xref: /openbmc/linux/drivers/md/md.c (revision b595076a)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59 
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
63 
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
66 
67 static void md_print_devices(void);
68 
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72 
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
74 
75 /*
76  * Default number of read corrections we'll attempt on an rdev
77  * before ejecting it from the array. We divide the read error
78  * count by 2 for every hour elapsed between read errors.
79  */
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81 /*
82  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83  * is 1000 KB/sec, so the extra system load does not show up that much.
84  * Increase it if you want to have more _guaranteed_ speed. Note that
85  * the RAID driver will use the maximum available bandwidth if the IO
86  * subsystem is idle. There is also an 'absolute maximum' reconstruction
87  * speed limit - in case reconstruction slows down your system despite
88  * idle IO detection.
89  *
90  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91  * or /sys/block/mdX/md/sync_speed_{min,max}
92  */
93 
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 	return mddev->sync_speed_min ?
99 		mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101 
102 static inline int speed_max(mddev_t *mddev)
103 {
104 	return mddev->sync_speed_max ?
105 		mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107 
108 static struct ctl_table_header *raid_table_header;
109 
110 static ctl_table raid_table[] = {
111 	{
112 		.procname	= "speed_limit_min",
113 		.data		= &sysctl_speed_limit_min,
114 		.maxlen		= sizeof(int),
115 		.mode		= S_IRUGO|S_IWUSR,
116 		.proc_handler	= proc_dointvec,
117 	},
118 	{
119 		.procname	= "speed_limit_max",
120 		.data		= &sysctl_speed_limit_max,
121 		.maxlen		= sizeof(int),
122 		.mode		= S_IRUGO|S_IWUSR,
123 		.proc_handler	= proc_dointvec,
124 	},
125 	{ }
126 };
127 
128 static ctl_table raid_dir_table[] = {
129 	{
130 		.procname	= "raid",
131 		.maxlen		= 0,
132 		.mode		= S_IRUGO|S_IXUGO,
133 		.child		= raid_table,
134 	},
135 	{ }
136 };
137 
138 static ctl_table raid_root_table[] = {
139 	{
140 		.procname	= "dev",
141 		.maxlen		= 0,
142 		.mode		= 0555,
143 		.child		= raid_dir_table,
144 	},
145 	{  }
146 };
147 
148 static const struct block_device_operations md_fops;
149 
150 static int start_readonly;
151 
152 /* bio_clone_mddev
153  * like bio_clone, but with a local bio set
154  */
155 
156 static void mddev_bio_destructor(struct bio *bio)
157 {
158 	mddev_t *mddev, **mddevp;
159 
160 	mddevp = (void*)bio;
161 	mddev = mddevp[-1];
162 
163 	bio_free(bio, mddev->bio_set);
164 }
165 
166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
167 			    mddev_t *mddev)
168 {
169 	struct bio *b;
170 	mddev_t **mddevp;
171 
172 	if (!mddev || !mddev->bio_set)
173 		return bio_alloc(gfp_mask, nr_iovecs);
174 
175 	b = bio_alloc_bioset(gfp_mask, nr_iovecs,
176 			     mddev->bio_set);
177 	if (!b)
178 		return NULL;
179 	mddevp = (void*)b;
180 	mddevp[-1] = mddev;
181 	b->bi_destructor = mddev_bio_destructor;
182 	return b;
183 }
184 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
185 
186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
187 			    mddev_t *mddev)
188 {
189 	struct bio *b;
190 	mddev_t **mddevp;
191 
192 	if (!mddev || !mddev->bio_set)
193 		return bio_clone(bio, gfp_mask);
194 
195 	b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
196 			     mddev->bio_set);
197 	if (!b)
198 		return NULL;
199 	mddevp = (void*)b;
200 	mddevp[-1] = mddev;
201 	b->bi_destructor = mddev_bio_destructor;
202 	__bio_clone(b, bio);
203 	if (bio_integrity(bio)) {
204 		int ret;
205 
206 		ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
207 
208 		if (ret < 0) {
209 			bio_put(b);
210 			return NULL;
211 		}
212 	}
213 
214 	return b;
215 }
216 EXPORT_SYMBOL_GPL(bio_clone_mddev);
217 
218 /*
219  * We have a system wide 'event count' that is incremented
220  * on any 'interesting' event, and readers of /proc/mdstat
221  * can use 'poll' or 'select' to find out when the event
222  * count increases.
223  *
224  * Events are:
225  *  start array, stop array, error, add device, remove device,
226  *  start build, activate spare
227  */
228 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
229 static atomic_t md_event_count;
230 void md_new_event(mddev_t *mddev)
231 {
232 	atomic_inc(&md_event_count);
233 	wake_up(&md_event_waiters);
234 }
235 EXPORT_SYMBOL_GPL(md_new_event);
236 
237 /* Alternate version that can be called from interrupts
238  * when calling sysfs_notify isn't needed.
239  */
240 static void md_new_event_inintr(mddev_t *mddev)
241 {
242 	atomic_inc(&md_event_count);
243 	wake_up(&md_event_waiters);
244 }
245 
246 /*
247  * Enables to iterate over all existing md arrays
248  * all_mddevs_lock protects this list.
249  */
250 static LIST_HEAD(all_mddevs);
251 static DEFINE_SPINLOCK(all_mddevs_lock);
252 
253 
254 /*
255  * iterates through all used mddevs in the system.
256  * We take care to grab the all_mddevs_lock whenever navigating
257  * the list, and to always hold a refcount when unlocked.
258  * Any code which breaks out of this loop while own
259  * a reference to the current mddev and must mddev_put it.
260  */
261 #define for_each_mddev(mddev,tmp)					\
262 									\
263 	for (({ spin_lock(&all_mddevs_lock); 				\
264 		tmp = all_mddevs.next;					\
265 		mddev = NULL;});					\
266 	     ({ if (tmp != &all_mddevs)					\
267 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
268 		spin_unlock(&all_mddevs_lock);				\
269 		if (mddev) mddev_put(mddev);				\
270 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
271 		tmp != &all_mddevs;});					\
272 	     ({ spin_lock(&all_mddevs_lock);				\
273 		tmp = tmp->next;})					\
274 		)
275 
276 
277 /* Rather than calling directly into the personality make_request function,
278  * IO requests come here first so that we can check if the device is
279  * being suspended pending a reconfiguration.
280  * We hold a refcount over the call to ->make_request.  By the time that
281  * call has finished, the bio has been linked into some internal structure
282  * and so is visible to ->quiesce(), so we don't need the refcount any more.
283  */
284 static int md_make_request(struct request_queue *q, struct bio *bio)
285 {
286 	const int rw = bio_data_dir(bio);
287 	mddev_t *mddev = q->queuedata;
288 	int rv;
289 	int cpu;
290 
291 	if (mddev == NULL || mddev->pers == NULL) {
292 		bio_io_error(bio);
293 		return 0;
294 	}
295 	rcu_read_lock();
296 	if (mddev->suspended) {
297 		DEFINE_WAIT(__wait);
298 		for (;;) {
299 			prepare_to_wait(&mddev->sb_wait, &__wait,
300 					TASK_UNINTERRUPTIBLE);
301 			if (!mddev->suspended)
302 				break;
303 			rcu_read_unlock();
304 			schedule();
305 			rcu_read_lock();
306 		}
307 		finish_wait(&mddev->sb_wait, &__wait);
308 	}
309 	atomic_inc(&mddev->active_io);
310 	rcu_read_unlock();
311 
312 	rv = mddev->pers->make_request(mddev, bio);
313 
314 	cpu = part_stat_lock();
315 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
316 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
317 		      bio_sectors(bio));
318 	part_stat_unlock();
319 
320 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
321 		wake_up(&mddev->sb_wait);
322 
323 	return rv;
324 }
325 
326 /* mddev_suspend makes sure no new requests are submitted
327  * to the device, and that any requests that have been submitted
328  * are completely handled.
329  * Once ->stop is called and completes, the module will be completely
330  * unused.
331  */
332 void mddev_suspend(mddev_t *mddev)
333 {
334 	BUG_ON(mddev->suspended);
335 	mddev->suspended = 1;
336 	synchronize_rcu();
337 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
338 	mddev->pers->quiesce(mddev, 1);
339 }
340 EXPORT_SYMBOL_GPL(mddev_suspend);
341 
342 void mddev_resume(mddev_t *mddev)
343 {
344 	mddev->suspended = 0;
345 	wake_up(&mddev->sb_wait);
346 	mddev->pers->quiesce(mddev, 0);
347 }
348 EXPORT_SYMBOL_GPL(mddev_resume);
349 
350 int mddev_congested(mddev_t *mddev, int bits)
351 {
352 	return mddev->suspended;
353 }
354 EXPORT_SYMBOL(mddev_congested);
355 
356 /*
357  * Generic flush handling for md
358  */
359 
360 static void md_end_flush(struct bio *bio, int err)
361 {
362 	mdk_rdev_t *rdev = bio->bi_private;
363 	mddev_t *mddev = rdev->mddev;
364 
365 	rdev_dec_pending(rdev, mddev);
366 
367 	if (atomic_dec_and_test(&mddev->flush_pending)) {
368 		/* The pre-request flush has finished */
369 		queue_work(md_wq, &mddev->flush_work);
370 	}
371 	bio_put(bio);
372 }
373 
374 static void submit_flushes(mddev_t *mddev)
375 {
376 	mdk_rdev_t *rdev;
377 
378 	rcu_read_lock();
379 	list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
380 		if (rdev->raid_disk >= 0 &&
381 		    !test_bit(Faulty, &rdev->flags)) {
382 			/* Take two references, one is dropped
383 			 * when request finishes, one after
384 			 * we reclaim rcu_read_lock
385 			 */
386 			struct bio *bi;
387 			atomic_inc(&rdev->nr_pending);
388 			atomic_inc(&rdev->nr_pending);
389 			rcu_read_unlock();
390 			bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
391 			bi->bi_end_io = md_end_flush;
392 			bi->bi_private = rdev;
393 			bi->bi_bdev = rdev->bdev;
394 			atomic_inc(&mddev->flush_pending);
395 			submit_bio(WRITE_FLUSH, bi);
396 			rcu_read_lock();
397 			rdev_dec_pending(rdev, mddev);
398 		}
399 	rcu_read_unlock();
400 }
401 
402 static void md_submit_flush_data(struct work_struct *ws)
403 {
404 	mddev_t *mddev = container_of(ws, mddev_t, flush_work);
405 	struct bio *bio = mddev->flush_bio;
406 
407 	atomic_set(&mddev->flush_pending, 1);
408 
409 	if (bio->bi_size == 0)
410 		/* an empty barrier - all done */
411 		bio_endio(bio, 0);
412 	else {
413 		bio->bi_rw &= ~REQ_FLUSH;
414 		if (mddev->pers->make_request(mddev, bio))
415 			generic_make_request(bio);
416 	}
417 	if (atomic_dec_and_test(&mddev->flush_pending)) {
418 		mddev->flush_bio = NULL;
419 		wake_up(&mddev->sb_wait);
420 	}
421 }
422 
423 void md_flush_request(mddev_t *mddev, struct bio *bio)
424 {
425 	spin_lock_irq(&mddev->write_lock);
426 	wait_event_lock_irq(mddev->sb_wait,
427 			    !mddev->flush_bio,
428 			    mddev->write_lock, /*nothing*/);
429 	mddev->flush_bio = bio;
430 	spin_unlock_irq(&mddev->write_lock);
431 
432 	atomic_set(&mddev->flush_pending, 1);
433 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
434 
435 	submit_flushes(mddev);
436 
437 	if (atomic_dec_and_test(&mddev->flush_pending))
438 		queue_work(md_wq, &mddev->flush_work);
439 }
440 EXPORT_SYMBOL(md_flush_request);
441 
442 /* Support for plugging.
443  * This mirrors the plugging support in request_queue, but does not
444  * require having a whole queue
445  */
446 static void plugger_work(struct work_struct *work)
447 {
448 	struct plug_handle *plug =
449 		container_of(work, struct plug_handle, unplug_work);
450 	plug->unplug_fn(plug);
451 }
452 static void plugger_timeout(unsigned long data)
453 {
454 	struct plug_handle *plug = (void *)data;
455 	kblockd_schedule_work(NULL, &plug->unplug_work);
456 }
457 void plugger_init(struct plug_handle *plug,
458 		  void (*unplug_fn)(struct plug_handle *))
459 {
460 	plug->unplug_flag = 0;
461 	plug->unplug_fn = unplug_fn;
462 	init_timer(&plug->unplug_timer);
463 	plug->unplug_timer.function = plugger_timeout;
464 	plug->unplug_timer.data = (unsigned long)plug;
465 	INIT_WORK(&plug->unplug_work, plugger_work);
466 }
467 EXPORT_SYMBOL_GPL(plugger_init);
468 
469 void plugger_set_plug(struct plug_handle *plug)
470 {
471 	if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
472 		mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
473 }
474 EXPORT_SYMBOL_GPL(plugger_set_plug);
475 
476 int plugger_remove_plug(struct plug_handle *plug)
477 {
478 	if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
479 		del_timer(&plug->unplug_timer);
480 		return 1;
481 	} else
482 		return 0;
483 }
484 EXPORT_SYMBOL_GPL(plugger_remove_plug);
485 
486 
487 static inline mddev_t *mddev_get(mddev_t *mddev)
488 {
489 	atomic_inc(&mddev->active);
490 	return mddev;
491 }
492 
493 static void mddev_delayed_delete(struct work_struct *ws);
494 
495 static void mddev_put(mddev_t *mddev)
496 {
497 	struct bio_set *bs = NULL;
498 
499 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
500 		return;
501 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
502 	    mddev->ctime == 0 && !mddev->hold_active) {
503 		/* Array is not configured at all, and not held active,
504 		 * so destroy it */
505 		list_del(&mddev->all_mddevs);
506 		bs = mddev->bio_set;
507 		mddev->bio_set = NULL;
508 		if (mddev->gendisk) {
509 			/* We did a probe so need to clean up.  Call
510 			 * queue_work inside the spinlock so that
511 			 * flush_workqueue() after mddev_find will
512 			 * succeed in waiting for the work to be done.
513 			 */
514 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
515 			queue_work(md_misc_wq, &mddev->del_work);
516 		} else
517 			kfree(mddev);
518 	}
519 	spin_unlock(&all_mddevs_lock);
520 	if (bs)
521 		bioset_free(bs);
522 }
523 
524 void mddev_init(mddev_t *mddev)
525 {
526 	mutex_init(&mddev->open_mutex);
527 	mutex_init(&mddev->reconfig_mutex);
528 	mutex_init(&mddev->bitmap_info.mutex);
529 	INIT_LIST_HEAD(&mddev->disks);
530 	INIT_LIST_HEAD(&mddev->all_mddevs);
531 	init_timer(&mddev->safemode_timer);
532 	atomic_set(&mddev->active, 1);
533 	atomic_set(&mddev->openers, 0);
534 	atomic_set(&mddev->active_io, 0);
535 	spin_lock_init(&mddev->write_lock);
536 	atomic_set(&mddev->flush_pending, 0);
537 	init_waitqueue_head(&mddev->sb_wait);
538 	init_waitqueue_head(&mddev->recovery_wait);
539 	mddev->reshape_position = MaxSector;
540 	mddev->resync_min = 0;
541 	mddev->resync_max = MaxSector;
542 	mddev->level = LEVEL_NONE;
543 }
544 EXPORT_SYMBOL_GPL(mddev_init);
545 
546 static mddev_t * mddev_find(dev_t unit)
547 {
548 	mddev_t *mddev, *new = NULL;
549 
550  retry:
551 	spin_lock(&all_mddevs_lock);
552 
553 	if (unit) {
554 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
555 			if (mddev->unit == unit) {
556 				mddev_get(mddev);
557 				spin_unlock(&all_mddevs_lock);
558 				kfree(new);
559 				return mddev;
560 			}
561 
562 		if (new) {
563 			list_add(&new->all_mddevs, &all_mddevs);
564 			spin_unlock(&all_mddevs_lock);
565 			new->hold_active = UNTIL_IOCTL;
566 			return new;
567 		}
568 	} else if (new) {
569 		/* find an unused unit number */
570 		static int next_minor = 512;
571 		int start = next_minor;
572 		int is_free = 0;
573 		int dev = 0;
574 		while (!is_free) {
575 			dev = MKDEV(MD_MAJOR, next_minor);
576 			next_minor++;
577 			if (next_minor > MINORMASK)
578 				next_minor = 0;
579 			if (next_minor == start) {
580 				/* Oh dear, all in use. */
581 				spin_unlock(&all_mddevs_lock);
582 				kfree(new);
583 				return NULL;
584 			}
585 
586 			is_free = 1;
587 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
588 				if (mddev->unit == dev) {
589 					is_free = 0;
590 					break;
591 				}
592 		}
593 		new->unit = dev;
594 		new->md_minor = MINOR(dev);
595 		new->hold_active = UNTIL_STOP;
596 		list_add(&new->all_mddevs, &all_mddevs);
597 		spin_unlock(&all_mddevs_lock);
598 		return new;
599 	}
600 	spin_unlock(&all_mddevs_lock);
601 
602 	new = kzalloc(sizeof(*new), GFP_KERNEL);
603 	if (!new)
604 		return NULL;
605 
606 	new->unit = unit;
607 	if (MAJOR(unit) == MD_MAJOR)
608 		new->md_minor = MINOR(unit);
609 	else
610 		new->md_minor = MINOR(unit) >> MdpMinorShift;
611 
612 	mddev_init(new);
613 
614 	goto retry;
615 }
616 
617 static inline int mddev_lock(mddev_t * mddev)
618 {
619 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
620 }
621 
622 static inline int mddev_is_locked(mddev_t *mddev)
623 {
624 	return mutex_is_locked(&mddev->reconfig_mutex);
625 }
626 
627 static inline int mddev_trylock(mddev_t * mddev)
628 {
629 	return mutex_trylock(&mddev->reconfig_mutex);
630 }
631 
632 static struct attribute_group md_redundancy_group;
633 
634 static void mddev_unlock(mddev_t * mddev)
635 {
636 	if (mddev->to_remove) {
637 		/* These cannot be removed under reconfig_mutex as
638 		 * an access to the files will try to take reconfig_mutex
639 		 * while holding the file unremovable, which leads to
640 		 * a deadlock.
641 		 * So hold set sysfs_active while the remove in happeing,
642 		 * and anything else which might set ->to_remove or my
643 		 * otherwise change the sysfs namespace will fail with
644 		 * -EBUSY if sysfs_active is still set.
645 		 * We set sysfs_active under reconfig_mutex and elsewhere
646 		 * test it under the same mutex to ensure its correct value
647 		 * is seen.
648 		 */
649 		struct attribute_group *to_remove = mddev->to_remove;
650 		mddev->to_remove = NULL;
651 		mddev->sysfs_active = 1;
652 		mutex_unlock(&mddev->reconfig_mutex);
653 
654 		if (mddev->kobj.sd) {
655 			if (to_remove != &md_redundancy_group)
656 				sysfs_remove_group(&mddev->kobj, to_remove);
657 			if (mddev->pers == NULL ||
658 			    mddev->pers->sync_request == NULL) {
659 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
660 				if (mddev->sysfs_action)
661 					sysfs_put(mddev->sysfs_action);
662 				mddev->sysfs_action = NULL;
663 			}
664 		}
665 		mddev->sysfs_active = 0;
666 	} else
667 		mutex_unlock(&mddev->reconfig_mutex);
668 
669 	md_wakeup_thread(mddev->thread);
670 }
671 
672 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
673 {
674 	mdk_rdev_t *rdev;
675 
676 	list_for_each_entry(rdev, &mddev->disks, same_set)
677 		if (rdev->desc_nr == nr)
678 			return rdev;
679 
680 	return NULL;
681 }
682 
683 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
684 {
685 	mdk_rdev_t *rdev;
686 
687 	list_for_each_entry(rdev, &mddev->disks, same_set)
688 		if (rdev->bdev->bd_dev == dev)
689 			return rdev;
690 
691 	return NULL;
692 }
693 
694 static struct mdk_personality *find_pers(int level, char *clevel)
695 {
696 	struct mdk_personality *pers;
697 	list_for_each_entry(pers, &pers_list, list) {
698 		if (level != LEVEL_NONE && pers->level == level)
699 			return pers;
700 		if (strcmp(pers->name, clevel)==0)
701 			return pers;
702 	}
703 	return NULL;
704 }
705 
706 /* return the offset of the super block in 512byte sectors */
707 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
708 {
709 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
710 	return MD_NEW_SIZE_SECTORS(num_sectors);
711 }
712 
713 static int alloc_disk_sb(mdk_rdev_t * rdev)
714 {
715 	if (rdev->sb_page)
716 		MD_BUG();
717 
718 	rdev->sb_page = alloc_page(GFP_KERNEL);
719 	if (!rdev->sb_page) {
720 		printk(KERN_ALERT "md: out of memory.\n");
721 		return -ENOMEM;
722 	}
723 
724 	return 0;
725 }
726 
727 static void free_disk_sb(mdk_rdev_t * rdev)
728 {
729 	if (rdev->sb_page) {
730 		put_page(rdev->sb_page);
731 		rdev->sb_loaded = 0;
732 		rdev->sb_page = NULL;
733 		rdev->sb_start = 0;
734 		rdev->sectors = 0;
735 	}
736 }
737 
738 
739 static void super_written(struct bio *bio, int error)
740 {
741 	mdk_rdev_t *rdev = bio->bi_private;
742 	mddev_t *mddev = rdev->mddev;
743 
744 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
745 		printk("md: super_written gets error=%d, uptodate=%d\n",
746 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
747 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
748 		md_error(mddev, rdev);
749 	}
750 
751 	if (atomic_dec_and_test(&mddev->pending_writes))
752 		wake_up(&mddev->sb_wait);
753 	bio_put(bio);
754 }
755 
756 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
757 		   sector_t sector, int size, struct page *page)
758 {
759 	/* write first size bytes of page to sector of rdev
760 	 * Increment mddev->pending_writes before returning
761 	 * and decrement it on completion, waking up sb_wait
762 	 * if zero is reached.
763 	 * If an error occurred, call md_error
764 	 */
765 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
766 
767 	bio->bi_bdev = rdev->bdev;
768 	bio->bi_sector = sector;
769 	bio_add_page(bio, page, size, 0);
770 	bio->bi_private = rdev;
771 	bio->bi_end_io = super_written;
772 
773 	atomic_inc(&mddev->pending_writes);
774 	submit_bio(REQ_WRITE | REQ_SYNC | REQ_UNPLUG | REQ_FLUSH | REQ_FUA,
775 		   bio);
776 }
777 
778 void md_super_wait(mddev_t *mddev)
779 {
780 	/* wait for all superblock writes that were scheduled to complete */
781 	DEFINE_WAIT(wq);
782 	for(;;) {
783 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
784 		if (atomic_read(&mddev->pending_writes)==0)
785 			break;
786 		schedule();
787 	}
788 	finish_wait(&mddev->sb_wait, &wq);
789 }
790 
791 static void bi_complete(struct bio *bio, int error)
792 {
793 	complete((struct completion*)bio->bi_private);
794 }
795 
796 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
797 		 struct page *page, int rw)
798 {
799 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
800 	struct completion event;
801 	int ret;
802 
803 	rw |= REQ_SYNC | REQ_UNPLUG;
804 
805 	bio->bi_bdev = rdev->bdev;
806 	bio->bi_sector = sector;
807 	bio_add_page(bio, page, size, 0);
808 	init_completion(&event);
809 	bio->bi_private = &event;
810 	bio->bi_end_io = bi_complete;
811 	submit_bio(rw, bio);
812 	wait_for_completion(&event);
813 
814 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
815 	bio_put(bio);
816 	return ret;
817 }
818 EXPORT_SYMBOL_GPL(sync_page_io);
819 
820 static int read_disk_sb(mdk_rdev_t * rdev, int size)
821 {
822 	char b[BDEVNAME_SIZE];
823 	if (!rdev->sb_page) {
824 		MD_BUG();
825 		return -EINVAL;
826 	}
827 	if (rdev->sb_loaded)
828 		return 0;
829 
830 
831 	if (!sync_page_io(rdev, rdev->sb_start, size, rdev->sb_page, READ))
832 		goto fail;
833 	rdev->sb_loaded = 1;
834 	return 0;
835 
836 fail:
837 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
838 		bdevname(rdev->bdev,b));
839 	return -EINVAL;
840 }
841 
842 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
843 {
844 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
845 		sb1->set_uuid1 == sb2->set_uuid1 &&
846 		sb1->set_uuid2 == sb2->set_uuid2 &&
847 		sb1->set_uuid3 == sb2->set_uuid3;
848 }
849 
850 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
851 {
852 	int ret;
853 	mdp_super_t *tmp1, *tmp2;
854 
855 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
856 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
857 
858 	if (!tmp1 || !tmp2) {
859 		ret = 0;
860 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
861 		goto abort;
862 	}
863 
864 	*tmp1 = *sb1;
865 	*tmp2 = *sb2;
866 
867 	/*
868 	 * nr_disks is not constant
869 	 */
870 	tmp1->nr_disks = 0;
871 	tmp2->nr_disks = 0;
872 
873 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
874 abort:
875 	kfree(tmp1);
876 	kfree(tmp2);
877 	return ret;
878 }
879 
880 
881 static u32 md_csum_fold(u32 csum)
882 {
883 	csum = (csum & 0xffff) + (csum >> 16);
884 	return (csum & 0xffff) + (csum >> 16);
885 }
886 
887 static unsigned int calc_sb_csum(mdp_super_t * sb)
888 {
889 	u64 newcsum = 0;
890 	u32 *sb32 = (u32*)sb;
891 	int i;
892 	unsigned int disk_csum, csum;
893 
894 	disk_csum = sb->sb_csum;
895 	sb->sb_csum = 0;
896 
897 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
898 		newcsum += sb32[i];
899 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
900 
901 
902 #ifdef CONFIG_ALPHA
903 	/* This used to use csum_partial, which was wrong for several
904 	 * reasons including that different results are returned on
905 	 * different architectures.  It isn't critical that we get exactly
906 	 * the same return value as before (we always csum_fold before
907 	 * testing, and that removes any differences).  However as we
908 	 * know that csum_partial always returned a 16bit value on
909 	 * alphas, do a fold to maximise conformity to previous behaviour.
910 	 */
911 	sb->sb_csum = md_csum_fold(disk_csum);
912 #else
913 	sb->sb_csum = disk_csum;
914 #endif
915 	return csum;
916 }
917 
918 
919 /*
920  * Handle superblock details.
921  * We want to be able to handle multiple superblock formats
922  * so we have a common interface to them all, and an array of
923  * different handlers.
924  * We rely on user-space to write the initial superblock, and support
925  * reading and updating of superblocks.
926  * Interface methods are:
927  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
928  *      loads and validates a superblock on dev.
929  *      if refdev != NULL, compare superblocks on both devices
930  *    Return:
931  *      0 - dev has a superblock that is compatible with refdev
932  *      1 - dev has a superblock that is compatible and newer than refdev
933  *          so dev should be used as the refdev in future
934  *     -EINVAL superblock incompatible or invalid
935  *     -othererror e.g. -EIO
936  *
937  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
938  *      Verify that dev is acceptable into mddev.
939  *       The first time, mddev->raid_disks will be 0, and data from
940  *       dev should be merged in.  Subsequent calls check that dev
941  *       is new enough.  Return 0 or -EINVAL
942  *
943  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
944  *     Update the superblock for rdev with data in mddev
945  *     This does not write to disc.
946  *
947  */
948 
949 struct super_type  {
950 	char		    *name;
951 	struct module	    *owner;
952 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
953 					  int minor_version);
954 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
955 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
956 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
957 						sector_t num_sectors);
958 };
959 
960 /*
961  * Check that the given mddev has no bitmap.
962  *
963  * This function is called from the run method of all personalities that do not
964  * support bitmaps. It prints an error message and returns non-zero if mddev
965  * has a bitmap. Otherwise, it returns 0.
966  *
967  */
968 int md_check_no_bitmap(mddev_t *mddev)
969 {
970 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
971 		return 0;
972 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
973 		mdname(mddev), mddev->pers->name);
974 	return 1;
975 }
976 EXPORT_SYMBOL(md_check_no_bitmap);
977 
978 /*
979  * load_super for 0.90.0
980  */
981 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
982 {
983 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
984 	mdp_super_t *sb;
985 	int ret;
986 
987 	/*
988 	 * Calculate the position of the superblock (512byte sectors),
989 	 * it's at the end of the disk.
990 	 *
991 	 * It also happens to be a multiple of 4Kb.
992 	 */
993 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
994 
995 	ret = read_disk_sb(rdev, MD_SB_BYTES);
996 	if (ret) return ret;
997 
998 	ret = -EINVAL;
999 
1000 	bdevname(rdev->bdev, b);
1001 	sb = (mdp_super_t*)page_address(rdev->sb_page);
1002 
1003 	if (sb->md_magic != MD_SB_MAGIC) {
1004 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1005 		       b);
1006 		goto abort;
1007 	}
1008 
1009 	if (sb->major_version != 0 ||
1010 	    sb->minor_version < 90 ||
1011 	    sb->minor_version > 91) {
1012 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1013 			sb->major_version, sb->minor_version,
1014 			b);
1015 		goto abort;
1016 	}
1017 
1018 	if (sb->raid_disks <= 0)
1019 		goto abort;
1020 
1021 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1022 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1023 			b);
1024 		goto abort;
1025 	}
1026 
1027 	rdev->preferred_minor = sb->md_minor;
1028 	rdev->data_offset = 0;
1029 	rdev->sb_size = MD_SB_BYTES;
1030 
1031 	if (sb->level == LEVEL_MULTIPATH)
1032 		rdev->desc_nr = -1;
1033 	else
1034 		rdev->desc_nr = sb->this_disk.number;
1035 
1036 	if (!refdev) {
1037 		ret = 1;
1038 	} else {
1039 		__u64 ev1, ev2;
1040 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1041 		if (!uuid_equal(refsb, sb)) {
1042 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1043 				b, bdevname(refdev->bdev,b2));
1044 			goto abort;
1045 		}
1046 		if (!sb_equal(refsb, sb)) {
1047 			printk(KERN_WARNING "md: %s has same UUID"
1048 			       " but different superblock to %s\n",
1049 			       b, bdevname(refdev->bdev, b2));
1050 			goto abort;
1051 		}
1052 		ev1 = md_event(sb);
1053 		ev2 = md_event(refsb);
1054 		if (ev1 > ev2)
1055 			ret = 1;
1056 		else
1057 			ret = 0;
1058 	}
1059 	rdev->sectors = rdev->sb_start;
1060 
1061 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
1062 		/* "this cannot possibly happen" ... */
1063 		ret = -EINVAL;
1064 
1065  abort:
1066 	return ret;
1067 }
1068 
1069 /*
1070  * validate_super for 0.90.0
1071  */
1072 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1073 {
1074 	mdp_disk_t *desc;
1075 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1076 	__u64 ev1 = md_event(sb);
1077 
1078 	rdev->raid_disk = -1;
1079 	clear_bit(Faulty, &rdev->flags);
1080 	clear_bit(In_sync, &rdev->flags);
1081 	clear_bit(WriteMostly, &rdev->flags);
1082 
1083 	if (mddev->raid_disks == 0) {
1084 		mddev->major_version = 0;
1085 		mddev->minor_version = sb->minor_version;
1086 		mddev->patch_version = sb->patch_version;
1087 		mddev->external = 0;
1088 		mddev->chunk_sectors = sb->chunk_size >> 9;
1089 		mddev->ctime = sb->ctime;
1090 		mddev->utime = sb->utime;
1091 		mddev->level = sb->level;
1092 		mddev->clevel[0] = 0;
1093 		mddev->layout = sb->layout;
1094 		mddev->raid_disks = sb->raid_disks;
1095 		mddev->dev_sectors = sb->size * 2;
1096 		mddev->events = ev1;
1097 		mddev->bitmap_info.offset = 0;
1098 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1099 
1100 		if (mddev->minor_version >= 91) {
1101 			mddev->reshape_position = sb->reshape_position;
1102 			mddev->delta_disks = sb->delta_disks;
1103 			mddev->new_level = sb->new_level;
1104 			mddev->new_layout = sb->new_layout;
1105 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1106 		} else {
1107 			mddev->reshape_position = MaxSector;
1108 			mddev->delta_disks = 0;
1109 			mddev->new_level = mddev->level;
1110 			mddev->new_layout = mddev->layout;
1111 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1112 		}
1113 
1114 		if (sb->state & (1<<MD_SB_CLEAN))
1115 			mddev->recovery_cp = MaxSector;
1116 		else {
1117 			if (sb->events_hi == sb->cp_events_hi &&
1118 				sb->events_lo == sb->cp_events_lo) {
1119 				mddev->recovery_cp = sb->recovery_cp;
1120 			} else
1121 				mddev->recovery_cp = 0;
1122 		}
1123 
1124 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1125 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1126 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1127 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1128 
1129 		mddev->max_disks = MD_SB_DISKS;
1130 
1131 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1132 		    mddev->bitmap_info.file == NULL)
1133 			mddev->bitmap_info.offset =
1134 				mddev->bitmap_info.default_offset;
1135 
1136 	} else if (mddev->pers == NULL) {
1137 		/* Insist on good event counter while assembling, except
1138 		 * for spares (which don't need an event count) */
1139 		++ev1;
1140 		if (sb->disks[rdev->desc_nr].state & (
1141 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1142 			if (ev1 < mddev->events)
1143 				return -EINVAL;
1144 	} else if (mddev->bitmap) {
1145 		/* if adding to array with a bitmap, then we can accept an
1146 		 * older device ... but not too old.
1147 		 */
1148 		if (ev1 < mddev->bitmap->events_cleared)
1149 			return 0;
1150 	} else {
1151 		if (ev1 < mddev->events)
1152 			/* just a hot-add of a new device, leave raid_disk at -1 */
1153 			return 0;
1154 	}
1155 
1156 	if (mddev->level != LEVEL_MULTIPATH) {
1157 		desc = sb->disks + rdev->desc_nr;
1158 
1159 		if (desc->state & (1<<MD_DISK_FAULTY))
1160 			set_bit(Faulty, &rdev->flags);
1161 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1162 			    desc->raid_disk < mddev->raid_disks */) {
1163 			set_bit(In_sync, &rdev->flags);
1164 			rdev->raid_disk = desc->raid_disk;
1165 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1166 			/* active but not in sync implies recovery up to
1167 			 * reshape position.  We don't know exactly where
1168 			 * that is, so set to zero for now */
1169 			if (mddev->minor_version >= 91) {
1170 				rdev->recovery_offset = 0;
1171 				rdev->raid_disk = desc->raid_disk;
1172 			}
1173 		}
1174 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1175 			set_bit(WriteMostly, &rdev->flags);
1176 	} else /* MULTIPATH are always insync */
1177 		set_bit(In_sync, &rdev->flags);
1178 	return 0;
1179 }
1180 
1181 /*
1182  * sync_super for 0.90.0
1183  */
1184 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1185 {
1186 	mdp_super_t *sb;
1187 	mdk_rdev_t *rdev2;
1188 	int next_spare = mddev->raid_disks;
1189 
1190 
1191 	/* make rdev->sb match mddev data..
1192 	 *
1193 	 * 1/ zero out disks
1194 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1195 	 * 3/ any empty disks < next_spare become removed
1196 	 *
1197 	 * disks[0] gets initialised to REMOVED because
1198 	 * we cannot be sure from other fields if it has
1199 	 * been initialised or not.
1200 	 */
1201 	int i;
1202 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1203 
1204 	rdev->sb_size = MD_SB_BYTES;
1205 
1206 	sb = (mdp_super_t*)page_address(rdev->sb_page);
1207 
1208 	memset(sb, 0, sizeof(*sb));
1209 
1210 	sb->md_magic = MD_SB_MAGIC;
1211 	sb->major_version = mddev->major_version;
1212 	sb->patch_version = mddev->patch_version;
1213 	sb->gvalid_words  = 0; /* ignored */
1214 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1215 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1216 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1217 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1218 
1219 	sb->ctime = mddev->ctime;
1220 	sb->level = mddev->level;
1221 	sb->size = mddev->dev_sectors / 2;
1222 	sb->raid_disks = mddev->raid_disks;
1223 	sb->md_minor = mddev->md_minor;
1224 	sb->not_persistent = 0;
1225 	sb->utime = mddev->utime;
1226 	sb->state = 0;
1227 	sb->events_hi = (mddev->events>>32);
1228 	sb->events_lo = (u32)mddev->events;
1229 
1230 	if (mddev->reshape_position == MaxSector)
1231 		sb->minor_version = 90;
1232 	else {
1233 		sb->minor_version = 91;
1234 		sb->reshape_position = mddev->reshape_position;
1235 		sb->new_level = mddev->new_level;
1236 		sb->delta_disks = mddev->delta_disks;
1237 		sb->new_layout = mddev->new_layout;
1238 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1239 	}
1240 	mddev->minor_version = sb->minor_version;
1241 	if (mddev->in_sync)
1242 	{
1243 		sb->recovery_cp = mddev->recovery_cp;
1244 		sb->cp_events_hi = (mddev->events>>32);
1245 		sb->cp_events_lo = (u32)mddev->events;
1246 		if (mddev->recovery_cp == MaxSector)
1247 			sb->state = (1<< MD_SB_CLEAN);
1248 	} else
1249 		sb->recovery_cp = 0;
1250 
1251 	sb->layout = mddev->layout;
1252 	sb->chunk_size = mddev->chunk_sectors << 9;
1253 
1254 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1255 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1256 
1257 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1258 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1259 		mdp_disk_t *d;
1260 		int desc_nr;
1261 		int is_active = test_bit(In_sync, &rdev2->flags);
1262 
1263 		if (rdev2->raid_disk >= 0 &&
1264 		    sb->minor_version >= 91)
1265 			/* we have nowhere to store the recovery_offset,
1266 			 * but if it is not below the reshape_position,
1267 			 * we can piggy-back on that.
1268 			 */
1269 			is_active = 1;
1270 		if (rdev2->raid_disk < 0 ||
1271 		    test_bit(Faulty, &rdev2->flags))
1272 			is_active = 0;
1273 		if (is_active)
1274 			desc_nr = rdev2->raid_disk;
1275 		else
1276 			desc_nr = next_spare++;
1277 		rdev2->desc_nr = desc_nr;
1278 		d = &sb->disks[rdev2->desc_nr];
1279 		nr_disks++;
1280 		d->number = rdev2->desc_nr;
1281 		d->major = MAJOR(rdev2->bdev->bd_dev);
1282 		d->minor = MINOR(rdev2->bdev->bd_dev);
1283 		if (is_active)
1284 			d->raid_disk = rdev2->raid_disk;
1285 		else
1286 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1287 		if (test_bit(Faulty, &rdev2->flags))
1288 			d->state = (1<<MD_DISK_FAULTY);
1289 		else if (is_active) {
1290 			d->state = (1<<MD_DISK_ACTIVE);
1291 			if (test_bit(In_sync, &rdev2->flags))
1292 				d->state |= (1<<MD_DISK_SYNC);
1293 			active++;
1294 			working++;
1295 		} else {
1296 			d->state = 0;
1297 			spare++;
1298 			working++;
1299 		}
1300 		if (test_bit(WriteMostly, &rdev2->flags))
1301 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1302 	}
1303 	/* now set the "removed" and "faulty" bits on any missing devices */
1304 	for (i=0 ; i < mddev->raid_disks ; i++) {
1305 		mdp_disk_t *d = &sb->disks[i];
1306 		if (d->state == 0 && d->number == 0) {
1307 			d->number = i;
1308 			d->raid_disk = i;
1309 			d->state = (1<<MD_DISK_REMOVED);
1310 			d->state |= (1<<MD_DISK_FAULTY);
1311 			failed++;
1312 		}
1313 	}
1314 	sb->nr_disks = nr_disks;
1315 	sb->active_disks = active;
1316 	sb->working_disks = working;
1317 	sb->failed_disks = failed;
1318 	sb->spare_disks = spare;
1319 
1320 	sb->this_disk = sb->disks[rdev->desc_nr];
1321 	sb->sb_csum = calc_sb_csum(sb);
1322 }
1323 
1324 /*
1325  * rdev_size_change for 0.90.0
1326  */
1327 static unsigned long long
1328 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1329 {
1330 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1331 		return 0; /* component must fit device */
1332 	if (rdev->mddev->bitmap_info.offset)
1333 		return 0; /* can't move bitmap */
1334 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1335 	if (!num_sectors || num_sectors > rdev->sb_start)
1336 		num_sectors = rdev->sb_start;
1337 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1338 		       rdev->sb_page);
1339 	md_super_wait(rdev->mddev);
1340 	return num_sectors / 2; /* kB for sysfs */
1341 }
1342 
1343 
1344 /*
1345  * version 1 superblock
1346  */
1347 
1348 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1349 {
1350 	__le32 disk_csum;
1351 	u32 csum;
1352 	unsigned long long newcsum;
1353 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1354 	__le32 *isuper = (__le32*)sb;
1355 	int i;
1356 
1357 	disk_csum = sb->sb_csum;
1358 	sb->sb_csum = 0;
1359 	newcsum = 0;
1360 	for (i=0; size>=4; size -= 4 )
1361 		newcsum += le32_to_cpu(*isuper++);
1362 
1363 	if (size == 2)
1364 		newcsum += le16_to_cpu(*(__le16*) isuper);
1365 
1366 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1367 	sb->sb_csum = disk_csum;
1368 	return cpu_to_le32(csum);
1369 }
1370 
1371 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1372 {
1373 	struct mdp_superblock_1 *sb;
1374 	int ret;
1375 	sector_t sb_start;
1376 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1377 	int bmask;
1378 
1379 	/*
1380 	 * Calculate the position of the superblock in 512byte sectors.
1381 	 * It is always aligned to a 4K boundary and
1382 	 * depeding on minor_version, it can be:
1383 	 * 0: At least 8K, but less than 12K, from end of device
1384 	 * 1: At start of device
1385 	 * 2: 4K from start of device.
1386 	 */
1387 	switch(minor_version) {
1388 	case 0:
1389 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1390 		sb_start -= 8*2;
1391 		sb_start &= ~(sector_t)(4*2-1);
1392 		break;
1393 	case 1:
1394 		sb_start = 0;
1395 		break;
1396 	case 2:
1397 		sb_start = 8;
1398 		break;
1399 	default:
1400 		return -EINVAL;
1401 	}
1402 	rdev->sb_start = sb_start;
1403 
1404 	/* superblock is rarely larger than 1K, but it can be larger,
1405 	 * and it is safe to read 4k, so we do that
1406 	 */
1407 	ret = read_disk_sb(rdev, 4096);
1408 	if (ret) return ret;
1409 
1410 
1411 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1412 
1413 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1414 	    sb->major_version != cpu_to_le32(1) ||
1415 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1416 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1417 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1418 		return -EINVAL;
1419 
1420 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1421 		printk("md: invalid superblock checksum on %s\n",
1422 			bdevname(rdev->bdev,b));
1423 		return -EINVAL;
1424 	}
1425 	if (le64_to_cpu(sb->data_size) < 10) {
1426 		printk("md: data_size too small on %s\n",
1427 		       bdevname(rdev->bdev,b));
1428 		return -EINVAL;
1429 	}
1430 
1431 	rdev->preferred_minor = 0xffff;
1432 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1433 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1434 
1435 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1436 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1437 	if (rdev->sb_size & bmask)
1438 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1439 
1440 	if (minor_version
1441 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1442 		return -EINVAL;
1443 
1444 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1445 		rdev->desc_nr = -1;
1446 	else
1447 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1448 
1449 	if (!refdev) {
1450 		ret = 1;
1451 	} else {
1452 		__u64 ev1, ev2;
1453 		struct mdp_superblock_1 *refsb =
1454 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1455 
1456 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1457 		    sb->level != refsb->level ||
1458 		    sb->layout != refsb->layout ||
1459 		    sb->chunksize != refsb->chunksize) {
1460 			printk(KERN_WARNING "md: %s has strangely different"
1461 				" superblock to %s\n",
1462 				bdevname(rdev->bdev,b),
1463 				bdevname(refdev->bdev,b2));
1464 			return -EINVAL;
1465 		}
1466 		ev1 = le64_to_cpu(sb->events);
1467 		ev2 = le64_to_cpu(refsb->events);
1468 
1469 		if (ev1 > ev2)
1470 			ret = 1;
1471 		else
1472 			ret = 0;
1473 	}
1474 	if (minor_version)
1475 		rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1476 			le64_to_cpu(sb->data_offset);
1477 	else
1478 		rdev->sectors = rdev->sb_start;
1479 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1480 		return -EINVAL;
1481 	rdev->sectors = le64_to_cpu(sb->data_size);
1482 	if (le64_to_cpu(sb->size) > rdev->sectors)
1483 		return -EINVAL;
1484 	return ret;
1485 }
1486 
1487 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1488 {
1489 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1490 	__u64 ev1 = le64_to_cpu(sb->events);
1491 
1492 	rdev->raid_disk = -1;
1493 	clear_bit(Faulty, &rdev->flags);
1494 	clear_bit(In_sync, &rdev->flags);
1495 	clear_bit(WriteMostly, &rdev->flags);
1496 
1497 	if (mddev->raid_disks == 0) {
1498 		mddev->major_version = 1;
1499 		mddev->patch_version = 0;
1500 		mddev->external = 0;
1501 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1502 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1503 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1504 		mddev->level = le32_to_cpu(sb->level);
1505 		mddev->clevel[0] = 0;
1506 		mddev->layout = le32_to_cpu(sb->layout);
1507 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1508 		mddev->dev_sectors = le64_to_cpu(sb->size);
1509 		mddev->events = ev1;
1510 		mddev->bitmap_info.offset = 0;
1511 		mddev->bitmap_info.default_offset = 1024 >> 9;
1512 
1513 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1514 		memcpy(mddev->uuid, sb->set_uuid, 16);
1515 
1516 		mddev->max_disks =  (4096-256)/2;
1517 
1518 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1519 		    mddev->bitmap_info.file == NULL )
1520 			mddev->bitmap_info.offset =
1521 				(__s32)le32_to_cpu(sb->bitmap_offset);
1522 
1523 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1524 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1525 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1526 			mddev->new_level = le32_to_cpu(sb->new_level);
1527 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1528 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1529 		} else {
1530 			mddev->reshape_position = MaxSector;
1531 			mddev->delta_disks = 0;
1532 			mddev->new_level = mddev->level;
1533 			mddev->new_layout = mddev->layout;
1534 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1535 		}
1536 
1537 	} else if (mddev->pers == NULL) {
1538 		/* Insist of good event counter while assembling, except for
1539 		 * spares (which don't need an event count) */
1540 		++ev1;
1541 		if (rdev->desc_nr >= 0 &&
1542 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1543 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1544 			if (ev1 < mddev->events)
1545 				return -EINVAL;
1546 	} else if (mddev->bitmap) {
1547 		/* If adding to array with a bitmap, then we can accept an
1548 		 * older device, but not too old.
1549 		 */
1550 		if (ev1 < mddev->bitmap->events_cleared)
1551 			return 0;
1552 	} else {
1553 		if (ev1 < mddev->events)
1554 			/* just a hot-add of a new device, leave raid_disk at -1 */
1555 			return 0;
1556 	}
1557 	if (mddev->level != LEVEL_MULTIPATH) {
1558 		int role;
1559 		if (rdev->desc_nr < 0 ||
1560 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1561 			role = 0xffff;
1562 			rdev->desc_nr = -1;
1563 		} else
1564 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1565 		switch(role) {
1566 		case 0xffff: /* spare */
1567 			break;
1568 		case 0xfffe: /* faulty */
1569 			set_bit(Faulty, &rdev->flags);
1570 			break;
1571 		default:
1572 			if ((le32_to_cpu(sb->feature_map) &
1573 			     MD_FEATURE_RECOVERY_OFFSET))
1574 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1575 			else
1576 				set_bit(In_sync, &rdev->flags);
1577 			rdev->raid_disk = role;
1578 			break;
1579 		}
1580 		if (sb->devflags & WriteMostly1)
1581 			set_bit(WriteMostly, &rdev->flags);
1582 	} else /* MULTIPATH are always insync */
1583 		set_bit(In_sync, &rdev->flags);
1584 
1585 	return 0;
1586 }
1587 
1588 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1589 {
1590 	struct mdp_superblock_1 *sb;
1591 	mdk_rdev_t *rdev2;
1592 	int max_dev, i;
1593 	/* make rdev->sb match mddev and rdev data. */
1594 
1595 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1596 
1597 	sb->feature_map = 0;
1598 	sb->pad0 = 0;
1599 	sb->recovery_offset = cpu_to_le64(0);
1600 	memset(sb->pad1, 0, sizeof(sb->pad1));
1601 	memset(sb->pad2, 0, sizeof(sb->pad2));
1602 	memset(sb->pad3, 0, sizeof(sb->pad3));
1603 
1604 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1605 	sb->events = cpu_to_le64(mddev->events);
1606 	if (mddev->in_sync)
1607 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1608 	else
1609 		sb->resync_offset = cpu_to_le64(0);
1610 
1611 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1612 
1613 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1614 	sb->size = cpu_to_le64(mddev->dev_sectors);
1615 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1616 	sb->level = cpu_to_le32(mddev->level);
1617 	sb->layout = cpu_to_le32(mddev->layout);
1618 
1619 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1620 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1621 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1622 	}
1623 
1624 	if (rdev->raid_disk >= 0 &&
1625 	    !test_bit(In_sync, &rdev->flags)) {
1626 		sb->feature_map |=
1627 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1628 		sb->recovery_offset =
1629 			cpu_to_le64(rdev->recovery_offset);
1630 	}
1631 
1632 	if (mddev->reshape_position != MaxSector) {
1633 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1634 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1635 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1636 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1637 		sb->new_level = cpu_to_le32(mddev->new_level);
1638 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1639 	}
1640 
1641 	max_dev = 0;
1642 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1643 		if (rdev2->desc_nr+1 > max_dev)
1644 			max_dev = rdev2->desc_nr+1;
1645 
1646 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1647 		int bmask;
1648 		sb->max_dev = cpu_to_le32(max_dev);
1649 		rdev->sb_size = max_dev * 2 + 256;
1650 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1651 		if (rdev->sb_size & bmask)
1652 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1653 	} else
1654 		max_dev = le32_to_cpu(sb->max_dev);
1655 
1656 	for (i=0; i<max_dev;i++)
1657 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1658 
1659 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1660 		i = rdev2->desc_nr;
1661 		if (test_bit(Faulty, &rdev2->flags))
1662 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1663 		else if (test_bit(In_sync, &rdev2->flags))
1664 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1665 		else if (rdev2->raid_disk >= 0)
1666 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1667 		else
1668 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1669 	}
1670 
1671 	sb->sb_csum = calc_sb_1_csum(sb);
1672 }
1673 
1674 static unsigned long long
1675 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1676 {
1677 	struct mdp_superblock_1 *sb;
1678 	sector_t max_sectors;
1679 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1680 		return 0; /* component must fit device */
1681 	if (rdev->sb_start < rdev->data_offset) {
1682 		/* minor versions 1 and 2; superblock before data */
1683 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1684 		max_sectors -= rdev->data_offset;
1685 		if (!num_sectors || num_sectors > max_sectors)
1686 			num_sectors = max_sectors;
1687 	} else if (rdev->mddev->bitmap_info.offset) {
1688 		/* minor version 0 with bitmap we can't move */
1689 		return 0;
1690 	} else {
1691 		/* minor version 0; superblock after data */
1692 		sector_t sb_start;
1693 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1694 		sb_start &= ~(sector_t)(4*2 - 1);
1695 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1696 		if (!num_sectors || num_sectors > max_sectors)
1697 			num_sectors = max_sectors;
1698 		rdev->sb_start = sb_start;
1699 	}
1700 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1701 	sb->data_size = cpu_to_le64(num_sectors);
1702 	sb->super_offset = rdev->sb_start;
1703 	sb->sb_csum = calc_sb_1_csum(sb);
1704 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1705 		       rdev->sb_page);
1706 	md_super_wait(rdev->mddev);
1707 	return num_sectors / 2; /* kB for sysfs */
1708 }
1709 
1710 static struct super_type super_types[] = {
1711 	[0] = {
1712 		.name	= "0.90.0",
1713 		.owner	= THIS_MODULE,
1714 		.load_super	    = super_90_load,
1715 		.validate_super	    = super_90_validate,
1716 		.sync_super	    = super_90_sync,
1717 		.rdev_size_change   = super_90_rdev_size_change,
1718 	},
1719 	[1] = {
1720 		.name	= "md-1",
1721 		.owner	= THIS_MODULE,
1722 		.load_super	    = super_1_load,
1723 		.validate_super	    = super_1_validate,
1724 		.sync_super	    = super_1_sync,
1725 		.rdev_size_change   = super_1_rdev_size_change,
1726 	},
1727 };
1728 
1729 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1730 {
1731 	mdk_rdev_t *rdev, *rdev2;
1732 
1733 	rcu_read_lock();
1734 	rdev_for_each_rcu(rdev, mddev1)
1735 		rdev_for_each_rcu(rdev2, mddev2)
1736 			if (rdev->bdev->bd_contains ==
1737 			    rdev2->bdev->bd_contains) {
1738 				rcu_read_unlock();
1739 				return 1;
1740 			}
1741 	rcu_read_unlock();
1742 	return 0;
1743 }
1744 
1745 static LIST_HEAD(pending_raid_disks);
1746 
1747 /*
1748  * Try to register data integrity profile for an mddev
1749  *
1750  * This is called when an array is started and after a disk has been kicked
1751  * from the array. It only succeeds if all working and active component devices
1752  * are integrity capable with matching profiles.
1753  */
1754 int md_integrity_register(mddev_t *mddev)
1755 {
1756 	mdk_rdev_t *rdev, *reference = NULL;
1757 
1758 	if (list_empty(&mddev->disks))
1759 		return 0; /* nothing to do */
1760 	if (blk_get_integrity(mddev->gendisk))
1761 		return 0; /* already registered */
1762 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1763 		/* skip spares and non-functional disks */
1764 		if (test_bit(Faulty, &rdev->flags))
1765 			continue;
1766 		if (rdev->raid_disk < 0)
1767 			continue;
1768 		/*
1769 		 * If at least one rdev is not integrity capable, we can not
1770 		 * enable data integrity for the md device.
1771 		 */
1772 		if (!bdev_get_integrity(rdev->bdev))
1773 			return -EINVAL;
1774 		if (!reference) {
1775 			/* Use the first rdev as the reference */
1776 			reference = rdev;
1777 			continue;
1778 		}
1779 		/* does this rdev's profile match the reference profile? */
1780 		if (blk_integrity_compare(reference->bdev->bd_disk,
1781 				rdev->bdev->bd_disk) < 0)
1782 			return -EINVAL;
1783 	}
1784 	/*
1785 	 * All component devices are integrity capable and have matching
1786 	 * profiles, register the common profile for the md device.
1787 	 */
1788 	if (blk_integrity_register(mddev->gendisk,
1789 			bdev_get_integrity(reference->bdev)) != 0) {
1790 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1791 			mdname(mddev));
1792 		return -EINVAL;
1793 	}
1794 	printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1795 		mdname(mddev));
1796 	return 0;
1797 }
1798 EXPORT_SYMBOL(md_integrity_register);
1799 
1800 /* Disable data integrity if non-capable/non-matching disk is being added */
1801 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1802 {
1803 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1804 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1805 
1806 	if (!bi_mddev) /* nothing to do */
1807 		return;
1808 	if (rdev->raid_disk < 0) /* skip spares */
1809 		return;
1810 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1811 					     rdev->bdev->bd_disk) >= 0)
1812 		return;
1813 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1814 	blk_integrity_unregister(mddev->gendisk);
1815 }
1816 EXPORT_SYMBOL(md_integrity_add_rdev);
1817 
1818 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1819 {
1820 	char b[BDEVNAME_SIZE];
1821 	struct kobject *ko;
1822 	char *s;
1823 	int err;
1824 
1825 	if (rdev->mddev) {
1826 		MD_BUG();
1827 		return -EINVAL;
1828 	}
1829 
1830 	/* prevent duplicates */
1831 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1832 		return -EEXIST;
1833 
1834 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1835 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1836 			rdev->sectors < mddev->dev_sectors)) {
1837 		if (mddev->pers) {
1838 			/* Cannot change size, so fail
1839 			 * If mddev->level <= 0, then we don't care
1840 			 * about aligning sizes (e.g. linear)
1841 			 */
1842 			if (mddev->level > 0)
1843 				return -ENOSPC;
1844 		} else
1845 			mddev->dev_sectors = rdev->sectors;
1846 	}
1847 
1848 	/* Verify rdev->desc_nr is unique.
1849 	 * If it is -1, assign a free number, else
1850 	 * check number is not in use
1851 	 */
1852 	if (rdev->desc_nr < 0) {
1853 		int choice = 0;
1854 		if (mddev->pers) choice = mddev->raid_disks;
1855 		while (find_rdev_nr(mddev, choice))
1856 			choice++;
1857 		rdev->desc_nr = choice;
1858 	} else {
1859 		if (find_rdev_nr(mddev, rdev->desc_nr))
1860 			return -EBUSY;
1861 	}
1862 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1863 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1864 		       mdname(mddev), mddev->max_disks);
1865 		return -EBUSY;
1866 	}
1867 	bdevname(rdev->bdev,b);
1868 	while ( (s=strchr(b, '/')) != NULL)
1869 		*s = '!';
1870 
1871 	rdev->mddev = mddev;
1872 	printk(KERN_INFO "md: bind<%s>\n", b);
1873 
1874 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1875 		goto fail;
1876 
1877 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1878 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
1879 		/* failure here is OK */;
1880 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1881 
1882 	list_add_rcu(&rdev->same_set, &mddev->disks);
1883 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1884 
1885 	/* May as well allow recovery to be retried once */
1886 	mddev->recovery_disabled = 0;
1887 
1888 	return 0;
1889 
1890  fail:
1891 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1892 	       b, mdname(mddev));
1893 	return err;
1894 }
1895 
1896 static void md_delayed_delete(struct work_struct *ws)
1897 {
1898 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1899 	kobject_del(&rdev->kobj);
1900 	kobject_put(&rdev->kobj);
1901 }
1902 
1903 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1904 {
1905 	char b[BDEVNAME_SIZE];
1906 	if (!rdev->mddev) {
1907 		MD_BUG();
1908 		return;
1909 	}
1910 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1911 	list_del_rcu(&rdev->same_set);
1912 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1913 	rdev->mddev = NULL;
1914 	sysfs_remove_link(&rdev->kobj, "block");
1915 	sysfs_put(rdev->sysfs_state);
1916 	rdev->sysfs_state = NULL;
1917 	/* We need to delay this, otherwise we can deadlock when
1918 	 * writing to 'remove' to "dev/state".  We also need
1919 	 * to delay it due to rcu usage.
1920 	 */
1921 	synchronize_rcu();
1922 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1923 	kobject_get(&rdev->kobj);
1924 	queue_work(md_misc_wq, &rdev->del_work);
1925 }
1926 
1927 /*
1928  * prevent the device from being mounted, repartitioned or
1929  * otherwise reused by a RAID array (or any other kernel
1930  * subsystem), by bd_claiming the device.
1931  */
1932 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1933 {
1934 	int err = 0;
1935 	struct block_device *bdev;
1936 	char b[BDEVNAME_SIZE];
1937 
1938 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1939 	if (IS_ERR(bdev)) {
1940 		printk(KERN_ERR "md: could not open %s.\n",
1941 			__bdevname(dev, b));
1942 		return PTR_ERR(bdev);
1943 	}
1944 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1945 	if (err) {
1946 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1947 			bdevname(bdev, b));
1948 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1949 		return err;
1950 	}
1951 	if (!shared)
1952 		set_bit(AllReserved, &rdev->flags);
1953 	rdev->bdev = bdev;
1954 	return err;
1955 }
1956 
1957 static void unlock_rdev(mdk_rdev_t *rdev)
1958 {
1959 	struct block_device *bdev = rdev->bdev;
1960 	rdev->bdev = NULL;
1961 	if (!bdev)
1962 		MD_BUG();
1963 	bd_release(bdev);
1964 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1965 }
1966 
1967 void md_autodetect_dev(dev_t dev);
1968 
1969 static void export_rdev(mdk_rdev_t * rdev)
1970 {
1971 	char b[BDEVNAME_SIZE];
1972 	printk(KERN_INFO "md: export_rdev(%s)\n",
1973 		bdevname(rdev->bdev,b));
1974 	if (rdev->mddev)
1975 		MD_BUG();
1976 	free_disk_sb(rdev);
1977 #ifndef MODULE
1978 	if (test_bit(AutoDetected, &rdev->flags))
1979 		md_autodetect_dev(rdev->bdev->bd_dev);
1980 #endif
1981 	unlock_rdev(rdev);
1982 	kobject_put(&rdev->kobj);
1983 }
1984 
1985 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1986 {
1987 	unbind_rdev_from_array(rdev);
1988 	export_rdev(rdev);
1989 }
1990 
1991 static void export_array(mddev_t *mddev)
1992 {
1993 	mdk_rdev_t *rdev, *tmp;
1994 
1995 	rdev_for_each(rdev, tmp, mddev) {
1996 		if (!rdev->mddev) {
1997 			MD_BUG();
1998 			continue;
1999 		}
2000 		kick_rdev_from_array(rdev);
2001 	}
2002 	if (!list_empty(&mddev->disks))
2003 		MD_BUG();
2004 	mddev->raid_disks = 0;
2005 	mddev->major_version = 0;
2006 }
2007 
2008 static void print_desc(mdp_disk_t *desc)
2009 {
2010 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2011 		desc->major,desc->minor,desc->raid_disk,desc->state);
2012 }
2013 
2014 static void print_sb_90(mdp_super_t *sb)
2015 {
2016 	int i;
2017 
2018 	printk(KERN_INFO
2019 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2020 		sb->major_version, sb->minor_version, sb->patch_version,
2021 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2022 		sb->ctime);
2023 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2024 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2025 		sb->md_minor, sb->layout, sb->chunk_size);
2026 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2027 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2028 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2029 		sb->failed_disks, sb->spare_disks,
2030 		sb->sb_csum, (unsigned long)sb->events_lo);
2031 
2032 	printk(KERN_INFO);
2033 	for (i = 0; i < MD_SB_DISKS; i++) {
2034 		mdp_disk_t *desc;
2035 
2036 		desc = sb->disks + i;
2037 		if (desc->number || desc->major || desc->minor ||
2038 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2039 			printk("     D %2d: ", i);
2040 			print_desc(desc);
2041 		}
2042 	}
2043 	printk(KERN_INFO "md:     THIS: ");
2044 	print_desc(&sb->this_disk);
2045 }
2046 
2047 static void print_sb_1(struct mdp_superblock_1 *sb)
2048 {
2049 	__u8 *uuid;
2050 
2051 	uuid = sb->set_uuid;
2052 	printk(KERN_INFO
2053 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2054 	       "md:    Name: \"%s\" CT:%llu\n",
2055 		le32_to_cpu(sb->major_version),
2056 		le32_to_cpu(sb->feature_map),
2057 		uuid,
2058 		sb->set_name,
2059 		(unsigned long long)le64_to_cpu(sb->ctime)
2060 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2061 
2062 	uuid = sb->device_uuid;
2063 	printk(KERN_INFO
2064 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2065 			" RO:%llu\n"
2066 	       "md:     Dev:%08x UUID: %pU\n"
2067 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2068 	       "md:         (MaxDev:%u) \n",
2069 		le32_to_cpu(sb->level),
2070 		(unsigned long long)le64_to_cpu(sb->size),
2071 		le32_to_cpu(sb->raid_disks),
2072 		le32_to_cpu(sb->layout),
2073 		le32_to_cpu(sb->chunksize),
2074 		(unsigned long long)le64_to_cpu(sb->data_offset),
2075 		(unsigned long long)le64_to_cpu(sb->data_size),
2076 		(unsigned long long)le64_to_cpu(sb->super_offset),
2077 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2078 		le32_to_cpu(sb->dev_number),
2079 		uuid,
2080 		sb->devflags,
2081 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2082 		(unsigned long long)le64_to_cpu(sb->events),
2083 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2084 		le32_to_cpu(sb->sb_csum),
2085 		le32_to_cpu(sb->max_dev)
2086 		);
2087 }
2088 
2089 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2090 {
2091 	char b[BDEVNAME_SIZE];
2092 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2093 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2094 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2095 	        rdev->desc_nr);
2096 	if (rdev->sb_loaded) {
2097 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2098 		switch (major_version) {
2099 		case 0:
2100 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2101 			break;
2102 		case 1:
2103 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2104 			break;
2105 		}
2106 	} else
2107 		printk(KERN_INFO "md: no rdev superblock!\n");
2108 }
2109 
2110 static void md_print_devices(void)
2111 {
2112 	struct list_head *tmp;
2113 	mdk_rdev_t *rdev;
2114 	mddev_t *mddev;
2115 	char b[BDEVNAME_SIZE];
2116 
2117 	printk("\n");
2118 	printk("md:	**********************************\n");
2119 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2120 	printk("md:	**********************************\n");
2121 	for_each_mddev(mddev, tmp) {
2122 
2123 		if (mddev->bitmap)
2124 			bitmap_print_sb(mddev->bitmap);
2125 		else
2126 			printk("%s: ", mdname(mddev));
2127 		list_for_each_entry(rdev, &mddev->disks, same_set)
2128 			printk("<%s>", bdevname(rdev->bdev,b));
2129 		printk("\n");
2130 
2131 		list_for_each_entry(rdev, &mddev->disks, same_set)
2132 			print_rdev(rdev, mddev->major_version);
2133 	}
2134 	printk("md:	**********************************\n");
2135 	printk("\n");
2136 }
2137 
2138 
2139 static void sync_sbs(mddev_t * mddev, int nospares)
2140 {
2141 	/* Update each superblock (in-memory image), but
2142 	 * if we are allowed to, skip spares which already
2143 	 * have the right event counter, or have one earlier
2144 	 * (which would mean they aren't being marked as dirty
2145 	 * with the rest of the array)
2146 	 */
2147 	mdk_rdev_t *rdev;
2148 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2149 		if (rdev->sb_events == mddev->events ||
2150 		    (nospares &&
2151 		     rdev->raid_disk < 0 &&
2152 		     rdev->sb_events+1 == mddev->events)) {
2153 			/* Don't update this superblock */
2154 			rdev->sb_loaded = 2;
2155 		} else {
2156 			super_types[mddev->major_version].
2157 				sync_super(mddev, rdev);
2158 			rdev->sb_loaded = 1;
2159 		}
2160 	}
2161 }
2162 
2163 static void md_update_sb(mddev_t * mddev, int force_change)
2164 {
2165 	mdk_rdev_t *rdev;
2166 	int sync_req;
2167 	int nospares = 0;
2168 
2169 repeat:
2170 	/* First make sure individual recovery_offsets are correct */
2171 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2172 		if (rdev->raid_disk >= 0 &&
2173 		    mddev->delta_disks >= 0 &&
2174 		    !test_bit(In_sync, &rdev->flags) &&
2175 		    mddev->curr_resync_completed > rdev->recovery_offset)
2176 				rdev->recovery_offset = mddev->curr_resync_completed;
2177 
2178 	}
2179 	if (!mddev->persistent) {
2180 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2181 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2182 		if (!mddev->external)
2183 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2184 		wake_up(&mddev->sb_wait);
2185 		return;
2186 	}
2187 
2188 	spin_lock_irq(&mddev->write_lock);
2189 
2190 	mddev->utime = get_seconds();
2191 
2192 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2193 		force_change = 1;
2194 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2195 		/* just a clean<-> dirty transition, possibly leave spares alone,
2196 		 * though if events isn't the right even/odd, we will have to do
2197 		 * spares after all
2198 		 */
2199 		nospares = 1;
2200 	if (force_change)
2201 		nospares = 0;
2202 	if (mddev->degraded)
2203 		/* If the array is degraded, then skipping spares is both
2204 		 * dangerous and fairly pointless.
2205 		 * Dangerous because a device that was removed from the array
2206 		 * might have a event_count that still looks up-to-date,
2207 		 * so it can be re-added without a resync.
2208 		 * Pointless because if there are any spares to skip,
2209 		 * then a recovery will happen and soon that array won't
2210 		 * be degraded any more and the spare can go back to sleep then.
2211 		 */
2212 		nospares = 0;
2213 
2214 	sync_req = mddev->in_sync;
2215 
2216 	/* If this is just a dirty<->clean transition, and the array is clean
2217 	 * and 'events' is odd, we can roll back to the previous clean state */
2218 	if (nospares
2219 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2220 	    && mddev->can_decrease_events
2221 	    && mddev->events != 1) {
2222 		mddev->events--;
2223 		mddev->can_decrease_events = 0;
2224 	} else {
2225 		/* otherwise we have to go forward and ... */
2226 		mddev->events ++;
2227 		mddev->can_decrease_events = nospares;
2228 	}
2229 
2230 	if (!mddev->events) {
2231 		/*
2232 		 * oops, this 64-bit counter should never wrap.
2233 		 * Either we are in around ~1 trillion A.C., assuming
2234 		 * 1 reboot per second, or we have a bug:
2235 		 */
2236 		MD_BUG();
2237 		mddev->events --;
2238 	}
2239 	sync_sbs(mddev, nospares);
2240 	spin_unlock_irq(&mddev->write_lock);
2241 
2242 	dprintk(KERN_INFO
2243 		"md: updating %s RAID superblock on device (in sync %d)\n",
2244 		mdname(mddev),mddev->in_sync);
2245 
2246 	bitmap_update_sb(mddev->bitmap);
2247 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2248 		char b[BDEVNAME_SIZE];
2249 		dprintk(KERN_INFO "md: ");
2250 		if (rdev->sb_loaded != 1)
2251 			continue; /* no noise on spare devices */
2252 		if (test_bit(Faulty, &rdev->flags))
2253 			dprintk("(skipping faulty ");
2254 
2255 		dprintk("%s ", bdevname(rdev->bdev,b));
2256 		if (!test_bit(Faulty, &rdev->flags)) {
2257 			md_super_write(mddev,rdev,
2258 				       rdev->sb_start, rdev->sb_size,
2259 				       rdev->sb_page);
2260 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2261 				bdevname(rdev->bdev,b),
2262 				(unsigned long long)rdev->sb_start);
2263 			rdev->sb_events = mddev->events;
2264 
2265 		} else
2266 			dprintk(")\n");
2267 		if (mddev->level == LEVEL_MULTIPATH)
2268 			/* only need to write one superblock... */
2269 			break;
2270 	}
2271 	md_super_wait(mddev);
2272 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2273 
2274 	spin_lock_irq(&mddev->write_lock);
2275 	if (mddev->in_sync != sync_req ||
2276 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2277 		/* have to write it out again */
2278 		spin_unlock_irq(&mddev->write_lock);
2279 		goto repeat;
2280 	}
2281 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2282 	spin_unlock_irq(&mddev->write_lock);
2283 	wake_up(&mddev->sb_wait);
2284 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2285 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2286 
2287 }
2288 
2289 /* words written to sysfs files may, or may not, be \n terminated.
2290  * We want to accept with case. For this we use cmd_match.
2291  */
2292 static int cmd_match(const char *cmd, const char *str)
2293 {
2294 	/* See if cmd, written into a sysfs file, matches
2295 	 * str.  They must either be the same, or cmd can
2296 	 * have a trailing newline
2297 	 */
2298 	while (*cmd && *str && *cmd == *str) {
2299 		cmd++;
2300 		str++;
2301 	}
2302 	if (*cmd == '\n')
2303 		cmd++;
2304 	if (*str || *cmd)
2305 		return 0;
2306 	return 1;
2307 }
2308 
2309 struct rdev_sysfs_entry {
2310 	struct attribute attr;
2311 	ssize_t (*show)(mdk_rdev_t *, char *);
2312 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2313 };
2314 
2315 static ssize_t
2316 state_show(mdk_rdev_t *rdev, char *page)
2317 {
2318 	char *sep = "";
2319 	size_t len = 0;
2320 
2321 	if (test_bit(Faulty, &rdev->flags)) {
2322 		len+= sprintf(page+len, "%sfaulty",sep);
2323 		sep = ",";
2324 	}
2325 	if (test_bit(In_sync, &rdev->flags)) {
2326 		len += sprintf(page+len, "%sin_sync",sep);
2327 		sep = ",";
2328 	}
2329 	if (test_bit(WriteMostly, &rdev->flags)) {
2330 		len += sprintf(page+len, "%swrite_mostly",sep);
2331 		sep = ",";
2332 	}
2333 	if (test_bit(Blocked, &rdev->flags)) {
2334 		len += sprintf(page+len, "%sblocked", sep);
2335 		sep = ",";
2336 	}
2337 	if (!test_bit(Faulty, &rdev->flags) &&
2338 	    !test_bit(In_sync, &rdev->flags)) {
2339 		len += sprintf(page+len, "%sspare", sep);
2340 		sep = ",";
2341 	}
2342 	return len+sprintf(page+len, "\n");
2343 }
2344 
2345 static ssize_t
2346 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2347 {
2348 	/* can write
2349 	 *  faulty  - simulates and error
2350 	 *  remove  - disconnects the device
2351 	 *  writemostly - sets write_mostly
2352 	 *  -writemostly - clears write_mostly
2353 	 *  blocked - sets the Blocked flag
2354 	 *  -blocked - clears the Blocked flag
2355 	 *  insync - sets Insync providing device isn't active
2356 	 */
2357 	int err = -EINVAL;
2358 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2359 		md_error(rdev->mddev, rdev);
2360 		err = 0;
2361 	} else if (cmd_match(buf, "remove")) {
2362 		if (rdev->raid_disk >= 0)
2363 			err = -EBUSY;
2364 		else {
2365 			mddev_t *mddev = rdev->mddev;
2366 			kick_rdev_from_array(rdev);
2367 			if (mddev->pers)
2368 				md_update_sb(mddev, 1);
2369 			md_new_event(mddev);
2370 			err = 0;
2371 		}
2372 	} else if (cmd_match(buf, "writemostly")) {
2373 		set_bit(WriteMostly, &rdev->flags);
2374 		err = 0;
2375 	} else if (cmd_match(buf, "-writemostly")) {
2376 		clear_bit(WriteMostly, &rdev->flags);
2377 		err = 0;
2378 	} else if (cmd_match(buf, "blocked")) {
2379 		set_bit(Blocked, &rdev->flags);
2380 		err = 0;
2381 	} else if (cmd_match(buf, "-blocked")) {
2382 		clear_bit(Blocked, &rdev->flags);
2383 		wake_up(&rdev->blocked_wait);
2384 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2385 		md_wakeup_thread(rdev->mddev->thread);
2386 
2387 		err = 0;
2388 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2389 		set_bit(In_sync, &rdev->flags);
2390 		err = 0;
2391 	}
2392 	if (!err)
2393 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2394 	return err ? err : len;
2395 }
2396 static struct rdev_sysfs_entry rdev_state =
2397 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2398 
2399 static ssize_t
2400 errors_show(mdk_rdev_t *rdev, char *page)
2401 {
2402 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2403 }
2404 
2405 static ssize_t
2406 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2407 {
2408 	char *e;
2409 	unsigned long n = simple_strtoul(buf, &e, 10);
2410 	if (*buf && (*e == 0 || *e == '\n')) {
2411 		atomic_set(&rdev->corrected_errors, n);
2412 		return len;
2413 	}
2414 	return -EINVAL;
2415 }
2416 static struct rdev_sysfs_entry rdev_errors =
2417 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2418 
2419 static ssize_t
2420 slot_show(mdk_rdev_t *rdev, char *page)
2421 {
2422 	if (rdev->raid_disk < 0)
2423 		return sprintf(page, "none\n");
2424 	else
2425 		return sprintf(page, "%d\n", rdev->raid_disk);
2426 }
2427 
2428 static ssize_t
2429 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2430 {
2431 	char *e;
2432 	int err;
2433 	char nm[20];
2434 	int slot = simple_strtoul(buf, &e, 10);
2435 	if (strncmp(buf, "none", 4)==0)
2436 		slot = -1;
2437 	else if (e==buf || (*e && *e!= '\n'))
2438 		return -EINVAL;
2439 	if (rdev->mddev->pers && slot == -1) {
2440 		/* Setting 'slot' on an active array requires also
2441 		 * updating the 'rd%d' link, and communicating
2442 		 * with the personality with ->hot_*_disk.
2443 		 * For now we only support removing
2444 		 * failed/spare devices.  This normally happens automatically,
2445 		 * but not when the metadata is externally managed.
2446 		 */
2447 		if (rdev->raid_disk == -1)
2448 			return -EEXIST;
2449 		/* personality does all needed checks */
2450 		if (rdev->mddev->pers->hot_add_disk == NULL)
2451 			return -EINVAL;
2452 		err = rdev->mddev->pers->
2453 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2454 		if (err)
2455 			return err;
2456 		sprintf(nm, "rd%d", rdev->raid_disk);
2457 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2458 		rdev->raid_disk = -1;
2459 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2460 		md_wakeup_thread(rdev->mddev->thread);
2461 	} else if (rdev->mddev->pers) {
2462 		mdk_rdev_t *rdev2;
2463 		/* Activating a spare .. or possibly reactivating
2464 		 * if we ever get bitmaps working here.
2465 		 */
2466 
2467 		if (rdev->raid_disk != -1)
2468 			return -EBUSY;
2469 
2470 		if (rdev->mddev->pers->hot_add_disk == NULL)
2471 			return -EINVAL;
2472 
2473 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2474 			if (rdev2->raid_disk == slot)
2475 				return -EEXIST;
2476 
2477 		rdev->raid_disk = slot;
2478 		if (test_bit(In_sync, &rdev->flags))
2479 			rdev->saved_raid_disk = slot;
2480 		else
2481 			rdev->saved_raid_disk = -1;
2482 		err = rdev->mddev->pers->
2483 			hot_add_disk(rdev->mddev, rdev);
2484 		if (err) {
2485 			rdev->raid_disk = -1;
2486 			return err;
2487 		} else
2488 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2489 		sprintf(nm, "rd%d", rdev->raid_disk);
2490 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2491 			/* failure here is OK */;
2492 		/* don't wakeup anyone, leave that to userspace. */
2493 	} else {
2494 		if (slot >= rdev->mddev->raid_disks)
2495 			return -ENOSPC;
2496 		rdev->raid_disk = slot;
2497 		/* assume it is working */
2498 		clear_bit(Faulty, &rdev->flags);
2499 		clear_bit(WriteMostly, &rdev->flags);
2500 		set_bit(In_sync, &rdev->flags);
2501 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2502 	}
2503 	return len;
2504 }
2505 
2506 
2507 static struct rdev_sysfs_entry rdev_slot =
2508 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2509 
2510 static ssize_t
2511 offset_show(mdk_rdev_t *rdev, char *page)
2512 {
2513 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2514 }
2515 
2516 static ssize_t
2517 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2518 {
2519 	char *e;
2520 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2521 	if (e==buf || (*e && *e != '\n'))
2522 		return -EINVAL;
2523 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2524 		return -EBUSY;
2525 	if (rdev->sectors && rdev->mddev->external)
2526 		/* Must set offset before size, so overlap checks
2527 		 * can be sane */
2528 		return -EBUSY;
2529 	rdev->data_offset = offset;
2530 	return len;
2531 }
2532 
2533 static struct rdev_sysfs_entry rdev_offset =
2534 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2535 
2536 static ssize_t
2537 rdev_size_show(mdk_rdev_t *rdev, char *page)
2538 {
2539 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2540 }
2541 
2542 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2543 {
2544 	/* check if two start/length pairs overlap */
2545 	if (s1+l1 <= s2)
2546 		return 0;
2547 	if (s2+l2 <= s1)
2548 		return 0;
2549 	return 1;
2550 }
2551 
2552 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2553 {
2554 	unsigned long long blocks;
2555 	sector_t new;
2556 
2557 	if (strict_strtoull(buf, 10, &blocks) < 0)
2558 		return -EINVAL;
2559 
2560 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2561 		return -EINVAL; /* sector conversion overflow */
2562 
2563 	new = blocks * 2;
2564 	if (new != blocks * 2)
2565 		return -EINVAL; /* unsigned long long to sector_t overflow */
2566 
2567 	*sectors = new;
2568 	return 0;
2569 }
2570 
2571 static ssize_t
2572 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2573 {
2574 	mddev_t *my_mddev = rdev->mddev;
2575 	sector_t oldsectors = rdev->sectors;
2576 	sector_t sectors;
2577 
2578 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2579 		return -EINVAL;
2580 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2581 		if (my_mddev->persistent) {
2582 			sectors = super_types[my_mddev->major_version].
2583 				rdev_size_change(rdev, sectors);
2584 			if (!sectors)
2585 				return -EBUSY;
2586 		} else if (!sectors)
2587 			sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2588 				rdev->data_offset;
2589 	}
2590 	if (sectors < my_mddev->dev_sectors)
2591 		return -EINVAL; /* component must fit device */
2592 
2593 	rdev->sectors = sectors;
2594 	if (sectors > oldsectors && my_mddev->external) {
2595 		/* need to check that all other rdevs with the same ->bdev
2596 		 * do not overlap.  We need to unlock the mddev to avoid
2597 		 * a deadlock.  We have already changed rdev->sectors, and if
2598 		 * we have to change it back, we will have the lock again.
2599 		 */
2600 		mddev_t *mddev;
2601 		int overlap = 0;
2602 		struct list_head *tmp;
2603 
2604 		mddev_unlock(my_mddev);
2605 		for_each_mddev(mddev, tmp) {
2606 			mdk_rdev_t *rdev2;
2607 
2608 			mddev_lock(mddev);
2609 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2610 				if (test_bit(AllReserved, &rdev2->flags) ||
2611 				    (rdev->bdev == rdev2->bdev &&
2612 				     rdev != rdev2 &&
2613 				     overlaps(rdev->data_offset, rdev->sectors,
2614 					      rdev2->data_offset,
2615 					      rdev2->sectors))) {
2616 					overlap = 1;
2617 					break;
2618 				}
2619 			mddev_unlock(mddev);
2620 			if (overlap) {
2621 				mddev_put(mddev);
2622 				break;
2623 			}
2624 		}
2625 		mddev_lock(my_mddev);
2626 		if (overlap) {
2627 			/* Someone else could have slipped in a size
2628 			 * change here, but doing so is just silly.
2629 			 * We put oldsectors back because we *know* it is
2630 			 * safe, and trust userspace not to race with
2631 			 * itself
2632 			 */
2633 			rdev->sectors = oldsectors;
2634 			return -EBUSY;
2635 		}
2636 	}
2637 	return len;
2638 }
2639 
2640 static struct rdev_sysfs_entry rdev_size =
2641 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2642 
2643 
2644 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2645 {
2646 	unsigned long long recovery_start = rdev->recovery_offset;
2647 
2648 	if (test_bit(In_sync, &rdev->flags) ||
2649 	    recovery_start == MaxSector)
2650 		return sprintf(page, "none\n");
2651 
2652 	return sprintf(page, "%llu\n", recovery_start);
2653 }
2654 
2655 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2656 {
2657 	unsigned long long recovery_start;
2658 
2659 	if (cmd_match(buf, "none"))
2660 		recovery_start = MaxSector;
2661 	else if (strict_strtoull(buf, 10, &recovery_start))
2662 		return -EINVAL;
2663 
2664 	if (rdev->mddev->pers &&
2665 	    rdev->raid_disk >= 0)
2666 		return -EBUSY;
2667 
2668 	rdev->recovery_offset = recovery_start;
2669 	if (recovery_start == MaxSector)
2670 		set_bit(In_sync, &rdev->flags);
2671 	else
2672 		clear_bit(In_sync, &rdev->flags);
2673 	return len;
2674 }
2675 
2676 static struct rdev_sysfs_entry rdev_recovery_start =
2677 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2678 
2679 static struct attribute *rdev_default_attrs[] = {
2680 	&rdev_state.attr,
2681 	&rdev_errors.attr,
2682 	&rdev_slot.attr,
2683 	&rdev_offset.attr,
2684 	&rdev_size.attr,
2685 	&rdev_recovery_start.attr,
2686 	NULL,
2687 };
2688 static ssize_t
2689 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2690 {
2691 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2692 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2693 	mddev_t *mddev = rdev->mddev;
2694 	ssize_t rv;
2695 
2696 	if (!entry->show)
2697 		return -EIO;
2698 
2699 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2700 	if (!rv) {
2701 		if (rdev->mddev == NULL)
2702 			rv = -EBUSY;
2703 		else
2704 			rv = entry->show(rdev, page);
2705 		mddev_unlock(mddev);
2706 	}
2707 	return rv;
2708 }
2709 
2710 static ssize_t
2711 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2712 	      const char *page, size_t length)
2713 {
2714 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2715 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2716 	ssize_t rv;
2717 	mddev_t *mddev = rdev->mddev;
2718 
2719 	if (!entry->store)
2720 		return -EIO;
2721 	if (!capable(CAP_SYS_ADMIN))
2722 		return -EACCES;
2723 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2724 	if (!rv) {
2725 		if (rdev->mddev == NULL)
2726 			rv = -EBUSY;
2727 		else
2728 			rv = entry->store(rdev, page, length);
2729 		mddev_unlock(mddev);
2730 	}
2731 	return rv;
2732 }
2733 
2734 static void rdev_free(struct kobject *ko)
2735 {
2736 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2737 	kfree(rdev);
2738 }
2739 static const struct sysfs_ops rdev_sysfs_ops = {
2740 	.show		= rdev_attr_show,
2741 	.store		= rdev_attr_store,
2742 };
2743 static struct kobj_type rdev_ktype = {
2744 	.release	= rdev_free,
2745 	.sysfs_ops	= &rdev_sysfs_ops,
2746 	.default_attrs	= rdev_default_attrs,
2747 };
2748 
2749 void md_rdev_init(mdk_rdev_t *rdev)
2750 {
2751 	rdev->desc_nr = -1;
2752 	rdev->saved_raid_disk = -1;
2753 	rdev->raid_disk = -1;
2754 	rdev->flags = 0;
2755 	rdev->data_offset = 0;
2756 	rdev->sb_events = 0;
2757 	rdev->last_read_error.tv_sec  = 0;
2758 	rdev->last_read_error.tv_nsec = 0;
2759 	atomic_set(&rdev->nr_pending, 0);
2760 	atomic_set(&rdev->read_errors, 0);
2761 	atomic_set(&rdev->corrected_errors, 0);
2762 
2763 	INIT_LIST_HEAD(&rdev->same_set);
2764 	init_waitqueue_head(&rdev->blocked_wait);
2765 }
2766 EXPORT_SYMBOL_GPL(md_rdev_init);
2767 /*
2768  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2769  *
2770  * mark the device faulty if:
2771  *
2772  *   - the device is nonexistent (zero size)
2773  *   - the device has no valid superblock
2774  *
2775  * a faulty rdev _never_ has rdev->sb set.
2776  */
2777 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2778 {
2779 	char b[BDEVNAME_SIZE];
2780 	int err;
2781 	mdk_rdev_t *rdev;
2782 	sector_t size;
2783 
2784 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2785 	if (!rdev) {
2786 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2787 		return ERR_PTR(-ENOMEM);
2788 	}
2789 
2790 	md_rdev_init(rdev);
2791 	if ((err = alloc_disk_sb(rdev)))
2792 		goto abort_free;
2793 
2794 	err = lock_rdev(rdev, newdev, super_format == -2);
2795 	if (err)
2796 		goto abort_free;
2797 
2798 	kobject_init(&rdev->kobj, &rdev_ktype);
2799 
2800 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2801 	if (!size) {
2802 		printk(KERN_WARNING
2803 			"md: %s has zero or unknown size, marking faulty!\n",
2804 			bdevname(rdev->bdev,b));
2805 		err = -EINVAL;
2806 		goto abort_free;
2807 	}
2808 
2809 	if (super_format >= 0) {
2810 		err = super_types[super_format].
2811 			load_super(rdev, NULL, super_minor);
2812 		if (err == -EINVAL) {
2813 			printk(KERN_WARNING
2814 				"md: %s does not have a valid v%d.%d "
2815 			       "superblock, not importing!\n",
2816 				bdevname(rdev->bdev,b),
2817 			       super_format, super_minor);
2818 			goto abort_free;
2819 		}
2820 		if (err < 0) {
2821 			printk(KERN_WARNING
2822 				"md: could not read %s's sb, not importing!\n",
2823 				bdevname(rdev->bdev,b));
2824 			goto abort_free;
2825 		}
2826 	}
2827 
2828 	return rdev;
2829 
2830 abort_free:
2831 	if (rdev->sb_page) {
2832 		if (rdev->bdev)
2833 			unlock_rdev(rdev);
2834 		free_disk_sb(rdev);
2835 	}
2836 	kfree(rdev);
2837 	return ERR_PTR(err);
2838 }
2839 
2840 /*
2841  * Check a full RAID array for plausibility
2842  */
2843 
2844 
2845 static void analyze_sbs(mddev_t * mddev)
2846 {
2847 	int i;
2848 	mdk_rdev_t *rdev, *freshest, *tmp;
2849 	char b[BDEVNAME_SIZE];
2850 
2851 	freshest = NULL;
2852 	rdev_for_each(rdev, tmp, mddev)
2853 		switch (super_types[mddev->major_version].
2854 			load_super(rdev, freshest, mddev->minor_version)) {
2855 		case 1:
2856 			freshest = rdev;
2857 			break;
2858 		case 0:
2859 			break;
2860 		default:
2861 			printk( KERN_ERR \
2862 				"md: fatal superblock inconsistency in %s"
2863 				" -- removing from array\n",
2864 				bdevname(rdev->bdev,b));
2865 			kick_rdev_from_array(rdev);
2866 		}
2867 
2868 
2869 	super_types[mddev->major_version].
2870 		validate_super(mddev, freshest);
2871 
2872 	i = 0;
2873 	rdev_for_each(rdev, tmp, mddev) {
2874 		if (mddev->max_disks &&
2875 		    (rdev->desc_nr >= mddev->max_disks ||
2876 		     i > mddev->max_disks)) {
2877 			printk(KERN_WARNING
2878 			       "md: %s: %s: only %d devices permitted\n",
2879 			       mdname(mddev), bdevname(rdev->bdev, b),
2880 			       mddev->max_disks);
2881 			kick_rdev_from_array(rdev);
2882 			continue;
2883 		}
2884 		if (rdev != freshest)
2885 			if (super_types[mddev->major_version].
2886 			    validate_super(mddev, rdev)) {
2887 				printk(KERN_WARNING "md: kicking non-fresh %s"
2888 					" from array!\n",
2889 					bdevname(rdev->bdev,b));
2890 				kick_rdev_from_array(rdev);
2891 				continue;
2892 			}
2893 		if (mddev->level == LEVEL_MULTIPATH) {
2894 			rdev->desc_nr = i++;
2895 			rdev->raid_disk = rdev->desc_nr;
2896 			set_bit(In_sync, &rdev->flags);
2897 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2898 			rdev->raid_disk = -1;
2899 			clear_bit(In_sync, &rdev->flags);
2900 		}
2901 	}
2902 }
2903 
2904 /* Read a fixed-point number.
2905  * Numbers in sysfs attributes should be in "standard" units where
2906  * possible, so time should be in seconds.
2907  * However we internally use a a much smaller unit such as
2908  * milliseconds or jiffies.
2909  * This function takes a decimal number with a possible fractional
2910  * component, and produces an integer which is the result of
2911  * multiplying that number by 10^'scale'.
2912  * all without any floating-point arithmetic.
2913  */
2914 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2915 {
2916 	unsigned long result = 0;
2917 	long decimals = -1;
2918 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2919 		if (*cp == '.')
2920 			decimals = 0;
2921 		else if (decimals < scale) {
2922 			unsigned int value;
2923 			value = *cp - '0';
2924 			result = result * 10 + value;
2925 			if (decimals >= 0)
2926 				decimals++;
2927 		}
2928 		cp++;
2929 	}
2930 	if (*cp == '\n')
2931 		cp++;
2932 	if (*cp)
2933 		return -EINVAL;
2934 	if (decimals < 0)
2935 		decimals = 0;
2936 	while (decimals < scale) {
2937 		result *= 10;
2938 		decimals ++;
2939 	}
2940 	*res = result;
2941 	return 0;
2942 }
2943 
2944 
2945 static void md_safemode_timeout(unsigned long data);
2946 
2947 static ssize_t
2948 safe_delay_show(mddev_t *mddev, char *page)
2949 {
2950 	int msec = (mddev->safemode_delay*1000)/HZ;
2951 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2952 }
2953 static ssize_t
2954 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2955 {
2956 	unsigned long msec;
2957 
2958 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2959 		return -EINVAL;
2960 	if (msec == 0)
2961 		mddev->safemode_delay = 0;
2962 	else {
2963 		unsigned long old_delay = mddev->safemode_delay;
2964 		mddev->safemode_delay = (msec*HZ)/1000;
2965 		if (mddev->safemode_delay == 0)
2966 			mddev->safemode_delay = 1;
2967 		if (mddev->safemode_delay < old_delay)
2968 			md_safemode_timeout((unsigned long)mddev);
2969 	}
2970 	return len;
2971 }
2972 static struct md_sysfs_entry md_safe_delay =
2973 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2974 
2975 static ssize_t
2976 level_show(mddev_t *mddev, char *page)
2977 {
2978 	struct mdk_personality *p = mddev->pers;
2979 	if (p)
2980 		return sprintf(page, "%s\n", p->name);
2981 	else if (mddev->clevel[0])
2982 		return sprintf(page, "%s\n", mddev->clevel);
2983 	else if (mddev->level != LEVEL_NONE)
2984 		return sprintf(page, "%d\n", mddev->level);
2985 	else
2986 		return 0;
2987 }
2988 
2989 static ssize_t
2990 level_store(mddev_t *mddev, const char *buf, size_t len)
2991 {
2992 	char clevel[16];
2993 	ssize_t rv = len;
2994 	struct mdk_personality *pers;
2995 	long level;
2996 	void *priv;
2997 	mdk_rdev_t *rdev;
2998 
2999 	if (mddev->pers == NULL) {
3000 		if (len == 0)
3001 			return 0;
3002 		if (len >= sizeof(mddev->clevel))
3003 			return -ENOSPC;
3004 		strncpy(mddev->clevel, buf, len);
3005 		if (mddev->clevel[len-1] == '\n')
3006 			len--;
3007 		mddev->clevel[len] = 0;
3008 		mddev->level = LEVEL_NONE;
3009 		return rv;
3010 	}
3011 
3012 	/* request to change the personality.  Need to ensure:
3013 	 *  - array is not engaged in resync/recovery/reshape
3014 	 *  - old personality can be suspended
3015 	 *  - new personality will access other array.
3016 	 */
3017 
3018 	if (mddev->sync_thread ||
3019 	    mddev->reshape_position != MaxSector ||
3020 	    mddev->sysfs_active)
3021 		return -EBUSY;
3022 
3023 	if (!mddev->pers->quiesce) {
3024 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3025 		       mdname(mddev), mddev->pers->name);
3026 		return -EINVAL;
3027 	}
3028 
3029 	/* Now find the new personality */
3030 	if (len == 0 || len >= sizeof(clevel))
3031 		return -EINVAL;
3032 	strncpy(clevel, buf, len);
3033 	if (clevel[len-1] == '\n')
3034 		len--;
3035 	clevel[len] = 0;
3036 	if (strict_strtol(clevel, 10, &level))
3037 		level = LEVEL_NONE;
3038 
3039 	if (request_module("md-%s", clevel) != 0)
3040 		request_module("md-level-%s", clevel);
3041 	spin_lock(&pers_lock);
3042 	pers = find_pers(level, clevel);
3043 	if (!pers || !try_module_get(pers->owner)) {
3044 		spin_unlock(&pers_lock);
3045 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3046 		return -EINVAL;
3047 	}
3048 	spin_unlock(&pers_lock);
3049 
3050 	if (pers == mddev->pers) {
3051 		/* Nothing to do! */
3052 		module_put(pers->owner);
3053 		return rv;
3054 	}
3055 	if (!pers->takeover) {
3056 		module_put(pers->owner);
3057 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3058 		       mdname(mddev), clevel);
3059 		return -EINVAL;
3060 	}
3061 
3062 	list_for_each_entry(rdev, &mddev->disks, same_set)
3063 		rdev->new_raid_disk = rdev->raid_disk;
3064 
3065 	/* ->takeover must set new_* and/or delta_disks
3066 	 * if it succeeds, and may set them when it fails.
3067 	 */
3068 	priv = pers->takeover(mddev);
3069 	if (IS_ERR(priv)) {
3070 		mddev->new_level = mddev->level;
3071 		mddev->new_layout = mddev->layout;
3072 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3073 		mddev->raid_disks -= mddev->delta_disks;
3074 		mddev->delta_disks = 0;
3075 		module_put(pers->owner);
3076 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3077 		       mdname(mddev), clevel);
3078 		return PTR_ERR(priv);
3079 	}
3080 
3081 	/* Looks like we have a winner */
3082 	mddev_suspend(mddev);
3083 	mddev->pers->stop(mddev);
3084 
3085 	if (mddev->pers->sync_request == NULL &&
3086 	    pers->sync_request != NULL) {
3087 		/* need to add the md_redundancy_group */
3088 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3089 			printk(KERN_WARNING
3090 			       "md: cannot register extra attributes for %s\n",
3091 			       mdname(mddev));
3092 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3093 	}
3094 	if (mddev->pers->sync_request != NULL &&
3095 	    pers->sync_request == NULL) {
3096 		/* need to remove the md_redundancy_group */
3097 		if (mddev->to_remove == NULL)
3098 			mddev->to_remove = &md_redundancy_group;
3099 	}
3100 
3101 	if (mddev->pers->sync_request == NULL &&
3102 	    mddev->external) {
3103 		/* We are converting from a no-redundancy array
3104 		 * to a redundancy array and metadata is managed
3105 		 * externally so we need to be sure that writes
3106 		 * won't block due to a need to transition
3107 		 *      clean->dirty
3108 		 * until external management is started.
3109 		 */
3110 		mddev->in_sync = 0;
3111 		mddev->safemode_delay = 0;
3112 		mddev->safemode = 0;
3113 	}
3114 
3115 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3116 		char nm[20];
3117 		if (rdev->raid_disk < 0)
3118 			continue;
3119 		if (rdev->new_raid_disk > mddev->raid_disks)
3120 			rdev->new_raid_disk = -1;
3121 		if (rdev->new_raid_disk == rdev->raid_disk)
3122 			continue;
3123 		sprintf(nm, "rd%d", rdev->raid_disk);
3124 		sysfs_remove_link(&mddev->kobj, nm);
3125 	}
3126 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3127 		if (rdev->raid_disk < 0)
3128 			continue;
3129 		if (rdev->new_raid_disk == rdev->raid_disk)
3130 			continue;
3131 		rdev->raid_disk = rdev->new_raid_disk;
3132 		if (rdev->raid_disk < 0)
3133 			clear_bit(In_sync, &rdev->flags);
3134 		else {
3135 			char nm[20];
3136 			sprintf(nm, "rd%d", rdev->raid_disk);
3137 			if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3138 				printk("md: cannot register %s for %s after level change\n",
3139 				       nm, mdname(mddev));
3140 		}
3141 	}
3142 
3143 	module_put(mddev->pers->owner);
3144 	mddev->pers = pers;
3145 	mddev->private = priv;
3146 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3147 	mddev->level = mddev->new_level;
3148 	mddev->layout = mddev->new_layout;
3149 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3150 	mddev->delta_disks = 0;
3151 	if (mddev->pers->sync_request == NULL) {
3152 		/* this is now an array without redundancy, so
3153 		 * it must always be in_sync
3154 		 */
3155 		mddev->in_sync = 1;
3156 		del_timer_sync(&mddev->safemode_timer);
3157 	}
3158 	pers->run(mddev);
3159 	mddev_resume(mddev);
3160 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3161 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3162 	md_wakeup_thread(mddev->thread);
3163 	sysfs_notify(&mddev->kobj, NULL, "level");
3164 	md_new_event(mddev);
3165 	return rv;
3166 }
3167 
3168 static struct md_sysfs_entry md_level =
3169 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3170 
3171 
3172 static ssize_t
3173 layout_show(mddev_t *mddev, char *page)
3174 {
3175 	/* just a number, not meaningful for all levels */
3176 	if (mddev->reshape_position != MaxSector &&
3177 	    mddev->layout != mddev->new_layout)
3178 		return sprintf(page, "%d (%d)\n",
3179 			       mddev->new_layout, mddev->layout);
3180 	return sprintf(page, "%d\n", mddev->layout);
3181 }
3182 
3183 static ssize_t
3184 layout_store(mddev_t *mddev, const char *buf, size_t len)
3185 {
3186 	char *e;
3187 	unsigned long n = simple_strtoul(buf, &e, 10);
3188 
3189 	if (!*buf || (*e && *e != '\n'))
3190 		return -EINVAL;
3191 
3192 	if (mddev->pers) {
3193 		int err;
3194 		if (mddev->pers->check_reshape == NULL)
3195 			return -EBUSY;
3196 		mddev->new_layout = n;
3197 		err = mddev->pers->check_reshape(mddev);
3198 		if (err) {
3199 			mddev->new_layout = mddev->layout;
3200 			return err;
3201 		}
3202 	} else {
3203 		mddev->new_layout = n;
3204 		if (mddev->reshape_position == MaxSector)
3205 			mddev->layout = n;
3206 	}
3207 	return len;
3208 }
3209 static struct md_sysfs_entry md_layout =
3210 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3211 
3212 
3213 static ssize_t
3214 raid_disks_show(mddev_t *mddev, char *page)
3215 {
3216 	if (mddev->raid_disks == 0)
3217 		return 0;
3218 	if (mddev->reshape_position != MaxSector &&
3219 	    mddev->delta_disks != 0)
3220 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3221 			       mddev->raid_disks - mddev->delta_disks);
3222 	return sprintf(page, "%d\n", mddev->raid_disks);
3223 }
3224 
3225 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3226 
3227 static ssize_t
3228 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3229 {
3230 	char *e;
3231 	int rv = 0;
3232 	unsigned long n = simple_strtoul(buf, &e, 10);
3233 
3234 	if (!*buf || (*e && *e != '\n'))
3235 		return -EINVAL;
3236 
3237 	if (mddev->pers)
3238 		rv = update_raid_disks(mddev, n);
3239 	else if (mddev->reshape_position != MaxSector) {
3240 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3241 		mddev->delta_disks = n - olddisks;
3242 		mddev->raid_disks = n;
3243 	} else
3244 		mddev->raid_disks = n;
3245 	return rv ? rv : len;
3246 }
3247 static struct md_sysfs_entry md_raid_disks =
3248 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3249 
3250 static ssize_t
3251 chunk_size_show(mddev_t *mddev, char *page)
3252 {
3253 	if (mddev->reshape_position != MaxSector &&
3254 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3255 		return sprintf(page, "%d (%d)\n",
3256 			       mddev->new_chunk_sectors << 9,
3257 			       mddev->chunk_sectors << 9);
3258 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3259 }
3260 
3261 static ssize_t
3262 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3263 {
3264 	char *e;
3265 	unsigned long n = simple_strtoul(buf, &e, 10);
3266 
3267 	if (!*buf || (*e && *e != '\n'))
3268 		return -EINVAL;
3269 
3270 	if (mddev->pers) {
3271 		int err;
3272 		if (mddev->pers->check_reshape == NULL)
3273 			return -EBUSY;
3274 		mddev->new_chunk_sectors = n >> 9;
3275 		err = mddev->pers->check_reshape(mddev);
3276 		if (err) {
3277 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3278 			return err;
3279 		}
3280 	} else {
3281 		mddev->new_chunk_sectors = n >> 9;
3282 		if (mddev->reshape_position == MaxSector)
3283 			mddev->chunk_sectors = n >> 9;
3284 	}
3285 	return len;
3286 }
3287 static struct md_sysfs_entry md_chunk_size =
3288 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3289 
3290 static ssize_t
3291 resync_start_show(mddev_t *mddev, char *page)
3292 {
3293 	if (mddev->recovery_cp == MaxSector)
3294 		return sprintf(page, "none\n");
3295 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3296 }
3297 
3298 static ssize_t
3299 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3300 {
3301 	char *e;
3302 	unsigned long long n = simple_strtoull(buf, &e, 10);
3303 
3304 	if (mddev->pers)
3305 		return -EBUSY;
3306 	if (cmd_match(buf, "none"))
3307 		n = MaxSector;
3308 	else if (!*buf || (*e && *e != '\n'))
3309 		return -EINVAL;
3310 
3311 	mddev->recovery_cp = n;
3312 	return len;
3313 }
3314 static struct md_sysfs_entry md_resync_start =
3315 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3316 
3317 /*
3318  * The array state can be:
3319  *
3320  * clear
3321  *     No devices, no size, no level
3322  *     Equivalent to STOP_ARRAY ioctl
3323  * inactive
3324  *     May have some settings, but array is not active
3325  *        all IO results in error
3326  *     When written, doesn't tear down array, but just stops it
3327  * suspended (not supported yet)
3328  *     All IO requests will block. The array can be reconfigured.
3329  *     Writing this, if accepted, will block until array is quiescent
3330  * readonly
3331  *     no resync can happen.  no superblocks get written.
3332  *     write requests fail
3333  * read-auto
3334  *     like readonly, but behaves like 'clean' on a write request.
3335  *
3336  * clean - no pending writes, but otherwise active.
3337  *     When written to inactive array, starts without resync
3338  *     If a write request arrives then
3339  *       if metadata is known, mark 'dirty' and switch to 'active'.
3340  *       if not known, block and switch to write-pending
3341  *     If written to an active array that has pending writes, then fails.
3342  * active
3343  *     fully active: IO and resync can be happening.
3344  *     When written to inactive array, starts with resync
3345  *
3346  * write-pending
3347  *     clean, but writes are blocked waiting for 'active' to be written.
3348  *
3349  * active-idle
3350  *     like active, but no writes have been seen for a while (100msec).
3351  *
3352  */
3353 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3354 		   write_pending, active_idle, bad_word};
3355 static char *array_states[] = {
3356 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3357 	"write-pending", "active-idle", NULL };
3358 
3359 static int match_word(const char *word, char **list)
3360 {
3361 	int n;
3362 	for (n=0; list[n]; n++)
3363 		if (cmd_match(word, list[n]))
3364 			break;
3365 	return n;
3366 }
3367 
3368 static ssize_t
3369 array_state_show(mddev_t *mddev, char *page)
3370 {
3371 	enum array_state st = inactive;
3372 
3373 	if (mddev->pers)
3374 		switch(mddev->ro) {
3375 		case 1:
3376 			st = readonly;
3377 			break;
3378 		case 2:
3379 			st = read_auto;
3380 			break;
3381 		case 0:
3382 			if (mddev->in_sync)
3383 				st = clean;
3384 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3385 				st = write_pending;
3386 			else if (mddev->safemode)
3387 				st = active_idle;
3388 			else
3389 				st = active;
3390 		}
3391 	else {
3392 		if (list_empty(&mddev->disks) &&
3393 		    mddev->raid_disks == 0 &&
3394 		    mddev->dev_sectors == 0)
3395 			st = clear;
3396 		else
3397 			st = inactive;
3398 	}
3399 	return sprintf(page, "%s\n", array_states[st]);
3400 }
3401 
3402 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3403 static int md_set_readonly(mddev_t * mddev, int is_open);
3404 static int do_md_run(mddev_t * mddev);
3405 static int restart_array(mddev_t *mddev);
3406 
3407 static ssize_t
3408 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3409 {
3410 	int err = -EINVAL;
3411 	enum array_state st = match_word(buf, array_states);
3412 	switch(st) {
3413 	case bad_word:
3414 		break;
3415 	case clear:
3416 		/* stopping an active array */
3417 		if (atomic_read(&mddev->openers) > 0)
3418 			return -EBUSY;
3419 		err = do_md_stop(mddev, 0, 0);
3420 		break;
3421 	case inactive:
3422 		/* stopping an active array */
3423 		if (mddev->pers) {
3424 			if (atomic_read(&mddev->openers) > 0)
3425 				return -EBUSY;
3426 			err = do_md_stop(mddev, 2, 0);
3427 		} else
3428 			err = 0; /* already inactive */
3429 		break;
3430 	case suspended:
3431 		break; /* not supported yet */
3432 	case readonly:
3433 		if (mddev->pers)
3434 			err = md_set_readonly(mddev, 0);
3435 		else {
3436 			mddev->ro = 1;
3437 			set_disk_ro(mddev->gendisk, 1);
3438 			err = do_md_run(mddev);
3439 		}
3440 		break;
3441 	case read_auto:
3442 		if (mddev->pers) {
3443 			if (mddev->ro == 0)
3444 				err = md_set_readonly(mddev, 0);
3445 			else if (mddev->ro == 1)
3446 				err = restart_array(mddev);
3447 			if (err == 0) {
3448 				mddev->ro = 2;
3449 				set_disk_ro(mddev->gendisk, 0);
3450 			}
3451 		} else {
3452 			mddev->ro = 2;
3453 			err = do_md_run(mddev);
3454 		}
3455 		break;
3456 	case clean:
3457 		if (mddev->pers) {
3458 			restart_array(mddev);
3459 			spin_lock_irq(&mddev->write_lock);
3460 			if (atomic_read(&mddev->writes_pending) == 0) {
3461 				if (mddev->in_sync == 0) {
3462 					mddev->in_sync = 1;
3463 					if (mddev->safemode == 1)
3464 						mddev->safemode = 0;
3465 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3466 				}
3467 				err = 0;
3468 			} else
3469 				err = -EBUSY;
3470 			spin_unlock_irq(&mddev->write_lock);
3471 		} else
3472 			err = -EINVAL;
3473 		break;
3474 	case active:
3475 		if (mddev->pers) {
3476 			restart_array(mddev);
3477 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3478 			wake_up(&mddev->sb_wait);
3479 			err = 0;
3480 		} else {
3481 			mddev->ro = 0;
3482 			set_disk_ro(mddev->gendisk, 0);
3483 			err = do_md_run(mddev);
3484 		}
3485 		break;
3486 	case write_pending:
3487 	case active_idle:
3488 		/* these cannot be set */
3489 		break;
3490 	}
3491 	if (err)
3492 		return err;
3493 	else {
3494 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3495 		return len;
3496 	}
3497 }
3498 static struct md_sysfs_entry md_array_state =
3499 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3500 
3501 static ssize_t
3502 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3503 	return sprintf(page, "%d\n",
3504 		       atomic_read(&mddev->max_corr_read_errors));
3505 }
3506 
3507 static ssize_t
3508 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3509 {
3510 	char *e;
3511 	unsigned long n = simple_strtoul(buf, &e, 10);
3512 
3513 	if (*buf && (*e == 0 || *e == '\n')) {
3514 		atomic_set(&mddev->max_corr_read_errors, n);
3515 		return len;
3516 	}
3517 	return -EINVAL;
3518 }
3519 
3520 static struct md_sysfs_entry max_corr_read_errors =
3521 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3522 	max_corrected_read_errors_store);
3523 
3524 static ssize_t
3525 null_show(mddev_t *mddev, char *page)
3526 {
3527 	return -EINVAL;
3528 }
3529 
3530 static ssize_t
3531 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3532 {
3533 	/* buf must be %d:%d\n? giving major and minor numbers */
3534 	/* The new device is added to the array.
3535 	 * If the array has a persistent superblock, we read the
3536 	 * superblock to initialise info and check validity.
3537 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3538 	 * which mainly checks size.
3539 	 */
3540 	char *e;
3541 	int major = simple_strtoul(buf, &e, 10);
3542 	int minor;
3543 	dev_t dev;
3544 	mdk_rdev_t *rdev;
3545 	int err;
3546 
3547 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3548 		return -EINVAL;
3549 	minor = simple_strtoul(e+1, &e, 10);
3550 	if (*e && *e != '\n')
3551 		return -EINVAL;
3552 	dev = MKDEV(major, minor);
3553 	if (major != MAJOR(dev) ||
3554 	    minor != MINOR(dev))
3555 		return -EOVERFLOW;
3556 
3557 
3558 	if (mddev->persistent) {
3559 		rdev = md_import_device(dev, mddev->major_version,
3560 					mddev->minor_version);
3561 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3562 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3563 						       mdk_rdev_t, same_set);
3564 			err = super_types[mddev->major_version]
3565 				.load_super(rdev, rdev0, mddev->minor_version);
3566 			if (err < 0)
3567 				goto out;
3568 		}
3569 	} else if (mddev->external)
3570 		rdev = md_import_device(dev, -2, -1);
3571 	else
3572 		rdev = md_import_device(dev, -1, -1);
3573 
3574 	if (IS_ERR(rdev))
3575 		return PTR_ERR(rdev);
3576 	err = bind_rdev_to_array(rdev, mddev);
3577  out:
3578 	if (err)
3579 		export_rdev(rdev);
3580 	return err ? err : len;
3581 }
3582 
3583 static struct md_sysfs_entry md_new_device =
3584 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3585 
3586 static ssize_t
3587 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3588 {
3589 	char *end;
3590 	unsigned long chunk, end_chunk;
3591 
3592 	if (!mddev->bitmap)
3593 		goto out;
3594 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3595 	while (*buf) {
3596 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3597 		if (buf == end) break;
3598 		if (*end == '-') { /* range */
3599 			buf = end + 1;
3600 			end_chunk = simple_strtoul(buf, &end, 0);
3601 			if (buf == end) break;
3602 		}
3603 		if (*end && !isspace(*end)) break;
3604 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3605 		buf = skip_spaces(end);
3606 	}
3607 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3608 out:
3609 	return len;
3610 }
3611 
3612 static struct md_sysfs_entry md_bitmap =
3613 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3614 
3615 static ssize_t
3616 size_show(mddev_t *mddev, char *page)
3617 {
3618 	return sprintf(page, "%llu\n",
3619 		(unsigned long long)mddev->dev_sectors / 2);
3620 }
3621 
3622 static int update_size(mddev_t *mddev, sector_t num_sectors);
3623 
3624 static ssize_t
3625 size_store(mddev_t *mddev, const char *buf, size_t len)
3626 {
3627 	/* If array is inactive, we can reduce the component size, but
3628 	 * not increase it (except from 0).
3629 	 * If array is active, we can try an on-line resize
3630 	 */
3631 	sector_t sectors;
3632 	int err = strict_blocks_to_sectors(buf, &sectors);
3633 
3634 	if (err < 0)
3635 		return err;
3636 	if (mddev->pers) {
3637 		err = update_size(mddev, sectors);
3638 		md_update_sb(mddev, 1);
3639 	} else {
3640 		if (mddev->dev_sectors == 0 ||
3641 		    mddev->dev_sectors > sectors)
3642 			mddev->dev_sectors = sectors;
3643 		else
3644 			err = -ENOSPC;
3645 	}
3646 	return err ? err : len;
3647 }
3648 
3649 static struct md_sysfs_entry md_size =
3650 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3651 
3652 
3653 /* Metdata version.
3654  * This is one of
3655  *   'none' for arrays with no metadata (good luck...)
3656  *   'external' for arrays with externally managed metadata,
3657  * or N.M for internally known formats
3658  */
3659 static ssize_t
3660 metadata_show(mddev_t *mddev, char *page)
3661 {
3662 	if (mddev->persistent)
3663 		return sprintf(page, "%d.%d\n",
3664 			       mddev->major_version, mddev->minor_version);
3665 	else if (mddev->external)
3666 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3667 	else
3668 		return sprintf(page, "none\n");
3669 }
3670 
3671 static ssize_t
3672 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3673 {
3674 	int major, minor;
3675 	char *e;
3676 	/* Changing the details of 'external' metadata is
3677 	 * always permitted.  Otherwise there must be
3678 	 * no devices attached to the array.
3679 	 */
3680 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3681 		;
3682 	else if (!list_empty(&mddev->disks))
3683 		return -EBUSY;
3684 
3685 	if (cmd_match(buf, "none")) {
3686 		mddev->persistent = 0;
3687 		mddev->external = 0;
3688 		mddev->major_version = 0;
3689 		mddev->minor_version = 90;
3690 		return len;
3691 	}
3692 	if (strncmp(buf, "external:", 9) == 0) {
3693 		size_t namelen = len-9;
3694 		if (namelen >= sizeof(mddev->metadata_type))
3695 			namelen = sizeof(mddev->metadata_type)-1;
3696 		strncpy(mddev->metadata_type, buf+9, namelen);
3697 		mddev->metadata_type[namelen] = 0;
3698 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3699 			mddev->metadata_type[--namelen] = 0;
3700 		mddev->persistent = 0;
3701 		mddev->external = 1;
3702 		mddev->major_version = 0;
3703 		mddev->minor_version = 90;
3704 		return len;
3705 	}
3706 	major = simple_strtoul(buf, &e, 10);
3707 	if (e==buf || *e != '.')
3708 		return -EINVAL;
3709 	buf = e+1;
3710 	minor = simple_strtoul(buf, &e, 10);
3711 	if (e==buf || (*e && *e != '\n') )
3712 		return -EINVAL;
3713 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3714 		return -ENOENT;
3715 	mddev->major_version = major;
3716 	mddev->minor_version = minor;
3717 	mddev->persistent = 1;
3718 	mddev->external = 0;
3719 	return len;
3720 }
3721 
3722 static struct md_sysfs_entry md_metadata =
3723 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3724 
3725 static ssize_t
3726 action_show(mddev_t *mddev, char *page)
3727 {
3728 	char *type = "idle";
3729 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3730 		type = "frozen";
3731 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3732 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3733 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3734 			type = "reshape";
3735 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3736 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3737 				type = "resync";
3738 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3739 				type = "check";
3740 			else
3741 				type = "repair";
3742 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3743 			type = "recover";
3744 	}
3745 	return sprintf(page, "%s\n", type);
3746 }
3747 
3748 static ssize_t
3749 action_store(mddev_t *mddev, const char *page, size_t len)
3750 {
3751 	if (!mddev->pers || !mddev->pers->sync_request)
3752 		return -EINVAL;
3753 
3754 	if (cmd_match(page, "frozen"))
3755 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3756 	else
3757 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3758 
3759 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3760 		if (mddev->sync_thread) {
3761 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3762 			md_unregister_thread(mddev->sync_thread);
3763 			mddev->sync_thread = NULL;
3764 			mddev->recovery = 0;
3765 		}
3766 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3767 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3768 		return -EBUSY;
3769 	else if (cmd_match(page, "resync"))
3770 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3771 	else if (cmd_match(page, "recover")) {
3772 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3773 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3774 	} else if (cmd_match(page, "reshape")) {
3775 		int err;
3776 		if (mddev->pers->start_reshape == NULL)
3777 			return -EINVAL;
3778 		err = mddev->pers->start_reshape(mddev);
3779 		if (err)
3780 			return err;
3781 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3782 	} else {
3783 		if (cmd_match(page, "check"))
3784 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3785 		else if (!cmd_match(page, "repair"))
3786 			return -EINVAL;
3787 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3788 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3789 	}
3790 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3791 	md_wakeup_thread(mddev->thread);
3792 	sysfs_notify_dirent_safe(mddev->sysfs_action);
3793 	return len;
3794 }
3795 
3796 static ssize_t
3797 mismatch_cnt_show(mddev_t *mddev, char *page)
3798 {
3799 	return sprintf(page, "%llu\n",
3800 		       (unsigned long long) mddev->resync_mismatches);
3801 }
3802 
3803 static struct md_sysfs_entry md_scan_mode =
3804 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3805 
3806 
3807 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3808 
3809 static ssize_t
3810 sync_min_show(mddev_t *mddev, char *page)
3811 {
3812 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3813 		       mddev->sync_speed_min ? "local": "system");
3814 }
3815 
3816 static ssize_t
3817 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3818 {
3819 	int min;
3820 	char *e;
3821 	if (strncmp(buf, "system", 6)==0) {
3822 		mddev->sync_speed_min = 0;
3823 		return len;
3824 	}
3825 	min = simple_strtoul(buf, &e, 10);
3826 	if (buf == e || (*e && *e != '\n') || min <= 0)
3827 		return -EINVAL;
3828 	mddev->sync_speed_min = min;
3829 	return len;
3830 }
3831 
3832 static struct md_sysfs_entry md_sync_min =
3833 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3834 
3835 static ssize_t
3836 sync_max_show(mddev_t *mddev, char *page)
3837 {
3838 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3839 		       mddev->sync_speed_max ? "local": "system");
3840 }
3841 
3842 static ssize_t
3843 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3844 {
3845 	int max;
3846 	char *e;
3847 	if (strncmp(buf, "system", 6)==0) {
3848 		mddev->sync_speed_max = 0;
3849 		return len;
3850 	}
3851 	max = simple_strtoul(buf, &e, 10);
3852 	if (buf == e || (*e && *e != '\n') || max <= 0)
3853 		return -EINVAL;
3854 	mddev->sync_speed_max = max;
3855 	return len;
3856 }
3857 
3858 static struct md_sysfs_entry md_sync_max =
3859 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3860 
3861 static ssize_t
3862 degraded_show(mddev_t *mddev, char *page)
3863 {
3864 	return sprintf(page, "%d\n", mddev->degraded);
3865 }
3866 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3867 
3868 static ssize_t
3869 sync_force_parallel_show(mddev_t *mddev, char *page)
3870 {
3871 	return sprintf(page, "%d\n", mddev->parallel_resync);
3872 }
3873 
3874 static ssize_t
3875 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3876 {
3877 	long n;
3878 
3879 	if (strict_strtol(buf, 10, &n))
3880 		return -EINVAL;
3881 
3882 	if (n != 0 && n != 1)
3883 		return -EINVAL;
3884 
3885 	mddev->parallel_resync = n;
3886 
3887 	if (mddev->sync_thread)
3888 		wake_up(&resync_wait);
3889 
3890 	return len;
3891 }
3892 
3893 /* force parallel resync, even with shared block devices */
3894 static struct md_sysfs_entry md_sync_force_parallel =
3895 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3896        sync_force_parallel_show, sync_force_parallel_store);
3897 
3898 static ssize_t
3899 sync_speed_show(mddev_t *mddev, char *page)
3900 {
3901 	unsigned long resync, dt, db;
3902 	if (mddev->curr_resync == 0)
3903 		return sprintf(page, "none\n");
3904 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3905 	dt = (jiffies - mddev->resync_mark) / HZ;
3906 	if (!dt) dt++;
3907 	db = resync - mddev->resync_mark_cnt;
3908 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3909 }
3910 
3911 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3912 
3913 static ssize_t
3914 sync_completed_show(mddev_t *mddev, char *page)
3915 {
3916 	unsigned long max_sectors, resync;
3917 
3918 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3919 		return sprintf(page, "none\n");
3920 
3921 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3922 		max_sectors = mddev->resync_max_sectors;
3923 	else
3924 		max_sectors = mddev->dev_sectors;
3925 
3926 	resync = mddev->curr_resync_completed;
3927 	return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3928 }
3929 
3930 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3931 
3932 static ssize_t
3933 min_sync_show(mddev_t *mddev, char *page)
3934 {
3935 	return sprintf(page, "%llu\n",
3936 		       (unsigned long long)mddev->resync_min);
3937 }
3938 static ssize_t
3939 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3940 {
3941 	unsigned long long min;
3942 	if (strict_strtoull(buf, 10, &min))
3943 		return -EINVAL;
3944 	if (min > mddev->resync_max)
3945 		return -EINVAL;
3946 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3947 		return -EBUSY;
3948 
3949 	/* Must be a multiple of chunk_size */
3950 	if (mddev->chunk_sectors) {
3951 		sector_t temp = min;
3952 		if (sector_div(temp, mddev->chunk_sectors))
3953 			return -EINVAL;
3954 	}
3955 	mddev->resync_min = min;
3956 
3957 	return len;
3958 }
3959 
3960 static struct md_sysfs_entry md_min_sync =
3961 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3962 
3963 static ssize_t
3964 max_sync_show(mddev_t *mddev, char *page)
3965 {
3966 	if (mddev->resync_max == MaxSector)
3967 		return sprintf(page, "max\n");
3968 	else
3969 		return sprintf(page, "%llu\n",
3970 			       (unsigned long long)mddev->resync_max);
3971 }
3972 static ssize_t
3973 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3974 {
3975 	if (strncmp(buf, "max", 3) == 0)
3976 		mddev->resync_max = MaxSector;
3977 	else {
3978 		unsigned long long max;
3979 		if (strict_strtoull(buf, 10, &max))
3980 			return -EINVAL;
3981 		if (max < mddev->resync_min)
3982 			return -EINVAL;
3983 		if (max < mddev->resync_max &&
3984 		    mddev->ro == 0 &&
3985 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3986 			return -EBUSY;
3987 
3988 		/* Must be a multiple of chunk_size */
3989 		if (mddev->chunk_sectors) {
3990 			sector_t temp = max;
3991 			if (sector_div(temp, mddev->chunk_sectors))
3992 				return -EINVAL;
3993 		}
3994 		mddev->resync_max = max;
3995 	}
3996 	wake_up(&mddev->recovery_wait);
3997 	return len;
3998 }
3999 
4000 static struct md_sysfs_entry md_max_sync =
4001 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4002 
4003 static ssize_t
4004 suspend_lo_show(mddev_t *mddev, char *page)
4005 {
4006 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4007 }
4008 
4009 static ssize_t
4010 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4011 {
4012 	char *e;
4013 	unsigned long long new = simple_strtoull(buf, &e, 10);
4014 
4015 	if (mddev->pers == NULL ||
4016 	    mddev->pers->quiesce == NULL)
4017 		return -EINVAL;
4018 	if (buf == e || (*e && *e != '\n'))
4019 		return -EINVAL;
4020 	if (new >= mddev->suspend_hi ||
4021 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
4022 		mddev->suspend_lo = new;
4023 		mddev->pers->quiesce(mddev, 2);
4024 		return len;
4025 	} else
4026 		return -EINVAL;
4027 }
4028 static struct md_sysfs_entry md_suspend_lo =
4029 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4030 
4031 
4032 static ssize_t
4033 suspend_hi_show(mddev_t *mddev, char *page)
4034 {
4035 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4036 }
4037 
4038 static ssize_t
4039 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4040 {
4041 	char *e;
4042 	unsigned long long new = simple_strtoull(buf, &e, 10);
4043 
4044 	if (mddev->pers == NULL ||
4045 	    mddev->pers->quiesce == NULL)
4046 		return -EINVAL;
4047 	if (buf == e || (*e && *e != '\n'))
4048 		return -EINVAL;
4049 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
4050 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
4051 		mddev->suspend_hi = new;
4052 		mddev->pers->quiesce(mddev, 1);
4053 		mddev->pers->quiesce(mddev, 0);
4054 		return len;
4055 	} else
4056 		return -EINVAL;
4057 }
4058 static struct md_sysfs_entry md_suspend_hi =
4059 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4060 
4061 static ssize_t
4062 reshape_position_show(mddev_t *mddev, char *page)
4063 {
4064 	if (mddev->reshape_position != MaxSector)
4065 		return sprintf(page, "%llu\n",
4066 			       (unsigned long long)mddev->reshape_position);
4067 	strcpy(page, "none\n");
4068 	return 5;
4069 }
4070 
4071 static ssize_t
4072 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4073 {
4074 	char *e;
4075 	unsigned long long new = simple_strtoull(buf, &e, 10);
4076 	if (mddev->pers)
4077 		return -EBUSY;
4078 	if (buf == e || (*e && *e != '\n'))
4079 		return -EINVAL;
4080 	mddev->reshape_position = new;
4081 	mddev->delta_disks = 0;
4082 	mddev->new_level = mddev->level;
4083 	mddev->new_layout = mddev->layout;
4084 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4085 	return len;
4086 }
4087 
4088 static struct md_sysfs_entry md_reshape_position =
4089 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4090        reshape_position_store);
4091 
4092 static ssize_t
4093 array_size_show(mddev_t *mddev, char *page)
4094 {
4095 	if (mddev->external_size)
4096 		return sprintf(page, "%llu\n",
4097 			       (unsigned long long)mddev->array_sectors/2);
4098 	else
4099 		return sprintf(page, "default\n");
4100 }
4101 
4102 static ssize_t
4103 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4104 {
4105 	sector_t sectors;
4106 
4107 	if (strncmp(buf, "default", 7) == 0) {
4108 		if (mddev->pers)
4109 			sectors = mddev->pers->size(mddev, 0, 0);
4110 		else
4111 			sectors = mddev->array_sectors;
4112 
4113 		mddev->external_size = 0;
4114 	} else {
4115 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4116 			return -EINVAL;
4117 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4118 			return -E2BIG;
4119 
4120 		mddev->external_size = 1;
4121 	}
4122 
4123 	mddev->array_sectors = sectors;
4124 	set_capacity(mddev->gendisk, mddev->array_sectors);
4125 	if (mddev->pers)
4126 		revalidate_disk(mddev->gendisk);
4127 
4128 	return len;
4129 }
4130 
4131 static struct md_sysfs_entry md_array_size =
4132 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4133        array_size_store);
4134 
4135 static struct attribute *md_default_attrs[] = {
4136 	&md_level.attr,
4137 	&md_layout.attr,
4138 	&md_raid_disks.attr,
4139 	&md_chunk_size.attr,
4140 	&md_size.attr,
4141 	&md_resync_start.attr,
4142 	&md_metadata.attr,
4143 	&md_new_device.attr,
4144 	&md_safe_delay.attr,
4145 	&md_array_state.attr,
4146 	&md_reshape_position.attr,
4147 	&md_array_size.attr,
4148 	&max_corr_read_errors.attr,
4149 	NULL,
4150 };
4151 
4152 static struct attribute *md_redundancy_attrs[] = {
4153 	&md_scan_mode.attr,
4154 	&md_mismatches.attr,
4155 	&md_sync_min.attr,
4156 	&md_sync_max.attr,
4157 	&md_sync_speed.attr,
4158 	&md_sync_force_parallel.attr,
4159 	&md_sync_completed.attr,
4160 	&md_min_sync.attr,
4161 	&md_max_sync.attr,
4162 	&md_suspend_lo.attr,
4163 	&md_suspend_hi.attr,
4164 	&md_bitmap.attr,
4165 	&md_degraded.attr,
4166 	NULL,
4167 };
4168 static struct attribute_group md_redundancy_group = {
4169 	.name = NULL,
4170 	.attrs = md_redundancy_attrs,
4171 };
4172 
4173 
4174 static ssize_t
4175 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4176 {
4177 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4178 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4179 	ssize_t rv;
4180 
4181 	if (!entry->show)
4182 		return -EIO;
4183 	rv = mddev_lock(mddev);
4184 	if (!rv) {
4185 		rv = entry->show(mddev, page);
4186 		mddev_unlock(mddev);
4187 	}
4188 	return rv;
4189 }
4190 
4191 static ssize_t
4192 md_attr_store(struct kobject *kobj, struct attribute *attr,
4193 	      const char *page, size_t length)
4194 {
4195 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4196 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4197 	ssize_t rv;
4198 
4199 	if (!entry->store)
4200 		return -EIO;
4201 	if (!capable(CAP_SYS_ADMIN))
4202 		return -EACCES;
4203 	rv = mddev_lock(mddev);
4204 	if (mddev->hold_active == UNTIL_IOCTL)
4205 		mddev->hold_active = 0;
4206 	if (!rv) {
4207 		rv = entry->store(mddev, page, length);
4208 		mddev_unlock(mddev);
4209 	}
4210 	return rv;
4211 }
4212 
4213 static void md_free(struct kobject *ko)
4214 {
4215 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
4216 
4217 	if (mddev->sysfs_state)
4218 		sysfs_put(mddev->sysfs_state);
4219 
4220 	if (mddev->gendisk) {
4221 		del_gendisk(mddev->gendisk);
4222 		put_disk(mddev->gendisk);
4223 	}
4224 	if (mddev->queue)
4225 		blk_cleanup_queue(mddev->queue);
4226 
4227 	kfree(mddev);
4228 }
4229 
4230 static const struct sysfs_ops md_sysfs_ops = {
4231 	.show	= md_attr_show,
4232 	.store	= md_attr_store,
4233 };
4234 static struct kobj_type md_ktype = {
4235 	.release	= md_free,
4236 	.sysfs_ops	= &md_sysfs_ops,
4237 	.default_attrs	= md_default_attrs,
4238 };
4239 
4240 int mdp_major = 0;
4241 
4242 static void mddev_delayed_delete(struct work_struct *ws)
4243 {
4244 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
4245 
4246 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4247 	kobject_del(&mddev->kobj);
4248 	kobject_put(&mddev->kobj);
4249 }
4250 
4251 static int md_alloc(dev_t dev, char *name)
4252 {
4253 	static DEFINE_MUTEX(disks_mutex);
4254 	mddev_t *mddev = mddev_find(dev);
4255 	struct gendisk *disk;
4256 	int partitioned;
4257 	int shift;
4258 	int unit;
4259 	int error;
4260 
4261 	if (!mddev)
4262 		return -ENODEV;
4263 
4264 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4265 	shift = partitioned ? MdpMinorShift : 0;
4266 	unit = MINOR(mddev->unit) >> shift;
4267 
4268 	/* wait for any previous instance of this device to be
4269 	 * completely removed (mddev_delayed_delete).
4270 	 */
4271 	flush_workqueue(md_misc_wq);
4272 
4273 	mutex_lock(&disks_mutex);
4274 	error = -EEXIST;
4275 	if (mddev->gendisk)
4276 		goto abort;
4277 
4278 	if (name) {
4279 		/* Need to ensure that 'name' is not a duplicate.
4280 		 */
4281 		mddev_t *mddev2;
4282 		spin_lock(&all_mddevs_lock);
4283 
4284 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4285 			if (mddev2->gendisk &&
4286 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4287 				spin_unlock(&all_mddevs_lock);
4288 				goto abort;
4289 			}
4290 		spin_unlock(&all_mddevs_lock);
4291 	}
4292 
4293 	error = -ENOMEM;
4294 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4295 	if (!mddev->queue)
4296 		goto abort;
4297 	mddev->queue->queuedata = mddev;
4298 
4299 	/* Can be unlocked because the queue is new: no concurrency */
4300 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4301 
4302 	blk_queue_make_request(mddev->queue, md_make_request);
4303 
4304 	disk = alloc_disk(1 << shift);
4305 	if (!disk) {
4306 		blk_cleanup_queue(mddev->queue);
4307 		mddev->queue = NULL;
4308 		goto abort;
4309 	}
4310 	disk->major = MAJOR(mddev->unit);
4311 	disk->first_minor = unit << shift;
4312 	if (name)
4313 		strcpy(disk->disk_name, name);
4314 	else if (partitioned)
4315 		sprintf(disk->disk_name, "md_d%d", unit);
4316 	else
4317 		sprintf(disk->disk_name, "md%d", unit);
4318 	disk->fops = &md_fops;
4319 	disk->private_data = mddev;
4320 	disk->queue = mddev->queue;
4321 	/* Allow extended partitions.  This makes the
4322 	 * 'mdp' device redundant, but we can't really
4323 	 * remove it now.
4324 	 */
4325 	disk->flags |= GENHD_FL_EXT_DEVT;
4326 	add_disk(disk);
4327 	mddev->gendisk = disk;
4328 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4329 				     &disk_to_dev(disk)->kobj, "%s", "md");
4330 	if (error) {
4331 		/* This isn't possible, but as kobject_init_and_add is marked
4332 		 * __must_check, we must do something with the result
4333 		 */
4334 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4335 		       disk->disk_name);
4336 		error = 0;
4337 	}
4338 	if (mddev->kobj.sd &&
4339 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4340 		printk(KERN_DEBUG "pointless warning\n");
4341  abort:
4342 	mutex_unlock(&disks_mutex);
4343 	if (!error && mddev->kobj.sd) {
4344 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4345 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4346 	}
4347 	mddev_put(mddev);
4348 	return error;
4349 }
4350 
4351 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4352 {
4353 	md_alloc(dev, NULL);
4354 	return NULL;
4355 }
4356 
4357 static int add_named_array(const char *val, struct kernel_param *kp)
4358 {
4359 	/* val must be "md_*" where * is not all digits.
4360 	 * We allocate an array with a large free minor number, and
4361 	 * set the name to val.  val must not already be an active name.
4362 	 */
4363 	int len = strlen(val);
4364 	char buf[DISK_NAME_LEN];
4365 
4366 	while (len && val[len-1] == '\n')
4367 		len--;
4368 	if (len >= DISK_NAME_LEN)
4369 		return -E2BIG;
4370 	strlcpy(buf, val, len+1);
4371 	if (strncmp(buf, "md_", 3) != 0)
4372 		return -EINVAL;
4373 	return md_alloc(0, buf);
4374 }
4375 
4376 static void md_safemode_timeout(unsigned long data)
4377 {
4378 	mddev_t *mddev = (mddev_t *) data;
4379 
4380 	if (!atomic_read(&mddev->writes_pending)) {
4381 		mddev->safemode = 1;
4382 		if (mddev->external)
4383 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4384 	}
4385 	md_wakeup_thread(mddev->thread);
4386 }
4387 
4388 static int start_dirty_degraded;
4389 
4390 int md_run(mddev_t *mddev)
4391 {
4392 	int err;
4393 	mdk_rdev_t *rdev;
4394 	struct mdk_personality *pers;
4395 
4396 	if (list_empty(&mddev->disks))
4397 		/* cannot run an array with no devices.. */
4398 		return -EINVAL;
4399 
4400 	if (mddev->pers)
4401 		return -EBUSY;
4402 	/* Cannot run until previous stop completes properly */
4403 	if (mddev->sysfs_active)
4404 		return -EBUSY;
4405 
4406 	/*
4407 	 * Analyze all RAID superblock(s)
4408 	 */
4409 	if (!mddev->raid_disks) {
4410 		if (!mddev->persistent)
4411 			return -EINVAL;
4412 		analyze_sbs(mddev);
4413 	}
4414 
4415 	if (mddev->level != LEVEL_NONE)
4416 		request_module("md-level-%d", mddev->level);
4417 	else if (mddev->clevel[0])
4418 		request_module("md-%s", mddev->clevel);
4419 
4420 	/*
4421 	 * Drop all container device buffers, from now on
4422 	 * the only valid external interface is through the md
4423 	 * device.
4424 	 */
4425 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4426 		if (test_bit(Faulty, &rdev->flags))
4427 			continue;
4428 		sync_blockdev(rdev->bdev);
4429 		invalidate_bdev(rdev->bdev);
4430 
4431 		/* perform some consistency tests on the device.
4432 		 * We don't want the data to overlap the metadata,
4433 		 * Internal Bitmap issues have been handled elsewhere.
4434 		 */
4435 		if (rdev->data_offset < rdev->sb_start) {
4436 			if (mddev->dev_sectors &&
4437 			    rdev->data_offset + mddev->dev_sectors
4438 			    > rdev->sb_start) {
4439 				printk("md: %s: data overlaps metadata\n",
4440 				       mdname(mddev));
4441 				return -EINVAL;
4442 			}
4443 		} else {
4444 			if (rdev->sb_start + rdev->sb_size/512
4445 			    > rdev->data_offset) {
4446 				printk("md: %s: metadata overlaps data\n",
4447 				       mdname(mddev));
4448 				return -EINVAL;
4449 			}
4450 		}
4451 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4452 	}
4453 
4454 	if (mddev->bio_set == NULL)
4455 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, sizeof(mddev));
4456 
4457 	spin_lock(&pers_lock);
4458 	pers = find_pers(mddev->level, mddev->clevel);
4459 	if (!pers || !try_module_get(pers->owner)) {
4460 		spin_unlock(&pers_lock);
4461 		if (mddev->level != LEVEL_NONE)
4462 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4463 			       mddev->level);
4464 		else
4465 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4466 			       mddev->clevel);
4467 		return -EINVAL;
4468 	}
4469 	mddev->pers = pers;
4470 	spin_unlock(&pers_lock);
4471 	if (mddev->level != pers->level) {
4472 		mddev->level = pers->level;
4473 		mddev->new_level = pers->level;
4474 	}
4475 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4476 
4477 	if (mddev->reshape_position != MaxSector &&
4478 	    pers->start_reshape == NULL) {
4479 		/* This personality cannot handle reshaping... */
4480 		mddev->pers = NULL;
4481 		module_put(pers->owner);
4482 		return -EINVAL;
4483 	}
4484 
4485 	if (pers->sync_request) {
4486 		/* Warn if this is a potentially silly
4487 		 * configuration.
4488 		 */
4489 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4490 		mdk_rdev_t *rdev2;
4491 		int warned = 0;
4492 
4493 		list_for_each_entry(rdev, &mddev->disks, same_set)
4494 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4495 				if (rdev < rdev2 &&
4496 				    rdev->bdev->bd_contains ==
4497 				    rdev2->bdev->bd_contains) {
4498 					printk(KERN_WARNING
4499 					       "%s: WARNING: %s appears to be"
4500 					       " on the same physical disk as"
4501 					       " %s.\n",
4502 					       mdname(mddev),
4503 					       bdevname(rdev->bdev,b),
4504 					       bdevname(rdev2->bdev,b2));
4505 					warned = 1;
4506 				}
4507 			}
4508 
4509 		if (warned)
4510 			printk(KERN_WARNING
4511 			       "True protection against single-disk"
4512 			       " failure might be compromised.\n");
4513 	}
4514 
4515 	mddev->recovery = 0;
4516 	/* may be over-ridden by personality */
4517 	mddev->resync_max_sectors = mddev->dev_sectors;
4518 
4519 	mddev->ok_start_degraded = start_dirty_degraded;
4520 
4521 	if (start_readonly && mddev->ro == 0)
4522 		mddev->ro = 2; /* read-only, but switch on first write */
4523 
4524 	err = mddev->pers->run(mddev);
4525 	if (err)
4526 		printk(KERN_ERR "md: pers->run() failed ...\n");
4527 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4528 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4529 			  " but 'external_size' not in effect?\n", __func__);
4530 		printk(KERN_ERR
4531 		       "md: invalid array_size %llu > default size %llu\n",
4532 		       (unsigned long long)mddev->array_sectors / 2,
4533 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4534 		err = -EINVAL;
4535 		mddev->pers->stop(mddev);
4536 	}
4537 	if (err == 0 && mddev->pers->sync_request) {
4538 		err = bitmap_create(mddev);
4539 		if (err) {
4540 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4541 			       mdname(mddev), err);
4542 			mddev->pers->stop(mddev);
4543 		}
4544 	}
4545 	if (err) {
4546 		module_put(mddev->pers->owner);
4547 		mddev->pers = NULL;
4548 		bitmap_destroy(mddev);
4549 		return err;
4550 	}
4551 	if (mddev->pers->sync_request) {
4552 		if (mddev->kobj.sd &&
4553 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4554 			printk(KERN_WARNING
4555 			       "md: cannot register extra attributes for %s\n",
4556 			       mdname(mddev));
4557 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4558 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4559 		mddev->ro = 0;
4560 
4561  	atomic_set(&mddev->writes_pending,0);
4562 	atomic_set(&mddev->max_corr_read_errors,
4563 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4564 	mddev->safemode = 0;
4565 	mddev->safemode_timer.function = md_safemode_timeout;
4566 	mddev->safemode_timer.data = (unsigned long) mddev;
4567 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4568 	mddev->in_sync = 1;
4569 
4570 	list_for_each_entry(rdev, &mddev->disks, same_set)
4571 		if (rdev->raid_disk >= 0) {
4572 			char nm[20];
4573 			sprintf(nm, "rd%d", rdev->raid_disk);
4574 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4575 				/* failure here is OK */;
4576 		}
4577 
4578 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4579 
4580 	if (mddev->flags)
4581 		md_update_sb(mddev, 0);
4582 
4583 	md_wakeup_thread(mddev->thread);
4584 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4585 
4586 	md_new_event(mddev);
4587 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4588 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4589 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4590 	return 0;
4591 }
4592 EXPORT_SYMBOL_GPL(md_run);
4593 
4594 static int do_md_run(mddev_t *mddev)
4595 {
4596 	int err;
4597 
4598 	err = md_run(mddev);
4599 	if (err)
4600 		goto out;
4601 	err = bitmap_load(mddev);
4602 	if (err) {
4603 		bitmap_destroy(mddev);
4604 		goto out;
4605 	}
4606 	set_capacity(mddev->gendisk, mddev->array_sectors);
4607 	revalidate_disk(mddev->gendisk);
4608 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4609 out:
4610 	return err;
4611 }
4612 
4613 static int restart_array(mddev_t *mddev)
4614 {
4615 	struct gendisk *disk = mddev->gendisk;
4616 
4617 	/* Complain if it has no devices */
4618 	if (list_empty(&mddev->disks))
4619 		return -ENXIO;
4620 	if (!mddev->pers)
4621 		return -EINVAL;
4622 	if (!mddev->ro)
4623 		return -EBUSY;
4624 	mddev->safemode = 0;
4625 	mddev->ro = 0;
4626 	set_disk_ro(disk, 0);
4627 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4628 		mdname(mddev));
4629 	/* Kick recovery or resync if necessary */
4630 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4631 	md_wakeup_thread(mddev->thread);
4632 	md_wakeup_thread(mddev->sync_thread);
4633 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4634 	return 0;
4635 }
4636 
4637 /* similar to deny_write_access, but accounts for our holding a reference
4638  * to the file ourselves */
4639 static int deny_bitmap_write_access(struct file * file)
4640 {
4641 	struct inode *inode = file->f_mapping->host;
4642 
4643 	spin_lock(&inode->i_lock);
4644 	if (atomic_read(&inode->i_writecount) > 1) {
4645 		spin_unlock(&inode->i_lock);
4646 		return -ETXTBSY;
4647 	}
4648 	atomic_set(&inode->i_writecount, -1);
4649 	spin_unlock(&inode->i_lock);
4650 
4651 	return 0;
4652 }
4653 
4654 void restore_bitmap_write_access(struct file *file)
4655 {
4656 	struct inode *inode = file->f_mapping->host;
4657 
4658 	spin_lock(&inode->i_lock);
4659 	atomic_set(&inode->i_writecount, 1);
4660 	spin_unlock(&inode->i_lock);
4661 }
4662 
4663 static void md_clean(mddev_t *mddev)
4664 {
4665 	mddev->array_sectors = 0;
4666 	mddev->external_size = 0;
4667 	mddev->dev_sectors = 0;
4668 	mddev->raid_disks = 0;
4669 	mddev->recovery_cp = 0;
4670 	mddev->resync_min = 0;
4671 	mddev->resync_max = MaxSector;
4672 	mddev->reshape_position = MaxSector;
4673 	mddev->external = 0;
4674 	mddev->persistent = 0;
4675 	mddev->level = LEVEL_NONE;
4676 	mddev->clevel[0] = 0;
4677 	mddev->flags = 0;
4678 	mddev->ro = 0;
4679 	mddev->metadata_type[0] = 0;
4680 	mddev->chunk_sectors = 0;
4681 	mddev->ctime = mddev->utime = 0;
4682 	mddev->layout = 0;
4683 	mddev->max_disks = 0;
4684 	mddev->events = 0;
4685 	mddev->can_decrease_events = 0;
4686 	mddev->delta_disks = 0;
4687 	mddev->new_level = LEVEL_NONE;
4688 	mddev->new_layout = 0;
4689 	mddev->new_chunk_sectors = 0;
4690 	mddev->curr_resync = 0;
4691 	mddev->resync_mismatches = 0;
4692 	mddev->suspend_lo = mddev->suspend_hi = 0;
4693 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
4694 	mddev->recovery = 0;
4695 	mddev->in_sync = 0;
4696 	mddev->degraded = 0;
4697 	mddev->safemode = 0;
4698 	mddev->bitmap_info.offset = 0;
4699 	mddev->bitmap_info.default_offset = 0;
4700 	mddev->bitmap_info.chunksize = 0;
4701 	mddev->bitmap_info.daemon_sleep = 0;
4702 	mddev->bitmap_info.max_write_behind = 0;
4703 	mddev->plug = NULL;
4704 }
4705 
4706 void md_stop_writes(mddev_t *mddev)
4707 {
4708 	if (mddev->sync_thread) {
4709 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4710 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4711 		md_unregister_thread(mddev->sync_thread);
4712 		mddev->sync_thread = NULL;
4713 	}
4714 
4715 	del_timer_sync(&mddev->safemode_timer);
4716 
4717 	bitmap_flush(mddev);
4718 	md_super_wait(mddev);
4719 
4720 	if (!mddev->in_sync || mddev->flags) {
4721 		/* mark array as shutdown cleanly */
4722 		mddev->in_sync = 1;
4723 		md_update_sb(mddev, 1);
4724 	}
4725 }
4726 EXPORT_SYMBOL_GPL(md_stop_writes);
4727 
4728 void md_stop(mddev_t *mddev)
4729 {
4730 	mddev->pers->stop(mddev);
4731 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
4732 		mddev->to_remove = &md_redundancy_group;
4733 	module_put(mddev->pers->owner);
4734 	mddev->pers = NULL;
4735 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4736 }
4737 EXPORT_SYMBOL_GPL(md_stop);
4738 
4739 static int md_set_readonly(mddev_t *mddev, int is_open)
4740 {
4741 	int err = 0;
4742 	mutex_lock(&mddev->open_mutex);
4743 	if (atomic_read(&mddev->openers) > is_open) {
4744 		printk("md: %s still in use.\n",mdname(mddev));
4745 		err = -EBUSY;
4746 		goto out;
4747 	}
4748 	if (mddev->pers) {
4749 		md_stop_writes(mddev);
4750 
4751 		err  = -ENXIO;
4752 		if (mddev->ro==1)
4753 			goto out;
4754 		mddev->ro = 1;
4755 		set_disk_ro(mddev->gendisk, 1);
4756 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4757 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4758 		err = 0;
4759 	}
4760 out:
4761 	mutex_unlock(&mddev->open_mutex);
4762 	return err;
4763 }
4764 
4765 /* mode:
4766  *   0 - completely stop and dis-assemble array
4767  *   2 - stop but do not disassemble array
4768  */
4769 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4770 {
4771 	struct gendisk *disk = mddev->gendisk;
4772 	mdk_rdev_t *rdev;
4773 
4774 	mutex_lock(&mddev->open_mutex);
4775 	if (atomic_read(&mddev->openers) > is_open ||
4776 	    mddev->sysfs_active) {
4777 		printk("md: %s still in use.\n",mdname(mddev));
4778 		mutex_unlock(&mddev->open_mutex);
4779 		return -EBUSY;
4780 	}
4781 
4782 	if (mddev->pers) {
4783 		if (mddev->ro)
4784 			set_disk_ro(disk, 0);
4785 
4786 		md_stop_writes(mddev);
4787 		md_stop(mddev);
4788 		mddev->queue->merge_bvec_fn = NULL;
4789 		mddev->queue->unplug_fn = NULL;
4790 		mddev->queue->backing_dev_info.congested_fn = NULL;
4791 
4792 		/* tell userspace to handle 'inactive' */
4793 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4794 
4795 		list_for_each_entry(rdev, &mddev->disks, same_set)
4796 			if (rdev->raid_disk >= 0) {
4797 				char nm[20];
4798 				sprintf(nm, "rd%d", rdev->raid_disk);
4799 				sysfs_remove_link(&mddev->kobj, nm);
4800 			}
4801 
4802 		set_capacity(disk, 0);
4803 		mutex_unlock(&mddev->open_mutex);
4804 		revalidate_disk(disk);
4805 
4806 		if (mddev->ro)
4807 			mddev->ro = 0;
4808 	} else
4809 		mutex_unlock(&mddev->open_mutex);
4810 	/*
4811 	 * Free resources if final stop
4812 	 */
4813 	if (mode == 0) {
4814 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4815 
4816 		bitmap_destroy(mddev);
4817 		if (mddev->bitmap_info.file) {
4818 			restore_bitmap_write_access(mddev->bitmap_info.file);
4819 			fput(mddev->bitmap_info.file);
4820 			mddev->bitmap_info.file = NULL;
4821 		}
4822 		mddev->bitmap_info.offset = 0;
4823 
4824 		export_array(mddev);
4825 
4826 		md_clean(mddev);
4827 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4828 		if (mddev->hold_active == UNTIL_STOP)
4829 			mddev->hold_active = 0;
4830 	}
4831 	blk_integrity_unregister(disk);
4832 	md_new_event(mddev);
4833 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4834 	return 0;
4835 }
4836 
4837 #ifndef MODULE
4838 static void autorun_array(mddev_t *mddev)
4839 {
4840 	mdk_rdev_t *rdev;
4841 	int err;
4842 
4843 	if (list_empty(&mddev->disks))
4844 		return;
4845 
4846 	printk(KERN_INFO "md: running: ");
4847 
4848 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4849 		char b[BDEVNAME_SIZE];
4850 		printk("<%s>", bdevname(rdev->bdev,b));
4851 	}
4852 	printk("\n");
4853 
4854 	err = do_md_run(mddev);
4855 	if (err) {
4856 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4857 		do_md_stop(mddev, 0, 0);
4858 	}
4859 }
4860 
4861 /*
4862  * lets try to run arrays based on all disks that have arrived
4863  * until now. (those are in pending_raid_disks)
4864  *
4865  * the method: pick the first pending disk, collect all disks with
4866  * the same UUID, remove all from the pending list and put them into
4867  * the 'same_array' list. Then order this list based on superblock
4868  * update time (freshest comes first), kick out 'old' disks and
4869  * compare superblocks. If everything's fine then run it.
4870  *
4871  * If "unit" is allocated, then bump its reference count
4872  */
4873 static void autorun_devices(int part)
4874 {
4875 	mdk_rdev_t *rdev0, *rdev, *tmp;
4876 	mddev_t *mddev;
4877 	char b[BDEVNAME_SIZE];
4878 
4879 	printk(KERN_INFO "md: autorun ...\n");
4880 	while (!list_empty(&pending_raid_disks)) {
4881 		int unit;
4882 		dev_t dev;
4883 		LIST_HEAD(candidates);
4884 		rdev0 = list_entry(pending_raid_disks.next,
4885 					 mdk_rdev_t, same_set);
4886 
4887 		printk(KERN_INFO "md: considering %s ...\n",
4888 			bdevname(rdev0->bdev,b));
4889 		INIT_LIST_HEAD(&candidates);
4890 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4891 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4892 				printk(KERN_INFO "md:  adding %s ...\n",
4893 					bdevname(rdev->bdev,b));
4894 				list_move(&rdev->same_set, &candidates);
4895 			}
4896 		/*
4897 		 * now we have a set of devices, with all of them having
4898 		 * mostly sane superblocks. It's time to allocate the
4899 		 * mddev.
4900 		 */
4901 		if (part) {
4902 			dev = MKDEV(mdp_major,
4903 				    rdev0->preferred_minor << MdpMinorShift);
4904 			unit = MINOR(dev) >> MdpMinorShift;
4905 		} else {
4906 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4907 			unit = MINOR(dev);
4908 		}
4909 		if (rdev0->preferred_minor != unit) {
4910 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4911 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4912 			break;
4913 		}
4914 
4915 		md_probe(dev, NULL, NULL);
4916 		mddev = mddev_find(dev);
4917 		if (!mddev || !mddev->gendisk) {
4918 			if (mddev)
4919 				mddev_put(mddev);
4920 			printk(KERN_ERR
4921 				"md: cannot allocate memory for md drive.\n");
4922 			break;
4923 		}
4924 		if (mddev_lock(mddev))
4925 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4926 			       mdname(mddev));
4927 		else if (mddev->raid_disks || mddev->major_version
4928 			 || !list_empty(&mddev->disks)) {
4929 			printk(KERN_WARNING
4930 				"md: %s already running, cannot run %s\n",
4931 				mdname(mddev), bdevname(rdev0->bdev,b));
4932 			mddev_unlock(mddev);
4933 		} else {
4934 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4935 			mddev->persistent = 1;
4936 			rdev_for_each_list(rdev, tmp, &candidates) {
4937 				list_del_init(&rdev->same_set);
4938 				if (bind_rdev_to_array(rdev, mddev))
4939 					export_rdev(rdev);
4940 			}
4941 			autorun_array(mddev);
4942 			mddev_unlock(mddev);
4943 		}
4944 		/* on success, candidates will be empty, on error
4945 		 * it won't...
4946 		 */
4947 		rdev_for_each_list(rdev, tmp, &candidates) {
4948 			list_del_init(&rdev->same_set);
4949 			export_rdev(rdev);
4950 		}
4951 		mddev_put(mddev);
4952 	}
4953 	printk(KERN_INFO "md: ... autorun DONE.\n");
4954 }
4955 #endif /* !MODULE */
4956 
4957 static int get_version(void __user * arg)
4958 {
4959 	mdu_version_t ver;
4960 
4961 	ver.major = MD_MAJOR_VERSION;
4962 	ver.minor = MD_MINOR_VERSION;
4963 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4964 
4965 	if (copy_to_user(arg, &ver, sizeof(ver)))
4966 		return -EFAULT;
4967 
4968 	return 0;
4969 }
4970 
4971 static int get_array_info(mddev_t * mddev, void __user * arg)
4972 {
4973 	mdu_array_info_t info;
4974 	int nr,working,insync,failed,spare;
4975 	mdk_rdev_t *rdev;
4976 
4977 	nr=working=insync=failed=spare=0;
4978 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4979 		nr++;
4980 		if (test_bit(Faulty, &rdev->flags))
4981 			failed++;
4982 		else {
4983 			working++;
4984 			if (test_bit(In_sync, &rdev->flags))
4985 				insync++;
4986 			else
4987 				spare++;
4988 		}
4989 	}
4990 
4991 	info.major_version = mddev->major_version;
4992 	info.minor_version = mddev->minor_version;
4993 	info.patch_version = MD_PATCHLEVEL_VERSION;
4994 	info.ctime         = mddev->ctime;
4995 	info.level         = mddev->level;
4996 	info.size          = mddev->dev_sectors / 2;
4997 	if (info.size != mddev->dev_sectors / 2) /* overflow */
4998 		info.size = -1;
4999 	info.nr_disks      = nr;
5000 	info.raid_disks    = mddev->raid_disks;
5001 	info.md_minor      = mddev->md_minor;
5002 	info.not_persistent= !mddev->persistent;
5003 
5004 	info.utime         = mddev->utime;
5005 	info.state         = 0;
5006 	if (mddev->in_sync)
5007 		info.state = (1<<MD_SB_CLEAN);
5008 	if (mddev->bitmap && mddev->bitmap_info.offset)
5009 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5010 	info.active_disks  = insync;
5011 	info.working_disks = working;
5012 	info.failed_disks  = failed;
5013 	info.spare_disks   = spare;
5014 
5015 	info.layout        = mddev->layout;
5016 	info.chunk_size    = mddev->chunk_sectors << 9;
5017 
5018 	if (copy_to_user(arg, &info, sizeof(info)))
5019 		return -EFAULT;
5020 
5021 	return 0;
5022 }
5023 
5024 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5025 {
5026 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5027 	char *ptr, *buf = NULL;
5028 	int err = -ENOMEM;
5029 
5030 	if (md_allow_write(mddev))
5031 		file = kmalloc(sizeof(*file), GFP_NOIO);
5032 	else
5033 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5034 
5035 	if (!file)
5036 		goto out;
5037 
5038 	/* bitmap disabled, zero the first byte and copy out */
5039 	if (!mddev->bitmap || !mddev->bitmap->file) {
5040 		file->pathname[0] = '\0';
5041 		goto copy_out;
5042 	}
5043 
5044 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5045 	if (!buf)
5046 		goto out;
5047 
5048 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5049 	if (IS_ERR(ptr))
5050 		goto out;
5051 
5052 	strcpy(file->pathname, ptr);
5053 
5054 copy_out:
5055 	err = 0;
5056 	if (copy_to_user(arg, file, sizeof(*file)))
5057 		err = -EFAULT;
5058 out:
5059 	kfree(buf);
5060 	kfree(file);
5061 	return err;
5062 }
5063 
5064 static int get_disk_info(mddev_t * mddev, void __user * arg)
5065 {
5066 	mdu_disk_info_t info;
5067 	mdk_rdev_t *rdev;
5068 
5069 	if (copy_from_user(&info, arg, sizeof(info)))
5070 		return -EFAULT;
5071 
5072 	rdev = find_rdev_nr(mddev, info.number);
5073 	if (rdev) {
5074 		info.major = MAJOR(rdev->bdev->bd_dev);
5075 		info.minor = MINOR(rdev->bdev->bd_dev);
5076 		info.raid_disk = rdev->raid_disk;
5077 		info.state = 0;
5078 		if (test_bit(Faulty, &rdev->flags))
5079 			info.state |= (1<<MD_DISK_FAULTY);
5080 		else if (test_bit(In_sync, &rdev->flags)) {
5081 			info.state |= (1<<MD_DISK_ACTIVE);
5082 			info.state |= (1<<MD_DISK_SYNC);
5083 		}
5084 		if (test_bit(WriteMostly, &rdev->flags))
5085 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5086 	} else {
5087 		info.major = info.minor = 0;
5088 		info.raid_disk = -1;
5089 		info.state = (1<<MD_DISK_REMOVED);
5090 	}
5091 
5092 	if (copy_to_user(arg, &info, sizeof(info)))
5093 		return -EFAULT;
5094 
5095 	return 0;
5096 }
5097 
5098 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5099 {
5100 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5101 	mdk_rdev_t *rdev;
5102 	dev_t dev = MKDEV(info->major,info->minor);
5103 
5104 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5105 		return -EOVERFLOW;
5106 
5107 	if (!mddev->raid_disks) {
5108 		int err;
5109 		/* expecting a device which has a superblock */
5110 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5111 		if (IS_ERR(rdev)) {
5112 			printk(KERN_WARNING
5113 				"md: md_import_device returned %ld\n",
5114 				PTR_ERR(rdev));
5115 			return PTR_ERR(rdev);
5116 		}
5117 		if (!list_empty(&mddev->disks)) {
5118 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5119 							mdk_rdev_t, same_set);
5120 			err = super_types[mddev->major_version]
5121 				.load_super(rdev, rdev0, mddev->minor_version);
5122 			if (err < 0) {
5123 				printk(KERN_WARNING
5124 					"md: %s has different UUID to %s\n",
5125 					bdevname(rdev->bdev,b),
5126 					bdevname(rdev0->bdev,b2));
5127 				export_rdev(rdev);
5128 				return -EINVAL;
5129 			}
5130 		}
5131 		err = bind_rdev_to_array(rdev, mddev);
5132 		if (err)
5133 			export_rdev(rdev);
5134 		return err;
5135 	}
5136 
5137 	/*
5138 	 * add_new_disk can be used once the array is assembled
5139 	 * to add "hot spares".  They must already have a superblock
5140 	 * written
5141 	 */
5142 	if (mddev->pers) {
5143 		int err;
5144 		if (!mddev->pers->hot_add_disk) {
5145 			printk(KERN_WARNING
5146 				"%s: personality does not support diskops!\n",
5147 			       mdname(mddev));
5148 			return -EINVAL;
5149 		}
5150 		if (mddev->persistent)
5151 			rdev = md_import_device(dev, mddev->major_version,
5152 						mddev->minor_version);
5153 		else
5154 			rdev = md_import_device(dev, -1, -1);
5155 		if (IS_ERR(rdev)) {
5156 			printk(KERN_WARNING
5157 				"md: md_import_device returned %ld\n",
5158 				PTR_ERR(rdev));
5159 			return PTR_ERR(rdev);
5160 		}
5161 		/* set save_raid_disk if appropriate */
5162 		if (!mddev->persistent) {
5163 			if (info->state & (1<<MD_DISK_SYNC)  &&
5164 			    info->raid_disk < mddev->raid_disks)
5165 				rdev->raid_disk = info->raid_disk;
5166 			else
5167 				rdev->raid_disk = -1;
5168 		} else
5169 			super_types[mddev->major_version].
5170 				validate_super(mddev, rdev);
5171 		rdev->saved_raid_disk = rdev->raid_disk;
5172 
5173 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5174 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5175 			set_bit(WriteMostly, &rdev->flags);
5176 		else
5177 			clear_bit(WriteMostly, &rdev->flags);
5178 
5179 		rdev->raid_disk = -1;
5180 		err = bind_rdev_to_array(rdev, mddev);
5181 		if (!err && !mddev->pers->hot_remove_disk) {
5182 			/* If there is hot_add_disk but no hot_remove_disk
5183 			 * then added disks for geometry changes,
5184 			 * and should be added immediately.
5185 			 */
5186 			super_types[mddev->major_version].
5187 				validate_super(mddev, rdev);
5188 			err = mddev->pers->hot_add_disk(mddev, rdev);
5189 			if (err)
5190 				unbind_rdev_from_array(rdev);
5191 		}
5192 		if (err)
5193 			export_rdev(rdev);
5194 		else
5195 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5196 
5197 		md_update_sb(mddev, 1);
5198 		if (mddev->degraded)
5199 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5200 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5201 		md_wakeup_thread(mddev->thread);
5202 		return err;
5203 	}
5204 
5205 	/* otherwise, add_new_disk is only allowed
5206 	 * for major_version==0 superblocks
5207 	 */
5208 	if (mddev->major_version != 0) {
5209 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5210 		       mdname(mddev));
5211 		return -EINVAL;
5212 	}
5213 
5214 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5215 		int err;
5216 		rdev = md_import_device(dev, -1, 0);
5217 		if (IS_ERR(rdev)) {
5218 			printk(KERN_WARNING
5219 				"md: error, md_import_device() returned %ld\n",
5220 				PTR_ERR(rdev));
5221 			return PTR_ERR(rdev);
5222 		}
5223 		rdev->desc_nr = info->number;
5224 		if (info->raid_disk < mddev->raid_disks)
5225 			rdev->raid_disk = info->raid_disk;
5226 		else
5227 			rdev->raid_disk = -1;
5228 
5229 		if (rdev->raid_disk < mddev->raid_disks)
5230 			if (info->state & (1<<MD_DISK_SYNC))
5231 				set_bit(In_sync, &rdev->flags);
5232 
5233 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5234 			set_bit(WriteMostly, &rdev->flags);
5235 
5236 		if (!mddev->persistent) {
5237 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5238 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5239 		} else
5240 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5241 		rdev->sectors = rdev->sb_start;
5242 
5243 		err = bind_rdev_to_array(rdev, mddev);
5244 		if (err) {
5245 			export_rdev(rdev);
5246 			return err;
5247 		}
5248 	}
5249 
5250 	return 0;
5251 }
5252 
5253 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5254 {
5255 	char b[BDEVNAME_SIZE];
5256 	mdk_rdev_t *rdev;
5257 
5258 	rdev = find_rdev(mddev, dev);
5259 	if (!rdev)
5260 		return -ENXIO;
5261 
5262 	if (rdev->raid_disk >= 0)
5263 		goto busy;
5264 
5265 	kick_rdev_from_array(rdev);
5266 	md_update_sb(mddev, 1);
5267 	md_new_event(mddev);
5268 
5269 	return 0;
5270 busy:
5271 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5272 		bdevname(rdev->bdev,b), mdname(mddev));
5273 	return -EBUSY;
5274 }
5275 
5276 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5277 {
5278 	char b[BDEVNAME_SIZE];
5279 	int err;
5280 	mdk_rdev_t *rdev;
5281 
5282 	if (!mddev->pers)
5283 		return -ENODEV;
5284 
5285 	if (mddev->major_version != 0) {
5286 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5287 			" version-0 superblocks.\n",
5288 			mdname(mddev));
5289 		return -EINVAL;
5290 	}
5291 	if (!mddev->pers->hot_add_disk) {
5292 		printk(KERN_WARNING
5293 			"%s: personality does not support diskops!\n",
5294 			mdname(mddev));
5295 		return -EINVAL;
5296 	}
5297 
5298 	rdev = md_import_device(dev, -1, 0);
5299 	if (IS_ERR(rdev)) {
5300 		printk(KERN_WARNING
5301 			"md: error, md_import_device() returned %ld\n",
5302 			PTR_ERR(rdev));
5303 		return -EINVAL;
5304 	}
5305 
5306 	if (mddev->persistent)
5307 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5308 	else
5309 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5310 
5311 	rdev->sectors = rdev->sb_start;
5312 
5313 	if (test_bit(Faulty, &rdev->flags)) {
5314 		printk(KERN_WARNING
5315 			"md: can not hot-add faulty %s disk to %s!\n",
5316 			bdevname(rdev->bdev,b), mdname(mddev));
5317 		err = -EINVAL;
5318 		goto abort_export;
5319 	}
5320 	clear_bit(In_sync, &rdev->flags);
5321 	rdev->desc_nr = -1;
5322 	rdev->saved_raid_disk = -1;
5323 	err = bind_rdev_to_array(rdev, mddev);
5324 	if (err)
5325 		goto abort_export;
5326 
5327 	/*
5328 	 * The rest should better be atomic, we can have disk failures
5329 	 * noticed in interrupt contexts ...
5330 	 */
5331 
5332 	rdev->raid_disk = -1;
5333 
5334 	md_update_sb(mddev, 1);
5335 
5336 	/*
5337 	 * Kick recovery, maybe this spare has to be added to the
5338 	 * array immediately.
5339 	 */
5340 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5341 	md_wakeup_thread(mddev->thread);
5342 	md_new_event(mddev);
5343 	return 0;
5344 
5345 abort_export:
5346 	export_rdev(rdev);
5347 	return err;
5348 }
5349 
5350 static int set_bitmap_file(mddev_t *mddev, int fd)
5351 {
5352 	int err;
5353 
5354 	if (mddev->pers) {
5355 		if (!mddev->pers->quiesce)
5356 			return -EBUSY;
5357 		if (mddev->recovery || mddev->sync_thread)
5358 			return -EBUSY;
5359 		/* we should be able to change the bitmap.. */
5360 	}
5361 
5362 
5363 	if (fd >= 0) {
5364 		if (mddev->bitmap)
5365 			return -EEXIST; /* cannot add when bitmap is present */
5366 		mddev->bitmap_info.file = fget(fd);
5367 
5368 		if (mddev->bitmap_info.file == NULL) {
5369 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5370 			       mdname(mddev));
5371 			return -EBADF;
5372 		}
5373 
5374 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5375 		if (err) {
5376 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5377 			       mdname(mddev));
5378 			fput(mddev->bitmap_info.file);
5379 			mddev->bitmap_info.file = NULL;
5380 			return err;
5381 		}
5382 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5383 	} else if (mddev->bitmap == NULL)
5384 		return -ENOENT; /* cannot remove what isn't there */
5385 	err = 0;
5386 	if (mddev->pers) {
5387 		mddev->pers->quiesce(mddev, 1);
5388 		if (fd >= 0) {
5389 			err = bitmap_create(mddev);
5390 			if (!err)
5391 				err = bitmap_load(mddev);
5392 		}
5393 		if (fd < 0 || err) {
5394 			bitmap_destroy(mddev);
5395 			fd = -1; /* make sure to put the file */
5396 		}
5397 		mddev->pers->quiesce(mddev, 0);
5398 	}
5399 	if (fd < 0) {
5400 		if (mddev->bitmap_info.file) {
5401 			restore_bitmap_write_access(mddev->bitmap_info.file);
5402 			fput(mddev->bitmap_info.file);
5403 		}
5404 		mddev->bitmap_info.file = NULL;
5405 	}
5406 
5407 	return err;
5408 }
5409 
5410 /*
5411  * set_array_info is used two different ways
5412  * The original usage is when creating a new array.
5413  * In this usage, raid_disks is > 0 and it together with
5414  *  level, size, not_persistent,layout,chunksize determine the
5415  *  shape of the array.
5416  *  This will always create an array with a type-0.90.0 superblock.
5417  * The newer usage is when assembling an array.
5418  *  In this case raid_disks will be 0, and the major_version field is
5419  *  use to determine which style super-blocks are to be found on the devices.
5420  *  The minor and patch _version numbers are also kept incase the
5421  *  super_block handler wishes to interpret them.
5422  */
5423 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5424 {
5425 
5426 	if (info->raid_disks == 0) {
5427 		/* just setting version number for superblock loading */
5428 		if (info->major_version < 0 ||
5429 		    info->major_version >= ARRAY_SIZE(super_types) ||
5430 		    super_types[info->major_version].name == NULL) {
5431 			/* maybe try to auto-load a module? */
5432 			printk(KERN_INFO
5433 				"md: superblock version %d not known\n",
5434 				info->major_version);
5435 			return -EINVAL;
5436 		}
5437 		mddev->major_version = info->major_version;
5438 		mddev->minor_version = info->minor_version;
5439 		mddev->patch_version = info->patch_version;
5440 		mddev->persistent = !info->not_persistent;
5441 		/* ensure mddev_put doesn't delete this now that there
5442 		 * is some minimal configuration.
5443 		 */
5444 		mddev->ctime         = get_seconds();
5445 		return 0;
5446 	}
5447 	mddev->major_version = MD_MAJOR_VERSION;
5448 	mddev->minor_version = MD_MINOR_VERSION;
5449 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5450 	mddev->ctime         = get_seconds();
5451 
5452 	mddev->level         = info->level;
5453 	mddev->clevel[0]     = 0;
5454 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5455 	mddev->raid_disks    = info->raid_disks;
5456 	/* don't set md_minor, it is determined by which /dev/md* was
5457 	 * openned
5458 	 */
5459 	if (info->state & (1<<MD_SB_CLEAN))
5460 		mddev->recovery_cp = MaxSector;
5461 	else
5462 		mddev->recovery_cp = 0;
5463 	mddev->persistent    = ! info->not_persistent;
5464 	mddev->external	     = 0;
5465 
5466 	mddev->layout        = info->layout;
5467 	mddev->chunk_sectors = info->chunk_size >> 9;
5468 
5469 	mddev->max_disks     = MD_SB_DISKS;
5470 
5471 	if (mddev->persistent)
5472 		mddev->flags         = 0;
5473 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5474 
5475 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5476 	mddev->bitmap_info.offset = 0;
5477 
5478 	mddev->reshape_position = MaxSector;
5479 
5480 	/*
5481 	 * Generate a 128 bit UUID
5482 	 */
5483 	get_random_bytes(mddev->uuid, 16);
5484 
5485 	mddev->new_level = mddev->level;
5486 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5487 	mddev->new_layout = mddev->layout;
5488 	mddev->delta_disks = 0;
5489 
5490 	return 0;
5491 }
5492 
5493 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5494 {
5495 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5496 
5497 	if (mddev->external_size)
5498 		return;
5499 
5500 	mddev->array_sectors = array_sectors;
5501 }
5502 EXPORT_SYMBOL(md_set_array_sectors);
5503 
5504 static int update_size(mddev_t *mddev, sector_t num_sectors)
5505 {
5506 	mdk_rdev_t *rdev;
5507 	int rv;
5508 	int fit = (num_sectors == 0);
5509 
5510 	if (mddev->pers->resize == NULL)
5511 		return -EINVAL;
5512 	/* The "num_sectors" is the number of sectors of each device that
5513 	 * is used.  This can only make sense for arrays with redundancy.
5514 	 * linear and raid0 always use whatever space is available. We can only
5515 	 * consider changing this number if no resync or reconstruction is
5516 	 * happening, and if the new size is acceptable. It must fit before the
5517 	 * sb_start or, if that is <data_offset, it must fit before the size
5518 	 * of each device.  If num_sectors is zero, we find the largest size
5519 	 * that fits.
5520 
5521 	 */
5522 	if (mddev->sync_thread)
5523 		return -EBUSY;
5524 	if (mddev->bitmap)
5525 		/* Sorry, cannot grow a bitmap yet, just remove it,
5526 		 * grow, and re-add.
5527 		 */
5528 		return -EBUSY;
5529 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5530 		sector_t avail = rdev->sectors;
5531 
5532 		if (fit && (num_sectors == 0 || num_sectors > avail))
5533 			num_sectors = avail;
5534 		if (avail < num_sectors)
5535 			return -ENOSPC;
5536 	}
5537 	rv = mddev->pers->resize(mddev, num_sectors);
5538 	if (!rv)
5539 		revalidate_disk(mddev->gendisk);
5540 	return rv;
5541 }
5542 
5543 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5544 {
5545 	int rv;
5546 	/* change the number of raid disks */
5547 	if (mddev->pers->check_reshape == NULL)
5548 		return -EINVAL;
5549 	if (raid_disks <= 0 ||
5550 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5551 		return -EINVAL;
5552 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5553 		return -EBUSY;
5554 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5555 
5556 	rv = mddev->pers->check_reshape(mddev);
5557 	return rv;
5558 }
5559 
5560 
5561 /*
5562  * update_array_info is used to change the configuration of an
5563  * on-line array.
5564  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5565  * fields in the info are checked against the array.
5566  * Any differences that cannot be handled will cause an error.
5567  * Normally, only one change can be managed at a time.
5568  */
5569 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5570 {
5571 	int rv = 0;
5572 	int cnt = 0;
5573 	int state = 0;
5574 
5575 	/* calculate expected state,ignoring low bits */
5576 	if (mddev->bitmap && mddev->bitmap_info.offset)
5577 		state |= (1 << MD_SB_BITMAP_PRESENT);
5578 
5579 	if (mddev->major_version != info->major_version ||
5580 	    mddev->minor_version != info->minor_version ||
5581 /*	    mddev->patch_version != info->patch_version || */
5582 	    mddev->ctime         != info->ctime         ||
5583 	    mddev->level         != info->level         ||
5584 /*	    mddev->layout        != info->layout        || */
5585 	    !mddev->persistent	 != info->not_persistent||
5586 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5587 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5588 	    ((state^info->state) & 0xfffffe00)
5589 		)
5590 		return -EINVAL;
5591 	/* Check there is only one change */
5592 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5593 		cnt++;
5594 	if (mddev->raid_disks != info->raid_disks)
5595 		cnt++;
5596 	if (mddev->layout != info->layout)
5597 		cnt++;
5598 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5599 		cnt++;
5600 	if (cnt == 0)
5601 		return 0;
5602 	if (cnt > 1)
5603 		return -EINVAL;
5604 
5605 	if (mddev->layout != info->layout) {
5606 		/* Change layout
5607 		 * we don't need to do anything at the md level, the
5608 		 * personality will take care of it all.
5609 		 */
5610 		if (mddev->pers->check_reshape == NULL)
5611 			return -EINVAL;
5612 		else {
5613 			mddev->new_layout = info->layout;
5614 			rv = mddev->pers->check_reshape(mddev);
5615 			if (rv)
5616 				mddev->new_layout = mddev->layout;
5617 			return rv;
5618 		}
5619 	}
5620 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5621 		rv = update_size(mddev, (sector_t)info->size * 2);
5622 
5623 	if (mddev->raid_disks    != info->raid_disks)
5624 		rv = update_raid_disks(mddev, info->raid_disks);
5625 
5626 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5627 		if (mddev->pers->quiesce == NULL)
5628 			return -EINVAL;
5629 		if (mddev->recovery || mddev->sync_thread)
5630 			return -EBUSY;
5631 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5632 			/* add the bitmap */
5633 			if (mddev->bitmap)
5634 				return -EEXIST;
5635 			if (mddev->bitmap_info.default_offset == 0)
5636 				return -EINVAL;
5637 			mddev->bitmap_info.offset =
5638 				mddev->bitmap_info.default_offset;
5639 			mddev->pers->quiesce(mddev, 1);
5640 			rv = bitmap_create(mddev);
5641 			if (!rv)
5642 				rv = bitmap_load(mddev);
5643 			if (rv)
5644 				bitmap_destroy(mddev);
5645 			mddev->pers->quiesce(mddev, 0);
5646 		} else {
5647 			/* remove the bitmap */
5648 			if (!mddev->bitmap)
5649 				return -ENOENT;
5650 			if (mddev->bitmap->file)
5651 				return -EINVAL;
5652 			mddev->pers->quiesce(mddev, 1);
5653 			bitmap_destroy(mddev);
5654 			mddev->pers->quiesce(mddev, 0);
5655 			mddev->bitmap_info.offset = 0;
5656 		}
5657 	}
5658 	md_update_sb(mddev, 1);
5659 	return rv;
5660 }
5661 
5662 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5663 {
5664 	mdk_rdev_t *rdev;
5665 
5666 	if (mddev->pers == NULL)
5667 		return -ENODEV;
5668 
5669 	rdev = find_rdev(mddev, dev);
5670 	if (!rdev)
5671 		return -ENODEV;
5672 
5673 	md_error(mddev, rdev);
5674 	return 0;
5675 }
5676 
5677 /*
5678  * We have a problem here : there is no easy way to give a CHS
5679  * virtual geometry. We currently pretend that we have a 2 heads
5680  * 4 sectors (with a BIG number of cylinders...). This drives
5681  * dosfs just mad... ;-)
5682  */
5683 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5684 {
5685 	mddev_t *mddev = bdev->bd_disk->private_data;
5686 
5687 	geo->heads = 2;
5688 	geo->sectors = 4;
5689 	geo->cylinders = mddev->array_sectors / 8;
5690 	return 0;
5691 }
5692 
5693 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5694 			unsigned int cmd, unsigned long arg)
5695 {
5696 	int err = 0;
5697 	void __user *argp = (void __user *)arg;
5698 	mddev_t *mddev = NULL;
5699 	int ro;
5700 
5701 	if (!capable(CAP_SYS_ADMIN))
5702 		return -EACCES;
5703 
5704 	/*
5705 	 * Commands dealing with the RAID driver but not any
5706 	 * particular array:
5707 	 */
5708 	switch (cmd)
5709 	{
5710 		case RAID_VERSION:
5711 			err = get_version(argp);
5712 			goto done;
5713 
5714 		case PRINT_RAID_DEBUG:
5715 			err = 0;
5716 			md_print_devices();
5717 			goto done;
5718 
5719 #ifndef MODULE
5720 		case RAID_AUTORUN:
5721 			err = 0;
5722 			autostart_arrays(arg);
5723 			goto done;
5724 #endif
5725 		default:;
5726 	}
5727 
5728 	/*
5729 	 * Commands creating/starting a new array:
5730 	 */
5731 
5732 	mddev = bdev->bd_disk->private_data;
5733 
5734 	if (!mddev) {
5735 		BUG();
5736 		goto abort;
5737 	}
5738 
5739 	err = mddev_lock(mddev);
5740 	if (err) {
5741 		printk(KERN_INFO
5742 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5743 			err, cmd);
5744 		goto abort;
5745 	}
5746 
5747 	switch (cmd)
5748 	{
5749 		case SET_ARRAY_INFO:
5750 			{
5751 				mdu_array_info_t info;
5752 				if (!arg)
5753 					memset(&info, 0, sizeof(info));
5754 				else if (copy_from_user(&info, argp, sizeof(info))) {
5755 					err = -EFAULT;
5756 					goto abort_unlock;
5757 				}
5758 				if (mddev->pers) {
5759 					err = update_array_info(mddev, &info);
5760 					if (err) {
5761 						printk(KERN_WARNING "md: couldn't update"
5762 						       " array info. %d\n", err);
5763 						goto abort_unlock;
5764 					}
5765 					goto done_unlock;
5766 				}
5767 				if (!list_empty(&mddev->disks)) {
5768 					printk(KERN_WARNING
5769 					       "md: array %s already has disks!\n",
5770 					       mdname(mddev));
5771 					err = -EBUSY;
5772 					goto abort_unlock;
5773 				}
5774 				if (mddev->raid_disks) {
5775 					printk(KERN_WARNING
5776 					       "md: array %s already initialised!\n",
5777 					       mdname(mddev));
5778 					err = -EBUSY;
5779 					goto abort_unlock;
5780 				}
5781 				err = set_array_info(mddev, &info);
5782 				if (err) {
5783 					printk(KERN_WARNING "md: couldn't set"
5784 					       " array info. %d\n", err);
5785 					goto abort_unlock;
5786 				}
5787 			}
5788 			goto done_unlock;
5789 
5790 		default:;
5791 	}
5792 
5793 	/*
5794 	 * Commands querying/configuring an existing array:
5795 	 */
5796 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5797 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5798 	if ((!mddev->raid_disks && !mddev->external)
5799 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5800 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5801 	    && cmd != GET_BITMAP_FILE) {
5802 		err = -ENODEV;
5803 		goto abort_unlock;
5804 	}
5805 
5806 	/*
5807 	 * Commands even a read-only array can execute:
5808 	 */
5809 	switch (cmd)
5810 	{
5811 		case GET_ARRAY_INFO:
5812 			err = get_array_info(mddev, argp);
5813 			goto done_unlock;
5814 
5815 		case GET_BITMAP_FILE:
5816 			err = get_bitmap_file(mddev, argp);
5817 			goto done_unlock;
5818 
5819 		case GET_DISK_INFO:
5820 			err = get_disk_info(mddev, argp);
5821 			goto done_unlock;
5822 
5823 		case RESTART_ARRAY_RW:
5824 			err = restart_array(mddev);
5825 			goto done_unlock;
5826 
5827 		case STOP_ARRAY:
5828 			err = do_md_stop(mddev, 0, 1);
5829 			goto done_unlock;
5830 
5831 		case STOP_ARRAY_RO:
5832 			err = md_set_readonly(mddev, 1);
5833 			goto done_unlock;
5834 
5835 		case BLKROSET:
5836 			if (get_user(ro, (int __user *)(arg))) {
5837 				err = -EFAULT;
5838 				goto done_unlock;
5839 			}
5840 			err = -EINVAL;
5841 
5842 			/* if the bdev is going readonly the value of mddev->ro
5843 			 * does not matter, no writes are coming
5844 			 */
5845 			if (ro)
5846 				goto done_unlock;
5847 
5848 			/* are we are already prepared for writes? */
5849 			if (mddev->ro != 1)
5850 				goto done_unlock;
5851 
5852 			/* transitioning to readauto need only happen for
5853 			 * arrays that call md_write_start
5854 			 */
5855 			if (mddev->pers) {
5856 				err = restart_array(mddev);
5857 				if (err == 0) {
5858 					mddev->ro = 2;
5859 					set_disk_ro(mddev->gendisk, 0);
5860 				}
5861 			}
5862 			goto done_unlock;
5863 	}
5864 
5865 	/*
5866 	 * The remaining ioctls are changing the state of the
5867 	 * superblock, so we do not allow them on read-only arrays.
5868 	 * However non-MD ioctls (e.g. get-size) will still come through
5869 	 * here and hit the 'default' below, so only disallow
5870 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5871 	 */
5872 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5873 		if (mddev->ro == 2) {
5874 			mddev->ro = 0;
5875 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5876 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5877 			md_wakeup_thread(mddev->thread);
5878 		} else {
5879 			err = -EROFS;
5880 			goto abort_unlock;
5881 		}
5882 	}
5883 
5884 	switch (cmd)
5885 	{
5886 		case ADD_NEW_DISK:
5887 		{
5888 			mdu_disk_info_t info;
5889 			if (copy_from_user(&info, argp, sizeof(info)))
5890 				err = -EFAULT;
5891 			else
5892 				err = add_new_disk(mddev, &info);
5893 			goto done_unlock;
5894 		}
5895 
5896 		case HOT_REMOVE_DISK:
5897 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5898 			goto done_unlock;
5899 
5900 		case HOT_ADD_DISK:
5901 			err = hot_add_disk(mddev, new_decode_dev(arg));
5902 			goto done_unlock;
5903 
5904 		case SET_DISK_FAULTY:
5905 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5906 			goto done_unlock;
5907 
5908 		case RUN_ARRAY:
5909 			err = do_md_run(mddev);
5910 			goto done_unlock;
5911 
5912 		case SET_BITMAP_FILE:
5913 			err = set_bitmap_file(mddev, (int)arg);
5914 			goto done_unlock;
5915 
5916 		default:
5917 			err = -EINVAL;
5918 			goto abort_unlock;
5919 	}
5920 
5921 done_unlock:
5922 abort_unlock:
5923 	if (mddev->hold_active == UNTIL_IOCTL &&
5924 	    err != -EINVAL)
5925 		mddev->hold_active = 0;
5926 	mddev_unlock(mddev);
5927 
5928 	return err;
5929 done:
5930 	if (err)
5931 		MD_BUG();
5932 abort:
5933 	return err;
5934 }
5935 #ifdef CONFIG_COMPAT
5936 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5937 		    unsigned int cmd, unsigned long arg)
5938 {
5939 	switch (cmd) {
5940 	case HOT_REMOVE_DISK:
5941 	case HOT_ADD_DISK:
5942 	case SET_DISK_FAULTY:
5943 	case SET_BITMAP_FILE:
5944 		/* These take in integer arg, do not convert */
5945 		break;
5946 	default:
5947 		arg = (unsigned long)compat_ptr(arg);
5948 		break;
5949 	}
5950 
5951 	return md_ioctl(bdev, mode, cmd, arg);
5952 }
5953 #endif /* CONFIG_COMPAT */
5954 
5955 static int md_open(struct block_device *bdev, fmode_t mode)
5956 {
5957 	/*
5958 	 * Succeed if we can lock the mddev, which confirms that
5959 	 * it isn't being stopped right now.
5960 	 */
5961 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5962 	int err;
5963 
5964 	if (mddev->gendisk != bdev->bd_disk) {
5965 		/* we are racing with mddev_put which is discarding this
5966 		 * bd_disk.
5967 		 */
5968 		mddev_put(mddev);
5969 		/* Wait until bdev->bd_disk is definitely gone */
5970 		flush_workqueue(md_misc_wq);
5971 		/* Then retry the open from the top */
5972 		return -ERESTARTSYS;
5973 	}
5974 	BUG_ON(mddev != bdev->bd_disk->private_data);
5975 
5976 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5977 		goto out;
5978 
5979 	err = 0;
5980 	atomic_inc(&mddev->openers);
5981 	mutex_unlock(&mddev->open_mutex);
5982 
5983 	check_disk_size_change(mddev->gendisk, bdev);
5984  out:
5985 	return err;
5986 }
5987 
5988 static int md_release(struct gendisk *disk, fmode_t mode)
5989 {
5990  	mddev_t *mddev = disk->private_data;
5991 
5992 	BUG_ON(!mddev);
5993 	atomic_dec(&mddev->openers);
5994 	mddev_put(mddev);
5995 
5996 	return 0;
5997 }
5998 static const struct block_device_operations md_fops =
5999 {
6000 	.owner		= THIS_MODULE,
6001 	.open		= md_open,
6002 	.release	= md_release,
6003 	.ioctl		= md_ioctl,
6004 #ifdef CONFIG_COMPAT
6005 	.compat_ioctl	= md_compat_ioctl,
6006 #endif
6007 	.getgeo		= md_getgeo,
6008 };
6009 
6010 static int md_thread(void * arg)
6011 {
6012 	mdk_thread_t *thread = arg;
6013 
6014 	/*
6015 	 * md_thread is a 'system-thread', it's priority should be very
6016 	 * high. We avoid resource deadlocks individually in each
6017 	 * raid personality. (RAID5 does preallocation) We also use RR and
6018 	 * the very same RT priority as kswapd, thus we will never get
6019 	 * into a priority inversion deadlock.
6020 	 *
6021 	 * we definitely have to have equal or higher priority than
6022 	 * bdflush, otherwise bdflush will deadlock if there are too
6023 	 * many dirty RAID5 blocks.
6024 	 */
6025 
6026 	allow_signal(SIGKILL);
6027 	while (!kthread_should_stop()) {
6028 
6029 		/* We need to wait INTERRUPTIBLE so that
6030 		 * we don't add to the load-average.
6031 		 * That means we need to be sure no signals are
6032 		 * pending
6033 		 */
6034 		if (signal_pending(current))
6035 			flush_signals(current);
6036 
6037 		wait_event_interruptible_timeout
6038 			(thread->wqueue,
6039 			 test_bit(THREAD_WAKEUP, &thread->flags)
6040 			 || kthread_should_stop(),
6041 			 thread->timeout);
6042 
6043 		clear_bit(THREAD_WAKEUP, &thread->flags);
6044 
6045 		thread->run(thread->mddev);
6046 	}
6047 
6048 	return 0;
6049 }
6050 
6051 void md_wakeup_thread(mdk_thread_t *thread)
6052 {
6053 	if (thread) {
6054 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6055 		set_bit(THREAD_WAKEUP, &thread->flags);
6056 		wake_up(&thread->wqueue);
6057 	}
6058 }
6059 
6060 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6061 				 const char *name)
6062 {
6063 	mdk_thread_t *thread;
6064 
6065 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6066 	if (!thread)
6067 		return NULL;
6068 
6069 	init_waitqueue_head(&thread->wqueue);
6070 
6071 	thread->run = run;
6072 	thread->mddev = mddev;
6073 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6074 	thread->tsk = kthread_run(md_thread, thread,
6075 				  "%s_%s",
6076 				  mdname(thread->mddev),
6077 				  name ?: mddev->pers->name);
6078 	if (IS_ERR(thread->tsk)) {
6079 		kfree(thread);
6080 		return NULL;
6081 	}
6082 	return thread;
6083 }
6084 
6085 void md_unregister_thread(mdk_thread_t *thread)
6086 {
6087 	if (!thread)
6088 		return;
6089 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6090 
6091 	kthread_stop(thread->tsk);
6092 	kfree(thread);
6093 }
6094 
6095 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6096 {
6097 	if (!mddev) {
6098 		MD_BUG();
6099 		return;
6100 	}
6101 
6102 	if (!rdev || test_bit(Faulty, &rdev->flags))
6103 		return;
6104 
6105 	if (mddev->external)
6106 		set_bit(Blocked, &rdev->flags);
6107 /*
6108 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6109 		mdname(mddev),
6110 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6111 		__builtin_return_address(0),__builtin_return_address(1),
6112 		__builtin_return_address(2),__builtin_return_address(3));
6113 */
6114 	if (!mddev->pers)
6115 		return;
6116 	if (!mddev->pers->error_handler)
6117 		return;
6118 	mddev->pers->error_handler(mddev,rdev);
6119 	if (mddev->degraded)
6120 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6121 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6122 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6123 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6124 	md_wakeup_thread(mddev->thread);
6125 	if (mddev->event_work.func)
6126 		queue_work(md_misc_wq, &mddev->event_work);
6127 	md_new_event_inintr(mddev);
6128 }
6129 
6130 /* seq_file implementation /proc/mdstat */
6131 
6132 static void status_unused(struct seq_file *seq)
6133 {
6134 	int i = 0;
6135 	mdk_rdev_t *rdev;
6136 
6137 	seq_printf(seq, "unused devices: ");
6138 
6139 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6140 		char b[BDEVNAME_SIZE];
6141 		i++;
6142 		seq_printf(seq, "%s ",
6143 			      bdevname(rdev->bdev,b));
6144 	}
6145 	if (!i)
6146 		seq_printf(seq, "<none>");
6147 
6148 	seq_printf(seq, "\n");
6149 }
6150 
6151 
6152 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6153 {
6154 	sector_t max_sectors, resync, res;
6155 	unsigned long dt, db;
6156 	sector_t rt;
6157 	int scale;
6158 	unsigned int per_milli;
6159 
6160 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6161 
6162 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6163 		max_sectors = mddev->resync_max_sectors;
6164 	else
6165 		max_sectors = mddev->dev_sectors;
6166 
6167 	/*
6168 	 * Should not happen.
6169 	 */
6170 	if (!max_sectors) {
6171 		MD_BUG();
6172 		return;
6173 	}
6174 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6175 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6176 	 * u32, as those are the requirements for sector_div.
6177 	 * Thus 'scale' must be at least 10
6178 	 */
6179 	scale = 10;
6180 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6181 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6182 			scale++;
6183 	}
6184 	res = (resync>>scale)*1000;
6185 	sector_div(res, (u32)((max_sectors>>scale)+1));
6186 
6187 	per_milli = res;
6188 	{
6189 		int i, x = per_milli/50, y = 20-x;
6190 		seq_printf(seq, "[");
6191 		for (i = 0; i < x; i++)
6192 			seq_printf(seq, "=");
6193 		seq_printf(seq, ">");
6194 		for (i = 0; i < y; i++)
6195 			seq_printf(seq, ".");
6196 		seq_printf(seq, "] ");
6197 	}
6198 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6199 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6200 		    "reshape" :
6201 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6202 		     "check" :
6203 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6204 		      "resync" : "recovery"))),
6205 		   per_milli/10, per_milli % 10,
6206 		   (unsigned long long) resync/2,
6207 		   (unsigned long long) max_sectors/2);
6208 
6209 	/*
6210 	 * dt: time from mark until now
6211 	 * db: blocks written from mark until now
6212 	 * rt: remaining time
6213 	 *
6214 	 * rt is a sector_t, so could be 32bit or 64bit.
6215 	 * So we divide before multiply in case it is 32bit and close
6216 	 * to the limit.
6217 	 * We scale the divisor (db) by 32 to avoid loosing precision
6218 	 * near the end of resync when the number of remaining sectors
6219 	 * is close to 'db'.
6220 	 * We then divide rt by 32 after multiplying by db to compensate.
6221 	 * The '+1' avoids division by zero if db is very small.
6222 	 */
6223 	dt = ((jiffies - mddev->resync_mark) / HZ);
6224 	if (!dt) dt++;
6225 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6226 		- mddev->resync_mark_cnt;
6227 
6228 	rt = max_sectors - resync;    /* number of remaining sectors */
6229 	sector_div(rt, db/32+1);
6230 	rt *= dt;
6231 	rt >>= 5;
6232 
6233 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6234 		   ((unsigned long)rt % 60)/6);
6235 
6236 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6237 }
6238 
6239 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6240 {
6241 	struct list_head *tmp;
6242 	loff_t l = *pos;
6243 	mddev_t *mddev;
6244 
6245 	if (l >= 0x10000)
6246 		return NULL;
6247 	if (!l--)
6248 		/* header */
6249 		return (void*)1;
6250 
6251 	spin_lock(&all_mddevs_lock);
6252 	list_for_each(tmp,&all_mddevs)
6253 		if (!l--) {
6254 			mddev = list_entry(tmp, mddev_t, all_mddevs);
6255 			mddev_get(mddev);
6256 			spin_unlock(&all_mddevs_lock);
6257 			return mddev;
6258 		}
6259 	spin_unlock(&all_mddevs_lock);
6260 	if (!l--)
6261 		return (void*)2;/* tail */
6262 	return NULL;
6263 }
6264 
6265 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6266 {
6267 	struct list_head *tmp;
6268 	mddev_t *next_mddev, *mddev = v;
6269 
6270 	++*pos;
6271 	if (v == (void*)2)
6272 		return NULL;
6273 
6274 	spin_lock(&all_mddevs_lock);
6275 	if (v == (void*)1)
6276 		tmp = all_mddevs.next;
6277 	else
6278 		tmp = mddev->all_mddevs.next;
6279 	if (tmp != &all_mddevs)
6280 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6281 	else {
6282 		next_mddev = (void*)2;
6283 		*pos = 0x10000;
6284 	}
6285 	spin_unlock(&all_mddevs_lock);
6286 
6287 	if (v != (void*)1)
6288 		mddev_put(mddev);
6289 	return next_mddev;
6290 
6291 }
6292 
6293 static void md_seq_stop(struct seq_file *seq, void *v)
6294 {
6295 	mddev_t *mddev = v;
6296 
6297 	if (mddev && v != (void*)1 && v != (void*)2)
6298 		mddev_put(mddev);
6299 }
6300 
6301 struct mdstat_info {
6302 	int event;
6303 };
6304 
6305 static int md_seq_show(struct seq_file *seq, void *v)
6306 {
6307 	mddev_t *mddev = v;
6308 	sector_t sectors;
6309 	mdk_rdev_t *rdev;
6310 	struct mdstat_info *mi = seq->private;
6311 	struct bitmap *bitmap;
6312 
6313 	if (v == (void*)1) {
6314 		struct mdk_personality *pers;
6315 		seq_printf(seq, "Personalities : ");
6316 		spin_lock(&pers_lock);
6317 		list_for_each_entry(pers, &pers_list, list)
6318 			seq_printf(seq, "[%s] ", pers->name);
6319 
6320 		spin_unlock(&pers_lock);
6321 		seq_printf(seq, "\n");
6322 		mi->event = atomic_read(&md_event_count);
6323 		return 0;
6324 	}
6325 	if (v == (void*)2) {
6326 		status_unused(seq);
6327 		return 0;
6328 	}
6329 
6330 	if (mddev_lock(mddev) < 0)
6331 		return -EINTR;
6332 
6333 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6334 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6335 						mddev->pers ? "" : "in");
6336 		if (mddev->pers) {
6337 			if (mddev->ro==1)
6338 				seq_printf(seq, " (read-only)");
6339 			if (mddev->ro==2)
6340 				seq_printf(seq, " (auto-read-only)");
6341 			seq_printf(seq, " %s", mddev->pers->name);
6342 		}
6343 
6344 		sectors = 0;
6345 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6346 			char b[BDEVNAME_SIZE];
6347 			seq_printf(seq, " %s[%d]",
6348 				bdevname(rdev->bdev,b), rdev->desc_nr);
6349 			if (test_bit(WriteMostly, &rdev->flags))
6350 				seq_printf(seq, "(W)");
6351 			if (test_bit(Faulty, &rdev->flags)) {
6352 				seq_printf(seq, "(F)");
6353 				continue;
6354 			} else if (rdev->raid_disk < 0)
6355 				seq_printf(seq, "(S)"); /* spare */
6356 			sectors += rdev->sectors;
6357 		}
6358 
6359 		if (!list_empty(&mddev->disks)) {
6360 			if (mddev->pers)
6361 				seq_printf(seq, "\n      %llu blocks",
6362 					   (unsigned long long)
6363 					   mddev->array_sectors / 2);
6364 			else
6365 				seq_printf(seq, "\n      %llu blocks",
6366 					   (unsigned long long)sectors / 2);
6367 		}
6368 		if (mddev->persistent) {
6369 			if (mddev->major_version != 0 ||
6370 			    mddev->minor_version != 90) {
6371 				seq_printf(seq," super %d.%d",
6372 					   mddev->major_version,
6373 					   mddev->minor_version);
6374 			}
6375 		} else if (mddev->external)
6376 			seq_printf(seq, " super external:%s",
6377 				   mddev->metadata_type);
6378 		else
6379 			seq_printf(seq, " super non-persistent");
6380 
6381 		if (mddev->pers) {
6382 			mddev->pers->status(seq, mddev);
6383 	 		seq_printf(seq, "\n      ");
6384 			if (mddev->pers->sync_request) {
6385 				if (mddev->curr_resync > 2) {
6386 					status_resync(seq, mddev);
6387 					seq_printf(seq, "\n      ");
6388 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6389 					seq_printf(seq, "\tresync=DELAYED\n      ");
6390 				else if (mddev->recovery_cp < MaxSector)
6391 					seq_printf(seq, "\tresync=PENDING\n      ");
6392 			}
6393 		} else
6394 			seq_printf(seq, "\n       ");
6395 
6396 		if ((bitmap = mddev->bitmap)) {
6397 			unsigned long chunk_kb;
6398 			unsigned long flags;
6399 			spin_lock_irqsave(&bitmap->lock, flags);
6400 			chunk_kb = mddev->bitmap_info.chunksize >> 10;
6401 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6402 				"%lu%s chunk",
6403 				bitmap->pages - bitmap->missing_pages,
6404 				bitmap->pages,
6405 				(bitmap->pages - bitmap->missing_pages)
6406 					<< (PAGE_SHIFT - 10),
6407 				chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6408 				chunk_kb ? "KB" : "B");
6409 			if (bitmap->file) {
6410 				seq_printf(seq, ", file: ");
6411 				seq_path(seq, &bitmap->file->f_path, " \t\n");
6412 			}
6413 
6414 			seq_printf(seq, "\n");
6415 			spin_unlock_irqrestore(&bitmap->lock, flags);
6416 		}
6417 
6418 		seq_printf(seq, "\n");
6419 	}
6420 	mddev_unlock(mddev);
6421 
6422 	return 0;
6423 }
6424 
6425 static const struct seq_operations md_seq_ops = {
6426 	.start  = md_seq_start,
6427 	.next   = md_seq_next,
6428 	.stop   = md_seq_stop,
6429 	.show   = md_seq_show,
6430 };
6431 
6432 static int md_seq_open(struct inode *inode, struct file *file)
6433 {
6434 	int error;
6435 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6436 	if (mi == NULL)
6437 		return -ENOMEM;
6438 
6439 	error = seq_open(file, &md_seq_ops);
6440 	if (error)
6441 		kfree(mi);
6442 	else {
6443 		struct seq_file *p = file->private_data;
6444 		p->private = mi;
6445 		mi->event = atomic_read(&md_event_count);
6446 	}
6447 	return error;
6448 }
6449 
6450 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6451 {
6452 	struct seq_file *m = filp->private_data;
6453 	struct mdstat_info *mi = m->private;
6454 	int mask;
6455 
6456 	poll_wait(filp, &md_event_waiters, wait);
6457 
6458 	/* always allow read */
6459 	mask = POLLIN | POLLRDNORM;
6460 
6461 	if (mi->event != atomic_read(&md_event_count))
6462 		mask |= POLLERR | POLLPRI;
6463 	return mask;
6464 }
6465 
6466 static const struct file_operations md_seq_fops = {
6467 	.owner		= THIS_MODULE,
6468 	.open           = md_seq_open,
6469 	.read           = seq_read,
6470 	.llseek         = seq_lseek,
6471 	.release	= seq_release_private,
6472 	.poll		= mdstat_poll,
6473 };
6474 
6475 int register_md_personality(struct mdk_personality *p)
6476 {
6477 	spin_lock(&pers_lock);
6478 	list_add_tail(&p->list, &pers_list);
6479 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6480 	spin_unlock(&pers_lock);
6481 	return 0;
6482 }
6483 
6484 int unregister_md_personality(struct mdk_personality *p)
6485 {
6486 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6487 	spin_lock(&pers_lock);
6488 	list_del_init(&p->list);
6489 	spin_unlock(&pers_lock);
6490 	return 0;
6491 }
6492 
6493 static int is_mddev_idle(mddev_t *mddev, int init)
6494 {
6495 	mdk_rdev_t * rdev;
6496 	int idle;
6497 	int curr_events;
6498 
6499 	idle = 1;
6500 	rcu_read_lock();
6501 	rdev_for_each_rcu(rdev, mddev) {
6502 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6503 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6504 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6505 			      atomic_read(&disk->sync_io);
6506 		/* sync IO will cause sync_io to increase before the disk_stats
6507 		 * as sync_io is counted when a request starts, and
6508 		 * disk_stats is counted when it completes.
6509 		 * So resync activity will cause curr_events to be smaller than
6510 		 * when there was no such activity.
6511 		 * non-sync IO will cause disk_stat to increase without
6512 		 * increasing sync_io so curr_events will (eventually)
6513 		 * be larger than it was before.  Once it becomes
6514 		 * substantially larger, the test below will cause
6515 		 * the array to appear non-idle, and resync will slow
6516 		 * down.
6517 		 * If there is a lot of outstanding resync activity when
6518 		 * we set last_event to curr_events, then all that activity
6519 		 * completing might cause the array to appear non-idle
6520 		 * and resync will be slowed down even though there might
6521 		 * not have been non-resync activity.  This will only
6522 		 * happen once though.  'last_events' will soon reflect
6523 		 * the state where there is little or no outstanding
6524 		 * resync requests, and further resync activity will
6525 		 * always make curr_events less than last_events.
6526 		 *
6527 		 */
6528 		if (init || curr_events - rdev->last_events > 64) {
6529 			rdev->last_events = curr_events;
6530 			idle = 0;
6531 		}
6532 	}
6533 	rcu_read_unlock();
6534 	return idle;
6535 }
6536 
6537 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6538 {
6539 	/* another "blocks" (512byte) blocks have been synced */
6540 	atomic_sub(blocks, &mddev->recovery_active);
6541 	wake_up(&mddev->recovery_wait);
6542 	if (!ok) {
6543 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6544 		md_wakeup_thread(mddev->thread);
6545 		// stop recovery, signal do_sync ....
6546 	}
6547 }
6548 
6549 
6550 /* md_write_start(mddev, bi)
6551  * If we need to update some array metadata (e.g. 'active' flag
6552  * in superblock) before writing, schedule a superblock update
6553  * and wait for it to complete.
6554  */
6555 void md_write_start(mddev_t *mddev, struct bio *bi)
6556 {
6557 	int did_change = 0;
6558 	if (bio_data_dir(bi) != WRITE)
6559 		return;
6560 
6561 	BUG_ON(mddev->ro == 1);
6562 	if (mddev->ro == 2) {
6563 		/* need to switch to read/write */
6564 		mddev->ro = 0;
6565 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6566 		md_wakeup_thread(mddev->thread);
6567 		md_wakeup_thread(mddev->sync_thread);
6568 		did_change = 1;
6569 	}
6570 	atomic_inc(&mddev->writes_pending);
6571 	if (mddev->safemode == 1)
6572 		mddev->safemode = 0;
6573 	if (mddev->in_sync) {
6574 		spin_lock_irq(&mddev->write_lock);
6575 		if (mddev->in_sync) {
6576 			mddev->in_sync = 0;
6577 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6578 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
6579 			md_wakeup_thread(mddev->thread);
6580 			did_change = 1;
6581 		}
6582 		spin_unlock_irq(&mddev->write_lock);
6583 	}
6584 	if (did_change)
6585 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6586 	wait_event(mddev->sb_wait,
6587 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6588 }
6589 
6590 void md_write_end(mddev_t *mddev)
6591 {
6592 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6593 		if (mddev->safemode == 2)
6594 			md_wakeup_thread(mddev->thread);
6595 		else if (mddev->safemode_delay)
6596 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6597 	}
6598 }
6599 
6600 /* md_allow_write(mddev)
6601  * Calling this ensures that the array is marked 'active' so that writes
6602  * may proceed without blocking.  It is important to call this before
6603  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6604  * Must be called with mddev_lock held.
6605  *
6606  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6607  * is dropped, so return -EAGAIN after notifying userspace.
6608  */
6609 int md_allow_write(mddev_t *mddev)
6610 {
6611 	if (!mddev->pers)
6612 		return 0;
6613 	if (mddev->ro)
6614 		return 0;
6615 	if (!mddev->pers->sync_request)
6616 		return 0;
6617 
6618 	spin_lock_irq(&mddev->write_lock);
6619 	if (mddev->in_sync) {
6620 		mddev->in_sync = 0;
6621 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6622 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
6623 		if (mddev->safemode_delay &&
6624 		    mddev->safemode == 0)
6625 			mddev->safemode = 1;
6626 		spin_unlock_irq(&mddev->write_lock);
6627 		md_update_sb(mddev, 0);
6628 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6629 	} else
6630 		spin_unlock_irq(&mddev->write_lock);
6631 
6632 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6633 		return -EAGAIN;
6634 	else
6635 		return 0;
6636 }
6637 EXPORT_SYMBOL_GPL(md_allow_write);
6638 
6639 void md_unplug(mddev_t *mddev)
6640 {
6641 	if (mddev->queue)
6642 		blk_unplug(mddev->queue);
6643 	if (mddev->plug)
6644 		mddev->plug->unplug_fn(mddev->plug);
6645 }
6646 
6647 #define SYNC_MARKS	10
6648 #define	SYNC_MARK_STEP	(3*HZ)
6649 void md_do_sync(mddev_t *mddev)
6650 {
6651 	mddev_t *mddev2;
6652 	unsigned int currspeed = 0,
6653 		 window;
6654 	sector_t max_sectors,j, io_sectors;
6655 	unsigned long mark[SYNC_MARKS];
6656 	sector_t mark_cnt[SYNC_MARKS];
6657 	int last_mark,m;
6658 	struct list_head *tmp;
6659 	sector_t last_check;
6660 	int skipped = 0;
6661 	mdk_rdev_t *rdev;
6662 	char *desc;
6663 
6664 	/* just incase thread restarts... */
6665 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6666 		return;
6667 	if (mddev->ro) /* never try to sync a read-only array */
6668 		return;
6669 
6670 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6671 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6672 			desc = "data-check";
6673 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6674 			desc = "requested-resync";
6675 		else
6676 			desc = "resync";
6677 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6678 		desc = "reshape";
6679 	else
6680 		desc = "recovery";
6681 
6682 	/* we overload curr_resync somewhat here.
6683 	 * 0 == not engaged in resync at all
6684 	 * 2 == checking that there is no conflict with another sync
6685 	 * 1 == like 2, but have yielded to allow conflicting resync to
6686 	 *		commense
6687 	 * other == active in resync - this many blocks
6688 	 *
6689 	 * Before starting a resync we must have set curr_resync to
6690 	 * 2, and then checked that every "conflicting" array has curr_resync
6691 	 * less than ours.  When we find one that is the same or higher
6692 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6693 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6694 	 * This will mean we have to start checking from the beginning again.
6695 	 *
6696 	 */
6697 
6698 	do {
6699 		mddev->curr_resync = 2;
6700 
6701 	try_again:
6702 		if (kthread_should_stop())
6703 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6704 
6705 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6706 			goto skip;
6707 		for_each_mddev(mddev2, tmp) {
6708 			if (mddev2 == mddev)
6709 				continue;
6710 			if (!mddev->parallel_resync
6711 			&&  mddev2->curr_resync
6712 			&&  match_mddev_units(mddev, mddev2)) {
6713 				DEFINE_WAIT(wq);
6714 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6715 					/* arbitrarily yield */
6716 					mddev->curr_resync = 1;
6717 					wake_up(&resync_wait);
6718 				}
6719 				if (mddev > mddev2 && mddev->curr_resync == 1)
6720 					/* no need to wait here, we can wait the next
6721 					 * time 'round when curr_resync == 2
6722 					 */
6723 					continue;
6724 				/* We need to wait 'interruptible' so as not to
6725 				 * contribute to the load average, and not to
6726 				 * be caught by 'softlockup'
6727 				 */
6728 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6729 				if (!kthread_should_stop() &&
6730 				    mddev2->curr_resync >= mddev->curr_resync) {
6731 					printk(KERN_INFO "md: delaying %s of %s"
6732 					       " until %s has finished (they"
6733 					       " share one or more physical units)\n",
6734 					       desc, mdname(mddev), mdname(mddev2));
6735 					mddev_put(mddev2);
6736 					if (signal_pending(current))
6737 						flush_signals(current);
6738 					schedule();
6739 					finish_wait(&resync_wait, &wq);
6740 					goto try_again;
6741 				}
6742 				finish_wait(&resync_wait, &wq);
6743 			}
6744 		}
6745 	} while (mddev->curr_resync < 2);
6746 
6747 	j = 0;
6748 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6749 		/* resync follows the size requested by the personality,
6750 		 * which defaults to physical size, but can be virtual size
6751 		 */
6752 		max_sectors = mddev->resync_max_sectors;
6753 		mddev->resync_mismatches = 0;
6754 		/* we don't use the checkpoint if there's a bitmap */
6755 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6756 			j = mddev->resync_min;
6757 		else if (!mddev->bitmap)
6758 			j = mddev->recovery_cp;
6759 
6760 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6761 		max_sectors = mddev->dev_sectors;
6762 	else {
6763 		/* recovery follows the physical size of devices */
6764 		max_sectors = mddev->dev_sectors;
6765 		j = MaxSector;
6766 		rcu_read_lock();
6767 		list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6768 			if (rdev->raid_disk >= 0 &&
6769 			    !test_bit(Faulty, &rdev->flags) &&
6770 			    !test_bit(In_sync, &rdev->flags) &&
6771 			    rdev->recovery_offset < j)
6772 				j = rdev->recovery_offset;
6773 		rcu_read_unlock();
6774 	}
6775 
6776 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6777 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6778 		" %d KB/sec/disk.\n", speed_min(mddev));
6779 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6780 	       "(but not more than %d KB/sec) for %s.\n",
6781 	       speed_max(mddev), desc);
6782 
6783 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6784 
6785 	io_sectors = 0;
6786 	for (m = 0; m < SYNC_MARKS; m++) {
6787 		mark[m] = jiffies;
6788 		mark_cnt[m] = io_sectors;
6789 	}
6790 	last_mark = 0;
6791 	mddev->resync_mark = mark[last_mark];
6792 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6793 
6794 	/*
6795 	 * Tune reconstruction:
6796 	 */
6797 	window = 32*(PAGE_SIZE/512);
6798 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6799 		window/2,(unsigned long long) max_sectors/2);
6800 
6801 	atomic_set(&mddev->recovery_active, 0);
6802 	last_check = 0;
6803 
6804 	if (j>2) {
6805 		printk(KERN_INFO
6806 		       "md: resuming %s of %s from checkpoint.\n",
6807 		       desc, mdname(mddev));
6808 		mddev->curr_resync = j;
6809 	}
6810 	mddev->curr_resync_completed = mddev->curr_resync;
6811 
6812 	while (j < max_sectors) {
6813 		sector_t sectors;
6814 
6815 		skipped = 0;
6816 
6817 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6818 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
6819 		      (mddev->curr_resync - mddev->curr_resync_completed)
6820 		      > (max_sectors >> 4)) ||
6821 		     (j - mddev->curr_resync_completed)*2
6822 		     >= mddev->resync_max - mddev->curr_resync_completed
6823 			    )) {
6824 			/* time to update curr_resync_completed */
6825 			md_unplug(mddev);
6826 			wait_event(mddev->recovery_wait,
6827 				   atomic_read(&mddev->recovery_active) == 0);
6828 			mddev->curr_resync_completed =
6829 				mddev->curr_resync;
6830 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6831 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6832 		}
6833 
6834 		while (j >= mddev->resync_max && !kthread_should_stop()) {
6835 			/* As this condition is controlled by user-space,
6836 			 * we can block indefinitely, so use '_interruptible'
6837 			 * to avoid triggering warnings.
6838 			 */
6839 			flush_signals(current); /* just in case */
6840 			wait_event_interruptible(mddev->recovery_wait,
6841 						 mddev->resync_max > j
6842 						 || kthread_should_stop());
6843 		}
6844 
6845 		if (kthread_should_stop())
6846 			goto interrupted;
6847 
6848 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6849 						  currspeed < speed_min(mddev));
6850 		if (sectors == 0) {
6851 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6852 			goto out;
6853 		}
6854 
6855 		if (!skipped) { /* actual IO requested */
6856 			io_sectors += sectors;
6857 			atomic_add(sectors, &mddev->recovery_active);
6858 		}
6859 
6860 		j += sectors;
6861 		if (j>1) mddev->curr_resync = j;
6862 		mddev->curr_mark_cnt = io_sectors;
6863 		if (last_check == 0)
6864 			/* this is the earliers that rebuilt will be
6865 			 * visible in /proc/mdstat
6866 			 */
6867 			md_new_event(mddev);
6868 
6869 		if (last_check + window > io_sectors || j == max_sectors)
6870 			continue;
6871 
6872 		last_check = io_sectors;
6873 
6874 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6875 			break;
6876 
6877 	repeat:
6878 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6879 			/* step marks */
6880 			int next = (last_mark+1) % SYNC_MARKS;
6881 
6882 			mddev->resync_mark = mark[next];
6883 			mddev->resync_mark_cnt = mark_cnt[next];
6884 			mark[next] = jiffies;
6885 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6886 			last_mark = next;
6887 		}
6888 
6889 
6890 		if (kthread_should_stop())
6891 			goto interrupted;
6892 
6893 
6894 		/*
6895 		 * this loop exits only if either when we are slower than
6896 		 * the 'hard' speed limit, or the system was IO-idle for
6897 		 * a jiffy.
6898 		 * the system might be non-idle CPU-wise, but we only care
6899 		 * about not overloading the IO subsystem. (things like an
6900 		 * e2fsck being done on the RAID array should execute fast)
6901 		 */
6902 		md_unplug(mddev);
6903 		cond_resched();
6904 
6905 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6906 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6907 
6908 		if (currspeed > speed_min(mddev)) {
6909 			if ((currspeed > speed_max(mddev)) ||
6910 					!is_mddev_idle(mddev, 0)) {
6911 				msleep(500);
6912 				goto repeat;
6913 			}
6914 		}
6915 	}
6916 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6917 	/*
6918 	 * this also signals 'finished resyncing' to md_stop
6919 	 */
6920  out:
6921 	md_unplug(mddev);
6922 
6923 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6924 
6925 	/* tell personality that we are finished */
6926 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6927 
6928 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6929 	    mddev->curr_resync > 2) {
6930 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6931 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6932 				if (mddev->curr_resync >= mddev->recovery_cp) {
6933 					printk(KERN_INFO
6934 					       "md: checkpointing %s of %s.\n",
6935 					       desc, mdname(mddev));
6936 					mddev->recovery_cp = mddev->curr_resync;
6937 				}
6938 			} else
6939 				mddev->recovery_cp = MaxSector;
6940 		} else {
6941 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6942 				mddev->curr_resync = MaxSector;
6943 			rcu_read_lock();
6944 			list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6945 				if (rdev->raid_disk >= 0 &&
6946 				    mddev->delta_disks >= 0 &&
6947 				    !test_bit(Faulty, &rdev->flags) &&
6948 				    !test_bit(In_sync, &rdev->flags) &&
6949 				    rdev->recovery_offset < mddev->curr_resync)
6950 					rdev->recovery_offset = mddev->curr_resync;
6951 			rcu_read_unlock();
6952 		}
6953 	}
6954 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6955 
6956  skip:
6957 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6958 		/* We completed so min/max setting can be forgotten if used. */
6959 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6960 			mddev->resync_min = 0;
6961 		mddev->resync_max = MaxSector;
6962 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6963 		mddev->resync_min = mddev->curr_resync_completed;
6964 	mddev->curr_resync = 0;
6965 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6966 		mddev->curr_resync_completed = 0;
6967 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6968 	wake_up(&resync_wait);
6969 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6970 	md_wakeup_thread(mddev->thread);
6971 	return;
6972 
6973  interrupted:
6974 	/*
6975 	 * got a signal, exit.
6976 	 */
6977 	printk(KERN_INFO
6978 	       "md: md_do_sync() got signal ... exiting\n");
6979 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6980 	goto out;
6981 
6982 }
6983 EXPORT_SYMBOL_GPL(md_do_sync);
6984 
6985 
6986 static int remove_and_add_spares(mddev_t *mddev)
6987 {
6988 	mdk_rdev_t *rdev;
6989 	int spares = 0;
6990 
6991 	mddev->curr_resync_completed = 0;
6992 
6993 	list_for_each_entry(rdev, &mddev->disks, same_set)
6994 		if (rdev->raid_disk >= 0 &&
6995 		    !test_bit(Blocked, &rdev->flags) &&
6996 		    (test_bit(Faulty, &rdev->flags) ||
6997 		     ! test_bit(In_sync, &rdev->flags)) &&
6998 		    atomic_read(&rdev->nr_pending)==0) {
6999 			if (mddev->pers->hot_remove_disk(
7000 				    mddev, rdev->raid_disk)==0) {
7001 				char nm[20];
7002 				sprintf(nm,"rd%d", rdev->raid_disk);
7003 				sysfs_remove_link(&mddev->kobj, nm);
7004 				rdev->raid_disk = -1;
7005 			}
7006 		}
7007 
7008 	if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
7009 		list_for_each_entry(rdev, &mddev->disks, same_set) {
7010 			if (rdev->raid_disk >= 0 &&
7011 			    !test_bit(In_sync, &rdev->flags) &&
7012 			    !test_bit(Blocked, &rdev->flags))
7013 				spares++;
7014 			if (rdev->raid_disk < 0
7015 			    && !test_bit(Faulty, &rdev->flags)) {
7016 				rdev->recovery_offset = 0;
7017 				if (mddev->pers->
7018 				    hot_add_disk(mddev, rdev) == 0) {
7019 					char nm[20];
7020 					sprintf(nm, "rd%d", rdev->raid_disk);
7021 					if (sysfs_create_link(&mddev->kobj,
7022 							      &rdev->kobj, nm))
7023 						/* failure here is OK */;
7024 					spares++;
7025 					md_new_event(mddev);
7026 					set_bit(MD_CHANGE_DEVS, &mddev->flags);
7027 				} else
7028 					break;
7029 			}
7030 		}
7031 	}
7032 	return spares;
7033 }
7034 /*
7035  * This routine is regularly called by all per-raid-array threads to
7036  * deal with generic issues like resync and super-block update.
7037  * Raid personalities that don't have a thread (linear/raid0) do not
7038  * need this as they never do any recovery or update the superblock.
7039  *
7040  * It does not do any resync itself, but rather "forks" off other threads
7041  * to do that as needed.
7042  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7043  * "->recovery" and create a thread at ->sync_thread.
7044  * When the thread finishes it sets MD_RECOVERY_DONE
7045  * and wakeups up this thread which will reap the thread and finish up.
7046  * This thread also removes any faulty devices (with nr_pending == 0).
7047  *
7048  * The overall approach is:
7049  *  1/ if the superblock needs updating, update it.
7050  *  2/ If a recovery thread is running, don't do anything else.
7051  *  3/ If recovery has finished, clean up, possibly marking spares active.
7052  *  4/ If there are any faulty devices, remove them.
7053  *  5/ If array is degraded, try to add spares devices
7054  *  6/ If array has spares or is not in-sync, start a resync thread.
7055  */
7056 void md_check_recovery(mddev_t *mddev)
7057 {
7058 	mdk_rdev_t *rdev;
7059 
7060 
7061 	if (mddev->bitmap)
7062 		bitmap_daemon_work(mddev);
7063 
7064 	if (mddev->ro)
7065 		return;
7066 
7067 	if (signal_pending(current)) {
7068 		if (mddev->pers->sync_request && !mddev->external) {
7069 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7070 			       mdname(mddev));
7071 			mddev->safemode = 2;
7072 		}
7073 		flush_signals(current);
7074 	}
7075 
7076 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7077 		return;
7078 	if ( ! (
7079 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7080 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7081 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7082 		(mddev->external == 0 && mddev->safemode == 1) ||
7083 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7084 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7085 		))
7086 		return;
7087 
7088 	if (mddev_trylock(mddev)) {
7089 		int spares = 0;
7090 
7091 		if (mddev->ro) {
7092 			/* Only thing we do on a ro array is remove
7093 			 * failed devices.
7094 			 */
7095 			remove_and_add_spares(mddev);
7096 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7097 			goto unlock;
7098 		}
7099 
7100 		if (!mddev->external) {
7101 			int did_change = 0;
7102 			spin_lock_irq(&mddev->write_lock);
7103 			if (mddev->safemode &&
7104 			    !atomic_read(&mddev->writes_pending) &&
7105 			    !mddev->in_sync &&
7106 			    mddev->recovery_cp == MaxSector) {
7107 				mddev->in_sync = 1;
7108 				did_change = 1;
7109 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7110 			}
7111 			if (mddev->safemode == 1)
7112 				mddev->safemode = 0;
7113 			spin_unlock_irq(&mddev->write_lock);
7114 			if (did_change)
7115 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7116 		}
7117 
7118 		if (mddev->flags)
7119 			md_update_sb(mddev, 0);
7120 
7121 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7122 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7123 			/* resync/recovery still happening */
7124 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7125 			goto unlock;
7126 		}
7127 		if (mddev->sync_thread) {
7128 			/* resync has finished, collect result */
7129 			md_unregister_thread(mddev->sync_thread);
7130 			mddev->sync_thread = NULL;
7131 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7132 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7133 				/* success...*/
7134 				/* activate any spares */
7135 				if (mddev->pers->spare_active(mddev))
7136 					sysfs_notify(&mddev->kobj, NULL,
7137 						     "degraded");
7138 			}
7139 			if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7140 			    mddev->pers->finish_reshape)
7141 				mddev->pers->finish_reshape(mddev);
7142 			md_update_sb(mddev, 1);
7143 
7144 			/* if array is no-longer degraded, then any saved_raid_disk
7145 			 * information must be scrapped
7146 			 */
7147 			if (!mddev->degraded)
7148 				list_for_each_entry(rdev, &mddev->disks, same_set)
7149 					rdev->saved_raid_disk = -1;
7150 
7151 			mddev->recovery = 0;
7152 			/* flag recovery needed just to double check */
7153 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7154 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7155 			md_new_event(mddev);
7156 			goto unlock;
7157 		}
7158 		/* Set RUNNING before clearing NEEDED to avoid
7159 		 * any transients in the value of "sync_action".
7160 		 */
7161 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7162 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7163 		/* Clear some bits that don't mean anything, but
7164 		 * might be left set
7165 		 */
7166 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7167 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7168 
7169 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7170 			goto unlock;
7171 		/* no recovery is running.
7172 		 * remove any failed drives, then
7173 		 * add spares if possible.
7174 		 * Spare are also removed and re-added, to allow
7175 		 * the personality to fail the re-add.
7176 		 */
7177 
7178 		if (mddev->reshape_position != MaxSector) {
7179 			if (mddev->pers->check_reshape == NULL ||
7180 			    mddev->pers->check_reshape(mddev) != 0)
7181 				/* Cannot proceed */
7182 				goto unlock;
7183 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7184 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7185 		} else if ((spares = remove_and_add_spares(mddev))) {
7186 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7187 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7188 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7189 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7190 		} else if (mddev->recovery_cp < MaxSector) {
7191 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7192 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7193 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7194 			/* nothing to be done ... */
7195 			goto unlock;
7196 
7197 		if (mddev->pers->sync_request) {
7198 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7199 				/* We are adding a device or devices to an array
7200 				 * which has the bitmap stored on all devices.
7201 				 * So make sure all bitmap pages get written
7202 				 */
7203 				bitmap_write_all(mddev->bitmap);
7204 			}
7205 			mddev->sync_thread = md_register_thread(md_do_sync,
7206 								mddev,
7207 								"resync");
7208 			if (!mddev->sync_thread) {
7209 				printk(KERN_ERR "%s: could not start resync"
7210 					" thread...\n",
7211 					mdname(mddev));
7212 				/* leave the spares where they are, it shouldn't hurt */
7213 				mddev->recovery = 0;
7214 			} else
7215 				md_wakeup_thread(mddev->sync_thread);
7216 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7217 			md_new_event(mddev);
7218 		}
7219 	unlock:
7220 		if (!mddev->sync_thread) {
7221 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7222 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7223 					       &mddev->recovery))
7224 				if (mddev->sysfs_action)
7225 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7226 		}
7227 		mddev_unlock(mddev);
7228 	}
7229 }
7230 
7231 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7232 {
7233 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7234 	wait_event_timeout(rdev->blocked_wait,
7235 			   !test_bit(Blocked, &rdev->flags),
7236 			   msecs_to_jiffies(5000));
7237 	rdev_dec_pending(rdev, mddev);
7238 }
7239 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7240 
7241 static int md_notify_reboot(struct notifier_block *this,
7242 			    unsigned long code, void *x)
7243 {
7244 	struct list_head *tmp;
7245 	mddev_t *mddev;
7246 
7247 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7248 
7249 		printk(KERN_INFO "md: stopping all md devices.\n");
7250 
7251 		for_each_mddev(mddev, tmp)
7252 			if (mddev_trylock(mddev)) {
7253 				/* Force a switch to readonly even array
7254 				 * appears to still be in use.  Hence
7255 				 * the '100'.
7256 				 */
7257 				md_set_readonly(mddev, 100);
7258 				mddev_unlock(mddev);
7259 			}
7260 		/*
7261 		 * certain more exotic SCSI devices are known to be
7262 		 * volatile wrt too early system reboots. While the
7263 		 * right place to handle this issue is the given
7264 		 * driver, we do want to have a safe RAID driver ...
7265 		 */
7266 		mdelay(1000*1);
7267 	}
7268 	return NOTIFY_DONE;
7269 }
7270 
7271 static struct notifier_block md_notifier = {
7272 	.notifier_call	= md_notify_reboot,
7273 	.next		= NULL,
7274 	.priority	= INT_MAX, /* before any real devices */
7275 };
7276 
7277 static void md_geninit(void)
7278 {
7279 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7280 
7281 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7282 }
7283 
7284 static int __init md_init(void)
7285 {
7286 	int ret = -ENOMEM;
7287 
7288 	md_wq = alloc_workqueue("md", WQ_RESCUER, 0);
7289 	if (!md_wq)
7290 		goto err_wq;
7291 
7292 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
7293 	if (!md_misc_wq)
7294 		goto err_misc_wq;
7295 
7296 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
7297 		goto err_md;
7298 
7299 	if ((ret = register_blkdev(0, "mdp")) < 0)
7300 		goto err_mdp;
7301 	mdp_major = ret;
7302 
7303 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7304 			    md_probe, NULL, NULL);
7305 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7306 			    md_probe, NULL, NULL);
7307 
7308 	register_reboot_notifier(&md_notifier);
7309 	raid_table_header = register_sysctl_table(raid_root_table);
7310 
7311 	md_geninit();
7312 	return 0;
7313 
7314 err_mdp:
7315 	unregister_blkdev(MD_MAJOR, "md");
7316 err_md:
7317 	destroy_workqueue(md_misc_wq);
7318 err_misc_wq:
7319 	destroy_workqueue(md_wq);
7320 err_wq:
7321 	return ret;
7322 }
7323 
7324 #ifndef MODULE
7325 
7326 /*
7327  * Searches all registered partitions for autorun RAID arrays
7328  * at boot time.
7329  */
7330 
7331 static LIST_HEAD(all_detected_devices);
7332 struct detected_devices_node {
7333 	struct list_head list;
7334 	dev_t dev;
7335 };
7336 
7337 void md_autodetect_dev(dev_t dev)
7338 {
7339 	struct detected_devices_node *node_detected_dev;
7340 
7341 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7342 	if (node_detected_dev) {
7343 		node_detected_dev->dev = dev;
7344 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
7345 	} else {
7346 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7347 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7348 	}
7349 }
7350 
7351 
7352 static void autostart_arrays(int part)
7353 {
7354 	mdk_rdev_t *rdev;
7355 	struct detected_devices_node *node_detected_dev;
7356 	dev_t dev;
7357 	int i_scanned, i_passed;
7358 
7359 	i_scanned = 0;
7360 	i_passed = 0;
7361 
7362 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7363 
7364 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7365 		i_scanned++;
7366 		node_detected_dev = list_entry(all_detected_devices.next,
7367 					struct detected_devices_node, list);
7368 		list_del(&node_detected_dev->list);
7369 		dev = node_detected_dev->dev;
7370 		kfree(node_detected_dev);
7371 		rdev = md_import_device(dev,0, 90);
7372 		if (IS_ERR(rdev))
7373 			continue;
7374 
7375 		if (test_bit(Faulty, &rdev->flags)) {
7376 			MD_BUG();
7377 			continue;
7378 		}
7379 		set_bit(AutoDetected, &rdev->flags);
7380 		list_add(&rdev->same_set, &pending_raid_disks);
7381 		i_passed++;
7382 	}
7383 
7384 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7385 						i_scanned, i_passed);
7386 
7387 	autorun_devices(part);
7388 }
7389 
7390 #endif /* !MODULE */
7391 
7392 static __exit void md_exit(void)
7393 {
7394 	mddev_t *mddev;
7395 	struct list_head *tmp;
7396 
7397 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7398 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7399 
7400 	unregister_blkdev(MD_MAJOR,"md");
7401 	unregister_blkdev(mdp_major, "mdp");
7402 	unregister_reboot_notifier(&md_notifier);
7403 	unregister_sysctl_table(raid_table_header);
7404 	remove_proc_entry("mdstat", NULL);
7405 	for_each_mddev(mddev, tmp) {
7406 		export_array(mddev);
7407 		mddev->hold_active = 0;
7408 	}
7409 	destroy_workqueue(md_misc_wq);
7410 	destroy_workqueue(md_wq);
7411 }
7412 
7413 subsys_initcall(md_init);
7414 module_exit(md_exit)
7415 
7416 static int get_ro(char *buffer, struct kernel_param *kp)
7417 {
7418 	return sprintf(buffer, "%d", start_readonly);
7419 }
7420 static int set_ro(const char *val, struct kernel_param *kp)
7421 {
7422 	char *e;
7423 	int num = simple_strtoul(val, &e, 10);
7424 	if (*val && (*e == '\0' || *e == '\n')) {
7425 		start_readonly = num;
7426 		return 0;
7427 	}
7428 	return -EINVAL;
7429 }
7430 
7431 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7432 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7433 
7434 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7435 
7436 EXPORT_SYMBOL(register_md_personality);
7437 EXPORT_SYMBOL(unregister_md_personality);
7438 EXPORT_SYMBOL(md_error);
7439 EXPORT_SYMBOL(md_done_sync);
7440 EXPORT_SYMBOL(md_write_start);
7441 EXPORT_SYMBOL(md_write_end);
7442 EXPORT_SYMBOL(md_register_thread);
7443 EXPORT_SYMBOL(md_unregister_thread);
7444 EXPORT_SYMBOL(md_wakeup_thread);
7445 EXPORT_SYMBOL(md_check_recovery);
7446 MODULE_LICENSE("GPL");
7447 MODULE_DESCRIPTION("MD RAID framework");
7448 MODULE_ALIAS("md");
7449 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
7450