xref: /openbmc/linux/drivers/md/md.c (revision bd926c63)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 
46 #include <linux/init.h>
47 
48 #include <linux/file.h>
49 
50 #ifdef CONFIG_KMOD
51 #include <linux/kmod.h>
52 #endif
53 
54 #include <asm/unaligned.h>
55 
56 #define MAJOR_NR MD_MAJOR
57 #define MD_DRIVER
58 
59 /* 63 partitions with the alternate major number (mdp) */
60 #define MdpMinorShift 6
61 
62 #define DEBUG 0
63 #define dprintk(x...) ((void)(DEBUG && printk(x)))
64 
65 
66 #ifndef MODULE
67 static void autostart_arrays (int part);
68 #endif
69 
70 static mdk_personality_t *pers[MAX_PERSONALITY];
71 static DEFINE_SPINLOCK(pers_lock);
72 
73 /*
74  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75  * is 1000 KB/sec, so the extra system load does not show up that much.
76  * Increase it if you want to have more _guaranteed_ speed. Note that
77  * the RAID driver will use the maximum available bandwidth if the IO
78  * subsystem is idle. There is also an 'absolute maximum' reconstruction
79  * speed limit - in case reconstruction slows down your system despite
80  * idle IO detection.
81  *
82  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
83  */
84 
85 static int sysctl_speed_limit_min = 1000;
86 static int sysctl_speed_limit_max = 200000;
87 
88 static struct ctl_table_header *raid_table_header;
89 
90 static ctl_table raid_table[] = {
91 	{
92 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
93 		.procname	= "speed_limit_min",
94 		.data		= &sysctl_speed_limit_min,
95 		.maxlen		= sizeof(int),
96 		.mode		= 0644,
97 		.proc_handler	= &proc_dointvec,
98 	},
99 	{
100 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
101 		.procname	= "speed_limit_max",
102 		.data		= &sysctl_speed_limit_max,
103 		.maxlen		= sizeof(int),
104 		.mode		= 0644,
105 		.proc_handler	= &proc_dointvec,
106 	},
107 	{ .ctl_name = 0 }
108 };
109 
110 static ctl_table raid_dir_table[] = {
111 	{
112 		.ctl_name	= DEV_RAID,
113 		.procname	= "raid",
114 		.maxlen		= 0,
115 		.mode		= 0555,
116 		.child		= raid_table,
117 	},
118 	{ .ctl_name = 0 }
119 };
120 
121 static ctl_table raid_root_table[] = {
122 	{
123 		.ctl_name	= CTL_DEV,
124 		.procname	= "dev",
125 		.maxlen		= 0,
126 		.mode		= 0555,
127 		.child		= raid_dir_table,
128 	},
129 	{ .ctl_name = 0 }
130 };
131 
132 static struct block_device_operations md_fops;
133 
134 /*
135  * Enables to iterate over all existing md arrays
136  * all_mddevs_lock protects this list.
137  */
138 static LIST_HEAD(all_mddevs);
139 static DEFINE_SPINLOCK(all_mddevs_lock);
140 
141 
142 /*
143  * iterates through all used mddevs in the system.
144  * We take care to grab the all_mddevs_lock whenever navigating
145  * the list, and to always hold a refcount when unlocked.
146  * Any code which breaks out of this loop while own
147  * a reference to the current mddev and must mddev_put it.
148  */
149 #define ITERATE_MDDEV(mddev,tmp)					\
150 									\
151 	for (({ spin_lock(&all_mddevs_lock); 				\
152 		tmp = all_mddevs.next;					\
153 		mddev = NULL;});					\
154 	     ({ if (tmp != &all_mddevs)					\
155 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
156 		spin_unlock(&all_mddevs_lock);				\
157 		if (mddev) mddev_put(mddev);				\
158 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
159 		tmp != &all_mddevs;});					\
160 	     ({ spin_lock(&all_mddevs_lock);				\
161 		tmp = tmp->next;})					\
162 		)
163 
164 
165 static int md_fail_request (request_queue_t *q, struct bio *bio)
166 {
167 	bio_io_error(bio, bio->bi_size);
168 	return 0;
169 }
170 
171 static inline mddev_t *mddev_get(mddev_t *mddev)
172 {
173 	atomic_inc(&mddev->active);
174 	return mddev;
175 }
176 
177 static void mddev_put(mddev_t *mddev)
178 {
179 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
180 		return;
181 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
182 		list_del(&mddev->all_mddevs);
183 		blk_put_queue(mddev->queue);
184 		kobject_unregister(&mddev->kobj);
185 	}
186 	spin_unlock(&all_mddevs_lock);
187 }
188 
189 static mddev_t * mddev_find(dev_t unit)
190 {
191 	mddev_t *mddev, *new = NULL;
192 
193  retry:
194 	spin_lock(&all_mddevs_lock);
195 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
196 		if (mddev->unit == unit) {
197 			mddev_get(mddev);
198 			spin_unlock(&all_mddevs_lock);
199 			kfree(new);
200 			return mddev;
201 		}
202 
203 	if (new) {
204 		list_add(&new->all_mddevs, &all_mddevs);
205 		spin_unlock(&all_mddevs_lock);
206 		return new;
207 	}
208 	spin_unlock(&all_mddevs_lock);
209 
210 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
211 	if (!new)
212 		return NULL;
213 
214 	memset(new, 0, sizeof(*new));
215 
216 	new->unit = unit;
217 	if (MAJOR(unit) == MD_MAJOR)
218 		new->md_minor = MINOR(unit);
219 	else
220 		new->md_minor = MINOR(unit) >> MdpMinorShift;
221 
222 	init_MUTEX(&new->reconfig_sem);
223 	INIT_LIST_HEAD(&new->disks);
224 	INIT_LIST_HEAD(&new->all_mddevs);
225 	init_timer(&new->safemode_timer);
226 	atomic_set(&new->active, 1);
227 	spin_lock_init(&new->write_lock);
228 	init_waitqueue_head(&new->sb_wait);
229 
230 	new->queue = blk_alloc_queue(GFP_KERNEL);
231 	if (!new->queue) {
232 		kfree(new);
233 		return NULL;
234 	}
235 
236 	blk_queue_make_request(new->queue, md_fail_request);
237 
238 	goto retry;
239 }
240 
241 static inline int mddev_lock(mddev_t * mddev)
242 {
243 	return down_interruptible(&mddev->reconfig_sem);
244 }
245 
246 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
247 {
248 	down(&mddev->reconfig_sem);
249 }
250 
251 static inline int mddev_trylock(mddev_t * mddev)
252 {
253 	return down_trylock(&mddev->reconfig_sem);
254 }
255 
256 static inline void mddev_unlock(mddev_t * mddev)
257 {
258 	up(&mddev->reconfig_sem);
259 
260 	md_wakeup_thread(mddev->thread);
261 }
262 
263 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
264 {
265 	mdk_rdev_t * rdev;
266 	struct list_head *tmp;
267 
268 	ITERATE_RDEV(mddev,rdev,tmp) {
269 		if (rdev->desc_nr == nr)
270 			return rdev;
271 	}
272 	return NULL;
273 }
274 
275 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
276 {
277 	struct list_head *tmp;
278 	mdk_rdev_t *rdev;
279 
280 	ITERATE_RDEV(mddev,rdev,tmp) {
281 		if (rdev->bdev->bd_dev == dev)
282 			return rdev;
283 	}
284 	return NULL;
285 }
286 
287 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
288 {
289 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
290 	return MD_NEW_SIZE_BLOCKS(size);
291 }
292 
293 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
294 {
295 	sector_t size;
296 
297 	size = rdev->sb_offset;
298 
299 	if (chunk_size)
300 		size &= ~((sector_t)chunk_size/1024 - 1);
301 	return size;
302 }
303 
304 static int alloc_disk_sb(mdk_rdev_t * rdev)
305 {
306 	if (rdev->sb_page)
307 		MD_BUG();
308 
309 	rdev->sb_page = alloc_page(GFP_KERNEL);
310 	if (!rdev->sb_page) {
311 		printk(KERN_ALERT "md: out of memory.\n");
312 		return -EINVAL;
313 	}
314 
315 	return 0;
316 }
317 
318 static void free_disk_sb(mdk_rdev_t * rdev)
319 {
320 	if (rdev->sb_page) {
321 		page_cache_release(rdev->sb_page);
322 		rdev->sb_loaded = 0;
323 		rdev->sb_page = NULL;
324 		rdev->sb_offset = 0;
325 		rdev->size = 0;
326 	}
327 }
328 
329 
330 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
331 {
332 	mdk_rdev_t *rdev = bio->bi_private;
333 	if (bio->bi_size)
334 		return 1;
335 
336 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
337 		md_error(rdev->mddev, rdev);
338 
339 	if (atomic_dec_and_test(&rdev->mddev->pending_writes))
340 		wake_up(&rdev->mddev->sb_wait);
341 	bio_put(bio);
342 	return 0;
343 }
344 
345 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
346 		   sector_t sector, int size, struct page *page)
347 {
348 	/* write first size bytes of page to sector of rdev
349 	 * Increment mddev->pending_writes before returning
350 	 * and decrement it on completion, waking up sb_wait
351 	 * if zero is reached.
352 	 * If an error occurred, call md_error
353 	 */
354 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
355 
356 	bio->bi_bdev = rdev->bdev;
357 	bio->bi_sector = sector;
358 	bio_add_page(bio, page, size, 0);
359 	bio->bi_private = rdev;
360 	bio->bi_end_io = super_written;
361 	atomic_inc(&mddev->pending_writes);
362 	submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
363 }
364 
365 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
366 {
367 	if (bio->bi_size)
368 		return 1;
369 
370 	complete((struct completion*)bio->bi_private);
371 	return 0;
372 }
373 
374 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
375 		   struct page *page, int rw)
376 {
377 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
378 	struct completion event;
379 	int ret;
380 
381 	rw |= (1 << BIO_RW_SYNC);
382 
383 	bio->bi_bdev = bdev;
384 	bio->bi_sector = sector;
385 	bio_add_page(bio, page, size, 0);
386 	init_completion(&event);
387 	bio->bi_private = &event;
388 	bio->bi_end_io = bi_complete;
389 	submit_bio(rw, bio);
390 	wait_for_completion(&event);
391 
392 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
393 	bio_put(bio);
394 	return ret;
395 }
396 
397 static int read_disk_sb(mdk_rdev_t * rdev, int size)
398 {
399 	char b[BDEVNAME_SIZE];
400 	if (!rdev->sb_page) {
401 		MD_BUG();
402 		return -EINVAL;
403 	}
404 	if (rdev->sb_loaded)
405 		return 0;
406 
407 
408 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
409 		goto fail;
410 	rdev->sb_loaded = 1;
411 	return 0;
412 
413 fail:
414 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
415 		bdevname(rdev->bdev,b));
416 	return -EINVAL;
417 }
418 
419 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
420 {
421 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
422 		(sb1->set_uuid1 == sb2->set_uuid1) &&
423 		(sb1->set_uuid2 == sb2->set_uuid2) &&
424 		(sb1->set_uuid3 == sb2->set_uuid3))
425 
426 		return 1;
427 
428 	return 0;
429 }
430 
431 
432 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
433 {
434 	int ret;
435 	mdp_super_t *tmp1, *tmp2;
436 
437 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
438 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
439 
440 	if (!tmp1 || !tmp2) {
441 		ret = 0;
442 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
443 		goto abort;
444 	}
445 
446 	*tmp1 = *sb1;
447 	*tmp2 = *sb2;
448 
449 	/*
450 	 * nr_disks is not constant
451 	 */
452 	tmp1->nr_disks = 0;
453 	tmp2->nr_disks = 0;
454 
455 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
456 		ret = 0;
457 	else
458 		ret = 1;
459 
460 abort:
461 	kfree(tmp1);
462 	kfree(tmp2);
463 	return ret;
464 }
465 
466 static unsigned int calc_sb_csum(mdp_super_t * sb)
467 {
468 	unsigned int disk_csum, csum;
469 
470 	disk_csum = sb->sb_csum;
471 	sb->sb_csum = 0;
472 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
473 	sb->sb_csum = disk_csum;
474 	return csum;
475 }
476 
477 
478 /*
479  * Handle superblock details.
480  * We want to be able to handle multiple superblock formats
481  * so we have a common interface to them all, and an array of
482  * different handlers.
483  * We rely on user-space to write the initial superblock, and support
484  * reading and updating of superblocks.
485  * Interface methods are:
486  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
487  *      loads and validates a superblock on dev.
488  *      if refdev != NULL, compare superblocks on both devices
489  *    Return:
490  *      0 - dev has a superblock that is compatible with refdev
491  *      1 - dev has a superblock that is compatible and newer than refdev
492  *          so dev should be used as the refdev in future
493  *     -EINVAL superblock incompatible or invalid
494  *     -othererror e.g. -EIO
495  *
496  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
497  *      Verify that dev is acceptable into mddev.
498  *       The first time, mddev->raid_disks will be 0, and data from
499  *       dev should be merged in.  Subsequent calls check that dev
500  *       is new enough.  Return 0 or -EINVAL
501  *
502  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
503  *     Update the superblock for rdev with data in mddev
504  *     This does not write to disc.
505  *
506  */
507 
508 struct super_type  {
509 	char 		*name;
510 	struct module	*owner;
511 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
512 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
513 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
514 };
515 
516 /*
517  * load_super for 0.90.0
518  */
519 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
520 {
521 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
522 	mdp_super_t *sb;
523 	int ret;
524 	sector_t sb_offset;
525 
526 	/*
527 	 * Calculate the position of the superblock,
528 	 * it's at the end of the disk.
529 	 *
530 	 * It also happens to be a multiple of 4Kb.
531 	 */
532 	sb_offset = calc_dev_sboffset(rdev->bdev);
533 	rdev->sb_offset = sb_offset;
534 
535 	ret = read_disk_sb(rdev, MD_SB_BYTES);
536 	if (ret) return ret;
537 
538 	ret = -EINVAL;
539 
540 	bdevname(rdev->bdev, b);
541 	sb = (mdp_super_t*)page_address(rdev->sb_page);
542 
543 	if (sb->md_magic != MD_SB_MAGIC) {
544 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
545 		       b);
546 		goto abort;
547 	}
548 
549 	if (sb->major_version != 0 ||
550 	    sb->minor_version != 90) {
551 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
552 			sb->major_version, sb->minor_version,
553 			b);
554 		goto abort;
555 	}
556 
557 	if (sb->raid_disks <= 0)
558 		goto abort;
559 
560 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
561 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
562 			b);
563 		goto abort;
564 	}
565 
566 	rdev->preferred_minor = sb->md_minor;
567 	rdev->data_offset = 0;
568 	rdev->sb_size = MD_SB_BYTES;
569 
570 	if (sb->level == LEVEL_MULTIPATH)
571 		rdev->desc_nr = -1;
572 	else
573 		rdev->desc_nr = sb->this_disk.number;
574 
575 	if (refdev == 0)
576 		ret = 1;
577 	else {
578 		__u64 ev1, ev2;
579 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
580 		if (!uuid_equal(refsb, sb)) {
581 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
582 				b, bdevname(refdev->bdev,b2));
583 			goto abort;
584 		}
585 		if (!sb_equal(refsb, sb)) {
586 			printk(KERN_WARNING "md: %s has same UUID"
587 			       " but different superblock to %s\n",
588 			       b, bdevname(refdev->bdev, b2));
589 			goto abort;
590 		}
591 		ev1 = md_event(sb);
592 		ev2 = md_event(refsb);
593 		if (ev1 > ev2)
594 			ret = 1;
595 		else
596 			ret = 0;
597 	}
598 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
599 
600  abort:
601 	return ret;
602 }
603 
604 /*
605  * validate_super for 0.90.0
606  */
607 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
608 {
609 	mdp_disk_t *desc;
610 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
611 
612 	rdev->raid_disk = -1;
613 	rdev->flags = 0;
614 	if (mddev->raid_disks == 0) {
615 		mddev->major_version = 0;
616 		mddev->minor_version = sb->minor_version;
617 		mddev->patch_version = sb->patch_version;
618 		mddev->persistent = ! sb->not_persistent;
619 		mddev->chunk_size = sb->chunk_size;
620 		mddev->ctime = sb->ctime;
621 		mddev->utime = sb->utime;
622 		mddev->level = sb->level;
623 		mddev->layout = sb->layout;
624 		mddev->raid_disks = sb->raid_disks;
625 		mddev->size = sb->size;
626 		mddev->events = md_event(sb);
627 		mddev->bitmap_offset = 0;
628 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
629 
630 		if (sb->state & (1<<MD_SB_CLEAN))
631 			mddev->recovery_cp = MaxSector;
632 		else {
633 			if (sb->events_hi == sb->cp_events_hi &&
634 				sb->events_lo == sb->cp_events_lo) {
635 				mddev->recovery_cp = sb->recovery_cp;
636 			} else
637 				mddev->recovery_cp = 0;
638 		}
639 
640 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
641 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
642 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
643 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
644 
645 		mddev->max_disks = MD_SB_DISKS;
646 
647 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
648 		    mddev->bitmap_file == NULL) {
649 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
650 				/* FIXME use a better test */
651 				printk(KERN_WARNING "md: bitmaps only support for raid1\n");
652 				return -EINVAL;
653 			}
654 			mddev->bitmap_offset = mddev->default_bitmap_offset;
655 		}
656 
657 	} else if (mddev->pers == NULL) {
658 		/* Insist on good event counter while assembling */
659 		__u64 ev1 = md_event(sb);
660 		++ev1;
661 		if (ev1 < mddev->events)
662 			return -EINVAL;
663 	} else if (mddev->bitmap) {
664 		/* if adding to array with a bitmap, then we can accept an
665 		 * older device ... but not too old.
666 		 */
667 		__u64 ev1 = md_event(sb);
668 		if (ev1 < mddev->bitmap->events_cleared)
669 			return 0;
670 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
671 		return 0;
672 
673 	if (mddev->level != LEVEL_MULTIPATH) {
674 		desc = sb->disks + rdev->desc_nr;
675 
676 		if (desc->state & (1<<MD_DISK_FAULTY))
677 			set_bit(Faulty, &rdev->flags);
678 		else if (desc->state & (1<<MD_DISK_SYNC) &&
679 			 desc->raid_disk < mddev->raid_disks) {
680 			set_bit(In_sync, &rdev->flags);
681 			rdev->raid_disk = desc->raid_disk;
682 		}
683 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
684 			set_bit(WriteMostly, &rdev->flags);
685 	} else /* MULTIPATH are always insync */
686 		set_bit(In_sync, &rdev->flags);
687 	return 0;
688 }
689 
690 /*
691  * sync_super for 0.90.0
692  */
693 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
694 {
695 	mdp_super_t *sb;
696 	struct list_head *tmp;
697 	mdk_rdev_t *rdev2;
698 	int next_spare = mddev->raid_disks;
699 	char nm[20];
700 
701 	/* make rdev->sb match mddev data..
702 	 *
703 	 * 1/ zero out disks
704 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
705 	 * 3/ any empty disks < next_spare become removed
706 	 *
707 	 * disks[0] gets initialised to REMOVED because
708 	 * we cannot be sure from other fields if it has
709 	 * been initialised or not.
710 	 */
711 	int i;
712 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
713 	unsigned int fixdesc=0;
714 
715 	rdev->sb_size = MD_SB_BYTES;
716 
717 	sb = (mdp_super_t*)page_address(rdev->sb_page);
718 
719 	memset(sb, 0, sizeof(*sb));
720 
721 	sb->md_magic = MD_SB_MAGIC;
722 	sb->major_version = mddev->major_version;
723 	sb->minor_version = mddev->minor_version;
724 	sb->patch_version = mddev->patch_version;
725 	sb->gvalid_words  = 0; /* ignored */
726 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
727 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
728 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
729 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
730 
731 	sb->ctime = mddev->ctime;
732 	sb->level = mddev->level;
733 	sb->size  = mddev->size;
734 	sb->raid_disks = mddev->raid_disks;
735 	sb->md_minor = mddev->md_minor;
736 	sb->not_persistent = !mddev->persistent;
737 	sb->utime = mddev->utime;
738 	sb->state = 0;
739 	sb->events_hi = (mddev->events>>32);
740 	sb->events_lo = (u32)mddev->events;
741 
742 	if (mddev->in_sync)
743 	{
744 		sb->recovery_cp = mddev->recovery_cp;
745 		sb->cp_events_hi = (mddev->events>>32);
746 		sb->cp_events_lo = (u32)mddev->events;
747 		if (mddev->recovery_cp == MaxSector)
748 			sb->state = (1<< MD_SB_CLEAN);
749 	} else
750 		sb->recovery_cp = 0;
751 
752 	sb->layout = mddev->layout;
753 	sb->chunk_size = mddev->chunk_size;
754 
755 	if (mddev->bitmap && mddev->bitmap_file == NULL)
756 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
757 
758 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
759 	ITERATE_RDEV(mddev,rdev2,tmp) {
760 		mdp_disk_t *d;
761 		int desc_nr;
762 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
763 		    && !test_bit(Faulty, &rdev2->flags))
764 			desc_nr = rdev2->raid_disk;
765 		else
766 			desc_nr = next_spare++;
767 		if (desc_nr != rdev2->desc_nr) {
768 			fixdesc |= (1 << desc_nr);
769 			rdev2->desc_nr = desc_nr;
770 			if (rdev2->raid_disk >= 0) {
771 				sprintf(nm, "rd%d", rdev2->raid_disk);
772 				sysfs_remove_link(&mddev->kobj, nm);
773 			}
774 			sysfs_remove_link(&rdev2->kobj, "block");
775 			kobject_del(&rdev2->kobj);
776 		}
777 		d = &sb->disks[rdev2->desc_nr];
778 		nr_disks++;
779 		d->number = rdev2->desc_nr;
780 		d->major = MAJOR(rdev2->bdev->bd_dev);
781 		d->minor = MINOR(rdev2->bdev->bd_dev);
782 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
783 		    && !test_bit(Faulty, &rdev2->flags))
784 			d->raid_disk = rdev2->raid_disk;
785 		else
786 			d->raid_disk = rdev2->desc_nr; /* compatibility */
787 		if (test_bit(Faulty, &rdev2->flags)) {
788 			d->state = (1<<MD_DISK_FAULTY);
789 			failed++;
790 		} else if (test_bit(In_sync, &rdev2->flags)) {
791 			d->state = (1<<MD_DISK_ACTIVE);
792 			d->state |= (1<<MD_DISK_SYNC);
793 			active++;
794 			working++;
795 		} else {
796 			d->state = 0;
797 			spare++;
798 			working++;
799 		}
800 		if (test_bit(WriteMostly, &rdev2->flags))
801 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
802 	}
803 	if (fixdesc)
804 		ITERATE_RDEV(mddev,rdev2,tmp)
805 			if (fixdesc & (1<<rdev2->desc_nr)) {
806 				snprintf(rdev2->kobj.name, KOBJ_NAME_LEN, "dev%d",
807 					 rdev2->desc_nr);
808 				/* kobject_add gets a ref on the parent, so
809 				 * we have to drop the one we already have
810 				 */
811 				kobject_add(&rdev2->kobj);
812 				kobject_put(rdev->kobj.parent);
813 				sysfs_create_link(&rdev2->kobj,
814 						  &rdev2->bdev->bd_disk->kobj,
815 						  "block");
816 				if (rdev2->raid_disk >= 0) {
817 					sprintf(nm, "rd%d", rdev2->raid_disk);
818 					sysfs_create_link(&mddev->kobj,
819 							  &rdev2->kobj, nm);
820 				}
821 			}
822 	/* now set the "removed" and "faulty" bits on any missing devices */
823 	for (i=0 ; i < mddev->raid_disks ; i++) {
824 		mdp_disk_t *d = &sb->disks[i];
825 		if (d->state == 0 && d->number == 0) {
826 			d->number = i;
827 			d->raid_disk = i;
828 			d->state = (1<<MD_DISK_REMOVED);
829 			d->state |= (1<<MD_DISK_FAULTY);
830 			failed++;
831 		}
832 	}
833 	sb->nr_disks = nr_disks;
834 	sb->active_disks = active;
835 	sb->working_disks = working;
836 	sb->failed_disks = failed;
837 	sb->spare_disks = spare;
838 
839 	sb->this_disk = sb->disks[rdev->desc_nr];
840 	sb->sb_csum = calc_sb_csum(sb);
841 }
842 
843 /*
844  * version 1 superblock
845  */
846 
847 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
848 {
849 	unsigned int disk_csum, csum;
850 	unsigned long long newcsum;
851 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
852 	unsigned int *isuper = (unsigned int*)sb;
853 	int i;
854 
855 	disk_csum = sb->sb_csum;
856 	sb->sb_csum = 0;
857 	newcsum = 0;
858 	for (i=0; size>=4; size -= 4 )
859 		newcsum += le32_to_cpu(*isuper++);
860 
861 	if (size == 2)
862 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
863 
864 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
865 	sb->sb_csum = disk_csum;
866 	return cpu_to_le32(csum);
867 }
868 
869 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
870 {
871 	struct mdp_superblock_1 *sb;
872 	int ret;
873 	sector_t sb_offset;
874 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
875 	int bmask;
876 
877 	/*
878 	 * Calculate the position of the superblock.
879 	 * It is always aligned to a 4K boundary and
880 	 * depeding on minor_version, it can be:
881 	 * 0: At least 8K, but less than 12K, from end of device
882 	 * 1: At start of device
883 	 * 2: 4K from start of device.
884 	 */
885 	switch(minor_version) {
886 	case 0:
887 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
888 		sb_offset -= 8*2;
889 		sb_offset &= ~(sector_t)(4*2-1);
890 		/* convert from sectors to K */
891 		sb_offset /= 2;
892 		break;
893 	case 1:
894 		sb_offset = 0;
895 		break;
896 	case 2:
897 		sb_offset = 4;
898 		break;
899 	default:
900 		return -EINVAL;
901 	}
902 	rdev->sb_offset = sb_offset;
903 
904 	/* superblock is rarely larger than 1K, but it can be larger,
905 	 * and it is safe to read 4k, so we do that
906 	 */
907 	ret = read_disk_sb(rdev, 4096);
908 	if (ret) return ret;
909 
910 
911 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
912 
913 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
914 	    sb->major_version != cpu_to_le32(1) ||
915 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
916 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
917 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
918 		return -EINVAL;
919 
920 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
921 		printk("md: invalid superblock checksum on %s\n",
922 			bdevname(rdev->bdev,b));
923 		return -EINVAL;
924 	}
925 	if (le64_to_cpu(sb->data_size) < 10) {
926 		printk("md: data_size too small on %s\n",
927 		       bdevname(rdev->bdev,b));
928 		return -EINVAL;
929 	}
930 	rdev->preferred_minor = 0xffff;
931 	rdev->data_offset = le64_to_cpu(sb->data_offset);
932 
933 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
934 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
935 	if (rdev->sb_size & bmask)
936 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
937 
938 	if (refdev == 0)
939 		return 1;
940 	else {
941 		__u64 ev1, ev2;
942 		struct mdp_superblock_1 *refsb =
943 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
944 
945 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
946 		    sb->level != refsb->level ||
947 		    sb->layout != refsb->layout ||
948 		    sb->chunksize != refsb->chunksize) {
949 			printk(KERN_WARNING "md: %s has strangely different"
950 				" superblock to %s\n",
951 				bdevname(rdev->bdev,b),
952 				bdevname(refdev->bdev,b2));
953 			return -EINVAL;
954 		}
955 		ev1 = le64_to_cpu(sb->events);
956 		ev2 = le64_to_cpu(refsb->events);
957 
958 		if (ev1 > ev2)
959 			return 1;
960 	}
961 	if (minor_version)
962 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
963 	else
964 		rdev->size = rdev->sb_offset;
965 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
966 		return -EINVAL;
967 	rdev->size = le64_to_cpu(sb->data_size)/2;
968 	if (le32_to_cpu(sb->chunksize))
969 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
970 	return 0;
971 }
972 
973 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
974 {
975 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
976 
977 	rdev->raid_disk = -1;
978 	rdev->flags = 0;
979 	if (mddev->raid_disks == 0) {
980 		mddev->major_version = 1;
981 		mddev->patch_version = 0;
982 		mddev->persistent = 1;
983 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
984 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
985 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
986 		mddev->level = le32_to_cpu(sb->level);
987 		mddev->layout = le32_to_cpu(sb->layout);
988 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
989 		mddev->size = le64_to_cpu(sb->size)/2;
990 		mddev->events = le64_to_cpu(sb->events);
991 		mddev->bitmap_offset = 0;
992 		mddev->default_bitmap_offset = 0;
993 		mddev->default_bitmap_offset = 1024;
994 
995 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
996 		memcpy(mddev->uuid, sb->set_uuid, 16);
997 
998 		mddev->max_disks =  (4096-256)/2;
999 
1000 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1001 		    mddev->bitmap_file == NULL ) {
1002 			if (mddev->level != 1) {
1003 				printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
1004 				return -EINVAL;
1005 			}
1006 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1007 		}
1008 	} else if (mddev->pers == NULL) {
1009 		/* Insist of good event counter while assembling */
1010 		__u64 ev1 = le64_to_cpu(sb->events);
1011 		++ev1;
1012 		if (ev1 < mddev->events)
1013 			return -EINVAL;
1014 	} else if (mddev->bitmap) {
1015 		/* If adding to array with a bitmap, then we can accept an
1016 		 * older device, but not too old.
1017 		 */
1018 		__u64 ev1 = le64_to_cpu(sb->events);
1019 		if (ev1 < mddev->bitmap->events_cleared)
1020 			return 0;
1021 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1022 		return 0;
1023 
1024 	if (mddev->level != LEVEL_MULTIPATH) {
1025 		int role;
1026 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1027 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1028 		switch(role) {
1029 		case 0xffff: /* spare */
1030 			break;
1031 		case 0xfffe: /* faulty */
1032 			set_bit(Faulty, &rdev->flags);
1033 			break;
1034 		default:
1035 			set_bit(In_sync, &rdev->flags);
1036 			rdev->raid_disk = role;
1037 			break;
1038 		}
1039 		if (sb->devflags & WriteMostly1)
1040 			set_bit(WriteMostly, &rdev->flags);
1041 	} else /* MULTIPATH are always insync */
1042 		set_bit(In_sync, &rdev->flags);
1043 
1044 	return 0;
1045 }
1046 
1047 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1048 {
1049 	struct mdp_superblock_1 *sb;
1050 	struct list_head *tmp;
1051 	mdk_rdev_t *rdev2;
1052 	int max_dev, i;
1053 	/* make rdev->sb match mddev and rdev data. */
1054 
1055 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1056 
1057 	sb->feature_map = 0;
1058 	sb->pad0 = 0;
1059 	memset(sb->pad1, 0, sizeof(sb->pad1));
1060 	memset(sb->pad2, 0, sizeof(sb->pad2));
1061 	memset(sb->pad3, 0, sizeof(sb->pad3));
1062 
1063 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1064 	sb->events = cpu_to_le64(mddev->events);
1065 	if (mddev->in_sync)
1066 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1067 	else
1068 		sb->resync_offset = cpu_to_le64(0);
1069 
1070 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1071 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1072 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1073 	}
1074 
1075 	max_dev = 0;
1076 	ITERATE_RDEV(mddev,rdev2,tmp)
1077 		if (rdev2->desc_nr+1 > max_dev)
1078 			max_dev = rdev2->desc_nr+1;
1079 
1080 	sb->max_dev = cpu_to_le32(max_dev);
1081 	for (i=0; i<max_dev;i++)
1082 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1083 
1084 	ITERATE_RDEV(mddev,rdev2,tmp) {
1085 		i = rdev2->desc_nr;
1086 		if (test_bit(Faulty, &rdev2->flags))
1087 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1088 		else if (test_bit(In_sync, &rdev2->flags))
1089 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1090 		else
1091 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1092 	}
1093 
1094 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1095 	sb->sb_csum = calc_sb_1_csum(sb);
1096 }
1097 
1098 
1099 static struct super_type super_types[] = {
1100 	[0] = {
1101 		.name	= "0.90.0",
1102 		.owner	= THIS_MODULE,
1103 		.load_super	= super_90_load,
1104 		.validate_super	= super_90_validate,
1105 		.sync_super	= super_90_sync,
1106 	},
1107 	[1] = {
1108 		.name	= "md-1",
1109 		.owner	= THIS_MODULE,
1110 		.load_super	= super_1_load,
1111 		.validate_super	= super_1_validate,
1112 		.sync_super	= super_1_sync,
1113 	},
1114 };
1115 
1116 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1117 {
1118 	struct list_head *tmp;
1119 	mdk_rdev_t *rdev;
1120 
1121 	ITERATE_RDEV(mddev,rdev,tmp)
1122 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1123 			return rdev;
1124 
1125 	return NULL;
1126 }
1127 
1128 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1129 {
1130 	struct list_head *tmp;
1131 	mdk_rdev_t *rdev;
1132 
1133 	ITERATE_RDEV(mddev1,rdev,tmp)
1134 		if (match_dev_unit(mddev2, rdev))
1135 			return 1;
1136 
1137 	return 0;
1138 }
1139 
1140 static LIST_HEAD(pending_raid_disks);
1141 
1142 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1143 {
1144 	mdk_rdev_t *same_pdev;
1145 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1146 
1147 	if (rdev->mddev) {
1148 		MD_BUG();
1149 		return -EINVAL;
1150 	}
1151 	same_pdev = match_dev_unit(mddev, rdev);
1152 	if (same_pdev)
1153 		printk(KERN_WARNING
1154 			"%s: WARNING: %s appears to be on the same physical"
1155 	 		" disk as %s. True\n     protection against single-disk"
1156 			" failure might be compromised.\n",
1157 			mdname(mddev), bdevname(rdev->bdev,b),
1158 			bdevname(same_pdev->bdev,b2));
1159 
1160 	/* Verify rdev->desc_nr is unique.
1161 	 * If it is -1, assign a free number, else
1162 	 * check number is not in use
1163 	 */
1164 	if (rdev->desc_nr < 0) {
1165 		int choice = 0;
1166 		if (mddev->pers) choice = mddev->raid_disks;
1167 		while (find_rdev_nr(mddev, choice))
1168 			choice++;
1169 		rdev->desc_nr = choice;
1170 	} else {
1171 		if (find_rdev_nr(mddev, rdev->desc_nr))
1172 			return -EBUSY;
1173 	}
1174 
1175 	list_add(&rdev->same_set, &mddev->disks);
1176 	rdev->mddev = mddev;
1177 	printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1178 
1179 	rdev->kobj.k_name = NULL;
1180 	snprintf(rdev->kobj.name, KOBJ_NAME_LEN, "dev%d", rdev->desc_nr);
1181 	rdev->kobj.parent = &mddev->kobj;
1182 	kobject_add(&rdev->kobj);
1183 
1184 	sysfs_create_link(&rdev->kobj, &rdev->bdev->bd_disk->kobj, "block");
1185 	return 0;
1186 }
1187 
1188 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1189 {
1190 	char b[BDEVNAME_SIZE];
1191 	if (!rdev->mddev) {
1192 		MD_BUG();
1193 		return;
1194 	}
1195 	list_del_init(&rdev->same_set);
1196 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1197 	rdev->mddev = NULL;
1198 	sysfs_remove_link(&rdev->kobj, "block");
1199 	kobject_del(&rdev->kobj);
1200 }
1201 
1202 /*
1203  * prevent the device from being mounted, repartitioned or
1204  * otherwise reused by a RAID array (or any other kernel
1205  * subsystem), by bd_claiming the device.
1206  */
1207 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1208 {
1209 	int err = 0;
1210 	struct block_device *bdev;
1211 	char b[BDEVNAME_SIZE];
1212 
1213 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1214 	if (IS_ERR(bdev)) {
1215 		printk(KERN_ERR "md: could not open %s.\n",
1216 			__bdevname(dev, b));
1217 		return PTR_ERR(bdev);
1218 	}
1219 	err = bd_claim(bdev, rdev);
1220 	if (err) {
1221 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1222 			bdevname(bdev, b));
1223 		blkdev_put(bdev);
1224 		return err;
1225 	}
1226 	rdev->bdev = bdev;
1227 	return err;
1228 }
1229 
1230 static void unlock_rdev(mdk_rdev_t *rdev)
1231 {
1232 	struct block_device *bdev = rdev->bdev;
1233 	rdev->bdev = NULL;
1234 	if (!bdev)
1235 		MD_BUG();
1236 	bd_release(bdev);
1237 	blkdev_put(bdev);
1238 }
1239 
1240 void md_autodetect_dev(dev_t dev);
1241 
1242 static void export_rdev(mdk_rdev_t * rdev)
1243 {
1244 	char b[BDEVNAME_SIZE];
1245 	printk(KERN_INFO "md: export_rdev(%s)\n",
1246 		bdevname(rdev->bdev,b));
1247 	if (rdev->mddev)
1248 		MD_BUG();
1249 	free_disk_sb(rdev);
1250 	list_del_init(&rdev->same_set);
1251 #ifndef MODULE
1252 	md_autodetect_dev(rdev->bdev->bd_dev);
1253 #endif
1254 	unlock_rdev(rdev);
1255 	kobject_put(&rdev->kobj);
1256 }
1257 
1258 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1259 {
1260 	unbind_rdev_from_array(rdev);
1261 	export_rdev(rdev);
1262 }
1263 
1264 static void export_array(mddev_t *mddev)
1265 {
1266 	struct list_head *tmp;
1267 	mdk_rdev_t *rdev;
1268 
1269 	ITERATE_RDEV(mddev,rdev,tmp) {
1270 		if (!rdev->mddev) {
1271 			MD_BUG();
1272 			continue;
1273 		}
1274 		kick_rdev_from_array(rdev);
1275 	}
1276 	if (!list_empty(&mddev->disks))
1277 		MD_BUG();
1278 	mddev->raid_disks = 0;
1279 	mddev->major_version = 0;
1280 }
1281 
1282 static void print_desc(mdp_disk_t *desc)
1283 {
1284 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1285 		desc->major,desc->minor,desc->raid_disk,desc->state);
1286 }
1287 
1288 static void print_sb(mdp_super_t *sb)
1289 {
1290 	int i;
1291 
1292 	printk(KERN_INFO
1293 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1294 		sb->major_version, sb->minor_version, sb->patch_version,
1295 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1296 		sb->ctime);
1297 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1298 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1299 		sb->md_minor, sb->layout, sb->chunk_size);
1300 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1301 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1302 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1303 		sb->failed_disks, sb->spare_disks,
1304 		sb->sb_csum, (unsigned long)sb->events_lo);
1305 
1306 	printk(KERN_INFO);
1307 	for (i = 0; i < MD_SB_DISKS; i++) {
1308 		mdp_disk_t *desc;
1309 
1310 		desc = sb->disks + i;
1311 		if (desc->number || desc->major || desc->minor ||
1312 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1313 			printk("     D %2d: ", i);
1314 			print_desc(desc);
1315 		}
1316 	}
1317 	printk(KERN_INFO "md:     THIS: ");
1318 	print_desc(&sb->this_disk);
1319 
1320 }
1321 
1322 static void print_rdev(mdk_rdev_t *rdev)
1323 {
1324 	char b[BDEVNAME_SIZE];
1325 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1326 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1327 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1328 	        rdev->desc_nr);
1329 	if (rdev->sb_loaded) {
1330 		printk(KERN_INFO "md: rdev superblock:\n");
1331 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1332 	} else
1333 		printk(KERN_INFO "md: no rdev superblock!\n");
1334 }
1335 
1336 void md_print_devices(void)
1337 {
1338 	struct list_head *tmp, *tmp2;
1339 	mdk_rdev_t *rdev;
1340 	mddev_t *mddev;
1341 	char b[BDEVNAME_SIZE];
1342 
1343 	printk("\n");
1344 	printk("md:	**********************************\n");
1345 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1346 	printk("md:	**********************************\n");
1347 	ITERATE_MDDEV(mddev,tmp) {
1348 
1349 		if (mddev->bitmap)
1350 			bitmap_print_sb(mddev->bitmap);
1351 		else
1352 			printk("%s: ", mdname(mddev));
1353 		ITERATE_RDEV(mddev,rdev,tmp2)
1354 			printk("<%s>", bdevname(rdev->bdev,b));
1355 		printk("\n");
1356 
1357 		ITERATE_RDEV(mddev,rdev,tmp2)
1358 			print_rdev(rdev);
1359 	}
1360 	printk("md:	**********************************\n");
1361 	printk("\n");
1362 }
1363 
1364 
1365 static void sync_sbs(mddev_t * mddev)
1366 {
1367 	mdk_rdev_t *rdev;
1368 	struct list_head *tmp;
1369 
1370 	ITERATE_RDEV(mddev,rdev,tmp) {
1371 		super_types[mddev->major_version].
1372 			sync_super(mddev, rdev);
1373 		rdev->sb_loaded = 1;
1374 	}
1375 }
1376 
1377 static void md_update_sb(mddev_t * mddev)
1378 {
1379 	int err;
1380 	struct list_head *tmp;
1381 	mdk_rdev_t *rdev;
1382 	int sync_req;
1383 
1384 repeat:
1385 	spin_lock(&mddev->write_lock);
1386 	sync_req = mddev->in_sync;
1387 	mddev->utime = get_seconds();
1388 	mddev->events ++;
1389 
1390 	if (!mddev->events) {
1391 		/*
1392 		 * oops, this 64-bit counter should never wrap.
1393 		 * Either we are in around ~1 trillion A.C., assuming
1394 		 * 1 reboot per second, or we have a bug:
1395 		 */
1396 		MD_BUG();
1397 		mddev->events --;
1398 	}
1399 	mddev->sb_dirty = 2;
1400 	sync_sbs(mddev);
1401 
1402 	/*
1403 	 * do not write anything to disk if using
1404 	 * nonpersistent superblocks
1405 	 */
1406 	if (!mddev->persistent) {
1407 		mddev->sb_dirty = 0;
1408 		spin_unlock(&mddev->write_lock);
1409 		wake_up(&mddev->sb_wait);
1410 		return;
1411 	}
1412 	spin_unlock(&mddev->write_lock);
1413 
1414 	dprintk(KERN_INFO
1415 		"md: updating %s RAID superblock on device (in sync %d)\n",
1416 		mdname(mddev),mddev->in_sync);
1417 
1418 	err = bitmap_update_sb(mddev->bitmap);
1419 	ITERATE_RDEV(mddev,rdev,tmp) {
1420 		char b[BDEVNAME_SIZE];
1421 		dprintk(KERN_INFO "md: ");
1422 		if (test_bit(Faulty, &rdev->flags))
1423 			dprintk("(skipping faulty ");
1424 
1425 		dprintk("%s ", bdevname(rdev->bdev,b));
1426 		if (!test_bit(Faulty, &rdev->flags)) {
1427 			md_super_write(mddev,rdev,
1428 				       rdev->sb_offset<<1, rdev->sb_size,
1429 				       rdev->sb_page);
1430 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1431 				bdevname(rdev->bdev,b),
1432 				(unsigned long long)rdev->sb_offset);
1433 
1434 		} else
1435 			dprintk(")\n");
1436 		if (mddev->level == LEVEL_MULTIPATH)
1437 			/* only need to write one superblock... */
1438 			break;
1439 	}
1440 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1441 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1442 
1443 	spin_lock(&mddev->write_lock);
1444 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1445 		/* have to write it out again */
1446 		spin_unlock(&mddev->write_lock);
1447 		goto repeat;
1448 	}
1449 	mddev->sb_dirty = 0;
1450 	spin_unlock(&mddev->write_lock);
1451 	wake_up(&mddev->sb_wait);
1452 
1453 }
1454 
1455 struct rdev_sysfs_entry {
1456 	struct attribute attr;
1457 	ssize_t (*show)(mdk_rdev_t *, char *);
1458 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1459 };
1460 
1461 static ssize_t
1462 rdev_show_state(mdk_rdev_t *rdev, char *page)
1463 {
1464 	char *sep = "";
1465 	int len=0;
1466 
1467 	if (test_bit(Faulty, &rdev->flags)) {
1468 		len+= sprintf(page+len, "%sfaulty",sep);
1469 		sep = ",";
1470 	}
1471 	if (test_bit(In_sync, &rdev->flags)) {
1472 		len += sprintf(page+len, "%sin_sync",sep);
1473 		sep = ",";
1474 	}
1475 	if (!test_bit(Faulty, &rdev->flags) &&
1476 	    !test_bit(In_sync, &rdev->flags)) {
1477 		len += sprintf(page+len, "%sspare", sep);
1478 		sep = ",";
1479 	}
1480 	return len+sprintf(page+len, "\n");
1481 }
1482 
1483 static struct rdev_sysfs_entry rdev_state = {
1484 	.attr = {.name = "state", .mode = S_IRUGO },
1485 	.show = rdev_show_state,
1486 };
1487 
1488 static ssize_t
1489 rdev_show_super(mdk_rdev_t *rdev, char *page)
1490 {
1491 	if (rdev->sb_loaded && rdev->sb_size) {
1492 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1493 		return rdev->sb_size;
1494 	} else
1495 		return 0;
1496 }
1497 static struct rdev_sysfs_entry rdev_super = {
1498 	.attr = {.name = "super", .mode = S_IRUGO },
1499 	.show = rdev_show_super,
1500 };
1501 static struct attribute *rdev_default_attrs[] = {
1502 	&rdev_state.attr,
1503 	&rdev_super.attr,
1504 	NULL,
1505 };
1506 static ssize_t
1507 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1508 {
1509 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1510 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1511 
1512 	if (!entry->show)
1513 		return -EIO;
1514 	return entry->show(rdev, page);
1515 }
1516 
1517 static ssize_t
1518 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1519 	      const char *page, size_t length)
1520 {
1521 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1522 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1523 
1524 	if (!entry->store)
1525 		return -EIO;
1526 	return entry->store(rdev, page, length);
1527 }
1528 
1529 static void rdev_free(struct kobject *ko)
1530 {
1531 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1532 	kfree(rdev);
1533 }
1534 static struct sysfs_ops rdev_sysfs_ops = {
1535 	.show		= rdev_attr_show,
1536 	.store		= rdev_attr_store,
1537 };
1538 static struct kobj_type rdev_ktype = {
1539 	.release	= rdev_free,
1540 	.sysfs_ops	= &rdev_sysfs_ops,
1541 	.default_attrs	= rdev_default_attrs,
1542 };
1543 
1544 /*
1545  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1546  *
1547  * mark the device faulty if:
1548  *
1549  *   - the device is nonexistent (zero size)
1550  *   - the device has no valid superblock
1551  *
1552  * a faulty rdev _never_ has rdev->sb set.
1553  */
1554 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1555 {
1556 	char b[BDEVNAME_SIZE];
1557 	int err;
1558 	mdk_rdev_t *rdev;
1559 	sector_t size;
1560 
1561 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1562 	if (!rdev) {
1563 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1564 		return ERR_PTR(-ENOMEM);
1565 	}
1566 	memset(rdev, 0, sizeof(*rdev));
1567 
1568 	if ((err = alloc_disk_sb(rdev)))
1569 		goto abort_free;
1570 
1571 	err = lock_rdev(rdev, newdev);
1572 	if (err)
1573 		goto abort_free;
1574 
1575 	rdev->kobj.parent = NULL;
1576 	rdev->kobj.ktype = &rdev_ktype;
1577 	kobject_init(&rdev->kobj);
1578 
1579 	rdev->desc_nr = -1;
1580 	rdev->flags = 0;
1581 	rdev->data_offset = 0;
1582 	atomic_set(&rdev->nr_pending, 0);
1583 	atomic_set(&rdev->read_errors, 0);
1584 
1585 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1586 	if (!size) {
1587 		printk(KERN_WARNING
1588 			"md: %s has zero or unknown size, marking faulty!\n",
1589 			bdevname(rdev->bdev,b));
1590 		err = -EINVAL;
1591 		goto abort_free;
1592 	}
1593 
1594 	if (super_format >= 0) {
1595 		err = super_types[super_format].
1596 			load_super(rdev, NULL, super_minor);
1597 		if (err == -EINVAL) {
1598 			printk(KERN_WARNING
1599 				"md: %s has invalid sb, not importing!\n",
1600 				bdevname(rdev->bdev,b));
1601 			goto abort_free;
1602 		}
1603 		if (err < 0) {
1604 			printk(KERN_WARNING
1605 				"md: could not read %s's sb, not importing!\n",
1606 				bdevname(rdev->bdev,b));
1607 			goto abort_free;
1608 		}
1609 	}
1610 	INIT_LIST_HEAD(&rdev->same_set);
1611 
1612 	return rdev;
1613 
1614 abort_free:
1615 	if (rdev->sb_page) {
1616 		if (rdev->bdev)
1617 			unlock_rdev(rdev);
1618 		free_disk_sb(rdev);
1619 	}
1620 	kfree(rdev);
1621 	return ERR_PTR(err);
1622 }
1623 
1624 /*
1625  * Check a full RAID array for plausibility
1626  */
1627 
1628 
1629 static void analyze_sbs(mddev_t * mddev)
1630 {
1631 	int i;
1632 	struct list_head *tmp;
1633 	mdk_rdev_t *rdev, *freshest;
1634 	char b[BDEVNAME_SIZE];
1635 
1636 	freshest = NULL;
1637 	ITERATE_RDEV(mddev,rdev,tmp)
1638 		switch (super_types[mddev->major_version].
1639 			load_super(rdev, freshest, mddev->minor_version)) {
1640 		case 1:
1641 			freshest = rdev;
1642 			break;
1643 		case 0:
1644 			break;
1645 		default:
1646 			printk( KERN_ERR \
1647 				"md: fatal superblock inconsistency in %s"
1648 				" -- removing from array\n",
1649 				bdevname(rdev->bdev,b));
1650 			kick_rdev_from_array(rdev);
1651 		}
1652 
1653 
1654 	super_types[mddev->major_version].
1655 		validate_super(mddev, freshest);
1656 
1657 	i = 0;
1658 	ITERATE_RDEV(mddev,rdev,tmp) {
1659 		if (rdev != freshest)
1660 			if (super_types[mddev->major_version].
1661 			    validate_super(mddev, rdev)) {
1662 				printk(KERN_WARNING "md: kicking non-fresh %s"
1663 					" from array!\n",
1664 					bdevname(rdev->bdev,b));
1665 				kick_rdev_from_array(rdev);
1666 				continue;
1667 			}
1668 		if (mddev->level == LEVEL_MULTIPATH) {
1669 			rdev->desc_nr = i++;
1670 			rdev->raid_disk = rdev->desc_nr;
1671 			set_bit(In_sync, &rdev->flags);
1672 		}
1673 	}
1674 
1675 
1676 
1677 	if (mddev->recovery_cp != MaxSector &&
1678 	    mddev->level >= 1)
1679 		printk(KERN_ERR "md: %s: raid array is not clean"
1680 		       " -- starting background reconstruction\n",
1681 		       mdname(mddev));
1682 
1683 }
1684 
1685 static ssize_t
1686 md_show_level(mddev_t *mddev, char *page)
1687 {
1688 	mdk_personality_t *p = mddev->pers;
1689 	if (p == NULL)
1690 		return 0;
1691 	if (mddev->level >= 0)
1692 		return sprintf(page, "RAID-%d\n", mddev->level);
1693 	else
1694 		return sprintf(page, "%s\n", p->name);
1695 }
1696 
1697 static struct md_sysfs_entry md_level = {
1698 	.attr = {.name = "level", .mode = S_IRUGO },
1699 	.show = md_show_level,
1700 };
1701 
1702 static ssize_t
1703 md_show_rdisks(mddev_t *mddev, char *page)
1704 {
1705 	return sprintf(page, "%d\n", mddev->raid_disks);
1706 }
1707 
1708 static struct md_sysfs_entry md_raid_disks = {
1709 	.attr = {.name = "raid_disks", .mode = S_IRUGO },
1710 	.show = md_show_rdisks,
1711 };
1712 
1713 static ssize_t
1714 md_show_scan(mddev_t *mddev, char *page)
1715 {
1716 	char *type = "none";
1717 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1718 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1719 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1720 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1721 				type = "resync";
1722 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1723 				type = "check";
1724 			else
1725 				type = "repair";
1726 		} else
1727 			type = "recover";
1728 	}
1729 	return sprintf(page, "%s\n", type);
1730 }
1731 
1732 static ssize_t
1733 md_store_scan(mddev_t *mddev, const char *page, size_t len)
1734 {
1735 	int canscan=0;
1736 
1737 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1738 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1739 		return -EBUSY;
1740 	down(&mddev->reconfig_sem);
1741 	if (mddev->pers && mddev->pers->sync_request)
1742 		canscan=1;
1743 	up(&mddev->reconfig_sem);
1744 	if (!canscan)
1745 		return -EINVAL;
1746 
1747 	if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
1748 		set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1749 	else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
1750 		return -EINVAL;
1751 	set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1752 	set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1753 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1754 	md_wakeup_thread(mddev->thread);
1755 	return len;
1756 }
1757 
1758 static ssize_t
1759 md_show_mismatch(mddev_t *mddev, char *page)
1760 {
1761 	return sprintf(page, "%llu\n",
1762 		       (unsigned long long) mddev->resync_mismatches);
1763 }
1764 
1765 static struct md_sysfs_entry md_scan_mode = {
1766 	.attr = {.name = "scan_mode", .mode = S_IRUGO|S_IWUSR },
1767 	.show = md_show_scan,
1768 	.store = md_store_scan,
1769 };
1770 
1771 static struct md_sysfs_entry md_mismatches = {
1772 	.attr = {.name = "mismatch_cnt", .mode = S_IRUGO },
1773 	.show = md_show_mismatch,
1774 };
1775 
1776 static struct attribute *md_default_attrs[] = {
1777 	&md_level.attr,
1778 	&md_raid_disks.attr,
1779 	&md_scan_mode.attr,
1780 	&md_mismatches.attr,
1781 	NULL,
1782 };
1783 
1784 static ssize_t
1785 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1786 {
1787 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1788 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1789 
1790 	if (!entry->show)
1791 		return -EIO;
1792 	return entry->show(mddev, page);
1793 }
1794 
1795 static ssize_t
1796 md_attr_store(struct kobject *kobj, struct attribute *attr,
1797 	      const char *page, size_t length)
1798 {
1799 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1800 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1801 
1802 	if (!entry->store)
1803 		return -EIO;
1804 	return entry->store(mddev, page, length);
1805 }
1806 
1807 static void md_free(struct kobject *ko)
1808 {
1809 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
1810 	kfree(mddev);
1811 }
1812 
1813 static struct sysfs_ops md_sysfs_ops = {
1814 	.show	= md_attr_show,
1815 	.store	= md_attr_store,
1816 };
1817 static struct kobj_type md_ktype = {
1818 	.release	= md_free,
1819 	.sysfs_ops	= &md_sysfs_ops,
1820 	.default_attrs	= md_default_attrs,
1821 };
1822 
1823 int mdp_major = 0;
1824 
1825 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1826 {
1827 	static DECLARE_MUTEX(disks_sem);
1828 	mddev_t *mddev = mddev_find(dev);
1829 	struct gendisk *disk;
1830 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1831 	int shift = partitioned ? MdpMinorShift : 0;
1832 	int unit = MINOR(dev) >> shift;
1833 
1834 	if (!mddev)
1835 		return NULL;
1836 
1837 	down(&disks_sem);
1838 	if (mddev->gendisk) {
1839 		up(&disks_sem);
1840 		mddev_put(mddev);
1841 		return NULL;
1842 	}
1843 	disk = alloc_disk(1 << shift);
1844 	if (!disk) {
1845 		up(&disks_sem);
1846 		mddev_put(mddev);
1847 		return NULL;
1848 	}
1849 	disk->major = MAJOR(dev);
1850 	disk->first_minor = unit << shift;
1851 	if (partitioned) {
1852 		sprintf(disk->disk_name, "md_d%d", unit);
1853 		sprintf(disk->devfs_name, "md/d%d", unit);
1854 	} else {
1855 		sprintf(disk->disk_name, "md%d", unit);
1856 		sprintf(disk->devfs_name, "md/%d", unit);
1857 	}
1858 	disk->fops = &md_fops;
1859 	disk->private_data = mddev;
1860 	disk->queue = mddev->queue;
1861 	add_disk(disk);
1862 	mddev->gendisk = disk;
1863 	up(&disks_sem);
1864 	mddev->kobj.parent = &disk->kobj;
1865 	mddev->kobj.k_name = NULL;
1866 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1867 	mddev->kobj.ktype = &md_ktype;
1868 	kobject_register(&mddev->kobj);
1869 	return NULL;
1870 }
1871 
1872 void md_wakeup_thread(mdk_thread_t *thread);
1873 
1874 static void md_safemode_timeout(unsigned long data)
1875 {
1876 	mddev_t *mddev = (mddev_t *) data;
1877 
1878 	mddev->safemode = 1;
1879 	md_wakeup_thread(mddev->thread);
1880 }
1881 
1882 
1883 static int do_md_run(mddev_t * mddev)
1884 {
1885 	int pnum, err;
1886 	int chunk_size;
1887 	struct list_head *tmp;
1888 	mdk_rdev_t *rdev;
1889 	struct gendisk *disk;
1890 	char b[BDEVNAME_SIZE];
1891 
1892 	if (list_empty(&mddev->disks))
1893 		/* cannot run an array with no devices.. */
1894 		return -EINVAL;
1895 
1896 	if (mddev->pers)
1897 		return -EBUSY;
1898 
1899 	/*
1900 	 * Analyze all RAID superblock(s)
1901 	 */
1902 	if (!mddev->raid_disks)
1903 		analyze_sbs(mddev);
1904 
1905 	chunk_size = mddev->chunk_size;
1906 	pnum = level_to_pers(mddev->level);
1907 
1908 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1909 		if (!chunk_size) {
1910 			/*
1911 			 * 'default chunksize' in the old md code used to
1912 			 * be PAGE_SIZE, baaad.
1913 			 * we abort here to be on the safe side. We don't
1914 			 * want to continue the bad practice.
1915 			 */
1916 			printk(KERN_ERR
1917 				"no chunksize specified, see 'man raidtab'\n");
1918 			return -EINVAL;
1919 		}
1920 		if (chunk_size > MAX_CHUNK_SIZE) {
1921 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1922 				chunk_size, MAX_CHUNK_SIZE);
1923 			return -EINVAL;
1924 		}
1925 		/*
1926 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1927 		 */
1928 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1929 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1930 			return -EINVAL;
1931 		}
1932 		if (chunk_size < PAGE_SIZE) {
1933 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1934 				chunk_size, PAGE_SIZE);
1935 			return -EINVAL;
1936 		}
1937 
1938 		/* devices must have minimum size of one chunk */
1939 		ITERATE_RDEV(mddev,rdev,tmp) {
1940 			if (test_bit(Faulty, &rdev->flags))
1941 				continue;
1942 			if (rdev->size < chunk_size / 1024) {
1943 				printk(KERN_WARNING
1944 					"md: Dev %s smaller than chunk_size:"
1945 					" %lluk < %dk\n",
1946 					bdevname(rdev->bdev,b),
1947 					(unsigned long long)rdev->size,
1948 					chunk_size / 1024);
1949 				return -EINVAL;
1950 			}
1951 		}
1952 	}
1953 
1954 #ifdef CONFIG_KMOD
1955 	if (!pers[pnum])
1956 	{
1957 		request_module("md-personality-%d", pnum);
1958 	}
1959 #endif
1960 
1961 	/*
1962 	 * Drop all container device buffers, from now on
1963 	 * the only valid external interface is through the md
1964 	 * device.
1965 	 * Also find largest hardsector size
1966 	 */
1967 	ITERATE_RDEV(mddev,rdev,tmp) {
1968 		if (test_bit(Faulty, &rdev->flags))
1969 			continue;
1970 		sync_blockdev(rdev->bdev);
1971 		invalidate_bdev(rdev->bdev, 0);
1972 	}
1973 
1974 	md_probe(mddev->unit, NULL, NULL);
1975 	disk = mddev->gendisk;
1976 	if (!disk)
1977 		return -ENOMEM;
1978 
1979 	spin_lock(&pers_lock);
1980 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1981 		spin_unlock(&pers_lock);
1982 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
1983 		       pnum);
1984 		return -EINVAL;
1985 	}
1986 
1987 	mddev->pers = pers[pnum];
1988 	spin_unlock(&pers_lock);
1989 
1990 	mddev->recovery = 0;
1991 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1992 
1993 	/* before we start the array running, initialise the bitmap */
1994 	err = bitmap_create(mddev);
1995 	if (err)
1996 		printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1997 			mdname(mddev), err);
1998 	else
1999 		err = mddev->pers->run(mddev);
2000 	if (err) {
2001 		printk(KERN_ERR "md: pers->run() failed ...\n");
2002 		module_put(mddev->pers->owner);
2003 		mddev->pers = NULL;
2004 		bitmap_destroy(mddev);
2005 		return err;
2006 	}
2007  	atomic_set(&mddev->writes_pending,0);
2008 	mddev->safemode = 0;
2009 	mddev->safemode_timer.function = md_safemode_timeout;
2010 	mddev->safemode_timer.data = (unsigned long) mddev;
2011 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2012 	mddev->in_sync = 1;
2013 
2014 	ITERATE_RDEV(mddev,rdev,tmp)
2015 		if (rdev->raid_disk >= 0) {
2016 			char nm[20];
2017 			sprintf(nm, "rd%d", rdev->raid_disk);
2018 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2019 		}
2020 
2021 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2022 	md_wakeup_thread(mddev->thread);
2023 
2024 	if (mddev->sb_dirty)
2025 		md_update_sb(mddev);
2026 
2027 	set_capacity(disk, mddev->array_size<<1);
2028 
2029 	/* If we call blk_queue_make_request here, it will
2030 	 * re-initialise max_sectors etc which may have been
2031 	 * refined inside -> run.  So just set the bits we need to set.
2032 	 * Most initialisation happended when we called
2033 	 * blk_queue_make_request(..., md_fail_request)
2034 	 * earlier.
2035 	 */
2036 	mddev->queue->queuedata = mddev;
2037 	mddev->queue->make_request_fn = mddev->pers->make_request;
2038 
2039 	mddev->changed = 1;
2040 	return 0;
2041 }
2042 
2043 static int restart_array(mddev_t *mddev)
2044 {
2045 	struct gendisk *disk = mddev->gendisk;
2046 	int err;
2047 
2048 	/*
2049 	 * Complain if it has no devices
2050 	 */
2051 	err = -ENXIO;
2052 	if (list_empty(&mddev->disks))
2053 		goto out;
2054 
2055 	if (mddev->pers) {
2056 		err = -EBUSY;
2057 		if (!mddev->ro)
2058 			goto out;
2059 
2060 		mddev->safemode = 0;
2061 		mddev->ro = 0;
2062 		set_disk_ro(disk, 0);
2063 
2064 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2065 			mdname(mddev));
2066 		/*
2067 		 * Kick recovery or resync if necessary
2068 		 */
2069 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2070 		md_wakeup_thread(mddev->thread);
2071 		err = 0;
2072 	} else {
2073 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2074 			mdname(mddev));
2075 		err = -EINVAL;
2076 	}
2077 
2078 out:
2079 	return err;
2080 }
2081 
2082 static int do_md_stop(mddev_t * mddev, int ro)
2083 {
2084 	int err = 0;
2085 	struct gendisk *disk = mddev->gendisk;
2086 
2087 	if (mddev->pers) {
2088 		if (atomic_read(&mddev->active)>2) {
2089 			printk("md: %s still in use.\n",mdname(mddev));
2090 			return -EBUSY;
2091 		}
2092 
2093 		if (mddev->sync_thread) {
2094 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2095 			md_unregister_thread(mddev->sync_thread);
2096 			mddev->sync_thread = NULL;
2097 		}
2098 
2099 		del_timer_sync(&mddev->safemode_timer);
2100 
2101 		invalidate_partition(disk, 0);
2102 
2103 		if (ro) {
2104 			err  = -ENXIO;
2105 			if (mddev->ro)
2106 				goto out;
2107 			mddev->ro = 1;
2108 		} else {
2109 			bitmap_flush(mddev);
2110 			wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
2111 			if (mddev->ro)
2112 				set_disk_ro(disk, 0);
2113 			blk_queue_make_request(mddev->queue, md_fail_request);
2114 			mddev->pers->stop(mddev);
2115 			module_put(mddev->pers->owner);
2116 			mddev->pers = NULL;
2117 			if (mddev->ro)
2118 				mddev->ro = 0;
2119 		}
2120 		if (!mddev->in_sync) {
2121 			/* mark array as shutdown cleanly */
2122 			mddev->in_sync = 1;
2123 			md_update_sb(mddev);
2124 		}
2125 		if (ro)
2126 			set_disk_ro(disk, 1);
2127 	}
2128 
2129 	bitmap_destroy(mddev);
2130 	if (mddev->bitmap_file) {
2131 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2132 		fput(mddev->bitmap_file);
2133 		mddev->bitmap_file = NULL;
2134 	}
2135 	mddev->bitmap_offset = 0;
2136 
2137 	/*
2138 	 * Free resources if final stop
2139 	 */
2140 	if (!ro) {
2141 		mdk_rdev_t *rdev;
2142 		struct list_head *tmp;
2143 		struct gendisk *disk;
2144 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2145 
2146 		ITERATE_RDEV(mddev,rdev,tmp)
2147 			if (rdev->raid_disk >= 0) {
2148 				char nm[20];
2149 				sprintf(nm, "rd%d", rdev->raid_disk);
2150 				sysfs_remove_link(&mddev->kobj, nm);
2151 			}
2152 
2153 		export_array(mddev);
2154 
2155 		mddev->array_size = 0;
2156 		disk = mddev->gendisk;
2157 		if (disk)
2158 			set_capacity(disk, 0);
2159 		mddev->changed = 1;
2160 	} else
2161 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2162 			mdname(mddev));
2163 	err = 0;
2164 out:
2165 	return err;
2166 }
2167 
2168 static void autorun_array(mddev_t *mddev)
2169 {
2170 	mdk_rdev_t *rdev;
2171 	struct list_head *tmp;
2172 	int err;
2173 
2174 	if (list_empty(&mddev->disks))
2175 		return;
2176 
2177 	printk(KERN_INFO "md: running: ");
2178 
2179 	ITERATE_RDEV(mddev,rdev,tmp) {
2180 		char b[BDEVNAME_SIZE];
2181 		printk("<%s>", bdevname(rdev->bdev,b));
2182 	}
2183 	printk("\n");
2184 
2185 	err = do_md_run (mddev);
2186 	if (err) {
2187 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2188 		do_md_stop (mddev, 0);
2189 	}
2190 }
2191 
2192 /*
2193  * lets try to run arrays based on all disks that have arrived
2194  * until now. (those are in pending_raid_disks)
2195  *
2196  * the method: pick the first pending disk, collect all disks with
2197  * the same UUID, remove all from the pending list and put them into
2198  * the 'same_array' list. Then order this list based on superblock
2199  * update time (freshest comes first), kick out 'old' disks and
2200  * compare superblocks. If everything's fine then run it.
2201  *
2202  * If "unit" is allocated, then bump its reference count
2203  */
2204 static void autorun_devices(int part)
2205 {
2206 	struct list_head candidates;
2207 	struct list_head *tmp;
2208 	mdk_rdev_t *rdev0, *rdev;
2209 	mddev_t *mddev;
2210 	char b[BDEVNAME_SIZE];
2211 
2212 	printk(KERN_INFO "md: autorun ...\n");
2213 	while (!list_empty(&pending_raid_disks)) {
2214 		dev_t dev;
2215 		rdev0 = list_entry(pending_raid_disks.next,
2216 					 mdk_rdev_t, same_set);
2217 
2218 		printk(KERN_INFO "md: considering %s ...\n",
2219 			bdevname(rdev0->bdev,b));
2220 		INIT_LIST_HEAD(&candidates);
2221 		ITERATE_RDEV_PENDING(rdev,tmp)
2222 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2223 				printk(KERN_INFO "md:  adding %s ...\n",
2224 					bdevname(rdev->bdev,b));
2225 				list_move(&rdev->same_set, &candidates);
2226 			}
2227 		/*
2228 		 * now we have a set of devices, with all of them having
2229 		 * mostly sane superblocks. It's time to allocate the
2230 		 * mddev.
2231 		 */
2232 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2233 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2234 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2235 			break;
2236 		}
2237 		if (part)
2238 			dev = MKDEV(mdp_major,
2239 				    rdev0->preferred_minor << MdpMinorShift);
2240 		else
2241 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2242 
2243 		md_probe(dev, NULL, NULL);
2244 		mddev = mddev_find(dev);
2245 		if (!mddev) {
2246 			printk(KERN_ERR
2247 				"md: cannot allocate memory for md drive.\n");
2248 			break;
2249 		}
2250 		if (mddev_lock(mddev))
2251 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2252 			       mdname(mddev));
2253 		else if (mddev->raid_disks || mddev->major_version
2254 			 || !list_empty(&mddev->disks)) {
2255 			printk(KERN_WARNING
2256 				"md: %s already running, cannot run %s\n",
2257 				mdname(mddev), bdevname(rdev0->bdev,b));
2258 			mddev_unlock(mddev);
2259 		} else {
2260 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2261 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2262 				list_del_init(&rdev->same_set);
2263 				if (bind_rdev_to_array(rdev, mddev))
2264 					export_rdev(rdev);
2265 			}
2266 			autorun_array(mddev);
2267 			mddev_unlock(mddev);
2268 		}
2269 		/* on success, candidates will be empty, on error
2270 		 * it won't...
2271 		 */
2272 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2273 			export_rdev(rdev);
2274 		mddev_put(mddev);
2275 	}
2276 	printk(KERN_INFO "md: ... autorun DONE.\n");
2277 }
2278 
2279 /*
2280  * import RAID devices based on one partition
2281  * if possible, the array gets run as well.
2282  */
2283 
2284 static int autostart_array(dev_t startdev)
2285 {
2286 	char b[BDEVNAME_SIZE];
2287 	int err = -EINVAL, i;
2288 	mdp_super_t *sb = NULL;
2289 	mdk_rdev_t *start_rdev = NULL, *rdev;
2290 
2291 	start_rdev = md_import_device(startdev, 0, 0);
2292 	if (IS_ERR(start_rdev))
2293 		return err;
2294 
2295 
2296 	/* NOTE: this can only work for 0.90.0 superblocks */
2297 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2298 	if (sb->major_version != 0 ||
2299 	    sb->minor_version != 90 ) {
2300 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2301 		export_rdev(start_rdev);
2302 		return err;
2303 	}
2304 
2305 	if (test_bit(Faulty, &start_rdev->flags)) {
2306 		printk(KERN_WARNING
2307 			"md: can not autostart based on faulty %s!\n",
2308 			bdevname(start_rdev->bdev,b));
2309 		export_rdev(start_rdev);
2310 		return err;
2311 	}
2312 	list_add(&start_rdev->same_set, &pending_raid_disks);
2313 
2314 	for (i = 0; i < MD_SB_DISKS; i++) {
2315 		mdp_disk_t *desc = sb->disks + i;
2316 		dev_t dev = MKDEV(desc->major, desc->minor);
2317 
2318 		if (!dev)
2319 			continue;
2320 		if (dev == startdev)
2321 			continue;
2322 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2323 			continue;
2324 		rdev = md_import_device(dev, 0, 0);
2325 		if (IS_ERR(rdev))
2326 			continue;
2327 
2328 		list_add(&rdev->same_set, &pending_raid_disks);
2329 	}
2330 
2331 	/*
2332 	 * possibly return codes
2333 	 */
2334 	autorun_devices(0);
2335 	return 0;
2336 
2337 }
2338 
2339 
2340 static int get_version(void __user * arg)
2341 {
2342 	mdu_version_t ver;
2343 
2344 	ver.major = MD_MAJOR_VERSION;
2345 	ver.minor = MD_MINOR_VERSION;
2346 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2347 
2348 	if (copy_to_user(arg, &ver, sizeof(ver)))
2349 		return -EFAULT;
2350 
2351 	return 0;
2352 }
2353 
2354 static int get_array_info(mddev_t * mddev, void __user * arg)
2355 {
2356 	mdu_array_info_t info;
2357 	int nr,working,active,failed,spare;
2358 	mdk_rdev_t *rdev;
2359 	struct list_head *tmp;
2360 
2361 	nr=working=active=failed=spare=0;
2362 	ITERATE_RDEV(mddev,rdev,tmp) {
2363 		nr++;
2364 		if (test_bit(Faulty, &rdev->flags))
2365 			failed++;
2366 		else {
2367 			working++;
2368 			if (test_bit(In_sync, &rdev->flags))
2369 				active++;
2370 			else
2371 				spare++;
2372 		}
2373 	}
2374 
2375 	info.major_version = mddev->major_version;
2376 	info.minor_version = mddev->minor_version;
2377 	info.patch_version = MD_PATCHLEVEL_VERSION;
2378 	info.ctime         = mddev->ctime;
2379 	info.level         = mddev->level;
2380 	info.size          = mddev->size;
2381 	info.nr_disks      = nr;
2382 	info.raid_disks    = mddev->raid_disks;
2383 	info.md_minor      = mddev->md_minor;
2384 	info.not_persistent= !mddev->persistent;
2385 
2386 	info.utime         = mddev->utime;
2387 	info.state         = 0;
2388 	if (mddev->in_sync)
2389 		info.state = (1<<MD_SB_CLEAN);
2390 	if (mddev->bitmap && mddev->bitmap_offset)
2391 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2392 	info.active_disks  = active;
2393 	info.working_disks = working;
2394 	info.failed_disks  = failed;
2395 	info.spare_disks   = spare;
2396 
2397 	info.layout        = mddev->layout;
2398 	info.chunk_size    = mddev->chunk_size;
2399 
2400 	if (copy_to_user(arg, &info, sizeof(info)))
2401 		return -EFAULT;
2402 
2403 	return 0;
2404 }
2405 
2406 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2407 {
2408 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2409 	char *ptr, *buf = NULL;
2410 	int err = -ENOMEM;
2411 
2412 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2413 	if (!file)
2414 		goto out;
2415 
2416 	/* bitmap disabled, zero the first byte and copy out */
2417 	if (!mddev->bitmap || !mddev->bitmap->file) {
2418 		file->pathname[0] = '\0';
2419 		goto copy_out;
2420 	}
2421 
2422 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2423 	if (!buf)
2424 		goto out;
2425 
2426 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2427 	if (!ptr)
2428 		goto out;
2429 
2430 	strcpy(file->pathname, ptr);
2431 
2432 copy_out:
2433 	err = 0;
2434 	if (copy_to_user(arg, file, sizeof(*file)))
2435 		err = -EFAULT;
2436 out:
2437 	kfree(buf);
2438 	kfree(file);
2439 	return err;
2440 }
2441 
2442 static int get_disk_info(mddev_t * mddev, void __user * arg)
2443 {
2444 	mdu_disk_info_t info;
2445 	unsigned int nr;
2446 	mdk_rdev_t *rdev;
2447 
2448 	if (copy_from_user(&info, arg, sizeof(info)))
2449 		return -EFAULT;
2450 
2451 	nr = info.number;
2452 
2453 	rdev = find_rdev_nr(mddev, nr);
2454 	if (rdev) {
2455 		info.major = MAJOR(rdev->bdev->bd_dev);
2456 		info.minor = MINOR(rdev->bdev->bd_dev);
2457 		info.raid_disk = rdev->raid_disk;
2458 		info.state = 0;
2459 		if (test_bit(Faulty, &rdev->flags))
2460 			info.state |= (1<<MD_DISK_FAULTY);
2461 		else if (test_bit(In_sync, &rdev->flags)) {
2462 			info.state |= (1<<MD_DISK_ACTIVE);
2463 			info.state |= (1<<MD_DISK_SYNC);
2464 		}
2465 		if (test_bit(WriteMostly, &rdev->flags))
2466 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2467 	} else {
2468 		info.major = info.minor = 0;
2469 		info.raid_disk = -1;
2470 		info.state = (1<<MD_DISK_REMOVED);
2471 	}
2472 
2473 	if (copy_to_user(arg, &info, sizeof(info)))
2474 		return -EFAULT;
2475 
2476 	return 0;
2477 }
2478 
2479 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2480 {
2481 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2482 	mdk_rdev_t *rdev;
2483 	dev_t dev = MKDEV(info->major,info->minor);
2484 
2485 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2486 		return -EOVERFLOW;
2487 
2488 	if (!mddev->raid_disks) {
2489 		int err;
2490 		/* expecting a device which has a superblock */
2491 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2492 		if (IS_ERR(rdev)) {
2493 			printk(KERN_WARNING
2494 				"md: md_import_device returned %ld\n",
2495 				PTR_ERR(rdev));
2496 			return PTR_ERR(rdev);
2497 		}
2498 		if (!list_empty(&mddev->disks)) {
2499 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2500 							mdk_rdev_t, same_set);
2501 			int err = super_types[mddev->major_version]
2502 				.load_super(rdev, rdev0, mddev->minor_version);
2503 			if (err < 0) {
2504 				printk(KERN_WARNING
2505 					"md: %s has different UUID to %s\n",
2506 					bdevname(rdev->bdev,b),
2507 					bdevname(rdev0->bdev,b2));
2508 				export_rdev(rdev);
2509 				return -EINVAL;
2510 			}
2511 		}
2512 		err = bind_rdev_to_array(rdev, mddev);
2513 		if (err)
2514 			export_rdev(rdev);
2515 		return err;
2516 	}
2517 
2518 	/*
2519 	 * add_new_disk can be used once the array is assembled
2520 	 * to add "hot spares".  They must already have a superblock
2521 	 * written
2522 	 */
2523 	if (mddev->pers) {
2524 		int err;
2525 		if (!mddev->pers->hot_add_disk) {
2526 			printk(KERN_WARNING
2527 				"%s: personality does not support diskops!\n",
2528 			       mdname(mddev));
2529 			return -EINVAL;
2530 		}
2531 		if (mddev->persistent)
2532 			rdev = md_import_device(dev, mddev->major_version,
2533 						mddev->minor_version);
2534 		else
2535 			rdev = md_import_device(dev, -1, -1);
2536 		if (IS_ERR(rdev)) {
2537 			printk(KERN_WARNING
2538 				"md: md_import_device returned %ld\n",
2539 				PTR_ERR(rdev));
2540 			return PTR_ERR(rdev);
2541 		}
2542 		/* set save_raid_disk if appropriate */
2543 		if (!mddev->persistent) {
2544 			if (info->state & (1<<MD_DISK_SYNC)  &&
2545 			    info->raid_disk < mddev->raid_disks)
2546 				rdev->raid_disk = info->raid_disk;
2547 			else
2548 				rdev->raid_disk = -1;
2549 		} else
2550 			super_types[mddev->major_version].
2551 				validate_super(mddev, rdev);
2552 		rdev->saved_raid_disk = rdev->raid_disk;
2553 
2554 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
2555 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2556 			set_bit(WriteMostly, &rdev->flags);
2557 
2558 		rdev->raid_disk = -1;
2559 		err = bind_rdev_to_array(rdev, mddev);
2560 		if (err)
2561 			export_rdev(rdev);
2562 
2563 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2564 		md_wakeup_thread(mddev->thread);
2565 		return err;
2566 	}
2567 
2568 	/* otherwise, add_new_disk is only allowed
2569 	 * for major_version==0 superblocks
2570 	 */
2571 	if (mddev->major_version != 0) {
2572 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2573 		       mdname(mddev));
2574 		return -EINVAL;
2575 	}
2576 
2577 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2578 		int err;
2579 		rdev = md_import_device (dev, -1, 0);
2580 		if (IS_ERR(rdev)) {
2581 			printk(KERN_WARNING
2582 				"md: error, md_import_device() returned %ld\n",
2583 				PTR_ERR(rdev));
2584 			return PTR_ERR(rdev);
2585 		}
2586 		rdev->desc_nr = info->number;
2587 		if (info->raid_disk < mddev->raid_disks)
2588 			rdev->raid_disk = info->raid_disk;
2589 		else
2590 			rdev->raid_disk = -1;
2591 
2592 		rdev->flags = 0;
2593 
2594 		if (rdev->raid_disk < mddev->raid_disks)
2595 			if (info->state & (1<<MD_DISK_SYNC))
2596 				set_bit(In_sync, &rdev->flags);
2597 
2598 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2599 			set_bit(WriteMostly, &rdev->flags);
2600 
2601 		err = bind_rdev_to_array(rdev, mddev);
2602 		if (err) {
2603 			export_rdev(rdev);
2604 			return err;
2605 		}
2606 
2607 		if (!mddev->persistent) {
2608 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2609 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2610 		} else
2611 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2612 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2613 
2614 		if (!mddev->size || (mddev->size > rdev->size))
2615 			mddev->size = rdev->size;
2616 	}
2617 
2618 	return 0;
2619 }
2620 
2621 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2622 {
2623 	char b[BDEVNAME_SIZE];
2624 	mdk_rdev_t *rdev;
2625 
2626 	if (!mddev->pers)
2627 		return -ENODEV;
2628 
2629 	rdev = find_rdev(mddev, dev);
2630 	if (!rdev)
2631 		return -ENXIO;
2632 
2633 	if (rdev->raid_disk >= 0)
2634 		goto busy;
2635 
2636 	kick_rdev_from_array(rdev);
2637 	md_update_sb(mddev);
2638 
2639 	return 0;
2640 busy:
2641 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2642 		bdevname(rdev->bdev,b), mdname(mddev));
2643 	return -EBUSY;
2644 }
2645 
2646 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2647 {
2648 	char b[BDEVNAME_SIZE];
2649 	int err;
2650 	unsigned int size;
2651 	mdk_rdev_t *rdev;
2652 
2653 	if (!mddev->pers)
2654 		return -ENODEV;
2655 
2656 	if (mddev->major_version != 0) {
2657 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2658 			" version-0 superblocks.\n",
2659 			mdname(mddev));
2660 		return -EINVAL;
2661 	}
2662 	if (!mddev->pers->hot_add_disk) {
2663 		printk(KERN_WARNING
2664 			"%s: personality does not support diskops!\n",
2665 			mdname(mddev));
2666 		return -EINVAL;
2667 	}
2668 
2669 	rdev = md_import_device (dev, -1, 0);
2670 	if (IS_ERR(rdev)) {
2671 		printk(KERN_WARNING
2672 			"md: error, md_import_device() returned %ld\n",
2673 			PTR_ERR(rdev));
2674 		return -EINVAL;
2675 	}
2676 
2677 	if (mddev->persistent)
2678 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2679 	else
2680 		rdev->sb_offset =
2681 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2682 
2683 	size = calc_dev_size(rdev, mddev->chunk_size);
2684 	rdev->size = size;
2685 
2686 	if (size < mddev->size) {
2687 		printk(KERN_WARNING
2688 			"%s: disk size %llu blocks < array size %llu\n",
2689 			mdname(mddev), (unsigned long long)size,
2690 			(unsigned long long)mddev->size);
2691 		err = -ENOSPC;
2692 		goto abort_export;
2693 	}
2694 
2695 	if (test_bit(Faulty, &rdev->flags)) {
2696 		printk(KERN_WARNING
2697 			"md: can not hot-add faulty %s disk to %s!\n",
2698 			bdevname(rdev->bdev,b), mdname(mddev));
2699 		err = -EINVAL;
2700 		goto abort_export;
2701 	}
2702 	clear_bit(In_sync, &rdev->flags);
2703 	rdev->desc_nr = -1;
2704 	bind_rdev_to_array(rdev, mddev);
2705 
2706 	/*
2707 	 * The rest should better be atomic, we can have disk failures
2708 	 * noticed in interrupt contexts ...
2709 	 */
2710 
2711 	if (rdev->desc_nr == mddev->max_disks) {
2712 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2713 			mdname(mddev));
2714 		err = -EBUSY;
2715 		goto abort_unbind_export;
2716 	}
2717 
2718 	rdev->raid_disk = -1;
2719 
2720 	md_update_sb(mddev);
2721 
2722 	/*
2723 	 * Kick recovery, maybe this spare has to be added to the
2724 	 * array immediately.
2725 	 */
2726 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2727 	md_wakeup_thread(mddev->thread);
2728 
2729 	return 0;
2730 
2731 abort_unbind_export:
2732 	unbind_rdev_from_array(rdev);
2733 
2734 abort_export:
2735 	export_rdev(rdev);
2736 	return err;
2737 }
2738 
2739 /* similar to deny_write_access, but accounts for our holding a reference
2740  * to the file ourselves */
2741 static int deny_bitmap_write_access(struct file * file)
2742 {
2743 	struct inode *inode = file->f_mapping->host;
2744 
2745 	spin_lock(&inode->i_lock);
2746 	if (atomic_read(&inode->i_writecount) > 1) {
2747 		spin_unlock(&inode->i_lock);
2748 		return -ETXTBSY;
2749 	}
2750 	atomic_set(&inode->i_writecount, -1);
2751 	spin_unlock(&inode->i_lock);
2752 
2753 	return 0;
2754 }
2755 
2756 static int set_bitmap_file(mddev_t *mddev, int fd)
2757 {
2758 	int err;
2759 
2760 	if (mddev->pers) {
2761 		if (!mddev->pers->quiesce)
2762 			return -EBUSY;
2763 		if (mddev->recovery || mddev->sync_thread)
2764 			return -EBUSY;
2765 		/* we should be able to change the bitmap.. */
2766 	}
2767 
2768 
2769 	if (fd >= 0) {
2770 		if (mddev->bitmap)
2771 			return -EEXIST; /* cannot add when bitmap is present */
2772 		mddev->bitmap_file = fget(fd);
2773 
2774 		if (mddev->bitmap_file == NULL) {
2775 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2776 			       mdname(mddev));
2777 			return -EBADF;
2778 		}
2779 
2780 		err = deny_bitmap_write_access(mddev->bitmap_file);
2781 		if (err) {
2782 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2783 			       mdname(mddev));
2784 			fput(mddev->bitmap_file);
2785 			mddev->bitmap_file = NULL;
2786 			return err;
2787 		}
2788 		mddev->bitmap_offset = 0; /* file overrides offset */
2789 	} else if (mddev->bitmap == NULL)
2790 		return -ENOENT; /* cannot remove what isn't there */
2791 	err = 0;
2792 	if (mddev->pers) {
2793 		mddev->pers->quiesce(mddev, 1);
2794 		if (fd >= 0)
2795 			err = bitmap_create(mddev);
2796 		if (fd < 0 || err)
2797 			bitmap_destroy(mddev);
2798 		mddev->pers->quiesce(mddev, 0);
2799 	} else if (fd < 0) {
2800 		if (mddev->bitmap_file)
2801 			fput(mddev->bitmap_file);
2802 		mddev->bitmap_file = NULL;
2803 	}
2804 
2805 	return err;
2806 }
2807 
2808 /*
2809  * set_array_info is used two different ways
2810  * The original usage is when creating a new array.
2811  * In this usage, raid_disks is > 0 and it together with
2812  *  level, size, not_persistent,layout,chunksize determine the
2813  *  shape of the array.
2814  *  This will always create an array with a type-0.90.0 superblock.
2815  * The newer usage is when assembling an array.
2816  *  In this case raid_disks will be 0, and the major_version field is
2817  *  use to determine which style super-blocks are to be found on the devices.
2818  *  The minor and patch _version numbers are also kept incase the
2819  *  super_block handler wishes to interpret them.
2820  */
2821 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2822 {
2823 
2824 	if (info->raid_disks == 0) {
2825 		/* just setting version number for superblock loading */
2826 		if (info->major_version < 0 ||
2827 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2828 		    super_types[info->major_version].name == NULL) {
2829 			/* maybe try to auto-load a module? */
2830 			printk(KERN_INFO
2831 				"md: superblock version %d not known\n",
2832 				info->major_version);
2833 			return -EINVAL;
2834 		}
2835 		mddev->major_version = info->major_version;
2836 		mddev->minor_version = info->minor_version;
2837 		mddev->patch_version = info->patch_version;
2838 		return 0;
2839 	}
2840 	mddev->major_version = MD_MAJOR_VERSION;
2841 	mddev->minor_version = MD_MINOR_VERSION;
2842 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2843 	mddev->ctime         = get_seconds();
2844 
2845 	mddev->level         = info->level;
2846 	mddev->size          = info->size;
2847 	mddev->raid_disks    = info->raid_disks;
2848 	/* don't set md_minor, it is determined by which /dev/md* was
2849 	 * openned
2850 	 */
2851 	if (info->state & (1<<MD_SB_CLEAN))
2852 		mddev->recovery_cp = MaxSector;
2853 	else
2854 		mddev->recovery_cp = 0;
2855 	mddev->persistent    = ! info->not_persistent;
2856 
2857 	mddev->layout        = info->layout;
2858 	mddev->chunk_size    = info->chunk_size;
2859 
2860 	mddev->max_disks     = MD_SB_DISKS;
2861 
2862 	mddev->sb_dirty      = 1;
2863 
2864 	/*
2865 	 * Generate a 128 bit UUID
2866 	 */
2867 	get_random_bytes(mddev->uuid, 16);
2868 
2869 	return 0;
2870 }
2871 
2872 /*
2873  * update_array_info is used to change the configuration of an
2874  * on-line array.
2875  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2876  * fields in the info are checked against the array.
2877  * Any differences that cannot be handled will cause an error.
2878  * Normally, only one change can be managed at a time.
2879  */
2880 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2881 {
2882 	int rv = 0;
2883 	int cnt = 0;
2884 	int state = 0;
2885 
2886 	/* calculate expected state,ignoring low bits */
2887 	if (mddev->bitmap && mddev->bitmap_offset)
2888 		state |= (1 << MD_SB_BITMAP_PRESENT);
2889 
2890 	if (mddev->major_version != info->major_version ||
2891 	    mddev->minor_version != info->minor_version ||
2892 /*	    mddev->patch_version != info->patch_version || */
2893 	    mddev->ctime         != info->ctime         ||
2894 	    mddev->level         != info->level         ||
2895 /*	    mddev->layout        != info->layout        || */
2896 	    !mddev->persistent	 != info->not_persistent||
2897 	    mddev->chunk_size    != info->chunk_size    ||
2898 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2899 	    ((state^info->state) & 0xfffffe00)
2900 		)
2901 		return -EINVAL;
2902 	/* Check there is only one change */
2903 	if (mddev->size != info->size) cnt++;
2904 	if (mddev->raid_disks != info->raid_disks) cnt++;
2905 	if (mddev->layout != info->layout) cnt++;
2906 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
2907 	if (cnt == 0) return 0;
2908 	if (cnt > 1) return -EINVAL;
2909 
2910 	if (mddev->layout != info->layout) {
2911 		/* Change layout
2912 		 * we don't need to do anything at the md level, the
2913 		 * personality will take care of it all.
2914 		 */
2915 		if (mddev->pers->reconfig == NULL)
2916 			return -EINVAL;
2917 		else
2918 			return mddev->pers->reconfig(mddev, info->layout, -1);
2919 	}
2920 	if (mddev->size != info->size) {
2921 		mdk_rdev_t * rdev;
2922 		struct list_head *tmp;
2923 		if (mddev->pers->resize == NULL)
2924 			return -EINVAL;
2925 		/* The "size" is the amount of each device that is used.
2926 		 * This can only make sense for arrays with redundancy.
2927 		 * linear and raid0 always use whatever space is available
2928 		 * We can only consider changing the size if no resync
2929 		 * or reconstruction is happening, and if the new size
2930 		 * is acceptable. It must fit before the sb_offset or,
2931 		 * if that is <data_offset, it must fit before the
2932 		 * size of each device.
2933 		 * If size is zero, we find the largest size that fits.
2934 		 */
2935 		if (mddev->sync_thread)
2936 			return -EBUSY;
2937 		ITERATE_RDEV(mddev,rdev,tmp) {
2938 			sector_t avail;
2939 			int fit = (info->size == 0);
2940 			if (rdev->sb_offset > rdev->data_offset)
2941 				avail = (rdev->sb_offset*2) - rdev->data_offset;
2942 			else
2943 				avail = get_capacity(rdev->bdev->bd_disk)
2944 					- rdev->data_offset;
2945 			if (fit && (info->size == 0 || info->size > avail/2))
2946 				info->size = avail/2;
2947 			if (avail < ((sector_t)info->size << 1))
2948 				return -ENOSPC;
2949 		}
2950 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2951 		if (!rv) {
2952 			struct block_device *bdev;
2953 
2954 			bdev = bdget_disk(mddev->gendisk, 0);
2955 			if (bdev) {
2956 				down(&bdev->bd_inode->i_sem);
2957 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
2958 				up(&bdev->bd_inode->i_sem);
2959 				bdput(bdev);
2960 			}
2961 		}
2962 	}
2963 	if (mddev->raid_disks    != info->raid_disks) {
2964 		/* change the number of raid disks */
2965 		if (mddev->pers->reshape == NULL)
2966 			return -EINVAL;
2967 		if (info->raid_disks <= 0 ||
2968 		    info->raid_disks >= mddev->max_disks)
2969 			return -EINVAL;
2970 		if (mddev->sync_thread)
2971 			return -EBUSY;
2972 		rv = mddev->pers->reshape(mddev, info->raid_disks);
2973 		if (!rv) {
2974 			struct block_device *bdev;
2975 
2976 			bdev = bdget_disk(mddev->gendisk, 0);
2977 			if (bdev) {
2978 				down(&bdev->bd_inode->i_sem);
2979 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
2980 				up(&bdev->bd_inode->i_sem);
2981 				bdput(bdev);
2982 			}
2983 		}
2984 	}
2985 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
2986 		if (mddev->pers->quiesce == NULL)
2987 			return -EINVAL;
2988 		if (mddev->recovery || mddev->sync_thread)
2989 			return -EBUSY;
2990 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
2991 			/* add the bitmap */
2992 			if (mddev->bitmap)
2993 				return -EEXIST;
2994 			if (mddev->default_bitmap_offset == 0)
2995 				return -EINVAL;
2996 			mddev->bitmap_offset = mddev->default_bitmap_offset;
2997 			mddev->pers->quiesce(mddev, 1);
2998 			rv = bitmap_create(mddev);
2999 			if (rv)
3000 				bitmap_destroy(mddev);
3001 			mddev->pers->quiesce(mddev, 0);
3002 		} else {
3003 			/* remove the bitmap */
3004 			if (!mddev->bitmap)
3005 				return -ENOENT;
3006 			if (mddev->bitmap->file)
3007 				return -EINVAL;
3008 			mddev->pers->quiesce(mddev, 1);
3009 			bitmap_destroy(mddev);
3010 			mddev->pers->quiesce(mddev, 0);
3011 			mddev->bitmap_offset = 0;
3012 		}
3013 	}
3014 	md_update_sb(mddev);
3015 	return rv;
3016 }
3017 
3018 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3019 {
3020 	mdk_rdev_t *rdev;
3021 
3022 	if (mddev->pers == NULL)
3023 		return -ENODEV;
3024 
3025 	rdev = find_rdev(mddev, dev);
3026 	if (!rdev)
3027 		return -ENODEV;
3028 
3029 	md_error(mddev, rdev);
3030 	return 0;
3031 }
3032 
3033 static int md_ioctl(struct inode *inode, struct file *file,
3034 			unsigned int cmd, unsigned long arg)
3035 {
3036 	int err = 0;
3037 	void __user *argp = (void __user *)arg;
3038 	struct hd_geometry __user *loc = argp;
3039 	mddev_t *mddev = NULL;
3040 
3041 	if (!capable(CAP_SYS_ADMIN))
3042 		return -EACCES;
3043 
3044 	/*
3045 	 * Commands dealing with the RAID driver but not any
3046 	 * particular array:
3047 	 */
3048 	switch (cmd)
3049 	{
3050 		case RAID_VERSION:
3051 			err = get_version(argp);
3052 			goto done;
3053 
3054 		case PRINT_RAID_DEBUG:
3055 			err = 0;
3056 			md_print_devices();
3057 			goto done;
3058 
3059 #ifndef MODULE
3060 		case RAID_AUTORUN:
3061 			err = 0;
3062 			autostart_arrays(arg);
3063 			goto done;
3064 #endif
3065 		default:;
3066 	}
3067 
3068 	/*
3069 	 * Commands creating/starting a new array:
3070 	 */
3071 
3072 	mddev = inode->i_bdev->bd_disk->private_data;
3073 
3074 	if (!mddev) {
3075 		BUG();
3076 		goto abort;
3077 	}
3078 
3079 
3080 	if (cmd == START_ARRAY) {
3081 		/* START_ARRAY doesn't need to lock the array as autostart_array
3082 		 * does the locking, and it could even be a different array
3083 		 */
3084 		static int cnt = 3;
3085 		if (cnt > 0 ) {
3086 			printk(KERN_WARNING
3087 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3088 			       "This will not be supported beyond 2.6\n",
3089 			       current->comm, current->pid);
3090 			cnt--;
3091 		}
3092 		err = autostart_array(new_decode_dev(arg));
3093 		if (err) {
3094 			printk(KERN_WARNING "md: autostart failed!\n");
3095 			goto abort;
3096 		}
3097 		goto done;
3098 	}
3099 
3100 	err = mddev_lock(mddev);
3101 	if (err) {
3102 		printk(KERN_INFO
3103 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3104 			err, cmd);
3105 		goto abort;
3106 	}
3107 
3108 	switch (cmd)
3109 	{
3110 		case SET_ARRAY_INFO:
3111 			{
3112 				mdu_array_info_t info;
3113 				if (!arg)
3114 					memset(&info, 0, sizeof(info));
3115 				else if (copy_from_user(&info, argp, sizeof(info))) {
3116 					err = -EFAULT;
3117 					goto abort_unlock;
3118 				}
3119 				if (mddev->pers) {
3120 					err = update_array_info(mddev, &info);
3121 					if (err) {
3122 						printk(KERN_WARNING "md: couldn't update"
3123 						       " array info. %d\n", err);
3124 						goto abort_unlock;
3125 					}
3126 					goto done_unlock;
3127 				}
3128 				if (!list_empty(&mddev->disks)) {
3129 					printk(KERN_WARNING
3130 					       "md: array %s already has disks!\n",
3131 					       mdname(mddev));
3132 					err = -EBUSY;
3133 					goto abort_unlock;
3134 				}
3135 				if (mddev->raid_disks) {
3136 					printk(KERN_WARNING
3137 					       "md: array %s already initialised!\n",
3138 					       mdname(mddev));
3139 					err = -EBUSY;
3140 					goto abort_unlock;
3141 				}
3142 				err = set_array_info(mddev, &info);
3143 				if (err) {
3144 					printk(KERN_WARNING "md: couldn't set"
3145 					       " array info. %d\n", err);
3146 					goto abort_unlock;
3147 				}
3148 			}
3149 			goto done_unlock;
3150 
3151 		default:;
3152 	}
3153 
3154 	/*
3155 	 * Commands querying/configuring an existing array:
3156 	 */
3157 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3158 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3159 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3160 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3161 		err = -ENODEV;
3162 		goto abort_unlock;
3163 	}
3164 
3165 	/*
3166 	 * Commands even a read-only array can execute:
3167 	 */
3168 	switch (cmd)
3169 	{
3170 		case GET_ARRAY_INFO:
3171 			err = get_array_info(mddev, argp);
3172 			goto done_unlock;
3173 
3174 		case GET_BITMAP_FILE:
3175 			err = get_bitmap_file(mddev, argp);
3176 			goto done_unlock;
3177 
3178 		case GET_DISK_INFO:
3179 			err = get_disk_info(mddev, argp);
3180 			goto done_unlock;
3181 
3182 		case RESTART_ARRAY_RW:
3183 			err = restart_array(mddev);
3184 			goto done_unlock;
3185 
3186 		case STOP_ARRAY:
3187 			err = do_md_stop (mddev, 0);
3188 			goto done_unlock;
3189 
3190 		case STOP_ARRAY_RO:
3191 			err = do_md_stop (mddev, 1);
3192 			goto done_unlock;
3193 
3194 	/*
3195 	 * We have a problem here : there is no easy way to give a CHS
3196 	 * virtual geometry. We currently pretend that we have a 2 heads
3197 	 * 4 sectors (with a BIG number of cylinders...). This drives
3198 	 * dosfs just mad... ;-)
3199 	 */
3200 		case HDIO_GETGEO:
3201 			if (!loc) {
3202 				err = -EINVAL;
3203 				goto abort_unlock;
3204 			}
3205 			err = put_user (2, (char __user *) &loc->heads);
3206 			if (err)
3207 				goto abort_unlock;
3208 			err = put_user (4, (char __user *) &loc->sectors);
3209 			if (err)
3210 				goto abort_unlock;
3211 			err = put_user(get_capacity(mddev->gendisk)/8,
3212 					(short __user *) &loc->cylinders);
3213 			if (err)
3214 				goto abort_unlock;
3215 			err = put_user (get_start_sect(inode->i_bdev),
3216 						(long __user *) &loc->start);
3217 			goto done_unlock;
3218 	}
3219 
3220 	/*
3221 	 * The remaining ioctls are changing the state of the
3222 	 * superblock, so we do not allow read-only arrays
3223 	 * here:
3224 	 */
3225 	if (mddev->ro) {
3226 		err = -EROFS;
3227 		goto abort_unlock;
3228 	}
3229 
3230 	switch (cmd)
3231 	{
3232 		case ADD_NEW_DISK:
3233 		{
3234 			mdu_disk_info_t info;
3235 			if (copy_from_user(&info, argp, sizeof(info)))
3236 				err = -EFAULT;
3237 			else
3238 				err = add_new_disk(mddev, &info);
3239 			goto done_unlock;
3240 		}
3241 
3242 		case HOT_REMOVE_DISK:
3243 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3244 			goto done_unlock;
3245 
3246 		case HOT_ADD_DISK:
3247 			err = hot_add_disk(mddev, new_decode_dev(arg));
3248 			goto done_unlock;
3249 
3250 		case SET_DISK_FAULTY:
3251 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3252 			goto done_unlock;
3253 
3254 		case RUN_ARRAY:
3255 			err = do_md_run (mddev);
3256 			goto done_unlock;
3257 
3258 		case SET_BITMAP_FILE:
3259 			err = set_bitmap_file(mddev, (int)arg);
3260 			goto done_unlock;
3261 
3262 		default:
3263 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3264 				printk(KERN_WARNING "md: %s(pid %d) used"
3265 					" obsolete MD ioctl, upgrade your"
3266 					" software to use new ictls.\n",
3267 					current->comm, current->pid);
3268 			err = -EINVAL;
3269 			goto abort_unlock;
3270 	}
3271 
3272 done_unlock:
3273 abort_unlock:
3274 	mddev_unlock(mddev);
3275 
3276 	return err;
3277 done:
3278 	if (err)
3279 		MD_BUG();
3280 abort:
3281 	return err;
3282 }
3283 
3284 static int md_open(struct inode *inode, struct file *file)
3285 {
3286 	/*
3287 	 * Succeed if we can lock the mddev, which confirms that
3288 	 * it isn't being stopped right now.
3289 	 */
3290 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3291 	int err;
3292 
3293 	if ((err = mddev_lock(mddev)))
3294 		goto out;
3295 
3296 	err = 0;
3297 	mddev_get(mddev);
3298 	mddev_unlock(mddev);
3299 
3300 	check_disk_change(inode->i_bdev);
3301  out:
3302 	return err;
3303 }
3304 
3305 static int md_release(struct inode *inode, struct file * file)
3306 {
3307  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3308 
3309 	if (!mddev)
3310 		BUG();
3311 	mddev_put(mddev);
3312 
3313 	return 0;
3314 }
3315 
3316 static int md_media_changed(struct gendisk *disk)
3317 {
3318 	mddev_t *mddev = disk->private_data;
3319 
3320 	return mddev->changed;
3321 }
3322 
3323 static int md_revalidate(struct gendisk *disk)
3324 {
3325 	mddev_t *mddev = disk->private_data;
3326 
3327 	mddev->changed = 0;
3328 	return 0;
3329 }
3330 static struct block_device_operations md_fops =
3331 {
3332 	.owner		= THIS_MODULE,
3333 	.open		= md_open,
3334 	.release	= md_release,
3335 	.ioctl		= md_ioctl,
3336 	.media_changed	= md_media_changed,
3337 	.revalidate_disk= md_revalidate,
3338 };
3339 
3340 static int md_thread(void * arg)
3341 {
3342 	mdk_thread_t *thread = arg;
3343 
3344 	/*
3345 	 * md_thread is a 'system-thread', it's priority should be very
3346 	 * high. We avoid resource deadlocks individually in each
3347 	 * raid personality. (RAID5 does preallocation) We also use RR and
3348 	 * the very same RT priority as kswapd, thus we will never get
3349 	 * into a priority inversion deadlock.
3350 	 *
3351 	 * we definitely have to have equal or higher priority than
3352 	 * bdflush, otherwise bdflush will deadlock if there are too
3353 	 * many dirty RAID5 blocks.
3354 	 */
3355 
3356 	allow_signal(SIGKILL);
3357 	complete(thread->event);
3358 	while (!kthread_should_stop()) {
3359 		void (*run)(mddev_t *);
3360 
3361 		wait_event_interruptible_timeout(thread->wqueue,
3362 						 test_bit(THREAD_WAKEUP, &thread->flags)
3363 						 || kthread_should_stop(),
3364 						 thread->timeout);
3365 		try_to_freeze();
3366 
3367 		clear_bit(THREAD_WAKEUP, &thread->flags);
3368 
3369 		run = thread->run;
3370 		if (run)
3371 			run(thread->mddev);
3372 	}
3373 
3374 	return 0;
3375 }
3376 
3377 void md_wakeup_thread(mdk_thread_t *thread)
3378 {
3379 	if (thread) {
3380 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3381 		set_bit(THREAD_WAKEUP, &thread->flags);
3382 		wake_up(&thread->wqueue);
3383 	}
3384 }
3385 
3386 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3387 				 const char *name)
3388 {
3389 	mdk_thread_t *thread;
3390 	struct completion event;
3391 
3392 	thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3393 	if (!thread)
3394 		return NULL;
3395 
3396 	memset(thread, 0, sizeof(mdk_thread_t));
3397 	init_waitqueue_head(&thread->wqueue);
3398 
3399 	init_completion(&event);
3400 	thread->event = &event;
3401 	thread->run = run;
3402 	thread->mddev = mddev;
3403 	thread->name = name;
3404 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3405 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3406 	if (IS_ERR(thread->tsk)) {
3407 		kfree(thread);
3408 		return NULL;
3409 	}
3410 	wait_for_completion(&event);
3411 	return thread;
3412 }
3413 
3414 void md_unregister_thread(mdk_thread_t *thread)
3415 {
3416 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3417 
3418 	kthread_stop(thread->tsk);
3419 	kfree(thread);
3420 }
3421 
3422 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3423 {
3424 	if (!mddev) {
3425 		MD_BUG();
3426 		return;
3427 	}
3428 
3429 	if (!rdev || test_bit(Faulty, &rdev->flags))
3430 		return;
3431 /*
3432 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3433 		mdname(mddev),
3434 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3435 		__builtin_return_address(0),__builtin_return_address(1),
3436 		__builtin_return_address(2),__builtin_return_address(3));
3437 */
3438 	if (!mddev->pers->error_handler)
3439 		return;
3440 	mddev->pers->error_handler(mddev,rdev);
3441 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3442 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3443 	md_wakeup_thread(mddev->thread);
3444 }
3445 
3446 /* seq_file implementation /proc/mdstat */
3447 
3448 static void status_unused(struct seq_file *seq)
3449 {
3450 	int i = 0;
3451 	mdk_rdev_t *rdev;
3452 	struct list_head *tmp;
3453 
3454 	seq_printf(seq, "unused devices: ");
3455 
3456 	ITERATE_RDEV_PENDING(rdev,tmp) {
3457 		char b[BDEVNAME_SIZE];
3458 		i++;
3459 		seq_printf(seq, "%s ",
3460 			      bdevname(rdev->bdev,b));
3461 	}
3462 	if (!i)
3463 		seq_printf(seq, "<none>");
3464 
3465 	seq_printf(seq, "\n");
3466 }
3467 
3468 
3469 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3470 {
3471 	unsigned long max_blocks, resync, res, dt, db, rt;
3472 
3473 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3474 
3475 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3476 		max_blocks = mddev->resync_max_sectors >> 1;
3477 	else
3478 		max_blocks = mddev->size;
3479 
3480 	/*
3481 	 * Should not happen.
3482 	 */
3483 	if (!max_blocks) {
3484 		MD_BUG();
3485 		return;
3486 	}
3487 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3488 	{
3489 		int i, x = res/50, y = 20-x;
3490 		seq_printf(seq, "[");
3491 		for (i = 0; i < x; i++)
3492 			seq_printf(seq, "=");
3493 		seq_printf(seq, ">");
3494 		for (i = 0; i < y; i++)
3495 			seq_printf(seq, ".");
3496 		seq_printf(seq, "] ");
3497 	}
3498 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3499 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3500 		       "resync" : "recovery"),
3501 		      res/10, res % 10, resync, max_blocks);
3502 
3503 	/*
3504 	 * We do not want to overflow, so the order of operands and
3505 	 * the * 100 / 100 trick are important. We do a +1 to be
3506 	 * safe against division by zero. We only estimate anyway.
3507 	 *
3508 	 * dt: time from mark until now
3509 	 * db: blocks written from mark until now
3510 	 * rt: remaining time
3511 	 */
3512 	dt = ((jiffies - mddev->resync_mark) / HZ);
3513 	if (!dt) dt++;
3514 	db = resync - (mddev->resync_mark_cnt/2);
3515 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3516 
3517 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3518 
3519 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3520 }
3521 
3522 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3523 {
3524 	struct list_head *tmp;
3525 	loff_t l = *pos;
3526 	mddev_t *mddev;
3527 
3528 	if (l >= 0x10000)
3529 		return NULL;
3530 	if (!l--)
3531 		/* header */
3532 		return (void*)1;
3533 
3534 	spin_lock(&all_mddevs_lock);
3535 	list_for_each(tmp,&all_mddevs)
3536 		if (!l--) {
3537 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3538 			mddev_get(mddev);
3539 			spin_unlock(&all_mddevs_lock);
3540 			return mddev;
3541 		}
3542 	spin_unlock(&all_mddevs_lock);
3543 	if (!l--)
3544 		return (void*)2;/* tail */
3545 	return NULL;
3546 }
3547 
3548 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3549 {
3550 	struct list_head *tmp;
3551 	mddev_t *next_mddev, *mddev = v;
3552 
3553 	++*pos;
3554 	if (v == (void*)2)
3555 		return NULL;
3556 
3557 	spin_lock(&all_mddevs_lock);
3558 	if (v == (void*)1)
3559 		tmp = all_mddevs.next;
3560 	else
3561 		tmp = mddev->all_mddevs.next;
3562 	if (tmp != &all_mddevs)
3563 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3564 	else {
3565 		next_mddev = (void*)2;
3566 		*pos = 0x10000;
3567 	}
3568 	spin_unlock(&all_mddevs_lock);
3569 
3570 	if (v != (void*)1)
3571 		mddev_put(mddev);
3572 	return next_mddev;
3573 
3574 }
3575 
3576 static void md_seq_stop(struct seq_file *seq, void *v)
3577 {
3578 	mddev_t *mddev = v;
3579 
3580 	if (mddev && v != (void*)1 && v != (void*)2)
3581 		mddev_put(mddev);
3582 }
3583 
3584 static int md_seq_show(struct seq_file *seq, void *v)
3585 {
3586 	mddev_t *mddev = v;
3587 	sector_t size;
3588 	struct list_head *tmp2;
3589 	mdk_rdev_t *rdev;
3590 	int i;
3591 	struct bitmap *bitmap;
3592 
3593 	if (v == (void*)1) {
3594 		seq_printf(seq, "Personalities : ");
3595 		spin_lock(&pers_lock);
3596 		for (i = 0; i < MAX_PERSONALITY; i++)
3597 			if (pers[i])
3598 				seq_printf(seq, "[%s] ", pers[i]->name);
3599 
3600 		spin_unlock(&pers_lock);
3601 		seq_printf(seq, "\n");
3602 		return 0;
3603 	}
3604 	if (v == (void*)2) {
3605 		status_unused(seq);
3606 		return 0;
3607 	}
3608 
3609 	if (mddev_lock(mddev)!=0)
3610 		return -EINTR;
3611 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3612 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3613 						mddev->pers ? "" : "in");
3614 		if (mddev->pers) {
3615 			if (mddev->ro)
3616 				seq_printf(seq, " (read-only)");
3617 			seq_printf(seq, " %s", mddev->pers->name);
3618 		}
3619 
3620 		size = 0;
3621 		ITERATE_RDEV(mddev,rdev,tmp2) {
3622 			char b[BDEVNAME_SIZE];
3623 			seq_printf(seq, " %s[%d]",
3624 				bdevname(rdev->bdev,b), rdev->desc_nr);
3625 			if (test_bit(WriteMostly, &rdev->flags))
3626 				seq_printf(seq, "(W)");
3627 			if (test_bit(Faulty, &rdev->flags)) {
3628 				seq_printf(seq, "(F)");
3629 				continue;
3630 			} else if (rdev->raid_disk < 0)
3631 				seq_printf(seq, "(S)"); /* spare */
3632 			size += rdev->size;
3633 		}
3634 
3635 		if (!list_empty(&mddev->disks)) {
3636 			if (mddev->pers)
3637 				seq_printf(seq, "\n      %llu blocks",
3638 					(unsigned long long)mddev->array_size);
3639 			else
3640 				seq_printf(seq, "\n      %llu blocks",
3641 					(unsigned long long)size);
3642 		}
3643 		if (mddev->persistent) {
3644 			if (mddev->major_version != 0 ||
3645 			    mddev->minor_version != 90) {
3646 				seq_printf(seq," super %d.%d",
3647 					   mddev->major_version,
3648 					   mddev->minor_version);
3649 			}
3650 		} else
3651 			seq_printf(seq, " super non-persistent");
3652 
3653 		if (mddev->pers) {
3654 			mddev->pers->status (seq, mddev);
3655 	 		seq_printf(seq, "\n      ");
3656 			if (mddev->curr_resync > 2) {
3657 				status_resync (seq, mddev);
3658 				seq_printf(seq, "\n      ");
3659 			} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3660 				seq_printf(seq, "	resync=DELAYED\n      ");
3661 		} else
3662 			seq_printf(seq, "\n       ");
3663 
3664 		if ((bitmap = mddev->bitmap)) {
3665 			unsigned long chunk_kb;
3666 			unsigned long flags;
3667 			spin_lock_irqsave(&bitmap->lock, flags);
3668 			chunk_kb = bitmap->chunksize >> 10;
3669 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3670 				"%lu%s chunk",
3671 				bitmap->pages - bitmap->missing_pages,
3672 				bitmap->pages,
3673 				(bitmap->pages - bitmap->missing_pages)
3674 					<< (PAGE_SHIFT - 10),
3675 				chunk_kb ? chunk_kb : bitmap->chunksize,
3676 				chunk_kb ? "KB" : "B");
3677 			if (bitmap->file) {
3678 				seq_printf(seq, ", file: ");
3679 				seq_path(seq, bitmap->file->f_vfsmnt,
3680 					 bitmap->file->f_dentry," \t\n");
3681 			}
3682 
3683 			seq_printf(seq, "\n");
3684 			spin_unlock_irqrestore(&bitmap->lock, flags);
3685 		}
3686 
3687 		seq_printf(seq, "\n");
3688 	}
3689 	mddev_unlock(mddev);
3690 
3691 	return 0;
3692 }
3693 
3694 static struct seq_operations md_seq_ops = {
3695 	.start  = md_seq_start,
3696 	.next   = md_seq_next,
3697 	.stop   = md_seq_stop,
3698 	.show   = md_seq_show,
3699 };
3700 
3701 static int md_seq_open(struct inode *inode, struct file *file)
3702 {
3703 	int error;
3704 
3705 	error = seq_open(file, &md_seq_ops);
3706 	return error;
3707 }
3708 
3709 static struct file_operations md_seq_fops = {
3710 	.open           = md_seq_open,
3711 	.read           = seq_read,
3712 	.llseek         = seq_lseek,
3713 	.release	= seq_release,
3714 };
3715 
3716 int register_md_personality(int pnum, mdk_personality_t *p)
3717 {
3718 	if (pnum >= MAX_PERSONALITY) {
3719 		printk(KERN_ERR
3720 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3721 		       p->name, pnum, MAX_PERSONALITY-1);
3722 		return -EINVAL;
3723 	}
3724 
3725 	spin_lock(&pers_lock);
3726 	if (pers[pnum]) {
3727 		spin_unlock(&pers_lock);
3728 		return -EBUSY;
3729 	}
3730 
3731 	pers[pnum] = p;
3732 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3733 	spin_unlock(&pers_lock);
3734 	return 0;
3735 }
3736 
3737 int unregister_md_personality(int pnum)
3738 {
3739 	if (pnum >= MAX_PERSONALITY)
3740 		return -EINVAL;
3741 
3742 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3743 	spin_lock(&pers_lock);
3744 	pers[pnum] = NULL;
3745 	spin_unlock(&pers_lock);
3746 	return 0;
3747 }
3748 
3749 static int is_mddev_idle(mddev_t *mddev)
3750 {
3751 	mdk_rdev_t * rdev;
3752 	struct list_head *tmp;
3753 	int idle;
3754 	unsigned long curr_events;
3755 
3756 	idle = 1;
3757 	ITERATE_RDEV(mddev,rdev,tmp) {
3758 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3759 		curr_events = disk_stat_read(disk, sectors[0]) +
3760 				disk_stat_read(disk, sectors[1]) -
3761 				atomic_read(&disk->sync_io);
3762 		/* Allow some slack between valud of curr_events and last_events,
3763 		 * as there are some uninteresting races.
3764 		 * Note: the following is an unsigned comparison.
3765 		 */
3766 		if ((curr_events - rdev->last_events + 32) > 64) {
3767 			rdev->last_events = curr_events;
3768 			idle = 0;
3769 		}
3770 	}
3771 	return idle;
3772 }
3773 
3774 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3775 {
3776 	/* another "blocks" (512byte) blocks have been synced */
3777 	atomic_sub(blocks, &mddev->recovery_active);
3778 	wake_up(&mddev->recovery_wait);
3779 	if (!ok) {
3780 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3781 		md_wakeup_thread(mddev->thread);
3782 		// stop recovery, signal do_sync ....
3783 	}
3784 }
3785 
3786 
3787 /* md_write_start(mddev, bi)
3788  * If we need to update some array metadata (e.g. 'active' flag
3789  * in superblock) before writing, schedule a superblock update
3790  * and wait for it to complete.
3791  */
3792 void md_write_start(mddev_t *mddev, struct bio *bi)
3793 {
3794 	if (bio_data_dir(bi) != WRITE)
3795 		return;
3796 
3797 	atomic_inc(&mddev->writes_pending);
3798 	if (mddev->in_sync) {
3799 		spin_lock(&mddev->write_lock);
3800 		if (mddev->in_sync) {
3801 			mddev->in_sync = 0;
3802 			mddev->sb_dirty = 1;
3803 			md_wakeup_thread(mddev->thread);
3804 		}
3805 		spin_unlock(&mddev->write_lock);
3806 	}
3807 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3808 }
3809 
3810 void md_write_end(mddev_t *mddev)
3811 {
3812 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3813 		if (mddev->safemode == 2)
3814 			md_wakeup_thread(mddev->thread);
3815 		else
3816 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3817 	}
3818 }
3819 
3820 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3821 
3822 #define SYNC_MARKS	10
3823 #define	SYNC_MARK_STEP	(3*HZ)
3824 static void md_do_sync(mddev_t *mddev)
3825 {
3826 	mddev_t *mddev2;
3827 	unsigned int currspeed = 0,
3828 		 window;
3829 	sector_t max_sectors,j, io_sectors;
3830 	unsigned long mark[SYNC_MARKS];
3831 	sector_t mark_cnt[SYNC_MARKS];
3832 	int last_mark,m;
3833 	struct list_head *tmp;
3834 	sector_t last_check;
3835 	int skipped = 0;
3836 
3837 	/* just incase thread restarts... */
3838 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3839 		return;
3840 
3841 	/* we overload curr_resync somewhat here.
3842 	 * 0 == not engaged in resync at all
3843 	 * 2 == checking that there is no conflict with another sync
3844 	 * 1 == like 2, but have yielded to allow conflicting resync to
3845 	 *		commense
3846 	 * other == active in resync - this many blocks
3847 	 *
3848 	 * Before starting a resync we must have set curr_resync to
3849 	 * 2, and then checked that every "conflicting" array has curr_resync
3850 	 * less than ours.  When we find one that is the same or higher
3851 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3852 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3853 	 * This will mean we have to start checking from the beginning again.
3854 	 *
3855 	 */
3856 
3857 	do {
3858 		mddev->curr_resync = 2;
3859 
3860 	try_again:
3861 		if (signal_pending(current) ||
3862 		    kthread_should_stop()) {
3863 			flush_signals(current);
3864 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3865 			goto skip;
3866 		}
3867 		ITERATE_MDDEV(mddev2,tmp) {
3868 			if (mddev2 == mddev)
3869 				continue;
3870 			if (mddev2->curr_resync &&
3871 			    match_mddev_units(mddev,mddev2)) {
3872 				DEFINE_WAIT(wq);
3873 				if (mddev < mddev2 && mddev->curr_resync == 2) {
3874 					/* arbitrarily yield */
3875 					mddev->curr_resync = 1;
3876 					wake_up(&resync_wait);
3877 				}
3878 				if (mddev > mddev2 && mddev->curr_resync == 1)
3879 					/* no need to wait here, we can wait the next
3880 					 * time 'round when curr_resync == 2
3881 					 */
3882 					continue;
3883 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3884 				if (!signal_pending(current) &&
3885 				    !kthread_should_stop() &&
3886 				    mddev2->curr_resync >= mddev->curr_resync) {
3887 					printk(KERN_INFO "md: delaying resync of %s"
3888 					       " until %s has finished resync (they"
3889 					       " share one or more physical units)\n",
3890 					       mdname(mddev), mdname(mddev2));
3891 					mddev_put(mddev2);
3892 					schedule();
3893 					finish_wait(&resync_wait, &wq);
3894 					goto try_again;
3895 				}
3896 				finish_wait(&resync_wait, &wq);
3897 			}
3898 		}
3899 	} while (mddev->curr_resync < 2);
3900 
3901 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3902 		/* resync follows the size requested by the personality,
3903 		 * which defaults to physical size, but can be virtual size
3904 		 */
3905 		max_sectors = mddev->resync_max_sectors;
3906 		mddev->resync_mismatches = 0;
3907 	} else
3908 		/* recovery follows the physical size of devices */
3909 		max_sectors = mddev->size << 1;
3910 
3911 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3912 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3913 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
3914 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
3915 	       "(but not more than %d KB/sec) for reconstruction.\n",
3916 	       sysctl_speed_limit_max);
3917 
3918 	is_mddev_idle(mddev); /* this also initializes IO event counters */
3919 	/* we don't use the checkpoint if there's a bitmap */
3920 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
3921 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3922 		j = mddev->recovery_cp;
3923 	else
3924 		j = 0;
3925 	io_sectors = 0;
3926 	for (m = 0; m < SYNC_MARKS; m++) {
3927 		mark[m] = jiffies;
3928 		mark_cnt[m] = io_sectors;
3929 	}
3930 	last_mark = 0;
3931 	mddev->resync_mark = mark[last_mark];
3932 	mddev->resync_mark_cnt = mark_cnt[last_mark];
3933 
3934 	/*
3935 	 * Tune reconstruction:
3936 	 */
3937 	window = 32*(PAGE_SIZE/512);
3938 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3939 		window/2,(unsigned long long) max_sectors/2);
3940 
3941 	atomic_set(&mddev->recovery_active, 0);
3942 	init_waitqueue_head(&mddev->recovery_wait);
3943 	last_check = 0;
3944 
3945 	if (j>2) {
3946 		printk(KERN_INFO
3947 			"md: resuming recovery of %s from checkpoint.\n",
3948 			mdname(mddev));
3949 		mddev->curr_resync = j;
3950 	}
3951 
3952 	while (j < max_sectors) {
3953 		sector_t sectors;
3954 
3955 		skipped = 0;
3956 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
3957 					    currspeed < sysctl_speed_limit_min);
3958 		if (sectors == 0) {
3959 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3960 			goto out;
3961 		}
3962 
3963 		if (!skipped) { /* actual IO requested */
3964 			io_sectors += sectors;
3965 			atomic_add(sectors, &mddev->recovery_active);
3966 		}
3967 
3968 		j += sectors;
3969 		if (j>1) mddev->curr_resync = j;
3970 
3971 
3972 		if (last_check + window > io_sectors || j == max_sectors)
3973 			continue;
3974 
3975 		last_check = io_sectors;
3976 
3977 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3978 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3979 			break;
3980 
3981 	repeat:
3982 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3983 			/* step marks */
3984 			int next = (last_mark+1) % SYNC_MARKS;
3985 
3986 			mddev->resync_mark = mark[next];
3987 			mddev->resync_mark_cnt = mark_cnt[next];
3988 			mark[next] = jiffies;
3989 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
3990 			last_mark = next;
3991 		}
3992 
3993 
3994 		if (signal_pending(current) || kthread_should_stop()) {
3995 			/*
3996 			 * got a signal, exit.
3997 			 */
3998 			printk(KERN_INFO
3999 				"md: md_do_sync() got signal ... exiting\n");
4000 			flush_signals(current);
4001 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4002 			goto out;
4003 		}
4004 
4005 		/*
4006 		 * this loop exits only if either when we are slower than
4007 		 * the 'hard' speed limit, or the system was IO-idle for
4008 		 * a jiffy.
4009 		 * the system might be non-idle CPU-wise, but we only care
4010 		 * about not overloading the IO subsystem. (things like an
4011 		 * e2fsck being done on the RAID array should execute fast)
4012 		 */
4013 		mddev->queue->unplug_fn(mddev->queue);
4014 		cond_resched();
4015 
4016 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4017 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4018 
4019 		if (currspeed > sysctl_speed_limit_min) {
4020 			if ((currspeed > sysctl_speed_limit_max) ||
4021 					!is_mddev_idle(mddev)) {
4022 				msleep_interruptible(250);
4023 				goto repeat;
4024 			}
4025 		}
4026 	}
4027 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4028 	/*
4029 	 * this also signals 'finished resyncing' to md_stop
4030 	 */
4031  out:
4032 	mddev->queue->unplug_fn(mddev->queue);
4033 
4034 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4035 
4036 	/* tell personality that we are finished */
4037 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4038 
4039 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4040 	    mddev->curr_resync > 2 &&
4041 	    mddev->curr_resync >= mddev->recovery_cp) {
4042 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4043 			printk(KERN_INFO
4044 				"md: checkpointing recovery of %s.\n",
4045 				mdname(mddev));
4046 			mddev->recovery_cp = mddev->curr_resync;
4047 		} else
4048 			mddev->recovery_cp = MaxSector;
4049 	}
4050 
4051  skip:
4052 	mddev->curr_resync = 0;
4053 	wake_up(&resync_wait);
4054 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4055 	md_wakeup_thread(mddev->thread);
4056 }
4057 
4058 
4059 /*
4060  * This routine is regularly called by all per-raid-array threads to
4061  * deal with generic issues like resync and super-block update.
4062  * Raid personalities that don't have a thread (linear/raid0) do not
4063  * need this as they never do any recovery or update the superblock.
4064  *
4065  * It does not do any resync itself, but rather "forks" off other threads
4066  * to do that as needed.
4067  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4068  * "->recovery" and create a thread at ->sync_thread.
4069  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4070  * and wakeups up this thread which will reap the thread and finish up.
4071  * This thread also removes any faulty devices (with nr_pending == 0).
4072  *
4073  * The overall approach is:
4074  *  1/ if the superblock needs updating, update it.
4075  *  2/ If a recovery thread is running, don't do anything else.
4076  *  3/ If recovery has finished, clean up, possibly marking spares active.
4077  *  4/ If there are any faulty devices, remove them.
4078  *  5/ If array is degraded, try to add spares devices
4079  *  6/ If array has spares or is not in-sync, start a resync thread.
4080  */
4081 void md_check_recovery(mddev_t *mddev)
4082 {
4083 	mdk_rdev_t *rdev;
4084 	struct list_head *rtmp;
4085 
4086 
4087 	if (mddev->bitmap)
4088 		bitmap_daemon_work(mddev->bitmap);
4089 
4090 	if (mddev->ro)
4091 		return;
4092 
4093 	if (signal_pending(current)) {
4094 		if (mddev->pers->sync_request) {
4095 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4096 			       mdname(mddev));
4097 			mddev->safemode = 2;
4098 		}
4099 		flush_signals(current);
4100 	}
4101 
4102 	if ( ! (
4103 		mddev->sb_dirty ||
4104 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4105 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4106 		(mddev->safemode == 1) ||
4107 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4108 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4109 		))
4110 		return;
4111 
4112 	if (mddev_trylock(mddev)==0) {
4113 		int spares =0;
4114 
4115 		spin_lock(&mddev->write_lock);
4116 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4117 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4118 			mddev->in_sync = 1;
4119 			mddev->sb_dirty = 1;
4120 		}
4121 		if (mddev->safemode == 1)
4122 			mddev->safemode = 0;
4123 		spin_unlock(&mddev->write_lock);
4124 
4125 		if (mddev->sb_dirty)
4126 			md_update_sb(mddev);
4127 
4128 
4129 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4130 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4131 			/* resync/recovery still happening */
4132 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4133 			goto unlock;
4134 		}
4135 		if (mddev->sync_thread) {
4136 			/* resync has finished, collect result */
4137 			md_unregister_thread(mddev->sync_thread);
4138 			mddev->sync_thread = NULL;
4139 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4140 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4141 				/* success...*/
4142 				/* activate any spares */
4143 				mddev->pers->spare_active(mddev);
4144 			}
4145 			md_update_sb(mddev);
4146 
4147 			/* if array is no-longer degraded, then any saved_raid_disk
4148 			 * information must be scrapped
4149 			 */
4150 			if (!mddev->degraded)
4151 				ITERATE_RDEV(mddev,rdev,rtmp)
4152 					rdev->saved_raid_disk = -1;
4153 
4154 			mddev->recovery = 0;
4155 			/* flag recovery needed just to double check */
4156 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4157 			goto unlock;
4158 		}
4159 		/* Clear some bits that don't mean anything, but
4160 		 * might be left set
4161 		 */
4162 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4163 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4164 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4165 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4166 
4167 		/* no recovery is running.
4168 		 * remove any failed drives, then
4169 		 * add spares if possible.
4170 		 * Spare are also removed and re-added, to allow
4171 		 * the personality to fail the re-add.
4172 		 */
4173 		ITERATE_RDEV(mddev,rdev,rtmp)
4174 			if (rdev->raid_disk >= 0 &&
4175 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4176 			    atomic_read(&rdev->nr_pending)==0) {
4177 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4178 					char nm[20];
4179 					sprintf(nm,"rd%d", rdev->raid_disk);
4180 					sysfs_remove_link(&mddev->kobj, nm);
4181 					rdev->raid_disk = -1;
4182 				}
4183 			}
4184 
4185 		if (mddev->degraded) {
4186 			ITERATE_RDEV(mddev,rdev,rtmp)
4187 				if (rdev->raid_disk < 0
4188 				    && !test_bit(Faulty, &rdev->flags)) {
4189 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4190 						char nm[20];
4191 						sprintf(nm, "rd%d", rdev->raid_disk);
4192 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4193 						spares++;
4194 					} else
4195 						break;
4196 				}
4197 		}
4198 
4199 		if (spares) {
4200 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4201 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4202 		} else if (mddev->recovery_cp < MaxSector) {
4203 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4204 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4205 			/* nothing to be done ... */
4206 			goto unlock;
4207 
4208 		if (mddev->pers->sync_request) {
4209 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4210 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4211 				/* We are adding a device or devices to an array
4212 				 * which has the bitmap stored on all devices.
4213 				 * So make sure all bitmap pages get written
4214 				 */
4215 				bitmap_write_all(mddev->bitmap);
4216 			}
4217 			mddev->sync_thread = md_register_thread(md_do_sync,
4218 								mddev,
4219 								"%s_resync");
4220 			if (!mddev->sync_thread) {
4221 				printk(KERN_ERR "%s: could not start resync"
4222 					" thread...\n",
4223 					mdname(mddev));
4224 				/* leave the spares where they are, it shouldn't hurt */
4225 				mddev->recovery = 0;
4226 			} else {
4227 				md_wakeup_thread(mddev->sync_thread);
4228 			}
4229 		}
4230 	unlock:
4231 		mddev_unlock(mddev);
4232 	}
4233 }
4234 
4235 static int md_notify_reboot(struct notifier_block *this,
4236 			    unsigned long code, void *x)
4237 {
4238 	struct list_head *tmp;
4239 	mddev_t *mddev;
4240 
4241 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4242 
4243 		printk(KERN_INFO "md: stopping all md devices.\n");
4244 
4245 		ITERATE_MDDEV(mddev,tmp)
4246 			if (mddev_trylock(mddev)==0)
4247 				do_md_stop (mddev, 1);
4248 		/*
4249 		 * certain more exotic SCSI devices are known to be
4250 		 * volatile wrt too early system reboots. While the
4251 		 * right place to handle this issue is the given
4252 		 * driver, we do want to have a safe RAID driver ...
4253 		 */
4254 		mdelay(1000*1);
4255 	}
4256 	return NOTIFY_DONE;
4257 }
4258 
4259 static struct notifier_block md_notifier = {
4260 	.notifier_call	= md_notify_reboot,
4261 	.next		= NULL,
4262 	.priority	= INT_MAX, /* before any real devices */
4263 };
4264 
4265 static void md_geninit(void)
4266 {
4267 	struct proc_dir_entry *p;
4268 
4269 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4270 
4271 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4272 	if (p)
4273 		p->proc_fops = &md_seq_fops;
4274 }
4275 
4276 static int __init md_init(void)
4277 {
4278 	int minor;
4279 
4280 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4281 			" MD_SB_DISKS=%d\n",
4282 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4283 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4284 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4285 			BITMAP_MINOR);
4286 
4287 	if (register_blkdev(MAJOR_NR, "md"))
4288 		return -1;
4289 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4290 		unregister_blkdev(MAJOR_NR, "md");
4291 		return -1;
4292 	}
4293 	devfs_mk_dir("md");
4294 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4295 				md_probe, NULL, NULL);
4296 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4297 			    md_probe, NULL, NULL);
4298 
4299 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4300 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4301 				S_IFBLK|S_IRUSR|S_IWUSR,
4302 				"md/%d", minor);
4303 
4304 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4305 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4306 			      S_IFBLK|S_IRUSR|S_IWUSR,
4307 			      "md/mdp%d", minor);
4308 
4309 
4310 	register_reboot_notifier(&md_notifier);
4311 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4312 
4313 	md_geninit();
4314 	return (0);
4315 }
4316 
4317 
4318 #ifndef MODULE
4319 
4320 /*
4321  * Searches all registered partitions for autorun RAID arrays
4322  * at boot time.
4323  */
4324 static dev_t detected_devices[128];
4325 static int dev_cnt;
4326 
4327 void md_autodetect_dev(dev_t dev)
4328 {
4329 	if (dev_cnt >= 0 && dev_cnt < 127)
4330 		detected_devices[dev_cnt++] = dev;
4331 }
4332 
4333 
4334 static void autostart_arrays(int part)
4335 {
4336 	mdk_rdev_t *rdev;
4337 	int i;
4338 
4339 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4340 
4341 	for (i = 0; i < dev_cnt; i++) {
4342 		dev_t dev = detected_devices[i];
4343 
4344 		rdev = md_import_device(dev,0, 0);
4345 		if (IS_ERR(rdev))
4346 			continue;
4347 
4348 		if (test_bit(Faulty, &rdev->flags)) {
4349 			MD_BUG();
4350 			continue;
4351 		}
4352 		list_add(&rdev->same_set, &pending_raid_disks);
4353 	}
4354 	dev_cnt = 0;
4355 
4356 	autorun_devices(part);
4357 }
4358 
4359 #endif
4360 
4361 static __exit void md_exit(void)
4362 {
4363 	mddev_t *mddev;
4364 	struct list_head *tmp;
4365 	int i;
4366 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4367 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4368 	for (i=0; i < MAX_MD_DEVS; i++)
4369 		devfs_remove("md/%d", i);
4370 	for (i=0; i < MAX_MD_DEVS; i++)
4371 		devfs_remove("md/d%d", i);
4372 
4373 	devfs_remove("md");
4374 
4375 	unregister_blkdev(MAJOR_NR,"md");
4376 	unregister_blkdev(mdp_major, "mdp");
4377 	unregister_reboot_notifier(&md_notifier);
4378 	unregister_sysctl_table(raid_table_header);
4379 	remove_proc_entry("mdstat", NULL);
4380 	ITERATE_MDDEV(mddev,tmp) {
4381 		struct gendisk *disk = mddev->gendisk;
4382 		if (!disk)
4383 			continue;
4384 		export_array(mddev);
4385 		del_gendisk(disk);
4386 		put_disk(disk);
4387 		mddev->gendisk = NULL;
4388 		mddev_put(mddev);
4389 	}
4390 }
4391 
4392 module_init(md_init)
4393 module_exit(md_exit)
4394 
4395 EXPORT_SYMBOL(register_md_personality);
4396 EXPORT_SYMBOL(unregister_md_personality);
4397 EXPORT_SYMBOL(md_error);
4398 EXPORT_SYMBOL(md_done_sync);
4399 EXPORT_SYMBOL(md_write_start);
4400 EXPORT_SYMBOL(md_write_end);
4401 EXPORT_SYMBOL(md_register_thread);
4402 EXPORT_SYMBOL(md_unregister_thread);
4403 EXPORT_SYMBOL(md_wakeup_thread);
4404 EXPORT_SYMBOL(md_print_devices);
4405 EXPORT_SYMBOL(md_check_recovery);
4406 MODULE_LICENSE("GPL");
4407 MODULE_ALIAS("md");
4408 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4409