xref: /openbmc/linux/drivers/md/md.c (revision b96fc2f3)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74 
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78 
79 static int remove_and_add_spares(struct mddev *mddev,
80 				 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82 
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101 
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_min ?
107 		mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109 
110 static inline int speed_max(struct mddev *mddev)
111 {
112 	return mddev->sync_speed_max ?
113 		mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115 
116 static struct ctl_table_header *raid_table_header;
117 
118 static struct ctl_table raid_table[] = {
119 	{
120 		.procname	= "speed_limit_min",
121 		.data		= &sysctl_speed_limit_min,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{
127 		.procname	= "speed_limit_max",
128 		.data		= &sysctl_speed_limit_max,
129 		.maxlen		= sizeof(int),
130 		.mode		= S_IRUGO|S_IWUSR,
131 		.proc_handler	= proc_dointvec,
132 	},
133 	{ }
134 };
135 
136 static struct ctl_table raid_dir_table[] = {
137 	{
138 		.procname	= "raid",
139 		.maxlen		= 0,
140 		.mode		= S_IRUGO|S_IXUGO,
141 		.child		= raid_table,
142 	},
143 	{ }
144 };
145 
146 static struct ctl_table raid_root_table[] = {
147 	{
148 		.procname	= "dev",
149 		.maxlen		= 0,
150 		.mode		= 0555,
151 		.child		= raid_dir_table,
152 	},
153 	{  }
154 };
155 
156 static const struct block_device_operations md_fops;
157 
158 static int start_readonly;
159 
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163 
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 			    struct mddev *mddev)
166 {
167 	struct bio *b;
168 
169 	if (!mddev || !mddev->bio_set)
170 		return bio_alloc(gfp_mask, nr_iovecs);
171 
172 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 	if (!b)
174 		return NULL;
175 	return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178 
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 			    struct mddev *mddev)
181 {
182 	if (!mddev || !mddev->bio_set)
183 		return bio_clone(bio, gfp_mask);
184 
185 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188 
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 	atomic_inc(&md_event_count);
204 	wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207 
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 	atomic_inc(&md_event_count);
214 	wake_up(&md_event_waiters);
215 }
216 
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223 
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)					\
232 									\
233 	for (({ spin_lock(&all_mddevs_lock);				\
234 		_tmp = all_mddevs.next;					\
235 		_mddev = NULL;});					\
236 	     ({ if (_tmp != &all_mddevs)				\
237 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 		spin_unlock(&all_mddevs_lock);				\
239 		if (_mddev) mddev_put(_mddev);				\
240 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
241 		_tmp != &all_mddevs;});					\
242 	     ({ spin_lock(&all_mddevs_lock);				\
243 		_tmp = _tmp->next;})					\
244 		)
245 
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 	const int rw = bio_data_dir(bio);
256 	struct mddev *mddev = q->queuedata;
257 	unsigned int sectors;
258 	int cpu;
259 
260 	blk_queue_split(q, &bio, q->bio_split);
261 
262 	if (mddev == NULL || mddev->pers == NULL
263 	    || !mddev->ready) {
264 		bio_io_error(bio);
265 		return;
266 	}
267 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268 		if (bio_sectors(bio) != 0)
269 			bio->bi_error = -EROFS;
270 		bio_endio(bio);
271 		return;
272 	}
273 	smp_rmb(); /* Ensure implications of  'active' are visible */
274 	rcu_read_lock();
275 	if (mddev->suspended) {
276 		DEFINE_WAIT(__wait);
277 		for (;;) {
278 			prepare_to_wait(&mddev->sb_wait, &__wait,
279 					TASK_UNINTERRUPTIBLE);
280 			if (!mddev->suspended)
281 				break;
282 			rcu_read_unlock();
283 			schedule();
284 			rcu_read_lock();
285 		}
286 		finish_wait(&mddev->sb_wait, &__wait);
287 	}
288 	atomic_inc(&mddev->active_io);
289 	rcu_read_unlock();
290 
291 	/*
292 	 * save the sectors now since our bio can
293 	 * go away inside make_request
294 	 */
295 	sectors = bio_sectors(bio);
296 	mddev->pers->make_request(mddev, bio);
297 
298 	cpu = part_stat_lock();
299 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301 	part_stat_unlock();
302 
303 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304 		wake_up(&mddev->sb_wait);
305 }
306 
307 /* mddev_suspend makes sure no new requests are submitted
308  * to the device, and that any requests that have been submitted
309  * are completely handled.
310  * Once mddev_detach() is called and completes, the module will be
311  * completely unused.
312  */
313 void mddev_suspend(struct mddev *mddev)
314 {
315 	BUG_ON(mddev->suspended);
316 	mddev->suspended = 1;
317 	synchronize_rcu();
318 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
319 	mddev->pers->quiesce(mddev, 1);
320 
321 	del_timer_sync(&mddev->safemode_timer);
322 }
323 EXPORT_SYMBOL_GPL(mddev_suspend);
324 
325 void mddev_resume(struct mddev *mddev)
326 {
327 	mddev->suspended = 0;
328 	wake_up(&mddev->sb_wait);
329 	mddev->pers->quiesce(mddev, 0);
330 
331 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
332 	md_wakeup_thread(mddev->thread);
333 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
334 }
335 EXPORT_SYMBOL_GPL(mddev_resume);
336 
337 int mddev_congested(struct mddev *mddev, int bits)
338 {
339 	struct md_personality *pers = mddev->pers;
340 	int ret = 0;
341 
342 	rcu_read_lock();
343 	if (mddev->suspended)
344 		ret = 1;
345 	else if (pers && pers->congested)
346 		ret = pers->congested(mddev, bits);
347 	rcu_read_unlock();
348 	return ret;
349 }
350 EXPORT_SYMBOL_GPL(mddev_congested);
351 static int md_congested(void *data, int bits)
352 {
353 	struct mddev *mddev = data;
354 	return mddev_congested(mddev, bits);
355 }
356 
357 /*
358  * Generic flush handling for md
359  */
360 
361 static void md_end_flush(struct bio *bio)
362 {
363 	struct md_rdev *rdev = bio->bi_private;
364 	struct mddev *mddev = rdev->mddev;
365 
366 	rdev_dec_pending(rdev, mddev);
367 
368 	if (atomic_dec_and_test(&mddev->flush_pending)) {
369 		/* The pre-request flush has finished */
370 		queue_work(md_wq, &mddev->flush_work);
371 	}
372 	bio_put(bio);
373 }
374 
375 static void md_submit_flush_data(struct work_struct *ws);
376 
377 static void submit_flushes(struct work_struct *ws)
378 {
379 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
380 	struct md_rdev *rdev;
381 
382 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
383 	atomic_set(&mddev->flush_pending, 1);
384 	rcu_read_lock();
385 	rdev_for_each_rcu(rdev, mddev)
386 		if (rdev->raid_disk >= 0 &&
387 		    !test_bit(Faulty, &rdev->flags)) {
388 			/* Take two references, one is dropped
389 			 * when request finishes, one after
390 			 * we reclaim rcu_read_lock
391 			 */
392 			struct bio *bi;
393 			atomic_inc(&rdev->nr_pending);
394 			atomic_inc(&rdev->nr_pending);
395 			rcu_read_unlock();
396 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
397 			bi->bi_end_io = md_end_flush;
398 			bi->bi_private = rdev;
399 			bi->bi_bdev = rdev->bdev;
400 			atomic_inc(&mddev->flush_pending);
401 			submit_bio(WRITE_FLUSH, bi);
402 			rcu_read_lock();
403 			rdev_dec_pending(rdev, mddev);
404 		}
405 	rcu_read_unlock();
406 	if (atomic_dec_and_test(&mddev->flush_pending))
407 		queue_work(md_wq, &mddev->flush_work);
408 }
409 
410 static void md_submit_flush_data(struct work_struct *ws)
411 {
412 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
413 	struct bio *bio = mddev->flush_bio;
414 
415 	if (bio->bi_iter.bi_size == 0)
416 		/* an empty barrier - all done */
417 		bio_endio(bio);
418 	else {
419 		bio->bi_rw &= ~REQ_FLUSH;
420 		mddev->pers->make_request(mddev, bio);
421 	}
422 
423 	mddev->flush_bio = NULL;
424 	wake_up(&mddev->sb_wait);
425 }
426 
427 void md_flush_request(struct mddev *mddev, struct bio *bio)
428 {
429 	spin_lock_irq(&mddev->lock);
430 	wait_event_lock_irq(mddev->sb_wait,
431 			    !mddev->flush_bio,
432 			    mddev->lock);
433 	mddev->flush_bio = bio;
434 	spin_unlock_irq(&mddev->lock);
435 
436 	INIT_WORK(&mddev->flush_work, submit_flushes);
437 	queue_work(md_wq, &mddev->flush_work);
438 }
439 EXPORT_SYMBOL(md_flush_request);
440 
441 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
442 {
443 	struct mddev *mddev = cb->data;
444 	md_wakeup_thread(mddev->thread);
445 	kfree(cb);
446 }
447 EXPORT_SYMBOL(md_unplug);
448 
449 static inline struct mddev *mddev_get(struct mddev *mddev)
450 {
451 	atomic_inc(&mddev->active);
452 	return mddev;
453 }
454 
455 static void mddev_delayed_delete(struct work_struct *ws);
456 
457 static void mddev_put(struct mddev *mddev)
458 {
459 	struct bio_set *bs = NULL;
460 
461 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
462 		return;
463 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
464 	    mddev->ctime == 0 && !mddev->hold_active) {
465 		/* Array is not configured at all, and not held active,
466 		 * so destroy it */
467 		list_del_init(&mddev->all_mddevs);
468 		bs = mddev->bio_set;
469 		mddev->bio_set = NULL;
470 		if (mddev->gendisk) {
471 			/* We did a probe so need to clean up.  Call
472 			 * queue_work inside the spinlock so that
473 			 * flush_workqueue() after mddev_find will
474 			 * succeed in waiting for the work to be done.
475 			 */
476 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
477 			queue_work(md_misc_wq, &mddev->del_work);
478 		} else
479 			kfree(mddev);
480 	}
481 	spin_unlock(&all_mddevs_lock);
482 	if (bs)
483 		bioset_free(bs);
484 }
485 
486 static void md_safemode_timeout(unsigned long data);
487 
488 void mddev_init(struct mddev *mddev)
489 {
490 	mutex_init(&mddev->open_mutex);
491 	mutex_init(&mddev->reconfig_mutex);
492 	mutex_init(&mddev->bitmap_info.mutex);
493 	INIT_LIST_HEAD(&mddev->disks);
494 	INIT_LIST_HEAD(&mddev->all_mddevs);
495 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
496 		    (unsigned long) mddev);
497 	atomic_set(&mddev->active, 1);
498 	atomic_set(&mddev->openers, 0);
499 	atomic_set(&mddev->active_io, 0);
500 	spin_lock_init(&mddev->lock);
501 	atomic_set(&mddev->flush_pending, 0);
502 	init_waitqueue_head(&mddev->sb_wait);
503 	init_waitqueue_head(&mddev->recovery_wait);
504 	mddev->reshape_position = MaxSector;
505 	mddev->reshape_backwards = 0;
506 	mddev->last_sync_action = "none";
507 	mddev->resync_min = 0;
508 	mddev->resync_max = MaxSector;
509 	mddev->level = LEVEL_NONE;
510 }
511 EXPORT_SYMBOL_GPL(mddev_init);
512 
513 static struct mddev *mddev_find(dev_t unit)
514 {
515 	struct mddev *mddev, *new = NULL;
516 
517 	if (unit && MAJOR(unit) != MD_MAJOR)
518 		unit &= ~((1<<MdpMinorShift)-1);
519 
520  retry:
521 	spin_lock(&all_mddevs_lock);
522 
523 	if (unit) {
524 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
525 			if (mddev->unit == unit) {
526 				mddev_get(mddev);
527 				spin_unlock(&all_mddevs_lock);
528 				kfree(new);
529 				return mddev;
530 			}
531 
532 		if (new) {
533 			list_add(&new->all_mddevs, &all_mddevs);
534 			spin_unlock(&all_mddevs_lock);
535 			new->hold_active = UNTIL_IOCTL;
536 			return new;
537 		}
538 	} else if (new) {
539 		/* find an unused unit number */
540 		static int next_minor = 512;
541 		int start = next_minor;
542 		int is_free = 0;
543 		int dev = 0;
544 		while (!is_free) {
545 			dev = MKDEV(MD_MAJOR, next_minor);
546 			next_minor++;
547 			if (next_minor > MINORMASK)
548 				next_minor = 0;
549 			if (next_minor == start) {
550 				/* Oh dear, all in use. */
551 				spin_unlock(&all_mddevs_lock);
552 				kfree(new);
553 				return NULL;
554 			}
555 
556 			is_free = 1;
557 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
558 				if (mddev->unit == dev) {
559 					is_free = 0;
560 					break;
561 				}
562 		}
563 		new->unit = dev;
564 		new->md_minor = MINOR(dev);
565 		new->hold_active = UNTIL_STOP;
566 		list_add(&new->all_mddevs, &all_mddevs);
567 		spin_unlock(&all_mddevs_lock);
568 		return new;
569 	}
570 	spin_unlock(&all_mddevs_lock);
571 
572 	new = kzalloc(sizeof(*new), GFP_KERNEL);
573 	if (!new)
574 		return NULL;
575 
576 	new->unit = unit;
577 	if (MAJOR(unit) == MD_MAJOR)
578 		new->md_minor = MINOR(unit);
579 	else
580 		new->md_minor = MINOR(unit) >> MdpMinorShift;
581 
582 	mddev_init(new);
583 
584 	goto retry;
585 }
586 
587 static struct attribute_group md_redundancy_group;
588 
589 void mddev_unlock(struct mddev *mddev)
590 {
591 	if (mddev->to_remove) {
592 		/* These cannot be removed under reconfig_mutex as
593 		 * an access to the files will try to take reconfig_mutex
594 		 * while holding the file unremovable, which leads to
595 		 * a deadlock.
596 		 * So hold set sysfs_active while the remove in happeing,
597 		 * and anything else which might set ->to_remove or my
598 		 * otherwise change the sysfs namespace will fail with
599 		 * -EBUSY if sysfs_active is still set.
600 		 * We set sysfs_active under reconfig_mutex and elsewhere
601 		 * test it under the same mutex to ensure its correct value
602 		 * is seen.
603 		 */
604 		struct attribute_group *to_remove = mddev->to_remove;
605 		mddev->to_remove = NULL;
606 		mddev->sysfs_active = 1;
607 		mutex_unlock(&mddev->reconfig_mutex);
608 
609 		if (mddev->kobj.sd) {
610 			if (to_remove != &md_redundancy_group)
611 				sysfs_remove_group(&mddev->kobj, to_remove);
612 			if (mddev->pers == NULL ||
613 			    mddev->pers->sync_request == NULL) {
614 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
615 				if (mddev->sysfs_action)
616 					sysfs_put(mddev->sysfs_action);
617 				mddev->sysfs_action = NULL;
618 			}
619 		}
620 		mddev->sysfs_active = 0;
621 	} else
622 		mutex_unlock(&mddev->reconfig_mutex);
623 
624 	/* As we've dropped the mutex we need a spinlock to
625 	 * make sure the thread doesn't disappear
626 	 */
627 	spin_lock(&pers_lock);
628 	md_wakeup_thread(mddev->thread);
629 	spin_unlock(&pers_lock);
630 }
631 EXPORT_SYMBOL_GPL(mddev_unlock);
632 
633 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
634 {
635 	struct md_rdev *rdev;
636 
637 	rdev_for_each_rcu(rdev, mddev)
638 		if (rdev->desc_nr == nr)
639 			return rdev;
640 
641 	return NULL;
642 }
643 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
644 
645 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
646 {
647 	struct md_rdev *rdev;
648 
649 	rdev_for_each(rdev, mddev)
650 		if (rdev->bdev->bd_dev == dev)
651 			return rdev;
652 
653 	return NULL;
654 }
655 
656 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
657 {
658 	struct md_rdev *rdev;
659 
660 	rdev_for_each_rcu(rdev, mddev)
661 		if (rdev->bdev->bd_dev == dev)
662 			return rdev;
663 
664 	return NULL;
665 }
666 
667 static struct md_personality *find_pers(int level, char *clevel)
668 {
669 	struct md_personality *pers;
670 	list_for_each_entry(pers, &pers_list, list) {
671 		if (level != LEVEL_NONE && pers->level == level)
672 			return pers;
673 		if (strcmp(pers->name, clevel)==0)
674 			return pers;
675 	}
676 	return NULL;
677 }
678 
679 /* return the offset of the super block in 512byte sectors */
680 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
681 {
682 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
683 	return MD_NEW_SIZE_SECTORS(num_sectors);
684 }
685 
686 static int alloc_disk_sb(struct md_rdev *rdev)
687 {
688 	rdev->sb_page = alloc_page(GFP_KERNEL);
689 	if (!rdev->sb_page) {
690 		printk(KERN_ALERT "md: out of memory.\n");
691 		return -ENOMEM;
692 	}
693 
694 	return 0;
695 }
696 
697 void md_rdev_clear(struct md_rdev *rdev)
698 {
699 	if (rdev->sb_page) {
700 		put_page(rdev->sb_page);
701 		rdev->sb_loaded = 0;
702 		rdev->sb_page = NULL;
703 		rdev->sb_start = 0;
704 		rdev->sectors = 0;
705 	}
706 	if (rdev->bb_page) {
707 		put_page(rdev->bb_page);
708 		rdev->bb_page = NULL;
709 	}
710 	kfree(rdev->badblocks.page);
711 	rdev->badblocks.page = NULL;
712 }
713 EXPORT_SYMBOL_GPL(md_rdev_clear);
714 
715 static void super_written(struct bio *bio)
716 {
717 	struct md_rdev *rdev = bio->bi_private;
718 	struct mddev *mddev = rdev->mddev;
719 
720 	if (bio->bi_error) {
721 		printk("md: super_written gets error=%d\n", bio->bi_error);
722 		md_error(mddev, rdev);
723 	}
724 
725 	if (atomic_dec_and_test(&mddev->pending_writes))
726 		wake_up(&mddev->sb_wait);
727 	bio_put(bio);
728 }
729 
730 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
731 		   sector_t sector, int size, struct page *page)
732 {
733 	/* write first size bytes of page to sector of rdev
734 	 * Increment mddev->pending_writes before returning
735 	 * and decrement it on completion, waking up sb_wait
736 	 * if zero is reached.
737 	 * If an error occurred, call md_error
738 	 */
739 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
740 
741 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
742 	bio->bi_iter.bi_sector = sector;
743 	bio_add_page(bio, page, size, 0);
744 	bio->bi_private = rdev;
745 	bio->bi_end_io = super_written;
746 
747 	atomic_inc(&mddev->pending_writes);
748 	submit_bio(WRITE_FLUSH_FUA, bio);
749 }
750 
751 void md_super_wait(struct mddev *mddev)
752 {
753 	/* wait for all superblock writes that were scheduled to complete */
754 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
755 }
756 
757 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
758 		 struct page *page, int rw, bool metadata_op)
759 {
760 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
761 	int ret;
762 
763 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
764 		rdev->meta_bdev : rdev->bdev;
765 	if (metadata_op)
766 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
767 	else if (rdev->mddev->reshape_position != MaxSector &&
768 		 (rdev->mddev->reshape_backwards ==
769 		  (sector >= rdev->mddev->reshape_position)))
770 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
771 	else
772 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
773 	bio_add_page(bio, page, size, 0);
774 	submit_bio_wait(rw, bio);
775 
776 	ret = !bio->bi_error;
777 	bio_put(bio);
778 	return ret;
779 }
780 EXPORT_SYMBOL_GPL(sync_page_io);
781 
782 static int read_disk_sb(struct md_rdev *rdev, int size)
783 {
784 	char b[BDEVNAME_SIZE];
785 
786 	if (rdev->sb_loaded)
787 		return 0;
788 
789 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
790 		goto fail;
791 	rdev->sb_loaded = 1;
792 	return 0;
793 
794 fail:
795 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
796 		bdevname(rdev->bdev,b));
797 	return -EINVAL;
798 }
799 
800 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
801 {
802 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
803 		sb1->set_uuid1 == sb2->set_uuid1 &&
804 		sb1->set_uuid2 == sb2->set_uuid2 &&
805 		sb1->set_uuid3 == sb2->set_uuid3;
806 }
807 
808 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
809 {
810 	int ret;
811 	mdp_super_t *tmp1, *tmp2;
812 
813 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
814 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
815 
816 	if (!tmp1 || !tmp2) {
817 		ret = 0;
818 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
819 		goto abort;
820 	}
821 
822 	*tmp1 = *sb1;
823 	*tmp2 = *sb2;
824 
825 	/*
826 	 * nr_disks is not constant
827 	 */
828 	tmp1->nr_disks = 0;
829 	tmp2->nr_disks = 0;
830 
831 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
832 abort:
833 	kfree(tmp1);
834 	kfree(tmp2);
835 	return ret;
836 }
837 
838 static u32 md_csum_fold(u32 csum)
839 {
840 	csum = (csum & 0xffff) + (csum >> 16);
841 	return (csum & 0xffff) + (csum >> 16);
842 }
843 
844 static unsigned int calc_sb_csum(mdp_super_t *sb)
845 {
846 	u64 newcsum = 0;
847 	u32 *sb32 = (u32*)sb;
848 	int i;
849 	unsigned int disk_csum, csum;
850 
851 	disk_csum = sb->sb_csum;
852 	sb->sb_csum = 0;
853 
854 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
855 		newcsum += sb32[i];
856 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
857 
858 #ifdef CONFIG_ALPHA
859 	/* This used to use csum_partial, which was wrong for several
860 	 * reasons including that different results are returned on
861 	 * different architectures.  It isn't critical that we get exactly
862 	 * the same return value as before (we always csum_fold before
863 	 * testing, and that removes any differences).  However as we
864 	 * know that csum_partial always returned a 16bit value on
865 	 * alphas, do a fold to maximise conformity to previous behaviour.
866 	 */
867 	sb->sb_csum = md_csum_fold(disk_csum);
868 #else
869 	sb->sb_csum = disk_csum;
870 #endif
871 	return csum;
872 }
873 
874 /*
875  * Handle superblock details.
876  * We want to be able to handle multiple superblock formats
877  * so we have a common interface to them all, and an array of
878  * different handlers.
879  * We rely on user-space to write the initial superblock, and support
880  * reading and updating of superblocks.
881  * Interface methods are:
882  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
883  *      loads and validates a superblock on dev.
884  *      if refdev != NULL, compare superblocks on both devices
885  *    Return:
886  *      0 - dev has a superblock that is compatible with refdev
887  *      1 - dev has a superblock that is compatible and newer than refdev
888  *          so dev should be used as the refdev in future
889  *     -EINVAL superblock incompatible or invalid
890  *     -othererror e.g. -EIO
891  *
892  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
893  *      Verify that dev is acceptable into mddev.
894  *       The first time, mddev->raid_disks will be 0, and data from
895  *       dev should be merged in.  Subsequent calls check that dev
896  *       is new enough.  Return 0 or -EINVAL
897  *
898  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
899  *     Update the superblock for rdev with data in mddev
900  *     This does not write to disc.
901  *
902  */
903 
904 struct super_type  {
905 	char		    *name;
906 	struct module	    *owner;
907 	int		    (*load_super)(struct md_rdev *rdev,
908 					  struct md_rdev *refdev,
909 					  int minor_version);
910 	int		    (*validate_super)(struct mddev *mddev,
911 					      struct md_rdev *rdev);
912 	void		    (*sync_super)(struct mddev *mddev,
913 					  struct md_rdev *rdev);
914 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
915 						sector_t num_sectors);
916 	int		    (*allow_new_offset)(struct md_rdev *rdev,
917 						unsigned long long new_offset);
918 };
919 
920 /*
921  * Check that the given mddev has no bitmap.
922  *
923  * This function is called from the run method of all personalities that do not
924  * support bitmaps. It prints an error message and returns non-zero if mddev
925  * has a bitmap. Otherwise, it returns 0.
926  *
927  */
928 int md_check_no_bitmap(struct mddev *mddev)
929 {
930 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
931 		return 0;
932 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
933 		mdname(mddev), mddev->pers->name);
934 	return 1;
935 }
936 EXPORT_SYMBOL(md_check_no_bitmap);
937 
938 /*
939  * load_super for 0.90.0
940  */
941 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
942 {
943 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
944 	mdp_super_t *sb;
945 	int ret;
946 
947 	/*
948 	 * Calculate the position of the superblock (512byte sectors),
949 	 * it's at the end of the disk.
950 	 *
951 	 * It also happens to be a multiple of 4Kb.
952 	 */
953 	rdev->sb_start = calc_dev_sboffset(rdev);
954 
955 	ret = read_disk_sb(rdev, MD_SB_BYTES);
956 	if (ret) return ret;
957 
958 	ret = -EINVAL;
959 
960 	bdevname(rdev->bdev, b);
961 	sb = page_address(rdev->sb_page);
962 
963 	if (sb->md_magic != MD_SB_MAGIC) {
964 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
965 		       b);
966 		goto abort;
967 	}
968 
969 	if (sb->major_version != 0 ||
970 	    sb->minor_version < 90 ||
971 	    sb->minor_version > 91) {
972 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
973 			sb->major_version, sb->minor_version,
974 			b);
975 		goto abort;
976 	}
977 
978 	if (sb->raid_disks <= 0)
979 		goto abort;
980 
981 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
982 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
983 			b);
984 		goto abort;
985 	}
986 
987 	rdev->preferred_minor = sb->md_minor;
988 	rdev->data_offset = 0;
989 	rdev->new_data_offset = 0;
990 	rdev->sb_size = MD_SB_BYTES;
991 	rdev->badblocks.shift = -1;
992 
993 	if (sb->level == LEVEL_MULTIPATH)
994 		rdev->desc_nr = -1;
995 	else
996 		rdev->desc_nr = sb->this_disk.number;
997 
998 	if (!refdev) {
999 		ret = 1;
1000 	} else {
1001 		__u64 ev1, ev2;
1002 		mdp_super_t *refsb = page_address(refdev->sb_page);
1003 		if (!uuid_equal(refsb, sb)) {
1004 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1005 				b, bdevname(refdev->bdev,b2));
1006 			goto abort;
1007 		}
1008 		if (!sb_equal(refsb, sb)) {
1009 			printk(KERN_WARNING "md: %s has same UUID"
1010 			       " but different superblock to %s\n",
1011 			       b, bdevname(refdev->bdev, b2));
1012 			goto abort;
1013 		}
1014 		ev1 = md_event(sb);
1015 		ev2 = md_event(refsb);
1016 		if (ev1 > ev2)
1017 			ret = 1;
1018 		else
1019 			ret = 0;
1020 	}
1021 	rdev->sectors = rdev->sb_start;
1022 	/* Limit to 4TB as metadata cannot record more than that.
1023 	 * (not needed for Linear and RAID0 as metadata doesn't
1024 	 * record this size)
1025 	 */
1026 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1027 		rdev->sectors = (2ULL << 32) - 2;
1028 
1029 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1030 		/* "this cannot possibly happen" ... */
1031 		ret = -EINVAL;
1032 
1033  abort:
1034 	return ret;
1035 }
1036 
1037 /*
1038  * validate_super for 0.90.0
1039  */
1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1041 {
1042 	mdp_disk_t *desc;
1043 	mdp_super_t *sb = page_address(rdev->sb_page);
1044 	__u64 ev1 = md_event(sb);
1045 
1046 	rdev->raid_disk = -1;
1047 	clear_bit(Faulty, &rdev->flags);
1048 	clear_bit(In_sync, &rdev->flags);
1049 	clear_bit(Bitmap_sync, &rdev->flags);
1050 	clear_bit(WriteMostly, &rdev->flags);
1051 
1052 	if (mddev->raid_disks == 0) {
1053 		mddev->major_version = 0;
1054 		mddev->minor_version = sb->minor_version;
1055 		mddev->patch_version = sb->patch_version;
1056 		mddev->external = 0;
1057 		mddev->chunk_sectors = sb->chunk_size >> 9;
1058 		mddev->ctime = sb->ctime;
1059 		mddev->utime = sb->utime;
1060 		mddev->level = sb->level;
1061 		mddev->clevel[0] = 0;
1062 		mddev->layout = sb->layout;
1063 		mddev->raid_disks = sb->raid_disks;
1064 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1065 		mddev->events = ev1;
1066 		mddev->bitmap_info.offset = 0;
1067 		mddev->bitmap_info.space = 0;
1068 		/* bitmap can use 60 K after the 4K superblocks */
1069 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1070 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1071 		mddev->reshape_backwards = 0;
1072 
1073 		if (mddev->minor_version >= 91) {
1074 			mddev->reshape_position = sb->reshape_position;
1075 			mddev->delta_disks = sb->delta_disks;
1076 			mddev->new_level = sb->new_level;
1077 			mddev->new_layout = sb->new_layout;
1078 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1079 			if (mddev->delta_disks < 0)
1080 				mddev->reshape_backwards = 1;
1081 		} else {
1082 			mddev->reshape_position = MaxSector;
1083 			mddev->delta_disks = 0;
1084 			mddev->new_level = mddev->level;
1085 			mddev->new_layout = mddev->layout;
1086 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1087 		}
1088 
1089 		if (sb->state & (1<<MD_SB_CLEAN))
1090 			mddev->recovery_cp = MaxSector;
1091 		else {
1092 			if (sb->events_hi == sb->cp_events_hi &&
1093 				sb->events_lo == sb->cp_events_lo) {
1094 				mddev->recovery_cp = sb->recovery_cp;
1095 			} else
1096 				mddev->recovery_cp = 0;
1097 		}
1098 
1099 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1100 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1101 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1102 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1103 
1104 		mddev->max_disks = MD_SB_DISKS;
1105 
1106 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1107 		    mddev->bitmap_info.file == NULL) {
1108 			mddev->bitmap_info.offset =
1109 				mddev->bitmap_info.default_offset;
1110 			mddev->bitmap_info.space =
1111 				mddev->bitmap_info.default_space;
1112 		}
1113 
1114 	} else if (mddev->pers == NULL) {
1115 		/* Insist on good event counter while assembling, except
1116 		 * for spares (which don't need an event count) */
1117 		++ev1;
1118 		if (sb->disks[rdev->desc_nr].state & (
1119 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1120 			if (ev1 < mddev->events)
1121 				return -EINVAL;
1122 	} else if (mddev->bitmap) {
1123 		/* if adding to array with a bitmap, then we can accept an
1124 		 * older device ... but not too old.
1125 		 */
1126 		if (ev1 < mddev->bitmap->events_cleared)
1127 			return 0;
1128 		if (ev1 < mddev->events)
1129 			set_bit(Bitmap_sync, &rdev->flags);
1130 	} else {
1131 		if (ev1 < mddev->events)
1132 			/* just a hot-add of a new device, leave raid_disk at -1 */
1133 			return 0;
1134 	}
1135 
1136 	if (mddev->level != LEVEL_MULTIPATH) {
1137 		desc = sb->disks + rdev->desc_nr;
1138 
1139 		if (desc->state & (1<<MD_DISK_FAULTY))
1140 			set_bit(Faulty, &rdev->flags);
1141 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1142 			    desc->raid_disk < mddev->raid_disks */) {
1143 			set_bit(In_sync, &rdev->flags);
1144 			rdev->raid_disk = desc->raid_disk;
1145 			rdev->saved_raid_disk = desc->raid_disk;
1146 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1147 			/* active but not in sync implies recovery up to
1148 			 * reshape position.  We don't know exactly where
1149 			 * that is, so set to zero for now */
1150 			if (mddev->minor_version >= 91) {
1151 				rdev->recovery_offset = 0;
1152 				rdev->raid_disk = desc->raid_disk;
1153 			}
1154 		}
1155 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1156 			set_bit(WriteMostly, &rdev->flags);
1157 	} else /* MULTIPATH are always insync */
1158 		set_bit(In_sync, &rdev->flags);
1159 	return 0;
1160 }
1161 
1162 /*
1163  * sync_super for 0.90.0
1164  */
1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1166 {
1167 	mdp_super_t *sb;
1168 	struct md_rdev *rdev2;
1169 	int next_spare = mddev->raid_disks;
1170 
1171 	/* make rdev->sb match mddev data..
1172 	 *
1173 	 * 1/ zero out disks
1174 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1175 	 * 3/ any empty disks < next_spare become removed
1176 	 *
1177 	 * disks[0] gets initialised to REMOVED because
1178 	 * we cannot be sure from other fields if it has
1179 	 * been initialised or not.
1180 	 */
1181 	int i;
1182 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1183 
1184 	rdev->sb_size = MD_SB_BYTES;
1185 
1186 	sb = page_address(rdev->sb_page);
1187 
1188 	memset(sb, 0, sizeof(*sb));
1189 
1190 	sb->md_magic = MD_SB_MAGIC;
1191 	sb->major_version = mddev->major_version;
1192 	sb->patch_version = mddev->patch_version;
1193 	sb->gvalid_words  = 0; /* ignored */
1194 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1195 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1196 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1197 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1198 
1199 	sb->ctime = mddev->ctime;
1200 	sb->level = mddev->level;
1201 	sb->size = mddev->dev_sectors / 2;
1202 	sb->raid_disks = mddev->raid_disks;
1203 	sb->md_minor = mddev->md_minor;
1204 	sb->not_persistent = 0;
1205 	sb->utime = mddev->utime;
1206 	sb->state = 0;
1207 	sb->events_hi = (mddev->events>>32);
1208 	sb->events_lo = (u32)mddev->events;
1209 
1210 	if (mddev->reshape_position == MaxSector)
1211 		sb->minor_version = 90;
1212 	else {
1213 		sb->minor_version = 91;
1214 		sb->reshape_position = mddev->reshape_position;
1215 		sb->new_level = mddev->new_level;
1216 		sb->delta_disks = mddev->delta_disks;
1217 		sb->new_layout = mddev->new_layout;
1218 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1219 	}
1220 	mddev->minor_version = sb->minor_version;
1221 	if (mddev->in_sync)
1222 	{
1223 		sb->recovery_cp = mddev->recovery_cp;
1224 		sb->cp_events_hi = (mddev->events>>32);
1225 		sb->cp_events_lo = (u32)mddev->events;
1226 		if (mddev->recovery_cp == MaxSector)
1227 			sb->state = (1<< MD_SB_CLEAN);
1228 	} else
1229 		sb->recovery_cp = 0;
1230 
1231 	sb->layout = mddev->layout;
1232 	sb->chunk_size = mddev->chunk_sectors << 9;
1233 
1234 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1235 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1236 
1237 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1238 	rdev_for_each(rdev2, mddev) {
1239 		mdp_disk_t *d;
1240 		int desc_nr;
1241 		int is_active = test_bit(In_sync, &rdev2->flags);
1242 
1243 		if (rdev2->raid_disk >= 0 &&
1244 		    sb->minor_version >= 91)
1245 			/* we have nowhere to store the recovery_offset,
1246 			 * but if it is not below the reshape_position,
1247 			 * we can piggy-back on that.
1248 			 */
1249 			is_active = 1;
1250 		if (rdev2->raid_disk < 0 ||
1251 		    test_bit(Faulty, &rdev2->flags))
1252 			is_active = 0;
1253 		if (is_active)
1254 			desc_nr = rdev2->raid_disk;
1255 		else
1256 			desc_nr = next_spare++;
1257 		rdev2->desc_nr = desc_nr;
1258 		d = &sb->disks[rdev2->desc_nr];
1259 		nr_disks++;
1260 		d->number = rdev2->desc_nr;
1261 		d->major = MAJOR(rdev2->bdev->bd_dev);
1262 		d->minor = MINOR(rdev2->bdev->bd_dev);
1263 		if (is_active)
1264 			d->raid_disk = rdev2->raid_disk;
1265 		else
1266 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1267 		if (test_bit(Faulty, &rdev2->flags))
1268 			d->state = (1<<MD_DISK_FAULTY);
1269 		else if (is_active) {
1270 			d->state = (1<<MD_DISK_ACTIVE);
1271 			if (test_bit(In_sync, &rdev2->flags))
1272 				d->state |= (1<<MD_DISK_SYNC);
1273 			active++;
1274 			working++;
1275 		} else {
1276 			d->state = 0;
1277 			spare++;
1278 			working++;
1279 		}
1280 		if (test_bit(WriteMostly, &rdev2->flags))
1281 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1282 	}
1283 	/* now set the "removed" and "faulty" bits on any missing devices */
1284 	for (i=0 ; i < mddev->raid_disks ; i++) {
1285 		mdp_disk_t *d = &sb->disks[i];
1286 		if (d->state == 0 && d->number == 0) {
1287 			d->number = i;
1288 			d->raid_disk = i;
1289 			d->state = (1<<MD_DISK_REMOVED);
1290 			d->state |= (1<<MD_DISK_FAULTY);
1291 			failed++;
1292 		}
1293 	}
1294 	sb->nr_disks = nr_disks;
1295 	sb->active_disks = active;
1296 	sb->working_disks = working;
1297 	sb->failed_disks = failed;
1298 	sb->spare_disks = spare;
1299 
1300 	sb->this_disk = sb->disks[rdev->desc_nr];
1301 	sb->sb_csum = calc_sb_csum(sb);
1302 }
1303 
1304 /*
1305  * rdev_size_change for 0.90.0
1306  */
1307 static unsigned long long
1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1309 {
1310 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1311 		return 0; /* component must fit device */
1312 	if (rdev->mddev->bitmap_info.offset)
1313 		return 0; /* can't move bitmap */
1314 	rdev->sb_start = calc_dev_sboffset(rdev);
1315 	if (!num_sectors || num_sectors > rdev->sb_start)
1316 		num_sectors = rdev->sb_start;
1317 	/* Limit to 4TB as metadata cannot record more than that.
1318 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1319 	 */
1320 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1321 		num_sectors = (2ULL << 32) - 2;
1322 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1323 		       rdev->sb_page);
1324 	md_super_wait(rdev->mddev);
1325 	return num_sectors;
1326 }
1327 
1328 static int
1329 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1330 {
1331 	/* non-zero offset changes not possible with v0.90 */
1332 	return new_offset == 0;
1333 }
1334 
1335 /*
1336  * version 1 superblock
1337  */
1338 
1339 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1340 {
1341 	__le32 disk_csum;
1342 	u32 csum;
1343 	unsigned long long newcsum;
1344 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1345 	__le32 *isuper = (__le32*)sb;
1346 
1347 	disk_csum = sb->sb_csum;
1348 	sb->sb_csum = 0;
1349 	newcsum = 0;
1350 	for (; size >= 4; size -= 4)
1351 		newcsum += le32_to_cpu(*isuper++);
1352 
1353 	if (size == 2)
1354 		newcsum += le16_to_cpu(*(__le16*) isuper);
1355 
1356 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1357 	sb->sb_csum = disk_csum;
1358 	return cpu_to_le32(csum);
1359 }
1360 
1361 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1362 			    int acknowledged);
1363 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1364 {
1365 	struct mdp_superblock_1 *sb;
1366 	int ret;
1367 	sector_t sb_start;
1368 	sector_t sectors;
1369 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1370 	int bmask;
1371 
1372 	/*
1373 	 * Calculate the position of the superblock in 512byte sectors.
1374 	 * It is always aligned to a 4K boundary and
1375 	 * depeding on minor_version, it can be:
1376 	 * 0: At least 8K, but less than 12K, from end of device
1377 	 * 1: At start of device
1378 	 * 2: 4K from start of device.
1379 	 */
1380 	switch(minor_version) {
1381 	case 0:
1382 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1383 		sb_start -= 8*2;
1384 		sb_start &= ~(sector_t)(4*2-1);
1385 		break;
1386 	case 1:
1387 		sb_start = 0;
1388 		break;
1389 	case 2:
1390 		sb_start = 8;
1391 		break;
1392 	default:
1393 		return -EINVAL;
1394 	}
1395 	rdev->sb_start = sb_start;
1396 
1397 	/* superblock is rarely larger than 1K, but it can be larger,
1398 	 * and it is safe to read 4k, so we do that
1399 	 */
1400 	ret = read_disk_sb(rdev, 4096);
1401 	if (ret) return ret;
1402 
1403 	sb = page_address(rdev->sb_page);
1404 
1405 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1406 	    sb->major_version != cpu_to_le32(1) ||
1407 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1408 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1409 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1410 		return -EINVAL;
1411 
1412 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1413 		printk("md: invalid superblock checksum on %s\n",
1414 			bdevname(rdev->bdev,b));
1415 		return -EINVAL;
1416 	}
1417 	if (le64_to_cpu(sb->data_size) < 10) {
1418 		printk("md: data_size too small on %s\n",
1419 		       bdevname(rdev->bdev,b));
1420 		return -EINVAL;
1421 	}
1422 	if (sb->pad0 ||
1423 	    sb->pad3[0] ||
1424 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1425 		/* Some padding is non-zero, might be a new feature */
1426 		return -EINVAL;
1427 
1428 	rdev->preferred_minor = 0xffff;
1429 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1430 	rdev->new_data_offset = rdev->data_offset;
1431 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1432 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1433 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1434 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1435 
1436 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1437 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1438 	if (rdev->sb_size & bmask)
1439 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1440 
1441 	if (minor_version
1442 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1443 		return -EINVAL;
1444 	if (minor_version
1445 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1446 		return -EINVAL;
1447 
1448 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1449 		rdev->desc_nr = -1;
1450 	else
1451 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1452 
1453 	if (!rdev->bb_page) {
1454 		rdev->bb_page = alloc_page(GFP_KERNEL);
1455 		if (!rdev->bb_page)
1456 			return -ENOMEM;
1457 	}
1458 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1459 	    rdev->badblocks.count == 0) {
1460 		/* need to load the bad block list.
1461 		 * Currently we limit it to one page.
1462 		 */
1463 		s32 offset;
1464 		sector_t bb_sector;
1465 		u64 *bbp;
1466 		int i;
1467 		int sectors = le16_to_cpu(sb->bblog_size);
1468 		if (sectors > (PAGE_SIZE / 512))
1469 			return -EINVAL;
1470 		offset = le32_to_cpu(sb->bblog_offset);
1471 		if (offset == 0)
1472 			return -EINVAL;
1473 		bb_sector = (long long)offset;
1474 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1475 				  rdev->bb_page, READ, true))
1476 			return -EIO;
1477 		bbp = (u64 *)page_address(rdev->bb_page);
1478 		rdev->badblocks.shift = sb->bblog_shift;
1479 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1480 			u64 bb = le64_to_cpu(*bbp);
1481 			int count = bb & (0x3ff);
1482 			u64 sector = bb >> 10;
1483 			sector <<= sb->bblog_shift;
1484 			count <<= sb->bblog_shift;
1485 			if (bb + 1 == 0)
1486 				break;
1487 			if (md_set_badblocks(&rdev->badblocks,
1488 					     sector, count, 1) == 0)
1489 				return -EINVAL;
1490 		}
1491 	} else if (sb->bblog_offset != 0)
1492 		rdev->badblocks.shift = 0;
1493 
1494 	if (!refdev) {
1495 		ret = 1;
1496 	} else {
1497 		__u64 ev1, ev2;
1498 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1499 
1500 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1501 		    sb->level != refsb->level ||
1502 		    sb->layout != refsb->layout ||
1503 		    sb->chunksize != refsb->chunksize) {
1504 			printk(KERN_WARNING "md: %s has strangely different"
1505 				" superblock to %s\n",
1506 				bdevname(rdev->bdev,b),
1507 				bdevname(refdev->bdev,b2));
1508 			return -EINVAL;
1509 		}
1510 		ev1 = le64_to_cpu(sb->events);
1511 		ev2 = le64_to_cpu(refsb->events);
1512 
1513 		if (ev1 > ev2)
1514 			ret = 1;
1515 		else
1516 			ret = 0;
1517 	}
1518 	if (minor_version) {
1519 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1520 		sectors -= rdev->data_offset;
1521 	} else
1522 		sectors = rdev->sb_start;
1523 	if (sectors < le64_to_cpu(sb->data_size))
1524 		return -EINVAL;
1525 	rdev->sectors = le64_to_cpu(sb->data_size);
1526 	return ret;
1527 }
1528 
1529 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1530 {
1531 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1532 	__u64 ev1 = le64_to_cpu(sb->events);
1533 
1534 	rdev->raid_disk = -1;
1535 	clear_bit(Faulty, &rdev->flags);
1536 	clear_bit(In_sync, &rdev->flags);
1537 	clear_bit(Bitmap_sync, &rdev->flags);
1538 	clear_bit(WriteMostly, &rdev->flags);
1539 
1540 	if (mddev->raid_disks == 0) {
1541 		mddev->major_version = 1;
1542 		mddev->patch_version = 0;
1543 		mddev->external = 0;
1544 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1545 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1546 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1547 		mddev->level = le32_to_cpu(sb->level);
1548 		mddev->clevel[0] = 0;
1549 		mddev->layout = le32_to_cpu(sb->layout);
1550 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1551 		mddev->dev_sectors = le64_to_cpu(sb->size);
1552 		mddev->events = ev1;
1553 		mddev->bitmap_info.offset = 0;
1554 		mddev->bitmap_info.space = 0;
1555 		/* Default location for bitmap is 1K after superblock
1556 		 * using 3K - total of 4K
1557 		 */
1558 		mddev->bitmap_info.default_offset = 1024 >> 9;
1559 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1560 		mddev->reshape_backwards = 0;
1561 
1562 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1563 		memcpy(mddev->uuid, sb->set_uuid, 16);
1564 
1565 		mddev->max_disks =  (4096-256)/2;
1566 
1567 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1568 		    mddev->bitmap_info.file == NULL) {
1569 			mddev->bitmap_info.offset =
1570 				(__s32)le32_to_cpu(sb->bitmap_offset);
1571 			/* Metadata doesn't record how much space is available.
1572 			 * For 1.0, we assume we can use up to the superblock
1573 			 * if before, else to 4K beyond superblock.
1574 			 * For others, assume no change is possible.
1575 			 */
1576 			if (mddev->minor_version > 0)
1577 				mddev->bitmap_info.space = 0;
1578 			else if (mddev->bitmap_info.offset > 0)
1579 				mddev->bitmap_info.space =
1580 					8 - mddev->bitmap_info.offset;
1581 			else
1582 				mddev->bitmap_info.space =
1583 					-mddev->bitmap_info.offset;
1584 		}
1585 
1586 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1587 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1588 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1589 			mddev->new_level = le32_to_cpu(sb->new_level);
1590 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1591 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1592 			if (mddev->delta_disks < 0 ||
1593 			    (mddev->delta_disks == 0 &&
1594 			     (le32_to_cpu(sb->feature_map)
1595 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1596 				mddev->reshape_backwards = 1;
1597 		} else {
1598 			mddev->reshape_position = MaxSector;
1599 			mddev->delta_disks = 0;
1600 			mddev->new_level = mddev->level;
1601 			mddev->new_layout = mddev->layout;
1602 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1603 		}
1604 
1605 	} else if (mddev->pers == NULL) {
1606 		/* Insist of good event counter while assembling, except for
1607 		 * spares (which don't need an event count) */
1608 		++ev1;
1609 		if (rdev->desc_nr >= 0 &&
1610 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1611 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1612 			if (ev1 < mddev->events)
1613 				return -EINVAL;
1614 	} else if (mddev->bitmap) {
1615 		/* If adding to array with a bitmap, then we can accept an
1616 		 * older device, but not too old.
1617 		 */
1618 		if (ev1 < mddev->bitmap->events_cleared)
1619 			return 0;
1620 		if (ev1 < mddev->events)
1621 			set_bit(Bitmap_sync, &rdev->flags);
1622 	} else {
1623 		if (ev1 < mddev->events)
1624 			/* just a hot-add of a new device, leave raid_disk at -1 */
1625 			return 0;
1626 	}
1627 	if (mddev->level != LEVEL_MULTIPATH) {
1628 		int role;
1629 		if (rdev->desc_nr < 0 ||
1630 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1631 			role = 0xffff;
1632 			rdev->desc_nr = -1;
1633 		} else
1634 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1635 		switch(role) {
1636 		case 0xffff: /* spare */
1637 			break;
1638 		case 0xfffe: /* faulty */
1639 			set_bit(Faulty, &rdev->flags);
1640 			break;
1641 		default:
1642 			rdev->saved_raid_disk = role;
1643 			if ((le32_to_cpu(sb->feature_map) &
1644 			     MD_FEATURE_RECOVERY_OFFSET)) {
1645 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1646 				if (!(le32_to_cpu(sb->feature_map) &
1647 				      MD_FEATURE_RECOVERY_BITMAP))
1648 					rdev->saved_raid_disk = -1;
1649 			} else
1650 				set_bit(In_sync, &rdev->flags);
1651 			rdev->raid_disk = role;
1652 			break;
1653 		}
1654 		if (sb->devflags & WriteMostly1)
1655 			set_bit(WriteMostly, &rdev->flags);
1656 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1657 			set_bit(Replacement, &rdev->flags);
1658 	} else /* MULTIPATH are always insync */
1659 		set_bit(In_sync, &rdev->flags);
1660 
1661 	return 0;
1662 }
1663 
1664 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1665 {
1666 	struct mdp_superblock_1 *sb;
1667 	struct md_rdev *rdev2;
1668 	int max_dev, i;
1669 	/* make rdev->sb match mddev and rdev data. */
1670 
1671 	sb = page_address(rdev->sb_page);
1672 
1673 	sb->feature_map = 0;
1674 	sb->pad0 = 0;
1675 	sb->recovery_offset = cpu_to_le64(0);
1676 	memset(sb->pad3, 0, sizeof(sb->pad3));
1677 
1678 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1679 	sb->events = cpu_to_le64(mddev->events);
1680 	if (mddev->in_sync)
1681 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1682 	else
1683 		sb->resync_offset = cpu_to_le64(0);
1684 
1685 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1686 
1687 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1688 	sb->size = cpu_to_le64(mddev->dev_sectors);
1689 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1690 	sb->level = cpu_to_le32(mddev->level);
1691 	sb->layout = cpu_to_le32(mddev->layout);
1692 
1693 	if (test_bit(WriteMostly, &rdev->flags))
1694 		sb->devflags |= WriteMostly1;
1695 	else
1696 		sb->devflags &= ~WriteMostly1;
1697 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1698 	sb->data_size = cpu_to_le64(rdev->sectors);
1699 
1700 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1701 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1702 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1703 	}
1704 
1705 	if (rdev->raid_disk >= 0 &&
1706 	    !test_bit(In_sync, &rdev->flags)) {
1707 		sb->feature_map |=
1708 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1709 		sb->recovery_offset =
1710 			cpu_to_le64(rdev->recovery_offset);
1711 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1712 			sb->feature_map |=
1713 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1714 	}
1715 	if (test_bit(Replacement, &rdev->flags))
1716 		sb->feature_map |=
1717 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1718 
1719 	if (mddev->reshape_position != MaxSector) {
1720 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1721 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1722 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1723 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1724 		sb->new_level = cpu_to_le32(mddev->new_level);
1725 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1726 		if (mddev->delta_disks == 0 &&
1727 		    mddev->reshape_backwards)
1728 			sb->feature_map
1729 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1730 		if (rdev->new_data_offset != rdev->data_offset) {
1731 			sb->feature_map
1732 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1733 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1734 							     - rdev->data_offset));
1735 		}
1736 	}
1737 
1738 	if (rdev->badblocks.count == 0)
1739 		/* Nothing to do for bad blocks*/ ;
1740 	else if (sb->bblog_offset == 0)
1741 		/* Cannot record bad blocks on this device */
1742 		md_error(mddev, rdev);
1743 	else {
1744 		struct badblocks *bb = &rdev->badblocks;
1745 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1746 		u64 *p = bb->page;
1747 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1748 		if (bb->changed) {
1749 			unsigned seq;
1750 
1751 retry:
1752 			seq = read_seqbegin(&bb->lock);
1753 
1754 			memset(bbp, 0xff, PAGE_SIZE);
1755 
1756 			for (i = 0 ; i < bb->count ; i++) {
1757 				u64 internal_bb = p[i];
1758 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1759 						| BB_LEN(internal_bb));
1760 				bbp[i] = cpu_to_le64(store_bb);
1761 			}
1762 			bb->changed = 0;
1763 			if (read_seqretry(&bb->lock, seq))
1764 				goto retry;
1765 
1766 			bb->sector = (rdev->sb_start +
1767 				      (int)le32_to_cpu(sb->bblog_offset));
1768 			bb->size = le16_to_cpu(sb->bblog_size);
1769 		}
1770 	}
1771 
1772 	max_dev = 0;
1773 	rdev_for_each(rdev2, mddev)
1774 		if (rdev2->desc_nr+1 > max_dev)
1775 			max_dev = rdev2->desc_nr+1;
1776 
1777 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1778 		int bmask;
1779 		sb->max_dev = cpu_to_le32(max_dev);
1780 		rdev->sb_size = max_dev * 2 + 256;
1781 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1782 		if (rdev->sb_size & bmask)
1783 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1784 	} else
1785 		max_dev = le32_to_cpu(sb->max_dev);
1786 
1787 	for (i=0; i<max_dev;i++)
1788 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1789 
1790 	rdev_for_each(rdev2, mddev) {
1791 		i = rdev2->desc_nr;
1792 		if (test_bit(Faulty, &rdev2->flags))
1793 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1794 		else if (test_bit(In_sync, &rdev2->flags))
1795 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1796 		else if (rdev2->raid_disk >= 0)
1797 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1798 		else
1799 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1800 	}
1801 
1802 	sb->sb_csum = calc_sb_1_csum(sb);
1803 }
1804 
1805 static unsigned long long
1806 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1807 {
1808 	struct mdp_superblock_1 *sb;
1809 	sector_t max_sectors;
1810 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1811 		return 0; /* component must fit device */
1812 	if (rdev->data_offset != rdev->new_data_offset)
1813 		return 0; /* too confusing */
1814 	if (rdev->sb_start < rdev->data_offset) {
1815 		/* minor versions 1 and 2; superblock before data */
1816 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1817 		max_sectors -= rdev->data_offset;
1818 		if (!num_sectors || num_sectors > max_sectors)
1819 			num_sectors = max_sectors;
1820 	} else if (rdev->mddev->bitmap_info.offset) {
1821 		/* minor version 0 with bitmap we can't move */
1822 		return 0;
1823 	} else {
1824 		/* minor version 0; superblock after data */
1825 		sector_t sb_start;
1826 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1827 		sb_start &= ~(sector_t)(4*2 - 1);
1828 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1829 		if (!num_sectors || num_sectors > max_sectors)
1830 			num_sectors = max_sectors;
1831 		rdev->sb_start = sb_start;
1832 	}
1833 	sb = page_address(rdev->sb_page);
1834 	sb->data_size = cpu_to_le64(num_sectors);
1835 	sb->super_offset = rdev->sb_start;
1836 	sb->sb_csum = calc_sb_1_csum(sb);
1837 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1838 		       rdev->sb_page);
1839 	md_super_wait(rdev->mddev);
1840 	return num_sectors;
1841 
1842 }
1843 
1844 static int
1845 super_1_allow_new_offset(struct md_rdev *rdev,
1846 			 unsigned long long new_offset)
1847 {
1848 	/* All necessary checks on new >= old have been done */
1849 	struct bitmap *bitmap;
1850 	if (new_offset >= rdev->data_offset)
1851 		return 1;
1852 
1853 	/* with 1.0 metadata, there is no metadata to tread on
1854 	 * so we can always move back */
1855 	if (rdev->mddev->minor_version == 0)
1856 		return 1;
1857 
1858 	/* otherwise we must be sure not to step on
1859 	 * any metadata, so stay:
1860 	 * 36K beyond start of superblock
1861 	 * beyond end of badblocks
1862 	 * beyond write-intent bitmap
1863 	 */
1864 	if (rdev->sb_start + (32+4)*2 > new_offset)
1865 		return 0;
1866 	bitmap = rdev->mddev->bitmap;
1867 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1868 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1869 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1870 		return 0;
1871 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1872 		return 0;
1873 
1874 	return 1;
1875 }
1876 
1877 static struct super_type super_types[] = {
1878 	[0] = {
1879 		.name	= "0.90.0",
1880 		.owner	= THIS_MODULE,
1881 		.load_super	    = super_90_load,
1882 		.validate_super	    = super_90_validate,
1883 		.sync_super	    = super_90_sync,
1884 		.rdev_size_change   = super_90_rdev_size_change,
1885 		.allow_new_offset   = super_90_allow_new_offset,
1886 	},
1887 	[1] = {
1888 		.name	= "md-1",
1889 		.owner	= THIS_MODULE,
1890 		.load_super	    = super_1_load,
1891 		.validate_super	    = super_1_validate,
1892 		.sync_super	    = super_1_sync,
1893 		.rdev_size_change   = super_1_rdev_size_change,
1894 		.allow_new_offset   = super_1_allow_new_offset,
1895 	},
1896 };
1897 
1898 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1899 {
1900 	if (mddev->sync_super) {
1901 		mddev->sync_super(mddev, rdev);
1902 		return;
1903 	}
1904 
1905 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1906 
1907 	super_types[mddev->major_version].sync_super(mddev, rdev);
1908 }
1909 
1910 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1911 {
1912 	struct md_rdev *rdev, *rdev2;
1913 
1914 	rcu_read_lock();
1915 	rdev_for_each_rcu(rdev, mddev1)
1916 		rdev_for_each_rcu(rdev2, mddev2)
1917 			if (rdev->bdev->bd_contains ==
1918 			    rdev2->bdev->bd_contains) {
1919 				rcu_read_unlock();
1920 				return 1;
1921 			}
1922 	rcu_read_unlock();
1923 	return 0;
1924 }
1925 
1926 static LIST_HEAD(pending_raid_disks);
1927 
1928 /*
1929  * Try to register data integrity profile for an mddev
1930  *
1931  * This is called when an array is started and after a disk has been kicked
1932  * from the array. It only succeeds if all working and active component devices
1933  * are integrity capable with matching profiles.
1934  */
1935 int md_integrity_register(struct mddev *mddev)
1936 {
1937 	struct md_rdev *rdev, *reference = NULL;
1938 
1939 	if (list_empty(&mddev->disks))
1940 		return 0; /* nothing to do */
1941 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1942 		return 0; /* shouldn't register, or already is */
1943 	rdev_for_each(rdev, mddev) {
1944 		/* skip spares and non-functional disks */
1945 		if (test_bit(Faulty, &rdev->flags))
1946 			continue;
1947 		if (rdev->raid_disk < 0)
1948 			continue;
1949 		if (!reference) {
1950 			/* Use the first rdev as the reference */
1951 			reference = rdev;
1952 			continue;
1953 		}
1954 		/* does this rdev's profile match the reference profile? */
1955 		if (blk_integrity_compare(reference->bdev->bd_disk,
1956 				rdev->bdev->bd_disk) < 0)
1957 			return -EINVAL;
1958 	}
1959 	if (!reference || !bdev_get_integrity(reference->bdev))
1960 		return 0;
1961 	/*
1962 	 * All component devices are integrity capable and have matching
1963 	 * profiles, register the common profile for the md device.
1964 	 */
1965 	if (blk_integrity_register(mddev->gendisk,
1966 			bdev_get_integrity(reference->bdev)) != 0) {
1967 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1968 			mdname(mddev));
1969 		return -EINVAL;
1970 	}
1971 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1972 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1973 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1974 		       mdname(mddev));
1975 		return -EINVAL;
1976 	}
1977 	return 0;
1978 }
1979 EXPORT_SYMBOL(md_integrity_register);
1980 
1981 /* Disable data integrity if non-capable/non-matching disk is being added */
1982 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1983 {
1984 	struct blk_integrity *bi_rdev;
1985 	struct blk_integrity *bi_mddev;
1986 
1987 	if (!mddev->gendisk)
1988 		return;
1989 
1990 	bi_rdev = bdev_get_integrity(rdev->bdev);
1991 	bi_mddev = blk_get_integrity(mddev->gendisk);
1992 
1993 	if (!bi_mddev) /* nothing to do */
1994 		return;
1995 	if (rdev->raid_disk < 0) /* skip spares */
1996 		return;
1997 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1998 					     rdev->bdev->bd_disk) >= 0)
1999 		return;
2000 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2001 	blk_integrity_unregister(mddev->gendisk);
2002 }
2003 EXPORT_SYMBOL(md_integrity_add_rdev);
2004 
2005 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2006 {
2007 	char b[BDEVNAME_SIZE];
2008 	struct kobject *ko;
2009 	int err;
2010 
2011 	/* prevent duplicates */
2012 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2013 		return -EEXIST;
2014 
2015 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2016 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2017 			rdev->sectors < mddev->dev_sectors)) {
2018 		if (mddev->pers) {
2019 			/* Cannot change size, so fail
2020 			 * If mddev->level <= 0, then we don't care
2021 			 * about aligning sizes (e.g. linear)
2022 			 */
2023 			if (mddev->level > 0)
2024 				return -ENOSPC;
2025 		} else
2026 			mddev->dev_sectors = rdev->sectors;
2027 	}
2028 
2029 	/* Verify rdev->desc_nr is unique.
2030 	 * If it is -1, assign a free number, else
2031 	 * check number is not in use
2032 	 */
2033 	rcu_read_lock();
2034 	if (rdev->desc_nr < 0) {
2035 		int choice = 0;
2036 		if (mddev->pers)
2037 			choice = mddev->raid_disks;
2038 		while (md_find_rdev_nr_rcu(mddev, choice))
2039 			choice++;
2040 		rdev->desc_nr = choice;
2041 	} else {
2042 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2043 			rcu_read_unlock();
2044 			return -EBUSY;
2045 		}
2046 	}
2047 	rcu_read_unlock();
2048 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2049 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2050 		       mdname(mddev), mddev->max_disks);
2051 		return -EBUSY;
2052 	}
2053 	bdevname(rdev->bdev,b);
2054 	strreplace(b, '/', '!');
2055 
2056 	rdev->mddev = mddev;
2057 	printk(KERN_INFO "md: bind<%s>\n", b);
2058 
2059 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2060 		goto fail;
2061 
2062 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2063 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2064 		/* failure here is OK */;
2065 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2066 
2067 	list_add_rcu(&rdev->same_set, &mddev->disks);
2068 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2069 
2070 	/* May as well allow recovery to be retried once */
2071 	mddev->recovery_disabled++;
2072 
2073 	return 0;
2074 
2075  fail:
2076 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2077 	       b, mdname(mddev));
2078 	return err;
2079 }
2080 
2081 static void md_delayed_delete(struct work_struct *ws)
2082 {
2083 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2084 	kobject_del(&rdev->kobj);
2085 	kobject_put(&rdev->kobj);
2086 }
2087 
2088 static void unbind_rdev_from_array(struct md_rdev *rdev)
2089 {
2090 	char b[BDEVNAME_SIZE];
2091 
2092 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2093 	list_del_rcu(&rdev->same_set);
2094 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2095 	rdev->mddev = NULL;
2096 	sysfs_remove_link(&rdev->kobj, "block");
2097 	sysfs_put(rdev->sysfs_state);
2098 	rdev->sysfs_state = NULL;
2099 	rdev->badblocks.count = 0;
2100 	/* We need to delay this, otherwise we can deadlock when
2101 	 * writing to 'remove' to "dev/state".  We also need
2102 	 * to delay it due to rcu usage.
2103 	 */
2104 	synchronize_rcu();
2105 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2106 	kobject_get(&rdev->kobj);
2107 	queue_work(md_misc_wq, &rdev->del_work);
2108 }
2109 
2110 /*
2111  * prevent the device from being mounted, repartitioned or
2112  * otherwise reused by a RAID array (or any other kernel
2113  * subsystem), by bd_claiming the device.
2114  */
2115 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2116 {
2117 	int err = 0;
2118 	struct block_device *bdev;
2119 	char b[BDEVNAME_SIZE];
2120 
2121 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2122 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2123 	if (IS_ERR(bdev)) {
2124 		printk(KERN_ERR "md: could not open %s.\n",
2125 			__bdevname(dev, b));
2126 		return PTR_ERR(bdev);
2127 	}
2128 	rdev->bdev = bdev;
2129 	return err;
2130 }
2131 
2132 static void unlock_rdev(struct md_rdev *rdev)
2133 {
2134 	struct block_device *bdev = rdev->bdev;
2135 	rdev->bdev = NULL;
2136 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2137 }
2138 
2139 void md_autodetect_dev(dev_t dev);
2140 
2141 static void export_rdev(struct md_rdev *rdev)
2142 {
2143 	char b[BDEVNAME_SIZE];
2144 
2145 	printk(KERN_INFO "md: export_rdev(%s)\n",
2146 		bdevname(rdev->bdev,b));
2147 	md_rdev_clear(rdev);
2148 #ifndef MODULE
2149 	if (test_bit(AutoDetected, &rdev->flags))
2150 		md_autodetect_dev(rdev->bdev->bd_dev);
2151 #endif
2152 	unlock_rdev(rdev);
2153 	kobject_put(&rdev->kobj);
2154 }
2155 
2156 void md_kick_rdev_from_array(struct md_rdev *rdev)
2157 {
2158 	unbind_rdev_from_array(rdev);
2159 	export_rdev(rdev);
2160 }
2161 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2162 
2163 static void export_array(struct mddev *mddev)
2164 {
2165 	struct md_rdev *rdev;
2166 
2167 	while (!list_empty(&mddev->disks)) {
2168 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2169 					same_set);
2170 		md_kick_rdev_from_array(rdev);
2171 	}
2172 	mddev->raid_disks = 0;
2173 	mddev->major_version = 0;
2174 }
2175 
2176 static void sync_sbs(struct mddev *mddev, int nospares)
2177 {
2178 	/* Update each superblock (in-memory image), but
2179 	 * if we are allowed to, skip spares which already
2180 	 * have the right event counter, or have one earlier
2181 	 * (which would mean they aren't being marked as dirty
2182 	 * with the rest of the array)
2183 	 */
2184 	struct md_rdev *rdev;
2185 	rdev_for_each(rdev, mddev) {
2186 		if (rdev->sb_events == mddev->events ||
2187 		    (nospares &&
2188 		     rdev->raid_disk < 0 &&
2189 		     rdev->sb_events+1 == mddev->events)) {
2190 			/* Don't update this superblock */
2191 			rdev->sb_loaded = 2;
2192 		} else {
2193 			sync_super(mddev, rdev);
2194 			rdev->sb_loaded = 1;
2195 		}
2196 	}
2197 }
2198 
2199 void md_update_sb(struct mddev *mddev, int force_change)
2200 {
2201 	struct md_rdev *rdev;
2202 	int sync_req;
2203 	int nospares = 0;
2204 	int any_badblocks_changed = 0;
2205 
2206 	if (mddev->ro) {
2207 		if (force_change)
2208 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2209 		return;
2210 	}
2211 repeat:
2212 	/* First make sure individual recovery_offsets are correct */
2213 	rdev_for_each(rdev, mddev) {
2214 		if (rdev->raid_disk >= 0 &&
2215 		    mddev->delta_disks >= 0 &&
2216 		    !test_bit(In_sync, &rdev->flags) &&
2217 		    mddev->curr_resync_completed > rdev->recovery_offset)
2218 				rdev->recovery_offset = mddev->curr_resync_completed;
2219 
2220 	}
2221 	if (!mddev->persistent) {
2222 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2223 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2224 		if (!mddev->external) {
2225 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2226 			rdev_for_each(rdev, mddev) {
2227 				if (rdev->badblocks.changed) {
2228 					rdev->badblocks.changed = 0;
2229 					md_ack_all_badblocks(&rdev->badblocks);
2230 					md_error(mddev, rdev);
2231 				}
2232 				clear_bit(Blocked, &rdev->flags);
2233 				clear_bit(BlockedBadBlocks, &rdev->flags);
2234 				wake_up(&rdev->blocked_wait);
2235 			}
2236 		}
2237 		wake_up(&mddev->sb_wait);
2238 		return;
2239 	}
2240 
2241 	spin_lock(&mddev->lock);
2242 
2243 	mddev->utime = get_seconds();
2244 
2245 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2246 		force_change = 1;
2247 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2248 		/* just a clean<-> dirty transition, possibly leave spares alone,
2249 		 * though if events isn't the right even/odd, we will have to do
2250 		 * spares after all
2251 		 */
2252 		nospares = 1;
2253 	if (force_change)
2254 		nospares = 0;
2255 	if (mddev->degraded)
2256 		/* If the array is degraded, then skipping spares is both
2257 		 * dangerous and fairly pointless.
2258 		 * Dangerous because a device that was removed from the array
2259 		 * might have a event_count that still looks up-to-date,
2260 		 * so it can be re-added without a resync.
2261 		 * Pointless because if there are any spares to skip,
2262 		 * then a recovery will happen and soon that array won't
2263 		 * be degraded any more and the spare can go back to sleep then.
2264 		 */
2265 		nospares = 0;
2266 
2267 	sync_req = mddev->in_sync;
2268 
2269 	/* If this is just a dirty<->clean transition, and the array is clean
2270 	 * and 'events' is odd, we can roll back to the previous clean state */
2271 	if (nospares
2272 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2273 	    && mddev->can_decrease_events
2274 	    && mddev->events != 1) {
2275 		mddev->events--;
2276 		mddev->can_decrease_events = 0;
2277 	} else {
2278 		/* otherwise we have to go forward and ... */
2279 		mddev->events ++;
2280 		mddev->can_decrease_events = nospares;
2281 	}
2282 
2283 	/*
2284 	 * This 64-bit counter should never wrap.
2285 	 * Either we are in around ~1 trillion A.C., assuming
2286 	 * 1 reboot per second, or we have a bug...
2287 	 */
2288 	WARN_ON(mddev->events == 0);
2289 
2290 	rdev_for_each(rdev, mddev) {
2291 		if (rdev->badblocks.changed)
2292 			any_badblocks_changed++;
2293 		if (test_bit(Faulty, &rdev->flags))
2294 			set_bit(FaultRecorded, &rdev->flags);
2295 	}
2296 
2297 	sync_sbs(mddev, nospares);
2298 	spin_unlock(&mddev->lock);
2299 
2300 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2301 		 mdname(mddev), mddev->in_sync);
2302 
2303 	bitmap_update_sb(mddev->bitmap);
2304 	rdev_for_each(rdev, mddev) {
2305 		char b[BDEVNAME_SIZE];
2306 
2307 		if (rdev->sb_loaded != 1)
2308 			continue; /* no noise on spare devices */
2309 
2310 		if (!test_bit(Faulty, &rdev->flags)) {
2311 			md_super_write(mddev,rdev,
2312 				       rdev->sb_start, rdev->sb_size,
2313 				       rdev->sb_page);
2314 			pr_debug("md: (write) %s's sb offset: %llu\n",
2315 				 bdevname(rdev->bdev, b),
2316 				 (unsigned long long)rdev->sb_start);
2317 			rdev->sb_events = mddev->events;
2318 			if (rdev->badblocks.size) {
2319 				md_super_write(mddev, rdev,
2320 					       rdev->badblocks.sector,
2321 					       rdev->badblocks.size << 9,
2322 					       rdev->bb_page);
2323 				rdev->badblocks.size = 0;
2324 			}
2325 
2326 		} else
2327 			pr_debug("md: %s (skipping faulty)\n",
2328 				 bdevname(rdev->bdev, b));
2329 
2330 		if (mddev->level == LEVEL_MULTIPATH)
2331 			/* only need to write one superblock... */
2332 			break;
2333 	}
2334 	md_super_wait(mddev);
2335 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2336 
2337 	spin_lock(&mddev->lock);
2338 	if (mddev->in_sync != sync_req ||
2339 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2340 		/* have to write it out again */
2341 		spin_unlock(&mddev->lock);
2342 		goto repeat;
2343 	}
2344 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2345 	spin_unlock(&mddev->lock);
2346 	wake_up(&mddev->sb_wait);
2347 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2348 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2349 
2350 	rdev_for_each(rdev, mddev) {
2351 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2352 			clear_bit(Blocked, &rdev->flags);
2353 
2354 		if (any_badblocks_changed)
2355 			md_ack_all_badblocks(&rdev->badblocks);
2356 		clear_bit(BlockedBadBlocks, &rdev->flags);
2357 		wake_up(&rdev->blocked_wait);
2358 	}
2359 }
2360 EXPORT_SYMBOL(md_update_sb);
2361 
2362 static int add_bound_rdev(struct md_rdev *rdev)
2363 {
2364 	struct mddev *mddev = rdev->mddev;
2365 	int err = 0;
2366 
2367 	if (!mddev->pers->hot_remove_disk) {
2368 		/* If there is hot_add_disk but no hot_remove_disk
2369 		 * then added disks for geometry changes,
2370 		 * and should be added immediately.
2371 		 */
2372 		super_types[mddev->major_version].
2373 			validate_super(mddev, rdev);
2374 		err = mddev->pers->hot_add_disk(mddev, rdev);
2375 		if (err) {
2376 			unbind_rdev_from_array(rdev);
2377 			export_rdev(rdev);
2378 			return err;
2379 		}
2380 	}
2381 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2382 
2383 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2384 	if (mddev->degraded)
2385 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2386 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2387 	md_new_event(mddev);
2388 	md_wakeup_thread(mddev->thread);
2389 	return 0;
2390 }
2391 
2392 /* words written to sysfs files may, or may not, be \n terminated.
2393  * We want to accept with case. For this we use cmd_match.
2394  */
2395 static int cmd_match(const char *cmd, const char *str)
2396 {
2397 	/* See if cmd, written into a sysfs file, matches
2398 	 * str.  They must either be the same, or cmd can
2399 	 * have a trailing newline
2400 	 */
2401 	while (*cmd && *str && *cmd == *str) {
2402 		cmd++;
2403 		str++;
2404 	}
2405 	if (*cmd == '\n')
2406 		cmd++;
2407 	if (*str || *cmd)
2408 		return 0;
2409 	return 1;
2410 }
2411 
2412 struct rdev_sysfs_entry {
2413 	struct attribute attr;
2414 	ssize_t (*show)(struct md_rdev *, char *);
2415 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2416 };
2417 
2418 static ssize_t
2419 state_show(struct md_rdev *rdev, char *page)
2420 {
2421 	char *sep = "";
2422 	size_t len = 0;
2423 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2424 
2425 	if (test_bit(Faulty, &flags) ||
2426 	    rdev->badblocks.unacked_exist) {
2427 		len+= sprintf(page+len, "%sfaulty",sep);
2428 		sep = ",";
2429 	}
2430 	if (test_bit(In_sync, &flags)) {
2431 		len += sprintf(page+len, "%sin_sync",sep);
2432 		sep = ",";
2433 	}
2434 	if (test_bit(WriteMostly, &flags)) {
2435 		len += sprintf(page+len, "%swrite_mostly",sep);
2436 		sep = ",";
2437 	}
2438 	if (test_bit(Blocked, &flags) ||
2439 	    (rdev->badblocks.unacked_exist
2440 	     && !test_bit(Faulty, &flags))) {
2441 		len += sprintf(page+len, "%sblocked", sep);
2442 		sep = ",";
2443 	}
2444 	if (!test_bit(Faulty, &flags) &&
2445 	    !test_bit(In_sync, &flags)) {
2446 		len += sprintf(page+len, "%sspare", sep);
2447 		sep = ",";
2448 	}
2449 	if (test_bit(WriteErrorSeen, &flags)) {
2450 		len += sprintf(page+len, "%swrite_error", sep);
2451 		sep = ",";
2452 	}
2453 	if (test_bit(WantReplacement, &flags)) {
2454 		len += sprintf(page+len, "%swant_replacement", sep);
2455 		sep = ",";
2456 	}
2457 	if (test_bit(Replacement, &flags)) {
2458 		len += sprintf(page+len, "%sreplacement", sep);
2459 		sep = ",";
2460 	}
2461 
2462 	return len+sprintf(page+len, "\n");
2463 }
2464 
2465 static ssize_t
2466 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2467 {
2468 	/* can write
2469 	 *  faulty  - simulates an error
2470 	 *  remove  - disconnects the device
2471 	 *  writemostly - sets write_mostly
2472 	 *  -writemostly - clears write_mostly
2473 	 *  blocked - sets the Blocked flags
2474 	 *  -blocked - clears the Blocked and possibly simulates an error
2475 	 *  insync - sets Insync providing device isn't active
2476 	 *  -insync - clear Insync for a device with a slot assigned,
2477 	 *            so that it gets rebuilt based on bitmap
2478 	 *  write_error - sets WriteErrorSeen
2479 	 *  -write_error - clears WriteErrorSeen
2480 	 */
2481 	int err = -EINVAL;
2482 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2483 		md_error(rdev->mddev, rdev);
2484 		if (test_bit(Faulty, &rdev->flags))
2485 			err = 0;
2486 		else
2487 			err = -EBUSY;
2488 	} else if (cmd_match(buf, "remove")) {
2489 		if (rdev->raid_disk >= 0)
2490 			err = -EBUSY;
2491 		else {
2492 			struct mddev *mddev = rdev->mddev;
2493 			if (mddev_is_clustered(mddev))
2494 				md_cluster_ops->remove_disk(mddev, rdev);
2495 			md_kick_rdev_from_array(rdev);
2496 			if (mddev_is_clustered(mddev))
2497 				md_cluster_ops->metadata_update_start(mddev);
2498 			if (mddev->pers)
2499 				md_update_sb(mddev, 1);
2500 			md_new_event(mddev);
2501 			if (mddev_is_clustered(mddev))
2502 				md_cluster_ops->metadata_update_finish(mddev);
2503 			err = 0;
2504 		}
2505 	} else if (cmd_match(buf, "writemostly")) {
2506 		set_bit(WriteMostly, &rdev->flags);
2507 		err = 0;
2508 	} else if (cmd_match(buf, "-writemostly")) {
2509 		clear_bit(WriteMostly, &rdev->flags);
2510 		err = 0;
2511 	} else if (cmd_match(buf, "blocked")) {
2512 		set_bit(Blocked, &rdev->flags);
2513 		err = 0;
2514 	} else if (cmd_match(buf, "-blocked")) {
2515 		if (!test_bit(Faulty, &rdev->flags) &&
2516 		    rdev->badblocks.unacked_exist) {
2517 			/* metadata handler doesn't understand badblocks,
2518 			 * so we need to fail the device
2519 			 */
2520 			md_error(rdev->mddev, rdev);
2521 		}
2522 		clear_bit(Blocked, &rdev->flags);
2523 		clear_bit(BlockedBadBlocks, &rdev->flags);
2524 		wake_up(&rdev->blocked_wait);
2525 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2526 		md_wakeup_thread(rdev->mddev->thread);
2527 
2528 		err = 0;
2529 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2530 		set_bit(In_sync, &rdev->flags);
2531 		err = 0;
2532 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2533 		if (rdev->mddev->pers == NULL) {
2534 			clear_bit(In_sync, &rdev->flags);
2535 			rdev->saved_raid_disk = rdev->raid_disk;
2536 			rdev->raid_disk = -1;
2537 			err = 0;
2538 		}
2539 	} else if (cmd_match(buf, "write_error")) {
2540 		set_bit(WriteErrorSeen, &rdev->flags);
2541 		err = 0;
2542 	} else if (cmd_match(buf, "-write_error")) {
2543 		clear_bit(WriteErrorSeen, &rdev->flags);
2544 		err = 0;
2545 	} else if (cmd_match(buf, "want_replacement")) {
2546 		/* Any non-spare device that is not a replacement can
2547 		 * become want_replacement at any time, but we then need to
2548 		 * check if recovery is needed.
2549 		 */
2550 		if (rdev->raid_disk >= 0 &&
2551 		    !test_bit(Replacement, &rdev->flags))
2552 			set_bit(WantReplacement, &rdev->flags);
2553 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2554 		md_wakeup_thread(rdev->mddev->thread);
2555 		err = 0;
2556 	} else if (cmd_match(buf, "-want_replacement")) {
2557 		/* Clearing 'want_replacement' is always allowed.
2558 		 * Once replacements starts it is too late though.
2559 		 */
2560 		err = 0;
2561 		clear_bit(WantReplacement, &rdev->flags);
2562 	} else if (cmd_match(buf, "replacement")) {
2563 		/* Can only set a device as a replacement when array has not
2564 		 * yet been started.  Once running, replacement is automatic
2565 		 * from spares, or by assigning 'slot'.
2566 		 */
2567 		if (rdev->mddev->pers)
2568 			err = -EBUSY;
2569 		else {
2570 			set_bit(Replacement, &rdev->flags);
2571 			err = 0;
2572 		}
2573 	} else if (cmd_match(buf, "-replacement")) {
2574 		/* Similarly, can only clear Replacement before start */
2575 		if (rdev->mddev->pers)
2576 			err = -EBUSY;
2577 		else {
2578 			clear_bit(Replacement, &rdev->flags);
2579 			err = 0;
2580 		}
2581 	} else if (cmd_match(buf, "re-add")) {
2582 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2583 			/* clear_bit is performed _after_ all the devices
2584 			 * have their local Faulty bit cleared. If any writes
2585 			 * happen in the meantime in the local node, they
2586 			 * will land in the local bitmap, which will be synced
2587 			 * by this node eventually
2588 			 */
2589 			if (!mddev_is_clustered(rdev->mddev) ||
2590 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2591 				clear_bit(Faulty, &rdev->flags);
2592 				err = add_bound_rdev(rdev);
2593 			}
2594 		} else
2595 			err = -EBUSY;
2596 	}
2597 	if (!err)
2598 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2599 	return err ? err : len;
2600 }
2601 static struct rdev_sysfs_entry rdev_state =
2602 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2603 
2604 static ssize_t
2605 errors_show(struct md_rdev *rdev, char *page)
2606 {
2607 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2608 }
2609 
2610 static ssize_t
2611 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2612 {
2613 	unsigned int n;
2614 	int rv;
2615 
2616 	rv = kstrtouint(buf, 10, &n);
2617 	if (rv < 0)
2618 		return rv;
2619 	atomic_set(&rdev->corrected_errors, n);
2620 	return len;
2621 }
2622 static struct rdev_sysfs_entry rdev_errors =
2623 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2624 
2625 static ssize_t
2626 slot_show(struct md_rdev *rdev, char *page)
2627 {
2628 	if (rdev->raid_disk < 0)
2629 		return sprintf(page, "none\n");
2630 	else
2631 		return sprintf(page, "%d\n", rdev->raid_disk);
2632 }
2633 
2634 static ssize_t
2635 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2636 {
2637 	int slot;
2638 	int err;
2639 
2640 	if (strncmp(buf, "none", 4)==0)
2641 		slot = -1;
2642 	else {
2643 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2644 		if (err < 0)
2645 			return err;
2646 	}
2647 	if (rdev->mddev->pers && slot == -1) {
2648 		/* Setting 'slot' on an active array requires also
2649 		 * updating the 'rd%d' link, and communicating
2650 		 * with the personality with ->hot_*_disk.
2651 		 * For now we only support removing
2652 		 * failed/spare devices.  This normally happens automatically,
2653 		 * but not when the metadata is externally managed.
2654 		 */
2655 		if (rdev->raid_disk == -1)
2656 			return -EEXIST;
2657 		/* personality does all needed checks */
2658 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2659 			return -EINVAL;
2660 		clear_bit(Blocked, &rdev->flags);
2661 		remove_and_add_spares(rdev->mddev, rdev);
2662 		if (rdev->raid_disk >= 0)
2663 			return -EBUSY;
2664 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2665 		md_wakeup_thread(rdev->mddev->thread);
2666 	} else if (rdev->mddev->pers) {
2667 		/* Activating a spare .. or possibly reactivating
2668 		 * if we ever get bitmaps working here.
2669 		 */
2670 
2671 		if (rdev->raid_disk != -1)
2672 			return -EBUSY;
2673 
2674 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2675 			return -EBUSY;
2676 
2677 		if (rdev->mddev->pers->hot_add_disk == NULL)
2678 			return -EINVAL;
2679 
2680 		if (slot >= rdev->mddev->raid_disks &&
2681 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2682 			return -ENOSPC;
2683 
2684 		rdev->raid_disk = slot;
2685 		if (test_bit(In_sync, &rdev->flags))
2686 			rdev->saved_raid_disk = slot;
2687 		else
2688 			rdev->saved_raid_disk = -1;
2689 		clear_bit(In_sync, &rdev->flags);
2690 		clear_bit(Bitmap_sync, &rdev->flags);
2691 		err = rdev->mddev->pers->
2692 			hot_add_disk(rdev->mddev, rdev);
2693 		if (err) {
2694 			rdev->raid_disk = -1;
2695 			return err;
2696 		} else
2697 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2698 		if (sysfs_link_rdev(rdev->mddev, rdev))
2699 			/* failure here is OK */;
2700 		/* don't wakeup anyone, leave that to userspace. */
2701 	} else {
2702 		if (slot >= rdev->mddev->raid_disks &&
2703 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2704 			return -ENOSPC;
2705 		rdev->raid_disk = slot;
2706 		/* assume it is working */
2707 		clear_bit(Faulty, &rdev->flags);
2708 		clear_bit(WriteMostly, &rdev->flags);
2709 		set_bit(In_sync, &rdev->flags);
2710 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2711 	}
2712 	return len;
2713 }
2714 
2715 static struct rdev_sysfs_entry rdev_slot =
2716 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2717 
2718 static ssize_t
2719 offset_show(struct md_rdev *rdev, char *page)
2720 {
2721 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2722 }
2723 
2724 static ssize_t
2725 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2726 {
2727 	unsigned long long offset;
2728 	if (kstrtoull(buf, 10, &offset) < 0)
2729 		return -EINVAL;
2730 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2731 		return -EBUSY;
2732 	if (rdev->sectors && rdev->mddev->external)
2733 		/* Must set offset before size, so overlap checks
2734 		 * can be sane */
2735 		return -EBUSY;
2736 	rdev->data_offset = offset;
2737 	rdev->new_data_offset = offset;
2738 	return len;
2739 }
2740 
2741 static struct rdev_sysfs_entry rdev_offset =
2742 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2743 
2744 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2745 {
2746 	return sprintf(page, "%llu\n",
2747 		       (unsigned long long)rdev->new_data_offset);
2748 }
2749 
2750 static ssize_t new_offset_store(struct md_rdev *rdev,
2751 				const char *buf, size_t len)
2752 {
2753 	unsigned long long new_offset;
2754 	struct mddev *mddev = rdev->mddev;
2755 
2756 	if (kstrtoull(buf, 10, &new_offset) < 0)
2757 		return -EINVAL;
2758 
2759 	if (mddev->sync_thread ||
2760 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2761 		return -EBUSY;
2762 	if (new_offset == rdev->data_offset)
2763 		/* reset is always permitted */
2764 		;
2765 	else if (new_offset > rdev->data_offset) {
2766 		/* must not push array size beyond rdev_sectors */
2767 		if (new_offset - rdev->data_offset
2768 		    + mddev->dev_sectors > rdev->sectors)
2769 				return -E2BIG;
2770 	}
2771 	/* Metadata worries about other space details. */
2772 
2773 	/* decreasing the offset is inconsistent with a backwards
2774 	 * reshape.
2775 	 */
2776 	if (new_offset < rdev->data_offset &&
2777 	    mddev->reshape_backwards)
2778 		return -EINVAL;
2779 	/* Increasing offset is inconsistent with forwards
2780 	 * reshape.  reshape_direction should be set to
2781 	 * 'backwards' first.
2782 	 */
2783 	if (new_offset > rdev->data_offset &&
2784 	    !mddev->reshape_backwards)
2785 		return -EINVAL;
2786 
2787 	if (mddev->pers && mddev->persistent &&
2788 	    !super_types[mddev->major_version]
2789 	    .allow_new_offset(rdev, new_offset))
2790 		return -E2BIG;
2791 	rdev->new_data_offset = new_offset;
2792 	if (new_offset > rdev->data_offset)
2793 		mddev->reshape_backwards = 1;
2794 	else if (new_offset < rdev->data_offset)
2795 		mddev->reshape_backwards = 0;
2796 
2797 	return len;
2798 }
2799 static struct rdev_sysfs_entry rdev_new_offset =
2800 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2801 
2802 static ssize_t
2803 rdev_size_show(struct md_rdev *rdev, char *page)
2804 {
2805 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2806 }
2807 
2808 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2809 {
2810 	/* check if two start/length pairs overlap */
2811 	if (s1+l1 <= s2)
2812 		return 0;
2813 	if (s2+l2 <= s1)
2814 		return 0;
2815 	return 1;
2816 }
2817 
2818 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2819 {
2820 	unsigned long long blocks;
2821 	sector_t new;
2822 
2823 	if (kstrtoull(buf, 10, &blocks) < 0)
2824 		return -EINVAL;
2825 
2826 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2827 		return -EINVAL; /* sector conversion overflow */
2828 
2829 	new = blocks * 2;
2830 	if (new != blocks * 2)
2831 		return -EINVAL; /* unsigned long long to sector_t overflow */
2832 
2833 	*sectors = new;
2834 	return 0;
2835 }
2836 
2837 static ssize_t
2838 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2839 {
2840 	struct mddev *my_mddev = rdev->mddev;
2841 	sector_t oldsectors = rdev->sectors;
2842 	sector_t sectors;
2843 
2844 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2845 		return -EINVAL;
2846 	if (rdev->data_offset != rdev->new_data_offset)
2847 		return -EINVAL; /* too confusing */
2848 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2849 		if (my_mddev->persistent) {
2850 			sectors = super_types[my_mddev->major_version].
2851 				rdev_size_change(rdev, sectors);
2852 			if (!sectors)
2853 				return -EBUSY;
2854 		} else if (!sectors)
2855 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2856 				rdev->data_offset;
2857 		if (!my_mddev->pers->resize)
2858 			/* Cannot change size for RAID0 or Linear etc */
2859 			return -EINVAL;
2860 	}
2861 	if (sectors < my_mddev->dev_sectors)
2862 		return -EINVAL; /* component must fit device */
2863 
2864 	rdev->sectors = sectors;
2865 	if (sectors > oldsectors && my_mddev->external) {
2866 		/* Need to check that all other rdevs with the same
2867 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2868 		 * the rdev lists safely.
2869 		 * This check does not provide a hard guarantee, it
2870 		 * just helps avoid dangerous mistakes.
2871 		 */
2872 		struct mddev *mddev;
2873 		int overlap = 0;
2874 		struct list_head *tmp;
2875 
2876 		rcu_read_lock();
2877 		for_each_mddev(mddev, tmp) {
2878 			struct md_rdev *rdev2;
2879 
2880 			rdev_for_each(rdev2, mddev)
2881 				if (rdev->bdev == rdev2->bdev &&
2882 				    rdev != rdev2 &&
2883 				    overlaps(rdev->data_offset, rdev->sectors,
2884 					     rdev2->data_offset,
2885 					     rdev2->sectors)) {
2886 					overlap = 1;
2887 					break;
2888 				}
2889 			if (overlap) {
2890 				mddev_put(mddev);
2891 				break;
2892 			}
2893 		}
2894 		rcu_read_unlock();
2895 		if (overlap) {
2896 			/* Someone else could have slipped in a size
2897 			 * change here, but doing so is just silly.
2898 			 * We put oldsectors back because we *know* it is
2899 			 * safe, and trust userspace not to race with
2900 			 * itself
2901 			 */
2902 			rdev->sectors = oldsectors;
2903 			return -EBUSY;
2904 		}
2905 	}
2906 	return len;
2907 }
2908 
2909 static struct rdev_sysfs_entry rdev_size =
2910 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2911 
2912 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2913 {
2914 	unsigned long long recovery_start = rdev->recovery_offset;
2915 
2916 	if (test_bit(In_sync, &rdev->flags) ||
2917 	    recovery_start == MaxSector)
2918 		return sprintf(page, "none\n");
2919 
2920 	return sprintf(page, "%llu\n", recovery_start);
2921 }
2922 
2923 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2924 {
2925 	unsigned long long recovery_start;
2926 
2927 	if (cmd_match(buf, "none"))
2928 		recovery_start = MaxSector;
2929 	else if (kstrtoull(buf, 10, &recovery_start))
2930 		return -EINVAL;
2931 
2932 	if (rdev->mddev->pers &&
2933 	    rdev->raid_disk >= 0)
2934 		return -EBUSY;
2935 
2936 	rdev->recovery_offset = recovery_start;
2937 	if (recovery_start == MaxSector)
2938 		set_bit(In_sync, &rdev->flags);
2939 	else
2940 		clear_bit(In_sync, &rdev->flags);
2941 	return len;
2942 }
2943 
2944 static struct rdev_sysfs_entry rdev_recovery_start =
2945 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2946 
2947 static ssize_t
2948 badblocks_show(struct badblocks *bb, char *page, int unack);
2949 static ssize_t
2950 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2951 
2952 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2953 {
2954 	return badblocks_show(&rdev->badblocks, page, 0);
2955 }
2956 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2957 {
2958 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2959 	/* Maybe that ack was all we needed */
2960 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2961 		wake_up(&rdev->blocked_wait);
2962 	return rv;
2963 }
2964 static struct rdev_sysfs_entry rdev_bad_blocks =
2965 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2966 
2967 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2968 {
2969 	return badblocks_show(&rdev->badblocks, page, 1);
2970 }
2971 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2972 {
2973 	return badblocks_store(&rdev->badblocks, page, len, 1);
2974 }
2975 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2976 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2977 
2978 static struct attribute *rdev_default_attrs[] = {
2979 	&rdev_state.attr,
2980 	&rdev_errors.attr,
2981 	&rdev_slot.attr,
2982 	&rdev_offset.attr,
2983 	&rdev_new_offset.attr,
2984 	&rdev_size.attr,
2985 	&rdev_recovery_start.attr,
2986 	&rdev_bad_blocks.attr,
2987 	&rdev_unack_bad_blocks.attr,
2988 	NULL,
2989 };
2990 static ssize_t
2991 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2992 {
2993 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2994 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2995 
2996 	if (!entry->show)
2997 		return -EIO;
2998 	if (!rdev->mddev)
2999 		return -EBUSY;
3000 	return entry->show(rdev, page);
3001 }
3002 
3003 static ssize_t
3004 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3005 	      const char *page, size_t length)
3006 {
3007 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3008 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3009 	ssize_t rv;
3010 	struct mddev *mddev = rdev->mddev;
3011 
3012 	if (!entry->store)
3013 		return -EIO;
3014 	if (!capable(CAP_SYS_ADMIN))
3015 		return -EACCES;
3016 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3017 	if (!rv) {
3018 		if (rdev->mddev == NULL)
3019 			rv = -EBUSY;
3020 		else
3021 			rv = entry->store(rdev, page, length);
3022 		mddev_unlock(mddev);
3023 	}
3024 	return rv;
3025 }
3026 
3027 static void rdev_free(struct kobject *ko)
3028 {
3029 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3030 	kfree(rdev);
3031 }
3032 static const struct sysfs_ops rdev_sysfs_ops = {
3033 	.show		= rdev_attr_show,
3034 	.store		= rdev_attr_store,
3035 };
3036 static struct kobj_type rdev_ktype = {
3037 	.release	= rdev_free,
3038 	.sysfs_ops	= &rdev_sysfs_ops,
3039 	.default_attrs	= rdev_default_attrs,
3040 };
3041 
3042 int md_rdev_init(struct md_rdev *rdev)
3043 {
3044 	rdev->desc_nr = -1;
3045 	rdev->saved_raid_disk = -1;
3046 	rdev->raid_disk = -1;
3047 	rdev->flags = 0;
3048 	rdev->data_offset = 0;
3049 	rdev->new_data_offset = 0;
3050 	rdev->sb_events = 0;
3051 	rdev->last_read_error.tv_sec  = 0;
3052 	rdev->last_read_error.tv_nsec = 0;
3053 	rdev->sb_loaded = 0;
3054 	rdev->bb_page = NULL;
3055 	atomic_set(&rdev->nr_pending, 0);
3056 	atomic_set(&rdev->read_errors, 0);
3057 	atomic_set(&rdev->corrected_errors, 0);
3058 
3059 	INIT_LIST_HEAD(&rdev->same_set);
3060 	init_waitqueue_head(&rdev->blocked_wait);
3061 
3062 	/* Add space to store bad block list.
3063 	 * This reserves the space even on arrays where it cannot
3064 	 * be used - I wonder if that matters
3065 	 */
3066 	rdev->badblocks.count = 0;
3067 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3068 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3069 	seqlock_init(&rdev->badblocks.lock);
3070 	if (rdev->badblocks.page == NULL)
3071 		return -ENOMEM;
3072 
3073 	return 0;
3074 }
3075 EXPORT_SYMBOL_GPL(md_rdev_init);
3076 /*
3077  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3078  *
3079  * mark the device faulty if:
3080  *
3081  *   - the device is nonexistent (zero size)
3082  *   - the device has no valid superblock
3083  *
3084  * a faulty rdev _never_ has rdev->sb set.
3085  */
3086 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3087 {
3088 	char b[BDEVNAME_SIZE];
3089 	int err;
3090 	struct md_rdev *rdev;
3091 	sector_t size;
3092 
3093 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3094 	if (!rdev) {
3095 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3096 		return ERR_PTR(-ENOMEM);
3097 	}
3098 
3099 	err = md_rdev_init(rdev);
3100 	if (err)
3101 		goto abort_free;
3102 	err = alloc_disk_sb(rdev);
3103 	if (err)
3104 		goto abort_free;
3105 
3106 	err = lock_rdev(rdev, newdev, super_format == -2);
3107 	if (err)
3108 		goto abort_free;
3109 
3110 	kobject_init(&rdev->kobj, &rdev_ktype);
3111 
3112 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3113 	if (!size) {
3114 		printk(KERN_WARNING
3115 			"md: %s has zero or unknown size, marking faulty!\n",
3116 			bdevname(rdev->bdev,b));
3117 		err = -EINVAL;
3118 		goto abort_free;
3119 	}
3120 
3121 	if (super_format >= 0) {
3122 		err = super_types[super_format].
3123 			load_super(rdev, NULL, super_minor);
3124 		if (err == -EINVAL) {
3125 			printk(KERN_WARNING
3126 				"md: %s does not have a valid v%d.%d "
3127 			       "superblock, not importing!\n",
3128 				bdevname(rdev->bdev,b),
3129 			       super_format, super_minor);
3130 			goto abort_free;
3131 		}
3132 		if (err < 0) {
3133 			printk(KERN_WARNING
3134 				"md: could not read %s's sb, not importing!\n",
3135 				bdevname(rdev->bdev,b));
3136 			goto abort_free;
3137 		}
3138 	}
3139 
3140 	return rdev;
3141 
3142 abort_free:
3143 	if (rdev->bdev)
3144 		unlock_rdev(rdev);
3145 	md_rdev_clear(rdev);
3146 	kfree(rdev);
3147 	return ERR_PTR(err);
3148 }
3149 
3150 /*
3151  * Check a full RAID array for plausibility
3152  */
3153 
3154 static void analyze_sbs(struct mddev *mddev)
3155 {
3156 	int i;
3157 	struct md_rdev *rdev, *freshest, *tmp;
3158 	char b[BDEVNAME_SIZE];
3159 
3160 	freshest = NULL;
3161 	rdev_for_each_safe(rdev, tmp, mddev)
3162 		switch (super_types[mddev->major_version].
3163 			load_super(rdev, freshest, mddev->minor_version)) {
3164 		case 1:
3165 			freshest = rdev;
3166 			break;
3167 		case 0:
3168 			break;
3169 		default:
3170 			printk( KERN_ERR \
3171 				"md: fatal superblock inconsistency in %s"
3172 				" -- removing from array\n",
3173 				bdevname(rdev->bdev,b));
3174 			md_kick_rdev_from_array(rdev);
3175 		}
3176 
3177 	super_types[mddev->major_version].
3178 		validate_super(mddev, freshest);
3179 
3180 	i = 0;
3181 	rdev_for_each_safe(rdev, tmp, mddev) {
3182 		if (mddev->max_disks &&
3183 		    (rdev->desc_nr >= mddev->max_disks ||
3184 		     i > mddev->max_disks)) {
3185 			printk(KERN_WARNING
3186 			       "md: %s: %s: only %d devices permitted\n",
3187 			       mdname(mddev), bdevname(rdev->bdev, b),
3188 			       mddev->max_disks);
3189 			md_kick_rdev_from_array(rdev);
3190 			continue;
3191 		}
3192 		if (rdev != freshest) {
3193 			if (super_types[mddev->major_version].
3194 			    validate_super(mddev, rdev)) {
3195 				printk(KERN_WARNING "md: kicking non-fresh %s"
3196 					" from array!\n",
3197 					bdevname(rdev->bdev,b));
3198 				md_kick_rdev_from_array(rdev);
3199 				continue;
3200 			}
3201 			/* No device should have a Candidate flag
3202 			 * when reading devices
3203 			 */
3204 			if (test_bit(Candidate, &rdev->flags)) {
3205 				pr_info("md: kicking Cluster Candidate %s from array!\n",
3206 					bdevname(rdev->bdev, b));
3207 				md_kick_rdev_from_array(rdev);
3208 			}
3209 		}
3210 		if (mddev->level == LEVEL_MULTIPATH) {
3211 			rdev->desc_nr = i++;
3212 			rdev->raid_disk = rdev->desc_nr;
3213 			set_bit(In_sync, &rdev->flags);
3214 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3215 			rdev->raid_disk = -1;
3216 			clear_bit(In_sync, &rdev->flags);
3217 		}
3218 	}
3219 }
3220 
3221 /* Read a fixed-point number.
3222  * Numbers in sysfs attributes should be in "standard" units where
3223  * possible, so time should be in seconds.
3224  * However we internally use a a much smaller unit such as
3225  * milliseconds or jiffies.
3226  * This function takes a decimal number with a possible fractional
3227  * component, and produces an integer which is the result of
3228  * multiplying that number by 10^'scale'.
3229  * all without any floating-point arithmetic.
3230  */
3231 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3232 {
3233 	unsigned long result = 0;
3234 	long decimals = -1;
3235 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3236 		if (*cp == '.')
3237 			decimals = 0;
3238 		else if (decimals < scale) {
3239 			unsigned int value;
3240 			value = *cp - '0';
3241 			result = result * 10 + value;
3242 			if (decimals >= 0)
3243 				decimals++;
3244 		}
3245 		cp++;
3246 	}
3247 	if (*cp == '\n')
3248 		cp++;
3249 	if (*cp)
3250 		return -EINVAL;
3251 	if (decimals < 0)
3252 		decimals = 0;
3253 	while (decimals < scale) {
3254 		result *= 10;
3255 		decimals ++;
3256 	}
3257 	*res = result;
3258 	return 0;
3259 }
3260 
3261 static ssize_t
3262 safe_delay_show(struct mddev *mddev, char *page)
3263 {
3264 	int msec = (mddev->safemode_delay*1000)/HZ;
3265 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3266 }
3267 static ssize_t
3268 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3269 {
3270 	unsigned long msec;
3271 
3272 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3273 		return -EINVAL;
3274 	if (msec == 0)
3275 		mddev->safemode_delay = 0;
3276 	else {
3277 		unsigned long old_delay = mddev->safemode_delay;
3278 		unsigned long new_delay = (msec*HZ)/1000;
3279 
3280 		if (new_delay == 0)
3281 			new_delay = 1;
3282 		mddev->safemode_delay = new_delay;
3283 		if (new_delay < old_delay || old_delay == 0)
3284 			mod_timer(&mddev->safemode_timer, jiffies+1);
3285 	}
3286 	return len;
3287 }
3288 static struct md_sysfs_entry md_safe_delay =
3289 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3290 
3291 static ssize_t
3292 level_show(struct mddev *mddev, char *page)
3293 {
3294 	struct md_personality *p;
3295 	int ret;
3296 	spin_lock(&mddev->lock);
3297 	p = mddev->pers;
3298 	if (p)
3299 		ret = sprintf(page, "%s\n", p->name);
3300 	else if (mddev->clevel[0])
3301 		ret = sprintf(page, "%s\n", mddev->clevel);
3302 	else if (mddev->level != LEVEL_NONE)
3303 		ret = sprintf(page, "%d\n", mddev->level);
3304 	else
3305 		ret = 0;
3306 	spin_unlock(&mddev->lock);
3307 	return ret;
3308 }
3309 
3310 static ssize_t
3311 level_store(struct mddev *mddev, const char *buf, size_t len)
3312 {
3313 	char clevel[16];
3314 	ssize_t rv;
3315 	size_t slen = len;
3316 	struct md_personality *pers, *oldpers;
3317 	long level;
3318 	void *priv, *oldpriv;
3319 	struct md_rdev *rdev;
3320 
3321 	if (slen == 0 || slen >= sizeof(clevel))
3322 		return -EINVAL;
3323 
3324 	rv = mddev_lock(mddev);
3325 	if (rv)
3326 		return rv;
3327 
3328 	if (mddev->pers == NULL) {
3329 		strncpy(mddev->clevel, buf, slen);
3330 		if (mddev->clevel[slen-1] == '\n')
3331 			slen--;
3332 		mddev->clevel[slen] = 0;
3333 		mddev->level = LEVEL_NONE;
3334 		rv = len;
3335 		goto out_unlock;
3336 	}
3337 	rv = -EROFS;
3338 	if (mddev->ro)
3339 		goto out_unlock;
3340 
3341 	/* request to change the personality.  Need to ensure:
3342 	 *  - array is not engaged in resync/recovery/reshape
3343 	 *  - old personality can be suspended
3344 	 *  - new personality will access other array.
3345 	 */
3346 
3347 	rv = -EBUSY;
3348 	if (mddev->sync_thread ||
3349 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3350 	    mddev->reshape_position != MaxSector ||
3351 	    mddev->sysfs_active)
3352 		goto out_unlock;
3353 
3354 	rv = -EINVAL;
3355 	if (!mddev->pers->quiesce) {
3356 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3357 		       mdname(mddev), mddev->pers->name);
3358 		goto out_unlock;
3359 	}
3360 
3361 	/* Now find the new personality */
3362 	strncpy(clevel, buf, slen);
3363 	if (clevel[slen-1] == '\n')
3364 		slen--;
3365 	clevel[slen] = 0;
3366 	if (kstrtol(clevel, 10, &level))
3367 		level = LEVEL_NONE;
3368 
3369 	if (request_module("md-%s", clevel) != 0)
3370 		request_module("md-level-%s", clevel);
3371 	spin_lock(&pers_lock);
3372 	pers = find_pers(level, clevel);
3373 	if (!pers || !try_module_get(pers->owner)) {
3374 		spin_unlock(&pers_lock);
3375 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3376 		rv = -EINVAL;
3377 		goto out_unlock;
3378 	}
3379 	spin_unlock(&pers_lock);
3380 
3381 	if (pers == mddev->pers) {
3382 		/* Nothing to do! */
3383 		module_put(pers->owner);
3384 		rv = len;
3385 		goto out_unlock;
3386 	}
3387 	if (!pers->takeover) {
3388 		module_put(pers->owner);
3389 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3390 		       mdname(mddev), clevel);
3391 		rv = -EINVAL;
3392 		goto out_unlock;
3393 	}
3394 
3395 	rdev_for_each(rdev, mddev)
3396 		rdev->new_raid_disk = rdev->raid_disk;
3397 
3398 	/* ->takeover must set new_* and/or delta_disks
3399 	 * if it succeeds, and may set them when it fails.
3400 	 */
3401 	priv = pers->takeover(mddev);
3402 	if (IS_ERR(priv)) {
3403 		mddev->new_level = mddev->level;
3404 		mddev->new_layout = mddev->layout;
3405 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3406 		mddev->raid_disks -= mddev->delta_disks;
3407 		mddev->delta_disks = 0;
3408 		mddev->reshape_backwards = 0;
3409 		module_put(pers->owner);
3410 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3411 		       mdname(mddev), clevel);
3412 		rv = PTR_ERR(priv);
3413 		goto out_unlock;
3414 	}
3415 
3416 	/* Looks like we have a winner */
3417 	mddev_suspend(mddev);
3418 	mddev_detach(mddev);
3419 
3420 	spin_lock(&mddev->lock);
3421 	oldpers = mddev->pers;
3422 	oldpriv = mddev->private;
3423 	mddev->pers = pers;
3424 	mddev->private = priv;
3425 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3426 	mddev->level = mddev->new_level;
3427 	mddev->layout = mddev->new_layout;
3428 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3429 	mddev->delta_disks = 0;
3430 	mddev->reshape_backwards = 0;
3431 	mddev->degraded = 0;
3432 	spin_unlock(&mddev->lock);
3433 
3434 	if (oldpers->sync_request == NULL &&
3435 	    mddev->external) {
3436 		/* We are converting from a no-redundancy array
3437 		 * to a redundancy array and metadata is managed
3438 		 * externally so we need to be sure that writes
3439 		 * won't block due to a need to transition
3440 		 *      clean->dirty
3441 		 * until external management is started.
3442 		 */
3443 		mddev->in_sync = 0;
3444 		mddev->safemode_delay = 0;
3445 		mddev->safemode = 0;
3446 	}
3447 
3448 	oldpers->free(mddev, oldpriv);
3449 
3450 	if (oldpers->sync_request == NULL &&
3451 	    pers->sync_request != NULL) {
3452 		/* need to add the md_redundancy_group */
3453 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3454 			printk(KERN_WARNING
3455 			       "md: cannot register extra attributes for %s\n",
3456 			       mdname(mddev));
3457 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3458 	}
3459 	if (oldpers->sync_request != NULL &&
3460 	    pers->sync_request == NULL) {
3461 		/* need to remove the md_redundancy_group */
3462 		if (mddev->to_remove == NULL)
3463 			mddev->to_remove = &md_redundancy_group;
3464 	}
3465 
3466 	rdev_for_each(rdev, mddev) {
3467 		if (rdev->raid_disk < 0)
3468 			continue;
3469 		if (rdev->new_raid_disk >= mddev->raid_disks)
3470 			rdev->new_raid_disk = -1;
3471 		if (rdev->new_raid_disk == rdev->raid_disk)
3472 			continue;
3473 		sysfs_unlink_rdev(mddev, rdev);
3474 	}
3475 	rdev_for_each(rdev, mddev) {
3476 		if (rdev->raid_disk < 0)
3477 			continue;
3478 		if (rdev->new_raid_disk == rdev->raid_disk)
3479 			continue;
3480 		rdev->raid_disk = rdev->new_raid_disk;
3481 		if (rdev->raid_disk < 0)
3482 			clear_bit(In_sync, &rdev->flags);
3483 		else {
3484 			if (sysfs_link_rdev(mddev, rdev))
3485 				printk(KERN_WARNING "md: cannot register rd%d"
3486 				       " for %s after level change\n",
3487 				       rdev->raid_disk, mdname(mddev));
3488 		}
3489 	}
3490 
3491 	if (pers->sync_request == NULL) {
3492 		/* this is now an array without redundancy, so
3493 		 * it must always be in_sync
3494 		 */
3495 		mddev->in_sync = 1;
3496 		del_timer_sync(&mddev->safemode_timer);
3497 	}
3498 	blk_set_stacking_limits(&mddev->queue->limits);
3499 	pers->run(mddev);
3500 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3501 	mddev_resume(mddev);
3502 	if (!mddev->thread)
3503 		md_update_sb(mddev, 1);
3504 	sysfs_notify(&mddev->kobj, NULL, "level");
3505 	md_new_event(mddev);
3506 	rv = len;
3507 out_unlock:
3508 	mddev_unlock(mddev);
3509 	return rv;
3510 }
3511 
3512 static struct md_sysfs_entry md_level =
3513 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3514 
3515 static ssize_t
3516 layout_show(struct mddev *mddev, char *page)
3517 {
3518 	/* just a number, not meaningful for all levels */
3519 	if (mddev->reshape_position != MaxSector &&
3520 	    mddev->layout != mddev->new_layout)
3521 		return sprintf(page, "%d (%d)\n",
3522 			       mddev->new_layout, mddev->layout);
3523 	return sprintf(page, "%d\n", mddev->layout);
3524 }
3525 
3526 static ssize_t
3527 layout_store(struct mddev *mddev, const char *buf, size_t len)
3528 {
3529 	unsigned int n;
3530 	int err;
3531 
3532 	err = kstrtouint(buf, 10, &n);
3533 	if (err < 0)
3534 		return err;
3535 	err = mddev_lock(mddev);
3536 	if (err)
3537 		return err;
3538 
3539 	if (mddev->pers) {
3540 		if (mddev->pers->check_reshape == NULL)
3541 			err = -EBUSY;
3542 		else if (mddev->ro)
3543 			err = -EROFS;
3544 		else {
3545 			mddev->new_layout = n;
3546 			err = mddev->pers->check_reshape(mddev);
3547 			if (err)
3548 				mddev->new_layout = mddev->layout;
3549 		}
3550 	} else {
3551 		mddev->new_layout = n;
3552 		if (mddev->reshape_position == MaxSector)
3553 			mddev->layout = n;
3554 	}
3555 	mddev_unlock(mddev);
3556 	return err ?: len;
3557 }
3558 static struct md_sysfs_entry md_layout =
3559 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3560 
3561 static ssize_t
3562 raid_disks_show(struct mddev *mddev, char *page)
3563 {
3564 	if (mddev->raid_disks == 0)
3565 		return 0;
3566 	if (mddev->reshape_position != MaxSector &&
3567 	    mddev->delta_disks != 0)
3568 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3569 			       mddev->raid_disks - mddev->delta_disks);
3570 	return sprintf(page, "%d\n", mddev->raid_disks);
3571 }
3572 
3573 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3574 
3575 static ssize_t
3576 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3577 {
3578 	unsigned int n;
3579 	int err;
3580 
3581 	err = kstrtouint(buf, 10, &n);
3582 	if (err < 0)
3583 		return err;
3584 
3585 	err = mddev_lock(mddev);
3586 	if (err)
3587 		return err;
3588 	if (mddev->pers)
3589 		err = update_raid_disks(mddev, n);
3590 	else if (mddev->reshape_position != MaxSector) {
3591 		struct md_rdev *rdev;
3592 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3593 
3594 		err = -EINVAL;
3595 		rdev_for_each(rdev, mddev) {
3596 			if (olddisks < n &&
3597 			    rdev->data_offset < rdev->new_data_offset)
3598 				goto out_unlock;
3599 			if (olddisks > n &&
3600 			    rdev->data_offset > rdev->new_data_offset)
3601 				goto out_unlock;
3602 		}
3603 		err = 0;
3604 		mddev->delta_disks = n - olddisks;
3605 		mddev->raid_disks = n;
3606 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3607 	} else
3608 		mddev->raid_disks = n;
3609 out_unlock:
3610 	mddev_unlock(mddev);
3611 	return err ? err : len;
3612 }
3613 static struct md_sysfs_entry md_raid_disks =
3614 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3615 
3616 static ssize_t
3617 chunk_size_show(struct mddev *mddev, char *page)
3618 {
3619 	if (mddev->reshape_position != MaxSector &&
3620 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3621 		return sprintf(page, "%d (%d)\n",
3622 			       mddev->new_chunk_sectors << 9,
3623 			       mddev->chunk_sectors << 9);
3624 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3625 }
3626 
3627 static ssize_t
3628 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3629 {
3630 	unsigned long n;
3631 	int err;
3632 
3633 	err = kstrtoul(buf, 10, &n);
3634 	if (err < 0)
3635 		return err;
3636 
3637 	err = mddev_lock(mddev);
3638 	if (err)
3639 		return err;
3640 	if (mddev->pers) {
3641 		if (mddev->pers->check_reshape == NULL)
3642 			err = -EBUSY;
3643 		else if (mddev->ro)
3644 			err = -EROFS;
3645 		else {
3646 			mddev->new_chunk_sectors = n >> 9;
3647 			err = mddev->pers->check_reshape(mddev);
3648 			if (err)
3649 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3650 		}
3651 	} else {
3652 		mddev->new_chunk_sectors = n >> 9;
3653 		if (mddev->reshape_position == MaxSector)
3654 			mddev->chunk_sectors = n >> 9;
3655 	}
3656 	mddev_unlock(mddev);
3657 	return err ?: len;
3658 }
3659 static struct md_sysfs_entry md_chunk_size =
3660 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3661 
3662 static ssize_t
3663 resync_start_show(struct mddev *mddev, char *page)
3664 {
3665 	if (mddev->recovery_cp == MaxSector)
3666 		return sprintf(page, "none\n");
3667 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3668 }
3669 
3670 static ssize_t
3671 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3672 {
3673 	unsigned long long n;
3674 	int err;
3675 
3676 	if (cmd_match(buf, "none"))
3677 		n = MaxSector;
3678 	else {
3679 		err = kstrtoull(buf, 10, &n);
3680 		if (err < 0)
3681 			return err;
3682 		if (n != (sector_t)n)
3683 			return -EINVAL;
3684 	}
3685 
3686 	err = mddev_lock(mddev);
3687 	if (err)
3688 		return err;
3689 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3690 		err = -EBUSY;
3691 
3692 	if (!err) {
3693 		mddev->recovery_cp = n;
3694 		if (mddev->pers)
3695 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3696 	}
3697 	mddev_unlock(mddev);
3698 	return err ?: len;
3699 }
3700 static struct md_sysfs_entry md_resync_start =
3701 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3702 		resync_start_show, resync_start_store);
3703 
3704 /*
3705  * The array state can be:
3706  *
3707  * clear
3708  *     No devices, no size, no level
3709  *     Equivalent to STOP_ARRAY ioctl
3710  * inactive
3711  *     May have some settings, but array is not active
3712  *        all IO results in error
3713  *     When written, doesn't tear down array, but just stops it
3714  * suspended (not supported yet)
3715  *     All IO requests will block. The array can be reconfigured.
3716  *     Writing this, if accepted, will block until array is quiescent
3717  * readonly
3718  *     no resync can happen.  no superblocks get written.
3719  *     write requests fail
3720  * read-auto
3721  *     like readonly, but behaves like 'clean' on a write request.
3722  *
3723  * clean - no pending writes, but otherwise active.
3724  *     When written to inactive array, starts without resync
3725  *     If a write request arrives then
3726  *       if metadata is known, mark 'dirty' and switch to 'active'.
3727  *       if not known, block and switch to write-pending
3728  *     If written to an active array that has pending writes, then fails.
3729  * active
3730  *     fully active: IO and resync can be happening.
3731  *     When written to inactive array, starts with resync
3732  *
3733  * write-pending
3734  *     clean, but writes are blocked waiting for 'active' to be written.
3735  *
3736  * active-idle
3737  *     like active, but no writes have been seen for a while (100msec).
3738  *
3739  */
3740 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3741 		   write_pending, active_idle, bad_word};
3742 static char *array_states[] = {
3743 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3744 	"write-pending", "active-idle", NULL };
3745 
3746 static int match_word(const char *word, char **list)
3747 {
3748 	int n;
3749 	for (n=0; list[n]; n++)
3750 		if (cmd_match(word, list[n]))
3751 			break;
3752 	return n;
3753 }
3754 
3755 static ssize_t
3756 array_state_show(struct mddev *mddev, char *page)
3757 {
3758 	enum array_state st = inactive;
3759 
3760 	if (mddev->pers)
3761 		switch(mddev->ro) {
3762 		case 1:
3763 			st = readonly;
3764 			break;
3765 		case 2:
3766 			st = read_auto;
3767 			break;
3768 		case 0:
3769 			if (mddev->in_sync)
3770 				st = clean;
3771 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3772 				st = write_pending;
3773 			else if (mddev->safemode)
3774 				st = active_idle;
3775 			else
3776 				st = active;
3777 		}
3778 	else {
3779 		if (list_empty(&mddev->disks) &&
3780 		    mddev->raid_disks == 0 &&
3781 		    mddev->dev_sectors == 0)
3782 			st = clear;
3783 		else
3784 			st = inactive;
3785 	}
3786 	return sprintf(page, "%s\n", array_states[st]);
3787 }
3788 
3789 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3790 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3791 static int do_md_run(struct mddev *mddev);
3792 static int restart_array(struct mddev *mddev);
3793 
3794 static ssize_t
3795 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3796 {
3797 	int err;
3798 	enum array_state st = match_word(buf, array_states);
3799 
3800 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3801 		/* don't take reconfig_mutex when toggling between
3802 		 * clean and active
3803 		 */
3804 		spin_lock(&mddev->lock);
3805 		if (st == active) {
3806 			restart_array(mddev);
3807 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3808 			wake_up(&mddev->sb_wait);
3809 			err = 0;
3810 		} else /* st == clean */ {
3811 			restart_array(mddev);
3812 			if (atomic_read(&mddev->writes_pending) == 0) {
3813 				if (mddev->in_sync == 0) {
3814 					mddev->in_sync = 1;
3815 					if (mddev->safemode == 1)
3816 						mddev->safemode = 0;
3817 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3818 				}
3819 				err = 0;
3820 			} else
3821 				err = -EBUSY;
3822 		}
3823 		spin_unlock(&mddev->lock);
3824 		return err ?: len;
3825 	}
3826 	err = mddev_lock(mddev);
3827 	if (err)
3828 		return err;
3829 	err = -EINVAL;
3830 	switch(st) {
3831 	case bad_word:
3832 		break;
3833 	case clear:
3834 		/* stopping an active array */
3835 		err = do_md_stop(mddev, 0, NULL);
3836 		break;
3837 	case inactive:
3838 		/* stopping an active array */
3839 		if (mddev->pers)
3840 			err = do_md_stop(mddev, 2, NULL);
3841 		else
3842 			err = 0; /* already inactive */
3843 		break;
3844 	case suspended:
3845 		break; /* not supported yet */
3846 	case readonly:
3847 		if (mddev->pers)
3848 			err = md_set_readonly(mddev, NULL);
3849 		else {
3850 			mddev->ro = 1;
3851 			set_disk_ro(mddev->gendisk, 1);
3852 			err = do_md_run(mddev);
3853 		}
3854 		break;
3855 	case read_auto:
3856 		if (mddev->pers) {
3857 			if (mddev->ro == 0)
3858 				err = md_set_readonly(mddev, NULL);
3859 			else if (mddev->ro == 1)
3860 				err = restart_array(mddev);
3861 			if (err == 0) {
3862 				mddev->ro = 2;
3863 				set_disk_ro(mddev->gendisk, 0);
3864 			}
3865 		} else {
3866 			mddev->ro = 2;
3867 			err = do_md_run(mddev);
3868 		}
3869 		break;
3870 	case clean:
3871 		if (mddev->pers) {
3872 			restart_array(mddev);
3873 			spin_lock(&mddev->lock);
3874 			if (atomic_read(&mddev->writes_pending) == 0) {
3875 				if (mddev->in_sync == 0) {
3876 					mddev->in_sync = 1;
3877 					if (mddev->safemode == 1)
3878 						mddev->safemode = 0;
3879 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3880 				}
3881 				err = 0;
3882 			} else
3883 				err = -EBUSY;
3884 			spin_unlock(&mddev->lock);
3885 		} else
3886 			err = -EINVAL;
3887 		break;
3888 	case active:
3889 		if (mddev->pers) {
3890 			restart_array(mddev);
3891 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3892 			wake_up(&mddev->sb_wait);
3893 			err = 0;
3894 		} else {
3895 			mddev->ro = 0;
3896 			set_disk_ro(mddev->gendisk, 0);
3897 			err = do_md_run(mddev);
3898 		}
3899 		break;
3900 	case write_pending:
3901 	case active_idle:
3902 		/* these cannot be set */
3903 		break;
3904 	}
3905 
3906 	if (!err) {
3907 		if (mddev->hold_active == UNTIL_IOCTL)
3908 			mddev->hold_active = 0;
3909 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3910 	}
3911 	mddev_unlock(mddev);
3912 	return err ?: len;
3913 }
3914 static struct md_sysfs_entry md_array_state =
3915 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3916 
3917 static ssize_t
3918 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3919 	return sprintf(page, "%d\n",
3920 		       atomic_read(&mddev->max_corr_read_errors));
3921 }
3922 
3923 static ssize_t
3924 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3925 {
3926 	unsigned int n;
3927 	int rv;
3928 
3929 	rv = kstrtouint(buf, 10, &n);
3930 	if (rv < 0)
3931 		return rv;
3932 	atomic_set(&mddev->max_corr_read_errors, n);
3933 	return len;
3934 }
3935 
3936 static struct md_sysfs_entry max_corr_read_errors =
3937 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3938 	max_corrected_read_errors_store);
3939 
3940 static ssize_t
3941 null_show(struct mddev *mddev, char *page)
3942 {
3943 	return -EINVAL;
3944 }
3945 
3946 static ssize_t
3947 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3948 {
3949 	/* buf must be %d:%d\n? giving major and minor numbers */
3950 	/* The new device is added to the array.
3951 	 * If the array has a persistent superblock, we read the
3952 	 * superblock to initialise info and check validity.
3953 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3954 	 * which mainly checks size.
3955 	 */
3956 	char *e;
3957 	int major = simple_strtoul(buf, &e, 10);
3958 	int minor;
3959 	dev_t dev;
3960 	struct md_rdev *rdev;
3961 	int err;
3962 
3963 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3964 		return -EINVAL;
3965 	minor = simple_strtoul(e+1, &e, 10);
3966 	if (*e && *e != '\n')
3967 		return -EINVAL;
3968 	dev = MKDEV(major, minor);
3969 	if (major != MAJOR(dev) ||
3970 	    minor != MINOR(dev))
3971 		return -EOVERFLOW;
3972 
3973 	flush_workqueue(md_misc_wq);
3974 
3975 	err = mddev_lock(mddev);
3976 	if (err)
3977 		return err;
3978 	if (mddev->persistent) {
3979 		rdev = md_import_device(dev, mddev->major_version,
3980 					mddev->minor_version);
3981 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3982 			struct md_rdev *rdev0
3983 				= list_entry(mddev->disks.next,
3984 					     struct md_rdev, same_set);
3985 			err = super_types[mddev->major_version]
3986 				.load_super(rdev, rdev0, mddev->minor_version);
3987 			if (err < 0)
3988 				goto out;
3989 		}
3990 	} else if (mddev->external)
3991 		rdev = md_import_device(dev, -2, -1);
3992 	else
3993 		rdev = md_import_device(dev, -1, -1);
3994 
3995 	if (IS_ERR(rdev)) {
3996 		mddev_unlock(mddev);
3997 		return PTR_ERR(rdev);
3998 	}
3999 	err = bind_rdev_to_array(rdev, mddev);
4000  out:
4001 	if (err)
4002 		export_rdev(rdev);
4003 	mddev_unlock(mddev);
4004 	return err ? err : len;
4005 }
4006 
4007 static struct md_sysfs_entry md_new_device =
4008 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4009 
4010 static ssize_t
4011 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4012 {
4013 	char *end;
4014 	unsigned long chunk, end_chunk;
4015 	int err;
4016 
4017 	err = mddev_lock(mddev);
4018 	if (err)
4019 		return err;
4020 	if (!mddev->bitmap)
4021 		goto out;
4022 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4023 	while (*buf) {
4024 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4025 		if (buf == end) break;
4026 		if (*end == '-') { /* range */
4027 			buf = end + 1;
4028 			end_chunk = simple_strtoul(buf, &end, 0);
4029 			if (buf == end) break;
4030 		}
4031 		if (*end && !isspace(*end)) break;
4032 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4033 		buf = skip_spaces(end);
4034 	}
4035 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4036 out:
4037 	mddev_unlock(mddev);
4038 	return len;
4039 }
4040 
4041 static struct md_sysfs_entry md_bitmap =
4042 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4043 
4044 static ssize_t
4045 size_show(struct mddev *mddev, char *page)
4046 {
4047 	return sprintf(page, "%llu\n",
4048 		(unsigned long long)mddev->dev_sectors / 2);
4049 }
4050 
4051 static int update_size(struct mddev *mddev, sector_t num_sectors);
4052 
4053 static ssize_t
4054 size_store(struct mddev *mddev, const char *buf, size_t len)
4055 {
4056 	/* If array is inactive, we can reduce the component size, but
4057 	 * not increase it (except from 0).
4058 	 * If array is active, we can try an on-line resize
4059 	 */
4060 	sector_t sectors;
4061 	int err = strict_blocks_to_sectors(buf, &sectors);
4062 
4063 	if (err < 0)
4064 		return err;
4065 	err = mddev_lock(mddev);
4066 	if (err)
4067 		return err;
4068 	if (mddev->pers) {
4069 		if (mddev_is_clustered(mddev))
4070 			md_cluster_ops->metadata_update_start(mddev);
4071 		err = update_size(mddev, sectors);
4072 		md_update_sb(mddev, 1);
4073 		if (mddev_is_clustered(mddev))
4074 			md_cluster_ops->metadata_update_finish(mddev);
4075 	} else {
4076 		if (mddev->dev_sectors == 0 ||
4077 		    mddev->dev_sectors > sectors)
4078 			mddev->dev_sectors = sectors;
4079 		else
4080 			err = -ENOSPC;
4081 	}
4082 	mddev_unlock(mddev);
4083 	return err ? err : len;
4084 }
4085 
4086 static struct md_sysfs_entry md_size =
4087 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4088 
4089 /* Metadata version.
4090  * This is one of
4091  *   'none' for arrays with no metadata (good luck...)
4092  *   'external' for arrays with externally managed metadata,
4093  * or N.M for internally known formats
4094  */
4095 static ssize_t
4096 metadata_show(struct mddev *mddev, char *page)
4097 {
4098 	if (mddev->persistent)
4099 		return sprintf(page, "%d.%d\n",
4100 			       mddev->major_version, mddev->minor_version);
4101 	else if (mddev->external)
4102 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4103 	else
4104 		return sprintf(page, "none\n");
4105 }
4106 
4107 static ssize_t
4108 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4109 {
4110 	int major, minor;
4111 	char *e;
4112 	int err;
4113 	/* Changing the details of 'external' metadata is
4114 	 * always permitted.  Otherwise there must be
4115 	 * no devices attached to the array.
4116 	 */
4117 
4118 	err = mddev_lock(mddev);
4119 	if (err)
4120 		return err;
4121 	err = -EBUSY;
4122 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4123 		;
4124 	else if (!list_empty(&mddev->disks))
4125 		goto out_unlock;
4126 
4127 	err = 0;
4128 	if (cmd_match(buf, "none")) {
4129 		mddev->persistent = 0;
4130 		mddev->external = 0;
4131 		mddev->major_version = 0;
4132 		mddev->minor_version = 90;
4133 		goto out_unlock;
4134 	}
4135 	if (strncmp(buf, "external:", 9) == 0) {
4136 		size_t namelen = len-9;
4137 		if (namelen >= sizeof(mddev->metadata_type))
4138 			namelen = sizeof(mddev->metadata_type)-1;
4139 		strncpy(mddev->metadata_type, buf+9, namelen);
4140 		mddev->metadata_type[namelen] = 0;
4141 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4142 			mddev->metadata_type[--namelen] = 0;
4143 		mddev->persistent = 0;
4144 		mddev->external = 1;
4145 		mddev->major_version = 0;
4146 		mddev->minor_version = 90;
4147 		goto out_unlock;
4148 	}
4149 	major = simple_strtoul(buf, &e, 10);
4150 	err = -EINVAL;
4151 	if (e==buf || *e != '.')
4152 		goto out_unlock;
4153 	buf = e+1;
4154 	minor = simple_strtoul(buf, &e, 10);
4155 	if (e==buf || (*e && *e != '\n') )
4156 		goto out_unlock;
4157 	err = -ENOENT;
4158 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4159 		goto out_unlock;
4160 	mddev->major_version = major;
4161 	mddev->minor_version = minor;
4162 	mddev->persistent = 1;
4163 	mddev->external = 0;
4164 	err = 0;
4165 out_unlock:
4166 	mddev_unlock(mddev);
4167 	return err ?: len;
4168 }
4169 
4170 static struct md_sysfs_entry md_metadata =
4171 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4172 
4173 static ssize_t
4174 action_show(struct mddev *mddev, char *page)
4175 {
4176 	char *type = "idle";
4177 	unsigned long recovery = mddev->recovery;
4178 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4179 		type = "frozen";
4180 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4181 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4182 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4183 			type = "reshape";
4184 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4185 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4186 				type = "resync";
4187 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4188 				type = "check";
4189 			else
4190 				type = "repair";
4191 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4192 			type = "recover";
4193 		else if (mddev->reshape_position != MaxSector)
4194 			type = "reshape";
4195 	}
4196 	return sprintf(page, "%s\n", type);
4197 }
4198 
4199 static ssize_t
4200 action_store(struct mddev *mddev, const char *page, size_t len)
4201 {
4202 	if (!mddev->pers || !mddev->pers->sync_request)
4203 		return -EINVAL;
4204 
4205 
4206 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4207 		if (cmd_match(page, "frozen"))
4208 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4209 		else
4210 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4211 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4212 		    mddev_lock(mddev) == 0) {
4213 			flush_workqueue(md_misc_wq);
4214 			if (mddev->sync_thread) {
4215 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4216 				md_reap_sync_thread(mddev);
4217 			}
4218 			mddev_unlock(mddev);
4219 		}
4220 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4221 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4222 		return -EBUSY;
4223 	else if (cmd_match(page, "resync"))
4224 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4225 	else if (cmd_match(page, "recover")) {
4226 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4227 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4228 	} else if (cmd_match(page, "reshape")) {
4229 		int err;
4230 		if (mddev->pers->start_reshape == NULL)
4231 			return -EINVAL;
4232 		err = mddev_lock(mddev);
4233 		if (!err) {
4234 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4235 			err = mddev->pers->start_reshape(mddev);
4236 			mddev_unlock(mddev);
4237 		}
4238 		if (err)
4239 			return err;
4240 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4241 	} else {
4242 		if (cmd_match(page, "check"))
4243 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4244 		else if (!cmd_match(page, "repair"))
4245 			return -EINVAL;
4246 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4247 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4248 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4249 	}
4250 	if (mddev->ro == 2) {
4251 		/* A write to sync_action is enough to justify
4252 		 * canceling read-auto mode
4253 		 */
4254 		mddev->ro = 0;
4255 		md_wakeup_thread(mddev->sync_thread);
4256 	}
4257 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4258 	md_wakeup_thread(mddev->thread);
4259 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4260 	return len;
4261 }
4262 
4263 static struct md_sysfs_entry md_scan_mode =
4264 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4265 
4266 static ssize_t
4267 last_sync_action_show(struct mddev *mddev, char *page)
4268 {
4269 	return sprintf(page, "%s\n", mddev->last_sync_action);
4270 }
4271 
4272 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4273 
4274 static ssize_t
4275 mismatch_cnt_show(struct mddev *mddev, char *page)
4276 {
4277 	return sprintf(page, "%llu\n",
4278 		       (unsigned long long)
4279 		       atomic64_read(&mddev->resync_mismatches));
4280 }
4281 
4282 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4283 
4284 static ssize_t
4285 sync_min_show(struct mddev *mddev, char *page)
4286 {
4287 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4288 		       mddev->sync_speed_min ? "local": "system");
4289 }
4290 
4291 static ssize_t
4292 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4293 {
4294 	unsigned int min;
4295 	int rv;
4296 
4297 	if (strncmp(buf, "system", 6)==0) {
4298 		min = 0;
4299 	} else {
4300 		rv = kstrtouint(buf, 10, &min);
4301 		if (rv < 0)
4302 			return rv;
4303 		if (min == 0)
4304 			return -EINVAL;
4305 	}
4306 	mddev->sync_speed_min = min;
4307 	return len;
4308 }
4309 
4310 static struct md_sysfs_entry md_sync_min =
4311 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4312 
4313 static ssize_t
4314 sync_max_show(struct mddev *mddev, char *page)
4315 {
4316 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4317 		       mddev->sync_speed_max ? "local": "system");
4318 }
4319 
4320 static ssize_t
4321 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4322 {
4323 	unsigned int max;
4324 	int rv;
4325 
4326 	if (strncmp(buf, "system", 6)==0) {
4327 		max = 0;
4328 	} else {
4329 		rv = kstrtouint(buf, 10, &max);
4330 		if (rv < 0)
4331 			return rv;
4332 		if (max == 0)
4333 			return -EINVAL;
4334 	}
4335 	mddev->sync_speed_max = max;
4336 	return len;
4337 }
4338 
4339 static struct md_sysfs_entry md_sync_max =
4340 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4341 
4342 static ssize_t
4343 degraded_show(struct mddev *mddev, char *page)
4344 {
4345 	return sprintf(page, "%d\n", mddev->degraded);
4346 }
4347 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4348 
4349 static ssize_t
4350 sync_force_parallel_show(struct mddev *mddev, char *page)
4351 {
4352 	return sprintf(page, "%d\n", mddev->parallel_resync);
4353 }
4354 
4355 static ssize_t
4356 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358 	long n;
4359 
4360 	if (kstrtol(buf, 10, &n))
4361 		return -EINVAL;
4362 
4363 	if (n != 0 && n != 1)
4364 		return -EINVAL;
4365 
4366 	mddev->parallel_resync = n;
4367 
4368 	if (mddev->sync_thread)
4369 		wake_up(&resync_wait);
4370 
4371 	return len;
4372 }
4373 
4374 /* force parallel resync, even with shared block devices */
4375 static struct md_sysfs_entry md_sync_force_parallel =
4376 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4377        sync_force_parallel_show, sync_force_parallel_store);
4378 
4379 static ssize_t
4380 sync_speed_show(struct mddev *mddev, char *page)
4381 {
4382 	unsigned long resync, dt, db;
4383 	if (mddev->curr_resync == 0)
4384 		return sprintf(page, "none\n");
4385 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4386 	dt = (jiffies - mddev->resync_mark) / HZ;
4387 	if (!dt) dt++;
4388 	db = resync - mddev->resync_mark_cnt;
4389 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4390 }
4391 
4392 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4393 
4394 static ssize_t
4395 sync_completed_show(struct mddev *mddev, char *page)
4396 {
4397 	unsigned long long max_sectors, resync;
4398 
4399 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4400 		return sprintf(page, "none\n");
4401 
4402 	if (mddev->curr_resync == 1 ||
4403 	    mddev->curr_resync == 2)
4404 		return sprintf(page, "delayed\n");
4405 
4406 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4407 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4408 		max_sectors = mddev->resync_max_sectors;
4409 	else
4410 		max_sectors = mddev->dev_sectors;
4411 
4412 	resync = mddev->curr_resync_completed;
4413 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4414 }
4415 
4416 static struct md_sysfs_entry md_sync_completed =
4417 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4418 
4419 static ssize_t
4420 min_sync_show(struct mddev *mddev, char *page)
4421 {
4422 	return sprintf(page, "%llu\n",
4423 		       (unsigned long long)mddev->resync_min);
4424 }
4425 static ssize_t
4426 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4427 {
4428 	unsigned long long min;
4429 	int err;
4430 
4431 	if (kstrtoull(buf, 10, &min))
4432 		return -EINVAL;
4433 
4434 	spin_lock(&mddev->lock);
4435 	err = -EINVAL;
4436 	if (min > mddev->resync_max)
4437 		goto out_unlock;
4438 
4439 	err = -EBUSY;
4440 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4441 		goto out_unlock;
4442 
4443 	/* Round down to multiple of 4K for safety */
4444 	mddev->resync_min = round_down(min, 8);
4445 	err = 0;
4446 
4447 out_unlock:
4448 	spin_unlock(&mddev->lock);
4449 	return err ?: len;
4450 }
4451 
4452 static struct md_sysfs_entry md_min_sync =
4453 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4454 
4455 static ssize_t
4456 max_sync_show(struct mddev *mddev, char *page)
4457 {
4458 	if (mddev->resync_max == MaxSector)
4459 		return sprintf(page, "max\n");
4460 	else
4461 		return sprintf(page, "%llu\n",
4462 			       (unsigned long long)mddev->resync_max);
4463 }
4464 static ssize_t
4465 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4466 {
4467 	int err;
4468 	spin_lock(&mddev->lock);
4469 	if (strncmp(buf, "max", 3) == 0)
4470 		mddev->resync_max = MaxSector;
4471 	else {
4472 		unsigned long long max;
4473 		int chunk;
4474 
4475 		err = -EINVAL;
4476 		if (kstrtoull(buf, 10, &max))
4477 			goto out_unlock;
4478 		if (max < mddev->resync_min)
4479 			goto out_unlock;
4480 
4481 		err = -EBUSY;
4482 		if (max < mddev->resync_max &&
4483 		    mddev->ro == 0 &&
4484 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4485 			goto out_unlock;
4486 
4487 		/* Must be a multiple of chunk_size */
4488 		chunk = mddev->chunk_sectors;
4489 		if (chunk) {
4490 			sector_t temp = max;
4491 
4492 			err = -EINVAL;
4493 			if (sector_div(temp, chunk))
4494 				goto out_unlock;
4495 		}
4496 		mddev->resync_max = max;
4497 	}
4498 	wake_up(&mddev->recovery_wait);
4499 	err = 0;
4500 out_unlock:
4501 	spin_unlock(&mddev->lock);
4502 	return err ?: len;
4503 }
4504 
4505 static struct md_sysfs_entry md_max_sync =
4506 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4507 
4508 static ssize_t
4509 suspend_lo_show(struct mddev *mddev, char *page)
4510 {
4511 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4512 }
4513 
4514 static ssize_t
4515 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4516 {
4517 	unsigned long long old, new;
4518 	int err;
4519 
4520 	err = kstrtoull(buf, 10, &new);
4521 	if (err < 0)
4522 		return err;
4523 	if (new != (sector_t)new)
4524 		return -EINVAL;
4525 
4526 	err = mddev_lock(mddev);
4527 	if (err)
4528 		return err;
4529 	err = -EINVAL;
4530 	if (mddev->pers == NULL ||
4531 	    mddev->pers->quiesce == NULL)
4532 		goto unlock;
4533 	old = mddev->suspend_lo;
4534 	mddev->suspend_lo = new;
4535 	if (new >= old)
4536 		/* Shrinking suspended region */
4537 		mddev->pers->quiesce(mddev, 2);
4538 	else {
4539 		/* Expanding suspended region - need to wait */
4540 		mddev->pers->quiesce(mddev, 1);
4541 		mddev->pers->quiesce(mddev, 0);
4542 	}
4543 	err = 0;
4544 unlock:
4545 	mddev_unlock(mddev);
4546 	return err ?: len;
4547 }
4548 static struct md_sysfs_entry md_suspend_lo =
4549 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4550 
4551 static ssize_t
4552 suspend_hi_show(struct mddev *mddev, char *page)
4553 {
4554 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4555 }
4556 
4557 static ssize_t
4558 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4559 {
4560 	unsigned long long old, new;
4561 	int err;
4562 
4563 	err = kstrtoull(buf, 10, &new);
4564 	if (err < 0)
4565 		return err;
4566 	if (new != (sector_t)new)
4567 		return -EINVAL;
4568 
4569 	err = mddev_lock(mddev);
4570 	if (err)
4571 		return err;
4572 	err = -EINVAL;
4573 	if (mddev->pers == NULL ||
4574 	    mddev->pers->quiesce == NULL)
4575 		goto unlock;
4576 	old = mddev->suspend_hi;
4577 	mddev->suspend_hi = new;
4578 	if (new <= old)
4579 		/* Shrinking suspended region */
4580 		mddev->pers->quiesce(mddev, 2);
4581 	else {
4582 		/* Expanding suspended region - need to wait */
4583 		mddev->pers->quiesce(mddev, 1);
4584 		mddev->pers->quiesce(mddev, 0);
4585 	}
4586 	err = 0;
4587 unlock:
4588 	mddev_unlock(mddev);
4589 	return err ?: len;
4590 }
4591 static struct md_sysfs_entry md_suspend_hi =
4592 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4593 
4594 static ssize_t
4595 reshape_position_show(struct mddev *mddev, char *page)
4596 {
4597 	if (mddev->reshape_position != MaxSector)
4598 		return sprintf(page, "%llu\n",
4599 			       (unsigned long long)mddev->reshape_position);
4600 	strcpy(page, "none\n");
4601 	return 5;
4602 }
4603 
4604 static ssize_t
4605 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4606 {
4607 	struct md_rdev *rdev;
4608 	unsigned long long new;
4609 	int err;
4610 
4611 	err = kstrtoull(buf, 10, &new);
4612 	if (err < 0)
4613 		return err;
4614 	if (new != (sector_t)new)
4615 		return -EINVAL;
4616 	err = mddev_lock(mddev);
4617 	if (err)
4618 		return err;
4619 	err = -EBUSY;
4620 	if (mddev->pers)
4621 		goto unlock;
4622 	mddev->reshape_position = new;
4623 	mddev->delta_disks = 0;
4624 	mddev->reshape_backwards = 0;
4625 	mddev->new_level = mddev->level;
4626 	mddev->new_layout = mddev->layout;
4627 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4628 	rdev_for_each(rdev, mddev)
4629 		rdev->new_data_offset = rdev->data_offset;
4630 	err = 0;
4631 unlock:
4632 	mddev_unlock(mddev);
4633 	return err ?: len;
4634 }
4635 
4636 static struct md_sysfs_entry md_reshape_position =
4637 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4638        reshape_position_store);
4639 
4640 static ssize_t
4641 reshape_direction_show(struct mddev *mddev, char *page)
4642 {
4643 	return sprintf(page, "%s\n",
4644 		       mddev->reshape_backwards ? "backwards" : "forwards");
4645 }
4646 
4647 static ssize_t
4648 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4649 {
4650 	int backwards = 0;
4651 	int err;
4652 
4653 	if (cmd_match(buf, "forwards"))
4654 		backwards = 0;
4655 	else if (cmd_match(buf, "backwards"))
4656 		backwards = 1;
4657 	else
4658 		return -EINVAL;
4659 	if (mddev->reshape_backwards == backwards)
4660 		return len;
4661 
4662 	err = mddev_lock(mddev);
4663 	if (err)
4664 		return err;
4665 	/* check if we are allowed to change */
4666 	if (mddev->delta_disks)
4667 		err = -EBUSY;
4668 	else if (mddev->persistent &&
4669 	    mddev->major_version == 0)
4670 		err =  -EINVAL;
4671 	else
4672 		mddev->reshape_backwards = backwards;
4673 	mddev_unlock(mddev);
4674 	return err ?: len;
4675 }
4676 
4677 static struct md_sysfs_entry md_reshape_direction =
4678 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4679        reshape_direction_store);
4680 
4681 static ssize_t
4682 array_size_show(struct mddev *mddev, char *page)
4683 {
4684 	if (mddev->external_size)
4685 		return sprintf(page, "%llu\n",
4686 			       (unsigned long long)mddev->array_sectors/2);
4687 	else
4688 		return sprintf(page, "default\n");
4689 }
4690 
4691 static ssize_t
4692 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4693 {
4694 	sector_t sectors;
4695 	int err;
4696 
4697 	err = mddev_lock(mddev);
4698 	if (err)
4699 		return err;
4700 
4701 	if (strncmp(buf, "default", 7) == 0) {
4702 		if (mddev->pers)
4703 			sectors = mddev->pers->size(mddev, 0, 0);
4704 		else
4705 			sectors = mddev->array_sectors;
4706 
4707 		mddev->external_size = 0;
4708 	} else {
4709 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4710 			err = -EINVAL;
4711 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4712 			err = -E2BIG;
4713 		else
4714 			mddev->external_size = 1;
4715 	}
4716 
4717 	if (!err) {
4718 		mddev->array_sectors = sectors;
4719 		if (mddev->pers) {
4720 			set_capacity(mddev->gendisk, mddev->array_sectors);
4721 			revalidate_disk(mddev->gendisk);
4722 		}
4723 	}
4724 	mddev_unlock(mddev);
4725 	return err ?: len;
4726 }
4727 
4728 static struct md_sysfs_entry md_array_size =
4729 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4730        array_size_store);
4731 
4732 static struct attribute *md_default_attrs[] = {
4733 	&md_level.attr,
4734 	&md_layout.attr,
4735 	&md_raid_disks.attr,
4736 	&md_chunk_size.attr,
4737 	&md_size.attr,
4738 	&md_resync_start.attr,
4739 	&md_metadata.attr,
4740 	&md_new_device.attr,
4741 	&md_safe_delay.attr,
4742 	&md_array_state.attr,
4743 	&md_reshape_position.attr,
4744 	&md_reshape_direction.attr,
4745 	&md_array_size.attr,
4746 	&max_corr_read_errors.attr,
4747 	NULL,
4748 };
4749 
4750 static struct attribute *md_redundancy_attrs[] = {
4751 	&md_scan_mode.attr,
4752 	&md_last_scan_mode.attr,
4753 	&md_mismatches.attr,
4754 	&md_sync_min.attr,
4755 	&md_sync_max.attr,
4756 	&md_sync_speed.attr,
4757 	&md_sync_force_parallel.attr,
4758 	&md_sync_completed.attr,
4759 	&md_min_sync.attr,
4760 	&md_max_sync.attr,
4761 	&md_suspend_lo.attr,
4762 	&md_suspend_hi.attr,
4763 	&md_bitmap.attr,
4764 	&md_degraded.attr,
4765 	NULL,
4766 };
4767 static struct attribute_group md_redundancy_group = {
4768 	.name = NULL,
4769 	.attrs = md_redundancy_attrs,
4770 };
4771 
4772 static ssize_t
4773 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4774 {
4775 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4776 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4777 	ssize_t rv;
4778 
4779 	if (!entry->show)
4780 		return -EIO;
4781 	spin_lock(&all_mddevs_lock);
4782 	if (list_empty(&mddev->all_mddevs)) {
4783 		spin_unlock(&all_mddevs_lock);
4784 		return -EBUSY;
4785 	}
4786 	mddev_get(mddev);
4787 	spin_unlock(&all_mddevs_lock);
4788 
4789 	rv = entry->show(mddev, page);
4790 	mddev_put(mddev);
4791 	return rv;
4792 }
4793 
4794 static ssize_t
4795 md_attr_store(struct kobject *kobj, struct attribute *attr,
4796 	      const char *page, size_t length)
4797 {
4798 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4799 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4800 	ssize_t rv;
4801 
4802 	if (!entry->store)
4803 		return -EIO;
4804 	if (!capable(CAP_SYS_ADMIN))
4805 		return -EACCES;
4806 	spin_lock(&all_mddevs_lock);
4807 	if (list_empty(&mddev->all_mddevs)) {
4808 		spin_unlock(&all_mddevs_lock);
4809 		return -EBUSY;
4810 	}
4811 	mddev_get(mddev);
4812 	spin_unlock(&all_mddevs_lock);
4813 	rv = entry->store(mddev, page, length);
4814 	mddev_put(mddev);
4815 	return rv;
4816 }
4817 
4818 static void md_free(struct kobject *ko)
4819 {
4820 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4821 
4822 	if (mddev->sysfs_state)
4823 		sysfs_put(mddev->sysfs_state);
4824 
4825 	if (mddev->queue)
4826 		blk_cleanup_queue(mddev->queue);
4827 	if (mddev->gendisk) {
4828 		del_gendisk(mddev->gendisk);
4829 		put_disk(mddev->gendisk);
4830 	}
4831 
4832 	kfree(mddev);
4833 }
4834 
4835 static const struct sysfs_ops md_sysfs_ops = {
4836 	.show	= md_attr_show,
4837 	.store	= md_attr_store,
4838 };
4839 static struct kobj_type md_ktype = {
4840 	.release	= md_free,
4841 	.sysfs_ops	= &md_sysfs_ops,
4842 	.default_attrs	= md_default_attrs,
4843 };
4844 
4845 int mdp_major = 0;
4846 
4847 static void mddev_delayed_delete(struct work_struct *ws)
4848 {
4849 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4850 
4851 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4852 	kobject_del(&mddev->kobj);
4853 	kobject_put(&mddev->kobj);
4854 }
4855 
4856 static int md_alloc(dev_t dev, char *name)
4857 {
4858 	static DEFINE_MUTEX(disks_mutex);
4859 	struct mddev *mddev = mddev_find(dev);
4860 	struct gendisk *disk;
4861 	int partitioned;
4862 	int shift;
4863 	int unit;
4864 	int error;
4865 
4866 	if (!mddev)
4867 		return -ENODEV;
4868 
4869 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4870 	shift = partitioned ? MdpMinorShift : 0;
4871 	unit = MINOR(mddev->unit) >> shift;
4872 
4873 	/* wait for any previous instance of this device to be
4874 	 * completely removed (mddev_delayed_delete).
4875 	 */
4876 	flush_workqueue(md_misc_wq);
4877 
4878 	mutex_lock(&disks_mutex);
4879 	error = -EEXIST;
4880 	if (mddev->gendisk)
4881 		goto abort;
4882 
4883 	if (name) {
4884 		/* Need to ensure that 'name' is not a duplicate.
4885 		 */
4886 		struct mddev *mddev2;
4887 		spin_lock(&all_mddevs_lock);
4888 
4889 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4890 			if (mddev2->gendisk &&
4891 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4892 				spin_unlock(&all_mddevs_lock);
4893 				goto abort;
4894 			}
4895 		spin_unlock(&all_mddevs_lock);
4896 	}
4897 
4898 	error = -ENOMEM;
4899 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4900 	if (!mddev->queue)
4901 		goto abort;
4902 	mddev->queue->queuedata = mddev;
4903 
4904 	blk_queue_make_request(mddev->queue, md_make_request);
4905 	blk_set_stacking_limits(&mddev->queue->limits);
4906 
4907 	disk = alloc_disk(1 << shift);
4908 	if (!disk) {
4909 		blk_cleanup_queue(mddev->queue);
4910 		mddev->queue = NULL;
4911 		goto abort;
4912 	}
4913 	disk->major = MAJOR(mddev->unit);
4914 	disk->first_minor = unit << shift;
4915 	if (name)
4916 		strcpy(disk->disk_name, name);
4917 	else if (partitioned)
4918 		sprintf(disk->disk_name, "md_d%d", unit);
4919 	else
4920 		sprintf(disk->disk_name, "md%d", unit);
4921 	disk->fops = &md_fops;
4922 	disk->private_data = mddev;
4923 	disk->queue = mddev->queue;
4924 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4925 	/* Allow extended partitions.  This makes the
4926 	 * 'mdp' device redundant, but we can't really
4927 	 * remove it now.
4928 	 */
4929 	disk->flags |= GENHD_FL_EXT_DEVT;
4930 	mddev->gendisk = disk;
4931 	/* As soon as we call add_disk(), another thread could get
4932 	 * through to md_open, so make sure it doesn't get too far
4933 	 */
4934 	mutex_lock(&mddev->open_mutex);
4935 	add_disk(disk);
4936 
4937 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4938 				     &disk_to_dev(disk)->kobj, "%s", "md");
4939 	if (error) {
4940 		/* This isn't possible, but as kobject_init_and_add is marked
4941 		 * __must_check, we must do something with the result
4942 		 */
4943 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4944 		       disk->disk_name);
4945 		error = 0;
4946 	}
4947 	if (mddev->kobj.sd &&
4948 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4949 		printk(KERN_DEBUG "pointless warning\n");
4950 	mutex_unlock(&mddev->open_mutex);
4951  abort:
4952 	mutex_unlock(&disks_mutex);
4953 	if (!error && mddev->kobj.sd) {
4954 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4955 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4956 	}
4957 	mddev_put(mddev);
4958 	return error;
4959 }
4960 
4961 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4962 {
4963 	md_alloc(dev, NULL);
4964 	return NULL;
4965 }
4966 
4967 static int add_named_array(const char *val, struct kernel_param *kp)
4968 {
4969 	/* val must be "md_*" where * is not all digits.
4970 	 * We allocate an array with a large free minor number, and
4971 	 * set the name to val.  val must not already be an active name.
4972 	 */
4973 	int len = strlen(val);
4974 	char buf[DISK_NAME_LEN];
4975 
4976 	while (len && val[len-1] == '\n')
4977 		len--;
4978 	if (len >= DISK_NAME_LEN)
4979 		return -E2BIG;
4980 	strlcpy(buf, val, len+1);
4981 	if (strncmp(buf, "md_", 3) != 0)
4982 		return -EINVAL;
4983 	return md_alloc(0, buf);
4984 }
4985 
4986 static void md_safemode_timeout(unsigned long data)
4987 {
4988 	struct mddev *mddev = (struct mddev *) data;
4989 
4990 	if (!atomic_read(&mddev->writes_pending)) {
4991 		mddev->safemode = 1;
4992 		if (mddev->external)
4993 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4994 	}
4995 	md_wakeup_thread(mddev->thread);
4996 }
4997 
4998 static int start_dirty_degraded;
4999 
5000 int md_run(struct mddev *mddev)
5001 {
5002 	int err;
5003 	struct md_rdev *rdev;
5004 	struct md_personality *pers;
5005 
5006 	if (list_empty(&mddev->disks))
5007 		/* cannot run an array with no devices.. */
5008 		return -EINVAL;
5009 
5010 	if (mddev->pers)
5011 		return -EBUSY;
5012 	/* Cannot run until previous stop completes properly */
5013 	if (mddev->sysfs_active)
5014 		return -EBUSY;
5015 
5016 	/*
5017 	 * Analyze all RAID superblock(s)
5018 	 */
5019 	if (!mddev->raid_disks) {
5020 		if (!mddev->persistent)
5021 			return -EINVAL;
5022 		analyze_sbs(mddev);
5023 	}
5024 
5025 	if (mddev->level != LEVEL_NONE)
5026 		request_module("md-level-%d", mddev->level);
5027 	else if (mddev->clevel[0])
5028 		request_module("md-%s", mddev->clevel);
5029 
5030 	/*
5031 	 * Drop all container device buffers, from now on
5032 	 * the only valid external interface is through the md
5033 	 * device.
5034 	 */
5035 	rdev_for_each(rdev, mddev) {
5036 		if (test_bit(Faulty, &rdev->flags))
5037 			continue;
5038 		sync_blockdev(rdev->bdev);
5039 		invalidate_bdev(rdev->bdev);
5040 
5041 		/* perform some consistency tests on the device.
5042 		 * We don't want the data to overlap the metadata,
5043 		 * Internal Bitmap issues have been handled elsewhere.
5044 		 */
5045 		if (rdev->meta_bdev) {
5046 			/* Nothing to check */;
5047 		} else if (rdev->data_offset < rdev->sb_start) {
5048 			if (mddev->dev_sectors &&
5049 			    rdev->data_offset + mddev->dev_sectors
5050 			    > rdev->sb_start) {
5051 				printk("md: %s: data overlaps metadata\n",
5052 				       mdname(mddev));
5053 				return -EINVAL;
5054 			}
5055 		} else {
5056 			if (rdev->sb_start + rdev->sb_size/512
5057 			    > rdev->data_offset) {
5058 				printk("md: %s: metadata overlaps data\n",
5059 				       mdname(mddev));
5060 				return -EINVAL;
5061 			}
5062 		}
5063 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5064 	}
5065 
5066 	if (mddev->bio_set == NULL)
5067 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5068 
5069 	spin_lock(&pers_lock);
5070 	pers = find_pers(mddev->level, mddev->clevel);
5071 	if (!pers || !try_module_get(pers->owner)) {
5072 		spin_unlock(&pers_lock);
5073 		if (mddev->level != LEVEL_NONE)
5074 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5075 			       mddev->level);
5076 		else
5077 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5078 			       mddev->clevel);
5079 		return -EINVAL;
5080 	}
5081 	spin_unlock(&pers_lock);
5082 	if (mddev->level != pers->level) {
5083 		mddev->level = pers->level;
5084 		mddev->new_level = pers->level;
5085 	}
5086 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5087 
5088 	if (mddev->reshape_position != MaxSector &&
5089 	    pers->start_reshape == NULL) {
5090 		/* This personality cannot handle reshaping... */
5091 		module_put(pers->owner);
5092 		return -EINVAL;
5093 	}
5094 
5095 	if (pers->sync_request) {
5096 		/* Warn if this is a potentially silly
5097 		 * configuration.
5098 		 */
5099 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5100 		struct md_rdev *rdev2;
5101 		int warned = 0;
5102 
5103 		rdev_for_each(rdev, mddev)
5104 			rdev_for_each(rdev2, mddev) {
5105 				if (rdev < rdev2 &&
5106 				    rdev->bdev->bd_contains ==
5107 				    rdev2->bdev->bd_contains) {
5108 					printk(KERN_WARNING
5109 					       "%s: WARNING: %s appears to be"
5110 					       " on the same physical disk as"
5111 					       " %s.\n",
5112 					       mdname(mddev),
5113 					       bdevname(rdev->bdev,b),
5114 					       bdevname(rdev2->bdev,b2));
5115 					warned = 1;
5116 				}
5117 			}
5118 
5119 		if (warned)
5120 			printk(KERN_WARNING
5121 			       "True protection against single-disk"
5122 			       " failure might be compromised.\n");
5123 	}
5124 
5125 	mddev->recovery = 0;
5126 	/* may be over-ridden by personality */
5127 	mddev->resync_max_sectors = mddev->dev_sectors;
5128 
5129 	mddev->ok_start_degraded = start_dirty_degraded;
5130 
5131 	if (start_readonly && mddev->ro == 0)
5132 		mddev->ro = 2; /* read-only, but switch on first write */
5133 
5134 	err = pers->run(mddev);
5135 	if (err)
5136 		printk(KERN_ERR "md: pers->run() failed ...\n");
5137 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5138 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5139 			  " but 'external_size' not in effect?\n", __func__);
5140 		printk(KERN_ERR
5141 		       "md: invalid array_size %llu > default size %llu\n",
5142 		       (unsigned long long)mddev->array_sectors / 2,
5143 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5144 		err = -EINVAL;
5145 	}
5146 	if (err == 0 && pers->sync_request &&
5147 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5148 		struct bitmap *bitmap;
5149 
5150 		bitmap = bitmap_create(mddev, -1);
5151 		if (IS_ERR(bitmap)) {
5152 			err = PTR_ERR(bitmap);
5153 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5154 			       mdname(mddev), err);
5155 		} else
5156 			mddev->bitmap = bitmap;
5157 
5158 	}
5159 	if (err) {
5160 		mddev_detach(mddev);
5161 		if (mddev->private)
5162 			pers->free(mddev, mddev->private);
5163 		mddev->private = NULL;
5164 		module_put(pers->owner);
5165 		bitmap_destroy(mddev);
5166 		return err;
5167 	}
5168 	if (mddev->queue) {
5169 		mddev->queue->backing_dev_info.congested_data = mddev;
5170 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5171 	}
5172 	if (pers->sync_request) {
5173 		if (mddev->kobj.sd &&
5174 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5175 			printk(KERN_WARNING
5176 			       "md: cannot register extra attributes for %s\n",
5177 			       mdname(mddev));
5178 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5179 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5180 		mddev->ro = 0;
5181 
5182 	atomic_set(&mddev->writes_pending,0);
5183 	atomic_set(&mddev->max_corr_read_errors,
5184 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5185 	mddev->safemode = 0;
5186 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5187 	mddev->in_sync = 1;
5188 	smp_wmb();
5189 	spin_lock(&mddev->lock);
5190 	mddev->pers = pers;
5191 	mddev->ready = 1;
5192 	spin_unlock(&mddev->lock);
5193 	rdev_for_each(rdev, mddev)
5194 		if (rdev->raid_disk >= 0)
5195 			if (sysfs_link_rdev(mddev, rdev))
5196 				/* failure here is OK */;
5197 
5198 	if (mddev->degraded && !mddev->ro)
5199 		/* This ensures that recovering status is reported immediately
5200 		 * via sysfs - until a lack of spares is confirmed.
5201 		 */
5202 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5203 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5204 
5205 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5206 		md_update_sb(mddev, 0);
5207 
5208 	md_new_event(mddev);
5209 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5210 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5211 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5212 	return 0;
5213 }
5214 EXPORT_SYMBOL_GPL(md_run);
5215 
5216 static int do_md_run(struct mddev *mddev)
5217 {
5218 	int err;
5219 
5220 	err = md_run(mddev);
5221 	if (err)
5222 		goto out;
5223 	err = bitmap_load(mddev);
5224 	if (err) {
5225 		bitmap_destroy(mddev);
5226 		goto out;
5227 	}
5228 
5229 	md_wakeup_thread(mddev->thread);
5230 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5231 
5232 	set_capacity(mddev->gendisk, mddev->array_sectors);
5233 	revalidate_disk(mddev->gendisk);
5234 	mddev->changed = 1;
5235 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5236 out:
5237 	return err;
5238 }
5239 
5240 static int restart_array(struct mddev *mddev)
5241 {
5242 	struct gendisk *disk = mddev->gendisk;
5243 
5244 	/* Complain if it has no devices */
5245 	if (list_empty(&mddev->disks))
5246 		return -ENXIO;
5247 	if (!mddev->pers)
5248 		return -EINVAL;
5249 	if (!mddev->ro)
5250 		return -EBUSY;
5251 	mddev->safemode = 0;
5252 	mddev->ro = 0;
5253 	set_disk_ro(disk, 0);
5254 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5255 		mdname(mddev));
5256 	/* Kick recovery or resync if necessary */
5257 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5258 	md_wakeup_thread(mddev->thread);
5259 	md_wakeup_thread(mddev->sync_thread);
5260 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5261 	return 0;
5262 }
5263 
5264 static void md_clean(struct mddev *mddev)
5265 {
5266 	mddev->array_sectors = 0;
5267 	mddev->external_size = 0;
5268 	mddev->dev_sectors = 0;
5269 	mddev->raid_disks = 0;
5270 	mddev->recovery_cp = 0;
5271 	mddev->resync_min = 0;
5272 	mddev->resync_max = MaxSector;
5273 	mddev->reshape_position = MaxSector;
5274 	mddev->external = 0;
5275 	mddev->persistent = 0;
5276 	mddev->level = LEVEL_NONE;
5277 	mddev->clevel[0] = 0;
5278 	mddev->flags = 0;
5279 	mddev->ro = 0;
5280 	mddev->metadata_type[0] = 0;
5281 	mddev->chunk_sectors = 0;
5282 	mddev->ctime = mddev->utime = 0;
5283 	mddev->layout = 0;
5284 	mddev->max_disks = 0;
5285 	mddev->events = 0;
5286 	mddev->can_decrease_events = 0;
5287 	mddev->delta_disks = 0;
5288 	mddev->reshape_backwards = 0;
5289 	mddev->new_level = LEVEL_NONE;
5290 	mddev->new_layout = 0;
5291 	mddev->new_chunk_sectors = 0;
5292 	mddev->curr_resync = 0;
5293 	atomic64_set(&mddev->resync_mismatches, 0);
5294 	mddev->suspend_lo = mddev->suspend_hi = 0;
5295 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5296 	mddev->recovery = 0;
5297 	mddev->in_sync = 0;
5298 	mddev->changed = 0;
5299 	mddev->degraded = 0;
5300 	mddev->safemode = 0;
5301 	mddev->private = NULL;
5302 	mddev->bitmap_info.offset = 0;
5303 	mddev->bitmap_info.default_offset = 0;
5304 	mddev->bitmap_info.default_space = 0;
5305 	mddev->bitmap_info.chunksize = 0;
5306 	mddev->bitmap_info.daemon_sleep = 0;
5307 	mddev->bitmap_info.max_write_behind = 0;
5308 }
5309 
5310 static void __md_stop_writes(struct mddev *mddev)
5311 {
5312 	if (mddev_is_clustered(mddev))
5313 		md_cluster_ops->metadata_update_start(mddev);
5314 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5315 	flush_workqueue(md_misc_wq);
5316 	if (mddev->sync_thread) {
5317 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5318 		md_reap_sync_thread(mddev);
5319 	}
5320 
5321 	del_timer_sync(&mddev->safemode_timer);
5322 
5323 	bitmap_flush(mddev);
5324 	md_super_wait(mddev);
5325 
5326 	if (mddev->ro == 0 &&
5327 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5328 		/* mark array as shutdown cleanly */
5329 		mddev->in_sync = 1;
5330 		md_update_sb(mddev, 1);
5331 	}
5332 	if (mddev_is_clustered(mddev))
5333 		md_cluster_ops->metadata_update_finish(mddev);
5334 }
5335 
5336 void md_stop_writes(struct mddev *mddev)
5337 {
5338 	mddev_lock_nointr(mddev);
5339 	__md_stop_writes(mddev);
5340 	mddev_unlock(mddev);
5341 }
5342 EXPORT_SYMBOL_GPL(md_stop_writes);
5343 
5344 static void mddev_detach(struct mddev *mddev)
5345 {
5346 	struct bitmap *bitmap = mddev->bitmap;
5347 	/* wait for behind writes to complete */
5348 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5349 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5350 		       mdname(mddev));
5351 		/* need to kick something here to make sure I/O goes? */
5352 		wait_event(bitmap->behind_wait,
5353 			   atomic_read(&bitmap->behind_writes) == 0);
5354 	}
5355 	if (mddev->pers && mddev->pers->quiesce) {
5356 		mddev->pers->quiesce(mddev, 1);
5357 		mddev->pers->quiesce(mddev, 0);
5358 	}
5359 	md_unregister_thread(&mddev->thread);
5360 	if (mddev->queue)
5361 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5362 }
5363 
5364 static void __md_stop(struct mddev *mddev)
5365 {
5366 	struct md_personality *pers = mddev->pers;
5367 	mddev_detach(mddev);
5368 	/* Ensure ->event_work is done */
5369 	flush_workqueue(md_misc_wq);
5370 	spin_lock(&mddev->lock);
5371 	mddev->ready = 0;
5372 	mddev->pers = NULL;
5373 	spin_unlock(&mddev->lock);
5374 	pers->free(mddev, mddev->private);
5375 	mddev->private = NULL;
5376 	if (pers->sync_request && mddev->to_remove == NULL)
5377 		mddev->to_remove = &md_redundancy_group;
5378 	module_put(pers->owner);
5379 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5380 }
5381 
5382 void md_stop(struct mddev *mddev)
5383 {
5384 	/* stop the array and free an attached data structures.
5385 	 * This is called from dm-raid
5386 	 */
5387 	__md_stop(mddev);
5388 	bitmap_destroy(mddev);
5389 	if (mddev->bio_set)
5390 		bioset_free(mddev->bio_set);
5391 }
5392 
5393 EXPORT_SYMBOL_GPL(md_stop);
5394 
5395 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5396 {
5397 	int err = 0;
5398 	int did_freeze = 0;
5399 
5400 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5401 		did_freeze = 1;
5402 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5403 		md_wakeup_thread(mddev->thread);
5404 	}
5405 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5406 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5407 	if (mddev->sync_thread)
5408 		/* Thread might be blocked waiting for metadata update
5409 		 * which will now never happen */
5410 		wake_up_process(mddev->sync_thread->tsk);
5411 
5412 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5413 		return -EBUSY;
5414 	mddev_unlock(mddev);
5415 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5416 					  &mddev->recovery));
5417 	wait_event(mddev->sb_wait,
5418 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5419 	mddev_lock_nointr(mddev);
5420 
5421 	mutex_lock(&mddev->open_mutex);
5422 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5423 	    mddev->sync_thread ||
5424 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5425 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5426 		printk("md: %s still in use.\n",mdname(mddev));
5427 		if (did_freeze) {
5428 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5429 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5430 			md_wakeup_thread(mddev->thread);
5431 		}
5432 		err = -EBUSY;
5433 		goto out;
5434 	}
5435 	if (mddev->pers) {
5436 		__md_stop_writes(mddev);
5437 
5438 		err  = -ENXIO;
5439 		if (mddev->ro==1)
5440 			goto out;
5441 		mddev->ro = 1;
5442 		set_disk_ro(mddev->gendisk, 1);
5443 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5444 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5445 		md_wakeup_thread(mddev->thread);
5446 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5447 		err = 0;
5448 	}
5449 out:
5450 	mutex_unlock(&mddev->open_mutex);
5451 	return err;
5452 }
5453 
5454 /* mode:
5455  *   0 - completely stop and dis-assemble array
5456  *   2 - stop but do not disassemble array
5457  */
5458 static int do_md_stop(struct mddev *mddev, int mode,
5459 		      struct block_device *bdev)
5460 {
5461 	struct gendisk *disk = mddev->gendisk;
5462 	struct md_rdev *rdev;
5463 	int did_freeze = 0;
5464 
5465 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5466 		did_freeze = 1;
5467 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5468 		md_wakeup_thread(mddev->thread);
5469 	}
5470 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5471 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5472 	if (mddev->sync_thread)
5473 		/* Thread might be blocked waiting for metadata update
5474 		 * which will now never happen */
5475 		wake_up_process(mddev->sync_thread->tsk);
5476 
5477 	mddev_unlock(mddev);
5478 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5479 				 !test_bit(MD_RECOVERY_RUNNING,
5480 					   &mddev->recovery)));
5481 	mddev_lock_nointr(mddev);
5482 
5483 	mutex_lock(&mddev->open_mutex);
5484 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5485 	    mddev->sysfs_active ||
5486 	    mddev->sync_thread ||
5487 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5488 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5489 		printk("md: %s still in use.\n",mdname(mddev));
5490 		mutex_unlock(&mddev->open_mutex);
5491 		if (did_freeze) {
5492 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5493 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5494 			md_wakeup_thread(mddev->thread);
5495 		}
5496 		return -EBUSY;
5497 	}
5498 	if (mddev->pers) {
5499 		if (mddev->ro)
5500 			set_disk_ro(disk, 0);
5501 
5502 		__md_stop_writes(mddev);
5503 		__md_stop(mddev);
5504 		mddev->queue->backing_dev_info.congested_fn = NULL;
5505 
5506 		/* tell userspace to handle 'inactive' */
5507 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5508 
5509 		rdev_for_each(rdev, mddev)
5510 			if (rdev->raid_disk >= 0)
5511 				sysfs_unlink_rdev(mddev, rdev);
5512 
5513 		set_capacity(disk, 0);
5514 		mutex_unlock(&mddev->open_mutex);
5515 		mddev->changed = 1;
5516 		revalidate_disk(disk);
5517 
5518 		if (mddev->ro)
5519 			mddev->ro = 0;
5520 	} else
5521 		mutex_unlock(&mddev->open_mutex);
5522 	/*
5523 	 * Free resources if final stop
5524 	 */
5525 	if (mode == 0) {
5526 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5527 
5528 		bitmap_destroy(mddev);
5529 		if (mddev->bitmap_info.file) {
5530 			struct file *f = mddev->bitmap_info.file;
5531 			spin_lock(&mddev->lock);
5532 			mddev->bitmap_info.file = NULL;
5533 			spin_unlock(&mddev->lock);
5534 			fput(f);
5535 		}
5536 		mddev->bitmap_info.offset = 0;
5537 
5538 		export_array(mddev);
5539 
5540 		md_clean(mddev);
5541 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5542 		if (mddev->hold_active == UNTIL_STOP)
5543 			mddev->hold_active = 0;
5544 	}
5545 	blk_integrity_unregister(disk);
5546 	md_new_event(mddev);
5547 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5548 	return 0;
5549 }
5550 
5551 #ifndef MODULE
5552 static void autorun_array(struct mddev *mddev)
5553 {
5554 	struct md_rdev *rdev;
5555 	int err;
5556 
5557 	if (list_empty(&mddev->disks))
5558 		return;
5559 
5560 	printk(KERN_INFO "md: running: ");
5561 
5562 	rdev_for_each(rdev, mddev) {
5563 		char b[BDEVNAME_SIZE];
5564 		printk("<%s>", bdevname(rdev->bdev,b));
5565 	}
5566 	printk("\n");
5567 
5568 	err = do_md_run(mddev);
5569 	if (err) {
5570 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5571 		do_md_stop(mddev, 0, NULL);
5572 	}
5573 }
5574 
5575 /*
5576  * lets try to run arrays based on all disks that have arrived
5577  * until now. (those are in pending_raid_disks)
5578  *
5579  * the method: pick the first pending disk, collect all disks with
5580  * the same UUID, remove all from the pending list and put them into
5581  * the 'same_array' list. Then order this list based on superblock
5582  * update time (freshest comes first), kick out 'old' disks and
5583  * compare superblocks. If everything's fine then run it.
5584  *
5585  * If "unit" is allocated, then bump its reference count
5586  */
5587 static void autorun_devices(int part)
5588 {
5589 	struct md_rdev *rdev0, *rdev, *tmp;
5590 	struct mddev *mddev;
5591 	char b[BDEVNAME_SIZE];
5592 
5593 	printk(KERN_INFO "md: autorun ...\n");
5594 	while (!list_empty(&pending_raid_disks)) {
5595 		int unit;
5596 		dev_t dev;
5597 		LIST_HEAD(candidates);
5598 		rdev0 = list_entry(pending_raid_disks.next,
5599 					 struct md_rdev, same_set);
5600 
5601 		printk(KERN_INFO "md: considering %s ...\n",
5602 			bdevname(rdev0->bdev,b));
5603 		INIT_LIST_HEAD(&candidates);
5604 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5605 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5606 				printk(KERN_INFO "md:  adding %s ...\n",
5607 					bdevname(rdev->bdev,b));
5608 				list_move(&rdev->same_set, &candidates);
5609 			}
5610 		/*
5611 		 * now we have a set of devices, with all of them having
5612 		 * mostly sane superblocks. It's time to allocate the
5613 		 * mddev.
5614 		 */
5615 		if (part) {
5616 			dev = MKDEV(mdp_major,
5617 				    rdev0->preferred_minor << MdpMinorShift);
5618 			unit = MINOR(dev) >> MdpMinorShift;
5619 		} else {
5620 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5621 			unit = MINOR(dev);
5622 		}
5623 		if (rdev0->preferred_minor != unit) {
5624 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5625 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5626 			break;
5627 		}
5628 
5629 		md_probe(dev, NULL, NULL);
5630 		mddev = mddev_find(dev);
5631 		if (!mddev || !mddev->gendisk) {
5632 			if (mddev)
5633 				mddev_put(mddev);
5634 			printk(KERN_ERR
5635 				"md: cannot allocate memory for md drive.\n");
5636 			break;
5637 		}
5638 		if (mddev_lock(mddev))
5639 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5640 			       mdname(mddev));
5641 		else if (mddev->raid_disks || mddev->major_version
5642 			 || !list_empty(&mddev->disks)) {
5643 			printk(KERN_WARNING
5644 				"md: %s already running, cannot run %s\n",
5645 				mdname(mddev), bdevname(rdev0->bdev,b));
5646 			mddev_unlock(mddev);
5647 		} else {
5648 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5649 			mddev->persistent = 1;
5650 			rdev_for_each_list(rdev, tmp, &candidates) {
5651 				list_del_init(&rdev->same_set);
5652 				if (bind_rdev_to_array(rdev, mddev))
5653 					export_rdev(rdev);
5654 			}
5655 			autorun_array(mddev);
5656 			mddev_unlock(mddev);
5657 		}
5658 		/* on success, candidates will be empty, on error
5659 		 * it won't...
5660 		 */
5661 		rdev_for_each_list(rdev, tmp, &candidates) {
5662 			list_del_init(&rdev->same_set);
5663 			export_rdev(rdev);
5664 		}
5665 		mddev_put(mddev);
5666 	}
5667 	printk(KERN_INFO "md: ... autorun DONE.\n");
5668 }
5669 #endif /* !MODULE */
5670 
5671 static int get_version(void __user *arg)
5672 {
5673 	mdu_version_t ver;
5674 
5675 	ver.major = MD_MAJOR_VERSION;
5676 	ver.minor = MD_MINOR_VERSION;
5677 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5678 
5679 	if (copy_to_user(arg, &ver, sizeof(ver)))
5680 		return -EFAULT;
5681 
5682 	return 0;
5683 }
5684 
5685 static int get_array_info(struct mddev *mddev, void __user *arg)
5686 {
5687 	mdu_array_info_t info;
5688 	int nr,working,insync,failed,spare;
5689 	struct md_rdev *rdev;
5690 
5691 	nr = working = insync = failed = spare = 0;
5692 	rcu_read_lock();
5693 	rdev_for_each_rcu(rdev, mddev) {
5694 		nr++;
5695 		if (test_bit(Faulty, &rdev->flags))
5696 			failed++;
5697 		else {
5698 			working++;
5699 			if (test_bit(In_sync, &rdev->flags))
5700 				insync++;
5701 			else
5702 				spare++;
5703 		}
5704 	}
5705 	rcu_read_unlock();
5706 
5707 	info.major_version = mddev->major_version;
5708 	info.minor_version = mddev->minor_version;
5709 	info.patch_version = MD_PATCHLEVEL_VERSION;
5710 	info.ctime         = mddev->ctime;
5711 	info.level         = mddev->level;
5712 	info.size          = mddev->dev_sectors / 2;
5713 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5714 		info.size = -1;
5715 	info.nr_disks      = nr;
5716 	info.raid_disks    = mddev->raid_disks;
5717 	info.md_minor      = mddev->md_minor;
5718 	info.not_persistent= !mddev->persistent;
5719 
5720 	info.utime         = mddev->utime;
5721 	info.state         = 0;
5722 	if (mddev->in_sync)
5723 		info.state = (1<<MD_SB_CLEAN);
5724 	if (mddev->bitmap && mddev->bitmap_info.offset)
5725 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5726 	if (mddev_is_clustered(mddev))
5727 		info.state |= (1<<MD_SB_CLUSTERED);
5728 	info.active_disks  = insync;
5729 	info.working_disks = working;
5730 	info.failed_disks  = failed;
5731 	info.spare_disks   = spare;
5732 
5733 	info.layout        = mddev->layout;
5734 	info.chunk_size    = mddev->chunk_sectors << 9;
5735 
5736 	if (copy_to_user(arg, &info, sizeof(info)))
5737 		return -EFAULT;
5738 
5739 	return 0;
5740 }
5741 
5742 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5743 {
5744 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5745 	char *ptr;
5746 	int err;
5747 
5748 	file = kzalloc(sizeof(*file), GFP_NOIO);
5749 	if (!file)
5750 		return -ENOMEM;
5751 
5752 	err = 0;
5753 	spin_lock(&mddev->lock);
5754 	/* bitmap enabled */
5755 	if (mddev->bitmap_info.file) {
5756 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5757 				sizeof(file->pathname));
5758 		if (IS_ERR(ptr))
5759 			err = PTR_ERR(ptr);
5760 		else
5761 			memmove(file->pathname, ptr,
5762 				sizeof(file->pathname)-(ptr-file->pathname));
5763 	}
5764 	spin_unlock(&mddev->lock);
5765 
5766 	if (err == 0 &&
5767 	    copy_to_user(arg, file, sizeof(*file)))
5768 		err = -EFAULT;
5769 
5770 	kfree(file);
5771 	return err;
5772 }
5773 
5774 static int get_disk_info(struct mddev *mddev, void __user * arg)
5775 {
5776 	mdu_disk_info_t info;
5777 	struct md_rdev *rdev;
5778 
5779 	if (copy_from_user(&info, arg, sizeof(info)))
5780 		return -EFAULT;
5781 
5782 	rcu_read_lock();
5783 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5784 	if (rdev) {
5785 		info.major = MAJOR(rdev->bdev->bd_dev);
5786 		info.minor = MINOR(rdev->bdev->bd_dev);
5787 		info.raid_disk = rdev->raid_disk;
5788 		info.state = 0;
5789 		if (test_bit(Faulty, &rdev->flags))
5790 			info.state |= (1<<MD_DISK_FAULTY);
5791 		else if (test_bit(In_sync, &rdev->flags)) {
5792 			info.state |= (1<<MD_DISK_ACTIVE);
5793 			info.state |= (1<<MD_DISK_SYNC);
5794 		}
5795 		if (test_bit(WriteMostly, &rdev->flags))
5796 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5797 	} else {
5798 		info.major = info.minor = 0;
5799 		info.raid_disk = -1;
5800 		info.state = (1<<MD_DISK_REMOVED);
5801 	}
5802 	rcu_read_unlock();
5803 
5804 	if (copy_to_user(arg, &info, sizeof(info)))
5805 		return -EFAULT;
5806 
5807 	return 0;
5808 }
5809 
5810 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5811 {
5812 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5813 	struct md_rdev *rdev;
5814 	dev_t dev = MKDEV(info->major,info->minor);
5815 
5816 	if (mddev_is_clustered(mddev) &&
5817 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5818 		pr_err("%s: Cannot add to clustered mddev.\n",
5819 			       mdname(mddev));
5820 		return -EINVAL;
5821 	}
5822 
5823 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5824 		return -EOVERFLOW;
5825 
5826 	if (!mddev->raid_disks) {
5827 		int err;
5828 		/* expecting a device which has a superblock */
5829 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5830 		if (IS_ERR(rdev)) {
5831 			printk(KERN_WARNING
5832 				"md: md_import_device returned %ld\n",
5833 				PTR_ERR(rdev));
5834 			return PTR_ERR(rdev);
5835 		}
5836 		if (!list_empty(&mddev->disks)) {
5837 			struct md_rdev *rdev0
5838 				= list_entry(mddev->disks.next,
5839 					     struct md_rdev, same_set);
5840 			err = super_types[mddev->major_version]
5841 				.load_super(rdev, rdev0, mddev->minor_version);
5842 			if (err < 0) {
5843 				printk(KERN_WARNING
5844 					"md: %s has different UUID to %s\n",
5845 					bdevname(rdev->bdev,b),
5846 					bdevname(rdev0->bdev,b2));
5847 				export_rdev(rdev);
5848 				return -EINVAL;
5849 			}
5850 		}
5851 		err = bind_rdev_to_array(rdev, mddev);
5852 		if (err)
5853 			export_rdev(rdev);
5854 		return err;
5855 	}
5856 
5857 	/*
5858 	 * add_new_disk can be used once the array is assembled
5859 	 * to add "hot spares".  They must already have a superblock
5860 	 * written
5861 	 */
5862 	if (mddev->pers) {
5863 		int err;
5864 		if (!mddev->pers->hot_add_disk) {
5865 			printk(KERN_WARNING
5866 				"%s: personality does not support diskops!\n",
5867 			       mdname(mddev));
5868 			return -EINVAL;
5869 		}
5870 		if (mddev->persistent)
5871 			rdev = md_import_device(dev, mddev->major_version,
5872 						mddev->minor_version);
5873 		else
5874 			rdev = md_import_device(dev, -1, -1);
5875 		if (IS_ERR(rdev)) {
5876 			printk(KERN_WARNING
5877 				"md: md_import_device returned %ld\n",
5878 				PTR_ERR(rdev));
5879 			return PTR_ERR(rdev);
5880 		}
5881 		/* set saved_raid_disk if appropriate */
5882 		if (!mddev->persistent) {
5883 			if (info->state & (1<<MD_DISK_SYNC)  &&
5884 			    info->raid_disk < mddev->raid_disks) {
5885 				rdev->raid_disk = info->raid_disk;
5886 				set_bit(In_sync, &rdev->flags);
5887 				clear_bit(Bitmap_sync, &rdev->flags);
5888 			} else
5889 				rdev->raid_disk = -1;
5890 			rdev->saved_raid_disk = rdev->raid_disk;
5891 		} else
5892 			super_types[mddev->major_version].
5893 				validate_super(mddev, rdev);
5894 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5895 		     rdev->raid_disk != info->raid_disk) {
5896 			/* This was a hot-add request, but events doesn't
5897 			 * match, so reject it.
5898 			 */
5899 			export_rdev(rdev);
5900 			return -EINVAL;
5901 		}
5902 
5903 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5904 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5905 			set_bit(WriteMostly, &rdev->flags);
5906 		else
5907 			clear_bit(WriteMostly, &rdev->flags);
5908 
5909 		/*
5910 		 * check whether the device shows up in other nodes
5911 		 */
5912 		if (mddev_is_clustered(mddev)) {
5913 			if (info->state & (1 << MD_DISK_CANDIDATE)) {
5914 				/* Through --cluster-confirm */
5915 				set_bit(Candidate, &rdev->flags);
5916 				err = md_cluster_ops->new_disk_ack(mddev, true);
5917 				if (err) {
5918 					export_rdev(rdev);
5919 					return err;
5920 				}
5921 			} else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5922 				/* --add initiated by this node */
5923 				err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5924 				if (err) {
5925 					md_cluster_ops->add_new_disk_finish(mddev);
5926 					export_rdev(rdev);
5927 					return err;
5928 				}
5929 			}
5930 		}
5931 
5932 		rdev->raid_disk = -1;
5933 		err = bind_rdev_to_array(rdev, mddev);
5934 		if (err)
5935 			export_rdev(rdev);
5936 		else
5937 			err = add_bound_rdev(rdev);
5938 		if (mddev_is_clustered(mddev) &&
5939 				(info->state & (1 << MD_DISK_CLUSTER_ADD)))
5940 			md_cluster_ops->add_new_disk_finish(mddev);
5941 		return err;
5942 	}
5943 
5944 	/* otherwise, add_new_disk is only allowed
5945 	 * for major_version==0 superblocks
5946 	 */
5947 	if (mddev->major_version != 0) {
5948 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5949 		       mdname(mddev));
5950 		return -EINVAL;
5951 	}
5952 
5953 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5954 		int err;
5955 		rdev = md_import_device(dev, -1, 0);
5956 		if (IS_ERR(rdev)) {
5957 			printk(KERN_WARNING
5958 				"md: error, md_import_device() returned %ld\n",
5959 				PTR_ERR(rdev));
5960 			return PTR_ERR(rdev);
5961 		}
5962 		rdev->desc_nr = info->number;
5963 		if (info->raid_disk < mddev->raid_disks)
5964 			rdev->raid_disk = info->raid_disk;
5965 		else
5966 			rdev->raid_disk = -1;
5967 
5968 		if (rdev->raid_disk < mddev->raid_disks)
5969 			if (info->state & (1<<MD_DISK_SYNC))
5970 				set_bit(In_sync, &rdev->flags);
5971 
5972 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5973 			set_bit(WriteMostly, &rdev->flags);
5974 
5975 		if (!mddev->persistent) {
5976 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5977 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5978 		} else
5979 			rdev->sb_start = calc_dev_sboffset(rdev);
5980 		rdev->sectors = rdev->sb_start;
5981 
5982 		err = bind_rdev_to_array(rdev, mddev);
5983 		if (err) {
5984 			export_rdev(rdev);
5985 			return err;
5986 		}
5987 	}
5988 
5989 	return 0;
5990 }
5991 
5992 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5993 {
5994 	char b[BDEVNAME_SIZE];
5995 	struct md_rdev *rdev;
5996 
5997 	rdev = find_rdev(mddev, dev);
5998 	if (!rdev)
5999 		return -ENXIO;
6000 
6001 	if (mddev_is_clustered(mddev))
6002 		md_cluster_ops->metadata_update_start(mddev);
6003 
6004 	clear_bit(Blocked, &rdev->flags);
6005 	remove_and_add_spares(mddev, rdev);
6006 
6007 	if (rdev->raid_disk >= 0)
6008 		goto busy;
6009 
6010 	if (mddev_is_clustered(mddev))
6011 		md_cluster_ops->remove_disk(mddev, rdev);
6012 
6013 	md_kick_rdev_from_array(rdev);
6014 	md_update_sb(mddev, 1);
6015 	md_new_event(mddev);
6016 
6017 	if (mddev_is_clustered(mddev))
6018 		md_cluster_ops->metadata_update_finish(mddev);
6019 
6020 	return 0;
6021 busy:
6022 	if (mddev_is_clustered(mddev))
6023 		md_cluster_ops->metadata_update_cancel(mddev);
6024 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6025 		bdevname(rdev->bdev,b), mdname(mddev));
6026 	return -EBUSY;
6027 }
6028 
6029 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6030 {
6031 	char b[BDEVNAME_SIZE];
6032 	int err;
6033 	struct md_rdev *rdev;
6034 
6035 	if (!mddev->pers)
6036 		return -ENODEV;
6037 
6038 	if (mddev->major_version != 0) {
6039 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6040 			" version-0 superblocks.\n",
6041 			mdname(mddev));
6042 		return -EINVAL;
6043 	}
6044 	if (!mddev->pers->hot_add_disk) {
6045 		printk(KERN_WARNING
6046 			"%s: personality does not support diskops!\n",
6047 			mdname(mddev));
6048 		return -EINVAL;
6049 	}
6050 
6051 	rdev = md_import_device(dev, -1, 0);
6052 	if (IS_ERR(rdev)) {
6053 		printk(KERN_WARNING
6054 			"md: error, md_import_device() returned %ld\n",
6055 			PTR_ERR(rdev));
6056 		return -EINVAL;
6057 	}
6058 
6059 	if (mddev->persistent)
6060 		rdev->sb_start = calc_dev_sboffset(rdev);
6061 	else
6062 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6063 
6064 	rdev->sectors = rdev->sb_start;
6065 
6066 	if (test_bit(Faulty, &rdev->flags)) {
6067 		printk(KERN_WARNING
6068 			"md: can not hot-add faulty %s disk to %s!\n",
6069 			bdevname(rdev->bdev,b), mdname(mddev));
6070 		err = -EINVAL;
6071 		goto abort_export;
6072 	}
6073 
6074 	if (mddev_is_clustered(mddev))
6075 		md_cluster_ops->metadata_update_start(mddev);
6076 	clear_bit(In_sync, &rdev->flags);
6077 	rdev->desc_nr = -1;
6078 	rdev->saved_raid_disk = -1;
6079 	err = bind_rdev_to_array(rdev, mddev);
6080 	if (err)
6081 		goto abort_clustered;
6082 
6083 	/*
6084 	 * The rest should better be atomic, we can have disk failures
6085 	 * noticed in interrupt contexts ...
6086 	 */
6087 
6088 	rdev->raid_disk = -1;
6089 
6090 	md_update_sb(mddev, 1);
6091 
6092 	if (mddev_is_clustered(mddev))
6093 		md_cluster_ops->metadata_update_finish(mddev);
6094 	/*
6095 	 * Kick recovery, maybe this spare has to be added to the
6096 	 * array immediately.
6097 	 */
6098 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6099 	md_wakeup_thread(mddev->thread);
6100 	md_new_event(mddev);
6101 	return 0;
6102 
6103 abort_clustered:
6104 	if (mddev_is_clustered(mddev))
6105 		md_cluster_ops->metadata_update_cancel(mddev);
6106 abort_export:
6107 	export_rdev(rdev);
6108 	return err;
6109 }
6110 
6111 static int set_bitmap_file(struct mddev *mddev, int fd)
6112 {
6113 	int err = 0;
6114 
6115 	if (mddev->pers) {
6116 		if (!mddev->pers->quiesce || !mddev->thread)
6117 			return -EBUSY;
6118 		if (mddev->recovery || mddev->sync_thread)
6119 			return -EBUSY;
6120 		/* we should be able to change the bitmap.. */
6121 	}
6122 
6123 	if (fd >= 0) {
6124 		struct inode *inode;
6125 		struct file *f;
6126 
6127 		if (mddev->bitmap || mddev->bitmap_info.file)
6128 			return -EEXIST; /* cannot add when bitmap is present */
6129 		f = fget(fd);
6130 
6131 		if (f == NULL) {
6132 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6133 			       mdname(mddev));
6134 			return -EBADF;
6135 		}
6136 
6137 		inode = f->f_mapping->host;
6138 		if (!S_ISREG(inode->i_mode)) {
6139 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6140 			       mdname(mddev));
6141 			err = -EBADF;
6142 		} else if (!(f->f_mode & FMODE_WRITE)) {
6143 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6144 			       mdname(mddev));
6145 			err = -EBADF;
6146 		} else if (atomic_read(&inode->i_writecount) != 1) {
6147 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6148 			       mdname(mddev));
6149 			err = -EBUSY;
6150 		}
6151 		if (err) {
6152 			fput(f);
6153 			return err;
6154 		}
6155 		mddev->bitmap_info.file = f;
6156 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6157 	} else if (mddev->bitmap == NULL)
6158 		return -ENOENT; /* cannot remove what isn't there */
6159 	err = 0;
6160 	if (mddev->pers) {
6161 		mddev->pers->quiesce(mddev, 1);
6162 		if (fd >= 0) {
6163 			struct bitmap *bitmap;
6164 
6165 			bitmap = bitmap_create(mddev, -1);
6166 			if (!IS_ERR(bitmap)) {
6167 				mddev->bitmap = bitmap;
6168 				err = bitmap_load(mddev);
6169 			} else
6170 				err = PTR_ERR(bitmap);
6171 		}
6172 		if (fd < 0 || err) {
6173 			bitmap_destroy(mddev);
6174 			fd = -1; /* make sure to put the file */
6175 		}
6176 		mddev->pers->quiesce(mddev, 0);
6177 	}
6178 	if (fd < 0) {
6179 		struct file *f = mddev->bitmap_info.file;
6180 		if (f) {
6181 			spin_lock(&mddev->lock);
6182 			mddev->bitmap_info.file = NULL;
6183 			spin_unlock(&mddev->lock);
6184 			fput(f);
6185 		}
6186 	}
6187 
6188 	return err;
6189 }
6190 
6191 /*
6192  * set_array_info is used two different ways
6193  * The original usage is when creating a new array.
6194  * In this usage, raid_disks is > 0 and it together with
6195  *  level, size, not_persistent,layout,chunksize determine the
6196  *  shape of the array.
6197  *  This will always create an array with a type-0.90.0 superblock.
6198  * The newer usage is when assembling an array.
6199  *  In this case raid_disks will be 0, and the major_version field is
6200  *  use to determine which style super-blocks are to be found on the devices.
6201  *  The minor and patch _version numbers are also kept incase the
6202  *  super_block handler wishes to interpret them.
6203  */
6204 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6205 {
6206 
6207 	if (info->raid_disks == 0) {
6208 		/* just setting version number for superblock loading */
6209 		if (info->major_version < 0 ||
6210 		    info->major_version >= ARRAY_SIZE(super_types) ||
6211 		    super_types[info->major_version].name == NULL) {
6212 			/* maybe try to auto-load a module? */
6213 			printk(KERN_INFO
6214 				"md: superblock version %d not known\n",
6215 				info->major_version);
6216 			return -EINVAL;
6217 		}
6218 		mddev->major_version = info->major_version;
6219 		mddev->minor_version = info->minor_version;
6220 		mddev->patch_version = info->patch_version;
6221 		mddev->persistent = !info->not_persistent;
6222 		/* ensure mddev_put doesn't delete this now that there
6223 		 * is some minimal configuration.
6224 		 */
6225 		mddev->ctime         = get_seconds();
6226 		return 0;
6227 	}
6228 	mddev->major_version = MD_MAJOR_VERSION;
6229 	mddev->minor_version = MD_MINOR_VERSION;
6230 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6231 	mddev->ctime         = get_seconds();
6232 
6233 	mddev->level         = info->level;
6234 	mddev->clevel[0]     = 0;
6235 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6236 	mddev->raid_disks    = info->raid_disks;
6237 	/* don't set md_minor, it is determined by which /dev/md* was
6238 	 * openned
6239 	 */
6240 	if (info->state & (1<<MD_SB_CLEAN))
6241 		mddev->recovery_cp = MaxSector;
6242 	else
6243 		mddev->recovery_cp = 0;
6244 	mddev->persistent    = ! info->not_persistent;
6245 	mddev->external	     = 0;
6246 
6247 	mddev->layout        = info->layout;
6248 	mddev->chunk_sectors = info->chunk_size >> 9;
6249 
6250 	mddev->max_disks     = MD_SB_DISKS;
6251 
6252 	if (mddev->persistent)
6253 		mddev->flags         = 0;
6254 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6255 
6256 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6257 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6258 	mddev->bitmap_info.offset = 0;
6259 
6260 	mddev->reshape_position = MaxSector;
6261 
6262 	/*
6263 	 * Generate a 128 bit UUID
6264 	 */
6265 	get_random_bytes(mddev->uuid, 16);
6266 
6267 	mddev->new_level = mddev->level;
6268 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6269 	mddev->new_layout = mddev->layout;
6270 	mddev->delta_disks = 0;
6271 	mddev->reshape_backwards = 0;
6272 
6273 	return 0;
6274 }
6275 
6276 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6277 {
6278 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6279 
6280 	if (mddev->external_size)
6281 		return;
6282 
6283 	mddev->array_sectors = array_sectors;
6284 }
6285 EXPORT_SYMBOL(md_set_array_sectors);
6286 
6287 static int update_size(struct mddev *mddev, sector_t num_sectors)
6288 {
6289 	struct md_rdev *rdev;
6290 	int rv;
6291 	int fit = (num_sectors == 0);
6292 
6293 	if (mddev->pers->resize == NULL)
6294 		return -EINVAL;
6295 	/* The "num_sectors" is the number of sectors of each device that
6296 	 * is used.  This can only make sense for arrays with redundancy.
6297 	 * linear and raid0 always use whatever space is available. We can only
6298 	 * consider changing this number if no resync or reconstruction is
6299 	 * happening, and if the new size is acceptable. It must fit before the
6300 	 * sb_start or, if that is <data_offset, it must fit before the size
6301 	 * of each device.  If num_sectors is zero, we find the largest size
6302 	 * that fits.
6303 	 */
6304 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6305 	    mddev->sync_thread)
6306 		return -EBUSY;
6307 	if (mddev->ro)
6308 		return -EROFS;
6309 
6310 	rdev_for_each(rdev, mddev) {
6311 		sector_t avail = rdev->sectors;
6312 
6313 		if (fit && (num_sectors == 0 || num_sectors > avail))
6314 			num_sectors = avail;
6315 		if (avail < num_sectors)
6316 			return -ENOSPC;
6317 	}
6318 	rv = mddev->pers->resize(mddev, num_sectors);
6319 	if (!rv)
6320 		revalidate_disk(mddev->gendisk);
6321 	return rv;
6322 }
6323 
6324 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6325 {
6326 	int rv;
6327 	struct md_rdev *rdev;
6328 	/* change the number of raid disks */
6329 	if (mddev->pers->check_reshape == NULL)
6330 		return -EINVAL;
6331 	if (mddev->ro)
6332 		return -EROFS;
6333 	if (raid_disks <= 0 ||
6334 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6335 		return -EINVAL;
6336 	if (mddev->sync_thread ||
6337 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6338 	    mddev->reshape_position != MaxSector)
6339 		return -EBUSY;
6340 
6341 	rdev_for_each(rdev, mddev) {
6342 		if (mddev->raid_disks < raid_disks &&
6343 		    rdev->data_offset < rdev->new_data_offset)
6344 			return -EINVAL;
6345 		if (mddev->raid_disks > raid_disks &&
6346 		    rdev->data_offset > rdev->new_data_offset)
6347 			return -EINVAL;
6348 	}
6349 
6350 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6351 	if (mddev->delta_disks < 0)
6352 		mddev->reshape_backwards = 1;
6353 	else if (mddev->delta_disks > 0)
6354 		mddev->reshape_backwards = 0;
6355 
6356 	rv = mddev->pers->check_reshape(mddev);
6357 	if (rv < 0) {
6358 		mddev->delta_disks = 0;
6359 		mddev->reshape_backwards = 0;
6360 	}
6361 	return rv;
6362 }
6363 
6364 /*
6365  * update_array_info is used to change the configuration of an
6366  * on-line array.
6367  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6368  * fields in the info are checked against the array.
6369  * Any differences that cannot be handled will cause an error.
6370  * Normally, only one change can be managed at a time.
6371  */
6372 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6373 {
6374 	int rv = 0;
6375 	int cnt = 0;
6376 	int state = 0;
6377 
6378 	/* calculate expected state,ignoring low bits */
6379 	if (mddev->bitmap && mddev->bitmap_info.offset)
6380 		state |= (1 << MD_SB_BITMAP_PRESENT);
6381 
6382 	if (mddev->major_version != info->major_version ||
6383 	    mddev->minor_version != info->minor_version ||
6384 /*	    mddev->patch_version != info->patch_version || */
6385 	    mddev->ctime         != info->ctime         ||
6386 	    mddev->level         != info->level         ||
6387 /*	    mddev->layout        != info->layout        || */
6388 	    mddev->persistent	 != !info->not_persistent ||
6389 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6390 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6391 	    ((state^info->state) & 0xfffffe00)
6392 		)
6393 		return -EINVAL;
6394 	/* Check there is only one change */
6395 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6396 		cnt++;
6397 	if (mddev->raid_disks != info->raid_disks)
6398 		cnt++;
6399 	if (mddev->layout != info->layout)
6400 		cnt++;
6401 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6402 		cnt++;
6403 	if (cnt == 0)
6404 		return 0;
6405 	if (cnt > 1)
6406 		return -EINVAL;
6407 
6408 	if (mddev->layout != info->layout) {
6409 		/* Change layout
6410 		 * we don't need to do anything at the md level, the
6411 		 * personality will take care of it all.
6412 		 */
6413 		if (mddev->pers->check_reshape == NULL)
6414 			return -EINVAL;
6415 		else {
6416 			mddev->new_layout = info->layout;
6417 			rv = mddev->pers->check_reshape(mddev);
6418 			if (rv)
6419 				mddev->new_layout = mddev->layout;
6420 			return rv;
6421 		}
6422 	}
6423 	if (mddev_is_clustered(mddev))
6424 		md_cluster_ops->metadata_update_start(mddev);
6425 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6426 		rv = update_size(mddev, (sector_t)info->size * 2);
6427 
6428 	if (mddev->raid_disks    != info->raid_disks)
6429 		rv = update_raid_disks(mddev, info->raid_disks);
6430 
6431 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6432 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6433 			rv = -EINVAL;
6434 			goto err;
6435 		}
6436 		if (mddev->recovery || mddev->sync_thread) {
6437 			rv = -EBUSY;
6438 			goto err;
6439 		}
6440 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6441 			struct bitmap *bitmap;
6442 			/* add the bitmap */
6443 			if (mddev->bitmap) {
6444 				rv = -EEXIST;
6445 				goto err;
6446 			}
6447 			if (mddev->bitmap_info.default_offset == 0) {
6448 				rv = -EINVAL;
6449 				goto err;
6450 			}
6451 			mddev->bitmap_info.offset =
6452 				mddev->bitmap_info.default_offset;
6453 			mddev->bitmap_info.space =
6454 				mddev->bitmap_info.default_space;
6455 			mddev->pers->quiesce(mddev, 1);
6456 			bitmap = bitmap_create(mddev, -1);
6457 			if (!IS_ERR(bitmap)) {
6458 				mddev->bitmap = bitmap;
6459 				rv = bitmap_load(mddev);
6460 			} else
6461 				rv = PTR_ERR(bitmap);
6462 			if (rv)
6463 				bitmap_destroy(mddev);
6464 			mddev->pers->quiesce(mddev, 0);
6465 		} else {
6466 			/* remove the bitmap */
6467 			if (!mddev->bitmap) {
6468 				rv = -ENOENT;
6469 				goto err;
6470 			}
6471 			if (mddev->bitmap->storage.file) {
6472 				rv = -EINVAL;
6473 				goto err;
6474 			}
6475 			mddev->pers->quiesce(mddev, 1);
6476 			bitmap_destroy(mddev);
6477 			mddev->pers->quiesce(mddev, 0);
6478 			mddev->bitmap_info.offset = 0;
6479 		}
6480 	}
6481 	md_update_sb(mddev, 1);
6482 	if (mddev_is_clustered(mddev))
6483 		md_cluster_ops->metadata_update_finish(mddev);
6484 	return rv;
6485 err:
6486 	if (mddev_is_clustered(mddev))
6487 		md_cluster_ops->metadata_update_cancel(mddev);
6488 	return rv;
6489 }
6490 
6491 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6492 {
6493 	struct md_rdev *rdev;
6494 	int err = 0;
6495 
6496 	if (mddev->pers == NULL)
6497 		return -ENODEV;
6498 
6499 	rcu_read_lock();
6500 	rdev = find_rdev_rcu(mddev, dev);
6501 	if (!rdev)
6502 		err =  -ENODEV;
6503 	else {
6504 		md_error(mddev, rdev);
6505 		if (!test_bit(Faulty, &rdev->flags))
6506 			err = -EBUSY;
6507 	}
6508 	rcu_read_unlock();
6509 	return err;
6510 }
6511 
6512 /*
6513  * We have a problem here : there is no easy way to give a CHS
6514  * virtual geometry. We currently pretend that we have a 2 heads
6515  * 4 sectors (with a BIG number of cylinders...). This drives
6516  * dosfs just mad... ;-)
6517  */
6518 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6519 {
6520 	struct mddev *mddev = bdev->bd_disk->private_data;
6521 
6522 	geo->heads = 2;
6523 	geo->sectors = 4;
6524 	geo->cylinders = mddev->array_sectors / 8;
6525 	return 0;
6526 }
6527 
6528 static inline bool md_ioctl_valid(unsigned int cmd)
6529 {
6530 	switch (cmd) {
6531 	case ADD_NEW_DISK:
6532 	case BLKROSET:
6533 	case GET_ARRAY_INFO:
6534 	case GET_BITMAP_FILE:
6535 	case GET_DISK_INFO:
6536 	case HOT_ADD_DISK:
6537 	case HOT_REMOVE_DISK:
6538 	case RAID_AUTORUN:
6539 	case RAID_VERSION:
6540 	case RESTART_ARRAY_RW:
6541 	case RUN_ARRAY:
6542 	case SET_ARRAY_INFO:
6543 	case SET_BITMAP_FILE:
6544 	case SET_DISK_FAULTY:
6545 	case STOP_ARRAY:
6546 	case STOP_ARRAY_RO:
6547 	case CLUSTERED_DISK_NACK:
6548 		return true;
6549 	default:
6550 		return false;
6551 	}
6552 }
6553 
6554 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6555 			unsigned int cmd, unsigned long arg)
6556 {
6557 	int err = 0;
6558 	void __user *argp = (void __user *)arg;
6559 	struct mddev *mddev = NULL;
6560 	int ro;
6561 
6562 	if (!md_ioctl_valid(cmd))
6563 		return -ENOTTY;
6564 
6565 	switch (cmd) {
6566 	case RAID_VERSION:
6567 	case GET_ARRAY_INFO:
6568 	case GET_DISK_INFO:
6569 		break;
6570 	default:
6571 		if (!capable(CAP_SYS_ADMIN))
6572 			return -EACCES;
6573 	}
6574 
6575 	/*
6576 	 * Commands dealing with the RAID driver but not any
6577 	 * particular array:
6578 	 */
6579 	switch (cmd) {
6580 	case RAID_VERSION:
6581 		err = get_version(argp);
6582 		goto out;
6583 
6584 #ifndef MODULE
6585 	case RAID_AUTORUN:
6586 		err = 0;
6587 		autostart_arrays(arg);
6588 		goto out;
6589 #endif
6590 	default:;
6591 	}
6592 
6593 	/*
6594 	 * Commands creating/starting a new array:
6595 	 */
6596 
6597 	mddev = bdev->bd_disk->private_data;
6598 
6599 	if (!mddev) {
6600 		BUG();
6601 		goto out;
6602 	}
6603 
6604 	/* Some actions do not requires the mutex */
6605 	switch (cmd) {
6606 	case GET_ARRAY_INFO:
6607 		if (!mddev->raid_disks && !mddev->external)
6608 			err = -ENODEV;
6609 		else
6610 			err = get_array_info(mddev, argp);
6611 		goto out;
6612 
6613 	case GET_DISK_INFO:
6614 		if (!mddev->raid_disks && !mddev->external)
6615 			err = -ENODEV;
6616 		else
6617 			err = get_disk_info(mddev, argp);
6618 		goto out;
6619 
6620 	case SET_DISK_FAULTY:
6621 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6622 		goto out;
6623 
6624 	case GET_BITMAP_FILE:
6625 		err = get_bitmap_file(mddev, argp);
6626 		goto out;
6627 
6628 	}
6629 
6630 	if (cmd == ADD_NEW_DISK)
6631 		/* need to ensure md_delayed_delete() has completed */
6632 		flush_workqueue(md_misc_wq);
6633 
6634 	if (cmd == HOT_REMOVE_DISK)
6635 		/* need to ensure recovery thread has run */
6636 		wait_event_interruptible_timeout(mddev->sb_wait,
6637 						 !test_bit(MD_RECOVERY_NEEDED,
6638 							   &mddev->flags),
6639 						 msecs_to_jiffies(5000));
6640 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6641 		/* Need to flush page cache, and ensure no-one else opens
6642 		 * and writes
6643 		 */
6644 		mutex_lock(&mddev->open_mutex);
6645 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6646 			mutex_unlock(&mddev->open_mutex);
6647 			err = -EBUSY;
6648 			goto out;
6649 		}
6650 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6651 		mutex_unlock(&mddev->open_mutex);
6652 		sync_blockdev(bdev);
6653 	}
6654 	err = mddev_lock(mddev);
6655 	if (err) {
6656 		printk(KERN_INFO
6657 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6658 			err, cmd);
6659 		goto out;
6660 	}
6661 
6662 	if (cmd == SET_ARRAY_INFO) {
6663 		mdu_array_info_t info;
6664 		if (!arg)
6665 			memset(&info, 0, sizeof(info));
6666 		else if (copy_from_user(&info, argp, sizeof(info))) {
6667 			err = -EFAULT;
6668 			goto unlock;
6669 		}
6670 		if (mddev->pers) {
6671 			err = update_array_info(mddev, &info);
6672 			if (err) {
6673 				printk(KERN_WARNING "md: couldn't update"
6674 				       " array info. %d\n", err);
6675 				goto unlock;
6676 			}
6677 			goto unlock;
6678 		}
6679 		if (!list_empty(&mddev->disks)) {
6680 			printk(KERN_WARNING
6681 			       "md: array %s already has disks!\n",
6682 			       mdname(mddev));
6683 			err = -EBUSY;
6684 			goto unlock;
6685 		}
6686 		if (mddev->raid_disks) {
6687 			printk(KERN_WARNING
6688 			       "md: array %s already initialised!\n",
6689 			       mdname(mddev));
6690 			err = -EBUSY;
6691 			goto unlock;
6692 		}
6693 		err = set_array_info(mddev, &info);
6694 		if (err) {
6695 			printk(KERN_WARNING "md: couldn't set"
6696 			       " array info. %d\n", err);
6697 			goto unlock;
6698 		}
6699 		goto unlock;
6700 	}
6701 
6702 	/*
6703 	 * Commands querying/configuring an existing array:
6704 	 */
6705 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6706 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6707 	if ((!mddev->raid_disks && !mddev->external)
6708 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6709 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6710 	    && cmd != GET_BITMAP_FILE) {
6711 		err = -ENODEV;
6712 		goto unlock;
6713 	}
6714 
6715 	/*
6716 	 * Commands even a read-only array can execute:
6717 	 */
6718 	switch (cmd) {
6719 	case RESTART_ARRAY_RW:
6720 		err = restart_array(mddev);
6721 		goto unlock;
6722 
6723 	case STOP_ARRAY:
6724 		err = do_md_stop(mddev, 0, bdev);
6725 		goto unlock;
6726 
6727 	case STOP_ARRAY_RO:
6728 		err = md_set_readonly(mddev, bdev);
6729 		goto unlock;
6730 
6731 	case HOT_REMOVE_DISK:
6732 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6733 		goto unlock;
6734 
6735 	case ADD_NEW_DISK:
6736 		/* We can support ADD_NEW_DISK on read-only arrays
6737 		 * on if we are re-adding a preexisting device.
6738 		 * So require mddev->pers and MD_DISK_SYNC.
6739 		 */
6740 		if (mddev->pers) {
6741 			mdu_disk_info_t info;
6742 			if (copy_from_user(&info, argp, sizeof(info)))
6743 				err = -EFAULT;
6744 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6745 				/* Need to clear read-only for this */
6746 				break;
6747 			else
6748 				err = add_new_disk(mddev, &info);
6749 			goto unlock;
6750 		}
6751 		break;
6752 
6753 	case BLKROSET:
6754 		if (get_user(ro, (int __user *)(arg))) {
6755 			err = -EFAULT;
6756 			goto unlock;
6757 		}
6758 		err = -EINVAL;
6759 
6760 		/* if the bdev is going readonly the value of mddev->ro
6761 		 * does not matter, no writes are coming
6762 		 */
6763 		if (ro)
6764 			goto unlock;
6765 
6766 		/* are we are already prepared for writes? */
6767 		if (mddev->ro != 1)
6768 			goto unlock;
6769 
6770 		/* transitioning to readauto need only happen for
6771 		 * arrays that call md_write_start
6772 		 */
6773 		if (mddev->pers) {
6774 			err = restart_array(mddev);
6775 			if (err == 0) {
6776 				mddev->ro = 2;
6777 				set_disk_ro(mddev->gendisk, 0);
6778 			}
6779 		}
6780 		goto unlock;
6781 	}
6782 
6783 	/*
6784 	 * The remaining ioctls are changing the state of the
6785 	 * superblock, so we do not allow them on read-only arrays.
6786 	 */
6787 	if (mddev->ro && mddev->pers) {
6788 		if (mddev->ro == 2) {
6789 			mddev->ro = 0;
6790 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6791 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6792 			/* mddev_unlock will wake thread */
6793 			/* If a device failed while we were read-only, we
6794 			 * need to make sure the metadata is updated now.
6795 			 */
6796 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6797 				mddev_unlock(mddev);
6798 				wait_event(mddev->sb_wait,
6799 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6800 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6801 				mddev_lock_nointr(mddev);
6802 			}
6803 		} else {
6804 			err = -EROFS;
6805 			goto unlock;
6806 		}
6807 	}
6808 
6809 	switch (cmd) {
6810 	case ADD_NEW_DISK:
6811 	{
6812 		mdu_disk_info_t info;
6813 		if (copy_from_user(&info, argp, sizeof(info)))
6814 			err = -EFAULT;
6815 		else
6816 			err = add_new_disk(mddev, &info);
6817 		goto unlock;
6818 	}
6819 
6820 	case CLUSTERED_DISK_NACK:
6821 		if (mddev_is_clustered(mddev))
6822 			md_cluster_ops->new_disk_ack(mddev, false);
6823 		else
6824 			err = -EINVAL;
6825 		goto unlock;
6826 
6827 	case HOT_ADD_DISK:
6828 		err = hot_add_disk(mddev, new_decode_dev(arg));
6829 		goto unlock;
6830 
6831 	case RUN_ARRAY:
6832 		err = do_md_run(mddev);
6833 		goto unlock;
6834 
6835 	case SET_BITMAP_FILE:
6836 		err = set_bitmap_file(mddev, (int)arg);
6837 		goto unlock;
6838 
6839 	default:
6840 		err = -EINVAL;
6841 		goto unlock;
6842 	}
6843 
6844 unlock:
6845 	if (mddev->hold_active == UNTIL_IOCTL &&
6846 	    err != -EINVAL)
6847 		mddev->hold_active = 0;
6848 	mddev_unlock(mddev);
6849 out:
6850 	return err;
6851 }
6852 #ifdef CONFIG_COMPAT
6853 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6854 		    unsigned int cmd, unsigned long arg)
6855 {
6856 	switch (cmd) {
6857 	case HOT_REMOVE_DISK:
6858 	case HOT_ADD_DISK:
6859 	case SET_DISK_FAULTY:
6860 	case SET_BITMAP_FILE:
6861 		/* These take in integer arg, do not convert */
6862 		break;
6863 	default:
6864 		arg = (unsigned long)compat_ptr(arg);
6865 		break;
6866 	}
6867 
6868 	return md_ioctl(bdev, mode, cmd, arg);
6869 }
6870 #endif /* CONFIG_COMPAT */
6871 
6872 static int md_open(struct block_device *bdev, fmode_t mode)
6873 {
6874 	/*
6875 	 * Succeed if we can lock the mddev, which confirms that
6876 	 * it isn't being stopped right now.
6877 	 */
6878 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6879 	int err;
6880 
6881 	if (!mddev)
6882 		return -ENODEV;
6883 
6884 	if (mddev->gendisk != bdev->bd_disk) {
6885 		/* we are racing with mddev_put which is discarding this
6886 		 * bd_disk.
6887 		 */
6888 		mddev_put(mddev);
6889 		/* Wait until bdev->bd_disk is definitely gone */
6890 		flush_workqueue(md_misc_wq);
6891 		/* Then retry the open from the top */
6892 		return -ERESTARTSYS;
6893 	}
6894 	BUG_ON(mddev != bdev->bd_disk->private_data);
6895 
6896 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6897 		goto out;
6898 
6899 	err = 0;
6900 	atomic_inc(&mddev->openers);
6901 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6902 	mutex_unlock(&mddev->open_mutex);
6903 
6904 	check_disk_change(bdev);
6905  out:
6906 	return err;
6907 }
6908 
6909 static void md_release(struct gendisk *disk, fmode_t mode)
6910 {
6911 	struct mddev *mddev = disk->private_data;
6912 
6913 	BUG_ON(!mddev);
6914 	atomic_dec(&mddev->openers);
6915 	mddev_put(mddev);
6916 }
6917 
6918 static int md_media_changed(struct gendisk *disk)
6919 {
6920 	struct mddev *mddev = disk->private_data;
6921 
6922 	return mddev->changed;
6923 }
6924 
6925 static int md_revalidate(struct gendisk *disk)
6926 {
6927 	struct mddev *mddev = disk->private_data;
6928 
6929 	mddev->changed = 0;
6930 	return 0;
6931 }
6932 static const struct block_device_operations md_fops =
6933 {
6934 	.owner		= THIS_MODULE,
6935 	.open		= md_open,
6936 	.release	= md_release,
6937 	.ioctl		= md_ioctl,
6938 #ifdef CONFIG_COMPAT
6939 	.compat_ioctl	= md_compat_ioctl,
6940 #endif
6941 	.getgeo		= md_getgeo,
6942 	.media_changed  = md_media_changed,
6943 	.revalidate_disk= md_revalidate,
6944 };
6945 
6946 static int md_thread(void *arg)
6947 {
6948 	struct md_thread *thread = arg;
6949 
6950 	/*
6951 	 * md_thread is a 'system-thread', it's priority should be very
6952 	 * high. We avoid resource deadlocks individually in each
6953 	 * raid personality. (RAID5 does preallocation) We also use RR and
6954 	 * the very same RT priority as kswapd, thus we will never get
6955 	 * into a priority inversion deadlock.
6956 	 *
6957 	 * we definitely have to have equal or higher priority than
6958 	 * bdflush, otherwise bdflush will deadlock if there are too
6959 	 * many dirty RAID5 blocks.
6960 	 */
6961 
6962 	allow_signal(SIGKILL);
6963 	while (!kthread_should_stop()) {
6964 
6965 		/* We need to wait INTERRUPTIBLE so that
6966 		 * we don't add to the load-average.
6967 		 * That means we need to be sure no signals are
6968 		 * pending
6969 		 */
6970 		if (signal_pending(current))
6971 			flush_signals(current);
6972 
6973 		wait_event_interruptible_timeout
6974 			(thread->wqueue,
6975 			 test_bit(THREAD_WAKEUP, &thread->flags)
6976 			 || kthread_should_stop(),
6977 			 thread->timeout);
6978 
6979 		clear_bit(THREAD_WAKEUP, &thread->flags);
6980 		if (!kthread_should_stop())
6981 			thread->run(thread);
6982 	}
6983 
6984 	return 0;
6985 }
6986 
6987 void md_wakeup_thread(struct md_thread *thread)
6988 {
6989 	if (thread) {
6990 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6991 		set_bit(THREAD_WAKEUP, &thread->flags);
6992 		wake_up(&thread->wqueue);
6993 	}
6994 }
6995 EXPORT_SYMBOL(md_wakeup_thread);
6996 
6997 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6998 		struct mddev *mddev, const char *name)
6999 {
7000 	struct md_thread *thread;
7001 
7002 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7003 	if (!thread)
7004 		return NULL;
7005 
7006 	init_waitqueue_head(&thread->wqueue);
7007 
7008 	thread->run = run;
7009 	thread->mddev = mddev;
7010 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7011 	thread->tsk = kthread_run(md_thread, thread,
7012 				  "%s_%s",
7013 				  mdname(thread->mddev),
7014 				  name);
7015 	if (IS_ERR(thread->tsk)) {
7016 		kfree(thread);
7017 		return NULL;
7018 	}
7019 	return thread;
7020 }
7021 EXPORT_SYMBOL(md_register_thread);
7022 
7023 void md_unregister_thread(struct md_thread **threadp)
7024 {
7025 	struct md_thread *thread = *threadp;
7026 	if (!thread)
7027 		return;
7028 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7029 	/* Locking ensures that mddev_unlock does not wake_up a
7030 	 * non-existent thread
7031 	 */
7032 	spin_lock(&pers_lock);
7033 	*threadp = NULL;
7034 	spin_unlock(&pers_lock);
7035 
7036 	kthread_stop(thread->tsk);
7037 	kfree(thread);
7038 }
7039 EXPORT_SYMBOL(md_unregister_thread);
7040 
7041 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7042 {
7043 	if (!rdev || test_bit(Faulty, &rdev->flags))
7044 		return;
7045 
7046 	if (!mddev->pers || !mddev->pers->error_handler)
7047 		return;
7048 	mddev->pers->error_handler(mddev,rdev);
7049 	if (mddev->degraded)
7050 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7051 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7052 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7053 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7054 	md_wakeup_thread(mddev->thread);
7055 	if (mddev->event_work.func)
7056 		queue_work(md_misc_wq, &mddev->event_work);
7057 	md_new_event_inintr(mddev);
7058 }
7059 EXPORT_SYMBOL(md_error);
7060 
7061 /* seq_file implementation /proc/mdstat */
7062 
7063 static void status_unused(struct seq_file *seq)
7064 {
7065 	int i = 0;
7066 	struct md_rdev *rdev;
7067 
7068 	seq_printf(seq, "unused devices: ");
7069 
7070 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7071 		char b[BDEVNAME_SIZE];
7072 		i++;
7073 		seq_printf(seq, "%s ",
7074 			      bdevname(rdev->bdev,b));
7075 	}
7076 	if (!i)
7077 		seq_printf(seq, "<none>");
7078 
7079 	seq_printf(seq, "\n");
7080 }
7081 
7082 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7083 {
7084 	sector_t max_sectors, resync, res;
7085 	unsigned long dt, db;
7086 	sector_t rt;
7087 	int scale;
7088 	unsigned int per_milli;
7089 
7090 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7091 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7092 		max_sectors = mddev->resync_max_sectors;
7093 	else
7094 		max_sectors = mddev->dev_sectors;
7095 
7096 	resync = mddev->curr_resync;
7097 	if (resync <= 3) {
7098 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7099 			/* Still cleaning up */
7100 			resync = max_sectors;
7101 	} else
7102 		resync -= atomic_read(&mddev->recovery_active);
7103 
7104 	if (resync == 0) {
7105 		if (mddev->recovery_cp < MaxSector) {
7106 			seq_printf(seq, "\tresync=PENDING");
7107 			return 1;
7108 		}
7109 		return 0;
7110 	}
7111 	if (resync < 3) {
7112 		seq_printf(seq, "\tresync=DELAYED");
7113 		return 1;
7114 	}
7115 
7116 	WARN_ON(max_sectors == 0);
7117 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7118 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7119 	 * u32, as those are the requirements for sector_div.
7120 	 * Thus 'scale' must be at least 10
7121 	 */
7122 	scale = 10;
7123 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7124 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7125 			scale++;
7126 	}
7127 	res = (resync>>scale)*1000;
7128 	sector_div(res, (u32)((max_sectors>>scale)+1));
7129 
7130 	per_milli = res;
7131 	{
7132 		int i, x = per_milli/50, y = 20-x;
7133 		seq_printf(seq, "[");
7134 		for (i = 0; i < x; i++)
7135 			seq_printf(seq, "=");
7136 		seq_printf(seq, ">");
7137 		for (i = 0; i < y; i++)
7138 			seq_printf(seq, ".");
7139 		seq_printf(seq, "] ");
7140 	}
7141 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7142 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7143 		    "reshape" :
7144 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7145 		     "check" :
7146 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7147 		      "resync" : "recovery"))),
7148 		   per_milli/10, per_milli % 10,
7149 		   (unsigned long long) resync/2,
7150 		   (unsigned long long) max_sectors/2);
7151 
7152 	/*
7153 	 * dt: time from mark until now
7154 	 * db: blocks written from mark until now
7155 	 * rt: remaining time
7156 	 *
7157 	 * rt is a sector_t, so could be 32bit or 64bit.
7158 	 * So we divide before multiply in case it is 32bit and close
7159 	 * to the limit.
7160 	 * We scale the divisor (db) by 32 to avoid losing precision
7161 	 * near the end of resync when the number of remaining sectors
7162 	 * is close to 'db'.
7163 	 * We then divide rt by 32 after multiplying by db to compensate.
7164 	 * The '+1' avoids division by zero if db is very small.
7165 	 */
7166 	dt = ((jiffies - mddev->resync_mark) / HZ);
7167 	if (!dt) dt++;
7168 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7169 		- mddev->resync_mark_cnt;
7170 
7171 	rt = max_sectors - resync;    /* number of remaining sectors */
7172 	sector_div(rt, db/32+1);
7173 	rt *= dt;
7174 	rt >>= 5;
7175 
7176 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7177 		   ((unsigned long)rt % 60)/6);
7178 
7179 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7180 	return 1;
7181 }
7182 
7183 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7184 {
7185 	struct list_head *tmp;
7186 	loff_t l = *pos;
7187 	struct mddev *mddev;
7188 
7189 	if (l >= 0x10000)
7190 		return NULL;
7191 	if (!l--)
7192 		/* header */
7193 		return (void*)1;
7194 
7195 	spin_lock(&all_mddevs_lock);
7196 	list_for_each(tmp,&all_mddevs)
7197 		if (!l--) {
7198 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7199 			mddev_get(mddev);
7200 			spin_unlock(&all_mddevs_lock);
7201 			return mddev;
7202 		}
7203 	spin_unlock(&all_mddevs_lock);
7204 	if (!l--)
7205 		return (void*)2;/* tail */
7206 	return NULL;
7207 }
7208 
7209 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7210 {
7211 	struct list_head *tmp;
7212 	struct mddev *next_mddev, *mddev = v;
7213 
7214 	++*pos;
7215 	if (v == (void*)2)
7216 		return NULL;
7217 
7218 	spin_lock(&all_mddevs_lock);
7219 	if (v == (void*)1)
7220 		tmp = all_mddevs.next;
7221 	else
7222 		tmp = mddev->all_mddevs.next;
7223 	if (tmp != &all_mddevs)
7224 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7225 	else {
7226 		next_mddev = (void*)2;
7227 		*pos = 0x10000;
7228 	}
7229 	spin_unlock(&all_mddevs_lock);
7230 
7231 	if (v != (void*)1)
7232 		mddev_put(mddev);
7233 	return next_mddev;
7234 
7235 }
7236 
7237 static void md_seq_stop(struct seq_file *seq, void *v)
7238 {
7239 	struct mddev *mddev = v;
7240 
7241 	if (mddev && v != (void*)1 && v != (void*)2)
7242 		mddev_put(mddev);
7243 }
7244 
7245 static int md_seq_show(struct seq_file *seq, void *v)
7246 {
7247 	struct mddev *mddev = v;
7248 	sector_t sectors;
7249 	struct md_rdev *rdev;
7250 
7251 	if (v == (void*)1) {
7252 		struct md_personality *pers;
7253 		seq_printf(seq, "Personalities : ");
7254 		spin_lock(&pers_lock);
7255 		list_for_each_entry(pers, &pers_list, list)
7256 			seq_printf(seq, "[%s] ", pers->name);
7257 
7258 		spin_unlock(&pers_lock);
7259 		seq_printf(seq, "\n");
7260 		seq->poll_event = atomic_read(&md_event_count);
7261 		return 0;
7262 	}
7263 	if (v == (void*)2) {
7264 		status_unused(seq);
7265 		return 0;
7266 	}
7267 
7268 	spin_lock(&mddev->lock);
7269 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7270 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7271 						mddev->pers ? "" : "in");
7272 		if (mddev->pers) {
7273 			if (mddev->ro==1)
7274 				seq_printf(seq, " (read-only)");
7275 			if (mddev->ro==2)
7276 				seq_printf(seq, " (auto-read-only)");
7277 			seq_printf(seq, " %s", mddev->pers->name);
7278 		}
7279 
7280 		sectors = 0;
7281 		rcu_read_lock();
7282 		rdev_for_each_rcu(rdev, mddev) {
7283 			char b[BDEVNAME_SIZE];
7284 			seq_printf(seq, " %s[%d]",
7285 				bdevname(rdev->bdev,b), rdev->desc_nr);
7286 			if (test_bit(WriteMostly, &rdev->flags))
7287 				seq_printf(seq, "(W)");
7288 			if (test_bit(Faulty, &rdev->flags)) {
7289 				seq_printf(seq, "(F)");
7290 				continue;
7291 			}
7292 			if (rdev->raid_disk < 0)
7293 				seq_printf(seq, "(S)"); /* spare */
7294 			if (test_bit(Replacement, &rdev->flags))
7295 				seq_printf(seq, "(R)");
7296 			sectors += rdev->sectors;
7297 		}
7298 		rcu_read_unlock();
7299 
7300 		if (!list_empty(&mddev->disks)) {
7301 			if (mddev->pers)
7302 				seq_printf(seq, "\n      %llu blocks",
7303 					   (unsigned long long)
7304 					   mddev->array_sectors / 2);
7305 			else
7306 				seq_printf(seq, "\n      %llu blocks",
7307 					   (unsigned long long)sectors / 2);
7308 		}
7309 		if (mddev->persistent) {
7310 			if (mddev->major_version != 0 ||
7311 			    mddev->minor_version != 90) {
7312 				seq_printf(seq," super %d.%d",
7313 					   mddev->major_version,
7314 					   mddev->minor_version);
7315 			}
7316 		} else if (mddev->external)
7317 			seq_printf(seq, " super external:%s",
7318 				   mddev->metadata_type);
7319 		else
7320 			seq_printf(seq, " super non-persistent");
7321 
7322 		if (mddev->pers) {
7323 			mddev->pers->status(seq, mddev);
7324 			seq_printf(seq, "\n      ");
7325 			if (mddev->pers->sync_request) {
7326 				if (status_resync(seq, mddev))
7327 					seq_printf(seq, "\n      ");
7328 			}
7329 		} else
7330 			seq_printf(seq, "\n       ");
7331 
7332 		bitmap_status(seq, mddev->bitmap);
7333 
7334 		seq_printf(seq, "\n");
7335 	}
7336 	spin_unlock(&mddev->lock);
7337 
7338 	return 0;
7339 }
7340 
7341 static const struct seq_operations md_seq_ops = {
7342 	.start  = md_seq_start,
7343 	.next   = md_seq_next,
7344 	.stop   = md_seq_stop,
7345 	.show   = md_seq_show,
7346 };
7347 
7348 static int md_seq_open(struct inode *inode, struct file *file)
7349 {
7350 	struct seq_file *seq;
7351 	int error;
7352 
7353 	error = seq_open(file, &md_seq_ops);
7354 	if (error)
7355 		return error;
7356 
7357 	seq = file->private_data;
7358 	seq->poll_event = atomic_read(&md_event_count);
7359 	return error;
7360 }
7361 
7362 static int md_unloading;
7363 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7364 {
7365 	struct seq_file *seq = filp->private_data;
7366 	int mask;
7367 
7368 	if (md_unloading)
7369 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7370 	poll_wait(filp, &md_event_waiters, wait);
7371 
7372 	/* always allow read */
7373 	mask = POLLIN | POLLRDNORM;
7374 
7375 	if (seq->poll_event != atomic_read(&md_event_count))
7376 		mask |= POLLERR | POLLPRI;
7377 	return mask;
7378 }
7379 
7380 static const struct file_operations md_seq_fops = {
7381 	.owner		= THIS_MODULE,
7382 	.open           = md_seq_open,
7383 	.read           = seq_read,
7384 	.llseek         = seq_lseek,
7385 	.release	= seq_release_private,
7386 	.poll		= mdstat_poll,
7387 };
7388 
7389 int register_md_personality(struct md_personality *p)
7390 {
7391 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7392 						p->name, p->level);
7393 	spin_lock(&pers_lock);
7394 	list_add_tail(&p->list, &pers_list);
7395 	spin_unlock(&pers_lock);
7396 	return 0;
7397 }
7398 EXPORT_SYMBOL(register_md_personality);
7399 
7400 int unregister_md_personality(struct md_personality *p)
7401 {
7402 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7403 	spin_lock(&pers_lock);
7404 	list_del_init(&p->list);
7405 	spin_unlock(&pers_lock);
7406 	return 0;
7407 }
7408 EXPORT_SYMBOL(unregister_md_personality);
7409 
7410 int register_md_cluster_operations(struct md_cluster_operations *ops,
7411 				   struct module *module)
7412 {
7413 	int ret = 0;
7414 	spin_lock(&pers_lock);
7415 	if (md_cluster_ops != NULL)
7416 		ret = -EALREADY;
7417 	else {
7418 		md_cluster_ops = ops;
7419 		md_cluster_mod = module;
7420 	}
7421 	spin_unlock(&pers_lock);
7422 	return ret;
7423 }
7424 EXPORT_SYMBOL(register_md_cluster_operations);
7425 
7426 int unregister_md_cluster_operations(void)
7427 {
7428 	spin_lock(&pers_lock);
7429 	md_cluster_ops = NULL;
7430 	spin_unlock(&pers_lock);
7431 	return 0;
7432 }
7433 EXPORT_SYMBOL(unregister_md_cluster_operations);
7434 
7435 int md_setup_cluster(struct mddev *mddev, int nodes)
7436 {
7437 	int err;
7438 
7439 	err = request_module("md-cluster");
7440 	if (err) {
7441 		pr_err("md-cluster module not found.\n");
7442 		return -ENOENT;
7443 	}
7444 
7445 	spin_lock(&pers_lock);
7446 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7447 		spin_unlock(&pers_lock);
7448 		return -ENOENT;
7449 	}
7450 	spin_unlock(&pers_lock);
7451 
7452 	return md_cluster_ops->join(mddev, nodes);
7453 }
7454 
7455 void md_cluster_stop(struct mddev *mddev)
7456 {
7457 	if (!md_cluster_ops)
7458 		return;
7459 	md_cluster_ops->leave(mddev);
7460 	module_put(md_cluster_mod);
7461 }
7462 
7463 static int is_mddev_idle(struct mddev *mddev, int init)
7464 {
7465 	struct md_rdev *rdev;
7466 	int idle;
7467 	int curr_events;
7468 
7469 	idle = 1;
7470 	rcu_read_lock();
7471 	rdev_for_each_rcu(rdev, mddev) {
7472 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7473 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7474 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7475 			      atomic_read(&disk->sync_io);
7476 		/* sync IO will cause sync_io to increase before the disk_stats
7477 		 * as sync_io is counted when a request starts, and
7478 		 * disk_stats is counted when it completes.
7479 		 * So resync activity will cause curr_events to be smaller than
7480 		 * when there was no such activity.
7481 		 * non-sync IO will cause disk_stat to increase without
7482 		 * increasing sync_io so curr_events will (eventually)
7483 		 * be larger than it was before.  Once it becomes
7484 		 * substantially larger, the test below will cause
7485 		 * the array to appear non-idle, and resync will slow
7486 		 * down.
7487 		 * If there is a lot of outstanding resync activity when
7488 		 * we set last_event to curr_events, then all that activity
7489 		 * completing might cause the array to appear non-idle
7490 		 * and resync will be slowed down even though there might
7491 		 * not have been non-resync activity.  This will only
7492 		 * happen once though.  'last_events' will soon reflect
7493 		 * the state where there is little or no outstanding
7494 		 * resync requests, and further resync activity will
7495 		 * always make curr_events less than last_events.
7496 		 *
7497 		 */
7498 		if (init || curr_events - rdev->last_events > 64) {
7499 			rdev->last_events = curr_events;
7500 			idle = 0;
7501 		}
7502 	}
7503 	rcu_read_unlock();
7504 	return idle;
7505 }
7506 
7507 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7508 {
7509 	/* another "blocks" (512byte) blocks have been synced */
7510 	atomic_sub(blocks, &mddev->recovery_active);
7511 	wake_up(&mddev->recovery_wait);
7512 	if (!ok) {
7513 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7514 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7515 		md_wakeup_thread(mddev->thread);
7516 		// stop recovery, signal do_sync ....
7517 	}
7518 }
7519 EXPORT_SYMBOL(md_done_sync);
7520 
7521 /* md_write_start(mddev, bi)
7522  * If we need to update some array metadata (e.g. 'active' flag
7523  * in superblock) before writing, schedule a superblock update
7524  * and wait for it to complete.
7525  */
7526 void md_write_start(struct mddev *mddev, struct bio *bi)
7527 {
7528 	int did_change = 0;
7529 	if (bio_data_dir(bi) != WRITE)
7530 		return;
7531 
7532 	BUG_ON(mddev->ro == 1);
7533 	if (mddev->ro == 2) {
7534 		/* need to switch to read/write */
7535 		mddev->ro = 0;
7536 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7537 		md_wakeup_thread(mddev->thread);
7538 		md_wakeup_thread(mddev->sync_thread);
7539 		did_change = 1;
7540 	}
7541 	atomic_inc(&mddev->writes_pending);
7542 	if (mddev->safemode == 1)
7543 		mddev->safemode = 0;
7544 	if (mddev->in_sync) {
7545 		spin_lock(&mddev->lock);
7546 		if (mddev->in_sync) {
7547 			mddev->in_sync = 0;
7548 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7549 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7550 			md_wakeup_thread(mddev->thread);
7551 			did_change = 1;
7552 		}
7553 		spin_unlock(&mddev->lock);
7554 	}
7555 	if (did_change)
7556 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7557 	wait_event(mddev->sb_wait,
7558 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7559 }
7560 EXPORT_SYMBOL(md_write_start);
7561 
7562 void md_write_end(struct mddev *mddev)
7563 {
7564 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7565 		if (mddev->safemode == 2)
7566 			md_wakeup_thread(mddev->thread);
7567 		else if (mddev->safemode_delay)
7568 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7569 	}
7570 }
7571 EXPORT_SYMBOL(md_write_end);
7572 
7573 /* md_allow_write(mddev)
7574  * Calling this ensures that the array is marked 'active' so that writes
7575  * may proceed without blocking.  It is important to call this before
7576  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7577  * Must be called with mddev_lock held.
7578  *
7579  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7580  * is dropped, so return -EAGAIN after notifying userspace.
7581  */
7582 int md_allow_write(struct mddev *mddev)
7583 {
7584 	if (!mddev->pers)
7585 		return 0;
7586 	if (mddev->ro)
7587 		return 0;
7588 	if (!mddev->pers->sync_request)
7589 		return 0;
7590 
7591 	spin_lock(&mddev->lock);
7592 	if (mddev->in_sync) {
7593 		mddev->in_sync = 0;
7594 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7595 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7596 		if (mddev->safemode_delay &&
7597 		    mddev->safemode == 0)
7598 			mddev->safemode = 1;
7599 		spin_unlock(&mddev->lock);
7600 		if (mddev_is_clustered(mddev))
7601 			md_cluster_ops->metadata_update_start(mddev);
7602 		md_update_sb(mddev, 0);
7603 		if (mddev_is_clustered(mddev))
7604 			md_cluster_ops->metadata_update_finish(mddev);
7605 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7606 	} else
7607 		spin_unlock(&mddev->lock);
7608 
7609 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7610 		return -EAGAIN;
7611 	else
7612 		return 0;
7613 }
7614 EXPORT_SYMBOL_GPL(md_allow_write);
7615 
7616 #define SYNC_MARKS	10
7617 #define	SYNC_MARK_STEP	(3*HZ)
7618 #define UPDATE_FREQUENCY (5*60*HZ)
7619 void md_do_sync(struct md_thread *thread)
7620 {
7621 	struct mddev *mddev = thread->mddev;
7622 	struct mddev *mddev2;
7623 	unsigned int currspeed = 0,
7624 		 window;
7625 	sector_t max_sectors,j, io_sectors, recovery_done;
7626 	unsigned long mark[SYNC_MARKS];
7627 	unsigned long update_time;
7628 	sector_t mark_cnt[SYNC_MARKS];
7629 	int last_mark,m;
7630 	struct list_head *tmp;
7631 	sector_t last_check;
7632 	int skipped = 0;
7633 	struct md_rdev *rdev;
7634 	char *desc, *action = NULL;
7635 	struct blk_plug plug;
7636 
7637 	/* just incase thread restarts... */
7638 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7639 		return;
7640 	if (mddev->ro) {/* never try to sync a read-only array */
7641 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7642 		return;
7643 	}
7644 
7645 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7646 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7647 			desc = "data-check";
7648 			action = "check";
7649 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7650 			desc = "requested-resync";
7651 			action = "repair";
7652 		} else
7653 			desc = "resync";
7654 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7655 		desc = "reshape";
7656 	else
7657 		desc = "recovery";
7658 
7659 	mddev->last_sync_action = action ?: desc;
7660 
7661 	/* we overload curr_resync somewhat here.
7662 	 * 0 == not engaged in resync at all
7663 	 * 2 == checking that there is no conflict with another sync
7664 	 * 1 == like 2, but have yielded to allow conflicting resync to
7665 	 *		commense
7666 	 * other == active in resync - this many blocks
7667 	 *
7668 	 * Before starting a resync we must have set curr_resync to
7669 	 * 2, and then checked that every "conflicting" array has curr_resync
7670 	 * less than ours.  When we find one that is the same or higher
7671 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7672 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7673 	 * This will mean we have to start checking from the beginning again.
7674 	 *
7675 	 */
7676 
7677 	do {
7678 		mddev->curr_resync = 2;
7679 
7680 	try_again:
7681 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7682 			goto skip;
7683 		for_each_mddev(mddev2, tmp) {
7684 			if (mddev2 == mddev)
7685 				continue;
7686 			if (!mddev->parallel_resync
7687 			&&  mddev2->curr_resync
7688 			&&  match_mddev_units(mddev, mddev2)) {
7689 				DEFINE_WAIT(wq);
7690 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7691 					/* arbitrarily yield */
7692 					mddev->curr_resync = 1;
7693 					wake_up(&resync_wait);
7694 				}
7695 				if (mddev > mddev2 && mddev->curr_resync == 1)
7696 					/* no need to wait here, we can wait the next
7697 					 * time 'round when curr_resync == 2
7698 					 */
7699 					continue;
7700 				/* We need to wait 'interruptible' so as not to
7701 				 * contribute to the load average, and not to
7702 				 * be caught by 'softlockup'
7703 				 */
7704 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7705 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7706 				    mddev2->curr_resync >= mddev->curr_resync) {
7707 					printk(KERN_INFO "md: delaying %s of %s"
7708 					       " until %s has finished (they"
7709 					       " share one or more physical units)\n",
7710 					       desc, mdname(mddev), mdname(mddev2));
7711 					mddev_put(mddev2);
7712 					if (signal_pending(current))
7713 						flush_signals(current);
7714 					schedule();
7715 					finish_wait(&resync_wait, &wq);
7716 					goto try_again;
7717 				}
7718 				finish_wait(&resync_wait, &wq);
7719 			}
7720 		}
7721 	} while (mddev->curr_resync < 2);
7722 
7723 	j = 0;
7724 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7725 		/* resync follows the size requested by the personality,
7726 		 * which defaults to physical size, but can be virtual size
7727 		 */
7728 		max_sectors = mddev->resync_max_sectors;
7729 		atomic64_set(&mddev->resync_mismatches, 0);
7730 		/* we don't use the checkpoint if there's a bitmap */
7731 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7732 			j = mddev->resync_min;
7733 		else if (!mddev->bitmap)
7734 			j = mddev->recovery_cp;
7735 
7736 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7737 		max_sectors = mddev->resync_max_sectors;
7738 	else {
7739 		/* recovery follows the physical size of devices */
7740 		max_sectors = mddev->dev_sectors;
7741 		j = MaxSector;
7742 		rcu_read_lock();
7743 		rdev_for_each_rcu(rdev, mddev)
7744 			if (rdev->raid_disk >= 0 &&
7745 			    !test_bit(Faulty, &rdev->flags) &&
7746 			    !test_bit(In_sync, &rdev->flags) &&
7747 			    rdev->recovery_offset < j)
7748 				j = rdev->recovery_offset;
7749 		rcu_read_unlock();
7750 
7751 		/* If there is a bitmap, we need to make sure all
7752 		 * writes that started before we added a spare
7753 		 * complete before we start doing a recovery.
7754 		 * Otherwise the write might complete and (via
7755 		 * bitmap_endwrite) set a bit in the bitmap after the
7756 		 * recovery has checked that bit and skipped that
7757 		 * region.
7758 		 */
7759 		if (mddev->bitmap) {
7760 			mddev->pers->quiesce(mddev, 1);
7761 			mddev->pers->quiesce(mddev, 0);
7762 		}
7763 	}
7764 
7765 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7766 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7767 		" %d KB/sec/disk.\n", speed_min(mddev));
7768 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7769 	       "(but not more than %d KB/sec) for %s.\n",
7770 	       speed_max(mddev), desc);
7771 
7772 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7773 
7774 	io_sectors = 0;
7775 	for (m = 0; m < SYNC_MARKS; m++) {
7776 		mark[m] = jiffies;
7777 		mark_cnt[m] = io_sectors;
7778 	}
7779 	last_mark = 0;
7780 	mddev->resync_mark = mark[last_mark];
7781 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7782 
7783 	/*
7784 	 * Tune reconstruction:
7785 	 */
7786 	window = 32*(PAGE_SIZE/512);
7787 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7788 		window/2, (unsigned long long)max_sectors/2);
7789 
7790 	atomic_set(&mddev->recovery_active, 0);
7791 	last_check = 0;
7792 
7793 	if (j>2) {
7794 		printk(KERN_INFO
7795 		       "md: resuming %s of %s from checkpoint.\n",
7796 		       desc, mdname(mddev));
7797 		mddev->curr_resync = j;
7798 	} else
7799 		mddev->curr_resync = 3; /* no longer delayed */
7800 	mddev->curr_resync_completed = j;
7801 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7802 	md_new_event(mddev);
7803 	update_time = jiffies;
7804 
7805 	if (mddev_is_clustered(mddev))
7806 		md_cluster_ops->resync_start(mddev, j, max_sectors);
7807 
7808 	blk_start_plug(&plug);
7809 	while (j < max_sectors) {
7810 		sector_t sectors;
7811 
7812 		skipped = 0;
7813 
7814 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7815 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7816 		      (mddev->curr_resync - mddev->curr_resync_completed)
7817 		      > (max_sectors >> 4)) ||
7818 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7819 		     (j - mddev->curr_resync_completed)*2
7820 		     >= mddev->resync_max - mddev->curr_resync_completed ||
7821 		     mddev->curr_resync_completed > mddev->resync_max
7822 			    )) {
7823 			/* time to update curr_resync_completed */
7824 			wait_event(mddev->recovery_wait,
7825 				   atomic_read(&mddev->recovery_active) == 0);
7826 			mddev->curr_resync_completed = j;
7827 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7828 			    j > mddev->recovery_cp)
7829 				mddev->recovery_cp = j;
7830 			update_time = jiffies;
7831 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7832 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7833 		}
7834 
7835 		while (j >= mddev->resync_max &&
7836 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7837 			/* As this condition is controlled by user-space,
7838 			 * we can block indefinitely, so use '_interruptible'
7839 			 * to avoid triggering warnings.
7840 			 */
7841 			flush_signals(current); /* just in case */
7842 			wait_event_interruptible(mddev->recovery_wait,
7843 						 mddev->resync_max > j
7844 						 || test_bit(MD_RECOVERY_INTR,
7845 							     &mddev->recovery));
7846 		}
7847 
7848 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7849 			break;
7850 
7851 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7852 		if (sectors == 0) {
7853 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7854 			break;
7855 		}
7856 
7857 		if (!skipped) { /* actual IO requested */
7858 			io_sectors += sectors;
7859 			atomic_add(sectors, &mddev->recovery_active);
7860 		}
7861 
7862 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7863 			break;
7864 
7865 		j += sectors;
7866 		if (j > max_sectors)
7867 			/* when skipping, extra large numbers can be returned. */
7868 			j = max_sectors;
7869 		if (j > 2)
7870 			mddev->curr_resync = j;
7871 		if (mddev_is_clustered(mddev))
7872 			md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7873 		mddev->curr_mark_cnt = io_sectors;
7874 		if (last_check == 0)
7875 			/* this is the earliest that rebuild will be
7876 			 * visible in /proc/mdstat
7877 			 */
7878 			md_new_event(mddev);
7879 
7880 		if (last_check + window > io_sectors || j == max_sectors)
7881 			continue;
7882 
7883 		last_check = io_sectors;
7884 	repeat:
7885 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7886 			/* step marks */
7887 			int next = (last_mark+1) % SYNC_MARKS;
7888 
7889 			mddev->resync_mark = mark[next];
7890 			mddev->resync_mark_cnt = mark_cnt[next];
7891 			mark[next] = jiffies;
7892 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7893 			last_mark = next;
7894 		}
7895 
7896 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7897 			break;
7898 
7899 		/*
7900 		 * this loop exits only if either when we are slower than
7901 		 * the 'hard' speed limit, or the system was IO-idle for
7902 		 * a jiffy.
7903 		 * the system might be non-idle CPU-wise, but we only care
7904 		 * about not overloading the IO subsystem. (things like an
7905 		 * e2fsck being done on the RAID array should execute fast)
7906 		 */
7907 		cond_resched();
7908 
7909 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7910 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7911 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7912 
7913 		if (currspeed > speed_min(mddev)) {
7914 			if (currspeed > speed_max(mddev)) {
7915 				msleep(500);
7916 				goto repeat;
7917 			}
7918 			if (!is_mddev_idle(mddev, 0)) {
7919 				/*
7920 				 * Give other IO more of a chance.
7921 				 * The faster the devices, the less we wait.
7922 				 */
7923 				wait_event(mddev->recovery_wait,
7924 					   !atomic_read(&mddev->recovery_active));
7925 			}
7926 		}
7927 	}
7928 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7929 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7930 	       ? "interrupted" : "done");
7931 	/*
7932 	 * this also signals 'finished resyncing' to md_stop
7933 	 */
7934 	blk_finish_plug(&plug);
7935 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7936 
7937 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7938 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7939 	    mddev->curr_resync > 2) {
7940 		mddev->curr_resync_completed = mddev->curr_resync;
7941 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7942 	}
7943 	/* tell personality that we are finished */
7944 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
7945 
7946 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7947 	    mddev->curr_resync > 2) {
7948 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7949 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7950 				if (mddev->curr_resync >= mddev->recovery_cp) {
7951 					printk(KERN_INFO
7952 					       "md: checkpointing %s of %s.\n",
7953 					       desc, mdname(mddev));
7954 					if (test_bit(MD_RECOVERY_ERROR,
7955 						&mddev->recovery))
7956 						mddev->recovery_cp =
7957 							mddev->curr_resync_completed;
7958 					else
7959 						mddev->recovery_cp =
7960 							mddev->curr_resync;
7961 				}
7962 			} else
7963 				mddev->recovery_cp = MaxSector;
7964 		} else {
7965 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7966 				mddev->curr_resync = MaxSector;
7967 			rcu_read_lock();
7968 			rdev_for_each_rcu(rdev, mddev)
7969 				if (rdev->raid_disk >= 0 &&
7970 				    mddev->delta_disks >= 0 &&
7971 				    !test_bit(Faulty, &rdev->flags) &&
7972 				    !test_bit(In_sync, &rdev->flags) &&
7973 				    rdev->recovery_offset < mddev->curr_resync)
7974 					rdev->recovery_offset = mddev->curr_resync;
7975 			rcu_read_unlock();
7976 		}
7977 	}
7978  skip:
7979 	if (mddev_is_clustered(mddev))
7980 		md_cluster_ops->resync_finish(mddev);
7981 
7982 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7983 
7984 	spin_lock(&mddev->lock);
7985 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7986 		/* We completed so min/max setting can be forgotten if used. */
7987 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7988 			mddev->resync_min = 0;
7989 		mddev->resync_max = MaxSector;
7990 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7991 		mddev->resync_min = mddev->curr_resync_completed;
7992 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7993 	mddev->curr_resync = 0;
7994 	spin_unlock(&mddev->lock);
7995 
7996 	wake_up(&resync_wait);
7997 	md_wakeup_thread(mddev->thread);
7998 	return;
7999 }
8000 EXPORT_SYMBOL_GPL(md_do_sync);
8001 
8002 static int remove_and_add_spares(struct mddev *mddev,
8003 				 struct md_rdev *this)
8004 {
8005 	struct md_rdev *rdev;
8006 	int spares = 0;
8007 	int removed = 0;
8008 
8009 	rdev_for_each(rdev, mddev)
8010 		if ((this == NULL || rdev == this) &&
8011 		    rdev->raid_disk >= 0 &&
8012 		    !test_bit(Blocked, &rdev->flags) &&
8013 		    (test_bit(Faulty, &rdev->flags) ||
8014 		     ! test_bit(In_sync, &rdev->flags)) &&
8015 		    atomic_read(&rdev->nr_pending)==0) {
8016 			if (mddev->pers->hot_remove_disk(
8017 				    mddev, rdev) == 0) {
8018 				sysfs_unlink_rdev(mddev, rdev);
8019 				rdev->raid_disk = -1;
8020 				removed++;
8021 			}
8022 		}
8023 	if (removed && mddev->kobj.sd)
8024 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8025 
8026 	if (this)
8027 		goto no_add;
8028 
8029 	rdev_for_each(rdev, mddev) {
8030 		if (rdev->raid_disk >= 0 &&
8031 		    !test_bit(In_sync, &rdev->flags) &&
8032 		    !test_bit(Faulty, &rdev->flags))
8033 			spares++;
8034 		if (rdev->raid_disk >= 0)
8035 			continue;
8036 		if (test_bit(Faulty, &rdev->flags))
8037 			continue;
8038 		if (mddev->ro &&
8039 		    ! (rdev->saved_raid_disk >= 0 &&
8040 		       !test_bit(Bitmap_sync, &rdev->flags)))
8041 			continue;
8042 
8043 		if (rdev->saved_raid_disk < 0)
8044 			rdev->recovery_offset = 0;
8045 		if (mddev->pers->
8046 		    hot_add_disk(mddev, rdev) == 0) {
8047 			if (sysfs_link_rdev(mddev, rdev))
8048 				/* failure here is OK */;
8049 			spares++;
8050 			md_new_event(mddev);
8051 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8052 		}
8053 	}
8054 no_add:
8055 	if (removed)
8056 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8057 	return spares;
8058 }
8059 
8060 static void md_start_sync(struct work_struct *ws)
8061 {
8062 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8063 
8064 	mddev->sync_thread = md_register_thread(md_do_sync,
8065 						mddev,
8066 						"resync");
8067 	if (!mddev->sync_thread) {
8068 		printk(KERN_ERR "%s: could not start resync"
8069 		       " thread...\n",
8070 		       mdname(mddev));
8071 		/* leave the spares where they are, it shouldn't hurt */
8072 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8073 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8074 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8075 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8076 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8077 		wake_up(&resync_wait);
8078 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8079 				       &mddev->recovery))
8080 			if (mddev->sysfs_action)
8081 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8082 	} else
8083 		md_wakeup_thread(mddev->sync_thread);
8084 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8085 	md_new_event(mddev);
8086 }
8087 
8088 /*
8089  * This routine is regularly called by all per-raid-array threads to
8090  * deal with generic issues like resync and super-block update.
8091  * Raid personalities that don't have a thread (linear/raid0) do not
8092  * need this as they never do any recovery or update the superblock.
8093  *
8094  * It does not do any resync itself, but rather "forks" off other threads
8095  * to do that as needed.
8096  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8097  * "->recovery" and create a thread at ->sync_thread.
8098  * When the thread finishes it sets MD_RECOVERY_DONE
8099  * and wakeups up this thread which will reap the thread and finish up.
8100  * This thread also removes any faulty devices (with nr_pending == 0).
8101  *
8102  * The overall approach is:
8103  *  1/ if the superblock needs updating, update it.
8104  *  2/ If a recovery thread is running, don't do anything else.
8105  *  3/ If recovery has finished, clean up, possibly marking spares active.
8106  *  4/ If there are any faulty devices, remove them.
8107  *  5/ If array is degraded, try to add spares devices
8108  *  6/ If array has spares or is not in-sync, start a resync thread.
8109  */
8110 void md_check_recovery(struct mddev *mddev)
8111 {
8112 	if (mddev->suspended)
8113 		return;
8114 
8115 	if (mddev->bitmap)
8116 		bitmap_daemon_work(mddev);
8117 
8118 	if (signal_pending(current)) {
8119 		if (mddev->pers->sync_request && !mddev->external) {
8120 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8121 			       mdname(mddev));
8122 			mddev->safemode = 2;
8123 		}
8124 		flush_signals(current);
8125 	}
8126 
8127 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8128 		return;
8129 	if ( ! (
8130 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8131 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8132 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8133 		(mddev->external == 0 && mddev->safemode == 1) ||
8134 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8135 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8136 		))
8137 		return;
8138 
8139 	if (mddev_trylock(mddev)) {
8140 		int spares = 0;
8141 
8142 		if (mddev->ro) {
8143 			struct md_rdev *rdev;
8144 			if (!mddev->external && mddev->in_sync)
8145 				/* 'Blocked' flag not needed as failed devices
8146 				 * will be recorded if array switched to read/write.
8147 				 * Leaving it set will prevent the device
8148 				 * from being removed.
8149 				 */
8150 				rdev_for_each(rdev, mddev)
8151 					clear_bit(Blocked, &rdev->flags);
8152 			/* On a read-only array we can:
8153 			 * - remove failed devices
8154 			 * - add already-in_sync devices if the array itself
8155 			 *   is in-sync.
8156 			 * As we only add devices that are already in-sync,
8157 			 * we can activate the spares immediately.
8158 			 */
8159 			remove_and_add_spares(mddev, NULL);
8160 			/* There is no thread, but we need to call
8161 			 * ->spare_active and clear saved_raid_disk
8162 			 */
8163 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8164 			md_reap_sync_thread(mddev);
8165 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8166 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8167 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8168 			goto unlock;
8169 		}
8170 
8171 		if (!mddev->external) {
8172 			int did_change = 0;
8173 			spin_lock(&mddev->lock);
8174 			if (mddev->safemode &&
8175 			    !atomic_read(&mddev->writes_pending) &&
8176 			    !mddev->in_sync &&
8177 			    mddev->recovery_cp == MaxSector) {
8178 				mddev->in_sync = 1;
8179 				did_change = 1;
8180 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8181 			}
8182 			if (mddev->safemode == 1)
8183 				mddev->safemode = 0;
8184 			spin_unlock(&mddev->lock);
8185 			if (did_change)
8186 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8187 		}
8188 
8189 		if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8190 			if (mddev_is_clustered(mddev))
8191 				md_cluster_ops->metadata_update_start(mddev);
8192 			md_update_sb(mddev, 0);
8193 			if (mddev_is_clustered(mddev))
8194 				md_cluster_ops->metadata_update_finish(mddev);
8195 		}
8196 
8197 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8198 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8199 			/* resync/recovery still happening */
8200 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8201 			goto unlock;
8202 		}
8203 		if (mddev->sync_thread) {
8204 			md_reap_sync_thread(mddev);
8205 			goto unlock;
8206 		}
8207 		/* Set RUNNING before clearing NEEDED to avoid
8208 		 * any transients in the value of "sync_action".
8209 		 */
8210 		mddev->curr_resync_completed = 0;
8211 		spin_lock(&mddev->lock);
8212 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8213 		spin_unlock(&mddev->lock);
8214 		/* Clear some bits that don't mean anything, but
8215 		 * might be left set
8216 		 */
8217 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8218 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8219 
8220 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8221 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8222 			goto not_running;
8223 		/* no recovery is running.
8224 		 * remove any failed drives, then
8225 		 * add spares if possible.
8226 		 * Spares are also removed and re-added, to allow
8227 		 * the personality to fail the re-add.
8228 		 */
8229 
8230 		if (mddev->reshape_position != MaxSector) {
8231 			if (mddev->pers->check_reshape == NULL ||
8232 			    mddev->pers->check_reshape(mddev) != 0)
8233 				/* Cannot proceed */
8234 				goto not_running;
8235 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8236 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8237 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8238 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8239 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8240 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8241 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8242 		} else if (mddev->recovery_cp < MaxSector) {
8243 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8244 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8245 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8246 			/* nothing to be done ... */
8247 			goto not_running;
8248 
8249 		if (mddev->pers->sync_request) {
8250 			if (spares) {
8251 				/* We are adding a device or devices to an array
8252 				 * which has the bitmap stored on all devices.
8253 				 * So make sure all bitmap pages get written
8254 				 */
8255 				bitmap_write_all(mddev->bitmap);
8256 			}
8257 			INIT_WORK(&mddev->del_work, md_start_sync);
8258 			queue_work(md_misc_wq, &mddev->del_work);
8259 			goto unlock;
8260 		}
8261 	not_running:
8262 		if (!mddev->sync_thread) {
8263 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8264 			wake_up(&resync_wait);
8265 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8266 					       &mddev->recovery))
8267 				if (mddev->sysfs_action)
8268 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8269 		}
8270 	unlock:
8271 		wake_up(&mddev->sb_wait);
8272 		mddev_unlock(mddev);
8273 	}
8274 }
8275 EXPORT_SYMBOL(md_check_recovery);
8276 
8277 void md_reap_sync_thread(struct mddev *mddev)
8278 {
8279 	struct md_rdev *rdev;
8280 
8281 	/* resync has finished, collect result */
8282 	md_unregister_thread(&mddev->sync_thread);
8283 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8284 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8285 		/* success...*/
8286 		/* activate any spares */
8287 		if (mddev->pers->spare_active(mddev)) {
8288 			sysfs_notify(&mddev->kobj, NULL,
8289 				     "degraded");
8290 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8291 		}
8292 	}
8293 	if (mddev_is_clustered(mddev))
8294 		md_cluster_ops->metadata_update_start(mddev);
8295 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8296 	    mddev->pers->finish_reshape)
8297 		mddev->pers->finish_reshape(mddev);
8298 
8299 	/* If array is no-longer degraded, then any saved_raid_disk
8300 	 * information must be scrapped.
8301 	 */
8302 	if (!mddev->degraded)
8303 		rdev_for_each(rdev, mddev)
8304 			rdev->saved_raid_disk = -1;
8305 
8306 	md_update_sb(mddev, 1);
8307 	if (mddev_is_clustered(mddev))
8308 		md_cluster_ops->metadata_update_finish(mddev);
8309 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8310 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8311 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8312 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8313 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8314 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8315 	wake_up(&resync_wait);
8316 	/* flag recovery needed just to double check */
8317 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8318 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8319 	md_new_event(mddev);
8320 	if (mddev->event_work.func)
8321 		queue_work(md_misc_wq, &mddev->event_work);
8322 }
8323 EXPORT_SYMBOL(md_reap_sync_thread);
8324 
8325 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8326 {
8327 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8328 	wait_event_timeout(rdev->blocked_wait,
8329 			   !test_bit(Blocked, &rdev->flags) &&
8330 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8331 			   msecs_to_jiffies(5000));
8332 	rdev_dec_pending(rdev, mddev);
8333 }
8334 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8335 
8336 void md_finish_reshape(struct mddev *mddev)
8337 {
8338 	/* called be personality module when reshape completes. */
8339 	struct md_rdev *rdev;
8340 
8341 	rdev_for_each(rdev, mddev) {
8342 		if (rdev->data_offset > rdev->new_data_offset)
8343 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8344 		else
8345 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8346 		rdev->data_offset = rdev->new_data_offset;
8347 	}
8348 }
8349 EXPORT_SYMBOL(md_finish_reshape);
8350 
8351 /* Bad block management.
8352  * We can record which blocks on each device are 'bad' and so just
8353  * fail those blocks, or that stripe, rather than the whole device.
8354  * Entries in the bad-block table are 64bits wide.  This comprises:
8355  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8356  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8357  *  A 'shift' can be set so that larger blocks are tracked and
8358  *  consequently larger devices can be covered.
8359  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8360  *
8361  * Locking of the bad-block table uses a seqlock so md_is_badblock
8362  * might need to retry if it is very unlucky.
8363  * We will sometimes want to check for bad blocks in a bi_end_io function,
8364  * so we use the write_seqlock_irq variant.
8365  *
8366  * When looking for a bad block we specify a range and want to
8367  * know if any block in the range is bad.  So we binary-search
8368  * to the last range that starts at-or-before the given endpoint,
8369  * (or "before the sector after the target range")
8370  * then see if it ends after the given start.
8371  * We return
8372  *  0 if there are no known bad blocks in the range
8373  *  1 if there are known bad block which are all acknowledged
8374  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8375  * plus the start/length of the first bad section we overlap.
8376  */
8377 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8378 		   sector_t *first_bad, int *bad_sectors)
8379 {
8380 	int hi;
8381 	int lo;
8382 	u64 *p = bb->page;
8383 	int rv;
8384 	sector_t target = s + sectors;
8385 	unsigned seq;
8386 
8387 	if (bb->shift > 0) {
8388 		/* round the start down, and the end up */
8389 		s >>= bb->shift;
8390 		target += (1<<bb->shift) - 1;
8391 		target >>= bb->shift;
8392 		sectors = target - s;
8393 	}
8394 	/* 'target' is now the first block after the bad range */
8395 
8396 retry:
8397 	seq = read_seqbegin(&bb->lock);
8398 	lo = 0;
8399 	rv = 0;
8400 	hi = bb->count;
8401 
8402 	/* Binary search between lo and hi for 'target'
8403 	 * i.e. for the last range that starts before 'target'
8404 	 */
8405 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8406 	 * are known not to be the last range before target.
8407 	 * VARIANT: hi-lo is the number of possible
8408 	 * ranges, and decreases until it reaches 1
8409 	 */
8410 	while (hi - lo > 1) {
8411 		int mid = (lo + hi) / 2;
8412 		sector_t a = BB_OFFSET(p[mid]);
8413 		if (a < target)
8414 			/* This could still be the one, earlier ranges
8415 			 * could not. */
8416 			lo = mid;
8417 		else
8418 			/* This and later ranges are definitely out. */
8419 			hi = mid;
8420 	}
8421 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8422 	if (hi > lo) {
8423 		/* need to check all range that end after 's' to see if
8424 		 * any are unacknowledged.
8425 		 */
8426 		while (lo >= 0 &&
8427 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8428 			if (BB_OFFSET(p[lo]) < target) {
8429 				/* starts before the end, and finishes after
8430 				 * the start, so they must overlap
8431 				 */
8432 				if (rv != -1 && BB_ACK(p[lo]))
8433 					rv = 1;
8434 				else
8435 					rv = -1;
8436 				*first_bad = BB_OFFSET(p[lo]);
8437 				*bad_sectors = BB_LEN(p[lo]);
8438 			}
8439 			lo--;
8440 		}
8441 	}
8442 
8443 	if (read_seqretry(&bb->lock, seq))
8444 		goto retry;
8445 
8446 	return rv;
8447 }
8448 EXPORT_SYMBOL_GPL(md_is_badblock);
8449 
8450 /*
8451  * Add a range of bad blocks to the table.
8452  * This might extend the table, or might contract it
8453  * if two adjacent ranges can be merged.
8454  * We binary-search to find the 'insertion' point, then
8455  * decide how best to handle it.
8456  */
8457 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8458 			    int acknowledged)
8459 {
8460 	u64 *p;
8461 	int lo, hi;
8462 	int rv = 1;
8463 	unsigned long flags;
8464 
8465 	if (bb->shift < 0)
8466 		/* badblocks are disabled */
8467 		return 0;
8468 
8469 	if (bb->shift) {
8470 		/* round the start down, and the end up */
8471 		sector_t next = s + sectors;
8472 		s >>= bb->shift;
8473 		next += (1<<bb->shift) - 1;
8474 		next >>= bb->shift;
8475 		sectors = next - s;
8476 	}
8477 
8478 	write_seqlock_irqsave(&bb->lock, flags);
8479 
8480 	p = bb->page;
8481 	lo = 0;
8482 	hi = bb->count;
8483 	/* Find the last range that starts at-or-before 's' */
8484 	while (hi - lo > 1) {
8485 		int mid = (lo + hi) / 2;
8486 		sector_t a = BB_OFFSET(p[mid]);
8487 		if (a <= s)
8488 			lo = mid;
8489 		else
8490 			hi = mid;
8491 	}
8492 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8493 		hi = lo;
8494 
8495 	if (hi > lo) {
8496 		/* we found a range that might merge with the start
8497 		 * of our new range
8498 		 */
8499 		sector_t a = BB_OFFSET(p[lo]);
8500 		sector_t e = a + BB_LEN(p[lo]);
8501 		int ack = BB_ACK(p[lo]);
8502 		if (e >= s) {
8503 			/* Yes, we can merge with a previous range */
8504 			if (s == a && s + sectors >= e)
8505 				/* new range covers old */
8506 				ack = acknowledged;
8507 			else
8508 				ack = ack && acknowledged;
8509 
8510 			if (e < s + sectors)
8511 				e = s + sectors;
8512 			if (e - a <= BB_MAX_LEN) {
8513 				p[lo] = BB_MAKE(a, e-a, ack);
8514 				s = e;
8515 			} else {
8516 				/* does not all fit in one range,
8517 				 * make p[lo] maximal
8518 				 */
8519 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8520 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8521 				s = a + BB_MAX_LEN;
8522 			}
8523 			sectors = e - s;
8524 		}
8525 	}
8526 	if (sectors && hi < bb->count) {
8527 		/* 'hi' points to the first range that starts after 's'.
8528 		 * Maybe we can merge with the start of that range */
8529 		sector_t a = BB_OFFSET(p[hi]);
8530 		sector_t e = a + BB_LEN(p[hi]);
8531 		int ack = BB_ACK(p[hi]);
8532 		if (a <= s + sectors) {
8533 			/* merging is possible */
8534 			if (e <= s + sectors) {
8535 				/* full overlap */
8536 				e = s + sectors;
8537 				ack = acknowledged;
8538 			} else
8539 				ack = ack && acknowledged;
8540 
8541 			a = s;
8542 			if (e - a <= BB_MAX_LEN) {
8543 				p[hi] = BB_MAKE(a, e-a, ack);
8544 				s = e;
8545 			} else {
8546 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8547 				s = a + BB_MAX_LEN;
8548 			}
8549 			sectors = e - s;
8550 			lo = hi;
8551 			hi++;
8552 		}
8553 	}
8554 	if (sectors == 0 && hi < bb->count) {
8555 		/* we might be able to combine lo and hi */
8556 		/* Note: 's' is at the end of 'lo' */
8557 		sector_t a = BB_OFFSET(p[hi]);
8558 		int lolen = BB_LEN(p[lo]);
8559 		int hilen = BB_LEN(p[hi]);
8560 		int newlen = lolen + hilen - (s - a);
8561 		if (s >= a && newlen < BB_MAX_LEN) {
8562 			/* yes, we can combine them */
8563 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8564 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8565 			memmove(p + hi, p + hi + 1,
8566 				(bb->count - hi - 1) * 8);
8567 			bb->count--;
8568 		}
8569 	}
8570 	while (sectors) {
8571 		/* didn't merge (it all).
8572 		 * Need to add a range just before 'hi' */
8573 		if (bb->count >= MD_MAX_BADBLOCKS) {
8574 			/* No room for more */
8575 			rv = 0;
8576 			break;
8577 		} else {
8578 			int this_sectors = sectors;
8579 			memmove(p + hi + 1, p + hi,
8580 				(bb->count - hi) * 8);
8581 			bb->count++;
8582 
8583 			if (this_sectors > BB_MAX_LEN)
8584 				this_sectors = BB_MAX_LEN;
8585 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8586 			sectors -= this_sectors;
8587 			s += this_sectors;
8588 		}
8589 	}
8590 
8591 	bb->changed = 1;
8592 	if (!acknowledged)
8593 		bb->unacked_exist = 1;
8594 	write_sequnlock_irqrestore(&bb->lock, flags);
8595 
8596 	return rv;
8597 }
8598 
8599 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8600 		       int is_new)
8601 {
8602 	int rv;
8603 	if (is_new)
8604 		s += rdev->new_data_offset;
8605 	else
8606 		s += rdev->data_offset;
8607 	rv = md_set_badblocks(&rdev->badblocks,
8608 			      s, sectors, 0);
8609 	if (rv) {
8610 		/* Make sure they get written out promptly */
8611 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8612 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8613 		set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8614 		md_wakeup_thread(rdev->mddev->thread);
8615 	}
8616 	return rv;
8617 }
8618 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8619 
8620 /*
8621  * Remove a range of bad blocks from the table.
8622  * This may involve extending the table if we spilt a region,
8623  * but it must not fail.  So if the table becomes full, we just
8624  * drop the remove request.
8625  */
8626 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8627 {
8628 	u64 *p;
8629 	int lo, hi;
8630 	sector_t target = s + sectors;
8631 	int rv = 0;
8632 
8633 	if (bb->shift > 0) {
8634 		/* When clearing we round the start up and the end down.
8635 		 * This should not matter as the shift should align with
8636 		 * the block size and no rounding should ever be needed.
8637 		 * However it is better the think a block is bad when it
8638 		 * isn't than to think a block is not bad when it is.
8639 		 */
8640 		s += (1<<bb->shift) - 1;
8641 		s >>= bb->shift;
8642 		target >>= bb->shift;
8643 		sectors = target - s;
8644 	}
8645 
8646 	write_seqlock_irq(&bb->lock);
8647 
8648 	p = bb->page;
8649 	lo = 0;
8650 	hi = bb->count;
8651 	/* Find the last range that starts before 'target' */
8652 	while (hi - lo > 1) {
8653 		int mid = (lo + hi) / 2;
8654 		sector_t a = BB_OFFSET(p[mid]);
8655 		if (a < target)
8656 			lo = mid;
8657 		else
8658 			hi = mid;
8659 	}
8660 	if (hi > lo) {
8661 		/* p[lo] is the last range that could overlap the
8662 		 * current range.  Earlier ranges could also overlap,
8663 		 * but only this one can overlap the end of the range.
8664 		 */
8665 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8666 			/* Partial overlap, leave the tail of this range */
8667 			int ack = BB_ACK(p[lo]);
8668 			sector_t a = BB_OFFSET(p[lo]);
8669 			sector_t end = a + BB_LEN(p[lo]);
8670 
8671 			if (a < s) {
8672 				/* we need to split this range */
8673 				if (bb->count >= MD_MAX_BADBLOCKS) {
8674 					rv = -ENOSPC;
8675 					goto out;
8676 				}
8677 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8678 				bb->count++;
8679 				p[lo] = BB_MAKE(a, s-a, ack);
8680 				lo++;
8681 			}
8682 			p[lo] = BB_MAKE(target, end - target, ack);
8683 			/* there is no longer an overlap */
8684 			hi = lo;
8685 			lo--;
8686 		}
8687 		while (lo >= 0 &&
8688 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8689 			/* This range does overlap */
8690 			if (BB_OFFSET(p[lo]) < s) {
8691 				/* Keep the early parts of this range. */
8692 				int ack = BB_ACK(p[lo]);
8693 				sector_t start = BB_OFFSET(p[lo]);
8694 				p[lo] = BB_MAKE(start, s - start, ack);
8695 				/* now low doesn't overlap, so.. */
8696 				break;
8697 			}
8698 			lo--;
8699 		}
8700 		/* 'lo' is strictly before, 'hi' is strictly after,
8701 		 * anything between needs to be discarded
8702 		 */
8703 		if (hi - lo > 1) {
8704 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8705 			bb->count -= (hi - lo - 1);
8706 		}
8707 	}
8708 
8709 	bb->changed = 1;
8710 out:
8711 	write_sequnlock_irq(&bb->lock);
8712 	return rv;
8713 }
8714 
8715 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8716 			 int is_new)
8717 {
8718 	if (is_new)
8719 		s += rdev->new_data_offset;
8720 	else
8721 		s += rdev->data_offset;
8722 	return md_clear_badblocks(&rdev->badblocks,
8723 				  s, sectors);
8724 }
8725 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8726 
8727 /*
8728  * Acknowledge all bad blocks in a list.
8729  * This only succeeds if ->changed is clear.  It is used by
8730  * in-kernel metadata updates
8731  */
8732 void md_ack_all_badblocks(struct badblocks *bb)
8733 {
8734 	if (bb->page == NULL || bb->changed)
8735 		/* no point even trying */
8736 		return;
8737 	write_seqlock_irq(&bb->lock);
8738 
8739 	if (bb->changed == 0 && bb->unacked_exist) {
8740 		u64 *p = bb->page;
8741 		int i;
8742 		for (i = 0; i < bb->count ; i++) {
8743 			if (!BB_ACK(p[i])) {
8744 				sector_t start = BB_OFFSET(p[i]);
8745 				int len = BB_LEN(p[i]);
8746 				p[i] = BB_MAKE(start, len, 1);
8747 			}
8748 		}
8749 		bb->unacked_exist = 0;
8750 	}
8751 	write_sequnlock_irq(&bb->lock);
8752 }
8753 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8754 
8755 /* sysfs access to bad-blocks list.
8756  * We present two files.
8757  * 'bad-blocks' lists sector numbers and lengths of ranges that
8758  *    are recorded as bad.  The list is truncated to fit within
8759  *    the one-page limit of sysfs.
8760  *    Writing "sector length" to this file adds an acknowledged
8761  *    bad block list.
8762  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8763  *    been acknowledged.  Writing to this file adds bad blocks
8764  *    without acknowledging them.  This is largely for testing.
8765  */
8766 
8767 static ssize_t
8768 badblocks_show(struct badblocks *bb, char *page, int unack)
8769 {
8770 	size_t len;
8771 	int i;
8772 	u64 *p = bb->page;
8773 	unsigned seq;
8774 
8775 	if (bb->shift < 0)
8776 		return 0;
8777 
8778 retry:
8779 	seq = read_seqbegin(&bb->lock);
8780 
8781 	len = 0;
8782 	i = 0;
8783 
8784 	while (len < PAGE_SIZE && i < bb->count) {
8785 		sector_t s = BB_OFFSET(p[i]);
8786 		unsigned int length = BB_LEN(p[i]);
8787 		int ack = BB_ACK(p[i]);
8788 		i++;
8789 
8790 		if (unack && ack)
8791 			continue;
8792 
8793 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8794 				(unsigned long long)s << bb->shift,
8795 				length << bb->shift);
8796 	}
8797 	if (unack && len == 0)
8798 		bb->unacked_exist = 0;
8799 
8800 	if (read_seqretry(&bb->lock, seq))
8801 		goto retry;
8802 
8803 	return len;
8804 }
8805 
8806 #define DO_DEBUG 1
8807 
8808 static ssize_t
8809 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8810 {
8811 	unsigned long long sector;
8812 	int length;
8813 	char newline;
8814 #ifdef DO_DEBUG
8815 	/* Allow clearing via sysfs *only* for testing/debugging.
8816 	 * Normally only a successful write may clear a badblock
8817 	 */
8818 	int clear = 0;
8819 	if (page[0] == '-') {
8820 		clear = 1;
8821 		page++;
8822 	}
8823 #endif /* DO_DEBUG */
8824 
8825 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8826 	case 3:
8827 		if (newline != '\n')
8828 			return -EINVAL;
8829 	case 2:
8830 		if (length <= 0)
8831 			return -EINVAL;
8832 		break;
8833 	default:
8834 		return -EINVAL;
8835 	}
8836 
8837 #ifdef DO_DEBUG
8838 	if (clear) {
8839 		md_clear_badblocks(bb, sector, length);
8840 		return len;
8841 	}
8842 #endif /* DO_DEBUG */
8843 	if (md_set_badblocks(bb, sector, length, !unack))
8844 		return len;
8845 	else
8846 		return -ENOSPC;
8847 }
8848 
8849 static int md_notify_reboot(struct notifier_block *this,
8850 			    unsigned long code, void *x)
8851 {
8852 	struct list_head *tmp;
8853 	struct mddev *mddev;
8854 	int need_delay = 0;
8855 
8856 	for_each_mddev(mddev, tmp) {
8857 		if (mddev_trylock(mddev)) {
8858 			if (mddev->pers)
8859 				__md_stop_writes(mddev);
8860 			if (mddev->persistent)
8861 				mddev->safemode = 2;
8862 			mddev_unlock(mddev);
8863 		}
8864 		need_delay = 1;
8865 	}
8866 	/*
8867 	 * certain more exotic SCSI devices are known to be
8868 	 * volatile wrt too early system reboots. While the
8869 	 * right place to handle this issue is the given
8870 	 * driver, we do want to have a safe RAID driver ...
8871 	 */
8872 	if (need_delay)
8873 		mdelay(1000*1);
8874 
8875 	return NOTIFY_DONE;
8876 }
8877 
8878 static struct notifier_block md_notifier = {
8879 	.notifier_call	= md_notify_reboot,
8880 	.next		= NULL,
8881 	.priority	= INT_MAX, /* before any real devices */
8882 };
8883 
8884 static void md_geninit(void)
8885 {
8886 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8887 
8888 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8889 }
8890 
8891 static int __init md_init(void)
8892 {
8893 	int ret = -ENOMEM;
8894 
8895 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8896 	if (!md_wq)
8897 		goto err_wq;
8898 
8899 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8900 	if (!md_misc_wq)
8901 		goto err_misc_wq;
8902 
8903 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8904 		goto err_md;
8905 
8906 	if ((ret = register_blkdev(0, "mdp")) < 0)
8907 		goto err_mdp;
8908 	mdp_major = ret;
8909 
8910 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8911 			    md_probe, NULL, NULL);
8912 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8913 			    md_probe, NULL, NULL);
8914 
8915 	register_reboot_notifier(&md_notifier);
8916 	raid_table_header = register_sysctl_table(raid_root_table);
8917 
8918 	md_geninit();
8919 	return 0;
8920 
8921 err_mdp:
8922 	unregister_blkdev(MD_MAJOR, "md");
8923 err_md:
8924 	destroy_workqueue(md_misc_wq);
8925 err_misc_wq:
8926 	destroy_workqueue(md_wq);
8927 err_wq:
8928 	return ret;
8929 }
8930 
8931 void md_reload_sb(struct mddev *mddev)
8932 {
8933 	struct md_rdev *rdev, *tmp;
8934 
8935 	rdev_for_each_safe(rdev, tmp, mddev) {
8936 		rdev->sb_loaded = 0;
8937 		ClearPageUptodate(rdev->sb_page);
8938 	}
8939 	mddev->raid_disks = 0;
8940 	analyze_sbs(mddev);
8941 	rdev_for_each_safe(rdev, tmp, mddev) {
8942 		struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8943 		/* since we don't write to faulty devices, we figure out if the
8944 		 *  disk is faulty by comparing events
8945 		 */
8946 		if (mddev->events > sb->events)
8947 			set_bit(Faulty, &rdev->flags);
8948 	}
8949 
8950 }
8951 EXPORT_SYMBOL(md_reload_sb);
8952 
8953 #ifndef MODULE
8954 
8955 /*
8956  * Searches all registered partitions for autorun RAID arrays
8957  * at boot time.
8958  */
8959 
8960 static LIST_HEAD(all_detected_devices);
8961 struct detected_devices_node {
8962 	struct list_head list;
8963 	dev_t dev;
8964 };
8965 
8966 void md_autodetect_dev(dev_t dev)
8967 {
8968 	struct detected_devices_node *node_detected_dev;
8969 
8970 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8971 	if (node_detected_dev) {
8972 		node_detected_dev->dev = dev;
8973 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8974 	} else {
8975 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8976 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8977 	}
8978 }
8979 
8980 static void autostart_arrays(int part)
8981 {
8982 	struct md_rdev *rdev;
8983 	struct detected_devices_node *node_detected_dev;
8984 	dev_t dev;
8985 	int i_scanned, i_passed;
8986 
8987 	i_scanned = 0;
8988 	i_passed = 0;
8989 
8990 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8991 
8992 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8993 		i_scanned++;
8994 		node_detected_dev = list_entry(all_detected_devices.next,
8995 					struct detected_devices_node, list);
8996 		list_del(&node_detected_dev->list);
8997 		dev = node_detected_dev->dev;
8998 		kfree(node_detected_dev);
8999 		rdev = md_import_device(dev,0, 90);
9000 		if (IS_ERR(rdev))
9001 			continue;
9002 
9003 		if (test_bit(Faulty, &rdev->flags))
9004 			continue;
9005 
9006 		set_bit(AutoDetected, &rdev->flags);
9007 		list_add(&rdev->same_set, &pending_raid_disks);
9008 		i_passed++;
9009 	}
9010 
9011 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9012 						i_scanned, i_passed);
9013 
9014 	autorun_devices(part);
9015 }
9016 
9017 #endif /* !MODULE */
9018 
9019 static __exit void md_exit(void)
9020 {
9021 	struct mddev *mddev;
9022 	struct list_head *tmp;
9023 	int delay = 1;
9024 
9025 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9026 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9027 
9028 	unregister_blkdev(MD_MAJOR,"md");
9029 	unregister_blkdev(mdp_major, "mdp");
9030 	unregister_reboot_notifier(&md_notifier);
9031 	unregister_sysctl_table(raid_table_header);
9032 
9033 	/* We cannot unload the modules while some process is
9034 	 * waiting for us in select() or poll() - wake them up
9035 	 */
9036 	md_unloading = 1;
9037 	while (waitqueue_active(&md_event_waiters)) {
9038 		/* not safe to leave yet */
9039 		wake_up(&md_event_waiters);
9040 		msleep(delay);
9041 		delay += delay;
9042 	}
9043 	remove_proc_entry("mdstat", NULL);
9044 
9045 	for_each_mddev(mddev, tmp) {
9046 		export_array(mddev);
9047 		mddev->hold_active = 0;
9048 	}
9049 	destroy_workqueue(md_misc_wq);
9050 	destroy_workqueue(md_wq);
9051 }
9052 
9053 subsys_initcall(md_init);
9054 module_exit(md_exit)
9055 
9056 static int get_ro(char *buffer, struct kernel_param *kp)
9057 {
9058 	return sprintf(buffer, "%d", start_readonly);
9059 }
9060 static int set_ro(const char *val, struct kernel_param *kp)
9061 {
9062 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9063 }
9064 
9065 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9066 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9067 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9068 
9069 MODULE_LICENSE("GPL");
9070 MODULE_DESCRIPTION("MD RAID framework");
9071 MODULE_ALIAS("md");
9072 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9073