xref: /openbmc/linux/drivers/md/md.c (revision b15c2e57)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 
46 #include <linux/init.h>
47 
48 #include <linux/file.h>
49 
50 #ifdef CONFIG_KMOD
51 #include <linux/kmod.h>
52 #endif
53 
54 #include <asm/unaligned.h>
55 
56 #define MAJOR_NR MD_MAJOR
57 #define MD_DRIVER
58 
59 /* 63 partitions with the alternate major number (mdp) */
60 #define MdpMinorShift 6
61 
62 #define DEBUG 0
63 #define dprintk(x...) ((void)(DEBUG && printk(x)))
64 
65 
66 #ifndef MODULE
67 static void autostart_arrays (int part);
68 #endif
69 
70 static mdk_personality_t *pers[MAX_PERSONALITY];
71 static DEFINE_SPINLOCK(pers_lock);
72 
73 /*
74  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75  * is 1000 KB/sec, so the extra system load does not show up that much.
76  * Increase it if you want to have more _guaranteed_ speed. Note that
77  * the RAID driver will use the maximum available bandwidth if the IO
78  * subsystem is idle. There is also an 'absolute maximum' reconstruction
79  * speed limit - in case reconstruction slows down your system despite
80  * idle IO detection.
81  *
82  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
83  */
84 
85 static int sysctl_speed_limit_min = 1000;
86 static int sysctl_speed_limit_max = 200000;
87 
88 static struct ctl_table_header *raid_table_header;
89 
90 static ctl_table raid_table[] = {
91 	{
92 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
93 		.procname	= "speed_limit_min",
94 		.data		= &sysctl_speed_limit_min,
95 		.maxlen		= sizeof(int),
96 		.mode		= 0644,
97 		.proc_handler	= &proc_dointvec,
98 	},
99 	{
100 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
101 		.procname	= "speed_limit_max",
102 		.data		= &sysctl_speed_limit_max,
103 		.maxlen		= sizeof(int),
104 		.mode		= 0644,
105 		.proc_handler	= &proc_dointvec,
106 	},
107 	{ .ctl_name = 0 }
108 };
109 
110 static ctl_table raid_dir_table[] = {
111 	{
112 		.ctl_name	= DEV_RAID,
113 		.procname	= "raid",
114 		.maxlen		= 0,
115 		.mode		= 0555,
116 		.child		= raid_table,
117 	},
118 	{ .ctl_name = 0 }
119 };
120 
121 static ctl_table raid_root_table[] = {
122 	{
123 		.ctl_name	= CTL_DEV,
124 		.procname	= "dev",
125 		.maxlen		= 0,
126 		.mode		= 0555,
127 		.child		= raid_dir_table,
128 	},
129 	{ .ctl_name = 0 }
130 };
131 
132 static struct block_device_operations md_fops;
133 
134 static int start_readonly;
135 
136 /*
137  * Enables to iterate over all existing md arrays
138  * all_mddevs_lock protects this list.
139  */
140 static LIST_HEAD(all_mddevs);
141 static DEFINE_SPINLOCK(all_mddevs_lock);
142 
143 
144 /*
145  * iterates through all used mddevs in the system.
146  * We take care to grab the all_mddevs_lock whenever navigating
147  * the list, and to always hold a refcount when unlocked.
148  * Any code which breaks out of this loop while own
149  * a reference to the current mddev and must mddev_put it.
150  */
151 #define ITERATE_MDDEV(mddev,tmp)					\
152 									\
153 	for (({ spin_lock(&all_mddevs_lock); 				\
154 		tmp = all_mddevs.next;					\
155 		mddev = NULL;});					\
156 	     ({ if (tmp != &all_mddevs)					\
157 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
158 		spin_unlock(&all_mddevs_lock);				\
159 		if (mddev) mddev_put(mddev);				\
160 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
161 		tmp != &all_mddevs;});					\
162 	     ({ spin_lock(&all_mddevs_lock);				\
163 		tmp = tmp->next;})					\
164 		)
165 
166 
167 static int md_fail_request (request_queue_t *q, struct bio *bio)
168 {
169 	bio_io_error(bio, bio->bi_size);
170 	return 0;
171 }
172 
173 static inline mddev_t *mddev_get(mddev_t *mddev)
174 {
175 	atomic_inc(&mddev->active);
176 	return mddev;
177 }
178 
179 static void mddev_put(mddev_t *mddev)
180 {
181 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
182 		return;
183 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
184 		list_del(&mddev->all_mddevs);
185 		blk_put_queue(mddev->queue);
186 		kobject_unregister(&mddev->kobj);
187 	}
188 	spin_unlock(&all_mddevs_lock);
189 }
190 
191 static mddev_t * mddev_find(dev_t unit)
192 {
193 	mddev_t *mddev, *new = NULL;
194 
195  retry:
196 	spin_lock(&all_mddevs_lock);
197 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
198 		if (mddev->unit == unit) {
199 			mddev_get(mddev);
200 			spin_unlock(&all_mddevs_lock);
201 			kfree(new);
202 			return mddev;
203 		}
204 
205 	if (new) {
206 		list_add(&new->all_mddevs, &all_mddevs);
207 		spin_unlock(&all_mddevs_lock);
208 		return new;
209 	}
210 	spin_unlock(&all_mddevs_lock);
211 
212 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
213 	if (!new)
214 		return NULL;
215 
216 	memset(new, 0, sizeof(*new));
217 
218 	new->unit = unit;
219 	if (MAJOR(unit) == MD_MAJOR)
220 		new->md_minor = MINOR(unit);
221 	else
222 		new->md_minor = MINOR(unit) >> MdpMinorShift;
223 
224 	init_MUTEX(&new->reconfig_sem);
225 	INIT_LIST_HEAD(&new->disks);
226 	INIT_LIST_HEAD(&new->all_mddevs);
227 	init_timer(&new->safemode_timer);
228 	atomic_set(&new->active, 1);
229 	spin_lock_init(&new->write_lock);
230 	init_waitqueue_head(&new->sb_wait);
231 
232 	new->queue = blk_alloc_queue(GFP_KERNEL);
233 	if (!new->queue) {
234 		kfree(new);
235 		return NULL;
236 	}
237 
238 	blk_queue_make_request(new->queue, md_fail_request);
239 
240 	goto retry;
241 }
242 
243 static inline int mddev_lock(mddev_t * mddev)
244 {
245 	return down_interruptible(&mddev->reconfig_sem);
246 }
247 
248 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
249 {
250 	down(&mddev->reconfig_sem);
251 }
252 
253 static inline int mddev_trylock(mddev_t * mddev)
254 {
255 	return down_trylock(&mddev->reconfig_sem);
256 }
257 
258 static inline void mddev_unlock(mddev_t * mddev)
259 {
260 	up(&mddev->reconfig_sem);
261 
262 	md_wakeup_thread(mddev->thread);
263 }
264 
265 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
266 {
267 	mdk_rdev_t * rdev;
268 	struct list_head *tmp;
269 
270 	ITERATE_RDEV(mddev,rdev,tmp) {
271 		if (rdev->desc_nr == nr)
272 			return rdev;
273 	}
274 	return NULL;
275 }
276 
277 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
278 {
279 	struct list_head *tmp;
280 	mdk_rdev_t *rdev;
281 
282 	ITERATE_RDEV(mddev,rdev,tmp) {
283 		if (rdev->bdev->bd_dev == dev)
284 			return rdev;
285 	}
286 	return NULL;
287 }
288 
289 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
290 {
291 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
292 	return MD_NEW_SIZE_BLOCKS(size);
293 }
294 
295 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
296 {
297 	sector_t size;
298 
299 	size = rdev->sb_offset;
300 
301 	if (chunk_size)
302 		size &= ~((sector_t)chunk_size/1024 - 1);
303 	return size;
304 }
305 
306 static int alloc_disk_sb(mdk_rdev_t * rdev)
307 {
308 	if (rdev->sb_page)
309 		MD_BUG();
310 
311 	rdev->sb_page = alloc_page(GFP_KERNEL);
312 	if (!rdev->sb_page) {
313 		printk(KERN_ALERT "md: out of memory.\n");
314 		return -EINVAL;
315 	}
316 
317 	return 0;
318 }
319 
320 static void free_disk_sb(mdk_rdev_t * rdev)
321 {
322 	if (rdev->sb_page) {
323 		page_cache_release(rdev->sb_page);
324 		rdev->sb_loaded = 0;
325 		rdev->sb_page = NULL;
326 		rdev->sb_offset = 0;
327 		rdev->size = 0;
328 	}
329 }
330 
331 
332 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
333 {
334 	mdk_rdev_t *rdev = bio->bi_private;
335 	mddev_t *mddev = rdev->mddev;
336 	if (bio->bi_size)
337 		return 1;
338 
339 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
340 		md_error(mddev, rdev);
341 
342 	if (atomic_dec_and_test(&mddev->pending_writes))
343 		wake_up(&mddev->sb_wait);
344 	bio_put(bio);
345 	return 0;
346 }
347 
348 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
349 {
350 	struct bio *bio2 = bio->bi_private;
351 	mdk_rdev_t *rdev = bio2->bi_private;
352 	mddev_t *mddev = rdev->mddev;
353 	if (bio->bi_size)
354 		return 1;
355 
356 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
357 	    error == -EOPNOTSUPP) {
358 		unsigned long flags;
359 		/* barriers don't appear to be supported :-( */
360 		set_bit(BarriersNotsupp, &rdev->flags);
361 		mddev->barriers_work = 0;
362 		spin_lock_irqsave(&mddev->write_lock, flags);
363 		bio2->bi_next = mddev->biolist;
364 		mddev->biolist = bio2;
365 		spin_unlock_irqrestore(&mddev->write_lock, flags);
366 		wake_up(&mddev->sb_wait);
367 		bio_put(bio);
368 		return 0;
369 	}
370 	bio_put(bio2);
371 	bio->bi_private = rdev;
372 	return super_written(bio, bytes_done, error);
373 }
374 
375 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
376 		   sector_t sector, int size, struct page *page)
377 {
378 	/* write first size bytes of page to sector of rdev
379 	 * Increment mddev->pending_writes before returning
380 	 * and decrement it on completion, waking up sb_wait
381 	 * if zero is reached.
382 	 * If an error occurred, call md_error
383 	 *
384 	 * As we might need to resubmit the request if BIO_RW_BARRIER
385 	 * causes ENOTSUPP, we allocate a spare bio...
386 	 */
387 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
388 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
389 
390 	bio->bi_bdev = rdev->bdev;
391 	bio->bi_sector = sector;
392 	bio_add_page(bio, page, size, 0);
393 	bio->bi_private = rdev;
394 	bio->bi_end_io = super_written;
395 	bio->bi_rw = rw;
396 
397 	atomic_inc(&mddev->pending_writes);
398 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
399 		struct bio *rbio;
400 		rw |= (1<<BIO_RW_BARRIER);
401 		rbio = bio_clone(bio, GFP_NOIO);
402 		rbio->bi_private = bio;
403 		rbio->bi_end_io = super_written_barrier;
404 		submit_bio(rw, rbio);
405 	} else
406 		submit_bio(rw, bio);
407 }
408 
409 void md_super_wait(mddev_t *mddev)
410 {
411 	/* wait for all superblock writes that were scheduled to complete.
412 	 * if any had to be retried (due to BARRIER problems), retry them
413 	 */
414 	DEFINE_WAIT(wq);
415 	for(;;) {
416 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
417 		if (atomic_read(&mddev->pending_writes)==0)
418 			break;
419 		while (mddev->biolist) {
420 			struct bio *bio;
421 			spin_lock_irq(&mddev->write_lock);
422 			bio = mddev->biolist;
423 			mddev->biolist = bio->bi_next ;
424 			bio->bi_next = NULL;
425 			spin_unlock_irq(&mddev->write_lock);
426 			submit_bio(bio->bi_rw, bio);
427 		}
428 		schedule();
429 	}
430 	finish_wait(&mddev->sb_wait, &wq);
431 }
432 
433 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
434 {
435 	if (bio->bi_size)
436 		return 1;
437 
438 	complete((struct completion*)bio->bi_private);
439 	return 0;
440 }
441 
442 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
443 		   struct page *page, int rw)
444 {
445 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
446 	struct completion event;
447 	int ret;
448 
449 	rw |= (1 << BIO_RW_SYNC);
450 
451 	bio->bi_bdev = bdev;
452 	bio->bi_sector = sector;
453 	bio_add_page(bio, page, size, 0);
454 	init_completion(&event);
455 	bio->bi_private = &event;
456 	bio->bi_end_io = bi_complete;
457 	submit_bio(rw, bio);
458 	wait_for_completion(&event);
459 
460 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
461 	bio_put(bio);
462 	return ret;
463 }
464 
465 static int read_disk_sb(mdk_rdev_t * rdev, int size)
466 {
467 	char b[BDEVNAME_SIZE];
468 	if (!rdev->sb_page) {
469 		MD_BUG();
470 		return -EINVAL;
471 	}
472 	if (rdev->sb_loaded)
473 		return 0;
474 
475 
476 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
477 		goto fail;
478 	rdev->sb_loaded = 1;
479 	return 0;
480 
481 fail:
482 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
483 		bdevname(rdev->bdev,b));
484 	return -EINVAL;
485 }
486 
487 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
488 {
489 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
490 		(sb1->set_uuid1 == sb2->set_uuid1) &&
491 		(sb1->set_uuid2 == sb2->set_uuid2) &&
492 		(sb1->set_uuid3 == sb2->set_uuid3))
493 
494 		return 1;
495 
496 	return 0;
497 }
498 
499 
500 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
501 {
502 	int ret;
503 	mdp_super_t *tmp1, *tmp2;
504 
505 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
506 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
507 
508 	if (!tmp1 || !tmp2) {
509 		ret = 0;
510 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
511 		goto abort;
512 	}
513 
514 	*tmp1 = *sb1;
515 	*tmp2 = *sb2;
516 
517 	/*
518 	 * nr_disks is not constant
519 	 */
520 	tmp1->nr_disks = 0;
521 	tmp2->nr_disks = 0;
522 
523 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
524 		ret = 0;
525 	else
526 		ret = 1;
527 
528 abort:
529 	kfree(tmp1);
530 	kfree(tmp2);
531 	return ret;
532 }
533 
534 static unsigned int calc_sb_csum(mdp_super_t * sb)
535 {
536 	unsigned int disk_csum, csum;
537 
538 	disk_csum = sb->sb_csum;
539 	sb->sb_csum = 0;
540 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
541 	sb->sb_csum = disk_csum;
542 	return csum;
543 }
544 
545 
546 /*
547  * Handle superblock details.
548  * We want to be able to handle multiple superblock formats
549  * so we have a common interface to them all, and an array of
550  * different handlers.
551  * We rely on user-space to write the initial superblock, and support
552  * reading and updating of superblocks.
553  * Interface methods are:
554  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
555  *      loads and validates a superblock on dev.
556  *      if refdev != NULL, compare superblocks on both devices
557  *    Return:
558  *      0 - dev has a superblock that is compatible with refdev
559  *      1 - dev has a superblock that is compatible and newer than refdev
560  *          so dev should be used as the refdev in future
561  *     -EINVAL superblock incompatible or invalid
562  *     -othererror e.g. -EIO
563  *
564  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
565  *      Verify that dev is acceptable into mddev.
566  *       The first time, mddev->raid_disks will be 0, and data from
567  *       dev should be merged in.  Subsequent calls check that dev
568  *       is new enough.  Return 0 or -EINVAL
569  *
570  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
571  *     Update the superblock for rdev with data in mddev
572  *     This does not write to disc.
573  *
574  */
575 
576 struct super_type  {
577 	char 		*name;
578 	struct module	*owner;
579 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
580 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
581 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
582 };
583 
584 /*
585  * load_super for 0.90.0
586  */
587 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
588 {
589 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
590 	mdp_super_t *sb;
591 	int ret;
592 	sector_t sb_offset;
593 
594 	/*
595 	 * Calculate the position of the superblock,
596 	 * it's at the end of the disk.
597 	 *
598 	 * It also happens to be a multiple of 4Kb.
599 	 */
600 	sb_offset = calc_dev_sboffset(rdev->bdev);
601 	rdev->sb_offset = sb_offset;
602 
603 	ret = read_disk_sb(rdev, MD_SB_BYTES);
604 	if (ret) return ret;
605 
606 	ret = -EINVAL;
607 
608 	bdevname(rdev->bdev, b);
609 	sb = (mdp_super_t*)page_address(rdev->sb_page);
610 
611 	if (sb->md_magic != MD_SB_MAGIC) {
612 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
613 		       b);
614 		goto abort;
615 	}
616 
617 	if (sb->major_version != 0 ||
618 	    sb->minor_version != 90) {
619 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
620 			sb->major_version, sb->minor_version,
621 			b);
622 		goto abort;
623 	}
624 
625 	if (sb->raid_disks <= 0)
626 		goto abort;
627 
628 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
629 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
630 			b);
631 		goto abort;
632 	}
633 
634 	rdev->preferred_minor = sb->md_minor;
635 	rdev->data_offset = 0;
636 	rdev->sb_size = MD_SB_BYTES;
637 
638 	if (sb->level == LEVEL_MULTIPATH)
639 		rdev->desc_nr = -1;
640 	else
641 		rdev->desc_nr = sb->this_disk.number;
642 
643 	if (refdev == 0)
644 		ret = 1;
645 	else {
646 		__u64 ev1, ev2;
647 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
648 		if (!uuid_equal(refsb, sb)) {
649 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
650 				b, bdevname(refdev->bdev,b2));
651 			goto abort;
652 		}
653 		if (!sb_equal(refsb, sb)) {
654 			printk(KERN_WARNING "md: %s has same UUID"
655 			       " but different superblock to %s\n",
656 			       b, bdevname(refdev->bdev, b2));
657 			goto abort;
658 		}
659 		ev1 = md_event(sb);
660 		ev2 = md_event(refsb);
661 		if (ev1 > ev2)
662 			ret = 1;
663 		else
664 			ret = 0;
665 	}
666 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
667 
668  abort:
669 	return ret;
670 }
671 
672 /*
673  * validate_super for 0.90.0
674  */
675 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
676 {
677 	mdp_disk_t *desc;
678 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
679 
680 	rdev->raid_disk = -1;
681 	rdev->flags = 0;
682 	if (mddev->raid_disks == 0) {
683 		mddev->major_version = 0;
684 		mddev->minor_version = sb->minor_version;
685 		mddev->patch_version = sb->patch_version;
686 		mddev->persistent = ! sb->not_persistent;
687 		mddev->chunk_size = sb->chunk_size;
688 		mddev->ctime = sb->ctime;
689 		mddev->utime = sb->utime;
690 		mddev->level = sb->level;
691 		mddev->layout = sb->layout;
692 		mddev->raid_disks = sb->raid_disks;
693 		mddev->size = sb->size;
694 		mddev->events = md_event(sb);
695 		mddev->bitmap_offset = 0;
696 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
697 
698 		if (sb->state & (1<<MD_SB_CLEAN))
699 			mddev->recovery_cp = MaxSector;
700 		else {
701 			if (sb->events_hi == sb->cp_events_hi &&
702 				sb->events_lo == sb->cp_events_lo) {
703 				mddev->recovery_cp = sb->recovery_cp;
704 			} else
705 				mddev->recovery_cp = 0;
706 		}
707 
708 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
709 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
710 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
711 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
712 
713 		mddev->max_disks = MD_SB_DISKS;
714 
715 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
716 		    mddev->bitmap_file == NULL) {
717 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
718 				/* FIXME use a better test */
719 				printk(KERN_WARNING "md: bitmaps only support for raid1\n");
720 				return -EINVAL;
721 			}
722 			mddev->bitmap_offset = mddev->default_bitmap_offset;
723 		}
724 
725 	} else if (mddev->pers == NULL) {
726 		/* Insist on good event counter while assembling */
727 		__u64 ev1 = md_event(sb);
728 		++ev1;
729 		if (ev1 < mddev->events)
730 			return -EINVAL;
731 	} else if (mddev->bitmap) {
732 		/* if adding to array with a bitmap, then we can accept an
733 		 * older device ... but not too old.
734 		 */
735 		__u64 ev1 = md_event(sb);
736 		if (ev1 < mddev->bitmap->events_cleared)
737 			return 0;
738 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
739 		return 0;
740 
741 	if (mddev->level != LEVEL_MULTIPATH) {
742 		desc = sb->disks + rdev->desc_nr;
743 
744 		if (desc->state & (1<<MD_DISK_FAULTY))
745 			set_bit(Faulty, &rdev->flags);
746 		else if (desc->state & (1<<MD_DISK_SYNC) &&
747 			 desc->raid_disk < mddev->raid_disks) {
748 			set_bit(In_sync, &rdev->flags);
749 			rdev->raid_disk = desc->raid_disk;
750 		}
751 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
752 			set_bit(WriteMostly, &rdev->flags);
753 	} else /* MULTIPATH are always insync */
754 		set_bit(In_sync, &rdev->flags);
755 	return 0;
756 }
757 
758 /*
759  * sync_super for 0.90.0
760  */
761 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
762 {
763 	mdp_super_t *sb;
764 	struct list_head *tmp;
765 	mdk_rdev_t *rdev2;
766 	int next_spare = mddev->raid_disks;
767 
768 
769 	/* make rdev->sb match mddev data..
770 	 *
771 	 * 1/ zero out disks
772 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
773 	 * 3/ any empty disks < next_spare become removed
774 	 *
775 	 * disks[0] gets initialised to REMOVED because
776 	 * we cannot be sure from other fields if it has
777 	 * been initialised or not.
778 	 */
779 	int i;
780 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
781 
782 	rdev->sb_size = MD_SB_BYTES;
783 
784 	sb = (mdp_super_t*)page_address(rdev->sb_page);
785 
786 	memset(sb, 0, sizeof(*sb));
787 
788 	sb->md_magic = MD_SB_MAGIC;
789 	sb->major_version = mddev->major_version;
790 	sb->minor_version = mddev->minor_version;
791 	sb->patch_version = mddev->patch_version;
792 	sb->gvalid_words  = 0; /* ignored */
793 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
794 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
795 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
796 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
797 
798 	sb->ctime = mddev->ctime;
799 	sb->level = mddev->level;
800 	sb->size  = mddev->size;
801 	sb->raid_disks = mddev->raid_disks;
802 	sb->md_minor = mddev->md_minor;
803 	sb->not_persistent = !mddev->persistent;
804 	sb->utime = mddev->utime;
805 	sb->state = 0;
806 	sb->events_hi = (mddev->events>>32);
807 	sb->events_lo = (u32)mddev->events;
808 
809 	if (mddev->in_sync)
810 	{
811 		sb->recovery_cp = mddev->recovery_cp;
812 		sb->cp_events_hi = (mddev->events>>32);
813 		sb->cp_events_lo = (u32)mddev->events;
814 		if (mddev->recovery_cp == MaxSector)
815 			sb->state = (1<< MD_SB_CLEAN);
816 	} else
817 		sb->recovery_cp = 0;
818 
819 	sb->layout = mddev->layout;
820 	sb->chunk_size = mddev->chunk_size;
821 
822 	if (mddev->bitmap && mddev->bitmap_file == NULL)
823 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
824 
825 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
826 	ITERATE_RDEV(mddev,rdev2,tmp) {
827 		mdp_disk_t *d;
828 		int desc_nr;
829 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
830 		    && !test_bit(Faulty, &rdev2->flags))
831 			desc_nr = rdev2->raid_disk;
832 		else
833 			desc_nr = next_spare++;
834 		rdev2->desc_nr = desc_nr;
835 		d = &sb->disks[rdev2->desc_nr];
836 		nr_disks++;
837 		d->number = rdev2->desc_nr;
838 		d->major = MAJOR(rdev2->bdev->bd_dev);
839 		d->minor = MINOR(rdev2->bdev->bd_dev);
840 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
841 		    && !test_bit(Faulty, &rdev2->flags))
842 			d->raid_disk = rdev2->raid_disk;
843 		else
844 			d->raid_disk = rdev2->desc_nr; /* compatibility */
845 		if (test_bit(Faulty, &rdev2->flags)) {
846 			d->state = (1<<MD_DISK_FAULTY);
847 			failed++;
848 		} else if (test_bit(In_sync, &rdev2->flags)) {
849 			d->state = (1<<MD_DISK_ACTIVE);
850 			d->state |= (1<<MD_DISK_SYNC);
851 			active++;
852 			working++;
853 		} else {
854 			d->state = 0;
855 			spare++;
856 			working++;
857 		}
858 		if (test_bit(WriteMostly, &rdev2->flags))
859 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
860 	}
861 	/* now set the "removed" and "faulty" bits on any missing devices */
862 	for (i=0 ; i < mddev->raid_disks ; i++) {
863 		mdp_disk_t *d = &sb->disks[i];
864 		if (d->state == 0 && d->number == 0) {
865 			d->number = i;
866 			d->raid_disk = i;
867 			d->state = (1<<MD_DISK_REMOVED);
868 			d->state |= (1<<MD_DISK_FAULTY);
869 			failed++;
870 		}
871 	}
872 	sb->nr_disks = nr_disks;
873 	sb->active_disks = active;
874 	sb->working_disks = working;
875 	sb->failed_disks = failed;
876 	sb->spare_disks = spare;
877 
878 	sb->this_disk = sb->disks[rdev->desc_nr];
879 	sb->sb_csum = calc_sb_csum(sb);
880 }
881 
882 /*
883  * version 1 superblock
884  */
885 
886 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
887 {
888 	unsigned int disk_csum, csum;
889 	unsigned long long newcsum;
890 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
891 	unsigned int *isuper = (unsigned int*)sb;
892 	int i;
893 
894 	disk_csum = sb->sb_csum;
895 	sb->sb_csum = 0;
896 	newcsum = 0;
897 	for (i=0; size>=4; size -= 4 )
898 		newcsum += le32_to_cpu(*isuper++);
899 
900 	if (size == 2)
901 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
902 
903 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
904 	sb->sb_csum = disk_csum;
905 	return cpu_to_le32(csum);
906 }
907 
908 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
909 {
910 	struct mdp_superblock_1 *sb;
911 	int ret;
912 	sector_t sb_offset;
913 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
914 	int bmask;
915 
916 	/*
917 	 * Calculate the position of the superblock.
918 	 * It is always aligned to a 4K boundary and
919 	 * depeding on minor_version, it can be:
920 	 * 0: At least 8K, but less than 12K, from end of device
921 	 * 1: At start of device
922 	 * 2: 4K from start of device.
923 	 */
924 	switch(minor_version) {
925 	case 0:
926 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
927 		sb_offset -= 8*2;
928 		sb_offset &= ~(sector_t)(4*2-1);
929 		/* convert from sectors to K */
930 		sb_offset /= 2;
931 		break;
932 	case 1:
933 		sb_offset = 0;
934 		break;
935 	case 2:
936 		sb_offset = 4;
937 		break;
938 	default:
939 		return -EINVAL;
940 	}
941 	rdev->sb_offset = sb_offset;
942 
943 	/* superblock is rarely larger than 1K, but it can be larger,
944 	 * and it is safe to read 4k, so we do that
945 	 */
946 	ret = read_disk_sb(rdev, 4096);
947 	if (ret) return ret;
948 
949 
950 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
951 
952 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
953 	    sb->major_version != cpu_to_le32(1) ||
954 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
955 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
956 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
957 		return -EINVAL;
958 
959 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
960 		printk("md: invalid superblock checksum on %s\n",
961 			bdevname(rdev->bdev,b));
962 		return -EINVAL;
963 	}
964 	if (le64_to_cpu(sb->data_size) < 10) {
965 		printk("md: data_size too small on %s\n",
966 		       bdevname(rdev->bdev,b));
967 		return -EINVAL;
968 	}
969 	rdev->preferred_minor = 0xffff;
970 	rdev->data_offset = le64_to_cpu(sb->data_offset);
971 
972 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
973 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
974 	if (rdev->sb_size & bmask)
975 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
976 
977 	if (refdev == 0)
978 		return 1;
979 	else {
980 		__u64 ev1, ev2;
981 		struct mdp_superblock_1 *refsb =
982 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
983 
984 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
985 		    sb->level != refsb->level ||
986 		    sb->layout != refsb->layout ||
987 		    sb->chunksize != refsb->chunksize) {
988 			printk(KERN_WARNING "md: %s has strangely different"
989 				" superblock to %s\n",
990 				bdevname(rdev->bdev,b),
991 				bdevname(refdev->bdev,b2));
992 			return -EINVAL;
993 		}
994 		ev1 = le64_to_cpu(sb->events);
995 		ev2 = le64_to_cpu(refsb->events);
996 
997 		if (ev1 > ev2)
998 			return 1;
999 	}
1000 	if (minor_version)
1001 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1002 	else
1003 		rdev->size = rdev->sb_offset;
1004 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1005 		return -EINVAL;
1006 	rdev->size = le64_to_cpu(sb->data_size)/2;
1007 	if (le32_to_cpu(sb->chunksize))
1008 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1009 	return 0;
1010 }
1011 
1012 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1013 {
1014 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1015 
1016 	rdev->raid_disk = -1;
1017 	rdev->flags = 0;
1018 	if (mddev->raid_disks == 0) {
1019 		mddev->major_version = 1;
1020 		mddev->patch_version = 0;
1021 		mddev->persistent = 1;
1022 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1023 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1024 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1025 		mddev->level = le32_to_cpu(sb->level);
1026 		mddev->layout = le32_to_cpu(sb->layout);
1027 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1028 		mddev->size = le64_to_cpu(sb->size)/2;
1029 		mddev->events = le64_to_cpu(sb->events);
1030 		mddev->bitmap_offset = 0;
1031 		mddev->default_bitmap_offset = 1024;
1032 
1033 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1034 		memcpy(mddev->uuid, sb->set_uuid, 16);
1035 
1036 		mddev->max_disks =  (4096-256)/2;
1037 
1038 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1039 		    mddev->bitmap_file == NULL ) {
1040 			if (mddev->level != 1) {
1041 				printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
1042 				return -EINVAL;
1043 			}
1044 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1045 		}
1046 	} else if (mddev->pers == NULL) {
1047 		/* Insist of good event counter while assembling */
1048 		__u64 ev1 = le64_to_cpu(sb->events);
1049 		++ev1;
1050 		if (ev1 < mddev->events)
1051 			return -EINVAL;
1052 	} else if (mddev->bitmap) {
1053 		/* If adding to array with a bitmap, then we can accept an
1054 		 * older device, but not too old.
1055 		 */
1056 		__u64 ev1 = le64_to_cpu(sb->events);
1057 		if (ev1 < mddev->bitmap->events_cleared)
1058 			return 0;
1059 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1060 		return 0;
1061 
1062 	if (mddev->level != LEVEL_MULTIPATH) {
1063 		int role;
1064 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1065 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1066 		switch(role) {
1067 		case 0xffff: /* spare */
1068 			break;
1069 		case 0xfffe: /* faulty */
1070 			set_bit(Faulty, &rdev->flags);
1071 			break;
1072 		default:
1073 			set_bit(In_sync, &rdev->flags);
1074 			rdev->raid_disk = role;
1075 			break;
1076 		}
1077 		if (sb->devflags & WriteMostly1)
1078 			set_bit(WriteMostly, &rdev->flags);
1079 	} else /* MULTIPATH are always insync */
1080 		set_bit(In_sync, &rdev->flags);
1081 
1082 	return 0;
1083 }
1084 
1085 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1086 {
1087 	struct mdp_superblock_1 *sb;
1088 	struct list_head *tmp;
1089 	mdk_rdev_t *rdev2;
1090 	int max_dev, i;
1091 	/* make rdev->sb match mddev and rdev data. */
1092 
1093 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1094 
1095 	sb->feature_map = 0;
1096 	sb->pad0 = 0;
1097 	memset(sb->pad1, 0, sizeof(sb->pad1));
1098 	memset(sb->pad2, 0, sizeof(sb->pad2));
1099 	memset(sb->pad3, 0, sizeof(sb->pad3));
1100 
1101 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1102 	sb->events = cpu_to_le64(mddev->events);
1103 	if (mddev->in_sync)
1104 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1105 	else
1106 		sb->resync_offset = cpu_to_le64(0);
1107 
1108 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1109 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1110 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1111 	}
1112 
1113 	max_dev = 0;
1114 	ITERATE_RDEV(mddev,rdev2,tmp)
1115 		if (rdev2->desc_nr+1 > max_dev)
1116 			max_dev = rdev2->desc_nr+1;
1117 
1118 	sb->max_dev = cpu_to_le32(max_dev);
1119 	for (i=0; i<max_dev;i++)
1120 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1121 
1122 	ITERATE_RDEV(mddev,rdev2,tmp) {
1123 		i = rdev2->desc_nr;
1124 		if (test_bit(Faulty, &rdev2->flags))
1125 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1126 		else if (test_bit(In_sync, &rdev2->flags))
1127 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1128 		else
1129 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1130 	}
1131 
1132 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1133 	sb->sb_csum = calc_sb_1_csum(sb);
1134 }
1135 
1136 
1137 static struct super_type super_types[] = {
1138 	[0] = {
1139 		.name	= "0.90.0",
1140 		.owner	= THIS_MODULE,
1141 		.load_super	= super_90_load,
1142 		.validate_super	= super_90_validate,
1143 		.sync_super	= super_90_sync,
1144 	},
1145 	[1] = {
1146 		.name	= "md-1",
1147 		.owner	= THIS_MODULE,
1148 		.load_super	= super_1_load,
1149 		.validate_super	= super_1_validate,
1150 		.sync_super	= super_1_sync,
1151 	},
1152 };
1153 
1154 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1155 {
1156 	struct list_head *tmp;
1157 	mdk_rdev_t *rdev;
1158 
1159 	ITERATE_RDEV(mddev,rdev,tmp)
1160 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1161 			return rdev;
1162 
1163 	return NULL;
1164 }
1165 
1166 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1167 {
1168 	struct list_head *tmp;
1169 	mdk_rdev_t *rdev;
1170 
1171 	ITERATE_RDEV(mddev1,rdev,tmp)
1172 		if (match_dev_unit(mddev2, rdev))
1173 			return 1;
1174 
1175 	return 0;
1176 }
1177 
1178 static LIST_HEAD(pending_raid_disks);
1179 
1180 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1181 {
1182 	mdk_rdev_t *same_pdev;
1183 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1184 	struct kobject *ko;
1185 
1186 	if (rdev->mddev) {
1187 		MD_BUG();
1188 		return -EINVAL;
1189 	}
1190 	same_pdev = match_dev_unit(mddev, rdev);
1191 	if (same_pdev)
1192 		printk(KERN_WARNING
1193 			"%s: WARNING: %s appears to be on the same physical"
1194 	 		" disk as %s. True\n     protection against single-disk"
1195 			" failure might be compromised.\n",
1196 			mdname(mddev), bdevname(rdev->bdev,b),
1197 			bdevname(same_pdev->bdev,b2));
1198 
1199 	/* Verify rdev->desc_nr is unique.
1200 	 * If it is -1, assign a free number, else
1201 	 * check number is not in use
1202 	 */
1203 	if (rdev->desc_nr < 0) {
1204 		int choice = 0;
1205 		if (mddev->pers) choice = mddev->raid_disks;
1206 		while (find_rdev_nr(mddev, choice))
1207 			choice++;
1208 		rdev->desc_nr = choice;
1209 	} else {
1210 		if (find_rdev_nr(mddev, rdev->desc_nr))
1211 			return -EBUSY;
1212 	}
1213 	bdevname(rdev->bdev,b);
1214 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1215 		return -ENOMEM;
1216 
1217 	list_add(&rdev->same_set, &mddev->disks);
1218 	rdev->mddev = mddev;
1219 	printk(KERN_INFO "md: bind<%s>\n", b);
1220 
1221 	rdev->kobj.parent = &mddev->kobj;
1222 	kobject_add(&rdev->kobj);
1223 
1224 	if (rdev->bdev->bd_part)
1225 		ko = &rdev->bdev->bd_part->kobj;
1226 	else
1227 		ko = &rdev->bdev->bd_disk->kobj;
1228 	sysfs_create_link(&rdev->kobj, ko, "block");
1229 	return 0;
1230 }
1231 
1232 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1233 {
1234 	char b[BDEVNAME_SIZE];
1235 	if (!rdev->mddev) {
1236 		MD_BUG();
1237 		return;
1238 	}
1239 	list_del_init(&rdev->same_set);
1240 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1241 	rdev->mddev = NULL;
1242 	sysfs_remove_link(&rdev->kobj, "block");
1243 	kobject_del(&rdev->kobj);
1244 }
1245 
1246 /*
1247  * prevent the device from being mounted, repartitioned or
1248  * otherwise reused by a RAID array (or any other kernel
1249  * subsystem), by bd_claiming the device.
1250  */
1251 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1252 {
1253 	int err = 0;
1254 	struct block_device *bdev;
1255 	char b[BDEVNAME_SIZE];
1256 
1257 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1258 	if (IS_ERR(bdev)) {
1259 		printk(KERN_ERR "md: could not open %s.\n",
1260 			__bdevname(dev, b));
1261 		return PTR_ERR(bdev);
1262 	}
1263 	err = bd_claim(bdev, rdev);
1264 	if (err) {
1265 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1266 			bdevname(bdev, b));
1267 		blkdev_put(bdev);
1268 		return err;
1269 	}
1270 	rdev->bdev = bdev;
1271 	return err;
1272 }
1273 
1274 static void unlock_rdev(mdk_rdev_t *rdev)
1275 {
1276 	struct block_device *bdev = rdev->bdev;
1277 	rdev->bdev = NULL;
1278 	if (!bdev)
1279 		MD_BUG();
1280 	bd_release(bdev);
1281 	blkdev_put(bdev);
1282 }
1283 
1284 void md_autodetect_dev(dev_t dev);
1285 
1286 static void export_rdev(mdk_rdev_t * rdev)
1287 {
1288 	char b[BDEVNAME_SIZE];
1289 	printk(KERN_INFO "md: export_rdev(%s)\n",
1290 		bdevname(rdev->bdev,b));
1291 	if (rdev->mddev)
1292 		MD_BUG();
1293 	free_disk_sb(rdev);
1294 	list_del_init(&rdev->same_set);
1295 #ifndef MODULE
1296 	md_autodetect_dev(rdev->bdev->bd_dev);
1297 #endif
1298 	unlock_rdev(rdev);
1299 	kobject_put(&rdev->kobj);
1300 }
1301 
1302 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1303 {
1304 	unbind_rdev_from_array(rdev);
1305 	export_rdev(rdev);
1306 }
1307 
1308 static void export_array(mddev_t *mddev)
1309 {
1310 	struct list_head *tmp;
1311 	mdk_rdev_t *rdev;
1312 
1313 	ITERATE_RDEV(mddev,rdev,tmp) {
1314 		if (!rdev->mddev) {
1315 			MD_BUG();
1316 			continue;
1317 		}
1318 		kick_rdev_from_array(rdev);
1319 	}
1320 	if (!list_empty(&mddev->disks))
1321 		MD_BUG();
1322 	mddev->raid_disks = 0;
1323 	mddev->major_version = 0;
1324 }
1325 
1326 static void print_desc(mdp_disk_t *desc)
1327 {
1328 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1329 		desc->major,desc->minor,desc->raid_disk,desc->state);
1330 }
1331 
1332 static void print_sb(mdp_super_t *sb)
1333 {
1334 	int i;
1335 
1336 	printk(KERN_INFO
1337 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1338 		sb->major_version, sb->minor_version, sb->patch_version,
1339 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1340 		sb->ctime);
1341 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1342 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1343 		sb->md_minor, sb->layout, sb->chunk_size);
1344 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1345 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1346 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1347 		sb->failed_disks, sb->spare_disks,
1348 		sb->sb_csum, (unsigned long)sb->events_lo);
1349 
1350 	printk(KERN_INFO);
1351 	for (i = 0; i < MD_SB_DISKS; i++) {
1352 		mdp_disk_t *desc;
1353 
1354 		desc = sb->disks + i;
1355 		if (desc->number || desc->major || desc->minor ||
1356 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1357 			printk("     D %2d: ", i);
1358 			print_desc(desc);
1359 		}
1360 	}
1361 	printk(KERN_INFO "md:     THIS: ");
1362 	print_desc(&sb->this_disk);
1363 
1364 }
1365 
1366 static void print_rdev(mdk_rdev_t *rdev)
1367 {
1368 	char b[BDEVNAME_SIZE];
1369 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1370 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1371 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1372 	        rdev->desc_nr);
1373 	if (rdev->sb_loaded) {
1374 		printk(KERN_INFO "md: rdev superblock:\n");
1375 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1376 	} else
1377 		printk(KERN_INFO "md: no rdev superblock!\n");
1378 }
1379 
1380 void md_print_devices(void)
1381 {
1382 	struct list_head *tmp, *tmp2;
1383 	mdk_rdev_t *rdev;
1384 	mddev_t *mddev;
1385 	char b[BDEVNAME_SIZE];
1386 
1387 	printk("\n");
1388 	printk("md:	**********************************\n");
1389 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1390 	printk("md:	**********************************\n");
1391 	ITERATE_MDDEV(mddev,tmp) {
1392 
1393 		if (mddev->bitmap)
1394 			bitmap_print_sb(mddev->bitmap);
1395 		else
1396 			printk("%s: ", mdname(mddev));
1397 		ITERATE_RDEV(mddev,rdev,tmp2)
1398 			printk("<%s>", bdevname(rdev->bdev,b));
1399 		printk("\n");
1400 
1401 		ITERATE_RDEV(mddev,rdev,tmp2)
1402 			print_rdev(rdev);
1403 	}
1404 	printk("md:	**********************************\n");
1405 	printk("\n");
1406 }
1407 
1408 
1409 static void sync_sbs(mddev_t * mddev)
1410 {
1411 	mdk_rdev_t *rdev;
1412 	struct list_head *tmp;
1413 
1414 	ITERATE_RDEV(mddev,rdev,tmp) {
1415 		super_types[mddev->major_version].
1416 			sync_super(mddev, rdev);
1417 		rdev->sb_loaded = 1;
1418 	}
1419 }
1420 
1421 static void md_update_sb(mddev_t * mddev)
1422 {
1423 	int err;
1424 	struct list_head *tmp;
1425 	mdk_rdev_t *rdev;
1426 	int sync_req;
1427 
1428 repeat:
1429 	spin_lock_irq(&mddev->write_lock);
1430 	sync_req = mddev->in_sync;
1431 	mddev->utime = get_seconds();
1432 	mddev->events ++;
1433 
1434 	if (!mddev->events) {
1435 		/*
1436 		 * oops, this 64-bit counter should never wrap.
1437 		 * Either we are in around ~1 trillion A.C., assuming
1438 		 * 1 reboot per second, or we have a bug:
1439 		 */
1440 		MD_BUG();
1441 		mddev->events --;
1442 	}
1443 	mddev->sb_dirty = 2;
1444 	sync_sbs(mddev);
1445 
1446 	/*
1447 	 * do not write anything to disk if using
1448 	 * nonpersistent superblocks
1449 	 */
1450 	if (!mddev->persistent) {
1451 		mddev->sb_dirty = 0;
1452 		spin_unlock_irq(&mddev->write_lock);
1453 		wake_up(&mddev->sb_wait);
1454 		return;
1455 	}
1456 	spin_unlock_irq(&mddev->write_lock);
1457 
1458 	dprintk(KERN_INFO
1459 		"md: updating %s RAID superblock on device (in sync %d)\n",
1460 		mdname(mddev),mddev->in_sync);
1461 
1462 	err = bitmap_update_sb(mddev->bitmap);
1463 	ITERATE_RDEV(mddev,rdev,tmp) {
1464 		char b[BDEVNAME_SIZE];
1465 		dprintk(KERN_INFO "md: ");
1466 		if (test_bit(Faulty, &rdev->flags))
1467 			dprintk("(skipping faulty ");
1468 
1469 		dprintk("%s ", bdevname(rdev->bdev,b));
1470 		if (!test_bit(Faulty, &rdev->flags)) {
1471 			md_super_write(mddev,rdev,
1472 				       rdev->sb_offset<<1, rdev->sb_size,
1473 				       rdev->sb_page);
1474 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1475 				bdevname(rdev->bdev,b),
1476 				(unsigned long long)rdev->sb_offset);
1477 
1478 		} else
1479 			dprintk(")\n");
1480 		if (mddev->level == LEVEL_MULTIPATH)
1481 			/* only need to write one superblock... */
1482 			break;
1483 	}
1484 	md_super_wait(mddev);
1485 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1486 
1487 	spin_lock_irq(&mddev->write_lock);
1488 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1489 		/* have to write it out again */
1490 		spin_unlock_irq(&mddev->write_lock);
1491 		goto repeat;
1492 	}
1493 	mddev->sb_dirty = 0;
1494 	spin_unlock_irq(&mddev->write_lock);
1495 	wake_up(&mddev->sb_wait);
1496 
1497 }
1498 
1499 struct rdev_sysfs_entry {
1500 	struct attribute attr;
1501 	ssize_t (*show)(mdk_rdev_t *, char *);
1502 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1503 };
1504 
1505 static ssize_t
1506 state_show(mdk_rdev_t *rdev, char *page)
1507 {
1508 	char *sep = "";
1509 	int len=0;
1510 
1511 	if (test_bit(Faulty, &rdev->flags)) {
1512 		len+= sprintf(page+len, "%sfaulty",sep);
1513 		sep = ",";
1514 	}
1515 	if (test_bit(In_sync, &rdev->flags)) {
1516 		len += sprintf(page+len, "%sin_sync",sep);
1517 		sep = ",";
1518 	}
1519 	if (!test_bit(Faulty, &rdev->flags) &&
1520 	    !test_bit(In_sync, &rdev->flags)) {
1521 		len += sprintf(page+len, "%sspare", sep);
1522 		sep = ",";
1523 	}
1524 	return len+sprintf(page+len, "\n");
1525 }
1526 
1527 static struct rdev_sysfs_entry
1528 rdev_state = __ATTR_RO(state);
1529 
1530 static ssize_t
1531 super_show(mdk_rdev_t *rdev, char *page)
1532 {
1533 	if (rdev->sb_loaded && rdev->sb_size) {
1534 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1535 		return rdev->sb_size;
1536 	} else
1537 		return 0;
1538 }
1539 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1540 
1541 static struct attribute *rdev_default_attrs[] = {
1542 	&rdev_state.attr,
1543 	&rdev_super.attr,
1544 	NULL,
1545 };
1546 static ssize_t
1547 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1548 {
1549 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1550 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1551 
1552 	if (!entry->show)
1553 		return -EIO;
1554 	return entry->show(rdev, page);
1555 }
1556 
1557 static ssize_t
1558 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1559 	      const char *page, size_t length)
1560 {
1561 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1562 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1563 
1564 	if (!entry->store)
1565 		return -EIO;
1566 	return entry->store(rdev, page, length);
1567 }
1568 
1569 static void rdev_free(struct kobject *ko)
1570 {
1571 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1572 	kfree(rdev);
1573 }
1574 static struct sysfs_ops rdev_sysfs_ops = {
1575 	.show		= rdev_attr_show,
1576 	.store		= rdev_attr_store,
1577 };
1578 static struct kobj_type rdev_ktype = {
1579 	.release	= rdev_free,
1580 	.sysfs_ops	= &rdev_sysfs_ops,
1581 	.default_attrs	= rdev_default_attrs,
1582 };
1583 
1584 /*
1585  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1586  *
1587  * mark the device faulty if:
1588  *
1589  *   - the device is nonexistent (zero size)
1590  *   - the device has no valid superblock
1591  *
1592  * a faulty rdev _never_ has rdev->sb set.
1593  */
1594 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1595 {
1596 	char b[BDEVNAME_SIZE];
1597 	int err;
1598 	mdk_rdev_t *rdev;
1599 	sector_t size;
1600 
1601 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1602 	if (!rdev) {
1603 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1604 		return ERR_PTR(-ENOMEM);
1605 	}
1606 	memset(rdev, 0, sizeof(*rdev));
1607 
1608 	if ((err = alloc_disk_sb(rdev)))
1609 		goto abort_free;
1610 
1611 	err = lock_rdev(rdev, newdev);
1612 	if (err)
1613 		goto abort_free;
1614 
1615 	rdev->kobj.parent = NULL;
1616 	rdev->kobj.ktype = &rdev_ktype;
1617 	kobject_init(&rdev->kobj);
1618 
1619 	rdev->desc_nr = -1;
1620 	rdev->flags = 0;
1621 	rdev->data_offset = 0;
1622 	atomic_set(&rdev->nr_pending, 0);
1623 	atomic_set(&rdev->read_errors, 0);
1624 
1625 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1626 	if (!size) {
1627 		printk(KERN_WARNING
1628 			"md: %s has zero or unknown size, marking faulty!\n",
1629 			bdevname(rdev->bdev,b));
1630 		err = -EINVAL;
1631 		goto abort_free;
1632 	}
1633 
1634 	if (super_format >= 0) {
1635 		err = super_types[super_format].
1636 			load_super(rdev, NULL, super_minor);
1637 		if (err == -EINVAL) {
1638 			printk(KERN_WARNING
1639 				"md: %s has invalid sb, not importing!\n",
1640 				bdevname(rdev->bdev,b));
1641 			goto abort_free;
1642 		}
1643 		if (err < 0) {
1644 			printk(KERN_WARNING
1645 				"md: could not read %s's sb, not importing!\n",
1646 				bdevname(rdev->bdev,b));
1647 			goto abort_free;
1648 		}
1649 	}
1650 	INIT_LIST_HEAD(&rdev->same_set);
1651 
1652 	return rdev;
1653 
1654 abort_free:
1655 	if (rdev->sb_page) {
1656 		if (rdev->bdev)
1657 			unlock_rdev(rdev);
1658 		free_disk_sb(rdev);
1659 	}
1660 	kfree(rdev);
1661 	return ERR_PTR(err);
1662 }
1663 
1664 /*
1665  * Check a full RAID array for plausibility
1666  */
1667 
1668 
1669 static void analyze_sbs(mddev_t * mddev)
1670 {
1671 	int i;
1672 	struct list_head *tmp;
1673 	mdk_rdev_t *rdev, *freshest;
1674 	char b[BDEVNAME_SIZE];
1675 
1676 	freshest = NULL;
1677 	ITERATE_RDEV(mddev,rdev,tmp)
1678 		switch (super_types[mddev->major_version].
1679 			load_super(rdev, freshest, mddev->minor_version)) {
1680 		case 1:
1681 			freshest = rdev;
1682 			break;
1683 		case 0:
1684 			break;
1685 		default:
1686 			printk( KERN_ERR \
1687 				"md: fatal superblock inconsistency in %s"
1688 				" -- removing from array\n",
1689 				bdevname(rdev->bdev,b));
1690 			kick_rdev_from_array(rdev);
1691 		}
1692 
1693 
1694 	super_types[mddev->major_version].
1695 		validate_super(mddev, freshest);
1696 
1697 	i = 0;
1698 	ITERATE_RDEV(mddev,rdev,tmp) {
1699 		if (rdev != freshest)
1700 			if (super_types[mddev->major_version].
1701 			    validate_super(mddev, rdev)) {
1702 				printk(KERN_WARNING "md: kicking non-fresh %s"
1703 					" from array!\n",
1704 					bdevname(rdev->bdev,b));
1705 				kick_rdev_from_array(rdev);
1706 				continue;
1707 			}
1708 		if (mddev->level == LEVEL_MULTIPATH) {
1709 			rdev->desc_nr = i++;
1710 			rdev->raid_disk = rdev->desc_nr;
1711 			set_bit(In_sync, &rdev->flags);
1712 		}
1713 	}
1714 
1715 
1716 
1717 	if (mddev->recovery_cp != MaxSector &&
1718 	    mddev->level >= 1)
1719 		printk(KERN_ERR "md: %s: raid array is not clean"
1720 		       " -- starting background reconstruction\n",
1721 		       mdname(mddev));
1722 
1723 }
1724 
1725 static ssize_t
1726 level_show(mddev_t *mddev, char *page)
1727 {
1728 	mdk_personality_t *p = mddev->pers;
1729 	if (p == NULL && mddev->raid_disks == 0)
1730 		return 0;
1731 	if (mddev->level >= 0)
1732 		return sprintf(page, "raid%d\n", mddev->level);
1733 	else
1734 		return sprintf(page, "%s\n", p->name);
1735 }
1736 
1737 static struct md_sysfs_entry md_level = __ATTR_RO(level);
1738 
1739 static ssize_t
1740 raid_disks_show(mddev_t *mddev, char *page)
1741 {
1742 	if (mddev->raid_disks == 0)
1743 		return 0;
1744 	return sprintf(page, "%d\n", mddev->raid_disks);
1745 }
1746 
1747 static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
1748 
1749 static ssize_t
1750 action_show(mddev_t *mddev, char *page)
1751 {
1752 	char *type = "idle";
1753 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1754 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1755 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1756 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1757 				type = "resync";
1758 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1759 				type = "check";
1760 			else
1761 				type = "repair";
1762 		} else
1763 			type = "recover";
1764 	}
1765 	return sprintf(page, "%s\n", type);
1766 }
1767 
1768 static ssize_t
1769 action_store(mddev_t *mddev, const char *page, size_t len)
1770 {
1771 	if (!mddev->pers || !mddev->pers->sync_request)
1772 		return -EINVAL;
1773 
1774 	if (strcmp(page, "idle")==0 || strcmp(page, "idle\n")==0) {
1775 		if (mddev->sync_thread) {
1776 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1777 			md_unregister_thread(mddev->sync_thread);
1778 			mddev->sync_thread = NULL;
1779 			mddev->recovery = 0;
1780 		}
1781 		return len;
1782 	}
1783 
1784 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1785 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1786 		return -EBUSY;
1787 	if (strcmp(page, "resync")==0 || strcmp(page, "resync\n")==0 ||
1788 	    strcmp(page, "recover")==0 || strcmp(page, "recover\n")==0)
1789 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1790 	else {
1791 		if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
1792 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1793 		else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
1794 			return -EINVAL;
1795 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1796 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1797 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1798 	}
1799 	md_wakeup_thread(mddev->thread);
1800 	return len;
1801 }
1802 
1803 static ssize_t
1804 mismatch_cnt_show(mddev_t *mddev, char *page)
1805 {
1806 	return sprintf(page, "%llu\n",
1807 		       (unsigned long long) mddev->resync_mismatches);
1808 }
1809 
1810 static struct md_sysfs_entry
1811 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
1812 
1813 
1814 static struct md_sysfs_entry
1815 md_mismatches = __ATTR_RO(mismatch_cnt);
1816 
1817 static struct attribute *md_default_attrs[] = {
1818 	&md_level.attr,
1819 	&md_raid_disks.attr,
1820 	NULL,
1821 };
1822 
1823 static struct attribute *md_redundancy_attrs[] = {
1824 	&md_scan_mode.attr,
1825 	&md_mismatches.attr,
1826 	NULL,
1827 };
1828 static struct attribute_group md_redundancy_group = {
1829 	.name = NULL,
1830 	.attrs = md_redundancy_attrs,
1831 };
1832 
1833 
1834 static ssize_t
1835 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1836 {
1837 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1838 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1839 	ssize_t rv;
1840 
1841 	if (!entry->show)
1842 		return -EIO;
1843 	mddev_lock(mddev);
1844 	rv = entry->show(mddev, page);
1845 	mddev_unlock(mddev);
1846 	return rv;
1847 }
1848 
1849 static ssize_t
1850 md_attr_store(struct kobject *kobj, struct attribute *attr,
1851 	      const char *page, size_t length)
1852 {
1853 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1854 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1855 	ssize_t rv;
1856 
1857 	if (!entry->store)
1858 		return -EIO;
1859 	mddev_lock(mddev);
1860 	rv = entry->store(mddev, page, length);
1861 	mddev_unlock(mddev);
1862 	return rv;
1863 }
1864 
1865 static void md_free(struct kobject *ko)
1866 {
1867 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
1868 	kfree(mddev);
1869 }
1870 
1871 static struct sysfs_ops md_sysfs_ops = {
1872 	.show	= md_attr_show,
1873 	.store	= md_attr_store,
1874 };
1875 static struct kobj_type md_ktype = {
1876 	.release	= md_free,
1877 	.sysfs_ops	= &md_sysfs_ops,
1878 	.default_attrs	= md_default_attrs,
1879 };
1880 
1881 int mdp_major = 0;
1882 
1883 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1884 {
1885 	static DECLARE_MUTEX(disks_sem);
1886 	mddev_t *mddev = mddev_find(dev);
1887 	struct gendisk *disk;
1888 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1889 	int shift = partitioned ? MdpMinorShift : 0;
1890 	int unit = MINOR(dev) >> shift;
1891 
1892 	if (!mddev)
1893 		return NULL;
1894 
1895 	down(&disks_sem);
1896 	if (mddev->gendisk) {
1897 		up(&disks_sem);
1898 		mddev_put(mddev);
1899 		return NULL;
1900 	}
1901 	disk = alloc_disk(1 << shift);
1902 	if (!disk) {
1903 		up(&disks_sem);
1904 		mddev_put(mddev);
1905 		return NULL;
1906 	}
1907 	disk->major = MAJOR(dev);
1908 	disk->first_minor = unit << shift;
1909 	if (partitioned) {
1910 		sprintf(disk->disk_name, "md_d%d", unit);
1911 		sprintf(disk->devfs_name, "md/d%d", unit);
1912 	} else {
1913 		sprintf(disk->disk_name, "md%d", unit);
1914 		sprintf(disk->devfs_name, "md/%d", unit);
1915 	}
1916 	disk->fops = &md_fops;
1917 	disk->private_data = mddev;
1918 	disk->queue = mddev->queue;
1919 	add_disk(disk);
1920 	mddev->gendisk = disk;
1921 	up(&disks_sem);
1922 	mddev->kobj.parent = &disk->kobj;
1923 	mddev->kobj.k_name = NULL;
1924 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1925 	mddev->kobj.ktype = &md_ktype;
1926 	kobject_register(&mddev->kobj);
1927 	return NULL;
1928 }
1929 
1930 void md_wakeup_thread(mdk_thread_t *thread);
1931 
1932 static void md_safemode_timeout(unsigned long data)
1933 {
1934 	mddev_t *mddev = (mddev_t *) data;
1935 
1936 	mddev->safemode = 1;
1937 	md_wakeup_thread(mddev->thread);
1938 }
1939 
1940 static int start_dirty_degraded;
1941 
1942 static int do_md_run(mddev_t * mddev)
1943 {
1944 	int pnum, err;
1945 	int chunk_size;
1946 	struct list_head *tmp;
1947 	mdk_rdev_t *rdev;
1948 	struct gendisk *disk;
1949 	char b[BDEVNAME_SIZE];
1950 
1951 	if (list_empty(&mddev->disks))
1952 		/* cannot run an array with no devices.. */
1953 		return -EINVAL;
1954 
1955 	if (mddev->pers)
1956 		return -EBUSY;
1957 
1958 	/*
1959 	 * Analyze all RAID superblock(s)
1960 	 */
1961 	if (!mddev->raid_disks)
1962 		analyze_sbs(mddev);
1963 
1964 	chunk_size = mddev->chunk_size;
1965 	pnum = level_to_pers(mddev->level);
1966 
1967 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1968 		if (!chunk_size) {
1969 			/*
1970 			 * 'default chunksize' in the old md code used to
1971 			 * be PAGE_SIZE, baaad.
1972 			 * we abort here to be on the safe side. We don't
1973 			 * want to continue the bad practice.
1974 			 */
1975 			printk(KERN_ERR
1976 				"no chunksize specified, see 'man raidtab'\n");
1977 			return -EINVAL;
1978 		}
1979 		if (chunk_size > MAX_CHUNK_SIZE) {
1980 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1981 				chunk_size, MAX_CHUNK_SIZE);
1982 			return -EINVAL;
1983 		}
1984 		/*
1985 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1986 		 */
1987 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1988 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1989 			return -EINVAL;
1990 		}
1991 		if (chunk_size < PAGE_SIZE) {
1992 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1993 				chunk_size, PAGE_SIZE);
1994 			return -EINVAL;
1995 		}
1996 
1997 		/* devices must have minimum size of one chunk */
1998 		ITERATE_RDEV(mddev,rdev,tmp) {
1999 			if (test_bit(Faulty, &rdev->flags))
2000 				continue;
2001 			if (rdev->size < chunk_size / 1024) {
2002 				printk(KERN_WARNING
2003 					"md: Dev %s smaller than chunk_size:"
2004 					" %lluk < %dk\n",
2005 					bdevname(rdev->bdev,b),
2006 					(unsigned long long)rdev->size,
2007 					chunk_size / 1024);
2008 				return -EINVAL;
2009 			}
2010 		}
2011 	}
2012 
2013 #ifdef CONFIG_KMOD
2014 	if (!pers[pnum])
2015 	{
2016 		request_module("md-personality-%d", pnum);
2017 	}
2018 #endif
2019 
2020 	/*
2021 	 * Drop all container device buffers, from now on
2022 	 * the only valid external interface is through the md
2023 	 * device.
2024 	 * Also find largest hardsector size
2025 	 */
2026 	ITERATE_RDEV(mddev,rdev,tmp) {
2027 		if (test_bit(Faulty, &rdev->flags))
2028 			continue;
2029 		sync_blockdev(rdev->bdev);
2030 		invalidate_bdev(rdev->bdev, 0);
2031 	}
2032 
2033 	md_probe(mddev->unit, NULL, NULL);
2034 	disk = mddev->gendisk;
2035 	if (!disk)
2036 		return -ENOMEM;
2037 
2038 	spin_lock(&pers_lock);
2039 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
2040 		spin_unlock(&pers_lock);
2041 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
2042 		       pnum);
2043 		return -EINVAL;
2044 	}
2045 
2046 	mddev->pers = pers[pnum];
2047 	spin_unlock(&pers_lock);
2048 
2049 	mddev->recovery = 0;
2050 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2051 	mddev->barriers_work = 1;
2052 	mddev->ok_start_degraded = start_dirty_degraded;
2053 
2054 	if (start_readonly)
2055 		mddev->ro = 2; /* read-only, but switch on first write */
2056 
2057 	err = mddev->pers->run(mddev);
2058 	if (!err && mddev->pers->sync_request) {
2059 		err = bitmap_create(mddev);
2060 		if (err) {
2061 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2062 			       mdname(mddev), err);
2063 			mddev->pers->stop(mddev);
2064 		}
2065 	}
2066 	if (err) {
2067 		printk(KERN_ERR "md: pers->run() failed ...\n");
2068 		module_put(mddev->pers->owner);
2069 		mddev->pers = NULL;
2070 		bitmap_destroy(mddev);
2071 		return err;
2072 	}
2073 	if (mddev->pers->sync_request)
2074 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2075 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
2076 		mddev->ro = 0;
2077 
2078  	atomic_set(&mddev->writes_pending,0);
2079 	mddev->safemode = 0;
2080 	mddev->safemode_timer.function = md_safemode_timeout;
2081 	mddev->safemode_timer.data = (unsigned long) mddev;
2082 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2083 	mddev->in_sync = 1;
2084 
2085 	ITERATE_RDEV(mddev,rdev,tmp)
2086 		if (rdev->raid_disk >= 0) {
2087 			char nm[20];
2088 			sprintf(nm, "rd%d", rdev->raid_disk);
2089 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2090 		}
2091 
2092 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2093 	md_wakeup_thread(mddev->thread);
2094 
2095 	if (mddev->sb_dirty)
2096 		md_update_sb(mddev);
2097 
2098 	set_capacity(disk, mddev->array_size<<1);
2099 
2100 	/* If we call blk_queue_make_request here, it will
2101 	 * re-initialise max_sectors etc which may have been
2102 	 * refined inside -> run.  So just set the bits we need to set.
2103 	 * Most initialisation happended when we called
2104 	 * blk_queue_make_request(..., md_fail_request)
2105 	 * earlier.
2106 	 */
2107 	mddev->queue->queuedata = mddev;
2108 	mddev->queue->make_request_fn = mddev->pers->make_request;
2109 
2110 	mddev->changed = 1;
2111 	return 0;
2112 }
2113 
2114 static int restart_array(mddev_t *mddev)
2115 {
2116 	struct gendisk *disk = mddev->gendisk;
2117 	int err;
2118 
2119 	/*
2120 	 * Complain if it has no devices
2121 	 */
2122 	err = -ENXIO;
2123 	if (list_empty(&mddev->disks))
2124 		goto out;
2125 
2126 	if (mddev->pers) {
2127 		err = -EBUSY;
2128 		if (!mddev->ro)
2129 			goto out;
2130 
2131 		mddev->safemode = 0;
2132 		mddev->ro = 0;
2133 		set_disk_ro(disk, 0);
2134 
2135 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2136 			mdname(mddev));
2137 		/*
2138 		 * Kick recovery or resync if necessary
2139 		 */
2140 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2141 		md_wakeup_thread(mddev->thread);
2142 		err = 0;
2143 	} else {
2144 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2145 			mdname(mddev));
2146 		err = -EINVAL;
2147 	}
2148 
2149 out:
2150 	return err;
2151 }
2152 
2153 static int do_md_stop(mddev_t * mddev, int ro)
2154 {
2155 	int err = 0;
2156 	struct gendisk *disk = mddev->gendisk;
2157 
2158 	if (mddev->pers) {
2159 		if (atomic_read(&mddev->active)>2) {
2160 			printk("md: %s still in use.\n",mdname(mddev));
2161 			return -EBUSY;
2162 		}
2163 
2164 		if (mddev->sync_thread) {
2165 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2166 			md_unregister_thread(mddev->sync_thread);
2167 			mddev->sync_thread = NULL;
2168 		}
2169 
2170 		del_timer_sync(&mddev->safemode_timer);
2171 
2172 		invalidate_partition(disk, 0);
2173 
2174 		if (ro) {
2175 			err  = -ENXIO;
2176 			if (mddev->ro==1)
2177 				goto out;
2178 			mddev->ro = 1;
2179 		} else {
2180 			bitmap_flush(mddev);
2181 			md_super_wait(mddev);
2182 			if (mddev->ro)
2183 				set_disk_ro(disk, 0);
2184 			blk_queue_make_request(mddev->queue, md_fail_request);
2185 			mddev->pers->stop(mddev);
2186 			if (mddev->pers->sync_request)
2187 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2188 
2189 			module_put(mddev->pers->owner);
2190 			mddev->pers = NULL;
2191 			if (mddev->ro)
2192 				mddev->ro = 0;
2193 		}
2194 		if (!mddev->in_sync) {
2195 			/* mark array as shutdown cleanly */
2196 			mddev->in_sync = 1;
2197 			md_update_sb(mddev);
2198 		}
2199 		if (ro)
2200 			set_disk_ro(disk, 1);
2201 	}
2202 
2203 	bitmap_destroy(mddev);
2204 	if (mddev->bitmap_file) {
2205 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2206 		fput(mddev->bitmap_file);
2207 		mddev->bitmap_file = NULL;
2208 	}
2209 	mddev->bitmap_offset = 0;
2210 
2211 	/*
2212 	 * Free resources if final stop
2213 	 */
2214 	if (!ro) {
2215 		mdk_rdev_t *rdev;
2216 		struct list_head *tmp;
2217 		struct gendisk *disk;
2218 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2219 
2220 		ITERATE_RDEV(mddev,rdev,tmp)
2221 			if (rdev->raid_disk >= 0) {
2222 				char nm[20];
2223 				sprintf(nm, "rd%d", rdev->raid_disk);
2224 				sysfs_remove_link(&mddev->kobj, nm);
2225 			}
2226 
2227 		export_array(mddev);
2228 
2229 		mddev->array_size = 0;
2230 		disk = mddev->gendisk;
2231 		if (disk)
2232 			set_capacity(disk, 0);
2233 		mddev->changed = 1;
2234 	} else
2235 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2236 			mdname(mddev));
2237 	err = 0;
2238 out:
2239 	return err;
2240 }
2241 
2242 static void autorun_array(mddev_t *mddev)
2243 {
2244 	mdk_rdev_t *rdev;
2245 	struct list_head *tmp;
2246 	int err;
2247 
2248 	if (list_empty(&mddev->disks))
2249 		return;
2250 
2251 	printk(KERN_INFO "md: running: ");
2252 
2253 	ITERATE_RDEV(mddev,rdev,tmp) {
2254 		char b[BDEVNAME_SIZE];
2255 		printk("<%s>", bdevname(rdev->bdev,b));
2256 	}
2257 	printk("\n");
2258 
2259 	err = do_md_run (mddev);
2260 	if (err) {
2261 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2262 		do_md_stop (mddev, 0);
2263 	}
2264 }
2265 
2266 /*
2267  * lets try to run arrays based on all disks that have arrived
2268  * until now. (those are in pending_raid_disks)
2269  *
2270  * the method: pick the first pending disk, collect all disks with
2271  * the same UUID, remove all from the pending list and put them into
2272  * the 'same_array' list. Then order this list based on superblock
2273  * update time (freshest comes first), kick out 'old' disks and
2274  * compare superblocks. If everything's fine then run it.
2275  *
2276  * If "unit" is allocated, then bump its reference count
2277  */
2278 static void autorun_devices(int part)
2279 {
2280 	struct list_head candidates;
2281 	struct list_head *tmp;
2282 	mdk_rdev_t *rdev0, *rdev;
2283 	mddev_t *mddev;
2284 	char b[BDEVNAME_SIZE];
2285 
2286 	printk(KERN_INFO "md: autorun ...\n");
2287 	while (!list_empty(&pending_raid_disks)) {
2288 		dev_t dev;
2289 		rdev0 = list_entry(pending_raid_disks.next,
2290 					 mdk_rdev_t, same_set);
2291 
2292 		printk(KERN_INFO "md: considering %s ...\n",
2293 			bdevname(rdev0->bdev,b));
2294 		INIT_LIST_HEAD(&candidates);
2295 		ITERATE_RDEV_PENDING(rdev,tmp)
2296 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2297 				printk(KERN_INFO "md:  adding %s ...\n",
2298 					bdevname(rdev->bdev,b));
2299 				list_move(&rdev->same_set, &candidates);
2300 			}
2301 		/*
2302 		 * now we have a set of devices, with all of them having
2303 		 * mostly sane superblocks. It's time to allocate the
2304 		 * mddev.
2305 		 */
2306 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2307 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2308 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2309 			break;
2310 		}
2311 		if (part)
2312 			dev = MKDEV(mdp_major,
2313 				    rdev0->preferred_minor << MdpMinorShift);
2314 		else
2315 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2316 
2317 		md_probe(dev, NULL, NULL);
2318 		mddev = mddev_find(dev);
2319 		if (!mddev) {
2320 			printk(KERN_ERR
2321 				"md: cannot allocate memory for md drive.\n");
2322 			break;
2323 		}
2324 		if (mddev_lock(mddev))
2325 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2326 			       mdname(mddev));
2327 		else if (mddev->raid_disks || mddev->major_version
2328 			 || !list_empty(&mddev->disks)) {
2329 			printk(KERN_WARNING
2330 				"md: %s already running, cannot run %s\n",
2331 				mdname(mddev), bdevname(rdev0->bdev,b));
2332 			mddev_unlock(mddev);
2333 		} else {
2334 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2335 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2336 				list_del_init(&rdev->same_set);
2337 				if (bind_rdev_to_array(rdev, mddev))
2338 					export_rdev(rdev);
2339 			}
2340 			autorun_array(mddev);
2341 			mddev_unlock(mddev);
2342 		}
2343 		/* on success, candidates will be empty, on error
2344 		 * it won't...
2345 		 */
2346 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2347 			export_rdev(rdev);
2348 		mddev_put(mddev);
2349 	}
2350 	printk(KERN_INFO "md: ... autorun DONE.\n");
2351 }
2352 
2353 /*
2354  * import RAID devices based on one partition
2355  * if possible, the array gets run as well.
2356  */
2357 
2358 static int autostart_array(dev_t startdev)
2359 {
2360 	char b[BDEVNAME_SIZE];
2361 	int err = -EINVAL, i;
2362 	mdp_super_t *sb = NULL;
2363 	mdk_rdev_t *start_rdev = NULL, *rdev;
2364 
2365 	start_rdev = md_import_device(startdev, 0, 0);
2366 	if (IS_ERR(start_rdev))
2367 		return err;
2368 
2369 
2370 	/* NOTE: this can only work for 0.90.0 superblocks */
2371 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2372 	if (sb->major_version != 0 ||
2373 	    sb->minor_version != 90 ) {
2374 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2375 		export_rdev(start_rdev);
2376 		return err;
2377 	}
2378 
2379 	if (test_bit(Faulty, &start_rdev->flags)) {
2380 		printk(KERN_WARNING
2381 			"md: can not autostart based on faulty %s!\n",
2382 			bdevname(start_rdev->bdev,b));
2383 		export_rdev(start_rdev);
2384 		return err;
2385 	}
2386 	list_add(&start_rdev->same_set, &pending_raid_disks);
2387 
2388 	for (i = 0; i < MD_SB_DISKS; i++) {
2389 		mdp_disk_t *desc = sb->disks + i;
2390 		dev_t dev = MKDEV(desc->major, desc->minor);
2391 
2392 		if (!dev)
2393 			continue;
2394 		if (dev == startdev)
2395 			continue;
2396 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2397 			continue;
2398 		rdev = md_import_device(dev, 0, 0);
2399 		if (IS_ERR(rdev))
2400 			continue;
2401 
2402 		list_add(&rdev->same_set, &pending_raid_disks);
2403 	}
2404 
2405 	/*
2406 	 * possibly return codes
2407 	 */
2408 	autorun_devices(0);
2409 	return 0;
2410 
2411 }
2412 
2413 
2414 static int get_version(void __user * arg)
2415 {
2416 	mdu_version_t ver;
2417 
2418 	ver.major = MD_MAJOR_VERSION;
2419 	ver.minor = MD_MINOR_VERSION;
2420 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2421 
2422 	if (copy_to_user(arg, &ver, sizeof(ver)))
2423 		return -EFAULT;
2424 
2425 	return 0;
2426 }
2427 
2428 static int get_array_info(mddev_t * mddev, void __user * arg)
2429 {
2430 	mdu_array_info_t info;
2431 	int nr,working,active,failed,spare;
2432 	mdk_rdev_t *rdev;
2433 	struct list_head *tmp;
2434 
2435 	nr=working=active=failed=spare=0;
2436 	ITERATE_RDEV(mddev,rdev,tmp) {
2437 		nr++;
2438 		if (test_bit(Faulty, &rdev->flags))
2439 			failed++;
2440 		else {
2441 			working++;
2442 			if (test_bit(In_sync, &rdev->flags))
2443 				active++;
2444 			else
2445 				spare++;
2446 		}
2447 	}
2448 
2449 	info.major_version = mddev->major_version;
2450 	info.minor_version = mddev->minor_version;
2451 	info.patch_version = MD_PATCHLEVEL_VERSION;
2452 	info.ctime         = mddev->ctime;
2453 	info.level         = mddev->level;
2454 	info.size          = mddev->size;
2455 	info.nr_disks      = nr;
2456 	info.raid_disks    = mddev->raid_disks;
2457 	info.md_minor      = mddev->md_minor;
2458 	info.not_persistent= !mddev->persistent;
2459 
2460 	info.utime         = mddev->utime;
2461 	info.state         = 0;
2462 	if (mddev->in_sync)
2463 		info.state = (1<<MD_SB_CLEAN);
2464 	if (mddev->bitmap && mddev->bitmap_offset)
2465 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2466 	info.active_disks  = active;
2467 	info.working_disks = working;
2468 	info.failed_disks  = failed;
2469 	info.spare_disks   = spare;
2470 
2471 	info.layout        = mddev->layout;
2472 	info.chunk_size    = mddev->chunk_size;
2473 
2474 	if (copy_to_user(arg, &info, sizeof(info)))
2475 		return -EFAULT;
2476 
2477 	return 0;
2478 }
2479 
2480 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2481 {
2482 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2483 	char *ptr, *buf = NULL;
2484 	int err = -ENOMEM;
2485 
2486 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2487 	if (!file)
2488 		goto out;
2489 
2490 	/* bitmap disabled, zero the first byte and copy out */
2491 	if (!mddev->bitmap || !mddev->bitmap->file) {
2492 		file->pathname[0] = '\0';
2493 		goto copy_out;
2494 	}
2495 
2496 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2497 	if (!buf)
2498 		goto out;
2499 
2500 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2501 	if (!ptr)
2502 		goto out;
2503 
2504 	strcpy(file->pathname, ptr);
2505 
2506 copy_out:
2507 	err = 0;
2508 	if (copy_to_user(arg, file, sizeof(*file)))
2509 		err = -EFAULT;
2510 out:
2511 	kfree(buf);
2512 	kfree(file);
2513 	return err;
2514 }
2515 
2516 static int get_disk_info(mddev_t * mddev, void __user * arg)
2517 {
2518 	mdu_disk_info_t info;
2519 	unsigned int nr;
2520 	mdk_rdev_t *rdev;
2521 
2522 	if (copy_from_user(&info, arg, sizeof(info)))
2523 		return -EFAULT;
2524 
2525 	nr = info.number;
2526 
2527 	rdev = find_rdev_nr(mddev, nr);
2528 	if (rdev) {
2529 		info.major = MAJOR(rdev->bdev->bd_dev);
2530 		info.minor = MINOR(rdev->bdev->bd_dev);
2531 		info.raid_disk = rdev->raid_disk;
2532 		info.state = 0;
2533 		if (test_bit(Faulty, &rdev->flags))
2534 			info.state |= (1<<MD_DISK_FAULTY);
2535 		else if (test_bit(In_sync, &rdev->flags)) {
2536 			info.state |= (1<<MD_DISK_ACTIVE);
2537 			info.state |= (1<<MD_DISK_SYNC);
2538 		}
2539 		if (test_bit(WriteMostly, &rdev->flags))
2540 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2541 	} else {
2542 		info.major = info.minor = 0;
2543 		info.raid_disk = -1;
2544 		info.state = (1<<MD_DISK_REMOVED);
2545 	}
2546 
2547 	if (copy_to_user(arg, &info, sizeof(info)))
2548 		return -EFAULT;
2549 
2550 	return 0;
2551 }
2552 
2553 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2554 {
2555 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2556 	mdk_rdev_t *rdev;
2557 	dev_t dev = MKDEV(info->major,info->minor);
2558 
2559 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2560 		return -EOVERFLOW;
2561 
2562 	if (!mddev->raid_disks) {
2563 		int err;
2564 		/* expecting a device which has a superblock */
2565 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2566 		if (IS_ERR(rdev)) {
2567 			printk(KERN_WARNING
2568 				"md: md_import_device returned %ld\n",
2569 				PTR_ERR(rdev));
2570 			return PTR_ERR(rdev);
2571 		}
2572 		if (!list_empty(&mddev->disks)) {
2573 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2574 							mdk_rdev_t, same_set);
2575 			int err = super_types[mddev->major_version]
2576 				.load_super(rdev, rdev0, mddev->minor_version);
2577 			if (err < 0) {
2578 				printk(KERN_WARNING
2579 					"md: %s has different UUID to %s\n",
2580 					bdevname(rdev->bdev,b),
2581 					bdevname(rdev0->bdev,b2));
2582 				export_rdev(rdev);
2583 				return -EINVAL;
2584 			}
2585 		}
2586 		err = bind_rdev_to_array(rdev, mddev);
2587 		if (err)
2588 			export_rdev(rdev);
2589 		return err;
2590 	}
2591 
2592 	/*
2593 	 * add_new_disk can be used once the array is assembled
2594 	 * to add "hot spares".  They must already have a superblock
2595 	 * written
2596 	 */
2597 	if (mddev->pers) {
2598 		int err;
2599 		if (!mddev->pers->hot_add_disk) {
2600 			printk(KERN_WARNING
2601 				"%s: personality does not support diskops!\n",
2602 			       mdname(mddev));
2603 			return -EINVAL;
2604 		}
2605 		if (mddev->persistent)
2606 			rdev = md_import_device(dev, mddev->major_version,
2607 						mddev->minor_version);
2608 		else
2609 			rdev = md_import_device(dev, -1, -1);
2610 		if (IS_ERR(rdev)) {
2611 			printk(KERN_WARNING
2612 				"md: md_import_device returned %ld\n",
2613 				PTR_ERR(rdev));
2614 			return PTR_ERR(rdev);
2615 		}
2616 		/* set save_raid_disk if appropriate */
2617 		if (!mddev->persistent) {
2618 			if (info->state & (1<<MD_DISK_SYNC)  &&
2619 			    info->raid_disk < mddev->raid_disks)
2620 				rdev->raid_disk = info->raid_disk;
2621 			else
2622 				rdev->raid_disk = -1;
2623 		} else
2624 			super_types[mddev->major_version].
2625 				validate_super(mddev, rdev);
2626 		rdev->saved_raid_disk = rdev->raid_disk;
2627 
2628 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
2629 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2630 			set_bit(WriteMostly, &rdev->flags);
2631 
2632 		rdev->raid_disk = -1;
2633 		err = bind_rdev_to_array(rdev, mddev);
2634 		if (err)
2635 			export_rdev(rdev);
2636 
2637 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2638 		md_wakeup_thread(mddev->thread);
2639 		return err;
2640 	}
2641 
2642 	/* otherwise, add_new_disk is only allowed
2643 	 * for major_version==0 superblocks
2644 	 */
2645 	if (mddev->major_version != 0) {
2646 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2647 		       mdname(mddev));
2648 		return -EINVAL;
2649 	}
2650 
2651 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2652 		int err;
2653 		rdev = md_import_device (dev, -1, 0);
2654 		if (IS_ERR(rdev)) {
2655 			printk(KERN_WARNING
2656 				"md: error, md_import_device() returned %ld\n",
2657 				PTR_ERR(rdev));
2658 			return PTR_ERR(rdev);
2659 		}
2660 		rdev->desc_nr = info->number;
2661 		if (info->raid_disk < mddev->raid_disks)
2662 			rdev->raid_disk = info->raid_disk;
2663 		else
2664 			rdev->raid_disk = -1;
2665 
2666 		rdev->flags = 0;
2667 
2668 		if (rdev->raid_disk < mddev->raid_disks)
2669 			if (info->state & (1<<MD_DISK_SYNC))
2670 				set_bit(In_sync, &rdev->flags);
2671 
2672 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2673 			set_bit(WriteMostly, &rdev->flags);
2674 
2675 		err = bind_rdev_to_array(rdev, mddev);
2676 		if (err) {
2677 			export_rdev(rdev);
2678 			return err;
2679 		}
2680 
2681 		if (!mddev->persistent) {
2682 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2683 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2684 		} else
2685 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2686 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2687 
2688 		if (!mddev->size || (mddev->size > rdev->size))
2689 			mddev->size = rdev->size;
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2696 {
2697 	char b[BDEVNAME_SIZE];
2698 	mdk_rdev_t *rdev;
2699 
2700 	if (!mddev->pers)
2701 		return -ENODEV;
2702 
2703 	rdev = find_rdev(mddev, dev);
2704 	if (!rdev)
2705 		return -ENXIO;
2706 
2707 	if (rdev->raid_disk >= 0)
2708 		goto busy;
2709 
2710 	kick_rdev_from_array(rdev);
2711 	md_update_sb(mddev);
2712 
2713 	return 0;
2714 busy:
2715 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2716 		bdevname(rdev->bdev,b), mdname(mddev));
2717 	return -EBUSY;
2718 }
2719 
2720 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2721 {
2722 	char b[BDEVNAME_SIZE];
2723 	int err;
2724 	unsigned int size;
2725 	mdk_rdev_t *rdev;
2726 
2727 	if (!mddev->pers)
2728 		return -ENODEV;
2729 
2730 	if (mddev->major_version != 0) {
2731 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2732 			" version-0 superblocks.\n",
2733 			mdname(mddev));
2734 		return -EINVAL;
2735 	}
2736 	if (!mddev->pers->hot_add_disk) {
2737 		printk(KERN_WARNING
2738 			"%s: personality does not support diskops!\n",
2739 			mdname(mddev));
2740 		return -EINVAL;
2741 	}
2742 
2743 	rdev = md_import_device (dev, -1, 0);
2744 	if (IS_ERR(rdev)) {
2745 		printk(KERN_WARNING
2746 			"md: error, md_import_device() returned %ld\n",
2747 			PTR_ERR(rdev));
2748 		return -EINVAL;
2749 	}
2750 
2751 	if (mddev->persistent)
2752 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2753 	else
2754 		rdev->sb_offset =
2755 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2756 
2757 	size = calc_dev_size(rdev, mddev->chunk_size);
2758 	rdev->size = size;
2759 
2760 	if (size < mddev->size) {
2761 		printk(KERN_WARNING
2762 			"%s: disk size %llu blocks < array size %llu\n",
2763 			mdname(mddev), (unsigned long long)size,
2764 			(unsigned long long)mddev->size);
2765 		err = -ENOSPC;
2766 		goto abort_export;
2767 	}
2768 
2769 	if (test_bit(Faulty, &rdev->flags)) {
2770 		printk(KERN_WARNING
2771 			"md: can not hot-add faulty %s disk to %s!\n",
2772 			bdevname(rdev->bdev,b), mdname(mddev));
2773 		err = -EINVAL;
2774 		goto abort_export;
2775 	}
2776 	clear_bit(In_sync, &rdev->flags);
2777 	rdev->desc_nr = -1;
2778 	bind_rdev_to_array(rdev, mddev);
2779 
2780 	/*
2781 	 * The rest should better be atomic, we can have disk failures
2782 	 * noticed in interrupt contexts ...
2783 	 */
2784 
2785 	if (rdev->desc_nr == mddev->max_disks) {
2786 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2787 			mdname(mddev));
2788 		err = -EBUSY;
2789 		goto abort_unbind_export;
2790 	}
2791 
2792 	rdev->raid_disk = -1;
2793 
2794 	md_update_sb(mddev);
2795 
2796 	/*
2797 	 * Kick recovery, maybe this spare has to be added to the
2798 	 * array immediately.
2799 	 */
2800 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2801 	md_wakeup_thread(mddev->thread);
2802 
2803 	return 0;
2804 
2805 abort_unbind_export:
2806 	unbind_rdev_from_array(rdev);
2807 
2808 abort_export:
2809 	export_rdev(rdev);
2810 	return err;
2811 }
2812 
2813 /* similar to deny_write_access, but accounts for our holding a reference
2814  * to the file ourselves */
2815 static int deny_bitmap_write_access(struct file * file)
2816 {
2817 	struct inode *inode = file->f_mapping->host;
2818 
2819 	spin_lock(&inode->i_lock);
2820 	if (atomic_read(&inode->i_writecount) > 1) {
2821 		spin_unlock(&inode->i_lock);
2822 		return -ETXTBSY;
2823 	}
2824 	atomic_set(&inode->i_writecount, -1);
2825 	spin_unlock(&inode->i_lock);
2826 
2827 	return 0;
2828 }
2829 
2830 static int set_bitmap_file(mddev_t *mddev, int fd)
2831 {
2832 	int err;
2833 
2834 	if (mddev->pers) {
2835 		if (!mddev->pers->quiesce)
2836 			return -EBUSY;
2837 		if (mddev->recovery || mddev->sync_thread)
2838 			return -EBUSY;
2839 		/* we should be able to change the bitmap.. */
2840 	}
2841 
2842 
2843 	if (fd >= 0) {
2844 		if (mddev->bitmap)
2845 			return -EEXIST; /* cannot add when bitmap is present */
2846 		mddev->bitmap_file = fget(fd);
2847 
2848 		if (mddev->bitmap_file == NULL) {
2849 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2850 			       mdname(mddev));
2851 			return -EBADF;
2852 		}
2853 
2854 		err = deny_bitmap_write_access(mddev->bitmap_file);
2855 		if (err) {
2856 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2857 			       mdname(mddev));
2858 			fput(mddev->bitmap_file);
2859 			mddev->bitmap_file = NULL;
2860 			return err;
2861 		}
2862 		mddev->bitmap_offset = 0; /* file overrides offset */
2863 	} else if (mddev->bitmap == NULL)
2864 		return -ENOENT; /* cannot remove what isn't there */
2865 	err = 0;
2866 	if (mddev->pers) {
2867 		mddev->pers->quiesce(mddev, 1);
2868 		if (fd >= 0)
2869 			err = bitmap_create(mddev);
2870 		if (fd < 0 || err)
2871 			bitmap_destroy(mddev);
2872 		mddev->pers->quiesce(mddev, 0);
2873 	} else if (fd < 0) {
2874 		if (mddev->bitmap_file)
2875 			fput(mddev->bitmap_file);
2876 		mddev->bitmap_file = NULL;
2877 	}
2878 
2879 	return err;
2880 }
2881 
2882 /*
2883  * set_array_info is used two different ways
2884  * The original usage is when creating a new array.
2885  * In this usage, raid_disks is > 0 and it together with
2886  *  level, size, not_persistent,layout,chunksize determine the
2887  *  shape of the array.
2888  *  This will always create an array with a type-0.90.0 superblock.
2889  * The newer usage is when assembling an array.
2890  *  In this case raid_disks will be 0, and the major_version field is
2891  *  use to determine which style super-blocks are to be found on the devices.
2892  *  The minor and patch _version numbers are also kept incase the
2893  *  super_block handler wishes to interpret them.
2894  */
2895 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2896 {
2897 
2898 	if (info->raid_disks == 0) {
2899 		/* just setting version number for superblock loading */
2900 		if (info->major_version < 0 ||
2901 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2902 		    super_types[info->major_version].name == NULL) {
2903 			/* maybe try to auto-load a module? */
2904 			printk(KERN_INFO
2905 				"md: superblock version %d not known\n",
2906 				info->major_version);
2907 			return -EINVAL;
2908 		}
2909 		mddev->major_version = info->major_version;
2910 		mddev->minor_version = info->minor_version;
2911 		mddev->patch_version = info->patch_version;
2912 		return 0;
2913 	}
2914 	mddev->major_version = MD_MAJOR_VERSION;
2915 	mddev->minor_version = MD_MINOR_VERSION;
2916 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2917 	mddev->ctime         = get_seconds();
2918 
2919 	mddev->level         = info->level;
2920 	mddev->size          = info->size;
2921 	mddev->raid_disks    = info->raid_disks;
2922 	/* don't set md_minor, it is determined by which /dev/md* was
2923 	 * openned
2924 	 */
2925 	if (info->state & (1<<MD_SB_CLEAN))
2926 		mddev->recovery_cp = MaxSector;
2927 	else
2928 		mddev->recovery_cp = 0;
2929 	mddev->persistent    = ! info->not_persistent;
2930 
2931 	mddev->layout        = info->layout;
2932 	mddev->chunk_size    = info->chunk_size;
2933 
2934 	mddev->max_disks     = MD_SB_DISKS;
2935 
2936 	mddev->sb_dirty      = 1;
2937 
2938 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
2939 	mddev->bitmap_offset = 0;
2940 
2941 	/*
2942 	 * Generate a 128 bit UUID
2943 	 */
2944 	get_random_bytes(mddev->uuid, 16);
2945 
2946 	return 0;
2947 }
2948 
2949 /*
2950  * update_array_info is used to change the configuration of an
2951  * on-line array.
2952  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2953  * fields in the info are checked against the array.
2954  * Any differences that cannot be handled will cause an error.
2955  * Normally, only one change can be managed at a time.
2956  */
2957 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2958 {
2959 	int rv = 0;
2960 	int cnt = 0;
2961 	int state = 0;
2962 
2963 	/* calculate expected state,ignoring low bits */
2964 	if (mddev->bitmap && mddev->bitmap_offset)
2965 		state |= (1 << MD_SB_BITMAP_PRESENT);
2966 
2967 	if (mddev->major_version != info->major_version ||
2968 	    mddev->minor_version != info->minor_version ||
2969 /*	    mddev->patch_version != info->patch_version || */
2970 	    mddev->ctime         != info->ctime         ||
2971 	    mddev->level         != info->level         ||
2972 /*	    mddev->layout        != info->layout        || */
2973 	    !mddev->persistent	 != info->not_persistent||
2974 	    mddev->chunk_size    != info->chunk_size    ||
2975 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2976 	    ((state^info->state) & 0xfffffe00)
2977 		)
2978 		return -EINVAL;
2979 	/* Check there is only one change */
2980 	if (mddev->size != info->size) cnt++;
2981 	if (mddev->raid_disks != info->raid_disks) cnt++;
2982 	if (mddev->layout != info->layout) cnt++;
2983 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
2984 	if (cnt == 0) return 0;
2985 	if (cnt > 1) return -EINVAL;
2986 
2987 	if (mddev->layout != info->layout) {
2988 		/* Change layout
2989 		 * we don't need to do anything at the md level, the
2990 		 * personality will take care of it all.
2991 		 */
2992 		if (mddev->pers->reconfig == NULL)
2993 			return -EINVAL;
2994 		else
2995 			return mddev->pers->reconfig(mddev, info->layout, -1);
2996 	}
2997 	if (mddev->size != info->size) {
2998 		mdk_rdev_t * rdev;
2999 		struct list_head *tmp;
3000 		if (mddev->pers->resize == NULL)
3001 			return -EINVAL;
3002 		/* The "size" is the amount of each device that is used.
3003 		 * This can only make sense for arrays with redundancy.
3004 		 * linear and raid0 always use whatever space is available
3005 		 * We can only consider changing the size if no resync
3006 		 * or reconstruction is happening, and if the new size
3007 		 * is acceptable. It must fit before the sb_offset or,
3008 		 * if that is <data_offset, it must fit before the
3009 		 * size of each device.
3010 		 * If size is zero, we find the largest size that fits.
3011 		 */
3012 		if (mddev->sync_thread)
3013 			return -EBUSY;
3014 		ITERATE_RDEV(mddev,rdev,tmp) {
3015 			sector_t avail;
3016 			int fit = (info->size == 0);
3017 			if (rdev->sb_offset > rdev->data_offset)
3018 				avail = (rdev->sb_offset*2) - rdev->data_offset;
3019 			else
3020 				avail = get_capacity(rdev->bdev->bd_disk)
3021 					- rdev->data_offset;
3022 			if (fit && (info->size == 0 || info->size > avail/2))
3023 				info->size = avail/2;
3024 			if (avail < ((sector_t)info->size << 1))
3025 				return -ENOSPC;
3026 		}
3027 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
3028 		if (!rv) {
3029 			struct block_device *bdev;
3030 
3031 			bdev = bdget_disk(mddev->gendisk, 0);
3032 			if (bdev) {
3033 				down(&bdev->bd_inode->i_sem);
3034 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3035 				up(&bdev->bd_inode->i_sem);
3036 				bdput(bdev);
3037 			}
3038 		}
3039 	}
3040 	if (mddev->raid_disks    != info->raid_disks) {
3041 		/* change the number of raid disks */
3042 		if (mddev->pers->reshape == NULL)
3043 			return -EINVAL;
3044 		if (info->raid_disks <= 0 ||
3045 		    info->raid_disks >= mddev->max_disks)
3046 			return -EINVAL;
3047 		if (mddev->sync_thread)
3048 			return -EBUSY;
3049 		rv = mddev->pers->reshape(mddev, info->raid_disks);
3050 		if (!rv) {
3051 			struct block_device *bdev;
3052 
3053 			bdev = bdget_disk(mddev->gendisk, 0);
3054 			if (bdev) {
3055 				down(&bdev->bd_inode->i_sem);
3056 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3057 				up(&bdev->bd_inode->i_sem);
3058 				bdput(bdev);
3059 			}
3060 		}
3061 	}
3062 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3063 		if (mddev->pers->quiesce == NULL)
3064 			return -EINVAL;
3065 		if (mddev->recovery || mddev->sync_thread)
3066 			return -EBUSY;
3067 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3068 			/* add the bitmap */
3069 			if (mddev->bitmap)
3070 				return -EEXIST;
3071 			if (mddev->default_bitmap_offset == 0)
3072 				return -EINVAL;
3073 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3074 			mddev->pers->quiesce(mddev, 1);
3075 			rv = bitmap_create(mddev);
3076 			if (rv)
3077 				bitmap_destroy(mddev);
3078 			mddev->pers->quiesce(mddev, 0);
3079 		} else {
3080 			/* remove the bitmap */
3081 			if (!mddev->bitmap)
3082 				return -ENOENT;
3083 			if (mddev->bitmap->file)
3084 				return -EINVAL;
3085 			mddev->pers->quiesce(mddev, 1);
3086 			bitmap_destroy(mddev);
3087 			mddev->pers->quiesce(mddev, 0);
3088 			mddev->bitmap_offset = 0;
3089 		}
3090 	}
3091 	md_update_sb(mddev);
3092 	return rv;
3093 }
3094 
3095 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3096 {
3097 	mdk_rdev_t *rdev;
3098 
3099 	if (mddev->pers == NULL)
3100 		return -ENODEV;
3101 
3102 	rdev = find_rdev(mddev, dev);
3103 	if (!rdev)
3104 		return -ENODEV;
3105 
3106 	md_error(mddev, rdev);
3107 	return 0;
3108 }
3109 
3110 static int md_ioctl(struct inode *inode, struct file *file,
3111 			unsigned int cmd, unsigned long arg)
3112 {
3113 	int err = 0;
3114 	void __user *argp = (void __user *)arg;
3115 	struct hd_geometry __user *loc = argp;
3116 	mddev_t *mddev = NULL;
3117 
3118 	if (!capable(CAP_SYS_ADMIN))
3119 		return -EACCES;
3120 
3121 	/*
3122 	 * Commands dealing with the RAID driver but not any
3123 	 * particular array:
3124 	 */
3125 	switch (cmd)
3126 	{
3127 		case RAID_VERSION:
3128 			err = get_version(argp);
3129 			goto done;
3130 
3131 		case PRINT_RAID_DEBUG:
3132 			err = 0;
3133 			md_print_devices();
3134 			goto done;
3135 
3136 #ifndef MODULE
3137 		case RAID_AUTORUN:
3138 			err = 0;
3139 			autostart_arrays(arg);
3140 			goto done;
3141 #endif
3142 		default:;
3143 	}
3144 
3145 	/*
3146 	 * Commands creating/starting a new array:
3147 	 */
3148 
3149 	mddev = inode->i_bdev->bd_disk->private_data;
3150 
3151 	if (!mddev) {
3152 		BUG();
3153 		goto abort;
3154 	}
3155 
3156 
3157 	if (cmd == START_ARRAY) {
3158 		/* START_ARRAY doesn't need to lock the array as autostart_array
3159 		 * does the locking, and it could even be a different array
3160 		 */
3161 		static int cnt = 3;
3162 		if (cnt > 0 ) {
3163 			printk(KERN_WARNING
3164 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3165 			       "This will not be supported beyond July 2006\n",
3166 			       current->comm, current->pid);
3167 			cnt--;
3168 		}
3169 		err = autostart_array(new_decode_dev(arg));
3170 		if (err) {
3171 			printk(KERN_WARNING "md: autostart failed!\n");
3172 			goto abort;
3173 		}
3174 		goto done;
3175 	}
3176 
3177 	err = mddev_lock(mddev);
3178 	if (err) {
3179 		printk(KERN_INFO
3180 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3181 			err, cmd);
3182 		goto abort;
3183 	}
3184 
3185 	switch (cmd)
3186 	{
3187 		case SET_ARRAY_INFO:
3188 			{
3189 				mdu_array_info_t info;
3190 				if (!arg)
3191 					memset(&info, 0, sizeof(info));
3192 				else if (copy_from_user(&info, argp, sizeof(info))) {
3193 					err = -EFAULT;
3194 					goto abort_unlock;
3195 				}
3196 				if (mddev->pers) {
3197 					err = update_array_info(mddev, &info);
3198 					if (err) {
3199 						printk(KERN_WARNING "md: couldn't update"
3200 						       " array info. %d\n", err);
3201 						goto abort_unlock;
3202 					}
3203 					goto done_unlock;
3204 				}
3205 				if (!list_empty(&mddev->disks)) {
3206 					printk(KERN_WARNING
3207 					       "md: array %s already has disks!\n",
3208 					       mdname(mddev));
3209 					err = -EBUSY;
3210 					goto abort_unlock;
3211 				}
3212 				if (mddev->raid_disks) {
3213 					printk(KERN_WARNING
3214 					       "md: array %s already initialised!\n",
3215 					       mdname(mddev));
3216 					err = -EBUSY;
3217 					goto abort_unlock;
3218 				}
3219 				err = set_array_info(mddev, &info);
3220 				if (err) {
3221 					printk(KERN_WARNING "md: couldn't set"
3222 					       " array info. %d\n", err);
3223 					goto abort_unlock;
3224 				}
3225 			}
3226 			goto done_unlock;
3227 
3228 		default:;
3229 	}
3230 
3231 	/*
3232 	 * Commands querying/configuring an existing array:
3233 	 */
3234 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3235 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3236 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3237 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3238 		err = -ENODEV;
3239 		goto abort_unlock;
3240 	}
3241 
3242 	/*
3243 	 * Commands even a read-only array can execute:
3244 	 */
3245 	switch (cmd)
3246 	{
3247 		case GET_ARRAY_INFO:
3248 			err = get_array_info(mddev, argp);
3249 			goto done_unlock;
3250 
3251 		case GET_BITMAP_FILE:
3252 			err = get_bitmap_file(mddev, argp);
3253 			goto done_unlock;
3254 
3255 		case GET_DISK_INFO:
3256 			err = get_disk_info(mddev, argp);
3257 			goto done_unlock;
3258 
3259 		case RESTART_ARRAY_RW:
3260 			err = restart_array(mddev);
3261 			goto done_unlock;
3262 
3263 		case STOP_ARRAY:
3264 			err = do_md_stop (mddev, 0);
3265 			goto done_unlock;
3266 
3267 		case STOP_ARRAY_RO:
3268 			err = do_md_stop (mddev, 1);
3269 			goto done_unlock;
3270 
3271 	/*
3272 	 * We have a problem here : there is no easy way to give a CHS
3273 	 * virtual geometry. We currently pretend that we have a 2 heads
3274 	 * 4 sectors (with a BIG number of cylinders...). This drives
3275 	 * dosfs just mad... ;-)
3276 	 */
3277 		case HDIO_GETGEO:
3278 			if (!loc) {
3279 				err = -EINVAL;
3280 				goto abort_unlock;
3281 			}
3282 			err = put_user (2, (char __user *) &loc->heads);
3283 			if (err)
3284 				goto abort_unlock;
3285 			err = put_user (4, (char __user *) &loc->sectors);
3286 			if (err)
3287 				goto abort_unlock;
3288 			err = put_user(get_capacity(mddev->gendisk)/8,
3289 					(short __user *) &loc->cylinders);
3290 			if (err)
3291 				goto abort_unlock;
3292 			err = put_user (get_start_sect(inode->i_bdev),
3293 						(long __user *) &loc->start);
3294 			goto done_unlock;
3295 	}
3296 
3297 	/*
3298 	 * The remaining ioctls are changing the state of the
3299 	 * superblock, so we do not allow them on read-only arrays.
3300 	 * However non-MD ioctls (e.g. get-size) will still come through
3301 	 * here and hit the 'default' below, so only disallow
3302 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3303 	 */
3304 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3305 	    mddev->ro && mddev->pers) {
3306 		if (mddev->ro == 2) {
3307 			mddev->ro = 0;
3308 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3309 		md_wakeup_thread(mddev->thread);
3310 
3311 		} else {
3312 			err = -EROFS;
3313 			goto abort_unlock;
3314 		}
3315 	}
3316 
3317 	switch (cmd)
3318 	{
3319 		case ADD_NEW_DISK:
3320 		{
3321 			mdu_disk_info_t info;
3322 			if (copy_from_user(&info, argp, sizeof(info)))
3323 				err = -EFAULT;
3324 			else
3325 				err = add_new_disk(mddev, &info);
3326 			goto done_unlock;
3327 		}
3328 
3329 		case HOT_REMOVE_DISK:
3330 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3331 			goto done_unlock;
3332 
3333 		case HOT_ADD_DISK:
3334 			err = hot_add_disk(mddev, new_decode_dev(arg));
3335 			goto done_unlock;
3336 
3337 		case SET_DISK_FAULTY:
3338 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3339 			goto done_unlock;
3340 
3341 		case RUN_ARRAY:
3342 			err = do_md_run (mddev);
3343 			goto done_unlock;
3344 
3345 		case SET_BITMAP_FILE:
3346 			err = set_bitmap_file(mddev, (int)arg);
3347 			goto done_unlock;
3348 
3349 		default:
3350 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3351 				printk(KERN_WARNING "md: %s(pid %d) used"
3352 					" obsolete MD ioctl, upgrade your"
3353 					" software to use new ictls.\n",
3354 					current->comm, current->pid);
3355 			err = -EINVAL;
3356 			goto abort_unlock;
3357 	}
3358 
3359 done_unlock:
3360 abort_unlock:
3361 	mddev_unlock(mddev);
3362 
3363 	return err;
3364 done:
3365 	if (err)
3366 		MD_BUG();
3367 abort:
3368 	return err;
3369 }
3370 
3371 static int md_open(struct inode *inode, struct file *file)
3372 {
3373 	/*
3374 	 * Succeed if we can lock the mddev, which confirms that
3375 	 * it isn't being stopped right now.
3376 	 */
3377 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3378 	int err;
3379 
3380 	if ((err = mddev_lock(mddev)))
3381 		goto out;
3382 
3383 	err = 0;
3384 	mddev_get(mddev);
3385 	mddev_unlock(mddev);
3386 
3387 	check_disk_change(inode->i_bdev);
3388  out:
3389 	return err;
3390 }
3391 
3392 static int md_release(struct inode *inode, struct file * file)
3393 {
3394  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3395 
3396 	if (!mddev)
3397 		BUG();
3398 	mddev_put(mddev);
3399 
3400 	return 0;
3401 }
3402 
3403 static int md_media_changed(struct gendisk *disk)
3404 {
3405 	mddev_t *mddev = disk->private_data;
3406 
3407 	return mddev->changed;
3408 }
3409 
3410 static int md_revalidate(struct gendisk *disk)
3411 {
3412 	mddev_t *mddev = disk->private_data;
3413 
3414 	mddev->changed = 0;
3415 	return 0;
3416 }
3417 static struct block_device_operations md_fops =
3418 {
3419 	.owner		= THIS_MODULE,
3420 	.open		= md_open,
3421 	.release	= md_release,
3422 	.ioctl		= md_ioctl,
3423 	.media_changed	= md_media_changed,
3424 	.revalidate_disk= md_revalidate,
3425 };
3426 
3427 static int md_thread(void * arg)
3428 {
3429 	mdk_thread_t *thread = arg;
3430 
3431 	/*
3432 	 * md_thread is a 'system-thread', it's priority should be very
3433 	 * high. We avoid resource deadlocks individually in each
3434 	 * raid personality. (RAID5 does preallocation) We also use RR and
3435 	 * the very same RT priority as kswapd, thus we will never get
3436 	 * into a priority inversion deadlock.
3437 	 *
3438 	 * we definitely have to have equal or higher priority than
3439 	 * bdflush, otherwise bdflush will deadlock if there are too
3440 	 * many dirty RAID5 blocks.
3441 	 */
3442 
3443 	allow_signal(SIGKILL);
3444 	while (!kthread_should_stop()) {
3445 
3446 		/* We need to wait INTERRUPTIBLE so that
3447 		 * we don't add to the load-average.
3448 		 * That means we need to be sure no signals are
3449 		 * pending
3450 		 */
3451 		if (signal_pending(current))
3452 			flush_signals(current);
3453 
3454 		wait_event_interruptible_timeout
3455 			(thread->wqueue,
3456 			 test_bit(THREAD_WAKEUP, &thread->flags)
3457 			 || kthread_should_stop(),
3458 			 thread->timeout);
3459 		try_to_freeze();
3460 
3461 		clear_bit(THREAD_WAKEUP, &thread->flags);
3462 
3463 		thread->run(thread->mddev);
3464 	}
3465 
3466 	return 0;
3467 }
3468 
3469 void md_wakeup_thread(mdk_thread_t *thread)
3470 {
3471 	if (thread) {
3472 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3473 		set_bit(THREAD_WAKEUP, &thread->flags);
3474 		wake_up(&thread->wqueue);
3475 	}
3476 }
3477 
3478 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3479 				 const char *name)
3480 {
3481 	mdk_thread_t *thread;
3482 
3483 	thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3484 	if (!thread)
3485 		return NULL;
3486 
3487 	memset(thread, 0, sizeof(mdk_thread_t));
3488 	init_waitqueue_head(&thread->wqueue);
3489 
3490 	thread->run = run;
3491 	thread->mddev = mddev;
3492 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3493 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3494 	if (IS_ERR(thread->tsk)) {
3495 		kfree(thread);
3496 		return NULL;
3497 	}
3498 	return thread;
3499 }
3500 
3501 void md_unregister_thread(mdk_thread_t *thread)
3502 {
3503 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3504 
3505 	kthread_stop(thread->tsk);
3506 	kfree(thread);
3507 }
3508 
3509 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3510 {
3511 	if (!mddev) {
3512 		MD_BUG();
3513 		return;
3514 	}
3515 
3516 	if (!rdev || test_bit(Faulty, &rdev->flags))
3517 		return;
3518 /*
3519 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3520 		mdname(mddev),
3521 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3522 		__builtin_return_address(0),__builtin_return_address(1),
3523 		__builtin_return_address(2),__builtin_return_address(3));
3524 */
3525 	if (!mddev->pers->error_handler)
3526 		return;
3527 	mddev->pers->error_handler(mddev,rdev);
3528 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3529 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3530 	md_wakeup_thread(mddev->thread);
3531 }
3532 
3533 /* seq_file implementation /proc/mdstat */
3534 
3535 static void status_unused(struct seq_file *seq)
3536 {
3537 	int i = 0;
3538 	mdk_rdev_t *rdev;
3539 	struct list_head *tmp;
3540 
3541 	seq_printf(seq, "unused devices: ");
3542 
3543 	ITERATE_RDEV_PENDING(rdev,tmp) {
3544 		char b[BDEVNAME_SIZE];
3545 		i++;
3546 		seq_printf(seq, "%s ",
3547 			      bdevname(rdev->bdev,b));
3548 	}
3549 	if (!i)
3550 		seq_printf(seq, "<none>");
3551 
3552 	seq_printf(seq, "\n");
3553 }
3554 
3555 
3556 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3557 {
3558 	unsigned long max_blocks, resync, res, dt, db, rt;
3559 
3560 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3561 
3562 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3563 		max_blocks = mddev->resync_max_sectors >> 1;
3564 	else
3565 		max_blocks = mddev->size;
3566 
3567 	/*
3568 	 * Should not happen.
3569 	 */
3570 	if (!max_blocks) {
3571 		MD_BUG();
3572 		return;
3573 	}
3574 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3575 	{
3576 		int i, x = res/50, y = 20-x;
3577 		seq_printf(seq, "[");
3578 		for (i = 0; i < x; i++)
3579 			seq_printf(seq, "=");
3580 		seq_printf(seq, ">");
3581 		for (i = 0; i < y; i++)
3582 			seq_printf(seq, ".");
3583 		seq_printf(seq, "] ");
3584 	}
3585 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3586 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3587 		       "resync" : "recovery"),
3588 		      res/10, res % 10, resync, max_blocks);
3589 
3590 	/*
3591 	 * We do not want to overflow, so the order of operands and
3592 	 * the * 100 / 100 trick are important. We do a +1 to be
3593 	 * safe against division by zero. We only estimate anyway.
3594 	 *
3595 	 * dt: time from mark until now
3596 	 * db: blocks written from mark until now
3597 	 * rt: remaining time
3598 	 */
3599 	dt = ((jiffies - mddev->resync_mark) / HZ);
3600 	if (!dt) dt++;
3601 	db = resync - (mddev->resync_mark_cnt/2);
3602 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3603 
3604 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3605 
3606 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3607 }
3608 
3609 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3610 {
3611 	struct list_head *tmp;
3612 	loff_t l = *pos;
3613 	mddev_t *mddev;
3614 
3615 	if (l >= 0x10000)
3616 		return NULL;
3617 	if (!l--)
3618 		/* header */
3619 		return (void*)1;
3620 
3621 	spin_lock(&all_mddevs_lock);
3622 	list_for_each(tmp,&all_mddevs)
3623 		if (!l--) {
3624 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3625 			mddev_get(mddev);
3626 			spin_unlock(&all_mddevs_lock);
3627 			return mddev;
3628 		}
3629 	spin_unlock(&all_mddevs_lock);
3630 	if (!l--)
3631 		return (void*)2;/* tail */
3632 	return NULL;
3633 }
3634 
3635 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3636 {
3637 	struct list_head *tmp;
3638 	mddev_t *next_mddev, *mddev = v;
3639 
3640 	++*pos;
3641 	if (v == (void*)2)
3642 		return NULL;
3643 
3644 	spin_lock(&all_mddevs_lock);
3645 	if (v == (void*)1)
3646 		tmp = all_mddevs.next;
3647 	else
3648 		tmp = mddev->all_mddevs.next;
3649 	if (tmp != &all_mddevs)
3650 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3651 	else {
3652 		next_mddev = (void*)2;
3653 		*pos = 0x10000;
3654 	}
3655 	spin_unlock(&all_mddevs_lock);
3656 
3657 	if (v != (void*)1)
3658 		mddev_put(mddev);
3659 	return next_mddev;
3660 
3661 }
3662 
3663 static void md_seq_stop(struct seq_file *seq, void *v)
3664 {
3665 	mddev_t *mddev = v;
3666 
3667 	if (mddev && v != (void*)1 && v != (void*)2)
3668 		mddev_put(mddev);
3669 }
3670 
3671 static int md_seq_show(struct seq_file *seq, void *v)
3672 {
3673 	mddev_t *mddev = v;
3674 	sector_t size;
3675 	struct list_head *tmp2;
3676 	mdk_rdev_t *rdev;
3677 	int i;
3678 	struct bitmap *bitmap;
3679 
3680 	if (v == (void*)1) {
3681 		seq_printf(seq, "Personalities : ");
3682 		spin_lock(&pers_lock);
3683 		for (i = 0; i < MAX_PERSONALITY; i++)
3684 			if (pers[i])
3685 				seq_printf(seq, "[%s] ", pers[i]->name);
3686 
3687 		spin_unlock(&pers_lock);
3688 		seq_printf(seq, "\n");
3689 		return 0;
3690 	}
3691 	if (v == (void*)2) {
3692 		status_unused(seq);
3693 		return 0;
3694 	}
3695 
3696 	if (mddev_lock(mddev)!=0)
3697 		return -EINTR;
3698 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3699 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3700 						mddev->pers ? "" : "in");
3701 		if (mddev->pers) {
3702 			if (mddev->ro==1)
3703 				seq_printf(seq, " (read-only)");
3704 			if (mddev->ro==2)
3705 				seq_printf(seq, "(auto-read-only)");
3706 			seq_printf(seq, " %s", mddev->pers->name);
3707 		}
3708 
3709 		size = 0;
3710 		ITERATE_RDEV(mddev,rdev,tmp2) {
3711 			char b[BDEVNAME_SIZE];
3712 			seq_printf(seq, " %s[%d]",
3713 				bdevname(rdev->bdev,b), rdev->desc_nr);
3714 			if (test_bit(WriteMostly, &rdev->flags))
3715 				seq_printf(seq, "(W)");
3716 			if (test_bit(Faulty, &rdev->flags)) {
3717 				seq_printf(seq, "(F)");
3718 				continue;
3719 			} else if (rdev->raid_disk < 0)
3720 				seq_printf(seq, "(S)"); /* spare */
3721 			size += rdev->size;
3722 		}
3723 
3724 		if (!list_empty(&mddev->disks)) {
3725 			if (mddev->pers)
3726 				seq_printf(seq, "\n      %llu blocks",
3727 					(unsigned long long)mddev->array_size);
3728 			else
3729 				seq_printf(seq, "\n      %llu blocks",
3730 					(unsigned long long)size);
3731 		}
3732 		if (mddev->persistent) {
3733 			if (mddev->major_version != 0 ||
3734 			    mddev->minor_version != 90) {
3735 				seq_printf(seq," super %d.%d",
3736 					   mddev->major_version,
3737 					   mddev->minor_version);
3738 			}
3739 		} else
3740 			seq_printf(seq, " super non-persistent");
3741 
3742 		if (mddev->pers) {
3743 			mddev->pers->status (seq, mddev);
3744 	 		seq_printf(seq, "\n      ");
3745 			if (mddev->pers->sync_request) {
3746 				if (mddev->curr_resync > 2) {
3747 					status_resync (seq, mddev);
3748 					seq_printf(seq, "\n      ");
3749 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3750 					seq_printf(seq, "\tresync=DELAYED\n      ");
3751 				else if (mddev->recovery_cp < MaxSector)
3752 					seq_printf(seq, "\tresync=PENDING\n      ");
3753 			}
3754 		} else
3755 			seq_printf(seq, "\n       ");
3756 
3757 		if ((bitmap = mddev->bitmap)) {
3758 			unsigned long chunk_kb;
3759 			unsigned long flags;
3760 			spin_lock_irqsave(&bitmap->lock, flags);
3761 			chunk_kb = bitmap->chunksize >> 10;
3762 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3763 				"%lu%s chunk",
3764 				bitmap->pages - bitmap->missing_pages,
3765 				bitmap->pages,
3766 				(bitmap->pages - bitmap->missing_pages)
3767 					<< (PAGE_SHIFT - 10),
3768 				chunk_kb ? chunk_kb : bitmap->chunksize,
3769 				chunk_kb ? "KB" : "B");
3770 			if (bitmap->file) {
3771 				seq_printf(seq, ", file: ");
3772 				seq_path(seq, bitmap->file->f_vfsmnt,
3773 					 bitmap->file->f_dentry," \t\n");
3774 			}
3775 
3776 			seq_printf(seq, "\n");
3777 			spin_unlock_irqrestore(&bitmap->lock, flags);
3778 		}
3779 
3780 		seq_printf(seq, "\n");
3781 	}
3782 	mddev_unlock(mddev);
3783 
3784 	return 0;
3785 }
3786 
3787 static struct seq_operations md_seq_ops = {
3788 	.start  = md_seq_start,
3789 	.next   = md_seq_next,
3790 	.stop   = md_seq_stop,
3791 	.show   = md_seq_show,
3792 };
3793 
3794 static int md_seq_open(struct inode *inode, struct file *file)
3795 {
3796 	int error;
3797 
3798 	error = seq_open(file, &md_seq_ops);
3799 	return error;
3800 }
3801 
3802 static struct file_operations md_seq_fops = {
3803 	.open           = md_seq_open,
3804 	.read           = seq_read,
3805 	.llseek         = seq_lseek,
3806 	.release	= seq_release,
3807 };
3808 
3809 int register_md_personality(int pnum, mdk_personality_t *p)
3810 {
3811 	if (pnum >= MAX_PERSONALITY) {
3812 		printk(KERN_ERR
3813 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3814 		       p->name, pnum, MAX_PERSONALITY-1);
3815 		return -EINVAL;
3816 	}
3817 
3818 	spin_lock(&pers_lock);
3819 	if (pers[pnum]) {
3820 		spin_unlock(&pers_lock);
3821 		return -EBUSY;
3822 	}
3823 
3824 	pers[pnum] = p;
3825 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3826 	spin_unlock(&pers_lock);
3827 	return 0;
3828 }
3829 
3830 int unregister_md_personality(int pnum)
3831 {
3832 	if (pnum >= MAX_PERSONALITY)
3833 		return -EINVAL;
3834 
3835 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3836 	spin_lock(&pers_lock);
3837 	pers[pnum] = NULL;
3838 	spin_unlock(&pers_lock);
3839 	return 0;
3840 }
3841 
3842 static int is_mddev_idle(mddev_t *mddev)
3843 {
3844 	mdk_rdev_t * rdev;
3845 	struct list_head *tmp;
3846 	int idle;
3847 	unsigned long curr_events;
3848 
3849 	idle = 1;
3850 	ITERATE_RDEV(mddev,rdev,tmp) {
3851 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3852 		curr_events = disk_stat_read(disk, sectors[0]) +
3853 				disk_stat_read(disk, sectors[1]) -
3854 				atomic_read(&disk->sync_io);
3855 		/* The difference between curr_events and last_events
3856 		 * will be affected by any new non-sync IO (making
3857 		 * curr_events bigger) and any difference in the amount of
3858 		 * in-flight syncio (making current_events bigger or smaller)
3859 		 * The amount in-flight is currently limited to
3860 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
3861 		 * which is at most 4096 sectors.
3862 		 * These numbers are fairly fragile and should be made
3863 		 * more robust, probably by enforcing the
3864 		 * 'window size' that md_do_sync sort-of uses.
3865 		 *
3866 		 * Note: the following is an unsigned comparison.
3867 		 */
3868 		if ((curr_events - rdev->last_events + 4096) > 8192) {
3869 			rdev->last_events = curr_events;
3870 			idle = 0;
3871 		}
3872 	}
3873 	return idle;
3874 }
3875 
3876 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3877 {
3878 	/* another "blocks" (512byte) blocks have been synced */
3879 	atomic_sub(blocks, &mddev->recovery_active);
3880 	wake_up(&mddev->recovery_wait);
3881 	if (!ok) {
3882 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3883 		md_wakeup_thread(mddev->thread);
3884 		// stop recovery, signal do_sync ....
3885 	}
3886 }
3887 
3888 
3889 /* md_write_start(mddev, bi)
3890  * If we need to update some array metadata (e.g. 'active' flag
3891  * in superblock) before writing, schedule a superblock update
3892  * and wait for it to complete.
3893  */
3894 void md_write_start(mddev_t *mddev, struct bio *bi)
3895 {
3896 	if (bio_data_dir(bi) != WRITE)
3897 		return;
3898 
3899 	BUG_ON(mddev->ro == 1);
3900 	if (mddev->ro == 2) {
3901 		/* need to switch to read/write */
3902 		mddev->ro = 0;
3903 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3904 		md_wakeup_thread(mddev->thread);
3905 	}
3906 	atomic_inc(&mddev->writes_pending);
3907 	if (mddev->in_sync) {
3908 		spin_lock_irq(&mddev->write_lock);
3909 		if (mddev->in_sync) {
3910 			mddev->in_sync = 0;
3911 			mddev->sb_dirty = 1;
3912 			md_wakeup_thread(mddev->thread);
3913 		}
3914 		spin_unlock_irq(&mddev->write_lock);
3915 	}
3916 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3917 }
3918 
3919 void md_write_end(mddev_t *mddev)
3920 {
3921 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3922 		if (mddev->safemode == 2)
3923 			md_wakeup_thread(mddev->thread);
3924 		else
3925 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3926 	}
3927 }
3928 
3929 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3930 
3931 #define SYNC_MARKS	10
3932 #define	SYNC_MARK_STEP	(3*HZ)
3933 static void md_do_sync(mddev_t *mddev)
3934 {
3935 	mddev_t *mddev2;
3936 	unsigned int currspeed = 0,
3937 		 window;
3938 	sector_t max_sectors,j, io_sectors;
3939 	unsigned long mark[SYNC_MARKS];
3940 	sector_t mark_cnt[SYNC_MARKS];
3941 	int last_mark,m;
3942 	struct list_head *tmp;
3943 	sector_t last_check;
3944 	int skipped = 0;
3945 
3946 	/* just incase thread restarts... */
3947 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3948 		return;
3949 
3950 	/* we overload curr_resync somewhat here.
3951 	 * 0 == not engaged in resync at all
3952 	 * 2 == checking that there is no conflict with another sync
3953 	 * 1 == like 2, but have yielded to allow conflicting resync to
3954 	 *		commense
3955 	 * other == active in resync - this many blocks
3956 	 *
3957 	 * Before starting a resync we must have set curr_resync to
3958 	 * 2, and then checked that every "conflicting" array has curr_resync
3959 	 * less than ours.  When we find one that is the same or higher
3960 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3961 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3962 	 * This will mean we have to start checking from the beginning again.
3963 	 *
3964 	 */
3965 
3966 	do {
3967 		mddev->curr_resync = 2;
3968 
3969 	try_again:
3970 		if (kthread_should_stop()) {
3971 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3972 			goto skip;
3973 		}
3974 		ITERATE_MDDEV(mddev2,tmp) {
3975 			if (mddev2 == mddev)
3976 				continue;
3977 			if (mddev2->curr_resync &&
3978 			    match_mddev_units(mddev,mddev2)) {
3979 				DEFINE_WAIT(wq);
3980 				if (mddev < mddev2 && mddev->curr_resync == 2) {
3981 					/* arbitrarily yield */
3982 					mddev->curr_resync = 1;
3983 					wake_up(&resync_wait);
3984 				}
3985 				if (mddev > mddev2 && mddev->curr_resync == 1)
3986 					/* no need to wait here, we can wait the next
3987 					 * time 'round when curr_resync == 2
3988 					 */
3989 					continue;
3990 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
3991 				if (!kthread_should_stop() &&
3992 				    mddev2->curr_resync >= mddev->curr_resync) {
3993 					printk(KERN_INFO "md: delaying resync of %s"
3994 					       " until %s has finished resync (they"
3995 					       " share one or more physical units)\n",
3996 					       mdname(mddev), mdname(mddev2));
3997 					mddev_put(mddev2);
3998 					schedule();
3999 					finish_wait(&resync_wait, &wq);
4000 					goto try_again;
4001 				}
4002 				finish_wait(&resync_wait, &wq);
4003 			}
4004 		}
4005 	} while (mddev->curr_resync < 2);
4006 
4007 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4008 		/* resync follows the size requested by the personality,
4009 		 * which defaults to physical size, but can be virtual size
4010 		 */
4011 		max_sectors = mddev->resync_max_sectors;
4012 		mddev->resync_mismatches = 0;
4013 	} else
4014 		/* recovery follows the physical size of devices */
4015 		max_sectors = mddev->size << 1;
4016 
4017 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4018 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4019 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
4020 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4021 	       "(but not more than %d KB/sec) for reconstruction.\n",
4022 	       sysctl_speed_limit_max);
4023 
4024 	is_mddev_idle(mddev); /* this also initializes IO event counters */
4025 	/* we don't use the checkpoint if there's a bitmap */
4026 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4027 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4028 		j = mddev->recovery_cp;
4029 	else
4030 		j = 0;
4031 	io_sectors = 0;
4032 	for (m = 0; m < SYNC_MARKS; m++) {
4033 		mark[m] = jiffies;
4034 		mark_cnt[m] = io_sectors;
4035 	}
4036 	last_mark = 0;
4037 	mddev->resync_mark = mark[last_mark];
4038 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4039 
4040 	/*
4041 	 * Tune reconstruction:
4042 	 */
4043 	window = 32*(PAGE_SIZE/512);
4044 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4045 		window/2,(unsigned long long) max_sectors/2);
4046 
4047 	atomic_set(&mddev->recovery_active, 0);
4048 	init_waitqueue_head(&mddev->recovery_wait);
4049 	last_check = 0;
4050 
4051 	if (j>2) {
4052 		printk(KERN_INFO
4053 			"md: resuming recovery of %s from checkpoint.\n",
4054 			mdname(mddev));
4055 		mddev->curr_resync = j;
4056 	}
4057 
4058 	while (j < max_sectors) {
4059 		sector_t sectors;
4060 
4061 		skipped = 0;
4062 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4063 					    currspeed < sysctl_speed_limit_min);
4064 		if (sectors == 0) {
4065 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4066 			goto out;
4067 		}
4068 
4069 		if (!skipped) { /* actual IO requested */
4070 			io_sectors += sectors;
4071 			atomic_add(sectors, &mddev->recovery_active);
4072 		}
4073 
4074 		j += sectors;
4075 		if (j>1) mddev->curr_resync = j;
4076 
4077 
4078 		if (last_check + window > io_sectors || j == max_sectors)
4079 			continue;
4080 
4081 		last_check = io_sectors;
4082 
4083 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4084 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4085 			break;
4086 
4087 	repeat:
4088 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4089 			/* step marks */
4090 			int next = (last_mark+1) % SYNC_MARKS;
4091 
4092 			mddev->resync_mark = mark[next];
4093 			mddev->resync_mark_cnt = mark_cnt[next];
4094 			mark[next] = jiffies;
4095 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4096 			last_mark = next;
4097 		}
4098 
4099 
4100 		if (kthread_should_stop()) {
4101 			/*
4102 			 * got a signal, exit.
4103 			 */
4104 			printk(KERN_INFO
4105 				"md: md_do_sync() got signal ... exiting\n");
4106 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4107 			goto out;
4108 		}
4109 
4110 		/*
4111 		 * this loop exits only if either when we are slower than
4112 		 * the 'hard' speed limit, or the system was IO-idle for
4113 		 * a jiffy.
4114 		 * the system might be non-idle CPU-wise, but we only care
4115 		 * about not overloading the IO subsystem. (things like an
4116 		 * e2fsck being done on the RAID array should execute fast)
4117 		 */
4118 		mddev->queue->unplug_fn(mddev->queue);
4119 		cond_resched();
4120 
4121 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4122 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4123 
4124 		if (currspeed > sysctl_speed_limit_min) {
4125 			if ((currspeed > sysctl_speed_limit_max) ||
4126 					!is_mddev_idle(mddev)) {
4127 				msleep(500);
4128 				goto repeat;
4129 			}
4130 		}
4131 	}
4132 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4133 	/*
4134 	 * this also signals 'finished resyncing' to md_stop
4135 	 */
4136  out:
4137 	mddev->queue->unplug_fn(mddev->queue);
4138 
4139 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4140 
4141 	/* tell personality that we are finished */
4142 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4143 
4144 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4145 	    mddev->curr_resync > 2 &&
4146 	    mddev->curr_resync >= mddev->recovery_cp) {
4147 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4148 			printk(KERN_INFO
4149 				"md: checkpointing recovery of %s.\n",
4150 				mdname(mddev));
4151 			mddev->recovery_cp = mddev->curr_resync;
4152 		} else
4153 			mddev->recovery_cp = MaxSector;
4154 	}
4155 
4156  skip:
4157 	mddev->curr_resync = 0;
4158 	wake_up(&resync_wait);
4159 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4160 	md_wakeup_thread(mddev->thread);
4161 }
4162 
4163 
4164 /*
4165  * This routine is regularly called by all per-raid-array threads to
4166  * deal with generic issues like resync and super-block update.
4167  * Raid personalities that don't have a thread (linear/raid0) do not
4168  * need this as they never do any recovery or update the superblock.
4169  *
4170  * It does not do any resync itself, but rather "forks" off other threads
4171  * to do that as needed.
4172  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4173  * "->recovery" and create a thread at ->sync_thread.
4174  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4175  * and wakeups up this thread which will reap the thread and finish up.
4176  * This thread also removes any faulty devices (with nr_pending == 0).
4177  *
4178  * The overall approach is:
4179  *  1/ if the superblock needs updating, update it.
4180  *  2/ If a recovery thread is running, don't do anything else.
4181  *  3/ If recovery has finished, clean up, possibly marking spares active.
4182  *  4/ If there are any faulty devices, remove them.
4183  *  5/ If array is degraded, try to add spares devices
4184  *  6/ If array has spares or is not in-sync, start a resync thread.
4185  */
4186 void md_check_recovery(mddev_t *mddev)
4187 {
4188 	mdk_rdev_t *rdev;
4189 	struct list_head *rtmp;
4190 
4191 
4192 	if (mddev->bitmap)
4193 		bitmap_daemon_work(mddev->bitmap);
4194 
4195 	if (mddev->ro)
4196 		return;
4197 
4198 	if (signal_pending(current)) {
4199 		if (mddev->pers->sync_request) {
4200 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4201 			       mdname(mddev));
4202 			mddev->safemode = 2;
4203 		}
4204 		flush_signals(current);
4205 	}
4206 
4207 	if ( ! (
4208 		mddev->sb_dirty ||
4209 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4210 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4211 		(mddev->safemode == 1) ||
4212 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4213 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4214 		))
4215 		return;
4216 
4217 	if (mddev_trylock(mddev)==0) {
4218 		int spares =0;
4219 
4220 		spin_lock_irq(&mddev->write_lock);
4221 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4222 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4223 			mddev->in_sync = 1;
4224 			mddev->sb_dirty = 1;
4225 		}
4226 		if (mddev->safemode == 1)
4227 			mddev->safemode = 0;
4228 		spin_unlock_irq(&mddev->write_lock);
4229 
4230 		if (mddev->sb_dirty)
4231 			md_update_sb(mddev);
4232 
4233 
4234 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4235 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4236 			/* resync/recovery still happening */
4237 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4238 			goto unlock;
4239 		}
4240 		if (mddev->sync_thread) {
4241 			/* resync has finished, collect result */
4242 			md_unregister_thread(mddev->sync_thread);
4243 			mddev->sync_thread = NULL;
4244 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4245 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4246 				/* success...*/
4247 				/* activate any spares */
4248 				mddev->pers->spare_active(mddev);
4249 			}
4250 			md_update_sb(mddev);
4251 
4252 			/* if array is no-longer degraded, then any saved_raid_disk
4253 			 * information must be scrapped
4254 			 */
4255 			if (!mddev->degraded)
4256 				ITERATE_RDEV(mddev,rdev,rtmp)
4257 					rdev->saved_raid_disk = -1;
4258 
4259 			mddev->recovery = 0;
4260 			/* flag recovery needed just to double check */
4261 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4262 			goto unlock;
4263 		}
4264 		/* Clear some bits that don't mean anything, but
4265 		 * might be left set
4266 		 */
4267 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4268 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4269 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4270 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4271 
4272 		/* no recovery is running.
4273 		 * remove any failed drives, then
4274 		 * add spares if possible.
4275 		 * Spare are also removed and re-added, to allow
4276 		 * the personality to fail the re-add.
4277 		 */
4278 		ITERATE_RDEV(mddev,rdev,rtmp)
4279 			if (rdev->raid_disk >= 0 &&
4280 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4281 			    atomic_read(&rdev->nr_pending)==0) {
4282 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4283 					char nm[20];
4284 					sprintf(nm,"rd%d", rdev->raid_disk);
4285 					sysfs_remove_link(&mddev->kobj, nm);
4286 					rdev->raid_disk = -1;
4287 				}
4288 			}
4289 
4290 		if (mddev->degraded) {
4291 			ITERATE_RDEV(mddev,rdev,rtmp)
4292 				if (rdev->raid_disk < 0
4293 				    && !test_bit(Faulty, &rdev->flags)) {
4294 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4295 						char nm[20];
4296 						sprintf(nm, "rd%d", rdev->raid_disk);
4297 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4298 						spares++;
4299 					} else
4300 						break;
4301 				}
4302 		}
4303 
4304 		if (spares) {
4305 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4306 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4307 		} else if (mddev->recovery_cp < MaxSector) {
4308 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4309 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4310 			/* nothing to be done ... */
4311 			goto unlock;
4312 
4313 		if (mddev->pers->sync_request) {
4314 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4315 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4316 				/* We are adding a device or devices to an array
4317 				 * which has the bitmap stored on all devices.
4318 				 * So make sure all bitmap pages get written
4319 				 */
4320 				bitmap_write_all(mddev->bitmap);
4321 			}
4322 			mddev->sync_thread = md_register_thread(md_do_sync,
4323 								mddev,
4324 								"%s_resync");
4325 			if (!mddev->sync_thread) {
4326 				printk(KERN_ERR "%s: could not start resync"
4327 					" thread...\n",
4328 					mdname(mddev));
4329 				/* leave the spares where they are, it shouldn't hurt */
4330 				mddev->recovery = 0;
4331 			} else {
4332 				md_wakeup_thread(mddev->sync_thread);
4333 			}
4334 		}
4335 	unlock:
4336 		mddev_unlock(mddev);
4337 	}
4338 }
4339 
4340 static int md_notify_reboot(struct notifier_block *this,
4341 			    unsigned long code, void *x)
4342 {
4343 	struct list_head *tmp;
4344 	mddev_t *mddev;
4345 
4346 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4347 
4348 		printk(KERN_INFO "md: stopping all md devices.\n");
4349 
4350 		ITERATE_MDDEV(mddev,tmp)
4351 			if (mddev_trylock(mddev)==0)
4352 				do_md_stop (mddev, 1);
4353 		/*
4354 		 * certain more exotic SCSI devices are known to be
4355 		 * volatile wrt too early system reboots. While the
4356 		 * right place to handle this issue is the given
4357 		 * driver, we do want to have a safe RAID driver ...
4358 		 */
4359 		mdelay(1000*1);
4360 	}
4361 	return NOTIFY_DONE;
4362 }
4363 
4364 static struct notifier_block md_notifier = {
4365 	.notifier_call	= md_notify_reboot,
4366 	.next		= NULL,
4367 	.priority	= INT_MAX, /* before any real devices */
4368 };
4369 
4370 static void md_geninit(void)
4371 {
4372 	struct proc_dir_entry *p;
4373 
4374 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4375 
4376 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4377 	if (p)
4378 		p->proc_fops = &md_seq_fops;
4379 }
4380 
4381 static int __init md_init(void)
4382 {
4383 	int minor;
4384 
4385 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4386 			" MD_SB_DISKS=%d\n",
4387 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4388 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4389 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4390 			BITMAP_MINOR);
4391 
4392 	if (register_blkdev(MAJOR_NR, "md"))
4393 		return -1;
4394 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4395 		unregister_blkdev(MAJOR_NR, "md");
4396 		return -1;
4397 	}
4398 	devfs_mk_dir("md");
4399 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4400 				md_probe, NULL, NULL);
4401 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4402 			    md_probe, NULL, NULL);
4403 
4404 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4405 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4406 				S_IFBLK|S_IRUSR|S_IWUSR,
4407 				"md/%d", minor);
4408 
4409 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4410 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4411 			      S_IFBLK|S_IRUSR|S_IWUSR,
4412 			      "md/mdp%d", minor);
4413 
4414 
4415 	register_reboot_notifier(&md_notifier);
4416 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4417 
4418 	md_geninit();
4419 	return (0);
4420 }
4421 
4422 
4423 #ifndef MODULE
4424 
4425 /*
4426  * Searches all registered partitions for autorun RAID arrays
4427  * at boot time.
4428  */
4429 static dev_t detected_devices[128];
4430 static int dev_cnt;
4431 
4432 void md_autodetect_dev(dev_t dev)
4433 {
4434 	if (dev_cnt >= 0 && dev_cnt < 127)
4435 		detected_devices[dev_cnt++] = dev;
4436 }
4437 
4438 
4439 static void autostart_arrays(int part)
4440 {
4441 	mdk_rdev_t *rdev;
4442 	int i;
4443 
4444 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4445 
4446 	for (i = 0; i < dev_cnt; i++) {
4447 		dev_t dev = detected_devices[i];
4448 
4449 		rdev = md_import_device(dev,0, 0);
4450 		if (IS_ERR(rdev))
4451 			continue;
4452 
4453 		if (test_bit(Faulty, &rdev->flags)) {
4454 			MD_BUG();
4455 			continue;
4456 		}
4457 		list_add(&rdev->same_set, &pending_raid_disks);
4458 	}
4459 	dev_cnt = 0;
4460 
4461 	autorun_devices(part);
4462 }
4463 
4464 #endif
4465 
4466 static __exit void md_exit(void)
4467 {
4468 	mddev_t *mddev;
4469 	struct list_head *tmp;
4470 	int i;
4471 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4472 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4473 	for (i=0; i < MAX_MD_DEVS; i++)
4474 		devfs_remove("md/%d", i);
4475 	for (i=0; i < MAX_MD_DEVS; i++)
4476 		devfs_remove("md/d%d", i);
4477 
4478 	devfs_remove("md");
4479 
4480 	unregister_blkdev(MAJOR_NR,"md");
4481 	unregister_blkdev(mdp_major, "mdp");
4482 	unregister_reboot_notifier(&md_notifier);
4483 	unregister_sysctl_table(raid_table_header);
4484 	remove_proc_entry("mdstat", NULL);
4485 	ITERATE_MDDEV(mddev,tmp) {
4486 		struct gendisk *disk = mddev->gendisk;
4487 		if (!disk)
4488 			continue;
4489 		export_array(mddev);
4490 		del_gendisk(disk);
4491 		put_disk(disk);
4492 		mddev->gendisk = NULL;
4493 		mddev_put(mddev);
4494 	}
4495 }
4496 
4497 module_init(md_init)
4498 module_exit(md_exit)
4499 
4500 static int get_ro(char *buffer, struct kernel_param *kp)
4501 {
4502 	return sprintf(buffer, "%d", start_readonly);
4503 }
4504 static int set_ro(const char *val, struct kernel_param *kp)
4505 {
4506 	char *e;
4507 	int num = simple_strtoul(val, &e, 10);
4508 	if (*val && (*e == '\0' || *e == '\n')) {
4509 		start_readonly = num;
4510 		return 0;;
4511 	}
4512 	return -EINVAL;
4513 }
4514 
4515 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4516 module_param(start_dirty_degraded, int, 0644);
4517 
4518 
4519 EXPORT_SYMBOL(register_md_personality);
4520 EXPORT_SYMBOL(unregister_md_personality);
4521 EXPORT_SYMBOL(md_error);
4522 EXPORT_SYMBOL(md_done_sync);
4523 EXPORT_SYMBOL(md_write_start);
4524 EXPORT_SYMBOL(md_write_end);
4525 EXPORT_SYMBOL(md_register_thread);
4526 EXPORT_SYMBOL(md_unregister_thread);
4527 EXPORT_SYMBOL(md_wakeup_thread);
4528 EXPORT_SYMBOL(md_print_devices);
4529 EXPORT_SYMBOL(md_check_recovery);
4530 MODULE_LICENSE("GPL");
4531 MODULE_ALIAS("md");
4532 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4533