xref: /openbmc/linux/drivers/md/md.c (revision b627b4ed)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48 #include <linux/raid/md_p.h>
49 #include <linux/raid/md_u.h>
50 #include "md.h"
51 #include "bitmap.h"
52 
53 #define DEBUG 0
54 #define dprintk(x...) ((void)(DEBUG && printk(x)))
55 
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 static LIST_HEAD(pers_list);
62 static DEFINE_SPINLOCK(pers_lock);
63 
64 static void md_print_devices(void);
65 
66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
67 
68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
69 
70 /*
71  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
72  * is 1000 KB/sec, so the extra system load does not show up that much.
73  * Increase it if you want to have more _guaranteed_ speed. Note that
74  * the RAID driver will use the maximum available bandwidth if the IO
75  * subsystem is idle. There is also an 'absolute maximum' reconstruction
76  * speed limit - in case reconstruction slows down your system despite
77  * idle IO detection.
78  *
79  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
80  * or /sys/block/mdX/md/sync_speed_{min,max}
81  */
82 
83 static int sysctl_speed_limit_min = 1000;
84 static int sysctl_speed_limit_max = 200000;
85 static inline int speed_min(mddev_t *mddev)
86 {
87 	return mddev->sync_speed_min ?
88 		mddev->sync_speed_min : sysctl_speed_limit_min;
89 }
90 
91 static inline int speed_max(mddev_t *mddev)
92 {
93 	return mddev->sync_speed_max ?
94 		mddev->sync_speed_max : sysctl_speed_limit_max;
95 }
96 
97 static struct ctl_table_header *raid_table_header;
98 
99 static ctl_table raid_table[] = {
100 	{
101 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
102 		.procname	= "speed_limit_min",
103 		.data		= &sysctl_speed_limit_min,
104 		.maxlen		= sizeof(int),
105 		.mode		= S_IRUGO|S_IWUSR,
106 		.proc_handler	= &proc_dointvec,
107 	},
108 	{
109 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
110 		.procname	= "speed_limit_max",
111 		.data		= &sysctl_speed_limit_max,
112 		.maxlen		= sizeof(int),
113 		.mode		= S_IRUGO|S_IWUSR,
114 		.proc_handler	= &proc_dointvec,
115 	},
116 	{ .ctl_name = 0 }
117 };
118 
119 static ctl_table raid_dir_table[] = {
120 	{
121 		.ctl_name	= DEV_RAID,
122 		.procname	= "raid",
123 		.maxlen		= 0,
124 		.mode		= S_IRUGO|S_IXUGO,
125 		.child		= raid_table,
126 	},
127 	{ .ctl_name = 0 }
128 };
129 
130 static ctl_table raid_root_table[] = {
131 	{
132 		.ctl_name	= CTL_DEV,
133 		.procname	= "dev",
134 		.maxlen		= 0,
135 		.mode		= 0555,
136 		.child		= raid_dir_table,
137 	},
138 	{ .ctl_name = 0 }
139 };
140 
141 static struct block_device_operations md_fops;
142 
143 static int start_readonly;
144 
145 /*
146  * We have a system wide 'event count' that is incremented
147  * on any 'interesting' event, and readers of /proc/mdstat
148  * can use 'poll' or 'select' to find out when the event
149  * count increases.
150  *
151  * Events are:
152  *  start array, stop array, error, add device, remove device,
153  *  start build, activate spare
154  */
155 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
156 static atomic_t md_event_count;
157 void md_new_event(mddev_t *mddev)
158 {
159 	atomic_inc(&md_event_count);
160 	wake_up(&md_event_waiters);
161 }
162 EXPORT_SYMBOL_GPL(md_new_event);
163 
164 /* Alternate version that can be called from interrupts
165  * when calling sysfs_notify isn't needed.
166  */
167 static void md_new_event_inintr(mddev_t *mddev)
168 {
169 	atomic_inc(&md_event_count);
170 	wake_up(&md_event_waiters);
171 }
172 
173 /*
174  * Enables to iterate over all existing md arrays
175  * all_mddevs_lock protects this list.
176  */
177 static LIST_HEAD(all_mddevs);
178 static DEFINE_SPINLOCK(all_mddevs_lock);
179 
180 
181 /*
182  * iterates through all used mddevs in the system.
183  * We take care to grab the all_mddevs_lock whenever navigating
184  * the list, and to always hold a refcount when unlocked.
185  * Any code which breaks out of this loop while own
186  * a reference to the current mddev and must mddev_put it.
187  */
188 #define for_each_mddev(mddev,tmp)					\
189 									\
190 	for (({ spin_lock(&all_mddevs_lock); 				\
191 		tmp = all_mddevs.next;					\
192 		mddev = NULL;});					\
193 	     ({ if (tmp != &all_mddevs)					\
194 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
195 		spin_unlock(&all_mddevs_lock);				\
196 		if (mddev) mddev_put(mddev);				\
197 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
198 		tmp != &all_mddevs;});					\
199 	     ({ spin_lock(&all_mddevs_lock);				\
200 		tmp = tmp->next;})					\
201 		)
202 
203 
204 /* Rather than calling directly into the personality make_request function,
205  * IO requests come here first so that we can check if the device is
206  * being suspended pending a reconfiguration.
207  * We hold a refcount over the call to ->make_request.  By the time that
208  * call has finished, the bio has been linked into some internal structure
209  * and so is visible to ->quiesce(), so we don't need the refcount any more.
210  */
211 static int md_make_request(struct request_queue *q, struct bio *bio)
212 {
213 	mddev_t *mddev = q->queuedata;
214 	int rv;
215 	if (mddev == NULL || mddev->pers == NULL) {
216 		bio_io_error(bio);
217 		return 0;
218 	}
219 	rcu_read_lock();
220 	if (mddev->suspended) {
221 		DEFINE_WAIT(__wait);
222 		for (;;) {
223 			prepare_to_wait(&mddev->sb_wait, &__wait,
224 					TASK_UNINTERRUPTIBLE);
225 			if (!mddev->suspended)
226 				break;
227 			rcu_read_unlock();
228 			schedule();
229 			rcu_read_lock();
230 		}
231 		finish_wait(&mddev->sb_wait, &__wait);
232 	}
233 	atomic_inc(&mddev->active_io);
234 	rcu_read_unlock();
235 	rv = mddev->pers->make_request(q, bio);
236 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
237 		wake_up(&mddev->sb_wait);
238 
239 	return rv;
240 }
241 
242 static void mddev_suspend(mddev_t *mddev)
243 {
244 	BUG_ON(mddev->suspended);
245 	mddev->suspended = 1;
246 	synchronize_rcu();
247 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
248 	mddev->pers->quiesce(mddev, 1);
249 	md_unregister_thread(mddev->thread);
250 	mddev->thread = NULL;
251 	/* we now know that no code is executing in the personality module,
252 	 * except possibly the tail end of a ->bi_end_io function, but that
253 	 * is certain to complete before the module has a chance to get
254 	 * unloaded
255 	 */
256 }
257 
258 static void mddev_resume(mddev_t *mddev)
259 {
260 	mddev->suspended = 0;
261 	wake_up(&mddev->sb_wait);
262 	mddev->pers->quiesce(mddev, 0);
263 }
264 
265 
266 static inline mddev_t *mddev_get(mddev_t *mddev)
267 {
268 	atomic_inc(&mddev->active);
269 	return mddev;
270 }
271 
272 static void mddev_delayed_delete(struct work_struct *ws);
273 
274 static void mddev_put(mddev_t *mddev)
275 {
276 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
277 		return;
278 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
279 	    !mddev->hold_active) {
280 		list_del(&mddev->all_mddevs);
281 		if (mddev->gendisk) {
282 			/* we did a probe so need to clean up.
283 			 * Call schedule_work inside the spinlock
284 			 * so that flush_scheduled_work() after
285 			 * mddev_find will succeed in waiting for the
286 			 * work to be done.
287 			 */
288 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
289 			schedule_work(&mddev->del_work);
290 		} else
291 			kfree(mddev);
292 	}
293 	spin_unlock(&all_mddevs_lock);
294 }
295 
296 static mddev_t * mddev_find(dev_t unit)
297 {
298 	mddev_t *mddev, *new = NULL;
299 
300  retry:
301 	spin_lock(&all_mddevs_lock);
302 
303 	if (unit) {
304 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
305 			if (mddev->unit == unit) {
306 				mddev_get(mddev);
307 				spin_unlock(&all_mddevs_lock);
308 				kfree(new);
309 				return mddev;
310 			}
311 
312 		if (new) {
313 			list_add(&new->all_mddevs, &all_mddevs);
314 			spin_unlock(&all_mddevs_lock);
315 			new->hold_active = UNTIL_IOCTL;
316 			return new;
317 		}
318 	} else if (new) {
319 		/* find an unused unit number */
320 		static int next_minor = 512;
321 		int start = next_minor;
322 		int is_free = 0;
323 		int dev = 0;
324 		while (!is_free) {
325 			dev = MKDEV(MD_MAJOR, next_minor);
326 			next_minor++;
327 			if (next_minor > MINORMASK)
328 				next_minor = 0;
329 			if (next_minor == start) {
330 				/* Oh dear, all in use. */
331 				spin_unlock(&all_mddevs_lock);
332 				kfree(new);
333 				return NULL;
334 			}
335 
336 			is_free = 1;
337 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
338 				if (mddev->unit == dev) {
339 					is_free = 0;
340 					break;
341 				}
342 		}
343 		new->unit = dev;
344 		new->md_minor = MINOR(dev);
345 		new->hold_active = UNTIL_STOP;
346 		list_add(&new->all_mddevs, &all_mddevs);
347 		spin_unlock(&all_mddevs_lock);
348 		return new;
349 	}
350 	spin_unlock(&all_mddevs_lock);
351 
352 	new = kzalloc(sizeof(*new), GFP_KERNEL);
353 	if (!new)
354 		return NULL;
355 
356 	new->unit = unit;
357 	if (MAJOR(unit) == MD_MAJOR)
358 		new->md_minor = MINOR(unit);
359 	else
360 		new->md_minor = MINOR(unit) >> MdpMinorShift;
361 
362 	mutex_init(&new->reconfig_mutex);
363 	INIT_LIST_HEAD(&new->disks);
364 	INIT_LIST_HEAD(&new->all_mddevs);
365 	init_timer(&new->safemode_timer);
366 	atomic_set(&new->active, 1);
367 	atomic_set(&new->openers, 0);
368 	atomic_set(&new->active_io, 0);
369 	spin_lock_init(&new->write_lock);
370 	init_waitqueue_head(&new->sb_wait);
371 	init_waitqueue_head(&new->recovery_wait);
372 	new->reshape_position = MaxSector;
373 	new->resync_min = 0;
374 	new->resync_max = MaxSector;
375 	new->level = LEVEL_NONE;
376 
377 	goto retry;
378 }
379 
380 static inline int mddev_lock(mddev_t * mddev)
381 {
382 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
383 }
384 
385 static inline int mddev_is_locked(mddev_t *mddev)
386 {
387 	return mutex_is_locked(&mddev->reconfig_mutex);
388 }
389 
390 static inline int mddev_trylock(mddev_t * mddev)
391 {
392 	return mutex_trylock(&mddev->reconfig_mutex);
393 }
394 
395 static inline void mddev_unlock(mddev_t * mddev)
396 {
397 	mutex_unlock(&mddev->reconfig_mutex);
398 
399 	md_wakeup_thread(mddev->thread);
400 }
401 
402 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
403 {
404 	mdk_rdev_t *rdev;
405 
406 	list_for_each_entry(rdev, &mddev->disks, same_set)
407 		if (rdev->desc_nr == nr)
408 			return rdev;
409 
410 	return NULL;
411 }
412 
413 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
414 {
415 	mdk_rdev_t *rdev;
416 
417 	list_for_each_entry(rdev, &mddev->disks, same_set)
418 		if (rdev->bdev->bd_dev == dev)
419 			return rdev;
420 
421 	return NULL;
422 }
423 
424 static struct mdk_personality *find_pers(int level, char *clevel)
425 {
426 	struct mdk_personality *pers;
427 	list_for_each_entry(pers, &pers_list, list) {
428 		if (level != LEVEL_NONE && pers->level == level)
429 			return pers;
430 		if (strcmp(pers->name, clevel)==0)
431 			return pers;
432 	}
433 	return NULL;
434 }
435 
436 /* return the offset of the super block in 512byte sectors */
437 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
438 {
439 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
440 	return MD_NEW_SIZE_SECTORS(num_sectors);
441 }
442 
443 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
444 {
445 	sector_t num_sectors = rdev->sb_start;
446 
447 	if (chunk_size)
448 		num_sectors &= ~((sector_t)chunk_size/512 - 1);
449 	return num_sectors;
450 }
451 
452 static int alloc_disk_sb(mdk_rdev_t * rdev)
453 {
454 	if (rdev->sb_page)
455 		MD_BUG();
456 
457 	rdev->sb_page = alloc_page(GFP_KERNEL);
458 	if (!rdev->sb_page) {
459 		printk(KERN_ALERT "md: out of memory.\n");
460 		return -ENOMEM;
461 	}
462 
463 	return 0;
464 }
465 
466 static void free_disk_sb(mdk_rdev_t * rdev)
467 {
468 	if (rdev->sb_page) {
469 		put_page(rdev->sb_page);
470 		rdev->sb_loaded = 0;
471 		rdev->sb_page = NULL;
472 		rdev->sb_start = 0;
473 		rdev->sectors = 0;
474 	}
475 }
476 
477 
478 static void super_written(struct bio *bio, int error)
479 {
480 	mdk_rdev_t *rdev = bio->bi_private;
481 	mddev_t *mddev = rdev->mddev;
482 
483 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
484 		printk("md: super_written gets error=%d, uptodate=%d\n",
485 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
486 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
487 		md_error(mddev, rdev);
488 	}
489 
490 	if (atomic_dec_and_test(&mddev->pending_writes))
491 		wake_up(&mddev->sb_wait);
492 	bio_put(bio);
493 }
494 
495 static void super_written_barrier(struct bio *bio, int error)
496 {
497 	struct bio *bio2 = bio->bi_private;
498 	mdk_rdev_t *rdev = bio2->bi_private;
499 	mddev_t *mddev = rdev->mddev;
500 
501 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
502 	    error == -EOPNOTSUPP) {
503 		unsigned long flags;
504 		/* barriers don't appear to be supported :-( */
505 		set_bit(BarriersNotsupp, &rdev->flags);
506 		mddev->barriers_work = 0;
507 		spin_lock_irqsave(&mddev->write_lock, flags);
508 		bio2->bi_next = mddev->biolist;
509 		mddev->biolist = bio2;
510 		spin_unlock_irqrestore(&mddev->write_lock, flags);
511 		wake_up(&mddev->sb_wait);
512 		bio_put(bio);
513 	} else {
514 		bio_put(bio2);
515 		bio->bi_private = rdev;
516 		super_written(bio, error);
517 	}
518 }
519 
520 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
521 		   sector_t sector, int size, struct page *page)
522 {
523 	/* write first size bytes of page to sector of rdev
524 	 * Increment mddev->pending_writes before returning
525 	 * and decrement it on completion, waking up sb_wait
526 	 * if zero is reached.
527 	 * If an error occurred, call md_error
528 	 *
529 	 * As we might need to resubmit the request if BIO_RW_BARRIER
530 	 * causes ENOTSUPP, we allocate a spare bio...
531 	 */
532 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
533 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
534 
535 	bio->bi_bdev = rdev->bdev;
536 	bio->bi_sector = sector;
537 	bio_add_page(bio, page, size, 0);
538 	bio->bi_private = rdev;
539 	bio->bi_end_io = super_written;
540 	bio->bi_rw = rw;
541 
542 	atomic_inc(&mddev->pending_writes);
543 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
544 		struct bio *rbio;
545 		rw |= (1<<BIO_RW_BARRIER);
546 		rbio = bio_clone(bio, GFP_NOIO);
547 		rbio->bi_private = bio;
548 		rbio->bi_end_io = super_written_barrier;
549 		submit_bio(rw, rbio);
550 	} else
551 		submit_bio(rw, bio);
552 }
553 
554 void md_super_wait(mddev_t *mddev)
555 {
556 	/* wait for all superblock writes that were scheduled to complete.
557 	 * if any had to be retried (due to BARRIER problems), retry them
558 	 */
559 	DEFINE_WAIT(wq);
560 	for(;;) {
561 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
562 		if (atomic_read(&mddev->pending_writes)==0)
563 			break;
564 		while (mddev->biolist) {
565 			struct bio *bio;
566 			spin_lock_irq(&mddev->write_lock);
567 			bio = mddev->biolist;
568 			mddev->biolist = bio->bi_next ;
569 			bio->bi_next = NULL;
570 			spin_unlock_irq(&mddev->write_lock);
571 			submit_bio(bio->bi_rw, bio);
572 		}
573 		schedule();
574 	}
575 	finish_wait(&mddev->sb_wait, &wq);
576 }
577 
578 static void bi_complete(struct bio *bio, int error)
579 {
580 	complete((struct completion*)bio->bi_private);
581 }
582 
583 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
584 		   struct page *page, int rw)
585 {
586 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
587 	struct completion event;
588 	int ret;
589 
590 	rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
591 
592 	bio->bi_bdev = bdev;
593 	bio->bi_sector = sector;
594 	bio_add_page(bio, page, size, 0);
595 	init_completion(&event);
596 	bio->bi_private = &event;
597 	bio->bi_end_io = bi_complete;
598 	submit_bio(rw, bio);
599 	wait_for_completion(&event);
600 
601 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
602 	bio_put(bio);
603 	return ret;
604 }
605 EXPORT_SYMBOL_GPL(sync_page_io);
606 
607 static int read_disk_sb(mdk_rdev_t * rdev, int size)
608 {
609 	char b[BDEVNAME_SIZE];
610 	if (!rdev->sb_page) {
611 		MD_BUG();
612 		return -EINVAL;
613 	}
614 	if (rdev->sb_loaded)
615 		return 0;
616 
617 
618 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
619 		goto fail;
620 	rdev->sb_loaded = 1;
621 	return 0;
622 
623 fail:
624 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
625 		bdevname(rdev->bdev,b));
626 	return -EINVAL;
627 }
628 
629 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
630 {
631 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
632 		sb1->set_uuid1 == sb2->set_uuid1 &&
633 		sb1->set_uuid2 == sb2->set_uuid2 &&
634 		sb1->set_uuid3 == sb2->set_uuid3;
635 }
636 
637 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
638 {
639 	int ret;
640 	mdp_super_t *tmp1, *tmp2;
641 
642 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
643 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
644 
645 	if (!tmp1 || !tmp2) {
646 		ret = 0;
647 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
648 		goto abort;
649 	}
650 
651 	*tmp1 = *sb1;
652 	*tmp2 = *sb2;
653 
654 	/*
655 	 * nr_disks is not constant
656 	 */
657 	tmp1->nr_disks = 0;
658 	tmp2->nr_disks = 0;
659 
660 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
661 abort:
662 	kfree(tmp1);
663 	kfree(tmp2);
664 	return ret;
665 }
666 
667 
668 static u32 md_csum_fold(u32 csum)
669 {
670 	csum = (csum & 0xffff) + (csum >> 16);
671 	return (csum & 0xffff) + (csum >> 16);
672 }
673 
674 static unsigned int calc_sb_csum(mdp_super_t * sb)
675 {
676 	u64 newcsum = 0;
677 	u32 *sb32 = (u32*)sb;
678 	int i;
679 	unsigned int disk_csum, csum;
680 
681 	disk_csum = sb->sb_csum;
682 	sb->sb_csum = 0;
683 
684 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
685 		newcsum += sb32[i];
686 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
687 
688 
689 #ifdef CONFIG_ALPHA
690 	/* This used to use csum_partial, which was wrong for several
691 	 * reasons including that different results are returned on
692 	 * different architectures.  It isn't critical that we get exactly
693 	 * the same return value as before (we always csum_fold before
694 	 * testing, and that removes any differences).  However as we
695 	 * know that csum_partial always returned a 16bit value on
696 	 * alphas, do a fold to maximise conformity to previous behaviour.
697 	 */
698 	sb->sb_csum = md_csum_fold(disk_csum);
699 #else
700 	sb->sb_csum = disk_csum;
701 #endif
702 	return csum;
703 }
704 
705 
706 /*
707  * Handle superblock details.
708  * We want to be able to handle multiple superblock formats
709  * so we have a common interface to them all, and an array of
710  * different handlers.
711  * We rely on user-space to write the initial superblock, and support
712  * reading and updating of superblocks.
713  * Interface methods are:
714  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
715  *      loads and validates a superblock on dev.
716  *      if refdev != NULL, compare superblocks on both devices
717  *    Return:
718  *      0 - dev has a superblock that is compatible with refdev
719  *      1 - dev has a superblock that is compatible and newer than refdev
720  *          so dev should be used as the refdev in future
721  *     -EINVAL superblock incompatible or invalid
722  *     -othererror e.g. -EIO
723  *
724  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
725  *      Verify that dev is acceptable into mddev.
726  *       The first time, mddev->raid_disks will be 0, and data from
727  *       dev should be merged in.  Subsequent calls check that dev
728  *       is new enough.  Return 0 or -EINVAL
729  *
730  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
731  *     Update the superblock for rdev with data in mddev
732  *     This does not write to disc.
733  *
734  */
735 
736 struct super_type  {
737 	char		    *name;
738 	struct module	    *owner;
739 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
740 					  int minor_version);
741 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
742 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
743 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
744 						sector_t num_sectors);
745 };
746 
747 /*
748  * load_super for 0.90.0
749  */
750 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
751 {
752 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
753 	mdp_super_t *sb;
754 	int ret;
755 
756 	/*
757 	 * Calculate the position of the superblock (512byte sectors),
758 	 * it's at the end of the disk.
759 	 *
760 	 * It also happens to be a multiple of 4Kb.
761 	 */
762 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
763 
764 	ret = read_disk_sb(rdev, MD_SB_BYTES);
765 	if (ret) return ret;
766 
767 	ret = -EINVAL;
768 
769 	bdevname(rdev->bdev, b);
770 	sb = (mdp_super_t*)page_address(rdev->sb_page);
771 
772 	if (sb->md_magic != MD_SB_MAGIC) {
773 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
774 		       b);
775 		goto abort;
776 	}
777 
778 	if (sb->major_version != 0 ||
779 	    sb->minor_version < 90 ||
780 	    sb->minor_version > 91) {
781 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
782 			sb->major_version, sb->minor_version,
783 			b);
784 		goto abort;
785 	}
786 
787 	if (sb->raid_disks <= 0)
788 		goto abort;
789 
790 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
791 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
792 			b);
793 		goto abort;
794 	}
795 
796 	rdev->preferred_minor = sb->md_minor;
797 	rdev->data_offset = 0;
798 	rdev->sb_size = MD_SB_BYTES;
799 
800 	if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
801 		if (sb->level != 1 && sb->level != 4
802 		    && sb->level != 5 && sb->level != 6
803 		    && sb->level != 10) {
804 			/* FIXME use a better test */
805 			printk(KERN_WARNING
806 			       "md: bitmaps not supported for this level.\n");
807 			goto abort;
808 		}
809 	}
810 
811 	if (sb->level == LEVEL_MULTIPATH)
812 		rdev->desc_nr = -1;
813 	else
814 		rdev->desc_nr = sb->this_disk.number;
815 
816 	if (!refdev) {
817 		ret = 1;
818 	} else {
819 		__u64 ev1, ev2;
820 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
821 		if (!uuid_equal(refsb, sb)) {
822 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
823 				b, bdevname(refdev->bdev,b2));
824 			goto abort;
825 		}
826 		if (!sb_equal(refsb, sb)) {
827 			printk(KERN_WARNING "md: %s has same UUID"
828 			       " but different superblock to %s\n",
829 			       b, bdevname(refdev->bdev, b2));
830 			goto abort;
831 		}
832 		ev1 = md_event(sb);
833 		ev2 = md_event(refsb);
834 		if (ev1 > ev2)
835 			ret = 1;
836 		else
837 			ret = 0;
838 	}
839 	rdev->sectors = calc_num_sectors(rdev, sb->chunk_size);
840 
841 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
842 		/* "this cannot possibly happen" ... */
843 		ret = -EINVAL;
844 
845  abort:
846 	return ret;
847 }
848 
849 /*
850  * validate_super for 0.90.0
851  */
852 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
853 {
854 	mdp_disk_t *desc;
855 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
856 	__u64 ev1 = md_event(sb);
857 
858 	rdev->raid_disk = -1;
859 	clear_bit(Faulty, &rdev->flags);
860 	clear_bit(In_sync, &rdev->flags);
861 	clear_bit(WriteMostly, &rdev->flags);
862 	clear_bit(BarriersNotsupp, &rdev->flags);
863 
864 	if (mddev->raid_disks == 0) {
865 		mddev->major_version = 0;
866 		mddev->minor_version = sb->minor_version;
867 		mddev->patch_version = sb->patch_version;
868 		mddev->external = 0;
869 		mddev->chunk_size = sb->chunk_size;
870 		mddev->ctime = sb->ctime;
871 		mddev->utime = sb->utime;
872 		mddev->level = sb->level;
873 		mddev->clevel[0] = 0;
874 		mddev->layout = sb->layout;
875 		mddev->raid_disks = sb->raid_disks;
876 		mddev->dev_sectors = sb->size * 2;
877 		mddev->events = ev1;
878 		mddev->bitmap_offset = 0;
879 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
880 
881 		if (mddev->minor_version >= 91) {
882 			mddev->reshape_position = sb->reshape_position;
883 			mddev->delta_disks = sb->delta_disks;
884 			mddev->new_level = sb->new_level;
885 			mddev->new_layout = sb->new_layout;
886 			mddev->new_chunk = sb->new_chunk;
887 		} else {
888 			mddev->reshape_position = MaxSector;
889 			mddev->delta_disks = 0;
890 			mddev->new_level = mddev->level;
891 			mddev->new_layout = mddev->layout;
892 			mddev->new_chunk = mddev->chunk_size;
893 		}
894 
895 		if (sb->state & (1<<MD_SB_CLEAN))
896 			mddev->recovery_cp = MaxSector;
897 		else {
898 			if (sb->events_hi == sb->cp_events_hi &&
899 				sb->events_lo == sb->cp_events_lo) {
900 				mddev->recovery_cp = sb->recovery_cp;
901 			} else
902 				mddev->recovery_cp = 0;
903 		}
904 
905 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
906 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
907 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
908 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
909 
910 		mddev->max_disks = MD_SB_DISKS;
911 
912 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
913 		    mddev->bitmap_file == NULL)
914 			mddev->bitmap_offset = mddev->default_bitmap_offset;
915 
916 	} else if (mddev->pers == NULL) {
917 		/* Insist on good event counter while assembling */
918 		++ev1;
919 		if (ev1 < mddev->events)
920 			return -EINVAL;
921 	} else if (mddev->bitmap) {
922 		/* if adding to array with a bitmap, then we can accept an
923 		 * older device ... but not too old.
924 		 */
925 		if (ev1 < mddev->bitmap->events_cleared)
926 			return 0;
927 	} else {
928 		if (ev1 < mddev->events)
929 			/* just a hot-add of a new device, leave raid_disk at -1 */
930 			return 0;
931 	}
932 
933 	if (mddev->level != LEVEL_MULTIPATH) {
934 		desc = sb->disks + rdev->desc_nr;
935 
936 		if (desc->state & (1<<MD_DISK_FAULTY))
937 			set_bit(Faulty, &rdev->flags);
938 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
939 			    desc->raid_disk < mddev->raid_disks */) {
940 			set_bit(In_sync, &rdev->flags);
941 			rdev->raid_disk = desc->raid_disk;
942 		}
943 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
944 			set_bit(WriteMostly, &rdev->flags);
945 	} else /* MULTIPATH are always insync */
946 		set_bit(In_sync, &rdev->flags);
947 	return 0;
948 }
949 
950 /*
951  * sync_super for 0.90.0
952  */
953 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
954 {
955 	mdp_super_t *sb;
956 	mdk_rdev_t *rdev2;
957 	int next_spare = mddev->raid_disks;
958 
959 
960 	/* make rdev->sb match mddev data..
961 	 *
962 	 * 1/ zero out disks
963 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
964 	 * 3/ any empty disks < next_spare become removed
965 	 *
966 	 * disks[0] gets initialised to REMOVED because
967 	 * we cannot be sure from other fields if it has
968 	 * been initialised or not.
969 	 */
970 	int i;
971 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
972 
973 	rdev->sb_size = MD_SB_BYTES;
974 
975 	sb = (mdp_super_t*)page_address(rdev->sb_page);
976 
977 	memset(sb, 0, sizeof(*sb));
978 
979 	sb->md_magic = MD_SB_MAGIC;
980 	sb->major_version = mddev->major_version;
981 	sb->patch_version = mddev->patch_version;
982 	sb->gvalid_words  = 0; /* ignored */
983 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
984 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
985 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
986 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
987 
988 	sb->ctime = mddev->ctime;
989 	sb->level = mddev->level;
990 	sb->size = mddev->dev_sectors / 2;
991 	sb->raid_disks = mddev->raid_disks;
992 	sb->md_minor = mddev->md_minor;
993 	sb->not_persistent = 0;
994 	sb->utime = mddev->utime;
995 	sb->state = 0;
996 	sb->events_hi = (mddev->events>>32);
997 	sb->events_lo = (u32)mddev->events;
998 
999 	if (mddev->reshape_position == MaxSector)
1000 		sb->minor_version = 90;
1001 	else {
1002 		sb->minor_version = 91;
1003 		sb->reshape_position = mddev->reshape_position;
1004 		sb->new_level = mddev->new_level;
1005 		sb->delta_disks = mddev->delta_disks;
1006 		sb->new_layout = mddev->new_layout;
1007 		sb->new_chunk = mddev->new_chunk;
1008 	}
1009 	mddev->minor_version = sb->minor_version;
1010 	if (mddev->in_sync)
1011 	{
1012 		sb->recovery_cp = mddev->recovery_cp;
1013 		sb->cp_events_hi = (mddev->events>>32);
1014 		sb->cp_events_lo = (u32)mddev->events;
1015 		if (mddev->recovery_cp == MaxSector)
1016 			sb->state = (1<< MD_SB_CLEAN);
1017 	} else
1018 		sb->recovery_cp = 0;
1019 
1020 	sb->layout = mddev->layout;
1021 	sb->chunk_size = mddev->chunk_size;
1022 
1023 	if (mddev->bitmap && mddev->bitmap_file == NULL)
1024 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1025 
1026 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1027 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1028 		mdp_disk_t *d;
1029 		int desc_nr;
1030 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1031 		    && !test_bit(Faulty, &rdev2->flags))
1032 			desc_nr = rdev2->raid_disk;
1033 		else
1034 			desc_nr = next_spare++;
1035 		rdev2->desc_nr = desc_nr;
1036 		d = &sb->disks[rdev2->desc_nr];
1037 		nr_disks++;
1038 		d->number = rdev2->desc_nr;
1039 		d->major = MAJOR(rdev2->bdev->bd_dev);
1040 		d->minor = MINOR(rdev2->bdev->bd_dev);
1041 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1042 		    && !test_bit(Faulty, &rdev2->flags))
1043 			d->raid_disk = rdev2->raid_disk;
1044 		else
1045 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1046 		if (test_bit(Faulty, &rdev2->flags))
1047 			d->state = (1<<MD_DISK_FAULTY);
1048 		else if (test_bit(In_sync, &rdev2->flags)) {
1049 			d->state = (1<<MD_DISK_ACTIVE);
1050 			d->state |= (1<<MD_DISK_SYNC);
1051 			active++;
1052 			working++;
1053 		} else {
1054 			d->state = 0;
1055 			spare++;
1056 			working++;
1057 		}
1058 		if (test_bit(WriteMostly, &rdev2->flags))
1059 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1060 	}
1061 	/* now set the "removed" and "faulty" bits on any missing devices */
1062 	for (i=0 ; i < mddev->raid_disks ; i++) {
1063 		mdp_disk_t *d = &sb->disks[i];
1064 		if (d->state == 0 && d->number == 0) {
1065 			d->number = i;
1066 			d->raid_disk = i;
1067 			d->state = (1<<MD_DISK_REMOVED);
1068 			d->state |= (1<<MD_DISK_FAULTY);
1069 			failed++;
1070 		}
1071 	}
1072 	sb->nr_disks = nr_disks;
1073 	sb->active_disks = active;
1074 	sb->working_disks = working;
1075 	sb->failed_disks = failed;
1076 	sb->spare_disks = spare;
1077 
1078 	sb->this_disk = sb->disks[rdev->desc_nr];
1079 	sb->sb_csum = calc_sb_csum(sb);
1080 }
1081 
1082 /*
1083  * rdev_size_change for 0.90.0
1084  */
1085 static unsigned long long
1086 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1087 {
1088 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1089 		return 0; /* component must fit device */
1090 	if (rdev->mddev->bitmap_offset)
1091 		return 0; /* can't move bitmap */
1092 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1093 	if (!num_sectors || num_sectors > rdev->sb_start)
1094 		num_sectors = rdev->sb_start;
1095 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1096 		       rdev->sb_page);
1097 	md_super_wait(rdev->mddev);
1098 	return num_sectors / 2; /* kB for sysfs */
1099 }
1100 
1101 
1102 /*
1103  * version 1 superblock
1104  */
1105 
1106 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1107 {
1108 	__le32 disk_csum;
1109 	u32 csum;
1110 	unsigned long long newcsum;
1111 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1112 	__le32 *isuper = (__le32*)sb;
1113 	int i;
1114 
1115 	disk_csum = sb->sb_csum;
1116 	sb->sb_csum = 0;
1117 	newcsum = 0;
1118 	for (i=0; size>=4; size -= 4 )
1119 		newcsum += le32_to_cpu(*isuper++);
1120 
1121 	if (size == 2)
1122 		newcsum += le16_to_cpu(*(__le16*) isuper);
1123 
1124 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1125 	sb->sb_csum = disk_csum;
1126 	return cpu_to_le32(csum);
1127 }
1128 
1129 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1130 {
1131 	struct mdp_superblock_1 *sb;
1132 	int ret;
1133 	sector_t sb_start;
1134 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1135 	int bmask;
1136 
1137 	/*
1138 	 * Calculate the position of the superblock in 512byte sectors.
1139 	 * It is always aligned to a 4K boundary and
1140 	 * depeding on minor_version, it can be:
1141 	 * 0: At least 8K, but less than 12K, from end of device
1142 	 * 1: At start of device
1143 	 * 2: 4K from start of device.
1144 	 */
1145 	switch(minor_version) {
1146 	case 0:
1147 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1148 		sb_start -= 8*2;
1149 		sb_start &= ~(sector_t)(4*2-1);
1150 		break;
1151 	case 1:
1152 		sb_start = 0;
1153 		break;
1154 	case 2:
1155 		sb_start = 8;
1156 		break;
1157 	default:
1158 		return -EINVAL;
1159 	}
1160 	rdev->sb_start = sb_start;
1161 
1162 	/* superblock is rarely larger than 1K, but it can be larger,
1163 	 * and it is safe to read 4k, so we do that
1164 	 */
1165 	ret = read_disk_sb(rdev, 4096);
1166 	if (ret) return ret;
1167 
1168 
1169 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1170 
1171 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1172 	    sb->major_version != cpu_to_le32(1) ||
1173 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1174 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1175 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1176 		return -EINVAL;
1177 
1178 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1179 		printk("md: invalid superblock checksum on %s\n",
1180 			bdevname(rdev->bdev,b));
1181 		return -EINVAL;
1182 	}
1183 	if (le64_to_cpu(sb->data_size) < 10) {
1184 		printk("md: data_size too small on %s\n",
1185 		       bdevname(rdev->bdev,b));
1186 		return -EINVAL;
1187 	}
1188 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1189 		if (sb->level != cpu_to_le32(1) &&
1190 		    sb->level != cpu_to_le32(4) &&
1191 		    sb->level != cpu_to_le32(5) &&
1192 		    sb->level != cpu_to_le32(6) &&
1193 		    sb->level != cpu_to_le32(10)) {
1194 			printk(KERN_WARNING
1195 			       "md: bitmaps not supported for this level.\n");
1196 			return -EINVAL;
1197 		}
1198 	}
1199 
1200 	rdev->preferred_minor = 0xffff;
1201 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1202 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1203 
1204 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1205 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1206 	if (rdev->sb_size & bmask)
1207 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1208 
1209 	if (minor_version
1210 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1211 		return -EINVAL;
1212 
1213 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1214 		rdev->desc_nr = -1;
1215 	else
1216 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1217 
1218 	if (!refdev) {
1219 		ret = 1;
1220 	} else {
1221 		__u64 ev1, ev2;
1222 		struct mdp_superblock_1 *refsb =
1223 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1224 
1225 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1226 		    sb->level != refsb->level ||
1227 		    sb->layout != refsb->layout ||
1228 		    sb->chunksize != refsb->chunksize) {
1229 			printk(KERN_WARNING "md: %s has strangely different"
1230 				" superblock to %s\n",
1231 				bdevname(rdev->bdev,b),
1232 				bdevname(refdev->bdev,b2));
1233 			return -EINVAL;
1234 		}
1235 		ev1 = le64_to_cpu(sb->events);
1236 		ev2 = le64_to_cpu(refsb->events);
1237 
1238 		if (ev1 > ev2)
1239 			ret = 1;
1240 		else
1241 			ret = 0;
1242 	}
1243 	if (minor_version)
1244 		rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1245 			le64_to_cpu(sb->data_offset);
1246 	else
1247 		rdev->sectors = rdev->sb_start;
1248 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1249 		return -EINVAL;
1250 	rdev->sectors = le64_to_cpu(sb->data_size);
1251 	if (le32_to_cpu(sb->chunksize))
1252 		rdev->sectors &= ~((sector_t)le32_to_cpu(sb->chunksize) - 1);
1253 
1254 	if (le64_to_cpu(sb->size) > rdev->sectors)
1255 		return -EINVAL;
1256 	return ret;
1257 }
1258 
1259 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1260 {
1261 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1262 	__u64 ev1 = le64_to_cpu(sb->events);
1263 
1264 	rdev->raid_disk = -1;
1265 	clear_bit(Faulty, &rdev->flags);
1266 	clear_bit(In_sync, &rdev->flags);
1267 	clear_bit(WriteMostly, &rdev->flags);
1268 	clear_bit(BarriersNotsupp, &rdev->flags);
1269 
1270 	if (mddev->raid_disks == 0) {
1271 		mddev->major_version = 1;
1272 		mddev->patch_version = 0;
1273 		mddev->external = 0;
1274 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1275 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1276 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1277 		mddev->level = le32_to_cpu(sb->level);
1278 		mddev->clevel[0] = 0;
1279 		mddev->layout = le32_to_cpu(sb->layout);
1280 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1281 		mddev->dev_sectors = le64_to_cpu(sb->size);
1282 		mddev->events = ev1;
1283 		mddev->bitmap_offset = 0;
1284 		mddev->default_bitmap_offset = 1024 >> 9;
1285 
1286 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1287 		memcpy(mddev->uuid, sb->set_uuid, 16);
1288 
1289 		mddev->max_disks =  (4096-256)/2;
1290 
1291 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1292 		    mddev->bitmap_file == NULL )
1293 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1294 
1295 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1296 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1297 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1298 			mddev->new_level = le32_to_cpu(sb->new_level);
1299 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1300 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1301 		} else {
1302 			mddev->reshape_position = MaxSector;
1303 			mddev->delta_disks = 0;
1304 			mddev->new_level = mddev->level;
1305 			mddev->new_layout = mddev->layout;
1306 			mddev->new_chunk = mddev->chunk_size;
1307 		}
1308 
1309 	} else if (mddev->pers == NULL) {
1310 		/* Insist of good event counter while assembling */
1311 		++ev1;
1312 		if (ev1 < mddev->events)
1313 			return -EINVAL;
1314 	} else if (mddev->bitmap) {
1315 		/* If adding to array with a bitmap, then we can accept an
1316 		 * older device, but not too old.
1317 		 */
1318 		if (ev1 < mddev->bitmap->events_cleared)
1319 			return 0;
1320 	} else {
1321 		if (ev1 < mddev->events)
1322 			/* just a hot-add of a new device, leave raid_disk at -1 */
1323 			return 0;
1324 	}
1325 	if (mddev->level != LEVEL_MULTIPATH) {
1326 		int role;
1327 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1328 		switch(role) {
1329 		case 0xffff: /* spare */
1330 			break;
1331 		case 0xfffe: /* faulty */
1332 			set_bit(Faulty, &rdev->flags);
1333 			break;
1334 		default:
1335 			if ((le32_to_cpu(sb->feature_map) &
1336 			     MD_FEATURE_RECOVERY_OFFSET))
1337 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1338 			else
1339 				set_bit(In_sync, &rdev->flags);
1340 			rdev->raid_disk = role;
1341 			break;
1342 		}
1343 		if (sb->devflags & WriteMostly1)
1344 			set_bit(WriteMostly, &rdev->flags);
1345 	} else /* MULTIPATH are always insync */
1346 		set_bit(In_sync, &rdev->flags);
1347 
1348 	return 0;
1349 }
1350 
1351 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1352 {
1353 	struct mdp_superblock_1 *sb;
1354 	mdk_rdev_t *rdev2;
1355 	int max_dev, i;
1356 	/* make rdev->sb match mddev and rdev data. */
1357 
1358 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1359 
1360 	sb->feature_map = 0;
1361 	sb->pad0 = 0;
1362 	sb->recovery_offset = cpu_to_le64(0);
1363 	memset(sb->pad1, 0, sizeof(sb->pad1));
1364 	memset(sb->pad2, 0, sizeof(sb->pad2));
1365 	memset(sb->pad3, 0, sizeof(sb->pad3));
1366 
1367 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1368 	sb->events = cpu_to_le64(mddev->events);
1369 	if (mddev->in_sync)
1370 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1371 	else
1372 		sb->resync_offset = cpu_to_le64(0);
1373 
1374 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1375 
1376 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1377 	sb->size = cpu_to_le64(mddev->dev_sectors);
1378 
1379 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1380 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1381 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1382 	}
1383 
1384 	if (rdev->raid_disk >= 0 &&
1385 	    !test_bit(In_sync, &rdev->flags)) {
1386 		if (mddev->curr_resync_completed > rdev->recovery_offset)
1387 			rdev->recovery_offset = mddev->curr_resync_completed;
1388 		if (rdev->recovery_offset > 0) {
1389 			sb->feature_map |=
1390 				cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1391 			sb->recovery_offset =
1392 				cpu_to_le64(rdev->recovery_offset);
1393 		}
1394 	}
1395 
1396 	if (mddev->reshape_position != MaxSector) {
1397 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1398 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1399 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1400 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1401 		sb->new_level = cpu_to_le32(mddev->new_level);
1402 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1403 	}
1404 
1405 	max_dev = 0;
1406 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1407 		if (rdev2->desc_nr+1 > max_dev)
1408 			max_dev = rdev2->desc_nr+1;
1409 
1410 	if (max_dev > le32_to_cpu(sb->max_dev))
1411 		sb->max_dev = cpu_to_le32(max_dev);
1412 	for (i=0; i<max_dev;i++)
1413 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1414 
1415 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1416 		i = rdev2->desc_nr;
1417 		if (test_bit(Faulty, &rdev2->flags))
1418 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1419 		else if (test_bit(In_sync, &rdev2->flags))
1420 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1421 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1422 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1423 		else
1424 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1425 	}
1426 
1427 	sb->sb_csum = calc_sb_1_csum(sb);
1428 }
1429 
1430 static unsigned long long
1431 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1432 {
1433 	struct mdp_superblock_1 *sb;
1434 	sector_t max_sectors;
1435 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1436 		return 0; /* component must fit device */
1437 	if (rdev->sb_start < rdev->data_offset) {
1438 		/* minor versions 1 and 2; superblock before data */
1439 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1440 		max_sectors -= rdev->data_offset;
1441 		if (!num_sectors || num_sectors > max_sectors)
1442 			num_sectors = max_sectors;
1443 	} else if (rdev->mddev->bitmap_offset) {
1444 		/* minor version 0 with bitmap we can't move */
1445 		return 0;
1446 	} else {
1447 		/* minor version 0; superblock after data */
1448 		sector_t sb_start;
1449 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1450 		sb_start &= ~(sector_t)(4*2 - 1);
1451 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1452 		if (!num_sectors || num_sectors > max_sectors)
1453 			num_sectors = max_sectors;
1454 		rdev->sb_start = sb_start;
1455 	}
1456 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1457 	sb->data_size = cpu_to_le64(num_sectors);
1458 	sb->super_offset = rdev->sb_start;
1459 	sb->sb_csum = calc_sb_1_csum(sb);
1460 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1461 		       rdev->sb_page);
1462 	md_super_wait(rdev->mddev);
1463 	return num_sectors / 2; /* kB for sysfs */
1464 }
1465 
1466 static struct super_type super_types[] = {
1467 	[0] = {
1468 		.name	= "0.90.0",
1469 		.owner	= THIS_MODULE,
1470 		.load_super	    = super_90_load,
1471 		.validate_super	    = super_90_validate,
1472 		.sync_super	    = super_90_sync,
1473 		.rdev_size_change   = super_90_rdev_size_change,
1474 	},
1475 	[1] = {
1476 		.name	= "md-1",
1477 		.owner	= THIS_MODULE,
1478 		.load_super	    = super_1_load,
1479 		.validate_super	    = super_1_validate,
1480 		.sync_super	    = super_1_sync,
1481 		.rdev_size_change   = super_1_rdev_size_change,
1482 	},
1483 };
1484 
1485 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1486 {
1487 	mdk_rdev_t *rdev, *rdev2;
1488 
1489 	rcu_read_lock();
1490 	rdev_for_each_rcu(rdev, mddev1)
1491 		rdev_for_each_rcu(rdev2, mddev2)
1492 			if (rdev->bdev->bd_contains ==
1493 			    rdev2->bdev->bd_contains) {
1494 				rcu_read_unlock();
1495 				return 1;
1496 			}
1497 	rcu_read_unlock();
1498 	return 0;
1499 }
1500 
1501 static LIST_HEAD(pending_raid_disks);
1502 
1503 static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev)
1504 {
1505 	struct mdk_personality *pers = mddev->pers;
1506 	struct gendisk *disk = mddev->gendisk;
1507 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1508 	struct blk_integrity *bi_mddev = blk_get_integrity(disk);
1509 
1510 	/* Data integrity passthrough not supported on RAID 4, 5 and 6 */
1511 	if (pers && pers->level >= 4 && pers->level <= 6)
1512 		return;
1513 
1514 	/* If rdev is integrity capable, register profile for mddev */
1515 	if (!bi_mddev && bi_rdev) {
1516 		if (blk_integrity_register(disk, bi_rdev))
1517 			printk(KERN_ERR "%s: %s Could not register integrity!\n",
1518 			       __func__, disk->disk_name);
1519 		else
1520 			printk(KERN_NOTICE "Enabling data integrity on %s\n",
1521 			       disk->disk_name);
1522 		return;
1523 	}
1524 
1525 	/* Check that mddev and rdev have matching profiles */
1526 	if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) {
1527 		printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__,
1528 		       disk->disk_name, rdev->bdev->bd_disk->disk_name);
1529 		printk(KERN_NOTICE "Disabling data integrity on %s\n",
1530 		       disk->disk_name);
1531 		blk_integrity_unregister(disk);
1532 	}
1533 }
1534 
1535 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1536 {
1537 	char b[BDEVNAME_SIZE];
1538 	struct kobject *ko;
1539 	char *s;
1540 	int err;
1541 
1542 	if (rdev->mddev) {
1543 		MD_BUG();
1544 		return -EINVAL;
1545 	}
1546 
1547 	/* prevent duplicates */
1548 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1549 		return -EEXIST;
1550 
1551 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1552 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1553 			rdev->sectors < mddev->dev_sectors)) {
1554 		if (mddev->pers) {
1555 			/* Cannot change size, so fail
1556 			 * If mddev->level <= 0, then we don't care
1557 			 * about aligning sizes (e.g. linear)
1558 			 */
1559 			if (mddev->level > 0)
1560 				return -ENOSPC;
1561 		} else
1562 			mddev->dev_sectors = rdev->sectors;
1563 	}
1564 
1565 	/* Verify rdev->desc_nr is unique.
1566 	 * If it is -1, assign a free number, else
1567 	 * check number is not in use
1568 	 */
1569 	if (rdev->desc_nr < 0) {
1570 		int choice = 0;
1571 		if (mddev->pers) choice = mddev->raid_disks;
1572 		while (find_rdev_nr(mddev, choice))
1573 			choice++;
1574 		rdev->desc_nr = choice;
1575 	} else {
1576 		if (find_rdev_nr(mddev, rdev->desc_nr))
1577 			return -EBUSY;
1578 	}
1579 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1580 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1581 		       mdname(mddev), mddev->max_disks);
1582 		return -EBUSY;
1583 	}
1584 	bdevname(rdev->bdev,b);
1585 	while ( (s=strchr(b, '/')) != NULL)
1586 		*s = '!';
1587 
1588 	rdev->mddev = mddev;
1589 	printk(KERN_INFO "md: bind<%s>\n", b);
1590 
1591 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1592 		goto fail;
1593 
1594 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1595 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1596 		kobject_del(&rdev->kobj);
1597 		goto fail;
1598 	}
1599 	rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1600 
1601 	list_add_rcu(&rdev->same_set, &mddev->disks);
1602 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1603 
1604 	/* May as well allow recovery to be retried once */
1605 	mddev->recovery_disabled = 0;
1606 
1607 	md_integrity_check(rdev, mddev);
1608 	return 0;
1609 
1610  fail:
1611 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1612 	       b, mdname(mddev));
1613 	return err;
1614 }
1615 
1616 static void md_delayed_delete(struct work_struct *ws)
1617 {
1618 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1619 	kobject_del(&rdev->kobj);
1620 	kobject_put(&rdev->kobj);
1621 }
1622 
1623 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1624 {
1625 	char b[BDEVNAME_SIZE];
1626 	if (!rdev->mddev) {
1627 		MD_BUG();
1628 		return;
1629 	}
1630 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1631 	list_del_rcu(&rdev->same_set);
1632 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1633 	rdev->mddev = NULL;
1634 	sysfs_remove_link(&rdev->kobj, "block");
1635 	sysfs_put(rdev->sysfs_state);
1636 	rdev->sysfs_state = NULL;
1637 	/* We need to delay this, otherwise we can deadlock when
1638 	 * writing to 'remove' to "dev/state".  We also need
1639 	 * to delay it due to rcu usage.
1640 	 */
1641 	synchronize_rcu();
1642 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1643 	kobject_get(&rdev->kobj);
1644 	schedule_work(&rdev->del_work);
1645 }
1646 
1647 /*
1648  * prevent the device from being mounted, repartitioned or
1649  * otherwise reused by a RAID array (or any other kernel
1650  * subsystem), by bd_claiming the device.
1651  */
1652 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1653 {
1654 	int err = 0;
1655 	struct block_device *bdev;
1656 	char b[BDEVNAME_SIZE];
1657 
1658 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1659 	if (IS_ERR(bdev)) {
1660 		printk(KERN_ERR "md: could not open %s.\n",
1661 			__bdevname(dev, b));
1662 		return PTR_ERR(bdev);
1663 	}
1664 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1665 	if (err) {
1666 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1667 			bdevname(bdev, b));
1668 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1669 		return err;
1670 	}
1671 	if (!shared)
1672 		set_bit(AllReserved, &rdev->flags);
1673 	rdev->bdev = bdev;
1674 	return err;
1675 }
1676 
1677 static void unlock_rdev(mdk_rdev_t *rdev)
1678 {
1679 	struct block_device *bdev = rdev->bdev;
1680 	rdev->bdev = NULL;
1681 	if (!bdev)
1682 		MD_BUG();
1683 	bd_release(bdev);
1684 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1685 }
1686 
1687 void md_autodetect_dev(dev_t dev);
1688 
1689 static void export_rdev(mdk_rdev_t * rdev)
1690 {
1691 	char b[BDEVNAME_SIZE];
1692 	printk(KERN_INFO "md: export_rdev(%s)\n",
1693 		bdevname(rdev->bdev,b));
1694 	if (rdev->mddev)
1695 		MD_BUG();
1696 	free_disk_sb(rdev);
1697 #ifndef MODULE
1698 	if (test_bit(AutoDetected, &rdev->flags))
1699 		md_autodetect_dev(rdev->bdev->bd_dev);
1700 #endif
1701 	unlock_rdev(rdev);
1702 	kobject_put(&rdev->kobj);
1703 }
1704 
1705 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1706 {
1707 	unbind_rdev_from_array(rdev);
1708 	export_rdev(rdev);
1709 }
1710 
1711 static void export_array(mddev_t *mddev)
1712 {
1713 	mdk_rdev_t *rdev, *tmp;
1714 
1715 	rdev_for_each(rdev, tmp, mddev) {
1716 		if (!rdev->mddev) {
1717 			MD_BUG();
1718 			continue;
1719 		}
1720 		kick_rdev_from_array(rdev);
1721 	}
1722 	if (!list_empty(&mddev->disks))
1723 		MD_BUG();
1724 	mddev->raid_disks = 0;
1725 	mddev->major_version = 0;
1726 }
1727 
1728 static void print_desc(mdp_disk_t *desc)
1729 {
1730 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1731 		desc->major,desc->minor,desc->raid_disk,desc->state);
1732 }
1733 
1734 static void print_sb_90(mdp_super_t *sb)
1735 {
1736 	int i;
1737 
1738 	printk(KERN_INFO
1739 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1740 		sb->major_version, sb->minor_version, sb->patch_version,
1741 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1742 		sb->ctime);
1743 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1744 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1745 		sb->md_minor, sb->layout, sb->chunk_size);
1746 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1747 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1748 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1749 		sb->failed_disks, sb->spare_disks,
1750 		sb->sb_csum, (unsigned long)sb->events_lo);
1751 
1752 	printk(KERN_INFO);
1753 	for (i = 0; i < MD_SB_DISKS; i++) {
1754 		mdp_disk_t *desc;
1755 
1756 		desc = sb->disks + i;
1757 		if (desc->number || desc->major || desc->minor ||
1758 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1759 			printk("     D %2d: ", i);
1760 			print_desc(desc);
1761 		}
1762 	}
1763 	printk(KERN_INFO "md:     THIS: ");
1764 	print_desc(&sb->this_disk);
1765 }
1766 
1767 static void print_sb_1(struct mdp_superblock_1 *sb)
1768 {
1769 	__u8 *uuid;
1770 
1771 	uuid = sb->set_uuid;
1772 	printk(KERN_INFO "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1773 			":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1774 	       KERN_INFO "md:    Name: \"%s\" CT:%llu\n",
1775 		le32_to_cpu(sb->major_version),
1776 		le32_to_cpu(sb->feature_map),
1777 		uuid[0], uuid[1], uuid[2], uuid[3],
1778 		uuid[4], uuid[5], uuid[6], uuid[7],
1779 		uuid[8], uuid[9], uuid[10], uuid[11],
1780 		uuid[12], uuid[13], uuid[14], uuid[15],
1781 		sb->set_name,
1782 		(unsigned long long)le64_to_cpu(sb->ctime)
1783 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1784 
1785 	uuid = sb->device_uuid;
1786 	printk(KERN_INFO "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1787 			" RO:%llu\n"
1788 	       KERN_INFO "md:     Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1789 			":%02x%02x%02x%02x%02x%02x\n"
1790 	       KERN_INFO "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1791 	       KERN_INFO "md:         (MaxDev:%u) \n",
1792 		le32_to_cpu(sb->level),
1793 		(unsigned long long)le64_to_cpu(sb->size),
1794 		le32_to_cpu(sb->raid_disks),
1795 		le32_to_cpu(sb->layout),
1796 		le32_to_cpu(sb->chunksize),
1797 		(unsigned long long)le64_to_cpu(sb->data_offset),
1798 		(unsigned long long)le64_to_cpu(sb->data_size),
1799 		(unsigned long long)le64_to_cpu(sb->super_offset),
1800 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
1801 		le32_to_cpu(sb->dev_number),
1802 		uuid[0], uuid[1], uuid[2], uuid[3],
1803 		uuid[4], uuid[5], uuid[6], uuid[7],
1804 		uuid[8], uuid[9], uuid[10], uuid[11],
1805 		uuid[12], uuid[13], uuid[14], uuid[15],
1806 		sb->devflags,
1807 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1808 		(unsigned long long)le64_to_cpu(sb->events),
1809 		(unsigned long long)le64_to_cpu(sb->resync_offset),
1810 		le32_to_cpu(sb->sb_csum),
1811 		le32_to_cpu(sb->max_dev)
1812 		);
1813 }
1814 
1815 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1816 {
1817 	char b[BDEVNAME_SIZE];
1818 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1819 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1820 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1821 	        rdev->desc_nr);
1822 	if (rdev->sb_loaded) {
1823 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1824 		switch (major_version) {
1825 		case 0:
1826 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1827 			break;
1828 		case 1:
1829 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1830 			break;
1831 		}
1832 	} else
1833 		printk(KERN_INFO "md: no rdev superblock!\n");
1834 }
1835 
1836 static void md_print_devices(void)
1837 {
1838 	struct list_head *tmp;
1839 	mdk_rdev_t *rdev;
1840 	mddev_t *mddev;
1841 	char b[BDEVNAME_SIZE];
1842 
1843 	printk("\n");
1844 	printk("md:	**********************************\n");
1845 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1846 	printk("md:	**********************************\n");
1847 	for_each_mddev(mddev, tmp) {
1848 
1849 		if (mddev->bitmap)
1850 			bitmap_print_sb(mddev->bitmap);
1851 		else
1852 			printk("%s: ", mdname(mddev));
1853 		list_for_each_entry(rdev, &mddev->disks, same_set)
1854 			printk("<%s>", bdevname(rdev->bdev,b));
1855 		printk("\n");
1856 
1857 		list_for_each_entry(rdev, &mddev->disks, same_set)
1858 			print_rdev(rdev, mddev->major_version);
1859 	}
1860 	printk("md:	**********************************\n");
1861 	printk("\n");
1862 }
1863 
1864 
1865 static void sync_sbs(mddev_t * mddev, int nospares)
1866 {
1867 	/* Update each superblock (in-memory image), but
1868 	 * if we are allowed to, skip spares which already
1869 	 * have the right event counter, or have one earlier
1870 	 * (which would mean they aren't being marked as dirty
1871 	 * with the rest of the array)
1872 	 */
1873 	mdk_rdev_t *rdev;
1874 
1875 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1876 		if (rdev->sb_events == mddev->events ||
1877 		    (nospares &&
1878 		     rdev->raid_disk < 0 &&
1879 		     (rdev->sb_events&1)==0 &&
1880 		     rdev->sb_events+1 == mddev->events)) {
1881 			/* Don't update this superblock */
1882 			rdev->sb_loaded = 2;
1883 		} else {
1884 			super_types[mddev->major_version].
1885 				sync_super(mddev, rdev);
1886 			rdev->sb_loaded = 1;
1887 		}
1888 	}
1889 }
1890 
1891 static void md_update_sb(mddev_t * mddev, int force_change)
1892 {
1893 	mdk_rdev_t *rdev;
1894 	int sync_req;
1895 	int nospares = 0;
1896 
1897 	if (mddev->external)
1898 		return;
1899 repeat:
1900 	spin_lock_irq(&mddev->write_lock);
1901 
1902 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1903 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1904 		force_change = 1;
1905 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1906 		/* just a clean<-> dirty transition, possibly leave spares alone,
1907 		 * though if events isn't the right even/odd, we will have to do
1908 		 * spares after all
1909 		 */
1910 		nospares = 1;
1911 	if (force_change)
1912 		nospares = 0;
1913 	if (mddev->degraded)
1914 		/* If the array is degraded, then skipping spares is both
1915 		 * dangerous and fairly pointless.
1916 		 * Dangerous because a device that was removed from the array
1917 		 * might have a event_count that still looks up-to-date,
1918 		 * so it can be re-added without a resync.
1919 		 * Pointless because if there are any spares to skip,
1920 		 * then a recovery will happen and soon that array won't
1921 		 * be degraded any more and the spare can go back to sleep then.
1922 		 */
1923 		nospares = 0;
1924 
1925 	sync_req = mddev->in_sync;
1926 	mddev->utime = get_seconds();
1927 
1928 	/* If this is just a dirty<->clean transition, and the array is clean
1929 	 * and 'events' is odd, we can roll back to the previous clean state */
1930 	if (nospares
1931 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1932 	    && (mddev->events & 1)
1933 	    && mddev->events != 1)
1934 		mddev->events--;
1935 	else {
1936 		/* otherwise we have to go forward and ... */
1937 		mddev->events ++;
1938 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1939 			/* .. if the array isn't clean, insist on an odd 'events' */
1940 			if ((mddev->events&1)==0) {
1941 				mddev->events++;
1942 				nospares = 0;
1943 			}
1944 		} else {
1945 			/* otherwise insist on an even 'events' (for clean states) */
1946 			if ((mddev->events&1)) {
1947 				mddev->events++;
1948 				nospares = 0;
1949 			}
1950 		}
1951 	}
1952 
1953 	if (!mddev->events) {
1954 		/*
1955 		 * oops, this 64-bit counter should never wrap.
1956 		 * Either we are in around ~1 trillion A.C., assuming
1957 		 * 1 reboot per second, or we have a bug:
1958 		 */
1959 		MD_BUG();
1960 		mddev->events --;
1961 	}
1962 
1963 	/*
1964 	 * do not write anything to disk if using
1965 	 * nonpersistent superblocks
1966 	 */
1967 	if (!mddev->persistent) {
1968 		if (!mddev->external)
1969 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1970 
1971 		spin_unlock_irq(&mddev->write_lock);
1972 		wake_up(&mddev->sb_wait);
1973 		return;
1974 	}
1975 	sync_sbs(mddev, nospares);
1976 	spin_unlock_irq(&mddev->write_lock);
1977 
1978 	dprintk(KERN_INFO
1979 		"md: updating %s RAID superblock on device (in sync %d)\n",
1980 		mdname(mddev),mddev->in_sync);
1981 
1982 	bitmap_update_sb(mddev->bitmap);
1983 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1984 		char b[BDEVNAME_SIZE];
1985 		dprintk(KERN_INFO "md: ");
1986 		if (rdev->sb_loaded != 1)
1987 			continue; /* no noise on spare devices */
1988 		if (test_bit(Faulty, &rdev->flags))
1989 			dprintk("(skipping faulty ");
1990 
1991 		dprintk("%s ", bdevname(rdev->bdev,b));
1992 		if (!test_bit(Faulty, &rdev->flags)) {
1993 			md_super_write(mddev,rdev,
1994 				       rdev->sb_start, rdev->sb_size,
1995 				       rdev->sb_page);
1996 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1997 				bdevname(rdev->bdev,b),
1998 				(unsigned long long)rdev->sb_start);
1999 			rdev->sb_events = mddev->events;
2000 
2001 		} else
2002 			dprintk(")\n");
2003 		if (mddev->level == LEVEL_MULTIPATH)
2004 			/* only need to write one superblock... */
2005 			break;
2006 	}
2007 	md_super_wait(mddev);
2008 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2009 
2010 	spin_lock_irq(&mddev->write_lock);
2011 	if (mddev->in_sync != sync_req ||
2012 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2013 		/* have to write it out again */
2014 		spin_unlock_irq(&mddev->write_lock);
2015 		goto repeat;
2016 	}
2017 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2018 	spin_unlock_irq(&mddev->write_lock);
2019 	wake_up(&mddev->sb_wait);
2020 
2021 }
2022 
2023 /* words written to sysfs files may, or may not, be \n terminated.
2024  * We want to accept with case. For this we use cmd_match.
2025  */
2026 static int cmd_match(const char *cmd, const char *str)
2027 {
2028 	/* See if cmd, written into a sysfs file, matches
2029 	 * str.  They must either be the same, or cmd can
2030 	 * have a trailing newline
2031 	 */
2032 	while (*cmd && *str && *cmd == *str) {
2033 		cmd++;
2034 		str++;
2035 	}
2036 	if (*cmd == '\n')
2037 		cmd++;
2038 	if (*str || *cmd)
2039 		return 0;
2040 	return 1;
2041 }
2042 
2043 struct rdev_sysfs_entry {
2044 	struct attribute attr;
2045 	ssize_t (*show)(mdk_rdev_t *, char *);
2046 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2047 };
2048 
2049 static ssize_t
2050 state_show(mdk_rdev_t *rdev, char *page)
2051 {
2052 	char *sep = "";
2053 	size_t len = 0;
2054 
2055 	if (test_bit(Faulty, &rdev->flags)) {
2056 		len+= sprintf(page+len, "%sfaulty",sep);
2057 		sep = ",";
2058 	}
2059 	if (test_bit(In_sync, &rdev->flags)) {
2060 		len += sprintf(page+len, "%sin_sync",sep);
2061 		sep = ",";
2062 	}
2063 	if (test_bit(WriteMostly, &rdev->flags)) {
2064 		len += sprintf(page+len, "%swrite_mostly",sep);
2065 		sep = ",";
2066 	}
2067 	if (test_bit(Blocked, &rdev->flags)) {
2068 		len += sprintf(page+len, "%sblocked", sep);
2069 		sep = ",";
2070 	}
2071 	if (!test_bit(Faulty, &rdev->flags) &&
2072 	    !test_bit(In_sync, &rdev->flags)) {
2073 		len += sprintf(page+len, "%sspare", sep);
2074 		sep = ",";
2075 	}
2076 	return len+sprintf(page+len, "\n");
2077 }
2078 
2079 static ssize_t
2080 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2081 {
2082 	/* can write
2083 	 *  faulty  - simulates and error
2084 	 *  remove  - disconnects the device
2085 	 *  writemostly - sets write_mostly
2086 	 *  -writemostly - clears write_mostly
2087 	 *  blocked - sets the Blocked flag
2088 	 *  -blocked - clears the Blocked flag
2089 	 */
2090 	int err = -EINVAL;
2091 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2092 		md_error(rdev->mddev, rdev);
2093 		err = 0;
2094 	} else if (cmd_match(buf, "remove")) {
2095 		if (rdev->raid_disk >= 0)
2096 			err = -EBUSY;
2097 		else {
2098 			mddev_t *mddev = rdev->mddev;
2099 			kick_rdev_from_array(rdev);
2100 			if (mddev->pers)
2101 				md_update_sb(mddev, 1);
2102 			md_new_event(mddev);
2103 			err = 0;
2104 		}
2105 	} else if (cmd_match(buf, "writemostly")) {
2106 		set_bit(WriteMostly, &rdev->flags);
2107 		err = 0;
2108 	} else if (cmd_match(buf, "-writemostly")) {
2109 		clear_bit(WriteMostly, &rdev->flags);
2110 		err = 0;
2111 	} else if (cmd_match(buf, "blocked")) {
2112 		set_bit(Blocked, &rdev->flags);
2113 		err = 0;
2114 	} else if (cmd_match(buf, "-blocked")) {
2115 		clear_bit(Blocked, &rdev->flags);
2116 		wake_up(&rdev->blocked_wait);
2117 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2118 		md_wakeup_thread(rdev->mddev->thread);
2119 
2120 		err = 0;
2121 	}
2122 	if (!err && rdev->sysfs_state)
2123 		sysfs_notify_dirent(rdev->sysfs_state);
2124 	return err ? err : len;
2125 }
2126 static struct rdev_sysfs_entry rdev_state =
2127 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2128 
2129 static ssize_t
2130 errors_show(mdk_rdev_t *rdev, char *page)
2131 {
2132 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2133 }
2134 
2135 static ssize_t
2136 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2137 {
2138 	char *e;
2139 	unsigned long n = simple_strtoul(buf, &e, 10);
2140 	if (*buf && (*e == 0 || *e == '\n')) {
2141 		atomic_set(&rdev->corrected_errors, n);
2142 		return len;
2143 	}
2144 	return -EINVAL;
2145 }
2146 static struct rdev_sysfs_entry rdev_errors =
2147 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2148 
2149 static ssize_t
2150 slot_show(mdk_rdev_t *rdev, char *page)
2151 {
2152 	if (rdev->raid_disk < 0)
2153 		return sprintf(page, "none\n");
2154 	else
2155 		return sprintf(page, "%d\n", rdev->raid_disk);
2156 }
2157 
2158 static ssize_t
2159 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2160 {
2161 	char *e;
2162 	int err;
2163 	char nm[20];
2164 	int slot = simple_strtoul(buf, &e, 10);
2165 	if (strncmp(buf, "none", 4)==0)
2166 		slot = -1;
2167 	else if (e==buf || (*e && *e!= '\n'))
2168 		return -EINVAL;
2169 	if (rdev->mddev->pers && slot == -1) {
2170 		/* Setting 'slot' on an active array requires also
2171 		 * updating the 'rd%d' link, and communicating
2172 		 * with the personality with ->hot_*_disk.
2173 		 * For now we only support removing
2174 		 * failed/spare devices.  This normally happens automatically,
2175 		 * but not when the metadata is externally managed.
2176 		 */
2177 		if (rdev->raid_disk == -1)
2178 			return -EEXIST;
2179 		/* personality does all needed checks */
2180 		if (rdev->mddev->pers->hot_add_disk == NULL)
2181 			return -EINVAL;
2182 		err = rdev->mddev->pers->
2183 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2184 		if (err)
2185 			return err;
2186 		sprintf(nm, "rd%d", rdev->raid_disk);
2187 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2188 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2189 		md_wakeup_thread(rdev->mddev->thread);
2190 	} else if (rdev->mddev->pers) {
2191 		mdk_rdev_t *rdev2;
2192 		/* Activating a spare .. or possibly reactivating
2193 		 * if we every get bitmaps working here.
2194 		 */
2195 
2196 		if (rdev->raid_disk != -1)
2197 			return -EBUSY;
2198 
2199 		if (rdev->mddev->pers->hot_add_disk == NULL)
2200 			return -EINVAL;
2201 
2202 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2203 			if (rdev2->raid_disk == slot)
2204 				return -EEXIST;
2205 
2206 		rdev->raid_disk = slot;
2207 		if (test_bit(In_sync, &rdev->flags))
2208 			rdev->saved_raid_disk = slot;
2209 		else
2210 			rdev->saved_raid_disk = -1;
2211 		err = rdev->mddev->pers->
2212 			hot_add_disk(rdev->mddev, rdev);
2213 		if (err) {
2214 			rdev->raid_disk = -1;
2215 			return err;
2216 		} else
2217 			sysfs_notify_dirent(rdev->sysfs_state);
2218 		sprintf(nm, "rd%d", rdev->raid_disk);
2219 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2220 			printk(KERN_WARNING
2221 			       "md: cannot register "
2222 			       "%s for %s\n",
2223 			       nm, mdname(rdev->mddev));
2224 
2225 		/* don't wakeup anyone, leave that to userspace. */
2226 	} else {
2227 		if (slot >= rdev->mddev->raid_disks)
2228 			return -ENOSPC;
2229 		rdev->raid_disk = slot;
2230 		/* assume it is working */
2231 		clear_bit(Faulty, &rdev->flags);
2232 		clear_bit(WriteMostly, &rdev->flags);
2233 		set_bit(In_sync, &rdev->flags);
2234 		sysfs_notify_dirent(rdev->sysfs_state);
2235 	}
2236 	return len;
2237 }
2238 
2239 
2240 static struct rdev_sysfs_entry rdev_slot =
2241 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2242 
2243 static ssize_t
2244 offset_show(mdk_rdev_t *rdev, char *page)
2245 {
2246 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2247 }
2248 
2249 static ssize_t
2250 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2251 {
2252 	char *e;
2253 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2254 	if (e==buf || (*e && *e != '\n'))
2255 		return -EINVAL;
2256 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2257 		return -EBUSY;
2258 	if (rdev->sectors && rdev->mddev->external)
2259 		/* Must set offset before size, so overlap checks
2260 		 * can be sane */
2261 		return -EBUSY;
2262 	rdev->data_offset = offset;
2263 	return len;
2264 }
2265 
2266 static struct rdev_sysfs_entry rdev_offset =
2267 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2268 
2269 static ssize_t
2270 rdev_size_show(mdk_rdev_t *rdev, char *page)
2271 {
2272 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2273 }
2274 
2275 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2276 {
2277 	/* check if two start/length pairs overlap */
2278 	if (s1+l1 <= s2)
2279 		return 0;
2280 	if (s2+l2 <= s1)
2281 		return 0;
2282 	return 1;
2283 }
2284 
2285 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2286 {
2287 	unsigned long long blocks;
2288 	sector_t new;
2289 
2290 	if (strict_strtoull(buf, 10, &blocks) < 0)
2291 		return -EINVAL;
2292 
2293 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2294 		return -EINVAL; /* sector conversion overflow */
2295 
2296 	new = blocks * 2;
2297 	if (new != blocks * 2)
2298 		return -EINVAL; /* unsigned long long to sector_t overflow */
2299 
2300 	*sectors = new;
2301 	return 0;
2302 }
2303 
2304 static ssize_t
2305 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2306 {
2307 	mddev_t *my_mddev = rdev->mddev;
2308 	sector_t oldsectors = rdev->sectors;
2309 	sector_t sectors;
2310 
2311 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2312 		return -EINVAL;
2313 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2314 		if (my_mddev->persistent) {
2315 			sectors = super_types[my_mddev->major_version].
2316 				rdev_size_change(rdev, sectors);
2317 			if (!sectors)
2318 				return -EBUSY;
2319 		} else if (!sectors)
2320 			sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2321 				rdev->data_offset;
2322 	}
2323 	if (sectors < my_mddev->dev_sectors)
2324 		return -EINVAL; /* component must fit device */
2325 
2326 	rdev->sectors = sectors;
2327 	if (sectors > oldsectors && my_mddev->external) {
2328 		/* need to check that all other rdevs with the same ->bdev
2329 		 * do not overlap.  We need to unlock the mddev to avoid
2330 		 * a deadlock.  We have already changed rdev->sectors, and if
2331 		 * we have to change it back, we will have the lock again.
2332 		 */
2333 		mddev_t *mddev;
2334 		int overlap = 0;
2335 		struct list_head *tmp;
2336 
2337 		mddev_unlock(my_mddev);
2338 		for_each_mddev(mddev, tmp) {
2339 			mdk_rdev_t *rdev2;
2340 
2341 			mddev_lock(mddev);
2342 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2343 				if (test_bit(AllReserved, &rdev2->flags) ||
2344 				    (rdev->bdev == rdev2->bdev &&
2345 				     rdev != rdev2 &&
2346 				     overlaps(rdev->data_offset, rdev->sectors,
2347 					      rdev2->data_offset,
2348 					      rdev2->sectors))) {
2349 					overlap = 1;
2350 					break;
2351 				}
2352 			mddev_unlock(mddev);
2353 			if (overlap) {
2354 				mddev_put(mddev);
2355 				break;
2356 			}
2357 		}
2358 		mddev_lock(my_mddev);
2359 		if (overlap) {
2360 			/* Someone else could have slipped in a size
2361 			 * change here, but doing so is just silly.
2362 			 * We put oldsectors back because we *know* it is
2363 			 * safe, and trust userspace not to race with
2364 			 * itself
2365 			 */
2366 			rdev->sectors = oldsectors;
2367 			return -EBUSY;
2368 		}
2369 	}
2370 	return len;
2371 }
2372 
2373 static struct rdev_sysfs_entry rdev_size =
2374 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2375 
2376 static struct attribute *rdev_default_attrs[] = {
2377 	&rdev_state.attr,
2378 	&rdev_errors.attr,
2379 	&rdev_slot.attr,
2380 	&rdev_offset.attr,
2381 	&rdev_size.attr,
2382 	NULL,
2383 };
2384 static ssize_t
2385 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2386 {
2387 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2388 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2389 	mddev_t *mddev = rdev->mddev;
2390 	ssize_t rv;
2391 
2392 	if (!entry->show)
2393 		return -EIO;
2394 
2395 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2396 	if (!rv) {
2397 		if (rdev->mddev == NULL)
2398 			rv = -EBUSY;
2399 		else
2400 			rv = entry->show(rdev, page);
2401 		mddev_unlock(mddev);
2402 	}
2403 	return rv;
2404 }
2405 
2406 static ssize_t
2407 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2408 	      const char *page, size_t length)
2409 {
2410 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2411 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2412 	ssize_t rv;
2413 	mddev_t *mddev = rdev->mddev;
2414 
2415 	if (!entry->store)
2416 		return -EIO;
2417 	if (!capable(CAP_SYS_ADMIN))
2418 		return -EACCES;
2419 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2420 	if (!rv) {
2421 		if (rdev->mddev == NULL)
2422 			rv = -EBUSY;
2423 		else
2424 			rv = entry->store(rdev, page, length);
2425 		mddev_unlock(mddev);
2426 	}
2427 	return rv;
2428 }
2429 
2430 static void rdev_free(struct kobject *ko)
2431 {
2432 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2433 	kfree(rdev);
2434 }
2435 static struct sysfs_ops rdev_sysfs_ops = {
2436 	.show		= rdev_attr_show,
2437 	.store		= rdev_attr_store,
2438 };
2439 static struct kobj_type rdev_ktype = {
2440 	.release	= rdev_free,
2441 	.sysfs_ops	= &rdev_sysfs_ops,
2442 	.default_attrs	= rdev_default_attrs,
2443 };
2444 
2445 /*
2446  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2447  *
2448  * mark the device faulty if:
2449  *
2450  *   - the device is nonexistent (zero size)
2451  *   - the device has no valid superblock
2452  *
2453  * a faulty rdev _never_ has rdev->sb set.
2454  */
2455 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2456 {
2457 	char b[BDEVNAME_SIZE];
2458 	int err;
2459 	mdk_rdev_t *rdev;
2460 	sector_t size;
2461 
2462 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2463 	if (!rdev) {
2464 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2465 		return ERR_PTR(-ENOMEM);
2466 	}
2467 
2468 	if ((err = alloc_disk_sb(rdev)))
2469 		goto abort_free;
2470 
2471 	err = lock_rdev(rdev, newdev, super_format == -2);
2472 	if (err)
2473 		goto abort_free;
2474 
2475 	kobject_init(&rdev->kobj, &rdev_ktype);
2476 
2477 	rdev->desc_nr = -1;
2478 	rdev->saved_raid_disk = -1;
2479 	rdev->raid_disk = -1;
2480 	rdev->flags = 0;
2481 	rdev->data_offset = 0;
2482 	rdev->sb_events = 0;
2483 	atomic_set(&rdev->nr_pending, 0);
2484 	atomic_set(&rdev->read_errors, 0);
2485 	atomic_set(&rdev->corrected_errors, 0);
2486 
2487 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2488 	if (!size) {
2489 		printk(KERN_WARNING
2490 			"md: %s has zero or unknown size, marking faulty!\n",
2491 			bdevname(rdev->bdev,b));
2492 		err = -EINVAL;
2493 		goto abort_free;
2494 	}
2495 
2496 	if (super_format >= 0) {
2497 		err = super_types[super_format].
2498 			load_super(rdev, NULL, super_minor);
2499 		if (err == -EINVAL) {
2500 			printk(KERN_WARNING
2501 				"md: %s does not have a valid v%d.%d "
2502 			       "superblock, not importing!\n",
2503 				bdevname(rdev->bdev,b),
2504 			       super_format, super_minor);
2505 			goto abort_free;
2506 		}
2507 		if (err < 0) {
2508 			printk(KERN_WARNING
2509 				"md: could not read %s's sb, not importing!\n",
2510 				bdevname(rdev->bdev,b));
2511 			goto abort_free;
2512 		}
2513 	}
2514 
2515 	INIT_LIST_HEAD(&rdev->same_set);
2516 	init_waitqueue_head(&rdev->blocked_wait);
2517 
2518 	return rdev;
2519 
2520 abort_free:
2521 	if (rdev->sb_page) {
2522 		if (rdev->bdev)
2523 			unlock_rdev(rdev);
2524 		free_disk_sb(rdev);
2525 	}
2526 	kfree(rdev);
2527 	return ERR_PTR(err);
2528 }
2529 
2530 /*
2531  * Check a full RAID array for plausibility
2532  */
2533 
2534 
2535 static void analyze_sbs(mddev_t * mddev)
2536 {
2537 	int i;
2538 	mdk_rdev_t *rdev, *freshest, *tmp;
2539 	char b[BDEVNAME_SIZE];
2540 
2541 	freshest = NULL;
2542 	rdev_for_each(rdev, tmp, mddev)
2543 		switch (super_types[mddev->major_version].
2544 			load_super(rdev, freshest, mddev->minor_version)) {
2545 		case 1:
2546 			freshest = rdev;
2547 			break;
2548 		case 0:
2549 			break;
2550 		default:
2551 			printk( KERN_ERR \
2552 				"md: fatal superblock inconsistency in %s"
2553 				" -- removing from array\n",
2554 				bdevname(rdev->bdev,b));
2555 			kick_rdev_from_array(rdev);
2556 		}
2557 
2558 
2559 	super_types[mddev->major_version].
2560 		validate_super(mddev, freshest);
2561 
2562 	i = 0;
2563 	rdev_for_each(rdev, tmp, mddev) {
2564 		if (rdev->desc_nr >= mddev->max_disks ||
2565 		    i > mddev->max_disks) {
2566 			printk(KERN_WARNING
2567 			       "md: %s: %s: only %d devices permitted\n",
2568 			       mdname(mddev), bdevname(rdev->bdev, b),
2569 			       mddev->max_disks);
2570 			kick_rdev_from_array(rdev);
2571 			continue;
2572 		}
2573 		if (rdev != freshest)
2574 			if (super_types[mddev->major_version].
2575 			    validate_super(mddev, rdev)) {
2576 				printk(KERN_WARNING "md: kicking non-fresh %s"
2577 					" from array!\n",
2578 					bdevname(rdev->bdev,b));
2579 				kick_rdev_from_array(rdev);
2580 				continue;
2581 			}
2582 		if (mddev->level == LEVEL_MULTIPATH) {
2583 			rdev->desc_nr = i++;
2584 			rdev->raid_disk = rdev->desc_nr;
2585 			set_bit(In_sync, &rdev->flags);
2586 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2587 			rdev->raid_disk = -1;
2588 			clear_bit(In_sync, &rdev->flags);
2589 		}
2590 	}
2591 
2592 
2593 
2594 	if (mddev->recovery_cp != MaxSector &&
2595 	    mddev->level >= 1)
2596 		printk(KERN_ERR "md: %s: raid array is not clean"
2597 		       " -- starting background reconstruction\n",
2598 		       mdname(mddev));
2599 
2600 }
2601 
2602 static void md_safemode_timeout(unsigned long data);
2603 
2604 static ssize_t
2605 safe_delay_show(mddev_t *mddev, char *page)
2606 {
2607 	int msec = (mddev->safemode_delay*1000)/HZ;
2608 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2609 }
2610 static ssize_t
2611 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2612 {
2613 	int scale=1;
2614 	int dot=0;
2615 	int i;
2616 	unsigned long msec;
2617 	char buf[30];
2618 
2619 	/* remove a period, and count digits after it */
2620 	if (len >= sizeof(buf))
2621 		return -EINVAL;
2622 	strlcpy(buf, cbuf, sizeof(buf));
2623 	for (i=0; i<len; i++) {
2624 		if (dot) {
2625 			if (isdigit(buf[i])) {
2626 				buf[i-1] = buf[i];
2627 				scale *= 10;
2628 			}
2629 			buf[i] = 0;
2630 		} else if (buf[i] == '.') {
2631 			dot=1;
2632 			buf[i] = 0;
2633 		}
2634 	}
2635 	if (strict_strtoul(buf, 10, &msec) < 0)
2636 		return -EINVAL;
2637 	msec = (msec * 1000) / scale;
2638 	if (msec == 0)
2639 		mddev->safemode_delay = 0;
2640 	else {
2641 		unsigned long old_delay = mddev->safemode_delay;
2642 		mddev->safemode_delay = (msec*HZ)/1000;
2643 		if (mddev->safemode_delay == 0)
2644 			mddev->safemode_delay = 1;
2645 		if (mddev->safemode_delay < old_delay)
2646 			md_safemode_timeout((unsigned long)mddev);
2647 	}
2648 	return len;
2649 }
2650 static struct md_sysfs_entry md_safe_delay =
2651 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2652 
2653 static ssize_t
2654 level_show(mddev_t *mddev, char *page)
2655 {
2656 	struct mdk_personality *p = mddev->pers;
2657 	if (p)
2658 		return sprintf(page, "%s\n", p->name);
2659 	else if (mddev->clevel[0])
2660 		return sprintf(page, "%s\n", mddev->clevel);
2661 	else if (mddev->level != LEVEL_NONE)
2662 		return sprintf(page, "%d\n", mddev->level);
2663 	else
2664 		return 0;
2665 }
2666 
2667 static ssize_t
2668 level_store(mddev_t *mddev, const char *buf, size_t len)
2669 {
2670 	char level[16];
2671 	ssize_t rv = len;
2672 	struct mdk_personality *pers;
2673 	void *priv;
2674 
2675 	if (mddev->pers == NULL) {
2676 		if (len == 0)
2677 			return 0;
2678 		if (len >= sizeof(mddev->clevel))
2679 			return -ENOSPC;
2680 		strncpy(mddev->clevel, buf, len);
2681 		if (mddev->clevel[len-1] == '\n')
2682 			len--;
2683 		mddev->clevel[len] = 0;
2684 		mddev->level = LEVEL_NONE;
2685 		return rv;
2686 	}
2687 
2688 	/* request to change the personality.  Need to ensure:
2689 	 *  - array is not engaged in resync/recovery/reshape
2690 	 *  - old personality can be suspended
2691 	 *  - new personality will access other array.
2692 	 */
2693 
2694 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2695 		return -EBUSY;
2696 
2697 	if (!mddev->pers->quiesce) {
2698 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2699 		       mdname(mddev), mddev->pers->name);
2700 		return -EINVAL;
2701 	}
2702 
2703 	/* Now find the new personality */
2704 	if (len == 0 || len >= sizeof(level))
2705 		return -EINVAL;
2706 	strncpy(level, buf, len);
2707 	if (level[len-1] == '\n')
2708 		len--;
2709 	level[len] = 0;
2710 
2711 	request_module("md-%s", level);
2712 	spin_lock(&pers_lock);
2713 	pers = find_pers(LEVEL_NONE, level);
2714 	if (!pers || !try_module_get(pers->owner)) {
2715 		spin_unlock(&pers_lock);
2716 		printk(KERN_WARNING "md: personality %s not loaded\n", level);
2717 		return -EINVAL;
2718 	}
2719 	spin_unlock(&pers_lock);
2720 
2721 	if (pers == mddev->pers) {
2722 		/* Nothing to do! */
2723 		module_put(pers->owner);
2724 		return rv;
2725 	}
2726 	if (!pers->takeover) {
2727 		module_put(pers->owner);
2728 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2729 		       mdname(mddev), level);
2730 		return -EINVAL;
2731 	}
2732 
2733 	/* ->takeover must set new_* and/or delta_disks
2734 	 * if it succeeds, and may set them when it fails.
2735 	 */
2736 	priv = pers->takeover(mddev);
2737 	if (IS_ERR(priv)) {
2738 		mddev->new_level = mddev->level;
2739 		mddev->new_layout = mddev->layout;
2740 		mddev->new_chunk = mddev->chunk_size;
2741 		mddev->raid_disks -= mddev->delta_disks;
2742 		mddev->delta_disks = 0;
2743 		module_put(pers->owner);
2744 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
2745 		       mdname(mddev), level);
2746 		return PTR_ERR(priv);
2747 	}
2748 
2749 	/* Looks like we have a winner */
2750 	mddev_suspend(mddev);
2751 	mddev->pers->stop(mddev);
2752 	module_put(mddev->pers->owner);
2753 	mddev->pers = pers;
2754 	mddev->private = priv;
2755 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2756 	mddev->level = mddev->new_level;
2757 	mddev->layout = mddev->new_layout;
2758 	mddev->chunk_size = mddev->new_chunk;
2759 	mddev->delta_disks = 0;
2760 	pers->run(mddev);
2761 	mddev_resume(mddev);
2762 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2763 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2764 	md_wakeup_thread(mddev->thread);
2765 	return rv;
2766 }
2767 
2768 static struct md_sysfs_entry md_level =
2769 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2770 
2771 
2772 static ssize_t
2773 layout_show(mddev_t *mddev, char *page)
2774 {
2775 	/* just a number, not meaningful for all levels */
2776 	if (mddev->reshape_position != MaxSector &&
2777 	    mddev->layout != mddev->new_layout)
2778 		return sprintf(page, "%d (%d)\n",
2779 			       mddev->new_layout, mddev->layout);
2780 	return sprintf(page, "%d\n", mddev->layout);
2781 }
2782 
2783 static ssize_t
2784 layout_store(mddev_t *mddev, const char *buf, size_t len)
2785 {
2786 	char *e;
2787 	unsigned long n = simple_strtoul(buf, &e, 10);
2788 
2789 	if (!*buf || (*e && *e != '\n'))
2790 		return -EINVAL;
2791 
2792 	if (mddev->pers) {
2793 		int err;
2794 		if (mddev->pers->reconfig == NULL)
2795 			return -EBUSY;
2796 		err = mddev->pers->reconfig(mddev, n, -1);
2797 		if (err)
2798 			return err;
2799 	} else {
2800 		mddev->new_layout = n;
2801 		if (mddev->reshape_position == MaxSector)
2802 			mddev->layout = n;
2803 	}
2804 	return len;
2805 }
2806 static struct md_sysfs_entry md_layout =
2807 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2808 
2809 
2810 static ssize_t
2811 raid_disks_show(mddev_t *mddev, char *page)
2812 {
2813 	if (mddev->raid_disks == 0)
2814 		return 0;
2815 	if (mddev->reshape_position != MaxSector &&
2816 	    mddev->delta_disks != 0)
2817 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2818 			       mddev->raid_disks - mddev->delta_disks);
2819 	return sprintf(page, "%d\n", mddev->raid_disks);
2820 }
2821 
2822 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2823 
2824 static ssize_t
2825 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2826 {
2827 	char *e;
2828 	int rv = 0;
2829 	unsigned long n = simple_strtoul(buf, &e, 10);
2830 
2831 	if (!*buf || (*e && *e != '\n'))
2832 		return -EINVAL;
2833 
2834 	if (mddev->pers)
2835 		rv = update_raid_disks(mddev, n);
2836 	else if (mddev->reshape_position != MaxSector) {
2837 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2838 		mddev->delta_disks = n - olddisks;
2839 		mddev->raid_disks = n;
2840 	} else
2841 		mddev->raid_disks = n;
2842 	return rv ? rv : len;
2843 }
2844 static struct md_sysfs_entry md_raid_disks =
2845 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2846 
2847 static ssize_t
2848 chunk_size_show(mddev_t *mddev, char *page)
2849 {
2850 	if (mddev->reshape_position != MaxSector &&
2851 	    mddev->chunk_size != mddev->new_chunk)
2852 		return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2853 			       mddev->chunk_size);
2854 	return sprintf(page, "%d\n", mddev->chunk_size);
2855 }
2856 
2857 static ssize_t
2858 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2859 {
2860 	char *e;
2861 	unsigned long n = simple_strtoul(buf, &e, 10);
2862 
2863 	if (!*buf || (*e && *e != '\n'))
2864 		return -EINVAL;
2865 
2866 	if (mddev->pers) {
2867 		int err;
2868 		if (mddev->pers->reconfig == NULL)
2869 			return -EBUSY;
2870 		err = mddev->pers->reconfig(mddev, -1, n);
2871 		if (err)
2872 			return err;
2873 	} else {
2874 		mddev->new_chunk = n;
2875 		if (mddev->reshape_position == MaxSector)
2876 			mddev->chunk_size = n;
2877 	}
2878 	return len;
2879 }
2880 static struct md_sysfs_entry md_chunk_size =
2881 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2882 
2883 static ssize_t
2884 resync_start_show(mddev_t *mddev, char *page)
2885 {
2886 	if (mddev->recovery_cp == MaxSector)
2887 		return sprintf(page, "none\n");
2888 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2889 }
2890 
2891 static ssize_t
2892 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2893 {
2894 	char *e;
2895 	unsigned long long n = simple_strtoull(buf, &e, 10);
2896 
2897 	if (mddev->pers)
2898 		return -EBUSY;
2899 	if (!*buf || (*e && *e != '\n'))
2900 		return -EINVAL;
2901 
2902 	mddev->recovery_cp = n;
2903 	return len;
2904 }
2905 static struct md_sysfs_entry md_resync_start =
2906 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2907 
2908 /*
2909  * The array state can be:
2910  *
2911  * clear
2912  *     No devices, no size, no level
2913  *     Equivalent to STOP_ARRAY ioctl
2914  * inactive
2915  *     May have some settings, but array is not active
2916  *        all IO results in error
2917  *     When written, doesn't tear down array, but just stops it
2918  * suspended (not supported yet)
2919  *     All IO requests will block. The array can be reconfigured.
2920  *     Writing this, if accepted, will block until array is quiescent
2921  * readonly
2922  *     no resync can happen.  no superblocks get written.
2923  *     write requests fail
2924  * read-auto
2925  *     like readonly, but behaves like 'clean' on a write request.
2926  *
2927  * clean - no pending writes, but otherwise active.
2928  *     When written to inactive array, starts without resync
2929  *     If a write request arrives then
2930  *       if metadata is known, mark 'dirty' and switch to 'active'.
2931  *       if not known, block and switch to write-pending
2932  *     If written to an active array that has pending writes, then fails.
2933  * active
2934  *     fully active: IO and resync can be happening.
2935  *     When written to inactive array, starts with resync
2936  *
2937  * write-pending
2938  *     clean, but writes are blocked waiting for 'active' to be written.
2939  *
2940  * active-idle
2941  *     like active, but no writes have been seen for a while (100msec).
2942  *
2943  */
2944 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2945 		   write_pending, active_idle, bad_word};
2946 static char *array_states[] = {
2947 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2948 	"write-pending", "active-idle", NULL };
2949 
2950 static int match_word(const char *word, char **list)
2951 {
2952 	int n;
2953 	for (n=0; list[n]; n++)
2954 		if (cmd_match(word, list[n]))
2955 			break;
2956 	return n;
2957 }
2958 
2959 static ssize_t
2960 array_state_show(mddev_t *mddev, char *page)
2961 {
2962 	enum array_state st = inactive;
2963 
2964 	if (mddev->pers)
2965 		switch(mddev->ro) {
2966 		case 1:
2967 			st = readonly;
2968 			break;
2969 		case 2:
2970 			st = read_auto;
2971 			break;
2972 		case 0:
2973 			if (mddev->in_sync)
2974 				st = clean;
2975 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2976 				st = write_pending;
2977 			else if (mddev->safemode)
2978 				st = active_idle;
2979 			else
2980 				st = active;
2981 		}
2982 	else {
2983 		if (list_empty(&mddev->disks) &&
2984 		    mddev->raid_disks == 0 &&
2985 		    mddev->dev_sectors == 0)
2986 			st = clear;
2987 		else
2988 			st = inactive;
2989 	}
2990 	return sprintf(page, "%s\n", array_states[st]);
2991 }
2992 
2993 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
2994 static int do_md_run(mddev_t * mddev);
2995 static int restart_array(mddev_t *mddev);
2996 
2997 static ssize_t
2998 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2999 {
3000 	int err = -EINVAL;
3001 	enum array_state st = match_word(buf, array_states);
3002 	switch(st) {
3003 	case bad_word:
3004 		break;
3005 	case clear:
3006 		/* stopping an active array */
3007 		if (atomic_read(&mddev->openers) > 0)
3008 			return -EBUSY;
3009 		err = do_md_stop(mddev, 0, 0);
3010 		break;
3011 	case inactive:
3012 		/* stopping an active array */
3013 		if (mddev->pers) {
3014 			if (atomic_read(&mddev->openers) > 0)
3015 				return -EBUSY;
3016 			err = do_md_stop(mddev, 2, 0);
3017 		} else
3018 			err = 0; /* already inactive */
3019 		break;
3020 	case suspended:
3021 		break; /* not supported yet */
3022 	case readonly:
3023 		if (mddev->pers)
3024 			err = do_md_stop(mddev, 1, 0);
3025 		else {
3026 			mddev->ro = 1;
3027 			set_disk_ro(mddev->gendisk, 1);
3028 			err = do_md_run(mddev);
3029 		}
3030 		break;
3031 	case read_auto:
3032 		if (mddev->pers) {
3033 			if (mddev->ro == 0)
3034 				err = do_md_stop(mddev, 1, 0);
3035 			else if (mddev->ro == 1)
3036 				err = restart_array(mddev);
3037 			if (err == 0) {
3038 				mddev->ro = 2;
3039 				set_disk_ro(mddev->gendisk, 0);
3040 			}
3041 		} else {
3042 			mddev->ro = 2;
3043 			err = do_md_run(mddev);
3044 		}
3045 		break;
3046 	case clean:
3047 		if (mddev->pers) {
3048 			restart_array(mddev);
3049 			spin_lock_irq(&mddev->write_lock);
3050 			if (atomic_read(&mddev->writes_pending) == 0) {
3051 				if (mddev->in_sync == 0) {
3052 					mddev->in_sync = 1;
3053 					if (mddev->safemode == 1)
3054 						mddev->safemode = 0;
3055 					if (mddev->persistent)
3056 						set_bit(MD_CHANGE_CLEAN,
3057 							&mddev->flags);
3058 				}
3059 				err = 0;
3060 			} else
3061 				err = -EBUSY;
3062 			spin_unlock_irq(&mddev->write_lock);
3063 		} else {
3064 			mddev->ro = 0;
3065 			mddev->recovery_cp = MaxSector;
3066 			err = do_md_run(mddev);
3067 		}
3068 		break;
3069 	case active:
3070 		if (mddev->pers) {
3071 			restart_array(mddev);
3072 			if (mddev->external)
3073 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3074 			wake_up(&mddev->sb_wait);
3075 			err = 0;
3076 		} else {
3077 			mddev->ro = 0;
3078 			set_disk_ro(mddev->gendisk, 0);
3079 			err = do_md_run(mddev);
3080 		}
3081 		break;
3082 	case write_pending:
3083 	case active_idle:
3084 		/* these cannot be set */
3085 		break;
3086 	}
3087 	if (err)
3088 		return err;
3089 	else {
3090 		sysfs_notify_dirent(mddev->sysfs_state);
3091 		return len;
3092 	}
3093 }
3094 static struct md_sysfs_entry md_array_state =
3095 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3096 
3097 static ssize_t
3098 null_show(mddev_t *mddev, char *page)
3099 {
3100 	return -EINVAL;
3101 }
3102 
3103 static ssize_t
3104 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3105 {
3106 	/* buf must be %d:%d\n? giving major and minor numbers */
3107 	/* The new device is added to the array.
3108 	 * If the array has a persistent superblock, we read the
3109 	 * superblock to initialise info and check validity.
3110 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3111 	 * which mainly checks size.
3112 	 */
3113 	char *e;
3114 	int major = simple_strtoul(buf, &e, 10);
3115 	int minor;
3116 	dev_t dev;
3117 	mdk_rdev_t *rdev;
3118 	int err;
3119 
3120 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3121 		return -EINVAL;
3122 	minor = simple_strtoul(e+1, &e, 10);
3123 	if (*e && *e != '\n')
3124 		return -EINVAL;
3125 	dev = MKDEV(major, minor);
3126 	if (major != MAJOR(dev) ||
3127 	    minor != MINOR(dev))
3128 		return -EOVERFLOW;
3129 
3130 
3131 	if (mddev->persistent) {
3132 		rdev = md_import_device(dev, mddev->major_version,
3133 					mddev->minor_version);
3134 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3135 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3136 						       mdk_rdev_t, same_set);
3137 			err = super_types[mddev->major_version]
3138 				.load_super(rdev, rdev0, mddev->minor_version);
3139 			if (err < 0)
3140 				goto out;
3141 		}
3142 	} else if (mddev->external)
3143 		rdev = md_import_device(dev, -2, -1);
3144 	else
3145 		rdev = md_import_device(dev, -1, -1);
3146 
3147 	if (IS_ERR(rdev))
3148 		return PTR_ERR(rdev);
3149 	err = bind_rdev_to_array(rdev, mddev);
3150  out:
3151 	if (err)
3152 		export_rdev(rdev);
3153 	return err ? err : len;
3154 }
3155 
3156 static struct md_sysfs_entry md_new_device =
3157 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3158 
3159 static ssize_t
3160 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3161 {
3162 	char *end;
3163 	unsigned long chunk, end_chunk;
3164 
3165 	if (!mddev->bitmap)
3166 		goto out;
3167 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3168 	while (*buf) {
3169 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3170 		if (buf == end) break;
3171 		if (*end == '-') { /* range */
3172 			buf = end + 1;
3173 			end_chunk = simple_strtoul(buf, &end, 0);
3174 			if (buf == end) break;
3175 		}
3176 		if (*end && !isspace(*end)) break;
3177 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3178 		buf = end;
3179 		while (isspace(*buf)) buf++;
3180 	}
3181 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3182 out:
3183 	return len;
3184 }
3185 
3186 static struct md_sysfs_entry md_bitmap =
3187 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3188 
3189 static ssize_t
3190 size_show(mddev_t *mddev, char *page)
3191 {
3192 	return sprintf(page, "%llu\n",
3193 		(unsigned long long)mddev->dev_sectors / 2);
3194 }
3195 
3196 static int update_size(mddev_t *mddev, sector_t num_sectors);
3197 
3198 static ssize_t
3199 size_store(mddev_t *mddev, const char *buf, size_t len)
3200 {
3201 	/* If array is inactive, we can reduce the component size, but
3202 	 * not increase it (except from 0).
3203 	 * If array is active, we can try an on-line resize
3204 	 */
3205 	sector_t sectors;
3206 	int err = strict_blocks_to_sectors(buf, &sectors);
3207 
3208 	if (err < 0)
3209 		return err;
3210 	if (mddev->pers) {
3211 		err = update_size(mddev, sectors);
3212 		md_update_sb(mddev, 1);
3213 	} else {
3214 		if (mddev->dev_sectors == 0 ||
3215 		    mddev->dev_sectors > sectors)
3216 			mddev->dev_sectors = sectors;
3217 		else
3218 			err = -ENOSPC;
3219 	}
3220 	return err ? err : len;
3221 }
3222 
3223 static struct md_sysfs_entry md_size =
3224 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3225 
3226 
3227 /* Metdata version.
3228  * This is one of
3229  *   'none' for arrays with no metadata (good luck...)
3230  *   'external' for arrays with externally managed metadata,
3231  * or N.M for internally known formats
3232  */
3233 static ssize_t
3234 metadata_show(mddev_t *mddev, char *page)
3235 {
3236 	if (mddev->persistent)
3237 		return sprintf(page, "%d.%d\n",
3238 			       mddev->major_version, mddev->minor_version);
3239 	else if (mddev->external)
3240 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3241 	else
3242 		return sprintf(page, "none\n");
3243 }
3244 
3245 static ssize_t
3246 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3247 {
3248 	int major, minor;
3249 	char *e;
3250 	/* Changing the details of 'external' metadata is
3251 	 * always permitted.  Otherwise there must be
3252 	 * no devices attached to the array.
3253 	 */
3254 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3255 		;
3256 	else if (!list_empty(&mddev->disks))
3257 		return -EBUSY;
3258 
3259 	if (cmd_match(buf, "none")) {
3260 		mddev->persistent = 0;
3261 		mddev->external = 0;
3262 		mddev->major_version = 0;
3263 		mddev->minor_version = 90;
3264 		return len;
3265 	}
3266 	if (strncmp(buf, "external:", 9) == 0) {
3267 		size_t namelen = len-9;
3268 		if (namelen >= sizeof(mddev->metadata_type))
3269 			namelen = sizeof(mddev->metadata_type)-1;
3270 		strncpy(mddev->metadata_type, buf+9, namelen);
3271 		mddev->metadata_type[namelen] = 0;
3272 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3273 			mddev->metadata_type[--namelen] = 0;
3274 		mddev->persistent = 0;
3275 		mddev->external = 1;
3276 		mddev->major_version = 0;
3277 		mddev->minor_version = 90;
3278 		return len;
3279 	}
3280 	major = simple_strtoul(buf, &e, 10);
3281 	if (e==buf || *e != '.')
3282 		return -EINVAL;
3283 	buf = e+1;
3284 	minor = simple_strtoul(buf, &e, 10);
3285 	if (e==buf || (*e && *e != '\n') )
3286 		return -EINVAL;
3287 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3288 		return -ENOENT;
3289 	mddev->major_version = major;
3290 	mddev->minor_version = minor;
3291 	mddev->persistent = 1;
3292 	mddev->external = 0;
3293 	return len;
3294 }
3295 
3296 static struct md_sysfs_entry md_metadata =
3297 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3298 
3299 static ssize_t
3300 action_show(mddev_t *mddev, char *page)
3301 {
3302 	char *type = "idle";
3303 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3304 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3305 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3306 			type = "reshape";
3307 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3308 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3309 				type = "resync";
3310 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3311 				type = "check";
3312 			else
3313 				type = "repair";
3314 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3315 			type = "recover";
3316 	}
3317 	return sprintf(page, "%s\n", type);
3318 }
3319 
3320 static ssize_t
3321 action_store(mddev_t *mddev, const char *page, size_t len)
3322 {
3323 	if (!mddev->pers || !mddev->pers->sync_request)
3324 		return -EINVAL;
3325 
3326 	if (cmd_match(page, "idle")) {
3327 		if (mddev->sync_thread) {
3328 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3329 			md_unregister_thread(mddev->sync_thread);
3330 			mddev->sync_thread = NULL;
3331 			mddev->recovery = 0;
3332 		}
3333 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3334 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3335 		return -EBUSY;
3336 	else if (cmd_match(page, "resync"))
3337 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3338 	else if (cmd_match(page, "recover")) {
3339 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3340 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3341 	} else if (cmd_match(page, "reshape")) {
3342 		int err;
3343 		if (mddev->pers->start_reshape == NULL)
3344 			return -EINVAL;
3345 		err = mddev->pers->start_reshape(mddev);
3346 		if (err)
3347 			return err;
3348 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3349 	} else {
3350 		if (cmd_match(page, "check"))
3351 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3352 		else if (!cmd_match(page, "repair"))
3353 			return -EINVAL;
3354 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3355 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3356 	}
3357 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3358 	md_wakeup_thread(mddev->thread);
3359 	sysfs_notify_dirent(mddev->sysfs_action);
3360 	return len;
3361 }
3362 
3363 static ssize_t
3364 mismatch_cnt_show(mddev_t *mddev, char *page)
3365 {
3366 	return sprintf(page, "%llu\n",
3367 		       (unsigned long long) mddev->resync_mismatches);
3368 }
3369 
3370 static struct md_sysfs_entry md_scan_mode =
3371 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3372 
3373 
3374 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3375 
3376 static ssize_t
3377 sync_min_show(mddev_t *mddev, char *page)
3378 {
3379 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3380 		       mddev->sync_speed_min ? "local": "system");
3381 }
3382 
3383 static ssize_t
3384 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3385 {
3386 	int min;
3387 	char *e;
3388 	if (strncmp(buf, "system", 6)==0) {
3389 		mddev->sync_speed_min = 0;
3390 		return len;
3391 	}
3392 	min = simple_strtoul(buf, &e, 10);
3393 	if (buf == e || (*e && *e != '\n') || min <= 0)
3394 		return -EINVAL;
3395 	mddev->sync_speed_min = min;
3396 	return len;
3397 }
3398 
3399 static struct md_sysfs_entry md_sync_min =
3400 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3401 
3402 static ssize_t
3403 sync_max_show(mddev_t *mddev, char *page)
3404 {
3405 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3406 		       mddev->sync_speed_max ? "local": "system");
3407 }
3408 
3409 static ssize_t
3410 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3411 {
3412 	int max;
3413 	char *e;
3414 	if (strncmp(buf, "system", 6)==0) {
3415 		mddev->sync_speed_max = 0;
3416 		return len;
3417 	}
3418 	max = simple_strtoul(buf, &e, 10);
3419 	if (buf == e || (*e && *e != '\n') || max <= 0)
3420 		return -EINVAL;
3421 	mddev->sync_speed_max = max;
3422 	return len;
3423 }
3424 
3425 static struct md_sysfs_entry md_sync_max =
3426 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3427 
3428 static ssize_t
3429 degraded_show(mddev_t *mddev, char *page)
3430 {
3431 	return sprintf(page, "%d\n", mddev->degraded);
3432 }
3433 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3434 
3435 static ssize_t
3436 sync_force_parallel_show(mddev_t *mddev, char *page)
3437 {
3438 	return sprintf(page, "%d\n", mddev->parallel_resync);
3439 }
3440 
3441 static ssize_t
3442 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3443 {
3444 	long n;
3445 
3446 	if (strict_strtol(buf, 10, &n))
3447 		return -EINVAL;
3448 
3449 	if (n != 0 && n != 1)
3450 		return -EINVAL;
3451 
3452 	mddev->parallel_resync = n;
3453 
3454 	if (mddev->sync_thread)
3455 		wake_up(&resync_wait);
3456 
3457 	return len;
3458 }
3459 
3460 /* force parallel resync, even with shared block devices */
3461 static struct md_sysfs_entry md_sync_force_parallel =
3462 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3463        sync_force_parallel_show, sync_force_parallel_store);
3464 
3465 static ssize_t
3466 sync_speed_show(mddev_t *mddev, char *page)
3467 {
3468 	unsigned long resync, dt, db;
3469 	if (mddev->curr_resync == 0)
3470 		return sprintf(page, "none\n");
3471 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3472 	dt = (jiffies - mddev->resync_mark) / HZ;
3473 	if (!dt) dt++;
3474 	db = resync - mddev->resync_mark_cnt;
3475 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3476 }
3477 
3478 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3479 
3480 static ssize_t
3481 sync_completed_show(mddev_t *mddev, char *page)
3482 {
3483 	unsigned long max_sectors, resync;
3484 
3485 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3486 		max_sectors = mddev->resync_max_sectors;
3487 	else
3488 		max_sectors = mddev->dev_sectors;
3489 
3490 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3491 	return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3492 }
3493 
3494 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3495 
3496 static ssize_t
3497 min_sync_show(mddev_t *mddev, char *page)
3498 {
3499 	return sprintf(page, "%llu\n",
3500 		       (unsigned long long)mddev->resync_min);
3501 }
3502 static ssize_t
3503 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3504 {
3505 	unsigned long long min;
3506 	if (strict_strtoull(buf, 10, &min))
3507 		return -EINVAL;
3508 	if (min > mddev->resync_max)
3509 		return -EINVAL;
3510 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3511 		return -EBUSY;
3512 
3513 	/* Must be a multiple of chunk_size */
3514 	if (mddev->chunk_size) {
3515 		if (min & (sector_t)((mddev->chunk_size>>9)-1))
3516 			return -EINVAL;
3517 	}
3518 	mddev->resync_min = min;
3519 
3520 	return len;
3521 }
3522 
3523 static struct md_sysfs_entry md_min_sync =
3524 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3525 
3526 static ssize_t
3527 max_sync_show(mddev_t *mddev, char *page)
3528 {
3529 	if (mddev->resync_max == MaxSector)
3530 		return sprintf(page, "max\n");
3531 	else
3532 		return sprintf(page, "%llu\n",
3533 			       (unsigned long long)mddev->resync_max);
3534 }
3535 static ssize_t
3536 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3537 {
3538 	if (strncmp(buf, "max", 3) == 0)
3539 		mddev->resync_max = MaxSector;
3540 	else {
3541 		unsigned long long max;
3542 		if (strict_strtoull(buf, 10, &max))
3543 			return -EINVAL;
3544 		if (max < mddev->resync_min)
3545 			return -EINVAL;
3546 		if (max < mddev->resync_max &&
3547 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3548 			return -EBUSY;
3549 
3550 		/* Must be a multiple of chunk_size */
3551 		if (mddev->chunk_size) {
3552 			if (max & (sector_t)((mddev->chunk_size>>9)-1))
3553 				return -EINVAL;
3554 		}
3555 		mddev->resync_max = max;
3556 	}
3557 	wake_up(&mddev->recovery_wait);
3558 	return len;
3559 }
3560 
3561 static struct md_sysfs_entry md_max_sync =
3562 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3563 
3564 static ssize_t
3565 suspend_lo_show(mddev_t *mddev, char *page)
3566 {
3567 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3568 }
3569 
3570 static ssize_t
3571 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3572 {
3573 	char *e;
3574 	unsigned long long new = simple_strtoull(buf, &e, 10);
3575 
3576 	if (mddev->pers->quiesce == NULL)
3577 		return -EINVAL;
3578 	if (buf == e || (*e && *e != '\n'))
3579 		return -EINVAL;
3580 	if (new >= mddev->suspend_hi ||
3581 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3582 		mddev->suspend_lo = new;
3583 		mddev->pers->quiesce(mddev, 2);
3584 		return len;
3585 	} else
3586 		return -EINVAL;
3587 }
3588 static struct md_sysfs_entry md_suspend_lo =
3589 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3590 
3591 
3592 static ssize_t
3593 suspend_hi_show(mddev_t *mddev, char *page)
3594 {
3595 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3596 }
3597 
3598 static ssize_t
3599 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3600 {
3601 	char *e;
3602 	unsigned long long new = simple_strtoull(buf, &e, 10);
3603 
3604 	if (mddev->pers->quiesce == NULL)
3605 		return -EINVAL;
3606 	if (buf == e || (*e && *e != '\n'))
3607 		return -EINVAL;
3608 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3609 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3610 		mddev->suspend_hi = new;
3611 		mddev->pers->quiesce(mddev, 1);
3612 		mddev->pers->quiesce(mddev, 0);
3613 		return len;
3614 	} else
3615 		return -EINVAL;
3616 }
3617 static struct md_sysfs_entry md_suspend_hi =
3618 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3619 
3620 static ssize_t
3621 reshape_position_show(mddev_t *mddev, char *page)
3622 {
3623 	if (mddev->reshape_position != MaxSector)
3624 		return sprintf(page, "%llu\n",
3625 			       (unsigned long long)mddev->reshape_position);
3626 	strcpy(page, "none\n");
3627 	return 5;
3628 }
3629 
3630 static ssize_t
3631 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3632 {
3633 	char *e;
3634 	unsigned long long new = simple_strtoull(buf, &e, 10);
3635 	if (mddev->pers)
3636 		return -EBUSY;
3637 	if (buf == e || (*e && *e != '\n'))
3638 		return -EINVAL;
3639 	mddev->reshape_position = new;
3640 	mddev->delta_disks = 0;
3641 	mddev->new_level = mddev->level;
3642 	mddev->new_layout = mddev->layout;
3643 	mddev->new_chunk = mddev->chunk_size;
3644 	return len;
3645 }
3646 
3647 static struct md_sysfs_entry md_reshape_position =
3648 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3649        reshape_position_store);
3650 
3651 static ssize_t
3652 array_size_show(mddev_t *mddev, char *page)
3653 {
3654 	if (mddev->external_size)
3655 		return sprintf(page, "%llu\n",
3656 			       (unsigned long long)mddev->array_sectors/2);
3657 	else
3658 		return sprintf(page, "default\n");
3659 }
3660 
3661 static ssize_t
3662 array_size_store(mddev_t *mddev, const char *buf, size_t len)
3663 {
3664 	sector_t sectors;
3665 
3666 	if (strncmp(buf, "default", 7) == 0) {
3667 		if (mddev->pers)
3668 			sectors = mddev->pers->size(mddev, 0, 0);
3669 		else
3670 			sectors = mddev->array_sectors;
3671 
3672 		mddev->external_size = 0;
3673 	} else {
3674 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
3675 			return -EINVAL;
3676 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
3677 			return -EINVAL;
3678 
3679 		mddev->external_size = 1;
3680 	}
3681 
3682 	mddev->array_sectors = sectors;
3683 	set_capacity(mddev->gendisk, mddev->array_sectors);
3684 	if (mddev->pers) {
3685 		struct block_device *bdev = bdget_disk(mddev->gendisk, 0);
3686 
3687 		if (bdev) {
3688 			mutex_lock(&bdev->bd_inode->i_mutex);
3689 			i_size_write(bdev->bd_inode,
3690 				     (loff_t)mddev->array_sectors << 9);
3691 			mutex_unlock(&bdev->bd_inode->i_mutex);
3692 			bdput(bdev);
3693 		}
3694 	}
3695 
3696 	return len;
3697 }
3698 
3699 static struct md_sysfs_entry md_array_size =
3700 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
3701        array_size_store);
3702 
3703 static struct attribute *md_default_attrs[] = {
3704 	&md_level.attr,
3705 	&md_layout.attr,
3706 	&md_raid_disks.attr,
3707 	&md_chunk_size.attr,
3708 	&md_size.attr,
3709 	&md_resync_start.attr,
3710 	&md_metadata.attr,
3711 	&md_new_device.attr,
3712 	&md_safe_delay.attr,
3713 	&md_array_state.attr,
3714 	&md_reshape_position.attr,
3715 	&md_array_size.attr,
3716 	NULL,
3717 };
3718 
3719 static struct attribute *md_redundancy_attrs[] = {
3720 	&md_scan_mode.attr,
3721 	&md_mismatches.attr,
3722 	&md_sync_min.attr,
3723 	&md_sync_max.attr,
3724 	&md_sync_speed.attr,
3725 	&md_sync_force_parallel.attr,
3726 	&md_sync_completed.attr,
3727 	&md_min_sync.attr,
3728 	&md_max_sync.attr,
3729 	&md_suspend_lo.attr,
3730 	&md_suspend_hi.attr,
3731 	&md_bitmap.attr,
3732 	&md_degraded.attr,
3733 	NULL,
3734 };
3735 static struct attribute_group md_redundancy_group = {
3736 	.name = NULL,
3737 	.attrs = md_redundancy_attrs,
3738 };
3739 
3740 
3741 static ssize_t
3742 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3743 {
3744 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3745 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3746 	ssize_t rv;
3747 
3748 	if (!entry->show)
3749 		return -EIO;
3750 	rv = mddev_lock(mddev);
3751 	if (!rv) {
3752 		rv = entry->show(mddev, page);
3753 		mddev_unlock(mddev);
3754 	}
3755 	return rv;
3756 }
3757 
3758 static ssize_t
3759 md_attr_store(struct kobject *kobj, struct attribute *attr,
3760 	      const char *page, size_t length)
3761 {
3762 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3763 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3764 	ssize_t rv;
3765 
3766 	if (!entry->store)
3767 		return -EIO;
3768 	if (!capable(CAP_SYS_ADMIN))
3769 		return -EACCES;
3770 	rv = mddev_lock(mddev);
3771 	if (mddev->hold_active == UNTIL_IOCTL)
3772 		mddev->hold_active = 0;
3773 	if (!rv) {
3774 		rv = entry->store(mddev, page, length);
3775 		mddev_unlock(mddev);
3776 	}
3777 	return rv;
3778 }
3779 
3780 static void md_free(struct kobject *ko)
3781 {
3782 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3783 
3784 	if (mddev->sysfs_state)
3785 		sysfs_put(mddev->sysfs_state);
3786 
3787 	if (mddev->gendisk) {
3788 		del_gendisk(mddev->gendisk);
3789 		put_disk(mddev->gendisk);
3790 	}
3791 	if (mddev->queue)
3792 		blk_cleanup_queue(mddev->queue);
3793 
3794 	kfree(mddev);
3795 }
3796 
3797 static struct sysfs_ops md_sysfs_ops = {
3798 	.show	= md_attr_show,
3799 	.store	= md_attr_store,
3800 };
3801 static struct kobj_type md_ktype = {
3802 	.release	= md_free,
3803 	.sysfs_ops	= &md_sysfs_ops,
3804 	.default_attrs	= md_default_attrs,
3805 };
3806 
3807 int mdp_major = 0;
3808 
3809 static void mddev_delayed_delete(struct work_struct *ws)
3810 {
3811 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
3812 
3813 	if (mddev->private == &md_redundancy_group) {
3814 		sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3815 		if (mddev->sysfs_action)
3816 			sysfs_put(mddev->sysfs_action);
3817 		mddev->sysfs_action = NULL;
3818 		mddev->private = NULL;
3819 	}
3820 	kobject_del(&mddev->kobj);
3821 	kobject_put(&mddev->kobj);
3822 }
3823 
3824 static int md_alloc(dev_t dev, char *name)
3825 {
3826 	static DEFINE_MUTEX(disks_mutex);
3827 	mddev_t *mddev = mddev_find(dev);
3828 	struct gendisk *disk;
3829 	int partitioned;
3830 	int shift;
3831 	int unit;
3832 	int error;
3833 
3834 	if (!mddev)
3835 		return -ENODEV;
3836 
3837 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3838 	shift = partitioned ? MdpMinorShift : 0;
3839 	unit = MINOR(mddev->unit) >> shift;
3840 
3841 	/* wait for any previous instance if this device
3842 	 * to be completed removed (mddev_delayed_delete).
3843 	 */
3844 	flush_scheduled_work();
3845 
3846 	mutex_lock(&disks_mutex);
3847 	if (mddev->gendisk) {
3848 		mutex_unlock(&disks_mutex);
3849 		mddev_put(mddev);
3850 		return -EEXIST;
3851 	}
3852 
3853 	if (name) {
3854 		/* Need to ensure that 'name' is not a duplicate.
3855 		 */
3856 		mddev_t *mddev2;
3857 		spin_lock(&all_mddevs_lock);
3858 
3859 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3860 			if (mddev2->gendisk &&
3861 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
3862 				spin_unlock(&all_mddevs_lock);
3863 				return -EEXIST;
3864 			}
3865 		spin_unlock(&all_mddevs_lock);
3866 	}
3867 
3868 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
3869 	if (!mddev->queue) {
3870 		mutex_unlock(&disks_mutex);
3871 		mddev_put(mddev);
3872 		return -ENOMEM;
3873 	}
3874 	mddev->queue->queuedata = mddev;
3875 
3876 	/* Can be unlocked because the queue is new: no concurrency */
3877 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3878 
3879 	blk_queue_make_request(mddev->queue, md_make_request);
3880 
3881 	disk = alloc_disk(1 << shift);
3882 	if (!disk) {
3883 		mutex_unlock(&disks_mutex);
3884 		blk_cleanup_queue(mddev->queue);
3885 		mddev->queue = NULL;
3886 		mddev_put(mddev);
3887 		return -ENOMEM;
3888 	}
3889 	disk->major = MAJOR(mddev->unit);
3890 	disk->first_minor = unit << shift;
3891 	if (name)
3892 		strcpy(disk->disk_name, name);
3893 	else if (partitioned)
3894 		sprintf(disk->disk_name, "md_d%d", unit);
3895 	else
3896 		sprintf(disk->disk_name, "md%d", unit);
3897 	disk->fops = &md_fops;
3898 	disk->private_data = mddev;
3899 	disk->queue = mddev->queue;
3900 	/* Allow extended partitions.  This makes the
3901 	 * 'mdp' device redundant, but we can't really
3902 	 * remove it now.
3903 	 */
3904 	disk->flags |= GENHD_FL_EXT_DEVT;
3905 	add_disk(disk);
3906 	mddev->gendisk = disk;
3907 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3908 				     &disk_to_dev(disk)->kobj, "%s", "md");
3909 	mutex_unlock(&disks_mutex);
3910 	if (error)
3911 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3912 		       disk->disk_name);
3913 	else {
3914 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
3915 		mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3916 	}
3917 	mddev_put(mddev);
3918 	return 0;
3919 }
3920 
3921 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3922 {
3923 	md_alloc(dev, NULL);
3924 	return NULL;
3925 }
3926 
3927 static int add_named_array(const char *val, struct kernel_param *kp)
3928 {
3929 	/* val must be "md_*" where * is not all digits.
3930 	 * We allocate an array with a large free minor number, and
3931 	 * set the name to val.  val must not already be an active name.
3932 	 */
3933 	int len = strlen(val);
3934 	char buf[DISK_NAME_LEN];
3935 
3936 	while (len && val[len-1] == '\n')
3937 		len--;
3938 	if (len >= DISK_NAME_LEN)
3939 		return -E2BIG;
3940 	strlcpy(buf, val, len+1);
3941 	if (strncmp(buf, "md_", 3) != 0)
3942 		return -EINVAL;
3943 	return md_alloc(0, buf);
3944 }
3945 
3946 static void md_safemode_timeout(unsigned long data)
3947 {
3948 	mddev_t *mddev = (mddev_t *) data;
3949 
3950 	if (!atomic_read(&mddev->writes_pending)) {
3951 		mddev->safemode = 1;
3952 		if (mddev->external)
3953 			sysfs_notify_dirent(mddev->sysfs_state);
3954 	}
3955 	md_wakeup_thread(mddev->thread);
3956 }
3957 
3958 static int start_dirty_degraded;
3959 
3960 static int do_md_run(mddev_t * mddev)
3961 {
3962 	int err;
3963 	int chunk_size;
3964 	mdk_rdev_t *rdev;
3965 	struct gendisk *disk;
3966 	struct mdk_personality *pers;
3967 	char b[BDEVNAME_SIZE];
3968 
3969 	if (list_empty(&mddev->disks))
3970 		/* cannot run an array with no devices.. */
3971 		return -EINVAL;
3972 
3973 	if (mddev->pers)
3974 		return -EBUSY;
3975 
3976 	/*
3977 	 * Analyze all RAID superblock(s)
3978 	 */
3979 	if (!mddev->raid_disks) {
3980 		if (!mddev->persistent)
3981 			return -EINVAL;
3982 		analyze_sbs(mddev);
3983 	}
3984 
3985 	chunk_size = mddev->chunk_size;
3986 
3987 	if (chunk_size) {
3988 		if (chunk_size > MAX_CHUNK_SIZE) {
3989 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3990 				chunk_size, MAX_CHUNK_SIZE);
3991 			return -EINVAL;
3992 		}
3993 		/*
3994 		 * chunk-size has to be a power of 2
3995 		 */
3996 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3997 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3998 			return -EINVAL;
3999 		}
4000 
4001 		/* devices must have minimum size of one chunk */
4002 		list_for_each_entry(rdev, &mddev->disks, same_set) {
4003 			if (test_bit(Faulty, &rdev->flags))
4004 				continue;
4005 			if (rdev->sectors < chunk_size / 512) {
4006 				printk(KERN_WARNING
4007 					"md: Dev %s smaller than chunk_size:"
4008 					" %llu < %d\n",
4009 					bdevname(rdev->bdev,b),
4010 					(unsigned long long)rdev->sectors,
4011 					chunk_size / 512);
4012 				return -EINVAL;
4013 			}
4014 		}
4015 	}
4016 
4017 	if (mddev->level != LEVEL_NONE)
4018 		request_module("md-level-%d", mddev->level);
4019 	else if (mddev->clevel[0])
4020 		request_module("md-%s", mddev->clevel);
4021 
4022 	/*
4023 	 * Drop all container device buffers, from now on
4024 	 * the only valid external interface is through the md
4025 	 * device.
4026 	 */
4027 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4028 		if (test_bit(Faulty, &rdev->flags))
4029 			continue;
4030 		sync_blockdev(rdev->bdev);
4031 		invalidate_bdev(rdev->bdev);
4032 
4033 		/* perform some consistency tests on the device.
4034 		 * We don't want the data to overlap the metadata,
4035 		 * Internal Bitmap issues have been handled elsewhere.
4036 		 */
4037 		if (rdev->data_offset < rdev->sb_start) {
4038 			if (mddev->dev_sectors &&
4039 			    rdev->data_offset + mddev->dev_sectors
4040 			    > rdev->sb_start) {
4041 				printk("md: %s: data overlaps metadata\n",
4042 				       mdname(mddev));
4043 				return -EINVAL;
4044 			}
4045 		} else {
4046 			if (rdev->sb_start + rdev->sb_size/512
4047 			    > rdev->data_offset) {
4048 				printk("md: %s: metadata overlaps data\n",
4049 				       mdname(mddev));
4050 				return -EINVAL;
4051 			}
4052 		}
4053 		sysfs_notify_dirent(rdev->sysfs_state);
4054 	}
4055 
4056 	md_probe(mddev->unit, NULL, NULL);
4057 	disk = mddev->gendisk;
4058 	if (!disk)
4059 		return -ENOMEM;
4060 
4061 	spin_lock(&pers_lock);
4062 	pers = find_pers(mddev->level, mddev->clevel);
4063 	if (!pers || !try_module_get(pers->owner)) {
4064 		spin_unlock(&pers_lock);
4065 		if (mddev->level != LEVEL_NONE)
4066 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4067 			       mddev->level);
4068 		else
4069 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4070 			       mddev->clevel);
4071 		return -EINVAL;
4072 	}
4073 	mddev->pers = pers;
4074 	spin_unlock(&pers_lock);
4075 	if (mddev->level != pers->level) {
4076 		mddev->level = pers->level;
4077 		mddev->new_level = pers->level;
4078 	}
4079 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4080 
4081 	if (pers->level >= 4 && pers->level <= 6)
4082 		/* Cannot support integrity (yet) */
4083 		blk_integrity_unregister(mddev->gendisk);
4084 
4085 	if (mddev->reshape_position != MaxSector &&
4086 	    pers->start_reshape == NULL) {
4087 		/* This personality cannot handle reshaping... */
4088 		mddev->pers = NULL;
4089 		module_put(pers->owner);
4090 		return -EINVAL;
4091 	}
4092 
4093 	if (pers->sync_request) {
4094 		/* Warn if this is a potentially silly
4095 		 * configuration.
4096 		 */
4097 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4098 		mdk_rdev_t *rdev2;
4099 		int warned = 0;
4100 
4101 		list_for_each_entry(rdev, &mddev->disks, same_set)
4102 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4103 				if (rdev < rdev2 &&
4104 				    rdev->bdev->bd_contains ==
4105 				    rdev2->bdev->bd_contains) {
4106 					printk(KERN_WARNING
4107 					       "%s: WARNING: %s appears to be"
4108 					       " on the same physical disk as"
4109 					       " %s.\n",
4110 					       mdname(mddev),
4111 					       bdevname(rdev->bdev,b),
4112 					       bdevname(rdev2->bdev,b2));
4113 					warned = 1;
4114 				}
4115 			}
4116 
4117 		if (warned)
4118 			printk(KERN_WARNING
4119 			       "True protection against single-disk"
4120 			       " failure might be compromised.\n");
4121 	}
4122 
4123 	mddev->recovery = 0;
4124 	/* may be over-ridden by personality */
4125 	mddev->resync_max_sectors = mddev->dev_sectors;
4126 
4127 	mddev->barriers_work = 1;
4128 	mddev->ok_start_degraded = start_dirty_degraded;
4129 
4130 	if (start_readonly)
4131 		mddev->ro = 2; /* read-only, but switch on first write */
4132 
4133 	err = mddev->pers->run(mddev);
4134 	if (err)
4135 		printk(KERN_ERR "md: pers->run() failed ...\n");
4136 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4137 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4138 			  " but 'external_size' not in effect?\n", __func__);
4139 		printk(KERN_ERR
4140 		       "md: invalid array_size %llu > default size %llu\n",
4141 		       (unsigned long long)mddev->array_sectors / 2,
4142 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4143 		err = -EINVAL;
4144 		mddev->pers->stop(mddev);
4145 	}
4146 	if (err == 0 && mddev->pers->sync_request) {
4147 		err = bitmap_create(mddev);
4148 		if (err) {
4149 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4150 			       mdname(mddev), err);
4151 			mddev->pers->stop(mddev);
4152 		}
4153 	}
4154 	if (err) {
4155 		module_put(mddev->pers->owner);
4156 		mddev->pers = NULL;
4157 		bitmap_destroy(mddev);
4158 		return err;
4159 	}
4160 	if (mddev->pers->sync_request) {
4161 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4162 			printk(KERN_WARNING
4163 			       "md: cannot register extra attributes for %s\n",
4164 			       mdname(mddev));
4165 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4166 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4167 		mddev->ro = 0;
4168 
4169  	atomic_set(&mddev->writes_pending,0);
4170 	mddev->safemode = 0;
4171 	mddev->safemode_timer.function = md_safemode_timeout;
4172 	mddev->safemode_timer.data = (unsigned long) mddev;
4173 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4174 	mddev->in_sync = 1;
4175 
4176 	list_for_each_entry(rdev, &mddev->disks, same_set)
4177 		if (rdev->raid_disk >= 0) {
4178 			char nm[20];
4179 			sprintf(nm, "rd%d", rdev->raid_disk);
4180 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4181 				printk("md: cannot register %s for %s\n",
4182 				       nm, mdname(mddev));
4183 		}
4184 
4185 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4186 
4187 	if (mddev->flags)
4188 		md_update_sb(mddev, 0);
4189 
4190 	set_capacity(disk, mddev->array_sectors);
4191 
4192 	/* If there is a partially-recovered drive we need to
4193 	 * start recovery here.  If we leave it to md_check_recovery,
4194 	 * it will remove the drives and not do the right thing
4195 	 */
4196 	if (mddev->degraded && !mddev->sync_thread) {
4197 		int spares = 0;
4198 		list_for_each_entry(rdev, &mddev->disks, same_set)
4199 			if (rdev->raid_disk >= 0 &&
4200 			    !test_bit(In_sync, &rdev->flags) &&
4201 			    !test_bit(Faulty, &rdev->flags))
4202 				/* complete an interrupted recovery */
4203 				spares++;
4204 		if (spares && mddev->pers->sync_request) {
4205 			mddev->recovery = 0;
4206 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4207 			mddev->sync_thread = md_register_thread(md_do_sync,
4208 								mddev,
4209 								"%s_resync");
4210 			if (!mddev->sync_thread) {
4211 				printk(KERN_ERR "%s: could not start resync"
4212 				       " thread...\n",
4213 				       mdname(mddev));
4214 				/* leave the spares where they are, it shouldn't hurt */
4215 				mddev->recovery = 0;
4216 			}
4217 		}
4218 	}
4219 	md_wakeup_thread(mddev->thread);
4220 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4221 
4222 	mddev->changed = 1;
4223 	md_new_event(mddev);
4224 	sysfs_notify_dirent(mddev->sysfs_state);
4225 	if (mddev->sysfs_action)
4226 		sysfs_notify_dirent(mddev->sysfs_action);
4227 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4228 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4229 	return 0;
4230 }
4231 
4232 static int restart_array(mddev_t *mddev)
4233 {
4234 	struct gendisk *disk = mddev->gendisk;
4235 
4236 	/* Complain if it has no devices */
4237 	if (list_empty(&mddev->disks))
4238 		return -ENXIO;
4239 	if (!mddev->pers)
4240 		return -EINVAL;
4241 	if (!mddev->ro)
4242 		return -EBUSY;
4243 	mddev->safemode = 0;
4244 	mddev->ro = 0;
4245 	set_disk_ro(disk, 0);
4246 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4247 		mdname(mddev));
4248 	/* Kick recovery or resync if necessary */
4249 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4250 	md_wakeup_thread(mddev->thread);
4251 	md_wakeup_thread(mddev->sync_thread);
4252 	sysfs_notify_dirent(mddev->sysfs_state);
4253 	return 0;
4254 }
4255 
4256 /* similar to deny_write_access, but accounts for our holding a reference
4257  * to the file ourselves */
4258 static int deny_bitmap_write_access(struct file * file)
4259 {
4260 	struct inode *inode = file->f_mapping->host;
4261 
4262 	spin_lock(&inode->i_lock);
4263 	if (atomic_read(&inode->i_writecount) > 1) {
4264 		spin_unlock(&inode->i_lock);
4265 		return -ETXTBSY;
4266 	}
4267 	atomic_set(&inode->i_writecount, -1);
4268 	spin_unlock(&inode->i_lock);
4269 
4270 	return 0;
4271 }
4272 
4273 static void restore_bitmap_write_access(struct file *file)
4274 {
4275 	struct inode *inode = file->f_mapping->host;
4276 
4277 	spin_lock(&inode->i_lock);
4278 	atomic_set(&inode->i_writecount, 1);
4279 	spin_unlock(&inode->i_lock);
4280 }
4281 
4282 /* mode:
4283  *   0 - completely stop and dis-assemble array
4284  *   1 - switch to readonly
4285  *   2 - stop but do not disassemble array
4286  */
4287 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4288 {
4289 	int err = 0;
4290 	struct gendisk *disk = mddev->gendisk;
4291 
4292 	if (atomic_read(&mddev->openers) > is_open) {
4293 		printk("md: %s still in use.\n",mdname(mddev));
4294 		return -EBUSY;
4295 	}
4296 
4297 	if (mddev->pers) {
4298 
4299 		if (mddev->sync_thread) {
4300 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4301 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4302 			md_unregister_thread(mddev->sync_thread);
4303 			mddev->sync_thread = NULL;
4304 		}
4305 
4306 		del_timer_sync(&mddev->safemode_timer);
4307 
4308 		switch(mode) {
4309 		case 1: /* readonly */
4310 			err  = -ENXIO;
4311 			if (mddev->ro==1)
4312 				goto out;
4313 			mddev->ro = 1;
4314 			break;
4315 		case 0: /* disassemble */
4316 		case 2: /* stop */
4317 			bitmap_flush(mddev);
4318 			md_super_wait(mddev);
4319 			if (mddev->ro)
4320 				set_disk_ro(disk, 0);
4321 
4322 			mddev->pers->stop(mddev);
4323 			mddev->queue->merge_bvec_fn = NULL;
4324 			mddev->queue->unplug_fn = NULL;
4325 			mddev->queue->backing_dev_info.congested_fn = NULL;
4326 			module_put(mddev->pers->owner);
4327 			if (mddev->pers->sync_request)
4328 				mddev->private = &md_redundancy_group;
4329 			mddev->pers = NULL;
4330 			/* tell userspace to handle 'inactive' */
4331 			sysfs_notify_dirent(mddev->sysfs_state);
4332 
4333 			set_capacity(disk, 0);
4334 			mddev->changed = 1;
4335 
4336 			if (mddev->ro)
4337 				mddev->ro = 0;
4338 		}
4339 		if (!mddev->in_sync || mddev->flags) {
4340 			/* mark array as shutdown cleanly */
4341 			mddev->in_sync = 1;
4342 			md_update_sb(mddev, 1);
4343 		}
4344 		if (mode == 1)
4345 			set_disk_ro(disk, 1);
4346 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4347 	}
4348 
4349 	/*
4350 	 * Free resources if final stop
4351 	 */
4352 	if (mode == 0) {
4353 		mdk_rdev_t *rdev;
4354 
4355 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4356 
4357 		bitmap_destroy(mddev);
4358 		if (mddev->bitmap_file) {
4359 			restore_bitmap_write_access(mddev->bitmap_file);
4360 			fput(mddev->bitmap_file);
4361 			mddev->bitmap_file = NULL;
4362 		}
4363 		mddev->bitmap_offset = 0;
4364 
4365 		list_for_each_entry(rdev, &mddev->disks, same_set)
4366 			if (rdev->raid_disk >= 0) {
4367 				char nm[20];
4368 				sprintf(nm, "rd%d", rdev->raid_disk);
4369 				sysfs_remove_link(&mddev->kobj, nm);
4370 			}
4371 
4372 		/* make sure all md_delayed_delete calls have finished */
4373 		flush_scheduled_work();
4374 
4375 		export_array(mddev);
4376 
4377 		mddev->array_sectors = 0;
4378 		mddev->external_size = 0;
4379 		mddev->dev_sectors = 0;
4380 		mddev->raid_disks = 0;
4381 		mddev->recovery_cp = 0;
4382 		mddev->resync_min = 0;
4383 		mddev->resync_max = MaxSector;
4384 		mddev->reshape_position = MaxSector;
4385 		mddev->external = 0;
4386 		mddev->persistent = 0;
4387 		mddev->level = LEVEL_NONE;
4388 		mddev->clevel[0] = 0;
4389 		mddev->flags = 0;
4390 		mddev->ro = 0;
4391 		mddev->metadata_type[0] = 0;
4392 		mddev->chunk_size = 0;
4393 		mddev->ctime = mddev->utime = 0;
4394 		mddev->layout = 0;
4395 		mddev->max_disks = 0;
4396 		mddev->events = 0;
4397 		mddev->delta_disks = 0;
4398 		mddev->new_level = LEVEL_NONE;
4399 		mddev->new_layout = 0;
4400 		mddev->new_chunk = 0;
4401 		mddev->curr_resync = 0;
4402 		mddev->resync_mismatches = 0;
4403 		mddev->suspend_lo = mddev->suspend_hi = 0;
4404 		mddev->sync_speed_min = mddev->sync_speed_max = 0;
4405 		mddev->recovery = 0;
4406 		mddev->in_sync = 0;
4407 		mddev->changed = 0;
4408 		mddev->degraded = 0;
4409 		mddev->barriers_work = 0;
4410 		mddev->safemode = 0;
4411 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4412 		if (mddev->hold_active == UNTIL_STOP)
4413 			mddev->hold_active = 0;
4414 
4415 	} else if (mddev->pers)
4416 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
4417 			mdname(mddev));
4418 	err = 0;
4419 	blk_integrity_unregister(disk);
4420 	md_new_event(mddev);
4421 	sysfs_notify_dirent(mddev->sysfs_state);
4422 out:
4423 	return err;
4424 }
4425 
4426 #ifndef MODULE
4427 static void autorun_array(mddev_t *mddev)
4428 {
4429 	mdk_rdev_t *rdev;
4430 	int err;
4431 
4432 	if (list_empty(&mddev->disks))
4433 		return;
4434 
4435 	printk(KERN_INFO "md: running: ");
4436 
4437 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4438 		char b[BDEVNAME_SIZE];
4439 		printk("<%s>", bdevname(rdev->bdev,b));
4440 	}
4441 	printk("\n");
4442 
4443 	err = do_md_run(mddev);
4444 	if (err) {
4445 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4446 		do_md_stop(mddev, 0, 0);
4447 	}
4448 }
4449 
4450 /*
4451  * lets try to run arrays based on all disks that have arrived
4452  * until now. (those are in pending_raid_disks)
4453  *
4454  * the method: pick the first pending disk, collect all disks with
4455  * the same UUID, remove all from the pending list and put them into
4456  * the 'same_array' list. Then order this list based on superblock
4457  * update time (freshest comes first), kick out 'old' disks and
4458  * compare superblocks. If everything's fine then run it.
4459  *
4460  * If "unit" is allocated, then bump its reference count
4461  */
4462 static void autorun_devices(int part)
4463 {
4464 	mdk_rdev_t *rdev0, *rdev, *tmp;
4465 	mddev_t *mddev;
4466 	char b[BDEVNAME_SIZE];
4467 
4468 	printk(KERN_INFO "md: autorun ...\n");
4469 	while (!list_empty(&pending_raid_disks)) {
4470 		int unit;
4471 		dev_t dev;
4472 		LIST_HEAD(candidates);
4473 		rdev0 = list_entry(pending_raid_disks.next,
4474 					 mdk_rdev_t, same_set);
4475 
4476 		printk(KERN_INFO "md: considering %s ...\n",
4477 			bdevname(rdev0->bdev,b));
4478 		INIT_LIST_HEAD(&candidates);
4479 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4480 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4481 				printk(KERN_INFO "md:  adding %s ...\n",
4482 					bdevname(rdev->bdev,b));
4483 				list_move(&rdev->same_set, &candidates);
4484 			}
4485 		/*
4486 		 * now we have a set of devices, with all of them having
4487 		 * mostly sane superblocks. It's time to allocate the
4488 		 * mddev.
4489 		 */
4490 		if (part) {
4491 			dev = MKDEV(mdp_major,
4492 				    rdev0->preferred_minor << MdpMinorShift);
4493 			unit = MINOR(dev) >> MdpMinorShift;
4494 		} else {
4495 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4496 			unit = MINOR(dev);
4497 		}
4498 		if (rdev0->preferred_minor != unit) {
4499 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4500 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4501 			break;
4502 		}
4503 
4504 		md_probe(dev, NULL, NULL);
4505 		mddev = mddev_find(dev);
4506 		if (!mddev || !mddev->gendisk) {
4507 			if (mddev)
4508 				mddev_put(mddev);
4509 			printk(KERN_ERR
4510 				"md: cannot allocate memory for md drive.\n");
4511 			break;
4512 		}
4513 		if (mddev_lock(mddev))
4514 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4515 			       mdname(mddev));
4516 		else if (mddev->raid_disks || mddev->major_version
4517 			 || !list_empty(&mddev->disks)) {
4518 			printk(KERN_WARNING
4519 				"md: %s already running, cannot run %s\n",
4520 				mdname(mddev), bdevname(rdev0->bdev,b));
4521 			mddev_unlock(mddev);
4522 		} else {
4523 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4524 			mddev->persistent = 1;
4525 			rdev_for_each_list(rdev, tmp, &candidates) {
4526 				list_del_init(&rdev->same_set);
4527 				if (bind_rdev_to_array(rdev, mddev))
4528 					export_rdev(rdev);
4529 			}
4530 			autorun_array(mddev);
4531 			mddev_unlock(mddev);
4532 		}
4533 		/* on success, candidates will be empty, on error
4534 		 * it won't...
4535 		 */
4536 		rdev_for_each_list(rdev, tmp, &candidates) {
4537 			list_del_init(&rdev->same_set);
4538 			export_rdev(rdev);
4539 		}
4540 		mddev_put(mddev);
4541 	}
4542 	printk(KERN_INFO "md: ... autorun DONE.\n");
4543 }
4544 #endif /* !MODULE */
4545 
4546 static int get_version(void __user * arg)
4547 {
4548 	mdu_version_t ver;
4549 
4550 	ver.major = MD_MAJOR_VERSION;
4551 	ver.minor = MD_MINOR_VERSION;
4552 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4553 
4554 	if (copy_to_user(arg, &ver, sizeof(ver)))
4555 		return -EFAULT;
4556 
4557 	return 0;
4558 }
4559 
4560 static int get_array_info(mddev_t * mddev, void __user * arg)
4561 {
4562 	mdu_array_info_t info;
4563 	int nr,working,active,failed,spare;
4564 	mdk_rdev_t *rdev;
4565 
4566 	nr=working=active=failed=spare=0;
4567 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4568 		nr++;
4569 		if (test_bit(Faulty, &rdev->flags))
4570 			failed++;
4571 		else {
4572 			working++;
4573 			if (test_bit(In_sync, &rdev->flags))
4574 				active++;
4575 			else
4576 				spare++;
4577 		}
4578 	}
4579 
4580 	info.major_version = mddev->major_version;
4581 	info.minor_version = mddev->minor_version;
4582 	info.patch_version = MD_PATCHLEVEL_VERSION;
4583 	info.ctime         = mddev->ctime;
4584 	info.level         = mddev->level;
4585 	info.size          = mddev->dev_sectors / 2;
4586 	if (info.size != mddev->dev_sectors / 2) /* overflow */
4587 		info.size = -1;
4588 	info.nr_disks      = nr;
4589 	info.raid_disks    = mddev->raid_disks;
4590 	info.md_minor      = mddev->md_minor;
4591 	info.not_persistent= !mddev->persistent;
4592 
4593 	info.utime         = mddev->utime;
4594 	info.state         = 0;
4595 	if (mddev->in_sync)
4596 		info.state = (1<<MD_SB_CLEAN);
4597 	if (mddev->bitmap && mddev->bitmap_offset)
4598 		info.state = (1<<MD_SB_BITMAP_PRESENT);
4599 	info.active_disks  = active;
4600 	info.working_disks = working;
4601 	info.failed_disks  = failed;
4602 	info.spare_disks   = spare;
4603 
4604 	info.layout        = mddev->layout;
4605 	info.chunk_size    = mddev->chunk_size;
4606 
4607 	if (copy_to_user(arg, &info, sizeof(info)))
4608 		return -EFAULT;
4609 
4610 	return 0;
4611 }
4612 
4613 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4614 {
4615 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4616 	char *ptr, *buf = NULL;
4617 	int err = -ENOMEM;
4618 
4619 	if (md_allow_write(mddev))
4620 		file = kmalloc(sizeof(*file), GFP_NOIO);
4621 	else
4622 		file = kmalloc(sizeof(*file), GFP_KERNEL);
4623 
4624 	if (!file)
4625 		goto out;
4626 
4627 	/* bitmap disabled, zero the first byte and copy out */
4628 	if (!mddev->bitmap || !mddev->bitmap->file) {
4629 		file->pathname[0] = '\0';
4630 		goto copy_out;
4631 	}
4632 
4633 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4634 	if (!buf)
4635 		goto out;
4636 
4637 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4638 	if (IS_ERR(ptr))
4639 		goto out;
4640 
4641 	strcpy(file->pathname, ptr);
4642 
4643 copy_out:
4644 	err = 0;
4645 	if (copy_to_user(arg, file, sizeof(*file)))
4646 		err = -EFAULT;
4647 out:
4648 	kfree(buf);
4649 	kfree(file);
4650 	return err;
4651 }
4652 
4653 static int get_disk_info(mddev_t * mddev, void __user * arg)
4654 {
4655 	mdu_disk_info_t info;
4656 	mdk_rdev_t *rdev;
4657 
4658 	if (copy_from_user(&info, arg, sizeof(info)))
4659 		return -EFAULT;
4660 
4661 	rdev = find_rdev_nr(mddev, info.number);
4662 	if (rdev) {
4663 		info.major = MAJOR(rdev->bdev->bd_dev);
4664 		info.minor = MINOR(rdev->bdev->bd_dev);
4665 		info.raid_disk = rdev->raid_disk;
4666 		info.state = 0;
4667 		if (test_bit(Faulty, &rdev->flags))
4668 			info.state |= (1<<MD_DISK_FAULTY);
4669 		else if (test_bit(In_sync, &rdev->flags)) {
4670 			info.state |= (1<<MD_DISK_ACTIVE);
4671 			info.state |= (1<<MD_DISK_SYNC);
4672 		}
4673 		if (test_bit(WriteMostly, &rdev->flags))
4674 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
4675 	} else {
4676 		info.major = info.minor = 0;
4677 		info.raid_disk = -1;
4678 		info.state = (1<<MD_DISK_REMOVED);
4679 	}
4680 
4681 	if (copy_to_user(arg, &info, sizeof(info)))
4682 		return -EFAULT;
4683 
4684 	return 0;
4685 }
4686 
4687 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4688 {
4689 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4690 	mdk_rdev_t *rdev;
4691 	dev_t dev = MKDEV(info->major,info->minor);
4692 
4693 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4694 		return -EOVERFLOW;
4695 
4696 	if (!mddev->raid_disks) {
4697 		int err;
4698 		/* expecting a device which has a superblock */
4699 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4700 		if (IS_ERR(rdev)) {
4701 			printk(KERN_WARNING
4702 				"md: md_import_device returned %ld\n",
4703 				PTR_ERR(rdev));
4704 			return PTR_ERR(rdev);
4705 		}
4706 		if (!list_empty(&mddev->disks)) {
4707 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4708 							mdk_rdev_t, same_set);
4709 			int err = super_types[mddev->major_version]
4710 				.load_super(rdev, rdev0, mddev->minor_version);
4711 			if (err < 0) {
4712 				printk(KERN_WARNING
4713 					"md: %s has different UUID to %s\n",
4714 					bdevname(rdev->bdev,b),
4715 					bdevname(rdev0->bdev,b2));
4716 				export_rdev(rdev);
4717 				return -EINVAL;
4718 			}
4719 		}
4720 		err = bind_rdev_to_array(rdev, mddev);
4721 		if (err)
4722 			export_rdev(rdev);
4723 		return err;
4724 	}
4725 
4726 	/*
4727 	 * add_new_disk can be used once the array is assembled
4728 	 * to add "hot spares".  They must already have a superblock
4729 	 * written
4730 	 */
4731 	if (mddev->pers) {
4732 		int err;
4733 		if (!mddev->pers->hot_add_disk) {
4734 			printk(KERN_WARNING
4735 				"%s: personality does not support diskops!\n",
4736 			       mdname(mddev));
4737 			return -EINVAL;
4738 		}
4739 		if (mddev->persistent)
4740 			rdev = md_import_device(dev, mddev->major_version,
4741 						mddev->minor_version);
4742 		else
4743 			rdev = md_import_device(dev, -1, -1);
4744 		if (IS_ERR(rdev)) {
4745 			printk(KERN_WARNING
4746 				"md: md_import_device returned %ld\n",
4747 				PTR_ERR(rdev));
4748 			return PTR_ERR(rdev);
4749 		}
4750 		/* set save_raid_disk if appropriate */
4751 		if (!mddev->persistent) {
4752 			if (info->state & (1<<MD_DISK_SYNC)  &&
4753 			    info->raid_disk < mddev->raid_disks)
4754 				rdev->raid_disk = info->raid_disk;
4755 			else
4756 				rdev->raid_disk = -1;
4757 		} else
4758 			super_types[mddev->major_version].
4759 				validate_super(mddev, rdev);
4760 		rdev->saved_raid_disk = rdev->raid_disk;
4761 
4762 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
4763 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4764 			set_bit(WriteMostly, &rdev->flags);
4765 		else
4766 			clear_bit(WriteMostly, &rdev->flags);
4767 
4768 		rdev->raid_disk = -1;
4769 		err = bind_rdev_to_array(rdev, mddev);
4770 		if (!err && !mddev->pers->hot_remove_disk) {
4771 			/* If there is hot_add_disk but no hot_remove_disk
4772 			 * then added disks for geometry changes,
4773 			 * and should be added immediately.
4774 			 */
4775 			super_types[mddev->major_version].
4776 				validate_super(mddev, rdev);
4777 			err = mddev->pers->hot_add_disk(mddev, rdev);
4778 			if (err)
4779 				unbind_rdev_from_array(rdev);
4780 		}
4781 		if (err)
4782 			export_rdev(rdev);
4783 		else
4784 			sysfs_notify_dirent(rdev->sysfs_state);
4785 
4786 		md_update_sb(mddev, 1);
4787 		if (mddev->degraded)
4788 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4789 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4790 		md_wakeup_thread(mddev->thread);
4791 		return err;
4792 	}
4793 
4794 	/* otherwise, add_new_disk is only allowed
4795 	 * for major_version==0 superblocks
4796 	 */
4797 	if (mddev->major_version != 0) {
4798 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4799 		       mdname(mddev));
4800 		return -EINVAL;
4801 	}
4802 
4803 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
4804 		int err;
4805 		rdev = md_import_device(dev, -1, 0);
4806 		if (IS_ERR(rdev)) {
4807 			printk(KERN_WARNING
4808 				"md: error, md_import_device() returned %ld\n",
4809 				PTR_ERR(rdev));
4810 			return PTR_ERR(rdev);
4811 		}
4812 		rdev->desc_nr = info->number;
4813 		if (info->raid_disk < mddev->raid_disks)
4814 			rdev->raid_disk = info->raid_disk;
4815 		else
4816 			rdev->raid_disk = -1;
4817 
4818 		if (rdev->raid_disk < mddev->raid_disks)
4819 			if (info->state & (1<<MD_DISK_SYNC))
4820 				set_bit(In_sync, &rdev->flags);
4821 
4822 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4823 			set_bit(WriteMostly, &rdev->flags);
4824 
4825 		if (!mddev->persistent) {
4826 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
4827 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4828 		} else
4829 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4830 		rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4831 
4832 		err = bind_rdev_to_array(rdev, mddev);
4833 		if (err) {
4834 			export_rdev(rdev);
4835 			return err;
4836 		}
4837 	}
4838 
4839 	return 0;
4840 }
4841 
4842 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4843 {
4844 	char b[BDEVNAME_SIZE];
4845 	mdk_rdev_t *rdev;
4846 
4847 	rdev = find_rdev(mddev, dev);
4848 	if (!rdev)
4849 		return -ENXIO;
4850 
4851 	if (rdev->raid_disk >= 0)
4852 		goto busy;
4853 
4854 	kick_rdev_from_array(rdev);
4855 	md_update_sb(mddev, 1);
4856 	md_new_event(mddev);
4857 
4858 	return 0;
4859 busy:
4860 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4861 		bdevname(rdev->bdev,b), mdname(mddev));
4862 	return -EBUSY;
4863 }
4864 
4865 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4866 {
4867 	char b[BDEVNAME_SIZE];
4868 	int err;
4869 	mdk_rdev_t *rdev;
4870 
4871 	if (!mddev->pers)
4872 		return -ENODEV;
4873 
4874 	if (mddev->major_version != 0) {
4875 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4876 			" version-0 superblocks.\n",
4877 			mdname(mddev));
4878 		return -EINVAL;
4879 	}
4880 	if (!mddev->pers->hot_add_disk) {
4881 		printk(KERN_WARNING
4882 			"%s: personality does not support diskops!\n",
4883 			mdname(mddev));
4884 		return -EINVAL;
4885 	}
4886 
4887 	rdev = md_import_device(dev, -1, 0);
4888 	if (IS_ERR(rdev)) {
4889 		printk(KERN_WARNING
4890 			"md: error, md_import_device() returned %ld\n",
4891 			PTR_ERR(rdev));
4892 		return -EINVAL;
4893 	}
4894 
4895 	if (mddev->persistent)
4896 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4897 	else
4898 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4899 
4900 	rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4901 
4902 	if (test_bit(Faulty, &rdev->flags)) {
4903 		printk(KERN_WARNING
4904 			"md: can not hot-add faulty %s disk to %s!\n",
4905 			bdevname(rdev->bdev,b), mdname(mddev));
4906 		err = -EINVAL;
4907 		goto abort_export;
4908 	}
4909 	clear_bit(In_sync, &rdev->flags);
4910 	rdev->desc_nr = -1;
4911 	rdev->saved_raid_disk = -1;
4912 	err = bind_rdev_to_array(rdev, mddev);
4913 	if (err)
4914 		goto abort_export;
4915 
4916 	/*
4917 	 * The rest should better be atomic, we can have disk failures
4918 	 * noticed in interrupt contexts ...
4919 	 */
4920 
4921 	rdev->raid_disk = -1;
4922 
4923 	md_update_sb(mddev, 1);
4924 
4925 	/*
4926 	 * Kick recovery, maybe this spare has to be added to the
4927 	 * array immediately.
4928 	 */
4929 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4930 	md_wakeup_thread(mddev->thread);
4931 	md_new_event(mddev);
4932 	return 0;
4933 
4934 abort_export:
4935 	export_rdev(rdev);
4936 	return err;
4937 }
4938 
4939 static int set_bitmap_file(mddev_t *mddev, int fd)
4940 {
4941 	int err;
4942 
4943 	if (mddev->pers) {
4944 		if (!mddev->pers->quiesce)
4945 			return -EBUSY;
4946 		if (mddev->recovery || mddev->sync_thread)
4947 			return -EBUSY;
4948 		/* we should be able to change the bitmap.. */
4949 	}
4950 
4951 
4952 	if (fd >= 0) {
4953 		if (mddev->bitmap)
4954 			return -EEXIST; /* cannot add when bitmap is present */
4955 		mddev->bitmap_file = fget(fd);
4956 
4957 		if (mddev->bitmap_file == NULL) {
4958 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4959 			       mdname(mddev));
4960 			return -EBADF;
4961 		}
4962 
4963 		err = deny_bitmap_write_access(mddev->bitmap_file);
4964 		if (err) {
4965 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4966 			       mdname(mddev));
4967 			fput(mddev->bitmap_file);
4968 			mddev->bitmap_file = NULL;
4969 			return err;
4970 		}
4971 		mddev->bitmap_offset = 0; /* file overrides offset */
4972 	} else if (mddev->bitmap == NULL)
4973 		return -ENOENT; /* cannot remove what isn't there */
4974 	err = 0;
4975 	if (mddev->pers) {
4976 		mddev->pers->quiesce(mddev, 1);
4977 		if (fd >= 0)
4978 			err = bitmap_create(mddev);
4979 		if (fd < 0 || err) {
4980 			bitmap_destroy(mddev);
4981 			fd = -1; /* make sure to put the file */
4982 		}
4983 		mddev->pers->quiesce(mddev, 0);
4984 	}
4985 	if (fd < 0) {
4986 		if (mddev->bitmap_file) {
4987 			restore_bitmap_write_access(mddev->bitmap_file);
4988 			fput(mddev->bitmap_file);
4989 		}
4990 		mddev->bitmap_file = NULL;
4991 	}
4992 
4993 	return err;
4994 }
4995 
4996 /*
4997  * set_array_info is used two different ways
4998  * The original usage is when creating a new array.
4999  * In this usage, raid_disks is > 0 and it together with
5000  *  level, size, not_persistent,layout,chunksize determine the
5001  *  shape of the array.
5002  *  This will always create an array with a type-0.90.0 superblock.
5003  * The newer usage is when assembling an array.
5004  *  In this case raid_disks will be 0, and the major_version field is
5005  *  use to determine which style super-blocks are to be found on the devices.
5006  *  The minor and patch _version numbers are also kept incase the
5007  *  super_block handler wishes to interpret them.
5008  */
5009 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5010 {
5011 
5012 	if (info->raid_disks == 0) {
5013 		/* just setting version number for superblock loading */
5014 		if (info->major_version < 0 ||
5015 		    info->major_version >= ARRAY_SIZE(super_types) ||
5016 		    super_types[info->major_version].name == NULL) {
5017 			/* maybe try to auto-load a module? */
5018 			printk(KERN_INFO
5019 				"md: superblock version %d not known\n",
5020 				info->major_version);
5021 			return -EINVAL;
5022 		}
5023 		mddev->major_version = info->major_version;
5024 		mddev->minor_version = info->minor_version;
5025 		mddev->patch_version = info->patch_version;
5026 		mddev->persistent = !info->not_persistent;
5027 		return 0;
5028 	}
5029 	mddev->major_version = MD_MAJOR_VERSION;
5030 	mddev->minor_version = MD_MINOR_VERSION;
5031 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5032 	mddev->ctime         = get_seconds();
5033 
5034 	mddev->level         = info->level;
5035 	mddev->clevel[0]     = 0;
5036 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5037 	mddev->raid_disks    = info->raid_disks;
5038 	/* don't set md_minor, it is determined by which /dev/md* was
5039 	 * openned
5040 	 */
5041 	if (info->state & (1<<MD_SB_CLEAN))
5042 		mddev->recovery_cp = MaxSector;
5043 	else
5044 		mddev->recovery_cp = 0;
5045 	mddev->persistent    = ! info->not_persistent;
5046 	mddev->external	     = 0;
5047 
5048 	mddev->layout        = info->layout;
5049 	mddev->chunk_size    = info->chunk_size;
5050 
5051 	mddev->max_disks     = MD_SB_DISKS;
5052 
5053 	if (mddev->persistent)
5054 		mddev->flags         = 0;
5055 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5056 
5057 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
5058 	mddev->bitmap_offset = 0;
5059 
5060 	mddev->reshape_position = MaxSector;
5061 
5062 	/*
5063 	 * Generate a 128 bit UUID
5064 	 */
5065 	get_random_bytes(mddev->uuid, 16);
5066 
5067 	mddev->new_level = mddev->level;
5068 	mddev->new_chunk = mddev->chunk_size;
5069 	mddev->new_layout = mddev->layout;
5070 	mddev->delta_disks = 0;
5071 
5072 	return 0;
5073 }
5074 
5075 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5076 {
5077 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5078 
5079 	if (mddev->external_size)
5080 		return;
5081 
5082 	mddev->array_sectors = array_sectors;
5083 }
5084 EXPORT_SYMBOL(md_set_array_sectors);
5085 
5086 static int update_size(mddev_t *mddev, sector_t num_sectors)
5087 {
5088 	mdk_rdev_t *rdev;
5089 	int rv;
5090 	int fit = (num_sectors == 0);
5091 
5092 	if (mddev->pers->resize == NULL)
5093 		return -EINVAL;
5094 	/* The "num_sectors" is the number of sectors of each device that
5095 	 * is used.  This can only make sense for arrays with redundancy.
5096 	 * linear and raid0 always use whatever space is available. We can only
5097 	 * consider changing this number if no resync or reconstruction is
5098 	 * happening, and if the new size is acceptable. It must fit before the
5099 	 * sb_start or, if that is <data_offset, it must fit before the size
5100 	 * of each device.  If num_sectors is zero, we find the largest size
5101 	 * that fits.
5102 
5103 	 */
5104 	if (mddev->sync_thread)
5105 		return -EBUSY;
5106 	if (mddev->bitmap)
5107 		/* Sorry, cannot grow a bitmap yet, just remove it,
5108 		 * grow, and re-add.
5109 		 */
5110 		return -EBUSY;
5111 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5112 		sector_t avail = rdev->sectors;
5113 
5114 		if (fit && (num_sectors == 0 || num_sectors > avail))
5115 			num_sectors = avail;
5116 		if (avail < num_sectors)
5117 			return -ENOSPC;
5118 	}
5119 	rv = mddev->pers->resize(mddev, num_sectors);
5120 	if (!rv) {
5121 		struct block_device *bdev;
5122 
5123 		bdev = bdget_disk(mddev->gendisk, 0);
5124 		if (bdev) {
5125 			mutex_lock(&bdev->bd_inode->i_mutex);
5126 			i_size_write(bdev->bd_inode,
5127 				     (loff_t)mddev->array_sectors << 9);
5128 			mutex_unlock(&bdev->bd_inode->i_mutex);
5129 			bdput(bdev);
5130 		}
5131 	}
5132 	return rv;
5133 }
5134 
5135 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5136 {
5137 	int rv;
5138 	/* change the number of raid disks */
5139 	if (mddev->pers->check_reshape == NULL)
5140 		return -EINVAL;
5141 	if (raid_disks <= 0 ||
5142 	    raid_disks >= mddev->max_disks)
5143 		return -EINVAL;
5144 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5145 		return -EBUSY;
5146 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5147 
5148 	rv = mddev->pers->check_reshape(mddev);
5149 	return rv;
5150 }
5151 
5152 
5153 /*
5154  * update_array_info is used to change the configuration of an
5155  * on-line array.
5156  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5157  * fields in the info are checked against the array.
5158  * Any differences that cannot be handled will cause an error.
5159  * Normally, only one change can be managed at a time.
5160  */
5161 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5162 {
5163 	int rv = 0;
5164 	int cnt = 0;
5165 	int state = 0;
5166 
5167 	/* calculate expected state,ignoring low bits */
5168 	if (mddev->bitmap && mddev->bitmap_offset)
5169 		state |= (1 << MD_SB_BITMAP_PRESENT);
5170 
5171 	if (mddev->major_version != info->major_version ||
5172 	    mddev->minor_version != info->minor_version ||
5173 /*	    mddev->patch_version != info->patch_version || */
5174 	    mddev->ctime         != info->ctime         ||
5175 	    mddev->level         != info->level         ||
5176 /*	    mddev->layout        != info->layout        || */
5177 	    !mddev->persistent	 != info->not_persistent||
5178 	    mddev->chunk_size    != info->chunk_size    ||
5179 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5180 	    ((state^info->state) & 0xfffffe00)
5181 		)
5182 		return -EINVAL;
5183 	/* Check there is only one change */
5184 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5185 		cnt++;
5186 	if (mddev->raid_disks != info->raid_disks)
5187 		cnt++;
5188 	if (mddev->layout != info->layout)
5189 		cnt++;
5190 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5191 		cnt++;
5192 	if (cnt == 0)
5193 		return 0;
5194 	if (cnt > 1)
5195 		return -EINVAL;
5196 
5197 	if (mddev->layout != info->layout) {
5198 		/* Change layout
5199 		 * we don't need to do anything at the md level, the
5200 		 * personality will take care of it all.
5201 		 */
5202 		if (mddev->pers->reconfig == NULL)
5203 			return -EINVAL;
5204 		else
5205 			return mddev->pers->reconfig(mddev, info->layout, -1);
5206 	}
5207 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5208 		rv = update_size(mddev, (sector_t)info->size * 2);
5209 
5210 	if (mddev->raid_disks    != info->raid_disks)
5211 		rv = update_raid_disks(mddev, info->raid_disks);
5212 
5213 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5214 		if (mddev->pers->quiesce == NULL)
5215 			return -EINVAL;
5216 		if (mddev->recovery || mddev->sync_thread)
5217 			return -EBUSY;
5218 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5219 			/* add the bitmap */
5220 			if (mddev->bitmap)
5221 				return -EEXIST;
5222 			if (mddev->default_bitmap_offset == 0)
5223 				return -EINVAL;
5224 			mddev->bitmap_offset = mddev->default_bitmap_offset;
5225 			mddev->pers->quiesce(mddev, 1);
5226 			rv = bitmap_create(mddev);
5227 			if (rv)
5228 				bitmap_destroy(mddev);
5229 			mddev->pers->quiesce(mddev, 0);
5230 		} else {
5231 			/* remove the bitmap */
5232 			if (!mddev->bitmap)
5233 				return -ENOENT;
5234 			if (mddev->bitmap->file)
5235 				return -EINVAL;
5236 			mddev->pers->quiesce(mddev, 1);
5237 			bitmap_destroy(mddev);
5238 			mddev->pers->quiesce(mddev, 0);
5239 			mddev->bitmap_offset = 0;
5240 		}
5241 	}
5242 	md_update_sb(mddev, 1);
5243 	return rv;
5244 }
5245 
5246 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5247 {
5248 	mdk_rdev_t *rdev;
5249 
5250 	if (mddev->pers == NULL)
5251 		return -ENODEV;
5252 
5253 	rdev = find_rdev(mddev, dev);
5254 	if (!rdev)
5255 		return -ENODEV;
5256 
5257 	md_error(mddev, rdev);
5258 	return 0;
5259 }
5260 
5261 /*
5262  * We have a problem here : there is no easy way to give a CHS
5263  * virtual geometry. We currently pretend that we have a 2 heads
5264  * 4 sectors (with a BIG number of cylinders...). This drives
5265  * dosfs just mad... ;-)
5266  */
5267 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5268 {
5269 	mddev_t *mddev = bdev->bd_disk->private_data;
5270 
5271 	geo->heads = 2;
5272 	geo->sectors = 4;
5273 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
5274 	return 0;
5275 }
5276 
5277 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5278 			unsigned int cmd, unsigned long arg)
5279 {
5280 	int err = 0;
5281 	void __user *argp = (void __user *)arg;
5282 	mddev_t *mddev = NULL;
5283 
5284 	if (!capable(CAP_SYS_ADMIN))
5285 		return -EACCES;
5286 
5287 	/*
5288 	 * Commands dealing with the RAID driver but not any
5289 	 * particular array:
5290 	 */
5291 	switch (cmd)
5292 	{
5293 		case RAID_VERSION:
5294 			err = get_version(argp);
5295 			goto done;
5296 
5297 		case PRINT_RAID_DEBUG:
5298 			err = 0;
5299 			md_print_devices();
5300 			goto done;
5301 
5302 #ifndef MODULE
5303 		case RAID_AUTORUN:
5304 			err = 0;
5305 			autostart_arrays(arg);
5306 			goto done;
5307 #endif
5308 		default:;
5309 	}
5310 
5311 	/*
5312 	 * Commands creating/starting a new array:
5313 	 */
5314 
5315 	mddev = bdev->bd_disk->private_data;
5316 
5317 	if (!mddev) {
5318 		BUG();
5319 		goto abort;
5320 	}
5321 
5322 	err = mddev_lock(mddev);
5323 	if (err) {
5324 		printk(KERN_INFO
5325 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5326 			err, cmd);
5327 		goto abort;
5328 	}
5329 
5330 	switch (cmd)
5331 	{
5332 		case SET_ARRAY_INFO:
5333 			{
5334 				mdu_array_info_t info;
5335 				if (!arg)
5336 					memset(&info, 0, sizeof(info));
5337 				else if (copy_from_user(&info, argp, sizeof(info))) {
5338 					err = -EFAULT;
5339 					goto abort_unlock;
5340 				}
5341 				if (mddev->pers) {
5342 					err = update_array_info(mddev, &info);
5343 					if (err) {
5344 						printk(KERN_WARNING "md: couldn't update"
5345 						       " array info. %d\n", err);
5346 						goto abort_unlock;
5347 					}
5348 					goto done_unlock;
5349 				}
5350 				if (!list_empty(&mddev->disks)) {
5351 					printk(KERN_WARNING
5352 					       "md: array %s already has disks!\n",
5353 					       mdname(mddev));
5354 					err = -EBUSY;
5355 					goto abort_unlock;
5356 				}
5357 				if (mddev->raid_disks) {
5358 					printk(KERN_WARNING
5359 					       "md: array %s already initialised!\n",
5360 					       mdname(mddev));
5361 					err = -EBUSY;
5362 					goto abort_unlock;
5363 				}
5364 				err = set_array_info(mddev, &info);
5365 				if (err) {
5366 					printk(KERN_WARNING "md: couldn't set"
5367 					       " array info. %d\n", err);
5368 					goto abort_unlock;
5369 				}
5370 			}
5371 			goto done_unlock;
5372 
5373 		default:;
5374 	}
5375 
5376 	/*
5377 	 * Commands querying/configuring an existing array:
5378 	 */
5379 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5380 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5381 	if ((!mddev->raid_disks && !mddev->external)
5382 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5383 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5384 	    && cmd != GET_BITMAP_FILE) {
5385 		err = -ENODEV;
5386 		goto abort_unlock;
5387 	}
5388 
5389 	/*
5390 	 * Commands even a read-only array can execute:
5391 	 */
5392 	switch (cmd)
5393 	{
5394 		case GET_ARRAY_INFO:
5395 			err = get_array_info(mddev, argp);
5396 			goto done_unlock;
5397 
5398 		case GET_BITMAP_FILE:
5399 			err = get_bitmap_file(mddev, argp);
5400 			goto done_unlock;
5401 
5402 		case GET_DISK_INFO:
5403 			err = get_disk_info(mddev, argp);
5404 			goto done_unlock;
5405 
5406 		case RESTART_ARRAY_RW:
5407 			err = restart_array(mddev);
5408 			goto done_unlock;
5409 
5410 		case STOP_ARRAY:
5411 			err = do_md_stop(mddev, 0, 1);
5412 			goto done_unlock;
5413 
5414 		case STOP_ARRAY_RO:
5415 			err = do_md_stop(mddev, 1, 1);
5416 			goto done_unlock;
5417 
5418 	}
5419 
5420 	/*
5421 	 * The remaining ioctls are changing the state of the
5422 	 * superblock, so we do not allow them on read-only arrays.
5423 	 * However non-MD ioctls (e.g. get-size) will still come through
5424 	 * here and hit the 'default' below, so only disallow
5425 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5426 	 */
5427 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5428 		if (mddev->ro == 2) {
5429 			mddev->ro = 0;
5430 			sysfs_notify_dirent(mddev->sysfs_state);
5431 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5432 			md_wakeup_thread(mddev->thread);
5433 		} else {
5434 			err = -EROFS;
5435 			goto abort_unlock;
5436 		}
5437 	}
5438 
5439 	switch (cmd)
5440 	{
5441 		case ADD_NEW_DISK:
5442 		{
5443 			mdu_disk_info_t info;
5444 			if (copy_from_user(&info, argp, sizeof(info)))
5445 				err = -EFAULT;
5446 			else
5447 				err = add_new_disk(mddev, &info);
5448 			goto done_unlock;
5449 		}
5450 
5451 		case HOT_REMOVE_DISK:
5452 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5453 			goto done_unlock;
5454 
5455 		case HOT_ADD_DISK:
5456 			err = hot_add_disk(mddev, new_decode_dev(arg));
5457 			goto done_unlock;
5458 
5459 		case SET_DISK_FAULTY:
5460 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5461 			goto done_unlock;
5462 
5463 		case RUN_ARRAY:
5464 			err = do_md_run(mddev);
5465 			goto done_unlock;
5466 
5467 		case SET_BITMAP_FILE:
5468 			err = set_bitmap_file(mddev, (int)arg);
5469 			goto done_unlock;
5470 
5471 		default:
5472 			err = -EINVAL;
5473 			goto abort_unlock;
5474 	}
5475 
5476 done_unlock:
5477 abort_unlock:
5478 	if (mddev->hold_active == UNTIL_IOCTL &&
5479 	    err != -EINVAL)
5480 		mddev->hold_active = 0;
5481 	mddev_unlock(mddev);
5482 
5483 	return err;
5484 done:
5485 	if (err)
5486 		MD_BUG();
5487 abort:
5488 	return err;
5489 }
5490 
5491 static int md_open(struct block_device *bdev, fmode_t mode)
5492 {
5493 	/*
5494 	 * Succeed if we can lock the mddev, which confirms that
5495 	 * it isn't being stopped right now.
5496 	 */
5497 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5498 	int err;
5499 
5500 	if (mddev->gendisk != bdev->bd_disk) {
5501 		/* we are racing with mddev_put which is discarding this
5502 		 * bd_disk.
5503 		 */
5504 		mddev_put(mddev);
5505 		/* Wait until bdev->bd_disk is definitely gone */
5506 		flush_scheduled_work();
5507 		/* Then retry the open from the top */
5508 		return -ERESTARTSYS;
5509 	}
5510 	BUG_ON(mddev != bdev->bd_disk->private_data);
5511 
5512 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5513 		goto out;
5514 
5515 	err = 0;
5516 	atomic_inc(&mddev->openers);
5517 	mddev_unlock(mddev);
5518 
5519 	check_disk_change(bdev);
5520  out:
5521 	return err;
5522 }
5523 
5524 static int md_release(struct gendisk *disk, fmode_t mode)
5525 {
5526  	mddev_t *mddev = disk->private_data;
5527 
5528 	BUG_ON(!mddev);
5529 	atomic_dec(&mddev->openers);
5530 	mddev_put(mddev);
5531 
5532 	return 0;
5533 }
5534 
5535 static int md_media_changed(struct gendisk *disk)
5536 {
5537 	mddev_t *mddev = disk->private_data;
5538 
5539 	return mddev->changed;
5540 }
5541 
5542 static int md_revalidate(struct gendisk *disk)
5543 {
5544 	mddev_t *mddev = disk->private_data;
5545 
5546 	mddev->changed = 0;
5547 	return 0;
5548 }
5549 static struct block_device_operations md_fops =
5550 {
5551 	.owner		= THIS_MODULE,
5552 	.open		= md_open,
5553 	.release	= md_release,
5554 	.locked_ioctl	= md_ioctl,
5555 	.getgeo		= md_getgeo,
5556 	.media_changed	= md_media_changed,
5557 	.revalidate_disk= md_revalidate,
5558 };
5559 
5560 static int md_thread(void * arg)
5561 {
5562 	mdk_thread_t *thread = arg;
5563 
5564 	/*
5565 	 * md_thread is a 'system-thread', it's priority should be very
5566 	 * high. We avoid resource deadlocks individually in each
5567 	 * raid personality. (RAID5 does preallocation) We also use RR and
5568 	 * the very same RT priority as kswapd, thus we will never get
5569 	 * into a priority inversion deadlock.
5570 	 *
5571 	 * we definitely have to have equal or higher priority than
5572 	 * bdflush, otherwise bdflush will deadlock if there are too
5573 	 * many dirty RAID5 blocks.
5574 	 */
5575 
5576 	allow_signal(SIGKILL);
5577 	while (!kthread_should_stop()) {
5578 
5579 		/* We need to wait INTERRUPTIBLE so that
5580 		 * we don't add to the load-average.
5581 		 * That means we need to be sure no signals are
5582 		 * pending
5583 		 */
5584 		if (signal_pending(current))
5585 			flush_signals(current);
5586 
5587 		wait_event_interruptible_timeout
5588 			(thread->wqueue,
5589 			 test_bit(THREAD_WAKEUP, &thread->flags)
5590 			 || kthread_should_stop(),
5591 			 thread->timeout);
5592 
5593 		clear_bit(THREAD_WAKEUP, &thread->flags);
5594 
5595 		thread->run(thread->mddev);
5596 	}
5597 
5598 	return 0;
5599 }
5600 
5601 void md_wakeup_thread(mdk_thread_t *thread)
5602 {
5603 	if (thread) {
5604 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5605 		set_bit(THREAD_WAKEUP, &thread->flags);
5606 		wake_up(&thread->wqueue);
5607 	}
5608 }
5609 
5610 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5611 				 const char *name)
5612 {
5613 	mdk_thread_t *thread;
5614 
5615 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5616 	if (!thread)
5617 		return NULL;
5618 
5619 	init_waitqueue_head(&thread->wqueue);
5620 
5621 	thread->run = run;
5622 	thread->mddev = mddev;
5623 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
5624 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5625 	if (IS_ERR(thread->tsk)) {
5626 		kfree(thread);
5627 		return NULL;
5628 	}
5629 	return thread;
5630 }
5631 
5632 void md_unregister_thread(mdk_thread_t *thread)
5633 {
5634 	if (!thread)
5635 		return;
5636 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5637 
5638 	kthread_stop(thread->tsk);
5639 	kfree(thread);
5640 }
5641 
5642 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5643 {
5644 	if (!mddev) {
5645 		MD_BUG();
5646 		return;
5647 	}
5648 
5649 	if (!rdev || test_bit(Faulty, &rdev->flags))
5650 		return;
5651 
5652 	if (mddev->external)
5653 		set_bit(Blocked, &rdev->flags);
5654 /*
5655 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5656 		mdname(mddev),
5657 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5658 		__builtin_return_address(0),__builtin_return_address(1),
5659 		__builtin_return_address(2),__builtin_return_address(3));
5660 */
5661 	if (!mddev->pers)
5662 		return;
5663 	if (!mddev->pers->error_handler)
5664 		return;
5665 	mddev->pers->error_handler(mddev,rdev);
5666 	if (mddev->degraded)
5667 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5668 	set_bit(StateChanged, &rdev->flags);
5669 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5670 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5671 	md_wakeup_thread(mddev->thread);
5672 	md_new_event_inintr(mddev);
5673 }
5674 
5675 /* seq_file implementation /proc/mdstat */
5676 
5677 static void status_unused(struct seq_file *seq)
5678 {
5679 	int i = 0;
5680 	mdk_rdev_t *rdev;
5681 
5682 	seq_printf(seq, "unused devices: ");
5683 
5684 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5685 		char b[BDEVNAME_SIZE];
5686 		i++;
5687 		seq_printf(seq, "%s ",
5688 			      bdevname(rdev->bdev,b));
5689 	}
5690 	if (!i)
5691 		seq_printf(seq, "<none>");
5692 
5693 	seq_printf(seq, "\n");
5694 }
5695 
5696 
5697 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5698 {
5699 	sector_t max_blocks, resync, res;
5700 	unsigned long dt, db, rt;
5701 	int scale;
5702 	unsigned int per_milli;
5703 
5704 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5705 
5706 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5707 		max_blocks = mddev->resync_max_sectors >> 1;
5708 	else
5709 		max_blocks = mddev->dev_sectors / 2;
5710 
5711 	/*
5712 	 * Should not happen.
5713 	 */
5714 	if (!max_blocks) {
5715 		MD_BUG();
5716 		return;
5717 	}
5718 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
5719 	 * in a sector_t, and (max_blocks>>scale) will fit in a
5720 	 * u32, as those are the requirements for sector_div.
5721 	 * Thus 'scale' must be at least 10
5722 	 */
5723 	scale = 10;
5724 	if (sizeof(sector_t) > sizeof(unsigned long)) {
5725 		while ( max_blocks/2 > (1ULL<<(scale+32)))
5726 			scale++;
5727 	}
5728 	res = (resync>>scale)*1000;
5729 	sector_div(res, (u32)((max_blocks>>scale)+1));
5730 
5731 	per_milli = res;
5732 	{
5733 		int i, x = per_milli/50, y = 20-x;
5734 		seq_printf(seq, "[");
5735 		for (i = 0; i < x; i++)
5736 			seq_printf(seq, "=");
5737 		seq_printf(seq, ">");
5738 		for (i = 0; i < y; i++)
5739 			seq_printf(seq, ".");
5740 		seq_printf(seq, "] ");
5741 	}
5742 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5743 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5744 		    "reshape" :
5745 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5746 		     "check" :
5747 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5748 		      "resync" : "recovery"))),
5749 		   per_milli/10, per_milli % 10,
5750 		   (unsigned long long) resync,
5751 		   (unsigned long long) max_blocks);
5752 
5753 	/*
5754 	 * We do not want to overflow, so the order of operands and
5755 	 * the * 100 / 100 trick are important. We do a +1 to be
5756 	 * safe against division by zero. We only estimate anyway.
5757 	 *
5758 	 * dt: time from mark until now
5759 	 * db: blocks written from mark until now
5760 	 * rt: remaining time
5761 	 */
5762 	dt = ((jiffies - mddev->resync_mark) / HZ);
5763 	if (!dt) dt++;
5764 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5765 		- mddev->resync_mark_cnt;
5766 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5767 
5768 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5769 
5770 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5771 }
5772 
5773 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5774 {
5775 	struct list_head *tmp;
5776 	loff_t l = *pos;
5777 	mddev_t *mddev;
5778 
5779 	if (l >= 0x10000)
5780 		return NULL;
5781 	if (!l--)
5782 		/* header */
5783 		return (void*)1;
5784 
5785 	spin_lock(&all_mddevs_lock);
5786 	list_for_each(tmp,&all_mddevs)
5787 		if (!l--) {
5788 			mddev = list_entry(tmp, mddev_t, all_mddevs);
5789 			mddev_get(mddev);
5790 			spin_unlock(&all_mddevs_lock);
5791 			return mddev;
5792 		}
5793 	spin_unlock(&all_mddevs_lock);
5794 	if (!l--)
5795 		return (void*)2;/* tail */
5796 	return NULL;
5797 }
5798 
5799 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5800 {
5801 	struct list_head *tmp;
5802 	mddev_t *next_mddev, *mddev = v;
5803 
5804 	++*pos;
5805 	if (v == (void*)2)
5806 		return NULL;
5807 
5808 	spin_lock(&all_mddevs_lock);
5809 	if (v == (void*)1)
5810 		tmp = all_mddevs.next;
5811 	else
5812 		tmp = mddev->all_mddevs.next;
5813 	if (tmp != &all_mddevs)
5814 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5815 	else {
5816 		next_mddev = (void*)2;
5817 		*pos = 0x10000;
5818 	}
5819 	spin_unlock(&all_mddevs_lock);
5820 
5821 	if (v != (void*)1)
5822 		mddev_put(mddev);
5823 	return next_mddev;
5824 
5825 }
5826 
5827 static void md_seq_stop(struct seq_file *seq, void *v)
5828 {
5829 	mddev_t *mddev = v;
5830 
5831 	if (mddev && v != (void*)1 && v != (void*)2)
5832 		mddev_put(mddev);
5833 }
5834 
5835 struct mdstat_info {
5836 	int event;
5837 };
5838 
5839 static int md_seq_show(struct seq_file *seq, void *v)
5840 {
5841 	mddev_t *mddev = v;
5842 	sector_t sectors;
5843 	mdk_rdev_t *rdev;
5844 	struct mdstat_info *mi = seq->private;
5845 	struct bitmap *bitmap;
5846 
5847 	if (v == (void*)1) {
5848 		struct mdk_personality *pers;
5849 		seq_printf(seq, "Personalities : ");
5850 		spin_lock(&pers_lock);
5851 		list_for_each_entry(pers, &pers_list, list)
5852 			seq_printf(seq, "[%s] ", pers->name);
5853 
5854 		spin_unlock(&pers_lock);
5855 		seq_printf(seq, "\n");
5856 		mi->event = atomic_read(&md_event_count);
5857 		return 0;
5858 	}
5859 	if (v == (void*)2) {
5860 		status_unused(seq);
5861 		return 0;
5862 	}
5863 
5864 	if (mddev_lock(mddev) < 0)
5865 		return -EINTR;
5866 
5867 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5868 		seq_printf(seq, "%s : %sactive", mdname(mddev),
5869 						mddev->pers ? "" : "in");
5870 		if (mddev->pers) {
5871 			if (mddev->ro==1)
5872 				seq_printf(seq, " (read-only)");
5873 			if (mddev->ro==2)
5874 				seq_printf(seq, " (auto-read-only)");
5875 			seq_printf(seq, " %s", mddev->pers->name);
5876 		}
5877 
5878 		sectors = 0;
5879 		list_for_each_entry(rdev, &mddev->disks, same_set) {
5880 			char b[BDEVNAME_SIZE];
5881 			seq_printf(seq, " %s[%d]",
5882 				bdevname(rdev->bdev,b), rdev->desc_nr);
5883 			if (test_bit(WriteMostly, &rdev->flags))
5884 				seq_printf(seq, "(W)");
5885 			if (test_bit(Faulty, &rdev->flags)) {
5886 				seq_printf(seq, "(F)");
5887 				continue;
5888 			} else if (rdev->raid_disk < 0)
5889 				seq_printf(seq, "(S)"); /* spare */
5890 			sectors += rdev->sectors;
5891 		}
5892 
5893 		if (!list_empty(&mddev->disks)) {
5894 			if (mddev->pers)
5895 				seq_printf(seq, "\n      %llu blocks",
5896 					   (unsigned long long)
5897 					   mddev->array_sectors / 2);
5898 			else
5899 				seq_printf(seq, "\n      %llu blocks",
5900 					   (unsigned long long)sectors / 2);
5901 		}
5902 		if (mddev->persistent) {
5903 			if (mddev->major_version != 0 ||
5904 			    mddev->minor_version != 90) {
5905 				seq_printf(seq," super %d.%d",
5906 					   mddev->major_version,
5907 					   mddev->minor_version);
5908 			}
5909 		} else if (mddev->external)
5910 			seq_printf(seq, " super external:%s",
5911 				   mddev->metadata_type);
5912 		else
5913 			seq_printf(seq, " super non-persistent");
5914 
5915 		if (mddev->pers) {
5916 			mddev->pers->status(seq, mddev);
5917 	 		seq_printf(seq, "\n      ");
5918 			if (mddev->pers->sync_request) {
5919 				if (mddev->curr_resync > 2) {
5920 					status_resync(seq, mddev);
5921 					seq_printf(seq, "\n      ");
5922 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5923 					seq_printf(seq, "\tresync=DELAYED\n      ");
5924 				else if (mddev->recovery_cp < MaxSector)
5925 					seq_printf(seq, "\tresync=PENDING\n      ");
5926 			}
5927 		} else
5928 			seq_printf(seq, "\n       ");
5929 
5930 		if ((bitmap = mddev->bitmap)) {
5931 			unsigned long chunk_kb;
5932 			unsigned long flags;
5933 			spin_lock_irqsave(&bitmap->lock, flags);
5934 			chunk_kb = bitmap->chunksize >> 10;
5935 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5936 				"%lu%s chunk",
5937 				bitmap->pages - bitmap->missing_pages,
5938 				bitmap->pages,
5939 				(bitmap->pages - bitmap->missing_pages)
5940 					<< (PAGE_SHIFT - 10),
5941 				chunk_kb ? chunk_kb : bitmap->chunksize,
5942 				chunk_kb ? "KB" : "B");
5943 			if (bitmap->file) {
5944 				seq_printf(seq, ", file: ");
5945 				seq_path(seq, &bitmap->file->f_path, " \t\n");
5946 			}
5947 
5948 			seq_printf(seq, "\n");
5949 			spin_unlock_irqrestore(&bitmap->lock, flags);
5950 		}
5951 
5952 		seq_printf(seq, "\n");
5953 	}
5954 	mddev_unlock(mddev);
5955 
5956 	return 0;
5957 }
5958 
5959 static struct seq_operations md_seq_ops = {
5960 	.start  = md_seq_start,
5961 	.next   = md_seq_next,
5962 	.stop   = md_seq_stop,
5963 	.show   = md_seq_show,
5964 };
5965 
5966 static int md_seq_open(struct inode *inode, struct file *file)
5967 {
5968 	int error;
5969 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5970 	if (mi == NULL)
5971 		return -ENOMEM;
5972 
5973 	error = seq_open(file, &md_seq_ops);
5974 	if (error)
5975 		kfree(mi);
5976 	else {
5977 		struct seq_file *p = file->private_data;
5978 		p->private = mi;
5979 		mi->event = atomic_read(&md_event_count);
5980 	}
5981 	return error;
5982 }
5983 
5984 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5985 {
5986 	struct seq_file *m = filp->private_data;
5987 	struct mdstat_info *mi = m->private;
5988 	int mask;
5989 
5990 	poll_wait(filp, &md_event_waiters, wait);
5991 
5992 	/* always allow read */
5993 	mask = POLLIN | POLLRDNORM;
5994 
5995 	if (mi->event != atomic_read(&md_event_count))
5996 		mask |= POLLERR | POLLPRI;
5997 	return mask;
5998 }
5999 
6000 static const struct file_operations md_seq_fops = {
6001 	.owner		= THIS_MODULE,
6002 	.open           = md_seq_open,
6003 	.read           = seq_read,
6004 	.llseek         = seq_lseek,
6005 	.release	= seq_release_private,
6006 	.poll		= mdstat_poll,
6007 };
6008 
6009 int register_md_personality(struct mdk_personality *p)
6010 {
6011 	spin_lock(&pers_lock);
6012 	list_add_tail(&p->list, &pers_list);
6013 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6014 	spin_unlock(&pers_lock);
6015 	return 0;
6016 }
6017 
6018 int unregister_md_personality(struct mdk_personality *p)
6019 {
6020 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6021 	spin_lock(&pers_lock);
6022 	list_del_init(&p->list);
6023 	spin_unlock(&pers_lock);
6024 	return 0;
6025 }
6026 
6027 static int is_mddev_idle(mddev_t *mddev, int init)
6028 {
6029 	mdk_rdev_t * rdev;
6030 	int idle;
6031 	int curr_events;
6032 
6033 	idle = 1;
6034 	rcu_read_lock();
6035 	rdev_for_each_rcu(rdev, mddev) {
6036 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6037 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6038 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6039 			      atomic_read(&disk->sync_io);
6040 		/* sync IO will cause sync_io to increase before the disk_stats
6041 		 * as sync_io is counted when a request starts, and
6042 		 * disk_stats is counted when it completes.
6043 		 * So resync activity will cause curr_events to be smaller than
6044 		 * when there was no such activity.
6045 		 * non-sync IO will cause disk_stat to increase without
6046 		 * increasing sync_io so curr_events will (eventually)
6047 		 * be larger than it was before.  Once it becomes
6048 		 * substantially larger, the test below will cause
6049 		 * the array to appear non-idle, and resync will slow
6050 		 * down.
6051 		 * If there is a lot of outstanding resync activity when
6052 		 * we set last_event to curr_events, then all that activity
6053 		 * completing might cause the array to appear non-idle
6054 		 * and resync will be slowed down even though there might
6055 		 * not have been non-resync activity.  This will only
6056 		 * happen once though.  'last_events' will soon reflect
6057 		 * the state where there is little or no outstanding
6058 		 * resync requests, and further resync activity will
6059 		 * always make curr_events less than last_events.
6060 		 *
6061 		 */
6062 		if (init || curr_events - rdev->last_events > 64) {
6063 			rdev->last_events = curr_events;
6064 			idle = 0;
6065 		}
6066 	}
6067 	rcu_read_unlock();
6068 	return idle;
6069 }
6070 
6071 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6072 {
6073 	/* another "blocks" (512byte) blocks have been synced */
6074 	atomic_sub(blocks, &mddev->recovery_active);
6075 	wake_up(&mddev->recovery_wait);
6076 	if (!ok) {
6077 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6078 		md_wakeup_thread(mddev->thread);
6079 		// stop recovery, signal do_sync ....
6080 	}
6081 }
6082 
6083 
6084 /* md_write_start(mddev, bi)
6085  * If we need to update some array metadata (e.g. 'active' flag
6086  * in superblock) before writing, schedule a superblock update
6087  * and wait for it to complete.
6088  */
6089 void md_write_start(mddev_t *mddev, struct bio *bi)
6090 {
6091 	int did_change = 0;
6092 	if (bio_data_dir(bi) != WRITE)
6093 		return;
6094 
6095 	BUG_ON(mddev->ro == 1);
6096 	if (mddev->ro == 2) {
6097 		/* need to switch to read/write */
6098 		mddev->ro = 0;
6099 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6100 		md_wakeup_thread(mddev->thread);
6101 		md_wakeup_thread(mddev->sync_thread);
6102 		did_change = 1;
6103 	}
6104 	atomic_inc(&mddev->writes_pending);
6105 	if (mddev->safemode == 1)
6106 		mddev->safemode = 0;
6107 	if (mddev->in_sync) {
6108 		spin_lock_irq(&mddev->write_lock);
6109 		if (mddev->in_sync) {
6110 			mddev->in_sync = 0;
6111 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6112 			md_wakeup_thread(mddev->thread);
6113 			did_change = 1;
6114 		}
6115 		spin_unlock_irq(&mddev->write_lock);
6116 	}
6117 	if (did_change)
6118 		sysfs_notify_dirent(mddev->sysfs_state);
6119 	wait_event(mddev->sb_wait,
6120 		   !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6121 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6122 }
6123 
6124 void md_write_end(mddev_t *mddev)
6125 {
6126 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6127 		if (mddev->safemode == 2)
6128 			md_wakeup_thread(mddev->thread);
6129 		else if (mddev->safemode_delay)
6130 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6131 	}
6132 }
6133 
6134 /* md_allow_write(mddev)
6135  * Calling this ensures that the array is marked 'active' so that writes
6136  * may proceed without blocking.  It is important to call this before
6137  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6138  * Must be called with mddev_lock held.
6139  *
6140  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6141  * is dropped, so return -EAGAIN after notifying userspace.
6142  */
6143 int md_allow_write(mddev_t *mddev)
6144 {
6145 	if (!mddev->pers)
6146 		return 0;
6147 	if (mddev->ro)
6148 		return 0;
6149 	if (!mddev->pers->sync_request)
6150 		return 0;
6151 
6152 	spin_lock_irq(&mddev->write_lock);
6153 	if (mddev->in_sync) {
6154 		mddev->in_sync = 0;
6155 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6156 		if (mddev->safemode_delay &&
6157 		    mddev->safemode == 0)
6158 			mddev->safemode = 1;
6159 		spin_unlock_irq(&mddev->write_lock);
6160 		md_update_sb(mddev, 0);
6161 		sysfs_notify_dirent(mddev->sysfs_state);
6162 	} else
6163 		spin_unlock_irq(&mddev->write_lock);
6164 
6165 	if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6166 		return -EAGAIN;
6167 	else
6168 		return 0;
6169 }
6170 EXPORT_SYMBOL_GPL(md_allow_write);
6171 
6172 #define SYNC_MARKS	10
6173 #define	SYNC_MARK_STEP	(3*HZ)
6174 void md_do_sync(mddev_t *mddev)
6175 {
6176 	mddev_t *mddev2;
6177 	unsigned int currspeed = 0,
6178 		 window;
6179 	sector_t max_sectors,j, io_sectors;
6180 	unsigned long mark[SYNC_MARKS];
6181 	sector_t mark_cnt[SYNC_MARKS];
6182 	int last_mark,m;
6183 	struct list_head *tmp;
6184 	sector_t last_check;
6185 	int skipped = 0;
6186 	mdk_rdev_t *rdev;
6187 	char *desc;
6188 
6189 	/* just incase thread restarts... */
6190 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6191 		return;
6192 	if (mddev->ro) /* never try to sync a read-only array */
6193 		return;
6194 
6195 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6196 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6197 			desc = "data-check";
6198 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6199 			desc = "requested-resync";
6200 		else
6201 			desc = "resync";
6202 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6203 		desc = "reshape";
6204 	else
6205 		desc = "recovery";
6206 
6207 	/* we overload curr_resync somewhat here.
6208 	 * 0 == not engaged in resync at all
6209 	 * 2 == checking that there is no conflict with another sync
6210 	 * 1 == like 2, but have yielded to allow conflicting resync to
6211 	 *		commense
6212 	 * other == active in resync - this many blocks
6213 	 *
6214 	 * Before starting a resync we must have set curr_resync to
6215 	 * 2, and then checked that every "conflicting" array has curr_resync
6216 	 * less than ours.  When we find one that is the same or higher
6217 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6218 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6219 	 * This will mean we have to start checking from the beginning again.
6220 	 *
6221 	 */
6222 
6223 	do {
6224 		mddev->curr_resync = 2;
6225 
6226 	try_again:
6227 		if (kthread_should_stop()) {
6228 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6229 			goto skip;
6230 		}
6231 		for_each_mddev(mddev2, tmp) {
6232 			if (mddev2 == mddev)
6233 				continue;
6234 			if (!mddev->parallel_resync
6235 			&&  mddev2->curr_resync
6236 			&&  match_mddev_units(mddev, mddev2)) {
6237 				DEFINE_WAIT(wq);
6238 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6239 					/* arbitrarily yield */
6240 					mddev->curr_resync = 1;
6241 					wake_up(&resync_wait);
6242 				}
6243 				if (mddev > mddev2 && mddev->curr_resync == 1)
6244 					/* no need to wait here, we can wait the next
6245 					 * time 'round when curr_resync == 2
6246 					 */
6247 					continue;
6248 				/* We need to wait 'interruptible' so as not to
6249 				 * contribute to the load average, and not to
6250 				 * be caught by 'softlockup'
6251 				 */
6252 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6253 				if (!kthread_should_stop() &&
6254 				    mddev2->curr_resync >= mddev->curr_resync) {
6255 					printk(KERN_INFO "md: delaying %s of %s"
6256 					       " until %s has finished (they"
6257 					       " share one or more physical units)\n",
6258 					       desc, mdname(mddev), mdname(mddev2));
6259 					mddev_put(mddev2);
6260 					if (signal_pending(current))
6261 						flush_signals(current);
6262 					schedule();
6263 					finish_wait(&resync_wait, &wq);
6264 					goto try_again;
6265 				}
6266 				finish_wait(&resync_wait, &wq);
6267 			}
6268 		}
6269 	} while (mddev->curr_resync < 2);
6270 
6271 	j = 0;
6272 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6273 		/* resync follows the size requested by the personality,
6274 		 * which defaults to physical size, but can be virtual size
6275 		 */
6276 		max_sectors = mddev->resync_max_sectors;
6277 		mddev->resync_mismatches = 0;
6278 		/* we don't use the checkpoint if there's a bitmap */
6279 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6280 			j = mddev->resync_min;
6281 		else if (!mddev->bitmap)
6282 			j = mddev->recovery_cp;
6283 
6284 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6285 		max_sectors = mddev->dev_sectors;
6286 	else {
6287 		/* recovery follows the physical size of devices */
6288 		max_sectors = mddev->dev_sectors;
6289 		j = MaxSector;
6290 		list_for_each_entry(rdev, &mddev->disks, same_set)
6291 			if (rdev->raid_disk >= 0 &&
6292 			    !test_bit(Faulty, &rdev->flags) &&
6293 			    !test_bit(In_sync, &rdev->flags) &&
6294 			    rdev->recovery_offset < j)
6295 				j = rdev->recovery_offset;
6296 	}
6297 
6298 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6299 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6300 		" %d KB/sec/disk.\n", speed_min(mddev));
6301 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6302 	       "(but not more than %d KB/sec) for %s.\n",
6303 	       speed_max(mddev), desc);
6304 
6305 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6306 
6307 	io_sectors = 0;
6308 	for (m = 0; m < SYNC_MARKS; m++) {
6309 		mark[m] = jiffies;
6310 		mark_cnt[m] = io_sectors;
6311 	}
6312 	last_mark = 0;
6313 	mddev->resync_mark = mark[last_mark];
6314 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6315 
6316 	/*
6317 	 * Tune reconstruction:
6318 	 */
6319 	window = 32*(PAGE_SIZE/512);
6320 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6321 		window/2,(unsigned long long) max_sectors/2);
6322 
6323 	atomic_set(&mddev->recovery_active, 0);
6324 	last_check = 0;
6325 
6326 	if (j>2) {
6327 		printk(KERN_INFO
6328 		       "md: resuming %s of %s from checkpoint.\n",
6329 		       desc, mdname(mddev));
6330 		mddev->curr_resync = j;
6331 	}
6332 
6333 	while (j < max_sectors) {
6334 		sector_t sectors;
6335 
6336 		skipped = 0;
6337 		if (j >= mddev->resync_max) {
6338 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6339 			wait_event(mddev->recovery_wait,
6340 				   mddev->resync_max > j
6341 				   || kthread_should_stop());
6342 		}
6343 		if (kthread_should_stop())
6344 			goto interrupted;
6345 
6346 		if (mddev->curr_resync > mddev->curr_resync_completed &&
6347 		    (mddev->curr_resync - mddev->curr_resync_completed)
6348 		    > (max_sectors >> 4)) {
6349 			/* time to update curr_resync_completed */
6350 			blk_unplug(mddev->queue);
6351 			wait_event(mddev->recovery_wait,
6352 				   atomic_read(&mddev->recovery_active) == 0);
6353 			mddev->curr_resync_completed =
6354 				mddev->curr_resync;
6355 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6356 		}
6357 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6358 						  currspeed < speed_min(mddev));
6359 		if (sectors == 0) {
6360 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6361 			goto out;
6362 		}
6363 
6364 		if (!skipped) { /* actual IO requested */
6365 			io_sectors += sectors;
6366 			atomic_add(sectors, &mddev->recovery_active);
6367 		}
6368 
6369 		j += sectors;
6370 		if (j>1) mddev->curr_resync = j;
6371 		mddev->curr_mark_cnt = io_sectors;
6372 		if (last_check == 0)
6373 			/* this is the earliers that rebuilt will be
6374 			 * visible in /proc/mdstat
6375 			 */
6376 			md_new_event(mddev);
6377 
6378 		if (last_check + window > io_sectors || j == max_sectors)
6379 			continue;
6380 
6381 		last_check = io_sectors;
6382 
6383 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6384 			break;
6385 
6386 	repeat:
6387 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6388 			/* step marks */
6389 			int next = (last_mark+1) % SYNC_MARKS;
6390 
6391 			mddev->resync_mark = mark[next];
6392 			mddev->resync_mark_cnt = mark_cnt[next];
6393 			mark[next] = jiffies;
6394 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6395 			last_mark = next;
6396 		}
6397 
6398 
6399 		if (kthread_should_stop())
6400 			goto interrupted;
6401 
6402 
6403 		/*
6404 		 * this loop exits only if either when we are slower than
6405 		 * the 'hard' speed limit, or the system was IO-idle for
6406 		 * a jiffy.
6407 		 * the system might be non-idle CPU-wise, but we only care
6408 		 * about not overloading the IO subsystem. (things like an
6409 		 * e2fsck being done on the RAID array should execute fast)
6410 		 */
6411 		blk_unplug(mddev->queue);
6412 		cond_resched();
6413 
6414 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6415 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6416 
6417 		if (currspeed > speed_min(mddev)) {
6418 			if ((currspeed > speed_max(mddev)) ||
6419 					!is_mddev_idle(mddev, 0)) {
6420 				msleep(500);
6421 				goto repeat;
6422 			}
6423 		}
6424 	}
6425 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6426 	/*
6427 	 * this also signals 'finished resyncing' to md_stop
6428 	 */
6429  out:
6430 	blk_unplug(mddev->queue);
6431 
6432 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6433 
6434 	/* tell personality that we are finished */
6435 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6436 
6437 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6438 	    mddev->curr_resync > 2) {
6439 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6440 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6441 				if (mddev->curr_resync >= mddev->recovery_cp) {
6442 					printk(KERN_INFO
6443 					       "md: checkpointing %s of %s.\n",
6444 					       desc, mdname(mddev));
6445 					mddev->recovery_cp = mddev->curr_resync;
6446 				}
6447 			} else
6448 				mddev->recovery_cp = MaxSector;
6449 		} else {
6450 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6451 				mddev->curr_resync = MaxSector;
6452 			list_for_each_entry(rdev, &mddev->disks, same_set)
6453 				if (rdev->raid_disk >= 0 &&
6454 				    !test_bit(Faulty, &rdev->flags) &&
6455 				    !test_bit(In_sync, &rdev->flags) &&
6456 				    rdev->recovery_offset < mddev->curr_resync)
6457 					rdev->recovery_offset = mddev->curr_resync;
6458 		}
6459 	}
6460 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6461 
6462  skip:
6463 	mddev->curr_resync = 0;
6464 	mddev->resync_min = 0;
6465 	mddev->resync_max = MaxSector;
6466 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6467 	wake_up(&resync_wait);
6468 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6469 	md_wakeup_thread(mddev->thread);
6470 	return;
6471 
6472  interrupted:
6473 	/*
6474 	 * got a signal, exit.
6475 	 */
6476 	printk(KERN_INFO
6477 	       "md: md_do_sync() got signal ... exiting\n");
6478 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6479 	goto out;
6480 
6481 }
6482 EXPORT_SYMBOL_GPL(md_do_sync);
6483 
6484 
6485 static int remove_and_add_spares(mddev_t *mddev)
6486 {
6487 	mdk_rdev_t *rdev;
6488 	int spares = 0;
6489 
6490 	mddev->curr_resync_completed = 0;
6491 
6492 	list_for_each_entry(rdev, &mddev->disks, same_set)
6493 		if (rdev->raid_disk >= 0 &&
6494 		    !test_bit(Blocked, &rdev->flags) &&
6495 		    (test_bit(Faulty, &rdev->flags) ||
6496 		     ! test_bit(In_sync, &rdev->flags)) &&
6497 		    atomic_read(&rdev->nr_pending)==0) {
6498 			if (mddev->pers->hot_remove_disk(
6499 				    mddev, rdev->raid_disk)==0) {
6500 				char nm[20];
6501 				sprintf(nm,"rd%d", rdev->raid_disk);
6502 				sysfs_remove_link(&mddev->kobj, nm);
6503 				rdev->raid_disk = -1;
6504 			}
6505 		}
6506 
6507 	if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6508 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6509 			if (rdev->raid_disk >= 0 &&
6510 			    !test_bit(In_sync, &rdev->flags) &&
6511 			    !test_bit(Blocked, &rdev->flags))
6512 				spares++;
6513 			if (rdev->raid_disk < 0
6514 			    && !test_bit(Faulty, &rdev->flags)) {
6515 				rdev->recovery_offset = 0;
6516 				if (mddev->pers->
6517 				    hot_add_disk(mddev, rdev) == 0) {
6518 					char nm[20];
6519 					sprintf(nm, "rd%d", rdev->raid_disk);
6520 					if (sysfs_create_link(&mddev->kobj,
6521 							      &rdev->kobj, nm))
6522 						printk(KERN_WARNING
6523 						       "md: cannot register "
6524 						       "%s for %s\n",
6525 						       nm, mdname(mddev));
6526 					spares++;
6527 					md_new_event(mddev);
6528 				} else
6529 					break;
6530 			}
6531 		}
6532 	}
6533 	return spares;
6534 }
6535 /*
6536  * This routine is regularly called by all per-raid-array threads to
6537  * deal with generic issues like resync and super-block update.
6538  * Raid personalities that don't have a thread (linear/raid0) do not
6539  * need this as they never do any recovery or update the superblock.
6540  *
6541  * It does not do any resync itself, but rather "forks" off other threads
6542  * to do that as needed.
6543  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6544  * "->recovery" and create a thread at ->sync_thread.
6545  * When the thread finishes it sets MD_RECOVERY_DONE
6546  * and wakeups up this thread which will reap the thread and finish up.
6547  * This thread also removes any faulty devices (with nr_pending == 0).
6548  *
6549  * The overall approach is:
6550  *  1/ if the superblock needs updating, update it.
6551  *  2/ If a recovery thread is running, don't do anything else.
6552  *  3/ If recovery has finished, clean up, possibly marking spares active.
6553  *  4/ If there are any faulty devices, remove them.
6554  *  5/ If array is degraded, try to add spares devices
6555  *  6/ If array has spares or is not in-sync, start a resync thread.
6556  */
6557 void md_check_recovery(mddev_t *mddev)
6558 {
6559 	mdk_rdev_t *rdev;
6560 
6561 
6562 	if (mddev->bitmap)
6563 		bitmap_daemon_work(mddev->bitmap);
6564 
6565 	if (mddev->ro)
6566 		return;
6567 
6568 	if (signal_pending(current)) {
6569 		if (mddev->pers->sync_request && !mddev->external) {
6570 			printk(KERN_INFO "md: %s in immediate safe mode\n",
6571 			       mdname(mddev));
6572 			mddev->safemode = 2;
6573 		}
6574 		flush_signals(current);
6575 	}
6576 
6577 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6578 		return;
6579 	if ( ! (
6580 		(mddev->flags && !mddev->external) ||
6581 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6582 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6583 		(mddev->external == 0 && mddev->safemode == 1) ||
6584 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6585 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6586 		))
6587 		return;
6588 
6589 	if (mddev_trylock(mddev)) {
6590 		int spares = 0;
6591 
6592 		if (mddev->ro) {
6593 			/* Only thing we do on a ro array is remove
6594 			 * failed devices.
6595 			 */
6596 			remove_and_add_spares(mddev);
6597 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6598 			goto unlock;
6599 		}
6600 
6601 		if (!mddev->external) {
6602 			int did_change = 0;
6603 			spin_lock_irq(&mddev->write_lock);
6604 			if (mddev->safemode &&
6605 			    !atomic_read(&mddev->writes_pending) &&
6606 			    !mddev->in_sync &&
6607 			    mddev->recovery_cp == MaxSector) {
6608 				mddev->in_sync = 1;
6609 				did_change = 1;
6610 				if (mddev->persistent)
6611 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6612 			}
6613 			if (mddev->safemode == 1)
6614 				mddev->safemode = 0;
6615 			spin_unlock_irq(&mddev->write_lock);
6616 			if (did_change)
6617 				sysfs_notify_dirent(mddev->sysfs_state);
6618 		}
6619 
6620 		if (mddev->flags)
6621 			md_update_sb(mddev, 0);
6622 
6623 		list_for_each_entry(rdev, &mddev->disks, same_set)
6624 			if (test_and_clear_bit(StateChanged, &rdev->flags))
6625 				sysfs_notify_dirent(rdev->sysfs_state);
6626 
6627 
6628 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6629 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6630 			/* resync/recovery still happening */
6631 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6632 			goto unlock;
6633 		}
6634 		if (mddev->sync_thread) {
6635 			/* resync has finished, collect result */
6636 			md_unregister_thread(mddev->sync_thread);
6637 			mddev->sync_thread = NULL;
6638 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6639 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6640 				/* success...*/
6641 				/* activate any spares */
6642 				if (mddev->pers->spare_active(mddev))
6643 					sysfs_notify(&mddev->kobj, NULL,
6644 						     "degraded");
6645 			}
6646 			if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6647 			    mddev->pers->finish_reshape)
6648 				mddev->pers->finish_reshape(mddev);
6649 			md_update_sb(mddev, 1);
6650 
6651 			/* if array is no-longer degraded, then any saved_raid_disk
6652 			 * information must be scrapped
6653 			 */
6654 			if (!mddev->degraded)
6655 				list_for_each_entry(rdev, &mddev->disks, same_set)
6656 					rdev->saved_raid_disk = -1;
6657 
6658 			mddev->recovery = 0;
6659 			/* flag recovery needed just to double check */
6660 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6661 			sysfs_notify_dirent(mddev->sysfs_action);
6662 			md_new_event(mddev);
6663 			goto unlock;
6664 		}
6665 		/* Set RUNNING before clearing NEEDED to avoid
6666 		 * any transients in the value of "sync_action".
6667 		 */
6668 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6669 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6670 		/* Clear some bits that don't mean anything, but
6671 		 * might be left set
6672 		 */
6673 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6674 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6675 
6676 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6677 			goto unlock;
6678 		/* no recovery is running.
6679 		 * remove any failed drives, then
6680 		 * add spares if possible.
6681 		 * Spare are also removed and re-added, to allow
6682 		 * the personality to fail the re-add.
6683 		 */
6684 
6685 		if (mddev->reshape_position != MaxSector) {
6686 			if (mddev->pers->check_reshape(mddev) != 0)
6687 				/* Cannot proceed */
6688 				goto unlock;
6689 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6690 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6691 		} else if ((spares = remove_and_add_spares(mddev))) {
6692 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6693 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6694 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6695 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6696 		} else if (mddev->recovery_cp < MaxSector) {
6697 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6698 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6699 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6700 			/* nothing to be done ... */
6701 			goto unlock;
6702 
6703 		if (mddev->pers->sync_request) {
6704 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6705 				/* We are adding a device or devices to an array
6706 				 * which has the bitmap stored on all devices.
6707 				 * So make sure all bitmap pages get written
6708 				 */
6709 				bitmap_write_all(mddev->bitmap);
6710 			}
6711 			mddev->sync_thread = md_register_thread(md_do_sync,
6712 								mddev,
6713 								"%s_resync");
6714 			if (!mddev->sync_thread) {
6715 				printk(KERN_ERR "%s: could not start resync"
6716 					" thread...\n",
6717 					mdname(mddev));
6718 				/* leave the spares where they are, it shouldn't hurt */
6719 				mddev->recovery = 0;
6720 			} else
6721 				md_wakeup_thread(mddev->sync_thread);
6722 			sysfs_notify_dirent(mddev->sysfs_action);
6723 			md_new_event(mddev);
6724 		}
6725 	unlock:
6726 		if (!mddev->sync_thread) {
6727 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6728 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6729 					       &mddev->recovery))
6730 				if (mddev->sysfs_action)
6731 					sysfs_notify_dirent(mddev->sysfs_action);
6732 		}
6733 		mddev_unlock(mddev);
6734 	}
6735 }
6736 
6737 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6738 {
6739 	sysfs_notify_dirent(rdev->sysfs_state);
6740 	wait_event_timeout(rdev->blocked_wait,
6741 			   !test_bit(Blocked, &rdev->flags),
6742 			   msecs_to_jiffies(5000));
6743 	rdev_dec_pending(rdev, mddev);
6744 }
6745 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6746 
6747 static int md_notify_reboot(struct notifier_block *this,
6748 			    unsigned long code, void *x)
6749 {
6750 	struct list_head *tmp;
6751 	mddev_t *mddev;
6752 
6753 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6754 
6755 		printk(KERN_INFO "md: stopping all md devices.\n");
6756 
6757 		for_each_mddev(mddev, tmp)
6758 			if (mddev_trylock(mddev)) {
6759 				/* Force a switch to readonly even array
6760 				 * appears to still be in use.  Hence
6761 				 * the '100'.
6762 				 */
6763 				do_md_stop(mddev, 1, 100);
6764 				mddev_unlock(mddev);
6765 			}
6766 		/*
6767 		 * certain more exotic SCSI devices are known to be
6768 		 * volatile wrt too early system reboots. While the
6769 		 * right place to handle this issue is the given
6770 		 * driver, we do want to have a safe RAID driver ...
6771 		 */
6772 		mdelay(1000*1);
6773 	}
6774 	return NOTIFY_DONE;
6775 }
6776 
6777 static struct notifier_block md_notifier = {
6778 	.notifier_call	= md_notify_reboot,
6779 	.next		= NULL,
6780 	.priority	= INT_MAX, /* before any real devices */
6781 };
6782 
6783 static void md_geninit(void)
6784 {
6785 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6786 
6787 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6788 }
6789 
6790 static int __init md_init(void)
6791 {
6792 	if (register_blkdev(MD_MAJOR, "md"))
6793 		return -1;
6794 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6795 		unregister_blkdev(MD_MAJOR, "md");
6796 		return -1;
6797 	}
6798 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
6799 			    md_probe, NULL, NULL);
6800 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6801 			    md_probe, NULL, NULL);
6802 
6803 	register_reboot_notifier(&md_notifier);
6804 	raid_table_header = register_sysctl_table(raid_root_table);
6805 
6806 	md_geninit();
6807 	return 0;
6808 }
6809 
6810 
6811 #ifndef MODULE
6812 
6813 /*
6814  * Searches all registered partitions for autorun RAID arrays
6815  * at boot time.
6816  */
6817 
6818 static LIST_HEAD(all_detected_devices);
6819 struct detected_devices_node {
6820 	struct list_head list;
6821 	dev_t dev;
6822 };
6823 
6824 void md_autodetect_dev(dev_t dev)
6825 {
6826 	struct detected_devices_node *node_detected_dev;
6827 
6828 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6829 	if (node_detected_dev) {
6830 		node_detected_dev->dev = dev;
6831 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
6832 	} else {
6833 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6834 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6835 	}
6836 }
6837 
6838 
6839 static void autostart_arrays(int part)
6840 {
6841 	mdk_rdev_t *rdev;
6842 	struct detected_devices_node *node_detected_dev;
6843 	dev_t dev;
6844 	int i_scanned, i_passed;
6845 
6846 	i_scanned = 0;
6847 	i_passed = 0;
6848 
6849 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6850 
6851 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6852 		i_scanned++;
6853 		node_detected_dev = list_entry(all_detected_devices.next,
6854 					struct detected_devices_node, list);
6855 		list_del(&node_detected_dev->list);
6856 		dev = node_detected_dev->dev;
6857 		kfree(node_detected_dev);
6858 		rdev = md_import_device(dev,0, 90);
6859 		if (IS_ERR(rdev))
6860 			continue;
6861 
6862 		if (test_bit(Faulty, &rdev->flags)) {
6863 			MD_BUG();
6864 			continue;
6865 		}
6866 		set_bit(AutoDetected, &rdev->flags);
6867 		list_add(&rdev->same_set, &pending_raid_disks);
6868 		i_passed++;
6869 	}
6870 
6871 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6872 						i_scanned, i_passed);
6873 
6874 	autorun_devices(part);
6875 }
6876 
6877 #endif /* !MODULE */
6878 
6879 static __exit void md_exit(void)
6880 {
6881 	mddev_t *mddev;
6882 	struct list_head *tmp;
6883 
6884 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
6885 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6886 
6887 	unregister_blkdev(MD_MAJOR,"md");
6888 	unregister_blkdev(mdp_major, "mdp");
6889 	unregister_reboot_notifier(&md_notifier);
6890 	unregister_sysctl_table(raid_table_header);
6891 	remove_proc_entry("mdstat", NULL);
6892 	for_each_mddev(mddev, tmp) {
6893 		export_array(mddev);
6894 		mddev->hold_active = 0;
6895 	}
6896 }
6897 
6898 subsys_initcall(md_init);
6899 module_exit(md_exit)
6900 
6901 static int get_ro(char *buffer, struct kernel_param *kp)
6902 {
6903 	return sprintf(buffer, "%d", start_readonly);
6904 }
6905 static int set_ro(const char *val, struct kernel_param *kp)
6906 {
6907 	char *e;
6908 	int num = simple_strtoul(val, &e, 10);
6909 	if (*val && (*e == '\0' || *e == '\n')) {
6910 		start_readonly = num;
6911 		return 0;
6912 	}
6913 	return -EINVAL;
6914 }
6915 
6916 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6917 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6918 
6919 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6920 
6921 EXPORT_SYMBOL(register_md_personality);
6922 EXPORT_SYMBOL(unregister_md_personality);
6923 EXPORT_SYMBOL(md_error);
6924 EXPORT_SYMBOL(md_done_sync);
6925 EXPORT_SYMBOL(md_write_start);
6926 EXPORT_SYMBOL(md_write_end);
6927 EXPORT_SYMBOL(md_register_thread);
6928 EXPORT_SYMBOL(md_unregister_thread);
6929 EXPORT_SYMBOL(md_wakeup_thread);
6930 EXPORT_SYMBOL(md_check_recovery);
6931 MODULE_LICENSE("GPL");
6932 MODULE_ALIAS("md");
6933 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
6934