1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/buffer_head.h> /* for invalidate_bdev */ 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/hdreg.h> 43 #include <linux/proc_fs.h> 44 #include <linux/random.h> 45 #include <linux/reboot.h> 46 #include <linux/file.h> 47 #include <linux/delay.h> 48 #include <linux/raid/md_p.h> 49 #include <linux/raid/md_u.h> 50 #include "md.h" 51 #include "bitmap.h" 52 53 #define DEBUG 0 54 #define dprintk(x...) ((void)(DEBUG && printk(x))) 55 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 static LIST_HEAD(pers_list); 62 static DEFINE_SPINLOCK(pers_lock); 63 64 static void md_print_devices(void); 65 66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 67 68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 69 70 /* 71 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 72 * is 1000 KB/sec, so the extra system load does not show up that much. 73 * Increase it if you want to have more _guaranteed_ speed. Note that 74 * the RAID driver will use the maximum available bandwidth if the IO 75 * subsystem is idle. There is also an 'absolute maximum' reconstruction 76 * speed limit - in case reconstruction slows down your system despite 77 * idle IO detection. 78 * 79 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 80 * or /sys/block/mdX/md/sync_speed_{min,max} 81 */ 82 83 static int sysctl_speed_limit_min = 1000; 84 static int sysctl_speed_limit_max = 200000; 85 static inline int speed_min(mddev_t *mddev) 86 { 87 return mddev->sync_speed_min ? 88 mddev->sync_speed_min : sysctl_speed_limit_min; 89 } 90 91 static inline int speed_max(mddev_t *mddev) 92 { 93 return mddev->sync_speed_max ? 94 mddev->sync_speed_max : sysctl_speed_limit_max; 95 } 96 97 static struct ctl_table_header *raid_table_header; 98 99 static ctl_table raid_table[] = { 100 { 101 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, 102 .procname = "speed_limit_min", 103 .data = &sysctl_speed_limit_min, 104 .maxlen = sizeof(int), 105 .mode = S_IRUGO|S_IWUSR, 106 .proc_handler = &proc_dointvec, 107 }, 108 { 109 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, 110 .procname = "speed_limit_max", 111 .data = &sysctl_speed_limit_max, 112 .maxlen = sizeof(int), 113 .mode = S_IRUGO|S_IWUSR, 114 .proc_handler = &proc_dointvec, 115 }, 116 { .ctl_name = 0 } 117 }; 118 119 static ctl_table raid_dir_table[] = { 120 { 121 .ctl_name = DEV_RAID, 122 .procname = "raid", 123 .maxlen = 0, 124 .mode = S_IRUGO|S_IXUGO, 125 .child = raid_table, 126 }, 127 { .ctl_name = 0 } 128 }; 129 130 static ctl_table raid_root_table[] = { 131 { 132 .ctl_name = CTL_DEV, 133 .procname = "dev", 134 .maxlen = 0, 135 .mode = 0555, 136 .child = raid_dir_table, 137 }, 138 { .ctl_name = 0 } 139 }; 140 141 static struct block_device_operations md_fops; 142 143 static int start_readonly; 144 145 /* 146 * We have a system wide 'event count' that is incremented 147 * on any 'interesting' event, and readers of /proc/mdstat 148 * can use 'poll' or 'select' to find out when the event 149 * count increases. 150 * 151 * Events are: 152 * start array, stop array, error, add device, remove device, 153 * start build, activate spare 154 */ 155 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 156 static atomic_t md_event_count; 157 void md_new_event(mddev_t *mddev) 158 { 159 atomic_inc(&md_event_count); 160 wake_up(&md_event_waiters); 161 } 162 EXPORT_SYMBOL_GPL(md_new_event); 163 164 /* Alternate version that can be called from interrupts 165 * when calling sysfs_notify isn't needed. 166 */ 167 static void md_new_event_inintr(mddev_t *mddev) 168 { 169 atomic_inc(&md_event_count); 170 wake_up(&md_event_waiters); 171 } 172 173 /* 174 * Enables to iterate over all existing md arrays 175 * all_mddevs_lock protects this list. 176 */ 177 static LIST_HEAD(all_mddevs); 178 static DEFINE_SPINLOCK(all_mddevs_lock); 179 180 181 /* 182 * iterates through all used mddevs in the system. 183 * We take care to grab the all_mddevs_lock whenever navigating 184 * the list, and to always hold a refcount when unlocked. 185 * Any code which breaks out of this loop while own 186 * a reference to the current mddev and must mddev_put it. 187 */ 188 #define for_each_mddev(mddev,tmp) \ 189 \ 190 for (({ spin_lock(&all_mddevs_lock); \ 191 tmp = all_mddevs.next; \ 192 mddev = NULL;}); \ 193 ({ if (tmp != &all_mddevs) \ 194 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 195 spin_unlock(&all_mddevs_lock); \ 196 if (mddev) mddev_put(mddev); \ 197 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 198 tmp != &all_mddevs;}); \ 199 ({ spin_lock(&all_mddevs_lock); \ 200 tmp = tmp->next;}) \ 201 ) 202 203 204 /* Rather than calling directly into the personality make_request function, 205 * IO requests come here first so that we can check if the device is 206 * being suspended pending a reconfiguration. 207 * We hold a refcount over the call to ->make_request. By the time that 208 * call has finished, the bio has been linked into some internal structure 209 * and so is visible to ->quiesce(), so we don't need the refcount any more. 210 */ 211 static int md_make_request(struct request_queue *q, struct bio *bio) 212 { 213 mddev_t *mddev = q->queuedata; 214 int rv; 215 if (mddev == NULL || mddev->pers == NULL) { 216 bio_io_error(bio); 217 return 0; 218 } 219 rcu_read_lock(); 220 if (mddev->suspended) { 221 DEFINE_WAIT(__wait); 222 for (;;) { 223 prepare_to_wait(&mddev->sb_wait, &__wait, 224 TASK_UNINTERRUPTIBLE); 225 if (!mddev->suspended) 226 break; 227 rcu_read_unlock(); 228 schedule(); 229 rcu_read_lock(); 230 } 231 finish_wait(&mddev->sb_wait, &__wait); 232 } 233 atomic_inc(&mddev->active_io); 234 rcu_read_unlock(); 235 rv = mddev->pers->make_request(q, bio); 236 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 237 wake_up(&mddev->sb_wait); 238 239 return rv; 240 } 241 242 static void mddev_suspend(mddev_t *mddev) 243 { 244 BUG_ON(mddev->suspended); 245 mddev->suspended = 1; 246 synchronize_rcu(); 247 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 248 mddev->pers->quiesce(mddev, 1); 249 md_unregister_thread(mddev->thread); 250 mddev->thread = NULL; 251 /* we now know that no code is executing in the personality module, 252 * except possibly the tail end of a ->bi_end_io function, but that 253 * is certain to complete before the module has a chance to get 254 * unloaded 255 */ 256 } 257 258 static void mddev_resume(mddev_t *mddev) 259 { 260 mddev->suspended = 0; 261 wake_up(&mddev->sb_wait); 262 mddev->pers->quiesce(mddev, 0); 263 } 264 265 266 static inline mddev_t *mddev_get(mddev_t *mddev) 267 { 268 atomic_inc(&mddev->active); 269 return mddev; 270 } 271 272 static void mddev_delayed_delete(struct work_struct *ws); 273 274 static void mddev_put(mddev_t *mddev) 275 { 276 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 277 return; 278 if (!mddev->raid_disks && list_empty(&mddev->disks) && 279 !mddev->hold_active) { 280 list_del(&mddev->all_mddevs); 281 if (mddev->gendisk) { 282 /* we did a probe so need to clean up. 283 * Call schedule_work inside the spinlock 284 * so that flush_scheduled_work() after 285 * mddev_find will succeed in waiting for the 286 * work to be done. 287 */ 288 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 289 schedule_work(&mddev->del_work); 290 } else 291 kfree(mddev); 292 } 293 spin_unlock(&all_mddevs_lock); 294 } 295 296 static mddev_t * mddev_find(dev_t unit) 297 { 298 mddev_t *mddev, *new = NULL; 299 300 retry: 301 spin_lock(&all_mddevs_lock); 302 303 if (unit) { 304 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 305 if (mddev->unit == unit) { 306 mddev_get(mddev); 307 spin_unlock(&all_mddevs_lock); 308 kfree(new); 309 return mddev; 310 } 311 312 if (new) { 313 list_add(&new->all_mddevs, &all_mddevs); 314 spin_unlock(&all_mddevs_lock); 315 new->hold_active = UNTIL_IOCTL; 316 return new; 317 } 318 } else if (new) { 319 /* find an unused unit number */ 320 static int next_minor = 512; 321 int start = next_minor; 322 int is_free = 0; 323 int dev = 0; 324 while (!is_free) { 325 dev = MKDEV(MD_MAJOR, next_minor); 326 next_minor++; 327 if (next_minor > MINORMASK) 328 next_minor = 0; 329 if (next_minor == start) { 330 /* Oh dear, all in use. */ 331 spin_unlock(&all_mddevs_lock); 332 kfree(new); 333 return NULL; 334 } 335 336 is_free = 1; 337 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 338 if (mddev->unit == dev) { 339 is_free = 0; 340 break; 341 } 342 } 343 new->unit = dev; 344 new->md_minor = MINOR(dev); 345 new->hold_active = UNTIL_STOP; 346 list_add(&new->all_mddevs, &all_mddevs); 347 spin_unlock(&all_mddevs_lock); 348 return new; 349 } 350 spin_unlock(&all_mddevs_lock); 351 352 new = kzalloc(sizeof(*new), GFP_KERNEL); 353 if (!new) 354 return NULL; 355 356 new->unit = unit; 357 if (MAJOR(unit) == MD_MAJOR) 358 new->md_minor = MINOR(unit); 359 else 360 new->md_minor = MINOR(unit) >> MdpMinorShift; 361 362 mutex_init(&new->reconfig_mutex); 363 INIT_LIST_HEAD(&new->disks); 364 INIT_LIST_HEAD(&new->all_mddevs); 365 init_timer(&new->safemode_timer); 366 atomic_set(&new->active, 1); 367 atomic_set(&new->openers, 0); 368 atomic_set(&new->active_io, 0); 369 spin_lock_init(&new->write_lock); 370 init_waitqueue_head(&new->sb_wait); 371 init_waitqueue_head(&new->recovery_wait); 372 new->reshape_position = MaxSector; 373 new->resync_min = 0; 374 new->resync_max = MaxSector; 375 new->level = LEVEL_NONE; 376 377 goto retry; 378 } 379 380 static inline int mddev_lock(mddev_t * mddev) 381 { 382 return mutex_lock_interruptible(&mddev->reconfig_mutex); 383 } 384 385 static inline int mddev_is_locked(mddev_t *mddev) 386 { 387 return mutex_is_locked(&mddev->reconfig_mutex); 388 } 389 390 static inline int mddev_trylock(mddev_t * mddev) 391 { 392 return mutex_trylock(&mddev->reconfig_mutex); 393 } 394 395 static inline void mddev_unlock(mddev_t * mddev) 396 { 397 mutex_unlock(&mddev->reconfig_mutex); 398 399 md_wakeup_thread(mddev->thread); 400 } 401 402 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 403 { 404 mdk_rdev_t *rdev; 405 406 list_for_each_entry(rdev, &mddev->disks, same_set) 407 if (rdev->desc_nr == nr) 408 return rdev; 409 410 return NULL; 411 } 412 413 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 414 { 415 mdk_rdev_t *rdev; 416 417 list_for_each_entry(rdev, &mddev->disks, same_set) 418 if (rdev->bdev->bd_dev == dev) 419 return rdev; 420 421 return NULL; 422 } 423 424 static struct mdk_personality *find_pers(int level, char *clevel) 425 { 426 struct mdk_personality *pers; 427 list_for_each_entry(pers, &pers_list, list) { 428 if (level != LEVEL_NONE && pers->level == level) 429 return pers; 430 if (strcmp(pers->name, clevel)==0) 431 return pers; 432 } 433 return NULL; 434 } 435 436 /* return the offset of the super block in 512byte sectors */ 437 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 438 { 439 sector_t num_sectors = bdev->bd_inode->i_size / 512; 440 return MD_NEW_SIZE_SECTORS(num_sectors); 441 } 442 443 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size) 444 { 445 sector_t num_sectors = rdev->sb_start; 446 447 if (chunk_size) 448 num_sectors &= ~((sector_t)chunk_size/512 - 1); 449 return num_sectors; 450 } 451 452 static int alloc_disk_sb(mdk_rdev_t * rdev) 453 { 454 if (rdev->sb_page) 455 MD_BUG(); 456 457 rdev->sb_page = alloc_page(GFP_KERNEL); 458 if (!rdev->sb_page) { 459 printk(KERN_ALERT "md: out of memory.\n"); 460 return -ENOMEM; 461 } 462 463 return 0; 464 } 465 466 static void free_disk_sb(mdk_rdev_t * rdev) 467 { 468 if (rdev->sb_page) { 469 put_page(rdev->sb_page); 470 rdev->sb_loaded = 0; 471 rdev->sb_page = NULL; 472 rdev->sb_start = 0; 473 rdev->sectors = 0; 474 } 475 } 476 477 478 static void super_written(struct bio *bio, int error) 479 { 480 mdk_rdev_t *rdev = bio->bi_private; 481 mddev_t *mddev = rdev->mddev; 482 483 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 484 printk("md: super_written gets error=%d, uptodate=%d\n", 485 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 486 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 487 md_error(mddev, rdev); 488 } 489 490 if (atomic_dec_and_test(&mddev->pending_writes)) 491 wake_up(&mddev->sb_wait); 492 bio_put(bio); 493 } 494 495 static void super_written_barrier(struct bio *bio, int error) 496 { 497 struct bio *bio2 = bio->bi_private; 498 mdk_rdev_t *rdev = bio2->bi_private; 499 mddev_t *mddev = rdev->mddev; 500 501 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 502 error == -EOPNOTSUPP) { 503 unsigned long flags; 504 /* barriers don't appear to be supported :-( */ 505 set_bit(BarriersNotsupp, &rdev->flags); 506 mddev->barriers_work = 0; 507 spin_lock_irqsave(&mddev->write_lock, flags); 508 bio2->bi_next = mddev->biolist; 509 mddev->biolist = bio2; 510 spin_unlock_irqrestore(&mddev->write_lock, flags); 511 wake_up(&mddev->sb_wait); 512 bio_put(bio); 513 } else { 514 bio_put(bio2); 515 bio->bi_private = rdev; 516 super_written(bio, error); 517 } 518 } 519 520 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 521 sector_t sector, int size, struct page *page) 522 { 523 /* write first size bytes of page to sector of rdev 524 * Increment mddev->pending_writes before returning 525 * and decrement it on completion, waking up sb_wait 526 * if zero is reached. 527 * If an error occurred, call md_error 528 * 529 * As we might need to resubmit the request if BIO_RW_BARRIER 530 * causes ENOTSUPP, we allocate a spare bio... 531 */ 532 struct bio *bio = bio_alloc(GFP_NOIO, 1); 533 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG); 534 535 bio->bi_bdev = rdev->bdev; 536 bio->bi_sector = sector; 537 bio_add_page(bio, page, size, 0); 538 bio->bi_private = rdev; 539 bio->bi_end_io = super_written; 540 bio->bi_rw = rw; 541 542 atomic_inc(&mddev->pending_writes); 543 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 544 struct bio *rbio; 545 rw |= (1<<BIO_RW_BARRIER); 546 rbio = bio_clone(bio, GFP_NOIO); 547 rbio->bi_private = bio; 548 rbio->bi_end_io = super_written_barrier; 549 submit_bio(rw, rbio); 550 } else 551 submit_bio(rw, bio); 552 } 553 554 void md_super_wait(mddev_t *mddev) 555 { 556 /* wait for all superblock writes that were scheduled to complete. 557 * if any had to be retried (due to BARRIER problems), retry them 558 */ 559 DEFINE_WAIT(wq); 560 for(;;) { 561 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 562 if (atomic_read(&mddev->pending_writes)==0) 563 break; 564 while (mddev->biolist) { 565 struct bio *bio; 566 spin_lock_irq(&mddev->write_lock); 567 bio = mddev->biolist; 568 mddev->biolist = bio->bi_next ; 569 bio->bi_next = NULL; 570 spin_unlock_irq(&mddev->write_lock); 571 submit_bio(bio->bi_rw, bio); 572 } 573 schedule(); 574 } 575 finish_wait(&mddev->sb_wait, &wq); 576 } 577 578 static void bi_complete(struct bio *bio, int error) 579 { 580 complete((struct completion*)bio->bi_private); 581 } 582 583 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 584 struct page *page, int rw) 585 { 586 struct bio *bio = bio_alloc(GFP_NOIO, 1); 587 struct completion event; 588 int ret; 589 590 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG); 591 592 bio->bi_bdev = bdev; 593 bio->bi_sector = sector; 594 bio_add_page(bio, page, size, 0); 595 init_completion(&event); 596 bio->bi_private = &event; 597 bio->bi_end_io = bi_complete; 598 submit_bio(rw, bio); 599 wait_for_completion(&event); 600 601 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 602 bio_put(bio); 603 return ret; 604 } 605 EXPORT_SYMBOL_GPL(sync_page_io); 606 607 static int read_disk_sb(mdk_rdev_t * rdev, int size) 608 { 609 char b[BDEVNAME_SIZE]; 610 if (!rdev->sb_page) { 611 MD_BUG(); 612 return -EINVAL; 613 } 614 if (rdev->sb_loaded) 615 return 0; 616 617 618 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ)) 619 goto fail; 620 rdev->sb_loaded = 1; 621 return 0; 622 623 fail: 624 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 625 bdevname(rdev->bdev,b)); 626 return -EINVAL; 627 } 628 629 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 630 { 631 return sb1->set_uuid0 == sb2->set_uuid0 && 632 sb1->set_uuid1 == sb2->set_uuid1 && 633 sb1->set_uuid2 == sb2->set_uuid2 && 634 sb1->set_uuid3 == sb2->set_uuid3; 635 } 636 637 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 638 { 639 int ret; 640 mdp_super_t *tmp1, *tmp2; 641 642 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 643 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 644 645 if (!tmp1 || !tmp2) { 646 ret = 0; 647 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 648 goto abort; 649 } 650 651 *tmp1 = *sb1; 652 *tmp2 = *sb2; 653 654 /* 655 * nr_disks is not constant 656 */ 657 tmp1->nr_disks = 0; 658 tmp2->nr_disks = 0; 659 660 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 661 abort: 662 kfree(tmp1); 663 kfree(tmp2); 664 return ret; 665 } 666 667 668 static u32 md_csum_fold(u32 csum) 669 { 670 csum = (csum & 0xffff) + (csum >> 16); 671 return (csum & 0xffff) + (csum >> 16); 672 } 673 674 static unsigned int calc_sb_csum(mdp_super_t * sb) 675 { 676 u64 newcsum = 0; 677 u32 *sb32 = (u32*)sb; 678 int i; 679 unsigned int disk_csum, csum; 680 681 disk_csum = sb->sb_csum; 682 sb->sb_csum = 0; 683 684 for (i = 0; i < MD_SB_BYTES/4 ; i++) 685 newcsum += sb32[i]; 686 csum = (newcsum & 0xffffffff) + (newcsum>>32); 687 688 689 #ifdef CONFIG_ALPHA 690 /* This used to use csum_partial, which was wrong for several 691 * reasons including that different results are returned on 692 * different architectures. It isn't critical that we get exactly 693 * the same return value as before (we always csum_fold before 694 * testing, and that removes any differences). However as we 695 * know that csum_partial always returned a 16bit value on 696 * alphas, do a fold to maximise conformity to previous behaviour. 697 */ 698 sb->sb_csum = md_csum_fold(disk_csum); 699 #else 700 sb->sb_csum = disk_csum; 701 #endif 702 return csum; 703 } 704 705 706 /* 707 * Handle superblock details. 708 * We want to be able to handle multiple superblock formats 709 * so we have a common interface to them all, and an array of 710 * different handlers. 711 * We rely on user-space to write the initial superblock, and support 712 * reading and updating of superblocks. 713 * Interface methods are: 714 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 715 * loads and validates a superblock on dev. 716 * if refdev != NULL, compare superblocks on both devices 717 * Return: 718 * 0 - dev has a superblock that is compatible with refdev 719 * 1 - dev has a superblock that is compatible and newer than refdev 720 * so dev should be used as the refdev in future 721 * -EINVAL superblock incompatible or invalid 722 * -othererror e.g. -EIO 723 * 724 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 725 * Verify that dev is acceptable into mddev. 726 * The first time, mddev->raid_disks will be 0, and data from 727 * dev should be merged in. Subsequent calls check that dev 728 * is new enough. Return 0 or -EINVAL 729 * 730 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 731 * Update the superblock for rdev with data in mddev 732 * This does not write to disc. 733 * 734 */ 735 736 struct super_type { 737 char *name; 738 struct module *owner; 739 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 740 int minor_version); 741 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 742 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 743 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 744 sector_t num_sectors); 745 }; 746 747 /* 748 * load_super for 0.90.0 749 */ 750 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 751 { 752 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 753 mdp_super_t *sb; 754 int ret; 755 756 /* 757 * Calculate the position of the superblock (512byte sectors), 758 * it's at the end of the disk. 759 * 760 * It also happens to be a multiple of 4Kb. 761 */ 762 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 763 764 ret = read_disk_sb(rdev, MD_SB_BYTES); 765 if (ret) return ret; 766 767 ret = -EINVAL; 768 769 bdevname(rdev->bdev, b); 770 sb = (mdp_super_t*)page_address(rdev->sb_page); 771 772 if (sb->md_magic != MD_SB_MAGIC) { 773 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 774 b); 775 goto abort; 776 } 777 778 if (sb->major_version != 0 || 779 sb->minor_version < 90 || 780 sb->minor_version > 91) { 781 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 782 sb->major_version, sb->minor_version, 783 b); 784 goto abort; 785 } 786 787 if (sb->raid_disks <= 0) 788 goto abort; 789 790 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 791 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 792 b); 793 goto abort; 794 } 795 796 rdev->preferred_minor = sb->md_minor; 797 rdev->data_offset = 0; 798 rdev->sb_size = MD_SB_BYTES; 799 800 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) { 801 if (sb->level != 1 && sb->level != 4 802 && sb->level != 5 && sb->level != 6 803 && sb->level != 10) { 804 /* FIXME use a better test */ 805 printk(KERN_WARNING 806 "md: bitmaps not supported for this level.\n"); 807 goto abort; 808 } 809 } 810 811 if (sb->level == LEVEL_MULTIPATH) 812 rdev->desc_nr = -1; 813 else 814 rdev->desc_nr = sb->this_disk.number; 815 816 if (!refdev) { 817 ret = 1; 818 } else { 819 __u64 ev1, ev2; 820 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 821 if (!uuid_equal(refsb, sb)) { 822 printk(KERN_WARNING "md: %s has different UUID to %s\n", 823 b, bdevname(refdev->bdev,b2)); 824 goto abort; 825 } 826 if (!sb_equal(refsb, sb)) { 827 printk(KERN_WARNING "md: %s has same UUID" 828 " but different superblock to %s\n", 829 b, bdevname(refdev->bdev, b2)); 830 goto abort; 831 } 832 ev1 = md_event(sb); 833 ev2 = md_event(refsb); 834 if (ev1 > ev2) 835 ret = 1; 836 else 837 ret = 0; 838 } 839 rdev->sectors = calc_num_sectors(rdev, sb->chunk_size); 840 841 if (rdev->sectors < sb->size * 2 && sb->level > 1) 842 /* "this cannot possibly happen" ... */ 843 ret = -EINVAL; 844 845 abort: 846 return ret; 847 } 848 849 /* 850 * validate_super for 0.90.0 851 */ 852 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 853 { 854 mdp_disk_t *desc; 855 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 856 __u64 ev1 = md_event(sb); 857 858 rdev->raid_disk = -1; 859 clear_bit(Faulty, &rdev->flags); 860 clear_bit(In_sync, &rdev->flags); 861 clear_bit(WriteMostly, &rdev->flags); 862 clear_bit(BarriersNotsupp, &rdev->flags); 863 864 if (mddev->raid_disks == 0) { 865 mddev->major_version = 0; 866 mddev->minor_version = sb->minor_version; 867 mddev->patch_version = sb->patch_version; 868 mddev->external = 0; 869 mddev->chunk_size = sb->chunk_size; 870 mddev->ctime = sb->ctime; 871 mddev->utime = sb->utime; 872 mddev->level = sb->level; 873 mddev->clevel[0] = 0; 874 mddev->layout = sb->layout; 875 mddev->raid_disks = sb->raid_disks; 876 mddev->dev_sectors = sb->size * 2; 877 mddev->events = ev1; 878 mddev->bitmap_offset = 0; 879 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 880 881 if (mddev->minor_version >= 91) { 882 mddev->reshape_position = sb->reshape_position; 883 mddev->delta_disks = sb->delta_disks; 884 mddev->new_level = sb->new_level; 885 mddev->new_layout = sb->new_layout; 886 mddev->new_chunk = sb->new_chunk; 887 } else { 888 mddev->reshape_position = MaxSector; 889 mddev->delta_disks = 0; 890 mddev->new_level = mddev->level; 891 mddev->new_layout = mddev->layout; 892 mddev->new_chunk = mddev->chunk_size; 893 } 894 895 if (sb->state & (1<<MD_SB_CLEAN)) 896 mddev->recovery_cp = MaxSector; 897 else { 898 if (sb->events_hi == sb->cp_events_hi && 899 sb->events_lo == sb->cp_events_lo) { 900 mddev->recovery_cp = sb->recovery_cp; 901 } else 902 mddev->recovery_cp = 0; 903 } 904 905 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 906 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 907 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 908 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 909 910 mddev->max_disks = MD_SB_DISKS; 911 912 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 913 mddev->bitmap_file == NULL) 914 mddev->bitmap_offset = mddev->default_bitmap_offset; 915 916 } else if (mddev->pers == NULL) { 917 /* Insist on good event counter while assembling */ 918 ++ev1; 919 if (ev1 < mddev->events) 920 return -EINVAL; 921 } else if (mddev->bitmap) { 922 /* if adding to array with a bitmap, then we can accept an 923 * older device ... but not too old. 924 */ 925 if (ev1 < mddev->bitmap->events_cleared) 926 return 0; 927 } else { 928 if (ev1 < mddev->events) 929 /* just a hot-add of a new device, leave raid_disk at -1 */ 930 return 0; 931 } 932 933 if (mddev->level != LEVEL_MULTIPATH) { 934 desc = sb->disks + rdev->desc_nr; 935 936 if (desc->state & (1<<MD_DISK_FAULTY)) 937 set_bit(Faulty, &rdev->flags); 938 else if (desc->state & (1<<MD_DISK_SYNC) /* && 939 desc->raid_disk < mddev->raid_disks */) { 940 set_bit(In_sync, &rdev->flags); 941 rdev->raid_disk = desc->raid_disk; 942 } 943 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 944 set_bit(WriteMostly, &rdev->flags); 945 } else /* MULTIPATH are always insync */ 946 set_bit(In_sync, &rdev->flags); 947 return 0; 948 } 949 950 /* 951 * sync_super for 0.90.0 952 */ 953 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 954 { 955 mdp_super_t *sb; 956 mdk_rdev_t *rdev2; 957 int next_spare = mddev->raid_disks; 958 959 960 /* make rdev->sb match mddev data.. 961 * 962 * 1/ zero out disks 963 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 964 * 3/ any empty disks < next_spare become removed 965 * 966 * disks[0] gets initialised to REMOVED because 967 * we cannot be sure from other fields if it has 968 * been initialised or not. 969 */ 970 int i; 971 int active=0, working=0,failed=0,spare=0,nr_disks=0; 972 973 rdev->sb_size = MD_SB_BYTES; 974 975 sb = (mdp_super_t*)page_address(rdev->sb_page); 976 977 memset(sb, 0, sizeof(*sb)); 978 979 sb->md_magic = MD_SB_MAGIC; 980 sb->major_version = mddev->major_version; 981 sb->patch_version = mddev->patch_version; 982 sb->gvalid_words = 0; /* ignored */ 983 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 984 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 985 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 986 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 987 988 sb->ctime = mddev->ctime; 989 sb->level = mddev->level; 990 sb->size = mddev->dev_sectors / 2; 991 sb->raid_disks = mddev->raid_disks; 992 sb->md_minor = mddev->md_minor; 993 sb->not_persistent = 0; 994 sb->utime = mddev->utime; 995 sb->state = 0; 996 sb->events_hi = (mddev->events>>32); 997 sb->events_lo = (u32)mddev->events; 998 999 if (mddev->reshape_position == MaxSector) 1000 sb->minor_version = 90; 1001 else { 1002 sb->minor_version = 91; 1003 sb->reshape_position = mddev->reshape_position; 1004 sb->new_level = mddev->new_level; 1005 sb->delta_disks = mddev->delta_disks; 1006 sb->new_layout = mddev->new_layout; 1007 sb->new_chunk = mddev->new_chunk; 1008 } 1009 mddev->minor_version = sb->minor_version; 1010 if (mddev->in_sync) 1011 { 1012 sb->recovery_cp = mddev->recovery_cp; 1013 sb->cp_events_hi = (mddev->events>>32); 1014 sb->cp_events_lo = (u32)mddev->events; 1015 if (mddev->recovery_cp == MaxSector) 1016 sb->state = (1<< MD_SB_CLEAN); 1017 } else 1018 sb->recovery_cp = 0; 1019 1020 sb->layout = mddev->layout; 1021 sb->chunk_size = mddev->chunk_size; 1022 1023 if (mddev->bitmap && mddev->bitmap_file == NULL) 1024 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1025 1026 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1027 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1028 mdp_disk_t *d; 1029 int desc_nr; 1030 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 1031 && !test_bit(Faulty, &rdev2->flags)) 1032 desc_nr = rdev2->raid_disk; 1033 else 1034 desc_nr = next_spare++; 1035 rdev2->desc_nr = desc_nr; 1036 d = &sb->disks[rdev2->desc_nr]; 1037 nr_disks++; 1038 d->number = rdev2->desc_nr; 1039 d->major = MAJOR(rdev2->bdev->bd_dev); 1040 d->minor = MINOR(rdev2->bdev->bd_dev); 1041 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 1042 && !test_bit(Faulty, &rdev2->flags)) 1043 d->raid_disk = rdev2->raid_disk; 1044 else 1045 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1046 if (test_bit(Faulty, &rdev2->flags)) 1047 d->state = (1<<MD_DISK_FAULTY); 1048 else if (test_bit(In_sync, &rdev2->flags)) { 1049 d->state = (1<<MD_DISK_ACTIVE); 1050 d->state |= (1<<MD_DISK_SYNC); 1051 active++; 1052 working++; 1053 } else { 1054 d->state = 0; 1055 spare++; 1056 working++; 1057 } 1058 if (test_bit(WriteMostly, &rdev2->flags)) 1059 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1060 } 1061 /* now set the "removed" and "faulty" bits on any missing devices */ 1062 for (i=0 ; i < mddev->raid_disks ; i++) { 1063 mdp_disk_t *d = &sb->disks[i]; 1064 if (d->state == 0 && d->number == 0) { 1065 d->number = i; 1066 d->raid_disk = i; 1067 d->state = (1<<MD_DISK_REMOVED); 1068 d->state |= (1<<MD_DISK_FAULTY); 1069 failed++; 1070 } 1071 } 1072 sb->nr_disks = nr_disks; 1073 sb->active_disks = active; 1074 sb->working_disks = working; 1075 sb->failed_disks = failed; 1076 sb->spare_disks = spare; 1077 1078 sb->this_disk = sb->disks[rdev->desc_nr]; 1079 sb->sb_csum = calc_sb_csum(sb); 1080 } 1081 1082 /* 1083 * rdev_size_change for 0.90.0 1084 */ 1085 static unsigned long long 1086 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1087 { 1088 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1089 return 0; /* component must fit device */ 1090 if (rdev->mddev->bitmap_offset) 1091 return 0; /* can't move bitmap */ 1092 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 1093 if (!num_sectors || num_sectors > rdev->sb_start) 1094 num_sectors = rdev->sb_start; 1095 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1096 rdev->sb_page); 1097 md_super_wait(rdev->mddev); 1098 return num_sectors / 2; /* kB for sysfs */ 1099 } 1100 1101 1102 /* 1103 * version 1 superblock 1104 */ 1105 1106 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1107 { 1108 __le32 disk_csum; 1109 u32 csum; 1110 unsigned long long newcsum; 1111 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1112 __le32 *isuper = (__le32*)sb; 1113 int i; 1114 1115 disk_csum = sb->sb_csum; 1116 sb->sb_csum = 0; 1117 newcsum = 0; 1118 for (i=0; size>=4; size -= 4 ) 1119 newcsum += le32_to_cpu(*isuper++); 1120 1121 if (size == 2) 1122 newcsum += le16_to_cpu(*(__le16*) isuper); 1123 1124 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1125 sb->sb_csum = disk_csum; 1126 return cpu_to_le32(csum); 1127 } 1128 1129 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1130 { 1131 struct mdp_superblock_1 *sb; 1132 int ret; 1133 sector_t sb_start; 1134 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1135 int bmask; 1136 1137 /* 1138 * Calculate the position of the superblock in 512byte sectors. 1139 * It is always aligned to a 4K boundary and 1140 * depeding on minor_version, it can be: 1141 * 0: At least 8K, but less than 12K, from end of device 1142 * 1: At start of device 1143 * 2: 4K from start of device. 1144 */ 1145 switch(minor_version) { 1146 case 0: 1147 sb_start = rdev->bdev->bd_inode->i_size >> 9; 1148 sb_start -= 8*2; 1149 sb_start &= ~(sector_t)(4*2-1); 1150 break; 1151 case 1: 1152 sb_start = 0; 1153 break; 1154 case 2: 1155 sb_start = 8; 1156 break; 1157 default: 1158 return -EINVAL; 1159 } 1160 rdev->sb_start = sb_start; 1161 1162 /* superblock is rarely larger than 1K, but it can be larger, 1163 * and it is safe to read 4k, so we do that 1164 */ 1165 ret = read_disk_sb(rdev, 4096); 1166 if (ret) return ret; 1167 1168 1169 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1170 1171 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1172 sb->major_version != cpu_to_le32(1) || 1173 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1174 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1175 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1176 return -EINVAL; 1177 1178 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1179 printk("md: invalid superblock checksum on %s\n", 1180 bdevname(rdev->bdev,b)); 1181 return -EINVAL; 1182 } 1183 if (le64_to_cpu(sb->data_size) < 10) { 1184 printk("md: data_size too small on %s\n", 1185 bdevname(rdev->bdev,b)); 1186 return -EINVAL; 1187 } 1188 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) { 1189 if (sb->level != cpu_to_le32(1) && 1190 sb->level != cpu_to_le32(4) && 1191 sb->level != cpu_to_le32(5) && 1192 sb->level != cpu_to_le32(6) && 1193 sb->level != cpu_to_le32(10)) { 1194 printk(KERN_WARNING 1195 "md: bitmaps not supported for this level.\n"); 1196 return -EINVAL; 1197 } 1198 } 1199 1200 rdev->preferred_minor = 0xffff; 1201 rdev->data_offset = le64_to_cpu(sb->data_offset); 1202 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1203 1204 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1205 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1; 1206 if (rdev->sb_size & bmask) 1207 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1208 1209 if (minor_version 1210 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1211 return -EINVAL; 1212 1213 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1214 rdev->desc_nr = -1; 1215 else 1216 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1217 1218 if (!refdev) { 1219 ret = 1; 1220 } else { 1221 __u64 ev1, ev2; 1222 struct mdp_superblock_1 *refsb = 1223 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1224 1225 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1226 sb->level != refsb->level || 1227 sb->layout != refsb->layout || 1228 sb->chunksize != refsb->chunksize) { 1229 printk(KERN_WARNING "md: %s has strangely different" 1230 " superblock to %s\n", 1231 bdevname(rdev->bdev,b), 1232 bdevname(refdev->bdev,b2)); 1233 return -EINVAL; 1234 } 1235 ev1 = le64_to_cpu(sb->events); 1236 ev2 = le64_to_cpu(refsb->events); 1237 1238 if (ev1 > ev2) 1239 ret = 1; 1240 else 1241 ret = 0; 1242 } 1243 if (minor_version) 1244 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) - 1245 le64_to_cpu(sb->data_offset); 1246 else 1247 rdev->sectors = rdev->sb_start; 1248 if (rdev->sectors < le64_to_cpu(sb->data_size)) 1249 return -EINVAL; 1250 rdev->sectors = le64_to_cpu(sb->data_size); 1251 if (le32_to_cpu(sb->chunksize)) 1252 rdev->sectors &= ~((sector_t)le32_to_cpu(sb->chunksize) - 1); 1253 1254 if (le64_to_cpu(sb->size) > rdev->sectors) 1255 return -EINVAL; 1256 return ret; 1257 } 1258 1259 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1260 { 1261 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1262 __u64 ev1 = le64_to_cpu(sb->events); 1263 1264 rdev->raid_disk = -1; 1265 clear_bit(Faulty, &rdev->flags); 1266 clear_bit(In_sync, &rdev->flags); 1267 clear_bit(WriteMostly, &rdev->flags); 1268 clear_bit(BarriersNotsupp, &rdev->flags); 1269 1270 if (mddev->raid_disks == 0) { 1271 mddev->major_version = 1; 1272 mddev->patch_version = 0; 1273 mddev->external = 0; 1274 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; 1275 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1276 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1277 mddev->level = le32_to_cpu(sb->level); 1278 mddev->clevel[0] = 0; 1279 mddev->layout = le32_to_cpu(sb->layout); 1280 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1281 mddev->dev_sectors = le64_to_cpu(sb->size); 1282 mddev->events = ev1; 1283 mddev->bitmap_offset = 0; 1284 mddev->default_bitmap_offset = 1024 >> 9; 1285 1286 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1287 memcpy(mddev->uuid, sb->set_uuid, 16); 1288 1289 mddev->max_disks = (4096-256)/2; 1290 1291 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1292 mddev->bitmap_file == NULL ) 1293 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); 1294 1295 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1296 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1297 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1298 mddev->new_level = le32_to_cpu(sb->new_level); 1299 mddev->new_layout = le32_to_cpu(sb->new_layout); 1300 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9; 1301 } else { 1302 mddev->reshape_position = MaxSector; 1303 mddev->delta_disks = 0; 1304 mddev->new_level = mddev->level; 1305 mddev->new_layout = mddev->layout; 1306 mddev->new_chunk = mddev->chunk_size; 1307 } 1308 1309 } else if (mddev->pers == NULL) { 1310 /* Insist of good event counter while assembling */ 1311 ++ev1; 1312 if (ev1 < mddev->events) 1313 return -EINVAL; 1314 } else if (mddev->bitmap) { 1315 /* If adding to array with a bitmap, then we can accept an 1316 * older device, but not too old. 1317 */ 1318 if (ev1 < mddev->bitmap->events_cleared) 1319 return 0; 1320 } else { 1321 if (ev1 < mddev->events) 1322 /* just a hot-add of a new device, leave raid_disk at -1 */ 1323 return 0; 1324 } 1325 if (mddev->level != LEVEL_MULTIPATH) { 1326 int role; 1327 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1328 switch(role) { 1329 case 0xffff: /* spare */ 1330 break; 1331 case 0xfffe: /* faulty */ 1332 set_bit(Faulty, &rdev->flags); 1333 break; 1334 default: 1335 if ((le32_to_cpu(sb->feature_map) & 1336 MD_FEATURE_RECOVERY_OFFSET)) 1337 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1338 else 1339 set_bit(In_sync, &rdev->flags); 1340 rdev->raid_disk = role; 1341 break; 1342 } 1343 if (sb->devflags & WriteMostly1) 1344 set_bit(WriteMostly, &rdev->flags); 1345 } else /* MULTIPATH are always insync */ 1346 set_bit(In_sync, &rdev->flags); 1347 1348 return 0; 1349 } 1350 1351 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1352 { 1353 struct mdp_superblock_1 *sb; 1354 mdk_rdev_t *rdev2; 1355 int max_dev, i; 1356 /* make rdev->sb match mddev and rdev data. */ 1357 1358 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1359 1360 sb->feature_map = 0; 1361 sb->pad0 = 0; 1362 sb->recovery_offset = cpu_to_le64(0); 1363 memset(sb->pad1, 0, sizeof(sb->pad1)); 1364 memset(sb->pad2, 0, sizeof(sb->pad2)); 1365 memset(sb->pad3, 0, sizeof(sb->pad3)); 1366 1367 sb->utime = cpu_to_le64((__u64)mddev->utime); 1368 sb->events = cpu_to_le64(mddev->events); 1369 if (mddev->in_sync) 1370 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1371 else 1372 sb->resync_offset = cpu_to_le64(0); 1373 1374 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1375 1376 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1377 sb->size = cpu_to_le64(mddev->dev_sectors); 1378 1379 if (mddev->bitmap && mddev->bitmap_file == NULL) { 1380 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); 1381 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1382 } 1383 1384 if (rdev->raid_disk >= 0 && 1385 !test_bit(In_sync, &rdev->flags)) { 1386 if (mddev->curr_resync_completed > rdev->recovery_offset) 1387 rdev->recovery_offset = mddev->curr_resync_completed; 1388 if (rdev->recovery_offset > 0) { 1389 sb->feature_map |= 1390 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1391 sb->recovery_offset = 1392 cpu_to_le64(rdev->recovery_offset); 1393 } 1394 } 1395 1396 if (mddev->reshape_position != MaxSector) { 1397 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1398 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1399 sb->new_layout = cpu_to_le32(mddev->new_layout); 1400 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1401 sb->new_level = cpu_to_le32(mddev->new_level); 1402 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9); 1403 } 1404 1405 max_dev = 0; 1406 list_for_each_entry(rdev2, &mddev->disks, same_set) 1407 if (rdev2->desc_nr+1 > max_dev) 1408 max_dev = rdev2->desc_nr+1; 1409 1410 if (max_dev > le32_to_cpu(sb->max_dev)) 1411 sb->max_dev = cpu_to_le32(max_dev); 1412 for (i=0; i<max_dev;i++) 1413 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1414 1415 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1416 i = rdev2->desc_nr; 1417 if (test_bit(Faulty, &rdev2->flags)) 1418 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1419 else if (test_bit(In_sync, &rdev2->flags)) 1420 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1421 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0) 1422 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1423 else 1424 sb->dev_roles[i] = cpu_to_le16(0xffff); 1425 } 1426 1427 sb->sb_csum = calc_sb_1_csum(sb); 1428 } 1429 1430 static unsigned long long 1431 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1432 { 1433 struct mdp_superblock_1 *sb; 1434 sector_t max_sectors; 1435 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1436 return 0; /* component must fit device */ 1437 if (rdev->sb_start < rdev->data_offset) { 1438 /* minor versions 1 and 2; superblock before data */ 1439 max_sectors = rdev->bdev->bd_inode->i_size >> 9; 1440 max_sectors -= rdev->data_offset; 1441 if (!num_sectors || num_sectors > max_sectors) 1442 num_sectors = max_sectors; 1443 } else if (rdev->mddev->bitmap_offset) { 1444 /* minor version 0 with bitmap we can't move */ 1445 return 0; 1446 } else { 1447 /* minor version 0; superblock after data */ 1448 sector_t sb_start; 1449 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2; 1450 sb_start &= ~(sector_t)(4*2 - 1); 1451 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1452 if (!num_sectors || num_sectors > max_sectors) 1453 num_sectors = max_sectors; 1454 rdev->sb_start = sb_start; 1455 } 1456 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1457 sb->data_size = cpu_to_le64(num_sectors); 1458 sb->super_offset = rdev->sb_start; 1459 sb->sb_csum = calc_sb_1_csum(sb); 1460 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1461 rdev->sb_page); 1462 md_super_wait(rdev->mddev); 1463 return num_sectors / 2; /* kB for sysfs */ 1464 } 1465 1466 static struct super_type super_types[] = { 1467 [0] = { 1468 .name = "0.90.0", 1469 .owner = THIS_MODULE, 1470 .load_super = super_90_load, 1471 .validate_super = super_90_validate, 1472 .sync_super = super_90_sync, 1473 .rdev_size_change = super_90_rdev_size_change, 1474 }, 1475 [1] = { 1476 .name = "md-1", 1477 .owner = THIS_MODULE, 1478 .load_super = super_1_load, 1479 .validate_super = super_1_validate, 1480 .sync_super = super_1_sync, 1481 .rdev_size_change = super_1_rdev_size_change, 1482 }, 1483 }; 1484 1485 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1486 { 1487 mdk_rdev_t *rdev, *rdev2; 1488 1489 rcu_read_lock(); 1490 rdev_for_each_rcu(rdev, mddev1) 1491 rdev_for_each_rcu(rdev2, mddev2) 1492 if (rdev->bdev->bd_contains == 1493 rdev2->bdev->bd_contains) { 1494 rcu_read_unlock(); 1495 return 1; 1496 } 1497 rcu_read_unlock(); 1498 return 0; 1499 } 1500 1501 static LIST_HEAD(pending_raid_disks); 1502 1503 static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev) 1504 { 1505 struct mdk_personality *pers = mddev->pers; 1506 struct gendisk *disk = mddev->gendisk; 1507 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 1508 struct blk_integrity *bi_mddev = blk_get_integrity(disk); 1509 1510 /* Data integrity passthrough not supported on RAID 4, 5 and 6 */ 1511 if (pers && pers->level >= 4 && pers->level <= 6) 1512 return; 1513 1514 /* If rdev is integrity capable, register profile for mddev */ 1515 if (!bi_mddev && bi_rdev) { 1516 if (blk_integrity_register(disk, bi_rdev)) 1517 printk(KERN_ERR "%s: %s Could not register integrity!\n", 1518 __func__, disk->disk_name); 1519 else 1520 printk(KERN_NOTICE "Enabling data integrity on %s\n", 1521 disk->disk_name); 1522 return; 1523 } 1524 1525 /* Check that mddev and rdev have matching profiles */ 1526 if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) { 1527 printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__, 1528 disk->disk_name, rdev->bdev->bd_disk->disk_name); 1529 printk(KERN_NOTICE "Disabling data integrity on %s\n", 1530 disk->disk_name); 1531 blk_integrity_unregister(disk); 1532 } 1533 } 1534 1535 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1536 { 1537 char b[BDEVNAME_SIZE]; 1538 struct kobject *ko; 1539 char *s; 1540 int err; 1541 1542 if (rdev->mddev) { 1543 MD_BUG(); 1544 return -EINVAL; 1545 } 1546 1547 /* prevent duplicates */ 1548 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1549 return -EEXIST; 1550 1551 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 1552 if (rdev->sectors && (mddev->dev_sectors == 0 || 1553 rdev->sectors < mddev->dev_sectors)) { 1554 if (mddev->pers) { 1555 /* Cannot change size, so fail 1556 * If mddev->level <= 0, then we don't care 1557 * about aligning sizes (e.g. linear) 1558 */ 1559 if (mddev->level > 0) 1560 return -ENOSPC; 1561 } else 1562 mddev->dev_sectors = rdev->sectors; 1563 } 1564 1565 /* Verify rdev->desc_nr is unique. 1566 * If it is -1, assign a free number, else 1567 * check number is not in use 1568 */ 1569 if (rdev->desc_nr < 0) { 1570 int choice = 0; 1571 if (mddev->pers) choice = mddev->raid_disks; 1572 while (find_rdev_nr(mddev, choice)) 1573 choice++; 1574 rdev->desc_nr = choice; 1575 } else { 1576 if (find_rdev_nr(mddev, rdev->desc_nr)) 1577 return -EBUSY; 1578 } 1579 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 1580 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 1581 mdname(mddev), mddev->max_disks); 1582 return -EBUSY; 1583 } 1584 bdevname(rdev->bdev,b); 1585 while ( (s=strchr(b, '/')) != NULL) 1586 *s = '!'; 1587 1588 rdev->mddev = mddev; 1589 printk(KERN_INFO "md: bind<%s>\n", b); 1590 1591 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1592 goto fail; 1593 1594 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 1595 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) { 1596 kobject_del(&rdev->kobj); 1597 goto fail; 1598 } 1599 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state"); 1600 1601 list_add_rcu(&rdev->same_set, &mddev->disks); 1602 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); 1603 1604 /* May as well allow recovery to be retried once */ 1605 mddev->recovery_disabled = 0; 1606 1607 md_integrity_check(rdev, mddev); 1608 return 0; 1609 1610 fail: 1611 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1612 b, mdname(mddev)); 1613 return err; 1614 } 1615 1616 static void md_delayed_delete(struct work_struct *ws) 1617 { 1618 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1619 kobject_del(&rdev->kobj); 1620 kobject_put(&rdev->kobj); 1621 } 1622 1623 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1624 { 1625 char b[BDEVNAME_SIZE]; 1626 if (!rdev->mddev) { 1627 MD_BUG(); 1628 return; 1629 } 1630 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1631 list_del_rcu(&rdev->same_set); 1632 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1633 rdev->mddev = NULL; 1634 sysfs_remove_link(&rdev->kobj, "block"); 1635 sysfs_put(rdev->sysfs_state); 1636 rdev->sysfs_state = NULL; 1637 /* We need to delay this, otherwise we can deadlock when 1638 * writing to 'remove' to "dev/state". We also need 1639 * to delay it due to rcu usage. 1640 */ 1641 synchronize_rcu(); 1642 INIT_WORK(&rdev->del_work, md_delayed_delete); 1643 kobject_get(&rdev->kobj); 1644 schedule_work(&rdev->del_work); 1645 } 1646 1647 /* 1648 * prevent the device from being mounted, repartitioned or 1649 * otherwise reused by a RAID array (or any other kernel 1650 * subsystem), by bd_claiming the device. 1651 */ 1652 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1653 { 1654 int err = 0; 1655 struct block_device *bdev; 1656 char b[BDEVNAME_SIZE]; 1657 1658 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1659 if (IS_ERR(bdev)) { 1660 printk(KERN_ERR "md: could not open %s.\n", 1661 __bdevname(dev, b)); 1662 return PTR_ERR(bdev); 1663 } 1664 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); 1665 if (err) { 1666 printk(KERN_ERR "md: could not bd_claim %s.\n", 1667 bdevname(bdev, b)); 1668 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1669 return err; 1670 } 1671 if (!shared) 1672 set_bit(AllReserved, &rdev->flags); 1673 rdev->bdev = bdev; 1674 return err; 1675 } 1676 1677 static void unlock_rdev(mdk_rdev_t *rdev) 1678 { 1679 struct block_device *bdev = rdev->bdev; 1680 rdev->bdev = NULL; 1681 if (!bdev) 1682 MD_BUG(); 1683 bd_release(bdev); 1684 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1685 } 1686 1687 void md_autodetect_dev(dev_t dev); 1688 1689 static void export_rdev(mdk_rdev_t * rdev) 1690 { 1691 char b[BDEVNAME_SIZE]; 1692 printk(KERN_INFO "md: export_rdev(%s)\n", 1693 bdevname(rdev->bdev,b)); 1694 if (rdev->mddev) 1695 MD_BUG(); 1696 free_disk_sb(rdev); 1697 #ifndef MODULE 1698 if (test_bit(AutoDetected, &rdev->flags)) 1699 md_autodetect_dev(rdev->bdev->bd_dev); 1700 #endif 1701 unlock_rdev(rdev); 1702 kobject_put(&rdev->kobj); 1703 } 1704 1705 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1706 { 1707 unbind_rdev_from_array(rdev); 1708 export_rdev(rdev); 1709 } 1710 1711 static void export_array(mddev_t *mddev) 1712 { 1713 mdk_rdev_t *rdev, *tmp; 1714 1715 rdev_for_each(rdev, tmp, mddev) { 1716 if (!rdev->mddev) { 1717 MD_BUG(); 1718 continue; 1719 } 1720 kick_rdev_from_array(rdev); 1721 } 1722 if (!list_empty(&mddev->disks)) 1723 MD_BUG(); 1724 mddev->raid_disks = 0; 1725 mddev->major_version = 0; 1726 } 1727 1728 static void print_desc(mdp_disk_t *desc) 1729 { 1730 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1731 desc->major,desc->minor,desc->raid_disk,desc->state); 1732 } 1733 1734 static void print_sb_90(mdp_super_t *sb) 1735 { 1736 int i; 1737 1738 printk(KERN_INFO 1739 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1740 sb->major_version, sb->minor_version, sb->patch_version, 1741 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1742 sb->ctime); 1743 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1744 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1745 sb->md_minor, sb->layout, sb->chunk_size); 1746 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1747 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1748 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1749 sb->failed_disks, sb->spare_disks, 1750 sb->sb_csum, (unsigned long)sb->events_lo); 1751 1752 printk(KERN_INFO); 1753 for (i = 0; i < MD_SB_DISKS; i++) { 1754 mdp_disk_t *desc; 1755 1756 desc = sb->disks + i; 1757 if (desc->number || desc->major || desc->minor || 1758 desc->raid_disk || (desc->state && (desc->state != 4))) { 1759 printk(" D %2d: ", i); 1760 print_desc(desc); 1761 } 1762 } 1763 printk(KERN_INFO "md: THIS: "); 1764 print_desc(&sb->this_disk); 1765 } 1766 1767 static void print_sb_1(struct mdp_superblock_1 *sb) 1768 { 1769 __u8 *uuid; 1770 1771 uuid = sb->set_uuid; 1772 printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x" 1773 ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n" 1774 KERN_INFO "md: Name: \"%s\" CT:%llu\n", 1775 le32_to_cpu(sb->major_version), 1776 le32_to_cpu(sb->feature_map), 1777 uuid[0], uuid[1], uuid[2], uuid[3], 1778 uuid[4], uuid[5], uuid[6], uuid[7], 1779 uuid[8], uuid[9], uuid[10], uuid[11], 1780 uuid[12], uuid[13], uuid[14], uuid[15], 1781 sb->set_name, 1782 (unsigned long long)le64_to_cpu(sb->ctime) 1783 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 1784 1785 uuid = sb->device_uuid; 1786 printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 1787 " RO:%llu\n" 1788 KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x" 1789 ":%02x%02x%02x%02x%02x%02x\n" 1790 KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 1791 KERN_INFO "md: (MaxDev:%u) \n", 1792 le32_to_cpu(sb->level), 1793 (unsigned long long)le64_to_cpu(sb->size), 1794 le32_to_cpu(sb->raid_disks), 1795 le32_to_cpu(sb->layout), 1796 le32_to_cpu(sb->chunksize), 1797 (unsigned long long)le64_to_cpu(sb->data_offset), 1798 (unsigned long long)le64_to_cpu(sb->data_size), 1799 (unsigned long long)le64_to_cpu(sb->super_offset), 1800 (unsigned long long)le64_to_cpu(sb->recovery_offset), 1801 le32_to_cpu(sb->dev_number), 1802 uuid[0], uuid[1], uuid[2], uuid[3], 1803 uuid[4], uuid[5], uuid[6], uuid[7], 1804 uuid[8], uuid[9], uuid[10], uuid[11], 1805 uuid[12], uuid[13], uuid[14], uuid[15], 1806 sb->devflags, 1807 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 1808 (unsigned long long)le64_to_cpu(sb->events), 1809 (unsigned long long)le64_to_cpu(sb->resync_offset), 1810 le32_to_cpu(sb->sb_csum), 1811 le32_to_cpu(sb->max_dev) 1812 ); 1813 } 1814 1815 static void print_rdev(mdk_rdev_t *rdev, int major_version) 1816 { 1817 char b[BDEVNAME_SIZE]; 1818 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 1819 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 1820 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 1821 rdev->desc_nr); 1822 if (rdev->sb_loaded) { 1823 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 1824 switch (major_version) { 1825 case 0: 1826 print_sb_90((mdp_super_t*)page_address(rdev->sb_page)); 1827 break; 1828 case 1: 1829 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page)); 1830 break; 1831 } 1832 } else 1833 printk(KERN_INFO "md: no rdev superblock!\n"); 1834 } 1835 1836 static void md_print_devices(void) 1837 { 1838 struct list_head *tmp; 1839 mdk_rdev_t *rdev; 1840 mddev_t *mddev; 1841 char b[BDEVNAME_SIZE]; 1842 1843 printk("\n"); 1844 printk("md: **********************************\n"); 1845 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 1846 printk("md: **********************************\n"); 1847 for_each_mddev(mddev, tmp) { 1848 1849 if (mddev->bitmap) 1850 bitmap_print_sb(mddev->bitmap); 1851 else 1852 printk("%s: ", mdname(mddev)); 1853 list_for_each_entry(rdev, &mddev->disks, same_set) 1854 printk("<%s>", bdevname(rdev->bdev,b)); 1855 printk("\n"); 1856 1857 list_for_each_entry(rdev, &mddev->disks, same_set) 1858 print_rdev(rdev, mddev->major_version); 1859 } 1860 printk("md: **********************************\n"); 1861 printk("\n"); 1862 } 1863 1864 1865 static void sync_sbs(mddev_t * mddev, int nospares) 1866 { 1867 /* Update each superblock (in-memory image), but 1868 * if we are allowed to, skip spares which already 1869 * have the right event counter, or have one earlier 1870 * (which would mean they aren't being marked as dirty 1871 * with the rest of the array) 1872 */ 1873 mdk_rdev_t *rdev; 1874 1875 list_for_each_entry(rdev, &mddev->disks, same_set) { 1876 if (rdev->sb_events == mddev->events || 1877 (nospares && 1878 rdev->raid_disk < 0 && 1879 (rdev->sb_events&1)==0 && 1880 rdev->sb_events+1 == mddev->events)) { 1881 /* Don't update this superblock */ 1882 rdev->sb_loaded = 2; 1883 } else { 1884 super_types[mddev->major_version]. 1885 sync_super(mddev, rdev); 1886 rdev->sb_loaded = 1; 1887 } 1888 } 1889 } 1890 1891 static void md_update_sb(mddev_t * mddev, int force_change) 1892 { 1893 mdk_rdev_t *rdev; 1894 int sync_req; 1895 int nospares = 0; 1896 1897 if (mddev->external) 1898 return; 1899 repeat: 1900 spin_lock_irq(&mddev->write_lock); 1901 1902 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1903 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 1904 force_change = 1; 1905 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 1906 /* just a clean<-> dirty transition, possibly leave spares alone, 1907 * though if events isn't the right even/odd, we will have to do 1908 * spares after all 1909 */ 1910 nospares = 1; 1911 if (force_change) 1912 nospares = 0; 1913 if (mddev->degraded) 1914 /* If the array is degraded, then skipping spares is both 1915 * dangerous and fairly pointless. 1916 * Dangerous because a device that was removed from the array 1917 * might have a event_count that still looks up-to-date, 1918 * so it can be re-added without a resync. 1919 * Pointless because if there are any spares to skip, 1920 * then a recovery will happen and soon that array won't 1921 * be degraded any more and the spare can go back to sleep then. 1922 */ 1923 nospares = 0; 1924 1925 sync_req = mddev->in_sync; 1926 mddev->utime = get_seconds(); 1927 1928 /* If this is just a dirty<->clean transition, and the array is clean 1929 * and 'events' is odd, we can roll back to the previous clean state */ 1930 if (nospares 1931 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 1932 && (mddev->events & 1) 1933 && mddev->events != 1) 1934 mddev->events--; 1935 else { 1936 /* otherwise we have to go forward and ... */ 1937 mddev->events ++; 1938 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ 1939 /* .. if the array isn't clean, insist on an odd 'events' */ 1940 if ((mddev->events&1)==0) { 1941 mddev->events++; 1942 nospares = 0; 1943 } 1944 } else { 1945 /* otherwise insist on an even 'events' (for clean states) */ 1946 if ((mddev->events&1)) { 1947 mddev->events++; 1948 nospares = 0; 1949 } 1950 } 1951 } 1952 1953 if (!mddev->events) { 1954 /* 1955 * oops, this 64-bit counter should never wrap. 1956 * Either we are in around ~1 trillion A.C., assuming 1957 * 1 reboot per second, or we have a bug: 1958 */ 1959 MD_BUG(); 1960 mddev->events --; 1961 } 1962 1963 /* 1964 * do not write anything to disk if using 1965 * nonpersistent superblocks 1966 */ 1967 if (!mddev->persistent) { 1968 if (!mddev->external) 1969 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1970 1971 spin_unlock_irq(&mddev->write_lock); 1972 wake_up(&mddev->sb_wait); 1973 return; 1974 } 1975 sync_sbs(mddev, nospares); 1976 spin_unlock_irq(&mddev->write_lock); 1977 1978 dprintk(KERN_INFO 1979 "md: updating %s RAID superblock on device (in sync %d)\n", 1980 mdname(mddev),mddev->in_sync); 1981 1982 bitmap_update_sb(mddev->bitmap); 1983 list_for_each_entry(rdev, &mddev->disks, same_set) { 1984 char b[BDEVNAME_SIZE]; 1985 dprintk(KERN_INFO "md: "); 1986 if (rdev->sb_loaded != 1) 1987 continue; /* no noise on spare devices */ 1988 if (test_bit(Faulty, &rdev->flags)) 1989 dprintk("(skipping faulty "); 1990 1991 dprintk("%s ", bdevname(rdev->bdev,b)); 1992 if (!test_bit(Faulty, &rdev->flags)) { 1993 md_super_write(mddev,rdev, 1994 rdev->sb_start, rdev->sb_size, 1995 rdev->sb_page); 1996 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 1997 bdevname(rdev->bdev,b), 1998 (unsigned long long)rdev->sb_start); 1999 rdev->sb_events = mddev->events; 2000 2001 } else 2002 dprintk(")\n"); 2003 if (mddev->level == LEVEL_MULTIPATH) 2004 /* only need to write one superblock... */ 2005 break; 2006 } 2007 md_super_wait(mddev); 2008 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2009 2010 spin_lock_irq(&mddev->write_lock); 2011 if (mddev->in_sync != sync_req || 2012 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2013 /* have to write it out again */ 2014 spin_unlock_irq(&mddev->write_lock); 2015 goto repeat; 2016 } 2017 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2018 spin_unlock_irq(&mddev->write_lock); 2019 wake_up(&mddev->sb_wait); 2020 2021 } 2022 2023 /* words written to sysfs files may, or may not, be \n terminated. 2024 * We want to accept with case. For this we use cmd_match. 2025 */ 2026 static int cmd_match(const char *cmd, const char *str) 2027 { 2028 /* See if cmd, written into a sysfs file, matches 2029 * str. They must either be the same, or cmd can 2030 * have a trailing newline 2031 */ 2032 while (*cmd && *str && *cmd == *str) { 2033 cmd++; 2034 str++; 2035 } 2036 if (*cmd == '\n') 2037 cmd++; 2038 if (*str || *cmd) 2039 return 0; 2040 return 1; 2041 } 2042 2043 struct rdev_sysfs_entry { 2044 struct attribute attr; 2045 ssize_t (*show)(mdk_rdev_t *, char *); 2046 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 2047 }; 2048 2049 static ssize_t 2050 state_show(mdk_rdev_t *rdev, char *page) 2051 { 2052 char *sep = ""; 2053 size_t len = 0; 2054 2055 if (test_bit(Faulty, &rdev->flags)) { 2056 len+= sprintf(page+len, "%sfaulty",sep); 2057 sep = ","; 2058 } 2059 if (test_bit(In_sync, &rdev->flags)) { 2060 len += sprintf(page+len, "%sin_sync",sep); 2061 sep = ","; 2062 } 2063 if (test_bit(WriteMostly, &rdev->flags)) { 2064 len += sprintf(page+len, "%swrite_mostly",sep); 2065 sep = ","; 2066 } 2067 if (test_bit(Blocked, &rdev->flags)) { 2068 len += sprintf(page+len, "%sblocked", sep); 2069 sep = ","; 2070 } 2071 if (!test_bit(Faulty, &rdev->flags) && 2072 !test_bit(In_sync, &rdev->flags)) { 2073 len += sprintf(page+len, "%sspare", sep); 2074 sep = ","; 2075 } 2076 return len+sprintf(page+len, "\n"); 2077 } 2078 2079 static ssize_t 2080 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2081 { 2082 /* can write 2083 * faulty - simulates and error 2084 * remove - disconnects the device 2085 * writemostly - sets write_mostly 2086 * -writemostly - clears write_mostly 2087 * blocked - sets the Blocked flag 2088 * -blocked - clears the Blocked flag 2089 */ 2090 int err = -EINVAL; 2091 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2092 md_error(rdev->mddev, rdev); 2093 err = 0; 2094 } else if (cmd_match(buf, "remove")) { 2095 if (rdev->raid_disk >= 0) 2096 err = -EBUSY; 2097 else { 2098 mddev_t *mddev = rdev->mddev; 2099 kick_rdev_from_array(rdev); 2100 if (mddev->pers) 2101 md_update_sb(mddev, 1); 2102 md_new_event(mddev); 2103 err = 0; 2104 } 2105 } else if (cmd_match(buf, "writemostly")) { 2106 set_bit(WriteMostly, &rdev->flags); 2107 err = 0; 2108 } else if (cmd_match(buf, "-writemostly")) { 2109 clear_bit(WriteMostly, &rdev->flags); 2110 err = 0; 2111 } else if (cmd_match(buf, "blocked")) { 2112 set_bit(Blocked, &rdev->flags); 2113 err = 0; 2114 } else if (cmd_match(buf, "-blocked")) { 2115 clear_bit(Blocked, &rdev->flags); 2116 wake_up(&rdev->blocked_wait); 2117 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2118 md_wakeup_thread(rdev->mddev->thread); 2119 2120 err = 0; 2121 } 2122 if (!err && rdev->sysfs_state) 2123 sysfs_notify_dirent(rdev->sysfs_state); 2124 return err ? err : len; 2125 } 2126 static struct rdev_sysfs_entry rdev_state = 2127 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2128 2129 static ssize_t 2130 errors_show(mdk_rdev_t *rdev, char *page) 2131 { 2132 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2133 } 2134 2135 static ssize_t 2136 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2137 { 2138 char *e; 2139 unsigned long n = simple_strtoul(buf, &e, 10); 2140 if (*buf && (*e == 0 || *e == '\n')) { 2141 atomic_set(&rdev->corrected_errors, n); 2142 return len; 2143 } 2144 return -EINVAL; 2145 } 2146 static struct rdev_sysfs_entry rdev_errors = 2147 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2148 2149 static ssize_t 2150 slot_show(mdk_rdev_t *rdev, char *page) 2151 { 2152 if (rdev->raid_disk < 0) 2153 return sprintf(page, "none\n"); 2154 else 2155 return sprintf(page, "%d\n", rdev->raid_disk); 2156 } 2157 2158 static ssize_t 2159 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2160 { 2161 char *e; 2162 int err; 2163 char nm[20]; 2164 int slot = simple_strtoul(buf, &e, 10); 2165 if (strncmp(buf, "none", 4)==0) 2166 slot = -1; 2167 else if (e==buf || (*e && *e!= '\n')) 2168 return -EINVAL; 2169 if (rdev->mddev->pers && slot == -1) { 2170 /* Setting 'slot' on an active array requires also 2171 * updating the 'rd%d' link, and communicating 2172 * with the personality with ->hot_*_disk. 2173 * For now we only support removing 2174 * failed/spare devices. This normally happens automatically, 2175 * but not when the metadata is externally managed. 2176 */ 2177 if (rdev->raid_disk == -1) 2178 return -EEXIST; 2179 /* personality does all needed checks */ 2180 if (rdev->mddev->pers->hot_add_disk == NULL) 2181 return -EINVAL; 2182 err = rdev->mddev->pers-> 2183 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2184 if (err) 2185 return err; 2186 sprintf(nm, "rd%d", rdev->raid_disk); 2187 sysfs_remove_link(&rdev->mddev->kobj, nm); 2188 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2189 md_wakeup_thread(rdev->mddev->thread); 2190 } else if (rdev->mddev->pers) { 2191 mdk_rdev_t *rdev2; 2192 /* Activating a spare .. or possibly reactivating 2193 * if we every get bitmaps working here. 2194 */ 2195 2196 if (rdev->raid_disk != -1) 2197 return -EBUSY; 2198 2199 if (rdev->mddev->pers->hot_add_disk == NULL) 2200 return -EINVAL; 2201 2202 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) 2203 if (rdev2->raid_disk == slot) 2204 return -EEXIST; 2205 2206 rdev->raid_disk = slot; 2207 if (test_bit(In_sync, &rdev->flags)) 2208 rdev->saved_raid_disk = slot; 2209 else 2210 rdev->saved_raid_disk = -1; 2211 err = rdev->mddev->pers-> 2212 hot_add_disk(rdev->mddev, rdev); 2213 if (err) { 2214 rdev->raid_disk = -1; 2215 return err; 2216 } else 2217 sysfs_notify_dirent(rdev->sysfs_state); 2218 sprintf(nm, "rd%d", rdev->raid_disk); 2219 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2220 printk(KERN_WARNING 2221 "md: cannot register " 2222 "%s for %s\n", 2223 nm, mdname(rdev->mddev)); 2224 2225 /* don't wakeup anyone, leave that to userspace. */ 2226 } else { 2227 if (slot >= rdev->mddev->raid_disks) 2228 return -ENOSPC; 2229 rdev->raid_disk = slot; 2230 /* assume it is working */ 2231 clear_bit(Faulty, &rdev->flags); 2232 clear_bit(WriteMostly, &rdev->flags); 2233 set_bit(In_sync, &rdev->flags); 2234 sysfs_notify_dirent(rdev->sysfs_state); 2235 } 2236 return len; 2237 } 2238 2239 2240 static struct rdev_sysfs_entry rdev_slot = 2241 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2242 2243 static ssize_t 2244 offset_show(mdk_rdev_t *rdev, char *page) 2245 { 2246 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2247 } 2248 2249 static ssize_t 2250 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2251 { 2252 char *e; 2253 unsigned long long offset = simple_strtoull(buf, &e, 10); 2254 if (e==buf || (*e && *e != '\n')) 2255 return -EINVAL; 2256 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2257 return -EBUSY; 2258 if (rdev->sectors && rdev->mddev->external) 2259 /* Must set offset before size, so overlap checks 2260 * can be sane */ 2261 return -EBUSY; 2262 rdev->data_offset = offset; 2263 return len; 2264 } 2265 2266 static struct rdev_sysfs_entry rdev_offset = 2267 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2268 2269 static ssize_t 2270 rdev_size_show(mdk_rdev_t *rdev, char *page) 2271 { 2272 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2273 } 2274 2275 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2276 { 2277 /* check if two start/length pairs overlap */ 2278 if (s1+l1 <= s2) 2279 return 0; 2280 if (s2+l2 <= s1) 2281 return 0; 2282 return 1; 2283 } 2284 2285 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2286 { 2287 unsigned long long blocks; 2288 sector_t new; 2289 2290 if (strict_strtoull(buf, 10, &blocks) < 0) 2291 return -EINVAL; 2292 2293 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2294 return -EINVAL; /* sector conversion overflow */ 2295 2296 new = blocks * 2; 2297 if (new != blocks * 2) 2298 return -EINVAL; /* unsigned long long to sector_t overflow */ 2299 2300 *sectors = new; 2301 return 0; 2302 } 2303 2304 static ssize_t 2305 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2306 { 2307 mddev_t *my_mddev = rdev->mddev; 2308 sector_t oldsectors = rdev->sectors; 2309 sector_t sectors; 2310 2311 if (strict_blocks_to_sectors(buf, §ors) < 0) 2312 return -EINVAL; 2313 if (my_mddev->pers && rdev->raid_disk >= 0) { 2314 if (my_mddev->persistent) { 2315 sectors = super_types[my_mddev->major_version]. 2316 rdev_size_change(rdev, sectors); 2317 if (!sectors) 2318 return -EBUSY; 2319 } else if (!sectors) 2320 sectors = (rdev->bdev->bd_inode->i_size >> 9) - 2321 rdev->data_offset; 2322 } 2323 if (sectors < my_mddev->dev_sectors) 2324 return -EINVAL; /* component must fit device */ 2325 2326 rdev->sectors = sectors; 2327 if (sectors > oldsectors && my_mddev->external) { 2328 /* need to check that all other rdevs with the same ->bdev 2329 * do not overlap. We need to unlock the mddev to avoid 2330 * a deadlock. We have already changed rdev->sectors, and if 2331 * we have to change it back, we will have the lock again. 2332 */ 2333 mddev_t *mddev; 2334 int overlap = 0; 2335 struct list_head *tmp; 2336 2337 mddev_unlock(my_mddev); 2338 for_each_mddev(mddev, tmp) { 2339 mdk_rdev_t *rdev2; 2340 2341 mddev_lock(mddev); 2342 list_for_each_entry(rdev2, &mddev->disks, same_set) 2343 if (test_bit(AllReserved, &rdev2->flags) || 2344 (rdev->bdev == rdev2->bdev && 2345 rdev != rdev2 && 2346 overlaps(rdev->data_offset, rdev->sectors, 2347 rdev2->data_offset, 2348 rdev2->sectors))) { 2349 overlap = 1; 2350 break; 2351 } 2352 mddev_unlock(mddev); 2353 if (overlap) { 2354 mddev_put(mddev); 2355 break; 2356 } 2357 } 2358 mddev_lock(my_mddev); 2359 if (overlap) { 2360 /* Someone else could have slipped in a size 2361 * change here, but doing so is just silly. 2362 * We put oldsectors back because we *know* it is 2363 * safe, and trust userspace not to race with 2364 * itself 2365 */ 2366 rdev->sectors = oldsectors; 2367 return -EBUSY; 2368 } 2369 } 2370 return len; 2371 } 2372 2373 static struct rdev_sysfs_entry rdev_size = 2374 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2375 2376 static struct attribute *rdev_default_attrs[] = { 2377 &rdev_state.attr, 2378 &rdev_errors.attr, 2379 &rdev_slot.attr, 2380 &rdev_offset.attr, 2381 &rdev_size.attr, 2382 NULL, 2383 }; 2384 static ssize_t 2385 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2386 { 2387 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2388 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2389 mddev_t *mddev = rdev->mddev; 2390 ssize_t rv; 2391 2392 if (!entry->show) 2393 return -EIO; 2394 2395 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2396 if (!rv) { 2397 if (rdev->mddev == NULL) 2398 rv = -EBUSY; 2399 else 2400 rv = entry->show(rdev, page); 2401 mddev_unlock(mddev); 2402 } 2403 return rv; 2404 } 2405 2406 static ssize_t 2407 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2408 const char *page, size_t length) 2409 { 2410 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2411 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2412 ssize_t rv; 2413 mddev_t *mddev = rdev->mddev; 2414 2415 if (!entry->store) 2416 return -EIO; 2417 if (!capable(CAP_SYS_ADMIN)) 2418 return -EACCES; 2419 rv = mddev ? mddev_lock(mddev): -EBUSY; 2420 if (!rv) { 2421 if (rdev->mddev == NULL) 2422 rv = -EBUSY; 2423 else 2424 rv = entry->store(rdev, page, length); 2425 mddev_unlock(mddev); 2426 } 2427 return rv; 2428 } 2429 2430 static void rdev_free(struct kobject *ko) 2431 { 2432 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2433 kfree(rdev); 2434 } 2435 static struct sysfs_ops rdev_sysfs_ops = { 2436 .show = rdev_attr_show, 2437 .store = rdev_attr_store, 2438 }; 2439 static struct kobj_type rdev_ktype = { 2440 .release = rdev_free, 2441 .sysfs_ops = &rdev_sysfs_ops, 2442 .default_attrs = rdev_default_attrs, 2443 }; 2444 2445 /* 2446 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2447 * 2448 * mark the device faulty if: 2449 * 2450 * - the device is nonexistent (zero size) 2451 * - the device has no valid superblock 2452 * 2453 * a faulty rdev _never_ has rdev->sb set. 2454 */ 2455 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2456 { 2457 char b[BDEVNAME_SIZE]; 2458 int err; 2459 mdk_rdev_t *rdev; 2460 sector_t size; 2461 2462 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2463 if (!rdev) { 2464 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2465 return ERR_PTR(-ENOMEM); 2466 } 2467 2468 if ((err = alloc_disk_sb(rdev))) 2469 goto abort_free; 2470 2471 err = lock_rdev(rdev, newdev, super_format == -2); 2472 if (err) 2473 goto abort_free; 2474 2475 kobject_init(&rdev->kobj, &rdev_ktype); 2476 2477 rdev->desc_nr = -1; 2478 rdev->saved_raid_disk = -1; 2479 rdev->raid_disk = -1; 2480 rdev->flags = 0; 2481 rdev->data_offset = 0; 2482 rdev->sb_events = 0; 2483 atomic_set(&rdev->nr_pending, 0); 2484 atomic_set(&rdev->read_errors, 0); 2485 atomic_set(&rdev->corrected_errors, 0); 2486 2487 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2488 if (!size) { 2489 printk(KERN_WARNING 2490 "md: %s has zero or unknown size, marking faulty!\n", 2491 bdevname(rdev->bdev,b)); 2492 err = -EINVAL; 2493 goto abort_free; 2494 } 2495 2496 if (super_format >= 0) { 2497 err = super_types[super_format]. 2498 load_super(rdev, NULL, super_minor); 2499 if (err == -EINVAL) { 2500 printk(KERN_WARNING 2501 "md: %s does not have a valid v%d.%d " 2502 "superblock, not importing!\n", 2503 bdevname(rdev->bdev,b), 2504 super_format, super_minor); 2505 goto abort_free; 2506 } 2507 if (err < 0) { 2508 printk(KERN_WARNING 2509 "md: could not read %s's sb, not importing!\n", 2510 bdevname(rdev->bdev,b)); 2511 goto abort_free; 2512 } 2513 } 2514 2515 INIT_LIST_HEAD(&rdev->same_set); 2516 init_waitqueue_head(&rdev->blocked_wait); 2517 2518 return rdev; 2519 2520 abort_free: 2521 if (rdev->sb_page) { 2522 if (rdev->bdev) 2523 unlock_rdev(rdev); 2524 free_disk_sb(rdev); 2525 } 2526 kfree(rdev); 2527 return ERR_PTR(err); 2528 } 2529 2530 /* 2531 * Check a full RAID array for plausibility 2532 */ 2533 2534 2535 static void analyze_sbs(mddev_t * mddev) 2536 { 2537 int i; 2538 mdk_rdev_t *rdev, *freshest, *tmp; 2539 char b[BDEVNAME_SIZE]; 2540 2541 freshest = NULL; 2542 rdev_for_each(rdev, tmp, mddev) 2543 switch (super_types[mddev->major_version]. 2544 load_super(rdev, freshest, mddev->minor_version)) { 2545 case 1: 2546 freshest = rdev; 2547 break; 2548 case 0: 2549 break; 2550 default: 2551 printk( KERN_ERR \ 2552 "md: fatal superblock inconsistency in %s" 2553 " -- removing from array\n", 2554 bdevname(rdev->bdev,b)); 2555 kick_rdev_from_array(rdev); 2556 } 2557 2558 2559 super_types[mddev->major_version]. 2560 validate_super(mddev, freshest); 2561 2562 i = 0; 2563 rdev_for_each(rdev, tmp, mddev) { 2564 if (rdev->desc_nr >= mddev->max_disks || 2565 i > mddev->max_disks) { 2566 printk(KERN_WARNING 2567 "md: %s: %s: only %d devices permitted\n", 2568 mdname(mddev), bdevname(rdev->bdev, b), 2569 mddev->max_disks); 2570 kick_rdev_from_array(rdev); 2571 continue; 2572 } 2573 if (rdev != freshest) 2574 if (super_types[mddev->major_version]. 2575 validate_super(mddev, rdev)) { 2576 printk(KERN_WARNING "md: kicking non-fresh %s" 2577 " from array!\n", 2578 bdevname(rdev->bdev,b)); 2579 kick_rdev_from_array(rdev); 2580 continue; 2581 } 2582 if (mddev->level == LEVEL_MULTIPATH) { 2583 rdev->desc_nr = i++; 2584 rdev->raid_disk = rdev->desc_nr; 2585 set_bit(In_sync, &rdev->flags); 2586 } else if (rdev->raid_disk >= mddev->raid_disks) { 2587 rdev->raid_disk = -1; 2588 clear_bit(In_sync, &rdev->flags); 2589 } 2590 } 2591 2592 2593 2594 if (mddev->recovery_cp != MaxSector && 2595 mddev->level >= 1) 2596 printk(KERN_ERR "md: %s: raid array is not clean" 2597 " -- starting background reconstruction\n", 2598 mdname(mddev)); 2599 2600 } 2601 2602 static void md_safemode_timeout(unsigned long data); 2603 2604 static ssize_t 2605 safe_delay_show(mddev_t *mddev, char *page) 2606 { 2607 int msec = (mddev->safemode_delay*1000)/HZ; 2608 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2609 } 2610 static ssize_t 2611 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2612 { 2613 int scale=1; 2614 int dot=0; 2615 int i; 2616 unsigned long msec; 2617 char buf[30]; 2618 2619 /* remove a period, and count digits after it */ 2620 if (len >= sizeof(buf)) 2621 return -EINVAL; 2622 strlcpy(buf, cbuf, sizeof(buf)); 2623 for (i=0; i<len; i++) { 2624 if (dot) { 2625 if (isdigit(buf[i])) { 2626 buf[i-1] = buf[i]; 2627 scale *= 10; 2628 } 2629 buf[i] = 0; 2630 } else if (buf[i] == '.') { 2631 dot=1; 2632 buf[i] = 0; 2633 } 2634 } 2635 if (strict_strtoul(buf, 10, &msec) < 0) 2636 return -EINVAL; 2637 msec = (msec * 1000) / scale; 2638 if (msec == 0) 2639 mddev->safemode_delay = 0; 2640 else { 2641 unsigned long old_delay = mddev->safemode_delay; 2642 mddev->safemode_delay = (msec*HZ)/1000; 2643 if (mddev->safemode_delay == 0) 2644 mddev->safemode_delay = 1; 2645 if (mddev->safemode_delay < old_delay) 2646 md_safemode_timeout((unsigned long)mddev); 2647 } 2648 return len; 2649 } 2650 static struct md_sysfs_entry md_safe_delay = 2651 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2652 2653 static ssize_t 2654 level_show(mddev_t *mddev, char *page) 2655 { 2656 struct mdk_personality *p = mddev->pers; 2657 if (p) 2658 return sprintf(page, "%s\n", p->name); 2659 else if (mddev->clevel[0]) 2660 return sprintf(page, "%s\n", mddev->clevel); 2661 else if (mddev->level != LEVEL_NONE) 2662 return sprintf(page, "%d\n", mddev->level); 2663 else 2664 return 0; 2665 } 2666 2667 static ssize_t 2668 level_store(mddev_t *mddev, const char *buf, size_t len) 2669 { 2670 char level[16]; 2671 ssize_t rv = len; 2672 struct mdk_personality *pers; 2673 void *priv; 2674 2675 if (mddev->pers == NULL) { 2676 if (len == 0) 2677 return 0; 2678 if (len >= sizeof(mddev->clevel)) 2679 return -ENOSPC; 2680 strncpy(mddev->clevel, buf, len); 2681 if (mddev->clevel[len-1] == '\n') 2682 len--; 2683 mddev->clevel[len] = 0; 2684 mddev->level = LEVEL_NONE; 2685 return rv; 2686 } 2687 2688 /* request to change the personality. Need to ensure: 2689 * - array is not engaged in resync/recovery/reshape 2690 * - old personality can be suspended 2691 * - new personality will access other array. 2692 */ 2693 2694 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 2695 return -EBUSY; 2696 2697 if (!mddev->pers->quiesce) { 2698 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 2699 mdname(mddev), mddev->pers->name); 2700 return -EINVAL; 2701 } 2702 2703 /* Now find the new personality */ 2704 if (len == 0 || len >= sizeof(level)) 2705 return -EINVAL; 2706 strncpy(level, buf, len); 2707 if (level[len-1] == '\n') 2708 len--; 2709 level[len] = 0; 2710 2711 request_module("md-%s", level); 2712 spin_lock(&pers_lock); 2713 pers = find_pers(LEVEL_NONE, level); 2714 if (!pers || !try_module_get(pers->owner)) { 2715 spin_unlock(&pers_lock); 2716 printk(KERN_WARNING "md: personality %s not loaded\n", level); 2717 return -EINVAL; 2718 } 2719 spin_unlock(&pers_lock); 2720 2721 if (pers == mddev->pers) { 2722 /* Nothing to do! */ 2723 module_put(pers->owner); 2724 return rv; 2725 } 2726 if (!pers->takeover) { 2727 module_put(pers->owner); 2728 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 2729 mdname(mddev), level); 2730 return -EINVAL; 2731 } 2732 2733 /* ->takeover must set new_* and/or delta_disks 2734 * if it succeeds, and may set them when it fails. 2735 */ 2736 priv = pers->takeover(mddev); 2737 if (IS_ERR(priv)) { 2738 mddev->new_level = mddev->level; 2739 mddev->new_layout = mddev->layout; 2740 mddev->new_chunk = mddev->chunk_size; 2741 mddev->raid_disks -= mddev->delta_disks; 2742 mddev->delta_disks = 0; 2743 module_put(pers->owner); 2744 printk(KERN_WARNING "md: %s: %s would not accept array\n", 2745 mdname(mddev), level); 2746 return PTR_ERR(priv); 2747 } 2748 2749 /* Looks like we have a winner */ 2750 mddev_suspend(mddev); 2751 mddev->pers->stop(mddev); 2752 module_put(mddev->pers->owner); 2753 mddev->pers = pers; 2754 mddev->private = priv; 2755 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 2756 mddev->level = mddev->new_level; 2757 mddev->layout = mddev->new_layout; 2758 mddev->chunk_size = mddev->new_chunk; 2759 mddev->delta_disks = 0; 2760 pers->run(mddev); 2761 mddev_resume(mddev); 2762 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2763 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2764 md_wakeup_thread(mddev->thread); 2765 return rv; 2766 } 2767 2768 static struct md_sysfs_entry md_level = 2769 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 2770 2771 2772 static ssize_t 2773 layout_show(mddev_t *mddev, char *page) 2774 { 2775 /* just a number, not meaningful for all levels */ 2776 if (mddev->reshape_position != MaxSector && 2777 mddev->layout != mddev->new_layout) 2778 return sprintf(page, "%d (%d)\n", 2779 mddev->new_layout, mddev->layout); 2780 return sprintf(page, "%d\n", mddev->layout); 2781 } 2782 2783 static ssize_t 2784 layout_store(mddev_t *mddev, const char *buf, size_t len) 2785 { 2786 char *e; 2787 unsigned long n = simple_strtoul(buf, &e, 10); 2788 2789 if (!*buf || (*e && *e != '\n')) 2790 return -EINVAL; 2791 2792 if (mddev->pers) { 2793 int err; 2794 if (mddev->pers->reconfig == NULL) 2795 return -EBUSY; 2796 err = mddev->pers->reconfig(mddev, n, -1); 2797 if (err) 2798 return err; 2799 } else { 2800 mddev->new_layout = n; 2801 if (mddev->reshape_position == MaxSector) 2802 mddev->layout = n; 2803 } 2804 return len; 2805 } 2806 static struct md_sysfs_entry md_layout = 2807 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 2808 2809 2810 static ssize_t 2811 raid_disks_show(mddev_t *mddev, char *page) 2812 { 2813 if (mddev->raid_disks == 0) 2814 return 0; 2815 if (mddev->reshape_position != MaxSector && 2816 mddev->delta_disks != 0) 2817 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 2818 mddev->raid_disks - mddev->delta_disks); 2819 return sprintf(page, "%d\n", mddev->raid_disks); 2820 } 2821 2822 static int update_raid_disks(mddev_t *mddev, int raid_disks); 2823 2824 static ssize_t 2825 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 2826 { 2827 char *e; 2828 int rv = 0; 2829 unsigned long n = simple_strtoul(buf, &e, 10); 2830 2831 if (!*buf || (*e && *e != '\n')) 2832 return -EINVAL; 2833 2834 if (mddev->pers) 2835 rv = update_raid_disks(mddev, n); 2836 else if (mddev->reshape_position != MaxSector) { 2837 int olddisks = mddev->raid_disks - mddev->delta_disks; 2838 mddev->delta_disks = n - olddisks; 2839 mddev->raid_disks = n; 2840 } else 2841 mddev->raid_disks = n; 2842 return rv ? rv : len; 2843 } 2844 static struct md_sysfs_entry md_raid_disks = 2845 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 2846 2847 static ssize_t 2848 chunk_size_show(mddev_t *mddev, char *page) 2849 { 2850 if (mddev->reshape_position != MaxSector && 2851 mddev->chunk_size != mddev->new_chunk) 2852 return sprintf(page, "%d (%d)\n", mddev->new_chunk, 2853 mddev->chunk_size); 2854 return sprintf(page, "%d\n", mddev->chunk_size); 2855 } 2856 2857 static ssize_t 2858 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 2859 { 2860 char *e; 2861 unsigned long n = simple_strtoul(buf, &e, 10); 2862 2863 if (!*buf || (*e && *e != '\n')) 2864 return -EINVAL; 2865 2866 if (mddev->pers) { 2867 int err; 2868 if (mddev->pers->reconfig == NULL) 2869 return -EBUSY; 2870 err = mddev->pers->reconfig(mddev, -1, n); 2871 if (err) 2872 return err; 2873 } else { 2874 mddev->new_chunk = n; 2875 if (mddev->reshape_position == MaxSector) 2876 mddev->chunk_size = n; 2877 } 2878 return len; 2879 } 2880 static struct md_sysfs_entry md_chunk_size = 2881 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 2882 2883 static ssize_t 2884 resync_start_show(mddev_t *mddev, char *page) 2885 { 2886 if (mddev->recovery_cp == MaxSector) 2887 return sprintf(page, "none\n"); 2888 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 2889 } 2890 2891 static ssize_t 2892 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 2893 { 2894 char *e; 2895 unsigned long long n = simple_strtoull(buf, &e, 10); 2896 2897 if (mddev->pers) 2898 return -EBUSY; 2899 if (!*buf || (*e && *e != '\n')) 2900 return -EINVAL; 2901 2902 mddev->recovery_cp = n; 2903 return len; 2904 } 2905 static struct md_sysfs_entry md_resync_start = 2906 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 2907 2908 /* 2909 * The array state can be: 2910 * 2911 * clear 2912 * No devices, no size, no level 2913 * Equivalent to STOP_ARRAY ioctl 2914 * inactive 2915 * May have some settings, but array is not active 2916 * all IO results in error 2917 * When written, doesn't tear down array, but just stops it 2918 * suspended (not supported yet) 2919 * All IO requests will block. The array can be reconfigured. 2920 * Writing this, if accepted, will block until array is quiescent 2921 * readonly 2922 * no resync can happen. no superblocks get written. 2923 * write requests fail 2924 * read-auto 2925 * like readonly, but behaves like 'clean' on a write request. 2926 * 2927 * clean - no pending writes, but otherwise active. 2928 * When written to inactive array, starts without resync 2929 * If a write request arrives then 2930 * if metadata is known, mark 'dirty' and switch to 'active'. 2931 * if not known, block and switch to write-pending 2932 * If written to an active array that has pending writes, then fails. 2933 * active 2934 * fully active: IO and resync can be happening. 2935 * When written to inactive array, starts with resync 2936 * 2937 * write-pending 2938 * clean, but writes are blocked waiting for 'active' to be written. 2939 * 2940 * active-idle 2941 * like active, but no writes have been seen for a while (100msec). 2942 * 2943 */ 2944 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 2945 write_pending, active_idle, bad_word}; 2946 static char *array_states[] = { 2947 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 2948 "write-pending", "active-idle", NULL }; 2949 2950 static int match_word(const char *word, char **list) 2951 { 2952 int n; 2953 for (n=0; list[n]; n++) 2954 if (cmd_match(word, list[n])) 2955 break; 2956 return n; 2957 } 2958 2959 static ssize_t 2960 array_state_show(mddev_t *mddev, char *page) 2961 { 2962 enum array_state st = inactive; 2963 2964 if (mddev->pers) 2965 switch(mddev->ro) { 2966 case 1: 2967 st = readonly; 2968 break; 2969 case 2: 2970 st = read_auto; 2971 break; 2972 case 0: 2973 if (mddev->in_sync) 2974 st = clean; 2975 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2976 st = write_pending; 2977 else if (mddev->safemode) 2978 st = active_idle; 2979 else 2980 st = active; 2981 } 2982 else { 2983 if (list_empty(&mddev->disks) && 2984 mddev->raid_disks == 0 && 2985 mddev->dev_sectors == 0) 2986 st = clear; 2987 else 2988 st = inactive; 2989 } 2990 return sprintf(page, "%s\n", array_states[st]); 2991 } 2992 2993 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 2994 static int do_md_run(mddev_t * mddev); 2995 static int restart_array(mddev_t *mddev); 2996 2997 static ssize_t 2998 array_state_store(mddev_t *mddev, const char *buf, size_t len) 2999 { 3000 int err = -EINVAL; 3001 enum array_state st = match_word(buf, array_states); 3002 switch(st) { 3003 case bad_word: 3004 break; 3005 case clear: 3006 /* stopping an active array */ 3007 if (atomic_read(&mddev->openers) > 0) 3008 return -EBUSY; 3009 err = do_md_stop(mddev, 0, 0); 3010 break; 3011 case inactive: 3012 /* stopping an active array */ 3013 if (mddev->pers) { 3014 if (atomic_read(&mddev->openers) > 0) 3015 return -EBUSY; 3016 err = do_md_stop(mddev, 2, 0); 3017 } else 3018 err = 0; /* already inactive */ 3019 break; 3020 case suspended: 3021 break; /* not supported yet */ 3022 case readonly: 3023 if (mddev->pers) 3024 err = do_md_stop(mddev, 1, 0); 3025 else { 3026 mddev->ro = 1; 3027 set_disk_ro(mddev->gendisk, 1); 3028 err = do_md_run(mddev); 3029 } 3030 break; 3031 case read_auto: 3032 if (mddev->pers) { 3033 if (mddev->ro == 0) 3034 err = do_md_stop(mddev, 1, 0); 3035 else if (mddev->ro == 1) 3036 err = restart_array(mddev); 3037 if (err == 0) { 3038 mddev->ro = 2; 3039 set_disk_ro(mddev->gendisk, 0); 3040 } 3041 } else { 3042 mddev->ro = 2; 3043 err = do_md_run(mddev); 3044 } 3045 break; 3046 case clean: 3047 if (mddev->pers) { 3048 restart_array(mddev); 3049 spin_lock_irq(&mddev->write_lock); 3050 if (atomic_read(&mddev->writes_pending) == 0) { 3051 if (mddev->in_sync == 0) { 3052 mddev->in_sync = 1; 3053 if (mddev->safemode == 1) 3054 mddev->safemode = 0; 3055 if (mddev->persistent) 3056 set_bit(MD_CHANGE_CLEAN, 3057 &mddev->flags); 3058 } 3059 err = 0; 3060 } else 3061 err = -EBUSY; 3062 spin_unlock_irq(&mddev->write_lock); 3063 } else { 3064 mddev->ro = 0; 3065 mddev->recovery_cp = MaxSector; 3066 err = do_md_run(mddev); 3067 } 3068 break; 3069 case active: 3070 if (mddev->pers) { 3071 restart_array(mddev); 3072 if (mddev->external) 3073 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 3074 wake_up(&mddev->sb_wait); 3075 err = 0; 3076 } else { 3077 mddev->ro = 0; 3078 set_disk_ro(mddev->gendisk, 0); 3079 err = do_md_run(mddev); 3080 } 3081 break; 3082 case write_pending: 3083 case active_idle: 3084 /* these cannot be set */ 3085 break; 3086 } 3087 if (err) 3088 return err; 3089 else { 3090 sysfs_notify_dirent(mddev->sysfs_state); 3091 return len; 3092 } 3093 } 3094 static struct md_sysfs_entry md_array_state = 3095 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3096 3097 static ssize_t 3098 null_show(mddev_t *mddev, char *page) 3099 { 3100 return -EINVAL; 3101 } 3102 3103 static ssize_t 3104 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 3105 { 3106 /* buf must be %d:%d\n? giving major and minor numbers */ 3107 /* The new device is added to the array. 3108 * If the array has a persistent superblock, we read the 3109 * superblock to initialise info and check validity. 3110 * Otherwise, only checking done is that in bind_rdev_to_array, 3111 * which mainly checks size. 3112 */ 3113 char *e; 3114 int major = simple_strtoul(buf, &e, 10); 3115 int minor; 3116 dev_t dev; 3117 mdk_rdev_t *rdev; 3118 int err; 3119 3120 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3121 return -EINVAL; 3122 minor = simple_strtoul(e+1, &e, 10); 3123 if (*e && *e != '\n') 3124 return -EINVAL; 3125 dev = MKDEV(major, minor); 3126 if (major != MAJOR(dev) || 3127 minor != MINOR(dev)) 3128 return -EOVERFLOW; 3129 3130 3131 if (mddev->persistent) { 3132 rdev = md_import_device(dev, mddev->major_version, 3133 mddev->minor_version); 3134 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3135 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3136 mdk_rdev_t, same_set); 3137 err = super_types[mddev->major_version] 3138 .load_super(rdev, rdev0, mddev->minor_version); 3139 if (err < 0) 3140 goto out; 3141 } 3142 } else if (mddev->external) 3143 rdev = md_import_device(dev, -2, -1); 3144 else 3145 rdev = md_import_device(dev, -1, -1); 3146 3147 if (IS_ERR(rdev)) 3148 return PTR_ERR(rdev); 3149 err = bind_rdev_to_array(rdev, mddev); 3150 out: 3151 if (err) 3152 export_rdev(rdev); 3153 return err ? err : len; 3154 } 3155 3156 static struct md_sysfs_entry md_new_device = 3157 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3158 3159 static ssize_t 3160 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 3161 { 3162 char *end; 3163 unsigned long chunk, end_chunk; 3164 3165 if (!mddev->bitmap) 3166 goto out; 3167 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3168 while (*buf) { 3169 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3170 if (buf == end) break; 3171 if (*end == '-') { /* range */ 3172 buf = end + 1; 3173 end_chunk = simple_strtoul(buf, &end, 0); 3174 if (buf == end) break; 3175 } 3176 if (*end && !isspace(*end)) break; 3177 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3178 buf = end; 3179 while (isspace(*buf)) buf++; 3180 } 3181 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3182 out: 3183 return len; 3184 } 3185 3186 static struct md_sysfs_entry md_bitmap = 3187 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3188 3189 static ssize_t 3190 size_show(mddev_t *mddev, char *page) 3191 { 3192 return sprintf(page, "%llu\n", 3193 (unsigned long long)mddev->dev_sectors / 2); 3194 } 3195 3196 static int update_size(mddev_t *mddev, sector_t num_sectors); 3197 3198 static ssize_t 3199 size_store(mddev_t *mddev, const char *buf, size_t len) 3200 { 3201 /* If array is inactive, we can reduce the component size, but 3202 * not increase it (except from 0). 3203 * If array is active, we can try an on-line resize 3204 */ 3205 sector_t sectors; 3206 int err = strict_blocks_to_sectors(buf, §ors); 3207 3208 if (err < 0) 3209 return err; 3210 if (mddev->pers) { 3211 err = update_size(mddev, sectors); 3212 md_update_sb(mddev, 1); 3213 } else { 3214 if (mddev->dev_sectors == 0 || 3215 mddev->dev_sectors > sectors) 3216 mddev->dev_sectors = sectors; 3217 else 3218 err = -ENOSPC; 3219 } 3220 return err ? err : len; 3221 } 3222 3223 static struct md_sysfs_entry md_size = 3224 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 3225 3226 3227 /* Metdata version. 3228 * This is one of 3229 * 'none' for arrays with no metadata (good luck...) 3230 * 'external' for arrays with externally managed metadata, 3231 * or N.M for internally known formats 3232 */ 3233 static ssize_t 3234 metadata_show(mddev_t *mddev, char *page) 3235 { 3236 if (mddev->persistent) 3237 return sprintf(page, "%d.%d\n", 3238 mddev->major_version, mddev->minor_version); 3239 else if (mddev->external) 3240 return sprintf(page, "external:%s\n", mddev->metadata_type); 3241 else 3242 return sprintf(page, "none\n"); 3243 } 3244 3245 static ssize_t 3246 metadata_store(mddev_t *mddev, const char *buf, size_t len) 3247 { 3248 int major, minor; 3249 char *e; 3250 /* Changing the details of 'external' metadata is 3251 * always permitted. Otherwise there must be 3252 * no devices attached to the array. 3253 */ 3254 if (mddev->external && strncmp(buf, "external:", 9) == 0) 3255 ; 3256 else if (!list_empty(&mddev->disks)) 3257 return -EBUSY; 3258 3259 if (cmd_match(buf, "none")) { 3260 mddev->persistent = 0; 3261 mddev->external = 0; 3262 mddev->major_version = 0; 3263 mddev->minor_version = 90; 3264 return len; 3265 } 3266 if (strncmp(buf, "external:", 9) == 0) { 3267 size_t namelen = len-9; 3268 if (namelen >= sizeof(mddev->metadata_type)) 3269 namelen = sizeof(mddev->metadata_type)-1; 3270 strncpy(mddev->metadata_type, buf+9, namelen); 3271 mddev->metadata_type[namelen] = 0; 3272 if (namelen && mddev->metadata_type[namelen-1] == '\n') 3273 mddev->metadata_type[--namelen] = 0; 3274 mddev->persistent = 0; 3275 mddev->external = 1; 3276 mddev->major_version = 0; 3277 mddev->minor_version = 90; 3278 return len; 3279 } 3280 major = simple_strtoul(buf, &e, 10); 3281 if (e==buf || *e != '.') 3282 return -EINVAL; 3283 buf = e+1; 3284 minor = simple_strtoul(buf, &e, 10); 3285 if (e==buf || (*e && *e != '\n') ) 3286 return -EINVAL; 3287 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 3288 return -ENOENT; 3289 mddev->major_version = major; 3290 mddev->minor_version = minor; 3291 mddev->persistent = 1; 3292 mddev->external = 0; 3293 return len; 3294 } 3295 3296 static struct md_sysfs_entry md_metadata = 3297 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 3298 3299 static ssize_t 3300 action_show(mddev_t *mddev, char *page) 3301 { 3302 char *type = "idle"; 3303 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3304 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 3305 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3306 type = "reshape"; 3307 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3308 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3309 type = "resync"; 3310 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3311 type = "check"; 3312 else 3313 type = "repair"; 3314 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3315 type = "recover"; 3316 } 3317 return sprintf(page, "%s\n", type); 3318 } 3319 3320 static ssize_t 3321 action_store(mddev_t *mddev, const char *page, size_t len) 3322 { 3323 if (!mddev->pers || !mddev->pers->sync_request) 3324 return -EINVAL; 3325 3326 if (cmd_match(page, "idle")) { 3327 if (mddev->sync_thread) { 3328 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3329 md_unregister_thread(mddev->sync_thread); 3330 mddev->sync_thread = NULL; 3331 mddev->recovery = 0; 3332 } 3333 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3334 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3335 return -EBUSY; 3336 else if (cmd_match(page, "resync")) 3337 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3338 else if (cmd_match(page, "recover")) { 3339 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3340 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3341 } else if (cmd_match(page, "reshape")) { 3342 int err; 3343 if (mddev->pers->start_reshape == NULL) 3344 return -EINVAL; 3345 err = mddev->pers->start_reshape(mddev); 3346 if (err) 3347 return err; 3348 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3349 } else { 3350 if (cmd_match(page, "check")) 3351 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3352 else if (!cmd_match(page, "repair")) 3353 return -EINVAL; 3354 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3355 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3356 } 3357 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3358 md_wakeup_thread(mddev->thread); 3359 sysfs_notify_dirent(mddev->sysfs_action); 3360 return len; 3361 } 3362 3363 static ssize_t 3364 mismatch_cnt_show(mddev_t *mddev, char *page) 3365 { 3366 return sprintf(page, "%llu\n", 3367 (unsigned long long) mddev->resync_mismatches); 3368 } 3369 3370 static struct md_sysfs_entry md_scan_mode = 3371 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3372 3373 3374 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3375 3376 static ssize_t 3377 sync_min_show(mddev_t *mddev, char *page) 3378 { 3379 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3380 mddev->sync_speed_min ? "local": "system"); 3381 } 3382 3383 static ssize_t 3384 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3385 { 3386 int min; 3387 char *e; 3388 if (strncmp(buf, "system", 6)==0) { 3389 mddev->sync_speed_min = 0; 3390 return len; 3391 } 3392 min = simple_strtoul(buf, &e, 10); 3393 if (buf == e || (*e && *e != '\n') || min <= 0) 3394 return -EINVAL; 3395 mddev->sync_speed_min = min; 3396 return len; 3397 } 3398 3399 static struct md_sysfs_entry md_sync_min = 3400 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3401 3402 static ssize_t 3403 sync_max_show(mddev_t *mddev, char *page) 3404 { 3405 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3406 mddev->sync_speed_max ? "local": "system"); 3407 } 3408 3409 static ssize_t 3410 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3411 { 3412 int max; 3413 char *e; 3414 if (strncmp(buf, "system", 6)==0) { 3415 mddev->sync_speed_max = 0; 3416 return len; 3417 } 3418 max = simple_strtoul(buf, &e, 10); 3419 if (buf == e || (*e && *e != '\n') || max <= 0) 3420 return -EINVAL; 3421 mddev->sync_speed_max = max; 3422 return len; 3423 } 3424 3425 static struct md_sysfs_entry md_sync_max = 3426 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3427 3428 static ssize_t 3429 degraded_show(mddev_t *mddev, char *page) 3430 { 3431 return sprintf(page, "%d\n", mddev->degraded); 3432 } 3433 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3434 3435 static ssize_t 3436 sync_force_parallel_show(mddev_t *mddev, char *page) 3437 { 3438 return sprintf(page, "%d\n", mddev->parallel_resync); 3439 } 3440 3441 static ssize_t 3442 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3443 { 3444 long n; 3445 3446 if (strict_strtol(buf, 10, &n)) 3447 return -EINVAL; 3448 3449 if (n != 0 && n != 1) 3450 return -EINVAL; 3451 3452 mddev->parallel_resync = n; 3453 3454 if (mddev->sync_thread) 3455 wake_up(&resync_wait); 3456 3457 return len; 3458 } 3459 3460 /* force parallel resync, even with shared block devices */ 3461 static struct md_sysfs_entry md_sync_force_parallel = 3462 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3463 sync_force_parallel_show, sync_force_parallel_store); 3464 3465 static ssize_t 3466 sync_speed_show(mddev_t *mddev, char *page) 3467 { 3468 unsigned long resync, dt, db; 3469 if (mddev->curr_resync == 0) 3470 return sprintf(page, "none\n"); 3471 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3472 dt = (jiffies - mddev->resync_mark) / HZ; 3473 if (!dt) dt++; 3474 db = resync - mddev->resync_mark_cnt; 3475 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3476 } 3477 3478 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3479 3480 static ssize_t 3481 sync_completed_show(mddev_t *mddev, char *page) 3482 { 3483 unsigned long max_sectors, resync; 3484 3485 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3486 max_sectors = mddev->resync_max_sectors; 3487 else 3488 max_sectors = mddev->dev_sectors; 3489 3490 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active)); 3491 return sprintf(page, "%lu / %lu\n", resync, max_sectors); 3492 } 3493 3494 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3495 3496 static ssize_t 3497 min_sync_show(mddev_t *mddev, char *page) 3498 { 3499 return sprintf(page, "%llu\n", 3500 (unsigned long long)mddev->resync_min); 3501 } 3502 static ssize_t 3503 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3504 { 3505 unsigned long long min; 3506 if (strict_strtoull(buf, 10, &min)) 3507 return -EINVAL; 3508 if (min > mddev->resync_max) 3509 return -EINVAL; 3510 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3511 return -EBUSY; 3512 3513 /* Must be a multiple of chunk_size */ 3514 if (mddev->chunk_size) { 3515 if (min & (sector_t)((mddev->chunk_size>>9)-1)) 3516 return -EINVAL; 3517 } 3518 mddev->resync_min = min; 3519 3520 return len; 3521 } 3522 3523 static struct md_sysfs_entry md_min_sync = 3524 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3525 3526 static ssize_t 3527 max_sync_show(mddev_t *mddev, char *page) 3528 { 3529 if (mddev->resync_max == MaxSector) 3530 return sprintf(page, "max\n"); 3531 else 3532 return sprintf(page, "%llu\n", 3533 (unsigned long long)mddev->resync_max); 3534 } 3535 static ssize_t 3536 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3537 { 3538 if (strncmp(buf, "max", 3) == 0) 3539 mddev->resync_max = MaxSector; 3540 else { 3541 unsigned long long max; 3542 if (strict_strtoull(buf, 10, &max)) 3543 return -EINVAL; 3544 if (max < mddev->resync_min) 3545 return -EINVAL; 3546 if (max < mddev->resync_max && 3547 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3548 return -EBUSY; 3549 3550 /* Must be a multiple of chunk_size */ 3551 if (mddev->chunk_size) { 3552 if (max & (sector_t)((mddev->chunk_size>>9)-1)) 3553 return -EINVAL; 3554 } 3555 mddev->resync_max = max; 3556 } 3557 wake_up(&mddev->recovery_wait); 3558 return len; 3559 } 3560 3561 static struct md_sysfs_entry md_max_sync = 3562 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 3563 3564 static ssize_t 3565 suspend_lo_show(mddev_t *mddev, char *page) 3566 { 3567 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 3568 } 3569 3570 static ssize_t 3571 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 3572 { 3573 char *e; 3574 unsigned long long new = simple_strtoull(buf, &e, 10); 3575 3576 if (mddev->pers->quiesce == NULL) 3577 return -EINVAL; 3578 if (buf == e || (*e && *e != '\n')) 3579 return -EINVAL; 3580 if (new >= mddev->suspend_hi || 3581 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 3582 mddev->suspend_lo = new; 3583 mddev->pers->quiesce(mddev, 2); 3584 return len; 3585 } else 3586 return -EINVAL; 3587 } 3588 static struct md_sysfs_entry md_suspend_lo = 3589 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 3590 3591 3592 static ssize_t 3593 suspend_hi_show(mddev_t *mddev, char *page) 3594 { 3595 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 3596 } 3597 3598 static ssize_t 3599 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 3600 { 3601 char *e; 3602 unsigned long long new = simple_strtoull(buf, &e, 10); 3603 3604 if (mddev->pers->quiesce == NULL) 3605 return -EINVAL; 3606 if (buf == e || (*e && *e != '\n')) 3607 return -EINVAL; 3608 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 3609 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 3610 mddev->suspend_hi = new; 3611 mddev->pers->quiesce(mddev, 1); 3612 mddev->pers->quiesce(mddev, 0); 3613 return len; 3614 } else 3615 return -EINVAL; 3616 } 3617 static struct md_sysfs_entry md_suspend_hi = 3618 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 3619 3620 static ssize_t 3621 reshape_position_show(mddev_t *mddev, char *page) 3622 { 3623 if (mddev->reshape_position != MaxSector) 3624 return sprintf(page, "%llu\n", 3625 (unsigned long long)mddev->reshape_position); 3626 strcpy(page, "none\n"); 3627 return 5; 3628 } 3629 3630 static ssize_t 3631 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 3632 { 3633 char *e; 3634 unsigned long long new = simple_strtoull(buf, &e, 10); 3635 if (mddev->pers) 3636 return -EBUSY; 3637 if (buf == e || (*e && *e != '\n')) 3638 return -EINVAL; 3639 mddev->reshape_position = new; 3640 mddev->delta_disks = 0; 3641 mddev->new_level = mddev->level; 3642 mddev->new_layout = mddev->layout; 3643 mddev->new_chunk = mddev->chunk_size; 3644 return len; 3645 } 3646 3647 static struct md_sysfs_entry md_reshape_position = 3648 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 3649 reshape_position_store); 3650 3651 static ssize_t 3652 array_size_show(mddev_t *mddev, char *page) 3653 { 3654 if (mddev->external_size) 3655 return sprintf(page, "%llu\n", 3656 (unsigned long long)mddev->array_sectors/2); 3657 else 3658 return sprintf(page, "default\n"); 3659 } 3660 3661 static ssize_t 3662 array_size_store(mddev_t *mddev, const char *buf, size_t len) 3663 { 3664 sector_t sectors; 3665 3666 if (strncmp(buf, "default", 7) == 0) { 3667 if (mddev->pers) 3668 sectors = mddev->pers->size(mddev, 0, 0); 3669 else 3670 sectors = mddev->array_sectors; 3671 3672 mddev->external_size = 0; 3673 } else { 3674 if (strict_blocks_to_sectors(buf, §ors) < 0) 3675 return -EINVAL; 3676 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 3677 return -EINVAL; 3678 3679 mddev->external_size = 1; 3680 } 3681 3682 mddev->array_sectors = sectors; 3683 set_capacity(mddev->gendisk, mddev->array_sectors); 3684 if (mddev->pers) { 3685 struct block_device *bdev = bdget_disk(mddev->gendisk, 0); 3686 3687 if (bdev) { 3688 mutex_lock(&bdev->bd_inode->i_mutex); 3689 i_size_write(bdev->bd_inode, 3690 (loff_t)mddev->array_sectors << 9); 3691 mutex_unlock(&bdev->bd_inode->i_mutex); 3692 bdput(bdev); 3693 } 3694 } 3695 3696 return len; 3697 } 3698 3699 static struct md_sysfs_entry md_array_size = 3700 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 3701 array_size_store); 3702 3703 static struct attribute *md_default_attrs[] = { 3704 &md_level.attr, 3705 &md_layout.attr, 3706 &md_raid_disks.attr, 3707 &md_chunk_size.attr, 3708 &md_size.attr, 3709 &md_resync_start.attr, 3710 &md_metadata.attr, 3711 &md_new_device.attr, 3712 &md_safe_delay.attr, 3713 &md_array_state.attr, 3714 &md_reshape_position.attr, 3715 &md_array_size.attr, 3716 NULL, 3717 }; 3718 3719 static struct attribute *md_redundancy_attrs[] = { 3720 &md_scan_mode.attr, 3721 &md_mismatches.attr, 3722 &md_sync_min.attr, 3723 &md_sync_max.attr, 3724 &md_sync_speed.attr, 3725 &md_sync_force_parallel.attr, 3726 &md_sync_completed.attr, 3727 &md_min_sync.attr, 3728 &md_max_sync.attr, 3729 &md_suspend_lo.attr, 3730 &md_suspend_hi.attr, 3731 &md_bitmap.attr, 3732 &md_degraded.attr, 3733 NULL, 3734 }; 3735 static struct attribute_group md_redundancy_group = { 3736 .name = NULL, 3737 .attrs = md_redundancy_attrs, 3738 }; 3739 3740 3741 static ssize_t 3742 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3743 { 3744 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3745 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3746 ssize_t rv; 3747 3748 if (!entry->show) 3749 return -EIO; 3750 rv = mddev_lock(mddev); 3751 if (!rv) { 3752 rv = entry->show(mddev, page); 3753 mddev_unlock(mddev); 3754 } 3755 return rv; 3756 } 3757 3758 static ssize_t 3759 md_attr_store(struct kobject *kobj, struct attribute *attr, 3760 const char *page, size_t length) 3761 { 3762 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3763 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3764 ssize_t rv; 3765 3766 if (!entry->store) 3767 return -EIO; 3768 if (!capable(CAP_SYS_ADMIN)) 3769 return -EACCES; 3770 rv = mddev_lock(mddev); 3771 if (mddev->hold_active == UNTIL_IOCTL) 3772 mddev->hold_active = 0; 3773 if (!rv) { 3774 rv = entry->store(mddev, page, length); 3775 mddev_unlock(mddev); 3776 } 3777 return rv; 3778 } 3779 3780 static void md_free(struct kobject *ko) 3781 { 3782 mddev_t *mddev = container_of(ko, mddev_t, kobj); 3783 3784 if (mddev->sysfs_state) 3785 sysfs_put(mddev->sysfs_state); 3786 3787 if (mddev->gendisk) { 3788 del_gendisk(mddev->gendisk); 3789 put_disk(mddev->gendisk); 3790 } 3791 if (mddev->queue) 3792 blk_cleanup_queue(mddev->queue); 3793 3794 kfree(mddev); 3795 } 3796 3797 static struct sysfs_ops md_sysfs_ops = { 3798 .show = md_attr_show, 3799 .store = md_attr_store, 3800 }; 3801 static struct kobj_type md_ktype = { 3802 .release = md_free, 3803 .sysfs_ops = &md_sysfs_ops, 3804 .default_attrs = md_default_attrs, 3805 }; 3806 3807 int mdp_major = 0; 3808 3809 static void mddev_delayed_delete(struct work_struct *ws) 3810 { 3811 mddev_t *mddev = container_of(ws, mddev_t, del_work); 3812 3813 if (mddev->private == &md_redundancy_group) { 3814 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 3815 if (mddev->sysfs_action) 3816 sysfs_put(mddev->sysfs_action); 3817 mddev->sysfs_action = NULL; 3818 mddev->private = NULL; 3819 } 3820 kobject_del(&mddev->kobj); 3821 kobject_put(&mddev->kobj); 3822 } 3823 3824 static int md_alloc(dev_t dev, char *name) 3825 { 3826 static DEFINE_MUTEX(disks_mutex); 3827 mddev_t *mddev = mddev_find(dev); 3828 struct gendisk *disk; 3829 int partitioned; 3830 int shift; 3831 int unit; 3832 int error; 3833 3834 if (!mddev) 3835 return -ENODEV; 3836 3837 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 3838 shift = partitioned ? MdpMinorShift : 0; 3839 unit = MINOR(mddev->unit) >> shift; 3840 3841 /* wait for any previous instance if this device 3842 * to be completed removed (mddev_delayed_delete). 3843 */ 3844 flush_scheduled_work(); 3845 3846 mutex_lock(&disks_mutex); 3847 if (mddev->gendisk) { 3848 mutex_unlock(&disks_mutex); 3849 mddev_put(mddev); 3850 return -EEXIST; 3851 } 3852 3853 if (name) { 3854 /* Need to ensure that 'name' is not a duplicate. 3855 */ 3856 mddev_t *mddev2; 3857 spin_lock(&all_mddevs_lock); 3858 3859 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 3860 if (mddev2->gendisk && 3861 strcmp(mddev2->gendisk->disk_name, name) == 0) { 3862 spin_unlock(&all_mddevs_lock); 3863 return -EEXIST; 3864 } 3865 spin_unlock(&all_mddevs_lock); 3866 } 3867 3868 mddev->queue = blk_alloc_queue(GFP_KERNEL); 3869 if (!mddev->queue) { 3870 mutex_unlock(&disks_mutex); 3871 mddev_put(mddev); 3872 return -ENOMEM; 3873 } 3874 mddev->queue->queuedata = mddev; 3875 3876 /* Can be unlocked because the queue is new: no concurrency */ 3877 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue); 3878 3879 blk_queue_make_request(mddev->queue, md_make_request); 3880 3881 disk = alloc_disk(1 << shift); 3882 if (!disk) { 3883 mutex_unlock(&disks_mutex); 3884 blk_cleanup_queue(mddev->queue); 3885 mddev->queue = NULL; 3886 mddev_put(mddev); 3887 return -ENOMEM; 3888 } 3889 disk->major = MAJOR(mddev->unit); 3890 disk->first_minor = unit << shift; 3891 if (name) 3892 strcpy(disk->disk_name, name); 3893 else if (partitioned) 3894 sprintf(disk->disk_name, "md_d%d", unit); 3895 else 3896 sprintf(disk->disk_name, "md%d", unit); 3897 disk->fops = &md_fops; 3898 disk->private_data = mddev; 3899 disk->queue = mddev->queue; 3900 /* Allow extended partitions. This makes the 3901 * 'mdp' device redundant, but we can't really 3902 * remove it now. 3903 */ 3904 disk->flags |= GENHD_FL_EXT_DEVT; 3905 add_disk(disk); 3906 mddev->gendisk = disk; 3907 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 3908 &disk_to_dev(disk)->kobj, "%s", "md"); 3909 mutex_unlock(&disks_mutex); 3910 if (error) 3911 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 3912 disk->disk_name); 3913 else { 3914 kobject_uevent(&mddev->kobj, KOBJ_ADD); 3915 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state"); 3916 } 3917 mddev_put(mddev); 3918 return 0; 3919 } 3920 3921 static struct kobject *md_probe(dev_t dev, int *part, void *data) 3922 { 3923 md_alloc(dev, NULL); 3924 return NULL; 3925 } 3926 3927 static int add_named_array(const char *val, struct kernel_param *kp) 3928 { 3929 /* val must be "md_*" where * is not all digits. 3930 * We allocate an array with a large free minor number, and 3931 * set the name to val. val must not already be an active name. 3932 */ 3933 int len = strlen(val); 3934 char buf[DISK_NAME_LEN]; 3935 3936 while (len && val[len-1] == '\n') 3937 len--; 3938 if (len >= DISK_NAME_LEN) 3939 return -E2BIG; 3940 strlcpy(buf, val, len+1); 3941 if (strncmp(buf, "md_", 3) != 0) 3942 return -EINVAL; 3943 return md_alloc(0, buf); 3944 } 3945 3946 static void md_safemode_timeout(unsigned long data) 3947 { 3948 mddev_t *mddev = (mddev_t *) data; 3949 3950 if (!atomic_read(&mddev->writes_pending)) { 3951 mddev->safemode = 1; 3952 if (mddev->external) 3953 sysfs_notify_dirent(mddev->sysfs_state); 3954 } 3955 md_wakeup_thread(mddev->thread); 3956 } 3957 3958 static int start_dirty_degraded; 3959 3960 static int do_md_run(mddev_t * mddev) 3961 { 3962 int err; 3963 int chunk_size; 3964 mdk_rdev_t *rdev; 3965 struct gendisk *disk; 3966 struct mdk_personality *pers; 3967 char b[BDEVNAME_SIZE]; 3968 3969 if (list_empty(&mddev->disks)) 3970 /* cannot run an array with no devices.. */ 3971 return -EINVAL; 3972 3973 if (mddev->pers) 3974 return -EBUSY; 3975 3976 /* 3977 * Analyze all RAID superblock(s) 3978 */ 3979 if (!mddev->raid_disks) { 3980 if (!mddev->persistent) 3981 return -EINVAL; 3982 analyze_sbs(mddev); 3983 } 3984 3985 chunk_size = mddev->chunk_size; 3986 3987 if (chunk_size) { 3988 if (chunk_size > MAX_CHUNK_SIZE) { 3989 printk(KERN_ERR "too big chunk_size: %d > %d\n", 3990 chunk_size, MAX_CHUNK_SIZE); 3991 return -EINVAL; 3992 } 3993 /* 3994 * chunk-size has to be a power of 2 3995 */ 3996 if ( (1 << ffz(~chunk_size)) != chunk_size) { 3997 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); 3998 return -EINVAL; 3999 } 4000 4001 /* devices must have minimum size of one chunk */ 4002 list_for_each_entry(rdev, &mddev->disks, same_set) { 4003 if (test_bit(Faulty, &rdev->flags)) 4004 continue; 4005 if (rdev->sectors < chunk_size / 512) { 4006 printk(KERN_WARNING 4007 "md: Dev %s smaller than chunk_size:" 4008 " %llu < %d\n", 4009 bdevname(rdev->bdev,b), 4010 (unsigned long long)rdev->sectors, 4011 chunk_size / 512); 4012 return -EINVAL; 4013 } 4014 } 4015 } 4016 4017 if (mddev->level != LEVEL_NONE) 4018 request_module("md-level-%d", mddev->level); 4019 else if (mddev->clevel[0]) 4020 request_module("md-%s", mddev->clevel); 4021 4022 /* 4023 * Drop all container device buffers, from now on 4024 * the only valid external interface is through the md 4025 * device. 4026 */ 4027 list_for_each_entry(rdev, &mddev->disks, same_set) { 4028 if (test_bit(Faulty, &rdev->flags)) 4029 continue; 4030 sync_blockdev(rdev->bdev); 4031 invalidate_bdev(rdev->bdev); 4032 4033 /* perform some consistency tests on the device. 4034 * We don't want the data to overlap the metadata, 4035 * Internal Bitmap issues have been handled elsewhere. 4036 */ 4037 if (rdev->data_offset < rdev->sb_start) { 4038 if (mddev->dev_sectors && 4039 rdev->data_offset + mddev->dev_sectors 4040 > rdev->sb_start) { 4041 printk("md: %s: data overlaps metadata\n", 4042 mdname(mddev)); 4043 return -EINVAL; 4044 } 4045 } else { 4046 if (rdev->sb_start + rdev->sb_size/512 4047 > rdev->data_offset) { 4048 printk("md: %s: metadata overlaps data\n", 4049 mdname(mddev)); 4050 return -EINVAL; 4051 } 4052 } 4053 sysfs_notify_dirent(rdev->sysfs_state); 4054 } 4055 4056 md_probe(mddev->unit, NULL, NULL); 4057 disk = mddev->gendisk; 4058 if (!disk) 4059 return -ENOMEM; 4060 4061 spin_lock(&pers_lock); 4062 pers = find_pers(mddev->level, mddev->clevel); 4063 if (!pers || !try_module_get(pers->owner)) { 4064 spin_unlock(&pers_lock); 4065 if (mddev->level != LEVEL_NONE) 4066 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4067 mddev->level); 4068 else 4069 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4070 mddev->clevel); 4071 return -EINVAL; 4072 } 4073 mddev->pers = pers; 4074 spin_unlock(&pers_lock); 4075 if (mddev->level != pers->level) { 4076 mddev->level = pers->level; 4077 mddev->new_level = pers->level; 4078 } 4079 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4080 4081 if (pers->level >= 4 && pers->level <= 6) 4082 /* Cannot support integrity (yet) */ 4083 blk_integrity_unregister(mddev->gendisk); 4084 4085 if (mddev->reshape_position != MaxSector && 4086 pers->start_reshape == NULL) { 4087 /* This personality cannot handle reshaping... */ 4088 mddev->pers = NULL; 4089 module_put(pers->owner); 4090 return -EINVAL; 4091 } 4092 4093 if (pers->sync_request) { 4094 /* Warn if this is a potentially silly 4095 * configuration. 4096 */ 4097 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4098 mdk_rdev_t *rdev2; 4099 int warned = 0; 4100 4101 list_for_each_entry(rdev, &mddev->disks, same_set) 4102 list_for_each_entry(rdev2, &mddev->disks, same_set) { 4103 if (rdev < rdev2 && 4104 rdev->bdev->bd_contains == 4105 rdev2->bdev->bd_contains) { 4106 printk(KERN_WARNING 4107 "%s: WARNING: %s appears to be" 4108 " on the same physical disk as" 4109 " %s.\n", 4110 mdname(mddev), 4111 bdevname(rdev->bdev,b), 4112 bdevname(rdev2->bdev,b2)); 4113 warned = 1; 4114 } 4115 } 4116 4117 if (warned) 4118 printk(KERN_WARNING 4119 "True protection against single-disk" 4120 " failure might be compromised.\n"); 4121 } 4122 4123 mddev->recovery = 0; 4124 /* may be over-ridden by personality */ 4125 mddev->resync_max_sectors = mddev->dev_sectors; 4126 4127 mddev->barriers_work = 1; 4128 mddev->ok_start_degraded = start_dirty_degraded; 4129 4130 if (start_readonly) 4131 mddev->ro = 2; /* read-only, but switch on first write */ 4132 4133 err = mddev->pers->run(mddev); 4134 if (err) 4135 printk(KERN_ERR "md: pers->run() failed ...\n"); 4136 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 4137 WARN_ONCE(!mddev->external_size, "%s: default size too small," 4138 " but 'external_size' not in effect?\n", __func__); 4139 printk(KERN_ERR 4140 "md: invalid array_size %llu > default size %llu\n", 4141 (unsigned long long)mddev->array_sectors / 2, 4142 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 4143 err = -EINVAL; 4144 mddev->pers->stop(mddev); 4145 } 4146 if (err == 0 && mddev->pers->sync_request) { 4147 err = bitmap_create(mddev); 4148 if (err) { 4149 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 4150 mdname(mddev), err); 4151 mddev->pers->stop(mddev); 4152 } 4153 } 4154 if (err) { 4155 module_put(mddev->pers->owner); 4156 mddev->pers = NULL; 4157 bitmap_destroy(mddev); 4158 return err; 4159 } 4160 if (mddev->pers->sync_request) { 4161 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4162 printk(KERN_WARNING 4163 "md: cannot register extra attributes for %s\n", 4164 mdname(mddev)); 4165 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4166 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 4167 mddev->ro = 0; 4168 4169 atomic_set(&mddev->writes_pending,0); 4170 mddev->safemode = 0; 4171 mddev->safemode_timer.function = md_safemode_timeout; 4172 mddev->safemode_timer.data = (unsigned long) mddev; 4173 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 4174 mddev->in_sync = 1; 4175 4176 list_for_each_entry(rdev, &mddev->disks, same_set) 4177 if (rdev->raid_disk >= 0) { 4178 char nm[20]; 4179 sprintf(nm, "rd%d", rdev->raid_disk); 4180 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 4181 printk("md: cannot register %s for %s\n", 4182 nm, mdname(mddev)); 4183 } 4184 4185 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4186 4187 if (mddev->flags) 4188 md_update_sb(mddev, 0); 4189 4190 set_capacity(disk, mddev->array_sectors); 4191 4192 /* If there is a partially-recovered drive we need to 4193 * start recovery here. If we leave it to md_check_recovery, 4194 * it will remove the drives and not do the right thing 4195 */ 4196 if (mddev->degraded && !mddev->sync_thread) { 4197 int spares = 0; 4198 list_for_each_entry(rdev, &mddev->disks, same_set) 4199 if (rdev->raid_disk >= 0 && 4200 !test_bit(In_sync, &rdev->flags) && 4201 !test_bit(Faulty, &rdev->flags)) 4202 /* complete an interrupted recovery */ 4203 spares++; 4204 if (spares && mddev->pers->sync_request) { 4205 mddev->recovery = 0; 4206 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4207 mddev->sync_thread = md_register_thread(md_do_sync, 4208 mddev, 4209 "%s_resync"); 4210 if (!mddev->sync_thread) { 4211 printk(KERN_ERR "%s: could not start resync" 4212 " thread...\n", 4213 mdname(mddev)); 4214 /* leave the spares where they are, it shouldn't hurt */ 4215 mddev->recovery = 0; 4216 } 4217 } 4218 } 4219 md_wakeup_thread(mddev->thread); 4220 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 4221 4222 mddev->changed = 1; 4223 md_new_event(mddev); 4224 sysfs_notify_dirent(mddev->sysfs_state); 4225 if (mddev->sysfs_action) 4226 sysfs_notify_dirent(mddev->sysfs_action); 4227 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4228 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4229 return 0; 4230 } 4231 4232 static int restart_array(mddev_t *mddev) 4233 { 4234 struct gendisk *disk = mddev->gendisk; 4235 4236 /* Complain if it has no devices */ 4237 if (list_empty(&mddev->disks)) 4238 return -ENXIO; 4239 if (!mddev->pers) 4240 return -EINVAL; 4241 if (!mddev->ro) 4242 return -EBUSY; 4243 mddev->safemode = 0; 4244 mddev->ro = 0; 4245 set_disk_ro(disk, 0); 4246 printk(KERN_INFO "md: %s switched to read-write mode.\n", 4247 mdname(mddev)); 4248 /* Kick recovery or resync if necessary */ 4249 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4250 md_wakeup_thread(mddev->thread); 4251 md_wakeup_thread(mddev->sync_thread); 4252 sysfs_notify_dirent(mddev->sysfs_state); 4253 return 0; 4254 } 4255 4256 /* similar to deny_write_access, but accounts for our holding a reference 4257 * to the file ourselves */ 4258 static int deny_bitmap_write_access(struct file * file) 4259 { 4260 struct inode *inode = file->f_mapping->host; 4261 4262 spin_lock(&inode->i_lock); 4263 if (atomic_read(&inode->i_writecount) > 1) { 4264 spin_unlock(&inode->i_lock); 4265 return -ETXTBSY; 4266 } 4267 atomic_set(&inode->i_writecount, -1); 4268 spin_unlock(&inode->i_lock); 4269 4270 return 0; 4271 } 4272 4273 static void restore_bitmap_write_access(struct file *file) 4274 { 4275 struct inode *inode = file->f_mapping->host; 4276 4277 spin_lock(&inode->i_lock); 4278 atomic_set(&inode->i_writecount, 1); 4279 spin_unlock(&inode->i_lock); 4280 } 4281 4282 /* mode: 4283 * 0 - completely stop and dis-assemble array 4284 * 1 - switch to readonly 4285 * 2 - stop but do not disassemble array 4286 */ 4287 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 4288 { 4289 int err = 0; 4290 struct gendisk *disk = mddev->gendisk; 4291 4292 if (atomic_read(&mddev->openers) > is_open) { 4293 printk("md: %s still in use.\n",mdname(mddev)); 4294 return -EBUSY; 4295 } 4296 4297 if (mddev->pers) { 4298 4299 if (mddev->sync_thread) { 4300 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4301 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4302 md_unregister_thread(mddev->sync_thread); 4303 mddev->sync_thread = NULL; 4304 } 4305 4306 del_timer_sync(&mddev->safemode_timer); 4307 4308 switch(mode) { 4309 case 1: /* readonly */ 4310 err = -ENXIO; 4311 if (mddev->ro==1) 4312 goto out; 4313 mddev->ro = 1; 4314 break; 4315 case 0: /* disassemble */ 4316 case 2: /* stop */ 4317 bitmap_flush(mddev); 4318 md_super_wait(mddev); 4319 if (mddev->ro) 4320 set_disk_ro(disk, 0); 4321 4322 mddev->pers->stop(mddev); 4323 mddev->queue->merge_bvec_fn = NULL; 4324 mddev->queue->unplug_fn = NULL; 4325 mddev->queue->backing_dev_info.congested_fn = NULL; 4326 module_put(mddev->pers->owner); 4327 if (mddev->pers->sync_request) 4328 mddev->private = &md_redundancy_group; 4329 mddev->pers = NULL; 4330 /* tell userspace to handle 'inactive' */ 4331 sysfs_notify_dirent(mddev->sysfs_state); 4332 4333 set_capacity(disk, 0); 4334 mddev->changed = 1; 4335 4336 if (mddev->ro) 4337 mddev->ro = 0; 4338 } 4339 if (!mddev->in_sync || mddev->flags) { 4340 /* mark array as shutdown cleanly */ 4341 mddev->in_sync = 1; 4342 md_update_sb(mddev, 1); 4343 } 4344 if (mode == 1) 4345 set_disk_ro(disk, 1); 4346 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4347 } 4348 4349 /* 4350 * Free resources if final stop 4351 */ 4352 if (mode == 0) { 4353 mdk_rdev_t *rdev; 4354 4355 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 4356 4357 bitmap_destroy(mddev); 4358 if (mddev->bitmap_file) { 4359 restore_bitmap_write_access(mddev->bitmap_file); 4360 fput(mddev->bitmap_file); 4361 mddev->bitmap_file = NULL; 4362 } 4363 mddev->bitmap_offset = 0; 4364 4365 list_for_each_entry(rdev, &mddev->disks, same_set) 4366 if (rdev->raid_disk >= 0) { 4367 char nm[20]; 4368 sprintf(nm, "rd%d", rdev->raid_disk); 4369 sysfs_remove_link(&mddev->kobj, nm); 4370 } 4371 4372 /* make sure all md_delayed_delete calls have finished */ 4373 flush_scheduled_work(); 4374 4375 export_array(mddev); 4376 4377 mddev->array_sectors = 0; 4378 mddev->external_size = 0; 4379 mddev->dev_sectors = 0; 4380 mddev->raid_disks = 0; 4381 mddev->recovery_cp = 0; 4382 mddev->resync_min = 0; 4383 mddev->resync_max = MaxSector; 4384 mddev->reshape_position = MaxSector; 4385 mddev->external = 0; 4386 mddev->persistent = 0; 4387 mddev->level = LEVEL_NONE; 4388 mddev->clevel[0] = 0; 4389 mddev->flags = 0; 4390 mddev->ro = 0; 4391 mddev->metadata_type[0] = 0; 4392 mddev->chunk_size = 0; 4393 mddev->ctime = mddev->utime = 0; 4394 mddev->layout = 0; 4395 mddev->max_disks = 0; 4396 mddev->events = 0; 4397 mddev->delta_disks = 0; 4398 mddev->new_level = LEVEL_NONE; 4399 mddev->new_layout = 0; 4400 mddev->new_chunk = 0; 4401 mddev->curr_resync = 0; 4402 mddev->resync_mismatches = 0; 4403 mddev->suspend_lo = mddev->suspend_hi = 0; 4404 mddev->sync_speed_min = mddev->sync_speed_max = 0; 4405 mddev->recovery = 0; 4406 mddev->in_sync = 0; 4407 mddev->changed = 0; 4408 mddev->degraded = 0; 4409 mddev->barriers_work = 0; 4410 mddev->safemode = 0; 4411 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4412 if (mddev->hold_active == UNTIL_STOP) 4413 mddev->hold_active = 0; 4414 4415 } else if (mddev->pers) 4416 printk(KERN_INFO "md: %s switched to read-only mode.\n", 4417 mdname(mddev)); 4418 err = 0; 4419 blk_integrity_unregister(disk); 4420 md_new_event(mddev); 4421 sysfs_notify_dirent(mddev->sysfs_state); 4422 out: 4423 return err; 4424 } 4425 4426 #ifndef MODULE 4427 static void autorun_array(mddev_t *mddev) 4428 { 4429 mdk_rdev_t *rdev; 4430 int err; 4431 4432 if (list_empty(&mddev->disks)) 4433 return; 4434 4435 printk(KERN_INFO "md: running: "); 4436 4437 list_for_each_entry(rdev, &mddev->disks, same_set) { 4438 char b[BDEVNAME_SIZE]; 4439 printk("<%s>", bdevname(rdev->bdev,b)); 4440 } 4441 printk("\n"); 4442 4443 err = do_md_run(mddev); 4444 if (err) { 4445 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 4446 do_md_stop(mddev, 0, 0); 4447 } 4448 } 4449 4450 /* 4451 * lets try to run arrays based on all disks that have arrived 4452 * until now. (those are in pending_raid_disks) 4453 * 4454 * the method: pick the first pending disk, collect all disks with 4455 * the same UUID, remove all from the pending list and put them into 4456 * the 'same_array' list. Then order this list based on superblock 4457 * update time (freshest comes first), kick out 'old' disks and 4458 * compare superblocks. If everything's fine then run it. 4459 * 4460 * If "unit" is allocated, then bump its reference count 4461 */ 4462 static void autorun_devices(int part) 4463 { 4464 mdk_rdev_t *rdev0, *rdev, *tmp; 4465 mddev_t *mddev; 4466 char b[BDEVNAME_SIZE]; 4467 4468 printk(KERN_INFO "md: autorun ...\n"); 4469 while (!list_empty(&pending_raid_disks)) { 4470 int unit; 4471 dev_t dev; 4472 LIST_HEAD(candidates); 4473 rdev0 = list_entry(pending_raid_disks.next, 4474 mdk_rdev_t, same_set); 4475 4476 printk(KERN_INFO "md: considering %s ...\n", 4477 bdevname(rdev0->bdev,b)); 4478 INIT_LIST_HEAD(&candidates); 4479 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 4480 if (super_90_load(rdev, rdev0, 0) >= 0) { 4481 printk(KERN_INFO "md: adding %s ...\n", 4482 bdevname(rdev->bdev,b)); 4483 list_move(&rdev->same_set, &candidates); 4484 } 4485 /* 4486 * now we have a set of devices, with all of them having 4487 * mostly sane superblocks. It's time to allocate the 4488 * mddev. 4489 */ 4490 if (part) { 4491 dev = MKDEV(mdp_major, 4492 rdev0->preferred_minor << MdpMinorShift); 4493 unit = MINOR(dev) >> MdpMinorShift; 4494 } else { 4495 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4496 unit = MINOR(dev); 4497 } 4498 if (rdev0->preferred_minor != unit) { 4499 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4500 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4501 break; 4502 } 4503 4504 md_probe(dev, NULL, NULL); 4505 mddev = mddev_find(dev); 4506 if (!mddev || !mddev->gendisk) { 4507 if (mddev) 4508 mddev_put(mddev); 4509 printk(KERN_ERR 4510 "md: cannot allocate memory for md drive.\n"); 4511 break; 4512 } 4513 if (mddev_lock(mddev)) 4514 printk(KERN_WARNING "md: %s locked, cannot run\n", 4515 mdname(mddev)); 4516 else if (mddev->raid_disks || mddev->major_version 4517 || !list_empty(&mddev->disks)) { 4518 printk(KERN_WARNING 4519 "md: %s already running, cannot run %s\n", 4520 mdname(mddev), bdevname(rdev0->bdev,b)); 4521 mddev_unlock(mddev); 4522 } else { 4523 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4524 mddev->persistent = 1; 4525 rdev_for_each_list(rdev, tmp, &candidates) { 4526 list_del_init(&rdev->same_set); 4527 if (bind_rdev_to_array(rdev, mddev)) 4528 export_rdev(rdev); 4529 } 4530 autorun_array(mddev); 4531 mddev_unlock(mddev); 4532 } 4533 /* on success, candidates will be empty, on error 4534 * it won't... 4535 */ 4536 rdev_for_each_list(rdev, tmp, &candidates) { 4537 list_del_init(&rdev->same_set); 4538 export_rdev(rdev); 4539 } 4540 mddev_put(mddev); 4541 } 4542 printk(KERN_INFO "md: ... autorun DONE.\n"); 4543 } 4544 #endif /* !MODULE */ 4545 4546 static int get_version(void __user * arg) 4547 { 4548 mdu_version_t ver; 4549 4550 ver.major = MD_MAJOR_VERSION; 4551 ver.minor = MD_MINOR_VERSION; 4552 ver.patchlevel = MD_PATCHLEVEL_VERSION; 4553 4554 if (copy_to_user(arg, &ver, sizeof(ver))) 4555 return -EFAULT; 4556 4557 return 0; 4558 } 4559 4560 static int get_array_info(mddev_t * mddev, void __user * arg) 4561 { 4562 mdu_array_info_t info; 4563 int nr,working,active,failed,spare; 4564 mdk_rdev_t *rdev; 4565 4566 nr=working=active=failed=spare=0; 4567 list_for_each_entry(rdev, &mddev->disks, same_set) { 4568 nr++; 4569 if (test_bit(Faulty, &rdev->flags)) 4570 failed++; 4571 else { 4572 working++; 4573 if (test_bit(In_sync, &rdev->flags)) 4574 active++; 4575 else 4576 spare++; 4577 } 4578 } 4579 4580 info.major_version = mddev->major_version; 4581 info.minor_version = mddev->minor_version; 4582 info.patch_version = MD_PATCHLEVEL_VERSION; 4583 info.ctime = mddev->ctime; 4584 info.level = mddev->level; 4585 info.size = mddev->dev_sectors / 2; 4586 if (info.size != mddev->dev_sectors / 2) /* overflow */ 4587 info.size = -1; 4588 info.nr_disks = nr; 4589 info.raid_disks = mddev->raid_disks; 4590 info.md_minor = mddev->md_minor; 4591 info.not_persistent= !mddev->persistent; 4592 4593 info.utime = mddev->utime; 4594 info.state = 0; 4595 if (mddev->in_sync) 4596 info.state = (1<<MD_SB_CLEAN); 4597 if (mddev->bitmap && mddev->bitmap_offset) 4598 info.state = (1<<MD_SB_BITMAP_PRESENT); 4599 info.active_disks = active; 4600 info.working_disks = working; 4601 info.failed_disks = failed; 4602 info.spare_disks = spare; 4603 4604 info.layout = mddev->layout; 4605 info.chunk_size = mddev->chunk_size; 4606 4607 if (copy_to_user(arg, &info, sizeof(info))) 4608 return -EFAULT; 4609 4610 return 0; 4611 } 4612 4613 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 4614 { 4615 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 4616 char *ptr, *buf = NULL; 4617 int err = -ENOMEM; 4618 4619 if (md_allow_write(mddev)) 4620 file = kmalloc(sizeof(*file), GFP_NOIO); 4621 else 4622 file = kmalloc(sizeof(*file), GFP_KERNEL); 4623 4624 if (!file) 4625 goto out; 4626 4627 /* bitmap disabled, zero the first byte and copy out */ 4628 if (!mddev->bitmap || !mddev->bitmap->file) { 4629 file->pathname[0] = '\0'; 4630 goto copy_out; 4631 } 4632 4633 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 4634 if (!buf) 4635 goto out; 4636 4637 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 4638 if (IS_ERR(ptr)) 4639 goto out; 4640 4641 strcpy(file->pathname, ptr); 4642 4643 copy_out: 4644 err = 0; 4645 if (copy_to_user(arg, file, sizeof(*file))) 4646 err = -EFAULT; 4647 out: 4648 kfree(buf); 4649 kfree(file); 4650 return err; 4651 } 4652 4653 static int get_disk_info(mddev_t * mddev, void __user * arg) 4654 { 4655 mdu_disk_info_t info; 4656 mdk_rdev_t *rdev; 4657 4658 if (copy_from_user(&info, arg, sizeof(info))) 4659 return -EFAULT; 4660 4661 rdev = find_rdev_nr(mddev, info.number); 4662 if (rdev) { 4663 info.major = MAJOR(rdev->bdev->bd_dev); 4664 info.minor = MINOR(rdev->bdev->bd_dev); 4665 info.raid_disk = rdev->raid_disk; 4666 info.state = 0; 4667 if (test_bit(Faulty, &rdev->flags)) 4668 info.state |= (1<<MD_DISK_FAULTY); 4669 else if (test_bit(In_sync, &rdev->flags)) { 4670 info.state |= (1<<MD_DISK_ACTIVE); 4671 info.state |= (1<<MD_DISK_SYNC); 4672 } 4673 if (test_bit(WriteMostly, &rdev->flags)) 4674 info.state |= (1<<MD_DISK_WRITEMOSTLY); 4675 } else { 4676 info.major = info.minor = 0; 4677 info.raid_disk = -1; 4678 info.state = (1<<MD_DISK_REMOVED); 4679 } 4680 4681 if (copy_to_user(arg, &info, sizeof(info))) 4682 return -EFAULT; 4683 4684 return 0; 4685 } 4686 4687 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 4688 { 4689 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4690 mdk_rdev_t *rdev; 4691 dev_t dev = MKDEV(info->major,info->minor); 4692 4693 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 4694 return -EOVERFLOW; 4695 4696 if (!mddev->raid_disks) { 4697 int err; 4698 /* expecting a device which has a superblock */ 4699 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 4700 if (IS_ERR(rdev)) { 4701 printk(KERN_WARNING 4702 "md: md_import_device returned %ld\n", 4703 PTR_ERR(rdev)); 4704 return PTR_ERR(rdev); 4705 } 4706 if (!list_empty(&mddev->disks)) { 4707 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 4708 mdk_rdev_t, same_set); 4709 int err = super_types[mddev->major_version] 4710 .load_super(rdev, rdev0, mddev->minor_version); 4711 if (err < 0) { 4712 printk(KERN_WARNING 4713 "md: %s has different UUID to %s\n", 4714 bdevname(rdev->bdev,b), 4715 bdevname(rdev0->bdev,b2)); 4716 export_rdev(rdev); 4717 return -EINVAL; 4718 } 4719 } 4720 err = bind_rdev_to_array(rdev, mddev); 4721 if (err) 4722 export_rdev(rdev); 4723 return err; 4724 } 4725 4726 /* 4727 * add_new_disk can be used once the array is assembled 4728 * to add "hot spares". They must already have a superblock 4729 * written 4730 */ 4731 if (mddev->pers) { 4732 int err; 4733 if (!mddev->pers->hot_add_disk) { 4734 printk(KERN_WARNING 4735 "%s: personality does not support diskops!\n", 4736 mdname(mddev)); 4737 return -EINVAL; 4738 } 4739 if (mddev->persistent) 4740 rdev = md_import_device(dev, mddev->major_version, 4741 mddev->minor_version); 4742 else 4743 rdev = md_import_device(dev, -1, -1); 4744 if (IS_ERR(rdev)) { 4745 printk(KERN_WARNING 4746 "md: md_import_device returned %ld\n", 4747 PTR_ERR(rdev)); 4748 return PTR_ERR(rdev); 4749 } 4750 /* set save_raid_disk if appropriate */ 4751 if (!mddev->persistent) { 4752 if (info->state & (1<<MD_DISK_SYNC) && 4753 info->raid_disk < mddev->raid_disks) 4754 rdev->raid_disk = info->raid_disk; 4755 else 4756 rdev->raid_disk = -1; 4757 } else 4758 super_types[mddev->major_version]. 4759 validate_super(mddev, rdev); 4760 rdev->saved_raid_disk = rdev->raid_disk; 4761 4762 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 4763 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 4764 set_bit(WriteMostly, &rdev->flags); 4765 else 4766 clear_bit(WriteMostly, &rdev->flags); 4767 4768 rdev->raid_disk = -1; 4769 err = bind_rdev_to_array(rdev, mddev); 4770 if (!err && !mddev->pers->hot_remove_disk) { 4771 /* If there is hot_add_disk but no hot_remove_disk 4772 * then added disks for geometry changes, 4773 * and should be added immediately. 4774 */ 4775 super_types[mddev->major_version]. 4776 validate_super(mddev, rdev); 4777 err = mddev->pers->hot_add_disk(mddev, rdev); 4778 if (err) 4779 unbind_rdev_from_array(rdev); 4780 } 4781 if (err) 4782 export_rdev(rdev); 4783 else 4784 sysfs_notify_dirent(rdev->sysfs_state); 4785 4786 md_update_sb(mddev, 1); 4787 if (mddev->degraded) 4788 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4789 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4790 md_wakeup_thread(mddev->thread); 4791 return err; 4792 } 4793 4794 /* otherwise, add_new_disk is only allowed 4795 * for major_version==0 superblocks 4796 */ 4797 if (mddev->major_version != 0) { 4798 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 4799 mdname(mddev)); 4800 return -EINVAL; 4801 } 4802 4803 if (!(info->state & (1<<MD_DISK_FAULTY))) { 4804 int err; 4805 rdev = md_import_device(dev, -1, 0); 4806 if (IS_ERR(rdev)) { 4807 printk(KERN_WARNING 4808 "md: error, md_import_device() returned %ld\n", 4809 PTR_ERR(rdev)); 4810 return PTR_ERR(rdev); 4811 } 4812 rdev->desc_nr = info->number; 4813 if (info->raid_disk < mddev->raid_disks) 4814 rdev->raid_disk = info->raid_disk; 4815 else 4816 rdev->raid_disk = -1; 4817 4818 if (rdev->raid_disk < mddev->raid_disks) 4819 if (info->state & (1<<MD_DISK_SYNC)) 4820 set_bit(In_sync, &rdev->flags); 4821 4822 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 4823 set_bit(WriteMostly, &rdev->flags); 4824 4825 if (!mddev->persistent) { 4826 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 4827 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 4828 } else 4829 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 4830 rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size); 4831 4832 err = bind_rdev_to_array(rdev, mddev); 4833 if (err) { 4834 export_rdev(rdev); 4835 return err; 4836 } 4837 } 4838 4839 return 0; 4840 } 4841 4842 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 4843 { 4844 char b[BDEVNAME_SIZE]; 4845 mdk_rdev_t *rdev; 4846 4847 rdev = find_rdev(mddev, dev); 4848 if (!rdev) 4849 return -ENXIO; 4850 4851 if (rdev->raid_disk >= 0) 4852 goto busy; 4853 4854 kick_rdev_from_array(rdev); 4855 md_update_sb(mddev, 1); 4856 md_new_event(mddev); 4857 4858 return 0; 4859 busy: 4860 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 4861 bdevname(rdev->bdev,b), mdname(mddev)); 4862 return -EBUSY; 4863 } 4864 4865 static int hot_add_disk(mddev_t * mddev, dev_t dev) 4866 { 4867 char b[BDEVNAME_SIZE]; 4868 int err; 4869 mdk_rdev_t *rdev; 4870 4871 if (!mddev->pers) 4872 return -ENODEV; 4873 4874 if (mddev->major_version != 0) { 4875 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 4876 " version-0 superblocks.\n", 4877 mdname(mddev)); 4878 return -EINVAL; 4879 } 4880 if (!mddev->pers->hot_add_disk) { 4881 printk(KERN_WARNING 4882 "%s: personality does not support diskops!\n", 4883 mdname(mddev)); 4884 return -EINVAL; 4885 } 4886 4887 rdev = md_import_device(dev, -1, 0); 4888 if (IS_ERR(rdev)) { 4889 printk(KERN_WARNING 4890 "md: error, md_import_device() returned %ld\n", 4891 PTR_ERR(rdev)); 4892 return -EINVAL; 4893 } 4894 4895 if (mddev->persistent) 4896 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 4897 else 4898 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 4899 4900 rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size); 4901 4902 if (test_bit(Faulty, &rdev->flags)) { 4903 printk(KERN_WARNING 4904 "md: can not hot-add faulty %s disk to %s!\n", 4905 bdevname(rdev->bdev,b), mdname(mddev)); 4906 err = -EINVAL; 4907 goto abort_export; 4908 } 4909 clear_bit(In_sync, &rdev->flags); 4910 rdev->desc_nr = -1; 4911 rdev->saved_raid_disk = -1; 4912 err = bind_rdev_to_array(rdev, mddev); 4913 if (err) 4914 goto abort_export; 4915 4916 /* 4917 * The rest should better be atomic, we can have disk failures 4918 * noticed in interrupt contexts ... 4919 */ 4920 4921 rdev->raid_disk = -1; 4922 4923 md_update_sb(mddev, 1); 4924 4925 /* 4926 * Kick recovery, maybe this spare has to be added to the 4927 * array immediately. 4928 */ 4929 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4930 md_wakeup_thread(mddev->thread); 4931 md_new_event(mddev); 4932 return 0; 4933 4934 abort_export: 4935 export_rdev(rdev); 4936 return err; 4937 } 4938 4939 static int set_bitmap_file(mddev_t *mddev, int fd) 4940 { 4941 int err; 4942 4943 if (mddev->pers) { 4944 if (!mddev->pers->quiesce) 4945 return -EBUSY; 4946 if (mddev->recovery || mddev->sync_thread) 4947 return -EBUSY; 4948 /* we should be able to change the bitmap.. */ 4949 } 4950 4951 4952 if (fd >= 0) { 4953 if (mddev->bitmap) 4954 return -EEXIST; /* cannot add when bitmap is present */ 4955 mddev->bitmap_file = fget(fd); 4956 4957 if (mddev->bitmap_file == NULL) { 4958 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 4959 mdname(mddev)); 4960 return -EBADF; 4961 } 4962 4963 err = deny_bitmap_write_access(mddev->bitmap_file); 4964 if (err) { 4965 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 4966 mdname(mddev)); 4967 fput(mddev->bitmap_file); 4968 mddev->bitmap_file = NULL; 4969 return err; 4970 } 4971 mddev->bitmap_offset = 0; /* file overrides offset */ 4972 } else if (mddev->bitmap == NULL) 4973 return -ENOENT; /* cannot remove what isn't there */ 4974 err = 0; 4975 if (mddev->pers) { 4976 mddev->pers->quiesce(mddev, 1); 4977 if (fd >= 0) 4978 err = bitmap_create(mddev); 4979 if (fd < 0 || err) { 4980 bitmap_destroy(mddev); 4981 fd = -1; /* make sure to put the file */ 4982 } 4983 mddev->pers->quiesce(mddev, 0); 4984 } 4985 if (fd < 0) { 4986 if (mddev->bitmap_file) { 4987 restore_bitmap_write_access(mddev->bitmap_file); 4988 fput(mddev->bitmap_file); 4989 } 4990 mddev->bitmap_file = NULL; 4991 } 4992 4993 return err; 4994 } 4995 4996 /* 4997 * set_array_info is used two different ways 4998 * The original usage is when creating a new array. 4999 * In this usage, raid_disks is > 0 and it together with 5000 * level, size, not_persistent,layout,chunksize determine the 5001 * shape of the array. 5002 * This will always create an array with a type-0.90.0 superblock. 5003 * The newer usage is when assembling an array. 5004 * In this case raid_disks will be 0, and the major_version field is 5005 * use to determine which style super-blocks are to be found on the devices. 5006 * The minor and patch _version numbers are also kept incase the 5007 * super_block handler wishes to interpret them. 5008 */ 5009 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 5010 { 5011 5012 if (info->raid_disks == 0) { 5013 /* just setting version number for superblock loading */ 5014 if (info->major_version < 0 || 5015 info->major_version >= ARRAY_SIZE(super_types) || 5016 super_types[info->major_version].name == NULL) { 5017 /* maybe try to auto-load a module? */ 5018 printk(KERN_INFO 5019 "md: superblock version %d not known\n", 5020 info->major_version); 5021 return -EINVAL; 5022 } 5023 mddev->major_version = info->major_version; 5024 mddev->minor_version = info->minor_version; 5025 mddev->patch_version = info->patch_version; 5026 mddev->persistent = !info->not_persistent; 5027 return 0; 5028 } 5029 mddev->major_version = MD_MAJOR_VERSION; 5030 mddev->minor_version = MD_MINOR_VERSION; 5031 mddev->patch_version = MD_PATCHLEVEL_VERSION; 5032 mddev->ctime = get_seconds(); 5033 5034 mddev->level = info->level; 5035 mddev->clevel[0] = 0; 5036 mddev->dev_sectors = 2 * (sector_t)info->size; 5037 mddev->raid_disks = info->raid_disks; 5038 /* don't set md_minor, it is determined by which /dev/md* was 5039 * openned 5040 */ 5041 if (info->state & (1<<MD_SB_CLEAN)) 5042 mddev->recovery_cp = MaxSector; 5043 else 5044 mddev->recovery_cp = 0; 5045 mddev->persistent = ! info->not_persistent; 5046 mddev->external = 0; 5047 5048 mddev->layout = info->layout; 5049 mddev->chunk_size = info->chunk_size; 5050 5051 mddev->max_disks = MD_SB_DISKS; 5052 5053 if (mddev->persistent) 5054 mddev->flags = 0; 5055 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5056 5057 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 5058 mddev->bitmap_offset = 0; 5059 5060 mddev->reshape_position = MaxSector; 5061 5062 /* 5063 * Generate a 128 bit UUID 5064 */ 5065 get_random_bytes(mddev->uuid, 16); 5066 5067 mddev->new_level = mddev->level; 5068 mddev->new_chunk = mddev->chunk_size; 5069 mddev->new_layout = mddev->layout; 5070 mddev->delta_disks = 0; 5071 5072 return 0; 5073 } 5074 5075 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors) 5076 { 5077 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 5078 5079 if (mddev->external_size) 5080 return; 5081 5082 mddev->array_sectors = array_sectors; 5083 } 5084 EXPORT_SYMBOL(md_set_array_sectors); 5085 5086 static int update_size(mddev_t *mddev, sector_t num_sectors) 5087 { 5088 mdk_rdev_t *rdev; 5089 int rv; 5090 int fit = (num_sectors == 0); 5091 5092 if (mddev->pers->resize == NULL) 5093 return -EINVAL; 5094 /* The "num_sectors" is the number of sectors of each device that 5095 * is used. This can only make sense for arrays with redundancy. 5096 * linear and raid0 always use whatever space is available. We can only 5097 * consider changing this number if no resync or reconstruction is 5098 * happening, and if the new size is acceptable. It must fit before the 5099 * sb_start or, if that is <data_offset, it must fit before the size 5100 * of each device. If num_sectors is zero, we find the largest size 5101 * that fits. 5102 5103 */ 5104 if (mddev->sync_thread) 5105 return -EBUSY; 5106 if (mddev->bitmap) 5107 /* Sorry, cannot grow a bitmap yet, just remove it, 5108 * grow, and re-add. 5109 */ 5110 return -EBUSY; 5111 list_for_each_entry(rdev, &mddev->disks, same_set) { 5112 sector_t avail = rdev->sectors; 5113 5114 if (fit && (num_sectors == 0 || num_sectors > avail)) 5115 num_sectors = avail; 5116 if (avail < num_sectors) 5117 return -ENOSPC; 5118 } 5119 rv = mddev->pers->resize(mddev, num_sectors); 5120 if (!rv) { 5121 struct block_device *bdev; 5122 5123 bdev = bdget_disk(mddev->gendisk, 0); 5124 if (bdev) { 5125 mutex_lock(&bdev->bd_inode->i_mutex); 5126 i_size_write(bdev->bd_inode, 5127 (loff_t)mddev->array_sectors << 9); 5128 mutex_unlock(&bdev->bd_inode->i_mutex); 5129 bdput(bdev); 5130 } 5131 } 5132 return rv; 5133 } 5134 5135 static int update_raid_disks(mddev_t *mddev, int raid_disks) 5136 { 5137 int rv; 5138 /* change the number of raid disks */ 5139 if (mddev->pers->check_reshape == NULL) 5140 return -EINVAL; 5141 if (raid_disks <= 0 || 5142 raid_disks >= mddev->max_disks) 5143 return -EINVAL; 5144 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 5145 return -EBUSY; 5146 mddev->delta_disks = raid_disks - mddev->raid_disks; 5147 5148 rv = mddev->pers->check_reshape(mddev); 5149 return rv; 5150 } 5151 5152 5153 /* 5154 * update_array_info is used to change the configuration of an 5155 * on-line array. 5156 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 5157 * fields in the info are checked against the array. 5158 * Any differences that cannot be handled will cause an error. 5159 * Normally, only one change can be managed at a time. 5160 */ 5161 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 5162 { 5163 int rv = 0; 5164 int cnt = 0; 5165 int state = 0; 5166 5167 /* calculate expected state,ignoring low bits */ 5168 if (mddev->bitmap && mddev->bitmap_offset) 5169 state |= (1 << MD_SB_BITMAP_PRESENT); 5170 5171 if (mddev->major_version != info->major_version || 5172 mddev->minor_version != info->minor_version || 5173 /* mddev->patch_version != info->patch_version || */ 5174 mddev->ctime != info->ctime || 5175 mddev->level != info->level || 5176 /* mddev->layout != info->layout || */ 5177 !mddev->persistent != info->not_persistent|| 5178 mddev->chunk_size != info->chunk_size || 5179 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 5180 ((state^info->state) & 0xfffffe00) 5181 ) 5182 return -EINVAL; 5183 /* Check there is only one change */ 5184 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5185 cnt++; 5186 if (mddev->raid_disks != info->raid_disks) 5187 cnt++; 5188 if (mddev->layout != info->layout) 5189 cnt++; 5190 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 5191 cnt++; 5192 if (cnt == 0) 5193 return 0; 5194 if (cnt > 1) 5195 return -EINVAL; 5196 5197 if (mddev->layout != info->layout) { 5198 /* Change layout 5199 * we don't need to do anything at the md level, the 5200 * personality will take care of it all. 5201 */ 5202 if (mddev->pers->reconfig == NULL) 5203 return -EINVAL; 5204 else 5205 return mddev->pers->reconfig(mddev, info->layout, -1); 5206 } 5207 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5208 rv = update_size(mddev, (sector_t)info->size * 2); 5209 5210 if (mddev->raid_disks != info->raid_disks) 5211 rv = update_raid_disks(mddev, info->raid_disks); 5212 5213 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 5214 if (mddev->pers->quiesce == NULL) 5215 return -EINVAL; 5216 if (mddev->recovery || mddev->sync_thread) 5217 return -EBUSY; 5218 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 5219 /* add the bitmap */ 5220 if (mddev->bitmap) 5221 return -EEXIST; 5222 if (mddev->default_bitmap_offset == 0) 5223 return -EINVAL; 5224 mddev->bitmap_offset = mddev->default_bitmap_offset; 5225 mddev->pers->quiesce(mddev, 1); 5226 rv = bitmap_create(mddev); 5227 if (rv) 5228 bitmap_destroy(mddev); 5229 mddev->pers->quiesce(mddev, 0); 5230 } else { 5231 /* remove the bitmap */ 5232 if (!mddev->bitmap) 5233 return -ENOENT; 5234 if (mddev->bitmap->file) 5235 return -EINVAL; 5236 mddev->pers->quiesce(mddev, 1); 5237 bitmap_destroy(mddev); 5238 mddev->pers->quiesce(mddev, 0); 5239 mddev->bitmap_offset = 0; 5240 } 5241 } 5242 md_update_sb(mddev, 1); 5243 return rv; 5244 } 5245 5246 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 5247 { 5248 mdk_rdev_t *rdev; 5249 5250 if (mddev->pers == NULL) 5251 return -ENODEV; 5252 5253 rdev = find_rdev(mddev, dev); 5254 if (!rdev) 5255 return -ENODEV; 5256 5257 md_error(mddev, rdev); 5258 return 0; 5259 } 5260 5261 /* 5262 * We have a problem here : there is no easy way to give a CHS 5263 * virtual geometry. We currently pretend that we have a 2 heads 5264 * 4 sectors (with a BIG number of cylinders...). This drives 5265 * dosfs just mad... ;-) 5266 */ 5267 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 5268 { 5269 mddev_t *mddev = bdev->bd_disk->private_data; 5270 5271 geo->heads = 2; 5272 geo->sectors = 4; 5273 geo->cylinders = get_capacity(mddev->gendisk) / 8; 5274 return 0; 5275 } 5276 5277 static int md_ioctl(struct block_device *bdev, fmode_t mode, 5278 unsigned int cmd, unsigned long arg) 5279 { 5280 int err = 0; 5281 void __user *argp = (void __user *)arg; 5282 mddev_t *mddev = NULL; 5283 5284 if (!capable(CAP_SYS_ADMIN)) 5285 return -EACCES; 5286 5287 /* 5288 * Commands dealing with the RAID driver but not any 5289 * particular array: 5290 */ 5291 switch (cmd) 5292 { 5293 case RAID_VERSION: 5294 err = get_version(argp); 5295 goto done; 5296 5297 case PRINT_RAID_DEBUG: 5298 err = 0; 5299 md_print_devices(); 5300 goto done; 5301 5302 #ifndef MODULE 5303 case RAID_AUTORUN: 5304 err = 0; 5305 autostart_arrays(arg); 5306 goto done; 5307 #endif 5308 default:; 5309 } 5310 5311 /* 5312 * Commands creating/starting a new array: 5313 */ 5314 5315 mddev = bdev->bd_disk->private_data; 5316 5317 if (!mddev) { 5318 BUG(); 5319 goto abort; 5320 } 5321 5322 err = mddev_lock(mddev); 5323 if (err) { 5324 printk(KERN_INFO 5325 "md: ioctl lock interrupted, reason %d, cmd %d\n", 5326 err, cmd); 5327 goto abort; 5328 } 5329 5330 switch (cmd) 5331 { 5332 case SET_ARRAY_INFO: 5333 { 5334 mdu_array_info_t info; 5335 if (!arg) 5336 memset(&info, 0, sizeof(info)); 5337 else if (copy_from_user(&info, argp, sizeof(info))) { 5338 err = -EFAULT; 5339 goto abort_unlock; 5340 } 5341 if (mddev->pers) { 5342 err = update_array_info(mddev, &info); 5343 if (err) { 5344 printk(KERN_WARNING "md: couldn't update" 5345 " array info. %d\n", err); 5346 goto abort_unlock; 5347 } 5348 goto done_unlock; 5349 } 5350 if (!list_empty(&mddev->disks)) { 5351 printk(KERN_WARNING 5352 "md: array %s already has disks!\n", 5353 mdname(mddev)); 5354 err = -EBUSY; 5355 goto abort_unlock; 5356 } 5357 if (mddev->raid_disks) { 5358 printk(KERN_WARNING 5359 "md: array %s already initialised!\n", 5360 mdname(mddev)); 5361 err = -EBUSY; 5362 goto abort_unlock; 5363 } 5364 err = set_array_info(mddev, &info); 5365 if (err) { 5366 printk(KERN_WARNING "md: couldn't set" 5367 " array info. %d\n", err); 5368 goto abort_unlock; 5369 } 5370 } 5371 goto done_unlock; 5372 5373 default:; 5374 } 5375 5376 /* 5377 * Commands querying/configuring an existing array: 5378 */ 5379 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 5380 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 5381 if ((!mddev->raid_disks && !mddev->external) 5382 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 5383 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 5384 && cmd != GET_BITMAP_FILE) { 5385 err = -ENODEV; 5386 goto abort_unlock; 5387 } 5388 5389 /* 5390 * Commands even a read-only array can execute: 5391 */ 5392 switch (cmd) 5393 { 5394 case GET_ARRAY_INFO: 5395 err = get_array_info(mddev, argp); 5396 goto done_unlock; 5397 5398 case GET_BITMAP_FILE: 5399 err = get_bitmap_file(mddev, argp); 5400 goto done_unlock; 5401 5402 case GET_DISK_INFO: 5403 err = get_disk_info(mddev, argp); 5404 goto done_unlock; 5405 5406 case RESTART_ARRAY_RW: 5407 err = restart_array(mddev); 5408 goto done_unlock; 5409 5410 case STOP_ARRAY: 5411 err = do_md_stop(mddev, 0, 1); 5412 goto done_unlock; 5413 5414 case STOP_ARRAY_RO: 5415 err = do_md_stop(mddev, 1, 1); 5416 goto done_unlock; 5417 5418 } 5419 5420 /* 5421 * The remaining ioctls are changing the state of the 5422 * superblock, so we do not allow them on read-only arrays. 5423 * However non-MD ioctls (e.g. get-size) will still come through 5424 * here and hit the 'default' below, so only disallow 5425 * 'md' ioctls, and switch to rw mode if started auto-readonly. 5426 */ 5427 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 5428 if (mddev->ro == 2) { 5429 mddev->ro = 0; 5430 sysfs_notify_dirent(mddev->sysfs_state); 5431 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5432 md_wakeup_thread(mddev->thread); 5433 } else { 5434 err = -EROFS; 5435 goto abort_unlock; 5436 } 5437 } 5438 5439 switch (cmd) 5440 { 5441 case ADD_NEW_DISK: 5442 { 5443 mdu_disk_info_t info; 5444 if (copy_from_user(&info, argp, sizeof(info))) 5445 err = -EFAULT; 5446 else 5447 err = add_new_disk(mddev, &info); 5448 goto done_unlock; 5449 } 5450 5451 case HOT_REMOVE_DISK: 5452 err = hot_remove_disk(mddev, new_decode_dev(arg)); 5453 goto done_unlock; 5454 5455 case HOT_ADD_DISK: 5456 err = hot_add_disk(mddev, new_decode_dev(arg)); 5457 goto done_unlock; 5458 5459 case SET_DISK_FAULTY: 5460 err = set_disk_faulty(mddev, new_decode_dev(arg)); 5461 goto done_unlock; 5462 5463 case RUN_ARRAY: 5464 err = do_md_run(mddev); 5465 goto done_unlock; 5466 5467 case SET_BITMAP_FILE: 5468 err = set_bitmap_file(mddev, (int)arg); 5469 goto done_unlock; 5470 5471 default: 5472 err = -EINVAL; 5473 goto abort_unlock; 5474 } 5475 5476 done_unlock: 5477 abort_unlock: 5478 if (mddev->hold_active == UNTIL_IOCTL && 5479 err != -EINVAL) 5480 mddev->hold_active = 0; 5481 mddev_unlock(mddev); 5482 5483 return err; 5484 done: 5485 if (err) 5486 MD_BUG(); 5487 abort: 5488 return err; 5489 } 5490 5491 static int md_open(struct block_device *bdev, fmode_t mode) 5492 { 5493 /* 5494 * Succeed if we can lock the mddev, which confirms that 5495 * it isn't being stopped right now. 5496 */ 5497 mddev_t *mddev = mddev_find(bdev->bd_dev); 5498 int err; 5499 5500 if (mddev->gendisk != bdev->bd_disk) { 5501 /* we are racing with mddev_put which is discarding this 5502 * bd_disk. 5503 */ 5504 mddev_put(mddev); 5505 /* Wait until bdev->bd_disk is definitely gone */ 5506 flush_scheduled_work(); 5507 /* Then retry the open from the top */ 5508 return -ERESTARTSYS; 5509 } 5510 BUG_ON(mddev != bdev->bd_disk->private_data); 5511 5512 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1))) 5513 goto out; 5514 5515 err = 0; 5516 atomic_inc(&mddev->openers); 5517 mddev_unlock(mddev); 5518 5519 check_disk_change(bdev); 5520 out: 5521 return err; 5522 } 5523 5524 static int md_release(struct gendisk *disk, fmode_t mode) 5525 { 5526 mddev_t *mddev = disk->private_data; 5527 5528 BUG_ON(!mddev); 5529 atomic_dec(&mddev->openers); 5530 mddev_put(mddev); 5531 5532 return 0; 5533 } 5534 5535 static int md_media_changed(struct gendisk *disk) 5536 { 5537 mddev_t *mddev = disk->private_data; 5538 5539 return mddev->changed; 5540 } 5541 5542 static int md_revalidate(struct gendisk *disk) 5543 { 5544 mddev_t *mddev = disk->private_data; 5545 5546 mddev->changed = 0; 5547 return 0; 5548 } 5549 static struct block_device_operations md_fops = 5550 { 5551 .owner = THIS_MODULE, 5552 .open = md_open, 5553 .release = md_release, 5554 .locked_ioctl = md_ioctl, 5555 .getgeo = md_getgeo, 5556 .media_changed = md_media_changed, 5557 .revalidate_disk= md_revalidate, 5558 }; 5559 5560 static int md_thread(void * arg) 5561 { 5562 mdk_thread_t *thread = arg; 5563 5564 /* 5565 * md_thread is a 'system-thread', it's priority should be very 5566 * high. We avoid resource deadlocks individually in each 5567 * raid personality. (RAID5 does preallocation) We also use RR and 5568 * the very same RT priority as kswapd, thus we will never get 5569 * into a priority inversion deadlock. 5570 * 5571 * we definitely have to have equal or higher priority than 5572 * bdflush, otherwise bdflush will deadlock if there are too 5573 * many dirty RAID5 blocks. 5574 */ 5575 5576 allow_signal(SIGKILL); 5577 while (!kthread_should_stop()) { 5578 5579 /* We need to wait INTERRUPTIBLE so that 5580 * we don't add to the load-average. 5581 * That means we need to be sure no signals are 5582 * pending 5583 */ 5584 if (signal_pending(current)) 5585 flush_signals(current); 5586 5587 wait_event_interruptible_timeout 5588 (thread->wqueue, 5589 test_bit(THREAD_WAKEUP, &thread->flags) 5590 || kthread_should_stop(), 5591 thread->timeout); 5592 5593 clear_bit(THREAD_WAKEUP, &thread->flags); 5594 5595 thread->run(thread->mddev); 5596 } 5597 5598 return 0; 5599 } 5600 5601 void md_wakeup_thread(mdk_thread_t *thread) 5602 { 5603 if (thread) { 5604 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 5605 set_bit(THREAD_WAKEUP, &thread->flags); 5606 wake_up(&thread->wqueue); 5607 } 5608 } 5609 5610 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 5611 const char *name) 5612 { 5613 mdk_thread_t *thread; 5614 5615 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 5616 if (!thread) 5617 return NULL; 5618 5619 init_waitqueue_head(&thread->wqueue); 5620 5621 thread->run = run; 5622 thread->mddev = mddev; 5623 thread->timeout = MAX_SCHEDULE_TIMEOUT; 5624 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev)); 5625 if (IS_ERR(thread->tsk)) { 5626 kfree(thread); 5627 return NULL; 5628 } 5629 return thread; 5630 } 5631 5632 void md_unregister_thread(mdk_thread_t *thread) 5633 { 5634 if (!thread) 5635 return; 5636 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 5637 5638 kthread_stop(thread->tsk); 5639 kfree(thread); 5640 } 5641 5642 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 5643 { 5644 if (!mddev) { 5645 MD_BUG(); 5646 return; 5647 } 5648 5649 if (!rdev || test_bit(Faulty, &rdev->flags)) 5650 return; 5651 5652 if (mddev->external) 5653 set_bit(Blocked, &rdev->flags); 5654 /* 5655 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 5656 mdname(mddev), 5657 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 5658 __builtin_return_address(0),__builtin_return_address(1), 5659 __builtin_return_address(2),__builtin_return_address(3)); 5660 */ 5661 if (!mddev->pers) 5662 return; 5663 if (!mddev->pers->error_handler) 5664 return; 5665 mddev->pers->error_handler(mddev,rdev); 5666 if (mddev->degraded) 5667 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5668 set_bit(StateChanged, &rdev->flags); 5669 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5670 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5671 md_wakeup_thread(mddev->thread); 5672 md_new_event_inintr(mddev); 5673 } 5674 5675 /* seq_file implementation /proc/mdstat */ 5676 5677 static void status_unused(struct seq_file *seq) 5678 { 5679 int i = 0; 5680 mdk_rdev_t *rdev; 5681 5682 seq_printf(seq, "unused devices: "); 5683 5684 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 5685 char b[BDEVNAME_SIZE]; 5686 i++; 5687 seq_printf(seq, "%s ", 5688 bdevname(rdev->bdev,b)); 5689 } 5690 if (!i) 5691 seq_printf(seq, "<none>"); 5692 5693 seq_printf(seq, "\n"); 5694 } 5695 5696 5697 static void status_resync(struct seq_file *seq, mddev_t * mddev) 5698 { 5699 sector_t max_blocks, resync, res; 5700 unsigned long dt, db, rt; 5701 int scale; 5702 unsigned int per_milli; 5703 5704 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; 5705 5706 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5707 max_blocks = mddev->resync_max_sectors >> 1; 5708 else 5709 max_blocks = mddev->dev_sectors / 2; 5710 5711 /* 5712 * Should not happen. 5713 */ 5714 if (!max_blocks) { 5715 MD_BUG(); 5716 return; 5717 } 5718 /* Pick 'scale' such that (resync>>scale)*1000 will fit 5719 * in a sector_t, and (max_blocks>>scale) will fit in a 5720 * u32, as those are the requirements for sector_div. 5721 * Thus 'scale' must be at least 10 5722 */ 5723 scale = 10; 5724 if (sizeof(sector_t) > sizeof(unsigned long)) { 5725 while ( max_blocks/2 > (1ULL<<(scale+32))) 5726 scale++; 5727 } 5728 res = (resync>>scale)*1000; 5729 sector_div(res, (u32)((max_blocks>>scale)+1)); 5730 5731 per_milli = res; 5732 { 5733 int i, x = per_milli/50, y = 20-x; 5734 seq_printf(seq, "["); 5735 for (i = 0; i < x; i++) 5736 seq_printf(seq, "="); 5737 seq_printf(seq, ">"); 5738 for (i = 0; i < y; i++) 5739 seq_printf(seq, "."); 5740 seq_printf(seq, "] "); 5741 } 5742 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 5743 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 5744 "reshape" : 5745 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 5746 "check" : 5747 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 5748 "resync" : "recovery"))), 5749 per_milli/10, per_milli % 10, 5750 (unsigned long long) resync, 5751 (unsigned long long) max_blocks); 5752 5753 /* 5754 * We do not want to overflow, so the order of operands and 5755 * the * 100 / 100 trick are important. We do a +1 to be 5756 * safe against division by zero. We only estimate anyway. 5757 * 5758 * dt: time from mark until now 5759 * db: blocks written from mark until now 5760 * rt: remaining time 5761 */ 5762 dt = ((jiffies - mddev->resync_mark) / HZ); 5763 if (!dt) dt++; 5764 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 5765 - mddev->resync_mark_cnt; 5766 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100; 5767 5768 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); 5769 5770 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 5771 } 5772 5773 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 5774 { 5775 struct list_head *tmp; 5776 loff_t l = *pos; 5777 mddev_t *mddev; 5778 5779 if (l >= 0x10000) 5780 return NULL; 5781 if (!l--) 5782 /* header */ 5783 return (void*)1; 5784 5785 spin_lock(&all_mddevs_lock); 5786 list_for_each(tmp,&all_mddevs) 5787 if (!l--) { 5788 mddev = list_entry(tmp, mddev_t, all_mddevs); 5789 mddev_get(mddev); 5790 spin_unlock(&all_mddevs_lock); 5791 return mddev; 5792 } 5793 spin_unlock(&all_mddevs_lock); 5794 if (!l--) 5795 return (void*)2;/* tail */ 5796 return NULL; 5797 } 5798 5799 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 5800 { 5801 struct list_head *tmp; 5802 mddev_t *next_mddev, *mddev = v; 5803 5804 ++*pos; 5805 if (v == (void*)2) 5806 return NULL; 5807 5808 spin_lock(&all_mddevs_lock); 5809 if (v == (void*)1) 5810 tmp = all_mddevs.next; 5811 else 5812 tmp = mddev->all_mddevs.next; 5813 if (tmp != &all_mddevs) 5814 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 5815 else { 5816 next_mddev = (void*)2; 5817 *pos = 0x10000; 5818 } 5819 spin_unlock(&all_mddevs_lock); 5820 5821 if (v != (void*)1) 5822 mddev_put(mddev); 5823 return next_mddev; 5824 5825 } 5826 5827 static void md_seq_stop(struct seq_file *seq, void *v) 5828 { 5829 mddev_t *mddev = v; 5830 5831 if (mddev && v != (void*)1 && v != (void*)2) 5832 mddev_put(mddev); 5833 } 5834 5835 struct mdstat_info { 5836 int event; 5837 }; 5838 5839 static int md_seq_show(struct seq_file *seq, void *v) 5840 { 5841 mddev_t *mddev = v; 5842 sector_t sectors; 5843 mdk_rdev_t *rdev; 5844 struct mdstat_info *mi = seq->private; 5845 struct bitmap *bitmap; 5846 5847 if (v == (void*)1) { 5848 struct mdk_personality *pers; 5849 seq_printf(seq, "Personalities : "); 5850 spin_lock(&pers_lock); 5851 list_for_each_entry(pers, &pers_list, list) 5852 seq_printf(seq, "[%s] ", pers->name); 5853 5854 spin_unlock(&pers_lock); 5855 seq_printf(seq, "\n"); 5856 mi->event = atomic_read(&md_event_count); 5857 return 0; 5858 } 5859 if (v == (void*)2) { 5860 status_unused(seq); 5861 return 0; 5862 } 5863 5864 if (mddev_lock(mddev) < 0) 5865 return -EINTR; 5866 5867 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 5868 seq_printf(seq, "%s : %sactive", mdname(mddev), 5869 mddev->pers ? "" : "in"); 5870 if (mddev->pers) { 5871 if (mddev->ro==1) 5872 seq_printf(seq, " (read-only)"); 5873 if (mddev->ro==2) 5874 seq_printf(seq, " (auto-read-only)"); 5875 seq_printf(seq, " %s", mddev->pers->name); 5876 } 5877 5878 sectors = 0; 5879 list_for_each_entry(rdev, &mddev->disks, same_set) { 5880 char b[BDEVNAME_SIZE]; 5881 seq_printf(seq, " %s[%d]", 5882 bdevname(rdev->bdev,b), rdev->desc_nr); 5883 if (test_bit(WriteMostly, &rdev->flags)) 5884 seq_printf(seq, "(W)"); 5885 if (test_bit(Faulty, &rdev->flags)) { 5886 seq_printf(seq, "(F)"); 5887 continue; 5888 } else if (rdev->raid_disk < 0) 5889 seq_printf(seq, "(S)"); /* spare */ 5890 sectors += rdev->sectors; 5891 } 5892 5893 if (!list_empty(&mddev->disks)) { 5894 if (mddev->pers) 5895 seq_printf(seq, "\n %llu blocks", 5896 (unsigned long long) 5897 mddev->array_sectors / 2); 5898 else 5899 seq_printf(seq, "\n %llu blocks", 5900 (unsigned long long)sectors / 2); 5901 } 5902 if (mddev->persistent) { 5903 if (mddev->major_version != 0 || 5904 mddev->minor_version != 90) { 5905 seq_printf(seq," super %d.%d", 5906 mddev->major_version, 5907 mddev->minor_version); 5908 } 5909 } else if (mddev->external) 5910 seq_printf(seq, " super external:%s", 5911 mddev->metadata_type); 5912 else 5913 seq_printf(seq, " super non-persistent"); 5914 5915 if (mddev->pers) { 5916 mddev->pers->status(seq, mddev); 5917 seq_printf(seq, "\n "); 5918 if (mddev->pers->sync_request) { 5919 if (mddev->curr_resync > 2) { 5920 status_resync(seq, mddev); 5921 seq_printf(seq, "\n "); 5922 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 5923 seq_printf(seq, "\tresync=DELAYED\n "); 5924 else if (mddev->recovery_cp < MaxSector) 5925 seq_printf(seq, "\tresync=PENDING\n "); 5926 } 5927 } else 5928 seq_printf(seq, "\n "); 5929 5930 if ((bitmap = mddev->bitmap)) { 5931 unsigned long chunk_kb; 5932 unsigned long flags; 5933 spin_lock_irqsave(&bitmap->lock, flags); 5934 chunk_kb = bitmap->chunksize >> 10; 5935 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 5936 "%lu%s chunk", 5937 bitmap->pages - bitmap->missing_pages, 5938 bitmap->pages, 5939 (bitmap->pages - bitmap->missing_pages) 5940 << (PAGE_SHIFT - 10), 5941 chunk_kb ? chunk_kb : bitmap->chunksize, 5942 chunk_kb ? "KB" : "B"); 5943 if (bitmap->file) { 5944 seq_printf(seq, ", file: "); 5945 seq_path(seq, &bitmap->file->f_path, " \t\n"); 5946 } 5947 5948 seq_printf(seq, "\n"); 5949 spin_unlock_irqrestore(&bitmap->lock, flags); 5950 } 5951 5952 seq_printf(seq, "\n"); 5953 } 5954 mddev_unlock(mddev); 5955 5956 return 0; 5957 } 5958 5959 static struct seq_operations md_seq_ops = { 5960 .start = md_seq_start, 5961 .next = md_seq_next, 5962 .stop = md_seq_stop, 5963 .show = md_seq_show, 5964 }; 5965 5966 static int md_seq_open(struct inode *inode, struct file *file) 5967 { 5968 int error; 5969 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 5970 if (mi == NULL) 5971 return -ENOMEM; 5972 5973 error = seq_open(file, &md_seq_ops); 5974 if (error) 5975 kfree(mi); 5976 else { 5977 struct seq_file *p = file->private_data; 5978 p->private = mi; 5979 mi->event = atomic_read(&md_event_count); 5980 } 5981 return error; 5982 } 5983 5984 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 5985 { 5986 struct seq_file *m = filp->private_data; 5987 struct mdstat_info *mi = m->private; 5988 int mask; 5989 5990 poll_wait(filp, &md_event_waiters, wait); 5991 5992 /* always allow read */ 5993 mask = POLLIN | POLLRDNORM; 5994 5995 if (mi->event != atomic_read(&md_event_count)) 5996 mask |= POLLERR | POLLPRI; 5997 return mask; 5998 } 5999 6000 static const struct file_operations md_seq_fops = { 6001 .owner = THIS_MODULE, 6002 .open = md_seq_open, 6003 .read = seq_read, 6004 .llseek = seq_lseek, 6005 .release = seq_release_private, 6006 .poll = mdstat_poll, 6007 }; 6008 6009 int register_md_personality(struct mdk_personality *p) 6010 { 6011 spin_lock(&pers_lock); 6012 list_add_tail(&p->list, &pers_list); 6013 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 6014 spin_unlock(&pers_lock); 6015 return 0; 6016 } 6017 6018 int unregister_md_personality(struct mdk_personality *p) 6019 { 6020 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 6021 spin_lock(&pers_lock); 6022 list_del_init(&p->list); 6023 spin_unlock(&pers_lock); 6024 return 0; 6025 } 6026 6027 static int is_mddev_idle(mddev_t *mddev, int init) 6028 { 6029 mdk_rdev_t * rdev; 6030 int idle; 6031 int curr_events; 6032 6033 idle = 1; 6034 rcu_read_lock(); 6035 rdev_for_each_rcu(rdev, mddev) { 6036 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 6037 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 6038 (int)part_stat_read(&disk->part0, sectors[1]) - 6039 atomic_read(&disk->sync_io); 6040 /* sync IO will cause sync_io to increase before the disk_stats 6041 * as sync_io is counted when a request starts, and 6042 * disk_stats is counted when it completes. 6043 * So resync activity will cause curr_events to be smaller than 6044 * when there was no such activity. 6045 * non-sync IO will cause disk_stat to increase without 6046 * increasing sync_io so curr_events will (eventually) 6047 * be larger than it was before. Once it becomes 6048 * substantially larger, the test below will cause 6049 * the array to appear non-idle, and resync will slow 6050 * down. 6051 * If there is a lot of outstanding resync activity when 6052 * we set last_event to curr_events, then all that activity 6053 * completing might cause the array to appear non-idle 6054 * and resync will be slowed down even though there might 6055 * not have been non-resync activity. This will only 6056 * happen once though. 'last_events' will soon reflect 6057 * the state where there is little or no outstanding 6058 * resync requests, and further resync activity will 6059 * always make curr_events less than last_events. 6060 * 6061 */ 6062 if (init || curr_events - rdev->last_events > 64) { 6063 rdev->last_events = curr_events; 6064 idle = 0; 6065 } 6066 } 6067 rcu_read_unlock(); 6068 return idle; 6069 } 6070 6071 void md_done_sync(mddev_t *mddev, int blocks, int ok) 6072 { 6073 /* another "blocks" (512byte) blocks have been synced */ 6074 atomic_sub(blocks, &mddev->recovery_active); 6075 wake_up(&mddev->recovery_wait); 6076 if (!ok) { 6077 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6078 md_wakeup_thread(mddev->thread); 6079 // stop recovery, signal do_sync .... 6080 } 6081 } 6082 6083 6084 /* md_write_start(mddev, bi) 6085 * If we need to update some array metadata (e.g. 'active' flag 6086 * in superblock) before writing, schedule a superblock update 6087 * and wait for it to complete. 6088 */ 6089 void md_write_start(mddev_t *mddev, struct bio *bi) 6090 { 6091 int did_change = 0; 6092 if (bio_data_dir(bi) != WRITE) 6093 return; 6094 6095 BUG_ON(mddev->ro == 1); 6096 if (mddev->ro == 2) { 6097 /* need to switch to read/write */ 6098 mddev->ro = 0; 6099 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6100 md_wakeup_thread(mddev->thread); 6101 md_wakeup_thread(mddev->sync_thread); 6102 did_change = 1; 6103 } 6104 atomic_inc(&mddev->writes_pending); 6105 if (mddev->safemode == 1) 6106 mddev->safemode = 0; 6107 if (mddev->in_sync) { 6108 spin_lock_irq(&mddev->write_lock); 6109 if (mddev->in_sync) { 6110 mddev->in_sync = 0; 6111 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6112 md_wakeup_thread(mddev->thread); 6113 did_change = 1; 6114 } 6115 spin_unlock_irq(&mddev->write_lock); 6116 } 6117 if (did_change) 6118 sysfs_notify_dirent(mddev->sysfs_state); 6119 wait_event(mddev->sb_wait, 6120 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) && 6121 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6122 } 6123 6124 void md_write_end(mddev_t *mddev) 6125 { 6126 if (atomic_dec_and_test(&mddev->writes_pending)) { 6127 if (mddev->safemode == 2) 6128 md_wakeup_thread(mddev->thread); 6129 else if (mddev->safemode_delay) 6130 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 6131 } 6132 } 6133 6134 /* md_allow_write(mddev) 6135 * Calling this ensures that the array is marked 'active' so that writes 6136 * may proceed without blocking. It is important to call this before 6137 * attempting a GFP_KERNEL allocation while holding the mddev lock. 6138 * Must be called with mddev_lock held. 6139 * 6140 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 6141 * is dropped, so return -EAGAIN after notifying userspace. 6142 */ 6143 int md_allow_write(mddev_t *mddev) 6144 { 6145 if (!mddev->pers) 6146 return 0; 6147 if (mddev->ro) 6148 return 0; 6149 if (!mddev->pers->sync_request) 6150 return 0; 6151 6152 spin_lock_irq(&mddev->write_lock); 6153 if (mddev->in_sync) { 6154 mddev->in_sync = 0; 6155 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6156 if (mddev->safemode_delay && 6157 mddev->safemode == 0) 6158 mddev->safemode = 1; 6159 spin_unlock_irq(&mddev->write_lock); 6160 md_update_sb(mddev, 0); 6161 sysfs_notify_dirent(mddev->sysfs_state); 6162 } else 6163 spin_unlock_irq(&mddev->write_lock); 6164 6165 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 6166 return -EAGAIN; 6167 else 6168 return 0; 6169 } 6170 EXPORT_SYMBOL_GPL(md_allow_write); 6171 6172 #define SYNC_MARKS 10 6173 #define SYNC_MARK_STEP (3*HZ) 6174 void md_do_sync(mddev_t *mddev) 6175 { 6176 mddev_t *mddev2; 6177 unsigned int currspeed = 0, 6178 window; 6179 sector_t max_sectors,j, io_sectors; 6180 unsigned long mark[SYNC_MARKS]; 6181 sector_t mark_cnt[SYNC_MARKS]; 6182 int last_mark,m; 6183 struct list_head *tmp; 6184 sector_t last_check; 6185 int skipped = 0; 6186 mdk_rdev_t *rdev; 6187 char *desc; 6188 6189 /* just incase thread restarts... */ 6190 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 6191 return; 6192 if (mddev->ro) /* never try to sync a read-only array */ 6193 return; 6194 6195 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6196 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 6197 desc = "data-check"; 6198 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6199 desc = "requested-resync"; 6200 else 6201 desc = "resync"; 6202 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6203 desc = "reshape"; 6204 else 6205 desc = "recovery"; 6206 6207 /* we overload curr_resync somewhat here. 6208 * 0 == not engaged in resync at all 6209 * 2 == checking that there is no conflict with another sync 6210 * 1 == like 2, but have yielded to allow conflicting resync to 6211 * commense 6212 * other == active in resync - this many blocks 6213 * 6214 * Before starting a resync we must have set curr_resync to 6215 * 2, and then checked that every "conflicting" array has curr_resync 6216 * less than ours. When we find one that is the same or higher 6217 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 6218 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 6219 * This will mean we have to start checking from the beginning again. 6220 * 6221 */ 6222 6223 do { 6224 mddev->curr_resync = 2; 6225 6226 try_again: 6227 if (kthread_should_stop()) { 6228 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6229 goto skip; 6230 } 6231 for_each_mddev(mddev2, tmp) { 6232 if (mddev2 == mddev) 6233 continue; 6234 if (!mddev->parallel_resync 6235 && mddev2->curr_resync 6236 && match_mddev_units(mddev, mddev2)) { 6237 DEFINE_WAIT(wq); 6238 if (mddev < mddev2 && mddev->curr_resync == 2) { 6239 /* arbitrarily yield */ 6240 mddev->curr_resync = 1; 6241 wake_up(&resync_wait); 6242 } 6243 if (mddev > mddev2 && mddev->curr_resync == 1) 6244 /* no need to wait here, we can wait the next 6245 * time 'round when curr_resync == 2 6246 */ 6247 continue; 6248 /* We need to wait 'interruptible' so as not to 6249 * contribute to the load average, and not to 6250 * be caught by 'softlockup' 6251 */ 6252 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 6253 if (!kthread_should_stop() && 6254 mddev2->curr_resync >= mddev->curr_resync) { 6255 printk(KERN_INFO "md: delaying %s of %s" 6256 " until %s has finished (they" 6257 " share one or more physical units)\n", 6258 desc, mdname(mddev), mdname(mddev2)); 6259 mddev_put(mddev2); 6260 if (signal_pending(current)) 6261 flush_signals(current); 6262 schedule(); 6263 finish_wait(&resync_wait, &wq); 6264 goto try_again; 6265 } 6266 finish_wait(&resync_wait, &wq); 6267 } 6268 } 6269 } while (mddev->curr_resync < 2); 6270 6271 j = 0; 6272 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6273 /* resync follows the size requested by the personality, 6274 * which defaults to physical size, but can be virtual size 6275 */ 6276 max_sectors = mddev->resync_max_sectors; 6277 mddev->resync_mismatches = 0; 6278 /* we don't use the checkpoint if there's a bitmap */ 6279 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6280 j = mddev->resync_min; 6281 else if (!mddev->bitmap) 6282 j = mddev->recovery_cp; 6283 6284 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6285 max_sectors = mddev->dev_sectors; 6286 else { 6287 /* recovery follows the physical size of devices */ 6288 max_sectors = mddev->dev_sectors; 6289 j = MaxSector; 6290 list_for_each_entry(rdev, &mddev->disks, same_set) 6291 if (rdev->raid_disk >= 0 && 6292 !test_bit(Faulty, &rdev->flags) && 6293 !test_bit(In_sync, &rdev->flags) && 6294 rdev->recovery_offset < j) 6295 j = rdev->recovery_offset; 6296 } 6297 6298 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 6299 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 6300 " %d KB/sec/disk.\n", speed_min(mddev)); 6301 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 6302 "(but not more than %d KB/sec) for %s.\n", 6303 speed_max(mddev), desc); 6304 6305 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 6306 6307 io_sectors = 0; 6308 for (m = 0; m < SYNC_MARKS; m++) { 6309 mark[m] = jiffies; 6310 mark_cnt[m] = io_sectors; 6311 } 6312 last_mark = 0; 6313 mddev->resync_mark = mark[last_mark]; 6314 mddev->resync_mark_cnt = mark_cnt[last_mark]; 6315 6316 /* 6317 * Tune reconstruction: 6318 */ 6319 window = 32*(PAGE_SIZE/512); 6320 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 6321 window/2,(unsigned long long) max_sectors/2); 6322 6323 atomic_set(&mddev->recovery_active, 0); 6324 last_check = 0; 6325 6326 if (j>2) { 6327 printk(KERN_INFO 6328 "md: resuming %s of %s from checkpoint.\n", 6329 desc, mdname(mddev)); 6330 mddev->curr_resync = j; 6331 } 6332 6333 while (j < max_sectors) { 6334 sector_t sectors; 6335 6336 skipped = 0; 6337 if (j >= mddev->resync_max) { 6338 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6339 wait_event(mddev->recovery_wait, 6340 mddev->resync_max > j 6341 || kthread_should_stop()); 6342 } 6343 if (kthread_should_stop()) 6344 goto interrupted; 6345 6346 if (mddev->curr_resync > mddev->curr_resync_completed && 6347 (mddev->curr_resync - mddev->curr_resync_completed) 6348 > (max_sectors >> 4)) { 6349 /* time to update curr_resync_completed */ 6350 blk_unplug(mddev->queue); 6351 wait_event(mddev->recovery_wait, 6352 atomic_read(&mddev->recovery_active) == 0); 6353 mddev->curr_resync_completed = 6354 mddev->curr_resync; 6355 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6356 } 6357 sectors = mddev->pers->sync_request(mddev, j, &skipped, 6358 currspeed < speed_min(mddev)); 6359 if (sectors == 0) { 6360 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6361 goto out; 6362 } 6363 6364 if (!skipped) { /* actual IO requested */ 6365 io_sectors += sectors; 6366 atomic_add(sectors, &mddev->recovery_active); 6367 } 6368 6369 j += sectors; 6370 if (j>1) mddev->curr_resync = j; 6371 mddev->curr_mark_cnt = io_sectors; 6372 if (last_check == 0) 6373 /* this is the earliers that rebuilt will be 6374 * visible in /proc/mdstat 6375 */ 6376 md_new_event(mddev); 6377 6378 if (last_check + window > io_sectors || j == max_sectors) 6379 continue; 6380 6381 last_check = io_sectors; 6382 6383 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6384 break; 6385 6386 repeat: 6387 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 6388 /* step marks */ 6389 int next = (last_mark+1) % SYNC_MARKS; 6390 6391 mddev->resync_mark = mark[next]; 6392 mddev->resync_mark_cnt = mark_cnt[next]; 6393 mark[next] = jiffies; 6394 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 6395 last_mark = next; 6396 } 6397 6398 6399 if (kthread_should_stop()) 6400 goto interrupted; 6401 6402 6403 /* 6404 * this loop exits only if either when we are slower than 6405 * the 'hard' speed limit, or the system was IO-idle for 6406 * a jiffy. 6407 * the system might be non-idle CPU-wise, but we only care 6408 * about not overloading the IO subsystem. (things like an 6409 * e2fsck being done on the RAID array should execute fast) 6410 */ 6411 blk_unplug(mddev->queue); 6412 cond_resched(); 6413 6414 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 6415 /((jiffies-mddev->resync_mark)/HZ +1) +1; 6416 6417 if (currspeed > speed_min(mddev)) { 6418 if ((currspeed > speed_max(mddev)) || 6419 !is_mddev_idle(mddev, 0)) { 6420 msleep(500); 6421 goto repeat; 6422 } 6423 } 6424 } 6425 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 6426 /* 6427 * this also signals 'finished resyncing' to md_stop 6428 */ 6429 out: 6430 blk_unplug(mddev->queue); 6431 6432 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 6433 6434 /* tell personality that we are finished */ 6435 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 6436 6437 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 6438 mddev->curr_resync > 2) { 6439 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6440 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6441 if (mddev->curr_resync >= mddev->recovery_cp) { 6442 printk(KERN_INFO 6443 "md: checkpointing %s of %s.\n", 6444 desc, mdname(mddev)); 6445 mddev->recovery_cp = mddev->curr_resync; 6446 } 6447 } else 6448 mddev->recovery_cp = MaxSector; 6449 } else { 6450 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6451 mddev->curr_resync = MaxSector; 6452 list_for_each_entry(rdev, &mddev->disks, same_set) 6453 if (rdev->raid_disk >= 0 && 6454 !test_bit(Faulty, &rdev->flags) && 6455 !test_bit(In_sync, &rdev->flags) && 6456 rdev->recovery_offset < mddev->curr_resync) 6457 rdev->recovery_offset = mddev->curr_resync; 6458 } 6459 } 6460 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6461 6462 skip: 6463 mddev->curr_resync = 0; 6464 mddev->resync_min = 0; 6465 mddev->resync_max = MaxSector; 6466 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6467 wake_up(&resync_wait); 6468 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 6469 md_wakeup_thread(mddev->thread); 6470 return; 6471 6472 interrupted: 6473 /* 6474 * got a signal, exit. 6475 */ 6476 printk(KERN_INFO 6477 "md: md_do_sync() got signal ... exiting\n"); 6478 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6479 goto out; 6480 6481 } 6482 EXPORT_SYMBOL_GPL(md_do_sync); 6483 6484 6485 static int remove_and_add_spares(mddev_t *mddev) 6486 { 6487 mdk_rdev_t *rdev; 6488 int spares = 0; 6489 6490 mddev->curr_resync_completed = 0; 6491 6492 list_for_each_entry(rdev, &mddev->disks, same_set) 6493 if (rdev->raid_disk >= 0 && 6494 !test_bit(Blocked, &rdev->flags) && 6495 (test_bit(Faulty, &rdev->flags) || 6496 ! test_bit(In_sync, &rdev->flags)) && 6497 atomic_read(&rdev->nr_pending)==0) { 6498 if (mddev->pers->hot_remove_disk( 6499 mddev, rdev->raid_disk)==0) { 6500 char nm[20]; 6501 sprintf(nm,"rd%d", rdev->raid_disk); 6502 sysfs_remove_link(&mddev->kobj, nm); 6503 rdev->raid_disk = -1; 6504 } 6505 } 6506 6507 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) { 6508 list_for_each_entry(rdev, &mddev->disks, same_set) { 6509 if (rdev->raid_disk >= 0 && 6510 !test_bit(In_sync, &rdev->flags) && 6511 !test_bit(Blocked, &rdev->flags)) 6512 spares++; 6513 if (rdev->raid_disk < 0 6514 && !test_bit(Faulty, &rdev->flags)) { 6515 rdev->recovery_offset = 0; 6516 if (mddev->pers-> 6517 hot_add_disk(mddev, rdev) == 0) { 6518 char nm[20]; 6519 sprintf(nm, "rd%d", rdev->raid_disk); 6520 if (sysfs_create_link(&mddev->kobj, 6521 &rdev->kobj, nm)) 6522 printk(KERN_WARNING 6523 "md: cannot register " 6524 "%s for %s\n", 6525 nm, mdname(mddev)); 6526 spares++; 6527 md_new_event(mddev); 6528 } else 6529 break; 6530 } 6531 } 6532 } 6533 return spares; 6534 } 6535 /* 6536 * This routine is regularly called by all per-raid-array threads to 6537 * deal with generic issues like resync and super-block update. 6538 * Raid personalities that don't have a thread (linear/raid0) do not 6539 * need this as they never do any recovery or update the superblock. 6540 * 6541 * It does not do any resync itself, but rather "forks" off other threads 6542 * to do that as needed. 6543 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 6544 * "->recovery" and create a thread at ->sync_thread. 6545 * When the thread finishes it sets MD_RECOVERY_DONE 6546 * and wakeups up this thread which will reap the thread and finish up. 6547 * This thread also removes any faulty devices (with nr_pending == 0). 6548 * 6549 * The overall approach is: 6550 * 1/ if the superblock needs updating, update it. 6551 * 2/ If a recovery thread is running, don't do anything else. 6552 * 3/ If recovery has finished, clean up, possibly marking spares active. 6553 * 4/ If there are any faulty devices, remove them. 6554 * 5/ If array is degraded, try to add spares devices 6555 * 6/ If array has spares or is not in-sync, start a resync thread. 6556 */ 6557 void md_check_recovery(mddev_t *mddev) 6558 { 6559 mdk_rdev_t *rdev; 6560 6561 6562 if (mddev->bitmap) 6563 bitmap_daemon_work(mddev->bitmap); 6564 6565 if (mddev->ro) 6566 return; 6567 6568 if (signal_pending(current)) { 6569 if (mddev->pers->sync_request && !mddev->external) { 6570 printk(KERN_INFO "md: %s in immediate safe mode\n", 6571 mdname(mddev)); 6572 mddev->safemode = 2; 6573 } 6574 flush_signals(current); 6575 } 6576 6577 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 6578 return; 6579 if ( ! ( 6580 (mddev->flags && !mddev->external) || 6581 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 6582 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 6583 (mddev->external == 0 && mddev->safemode == 1) || 6584 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 6585 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 6586 )) 6587 return; 6588 6589 if (mddev_trylock(mddev)) { 6590 int spares = 0; 6591 6592 if (mddev->ro) { 6593 /* Only thing we do on a ro array is remove 6594 * failed devices. 6595 */ 6596 remove_and_add_spares(mddev); 6597 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6598 goto unlock; 6599 } 6600 6601 if (!mddev->external) { 6602 int did_change = 0; 6603 spin_lock_irq(&mddev->write_lock); 6604 if (mddev->safemode && 6605 !atomic_read(&mddev->writes_pending) && 6606 !mddev->in_sync && 6607 mddev->recovery_cp == MaxSector) { 6608 mddev->in_sync = 1; 6609 did_change = 1; 6610 if (mddev->persistent) 6611 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6612 } 6613 if (mddev->safemode == 1) 6614 mddev->safemode = 0; 6615 spin_unlock_irq(&mddev->write_lock); 6616 if (did_change) 6617 sysfs_notify_dirent(mddev->sysfs_state); 6618 } 6619 6620 if (mddev->flags) 6621 md_update_sb(mddev, 0); 6622 6623 list_for_each_entry(rdev, &mddev->disks, same_set) 6624 if (test_and_clear_bit(StateChanged, &rdev->flags)) 6625 sysfs_notify_dirent(rdev->sysfs_state); 6626 6627 6628 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 6629 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 6630 /* resync/recovery still happening */ 6631 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6632 goto unlock; 6633 } 6634 if (mddev->sync_thread) { 6635 /* resync has finished, collect result */ 6636 md_unregister_thread(mddev->sync_thread); 6637 mddev->sync_thread = NULL; 6638 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 6639 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 6640 /* success...*/ 6641 /* activate any spares */ 6642 if (mddev->pers->spare_active(mddev)) 6643 sysfs_notify(&mddev->kobj, NULL, 6644 "degraded"); 6645 } 6646 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 6647 mddev->pers->finish_reshape) 6648 mddev->pers->finish_reshape(mddev); 6649 md_update_sb(mddev, 1); 6650 6651 /* if array is no-longer degraded, then any saved_raid_disk 6652 * information must be scrapped 6653 */ 6654 if (!mddev->degraded) 6655 list_for_each_entry(rdev, &mddev->disks, same_set) 6656 rdev->saved_raid_disk = -1; 6657 6658 mddev->recovery = 0; 6659 /* flag recovery needed just to double check */ 6660 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6661 sysfs_notify_dirent(mddev->sysfs_action); 6662 md_new_event(mddev); 6663 goto unlock; 6664 } 6665 /* Set RUNNING before clearing NEEDED to avoid 6666 * any transients in the value of "sync_action". 6667 */ 6668 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6669 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6670 /* Clear some bits that don't mean anything, but 6671 * might be left set 6672 */ 6673 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 6674 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 6675 6676 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 6677 goto unlock; 6678 /* no recovery is running. 6679 * remove any failed drives, then 6680 * add spares if possible. 6681 * Spare are also removed and re-added, to allow 6682 * the personality to fail the re-add. 6683 */ 6684 6685 if (mddev->reshape_position != MaxSector) { 6686 if (mddev->pers->check_reshape(mddev) != 0) 6687 /* Cannot proceed */ 6688 goto unlock; 6689 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6690 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6691 } else if ((spares = remove_and_add_spares(mddev))) { 6692 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6693 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6694 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 6695 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6696 } else if (mddev->recovery_cp < MaxSector) { 6697 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6698 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6699 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6700 /* nothing to be done ... */ 6701 goto unlock; 6702 6703 if (mddev->pers->sync_request) { 6704 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 6705 /* We are adding a device or devices to an array 6706 * which has the bitmap stored on all devices. 6707 * So make sure all bitmap pages get written 6708 */ 6709 bitmap_write_all(mddev->bitmap); 6710 } 6711 mddev->sync_thread = md_register_thread(md_do_sync, 6712 mddev, 6713 "%s_resync"); 6714 if (!mddev->sync_thread) { 6715 printk(KERN_ERR "%s: could not start resync" 6716 " thread...\n", 6717 mdname(mddev)); 6718 /* leave the spares where they are, it shouldn't hurt */ 6719 mddev->recovery = 0; 6720 } else 6721 md_wakeup_thread(mddev->sync_thread); 6722 sysfs_notify_dirent(mddev->sysfs_action); 6723 md_new_event(mddev); 6724 } 6725 unlock: 6726 if (!mddev->sync_thread) { 6727 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6728 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 6729 &mddev->recovery)) 6730 if (mddev->sysfs_action) 6731 sysfs_notify_dirent(mddev->sysfs_action); 6732 } 6733 mddev_unlock(mddev); 6734 } 6735 } 6736 6737 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 6738 { 6739 sysfs_notify_dirent(rdev->sysfs_state); 6740 wait_event_timeout(rdev->blocked_wait, 6741 !test_bit(Blocked, &rdev->flags), 6742 msecs_to_jiffies(5000)); 6743 rdev_dec_pending(rdev, mddev); 6744 } 6745 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 6746 6747 static int md_notify_reboot(struct notifier_block *this, 6748 unsigned long code, void *x) 6749 { 6750 struct list_head *tmp; 6751 mddev_t *mddev; 6752 6753 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 6754 6755 printk(KERN_INFO "md: stopping all md devices.\n"); 6756 6757 for_each_mddev(mddev, tmp) 6758 if (mddev_trylock(mddev)) { 6759 /* Force a switch to readonly even array 6760 * appears to still be in use. Hence 6761 * the '100'. 6762 */ 6763 do_md_stop(mddev, 1, 100); 6764 mddev_unlock(mddev); 6765 } 6766 /* 6767 * certain more exotic SCSI devices are known to be 6768 * volatile wrt too early system reboots. While the 6769 * right place to handle this issue is the given 6770 * driver, we do want to have a safe RAID driver ... 6771 */ 6772 mdelay(1000*1); 6773 } 6774 return NOTIFY_DONE; 6775 } 6776 6777 static struct notifier_block md_notifier = { 6778 .notifier_call = md_notify_reboot, 6779 .next = NULL, 6780 .priority = INT_MAX, /* before any real devices */ 6781 }; 6782 6783 static void md_geninit(void) 6784 { 6785 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 6786 6787 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 6788 } 6789 6790 static int __init md_init(void) 6791 { 6792 if (register_blkdev(MD_MAJOR, "md")) 6793 return -1; 6794 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 6795 unregister_blkdev(MD_MAJOR, "md"); 6796 return -1; 6797 } 6798 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 6799 md_probe, NULL, NULL); 6800 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 6801 md_probe, NULL, NULL); 6802 6803 register_reboot_notifier(&md_notifier); 6804 raid_table_header = register_sysctl_table(raid_root_table); 6805 6806 md_geninit(); 6807 return 0; 6808 } 6809 6810 6811 #ifndef MODULE 6812 6813 /* 6814 * Searches all registered partitions for autorun RAID arrays 6815 * at boot time. 6816 */ 6817 6818 static LIST_HEAD(all_detected_devices); 6819 struct detected_devices_node { 6820 struct list_head list; 6821 dev_t dev; 6822 }; 6823 6824 void md_autodetect_dev(dev_t dev) 6825 { 6826 struct detected_devices_node *node_detected_dev; 6827 6828 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 6829 if (node_detected_dev) { 6830 node_detected_dev->dev = dev; 6831 list_add_tail(&node_detected_dev->list, &all_detected_devices); 6832 } else { 6833 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 6834 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 6835 } 6836 } 6837 6838 6839 static void autostart_arrays(int part) 6840 { 6841 mdk_rdev_t *rdev; 6842 struct detected_devices_node *node_detected_dev; 6843 dev_t dev; 6844 int i_scanned, i_passed; 6845 6846 i_scanned = 0; 6847 i_passed = 0; 6848 6849 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 6850 6851 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 6852 i_scanned++; 6853 node_detected_dev = list_entry(all_detected_devices.next, 6854 struct detected_devices_node, list); 6855 list_del(&node_detected_dev->list); 6856 dev = node_detected_dev->dev; 6857 kfree(node_detected_dev); 6858 rdev = md_import_device(dev,0, 90); 6859 if (IS_ERR(rdev)) 6860 continue; 6861 6862 if (test_bit(Faulty, &rdev->flags)) { 6863 MD_BUG(); 6864 continue; 6865 } 6866 set_bit(AutoDetected, &rdev->flags); 6867 list_add(&rdev->same_set, &pending_raid_disks); 6868 i_passed++; 6869 } 6870 6871 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 6872 i_scanned, i_passed); 6873 6874 autorun_devices(part); 6875 } 6876 6877 #endif /* !MODULE */ 6878 6879 static __exit void md_exit(void) 6880 { 6881 mddev_t *mddev; 6882 struct list_head *tmp; 6883 6884 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 6885 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 6886 6887 unregister_blkdev(MD_MAJOR,"md"); 6888 unregister_blkdev(mdp_major, "mdp"); 6889 unregister_reboot_notifier(&md_notifier); 6890 unregister_sysctl_table(raid_table_header); 6891 remove_proc_entry("mdstat", NULL); 6892 for_each_mddev(mddev, tmp) { 6893 export_array(mddev); 6894 mddev->hold_active = 0; 6895 } 6896 } 6897 6898 subsys_initcall(md_init); 6899 module_exit(md_exit) 6900 6901 static int get_ro(char *buffer, struct kernel_param *kp) 6902 { 6903 return sprintf(buffer, "%d", start_readonly); 6904 } 6905 static int set_ro(const char *val, struct kernel_param *kp) 6906 { 6907 char *e; 6908 int num = simple_strtoul(val, &e, 10); 6909 if (*val && (*e == '\0' || *e == '\n')) { 6910 start_readonly = num; 6911 return 0; 6912 } 6913 return -EINVAL; 6914 } 6915 6916 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 6917 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 6918 6919 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 6920 6921 EXPORT_SYMBOL(register_md_personality); 6922 EXPORT_SYMBOL(unregister_md_personality); 6923 EXPORT_SYMBOL(md_error); 6924 EXPORT_SYMBOL(md_done_sync); 6925 EXPORT_SYMBOL(md_write_start); 6926 EXPORT_SYMBOL(md_write_end); 6927 EXPORT_SYMBOL(md_register_thread); 6928 EXPORT_SYMBOL(md_unregister_thread); 6929 EXPORT_SYMBOL(md_wakeup_thread); 6930 EXPORT_SYMBOL(md_check_recovery); 6931 MODULE_LICENSE("GPL"); 6932 MODULE_ALIAS("md"); 6933 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 6934