1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/raid/detect.h> 62 #include <linux/slab.h> 63 #include <linux/percpu-refcount.h> 64 #include <linux/part_stat.h> 65 66 #include <trace/events/block.h> 67 #include "md.h" 68 #include "md-bitmap.h" 69 #include "md-cluster.h" 70 71 /* pers_list is a list of registered personalities protected 72 * by pers_lock. 73 * pers_lock does extra service to protect accesses to 74 * mddev->thread when the mutex cannot be held. 75 */ 76 static LIST_HEAD(pers_list); 77 static DEFINE_SPINLOCK(pers_lock); 78 79 static struct kobj_type md_ktype; 80 81 struct md_cluster_operations *md_cluster_ops; 82 EXPORT_SYMBOL(md_cluster_ops); 83 static struct module *md_cluster_mod; 84 85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 86 static struct workqueue_struct *md_wq; 87 static struct workqueue_struct *md_misc_wq; 88 static struct workqueue_struct *md_rdev_misc_wq; 89 90 static int remove_and_add_spares(struct mddev *mddev, 91 struct md_rdev *this); 92 static void mddev_detach(struct mddev *mddev); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static struct ctl_table raid_dir_table[] = { 312 { 313 .procname = "raid", 314 .maxlen = 0, 315 .mode = S_IRUGO|S_IXUGO, 316 .child = raid_table, 317 }, 318 { } 319 }; 320 321 static struct ctl_table raid_root_table[] = { 322 { 323 .procname = "dev", 324 .maxlen = 0, 325 .mode = 0555, 326 .child = raid_dir_table, 327 }, 328 { } 329 }; 330 331 static int start_readonly; 332 333 /* 334 * The original mechanism for creating an md device is to create 335 * a device node in /dev and to open it. This causes races with device-close. 336 * The preferred method is to write to the "new_array" module parameter. 337 * This can avoid races. 338 * Setting create_on_open to false disables the original mechanism 339 * so all the races disappear. 340 */ 341 static bool create_on_open = true; 342 343 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 344 struct mddev *mddev) 345 { 346 if (!mddev || !bioset_initialized(&mddev->bio_set)) 347 return bio_alloc(gfp_mask, nr_iovecs); 348 349 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 350 } 351 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 352 353 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 354 { 355 if (!mddev || !bioset_initialized(&mddev->sync_set)) 356 return bio_alloc(GFP_NOIO, 1); 357 358 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 359 } 360 361 /* 362 * We have a system wide 'event count' that is incremented 363 * on any 'interesting' event, and readers of /proc/mdstat 364 * can use 'poll' or 'select' to find out when the event 365 * count increases. 366 * 367 * Events are: 368 * start array, stop array, error, add device, remove device, 369 * start build, activate spare 370 */ 371 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 372 static atomic_t md_event_count; 373 void md_new_event(struct mddev *mddev) 374 { 375 atomic_inc(&md_event_count); 376 wake_up(&md_event_waiters); 377 } 378 EXPORT_SYMBOL_GPL(md_new_event); 379 380 /* 381 * Enables to iterate over all existing md arrays 382 * all_mddevs_lock protects this list. 383 */ 384 static LIST_HEAD(all_mddevs); 385 static DEFINE_SPINLOCK(all_mddevs_lock); 386 387 /* 388 * iterates through all used mddevs in the system. 389 * We take care to grab the all_mddevs_lock whenever navigating 390 * the list, and to always hold a refcount when unlocked. 391 * Any code which breaks out of this loop while own 392 * a reference to the current mddev and must mddev_put it. 393 */ 394 #define for_each_mddev(_mddev,_tmp) \ 395 \ 396 for (({ spin_lock(&all_mddevs_lock); \ 397 _tmp = all_mddevs.next; \ 398 _mddev = NULL;}); \ 399 ({ if (_tmp != &all_mddevs) \ 400 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 401 spin_unlock(&all_mddevs_lock); \ 402 if (_mddev) mddev_put(_mddev); \ 403 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 404 _tmp != &all_mddevs;}); \ 405 ({ spin_lock(&all_mddevs_lock); \ 406 _tmp = _tmp->next;}) \ 407 ) 408 409 /* Rather than calling directly into the personality make_request function, 410 * IO requests come here first so that we can check if the device is 411 * being suspended pending a reconfiguration. 412 * We hold a refcount over the call to ->make_request. By the time that 413 * call has finished, the bio has been linked into some internal structure 414 * and so is visible to ->quiesce(), so we don't need the refcount any more. 415 */ 416 static bool is_suspended(struct mddev *mddev, struct bio *bio) 417 { 418 if (mddev->suspended) 419 return true; 420 if (bio_data_dir(bio) != WRITE) 421 return false; 422 if (mddev->suspend_lo >= mddev->suspend_hi) 423 return false; 424 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 425 return false; 426 if (bio_end_sector(bio) < mddev->suspend_lo) 427 return false; 428 return true; 429 } 430 431 void md_handle_request(struct mddev *mddev, struct bio *bio) 432 { 433 check_suspended: 434 rcu_read_lock(); 435 if (is_suspended(mddev, bio)) { 436 DEFINE_WAIT(__wait); 437 for (;;) { 438 prepare_to_wait(&mddev->sb_wait, &__wait, 439 TASK_UNINTERRUPTIBLE); 440 if (!is_suspended(mddev, bio)) 441 break; 442 rcu_read_unlock(); 443 schedule(); 444 rcu_read_lock(); 445 } 446 finish_wait(&mddev->sb_wait, &__wait); 447 } 448 atomic_inc(&mddev->active_io); 449 rcu_read_unlock(); 450 451 if (!mddev->pers->make_request(mddev, bio)) { 452 atomic_dec(&mddev->active_io); 453 wake_up(&mddev->sb_wait); 454 goto check_suspended; 455 } 456 457 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 458 wake_up(&mddev->sb_wait); 459 } 460 EXPORT_SYMBOL(md_handle_request); 461 462 struct md_io { 463 struct mddev *mddev; 464 bio_end_io_t *orig_bi_end_io; 465 void *orig_bi_private; 466 unsigned long start_time; 467 }; 468 469 static void md_end_io(struct bio *bio) 470 { 471 struct md_io *md_io = bio->bi_private; 472 struct mddev *mddev = md_io->mddev; 473 474 disk_end_io_acct(mddev->gendisk, bio_op(bio), md_io->start_time); 475 476 bio->bi_end_io = md_io->orig_bi_end_io; 477 bio->bi_private = md_io->orig_bi_private; 478 479 mempool_free(md_io, &mddev->md_io_pool); 480 481 if (bio->bi_end_io) 482 bio->bi_end_io(bio); 483 } 484 485 static blk_qc_t md_submit_bio(struct bio *bio) 486 { 487 const int rw = bio_data_dir(bio); 488 struct mddev *mddev = bio->bi_disk->private_data; 489 490 if (mddev == NULL || mddev->pers == NULL) { 491 bio_io_error(bio); 492 return BLK_QC_T_NONE; 493 } 494 495 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 496 bio_io_error(bio); 497 return BLK_QC_T_NONE; 498 } 499 500 blk_queue_split(&bio); 501 502 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 503 if (bio_sectors(bio) != 0) 504 bio->bi_status = BLK_STS_IOERR; 505 bio_endio(bio); 506 return BLK_QC_T_NONE; 507 } 508 509 if (bio->bi_end_io != md_end_io) { 510 struct md_io *md_io; 511 512 md_io = mempool_alloc(&mddev->md_io_pool, GFP_NOIO); 513 md_io->mddev = mddev; 514 md_io->orig_bi_end_io = bio->bi_end_io; 515 md_io->orig_bi_private = bio->bi_private; 516 517 bio->bi_end_io = md_end_io; 518 bio->bi_private = md_io; 519 520 md_io->start_time = disk_start_io_acct(mddev->gendisk, 521 bio_sectors(bio), 522 bio_op(bio)); 523 } 524 525 /* bio could be mergeable after passing to underlayer */ 526 bio->bi_opf &= ~REQ_NOMERGE; 527 528 md_handle_request(mddev, bio); 529 530 return BLK_QC_T_NONE; 531 } 532 533 /* mddev_suspend makes sure no new requests are submitted 534 * to the device, and that any requests that have been submitted 535 * are completely handled. 536 * Once mddev_detach() is called and completes, the module will be 537 * completely unused. 538 */ 539 void mddev_suspend(struct mddev *mddev) 540 { 541 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 542 lockdep_assert_held(&mddev->reconfig_mutex); 543 if (mddev->suspended++) 544 return; 545 synchronize_rcu(); 546 wake_up(&mddev->sb_wait); 547 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 548 smp_mb__after_atomic(); 549 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 550 mddev->pers->quiesce(mddev, 1); 551 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 552 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 553 554 del_timer_sync(&mddev->safemode_timer); 555 /* restrict memory reclaim I/O during raid array is suspend */ 556 mddev->noio_flag = memalloc_noio_save(); 557 } 558 EXPORT_SYMBOL_GPL(mddev_suspend); 559 560 void mddev_resume(struct mddev *mddev) 561 { 562 /* entred the memalloc scope from mddev_suspend() */ 563 memalloc_noio_restore(mddev->noio_flag); 564 lockdep_assert_held(&mddev->reconfig_mutex); 565 if (--mddev->suspended) 566 return; 567 wake_up(&mddev->sb_wait); 568 mddev->pers->quiesce(mddev, 0); 569 570 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 571 md_wakeup_thread(mddev->thread); 572 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 573 } 574 EXPORT_SYMBOL_GPL(mddev_resume); 575 576 /* 577 * Generic flush handling for md 578 */ 579 580 static void md_end_flush(struct bio *bio) 581 { 582 struct md_rdev *rdev = bio->bi_private; 583 struct mddev *mddev = rdev->mddev; 584 585 rdev_dec_pending(rdev, mddev); 586 587 if (atomic_dec_and_test(&mddev->flush_pending)) { 588 /* The pre-request flush has finished */ 589 queue_work(md_wq, &mddev->flush_work); 590 } 591 bio_put(bio); 592 } 593 594 static void md_submit_flush_data(struct work_struct *ws); 595 596 static void submit_flushes(struct work_struct *ws) 597 { 598 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 599 struct md_rdev *rdev; 600 601 mddev->start_flush = ktime_get_boottime(); 602 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 603 atomic_set(&mddev->flush_pending, 1); 604 rcu_read_lock(); 605 rdev_for_each_rcu(rdev, mddev) 606 if (rdev->raid_disk >= 0 && 607 !test_bit(Faulty, &rdev->flags)) { 608 /* Take two references, one is dropped 609 * when request finishes, one after 610 * we reclaim rcu_read_lock 611 */ 612 struct bio *bi; 613 atomic_inc(&rdev->nr_pending); 614 atomic_inc(&rdev->nr_pending); 615 rcu_read_unlock(); 616 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 617 bi->bi_end_io = md_end_flush; 618 bi->bi_private = rdev; 619 bio_set_dev(bi, rdev->bdev); 620 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 621 atomic_inc(&mddev->flush_pending); 622 submit_bio(bi); 623 rcu_read_lock(); 624 rdev_dec_pending(rdev, mddev); 625 } 626 rcu_read_unlock(); 627 if (atomic_dec_and_test(&mddev->flush_pending)) 628 queue_work(md_wq, &mddev->flush_work); 629 } 630 631 static void md_submit_flush_data(struct work_struct *ws) 632 { 633 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 634 struct bio *bio = mddev->flush_bio; 635 636 /* 637 * must reset flush_bio before calling into md_handle_request to avoid a 638 * deadlock, because other bios passed md_handle_request suspend check 639 * could wait for this and below md_handle_request could wait for those 640 * bios because of suspend check 641 */ 642 mddev->last_flush = mddev->start_flush; 643 mddev->flush_bio = NULL; 644 wake_up(&mddev->sb_wait); 645 646 if (bio->bi_iter.bi_size == 0) { 647 /* an empty barrier - all done */ 648 bio_endio(bio); 649 } else { 650 bio->bi_opf &= ~REQ_PREFLUSH; 651 md_handle_request(mddev, bio); 652 } 653 } 654 655 /* 656 * Manages consolidation of flushes and submitting any flushes needed for 657 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 658 * being finished in another context. Returns false if the flushing is 659 * complete but still needs the I/O portion of the bio to be processed. 660 */ 661 bool md_flush_request(struct mddev *mddev, struct bio *bio) 662 { 663 ktime_t start = ktime_get_boottime(); 664 spin_lock_irq(&mddev->lock); 665 wait_event_lock_irq(mddev->sb_wait, 666 !mddev->flush_bio || 667 ktime_after(mddev->last_flush, start), 668 mddev->lock); 669 if (!ktime_after(mddev->last_flush, start)) { 670 WARN_ON(mddev->flush_bio); 671 mddev->flush_bio = bio; 672 bio = NULL; 673 } 674 spin_unlock_irq(&mddev->lock); 675 676 if (!bio) { 677 INIT_WORK(&mddev->flush_work, submit_flushes); 678 queue_work(md_wq, &mddev->flush_work); 679 } else { 680 /* flush was performed for some other bio while we waited. */ 681 if (bio->bi_iter.bi_size == 0) 682 /* an empty barrier - all done */ 683 bio_endio(bio); 684 else { 685 bio->bi_opf &= ~REQ_PREFLUSH; 686 return false; 687 } 688 } 689 return true; 690 } 691 EXPORT_SYMBOL(md_flush_request); 692 693 static inline struct mddev *mddev_get(struct mddev *mddev) 694 { 695 atomic_inc(&mddev->active); 696 return mddev; 697 } 698 699 static void mddev_delayed_delete(struct work_struct *ws); 700 701 static void mddev_put(struct mddev *mddev) 702 { 703 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 704 return; 705 if (!mddev->raid_disks && list_empty(&mddev->disks) && 706 mddev->ctime == 0 && !mddev->hold_active) { 707 /* Array is not configured at all, and not held active, 708 * so destroy it */ 709 list_del_init(&mddev->all_mddevs); 710 711 /* 712 * Call queue_work inside the spinlock so that 713 * flush_workqueue() after mddev_find will succeed in waiting 714 * for the work to be done. 715 */ 716 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 717 queue_work(md_misc_wq, &mddev->del_work); 718 } 719 spin_unlock(&all_mddevs_lock); 720 } 721 722 static void md_safemode_timeout(struct timer_list *t); 723 724 void mddev_init(struct mddev *mddev) 725 { 726 kobject_init(&mddev->kobj, &md_ktype); 727 mutex_init(&mddev->open_mutex); 728 mutex_init(&mddev->reconfig_mutex); 729 mutex_init(&mddev->bitmap_info.mutex); 730 INIT_LIST_HEAD(&mddev->disks); 731 INIT_LIST_HEAD(&mddev->all_mddevs); 732 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 733 atomic_set(&mddev->active, 1); 734 atomic_set(&mddev->openers, 0); 735 atomic_set(&mddev->active_io, 0); 736 spin_lock_init(&mddev->lock); 737 atomic_set(&mddev->flush_pending, 0); 738 init_waitqueue_head(&mddev->sb_wait); 739 init_waitqueue_head(&mddev->recovery_wait); 740 mddev->reshape_position = MaxSector; 741 mddev->reshape_backwards = 0; 742 mddev->last_sync_action = "none"; 743 mddev->resync_min = 0; 744 mddev->resync_max = MaxSector; 745 mddev->level = LEVEL_NONE; 746 } 747 EXPORT_SYMBOL_GPL(mddev_init); 748 749 static struct mddev *mddev_find(dev_t unit) 750 { 751 struct mddev *mddev, *new = NULL; 752 753 if (unit && MAJOR(unit) != MD_MAJOR) 754 unit &= ~((1<<MdpMinorShift)-1); 755 756 retry: 757 spin_lock(&all_mddevs_lock); 758 759 if (unit) { 760 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 761 if (mddev->unit == unit) { 762 mddev_get(mddev); 763 spin_unlock(&all_mddevs_lock); 764 kfree(new); 765 return mddev; 766 } 767 768 if (new) { 769 list_add(&new->all_mddevs, &all_mddevs); 770 spin_unlock(&all_mddevs_lock); 771 new->hold_active = UNTIL_IOCTL; 772 return new; 773 } 774 } else if (new) { 775 /* find an unused unit number */ 776 static int next_minor = 512; 777 int start = next_minor; 778 int is_free = 0; 779 int dev = 0; 780 while (!is_free) { 781 dev = MKDEV(MD_MAJOR, next_minor); 782 next_minor++; 783 if (next_minor > MINORMASK) 784 next_minor = 0; 785 if (next_minor == start) { 786 /* Oh dear, all in use. */ 787 spin_unlock(&all_mddevs_lock); 788 kfree(new); 789 return NULL; 790 } 791 792 is_free = 1; 793 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 794 if (mddev->unit == dev) { 795 is_free = 0; 796 break; 797 } 798 } 799 new->unit = dev; 800 new->md_minor = MINOR(dev); 801 new->hold_active = UNTIL_STOP; 802 list_add(&new->all_mddevs, &all_mddevs); 803 spin_unlock(&all_mddevs_lock); 804 return new; 805 } 806 spin_unlock(&all_mddevs_lock); 807 808 new = kzalloc(sizeof(*new), GFP_KERNEL); 809 if (!new) 810 return NULL; 811 812 new->unit = unit; 813 if (MAJOR(unit) == MD_MAJOR) 814 new->md_minor = MINOR(unit); 815 else 816 new->md_minor = MINOR(unit) >> MdpMinorShift; 817 818 mddev_init(new); 819 820 goto retry; 821 } 822 823 static struct attribute_group md_redundancy_group; 824 825 void mddev_unlock(struct mddev *mddev) 826 { 827 if (mddev->to_remove) { 828 /* These cannot be removed under reconfig_mutex as 829 * an access to the files will try to take reconfig_mutex 830 * while holding the file unremovable, which leads to 831 * a deadlock. 832 * So hold set sysfs_active while the remove in happeing, 833 * and anything else which might set ->to_remove or my 834 * otherwise change the sysfs namespace will fail with 835 * -EBUSY if sysfs_active is still set. 836 * We set sysfs_active under reconfig_mutex and elsewhere 837 * test it under the same mutex to ensure its correct value 838 * is seen. 839 */ 840 struct attribute_group *to_remove = mddev->to_remove; 841 mddev->to_remove = NULL; 842 mddev->sysfs_active = 1; 843 mutex_unlock(&mddev->reconfig_mutex); 844 845 if (mddev->kobj.sd) { 846 if (to_remove != &md_redundancy_group) 847 sysfs_remove_group(&mddev->kobj, to_remove); 848 if (mddev->pers == NULL || 849 mddev->pers->sync_request == NULL) { 850 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 851 if (mddev->sysfs_action) 852 sysfs_put(mddev->sysfs_action); 853 mddev->sysfs_action = NULL; 854 } 855 } 856 mddev->sysfs_active = 0; 857 } else 858 mutex_unlock(&mddev->reconfig_mutex); 859 860 /* As we've dropped the mutex we need a spinlock to 861 * make sure the thread doesn't disappear 862 */ 863 spin_lock(&pers_lock); 864 md_wakeup_thread(mddev->thread); 865 wake_up(&mddev->sb_wait); 866 spin_unlock(&pers_lock); 867 } 868 EXPORT_SYMBOL_GPL(mddev_unlock); 869 870 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 871 { 872 struct md_rdev *rdev; 873 874 rdev_for_each_rcu(rdev, mddev) 875 if (rdev->desc_nr == nr) 876 return rdev; 877 878 return NULL; 879 } 880 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 881 882 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 883 { 884 struct md_rdev *rdev; 885 886 rdev_for_each(rdev, mddev) 887 if (rdev->bdev->bd_dev == dev) 888 return rdev; 889 890 return NULL; 891 } 892 893 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 894 { 895 struct md_rdev *rdev; 896 897 rdev_for_each_rcu(rdev, mddev) 898 if (rdev->bdev->bd_dev == dev) 899 return rdev; 900 901 return NULL; 902 } 903 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 904 905 static struct md_personality *find_pers(int level, char *clevel) 906 { 907 struct md_personality *pers; 908 list_for_each_entry(pers, &pers_list, list) { 909 if (level != LEVEL_NONE && pers->level == level) 910 return pers; 911 if (strcmp(pers->name, clevel)==0) 912 return pers; 913 } 914 return NULL; 915 } 916 917 /* return the offset of the super block in 512byte sectors */ 918 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 919 { 920 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 921 return MD_NEW_SIZE_SECTORS(num_sectors); 922 } 923 924 static int alloc_disk_sb(struct md_rdev *rdev) 925 { 926 rdev->sb_page = alloc_page(GFP_KERNEL); 927 if (!rdev->sb_page) 928 return -ENOMEM; 929 return 0; 930 } 931 932 void md_rdev_clear(struct md_rdev *rdev) 933 { 934 if (rdev->sb_page) { 935 put_page(rdev->sb_page); 936 rdev->sb_loaded = 0; 937 rdev->sb_page = NULL; 938 rdev->sb_start = 0; 939 rdev->sectors = 0; 940 } 941 if (rdev->bb_page) { 942 put_page(rdev->bb_page); 943 rdev->bb_page = NULL; 944 } 945 badblocks_exit(&rdev->badblocks); 946 } 947 EXPORT_SYMBOL_GPL(md_rdev_clear); 948 949 static void super_written(struct bio *bio) 950 { 951 struct md_rdev *rdev = bio->bi_private; 952 struct mddev *mddev = rdev->mddev; 953 954 if (bio->bi_status) { 955 pr_err("md: %s gets error=%d\n", __func__, 956 blk_status_to_errno(bio->bi_status)); 957 md_error(mddev, rdev); 958 if (!test_bit(Faulty, &rdev->flags) 959 && (bio->bi_opf & MD_FAILFAST)) { 960 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 961 set_bit(LastDev, &rdev->flags); 962 } 963 } else 964 clear_bit(LastDev, &rdev->flags); 965 966 if (atomic_dec_and_test(&mddev->pending_writes)) 967 wake_up(&mddev->sb_wait); 968 rdev_dec_pending(rdev, mddev); 969 bio_put(bio); 970 } 971 972 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 973 sector_t sector, int size, struct page *page) 974 { 975 /* write first size bytes of page to sector of rdev 976 * Increment mddev->pending_writes before returning 977 * and decrement it on completion, waking up sb_wait 978 * if zero is reached. 979 * If an error occurred, call md_error 980 */ 981 struct bio *bio; 982 int ff = 0; 983 984 if (!page) 985 return; 986 987 if (test_bit(Faulty, &rdev->flags)) 988 return; 989 990 bio = md_bio_alloc_sync(mddev); 991 992 atomic_inc(&rdev->nr_pending); 993 994 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 995 bio->bi_iter.bi_sector = sector; 996 bio_add_page(bio, page, size, 0); 997 bio->bi_private = rdev; 998 bio->bi_end_io = super_written; 999 1000 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 1001 test_bit(FailFast, &rdev->flags) && 1002 !test_bit(LastDev, &rdev->flags)) 1003 ff = MD_FAILFAST; 1004 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 1005 1006 atomic_inc(&mddev->pending_writes); 1007 submit_bio(bio); 1008 } 1009 1010 int md_super_wait(struct mddev *mddev) 1011 { 1012 /* wait for all superblock writes that were scheduled to complete */ 1013 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1014 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1015 return -EAGAIN; 1016 return 0; 1017 } 1018 1019 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1020 struct page *page, int op, int op_flags, bool metadata_op) 1021 { 1022 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 1023 int ret; 1024 1025 if (metadata_op && rdev->meta_bdev) 1026 bio_set_dev(bio, rdev->meta_bdev); 1027 else 1028 bio_set_dev(bio, rdev->bdev); 1029 bio_set_op_attrs(bio, op, op_flags); 1030 if (metadata_op) 1031 bio->bi_iter.bi_sector = sector + rdev->sb_start; 1032 else if (rdev->mddev->reshape_position != MaxSector && 1033 (rdev->mddev->reshape_backwards == 1034 (sector >= rdev->mddev->reshape_position))) 1035 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 1036 else 1037 bio->bi_iter.bi_sector = sector + rdev->data_offset; 1038 bio_add_page(bio, page, size, 0); 1039 1040 submit_bio_wait(bio); 1041 1042 ret = !bio->bi_status; 1043 bio_put(bio); 1044 return ret; 1045 } 1046 EXPORT_SYMBOL_GPL(sync_page_io); 1047 1048 static int read_disk_sb(struct md_rdev *rdev, int size) 1049 { 1050 char b[BDEVNAME_SIZE]; 1051 1052 if (rdev->sb_loaded) 1053 return 0; 1054 1055 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1056 goto fail; 1057 rdev->sb_loaded = 1; 1058 return 0; 1059 1060 fail: 1061 pr_err("md: disabled device %s, could not read superblock.\n", 1062 bdevname(rdev->bdev,b)); 1063 return -EINVAL; 1064 } 1065 1066 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1067 { 1068 return sb1->set_uuid0 == sb2->set_uuid0 && 1069 sb1->set_uuid1 == sb2->set_uuid1 && 1070 sb1->set_uuid2 == sb2->set_uuid2 && 1071 sb1->set_uuid3 == sb2->set_uuid3; 1072 } 1073 1074 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1075 { 1076 int ret; 1077 mdp_super_t *tmp1, *tmp2; 1078 1079 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1080 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1081 1082 if (!tmp1 || !tmp2) { 1083 ret = 0; 1084 goto abort; 1085 } 1086 1087 *tmp1 = *sb1; 1088 *tmp2 = *sb2; 1089 1090 /* 1091 * nr_disks is not constant 1092 */ 1093 tmp1->nr_disks = 0; 1094 tmp2->nr_disks = 0; 1095 1096 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1097 abort: 1098 kfree(tmp1); 1099 kfree(tmp2); 1100 return ret; 1101 } 1102 1103 static u32 md_csum_fold(u32 csum) 1104 { 1105 csum = (csum & 0xffff) + (csum >> 16); 1106 return (csum & 0xffff) + (csum >> 16); 1107 } 1108 1109 static unsigned int calc_sb_csum(mdp_super_t *sb) 1110 { 1111 u64 newcsum = 0; 1112 u32 *sb32 = (u32*)sb; 1113 int i; 1114 unsigned int disk_csum, csum; 1115 1116 disk_csum = sb->sb_csum; 1117 sb->sb_csum = 0; 1118 1119 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1120 newcsum += sb32[i]; 1121 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1122 1123 #ifdef CONFIG_ALPHA 1124 /* This used to use csum_partial, which was wrong for several 1125 * reasons including that different results are returned on 1126 * different architectures. It isn't critical that we get exactly 1127 * the same return value as before (we always csum_fold before 1128 * testing, and that removes any differences). However as we 1129 * know that csum_partial always returned a 16bit value on 1130 * alphas, do a fold to maximise conformity to previous behaviour. 1131 */ 1132 sb->sb_csum = md_csum_fold(disk_csum); 1133 #else 1134 sb->sb_csum = disk_csum; 1135 #endif 1136 return csum; 1137 } 1138 1139 /* 1140 * Handle superblock details. 1141 * We want to be able to handle multiple superblock formats 1142 * so we have a common interface to them all, and an array of 1143 * different handlers. 1144 * We rely on user-space to write the initial superblock, and support 1145 * reading and updating of superblocks. 1146 * Interface methods are: 1147 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1148 * loads and validates a superblock on dev. 1149 * if refdev != NULL, compare superblocks on both devices 1150 * Return: 1151 * 0 - dev has a superblock that is compatible with refdev 1152 * 1 - dev has a superblock that is compatible and newer than refdev 1153 * so dev should be used as the refdev in future 1154 * -EINVAL superblock incompatible or invalid 1155 * -othererror e.g. -EIO 1156 * 1157 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1158 * Verify that dev is acceptable into mddev. 1159 * The first time, mddev->raid_disks will be 0, and data from 1160 * dev should be merged in. Subsequent calls check that dev 1161 * is new enough. Return 0 or -EINVAL 1162 * 1163 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1164 * Update the superblock for rdev with data in mddev 1165 * This does not write to disc. 1166 * 1167 */ 1168 1169 struct super_type { 1170 char *name; 1171 struct module *owner; 1172 int (*load_super)(struct md_rdev *rdev, 1173 struct md_rdev *refdev, 1174 int minor_version); 1175 int (*validate_super)(struct mddev *mddev, 1176 struct md_rdev *rdev); 1177 void (*sync_super)(struct mddev *mddev, 1178 struct md_rdev *rdev); 1179 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1180 sector_t num_sectors); 1181 int (*allow_new_offset)(struct md_rdev *rdev, 1182 unsigned long long new_offset); 1183 }; 1184 1185 /* 1186 * Check that the given mddev has no bitmap. 1187 * 1188 * This function is called from the run method of all personalities that do not 1189 * support bitmaps. It prints an error message and returns non-zero if mddev 1190 * has a bitmap. Otherwise, it returns 0. 1191 * 1192 */ 1193 int md_check_no_bitmap(struct mddev *mddev) 1194 { 1195 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1196 return 0; 1197 pr_warn("%s: bitmaps are not supported for %s\n", 1198 mdname(mddev), mddev->pers->name); 1199 return 1; 1200 } 1201 EXPORT_SYMBOL(md_check_no_bitmap); 1202 1203 /* 1204 * load_super for 0.90.0 1205 */ 1206 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1207 { 1208 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1209 mdp_super_t *sb; 1210 int ret; 1211 bool spare_disk = true; 1212 1213 /* 1214 * Calculate the position of the superblock (512byte sectors), 1215 * it's at the end of the disk. 1216 * 1217 * It also happens to be a multiple of 4Kb. 1218 */ 1219 rdev->sb_start = calc_dev_sboffset(rdev); 1220 1221 ret = read_disk_sb(rdev, MD_SB_BYTES); 1222 if (ret) 1223 return ret; 1224 1225 ret = -EINVAL; 1226 1227 bdevname(rdev->bdev, b); 1228 sb = page_address(rdev->sb_page); 1229 1230 if (sb->md_magic != MD_SB_MAGIC) { 1231 pr_warn("md: invalid raid superblock magic on %s\n", b); 1232 goto abort; 1233 } 1234 1235 if (sb->major_version != 0 || 1236 sb->minor_version < 90 || 1237 sb->minor_version > 91) { 1238 pr_warn("Bad version number %d.%d on %s\n", 1239 sb->major_version, sb->minor_version, b); 1240 goto abort; 1241 } 1242 1243 if (sb->raid_disks <= 0) 1244 goto abort; 1245 1246 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1247 pr_warn("md: invalid superblock checksum on %s\n", b); 1248 goto abort; 1249 } 1250 1251 rdev->preferred_minor = sb->md_minor; 1252 rdev->data_offset = 0; 1253 rdev->new_data_offset = 0; 1254 rdev->sb_size = MD_SB_BYTES; 1255 rdev->badblocks.shift = -1; 1256 1257 if (sb->level == LEVEL_MULTIPATH) 1258 rdev->desc_nr = -1; 1259 else 1260 rdev->desc_nr = sb->this_disk.number; 1261 1262 /* not spare disk, or LEVEL_MULTIPATH */ 1263 if (sb->level == LEVEL_MULTIPATH || 1264 (rdev->desc_nr >= 0 && 1265 rdev->desc_nr < MD_SB_DISKS && 1266 sb->disks[rdev->desc_nr].state & 1267 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1268 spare_disk = false; 1269 1270 if (!refdev) { 1271 if (!spare_disk) 1272 ret = 1; 1273 else 1274 ret = 0; 1275 } else { 1276 __u64 ev1, ev2; 1277 mdp_super_t *refsb = page_address(refdev->sb_page); 1278 if (!md_uuid_equal(refsb, sb)) { 1279 pr_warn("md: %s has different UUID to %s\n", 1280 b, bdevname(refdev->bdev,b2)); 1281 goto abort; 1282 } 1283 if (!md_sb_equal(refsb, sb)) { 1284 pr_warn("md: %s has same UUID but different superblock to %s\n", 1285 b, bdevname(refdev->bdev, b2)); 1286 goto abort; 1287 } 1288 ev1 = md_event(sb); 1289 ev2 = md_event(refsb); 1290 1291 if (!spare_disk && ev1 > ev2) 1292 ret = 1; 1293 else 1294 ret = 0; 1295 } 1296 rdev->sectors = rdev->sb_start; 1297 /* Limit to 4TB as metadata cannot record more than that. 1298 * (not needed for Linear and RAID0 as metadata doesn't 1299 * record this size) 1300 */ 1301 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1302 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1303 1304 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1305 /* "this cannot possibly happen" ... */ 1306 ret = -EINVAL; 1307 1308 abort: 1309 return ret; 1310 } 1311 1312 /* 1313 * validate_super for 0.90.0 1314 */ 1315 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1316 { 1317 mdp_disk_t *desc; 1318 mdp_super_t *sb = page_address(rdev->sb_page); 1319 __u64 ev1 = md_event(sb); 1320 1321 rdev->raid_disk = -1; 1322 clear_bit(Faulty, &rdev->flags); 1323 clear_bit(In_sync, &rdev->flags); 1324 clear_bit(Bitmap_sync, &rdev->flags); 1325 clear_bit(WriteMostly, &rdev->flags); 1326 1327 if (mddev->raid_disks == 0) { 1328 mddev->major_version = 0; 1329 mddev->minor_version = sb->minor_version; 1330 mddev->patch_version = sb->patch_version; 1331 mddev->external = 0; 1332 mddev->chunk_sectors = sb->chunk_size >> 9; 1333 mddev->ctime = sb->ctime; 1334 mddev->utime = sb->utime; 1335 mddev->level = sb->level; 1336 mddev->clevel[0] = 0; 1337 mddev->layout = sb->layout; 1338 mddev->raid_disks = sb->raid_disks; 1339 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1340 mddev->events = ev1; 1341 mddev->bitmap_info.offset = 0; 1342 mddev->bitmap_info.space = 0; 1343 /* bitmap can use 60 K after the 4K superblocks */ 1344 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1345 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1346 mddev->reshape_backwards = 0; 1347 1348 if (mddev->minor_version >= 91) { 1349 mddev->reshape_position = sb->reshape_position; 1350 mddev->delta_disks = sb->delta_disks; 1351 mddev->new_level = sb->new_level; 1352 mddev->new_layout = sb->new_layout; 1353 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1354 if (mddev->delta_disks < 0) 1355 mddev->reshape_backwards = 1; 1356 } else { 1357 mddev->reshape_position = MaxSector; 1358 mddev->delta_disks = 0; 1359 mddev->new_level = mddev->level; 1360 mddev->new_layout = mddev->layout; 1361 mddev->new_chunk_sectors = mddev->chunk_sectors; 1362 } 1363 if (mddev->level == 0) 1364 mddev->layout = -1; 1365 1366 if (sb->state & (1<<MD_SB_CLEAN)) 1367 mddev->recovery_cp = MaxSector; 1368 else { 1369 if (sb->events_hi == sb->cp_events_hi && 1370 sb->events_lo == sb->cp_events_lo) { 1371 mddev->recovery_cp = sb->recovery_cp; 1372 } else 1373 mddev->recovery_cp = 0; 1374 } 1375 1376 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1377 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1378 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1379 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1380 1381 mddev->max_disks = MD_SB_DISKS; 1382 1383 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1384 mddev->bitmap_info.file == NULL) { 1385 mddev->bitmap_info.offset = 1386 mddev->bitmap_info.default_offset; 1387 mddev->bitmap_info.space = 1388 mddev->bitmap_info.default_space; 1389 } 1390 1391 } else if (mddev->pers == NULL) { 1392 /* Insist on good event counter while assembling, except 1393 * for spares (which don't need an event count) */ 1394 ++ev1; 1395 if (sb->disks[rdev->desc_nr].state & ( 1396 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1397 if (ev1 < mddev->events) 1398 return -EINVAL; 1399 } else if (mddev->bitmap) { 1400 /* if adding to array with a bitmap, then we can accept an 1401 * older device ... but not too old. 1402 */ 1403 if (ev1 < mddev->bitmap->events_cleared) 1404 return 0; 1405 if (ev1 < mddev->events) 1406 set_bit(Bitmap_sync, &rdev->flags); 1407 } else { 1408 if (ev1 < mddev->events) 1409 /* just a hot-add of a new device, leave raid_disk at -1 */ 1410 return 0; 1411 } 1412 1413 if (mddev->level != LEVEL_MULTIPATH) { 1414 desc = sb->disks + rdev->desc_nr; 1415 1416 if (desc->state & (1<<MD_DISK_FAULTY)) 1417 set_bit(Faulty, &rdev->flags); 1418 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1419 desc->raid_disk < mddev->raid_disks */) { 1420 set_bit(In_sync, &rdev->flags); 1421 rdev->raid_disk = desc->raid_disk; 1422 rdev->saved_raid_disk = desc->raid_disk; 1423 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1424 /* active but not in sync implies recovery up to 1425 * reshape position. We don't know exactly where 1426 * that is, so set to zero for now */ 1427 if (mddev->minor_version >= 91) { 1428 rdev->recovery_offset = 0; 1429 rdev->raid_disk = desc->raid_disk; 1430 } 1431 } 1432 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1433 set_bit(WriteMostly, &rdev->flags); 1434 if (desc->state & (1<<MD_DISK_FAILFAST)) 1435 set_bit(FailFast, &rdev->flags); 1436 } else /* MULTIPATH are always insync */ 1437 set_bit(In_sync, &rdev->flags); 1438 return 0; 1439 } 1440 1441 /* 1442 * sync_super for 0.90.0 1443 */ 1444 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1445 { 1446 mdp_super_t *sb; 1447 struct md_rdev *rdev2; 1448 int next_spare = mddev->raid_disks; 1449 1450 /* make rdev->sb match mddev data.. 1451 * 1452 * 1/ zero out disks 1453 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1454 * 3/ any empty disks < next_spare become removed 1455 * 1456 * disks[0] gets initialised to REMOVED because 1457 * we cannot be sure from other fields if it has 1458 * been initialised or not. 1459 */ 1460 int i; 1461 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1462 1463 rdev->sb_size = MD_SB_BYTES; 1464 1465 sb = page_address(rdev->sb_page); 1466 1467 memset(sb, 0, sizeof(*sb)); 1468 1469 sb->md_magic = MD_SB_MAGIC; 1470 sb->major_version = mddev->major_version; 1471 sb->patch_version = mddev->patch_version; 1472 sb->gvalid_words = 0; /* ignored */ 1473 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1474 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1475 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1476 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1477 1478 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1479 sb->level = mddev->level; 1480 sb->size = mddev->dev_sectors / 2; 1481 sb->raid_disks = mddev->raid_disks; 1482 sb->md_minor = mddev->md_minor; 1483 sb->not_persistent = 0; 1484 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1485 sb->state = 0; 1486 sb->events_hi = (mddev->events>>32); 1487 sb->events_lo = (u32)mddev->events; 1488 1489 if (mddev->reshape_position == MaxSector) 1490 sb->minor_version = 90; 1491 else { 1492 sb->minor_version = 91; 1493 sb->reshape_position = mddev->reshape_position; 1494 sb->new_level = mddev->new_level; 1495 sb->delta_disks = mddev->delta_disks; 1496 sb->new_layout = mddev->new_layout; 1497 sb->new_chunk = mddev->new_chunk_sectors << 9; 1498 } 1499 mddev->minor_version = sb->minor_version; 1500 if (mddev->in_sync) 1501 { 1502 sb->recovery_cp = mddev->recovery_cp; 1503 sb->cp_events_hi = (mddev->events>>32); 1504 sb->cp_events_lo = (u32)mddev->events; 1505 if (mddev->recovery_cp == MaxSector) 1506 sb->state = (1<< MD_SB_CLEAN); 1507 } else 1508 sb->recovery_cp = 0; 1509 1510 sb->layout = mddev->layout; 1511 sb->chunk_size = mddev->chunk_sectors << 9; 1512 1513 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1514 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1515 1516 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1517 rdev_for_each(rdev2, mddev) { 1518 mdp_disk_t *d; 1519 int desc_nr; 1520 int is_active = test_bit(In_sync, &rdev2->flags); 1521 1522 if (rdev2->raid_disk >= 0 && 1523 sb->minor_version >= 91) 1524 /* we have nowhere to store the recovery_offset, 1525 * but if it is not below the reshape_position, 1526 * we can piggy-back on that. 1527 */ 1528 is_active = 1; 1529 if (rdev2->raid_disk < 0 || 1530 test_bit(Faulty, &rdev2->flags)) 1531 is_active = 0; 1532 if (is_active) 1533 desc_nr = rdev2->raid_disk; 1534 else 1535 desc_nr = next_spare++; 1536 rdev2->desc_nr = desc_nr; 1537 d = &sb->disks[rdev2->desc_nr]; 1538 nr_disks++; 1539 d->number = rdev2->desc_nr; 1540 d->major = MAJOR(rdev2->bdev->bd_dev); 1541 d->minor = MINOR(rdev2->bdev->bd_dev); 1542 if (is_active) 1543 d->raid_disk = rdev2->raid_disk; 1544 else 1545 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1546 if (test_bit(Faulty, &rdev2->flags)) 1547 d->state = (1<<MD_DISK_FAULTY); 1548 else if (is_active) { 1549 d->state = (1<<MD_DISK_ACTIVE); 1550 if (test_bit(In_sync, &rdev2->flags)) 1551 d->state |= (1<<MD_DISK_SYNC); 1552 active++; 1553 working++; 1554 } else { 1555 d->state = 0; 1556 spare++; 1557 working++; 1558 } 1559 if (test_bit(WriteMostly, &rdev2->flags)) 1560 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1561 if (test_bit(FailFast, &rdev2->flags)) 1562 d->state |= (1<<MD_DISK_FAILFAST); 1563 } 1564 /* now set the "removed" and "faulty" bits on any missing devices */ 1565 for (i=0 ; i < mddev->raid_disks ; i++) { 1566 mdp_disk_t *d = &sb->disks[i]; 1567 if (d->state == 0 && d->number == 0) { 1568 d->number = i; 1569 d->raid_disk = i; 1570 d->state = (1<<MD_DISK_REMOVED); 1571 d->state |= (1<<MD_DISK_FAULTY); 1572 failed++; 1573 } 1574 } 1575 sb->nr_disks = nr_disks; 1576 sb->active_disks = active; 1577 sb->working_disks = working; 1578 sb->failed_disks = failed; 1579 sb->spare_disks = spare; 1580 1581 sb->this_disk = sb->disks[rdev->desc_nr]; 1582 sb->sb_csum = calc_sb_csum(sb); 1583 } 1584 1585 /* 1586 * rdev_size_change for 0.90.0 1587 */ 1588 static unsigned long long 1589 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1590 { 1591 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1592 return 0; /* component must fit device */ 1593 if (rdev->mddev->bitmap_info.offset) 1594 return 0; /* can't move bitmap */ 1595 rdev->sb_start = calc_dev_sboffset(rdev); 1596 if (!num_sectors || num_sectors > rdev->sb_start) 1597 num_sectors = rdev->sb_start; 1598 /* Limit to 4TB as metadata cannot record more than that. 1599 * 4TB == 2^32 KB, or 2*2^32 sectors. 1600 */ 1601 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1602 num_sectors = (sector_t)(2ULL << 32) - 2; 1603 do { 1604 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1605 rdev->sb_page); 1606 } while (md_super_wait(rdev->mddev) < 0); 1607 return num_sectors; 1608 } 1609 1610 static int 1611 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1612 { 1613 /* non-zero offset changes not possible with v0.90 */ 1614 return new_offset == 0; 1615 } 1616 1617 /* 1618 * version 1 superblock 1619 */ 1620 1621 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1622 { 1623 __le32 disk_csum; 1624 u32 csum; 1625 unsigned long long newcsum; 1626 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1627 __le32 *isuper = (__le32*)sb; 1628 1629 disk_csum = sb->sb_csum; 1630 sb->sb_csum = 0; 1631 newcsum = 0; 1632 for (; size >= 4; size -= 4) 1633 newcsum += le32_to_cpu(*isuper++); 1634 1635 if (size == 2) 1636 newcsum += le16_to_cpu(*(__le16*) isuper); 1637 1638 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1639 sb->sb_csum = disk_csum; 1640 return cpu_to_le32(csum); 1641 } 1642 1643 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1644 { 1645 struct mdp_superblock_1 *sb; 1646 int ret; 1647 sector_t sb_start; 1648 sector_t sectors; 1649 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1650 int bmask; 1651 bool spare_disk = true; 1652 1653 /* 1654 * Calculate the position of the superblock in 512byte sectors. 1655 * It is always aligned to a 4K boundary and 1656 * depeding on minor_version, it can be: 1657 * 0: At least 8K, but less than 12K, from end of device 1658 * 1: At start of device 1659 * 2: 4K from start of device. 1660 */ 1661 switch(minor_version) { 1662 case 0: 1663 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1664 sb_start -= 8*2; 1665 sb_start &= ~(sector_t)(4*2-1); 1666 break; 1667 case 1: 1668 sb_start = 0; 1669 break; 1670 case 2: 1671 sb_start = 8; 1672 break; 1673 default: 1674 return -EINVAL; 1675 } 1676 rdev->sb_start = sb_start; 1677 1678 /* superblock is rarely larger than 1K, but it can be larger, 1679 * and it is safe to read 4k, so we do that 1680 */ 1681 ret = read_disk_sb(rdev, 4096); 1682 if (ret) return ret; 1683 1684 sb = page_address(rdev->sb_page); 1685 1686 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1687 sb->major_version != cpu_to_le32(1) || 1688 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1689 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1690 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1691 return -EINVAL; 1692 1693 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1694 pr_warn("md: invalid superblock checksum on %s\n", 1695 bdevname(rdev->bdev,b)); 1696 return -EINVAL; 1697 } 1698 if (le64_to_cpu(sb->data_size) < 10) { 1699 pr_warn("md: data_size too small on %s\n", 1700 bdevname(rdev->bdev,b)); 1701 return -EINVAL; 1702 } 1703 if (sb->pad0 || 1704 sb->pad3[0] || 1705 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1706 /* Some padding is non-zero, might be a new feature */ 1707 return -EINVAL; 1708 1709 rdev->preferred_minor = 0xffff; 1710 rdev->data_offset = le64_to_cpu(sb->data_offset); 1711 rdev->new_data_offset = rdev->data_offset; 1712 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1713 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1714 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1715 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1716 1717 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1718 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1719 if (rdev->sb_size & bmask) 1720 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1721 1722 if (minor_version 1723 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1724 return -EINVAL; 1725 if (minor_version 1726 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1727 return -EINVAL; 1728 1729 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1730 rdev->desc_nr = -1; 1731 else 1732 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1733 1734 if (!rdev->bb_page) { 1735 rdev->bb_page = alloc_page(GFP_KERNEL); 1736 if (!rdev->bb_page) 1737 return -ENOMEM; 1738 } 1739 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1740 rdev->badblocks.count == 0) { 1741 /* need to load the bad block list. 1742 * Currently we limit it to one page. 1743 */ 1744 s32 offset; 1745 sector_t bb_sector; 1746 __le64 *bbp; 1747 int i; 1748 int sectors = le16_to_cpu(sb->bblog_size); 1749 if (sectors > (PAGE_SIZE / 512)) 1750 return -EINVAL; 1751 offset = le32_to_cpu(sb->bblog_offset); 1752 if (offset == 0) 1753 return -EINVAL; 1754 bb_sector = (long long)offset; 1755 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1756 rdev->bb_page, REQ_OP_READ, 0, true)) 1757 return -EIO; 1758 bbp = (__le64 *)page_address(rdev->bb_page); 1759 rdev->badblocks.shift = sb->bblog_shift; 1760 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1761 u64 bb = le64_to_cpu(*bbp); 1762 int count = bb & (0x3ff); 1763 u64 sector = bb >> 10; 1764 sector <<= sb->bblog_shift; 1765 count <<= sb->bblog_shift; 1766 if (bb + 1 == 0) 1767 break; 1768 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1769 return -EINVAL; 1770 } 1771 } else if (sb->bblog_offset != 0) 1772 rdev->badblocks.shift = 0; 1773 1774 if ((le32_to_cpu(sb->feature_map) & 1775 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1776 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1777 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1778 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1779 } 1780 1781 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1782 sb->level != 0) 1783 return -EINVAL; 1784 1785 /* not spare disk, or LEVEL_MULTIPATH */ 1786 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1787 (rdev->desc_nr >= 0 && 1788 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1789 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1790 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1791 spare_disk = false; 1792 1793 if (!refdev) { 1794 if (!spare_disk) 1795 ret = 1; 1796 else 1797 ret = 0; 1798 } else { 1799 __u64 ev1, ev2; 1800 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1801 1802 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1803 sb->level != refsb->level || 1804 sb->layout != refsb->layout || 1805 sb->chunksize != refsb->chunksize) { 1806 pr_warn("md: %s has strangely different superblock to %s\n", 1807 bdevname(rdev->bdev,b), 1808 bdevname(refdev->bdev,b2)); 1809 return -EINVAL; 1810 } 1811 ev1 = le64_to_cpu(sb->events); 1812 ev2 = le64_to_cpu(refsb->events); 1813 1814 if (!spare_disk && ev1 > ev2) 1815 ret = 1; 1816 else 1817 ret = 0; 1818 } 1819 if (minor_version) { 1820 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1821 sectors -= rdev->data_offset; 1822 } else 1823 sectors = rdev->sb_start; 1824 if (sectors < le64_to_cpu(sb->data_size)) 1825 return -EINVAL; 1826 rdev->sectors = le64_to_cpu(sb->data_size); 1827 return ret; 1828 } 1829 1830 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1831 { 1832 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1833 __u64 ev1 = le64_to_cpu(sb->events); 1834 1835 rdev->raid_disk = -1; 1836 clear_bit(Faulty, &rdev->flags); 1837 clear_bit(In_sync, &rdev->flags); 1838 clear_bit(Bitmap_sync, &rdev->flags); 1839 clear_bit(WriteMostly, &rdev->flags); 1840 1841 if (mddev->raid_disks == 0) { 1842 mddev->major_version = 1; 1843 mddev->patch_version = 0; 1844 mddev->external = 0; 1845 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1846 mddev->ctime = le64_to_cpu(sb->ctime); 1847 mddev->utime = le64_to_cpu(sb->utime); 1848 mddev->level = le32_to_cpu(sb->level); 1849 mddev->clevel[0] = 0; 1850 mddev->layout = le32_to_cpu(sb->layout); 1851 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1852 mddev->dev_sectors = le64_to_cpu(sb->size); 1853 mddev->events = ev1; 1854 mddev->bitmap_info.offset = 0; 1855 mddev->bitmap_info.space = 0; 1856 /* Default location for bitmap is 1K after superblock 1857 * using 3K - total of 4K 1858 */ 1859 mddev->bitmap_info.default_offset = 1024 >> 9; 1860 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1861 mddev->reshape_backwards = 0; 1862 1863 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1864 memcpy(mddev->uuid, sb->set_uuid, 16); 1865 1866 mddev->max_disks = (4096-256)/2; 1867 1868 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1869 mddev->bitmap_info.file == NULL) { 1870 mddev->bitmap_info.offset = 1871 (__s32)le32_to_cpu(sb->bitmap_offset); 1872 /* Metadata doesn't record how much space is available. 1873 * For 1.0, we assume we can use up to the superblock 1874 * if before, else to 4K beyond superblock. 1875 * For others, assume no change is possible. 1876 */ 1877 if (mddev->minor_version > 0) 1878 mddev->bitmap_info.space = 0; 1879 else if (mddev->bitmap_info.offset > 0) 1880 mddev->bitmap_info.space = 1881 8 - mddev->bitmap_info.offset; 1882 else 1883 mddev->bitmap_info.space = 1884 -mddev->bitmap_info.offset; 1885 } 1886 1887 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1888 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1889 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1890 mddev->new_level = le32_to_cpu(sb->new_level); 1891 mddev->new_layout = le32_to_cpu(sb->new_layout); 1892 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1893 if (mddev->delta_disks < 0 || 1894 (mddev->delta_disks == 0 && 1895 (le32_to_cpu(sb->feature_map) 1896 & MD_FEATURE_RESHAPE_BACKWARDS))) 1897 mddev->reshape_backwards = 1; 1898 } else { 1899 mddev->reshape_position = MaxSector; 1900 mddev->delta_disks = 0; 1901 mddev->new_level = mddev->level; 1902 mddev->new_layout = mddev->layout; 1903 mddev->new_chunk_sectors = mddev->chunk_sectors; 1904 } 1905 1906 if (mddev->level == 0 && 1907 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1908 mddev->layout = -1; 1909 1910 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1911 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1912 1913 if (le32_to_cpu(sb->feature_map) & 1914 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1915 if (le32_to_cpu(sb->feature_map) & 1916 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1917 return -EINVAL; 1918 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1919 (le32_to_cpu(sb->feature_map) & 1920 MD_FEATURE_MULTIPLE_PPLS)) 1921 return -EINVAL; 1922 set_bit(MD_HAS_PPL, &mddev->flags); 1923 } 1924 } else if (mddev->pers == NULL) { 1925 /* Insist of good event counter while assembling, except for 1926 * spares (which don't need an event count) */ 1927 ++ev1; 1928 if (rdev->desc_nr >= 0 && 1929 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1930 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1931 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1932 if (ev1 < mddev->events) 1933 return -EINVAL; 1934 } else if (mddev->bitmap) { 1935 /* If adding to array with a bitmap, then we can accept an 1936 * older device, but not too old. 1937 */ 1938 if (ev1 < mddev->bitmap->events_cleared) 1939 return 0; 1940 if (ev1 < mddev->events) 1941 set_bit(Bitmap_sync, &rdev->flags); 1942 } else { 1943 if (ev1 < mddev->events) 1944 /* just a hot-add of a new device, leave raid_disk at -1 */ 1945 return 0; 1946 } 1947 if (mddev->level != LEVEL_MULTIPATH) { 1948 int role; 1949 if (rdev->desc_nr < 0 || 1950 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1951 role = MD_DISK_ROLE_SPARE; 1952 rdev->desc_nr = -1; 1953 } else 1954 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1955 switch(role) { 1956 case MD_DISK_ROLE_SPARE: /* spare */ 1957 break; 1958 case MD_DISK_ROLE_FAULTY: /* faulty */ 1959 set_bit(Faulty, &rdev->flags); 1960 break; 1961 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1962 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1963 /* journal device without journal feature */ 1964 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1965 return -EINVAL; 1966 } 1967 set_bit(Journal, &rdev->flags); 1968 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1969 rdev->raid_disk = 0; 1970 break; 1971 default: 1972 rdev->saved_raid_disk = role; 1973 if ((le32_to_cpu(sb->feature_map) & 1974 MD_FEATURE_RECOVERY_OFFSET)) { 1975 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1976 if (!(le32_to_cpu(sb->feature_map) & 1977 MD_FEATURE_RECOVERY_BITMAP)) 1978 rdev->saved_raid_disk = -1; 1979 } else { 1980 /* 1981 * If the array is FROZEN, then the device can't 1982 * be in_sync with rest of array. 1983 */ 1984 if (!test_bit(MD_RECOVERY_FROZEN, 1985 &mddev->recovery)) 1986 set_bit(In_sync, &rdev->flags); 1987 } 1988 rdev->raid_disk = role; 1989 break; 1990 } 1991 if (sb->devflags & WriteMostly1) 1992 set_bit(WriteMostly, &rdev->flags); 1993 if (sb->devflags & FailFast1) 1994 set_bit(FailFast, &rdev->flags); 1995 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1996 set_bit(Replacement, &rdev->flags); 1997 } else /* MULTIPATH are always insync */ 1998 set_bit(In_sync, &rdev->flags); 1999 2000 return 0; 2001 } 2002 2003 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 2004 { 2005 struct mdp_superblock_1 *sb; 2006 struct md_rdev *rdev2; 2007 int max_dev, i; 2008 /* make rdev->sb match mddev and rdev data. */ 2009 2010 sb = page_address(rdev->sb_page); 2011 2012 sb->feature_map = 0; 2013 sb->pad0 = 0; 2014 sb->recovery_offset = cpu_to_le64(0); 2015 memset(sb->pad3, 0, sizeof(sb->pad3)); 2016 2017 sb->utime = cpu_to_le64((__u64)mddev->utime); 2018 sb->events = cpu_to_le64(mddev->events); 2019 if (mddev->in_sync) 2020 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2021 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2022 sb->resync_offset = cpu_to_le64(MaxSector); 2023 else 2024 sb->resync_offset = cpu_to_le64(0); 2025 2026 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2027 2028 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2029 sb->size = cpu_to_le64(mddev->dev_sectors); 2030 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2031 sb->level = cpu_to_le32(mddev->level); 2032 sb->layout = cpu_to_le32(mddev->layout); 2033 if (test_bit(FailFast, &rdev->flags)) 2034 sb->devflags |= FailFast1; 2035 else 2036 sb->devflags &= ~FailFast1; 2037 2038 if (test_bit(WriteMostly, &rdev->flags)) 2039 sb->devflags |= WriteMostly1; 2040 else 2041 sb->devflags &= ~WriteMostly1; 2042 sb->data_offset = cpu_to_le64(rdev->data_offset); 2043 sb->data_size = cpu_to_le64(rdev->sectors); 2044 2045 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2046 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2047 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2048 } 2049 2050 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2051 !test_bit(In_sync, &rdev->flags)) { 2052 sb->feature_map |= 2053 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2054 sb->recovery_offset = 2055 cpu_to_le64(rdev->recovery_offset); 2056 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2057 sb->feature_map |= 2058 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2059 } 2060 /* Note: recovery_offset and journal_tail share space */ 2061 if (test_bit(Journal, &rdev->flags)) 2062 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2063 if (test_bit(Replacement, &rdev->flags)) 2064 sb->feature_map |= 2065 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2066 2067 if (mddev->reshape_position != MaxSector) { 2068 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2069 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2070 sb->new_layout = cpu_to_le32(mddev->new_layout); 2071 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2072 sb->new_level = cpu_to_le32(mddev->new_level); 2073 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2074 if (mddev->delta_disks == 0 && 2075 mddev->reshape_backwards) 2076 sb->feature_map 2077 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2078 if (rdev->new_data_offset != rdev->data_offset) { 2079 sb->feature_map 2080 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2081 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2082 - rdev->data_offset)); 2083 } 2084 } 2085 2086 if (mddev_is_clustered(mddev)) 2087 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2088 2089 if (rdev->badblocks.count == 0) 2090 /* Nothing to do for bad blocks*/ ; 2091 else if (sb->bblog_offset == 0) 2092 /* Cannot record bad blocks on this device */ 2093 md_error(mddev, rdev); 2094 else { 2095 struct badblocks *bb = &rdev->badblocks; 2096 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2097 u64 *p = bb->page; 2098 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2099 if (bb->changed) { 2100 unsigned seq; 2101 2102 retry: 2103 seq = read_seqbegin(&bb->lock); 2104 2105 memset(bbp, 0xff, PAGE_SIZE); 2106 2107 for (i = 0 ; i < bb->count ; i++) { 2108 u64 internal_bb = p[i]; 2109 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2110 | BB_LEN(internal_bb)); 2111 bbp[i] = cpu_to_le64(store_bb); 2112 } 2113 bb->changed = 0; 2114 if (read_seqretry(&bb->lock, seq)) 2115 goto retry; 2116 2117 bb->sector = (rdev->sb_start + 2118 (int)le32_to_cpu(sb->bblog_offset)); 2119 bb->size = le16_to_cpu(sb->bblog_size); 2120 } 2121 } 2122 2123 max_dev = 0; 2124 rdev_for_each(rdev2, mddev) 2125 if (rdev2->desc_nr+1 > max_dev) 2126 max_dev = rdev2->desc_nr+1; 2127 2128 if (max_dev > le32_to_cpu(sb->max_dev)) { 2129 int bmask; 2130 sb->max_dev = cpu_to_le32(max_dev); 2131 rdev->sb_size = max_dev * 2 + 256; 2132 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2133 if (rdev->sb_size & bmask) 2134 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2135 } else 2136 max_dev = le32_to_cpu(sb->max_dev); 2137 2138 for (i=0; i<max_dev;i++) 2139 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2140 2141 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2142 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2143 2144 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2145 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2146 sb->feature_map |= 2147 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2148 else 2149 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2150 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2151 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2152 } 2153 2154 rdev_for_each(rdev2, mddev) { 2155 i = rdev2->desc_nr; 2156 if (test_bit(Faulty, &rdev2->flags)) 2157 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2158 else if (test_bit(In_sync, &rdev2->flags)) 2159 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2160 else if (test_bit(Journal, &rdev2->flags)) 2161 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2162 else if (rdev2->raid_disk >= 0) 2163 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2164 else 2165 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2166 } 2167 2168 sb->sb_csum = calc_sb_1_csum(sb); 2169 } 2170 2171 static sector_t super_1_choose_bm_space(sector_t dev_size) 2172 { 2173 sector_t bm_space; 2174 2175 /* if the device is bigger than 8Gig, save 64k for bitmap 2176 * usage, if bigger than 200Gig, save 128k 2177 */ 2178 if (dev_size < 64*2) 2179 bm_space = 0; 2180 else if (dev_size - 64*2 >= 200*1024*1024*2) 2181 bm_space = 128*2; 2182 else if (dev_size - 4*2 > 8*1024*1024*2) 2183 bm_space = 64*2; 2184 else 2185 bm_space = 4*2; 2186 return bm_space; 2187 } 2188 2189 static unsigned long long 2190 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2191 { 2192 struct mdp_superblock_1 *sb; 2193 sector_t max_sectors; 2194 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2195 return 0; /* component must fit device */ 2196 if (rdev->data_offset != rdev->new_data_offset) 2197 return 0; /* too confusing */ 2198 if (rdev->sb_start < rdev->data_offset) { 2199 /* minor versions 1 and 2; superblock before data */ 2200 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2201 max_sectors -= rdev->data_offset; 2202 if (!num_sectors || num_sectors > max_sectors) 2203 num_sectors = max_sectors; 2204 } else if (rdev->mddev->bitmap_info.offset) { 2205 /* minor version 0 with bitmap we can't move */ 2206 return 0; 2207 } else { 2208 /* minor version 0; superblock after data */ 2209 sector_t sb_start, bm_space; 2210 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9; 2211 2212 /* 8K is for superblock */ 2213 sb_start = dev_size - 8*2; 2214 sb_start &= ~(sector_t)(4*2 - 1); 2215 2216 bm_space = super_1_choose_bm_space(dev_size); 2217 2218 /* Space that can be used to store date needs to decrease 2219 * superblock bitmap space and bad block space(4K) 2220 */ 2221 max_sectors = sb_start - bm_space - 4*2; 2222 2223 if (!num_sectors || num_sectors > max_sectors) 2224 num_sectors = max_sectors; 2225 } 2226 sb = page_address(rdev->sb_page); 2227 sb->data_size = cpu_to_le64(num_sectors); 2228 sb->super_offset = cpu_to_le64(rdev->sb_start); 2229 sb->sb_csum = calc_sb_1_csum(sb); 2230 do { 2231 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2232 rdev->sb_page); 2233 } while (md_super_wait(rdev->mddev) < 0); 2234 return num_sectors; 2235 2236 } 2237 2238 static int 2239 super_1_allow_new_offset(struct md_rdev *rdev, 2240 unsigned long long new_offset) 2241 { 2242 /* All necessary checks on new >= old have been done */ 2243 struct bitmap *bitmap; 2244 if (new_offset >= rdev->data_offset) 2245 return 1; 2246 2247 /* with 1.0 metadata, there is no metadata to tread on 2248 * so we can always move back */ 2249 if (rdev->mddev->minor_version == 0) 2250 return 1; 2251 2252 /* otherwise we must be sure not to step on 2253 * any metadata, so stay: 2254 * 36K beyond start of superblock 2255 * beyond end of badblocks 2256 * beyond write-intent bitmap 2257 */ 2258 if (rdev->sb_start + (32+4)*2 > new_offset) 2259 return 0; 2260 bitmap = rdev->mddev->bitmap; 2261 if (bitmap && !rdev->mddev->bitmap_info.file && 2262 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2263 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2264 return 0; 2265 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2266 return 0; 2267 2268 return 1; 2269 } 2270 2271 static struct super_type super_types[] = { 2272 [0] = { 2273 .name = "0.90.0", 2274 .owner = THIS_MODULE, 2275 .load_super = super_90_load, 2276 .validate_super = super_90_validate, 2277 .sync_super = super_90_sync, 2278 .rdev_size_change = super_90_rdev_size_change, 2279 .allow_new_offset = super_90_allow_new_offset, 2280 }, 2281 [1] = { 2282 .name = "md-1", 2283 .owner = THIS_MODULE, 2284 .load_super = super_1_load, 2285 .validate_super = super_1_validate, 2286 .sync_super = super_1_sync, 2287 .rdev_size_change = super_1_rdev_size_change, 2288 .allow_new_offset = super_1_allow_new_offset, 2289 }, 2290 }; 2291 2292 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2293 { 2294 if (mddev->sync_super) { 2295 mddev->sync_super(mddev, rdev); 2296 return; 2297 } 2298 2299 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2300 2301 super_types[mddev->major_version].sync_super(mddev, rdev); 2302 } 2303 2304 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2305 { 2306 struct md_rdev *rdev, *rdev2; 2307 2308 rcu_read_lock(); 2309 rdev_for_each_rcu(rdev, mddev1) { 2310 if (test_bit(Faulty, &rdev->flags) || 2311 test_bit(Journal, &rdev->flags) || 2312 rdev->raid_disk == -1) 2313 continue; 2314 rdev_for_each_rcu(rdev2, mddev2) { 2315 if (test_bit(Faulty, &rdev2->flags) || 2316 test_bit(Journal, &rdev2->flags) || 2317 rdev2->raid_disk == -1) 2318 continue; 2319 if (rdev->bdev->bd_contains == 2320 rdev2->bdev->bd_contains) { 2321 rcu_read_unlock(); 2322 return 1; 2323 } 2324 } 2325 } 2326 rcu_read_unlock(); 2327 return 0; 2328 } 2329 2330 static LIST_HEAD(pending_raid_disks); 2331 2332 /* 2333 * Try to register data integrity profile for an mddev 2334 * 2335 * This is called when an array is started and after a disk has been kicked 2336 * from the array. It only succeeds if all working and active component devices 2337 * are integrity capable with matching profiles. 2338 */ 2339 int md_integrity_register(struct mddev *mddev) 2340 { 2341 struct md_rdev *rdev, *reference = NULL; 2342 2343 if (list_empty(&mddev->disks)) 2344 return 0; /* nothing to do */ 2345 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2346 return 0; /* shouldn't register, or already is */ 2347 rdev_for_each(rdev, mddev) { 2348 /* skip spares and non-functional disks */ 2349 if (test_bit(Faulty, &rdev->flags)) 2350 continue; 2351 if (rdev->raid_disk < 0) 2352 continue; 2353 if (!reference) { 2354 /* Use the first rdev as the reference */ 2355 reference = rdev; 2356 continue; 2357 } 2358 /* does this rdev's profile match the reference profile? */ 2359 if (blk_integrity_compare(reference->bdev->bd_disk, 2360 rdev->bdev->bd_disk) < 0) 2361 return -EINVAL; 2362 } 2363 if (!reference || !bdev_get_integrity(reference->bdev)) 2364 return 0; 2365 /* 2366 * All component devices are integrity capable and have matching 2367 * profiles, register the common profile for the md device. 2368 */ 2369 blk_integrity_register(mddev->gendisk, 2370 bdev_get_integrity(reference->bdev)); 2371 2372 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2373 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2374 pr_err("md: failed to create integrity pool for %s\n", 2375 mdname(mddev)); 2376 return -EINVAL; 2377 } 2378 return 0; 2379 } 2380 EXPORT_SYMBOL(md_integrity_register); 2381 2382 /* 2383 * Attempt to add an rdev, but only if it is consistent with the current 2384 * integrity profile 2385 */ 2386 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2387 { 2388 struct blk_integrity *bi_mddev; 2389 char name[BDEVNAME_SIZE]; 2390 2391 if (!mddev->gendisk) 2392 return 0; 2393 2394 bi_mddev = blk_get_integrity(mddev->gendisk); 2395 2396 if (!bi_mddev) /* nothing to do */ 2397 return 0; 2398 2399 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2400 pr_err("%s: incompatible integrity profile for %s\n", 2401 mdname(mddev), bdevname(rdev->bdev, name)); 2402 return -ENXIO; 2403 } 2404 2405 return 0; 2406 } 2407 EXPORT_SYMBOL(md_integrity_add_rdev); 2408 2409 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2410 { 2411 char b[BDEVNAME_SIZE]; 2412 struct kobject *ko; 2413 int err; 2414 2415 /* prevent duplicates */ 2416 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2417 return -EEXIST; 2418 2419 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2420 mddev->pers) 2421 return -EROFS; 2422 2423 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2424 if (!test_bit(Journal, &rdev->flags) && 2425 rdev->sectors && 2426 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2427 if (mddev->pers) { 2428 /* Cannot change size, so fail 2429 * If mddev->level <= 0, then we don't care 2430 * about aligning sizes (e.g. linear) 2431 */ 2432 if (mddev->level > 0) 2433 return -ENOSPC; 2434 } else 2435 mddev->dev_sectors = rdev->sectors; 2436 } 2437 2438 /* Verify rdev->desc_nr is unique. 2439 * If it is -1, assign a free number, else 2440 * check number is not in use 2441 */ 2442 rcu_read_lock(); 2443 if (rdev->desc_nr < 0) { 2444 int choice = 0; 2445 if (mddev->pers) 2446 choice = mddev->raid_disks; 2447 while (md_find_rdev_nr_rcu(mddev, choice)) 2448 choice++; 2449 rdev->desc_nr = choice; 2450 } else { 2451 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2452 rcu_read_unlock(); 2453 return -EBUSY; 2454 } 2455 } 2456 rcu_read_unlock(); 2457 if (!test_bit(Journal, &rdev->flags) && 2458 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2459 pr_warn("md: %s: array is limited to %d devices\n", 2460 mdname(mddev), mddev->max_disks); 2461 return -EBUSY; 2462 } 2463 bdevname(rdev->bdev,b); 2464 strreplace(b, '/', '!'); 2465 2466 rdev->mddev = mddev; 2467 pr_debug("md: bind<%s>\n", b); 2468 2469 if (mddev->raid_disks) 2470 mddev_create_serial_pool(mddev, rdev, false); 2471 2472 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2473 goto fail; 2474 2475 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2476 /* failure here is OK */ 2477 err = sysfs_create_link(&rdev->kobj, ko, "block"); 2478 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2479 rdev->sysfs_unack_badblocks = 2480 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2481 rdev->sysfs_badblocks = 2482 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2483 2484 list_add_rcu(&rdev->same_set, &mddev->disks); 2485 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2486 2487 /* May as well allow recovery to be retried once */ 2488 mddev->recovery_disabled++; 2489 2490 return 0; 2491 2492 fail: 2493 pr_warn("md: failed to register dev-%s for %s\n", 2494 b, mdname(mddev)); 2495 return err; 2496 } 2497 2498 static void rdev_delayed_delete(struct work_struct *ws) 2499 { 2500 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2501 kobject_del(&rdev->kobj); 2502 kobject_put(&rdev->kobj); 2503 } 2504 2505 static void unbind_rdev_from_array(struct md_rdev *rdev) 2506 { 2507 char b[BDEVNAME_SIZE]; 2508 2509 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2510 list_del_rcu(&rdev->same_set); 2511 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2512 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2513 rdev->mddev = NULL; 2514 sysfs_remove_link(&rdev->kobj, "block"); 2515 sysfs_put(rdev->sysfs_state); 2516 sysfs_put(rdev->sysfs_unack_badblocks); 2517 sysfs_put(rdev->sysfs_badblocks); 2518 rdev->sysfs_state = NULL; 2519 rdev->sysfs_unack_badblocks = NULL; 2520 rdev->sysfs_badblocks = NULL; 2521 rdev->badblocks.count = 0; 2522 /* We need to delay this, otherwise we can deadlock when 2523 * writing to 'remove' to "dev/state". We also need 2524 * to delay it due to rcu usage. 2525 */ 2526 synchronize_rcu(); 2527 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2528 kobject_get(&rdev->kobj); 2529 queue_work(md_rdev_misc_wq, &rdev->del_work); 2530 } 2531 2532 /* 2533 * prevent the device from being mounted, repartitioned or 2534 * otherwise reused by a RAID array (or any other kernel 2535 * subsystem), by bd_claiming the device. 2536 */ 2537 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2538 { 2539 int err = 0; 2540 struct block_device *bdev; 2541 2542 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2543 shared ? (struct md_rdev *)lock_rdev : rdev); 2544 if (IS_ERR(bdev)) { 2545 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2546 MAJOR(dev), MINOR(dev)); 2547 return PTR_ERR(bdev); 2548 } 2549 rdev->bdev = bdev; 2550 return err; 2551 } 2552 2553 static void unlock_rdev(struct md_rdev *rdev) 2554 { 2555 struct block_device *bdev = rdev->bdev; 2556 rdev->bdev = NULL; 2557 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2558 } 2559 2560 void md_autodetect_dev(dev_t dev); 2561 2562 static void export_rdev(struct md_rdev *rdev) 2563 { 2564 char b[BDEVNAME_SIZE]; 2565 2566 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2567 md_rdev_clear(rdev); 2568 #ifndef MODULE 2569 if (test_bit(AutoDetected, &rdev->flags)) 2570 md_autodetect_dev(rdev->bdev->bd_dev); 2571 #endif 2572 unlock_rdev(rdev); 2573 kobject_put(&rdev->kobj); 2574 } 2575 2576 void md_kick_rdev_from_array(struct md_rdev *rdev) 2577 { 2578 unbind_rdev_from_array(rdev); 2579 export_rdev(rdev); 2580 } 2581 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2582 2583 static void export_array(struct mddev *mddev) 2584 { 2585 struct md_rdev *rdev; 2586 2587 while (!list_empty(&mddev->disks)) { 2588 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2589 same_set); 2590 md_kick_rdev_from_array(rdev); 2591 } 2592 mddev->raid_disks = 0; 2593 mddev->major_version = 0; 2594 } 2595 2596 static bool set_in_sync(struct mddev *mddev) 2597 { 2598 lockdep_assert_held(&mddev->lock); 2599 if (!mddev->in_sync) { 2600 mddev->sync_checkers++; 2601 spin_unlock(&mddev->lock); 2602 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2603 spin_lock(&mddev->lock); 2604 if (!mddev->in_sync && 2605 percpu_ref_is_zero(&mddev->writes_pending)) { 2606 mddev->in_sync = 1; 2607 /* 2608 * Ensure ->in_sync is visible before we clear 2609 * ->sync_checkers. 2610 */ 2611 smp_mb(); 2612 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2613 sysfs_notify_dirent_safe(mddev->sysfs_state); 2614 } 2615 if (--mddev->sync_checkers == 0) 2616 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2617 } 2618 if (mddev->safemode == 1) 2619 mddev->safemode = 0; 2620 return mddev->in_sync; 2621 } 2622 2623 static void sync_sbs(struct mddev *mddev, int nospares) 2624 { 2625 /* Update each superblock (in-memory image), but 2626 * if we are allowed to, skip spares which already 2627 * have the right event counter, or have one earlier 2628 * (which would mean they aren't being marked as dirty 2629 * with the rest of the array) 2630 */ 2631 struct md_rdev *rdev; 2632 rdev_for_each(rdev, mddev) { 2633 if (rdev->sb_events == mddev->events || 2634 (nospares && 2635 rdev->raid_disk < 0 && 2636 rdev->sb_events+1 == mddev->events)) { 2637 /* Don't update this superblock */ 2638 rdev->sb_loaded = 2; 2639 } else { 2640 sync_super(mddev, rdev); 2641 rdev->sb_loaded = 1; 2642 } 2643 } 2644 } 2645 2646 static bool does_sb_need_changing(struct mddev *mddev) 2647 { 2648 struct md_rdev *rdev; 2649 struct mdp_superblock_1 *sb; 2650 int role; 2651 2652 /* Find a good rdev */ 2653 rdev_for_each(rdev, mddev) 2654 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2655 break; 2656 2657 /* No good device found. */ 2658 if (!rdev) 2659 return false; 2660 2661 sb = page_address(rdev->sb_page); 2662 /* Check if a device has become faulty or a spare become active */ 2663 rdev_for_each(rdev, mddev) { 2664 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2665 /* Device activated? */ 2666 if (role == 0xffff && rdev->raid_disk >=0 && 2667 !test_bit(Faulty, &rdev->flags)) 2668 return true; 2669 /* Device turned faulty? */ 2670 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2671 return true; 2672 } 2673 2674 /* Check if any mddev parameters have changed */ 2675 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2676 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2677 (mddev->layout != le32_to_cpu(sb->layout)) || 2678 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2679 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2680 return true; 2681 2682 return false; 2683 } 2684 2685 void md_update_sb(struct mddev *mddev, int force_change) 2686 { 2687 struct md_rdev *rdev; 2688 int sync_req; 2689 int nospares = 0; 2690 int any_badblocks_changed = 0; 2691 int ret = -1; 2692 2693 if (mddev->ro) { 2694 if (force_change) 2695 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2696 return; 2697 } 2698 2699 repeat: 2700 if (mddev_is_clustered(mddev)) { 2701 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2702 force_change = 1; 2703 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2704 nospares = 1; 2705 ret = md_cluster_ops->metadata_update_start(mddev); 2706 /* Has someone else has updated the sb */ 2707 if (!does_sb_need_changing(mddev)) { 2708 if (ret == 0) 2709 md_cluster_ops->metadata_update_cancel(mddev); 2710 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2711 BIT(MD_SB_CHANGE_DEVS) | 2712 BIT(MD_SB_CHANGE_CLEAN)); 2713 return; 2714 } 2715 } 2716 2717 /* 2718 * First make sure individual recovery_offsets are correct 2719 * curr_resync_completed can only be used during recovery. 2720 * During reshape/resync it might use array-addresses rather 2721 * that device addresses. 2722 */ 2723 rdev_for_each(rdev, mddev) { 2724 if (rdev->raid_disk >= 0 && 2725 mddev->delta_disks >= 0 && 2726 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2727 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2728 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2729 !test_bit(Journal, &rdev->flags) && 2730 !test_bit(In_sync, &rdev->flags) && 2731 mddev->curr_resync_completed > rdev->recovery_offset) 2732 rdev->recovery_offset = mddev->curr_resync_completed; 2733 2734 } 2735 if (!mddev->persistent) { 2736 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2737 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2738 if (!mddev->external) { 2739 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2740 rdev_for_each(rdev, mddev) { 2741 if (rdev->badblocks.changed) { 2742 rdev->badblocks.changed = 0; 2743 ack_all_badblocks(&rdev->badblocks); 2744 md_error(mddev, rdev); 2745 } 2746 clear_bit(Blocked, &rdev->flags); 2747 clear_bit(BlockedBadBlocks, &rdev->flags); 2748 wake_up(&rdev->blocked_wait); 2749 } 2750 } 2751 wake_up(&mddev->sb_wait); 2752 return; 2753 } 2754 2755 spin_lock(&mddev->lock); 2756 2757 mddev->utime = ktime_get_real_seconds(); 2758 2759 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2760 force_change = 1; 2761 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2762 /* just a clean<-> dirty transition, possibly leave spares alone, 2763 * though if events isn't the right even/odd, we will have to do 2764 * spares after all 2765 */ 2766 nospares = 1; 2767 if (force_change) 2768 nospares = 0; 2769 if (mddev->degraded) 2770 /* If the array is degraded, then skipping spares is both 2771 * dangerous and fairly pointless. 2772 * Dangerous because a device that was removed from the array 2773 * might have a event_count that still looks up-to-date, 2774 * so it can be re-added without a resync. 2775 * Pointless because if there are any spares to skip, 2776 * then a recovery will happen and soon that array won't 2777 * be degraded any more and the spare can go back to sleep then. 2778 */ 2779 nospares = 0; 2780 2781 sync_req = mddev->in_sync; 2782 2783 /* If this is just a dirty<->clean transition, and the array is clean 2784 * and 'events' is odd, we can roll back to the previous clean state */ 2785 if (nospares 2786 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2787 && mddev->can_decrease_events 2788 && mddev->events != 1) { 2789 mddev->events--; 2790 mddev->can_decrease_events = 0; 2791 } else { 2792 /* otherwise we have to go forward and ... */ 2793 mddev->events ++; 2794 mddev->can_decrease_events = nospares; 2795 } 2796 2797 /* 2798 * This 64-bit counter should never wrap. 2799 * Either we are in around ~1 trillion A.C., assuming 2800 * 1 reboot per second, or we have a bug... 2801 */ 2802 WARN_ON(mddev->events == 0); 2803 2804 rdev_for_each(rdev, mddev) { 2805 if (rdev->badblocks.changed) 2806 any_badblocks_changed++; 2807 if (test_bit(Faulty, &rdev->flags)) 2808 set_bit(FaultRecorded, &rdev->flags); 2809 } 2810 2811 sync_sbs(mddev, nospares); 2812 spin_unlock(&mddev->lock); 2813 2814 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2815 mdname(mddev), mddev->in_sync); 2816 2817 if (mddev->queue) 2818 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2819 rewrite: 2820 md_bitmap_update_sb(mddev->bitmap); 2821 rdev_for_each(rdev, mddev) { 2822 char b[BDEVNAME_SIZE]; 2823 2824 if (rdev->sb_loaded != 1) 2825 continue; /* no noise on spare devices */ 2826 2827 if (!test_bit(Faulty, &rdev->flags)) { 2828 md_super_write(mddev,rdev, 2829 rdev->sb_start, rdev->sb_size, 2830 rdev->sb_page); 2831 pr_debug("md: (write) %s's sb offset: %llu\n", 2832 bdevname(rdev->bdev, b), 2833 (unsigned long long)rdev->sb_start); 2834 rdev->sb_events = mddev->events; 2835 if (rdev->badblocks.size) { 2836 md_super_write(mddev, rdev, 2837 rdev->badblocks.sector, 2838 rdev->badblocks.size << 9, 2839 rdev->bb_page); 2840 rdev->badblocks.size = 0; 2841 } 2842 2843 } else 2844 pr_debug("md: %s (skipping faulty)\n", 2845 bdevname(rdev->bdev, b)); 2846 2847 if (mddev->level == LEVEL_MULTIPATH) 2848 /* only need to write one superblock... */ 2849 break; 2850 } 2851 if (md_super_wait(mddev) < 0) 2852 goto rewrite; 2853 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2854 2855 if (mddev_is_clustered(mddev) && ret == 0) 2856 md_cluster_ops->metadata_update_finish(mddev); 2857 2858 if (mddev->in_sync != sync_req || 2859 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2860 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2861 /* have to write it out again */ 2862 goto repeat; 2863 wake_up(&mddev->sb_wait); 2864 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2865 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2866 2867 rdev_for_each(rdev, mddev) { 2868 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2869 clear_bit(Blocked, &rdev->flags); 2870 2871 if (any_badblocks_changed) 2872 ack_all_badblocks(&rdev->badblocks); 2873 clear_bit(BlockedBadBlocks, &rdev->flags); 2874 wake_up(&rdev->blocked_wait); 2875 } 2876 } 2877 EXPORT_SYMBOL(md_update_sb); 2878 2879 static int add_bound_rdev(struct md_rdev *rdev) 2880 { 2881 struct mddev *mddev = rdev->mddev; 2882 int err = 0; 2883 bool add_journal = test_bit(Journal, &rdev->flags); 2884 2885 if (!mddev->pers->hot_remove_disk || add_journal) { 2886 /* If there is hot_add_disk but no hot_remove_disk 2887 * then added disks for geometry changes, 2888 * and should be added immediately. 2889 */ 2890 super_types[mddev->major_version]. 2891 validate_super(mddev, rdev); 2892 if (add_journal) 2893 mddev_suspend(mddev); 2894 err = mddev->pers->hot_add_disk(mddev, rdev); 2895 if (add_journal) 2896 mddev_resume(mddev); 2897 if (err) { 2898 md_kick_rdev_from_array(rdev); 2899 return err; 2900 } 2901 } 2902 sysfs_notify_dirent_safe(rdev->sysfs_state); 2903 2904 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2905 if (mddev->degraded) 2906 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2907 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2908 md_new_event(mddev); 2909 md_wakeup_thread(mddev->thread); 2910 return 0; 2911 } 2912 2913 /* words written to sysfs files may, or may not, be \n terminated. 2914 * We want to accept with case. For this we use cmd_match. 2915 */ 2916 static int cmd_match(const char *cmd, const char *str) 2917 { 2918 /* See if cmd, written into a sysfs file, matches 2919 * str. They must either be the same, or cmd can 2920 * have a trailing newline 2921 */ 2922 while (*cmd && *str && *cmd == *str) { 2923 cmd++; 2924 str++; 2925 } 2926 if (*cmd == '\n') 2927 cmd++; 2928 if (*str || *cmd) 2929 return 0; 2930 return 1; 2931 } 2932 2933 struct rdev_sysfs_entry { 2934 struct attribute attr; 2935 ssize_t (*show)(struct md_rdev *, char *); 2936 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2937 }; 2938 2939 static ssize_t 2940 state_show(struct md_rdev *rdev, char *page) 2941 { 2942 char *sep = ","; 2943 size_t len = 0; 2944 unsigned long flags = READ_ONCE(rdev->flags); 2945 2946 if (test_bit(Faulty, &flags) || 2947 (!test_bit(ExternalBbl, &flags) && 2948 rdev->badblocks.unacked_exist)) 2949 len += sprintf(page+len, "faulty%s", sep); 2950 if (test_bit(In_sync, &flags)) 2951 len += sprintf(page+len, "in_sync%s", sep); 2952 if (test_bit(Journal, &flags)) 2953 len += sprintf(page+len, "journal%s", sep); 2954 if (test_bit(WriteMostly, &flags)) 2955 len += sprintf(page+len, "write_mostly%s", sep); 2956 if (test_bit(Blocked, &flags) || 2957 (rdev->badblocks.unacked_exist 2958 && !test_bit(Faulty, &flags))) 2959 len += sprintf(page+len, "blocked%s", sep); 2960 if (!test_bit(Faulty, &flags) && 2961 !test_bit(Journal, &flags) && 2962 !test_bit(In_sync, &flags)) 2963 len += sprintf(page+len, "spare%s", sep); 2964 if (test_bit(WriteErrorSeen, &flags)) 2965 len += sprintf(page+len, "write_error%s", sep); 2966 if (test_bit(WantReplacement, &flags)) 2967 len += sprintf(page+len, "want_replacement%s", sep); 2968 if (test_bit(Replacement, &flags)) 2969 len += sprintf(page+len, "replacement%s", sep); 2970 if (test_bit(ExternalBbl, &flags)) 2971 len += sprintf(page+len, "external_bbl%s", sep); 2972 if (test_bit(FailFast, &flags)) 2973 len += sprintf(page+len, "failfast%s", sep); 2974 2975 if (len) 2976 len -= strlen(sep); 2977 2978 return len+sprintf(page+len, "\n"); 2979 } 2980 2981 static ssize_t 2982 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2983 { 2984 /* can write 2985 * faulty - simulates an error 2986 * remove - disconnects the device 2987 * writemostly - sets write_mostly 2988 * -writemostly - clears write_mostly 2989 * blocked - sets the Blocked flags 2990 * -blocked - clears the Blocked and possibly simulates an error 2991 * insync - sets Insync providing device isn't active 2992 * -insync - clear Insync for a device with a slot assigned, 2993 * so that it gets rebuilt based on bitmap 2994 * write_error - sets WriteErrorSeen 2995 * -write_error - clears WriteErrorSeen 2996 * {,-}failfast - set/clear FailFast 2997 */ 2998 int err = -EINVAL; 2999 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 3000 md_error(rdev->mddev, rdev); 3001 if (test_bit(Faulty, &rdev->flags)) 3002 err = 0; 3003 else 3004 err = -EBUSY; 3005 } else if (cmd_match(buf, "remove")) { 3006 if (rdev->mddev->pers) { 3007 clear_bit(Blocked, &rdev->flags); 3008 remove_and_add_spares(rdev->mddev, rdev); 3009 } 3010 if (rdev->raid_disk >= 0) 3011 err = -EBUSY; 3012 else { 3013 struct mddev *mddev = rdev->mddev; 3014 err = 0; 3015 if (mddev_is_clustered(mddev)) 3016 err = md_cluster_ops->remove_disk(mddev, rdev); 3017 3018 if (err == 0) { 3019 md_kick_rdev_from_array(rdev); 3020 if (mddev->pers) { 3021 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3022 md_wakeup_thread(mddev->thread); 3023 } 3024 md_new_event(mddev); 3025 } 3026 } 3027 } else if (cmd_match(buf, "writemostly")) { 3028 set_bit(WriteMostly, &rdev->flags); 3029 mddev_create_serial_pool(rdev->mddev, rdev, false); 3030 err = 0; 3031 } else if (cmd_match(buf, "-writemostly")) { 3032 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3033 clear_bit(WriteMostly, &rdev->flags); 3034 err = 0; 3035 } else if (cmd_match(buf, "blocked")) { 3036 set_bit(Blocked, &rdev->flags); 3037 err = 0; 3038 } else if (cmd_match(buf, "-blocked")) { 3039 if (!test_bit(Faulty, &rdev->flags) && 3040 !test_bit(ExternalBbl, &rdev->flags) && 3041 rdev->badblocks.unacked_exist) { 3042 /* metadata handler doesn't understand badblocks, 3043 * so we need to fail the device 3044 */ 3045 md_error(rdev->mddev, rdev); 3046 } 3047 clear_bit(Blocked, &rdev->flags); 3048 clear_bit(BlockedBadBlocks, &rdev->flags); 3049 wake_up(&rdev->blocked_wait); 3050 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3051 md_wakeup_thread(rdev->mddev->thread); 3052 3053 err = 0; 3054 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3055 set_bit(In_sync, &rdev->flags); 3056 err = 0; 3057 } else if (cmd_match(buf, "failfast")) { 3058 set_bit(FailFast, &rdev->flags); 3059 err = 0; 3060 } else if (cmd_match(buf, "-failfast")) { 3061 clear_bit(FailFast, &rdev->flags); 3062 err = 0; 3063 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3064 !test_bit(Journal, &rdev->flags)) { 3065 if (rdev->mddev->pers == NULL) { 3066 clear_bit(In_sync, &rdev->flags); 3067 rdev->saved_raid_disk = rdev->raid_disk; 3068 rdev->raid_disk = -1; 3069 err = 0; 3070 } 3071 } else if (cmd_match(buf, "write_error")) { 3072 set_bit(WriteErrorSeen, &rdev->flags); 3073 err = 0; 3074 } else if (cmd_match(buf, "-write_error")) { 3075 clear_bit(WriteErrorSeen, &rdev->flags); 3076 err = 0; 3077 } else if (cmd_match(buf, "want_replacement")) { 3078 /* Any non-spare device that is not a replacement can 3079 * become want_replacement at any time, but we then need to 3080 * check if recovery is needed. 3081 */ 3082 if (rdev->raid_disk >= 0 && 3083 !test_bit(Journal, &rdev->flags) && 3084 !test_bit(Replacement, &rdev->flags)) 3085 set_bit(WantReplacement, &rdev->flags); 3086 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3087 md_wakeup_thread(rdev->mddev->thread); 3088 err = 0; 3089 } else if (cmd_match(buf, "-want_replacement")) { 3090 /* Clearing 'want_replacement' is always allowed. 3091 * Once replacements starts it is too late though. 3092 */ 3093 err = 0; 3094 clear_bit(WantReplacement, &rdev->flags); 3095 } else if (cmd_match(buf, "replacement")) { 3096 /* Can only set a device as a replacement when array has not 3097 * yet been started. Once running, replacement is automatic 3098 * from spares, or by assigning 'slot'. 3099 */ 3100 if (rdev->mddev->pers) 3101 err = -EBUSY; 3102 else { 3103 set_bit(Replacement, &rdev->flags); 3104 err = 0; 3105 } 3106 } else if (cmd_match(buf, "-replacement")) { 3107 /* Similarly, can only clear Replacement before start */ 3108 if (rdev->mddev->pers) 3109 err = -EBUSY; 3110 else { 3111 clear_bit(Replacement, &rdev->flags); 3112 err = 0; 3113 } 3114 } else if (cmd_match(buf, "re-add")) { 3115 if (!rdev->mddev->pers) 3116 err = -EINVAL; 3117 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3118 rdev->saved_raid_disk >= 0) { 3119 /* clear_bit is performed _after_ all the devices 3120 * have their local Faulty bit cleared. If any writes 3121 * happen in the meantime in the local node, they 3122 * will land in the local bitmap, which will be synced 3123 * by this node eventually 3124 */ 3125 if (!mddev_is_clustered(rdev->mddev) || 3126 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3127 clear_bit(Faulty, &rdev->flags); 3128 err = add_bound_rdev(rdev); 3129 } 3130 } else 3131 err = -EBUSY; 3132 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3133 set_bit(ExternalBbl, &rdev->flags); 3134 rdev->badblocks.shift = 0; 3135 err = 0; 3136 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3137 clear_bit(ExternalBbl, &rdev->flags); 3138 err = 0; 3139 } 3140 if (!err) 3141 sysfs_notify_dirent_safe(rdev->sysfs_state); 3142 return err ? err : len; 3143 } 3144 static struct rdev_sysfs_entry rdev_state = 3145 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3146 3147 static ssize_t 3148 errors_show(struct md_rdev *rdev, char *page) 3149 { 3150 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3151 } 3152 3153 static ssize_t 3154 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3155 { 3156 unsigned int n; 3157 int rv; 3158 3159 rv = kstrtouint(buf, 10, &n); 3160 if (rv < 0) 3161 return rv; 3162 atomic_set(&rdev->corrected_errors, n); 3163 return len; 3164 } 3165 static struct rdev_sysfs_entry rdev_errors = 3166 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3167 3168 static ssize_t 3169 slot_show(struct md_rdev *rdev, char *page) 3170 { 3171 if (test_bit(Journal, &rdev->flags)) 3172 return sprintf(page, "journal\n"); 3173 else if (rdev->raid_disk < 0) 3174 return sprintf(page, "none\n"); 3175 else 3176 return sprintf(page, "%d\n", rdev->raid_disk); 3177 } 3178 3179 static ssize_t 3180 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3181 { 3182 int slot; 3183 int err; 3184 3185 if (test_bit(Journal, &rdev->flags)) 3186 return -EBUSY; 3187 if (strncmp(buf, "none", 4)==0) 3188 slot = -1; 3189 else { 3190 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3191 if (err < 0) 3192 return err; 3193 } 3194 if (rdev->mddev->pers && slot == -1) { 3195 /* Setting 'slot' on an active array requires also 3196 * updating the 'rd%d' link, and communicating 3197 * with the personality with ->hot_*_disk. 3198 * For now we only support removing 3199 * failed/spare devices. This normally happens automatically, 3200 * but not when the metadata is externally managed. 3201 */ 3202 if (rdev->raid_disk == -1) 3203 return -EEXIST; 3204 /* personality does all needed checks */ 3205 if (rdev->mddev->pers->hot_remove_disk == NULL) 3206 return -EINVAL; 3207 clear_bit(Blocked, &rdev->flags); 3208 remove_and_add_spares(rdev->mddev, rdev); 3209 if (rdev->raid_disk >= 0) 3210 return -EBUSY; 3211 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3212 md_wakeup_thread(rdev->mddev->thread); 3213 } else if (rdev->mddev->pers) { 3214 /* Activating a spare .. or possibly reactivating 3215 * if we ever get bitmaps working here. 3216 */ 3217 int err; 3218 3219 if (rdev->raid_disk != -1) 3220 return -EBUSY; 3221 3222 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3223 return -EBUSY; 3224 3225 if (rdev->mddev->pers->hot_add_disk == NULL) 3226 return -EINVAL; 3227 3228 if (slot >= rdev->mddev->raid_disks && 3229 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3230 return -ENOSPC; 3231 3232 rdev->raid_disk = slot; 3233 if (test_bit(In_sync, &rdev->flags)) 3234 rdev->saved_raid_disk = slot; 3235 else 3236 rdev->saved_raid_disk = -1; 3237 clear_bit(In_sync, &rdev->flags); 3238 clear_bit(Bitmap_sync, &rdev->flags); 3239 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3240 if (err) { 3241 rdev->raid_disk = -1; 3242 return err; 3243 } else 3244 sysfs_notify_dirent_safe(rdev->sysfs_state); 3245 /* failure here is OK */; 3246 sysfs_link_rdev(rdev->mddev, rdev); 3247 /* don't wakeup anyone, leave that to userspace. */ 3248 } else { 3249 if (slot >= rdev->mddev->raid_disks && 3250 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3251 return -ENOSPC; 3252 rdev->raid_disk = slot; 3253 /* assume it is working */ 3254 clear_bit(Faulty, &rdev->flags); 3255 clear_bit(WriteMostly, &rdev->flags); 3256 set_bit(In_sync, &rdev->flags); 3257 sysfs_notify_dirent_safe(rdev->sysfs_state); 3258 } 3259 return len; 3260 } 3261 3262 static struct rdev_sysfs_entry rdev_slot = 3263 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3264 3265 static ssize_t 3266 offset_show(struct md_rdev *rdev, char *page) 3267 { 3268 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3269 } 3270 3271 static ssize_t 3272 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3273 { 3274 unsigned long long offset; 3275 if (kstrtoull(buf, 10, &offset) < 0) 3276 return -EINVAL; 3277 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3278 return -EBUSY; 3279 if (rdev->sectors && rdev->mddev->external) 3280 /* Must set offset before size, so overlap checks 3281 * can be sane */ 3282 return -EBUSY; 3283 rdev->data_offset = offset; 3284 rdev->new_data_offset = offset; 3285 return len; 3286 } 3287 3288 static struct rdev_sysfs_entry rdev_offset = 3289 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3290 3291 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3292 { 3293 return sprintf(page, "%llu\n", 3294 (unsigned long long)rdev->new_data_offset); 3295 } 3296 3297 static ssize_t new_offset_store(struct md_rdev *rdev, 3298 const char *buf, size_t len) 3299 { 3300 unsigned long long new_offset; 3301 struct mddev *mddev = rdev->mddev; 3302 3303 if (kstrtoull(buf, 10, &new_offset) < 0) 3304 return -EINVAL; 3305 3306 if (mddev->sync_thread || 3307 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3308 return -EBUSY; 3309 if (new_offset == rdev->data_offset) 3310 /* reset is always permitted */ 3311 ; 3312 else if (new_offset > rdev->data_offset) { 3313 /* must not push array size beyond rdev_sectors */ 3314 if (new_offset - rdev->data_offset 3315 + mddev->dev_sectors > rdev->sectors) 3316 return -E2BIG; 3317 } 3318 /* Metadata worries about other space details. */ 3319 3320 /* decreasing the offset is inconsistent with a backwards 3321 * reshape. 3322 */ 3323 if (new_offset < rdev->data_offset && 3324 mddev->reshape_backwards) 3325 return -EINVAL; 3326 /* Increasing offset is inconsistent with forwards 3327 * reshape. reshape_direction should be set to 3328 * 'backwards' first. 3329 */ 3330 if (new_offset > rdev->data_offset && 3331 !mddev->reshape_backwards) 3332 return -EINVAL; 3333 3334 if (mddev->pers && mddev->persistent && 3335 !super_types[mddev->major_version] 3336 .allow_new_offset(rdev, new_offset)) 3337 return -E2BIG; 3338 rdev->new_data_offset = new_offset; 3339 if (new_offset > rdev->data_offset) 3340 mddev->reshape_backwards = 1; 3341 else if (new_offset < rdev->data_offset) 3342 mddev->reshape_backwards = 0; 3343 3344 return len; 3345 } 3346 static struct rdev_sysfs_entry rdev_new_offset = 3347 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3348 3349 static ssize_t 3350 rdev_size_show(struct md_rdev *rdev, char *page) 3351 { 3352 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3353 } 3354 3355 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3356 { 3357 /* check if two start/length pairs overlap */ 3358 if (s1+l1 <= s2) 3359 return 0; 3360 if (s2+l2 <= s1) 3361 return 0; 3362 return 1; 3363 } 3364 3365 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3366 { 3367 unsigned long long blocks; 3368 sector_t new; 3369 3370 if (kstrtoull(buf, 10, &blocks) < 0) 3371 return -EINVAL; 3372 3373 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3374 return -EINVAL; /* sector conversion overflow */ 3375 3376 new = blocks * 2; 3377 if (new != blocks * 2) 3378 return -EINVAL; /* unsigned long long to sector_t overflow */ 3379 3380 *sectors = new; 3381 return 0; 3382 } 3383 3384 static ssize_t 3385 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3386 { 3387 struct mddev *my_mddev = rdev->mddev; 3388 sector_t oldsectors = rdev->sectors; 3389 sector_t sectors; 3390 3391 if (test_bit(Journal, &rdev->flags)) 3392 return -EBUSY; 3393 if (strict_blocks_to_sectors(buf, §ors) < 0) 3394 return -EINVAL; 3395 if (rdev->data_offset != rdev->new_data_offset) 3396 return -EINVAL; /* too confusing */ 3397 if (my_mddev->pers && rdev->raid_disk >= 0) { 3398 if (my_mddev->persistent) { 3399 sectors = super_types[my_mddev->major_version]. 3400 rdev_size_change(rdev, sectors); 3401 if (!sectors) 3402 return -EBUSY; 3403 } else if (!sectors) 3404 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3405 rdev->data_offset; 3406 if (!my_mddev->pers->resize) 3407 /* Cannot change size for RAID0 or Linear etc */ 3408 return -EINVAL; 3409 } 3410 if (sectors < my_mddev->dev_sectors) 3411 return -EINVAL; /* component must fit device */ 3412 3413 rdev->sectors = sectors; 3414 if (sectors > oldsectors && my_mddev->external) { 3415 /* Need to check that all other rdevs with the same 3416 * ->bdev do not overlap. 'rcu' is sufficient to walk 3417 * the rdev lists safely. 3418 * This check does not provide a hard guarantee, it 3419 * just helps avoid dangerous mistakes. 3420 */ 3421 struct mddev *mddev; 3422 int overlap = 0; 3423 struct list_head *tmp; 3424 3425 rcu_read_lock(); 3426 for_each_mddev(mddev, tmp) { 3427 struct md_rdev *rdev2; 3428 3429 rdev_for_each(rdev2, mddev) 3430 if (rdev->bdev == rdev2->bdev && 3431 rdev != rdev2 && 3432 overlaps(rdev->data_offset, rdev->sectors, 3433 rdev2->data_offset, 3434 rdev2->sectors)) { 3435 overlap = 1; 3436 break; 3437 } 3438 if (overlap) { 3439 mddev_put(mddev); 3440 break; 3441 } 3442 } 3443 rcu_read_unlock(); 3444 if (overlap) { 3445 /* Someone else could have slipped in a size 3446 * change here, but doing so is just silly. 3447 * We put oldsectors back because we *know* it is 3448 * safe, and trust userspace not to race with 3449 * itself 3450 */ 3451 rdev->sectors = oldsectors; 3452 return -EBUSY; 3453 } 3454 } 3455 return len; 3456 } 3457 3458 static struct rdev_sysfs_entry rdev_size = 3459 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3460 3461 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3462 { 3463 unsigned long long recovery_start = rdev->recovery_offset; 3464 3465 if (test_bit(In_sync, &rdev->flags) || 3466 recovery_start == MaxSector) 3467 return sprintf(page, "none\n"); 3468 3469 return sprintf(page, "%llu\n", recovery_start); 3470 } 3471 3472 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3473 { 3474 unsigned long long recovery_start; 3475 3476 if (cmd_match(buf, "none")) 3477 recovery_start = MaxSector; 3478 else if (kstrtoull(buf, 10, &recovery_start)) 3479 return -EINVAL; 3480 3481 if (rdev->mddev->pers && 3482 rdev->raid_disk >= 0) 3483 return -EBUSY; 3484 3485 rdev->recovery_offset = recovery_start; 3486 if (recovery_start == MaxSector) 3487 set_bit(In_sync, &rdev->flags); 3488 else 3489 clear_bit(In_sync, &rdev->flags); 3490 return len; 3491 } 3492 3493 static struct rdev_sysfs_entry rdev_recovery_start = 3494 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3495 3496 /* sysfs access to bad-blocks list. 3497 * We present two files. 3498 * 'bad-blocks' lists sector numbers and lengths of ranges that 3499 * are recorded as bad. The list is truncated to fit within 3500 * the one-page limit of sysfs. 3501 * Writing "sector length" to this file adds an acknowledged 3502 * bad block list. 3503 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3504 * been acknowledged. Writing to this file adds bad blocks 3505 * without acknowledging them. This is largely for testing. 3506 */ 3507 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3508 { 3509 return badblocks_show(&rdev->badblocks, page, 0); 3510 } 3511 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3512 { 3513 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3514 /* Maybe that ack was all we needed */ 3515 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3516 wake_up(&rdev->blocked_wait); 3517 return rv; 3518 } 3519 static struct rdev_sysfs_entry rdev_bad_blocks = 3520 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3521 3522 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3523 { 3524 return badblocks_show(&rdev->badblocks, page, 1); 3525 } 3526 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3527 { 3528 return badblocks_store(&rdev->badblocks, page, len, 1); 3529 } 3530 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3531 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3532 3533 static ssize_t 3534 ppl_sector_show(struct md_rdev *rdev, char *page) 3535 { 3536 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3537 } 3538 3539 static ssize_t 3540 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3541 { 3542 unsigned long long sector; 3543 3544 if (kstrtoull(buf, 10, §or) < 0) 3545 return -EINVAL; 3546 if (sector != (sector_t)sector) 3547 return -EINVAL; 3548 3549 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3550 rdev->raid_disk >= 0) 3551 return -EBUSY; 3552 3553 if (rdev->mddev->persistent) { 3554 if (rdev->mddev->major_version == 0) 3555 return -EINVAL; 3556 if ((sector > rdev->sb_start && 3557 sector - rdev->sb_start > S16_MAX) || 3558 (sector < rdev->sb_start && 3559 rdev->sb_start - sector > -S16_MIN)) 3560 return -EINVAL; 3561 rdev->ppl.offset = sector - rdev->sb_start; 3562 } else if (!rdev->mddev->external) { 3563 return -EBUSY; 3564 } 3565 rdev->ppl.sector = sector; 3566 return len; 3567 } 3568 3569 static struct rdev_sysfs_entry rdev_ppl_sector = 3570 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3571 3572 static ssize_t 3573 ppl_size_show(struct md_rdev *rdev, char *page) 3574 { 3575 return sprintf(page, "%u\n", rdev->ppl.size); 3576 } 3577 3578 static ssize_t 3579 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3580 { 3581 unsigned int size; 3582 3583 if (kstrtouint(buf, 10, &size) < 0) 3584 return -EINVAL; 3585 3586 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3587 rdev->raid_disk >= 0) 3588 return -EBUSY; 3589 3590 if (rdev->mddev->persistent) { 3591 if (rdev->mddev->major_version == 0) 3592 return -EINVAL; 3593 if (size > U16_MAX) 3594 return -EINVAL; 3595 } else if (!rdev->mddev->external) { 3596 return -EBUSY; 3597 } 3598 rdev->ppl.size = size; 3599 return len; 3600 } 3601 3602 static struct rdev_sysfs_entry rdev_ppl_size = 3603 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3604 3605 static struct attribute *rdev_default_attrs[] = { 3606 &rdev_state.attr, 3607 &rdev_errors.attr, 3608 &rdev_slot.attr, 3609 &rdev_offset.attr, 3610 &rdev_new_offset.attr, 3611 &rdev_size.attr, 3612 &rdev_recovery_start.attr, 3613 &rdev_bad_blocks.attr, 3614 &rdev_unack_bad_blocks.attr, 3615 &rdev_ppl_sector.attr, 3616 &rdev_ppl_size.attr, 3617 NULL, 3618 }; 3619 static ssize_t 3620 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3621 { 3622 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3623 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3624 3625 if (!entry->show) 3626 return -EIO; 3627 if (!rdev->mddev) 3628 return -ENODEV; 3629 return entry->show(rdev, page); 3630 } 3631 3632 static ssize_t 3633 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3634 const char *page, size_t length) 3635 { 3636 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3637 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3638 ssize_t rv; 3639 struct mddev *mddev = rdev->mddev; 3640 3641 if (!entry->store) 3642 return -EIO; 3643 if (!capable(CAP_SYS_ADMIN)) 3644 return -EACCES; 3645 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3646 if (!rv) { 3647 if (rdev->mddev == NULL) 3648 rv = -ENODEV; 3649 else 3650 rv = entry->store(rdev, page, length); 3651 mddev_unlock(mddev); 3652 } 3653 return rv; 3654 } 3655 3656 static void rdev_free(struct kobject *ko) 3657 { 3658 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3659 kfree(rdev); 3660 } 3661 static const struct sysfs_ops rdev_sysfs_ops = { 3662 .show = rdev_attr_show, 3663 .store = rdev_attr_store, 3664 }; 3665 static struct kobj_type rdev_ktype = { 3666 .release = rdev_free, 3667 .sysfs_ops = &rdev_sysfs_ops, 3668 .default_attrs = rdev_default_attrs, 3669 }; 3670 3671 int md_rdev_init(struct md_rdev *rdev) 3672 { 3673 rdev->desc_nr = -1; 3674 rdev->saved_raid_disk = -1; 3675 rdev->raid_disk = -1; 3676 rdev->flags = 0; 3677 rdev->data_offset = 0; 3678 rdev->new_data_offset = 0; 3679 rdev->sb_events = 0; 3680 rdev->last_read_error = 0; 3681 rdev->sb_loaded = 0; 3682 rdev->bb_page = NULL; 3683 atomic_set(&rdev->nr_pending, 0); 3684 atomic_set(&rdev->read_errors, 0); 3685 atomic_set(&rdev->corrected_errors, 0); 3686 3687 INIT_LIST_HEAD(&rdev->same_set); 3688 init_waitqueue_head(&rdev->blocked_wait); 3689 3690 /* Add space to store bad block list. 3691 * This reserves the space even on arrays where it cannot 3692 * be used - I wonder if that matters 3693 */ 3694 return badblocks_init(&rdev->badblocks, 0); 3695 } 3696 EXPORT_SYMBOL_GPL(md_rdev_init); 3697 /* 3698 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3699 * 3700 * mark the device faulty if: 3701 * 3702 * - the device is nonexistent (zero size) 3703 * - the device has no valid superblock 3704 * 3705 * a faulty rdev _never_ has rdev->sb set. 3706 */ 3707 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3708 { 3709 char b[BDEVNAME_SIZE]; 3710 int err; 3711 struct md_rdev *rdev; 3712 sector_t size; 3713 3714 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3715 if (!rdev) 3716 return ERR_PTR(-ENOMEM); 3717 3718 err = md_rdev_init(rdev); 3719 if (err) 3720 goto abort_free; 3721 err = alloc_disk_sb(rdev); 3722 if (err) 3723 goto abort_free; 3724 3725 err = lock_rdev(rdev, newdev, super_format == -2); 3726 if (err) 3727 goto abort_free; 3728 3729 kobject_init(&rdev->kobj, &rdev_ktype); 3730 3731 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3732 if (!size) { 3733 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3734 bdevname(rdev->bdev,b)); 3735 err = -EINVAL; 3736 goto abort_free; 3737 } 3738 3739 if (super_format >= 0) { 3740 err = super_types[super_format]. 3741 load_super(rdev, NULL, super_minor); 3742 if (err == -EINVAL) { 3743 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3744 bdevname(rdev->bdev,b), 3745 super_format, super_minor); 3746 goto abort_free; 3747 } 3748 if (err < 0) { 3749 pr_warn("md: could not read %s's sb, not importing!\n", 3750 bdevname(rdev->bdev,b)); 3751 goto abort_free; 3752 } 3753 } 3754 3755 return rdev; 3756 3757 abort_free: 3758 if (rdev->bdev) 3759 unlock_rdev(rdev); 3760 md_rdev_clear(rdev); 3761 kfree(rdev); 3762 return ERR_PTR(err); 3763 } 3764 3765 /* 3766 * Check a full RAID array for plausibility 3767 */ 3768 3769 static int analyze_sbs(struct mddev *mddev) 3770 { 3771 int i; 3772 struct md_rdev *rdev, *freshest, *tmp; 3773 char b[BDEVNAME_SIZE]; 3774 3775 freshest = NULL; 3776 rdev_for_each_safe(rdev, tmp, mddev) 3777 switch (super_types[mddev->major_version]. 3778 load_super(rdev, freshest, mddev->minor_version)) { 3779 case 1: 3780 freshest = rdev; 3781 break; 3782 case 0: 3783 break; 3784 default: 3785 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3786 bdevname(rdev->bdev,b)); 3787 md_kick_rdev_from_array(rdev); 3788 } 3789 3790 /* Cannot find a valid fresh disk */ 3791 if (!freshest) { 3792 pr_warn("md: cannot find a valid disk\n"); 3793 return -EINVAL; 3794 } 3795 3796 super_types[mddev->major_version]. 3797 validate_super(mddev, freshest); 3798 3799 i = 0; 3800 rdev_for_each_safe(rdev, tmp, mddev) { 3801 if (mddev->max_disks && 3802 (rdev->desc_nr >= mddev->max_disks || 3803 i > mddev->max_disks)) { 3804 pr_warn("md: %s: %s: only %d devices permitted\n", 3805 mdname(mddev), bdevname(rdev->bdev, b), 3806 mddev->max_disks); 3807 md_kick_rdev_from_array(rdev); 3808 continue; 3809 } 3810 if (rdev != freshest) { 3811 if (super_types[mddev->major_version]. 3812 validate_super(mddev, rdev)) { 3813 pr_warn("md: kicking non-fresh %s from array!\n", 3814 bdevname(rdev->bdev,b)); 3815 md_kick_rdev_from_array(rdev); 3816 continue; 3817 } 3818 } 3819 if (mddev->level == LEVEL_MULTIPATH) { 3820 rdev->desc_nr = i++; 3821 rdev->raid_disk = rdev->desc_nr; 3822 set_bit(In_sync, &rdev->flags); 3823 } else if (rdev->raid_disk >= 3824 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3825 !test_bit(Journal, &rdev->flags)) { 3826 rdev->raid_disk = -1; 3827 clear_bit(In_sync, &rdev->flags); 3828 } 3829 } 3830 3831 return 0; 3832 } 3833 3834 /* Read a fixed-point number. 3835 * Numbers in sysfs attributes should be in "standard" units where 3836 * possible, so time should be in seconds. 3837 * However we internally use a a much smaller unit such as 3838 * milliseconds or jiffies. 3839 * This function takes a decimal number with a possible fractional 3840 * component, and produces an integer which is the result of 3841 * multiplying that number by 10^'scale'. 3842 * all without any floating-point arithmetic. 3843 */ 3844 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3845 { 3846 unsigned long result = 0; 3847 long decimals = -1; 3848 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3849 if (*cp == '.') 3850 decimals = 0; 3851 else if (decimals < scale) { 3852 unsigned int value; 3853 value = *cp - '0'; 3854 result = result * 10 + value; 3855 if (decimals >= 0) 3856 decimals++; 3857 } 3858 cp++; 3859 } 3860 if (*cp == '\n') 3861 cp++; 3862 if (*cp) 3863 return -EINVAL; 3864 if (decimals < 0) 3865 decimals = 0; 3866 *res = result * int_pow(10, scale - decimals); 3867 return 0; 3868 } 3869 3870 static ssize_t 3871 safe_delay_show(struct mddev *mddev, char *page) 3872 { 3873 int msec = (mddev->safemode_delay*1000)/HZ; 3874 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3875 } 3876 static ssize_t 3877 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3878 { 3879 unsigned long msec; 3880 3881 if (mddev_is_clustered(mddev)) { 3882 pr_warn("md: Safemode is disabled for clustered mode\n"); 3883 return -EINVAL; 3884 } 3885 3886 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3887 return -EINVAL; 3888 if (msec == 0) 3889 mddev->safemode_delay = 0; 3890 else { 3891 unsigned long old_delay = mddev->safemode_delay; 3892 unsigned long new_delay = (msec*HZ)/1000; 3893 3894 if (new_delay == 0) 3895 new_delay = 1; 3896 mddev->safemode_delay = new_delay; 3897 if (new_delay < old_delay || old_delay == 0) 3898 mod_timer(&mddev->safemode_timer, jiffies+1); 3899 } 3900 return len; 3901 } 3902 static struct md_sysfs_entry md_safe_delay = 3903 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3904 3905 static ssize_t 3906 level_show(struct mddev *mddev, char *page) 3907 { 3908 struct md_personality *p; 3909 int ret; 3910 spin_lock(&mddev->lock); 3911 p = mddev->pers; 3912 if (p) 3913 ret = sprintf(page, "%s\n", p->name); 3914 else if (mddev->clevel[0]) 3915 ret = sprintf(page, "%s\n", mddev->clevel); 3916 else if (mddev->level != LEVEL_NONE) 3917 ret = sprintf(page, "%d\n", mddev->level); 3918 else 3919 ret = 0; 3920 spin_unlock(&mddev->lock); 3921 return ret; 3922 } 3923 3924 static ssize_t 3925 level_store(struct mddev *mddev, const char *buf, size_t len) 3926 { 3927 char clevel[16]; 3928 ssize_t rv; 3929 size_t slen = len; 3930 struct md_personality *pers, *oldpers; 3931 long level; 3932 void *priv, *oldpriv; 3933 struct md_rdev *rdev; 3934 3935 if (slen == 0 || slen >= sizeof(clevel)) 3936 return -EINVAL; 3937 3938 rv = mddev_lock(mddev); 3939 if (rv) 3940 return rv; 3941 3942 if (mddev->pers == NULL) { 3943 strncpy(mddev->clevel, buf, slen); 3944 if (mddev->clevel[slen-1] == '\n') 3945 slen--; 3946 mddev->clevel[slen] = 0; 3947 mddev->level = LEVEL_NONE; 3948 rv = len; 3949 goto out_unlock; 3950 } 3951 rv = -EROFS; 3952 if (mddev->ro) 3953 goto out_unlock; 3954 3955 /* request to change the personality. Need to ensure: 3956 * - array is not engaged in resync/recovery/reshape 3957 * - old personality can be suspended 3958 * - new personality will access other array. 3959 */ 3960 3961 rv = -EBUSY; 3962 if (mddev->sync_thread || 3963 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3964 mddev->reshape_position != MaxSector || 3965 mddev->sysfs_active) 3966 goto out_unlock; 3967 3968 rv = -EINVAL; 3969 if (!mddev->pers->quiesce) { 3970 pr_warn("md: %s: %s does not support online personality change\n", 3971 mdname(mddev), mddev->pers->name); 3972 goto out_unlock; 3973 } 3974 3975 /* Now find the new personality */ 3976 strncpy(clevel, buf, slen); 3977 if (clevel[slen-1] == '\n') 3978 slen--; 3979 clevel[slen] = 0; 3980 if (kstrtol(clevel, 10, &level)) 3981 level = LEVEL_NONE; 3982 3983 if (request_module("md-%s", clevel) != 0) 3984 request_module("md-level-%s", clevel); 3985 spin_lock(&pers_lock); 3986 pers = find_pers(level, clevel); 3987 if (!pers || !try_module_get(pers->owner)) { 3988 spin_unlock(&pers_lock); 3989 pr_warn("md: personality %s not loaded\n", clevel); 3990 rv = -EINVAL; 3991 goto out_unlock; 3992 } 3993 spin_unlock(&pers_lock); 3994 3995 if (pers == mddev->pers) { 3996 /* Nothing to do! */ 3997 module_put(pers->owner); 3998 rv = len; 3999 goto out_unlock; 4000 } 4001 if (!pers->takeover) { 4002 module_put(pers->owner); 4003 pr_warn("md: %s: %s does not support personality takeover\n", 4004 mdname(mddev), clevel); 4005 rv = -EINVAL; 4006 goto out_unlock; 4007 } 4008 4009 rdev_for_each(rdev, mddev) 4010 rdev->new_raid_disk = rdev->raid_disk; 4011 4012 /* ->takeover must set new_* and/or delta_disks 4013 * if it succeeds, and may set them when it fails. 4014 */ 4015 priv = pers->takeover(mddev); 4016 if (IS_ERR(priv)) { 4017 mddev->new_level = mddev->level; 4018 mddev->new_layout = mddev->layout; 4019 mddev->new_chunk_sectors = mddev->chunk_sectors; 4020 mddev->raid_disks -= mddev->delta_disks; 4021 mddev->delta_disks = 0; 4022 mddev->reshape_backwards = 0; 4023 module_put(pers->owner); 4024 pr_warn("md: %s: %s would not accept array\n", 4025 mdname(mddev), clevel); 4026 rv = PTR_ERR(priv); 4027 goto out_unlock; 4028 } 4029 4030 /* Looks like we have a winner */ 4031 mddev_suspend(mddev); 4032 mddev_detach(mddev); 4033 4034 spin_lock(&mddev->lock); 4035 oldpers = mddev->pers; 4036 oldpriv = mddev->private; 4037 mddev->pers = pers; 4038 mddev->private = priv; 4039 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4040 mddev->level = mddev->new_level; 4041 mddev->layout = mddev->new_layout; 4042 mddev->chunk_sectors = mddev->new_chunk_sectors; 4043 mddev->delta_disks = 0; 4044 mddev->reshape_backwards = 0; 4045 mddev->degraded = 0; 4046 spin_unlock(&mddev->lock); 4047 4048 if (oldpers->sync_request == NULL && 4049 mddev->external) { 4050 /* We are converting from a no-redundancy array 4051 * to a redundancy array and metadata is managed 4052 * externally so we need to be sure that writes 4053 * won't block due to a need to transition 4054 * clean->dirty 4055 * until external management is started. 4056 */ 4057 mddev->in_sync = 0; 4058 mddev->safemode_delay = 0; 4059 mddev->safemode = 0; 4060 } 4061 4062 oldpers->free(mddev, oldpriv); 4063 4064 if (oldpers->sync_request == NULL && 4065 pers->sync_request != NULL) { 4066 /* need to add the md_redundancy_group */ 4067 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4068 pr_warn("md: cannot register extra attributes for %s\n", 4069 mdname(mddev)); 4070 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4071 } 4072 if (oldpers->sync_request != NULL && 4073 pers->sync_request == NULL) { 4074 /* need to remove the md_redundancy_group */ 4075 if (mddev->to_remove == NULL) 4076 mddev->to_remove = &md_redundancy_group; 4077 } 4078 4079 module_put(oldpers->owner); 4080 4081 rdev_for_each(rdev, mddev) { 4082 if (rdev->raid_disk < 0) 4083 continue; 4084 if (rdev->new_raid_disk >= mddev->raid_disks) 4085 rdev->new_raid_disk = -1; 4086 if (rdev->new_raid_disk == rdev->raid_disk) 4087 continue; 4088 sysfs_unlink_rdev(mddev, rdev); 4089 } 4090 rdev_for_each(rdev, mddev) { 4091 if (rdev->raid_disk < 0) 4092 continue; 4093 if (rdev->new_raid_disk == rdev->raid_disk) 4094 continue; 4095 rdev->raid_disk = rdev->new_raid_disk; 4096 if (rdev->raid_disk < 0) 4097 clear_bit(In_sync, &rdev->flags); 4098 else { 4099 if (sysfs_link_rdev(mddev, rdev)) 4100 pr_warn("md: cannot register rd%d for %s after level change\n", 4101 rdev->raid_disk, mdname(mddev)); 4102 } 4103 } 4104 4105 if (pers->sync_request == NULL) { 4106 /* this is now an array without redundancy, so 4107 * it must always be in_sync 4108 */ 4109 mddev->in_sync = 1; 4110 del_timer_sync(&mddev->safemode_timer); 4111 } 4112 blk_set_stacking_limits(&mddev->queue->limits); 4113 pers->run(mddev); 4114 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4115 mddev_resume(mddev); 4116 if (!mddev->thread) 4117 md_update_sb(mddev, 1); 4118 sysfs_notify_dirent_safe(mddev->sysfs_level); 4119 md_new_event(mddev); 4120 rv = len; 4121 out_unlock: 4122 mddev_unlock(mddev); 4123 return rv; 4124 } 4125 4126 static struct md_sysfs_entry md_level = 4127 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4128 4129 static ssize_t 4130 layout_show(struct mddev *mddev, char *page) 4131 { 4132 /* just a number, not meaningful for all levels */ 4133 if (mddev->reshape_position != MaxSector && 4134 mddev->layout != mddev->new_layout) 4135 return sprintf(page, "%d (%d)\n", 4136 mddev->new_layout, mddev->layout); 4137 return sprintf(page, "%d\n", mddev->layout); 4138 } 4139 4140 static ssize_t 4141 layout_store(struct mddev *mddev, const char *buf, size_t len) 4142 { 4143 unsigned int n; 4144 int err; 4145 4146 err = kstrtouint(buf, 10, &n); 4147 if (err < 0) 4148 return err; 4149 err = mddev_lock(mddev); 4150 if (err) 4151 return err; 4152 4153 if (mddev->pers) { 4154 if (mddev->pers->check_reshape == NULL) 4155 err = -EBUSY; 4156 else if (mddev->ro) 4157 err = -EROFS; 4158 else { 4159 mddev->new_layout = n; 4160 err = mddev->pers->check_reshape(mddev); 4161 if (err) 4162 mddev->new_layout = mddev->layout; 4163 } 4164 } else { 4165 mddev->new_layout = n; 4166 if (mddev->reshape_position == MaxSector) 4167 mddev->layout = n; 4168 } 4169 mddev_unlock(mddev); 4170 return err ?: len; 4171 } 4172 static struct md_sysfs_entry md_layout = 4173 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4174 4175 static ssize_t 4176 raid_disks_show(struct mddev *mddev, char *page) 4177 { 4178 if (mddev->raid_disks == 0) 4179 return 0; 4180 if (mddev->reshape_position != MaxSector && 4181 mddev->delta_disks != 0) 4182 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4183 mddev->raid_disks - mddev->delta_disks); 4184 return sprintf(page, "%d\n", mddev->raid_disks); 4185 } 4186 4187 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4188 4189 static ssize_t 4190 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4191 { 4192 unsigned int n; 4193 int err; 4194 4195 err = kstrtouint(buf, 10, &n); 4196 if (err < 0) 4197 return err; 4198 4199 err = mddev_lock(mddev); 4200 if (err) 4201 return err; 4202 if (mddev->pers) 4203 err = update_raid_disks(mddev, n); 4204 else if (mddev->reshape_position != MaxSector) { 4205 struct md_rdev *rdev; 4206 int olddisks = mddev->raid_disks - mddev->delta_disks; 4207 4208 err = -EINVAL; 4209 rdev_for_each(rdev, mddev) { 4210 if (olddisks < n && 4211 rdev->data_offset < rdev->new_data_offset) 4212 goto out_unlock; 4213 if (olddisks > n && 4214 rdev->data_offset > rdev->new_data_offset) 4215 goto out_unlock; 4216 } 4217 err = 0; 4218 mddev->delta_disks = n - olddisks; 4219 mddev->raid_disks = n; 4220 mddev->reshape_backwards = (mddev->delta_disks < 0); 4221 } else 4222 mddev->raid_disks = n; 4223 out_unlock: 4224 mddev_unlock(mddev); 4225 return err ? err : len; 4226 } 4227 static struct md_sysfs_entry md_raid_disks = 4228 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4229 4230 static ssize_t 4231 uuid_show(struct mddev *mddev, char *page) 4232 { 4233 return sprintf(page, "%pU\n", mddev->uuid); 4234 } 4235 static struct md_sysfs_entry md_uuid = 4236 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4237 4238 static ssize_t 4239 chunk_size_show(struct mddev *mddev, char *page) 4240 { 4241 if (mddev->reshape_position != MaxSector && 4242 mddev->chunk_sectors != mddev->new_chunk_sectors) 4243 return sprintf(page, "%d (%d)\n", 4244 mddev->new_chunk_sectors << 9, 4245 mddev->chunk_sectors << 9); 4246 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4247 } 4248 4249 static ssize_t 4250 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4251 { 4252 unsigned long n; 4253 int err; 4254 4255 err = kstrtoul(buf, 10, &n); 4256 if (err < 0) 4257 return err; 4258 4259 err = mddev_lock(mddev); 4260 if (err) 4261 return err; 4262 if (mddev->pers) { 4263 if (mddev->pers->check_reshape == NULL) 4264 err = -EBUSY; 4265 else if (mddev->ro) 4266 err = -EROFS; 4267 else { 4268 mddev->new_chunk_sectors = n >> 9; 4269 err = mddev->pers->check_reshape(mddev); 4270 if (err) 4271 mddev->new_chunk_sectors = mddev->chunk_sectors; 4272 } 4273 } else { 4274 mddev->new_chunk_sectors = n >> 9; 4275 if (mddev->reshape_position == MaxSector) 4276 mddev->chunk_sectors = n >> 9; 4277 } 4278 mddev_unlock(mddev); 4279 return err ?: len; 4280 } 4281 static struct md_sysfs_entry md_chunk_size = 4282 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4283 4284 static ssize_t 4285 resync_start_show(struct mddev *mddev, char *page) 4286 { 4287 if (mddev->recovery_cp == MaxSector) 4288 return sprintf(page, "none\n"); 4289 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4290 } 4291 4292 static ssize_t 4293 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4294 { 4295 unsigned long long n; 4296 int err; 4297 4298 if (cmd_match(buf, "none")) 4299 n = MaxSector; 4300 else { 4301 err = kstrtoull(buf, 10, &n); 4302 if (err < 0) 4303 return err; 4304 if (n != (sector_t)n) 4305 return -EINVAL; 4306 } 4307 4308 err = mddev_lock(mddev); 4309 if (err) 4310 return err; 4311 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4312 err = -EBUSY; 4313 4314 if (!err) { 4315 mddev->recovery_cp = n; 4316 if (mddev->pers) 4317 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4318 } 4319 mddev_unlock(mddev); 4320 return err ?: len; 4321 } 4322 static struct md_sysfs_entry md_resync_start = 4323 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4324 resync_start_show, resync_start_store); 4325 4326 /* 4327 * The array state can be: 4328 * 4329 * clear 4330 * No devices, no size, no level 4331 * Equivalent to STOP_ARRAY ioctl 4332 * inactive 4333 * May have some settings, but array is not active 4334 * all IO results in error 4335 * When written, doesn't tear down array, but just stops it 4336 * suspended (not supported yet) 4337 * All IO requests will block. The array can be reconfigured. 4338 * Writing this, if accepted, will block until array is quiescent 4339 * readonly 4340 * no resync can happen. no superblocks get written. 4341 * write requests fail 4342 * read-auto 4343 * like readonly, but behaves like 'clean' on a write request. 4344 * 4345 * clean - no pending writes, but otherwise active. 4346 * When written to inactive array, starts without resync 4347 * If a write request arrives then 4348 * if metadata is known, mark 'dirty' and switch to 'active'. 4349 * if not known, block and switch to write-pending 4350 * If written to an active array that has pending writes, then fails. 4351 * active 4352 * fully active: IO and resync can be happening. 4353 * When written to inactive array, starts with resync 4354 * 4355 * write-pending 4356 * clean, but writes are blocked waiting for 'active' to be written. 4357 * 4358 * active-idle 4359 * like active, but no writes have been seen for a while (100msec). 4360 * 4361 * broken 4362 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4363 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4364 * when a member is gone, so this state will at least alert the 4365 * user that something is wrong. 4366 */ 4367 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4368 write_pending, active_idle, broken, bad_word}; 4369 static char *array_states[] = { 4370 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4371 "write-pending", "active-idle", "broken", NULL }; 4372 4373 static int match_word(const char *word, char **list) 4374 { 4375 int n; 4376 for (n=0; list[n]; n++) 4377 if (cmd_match(word, list[n])) 4378 break; 4379 return n; 4380 } 4381 4382 static ssize_t 4383 array_state_show(struct mddev *mddev, char *page) 4384 { 4385 enum array_state st = inactive; 4386 4387 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4388 switch(mddev->ro) { 4389 case 1: 4390 st = readonly; 4391 break; 4392 case 2: 4393 st = read_auto; 4394 break; 4395 case 0: 4396 spin_lock(&mddev->lock); 4397 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4398 st = write_pending; 4399 else if (mddev->in_sync) 4400 st = clean; 4401 else if (mddev->safemode) 4402 st = active_idle; 4403 else 4404 st = active; 4405 spin_unlock(&mddev->lock); 4406 } 4407 4408 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4409 st = broken; 4410 } else { 4411 if (list_empty(&mddev->disks) && 4412 mddev->raid_disks == 0 && 4413 mddev->dev_sectors == 0) 4414 st = clear; 4415 else 4416 st = inactive; 4417 } 4418 return sprintf(page, "%s\n", array_states[st]); 4419 } 4420 4421 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4422 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4423 static int restart_array(struct mddev *mddev); 4424 4425 static ssize_t 4426 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4427 { 4428 int err = 0; 4429 enum array_state st = match_word(buf, array_states); 4430 4431 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4432 /* don't take reconfig_mutex when toggling between 4433 * clean and active 4434 */ 4435 spin_lock(&mddev->lock); 4436 if (st == active) { 4437 restart_array(mddev); 4438 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4439 md_wakeup_thread(mddev->thread); 4440 wake_up(&mddev->sb_wait); 4441 } else /* st == clean */ { 4442 restart_array(mddev); 4443 if (!set_in_sync(mddev)) 4444 err = -EBUSY; 4445 } 4446 if (!err) 4447 sysfs_notify_dirent_safe(mddev->sysfs_state); 4448 spin_unlock(&mddev->lock); 4449 return err ?: len; 4450 } 4451 err = mddev_lock(mddev); 4452 if (err) 4453 return err; 4454 err = -EINVAL; 4455 switch(st) { 4456 case bad_word: 4457 break; 4458 case clear: 4459 /* stopping an active array */ 4460 err = do_md_stop(mddev, 0, NULL); 4461 break; 4462 case inactive: 4463 /* stopping an active array */ 4464 if (mddev->pers) 4465 err = do_md_stop(mddev, 2, NULL); 4466 else 4467 err = 0; /* already inactive */ 4468 break; 4469 case suspended: 4470 break; /* not supported yet */ 4471 case readonly: 4472 if (mddev->pers) 4473 err = md_set_readonly(mddev, NULL); 4474 else { 4475 mddev->ro = 1; 4476 set_disk_ro(mddev->gendisk, 1); 4477 err = do_md_run(mddev); 4478 } 4479 break; 4480 case read_auto: 4481 if (mddev->pers) { 4482 if (mddev->ro == 0) 4483 err = md_set_readonly(mddev, NULL); 4484 else if (mddev->ro == 1) 4485 err = restart_array(mddev); 4486 if (err == 0) { 4487 mddev->ro = 2; 4488 set_disk_ro(mddev->gendisk, 0); 4489 } 4490 } else { 4491 mddev->ro = 2; 4492 err = do_md_run(mddev); 4493 } 4494 break; 4495 case clean: 4496 if (mddev->pers) { 4497 err = restart_array(mddev); 4498 if (err) 4499 break; 4500 spin_lock(&mddev->lock); 4501 if (!set_in_sync(mddev)) 4502 err = -EBUSY; 4503 spin_unlock(&mddev->lock); 4504 } else 4505 err = -EINVAL; 4506 break; 4507 case active: 4508 if (mddev->pers) { 4509 err = restart_array(mddev); 4510 if (err) 4511 break; 4512 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4513 wake_up(&mddev->sb_wait); 4514 err = 0; 4515 } else { 4516 mddev->ro = 0; 4517 set_disk_ro(mddev->gendisk, 0); 4518 err = do_md_run(mddev); 4519 } 4520 break; 4521 case write_pending: 4522 case active_idle: 4523 case broken: 4524 /* these cannot be set */ 4525 break; 4526 } 4527 4528 if (!err) { 4529 if (mddev->hold_active == UNTIL_IOCTL) 4530 mddev->hold_active = 0; 4531 sysfs_notify_dirent_safe(mddev->sysfs_state); 4532 } 4533 mddev_unlock(mddev); 4534 return err ?: len; 4535 } 4536 static struct md_sysfs_entry md_array_state = 4537 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4538 4539 static ssize_t 4540 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4541 return sprintf(page, "%d\n", 4542 atomic_read(&mddev->max_corr_read_errors)); 4543 } 4544 4545 static ssize_t 4546 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4547 { 4548 unsigned int n; 4549 int rv; 4550 4551 rv = kstrtouint(buf, 10, &n); 4552 if (rv < 0) 4553 return rv; 4554 atomic_set(&mddev->max_corr_read_errors, n); 4555 return len; 4556 } 4557 4558 static struct md_sysfs_entry max_corr_read_errors = 4559 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4560 max_corrected_read_errors_store); 4561 4562 static ssize_t 4563 null_show(struct mddev *mddev, char *page) 4564 { 4565 return -EINVAL; 4566 } 4567 4568 /* need to ensure rdev_delayed_delete() has completed */ 4569 static void flush_rdev_wq(struct mddev *mddev) 4570 { 4571 struct md_rdev *rdev; 4572 4573 rcu_read_lock(); 4574 rdev_for_each_rcu(rdev, mddev) 4575 if (work_pending(&rdev->del_work)) { 4576 flush_workqueue(md_rdev_misc_wq); 4577 break; 4578 } 4579 rcu_read_unlock(); 4580 } 4581 4582 static ssize_t 4583 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4584 { 4585 /* buf must be %d:%d\n? giving major and minor numbers */ 4586 /* The new device is added to the array. 4587 * If the array has a persistent superblock, we read the 4588 * superblock to initialise info and check validity. 4589 * Otherwise, only checking done is that in bind_rdev_to_array, 4590 * which mainly checks size. 4591 */ 4592 char *e; 4593 int major = simple_strtoul(buf, &e, 10); 4594 int minor; 4595 dev_t dev; 4596 struct md_rdev *rdev; 4597 int err; 4598 4599 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4600 return -EINVAL; 4601 minor = simple_strtoul(e+1, &e, 10); 4602 if (*e && *e != '\n') 4603 return -EINVAL; 4604 dev = MKDEV(major, minor); 4605 if (major != MAJOR(dev) || 4606 minor != MINOR(dev)) 4607 return -EOVERFLOW; 4608 4609 flush_rdev_wq(mddev); 4610 err = mddev_lock(mddev); 4611 if (err) 4612 return err; 4613 if (mddev->persistent) { 4614 rdev = md_import_device(dev, mddev->major_version, 4615 mddev->minor_version); 4616 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4617 struct md_rdev *rdev0 4618 = list_entry(mddev->disks.next, 4619 struct md_rdev, same_set); 4620 err = super_types[mddev->major_version] 4621 .load_super(rdev, rdev0, mddev->minor_version); 4622 if (err < 0) 4623 goto out; 4624 } 4625 } else if (mddev->external) 4626 rdev = md_import_device(dev, -2, -1); 4627 else 4628 rdev = md_import_device(dev, -1, -1); 4629 4630 if (IS_ERR(rdev)) { 4631 mddev_unlock(mddev); 4632 return PTR_ERR(rdev); 4633 } 4634 err = bind_rdev_to_array(rdev, mddev); 4635 out: 4636 if (err) 4637 export_rdev(rdev); 4638 mddev_unlock(mddev); 4639 if (!err) 4640 md_new_event(mddev); 4641 return err ? err : len; 4642 } 4643 4644 static struct md_sysfs_entry md_new_device = 4645 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4646 4647 static ssize_t 4648 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4649 { 4650 char *end; 4651 unsigned long chunk, end_chunk; 4652 int err; 4653 4654 err = mddev_lock(mddev); 4655 if (err) 4656 return err; 4657 if (!mddev->bitmap) 4658 goto out; 4659 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4660 while (*buf) { 4661 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4662 if (buf == end) break; 4663 if (*end == '-') { /* range */ 4664 buf = end + 1; 4665 end_chunk = simple_strtoul(buf, &end, 0); 4666 if (buf == end) break; 4667 } 4668 if (*end && !isspace(*end)) break; 4669 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4670 buf = skip_spaces(end); 4671 } 4672 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4673 out: 4674 mddev_unlock(mddev); 4675 return len; 4676 } 4677 4678 static struct md_sysfs_entry md_bitmap = 4679 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4680 4681 static ssize_t 4682 size_show(struct mddev *mddev, char *page) 4683 { 4684 return sprintf(page, "%llu\n", 4685 (unsigned long long)mddev->dev_sectors / 2); 4686 } 4687 4688 static int update_size(struct mddev *mddev, sector_t num_sectors); 4689 4690 static ssize_t 4691 size_store(struct mddev *mddev, const char *buf, size_t len) 4692 { 4693 /* If array is inactive, we can reduce the component size, but 4694 * not increase it (except from 0). 4695 * If array is active, we can try an on-line resize 4696 */ 4697 sector_t sectors; 4698 int err = strict_blocks_to_sectors(buf, §ors); 4699 4700 if (err < 0) 4701 return err; 4702 err = mddev_lock(mddev); 4703 if (err) 4704 return err; 4705 if (mddev->pers) { 4706 err = update_size(mddev, sectors); 4707 if (err == 0) 4708 md_update_sb(mddev, 1); 4709 } else { 4710 if (mddev->dev_sectors == 0 || 4711 mddev->dev_sectors > sectors) 4712 mddev->dev_sectors = sectors; 4713 else 4714 err = -ENOSPC; 4715 } 4716 mddev_unlock(mddev); 4717 return err ? err : len; 4718 } 4719 4720 static struct md_sysfs_entry md_size = 4721 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4722 4723 /* Metadata version. 4724 * This is one of 4725 * 'none' for arrays with no metadata (good luck...) 4726 * 'external' for arrays with externally managed metadata, 4727 * or N.M for internally known formats 4728 */ 4729 static ssize_t 4730 metadata_show(struct mddev *mddev, char *page) 4731 { 4732 if (mddev->persistent) 4733 return sprintf(page, "%d.%d\n", 4734 mddev->major_version, mddev->minor_version); 4735 else if (mddev->external) 4736 return sprintf(page, "external:%s\n", mddev->metadata_type); 4737 else 4738 return sprintf(page, "none\n"); 4739 } 4740 4741 static ssize_t 4742 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4743 { 4744 int major, minor; 4745 char *e; 4746 int err; 4747 /* Changing the details of 'external' metadata is 4748 * always permitted. Otherwise there must be 4749 * no devices attached to the array. 4750 */ 4751 4752 err = mddev_lock(mddev); 4753 if (err) 4754 return err; 4755 err = -EBUSY; 4756 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4757 ; 4758 else if (!list_empty(&mddev->disks)) 4759 goto out_unlock; 4760 4761 err = 0; 4762 if (cmd_match(buf, "none")) { 4763 mddev->persistent = 0; 4764 mddev->external = 0; 4765 mddev->major_version = 0; 4766 mddev->minor_version = 90; 4767 goto out_unlock; 4768 } 4769 if (strncmp(buf, "external:", 9) == 0) { 4770 size_t namelen = len-9; 4771 if (namelen >= sizeof(mddev->metadata_type)) 4772 namelen = sizeof(mddev->metadata_type)-1; 4773 strncpy(mddev->metadata_type, buf+9, namelen); 4774 mddev->metadata_type[namelen] = 0; 4775 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4776 mddev->metadata_type[--namelen] = 0; 4777 mddev->persistent = 0; 4778 mddev->external = 1; 4779 mddev->major_version = 0; 4780 mddev->minor_version = 90; 4781 goto out_unlock; 4782 } 4783 major = simple_strtoul(buf, &e, 10); 4784 err = -EINVAL; 4785 if (e==buf || *e != '.') 4786 goto out_unlock; 4787 buf = e+1; 4788 minor = simple_strtoul(buf, &e, 10); 4789 if (e==buf || (*e && *e != '\n') ) 4790 goto out_unlock; 4791 err = -ENOENT; 4792 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4793 goto out_unlock; 4794 mddev->major_version = major; 4795 mddev->minor_version = minor; 4796 mddev->persistent = 1; 4797 mddev->external = 0; 4798 err = 0; 4799 out_unlock: 4800 mddev_unlock(mddev); 4801 return err ?: len; 4802 } 4803 4804 static struct md_sysfs_entry md_metadata = 4805 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4806 4807 static ssize_t 4808 action_show(struct mddev *mddev, char *page) 4809 { 4810 char *type = "idle"; 4811 unsigned long recovery = mddev->recovery; 4812 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4813 type = "frozen"; 4814 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4815 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4816 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4817 type = "reshape"; 4818 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4819 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4820 type = "resync"; 4821 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4822 type = "check"; 4823 else 4824 type = "repair"; 4825 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4826 type = "recover"; 4827 else if (mddev->reshape_position != MaxSector) 4828 type = "reshape"; 4829 } 4830 return sprintf(page, "%s\n", type); 4831 } 4832 4833 static ssize_t 4834 action_store(struct mddev *mddev, const char *page, size_t len) 4835 { 4836 if (!mddev->pers || !mddev->pers->sync_request) 4837 return -EINVAL; 4838 4839 4840 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4841 if (cmd_match(page, "frozen")) 4842 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4843 else 4844 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4845 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4846 mddev_lock(mddev) == 0) { 4847 if (work_pending(&mddev->del_work)) 4848 flush_workqueue(md_misc_wq); 4849 if (mddev->sync_thread) { 4850 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4851 md_reap_sync_thread(mddev); 4852 } 4853 mddev_unlock(mddev); 4854 } 4855 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4856 return -EBUSY; 4857 else if (cmd_match(page, "resync")) 4858 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4859 else if (cmd_match(page, "recover")) { 4860 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4861 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4862 } else if (cmd_match(page, "reshape")) { 4863 int err; 4864 if (mddev->pers->start_reshape == NULL) 4865 return -EINVAL; 4866 err = mddev_lock(mddev); 4867 if (!err) { 4868 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4869 err = -EBUSY; 4870 else { 4871 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4872 err = mddev->pers->start_reshape(mddev); 4873 } 4874 mddev_unlock(mddev); 4875 } 4876 if (err) 4877 return err; 4878 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4879 } else { 4880 if (cmd_match(page, "check")) 4881 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4882 else if (!cmd_match(page, "repair")) 4883 return -EINVAL; 4884 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4885 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4886 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4887 } 4888 if (mddev->ro == 2) { 4889 /* A write to sync_action is enough to justify 4890 * canceling read-auto mode 4891 */ 4892 mddev->ro = 0; 4893 md_wakeup_thread(mddev->sync_thread); 4894 } 4895 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4896 md_wakeup_thread(mddev->thread); 4897 sysfs_notify_dirent_safe(mddev->sysfs_action); 4898 return len; 4899 } 4900 4901 static struct md_sysfs_entry md_scan_mode = 4902 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4903 4904 static ssize_t 4905 last_sync_action_show(struct mddev *mddev, char *page) 4906 { 4907 return sprintf(page, "%s\n", mddev->last_sync_action); 4908 } 4909 4910 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4911 4912 static ssize_t 4913 mismatch_cnt_show(struct mddev *mddev, char *page) 4914 { 4915 return sprintf(page, "%llu\n", 4916 (unsigned long long) 4917 atomic64_read(&mddev->resync_mismatches)); 4918 } 4919 4920 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4921 4922 static ssize_t 4923 sync_min_show(struct mddev *mddev, char *page) 4924 { 4925 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4926 mddev->sync_speed_min ? "local": "system"); 4927 } 4928 4929 static ssize_t 4930 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4931 { 4932 unsigned int min; 4933 int rv; 4934 4935 if (strncmp(buf, "system", 6)==0) { 4936 min = 0; 4937 } else { 4938 rv = kstrtouint(buf, 10, &min); 4939 if (rv < 0) 4940 return rv; 4941 if (min == 0) 4942 return -EINVAL; 4943 } 4944 mddev->sync_speed_min = min; 4945 return len; 4946 } 4947 4948 static struct md_sysfs_entry md_sync_min = 4949 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4950 4951 static ssize_t 4952 sync_max_show(struct mddev *mddev, char *page) 4953 { 4954 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4955 mddev->sync_speed_max ? "local": "system"); 4956 } 4957 4958 static ssize_t 4959 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4960 { 4961 unsigned int max; 4962 int rv; 4963 4964 if (strncmp(buf, "system", 6)==0) { 4965 max = 0; 4966 } else { 4967 rv = kstrtouint(buf, 10, &max); 4968 if (rv < 0) 4969 return rv; 4970 if (max == 0) 4971 return -EINVAL; 4972 } 4973 mddev->sync_speed_max = max; 4974 return len; 4975 } 4976 4977 static struct md_sysfs_entry md_sync_max = 4978 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4979 4980 static ssize_t 4981 degraded_show(struct mddev *mddev, char *page) 4982 { 4983 return sprintf(page, "%d\n", mddev->degraded); 4984 } 4985 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4986 4987 static ssize_t 4988 sync_force_parallel_show(struct mddev *mddev, char *page) 4989 { 4990 return sprintf(page, "%d\n", mddev->parallel_resync); 4991 } 4992 4993 static ssize_t 4994 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4995 { 4996 long n; 4997 4998 if (kstrtol(buf, 10, &n)) 4999 return -EINVAL; 5000 5001 if (n != 0 && n != 1) 5002 return -EINVAL; 5003 5004 mddev->parallel_resync = n; 5005 5006 if (mddev->sync_thread) 5007 wake_up(&resync_wait); 5008 5009 return len; 5010 } 5011 5012 /* force parallel resync, even with shared block devices */ 5013 static struct md_sysfs_entry md_sync_force_parallel = 5014 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5015 sync_force_parallel_show, sync_force_parallel_store); 5016 5017 static ssize_t 5018 sync_speed_show(struct mddev *mddev, char *page) 5019 { 5020 unsigned long resync, dt, db; 5021 if (mddev->curr_resync == 0) 5022 return sprintf(page, "none\n"); 5023 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5024 dt = (jiffies - mddev->resync_mark) / HZ; 5025 if (!dt) dt++; 5026 db = resync - mddev->resync_mark_cnt; 5027 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5028 } 5029 5030 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5031 5032 static ssize_t 5033 sync_completed_show(struct mddev *mddev, char *page) 5034 { 5035 unsigned long long max_sectors, resync; 5036 5037 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5038 return sprintf(page, "none\n"); 5039 5040 if (mddev->curr_resync == 1 || 5041 mddev->curr_resync == 2) 5042 return sprintf(page, "delayed\n"); 5043 5044 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5045 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5046 max_sectors = mddev->resync_max_sectors; 5047 else 5048 max_sectors = mddev->dev_sectors; 5049 5050 resync = mddev->curr_resync_completed; 5051 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5052 } 5053 5054 static struct md_sysfs_entry md_sync_completed = 5055 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5056 5057 static ssize_t 5058 min_sync_show(struct mddev *mddev, char *page) 5059 { 5060 return sprintf(page, "%llu\n", 5061 (unsigned long long)mddev->resync_min); 5062 } 5063 static ssize_t 5064 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5065 { 5066 unsigned long long min; 5067 int err; 5068 5069 if (kstrtoull(buf, 10, &min)) 5070 return -EINVAL; 5071 5072 spin_lock(&mddev->lock); 5073 err = -EINVAL; 5074 if (min > mddev->resync_max) 5075 goto out_unlock; 5076 5077 err = -EBUSY; 5078 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5079 goto out_unlock; 5080 5081 /* Round down to multiple of 4K for safety */ 5082 mddev->resync_min = round_down(min, 8); 5083 err = 0; 5084 5085 out_unlock: 5086 spin_unlock(&mddev->lock); 5087 return err ?: len; 5088 } 5089 5090 static struct md_sysfs_entry md_min_sync = 5091 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5092 5093 static ssize_t 5094 max_sync_show(struct mddev *mddev, char *page) 5095 { 5096 if (mddev->resync_max == MaxSector) 5097 return sprintf(page, "max\n"); 5098 else 5099 return sprintf(page, "%llu\n", 5100 (unsigned long long)mddev->resync_max); 5101 } 5102 static ssize_t 5103 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5104 { 5105 int err; 5106 spin_lock(&mddev->lock); 5107 if (strncmp(buf, "max", 3) == 0) 5108 mddev->resync_max = MaxSector; 5109 else { 5110 unsigned long long max; 5111 int chunk; 5112 5113 err = -EINVAL; 5114 if (kstrtoull(buf, 10, &max)) 5115 goto out_unlock; 5116 if (max < mddev->resync_min) 5117 goto out_unlock; 5118 5119 err = -EBUSY; 5120 if (max < mddev->resync_max && 5121 mddev->ro == 0 && 5122 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5123 goto out_unlock; 5124 5125 /* Must be a multiple of chunk_size */ 5126 chunk = mddev->chunk_sectors; 5127 if (chunk) { 5128 sector_t temp = max; 5129 5130 err = -EINVAL; 5131 if (sector_div(temp, chunk)) 5132 goto out_unlock; 5133 } 5134 mddev->resync_max = max; 5135 } 5136 wake_up(&mddev->recovery_wait); 5137 err = 0; 5138 out_unlock: 5139 spin_unlock(&mddev->lock); 5140 return err ?: len; 5141 } 5142 5143 static struct md_sysfs_entry md_max_sync = 5144 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5145 5146 static ssize_t 5147 suspend_lo_show(struct mddev *mddev, char *page) 5148 { 5149 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5150 } 5151 5152 static ssize_t 5153 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5154 { 5155 unsigned long long new; 5156 int err; 5157 5158 err = kstrtoull(buf, 10, &new); 5159 if (err < 0) 5160 return err; 5161 if (new != (sector_t)new) 5162 return -EINVAL; 5163 5164 err = mddev_lock(mddev); 5165 if (err) 5166 return err; 5167 err = -EINVAL; 5168 if (mddev->pers == NULL || 5169 mddev->pers->quiesce == NULL) 5170 goto unlock; 5171 mddev_suspend(mddev); 5172 mddev->suspend_lo = new; 5173 mddev_resume(mddev); 5174 5175 err = 0; 5176 unlock: 5177 mddev_unlock(mddev); 5178 return err ?: len; 5179 } 5180 static struct md_sysfs_entry md_suspend_lo = 5181 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5182 5183 static ssize_t 5184 suspend_hi_show(struct mddev *mddev, char *page) 5185 { 5186 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5187 } 5188 5189 static ssize_t 5190 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5191 { 5192 unsigned long long new; 5193 int err; 5194 5195 err = kstrtoull(buf, 10, &new); 5196 if (err < 0) 5197 return err; 5198 if (new != (sector_t)new) 5199 return -EINVAL; 5200 5201 err = mddev_lock(mddev); 5202 if (err) 5203 return err; 5204 err = -EINVAL; 5205 if (mddev->pers == NULL) 5206 goto unlock; 5207 5208 mddev_suspend(mddev); 5209 mddev->suspend_hi = new; 5210 mddev_resume(mddev); 5211 5212 err = 0; 5213 unlock: 5214 mddev_unlock(mddev); 5215 return err ?: len; 5216 } 5217 static struct md_sysfs_entry md_suspend_hi = 5218 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5219 5220 static ssize_t 5221 reshape_position_show(struct mddev *mddev, char *page) 5222 { 5223 if (mddev->reshape_position != MaxSector) 5224 return sprintf(page, "%llu\n", 5225 (unsigned long long)mddev->reshape_position); 5226 strcpy(page, "none\n"); 5227 return 5; 5228 } 5229 5230 static ssize_t 5231 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5232 { 5233 struct md_rdev *rdev; 5234 unsigned long long new; 5235 int err; 5236 5237 err = kstrtoull(buf, 10, &new); 5238 if (err < 0) 5239 return err; 5240 if (new != (sector_t)new) 5241 return -EINVAL; 5242 err = mddev_lock(mddev); 5243 if (err) 5244 return err; 5245 err = -EBUSY; 5246 if (mddev->pers) 5247 goto unlock; 5248 mddev->reshape_position = new; 5249 mddev->delta_disks = 0; 5250 mddev->reshape_backwards = 0; 5251 mddev->new_level = mddev->level; 5252 mddev->new_layout = mddev->layout; 5253 mddev->new_chunk_sectors = mddev->chunk_sectors; 5254 rdev_for_each(rdev, mddev) 5255 rdev->new_data_offset = rdev->data_offset; 5256 err = 0; 5257 unlock: 5258 mddev_unlock(mddev); 5259 return err ?: len; 5260 } 5261 5262 static struct md_sysfs_entry md_reshape_position = 5263 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5264 reshape_position_store); 5265 5266 static ssize_t 5267 reshape_direction_show(struct mddev *mddev, char *page) 5268 { 5269 return sprintf(page, "%s\n", 5270 mddev->reshape_backwards ? "backwards" : "forwards"); 5271 } 5272 5273 static ssize_t 5274 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5275 { 5276 int backwards = 0; 5277 int err; 5278 5279 if (cmd_match(buf, "forwards")) 5280 backwards = 0; 5281 else if (cmd_match(buf, "backwards")) 5282 backwards = 1; 5283 else 5284 return -EINVAL; 5285 if (mddev->reshape_backwards == backwards) 5286 return len; 5287 5288 err = mddev_lock(mddev); 5289 if (err) 5290 return err; 5291 /* check if we are allowed to change */ 5292 if (mddev->delta_disks) 5293 err = -EBUSY; 5294 else if (mddev->persistent && 5295 mddev->major_version == 0) 5296 err = -EINVAL; 5297 else 5298 mddev->reshape_backwards = backwards; 5299 mddev_unlock(mddev); 5300 return err ?: len; 5301 } 5302 5303 static struct md_sysfs_entry md_reshape_direction = 5304 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5305 reshape_direction_store); 5306 5307 static ssize_t 5308 array_size_show(struct mddev *mddev, char *page) 5309 { 5310 if (mddev->external_size) 5311 return sprintf(page, "%llu\n", 5312 (unsigned long long)mddev->array_sectors/2); 5313 else 5314 return sprintf(page, "default\n"); 5315 } 5316 5317 static ssize_t 5318 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5319 { 5320 sector_t sectors; 5321 int err; 5322 5323 err = mddev_lock(mddev); 5324 if (err) 5325 return err; 5326 5327 /* cluster raid doesn't support change array_sectors */ 5328 if (mddev_is_clustered(mddev)) { 5329 mddev_unlock(mddev); 5330 return -EINVAL; 5331 } 5332 5333 if (strncmp(buf, "default", 7) == 0) { 5334 if (mddev->pers) 5335 sectors = mddev->pers->size(mddev, 0, 0); 5336 else 5337 sectors = mddev->array_sectors; 5338 5339 mddev->external_size = 0; 5340 } else { 5341 if (strict_blocks_to_sectors(buf, §ors) < 0) 5342 err = -EINVAL; 5343 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5344 err = -E2BIG; 5345 else 5346 mddev->external_size = 1; 5347 } 5348 5349 if (!err) { 5350 mddev->array_sectors = sectors; 5351 if (mddev->pers) { 5352 set_capacity(mddev->gendisk, mddev->array_sectors); 5353 revalidate_disk(mddev->gendisk); 5354 } 5355 } 5356 mddev_unlock(mddev); 5357 return err ?: len; 5358 } 5359 5360 static struct md_sysfs_entry md_array_size = 5361 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5362 array_size_store); 5363 5364 static ssize_t 5365 consistency_policy_show(struct mddev *mddev, char *page) 5366 { 5367 int ret; 5368 5369 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5370 ret = sprintf(page, "journal\n"); 5371 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5372 ret = sprintf(page, "ppl\n"); 5373 } else if (mddev->bitmap) { 5374 ret = sprintf(page, "bitmap\n"); 5375 } else if (mddev->pers) { 5376 if (mddev->pers->sync_request) 5377 ret = sprintf(page, "resync\n"); 5378 else 5379 ret = sprintf(page, "none\n"); 5380 } else { 5381 ret = sprintf(page, "unknown\n"); 5382 } 5383 5384 return ret; 5385 } 5386 5387 static ssize_t 5388 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5389 { 5390 int err = 0; 5391 5392 if (mddev->pers) { 5393 if (mddev->pers->change_consistency_policy) 5394 err = mddev->pers->change_consistency_policy(mddev, buf); 5395 else 5396 err = -EBUSY; 5397 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5398 set_bit(MD_HAS_PPL, &mddev->flags); 5399 } else { 5400 err = -EINVAL; 5401 } 5402 5403 return err ? err : len; 5404 } 5405 5406 static struct md_sysfs_entry md_consistency_policy = 5407 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5408 consistency_policy_store); 5409 5410 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5411 { 5412 return sprintf(page, "%d\n", mddev->fail_last_dev); 5413 } 5414 5415 /* 5416 * Setting fail_last_dev to true to allow last device to be forcibly removed 5417 * from RAID1/RAID10. 5418 */ 5419 static ssize_t 5420 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5421 { 5422 int ret; 5423 bool value; 5424 5425 ret = kstrtobool(buf, &value); 5426 if (ret) 5427 return ret; 5428 5429 if (value != mddev->fail_last_dev) 5430 mddev->fail_last_dev = value; 5431 5432 return len; 5433 } 5434 static struct md_sysfs_entry md_fail_last_dev = 5435 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5436 fail_last_dev_store); 5437 5438 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5439 { 5440 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5441 return sprintf(page, "n/a\n"); 5442 else 5443 return sprintf(page, "%d\n", mddev->serialize_policy); 5444 } 5445 5446 /* 5447 * Setting serialize_policy to true to enforce write IO is not reordered 5448 * for raid1. 5449 */ 5450 static ssize_t 5451 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5452 { 5453 int err; 5454 bool value; 5455 5456 err = kstrtobool(buf, &value); 5457 if (err) 5458 return err; 5459 5460 if (value == mddev->serialize_policy) 5461 return len; 5462 5463 err = mddev_lock(mddev); 5464 if (err) 5465 return err; 5466 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5467 pr_err("md: serialize_policy is only effective for raid1\n"); 5468 err = -EINVAL; 5469 goto unlock; 5470 } 5471 5472 mddev_suspend(mddev); 5473 if (value) 5474 mddev_create_serial_pool(mddev, NULL, true); 5475 else 5476 mddev_destroy_serial_pool(mddev, NULL, true); 5477 mddev->serialize_policy = value; 5478 mddev_resume(mddev); 5479 unlock: 5480 mddev_unlock(mddev); 5481 return err ?: len; 5482 } 5483 5484 static struct md_sysfs_entry md_serialize_policy = 5485 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5486 serialize_policy_store); 5487 5488 5489 static struct attribute *md_default_attrs[] = { 5490 &md_level.attr, 5491 &md_layout.attr, 5492 &md_raid_disks.attr, 5493 &md_uuid.attr, 5494 &md_chunk_size.attr, 5495 &md_size.attr, 5496 &md_resync_start.attr, 5497 &md_metadata.attr, 5498 &md_new_device.attr, 5499 &md_safe_delay.attr, 5500 &md_array_state.attr, 5501 &md_reshape_position.attr, 5502 &md_reshape_direction.attr, 5503 &md_array_size.attr, 5504 &max_corr_read_errors.attr, 5505 &md_consistency_policy.attr, 5506 &md_fail_last_dev.attr, 5507 &md_serialize_policy.attr, 5508 NULL, 5509 }; 5510 5511 static struct attribute *md_redundancy_attrs[] = { 5512 &md_scan_mode.attr, 5513 &md_last_scan_mode.attr, 5514 &md_mismatches.attr, 5515 &md_sync_min.attr, 5516 &md_sync_max.attr, 5517 &md_sync_speed.attr, 5518 &md_sync_force_parallel.attr, 5519 &md_sync_completed.attr, 5520 &md_min_sync.attr, 5521 &md_max_sync.attr, 5522 &md_suspend_lo.attr, 5523 &md_suspend_hi.attr, 5524 &md_bitmap.attr, 5525 &md_degraded.attr, 5526 NULL, 5527 }; 5528 static struct attribute_group md_redundancy_group = { 5529 .name = NULL, 5530 .attrs = md_redundancy_attrs, 5531 }; 5532 5533 static ssize_t 5534 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5535 { 5536 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5537 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5538 ssize_t rv; 5539 5540 if (!entry->show) 5541 return -EIO; 5542 spin_lock(&all_mddevs_lock); 5543 if (list_empty(&mddev->all_mddevs)) { 5544 spin_unlock(&all_mddevs_lock); 5545 return -EBUSY; 5546 } 5547 mddev_get(mddev); 5548 spin_unlock(&all_mddevs_lock); 5549 5550 rv = entry->show(mddev, page); 5551 mddev_put(mddev); 5552 return rv; 5553 } 5554 5555 static ssize_t 5556 md_attr_store(struct kobject *kobj, struct attribute *attr, 5557 const char *page, size_t length) 5558 { 5559 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5560 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5561 ssize_t rv; 5562 5563 if (!entry->store) 5564 return -EIO; 5565 if (!capable(CAP_SYS_ADMIN)) 5566 return -EACCES; 5567 spin_lock(&all_mddevs_lock); 5568 if (list_empty(&mddev->all_mddevs)) { 5569 spin_unlock(&all_mddevs_lock); 5570 return -EBUSY; 5571 } 5572 mddev_get(mddev); 5573 spin_unlock(&all_mddevs_lock); 5574 rv = entry->store(mddev, page, length); 5575 mddev_put(mddev); 5576 return rv; 5577 } 5578 5579 static void md_free(struct kobject *ko) 5580 { 5581 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5582 5583 if (mddev->sysfs_state) 5584 sysfs_put(mddev->sysfs_state); 5585 if (mddev->sysfs_completed) 5586 sysfs_put(mddev->sysfs_completed); 5587 if (mddev->sysfs_degraded) 5588 sysfs_put(mddev->sysfs_degraded); 5589 if (mddev->sysfs_level) 5590 sysfs_put(mddev->sysfs_level); 5591 5592 5593 if (mddev->gendisk) 5594 del_gendisk(mddev->gendisk); 5595 if (mddev->queue) 5596 blk_cleanup_queue(mddev->queue); 5597 if (mddev->gendisk) 5598 put_disk(mddev->gendisk); 5599 percpu_ref_exit(&mddev->writes_pending); 5600 5601 bioset_exit(&mddev->bio_set); 5602 bioset_exit(&mddev->sync_set); 5603 mempool_exit(&mddev->md_io_pool); 5604 kfree(mddev); 5605 } 5606 5607 static const struct sysfs_ops md_sysfs_ops = { 5608 .show = md_attr_show, 5609 .store = md_attr_store, 5610 }; 5611 static struct kobj_type md_ktype = { 5612 .release = md_free, 5613 .sysfs_ops = &md_sysfs_ops, 5614 .default_attrs = md_default_attrs, 5615 }; 5616 5617 int mdp_major = 0; 5618 5619 static void mddev_delayed_delete(struct work_struct *ws) 5620 { 5621 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5622 5623 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5624 kobject_del(&mddev->kobj); 5625 kobject_put(&mddev->kobj); 5626 } 5627 5628 static void no_op(struct percpu_ref *r) {} 5629 5630 int mddev_init_writes_pending(struct mddev *mddev) 5631 { 5632 if (mddev->writes_pending.percpu_count_ptr) 5633 return 0; 5634 if (percpu_ref_init(&mddev->writes_pending, no_op, 5635 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5636 return -ENOMEM; 5637 /* We want to start with the refcount at zero */ 5638 percpu_ref_put(&mddev->writes_pending); 5639 return 0; 5640 } 5641 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5642 5643 static int md_alloc(dev_t dev, char *name) 5644 { 5645 /* 5646 * If dev is zero, name is the name of a device to allocate with 5647 * an arbitrary minor number. It will be "md_???" 5648 * If dev is non-zero it must be a device number with a MAJOR of 5649 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5650 * the device is being created by opening a node in /dev. 5651 * If "name" is not NULL, the device is being created by 5652 * writing to /sys/module/md_mod/parameters/new_array. 5653 */ 5654 static DEFINE_MUTEX(disks_mutex); 5655 struct mddev *mddev = mddev_find(dev); 5656 struct gendisk *disk; 5657 int partitioned; 5658 int shift; 5659 int unit; 5660 int error; 5661 5662 if (!mddev) 5663 return -ENODEV; 5664 5665 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5666 shift = partitioned ? MdpMinorShift : 0; 5667 unit = MINOR(mddev->unit) >> shift; 5668 5669 /* wait for any previous instance of this device to be 5670 * completely removed (mddev_delayed_delete). 5671 */ 5672 flush_workqueue(md_misc_wq); 5673 5674 mutex_lock(&disks_mutex); 5675 error = -EEXIST; 5676 if (mddev->gendisk) 5677 goto abort; 5678 5679 if (name && !dev) { 5680 /* Need to ensure that 'name' is not a duplicate. 5681 */ 5682 struct mddev *mddev2; 5683 spin_lock(&all_mddevs_lock); 5684 5685 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5686 if (mddev2->gendisk && 5687 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5688 spin_unlock(&all_mddevs_lock); 5689 goto abort; 5690 } 5691 spin_unlock(&all_mddevs_lock); 5692 } 5693 if (name && dev) 5694 /* 5695 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5696 */ 5697 mddev->hold_active = UNTIL_STOP; 5698 5699 error = mempool_init_kmalloc_pool(&mddev->md_io_pool, BIO_POOL_SIZE, 5700 sizeof(struct md_io)); 5701 if (error) 5702 goto abort; 5703 5704 error = -ENOMEM; 5705 mddev->queue = blk_alloc_queue(NUMA_NO_NODE); 5706 if (!mddev->queue) 5707 goto abort; 5708 5709 blk_set_stacking_limits(&mddev->queue->limits); 5710 5711 disk = alloc_disk(1 << shift); 5712 if (!disk) { 5713 blk_cleanup_queue(mddev->queue); 5714 mddev->queue = NULL; 5715 goto abort; 5716 } 5717 disk->major = MAJOR(mddev->unit); 5718 disk->first_minor = unit << shift; 5719 if (name) 5720 strcpy(disk->disk_name, name); 5721 else if (partitioned) 5722 sprintf(disk->disk_name, "md_d%d", unit); 5723 else 5724 sprintf(disk->disk_name, "md%d", unit); 5725 disk->fops = &md_fops; 5726 disk->private_data = mddev; 5727 disk->queue = mddev->queue; 5728 blk_queue_write_cache(mddev->queue, true, true); 5729 /* Allow extended partitions. This makes the 5730 * 'mdp' device redundant, but we can't really 5731 * remove it now. 5732 */ 5733 disk->flags |= GENHD_FL_EXT_DEVT; 5734 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5735 mddev->gendisk = disk; 5736 /* As soon as we call add_disk(), another thread could get 5737 * through to md_open, so make sure it doesn't get too far 5738 */ 5739 mutex_lock(&mddev->open_mutex); 5740 add_disk(disk); 5741 5742 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5743 if (error) { 5744 /* This isn't possible, but as kobject_init_and_add is marked 5745 * __must_check, we must do something with the result 5746 */ 5747 pr_debug("md: cannot register %s/md - name in use\n", 5748 disk->disk_name); 5749 error = 0; 5750 } 5751 if (mddev->kobj.sd && 5752 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5753 pr_debug("pointless warning\n"); 5754 mutex_unlock(&mddev->open_mutex); 5755 abort: 5756 mutex_unlock(&disks_mutex); 5757 if (!error && mddev->kobj.sd) { 5758 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5759 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5760 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 5761 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 5762 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5763 } 5764 mddev_put(mddev); 5765 return error; 5766 } 5767 5768 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5769 { 5770 if (create_on_open) 5771 md_alloc(dev, NULL); 5772 return NULL; 5773 } 5774 5775 static int add_named_array(const char *val, const struct kernel_param *kp) 5776 { 5777 /* 5778 * val must be "md_*" or "mdNNN". 5779 * For "md_*" we allocate an array with a large free minor number, and 5780 * set the name to val. val must not already be an active name. 5781 * For "mdNNN" we allocate an array with the minor number NNN 5782 * which must not already be in use. 5783 */ 5784 int len = strlen(val); 5785 char buf[DISK_NAME_LEN]; 5786 unsigned long devnum; 5787 5788 while (len && val[len-1] == '\n') 5789 len--; 5790 if (len >= DISK_NAME_LEN) 5791 return -E2BIG; 5792 strlcpy(buf, val, len+1); 5793 if (strncmp(buf, "md_", 3) == 0) 5794 return md_alloc(0, buf); 5795 if (strncmp(buf, "md", 2) == 0 && 5796 isdigit(buf[2]) && 5797 kstrtoul(buf+2, 10, &devnum) == 0 && 5798 devnum <= MINORMASK) 5799 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5800 5801 return -EINVAL; 5802 } 5803 5804 static void md_safemode_timeout(struct timer_list *t) 5805 { 5806 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5807 5808 mddev->safemode = 1; 5809 if (mddev->external) 5810 sysfs_notify_dirent_safe(mddev->sysfs_state); 5811 5812 md_wakeup_thread(mddev->thread); 5813 } 5814 5815 static int start_dirty_degraded; 5816 5817 int md_run(struct mddev *mddev) 5818 { 5819 int err; 5820 struct md_rdev *rdev; 5821 struct md_personality *pers; 5822 5823 if (list_empty(&mddev->disks)) 5824 /* cannot run an array with no devices.. */ 5825 return -EINVAL; 5826 5827 if (mddev->pers) 5828 return -EBUSY; 5829 /* Cannot run until previous stop completes properly */ 5830 if (mddev->sysfs_active) 5831 return -EBUSY; 5832 5833 /* 5834 * Analyze all RAID superblock(s) 5835 */ 5836 if (!mddev->raid_disks) { 5837 if (!mddev->persistent) 5838 return -EINVAL; 5839 err = analyze_sbs(mddev); 5840 if (err) 5841 return -EINVAL; 5842 } 5843 5844 if (mddev->level != LEVEL_NONE) 5845 request_module("md-level-%d", mddev->level); 5846 else if (mddev->clevel[0]) 5847 request_module("md-%s", mddev->clevel); 5848 5849 /* 5850 * Drop all container device buffers, from now on 5851 * the only valid external interface is through the md 5852 * device. 5853 */ 5854 mddev->has_superblocks = false; 5855 rdev_for_each(rdev, mddev) { 5856 if (test_bit(Faulty, &rdev->flags)) 5857 continue; 5858 sync_blockdev(rdev->bdev); 5859 invalidate_bdev(rdev->bdev); 5860 if (mddev->ro != 1 && 5861 (bdev_read_only(rdev->bdev) || 5862 bdev_read_only(rdev->meta_bdev))) { 5863 mddev->ro = 1; 5864 if (mddev->gendisk) 5865 set_disk_ro(mddev->gendisk, 1); 5866 } 5867 5868 if (rdev->sb_page) 5869 mddev->has_superblocks = true; 5870 5871 /* perform some consistency tests on the device. 5872 * We don't want the data to overlap the metadata, 5873 * Internal Bitmap issues have been handled elsewhere. 5874 */ 5875 if (rdev->meta_bdev) { 5876 /* Nothing to check */; 5877 } else if (rdev->data_offset < rdev->sb_start) { 5878 if (mddev->dev_sectors && 5879 rdev->data_offset + mddev->dev_sectors 5880 > rdev->sb_start) { 5881 pr_warn("md: %s: data overlaps metadata\n", 5882 mdname(mddev)); 5883 return -EINVAL; 5884 } 5885 } else { 5886 if (rdev->sb_start + rdev->sb_size/512 5887 > rdev->data_offset) { 5888 pr_warn("md: %s: metadata overlaps data\n", 5889 mdname(mddev)); 5890 return -EINVAL; 5891 } 5892 } 5893 sysfs_notify_dirent_safe(rdev->sysfs_state); 5894 } 5895 5896 if (!bioset_initialized(&mddev->bio_set)) { 5897 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5898 if (err) 5899 return err; 5900 } 5901 if (!bioset_initialized(&mddev->sync_set)) { 5902 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5903 if (err) 5904 return err; 5905 } 5906 5907 spin_lock(&pers_lock); 5908 pers = find_pers(mddev->level, mddev->clevel); 5909 if (!pers || !try_module_get(pers->owner)) { 5910 spin_unlock(&pers_lock); 5911 if (mddev->level != LEVEL_NONE) 5912 pr_warn("md: personality for level %d is not loaded!\n", 5913 mddev->level); 5914 else 5915 pr_warn("md: personality for level %s is not loaded!\n", 5916 mddev->clevel); 5917 err = -EINVAL; 5918 goto abort; 5919 } 5920 spin_unlock(&pers_lock); 5921 if (mddev->level != pers->level) { 5922 mddev->level = pers->level; 5923 mddev->new_level = pers->level; 5924 } 5925 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5926 5927 if (mddev->reshape_position != MaxSector && 5928 pers->start_reshape == NULL) { 5929 /* This personality cannot handle reshaping... */ 5930 module_put(pers->owner); 5931 err = -EINVAL; 5932 goto abort; 5933 } 5934 5935 if (pers->sync_request) { 5936 /* Warn if this is a potentially silly 5937 * configuration. 5938 */ 5939 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5940 struct md_rdev *rdev2; 5941 int warned = 0; 5942 5943 rdev_for_each(rdev, mddev) 5944 rdev_for_each(rdev2, mddev) { 5945 if (rdev < rdev2 && 5946 rdev->bdev->bd_contains == 5947 rdev2->bdev->bd_contains) { 5948 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5949 mdname(mddev), 5950 bdevname(rdev->bdev,b), 5951 bdevname(rdev2->bdev,b2)); 5952 warned = 1; 5953 } 5954 } 5955 5956 if (warned) 5957 pr_warn("True protection against single-disk failure might be compromised.\n"); 5958 } 5959 5960 mddev->recovery = 0; 5961 /* may be over-ridden by personality */ 5962 mddev->resync_max_sectors = mddev->dev_sectors; 5963 5964 mddev->ok_start_degraded = start_dirty_degraded; 5965 5966 if (start_readonly && mddev->ro == 0) 5967 mddev->ro = 2; /* read-only, but switch on first write */ 5968 5969 err = pers->run(mddev); 5970 if (err) 5971 pr_warn("md: pers->run() failed ...\n"); 5972 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5973 WARN_ONCE(!mddev->external_size, 5974 "%s: default size too small, but 'external_size' not in effect?\n", 5975 __func__); 5976 pr_warn("md: invalid array_size %llu > default size %llu\n", 5977 (unsigned long long)mddev->array_sectors / 2, 5978 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5979 err = -EINVAL; 5980 } 5981 if (err == 0 && pers->sync_request && 5982 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5983 struct bitmap *bitmap; 5984 5985 bitmap = md_bitmap_create(mddev, -1); 5986 if (IS_ERR(bitmap)) { 5987 err = PTR_ERR(bitmap); 5988 pr_warn("%s: failed to create bitmap (%d)\n", 5989 mdname(mddev), err); 5990 } else 5991 mddev->bitmap = bitmap; 5992 5993 } 5994 if (err) 5995 goto bitmap_abort; 5996 5997 if (mddev->bitmap_info.max_write_behind > 0) { 5998 bool create_pool = false; 5999 6000 rdev_for_each(rdev, mddev) { 6001 if (test_bit(WriteMostly, &rdev->flags) && 6002 rdev_init_serial(rdev)) 6003 create_pool = true; 6004 } 6005 if (create_pool && mddev->serial_info_pool == NULL) { 6006 mddev->serial_info_pool = 6007 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 6008 sizeof(struct serial_info)); 6009 if (!mddev->serial_info_pool) { 6010 err = -ENOMEM; 6011 goto bitmap_abort; 6012 } 6013 } 6014 } 6015 6016 if (mddev->queue) { 6017 bool nonrot = true; 6018 6019 rdev_for_each(rdev, mddev) { 6020 if (rdev->raid_disk >= 0 && 6021 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6022 nonrot = false; 6023 break; 6024 } 6025 } 6026 if (mddev->degraded) 6027 nonrot = false; 6028 if (nonrot) 6029 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6030 else 6031 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6032 } 6033 if (pers->sync_request) { 6034 if (mddev->kobj.sd && 6035 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6036 pr_warn("md: cannot register extra attributes for %s\n", 6037 mdname(mddev)); 6038 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6039 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6040 mddev->ro = 0; 6041 6042 atomic_set(&mddev->max_corr_read_errors, 6043 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6044 mddev->safemode = 0; 6045 if (mddev_is_clustered(mddev)) 6046 mddev->safemode_delay = 0; 6047 else 6048 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6049 mddev->in_sync = 1; 6050 smp_wmb(); 6051 spin_lock(&mddev->lock); 6052 mddev->pers = pers; 6053 spin_unlock(&mddev->lock); 6054 rdev_for_each(rdev, mddev) 6055 if (rdev->raid_disk >= 0) 6056 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6057 6058 if (mddev->degraded && !mddev->ro) 6059 /* This ensures that recovering status is reported immediately 6060 * via sysfs - until a lack of spares is confirmed. 6061 */ 6062 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6063 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6064 6065 if (mddev->sb_flags) 6066 md_update_sb(mddev, 0); 6067 6068 md_new_event(mddev); 6069 return 0; 6070 6071 bitmap_abort: 6072 mddev_detach(mddev); 6073 if (mddev->private) 6074 pers->free(mddev, mddev->private); 6075 mddev->private = NULL; 6076 module_put(pers->owner); 6077 md_bitmap_destroy(mddev); 6078 abort: 6079 bioset_exit(&mddev->bio_set); 6080 bioset_exit(&mddev->sync_set); 6081 return err; 6082 } 6083 EXPORT_SYMBOL_GPL(md_run); 6084 6085 int do_md_run(struct mddev *mddev) 6086 { 6087 int err; 6088 6089 set_bit(MD_NOT_READY, &mddev->flags); 6090 err = md_run(mddev); 6091 if (err) 6092 goto out; 6093 err = md_bitmap_load(mddev); 6094 if (err) { 6095 md_bitmap_destroy(mddev); 6096 goto out; 6097 } 6098 6099 if (mddev_is_clustered(mddev)) 6100 md_allow_write(mddev); 6101 6102 /* run start up tasks that require md_thread */ 6103 md_start(mddev); 6104 6105 md_wakeup_thread(mddev->thread); 6106 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6107 6108 set_capacity(mddev->gendisk, mddev->array_sectors); 6109 revalidate_disk(mddev->gendisk); 6110 clear_bit(MD_NOT_READY, &mddev->flags); 6111 mddev->changed = 1; 6112 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6113 sysfs_notify_dirent_safe(mddev->sysfs_state); 6114 sysfs_notify_dirent_safe(mddev->sysfs_action); 6115 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6116 out: 6117 clear_bit(MD_NOT_READY, &mddev->flags); 6118 return err; 6119 } 6120 6121 int md_start(struct mddev *mddev) 6122 { 6123 int ret = 0; 6124 6125 if (mddev->pers->start) { 6126 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6127 md_wakeup_thread(mddev->thread); 6128 ret = mddev->pers->start(mddev); 6129 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6130 md_wakeup_thread(mddev->sync_thread); 6131 } 6132 return ret; 6133 } 6134 EXPORT_SYMBOL_GPL(md_start); 6135 6136 static int restart_array(struct mddev *mddev) 6137 { 6138 struct gendisk *disk = mddev->gendisk; 6139 struct md_rdev *rdev; 6140 bool has_journal = false; 6141 bool has_readonly = false; 6142 6143 /* Complain if it has no devices */ 6144 if (list_empty(&mddev->disks)) 6145 return -ENXIO; 6146 if (!mddev->pers) 6147 return -EINVAL; 6148 if (!mddev->ro) 6149 return -EBUSY; 6150 6151 rcu_read_lock(); 6152 rdev_for_each_rcu(rdev, mddev) { 6153 if (test_bit(Journal, &rdev->flags) && 6154 !test_bit(Faulty, &rdev->flags)) 6155 has_journal = true; 6156 if (bdev_read_only(rdev->bdev)) 6157 has_readonly = true; 6158 } 6159 rcu_read_unlock(); 6160 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6161 /* Don't restart rw with journal missing/faulty */ 6162 return -EINVAL; 6163 if (has_readonly) 6164 return -EROFS; 6165 6166 mddev->safemode = 0; 6167 mddev->ro = 0; 6168 set_disk_ro(disk, 0); 6169 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6170 /* Kick recovery or resync if necessary */ 6171 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6172 md_wakeup_thread(mddev->thread); 6173 md_wakeup_thread(mddev->sync_thread); 6174 sysfs_notify_dirent_safe(mddev->sysfs_state); 6175 return 0; 6176 } 6177 6178 static void md_clean(struct mddev *mddev) 6179 { 6180 mddev->array_sectors = 0; 6181 mddev->external_size = 0; 6182 mddev->dev_sectors = 0; 6183 mddev->raid_disks = 0; 6184 mddev->recovery_cp = 0; 6185 mddev->resync_min = 0; 6186 mddev->resync_max = MaxSector; 6187 mddev->reshape_position = MaxSector; 6188 mddev->external = 0; 6189 mddev->persistent = 0; 6190 mddev->level = LEVEL_NONE; 6191 mddev->clevel[0] = 0; 6192 mddev->flags = 0; 6193 mddev->sb_flags = 0; 6194 mddev->ro = 0; 6195 mddev->metadata_type[0] = 0; 6196 mddev->chunk_sectors = 0; 6197 mddev->ctime = mddev->utime = 0; 6198 mddev->layout = 0; 6199 mddev->max_disks = 0; 6200 mddev->events = 0; 6201 mddev->can_decrease_events = 0; 6202 mddev->delta_disks = 0; 6203 mddev->reshape_backwards = 0; 6204 mddev->new_level = LEVEL_NONE; 6205 mddev->new_layout = 0; 6206 mddev->new_chunk_sectors = 0; 6207 mddev->curr_resync = 0; 6208 atomic64_set(&mddev->resync_mismatches, 0); 6209 mddev->suspend_lo = mddev->suspend_hi = 0; 6210 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6211 mddev->recovery = 0; 6212 mddev->in_sync = 0; 6213 mddev->changed = 0; 6214 mddev->degraded = 0; 6215 mddev->safemode = 0; 6216 mddev->private = NULL; 6217 mddev->cluster_info = NULL; 6218 mddev->bitmap_info.offset = 0; 6219 mddev->bitmap_info.default_offset = 0; 6220 mddev->bitmap_info.default_space = 0; 6221 mddev->bitmap_info.chunksize = 0; 6222 mddev->bitmap_info.daemon_sleep = 0; 6223 mddev->bitmap_info.max_write_behind = 0; 6224 mddev->bitmap_info.nodes = 0; 6225 } 6226 6227 static void __md_stop_writes(struct mddev *mddev) 6228 { 6229 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6230 if (work_pending(&mddev->del_work)) 6231 flush_workqueue(md_misc_wq); 6232 if (mddev->sync_thread) { 6233 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6234 md_reap_sync_thread(mddev); 6235 } 6236 6237 del_timer_sync(&mddev->safemode_timer); 6238 6239 if (mddev->pers && mddev->pers->quiesce) { 6240 mddev->pers->quiesce(mddev, 1); 6241 mddev->pers->quiesce(mddev, 0); 6242 } 6243 md_bitmap_flush(mddev); 6244 6245 if (mddev->ro == 0 && 6246 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6247 mddev->sb_flags)) { 6248 /* mark array as shutdown cleanly */ 6249 if (!mddev_is_clustered(mddev)) 6250 mddev->in_sync = 1; 6251 md_update_sb(mddev, 1); 6252 } 6253 /* disable policy to guarantee rdevs free resources for serialization */ 6254 mddev->serialize_policy = 0; 6255 mddev_destroy_serial_pool(mddev, NULL, true); 6256 } 6257 6258 void md_stop_writes(struct mddev *mddev) 6259 { 6260 mddev_lock_nointr(mddev); 6261 __md_stop_writes(mddev); 6262 mddev_unlock(mddev); 6263 } 6264 EXPORT_SYMBOL_GPL(md_stop_writes); 6265 6266 static void mddev_detach(struct mddev *mddev) 6267 { 6268 md_bitmap_wait_behind_writes(mddev); 6269 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6270 mddev->pers->quiesce(mddev, 1); 6271 mddev->pers->quiesce(mddev, 0); 6272 } 6273 md_unregister_thread(&mddev->thread); 6274 if (mddev->queue) 6275 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6276 } 6277 6278 static void __md_stop(struct mddev *mddev) 6279 { 6280 struct md_personality *pers = mddev->pers; 6281 md_bitmap_destroy(mddev); 6282 mddev_detach(mddev); 6283 /* Ensure ->event_work is done */ 6284 if (mddev->event_work.func) 6285 flush_workqueue(md_misc_wq); 6286 spin_lock(&mddev->lock); 6287 mddev->pers = NULL; 6288 spin_unlock(&mddev->lock); 6289 pers->free(mddev, mddev->private); 6290 mddev->private = NULL; 6291 if (pers->sync_request && mddev->to_remove == NULL) 6292 mddev->to_remove = &md_redundancy_group; 6293 module_put(pers->owner); 6294 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6295 } 6296 6297 void md_stop(struct mddev *mddev) 6298 { 6299 /* stop the array and free an attached data structures. 6300 * This is called from dm-raid 6301 */ 6302 __md_stop(mddev); 6303 bioset_exit(&mddev->bio_set); 6304 bioset_exit(&mddev->sync_set); 6305 } 6306 6307 EXPORT_SYMBOL_GPL(md_stop); 6308 6309 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6310 { 6311 int err = 0; 6312 int did_freeze = 0; 6313 6314 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6315 did_freeze = 1; 6316 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6317 md_wakeup_thread(mddev->thread); 6318 } 6319 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6320 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6321 if (mddev->sync_thread) 6322 /* Thread might be blocked waiting for metadata update 6323 * which will now never happen */ 6324 wake_up_process(mddev->sync_thread->tsk); 6325 6326 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6327 return -EBUSY; 6328 mddev_unlock(mddev); 6329 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6330 &mddev->recovery)); 6331 wait_event(mddev->sb_wait, 6332 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6333 mddev_lock_nointr(mddev); 6334 6335 mutex_lock(&mddev->open_mutex); 6336 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6337 mddev->sync_thread || 6338 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6339 pr_warn("md: %s still in use.\n",mdname(mddev)); 6340 if (did_freeze) { 6341 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6342 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6343 md_wakeup_thread(mddev->thread); 6344 } 6345 err = -EBUSY; 6346 goto out; 6347 } 6348 if (mddev->pers) { 6349 __md_stop_writes(mddev); 6350 6351 err = -ENXIO; 6352 if (mddev->ro==1) 6353 goto out; 6354 mddev->ro = 1; 6355 set_disk_ro(mddev->gendisk, 1); 6356 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6357 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6358 md_wakeup_thread(mddev->thread); 6359 sysfs_notify_dirent_safe(mddev->sysfs_state); 6360 err = 0; 6361 } 6362 out: 6363 mutex_unlock(&mddev->open_mutex); 6364 return err; 6365 } 6366 6367 /* mode: 6368 * 0 - completely stop and dis-assemble array 6369 * 2 - stop but do not disassemble array 6370 */ 6371 static int do_md_stop(struct mddev *mddev, int mode, 6372 struct block_device *bdev) 6373 { 6374 struct gendisk *disk = mddev->gendisk; 6375 struct md_rdev *rdev; 6376 int did_freeze = 0; 6377 6378 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6379 did_freeze = 1; 6380 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6381 md_wakeup_thread(mddev->thread); 6382 } 6383 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6384 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6385 if (mddev->sync_thread) 6386 /* Thread might be blocked waiting for metadata update 6387 * which will now never happen */ 6388 wake_up_process(mddev->sync_thread->tsk); 6389 6390 mddev_unlock(mddev); 6391 wait_event(resync_wait, (mddev->sync_thread == NULL && 6392 !test_bit(MD_RECOVERY_RUNNING, 6393 &mddev->recovery))); 6394 mddev_lock_nointr(mddev); 6395 6396 mutex_lock(&mddev->open_mutex); 6397 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6398 mddev->sysfs_active || 6399 mddev->sync_thread || 6400 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6401 pr_warn("md: %s still in use.\n",mdname(mddev)); 6402 mutex_unlock(&mddev->open_mutex); 6403 if (did_freeze) { 6404 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6405 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6406 md_wakeup_thread(mddev->thread); 6407 } 6408 return -EBUSY; 6409 } 6410 if (mddev->pers) { 6411 if (mddev->ro) 6412 set_disk_ro(disk, 0); 6413 6414 __md_stop_writes(mddev); 6415 __md_stop(mddev); 6416 6417 /* tell userspace to handle 'inactive' */ 6418 sysfs_notify_dirent_safe(mddev->sysfs_state); 6419 6420 rdev_for_each(rdev, mddev) 6421 if (rdev->raid_disk >= 0) 6422 sysfs_unlink_rdev(mddev, rdev); 6423 6424 set_capacity(disk, 0); 6425 mutex_unlock(&mddev->open_mutex); 6426 mddev->changed = 1; 6427 revalidate_disk(disk); 6428 6429 if (mddev->ro) 6430 mddev->ro = 0; 6431 } else 6432 mutex_unlock(&mddev->open_mutex); 6433 /* 6434 * Free resources if final stop 6435 */ 6436 if (mode == 0) { 6437 pr_info("md: %s stopped.\n", mdname(mddev)); 6438 6439 if (mddev->bitmap_info.file) { 6440 struct file *f = mddev->bitmap_info.file; 6441 spin_lock(&mddev->lock); 6442 mddev->bitmap_info.file = NULL; 6443 spin_unlock(&mddev->lock); 6444 fput(f); 6445 } 6446 mddev->bitmap_info.offset = 0; 6447 6448 export_array(mddev); 6449 6450 md_clean(mddev); 6451 if (mddev->hold_active == UNTIL_STOP) 6452 mddev->hold_active = 0; 6453 } 6454 md_new_event(mddev); 6455 sysfs_notify_dirent_safe(mddev->sysfs_state); 6456 return 0; 6457 } 6458 6459 #ifndef MODULE 6460 static void autorun_array(struct mddev *mddev) 6461 { 6462 struct md_rdev *rdev; 6463 int err; 6464 6465 if (list_empty(&mddev->disks)) 6466 return; 6467 6468 pr_info("md: running: "); 6469 6470 rdev_for_each(rdev, mddev) { 6471 char b[BDEVNAME_SIZE]; 6472 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6473 } 6474 pr_cont("\n"); 6475 6476 err = do_md_run(mddev); 6477 if (err) { 6478 pr_warn("md: do_md_run() returned %d\n", err); 6479 do_md_stop(mddev, 0, NULL); 6480 } 6481 } 6482 6483 /* 6484 * lets try to run arrays based on all disks that have arrived 6485 * until now. (those are in pending_raid_disks) 6486 * 6487 * the method: pick the first pending disk, collect all disks with 6488 * the same UUID, remove all from the pending list and put them into 6489 * the 'same_array' list. Then order this list based on superblock 6490 * update time (freshest comes first), kick out 'old' disks and 6491 * compare superblocks. If everything's fine then run it. 6492 * 6493 * If "unit" is allocated, then bump its reference count 6494 */ 6495 static void autorun_devices(int part) 6496 { 6497 struct md_rdev *rdev0, *rdev, *tmp; 6498 struct mddev *mddev; 6499 char b[BDEVNAME_SIZE]; 6500 6501 pr_info("md: autorun ...\n"); 6502 while (!list_empty(&pending_raid_disks)) { 6503 int unit; 6504 dev_t dev; 6505 LIST_HEAD(candidates); 6506 rdev0 = list_entry(pending_raid_disks.next, 6507 struct md_rdev, same_set); 6508 6509 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6510 INIT_LIST_HEAD(&candidates); 6511 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6512 if (super_90_load(rdev, rdev0, 0) >= 0) { 6513 pr_debug("md: adding %s ...\n", 6514 bdevname(rdev->bdev,b)); 6515 list_move(&rdev->same_set, &candidates); 6516 } 6517 /* 6518 * now we have a set of devices, with all of them having 6519 * mostly sane superblocks. It's time to allocate the 6520 * mddev. 6521 */ 6522 if (part) { 6523 dev = MKDEV(mdp_major, 6524 rdev0->preferred_minor << MdpMinorShift); 6525 unit = MINOR(dev) >> MdpMinorShift; 6526 } else { 6527 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6528 unit = MINOR(dev); 6529 } 6530 if (rdev0->preferred_minor != unit) { 6531 pr_warn("md: unit number in %s is bad: %d\n", 6532 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6533 break; 6534 } 6535 6536 md_probe(dev, NULL, NULL); 6537 mddev = mddev_find(dev); 6538 if (!mddev || !mddev->gendisk) { 6539 if (mddev) 6540 mddev_put(mddev); 6541 break; 6542 } 6543 if (mddev_lock(mddev)) 6544 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6545 else if (mddev->raid_disks || mddev->major_version 6546 || !list_empty(&mddev->disks)) { 6547 pr_warn("md: %s already running, cannot run %s\n", 6548 mdname(mddev), bdevname(rdev0->bdev,b)); 6549 mddev_unlock(mddev); 6550 } else { 6551 pr_debug("md: created %s\n", mdname(mddev)); 6552 mddev->persistent = 1; 6553 rdev_for_each_list(rdev, tmp, &candidates) { 6554 list_del_init(&rdev->same_set); 6555 if (bind_rdev_to_array(rdev, mddev)) 6556 export_rdev(rdev); 6557 } 6558 autorun_array(mddev); 6559 mddev_unlock(mddev); 6560 } 6561 /* on success, candidates will be empty, on error 6562 * it won't... 6563 */ 6564 rdev_for_each_list(rdev, tmp, &candidates) { 6565 list_del_init(&rdev->same_set); 6566 export_rdev(rdev); 6567 } 6568 mddev_put(mddev); 6569 } 6570 pr_info("md: ... autorun DONE.\n"); 6571 } 6572 #endif /* !MODULE */ 6573 6574 static int get_version(void __user *arg) 6575 { 6576 mdu_version_t ver; 6577 6578 ver.major = MD_MAJOR_VERSION; 6579 ver.minor = MD_MINOR_VERSION; 6580 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6581 6582 if (copy_to_user(arg, &ver, sizeof(ver))) 6583 return -EFAULT; 6584 6585 return 0; 6586 } 6587 6588 static int get_array_info(struct mddev *mddev, void __user *arg) 6589 { 6590 mdu_array_info_t info; 6591 int nr,working,insync,failed,spare; 6592 struct md_rdev *rdev; 6593 6594 nr = working = insync = failed = spare = 0; 6595 rcu_read_lock(); 6596 rdev_for_each_rcu(rdev, mddev) { 6597 nr++; 6598 if (test_bit(Faulty, &rdev->flags)) 6599 failed++; 6600 else { 6601 working++; 6602 if (test_bit(In_sync, &rdev->flags)) 6603 insync++; 6604 else if (test_bit(Journal, &rdev->flags)) 6605 /* TODO: add journal count to md_u.h */ 6606 ; 6607 else 6608 spare++; 6609 } 6610 } 6611 rcu_read_unlock(); 6612 6613 info.major_version = mddev->major_version; 6614 info.minor_version = mddev->minor_version; 6615 info.patch_version = MD_PATCHLEVEL_VERSION; 6616 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6617 info.level = mddev->level; 6618 info.size = mddev->dev_sectors / 2; 6619 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6620 info.size = -1; 6621 info.nr_disks = nr; 6622 info.raid_disks = mddev->raid_disks; 6623 info.md_minor = mddev->md_minor; 6624 info.not_persistent= !mddev->persistent; 6625 6626 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6627 info.state = 0; 6628 if (mddev->in_sync) 6629 info.state = (1<<MD_SB_CLEAN); 6630 if (mddev->bitmap && mddev->bitmap_info.offset) 6631 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6632 if (mddev_is_clustered(mddev)) 6633 info.state |= (1<<MD_SB_CLUSTERED); 6634 info.active_disks = insync; 6635 info.working_disks = working; 6636 info.failed_disks = failed; 6637 info.spare_disks = spare; 6638 6639 info.layout = mddev->layout; 6640 info.chunk_size = mddev->chunk_sectors << 9; 6641 6642 if (copy_to_user(arg, &info, sizeof(info))) 6643 return -EFAULT; 6644 6645 return 0; 6646 } 6647 6648 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6649 { 6650 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6651 char *ptr; 6652 int err; 6653 6654 file = kzalloc(sizeof(*file), GFP_NOIO); 6655 if (!file) 6656 return -ENOMEM; 6657 6658 err = 0; 6659 spin_lock(&mddev->lock); 6660 /* bitmap enabled */ 6661 if (mddev->bitmap_info.file) { 6662 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6663 sizeof(file->pathname)); 6664 if (IS_ERR(ptr)) 6665 err = PTR_ERR(ptr); 6666 else 6667 memmove(file->pathname, ptr, 6668 sizeof(file->pathname)-(ptr-file->pathname)); 6669 } 6670 spin_unlock(&mddev->lock); 6671 6672 if (err == 0 && 6673 copy_to_user(arg, file, sizeof(*file))) 6674 err = -EFAULT; 6675 6676 kfree(file); 6677 return err; 6678 } 6679 6680 static int get_disk_info(struct mddev *mddev, void __user * arg) 6681 { 6682 mdu_disk_info_t info; 6683 struct md_rdev *rdev; 6684 6685 if (copy_from_user(&info, arg, sizeof(info))) 6686 return -EFAULT; 6687 6688 rcu_read_lock(); 6689 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6690 if (rdev) { 6691 info.major = MAJOR(rdev->bdev->bd_dev); 6692 info.minor = MINOR(rdev->bdev->bd_dev); 6693 info.raid_disk = rdev->raid_disk; 6694 info.state = 0; 6695 if (test_bit(Faulty, &rdev->flags)) 6696 info.state |= (1<<MD_DISK_FAULTY); 6697 else if (test_bit(In_sync, &rdev->flags)) { 6698 info.state |= (1<<MD_DISK_ACTIVE); 6699 info.state |= (1<<MD_DISK_SYNC); 6700 } 6701 if (test_bit(Journal, &rdev->flags)) 6702 info.state |= (1<<MD_DISK_JOURNAL); 6703 if (test_bit(WriteMostly, &rdev->flags)) 6704 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6705 if (test_bit(FailFast, &rdev->flags)) 6706 info.state |= (1<<MD_DISK_FAILFAST); 6707 } else { 6708 info.major = info.minor = 0; 6709 info.raid_disk = -1; 6710 info.state = (1<<MD_DISK_REMOVED); 6711 } 6712 rcu_read_unlock(); 6713 6714 if (copy_to_user(arg, &info, sizeof(info))) 6715 return -EFAULT; 6716 6717 return 0; 6718 } 6719 6720 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6721 { 6722 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6723 struct md_rdev *rdev; 6724 dev_t dev = MKDEV(info->major,info->minor); 6725 6726 if (mddev_is_clustered(mddev) && 6727 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6728 pr_warn("%s: Cannot add to clustered mddev.\n", 6729 mdname(mddev)); 6730 return -EINVAL; 6731 } 6732 6733 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6734 return -EOVERFLOW; 6735 6736 if (!mddev->raid_disks) { 6737 int err; 6738 /* expecting a device which has a superblock */ 6739 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6740 if (IS_ERR(rdev)) { 6741 pr_warn("md: md_import_device returned %ld\n", 6742 PTR_ERR(rdev)); 6743 return PTR_ERR(rdev); 6744 } 6745 if (!list_empty(&mddev->disks)) { 6746 struct md_rdev *rdev0 6747 = list_entry(mddev->disks.next, 6748 struct md_rdev, same_set); 6749 err = super_types[mddev->major_version] 6750 .load_super(rdev, rdev0, mddev->minor_version); 6751 if (err < 0) { 6752 pr_warn("md: %s has different UUID to %s\n", 6753 bdevname(rdev->bdev,b), 6754 bdevname(rdev0->bdev,b2)); 6755 export_rdev(rdev); 6756 return -EINVAL; 6757 } 6758 } 6759 err = bind_rdev_to_array(rdev, mddev); 6760 if (err) 6761 export_rdev(rdev); 6762 return err; 6763 } 6764 6765 /* 6766 * md_add_new_disk can be used once the array is assembled 6767 * to add "hot spares". They must already have a superblock 6768 * written 6769 */ 6770 if (mddev->pers) { 6771 int err; 6772 if (!mddev->pers->hot_add_disk) { 6773 pr_warn("%s: personality does not support diskops!\n", 6774 mdname(mddev)); 6775 return -EINVAL; 6776 } 6777 if (mddev->persistent) 6778 rdev = md_import_device(dev, mddev->major_version, 6779 mddev->minor_version); 6780 else 6781 rdev = md_import_device(dev, -1, -1); 6782 if (IS_ERR(rdev)) { 6783 pr_warn("md: md_import_device returned %ld\n", 6784 PTR_ERR(rdev)); 6785 return PTR_ERR(rdev); 6786 } 6787 /* set saved_raid_disk if appropriate */ 6788 if (!mddev->persistent) { 6789 if (info->state & (1<<MD_DISK_SYNC) && 6790 info->raid_disk < mddev->raid_disks) { 6791 rdev->raid_disk = info->raid_disk; 6792 set_bit(In_sync, &rdev->flags); 6793 clear_bit(Bitmap_sync, &rdev->flags); 6794 } else 6795 rdev->raid_disk = -1; 6796 rdev->saved_raid_disk = rdev->raid_disk; 6797 } else 6798 super_types[mddev->major_version]. 6799 validate_super(mddev, rdev); 6800 if ((info->state & (1<<MD_DISK_SYNC)) && 6801 rdev->raid_disk != info->raid_disk) { 6802 /* This was a hot-add request, but events doesn't 6803 * match, so reject it. 6804 */ 6805 export_rdev(rdev); 6806 return -EINVAL; 6807 } 6808 6809 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6810 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6811 set_bit(WriteMostly, &rdev->flags); 6812 else 6813 clear_bit(WriteMostly, &rdev->flags); 6814 if (info->state & (1<<MD_DISK_FAILFAST)) 6815 set_bit(FailFast, &rdev->flags); 6816 else 6817 clear_bit(FailFast, &rdev->flags); 6818 6819 if (info->state & (1<<MD_DISK_JOURNAL)) { 6820 struct md_rdev *rdev2; 6821 bool has_journal = false; 6822 6823 /* make sure no existing journal disk */ 6824 rdev_for_each(rdev2, mddev) { 6825 if (test_bit(Journal, &rdev2->flags)) { 6826 has_journal = true; 6827 break; 6828 } 6829 } 6830 if (has_journal || mddev->bitmap) { 6831 export_rdev(rdev); 6832 return -EBUSY; 6833 } 6834 set_bit(Journal, &rdev->flags); 6835 } 6836 /* 6837 * check whether the device shows up in other nodes 6838 */ 6839 if (mddev_is_clustered(mddev)) { 6840 if (info->state & (1 << MD_DISK_CANDIDATE)) 6841 set_bit(Candidate, &rdev->flags); 6842 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6843 /* --add initiated by this node */ 6844 err = md_cluster_ops->add_new_disk(mddev, rdev); 6845 if (err) { 6846 export_rdev(rdev); 6847 return err; 6848 } 6849 } 6850 } 6851 6852 rdev->raid_disk = -1; 6853 err = bind_rdev_to_array(rdev, mddev); 6854 6855 if (err) 6856 export_rdev(rdev); 6857 6858 if (mddev_is_clustered(mddev)) { 6859 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6860 if (!err) { 6861 err = md_cluster_ops->new_disk_ack(mddev, 6862 err == 0); 6863 if (err) 6864 md_kick_rdev_from_array(rdev); 6865 } 6866 } else { 6867 if (err) 6868 md_cluster_ops->add_new_disk_cancel(mddev); 6869 else 6870 err = add_bound_rdev(rdev); 6871 } 6872 6873 } else if (!err) 6874 err = add_bound_rdev(rdev); 6875 6876 return err; 6877 } 6878 6879 /* otherwise, md_add_new_disk is only allowed 6880 * for major_version==0 superblocks 6881 */ 6882 if (mddev->major_version != 0) { 6883 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6884 return -EINVAL; 6885 } 6886 6887 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6888 int err; 6889 rdev = md_import_device(dev, -1, 0); 6890 if (IS_ERR(rdev)) { 6891 pr_warn("md: error, md_import_device() returned %ld\n", 6892 PTR_ERR(rdev)); 6893 return PTR_ERR(rdev); 6894 } 6895 rdev->desc_nr = info->number; 6896 if (info->raid_disk < mddev->raid_disks) 6897 rdev->raid_disk = info->raid_disk; 6898 else 6899 rdev->raid_disk = -1; 6900 6901 if (rdev->raid_disk < mddev->raid_disks) 6902 if (info->state & (1<<MD_DISK_SYNC)) 6903 set_bit(In_sync, &rdev->flags); 6904 6905 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6906 set_bit(WriteMostly, &rdev->flags); 6907 if (info->state & (1<<MD_DISK_FAILFAST)) 6908 set_bit(FailFast, &rdev->flags); 6909 6910 if (!mddev->persistent) { 6911 pr_debug("md: nonpersistent superblock ...\n"); 6912 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6913 } else 6914 rdev->sb_start = calc_dev_sboffset(rdev); 6915 rdev->sectors = rdev->sb_start; 6916 6917 err = bind_rdev_to_array(rdev, mddev); 6918 if (err) { 6919 export_rdev(rdev); 6920 return err; 6921 } 6922 } 6923 6924 return 0; 6925 } 6926 6927 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6928 { 6929 char b[BDEVNAME_SIZE]; 6930 struct md_rdev *rdev; 6931 6932 if (!mddev->pers) 6933 return -ENODEV; 6934 6935 rdev = find_rdev(mddev, dev); 6936 if (!rdev) 6937 return -ENXIO; 6938 6939 if (rdev->raid_disk < 0) 6940 goto kick_rdev; 6941 6942 clear_bit(Blocked, &rdev->flags); 6943 remove_and_add_spares(mddev, rdev); 6944 6945 if (rdev->raid_disk >= 0) 6946 goto busy; 6947 6948 kick_rdev: 6949 if (mddev_is_clustered(mddev)) 6950 md_cluster_ops->remove_disk(mddev, rdev); 6951 6952 md_kick_rdev_from_array(rdev); 6953 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6954 if (mddev->thread) 6955 md_wakeup_thread(mddev->thread); 6956 else 6957 md_update_sb(mddev, 1); 6958 md_new_event(mddev); 6959 6960 return 0; 6961 busy: 6962 pr_debug("md: cannot remove active disk %s from %s ...\n", 6963 bdevname(rdev->bdev,b), mdname(mddev)); 6964 return -EBUSY; 6965 } 6966 6967 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6968 { 6969 char b[BDEVNAME_SIZE]; 6970 int err; 6971 struct md_rdev *rdev; 6972 6973 if (!mddev->pers) 6974 return -ENODEV; 6975 6976 if (mddev->major_version != 0) { 6977 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6978 mdname(mddev)); 6979 return -EINVAL; 6980 } 6981 if (!mddev->pers->hot_add_disk) { 6982 pr_warn("%s: personality does not support diskops!\n", 6983 mdname(mddev)); 6984 return -EINVAL; 6985 } 6986 6987 rdev = md_import_device(dev, -1, 0); 6988 if (IS_ERR(rdev)) { 6989 pr_warn("md: error, md_import_device() returned %ld\n", 6990 PTR_ERR(rdev)); 6991 return -EINVAL; 6992 } 6993 6994 if (mddev->persistent) 6995 rdev->sb_start = calc_dev_sboffset(rdev); 6996 else 6997 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6998 6999 rdev->sectors = rdev->sb_start; 7000 7001 if (test_bit(Faulty, &rdev->flags)) { 7002 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 7003 bdevname(rdev->bdev,b), mdname(mddev)); 7004 err = -EINVAL; 7005 goto abort_export; 7006 } 7007 7008 clear_bit(In_sync, &rdev->flags); 7009 rdev->desc_nr = -1; 7010 rdev->saved_raid_disk = -1; 7011 err = bind_rdev_to_array(rdev, mddev); 7012 if (err) 7013 goto abort_export; 7014 7015 /* 7016 * The rest should better be atomic, we can have disk failures 7017 * noticed in interrupt contexts ... 7018 */ 7019 7020 rdev->raid_disk = -1; 7021 7022 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7023 if (!mddev->thread) 7024 md_update_sb(mddev, 1); 7025 /* 7026 * Kick recovery, maybe this spare has to be added to the 7027 * array immediately. 7028 */ 7029 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7030 md_wakeup_thread(mddev->thread); 7031 md_new_event(mddev); 7032 return 0; 7033 7034 abort_export: 7035 export_rdev(rdev); 7036 return err; 7037 } 7038 7039 static int set_bitmap_file(struct mddev *mddev, int fd) 7040 { 7041 int err = 0; 7042 7043 if (mddev->pers) { 7044 if (!mddev->pers->quiesce || !mddev->thread) 7045 return -EBUSY; 7046 if (mddev->recovery || mddev->sync_thread) 7047 return -EBUSY; 7048 /* we should be able to change the bitmap.. */ 7049 } 7050 7051 if (fd >= 0) { 7052 struct inode *inode; 7053 struct file *f; 7054 7055 if (mddev->bitmap || mddev->bitmap_info.file) 7056 return -EEXIST; /* cannot add when bitmap is present */ 7057 f = fget(fd); 7058 7059 if (f == NULL) { 7060 pr_warn("%s: error: failed to get bitmap file\n", 7061 mdname(mddev)); 7062 return -EBADF; 7063 } 7064 7065 inode = f->f_mapping->host; 7066 if (!S_ISREG(inode->i_mode)) { 7067 pr_warn("%s: error: bitmap file must be a regular file\n", 7068 mdname(mddev)); 7069 err = -EBADF; 7070 } else if (!(f->f_mode & FMODE_WRITE)) { 7071 pr_warn("%s: error: bitmap file must open for write\n", 7072 mdname(mddev)); 7073 err = -EBADF; 7074 } else if (atomic_read(&inode->i_writecount) != 1) { 7075 pr_warn("%s: error: bitmap file is already in use\n", 7076 mdname(mddev)); 7077 err = -EBUSY; 7078 } 7079 if (err) { 7080 fput(f); 7081 return err; 7082 } 7083 mddev->bitmap_info.file = f; 7084 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7085 } else if (mddev->bitmap == NULL) 7086 return -ENOENT; /* cannot remove what isn't there */ 7087 err = 0; 7088 if (mddev->pers) { 7089 if (fd >= 0) { 7090 struct bitmap *bitmap; 7091 7092 bitmap = md_bitmap_create(mddev, -1); 7093 mddev_suspend(mddev); 7094 if (!IS_ERR(bitmap)) { 7095 mddev->bitmap = bitmap; 7096 err = md_bitmap_load(mddev); 7097 } else 7098 err = PTR_ERR(bitmap); 7099 if (err) { 7100 md_bitmap_destroy(mddev); 7101 fd = -1; 7102 } 7103 mddev_resume(mddev); 7104 } else if (fd < 0) { 7105 mddev_suspend(mddev); 7106 md_bitmap_destroy(mddev); 7107 mddev_resume(mddev); 7108 } 7109 } 7110 if (fd < 0) { 7111 struct file *f = mddev->bitmap_info.file; 7112 if (f) { 7113 spin_lock(&mddev->lock); 7114 mddev->bitmap_info.file = NULL; 7115 spin_unlock(&mddev->lock); 7116 fput(f); 7117 } 7118 } 7119 7120 return err; 7121 } 7122 7123 /* 7124 * md_set_array_info is used two different ways 7125 * The original usage is when creating a new array. 7126 * In this usage, raid_disks is > 0 and it together with 7127 * level, size, not_persistent,layout,chunksize determine the 7128 * shape of the array. 7129 * This will always create an array with a type-0.90.0 superblock. 7130 * The newer usage is when assembling an array. 7131 * In this case raid_disks will be 0, and the major_version field is 7132 * use to determine which style super-blocks are to be found on the devices. 7133 * The minor and patch _version numbers are also kept incase the 7134 * super_block handler wishes to interpret them. 7135 */ 7136 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7137 { 7138 if (info->raid_disks == 0) { 7139 /* just setting version number for superblock loading */ 7140 if (info->major_version < 0 || 7141 info->major_version >= ARRAY_SIZE(super_types) || 7142 super_types[info->major_version].name == NULL) { 7143 /* maybe try to auto-load a module? */ 7144 pr_warn("md: superblock version %d not known\n", 7145 info->major_version); 7146 return -EINVAL; 7147 } 7148 mddev->major_version = info->major_version; 7149 mddev->minor_version = info->minor_version; 7150 mddev->patch_version = info->patch_version; 7151 mddev->persistent = !info->not_persistent; 7152 /* ensure mddev_put doesn't delete this now that there 7153 * is some minimal configuration. 7154 */ 7155 mddev->ctime = ktime_get_real_seconds(); 7156 return 0; 7157 } 7158 mddev->major_version = MD_MAJOR_VERSION; 7159 mddev->minor_version = MD_MINOR_VERSION; 7160 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7161 mddev->ctime = ktime_get_real_seconds(); 7162 7163 mddev->level = info->level; 7164 mddev->clevel[0] = 0; 7165 mddev->dev_sectors = 2 * (sector_t)info->size; 7166 mddev->raid_disks = info->raid_disks; 7167 /* don't set md_minor, it is determined by which /dev/md* was 7168 * openned 7169 */ 7170 if (info->state & (1<<MD_SB_CLEAN)) 7171 mddev->recovery_cp = MaxSector; 7172 else 7173 mddev->recovery_cp = 0; 7174 mddev->persistent = ! info->not_persistent; 7175 mddev->external = 0; 7176 7177 mddev->layout = info->layout; 7178 if (mddev->level == 0) 7179 /* Cannot trust RAID0 layout info here */ 7180 mddev->layout = -1; 7181 mddev->chunk_sectors = info->chunk_size >> 9; 7182 7183 if (mddev->persistent) { 7184 mddev->max_disks = MD_SB_DISKS; 7185 mddev->flags = 0; 7186 mddev->sb_flags = 0; 7187 } 7188 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7189 7190 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7191 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7192 mddev->bitmap_info.offset = 0; 7193 7194 mddev->reshape_position = MaxSector; 7195 7196 /* 7197 * Generate a 128 bit UUID 7198 */ 7199 get_random_bytes(mddev->uuid, 16); 7200 7201 mddev->new_level = mddev->level; 7202 mddev->new_chunk_sectors = mddev->chunk_sectors; 7203 mddev->new_layout = mddev->layout; 7204 mddev->delta_disks = 0; 7205 mddev->reshape_backwards = 0; 7206 7207 return 0; 7208 } 7209 7210 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7211 { 7212 lockdep_assert_held(&mddev->reconfig_mutex); 7213 7214 if (mddev->external_size) 7215 return; 7216 7217 mddev->array_sectors = array_sectors; 7218 } 7219 EXPORT_SYMBOL(md_set_array_sectors); 7220 7221 static int update_size(struct mddev *mddev, sector_t num_sectors) 7222 { 7223 struct md_rdev *rdev; 7224 int rv; 7225 int fit = (num_sectors == 0); 7226 sector_t old_dev_sectors = mddev->dev_sectors; 7227 7228 if (mddev->pers->resize == NULL) 7229 return -EINVAL; 7230 /* The "num_sectors" is the number of sectors of each device that 7231 * is used. This can only make sense for arrays with redundancy. 7232 * linear and raid0 always use whatever space is available. We can only 7233 * consider changing this number if no resync or reconstruction is 7234 * happening, and if the new size is acceptable. It must fit before the 7235 * sb_start or, if that is <data_offset, it must fit before the size 7236 * of each device. If num_sectors is zero, we find the largest size 7237 * that fits. 7238 */ 7239 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7240 mddev->sync_thread) 7241 return -EBUSY; 7242 if (mddev->ro) 7243 return -EROFS; 7244 7245 rdev_for_each(rdev, mddev) { 7246 sector_t avail = rdev->sectors; 7247 7248 if (fit && (num_sectors == 0 || num_sectors > avail)) 7249 num_sectors = avail; 7250 if (avail < num_sectors) 7251 return -ENOSPC; 7252 } 7253 rv = mddev->pers->resize(mddev, num_sectors); 7254 if (!rv) { 7255 if (mddev_is_clustered(mddev)) 7256 md_cluster_ops->update_size(mddev, old_dev_sectors); 7257 else if (mddev->queue) { 7258 set_capacity(mddev->gendisk, mddev->array_sectors); 7259 revalidate_disk(mddev->gendisk); 7260 } 7261 } 7262 return rv; 7263 } 7264 7265 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7266 { 7267 int rv; 7268 struct md_rdev *rdev; 7269 /* change the number of raid disks */ 7270 if (mddev->pers->check_reshape == NULL) 7271 return -EINVAL; 7272 if (mddev->ro) 7273 return -EROFS; 7274 if (raid_disks <= 0 || 7275 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7276 return -EINVAL; 7277 if (mddev->sync_thread || 7278 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7279 mddev->reshape_position != MaxSector) 7280 return -EBUSY; 7281 7282 rdev_for_each(rdev, mddev) { 7283 if (mddev->raid_disks < raid_disks && 7284 rdev->data_offset < rdev->new_data_offset) 7285 return -EINVAL; 7286 if (mddev->raid_disks > raid_disks && 7287 rdev->data_offset > rdev->new_data_offset) 7288 return -EINVAL; 7289 } 7290 7291 mddev->delta_disks = raid_disks - mddev->raid_disks; 7292 if (mddev->delta_disks < 0) 7293 mddev->reshape_backwards = 1; 7294 else if (mddev->delta_disks > 0) 7295 mddev->reshape_backwards = 0; 7296 7297 rv = mddev->pers->check_reshape(mddev); 7298 if (rv < 0) { 7299 mddev->delta_disks = 0; 7300 mddev->reshape_backwards = 0; 7301 } 7302 return rv; 7303 } 7304 7305 /* 7306 * update_array_info is used to change the configuration of an 7307 * on-line array. 7308 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7309 * fields in the info are checked against the array. 7310 * Any differences that cannot be handled will cause an error. 7311 * Normally, only one change can be managed at a time. 7312 */ 7313 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7314 { 7315 int rv = 0; 7316 int cnt = 0; 7317 int state = 0; 7318 7319 /* calculate expected state,ignoring low bits */ 7320 if (mddev->bitmap && mddev->bitmap_info.offset) 7321 state |= (1 << MD_SB_BITMAP_PRESENT); 7322 7323 if (mddev->major_version != info->major_version || 7324 mddev->minor_version != info->minor_version || 7325 /* mddev->patch_version != info->patch_version || */ 7326 mddev->ctime != info->ctime || 7327 mddev->level != info->level || 7328 /* mddev->layout != info->layout || */ 7329 mddev->persistent != !info->not_persistent || 7330 mddev->chunk_sectors != info->chunk_size >> 9 || 7331 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7332 ((state^info->state) & 0xfffffe00) 7333 ) 7334 return -EINVAL; 7335 /* Check there is only one change */ 7336 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7337 cnt++; 7338 if (mddev->raid_disks != info->raid_disks) 7339 cnt++; 7340 if (mddev->layout != info->layout) 7341 cnt++; 7342 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7343 cnt++; 7344 if (cnt == 0) 7345 return 0; 7346 if (cnt > 1) 7347 return -EINVAL; 7348 7349 if (mddev->layout != info->layout) { 7350 /* Change layout 7351 * we don't need to do anything at the md level, the 7352 * personality will take care of it all. 7353 */ 7354 if (mddev->pers->check_reshape == NULL) 7355 return -EINVAL; 7356 else { 7357 mddev->new_layout = info->layout; 7358 rv = mddev->pers->check_reshape(mddev); 7359 if (rv) 7360 mddev->new_layout = mddev->layout; 7361 return rv; 7362 } 7363 } 7364 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7365 rv = update_size(mddev, (sector_t)info->size * 2); 7366 7367 if (mddev->raid_disks != info->raid_disks) 7368 rv = update_raid_disks(mddev, info->raid_disks); 7369 7370 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7371 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7372 rv = -EINVAL; 7373 goto err; 7374 } 7375 if (mddev->recovery || mddev->sync_thread) { 7376 rv = -EBUSY; 7377 goto err; 7378 } 7379 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7380 struct bitmap *bitmap; 7381 /* add the bitmap */ 7382 if (mddev->bitmap) { 7383 rv = -EEXIST; 7384 goto err; 7385 } 7386 if (mddev->bitmap_info.default_offset == 0) { 7387 rv = -EINVAL; 7388 goto err; 7389 } 7390 mddev->bitmap_info.offset = 7391 mddev->bitmap_info.default_offset; 7392 mddev->bitmap_info.space = 7393 mddev->bitmap_info.default_space; 7394 bitmap = md_bitmap_create(mddev, -1); 7395 mddev_suspend(mddev); 7396 if (!IS_ERR(bitmap)) { 7397 mddev->bitmap = bitmap; 7398 rv = md_bitmap_load(mddev); 7399 } else 7400 rv = PTR_ERR(bitmap); 7401 if (rv) 7402 md_bitmap_destroy(mddev); 7403 mddev_resume(mddev); 7404 } else { 7405 /* remove the bitmap */ 7406 if (!mddev->bitmap) { 7407 rv = -ENOENT; 7408 goto err; 7409 } 7410 if (mddev->bitmap->storage.file) { 7411 rv = -EINVAL; 7412 goto err; 7413 } 7414 if (mddev->bitmap_info.nodes) { 7415 /* hold PW on all the bitmap lock */ 7416 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7417 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7418 rv = -EPERM; 7419 md_cluster_ops->unlock_all_bitmaps(mddev); 7420 goto err; 7421 } 7422 7423 mddev->bitmap_info.nodes = 0; 7424 md_cluster_ops->leave(mddev); 7425 module_put(md_cluster_mod); 7426 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7427 } 7428 mddev_suspend(mddev); 7429 md_bitmap_destroy(mddev); 7430 mddev_resume(mddev); 7431 mddev->bitmap_info.offset = 0; 7432 } 7433 } 7434 md_update_sb(mddev, 1); 7435 return rv; 7436 err: 7437 return rv; 7438 } 7439 7440 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7441 { 7442 struct md_rdev *rdev; 7443 int err = 0; 7444 7445 if (mddev->pers == NULL) 7446 return -ENODEV; 7447 7448 rcu_read_lock(); 7449 rdev = md_find_rdev_rcu(mddev, dev); 7450 if (!rdev) 7451 err = -ENODEV; 7452 else { 7453 md_error(mddev, rdev); 7454 if (!test_bit(Faulty, &rdev->flags)) 7455 err = -EBUSY; 7456 } 7457 rcu_read_unlock(); 7458 return err; 7459 } 7460 7461 /* 7462 * We have a problem here : there is no easy way to give a CHS 7463 * virtual geometry. We currently pretend that we have a 2 heads 7464 * 4 sectors (with a BIG number of cylinders...). This drives 7465 * dosfs just mad... ;-) 7466 */ 7467 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7468 { 7469 struct mddev *mddev = bdev->bd_disk->private_data; 7470 7471 geo->heads = 2; 7472 geo->sectors = 4; 7473 geo->cylinders = mddev->array_sectors / 8; 7474 return 0; 7475 } 7476 7477 static inline bool md_ioctl_valid(unsigned int cmd) 7478 { 7479 switch (cmd) { 7480 case ADD_NEW_DISK: 7481 case BLKROSET: 7482 case GET_ARRAY_INFO: 7483 case GET_BITMAP_FILE: 7484 case GET_DISK_INFO: 7485 case HOT_ADD_DISK: 7486 case HOT_REMOVE_DISK: 7487 case RAID_VERSION: 7488 case RESTART_ARRAY_RW: 7489 case RUN_ARRAY: 7490 case SET_ARRAY_INFO: 7491 case SET_BITMAP_FILE: 7492 case SET_DISK_FAULTY: 7493 case STOP_ARRAY: 7494 case STOP_ARRAY_RO: 7495 case CLUSTERED_DISK_NACK: 7496 return true; 7497 default: 7498 return false; 7499 } 7500 } 7501 7502 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7503 unsigned int cmd, unsigned long arg) 7504 { 7505 int err = 0; 7506 void __user *argp = (void __user *)arg; 7507 struct mddev *mddev = NULL; 7508 int ro; 7509 bool did_set_md_closing = false; 7510 7511 if (!md_ioctl_valid(cmd)) 7512 return -ENOTTY; 7513 7514 switch (cmd) { 7515 case RAID_VERSION: 7516 case GET_ARRAY_INFO: 7517 case GET_DISK_INFO: 7518 break; 7519 default: 7520 if (!capable(CAP_SYS_ADMIN)) 7521 return -EACCES; 7522 } 7523 7524 /* 7525 * Commands dealing with the RAID driver but not any 7526 * particular array: 7527 */ 7528 switch (cmd) { 7529 case RAID_VERSION: 7530 err = get_version(argp); 7531 goto out; 7532 default:; 7533 } 7534 7535 /* 7536 * Commands creating/starting a new array: 7537 */ 7538 7539 mddev = bdev->bd_disk->private_data; 7540 7541 if (!mddev) { 7542 BUG(); 7543 goto out; 7544 } 7545 7546 /* Some actions do not requires the mutex */ 7547 switch (cmd) { 7548 case GET_ARRAY_INFO: 7549 if (!mddev->raid_disks && !mddev->external) 7550 err = -ENODEV; 7551 else 7552 err = get_array_info(mddev, argp); 7553 goto out; 7554 7555 case GET_DISK_INFO: 7556 if (!mddev->raid_disks && !mddev->external) 7557 err = -ENODEV; 7558 else 7559 err = get_disk_info(mddev, argp); 7560 goto out; 7561 7562 case SET_DISK_FAULTY: 7563 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7564 goto out; 7565 7566 case GET_BITMAP_FILE: 7567 err = get_bitmap_file(mddev, argp); 7568 goto out; 7569 7570 } 7571 7572 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7573 flush_rdev_wq(mddev); 7574 7575 if (cmd == HOT_REMOVE_DISK) 7576 /* need to ensure recovery thread has run */ 7577 wait_event_interruptible_timeout(mddev->sb_wait, 7578 !test_bit(MD_RECOVERY_NEEDED, 7579 &mddev->recovery), 7580 msecs_to_jiffies(5000)); 7581 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7582 /* Need to flush page cache, and ensure no-one else opens 7583 * and writes 7584 */ 7585 mutex_lock(&mddev->open_mutex); 7586 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7587 mutex_unlock(&mddev->open_mutex); 7588 err = -EBUSY; 7589 goto out; 7590 } 7591 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7592 set_bit(MD_CLOSING, &mddev->flags); 7593 did_set_md_closing = true; 7594 mutex_unlock(&mddev->open_mutex); 7595 sync_blockdev(bdev); 7596 } 7597 err = mddev_lock(mddev); 7598 if (err) { 7599 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7600 err, cmd); 7601 goto out; 7602 } 7603 7604 if (cmd == SET_ARRAY_INFO) { 7605 mdu_array_info_t info; 7606 if (!arg) 7607 memset(&info, 0, sizeof(info)); 7608 else if (copy_from_user(&info, argp, sizeof(info))) { 7609 err = -EFAULT; 7610 goto unlock; 7611 } 7612 if (mddev->pers) { 7613 err = update_array_info(mddev, &info); 7614 if (err) { 7615 pr_warn("md: couldn't update array info. %d\n", err); 7616 goto unlock; 7617 } 7618 goto unlock; 7619 } 7620 if (!list_empty(&mddev->disks)) { 7621 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7622 err = -EBUSY; 7623 goto unlock; 7624 } 7625 if (mddev->raid_disks) { 7626 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7627 err = -EBUSY; 7628 goto unlock; 7629 } 7630 err = md_set_array_info(mddev, &info); 7631 if (err) { 7632 pr_warn("md: couldn't set array info. %d\n", err); 7633 goto unlock; 7634 } 7635 goto unlock; 7636 } 7637 7638 /* 7639 * Commands querying/configuring an existing array: 7640 */ 7641 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7642 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7643 if ((!mddev->raid_disks && !mddev->external) 7644 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7645 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7646 && cmd != GET_BITMAP_FILE) { 7647 err = -ENODEV; 7648 goto unlock; 7649 } 7650 7651 /* 7652 * Commands even a read-only array can execute: 7653 */ 7654 switch (cmd) { 7655 case RESTART_ARRAY_RW: 7656 err = restart_array(mddev); 7657 goto unlock; 7658 7659 case STOP_ARRAY: 7660 err = do_md_stop(mddev, 0, bdev); 7661 goto unlock; 7662 7663 case STOP_ARRAY_RO: 7664 err = md_set_readonly(mddev, bdev); 7665 goto unlock; 7666 7667 case HOT_REMOVE_DISK: 7668 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7669 goto unlock; 7670 7671 case ADD_NEW_DISK: 7672 /* We can support ADD_NEW_DISK on read-only arrays 7673 * only if we are re-adding a preexisting device. 7674 * So require mddev->pers and MD_DISK_SYNC. 7675 */ 7676 if (mddev->pers) { 7677 mdu_disk_info_t info; 7678 if (copy_from_user(&info, argp, sizeof(info))) 7679 err = -EFAULT; 7680 else if (!(info.state & (1<<MD_DISK_SYNC))) 7681 /* Need to clear read-only for this */ 7682 break; 7683 else 7684 err = md_add_new_disk(mddev, &info); 7685 goto unlock; 7686 } 7687 break; 7688 7689 case BLKROSET: 7690 if (get_user(ro, (int __user *)(arg))) { 7691 err = -EFAULT; 7692 goto unlock; 7693 } 7694 err = -EINVAL; 7695 7696 /* if the bdev is going readonly the value of mddev->ro 7697 * does not matter, no writes are coming 7698 */ 7699 if (ro) 7700 goto unlock; 7701 7702 /* are we are already prepared for writes? */ 7703 if (mddev->ro != 1) 7704 goto unlock; 7705 7706 /* transitioning to readauto need only happen for 7707 * arrays that call md_write_start 7708 */ 7709 if (mddev->pers) { 7710 err = restart_array(mddev); 7711 if (err == 0) { 7712 mddev->ro = 2; 7713 set_disk_ro(mddev->gendisk, 0); 7714 } 7715 } 7716 goto unlock; 7717 } 7718 7719 /* 7720 * The remaining ioctls are changing the state of the 7721 * superblock, so we do not allow them on read-only arrays. 7722 */ 7723 if (mddev->ro && mddev->pers) { 7724 if (mddev->ro == 2) { 7725 mddev->ro = 0; 7726 sysfs_notify_dirent_safe(mddev->sysfs_state); 7727 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7728 /* mddev_unlock will wake thread */ 7729 /* If a device failed while we were read-only, we 7730 * need to make sure the metadata is updated now. 7731 */ 7732 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7733 mddev_unlock(mddev); 7734 wait_event(mddev->sb_wait, 7735 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7736 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7737 mddev_lock_nointr(mddev); 7738 } 7739 } else { 7740 err = -EROFS; 7741 goto unlock; 7742 } 7743 } 7744 7745 switch (cmd) { 7746 case ADD_NEW_DISK: 7747 { 7748 mdu_disk_info_t info; 7749 if (copy_from_user(&info, argp, sizeof(info))) 7750 err = -EFAULT; 7751 else 7752 err = md_add_new_disk(mddev, &info); 7753 goto unlock; 7754 } 7755 7756 case CLUSTERED_DISK_NACK: 7757 if (mddev_is_clustered(mddev)) 7758 md_cluster_ops->new_disk_ack(mddev, false); 7759 else 7760 err = -EINVAL; 7761 goto unlock; 7762 7763 case HOT_ADD_DISK: 7764 err = hot_add_disk(mddev, new_decode_dev(arg)); 7765 goto unlock; 7766 7767 case RUN_ARRAY: 7768 err = do_md_run(mddev); 7769 goto unlock; 7770 7771 case SET_BITMAP_FILE: 7772 err = set_bitmap_file(mddev, (int)arg); 7773 goto unlock; 7774 7775 default: 7776 err = -EINVAL; 7777 goto unlock; 7778 } 7779 7780 unlock: 7781 if (mddev->hold_active == UNTIL_IOCTL && 7782 err != -EINVAL) 7783 mddev->hold_active = 0; 7784 mddev_unlock(mddev); 7785 out: 7786 if(did_set_md_closing) 7787 clear_bit(MD_CLOSING, &mddev->flags); 7788 return err; 7789 } 7790 #ifdef CONFIG_COMPAT 7791 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7792 unsigned int cmd, unsigned long arg) 7793 { 7794 switch (cmd) { 7795 case HOT_REMOVE_DISK: 7796 case HOT_ADD_DISK: 7797 case SET_DISK_FAULTY: 7798 case SET_BITMAP_FILE: 7799 /* These take in integer arg, do not convert */ 7800 break; 7801 default: 7802 arg = (unsigned long)compat_ptr(arg); 7803 break; 7804 } 7805 7806 return md_ioctl(bdev, mode, cmd, arg); 7807 } 7808 #endif /* CONFIG_COMPAT */ 7809 7810 static int md_open(struct block_device *bdev, fmode_t mode) 7811 { 7812 /* 7813 * Succeed if we can lock the mddev, which confirms that 7814 * it isn't being stopped right now. 7815 */ 7816 struct mddev *mddev = mddev_find(bdev->bd_dev); 7817 int err; 7818 7819 if (!mddev) 7820 return -ENODEV; 7821 7822 if (mddev->gendisk != bdev->bd_disk) { 7823 /* we are racing with mddev_put which is discarding this 7824 * bd_disk. 7825 */ 7826 mddev_put(mddev); 7827 /* Wait until bdev->bd_disk is definitely gone */ 7828 if (work_pending(&mddev->del_work)) 7829 flush_workqueue(md_misc_wq); 7830 /* Then retry the open from the top */ 7831 return -ERESTARTSYS; 7832 } 7833 BUG_ON(mddev != bdev->bd_disk->private_data); 7834 7835 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7836 goto out; 7837 7838 if (test_bit(MD_CLOSING, &mddev->flags)) { 7839 mutex_unlock(&mddev->open_mutex); 7840 err = -ENODEV; 7841 goto out; 7842 } 7843 7844 err = 0; 7845 atomic_inc(&mddev->openers); 7846 mutex_unlock(&mddev->open_mutex); 7847 7848 check_disk_change(bdev); 7849 out: 7850 if (err) 7851 mddev_put(mddev); 7852 return err; 7853 } 7854 7855 static void md_release(struct gendisk *disk, fmode_t mode) 7856 { 7857 struct mddev *mddev = disk->private_data; 7858 7859 BUG_ON(!mddev); 7860 atomic_dec(&mddev->openers); 7861 mddev_put(mddev); 7862 } 7863 7864 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7865 { 7866 struct mddev *mddev = disk->private_data; 7867 unsigned int ret = 0; 7868 7869 if (mddev->changed) 7870 ret = DISK_EVENT_MEDIA_CHANGE; 7871 mddev->changed = 0; 7872 return ret; 7873 } 7874 7875 const struct block_device_operations md_fops = 7876 { 7877 .owner = THIS_MODULE, 7878 .submit_bio = md_submit_bio, 7879 .open = md_open, 7880 .release = md_release, 7881 .ioctl = md_ioctl, 7882 #ifdef CONFIG_COMPAT 7883 .compat_ioctl = md_compat_ioctl, 7884 #endif 7885 .getgeo = md_getgeo, 7886 .check_events = md_check_events, 7887 }; 7888 7889 static int md_thread(void *arg) 7890 { 7891 struct md_thread *thread = arg; 7892 7893 /* 7894 * md_thread is a 'system-thread', it's priority should be very 7895 * high. We avoid resource deadlocks individually in each 7896 * raid personality. (RAID5 does preallocation) We also use RR and 7897 * the very same RT priority as kswapd, thus we will never get 7898 * into a priority inversion deadlock. 7899 * 7900 * we definitely have to have equal or higher priority than 7901 * bdflush, otherwise bdflush will deadlock if there are too 7902 * many dirty RAID5 blocks. 7903 */ 7904 7905 allow_signal(SIGKILL); 7906 while (!kthread_should_stop()) { 7907 7908 /* We need to wait INTERRUPTIBLE so that 7909 * we don't add to the load-average. 7910 * That means we need to be sure no signals are 7911 * pending 7912 */ 7913 if (signal_pending(current)) 7914 flush_signals(current); 7915 7916 wait_event_interruptible_timeout 7917 (thread->wqueue, 7918 test_bit(THREAD_WAKEUP, &thread->flags) 7919 || kthread_should_stop() || kthread_should_park(), 7920 thread->timeout); 7921 7922 clear_bit(THREAD_WAKEUP, &thread->flags); 7923 if (kthread_should_park()) 7924 kthread_parkme(); 7925 if (!kthread_should_stop()) 7926 thread->run(thread); 7927 } 7928 7929 return 0; 7930 } 7931 7932 void md_wakeup_thread(struct md_thread *thread) 7933 { 7934 if (thread) { 7935 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7936 set_bit(THREAD_WAKEUP, &thread->flags); 7937 wake_up(&thread->wqueue); 7938 } 7939 } 7940 EXPORT_SYMBOL(md_wakeup_thread); 7941 7942 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7943 struct mddev *mddev, const char *name) 7944 { 7945 struct md_thread *thread; 7946 7947 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7948 if (!thread) 7949 return NULL; 7950 7951 init_waitqueue_head(&thread->wqueue); 7952 7953 thread->run = run; 7954 thread->mddev = mddev; 7955 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7956 thread->tsk = kthread_run(md_thread, thread, 7957 "%s_%s", 7958 mdname(thread->mddev), 7959 name); 7960 if (IS_ERR(thread->tsk)) { 7961 kfree(thread); 7962 return NULL; 7963 } 7964 return thread; 7965 } 7966 EXPORT_SYMBOL(md_register_thread); 7967 7968 void md_unregister_thread(struct md_thread **threadp) 7969 { 7970 struct md_thread *thread = *threadp; 7971 if (!thread) 7972 return; 7973 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7974 /* Locking ensures that mddev_unlock does not wake_up a 7975 * non-existent thread 7976 */ 7977 spin_lock(&pers_lock); 7978 *threadp = NULL; 7979 spin_unlock(&pers_lock); 7980 7981 kthread_stop(thread->tsk); 7982 kfree(thread); 7983 } 7984 EXPORT_SYMBOL(md_unregister_thread); 7985 7986 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7987 { 7988 if (!rdev || test_bit(Faulty, &rdev->flags)) 7989 return; 7990 7991 if (!mddev->pers || !mddev->pers->error_handler) 7992 return; 7993 mddev->pers->error_handler(mddev,rdev); 7994 if (mddev->degraded) 7995 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7996 sysfs_notify_dirent_safe(rdev->sysfs_state); 7997 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7998 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7999 md_wakeup_thread(mddev->thread); 8000 if (mddev->event_work.func) 8001 queue_work(md_misc_wq, &mddev->event_work); 8002 md_new_event(mddev); 8003 } 8004 EXPORT_SYMBOL(md_error); 8005 8006 /* seq_file implementation /proc/mdstat */ 8007 8008 static void status_unused(struct seq_file *seq) 8009 { 8010 int i = 0; 8011 struct md_rdev *rdev; 8012 8013 seq_printf(seq, "unused devices: "); 8014 8015 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8016 char b[BDEVNAME_SIZE]; 8017 i++; 8018 seq_printf(seq, "%s ", 8019 bdevname(rdev->bdev,b)); 8020 } 8021 if (!i) 8022 seq_printf(seq, "<none>"); 8023 8024 seq_printf(seq, "\n"); 8025 } 8026 8027 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8028 { 8029 sector_t max_sectors, resync, res; 8030 unsigned long dt, db = 0; 8031 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8032 int scale, recovery_active; 8033 unsigned int per_milli; 8034 8035 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8036 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8037 max_sectors = mddev->resync_max_sectors; 8038 else 8039 max_sectors = mddev->dev_sectors; 8040 8041 resync = mddev->curr_resync; 8042 if (resync <= 3) { 8043 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8044 /* Still cleaning up */ 8045 resync = max_sectors; 8046 } else if (resync > max_sectors) 8047 resync = max_sectors; 8048 else 8049 resync -= atomic_read(&mddev->recovery_active); 8050 8051 if (resync == 0) { 8052 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8053 struct md_rdev *rdev; 8054 8055 rdev_for_each(rdev, mddev) 8056 if (rdev->raid_disk >= 0 && 8057 !test_bit(Faulty, &rdev->flags) && 8058 rdev->recovery_offset != MaxSector && 8059 rdev->recovery_offset) { 8060 seq_printf(seq, "\trecover=REMOTE"); 8061 return 1; 8062 } 8063 if (mddev->reshape_position != MaxSector) 8064 seq_printf(seq, "\treshape=REMOTE"); 8065 else 8066 seq_printf(seq, "\tresync=REMOTE"); 8067 return 1; 8068 } 8069 if (mddev->recovery_cp < MaxSector) { 8070 seq_printf(seq, "\tresync=PENDING"); 8071 return 1; 8072 } 8073 return 0; 8074 } 8075 if (resync < 3) { 8076 seq_printf(seq, "\tresync=DELAYED"); 8077 return 1; 8078 } 8079 8080 WARN_ON(max_sectors == 0); 8081 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8082 * in a sector_t, and (max_sectors>>scale) will fit in a 8083 * u32, as those are the requirements for sector_div. 8084 * Thus 'scale' must be at least 10 8085 */ 8086 scale = 10; 8087 if (sizeof(sector_t) > sizeof(unsigned long)) { 8088 while ( max_sectors/2 > (1ULL<<(scale+32))) 8089 scale++; 8090 } 8091 res = (resync>>scale)*1000; 8092 sector_div(res, (u32)((max_sectors>>scale)+1)); 8093 8094 per_milli = res; 8095 { 8096 int i, x = per_milli/50, y = 20-x; 8097 seq_printf(seq, "["); 8098 for (i = 0; i < x; i++) 8099 seq_printf(seq, "="); 8100 seq_printf(seq, ">"); 8101 for (i = 0; i < y; i++) 8102 seq_printf(seq, "."); 8103 seq_printf(seq, "] "); 8104 } 8105 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8106 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8107 "reshape" : 8108 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8109 "check" : 8110 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8111 "resync" : "recovery"))), 8112 per_milli/10, per_milli % 10, 8113 (unsigned long long) resync/2, 8114 (unsigned long long) max_sectors/2); 8115 8116 /* 8117 * dt: time from mark until now 8118 * db: blocks written from mark until now 8119 * rt: remaining time 8120 * 8121 * rt is a sector_t, which is always 64bit now. We are keeping 8122 * the original algorithm, but it is not really necessary. 8123 * 8124 * Original algorithm: 8125 * So we divide before multiply in case it is 32bit and close 8126 * to the limit. 8127 * We scale the divisor (db) by 32 to avoid losing precision 8128 * near the end of resync when the number of remaining sectors 8129 * is close to 'db'. 8130 * We then divide rt by 32 after multiplying by db to compensate. 8131 * The '+1' avoids division by zero if db is very small. 8132 */ 8133 dt = ((jiffies - mddev->resync_mark) / HZ); 8134 if (!dt) dt++; 8135 8136 curr_mark_cnt = mddev->curr_mark_cnt; 8137 recovery_active = atomic_read(&mddev->recovery_active); 8138 resync_mark_cnt = mddev->resync_mark_cnt; 8139 8140 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8141 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8142 8143 rt = max_sectors - resync; /* number of remaining sectors */ 8144 rt = div64_u64(rt, db/32+1); 8145 rt *= dt; 8146 rt >>= 5; 8147 8148 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8149 ((unsigned long)rt % 60)/6); 8150 8151 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8152 return 1; 8153 } 8154 8155 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8156 { 8157 struct list_head *tmp; 8158 loff_t l = *pos; 8159 struct mddev *mddev; 8160 8161 if (l >= 0x10000) 8162 return NULL; 8163 if (!l--) 8164 /* header */ 8165 return (void*)1; 8166 8167 spin_lock(&all_mddevs_lock); 8168 list_for_each(tmp,&all_mddevs) 8169 if (!l--) { 8170 mddev = list_entry(tmp, struct mddev, all_mddevs); 8171 mddev_get(mddev); 8172 spin_unlock(&all_mddevs_lock); 8173 return mddev; 8174 } 8175 spin_unlock(&all_mddevs_lock); 8176 if (!l--) 8177 return (void*)2;/* tail */ 8178 return NULL; 8179 } 8180 8181 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8182 { 8183 struct list_head *tmp; 8184 struct mddev *next_mddev, *mddev = v; 8185 8186 ++*pos; 8187 if (v == (void*)2) 8188 return NULL; 8189 8190 spin_lock(&all_mddevs_lock); 8191 if (v == (void*)1) 8192 tmp = all_mddevs.next; 8193 else 8194 tmp = mddev->all_mddevs.next; 8195 if (tmp != &all_mddevs) 8196 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8197 else { 8198 next_mddev = (void*)2; 8199 *pos = 0x10000; 8200 } 8201 spin_unlock(&all_mddevs_lock); 8202 8203 if (v != (void*)1) 8204 mddev_put(mddev); 8205 return next_mddev; 8206 8207 } 8208 8209 static void md_seq_stop(struct seq_file *seq, void *v) 8210 { 8211 struct mddev *mddev = v; 8212 8213 if (mddev && v != (void*)1 && v != (void*)2) 8214 mddev_put(mddev); 8215 } 8216 8217 static int md_seq_show(struct seq_file *seq, void *v) 8218 { 8219 struct mddev *mddev = v; 8220 sector_t sectors; 8221 struct md_rdev *rdev; 8222 8223 if (v == (void*)1) { 8224 struct md_personality *pers; 8225 seq_printf(seq, "Personalities : "); 8226 spin_lock(&pers_lock); 8227 list_for_each_entry(pers, &pers_list, list) 8228 seq_printf(seq, "[%s] ", pers->name); 8229 8230 spin_unlock(&pers_lock); 8231 seq_printf(seq, "\n"); 8232 seq->poll_event = atomic_read(&md_event_count); 8233 return 0; 8234 } 8235 if (v == (void*)2) { 8236 status_unused(seq); 8237 return 0; 8238 } 8239 8240 spin_lock(&mddev->lock); 8241 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8242 seq_printf(seq, "%s : %sactive", mdname(mddev), 8243 mddev->pers ? "" : "in"); 8244 if (mddev->pers) { 8245 if (mddev->ro==1) 8246 seq_printf(seq, " (read-only)"); 8247 if (mddev->ro==2) 8248 seq_printf(seq, " (auto-read-only)"); 8249 seq_printf(seq, " %s", mddev->pers->name); 8250 } 8251 8252 sectors = 0; 8253 rcu_read_lock(); 8254 rdev_for_each_rcu(rdev, mddev) { 8255 char b[BDEVNAME_SIZE]; 8256 seq_printf(seq, " %s[%d]", 8257 bdevname(rdev->bdev,b), rdev->desc_nr); 8258 if (test_bit(WriteMostly, &rdev->flags)) 8259 seq_printf(seq, "(W)"); 8260 if (test_bit(Journal, &rdev->flags)) 8261 seq_printf(seq, "(J)"); 8262 if (test_bit(Faulty, &rdev->flags)) { 8263 seq_printf(seq, "(F)"); 8264 continue; 8265 } 8266 if (rdev->raid_disk < 0) 8267 seq_printf(seq, "(S)"); /* spare */ 8268 if (test_bit(Replacement, &rdev->flags)) 8269 seq_printf(seq, "(R)"); 8270 sectors += rdev->sectors; 8271 } 8272 rcu_read_unlock(); 8273 8274 if (!list_empty(&mddev->disks)) { 8275 if (mddev->pers) 8276 seq_printf(seq, "\n %llu blocks", 8277 (unsigned long long) 8278 mddev->array_sectors / 2); 8279 else 8280 seq_printf(seq, "\n %llu blocks", 8281 (unsigned long long)sectors / 2); 8282 } 8283 if (mddev->persistent) { 8284 if (mddev->major_version != 0 || 8285 mddev->minor_version != 90) { 8286 seq_printf(seq," super %d.%d", 8287 mddev->major_version, 8288 mddev->minor_version); 8289 } 8290 } else if (mddev->external) 8291 seq_printf(seq, " super external:%s", 8292 mddev->metadata_type); 8293 else 8294 seq_printf(seq, " super non-persistent"); 8295 8296 if (mddev->pers) { 8297 mddev->pers->status(seq, mddev); 8298 seq_printf(seq, "\n "); 8299 if (mddev->pers->sync_request) { 8300 if (status_resync(seq, mddev)) 8301 seq_printf(seq, "\n "); 8302 } 8303 } else 8304 seq_printf(seq, "\n "); 8305 8306 md_bitmap_status(seq, mddev->bitmap); 8307 8308 seq_printf(seq, "\n"); 8309 } 8310 spin_unlock(&mddev->lock); 8311 8312 return 0; 8313 } 8314 8315 static const struct seq_operations md_seq_ops = { 8316 .start = md_seq_start, 8317 .next = md_seq_next, 8318 .stop = md_seq_stop, 8319 .show = md_seq_show, 8320 }; 8321 8322 static int md_seq_open(struct inode *inode, struct file *file) 8323 { 8324 struct seq_file *seq; 8325 int error; 8326 8327 error = seq_open(file, &md_seq_ops); 8328 if (error) 8329 return error; 8330 8331 seq = file->private_data; 8332 seq->poll_event = atomic_read(&md_event_count); 8333 return error; 8334 } 8335 8336 static int md_unloading; 8337 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8338 { 8339 struct seq_file *seq = filp->private_data; 8340 __poll_t mask; 8341 8342 if (md_unloading) 8343 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8344 poll_wait(filp, &md_event_waiters, wait); 8345 8346 /* always allow read */ 8347 mask = EPOLLIN | EPOLLRDNORM; 8348 8349 if (seq->poll_event != atomic_read(&md_event_count)) 8350 mask |= EPOLLERR | EPOLLPRI; 8351 return mask; 8352 } 8353 8354 static const struct proc_ops mdstat_proc_ops = { 8355 .proc_open = md_seq_open, 8356 .proc_read = seq_read, 8357 .proc_lseek = seq_lseek, 8358 .proc_release = seq_release, 8359 .proc_poll = mdstat_poll, 8360 }; 8361 8362 int register_md_personality(struct md_personality *p) 8363 { 8364 pr_debug("md: %s personality registered for level %d\n", 8365 p->name, p->level); 8366 spin_lock(&pers_lock); 8367 list_add_tail(&p->list, &pers_list); 8368 spin_unlock(&pers_lock); 8369 return 0; 8370 } 8371 EXPORT_SYMBOL(register_md_personality); 8372 8373 int unregister_md_personality(struct md_personality *p) 8374 { 8375 pr_debug("md: %s personality unregistered\n", p->name); 8376 spin_lock(&pers_lock); 8377 list_del_init(&p->list); 8378 spin_unlock(&pers_lock); 8379 return 0; 8380 } 8381 EXPORT_SYMBOL(unregister_md_personality); 8382 8383 int register_md_cluster_operations(struct md_cluster_operations *ops, 8384 struct module *module) 8385 { 8386 int ret = 0; 8387 spin_lock(&pers_lock); 8388 if (md_cluster_ops != NULL) 8389 ret = -EALREADY; 8390 else { 8391 md_cluster_ops = ops; 8392 md_cluster_mod = module; 8393 } 8394 spin_unlock(&pers_lock); 8395 return ret; 8396 } 8397 EXPORT_SYMBOL(register_md_cluster_operations); 8398 8399 int unregister_md_cluster_operations(void) 8400 { 8401 spin_lock(&pers_lock); 8402 md_cluster_ops = NULL; 8403 spin_unlock(&pers_lock); 8404 return 0; 8405 } 8406 EXPORT_SYMBOL(unregister_md_cluster_operations); 8407 8408 int md_setup_cluster(struct mddev *mddev, int nodes) 8409 { 8410 int ret; 8411 if (!md_cluster_ops) 8412 request_module("md-cluster"); 8413 spin_lock(&pers_lock); 8414 /* ensure module won't be unloaded */ 8415 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8416 pr_warn("can't find md-cluster module or get it's reference.\n"); 8417 spin_unlock(&pers_lock); 8418 return -ENOENT; 8419 } 8420 spin_unlock(&pers_lock); 8421 8422 ret = md_cluster_ops->join(mddev, nodes); 8423 if (!ret) 8424 mddev->safemode_delay = 0; 8425 return ret; 8426 } 8427 8428 void md_cluster_stop(struct mddev *mddev) 8429 { 8430 if (!md_cluster_ops) 8431 return; 8432 md_cluster_ops->leave(mddev); 8433 module_put(md_cluster_mod); 8434 } 8435 8436 static int is_mddev_idle(struct mddev *mddev, int init) 8437 { 8438 struct md_rdev *rdev; 8439 int idle; 8440 int curr_events; 8441 8442 idle = 1; 8443 rcu_read_lock(); 8444 rdev_for_each_rcu(rdev, mddev) { 8445 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8446 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 8447 atomic_read(&disk->sync_io); 8448 /* sync IO will cause sync_io to increase before the disk_stats 8449 * as sync_io is counted when a request starts, and 8450 * disk_stats is counted when it completes. 8451 * So resync activity will cause curr_events to be smaller than 8452 * when there was no such activity. 8453 * non-sync IO will cause disk_stat to increase without 8454 * increasing sync_io so curr_events will (eventually) 8455 * be larger than it was before. Once it becomes 8456 * substantially larger, the test below will cause 8457 * the array to appear non-idle, and resync will slow 8458 * down. 8459 * If there is a lot of outstanding resync activity when 8460 * we set last_event to curr_events, then all that activity 8461 * completing might cause the array to appear non-idle 8462 * and resync will be slowed down even though there might 8463 * not have been non-resync activity. This will only 8464 * happen once though. 'last_events' will soon reflect 8465 * the state where there is little or no outstanding 8466 * resync requests, and further resync activity will 8467 * always make curr_events less than last_events. 8468 * 8469 */ 8470 if (init || curr_events - rdev->last_events > 64) { 8471 rdev->last_events = curr_events; 8472 idle = 0; 8473 } 8474 } 8475 rcu_read_unlock(); 8476 return idle; 8477 } 8478 8479 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8480 { 8481 /* another "blocks" (512byte) blocks have been synced */ 8482 atomic_sub(blocks, &mddev->recovery_active); 8483 wake_up(&mddev->recovery_wait); 8484 if (!ok) { 8485 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8486 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8487 md_wakeup_thread(mddev->thread); 8488 // stop recovery, signal do_sync .... 8489 } 8490 } 8491 EXPORT_SYMBOL(md_done_sync); 8492 8493 /* md_write_start(mddev, bi) 8494 * If we need to update some array metadata (e.g. 'active' flag 8495 * in superblock) before writing, schedule a superblock update 8496 * and wait for it to complete. 8497 * A return value of 'false' means that the write wasn't recorded 8498 * and cannot proceed as the array is being suspend. 8499 */ 8500 bool md_write_start(struct mddev *mddev, struct bio *bi) 8501 { 8502 int did_change = 0; 8503 8504 if (bio_data_dir(bi) != WRITE) 8505 return true; 8506 8507 BUG_ON(mddev->ro == 1); 8508 if (mddev->ro == 2) { 8509 /* need to switch to read/write */ 8510 mddev->ro = 0; 8511 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8512 md_wakeup_thread(mddev->thread); 8513 md_wakeup_thread(mddev->sync_thread); 8514 did_change = 1; 8515 } 8516 rcu_read_lock(); 8517 percpu_ref_get(&mddev->writes_pending); 8518 smp_mb(); /* Match smp_mb in set_in_sync() */ 8519 if (mddev->safemode == 1) 8520 mddev->safemode = 0; 8521 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8522 if (mddev->in_sync || mddev->sync_checkers) { 8523 spin_lock(&mddev->lock); 8524 if (mddev->in_sync) { 8525 mddev->in_sync = 0; 8526 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8527 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8528 md_wakeup_thread(mddev->thread); 8529 did_change = 1; 8530 } 8531 spin_unlock(&mddev->lock); 8532 } 8533 rcu_read_unlock(); 8534 if (did_change) 8535 sysfs_notify_dirent_safe(mddev->sysfs_state); 8536 if (!mddev->has_superblocks) 8537 return true; 8538 wait_event(mddev->sb_wait, 8539 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8540 mddev->suspended); 8541 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8542 percpu_ref_put(&mddev->writes_pending); 8543 return false; 8544 } 8545 return true; 8546 } 8547 EXPORT_SYMBOL(md_write_start); 8548 8549 /* md_write_inc can only be called when md_write_start() has 8550 * already been called at least once of the current request. 8551 * It increments the counter and is useful when a single request 8552 * is split into several parts. Each part causes an increment and 8553 * so needs a matching md_write_end(). 8554 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8555 * a spinlocked region. 8556 */ 8557 void md_write_inc(struct mddev *mddev, struct bio *bi) 8558 { 8559 if (bio_data_dir(bi) != WRITE) 8560 return; 8561 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8562 percpu_ref_get(&mddev->writes_pending); 8563 } 8564 EXPORT_SYMBOL(md_write_inc); 8565 8566 void md_write_end(struct mddev *mddev) 8567 { 8568 percpu_ref_put(&mddev->writes_pending); 8569 8570 if (mddev->safemode == 2) 8571 md_wakeup_thread(mddev->thread); 8572 else if (mddev->safemode_delay) 8573 /* The roundup() ensures this only performs locking once 8574 * every ->safemode_delay jiffies 8575 */ 8576 mod_timer(&mddev->safemode_timer, 8577 roundup(jiffies, mddev->safemode_delay) + 8578 mddev->safemode_delay); 8579 } 8580 8581 EXPORT_SYMBOL(md_write_end); 8582 8583 /* md_allow_write(mddev) 8584 * Calling this ensures that the array is marked 'active' so that writes 8585 * may proceed without blocking. It is important to call this before 8586 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8587 * Must be called with mddev_lock held. 8588 */ 8589 void md_allow_write(struct mddev *mddev) 8590 { 8591 if (!mddev->pers) 8592 return; 8593 if (mddev->ro) 8594 return; 8595 if (!mddev->pers->sync_request) 8596 return; 8597 8598 spin_lock(&mddev->lock); 8599 if (mddev->in_sync) { 8600 mddev->in_sync = 0; 8601 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8602 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8603 if (mddev->safemode_delay && 8604 mddev->safemode == 0) 8605 mddev->safemode = 1; 8606 spin_unlock(&mddev->lock); 8607 md_update_sb(mddev, 0); 8608 sysfs_notify_dirent_safe(mddev->sysfs_state); 8609 /* wait for the dirty state to be recorded in the metadata */ 8610 wait_event(mddev->sb_wait, 8611 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8612 } else 8613 spin_unlock(&mddev->lock); 8614 } 8615 EXPORT_SYMBOL_GPL(md_allow_write); 8616 8617 #define SYNC_MARKS 10 8618 #define SYNC_MARK_STEP (3*HZ) 8619 #define UPDATE_FREQUENCY (5*60*HZ) 8620 void md_do_sync(struct md_thread *thread) 8621 { 8622 struct mddev *mddev = thread->mddev; 8623 struct mddev *mddev2; 8624 unsigned int currspeed = 0, window; 8625 sector_t max_sectors,j, io_sectors, recovery_done; 8626 unsigned long mark[SYNC_MARKS]; 8627 unsigned long update_time; 8628 sector_t mark_cnt[SYNC_MARKS]; 8629 int last_mark,m; 8630 struct list_head *tmp; 8631 sector_t last_check; 8632 int skipped = 0; 8633 struct md_rdev *rdev; 8634 char *desc, *action = NULL; 8635 struct blk_plug plug; 8636 int ret; 8637 8638 /* just incase thread restarts... */ 8639 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8640 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8641 return; 8642 if (mddev->ro) {/* never try to sync a read-only array */ 8643 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8644 return; 8645 } 8646 8647 if (mddev_is_clustered(mddev)) { 8648 ret = md_cluster_ops->resync_start(mddev); 8649 if (ret) 8650 goto skip; 8651 8652 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8653 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8654 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8655 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8656 && ((unsigned long long)mddev->curr_resync_completed 8657 < (unsigned long long)mddev->resync_max_sectors)) 8658 goto skip; 8659 } 8660 8661 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8662 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8663 desc = "data-check"; 8664 action = "check"; 8665 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8666 desc = "requested-resync"; 8667 action = "repair"; 8668 } else 8669 desc = "resync"; 8670 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8671 desc = "reshape"; 8672 else 8673 desc = "recovery"; 8674 8675 mddev->last_sync_action = action ?: desc; 8676 8677 /* we overload curr_resync somewhat here. 8678 * 0 == not engaged in resync at all 8679 * 2 == checking that there is no conflict with another sync 8680 * 1 == like 2, but have yielded to allow conflicting resync to 8681 * commence 8682 * other == active in resync - this many blocks 8683 * 8684 * Before starting a resync we must have set curr_resync to 8685 * 2, and then checked that every "conflicting" array has curr_resync 8686 * less than ours. When we find one that is the same or higher 8687 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8688 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8689 * This will mean we have to start checking from the beginning again. 8690 * 8691 */ 8692 8693 do { 8694 int mddev2_minor = -1; 8695 mddev->curr_resync = 2; 8696 8697 try_again: 8698 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8699 goto skip; 8700 for_each_mddev(mddev2, tmp) { 8701 if (mddev2 == mddev) 8702 continue; 8703 if (!mddev->parallel_resync 8704 && mddev2->curr_resync 8705 && match_mddev_units(mddev, mddev2)) { 8706 DEFINE_WAIT(wq); 8707 if (mddev < mddev2 && mddev->curr_resync == 2) { 8708 /* arbitrarily yield */ 8709 mddev->curr_resync = 1; 8710 wake_up(&resync_wait); 8711 } 8712 if (mddev > mddev2 && mddev->curr_resync == 1) 8713 /* no need to wait here, we can wait the next 8714 * time 'round when curr_resync == 2 8715 */ 8716 continue; 8717 /* We need to wait 'interruptible' so as not to 8718 * contribute to the load average, and not to 8719 * be caught by 'softlockup' 8720 */ 8721 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8722 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8723 mddev2->curr_resync >= mddev->curr_resync) { 8724 if (mddev2_minor != mddev2->md_minor) { 8725 mddev2_minor = mddev2->md_minor; 8726 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8727 desc, mdname(mddev), 8728 mdname(mddev2)); 8729 } 8730 mddev_put(mddev2); 8731 if (signal_pending(current)) 8732 flush_signals(current); 8733 schedule(); 8734 finish_wait(&resync_wait, &wq); 8735 goto try_again; 8736 } 8737 finish_wait(&resync_wait, &wq); 8738 } 8739 } 8740 } while (mddev->curr_resync < 2); 8741 8742 j = 0; 8743 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8744 /* resync follows the size requested by the personality, 8745 * which defaults to physical size, but can be virtual size 8746 */ 8747 max_sectors = mddev->resync_max_sectors; 8748 atomic64_set(&mddev->resync_mismatches, 0); 8749 /* we don't use the checkpoint if there's a bitmap */ 8750 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8751 j = mddev->resync_min; 8752 else if (!mddev->bitmap) 8753 j = mddev->recovery_cp; 8754 8755 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8756 max_sectors = mddev->resync_max_sectors; 8757 /* 8758 * If the original node aborts reshaping then we continue the 8759 * reshaping, so set j again to avoid restart reshape from the 8760 * first beginning 8761 */ 8762 if (mddev_is_clustered(mddev) && 8763 mddev->reshape_position != MaxSector) 8764 j = mddev->reshape_position; 8765 } else { 8766 /* recovery follows the physical size of devices */ 8767 max_sectors = mddev->dev_sectors; 8768 j = MaxSector; 8769 rcu_read_lock(); 8770 rdev_for_each_rcu(rdev, mddev) 8771 if (rdev->raid_disk >= 0 && 8772 !test_bit(Journal, &rdev->flags) && 8773 !test_bit(Faulty, &rdev->flags) && 8774 !test_bit(In_sync, &rdev->flags) && 8775 rdev->recovery_offset < j) 8776 j = rdev->recovery_offset; 8777 rcu_read_unlock(); 8778 8779 /* If there is a bitmap, we need to make sure all 8780 * writes that started before we added a spare 8781 * complete before we start doing a recovery. 8782 * Otherwise the write might complete and (via 8783 * bitmap_endwrite) set a bit in the bitmap after the 8784 * recovery has checked that bit and skipped that 8785 * region. 8786 */ 8787 if (mddev->bitmap) { 8788 mddev->pers->quiesce(mddev, 1); 8789 mddev->pers->quiesce(mddev, 0); 8790 } 8791 } 8792 8793 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8794 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8795 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8796 speed_max(mddev), desc); 8797 8798 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8799 8800 io_sectors = 0; 8801 for (m = 0; m < SYNC_MARKS; m++) { 8802 mark[m] = jiffies; 8803 mark_cnt[m] = io_sectors; 8804 } 8805 last_mark = 0; 8806 mddev->resync_mark = mark[last_mark]; 8807 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8808 8809 /* 8810 * Tune reconstruction: 8811 */ 8812 window = 32 * (PAGE_SIZE / 512); 8813 pr_debug("md: using %dk window, over a total of %lluk.\n", 8814 window/2, (unsigned long long)max_sectors/2); 8815 8816 atomic_set(&mddev->recovery_active, 0); 8817 last_check = 0; 8818 8819 if (j>2) { 8820 pr_debug("md: resuming %s of %s from checkpoint.\n", 8821 desc, mdname(mddev)); 8822 mddev->curr_resync = j; 8823 } else 8824 mddev->curr_resync = 3; /* no longer delayed */ 8825 mddev->curr_resync_completed = j; 8826 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8827 md_new_event(mddev); 8828 update_time = jiffies; 8829 8830 blk_start_plug(&plug); 8831 while (j < max_sectors) { 8832 sector_t sectors; 8833 8834 skipped = 0; 8835 8836 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8837 ((mddev->curr_resync > mddev->curr_resync_completed && 8838 (mddev->curr_resync - mddev->curr_resync_completed) 8839 > (max_sectors >> 4)) || 8840 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8841 (j - mddev->curr_resync_completed)*2 8842 >= mddev->resync_max - mddev->curr_resync_completed || 8843 mddev->curr_resync_completed > mddev->resync_max 8844 )) { 8845 /* time to update curr_resync_completed */ 8846 wait_event(mddev->recovery_wait, 8847 atomic_read(&mddev->recovery_active) == 0); 8848 mddev->curr_resync_completed = j; 8849 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8850 j > mddev->recovery_cp) 8851 mddev->recovery_cp = j; 8852 update_time = jiffies; 8853 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8854 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8855 } 8856 8857 while (j >= mddev->resync_max && 8858 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8859 /* As this condition is controlled by user-space, 8860 * we can block indefinitely, so use '_interruptible' 8861 * to avoid triggering warnings. 8862 */ 8863 flush_signals(current); /* just in case */ 8864 wait_event_interruptible(mddev->recovery_wait, 8865 mddev->resync_max > j 8866 || test_bit(MD_RECOVERY_INTR, 8867 &mddev->recovery)); 8868 } 8869 8870 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8871 break; 8872 8873 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8874 if (sectors == 0) { 8875 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8876 break; 8877 } 8878 8879 if (!skipped) { /* actual IO requested */ 8880 io_sectors += sectors; 8881 atomic_add(sectors, &mddev->recovery_active); 8882 } 8883 8884 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8885 break; 8886 8887 j += sectors; 8888 if (j > max_sectors) 8889 /* when skipping, extra large numbers can be returned. */ 8890 j = max_sectors; 8891 if (j > 2) 8892 mddev->curr_resync = j; 8893 mddev->curr_mark_cnt = io_sectors; 8894 if (last_check == 0) 8895 /* this is the earliest that rebuild will be 8896 * visible in /proc/mdstat 8897 */ 8898 md_new_event(mddev); 8899 8900 if (last_check + window > io_sectors || j == max_sectors) 8901 continue; 8902 8903 last_check = io_sectors; 8904 repeat: 8905 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8906 /* step marks */ 8907 int next = (last_mark+1) % SYNC_MARKS; 8908 8909 mddev->resync_mark = mark[next]; 8910 mddev->resync_mark_cnt = mark_cnt[next]; 8911 mark[next] = jiffies; 8912 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8913 last_mark = next; 8914 } 8915 8916 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8917 break; 8918 8919 /* 8920 * this loop exits only if either when we are slower than 8921 * the 'hard' speed limit, or the system was IO-idle for 8922 * a jiffy. 8923 * the system might be non-idle CPU-wise, but we only care 8924 * about not overloading the IO subsystem. (things like an 8925 * e2fsck being done on the RAID array should execute fast) 8926 */ 8927 cond_resched(); 8928 8929 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8930 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8931 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8932 8933 if (currspeed > speed_min(mddev)) { 8934 if (currspeed > speed_max(mddev)) { 8935 msleep(500); 8936 goto repeat; 8937 } 8938 if (!is_mddev_idle(mddev, 0)) { 8939 /* 8940 * Give other IO more of a chance. 8941 * The faster the devices, the less we wait. 8942 */ 8943 wait_event(mddev->recovery_wait, 8944 !atomic_read(&mddev->recovery_active)); 8945 } 8946 } 8947 } 8948 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8949 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8950 ? "interrupted" : "done"); 8951 /* 8952 * this also signals 'finished resyncing' to md_stop 8953 */ 8954 blk_finish_plug(&plug); 8955 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8956 8957 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8958 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8959 mddev->curr_resync > 3) { 8960 mddev->curr_resync_completed = mddev->curr_resync; 8961 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8962 } 8963 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8964 8965 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8966 mddev->curr_resync > 3) { 8967 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8968 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8969 if (mddev->curr_resync >= mddev->recovery_cp) { 8970 pr_debug("md: checkpointing %s of %s.\n", 8971 desc, mdname(mddev)); 8972 if (test_bit(MD_RECOVERY_ERROR, 8973 &mddev->recovery)) 8974 mddev->recovery_cp = 8975 mddev->curr_resync_completed; 8976 else 8977 mddev->recovery_cp = 8978 mddev->curr_resync; 8979 } 8980 } else 8981 mddev->recovery_cp = MaxSector; 8982 } else { 8983 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8984 mddev->curr_resync = MaxSector; 8985 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8986 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8987 rcu_read_lock(); 8988 rdev_for_each_rcu(rdev, mddev) 8989 if (rdev->raid_disk >= 0 && 8990 mddev->delta_disks >= 0 && 8991 !test_bit(Journal, &rdev->flags) && 8992 !test_bit(Faulty, &rdev->flags) && 8993 !test_bit(In_sync, &rdev->flags) && 8994 rdev->recovery_offset < mddev->curr_resync) 8995 rdev->recovery_offset = mddev->curr_resync; 8996 rcu_read_unlock(); 8997 } 8998 } 8999 } 9000 skip: 9001 /* set CHANGE_PENDING here since maybe another update is needed, 9002 * so other nodes are informed. It should be harmless for normal 9003 * raid */ 9004 set_mask_bits(&mddev->sb_flags, 0, 9005 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9006 9007 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9008 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9009 mddev->delta_disks > 0 && 9010 mddev->pers->finish_reshape && 9011 mddev->pers->size && 9012 mddev->queue) { 9013 mddev_lock_nointr(mddev); 9014 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9015 mddev_unlock(mddev); 9016 if (!mddev_is_clustered(mddev)) { 9017 set_capacity(mddev->gendisk, mddev->array_sectors); 9018 revalidate_disk(mddev->gendisk); 9019 } 9020 } 9021 9022 spin_lock(&mddev->lock); 9023 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9024 /* We completed so min/max setting can be forgotten if used. */ 9025 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9026 mddev->resync_min = 0; 9027 mddev->resync_max = MaxSector; 9028 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9029 mddev->resync_min = mddev->curr_resync_completed; 9030 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9031 mddev->curr_resync = 0; 9032 spin_unlock(&mddev->lock); 9033 9034 wake_up(&resync_wait); 9035 md_wakeup_thread(mddev->thread); 9036 return; 9037 } 9038 EXPORT_SYMBOL_GPL(md_do_sync); 9039 9040 static int remove_and_add_spares(struct mddev *mddev, 9041 struct md_rdev *this) 9042 { 9043 struct md_rdev *rdev; 9044 int spares = 0; 9045 int removed = 0; 9046 bool remove_some = false; 9047 9048 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9049 /* Mustn't remove devices when resync thread is running */ 9050 return 0; 9051 9052 rdev_for_each(rdev, mddev) { 9053 if ((this == NULL || rdev == this) && 9054 rdev->raid_disk >= 0 && 9055 !test_bit(Blocked, &rdev->flags) && 9056 test_bit(Faulty, &rdev->flags) && 9057 atomic_read(&rdev->nr_pending)==0) { 9058 /* Faulty non-Blocked devices with nr_pending == 0 9059 * never get nr_pending incremented, 9060 * never get Faulty cleared, and never get Blocked set. 9061 * So we can synchronize_rcu now rather than once per device 9062 */ 9063 remove_some = true; 9064 set_bit(RemoveSynchronized, &rdev->flags); 9065 } 9066 } 9067 9068 if (remove_some) 9069 synchronize_rcu(); 9070 rdev_for_each(rdev, mddev) { 9071 if ((this == NULL || rdev == this) && 9072 rdev->raid_disk >= 0 && 9073 !test_bit(Blocked, &rdev->flags) && 9074 ((test_bit(RemoveSynchronized, &rdev->flags) || 9075 (!test_bit(In_sync, &rdev->flags) && 9076 !test_bit(Journal, &rdev->flags))) && 9077 atomic_read(&rdev->nr_pending)==0)) { 9078 if (mddev->pers->hot_remove_disk( 9079 mddev, rdev) == 0) { 9080 sysfs_unlink_rdev(mddev, rdev); 9081 rdev->saved_raid_disk = rdev->raid_disk; 9082 rdev->raid_disk = -1; 9083 removed++; 9084 } 9085 } 9086 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9087 clear_bit(RemoveSynchronized, &rdev->flags); 9088 } 9089 9090 if (removed && mddev->kobj.sd) 9091 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9092 9093 if (this && removed) 9094 goto no_add; 9095 9096 rdev_for_each(rdev, mddev) { 9097 if (this && this != rdev) 9098 continue; 9099 if (test_bit(Candidate, &rdev->flags)) 9100 continue; 9101 if (rdev->raid_disk >= 0 && 9102 !test_bit(In_sync, &rdev->flags) && 9103 !test_bit(Journal, &rdev->flags) && 9104 !test_bit(Faulty, &rdev->flags)) 9105 spares++; 9106 if (rdev->raid_disk >= 0) 9107 continue; 9108 if (test_bit(Faulty, &rdev->flags)) 9109 continue; 9110 if (!test_bit(Journal, &rdev->flags)) { 9111 if (mddev->ro && 9112 ! (rdev->saved_raid_disk >= 0 && 9113 !test_bit(Bitmap_sync, &rdev->flags))) 9114 continue; 9115 9116 rdev->recovery_offset = 0; 9117 } 9118 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9119 /* failure here is OK */ 9120 sysfs_link_rdev(mddev, rdev); 9121 if (!test_bit(Journal, &rdev->flags)) 9122 spares++; 9123 md_new_event(mddev); 9124 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9125 } 9126 } 9127 no_add: 9128 if (removed) 9129 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9130 return spares; 9131 } 9132 9133 static void md_start_sync(struct work_struct *ws) 9134 { 9135 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9136 9137 mddev->sync_thread = md_register_thread(md_do_sync, 9138 mddev, 9139 "resync"); 9140 if (!mddev->sync_thread) { 9141 pr_warn("%s: could not start resync thread...\n", 9142 mdname(mddev)); 9143 /* leave the spares where they are, it shouldn't hurt */ 9144 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9145 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9146 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9147 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9148 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9149 wake_up(&resync_wait); 9150 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9151 &mddev->recovery)) 9152 if (mddev->sysfs_action) 9153 sysfs_notify_dirent_safe(mddev->sysfs_action); 9154 } else 9155 md_wakeup_thread(mddev->sync_thread); 9156 sysfs_notify_dirent_safe(mddev->sysfs_action); 9157 md_new_event(mddev); 9158 } 9159 9160 /* 9161 * This routine is regularly called by all per-raid-array threads to 9162 * deal with generic issues like resync and super-block update. 9163 * Raid personalities that don't have a thread (linear/raid0) do not 9164 * need this as they never do any recovery or update the superblock. 9165 * 9166 * It does not do any resync itself, but rather "forks" off other threads 9167 * to do that as needed. 9168 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9169 * "->recovery" and create a thread at ->sync_thread. 9170 * When the thread finishes it sets MD_RECOVERY_DONE 9171 * and wakeups up this thread which will reap the thread and finish up. 9172 * This thread also removes any faulty devices (with nr_pending == 0). 9173 * 9174 * The overall approach is: 9175 * 1/ if the superblock needs updating, update it. 9176 * 2/ If a recovery thread is running, don't do anything else. 9177 * 3/ If recovery has finished, clean up, possibly marking spares active. 9178 * 4/ If there are any faulty devices, remove them. 9179 * 5/ If array is degraded, try to add spares devices 9180 * 6/ If array has spares or is not in-sync, start a resync thread. 9181 */ 9182 void md_check_recovery(struct mddev *mddev) 9183 { 9184 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9185 /* Write superblock - thread that called mddev_suspend() 9186 * holds reconfig_mutex for us. 9187 */ 9188 set_bit(MD_UPDATING_SB, &mddev->flags); 9189 smp_mb__after_atomic(); 9190 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9191 md_update_sb(mddev, 0); 9192 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9193 wake_up(&mddev->sb_wait); 9194 } 9195 9196 if (mddev->suspended) 9197 return; 9198 9199 if (mddev->bitmap) 9200 md_bitmap_daemon_work(mddev); 9201 9202 if (signal_pending(current)) { 9203 if (mddev->pers->sync_request && !mddev->external) { 9204 pr_debug("md: %s in immediate safe mode\n", 9205 mdname(mddev)); 9206 mddev->safemode = 2; 9207 } 9208 flush_signals(current); 9209 } 9210 9211 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9212 return; 9213 if ( ! ( 9214 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9215 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9216 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9217 (mddev->external == 0 && mddev->safemode == 1) || 9218 (mddev->safemode == 2 9219 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9220 )) 9221 return; 9222 9223 if (mddev_trylock(mddev)) { 9224 int spares = 0; 9225 bool try_set_sync = mddev->safemode != 0; 9226 9227 if (!mddev->external && mddev->safemode == 1) 9228 mddev->safemode = 0; 9229 9230 if (mddev->ro) { 9231 struct md_rdev *rdev; 9232 if (!mddev->external && mddev->in_sync) 9233 /* 'Blocked' flag not needed as failed devices 9234 * will be recorded if array switched to read/write. 9235 * Leaving it set will prevent the device 9236 * from being removed. 9237 */ 9238 rdev_for_each(rdev, mddev) 9239 clear_bit(Blocked, &rdev->flags); 9240 /* On a read-only array we can: 9241 * - remove failed devices 9242 * - add already-in_sync devices if the array itself 9243 * is in-sync. 9244 * As we only add devices that are already in-sync, 9245 * we can activate the spares immediately. 9246 */ 9247 remove_and_add_spares(mddev, NULL); 9248 /* There is no thread, but we need to call 9249 * ->spare_active and clear saved_raid_disk 9250 */ 9251 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9252 md_reap_sync_thread(mddev); 9253 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9254 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9255 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9256 goto unlock; 9257 } 9258 9259 if (mddev_is_clustered(mddev)) { 9260 struct md_rdev *rdev; 9261 /* kick the device if another node issued a 9262 * remove disk. 9263 */ 9264 rdev_for_each(rdev, mddev) { 9265 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9266 rdev->raid_disk < 0) 9267 md_kick_rdev_from_array(rdev); 9268 } 9269 } 9270 9271 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9272 spin_lock(&mddev->lock); 9273 set_in_sync(mddev); 9274 spin_unlock(&mddev->lock); 9275 } 9276 9277 if (mddev->sb_flags) 9278 md_update_sb(mddev, 0); 9279 9280 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9281 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9282 /* resync/recovery still happening */ 9283 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9284 goto unlock; 9285 } 9286 if (mddev->sync_thread) { 9287 md_reap_sync_thread(mddev); 9288 goto unlock; 9289 } 9290 /* Set RUNNING before clearing NEEDED to avoid 9291 * any transients in the value of "sync_action". 9292 */ 9293 mddev->curr_resync_completed = 0; 9294 spin_lock(&mddev->lock); 9295 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9296 spin_unlock(&mddev->lock); 9297 /* Clear some bits that don't mean anything, but 9298 * might be left set 9299 */ 9300 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9301 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9302 9303 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9304 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9305 goto not_running; 9306 /* no recovery is running. 9307 * remove any failed drives, then 9308 * add spares if possible. 9309 * Spares are also removed and re-added, to allow 9310 * the personality to fail the re-add. 9311 */ 9312 9313 if (mddev->reshape_position != MaxSector) { 9314 if (mddev->pers->check_reshape == NULL || 9315 mddev->pers->check_reshape(mddev) != 0) 9316 /* Cannot proceed */ 9317 goto not_running; 9318 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9319 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9320 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9321 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9322 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9323 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9324 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9325 } else if (mddev->recovery_cp < MaxSector) { 9326 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9327 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9328 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9329 /* nothing to be done ... */ 9330 goto not_running; 9331 9332 if (mddev->pers->sync_request) { 9333 if (spares) { 9334 /* We are adding a device or devices to an array 9335 * which has the bitmap stored on all devices. 9336 * So make sure all bitmap pages get written 9337 */ 9338 md_bitmap_write_all(mddev->bitmap); 9339 } 9340 INIT_WORK(&mddev->del_work, md_start_sync); 9341 queue_work(md_misc_wq, &mddev->del_work); 9342 goto unlock; 9343 } 9344 not_running: 9345 if (!mddev->sync_thread) { 9346 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9347 wake_up(&resync_wait); 9348 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9349 &mddev->recovery)) 9350 if (mddev->sysfs_action) 9351 sysfs_notify_dirent_safe(mddev->sysfs_action); 9352 } 9353 unlock: 9354 wake_up(&mddev->sb_wait); 9355 mddev_unlock(mddev); 9356 } 9357 } 9358 EXPORT_SYMBOL(md_check_recovery); 9359 9360 void md_reap_sync_thread(struct mddev *mddev) 9361 { 9362 struct md_rdev *rdev; 9363 sector_t old_dev_sectors = mddev->dev_sectors; 9364 bool is_reshaped = false; 9365 9366 /* resync has finished, collect result */ 9367 md_unregister_thread(&mddev->sync_thread); 9368 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9369 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9370 mddev->degraded != mddev->raid_disks) { 9371 /* success...*/ 9372 /* activate any spares */ 9373 if (mddev->pers->spare_active(mddev)) { 9374 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9375 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9376 } 9377 } 9378 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9379 mddev->pers->finish_reshape) { 9380 mddev->pers->finish_reshape(mddev); 9381 if (mddev_is_clustered(mddev)) 9382 is_reshaped = true; 9383 } 9384 9385 /* If array is no-longer degraded, then any saved_raid_disk 9386 * information must be scrapped. 9387 */ 9388 if (!mddev->degraded) 9389 rdev_for_each(rdev, mddev) 9390 rdev->saved_raid_disk = -1; 9391 9392 md_update_sb(mddev, 1); 9393 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9394 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9395 * clustered raid */ 9396 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9397 md_cluster_ops->resync_finish(mddev); 9398 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9399 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9400 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9401 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9402 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9403 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9404 /* 9405 * We call md_cluster_ops->update_size here because sync_size could 9406 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9407 * so it is time to update size across cluster. 9408 */ 9409 if (mddev_is_clustered(mddev) && is_reshaped 9410 && !test_bit(MD_CLOSING, &mddev->flags)) 9411 md_cluster_ops->update_size(mddev, old_dev_sectors); 9412 wake_up(&resync_wait); 9413 /* flag recovery needed just to double check */ 9414 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9415 sysfs_notify_dirent_safe(mddev->sysfs_action); 9416 md_new_event(mddev); 9417 if (mddev->event_work.func) 9418 queue_work(md_misc_wq, &mddev->event_work); 9419 } 9420 EXPORT_SYMBOL(md_reap_sync_thread); 9421 9422 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9423 { 9424 sysfs_notify_dirent_safe(rdev->sysfs_state); 9425 wait_event_timeout(rdev->blocked_wait, 9426 !test_bit(Blocked, &rdev->flags) && 9427 !test_bit(BlockedBadBlocks, &rdev->flags), 9428 msecs_to_jiffies(5000)); 9429 rdev_dec_pending(rdev, mddev); 9430 } 9431 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9432 9433 void md_finish_reshape(struct mddev *mddev) 9434 { 9435 /* called be personality module when reshape completes. */ 9436 struct md_rdev *rdev; 9437 9438 rdev_for_each(rdev, mddev) { 9439 if (rdev->data_offset > rdev->new_data_offset) 9440 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9441 else 9442 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9443 rdev->data_offset = rdev->new_data_offset; 9444 } 9445 } 9446 EXPORT_SYMBOL(md_finish_reshape); 9447 9448 /* Bad block management */ 9449 9450 /* Returns 1 on success, 0 on failure */ 9451 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9452 int is_new) 9453 { 9454 struct mddev *mddev = rdev->mddev; 9455 int rv; 9456 if (is_new) 9457 s += rdev->new_data_offset; 9458 else 9459 s += rdev->data_offset; 9460 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9461 if (rv == 0) { 9462 /* Make sure they get written out promptly */ 9463 if (test_bit(ExternalBbl, &rdev->flags)) 9464 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9465 sysfs_notify_dirent_safe(rdev->sysfs_state); 9466 set_mask_bits(&mddev->sb_flags, 0, 9467 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9468 md_wakeup_thread(rdev->mddev->thread); 9469 return 1; 9470 } else 9471 return 0; 9472 } 9473 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9474 9475 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9476 int is_new) 9477 { 9478 int rv; 9479 if (is_new) 9480 s += rdev->new_data_offset; 9481 else 9482 s += rdev->data_offset; 9483 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9484 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9485 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9486 return rv; 9487 } 9488 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9489 9490 static int md_notify_reboot(struct notifier_block *this, 9491 unsigned long code, void *x) 9492 { 9493 struct list_head *tmp; 9494 struct mddev *mddev; 9495 int need_delay = 0; 9496 9497 for_each_mddev(mddev, tmp) { 9498 if (mddev_trylock(mddev)) { 9499 if (mddev->pers) 9500 __md_stop_writes(mddev); 9501 if (mddev->persistent) 9502 mddev->safemode = 2; 9503 mddev_unlock(mddev); 9504 } 9505 need_delay = 1; 9506 } 9507 /* 9508 * certain more exotic SCSI devices are known to be 9509 * volatile wrt too early system reboots. While the 9510 * right place to handle this issue is the given 9511 * driver, we do want to have a safe RAID driver ... 9512 */ 9513 if (need_delay) 9514 mdelay(1000*1); 9515 9516 return NOTIFY_DONE; 9517 } 9518 9519 static struct notifier_block md_notifier = { 9520 .notifier_call = md_notify_reboot, 9521 .next = NULL, 9522 .priority = INT_MAX, /* before any real devices */ 9523 }; 9524 9525 static void md_geninit(void) 9526 { 9527 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9528 9529 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9530 } 9531 9532 static int __init md_init(void) 9533 { 9534 int ret = -ENOMEM; 9535 9536 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9537 if (!md_wq) 9538 goto err_wq; 9539 9540 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9541 if (!md_misc_wq) 9542 goto err_misc_wq; 9543 9544 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9545 if (!md_misc_wq) 9546 goto err_rdev_misc_wq; 9547 9548 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9549 goto err_md; 9550 9551 if ((ret = register_blkdev(0, "mdp")) < 0) 9552 goto err_mdp; 9553 mdp_major = ret; 9554 9555 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9556 md_probe, NULL, NULL); 9557 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9558 md_probe, NULL, NULL); 9559 9560 register_reboot_notifier(&md_notifier); 9561 raid_table_header = register_sysctl_table(raid_root_table); 9562 9563 md_geninit(); 9564 return 0; 9565 9566 err_mdp: 9567 unregister_blkdev(MD_MAJOR, "md"); 9568 err_md: 9569 destroy_workqueue(md_rdev_misc_wq); 9570 err_rdev_misc_wq: 9571 destroy_workqueue(md_misc_wq); 9572 err_misc_wq: 9573 destroy_workqueue(md_wq); 9574 err_wq: 9575 return ret; 9576 } 9577 9578 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9579 { 9580 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9581 struct md_rdev *rdev2; 9582 int role, ret; 9583 char b[BDEVNAME_SIZE]; 9584 9585 /* 9586 * If size is changed in another node then we need to 9587 * do resize as well. 9588 */ 9589 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9590 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9591 if (ret) 9592 pr_info("md-cluster: resize failed\n"); 9593 else 9594 md_bitmap_update_sb(mddev->bitmap); 9595 } 9596 9597 /* Check for change of roles in the active devices */ 9598 rdev_for_each(rdev2, mddev) { 9599 if (test_bit(Faulty, &rdev2->flags)) 9600 continue; 9601 9602 /* Check if the roles changed */ 9603 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9604 9605 if (test_bit(Candidate, &rdev2->flags)) { 9606 if (role == 0xfffe) { 9607 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9608 md_kick_rdev_from_array(rdev2); 9609 continue; 9610 } 9611 else 9612 clear_bit(Candidate, &rdev2->flags); 9613 } 9614 9615 if (role != rdev2->raid_disk) { 9616 /* 9617 * got activated except reshape is happening. 9618 */ 9619 if (rdev2->raid_disk == -1 && role != 0xffff && 9620 !(le32_to_cpu(sb->feature_map) & 9621 MD_FEATURE_RESHAPE_ACTIVE)) { 9622 rdev2->saved_raid_disk = role; 9623 ret = remove_and_add_spares(mddev, rdev2); 9624 pr_info("Activated spare: %s\n", 9625 bdevname(rdev2->bdev,b)); 9626 /* wakeup mddev->thread here, so array could 9627 * perform resync with the new activated disk */ 9628 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9629 md_wakeup_thread(mddev->thread); 9630 } 9631 /* device faulty 9632 * We just want to do the minimum to mark the disk 9633 * as faulty. The recovery is performed by the 9634 * one who initiated the error. 9635 */ 9636 if ((role == 0xfffe) || (role == 0xfffd)) { 9637 md_error(mddev, rdev2); 9638 clear_bit(Blocked, &rdev2->flags); 9639 } 9640 } 9641 } 9642 9643 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9644 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9645 9646 /* 9647 * Since mddev->delta_disks has already updated in update_raid_disks, 9648 * so it is time to check reshape. 9649 */ 9650 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9651 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9652 /* 9653 * reshape is happening in the remote node, we need to 9654 * update reshape_position and call start_reshape. 9655 */ 9656 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9657 if (mddev->pers->update_reshape_pos) 9658 mddev->pers->update_reshape_pos(mddev); 9659 if (mddev->pers->start_reshape) 9660 mddev->pers->start_reshape(mddev); 9661 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9662 mddev->reshape_position != MaxSector && 9663 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9664 /* reshape is just done in another node. */ 9665 mddev->reshape_position = MaxSector; 9666 if (mddev->pers->update_reshape_pos) 9667 mddev->pers->update_reshape_pos(mddev); 9668 } 9669 9670 /* Finally set the event to be up to date */ 9671 mddev->events = le64_to_cpu(sb->events); 9672 } 9673 9674 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9675 { 9676 int err; 9677 struct page *swapout = rdev->sb_page; 9678 struct mdp_superblock_1 *sb; 9679 9680 /* Store the sb page of the rdev in the swapout temporary 9681 * variable in case we err in the future 9682 */ 9683 rdev->sb_page = NULL; 9684 err = alloc_disk_sb(rdev); 9685 if (err == 0) { 9686 ClearPageUptodate(rdev->sb_page); 9687 rdev->sb_loaded = 0; 9688 err = super_types[mddev->major_version]. 9689 load_super(rdev, NULL, mddev->minor_version); 9690 } 9691 if (err < 0) { 9692 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9693 __func__, __LINE__, rdev->desc_nr, err); 9694 if (rdev->sb_page) 9695 put_page(rdev->sb_page); 9696 rdev->sb_page = swapout; 9697 rdev->sb_loaded = 1; 9698 return err; 9699 } 9700 9701 sb = page_address(rdev->sb_page); 9702 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9703 * is not set 9704 */ 9705 9706 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9707 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9708 9709 /* The other node finished recovery, call spare_active to set 9710 * device In_sync and mddev->degraded 9711 */ 9712 if (rdev->recovery_offset == MaxSector && 9713 !test_bit(In_sync, &rdev->flags) && 9714 mddev->pers->spare_active(mddev)) 9715 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9716 9717 put_page(swapout); 9718 return 0; 9719 } 9720 9721 void md_reload_sb(struct mddev *mddev, int nr) 9722 { 9723 struct md_rdev *rdev; 9724 int err; 9725 9726 /* Find the rdev */ 9727 rdev_for_each_rcu(rdev, mddev) { 9728 if (rdev->desc_nr == nr) 9729 break; 9730 } 9731 9732 if (!rdev || rdev->desc_nr != nr) { 9733 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9734 return; 9735 } 9736 9737 err = read_rdev(mddev, rdev); 9738 if (err < 0) 9739 return; 9740 9741 check_sb_changes(mddev, rdev); 9742 9743 /* Read all rdev's to update recovery_offset */ 9744 rdev_for_each_rcu(rdev, mddev) { 9745 if (!test_bit(Faulty, &rdev->flags)) 9746 read_rdev(mddev, rdev); 9747 } 9748 } 9749 EXPORT_SYMBOL(md_reload_sb); 9750 9751 #ifndef MODULE 9752 9753 /* 9754 * Searches all registered partitions for autorun RAID arrays 9755 * at boot time. 9756 */ 9757 9758 static DEFINE_MUTEX(detected_devices_mutex); 9759 static LIST_HEAD(all_detected_devices); 9760 struct detected_devices_node { 9761 struct list_head list; 9762 dev_t dev; 9763 }; 9764 9765 void md_autodetect_dev(dev_t dev) 9766 { 9767 struct detected_devices_node *node_detected_dev; 9768 9769 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9770 if (node_detected_dev) { 9771 node_detected_dev->dev = dev; 9772 mutex_lock(&detected_devices_mutex); 9773 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9774 mutex_unlock(&detected_devices_mutex); 9775 } 9776 } 9777 9778 void md_autostart_arrays(int part) 9779 { 9780 struct md_rdev *rdev; 9781 struct detected_devices_node *node_detected_dev; 9782 dev_t dev; 9783 int i_scanned, i_passed; 9784 9785 i_scanned = 0; 9786 i_passed = 0; 9787 9788 pr_info("md: Autodetecting RAID arrays.\n"); 9789 9790 mutex_lock(&detected_devices_mutex); 9791 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9792 i_scanned++; 9793 node_detected_dev = list_entry(all_detected_devices.next, 9794 struct detected_devices_node, list); 9795 list_del(&node_detected_dev->list); 9796 dev = node_detected_dev->dev; 9797 kfree(node_detected_dev); 9798 mutex_unlock(&detected_devices_mutex); 9799 rdev = md_import_device(dev,0, 90); 9800 mutex_lock(&detected_devices_mutex); 9801 if (IS_ERR(rdev)) 9802 continue; 9803 9804 if (test_bit(Faulty, &rdev->flags)) 9805 continue; 9806 9807 set_bit(AutoDetected, &rdev->flags); 9808 list_add(&rdev->same_set, &pending_raid_disks); 9809 i_passed++; 9810 } 9811 mutex_unlock(&detected_devices_mutex); 9812 9813 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9814 9815 autorun_devices(part); 9816 } 9817 9818 #endif /* !MODULE */ 9819 9820 static __exit void md_exit(void) 9821 { 9822 struct mddev *mddev; 9823 struct list_head *tmp; 9824 int delay = 1; 9825 9826 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9827 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9828 9829 unregister_blkdev(MD_MAJOR,"md"); 9830 unregister_blkdev(mdp_major, "mdp"); 9831 unregister_reboot_notifier(&md_notifier); 9832 unregister_sysctl_table(raid_table_header); 9833 9834 /* We cannot unload the modules while some process is 9835 * waiting for us in select() or poll() - wake them up 9836 */ 9837 md_unloading = 1; 9838 while (waitqueue_active(&md_event_waiters)) { 9839 /* not safe to leave yet */ 9840 wake_up(&md_event_waiters); 9841 msleep(delay); 9842 delay += delay; 9843 } 9844 remove_proc_entry("mdstat", NULL); 9845 9846 for_each_mddev(mddev, tmp) { 9847 export_array(mddev); 9848 mddev->ctime = 0; 9849 mddev->hold_active = 0; 9850 /* 9851 * for_each_mddev() will call mddev_put() at the end of each 9852 * iteration. As the mddev is now fully clear, this will 9853 * schedule the mddev for destruction by a workqueue, and the 9854 * destroy_workqueue() below will wait for that to complete. 9855 */ 9856 } 9857 destroy_workqueue(md_rdev_misc_wq); 9858 destroy_workqueue(md_misc_wq); 9859 destroy_workqueue(md_wq); 9860 } 9861 9862 subsys_initcall(md_init); 9863 module_exit(md_exit) 9864 9865 static int get_ro(char *buffer, const struct kernel_param *kp) 9866 { 9867 return sprintf(buffer, "%d\n", start_readonly); 9868 } 9869 static int set_ro(const char *val, const struct kernel_param *kp) 9870 { 9871 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9872 } 9873 9874 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9875 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9876 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9877 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9878 9879 MODULE_LICENSE("GPL"); 9880 MODULE_DESCRIPTION("MD RAID framework"); 9881 MODULE_ALIAS("md"); 9882 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9883