xref: /openbmc/linux/drivers/md/md.c (revision b6dcefde)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/reboot.h>
47 #include <linux/file.h>
48 #include <linux/compat.h>
49 #include <linux/delay.h>
50 #include <linux/raid/md_p.h>
51 #include <linux/raid/md_u.h>
52 #include "md.h"
53 #include "bitmap.h"
54 
55 #define DEBUG 0
56 #define dprintk(x...) ((void)(DEBUG && printk(x)))
57 
58 
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62 
63 static LIST_HEAD(pers_list);
64 static DEFINE_SPINLOCK(pers_lock);
65 
66 static void md_print_devices(void);
67 
68 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
69 
70 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
71 
72 /*
73  * Default number of read corrections we'll attempt on an rdev
74  * before ejecting it from the array. We divide the read error
75  * count by 2 for every hour elapsed between read errors.
76  */
77 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
78 /*
79  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80  * is 1000 KB/sec, so the extra system load does not show up that much.
81  * Increase it if you want to have more _guaranteed_ speed. Note that
82  * the RAID driver will use the maximum available bandwidth if the IO
83  * subsystem is idle. There is also an 'absolute maximum' reconstruction
84  * speed limit - in case reconstruction slows down your system despite
85  * idle IO detection.
86  *
87  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88  * or /sys/block/mdX/md/sync_speed_{min,max}
89  */
90 
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
94 {
95 	return mddev->sync_speed_min ?
96 		mddev->sync_speed_min : sysctl_speed_limit_min;
97 }
98 
99 static inline int speed_max(mddev_t *mddev)
100 {
101 	return mddev->sync_speed_max ?
102 		mddev->sync_speed_max : sysctl_speed_limit_max;
103 }
104 
105 static struct ctl_table_header *raid_table_header;
106 
107 static ctl_table raid_table[] = {
108 	{
109 		.procname	= "speed_limit_min",
110 		.data		= &sysctl_speed_limit_min,
111 		.maxlen		= sizeof(int),
112 		.mode		= S_IRUGO|S_IWUSR,
113 		.proc_handler	= proc_dointvec,
114 	},
115 	{
116 		.procname	= "speed_limit_max",
117 		.data		= &sysctl_speed_limit_max,
118 		.maxlen		= sizeof(int),
119 		.mode		= S_IRUGO|S_IWUSR,
120 		.proc_handler	= proc_dointvec,
121 	},
122 	{ }
123 };
124 
125 static ctl_table raid_dir_table[] = {
126 	{
127 		.procname	= "raid",
128 		.maxlen		= 0,
129 		.mode		= S_IRUGO|S_IXUGO,
130 		.child		= raid_table,
131 	},
132 	{ }
133 };
134 
135 static ctl_table raid_root_table[] = {
136 	{
137 		.procname	= "dev",
138 		.maxlen		= 0,
139 		.mode		= 0555,
140 		.child		= raid_dir_table,
141 	},
142 	{  }
143 };
144 
145 static const struct block_device_operations md_fops;
146 
147 static int start_readonly;
148 
149 /*
150  * We have a system wide 'event count' that is incremented
151  * on any 'interesting' event, and readers of /proc/mdstat
152  * can use 'poll' or 'select' to find out when the event
153  * count increases.
154  *
155  * Events are:
156  *  start array, stop array, error, add device, remove device,
157  *  start build, activate spare
158  */
159 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
160 static atomic_t md_event_count;
161 void md_new_event(mddev_t *mddev)
162 {
163 	atomic_inc(&md_event_count);
164 	wake_up(&md_event_waiters);
165 }
166 EXPORT_SYMBOL_GPL(md_new_event);
167 
168 /* Alternate version that can be called from interrupts
169  * when calling sysfs_notify isn't needed.
170  */
171 static void md_new_event_inintr(mddev_t *mddev)
172 {
173 	atomic_inc(&md_event_count);
174 	wake_up(&md_event_waiters);
175 }
176 
177 /*
178  * Enables to iterate over all existing md arrays
179  * all_mddevs_lock protects this list.
180  */
181 static LIST_HEAD(all_mddevs);
182 static DEFINE_SPINLOCK(all_mddevs_lock);
183 
184 
185 /*
186  * iterates through all used mddevs in the system.
187  * We take care to grab the all_mddevs_lock whenever navigating
188  * the list, and to always hold a refcount when unlocked.
189  * Any code which breaks out of this loop while own
190  * a reference to the current mddev and must mddev_put it.
191  */
192 #define for_each_mddev(mddev,tmp)					\
193 									\
194 	for (({ spin_lock(&all_mddevs_lock); 				\
195 		tmp = all_mddevs.next;					\
196 		mddev = NULL;});					\
197 	     ({ if (tmp != &all_mddevs)					\
198 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
199 		spin_unlock(&all_mddevs_lock);				\
200 		if (mddev) mddev_put(mddev);				\
201 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
202 		tmp != &all_mddevs;});					\
203 	     ({ spin_lock(&all_mddevs_lock);				\
204 		tmp = tmp->next;})					\
205 		)
206 
207 
208 /* Rather than calling directly into the personality make_request function,
209  * IO requests come here first so that we can check if the device is
210  * being suspended pending a reconfiguration.
211  * We hold a refcount over the call to ->make_request.  By the time that
212  * call has finished, the bio has been linked into some internal structure
213  * and so is visible to ->quiesce(), so we don't need the refcount any more.
214  */
215 static int md_make_request(struct request_queue *q, struct bio *bio)
216 {
217 	mddev_t *mddev = q->queuedata;
218 	int rv;
219 	if (mddev == NULL || mddev->pers == NULL) {
220 		bio_io_error(bio);
221 		return 0;
222 	}
223 	rcu_read_lock();
224 	if (mddev->suspended || mddev->barrier) {
225 		DEFINE_WAIT(__wait);
226 		for (;;) {
227 			prepare_to_wait(&mddev->sb_wait, &__wait,
228 					TASK_UNINTERRUPTIBLE);
229 			if (!mddev->suspended && !mddev->barrier)
230 				break;
231 			rcu_read_unlock();
232 			schedule();
233 			rcu_read_lock();
234 		}
235 		finish_wait(&mddev->sb_wait, &__wait);
236 	}
237 	atomic_inc(&mddev->active_io);
238 	rcu_read_unlock();
239 	rv = mddev->pers->make_request(q, bio);
240 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
241 		wake_up(&mddev->sb_wait);
242 
243 	return rv;
244 }
245 
246 static void mddev_suspend(mddev_t *mddev)
247 {
248 	BUG_ON(mddev->suspended);
249 	mddev->suspended = 1;
250 	synchronize_rcu();
251 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
252 	mddev->pers->quiesce(mddev, 1);
253 	md_unregister_thread(mddev->thread);
254 	mddev->thread = NULL;
255 	/* we now know that no code is executing in the personality module,
256 	 * except possibly the tail end of a ->bi_end_io function, but that
257 	 * is certain to complete before the module has a chance to get
258 	 * unloaded
259 	 */
260 }
261 
262 static void mddev_resume(mddev_t *mddev)
263 {
264 	mddev->suspended = 0;
265 	wake_up(&mddev->sb_wait);
266 	mddev->pers->quiesce(mddev, 0);
267 }
268 
269 int mddev_congested(mddev_t *mddev, int bits)
270 {
271 	if (mddev->barrier)
272 		return 1;
273 	return mddev->suspended;
274 }
275 EXPORT_SYMBOL(mddev_congested);
276 
277 /*
278  * Generic barrier handling for md
279  */
280 
281 #define POST_REQUEST_BARRIER ((void*)1)
282 
283 static void md_end_barrier(struct bio *bio, int err)
284 {
285 	mdk_rdev_t *rdev = bio->bi_private;
286 	mddev_t *mddev = rdev->mddev;
287 	if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
288 		set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
289 
290 	rdev_dec_pending(rdev, mddev);
291 
292 	if (atomic_dec_and_test(&mddev->flush_pending)) {
293 		if (mddev->barrier == POST_REQUEST_BARRIER) {
294 			/* This was a post-request barrier */
295 			mddev->barrier = NULL;
296 			wake_up(&mddev->sb_wait);
297 		} else
298 			/* The pre-request barrier has finished */
299 			schedule_work(&mddev->barrier_work);
300 	}
301 	bio_put(bio);
302 }
303 
304 static void submit_barriers(mddev_t *mddev)
305 {
306 	mdk_rdev_t *rdev;
307 
308 	rcu_read_lock();
309 	list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
310 		if (rdev->raid_disk >= 0 &&
311 		    !test_bit(Faulty, &rdev->flags)) {
312 			/* Take two references, one is dropped
313 			 * when request finishes, one after
314 			 * we reclaim rcu_read_lock
315 			 */
316 			struct bio *bi;
317 			atomic_inc(&rdev->nr_pending);
318 			atomic_inc(&rdev->nr_pending);
319 			rcu_read_unlock();
320 			bi = bio_alloc(GFP_KERNEL, 0);
321 			bi->bi_end_io = md_end_barrier;
322 			bi->bi_private = rdev;
323 			bi->bi_bdev = rdev->bdev;
324 			atomic_inc(&mddev->flush_pending);
325 			submit_bio(WRITE_BARRIER, bi);
326 			rcu_read_lock();
327 			rdev_dec_pending(rdev, mddev);
328 		}
329 	rcu_read_unlock();
330 }
331 
332 static void md_submit_barrier(struct work_struct *ws)
333 {
334 	mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
335 	struct bio *bio = mddev->barrier;
336 
337 	atomic_set(&mddev->flush_pending, 1);
338 
339 	if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
340 		bio_endio(bio, -EOPNOTSUPP);
341 	else if (bio->bi_size == 0)
342 		/* an empty barrier - all done */
343 		bio_endio(bio, 0);
344 	else {
345 		bio->bi_rw &= ~(1<<BIO_RW_BARRIER);
346 		if (mddev->pers->make_request(mddev->queue, bio))
347 			generic_make_request(bio);
348 		mddev->barrier = POST_REQUEST_BARRIER;
349 		submit_barriers(mddev);
350 	}
351 	if (atomic_dec_and_test(&mddev->flush_pending)) {
352 		mddev->barrier = NULL;
353 		wake_up(&mddev->sb_wait);
354 	}
355 }
356 
357 void md_barrier_request(mddev_t *mddev, struct bio *bio)
358 {
359 	spin_lock_irq(&mddev->write_lock);
360 	wait_event_lock_irq(mddev->sb_wait,
361 			    !mddev->barrier,
362 			    mddev->write_lock, /*nothing*/);
363 	mddev->barrier = bio;
364 	spin_unlock_irq(&mddev->write_lock);
365 
366 	atomic_set(&mddev->flush_pending, 1);
367 	INIT_WORK(&mddev->barrier_work, md_submit_barrier);
368 
369 	submit_barriers(mddev);
370 
371 	if (atomic_dec_and_test(&mddev->flush_pending))
372 		schedule_work(&mddev->barrier_work);
373 }
374 EXPORT_SYMBOL(md_barrier_request);
375 
376 static inline mddev_t *mddev_get(mddev_t *mddev)
377 {
378 	atomic_inc(&mddev->active);
379 	return mddev;
380 }
381 
382 static void mddev_delayed_delete(struct work_struct *ws);
383 
384 static void mddev_put(mddev_t *mddev)
385 {
386 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
387 		return;
388 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
389 	    mddev->ctime == 0 && !mddev->hold_active) {
390 		/* Array is not configured at all, and not held active,
391 		 * so destroy it */
392 		list_del(&mddev->all_mddevs);
393 		if (mddev->gendisk) {
394 			/* we did a probe so need to clean up.
395 			 * Call schedule_work inside the spinlock
396 			 * so that flush_scheduled_work() after
397 			 * mddev_find will succeed in waiting for the
398 			 * work to be done.
399 			 */
400 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
401 			schedule_work(&mddev->del_work);
402 		} else
403 			kfree(mddev);
404 	}
405 	spin_unlock(&all_mddevs_lock);
406 }
407 
408 static mddev_t * mddev_find(dev_t unit)
409 {
410 	mddev_t *mddev, *new = NULL;
411 
412  retry:
413 	spin_lock(&all_mddevs_lock);
414 
415 	if (unit) {
416 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
417 			if (mddev->unit == unit) {
418 				mddev_get(mddev);
419 				spin_unlock(&all_mddevs_lock);
420 				kfree(new);
421 				return mddev;
422 			}
423 
424 		if (new) {
425 			list_add(&new->all_mddevs, &all_mddevs);
426 			spin_unlock(&all_mddevs_lock);
427 			new->hold_active = UNTIL_IOCTL;
428 			return new;
429 		}
430 	} else if (new) {
431 		/* find an unused unit number */
432 		static int next_minor = 512;
433 		int start = next_minor;
434 		int is_free = 0;
435 		int dev = 0;
436 		while (!is_free) {
437 			dev = MKDEV(MD_MAJOR, next_minor);
438 			next_minor++;
439 			if (next_minor > MINORMASK)
440 				next_minor = 0;
441 			if (next_minor == start) {
442 				/* Oh dear, all in use. */
443 				spin_unlock(&all_mddevs_lock);
444 				kfree(new);
445 				return NULL;
446 			}
447 
448 			is_free = 1;
449 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
450 				if (mddev->unit == dev) {
451 					is_free = 0;
452 					break;
453 				}
454 		}
455 		new->unit = dev;
456 		new->md_minor = MINOR(dev);
457 		new->hold_active = UNTIL_STOP;
458 		list_add(&new->all_mddevs, &all_mddevs);
459 		spin_unlock(&all_mddevs_lock);
460 		return new;
461 	}
462 	spin_unlock(&all_mddevs_lock);
463 
464 	new = kzalloc(sizeof(*new), GFP_KERNEL);
465 	if (!new)
466 		return NULL;
467 
468 	new->unit = unit;
469 	if (MAJOR(unit) == MD_MAJOR)
470 		new->md_minor = MINOR(unit);
471 	else
472 		new->md_minor = MINOR(unit) >> MdpMinorShift;
473 
474 	mutex_init(&new->open_mutex);
475 	mutex_init(&new->reconfig_mutex);
476 	mutex_init(&new->bitmap_info.mutex);
477 	INIT_LIST_HEAD(&new->disks);
478 	INIT_LIST_HEAD(&new->all_mddevs);
479 	init_timer(&new->safemode_timer);
480 	atomic_set(&new->active, 1);
481 	atomic_set(&new->openers, 0);
482 	atomic_set(&new->active_io, 0);
483 	spin_lock_init(&new->write_lock);
484 	atomic_set(&new->flush_pending, 0);
485 	init_waitqueue_head(&new->sb_wait);
486 	init_waitqueue_head(&new->recovery_wait);
487 	new->reshape_position = MaxSector;
488 	new->resync_min = 0;
489 	new->resync_max = MaxSector;
490 	new->level = LEVEL_NONE;
491 
492 	goto retry;
493 }
494 
495 static inline int mddev_lock(mddev_t * mddev)
496 {
497 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
498 }
499 
500 static inline int mddev_is_locked(mddev_t *mddev)
501 {
502 	return mutex_is_locked(&mddev->reconfig_mutex);
503 }
504 
505 static inline int mddev_trylock(mddev_t * mddev)
506 {
507 	return mutex_trylock(&mddev->reconfig_mutex);
508 }
509 
510 static inline void mddev_unlock(mddev_t * mddev)
511 {
512 	mutex_unlock(&mddev->reconfig_mutex);
513 
514 	md_wakeup_thread(mddev->thread);
515 }
516 
517 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
518 {
519 	mdk_rdev_t *rdev;
520 
521 	list_for_each_entry(rdev, &mddev->disks, same_set)
522 		if (rdev->desc_nr == nr)
523 			return rdev;
524 
525 	return NULL;
526 }
527 
528 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
529 {
530 	mdk_rdev_t *rdev;
531 
532 	list_for_each_entry(rdev, &mddev->disks, same_set)
533 		if (rdev->bdev->bd_dev == dev)
534 			return rdev;
535 
536 	return NULL;
537 }
538 
539 static struct mdk_personality *find_pers(int level, char *clevel)
540 {
541 	struct mdk_personality *pers;
542 	list_for_each_entry(pers, &pers_list, list) {
543 		if (level != LEVEL_NONE && pers->level == level)
544 			return pers;
545 		if (strcmp(pers->name, clevel)==0)
546 			return pers;
547 	}
548 	return NULL;
549 }
550 
551 /* return the offset of the super block in 512byte sectors */
552 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
553 {
554 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
555 	return MD_NEW_SIZE_SECTORS(num_sectors);
556 }
557 
558 static int alloc_disk_sb(mdk_rdev_t * rdev)
559 {
560 	if (rdev->sb_page)
561 		MD_BUG();
562 
563 	rdev->sb_page = alloc_page(GFP_KERNEL);
564 	if (!rdev->sb_page) {
565 		printk(KERN_ALERT "md: out of memory.\n");
566 		return -ENOMEM;
567 	}
568 
569 	return 0;
570 }
571 
572 static void free_disk_sb(mdk_rdev_t * rdev)
573 {
574 	if (rdev->sb_page) {
575 		put_page(rdev->sb_page);
576 		rdev->sb_loaded = 0;
577 		rdev->sb_page = NULL;
578 		rdev->sb_start = 0;
579 		rdev->sectors = 0;
580 	}
581 }
582 
583 
584 static void super_written(struct bio *bio, int error)
585 {
586 	mdk_rdev_t *rdev = bio->bi_private;
587 	mddev_t *mddev = rdev->mddev;
588 
589 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
590 		printk("md: super_written gets error=%d, uptodate=%d\n",
591 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
592 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
593 		md_error(mddev, rdev);
594 	}
595 
596 	if (atomic_dec_and_test(&mddev->pending_writes))
597 		wake_up(&mddev->sb_wait);
598 	bio_put(bio);
599 }
600 
601 static void super_written_barrier(struct bio *bio, int error)
602 {
603 	struct bio *bio2 = bio->bi_private;
604 	mdk_rdev_t *rdev = bio2->bi_private;
605 	mddev_t *mddev = rdev->mddev;
606 
607 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
608 	    error == -EOPNOTSUPP) {
609 		unsigned long flags;
610 		/* barriers don't appear to be supported :-( */
611 		set_bit(BarriersNotsupp, &rdev->flags);
612 		mddev->barriers_work = 0;
613 		spin_lock_irqsave(&mddev->write_lock, flags);
614 		bio2->bi_next = mddev->biolist;
615 		mddev->biolist = bio2;
616 		spin_unlock_irqrestore(&mddev->write_lock, flags);
617 		wake_up(&mddev->sb_wait);
618 		bio_put(bio);
619 	} else {
620 		bio_put(bio2);
621 		bio->bi_private = rdev;
622 		super_written(bio, error);
623 	}
624 }
625 
626 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
627 		   sector_t sector, int size, struct page *page)
628 {
629 	/* write first size bytes of page to sector of rdev
630 	 * Increment mddev->pending_writes before returning
631 	 * and decrement it on completion, waking up sb_wait
632 	 * if zero is reached.
633 	 * If an error occurred, call md_error
634 	 *
635 	 * As we might need to resubmit the request if BIO_RW_BARRIER
636 	 * causes ENOTSUPP, we allocate a spare bio...
637 	 */
638 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
639 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
640 
641 	bio->bi_bdev = rdev->bdev;
642 	bio->bi_sector = sector;
643 	bio_add_page(bio, page, size, 0);
644 	bio->bi_private = rdev;
645 	bio->bi_end_io = super_written;
646 	bio->bi_rw = rw;
647 
648 	atomic_inc(&mddev->pending_writes);
649 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
650 		struct bio *rbio;
651 		rw |= (1<<BIO_RW_BARRIER);
652 		rbio = bio_clone(bio, GFP_NOIO);
653 		rbio->bi_private = bio;
654 		rbio->bi_end_io = super_written_barrier;
655 		submit_bio(rw, rbio);
656 	} else
657 		submit_bio(rw, bio);
658 }
659 
660 void md_super_wait(mddev_t *mddev)
661 {
662 	/* wait for all superblock writes that were scheduled to complete.
663 	 * if any had to be retried (due to BARRIER problems), retry them
664 	 */
665 	DEFINE_WAIT(wq);
666 	for(;;) {
667 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
668 		if (atomic_read(&mddev->pending_writes)==0)
669 			break;
670 		while (mddev->biolist) {
671 			struct bio *bio;
672 			spin_lock_irq(&mddev->write_lock);
673 			bio = mddev->biolist;
674 			mddev->biolist = bio->bi_next ;
675 			bio->bi_next = NULL;
676 			spin_unlock_irq(&mddev->write_lock);
677 			submit_bio(bio->bi_rw, bio);
678 		}
679 		schedule();
680 	}
681 	finish_wait(&mddev->sb_wait, &wq);
682 }
683 
684 static void bi_complete(struct bio *bio, int error)
685 {
686 	complete((struct completion*)bio->bi_private);
687 }
688 
689 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
690 		   struct page *page, int rw)
691 {
692 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
693 	struct completion event;
694 	int ret;
695 
696 	rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
697 
698 	bio->bi_bdev = bdev;
699 	bio->bi_sector = sector;
700 	bio_add_page(bio, page, size, 0);
701 	init_completion(&event);
702 	bio->bi_private = &event;
703 	bio->bi_end_io = bi_complete;
704 	submit_bio(rw, bio);
705 	wait_for_completion(&event);
706 
707 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
708 	bio_put(bio);
709 	return ret;
710 }
711 EXPORT_SYMBOL_GPL(sync_page_io);
712 
713 static int read_disk_sb(mdk_rdev_t * rdev, int size)
714 {
715 	char b[BDEVNAME_SIZE];
716 	if (!rdev->sb_page) {
717 		MD_BUG();
718 		return -EINVAL;
719 	}
720 	if (rdev->sb_loaded)
721 		return 0;
722 
723 
724 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
725 		goto fail;
726 	rdev->sb_loaded = 1;
727 	return 0;
728 
729 fail:
730 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
731 		bdevname(rdev->bdev,b));
732 	return -EINVAL;
733 }
734 
735 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
736 {
737 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
738 		sb1->set_uuid1 == sb2->set_uuid1 &&
739 		sb1->set_uuid2 == sb2->set_uuid2 &&
740 		sb1->set_uuid3 == sb2->set_uuid3;
741 }
742 
743 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
744 {
745 	int ret;
746 	mdp_super_t *tmp1, *tmp2;
747 
748 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
749 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
750 
751 	if (!tmp1 || !tmp2) {
752 		ret = 0;
753 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
754 		goto abort;
755 	}
756 
757 	*tmp1 = *sb1;
758 	*tmp2 = *sb2;
759 
760 	/*
761 	 * nr_disks is not constant
762 	 */
763 	tmp1->nr_disks = 0;
764 	tmp2->nr_disks = 0;
765 
766 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
767 abort:
768 	kfree(tmp1);
769 	kfree(tmp2);
770 	return ret;
771 }
772 
773 
774 static u32 md_csum_fold(u32 csum)
775 {
776 	csum = (csum & 0xffff) + (csum >> 16);
777 	return (csum & 0xffff) + (csum >> 16);
778 }
779 
780 static unsigned int calc_sb_csum(mdp_super_t * sb)
781 {
782 	u64 newcsum = 0;
783 	u32 *sb32 = (u32*)sb;
784 	int i;
785 	unsigned int disk_csum, csum;
786 
787 	disk_csum = sb->sb_csum;
788 	sb->sb_csum = 0;
789 
790 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
791 		newcsum += sb32[i];
792 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
793 
794 
795 #ifdef CONFIG_ALPHA
796 	/* This used to use csum_partial, which was wrong for several
797 	 * reasons including that different results are returned on
798 	 * different architectures.  It isn't critical that we get exactly
799 	 * the same return value as before (we always csum_fold before
800 	 * testing, and that removes any differences).  However as we
801 	 * know that csum_partial always returned a 16bit value on
802 	 * alphas, do a fold to maximise conformity to previous behaviour.
803 	 */
804 	sb->sb_csum = md_csum_fold(disk_csum);
805 #else
806 	sb->sb_csum = disk_csum;
807 #endif
808 	return csum;
809 }
810 
811 
812 /*
813  * Handle superblock details.
814  * We want to be able to handle multiple superblock formats
815  * so we have a common interface to them all, and an array of
816  * different handlers.
817  * We rely on user-space to write the initial superblock, and support
818  * reading and updating of superblocks.
819  * Interface methods are:
820  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
821  *      loads and validates a superblock on dev.
822  *      if refdev != NULL, compare superblocks on both devices
823  *    Return:
824  *      0 - dev has a superblock that is compatible with refdev
825  *      1 - dev has a superblock that is compatible and newer than refdev
826  *          so dev should be used as the refdev in future
827  *     -EINVAL superblock incompatible or invalid
828  *     -othererror e.g. -EIO
829  *
830  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
831  *      Verify that dev is acceptable into mddev.
832  *       The first time, mddev->raid_disks will be 0, and data from
833  *       dev should be merged in.  Subsequent calls check that dev
834  *       is new enough.  Return 0 or -EINVAL
835  *
836  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
837  *     Update the superblock for rdev with data in mddev
838  *     This does not write to disc.
839  *
840  */
841 
842 struct super_type  {
843 	char		    *name;
844 	struct module	    *owner;
845 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
846 					  int minor_version);
847 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
848 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
849 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
850 						sector_t num_sectors);
851 };
852 
853 /*
854  * Check that the given mddev has no bitmap.
855  *
856  * This function is called from the run method of all personalities that do not
857  * support bitmaps. It prints an error message and returns non-zero if mddev
858  * has a bitmap. Otherwise, it returns 0.
859  *
860  */
861 int md_check_no_bitmap(mddev_t *mddev)
862 {
863 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
864 		return 0;
865 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
866 		mdname(mddev), mddev->pers->name);
867 	return 1;
868 }
869 EXPORT_SYMBOL(md_check_no_bitmap);
870 
871 /*
872  * load_super for 0.90.0
873  */
874 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
875 {
876 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
877 	mdp_super_t *sb;
878 	int ret;
879 
880 	/*
881 	 * Calculate the position of the superblock (512byte sectors),
882 	 * it's at the end of the disk.
883 	 *
884 	 * It also happens to be a multiple of 4Kb.
885 	 */
886 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
887 
888 	ret = read_disk_sb(rdev, MD_SB_BYTES);
889 	if (ret) return ret;
890 
891 	ret = -EINVAL;
892 
893 	bdevname(rdev->bdev, b);
894 	sb = (mdp_super_t*)page_address(rdev->sb_page);
895 
896 	if (sb->md_magic != MD_SB_MAGIC) {
897 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
898 		       b);
899 		goto abort;
900 	}
901 
902 	if (sb->major_version != 0 ||
903 	    sb->minor_version < 90 ||
904 	    sb->minor_version > 91) {
905 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
906 			sb->major_version, sb->minor_version,
907 			b);
908 		goto abort;
909 	}
910 
911 	if (sb->raid_disks <= 0)
912 		goto abort;
913 
914 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
915 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
916 			b);
917 		goto abort;
918 	}
919 
920 	rdev->preferred_minor = sb->md_minor;
921 	rdev->data_offset = 0;
922 	rdev->sb_size = MD_SB_BYTES;
923 
924 	if (sb->level == LEVEL_MULTIPATH)
925 		rdev->desc_nr = -1;
926 	else
927 		rdev->desc_nr = sb->this_disk.number;
928 
929 	if (!refdev) {
930 		ret = 1;
931 	} else {
932 		__u64 ev1, ev2;
933 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
934 		if (!uuid_equal(refsb, sb)) {
935 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
936 				b, bdevname(refdev->bdev,b2));
937 			goto abort;
938 		}
939 		if (!sb_equal(refsb, sb)) {
940 			printk(KERN_WARNING "md: %s has same UUID"
941 			       " but different superblock to %s\n",
942 			       b, bdevname(refdev->bdev, b2));
943 			goto abort;
944 		}
945 		ev1 = md_event(sb);
946 		ev2 = md_event(refsb);
947 		if (ev1 > ev2)
948 			ret = 1;
949 		else
950 			ret = 0;
951 	}
952 	rdev->sectors = rdev->sb_start;
953 
954 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
955 		/* "this cannot possibly happen" ... */
956 		ret = -EINVAL;
957 
958  abort:
959 	return ret;
960 }
961 
962 /*
963  * validate_super for 0.90.0
964  */
965 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
966 {
967 	mdp_disk_t *desc;
968 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
969 	__u64 ev1 = md_event(sb);
970 
971 	rdev->raid_disk = -1;
972 	clear_bit(Faulty, &rdev->flags);
973 	clear_bit(In_sync, &rdev->flags);
974 	clear_bit(WriteMostly, &rdev->flags);
975 	clear_bit(BarriersNotsupp, &rdev->flags);
976 
977 	if (mddev->raid_disks == 0) {
978 		mddev->major_version = 0;
979 		mddev->minor_version = sb->minor_version;
980 		mddev->patch_version = sb->patch_version;
981 		mddev->external = 0;
982 		mddev->chunk_sectors = sb->chunk_size >> 9;
983 		mddev->ctime = sb->ctime;
984 		mddev->utime = sb->utime;
985 		mddev->level = sb->level;
986 		mddev->clevel[0] = 0;
987 		mddev->layout = sb->layout;
988 		mddev->raid_disks = sb->raid_disks;
989 		mddev->dev_sectors = sb->size * 2;
990 		mddev->events = ev1;
991 		mddev->bitmap_info.offset = 0;
992 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
993 
994 		if (mddev->minor_version >= 91) {
995 			mddev->reshape_position = sb->reshape_position;
996 			mddev->delta_disks = sb->delta_disks;
997 			mddev->new_level = sb->new_level;
998 			mddev->new_layout = sb->new_layout;
999 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1000 		} else {
1001 			mddev->reshape_position = MaxSector;
1002 			mddev->delta_disks = 0;
1003 			mddev->new_level = mddev->level;
1004 			mddev->new_layout = mddev->layout;
1005 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1006 		}
1007 
1008 		if (sb->state & (1<<MD_SB_CLEAN))
1009 			mddev->recovery_cp = MaxSector;
1010 		else {
1011 			if (sb->events_hi == sb->cp_events_hi &&
1012 				sb->events_lo == sb->cp_events_lo) {
1013 				mddev->recovery_cp = sb->recovery_cp;
1014 			} else
1015 				mddev->recovery_cp = 0;
1016 		}
1017 
1018 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1019 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1020 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1021 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1022 
1023 		mddev->max_disks = MD_SB_DISKS;
1024 
1025 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1026 		    mddev->bitmap_info.file == NULL)
1027 			mddev->bitmap_info.offset =
1028 				mddev->bitmap_info.default_offset;
1029 
1030 	} else if (mddev->pers == NULL) {
1031 		/* Insist on good event counter while assembling */
1032 		++ev1;
1033 		if (ev1 < mddev->events)
1034 			return -EINVAL;
1035 	} else if (mddev->bitmap) {
1036 		/* if adding to array with a bitmap, then we can accept an
1037 		 * older device ... but not too old.
1038 		 */
1039 		if (ev1 < mddev->bitmap->events_cleared)
1040 			return 0;
1041 	} else {
1042 		if (ev1 < mddev->events)
1043 			/* just a hot-add of a new device, leave raid_disk at -1 */
1044 			return 0;
1045 	}
1046 
1047 	if (mddev->level != LEVEL_MULTIPATH) {
1048 		desc = sb->disks + rdev->desc_nr;
1049 
1050 		if (desc->state & (1<<MD_DISK_FAULTY))
1051 			set_bit(Faulty, &rdev->flags);
1052 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1053 			    desc->raid_disk < mddev->raid_disks */) {
1054 			set_bit(In_sync, &rdev->flags);
1055 			rdev->raid_disk = desc->raid_disk;
1056 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1057 			/* active but not in sync implies recovery up to
1058 			 * reshape position.  We don't know exactly where
1059 			 * that is, so set to zero for now */
1060 			if (mddev->minor_version >= 91) {
1061 				rdev->recovery_offset = 0;
1062 				rdev->raid_disk = desc->raid_disk;
1063 			}
1064 		}
1065 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1066 			set_bit(WriteMostly, &rdev->flags);
1067 	} else /* MULTIPATH are always insync */
1068 		set_bit(In_sync, &rdev->flags);
1069 	return 0;
1070 }
1071 
1072 /*
1073  * sync_super for 0.90.0
1074  */
1075 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1076 {
1077 	mdp_super_t *sb;
1078 	mdk_rdev_t *rdev2;
1079 	int next_spare = mddev->raid_disks;
1080 
1081 
1082 	/* make rdev->sb match mddev data..
1083 	 *
1084 	 * 1/ zero out disks
1085 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1086 	 * 3/ any empty disks < next_spare become removed
1087 	 *
1088 	 * disks[0] gets initialised to REMOVED because
1089 	 * we cannot be sure from other fields if it has
1090 	 * been initialised or not.
1091 	 */
1092 	int i;
1093 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1094 
1095 	rdev->sb_size = MD_SB_BYTES;
1096 
1097 	sb = (mdp_super_t*)page_address(rdev->sb_page);
1098 
1099 	memset(sb, 0, sizeof(*sb));
1100 
1101 	sb->md_magic = MD_SB_MAGIC;
1102 	sb->major_version = mddev->major_version;
1103 	sb->patch_version = mddev->patch_version;
1104 	sb->gvalid_words  = 0; /* ignored */
1105 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1106 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1107 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1108 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1109 
1110 	sb->ctime = mddev->ctime;
1111 	sb->level = mddev->level;
1112 	sb->size = mddev->dev_sectors / 2;
1113 	sb->raid_disks = mddev->raid_disks;
1114 	sb->md_minor = mddev->md_minor;
1115 	sb->not_persistent = 0;
1116 	sb->utime = mddev->utime;
1117 	sb->state = 0;
1118 	sb->events_hi = (mddev->events>>32);
1119 	sb->events_lo = (u32)mddev->events;
1120 
1121 	if (mddev->reshape_position == MaxSector)
1122 		sb->minor_version = 90;
1123 	else {
1124 		sb->minor_version = 91;
1125 		sb->reshape_position = mddev->reshape_position;
1126 		sb->new_level = mddev->new_level;
1127 		sb->delta_disks = mddev->delta_disks;
1128 		sb->new_layout = mddev->new_layout;
1129 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1130 	}
1131 	mddev->minor_version = sb->minor_version;
1132 	if (mddev->in_sync)
1133 	{
1134 		sb->recovery_cp = mddev->recovery_cp;
1135 		sb->cp_events_hi = (mddev->events>>32);
1136 		sb->cp_events_lo = (u32)mddev->events;
1137 		if (mddev->recovery_cp == MaxSector)
1138 			sb->state = (1<< MD_SB_CLEAN);
1139 	} else
1140 		sb->recovery_cp = 0;
1141 
1142 	sb->layout = mddev->layout;
1143 	sb->chunk_size = mddev->chunk_sectors << 9;
1144 
1145 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1146 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1147 
1148 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1149 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1150 		mdp_disk_t *d;
1151 		int desc_nr;
1152 		int is_active = test_bit(In_sync, &rdev2->flags);
1153 
1154 		if (rdev2->raid_disk >= 0 &&
1155 		    sb->minor_version >= 91)
1156 			/* we have nowhere to store the recovery_offset,
1157 			 * but if it is not below the reshape_position,
1158 			 * we can piggy-back on that.
1159 			 */
1160 			is_active = 1;
1161 		if (rdev2->raid_disk < 0 ||
1162 		    test_bit(Faulty, &rdev2->flags))
1163 			is_active = 0;
1164 		if (is_active)
1165 			desc_nr = rdev2->raid_disk;
1166 		else
1167 			desc_nr = next_spare++;
1168 		rdev2->desc_nr = desc_nr;
1169 		d = &sb->disks[rdev2->desc_nr];
1170 		nr_disks++;
1171 		d->number = rdev2->desc_nr;
1172 		d->major = MAJOR(rdev2->bdev->bd_dev);
1173 		d->minor = MINOR(rdev2->bdev->bd_dev);
1174 		if (is_active)
1175 			d->raid_disk = rdev2->raid_disk;
1176 		else
1177 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1178 		if (test_bit(Faulty, &rdev2->flags))
1179 			d->state = (1<<MD_DISK_FAULTY);
1180 		else if (is_active) {
1181 			d->state = (1<<MD_DISK_ACTIVE);
1182 			if (test_bit(In_sync, &rdev2->flags))
1183 				d->state |= (1<<MD_DISK_SYNC);
1184 			active++;
1185 			working++;
1186 		} else {
1187 			d->state = 0;
1188 			spare++;
1189 			working++;
1190 		}
1191 		if (test_bit(WriteMostly, &rdev2->flags))
1192 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1193 	}
1194 	/* now set the "removed" and "faulty" bits on any missing devices */
1195 	for (i=0 ; i < mddev->raid_disks ; i++) {
1196 		mdp_disk_t *d = &sb->disks[i];
1197 		if (d->state == 0 && d->number == 0) {
1198 			d->number = i;
1199 			d->raid_disk = i;
1200 			d->state = (1<<MD_DISK_REMOVED);
1201 			d->state |= (1<<MD_DISK_FAULTY);
1202 			failed++;
1203 		}
1204 	}
1205 	sb->nr_disks = nr_disks;
1206 	sb->active_disks = active;
1207 	sb->working_disks = working;
1208 	sb->failed_disks = failed;
1209 	sb->spare_disks = spare;
1210 
1211 	sb->this_disk = sb->disks[rdev->desc_nr];
1212 	sb->sb_csum = calc_sb_csum(sb);
1213 }
1214 
1215 /*
1216  * rdev_size_change for 0.90.0
1217  */
1218 static unsigned long long
1219 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1220 {
1221 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1222 		return 0; /* component must fit device */
1223 	if (rdev->mddev->bitmap_info.offset)
1224 		return 0; /* can't move bitmap */
1225 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1226 	if (!num_sectors || num_sectors > rdev->sb_start)
1227 		num_sectors = rdev->sb_start;
1228 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1229 		       rdev->sb_page);
1230 	md_super_wait(rdev->mddev);
1231 	return num_sectors / 2; /* kB for sysfs */
1232 }
1233 
1234 
1235 /*
1236  * version 1 superblock
1237  */
1238 
1239 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1240 {
1241 	__le32 disk_csum;
1242 	u32 csum;
1243 	unsigned long long newcsum;
1244 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1245 	__le32 *isuper = (__le32*)sb;
1246 	int i;
1247 
1248 	disk_csum = sb->sb_csum;
1249 	sb->sb_csum = 0;
1250 	newcsum = 0;
1251 	for (i=0; size>=4; size -= 4 )
1252 		newcsum += le32_to_cpu(*isuper++);
1253 
1254 	if (size == 2)
1255 		newcsum += le16_to_cpu(*(__le16*) isuper);
1256 
1257 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1258 	sb->sb_csum = disk_csum;
1259 	return cpu_to_le32(csum);
1260 }
1261 
1262 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1263 {
1264 	struct mdp_superblock_1 *sb;
1265 	int ret;
1266 	sector_t sb_start;
1267 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1268 	int bmask;
1269 
1270 	/*
1271 	 * Calculate the position of the superblock in 512byte sectors.
1272 	 * It is always aligned to a 4K boundary and
1273 	 * depeding on minor_version, it can be:
1274 	 * 0: At least 8K, but less than 12K, from end of device
1275 	 * 1: At start of device
1276 	 * 2: 4K from start of device.
1277 	 */
1278 	switch(minor_version) {
1279 	case 0:
1280 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1281 		sb_start -= 8*2;
1282 		sb_start &= ~(sector_t)(4*2-1);
1283 		break;
1284 	case 1:
1285 		sb_start = 0;
1286 		break;
1287 	case 2:
1288 		sb_start = 8;
1289 		break;
1290 	default:
1291 		return -EINVAL;
1292 	}
1293 	rdev->sb_start = sb_start;
1294 
1295 	/* superblock is rarely larger than 1K, but it can be larger,
1296 	 * and it is safe to read 4k, so we do that
1297 	 */
1298 	ret = read_disk_sb(rdev, 4096);
1299 	if (ret) return ret;
1300 
1301 
1302 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1303 
1304 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1305 	    sb->major_version != cpu_to_le32(1) ||
1306 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1307 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1308 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1309 		return -EINVAL;
1310 
1311 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1312 		printk("md: invalid superblock checksum on %s\n",
1313 			bdevname(rdev->bdev,b));
1314 		return -EINVAL;
1315 	}
1316 	if (le64_to_cpu(sb->data_size) < 10) {
1317 		printk("md: data_size too small on %s\n",
1318 		       bdevname(rdev->bdev,b));
1319 		return -EINVAL;
1320 	}
1321 
1322 	rdev->preferred_minor = 0xffff;
1323 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1324 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1325 
1326 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1327 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1328 	if (rdev->sb_size & bmask)
1329 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1330 
1331 	if (minor_version
1332 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1333 		return -EINVAL;
1334 
1335 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1336 		rdev->desc_nr = -1;
1337 	else
1338 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1339 
1340 	if (!refdev) {
1341 		ret = 1;
1342 	} else {
1343 		__u64 ev1, ev2;
1344 		struct mdp_superblock_1 *refsb =
1345 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1346 
1347 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1348 		    sb->level != refsb->level ||
1349 		    sb->layout != refsb->layout ||
1350 		    sb->chunksize != refsb->chunksize) {
1351 			printk(KERN_WARNING "md: %s has strangely different"
1352 				" superblock to %s\n",
1353 				bdevname(rdev->bdev,b),
1354 				bdevname(refdev->bdev,b2));
1355 			return -EINVAL;
1356 		}
1357 		ev1 = le64_to_cpu(sb->events);
1358 		ev2 = le64_to_cpu(refsb->events);
1359 
1360 		if (ev1 > ev2)
1361 			ret = 1;
1362 		else
1363 			ret = 0;
1364 	}
1365 	if (minor_version)
1366 		rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1367 			le64_to_cpu(sb->data_offset);
1368 	else
1369 		rdev->sectors = rdev->sb_start;
1370 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1371 		return -EINVAL;
1372 	rdev->sectors = le64_to_cpu(sb->data_size);
1373 	if (le64_to_cpu(sb->size) > rdev->sectors)
1374 		return -EINVAL;
1375 	return ret;
1376 }
1377 
1378 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1379 {
1380 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1381 	__u64 ev1 = le64_to_cpu(sb->events);
1382 
1383 	rdev->raid_disk = -1;
1384 	clear_bit(Faulty, &rdev->flags);
1385 	clear_bit(In_sync, &rdev->flags);
1386 	clear_bit(WriteMostly, &rdev->flags);
1387 	clear_bit(BarriersNotsupp, &rdev->flags);
1388 
1389 	if (mddev->raid_disks == 0) {
1390 		mddev->major_version = 1;
1391 		mddev->patch_version = 0;
1392 		mddev->external = 0;
1393 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1394 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1395 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1396 		mddev->level = le32_to_cpu(sb->level);
1397 		mddev->clevel[0] = 0;
1398 		mddev->layout = le32_to_cpu(sb->layout);
1399 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1400 		mddev->dev_sectors = le64_to_cpu(sb->size);
1401 		mddev->events = ev1;
1402 		mddev->bitmap_info.offset = 0;
1403 		mddev->bitmap_info.default_offset = 1024 >> 9;
1404 
1405 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1406 		memcpy(mddev->uuid, sb->set_uuid, 16);
1407 
1408 		mddev->max_disks =  (4096-256)/2;
1409 
1410 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1411 		    mddev->bitmap_info.file == NULL )
1412 			mddev->bitmap_info.offset =
1413 				(__s32)le32_to_cpu(sb->bitmap_offset);
1414 
1415 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1416 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1417 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1418 			mddev->new_level = le32_to_cpu(sb->new_level);
1419 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1420 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1421 		} else {
1422 			mddev->reshape_position = MaxSector;
1423 			mddev->delta_disks = 0;
1424 			mddev->new_level = mddev->level;
1425 			mddev->new_layout = mddev->layout;
1426 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1427 		}
1428 
1429 	} else if (mddev->pers == NULL) {
1430 		/* Insist of good event counter while assembling */
1431 		++ev1;
1432 		if (ev1 < mddev->events)
1433 			return -EINVAL;
1434 	} else if (mddev->bitmap) {
1435 		/* If adding to array with a bitmap, then we can accept an
1436 		 * older device, but not too old.
1437 		 */
1438 		if (ev1 < mddev->bitmap->events_cleared)
1439 			return 0;
1440 	} else {
1441 		if (ev1 < mddev->events)
1442 			/* just a hot-add of a new device, leave raid_disk at -1 */
1443 			return 0;
1444 	}
1445 	if (mddev->level != LEVEL_MULTIPATH) {
1446 		int role;
1447 		if (rdev->desc_nr < 0 ||
1448 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1449 			role = 0xffff;
1450 			rdev->desc_nr = -1;
1451 		} else
1452 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1453 		switch(role) {
1454 		case 0xffff: /* spare */
1455 			break;
1456 		case 0xfffe: /* faulty */
1457 			set_bit(Faulty, &rdev->flags);
1458 			break;
1459 		default:
1460 			if ((le32_to_cpu(sb->feature_map) &
1461 			     MD_FEATURE_RECOVERY_OFFSET))
1462 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1463 			else
1464 				set_bit(In_sync, &rdev->flags);
1465 			rdev->raid_disk = role;
1466 			break;
1467 		}
1468 		if (sb->devflags & WriteMostly1)
1469 			set_bit(WriteMostly, &rdev->flags);
1470 	} else /* MULTIPATH are always insync */
1471 		set_bit(In_sync, &rdev->flags);
1472 
1473 	return 0;
1474 }
1475 
1476 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1477 {
1478 	struct mdp_superblock_1 *sb;
1479 	mdk_rdev_t *rdev2;
1480 	int max_dev, i;
1481 	/* make rdev->sb match mddev and rdev data. */
1482 
1483 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1484 
1485 	sb->feature_map = 0;
1486 	sb->pad0 = 0;
1487 	sb->recovery_offset = cpu_to_le64(0);
1488 	memset(sb->pad1, 0, sizeof(sb->pad1));
1489 	memset(sb->pad2, 0, sizeof(sb->pad2));
1490 	memset(sb->pad3, 0, sizeof(sb->pad3));
1491 
1492 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1493 	sb->events = cpu_to_le64(mddev->events);
1494 	if (mddev->in_sync)
1495 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1496 	else
1497 		sb->resync_offset = cpu_to_le64(0);
1498 
1499 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1500 
1501 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1502 	sb->size = cpu_to_le64(mddev->dev_sectors);
1503 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1504 	sb->level = cpu_to_le32(mddev->level);
1505 	sb->layout = cpu_to_le32(mddev->layout);
1506 
1507 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1508 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1509 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1510 	}
1511 
1512 	if (rdev->raid_disk >= 0 &&
1513 	    !test_bit(In_sync, &rdev->flags)) {
1514 		sb->feature_map |=
1515 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1516 		sb->recovery_offset =
1517 			cpu_to_le64(rdev->recovery_offset);
1518 	}
1519 
1520 	if (mddev->reshape_position != MaxSector) {
1521 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1522 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1523 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1524 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1525 		sb->new_level = cpu_to_le32(mddev->new_level);
1526 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1527 	}
1528 
1529 	max_dev = 0;
1530 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1531 		if (rdev2->desc_nr+1 > max_dev)
1532 			max_dev = rdev2->desc_nr+1;
1533 
1534 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1535 		int bmask;
1536 		sb->max_dev = cpu_to_le32(max_dev);
1537 		rdev->sb_size = max_dev * 2 + 256;
1538 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1539 		if (rdev->sb_size & bmask)
1540 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1541 	}
1542 	for (i=0; i<max_dev;i++)
1543 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1544 
1545 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1546 		i = rdev2->desc_nr;
1547 		if (test_bit(Faulty, &rdev2->flags))
1548 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1549 		else if (test_bit(In_sync, &rdev2->flags))
1550 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1551 		else if (rdev2->raid_disk >= 0)
1552 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1553 		else
1554 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1555 	}
1556 
1557 	sb->sb_csum = calc_sb_1_csum(sb);
1558 }
1559 
1560 static unsigned long long
1561 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1562 {
1563 	struct mdp_superblock_1 *sb;
1564 	sector_t max_sectors;
1565 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1566 		return 0; /* component must fit device */
1567 	if (rdev->sb_start < rdev->data_offset) {
1568 		/* minor versions 1 and 2; superblock before data */
1569 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1570 		max_sectors -= rdev->data_offset;
1571 		if (!num_sectors || num_sectors > max_sectors)
1572 			num_sectors = max_sectors;
1573 	} else if (rdev->mddev->bitmap_info.offset) {
1574 		/* minor version 0 with bitmap we can't move */
1575 		return 0;
1576 	} else {
1577 		/* minor version 0; superblock after data */
1578 		sector_t sb_start;
1579 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1580 		sb_start &= ~(sector_t)(4*2 - 1);
1581 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1582 		if (!num_sectors || num_sectors > max_sectors)
1583 			num_sectors = max_sectors;
1584 		rdev->sb_start = sb_start;
1585 	}
1586 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1587 	sb->data_size = cpu_to_le64(num_sectors);
1588 	sb->super_offset = rdev->sb_start;
1589 	sb->sb_csum = calc_sb_1_csum(sb);
1590 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1591 		       rdev->sb_page);
1592 	md_super_wait(rdev->mddev);
1593 	return num_sectors / 2; /* kB for sysfs */
1594 }
1595 
1596 static struct super_type super_types[] = {
1597 	[0] = {
1598 		.name	= "0.90.0",
1599 		.owner	= THIS_MODULE,
1600 		.load_super	    = super_90_load,
1601 		.validate_super	    = super_90_validate,
1602 		.sync_super	    = super_90_sync,
1603 		.rdev_size_change   = super_90_rdev_size_change,
1604 	},
1605 	[1] = {
1606 		.name	= "md-1",
1607 		.owner	= THIS_MODULE,
1608 		.load_super	    = super_1_load,
1609 		.validate_super	    = super_1_validate,
1610 		.sync_super	    = super_1_sync,
1611 		.rdev_size_change   = super_1_rdev_size_change,
1612 	},
1613 };
1614 
1615 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1616 {
1617 	mdk_rdev_t *rdev, *rdev2;
1618 
1619 	rcu_read_lock();
1620 	rdev_for_each_rcu(rdev, mddev1)
1621 		rdev_for_each_rcu(rdev2, mddev2)
1622 			if (rdev->bdev->bd_contains ==
1623 			    rdev2->bdev->bd_contains) {
1624 				rcu_read_unlock();
1625 				return 1;
1626 			}
1627 	rcu_read_unlock();
1628 	return 0;
1629 }
1630 
1631 static LIST_HEAD(pending_raid_disks);
1632 
1633 /*
1634  * Try to register data integrity profile for an mddev
1635  *
1636  * This is called when an array is started and after a disk has been kicked
1637  * from the array. It only succeeds if all working and active component devices
1638  * are integrity capable with matching profiles.
1639  */
1640 int md_integrity_register(mddev_t *mddev)
1641 {
1642 	mdk_rdev_t *rdev, *reference = NULL;
1643 
1644 	if (list_empty(&mddev->disks))
1645 		return 0; /* nothing to do */
1646 	if (blk_get_integrity(mddev->gendisk))
1647 		return 0; /* already registered */
1648 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1649 		/* skip spares and non-functional disks */
1650 		if (test_bit(Faulty, &rdev->flags))
1651 			continue;
1652 		if (rdev->raid_disk < 0)
1653 			continue;
1654 		/*
1655 		 * If at least one rdev is not integrity capable, we can not
1656 		 * enable data integrity for the md device.
1657 		 */
1658 		if (!bdev_get_integrity(rdev->bdev))
1659 			return -EINVAL;
1660 		if (!reference) {
1661 			/* Use the first rdev as the reference */
1662 			reference = rdev;
1663 			continue;
1664 		}
1665 		/* does this rdev's profile match the reference profile? */
1666 		if (blk_integrity_compare(reference->bdev->bd_disk,
1667 				rdev->bdev->bd_disk) < 0)
1668 			return -EINVAL;
1669 	}
1670 	/*
1671 	 * All component devices are integrity capable and have matching
1672 	 * profiles, register the common profile for the md device.
1673 	 */
1674 	if (blk_integrity_register(mddev->gendisk,
1675 			bdev_get_integrity(reference->bdev)) != 0) {
1676 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1677 			mdname(mddev));
1678 		return -EINVAL;
1679 	}
1680 	printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1681 		mdname(mddev));
1682 	return 0;
1683 }
1684 EXPORT_SYMBOL(md_integrity_register);
1685 
1686 /* Disable data integrity if non-capable/non-matching disk is being added */
1687 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1688 {
1689 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1690 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1691 
1692 	if (!bi_mddev) /* nothing to do */
1693 		return;
1694 	if (rdev->raid_disk < 0) /* skip spares */
1695 		return;
1696 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1697 					     rdev->bdev->bd_disk) >= 0)
1698 		return;
1699 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1700 	blk_integrity_unregister(mddev->gendisk);
1701 }
1702 EXPORT_SYMBOL(md_integrity_add_rdev);
1703 
1704 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1705 {
1706 	char b[BDEVNAME_SIZE];
1707 	struct kobject *ko;
1708 	char *s;
1709 	int err;
1710 
1711 	if (rdev->mddev) {
1712 		MD_BUG();
1713 		return -EINVAL;
1714 	}
1715 
1716 	/* prevent duplicates */
1717 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1718 		return -EEXIST;
1719 
1720 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1721 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1722 			rdev->sectors < mddev->dev_sectors)) {
1723 		if (mddev->pers) {
1724 			/* Cannot change size, so fail
1725 			 * If mddev->level <= 0, then we don't care
1726 			 * about aligning sizes (e.g. linear)
1727 			 */
1728 			if (mddev->level > 0)
1729 				return -ENOSPC;
1730 		} else
1731 			mddev->dev_sectors = rdev->sectors;
1732 	}
1733 
1734 	/* Verify rdev->desc_nr is unique.
1735 	 * If it is -1, assign a free number, else
1736 	 * check number is not in use
1737 	 */
1738 	if (rdev->desc_nr < 0) {
1739 		int choice = 0;
1740 		if (mddev->pers) choice = mddev->raid_disks;
1741 		while (find_rdev_nr(mddev, choice))
1742 			choice++;
1743 		rdev->desc_nr = choice;
1744 	} else {
1745 		if (find_rdev_nr(mddev, rdev->desc_nr))
1746 			return -EBUSY;
1747 	}
1748 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1749 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1750 		       mdname(mddev), mddev->max_disks);
1751 		return -EBUSY;
1752 	}
1753 	bdevname(rdev->bdev,b);
1754 	while ( (s=strchr(b, '/')) != NULL)
1755 		*s = '!';
1756 
1757 	rdev->mddev = mddev;
1758 	printk(KERN_INFO "md: bind<%s>\n", b);
1759 
1760 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1761 		goto fail;
1762 
1763 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1764 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1765 		kobject_del(&rdev->kobj);
1766 		goto fail;
1767 	}
1768 	rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1769 
1770 	list_add_rcu(&rdev->same_set, &mddev->disks);
1771 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1772 
1773 	/* May as well allow recovery to be retried once */
1774 	mddev->recovery_disabled = 0;
1775 
1776 	return 0;
1777 
1778  fail:
1779 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1780 	       b, mdname(mddev));
1781 	return err;
1782 }
1783 
1784 static void md_delayed_delete(struct work_struct *ws)
1785 {
1786 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1787 	kobject_del(&rdev->kobj);
1788 	kobject_put(&rdev->kobj);
1789 }
1790 
1791 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1792 {
1793 	char b[BDEVNAME_SIZE];
1794 	if (!rdev->mddev) {
1795 		MD_BUG();
1796 		return;
1797 	}
1798 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1799 	list_del_rcu(&rdev->same_set);
1800 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1801 	rdev->mddev = NULL;
1802 	sysfs_remove_link(&rdev->kobj, "block");
1803 	sysfs_put(rdev->sysfs_state);
1804 	rdev->sysfs_state = NULL;
1805 	/* We need to delay this, otherwise we can deadlock when
1806 	 * writing to 'remove' to "dev/state".  We also need
1807 	 * to delay it due to rcu usage.
1808 	 */
1809 	synchronize_rcu();
1810 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1811 	kobject_get(&rdev->kobj);
1812 	schedule_work(&rdev->del_work);
1813 }
1814 
1815 /*
1816  * prevent the device from being mounted, repartitioned or
1817  * otherwise reused by a RAID array (or any other kernel
1818  * subsystem), by bd_claiming the device.
1819  */
1820 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1821 {
1822 	int err = 0;
1823 	struct block_device *bdev;
1824 	char b[BDEVNAME_SIZE];
1825 
1826 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1827 	if (IS_ERR(bdev)) {
1828 		printk(KERN_ERR "md: could not open %s.\n",
1829 			__bdevname(dev, b));
1830 		return PTR_ERR(bdev);
1831 	}
1832 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1833 	if (err) {
1834 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1835 			bdevname(bdev, b));
1836 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1837 		return err;
1838 	}
1839 	if (!shared)
1840 		set_bit(AllReserved, &rdev->flags);
1841 	rdev->bdev = bdev;
1842 	return err;
1843 }
1844 
1845 static void unlock_rdev(mdk_rdev_t *rdev)
1846 {
1847 	struct block_device *bdev = rdev->bdev;
1848 	rdev->bdev = NULL;
1849 	if (!bdev)
1850 		MD_BUG();
1851 	bd_release(bdev);
1852 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1853 }
1854 
1855 void md_autodetect_dev(dev_t dev);
1856 
1857 static void export_rdev(mdk_rdev_t * rdev)
1858 {
1859 	char b[BDEVNAME_SIZE];
1860 	printk(KERN_INFO "md: export_rdev(%s)\n",
1861 		bdevname(rdev->bdev,b));
1862 	if (rdev->mddev)
1863 		MD_BUG();
1864 	free_disk_sb(rdev);
1865 #ifndef MODULE
1866 	if (test_bit(AutoDetected, &rdev->flags))
1867 		md_autodetect_dev(rdev->bdev->bd_dev);
1868 #endif
1869 	unlock_rdev(rdev);
1870 	kobject_put(&rdev->kobj);
1871 }
1872 
1873 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1874 {
1875 	unbind_rdev_from_array(rdev);
1876 	export_rdev(rdev);
1877 }
1878 
1879 static void export_array(mddev_t *mddev)
1880 {
1881 	mdk_rdev_t *rdev, *tmp;
1882 
1883 	rdev_for_each(rdev, tmp, mddev) {
1884 		if (!rdev->mddev) {
1885 			MD_BUG();
1886 			continue;
1887 		}
1888 		kick_rdev_from_array(rdev);
1889 	}
1890 	if (!list_empty(&mddev->disks))
1891 		MD_BUG();
1892 	mddev->raid_disks = 0;
1893 	mddev->major_version = 0;
1894 }
1895 
1896 static void print_desc(mdp_disk_t *desc)
1897 {
1898 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1899 		desc->major,desc->minor,desc->raid_disk,desc->state);
1900 }
1901 
1902 static void print_sb_90(mdp_super_t *sb)
1903 {
1904 	int i;
1905 
1906 	printk(KERN_INFO
1907 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1908 		sb->major_version, sb->minor_version, sb->patch_version,
1909 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1910 		sb->ctime);
1911 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1912 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1913 		sb->md_minor, sb->layout, sb->chunk_size);
1914 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1915 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1916 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1917 		sb->failed_disks, sb->spare_disks,
1918 		sb->sb_csum, (unsigned long)sb->events_lo);
1919 
1920 	printk(KERN_INFO);
1921 	for (i = 0; i < MD_SB_DISKS; i++) {
1922 		mdp_disk_t *desc;
1923 
1924 		desc = sb->disks + i;
1925 		if (desc->number || desc->major || desc->minor ||
1926 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1927 			printk("     D %2d: ", i);
1928 			print_desc(desc);
1929 		}
1930 	}
1931 	printk(KERN_INFO "md:     THIS: ");
1932 	print_desc(&sb->this_disk);
1933 }
1934 
1935 static void print_sb_1(struct mdp_superblock_1 *sb)
1936 {
1937 	__u8 *uuid;
1938 
1939 	uuid = sb->set_uuid;
1940 	printk(KERN_INFO
1941 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
1942 	       "md:    Name: \"%s\" CT:%llu\n",
1943 		le32_to_cpu(sb->major_version),
1944 		le32_to_cpu(sb->feature_map),
1945 		uuid,
1946 		sb->set_name,
1947 		(unsigned long long)le64_to_cpu(sb->ctime)
1948 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1949 
1950 	uuid = sb->device_uuid;
1951 	printk(KERN_INFO
1952 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1953 			" RO:%llu\n"
1954 	       "md:     Dev:%08x UUID: %pU\n"
1955 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1956 	       "md:         (MaxDev:%u) \n",
1957 		le32_to_cpu(sb->level),
1958 		(unsigned long long)le64_to_cpu(sb->size),
1959 		le32_to_cpu(sb->raid_disks),
1960 		le32_to_cpu(sb->layout),
1961 		le32_to_cpu(sb->chunksize),
1962 		(unsigned long long)le64_to_cpu(sb->data_offset),
1963 		(unsigned long long)le64_to_cpu(sb->data_size),
1964 		(unsigned long long)le64_to_cpu(sb->super_offset),
1965 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
1966 		le32_to_cpu(sb->dev_number),
1967 		uuid,
1968 		sb->devflags,
1969 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1970 		(unsigned long long)le64_to_cpu(sb->events),
1971 		(unsigned long long)le64_to_cpu(sb->resync_offset),
1972 		le32_to_cpu(sb->sb_csum),
1973 		le32_to_cpu(sb->max_dev)
1974 		);
1975 }
1976 
1977 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1978 {
1979 	char b[BDEVNAME_SIZE];
1980 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1981 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1982 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1983 	        rdev->desc_nr);
1984 	if (rdev->sb_loaded) {
1985 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1986 		switch (major_version) {
1987 		case 0:
1988 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1989 			break;
1990 		case 1:
1991 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1992 			break;
1993 		}
1994 	} else
1995 		printk(KERN_INFO "md: no rdev superblock!\n");
1996 }
1997 
1998 static void md_print_devices(void)
1999 {
2000 	struct list_head *tmp;
2001 	mdk_rdev_t *rdev;
2002 	mddev_t *mddev;
2003 	char b[BDEVNAME_SIZE];
2004 
2005 	printk("\n");
2006 	printk("md:	**********************************\n");
2007 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2008 	printk("md:	**********************************\n");
2009 	for_each_mddev(mddev, tmp) {
2010 
2011 		if (mddev->bitmap)
2012 			bitmap_print_sb(mddev->bitmap);
2013 		else
2014 			printk("%s: ", mdname(mddev));
2015 		list_for_each_entry(rdev, &mddev->disks, same_set)
2016 			printk("<%s>", bdevname(rdev->bdev,b));
2017 		printk("\n");
2018 
2019 		list_for_each_entry(rdev, &mddev->disks, same_set)
2020 			print_rdev(rdev, mddev->major_version);
2021 	}
2022 	printk("md:	**********************************\n");
2023 	printk("\n");
2024 }
2025 
2026 
2027 static void sync_sbs(mddev_t * mddev, int nospares)
2028 {
2029 	/* Update each superblock (in-memory image), but
2030 	 * if we are allowed to, skip spares which already
2031 	 * have the right event counter, or have one earlier
2032 	 * (which would mean they aren't being marked as dirty
2033 	 * with the rest of the array)
2034 	 */
2035 	mdk_rdev_t *rdev;
2036 
2037 	/* First make sure individual recovery_offsets are correct */
2038 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2039 		if (rdev->raid_disk >= 0 &&
2040 		    !test_bit(In_sync, &rdev->flags) &&
2041 		    mddev->curr_resync_completed > rdev->recovery_offset)
2042 				rdev->recovery_offset = mddev->curr_resync_completed;
2043 
2044 	}
2045 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2046 		if (rdev->sb_events == mddev->events ||
2047 		    (nospares &&
2048 		     rdev->raid_disk < 0 &&
2049 		     (rdev->sb_events&1)==0 &&
2050 		     rdev->sb_events+1 == mddev->events)) {
2051 			/* Don't update this superblock */
2052 			rdev->sb_loaded = 2;
2053 		} else {
2054 			super_types[mddev->major_version].
2055 				sync_super(mddev, rdev);
2056 			rdev->sb_loaded = 1;
2057 		}
2058 	}
2059 }
2060 
2061 static void md_update_sb(mddev_t * mddev, int force_change)
2062 {
2063 	mdk_rdev_t *rdev;
2064 	int sync_req;
2065 	int nospares = 0;
2066 
2067 	mddev->utime = get_seconds();
2068 	if (mddev->external)
2069 		return;
2070 repeat:
2071 	spin_lock_irq(&mddev->write_lock);
2072 
2073 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
2074 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2075 		force_change = 1;
2076 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2077 		/* just a clean<-> dirty transition, possibly leave spares alone,
2078 		 * though if events isn't the right even/odd, we will have to do
2079 		 * spares after all
2080 		 */
2081 		nospares = 1;
2082 	if (force_change)
2083 		nospares = 0;
2084 	if (mddev->degraded)
2085 		/* If the array is degraded, then skipping spares is both
2086 		 * dangerous and fairly pointless.
2087 		 * Dangerous because a device that was removed from the array
2088 		 * might have a event_count that still looks up-to-date,
2089 		 * so it can be re-added without a resync.
2090 		 * Pointless because if there are any spares to skip,
2091 		 * then a recovery will happen and soon that array won't
2092 		 * be degraded any more and the spare can go back to sleep then.
2093 		 */
2094 		nospares = 0;
2095 
2096 	sync_req = mddev->in_sync;
2097 
2098 	/* If this is just a dirty<->clean transition, and the array is clean
2099 	 * and 'events' is odd, we can roll back to the previous clean state */
2100 	if (nospares
2101 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2102 	    && (mddev->events & 1)
2103 	    && mddev->events != 1)
2104 		mddev->events--;
2105 	else {
2106 		/* otherwise we have to go forward and ... */
2107 		mddev->events ++;
2108 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
2109 			/* .. if the array isn't clean, an 'even' event must also go
2110 			 * to spares. */
2111 			if ((mddev->events&1)==0)
2112 				nospares = 0;
2113 		} else {
2114 			/* otherwise an 'odd' event must go to spares */
2115 			if ((mddev->events&1))
2116 				nospares = 0;
2117 		}
2118 	}
2119 
2120 	if (!mddev->events) {
2121 		/*
2122 		 * oops, this 64-bit counter should never wrap.
2123 		 * Either we are in around ~1 trillion A.C., assuming
2124 		 * 1 reboot per second, or we have a bug:
2125 		 */
2126 		MD_BUG();
2127 		mddev->events --;
2128 	}
2129 
2130 	/*
2131 	 * do not write anything to disk if using
2132 	 * nonpersistent superblocks
2133 	 */
2134 	if (!mddev->persistent) {
2135 		if (!mddev->external)
2136 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2137 
2138 		spin_unlock_irq(&mddev->write_lock);
2139 		wake_up(&mddev->sb_wait);
2140 		return;
2141 	}
2142 	sync_sbs(mddev, nospares);
2143 	spin_unlock_irq(&mddev->write_lock);
2144 
2145 	dprintk(KERN_INFO
2146 		"md: updating %s RAID superblock on device (in sync %d)\n",
2147 		mdname(mddev),mddev->in_sync);
2148 
2149 	bitmap_update_sb(mddev->bitmap);
2150 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2151 		char b[BDEVNAME_SIZE];
2152 		dprintk(KERN_INFO "md: ");
2153 		if (rdev->sb_loaded != 1)
2154 			continue; /* no noise on spare devices */
2155 		if (test_bit(Faulty, &rdev->flags))
2156 			dprintk("(skipping faulty ");
2157 
2158 		dprintk("%s ", bdevname(rdev->bdev,b));
2159 		if (!test_bit(Faulty, &rdev->flags)) {
2160 			md_super_write(mddev,rdev,
2161 				       rdev->sb_start, rdev->sb_size,
2162 				       rdev->sb_page);
2163 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2164 				bdevname(rdev->bdev,b),
2165 				(unsigned long long)rdev->sb_start);
2166 			rdev->sb_events = mddev->events;
2167 
2168 		} else
2169 			dprintk(")\n");
2170 		if (mddev->level == LEVEL_MULTIPATH)
2171 			/* only need to write one superblock... */
2172 			break;
2173 	}
2174 	md_super_wait(mddev);
2175 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2176 
2177 	spin_lock_irq(&mddev->write_lock);
2178 	if (mddev->in_sync != sync_req ||
2179 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2180 		/* have to write it out again */
2181 		spin_unlock_irq(&mddev->write_lock);
2182 		goto repeat;
2183 	}
2184 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2185 	spin_unlock_irq(&mddev->write_lock);
2186 	wake_up(&mddev->sb_wait);
2187 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2188 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2189 
2190 }
2191 
2192 /* words written to sysfs files may, or may not, be \n terminated.
2193  * We want to accept with case. For this we use cmd_match.
2194  */
2195 static int cmd_match(const char *cmd, const char *str)
2196 {
2197 	/* See if cmd, written into a sysfs file, matches
2198 	 * str.  They must either be the same, or cmd can
2199 	 * have a trailing newline
2200 	 */
2201 	while (*cmd && *str && *cmd == *str) {
2202 		cmd++;
2203 		str++;
2204 	}
2205 	if (*cmd == '\n')
2206 		cmd++;
2207 	if (*str || *cmd)
2208 		return 0;
2209 	return 1;
2210 }
2211 
2212 struct rdev_sysfs_entry {
2213 	struct attribute attr;
2214 	ssize_t (*show)(mdk_rdev_t *, char *);
2215 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2216 };
2217 
2218 static ssize_t
2219 state_show(mdk_rdev_t *rdev, char *page)
2220 {
2221 	char *sep = "";
2222 	size_t len = 0;
2223 
2224 	if (test_bit(Faulty, &rdev->flags)) {
2225 		len+= sprintf(page+len, "%sfaulty",sep);
2226 		sep = ",";
2227 	}
2228 	if (test_bit(In_sync, &rdev->flags)) {
2229 		len += sprintf(page+len, "%sin_sync",sep);
2230 		sep = ",";
2231 	}
2232 	if (test_bit(WriteMostly, &rdev->flags)) {
2233 		len += sprintf(page+len, "%swrite_mostly",sep);
2234 		sep = ",";
2235 	}
2236 	if (test_bit(Blocked, &rdev->flags)) {
2237 		len += sprintf(page+len, "%sblocked", sep);
2238 		sep = ",";
2239 	}
2240 	if (!test_bit(Faulty, &rdev->flags) &&
2241 	    !test_bit(In_sync, &rdev->flags)) {
2242 		len += sprintf(page+len, "%sspare", sep);
2243 		sep = ",";
2244 	}
2245 	return len+sprintf(page+len, "\n");
2246 }
2247 
2248 static ssize_t
2249 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2250 {
2251 	/* can write
2252 	 *  faulty  - simulates and error
2253 	 *  remove  - disconnects the device
2254 	 *  writemostly - sets write_mostly
2255 	 *  -writemostly - clears write_mostly
2256 	 *  blocked - sets the Blocked flag
2257 	 *  -blocked - clears the Blocked flag
2258 	 *  insync - sets Insync providing device isn't active
2259 	 */
2260 	int err = -EINVAL;
2261 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2262 		md_error(rdev->mddev, rdev);
2263 		err = 0;
2264 	} else if (cmd_match(buf, "remove")) {
2265 		if (rdev->raid_disk >= 0)
2266 			err = -EBUSY;
2267 		else {
2268 			mddev_t *mddev = rdev->mddev;
2269 			kick_rdev_from_array(rdev);
2270 			if (mddev->pers)
2271 				md_update_sb(mddev, 1);
2272 			md_new_event(mddev);
2273 			err = 0;
2274 		}
2275 	} else if (cmd_match(buf, "writemostly")) {
2276 		set_bit(WriteMostly, &rdev->flags);
2277 		err = 0;
2278 	} else if (cmd_match(buf, "-writemostly")) {
2279 		clear_bit(WriteMostly, &rdev->flags);
2280 		err = 0;
2281 	} else if (cmd_match(buf, "blocked")) {
2282 		set_bit(Blocked, &rdev->flags);
2283 		err = 0;
2284 	} else if (cmd_match(buf, "-blocked")) {
2285 		clear_bit(Blocked, &rdev->flags);
2286 		wake_up(&rdev->blocked_wait);
2287 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2288 		md_wakeup_thread(rdev->mddev->thread);
2289 
2290 		err = 0;
2291 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2292 		set_bit(In_sync, &rdev->flags);
2293 		err = 0;
2294 	}
2295 	if (!err && rdev->sysfs_state)
2296 		sysfs_notify_dirent(rdev->sysfs_state);
2297 	return err ? err : len;
2298 }
2299 static struct rdev_sysfs_entry rdev_state =
2300 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2301 
2302 static ssize_t
2303 errors_show(mdk_rdev_t *rdev, char *page)
2304 {
2305 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2306 }
2307 
2308 static ssize_t
2309 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2310 {
2311 	char *e;
2312 	unsigned long n = simple_strtoul(buf, &e, 10);
2313 	if (*buf && (*e == 0 || *e == '\n')) {
2314 		atomic_set(&rdev->corrected_errors, n);
2315 		return len;
2316 	}
2317 	return -EINVAL;
2318 }
2319 static struct rdev_sysfs_entry rdev_errors =
2320 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2321 
2322 static ssize_t
2323 slot_show(mdk_rdev_t *rdev, char *page)
2324 {
2325 	if (rdev->raid_disk < 0)
2326 		return sprintf(page, "none\n");
2327 	else
2328 		return sprintf(page, "%d\n", rdev->raid_disk);
2329 }
2330 
2331 static ssize_t
2332 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2333 {
2334 	char *e;
2335 	int err;
2336 	char nm[20];
2337 	int slot = simple_strtoul(buf, &e, 10);
2338 	if (strncmp(buf, "none", 4)==0)
2339 		slot = -1;
2340 	else if (e==buf || (*e && *e!= '\n'))
2341 		return -EINVAL;
2342 	if (rdev->mddev->pers && slot == -1) {
2343 		/* Setting 'slot' on an active array requires also
2344 		 * updating the 'rd%d' link, and communicating
2345 		 * with the personality with ->hot_*_disk.
2346 		 * For now we only support removing
2347 		 * failed/spare devices.  This normally happens automatically,
2348 		 * but not when the metadata is externally managed.
2349 		 */
2350 		if (rdev->raid_disk == -1)
2351 			return -EEXIST;
2352 		/* personality does all needed checks */
2353 		if (rdev->mddev->pers->hot_add_disk == NULL)
2354 			return -EINVAL;
2355 		err = rdev->mddev->pers->
2356 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2357 		if (err)
2358 			return err;
2359 		sprintf(nm, "rd%d", rdev->raid_disk);
2360 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2361 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2362 		md_wakeup_thread(rdev->mddev->thread);
2363 	} else if (rdev->mddev->pers) {
2364 		mdk_rdev_t *rdev2;
2365 		/* Activating a spare .. or possibly reactivating
2366 		 * if we ever get bitmaps working here.
2367 		 */
2368 
2369 		if (rdev->raid_disk != -1)
2370 			return -EBUSY;
2371 
2372 		if (rdev->mddev->pers->hot_add_disk == NULL)
2373 			return -EINVAL;
2374 
2375 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2376 			if (rdev2->raid_disk == slot)
2377 				return -EEXIST;
2378 
2379 		rdev->raid_disk = slot;
2380 		if (test_bit(In_sync, &rdev->flags))
2381 			rdev->saved_raid_disk = slot;
2382 		else
2383 			rdev->saved_raid_disk = -1;
2384 		err = rdev->mddev->pers->
2385 			hot_add_disk(rdev->mddev, rdev);
2386 		if (err) {
2387 			rdev->raid_disk = -1;
2388 			return err;
2389 		} else
2390 			sysfs_notify_dirent(rdev->sysfs_state);
2391 		sprintf(nm, "rd%d", rdev->raid_disk);
2392 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2393 			printk(KERN_WARNING
2394 			       "md: cannot register "
2395 			       "%s for %s\n",
2396 			       nm, mdname(rdev->mddev));
2397 
2398 		/* don't wakeup anyone, leave that to userspace. */
2399 	} else {
2400 		if (slot >= rdev->mddev->raid_disks)
2401 			return -ENOSPC;
2402 		rdev->raid_disk = slot;
2403 		/* assume it is working */
2404 		clear_bit(Faulty, &rdev->flags);
2405 		clear_bit(WriteMostly, &rdev->flags);
2406 		set_bit(In_sync, &rdev->flags);
2407 		sysfs_notify_dirent(rdev->sysfs_state);
2408 	}
2409 	return len;
2410 }
2411 
2412 
2413 static struct rdev_sysfs_entry rdev_slot =
2414 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2415 
2416 static ssize_t
2417 offset_show(mdk_rdev_t *rdev, char *page)
2418 {
2419 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2420 }
2421 
2422 static ssize_t
2423 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2424 {
2425 	char *e;
2426 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2427 	if (e==buf || (*e && *e != '\n'))
2428 		return -EINVAL;
2429 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2430 		return -EBUSY;
2431 	if (rdev->sectors && rdev->mddev->external)
2432 		/* Must set offset before size, so overlap checks
2433 		 * can be sane */
2434 		return -EBUSY;
2435 	rdev->data_offset = offset;
2436 	return len;
2437 }
2438 
2439 static struct rdev_sysfs_entry rdev_offset =
2440 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2441 
2442 static ssize_t
2443 rdev_size_show(mdk_rdev_t *rdev, char *page)
2444 {
2445 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2446 }
2447 
2448 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2449 {
2450 	/* check if two start/length pairs overlap */
2451 	if (s1+l1 <= s2)
2452 		return 0;
2453 	if (s2+l2 <= s1)
2454 		return 0;
2455 	return 1;
2456 }
2457 
2458 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2459 {
2460 	unsigned long long blocks;
2461 	sector_t new;
2462 
2463 	if (strict_strtoull(buf, 10, &blocks) < 0)
2464 		return -EINVAL;
2465 
2466 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2467 		return -EINVAL; /* sector conversion overflow */
2468 
2469 	new = blocks * 2;
2470 	if (new != blocks * 2)
2471 		return -EINVAL; /* unsigned long long to sector_t overflow */
2472 
2473 	*sectors = new;
2474 	return 0;
2475 }
2476 
2477 static ssize_t
2478 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2479 {
2480 	mddev_t *my_mddev = rdev->mddev;
2481 	sector_t oldsectors = rdev->sectors;
2482 	sector_t sectors;
2483 
2484 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2485 		return -EINVAL;
2486 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2487 		if (my_mddev->persistent) {
2488 			sectors = super_types[my_mddev->major_version].
2489 				rdev_size_change(rdev, sectors);
2490 			if (!sectors)
2491 				return -EBUSY;
2492 		} else if (!sectors)
2493 			sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2494 				rdev->data_offset;
2495 	}
2496 	if (sectors < my_mddev->dev_sectors)
2497 		return -EINVAL; /* component must fit device */
2498 
2499 	rdev->sectors = sectors;
2500 	if (sectors > oldsectors && my_mddev->external) {
2501 		/* need to check that all other rdevs with the same ->bdev
2502 		 * do not overlap.  We need to unlock the mddev to avoid
2503 		 * a deadlock.  We have already changed rdev->sectors, and if
2504 		 * we have to change it back, we will have the lock again.
2505 		 */
2506 		mddev_t *mddev;
2507 		int overlap = 0;
2508 		struct list_head *tmp;
2509 
2510 		mddev_unlock(my_mddev);
2511 		for_each_mddev(mddev, tmp) {
2512 			mdk_rdev_t *rdev2;
2513 
2514 			mddev_lock(mddev);
2515 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2516 				if (test_bit(AllReserved, &rdev2->flags) ||
2517 				    (rdev->bdev == rdev2->bdev &&
2518 				     rdev != rdev2 &&
2519 				     overlaps(rdev->data_offset, rdev->sectors,
2520 					      rdev2->data_offset,
2521 					      rdev2->sectors))) {
2522 					overlap = 1;
2523 					break;
2524 				}
2525 			mddev_unlock(mddev);
2526 			if (overlap) {
2527 				mddev_put(mddev);
2528 				break;
2529 			}
2530 		}
2531 		mddev_lock(my_mddev);
2532 		if (overlap) {
2533 			/* Someone else could have slipped in a size
2534 			 * change here, but doing so is just silly.
2535 			 * We put oldsectors back because we *know* it is
2536 			 * safe, and trust userspace not to race with
2537 			 * itself
2538 			 */
2539 			rdev->sectors = oldsectors;
2540 			return -EBUSY;
2541 		}
2542 	}
2543 	return len;
2544 }
2545 
2546 static struct rdev_sysfs_entry rdev_size =
2547 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2548 
2549 
2550 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2551 {
2552 	unsigned long long recovery_start = rdev->recovery_offset;
2553 
2554 	if (test_bit(In_sync, &rdev->flags) ||
2555 	    recovery_start == MaxSector)
2556 		return sprintf(page, "none\n");
2557 
2558 	return sprintf(page, "%llu\n", recovery_start);
2559 }
2560 
2561 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2562 {
2563 	unsigned long long recovery_start;
2564 
2565 	if (cmd_match(buf, "none"))
2566 		recovery_start = MaxSector;
2567 	else if (strict_strtoull(buf, 10, &recovery_start))
2568 		return -EINVAL;
2569 
2570 	if (rdev->mddev->pers &&
2571 	    rdev->raid_disk >= 0)
2572 		return -EBUSY;
2573 
2574 	rdev->recovery_offset = recovery_start;
2575 	if (recovery_start == MaxSector)
2576 		set_bit(In_sync, &rdev->flags);
2577 	else
2578 		clear_bit(In_sync, &rdev->flags);
2579 	return len;
2580 }
2581 
2582 static struct rdev_sysfs_entry rdev_recovery_start =
2583 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2584 
2585 static struct attribute *rdev_default_attrs[] = {
2586 	&rdev_state.attr,
2587 	&rdev_errors.attr,
2588 	&rdev_slot.attr,
2589 	&rdev_offset.attr,
2590 	&rdev_size.attr,
2591 	&rdev_recovery_start.attr,
2592 	NULL,
2593 };
2594 static ssize_t
2595 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2596 {
2597 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2598 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2599 	mddev_t *mddev = rdev->mddev;
2600 	ssize_t rv;
2601 
2602 	if (!entry->show)
2603 		return -EIO;
2604 
2605 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2606 	if (!rv) {
2607 		if (rdev->mddev == NULL)
2608 			rv = -EBUSY;
2609 		else
2610 			rv = entry->show(rdev, page);
2611 		mddev_unlock(mddev);
2612 	}
2613 	return rv;
2614 }
2615 
2616 static ssize_t
2617 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2618 	      const char *page, size_t length)
2619 {
2620 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2621 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2622 	ssize_t rv;
2623 	mddev_t *mddev = rdev->mddev;
2624 
2625 	if (!entry->store)
2626 		return -EIO;
2627 	if (!capable(CAP_SYS_ADMIN))
2628 		return -EACCES;
2629 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2630 	if (!rv) {
2631 		if (rdev->mddev == NULL)
2632 			rv = -EBUSY;
2633 		else
2634 			rv = entry->store(rdev, page, length);
2635 		mddev_unlock(mddev);
2636 	}
2637 	return rv;
2638 }
2639 
2640 static void rdev_free(struct kobject *ko)
2641 {
2642 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2643 	kfree(rdev);
2644 }
2645 static struct sysfs_ops rdev_sysfs_ops = {
2646 	.show		= rdev_attr_show,
2647 	.store		= rdev_attr_store,
2648 };
2649 static struct kobj_type rdev_ktype = {
2650 	.release	= rdev_free,
2651 	.sysfs_ops	= &rdev_sysfs_ops,
2652 	.default_attrs	= rdev_default_attrs,
2653 };
2654 
2655 /*
2656  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2657  *
2658  * mark the device faulty if:
2659  *
2660  *   - the device is nonexistent (zero size)
2661  *   - the device has no valid superblock
2662  *
2663  * a faulty rdev _never_ has rdev->sb set.
2664  */
2665 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2666 {
2667 	char b[BDEVNAME_SIZE];
2668 	int err;
2669 	mdk_rdev_t *rdev;
2670 	sector_t size;
2671 
2672 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2673 	if (!rdev) {
2674 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2675 		return ERR_PTR(-ENOMEM);
2676 	}
2677 
2678 	if ((err = alloc_disk_sb(rdev)))
2679 		goto abort_free;
2680 
2681 	err = lock_rdev(rdev, newdev, super_format == -2);
2682 	if (err)
2683 		goto abort_free;
2684 
2685 	kobject_init(&rdev->kobj, &rdev_ktype);
2686 
2687 	rdev->desc_nr = -1;
2688 	rdev->saved_raid_disk = -1;
2689 	rdev->raid_disk = -1;
2690 	rdev->flags = 0;
2691 	rdev->data_offset = 0;
2692 	rdev->sb_events = 0;
2693 	rdev->last_read_error.tv_sec  = 0;
2694 	rdev->last_read_error.tv_nsec = 0;
2695 	atomic_set(&rdev->nr_pending, 0);
2696 	atomic_set(&rdev->read_errors, 0);
2697 	atomic_set(&rdev->corrected_errors, 0);
2698 
2699 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2700 	if (!size) {
2701 		printk(KERN_WARNING
2702 			"md: %s has zero or unknown size, marking faulty!\n",
2703 			bdevname(rdev->bdev,b));
2704 		err = -EINVAL;
2705 		goto abort_free;
2706 	}
2707 
2708 	if (super_format >= 0) {
2709 		err = super_types[super_format].
2710 			load_super(rdev, NULL, super_minor);
2711 		if (err == -EINVAL) {
2712 			printk(KERN_WARNING
2713 				"md: %s does not have a valid v%d.%d "
2714 			       "superblock, not importing!\n",
2715 				bdevname(rdev->bdev,b),
2716 			       super_format, super_minor);
2717 			goto abort_free;
2718 		}
2719 		if (err < 0) {
2720 			printk(KERN_WARNING
2721 				"md: could not read %s's sb, not importing!\n",
2722 				bdevname(rdev->bdev,b));
2723 			goto abort_free;
2724 		}
2725 	}
2726 
2727 	INIT_LIST_HEAD(&rdev->same_set);
2728 	init_waitqueue_head(&rdev->blocked_wait);
2729 
2730 	return rdev;
2731 
2732 abort_free:
2733 	if (rdev->sb_page) {
2734 		if (rdev->bdev)
2735 			unlock_rdev(rdev);
2736 		free_disk_sb(rdev);
2737 	}
2738 	kfree(rdev);
2739 	return ERR_PTR(err);
2740 }
2741 
2742 /*
2743  * Check a full RAID array for plausibility
2744  */
2745 
2746 
2747 static void analyze_sbs(mddev_t * mddev)
2748 {
2749 	int i;
2750 	mdk_rdev_t *rdev, *freshest, *tmp;
2751 	char b[BDEVNAME_SIZE];
2752 
2753 	freshest = NULL;
2754 	rdev_for_each(rdev, tmp, mddev)
2755 		switch (super_types[mddev->major_version].
2756 			load_super(rdev, freshest, mddev->minor_version)) {
2757 		case 1:
2758 			freshest = rdev;
2759 			break;
2760 		case 0:
2761 			break;
2762 		default:
2763 			printk( KERN_ERR \
2764 				"md: fatal superblock inconsistency in %s"
2765 				" -- removing from array\n",
2766 				bdevname(rdev->bdev,b));
2767 			kick_rdev_from_array(rdev);
2768 		}
2769 
2770 
2771 	super_types[mddev->major_version].
2772 		validate_super(mddev, freshest);
2773 
2774 	i = 0;
2775 	rdev_for_each(rdev, tmp, mddev) {
2776 		if (rdev->desc_nr >= mddev->max_disks ||
2777 		    i > mddev->max_disks) {
2778 			printk(KERN_WARNING
2779 			       "md: %s: %s: only %d devices permitted\n",
2780 			       mdname(mddev), bdevname(rdev->bdev, b),
2781 			       mddev->max_disks);
2782 			kick_rdev_from_array(rdev);
2783 			continue;
2784 		}
2785 		if (rdev != freshest)
2786 			if (super_types[mddev->major_version].
2787 			    validate_super(mddev, rdev)) {
2788 				printk(KERN_WARNING "md: kicking non-fresh %s"
2789 					" from array!\n",
2790 					bdevname(rdev->bdev,b));
2791 				kick_rdev_from_array(rdev);
2792 				continue;
2793 			}
2794 		if (mddev->level == LEVEL_MULTIPATH) {
2795 			rdev->desc_nr = i++;
2796 			rdev->raid_disk = rdev->desc_nr;
2797 			set_bit(In_sync, &rdev->flags);
2798 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2799 			rdev->raid_disk = -1;
2800 			clear_bit(In_sync, &rdev->flags);
2801 		}
2802 	}
2803 }
2804 
2805 /* Read a fixed-point number.
2806  * Numbers in sysfs attributes should be in "standard" units where
2807  * possible, so time should be in seconds.
2808  * However we internally use a a much smaller unit such as
2809  * milliseconds or jiffies.
2810  * This function takes a decimal number with a possible fractional
2811  * component, and produces an integer which is the result of
2812  * multiplying that number by 10^'scale'.
2813  * all without any floating-point arithmetic.
2814  */
2815 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2816 {
2817 	unsigned long result = 0;
2818 	long decimals = -1;
2819 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2820 		if (*cp == '.')
2821 			decimals = 0;
2822 		else if (decimals < scale) {
2823 			unsigned int value;
2824 			value = *cp - '0';
2825 			result = result * 10 + value;
2826 			if (decimals >= 0)
2827 				decimals++;
2828 		}
2829 		cp++;
2830 	}
2831 	if (*cp == '\n')
2832 		cp++;
2833 	if (*cp)
2834 		return -EINVAL;
2835 	if (decimals < 0)
2836 		decimals = 0;
2837 	while (decimals < scale) {
2838 		result *= 10;
2839 		decimals ++;
2840 	}
2841 	*res = result;
2842 	return 0;
2843 }
2844 
2845 
2846 static void md_safemode_timeout(unsigned long data);
2847 
2848 static ssize_t
2849 safe_delay_show(mddev_t *mddev, char *page)
2850 {
2851 	int msec = (mddev->safemode_delay*1000)/HZ;
2852 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2853 }
2854 static ssize_t
2855 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2856 {
2857 	unsigned long msec;
2858 
2859 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2860 		return -EINVAL;
2861 	if (msec == 0)
2862 		mddev->safemode_delay = 0;
2863 	else {
2864 		unsigned long old_delay = mddev->safemode_delay;
2865 		mddev->safemode_delay = (msec*HZ)/1000;
2866 		if (mddev->safemode_delay == 0)
2867 			mddev->safemode_delay = 1;
2868 		if (mddev->safemode_delay < old_delay)
2869 			md_safemode_timeout((unsigned long)mddev);
2870 	}
2871 	return len;
2872 }
2873 static struct md_sysfs_entry md_safe_delay =
2874 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2875 
2876 static ssize_t
2877 level_show(mddev_t *mddev, char *page)
2878 {
2879 	struct mdk_personality *p = mddev->pers;
2880 	if (p)
2881 		return sprintf(page, "%s\n", p->name);
2882 	else if (mddev->clevel[0])
2883 		return sprintf(page, "%s\n", mddev->clevel);
2884 	else if (mddev->level != LEVEL_NONE)
2885 		return sprintf(page, "%d\n", mddev->level);
2886 	else
2887 		return 0;
2888 }
2889 
2890 static ssize_t
2891 level_store(mddev_t *mddev, const char *buf, size_t len)
2892 {
2893 	char level[16];
2894 	ssize_t rv = len;
2895 	struct mdk_personality *pers;
2896 	void *priv;
2897 	mdk_rdev_t *rdev;
2898 
2899 	if (mddev->pers == NULL) {
2900 		if (len == 0)
2901 			return 0;
2902 		if (len >= sizeof(mddev->clevel))
2903 			return -ENOSPC;
2904 		strncpy(mddev->clevel, buf, len);
2905 		if (mddev->clevel[len-1] == '\n')
2906 			len--;
2907 		mddev->clevel[len] = 0;
2908 		mddev->level = LEVEL_NONE;
2909 		return rv;
2910 	}
2911 
2912 	/* request to change the personality.  Need to ensure:
2913 	 *  - array is not engaged in resync/recovery/reshape
2914 	 *  - old personality can be suspended
2915 	 *  - new personality will access other array.
2916 	 */
2917 
2918 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2919 		return -EBUSY;
2920 
2921 	if (!mddev->pers->quiesce) {
2922 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2923 		       mdname(mddev), mddev->pers->name);
2924 		return -EINVAL;
2925 	}
2926 
2927 	/* Now find the new personality */
2928 	if (len == 0 || len >= sizeof(level))
2929 		return -EINVAL;
2930 	strncpy(level, buf, len);
2931 	if (level[len-1] == '\n')
2932 		len--;
2933 	level[len] = 0;
2934 
2935 	request_module("md-%s", level);
2936 	spin_lock(&pers_lock);
2937 	pers = find_pers(LEVEL_NONE, level);
2938 	if (!pers || !try_module_get(pers->owner)) {
2939 		spin_unlock(&pers_lock);
2940 		printk(KERN_WARNING "md: personality %s not loaded\n", level);
2941 		return -EINVAL;
2942 	}
2943 	spin_unlock(&pers_lock);
2944 
2945 	if (pers == mddev->pers) {
2946 		/* Nothing to do! */
2947 		module_put(pers->owner);
2948 		return rv;
2949 	}
2950 	if (!pers->takeover) {
2951 		module_put(pers->owner);
2952 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2953 		       mdname(mddev), level);
2954 		return -EINVAL;
2955 	}
2956 
2957 	/* ->takeover must set new_* and/or delta_disks
2958 	 * if it succeeds, and may set them when it fails.
2959 	 */
2960 	priv = pers->takeover(mddev);
2961 	if (IS_ERR(priv)) {
2962 		mddev->new_level = mddev->level;
2963 		mddev->new_layout = mddev->layout;
2964 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2965 		mddev->raid_disks -= mddev->delta_disks;
2966 		mddev->delta_disks = 0;
2967 		module_put(pers->owner);
2968 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
2969 		       mdname(mddev), level);
2970 		return PTR_ERR(priv);
2971 	}
2972 
2973 	/* Looks like we have a winner */
2974 	mddev_suspend(mddev);
2975 	mddev->pers->stop(mddev);
2976 	module_put(mddev->pers->owner);
2977 	/* Invalidate devices that are now superfluous */
2978 	list_for_each_entry(rdev, &mddev->disks, same_set)
2979 		if (rdev->raid_disk >= mddev->raid_disks) {
2980 			rdev->raid_disk = -1;
2981 			clear_bit(In_sync, &rdev->flags);
2982 		}
2983 	mddev->pers = pers;
2984 	mddev->private = priv;
2985 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2986 	mddev->level = mddev->new_level;
2987 	mddev->layout = mddev->new_layout;
2988 	mddev->chunk_sectors = mddev->new_chunk_sectors;
2989 	mddev->delta_disks = 0;
2990 	pers->run(mddev);
2991 	mddev_resume(mddev);
2992 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2993 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2994 	md_wakeup_thread(mddev->thread);
2995 	return rv;
2996 }
2997 
2998 static struct md_sysfs_entry md_level =
2999 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3000 
3001 
3002 static ssize_t
3003 layout_show(mddev_t *mddev, char *page)
3004 {
3005 	/* just a number, not meaningful for all levels */
3006 	if (mddev->reshape_position != MaxSector &&
3007 	    mddev->layout != mddev->new_layout)
3008 		return sprintf(page, "%d (%d)\n",
3009 			       mddev->new_layout, mddev->layout);
3010 	return sprintf(page, "%d\n", mddev->layout);
3011 }
3012 
3013 static ssize_t
3014 layout_store(mddev_t *mddev, const char *buf, size_t len)
3015 {
3016 	char *e;
3017 	unsigned long n = simple_strtoul(buf, &e, 10);
3018 
3019 	if (!*buf || (*e && *e != '\n'))
3020 		return -EINVAL;
3021 
3022 	if (mddev->pers) {
3023 		int err;
3024 		if (mddev->pers->check_reshape == NULL)
3025 			return -EBUSY;
3026 		mddev->new_layout = n;
3027 		err = mddev->pers->check_reshape(mddev);
3028 		if (err) {
3029 			mddev->new_layout = mddev->layout;
3030 			return err;
3031 		}
3032 	} else {
3033 		mddev->new_layout = n;
3034 		if (mddev->reshape_position == MaxSector)
3035 			mddev->layout = n;
3036 	}
3037 	return len;
3038 }
3039 static struct md_sysfs_entry md_layout =
3040 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3041 
3042 
3043 static ssize_t
3044 raid_disks_show(mddev_t *mddev, char *page)
3045 {
3046 	if (mddev->raid_disks == 0)
3047 		return 0;
3048 	if (mddev->reshape_position != MaxSector &&
3049 	    mddev->delta_disks != 0)
3050 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3051 			       mddev->raid_disks - mddev->delta_disks);
3052 	return sprintf(page, "%d\n", mddev->raid_disks);
3053 }
3054 
3055 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3056 
3057 static ssize_t
3058 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3059 {
3060 	char *e;
3061 	int rv = 0;
3062 	unsigned long n = simple_strtoul(buf, &e, 10);
3063 
3064 	if (!*buf || (*e && *e != '\n'))
3065 		return -EINVAL;
3066 
3067 	if (mddev->pers)
3068 		rv = update_raid_disks(mddev, n);
3069 	else if (mddev->reshape_position != MaxSector) {
3070 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3071 		mddev->delta_disks = n - olddisks;
3072 		mddev->raid_disks = n;
3073 	} else
3074 		mddev->raid_disks = n;
3075 	return rv ? rv : len;
3076 }
3077 static struct md_sysfs_entry md_raid_disks =
3078 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3079 
3080 static ssize_t
3081 chunk_size_show(mddev_t *mddev, char *page)
3082 {
3083 	if (mddev->reshape_position != MaxSector &&
3084 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3085 		return sprintf(page, "%d (%d)\n",
3086 			       mddev->new_chunk_sectors << 9,
3087 			       mddev->chunk_sectors << 9);
3088 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3089 }
3090 
3091 static ssize_t
3092 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3093 {
3094 	char *e;
3095 	unsigned long n = simple_strtoul(buf, &e, 10);
3096 
3097 	if (!*buf || (*e && *e != '\n'))
3098 		return -EINVAL;
3099 
3100 	if (mddev->pers) {
3101 		int err;
3102 		if (mddev->pers->check_reshape == NULL)
3103 			return -EBUSY;
3104 		mddev->new_chunk_sectors = n >> 9;
3105 		err = mddev->pers->check_reshape(mddev);
3106 		if (err) {
3107 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3108 			return err;
3109 		}
3110 	} else {
3111 		mddev->new_chunk_sectors = n >> 9;
3112 		if (mddev->reshape_position == MaxSector)
3113 			mddev->chunk_sectors = n >> 9;
3114 	}
3115 	return len;
3116 }
3117 static struct md_sysfs_entry md_chunk_size =
3118 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3119 
3120 static ssize_t
3121 resync_start_show(mddev_t *mddev, char *page)
3122 {
3123 	if (mddev->recovery_cp == MaxSector)
3124 		return sprintf(page, "none\n");
3125 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3126 }
3127 
3128 static ssize_t
3129 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3130 {
3131 	char *e;
3132 	unsigned long long n = simple_strtoull(buf, &e, 10);
3133 
3134 	if (mddev->pers)
3135 		return -EBUSY;
3136 	if (cmd_match(buf, "none"))
3137 		n = MaxSector;
3138 	else if (!*buf || (*e && *e != '\n'))
3139 		return -EINVAL;
3140 
3141 	mddev->recovery_cp = n;
3142 	return len;
3143 }
3144 static struct md_sysfs_entry md_resync_start =
3145 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3146 
3147 /*
3148  * The array state can be:
3149  *
3150  * clear
3151  *     No devices, no size, no level
3152  *     Equivalent to STOP_ARRAY ioctl
3153  * inactive
3154  *     May have some settings, but array is not active
3155  *        all IO results in error
3156  *     When written, doesn't tear down array, but just stops it
3157  * suspended (not supported yet)
3158  *     All IO requests will block. The array can be reconfigured.
3159  *     Writing this, if accepted, will block until array is quiescent
3160  * readonly
3161  *     no resync can happen.  no superblocks get written.
3162  *     write requests fail
3163  * read-auto
3164  *     like readonly, but behaves like 'clean' on a write request.
3165  *
3166  * clean - no pending writes, but otherwise active.
3167  *     When written to inactive array, starts without resync
3168  *     If a write request arrives then
3169  *       if metadata is known, mark 'dirty' and switch to 'active'.
3170  *       if not known, block and switch to write-pending
3171  *     If written to an active array that has pending writes, then fails.
3172  * active
3173  *     fully active: IO and resync can be happening.
3174  *     When written to inactive array, starts with resync
3175  *
3176  * write-pending
3177  *     clean, but writes are blocked waiting for 'active' to be written.
3178  *
3179  * active-idle
3180  *     like active, but no writes have been seen for a while (100msec).
3181  *
3182  */
3183 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3184 		   write_pending, active_idle, bad_word};
3185 static char *array_states[] = {
3186 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3187 	"write-pending", "active-idle", NULL };
3188 
3189 static int match_word(const char *word, char **list)
3190 {
3191 	int n;
3192 	for (n=0; list[n]; n++)
3193 		if (cmd_match(word, list[n]))
3194 			break;
3195 	return n;
3196 }
3197 
3198 static ssize_t
3199 array_state_show(mddev_t *mddev, char *page)
3200 {
3201 	enum array_state st = inactive;
3202 
3203 	if (mddev->pers)
3204 		switch(mddev->ro) {
3205 		case 1:
3206 			st = readonly;
3207 			break;
3208 		case 2:
3209 			st = read_auto;
3210 			break;
3211 		case 0:
3212 			if (mddev->in_sync)
3213 				st = clean;
3214 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
3215 				st = write_pending;
3216 			else if (mddev->safemode)
3217 				st = active_idle;
3218 			else
3219 				st = active;
3220 		}
3221 	else {
3222 		if (list_empty(&mddev->disks) &&
3223 		    mddev->raid_disks == 0 &&
3224 		    mddev->dev_sectors == 0)
3225 			st = clear;
3226 		else
3227 			st = inactive;
3228 	}
3229 	return sprintf(page, "%s\n", array_states[st]);
3230 }
3231 
3232 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3233 static int do_md_run(mddev_t * mddev);
3234 static int restart_array(mddev_t *mddev);
3235 
3236 static ssize_t
3237 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3238 {
3239 	int err = -EINVAL;
3240 	enum array_state st = match_word(buf, array_states);
3241 	switch(st) {
3242 	case bad_word:
3243 		break;
3244 	case clear:
3245 		/* stopping an active array */
3246 		if (atomic_read(&mddev->openers) > 0)
3247 			return -EBUSY;
3248 		err = do_md_stop(mddev, 0, 0);
3249 		break;
3250 	case inactive:
3251 		/* stopping an active array */
3252 		if (mddev->pers) {
3253 			if (atomic_read(&mddev->openers) > 0)
3254 				return -EBUSY;
3255 			err = do_md_stop(mddev, 2, 0);
3256 		} else
3257 			err = 0; /* already inactive */
3258 		break;
3259 	case suspended:
3260 		break; /* not supported yet */
3261 	case readonly:
3262 		if (mddev->pers)
3263 			err = do_md_stop(mddev, 1, 0);
3264 		else {
3265 			mddev->ro = 1;
3266 			set_disk_ro(mddev->gendisk, 1);
3267 			err = do_md_run(mddev);
3268 		}
3269 		break;
3270 	case read_auto:
3271 		if (mddev->pers) {
3272 			if (mddev->ro == 0)
3273 				err = do_md_stop(mddev, 1, 0);
3274 			else if (mddev->ro == 1)
3275 				err = restart_array(mddev);
3276 			if (err == 0) {
3277 				mddev->ro = 2;
3278 				set_disk_ro(mddev->gendisk, 0);
3279 			}
3280 		} else {
3281 			mddev->ro = 2;
3282 			err = do_md_run(mddev);
3283 		}
3284 		break;
3285 	case clean:
3286 		if (mddev->pers) {
3287 			restart_array(mddev);
3288 			spin_lock_irq(&mddev->write_lock);
3289 			if (atomic_read(&mddev->writes_pending) == 0) {
3290 				if (mddev->in_sync == 0) {
3291 					mddev->in_sync = 1;
3292 					if (mddev->safemode == 1)
3293 						mddev->safemode = 0;
3294 					if (mddev->persistent)
3295 						set_bit(MD_CHANGE_CLEAN,
3296 							&mddev->flags);
3297 				}
3298 				err = 0;
3299 			} else
3300 				err = -EBUSY;
3301 			spin_unlock_irq(&mddev->write_lock);
3302 		} else
3303 			err = -EINVAL;
3304 		break;
3305 	case active:
3306 		if (mddev->pers) {
3307 			restart_array(mddev);
3308 			if (mddev->external)
3309 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3310 			wake_up(&mddev->sb_wait);
3311 			err = 0;
3312 		} else {
3313 			mddev->ro = 0;
3314 			set_disk_ro(mddev->gendisk, 0);
3315 			err = do_md_run(mddev);
3316 		}
3317 		break;
3318 	case write_pending:
3319 	case active_idle:
3320 		/* these cannot be set */
3321 		break;
3322 	}
3323 	if (err)
3324 		return err;
3325 	else {
3326 		sysfs_notify_dirent(mddev->sysfs_state);
3327 		return len;
3328 	}
3329 }
3330 static struct md_sysfs_entry md_array_state =
3331 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3332 
3333 static ssize_t
3334 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3335 	return sprintf(page, "%d\n",
3336 		       atomic_read(&mddev->max_corr_read_errors));
3337 }
3338 
3339 static ssize_t
3340 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3341 {
3342 	char *e;
3343 	unsigned long n = simple_strtoul(buf, &e, 10);
3344 
3345 	if (*buf && (*e == 0 || *e == '\n')) {
3346 		atomic_set(&mddev->max_corr_read_errors, n);
3347 		return len;
3348 	}
3349 	return -EINVAL;
3350 }
3351 
3352 static struct md_sysfs_entry max_corr_read_errors =
3353 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3354 	max_corrected_read_errors_store);
3355 
3356 static ssize_t
3357 null_show(mddev_t *mddev, char *page)
3358 {
3359 	return -EINVAL;
3360 }
3361 
3362 static ssize_t
3363 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3364 {
3365 	/* buf must be %d:%d\n? giving major and minor numbers */
3366 	/* The new device is added to the array.
3367 	 * If the array has a persistent superblock, we read the
3368 	 * superblock to initialise info and check validity.
3369 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3370 	 * which mainly checks size.
3371 	 */
3372 	char *e;
3373 	int major = simple_strtoul(buf, &e, 10);
3374 	int minor;
3375 	dev_t dev;
3376 	mdk_rdev_t *rdev;
3377 	int err;
3378 
3379 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3380 		return -EINVAL;
3381 	minor = simple_strtoul(e+1, &e, 10);
3382 	if (*e && *e != '\n')
3383 		return -EINVAL;
3384 	dev = MKDEV(major, minor);
3385 	if (major != MAJOR(dev) ||
3386 	    minor != MINOR(dev))
3387 		return -EOVERFLOW;
3388 
3389 
3390 	if (mddev->persistent) {
3391 		rdev = md_import_device(dev, mddev->major_version,
3392 					mddev->minor_version);
3393 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3394 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3395 						       mdk_rdev_t, same_set);
3396 			err = super_types[mddev->major_version]
3397 				.load_super(rdev, rdev0, mddev->minor_version);
3398 			if (err < 0)
3399 				goto out;
3400 		}
3401 	} else if (mddev->external)
3402 		rdev = md_import_device(dev, -2, -1);
3403 	else
3404 		rdev = md_import_device(dev, -1, -1);
3405 
3406 	if (IS_ERR(rdev))
3407 		return PTR_ERR(rdev);
3408 	err = bind_rdev_to_array(rdev, mddev);
3409  out:
3410 	if (err)
3411 		export_rdev(rdev);
3412 	return err ? err : len;
3413 }
3414 
3415 static struct md_sysfs_entry md_new_device =
3416 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3417 
3418 static ssize_t
3419 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3420 {
3421 	char *end;
3422 	unsigned long chunk, end_chunk;
3423 
3424 	if (!mddev->bitmap)
3425 		goto out;
3426 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3427 	while (*buf) {
3428 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3429 		if (buf == end) break;
3430 		if (*end == '-') { /* range */
3431 			buf = end + 1;
3432 			end_chunk = simple_strtoul(buf, &end, 0);
3433 			if (buf == end) break;
3434 		}
3435 		if (*end && !isspace(*end)) break;
3436 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3437 		buf = skip_spaces(end);
3438 	}
3439 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3440 out:
3441 	return len;
3442 }
3443 
3444 static struct md_sysfs_entry md_bitmap =
3445 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3446 
3447 static ssize_t
3448 size_show(mddev_t *mddev, char *page)
3449 {
3450 	return sprintf(page, "%llu\n",
3451 		(unsigned long long)mddev->dev_sectors / 2);
3452 }
3453 
3454 static int update_size(mddev_t *mddev, sector_t num_sectors);
3455 
3456 static ssize_t
3457 size_store(mddev_t *mddev, const char *buf, size_t len)
3458 {
3459 	/* If array is inactive, we can reduce the component size, but
3460 	 * not increase it (except from 0).
3461 	 * If array is active, we can try an on-line resize
3462 	 */
3463 	sector_t sectors;
3464 	int err = strict_blocks_to_sectors(buf, &sectors);
3465 
3466 	if (err < 0)
3467 		return err;
3468 	if (mddev->pers) {
3469 		err = update_size(mddev, sectors);
3470 		md_update_sb(mddev, 1);
3471 	} else {
3472 		if (mddev->dev_sectors == 0 ||
3473 		    mddev->dev_sectors > sectors)
3474 			mddev->dev_sectors = sectors;
3475 		else
3476 			err = -ENOSPC;
3477 	}
3478 	return err ? err : len;
3479 }
3480 
3481 static struct md_sysfs_entry md_size =
3482 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3483 
3484 
3485 /* Metdata version.
3486  * This is one of
3487  *   'none' for arrays with no metadata (good luck...)
3488  *   'external' for arrays with externally managed metadata,
3489  * or N.M for internally known formats
3490  */
3491 static ssize_t
3492 metadata_show(mddev_t *mddev, char *page)
3493 {
3494 	if (mddev->persistent)
3495 		return sprintf(page, "%d.%d\n",
3496 			       mddev->major_version, mddev->minor_version);
3497 	else if (mddev->external)
3498 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3499 	else
3500 		return sprintf(page, "none\n");
3501 }
3502 
3503 static ssize_t
3504 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3505 {
3506 	int major, minor;
3507 	char *e;
3508 	/* Changing the details of 'external' metadata is
3509 	 * always permitted.  Otherwise there must be
3510 	 * no devices attached to the array.
3511 	 */
3512 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3513 		;
3514 	else if (!list_empty(&mddev->disks))
3515 		return -EBUSY;
3516 
3517 	if (cmd_match(buf, "none")) {
3518 		mddev->persistent = 0;
3519 		mddev->external = 0;
3520 		mddev->major_version = 0;
3521 		mddev->minor_version = 90;
3522 		return len;
3523 	}
3524 	if (strncmp(buf, "external:", 9) == 0) {
3525 		size_t namelen = len-9;
3526 		if (namelen >= sizeof(mddev->metadata_type))
3527 			namelen = sizeof(mddev->metadata_type)-1;
3528 		strncpy(mddev->metadata_type, buf+9, namelen);
3529 		mddev->metadata_type[namelen] = 0;
3530 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3531 			mddev->metadata_type[--namelen] = 0;
3532 		mddev->persistent = 0;
3533 		mddev->external = 1;
3534 		mddev->major_version = 0;
3535 		mddev->minor_version = 90;
3536 		return len;
3537 	}
3538 	major = simple_strtoul(buf, &e, 10);
3539 	if (e==buf || *e != '.')
3540 		return -EINVAL;
3541 	buf = e+1;
3542 	minor = simple_strtoul(buf, &e, 10);
3543 	if (e==buf || (*e && *e != '\n') )
3544 		return -EINVAL;
3545 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3546 		return -ENOENT;
3547 	mddev->major_version = major;
3548 	mddev->minor_version = minor;
3549 	mddev->persistent = 1;
3550 	mddev->external = 0;
3551 	return len;
3552 }
3553 
3554 static struct md_sysfs_entry md_metadata =
3555 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3556 
3557 static ssize_t
3558 action_show(mddev_t *mddev, char *page)
3559 {
3560 	char *type = "idle";
3561 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3562 		type = "frozen";
3563 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3564 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3565 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3566 			type = "reshape";
3567 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3568 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3569 				type = "resync";
3570 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3571 				type = "check";
3572 			else
3573 				type = "repair";
3574 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3575 			type = "recover";
3576 	}
3577 	return sprintf(page, "%s\n", type);
3578 }
3579 
3580 static ssize_t
3581 action_store(mddev_t *mddev, const char *page, size_t len)
3582 {
3583 	if (!mddev->pers || !mddev->pers->sync_request)
3584 		return -EINVAL;
3585 
3586 	if (cmd_match(page, "frozen"))
3587 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3588 	else
3589 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3590 
3591 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3592 		if (mddev->sync_thread) {
3593 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3594 			md_unregister_thread(mddev->sync_thread);
3595 			mddev->sync_thread = NULL;
3596 			mddev->recovery = 0;
3597 		}
3598 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3599 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3600 		return -EBUSY;
3601 	else if (cmd_match(page, "resync"))
3602 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3603 	else if (cmd_match(page, "recover")) {
3604 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3605 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3606 	} else if (cmd_match(page, "reshape")) {
3607 		int err;
3608 		if (mddev->pers->start_reshape == NULL)
3609 			return -EINVAL;
3610 		err = mddev->pers->start_reshape(mddev);
3611 		if (err)
3612 			return err;
3613 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3614 	} else {
3615 		if (cmd_match(page, "check"))
3616 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3617 		else if (!cmd_match(page, "repair"))
3618 			return -EINVAL;
3619 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3620 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3621 	}
3622 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3623 	md_wakeup_thread(mddev->thread);
3624 	sysfs_notify_dirent(mddev->sysfs_action);
3625 	return len;
3626 }
3627 
3628 static ssize_t
3629 mismatch_cnt_show(mddev_t *mddev, char *page)
3630 {
3631 	return sprintf(page, "%llu\n",
3632 		       (unsigned long long) mddev->resync_mismatches);
3633 }
3634 
3635 static struct md_sysfs_entry md_scan_mode =
3636 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3637 
3638 
3639 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3640 
3641 static ssize_t
3642 sync_min_show(mddev_t *mddev, char *page)
3643 {
3644 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3645 		       mddev->sync_speed_min ? "local": "system");
3646 }
3647 
3648 static ssize_t
3649 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3650 {
3651 	int min;
3652 	char *e;
3653 	if (strncmp(buf, "system", 6)==0) {
3654 		mddev->sync_speed_min = 0;
3655 		return len;
3656 	}
3657 	min = simple_strtoul(buf, &e, 10);
3658 	if (buf == e || (*e && *e != '\n') || min <= 0)
3659 		return -EINVAL;
3660 	mddev->sync_speed_min = min;
3661 	return len;
3662 }
3663 
3664 static struct md_sysfs_entry md_sync_min =
3665 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3666 
3667 static ssize_t
3668 sync_max_show(mddev_t *mddev, char *page)
3669 {
3670 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3671 		       mddev->sync_speed_max ? "local": "system");
3672 }
3673 
3674 static ssize_t
3675 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3676 {
3677 	int max;
3678 	char *e;
3679 	if (strncmp(buf, "system", 6)==0) {
3680 		mddev->sync_speed_max = 0;
3681 		return len;
3682 	}
3683 	max = simple_strtoul(buf, &e, 10);
3684 	if (buf == e || (*e && *e != '\n') || max <= 0)
3685 		return -EINVAL;
3686 	mddev->sync_speed_max = max;
3687 	return len;
3688 }
3689 
3690 static struct md_sysfs_entry md_sync_max =
3691 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3692 
3693 static ssize_t
3694 degraded_show(mddev_t *mddev, char *page)
3695 {
3696 	return sprintf(page, "%d\n", mddev->degraded);
3697 }
3698 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3699 
3700 static ssize_t
3701 sync_force_parallel_show(mddev_t *mddev, char *page)
3702 {
3703 	return sprintf(page, "%d\n", mddev->parallel_resync);
3704 }
3705 
3706 static ssize_t
3707 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3708 {
3709 	long n;
3710 
3711 	if (strict_strtol(buf, 10, &n))
3712 		return -EINVAL;
3713 
3714 	if (n != 0 && n != 1)
3715 		return -EINVAL;
3716 
3717 	mddev->parallel_resync = n;
3718 
3719 	if (mddev->sync_thread)
3720 		wake_up(&resync_wait);
3721 
3722 	return len;
3723 }
3724 
3725 /* force parallel resync, even with shared block devices */
3726 static struct md_sysfs_entry md_sync_force_parallel =
3727 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3728        sync_force_parallel_show, sync_force_parallel_store);
3729 
3730 static ssize_t
3731 sync_speed_show(mddev_t *mddev, char *page)
3732 {
3733 	unsigned long resync, dt, db;
3734 	if (mddev->curr_resync == 0)
3735 		return sprintf(page, "none\n");
3736 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3737 	dt = (jiffies - mddev->resync_mark) / HZ;
3738 	if (!dt) dt++;
3739 	db = resync - mddev->resync_mark_cnt;
3740 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3741 }
3742 
3743 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3744 
3745 static ssize_t
3746 sync_completed_show(mddev_t *mddev, char *page)
3747 {
3748 	unsigned long max_sectors, resync;
3749 
3750 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3751 		return sprintf(page, "none\n");
3752 
3753 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3754 		max_sectors = mddev->resync_max_sectors;
3755 	else
3756 		max_sectors = mddev->dev_sectors;
3757 
3758 	resync = mddev->curr_resync_completed;
3759 	return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3760 }
3761 
3762 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3763 
3764 static ssize_t
3765 min_sync_show(mddev_t *mddev, char *page)
3766 {
3767 	return sprintf(page, "%llu\n",
3768 		       (unsigned long long)mddev->resync_min);
3769 }
3770 static ssize_t
3771 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3772 {
3773 	unsigned long long min;
3774 	if (strict_strtoull(buf, 10, &min))
3775 		return -EINVAL;
3776 	if (min > mddev->resync_max)
3777 		return -EINVAL;
3778 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3779 		return -EBUSY;
3780 
3781 	/* Must be a multiple of chunk_size */
3782 	if (mddev->chunk_sectors) {
3783 		sector_t temp = min;
3784 		if (sector_div(temp, mddev->chunk_sectors))
3785 			return -EINVAL;
3786 	}
3787 	mddev->resync_min = min;
3788 
3789 	return len;
3790 }
3791 
3792 static struct md_sysfs_entry md_min_sync =
3793 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3794 
3795 static ssize_t
3796 max_sync_show(mddev_t *mddev, char *page)
3797 {
3798 	if (mddev->resync_max == MaxSector)
3799 		return sprintf(page, "max\n");
3800 	else
3801 		return sprintf(page, "%llu\n",
3802 			       (unsigned long long)mddev->resync_max);
3803 }
3804 static ssize_t
3805 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3806 {
3807 	if (strncmp(buf, "max", 3) == 0)
3808 		mddev->resync_max = MaxSector;
3809 	else {
3810 		unsigned long long max;
3811 		if (strict_strtoull(buf, 10, &max))
3812 			return -EINVAL;
3813 		if (max < mddev->resync_min)
3814 			return -EINVAL;
3815 		if (max < mddev->resync_max &&
3816 		    mddev->ro == 0 &&
3817 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3818 			return -EBUSY;
3819 
3820 		/* Must be a multiple of chunk_size */
3821 		if (mddev->chunk_sectors) {
3822 			sector_t temp = max;
3823 			if (sector_div(temp, mddev->chunk_sectors))
3824 				return -EINVAL;
3825 		}
3826 		mddev->resync_max = max;
3827 	}
3828 	wake_up(&mddev->recovery_wait);
3829 	return len;
3830 }
3831 
3832 static struct md_sysfs_entry md_max_sync =
3833 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3834 
3835 static ssize_t
3836 suspend_lo_show(mddev_t *mddev, char *page)
3837 {
3838 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3839 }
3840 
3841 static ssize_t
3842 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3843 {
3844 	char *e;
3845 	unsigned long long new = simple_strtoull(buf, &e, 10);
3846 
3847 	if (mddev->pers == NULL ||
3848 	    mddev->pers->quiesce == NULL)
3849 		return -EINVAL;
3850 	if (buf == e || (*e && *e != '\n'))
3851 		return -EINVAL;
3852 	if (new >= mddev->suspend_hi ||
3853 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3854 		mddev->suspend_lo = new;
3855 		mddev->pers->quiesce(mddev, 2);
3856 		return len;
3857 	} else
3858 		return -EINVAL;
3859 }
3860 static struct md_sysfs_entry md_suspend_lo =
3861 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3862 
3863 
3864 static ssize_t
3865 suspend_hi_show(mddev_t *mddev, char *page)
3866 {
3867 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3868 }
3869 
3870 static ssize_t
3871 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3872 {
3873 	char *e;
3874 	unsigned long long new = simple_strtoull(buf, &e, 10);
3875 
3876 	if (mddev->pers == NULL ||
3877 	    mddev->pers->quiesce == NULL)
3878 		return -EINVAL;
3879 	if (buf == e || (*e && *e != '\n'))
3880 		return -EINVAL;
3881 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3882 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3883 		mddev->suspend_hi = new;
3884 		mddev->pers->quiesce(mddev, 1);
3885 		mddev->pers->quiesce(mddev, 0);
3886 		return len;
3887 	} else
3888 		return -EINVAL;
3889 }
3890 static struct md_sysfs_entry md_suspend_hi =
3891 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3892 
3893 static ssize_t
3894 reshape_position_show(mddev_t *mddev, char *page)
3895 {
3896 	if (mddev->reshape_position != MaxSector)
3897 		return sprintf(page, "%llu\n",
3898 			       (unsigned long long)mddev->reshape_position);
3899 	strcpy(page, "none\n");
3900 	return 5;
3901 }
3902 
3903 static ssize_t
3904 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3905 {
3906 	char *e;
3907 	unsigned long long new = simple_strtoull(buf, &e, 10);
3908 	if (mddev->pers)
3909 		return -EBUSY;
3910 	if (buf == e || (*e && *e != '\n'))
3911 		return -EINVAL;
3912 	mddev->reshape_position = new;
3913 	mddev->delta_disks = 0;
3914 	mddev->new_level = mddev->level;
3915 	mddev->new_layout = mddev->layout;
3916 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3917 	return len;
3918 }
3919 
3920 static struct md_sysfs_entry md_reshape_position =
3921 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3922        reshape_position_store);
3923 
3924 static ssize_t
3925 array_size_show(mddev_t *mddev, char *page)
3926 {
3927 	if (mddev->external_size)
3928 		return sprintf(page, "%llu\n",
3929 			       (unsigned long long)mddev->array_sectors/2);
3930 	else
3931 		return sprintf(page, "default\n");
3932 }
3933 
3934 static ssize_t
3935 array_size_store(mddev_t *mddev, const char *buf, size_t len)
3936 {
3937 	sector_t sectors;
3938 
3939 	if (strncmp(buf, "default", 7) == 0) {
3940 		if (mddev->pers)
3941 			sectors = mddev->pers->size(mddev, 0, 0);
3942 		else
3943 			sectors = mddev->array_sectors;
3944 
3945 		mddev->external_size = 0;
3946 	} else {
3947 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
3948 			return -EINVAL;
3949 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
3950 			return -E2BIG;
3951 
3952 		mddev->external_size = 1;
3953 	}
3954 
3955 	mddev->array_sectors = sectors;
3956 	set_capacity(mddev->gendisk, mddev->array_sectors);
3957 	if (mddev->pers)
3958 		revalidate_disk(mddev->gendisk);
3959 
3960 	return len;
3961 }
3962 
3963 static struct md_sysfs_entry md_array_size =
3964 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
3965        array_size_store);
3966 
3967 static struct attribute *md_default_attrs[] = {
3968 	&md_level.attr,
3969 	&md_layout.attr,
3970 	&md_raid_disks.attr,
3971 	&md_chunk_size.attr,
3972 	&md_size.attr,
3973 	&md_resync_start.attr,
3974 	&md_metadata.attr,
3975 	&md_new_device.attr,
3976 	&md_safe_delay.attr,
3977 	&md_array_state.attr,
3978 	&md_reshape_position.attr,
3979 	&md_array_size.attr,
3980 	&max_corr_read_errors.attr,
3981 	NULL,
3982 };
3983 
3984 static struct attribute *md_redundancy_attrs[] = {
3985 	&md_scan_mode.attr,
3986 	&md_mismatches.attr,
3987 	&md_sync_min.attr,
3988 	&md_sync_max.attr,
3989 	&md_sync_speed.attr,
3990 	&md_sync_force_parallel.attr,
3991 	&md_sync_completed.attr,
3992 	&md_min_sync.attr,
3993 	&md_max_sync.attr,
3994 	&md_suspend_lo.attr,
3995 	&md_suspend_hi.attr,
3996 	&md_bitmap.attr,
3997 	&md_degraded.attr,
3998 	NULL,
3999 };
4000 static struct attribute_group md_redundancy_group = {
4001 	.name = NULL,
4002 	.attrs = md_redundancy_attrs,
4003 };
4004 
4005 
4006 static ssize_t
4007 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4008 {
4009 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4010 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4011 	ssize_t rv;
4012 
4013 	if (!entry->show)
4014 		return -EIO;
4015 	rv = mddev_lock(mddev);
4016 	if (!rv) {
4017 		rv = entry->show(mddev, page);
4018 		mddev_unlock(mddev);
4019 	}
4020 	return rv;
4021 }
4022 
4023 static ssize_t
4024 md_attr_store(struct kobject *kobj, struct attribute *attr,
4025 	      const char *page, size_t length)
4026 {
4027 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4028 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4029 	ssize_t rv;
4030 
4031 	if (!entry->store)
4032 		return -EIO;
4033 	if (!capable(CAP_SYS_ADMIN))
4034 		return -EACCES;
4035 	rv = mddev_lock(mddev);
4036 	if (mddev->hold_active == UNTIL_IOCTL)
4037 		mddev->hold_active = 0;
4038 	if (!rv) {
4039 		rv = entry->store(mddev, page, length);
4040 		mddev_unlock(mddev);
4041 	}
4042 	return rv;
4043 }
4044 
4045 static void md_free(struct kobject *ko)
4046 {
4047 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
4048 
4049 	if (mddev->sysfs_state)
4050 		sysfs_put(mddev->sysfs_state);
4051 
4052 	if (mddev->gendisk) {
4053 		del_gendisk(mddev->gendisk);
4054 		put_disk(mddev->gendisk);
4055 	}
4056 	if (mddev->queue)
4057 		blk_cleanup_queue(mddev->queue);
4058 
4059 	kfree(mddev);
4060 }
4061 
4062 static struct sysfs_ops md_sysfs_ops = {
4063 	.show	= md_attr_show,
4064 	.store	= md_attr_store,
4065 };
4066 static struct kobj_type md_ktype = {
4067 	.release	= md_free,
4068 	.sysfs_ops	= &md_sysfs_ops,
4069 	.default_attrs	= md_default_attrs,
4070 };
4071 
4072 int mdp_major = 0;
4073 
4074 static void mddev_delayed_delete(struct work_struct *ws)
4075 {
4076 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
4077 
4078 	if (mddev->private) {
4079 		sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
4080 		if (mddev->private != (void*)1)
4081 			sysfs_remove_group(&mddev->kobj, mddev->private);
4082 		if (mddev->sysfs_action)
4083 			sysfs_put(mddev->sysfs_action);
4084 		mddev->sysfs_action = NULL;
4085 		mddev->private = NULL;
4086 	}
4087 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4088 	kobject_del(&mddev->kobj);
4089 	kobject_put(&mddev->kobj);
4090 }
4091 
4092 static int md_alloc(dev_t dev, char *name)
4093 {
4094 	static DEFINE_MUTEX(disks_mutex);
4095 	mddev_t *mddev = mddev_find(dev);
4096 	struct gendisk *disk;
4097 	int partitioned;
4098 	int shift;
4099 	int unit;
4100 	int error;
4101 
4102 	if (!mddev)
4103 		return -ENODEV;
4104 
4105 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4106 	shift = partitioned ? MdpMinorShift : 0;
4107 	unit = MINOR(mddev->unit) >> shift;
4108 
4109 	/* wait for any previous instance if this device
4110 	 * to be completed removed (mddev_delayed_delete).
4111 	 */
4112 	flush_scheduled_work();
4113 
4114 	mutex_lock(&disks_mutex);
4115 	error = -EEXIST;
4116 	if (mddev->gendisk)
4117 		goto abort;
4118 
4119 	if (name) {
4120 		/* Need to ensure that 'name' is not a duplicate.
4121 		 */
4122 		mddev_t *mddev2;
4123 		spin_lock(&all_mddevs_lock);
4124 
4125 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4126 			if (mddev2->gendisk &&
4127 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4128 				spin_unlock(&all_mddevs_lock);
4129 				goto abort;
4130 			}
4131 		spin_unlock(&all_mddevs_lock);
4132 	}
4133 
4134 	error = -ENOMEM;
4135 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4136 	if (!mddev->queue)
4137 		goto abort;
4138 	mddev->queue->queuedata = mddev;
4139 
4140 	/* Can be unlocked because the queue is new: no concurrency */
4141 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4142 
4143 	blk_queue_make_request(mddev->queue, md_make_request);
4144 
4145 	disk = alloc_disk(1 << shift);
4146 	if (!disk) {
4147 		blk_cleanup_queue(mddev->queue);
4148 		mddev->queue = NULL;
4149 		goto abort;
4150 	}
4151 	disk->major = MAJOR(mddev->unit);
4152 	disk->first_minor = unit << shift;
4153 	if (name)
4154 		strcpy(disk->disk_name, name);
4155 	else if (partitioned)
4156 		sprintf(disk->disk_name, "md_d%d", unit);
4157 	else
4158 		sprintf(disk->disk_name, "md%d", unit);
4159 	disk->fops = &md_fops;
4160 	disk->private_data = mddev;
4161 	disk->queue = mddev->queue;
4162 	/* Allow extended partitions.  This makes the
4163 	 * 'mdp' device redundant, but we can't really
4164 	 * remove it now.
4165 	 */
4166 	disk->flags |= GENHD_FL_EXT_DEVT;
4167 	add_disk(disk);
4168 	mddev->gendisk = disk;
4169 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4170 				     &disk_to_dev(disk)->kobj, "%s", "md");
4171 	if (error) {
4172 		/* This isn't possible, but as kobject_init_and_add is marked
4173 		 * __must_check, we must do something with the result
4174 		 */
4175 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4176 		       disk->disk_name);
4177 		error = 0;
4178 	}
4179 	if (sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4180 		printk(KERN_DEBUG "pointless warning\n");
4181  abort:
4182 	mutex_unlock(&disks_mutex);
4183 	if (!error) {
4184 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4185 		mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
4186 	}
4187 	mddev_put(mddev);
4188 	return error;
4189 }
4190 
4191 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4192 {
4193 	md_alloc(dev, NULL);
4194 	return NULL;
4195 }
4196 
4197 static int add_named_array(const char *val, struct kernel_param *kp)
4198 {
4199 	/* val must be "md_*" where * is not all digits.
4200 	 * We allocate an array with a large free minor number, and
4201 	 * set the name to val.  val must not already be an active name.
4202 	 */
4203 	int len = strlen(val);
4204 	char buf[DISK_NAME_LEN];
4205 
4206 	while (len && val[len-1] == '\n')
4207 		len--;
4208 	if (len >= DISK_NAME_LEN)
4209 		return -E2BIG;
4210 	strlcpy(buf, val, len+1);
4211 	if (strncmp(buf, "md_", 3) != 0)
4212 		return -EINVAL;
4213 	return md_alloc(0, buf);
4214 }
4215 
4216 static void md_safemode_timeout(unsigned long data)
4217 {
4218 	mddev_t *mddev = (mddev_t *) data;
4219 
4220 	if (!atomic_read(&mddev->writes_pending)) {
4221 		mddev->safemode = 1;
4222 		if (mddev->external)
4223 			sysfs_notify_dirent(mddev->sysfs_state);
4224 	}
4225 	md_wakeup_thread(mddev->thread);
4226 }
4227 
4228 static int start_dirty_degraded;
4229 
4230 static int do_md_run(mddev_t * mddev)
4231 {
4232 	int err;
4233 	mdk_rdev_t *rdev;
4234 	struct gendisk *disk;
4235 	struct mdk_personality *pers;
4236 
4237 	if (list_empty(&mddev->disks))
4238 		/* cannot run an array with no devices.. */
4239 		return -EINVAL;
4240 
4241 	if (mddev->pers)
4242 		return -EBUSY;
4243 
4244 	/*
4245 	 * Analyze all RAID superblock(s)
4246 	 */
4247 	if (!mddev->raid_disks) {
4248 		if (!mddev->persistent)
4249 			return -EINVAL;
4250 		analyze_sbs(mddev);
4251 	}
4252 
4253 	if (mddev->level != LEVEL_NONE)
4254 		request_module("md-level-%d", mddev->level);
4255 	else if (mddev->clevel[0])
4256 		request_module("md-%s", mddev->clevel);
4257 
4258 	/*
4259 	 * Drop all container device buffers, from now on
4260 	 * the only valid external interface is through the md
4261 	 * device.
4262 	 */
4263 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4264 		if (test_bit(Faulty, &rdev->flags))
4265 			continue;
4266 		sync_blockdev(rdev->bdev);
4267 		invalidate_bdev(rdev->bdev);
4268 
4269 		/* perform some consistency tests on the device.
4270 		 * We don't want the data to overlap the metadata,
4271 		 * Internal Bitmap issues have been handled elsewhere.
4272 		 */
4273 		if (rdev->data_offset < rdev->sb_start) {
4274 			if (mddev->dev_sectors &&
4275 			    rdev->data_offset + mddev->dev_sectors
4276 			    > rdev->sb_start) {
4277 				printk("md: %s: data overlaps metadata\n",
4278 				       mdname(mddev));
4279 				return -EINVAL;
4280 			}
4281 		} else {
4282 			if (rdev->sb_start + rdev->sb_size/512
4283 			    > rdev->data_offset) {
4284 				printk("md: %s: metadata overlaps data\n",
4285 				       mdname(mddev));
4286 				return -EINVAL;
4287 			}
4288 		}
4289 		sysfs_notify_dirent(rdev->sysfs_state);
4290 	}
4291 
4292 	disk = mddev->gendisk;
4293 
4294 	spin_lock(&pers_lock);
4295 	pers = find_pers(mddev->level, mddev->clevel);
4296 	if (!pers || !try_module_get(pers->owner)) {
4297 		spin_unlock(&pers_lock);
4298 		if (mddev->level != LEVEL_NONE)
4299 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4300 			       mddev->level);
4301 		else
4302 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4303 			       mddev->clevel);
4304 		return -EINVAL;
4305 	}
4306 	mddev->pers = pers;
4307 	spin_unlock(&pers_lock);
4308 	if (mddev->level != pers->level) {
4309 		mddev->level = pers->level;
4310 		mddev->new_level = pers->level;
4311 	}
4312 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4313 
4314 	if (mddev->reshape_position != MaxSector &&
4315 	    pers->start_reshape == NULL) {
4316 		/* This personality cannot handle reshaping... */
4317 		mddev->pers = NULL;
4318 		module_put(pers->owner);
4319 		return -EINVAL;
4320 	}
4321 
4322 	if (pers->sync_request) {
4323 		/* Warn if this is a potentially silly
4324 		 * configuration.
4325 		 */
4326 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4327 		mdk_rdev_t *rdev2;
4328 		int warned = 0;
4329 
4330 		list_for_each_entry(rdev, &mddev->disks, same_set)
4331 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4332 				if (rdev < rdev2 &&
4333 				    rdev->bdev->bd_contains ==
4334 				    rdev2->bdev->bd_contains) {
4335 					printk(KERN_WARNING
4336 					       "%s: WARNING: %s appears to be"
4337 					       " on the same physical disk as"
4338 					       " %s.\n",
4339 					       mdname(mddev),
4340 					       bdevname(rdev->bdev,b),
4341 					       bdevname(rdev2->bdev,b2));
4342 					warned = 1;
4343 				}
4344 			}
4345 
4346 		if (warned)
4347 			printk(KERN_WARNING
4348 			       "True protection against single-disk"
4349 			       " failure might be compromised.\n");
4350 	}
4351 
4352 	mddev->recovery = 0;
4353 	/* may be over-ridden by personality */
4354 	mddev->resync_max_sectors = mddev->dev_sectors;
4355 
4356 	mddev->barriers_work = 1;
4357 	mddev->ok_start_degraded = start_dirty_degraded;
4358 
4359 	if (start_readonly && mddev->ro == 0)
4360 		mddev->ro = 2; /* read-only, but switch on first write */
4361 
4362 	err = mddev->pers->run(mddev);
4363 	if (err)
4364 		printk(KERN_ERR "md: pers->run() failed ...\n");
4365 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4366 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4367 			  " but 'external_size' not in effect?\n", __func__);
4368 		printk(KERN_ERR
4369 		       "md: invalid array_size %llu > default size %llu\n",
4370 		       (unsigned long long)mddev->array_sectors / 2,
4371 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4372 		err = -EINVAL;
4373 		mddev->pers->stop(mddev);
4374 	}
4375 	if (err == 0 && mddev->pers->sync_request) {
4376 		err = bitmap_create(mddev);
4377 		if (err) {
4378 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4379 			       mdname(mddev), err);
4380 			mddev->pers->stop(mddev);
4381 		}
4382 	}
4383 	if (err) {
4384 		module_put(mddev->pers->owner);
4385 		mddev->pers = NULL;
4386 		bitmap_destroy(mddev);
4387 		return err;
4388 	}
4389 	if (mddev->pers->sync_request) {
4390 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4391 			printk(KERN_WARNING
4392 			       "md: cannot register extra attributes for %s\n",
4393 			       mdname(mddev));
4394 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4395 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4396 		mddev->ro = 0;
4397 
4398  	atomic_set(&mddev->writes_pending,0);
4399 	atomic_set(&mddev->max_corr_read_errors,
4400 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4401 	mddev->safemode = 0;
4402 	mddev->safemode_timer.function = md_safemode_timeout;
4403 	mddev->safemode_timer.data = (unsigned long) mddev;
4404 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4405 	mddev->in_sync = 1;
4406 
4407 	list_for_each_entry(rdev, &mddev->disks, same_set)
4408 		if (rdev->raid_disk >= 0) {
4409 			char nm[20];
4410 			sprintf(nm, "rd%d", rdev->raid_disk);
4411 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4412 				printk("md: cannot register %s for %s\n",
4413 				       nm, mdname(mddev));
4414 		}
4415 
4416 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4417 
4418 	if (mddev->flags)
4419 		md_update_sb(mddev, 0);
4420 
4421 	set_capacity(disk, mddev->array_sectors);
4422 
4423 	md_wakeup_thread(mddev->thread);
4424 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4425 
4426 	revalidate_disk(mddev->gendisk);
4427 	mddev->changed = 1;
4428 	md_new_event(mddev);
4429 	sysfs_notify_dirent(mddev->sysfs_state);
4430 	if (mddev->sysfs_action)
4431 		sysfs_notify_dirent(mddev->sysfs_action);
4432 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4433 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4434 	return 0;
4435 }
4436 
4437 static int restart_array(mddev_t *mddev)
4438 {
4439 	struct gendisk *disk = mddev->gendisk;
4440 
4441 	/* Complain if it has no devices */
4442 	if (list_empty(&mddev->disks))
4443 		return -ENXIO;
4444 	if (!mddev->pers)
4445 		return -EINVAL;
4446 	if (!mddev->ro)
4447 		return -EBUSY;
4448 	mddev->safemode = 0;
4449 	mddev->ro = 0;
4450 	set_disk_ro(disk, 0);
4451 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4452 		mdname(mddev));
4453 	/* Kick recovery or resync if necessary */
4454 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4455 	md_wakeup_thread(mddev->thread);
4456 	md_wakeup_thread(mddev->sync_thread);
4457 	sysfs_notify_dirent(mddev->sysfs_state);
4458 	return 0;
4459 }
4460 
4461 /* similar to deny_write_access, but accounts for our holding a reference
4462  * to the file ourselves */
4463 static int deny_bitmap_write_access(struct file * file)
4464 {
4465 	struct inode *inode = file->f_mapping->host;
4466 
4467 	spin_lock(&inode->i_lock);
4468 	if (atomic_read(&inode->i_writecount) > 1) {
4469 		spin_unlock(&inode->i_lock);
4470 		return -ETXTBSY;
4471 	}
4472 	atomic_set(&inode->i_writecount, -1);
4473 	spin_unlock(&inode->i_lock);
4474 
4475 	return 0;
4476 }
4477 
4478 void restore_bitmap_write_access(struct file *file)
4479 {
4480 	struct inode *inode = file->f_mapping->host;
4481 
4482 	spin_lock(&inode->i_lock);
4483 	atomic_set(&inode->i_writecount, 1);
4484 	spin_unlock(&inode->i_lock);
4485 }
4486 
4487 /* mode:
4488  *   0 - completely stop and dis-assemble array
4489  *   1 - switch to readonly
4490  *   2 - stop but do not disassemble array
4491  */
4492 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4493 {
4494 	int err = 0;
4495 	struct gendisk *disk = mddev->gendisk;
4496 	mdk_rdev_t *rdev;
4497 
4498 	mutex_lock(&mddev->open_mutex);
4499 	if (atomic_read(&mddev->openers) > is_open) {
4500 		printk("md: %s still in use.\n",mdname(mddev));
4501 		err = -EBUSY;
4502 	} else if (mddev->pers) {
4503 
4504 		if (mddev->sync_thread) {
4505 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4506 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4507 			md_unregister_thread(mddev->sync_thread);
4508 			mddev->sync_thread = NULL;
4509 		}
4510 
4511 		del_timer_sync(&mddev->safemode_timer);
4512 
4513 		switch(mode) {
4514 		case 1: /* readonly */
4515 			err  = -ENXIO;
4516 			if (mddev->ro==1)
4517 				goto out;
4518 			mddev->ro = 1;
4519 			break;
4520 		case 0: /* disassemble */
4521 		case 2: /* stop */
4522 			bitmap_flush(mddev);
4523 			md_super_wait(mddev);
4524 			if (mddev->ro)
4525 				set_disk_ro(disk, 0);
4526 
4527 			mddev->pers->stop(mddev);
4528 			mddev->queue->merge_bvec_fn = NULL;
4529 			mddev->queue->unplug_fn = NULL;
4530 			mddev->queue->backing_dev_info.congested_fn = NULL;
4531 			module_put(mddev->pers->owner);
4532 			if (mddev->pers->sync_request && mddev->private == NULL)
4533 				mddev->private = (void*)1;
4534 			mddev->pers = NULL;
4535 			/* tell userspace to handle 'inactive' */
4536 			sysfs_notify_dirent(mddev->sysfs_state);
4537 
4538 			list_for_each_entry(rdev, &mddev->disks, same_set)
4539 				if (rdev->raid_disk >= 0) {
4540 					char nm[20];
4541 					sprintf(nm, "rd%d", rdev->raid_disk);
4542 					sysfs_remove_link(&mddev->kobj, nm);
4543 				}
4544 
4545 			set_capacity(disk, 0);
4546 			mddev->changed = 1;
4547 
4548 			if (mddev->ro)
4549 				mddev->ro = 0;
4550 		}
4551 		if (!mddev->in_sync || mddev->flags) {
4552 			/* mark array as shutdown cleanly */
4553 			mddev->in_sync = 1;
4554 			md_update_sb(mddev, 1);
4555 		}
4556 		if (mode == 1)
4557 			set_disk_ro(disk, 1);
4558 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4559 		err = 0;
4560 	}
4561 out:
4562 	mutex_unlock(&mddev->open_mutex);
4563 	if (err)
4564 		return err;
4565 	/*
4566 	 * Free resources if final stop
4567 	 */
4568 	if (mode == 0) {
4569 
4570 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4571 
4572 		bitmap_destroy(mddev);
4573 		if (mddev->bitmap_info.file) {
4574 			restore_bitmap_write_access(mddev->bitmap_info.file);
4575 			fput(mddev->bitmap_info.file);
4576 			mddev->bitmap_info.file = NULL;
4577 		}
4578 		mddev->bitmap_info.offset = 0;
4579 
4580 		export_array(mddev);
4581 
4582 		mddev->array_sectors = 0;
4583 		mddev->external_size = 0;
4584 		mddev->dev_sectors = 0;
4585 		mddev->raid_disks = 0;
4586 		mddev->recovery_cp = 0;
4587 		mddev->resync_min = 0;
4588 		mddev->resync_max = MaxSector;
4589 		mddev->reshape_position = MaxSector;
4590 		mddev->external = 0;
4591 		mddev->persistent = 0;
4592 		mddev->level = LEVEL_NONE;
4593 		mddev->clevel[0] = 0;
4594 		mddev->flags = 0;
4595 		mddev->ro = 0;
4596 		mddev->metadata_type[0] = 0;
4597 		mddev->chunk_sectors = 0;
4598 		mddev->ctime = mddev->utime = 0;
4599 		mddev->layout = 0;
4600 		mddev->max_disks = 0;
4601 		mddev->events = 0;
4602 		mddev->delta_disks = 0;
4603 		mddev->new_level = LEVEL_NONE;
4604 		mddev->new_layout = 0;
4605 		mddev->new_chunk_sectors = 0;
4606 		mddev->curr_resync = 0;
4607 		mddev->resync_mismatches = 0;
4608 		mddev->suspend_lo = mddev->suspend_hi = 0;
4609 		mddev->sync_speed_min = mddev->sync_speed_max = 0;
4610 		mddev->recovery = 0;
4611 		mddev->in_sync = 0;
4612 		mddev->changed = 0;
4613 		mddev->degraded = 0;
4614 		mddev->barriers_work = 0;
4615 		mddev->safemode = 0;
4616 		mddev->bitmap_info.offset = 0;
4617 		mddev->bitmap_info.default_offset = 0;
4618 		mddev->bitmap_info.chunksize = 0;
4619 		mddev->bitmap_info.daemon_sleep = 0;
4620 		mddev->bitmap_info.max_write_behind = 0;
4621 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4622 		if (mddev->hold_active == UNTIL_STOP)
4623 			mddev->hold_active = 0;
4624 
4625 	} else if (mddev->pers)
4626 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
4627 			mdname(mddev));
4628 	err = 0;
4629 	blk_integrity_unregister(disk);
4630 	md_new_event(mddev);
4631 	sysfs_notify_dirent(mddev->sysfs_state);
4632 	return err;
4633 }
4634 
4635 #ifndef MODULE
4636 static void autorun_array(mddev_t *mddev)
4637 {
4638 	mdk_rdev_t *rdev;
4639 	int err;
4640 
4641 	if (list_empty(&mddev->disks))
4642 		return;
4643 
4644 	printk(KERN_INFO "md: running: ");
4645 
4646 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4647 		char b[BDEVNAME_SIZE];
4648 		printk("<%s>", bdevname(rdev->bdev,b));
4649 	}
4650 	printk("\n");
4651 
4652 	err = do_md_run(mddev);
4653 	if (err) {
4654 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4655 		do_md_stop(mddev, 0, 0);
4656 	}
4657 }
4658 
4659 /*
4660  * lets try to run arrays based on all disks that have arrived
4661  * until now. (those are in pending_raid_disks)
4662  *
4663  * the method: pick the first pending disk, collect all disks with
4664  * the same UUID, remove all from the pending list and put them into
4665  * the 'same_array' list. Then order this list based on superblock
4666  * update time (freshest comes first), kick out 'old' disks and
4667  * compare superblocks. If everything's fine then run it.
4668  *
4669  * If "unit" is allocated, then bump its reference count
4670  */
4671 static void autorun_devices(int part)
4672 {
4673 	mdk_rdev_t *rdev0, *rdev, *tmp;
4674 	mddev_t *mddev;
4675 	char b[BDEVNAME_SIZE];
4676 
4677 	printk(KERN_INFO "md: autorun ...\n");
4678 	while (!list_empty(&pending_raid_disks)) {
4679 		int unit;
4680 		dev_t dev;
4681 		LIST_HEAD(candidates);
4682 		rdev0 = list_entry(pending_raid_disks.next,
4683 					 mdk_rdev_t, same_set);
4684 
4685 		printk(KERN_INFO "md: considering %s ...\n",
4686 			bdevname(rdev0->bdev,b));
4687 		INIT_LIST_HEAD(&candidates);
4688 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4689 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4690 				printk(KERN_INFO "md:  adding %s ...\n",
4691 					bdevname(rdev->bdev,b));
4692 				list_move(&rdev->same_set, &candidates);
4693 			}
4694 		/*
4695 		 * now we have a set of devices, with all of them having
4696 		 * mostly sane superblocks. It's time to allocate the
4697 		 * mddev.
4698 		 */
4699 		if (part) {
4700 			dev = MKDEV(mdp_major,
4701 				    rdev0->preferred_minor << MdpMinorShift);
4702 			unit = MINOR(dev) >> MdpMinorShift;
4703 		} else {
4704 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4705 			unit = MINOR(dev);
4706 		}
4707 		if (rdev0->preferred_minor != unit) {
4708 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4709 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4710 			break;
4711 		}
4712 
4713 		md_probe(dev, NULL, NULL);
4714 		mddev = mddev_find(dev);
4715 		if (!mddev || !mddev->gendisk) {
4716 			if (mddev)
4717 				mddev_put(mddev);
4718 			printk(KERN_ERR
4719 				"md: cannot allocate memory for md drive.\n");
4720 			break;
4721 		}
4722 		if (mddev_lock(mddev))
4723 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4724 			       mdname(mddev));
4725 		else if (mddev->raid_disks || mddev->major_version
4726 			 || !list_empty(&mddev->disks)) {
4727 			printk(KERN_WARNING
4728 				"md: %s already running, cannot run %s\n",
4729 				mdname(mddev), bdevname(rdev0->bdev,b));
4730 			mddev_unlock(mddev);
4731 		} else {
4732 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4733 			mddev->persistent = 1;
4734 			rdev_for_each_list(rdev, tmp, &candidates) {
4735 				list_del_init(&rdev->same_set);
4736 				if (bind_rdev_to_array(rdev, mddev))
4737 					export_rdev(rdev);
4738 			}
4739 			autorun_array(mddev);
4740 			mddev_unlock(mddev);
4741 		}
4742 		/* on success, candidates will be empty, on error
4743 		 * it won't...
4744 		 */
4745 		rdev_for_each_list(rdev, tmp, &candidates) {
4746 			list_del_init(&rdev->same_set);
4747 			export_rdev(rdev);
4748 		}
4749 		mddev_put(mddev);
4750 	}
4751 	printk(KERN_INFO "md: ... autorun DONE.\n");
4752 }
4753 #endif /* !MODULE */
4754 
4755 static int get_version(void __user * arg)
4756 {
4757 	mdu_version_t ver;
4758 
4759 	ver.major = MD_MAJOR_VERSION;
4760 	ver.minor = MD_MINOR_VERSION;
4761 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4762 
4763 	if (copy_to_user(arg, &ver, sizeof(ver)))
4764 		return -EFAULT;
4765 
4766 	return 0;
4767 }
4768 
4769 static int get_array_info(mddev_t * mddev, void __user * arg)
4770 {
4771 	mdu_array_info_t info;
4772 	int nr,working,insync,failed,spare;
4773 	mdk_rdev_t *rdev;
4774 
4775 	nr=working=insync=failed=spare=0;
4776 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4777 		nr++;
4778 		if (test_bit(Faulty, &rdev->flags))
4779 			failed++;
4780 		else {
4781 			working++;
4782 			if (test_bit(In_sync, &rdev->flags))
4783 				insync++;
4784 			else
4785 				spare++;
4786 		}
4787 	}
4788 
4789 	info.major_version = mddev->major_version;
4790 	info.minor_version = mddev->minor_version;
4791 	info.patch_version = MD_PATCHLEVEL_VERSION;
4792 	info.ctime         = mddev->ctime;
4793 	info.level         = mddev->level;
4794 	info.size          = mddev->dev_sectors / 2;
4795 	if (info.size != mddev->dev_sectors / 2) /* overflow */
4796 		info.size = -1;
4797 	info.nr_disks      = nr;
4798 	info.raid_disks    = mddev->raid_disks;
4799 	info.md_minor      = mddev->md_minor;
4800 	info.not_persistent= !mddev->persistent;
4801 
4802 	info.utime         = mddev->utime;
4803 	info.state         = 0;
4804 	if (mddev->in_sync)
4805 		info.state = (1<<MD_SB_CLEAN);
4806 	if (mddev->bitmap && mddev->bitmap_info.offset)
4807 		info.state = (1<<MD_SB_BITMAP_PRESENT);
4808 	info.active_disks  = insync;
4809 	info.working_disks = working;
4810 	info.failed_disks  = failed;
4811 	info.spare_disks   = spare;
4812 
4813 	info.layout        = mddev->layout;
4814 	info.chunk_size    = mddev->chunk_sectors << 9;
4815 
4816 	if (copy_to_user(arg, &info, sizeof(info)))
4817 		return -EFAULT;
4818 
4819 	return 0;
4820 }
4821 
4822 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4823 {
4824 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4825 	char *ptr, *buf = NULL;
4826 	int err = -ENOMEM;
4827 
4828 	if (md_allow_write(mddev))
4829 		file = kmalloc(sizeof(*file), GFP_NOIO);
4830 	else
4831 		file = kmalloc(sizeof(*file), GFP_KERNEL);
4832 
4833 	if (!file)
4834 		goto out;
4835 
4836 	/* bitmap disabled, zero the first byte and copy out */
4837 	if (!mddev->bitmap || !mddev->bitmap->file) {
4838 		file->pathname[0] = '\0';
4839 		goto copy_out;
4840 	}
4841 
4842 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4843 	if (!buf)
4844 		goto out;
4845 
4846 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4847 	if (IS_ERR(ptr))
4848 		goto out;
4849 
4850 	strcpy(file->pathname, ptr);
4851 
4852 copy_out:
4853 	err = 0;
4854 	if (copy_to_user(arg, file, sizeof(*file)))
4855 		err = -EFAULT;
4856 out:
4857 	kfree(buf);
4858 	kfree(file);
4859 	return err;
4860 }
4861 
4862 static int get_disk_info(mddev_t * mddev, void __user * arg)
4863 {
4864 	mdu_disk_info_t info;
4865 	mdk_rdev_t *rdev;
4866 
4867 	if (copy_from_user(&info, arg, sizeof(info)))
4868 		return -EFAULT;
4869 
4870 	rdev = find_rdev_nr(mddev, info.number);
4871 	if (rdev) {
4872 		info.major = MAJOR(rdev->bdev->bd_dev);
4873 		info.minor = MINOR(rdev->bdev->bd_dev);
4874 		info.raid_disk = rdev->raid_disk;
4875 		info.state = 0;
4876 		if (test_bit(Faulty, &rdev->flags))
4877 			info.state |= (1<<MD_DISK_FAULTY);
4878 		else if (test_bit(In_sync, &rdev->flags)) {
4879 			info.state |= (1<<MD_DISK_ACTIVE);
4880 			info.state |= (1<<MD_DISK_SYNC);
4881 		}
4882 		if (test_bit(WriteMostly, &rdev->flags))
4883 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
4884 	} else {
4885 		info.major = info.minor = 0;
4886 		info.raid_disk = -1;
4887 		info.state = (1<<MD_DISK_REMOVED);
4888 	}
4889 
4890 	if (copy_to_user(arg, &info, sizeof(info)))
4891 		return -EFAULT;
4892 
4893 	return 0;
4894 }
4895 
4896 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4897 {
4898 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4899 	mdk_rdev_t *rdev;
4900 	dev_t dev = MKDEV(info->major,info->minor);
4901 
4902 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4903 		return -EOVERFLOW;
4904 
4905 	if (!mddev->raid_disks) {
4906 		int err;
4907 		/* expecting a device which has a superblock */
4908 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4909 		if (IS_ERR(rdev)) {
4910 			printk(KERN_WARNING
4911 				"md: md_import_device returned %ld\n",
4912 				PTR_ERR(rdev));
4913 			return PTR_ERR(rdev);
4914 		}
4915 		if (!list_empty(&mddev->disks)) {
4916 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4917 							mdk_rdev_t, same_set);
4918 			err = super_types[mddev->major_version]
4919 				.load_super(rdev, rdev0, mddev->minor_version);
4920 			if (err < 0) {
4921 				printk(KERN_WARNING
4922 					"md: %s has different UUID to %s\n",
4923 					bdevname(rdev->bdev,b),
4924 					bdevname(rdev0->bdev,b2));
4925 				export_rdev(rdev);
4926 				return -EINVAL;
4927 			}
4928 		}
4929 		err = bind_rdev_to_array(rdev, mddev);
4930 		if (err)
4931 			export_rdev(rdev);
4932 		return err;
4933 	}
4934 
4935 	/*
4936 	 * add_new_disk can be used once the array is assembled
4937 	 * to add "hot spares".  They must already have a superblock
4938 	 * written
4939 	 */
4940 	if (mddev->pers) {
4941 		int err;
4942 		if (!mddev->pers->hot_add_disk) {
4943 			printk(KERN_WARNING
4944 				"%s: personality does not support diskops!\n",
4945 			       mdname(mddev));
4946 			return -EINVAL;
4947 		}
4948 		if (mddev->persistent)
4949 			rdev = md_import_device(dev, mddev->major_version,
4950 						mddev->minor_version);
4951 		else
4952 			rdev = md_import_device(dev, -1, -1);
4953 		if (IS_ERR(rdev)) {
4954 			printk(KERN_WARNING
4955 				"md: md_import_device returned %ld\n",
4956 				PTR_ERR(rdev));
4957 			return PTR_ERR(rdev);
4958 		}
4959 		/* set save_raid_disk if appropriate */
4960 		if (!mddev->persistent) {
4961 			if (info->state & (1<<MD_DISK_SYNC)  &&
4962 			    info->raid_disk < mddev->raid_disks)
4963 				rdev->raid_disk = info->raid_disk;
4964 			else
4965 				rdev->raid_disk = -1;
4966 		} else
4967 			super_types[mddev->major_version].
4968 				validate_super(mddev, rdev);
4969 		rdev->saved_raid_disk = rdev->raid_disk;
4970 
4971 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
4972 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4973 			set_bit(WriteMostly, &rdev->flags);
4974 		else
4975 			clear_bit(WriteMostly, &rdev->flags);
4976 
4977 		rdev->raid_disk = -1;
4978 		err = bind_rdev_to_array(rdev, mddev);
4979 		if (!err && !mddev->pers->hot_remove_disk) {
4980 			/* If there is hot_add_disk but no hot_remove_disk
4981 			 * then added disks for geometry changes,
4982 			 * and should be added immediately.
4983 			 */
4984 			super_types[mddev->major_version].
4985 				validate_super(mddev, rdev);
4986 			err = mddev->pers->hot_add_disk(mddev, rdev);
4987 			if (err)
4988 				unbind_rdev_from_array(rdev);
4989 		}
4990 		if (err)
4991 			export_rdev(rdev);
4992 		else
4993 			sysfs_notify_dirent(rdev->sysfs_state);
4994 
4995 		md_update_sb(mddev, 1);
4996 		if (mddev->degraded)
4997 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4998 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4999 		md_wakeup_thread(mddev->thread);
5000 		return err;
5001 	}
5002 
5003 	/* otherwise, add_new_disk is only allowed
5004 	 * for major_version==0 superblocks
5005 	 */
5006 	if (mddev->major_version != 0) {
5007 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5008 		       mdname(mddev));
5009 		return -EINVAL;
5010 	}
5011 
5012 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5013 		int err;
5014 		rdev = md_import_device(dev, -1, 0);
5015 		if (IS_ERR(rdev)) {
5016 			printk(KERN_WARNING
5017 				"md: error, md_import_device() returned %ld\n",
5018 				PTR_ERR(rdev));
5019 			return PTR_ERR(rdev);
5020 		}
5021 		rdev->desc_nr = info->number;
5022 		if (info->raid_disk < mddev->raid_disks)
5023 			rdev->raid_disk = info->raid_disk;
5024 		else
5025 			rdev->raid_disk = -1;
5026 
5027 		if (rdev->raid_disk < mddev->raid_disks)
5028 			if (info->state & (1<<MD_DISK_SYNC))
5029 				set_bit(In_sync, &rdev->flags);
5030 
5031 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5032 			set_bit(WriteMostly, &rdev->flags);
5033 
5034 		if (!mddev->persistent) {
5035 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5036 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5037 		} else
5038 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5039 		rdev->sectors = rdev->sb_start;
5040 
5041 		err = bind_rdev_to_array(rdev, mddev);
5042 		if (err) {
5043 			export_rdev(rdev);
5044 			return err;
5045 		}
5046 	}
5047 
5048 	return 0;
5049 }
5050 
5051 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5052 {
5053 	char b[BDEVNAME_SIZE];
5054 	mdk_rdev_t *rdev;
5055 
5056 	rdev = find_rdev(mddev, dev);
5057 	if (!rdev)
5058 		return -ENXIO;
5059 
5060 	if (rdev->raid_disk >= 0)
5061 		goto busy;
5062 
5063 	kick_rdev_from_array(rdev);
5064 	md_update_sb(mddev, 1);
5065 	md_new_event(mddev);
5066 
5067 	return 0;
5068 busy:
5069 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5070 		bdevname(rdev->bdev,b), mdname(mddev));
5071 	return -EBUSY;
5072 }
5073 
5074 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5075 {
5076 	char b[BDEVNAME_SIZE];
5077 	int err;
5078 	mdk_rdev_t *rdev;
5079 
5080 	if (!mddev->pers)
5081 		return -ENODEV;
5082 
5083 	if (mddev->major_version != 0) {
5084 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5085 			" version-0 superblocks.\n",
5086 			mdname(mddev));
5087 		return -EINVAL;
5088 	}
5089 	if (!mddev->pers->hot_add_disk) {
5090 		printk(KERN_WARNING
5091 			"%s: personality does not support diskops!\n",
5092 			mdname(mddev));
5093 		return -EINVAL;
5094 	}
5095 
5096 	rdev = md_import_device(dev, -1, 0);
5097 	if (IS_ERR(rdev)) {
5098 		printk(KERN_WARNING
5099 			"md: error, md_import_device() returned %ld\n",
5100 			PTR_ERR(rdev));
5101 		return -EINVAL;
5102 	}
5103 
5104 	if (mddev->persistent)
5105 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5106 	else
5107 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5108 
5109 	rdev->sectors = rdev->sb_start;
5110 
5111 	if (test_bit(Faulty, &rdev->flags)) {
5112 		printk(KERN_WARNING
5113 			"md: can not hot-add faulty %s disk to %s!\n",
5114 			bdevname(rdev->bdev,b), mdname(mddev));
5115 		err = -EINVAL;
5116 		goto abort_export;
5117 	}
5118 	clear_bit(In_sync, &rdev->flags);
5119 	rdev->desc_nr = -1;
5120 	rdev->saved_raid_disk = -1;
5121 	err = bind_rdev_to_array(rdev, mddev);
5122 	if (err)
5123 		goto abort_export;
5124 
5125 	/*
5126 	 * The rest should better be atomic, we can have disk failures
5127 	 * noticed in interrupt contexts ...
5128 	 */
5129 
5130 	rdev->raid_disk = -1;
5131 
5132 	md_update_sb(mddev, 1);
5133 
5134 	/*
5135 	 * Kick recovery, maybe this spare has to be added to the
5136 	 * array immediately.
5137 	 */
5138 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5139 	md_wakeup_thread(mddev->thread);
5140 	md_new_event(mddev);
5141 	return 0;
5142 
5143 abort_export:
5144 	export_rdev(rdev);
5145 	return err;
5146 }
5147 
5148 static int set_bitmap_file(mddev_t *mddev, int fd)
5149 {
5150 	int err;
5151 
5152 	if (mddev->pers) {
5153 		if (!mddev->pers->quiesce)
5154 			return -EBUSY;
5155 		if (mddev->recovery || mddev->sync_thread)
5156 			return -EBUSY;
5157 		/* we should be able to change the bitmap.. */
5158 	}
5159 
5160 
5161 	if (fd >= 0) {
5162 		if (mddev->bitmap)
5163 			return -EEXIST; /* cannot add when bitmap is present */
5164 		mddev->bitmap_info.file = fget(fd);
5165 
5166 		if (mddev->bitmap_info.file == NULL) {
5167 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5168 			       mdname(mddev));
5169 			return -EBADF;
5170 		}
5171 
5172 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5173 		if (err) {
5174 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5175 			       mdname(mddev));
5176 			fput(mddev->bitmap_info.file);
5177 			mddev->bitmap_info.file = NULL;
5178 			return err;
5179 		}
5180 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5181 	} else if (mddev->bitmap == NULL)
5182 		return -ENOENT; /* cannot remove what isn't there */
5183 	err = 0;
5184 	if (mddev->pers) {
5185 		mddev->pers->quiesce(mddev, 1);
5186 		if (fd >= 0)
5187 			err = bitmap_create(mddev);
5188 		if (fd < 0 || err) {
5189 			bitmap_destroy(mddev);
5190 			fd = -1; /* make sure to put the file */
5191 		}
5192 		mddev->pers->quiesce(mddev, 0);
5193 	}
5194 	if (fd < 0) {
5195 		if (mddev->bitmap_info.file) {
5196 			restore_bitmap_write_access(mddev->bitmap_info.file);
5197 			fput(mddev->bitmap_info.file);
5198 		}
5199 		mddev->bitmap_info.file = NULL;
5200 	}
5201 
5202 	return err;
5203 }
5204 
5205 /*
5206  * set_array_info is used two different ways
5207  * The original usage is when creating a new array.
5208  * In this usage, raid_disks is > 0 and it together with
5209  *  level, size, not_persistent,layout,chunksize determine the
5210  *  shape of the array.
5211  *  This will always create an array with a type-0.90.0 superblock.
5212  * The newer usage is when assembling an array.
5213  *  In this case raid_disks will be 0, and the major_version field is
5214  *  use to determine which style super-blocks are to be found on the devices.
5215  *  The minor and patch _version numbers are also kept incase the
5216  *  super_block handler wishes to interpret them.
5217  */
5218 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5219 {
5220 
5221 	if (info->raid_disks == 0) {
5222 		/* just setting version number for superblock loading */
5223 		if (info->major_version < 0 ||
5224 		    info->major_version >= ARRAY_SIZE(super_types) ||
5225 		    super_types[info->major_version].name == NULL) {
5226 			/* maybe try to auto-load a module? */
5227 			printk(KERN_INFO
5228 				"md: superblock version %d not known\n",
5229 				info->major_version);
5230 			return -EINVAL;
5231 		}
5232 		mddev->major_version = info->major_version;
5233 		mddev->minor_version = info->minor_version;
5234 		mddev->patch_version = info->patch_version;
5235 		mddev->persistent = !info->not_persistent;
5236 		/* ensure mddev_put doesn't delete this now that there
5237 		 * is some minimal configuration.
5238 		 */
5239 		mddev->ctime         = get_seconds();
5240 		return 0;
5241 	}
5242 	mddev->major_version = MD_MAJOR_VERSION;
5243 	mddev->minor_version = MD_MINOR_VERSION;
5244 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5245 	mddev->ctime         = get_seconds();
5246 
5247 	mddev->level         = info->level;
5248 	mddev->clevel[0]     = 0;
5249 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5250 	mddev->raid_disks    = info->raid_disks;
5251 	/* don't set md_minor, it is determined by which /dev/md* was
5252 	 * openned
5253 	 */
5254 	if (info->state & (1<<MD_SB_CLEAN))
5255 		mddev->recovery_cp = MaxSector;
5256 	else
5257 		mddev->recovery_cp = 0;
5258 	mddev->persistent    = ! info->not_persistent;
5259 	mddev->external	     = 0;
5260 
5261 	mddev->layout        = info->layout;
5262 	mddev->chunk_sectors = info->chunk_size >> 9;
5263 
5264 	mddev->max_disks     = MD_SB_DISKS;
5265 
5266 	if (mddev->persistent)
5267 		mddev->flags         = 0;
5268 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5269 
5270 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5271 	mddev->bitmap_info.offset = 0;
5272 
5273 	mddev->reshape_position = MaxSector;
5274 
5275 	/*
5276 	 * Generate a 128 bit UUID
5277 	 */
5278 	get_random_bytes(mddev->uuid, 16);
5279 
5280 	mddev->new_level = mddev->level;
5281 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5282 	mddev->new_layout = mddev->layout;
5283 	mddev->delta_disks = 0;
5284 
5285 	return 0;
5286 }
5287 
5288 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5289 {
5290 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5291 
5292 	if (mddev->external_size)
5293 		return;
5294 
5295 	mddev->array_sectors = array_sectors;
5296 }
5297 EXPORT_SYMBOL(md_set_array_sectors);
5298 
5299 static int update_size(mddev_t *mddev, sector_t num_sectors)
5300 {
5301 	mdk_rdev_t *rdev;
5302 	int rv;
5303 	int fit = (num_sectors == 0);
5304 
5305 	if (mddev->pers->resize == NULL)
5306 		return -EINVAL;
5307 	/* The "num_sectors" is the number of sectors of each device that
5308 	 * is used.  This can only make sense for arrays with redundancy.
5309 	 * linear and raid0 always use whatever space is available. We can only
5310 	 * consider changing this number if no resync or reconstruction is
5311 	 * happening, and if the new size is acceptable. It must fit before the
5312 	 * sb_start or, if that is <data_offset, it must fit before the size
5313 	 * of each device.  If num_sectors is zero, we find the largest size
5314 	 * that fits.
5315 
5316 	 */
5317 	if (mddev->sync_thread)
5318 		return -EBUSY;
5319 	if (mddev->bitmap)
5320 		/* Sorry, cannot grow a bitmap yet, just remove it,
5321 		 * grow, and re-add.
5322 		 */
5323 		return -EBUSY;
5324 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5325 		sector_t avail = rdev->sectors;
5326 
5327 		if (fit && (num_sectors == 0 || num_sectors > avail))
5328 			num_sectors = avail;
5329 		if (avail < num_sectors)
5330 			return -ENOSPC;
5331 	}
5332 	rv = mddev->pers->resize(mddev, num_sectors);
5333 	if (!rv)
5334 		revalidate_disk(mddev->gendisk);
5335 	return rv;
5336 }
5337 
5338 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5339 {
5340 	int rv;
5341 	/* change the number of raid disks */
5342 	if (mddev->pers->check_reshape == NULL)
5343 		return -EINVAL;
5344 	if (raid_disks <= 0 ||
5345 	    raid_disks >= mddev->max_disks)
5346 		return -EINVAL;
5347 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5348 		return -EBUSY;
5349 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5350 
5351 	rv = mddev->pers->check_reshape(mddev);
5352 	return rv;
5353 }
5354 
5355 
5356 /*
5357  * update_array_info is used to change the configuration of an
5358  * on-line array.
5359  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5360  * fields in the info are checked against the array.
5361  * Any differences that cannot be handled will cause an error.
5362  * Normally, only one change can be managed at a time.
5363  */
5364 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5365 {
5366 	int rv = 0;
5367 	int cnt = 0;
5368 	int state = 0;
5369 
5370 	/* calculate expected state,ignoring low bits */
5371 	if (mddev->bitmap && mddev->bitmap_info.offset)
5372 		state |= (1 << MD_SB_BITMAP_PRESENT);
5373 
5374 	if (mddev->major_version != info->major_version ||
5375 	    mddev->minor_version != info->minor_version ||
5376 /*	    mddev->patch_version != info->patch_version || */
5377 	    mddev->ctime         != info->ctime         ||
5378 	    mddev->level         != info->level         ||
5379 /*	    mddev->layout        != info->layout        || */
5380 	    !mddev->persistent	 != info->not_persistent||
5381 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5382 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5383 	    ((state^info->state) & 0xfffffe00)
5384 		)
5385 		return -EINVAL;
5386 	/* Check there is only one change */
5387 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5388 		cnt++;
5389 	if (mddev->raid_disks != info->raid_disks)
5390 		cnt++;
5391 	if (mddev->layout != info->layout)
5392 		cnt++;
5393 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5394 		cnt++;
5395 	if (cnt == 0)
5396 		return 0;
5397 	if (cnt > 1)
5398 		return -EINVAL;
5399 
5400 	if (mddev->layout != info->layout) {
5401 		/* Change layout
5402 		 * we don't need to do anything at the md level, the
5403 		 * personality will take care of it all.
5404 		 */
5405 		if (mddev->pers->check_reshape == NULL)
5406 			return -EINVAL;
5407 		else {
5408 			mddev->new_layout = info->layout;
5409 			rv = mddev->pers->check_reshape(mddev);
5410 			if (rv)
5411 				mddev->new_layout = mddev->layout;
5412 			return rv;
5413 		}
5414 	}
5415 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5416 		rv = update_size(mddev, (sector_t)info->size * 2);
5417 
5418 	if (mddev->raid_disks    != info->raid_disks)
5419 		rv = update_raid_disks(mddev, info->raid_disks);
5420 
5421 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5422 		if (mddev->pers->quiesce == NULL)
5423 			return -EINVAL;
5424 		if (mddev->recovery || mddev->sync_thread)
5425 			return -EBUSY;
5426 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5427 			/* add the bitmap */
5428 			if (mddev->bitmap)
5429 				return -EEXIST;
5430 			if (mddev->bitmap_info.default_offset == 0)
5431 				return -EINVAL;
5432 			mddev->bitmap_info.offset =
5433 				mddev->bitmap_info.default_offset;
5434 			mddev->pers->quiesce(mddev, 1);
5435 			rv = bitmap_create(mddev);
5436 			if (rv)
5437 				bitmap_destroy(mddev);
5438 			mddev->pers->quiesce(mddev, 0);
5439 		} else {
5440 			/* remove the bitmap */
5441 			if (!mddev->bitmap)
5442 				return -ENOENT;
5443 			if (mddev->bitmap->file)
5444 				return -EINVAL;
5445 			mddev->pers->quiesce(mddev, 1);
5446 			bitmap_destroy(mddev);
5447 			mddev->pers->quiesce(mddev, 0);
5448 			mddev->bitmap_info.offset = 0;
5449 		}
5450 	}
5451 	md_update_sb(mddev, 1);
5452 	return rv;
5453 }
5454 
5455 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5456 {
5457 	mdk_rdev_t *rdev;
5458 
5459 	if (mddev->pers == NULL)
5460 		return -ENODEV;
5461 
5462 	rdev = find_rdev(mddev, dev);
5463 	if (!rdev)
5464 		return -ENODEV;
5465 
5466 	md_error(mddev, rdev);
5467 	return 0;
5468 }
5469 
5470 /*
5471  * We have a problem here : there is no easy way to give a CHS
5472  * virtual geometry. We currently pretend that we have a 2 heads
5473  * 4 sectors (with a BIG number of cylinders...). This drives
5474  * dosfs just mad... ;-)
5475  */
5476 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5477 {
5478 	mddev_t *mddev = bdev->bd_disk->private_data;
5479 
5480 	geo->heads = 2;
5481 	geo->sectors = 4;
5482 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
5483 	return 0;
5484 }
5485 
5486 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5487 			unsigned int cmd, unsigned long arg)
5488 {
5489 	int err = 0;
5490 	void __user *argp = (void __user *)arg;
5491 	mddev_t *mddev = NULL;
5492 
5493 	if (!capable(CAP_SYS_ADMIN))
5494 		return -EACCES;
5495 
5496 	/*
5497 	 * Commands dealing with the RAID driver but not any
5498 	 * particular array:
5499 	 */
5500 	switch (cmd)
5501 	{
5502 		case RAID_VERSION:
5503 			err = get_version(argp);
5504 			goto done;
5505 
5506 		case PRINT_RAID_DEBUG:
5507 			err = 0;
5508 			md_print_devices();
5509 			goto done;
5510 
5511 #ifndef MODULE
5512 		case RAID_AUTORUN:
5513 			err = 0;
5514 			autostart_arrays(arg);
5515 			goto done;
5516 #endif
5517 		default:;
5518 	}
5519 
5520 	/*
5521 	 * Commands creating/starting a new array:
5522 	 */
5523 
5524 	mddev = bdev->bd_disk->private_data;
5525 
5526 	if (!mddev) {
5527 		BUG();
5528 		goto abort;
5529 	}
5530 
5531 	err = mddev_lock(mddev);
5532 	if (err) {
5533 		printk(KERN_INFO
5534 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5535 			err, cmd);
5536 		goto abort;
5537 	}
5538 
5539 	switch (cmd)
5540 	{
5541 		case SET_ARRAY_INFO:
5542 			{
5543 				mdu_array_info_t info;
5544 				if (!arg)
5545 					memset(&info, 0, sizeof(info));
5546 				else if (copy_from_user(&info, argp, sizeof(info))) {
5547 					err = -EFAULT;
5548 					goto abort_unlock;
5549 				}
5550 				if (mddev->pers) {
5551 					err = update_array_info(mddev, &info);
5552 					if (err) {
5553 						printk(KERN_WARNING "md: couldn't update"
5554 						       " array info. %d\n", err);
5555 						goto abort_unlock;
5556 					}
5557 					goto done_unlock;
5558 				}
5559 				if (!list_empty(&mddev->disks)) {
5560 					printk(KERN_WARNING
5561 					       "md: array %s already has disks!\n",
5562 					       mdname(mddev));
5563 					err = -EBUSY;
5564 					goto abort_unlock;
5565 				}
5566 				if (mddev->raid_disks) {
5567 					printk(KERN_WARNING
5568 					       "md: array %s already initialised!\n",
5569 					       mdname(mddev));
5570 					err = -EBUSY;
5571 					goto abort_unlock;
5572 				}
5573 				err = set_array_info(mddev, &info);
5574 				if (err) {
5575 					printk(KERN_WARNING "md: couldn't set"
5576 					       " array info. %d\n", err);
5577 					goto abort_unlock;
5578 				}
5579 			}
5580 			goto done_unlock;
5581 
5582 		default:;
5583 	}
5584 
5585 	/*
5586 	 * Commands querying/configuring an existing array:
5587 	 */
5588 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5589 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5590 	if ((!mddev->raid_disks && !mddev->external)
5591 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5592 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5593 	    && cmd != GET_BITMAP_FILE) {
5594 		err = -ENODEV;
5595 		goto abort_unlock;
5596 	}
5597 
5598 	/*
5599 	 * Commands even a read-only array can execute:
5600 	 */
5601 	switch (cmd)
5602 	{
5603 		case GET_ARRAY_INFO:
5604 			err = get_array_info(mddev, argp);
5605 			goto done_unlock;
5606 
5607 		case GET_BITMAP_FILE:
5608 			err = get_bitmap_file(mddev, argp);
5609 			goto done_unlock;
5610 
5611 		case GET_DISK_INFO:
5612 			err = get_disk_info(mddev, argp);
5613 			goto done_unlock;
5614 
5615 		case RESTART_ARRAY_RW:
5616 			err = restart_array(mddev);
5617 			goto done_unlock;
5618 
5619 		case STOP_ARRAY:
5620 			err = do_md_stop(mddev, 0, 1);
5621 			goto done_unlock;
5622 
5623 		case STOP_ARRAY_RO:
5624 			err = do_md_stop(mddev, 1, 1);
5625 			goto done_unlock;
5626 
5627 	}
5628 
5629 	/*
5630 	 * The remaining ioctls are changing the state of the
5631 	 * superblock, so we do not allow them on read-only arrays.
5632 	 * However non-MD ioctls (e.g. get-size) will still come through
5633 	 * here and hit the 'default' below, so only disallow
5634 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5635 	 */
5636 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5637 		if (mddev->ro == 2) {
5638 			mddev->ro = 0;
5639 			sysfs_notify_dirent(mddev->sysfs_state);
5640 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5641 			md_wakeup_thread(mddev->thread);
5642 		} else {
5643 			err = -EROFS;
5644 			goto abort_unlock;
5645 		}
5646 	}
5647 
5648 	switch (cmd)
5649 	{
5650 		case ADD_NEW_DISK:
5651 		{
5652 			mdu_disk_info_t info;
5653 			if (copy_from_user(&info, argp, sizeof(info)))
5654 				err = -EFAULT;
5655 			else
5656 				err = add_new_disk(mddev, &info);
5657 			goto done_unlock;
5658 		}
5659 
5660 		case HOT_REMOVE_DISK:
5661 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5662 			goto done_unlock;
5663 
5664 		case HOT_ADD_DISK:
5665 			err = hot_add_disk(mddev, new_decode_dev(arg));
5666 			goto done_unlock;
5667 
5668 		case SET_DISK_FAULTY:
5669 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5670 			goto done_unlock;
5671 
5672 		case RUN_ARRAY:
5673 			err = do_md_run(mddev);
5674 			goto done_unlock;
5675 
5676 		case SET_BITMAP_FILE:
5677 			err = set_bitmap_file(mddev, (int)arg);
5678 			goto done_unlock;
5679 
5680 		default:
5681 			err = -EINVAL;
5682 			goto abort_unlock;
5683 	}
5684 
5685 done_unlock:
5686 abort_unlock:
5687 	if (mddev->hold_active == UNTIL_IOCTL &&
5688 	    err != -EINVAL)
5689 		mddev->hold_active = 0;
5690 	mddev_unlock(mddev);
5691 
5692 	return err;
5693 done:
5694 	if (err)
5695 		MD_BUG();
5696 abort:
5697 	return err;
5698 }
5699 #ifdef CONFIG_COMPAT
5700 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5701 		    unsigned int cmd, unsigned long arg)
5702 {
5703 	switch (cmd) {
5704 	case HOT_REMOVE_DISK:
5705 	case HOT_ADD_DISK:
5706 	case SET_DISK_FAULTY:
5707 	case SET_BITMAP_FILE:
5708 		/* These take in integer arg, do not convert */
5709 		break;
5710 	default:
5711 		arg = (unsigned long)compat_ptr(arg);
5712 		break;
5713 	}
5714 
5715 	return md_ioctl(bdev, mode, cmd, arg);
5716 }
5717 #endif /* CONFIG_COMPAT */
5718 
5719 static int md_open(struct block_device *bdev, fmode_t mode)
5720 {
5721 	/*
5722 	 * Succeed if we can lock the mddev, which confirms that
5723 	 * it isn't being stopped right now.
5724 	 */
5725 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5726 	int err;
5727 
5728 	if (mddev->gendisk != bdev->bd_disk) {
5729 		/* we are racing with mddev_put which is discarding this
5730 		 * bd_disk.
5731 		 */
5732 		mddev_put(mddev);
5733 		/* Wait until bdev->bd_disk is definitely gone */
5734 		flush_scheduled_work();
5735 		/* Then retry the open from the top */
5736 		return -ERESTARTSYS;
5737 	}
5738 	BUG_ON(mddev != bdev->bd_disk->private_data);
5739 
5740 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5741 		goto out;
5742 
5743 	err = 0;
5744 	atomic_inc(&mddev->openers);
5745 	mutex_unlock(&mddev->open_mutex);
5746 
5747 	check_disk_change(bdev);
5748  out:
5749 	return err;
5750 }
5751 
5752 static int md_release(struct gendisk *disk, fmode_t mode)
5753 {
5754  	mddev_t *mddev = disk->private_data;
5755 
5756 	BUG_ON(!mddev);
5757 	atomic_dec(&mddev->openers);
5758 	mddev_put(mddev);
5759 
5760 	return 0;
5761 }
5762 
5763 static int md_media_changed(struct gendisk *disk)
5764 {
5765 	mddev_t *mddev = disk->private_data;
5766 
5767 	return mddev->changed;
5768 }
5769 
5770 static int md_revalidate(struct gendisk *disk)
5771 {
5772 	mddev_t *mddev = disk->private_data;
5773 
5774 	mddev->changed = 0;
5775 	return 0;
5776 }
5777 static const struct block_device_operations md_fops =
5778 {
5779 	.owner		= THIS_MODULE,
5780 	.open		= md_open,
5781 	.release	= md_release,
5782 	.ioctl		= md_ioctl,
5783 #ifdef CONFIG_COMPAT
5784 	.compat_ioctl	= md_compat_ioctl,
5785 #endif
5786 	.getgeo		= md_getgeo,
5787 	.media_changed	= md_media_changed,
5788 	.revalidate_disk= md_revalidate,
5789 };
5790 
5791 static int md_thread(void * arg)
5792 {
5793 	mdk_thread_t *thread = arg;
5794 
5795 	/*
5796 	 * md_thread is a 'system-thread', it's priority should be very
5797 	 * high. We avoid resource deadlocks individually in each
5798 	 * raid personality. (RAID5 does preallocation) We also use RR and
5799 	 * the very same RT priority as kswapd, thus we will never get
5800 	 * into a priority inversion deadlock.
5801 	 *
5802 	 * we definitely have to have equal or higher priority than
5803 	 * bdflush, otherwise bdflush will deadlock if there are too
5804 	 * many dirty RAID5 blocks.
5805 	 */
5806 
5807 	allow_signal(SIGKILL);
5808 	while (!kthread_should_stop()) {
5809 
5810 		/* We need to wait INTERRUPTIBLE so that
5811 		 * we don't add to the load-average.
5812 		 * That means we need to be sure no signals are
5813 		 * pending
5814 		 */
5815 		if (signal_pending(current))
5816 			flush_signals(current);
5817 
5818 		wait_event_interruptible_timeout
5819 			(thread->wqueue,
5820 			 test_bit(THREAD_WAKEUP, &thread->flags)
5821 			 || kthread_should_stop(),
5822 			 thread->timeout);
5823 
5824 		clear_bit(THREAD_WAKEUP, &thread->flags);
5825 
5826 		thread->run(thread->mddev);
5827 	}
5828 
5829 	return 0;
5830 }
5831 
5832 void md_wakeup_thread(mdk_thread_t *thread)
5833 {
5834 	if (thread) {
5835 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5836 		set_bit(THREAD_WAKEUP, &thread->flags);
5837 		wake_up(&thread->wqueue);
5838 	}
5839 }
5840 
5841 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5842 				 const char *name)
5843 {
5844 	mdk_thread_t *thread;
5845 
5846 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5847 	if (!thread)
5848 		return NULL;
5849 
5850 	init_waitqueue_head(&thread->wqueue);
5851 
5852 	thread->run = run;
5853 	thread->mddev = mddev;
5854 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
5855 	thread->tsk = kthread_run(md_thread, thread,
5856 				  "%s_%s",
5857 				  mdname(thread->mddev),
5858 				  name ?: mddev->pers->name);
5859 	if (IS_ERR(thread->tsk)) {
5860 		kfree(thread);
5861 		return NULL;
5862 	}
5863 	return thread;
5864 }
5865 
5866 void md_unregister_thread(mdk_thread_t *thread)
5867 {
5868 	if (!thread)
5869 		return;
5870 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5871 
5872 	kthread_stop(thread->tsk);
5873 	kfree(thread);
5874 }
5875 
5876 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5877 {
5878 	if (!mddev) {
5879 		MD_BUG();
5880 		return;
5881 	}
5882 
5883 	if (!rdev || test_bit(Faulty, &rdev->flags))
5884 		return;
5885 
5886 	if (mddev->external)
5887 		set_bit(Blocked, &rdev->flags);
5888 /*
5889 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5890 		mdname(mddev),
5891 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5892 		__builtin_return_address(0),__builtin_return_address(1),
5893 		__builtin_return_address(2),__builtin_return_address(3));
5894 */
5895 	if (!mddev->pers)
5896 		return;
5897 	if (!mddev->pers->error_handler)
5898 		return;
5899 	mddev->pers->error_handler(mddev,rdev);
5900 	if (mddev->degraded)
5901 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5902 	set_bit(StateChanged, &rdev->flags);
5903 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5904 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5905 	md_wakeup_thread(mddev->thread);
5906 	md_new_event_inintr(mddev);
5907 }
5908 
5909 /* seq_file implementation /proc/mdstat */
5910 
5911 static void status_unused(struct seq_file *seq)
5912 {
5913 	int i = 0;
5914 	mdk_rdev_t *rdev;
5915 
5916 	seq_printf(seq, "unused devices: ");
5917 
5918 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5919 		char b[BDEVNAME_SIZE];
5920 		i++;
5921 		seq_printf(seq, "%s ",
5922 			      bdevname(rdev->bdev,b));
5923 	}
5924 	if (!i)
5925 		seq_printf(seq, "<none>");
5926 
5927 	seq_printf(seq, "\n");
5928 }
5929 
5930 
5931 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5932 {
5933 	sector_t max_sectors, resync, res;
5934 	unsigned long dt, db;
5935 	sector_t rt;
5936 	int scale;
5937 	unsigned int per_milli;
5938 
5939 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
5940 
5941 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5942 		max_sectors = mddev->resync_max_sectors;
5943 	else
5944 		max_sectors = mddev->dev_sectors;
5945 
5946 	/*
5947 	 * Should not happen.
5948 	 */
5949 	if (!max_sectors) {
5950 		MD_BUG();
5951 		return;
5952 	}
5953 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
5954 	 * in a sector_t, and (max_sectors>>scale) will fit in a
5955 	 * u32, as those are the requirements for sector_div.
5956 	 * Thus 'scale' must be at least 10
5957 	 */
5958 	scale = 10;
5959 	if (sizeof(sector_t) > sizeof(unsigned long)) {
5960 		while ( max_sectors/2 > (1ULL<<(scale+32)))
5961 			scale++;
5962 	}
5963 	res = (resync>>scale)*1000;
5964 	sector_div(res, (u32)((max_sectors>>scale)+1));
5965 
5966 	per_milli = res;
5967 	{
5968 		int i, x = per_milli/50, y = 20-x;
5969 		seq_printf(seq, "[");
5970 		for (i = 0; i < x; i++)
5971 			seq_printf(seq, "=");
5972 		seq_printf(seq, ">");
5973 		for (i = 0; i < y; i++)
5974 			seq_printf(seq, ".");
5975 		seq_printf(seq, "] ");
5976 	}
5977 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5978 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5979 		    "reshape" :
5980 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5981 		     "check" :
5982 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5983 		      "resync" : "recovery"))),
5984 		   per_milli/10, per_milli % 10,
5985 		   (unsigned long long) resync/2,
5986 		   (unsigned long long) max_sectors/2);
5987 
5988 	/*
5989 	 * dt: time from mark until now
5990 	 * db: blocks written from mark until now
5991 	 * rt: remaining time
5992 	 *
5993 	 * rt is a sector_t, so could be 32bit or 64bit.
5994 	 * So we divide before multiply in case it is 32bit and close
5995 	 * to the limit.
5996 	 * We scale the divisor (db) by 32 to avoid loosing precision
5997 	 * near the end of resync when the number of remaining sectors
5998 	 * is close to 'db'.
5999 	 * We then divide rt by 32 after multiplying by db to compensate.
6000 	 * The '+1' avoids division by zero if db is very small.
6001 	 */
6002 	dt = ((jiffies - mddev->resync_mark) / HZ);
6003 	if (!dt) dt++;
6004 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6005 		- mddev->resync_mark_cnt;
6006 
6007 	rt = max_sectors - resync;    /* number of remaining sectors */
6008 	sector_div(rt, db/32+1);
6009 	rt *= dt;
6010 	rt >>= 5;
6011 
6012 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6013 		   ((unsigned long)rt % 60)/6);
6014 
6015 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6016 }
6017 
6018 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6019 {
6020 	struct list_head *tmp;
6021 	loff_t l = *pos;
6022 	mddev_t *mddev;
6023 
6024 	if (l >= 0x10000)
6025 		return NULL;
6026 	if (!l--)
6027 		/* header */
6028 		return (void*)1;
6029 
6030 	spin_lock(&all_mddevs_lock);
6031 	list_for_each(tmp,&all_mddevs)
6032 		if (!l--) {
6033 			mddev = list_entry(tmp, mddev_t, all_mddevs);
6034 			mddev_get(mddev);
6035 			spin_unlock(&all_mddevs_lock);
6036 			return mddev;
6037 		}
6038 	spin_unlock(&all_mddevs_lock);
6039 	if (!l--)
6040 		return (void*)2;/* tail */
6041 	return NULL;
6042 }
6043 
6044 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6045 {
6046 	struct list_head *tmp;
6047 	mddev_t *next_mddev, *mddev = v;
6048 
6049 	++*pos;
6050 	if (v == (void*)2)
6051 		return NULL;
6052 
6053 	spin_lock(&all_mddevs_lock);
6054 	if (v == (void*)1)
6055 		tmp = all_mddevs.next;
6056 	else
6057 		tmp = mddev->all_mddevs.next;
6058 	if (tmp != &all_mddevs)
6059 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6060 	else {
6061 		next_mddev = (void*)2;
6062 		*pos = 0x10000;
6063 	}
6064 	spin_unlock(&all_mddevs_lock);
6065 
6066 	if (v != (void*)1)
6067 		mddev_put(mddev);
6068 	return next_mddev;
6069 
6070 }
6071 
6072 static void md_seq_stop(struct seq_file *seq, void *v)
6073 {
6074 	mddev_t *mddev = v;
6075 
6076 	if (mddev && v != (void*)1 && v != (void*)2)
6077 		mddev_put(mddev);
6078 }
6079 
6080 struct mdstat_info {
6081 	int event;
6082 };
6083 
6084 static int md_seq_show(struct seq_file *seq, void *v)
6085 {
6086 	mddev_t *mddev = v;
6087 	sector_t sectors;
6088 	mdk_rdev_t *rdev;
6089 	struct mdstat_info *mi = seq->private;
6090 	struct bitmap *bitmap;
6091 
6092 	if (v == (void*)1) {
6093 		struct mdk_personality *pers;
6094 		seq_printf(seq, "Personalities : ");
6095 		spin_lock(&pers_lock);
6096 		list_for_each_entry(pers, &pers_list, list)
6097 			seq_printf(seq, "[%s] ", pers->name);
6098 
6099 		spin_unlock(&pers_lock);
6100 		seq_printf(seq, "\n");
6101 		mi->event = atomic_read(&md_event_count);
6102 		return 0;
6103 	}
6104 	if (v == (void*)2) {
6105 		status_unused(seq);
6106 		return 0;
6107 	}
6108 
6109 	if (mddev_lock(mddev) < 0)
6110 		return -EINTR;
6111 
6112 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6113 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6114 						mddev->pers ? "" : "in");
6115 		if (mddev->pers) {
6116 			if (mddev->ro==1)
6117 				seq_printf(seq, " (read-only)");
6118 			if (mddev->ro==2)
6119 				seq_printf(seq, " (auto-read-only)");
6120 			seq_printf(seq, " %s", mddev->pers->name);
6121 		}
6122 
6123 		sectors = 0;
6124 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6125 			char b[BDEVNAME_SIZE];
6126 			seq_printf(seq, " %s[%d]",
6127 				bdevname(rdev->bdev,b), rdev->desc_nr);
6128 			if (test_bit(WriteMostly, &rdev->flags))
6129 				seq_printf(seq, "(W)");
6130 			if (test_bit(Faulty, &rdev->flags)) {
6131 				seq_printf(seq, "(F)");
6132 				continue;
6133 			} else if (rdev->raid_disk < 0)
6134 				seq_printf(seq, "(S)"); /* spare */
6135 			sectors += rdev->sectors;
6136 		}
6137 
6138 		if (!list_empty(&mddev->disks)) {
6139 			if (mddev->pers)
6140 				seq_printf(seq, "\n      %llu blocks",
6141 					   (unsigned long long)
6142 					   mddev->array_sectors / 2);
6143 			else
6144 				seq_printf(seq, "\n      %llu blocks",
6145 					   (unsigned long long)sectors / 2);
6146 		}
6147 		if (mddev->persistent) {
6148 			if (mddev->major_version != 0 ||
6149 			    mddev->minor_version != 90) {
6150 				seq_printf(seq," super %d.%d",
6151 					   mddev->major_version,
6152 					   mddev->minor_version);
6153 			}
6154 		} else if (mddev->external)
6155 			seq_printf(seq, " super external:%s",
6156 				   mddev->metadata_type);
6157 		else
6158 			seq_printf(seq, " super non-persistent");
6159 
6160 		if (mddev->pers) {
6161 			mddev->pers->status(seq, mddev);
6162 	 		seq_printf(seq, "\n      ");
6163 			if (mddev->pers->sync_request) {
6164 				if (mddev->curr_resync > 2) {
6165 					status_resync(seq, mddev);
6166 					seq_printf(seq, "\n      ");
6167 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6168 					seq_printf(seq, "\tresync=DELAYED\n      ");
6169 				else if (mddev->recovery_cp < MaxSector)
6170 					seq_printf(seq, "\tresync=PENDING\n      ");
6171 			}
6172 		} else
6173 			seq_printf(seq, "\n       ");
6174 
6175 		if ((bitmap = mddev->bitmap)) {
6176 			unsigned long chunk_kb;
6177 			unsigned long flags;
6178 			spin_lock_irqsave(&bitmap->lock, flags);
6179 			chunk_kb = mddev->bitmap_info.chunksize >> 10;
6180 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6181 				"%lu%s chunk",
6182 				bitmap->pages - bitmap->missing_pages,
6183 				bitmap->pages,
6184 				(bitmap->pages - bitmap->missing_pages)
6185 					<< (PAGE_SHIFT - 10),
6186 				chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6187 				chunk_kb ? "KB" : "B");
6188 			if (bitmap->file) {
6189 				seq_printf(seq, ", file: ");
6190 				seq_path(seq, &bitmap->file->f_path, " \t\n");
6191 			}
6192 
6193 			seq_printf(seq, "\n");
6194 			spin_unlock_irqrestore(&bitmap->lock, flags);
6195 		}
6196 
6197 		seq_printf(seq, "\n");
6198 	}
6199 	mddev_unlock(mddev);
6200 
6201 	return 0;
6202 }
6203 
6204 static const struct seq_operations md_seq_ops = {
6205 	.start  = md_seq_start,
6206 	.next   = md_seq_next,
6207 	.stop   = md_seq_stop,
6208 	.show   = md_seq_show,
6209 };
6210 
6211 static int md_seq_open(struct inode *inode, struct file *file)
6212 {
6213 	int error;
6214 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6215 	if (mi == NULL)
6216 		return -ENOMEM;
6217 
6218 	error = seq_open(file, &md_seq_ops);
6219 	if (error)
6220 		kfree(mi);
6221 	else {
6222 		struct seq_file *p = file->private_data;
6223 		p->private = mi;
6224 		mi->event = atomic_read(&md_event_count);
6225 	}
6226 	return error;
6227 }
6228 
6229 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6230 {
6231 	struct seq_file *m = filp->private_data;
6232 	struct mdstat_info *mi = m->private;
6233 	int mask;
6234 
6235 	poll_wait(filp, &md_event_waiters, wait);
6236 
6237 	/* always allow read */
6238 	mask = POLLIN | POLLRDNORM;
6239 
6240 	if (mi->event != atomic_read(&md_event_count))
6241 		mask |= POLLERR | POLLPRI;
6242 	return mask;
6243 }
6244 
6245 static const struct file_operations md_seq_fops = {
6246 	.owner		= THIS_MODULE,
6247 	.open           = md_seq_open,
6248 	.read           = seq_read,
6249 	.llseek         = seq_lseek,
6250 	.release	= seq_release_private,
6251 	.poll		= mdstat_poll,
6252 };
6253 
6254 int register_md_personality(struct mdk_personality *p)
6255 {
6256 	spin_lock(&pers_lock);
6257 	list_add_tail(&p->list, &pers_list);
6258 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6259 	spin_unlock(&pers_lock);
6260 	return 0;
6261 }
6262 
6263 int unregister_md_personality(struct mdk_personality *p)
6264 {
6265 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6266 	spin_lock(&pers_lock);
6267 	list_del_init(&p->list);
6268 	spin_unlock(&pers_lock);
6269 	return 0;
6270 }
6271 
6272 static int is_mddev_idle(mddev_t *mddev, int init)
6273 {
6274 	mdk_rdev_t * rdev;
6275 	int idle;
6276 	int curr_events;
6277 
6278 	idle = 1;
6279 	rcu_read_lock();
6280 	rdev_for_each_rcu(rdev, mddev) {
6281 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6282 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6283 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6284 			      atomic_read(&disk->sync_io);
6285 		/* sync IO will cause sync_io to increase before the disk_stats
6286 		 * as sync_io is counted when a request starts, and
6287 		 * disk_stats is counted when it completes.
6288 		 * So resync activity will cause curr_events to be smaller than
6289 		 * when there was no such activity.
6290 		 * non-sync IO will cause disk_stat to increase without
6291 		 * increasing sync_io so curr_events will (eventually)
6292 		 * be larger than it was before.  Once it becomes
6293 		 * substantially larger, the test below will cause
6294 		 * the array to appear non-idle, and resync will slow
6295 		 * down.
6296 		 * If there is a lot of outstanding resync activity when
6297 		 * we set last_event to curr_events, then all that activity
6298 		 * completing might cause the array to appear non-idle
6299 		 * and resync will be slowed down even though there might
6300 		 * not have been non-resync activity.  This will only
6301 		 * happen once though.  'last_events' will soon reflect
6302 		 * the state where there is little or no outstanding
6303 		 * resync requests, and further resync activity will
6304 		 * always make curr_events less than last_events.
6305 		 *
6306 		 */
6307 		if (init || curr_events - rdev->last_events > 64) {
6308 			rdev->last_events = curr_events;
6309 			idle = 0;
6310 		}
6311 	}
6312 	rcu_read_unlock();
6313 	return idle;
6314 }
6315 
6316 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6317 {
6318 	/* another "blocks" (512byte) blocks have been synced */
6319 	atomic_sub(blocks, &mddev->recovery_active);
6320 	wake_up(&mddev->recovery_wait);
6321 	if (!ok) {
6322 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6323 		md_wakeup_thread(mddev->thread);
6324 		// stop recovery, signal do_sync ....
6325 	}
6326 }
6327 
6328 
6329 /* md_write_start(mddev, bi)
6330  * If we need to update some array metadata (e.g. 'active' flag
6331  * in superblock) before writing, schedule a superblock update
6332  * and wait for it to complete.
6333  */
6334 void md_write_start(mddev_t *mddev, struct bio *bi)
6335 {
6336 	int did_change = 0;
6337 	if (bio_data_dir(bi) != WRITE)
6338 		return;
6339 
6340 	BUG_ON(mddev->ro == 1);
6341 	if (mddev->ro == 2) {
6342 		/* need to switch to read/write */
6343 		mddev->ro = 0;
6344 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6345 		md_wakeup_thread(mddev->thread);
6346 		md_wakeup_thread(mddev->sync_thread);
6347 		did_change = 1;
6348 	}
6349 	atomic_inc(&mddev->writes_pending);
6350 	if (mddev->safemode == 1)
6351 		mddev->safemode = 0;
6352 	if (mddev->in_sync) {
6353 		spin_lock_irq(&mddev->write_lock);
6354 		if (mddev->in_sync) {
6355 			mddev->in_sync = 0;
6356 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6357 			md_wakeup_thread(mddev->thread);
6358 			did_change = 1;
6359 		}
6360 		spin_unlock_irq(&mddev->write_lock);
6361 	}
6362 	if (did_change)
6363 		sysfs_notify_dirent(mddev->sysfs_state);
6364 	wait_event(mddev->sb_wait,
6365 		   !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6366 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6367 }
6368 
6369 void md_write_end(mddev_t *mddev)
6370 {
6371 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6372 		if (mddev->safemode == 2)
6373 			md_wakeup_thread(mddev->thread);
6374 		else if (mddev->safemode_delay)
6375 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6376 	}
6377 }
6378 
6379 /* md_allow_write(mddev)
6380  * Calling this ensures that the array is marked 'active' so that writes
6381  * may proceed without blocking.  It is important to call this before
6382  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6383  * Must be called with mddev_lock held.
6384  *
6385  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6386  * is dropped, so return -EAGAIN after notifying userspace.
6387  */
6388 int md_allow_write(mddev_t *mddev)
6389 {
6390 	if (!mddev->pers)
6391 		return 0;
6392 	if (mddev->ro)
6393 		return 0;
6394 	if (!mddev->pers->sync_request)
6395 		return 0;
6396 
6397 	spin_lock_irq(&mddev->write_lock);
6398 	if (mddev->in_sync) {
6399 		mddev->in_sync = 0;
6400 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6401 		if (mddev->safemode_delay &&
6402 		    mddev->safemode == 0)
6403 			mddev->safemode = 1;
6404 		spin_unlock_irq(&mddev->write_lock);
6405 		md_update_sb(mddev, 0);
6406 		sysfs_notify_dirent(mddev->sysfs_state);
6407 	} else
6408 		spin_unlock_irq(&mddev->write_lock);
6409 
6410 	if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6411 		return -EAGAIN;
6412 	else
6413 		return 0;
6414 }
6415 EXPORT_SYMBOL_GPL(md_allow_write);
6416 
6417 #define SYNC_MARKS	10
6418 #define	SYNC_MARK_STEP	(3*HZ)
6419 void md_do_sync(mddev_t *mddev)
6420 {
6421 	mddev_t *mddev2;
6422 	unsigned int currspeed = 0,
6423 		 window;
6424 	sector_t max_sectors,j, io_sectors;
6425 	unsigned long mark[SYNC_MARKS];
6426 	sector_t mark_cnt[SYNC_MARKS];
6427 	int last_mark,m;
6428 	struct list_head *tmp;
6429 	sector_t last_check;
6430 	int skipped = 0;
6431 	mdk_rdev_t *rdev;
6432 	char *desc;
6433 
6434 	/* just incase thread restarts... */
6435 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6436 		return;
6437 	if (mddev->ro) /* never try to sync a read-only array */
6438 		return;
6439 
6440 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6441 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6442 			desc = "data-check";
6443 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6444 			desc = "requested-resync";
6445 		else
6446 			desc = "resync";
6447 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6448 		desc = "reshape";
6449 	else
6450 		desc = "recovery";
6451 
6452 	/* we overload curr_resync somewhat here.
6453 	 * 0 == not engaged in resync at all
6454 	 * 2 == checking that there is no conflict with another sync
6455 	 * 1 == like 2, but have yielded to allow conflicting resync to
6456 	 *		commense
6457 	 * other == active in resync - this many blocks
6458 	 *
6459 	 * Before starting a resync we must have set curr_resync to
6460 	 * 2, and then checked that every "conflicting" array has curr_resync
6461 	 * less than ours.  When we find one that is the same or higher
6462 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6463 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6464 	 * This will mean we have to start checking from the beginning again.
6465 	 *
6466 	 */
6467 
6468 	do {
6469 		mddev->curr_resync = 2;
6470 
6471 	try_again:
6472 		if (kthread_should_stop())
6473 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6474 
6475 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6476 			goto skip;
6477 		for_each_mddev(mddev2, tmp) {
6478 			if (mddev2 == mddev)
6479 				continue;
6480 			if (!mddev->parallel_resync
6481 			&&  mddev2->curr_resync
6482 			&&  match_mddev_units(mddev, mddev2)) {
6483 				DEFINE_WAIT(wq);
6484 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6485 					/* arbitrarily yield */
6486 					mddev->curr_resync = 1;
6487 					wake_up(&resync_wait);
6488 				}
6489 				if (mddev > mddev2 && mddev->curr_resync == 1)
6490 					/* no need to wait here, we can wait the next
6491 					 * time 'round when curr_resync == 2
6492 					 */
6493 					continue;
6494 				/* We need to wait 'interruptible' so as not to
6495 				 * contribute to the load average, and not to
6496 				 * be caught by 'softlockup'
6497 				 */
6498 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6499 				if (!kthread_should_stop() &&
6500 				    mddev2->curr_resync >= mddev->curr_resync) {
6501 					printk(KERN_INFO "md: delaying %s of %s"
6502 					       " until %s has finished (they"
6503 					       " share one or more physical units)\n",
6504 					       desc, mdname(mddev), mdname(mddev2));
6505 					mddev_put(mddev2);
6506 					if (signal_pending(current))
6507 						flush_signals(current);
6508 					schedule();
6509 					finish_wait(&resync_wait, &wq);
6510 					goto try_again;
6511 				}
6512 				finish_wait(&resync_wait, &wq);
6513 			}
6514 		}
6515 	} while (mddev->curr_resync < 2);
6516 
6517 	j = 0;
6518 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6519 		/* resync follows the size requested by the personality,
6520 		 * which defaults to physical size, but can be virtual size
6521 		 */
6522 		max_sectors = mddev->resync_max_sectors;
6523 		mddev->resync_mismatches = 0;
6524 		/* we don't use the checkpoint if there's a bitmap */
6525 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6526 			j = mddev->resync_min;
6527 		else if (!mddev->bitmap)
6528 			j = mddev->recovery_cp;
6529 
6530 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6531 		max_sectors = mddev->dev_sectors;
6532 	else {
6533 		/* recovery follows the physical size of devices */
6534 		max_sectors = mddev->dev_sectors;
6535 		j = MaxSector;
6536 		rcu_read_lock();
6537 		list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6538 			if (rdev->raid_disk >= 0 &&
6539 			    !test_bit(Faulty, &rdev->flags) &&
6540 			    !test_bit(In_sync, &rdev->flags) &&
6541 			    rdev->recovery_offset < j)
6542 				j = rdev->recovery_offset;
6543 		rcu_read_unlock();
6544 	}
6545 
6546 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6547 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6548 		" %d KB/sec/disk.\n", speed_min(mddev));
6549 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6550 	       "(but not more than %d KB/sec) for %s.\n",
6551 	       speed_max(mddev), desc);
6552 
6553 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6554 
6555 	io_sectors = 0;
6556 	for (m = 0; m < SYNC_MARKS; m++) {
6557 		mark[m] = jiffies;
6558 		mark_cnt[m] = io_sectors;
6559 	}
6560 	last_mark = 0;
6561 	mddev->resync_mark = mark[last_mark];
6562 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6563 
6564 	/*
6565 	 * Tune reconstruction:
6566 	 */
6567 	window = 32*(PAGE_SIZE/512);
6568 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6569 		window/2,(unsigned long long) max_sectors/2);
6570 
6571 	atomic_set(&mddev->recovery_active, 0);
6572 	last_check = 0;
6573 
6574 	if (j>2) {
6575 		printk(KERN_INFO
6576 		       "md: resuming %s of %s from checkpoint.\n",
6577 		       desc, mdname(mddev));
6578 		mddev->curr_resync = j;
6579 	}
6580 	mddev->curr_resync_completed = mddev->curr_resync;
6581 
6582 	while (j < max_sectors) {
6583 		sector_t sectors;
6584 
6585 		skipped = 0;
6586 
6587 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6588 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
6589 		      (mddev->curr_resync - mddev->curr_resync_completed)
6590 		      > (max_sectors >> 4)) ||
6591 		     (j - mddev->curr_resync_completed)*2
6592 		     >= mddev->resync_max - mddev->curr_resync_completed
6593 			    )) {
6594 			/* time to update curr_resync_completed */
6595 			blk_unplug(mddev->queue);
6596 			wait_event(mddev->recovery_wait,
6597 				   atomic_read(&mddev->recovery_active) == 0);
6598 			mddev->curr_resync_completed =
6599 				mddev->curr_resync;
6600 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6601 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6602 		}
6603 
6604 		while (j >= mddev->resync_max && !kthread_should_stop()) {
6605 			/* As this condition is controlled by user-space,
6606 			 * we can block indefinitely, so use '_interruptible'
6607 			 * to avoid triggering warnings.
6608 			 */
6609 			flush_signals(current); /* just in case */
6610 			wait_event_interruptible(mddev->recovery_wait,
6611 						 mddev->resync_max > j
6612 						 || kthread_should_stop());
6613 		}
6614 
6615 		if (kthread_should_stop())
6616 			goto interrupted;
6617 
6618 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6619 						  currspeed < speed_min(mddev));
6620 		if (sectors == 0) {
6621 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6622 			goto out;
6623 		}
6624 
6625 		if (!skipped) { /* actual IO requested */
6626 			io_sectors += sectors;
6627 			atomic_add(sectors, &mddev->recovery_active);
6628 		}
6629 
6630 		j += sectors;
6631 		if (j>1) mddev->curr_resync = j;
6632 		mddev->curr_mark_cnt = io_sectors;
6633 		if (last_check == 0)
6634 			/* this is the earliers that rebuilt will be
6635 			 * visible in /proc/mdstat
6636 			 */
6637 			md_new_event(mddev);
6638 
6639 		if (last_check + window > io_sectors || j == max_sectors)
6640 			continue;
6641 
6642 		last_check = io_sectors;
6643 
6644 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6645 			break;
6646 
6647 	repeat:
6648 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6649 			/* step marks */
6650 			int next = (last_mark+1) % SYNC_MARKS;
6651 
6652 			mddev->resync_mark = mark[next];
6653 			mddev->resync_mark_cnt = mark_cnt[next];
6654 			mark[next] = jiffies;
6655 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6656 			last_mark = next;
6657 		}
6658 
6659 
6660 		if (kthread_should_stop())
6661 			goto interrupted;
6662 
6663 
6664 		/*
6665 		 * this loop exits only if either when we are slower than
6666 		 * the 'hard' speed limit, or the system was IO-idle for
6667 		 * a jiffy.
6668 		 * the system might be non-idle CPU-wise, but we only care
6669 		 * about not overloading the IO subsystem. (things like an
6670 		 * e2fsck being done on the RAID array should execute fast)
6671 		 */
6672 		blk_unplug(mddev->queue);
6673 		cond_resched();
6674 
6675 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6676 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6677 
6678 		if (currspeed > speed_min(mddev)) {
6679 			if ((currspeed > speed_max(mddev)) ||
6680 					!is_mddev_idle(mddev, 0)) {
6681 				msleep(500);
6682 				goto repeat;
6683 			}
6684 		}
6685 	}
6686 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6687 	/*
6688 	 * this also signals 'finished resyncing' to md_stop
6689 	 */
6690  out:
6691 	blk_unplug(mddev->queue);
6692 
6693 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6694 
6695 	/* tell personality that we are finished */
6696 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6697 
6698 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6699 	    mddev->curr_resync > 2) {
6700 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6701 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6702 				if (mddev->curr_resync >= mddev->recovery_cp) {
6703 					printk(KERN_INFO
6704 					       "md: checkpointing %s of %s.\n",
6705 					       desc, mdname(mddev));
6706 					mddev->recovery_cp = mddev->curr_resync;
6707 				}
6708 			} else
6709 				mddev->recovery_cp = MaxSector;
6710 		} else {
6711 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6712 				mddev->curr_resync = MaxSector;
6713 			rcu_read_lock();
6714 			list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6715 				if (rdev->raid_disk >= 0 &&
6716 				    !test_bit(Faulty, &rdev->flags) &&
6717 				    !test_bit(In_sync, &rdev->flags) &&
6718 				    rdev->recovery_offset < mddev->curr_resync)
6719 					rdev->recovery_offset = mddev->curr_resync;
6720 			rcu_read_unlock();
6721 		}
6722 	}
6723 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6724 
6725  skip:
6726 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6727 		/* We completed so min/max setting can be forgotten if used. */
6728 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6729 			mddev->resync_min = 0;
6730 		mddev->resync_max = MaxSector;
6731 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6732 		mddev->resync_min = mddev->curr_resync_completed;
6733 	mddev->curr_resync = 0;
6734 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6735 		mddev->curr_resync_completed = 0;
6736 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6737 	wake_up(&resync_wait);
6738 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6739 	md_wakeup_thread(mddev->thread);
6740 	return;
6741 
6742  interrupted:
6743 	/*
6744 	 * got a signal, exit.
6745 	 */
6746 	printk(KERN_INFO
6747 	       "md: md_do_sync() got signal ... exiting\n");
6748 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6749 	goto out;
6750 
6751 }
6752 EXPORT_SYMBOL_GPL(md_do_sync);
6753 
6754 
6755 static int remove_and_add_spares(mddev_t *mddev)
6756 {
6757 	mdk_rdev_t *rdev;
6758 	int spares = 0;
6759 
6760 	mddev->curr_resync_completed = 0;
6761 
6762 	list_for_each_entry(rdev, &mddev->disks, same_set)
6763 		if (rdev->raid_disk >= 0 &&
6764 		    !test_bit(Blocked, &rdev->flags) &&
6765 		    (test_bit(Faulty, &rdev->flags) ||
6766 		     ! test_bit(In_sync, &rdev->flags)) &&
6767 		    atomic_read(&rdev->nr_pending)==0) {
6768 			if (mddev->pers->hot_remove_disk(
6769 				    mddev, rdev->raid_disk)==0) {
6770 				char nm[20];
6771 				sprintf(nm,"rd%d", rdev->raid_disk);
6772 				sysfs_remove_link(&mddev->kobj, nm);
6773 				rdev->raid_disk = -1;
6774 			}
6775 		}
6776 
6777 	if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6778 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6779 			if (rdev->raid_disk >= 0 &&
6780 			    !test_bit(In_sync, &rdev->flags) &&
6781 			    !test_bit(Blocked, &rdev->flags))
6782 				spares++;
6783 			if (rdev->raid_disk < 0
6784 			    && !test_bit(Faulty, &rdev->flags)) {
6785 				rdev->recovery_offset = 0;
6786 				if (mddev->pers->
6787 				    hot_add_disk(mddev, rdev) == 0) {
6788 					char nm[20];
6789 					sprintf(nm, "rd%d", rdev->raid_disk);
6790 					if (sysfs_create_link(&mddev->kobj,
6791 							      &rdev->kobj, nm))
6792 						printk(KERN_WARNING
6793 						       "md: cannot register "
6794 						       "%s for %s\n",
6795 						       nm, mdname(mddev));
6796 					spares++;
6797 					md_new_event(mddev);
6798 					set_bit(MD_CHANGE_DEVS, &mddev->flags);
6799 				} else
6800 					break;
6801 			}
6802 		}
6803 	}
6804 	return spares;
6805 }
6806 /*
6807  * This routine is regularly called by all per-raid-array threads to
6808  * deal with generic issues like resync and super-block update.
6809  * Raid personalities that don't have a thread (linear/raid0) do not
6810  * need this as they never do any recovery or update the superblock.
6811  *
6812  * It does not do any resync itself, but rather "forks" off other threads
6813  * to do that as needed.
6814  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6815  * "->recovery" and create a thread at ->sync_thread.
6816  * When the thread finishes it sets MD_RECOVERY_DONE
6817  * and wakeups up this thread which will reap the thread and finish up.
6818  * This thread also removes any faulty devices (with nr_pending == 0).
6819  *
6820  * The overall approach is:
6821  *  1/ if the superblock needs updating, update it.
6822  *  2/ If a recovery thread is running, don't do anything else.
6823  *  3/ If recovery has finished, clean up, possibly marking spares active.
6824  *  4/ If there are any faulty devices, remove them.
6825  *  5/ If array is degraded, try to add spares devices
6826  *  6/ If array has spares or is not in-sync, start a resync thread.
6827  */
6828 void md_check_recovery(mddev_t *mddev)
6829 {
6830 	mdk_rdev_t *rdev;
6831 
6832 
6833 	if (mddev->bitmap)
6834 		bitmap_daemon_work(mddev);
6835 
6836 	if (mddev->ro)
6837 		return;
6838 
6839 	if (signal_pending(current)) {
6840 		if (mddev->pers->sync_request && !mddev->external) {
6841 			printk(KERN_INFO "md: %s in immediate safe mode\n",
6842 			       mdname(mddev));
6843 			mddev->safemode = 2;
6844 		}
6845 		flush_signals(current);
6846 	}
6847 
6848 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6849 		return;
6850 	if ( ! (
6851 		(mddev->flags && !mddev->external) ||
6852 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6853 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6854 		(mddev->external == 0 && mddev->safemode == 1) ||
6855 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6856 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6857 		))
6858 		return;
6859 
6860 	if (mddev_trylock(mddev)) {
6861 		int spares = 0;
6862 
6863 		if (mddev->ro) {
6864 			/* Only thing we do on a ro array is remove
6865 			 * failed devices.
6866 			 */
6867 			remove_and_add_spares(mddev);
6868 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6869 			goto unlock;
6870 		}
6871 
6872 		if (!mddev->external) {
6873 			int did_change = 0;
6874 			spin_lock_irq(&mddev->write_lock);
6875 			if (mddev->safemode &&
6876 			    !atomic_read(&mddev->writes_pending) &&
6877 			    !mddev->in_sync &&
6878 			    mddev->recovery_cp == MaxSector) {
6879 				mddev->in_sync = 1;
6880 				did_change = 1;
6881 				if (mddev->persistent)
6882 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6883 			}
6884 			if (mddev->safemode == 1)
6885 				mddev->safemode = 0;
6886 			spin_unlock_irq(&mddev->write_lock);
6887 			if (did_change)
6888 				sysfs_notify_dirent(mddev->sysfs_state);
6889 		}
6890 
6891 		if (mddev->flags)
6892 			md_update_sb(mddev, 0);
6893 
6894 		list_for_each_entry(rdev, &mddev->disks, same_set)
6895 			if (test_and_clear_bit(StateChanged, &rdev->flags))
6896 				sysfs_notify_dirent(rdev->sysfs_state);
6897 
6898 
6899 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6900 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6901 			/* resync/recovery still happening */
6902 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6903 			goto unlock;
6904 		}
6905 		if (mddev->sync_thread) {
6906 			/* resync has finished, collect result */
6907 			md_unregister_thread(mddev->sync_thread);
6908 			mddev->sync_thread = NULL;
6909 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6910 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6911 				/* success...*/
6912 				/* activate any spares */
6913 				if (mddev->pers->spare_active(mddev))
6914 					sysfs_notify(&mddev->kobj, NULL,
6915 						     "degraded");
6916 			}
6917 			if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6918 			    mddev->pers->finish_reshape)
6919 				mddev->pers->finish_reshape(mddev);
6920 			md_update_sb(mddev, 1);
6921 
6922 			/* if array is no-longer degraded, then any saved_raid_disk
6923 			 * information must be scrapped
6924 			 */
6925 			if (!mddev->degraded)
6926 				list_for_each_entry(rdev, &mddev->disks, same_set)
6927 					rdev->saved_raid_disk = -1;
6928 
6929 			mddev->recovery = 0;
6930 			/* flag recovery needed just to double check */
6931 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6932 			sysfs_notify_dirent(mddev->sysfs_action);
6933 			md_new_event(mddev);
6934 			goto unlock;
6935 		}
6936 		/* Set RUNNING before clearing NEEDED to avoid
6937 		 * any transients in the value of "sync_action".
6938 		 */
6939 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6940 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6941 		/* Clear some bits that don't mean anything, but
6942 		 * might be left set
6943 		 */
6944 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6945 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6946 
6947 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6948 			goto unlock;
6949 		/* no recovery is running.
6950 		 * remove any failed drives, then
6951 		 * add spares if possible.
6952 		 * Spare are also removed and re-added, to allow
6953 		 * the personality to fail the re-add.
6954 		 */
6955 
6956 		if (mddev->reshape_position != MaxSector) {
6957 			if (mddev->pers->check_reshape == NULL ||
6958 			    mddev->pers->check_reshape(mddev) != 0)
6959 				/* Cannot proceed */
6960 				goto unlock;
6961 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6962 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6963 		} else if ((spares = remove_and_add_spares(mddev))) {
6964 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6965 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6966 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6967 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6968 		} else if (mddev->recovery_cp < MaxSector) {
6969 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6970 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6971 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6972 			/* nothing to be done ... */
6973 			goto unlock;
6974 
6975 		if (mddev->pers->sync_request) {
6976 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6977 				/* We are adding a device or devices to an array
6978 				 * which has the bitmap stored on all devices.
6979 				 * So make sure all bitmap pages get written
6980 				 */
6981 				bitmap_write_all(mddev->bitmap);
6982 			}
6983 			mddev->sync_thread = md_register_thread(md_do_sync,
6984 								mddev,
6985 								"resync");
6986 			if (!mddev->sync_thread) {
6987 				printk(KERN_ERR "%s: could not start resync"
6988 					" thread...\n",
6989 					mdname(mddev));
6990 				/* leave the spares where they are, it shouldn't hurt */
6991 				mddev->recovery = 0;
6992 			} else
6993 				md_wakeup_thread(mddev->sync_thread);
6994 			sysfs_notify_dirent(mddev->sysfs_action);
6995 			md_new_event(mddev);
6996 		}
6997 	unlock:
6998 		if (!mddev->sync_thread) {
6999 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7000 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7001 					       &mddev->recovery))
7002 				if (mddev->sysfs_action)
7003 					sysfs_notify_dirent(mddev->sysfs_action);
7004 		}
7005 		mddev_unlock(mddev);
7006 	}
7007 }
7008 
7009 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7010 {
7011 	sysfs_notify_dirent(rdev->sysfs_state);
7012 	wait_event_timeout(rdev->blocked_wait,
7013 			   !test_bit(Blocked, &rdev->flags),
7014 			   msecs_to_jiffies(5000));
7015 	rdev_dec_pending(rdev, mddev);
7016 }
7017 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7018 
7019 static int md_notify_reboot(struct notifier_block *this,
7020 			    unsigned long code, void *x)
7021 {
7022 	struct list_head *tmp;
7023 	mddev_t *mddev;
7024 
7025 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7026 
7027 		printk(KERN_INFO "md: stopping all md devices.\n");
7028 
7029 		for_each_mddev(mddev, tmp)
7030 			if (mddev_trylock(mddev)) {
7031 				/* Force a switch to readonly even array
7032 				 * appears to still be in use.  Hence
7033 				 * the '100'.
7034 				 */
7035 				do_md_stop(mddev, 1, 100);
7036 				mddev_unlock(mddev);
7037 			}
7038 		/*
7039 		 * certain more exotic SCSI devices are known to be
7040 		 * volatile wrt too early system reboots. While the
7041 		 * right place to handle this issue is the given
7042 		 * driver, we do want to have a safe RAID driver ...
7043 		 */
7044 		mdelay(1000*1);
7045 	}
7046 	return NOTIFY_DONE;
7047 }
7048 
7049 static struct notifier_block md_notifier = {
7050 	.notifier_call	= md_notify_reboot,
7051 	.next		= NULL,
7052 	.priority	= INT_MAX, /* before any real devices */
7053 };
7054 
7055 static void md_geninit(void)
7056 {
7057 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7058 
7059 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7060 }
7061 
7062 static int __init md_init(void)
7063 {
7064 	if (register_blkdev(MD_MAJOR, "md"))
7065 		return -1;
7066 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7067 		unregister_blkdev(MD_MAJOR, "md");
7068 		return -1;
7069 	}
7070 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7071 			    md_probe, NULL, NULL);
7072 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7073 			    md_probe, NULL, NULL);
7074 
7075 	register_reboot_notifier(&md_notifier);
7076 	raid_table_header = register_sysctl_table(raid_root_table);
7077 
7078 	md_geninit();
7079 	return 0;
7080 }
7081 
7082 
7083 #ifndef MODULE
7084 
7085 /*
7086  * Searches all registered partitions for autorun RAID arrays
7087  * at boot time.
7088  */
7089 
7090 static LIST_HEAD(all_detected_devices);
7091 struct detected_devices_node {
7092 	struct list_head list;
7093 	dev_t dev;
7094 };
7095 
7096 void md_autodetect_dev(dev_t dev)
7097 {
7098 	struct detected_devices_node *node_detected_dev;
7099 
7100 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7101 	if (node_detected_dev) {
7102 		node_detected_dev->dev = dev;
7103 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
7104 	} else {
7105 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7106 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7107 	}
7108 }
7109 
7110 
7111 static void autostart_arrays(int part)
7112 {
7113 	mdk_rdev_t *rdev;
7114 	struct detected_devices_node *node_detected_dev;
7115 	dev_t dev;
7116 	int i_scanned, i_passed;
7117 
7118 	i_scanned = 0;
7119 	i_passed = 0;
7120 
7121 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7122 
7123 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7124 		i_scanned++;
7125 		node_detected_dev = list_entry(all_detected_devices.next,
7126 					struct detected_devices_node, list);
7127 		list_del(&node_detected_dev->list);
7128 		dev = node_detected_dev->dev;
7129 		kfree(node_detected_dev);
7130 		rdev = md_import_device(dev,0, 90);
7131 		if (IS_ERR(rdev))
7132 			continue;
7133 
7134 		if (test_bit(Faulty, &rdev->flags)) {
7135 			MD_BUG();
7136 			continue;
7137 		}
7138 		set_bit(AutoDetected, &rdev->flags);
7139 		list_add(&rdev->same_set, &pending_raid_disks);
7140 		i_passed++;
7141 	}
7142 
7143 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7144 						i_scanned, i_passed);
7145 
7146 	autorun_devices(part);
7147 }
7148 
7149 #endif /* !MODULE */
7150 
7151 static __exit void md_exit(void)
7152 {
7153 	mddev_t *mddev;
7154 	struct list_head *tmp;
7155 
7156 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7157 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7158 
7159 	unregister_blkdev(MD_MAJOR,"md");
7160 	unregister_blkdev(mdp_major, "mdp");
7161 	unregister_reboot_notifier(&md_notifier);
7162 	unregister_sysctl_table(raid_table_header);
7163 	remove_proc_entry("mdstat", NULL);
7164 	for_each_mddev(mddev, tmp) {
7165 		export_array(mddev);
7166 		mddev->hold_active = 0;
7167 	}
7168 }
7169 
7170 subsys_initcall(md_init);
7171 module_exit(md_exit)
7172 
7173 static int get_ro(char *buffer, struct kernel_param *kp)
7174 {
7175 	return sprintf(buffer, "%d", start_readonly);
7176 }
7177 static int set_ro(const char *val, struct kernel_param *kp)
7178 {
7179 	char *e;
7180 	int num = simple_strtoul(val, &e, 10);
7181 	if (*val && (*e == '\0' || *e == '\n')) {
7182 		start_readonly = num;
7183 		return 0;
7184 	}
7185 	return -EINVAL;
7186 }
7187 
7188 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7189 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7190 
7191 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7192 
7193 EXPORT_SYMBOL(register_md_personality);
7194 EXPORT_SYMBOL(unregister_md_personality);
7195 EXPORT_SYMBOL(md_error);
7196 EXPORT_SYMBOL(md_done_sync);
7197 EXPORT_SYMBOL(md_write_start);
7198 EXPORT_SYMBOL(md_write_end);
7199 EXPORT_SYMBOL(md_register_thread);
7200 EXPORT_SYMBOL(md_unregister_thread);
7201 EXPORT_SYMBOL(md_wakeup_thread);
7202 EXPORT_SYMBOL(md_check_recovery);
7203 MODULE_LICENSE("GPL");
7204 MODULE_DESCRIPTION("MD RAID framework");
7205 MODULE_ALIAS("md");
7206 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
7207