xref: /openbmc/linux/drivers/md/md.c (revision bb636547)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 
46 #include <linux/init.h>
47 
48 #include <linux/file.h>
49 
50 #ifdef CONFIG_KMOD
51 #include <linux/kmod.h>
52 #endif
53 
54 #include <asm/unaligned.h>
55 
56 #define MAJOR_NR MD_MAJOR
57 #define MD_DRIVER
58 
59 /* 63 partitions with the alternate major number (mdp) */
60 #define MdpMinorShift 6
61 
62 #define DEBUG 0
63 #define dprintk(x...) ((void)(DEBUG && printk(x)))
64 
65 
66 #ifndef MODULE
67 static void autostart_arrays (int part);
68 #endif
69 
70 static mdk_personality_t *pers[MAX_PERSONALITY];
71 static DEFINE_SPINLOCK(pers_lock);
72 
73 /*
74  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75  * is 1000 KB/sec, so the extra system load does not show up that much.
76  * Increase it if you want to have more _guaranteed_ speed. Note that
77  * the RAID driver will use the maximum available bandwidth if the IO
78  * subsystem is idle. There is also an 'absolute maximum' reconstruction
79  * speed limit - in case reconstruction slows down your system despite
80  * idle IO detection.
81  *
82  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
83  */
84 
85 static int sysctl_speed_limit_min = 1000;
86 static int sysctl_speed_limit_max = 200000;
87 
88 static struct ctl_table_header *raid_table_header;
89 
90 static ctl_table raid_table[] = {
91 	{
92 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
93 		.procname	= "speed_limit_min",
94 		.data		= &sysctl_speed_limit_min,
95 		.maxlen		= sizeof(int),
96 		.mode		= 0644,
97 		.proc_handler	= &proc_dointvec,
98 	},
99 	{
100 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
101 		.procname	= "speed_limit_max",
102 		.data		= &sysctl_speed_limit_max,
103 		.maxlen		= sizeof(int),
104 		.mode		= 0644,
105 		.proc_handler	= &proc_dointvec,
106 	},
107 	{ .ctl_name = 0 }
108 };
109 
110 static ctl_table raid_dir_table[] = {
111 	{
112 		.ctl_name	= DEV_RAID,
113 		.procname	= "raid",
114 		.maxlen		= 0,
115 		.mode		= 0555,
116 		.child		= raid_table,
117 	},
118 	{ .ctl_name = 0 }
119 };
120 
121 static ctl_table raid_root_table[] = {
122 	{
123 		.ctl_name	= CTL_DEV,
124 		.procname	= "dev",
125 		.maxlen		= 0,
126 		.mode		= 0555,
127 		.child		= raid_dir_table,
128 	},
129 	{ .ctl_name = 0 }
130 };
131 
132 static struct block_device_operations md_fops;
133 
134 static int start_readonly;
135 
136 /*
137  * Enables to iterate over all existing md arrays
138  * all_mddevs_lock protects this list.
139  */
140 static LIST_HEAD(all_mddevs);
141 static DEFINE_SPINLOCK(all_mddevs_lock);
142 
143 
144 /*
145  * iterates through all used mddevs in the system.
146  * We take care to grab the all_mddevs_lock whenever navigating
147  * the list, and to always hold a refcount when unlocked.
148  * Any code which breaks out of this loop while own
149  * a reference to the current mddev and must mddev_put it.
150  */
151 #define ITERATE_MDDEV(mddev,tmp)					\
152 									\
153 	for (({ spin_lock(&all_mddevs_lock); 				\
154 		tmp = all_mddevs.next;					\
155 		mddev = NULL;});					\
156 	     ({ if (tmp != &all_mddevs)					\
157 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
158 		spin_unlock(&all_mddevs_lock);				\
159 		if (mddev) mddev_put(mddev);				\
160 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
161 		tmp != &all_mddevs;});					\
162 	     ({ spin_lock(&all_mddevs_lock);				\
163 		tmp = tmp->next;})					\
164 		)
165 
166 
167 static int md_fail_request (request_queue_t *q, struct bio *bio)
168 {
169 	bio_io_error(bio, bio->bi_size);
170 	return 0;
171 }
172 
173 static inline mddev_t *mddev_get(mddev_t *mddev)
174 {
175 	atomic_inc(&mddev->active);
176 	return mddev;
177 }
178 
179 static void mddev_put(mddev_t *mddev)
180 {
181 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
182 		return;
183 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
184 		list_del(&mddev->all_mddevs);
185 		blk_put_queue(mddev->queue);
186 		kobject_unregister(&mddev->kobj);
187 	}
188 	spin_unlock(&all_mddevs_lock);
189 }
190 
191 static mddev_t * mddev_find(dev_t unit)
192 {
193 	mddev_t *mddev, *new = NULL;
194 
195  retry:
196 	spin_lock(&all_mddevs_lock);
197 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
198 		if (mddev->unit == unit) {
199 			mddev_get(mddev);
200 			spin_unlock(&all_mddevs_lock);
201 			kfree(new);
202 			return mddev;
203 		}
204 
205 	if (new) {
206 		list_add(&new->all_mddevs, &all_mddevs);
207 		spin_unlock(&all_mddevs_lock);
208 		return new;
209 	}
210 	spin_unlock(&all_mddevs_lock);
211 
212 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
213 	if (!new)
214 		return NULL;
215 
216 	memset(new, 0, sizeof(*new));
217 
218 	new->unit = unit;
219 	if (MAJOR(unit) == MD_MAJOR)
220 		new->md_minor = MINOR(unit);
221 	else
222 		new->md_minor = MINOR(unit) >> MdpMinorShift;
223 
224 	init_MUTEX(&new->reconfig_sem);
225 	INIT_LIST_HEAD(&new->disks);
226 	INIT_LIST_HEAD(&new->all_mddevs);
227 	init_timer(&new->safemode_timer);
228 	atomic_set(&new->active, 1);
229 	spin_lock_init(&new->write_lock);
230 	init_waitqueue_head(&new->sb_wait);
231 
232 	new->queue = blk_alloc_queue(GFP_KERNEL);
233 	if (!new->queue) {
234 		kfree(new);
235 		return NULL;
236 	}
237 
238 	blk_queue_make_request(new->queue, md_fail_request);
239 
240 	goto retry;
241 }
242 
243 static inline int mddev_lock(mddev_t * mddev)
244 {
245 	return down_interruptible(&mddev->reconfig_sem);
246 }
247 
248 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
249 {
250 	down(&mddev->reconfig_sem);
251 }
252 
253 static inline int mddev_trylock(mddev_t * mddev)
254 {
255 	return down_trylock(&mddev->reconfig_sem);
256 }
257 
258 static inline void mddev_unlock(mddev_t * mddev)
259 {
260 	up(&mddev->reconfig_sem);
261 
262 	md_wakeup_thread(mddev->thread);
263 }
264 
265 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
266 {
267 	mdk_rdev_t * rdev;
268 	struct list_head *tmp;
269 
270 	ITERATE_RDEV(mddev,rdev,tmp) {
271 		if (rdev->desc_nr == nr)
272 			return rdev;
273 	}
274 	return NULL;
275 }
276 
277 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
278 {
279 	struct list_head *tmp;
280 	mdk_rdev_t *rdev;
281 
282 	ITERATE_RDEV(mddev,rdev,tmp) {
283 		if (rdev->bdev->bd_dev == dev)
284 			return rdev;
285 	}
286 	return NULL;
287 }
288 
289 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
290 {
291 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
292 	return MD_NEW_SIZE_BLOCKS(size);
293 }
294 
295 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
296 {
297 	sector_t size;
298 
299 	size = rdev->sb_offset;
300 
301 	if (chunk_size)
302 		size &= ~((sector_t)chunk_size/1024 - 1);
303 	return size;
304 }
305 
306 static int alloc_disk_sb(mdk_rdev_t * rdev)
307 {
308 	if (rdev->sb_page)
309 		MD_BUG();
310 
311 	rdev->sb_page = alloc_page(GFP_KERNEL);
312 	if (!rdev->sb_page) {
313 		printk(KERN_ALERT "md: out of memory.\n");
314 		return -EINVAL;
315 	}
316 
317 	return 0;
318 }
319 
320 static void free_disk_sb(mdk_rdev_t * rdev)
321 {
322 	if (rdev->sb_page) {
323 		page_cache_release(rdev->sb_page);
324 		rdev->sb_loaded = 0;
325 		rdev->sb_page = NULL;
326 		rdev->sb_offset = 0;
327 		rdev->size = 0;
328 	}
329 }
330 
331 
332 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
333 {
334 	mdk_rdev_t *rdev = bio->bi_private;
335 	mddev_t *mddev = rdev->mddev;
336 	if (bio->bi_size)
337 		return 1;
338 
339 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
340 		md_error(mddev, rdev);
341 
342 	if (atomic_dec_and_test(&mddev->pending_writes))
343 		wake_up(&mddev->sb_wait);
344 	bio_put(bio);
345 	return 0;
346 }
347 
348 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
349 {
350 	struct bio *bio2 = bio->bi_private;
351 	mdk_rdev_t *rdev = bio2->bi_private;
352 	mddev_t *mddev = rdev->mddev;
353 	if (bio->bi_size)
354 		return 1;
355 
356 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
357 	    error == -EOPNOTSUPP) {
358 		unsigned long flags;
359 		/* barriers don't appear to be supported :-( */
360 		set_bit(BarriersNotsupp, &rdev->flags);
361 		mddev->barriers_work = 0;
362 		spin_lock_irqsave(&mddev->write_lock, flags);
363 		bio2->bi_next = mddev->biolist;
364 		mddev->biolist = bio2;
365 		spin_unlock_irqrestore(&mddev->write_lock, flags);
366 		wake_up(&mddev->sb_wait);
367 		bio_put(bio);
368 		return 0;
369 	}
370 	bio_put(bio2);
371 	bio->bi_private = rdev;
372 	return super_written(bio, bytes_done, error);
373 }
374 
375 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
376 		   sector_t sector, int size, struct page *page)
377 {
378 	/* write first size bytes of page to sector of rdev
379 	 * Increment mddev->pending_writes before returning
380 	 * and decrement it on completion, waking up sb_wait
381 	 * if zero is reached.
382 	 * If an error occurred, call md_error
383 	 *
384 	 * As we might need to resubmit the request if BIO_RW_BARRIER
385 	 * causes ENOTSUPP, we allocate a spare bio...
386 	 */
387 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
388 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
389 
390 	bio->bi_bdev = rdev->bdev;
391 	bio->bi_sector = sector;
392 	bio_add_page(bio, page, size, 0);
393 	bio->bi_private = rdev;
394 	bio->bi_end_io = super_written;
395 	bio->bi_rw = rw;
396 
397 	atomic_inc(&mddev->pending_writes);
398 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
399 		struct bio *rbio;
400 		rw |= (1<<BIO_RW_BARRIER);
401 		rbio = bio_clone(bio, GFP_NOIO);
402 		rbio->bi_private = bio;
403 		rbio->bi_end_io = super_written_barrier;
404 		submit_bio(rw, rbio);
405 	} else
406 		submit_bio(rw, bio);
407 }
408 
409 void md_super_wait(mddev_t *mddev)
410 {
411 	/* wait for all superblock writes that were scheduled to complete.
412 	 * if any had to be retried (due to BARRIER problems), retry them
413 	 */
414 	DEFINE_WAIT(wq);
415 	for(;;) {
416 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
417 		if (atomic_read(&mddev->pending_writes)==0)
418 			break;
419 		while (mddev->biolist) {
420 			struct bio *bio;
421 			spin_lock_irq(&mddev->write_lock);
422 			bio = mddev->biolist;
423 			mddev->biolist = bio->bi_next ;
424 			bio->bi_next = NULL;
425 			spin_unlock_irq(&mddev->write_lock);
426 			submit_bio(bio->bi_rw, bio);
427 		}
428 		schedule();
429 	}
430 	finish_wait(&mddev->sb_wait, &wq);
431 }
432 
433 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
434 {
435 	if (bio->bi_size)
436 		return 1;
437 
438 	complete((struct completion*)bio->bi_private);
439 	return 0;
440 }
441 
442 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
443 		   struct page *page, int rw)
444 {
445 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
446 	struct completion event;
447 	int ret;
448 
449 	rw |= (1 << BIO_RW_SYNC);
450 
451 	bio->bi_bdev = bdev;
452 	bio->bi_sector = sector;
453 	bio_add_page(bio, page, size, 0);
454 	init_completion(&event);
455 	bio->bi_private = &event;
456 	bio->bi_end_io = bi_complete;
457 	submit_bio(rw, bio);
458 	wait_for_completion(&event);
459 
460 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
461 	bio_put(bio);
462 	return ret;
463 }
464 
465 static int read_disk_sb(mdk_rdev_t * rdev, int size)
466 {
467 	char b[BDEVNAME_SIZE];
468 	if (!rdev->sb_page) {
469 		MD_BUG();
470 		return -EINVAL;
471 	}
472 	if (rdev->sb_loaded)
473 		return 0;
474 
475 
476 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
477 		goto fail;
478 	rdev->sb_loaded = 1;
479 	return 0;
480 
481 fail:
482 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
483 		bdevname(rdev->bdev,b));
484 	return -EINVAL;
485 }
486 
487 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
488 {
489 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
490 		(sb1->set_uuid1 == sb2->set_uuid1) &&
491 		(sb1->set_uuid2 == sb2->set_uuid2) &&
492 		(sb1->set_uuid3 == sb2->set_uuid3))
493 
494 		return 1;
495 
496 	return 0;
497 }
498 
499 
500 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
501 {
502 	int ret;
503 	mdp_super_t *tmp1, *tmp2;
504 
505 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
506 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
507 
508 	if (!tmp1 || !tmp2) {
509 		ret = 0;
510 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
511 		goto abort;
512 	}
513 
514 	*tmp1 = *sb1;
515 	*tmp2 = *sb2;
516 
517 	/*
518 	 * nr_disks is not constant
519 	 */
520 	tmp1->nr_disks = 0;
521 	tmp2->nr_disks = 0;
522 
523 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
524 		ret = 0;
525 	else
526 		ret = 1;
527 
528 abort:
529 	kfree(tmp1);
530 	kfree(tmp2);
531 	return ret;
532 }
533 
534 static unsigned int calc_sb_csum(mdp_super_t * sb)
535 {
536 	unsigned int disk_csum, csum;
537 
538 	disk_csum = sb->sb_csum;
539 	sb->sb_csum = 0;
540 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
541 	sb->sb_csum = disk_csum;
542 	return csum;
543 }
544 
545 
546 /*
547  * Handle superblock details.
548  * We want to be able to handle multiple superblock formats
549  * so we have a common interface to them all, and an array of
550  * different handlers.
551  * We rely on user-space to write the initial superblock, and support
552  * reading and updating of superblocks.
553  * Interface methods are:
554  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
555  *      loads and validates a superblock on dev.
556  *      if refdev != NULL, compare superblocks on both devices
557  *    Return:
558  *      0 - dev has a superblock that is compatible with refdev
559  *      1 - dev has a superblock that is compatible and newer than refdev
560  *          so dev should be used as the refdev in future
561  *     -EINVAL superblock incompatible or invalid
562  *     -othererror e.g. -EIO
563  *
564  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
565  *      Verify that dev is acceptable into mddev.
566  *       The first time, mddev->raid_disks will be 0, and data from
567  *       dev should be merged in.  Subsequent calls check that dev
568  *       is new enough.  Return 0 or -EINVAL
569  *
570  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
571  *     Update the superblock for rdev with data in mddev
572  *     This does not write to disc.
573  *
574  */
575 
576 struct super_type  {
577 	char 		*name;
578 	struct module	*owner;
579 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
580 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
581 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
582 };
583 
584 /*
585  * load_super for 0.90.0
586  */
587 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
588 {
589 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
590 	mdp_super_t *sb;
591 	int ret;
592 	sector_t sb_offset;
593 
594 	/*
595 	 * Calculate the position of the superblock,
596 	 * it's at the end of the disk.
597 	 *
598 	 * It also happens to be a multiple of 4Kb.
599 	 */
600 	sb_offset = calc_dev_sboffset(rdev->bdev);
601 	rdev->sb_offset = sb_offset;
602 
603 	ret = read_disk_sb(rdev, MD_SB_BYTES);
604 	if (ret) return ret;
605 
606 	ret = -EINVAL;
607 
608 	bdevname(rdev->bdev, b);
609 	sb = (mdp_super_t*)page_address(rdev->sb_page);
610 
611 	if (sb->md_magic != MD_SB_MAGIC) {
612 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
613 		       b);
614 		goto abort;
615 	}
616 
617 	if (sb->major_version != 0 ||
618 	    sb->minor_version != 90) {
619 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
620 			sb->major_version, sb->minor_version,
621 			b);
622 		goto abort;
623 	}
624 
625 	if (sb->raid_disks <= 0)
626 		goto abort;
627 
628 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
629 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
630 			b);
631 		goto abort;
632 	}
633 
634 	rdev->preferred_minor = sb->md_minor;
635 	rdev->data_offset = 0;
636 	rdev->sb_size = MD_SB_BYTES;
637 
638 	if (sb->level == LEVEL_MULTIPATH)
639 		rdev->desc_nr = -1;
640 	else
641 		rdev->desc_nr = sb->this_disk.number;
642 
643 	if (refdev == 0)
644 		ret = 1;
645 	else {
646 		__u64 ev1, ev2;
647 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
648 		if (!uuid_equal(refsb, sb)) {
649 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
650 				b, bdevname(refdev->bdev,b2));
651 			goto abort;
652 		}
653 		if (!sb_equal(refsb, sb)) {
654 			printk(KERN_WARNING "md: %s has same UUID"
655 			       " but different superblock to %s\n",
656 			       b, bdevname(refdev->bdev, b2));
657 			goto abort;
658 		}
659 		ev1 = md_event(sb);
660 		ev2 = md_event(refsb);
661 		if (ev1 > ev2)
662 			ret = 1;
663 		else
664 			ret = 0;
665 	}
666 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
667 
668  abort:
669 	return ret;
670 }
671 
672 /*
673  * validate_super for 0.90.0
674  */
675 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
676 {
677 	mdp_disk_t *desc;
678 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
679 
680 	rdev->raid_disk = -1;
681 	rdev->flags = 0;
682 	if (mddev->raid_disks == 0) {
683 		mddev->major_version = 0;
684 		mddev->minor_version = sb->minor_version;
685 		mddev->patch_version = sb->patch_version;
686 		mddev->persistent = ! sb->not_persistent;
687 		mddev->chunk_size = sb->chunk_size;
688 		mddev->ctime = sb->ctime;
689 		mddev->utime = sb->utime;
690 		mddev->level = sb->level;
691 		mddev->layout = sb->layout;
692 		mddev->raid_disks = sb->raid_disks;
693 		mddev->size = sb->size;
694 		mddev->events = md_event(sb);
695 		mddev->bitmap_offset = 0;
696 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
697 
698 		if (sb->state & (1<<MD_SB_CLEAN))
699 			mddev->recovery_cp = MaxSector;
700 		else {
701 			if (sb->events_hi == sb->cp_events_hi &&
702 				sb->events_lo == sb->cp_events_lo) {
703 				mddev->recovery_cp = sb->recovery_cp;
704 			} else
705 				mddev->recovery_cp = 0;
706 		}
707 
708 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
709 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
710 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
711 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
712 
713 		mddev->max_disks = MD_SB_DISKS;
714 
715 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
716 		    mddev->bitmap_file == NULL) {
717 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
718 				/* FIXME use a better test */
719 				printk(KERN_WARNING "md: bitmaps only support for raid1\n");
720 				return -EINVAL;
721 			}
722 			mddev->bitmap_offset = mddev->default_bitmap_offset;
723 		}
724 
725 	} else if (mddev->pers == NULL) {
726 		/* Insist on good event counter while assembling */
727 		__u64 ev1 = md_event(sb);
728 		++ev1;
729 		if (ev1 < mddev->events)
730 			return -EINVAL;
731 	} else if (mddev->bitmap) {
732 		/* if adding to array with a bitmap, then we can accept an
733 		 * older device ... but not too old.
734 		 */
735 		__u64 ev1 = md_event(sb);
736 		if (ev1 < mddev->bitmap->events_cleared)
737 			return 0;
738 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
739 		return 0;
740 
741 	if (mddev->level != LEVEL_MULTIPATH) {
742 		desc = sb->disks + rdev->desc_nr;
743 
744 		if (desc->state & (1<<MD_DISK_FAULTY))
745 			set_bit(Faulty, &rdev->flags);
746 		else if (desc->state & (1<<MD_DISK_SYNC) &&
747 			 desc->raid_disk < mddev->raid_disks) {
748 			set_bit(In_sync, &rdev->flags);
749 			rdev->raid_disk = desc->raid_disk;
750 		}
751 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
752 			set_bit(WriteMostly, &rdev->flags);
753 	} else /* MULTIPATH are always insync */
754 		set_bit(In_sync, &rdev->flags);
755 	return 0;
756 }
757 
758 /*
759  * sync_super for 0.90.0
760  */
761 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
762 {
763 	mdp_super_t *sb;
764 	struct list_head *tmp;
765 	mdk_rdev_t *rdev2;
766 	int next_spare = mddev->raid_disks;
767 
768 
769 	/* make rdev->sb match mddev data..
770 	 *
771 	 * 1/ zero out disks
772 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
773 	 * 3/ any empty disks < next_spare become removed
774 	 *
775 	 * disks[0] gets initialised to REMOVED because
776 	 * we cannot be sure from other fields if it has
777 	 * been initialised or not.
778 	 */
779 	int i;
780 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
781 
782 	rdev->sb_size = MD_SB_BYTES;
783 
784 	sb = (mdp_super_t*)page_address(rdev->sb_page);
785 
786 	memset(sb, 0, sizeof(*sb));
787 
788 	sb->md_magic = MD_SB_MAGIC;
789 	sb->major_version = mddev->major_version;
790 	sb->minor_version = mddev->minor_version;
791 	sb->patch_version = mddev->patch_version;
792 	sb->gvalid_words  = 0; /* ignored */
793 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
794 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
795 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
796 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
797 
798 	sb->ctime = mddev->ctime;
799 	sb->level = mddev->level;
800 	sb->size  = mddev->size;
801 	sb->raid_disks = mddev->raid_disks;
802 	sb->md_minor = mddev->md_minor;
803 	sb->not_persistent = !mddev->persistent;
804 	sb->utime = mddev->utime;
805 	sb->state = 0;
806 	sb->events_hi = (mddev->events>>32);
807 	sb->events_lo = (u32)mddev->events;
808 
809 	if (mddev->in_sync)
810 	{
811 		sb->recovery_cp = mddev->recovery_cp;
812 		sb->cp_events_hi = (mddev->events>>32);
813 		sb->cp_events_lo = (u32)mddev->events;
814 		if (mddev->recovery_cp == MaxSector)
815 			sb->state = (1<< MD_SB_CLEAN);
816 	} else
817 		sb->recovery_cp = 0;
818 
819 	sb->layout = mddev->layout;
820 	sb->chunk_size = mddev->chunk_size;
821 
822 	if (mddev->bitmap && mddev->bitmap_file == NULL)
823 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
824 
825 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
826 	ITERATE_RDEV(mddev,rdev2,tmp) {
827 		mdp_disk_t *d;
828 		int desc_nr;
829 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
830 		    && !test_bit(Faulty, &rdev2->flags))
831 			desc_nr = rdev2->raid_disk;
832 		else
833 			desc_nr = next_spare++;
834 		rdev2->desc_nr = desc_nr;
835 		d = &sb->disks[rdev2->desc_nr];
836 		nr_disks++;
837 		d->number = rdev2->desc_nr;
838 		d->major = MAJOR(rdev2->bdev->bd_dev);
839 		d->minor = MINOR(rdev2->bdev->bd_dev);
840 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
841 		    && !test_bit(Faulty, &rdev2->flags))
842 			d->raid_disk = rdev2->raid_disk;
843 		else
844 			d->raid_disk = rdev2->desc_nr; /* compatibility */
845 		if (test_bit(Faulty, &rdev2->flags)) {
846 			d->state = (1<<MD_DISK_FAULTY);
847 			failed++;
848 		} else if (test_bit(In_sync, &rdev2->flags)) {
849 			d->state = (1<<MD_DISK_ACTIVE);
850 			d->state |= (1<<MD_DISK_SYNC);
851 			active++;
852 			working++;
853 		} else {
854 			d->state = 0;
855 			spare++;
856 			working++;
857 		}
858 		if (test_bit(WriteMostly, &rdev2->flags))
859 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
860 	}
861 	/* now set the "removed" and "faulty" bits on any missing devices */
862 	for (i=0 ; i < mddev->raid_disks ; i++) {
863 		mdp_disk_t *d = &sb->disks[i];
864 		if (d->state == 0 && d->number == 0) {
865 			d->number = i;
866 			d->raid_disk = i;
867 			d->state = (1<<MD_DISK_REMOVED);
868 			d->state |= (1<<MD_DISK_FAULTY);
869 			failed++;
870 		}
871 	}
872 	sb->nr_disks = nr_disks;
873 	sb->active_disks = active;
874 	sb->working_disks = working;
875 	sb->failed_disks = failed;
876 	sb->spare_disks = spare;
877 
878 	sb->this_disk = sb->disks[rdev->desc_nr];
879 	sb->sb_csum = calc_sb_csum(sb);
880 }
881 
882 /*
883  * version 1 superblock
884  */
885 
886 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
887 {
888 	unsigned int disk_csum, csum;
889 	unsigned long long newcsum;
890 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
891 	unsigned int *isuper = (unsigned int*)sb;
892 	int i;
893 
894 	disk_csum = sb->sb_csum;
895 	sb->sb_csum = 0;
896 	newcsum = 0;
897 	for (i=0; size>=4; size -= 4 )
898 		newcsum += le32_to_cpu(*isuper++);
899 
900 	if (size == 2)
901 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
902 
903 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
904 	sb->sb_csum = disk_csum;
905 	return cpu_to_le32(csum);
906 }
907 
908 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
909 {
910 	struct mdp_superblock_1 *sb;
911 	int ret;
912 	sector_t sb_offset;
913 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
914 	int bmask;
915 
916 	/*
917 	 * Calculate the position of the superblock.
918 	 * It is always aligned to a 4K boundary and
919 	 * depeding on minor_version, it can be:
920 	 * 0: At least 8K, but less than 12K, from end of device
921 	 * 1: At start of device
922 	 * 2: 4K from start of device.
923 	 */
924 	switch(minor_version) {
925 	case 0:
926 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
927 		sb_offset -= 8*2;
928 		sb_offset &= ~(sector_t)(4*2-1);
929 		/* convert from sectors to K */
930 		sb_offset /= 2;
931 		break;
932 	case 1:
933 		sb_offset = 0;
934 		break;
935 	case 2:
936 		sb_offset = 4;
937 		break;
938 	default:
939 		return -EINVAL;
940 	}
941 	rdev->sb_offset = sb_offset;
942 
943 	/* superblock is rarely larger than 1K, but it can be larger,
944 	 * and it is safe to read 4k, so we do that
945 	 */
946 	ret = read_disk_sb(rdev, 4096);
947 	if (ret) return ret;
948 
949 
950 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
951 
952 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
953 	    sb->major_version != cpu_to_le32(1) ||
954 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
955 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
956 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
957 		return -EINVAL;
958 
959 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
960 		printk("md: invalid superblock checksum on %s\n",
961 			bdevname(rdev->bdev,b));
962 		return -EINVAL;
963 	}
964 	if (le64_to_cpu(sb->data_size) < 10) {
965 		printk("md: data_size too small on %s\n",
966 		       bdevname(rdev->bdev,b));
967 		return -EINVAL;
968 	}
969 	rdev->preferred_minor = 0xffff;
970 	rdev->data_offset = le64_to_cpu(sb->data_offset);
971 
972 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
973 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
974 	if (rdev->sb_size & bmask)
975 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
976 
977 	if (refdev == 0)
978 		return 1;
979 	else {
980 		__u64 ev1, ev2;
981 		struct mdp_superblock_1 *refsb =
982 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
983 
984 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
985 		    sb->level != refsb->level ||
986 		    sb->layout != refsb->layout ||
987 		    sb->chunksize != refsb->chunksize) {
988 			printk(KERN_WARNING "md: %s has strangely different"
989 				" superblock to %s\n",
990 				bdevname(rdev->bdev,b),
991 				bdevname(refdev->bdev,b2));
992 			return -EINVAL;
993 		}
994 		ev1 = le64_to_cpu(sb->events);
995 		ev2 = le64_to_cpu(refsb->events);
996 
997 		if (ev1 > ev2)
998 			return 1;
999 	}
1000 	if (minor_version)
1001 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1002 	else
1003 		rdev->size = rdev->sb_offset;
1004 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1005 		return -EINVAL;
1006 	rdev->size = le64_to_cpu(sb->data_size)/2;
1007 	if (le32_to_cpu(sb->chunksize))
1008 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1009 	return 0;
1010 }
1011 
1012 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1013 {
1014 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1015 
1016 	rdev->raid_disk = -1;
1017 	rdev->flags = 0;
1018 	if (mddev->raid_disks == 0) {
1019 		mddev->major_version = 1;
1020 		mddev->patch_version = 0;
1021 		mddev->persistent = 1;
1022 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1023 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1024 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1025 		mddev->level = le32_to_cpu(sb->level);
1026 		mddev->layout = le32_to_cpu(sb->layout);
1027 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1028 		mddev->size = le64_to_cpu(sb->size)/2;
1029 		mddev->events = le64_to_cpu(sb->events);
1030 		mddev->bitmap_offset = 0;
1031 		mddev->default_bitmap_offset = 0;
1032 		mddev->default_bitmap_offset = 1024;
1033 
1034 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1035 		memcpy(mddev->uuid, sb->set_uuid, 16);
1036 
1037 		mddev->max_disks =  (4096-256)/2;
1038 
1039 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1040 		    mddev->bitmap_file == NULL ) {
1041 			if (mddev->level != 1) {
1042 				printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
1043 				return -EINVAL;
1044 			}
1045 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1046 		}
1047 	} else if (mddev->pers == NULL) {
1048 		/* Insist of good event counter while assembling */
1049 		__u64 ev1 = le64_to_cpu(sb->events);
1050 		++ev1;
1051 		if (ev1 < mddev->events)
1052 			return -EINVAL;
1053 	} else if (mddev->bitmap) {
1054 		/* If adding to array with a bitmap, then we can accept an
1055 		 * older device, but not too old.
1056 		 */
1057 		__u64 ev1 = le64_to_cpu(sb->events);
1058 		if (ev1 < mddev->bitmap->events_cleared)
1059 			return 0;
1060 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1061 		return 0;
1062 
1063 	if (mddev->level != LEVEL_MULTIPATH) {
1064 		int role;
1065 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1066 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1067 		switch(role) {
1068 		case 0xffff: /* spare */
1069 			break;
1070 		case 0xfffe: /* faulty */
1071 			set_bit(Faulty, &rdev->flags);
1072 			break;
1073 		default:
1074 			set_bit(In_sync, &rdev->flags);
1075 			rdev->raid_disk = role;
1076 			break;
1077 		}
1078 		if (sb->devflags & WriteMostly1)
1079 			set_bit(WriteMostly, &rdev->flags);
1080 	} else /* MULTIPATH are always insync */
1081 		set_bit(In_sync, &rdev->flags);
1082 
1083 	return 0;
1084 }
1085 
1086 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1087 {
1088 	struct mdp_superblock_1 *sb;
1089 	struct list_head *tmp;
1090 	mdk_rdev_t *rdev2;
1091 	int max_dev, i;
1092 	/* make rdev->sb match mddev and rdev data. */
1093 
1094 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1095 
1096 	sb->feature_map = 0;
1097 	sb->pad0 = 0;
1098 	memset(sb->pad1, 0, sizeof(sb->pad1));
1099 	memset(sb->pad2, 0, sizeof(sb->pad2));
1100 	memset(sb->pad3, 0, sizeof(sb->pad3));
1101 
1102 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1103 	sb->events = cpu_to_le64(mddev->events);
1104 	if (mddev->in_sync)
1105 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1106 	else
1107 		sb->resync_offset = cpu_to_le64(0);
1108 
1109 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1110 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1111 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1112 	}
1113 
1114 	max_dev = 0;
1115 	ITERATE_RDEV(mddev,rdev2,tmp)
1116 		if (rdev2->desc_nr+1 > max_dev)
1117 			max_dev = rdev2->desc_nr+1;
1118 
1119 	sb->max_dev = cpu_to_le32(max_dev);
1120 	for (i=0; i<max_dev;i++)
1121 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1122 
1123 	ITERATE_RDEV(mddev,rdev2,tmp) {
1124 		i = rdev2->desc_nr;
1125 		if (test_bit(Faulty, &rdev2->flags))
1126 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1127 		else if (test_bit(In_sync, &rdev2->flags))
1128 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1129 		else
1130 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1131 	}
1132 
1133 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1134 	sb->sb_csum = calc_sb_1_csum(sb);
1135 }
1136 
1137 
1138 static struct super_type super_types[] = {
1139 	[0] = {
1140 		.name	= "0.90.0",
1141 		.owner	= THIS_MODULE,
1142 		.load_super	= super_90_load,
1143 		.validate_super	= super_90_validate,
1144 		.sync_super	= super_90_sync,
1145 	},
1146 	[1] = {
1147 		.name	= "md-1",
1148 		.owner	= THIS_MODULE,
1149 		.load_super	= super_1_load,
1150 		.validate_super	= super_1_validate,
1151 		.sync_super	= super_1_sync,
1152 	},
1153 };
1154 
1155 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1156 {
1157 	struct list_head *tmp;
1158 	mdk_rdev_t *rdev;
1159 
1160 	ITERATE_RDEV(mddev,rdev,tmp)
1161 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1162 			return rdev;
1163 
1164 	return NULL;
1165 }
1166 
1167 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1168 {
1169 	struct list_head *tmp;
1170 	mdk_rdev_t *rdev;
1171 
1172 	ITERATE_RDEV(mddev1,rdev,tmp)
1173 		if (match_dev_unit(mddev2, rdev))
1174 			return 1;
1175 
1176 	return 0;
1177 }
1178 
1179 static LIST_HEAD(pending_raid_disks);
1180 
1181 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1182 {
1183 	mdk_rdev_t *same_pdev;
1184 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1185 	struct kobject *ko;
1186 
1187 	if (rdev->mddev) {
1188 		MD_BUG();
1189 		return -EINVAL;
1190 	}
1191 	same_pdev = match_dev_unit(mddev, rdev);
1192 	if (same_pdev)
1193 		printk(KERN_WARNING
1194 			"%s: WARNING: %s appears to be on the same physical"
1195 	 		" disk as %s. True\n     protection against single-disk"
1196 			" failure might be compromised.\n",
1197 			mdname(mddev), bdevname(rdev->bdev,b),
1198 			bdevname(same_pdev->bdev,b2));
1199 
1200 	/* Verify rdev->desc_nr is unique.
1201 	 * If it is -1, assign a free number, else
1202 	 * check number is not in use
1203 	 */
1204 	if (rdev->desc_nr < 0) {
1205 		int choice = 0;
1206 		if (mddev->pers) choice = mddev->raid_disks;
1207 		while (find_rdev_nr(mddev, choice))
1208 			choice++;
1209 		rdev->desc_nr = choice;
1210 	} else {
1211 		if (find_rdev_nr(mddev, rdev->desc_nr))
1212 			return -EBUSY;
1213 	}
1214 	bdevname(rdev->bdev,b);
1215 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1216 		return -ENOMEM;
1217 
1218 	list_add(&rdev->same_set, &mddev->disks);
1219 	rdev->mddev = mddev;
1220 	printk(KERN_INFO "md: bind<%s>\n", b);
1221 
1222 	rdev->kobj.parent = &mddev->kobj;
1223 	kobject_add(&rdev->kobj);
1224 
1225 	if (rdev->bdev->bd_part)
1226 		ko = &rdev->bdev->bd_part->kobj;
1227 	else
1228 		ko = &rdev->bdev->bd_disk->kobj;
1229 	sysfs_create_link(&rdev->kobj, ko, "block");
1230 	return 0;
1231 }
1232 
1233 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1234 {
1235 	char b[BDEVNAME_SIZE];
1236 	if (!rdev->mddev) {
1237 		MD_BUG();
1238 		return;
1239 	}
1240 	list_del_init(&rdev->same_set);
1241 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1242 	rdev->mddev = NULL;
1243 	sysfs_remove_link(&rdev->kobj, "block");
1244 	kobject_del(&rdev->kobj);
1245 }
1246 
1247 /*
1248  * prevent the device from being mounted, repartitioned or
1249  * otherwise reused by a RAID array (or any other kernel
1250  * subsystem), by bd_claiming the device.
1251  */
1252 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1253 {
1254 	int err = 0;
1255 	struct block_device *bdev;
1256 	char b[BDEVNAME_SIZE];
1257 
1258 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1259 	if (IS_ERR(bdev)) {
1260 		printk(KERN_ERR "md: could not open %s.\n",
1261 			__bdevname(dev, b));
1262 		return PTR_ERR(bdev);
1263 	}
1264 	err = bd_claim(bdev, rdev);
1265 	if (err) {
1266 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1267 			bdevname(bdev, b));
1268 		blkdev_put(bdev);
1269 		return err;
1270 	}
1271 	rdev->bdev = bdev;
1272 	return err;
1273 }
1274 
1275 static void unlock_rdev(mdk_rdev_t *rdev)
1276 {
1277 	struct block_device *bdev = rdev->bdev;
1278 	rdev->bdev = NULL;
1279 	if (!bdev)
1280 		MD_BUG();
1281 	bd_release(bdev);
1282 	blkdev_put(bdev);
1283 }
1284 
1285 void md_autodetect_dev(dev_t dev);
1286 
1287 static void export_rdev(mdk_rdev_t * rdev)
1288 {
1289 	char b[BDEVNAME_SIZE];
1290 	printk(KERN_INFO "md: export_rdev(%s)\n",
1291 		bdevname(rdev->bdev,b));
1292 	if (rdev->mddev)
1293 		MD_BUG();
1294 	free_disk_sb(rdev);
1295 	list_del_init(&rdev->same_set);
1296 #ifndef MODULE
1297 	md_autodetect_dev(rdev->bdev->bd_dev);
1298 #endif
1299 	unlock_rdev(rdev);
1300 	kobject_put(&rdev->kobj);
1301 }
1302 
1303 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1304 {
1305 	unbind_rdev_from_array(rdev);
1306 	export_rdev(rdev);
1307 }
1308 
1309 static void export_array(mddev_t *mddev)
1310 {
1311 	struct list_head *tmp;
1312 	mdk_rdev_t *rdev;
1313 
1314 	ITERATE_RDEV(mddev,rdev,tmp) {
1315 		if (!rdev->mddev) {
1316 			MD_BUG();
1317 			continue;
1318 		}
1319 		kick_rdev_from_array(rdev);
1320 	}
1321 	if (!list_empty(&mddev->disks))
1322 		MD_BUG();
1323 	mddev->raid_disks = 0;
1324 	mddev->major_version = 0;
1325 }
1326 
1327 static void print_desc(mdp_disk_t *desc)
1328 {
1329 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1330 		desc->major,desc->minor,desc->raid_disk,desc->state);
1331 }
1332 
1333 static void print_sb(mdp_super_t *sb)
1334 {
1335 	int i;
1336 
1337 	printk(KERN_INFO
1338 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1339 		sb->major_version, sb->minor_version, sb->patch_version,
1340 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1341 		sb->ctime);
1342 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1343 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1344 		sb->md_minor, sb->layout, sb->chunk_size);
1345 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1346 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1347 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1348 		sb->failed_disks, sb->spare_disks,
1349 		sb->sb_csum, (unsigned long)sb->events_lo);
1350 
1351 	printk(KERN_INFO);
1352 	for (i = 0; i < MD_SB_DISKS; i++) {
1353 		mdp_disk_t *desc;
1354 
1355 		desc = sb->disks + i;
1356 		if (desc->number || desc->major || desc->minor ||
1357 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1358 			printk("     D %2d: ", i);
1359 			print_desc(desc);
1360 		}
1361 	}
1362 	printk(KERN_INFO "md:     THIS: ");
1363 	print_desc(&sb->this_disk);
1364 
1365 }
1366 
1367 static void print_rdev(mdk_rdev_t *rdev)
1368 {
1369 	char b[BDEVNAME_SIZE];
1370 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1371 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1372 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1373 	        rdev->desc_nr);
1374 	if (rdev->sb_loaded) {
1375 		printk(KERN_INFO "md: rdev superblock:\n");
1376 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1377 	} else
1378 		printk(KERN_INFO "md: no rdev superblock!\n");
1379 }
1380 
1381 void md_print_devices(void)
1382 {
1383 	struct list_head *tmp, *tmp2;
1384 	mdk_rdev_t *rdev;
1385 	mddev_t *mddev;
1386 	char b[BDEVNAME_SIZE];
1387 
1388 	printk("\n");
1389 	printk("md:	**********************************\n");
1390 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1391 	printk("md:	**********************************\n");
1392 	ITERATE_MDDEV(mddev,tmp) {
1393 
1394 		if (mddev->bitmap)
1395 			bitmap_print_sb(mddev->bitmap);
1396 		else
1397 			printk("%s: ", mdname(mddev));
1398 		ITERATE_RDEV(mddev,rdev,tmp2)
1399 			printk("<%s>", bdevname(rdev->bdev,b));
1400 		printk("\n");
1401 
1402 		ITERATE_RDEV(mddev,rdev,tmp2)
1403 			print_rdev(rdev);
1404 	}
1405 	printk("md:	**********************************\n");
1406 	printk("\n");
1407 }
1408 
1409 
1410 static void sync_sbs(mddev_t * mddev)
1411 {
1412 	mdk_rdev_t *rdev;
1413 	struct list_head *tmp;
1414 
1415 	ITERATE_RDEV(mddev,rdev,tmp) {
1416 		super_types[mddev->major_version].
1417 			sync_super(mddev, rdev);
1418 		rdev->sb_loaded = 1;
1419 	}
1420 }
1421 
1422 static void md_update_sb(mddev_t * mddev)
1423 {
1424 	int err;
1425 	struct list_head *tmp;
1426 	mdk_rdev_t *rdev;
1427 	int sync_req;
1428 
1429 repeat:
1430 	spin_lock_irq(&mddev->write_lock);
1431 	sync_req = mddev->in_sync;
1432 	mddev->utime = get_seconds();
1433 	mddev->events ++;
1434 
1435 	if (!mddev->events) {
1436 		/*
1437 		 * oops, this 64-bit counter should never wrap.
1438 		 * Either we are in around ~1 trillion A.C., assuming
1439 		 * 1 reboot per second, or we have a bug:
1440 		 */
1441 		MD_BUG();
1442 		mddev->events --;
1443 	}
1444 	mddev->sb_dirty = 2;
1445 	sync_sbs(mddev);
1446 
1447 	/*
1448 	 * do not write anything to disk if using
1449 	 * nonpersistent superblocks
1450 	 */
1451 	if (!mddev->persistent) {
1452 		mddev->sb_dirty = 0;
1453 		spin_unlock_irq(&mddev->write_lock);
1454 		wake_up(&mddev->sb_wait);
1455 		return;
1456 	}
1457 	spin_unlock_irq(&mddev->write_lock);
1458 
1459 	dprintk(KERN_INFO
1460 		"md: updating %s RAID superblock on device (in sync %d)\n",
1461 		mdname(mddev),mddev->in_sync);
1462 
1463 	err = bitmap_update_sb(mddev->bitmap);
1464 	ITERATE_RDEV(mddev,rdev,tmp) {
1465 		char b[BDEVNAME_SIZE];
1466 		dprintk(KERN_INFO "md: ");
1467 		if (test_bit(Faulty, &rdev->flags))
1468 			dprintk("(skipping faulty ");
1469 
1470 		dprintk("%s ", bdevname(rdev->bdev,b));
1471 		if (!test_bit(Faulty, &rdev->flags)) {
1472 			md_super_write(mddev,rdev,
1473 				       rdev->sb_offset<<1, rdev->sb_size,
1474 				       rdev->sb_page);
1475 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1476 				bdevname(rdev->bdev,b),
1477 				(unsigned long long)rdev->sb_offset);
1478 
1479 		} else
1480 			dprintk(")\n");
1481 		if (mddev->level == LEVEL_MULTIPATH)
1482 			/* only need to write one superblock... */
1483 			break;
1484 	}
1485 	md_super_wait(mddev);
1486 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1487 
1488 	spin_lock_irq(&mddev->write_lock);
1489 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1490 		/* have to write it out again */
1491 		spin_unlock_irq(&mddev->write_lock);
1492 		goto repeat;
1493 	}
1494 	mddev->sb_dirty = 0;
1495 	spin_unlock_irq(&mddev->write_lock);
1496 	wake_up(&mddev->sb_wait);
1497 
1498 }
1499 
1500 struct rdev_sysfs_entry {
1501 	struct attribute attr;
1502 	ssize_t (*show)(mdk_rdev_t *, char *);
1503 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1504 };
1505 
1506 static ssize_t
1507 state_show(mdk_rdev_t *rdev, char *page)
1508 {
1509 	char *sep = "";
1510 	int len=0;
1511 
1512 	if (test_bit(Faulty, &rdev->flags)) {
1513 		len+= sprintf(page+len, "%sfaulty",sep);
1514 		sep = ",";
1515 	}
1516 	if (test_bit(In_sync, &rdev->flags)) {
1517 		len += sprintf(page+len, "%sin_sync",sep);
1518 		sep = ",";
1519 	}
1520 	if (!test_bit(Faulty, &rdev->flags) &&
1521 	    !test_bit(In_sync, &rdev->flags)) {
1522 		len += sprintf(page+len, "%sspare", sep);
1523 		sep = ",";
1524 	}
1525 	return len+sprintf(page+len, "\n");
1526 }
1527 
1528 static struct rdev_sysfs_entry
1529 rdev_state = __ATTR_RO(state);
1530 
1531 static ssize_t
1532 super_show(mdk_rdev_t *rdev, char *page)
1533 {
1534 	if (rdev->sb_loaded && rdev->sb_size) {
1535 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1536 		return rdev->sb_size;
1537 	} else
1538 		return 0;
1539 }
1540 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1541 
1542 static struct attribute *rdev_default_attrs[] = {
1543 	&rdev_state.attr,
1544 	&rdev_super.attr,
1545 	NULL,
1546 };
1547 static ssize_t
1548 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1549 {
1550 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1551 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1552 
1553 	if (!entry->show)
1554 		return -EIO;
1555 	return entry->show(rdev, page);
1556 }
1557 
1558 static ssize_t
1559 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1560 	      const char *page, size_t length)
1561 {
1562 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1563 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1564 
1565 	if (!entry->store)
1566 		return -EIO;
1567 	return entry->store(rdev, page, length);
1568 }
1569 
1570 static void rdev_free(struct kobject *ko)
1571 {
1572 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1573 	kfree(rdev);
1574 }
1575 static struct sysfs_ops rdev_sysfs_ops = {
1576 	.show		= rdev_attr_show,
1577 	.store		= rdev_attr_store,
1578 };
1579 static struct kobj_type rdev_ktype = {
1580 	.release	= rdev_free,
1581 	.sysfs_ops	= &rdev_sysfs_ops,
1582 	.default_attrs	= rdev_default_attrs,
1583 };
1584 
1585 /*
1586  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1587  *
1588  * mark the device faulty if:
1589  *
1590  *   - the device is nonexistent (zero size)
1591  *   - the device has no valid superblock
1592  *
1593  * a faulty rdev _never_ has rdev->sb set.
1594  */
1595 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1596 {
1597 	char b[BDEVNAME_SIZE];
1598 	int err;
1599 	mdk_rdev_t *rdev;
1600 	sector_t size;
1601 
1602 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1603 	if (!rdev) {
1604 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1605 		return ERR_PTR(-ENOMEM);
1606 	}
1607 	memset(rdev, 0, sizeof(*rdev));
1608 
1609 	if ((err = alloc_disk_sb(rdev)))
1610 		goto abort_free;
1611 
1612 	err = lock_rdev(rdev, newdev);
1613 	if (err)
1614 		goto abort_free;
1615 
1616 	rdev->kobj.parent = NULL;
1617 	rdev->kobj.ktype = &rdev_ktype;
1618 	kobject_init(&rdev->kobj);
1619 
1620 	rdev->desc_nr = -1;
1621 	rdev->flags = 0;
1622 	rdev->data_offset = 0;
1623 	atomic_set(&rdev->nr_pending, 0);
1624 	atomic_set(&rdev->read_errors, 0);
1625 
1626 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1627 	if (!size) {
1628 		printk(KERN_WARNING
1629 			"md: %s has zero or unknown size, marking faulty!\n",
1630 			bdevname(rdev->bdev,b));
1631 		err = -EINVAL;
1632 		goto abort_free;
1633 	}
1634 
1635 	if (super_format >= 0) {
1636 		err = super_types[super_format].
1637 			load_super(rdev, NULL, super_minor);
1638 		if (err == -EINVAL) {
1639 			printk(KERN_WARNING
1640 				"md: %s has invalid sb, not importing!\n",
1641 				bdevname(rdev->bdev,b));
1642 			goto abort_free;
1643 		}
1644 		if (err < 0) {
1645 			printk(KERN_WARNING
1646 				"md: could not read %s's sb, not importing!\n",
1647 				bdevname(rdev->bdev,b));
1648 			goto abort_free;
1649 		}
1650 	}
1651 	INIT_LIST_HEAD(&rdev->same_set);
1652 
1653 	return rdev;
1654 
1655 abort_free:
1656 	if (rdev->sb_page) {
1657 		if (rdev->bdev)
1658 			unlock_rdev(rdev);
1659 		free_disk_sb(rdev);
1660 	}
1661 	kfree(rdev);
1662 	return ERR_PTR(err);
1663 }
1664 
1665 /*
1666  * Check a full RAID array for plausibility
1667  */
1668 
1669 
1670 static void analyze_sbs(mddev_t * mddev)
1671 {
1672 	int i;
1673 	struct list_head *tmp;
1674 	mdk_rdev_t *rdev, *freshest;
1675 	char b[BDEVNAME_SIZE];
1676 
1677 	freshest = NULL;
1678 	ITERATE_RDEV(mddev,rdev,tmp)
1679 		switch (super_types[mddev->major_version].
1680 			load_super(rdev, freshest, mddev->minor_version)) {
1681 		case 1:
1682 			freshest = rdev;
1683 			break;
1684 		case 0:
1685 			break;
1686 		default:
1687 			printk( KERN_ERR \
1688 				"md: fatal superblock inconsistency in %s"
1689 				" -- removing from array\n",
1690 				bdevname(rdev->bdev,b));
1691 			kick_rdev_from_array(rdev);
1692 		}
1693 
1694 
1695 	super_types[mddev->major_version].
1696 		validate_super(mddev, freshest);
1697 
1698 	i = 0;
1699 	ITERATE_RDEV(mddev,rdev,tmp) {
1700 		if (rdev != freshest)
1701 			if (super_types[mddev->major_version].
1702 			    validate_super(mddev, rdev)) {
1703 				printk(KERN_WARNING "md: kicking non-fresh %s"
1704 					" from array!\n",
1705 					bdevname(rdev->bdev,b));
1706 				kick_rdev_from_array(rdev);
1707 				continue;
1708 			}
1709 		if (mddev->level == LEVEL_MULTIPATH) {
1710 			rdev->desc_nr = i++;
1711 			rdev->raid_disk = rdev->desc_nr;
1712 			set_bit(In_sync, &rdev->flags);
1713 		}
1714 	}
1715 
1716 
1717 
1718 	if (mddev->recovery_cp != MaxSector &&
1719 	    mddev->level >= 1)
1720 		printk(KERN_ERR "md: %s: raid array is not clean"
1721 		       " -- starting background reconstruction\n",
1722 		       mdname(mddev));
1723 
1724 }
1725 
1726 static ssize_t
1727 level_show(mddev_t *mddev, char *page)
1728 {
1729 	mdk_personality_t *p = mddev->pers;
1730 	if (p == NULL && mddev->raid_disks == 0)
1731 		return 0;
1732 	if (mddev->level >= 0)
1733 		return sprintf(page, "RAID-%d\n", mddev->level);
1734 	else
1735 		return sprintf(page, "%s\n", p->name);
1736 }
1737 
1738 static struct md_sysfs_entry md_level = __ATTR_RO(level);
1739 
1740 static ssize_t
1741 raid_disks_show(mddev_t *mddev, char *page)
1742 {
1743 	if (mddev->raid_disks == 0)
1744 		return 0;
1745 	return sprintf(page, "%d\n", mddev->raid_disks);
1746 }
1747 
1748 static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
1749 
1750 static ssize_t
1751 action_show(mddev_t *mddev, char *page)
1752 {
1753 	char *type = "idle";
1754 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1755 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1756 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1757 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1758 				type = "resync";
1759 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1760 				type = "check";
1761 			else
1762 				type = "repair";
1763 		} else
1764 			type = "recover";
1765 	}
1766 	return sprintf(page, "%s\n", type);
1767 }
1768 
1769 static ssize_t
1770 action_store(mddev_t *mddev, const char *page, size_t len)
1771 {
1772 	if (!mddev->pers || !mddev->pers->sync_request)
1773 		return -EINVAL;
1774 
1775 	if (strcmp(page, "idle")==0 || strcmp(page, "idle\n")==0) {
1776 		if (mddev->sync_thread) {
1777 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1778 			md_unregister_thread(mddev->sync_thread);
1779 			mddev->sync_thread = NULL;
1780 			mddev->recovery = 0;
1781 		}
1782 		return len;
1783 	}
1784 
1785 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1786 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1787 		return -EBUSY;
1788 	if (strcmp(page, "resync")==0 || strcmp(page, "resync\n")==0 ||
1789 	    strcmp(page, "recover")==0 || strcmp(page, "recover\n")==0)
1790 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1791 	else {
1792 		if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
1793 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1794 		else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
1795 			return -EINVAL;
1796 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1797 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1798 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1799 	}
1800 	md_wakeup_thread(mddev->thread);
1801 	return len;
1802 }
1803 
1804 static ssize_t
1805 mismatch_cnt_show(mddev_t *mddev, char *page)
1806 {
1807 	return sprintf(page, "%llu\n",
1808 		       (unsigned long long) mddev->resync_mismatches);
1809 }
1810 
1811 static struct md_sysfs_entry
1812 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
1813 
1814 
1815 static struct md_sysfs_entry
1816 md_mismatches = __ATTR_RO(mismatch_cnt);
1817 
1818 static struct attribute *md_default_attrs[] = {
1819 	&md_level.attr,
1820 	&md_raid_disks.attr,
1821 	NULL,
1822 };
1823 
1824 static struct attribute *md_redundancy_attrs[] = {
1825 	&md_scan_mode.attr,
1826 	&md_mismatches.attr,
1827 	NULL,
1828 };
1829 static struct attribute_group md_redundancy_group = {
1830 	.name = NULL,
1831 	.attrs = md_redundancy_attrs,
1832 };
1833 
1834 
1835 static ssize_t
1836 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1837 {
1838 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1839 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1840 	ssize_t rv;
1841 
1842 	if (!entry->show)
1843 		return -EIO;
1844 	mddev_lock(mddev);
1845 	rv = entry->show(mddev, page);
1846 	mddev_unlock(mddev);
1847 	return rv;
1848 }
1849 
1850 static ssize_t
1851 md_attr_store(struct kobject *kobj, struct attribute *attr,
1852 	      const char *page, size_t length)
1853 {
1854 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1855 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1856 	ssize_t rv;
1857 
1858 	if (!entry->store)
1859 		return -EIO;
1860 	mddev_lock(mddev);
1861 	rv = entry->store(mddev, page, length);
1862 	mddev_unlock(mddev);
1863 	return rv;
1864 }
1865 
1866 static void md_free(struct kobject *ko)
1867 {
1868 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
1869 	kfree(mddev);
1870 }
1871 
1872 static struct sysfs_ops md_sysfs_ops = {
1873 	.show	= md_attr_show,
1874 	.store	= md_attr_store,
1875 };
1876 static struct kobj_type md_ktype = {
1877 	.release	= md_free,
1878 	.sysfs_ops	= &md_sysfs_ops,
1879 	.default_attrs	= md_default_attrs,
1880 };
1881 
1882 int mdp_major = 0;
1883 
1884 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1885 {
1886 	static DECLARE_MUTEX(disks_sem);
1887 	mddev_t *mddev = mddev_find(dev);
1888 	struct gendisk *disk;
1889 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1890 	int shift = partitioned ? MdpMinorShift : 0;
1891 	int unit = MINOR(dev) >> shift;
1892 
1893 	if (!mddev)
1894 		return NULL;
1895 
1896 	down(&disks_sem);
1897 	if (mddev->gendisk) {
1898 		up(&disks_sem);
1899 		mddev_put(mddev);
1900 		return NULL;
1901 	}
1902 	disk = alloc_disk(1 << shift);
1903 	if (!disk) {
1904 		up(&disks_sem);
1905 		mddev_put(mddev);
1906 		return NULL;
1907 	}
1908 	disk->major = MAJOR(dev);
1909 	disk->first_minor = unit << shift;
1910 	if (partitioned) {
1911 		sprintf(disk->disk_name, "md_d%d", unit);
1912 		sprintf(disk->devfs_name, "md/d%d", unit);
1913 	} else {
1914 		sprintf(disk->disk_name, "md%d", unit);
1915 		sprintf(disk->devfs_name, "md/%d", unit);
1916 	}
1917 	disk->fops = &md_fops;
1918 	disk->private_data = mddev;
1919 	disk->queue = mddev->queue;
1920 	add_disk(disk);
1921 	mddev->gendisk = disk;
1922 	up(&disks_sem);
1923 	mddev->kobj.parent = &disk->kobj;
1924 	mddev->kobj.k_name = NULL;
1925 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1926 	mddev->kobj.ktype = &md_ktype;
1927 	kobject_register(&mddev->kobj);
1928 	return NULL;
1929 }
1930 
1931 void md_wakeup_thread(mdk_thread_t *thread);
1932 
1933 static void md_safemode_timeout(unsigned long data)
1934 {
1935 	mddev_t *mddev = (mddev_t *) data;
1936 
1937 	mddev->safemode = 1;
1938 	md_wakeup_thread(mddev->thread);
1939 }
1940 
1941 
1942 static int do_md_run(mddev_t * mddev)
1943 {
1944 	int pnum, err;
1945 	int chunk_size;
1946 	struct list_head *tmp;
1947 	mdk_rdev_t *rdev;
1948 	struct gendisk *disk;
1949 	char b[BDEVNAME_SIZE];
1950 
1951 	if (list_empty(&mddev->disks))
1952 		/* cannot run an array with no devices.. */
1953 		return -EINVAL;
1954 
1955 	if (mddev->pers)
1956 		return -EBUSY;
1957 
1958 	/*
1959 	 * Analyze all RAID superblock(s)
1960 	 */
1961 	if (!mddev->raid_disks)
1962 		analyze_sbs(mddev);
1963 
1964 	chunk_size = mddev->chunk_size;
1965 	pnum = level_to_pers(mddev->level);
1966 
1967 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1968 		if (!chunk_size) {
1969 			/*
1970 			 * 'default chunksize' in the old md code used to
1971 			 * be PAGE_SIZE, baaad.
1972 			 * we abort here to be on the safe side. We don't
1973 			 * want to continue the bad practice.
1974 			 */
1975 			printk(KERN_ERR
1976 				"no chunksize specified, see 'man raidtab'\n");
1977 			return -EINVAL;
1978 		}
1979 		if (chunk_size > MAX_CHUNK_SIZE) {
1980 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1981 				chunk_size, MAX_CHUNK_SIZE);
1982 			return -EINVAL;
1983 		}
1984 		/*
1985 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1986 		 */
1987 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1988 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1989 			return -EINVAL;
1990 		}
1991 		if (chunk_size < PAGE_SIZE) {
1992 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1993 				chunk_size, PAGE_SIZE);
1994 			return -EINVAL;
1995 		}
1996 
1997 		/* devices must have minimum size of one chunk */
1998 		ITERATE_RDEV(mddev,rdev,tmp) {
1999 			if (test_bit(Faulty, &rdev->flags))
2000 				continue;
2001 			if (rdev->size < chunk_size / 1024) {
2002 				printk(KERN_WARNING
2003 					"md: Dev %s smaller than chunk_size:"
2004 					" %lluk < %dk\n",
2005 					bdevname(rdev->bdev,b),
2006 					(unsigned long long)rdev->size,
2007 					chunk_size / 1024);
2008 				return -EINVAL;
2009 			}
2010 		}
2011 	}
2012 
2013 #ifdef CONFIG_KMOD
2014 	if (!pers[pnum])
2015 	{
2016 		request_module("md-personality-%d", pnum);
2017 	}
2018 #endif
2019 
2020 	/*
2021 	 * Drop all container device buffers, from now on
2022 	 * the only valid external interface is through the md
2023 	 * device.
2024 	 * Also find largest hardsector size
2025 	 */
2026 	ITERATE_RDEV(mddev,rdev,tmp) {
2027 		if (test_bit(Faulty, &rdev->flags))
2028 			continue;
2029 		sync_blockdev(rdev->bdev);
2030 		invalidate_bdev(rdev->bdev, 0);
2031 	}
2032 
2033 	md_probe(mddev->unit, NULL, NULL);
2034 	disk = mddev->gendisk;
2035 	if (!disk)
2036 		return -ENOMEM;
2037 
2038 	spin_lock(&pers_lock);
2039 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
2040 		spin_unlock(&pers_lock);
2041 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
2042 		       pnum);
2043 		return -EINVAL;
2044 	}
2045 
2046 	mddev->pers = pers[pnum];
2047 	spin_unlock(&pers_lock);
2048 
2049 	mddev->recovery = 0;
2050 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2051 	mddev->barriers_work = 1;
2052 
2053 	if (start_readonly)
2054 		mddev->ro = 2; /* read-only, but switch on first write */
2055 
2056 	/* before we start the array running, initialise the bitmap */
2057 	err = bitmap_create(mddev);
2058 	if (err)
2059 		printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2060 			mdname(mddev), err);
2061 	else
2062 		err = mddev->pers->run(mddev);
2063 	if (err) {
2064 		printk(KERN_ERR "md: pers->run() failed ...\n");
2065 		module_put(mddev->pers->owner);
2066 		mddev->pers = NULL;
2067 		bitmap_destroy(mddev);
2068 		return err;
2069 	}
2070 	if (mddev->pers->sync_request)
2071 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2072 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
2073 		mddev->ro = 0;
2074 
2075  	atomic_set(&mddev->writes_pending,0);
2076 	mddev->safemode = 0;
2077 	mddev->safemode_timer.function = md_safemode_timeout;
2078 	mddev->safemode_timer.data = (unsigned long) mddev;
2079 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2080 	mddev->in_sync = 1;
2081 
2082 	ITERATE_RDEV(mddev,rdev,tmp)
2083 		if (rdev->raid_disk >= 0) {
2084 			char nm[20];
2085 			sprintf(nm, "rd%d", rdev->raid_disk);
2086 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2087 		}
2088 
2089 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2090 	md_wakeup_thread(mddev->thread);
2091 
2092 	if (mddev->sb_dirty)
2093 		md_update_sb(mddev);
2094 
2095 	set_capacity(disk, mddev->array_size<<1);
2096 
2097 	/* If we call blk_queue_make_request here, it will
2098 	 * re-initialise max_sectors etc which may have been
2099 	 * refined inside -> run.  So just set the bits we need to set.
2100 	 * Most initialisation happended when we called
2101 	 * blk_queue_make_request(..., md_fail_request)
2102 	 * earlier.
2103 	 */
2104 	mddev->queue->queuedata = mddev;
2105 	mddev->queue->make_request_fn = mddev->pers->make_request;
2106 
2107 	mddev->changed = 1;
2108 	return 0;
2109 }
2110 
2111 static int restart_array(mddev_t *mddev)
2112 {
2113 	struct gendisk *disk = mddev->gendisk;
2114 	int err;
2115 
2116 	/*
2117 	 * Complain if it has no devices
2118 	 */
2119 	err = -ENXIO;
2120 	if (list_empty(&mddev->disks))
2121 		goto out;
2122 
2123 	if (mddev->pers) {
2124 		err = -EBUSY;
2125 		if (!mddev->ro)
2126 			goto out;
2127 
2128 		mddev->safemode = 0;
2129 		mddev->ro = 0;
2130 		set_disk_ro(disk, 0);
2131 
2132 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2133 			mdname(mddev));
2134 		/*
2135 		 * Kick recovery or resync if necessary
2136 		 */
2137 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2138 		md_wakeup_thread(mddev->thread);
2139 		err = 0;
2140 	} else {
2141 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2142 			mdname(mddev));
2143 		err = -EINVAL;
2144 	}
2145 
2146 out:
2147 	return err;
2148 }
2149 
2150 static int do_md_stop(mddev_t * mddev, int ro)
2151 {
2152 	int err = 0;
2153 	struct gendisk *disk = mddev->gendisk;
2154 
2155 	if (mddev->pers) {
2156 		if (atomic_read(&mddev->active)>2) {
2157 			printk("md: %s still in use.\n",mdname(mddev));
2158 			return -EBUSY;
2159 		}
2160 
2161 		if (mddev->sync_thread) {
2162 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2163 			md_unregister_thread(mddev->sync_thread);
2164 			mddev->sync_thread = NULL;
2165 		}
2166 
2167 		del_timer_sync(&mddev->safemode_timer);
2168 
2169 		invalidate_partition(disk, 0);
2170 
2171 		if (ro) {
2172 			err  = -ENXIO;
2173 			if (mddev->ro==1)
2174 				goto out;
2175 			mddev->ro = 1;
2176 		} else {
2177 			bitmap_flush(mddev);
2178 			md_super_wait(mddev);
2179 			if (mddev->ro)
2180 				set_disk_ro(disk, 0);
2181 			blk_queue_make_request(mddev->queue, md_fail_request);
2182 			mddev->pers->stop(mddev);
2183 			if (mddev->pers->sync_request)
2184 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2185 
2186 			module_put(mddev->pers->owner);
2187 			mddev->pers = NULL;
2188 			if (mddev->ro)
2189 				mddev->ro = 0;
2190 		}
2191 		if (!mddev->in_sync) {
2192 			/* mark array as shutdown cleanly */
2193 			mddev->in_sync = 1;
2194 			md_update_sb(mddev);
2195 		}
2196 		if (ro)
2197 			set_disk_ro(disk, 1);
2198 	}
2199 
2200 	bitmap_destroy(mddev);
2201 	if (mddev->bitmap_file) {
2202 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2203 		fput(mddev->bitmap_file);
2204 		mddev->bitmap_file = NULL;
2205 	}
2206 	mddev->bitmap_offset = 0;
2207 
2208 	/*
2209 	 * Free resources if final stop
2210 	 */
2211 	if (!ro) {
2212 		mdk_rdev_t *rdev;
2213 		struct list_head *tmp;
2214 		struct gendisk *disk;
2215 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2216 
2217 		ITERATE_RDEV(mddev,rdev,tmp)
2218 			if (rdev->raid_disk >= 0) {
2219 				char nm[20];
2220 				sprintf(nm, "rd%d", rdev->raid_disk);
2221 				sysfs_remove_link(&mddev->kobj, nm);
2222 			}
2223 
2224 		export_array(mddev);
2225 
2226 		mddev->array_size = 0;
2227 		disk = mddev->gendisk;
2228 		if (disk)
2229 			set_capacity(disk, 0);
2230 		mddev->changed = 1;
2231 	} else
2232 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2233 			mdname(mddev));
2234 	err = 0;
2235 out:
2236 	return err;
2237 }
2238 
2239 static void autorun_array(mddev_t *mddev)
2240 {
2241 	mdk_rdev_t *rdev;
2242 	struct list_head *tmp;
2243 	int err;
2244 
2245 	if (list_empty(&mddev->disks))
2246 		return;
2247 
2248 	printk(KERN_INFO "md: running: ");
2249 
2250 	ITERATE_RDEV(mddev,rdev,tmp) {
2251 		char b[BDEVNAME_SIZE];
2252 		printk("<%s>", bdevname(rdev->bdev,b));
2253 	}
2254 	printk("\n");
2255 
2256 	err = do_md_run (mddev);
2257 	if (err) {
2258 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2259 		do_md_stop (mddev, 0);
2260 	}
2261 }
2262 
2263 /*
2264  * lets try to run arrays based on all disks that have arrived
2265  * until now. (those are in pending_raid_disks)
2266  *
2267  * the method: pick the first pending disk, collect all disks with
2268  * the same UUID, remove all from the pending list and put them into
2269  * the 'same_array' list. Then order this list based on superblock
2270  * update time (freshest comes first), kick out 'old' disks and
2271  * compare superblocks. If everything's fine then run it.
2272  *
2273  * If "unit" is allocated, then bump its reference count
2274  */
2275 static void autorun_devices(int part)
2276 {
2277 	struct list_head candidates;
2278 	struct list_head *tmp;
2279 	mdk_rdev_t *rdev0, *rdev;
2280 	mddev_t *mddev;
2281 	char b[BDEVNAME_SIZE];
2282 
2283 	printk(KERN_INFO "md: autorun ...\n");
2284 	while (!list_empty(&pending_raid_disks)) {
2285 		dev_t dev;
2286 		rdev0 = list_entry(pending_raid_disks.next,
2287 					 mdk_rdev_t, same_set);
2288 
2289 		printk(KERN_INFO "md: considering %s ...\n",
2290 			bdevname(rdev0->bdev,b));
2291 		INIT_LIST_HEAD(&candidates);
2292 		ITERATE_RDEV_PENDING(rdev,tmp)
2293 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2294 				printk(KERN_INFO "md:  adding %s ...\n",
2295 					bdevname(rdev->bdev,b));
2296 				list_move(&rdev->same_set, &candidates);
2297 			}
2298 		/*
2299 		 * now we have a set of devices, with all of them having
2300 		 * mostly sane superblocks. It's time to allocate the
2301 		 * mddev.
2302 		 */
2303 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2304 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2305 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2306 			break;
2307 		}
2308 		if (part)
2309 			dev = MKDEV(mdp_major,
2310 				    rdev0->preferred_minor << MdpMinorShift);
2311 		else
2312 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2313 
2314 		md_probe(dev, NULL, NULL);
2315 		mddev = mddev_find(dev);
2316 		if (!mddev) {
2317 			printk(KERN_ERR
2318 				"md: cannot allocate memory for md drive.\n");
2319 			break;
2320 		}
2321 		if (mddev_lock(mddev))
2322 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2323 			       mdname(mddev));
2324 		else if (mddev->raid_disks || mddev->major_version
2325 			 || !list_empty(&mddev->disks)) {
2326 			printk(KERN_WARNING
2327 				"md: %s already running, cannot run %s\n",
2328 				mdname(mddev), bdevname(rdev0->bdev,b));
2329 			mddev_unlock(mddev);
2330 		} else {
2331 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2332 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2333 				list_del_init(&rdev->same_set);
2334 				if (bind_rdev_to_array(rdev, mddev))
2335 					export_rdev(rdev);
2336 			}
2337 			autorun_array(mddev);
2338 			mddev_unlock(mddev);
2339 		}
2340 		/* on success, candidates will be empty, on error
2341 		 * it won't...
2342 		 */
2343 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2344 			export_rdev(rdev);
2345 		mddev_put(mddev);
2346 	}
2347 	printk(KERN_INFO "md: ... autorun DONE.\n");
2348 }
2349 
2350 /*
2351  * import RAID devices based on one partition
2352  * if possible, the array gets run as well.
2353  */
2354 
2355 static int autostart_array(dev_t startdev)
2356 {
2357 	char b[BDEVNAME_SIZE];
2358 	int err = -EINVAL, i;
2359 	mdp_super_t *sb = NULL;
2360 	mdk_rdev_t *start_rdev = NULL, *rdev;
2361 
2362 	start_rdev = md_import_device(startdev, 0, 0);
2363 	if (IS_ERR(start_rdev))
2364 		return err;
2365 
2366 
2367 	/* NOTE: this can only work for 0.90.0 superblocks */
2368 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2369 	if (sb->major_version != 0 ||
2370 	    sb->minor_version != 90 ) {
2371 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2372 		export_rdev(start_rdev);
2373 		return err;
2374 	}
2375 
2376 	if (test_bit(Faulty, &start_rdev->flags)) {
2377 		printk(KERN_WARNING
2378 			"md: can not autostart based on faulty %s!\n",
2379 			bdevname(start_rdev->bdev,b));
2380 		export_rdev(start_rdev);
2381 		return err;
2382 	}
2383 	list_add(&start_rdev->same_set, &pending_raid_disks);
2384 
2385 	for (i = 0; i < MD_SB_DISKS; i++) {
2386 		mdp_disk_t *desc = sb->disks + i;
2387 		dev_t dev = MKDEV(desc->major, desc->minor);
2388 
2389 		if (!dev)
2390 			continue;
2391 		if (dev == startdev)
2392 			continue;
2393 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2394 			continue;
2395 		rdev = md_import_device(dev, 0, 0);
2396 		if (IS_ERR(rdev))
2397 			continue;
2398 
2399 		list_add(&rdev->same_set, &pending_raid_disks);
2400 	}
2401 
2402 	/*
2403 	 * possibly return codes
2404 	 */
2405 	autorun_devices(0);
2406 	return 0;
2407 
2408 }
2409 
2410 
2411 static int get_version(void __user * arg)
2412 {
2413 	mdu_version_t ver;
2414 
2415 	ver.major = MD_MAJOR_VERSION;
2416 	ver.minor = MD_MINOR_VERSION;
2417 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2418 
2419 	if (copy_to_user(arg, &ver, sizeof(ver)))
2420 		return -EFAULT;
2421 
2422 	return 0;
2423 }
2424 
2425 static int get_array_info(mddev_t * mddev, void __user * arg)
2426 {
2427 	mdu_array_info_t info;
2428 	int nr,working,active,failed,spare;
2429 	mdk_rdev_t *rdev;
2430 	struct list_head *tmp;
2431 
2432 	nr=working=active=failed=spare=0;
2433 	ITERATE_RDEV(mddev,rdev,tmp) {
2434 		nr++;
2435 		if (test_bit(Faulty, &rdev->flags))
2436 			failed++;
2437 		else {
2438 			working++;
2439 			if (test_bit(In_sync, &rdev->flags))
2440 				active++;
2441 			else
2442 				spare++;
2443 		}
2444 	}
2445 
2446 	info.major_version = mddev->major_version;
2447 	info.minor_version = mddev->minor_version;
2448 	info.patch_version = MD_PATCHLEVEL_VERSION;
2449 	info.ctime         = mddev->ctime;
2450 	info.level         = mddev->level;
2451 	info.size          = mddev->size;
2452 	info.nr_disks      = nr;
2453 	info.raid_disks    = mddev->raid_disks;
2454 	info.md_minor      = mddev->md_minor;
2455 	info.not_persistent= !mddev->persistent;
2456 
2457 	info.utime         = mddev->utime;
2458 	info.state         = 0;
2459 	if (mddev->in_sync)
2460 		info.state = (1<<MD_SB_CLEAN);
2461 	if (mddev->bitmap && mddev->bitmap_offset)
2462 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2463 	info.active_disks  = active;
2464 	info.working_disks = working;
2465 	info.failed_disks  = failed;
2466 	info.spare_disks   = spare;
2467 
2468 	info.layout        = mddev->layout;
2469 	info.chunk_size    = mddev->chunk_size;
2470 
2471 	if (copy_to_user(arg, &info, sizeof(info)))
2472 		return -EFAULT;
2473 
2474 	return 0;
2475 }
2476 
2477 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2478 {
2479 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2480 	char *ptr, *buf = NULL;
2481 	int err = -ENOMEM;
2482 
2483 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2484 	if (!file)
2485 		goto out;
2486 
2487 	/* bitmap disabled, zero the first byte and copy out */
2488 	if (!mddev->bitmap || !mddev->bitmap->file) {
2489 		file->pathname[0] = '\0';
2490 		goto copy_out;
2491 	}
2492 
2493 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2494 	if (!buf)
2495 		goto out;
2496 
2497 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2498 	if (!ptr)
2499 		goto out;
2500 
2501 	strcpy(file->pathname, ptr);
2502 
2503 copy_out:
2504 	err = 0;
2505 	if (copy_to_user(arg, file, sizeof(*file)))
2506 		err = -EFAULT;
2507 out:
2508 	kfree(buf);
2509 	kfree(file);
2510 	return err;
2511 }
2512 
2513 static int get_disk_info(mddev_t * mddev, void __user * arg)
2514 {
2515 	mdu_disk_info_t info;
2516 	unsigned int nr;
2517 	mdk_rdev_t *rdev;
2518 
2519 	if (copy_from_user(&info, arg, sizeof(info)))
2520 		return -EFAULT;
2521 
2522 	nr = info.number;
2523 
2524 	rdev = find_rdev_nr(mddev, nr);
2525 	if (rdev) {
2526 		info.major = MAJOR(rdev->bdev->bd_dev);
2527 		info.minor = MINOR(rdev->bdev->bd_dev);
2528 		info.raid_disk = rdev->raid_disk;
2529 		info.state = 0;
2530 		if (test_bit(Faulty, &rdev->flags))
2531 			info.state |= (1<<MD_DISK_FAULTY);
2532 		else if (test_bit(In_sync, &rdev->flags)) {
2533 			info.state |= (1<<MD_DISK_ACTIVE);
2534 			info.state |= (1<<MD_DISK_SYNC);
2535 		}
2536 		if (test_bit(WriteMostly, &rdev->flags))
2537 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2538 	} else {
2539 		info.major = info.minor = 0;
2540 		info.raid_disk = -1;
2541 		info.state = (1<<MD_DISK_REMOVED);
2542 	}
2543 
2544 	if (copy_to_user(arg, &info, sizeof(info)))
2545 		return -EFAULT;
2546 
2547 	return 0;
2548 }
2549 
2550 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2551 {
2552 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2553 	mdk_rdev_t *rdev;
2554 	dev_t dev = MKDEV(info->major,info->minor);
2555 
2556 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2557 		return -EOVERFLOW;
2558 
2559 	if (!mddev->raid_disks) {
2560 		int err;
2561 		/* expecting a device which has a superblock */
2562 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2563 		if (IS_ERR(rdev)) {
2564 			printk(KERN_WARNING
2565 				"md: md_import_device returned %ld\n",
2566 				PTR_ERR(rdev));
2567 			return PTR_ERR(rdev);
2568 		}
2569 		if (!list_empty(&mddev->disks)) {
2570 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2571 							mdk_rdev_t, same_set);
2572 			int err = super_types[mddev->major_version]
2573 				.load_super(rdev, rdev0, mddev->minor_version);
2574 			if (err < 0) {
2575 				printk(KERN_WARNING
2576 					"md: %s has different UUID to %s\n",
2577 					bdevname(rdev->bdev,b),
2578 					bdevname(rdev0->bdev,b2));
2579 				export_rdev(rdev);
2580 				return -EINVAL;
2581 			}
2582 		}
2583 		err = bind_rdev_to_array(rdev, mddev);
2584 		if (err)
2585 			export_rdev(rdev);
2586 		return err;
2587 	}
2588 
2589 	/*
2590 	 * add_new_disk can be used once the array is assembled
2591 	 * to add "hot spares".  They must already have a superblock
2592 	 * written
2593 	 */
2594 	if (mddev->pers) {
2595 		int err;
2596 		if (!mddev->pers->hot_add_disk) {
2597 			printk(KERN_WARNING
2598 				"%s: personality does not support diskops!\n",
2599 			       mdname(mddev));
2600 			return -EINVAL;
2601 		}
2602 		if (mddev->persistent)
2603 			rdev = md_import_device(dev, mddev->major_version,
2604 						mddev->minor_version);
2605 		else
2606 			rdev = md_import_device(dev, -1, -1);
2607 		if (IS_ERR(rdev)) {
2608 			printk(KERN_WARNING
2609 				"md: md_import_device returned %ld\n",
2610 				PTR_ERR(rdev));
2611 			return PTR_ERR(rdev);
2612 		}
2613 		/* set save_raid_disk if appropriate */
2614 		if (!mddev->persistent) {
2615 			if (info->state & (1<<MD_DISK_SYNC)  &&
2616 			    info->raid_disk < mddev->raid_disks)
2617 				rdev->raid_disk = info->raid_disk;
2618 			else
2619 				rdev->raid_disk = -1;
2620 		} else
2621 			super_types[mddev->major_version].
2622 				validate_super(mddev, rdev);
2623 		rdev->saved_raid_disk = rdev->raid_disk;
2624 
2625 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
2626 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2627 			set_bit(WriteMostly, &rdev->flags);
2628 
2629 		rdev->raid_disk = -1;
2630 		err = bind_rdev_to_array(rdev, mddev);
2631 		if (err)
2632 			export_rdev(rdev);
2633 
2634 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2635 		md_wakeup_thread(mddev->thread);
2636 		return err;
2637 	}
2638 
2639 	/* otherwise, add_new_disk is only allowed
2640 	 * for major_version==0 superblocks
2641 	 */
2642 	if (mddev->major_version != 0) {
2643 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2644 		       mdname(mddev));
2645 		return -EINVAL;
2646 	}
2647 
2648 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2649 		int err;
2650 		rdev = md_import_device (dev, -1, 0);
2651 		if (IS_ERR(rdev)) {
2652 			printk(KERN_WARNING
2653 				"md: error, md_import_device() returned %ld\n",
2654 				PTR_ERR(rdev));
2655 			return PTR_ERR(rdev);
2656 		}
2657 		rdev->desc_nr = info->number;
2658 		if (info->raid_disk < mddev->raid_disks)
2659 			rdev->raid_disk = info->raid_disk;
2660 		else
2661 			rdev->raid_disk = -1;
2662 
2663 		rdev->flags = 0;
2664 
2665 		if (rdev->raid_disk < mddev->raid_disks)
2666 			if (info->state & (1<<MD_DISK_SYNC))
2667 				set_bit(In_sync, &rdev->flags);
2668 
2669 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2670 			set_bit(WriteMostly, &rdev->flags);
2671 
2672 		err = bind_rdev_to_array(rdev, mddev);
2673 		if (err) {
2674 			export_rdev(rdev);
2675 			return err;
2676 		}
2677 
2678 		if (!mddev->persistent) {
2679 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2680 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2681 		} else
2682 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2683 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2684 
2685 		if (!mddev->size || (mddev->size > rdev->size))
2686 			mddev->size = rdev->size;
2687 	}
2688 
2689 	return 0;
2690 }
2691 
2692 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2693 {
2694 	char b[BDEVNAME_SIZE];
2695 	mdk_rdev_t *rdev;
2696 
2697 	if (!mddev->pers)
2698 		return -ENODEV;
2699 
2700 	rdev = find_rdev(mddev, dev);
2701 	if (!rdev)
2702 		return -ENXIO;
2703 
2704 	if (rdev->raid_disk >= 0)
2705 		goto busy;
2706 
2707 	kick_rdev_from_array(rdev);
2708 	md_update_sb(mddev);
2709 
2710 	return 0;
2711 busy:
2712 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2713 		bdevname(rdev->bdev,b), mdname(mddev));
2714 	return -EBUSY;
2715 }
2716 
2717 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2718 {
2719 	char b[BDEVNAME_SIZE];
2720 	int err;
2721 	unsigned int size;
2722 	mdk_rdev_t *rdev;
2723 
2724 	if (!mddev->pers)
2725 		return -ENODEV;
2726 
2727 	if (mddev->major_version != 0) {
2728 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2729 			" version-0 superblocks.\n",
2730 			mdname(mddev));
2731 		return -EINVAL;
2732 	}
2733 	if (!mddev->pers->hot_add_disk) {
2734 		printk(KERN_WARNING
2735 			"%s: personality does not support diskops!\n",
2736 			mdname(mddev));
2737 		return -EINVAL;
2738 	}
2739 
2740 	rdev = md_import_device (dev, -1, 0);
2741 	if (IS_ERR(rdev)) {
2742 		printk(KERN_WARNING
2743 			"md: error, md_import_device() returned %ld\n",
2744 			PTR_ERR(rdev));
2745 		return -EINVAL;
2746 	}
2747 
2748 	if (mddev->persistent)
2749 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2750 	else
2751 		rdev->sb_offset =
2752 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2753 
2754 	size = calc_dev_size(rdev, mddev->chunk_size);
2755 	rdev->size = size;
2756 
2757 	if (size < mddev->size) {
2758 		printk(KERN_WARNING
2759 			"%s: disk size %llu blocks < array size %llu\n",
2760 			mdname(mddev), (unsigned long long)size,
2761 			(unsigned long long)mddev->size);
2762 		err = -ENOSPC;
2763 		goto abort_export;
2764 	}
2765 
2766 	if (test_bit(Faulty, &rdev->flags)) {
2767 		printk(KERN_WARNING
2768 			"md: can not hot-add faulty %s disk to %s!\n",
2769 			bdevname(rdev->bdev,b), mdname(mddev));
2770 		err = -EINVAL;
2771 		goto abort_export;
2772 	}
2773 	clear_bit(In_sync, &rdev->flags);
2774 	rdev->desc_nr = -1;
2775 	bind_rdev_to_array(rdev, mddev);
2776 
2777 	/*
2778 	 * The rest should better be atomic, we can have disk failures
2779 	 * noticed in interrupt contexts ...
2780 	 */
2781 
2782 	if (rdev->desc_nr == mddev->max_disks) {
2783 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2784 			mdname(mddev));
2785 		err = -EBUSY;
2786 		goto abort_unbind_export;
2787 	}
2788 
2789 	rdev->raid_disk = -1;
2790 
2791 	md_update_sb(mddev);
2792 
2793 	/*
2794 	 * Kick recovery, maybe this spare has to be added to the
2795 	 * array immediately.
2796 	 */
2797 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2798 	md_wakeup_thread(mddev->thread);
2799 
2800 	return 0;
2801 
2802 abort_unbind_export:
2803 	unbind_rdev_from_array(rdev);
2804 
2805 abort_export:
2806 	export_rdev(rdev);
2807 	return err;
2808 }
2809 
2810 /* similar to deny_write_access, but accounts for our holding a reference
2811  * to the file ourselves */
2812 static int deny_bitmap_write_access(struct file * file)
2813 {
2814 	struct inode *inode = file->f_mapping->host;
2815 
2816 	spin_lock(&inode->i_lock);
2817 	if (atomic_read(&inode->i_writecount) > 1) {
2818 		spin_unlock(&inode->i_lock);
2819 		return -ETXTBSY;
2820 	}
2821 	atomic_set(&inode->i_writecount, -1);
2822 	spin_unlock(&inode->i_lock);
2823 
2824 	return 0;
2825 }
2826 
2827 static int set_bitmap_file(mddev_t *mddev, int fd)
2828 {
2829 	int err;
2830 
2831 	if (mddev->pers) {
2832 		if (!mddev->pers->quiesce)
2833 			return -EBUSY;
2834 		if (mddev->recovery || mddev->sync_thread)
2835 			return -EBUSY;
2836 		/* we should be able to change the bitmap.. */
2837 	}
2838 
2839 
2840 	if (fd >= 0) {
2841 		if (mddev->bitmap)
2842 			return -EEXIST; /* cannot add when bitmap is present */
2843 		mddev->bitmap_file = fget(fd);
2844 
2845 		if (mddev->bitmap_file == NULL) {
2846 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2847 			       mdname(mddev));
2848 			return -EBADF;
2849 		}
2850 
2851 		err = deny_bitmap_write_access(mddev->bitmap_file);
2852 		if (err) {
2853 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2854 			       mdname(mddev));
2855 			fput(mddev->bitmap_file);
2856 			mddev->bitmap_file = NULL;
2857 			return err;
2858 		}
2859 		mddev->bitmap_offset = 0; /* file overrides offset */
2860 	} else if (mddev->bitmap == NULL)
2861 		return -ENOENT; /* cannot remove what isn't there */
2862 	err = 0;
2863 	if (mddev->pers) {
2864 		mddev->pers->quiesce(mddev, 1);
2865 		if (fd >= 0)
2866 			err = bitmap_create(mddev);
2867 		if (fd < 0 || err)
2868 			bitmap_destroy(mddev);
2869 		mddev->pers->quiesce(mddev, 0);
2870 	} else if (fd < 0) {
2871 		if (mddev->bitmap_file)
2872 			fput(mddev->bitmap_file);
2873 		mddev->bitmap_file = NULL;
2874 	}
2875 
2876 	return err;
2877 }
2878 
2879 /*
2880  * set_array_info is used two different ways
2881  * The original usage is when creating a new array.
2882  * In this usage, raid_disks is > 0 and it together with
2883  *  level, size, not_persistent,layout,chunksize determine the
2884  *  shape of the array.
2885  *  This will always create an array with a type-0.90.0 superblock.
2886  * The newer usage is when assembling an array.
2887  *  In this case raid_disks will be 0, and the major_version field is
2888  *  use to determine which style super-blocks are to be found on the devices.
2889  *  The minor and patch _version numbers are also kept incase the
2890  *  super_block handler wishes to interpret them.
2891  */
2892 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2893 {
2894 
2895 	if (info->raid_disks == 0) {
2896 		/* just setting version number for superblock loading */
2897 		if (info->major_version < 0 ||
2898 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2899 		    super_types[info->major_version].name == NULL) {
2900 			/* maybe try to auto-load a module? */
2901 			printk(KERN_INFO
2902 				"md: superblock version %d not known\n",
2903 				info->major_version);
2904 			return -EINVAL;
2905 		}
2906 		mddev->major_version = info->major_version;
2907 		mddev->minor_version = info->minor_version;
2908 		mddev->patch_version = info->patch_version;
2909 		return 0;
2910 	}
2911 	mddev->major_version = MD_MAJOR_VERSION;
2912 	mddev->minor_version = MD_MINOR_VERSION;
2913 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2914 	mddev->ctime         = get_seconds();
2915 
2916 	mddev->level         = info->level;
2917 	mddev->size          = info->size;
2918 	mddev->raid_disks    = info->raid_disks;
2919 	/* don't set md_minor, it is determined by which /dev/md* was
2920 	 * openned
2921 	 */
2922 	if (info->state & (1<<MD_SB_CLEAN))
2923 		mddev->recovery_cp = MaxSector;
2924 	else
2925 		mddev->recovery_cp = 0;
2926 	mddev->persistent    = ! info->not_persistent;
2927 
2928 	mddev->layout        = info->layout;
2929 	mddev->chunk_size    = info->chunk_size;
2930 
2931 	mddev->max_disks     = MD_SB_DISKS;
2932 
2933 	mddev->sb_dirty      = 1;
2934 
2935 	/*
2936 	 * Generate a 128 bit UUID
2937 	 */
2938 	get_random_bytes(mddev->uuid, 16);
2939 
2940 	return 0;
2941 }
2942 
2943 /*
2944  * update_array_info is used to change the configuration of an
2945  * on-line array.
2946  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2947  * fields in the info are checked against the array.
2948  * Any differences that cannot be handled will cause an error.
2949  * Normally, only one change can be managed at a time.
2950  */
2951 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2952 {
2953 	int rv = 0;
2954 	int cnt = 0;
2955 	int state = 0;
2956 
2957 	/* calculate expected state,ignoring low bits */
2958 	if (mddev->bitmap && mddev->bitmap_offset)
2959 		state |= (1 << MD_SB_BITMAP_PRESENT);
2960 
2961 	if (mddev->major_version != info->major_version ||
2962 	    mddev->minor_version != info->minor_version ||
2963 /*	    mddev->patch_version != info->patch_version || */
2964 	    mddev->ctime         != info->ctime         ||
2965 	    mddev->level         != info->level         ||
2966 /*	    mddev->layout        != info->layout        || */
2967 	    !mddev->persistent	 != info->not_persistent||
2968 	    mddev->chunk_size    != info->chunk_size    ||
2969 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2970 	    ((state^info->state) & 0xfffffe00)
2971 		)
2972 		return -EINVAL;
2973 	/* Check there is only one change */
2974 	if (mddev->size != info->size) cnt++;
2975 	if (mddev->raid_disks != info->raid_disks) cnt++;
2976 	if (mddev->layout != info->layout) cnt++;
2977 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
2978 	if (cnt == 0) return 0;
2979 	if (cnt > 1) return -EINVAL;
2980 
2981 	if (mddev->layout != info->layout) {
2982 		/* Change layout
2983 		 * we don't need to do anything at the md level, the
2984 		 * personality will take care of it all.
2985 		 */
2986 		if (mddev->pers->reconfig == NULL)
2987 			return -EINVAL;
2988 		else
2989 			return mddev->pers->reconfig(mddev, info->layout, -1);
2990 	}
2991 	if (mddev->size != info->size) {
2992 		mdk_rdev_t * rdev;
2993 		struct list_head *tmp;
2994 		if (mddev->pers->resize == NULL)
2995 			return -EINVAL;
2996 		/* The "size" is the amount of each device that is used.
2997 		 * This can only make sense for arrays with redundancy.
2998 		 * linear and raid0 always use whatever space is available
2999 		 * We can only consider changing the size if no resync
3000 		 * or reconstruction is happening, and if the new size
3001 		 * is acceptable. It must fit before the sb_offset or,
3002 		 * if that is <data_offset, it must fit before the
3003 		 * size of each device.
3004 		 * If size is zero, we find the largest size that fits.
3005 		 */
3006 		if (mddev->sync_thread)
3007 			return -EBUSY;
3008 		ITERATE_RDEV(mddev,rdev,tmp) {
3009 			sector_t avail;
3010 			int fit = (info->size == 0);
3011 			if (rdev->sb_offset > rdev->data_offset)
3012 				avail = (rdev->sb_offset*2) - rdev->data_offset;
3013 			else
3014 				avail = get_capacity(rdev->bdev->bd_disk)
3015 					- rdev->data_offset;
3016 			if (fit && (info->size == 0 || info->size > avail/2))
3017 				info->size = avail/2;
3018 			if (avail < ((sector_t)info->size << 1))
3019 				return -ENOSPC;
3020 		}
3021 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
3022 		if (!rv) {
3023 			struct block_device *bdev;
3024 
3025 			bdev = bdget_disk(mddev->gendisk, 0);
3026 			if (bdev) {
3027 				down(&bdev->bd_inode->i_sem);
3028 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3029 				up(&bdev->bd_inode->i_sem);
3030 				bdput(bdev);
3031 			}
3032 		}
3033 	}
3034 	if (mddev->raid_disks    != info->raid_disks) {
3035 		/* change the number of raid disks */
3036 		if (mddev->pers->reshape == NULL)
3037 			return -EINVAL;
3038 		if (info->raid_disks <= 0 ||
3039 		    info->raid_disks >= mddev->max_disks)
3040 			return -EINVAL;
3041 		if (mddev->sync_thread)
3042 			return -EBUSY;
3043 		rv = mddev->pers->reshape(mddev, info->raid_disks);
3044 		if (!rv) {
3045 			struct block_device *bdev;
3046 
3047 			bdev = bdget_disk(mddev->gendisk, 0);
3048 			if (bdev) {
3049 				down(&bdev->bd_inode->i_sem);
3050 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3051 				up(&bdev->bd_inode->i_sem);
3052 				bdput(bdev);
3053 			}
3054 		}
3055 	}
3056 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3057 		if (mddev->pers->quiesce == NULL)
3058 			return -EINVAL;
3059 		if (mddev->recovery || mddev->sync_thread)
3060 			return -EBUSY;
3061 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3062 			/* add the bitmap */
3063 			if (mddev->bitmap)
3064 				return -EEXIST;
3065 			if (mddev->default_bitmap_offset == 0)
3066 				return -EINVAL;
3067 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3068 			mddev->pers->quiesce(mddev, 1);
3069 			rv = bitmap_create(mddev);
3070 			if (rv)
3071 				bitmap_destroy(mddev);
3072 			mddev->pers->quiesce(mddev, 0);
3073 		} else {
3074 			/* remove the bitmap */
3075 			if (!mddev->bitmap)
3076 				return -ENOENT;
3077 			if (mddev->bitmap->file)
3078 				return -EINVAL;
3079 			mddev->pers->quiesce(mddev, 1);
3080 			bitmap_destroy(mddev);
3081 			mddev->pers->quiesce(mddev, 0);
3082 			mddev->bitmap_offset = 0;
3083 		}
3084 	}
3085 	md_update_sb(mddev);
3086 	return rv;
3087 }
3088 
3089 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3090 {
3091 	mdk_rdev_t *rdev;
3092 
3093 	if (mddev->pers == NULL)
3094 		return -ENODEV;
3095 
3096 	rdev = find_rdev(mddev, dev);
3097 	if (!rdev)
3098 		return -ENODEV;
3099 
3100 	md_error(mddev, rdev);
3101 	return 0;
3102 }
3103 
3104 static int md_ioctl(struct inode *inode, struct file *file,
3105 			unsigned int cmd, unsigned long arg)
3106 {
3107 	int err = 0;
3108 	void __user *argp = (void __user *)arg;
3109 	struct hd_geometry __user *loc = argp;
3110 	mddev_t *mddev = NULL;
3111 
3112 	if (!capable(CAP_SYS_ADMIN))
3113 		return -EACCES;
3114 
3115 	/*
3116 	 * Commands dealing with the RAID driver but not any
3117 	 * particular array:
3118 	 */
3119 	switch (cmd)
3120 	{
3121 		case RAID_VERSION:
3122 			err = get_version(argp);
3123 			goto done;
3124 
3125 		case PRINT_RAID_DEBUG:
3126 			err = 0;
3127 			md_print_devices();
3128 			goto done;
3129 
3130 #ifndef MODULE
3131 		case RAID_AUTORUN:
3132 			err = 0;
3133 			autostart_arrays(arg);
3134 			goto done;
3135 #endif
3136 		default:;
3137 	}
3138 
3139 	/*
3140 	 * Commands creating/starting a new array:
3141 	 */
3142 
3143 	mddev = inode->i_bdev->bd_disk->private_data;
3144 
3145 	if (!mddev) {
3146 		BUG();
3147 		goto abort;
3148 	}
3149 
3150 
3151 	if (cmd == START_ARRAY) {
3152 		/* START_ARRAY doesn't need to lock the array as autostart_array
3153 		 * does the locking, and it could even be a different array
3154 		 */
3155 		static int cnt = 3;
3156 		if (cnt > 0 ) {
3157 			printk(KERN_WARNING
3158 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3159 			       "This will not be supported beyond 2.6\n",
3160 			       current->comm, current->pid);
3161 			cnt--;
3162 		}
3163 		err = autostart_array(new_decode_dev(arg));
3164 		if (err) {
3165 			printk(KERN_WARNING "md: autostart failed!\n");
3166 			goto abort;
3167 		}
3168 		goto done;
3169 	}
3170 
3171 	err = mddev_lock(mddev);
3172 	if (err) {
3173 		printk(KERN_INFO
3174 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3175 			err, cmd);
3176 		goto abort;
3177 	}
3178 
3179 	switch (cmd)
3180 	{
3181 		case SET_ARRAY_INFO:
3182 			{
3183 				mdu_array_info_t info;
3184 				if (!arg)
3185 					memset(&info, 0, sizeof(info));
3186 				else if (copy_from_user(&info, argp, sizeof(info))) {
3187 					err = -EFAULT;
3188 					goto abort_unlock;
3189 				}
3190 				if (mddev->pers) {
3191 					err = update_array_info(mddev, &info);
3192 					if (err) {
3193 						printk(KERN_WARNING "md: couldn't update"
3194 						       " array info. %d\n", err);
3195 						goto abort_unlock;
3196 					}
3197 					goto done_unlock;
3198 				}
3199 				if (!list_empty(&mddev->disks)) {
3200 					printk(KERN_WARNING
3201 					       "md: array %s already has disks!\n",
3202 					       mdname(mddev));
3203 					err = -EBUSY;
3204 					goto abort_unlock;
3205 				}
3206 				if (mddev->raid_disks) {
3207 					printk(KERN_WARNING
3208 					       "md: array %s already initialised!\n",
3209 					       mdname(mddev));
3210 					err = -EBUSY;
3211 					goto abort_unlock;
3212 				}
3213 				err = set_array_info(mddev, &info);
3214 				if (err) {
3215 					printk(KERN_WARNING "md: couldn't set"
3216 					       " array info. %d\n", err);
3217 					goto abort_unlock;
3218 				}
3219 			}
3220 			goto done_unlock;
3221 
3222 		default:;
3223 	}
3224 
3225 	/*
3226 	 * Commands querying/configuring an existing array:
3227 	 */
3228 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3229 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3230 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3231 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3232 		err = -ENODEV;
3233 		goto abort_unlock;
3234 	}
3235 
3236 	/*
3237 	 * Commands even a read-only array can execute:
3238 	 */
3239 	switch (cmd)
3240 	{
3241 		case GET_ARRAY_INFO:
3242 			err = get_array_info(mddev, argp);
3243 			goto done_unlock;
3244 
3245 		case GET_BITMAP_FILE:
3246 			err = get_bitmap_file(mddev, argp);
3247 			goto done_unlock;
3248 
3249 		case GET_DISK_INFO:
3250 			err = get_disk_info(mddev, argp);
3251 			goto done_unlock;
3252 
3253 		case RESTART_ARRAY_RW:
3254 			err = restart_array(mddev);
3255 			goto done_unlock;
3256 
3257 		case STOP_ARRAY:
3258 			err = do_md_stop (mddev, 0);
3259 			goto done_unlock;
3260 
3261 		case STOP_ARRAY_RO:
3262 			err = do_md_stop (mddev, 1);
3263 			goto done_unlock;
3264 
3265 	/*
3266 	 * We have a problem here : there is no easy way to give a CHS
3267 	 * virtual geometry. We currently pretend that we have a 2 heads
3268 	 * 4 sectors (with a BIG number of cylinders...). This drives
3269 	 * dosfs just mad... ;-)
3270 	 */
3271 		case HDIO_GETGEO:
3272 			if (!loc) {
3273 				err = -EINVAL;
3274 				goto abort_unlock;
3275 			}
3276 			err = put_user (2, (char __user *) &loc->heads);
3277 			if (err)
3278 				goto abort_unlock;
3279 			err = put_user (4, (char __user *) &loc->sectors);
3280 			if (err)
3281 				goto abort_unlock;
3282 			err = put_user(get_capacity(mddev->gendisk)/8,
3283 					(short __user *) &loc->cylinders);
3284 			if (err)
3285 				goto abort_unlock;
3286 			err = put_user (get_start_sect(inode->i_bdev),
3287 						(long __user *) &loc->start);
3288 			goto done_unlock;
3289 	}
3290 
3291 	/*
3292 	 * The remaining ioctls are changing the state of the
3293 	 * superblock, so we do not allow them on read-only arrays.
3294 	 * However non-MD ioctls (e.g. get-size) will still come through
3295 	 * here and hit the 'default' below, so only disallow
3296 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3297 	 */
3298 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3299 	    mddev->ro && mddev->pers) {
3300 		if (mddev->ro == 2) {
3301 			mddev->ro = 0;
3302 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3303 		md_wakeup_thread(mddev->thread);
3304 
3305 		} else {
3306 			err = -EROFS;
3307 			goto abort_unlock;
3308 		}
3309 	}
3310 
3311 	switch (cmd)
3312 	{
3313 		case ADD_NEW_DISK:
3314 		{
3315 			mdu_disk_info_t info;
3316 			if (copy_from_user(&info, argp, sizeof(info)))
3317 				err = -EFAULT;
3318 			else
3319 				err = add_new_disk(mddev, &info);
3320 			goto done_unlock;
3321 		}
3322 
3323 		case HOT_REMOVE_DISK:
3324 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3325 			goto done_unlock;
3326 
3327 		case HOT_ADD_DISK:
3328 			err = hot_add_disk(mddev, new_decode_dev(arg));
3329 			goto done_unlock;
3330 
3331 		case SET_DISK_FAULTY:
3332 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3333 			goto done_unlock;
3334 
3335 		case RUN_ARRAY:
3336 			err = do_md_run (mddev);
3337 			goto done_unlock;
3338 
3339 		case SET_BITMAP_FILE:
3340 			err = set_bitmap_file(mddev, (int)arg);
3341 			goto done_unlock;
3342 
3343 		default:
3344 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3345 				printk(KERN_WARNING "md: %s(pid %d) used"
3346 					" obsolete MD ioctl, upgrade your"
3347 					" software to use new ictls.\n",
3348 					current->comm, current->pid);
3349 			err = -EINVAL;
3350 			goto abort_unlock;
3351 	}
3352 
3353 done_unlock:
3354 abort_unlock:
3355 	mddev_unlock(mddev);
3356 
3357 	return err;
3358 done:
3359 	if (err)
3360 		MD_BUG();
3361 abort:
3362 	return err;
3363 }
3364 
3365 static int md_open(struct inode *inode, struct file *file)
3366 {
3367 	/*
3368 	 * Succeed if we can lock the mddev, which confirms that
3369 	 * it isn't being stopped right now.
3370 	 */
3371 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3372 	int err;
3373 
3374 	if ((err = mddev_lock(mddev)))
3375 		goto out;
3376 
3377 	err = 0;
3378 	mddev_get(mddev);
3379 	mddev_unlock(mddev);
3380 
3381 	check_disk_change(inode->i_bdev);
3382  out:
3383 	return err;
3384 }
3385 
3386 static int md_release(struct inode *inode, struct file * file)
3387 {
3388  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3389 
3390 	if (!mddev)
3391 		BUG();
3392 	mddev_put(mddev);
3393 
3394 	return 0;
3395 }
3396 
3397 static int md_media_changed(struct gendisk *disk)
3398 {
3399 	mddev_t *mddev = disk->private_data;
3400 
3401 	return mddev->changed;
3402 }
3403 
3404 static int md_revalidate(struct gendisk *disk)
3405 {
3406 	mddev_t *mddev = disk->private_data;
3407 
3408 	mddev->changed = 0;
3409 	return 0;
3410 }
3411 static struct block_device_operations md_fops =
3412 {
3413 	.owner		= THIS_MODULE,
3414 	.open		= md_open,
3415 	.release	= md_release,
3416 	.ioctl		= md_ioctl,
3417 	.media_changed	= md_media_changed,
3418 	.revalidate_disk= md_revalidate,
3419 };
3420 
3421 static int md_thread(void * arg)
3422 {
3423 	mdk_thread_t *thread = arg;
3424 
3425 	/*
3426 	 * md_thread is a 'system-thread', it's priority should be very
3427 	 * high. We avoid resource deadlocks individually in each
3428 	 * raid personality. (RAID5 does preallocation) We also use RR and
3429 	 * the very same RT priority as kswapd, thus we will never get
3430 	 * into a priority inversion deadlock.
3431 	 *
3432 	 * we definitely have to have equal or higher priority than
3433 	 * bdflush, otherwise bdflush will deadlock if there are too
3434 	 * many dirty RAID5 blocks.
3435 	 */
3436 
3437 	allow_signal(SIGKILL);
3438 	while (!kthread_should_stop()) {
3439 
3440 		wait_event_timeout(thread->wqueue,
3441 				   test_bit(THREAD_WAKEUP, &thread->flags)
3442 				   || kthread_should_stop(),
3443 				   thread->timeout);
3444 		try_to_freeze();
3445 
3446 		clear_bit(THREAD_WAKEUP, &thread->flags);
3447 
3448 		thread->run(thread->mddev);
3449 	}
3450 
3451 	return 0;
3452 }
3453 
3454 void md_wakeup_thread(mdk_thread_t *thread)
3455 {
3456 	if (thread) {
3457 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3458 		set_bit(THREAD_WAKEUP, &thread->flags);
3459 		wake_up(&thread->wqueue);
3460 	}
3461 }
3462 
3463 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3464 				 const char *name)
3465 {
3466 	mdk_thread_t *thread;
3467 
3468 	thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3469 	if (!thread)
3470 		return NULL;
3471 
3472 	memset(thread, 0, sizeof(mdk_thread_t));
3473 	init_waitqueue_head(&thread->wqueue);
3474 
3475 	thread->run = run;
3476 	thread->mddev = mddev;
3477 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3478 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3479 	if (IS_ERR(thread->tsk)) {
3480 		kfree(thread);
3481 		return NULL;
3482 	}
3483 	return thread;
3484 }
3485 
3486 void md_unregister_thread(mdk_thread_t *thread)
3487 {
3488 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3489 
3490 	kthread_stop(thread->tsk);
3491 	kfree(thread);
3492 }
3493 
3494 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3495 {
3496 	if (!mddev) {
3497 		MD_BUG();
3498 		return;
3499 	}
3500 
3501 	if (!rdev || test_bit(Faulty, &rdev->flags))
3502 		return;
3503 /*
3504 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3505 		mdname(mddev),
3506 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3507 		__builtin_return_address(0),__builtin_return_address(1),
3508 		__builtin_return_address(2),__builtin_return_address(3));
3509 */
3510 	if (!mddev->pers->error_handler)
3511 		return;
3512 	mddev->pers->error_handler(mddev,rdev);
3513 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3514 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3515 	md_wakeup_thread(mddev->thread);
3516 }
3517 
3518 /* seq_file implementation /proc/mdstat */
3519 
3520 static void status_unused(struct seq_file *seq)
3521 {
3522 	int i = 0;
3523 	mdk_rdev_t *rdev;
3524 	struct list_head *tmp;
3525 
3526 	seq_printf(seq, "unused devices: ");
3527 
3528 	ITERATE_RDEV_PENDING(rdev,tmp) {
3529 		char b[BDEVNAME_SIZE];
3530 		i++;
3531 		seq_printf(seq, "%s ",
3532 			      bdevname(rdev->bdev,b));
3533 	}
3534 	if (!i)
3535 		seq_printf(seq, "<none>");
3536 
3537 	seq_printf(seq, "\n");
3538 }
3539 
3540 
3541 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3542 {
3543 	unsigned long max_blocks, resync, res, dt, db, rt;
3544 
3545 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3546 
3547 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3548 		max_blocks = mddev->resync_max_sectors >> 1;
3549 	else
3550 		max_blocks = mddev->size;
3551 
3552 	/*
3553 	 * Should not happen.
3554 	 */
3555 	if (!max_blocks) {
3556 		MD_BUG();
3557 		return;
3558 	}
3559 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3560 	{
3561 		int i, x = res/50, y = 20-x;
3562 		seq_printf(seq, "[");
3563 		for (i = 0; i < x; i++)
3564 			seq_printf(seq, "=");
3565 		seq_printf(seq, ">");
3566 		for (i = 0; i < y; i++)
3567 			seq_printf(seq, ".");
3568 		seq_printf(seq, "] ");
3569 	}
3570 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3571 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3572 		       "resync" : "recovery"),
3573 		      res/10, res % 10, resync, max_blocks);
3574 
3575 	/*
3576 	 * We do not want to overflow, so the order of operands and
3577 	 * the * 100 / 100 trick are important. We do a +1 to be
3578 	 * safe against division by zero. We only estimate anyway.
3579 	 *
3580 	 * dt: time from mark until now
3581 	 * db: blocks written from mark until now
3582 	 * rt: remaining time
3583 	 */
3584 	dt = ((jiffies - mddev->resync_mark) / HZ);
3585 	if (!dt) dt++;
3586 	db = resync - (mddev->resync_mark_cnt/2);
3587 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3588 
3589 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3590 
3591 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3592 }
3593 
3594 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3595 {
3596 	struct list_head *tmp;
3597 	loff_t l = *pos;
3598 	mddev_t *mddev;
3599 
3600 	if (l >= 0x10000)
3601 		return NULL;
3602 	if (!l--)
3603 		/* header */
3604 		return (void*)1;
3605 
3606 	spin_lock(&all_mddevs_lock);
3607 	list_for_each(tmp,&all_mddevs)
3608 		if (!l--) {
3609 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3610 			mddev_get(mddev);
3611 			spin_unlock(&all_mddevs_lock);
3612 			return mddev;
3613 		}
3614 	spin_unlock(&all_mddevs_lock);
3615 	if (!l--)
3616 		return (void*)2;/* tail */
3617 	return NULL;
3618 }
3619 
3620 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3621 {
3622 	struct list_head *tmp;
3623 	mddev_t *next_mddev, *mddev = v;
3624 
3625 	++*pos;
3626 	if (v == (void*)2)
3627 		return NULL;
3628 
3629 	spin_lock(&all_mddevs_lock);
3630 	if (v == (void*)1)
3631 		tmp = all_mddevs.next;
3632 	else
3633 		tmp = mddev->all_mddevs.next;
3634 	if (tmp != &all_mddevs)
3635 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3636 	else {
3637 		next_mddev = (void*)2;
3638 		*pos = 0x10000;
3639 	}
3640 	spin_unlock(&all_mddevs_lock);
3641 
3642 	if (v != (void*)1)
3643 		mddev_put(mddev);
3644 	return next_mddev;
3645 
3646 }
3647 
3648 static void md_seq_stop(struct seq_file *seq, void *v)
3649 {
3650 	mddev_t *mddev = v;
3651 
3652 	if (mddev && v != (void*)1 && v != (void*)2)
3653 		mddev_put(mddev);
3654 }
3655 
3656 static int md_seq_show(struct seq_file *seq, void *v)
3657 {
3658 	mddev_t *mddev = v;
3659 	sector_t size;
3660 	struct list_head *tmp2;
3661 	mdk_rdev_t *rdev;
3662 	int i;
3663 	struct bitmap *bitmap;
3664 
3665 	if (v == (void*)1) {
3666 		seq_printf(seq, "Personalities : ");
3667 		spin_lock(&pers_lock);
3668 		for (i = 0; i < MAX_PERSONALITY; i++)
3669 			if (pers[i])
3670 				seq_printf(seq, "[%s] ", pers[i]->name);
3671 
3672 		spin_unlock(&pers_lock);
3673 		seq_printf(seq, "\n");
3674 		return 0;
3675 	}
3676 	if (v == (void*)2) {
3677 		status_unused(seq);
3678 		return 0;
3679 	}
3680 
3681 	if (mddev_lock(mddev)!=0)
3682 		return -EINTR;
3683 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3684 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3685 						mddev->pers ? "" : "in");
3686 		if (mddev->pers) {
3687 			if (mddev->ro==1)
3688 				seq_printf(seq, " (read-only)");
3689 			if (mddev->ro==2)
3690 				seq_printf(seq, "(auto-read-only)");
3691 			seq_printf(seq, " %s", mddev->pers->name);
3692 		}
3693 
3694 		size = 0;
3695 		ITERATE_RDEV(mddev,rdev,tmp2) {
3696 			char b[BDEVNAME_SIZE];
3697 			seq_printf(seq, " %s[%d]",
3698 				bdevname(rdev->bdev,b), rdev->desc_nr);
3699 			if (test_bit(WriteMostly, &rdev->flags))
3700 				seq_printf(seq, "(W)");
3701 			if (test_bit(Faulty, &rdev->flags)) {
3702 				seq_printf(seq, "(F)");
3703 				continue;
3704 			} else if (rdev->raid_disk < 0)
3705 				seq_printf(seq, "(S)"); /* spare */
3706 			size += rdev->size;
3707 		}
3708 
3709 		if (!list_empty(&mddev->disks)) {
3710 			if (mddev->pers)
3711 				seq_printf(seq, "\n      %llu blocks",
3712 					(unsigned long long)mddev->array_size);
3713 			else
3714 				seq_printf(seq, "\n      %llu blocks",
3715 					(unsigned long long)size);
3716 		}
3717 		if (mddev->persistent) {
3718 			if (mddev->major_version != 0 ||
3719 			    mddev->minor_version != 90) {
3720 				seq_printf(seq," super %d.%d",
3721 					   mddev->major_version,
3722 					   mddev->minor_version);
3723 			}
3724 		} else
3725 			seq_printf(seq, " super non-persistent");
3726 
3727 		if (mddev->pers) {
3728 			mddev->pers->status (seq, mddev);
3729 	 		seq_printf(seq, "\n      ");
3730 			if (mddev->pers->sync_request) {
3731 				if (mddev->curr_resync > 2) {
3732 					status_resync (seq, mddev);
3733 					seq_printf(seq, "\n      ");
3734 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3735 					seq_printf(seq, "\tresync=DELAYED\n      ");
3736 				else if (mddev->recovery_cp < MaxSector)
3737 					seq_printf(seq, "\tresync=PENDING\n      ");
3738 			}
3739 		} else
3740 			seq_printf(seq, "\n       ");
3741 
3742 		if ((bitmap = mddev->bitmap)) {
3743 			unsigned long chunk_kb;
3744 			unsigned long flags;
3745 			spin_lock_irqsave(&bitmap->lock, flags);
3746 			chunk_kb = bitmap->chunksize >> 10;
3747 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3748 				"%lu%s chunk",
3749 				bitmap->pages - bitmap->missing_pages,
3750 				bitmap->pages,
3751 				(bitmap->pages - bitmap->missing_pages)
3752 					<< (PAGE_SHIFT - 10),
3753 				chunk_kb ? chunk_kb : bitmap->chunksize,
3754 				chunk_kb ? "KB" : "B");
3755 			if (bitmap->file) {
3756 				seq_printf(seq, ", file: ");
3757 				seq_path(seq, bitmap->file->f_vfsmnt,
3758 					 bitmap->file->f_dentry," \t\n");
3759 			}
3760 
3761 			seq_printf(seq, "\n");
3762 			spin_unlock_irqrestore(&bitmap->lock, flags);
3763 		}
3764 
3765 		seq_printf(seq, "\n");
3766 	}
3767 	mddev_unlock(mddev);
3768 
3769 	return 0;
3770 }
3771 
3772 static struct seq_operations md_seq_ops = {
3773 	.start  = md_seq_start,
3774 	.next   = md_seq_next,
3775 	.stop   = md_seq_stop,
3776 	.show   = md_seq_show,
3777 };
3778 
3779 static int md_seq_open(struct inode *inode, struct file *file)
3780 {
3781 	int error;
3782 
3783 	error = seq_open(file, &md_seq_ops);
3784 	return error;
3785 }
3786 
3787 static struct file_operations md_seq_fops = {
3788 	.open           = md_seq_open,
3789 	.read           = seq_read,
3790 	.llseek         = seq_lseek,
3791 	.release	= seq_release,
3792 };
3793 
3794 int register_md_personality(int pnum, mdk_personality_t *p)
3795 {
3796 	if (pnum >= MAX_PERSONALITY) {
3797 		printk(KERN_ERR
3798 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3799 		       p->name, pnum, MAX_PERSONALITY-1);
3800 		return -EINVAL;
3801 	}
3802 
3803 	spin_lock(&pers_lock);
3804 	if (pers[pnum]) {
3805 		spin_unlock(&pers_lock);
3806 		return -EBUSY;
3807 	}
3808 
3809 	pers[pnum] = p;
3810 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3811 	spin_unlock(&pers_lock);
3812 	return 0;
3813 }
3814 
3815 int unregister_md_personality(int pnum)
3816 {
3817 	if (pnum >= MAX_PERSONALITY)
3818 		return -EINVAL;
3819 
3820 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3821 	spin_lock(&pers_lock);
3822 	pers[pnum] = NULL;
3823 	spin_unlock(&pers_lock);
3824 	return 0;
3825 }
3826 
3827 static int is_mddev_idle(mddev_t *mddev)
3828 {
3829 	mdk_rdev_t * rdev;
3830 	struct list_head *tmp;
3831 	int idle;
3832 	unsigned long curr_events;
3833 
3834 	idle = 1;
3835 	ITERATE_RDEV(mddev,rdev,tmp) {
3836 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3837 		curr_events = disk_stat_read(disk, sectors[0]) +
3838 				disk_stat_read(disk, sectors[1]) -
3839 				atomic_read(&disk->sync_io);
3840 		/* Allow some slack between valud of curr_events and last_events,
3841 		 * as there are some uninteresting races.
3842 		 * Note: the following is an unsigned comparison.
3843 		 */
3844 		if ((curr_events - rdev->last_events + 32) > 64) {
3845 			rdev->last_events = curr_events;
3846 			idle = 0;
3847 		}
3848 	}
3849 	return idle;
3850 }
3851 
3852 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3853 {
3854 	/* another "blocks" (512byte) blocks have been synced */
3855 	atomic_sub(blocks, &mddev->recovery_active);
3856 	wake_up(&mddev->recovery_wait);
3857 	if (!ok) {
3858 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3859 		md_wakeup_thread(mddev->thread);
3860 		// stop recovery, signal do_sync ....
3861 	}
3862 }
3863 
3864 
3865 /* md_write_start(mddev, bi)
3866  * If we need to update some array metadata (e.g. 'active' flag
3867  * in superblock) before writing, schedule a superblock update
3868  * and wait for it to complete.
3869  */
3870 void md_write_start(mddev_t *mddev, struct bio *bi)
3871 {
3872 	if (bio_data_dir(bi) != WRITE)
3873 		return;
3874 
3875 	BUG_ON(mddev->ro == 1);
3876 	if (mddev->ro == 2) {
3877 		/* need to switch to read/write */
3878 		mddev->ro = 0;
3879 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3880 		md_wakeup_thread(mddev->thread);
3881 	}
3882 	atomic_inc(&mddev->writes_pending);
3883 	if (mddev->in_sync) {
3884 		spin_lock_irq(&mddev->write_lock);
3885 		if (mddev->in_sync) {
3886 			mddev->in_sync = 0;
3887 			mddev->sb_dirty = 1;
3888 			md_wakeup_thread(mddev->thread);
3889 		}
3890 		spin_unlock_irq(&mddev->write_lock);
3891 	}
3892 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3893 }
3894 
3895 void md_write_end(mddev_t *mddev)
3896 {
3897 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3898 		if (mddev->safemode == 2)
3899 			md_wakeup_thread(mddev->thread);
3900 		else
3901 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3902 	}
3903 }
3904 
3905 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3906 
3907 #define SYNC_MARKS	10
3908 #define	SYNC_MARK_STEP	(3*HZ)
3909 static void md_do_sync(mddev_t *mddev)
3910 {
3911 	mddev_t *mddev2;
3912 	unsigned int currspeed = 0,
3913 		 window;
3914 	sector_t max_sectors,j, io_sectors;
3915 	unsigned long mark[SYNC_MARKS];
3916 	sector_t mark_cnt[SYNC_MARKS];
3917 	int last_mark,m;
3918 	struct list_head *tmp;
3919 	sector_t last_check;
3920 	int skipped = 0;
3921 
3922 	/* just incase thread restarts... */
3923 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3924 		return;
3925 
3926 	/* we overload curr_resync somewhat here.
3927 	 * 0 == not engaged in resync at all
3928 	 * 2 == checking that there is no conflict with another sync
3929 	 * 1 == like 2, but have yielded to allow conflicting resync to
3930 	 *		commense
3931 	 * other == active in resync - this many blocks
3932 	 *
3933 	 * Before starting a resync we must have set curr_resync to
3934 	 * 2, and then checked that every "conflicting" array has curr_resync
3935 	 * less than ours.  When we find one that is the same or higher
3936 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3937 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3938 	 * This will mean we have to start checking from the beginning again.
3939 	 *
3940 	 */
3941 
3942 	do {
3943 		mddev->curr_resync = 2;
3944 
3945 	try_again:
3946 		if (kthread_should_stop()) {
3947 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3948 			goto skip;
3949 		}
3950 		ITERATE_MDDEV(mddev2,tmp) {
3951 			if (mddev2 == mddev)
3952 				continue;
3953 			if (mddev2->curr_resync &&
3954 			    match_mddev_units(mddev,mddev2)) {
3955 				DEFINE_WAIT(wq);
3956 				if (mddev < mddev2 && mddev->curr_resync == 2) {
3957 					/* arbitrarily yield */
3958 					mddev->curr_resync = 1;
3959 					wake_up(&resync_wait);
3960 				}
3961 				if (mddev > mddev2 && mddev->curr_resync == 1)
3962 					/* no need to wait here, we can wait the next
3963 					 * time 'round when curr_resync == 2
3964 					 */
3965 					continue;
3966 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
3967 				if (!kthread_should_stop() &&
3968 				    mddev2->curr_resync >= mddev->curr_resync) {
3969 					printk(KERN_INFO "md: delaying resync of %s"
3970 					       " until %s has finished resync (they"
3971 					       " share one or more physical units)\n",
3972 					       mdname(mddev), mdname(mddev2));
3973 					mddev_put(mddev2);
3974 					schedule();
3975 					finish_wait(&resync_wait, &wq);
3976 					goto try_again;
3977 				}
3978 				finish_wait(&resync_wait, &wq);
3979 			}
3980 		}
3981 	} while (mddev->curr_resync < 2);
3982 
3983 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3984 		/* resync follows the size requested by the personality,
3985 		 * which defaults to physical size, but can be virtual size
3986 		 */
3987 		max_sectors = mddev->resync_max_sectors;
3988 		mddev->resync_mismatches = 0;
3989 	} else
3990 		/* recovery follows the physical size of devices */
3991 		max_sectors = mddev->size << 1;
3992 
3993 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3994 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3995 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
3996 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
3997 	       "(but not more than %d KB/sec) for reconstruction.\n",
3998 	       sysctl_speed_limit_max);
3999 
4000 	is_mddev_idle(mddev); /* this also initializes IO event counters */
4001 	/* we don't use the checkpoint if there's a bitmap */
4002 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4003 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4004 		j = mddev->recovery_cp;
4005 	else
4006 		j = 0;
4007 	io_sectors = 0;
4008 	for (m = 0; m < SYNC_MARKS; m++) {
4009 		mark[m] = jiffies;
4010 		mark_cnt[m] = io_sectors;
4011 	}
4012 	last_mark = 0;
4013 	mddev->resync_mark = mark[last_mark];
4014 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4015 
4016 	/*
4017 	 * Tune reconstruction:
4018 	 */
4019 	window = 32*(PAGE_SIZE/512);
4020 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4021 		window/2,(unsigned long long) max_sectors/2);
4022 
4023 	atomic_set(&mddev->recovery_active, 0);
4024 	init_waitqueue_head(&mddev->recovery_wait);
4025 	last_check = 0;
4026 
4027 	if (j>2) {
4028 		printk(KERN_INFO
4029 			"md: resuming recovery of %s from checkpoint.\n",
4030 			mdname(mddev));
4031 		mddev->curr_resync = j;
4032 	}
4033 
4034 	while (j < max_sectors) {
4035 		sector_t sectors;
4036 
4037 		skipped = 0;
4038 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4039 					    currspeed < sysctl_speed_limit_min);
4040 		if (sectors == 0) {
4041 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4042 			goto out;
4043 		}
4044 
4045 		if (!skipped) { /* actual IO requested */
4046 			io_sectors += sectors;
4047 			atomic_add(sectors, &mddev->recovery_active);
4048 		}
4049 
4050 		j += sectors;
4051 		if (j>1) mddev->curr_resync = j;
4052 
4053 
4054 		if (last_check + window > io_sectors || j == max_sectors)
4055 			continue;
4056 
4057 		last_check = io_sectors;
4058 
4059 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4060 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4061 			break;
4062 
4063 	repeat:
4064 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4065 			/* step marks */
4066 			int next = (last_mark+1) % SYNC_MARKS;
4067 
4068 			mddev->resync_mark = mark[next];
4069 			mddev->resync_mark_cnt = mark_cnt[next];
4070 			mark[next] = jiffies;
4071 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4072 			last_mark = next;
4073 		}
4074 
4075 
4076 		if (kthread_should_stop()) {
4077 			/*
4078 			 * got a signal, exit.
4079 			 */
4080 			printk(KERN_INFO
4081 				"md: md_do_sync() got signal ... exiting\n");
4082 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4083 			goto out;
4084 		}
4085 
4086 		/*
4087 		 * this loop exits only if either when we are slower than
4088 		 * the 'hard' speed limit, or the system was IO-idle for
4089 		 * a jiffy.
4090 		 * the system might be non-idle CPU-wise, but we only care
4091 		 * about not overloading the IO subsystem. (things like an
4092 		 * e2fsck being done on the RAID array should execute fast)
4093 		 */
4094 		mddev->queue->unplug_fn(mddev->queue);
4095 		cond_resched();
4096 
4097 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4098 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4099 
4100 		if (currspeed > sysctl_speed_limit_min) {
4101 			if ((currspeed > sysctl_speed_limit_max) ||
4102 					!is_mddev_idle(mddev)) {
4103 				msleep(250);
4104 				goto repeat;
4105 			}
4106 		}
4107 	}
4108 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4109 	/*
4110 	 * this also signals 'finished resyncing' to md_stop
4111 	 */
4112  out:
4113 	mddev->queue->unplug_fn(mddev->queue);
4114 
4115 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4116 
4117 	/* tell personality that we are finished */
4118 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4119 
4120 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4121 	    mddev->curr_resync > 2 &&
4122 	    mddev->curr_resync >= mddev->recovery_cp) {
4123 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4124 			printk(KERN_INFO
4125 				"md: checkpointing recovery of %s.\n",
4126 				mdname(mddev));
4127 			mddev->recovery_cp = mddev->curr_resync;
4128 		} else
4129 			mddev->recovery_cp = MaxSector;
4130 	}
4131 
4132  skip:
4133 	mddev->curr_resync = 0;
4134 	wake_up(&resync_wait);
4135 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4136 	md_wakeup_thread(mddev->thread);
4137 }
4138 
4139 
4140 /*
4141  * This routine is regularly called by all per-raid-array threads to
4142  * deal with generic issues like resync and super-block update.
4143  * Raid personalities that don't have a thread (linear/raid0) do not
4144  * need this as they never do any recovery or update the superblock.
4145  *
4146  * It does not do any resync itself, but rather "forks" off other threads
4147  * to do that as needed.
4148  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4149  * "->recovery" and create a thread at ->sync_thread.
4150  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4151  * and wakeups up this thread which will reap the thread and finish up.
4152  * This thread also removes any faulty devices (with nr_pending == 0).
4153  *
4154  * The overall approach is:
4155  *  1/ if the superblock needs updating, update it.
4156  *  2/ If a recovery thread is running, don't do anything else.
4157  *  3/ If recovery has finished, clean up, possibly marking spares active.
4158  *  4/ If there are any faulty devices, remove them.
4159  *  5/ If array is degraded, try to add spares devices
4160  *  6/ If array has spares or is not in-sync, start a resync thread.
4161  */
4162 void md_check_recovery(mddev_t *mddev)
4163 {
4164 	mdk_rdev_t *rdev;
4165 	struct list_head *rtmp;
4166 
4167 
4168 	if (mddev->bitmap)
4169 		bitmap_daemon_work(mddev->bitmap);
4170 
4171 	if (mddev->ro)
4172 		return;
4173 
4174 	if (signal_pending(current)) {
4175 		if (mddev->pers->sync_request) {
4176 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4177 			       mdname(mddev));
4178 			mddev->safemode = 2;
4179 		}
4180 		flush_signals(current);
4181 	}
4182 
4183 	if ( ! (
4184 		mddev->sb_dirty ||
4185 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4186 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4187 		(mddev->safemode == 1) ||
4188 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4189 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4190 		))
4191 		return;
4192 
4193 	if (mddev_trylock(mddev)==0) {
4194 		int spares =0;
4195 
4196 		spin_lock_irq(&mddev->write_lock);
4197 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4198 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4199 			mddev->in_sync = 1;
4200 			mddev->sb_dirty = 1;
4201 		}
4202 		if (mddev->safemode == 1)
4203 			mddev->safemode = 0;
4204 		spin_unlock_irq(&mddev->write_lock);
4205 
4206 		if (mddev->sb_dirty)
4207 			md_update_sb(mddev);
4208 
4209 
4210 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4211 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4212 			/* resync/recovery still happening */
4213 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4214 			goto unlock;
4215 		}
4216 		if (mddev->sync_thread) {
4217 			/* resync has finished, collect result */
4218 			md_unregister_thread(mddev->sync_thread);
4219 			mddev->sync_thread = NULL;
4220 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4221 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4222 				/* success...*/
4223 				/* activate any spares */
4224 				mddev->pers->spare_active(mddev);
4225 			}
4226 			md_update_sb(mddev);
4227 
4228 			/* if array is no-longer degraded, then any saved_raid_disk
4229 			 * information must be scrapped
4230 			 */
4231 			if (!mddev->degraded)
4232 				ITERATE_RDEV(mddev,rdev,rtmp)
4233 					rdev->saved_raid_disk = -1;
4234 
4235 			mddev->recovery = 0;
4236 			/* flag recovery needed just to double check */
4237 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4238 			goto unlock;
4239 		}
4240 		/* Clear some bits that don't mean anything, but
4241 		 * might be left set
4242 		 */
4243 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4244 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4245 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4246 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4247 
4248 		/* no recovery is running.
4249 		 * remove any failed drives, then
4250 		 * add spares if possible.
4251 		 * Spare are also removed and re-added, to allow
4252 		 * the personality to fail the re-add.
4253 		 */
4254 		ITERATE_RDEV(mddev,rdev,rtmp)
4255 			if (rdev->raid_disk >= 0 &&
4256 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4257 			    atomic_read(&rdev->nr_pending)==0) {
4258 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4259 					char nm[20];
4260 					sprintf(nm,"rd%d", rdev->raid_disk);
4261 					sysfs_remove_link(&mddev->kobj, nm);
4262 					rdev->raid_disk = -1;
4263 				}
4264 			}
4265 
4266 		if (mddev->degraded) {
4267 			ITERATE_RDEV(mddev,rdev,rtmp)
4268 				if (rdev->raid_disk < 0
4269 				    && !test_bit(Faulty, &rdev->flags)) {
4270 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4271 						char nm[20];
4272 						sprintf(nm, "rd%d", rdev->raid_disk);
4273 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4274 						spares++;
4275 					} else
4276 						break;
4277 				}
4278 		}
4279 
4280 		if (spares) {
4281 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4282 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4283 		} else if (mddev->recovery_cp < MaxSector) {
4284 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4285 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4286 			/* nothing to be done ... */
4287 			goto unlock;
4288 
4289 		if (mddev->pers->sync_request) {
4290 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4291 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4292 				/* We are adding a device or devices to an array
4293 				 * which has the bitmap stored on all devices.
4294 				 * So make sure all bitmap pages get written
4295 				 */
4296 				bitmap_write_all(mddev->bitmap);
4297 			}
4298 			mddev->sync_thread = md_register_thread(md_do_sync,
4299 								mddev,
4300 								"%s_resync");
4301 			if (!mddev->sync_thread) {
4302 				printk(KERN_ERR "%s: could not start resync"
4303 					" thread...\n",
4304 					mdname(mddev));
4305 				/* leave the spares where they are, it shouldn't hurt */
4306 				mddev->recovery = 0;
4307 			} else {
4308 				md_wakeup_thread(mddev->sync_thread);
4309 			}
4310 		}
4311 	unlock:
4312 		mddev_unlock(mddev);
4313 	}
4314 }
4315 
4316 static int md_notify_reboot(struct notifier_block *this,
4317 			    unsigned long code, void *x)
4318 {
4319 	struct list_head *tmp;
4320 	mddev_t *mddev;
4321 
4322 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4323 
4324 		printk(KERN_INFO "md: stopping all md devices.\n");
4325 
4326 		ITERATE_MDDEV(mddev,tmp)
4327 			if (mddev_trylock(mddev)==0)
4328 				do_md_stop (mddev, 1);
4329 		/*
4330 		 * certain more exotic SCSI devices are known to be
4331 		 * volatile wrt too early system reboots. While the
4332 		 * right place to handle this issue is the given
4333 		 * driver, we do want to have a safe RAID driver ...
4334 		 */
4335 		mdelay(1000*1);
4336 	}
4337 	return NOTIFY_DONE;
4338 }
4339 
4340 static struct notifier_block md_notifier = {
4341 	.notifier_call	= md_notify_reboot,
4342 	.next		= NULL,
4343 	.priority	= INT_MAX, /* before any real devices */
4344 };
4345 
4346 static void md_geninit(void)
4347 {
4348 	struct proc_dir_entry *p;
4349 
4350 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4351 
4352 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4353 	if (p)
4354 		p->proc_fops = &md_seq_fops;
4355 }
4356 
4357 static int __init md_init(void)
4358 {
4359 	int minor;
4360 
4361 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4362 			" MD_SB_DISKS=%d\n",
4363 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4364 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4365 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4366 			BITMAP_MINOR);
4367 
4368 	if (register_blkdev(MAJOR_NR, "md"))
4369 		return -1;
4370 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4371 		unregister_blkdev(MAJOR_NR, "md");
4372 		return -1;
4373 	}
4374 	devfs_mk_dir("md");
4375 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4376 				md_probe, NULL, NULL);
4377 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4378 			    md_probe, NULL, NULL);
4379 
4380 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4381 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4382 				S_IFBLK|S_IRUSR|S_IWUSR,
4383 				"md/%d", minor);
4384 
4385 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4386 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4387 			      S_IFBLK|S_IRUSR|S_IWUSR,
4388 			      "md/mdp%d", minor);
4389 
4390 
4391 	register_reboot_notifier(&md_notifier);
4392 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4393 
4394 	md_geninit();
4395 	return (0);
4396 }
4397 
4398 
4399 #ifndef MODULE
4400 
4401 /*
4402  * Searches all registered partitions for autorun RAID arrays
4403  * at boot time.
4404  */
4405 static dev_t detected_devices[128];
4406 static int dev_cnt;
4407 
4408 void md_autodetect_dev(dev_t dev)
4409 {
4410 	if (dev_cnt >= 0 && dev_cnt < 127)
4411 		detected_devices[dev_cnt++] = dev;
4412 }
4413 
4414 
4415 static void autostart_arrays(int part)
4416 {
4417 	mdk_rdev_t *rdev;
4418 	int i;
4419 
4420 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4421 
4422 	for (i = 0; i < dev_cnt; i++) {
4423 		dev_t dev = detected_devices[i];
4424 
4425 		rdev = md_import_device(dev,0, 0);
4426 		if (IS_ERR(rdev))
4427 			continue;
4428 
4429 		if (test_bit(Faulty, &rdev->flags)) {
4430 			MD_BUG();
4431 			continue;
4432 		}
4433 		list_add(&rdev->same_set, &pending_raid_disks);
4434 	}
4435 	dev_cnt = 0;
4436 
4437 	autorun_devices(part);
4438 }
4439 
4440 #endif
4441 
4442 static __exit void md_exit(void)
4443 {
4444 	mddev_t *mddev;
4445 	struct list_head *tmp;
4446 	int i;
4447 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4448 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4449 	for (i=0; i < MAX_MD_DEVS; i++)
4450 		devfs_remove("md/%d", i);
4451 	for (i=0; i < MAX_MD_DEVS; i++)
4452 		devfs_remove("md/d%d", i);
4453 
4454 	devfs_remove("md");
4455 
4456 	unregister_blkdev(MAJOR_NR,"md");
4457 	unregister_blkdev(mdp_major, "mdp");
4458 	unregister_reboot_notifier(&md_notifier);
4459 	unregister_sysctl_table(raid_table_header);
4460 	remove_proc_entry("mdstat", NULL);
4461 	ITERATE_MDDEV(mddev,tmp) {
4462 		struct gendisk *disk = mddev->gendisk;
4463 		if (!disk)
4464 			continue;
4465 		export_array(mddev);
4466 		del_gendisk(disk);
4467 		put_disk(disk);
4468 		mddev->gendisk = NULL;
4469 		mddev_put(mddev);
4470 	}
4471 }
4472 
4473 module_init(md_init)
4474 module_exit(md_exit)
4475 
4476 static int get_ro(char *buffer, struct kernel_param *kp)
4477 {
4478 	return sprintf(buffer, "%d", start_readonly);
4479 }
4480 static int set_ro(const char *val, struct kernel_param *kp)
4481 {
4482 	char *e;
4483 	int num = simple_strtoul(val, &e, 10);
4484 	if (*val && (*e == '\0' || *e == '\n')) {
4485 		start_readonly = num;
4486 		return 0;;
4487 	}
4488 	return -EINVAL;
4489 }
4490 
4491 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4492 
4493 EXPORT_SYMBOL(register_md_personality);
4494 EXPORT_SYMBOL(unregister_md_personality);
4495 EXPORT_SYMBOL(md_error);
4496 EXPORT_SYMBOL(md_done_sync);
4497 EXPORT_SYMBOL(md_write_start);
4498 EXPORT_SYMBOL(md_write_end);
4499 EXPORT_SYMBOL(md_register_thread);
4500 EXPORT_SYMBOL(md_unregister_thread);
4501 EXPORT_SYMBOL(md_wakeup_thread);
4502 EXPORT_SYMBOL(md_print_devices);
4503 EXPORT_SYMBOL(md_check_recovery);
4504 MODULE_LICENSE("GPL");
4505 MODULE_ALIAS("md");
4506 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4507