xref: /openbmc/linux/drivers/md/md.c (revision b04b4f78)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48 #include <linux/raid/md_p.h>
49 #include <linux/raid/md_u.h>
50 #include "md.h"
51 #include "bitmap.h"
52 
53 #define DEBUG 0
54 #define dprintk(x...) ((void)(DEBUG && printk(x)))
55 
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 static LIST_HEAD(pers_list);
62 static DEFINE_SPINLOCK(pers_lock);
63 
64 static void md_print_devices(void);
65 
66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
67 
68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
69 
70 /*
71  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
72  * is 1000 KB/sec, so the extra system load does not show up that much.
73  * Increase it if you want to have more _guaranteed_ speed. Note that
74  * the RAID driver will use the maximum available bandwidth if the IO
75  * subsystem is idle. There is also an 'absolute maximum' reconstruction
76  * speed limit - in case reconstruction slows down your system despite
77  * idle IO detection.
78  *
79  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
80  * or /sys/block/mdX/md/sync_speed_{min,max}
81  */
82 
83 static int sysctl_speed_limit_min = 1000;
84 static int sysctl_speed_limit_max = 200000;
85 static inline int speed_min(mddev_t *mddev)
86 {
87 	return mddev->sync_speed_min ?
88 		mddev->sync_speed_min : sysctl_speed_limit_min;
89 }
90 
91 static inline int speed_max(mddev_t *mddev)
92 {
93 	return mddev->sync_speed_max ?
94 		mddev->sync_speed_max : sysctl_speed_limit_max;
95 }
96 
97 static struct ctl_table_header *raid_table_header;
98 
99 static ctl_table raid_table[] = {
100 	{
101 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
102 		.procname	= "speed_limit_min",
103 		.data		= &sysctl_speed_limit_min,
104 		.maxlen		= sizeof(int),
105 		.mode		= S_IRUGO|S_IWUSR,
106 		.proc_handler	= &proc_dointvec,
107 	},
108 	{
109 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
110 		.procname	= "speed_limit_max",
111 		.data		= &sysctl_speed_limit_max,
112 		.maxlen		= sizeof(int),
113 		.mode		= S_IRUGO|S_IWUSR,
114 		.proc_handler	= &proc_dointvec,
115 	},
116 	{ .ctl_name = 0 }
117 };
118 
119 static ctl_table raid_dir_table[] = {
120 	{
121 		.ctl_name	= DEV_RAID,
122 		.procname	= "raid",
123 		.maxlen		= 0,
124 		.mode		= S_IRUGO|S_IXUGO,
125 		.child		= raid_table,
126 	},
127 	{ .ctl_name = 0 }
128 };
129 
130 static ctl_table raid_root_table[] = {
131 	{
132 		.ctl_name	= CTL_DEV,
133 		.procname	= "dev",
134 		.maxlen		= 0,
135 		.mode		= 0555,
136 		.child		= raid_dir_table,
137 	},
138 	{ .ctl_name = 0 }
139 };
140 
141 static struct block_device_operations md_fops;
142 
143 static int start_readonly;
144 
145 /*
146  * We have a system wide 'event count' that is incremented
147  * on any 'interesting' event, and readers of /proc/mdstat
148  * can use 'poll' or 'select' to find out when the event
149  * count increases.
150  *
151  * Events are:
152  *  start array, stop array, error, add device, remove device,
153  *  start build, activate spare
154  */
155 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
156 static atomic_t md_event_count;
157 void md_new_event(mddev_t *mddev)
158 {
159 	atomic_inc(&md_event_count);
160 	wake_up(&md_event_waiters);
161 }
162 EXPORT_SYMBOL_GPL(md_new_event);
163 
164 /* Alternate version that can be called from interrupts
165  * when calling sysfs_notify isn't needed.
166  */
167 static void md_new_event_inintr(mddev_t *mddev)
168 {
169 	atomic_inc(&md_event_count);
170 	wake_up(&md_event_waiters);
171 }
172 
173 /*
174  * Enables to iterate over all existing md arrays
175  * all_mddevs_lock protects this list.
176  */
177 static LIST_HEAD(all_mddevs);
178 static DEFINE_SPINLOCK(all_mddevs_lock);
179 
180 
181 /*
182  * iterates through all used mddevs in the system.
183  * We take care to grab the all_mddevs_lock whenever navigating
184  * the list, and to always hold a refcount when unlocked.
185  * Any code which breaks out of this loop while own
186  * a reference to the current mddev and must mddev_put it.
187  */
188 #define for_each_mddev(mddev,tmp)					\
189 									\
190 	for (({ spin_lock(&all_mddevs_lock); 				\
191 		tmp = all_mddevs.next;					\
192 		mddev = NULL;});					\
193 	     ({ if (tmp != &all_mddevs)					\
194 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
195 		spin_unlock(&all_mddevs_lock);				\
196 		if (mddev) mddev_put(mddev);				\
197 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
198 		tmp != &all_mddevs;});					\
199 	     ({ spin_lock(&all_mddevs_lock);				\
200 		tmp = tmp->next;})					\
201 		)
202 
203 
204 /* Rather than calling directly into the personality make_request function,
205  * IO requests come here first so that we can check if the device is
206  * being suspended pending a reconfiguration.
207  * We hold a refcount over the call to ->make_request.  By the time that
208  * call has finished, the bio has been linked into some internal structure
209  * and so is visible to ->quiesce(), so we don't need the refcount any more.
210  */
211 static int md_make_request(struct request_queue *q, struct bio *bio)
212 {
213 	mddev_t *mddev = q->queuedata;
214 	int rv;
215 	if (mddev == NULL || mddev->pers == NULL) {
216 		bio_io_error(bio);
217 		return 0;
218 	}
219 	rcu_read_lock();
220 	if (mddev->suspended) {
221 		DEFINE_WAIT(__wait);
222 		for (;;) {
223 			prepare_to_wait(&mddev->sb_wait, &__wait,
224 					TASK_UNINTERRUPTIBLE);
225 			if (!mddev->suspended)
226 				break;
227 			rcu_read_unlock();
228 			schedule();
229 			rcu_read_lock();
230 		}
231 		finish_wait(&mddev->sb_wait, &__wait);
232 	}
233 	atomic_inc(&mddev->active_io);
234 	rcu_read_unlock();
235 	rv = mddev->pers->make_request(q, bio);
236 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
237 		wake_up(&mddev->sb_wait);
238 
239 	return rv;
240 }
241 
242 static void mddev_suspend(mddev_t *mddev)
243 {
244 	BUG_ON(mddev->suspended);
245 	mddev->suspended = 1;
246 	synchronize_rcu();
247 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
248 	mddev->pers->quiesce(mddev, 1);
249 	md_unregister_thread(mddev->thread);
250 	mddev->thread = NULL;
251 	/* we now know that no code is executing in the personality module,
252 	 * except possibly the tail end of a ->bi_end_io function, but that
253 	 * is certain to complete before the module has a chance to get
254 	 * unloaded
255 	 */
256 }
257 
258 static void mddev_resume(mddev_t *mddev)
259 {
260 	mddev->suspended = 0;
261 	wake_up(&mddev->sb_wait);
262 	mddev->pers->quiesce(mddev, 0);
263 }
264 
265 
266 static inline mddev_t *mddev_get(mddev_t *mddev)
267 {
268 	atomic_inc(&mddev->active);
269 	return mddev;
270 }
271 
272 static void mddev_delayed_delete(struct work_struct *ws);
273 
274 static void mddev_put(mddev_t *mddev)
275 {
276 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
277 		return;
278 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
279 	    !mddev->hold_active) {
280 		list_del(&mddev->all_mddevs);
281 		if (mddev->gendisk) {
282 			/* we did a probe so need to clean up.
283 			 * Call schedule_work inside the spinlock
284 			 * so that flush_scheduled_work() after
285 			 * mddev_find will succeed in waiting for the
286 			 * work to be done.
287 			 */
288 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
289 			schedule_work(&mddev->del_work);
290 		} else
291 			kfree(mddev);
292 	}
293 	spin_unlock(&all_mddevs_lock);
294 }
295 
296 static mddev_t * mddev_find(dev_t unit)
297 {
298 	mddev_t *mddev, *new = NULL;
299 
300  retry:
301 	spin_lock(&all_mddevs_lock);
302 
303 	if (unit) {
304 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
305 			if (mddev->unit == unit) {
306 				mddev_get(mddev);
307 				spin_unlock(&all_mddevs_lock);
308 				kfree(new);
309 				return mddev;
310 			}
311 
312 		if (new) {
313 			list_add(&new->all_mddevs, &all_mddevs);
314 			spin_unlock(&all_mddevs_lock);
315 			new->hold_active = UNTIL_IOCTL;
316 			return new;
317 		}
318 	} else if (new) {
319 		/* find an unused unit number */
320 		static int next_minor = 512;
321 		int start = next_minor;
322 		int is_free = 0;
323 		int dev = 0;
324 		while (!is_free) {
325 			dev = MKDEV(MD_MAJOR, next_minor);
326 			next_minor++;
327 			if (next_minor > MINORMASK)
328 				next_minor = 0;
329 			if (next_minor == start) {
330 				/* Oh dear, all in use. */
331 				spin_unlock(&all_mddevs_lock);
332 				kfree(new);
333 				return NULL;
334 			}
335 
336 			is_free = 1;
337 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
338 				if (mddev->unit == dev) {
339 					is_free = 0;
340 					break;
341 				}
342 		}
343 		new->unit = dev;
344 		new->md_minor = MINOR(dev);
345 		new->hold_active = UNTIL_STOP;
346 		list_add(&new->all_mddevs, &all_mddevs);
347 		spin_unlock(&all_mddevs_lock);
348 		return new;
349 	}
350 	spin_unlock(&all_mddevs_lock);
351 
352 	new = kzalloc(sizeof(*new), GFP_KERNEL);
353 	if (!new)
354 		return NULL;
355 
356 	new->unit = unit;
357 	if (MAJOR(unit) == MD_MAJOR)
358 		new->md_minor = MINOR(unit);
359 	else
360 		new->md_minor = MINOR(unit) >> MdpMinorShift;
361 
362 	mutex_init(&new->reconfig_mutex);
363 	INIT_LIST_HEAD(&new->disks);
364 	INIT_LIST_HEAD(&new->all_mddevs);
365 	init_timer(&new->safemode_timer);
366 	atomic_set(&new->active, 1);
367 	atomic_set(&new->openers, 0);
368 	atomic_set(&new->active_io, 0);
369 	spin_lock_init(&new->write_lock);
370 	init_waitqueue_head(&new->sb_wait);
371 	init_waitqueue_head(&new->recovery_wait);
372 	new->reshape_position = MaxSector;
373 	new->resync_min = 0;
374 	new->resync_max = MaxSector;
375 	new->level = LEVEL_NONE;
376 
377 	goto retry;
378 }
379 
380 static inline int mddev_lock(mddev_t * mddev)
381 {
382 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
383 }
384 
385 static inline int mddev_is_locked(mddev_t *mddev)
386 {
387 	return mutex_is_locked(&mddev->reconfig_mutex);
388 }
389 
390 static inline int mddev_trylock(mddev_t * mddev)
391 {
392 	return mutex_trylock(&mddev->reconfig_mutex);
393 }
394 
395 static inline void mddev_unlock(mddev_t * mddev)
396 {
397 	mutex_unlock(&mddev->reconfig_mutex);
398 
399 	md_wakeup_thread(mddev->thread);
400 }
401 
402 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
403 {
404 	mdk_rdev_t *rdev;
405 
406 	list_for_each_entry(rdev, &mddev->disks, same_set)
407 		if (rdev->desc_nr == nr)
408 			return rdev;
409 
410 	return NULL;
411 }
412 
413 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
414 {
415 	mdk_rdev_t *rdev;
416 
417 	list_for_each_entry(rdev, &mddev->disks, same_set)
418 		if (rdev->bdev->bd_dev == dev)
419 			return rdev;
420 
421 	return NULL;
422 }
423 
424 static struct mdk_personality *find_pers(int level, char *clevel)
425 {
426 	struct mdk_personality *pers;
427 	list_for_each_entry(pers, &pers_list, list) {
428 		if (level != LEVEL_NONE && pers->level == level)
429 			return pers;
430 		if (strcmp(pers->name, clevel)==0)
431 			return pers;
432 	}
433 	return NULL;
434 }
435 
436 /* return the offset of the super block in 512byte sectors */
437 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
438 {
439 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
440 	return MD_NEW_SIZE_SECTORS(num_sectors);
441 }
442 
443 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
444 {
445 	sector_t num_sectors = rdev->sb_start;
446 
447 	if (chunk_size)
448 		num_sectors &= ~((sector_t)chunk_size/512 - 1);
449 	return num_sectors;
450 }
451 
452 static int alloc_disk_sb(mdk_rdev_t * rdev)
453 {
454 	if (rdev->sb_page)
455 		MD_BUG();
456 
457 	rdev->sb_page = alloc_page(GFP_KERNEL);
458 	if (!rdev->sb_page) {
459 		printk(KERN_ALERT "md: out of memory.\n");
460 		return -ENOMEM;
461 	}
462 
463 	return 0;
464 }
465 
466 static void free_disk_sb(mdk_rdev_t * rdev)
467 {
468 	if (rdev->sb_page) {
469 		put_page(rdev->sb_page);
470 		rdev->sb_loaded = 0;
471 		rdev->sb_page = NULL;
472 		rdev->sb_start = 0;
473 		rdev->sectors = 0;
474 	}
475 }
476 
477 
478 static void super_written(struct bio *bio, int error)
479 {
480 	mdk_rdev_t *rdev = bio->bi_private;
481 	mddev_t *mddev = rdev->mddev;
482 
483 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
484 		printk("md: super_written gets error=%d, uptodate=%d\n",
485 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
486 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
487 		md_error(mddev, rdev);
488 	}
489 
490 	if (atomic_dec_and_test(&mddev->pending_writes))
491 		wake_up(&mddev->sb_wait);
492 	bio_put(bio);
493 }
494 
495 static void super_written_barrier(struct bio *bio, int error)
496 {
497 	struct bio *bio2 = bio->bi_private;
498 	mdk_rdev_t *rdev = bio2->bi_private;
499 	mddev_t *mddev = rdev->mddev;
500 
501 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
502 	    error == -EOPNOTSUPP) {
503 		unsigned long flags;
504 		/* barriers don't appear to be supported :-( */
505 		set_bit(BarriersNotsupp, &rdev->flags);
506 		mddev->barriers_work = 0;
507 		spin_lock_irqsave(&mddev->write_lock, flags);
508 		bio2->bi_next = mddev->biolist;
509 		mddev->biolist = bio2;
510 		spin_unlock_irqrestore(&mddev->write_lock, flags);
511 		wake_up(&mddev->sb_wait);
512 		bio_put(bio);
513 	} else {
514 		bio_put(bio2);
515 		bio->bi_private = rdev;
516 		super_written(bio, error);
517 	}
518 }
519 
520 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
521 		   sector_t sector, int size, struct page *page)
522 {
523 	/* write first size bytes of page to sector of rdev
524 	 * Increment mddev->pending_writes before returning
525 	 * and decrement it on completion, waking up sb_wait
526 	 * if zero is reached.
527 	 * If an error occurred, call md_error
528 	 *
529 	 * As we might need to resubmit the request if BIO_RW_BARRIER
530 	 * causes ENOTSUPP, we allocate a spare bio...
531 	 */
532 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
533 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
534 
535 	bio->bi_bdev = rdev->bdev;
536 	bio->bi_sector = sector;
537 	bio_add_page(bio, page, size, 0);
538 	bio->bi_private = rdev;
539 	bio->bi_end_io = super_written;
540 	bio->bi_rw = rw;
541 
542 	atomic_inc(&mddev->pending_writes);
543 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
544 		struct bio *rbio;
545 		rw |= (1<<BIO_RW_BARRIER);
546 		rbio = bio_clone(bio, GFP_NOIO);
547 		rbio->bi_private = bio;
548 		rbio->bi_end_io = super_written_barrier;
549 		submit_bio(rw, rbio);
550 	} else
551 		submit_bio(rw, bio);
552 }
553 
554 void md_super_wait(mddev_t *mddev)
555 {
556 	/* wait for all superblock writes that were scheduled to complete.
557 	 * if any had to be retried (due to BARRIER problems), retry them
558 	 */
559 	DEFINE_WAIT(wq);
560 	for(;;) {
561 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
562 		if (atomic_read(&mddev->pending_writes)==0)
563 			break;
564 		while (mddev->biolist) {
565 			struct bio *bio;
566 			spin_lock_irq(&mddev->write_lock);
567 			bio = mddev->biolist;
568 			mddev->biolist = bio->bi_next ;
569 			bio->bi_next = NULL;
570 			spin_unlock_irq(&mddev->write_lock);
571 			submit_bio(bio->bi_rw, bio);
572 		}
573 		schedule();
574 	}
575 	finish_wait(&mddev->sb_wait, &wq);
576 }
577 
578 static void bi_complete(struct bio *bio, int error)
579 {
580 	complete((struct completion*)bio->bi_private);
581 }
582 
583 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
584 		   struct page *page, int rw)
585 {
586 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
587 	struct completion event;
588 	int ret;
589 
590 	rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
591 
592 	bio->bi_bdev = bdev;
593 	bio->bi_sector = sector;
594 	bio_add_page(bio, page, size, 0);
595 	init_completion(&event);
596 	bio->bi_private = &event;
597 	bio->bi_end_io = bi_complete;
598 	submit_bio(rw, bio);
599 	wait_for_completion(&event);
600 
601 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
602 	bio_put(bio);
603 	return ret;
604 }
605 EXPORT_SYMBOL_GPL(sync_page_io);
606 
607 static int read_disk_sb(mdk_rdev_t * rdev, int size)
608 {
609 	char b[BDEVNAME_SIZE];
610 	if (!rdev->sb_page) {
611 		MD_BUG();
612 		return -EINVAL;
613 	}
614 	if (rdev->sb_loaded)
615 		return 0;
616 
617 
618 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
619 		goto fail;
620 	rdev->sb_loaded = 1;
621 	return 0;
622 
623 fail:
624 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
625 		bdevname(rdev->bdev,b));
626 	return -EINVAL;
627 }
628 
629 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
630 {
631 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
632 		sb1->set_uuid1 == sb2->set_uuid1 &&
633 		sb1->set_uuid2 == sb2->set_uuid2 &&
634 		sb1->set_uuid3 == sb2->set_uuid3;
635 }
636 
637 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
638 {
639 	int ret;
640 	mdp_super_t *tmp1, *tmp2;
641 
642 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
643 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
644 
645 	if (!tmp1 || !tmp2) {
646 		ret = 0;
647 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
648 		goto abort;
649 	}
650 
651 	*tmp1 = *sb1;
652 	*tmp2 = *sb2;
653 
654 	/*
655 	 * nr_disks is not constant
656 	 */
657 	tmp1->nr_disks = 0;
658 	tmp2->nr_disks = 0;
659 
660 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
661 abort:
662 	kfree(tmp1);
663 	kfree(tmp2);
664 	return ret;
665 }
666 
667 
668 static u32 md_csum_fold(u32 csum)
669 {
670 	csum = (csum & 0xffff) + (csum >> 16);
671 	return (csum & 0xffff) + (csum >> 16);
672 }
673 
674 static unsigned int calc_sb_csum(mdp_super_t * sb)
675 {
676 	u64 newcsum = 0;
677 	u32 *sb32 = (u32*)sb;
678 	int i;
679 	unsigned int disk_csum, csum;
680 
681 	disk_csum = sb->sb_csum;
682 	sb->sb_csum = 0;
683 
684 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
685 		newcsum += sb32[i];
686 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
687 
688 
689 #ifdef CONFIG_ALPHA
690 	/* This used to use csum_partial, which was wrong for several
691 	 * reasons including that different results are returned on
692 	 * different architectures.  It isn't critical that we get exactly
693 	 * the same return value as before (we always csum_fold before
694 	 * testing, and that removes any differences).  However as we
695 	 * know that csum_partial always returned a 16bit value on
696 	 * alphas, do a fold to maximise conformity to previous behaviour.
697 	 */
698 	sb->sb_csum = md_csum_fold(disk_csum);
699 #else
700 	sb->sb_csum = disk_csum;
701 #endif
702 	return csum;
703 }
704 
705 
706 /*
707  * Handle superblock details.
708  * We want to be able to handle multiple superblock formats
709  * so we have a common interface to them all, and an array of
710  * different handlers.
711  * We rely on user-space to write the initial superblock, and support
712  * reading and updating of superblocks.
713  * Interface methods are:
714  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
715  *      loads and validates a superblock on dev.
716  *      if refdev != NULL, compare superblocks on both devices
717  *    Return:
718  *      0 - dev has a superblock that is compatible with refdev
719  *      1 - dev has a superblock that is compatible and newer than refdev
720  *          so dev should be used as the refdev in future
721  *     -EINVAL superblock incompatible or invalid
722  *     -othererror e.g. -EIO
723  *
724  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
725  *      Verify that dev is acceptable into mddev.
726  *       The first time, mddev->raid_disks will be 0, and data from
727  *       dev should be merged in.  Subsequent calls check that dev
728  *       is new enough.  Return 0 or -EINVAL
729  *
730  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
731  *     Update the superblock for rdev with data in mddev
732  *     This does not write to disc.
733  *
734  */
735 
736 struct super_type  {
737 	char		    *name;
738 	struct module	    *owner;
739 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
740 					  int minor_version);
741 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
742 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
743 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
744 						sector_t num_sectors);
745 };
746 
747 /*
748  * load_super for 0.90.0
749  */
750 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
751 {
752 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
753 	mdp_super_t *sb;
754 	int ret;
755 
756 	/*
757 	 * Calculate the position of the superblock (512byte sectors),
758 	 * it's at the end of the disk.
759 	 *
760 	 * It also happens to be a multiple of 4Kb.
761 	 */
762 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
763 
764 	ret = read_disk_sb(rdev, MD_SB_BYTES);
765 	if (ret) return ret;
766 
767 	ret = -EINVAL;
768 
769 	bdevname(rdev->bdev, b);
770 	sb = (mdp_super_t*)page_address(rdev->sb_page);
771 
772 	if (sb->md_magic != MD_SB_MAGIC) {
773 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
774 		       b);
775 		goto abort;
776 	}
777 
778 	if (sb->major_version != 0 ||
779 	    sb->minor_version < 90 ||
780 	    sb->minor_version > 91) {
781 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
782 			sb->major_version, sb->minor_version,
783 			b);
784 		goto abort;
785 	}
786 
787 	if (sb->raid_disks <= 0)
788 		goto abort;
789 
790 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
791 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
792 			b);
793 		goto abort;
794 	}
795 
796 	rdev->preferred_minor = sb->md_minor;
797 	rdev->data_offset = 0;
798 	rdev->sb_size = MD_SB_BYTES;
799 
800 	if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
801 		if (sb->level != 1 && sb->level != 4
802 		    && sb->level != 5 && sb->level != 6
803 		    && sb->level != 10) {
804 			/* FIXME use a better test */
805 			printk(KERN_WARNING
806 			       "md: bitmaps not supported for this level.\n");
807 			goto abort;
808 		}
809 	}
810 
811 	if (sb->level == LEVEL_MULTIPATH)
812 		rdev->desc_nr = -1;
813 	else
814 		rdev->desc_nr = sb->this_disk.number;
815 
816 	if (!refdev) {
817 		ret = 1;
818 	} else {
819 		__u64 ev1, ev2;
820 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
821 		if (!uuid_equal(refsb, sb)) {
822 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
823 				b, bdevname(refdev->bdev,b2));
824 			goto abort;
825 		}
826 		if (!sb_equal(refsb, sb)) {
827 			printk(KERN_WARNING "md: %s has same UUID"
828 			       " but different superblock to %s\n",
829 			       b, bdevname(refdev->bdev, b2));
830 			goto abort;
831 		}
832 		ev1 = md_event(sb);
833 		ev2 = md_event(refsb);
834 		if (ev1 > ev2)
835 			ret = 1;
836 		else
837 			ret = 0;
838 	}
839 	rdev->sectors = calc_num_sectors(rdev, sb->chunk_size);
840 
841 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
842 		/* "this cannot possibly happen" ... */
843 		ret = -EINVAL;
844 
845  abort:
846 	return ret;
847 }
848 
849 /*
850  * validate_super for 0.90.0
851  */
852 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
853 {
854 	mdp_disk_t *desc;
855 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
856 	__u64 ev1 = md_event(sb);
857 
858 	rdev->raid_disk = -1;
859 	clear_bit(Faulty, &rdev->flags);
860 	clear_bit(In_sync, &rdev->flags);
861 	clear_bit(WriteMostly, &rdev->flags);
862 	clear_bit(BarriersNotsupp, &rdev->flags);
863 
864 	if (mddev->raid_disks == 0) {
865 		mddev->major_version = 0;
866 		mddev->minor_version = sb->minor_version;
867 		mddev->patch_version = sb->patch_version;
868 		mddev->external = 0;
869 		mddev->chunk_size = sb->chunk_size;
870 		mddev->ctime = sb->ctime;
871 		mddev->utime = sb->utime;
872 		mddev->level = sb->level;
873 		mddev->clevel[0] = 0;
874 		mddev->layout = sb->layout;
875 		mddev->raid_disks = sb->raid_disks;
876 		mddev->dev_sectors = sb->size * 2;
877 		mddev->events = ev1;
878 		mddev->bitmap_offset = 0;
879 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
880 
881 		if (mddev->minor_version >= 91) {
882 			mddev->reshape_position = sb->reshape_position;
883 			mddev->delta_disks = sb->delta_disks;
884 			mddev->new_level = sb->new_level;
885 			mddev->new_layout = sb->new_layout;
886 			mddev->new_chunk = sb->new_chunk;
887 		} else {
888 			mddev->reshape_position = MaxSector;
889 			mddev->delta_disks = 0;
890 			mddev->new_level = mddev->level;
891 			mddev->new_layout = mddev->layout;
892 			mddev->new_chunk = mddev->chunk_size;
893 		}
894 
895 		if (sb->state & (1<<MD_SB_CLEAN))
896 			mddev->recovery_cp = MaxSector;
897 		else {
898 			if (sb->events_hi == sb->cp_events_hi &&
899 				sb->events_lo == sb->cp_events_lo) {
900 				mddev->recovery_cp = sb->recovery_cp;
901 			} else
902 				mddev->recovery_cp = 0;
903 		}
904 
905 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
906 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
907 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
908 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
909 
910 		mddev->max_disks = MD_SB_DISKS;
911 
912 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
913 		    mddev->bitmap_file == NULL)
914 			mddev->bitmap_offset = mddev->default_bitmap_offset;
915 
916 	} else if (mddev->pers == NULL) {
917 		/* Insist on good event counter while assembling */
918 		++ev1;
919 		if (ev1 < mddev->events)
920 			return -EINVAL;
921 	} else if (mddev->bitmap) {
922 		/* if adding to array with a bitmap, then we can accept an
923 		 * older device ... but not too old.
924 		 */
925 		if (ev1 < mddev->bitmap->events_cleared)
926 			return 0;
927 	} else {
928 		if (ev1 < mddev->events)
929 			/* just a hot-add of a new device, leave raid_disk at -1 */
930 			return 0;
931 	}
932 
933 	if (mddev->level != LEVEL_MULTIPATH) {
934 		desc = sb->disks + rdev->desc_nr;
935 
936 		if (desc->state & (1<<MD_DISK_FAULTY))
937 			set_bit(Faulty, &rdev->flags);
938 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
939 			    desc->raid_disk < mddev->raid_disks */) {
940 			set_bit(In_sync, &rdev->flags);
941 			rdev->raid_disk = desc->raid_disk;
942 		}
943 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
944 			set_bit(WriteMostly, &rdev->flags);
945 	} else /* MULTIPATH are always insync */
946 		set_bit(In_sync, &rdev->flags);
947 	return 0;
948 }
949 
950 /*
951  * sync_super for 0.90.0
952  */
953 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
954 {
955 	mdp_super_t *sb;
956 	mdk_rdev_t *rdev2;
957 	int next_spare = mddev->raid_disks;
958 
959 
960 	/* make rdev->sb match mddev data..
961 	 *
962 	 * 1/ zero out disks
963 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
964 	 * 3/ any empty disks < next_spare become removed
965 	 *
966 	 * disks[0] gets initialised to REMOVED because
967 	 * we cannot be sure from other fields if it has
968 	 * been initialised or not.
969 	 */
970 	int i;
971 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
972 
973 	rdev->sb_size = MD_SB_BYTES;
974 
975 	sb = (mdp_super_t*)page_address(rdev->sb_page);
976 
977 	memset(sb, 0, sizeof(*sb));
978 
979 	sb->md_magic = MD_SB_MAGIC;
980 	sb->major_version = mddev->major_version;
981 	sb->patch_version = mddev->patch_version;
982 	sb->gvalid_words  = 0; /* ignored */
983 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
984 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
985 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
986 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
987 
988 	sb->ctime = mddev->ctime;
989 	sb->level = mddev->level;
990 	sb->size = mddev->dev_sectors / 2;
991 	sb->raid_disks = mddev->raid_disks;
992 	sb->md_minor = mddev->md_minor;
993 	sb->not_persistent = 0;
994 	sb->utime = mddev->utime;
995 	sb->state = 0;
996 	sb->events_hi = (mddev->events>>32);
997 	sb->events_lo = (u32)mddev->events;
998 
999 	if (mddev->reshape_position == MaxSector)
1000 		sb->minor_version = 90;
1001 	else {
1002 		sb->minor_version = 91;
1003 		sb->reshape_position = mddev->reshape_position;
1004 		sb->new_level = mddev->new_level;
1005 		sb->delta_disks = mddev->delta_disks;
1006 		sb->new_layout = mddev->new_layout;
1007 		sb->new_chunk = mddev->new_chunk;
1008 	}
1009 	mddev->minor_version = sb->minor_version;
1010 	if (mddev->in_sync)
1011 	{
1012 		sb->recovery_cp = mddev->recovery_cp;
1013 		sb->cp_events_hi = (mddev->events>>32);
1014 		sb->cp_events_lo = (u32)mddev->events;
1015 		if (mddev->recovery_cp == MaxSector)
1016 			sb->state = (1<< MD_SB_CLEAN);
1017 	} else
1018 		sb->recovery_cp = 0;
1019 
1020 	sb->layout = mddev->layout;
1021 	sb->chunk_size = mddev->chunk_size;
1022 
1023 	if (mddev->bitmap && mddev->bitmap_file == NULL)
1024 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1025 
1026 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1027 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1028 		mdp_disk_t *d;
1029 		int desc_nr;
1030 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1031 		    && !test_bit(Faulty, &rdev2->flags))
1032 			desc_nr = rdev2->raid_disk;
1033 		else
1034 			desc_nr = next_spare++;
1035 		rdev2->desc_nr = desc_nr;
1036 		d = &sb->disks[rdev2->desc_nr];
1037 		nr_disks++;
1038 		d->number = rdev2->desc_nr;
1039 		d->major = MAJOR(rdev2->bdev->bd_dev);
1040 		d->minor = MINOR(rdev2->bdev->bd_dev);
1041 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1042 		    && !test_bit(Faulty, &rdev2->flags))
1043 			d->raid_disk = rdev2->raid_disk;
1044 		else
1045 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1046 		if (test_bit(Faulty, &rdev2->flags))
1047 			d->state = (1<<MD_DISK_FAULTY);
1048 		else if (test_bit(In_sync, &rdev2->flags)) {
1049 			d->state = (1<<MD_DISK_ACTIVE);
1050 			d->state |= (1<<MD_DISK_SYNC);
1051 			active++;
1052 			working++;
1053 		} else {
1054 			d->state = 0;
1055 			spare++;
1056 			working++;
1057 		}
1058 		if (test_bit(WriteMostly, &rdev2->flags))
1059 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1060 	}
1061 	/* now set the "removed" and "faulty" bits on any missing devices */
1062 	for (i=0 ; i < mddev->raid_disks ; i++) {
1063 		mdp_disk_t *d = &sb->disks[i];
1064 		if (d->state == 0 && d->number == 0) {
1065 			d->number = i;
1066 			d->raid_disk = i;
1067 			d->state = (1<<MD_DISK_REMOVED);
1068 			d->state |= (1<<MD_DISK_FAULTY);
1069 			failed++;
1070 		}
1071 	}
1072 	sb->nr_disks = nr_disks;
1073 	sb->active_disks = active;
1074 	sb->working_disks = working;
1075 	sb->failed_disks = failed;
1076 	sb->spare_disks = spare;
1077 
1078 	sb->this_disk = sb->disks[rdev->desc_nr];
1079 	sb->sb_csum = calc_sb_csum(sb);
1080 }
1081 
1082 /*
1083  * rdev_size_change for 0.90.0
1084  */
1085 static unsigned long long
1086 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1087 {
1088 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1089 		return 0; /* component must fit device */
1090 	if (rdev->mddev->bitmap_offset)
1091 		return 0; /* can't move bitmap */
1092 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1093 	if (!num_sectors || num_sectors > rdev->sb_start)
1094 		num_sectors = rdev->sb_start;
1095 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1096 		       rdev->sb_page);
1097 	md_super_wait(rdev->mddev);
1098 	return num_sectors / 2; /* kB for sysfs */
1099 }
1100 
1101 
1102 /*
1103  * version 1 superblock
1104  */
1105 
1106 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1107 {
1108 	__le32 disk_csum;
1109 	u32 csum;
1110 	unsigned long long newcsum;
1111 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1112 	__le32 *isuper = (__le32*)sb;
1113 	int i;
1114 
1115 	disk_csum = sb->sb_csum;
1116 	sb->sb_csum = 0;
1117 	newcsum = 0;
1118 	for (i=0; size>=4; size -= 4 )
1119 		newcsum += le32_to_cpu(*isuper++);
1120 
1121 	if (size == 2)
1122 		newcsum += le16_to_cpu(*(__le16*) isuper);
1123 
1124 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1125 	sb->sb_csum = disk_csum;
1126 	return cpu_to_le32(csum);
1127 }
1128 
1129 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1130 {
1131 	struct mdp_superblock_1 *sb;
1132 	int ret;
1133 	sector_t sb_start;
1134 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1135 	int bmask;
1136 
1137 	/*
1138 	 * Calculate the position of the superblock in 512byte sectors.
1139 	 * It is always aligned to a 4K boundary and
1140 	 * depeding on minor_version, it can be:
1141 	 * 0: At least 8K, but less than 12K, from end of device
1142 	 * 1: At start of device
1143 	 * 2: 4K from start of device.
1144 	 */
1145 	switch(minor_version) {
1146 	case 0:
1147 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1148 		sb_start -= 8*2;
1149 		sb_start &= ~(sector_t)(4*2-1);
1150 		break;
1151 	case 1:
1152 		sb_start = 0;
1153 		break;
1154 	case 2:
1155 		sb_start = 8;
1156 		break;
1157 	default:
1158 		return -EINVAL;
1159 	}
1160 	rdev->sb_start = sb_start;
1161 
1162 	/* superblock is rarely larger than 1K, but it can be larger,
1163 	 * and it is safe to read 4k, so we do that
1164 	 */
1165 	ret = read_disk_sb(rdev, 4096);
1166 	if (ret) return ret;
1167 
1168 
1169 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1170 
1171 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1172 	    sb->major_version != cpu_to_le32(1) ||
1173 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1174 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1175 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1176 		return -EINVAL;
1177 
1178 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1179 		printk("md: invalid superblock checksum on %s\n",
1180 			bdevname(rdev->bdev,b));
1181 		return -EINVAL;
1182 	}
1183 	if (le64_to_cpu(sb->data_size) < 10) {
1184 		printk("md: data_size too small on %s\n",
1185 		       bdevname(rdev->bdev,b));
1186 		return -EINVAL;
1187 	}
1188 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1189 		if (sb->level != cpu_to_le32(1) &&
1190 		    sb->level != cpu_to_le32(4) &&
1191 		    sb->level != cpu_to_le32(5) &&
1192 		    sb->level != cpu_to_le32(6) &&
1193 		    sb->level != cpu_to_le32(10)) {
1194 			printk(KERN_WARNING
1195 			       "md: bitmaps not supported for this level.\n");
1196 			return -EINVAL;
1197 		}
1198 	}
1199 
1200 	rdev->preferred_minor = 0xffff;
1201 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1202 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1203 
1204 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1205 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1206 	if (rdev->sb_size & bmask)
1207 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1208 
1209 	if (minor_version
1210 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1211 		return -EINVAL;
1212 
1213 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1214 		rdev->desc_nr = -1;
1215 	else
1216 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1217 
1218 	if (!refdev) {
1219 		ret = 1;
1220 	} else {
1221 		__u64 ev1, ev2;
1222 		struct mdp_superblock_1 *refsb =
1223 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1224 
1225 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1226 		    sb->level != refsb->level ||
1227 		    sb->layout != refsb->layout ||
1228 		    sb->chunksize != refsb->chunksize) {
1229 			printk(KERN_WARNING "md: %s has strangely different"
1230 				" superblock to %s\n",
1231 				bdevname(rdev->bdev,b),
1232 				bdevname(refdev->bdev,b2));
1233 			return -EINVAL;
1234 		}
1235 		ev1 = le64_to_cpu(sb->events);
1236 		ev2 = le64_to_cpu(refsb->events);
1237 
1238 		if (ev1 > ev2)
1239 			ret = 1;
1240 		else
1241 			ret = 0;
1242 	}
1243 	if (minor_version)
1244 		rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1245 			le64_to_cpu(sb->data_offset);
1246 	else
1247 		rdev->sectors = rdev->sb_start;
1248 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1249 		return -EINVAL;
1250 	rdev->sectors = le64_to_cpu(sb->data_size);
1251 	if (le32_to_cpu(sb->chunksize))
1252 		rdev->sectors &= ~((sector_t)le32_to_cpu(sb->chunksize) - 1);
1253 
1254 	if (le64_to_cpu(sb->size) > rdev->sectors)
1255 		return -EINVAL;
1256 	return ret;
1257 }
1258 
1259 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1260 {
1261 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1262 	__u64 ev1 = le64_to_cpu(sb->events);
1263 
1264 	rdev->raid_disk = -1;
1265 	clear_bit(Faulty, &rdev->flags);
1266 	clear_bit(In_sync, &rdev->flags);
1267 	clear_bit(WriteMostly, &rdev->flags);
1268 	clear_bit(BarriersNotsupp, &rdev->flags);
1269 
1270 	if (mddev->raid_disks == 0) {
1271 		mddev->major_version = 1;
1272 		mddev->patch_version = 0;
1273 		mddev->external = 0;
1274 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1275 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1276 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1277 		mddev->level = le32_to_cpu(sb->level);
1278 		mddev->clevel[0] = 0;
1279 		mddev->layout = le32_to_cpu(sb->layout);
1280 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1281 		mddev->dev_sectors = le64_to_cpu(sb->size);
1282 		mddev->events = ev1;
1283 		mddev->bitmap_offset = 0;
1284 		mddev->default_bitmap_offset = 1024 >> 9;
1285 
1286 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1287 		memcpy(mddev->uuid, sb->set_uuid, 16);
1288 
1289 		mddev->max_disks =  (4096-256)/2;
1290 
1291 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1292 		    mddev->bitmap_file == NULL )
1293 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1294 
1295 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1296 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1297 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1298 			mddev->new_level = le32_to_cpu(sb->new_level);
1299 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1300 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1301 		} else {
1302 			mddev->reshape_position = MaxSector;
1303 			mddev->delta_disks = 0;
1304 			mddev->new_level = mddev->level;
1305 			mddev->new_layout = mddev->layout;
1306 			mddev->new_chunk = mddev->chunk_size;
1307 		}
1308 
1309 	} else if (mddev->pers == NULL) {
1310 		/* Insist of good event counter while assembling */
1311 		++ev1;
1312 		if (ev1 < mddev->events)
1313 			return -EINVAL;
1314 	} else if (mddev->bitmap) {
1315 		/* If adding to array with a bitmap, then we can accept an
1316 		 * older device, but not too old.
1317 		 */
1318 		if (ev1 < mddev->bitmap->events_cleared)
1319 			return 0;
1320 	} else {
1321 		if (ev1 < mddev->events)
1322 			/* just a hot-add of a new device, leave raid_disk at -1 */
1323 			return 0;
1324 	}
1325 	if (mddev->level != LEVEL_MULTIPATH) {
1326 		int role;
1327 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1328 		switch(role) {
1329 		case 0xffff: /* spare */
1330 			break;
1331 		case 0xfffe: /* faulty */
1332 			set_bit(Faulty, &rdev->flags);
1333 			break;
1334 		default:
1335 			if ((le32_to_cpu(sb->feature_map) &
1336 			     MD_FEATURE_RECOVERY_OFFSET))
1337 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1338 			else
1339 				set_bit(In_sync, &rdev->flags);
1340 			rdev->raid_disk = role;
1341 			break;
1342 		}
1343 		if (sb->devflags & WriteMostly1)
1344 			set_bit(WriteMostly, &rdev->flags);
1345 	} else /* MULTIPATH are always insync */
1346 		set_bit(In_sync, &rdev->flags);
1347 
1348 	return 0;
1349 }
1350 
1351 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1352 {
1353 	struct mdp_superblock_1 *sb;
1354 	mdk_rdev_t *rdev2;
1355 	int max_dev, i;
1356 	/* make rdev->sb match mddev and rdev data. */
1357 
1358 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1359 
1360 	sb->feature_map = 0;
1361 	sb->pad0 = 0;
1362 	sb->recovery_offset = cpu_to_le64(0);
1363 	memset(sb->pad1, 0, sizeof(sb->pad1));
1364 	memset(sb->pad2, 0, sizeof(sb->pad2));
1365 	memset(sb->pad3, 0, sizeof(sb->pad3));
1366 
1367 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1368 	sb->events = cpu_to_le64(mddev->events);
1369 	if (mddev->in_sync)
1370 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1371 	else
1372 		sb->resync_offset = cpu_to_le64(0);
1373 
1374 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1375 
1376 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1377 	sb->size = cpu_to_le64(mddev->dev_sectors);
1378 
1379 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1380 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1381 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1382 	}
1383 
1384 	if (rdev->raid_disk >= 0 &&
1385 	    !test_bit(In_sync, &rdev->flags)) {
1386 		if (mddev->curr_resync_completed > rdev->recovery_offset)
1387 			rdev->recovery_offset = mddev->curr_resync_completed;
1388 		if (rdev->recovery_offset > 0) {
1389 			sb->feature_map |=
1390 				cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1391 			sb->recovery_offset =
1392 				cpu_to_le64(rdev->recovery_offset);
1393 		}
1394 	}
1395 
1396 	if (mddev->reshape_position != MaxSector) {
1397 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1398 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1399 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1400 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1401 		sb->new_level = cpu_to_le32(mddev->new_level);
1402 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1403 	}
1404 
1405 	max_dev = 0;
1406 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1407 		if (rdev2->desc_nr+1 > max_dev)
1408 			max_dev = rdev2->desc_nr+1;
1409 
1410 	if (max_dev > le32_to_cpu(sb->max_dev))
1411 		sb->max_dev = cpu_to_le32(max_dev);
1412 	for (i=0; i<max_dev;i++)
1413 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1414 
1415 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1416 		i = rdev2->desc_nr;
1417 		if (test_bit(Faulty, &rdev2->flags))
1418 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1419 		else if (test_bit(In_sync, &rdev2->flags))
1420 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1421 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1422 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1423 		else
1424 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1425 	}
1426 
1427 	sb->sb_csum = calc_sb_1_csum(sb);
1428 }
1429 
1430 static unsigned long long
1431 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1432 {
1433 	struct mdp_superblock_1 *sb;
1434 	sector_t max_sectors;
1435 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1436 		return 0; /* component must fit device */
1437 	if (rdev->sb_start < rdev->data_offset) {
1438 		/* minor versions 1 and 2; superblock before data */
1439 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1440 		max_sectors -= rdev->data_offset;
1441 		if (!num_sectors || num_sectors > max_sectors)
1442 			num_sectors = max_sectors;
1443 	} else if (rdev->mddev->bitmap_offset) {
1444 		/* minor version 0 with bitmap we can't move */
1445 		return 0;
1446 	} else {
1447 		/* minor version 0; superblock after data */
1448 		sector_t sb_start;
1449 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1450 		sb_start &= ~(sector_t)(4*2 - 1);
1451 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1452 		if (!num_sectors || num_sectors > max_sectors)
1453 			num_sectors = max_sectors;
1454 		rdev->sb_start = sb_start;
1455 	}
1456 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1457 	sb->data_size = cpu_to_le64(num_sectors);
1458 	sb->super_offset = rdev->sb_start;
1459 	sb->sb_csum = calc_sb_1_csum(sb);
1460 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1461 		       rdev->sb_page);
1462 	md_super_wait(rdev->mddev);
1463 	return num_sectors / 2; /* kB for sysfs */
1464 }
1465 
1466 static struct super_type super_types[] = {
1467 	[0] = {
1468 		.name	= "0.90.0",
1469 		.owner	= THIS_MODULE,
1470 		.load_super	    = super_90_load,
1471 		.validate_super	    = super_90_validate,
1472 		.sync_super	    = super_90_sync,
1473 		.rdev_size_change   = super_90_rdev_size_change,
1474 	},
1475 	[1] = {
1476 		.name	= "md-1",
1477 		.owner	= THIS_MODULE,
1478 		.load_super	    = super_1_load,
1479 		.validate_super	    = super_1_validate,
1480 		.sync_super	    = super_1_sync,
1481 		.rdev_size_change   = super_1_rdev_size_change,
1482 	},
1483 };
1484 
1485 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1486 {
1487 	mdk_rdev_t *rdev, *rdev2;
1488 
1489 	rcu_read_lock();
1490 	rdev_for_each_rcu(rdev, mddev1)
1491 		rdev_for_each_rcu(rdev2, mddev2)
1492 			if (rdev->bdev->bd_contains ==
1493 			    rdev2->bdev->bd_contains) {
1494 				rcu_read_unlock();
1495 				return 1;
1496 			}
1497 	rcu_read_unlock();
1498 	return 0;
1499 }
1500 
1501 static LIST_HEAD(pending_raid_disks);
1502 
1503 static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev)
1504 {
1505 	struct mdk_personality *pers = mddev->pers;
1506 	struct gendisk *disk = mddev->gendisk;
1507 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1508 	struct blk_integrity *bi_mddev = blk_get_integrity(disk);
1509 
1510 	/* Data integrity passthrough not supported on RAID 4, 5 and 6 */
1511 	if (pers && pers->level >= 4 && pers->level <= 6)
1512 		return;
1513 
1514 	/* If rdev is integrity capable, register profile for mddev */
1515 	if (!bi_mddev && bi_rdev) {
1516 		if (blk_integrity_register(disk, bi_rdev))
1517 			printk(KERN_ERR "%s: %s Could not register integrity!\n",
1518 			       __func__, disk->disk_name);
1519 		else
1520 			printk(KERN_NOTICE "Enabling data integrity on %s\n",
1521 			       disk->disk_name);
1522 		return;
1523 	}
1524 
1525 	/* Check that mddev and rdev have matching profiles */
1526 	if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) {
1527 		printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__,
1528 		       disk->disk_name, rdev->bdev->bd_disk->disk_name);
1529 		printk(KERN_NOTICE "Disabling data integrity on %s\n",
1530 		       disk->disk_name);
1531 		blk_integrity_unregister(disk);
1532 	}
1533 }
1534 
1535 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1536 {
1537 	char b[BDEVNAME_SIZE];
1538 	struct kobject *ko;
1539 	char *s;
1540 	int err;
1541 
1542 	if (rdev->mddev) {
1543 		MD_BUG();
1544 		return -EINVAL;
1545 	}
1546 
1547 	/* prevent duplicates */
1548 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1549 		return -EEXIST;
1550 
1551 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1552 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1553 			rdev->sectors < mddev->dev_sectors)) {
1554 		if (mddev->pers) {
1555 			/* Cannot change size, so fail
1556 			 * If mddev->level <= 0, then we don't care
1557 			 * about aligning sizes (e.g. linear)
1558 			 */
1559 			if (mddev->level > 0)
1560 				return -ENOSPC;
1561 		} else
1562 			mddev->dev_sectors = rdev->sectors;
1563 	}
1564 
1565 	/* Verify rdev->desc_nr is unique.
1566 	 * If it is -1, assign a free number, else
1567 	 * check number is not in use
1568 	 */
1569 	if (rdev->desc_nr < 0) {
1570 		int choice = 0;
1571 		if (mddev->pers) choice = mddev->raid_disks;
1572 		while (find_rdev_nr(mddev, choice))
1573 			choice++;
1574 		rdev->desc_nr = choice;
1575 	} else {
1576 		if (find_rdev_nr(mddev, rdev->desc_nr))
1577 			return -EBUSY;
1578 	}
1579 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1580 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1581 		       mdname(mddev), mddev->max_disks);
1582 		return -EBUSY;
1583 	}
1584 	bdevname(rdev->bdev,b);
1585 	while ( (s=strchr(b, '/')) != NULL)
1586 		*s = '!';
1587 
1588 	rdev->mddev = mddev;
1589 	printk(KERN_INFO "md: bind<%s>\n", b);
1590 
1591 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1592 		goto fail;
1593 
1594 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1595 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1596 		kobject_del(&rdev->kobj);
1597 		goto fail;
1598 	}
1599 	rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1600 
1601 	list_add_rcu(&rdev->same_set, &mddev->disks);
1602 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1603 
1604 	/* May as well allow recovery to be retried once */
1605 	mddev->recovery_disabled = 0;
1606 
1607 	md_integrity_check(rdev, mddev);
1608 	return 0;
1609 
1610  fail:
1611 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1612 	       b, mdname(mddev));
1613 	return err;
1614 }
1615 
1616 static void md_delayed_delete(struct work_struct *ws)
1617 {
1618 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1619 	kobject_del(&rdev->kobj);
1620 	kobject_put(&rdev->kobj);
1621 }
1622 
1623 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1624 {
1625 	char b[BDEVNAME_SIZE];
1626 	if (!rdev->mddev) {
1627 		MD_BUG();
1628 		return;
1629 	}
1630 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1631 	list_del_rcu(&rdev->same_set);
1632 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1633 	rdev->mddev = NULL;
1634 	sysfs_remove_link(&rdev->kobj, "block");
1635 	sysfs_put(rdev->sysfs_state);
1636 	rdev->sysfs_state = NULL;
1637 	/* We need to delay this, otherwise we can deadlock when
1638 	 * writing to 'remove' to "dev/state".  We also need
1639 	 * to delay it due to rcu usage.
1640 	 */
1641 	synchronize_rcu();
1642 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1643 	kobject_get(&rdev->kobj);
1644 	schedule_work(&rdev->del_work);
1645 }
1646 
1647 /*
1648  * prevent the device from being mounted, repartitioned or
1649  * otherwise reused by a RAID array (or any other kernel
1650  * subsystem), by bd_claiming the device.
1651  */
1652 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1653 {
1654 	int err = 0;
1655 	struct block_device *bdev;
1656 	char b[BDEVNAME_SIZE];
1657 
1658 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1659 	if (IS_ERR(bdev)) {
1660 		printk(KERN_ERR "md: could not open %s.\n",
1661 			__bdevname(dev, b));
1662 		return PTR_ERR(bdev);
1663 	}
1664 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1665 	if (err) {
1666 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1667 			bdevname(bdev, b));
1668 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1669 		return err;
1670 	}
1671 	if (!shared)
1672 		set_bit(AllReserved, &rdev->flags);
1673 	rdev->bdev = bdev;
1674 	return err;
1675 }
1676 
1677 static void unlock_rdev(mdk_rdev_t *rdev)
1678 {
1679 	struct block_device *bdev = rdev->bdev;
1680 	rdev->bdev = NULL;
1681 	if (!bdev)
1682 		MD_BUG();
1683 	bd_release(bdev);
1684 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1685 }
1686 
1687 void md_autodetect_dev(dev_t dev);
1688 
1689 static void export_rdev(mdk_rdev_t * rdev)
1690 {
1691 	char b[BDEVNAME_SIZE];
1692 	printk(KERN_INFO "md: export_rdev(%s)\n",
1693 		bdevname(rdev->bdev,b));
1694 	if (rdev->mddev)
1695 		MD_BUG();
1696 	free_disk_sb(rdev);
1697 #ifndef MODULE
1698 	if (test_bit(AutoDetected, &rdev->flags))
1699 		md_autodetect_dev(rdev->bdev->bd_dev);
1700 #endif
1701 	unlock_rdev(rdev);
1702 	kobject_put(&rdev->kobj);
1703 }
1704 
1705 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1706 {
1707 	unbind_rdev_from_array(rdev);
1708 	export_rdev(rdev);
1709 }
1710 
1711 static void export_array(mddev_t *mddev)
1712 {
1713 	mdk_rdev_t *rdev, *tmp;
1714 
1715 	rdev_for_each(rdev, tmp, mddev) {
1716 		if (!rdev->mddev) {
1717 			MD_BUG();
1718 			continue;
1719 		}
1720 		kick_rdev_from_array(rdev);
1721 	}
1722 	if (!list_empty(&mddev->disks))
1723 		MD_BUG();
1724 	mddev->raid_disks = 0;
1725 	mddev->major_version = 0;
1726 }
1727 
1728 static void print_desc(mdp_disk_t *desc)
1729 {
1730 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1731 		desc->major,desc->minor,desc->raid_disk,desc->state);
1732 }
1733 
1734 static void print_sb_90(mdp_super_t *sb)
1735 {
1736 	int i;
1737 
1738 	printk(KERN_INFO
1739 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1740 		sb->major_version, sb->minor_version, sb->patch_version,
1741 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1742 		sb->ctime);
1743 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1744 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1745 		sb->md_minor, sb->layout, sb->chunk_size);
1746 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1747 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1748 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1749 		sb->failed_disks, sb->spare_disks,
1750 		sb->sb_csum, (unsigned long)sb->events_lo);
1751 
1752 	printk(KERN_INFO);
1753 	for (i = 0; i < MD_SB_DISKS; i++) {
1754 		mdp_disk_t *desc;
1755 
1756 		desc = sb->disks + i;
1757 		if (desc->number || desc->major || desc->minor ||
1758 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1759 			printk("     D %2d: ", i);
1760 			print_desc(desc);
1761 		}
1762 	}
1763 	printk(KERN_INFO "md:     THIS: ");
1764 	print_desc(&sb->this_disk);
1765 }
1766 
1767 static void print_sb_1(struct mdp_superblock_1 *sb)
1768 {
1769 	__u8 *uuid;
1770 
1771 	uuid = sb->set_uuid;
1772 	printk(KERN_INFO "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1773 			":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1774 	       KERN_INFO "md:    Name: \"%s\" CT:%llu\n",
1775 		le32_to_cpu(sb->major_version),
1776 		le32_to_cpu(sb->feature_map),
1777 		uuid[0], uuid[1], uuid[2], uuid[3],
1778 		uuid[4], uuid[5], uuid[6], uuid[7],
1779 		uuid[8], uuid[9], uuid[10], uuid[11],
1780 		uuid[12], uuid[13], uuid[14], uuid[15],
1781 		sb->set_name,
1782 		(unsigned long long)le64_to_cpu(sb->ctime)
1783 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1784 
1785 	uuid = sb->device_uuid;
1786 	printk(KERN_INFO "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1787 			" RO:%llu\n"
1788 	       KERN_INFO "md:     Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1789 			":%02x%02x%02x%02x%02x%02x\n"
1790 	       KERN_INFO "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1791 	       KERN_INFO "md:         (MaxDev:%u) \n",
1792 		le32_to_cpu(sb->level),
1793 		(unsigned long long)le64_to_cpu(sb->size),
1794 		le32_to_cpu(sb->raid_disks),
1795 		le32_to_cpu(sb->layout),
1796 		le32_to_cpu(sb->chunksize),
1797 		(unsigned long long)le64_to_cpu(sb->data_offset),
1798 		(unsigned long long)le64_to_cpu(sb->data_size),
1799 		(unsigned long long)le64_to_cpu(sb->super_offset),
1800 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
1801 		le32_to_cpu(sb->dev_number),
1802 		uuid[0], uuid[1], uuid[2], uuid[3],
1803 		uuid[4], uuid[5], uuid[6], uuid[7],
1804 		uuid[8], uuid[9], uuid[10], uuid[11],
1805 		uuid[12], uuid[13], uuid[14], uuid[15],
1806 		sb->devflags,
1807 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1808 		(unsigned long long)le64_to_cpu(sb->events),
1809 		(unsigned long long)le64_to_cpu(sb->resync_offset),
1810 		le32_to_cpu(sb->sb_csum),
1811 		le32_to_cpu(sb->max_dev)
1812 		);
1813 }
1814 
1815 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1816 {
1817 	char b[BDEVNAME_SIZE];
1818 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1819 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1820 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1821 	        rdev->desc_nr);
1822 	if (rdev->sb_loaded) {
1823 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1824 		switch (major_version) {
1825 		case 0:
1826 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1827 			break;
1828 		case 1:
1829 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1830 			break;
1831 		}
1832 	} else
1833 		printk(KERN_INFO "md: no rdev superblock!\n");
1834 }
1835 
1836 static void md_print_devices(void)
1837 {
1838 	struct list_head *tmp;
1839 	mdk_rdev_t *rdev;
1840 	mddev_t *mddev;
1841 	char b[BDEVNAME_SIZE];
1842 
1843 	printk("\n");
1844 	printk("md:	**********************************\n");
1845 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1846 	printk("md:	**********************************\n");
1847 	for_each_mddev(mddev, tmp) {
1848 
1849 		if (mddev->bitmap)
1850 			bitmap_print_sb(mddev->bitmap);
1851 		else
1852 			printk("%s: ", mdname(mddev));
1853 		list_for_each_entry(rdev, &mddev->disks, same_set)
1854 			printk("<%s>", bdevname(rdev->bdev,b));
1855 		printk("\n");
1856 
1857 		list_for_each_entry(rdev, &mddev->disks, same_set)
1858 			print_rdev(rdev, mddev->major_version);
1859 	}
1860 	printk("md:	**********************************\n");
1861 	printk("\n");
1862 }
1863 
1864 
1865 static void sync_sbs(mddev_t * mddev, int nospares)
1866 {
1867 	/* Update each superblock (in-memory image), but
1868 	 * if we are allowed to, skip spares which already
1869 	 * have the right event counter, or have one earlier
1870 	 * (which would mean they aren't being marked as dirty
1871 	 * with the rest of the array)
1872 	 */
1873 	mdk_rdev_t *rdev;
1874 
1875 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1876 		if (rdev->sb_events == mddev->events ||
1877 		    (nospares &&
1878 		     rdev->raid_disk < 0 &&
1879 		     (rdev->sb_events&1)==0 &&
1880 		     rdev->sb_events+1 == mddev->events)) {
1881 			/* Don't update this superblock */
1882 			rdev->sb_loaded = 2;
1883 		} else {
1884 			super_types[mddev->major_version].
1885 				sync_super(mddev, rdev);
1886 			rdev->sb_loaded = 1;
1887 		}
1888 	}
1889 }
1890 
1891 static void md_update_sb(mddev_t * mddev, int force_change)
1892 {
1893 	mdk_rdev_t *rdev;
1894 	int sync_req;
1895 	int nospares = 0;
1896 
1897 	if (mddev->external)
1898 		return;
1899 repeat:
1900 	spin_lock_irq(&mddev->write_lock);
1901 
1902 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1903 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1904 		force_change = 1;
1905 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1906 		/* just a clean<-> dirty transition, possibly leave spares alone,
1907 		 * though if events isn't the right even/odd, we will have to do
1908 		 * spares after all
1909 		 */
1910 		nospares = 1;
1911 	if (force_change)
1912 		nospares = 0;
1913 	if (mddev->degraded)
1914 		/* If the array is degraded, then skipping spares is both
1915 		 * dangerous and fairly pointless.
1916 		 * Dangerous because a device that was removed from the array
1917 		 * might have a event_count that still looks up-to-date,
1918 		 * so it can be re-added without a resync.
1919 		 * Pointless because if there are any spares to skip,
1920 		 * then a recovery will happen and soon that array won't
1921 		 * be degraded any more and the spare can go back to sleep then.
1922 		 */
1923 		nospares = 0;
1924 
1925 	sync_req = mddev->in_sync;
1926 	mddev->utime = get_seconds();
1927 
1928 	/* If this is just a dirty<->clean transition, and the array is clean
1929 	 * and 'events' is odd, we can roll back to the previous clean state */
1930 	if (nospares
1931 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1932 	    && (mddev->events & 1)
1933 	    && mddev->events != 1)
1934 		mddev->events--;
1935 	else {
1936 		/* otherwise we have to go forward and ... */
1937 		mddev->events ++;
1938 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1939 			/* .. if the array isn't clean, insist on an odd 'events' */
1940 			if ((mddev->events&1)==0) {
1941 				mddev->events++;
1942 				nospares = 0;
1943 			}
1944 		} else {
1945 			/* otherwise insist on an even 'events' (for clean states) */
1946 			if ((mddev->events&1)) {
1947 				mddev->events++;
1948 				nospares = 0;
1949 			}
1950 		}
1951 	}
1952 
1953 	if (!mddev->events) {
1954 		/*
1955 		 * oops, this 64-bit counter should never wrap.
1956 		 * Either we are in around ~1 trillion A.C., assuming
1957 		 * 1 reboot per second, or we have a bug:
1958 		 */
1959 		MD_BUG();
1960 		mddev->events --;
1961 	}
1962 
1963 	/*
1964 	 * do not write anything to disk if using
1965 	 * nonpersistent superblocks
1966 	 */
1967 	if (!mddev->persistent) {
1968 		if (!mddev->external)
1969 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1970 
1971 		spin_unlock_irq(&mddev->write_lock);
1972 		wake_up(&mddev->sb_wait);
1973 		return;
1974 	}
1975 	sync_sbs(mddev, nospares);
1976 	spin_unlock_irq(&mddev->write_lock);
1977 
1978 	dprintk(KERN_INFO
1979 		"md: updating %s RAID superblock on device (in sync %d)\n",
1980 		mdname(mddev),mddev->in_sync);
1981 
1982 	bitmap_update_sb(mddev->bitmap);
1983 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1984 		char b[BDEVNAME_SIZE];
1985 		dprintk(KERN_INFO "md: ");
1986 		if (rdev->sb_loaded != 1)
1987 			continue; /* no noise on spare devices */
1988 		if (test_bit(Faulty, &rdev->flags))
1989 			dprintk("(skipping faulty ");
1990 
1991 		dprintk("%s ", bdevname(rdev->bdev,b));
1992 		if (!test_bit(Faulty, &rdev->flags)) {
1993 			md_super_write(mddev,rdev,
1994 				       rdev->sb_start, rdev->sb_size,
1995 				       rdev->sb_page);
1996 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1997 				bdevname(rdev->bdev,b),
1998 				(unsigned long long)rdev->sb_start);
1999 			rdev->sb_events = mddev->events;
2000 
2001 		} else
2002 			dprintk(")\n");
2003 		if (mddev->level == LEVEL_MULTIPATH)
2004 			/* only need to write one superblock... */
2005 			break;
2006 	}
2007 	md_super_wait(mddev);
2008 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2009 
2010 	spin_lock_irq(&mddev->write_lock);
2011 	if (mddev->in_sync != sync_req ||
2012 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2013 		/* have to write it out again */
2014 		spin_unlock_irq(&mddev->write_lock);
2015 		goto repeat;
2016 	}
2017 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2018 	spin_unlock_irq(&mddev->write_lock);
2019 	wake_up(&mddev->sb_wait);
2020 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2021 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2022 
2023 }
2024 
2025 /* words written to sysfs files may, or may not, be \n terminated.
2026  * We want to accept with case. For this we use cmd_match.
2027  */
2028 static int cmd_match(const char *cmd, const char *str)
2029 {
2030 	/* See if cmd, written into a sysfs file, matches
2031 	 * str.  They must either be the same, or cmd can
2032 	 * have a trailing newline
2033 	 */
2034 	while (*cmd && *str && *cmd == *str) {
2035 		cmd++;
2036 		str++;
2037 	}
2038 	if (*cmd == '\n')
2039 		cmd++;
2040 	if (*str || *cmd)
2041 		return 0;
2042 	return 1;
2043 }
2044 
2045 struct rdev_sysfs_entry {
2046 	struct attribute attr;
2047 	ssize_t (*show)(mdk_rdev_t *, char *);
2048 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2049 };
2050 
2051 static ssize_t
2052 state_show(mdk_rdev_t *rdev, char *page)
2053 {
2054 	char *sep = "";
2055 	size_t len = 0;
2056 
2057 	if (test_bit(Faulty, &rdev->flags)) {
2058 		len+= sprintf(page+len, "%sfaulty",sep);
2059 		sep = ",";
2060 	}
2061 	if (test_bit(In_sync, &rdev->flags)) {
2062 		len += sprintf(page+len, "%sin_sync",sep);
2063 		sep = ",";
2064 	}
2065 	if (test_bit(WriteMostly, &rdev->flags)) {
2066 		len += sprintf(page+len, "%swrite_mostly",sep);
2067 		sep = ",";
2068 	}
2069 	if (test_bit(Blocked, &rdev->flags)) {
2070 		len += sprintf(page+len, "%sblocked", sep);
2071 		sep = ",";
2072 	}
2073 	if (!test_bit(Faulty, &rdev->flags) &&
2074 	    !test_bit(In_sync, &rdev->flags)) {
2075 		len += sprintf(page+len, "%sspare", sep);
2076 		sep = ",";
2077 	}
2078 	return len+sprintf(page+len, "\n");
2079 }
2080 
2081 static ssize_t
2082 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2083 {
2084 	/* can write
2085 	 *  faulty  - simulates and error
2086 	 *  remove  - disconnects the device
2087 	 *  writemostly - sets write_mostly
2088 	 *  -writemostly - clears write_mostly
2089 	 *  blocked - sets the Blocked flag
2090 	 *  -blocked - clears the Blocked flag
2091 	 *  insync - sets Insync providing device isn't active
2092 	 */
2093 	int err = -EINVAL;
2094 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2095 		md_error(rdev->mddev, rdev);
2096 		err = 0;
2097 	} else if (cmd_match(buf, "remove")) {
2098 		if (rdev->raid_disk >= 0)
2099 			err = -EBUSY;
2100 		else {
2101 			mddev_t *mddev = rdev->mddev;
2102 			kick_rdev_from_array(rdev);
2103 			if (mddev->pers)
2104 				md_update_sb(mddev, 1);
2105 			md_new_event(mddev);
2106 			err = 0;
2107 		}
2108 	} else if (cmd_match(buf, "writemostly")) {
2109 		set_bit(WriteMostly, &rdev->flags);
2110 		err = 0;
2111 	} else if (cmd_match(buf, "-writemostly")) {
2112 		clear_bit(WriteMostly, &rdev->flags);
2113 		err = 0;
2114 	} else if (cmd_match(buf, "blocked")) {
2115 		set_bit(Blocked, &rdev->flags);
2116 		err = 0;
2117 	} else if (cmd_match(buf, "-blocked")) {
2118 		clear_bit(Blocked, &rdev->flags);
2119 		wake_up(&rdev->blocked_wait);
2120 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2121 		md_wakeup_thread(rdev->mddev->thread);
2122 
2123 		err = 0;
2124 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2125 		set_bit(In_sync, &rdev->flags);
2126 		err = 0;
2127 	}
2128 	if (!err && rdev->sysfs_state)
2129 		sysfs_notify_dirent(rdev->sysfs_state);
2130 	return err ? err : len;
2131 }
2132 static struct rdev_sysfs_entry rdev_state =
2133 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2134 
2135 static ssize_t
2136 errors_show(mdk_rdev_t *rdev, char *page)
2137 {
2138 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2139 }
2140 
2141 static ssize_t
2142 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2143 {
2144 	char *e;
2145 	unsigned long n = simple_strtoul(buf, &e, 10);
2146 	if (*buf && (*e == 0 || *e == '\n')) {
2147 		atomic_set(&rdev->corrected_errors, n);
2148 		return len;
2149 	}
2150 	return -EINVAL;
2151 }
2152 static struct rdev_sysfs_entry rdev_errors =
2153 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2154 
2155 static ssize_t
2156 slot_show(mdk_rdev_t *rdev, char *page)
2157 {
2158 	if (rdev->raid_disk < 0)
2159 		return sprintf(page, "none\n");
2160 	else
2161 		return sprintf(page, "%d\n", rdev->raid_disk);
2162 }
2163 
2164 static ssize_t
2165 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2166 {
2167 	char *e;
2168 	int err;
2169 	char nm[20];
2170 	int slot = simple_strtoul(buf, &e, 10);
2171 	if (strncmp(buf, "none", 4)==0)
2172 		slot = -1;
2173 	else if (e==buf || (*e && *e!= '\n'))
2174 		return -EINVAL;
2175 	if (rdev->mddev->pers && slot == -1) {
2176 		/* Setting 'slot' on an active array requires also
2177 		 * updating the 'rd%d' link, and communicating
2178 		 * with the personality with ->hot_*_disk.
2179 		 * For now we only support removing
2180 		 * failed/spare devices.  This normally happens automatically,
2181 		 * but not when the metadata is externally managed.
2182 		 */
2183 		if (rdev->raid_disk == -1)
2184 			return -EEXIST;
2185 		/* personality does all needed checks */
2186 		if (rdev->mddev->pers->hot_add_disk == NULL)
2187 			return -EINVAL;
2188 		err = rdev->mddev->pers->
2189 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2190 		if (err)
2191 			return err;
2192 		sprintf(nm, "rd%d", rdev->raid_disk);
2193 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2194 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2195 		md_wakeup_thread(rdev->mddev->thread);
2196 	} else if (rdev->mddev->pers) {
2197 		mdk_rdev_t *rdev2;
2198 		/* Activating a spare .. or possibly reactivating
2199 		 * if we ever get bitmaps working here.
2200 		 */
2201 
2202 		if (rdev->raid_disk != -1)
2203 			return -EBUSY;
2204 
2205 		if (rdev->mddev->pers->hot_add_disk == NULL)
2206 			return -EINVAL;
2207 
2208 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2209 			if (rdev2->raid_disk == slot)
2210 				return -EEXIST;
2211 
2212 		rdev->raid_disk = slot;
2213 		if (test_bit(In_sync, &rdev->flags))
2214 			rdev->saved_raid_disk = slot;
2215 		else
2216 			rdev->saved_raid_disk = -1;
2217 		err = rdev->mddev->pers->
2218 			hot_add_disk(rdev->mddev, rdev);
2219 		if (err) {
2220 			rdev->raid_disk = -1;
2221 			return err;
2222 		} else
2223 			sysfs_notify_dirent(rdev->sysfs_state);
2224 		sprintf(nm, "rd%d", rdev->raid_disk);
2225 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2226 			printk(KERN_WARNING
2227 			       "md: cannot register "
2228 			       "%s for %s\n",
2229 			       nm, mdname(rdev->mddev));
2230 
2231 		/* don't wakeup anyone, leave that to userspace. */
2232 	} else {
2233 		if (slot >= rdev->mddev->raid_disks)
2234 			return -ENOSPC;
2235 		rdev->raid_disk = slot;
2236 		/* assume it is working */
2237 		clear_bit(Faulty, &rdev->flags);
2238 		clear_bit(WriteMostly, &rdev->flags);
2239 		set_bit(In_sync, &rdev->flags);
2240 		sysfs_notify_dirent(rdev->sysfs_state);
2241 	}
2242 	return len;
2243 }
2244 
2245 
2246 static struct rdev_sysfs_entry rdev_slot =
2247 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2248 
2249 static ssize_t
2250 offset_show(mdk_rdev_t *rdev, char *page)
2251 {
2252 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2253 }
2254 
2255 static ssize_t
2256 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2257 {
2258 	char *e;
2259 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2260 	if (e==buf || (*e && *e != '\n'))
2261 		return -EINVAL;
2262 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2263 		return -EBUSY;
2264 	if (rdev->sectors && rdev->mddev->external)
2265 		/* Must set offset before size, so overlap checks
2266 		 * can be sane */
2267 		return -EBUSY;
2268 	rdev->data_offset = offset;
2269 	return len;
2270 }
2271 
2272 static struct rdev_sysfs_entry rdev_offset =
2273 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2274 
2275 static ssize_t
2276 rdev_size_show(mdk_rdev_t *rdev, char *page)
2277 {
2278 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2279 }
2280 
2281 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2282 {
2283 	/* check if two start/length pairs overlap */
2284 	if (s1+l1 <= s2)
2285 		return 0;
2286 	if (s2+l2 <= s1)
2287 		return 0;
2288 	return 1;
2289 }
2290 
2291 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2292 {
2293 	unsigned long long blocks;
2294 	sector_t new;
2295 
2296 	if (strict_strtoull(buf, 10, &blocks) < 0)
2297 		return -EINVAL;
2298 
2299 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2300 		return -EINVAL; /* sector conversion overflow */
2301 
2302 	new = blocks * 2;
2303 	if (new != blocks * 2)
2304 		return -EINVAL; /* unsigned long long to sector_t overflow */
2305 
2306 	*sectors = new;
2307 	return 0;
2308 }
2309 
2310 static ssize_t
2311 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2312 {
2313 	mddev_t *my_mddev = rdev->mddev;
2314 	sector_t oldsectors = rdev->sectors;
2315 	sector_t sectors;
2316 
2317 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2318 		return -EINVAL;
2319 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2320 		if (my_mddev->persistent) {
2321 			sectors = super_types[my_mddev->major_version].
2322 				rdev_size_change(rdev, sectors);
2323 			if (!sectors)
2324 				return -EBUSY;
2325 		} else if (!sectors)
2326 			sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2327 				rdev->data_offset;
2328 	}
2329 	if (sectors < my_mddev->dev_sectors)
2330 		return -EINVAL; /* component must fit device */
2331 
2332 	rdev->sectors = sectors;
2333 	if (sectors > oldsectors && my_mddev->external) {
2334 		/* need to check that all other rdevs with the same ->bdev
2335 		 * do not overlap.  We need to unlock the mddev to avoid
2336 		 * a deadlock.  We have already changed rdev->sectors, and if
2337 		 * we have to change it back, we will have the lock again.
2338 		 */
2339 		mddev_t *mddev;
2340 		int overlap = 0;
2341 		struct list_head *tmp;
2342 
2343 		mddev_unlock(my_mddev);
2344 		for_each_mddev(mddev, tmp) {
2345 			mdk_rdev_t *rdev2;
2346 
2347 			mddev_lock(mddev);
2348 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2349 				if (test_bit(AllReserved, &rdev2->flags) ||
2350 				    (rdev->bdev == rdev2->bdev &&
2351 				     rdev != rdev2 &&
2352 				     overlaps(rdev->data_offset, rdev->sectors,
2353 					      rdev2->data_offset,
2354 					      rdev2->sectors))) {
2355 					overlap = 1;
2356 					break;
2357 				}
2358 			mddev_unlock(mddev);
2359 			if (overlap) {
2360 				mddev_put(mddev);
2361 				break;
2362 			}
2363 		}
2364 		mddev_lock(my_mddev);
2365 		if (overlap) {
2366 			/* Someone else could have slipped in a size
2367 			 * change here, but doing so is just silly.
2368 			 * We put oldsectors back because we *know* it is
2369 			 * safe, and trust userspace not to race with
2370 			 * itself
2371 			 */
2372 			rdev->sectors = oldsectors;
2373 			return -EBUSY;
2374 		}
2375 	}
2376 	return len;
2377 }
2378 
2379 static struct rdev_sysfs_entry rdev_size =
2380 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2381 
2382 static struct attribute *rdev_default_attrs[] = {
2383 	&rdev_state.attr,
2384 	&rdev_errors.attr,
2385 	&rdev_slot.attr,
2386 	&rdev_offset.attr,
2387 	&rdev_size.attr,
2388 	NULL,
2389 };
2390 static ssize_t
2391 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2392 {
2393 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2394 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2395 	mddev_t *mddev = rdev->mddev;
2396 	ssize_t rv;
2397 
2398 	if (!entry->show)
2399 		return -EIO;
2400 
2401 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2402 	if (!rv) {
2403 		if (rdev->mddev == NULL)
2404 			rv = -EBUSY;
2405 		else
2406 			rv = entry->show(rdev, page);
2407 		mddev_unlock(mddev);
2408 	}
2409 	return rv;
2410 }
2411 
2412 static ssize_t
2413 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2414 	      const char *page, size_t length)
2415 {
2416 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2417 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2418 	ssize_t rv;
2419 	mddev_t *mddev = rdev->mddev;
2420 
2421 	if (!entry->store)
2422 		return -EIO;
2423 	if (!capable(CAP_SYS_ADMIN))
2424 		return -EACCES;
2425 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2426 	if (!rv) {
2427 		if (rdev->mddev == NULL)
2428 			rv = -EBUSY;
2429 		else
2430 			rv = entry->store(rdev, page, length);
2431 		mddev_unlock(mddev);
2432 	}
2433 	return rv;
2434 }
2435 
2436 static void rdev_free(struct kobject *ko)
2437 {
2438 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2439 	kfree(rdev);
2440 }
2441 static struct sysfs_ops rdev_sysfs_ops = {
2442 	.show		= rdev_attr_show,
2443 	.store		= rdev_attr_store,
2444 };
2445 static struct kobj_type rdev_ktype = {
2446 	.release	= rdev_free,
2447 	.sysfs_ops	= &rdev_sysfs_ops,
2448 	.default_attrs	= rdev_default_attrs,
2449 };
2450 
2451 /*
2452  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2453  *
2454  * mark the device faulty if:
2455  *
2456  *   - the device is nonexistent (zero size)
2457  *   - the device has no valid superblock
2458  *
2459  * a faulty rdev _never_ has rdev->sb set.
2460  */
2461 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2462 {
2463 	char b[BDEVNAME_SIZE];
2464 	int err;
2465 	mdk_rdev_t *rdev;
2466 	sector_t size;
2467 
2468 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2469 	if (!rdev) {
2470 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2471 		return ERR_PTR(-ENOMEM);
2472 	}
2473 
2474 	if ((err = alloc_disk_sb(rdev)))
2475 		goto abort_free;
2476 
2477 	err = lock_rdev(rdev, newdev, super_format == -2);
2478 	if (err)
2479 		goto abort_free;
2480 
2481 	kobject_init(&rdev->kobj, &rdev_ktype);
2482 
2483 	rdev->desc_nr = -1;
2484 	rdev->saved_raid_disk = -1;
2485 	rdev->raid_disk = -1;
2486 	rdev->flags = 0;
2487 	rdev->data_offset = 0;
2488 	rdev->sb_events = 0;
2489 	atomic_set(&rdev->nr_pending, 0);
2490 	atomic_set(&rdev->read_errors, 0);
2491 	atomic_set(&rdev->corrected_errors, 0);
2492 
2493 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2494 	if (!size) {
2495 		printk(KERN_WARNING
2496 			"md: %s has zero or unknown size, marking faulty!\n",
2497 			bdevname(rdev->bdev,b));
2498 		err = -EINVAL;
2499 		goto abort_free;
2500 	}
2501 
2502 	if (super_format >= 0) {
2503 		err = super_types[super_format].
2504 			load_super(rdev, NULL, super_minor);
2505 		if (err == -EINVAL) {
2506 			printk(KERN_WARNING
2507 				"md: %s does not have a valid v%d.%d "
2508 			       "superblock, not importing!\n",
2509 				bdevname(rdev->bdev,b),
2510 			       super_format, super_minor);
2511 			goto abort_free;
2512 		}
2513 		if (err < 0) {
2514 			printk(KERN_WARNING
2515 				"md: could not read %s's sb, not importing!\n",
2516 				bdevname(rdev->bdev,b));
2517 			goto abort_free;
2518 		}
2519 	}
2520 
2521 	INIT_LIST_HEAD(&rdev->same_set);
2522 	init_waitqueue_head(&rdev->blocked_wait);
2523 
2524 	return rdev;
2525 
2526 abort_free:
2527 	if (rdev->sb_page) {
2528 		if (rdev->bdev)
2529 			unlock_rdev(rdev);
2530 		free_disk_sb(rdev);
2531 	}
2532 	kfree(rdev);
2533 	return ERR_PTR(err);
2534 }
2535 
2536 /*
2537  * Check a full RAID array for plausibility
2538  */
2539 
2540 
2541 static void analyze_sbs(mddev_t * mddev)
2542 {
2543 	int i;
2544 	mdk_rdev_t *rdev, *freshest, *tmp;
2545 	char b[BDEVNAME_SIZE];
2546 
2547 	freshest = NULL;
2548 	rdev_for_each(rdev, tmp, mddev)
2549 		switch (super_types[mddev->major_version].
2550 			load_super(rdev, freshest, mddev->minor_version)) {
2551 		case 1:
2552 			freshest = rdev;
2553 			break;
2554 		case 0:
2555 			break;
2556 		default:
2557 			printk( KERN_ERR \
2558 				"md: fatal superblock inconsistency in %s"
2559 				" -- removing from array\n",
2560 				bdevname(rdev->bdev,b));
2561 			kick_rdev_from_array(rdev);
2562 		}
2563 
2564 
2565 	super_types[mddev->major_version].
2566 		validate_super(mddev, freshest);
2567 
2568 	i = 0;
2569 	rdev_for_each(rdev, tmp, mddev) {
2570 		if (rdev->desc_nr >= mddev->max_disks ||
2571 		    i > mddev->max_disks) {
2572 			printk(KERN_WARNING
2573 			       "md: %s: %s: only %d devices permitted\n",
2574 			       mdname(mddev), bdevname(rdev->bdev, b),
2575 			       mddev->max_disks);
2576 			kick_rdev_from_array(rdev);
2577 			continue;
2578 		}
2579 		if (rdev != freshest)
2580 			if (super_types[mddev->major_version].
2581 			    validate_super(mddev, rdev)) {
2582 				printk(KERN_WARNING "md: kicking non-fresh %s"
2583 					" from array!\n",
2584 					bdevname(rdev->bdev,b));
2585 				kick_rdev_from_array(rdev);
2586 				continue;
2587 			}
2588 		if (mddev->level == LEVEL_MULTIPATH) {
2589 			rdev->desc_nr = i++;
2590 			rdev->raid_disk = rdev->desc_nr;
2591 			set_bit(In_sync, &rdev->flags);
2592 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2593 			rdev->raid_disk = -1;
2594 			clear_bit(In_sync, &rdev->flags);
2595 		}
2596 	}
2597 
2598 
2599 
2600 	if (mddev->recovery_cp != MaxSector &&
2601 	    mddev->level >= 1)
2602 		printk(KERN_ERR "md: %s: raid array is not clean"
2603 		       " -- starting background reconstruction\n",
2604 		       mdname(mddev));
2605 
2606 }
2607 
2608 static void md_safemode_timeout(unsigned long data);
2609 
2610 static ssize_t
2611 safe_delay_show(mddev_t *mddev, char *page)
2612 {
2613 	int msec = (mddev->safemode_delay*1000)/HZ;
2614 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2615 }
2616 static ssize_t
2617 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2618 {
2619 	int scale=1;
2620 	int dot=0;
2621 	int i;
2622 	unsigned long msec;
2623 	char buf[30];
2624 
2625 	/* remove a period, and count digits after it */
2626 	if (len >= sizeof(buf))
2627 		return -EINVAL;
2628 	strlcpy(buf, cbuf, sizeof(buf));
2629 	for (i=0; i<len; i++) {
2630 		if (dot) {
2631 			if (isdigit(buf[i])) {
2632 				buf[i-1] = buf[i];
2633 				scale *= 10;
2634 			}
2635 			buf[i] = 0;
2636 		} else if (buf[i] == '.') {
2637 			dot=1;
2638 			buf[i] = 0;
2639 		}
2640 	}
2641 	if (strict_strtoul(buf, 10, &msec) < 0)
2642 		return -EINVAL;
2643 	msec = (msec * 1000) / scale;
2644 	if (msec == 0)
2645 		mddev->safemode_delay = 0;
2646 	else {
2647 		unsigned long old_delay = mddev->safemode_delay;
2648 		mddev->safemode_delay = (msec*HZ)/1000;
2649 		if (mddev->safemode_delay == 0)
2650 			mddev->safemode_delay = 1;
2651 		if (mddev->safemode_delay < old_delay)
2652 			md_safemode_timeout((unsigned long)mddev);
2653 	}
2654 	return len;
2655 }
2656 static struct md_sysfs_entry md_safe_delay =
2657 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2658 
2659 static ssize_t
2660 level_show(mddev_t *mddev, char *page)
2661 {
2662 	struct mdk_personality *p = mddev->pers;
2663 	if (p)
2664 		return sprintf(page, "%s\n", p->name);
2665 	else if (mddev->clevel[0])
2666 		return sprintf(page, "%s\n", mddev->clevel);
2667 	else if (mddev->level != LEVEL_NONE)
2668 		return sprintf(page, "%d\n", mddev->level);
2669 	else
2670 		return 0;
2671 }
2672 
2673 static ssize_t
2674 level_store(mddev_t *mddev, const char *buf, size_t len)
2675 {
2676 	char level[16];
2677 	ssize_t rv = len;
2678 	struct mdk_personality *pers;
2679 	void *priv;
2680 
2681 	if (mddev->pers == NULL) {
2682 		if (len == 0)
2683 			return 0;
2684 		if (len >= sizeof(mddev->clevel))
2685 			return -ENOSPC;
2686 		strncpy(mddev->clevel, buf, len);
2687 		if (mddev->clevel[len-1] == '\n')
2688 			len--;
2689 		mddev->clevel[len] = 0;
2690 		mddev->level = LEVEL_NONE;
2691 		return rv;
2692 	}
2693 
2694 	/* request to change the personality.  Need to ensure:
2695 	 *  - array is not engaged in resync/recovery/reshape
2696 	 *  - old personality can be suspended
2697 	 *  - new personality will access other array.
2698 	 */
2699 
2700 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2701 		return -EBUSY;
2702 
2703 	if (!mddev->pers->quiesce) {
2704 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2705 		       mdname(mddev), mddev->pers->name);
2706 		return -EINVAL;
2707 	}
2708 
2709 	/* Now find the new personality */
2710 	if (len == 0 || len >= sizeof(level))
2711 		return -EINVAL;
2712 	strncpy(level, buf, len);
2713 	if (level[len-1] == '\n')
2714 		len--;
2715 	level[len] = 0;
2716 
2717 	request_module("md-%s", level);
2718 	spin_lock(&pers_lock);
2719 	pers = find_pers(LEVEL_NONE, level);
2720 	if (!pers || !try_module_get(pers->owner)) {
2721 		spin_unlock(&pers_lock);
2722 		printk(KERN_WARNING "md: personality %s not loaded\n", level);
2723 		return -EINVAL;
2724 	}
2725 	spin_unlock(&pers_lock);
2726 
2727 	if (pers == mddev->pers) {
2728 		/* Nothing to do! */
2729 		module_put(pers->owner);
2730 		return rv;
2731 	}
2732 	if (!pers->takeover) {
2733 		module_put(pers->owner);
2734 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2735 		       mdname(mddev), level);
2736 		return -EINVAL;
2737 	}
2738 
2739 	/* ->takeover must set new_* and/or delta_disks
2740 	 * if it succeeds, and may set them when it fails.
2741 	 */
2742 	priv = pers->takeover(mddev);
2743 	if (IS_ERR(priv)) {
2744 		mddev->new_level = mddev->level;
2745 		mddev->new_layout = mddev->layout;
2746 		mddev->new_chunk = mddev->chunk_size;
2747 		mddev->raid_disks -= mddev->delta_disks;
2748 		mddev->delta_disks = 0;
2749 		module_put(pers->owner);
2750 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
2751 		       mdname(mddev), level);
2752 		return PTR_ERR(priv);
2753 	}
2754 
2755 	/* Looks like we have a winner */
2756 	mddev_suspend(mddev);
2757 	mddev->pers->stop(mddev);
2758 	module_put(mddev->pers->owner);
2759 	mddev->pers = pers;
2760 	mddev->private = priv;
2761 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2762 	mddev->level = mddev->new_level;
2763 	mddev->layout = mddev->new_layout;
2764 	mddev->chunk_size = mddev->new_chunk;
2765 	mddev->delta_disks = 0;
2766 	pers->run(mddev);
2767 	mddev_resume(mddev);
2768 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2769 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2770 	md_wakeup_thread(mddev->thread);
2771 	return rv;
2772 }
2773 
2774 static struct md_sysfs_entry md_level =
2775 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2776 
2777 
2778 static ssize_t
2779 layout_show(mddev_t *mddev, char *page)
2780 {
2781 	/* just a number, not meaningful for all levels */
2782 	if (mddev->reshape_position != MaxSector &&
2783 	    mddev->layout != mddev->new_layout)
2784 		return sprintf(page, "%d (%d)\n",
2785 			       mddev->new_layout, mddev->layout);
2786 	return sprintf(page, "%d\n", mddev->layout);
2787 }
2788 
2789 static ssize_t
2790 layout_store(mddev_t *mddev, const char *buf, size_t len)
2791 {
2792 	char *e;
2793 	unsigned long n = simple_strtoul(buf, &e, 10);
2794 
2795 	if (!*buf || (*e && *e != '\n'))
2796 		return -EINVAL;
2797 
2798 	if (mddev->pers) {
2799 		int err;
2800 		if (mddev->pers->reconfig == NULL)
2801 			return -EBUSY;
2802 		err = mddev->pers->reconfig(mddev, n, -1);
2803 		if (err)
2804 			return err;
2805 	} else {
2806 		mddev->new_layout = n;
2807 		if (mddev->reshape_position == MaxSector)
2808 			mddev->layout = n;
2809 	}
2810 	return len;
2811 }
2812 static struct md_sysfs_entry md_layout =
2813 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2814 
2815 
2816 static ssize_t
2817 raid_disks_show(mddev_t *mddev, char *page)
2818 {
2819 	if (mddev->raid_disks == 0)
2820 		return 0;
2821 	if (mddev->reshape_position != MaxSector &&
2822 	    mddev->delta_disks != 0)
2823 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2824 			       mddev->raid_disks - mddev->delta_disks);
2825 	return sprintf(page, "%d\n", mddev->raid_disks);
2826 }
2827 
2828 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2829 
2830 static ssize_t
2831 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2832 {
2833 	char *e;
2834 	int rv = 0;
2835 	unsigned long n = simple_strtoul(buf, &e, 10);
2836 
2837 	if (!*buf || (*e && *e != '\n'))
2838 		return -EINVAL;
2839 
2840 	if (mddev->pers)
2841 		rv = update_raid_disks(mddev, n);
2842 	else if (mddev->reshape_position != MaxSector) {
2843 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2844 		mddev->delta_disks = n - olddisks;
2845 		mddev->raid_disks = n;
2846 	} else
2847 		mddev->raid_disks = n;
2848 	return rv ? rv : len;
2849 }
2850 static struct md_sysfs_entry md_raid_disks =
2851 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2852 
2853 static ssize_t
2854 chunk_size_show(mddev_t *mddev, char *page)
2855 {
2856 	if (mddev->reshape_position != MaxSector &&
2857 	    mddev->chunk_size != mddev->new_chunk)
2858 		return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2859 			       mddev->chunk_size);
2860 	return sprintf(page, "%d\n", mddev->chunk_size);
2861 }
2862 
2863 static ssize_t
2864 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2865 {
2866 	char *e;
2867 	unsigned long n = simple_strtoul(buf, &e, 10);
2868 
2869 	if (!*buf || (*e && *e != '\n'))
2870 		return -EINVAL;
2871 
2872 	if (mddev->pers) {
2873 		int err;
2874 		if (mddev->pers->reconfig == NULL)
2875 			return -EBUSY;
2876 		err = mddev->pers->reconfig(mddev, -1, n);
2877 		if (err)
2878 			return err;
2879 	} else {
2880 		mddev->new_chunk = n;
2881 		if (mddev->reshape_position == MaxSector)
2882 			mddev->chunk_size = n;
2883 	}
2884 	return len;
2885 }
2886 static struct md_sysfs_entry md_chunk_size =
2887 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2888 
2889 static ssize_t
2890 resync_start_show(mddev_t *mddev, char *page)
2891 {
2892 	if (mddev->recovery_cp == MaxSector)
2893 		return sprintf(page, "none\n");
2894 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2895 }
2896 
2897 static ssize_t
2898 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2899 {
2900 	char *e;
2901 	unsigned long long n = simple_strtoull(buf, &e, 10);
2902 
2903 	if (mddev->pers)
2904 		return -EBUSY;
2905 	if (!*buf || (*e && *e != '\n'))
2906 		return -EINVAL;
2907 
2908 	mddev->recovery_cp = n;
2909 	return len;
2910 }
2911 static struct md_sysfs_entry md_resync_start =
2912 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2913 
2914 /*
2915  * The array state can be:
2916  *
2917  * clear
2918  *     No devices, no size, no level
2919  *     Equivalent to STOP_ARRAY ioctl
2920  * inactive
2921  *     May have some settings, but array is not active
2922  *        all IO results in error
2923  *     When written, doesn't tear down array, but just stops it
2924  * suspended (not supported yet)
2925  *     All IO requests will block. The array can be reconfigured.
2926  *     Writing this, if accepted, will block until array is quiescent
2927  * readonly
2928  *     no resync can happen.  no superblocks get written.
2929  *     write requests fail
2930  * read-auto
2931  *     like readonly, but behaves like 'clean' on a write request.
2932  *
2933  * clean - no pending writes, but otherwise active.
2934  *     When written to inactive array, starts without resync
2935  *     If a write request arrives then
2936  *       if metadata is known, mark 'dirty' and switch to 'active'.
2937  *       if not known, block and switch to write-pending
2938  *     If written to an active array that has pending writes, then fails.
2939  * active
2940  *     fully active: IO and resync can be happening.
2941  *     When written to inactive array, starts with resync
2942  *
2943  * write-pending
2944  *     clean, but writes are blocked waiting for 'active' to be written.
2945  *
2946  * active-idle
2947  *     like active, but no writes have been seen for a while (100msec).
2948  *
2949  */
2950 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2951 		   write_pending, active_idle, bad_word};
2952 static char *array_states[] = {
2953 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2954 	"write-pending", "active-idle", NULL };
2955 
2956 static int match_word(const char *word, char **list)
2957 {
2958 	int n;
2959 	for (n=0; list[n]; n++)
2960 		if (cmd_match(word, list[n]))
2961 			break;
2962 	return n;
2963 }
2964 
2965 static ssize_t
2966 array_state_show(mddev_t *mddev, char *page)
2967 {
2968 	enum array_state st = inactive;
2969 
2970 	if (mddev->pers)
2971 		switch(mddev->ro) {
2972 		case 1:
2973 			st = readonly;
2974 			break;
2975 		case 2:
2976 			st = read_auto;
2977 			break;
2978 		case 0:
2979 			if (mddev->in_sync)
2980 				st = clean;
2981 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2982 				st = write_pending;
2983 			else if (mddev->safemode)
2984 				st = active_idle;
2985 			else
2986 				st = active;
2987 		}
2988 	else {
2989 		if (list_empty(&mddev->disks) &&
2990 		    mddev->raid_disks == 0 &&
2991 		    mddev->dev_sectors == 0)
2992 			st = clear;
2993 		else
2994 			st = inactive;
2995 	}
2996 	return sprintf(page, "%s\n", array_states[st]);
2997 }
2998 
2999 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3000 static int do_md_run(mddev_t * mddev);
3001 static int restart_array(mddev_t *mddev);
3002 
3003 static ssize_t
3004 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3005 {
3006 	int err = -EINVAL;
3007 	enum array_state st = match_word(buf, array_states);
3008 	switch(st) {
3009 	case bad_word:
3010 		break;
3011 	case clear:
3012 		/* stopping an active array */
3013 		if (atomic_read(&mddev->openers) > 0)
3014 			return -EBUSY;
3015 		err = do_md_stop(mddev, 0, 0);
3016 		break;
3017 	case inactive:
3018 		/* stopping an active array */
3019 		if (mddev->pers) {
3020 			if (atomic_read(&mddev->openers) > 0)
3021 				return -EBUSY;
3022 			err = do_md_stop(mddev, 2, 0);
3023 		} else
3024 			err = 0; /* already inactive */
3025 		break;
3026 	case suspended:
3027 		break; /* not supported yet */
3028 	case readonly:
3029 		if (mddev->pers)
3030 			err = do_md_stop(mddev, 1, 0);
3031 		else {
3032 			mddev->ro = 1;
3033 			set_disk_ro(mddev->gendisk, 1);
3034 			err = do_md_run(mddev);
3035 		}
3036 		break;
3037 	case read_auto:
3038 		if (mddev->pers) {
3039 			if (mddev->ro == 0)
3040 				err = do_md_stop(mddev, 1, 0);
3041 			else if (mddev->ro == 1)
3042 				err = restart_array(mddev);
3043 			if (err == 0) {
3044 				mddev->ro = 2;
3045 				set_disk_ro(mddev->gendisk, 0);
3046 			}
3047 		} else {
3048 			mddev->ro = 2;
3049 			err = do_md_run(mddev);
3050 		}
3051 		break;
3052 	case clean:
3053 		if (mddev->pers) {
3054 			restart_array(mddev);
3055 			spin_lock_irq(&mddev->write_lock);
3056 			if (atomic_read(&mddev->writes_pending) == 0) {
3057 				if (mddev->in_sync == 0) {
3058 					mddev->in_sync = 1;
3059 					if (mddev->safemode == 1)
3060 						mddev->safemode = 0;
3061 					if (mddev->persistent)
3062 						set_bit(MD_CHANGE_CLEAN,
3063 							&mddev->flags);
3064 				}
3065 				err = 0;
3066 			} else
3067 				err = -EBUSY;
3068 			spin_unlock_irq(&mddev->write_lock);
3069 		} else
3070 			err = -EINVAL;
3071 		break;
3072 	case active:
3073 		if (mddev->pers) {
3074 			restart_array(mddev);
3075 			if (mddev->external)
3076 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3077 			wake_up(&mddev->sb_wait);
3078 			err = 0;
3079 		} else {
3080 			mddev->ro = 0;
3081 			set_disk_ro(mddev->gendisk, 0);
3082 			err = do_md_run(mddev);
3083 		}
3084 		break;
3085 	case write_pending:
3086 	case active_idle:
3087 		/* these cannot be set */
3088 		break;
3089 	}
3090 	if (err)
3091 		return err;
3092 	else {
3093 		sysfs_notify_dirent(mddev->sysfs_state);
3094 		return len;
3095 	}
3096 }
3097 static struct md_sysfs_entry md_array_state =
3098 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3099 
3100 static ssize_t
3101 null_show(mddev_t *mddev, char *page)
3102 {
3103 	return -EINVAL;
3104 }
3105 
3106 static ssize_t
3107 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3108 {
3109 	/* buf must be %d:%d\n? giving major and minor numbers */
3110 	/* The new device is added to the array.
3111 	 * If the array has a persistent superblock, we read the
3112 	 * superblock to initialise info and check validity.
3113 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3114 	 * which mainly checks size.
3115 	 */
3116 	char *e;
3117 	int major = simple_strtoul(buf, &e, 10);
3118 	int minor;
3119 	dev_t dev;
3120 	mdk_rdev_t *rdev;
3121 	int err;
3122 
3123 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3124 		return -EINVAL;
3125 	minor = simple_strtoul(e+1, &e, 10);
3126 	if (*e && *e != '\n')
3127 		return -EINVAL;
3128 	dev = MKDEV(major, minor);
3129 	if (major != MAJOR(dev) ||
3130 	    minor != MINOR(dev))
3131 		return -EOVERFLOW;
3132 
3133 
3134 	if (mddev->persistent) {
3135 		rdev = md_import_device(dev, mddev->major_version,
3136 					mddev->minor_version);
3137 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3138 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3139 						       mdk_rdev_t, same_set);
3140 			err = super_types[mddev->major_version]
3141 				.load_super(rdev, rdev0, mddev->minor_version);
3142 			if (err < 0)
3143 				goto out;
3144 		}
3145 	} else if (mddev->external)
3146 		rdev = md_import_device(dev, -2, -1);
3147 	else
3148 		rdev = md_import_device(dev, -1, -1);
3149 
3150 	if (IS_ERR(rdev))
3151 		return PTR_ERR(rdev);
3152 	err = bind_rdev_to_array(rdev, mddev);
3153  out:
3154 	if (err)
3155 		export_rdev(rdev);
3156 	return err ? err : len;
3157 }
3158 
3159 static struct md_sysfs_entry md_new_device =
3160 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3161 
3162 static ssize_t
3163 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3164 {
3165 	char *end;
3166 	unsigned long chunk, end_chunk;
3167 
3168 	if (!mddev->bitmap)
3169 		goto out;
3170 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3171 	while (*buf) {
3172 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3173 		if (buf == end) break;
3174 		if (*end == '-') { /* range */
3175 			buf = end + 1;
3176 			end_chunk = simple_strtoul(buf, &end, 0);
3177 			if (buf == end) break;
3178 		}
3179 		if (*end && !isspace(*end)) break;
3180 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3181 		buf = end;
3182 		while (isspace(*buf)) buf++;
3183 	}
3184 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3185 out:
3186 	return len;
3187 }
3188 
3189 static struct md_sysfs_entry md_bitmap =
3190 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3191 
3192 static ssize_t
3193 size_show(mddev_t *mddev, char *page)
3194 {
3195 	return sprintf(page, "%llu\n",
3196 		(unsigned long long)mddev->dev_sectors / 2);
3197 }
3198 
3199 static int update_size(mddev_t *mddev, sector_t num_sectors);
3200 
3201 static ssize_t
3202 size_store(mddev_t *mddev, const char *buf, size_t len)
3203 {
3204 	/* If array is inactive, we can reduce the component size, but
3205 	 * not increase it (except from 0).
3206 	 * If array is active, we can try an on-line resize
3207 	 */
3208 	sector_t sectors;
3209 	int err = strict_blocks_to_sectors(buf, &sectors);
3210 
3211 	if (err < 0)
3212 		return err;
3213 	if (mddev->pers) {
3214 		err = update_size(mddev, sectors);
3215 		md_update_sb(mddev, 1);
3216 	} else {
3217 		if (mddev->dev_sectors == 0 ||
3218 		    mddev->dev_sectors > sectors)
3219 			mddev->dev_sectors = sectors;
3220 		else
3221 			err = -ENOSPC;
3222 	}
3223 	return err ? err : len;
3224 }
3225 
3226 static struct md_sysfs_entry md_size =
3227 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3228 
3229 
3230 /* Metdata version.
3231  * This is one of
3232  *   'none' for arrays with no metadata (good luck...)
3233  *   'external' for arrays with externally managed metadata,
3234  * or N.M for internally known formats
3235  */
3236 static ssize_t
3237 metadata_show(mddev_t *mddev, char *page)
3238 {
3239 	if (mddev->persistent)
3240 		return sprintf(page, "%d.%d\n",
3241 			       mddev->major_version, mddev->minor_version);
3242 	else if (mddev->external)
3243 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3244 	else
3245 		return sprintf(page, "none\n");
3246 }
3247 
3248 static ssize_t
3249 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3250 {
3251 	int major, minor;
3252 	char *e;
3253 	/* Changing the details of 'external' metadata is
3254 	 * always permitted.  Otherwise there must be
3255 	 * no devices attached to the array.
3256 	 */
3257 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3258 		;
3259 	else if (!list_empty(&mddev->disks))
3260 		return -EBUSY;
3261 
3262 	if (cmd_match(buf, "none")) {
3263 		mddev->persistent = 0;
3264 		mddev->external = 0;
3265 		mddev->major_version = 0;
3266 		mddev->minor_version = 90;
3267 		return len;
3268 	}
3269 	if (strncmp(buf, "external:", 9) == 0) {
3270 		size_t namelen = len-9;
3271 		if (namelen >= sizeof(mddev->metadata_type))
3272 			namelen = sizeof(mddev->metadata_type)-1;
3273 		strncpy(mddev->metadata_type, buf+9, namelen);
3274 		mddev->metadata_type[namelen] = 0;
3275 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3276 			mddev->metadata_type[--namelen] = 0;
3277 		mddev->persistent = 0;
3278 		mddev->external = 1;
3279 		mddev->major_version = 0;
3280 		mddev->minor_version = 90;
3281 		return len;
3282 	}
3283 	major = simple_strtoul(buf, &e, 10);
3284 	if (e==buf || *e != '.')
3285 		return -EINVAL;
3286 	buf = e+1;
3287 	minor = simple_strtoul(buf, &e, 10);
3288 	if (e==buf || (*e && *e != '\n') )
3289 		return -EINVAL;
3290 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3291 		return -ENOENT;
3292 	mddev->major_version = major;
3293 	mddev->minor_version = minor;
3294 	mddev->persistent = 1;
3295 	mddev->external = 0;
3296 	return len;
3297 }
3298 
3299 static struct md_sysfs_entry md_metadata =
3300 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3301 
3302 static ssize_t
3303 action_show(mddev_t *mddev, char *page)
3304 {
3305 	char *type = "idle";
3306 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3307 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3308 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3309 			type = "reshape";
3310 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3311 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3312 				type = "resync";
3313 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3314 				type = "check";
3315 			else
3316 				type = "repair";
3317 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3318 			type = "recover";
3319 	}
3320 	return sprintf(page, "%s\n", type);
3321 }
3322 
3323 static ssize_t
3324 action_store(mddev_t *mddev, const char *page, size_t len)
3325 {
3326 	if (!mddev->pers || !mddev->pers->sync_request)
3327 		return -EINVAL;
3328 
3329 	if (cmd_match(page, "idle")) {
3330 		if (mddev->sync_thread) {
3331 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3332 			md_unregister_thread(mddev->sync_thread);
3333 			mddev->sync_thread = NULL;
3334 			mddev->recovery = 0;
3335 		}
3336 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3337 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3338 		return -EBUSY;
3339 	else if (cmd_match(page, "resync"))
3340 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3341 	else if (cmd_match(page, "recover")) {
3342 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3343 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3344 	} else if (cmd_match(page, "reshape")) {
3345 		int err;
3346 		if (mddev->pers->start_reshape == NULL)
3347 			return -EINVAL;
3348 		err = mddev->pers->start_reshape(mddev);
3349 		if (err)
3350 			return err;
3351 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3352 	} else {
3353 		if (cmd_match(page, "check"))
3354 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3355 		else if (!cmd_match(page, "repair"))
3356 			return -EINVAL;
3357 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3358 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3359 	}
3360 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3361 	md_wakeup_thread(mddev->thread);
3362 	sysfs_notify_dirent(mddev->sysfs_action);
3363 	return len;
3364 }
3365 
3366 static ssize_t
3367 mismatch_cnt_show(mddev_t *mddev, char *page)
3368 {
3369 	return sprintf(page, "%llu\n",
3370 		       (unsigned long long) mddev->resync_mismatches);
3371 }
3372 
3373 static struct md_sysfs_entry md_scan_mode =
3374 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3375 
3376 
3377 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3378 
3379 static ssize_t
3380 sync_min_show(mddev_t *mddev, char *page)
3381 {
3382 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3383 		       mddev->sync_speed_min ? "local": "system");
3384 }
3385 
3386 static ssize_t
3387 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3388 {
3389 	int min;
3390 	char *e;
3391 	if (strncmp(buf, "system", 6)==0) {
3392 		mddev->sync_speed_min = 0;
3393 		return len;
3394 	}
3395 	min = simple_strtoul(buf, &e, 10);
3396 	if (buf == e || (*e && *e != '\n') || min <= 0)
3397 		return -EINVAL;
3398 	mddev->sync_speed_min = min;
3399 	return len;
3400 }
3401 
3402 static struct md_sysfs_entry md_sync_min =
3403 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3404 
3405 static ssize_t
3406 sync_max_show(mddev_t *mddev, char *page)
3407 {
3408 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3409 		       mddev->sync_speed_max ? "local": "system");
3410 }
3411 
3412 static ssize_t
3413 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3414 {
3415 	int max;
3416 	char *e;
3417 	if (strncmp(buf, "system", 6)==0) {
3418 		mddev->sync_speed_max = 0;
3419 		return len;
3420 	}
3421 	max = simple_strtoul(buf, &e, 10);
3422 	if (buf == e || (*e && *e != '\n') || max <= 0)
3423 		return -EINVAL;
3424 	mddev->sync_speed_max = max;
3425 	return len;
3426 }
3427 
3428 static struct md_sysfs_entry md_sync_max =
3429 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3430 
3431 static ssize_t
3432 degraded_show(mddev_t *mddev, char *page)
3433 {
3434 	return sprintf(page, "%d\n", mddev->degraded);
3435 }
3436 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3437 
3438 static ssize_t
3439 sync_force_parallel_show(mddev_t *mddev, char *page)
3440 {
3441 	return sprintf(page, "%d\n", mddev->parallel_resync);
3442 }
3443 
3444 static ssize_t
3445 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3446 {
3447 	long n;
3448 
3449 	if (strict_strtol(buf, 10, &n))
3450 		return -EINVAL;
3451 
3452 	if (n != 0 && n != 1)
3453 		return -EINVAL;
3454 
3455 	mddev->parallel_resync = n;
3456 
3457 	if (mddev->sync_thread)
3458 		wake_up(&resync_wait);
3459 
3460 	return len;
3461 }
3462 
3463 /* force parallel resync, even with shared block devices */
3464 static struct md_sysfs_entry md_sync_force_parallel =
3465 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3466        sync_force_parallel_show, sync_force_parallel_store);
3467 
3468 static ssize_t
3469 sync_speed_show(mddev_t *mddev, char *page)
3470 {
3471 	unsigned long resync, dt, db;
3472 	if (mddev->curr_resync == 0)
3473 		return sprintf(page, "none\n");
3474 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3475 	dt = (jiffies - mddev->resync_mark) / HZ;
3476 	if (!dt) dt++;
3477 	db = resync - mddev->resync_mark_cnt;
3478 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3479 }
3480 
3481 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3482 
3483 static ssize_t
3484 sync_completed_show(mddev_t *mddev, char *page)
3485 {
3486 	unsigned long max_sectors, resync;
3487 
3488 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3489 		return sprintf(page, "none\n");
3490 
3491 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3492 		max_sectors = mddev->resync_max_sectors;
3493 	else
3494 		max_sectors = mddev->dev_sectors;
3495 
3496 	resync = mddev->curr_resync_completed;
3497 	return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3498 }
3499 
3500 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3501 
3502 static ssize_t
3503 min_sync_show(mddev_t *mddev, char *page)
3504 {
3505 	return sprintf(page, "%llu\n",
3506 		       (unsigned long long)mddev->resync_min);
3507 }
3508 static ssize_t
3509 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3510 {
3511 	unsigned long long min;
3512 	if (strict_strtoull(buf, 10, &min))
3513 		return -EINVAL;
3514 	if (min > mddev->resync_max)
3515 		return -EINVAL;
3516 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3517 		return -EBUSY;
3518 
3519 	/* Must be a multiple of chunk_size */
3520 	if (mddev->chunk_size) {
3521 		if (min & (sector_t)((mddev->chunk_size>>9)-1))
3522 			return -EINVAL;
3523 	}
3524 	mddev->resync_min = min;
3525 
3526 	return len;
3527 }
3528 
3529 static struct md_sysfs_entry md_min_sync =
3530 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3531 
3532 static ssize_t
3533 max_sync_show(mddev_t *mddev, char *page)
3534 {
3535 	if (mddev->resync_max == MaxSector)
3536 		return sprintf(page, "max\n");
3537 	else
3538 		return sprintf(page, "%llu\n",
3539 			       (unsigned long long)mddev->resync_max);
3540 }
3541 static ssize_t
3542 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3543 {
3544 	if (strncmp(buf, "max", 3) == 0)
3545 		mddev->resync_max = MaxSector;
3546 	else {
3547 		unsigned long long max;
3548 		if (strict_strtoull(buf, 10, &max))
3549 			return -EINVAL;
3550 		if (max < mddev->resync_min)
3551 			return -EINVAL;
3552 		if (max < mddev->resync_max &&
3553 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3554 			return -EBUSY;
3555 
3556 		/* Must be a multiple of chunk_size */
3557 		if (mddev->chunk_size) {
3558 			if (max & (sector_t)((mddev->chunk_size>>9)-1))
3559 				return -EINVAL;
3560 		}
3561 		mddev->resync_max = max;
3562 	}
3563 	wake_up(&mddev->recovery_wait);
3564 	return len;
3565 }
3566 
3567 static struct md_sysfs_entry md_max_sync =
3568 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3569 
3570 static ssize_t
3571 suspend_lo_show(mddev_t *mddev, char *page)
3572 {
3573 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3574 }
3575 
3576 static ssize_t
3577 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3578 {
3579 	char *e;
3580 	unsigned long long new = simple_strtoull(buf, &e, 10);
3581 
3582 	if (mddev->pers->quiesce == NULL)
3583 		return -EINVAL;
3584 	if (buf == e || (*e && *e != '\n'))
3585 		return -EINVAL;
3586 	if (new >= mddev->suspend_hi ||
3587 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3588 		mddev->suspend_lo = new;
3589 		mddev->pers->quiesce(mddev, 2);
3590 		return len;
3591 	} else
3592 		return -EINVAL;
3593 }
3594 static struct md_sysfs_entry md_suspend_lo =
3595 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3596 
3597 
3598 static ssize_t
3599 suspend_hi_show(mddev_t *mddev, char *page)
3600 {
3601 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3602 }
3603 
3604 static ssize_t
3605 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3606 {
3607 	char *e;
3608 	unsigned long long new = simple_strtoull(buf, &e, 10);
3609 
3610 	if (mddev->pers->quiesce == NULL)
3611 		return -EINVAL;
3612 	if (buf == e || (*e && *e != '\n'))
3613 		return -EINVAL;
3614 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3615 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3616 		mddev->suspend_hi = new;
3617 		mddev->pers->quiesce(mddev, 1);
3618 		mddev->pers->quiesce(mddev, 0);
3619 		return len;
3620 	} else
3621 		return -EINVAL;
3622 }
3623 static struct md_sysfs_entry md_suspend_hi =
3624 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3625 
3626 static ssize_t
3627 reshape_position_show(mddev_t *mddev, char *page)
3628 {
3629 	if (mddev->reshape_position != MaxSector)
3630 		return sprintf(page, "%llu\n",
3631 			       (unsigned long long)mddev->reshape_position);
3632 	strcpy(page, "none\n");
3633 	return 5;
3634 }
3635 
3636 static ssize_t
3637 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3638 {
3639 	char *e;
3640 	unsigned long long new = simple_strtoull(buf, &e, 10);
3641 	if (mddev->pers)
3642 		return -EBUSY;
3643 	if (buf == e || (*e && *e != '\n'))
3644 		return -EINVAL;
3645 	mddev->reshape_position = new;
3646 	mddev->delta_disks = 0;
3647 	mddev->new_level = mddev->level;
3648 	mddev->new_layout = mddev->layout;
3649 	mddev->new_chunk = mddev->chunk_size;
3650 	return len;
3651 }
3652 
3653 static struct md_sysfs_entry md_reshape_position =
3654 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3655        reshape_position_store);
3656 
3657 static ssize_t
3658 array_size_show(mddev_t *mddev, char *page)
3659 {
3660 	if (mddev->external_size)
3661 		return sprintf(page, "%llu\n",
3662 			       (unsigned long long)mddev->array_sectors/2);
3663 	else
3664 		return sprintf(page, "default\n");
3665 }
3666 
3667 static ssize_t
3668 array_size_store(mddev_t *mddev, const char *buf, size_t len)
3669 {
3670 	sector_t sectors;
3671 
3672 	if (strncmp(buf, "default", 7) == 0) {
3673 		if (mddev->pers)
3674 			sectors = mddev->pers->size(mddev, 0, 0);
3675 		else
3676 			sectors = mddev->array_sectors;
3677 
3678 		mddev->external_size = 0;
3679 	} else {
3680 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
3681 			return -EINVAL;
3682 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
3683 			return -EINVAL;
3684 
3685 		mddev->external_size = 1;
3686 	}
3687 
3688 	mddev->array_sectors = sectors;
3689 	set_capacity(mddev->gendisk, mddev->array_sectors);
3690 	if (mddev->pers) {
3691 		struct block_device *bdev = bdget_disk(mddev->gendisk, 0);
3692 
3693 		if (bdev) {
3694 			mutex_lock(&bdev->bd_inode->i_mutex);
3695 			i_size_write(bdev->bd_inode,
3696 				     (loff_t)mddev->array_sectors << 9);
3697 			mutex_unlock(&bdev->bd_inode->i_mutex);
3698 			bdput(bdev);
3699 		}
3700 	}
3701 
3702 	return len;
3703 }
3704 
3705 static struct md_sysfs_entry md_array_size =
3706 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
3707        array_size_store);
3708 
3709 static struct attribute *md_default_attrs[] = {
3710 	&md_level.attr,
3711 	&md_layout.attr,
3712 	&md_raid_disks.attr,
3713 	&md_chunk_size.attr,
3714 	&md_size.attr,
3715 	&md_resync_start.attr,
3716 	&md_metadata.attr,
3717 	&md_new_device.attr,
3718 	&md_safe_delay.attr,
3719 	&md_array_state.attr,
3720 	&md_reshape_position.attr,
3721 	&md_array_size.attr,
3722 	NULL,
3723 };
3724 
3725 static struct attribute *md_redundancy_attrs[] = {
3726 	&md_scan_mode.attr,
3727 	&md_mismatches.attr,
3728 	&md_sync_min.attr,
3729 	&md_sync_max.attr,
3730 	&md_sync_speed.attr,
3731 	&md_sync_force_parallel.attr,
3732 	&md_sync_completed.attr,
3733 	&md_min_sync.attr,
3734 	&md_max_sync.attr,
3735 	&md_suspend_lo.attr,
3736 	&md_suspend_hi.attr,
3737 	&md_bitmap.attr,
3738 	&md_degraded.attr,
3739 	NULL,
3740 };
3741 static struct attribute_group md_redundancy_group = {
3742 	.name = NULL,
3743 	.attrs = md_redundancy_attrs,
3744 };
3745 
3746 
3747 static ssize_t
3748 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3749 {
3750 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3751 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3752 	ssize_t rv;
3753 
3754 	if (!entry->show)
3755 		return -EIO;
3756 	rv = mddev_lock(mddev);
3757 	if (!rv) {
3758 		rv = entry->show(mddev, page);
3759 		mddev_unlock(mddev);
3760 	}
3761 	return rv;
3762 }
3763 
3764 static ssize_t
3765 md_attr_store(struct kobject *kobj, struct attribute *attr,
3766 	      const char *page, size_t length)
3767 {
3768 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3769 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3770 	ssize_t rv;
3771 
3772 	if (!entry->store)
3773 		return -EIO;
3774 	if (!capable(CAP_SYS_ADMIN))
3775 		return -EACCES;
3776 	rv = mddev_lock(mddev);
3777 	if (mddev->hold_active == UNTIL_IOCTL)
3778 		mddev->hold_active = 0;
3779 	if (!rv) {
3780 		rv = entry->store(mddev, page, length);
3781 		mddev_unlock(mddev);
3782 	}
3783 	return rv;
3784 }
3785 
3786 static void md_free(struct kobject *ko)
3787 {
3788 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3789 
3790 	if (mddev->sysfs_state)
3791 		sysfs_put(mddev->sysfs_state);
3792 
3793 	if (mddev->gendisk) {
3794 		del_gendisk(mddev->gendisk);
3795 		put_disk(mddev->gendisk);
3796 	}
3797 	if (mddev->queue)
3798 		blk_cleanup_queue(mddev->queue);
3799 
3800 	kfree(mddev);
3801 }
3802 
3803 static struct sysfs_ops md_sysfs_ops = {
3804 	.show	= md_attr_show,
3805 	.store	= md_attr_store,
3806 };
3807 static struct kobj_type md_ktype = {
3808 	.release	= md_free,
3809 	.sysfs_ops	= &md_sysfs_ops,
3810 	.default_attrs	= md_default_attrs,
3811 };
3812 
3813 int mdp_major = 0;
3814 
3815 static void mddev_delayed_delete(struct work_struct *ws)
3816 {
3817 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
3818 
3819 	if (mddev->private == &md_redundancy_group) {
3820 		sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3821 		if (mddev->sysfs_action)
3822 			sysfs_put(mddev->sysfs_action);
3823 		mddev->sysfs_action = NULL;
3824 		mddev->private = NULL;
3825 	}
3826 	kobject_del(&mddev->kobj);
3827 	kobject_put(&mddev->kobj);
3828 }
3829 
3830 static int md_alloc(dev_t dev, char *name)
3831 {
3832 	static DEFINE_MUTEX(disks_mutex);
3833 	mddev_t *mddev = mddev_find(dev);
3834 	struct gendisk *disk;
3835 	int partitioned;
3836 	int shift;
3837 	int unit;
3838 	int error;
3839 
3840 	if (!mddev)
3841 		return -ENODEV;
3842 
3843 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3844 	shift = partitioned ? MdpMinorShift : 0;
3845 	unit = MINOR(mddev->unit) >> shift;
3846 
3847 	/* wait for any previous instance if this device
3848 	 * to be completed removed (mddev_delayed_delete).
3849 	 */
3850 	flush_scheduled_work();
3851 
3852 	mutex_lock(&disks_mutex);
3853 	if (mddev->gendisk) {
3854 		mutex_unlock(&disks_mutex);
3855 		mddev_put(mddev);
3856 		return -EEXIST;
3857 	}
3858 
3859 	if (name) {
3860 		/* Need to ensure that 'name' is not a duplicate.
3861 		 */
3862 		mddev_t *mddev2;
3863 		spin_lock(&all_mddevs_lock);
3864 
3865 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3866 			if (mddev2->gendisk &&
3867 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
3868 				spin_unlock(&all_mddevs_lock);
3869 				return -EEXIST;
3870 			}
3871 		spin_unlock(&all_mddevs_lock);
3872 	}
3873 
3874 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
3875 	if (!mddev->queue) {
3876 		mutex_unlock(&disks_mutex);
3877 		mddev_put(mddev);
3878 		return -ENOMEM;
3879 	}
3880 	mddev->queue->queuedata = mddev;
3881 
3882 	/* Can be unlocked because the queue is new: no concurrency */
3883 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3884 
3885 	blk_queue_make_request(mddev->queue, md_make_request);
3886 
3887 	disk = alloc_disk(1 << shift);
3888 	if (!disk) {
3889 		mutex_unlock(&disks_mutex);
3890 		blk_cleanup_queue(mddev->queue);
3891 		mddev->queue = NULL;
3892 		mddev_put(mddev);
3893 		return -ENOMEM;
3894 	}
3895 	disk->major = MAJOR(mddev->unit);
3896 	disk->first_minor = unit << shift;
3897 	if (name)
3898 		strcpy(disk->disk_name, name);
3899 	else if (partitioned)
3900 		sprintf(disk->disk_name, "md_d%d", unit);
3901 	else
3902 		sprintf(disk->disk_name, "md%d", unit);
3903 	disk->fops = &md_fops;
3904 	disk->private_data = mddev;
3905 	disk->queue = mddev->queue;
3906 	/* Allow extended partitions.  This makes the
3907 	 * 'mdp' device redundant, but we can't really
3908 	 * remove it now.
3909 	 */
3910 	disk->flags |= GENHD_FL_EXT_DEVT;
3911 	add_disk(disk);
3912 	mddev->gendisk = disk;
3913 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3914 				     &disk_to_dev(disk)->kobj, "%s", "md");
3915 	mutex_unlock(&disks_mutex);
3916 	if (error)
3917 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3918 		       disk->disk_name);
3919 	else {
3920 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
3921 		mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3922 	}
3923 	mddev_put(mddev);
3924 	return 0;
3925 }
3926 
3927 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3928 {
3929 	md_alloc(dev, NULL);
3930 	return NULL;
3931 }
3932 
3933 static int add_named_array(const char *val, struct kernel_param *kp)
3934 {
3935 	/* val must be "md_*" where * is not all digits.
3936 	 * We allocate an array with a large free minor number, and
3937 	 * set the name to val.  val must not already be an active name.
3938 	 */
3939 	int len = strlen(val);
3940 	char buf[DISK_NAME_LEN];
3941 
3942 	while (len && val[len-1] == '\n')
3943 		len--;
3944 	if (len >= DISK_NAME_LEN)
3945 		return -E2BIG;
3946 	strlcpy(buf, val, len+1);
3947 	if (strncmp(buf, "md_", 3) != 0)
3948 		return -EINVAL;
3949 	return md_alloc(0, buf);
3950 }
3951 
3952 static void md_safemode_timeout(unsigned long data)
3953 {
3954 	mddev_t *mddev = (mddev_t *) data;
3955 
3956 	if (!atomic_read(&mddev->writes_pending)) {
3957 		mddev->safemode = 1;
3958 		if (mddev->external)
3959 			sysfs_notify_dirent(mddev->sysfs_state);
3960 	}
3961 	md_wakeup_thread(mddev->thread);
3962 }
3963 
3964 static int start_dirty_degraded;
3965 
3966 static int do_md_run(mddev_t * mddev)
3967 {
3968 	int err;
3969 	int chunk_size;
3970 	mdk_rdev_t *rdev;
3971 	struct gendisk *disk;
3972 	struct mdk_personality *pers;
3973 	char b[BDEVNAME_SIZE];
3974 
3975 	if (list_empty(&mddev->disks))
3976 		/* cannot run an array with no devices.. */
3977 		return -EINVAL;
3978 
3979 	if (mddev->pers)
3980 		return -EBUSY;
3981 
3982 	/*
3983 	 * Analyze all RAID superblock(s)
3984 	 */
3985 	if (!mddev->raid_disks) {
3986 		if (!mddev->persistent)
3987 			return -EINVAL;
3988 		analyze_sbs(mddev);
3989 	}
3990 
3991 	chunk_size = mddev->chunk_size;
3992 
3993 	if (chunk_size) {
3994 		if (chunk_size > MAX_CHUNK_SIZE) {
3995 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3996 				chunk_size, MAX_CHUNK_SIZE);
3997 			return -EINVAL;
3998 		}
3999 		/*
4000 		 * chunk-size has to be a power of 2
4001 		 */
4002 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
4003 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
4004 			return -EINVAL;
4005 		}
4006 
4007 		/* devices must have minimum size of one chunk */
4008 		list_for_each_entry(rdev, &mddev->disks, same_set) {
4009 			if (test_bit(Faulty, &rdev->flags))
4010 				continue;
4011 			if (rdev->sectors < chunk_size / 512) {
4012 				printk(KERN_WARNING
4013 					"md: Dev %s smaller than chunk_size:"
4014 					" %llu < %d\n",
4015 					bdevname(rdev->bdev,b),
4016 					(unsigned long long)rdev->sectors,
4017 					chunk_size / 512);
4018 				return -EINVAL;
4019 			}
4020 		}
4021 	}
4022 
4023 	if (mddev->level != LEVEL_NONE)
4024 		request_module("md-level-%d", mddev->level);
4025 	else if (mddev->clevel[0])
4026 		request_module("md-%s", mddev->clevel);
4027 
4028 	/*
4029 	 * Drop all container device buffers, from now on
4030 	 * the only valid external interface is through the md
4031 	 * device.
4032 	 */
4033 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4034 		if (test_bit(Faulty, &rdev->flags))
4035 			continue;
4036 		sync_blockdev(rdev->bdev);
4037 		invalidate_bdev(rdev->bdev);
4038 
4039 		/* perform some consistency tests on the device.
4040 		 * We don't want the data to overlap the metadata,
4041 		 * Internal Bitmap issues have been handled elsewhere.
4042 		 */
4043 		if (rdev->data_offset < rdev->sb_start) {
4044 			if (mddev->dev_sectors &&
4045 			    rdev->data_offset + mddev->dev_sectors
4046 			    > rdev->sb_start) {
4047 				printk("md: %s: data overlaps metadata\n",
4048 				       mdname(mddev));
4049 				return -EINVAL;
4050 			}
4051 		} else {
4052 			if (rdev->sb_start + rdev->sb_size/512
4053 			    > rdev->data_offset) {
4054 				printk("md: %s: metadata overlaps data\n",
4055 				       mdname(mddev));
4056 				return -EINVAL;
4057 			}
4058 		}
4059 		sysfs_notify_dirent(rdev->sysfs_state);
4060 	}
4061 
4062 	md_probe(mddev->unit, NULL, NULL);
4063 	disk = mddev->gendisk;
4064 	if (!disk)
4065 		return -ENOMEM;
4066 
4067 	spin_lock(&pers_lock);
4068 	pers = find_pers(mddev->level, mddev->clevel);
4069 	if (!pers || !try_module_get(pers->owner)) {
4070 		spin_unlock(&pers_lock);
4071 		if (mddev->level != LEVEL_NONE)
4072 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4073 			       mddev->level);
4074 		else
4075 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4076 			       mddev->clevel);
4077 		return -EINVAL;
4078 	}
4079 	mddev->pers = pers;
4080 	spin_unlock(&pers_lock);
4081 	if (mddev->level != pers->level) {
4082 		mddev->level = pers->level;
4083 		mddev->new_level = pers->level;
4084 	}
4085 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4086 
4087 	if (pers->level >= 4 && pers->level <= 6)
4088 		/* Cannot support integrity (yet) */
4089 		blk_integrity_unregister(mddev->gendisk);
4090 
4091 	if (mddev->reshape_position != MaxSector &&
4092 	    pers->start_reshape == NULL) {
4093 		/* This personality cannot handle reshaping... */
4094 		mddev->pers = NULL;
4095 		module_put(pers->owner);
4096 		return -EINVAL;
4097 	}
4098 
4099 	if (pers->sync_request) {
4100 		/* Warn if this is a potentially silly
4101 		 * configuration.
4102 		 */
4103 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4104 		mdk_rdev_t *rdev2;
4105 		int warned = 0;
4106 
4107 		list_for_each_entry(rdev, &mddev->disks, same_set)
4108 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4109 				if (rdev < rdev2 &&
4110 				    rdev->bdev->bd_contains ==
4111 				    rdev2->bdev->bd_contains) {
4112 					printk(KERN_WARNING
4113 					       "%s: WARNING: %s appears to be"
4114 					       " on the same physical disk as"
4115 					       " %s.\n",
4116 					       mdname(mddev),
4117 					       bdevname(rdev->bdev,b),
4118 					       bdevname(rdev2->bdev,b2));
4119 					warned = 1;
4120 				}
4121 			}
4122 
4123 		if (warned)
4124 			printk(KERN_WARNING
4125 			       "True protection against single-disk"
4126 			       " failure might be compromised.\n");
4127 	}
4128 
4129 	mddev->recovery = 0;
4130 	/* may be over-ridden by personality */
4131 	mddev->resync_max_sectors = mddev->dev_sectors;
4132 
4133 	mddev->barriers_work = 1;
4134 	mddev->ok_start_degraded = start_dirty_degraded;
4135 
4136 	if (start_readonly)
4137 		mddev->ro = 2; /* read-only, but switch on first write */
4138 
4139 	err = mddev->pers->run(mddev);
4140 	if (err)
4141 		printk(KERN_ERR "md: pers->run() failed ...\n");
4142 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4143 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4144 			  " but 'external_size' not in effect?\n", __func__);
4145 		printk(KERN_ERR
4146 		       "md: invalid array_size %llu > default size %llu\n",
4147 		       (unsigned long long)mddev->array_sectors / 2,
4148 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4149 		err = -EINVAL;
4150 		mddev->pers->stop(mddev);
4151 	}
4152 	if (err == 0 && mddev->pers->sync_request) {
4153 		err = bitmap_create(mddev);
4154 		if (err) {
4155 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4156 			       mdname(mddev), err);
4157 			mddev->pers->stop(mddev);
4158 		}
4159 	}
4160 	if (err) {
4161 		module_put(mddev->pers->owner);
4162 		mddev->pers = NULL;
4163 		bitmap_destroy(mddev);
4164 		return err;
4165 	}
4166 	if (mddev->pers->sync_request) {
4167 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4168 			printk(KERN_WARNING
4169 			       "md: cannot register extra attributes for %s\n",
4170 			       mdname(mddev));
4171 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4172 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4173 		mddev->ro = 0;
4174 
4175  	atomic_set(&mddev->writes_pending,0);
4176 	mddev->safemode = 0;
4177 	mddev->safemode_timer.function = md_safemode_timeout;
4178 	mddev->safemode_timer.data = (unsigned long) mddev;
4179 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4180 	mddev->in_sync = 1;
4181 
4182 	list_for_each_entry(rdev, &mddev->disks, same_set)
4183 		if (rdev->raid_disk >= 0) {
4184 			char nm[20];
4185 			sprintf(nm, "rd%d", rdev->raid_disk);
4186 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4187 				printk("md: cannot register %s for %s\n",
4188 				       nm, mdname(mddev));
4189 		}
4190 
4191 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4192 
4193 	if (mddev->flags)
4194 		md_update_sb(mddev, 0);
4195 
4196 	set_capacity(disk, mddev->array_sectors);
4197 
4198 	/* If there is a partially-recovered drive we need to
4199 	 * start recovery here.  If we leave it to md_check_recovery,
4200 	 * it will remove the drives and not do the right thing
4201 	 */
4202 	if (mddev->degraded && !mddev->sync_thread) {
4203 		int spares = 0;
4204 		list_for_each_entry(rdev, &mddev->disks, same_set)
4205 			if (rdev->raid_disk >= 0 &&
4206 			    !test_bit(In_sync, &rdev->flags) &&
4207 			    !test_bit(Faulty, &rdev->flags))
4208 				/* complete an interrupted recovery */
4209 				spares++;
4210 		if (spares && mddev->pers->sync_request) {
4211 			mddev->recovery = 0;
4212 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4213 			mddev->sync_thread = md_register_thread(md_do_sync,
4214 								mddev,
4215 								"%s_resync");
4216 			if (!mddev->sync_thread) {
4217 				printk(KERN_ERR "%s: could not start resync"
4218 				       " thread...\n",
4219 				       mdname(mddev));
4220 				/* leave the spares where they are, it shouldn't hurt */
4221 				mddev->recovery = 0;
4222 			}
4223 		}
4224 	}
4225 	md_wakeup_thread(mddev->thread);
4226 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4227 
4228 	mddev->changed = 1;
4229 	md_new_event(mddev);
4230 	sysfs_notify_dirent(mddev->sysfs_state);
4231 	if (mddev->sysfs_action)
4232 		sysfs_notify_dirent(mddev->sysfs_action);
4233 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4234 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4235 	return 0;
4236 }
4237 
4238 static int restart_array(mddev_t *mddev)
4239 {
4240 	struct gendisk *disk = mddev->gendisk;
4241 
4242 	/* Complain if it has no devices */
4243 	if (list_empty(&mddev->disks))
4244 		return -ENXIO;
4245 	if (!mddev->pers)
4246 		return -EINVAL;
4247 	if (!mddev->ro)
4248 		return -EBUSY;
4249 	mddev->safemode = 0;
4250 	mddev->ro = 0;
4251 	set_disk_ro(disk, 0);
4252 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4253 		mdname(mddev));
4254 	/* Kick recovery or resync if necessary */
4255 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4256 	md_wakeup_thread(mddev->thread);
4257 	md_wakeup_thread(mddev->sync_thread);
4258 	sysfs_notify_dirent(mddev->sysfs_state);
4259 	return 0;
4260 }
4261 
4262 /* similar to deny_write_access, but accounts for our holding a reference
4263  * to the file ourselves */
4264 static int deny_bitmap_write_access(struct file * file)
4265 {
4266 	struct inode *inode = file->f_mapping->host;
4267 
4268 	spin_lock(&inode->i_lock);
4269 	if (atomic_read(&inode->i_writecount) > 1) {
4270 		spin_unlock(&inode->i_lock);
4271 		return -ETXTBSY;
4272 	}
4273 	atomic_set(&inode->i_writecount, -1);
4274 	spin_unlock(&inode->i_lock);
4275 
4276 	return 0;
4277 }
4278 
4279 static void restore_bitmap_write_access(struct file *file)
4280 {
4281 	struct inode *inode = file->f_mapping->host;
4282 
4283 	spin_lock(&inode->i_lock);
4284 	atomic_set(&inode->i_writecount, 1);
4285 	spin_unlock(&inode->i_lock);
4286 }
4287 
4288 /* mode:
4289  *   0 - completely stop and dis-assemble array
4290  *   1 - switch to readonly
4291  *   2 - stop but do not disassemble array
4292  */
4293 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4294 {
4295 	int err = 0;
4296 	struct gendisk *disk = mddev->gendisk;
4297 	mdk_rdev_t *rdev;
4298 
4299 	if (atomic_read(&mddev->openers) > is_open) {
4300 		printk("md: %s still in use.\n",mdname(mddev));
4301 		return -EBUSY;
4302 	}
4303 
4304 	if (mddev->pers) {
4305 
4306 		if (mddev->sync_thread) {
4307 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4308 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4309 			md_unregister_thread(mddev->sync_thread);
4310 			mddev->sync_thread = NULL;
4311 		}
4312 
4313 		del_timer_sync(&mddev->safemode_timer);
4314 
4315 		switch(mode) {
4316 		case 1: /* readonly */
4317 			err  = -ENXIO;
4318 			if (mddev->ro==1)
4319 				goto out;
4320 			mddev->ro = 1;
4321 			break;
4322 		case 0: /* disassemble */
4323 		case 2: /* stop */
4324 			bitmap_flush(mddev);
4325 			md_super_wait(mddev);
4326 			if (mddev->ro)
4327 				set_disk_ro(disk, 0);
4328 
4329 			mddev->pers->stop(mddev);
4330 			mddev->queue->merge_bvec_fn = NULL;
4331 			mddev->queue->unplug_fn = NULL;
4332 			mddev->queue->backing_dev_info.congested_fn = NULL;
4333 			module_put(mddev->pers->owner);
4334 			if (mddev->pers->sync_request)
4335 				mddev->private = &md_redundancy_group;
4336 			mddev->pers = NULL;
4337 			/* tell userspace to handle 'inactive' */
4338 			sysfs_notify_dirent(mddev->sysfs_state);
4339 
4340 			list_for_each_entry(rdev, &mddev->disks, same_set)
4341 				if (rdev->raid_disk >= 0) {
4342 					char nm[20];
4343 					sprintf(nm, "rd%d", rdev->raid_disk);
4344 					sysfs_remove_link(&mddev->kobj, nm);
4345 				}
4346 
4347 			set_capacity(disk, 0);
4348 			mddev->changed = 1;
4349 
4350 			if (mddev->ro)
4351 				mddev->ro = 0;
4352 		}
4353 		if (!mddev->in_sync || mddev->flags) {
4354 			/* mark array as shutdown cleanly */
4355 			mddev->in_sync = 1;
4356 			md_update_sb(mddev, 1);
4357 		}
4358 		if (mode == 1)
4359 			set_disk_ro(disk, 1);
4360 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4361 	}
4362 
4363 	/*
4364 	 * Free resources if final stop
4365 	 */
4366 	if (mode == 0) {
4367 
4368 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4369 
4370 		bitmap_destroy(mddev);
4371 		if (mddev->bitmap_file) {
4372 			restore_bitmap_write_access(mddev->bitmap_file);
4373 			fput(mddev->bitmap_file);
4374 			mddev->bitmap_file = NULL;
4375 		}
4376 		mddev->bitmap_offset = 0;
4377 
4378 		/* make sure all md_delayed_delete calls have finished */
4379 		flush_scheduled_work();
4380 
4381 		export_array(mddev);
4382 
4383 		mddev->array_sectors = 0;
4384 		mddev->external_size = 0;
4385 		mddev->dev_sectors = 0;
4386 		mddev->raid_disks = 0;
4387 		mddev->recovery_cp = 0;
4388 		mddev->resync_min = 0;
4389 		mddev->resync_max = MaxSector;
4390 		mddev->reshape_position = MaxSector;
4391 		mddev->external = 0;
4392 		mddev->persistent = 0;
4393 		mddev->level = LEVEL_NONE;
4394 		mddev->clevel[0] = 0;
4395 		mddev->flags = 0;
4396 		mddev->ro = 0;
4397 		mddev->metadata_type[0] = 0;
4398 		mddev->chunk_size = 0;
4399 		mddev->ctime = mddev->utime = 0;
4400 		mddev->layout = 0;
4401 		mddev->max_disks = 0;
4402 		mddev->events = 0;
4403 		mddev->delta_disks = 0;
4404 		mddev->new_level = LEVEL_NONE;
4405 		mddev->new_layout = 0;
4406 		mddev->new_chunk = 0;
4407 		mddev->curr_resync = 0;
4408 		mddev->resync_mismatches = 0;
4409 		mddev->suspend_lo = mddev->suspend_hi = 0;
4410 		mddev->sync_speed_min = mddev->sync_speed_max = 0;
4411 		mddev->recovery = 0;
4412 		mddev->in_sync = 0;
4413 		mddev->changed = 0;
4414 		mddev->degraded = 0;
4415 		mddev->barriers_work = 0;
4416 		mddev->safemode = 0;
4417 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4418 		if (mddev->hold_active == UNTIL_STOP)
4419 			mddev->hold_active = 0;
4420 
4421 	} else if (mddev->pers)
4422 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
4423 			mdname(mddev));
4424 	err = 0;
4425 	blk_integrity_unregister(disk);
4426 	md_new_event(mddev);
4427 	sysfs_notify_dirent(mddev->sysfs_state);
4428 out:
4429 	return err;
4430 }
4431 
4432 #ifndef MODULE
4433 static void autorun_array(mddev_t *mddev)
4434 {
4435 	mdk_rdev_t *rdev;
4436 	int err;
4437 
4438 	if (list_empty(&mddev->disks))
4439 		return;
4440 
4441 	printk(KERN_INFO "md: running: ");
4442 
4443 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4444 		char b[BDEVNAME_SIZE];
4445 		printk("<%s>", bdevname(rdev->bdev,b));
4446 	}
4447 	printk("\n");
4448 
4449 	err = do_md_run(mddev);
4450 	if (err) {
4451 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4452 		do_md_stop(mddev, 0, 0);
4453 	}
4454 }
4455 
4456 /*
4457  * lets try to run arrays based on all disks that have arrived
4458  * until now. (those are in pending_raid_disks)
4459  *
4460  * the method: pick the first pending disk, collect all disks with
4461  * the same UUID, remove all from the pending list and put them into
4462  * the 'same_array' list. Then order this list based on superblock
4463  * update time (freshest comes first), kick out 'old' disks and
4464  * compare superblocks. If everything's fine then run it.
4465  *
4466  * If "unit" is allocated, then bump its reference count
4467  */
4468 static void autorun_devices(int part)
4469 {
4470 	mdk_rdev_t *rdev0, *rdev, *tmp;
4471 	mddev_t *mddev;
4472 	char b[BDEVNAME_SIZE];
4473 
4474 	printk(KERN_INFO "md: autorun ...\n");
4475 	while (!list_empty(&pending_raid_disks)) {
4476 		int unit;
4477 		dev_t dev;
4478 		LIST_HEAD(candidates);
4479 		rdev0 = list_entry(pending_raid_disks.next,
4480 					 mdk_rdev_t, same_set);
4481 
4482 		printk(KERN_INFO "md: considering %s ...\n",
4483 			bdevname(rdev0->bdev,b));
4484 		INIT_LIST_HEAD(&candidates);
4485 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4486 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4487 				printk(KERN_INFO "md:  adding %s ...\n",
4488 					bdevname(rdev->bdev,b));
4489 				list_move(&rdev->same_set, &candidates);
4490 			}
4491 		/*
4492 		 * now we have a set of devices, with all of them having
4493 		 * mostly sane superblocks. It's time to allocate the
4494 		 * mddev.
4495 		 */
4496 		if (part) {
4497 			dev = MKDEV(mdp_major,
4498 				    rdev0->preferred_minor << MdpMinorShift);
4499 			unit = MINOR(dev) >> MdpMinorShift;
4500 		} else {
4501 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4502 			unit = MINOR(dev);
4503 		}
4504 		if (rdev0->preferred_minor != unit) {
4505 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4506 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4507 			break;
4508 		}
4509 
4510 		md_probe(dev, NULL, NULL);
4511 		mddev = mddev_find(dev);
4512 		if (!mddev || !mddev->gendisk) {
4513 			if (mddev)
4514 				mddev_put(mddev);
4515 			printk(KERN_ERR
4516 				"md: cannot allocate memory for md drive.\n");
4517 			break;
4518 		}
4519 		if (mddev_lock(mddev))
4520 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4521 			       mdname(mddev));
4522 		else if (mddev->raid_disks || mddev->major_version
4523 			 || !list_empty(&mddev->disks)) {
4524 			printk(KERN_WARNING
4525 				"md: %s already running, cannot run %s\n",
4526 				mdname(mddev), bdevname(rdev0->bdev,b));
4527 			mddev_unlock(mddev);
4528 		} else {
4529 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4530 			mddev->persistent = 1;
4531 			rdev_for_each_list(rdev, tmp, &candidates) {
4532 				list_del_init(&rdev->same_set);
4533 				if (bind_rdev_to_array(rdev, mddev))
4534 					export_rdev(rdev);
4535 			}
4536 			autorun_array(mddev);
4537 			mddev_unlock(mddev);
4538 		}
4539 		/* on success, candidates will be empty, on error
4540 		 * it won't...
4541 		 */
4542 		rdev_for_each_list(rdev, tmp, &candidates) {
4543 			list_del_init(&rdev->same_set);
4544 			export_rdev(rdev);
4545 		}
4546 		mddev_put(mddev);
4547 	}
4548 	printk(KERN_INFO "md: ... autorun DONE.\n");
4549 }
4550 #endif /* !MODULE */
4551 
4552 static int get_version(void __user * arg)
4553 {
4554 	mdu_version_t ver;
4555 
4556 	ver.major = MD_MAJOR_VERSION;
4557 	ver.minor = MD_MINOR_VERSION;
4558 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4559 
4560 	if (copy_to_user(arg, &ver, sizeof(ver)))
4561 		return -EFAULT;
4562 
4563 	return 0;
4564 }
4565 
4566 static int get_array_info(mddev_t * mddev, void __user * arg)
4567 {
4568 	mdu_array_info_t info;
4569 	int nr,working,active,failed,spare;
4570 	mdk_rdev_t *rdev;
4571 
4572 	nr=working=active=failed=spare=0;
4573 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4574 		nr++;
4575 		if (test_bit(Faulty, &rdev->flags))
4576 			failed++;
4577 		else {
4578 			working++;
4579 			if (test_bit(In_sync, &rdev->flags))
4580 				active++;
4581 			else
4582 				spare++;
4583 		}
4584 	}
4585 
4586 	info.major_version = mddev->major_version;
4587 	info.minor_version = mddev->minor_version;
4588 	info.patch_version = MD_PATCHLEVEL_VERSION;
4589 	info.ctime         = mddev->ctime;
4590 	info.level         = mddev->level;
4591 	info.size          = mddev->dev_sectors / 2;
4592 	if (info.size != mddev->dev_sectors / 2) /* overflow */
4593 		info.size = -1;
4594 	info.nr_disks      = nr;
4595 	info.raid_disks    = mddev->raid_disks;
4596 	info.md_minor      = mddev->md_minor;
4597 	info.not_persistent= !mddev->persistent;
4598 
4599 	info.utime         = mddev->utime;
4600 	info.state         = 0;
4601 	if (mddev->in_sync)
4602 		info.state = (1<<MD_SB_CLEAN);
4603 	if (mddev->bitmap && mddev->bitmap_offset)
4604 		info.state = (1<<MD_SB_BITMAP_PRESENT);
4605 	info.active_disks  = active;
4606 	info.working_disks = working;
4607 	info.failed_disks  = failed;
4608 	info.spare_disks   = spare;
4609 
4610 	info.layout        = mddev->layout;
4611 	info.chunk_size    = mddev->chunk_size;
4612 
4613 	if (copy_to_user(arg, &info, sizeof(info)))
4614 		return -EFAULT;
4615 
4616 	return 0;
4617 }
4618 
4619 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4620 {
4621 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4622 	char *ptr, *buf = NULL;
4623 	int err = -ENOMEM;
4624 
4625 	if (md_allow_write(mddev))
4626 		file = kmalloc(sizeof(*file), GFP_NOIO);
4627 	else
4628 		file = kmalloc(sizeof(*file), GFP_KERNEL);
4629 
4630 	if (!file)
4631 		goto out;
4632 
4633 	/* bitmap disabled, zero the first byte and copy out */
4634 	if (!mddev->bitmap || !mddev->bitmap->file) {
4635 		file->pathname[0] = '\0';
4636 		goto copy_out;
4637 	}
4638 
4639 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4640 	if (!buf)
4641 		goto out;
4642 
4643 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4644 	if (IS_ERR(ptr))
4645 		goto out;
4646 
4647 	strcpy(file->pathname, ptr);
4648 
4649 copy_out:
4650 	err = 0;
4651 	if (copy_to_user(arg, file, sizeof(*file)))
4652 		err = -EFAULT;
4653 out:
4654 	kfree(buf);
4655 	kfree(file);
4656 	return err;
4657 }
4658 
4659 static int get_disk_info(mddev_t * mddev, void __user * arg)
4660 {
4661 	mdu_disk_info_t info;
4662 	mdk_rdev_t *rdev;
4663 
4664 	if (copy_from_user(&info, arg, sizeof(info)))
4665 		return -EFAULT;
4666 
4667 	rdev = find_rdev_nr(mddev, info.number);
4668 	if (rdev) {
4669 		info.major = MAJOR(rdev->bdev->bd_dev);
4670 		info.minor = MINOR(rdev->bdev->bd_dev);
4671 		info.raid_disk = rdev->raid_disk;
4672 		info.state = 0;
4673 		if (test_bit(Faulty, &rdev->flags))
4674 			info.state |= (1<<MD_DISK_FAULTY);
4675 		else if (test_bit(In_sync, &rdev->flags)) {
4676 			info.state |= (1<<MD_DISK_ACTIVE);
4677 			info.state |= (1<<MD_DISK_SYNC);
4678 		}
4679 		if (test_bit(WriteMostly, &rdev->flags))
4680 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
4681 	} else {
4682 		info.major = info.minor = 0;
4683 		info.raid_disk = -1;
4684 		info.state = (1<<MD_DISK_REMOVED);
4685 	}
4686 
4687 	if (copy_to_user(arg, &info, sizeof(info)))
4688 		return -EFAULT;
4689 
4690 	return 0;
4691 }
4692 
4693 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4694 {
4695 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4696 	mdk_rdev_t *rdev;
4697 	dev_t dev = MKDEV(info->major,info->minor);
4698 
4699 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4700 		return -EOVERFLOW;
4701 
4702 	if (!mddev->raid_disks) {
4703 		int err;
4704 		/* expecting a device which has a superblock */
4705 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4706 		if (IS_ERR(rdev)) {
4707 			printk(KERN_WARNING
4708 				"md: md_import_device returned %ld\n",
4709 				PTR_ERR(rdev));
4710 			return PTR_ERR(rdev);
4711 		}
4712 		if (!list_empty(&mddev->disks)) {
4713 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4714 							mdk_rdev_t, same_set);
4715 			int err = super_types[mddev->major_version]
4716 				.load_super(rdev, rdev0, mddev->minor_version);
4717 			if (err < 0) {
4718 				printk(KERN_WARNING
4719 					"md: %s has different UUID to %s\n",
4720 					bdevname(rdev->bdev,b),
4721 					bdevname(rdev0->bdev,b2));
4722 				export_rdev(rdev);
4723 				return -EINVAL;
4724 			}
4725 		}
4726 		err = bind_rdev_to_array(rdev, mddev);
4727 		if (err)
4728 			export_rdev(rdev);
4729 		return err;
4730 	}
4731 
4732 	/*
4733 	 * add_new_disk can be used once the array is assembled
4734 	 * to add "hot spares".  They must already have a superblock
4735 	 * written
4736 	 */
4737 	if (mddev->pers) {
4738 		int err;
4739 		if (!mddev->pers->hot_add_disk) {
4740 			printk(KERN_WARNING
4741 				"%s: personality does not support diskops!\n",
4742 			       mdname(mddev));
4743 			return -EINVAL;
4744 		}
4745 		if (mddev->persistent)
4746 			rdev = md_import_device(dev, mddev->major_version,
4747 						mddev->minor_version);
4748 		else
4749 			rdev = md_import_device(dev, -1, -1);
4750 		if (IS_ERR(rdev)) {
4751 			printk(KERN_WARNING
4752 				"md: md_import_device returned %ld\n",
4753 				PTR_ERR(rdev));
4754 			return PTR_ERR(rdev);
4755 		}
4756 		/* set save_raid_disk if appropriate */
4757 		if (!mddev->persistent) {
4758 			if (info->state & (1<<MD_DISK_SYNC)  &&
4759 			    info->raid_disk < mddev->raid_disks)
4760 				rdev->raid_disk = info->raid_disk;
4761 			else
4762 				rdev->raid_disk = -1;
4763 		} else
4764 			super_types[mddev->major_version].
4765 				validate_super(mddev, rdev);
4766 		rdev->saved_raid_disk = rdev->raid_disk;
4767 
4768 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
4769 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4770 			set_bit(WriteMostly, &rdev->flags);
4771 		else
4772 			clear_bit(WriteMostly, &rdev->flags);
4773 
4774 		rdev->raid_disk = -1;
4775 		err = bind_rdev_to_array(rdev, mddev);
4776 		if (!err && !mddev->pers->hot_remove_disk) {
4777 			/* If there is hot_add_disk but no hot_remove_disk
4778 			 * then added disks for geometry changes,
4779 			 * and should be added immediately.
4780 			 */
4781 			super_types[mddev->major_version].
4782 				validate_super(mddev, rdev);
4783 			err = mddev->pers->hot_add_disk(mddev, rdev);
4784 			if (err)
4785 				unbind_rdev_from_array(rdev);
4786 		}
4787 		if (err)
4788 			export_rdev(rdev);
4789 		else
4790 			sysfs_notify_dirent(rdev->sysfs_state);
4791 
4792 		md_update_sb(mddev, 1);
4793 		if (mddev->degraded)
4794 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4795 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4796 		md_wakeup_thread(mddev->thread);
4797 		return err;
4798 	}
4799 
4800 	/* otherwise, add_new_disk is only allowed
4801 	 * for major_version==0 superblocks
4802 	 */
4803 	if (mddev->major_version != 0) {
4804 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4805 		       mdname(mddev));
4806 		return -EINVAL;
4807 	}
4808 
4809 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
4810 		int err;
4811 		rdev = md_import_device(dev, -1, 0);
4812 		if (IS_ERR(rdev)) {
4813 			printk(KERN_WARNING
4814 				"md: error, md_import_device() returned %ld\n",
4815 				PTR_ERR(rdev));
4816 			return PTR_ERR(rdev);
4817 		}
4818 		rdev->desc_nr = info->number;
4819 		if (info->raid_disk < mddev->raid_disks)
4820 			rdev->raid_disk = info->raid_disk;
4821 		else
4822 			rdev->raid_disk = -1;
4823 
4824 		if (rdev->raid_disk < mddev->raid_disks)
4825 			if (info->state & (1<<MD_DISK_SYNC))
4826 				set_bit(In_sync, &rdev->flags);
4827 
4828 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4829 			set_bit(WriteMostly, &rdev->flags);
4830 
4831 		if (!mddev->persistent) {
4832 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
4833 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4834 		} else
4835 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4836 		rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4837 
4838 		err = bind_rdev_to_array(rdev, mddev);
4839 		if (err) {
4840 			export_rdev(rdev);
4841 			return err;
4842 		}
4843 	}
4844 
4845 	return 0;
4846 }
4847 
4848 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4849 {
4850 	char b[BDEVNAME_SIZE];
4851 	mdk_rdev_t *rdev;
4852 
4853 	rdev = find_rdev(mddev, dev);
4854 	if (!rdev)
4855 		return -ENXIO;
4856 
4857 	if (rdev->raid_disk >= 0)
4858 		goto busy;
4859 
4860 	kick_rdev_from_array(rdev);
4861 	md_update_sb(mddev, 1);
4862 	md_new_event(mddev);
4863 
4864 	return 0;
4865 busy:
4866 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4867 		bdevname(rdev->bdev,b), mdname(mddev));
4868 	return -EBUSY;
4869 }
4870 
4871 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4872 {
4873 	char b[BDEVNAME_SIZE];
4874 	int err;
4875 	mdk_rdev_t *rdev;
4876 
4877 	if (!mddev->pers)
4878 		return -ENODEV;
4879 
4880 	if (mddev->major_version != 0) {
4881 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4882 			" version-0 superblocks.\n",
4883 			mdname(mddev));
4884 		return -EINVAL;
4885 	}
4886 	if (!mddev->pers->hot_add_disk) {
4887 		printk(KERN_WARNING
4888 			"%s: personality does not support diskops!\n",
4889 			mdname(mddev));
4890 		return -EINVAL;
4891 	}
4892 
4893 	rdev = md_import_device(dev, -1, 0);
4894 	if (IS_ERR(rdev)) {
4895 		printk(KERN_WARNING
4896 			"md: error, md_import_device() returned %ld\n",
4897 			PTR_ERR(rdev));
4898 		return -EINVAL;
4899 	}
4900 
4901 	if (mddev->persistent)
4902 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4903 	else
4904 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4905 
4906 	rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4907 
4908 	if (test_bit(Faulty, &rdev->flags)) {
4909 		printk(KERN_WARNING
4910 			"md: can not hot-add faulty %s disk to %s!\n",
4911 			bdevname(rdev->bdev,b), mdname(mddev));
4912 		err = -EINVAL;
4913 		goto abort_export;
4914 	}
4915 	clear_bit(In_sync, &rdev->flags);
4916 	rdev->desc_nr = -1;
4917 	rdev->saved_raid_disk = -1;
4918 	err = bind_rdev_to_array(rdev, mddev);
4919 	if (err)
4920 		goto abort_export;
4921 
4922 	/*
4923 	 * The rest should better be atomic, we can have disk failures
4924 	 * noticed in interrupt contexts ...
4925 	 */
4926 
4927 	rdev->raid_disk = -1;
4928 
4929 	md_update_sb(mddev, 1);
4930 
4931 	/*
4932 	 * Kick recovery, maybe this spare has to be added to the
4933 	 * array immediately.
4934 	 */
4935 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4936 	md_wakeup_thread(mddev->thread);
4937 	md_new_event(mddev);
4938 	return 0;
4939 
4940 abort_export:
4941 	export_rdev(rdev);
4942 	return err;
4943 }
4944 
4945 static int set_bitmap_file(mddev_t *mddev, int fd)
4946 {
4947 	int err;
4948 
4949 	if (mddev->pers) {
4950 		if (!mddev->pers->quiesce)
4951 			return -EBUSY;
4952 		if (mddev->recovery || mddev->sync_thread)
4953 			return -EBUSY;
4954 		/* we should be able to change the bitmap.. */
4955 	}
4956 
4957 
4958 	if (fd >= 0) {
4959 		if (mddev->bitmap)
4960 			return -EEXIST; /* cannot add when bitmap is present */
4961 		mddev->bitmap_file = fget(fd);
4962 
4963 		if (mddev->bitmap_file == NULL) {
4964 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4965 			       mdname(mddev));
4966 			return -EBADF;
4967 		}
4968 
4969 		err = deny_bitmap_write_access(mddev->bitmap_file);
4970 		if (err) {
4971 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4972 			       mdname(mddev));
4973 			fput(mddev->bitmap_file);
4974 			mddev->bitmap_file = NULL;
4975 			return err;
4976 		}
4977 		mddev->bitmap_offset = 0; /* file overrides offset */
4978 	} else if (mddev->bitmap == NULL)
4979 		return -ENOENT; /* cannot remove what isn't there */
4980 	err = 0;
4981 	if (mddev->pers) {
4982 		mddev->pers->quiesce(mddev, 1);
4983 		if (fd >= 0)
4984 			err = bitmap_create(mddev);
4985 		if (fd < 0 || err) {
4986 			bitmap_destroy(mddev);
4987 			fd = -1; /* make sure to put the file */
4988 		}
4989 		mddev->pers->quiesce(mddev, 0);
4990 	}
4991 	if (fd < 0) {
4992 		if (mddev->bitmap_file) {
4993 			restore_bitmap_write_access(mddev->bitmap_file);
4994 			fput(mddev->bitmap_file);
4995 		}
4996 		mddev->bitmap_file = NULL;
4997 	}
4998 
4999 	return err;
5000 }
5001 
5002 /*
5003  * set_array_info is used two different ways
5004  * The original usage is when creating a new array.
5005  * In this usage, raid_disks is > 0 and it together with
5006  *  level, size, not_persistent,layout,chunksize determine the
5007  *  shape of the array.
5008  *  This will always create an array with a type-0.90.0 superblock.
5009  * The newer usage is when assembling an array.
5010  *  In this case raid_disks will be 0, and the major_version field is
5011  *  use to determine which style super-blocks are to be found on the devices.
5012  *  The minor and patch _version numbers are also kept incase the
5013  *  super_block handler wishes to interpret them.
5014  */
5015 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5016 {
5017 
5018 	if (info->raid_disks == 0) {
5019 		/* just setting version number for superblock loading */
5020 		if (info->major_version < 0 ||
5021 		    info->major_version >= ARRAY_SIZE(super_types) ||
5022 		    super_types[info->major_version].name == NULL) {
5023 			/* maybe try to auto-load a module? */
5024 			printk(KERN_INFO
5025 				"md: superblock version %d not known\n",
5026 				info->major_version);
5027 			return -EINVAL;
5028 		}
5029 		mddev->major_version = info->major_version;
5030 		mddev->minor_version = info->minor_version;
5031 		mddev->patch_version = info->patch_version;
5032 		mddev->persistent = !info->not_persistent;
5033 		return 0;
5034 	}
5035 	mddev->major_version = MD_MAJOR_VERSION;
5036 	mddev->minor_version = MD_MINOR_VERSION;
5037 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5038 	mddev->ctime         = get_seconds();
5039 
5040 	mddev->level         = info->level;
5041 	mddev->clevel[0]     = 0;
5042 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5043 	mddev->raid_disks    = info->raid_disks;
5044 	/* don't set md_minor, it is determined by which /dev/md* was
5045 	 * openned
5046 	 */
5047 	if (info->state & (1<<MD_SB_CLEAN))
5048 		mddev->recovery_cp = MaxSector;
5049 	else
5050 		mddev->recovery_cp = 0;
5051 	mddev->persistent    = ! info->not_persistent;
5052 	mddev->external	     = 0;
5053 
5054 	mddev->layout        = info->layout;
5055 	mddev->chunk_size    = info->chunk_size;
5056 
5057 	mddev->max_disks     = MD_SB_DISKS;
5058 
5059 	if (mddev->persistent)
5060 		mddev->flags         = 0;
5061 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5062 
5063 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
5064 	mddev->bitmap_offset = 0;
5065 
5066 	mddev->reshape_position = MaxSector;
5067 
5068 	/*
5069 	 * Generate a 128 bit UUID
5070 	 */
5071 	get_random_bytes(mddev->uuid, 16);
5072 
5073 	mddev->new_level = mddev->level;
5074 	mddev->new_chunk = mddev->chunk_size;
5075 	mddev->new_layout = mddev->layout;
5076 	mddev->delta_disks = 0;
5077 
5078 	return 0;
5079 }
5080 
5081 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5082 {
5083 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5084 
5085 	if (mddev->external_size)
5086 		return;
5087 
5088 	mddev->array_sectors = array_sectors;
5089 }
5090 EXPORT_SYMBOL(md_set_array_sectors);
5091 
5092 static int update_size(mddev_t *mddev, sector_t num_sectors)
5093 {
5094 	mdk_rdev_t *rdev;
5095 	int rv;
5096 	int fit = (num_sectors == 0);
5097 
5098 	if (mddev->pers->resize == NULL)
5099 		return -EINVAL;
5100 	/* The "num_sectors" is the number of sectors of each device that
5101 	 * is used.  This can only make sense for arrays with redundancy.
5102 	 * linear and raid0 always use whatever space is available. We can only
5103 	 * consider changing this number if no resync or reconstruction is
5104 	 * happening, and if the new size is acceptable. It must fit before the
5105 	 * sb_start or, if that is <data_offset, it must fit before the size
5106 	 * of each device.  If num_sectors is zero, we find the largest size
5107 	 * that fits.
5108 
5109 	 */
5110 	if (mddev->sync_thread)
5111 		return -EBUSY;
5112 	if (mddev->bitmap)
5113 		/* Sorry, cannot grow a bitmap yet, just remove it,
5114 		 * grow, and re-add.
5115 		 */
5116 		return -EBUSY;
5117 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5118 		sector_t avail = rdev->sectors;
5119 
5120 		if (fit && (num_sectors == 0 || num_sectors > avail))
5121 			num_sectors = avail;
5122 		if (avail < num_sectors)
5123 			return -ENOSPC;
5124 	}
5125 	rv = mddev->pers->resize(mddev, num_sectors);
5126 	if (!rv) {
5127 		struct block_device *bdev;
5128 
5129 		bdev = bdget_disk(mddev->gendisk, 0);
5130 		if (bdev) {
5131 			mutex_lock(&bdev->bd_inode->i_mutex);
5132 			i_size_write(bdev->bd_inode,
5133 				     (loff_t)mddev->array_sectors << 9);
5134 			mutex_unlock(&bdev->bd_inode->i_mutex);
5135 			bdput(bdev);
5136 		}
5137 	}
5138 	return rv;
5139 }
5140 
5141 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5142 {
5143 	int rv;
5144 	/* change the number of raid disks */
5145 	if (mddev->pers->check_reshape == NULL)
5146 		return -EINVAL;
5147 	if (raid_disks <= 0 ||
5148 	    raid_disks >= mddev->max_disks)
5149 		return -EINVAL;
5150 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5151 		return -EBUSY;
5152 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5153 
5154 	rv = mddev->pers->check_reshape(mddev);
5155 	return rv;
5156 }
5157 
5158 
5159 /*
5160  * update_array_info is used to change the configuration of an
5161  * on-line array.
5162  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5163  * fields in the info are checked against the array.
5164  * Any differences that cannot be handled will cause an error.
5165  * Normally, only one change can be managed at a time.
5166  */
5167 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5168 {
5169 	int rv = 0;
5170 	int cnt = 0;
5171 	int state = 0;
5172 
5173 	/* calculate expected state,ignoring low bits */
5174 	if (mddev->bitmap && mddev->bitmap_offset)
5175 		state |= (1 << MD_SB_BITMAP_PRESENT);
5176 
5177 	if (mddev->major_version != info->major_version ||
5178 	    mddev->minor_version != info->minor_version ||
5179 /*	    mddev->patch_version != info->patch_version || */
5180 	    mddev->ctime         != info->ctime         ||
5181 	    mddev->level         != info->level         ||
5182 /*	    mddev->layout        != info->layout        || */
5183 	    !mddev->persistent	 != info->not_persistent||
5184 	    mddev->chunk_size    != info->chunk_size    ||
5185 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5186 	    ((state^info->state) & 0xfffffe00)
5187 		)
5188 		return -EINVAL;
5189 	/* Check there is only one change */
5190 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5191 		cnt++;
5192 	if (mddev->raid_disks != info->raid_disks)
5193 		cnt++;
5194 	if (mddev->layout != info->layout)
5195 		cnt++;
5196 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5197 		cnt++;
5198 	if (cnt == 0)
5199 		return 0;
5200 	if (cnt > 1)
5201 		return -EINVAL;
5202 
5203 	if (mddev->layout != info->layout) {
5204 		/* Change layout
5205 		 * we don't need to do anything at the md level, the
5206 		 * personality will take care of it all.
5207 		 */
5208 		if (mddev->pers->reconfig == NULL)
5209 			return -EINVAL;
5210 		else
5211 			return mddev->pers->reconfig(mddev, info->layout, -1);
5212 	}
5213 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5214 		rv = update_size(mddev, (sector_t)info->size * 2);
5215 
5216 	if (mddev->raid_disks    != info->raid_disks)
5217 		rv = update_raid_disks(mddev, info->raid_disks);
5218 
5219 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5220 		if (mddev->pers->quiesce == NULL)
5221 			return -EINVAL;
5222 		if (mddev->recovery || mddev->sync_thread)
5223 			return -EBUSY;
5224 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5225 			/* add the bitmap */
5226 			if (mddev->bitmap)
5227 				return -EEXIST;
5228 			if (mddev->default_bitmap_offset == 0)
5229 				return -EINVAL;
5230 			mddev->bitmap_offset = mddev->default_bitmap_offset;
5231 			mddev->pers->quiesce(mddev, 1);
5232 			rv = bitmap_create(mddev);
5233 			if (rv)
5234 				bitmap_destroy(mddev);
5235 			mddev->pers->quiesce(mddev, 0);
5236 		} else {
5237 			/* remove the bitmap */
5238 			if (!mddev->bitmap)
5239 				return -ENOENT;
5240 			if (mddev->bitmap->file)
5241 				return -EINVAL;
5242 			mddev->pers->quiesce(mddev, 1);
5243 			bitmap_destroy(mddev);
5244 			mddev->pers->quiesce(mddev, 0);
5245 			mddev->bitmap_offset = 0;
5246 		}
5247 	}
5248 	md_update_sb(mddev, 1);
5249 	return rv;
5250 }
5251 
5252 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5253 {
5254 	mdk_rdev_t *rdev;
5255 
5256 	if (mddev->pers == NULL)
5257 		return -ENODEV;
5258 
5259 	rdev = find_rdev(mddev, dev);
5260 	if (!rdev)
5261 		return -ENODEV;
5262 
5263 	md_error(mddev, rdev);
5264 	return 0;
5265 }
5266 
5267 /*
5268  * We have a problem here : there is no easy way to give a CHS
5269  * virtual geometry. We currently pretend that we have a 2 heads
5270  * 4 sectors (with a BIG number of cylinders...). This drives
5271  * dosfs just mad... ;-)
5272  */
5273 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5274 {
5275 	mddev_t *mddev = bdev->bd_disk->private_data;
5276 
5277 	geo->heads = 2;
5278 	geo->sectors = 4;
5279 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
5280 	return 0;
5281 }
5282 
5283 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5284 			unsigned int cmd, unsigned long arg)
5285 {
5286 	int err = 0;
5287 	void __user *argp = (void __user *)arg;
5288 	mddev_t *mddev = NULL;
5289 
5290 	if (!capable(CAP_SYS_ADMIN))
5291 		return -EACCES;
5292 
5293 	/*
5294 	 * Commands dealing with the RAID driver but not any
5295 	 * particular array:
5296 	 */
5297 	switch (cmd)
5298 	{
5299 		case RAID_VERSION:
5300 			err = get_version(argp);
5301 			goto done;
5302 
5303 		case PRINT_RAID_DEBUG:
5304 			err = 0;
5305 			md_print_devices();
5306 			goto done;
5307 
5308 #ifndef MODULE
5309 		case RAID_AUTORUN:
5310 			err = 0;
5311 			autostart_arrays(arg);
5312 			goto done;
5313 #endif
5314 		default:;
5315 	}
5316 
5317 	/*
5318 	 * Commands creating/starting a new array:
5319 	 */
5320 
5321 	mddev = bdev->bd_disk->private_data;
5322 
5323 	if (!mddev) {
5324 		BUG();
5325 		goto abort;
5326 	}
5327 
5328 	err = mddev_lock(mddev);
5329 	if (err) {
5330 		printk(KERN_INFO
5331 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5332 			err, cmd);
5333 		goto abort;
5334 	}
5335 
5336 	switch (cmd)
5337 	{
5338 		case SET_ARRAY_INFO:
5339 			{
5340 				mdu_array_info_t info;
5341 				if (!arg)
5342 					memset(&info, 0, sizeof(info));
5343 				else if (copy_from_user(&info, argp, sizeof(info))) {
5344 					err = -EFAULT;
5345 					goto abort_unlock;
5346 				}
5347 				if (mddev->pers) {
5348 					err = update_array_info(mddev, &info);
5349 					if (err) {
5350 						printk(KERN_WARNING "md: couldn't update"
5351 						       " array info. %d\n", err);
5352 						goto abort_unlock;
5353 					}
5354 					goto done_unlock;
5355 				}
5356 				if (!list_empty(&mddev->disks)) {
5357 					printk(KERN_WARNING
5358 					       "md: array %s already has disks!\n",
5359 					       mdname(mddev));
5360 					err = -EBUSY;
5361 					goto abort_unlock;
5362 				}
5363 				if (mddev->raid_disks) {
5364 					printk(KERN_WARNING
5365 					       "md: array %s already initialised!\n",
5366 					       mdname(mddev));
5367 					err = -EBUSY;
5368 					goto abort_unlock;
5369 				}
5370 				err = set_array_info(mddev, &info);
5371 				if (err) {
5372 					printk(KERN_WARNING "md: couldn't set"
5373 					       " array info. %d\n", err);
5374 					goto abort_unlock;
5375 				}
5376 			}
5377 			goto done_unlock;
5378 
5379 		default:;
5380 	}
5381 
5382 	/*
5383 	 * Commands querying/configuring an existing array:
5384 	 */
5385 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5386 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5387 	if ((!mddev->raid_disks && !mddev->external)
5388 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5389 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5390 	    && cmd != GET_BITMAP_FILE) {
5391 		err = -ENODEV;
5392 		goto abort_unlock;
5393 	}
5394 
5395 	/*
5396 	 * Commands even a read-only array can execute:
5397 	 */
5398 	switch (cmd)
5399 	{
5400 		case GET_ARRAY_INFO:
5401 			err = get_array_info(mddev, argp);
5402 			goto done_unlock;
5403 
5404 		case GET_BITMAP_FILE:
5405 			err = get_bitmap_file(mddev, argp);
5406 			goto done_unlock;
5407 
5408 		case GET_DISK_INFO:
5409 			err = get_disk_info(mddev, argp);
5410 			goto done_unlock;
5411 
5412 		case RESTART_ARRAY_RW:
5413 			err = restart_array(mddev);
5414 			goto done_unlock;
5415 
5416 		case STOP_ARRAY:
5417 			err = do_md_stop(mddev, 0, 1);
5418 			goto done_unlock;
5419 
5420 		case STOP_ARRAY_RO:
5421 			err = do_md_stop(mddev, 1, 1);
5422 			goto done_unlock;
5423 
5424 	}
5425 
5426 	/*
5427 	 * The remaining ioctls are changing the state of the
5428 	 * superblock, so we do not allow them on read-only arrays.
5429 	 * However non-MD ioctls (e.g. get-size) will still come through
5430 	 * here and hit the 'default' below, so only disallow
5431 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5432 	 */
5433 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5434 		if (mddev->ro == 2) {
5435 			mddev->ro = 0;
5436 			sysfs_notify_dirent(mddev->sysfs_state);
5437 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5438 			md_wakeup_thread(mddev->thread);
5439 		} else {
5440 			err = -EROFS;
5441 			goto abort_unlock;
5442 		}
5443 	}
5444 
5445 	switch (cmd)
5446 	{
5447 		case ADD_NEW_DISK:
5448 		{
5449 			mdu_disk_info_t info;
5450 			if (copy_from_user(&info, argp, sizeof(info)))
5451 				err = -EFAULT;
5452 			else
5453 				err = add_new_disk(mddev, &info);
5454 			goto done_unlock;
5455 		}
5456 
5457 		case HOT_REMOVE_DISK:
5458 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5459 			goto done_unlock;
5460 
5461 		case HOT_ADD_DISK:
5462 			err = hot_add_disk(mddev, new_decode_dev(arg));
5463 			goto done_unlock;
5464 
5465 		case SET_DISK_FAULTY:
5466 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5467 			goto done_unlock;
5468 
5469 		case RUN_ARRAY:
5470 			err = do_md_run(mddev);
5471 			goto done_unlock;
5472 
5473 		case SET_BITMAP_FILE:
5474 			err = set_bitmap_file(mddev, (int)arg);
5475 			goto done_unlock;
5476 
5477 		default:
5478 			err = -EINVAL;
5479 			goto abort_unlock;
5480 	}
5481 
5482 done_unlock:
5483 abort_unlock:
5484 	if (mddev->hold_active == UNTIL_IOCTL &&
5485 	    err != -EINVAL)
5486 		mddev->hold_active = 0;
5487 	mddev_unlock(mddev);
5488 
5489 	return err;
5490 done:
5491 	if (err)
5492 		MD_BUG();
5493 abort:
5494 	return err;
5495 }
5496 
5497 static int md_open(struct block_device *bdev, fmode_t mode)
5498 {
5499 	/*
5500 	 * Succeed if we can lock the mddev, which confirms that
5501 	 * it isn't being stopped right now.
5502 	 */
5503 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5504 	int err;
5505 
5506 	if (mddev->gendisk != bdev->bd_disk) {
5507 		/* we are racing with mddev_put which is discarding this
5508 		 * bd_disk.
5509 		 */
5510 		mddev_put(mddev);
5511 		/* Wait until bdev->bd_disk is definitely gone */
5512 		flush_scheduled_work();
5513 		/* Then retry the open from the top */
5514 		return -ERESTARTSYS;
5515 	}
5516 	BUG_ON(mddev != bdev->bd_disk->private_data);
5517 
5518 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5519 		goto out;
5520 
5521 	err = 0;
5522 	atomic_inc(&mddev->openers);
5523 	mddev_unlock(mddev);
5524 
5525 	check_disk_change(bdev);
5526  out:
5527 	return err;
5528 }
5529 
5530 static int md_release(struct gendisk *disk, fmode_t mode)
5531 {
5532  	mddev_t *mddev = disk->private_data;
5533 
5534 	BUG_ON(!mddev);
5535 	atomic_dec(&mddev->openers);
5536 	mddev_put(mddev);
5537 
5538 	return 0;
5539 }
5540 
5541 static int md_media_changed(struct gendisk *disk)
5542 {
5543 	mddev_t *mddev = disk->private_data;
5544 
5545 	return mddev->changed;
5546 }
5547 
5548 static int md_revalidate(struct gendisk *disk)
5549 {
5550 	mddev_t *mddev = disk->private_data;
5551 
5552 	mddev->changed = 0;
5553 	return 0;
5554 }
5555 static struct block_device_operations md_fops =
5556 {
5557 	.owner		= THIS_MODULE,
5558 	.open		= md_open,
5559 	.release	= md_release,
5560 	.locked_ioctl	= md_ioctl,
5561 	.getgeo		= md_getgeo,
5562 	.media_changed	= md_media_changed,
5563 	.revalidate_disk= md_revalidate,
5564 };
5565 
5566 static int md_thread(void * arg)
5567 {
5568 	mdk_thread_t *thread = arg;
5569 
5570 	/*
5571 	 * md_thread is a 'system-thread', it's priority should be very
5572 	 * high. We avoid resource deadlocks individually in each
5573 	 * raid personality. (RAID5 does preallocation) We also use RR and
5574 	 * the very same RT priority as kswapd, thus we will never get
5575 	 * into a priority inversion deadlock.
5576 	 *
5577 	 * we definitely have to have equal or higher priority than
5578 	 * bdflush, otherwise bdflush will deadlock if there are too
5579 	 * many dirty RAID5 blocks.
5580 	 */
5581 
5582 	allow_signal(SIGKILL);
5583 	while (!kthread_should_stop()) {
5584 
5585 		/* We need to wait INTERRUPTIBLE so that
5586 		 * we don't add to the load-average.
5587 		 * That means we need to be sure no signals are
5588 		 * pending
5589 		 */
5590 		if (signal_pending(current))
5591 			flush_signals(current);
5592 
5593 		wait_event_interruptible_timeout
5594 			(thread->wqueue,
5595 			 test_bit(THREAD_WAKEUP, &thread->flags)
5596 			 || kthread_should_stop(),
5597 			 thread->timeout);
5598 
5599 		clear_bit(THREAD_WAKEUP, &thread->flags);
5600 
5601 		thread->run(thread->mddev);
5602 	}
5603 
5604 	return 0;
5605 }
5606 
5607 void md_wakeup_thread(mdk_thread_t *thread)
5608 {
5609 	if (thread) {
5610 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5611 		set_bit(THREAD_WAKEUP, &thread->flags);
5612 		wake_up(&thread->wqueue);
5613 	}
5614 }
5615 
5616 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5617 				 const char *name)
5618 {
5619 	mdk_thread_t *thread;
5620 
5621 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5622 	if (!thread)
5623 		return NULL;
5624 
5625 	init_waitqueue_head(&thread->wqueue);
5626 
5627 	thread->run = run;
5628 	thread->mddev = mddev;
5629 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
5630 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5631 	if (IS_ERR(thread->tsk)) {
5632 		kfree(thread);
5633 		return NULL;
5634 	}
5635 	return thread;
5636 }
5637 
5638 void md_unregister_thread(mdk_thread_t *thread)
5639 {
5640 	if (!thread)
5641 		return;
5642 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5643 
5644 	kthread_stop(thread->tsk);
5645 	kfree(thread);
5646 }
5647 
5648 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5649 {
5650 	if (!mddev) {
5651 		MD_BUG();
5652 		return;
5653 	}
5654 
5655 	if (!rdev || test_bit(Faulty, &rdev->flags))
5656 		return;
5657 
5658 	if (mddev->external)
5659 		set_bit(Blocked, &rdev->flags);
5660 /*
5661 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5662 		mdname(mddev),
5663 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5664 		__builtin_return_address(0),__builtin_return_address(1),
5665 		__builtin_return_address(2),__builtin_return_address(3));
5666 */
5667 	if (!mddev->pers)
5668 		return;
5669 	if (!mddev->pers->error_handler)
5670 		return;
5671 	mddev->pers->error_handler(mddev,rdev);
5672 	if (mddev->degraded)
5673 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5674 	set_bit(StateChanged, &rdev->flags);
5675 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5676 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5677 	md_wakeup_thread(mddev->thread);
5678 	md_new_event_inintr(mddev);
5679 }
5680 
5681 /* seq_file implementation /proc/mdstat */
5682 
5683 static void status_unused(struct seq_file *seq)
5684 {
5685 	int i = 0;
5686 	mdk_rdev_t *rdev;
5687 
5688 	seq_printf(seq, "unused devices: ");
5689 
5690 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5691 		char b[BDEVNAME_SIZE];
5692 		i++;
5693 		seq_printf(seq, "%s ",
5694 			      bdevname(rdev->bdev,b));
5695 	}
5696 	if (!i)
5697 		seq_printf(seq, "<none>");
5698 
5699 	seq_printf(seq, "\n");
5700 }
5701 
5702 
5703 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5704 {
5705 	sector_t max_sectors, resync, res;
5706 	unsigned long dt, db;
5707 	sector_t rt;
5708 	int scale;
5709 	unsigned int per_milli;
5710 
5711 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
5712 
5713 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5714 		max_sectors = mddev->resync_max_sectors;
5715 	else
5716 		max_sectors = mddev->dev_sectors;
5717 
5718 	/*
5719 	 * Should not happen.
5720 	 */
5721 	if (!max_sectors) {
5722 		MD_BUG();
5723 		return;
5724 	}
5725 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
5726 	 * in a sector_t, and (max_sectors>>scale) will fit in a
5727 	 * u32, as those are the requirements for sector_div.
5728 	 * Thus 'scale' must be at least 10
5729 	 */
5730 	scale = 10;
5731 	if (sizeof(sector_t) > sizeof(unsigned long)) {
5732 		while ( max_sectors/2 > (1ULL<<(scale+32)))
5733 			scale++;
5734 	}
5735 	res = (resync>>scale)*1000;
5736 	sector_div(res, (u32)((max_sectors>>scale)+1));
5737 
5738 	per_milli = res;
5739 	{
5740 		int i, x = per_milli/50, y = 20-x;
5741 		seq_printf(seq, "[");
5742 		for (i = 0; i < x; i++)
5743 			seq_printf(seq, "=");
5744 		seq_printf(seq, ">");
5745 		for (i = 0; i < y; i++)
5746 			seq_printf(seq, ".");
5747 		seq_printf(seq, "] ");
5748 	}
5749 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5750 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5751 		    "reshape" :
5752 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5753 		     "check" :
5754 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5755 		      "resync" : "recovery"))),
5756 		   per_milli/10, per_milli % 10,
5757 		   (unsigned long long) resync/2,
5758 		   (unsigned long long) max_sectors/2);
5759 
5760 	/*
5761 	 * dt: time from mark until now
5762 	 * db: blocks written from mark until now
5763 	 * rt: remaining time
5764 	 *
5765 	 * rt is a sector_t, so could be 32bit or 64bit.
5766 	 * So we divide before multiply in case it is 32bit and close
5767 	 * to the limit.
5768 	 * We scale the divisor (db) by 32 to avoid loosing precision
5769 	 * near the end of resync when the number of remaining sectors
5770 	 * is close to 'db'.
5771 	 * We then divide rt by 32 after multiplying by db to compensate.
5772 	 * The '+1' avoids division by zero if db is very small.
5773 	 */
5774 	dt = ((jiffies - mddev->resync_mark) / HZ);
5775 	if (!dt) dt++;
5776 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5777 		- mddev->resync_mark_cnt;
5778 
5779 	rt = max_sectors - resync;    /* number of remaining sectors */
5780 	sector_div(rt, db/32+1);
5781 	rt *= dt;
5782 	rt >>= 5;
5783 
5784 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
5785 		   ((unsigned long)rt % 60)/6);
5786 
5787 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5788 }
5789 
5790 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5791 {
5792 	struct list_head *tmp;
5793 	loff_t l = *pos;
5794 	mddev_t *mddev;
5795 
5796 	if (l >= 0x10000)
5797 		return NULL;
5798 	if (!l--)
5799 		/* header */
5800 		return (void*)1;
5801 
5802 	spin_lock(&all_mddevs_lock);
5803 	list_for_each(tmp,&all_mddevs)
5804 		if (!l--) {
5805 			mddev = list_entry(tmp, mddev_t, all_mddevs);
5806 			mddev_get(mddev);
5807 			spin_unlock(&all_mddevs_lock);
5808 			return mddev;
5809 		}
5810 	spin_unlock(&all_mddevs_lock);
5811 	if (!l--)
5812 		return (void*)2;/* tail */
5813 	return NULL;
5814 }
5815 
5816 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5817 {
5818 	struct list_head *tmp;
5819 	mddev_t *next_mddev, *mddev = v;
5820 
5821 	++*pos;
5822 	if (v == (void*)2)
5823 		return NULL;
5824 
5825 	spin_lock(&all_mddevs_lock);
5826 	if (v == (void*)1)
5827 		tmp = all_mddevs.next;
5828 	else
5829 		tmp = mddev->all_mddevs.next;
5830 	if (tmp != &all_mddevs)
5831 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5832 	else {
5833 		next_mddev = (void*)2;
5834 		*pos = 0x10000;
5835 	}
5836 	spin_unlock(&all_mddevs_lock);
5837 
5838 	if (v != (void*)1)
5839 		mddev_put(mddev);
5840 	return next_mddev;
5841 
5842 }
5843 
5844 static void md_seq_stop(struct seq_file *seq, void *v)
5845 {
5846 	mddev_t *mddev = v;
5847 
5848 	if (mddev && v != (void*)1 && v != (void*)2)
5849 		mddev_put(mddev);
5850 }
5851 
5852 struct mdstat_info {
5853 	int event;
5854 };
5855 
5856 static int md_seq_show(struct seq_file *seq, void *v)
5857 {
5858 	mddev_t *mddev = v;
5859 	sector_t sectors;
5860 	mdk_rdev_t *rdev;
5861 	struct mdstat_info *mi = seq->private;
5862 	struct bitmap *bitmap;
5863 
5864 	if (v == (void*)1) {
5865 		struct mdk_personality *pers;
5866 		seq_printf(seq, "Personalities : ");
5867 		spin_lock(&pers_lock);
5868 		list_for_each_entry(pers, &pers_list, list)
5869 			seq_printf(seq, "[%s] ", pers->name);
5870 
5871 		spin_unlock(&pers_lock);
5872 		seq_printf(seq, "\n");
5873 		mi->event = atomic_read(&md_event_count);
5874 		return 0;
5875 	}
5876 	if (v == (void*)2) {
5877 		status_unused(seq);
5878 		return 0;
5879 	}
5880 
5881 	if (mddev_lock(mddev) < 0)
5882 		return -EINTR;
5883 
5884 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5885 		seq_printf(seq, "%s : %sactive", mdname(mddev),
5886 						mddev->pers ? "" : "in");
5887 		if (mddev->pers) {
5888 			if (mddev->ro==1)
5889 				seq_printf(seq, " (read-only)");
5890 			if (mddev->ro==2)
5891 				seq_printf(seq, " (auto-read-only)");
5892 			seq_printf(seq, " %s", mddev->pers->name);
5893 		}
5894 
5895 		sectors = 0;
5896 		list_for_each_entry(rdev, &mddev->disks, same_set) {
5897 			char b[BDEVNAME_SIZE];
5898 			seq_printf(seq, " %s[%d]",
5899 				bdevname(rdev->bdev,b), rdev->desc_nr);
5900 			if (test_bit(WriteMostly, &rdev->flags))
5901 				seq_printf(seq, "(W)");
5902 			if (test_bit(Faulty, &rdev->flags)) {
5903 				seq_printf(seq, "(F)");
5904 				continue;
5905 			} else if (rdev->raid_disk < 0)
5906 				seq_printf(seq, "(S)"); /* spare */
5907 			sectors += rdev->sectors;
5908 		}
5909 
5910 		if (!list_empty(&mddev->disks)) {
5911 			if (mddev->pers)
5912 				seq_printf(seq, "\n      %llu blocks",
5913 					   (unsigned long long)
5914 					   mddev->array_sectors / 2);
5915 			else
5916 				seq_printf(seq, "\n      %llu blocks",
5917 					   (unsigned long long)sectors / 2);
5918 		}
5919 		if (mddev->persistent) {
5920 			if (mddev->major_version != 0 ||
5921 			    mddev->minor_version != 90) {
5922 				seq_printf(seq," super %d.%d",
5923 					   mddev->major_version,
5924 					   mddev->minor_version);
5925 			}
5926 		} else if (mddev->external)
5927 			seq_printf(seq, " super external:%s",
5928 				   mddev->metadata_type);
5929 		else
5930 			seq_printf(seq, " super non-persistent");
5931 
5932 		if (mddev->pers) {
5933 			mddev->pers->status(seq, mddev);
5934 	 		seq_printf(seq, "\n      ");
5935 			if (mddev->pers->sync_request) {
5936 				if (mddev->curr_resync > 2) {
5937 					status_resync(seq, mddev);
5938 					seq_printf(seq, "\n      ");
5939 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5940 					seq_printf(seq, "\tresync=DELAYED\n      ");
5941 				else if (mddev->recovery_cp < MaxSector)
5942 					seq_printf(seq, "\tresync=PENDING\n      ");
5943 			}
5944 		} else
5945 			seq_printf(seq, "\n       ");
5946 
5947 		if ((bitmap = mddev->bitmap)) {
5948 			unsigned long chunk_kb;
5949 			unsigned long flags;
5950 			spin_lock_irqsave(&bitmap->lock, flags);
5951 			chunk_kb = bitmap->chunksize >> 10;
5952 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5953 				"%lu%s chunk",
5954 				bitmap->pages - bitmap->missing_pages,
5955 				bitmap->pages,
5956 				(bitmap->pages - bitmap->missing_pages)
5957 					<< (PAGE_SHIFT - 10),
5958 				chunk_kb ? chunk_kb : bitmap->chunksize,
5959 				chunk_kb ? "KB" : "B");
5960 			if (bitmap->file) {
5961 				seq_printf(seq, ", file: ");
5962 				seq_path(seq, &bitmap->file->f_path, " \t\n");
5963 			}
5964 
5965 			seq_printf(seq, "\n");
5966 			spin_unlock_irqrestore(&bitmap->lock, flags);
5967 		}
5968 
5969 		seq_printf(seq, "\n");
5970 	}
5971 	mddev_unlock(mddev);
5972 
5973 	return 0;
5974 }
5975 
5976 static const struct seq_operations md_seq_ops = {
5977 	.start  = md_seq_start,
5978 	.next   = md_seq_next,
5979 	.stop   = md_seq_stop,
5980 	.show   = md_seq_show,
5981 };
5982 
5983 static int md_seq_open(struct inode *inode, struct file *file)
5984 {
5985 	int error;
5986 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5987 	if (mi == NULL)
5988 		return -ENOMEM;
5989 
5990 	error = seq_open(file, &md_seq_ops);
5991 	if (error)
5992 		kfree(mi);
5993 	else {
5994 		struct seq_file *p = file->private_data;
5995 		p->private = mi;
5996 		mi->event = atomic_read(&md_event_count);
5997 	}
5998 	return error;
5999 }
6000 
6001 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6002 {
6003 	struct seq_file *m = filp->private_data;
6004 	struct mdstat_info *mi = m->private;
6005 	int mask;
6006 
6007 	poll_wait(filp, &md_event_waiters, wait);
6008 
6009 	/* always allow read */
6010 	mask = POLLIN | POLLRDNORM;
6011 
6012 	if (mi->event != atomic_read(&md_event_count))
6013 		mask |= POLLERR | POLLPRI;
6014 	return mask;
6015 }
6016 
6017 static const struct file_operations md_seq_fops = {
6018 	.owner		= THIS_MODULE,
6019 	.open           = md_seq_open,
6020 	.read           = seq_read,
6021 	.llseek         = seq_lseek,
6022 	.release	= seq_release_private,
6023 	.poll		= mdstat_poll,
6024 };
6025 
6026 int register_md_personality(struct mdk_personality *p)
6027 {
6028 	spin_lock(&pers_lock);
6029 	list_add_tail(&p->list, &pers_list);
6030 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6031 	spin_unlock(&pers_lock);
6032 	return 0;
6033 }
6034 
6035 int unregister_md_personality(struct mdk_personality *p)
6036 {
6037 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6038 	spin_lock(&pers_lock);
6039 	list_del_init(&p->list);
6040 	spin_unlock(&pers_lock);
6041 	return 0;
6042 }
6043 
6044 static int is_mddev_idle(mddev_t *mddev, int init)
6045 {
6046 	mdk_rdev_t * rdev;
6047 	int idle;
6048 	int curr_events;
6049 
6050 	idle = 1;
6051 	rcu_read_lock();
6052 	rdev_for_each_rcu(rdev, mddev) {
6053 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6054 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6055 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6056 			      atomic_read(&disk->sync_io);
6057 		/* sync IO will cause sync_io to increase before the disk_stats
6058 		 * as sync_io is counted when a request starts, and
6059 		 * disk_stats is counted when it completes.
6060 		 * So resync activity will cause curr_events to be smaller than
6061 		 * when there was no such activity.
6062 		 * non-sync IO will cause disk_stat to increase without
6063 		 * increasing sync_io so curr_events will (eventually)
6064 		 * be larger than it was before.  Once it becomes
6065 		 * substantially larger, the test below will cause
6066 		 * the array to appear non-idle, and resync will slow
6067 		 * down.
6068 		 * If there is a lot of outstanding resync activity when
6069 		 * we set last_event to curr_events, then all that activity
6070 		 * completing might cause the array to appear non-idle
6071 		 * and resync will be slowed down even though there might
6072 		 * not have been non-resync activity.  This will only
6073 		 * happen once though.  'last_events' will soon reflect
6074 		 * the state where there is little or no outstanding
6075 		 * resync requests, and further resync activity will
6076 		 * always make curr_events less than last_events.
6077 		 *
6078 		 */
6079 		if (init || curr_events - rdev->last_events > 64) {
6080 			rdev->last_events = curr_events;
6081 			idle = 0;
6082 		}
6083 	}
6084 	rcu_read_unlock();
6085 	return idle;
6086 }
6087 
6088 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6089 {
6090 	/* another "blocks" (512byte) blocks have been synced */
6091 	atomic_sub(blocks, &mddev->recovery_active);
6092 	wake_up(&mddev->recovery_wait);
6093 	if (!ok) {
6094 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6095 		md_wakeup_thread(mddev->thread);
6096 		// stop recovery, signal do_sync ....
6097 	}
6098 }
6099 
6100 
6101 /* md_write_start(mddev, bi)
6102  * If we need to update some array metadata (e.g. 'active' flag
6103  * in superblock) before writing, schedule a superblock update
6104  * and wait for it to complete.
6105  */
6106 void md_write_start(mddev_t *mddev, struct bio *bi)
6107 {
6108 	int did_change = 0;
6109 	if (bio_data_dir(bi) != WRITE)
6110 		return;
6111 
6112 	BUG_ON(mddev->ro == 1);
6113 	if (mddev->ro == 2) {
6114 		/* need to switch to read/write */
6115 		mddev->ro = 0;
6116 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6117 		md_wakeup_thread(mddev->thread);
6118 		md_wakeup_thread(mddev->sync_thread);
6119 		did_change = 1;
6120 	}
6121 	atomic_inc(&mddev->writes_pending);
6122 	if (mddev->safemode == 1)
6123 		mddev->safemode = 0;
6124 	if (mddev->in_sync) {
6125 		spin_lock_irq(&mddev->write_lock);
6126 		if (mddev->in_sync) {
6127 			mddev->in_sync = 0;
6128 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6129 			md_wakeup_thread(mddev->thread);
6130 			did_change = 1;
6131 		}
6132 		spin_unlock_irq(&mddev->write_lock);
6133 	}
6134 	if (did_change)
6135 		sysfs_notify_dirent(mddev->sysfs_state);
6136 	wait_event(mddev->sb_wait,
6137 		   !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6138 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6139 }
6140 
6141 void md_write_end(mddev_t *mddev)
6142 {
6143 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6144 		if (mddev->safemode == 2)
6145 			md_wakeup_thread(mddev->thread);
6146 		else if (mddev->safemode_delay)
6147 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6148 	}
6149 }
6150 
6151 /* md_allow_write(mddev)
6152  * Calling this ensures that the array is marked 'active' so that writes
6153  * may proceed without blocking.  It is important to call this before
6154  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6155  * Must be called with mddev_lock held.
6156  *
6157  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6158  * is dropped, so return -EAGAIN after notifying userspace.
6159  */
6160 int md_allow_write(mddev_t *mddev)
6161 {
6162 	if (!mddev->pers)
6163 		return 0;
6164 	if (mddev->ro)
6165 		return 0;
6166 	if (!mddev->pers->sync_request)
6167 		return 0;
6168 
6169 	spin_lock_irq(&mddev->write_lock);
6170 	if (mddev->in_sync) {
6171 		mddev->in_sync = 0;
6172 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6173 		if (mddev->safemode_delay &&
6174 		    mddev->safemode == 0)
6175 			mddev->safemode = 1;
6176 		spin_unlock_irq(&mddev->write_lock);
6177 		md_update_sb(mddev, 0);
6178 		sysfs_notify_dirent(mddev->sysfs_state);
6179 	} else
6180 		spin_unlock_irq(&mddev->write_lock);
6181 
6182 	if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6183 		return -EAGAIN;
6184 	else
6185 		return 0;
6186 }
6187 EXPORT_SYMBOL_GPL(md_allow_write);
6188 
6189 #define SYNC_MARKS	10
6190 #define	SYNC_MARK_STEP	(3*HZ)
6191 void md_do_sync(mddev_t *mddev)
6192 {
6193 	mddev_t *mddev2;
6194 	unsigned int currspeed = 0,
6195 		 window;
6196 	sector_t max_sectors,j, io_sectors;
6197 	unsigned long mark[SYNC_MARKS];
6198 	sector_t mark_cnt[SYNC_MARKS];
6199 	int last_mark,m;
6200 	struct list_head *tmp;
6201 	sector_t last_check;
6202 	int skipped = 0;
6203 	mdk_rdev_t *rdev;
6204 	char *desc;
6205 
6206 	/* just incase thread restarts... */
6207 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6208 		return;
6209 	if (mddev->ro) /* never try to sync a read-only array */
6210 		return;
6211 
6212 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6213 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6214 			desc = "data-check";
6215 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6216 			desc = "requested-resync";
6217 		else
6218 			desc = "resync";
6219 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6220 		desc = "reshape";
6221 	else
6222 		desc = "recovery";
6223 
6224 	/* we overload curr_resync somewhat here.
6225 	 * 0 == not engaged in resync at all
6226 	 * 2 == checking that there is no conflict with another sync
6227 	 * 1 == like 2, but have yielded to allow conflicting resync to
6228 	 *		commense
6229 	 * other == active in resync - this many blocks
6230 	 *
6231 	 * Before starting a resync we must have set curr_resync to
6232 	 * 2, and then checked that every "conflicting" array has curr_resync
6233 	 * less than ours.  When we find one that is the same or higher
6234 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6235 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6236 	 * This will mean we have to start checking from the beginning again.
6237 	 *
6238 	 */
6239 
6240 	do {
6241 		mddev->curr_resync = 2;
6242 
6243 	try_again:
6244 		if (kthread_should_stop()) {
6245 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6246 			goto skip;
6247 		}
6248 		for_each_mddev(mddev2, tmp) {
6249 			if (mddev2 == mddev)
6250 				continue;
6251 			if (!mddev->parallel_resync
6252 			&&  mddev2->curr_resync
6253 			&&  match_mddev_units(mddev, mddev2)) {
6254 				DEFINE_WAIT(wq);
6255 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6256 					/* arbitrarily yield */
6257 					mddev->curr_resync = 1;
6258 					wake_up(&resync_wait);
6259 				}
6260 				if (mddev > mddev2 && mddev->curr_resync == 1)
6261 					/* no need to wait here, we can wait the next
6262 					 * time 'round when curr_resync == 2
6263 					 */
6264 					continue;
6265 				/* We need to wait 'interruptible' so as not to
6266 				 * contribute to the load average, and not to
6267 				 * be caught by 'softlockup'
6268 				 */
6269 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6270 				if (!kthread_should_stop() &&
6271 				    mddev2->curr_resync >= mddev->curr_resync) {
6272 					printk(KERN_INFO "md: delaying %s of %s"
6273 					       " until %s has finished (they"
6274 					       " share one or more physical units)\n",
6275 					       desc, mdname(mddev), mdname(mddev2));
6276 					mddev_put(mddev2);
6277 					if (signal_pending(current))
6278 						flush_signals(current);
6279 					schedule();
6280 					finish_wait(&resync_wait, &wq);
6281 					goto try_again;
6282 				}
6283 				finish_wait(&resync_wait, &wq);
6284 			}
6285 		}
6286 	} while (mddev->curr_resync < 2);
6287 
6288 	j = 0;
6289 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6290 		/* resync follows the size requested by the personality,
6291 		 * which defaults to physical size, but can be virtual size
6292 		 */
6293 		max_sectors = mddev->resync_max_sectors;
6294 		mddev->resync_mismatches = 0;
6295 		/* we don't use the checkpoint if there's a bitmap */
6296 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6297 			j = mddev->resync_min;
6298 		else if (!mddev->bitmap)
6299 			j = mddev->recovery_cp;
6300 
6301 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6302 		max_sectors = mddev->dev_sectors;
6303 	else {
6304 		/* recovery follows the physical size of devices */
6305 		max_sectors = mddev->dev_sectors;
6306 		j = MaxSector;
6307 		list_for_each_entry(rdev, &mddev->disks, same_set)
6308 			if (rdev->raid_disk >= 0 &&
6309 			    !test_bit(Faulty, &rdev->flags) &&
6310 			    !test_bit(In_sync, &rdev->flags) &&
6311 			    rdev->recovery_offset < j)
6312 				j = rdev->recovery_offset;
6313 	}
6314 
6315 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6316 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6317 		" %d KB/sec/disk.\n", speed_min(mddev));
6318 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6319 	       "(but not more than %d KB/sec) for %s.\n",
6320 	       speed_max(mddev), desc);
6321 
6322 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6323 
6324 	io_sectors = 0;
6325 	for (m = 0; m < SYNC_MARKS; m++) {
6326 		mark[m] = jiffies;
6327 		mark_cnt[m] = io_sectors;
6328 	}
6329 	last_mark = 0;
6330 	mddev->resync_mark = mark[last_mark];
6331 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6332 
6333 	/*
6334 	 * Tune reconstruction:
6335 	 */
6336 	window = 32*(PAGE_SIZE/512);
6337 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6338 		window/2,(unsigned long long) max_sectors/2);
6339 
6340 	atomic_set(&mddev->recovery_active, 0);
6341 	last_check = 0;
6342 
6343 	if (j>2) {
6344 		printk(KERN_INFO
6345 		       "md: resuming %s of %s from checkpoint.\n",
6346 		       desc, mdname(mddev));
6347 		mddev->curr_resync = j;
6348 	}
6349 
6350 	while (j < max_sectors) {
6351 		sector_t sectors;
6352 
6353 		skipped = 0;
6354 
6355 		if ((mddev->curr_resync > mddev->curr_resync_completed &&
6356 		     (mddev->curr_resync - mddev->curr_resync_completed)
6357 		    > (max_sectors >> 4)) ||
6358 		    (j - mddev->curr_resync_completed)*2
6359 		    >= mddev->resync_max - mddev->curr_resync_completed
6360 			) {
6361 			/* time to update curr_resync_completed */
6362 			blk_unplug(mddev->queue);
6363 			wait_event(mddev->recovery_wait,
6364 				   atomic_read(&mddev->recovery_active) == 0);
6365 			mddev->curr_resync_completed =
6366 				mddev->curr_resync;
6367 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6368 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6369 		}
6370 
6371 		if (j >= mddev->resync_max)
6372 			wait_event(mddev->recovery_wait,
6373 				   mddev->resync_max > j
6374 				   || kthread_should_stop());
6375 
6376 		if (kthread_should_stop())
6377 			goto interrupted;
6378 
6379 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6380 						  currspeed < speed_min(mddev));
6381 		if (sectors == 0) {
6382 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6383 			goto out;
6384 		}
6385 
6386 		if (!skipped) { /* actual IO requested */
6387 			io_sectors += sectors;
6388 			atomic_add(sectors, &mddev->recovery_active);
6389 		}
6390 
6391 		j += sectors;
6392 		if (j>1) mddev->curr_resync = j;
6393 		mddev->curr_mark_cnt = io_sectors;
6394 		if (last_check == 0)
6395 			/* this is the earliers that rebuilt will be
6396 			 * visible in /proc/mdstat
6397 			 */
6398 			md_new_event(mddev);
6399 
6400 		if (last_check + window > io_sectors || j == max_sectors)
6401 			continue;
6402 
6403 		last_check = io_sectors;
6404 
6405 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6406 			break;
6407 
6408 	repeat:
6409 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6410 			/* step marks */
6411 			int next = (last_mark+1) % SYNC_MARKS;
6412 
6413 			mddev->resync_mark = mark[next];
6414 			mddev->resync_mark_cnt = mark_cnt[next];
6415 			mark[next] = jiffies;
6416 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6417 			last_mark = next;
6418 		}
6419 
6420 
6421 		if (kthread_should_stop())
6422 			goto interrupted;
6423 
6424 
6425 		/*
6426 		 * this loop exits only if either when we are slower than
6427 		 * the 'hard' speed limit, or the system was IO-idle for
6428 		 * a jiffy.
6429 		 * the system might be non-idle CPU-wise, but we only care
6430 		 * about not overloading the IO subsystem. (things like an
6431 		 * e2fsck being done on the RAID array should execute fast)
6432 		 */
6433 		blk_unplug(mddev->queue);
6434 		cond_resched();
6435 
6436 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6437 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6438 
6439 		if (currspeed > speed_min(mddev)) {
6440 			if ((currspeed > speed_max(mddev)) ||
6441 					!is_mddev_idle(mddev, 0)) {
6442 				msleep(500);
6443 				goto repeat;
6444 			}
6445 		}
6446 	}
6447 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6448 	/*
6449 	 * this also signals 'finished resyncing' to md_stop
6450 	 */
6451  out:
6452 	blk_unplug(mddev->queue);
6453 
6454 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6455 
6456 	/* tell personality that we are finished */
6457 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6458 
6459 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6460 	    mddev->curr_resync > 2) {
6461 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6462 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6463 				if (mddev->curr_resync >= mddev->recovery_cp) {
6464 					printk(KERN_INFO
6465 					       "md: checkpointing %s of %s.\n",
6466 					       desc, mdname(mddev));
6467 					mddev->recovery_cp = mddev->curr_resync;
6468 				}
6469 			} else
6470 				mddev->recovery_cp = MaxSector;
6471 		} else {
6472 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6473 				mddev->curr_resync = MaxSector;
6474 			list_for_each_entry(rdev, &mddev->disks, same_set)
6475 				if (rdev->raid_disk >= 0 &&
6476 				    !test_bit(Faulty, &rdev->flags) &&
6477 				    !test_bit(In_sync, &rdev->flags) &&
6478 				    rdev->recovery_offset < mddev->curr_resync)
6479 					rdev->recovery_offset = mddev->curr_resync;
6480 		}
6481 	}
6482 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6483 
6484  skip:
6485 	mddev->curr_resync = 0;
6486 	mddev->curr_resync_completed = 0;
6487 	mddev->resync_min = 0;
6488 	mddev->resync_max = MaxSector;
6489 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6490 	wake_up(&resync_wait);
6491 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6492 	md_wakeup_thread(mddev->thread);
6493 	return;
6494 
6495  interrupted:
6496 	/*
6497 	 * got a signal, exit.
6498 	 */
6499 	printk(KERN_INFO
6500 	       "md: md_do_sync() got signal ... exiting\n");
6501 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6502 	goto out;
6503 
6504 }
6505 EXPORT_SYMBOL_GPL(md_do_sync);
6506 
6507 
6508 static int remove_and_add_spares(mddev_t *mddev)
6509 {
6510 	mdk_rdev_t *rdev;
6511 	int spares = 0;
6512 
6513 	mddev->curr_resync_completed = 0;
6514 
6515 	list_for_each_entry(rdev, &mddev->disks, same_set)
6516 		if (rdev->raid_disk >= 0 &&
6517 		    !test_bit(Blocked, &rdev->flags) &&
6518 		    (test_bit(Faulty, &rdev->flags) ||
6519 		     ! test_bit(In_sync, &rdev->flags)) &&
6520 		    atomic_read(&rdev->nr_pending)==0) {
6521 			if (mddev->pers->hot_remove_disk(
6522 				    mddev, rdev->raid_disk)==0) {
6523 				char nm[20];
6524 				sprintf(nm,"rd%d", rdev->raid_disk);
6525 				sysfs_remove_link(&mddev->kobj, nm);
6526 				rdev->raid_disk = -1;
6527 			}
6528 		}
6529 
6530 	if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6531 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6532 			if (rdev->raid_disk >= 0 &&
6533 			    !test_bit(In_sync, &rdev->flags) &&
6534 			    !test_bit(Blocked, &rdev->flags))
6535 				spares++;
6536 			if (rdev->raid_disk < 0
6537 			    && !test_bit(Faulty, &rdev->flags)) {
6538 				rdev->recovery_offset = 0;
6539 				if (mddev->pers->
6540 				    hot_add_disk(mddev, rdev) == 0) {
6541 					char nm[20];
6542 					sprintf(nm, "rd%d", rdev->raid_disk);
6543 					if (sysfs_create_link(&mddev->kobj,
6544 							      &rdev->kobj, nm))
6545 						printk(KERN_WARNING
6546 						       "md: cannot register "
6547 						       "%s for %s\n",
6548 						       nm, mdname(mddev));
6549 					spares++;
6550 					md_new_event(mddev);
6551 				} else
6552 					break;
6553 			}
6554 		}
6555 	}
6556 	return spares;
6557 }
6558 /*
6559  * This routine is regularly called by all per-raid-array threads to
6560  * deal with generic issues like resync and super-block update.
6561  * Raid personalities that don't have a thread (linear/raid0) do not
6562  * need this as they never do any recovery or update the superblock.
6563  *
6564  * It does not do any resync itself, but rather "forks" off other threads
6565  * to do that as needed.
6566  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6567  * "->recovery" and create a thread at ->sync_thread.
6568  * When the thread finishes it sets MD_RECOVERY_DONE
6569  * and wakeups up this thread which will reap the thread and finish up.
6570  * This thread also removes any faulty devices (with nr_pending == 0).
6571  *
6572  * The overall approach is:
6573  *  1/ if the superblock needs updating, update it.
6574  *  2/ If a recovery thread is running, don't do anything else.
6575  *  3/ If recovery has finished, clean up, possibly marking spares active.
6576  *  4/ If there are any faulty devices, remove them.
6577  *  5/ If array is degraded, try to add spares devices
6578  *  6/ If array has spares or is not in-sync, start a resync thread.
6579  */
6580 void md_check_recovery(mddev_t *mddev)
6581 {
6582 	mdk_rdev_t *rdev;
6583 
6584 
6585 	if (mddev->bitmap)
6586 		bitmap_daemon_work(mddev->bitmap);
6587 
6588 	if (mddev->ro)
6589 		return;
6590 
6591 	if (signal_pending(current)) {
6592 		if (mddev->pers->sync_request && !mddev->external) {
6593 			printk(KERN_INFO "md: %s in immediate safe mode\n",
6594 			       mdname(mddev));
6595 			mddev->safemode = 2;
6596 		}
6597 		flush_signals(current);
6598 	}
6599 
6600 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6601 		return;
6602 	if ( ! (
6603 		(mddev->flags && !mddev->external) ||
6604 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6605 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6606 		(mddev->external == 0 && mddev->safemode == 1) ||
6607 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6608 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6609 		))
6610 		return;
6611 
6612 	if (mddev_trylock(mddev)) {
6613 		int spares = 0;
6614 
6615 		if (mddev->ro) {
6616 			/* Only thing we do on a ro array is remove
6617 			 * failed devices.
6618 			 */
6619 			remove_and_add_spares(mddev);
6620 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6621 			goto unlock;
6622 		}
6623 
6624 		if (!mddev->external) {
6625 			int did_change = 0;
6626 			spin_lock_irq(&mddev->write_lock);
6627 			if (mddev->safemode &&
6628 			    !atomic_read(&mddev->writes_pending) &&
6629 			    !mddev->in_sync &&
6630 			    mddev->recovery_cp == MaxSector) {
6631 				mddev->in_sync = 1;
6632 				did_change = 1;
6633 				if (mddev->persistent)
6634 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6635 			}
6636 			if (mddev->safemode == 1)
6637 				mddev->safemode = 0;
6638 			spin_unlock_irq(&mddev->write_lock);
6639 			if (did_change)
6640 				sysfs_notify_dirent(mddev->sysfs_state);
6641 		}
6642 
6643 		if (mddev->flags)
6644 			md_update_sb(mddev, 0);
6645 
6646 		list_for_each_entry(rdev, &mddev->disks, same_set)
6647 			if (test_and_clear_bit(StateChanged, &rdev->flags))
6648 				sysfs_notify_dirent(rdev->sysfs_state);
6649 
6650 
6651 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6652 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6653 			/* resync/recovery still happening */
6654 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6655 			goto unlock;
6656 		}
6657 		if (mddev->sync_thread) {
6658 			/* resync has finished, collect result */
6659 			md_unregister_thread(mddev->sync_thread);
6660 			mddev->sync_thread = NULL;
6661 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6662 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6663 				/* success...*/
6664 				/* activate any spares */
6665 				if (mddev->pers->spare_active(mddev))
6666 					sysfs_notify(&mddev->kobj, NULL,
6667 						     "degraded");
6668 			}
6669 			if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6670 			    mddev->pers->finish_reshape)
6671 				mddev->pers->finish_reshape(mddev);
6672 			md_update_sb(mddev, 1);
6673 
6674 			/* if array is no-longer degraded, then any saved_raid_disk
6675 			 * information must be scrapped
6676 			 */
6677 			if (!mddev->degraded)
6678 				list_for_each_entry(rdev, &mddev->disks, same_set)
6679 					rdev->saved_raid_disk = -1;
6680 
6681 			mddev->recovery = 0;
6682 			/* flag recovery needed just to double check */
6683 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6684 			sysfs_notify_dirent(mddev->sysfs_action);
6685 			md_new_event(mddev);
6686 			goto unlock;
6687 		}
6688 		/* Set RUNNING before clearing NEEDED to avoid
6689 		 * any transients in the value of "sync_action".
6690 		 */
6691 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6692 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6693 		/* Clear some bits that don't mean anything, but
6694 		 * might be left set
6695 		 */
6696 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6697 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6698 
6699 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6700 			goto unlock;
6701 		/* no recovery is running.
6702 		 * remove any failed drives, then
6703 		 * add spares if possible.
6704 		 * Spare are also removed and re-added, to allow
6705 		 * the personality to fail the re-add.
6706 		 */
6707 
6708 		if (mddev->reshape_position != MaxSector) {
6709 			if (mddev->pers->check_reshape(mddev) != 0)
6710 				/* Cannot proceed */
6711 				goto unlock;
6712 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6713 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6714 		} else if ((spares = remove_and_add_spares(mddev))) {
6715 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6716 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6717 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6718 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6719 		} else if (mddev->recovery_cp < MaxSector) {
6720 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6721 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6722 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6723 			/* nothing to be done ... */
6724 			goto unlock;
6725 
6726 		if (mddev->pers->sync_request) {
6727 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6728 				/* We are adding a device or devices to an array
6729 				 * which has the bitmap stored on all devices.
6730 				 * So make sure all bitmap pages get written
6731 				 */
6732 				bitmap_write_all(mddev->bitmap);
6733 			}
6734 			mddev->sync_thread = md_register_thread(md_do_sync,
6735 								mddev,
6736 								"%s_resync");
6737 			if (!mddev->sync_thread) {
6738 				printk(KERN_ERR "%s: could not start resync"
6739 					" thread...\n",
6740 					mdname(mddev));
6741 				/* leave the spares where they are, it shouldn't hurt */
6742 				mddev->recovery = 0;
6743 			} else
6744 				md_wakeup_thread(mddev->sync_thread);
6745 			sysfs_notify_dirent(mddev->sysfs_action);
6746 			md_new_event(mddev);
6747 		}
6748 	unlock:
6749 		if (!mddev->sync_thread) {
6750 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6751 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6752 					       &mddev->recovery))
6753 				if (mddev->sysfs_action)
6754 					sysfs_notify_dirent(mddev->sysfs_action);
6755 		}
6756 		mddev_unlock(mddev);
6757 	}
6758 }
6759 
6760 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6761 {
6762 	sysfs_notify_dirent(rdev->sysfs_state);
6763 	wait_event_timeout(rdev->blocked_wait,
6764 			   !test_bit(Blocked, &rdev->flags),
6765 			   msecs_to_jiffies(5000));
6766 	rdev_dec_pending(rdev, mddev);
6767 }
6768 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6769 
6770 static int md_notify_reboot(struct notifier_block *this,
6771 			    unsigned long code, void *x)
6772 {
6773 	struct list_head *tmp;
6774 	mddev_t *mddev;
6775 
6776 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6777 
6778 		printk(KERN_INFO "md: stopping all md devices.\n");
6779 
6780 		for_each_mddev(mddev, tmp)
6781 			if (mddev_trylock(mddev)) {
6782 				/* Force a switch to readonly even array
6783 				 * appears to still be in use.  Hence
6784 				 * the '100'.
6785 				 */
6786 				do_md_stop(mddev, 1, 100);
6787 				mddev_unlock(mddev);
6788 			}
6789 		/*
6790 		 * certain more exotic SCSI devices are known to be
6791 		 * volatile wrt too early system reboots. While the
6792 		 * right place to handle this issue is the given
6793 		 * driver, we do want to have a safe RAID driver ...
6794 		 */
6795 		mdelay(1000*1);
6796 	}
6797 	return NOTIFY_DONE;
6798 }
6799 
6800 static struct notifier_block md_notifier = {
6801 	.notifier_call	= md_notify_reboot,
6802 	.next		= NULL,
6803 	.priority	= INT_MAX, /* before any real devices */
6804 };
6805 
6806 static void md_geninit(void)
6807 {
6808 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6809 
6810 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6811 }
6812 
6813 static int __init md_init(void)
6814 {
6815 	if (register_blkdev(MD_MAJOR, "md"))
6816 		return -1;
6817 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6818 		unregister_blkdev(MD_MAJOR, "md");
6819 		return -1;
6820 	}
6821 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
6822 			    md_probe, NULL, NULL);
6823 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6824 			    md_probe, NULL, NULL);
6825 
6826 	register_reboot_notifier(&md_notifier);
6827 	raid_table_header = register_sysctl_table(raid_root_table);
6828 
6829 	md_geninit();
6830 	return 0;
6831 }
6832 
6833 
6834 #ifndef MODULE
6835 
6836 /*
6837  * Searches all registered partitions for autorun RAID arrays
6838  * at boot time.
6839  */
6840 
6841 static LIST_HEAD(all_detected_devices);
6842 struct detected_devices_node {
6843 	struct list_head list;
6844 	dev_t dev;
6845 };
6846 
6847 void md_autodetect_dev(dev_t dev)
6848 {
6849 	struct detected_devices_node *node_detected_dev;
6850 
6851 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6852 	if (node_detected_dev) {
6853 		node_detected_dev->dev = dev;
6854 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
6855 	} else {
6856 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6857 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6858 	}
6859 }
6860 
6861 
6862 static void autostart_arrays(int part)
6863 {
6864 	mdk_rdev_t *rdev;
6865 	struct detected_devices_node *node_detected_dev;
6866 	dev_t dev;
6867 	int i_scanned, i_passed;
6868 
6869 	i_scanned = 0;
6870 	i_passed = 0;
6871 
6872 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6873 
6874 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6875 		i_scanned++;
6876 		node_detected_dev = list_entry(all_detected_devices.next,
6877 					struct detected_devices_node, list);
6878 		list_del(&node_detected_dev->list);
6879 		dev = node_detected_dev->dev;
6880 		kfree(node_detected_dev);
6881 		rdev = md_import_device(dev,0, 90);
6882 		if (IS_ERR(rdev))
6883 			continue;
6884 
6885 		if (test_bit(Faulty, &rdev->flags)) {
6886 			MD_BUG();
6887 			continue;
6888 		}
6889 		set_bit(AutoDetected, &rdev->flags);
6890 		list_add(&rdev->same_set, &pending_raid_disks);
6891 		i_passed++;
6892 	}
6893 
6894 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6895 						i_scanned, i_passed);
6896 
6897 	autorun_devices(part);
6898 }
6899 
6900 #endif /* !MODULE */
6901 
6902 static __exit void md_exit(void)
6903 {
6904 	mddev_t *mddev;
6905 	struct list_head *tmp;
6906 
6907 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
6908 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6909 
6910 	unregister_blkdev(MD_MAJOR,"md");
6911 	unregister_blkdev(mdp_major, "mdp");
6912 	unregister_reboot_notifier(&md_notifier);
6913 	unregister_sysctl_table(raid_table_header);
6914 	remove_proc_entry("mdstat", NULL);
6915 	for_each_mddev(mddev, tmp) {
6916 		export_array(mddev);
6917 		mddev->hold_active = 0;
6918 	}
6919 }
6920 
6921 subsys_initcall(md_init);
6922 module_exit(md_exit)
6923 
6924 static int get_ro(char *buffer, struct kernel_param *kp)
6925 {
6926 	return sprintf(buffer, "%d", start_readonly);
6927 }
6928 static int set_ro(const char *val, struct kernel_param *kp)
6929 {
6930 	char *e;
6931 	int num = simple_strtoul(val, &e, 10);
6932 	if (*val && (*e == '\0' || *e == '\n')) {
6933 		start_readonly = num;
6934 		return 0;
6935 	}
6936 	return -EINVAL;
6937 }
6938 
6939 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6940 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6941 
6942 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6943 
6944 EXPORT_SYMBOL(register_md_personality);
6945 EXPORT_SYMBOL(unregister_md_personality);
6946 EXPORT_SYMBOL(md_error);
6947 EXPORT_SYMBOL(md_done_sync);
6948 EXPORT_SYMBOL(md_write_start);
6949 EXPORT_SYMBOL(md_write_end);
6950 EXPORT_SYMBOL(md_register_thread);
6951 EXPORT_SYMBOL(md_unregister_thread);
6952 EXPORT_SYMBOL(md_wakeup_thread);
6953 EXPORT_SYMBOL(md_check_recovery);
6954 MODULE_LICENSE("GPL");
6955 MODULE_ALIAS("md");
6956 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
6957