1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/slab.h> 62 #include <linux/percpu-refcount.h> 63 64 #include <trace/events/block.h> 65 #include "md.h" 66 #include "md-bitmap.h" 67 #include "md-cluster.h" 68 69 #ifndef MODULE 70 static void autostart_arrays(int part); 71 #endif 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 91 static int remove_and_add_spares(struct mddev *mddev, 92 struct md_rdev *this); 93 static void mddev_detach(struct mddev *mddev); 94 95 /* 96 * Default number of read corrections we'll attempt on an rdev 97 * before ejecting it from the array. We divide the read error 98 * count by 2 for every hour elapsed between read errors. 99 */ 100 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 101 /* 102 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 103 * is 1000 KB/sec, so the extra system load does not show up that much. 104 * Increase it if you want to have more _guaranteed_ speed. Note that 105 * the RAID driver will use the maximum available bandwidth if the IO 106 * subsystem is idle. There is also an 'absolute maximum' reconstruction 107 * speed limit - in case reconstruction slows down your system despite 108 * idle IO detection. 109 * 110 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 111 * or /sys/block/mdX/md/sync_speed_{min,max} 112 */ 113 114 static int sysctl_speed_limit_min = 1000; 115 static int sysctl_speed_limit_max = 200000; 116 static inline int speed_min(struct mddev *mddev) 117 { 118 return mddev->sync_speed_min ? 119 mddev->sync_speed_min : sysctl_speed_limit_min; 120 } 121 122 static inline int speed_max(struct mddev *mddev) 123 { 124 return mddev->sync_speed_max ? 125 mddev->sync_speed_max : sysctl_speed_limit_max; 126 } 127 128 static int rdev_init_wb(struct md_rdev *rdev) 129 { 130 if (rdev->bdev->bd_queue->nr_hw_queues == 1) 131 return 0; 132 133 spin_lock_init(&rdev->wb_list_lock); 134 INIT_LIST_HEAD(&rdev->wb_list); 135 init_waitqueue_head(&rdev->wb_io_wait); 136 set_bit(WBCollisionCheck, &rdev->flags); 137 138 return 1; 139 } 140 141 /* 142 * Create wb_info_pool if rdev is the first multi-queue device flaged 143 * with writemostly, also write-behind mode is enabled. 144 */ 145 void mddev_create_wb_pool(struct mddev *mddev, struct md_rdev *rdev, 146 bool is_suspend) 147 { 148 if (mddev->bitmap_info.max_write_behind == 0) 149 return; 150 151 if (!test_bit(WriteMostly, &rdev->flags) || !rdev_init_wb(rdev)) 152 return; 153 154 if (mddev->wb_info_pool == NULL) { 155 unsigned int noio_flag; 156 157 if (!is_suspend) 158 mddev_suspend(mddev); 159 noio_flag = memalloc_noio_save(); 160 mddev->wb_info_pool = mempool_create_kmalloc_pool(NR_WB_INFOS, 161 sizeof(struct wb_info)); 162 memalloc_noio_restore(noio_flag); 163 if (!mddev->wb_info_pool) 164 pr_err("can't alloc memory pool for writemostly\n"); 165 if (!is_suspend) 166 mddev_resume(mddev); 167 } 168 } 169 EXPORT_SYMBOL_GPL(mddev_create_wb_pool); 170 171 /* 172 * destroy wb_info_pool if rdev is the last device flaged with WBCollisionCheck. 173 */ 174 static void mddev_destroy_wb_pool(struct mddev *mddev, struct md_rdev *rdev) 175 { 176 if (!test_and_clear_bit(WBCollisionCheck, &rdev->flags)) 177 return; 178 179 if (mddev->wb_info_pool) { 180 struct md_rdev *temp; 181 int num = 0; 182 183 /* 184 * Check if other rdevs need wb_info_pool. 185 */ 186 rdev_for_each(temp, mddev) 187 if (temp != rdev && 188 test_bit(WBCollisionCheck, &temp->flags)) 189 num++; 190 if (!num) { 191 mddev_suspend(rdev->mddev); 192 mempool_destroy(mddev->wb_info_pool); 193 mddev->wb_info_pool = NULL; 194 mddev_resume(rdev->mddev); 195 } 196 } 197 } 198 199 static struct ctl_table_header *raid_table_header; 200 201 static struct ctl_table raid_table[] = { 202 { 203 .procname = "speed_limit_min", 204 .data = &sysctl_speed_limit_min, 205 .maxlen = sizeof(int), 206 .mode = S_IRUGO|S_IWUSR, 207 .proc_handler = proc_dointvec, 208 }, 209 { 210 .procname = "speed_limit_max", 211 .data = &sysctl_speed_limit_max, 212 .maxlen = sizeof(int), 213 .mode = S_IRUGO|S_IWUSR, 214 .proc_handler = proc_dointvec, 215 }, 216 { } 217 }; 218 219 static struct ctl_table raid_dir_table[] = { 220 { 221 .procname = "raid", 222 .maxlen = 0, 223 .mode = S_IRUGO|S_IXUGO, 224 .child = raid_table, 225 }, 226 { } 227 }; 228 229 static struct ctl_table raid_root_table[] = { 230 { 231 .procname = "dev", 232 .maxlen = 0, 233 .mode = 0555, 234 .child = raid_dir_table, 235 }, 236 { } 237 }; 238 239 static const struct block_device_operations md_fops; 240 241 static int start_readonly; 242 243 /* 244 * The original mechanism for creating an md device is to create 245 * a device node in /dev and to open it. This causes races with device-close. 246 * The preferred method is to write to the "new_array" module parameter. 247 * This can avoid races. 248 * Setting create_on_open to false disables the original mechanism 249 * so all the races disappear. 250 */ 251 static bool create_on_open = true; 252 253 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 254 struct mddev *mddev) 255 { 256 if (!mddev || !bioset_initialized(&mddev->bio_set)) 257 return bio_alloc(gfp_mask, nr_iovecs); 258 259 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 260 } 261 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 262 263 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 264 { 265 if (!mddev || !bioset_initialized(&mddev->sync_set)) 266 return bio_alloc(GFP_NOIO, 1); 267 268 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 269 } 270 271 /* 272 * We have a system wide 'event count' that is incremented 273 * on any 'interesting' event, and readers of /proc/mdstat 274 * can use 'poll' or 'select' to find out when the event 275 * count increases. 276 * 277 * Events are: 278 * start array, stop array, error, add device, remove device, 279 * start build, activate spare 280 */ 281 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 282 static atomic_t md_event_count; 283 void md_new_event(struct mddev *mddev) 284 { 285 atomic_inc(&md_event_count); 286 wake_up(&md_event_waiters); 287 } 288 EXPORT_SYMBOL_GPL(md_new_event); 289 290 /* 291 * Enables to iterate over all existing md arrays 292 * all_mddevs_lock protects this list. 293 */ 294 static LIST_HEAD(all_mddevs); 295 static DEFINE_SPINLOCK(all_mddevs_lock); 296 297 /* 298 * iterates through all used mddevs in the system. 299 * We take care to grab the all_mddevs_lock whenever navigating 300 * the list, and to always hold a refcount when unlocked. 301 * Any code which breaks out of this loop while own 302 * a reference to the current mddev and must mddev_put it. 303 */ 304 #define for_each_mddev(_mddev,_tmp) \ 305 \ 306 for (({ spin_lock(&all_mddevs_lock); \ 307 _tmp = all_mddevs.next; \ 308 _mddev = NULL;}); \ 309 ({ if (_tmp != &all_mddevs) \ 310 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 311 spin_unlock(&all_mddevs_lock); \ 312 if (_mddev) mddev_put(_mddev); \ 313 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 314 _tmp != &all_mddevs;}); \ 315 ({ spin_lock(&all_mddevs_lock); \ 316 _tmp = _tmp->next;}) \ 317 ) 318 319 /* Rather than calling directly into the personality make_request function, 320 * IO requests come here first so that we can check if the device is 321 * being suspended pending a reconfiguration. 322 * We hold a refcount over the call to ->make_request. By the time that 323 * call has finished, the bio has been linked into some internal structure 324 * and so is visible to ->quiesce(), so we don't need the refcount any more. 325 */ 326 static bool is_suspended(struct mddev *mddev, struct bio *bio) 327 { 328 if (mddev->suspended) 329 return true; 330 if (bio_data_dir(bio) != WRITE) 331 return false; 332 if (mddev->suspend_lo >= mddev->suspend_hi) 333 return false; 334 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 335 return false; 336 if (bio_end_sector(bio) < mddev->suspend_lo) 337 return false; 338 return true; 339 } 340 341 void md_handle_request(struct mddev *mddev, struct bio *bio) 342 { 343 check_suspended: 344 rcu_read_lock(); 345 if (is_suspended(mddev, bio)) { 346 DEFINE_WAIT(__wait); 347 for (;;) { 348 prepare_to_wait(&mddev->sb_wait, &__wait, 349 TASK_UNINTERRUPTIBLE); 350 if (!is_suspended(mddev, bio)) 351 break; 352 rcu_read_unlock(); 353 schedule(); 354 rcu_read_lock(); 355 } 356 finish_wait(&mddev->sb_wait, &__wait); 357 } 358 atomic_inc(&mddev->active_io); 359 rcu_read_unlock(); 360 361 if (!mddev->pers->make_request(mddev, bio)) { 362 atomic_dec(&mddev->active_io); 363 wake_up(&mddev->sb_wait); 364 goto check_suspended; 365 } 366 367 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 368 wake_up(&mddev->sb_wait); 369 } 370 EXPORT_SYMBOL(md_handle_request); 371 372 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 373 { 374 const int rw = bio_data_dir(bio); 375 const int sgrp = op_stat_group(bio_op(bio)); 376 struct mddev *mddev = q->queuedata; 377 unsigned int sectors; 378 379 blk_queue_split(q, &bio); 380 381 if (mddev == NULL || mddev->pers == NULL) { 382 bio_io_error(bio); 383 return BLK_QC_T_NONE; 384 } 385 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 386 if (bio_sectors(bio) != 0) 387 bio->bi_status = BLK_STS_IOERR; 388 bio_endio(bio); 389 return BLK_QC_T_NONE; 390 } 391 392 /* 393 * save the sectors now since our bio can 394 * go away inside make_request 395 */ 396 sectors = bio_sectors(bio); 397 /* bio could be mergeable after passing to underlayer */ 398 bio->bi_opf &= ~REQ_NOMERGE; 399 400 md_handle_request(mddev, bio); 401 402 part_stat_lock(); 403 part_stat_inc(&mddev->gendisk->part0, ios[sgrp]); 404 part_stat_add(&mddev->gendisk->part0, sectors[sgrp], sectors); 405 part_stat_unlock(); 406 407 return BLK_QC_T_NONE; 408 } 409 410 /* mddev_suspend makes sure no new requests are submitted 411 * to the device, and that any requests that have been submitted 412 * are completely handled. 413 * Once mddev_detach() is called and completes, the module will be 414 * completely unused. 415 */ 416 void mddev_suspend(struct mddev *mddev) 417 { 418 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 419 lockdep_assert_held(&mddev->reconfig_mutex); 420 if (mddev->suspended++) 421 return; 422 synchronize_rcu(); 423 wake_up(&mddev->sb_wait); 424 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 425 smp_mb__after_atomic(); 426 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 427 mddev->pers->quiesce(mddev, 1); 428 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 429 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 430 431 del_timer_sync(&mddev->safemode_timer); 432 } 433 EXPORT_SYMBOL_GPL(mddev_suspend); 434 435 void mddev_resume(struct mddev *mddev) 436 { 437 lockdep_assert_held(&mddev->reconfig_mutex); 438 if (--mddev->suspended) 439 return; 440 wake_up(&mddev->sb_wait); 441 mddev->pers->quiesce(mddev, 0); 442 443 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 444 md_wakeup_thread(mddev->thread); 445 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 446 } 447 EXPORT_SYMBOL_GPL(mddev_resume); 448 449 int mddev_congested(struct mddev *mddev, int bits) 450 { 451 struct md_personality *pers = mddev->pers; 452 int ret = 0; 453 454 rcu_read_lock(); 455 if (mddev->suspended) 456 ret = 1; 457 else if (pers && pers->congested) 458 ret = pers->congested(mddev, bits); 459 rcu_read_unlock(); 460 return ret; 461 } 462 EXPORT_SYMBOL_GPL(mddev_congested); 463 static int md_congested(void *data, int bits) 464 { 465 struct mddev *mddev = data; 466 return mddev_congested(mddev, bits); 467 } 468 469 /* 470 * Generic flush handling for md 471 */ 472 473 static void md_end_flush(struct bio *bio) 474 { 475 struct md_rdev *rdev = bio->bi_private; 476 struct mddev *mddev = rdev->mddev; 477 478 rdev_dec_pending(rdev, mddev); 479 480 if (atomic_dec_and_test(&mddev->flush_pending)) { 481 /* The pre-request flush has finished */ 482 queue_work(md_wq, &mddev->flush_work); 483 } 484 bio_put(bio); 485 } 486 487 static void md_submit_flush_data(struct work_struct *ws); 488 489 static void submit_flushes(struct work_struct *ws) 490 { 491 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 492 struct md_rdev *rdev; 493 494 mddev->start_flush = ktime_get_boottime(); 495 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 496 atomic_set(&mddev->flush_pending, 1); 497 rcu_read_lock(); 498 rdev_for_each_rcu(rdev, mddev) 499 if (rdev->raid_disk >= 0 && 500 !test_bit(Faulty, &rdev->flags)) { 501 /* Take two references, one is dropped 502 * when request finishes, one after 503 * we reclaim rcu_read_lock 504 */ 505 struct bio *bi; 506 atomic_inc(&rdev->nr_pending); 507 atomic_inc(&rdev->nr_pending); 508 rcu_read_unlock(); 509 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 510 bi->bi_end_io = md_end_flush; 511 bi->bi_private = rdev; 512 bio_set_dev(bi, rdev->bdev); 513 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 514 atomic_inc(&mddev->flush_pending); 515 submit_bio(bi); 516 rcu_read_lock(); 517 rdev_dec_pending(rdev, mddev); 518 } 519 rcu_read_unlock(); 520 if (atomic_dec_and_test(&mddev->flush_pending)) 521 queue_work(md_wq, &mddev->flush_work); 522 } 523 524 static void md_submit_flush_data(struct work_struct *ws) 525 { 526 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 527 struct bio *bio = mddev->flush_bio; 528 529 /* 530 * must reset flush_bio before calling into md_handle_request to avoid a 531 * deadlock, because other bios passed md_handle_request suspend check 532 * could wait for this and below md_handle_request could wait for those 533 * bios because of suspend check 534 */ 535 mddev->last_flush = mddev->start_flush; 536 mddev->flush_bio = NULL; 537 wake_up(&mddev->sb_wait); 538 539 if (bio->bi_iter.bi_size == 0) { 540 /* an empty barrier - all done */ 541 bio_endio(bio); 542 } else { 543 bio->bi_opf &= ~REQ_PREFLUSH; 544 md_handle_request(mddev, bio); 545 } 546 } 547 548 void md_flush_request(struct mddev *mddev, struct bio *bio) 549 { 550 ktime_t start = ktime_get_boottime(); 551 spin_lock_irq(&mddev->lock); 552 wait_event_lock_irq(mddev->sb_wait, 553 !mddev->flush_bio || 554 ktime_after(mddev->last_flush, start), 555 mddev->lock); 556 if (!ktime_after(mddev->last_flush, start)) { 557 WARN_ON(mddev->flush_bio); 558 mddev->flush_bio = bio; 559 bio = NULL; 560 } 561 spin_unlock_irq(&mddev->lock); 562 563 if (!bio) { 564 INIT_WORK(&mddev->flush_work, submit_flushes); 565 queue_work(md_wq, &mddev->flush_work); 566 } else { 567 /* flush was performed for some other bio while we waited. */ 568 if (bio->bi_iter.bi_size == 0) 569 /* an empty barrier - all done */ 570 bio_endio(bio); 571 else { 572 bio->bi_opf &= ~REQ_PREFLUSH; 573 mddev->pers->make_request(mddev, bio); 574 } 575 } 576 } 577 EXPORT_SYMBOL(md_flush_request); 578 579 static inline struct mddev *mddev_get(struct mddev *mddev) 580 { 581 atomic_inc(&mddev->active); 582 return mddev; 583 } 584 585 static void mddev_delayed_delete(struct work_struct *ws); 586 587 static void mddev_put(struct mddev *mddev) 588 { 589 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 590 return; 591 if (!mddev->raid_disks && list_empty(&mddev->disks) && 592 mddev->ctime == 0 && !mddev->hold_active) { 593 /* Array is not configured at all, and not held active, 594 * so destroy it */ 595 list_del_init(&mddev->all_mddevs); 596 597 /* 598 * Call queue_work inside the spinlock so that 599 * flush_workqueue() after mddev_find will succeed in waiting 600 * for the work to be done. 601 */ 602 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 603 queue_work(md_misc_wq, &mddev->del_work); 604 } 605 spin_unlock(&all_mddevs_lock); 606 } 607 608 static void md_safemode_timeout(struct timer_list *t); 609 610 void mddev_init(struct mddev *mddev) 611 { 612 kobject_init(&mddev->kobj, &md_ktype); 613 mutex_init(&mddev->open_mutex); 614 mutex_init(&mddev->reconfig_mutex); 615 mutex_init(&mddev->bitmap_info.mutex); 616 INIT_LIST_HEAD(&mddev->disks); 617 INIT_LIST_HEAD(&mddev->all_mddevs); 618 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 619 atomic_set(&mddev->active, 1); 620 atomic_set(&mddev->openers, 0); 621 atomic_set(&mddev->active_io, 0); 622 spin_lock_init(&mddev->lock); 623 atomic_set(&mddev->flush_pending, 0); 624 init_waitqueue_head(&mddev->sb_wait); 625 init_waitqueue_head(&mddev->recovery_wait); 626 mddev->reshape_position = MaxSector; 627 mddev->reshape_backwards = 0; 628 mddev->last_sync_action = "none"; 629 mddev->resync_min = 0; 630 mddev->resync_max = MaxSector; 631 mddev->level = LEVEL_NONE; 632 } 633 EXPORT_SYMBOL_GPL(mddev_init); 634 635 static struct mddev *mddev_find(dev_t unit) 636 { 637 struct mddev *mddev, *new = NULL; 638 639 if (unit && MAJOR(unit) != MD_MAJOR) 640 unit &= ~((1<<MdpMinorShift)-1); 641 642 retry: 643 spin_lock(&all_mddevs_lock); 644 645 if (unit) { 646 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 647 if (mddev->unit == unit) { 648 mddev_get(mddev); 649 spin_unlock(&all_mddevs_lock); 650 kfree(new); 651 return mddev; 652 } 653 654 if (new) { 655 list_add(&new->all_mddevs, &all_mddevs); 656 spin_unlock(&all_mddevs_lock); 657 new->hold_active = UNTIL_IOCTL; 658 return new; 659 } 660 } else if (new) { 661 /* find an unused unit number */ 662 static int next_minor = 512; 663 int start = next_minor; 664 int is_free = 0; 665 int dev = 0; 666 while (!is_free) { 667 dev = MKDEV(MD_MAJOR, next_minor); 668 next_minor++; 669 if (next_minor > MINORMASK) 670 next_minor = 0; 671 if (next_minor == start) { 672 /* Oh dear, all in use. */ 673 spin_unlock(&all_mddevs_lock); 674 kfree(new); 675 return NULL; 676 } 677 678 is_free = 1; 679 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 680 if (mddev->unit == dev) { 681 is_free = 0; 682 break; 683 } 684 } 685 new->unit = dev; 686 new->md_minor = MINOR(dev); 687 new->hold_active = UNTIL_STOP; 688 list_add(&new->all_mddevs, &all_mddevs); 689 spin_unlock(&all_mddevs_lock); 690 return new; 691 } 692 spin_unlock(&all_mddevs_lock); 693 694 new = kzalloc(sizeof(*new), GFP_KERNEL); 695 if (!new) 696 return NULL; 697 698 new->unit = unit; 699 if (MAJOR(unit) == MD_MAJOR) 700 new->md_minor = MINOR(unit); 701 else 702 new->md_minor = MINOR(unit) >> MdpMinorShift; 703 704 mddev_init(new); 705 706 goto retry; 707 } 708 709 static struct attribute_group md_redundancy_group; 710 711 void mddev_unlock(struct mddev *mddev) 712 { 713 if (mddev->to_remove) { 714 /* These cannot be removed under reconfig_mutex as 715 * an access to the files will try to take reconfig_mutex 716 * while holding the file unremovable, which leads to 717 * a deadlock. 718 * So hold set sysfs_active while the remove in happeing, 719 * and anything else which might set ->to_remove or my 720 * otherwise change the sysfs namespace will fail with 721 * -EBUSY if sysfs_active is still set. 722 * We set sysfs_active under reconfig_mutex and elsewhere 723 * test it under the same mutex to ensure its correct value 724 * is seen. 725 */ 726 struct attribute_group *to_remove = mddev->to_remove; 727 mddev->to_remove = NULL; 728 mddev->sysfs_active = 1; 729 mutex_unlock(&mddev->reconfig_mutex); 730 731 if (mddev->kobj.sd) { 732 if (to_remove != &md_redundancy_group) 733 sysfs_remove_group(&mddev->kobj, to_remove); 734 if (mddev->pers == NULL || 735 mddev->pers->sync_request == NULL) { 736 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 737 if (mddev->sysfs_action) 738 sysfs_put(mddev->sysfs_action); 739 mddev->sysfs_action = NULL; 740 } 741 } 742 mddev->sysfs_active = 0; 743 } else 744 mutex_unlock(&mddev->reconfig_mutex); 745 746 /* As we've dropped the mutex we need a spinlock to 747 * make sure the thread doesn't disappear 748 */ 749 spin_lock(&pers_lock); 750 md_wakeup_thread(mddev->thread); 751 wake_up(&mddev->sb_wait); 752 spin_unlock(&pers_lock); 753 } 754 EXPORT_SYMBOL_GPL(mddev_unlock); 755 756 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 757 { 758 struct md_rdev *rdev; 759 760 rdev_for_each_rcu(rdev, mddev) 761 if (rdev->desc_nr == nr) 762 return rdev; 763 764 return NULL; 765 } 766 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 767 768 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 769 { 770 struct md_rdev *rdev; 771 772 rdev_for_each(rdev, mddev) 773 if (rdev->bdev->bd_dev == dev) 774 return rdev; 775 776 return NULL; 777 } 778 779 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 780 { 781 struct md_rdev *rdev; 782 783 rdev_for_each_rcu(rdev, mddev) 784 if (rdev->bdev->bd_dev == dev) 785 return rdev; 786 787 return NULL; 788 } 789 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 790 791 static struct md_personality *find_pers(int level, char *clevel) 792 { 793 struct md_personality *pers; 794 list_for_each_entry(pers, &pers_list, list) { 795 if (level != LEVEL_NONE && pers->level == level) 796 return pers; 797 if (strcmp(pers->name, clevel)==0) 798 return pers; 799 } 800 return NULL; 801 } 802 803 /* return the offset of the super block in 512byte sectors */ 804 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 805 { 806 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 807 return MD_NEW_SIZE_SECTORS(num_sectors); 808 } 809 810 static int alloc_disk_sb(struct md_rdev *rdev) 811 { 812 rdev->sb_page = alloc_page(GFP_KERNEL); 813 if (!rdev->sb_page) 814 return -ENOMEM; 815 return 0; 816 } 817 818 void md_rdev_clear(struct md_rdev *rdev) 819 { 820 if (rdev->sb_page) { 821 put_page(rdev->sb_page); 822 rdev->sb_loaded = 0; 823 rdev->sb_page = NULL; 824 rdev->sb_start = 0; 825 rdev->sectors = 0; 826 } 827 if (rdev->bb_page) { 828 put_page(rdev->bb_page); 829 rdev->bb_page = NULL; 830 } 831 badblocks_exit(&rdev->badblocks); 832 } 833 EXPORT_SYMBOL_GPL(md_rdev_clear); 834 835 static void super_written(struct bio *bio) 836 { 837 struct md_rdev *rdev = bio->bi_private; 838 struct mddev *mddev = rdev->mddev; 839 840 if (bio->bi_status) { 841 pr_err("md: super_written gets error=%d\n", bio->bi_status); 842 md_error(mddev, rdev); 843 if (!test_bit(Faulty, &rdev->flags) 844 && (bio->bi_opf & MD_FAILFAST)) { 845 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 846 set_bit(LastDev, &rdev->flags); 847 } 848 } else 849 clear_bit(LastDev, &rdev->flags); 850 851 if (atomic_dec_and_test(&mddev->pending_writes)) 852 wake_up(&mddev->sb_wait); 853 rdev_dec_pending(rdev, mddev); 854 bio_put(bio); 855 } 856 857 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 858 sector_t sector, int size, struct page *page) 859 { 860 /* write first size bytes of page to sector of rdev 861 * Increment mddev->pending_writes before returning 862 * and decrement it on completion, waking up sb_wait 863 * if zero is reached. 864 * If an error occurred, call md_error 865 */ 866 struct bio *bio; 867 int ff = 0; 868 869 if (!page) 870 return; 871 872 if (test_bit(Faulty, &rdev->flags)) 873 return; 874 875 bio = md_bio_alloc_sync(mddev); 876 877 atomic_inc(&rdev->nr_pending); 878 879 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 880 bio->bi_iter.bi_sector = sector; 881 bio_add_page(bio, page, size, 0); 882 bio->bi_private = rdev; 883 bio->bi_end_io = super_written; 884 885 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 886 test_bit(FailFast, &rdev->flags) && 887 !test_bit(LastDev, &rdev->flags)) 888 ff = MD_FAILFAST; 889 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 890 891 atomic_inc(&mddev->pending_writes); 892 submit_bio(bio); 893 } 894 895 int md_super_wait(struct mddev *mddev) 896 { 897 /* wait for all superblock writes that were scheduled to complete */ 898 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 899 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 900 return -EAGAIN; 901 return 0; 902 } 903 904 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 905 struct page *page, int op, int op_flags, bool metadata_op) 906 { 907 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 908 int ret; 909 910 if (metadata_op && rdev->meta_bdev) 911 bio_set_dev(bio, rdev->meta_bdev); 912 else 913 bio_set_dev(bio, rdev->bdev); 914 bio_set_op_attrs(bio, op, op_flags); 915 if (metadata_op) 916 bio->bi_iter.bi_sector = sector + rdev->sb_start; 917 else if (rdev->mddev->reshape_position != MaxSector && 918 (rdev->mddev->reshape_backwards == 919 (sector >= rdev->mddev->reshape_position))) 920 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 921 else 922 bio->bi_iter.bi_sector = sector + rdev->data_offset; 923 bio_add_page(bio, page, size, 0); 924 925 submit_bio_wait(bio); 926 927 ret = !bio->bi_status; 928 bio_put(bio); 929 return ret; 930 } 931 EXPORT_SYMBOL_GPL(sync_page_io); 932 933 static int read_disk_sb(struct md_rdev *rdev, int size) 934 { 935 char b[BDEVNAME_SIZE]; 936 937 if (rdev->sb_loaded) 938 return 0; 939 940 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 941 goto fail; 942 rdev->sb_loaded = 1; 943 return 0; 944 945 fail: 946 pr_err("md: disabled device %s, could not read superblock.\n", 947 bdevname(rdev->bdev,b)); 948 return -EINVAL; 949 } 950 951 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 952 { 953 return sb1->set_uuid0 == sb2->set_uuid0 && 954 sb1->set_uuid1 == sb2->set_uuid1 && 955 sb1->set_uuid2 == sb2->set_uuid2 && 956 sb1->set_uuid3 == sb2->set_uuid3; 957 } 958 959 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 960 { 961 int ret; 962 mdp_super_t *tmp1, *tmp2; 963 964 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 965 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 966 967 if (!tmp1 || !tmp2) { 968 ret = 0; 969 goto abort; 970 } 971 972 *tmp1 = *sb1; 973 *tmp2 = *sb2; 974 975 /* 976 * nr_disks is not constant 977 */ 978 tmp1->nr_disks = 0; 979 tmp2->nr_disks = 0; 980 981 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 982 abort: 983 kfree(tmp1); 984 kfree(tmp2); 985 return ret; 986 } 987 988 static u32 md_csum_fold(u32 csum) 989 { 990 csum = (csum & 0xffff) + (csum >> 16); 991 return (csum & 0xffff) + (csum >> 16); 992 } 993 994 static unsigned int calc_sb_csum(mdp_super_t *sb) 995 { 996 u64 newcsum = 0; 997 u32 *sb32 = (u32*)sb; 998 int i; 999 unsigned int disk_csum, csum; 1000 1001 disk_csum = sb->sb_csum; 1002 sb->sb_csum = 0; 1003 1004 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1005 newcsum += sb32[i]; 1006 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1007 1008 #ifdef CONFIG_ALPHA 1009 /* This used to use csum_partial, which was wrong for several 1010 * reasons including that different results are returned on 1011 * different architectures. It isn't critical that we get exactly 1012 * the same return value as before (we always csum_fold before 1013 * testing, and that removes any differences). However as we 1014 * know that csum_partial always returned a 16bit value on 1015 * alphas, do a fold to maximise conformity to previous behaviour. 1016 */ 1017 sb->sb_csum = md_csum_fold(disk_csum); 1018 #else 1019 sb->sb_csum = disk_csum; 1020 #endif 1021 return csum; 1022 } 1023 1024 /* 1025 * Handle superblock details. 1026 * We want to be able to handle multiple superblock formats 1027 * so we have a common interface to them all, and an array of 1028 * different handlers. 1029 * We rely on user-space to write the initial superblock, and support 1030 * reading and updating of superblocks. 1031 * Interface methods are: 1032 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1033 * loads and validates a superblock on dev. 1034 * if refdev != NULL, compare superblocks on both devices 1035 * Return: 1036 * 0 - dev has a superblock that is compatible with refdev 1037 * 1 - dev has a superblock that is compatible and newer than refdev 1038 * so dev should be used as the refdev in future 1039 * -EINVAL superblock incompatible or invalid 1040 * -othererror e.g. -EIO 1041 * 1042 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1043 * Verify that dev is acceptable into mddev. 1044 * The first time, mddev->raid_disks will be 0, and data from 1045 * dev should be merged in. Subsequent calls check that dev 1046 * is new enough. Return 0 or -EINVAL 1047 * 1048 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1049 * Update the superblock for rdev with data in mddev 1050 * This does not write to disc. 1051 * 1052 */ 1053 1054 struct super_type { 1055 char *name; 1056 struct module *owner; 1057 int (*load_super)(struct md_rdev *rdev, 1058 struct md_rdev *refdev, 1059 int minor_version); 1060 int (*validate_super)(struct mddev *mddev, 1061 struct md_rdev *rdev); 1062 void (*sync_super)(struct mddev *mddev, 1063 struct md_rdev *rdev); 1064 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1065 sector_t num_sectors); 1066 int (*allow_new_offset)(struct md_rdev *rdev, 1067 unsigned long long new_offset); 1068 }; 1069 1070 /* 1071 * Check that the given mddev has no bitmap. 1072 * 1073 * This function is called from the run method of all personalities that do not 1074 * support bitmaps. It prints an error message and returns non-zero if mddev 1075 * has a bitmap. Otherwise, it returns 0. 1076 * 1077 */ 1078 int md_check_no_bitmap(struct mddev *mddev) 1079 { 1080 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1081 return 0; 1082 pr_warn("%s: bitmaps are not supported for %s\n", 1083 mdname(mddev), mddev->pers->name); 1084 return 1; 1085 } 1086 EXPORT_SYMBOL(md_check_no_bitmap); 1087 1088 /* 1089 * load_super for 0.90.0 1090 */ 1091 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1092 { 1093 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1094 mdp_super_t *sb; 1095 int ret; 1096 1097 /* 1098 * Calculate the position of the superblock (512byte sectors), 1099 * it's at the end of the disk. 1100 * 1101 * It also happens to be a multiple of 4Kb. 1102 */ 1103 rdev->sb_start = calc_dev_sboffset(rdev); 1104 1105 ret = read_disk_sb(rdev, MD_SB_BYTES); 1106 if (ret) 1107 return ret; 1108 1109 ret = -EINVAL; 1110 1111 bdevname(rdev->bdev, b); 1112 sb = page_address(rdev->sb_page); 1113 1114 if (sb->md_magic != MD_SB_MAGIC) { 1115 pr_warn("md: invalid raid superblock magic on %s\n", b); 1116 goto abort; 1117 } 1118 1119 if (sb->major_version != 0 || 1120 sb->minor_version < 90 || 1121 sb->minor_version > 91) { 1122 pr_warn("Bad version number %d.%d on %s\n", 1123 sb->major_version, sb->minor_version, b); 1124 goto abort; 1125 } 1126 1127 if (sb->raid_disks <= 0) 1128 goto abort; 1129 1130 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1131 pr_warn("md: invalid superblock checksum on %s\n", b); 1132 goto abort; 1133 } 1134 1135 rdev->preferred_minor = sb->md_minor; 1136 rdev->data_offset = 0; 1137 rdev->new_data_offset = 0; 1138 rdev->sb_size = MD_SB_BYTES; 1139 rdev->badblocks.shift = -1; 1140 1141 if (sb->level == LEVEL_MULTIPATH) 1142 rdev->desc_nr = -1; 1143 else 1144 rdev->desc_nr = sb->this_disk.number; 1145 1146 if (!refdev) { 1147 ret = 1; 1148 } else { 1149 __u64 ev1, ev2; 1150 mdp_super_t *refsb = page_address(refdev->sb_page); 1151 if (!md_uuid_equal(refsb, sb)) { 1152 pr_warn("md: %s has different UUID to %s\n", 1153 b, bdevname(refdev->bdev,b2)); 1154 goto abort; 1155 } 1156 if (!md_sb_equal(refsb, sb)) { 1157 pr_warn("md: %s has same UUID but different superblock to %s\n", 1158 b, bdevname(refdev->bdev, b2)); 1159 goto abort; 1160 } 1161 ev1 = md_event(sb); 1162 ev2 = md_event(refsb); 1163 if (ev1 > ev2) 1164 ret = 1; 1165 else 1166 ret = 0; 1167 } 1168 rdev->sectors = rdev->sb_start; 1169 /* Limit to 4TB as metadata cannot record more than that. 1170 * (not needed for Linear and RAID0 as metadata doesn't 1171 * record this size) 1172 */ 1173 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1174 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1175 1176 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1177 /* "this cannot possibly happen" ... */ 1178 ret = -EINVAL; 1179 1180 abort: 1181 return ret; 1182 } 1183 1184 /* 1185 * validate_super for 0.90.0 1186 */ 1187 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1188 { 1189 mdp_disk_t *desc; 1190 mdp_super_t *sb = page_address(rdev->sb_page); 1191 __u64 ev1 = md_event(sb); 1192 1193 rdev->raid_disk = -1; 1194 clear_bit(Faulty, &rdev->flags); 1195 clear_bit(In_sync, &rdev->flags); 1196 clear_bit(Bitmap_sync, &rdev->flags); 1197 clear_bit(WriteMostly, &rdev->flags); 1198 1199 if (mddev->raid_disks == 0) { 1200 mddev->major_version = 0; 1201 mddev->minor_version = sb->minor_version; 1202 mddev->patch_version = sb->patch_version; 1203 mddev->external = 0; 1204 mddev->chunk_sectors = sb->chunk_size >> 9; 1205 mddev->ctime = sb->ctime; 1206 mddev->utime = sb->utime; 1207 mddev->level = sb->level; 1208 mddev->clevel[0] = 0; 1209 mddev->layout = sb->layout; 1210 mddev->raid_disks = sb->raid_disks; 1211 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1212 mddev->events = ev1; 1213 mddev->bitmap_info.offset = 0; 1214 mddev->bitmap_info.space = 0; 1215 /* bitmap can use 60 K after the 4K superblocks */ 1216 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1217 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1218 mddev->reshape_backwards = 0; 1219 1220 if (mddev->minor_version >= 91) { 1221 mddev->reshape_position = sb->reshape_position; 1222 mddev->delta_disks = sb->delta_disks; 1223 mddev->new_level = sb->new_level; 1224 mddev->new_layout = sb->new_layout; 1225 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1226 if (mddev->delta_disks < 0) 1227 mddev->reshape_backwards = 1; 1228 } else { 1229 mddev->reshape_position = MaxSector; 1230 mddev->delta_disks = 0; 1231 mddev->new_level = mddev->level; 1232 mddev->new_layout = mddev->layout; 1233 mddev->new_chunk_sectors = mddev->chunk_sectors; 1234 } 1235 1236 if (sb->state & (1<<MD_SB_CLEAN)) 1237 mddev->recovery_cp = MaxSector; 1238 else { 1239 if (sb->events_hi == sb->cp_events_hi && 1240 sb->events_lo == sb->cp_events_lo) { 1241 mddev->recovery_cp = sb->recovery_cp; 1242 } else 1243 mddev->recovery_cp = 0; 1244 } 1245 1246 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1247 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1248 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1249 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1250 1251 mddev->max_disks = MD_SB_DISKS; 1252 1253 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1254 mddev->bitmap_info.file == NULL) { 1255 mddev->bitmap_info.offset = 1256 mddev->bitmap_info.default_offset; 1257 mddev->bitmap_info.space = 1258 mddev->bitmap_info.default_space; 1259 } 1260 1261 } else if (mddev->pers == NULL) { 1262 /* Insist on good event counter while assembling, except 1263 * for spares (which don't need an event count) */ 1264 ++ev1; 1265 if (sb->disks[rdev->desc_nr].state & ( 1266 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1267 if (ev1 < mddev->events) 1268 return -EINVAL; 1269 } else if (mddev->bitmap) { 1270 /* if adding to array with a bitmap, then we can accept an 1271 * older device ... but not too old. 1272 */ 1273 if (ev1 < mddev->bitmap->events_cleared) 1274 return 0; 1275 if (ev1 < mddev->events) 1276 set_bit(Bitmap_sync, &rdev->flags); 1277 } else { 1278 if (ev1 < mddev->events) 1279 /* just a hot-add of a new device, leave raid_disk at -1 */ 1280 return 0; 1281 } 1282 1283 if (mddev->level != LEVEL_MULTIPATH) { 1284 desc = sb->disks + rdev->desc_nr; 1285 1286 if (desc->state & (1<<MD_DISK_FAULTY)) 1287 set_bit(Faulty, &rdev->flags); 1288 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1289 desc->raid_disk < mddev->raid_disks */) { 1290 set_bit(In_sync, &rdev->flags); 1291 rdev->raid_disk = desc->raid_disk; 1292 rdev->saved_raid_disk = desc->raid_disk; 1293 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1294 /* active but not in sync implies recovery up to 1295 * reshape position. We don't know exactly where 1296 * that is, so set to zero for now */ 1297 if (mddev->minor_version >= 91) { 1298 rdev->recovery_offset = 0; 1299 rdev->raid_disk = desc->raid_disk; 1300 } 1301 } 1302 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1303 set_bit(WriteMostly, &rdev->flags); 1304 if (desc->state & (1<<MD_DISK_FAILFAST)) 1305 set_bit(FailFast, &rdev->flags); 1306 } else /* MULTIPATH are always insync */ 1307 set_bit(In_sync, &rdev->flags); 1308 return 0; 1309 } 1310 1311 /* 1312 * sync_super for 0.90.0 1313 */ 1314 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1315 { 1316 mdp_super_t *sb; 1317 struct md_rdev *rdev2; 1318 int next_spare = mddev->raid_disks; 1319 1320 /* make rdev->sb match mddev data.. 1321 * 1322 * 1/ zero out disks 1323 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1324 * 3/ any empty disks < next_spare become removed 1325 * 1326 * disks[0] gets initialised to REMOVED because 1327 * we cannot be sure from other fields if it has 1328 * been initialised or not. 1329 */ 1330 int i; 1331 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1332 1333 rdev->sb_size = MD_SB_BYTES; 1334 1335 sb = page_address(rdev->sb_page); 1336 1337 memset(sb, 0, sizeof(*sb)); 1338 1339 sb->md_magic = MD_SB_MAGIC; 1340 sb->major_version = mddev->major_version; 1341 sb->patch_version = mddev->patch_version; 1342 sb->gvalid_words = 0; /* ignored */ 1343 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1344 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1345 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1346 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1347 1348 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1349 sb->level = mddev->level; 1350 sb->size = mddev->dev_sectors / 2; 1351 sb->raid_disks = mddev->raid_disks; 1352 sb->md_minor = mddev->md_minor; 1353 sb->not_persistent = 0; 1354 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1355 sb->state = 0; 1356 sb->events_hi = (mddev->events>>32); 1357 sb->events_lo = (u32)mddev->events; 1358 1359 if (mddev->reshape_position == MaxSector) 1360 sb->minor_version = 90; 1361 else { 1362 sb->minor_version = 91; 1363 sb->reshape_position = mddev->reshape_position; 1364 sb->new_level = mddev->new_level; 1365 sb->delta_disks = mddev->delta_disks; 1366 sb->new_layout = mddev->new_layout; 1367 sb->new_chunk = mddev->new_chunk_sectors << 9; 1368 } 1369 mddev->minor_version = sb->minor_version; 1370 if (mddev->in_sync) 1371 { 1372 sb->recovery_cp = mddev->recovery_cp; 1373 sb->cp_events_hi = (mddev->events>>32); 1374 sb->cp_events_lo = (u32)mddev->events; 1375 if (mddev->recovery_cp == MaxSector) 1376 sb->state = (1<< MD_SB_CLEAN); 1377 } else 1378 sb->recovery_cp = 0; 1379 1380 sb->layout = mddev->layout; 1381 sb->chunk_size = mddev->chunk_sectors << 9; 1382 1383 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1384 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1385 1386 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1387 rdev_for_each(rdev2, mddev) { 1388 mdp_disk_t *d; 1389 int desc_nr; 1390 int is_active = test_bit(In_sync, &rdev2->flags); 1391 1392 if (rdev2->raid_disk >= 0 && 1393 sb->minor_version >= 91) 1394 /* we have nowhere to store the recovery_offset, 1395 * but if it is not below the reshape_position, 1396 * we can piggy-back on that. 1397 */ 1398 is_active = 1; 1399 if (rdev2->raid_disk < 0 || 1400 test_bit(Faulty, &rdev2->flags)) 1401 is_active = 0; 1402 if (is_active) 1403 desc_nr = rdev2->raid_disk; 1404 else 1405 desc_nr = next_spare++; 1406 rdev2->desc_nr = desc_nr; 1407 d = &sb->disks[rdev2->desc_nr]; 1408 nr_disks++; 1409 d->number = rdev2->desc_nr; 1410 d->major = MAJOR(rdev2->bdev->bd_dev); 1411 d->minor = MINOR(rdev2->bdev->bd_dev); 1412 if (is_active) 1413 d->raid_disk = rdev2->raid_disk; 1414 else 1415 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1416 if (test_bit(Faulty, &rdev2->flags)) 1417 d->state = (1<<MD_DISK_FAULTY); 1418 else if (is_active) { 1419 d->state = (1<<MD_DISK_ACTIVE); 1420 if (test_bit(In_sync, &rdev2->flags)) 1421 d->state |= (1<<MD_DISK_SYNC); 1422 active++; 1423 working++; 1424 } else { 1425 d->state = 0; 1426 spare++; 1427 working++; 1428 } 1429 if (test_bit(WriteMostly, &rdev2->flags)) 1430 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1431 if (test_bit(FailFast, &rdev2->flags)) 1432 d->state |= (1<<MD_DISK_FAILFAST); 1433 } 1434 /* now set the "removed" and "faulty" bits on any missing devices */ 1435 for (i=0 ; i < mddev->raid_disks ; i++) { 1436 mdp_disk_t *d = &sb->disks[i]; 1437 if (d->state == 0 && d->number == 0) { 1438 d->number = i; 1439 d->raid_disk = i; 1440 d->state = (1<<MD_DISK_REMOVED); 1441 d->state |= (1<<MD_DISK_FAULTY); 1442 failed++; 1443 } 1444 } 1445 sb->nr_disks = nr_disks; 1446 sb->active_disks = active; 1447 sb->working_disks = working; 1448 sb->failed_disks = failed; 1449 sb->spare_disks = spare; 1450 1451 sb->this_disk = sb->disks[rdev->desc_nr]; 1452 sb->sb_csum = calc_sb_csum(sb); 1453 } 1454 1455 /* 1456 * rdev_size_change for 0.90.0 1457 */ 1458 static unsigned long long 1459 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1460 { 1461 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1462 return 0; /* component must fit device */ 1463 if (rdev->mddev->bitmap_info.offset) 1464 return 0; /* can't move bitmap */ 1465 rdev->sb_start = calc_dev_sboffset(rdev); 1466 if (!num_sectors || num_sectors > rdev->sb_start) 1467 num_sectors = rdev->sb_start; 1468 /* Limit to 4TB as metadata cannot record more than that. 1469 * 4TB == 2^32 KB, or 2*2^32 sectors. 1470 */ 1471 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1472 num_sectors = (sector_t)(2ULL << 32) - 2; 1473 do { 1474 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1475 rdev->sb_page); 1476 } while (md_super_wait(rdev->mddev) < 0); 1477 return num_sectors; 1478 } 1479 1480 static int 1481 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1482 { 1483 /* non-zero offset changes not possible with v0.90 */ 1484 return new_offset == 0; 1485 } 1486 1487 /* 1488 * version 1 superblock 1489 */ 1490 1491 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1492 { 1493 __le32 disk_csum; 1494 u32 csum; 1495 unsigned long long newcsum; 1496 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1497 __le32 *isuper = (__le32*)sb; 1498 1499 disk_csum = sb->sb_csum; 1500 sb->sb_csum = 0; 1501 newcsum = 0; 1502 for (; size >= 4; size -= 4) 1503 newcsum += le32_to_cpu(*isuper++); 1504 1505 if (size == 2) 1506 newcsum += le16_to_cpu(*(__le16*) isuper); 1507 1508 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1509 sb->sb_csum = disk_csum; 1510 return cpu_to_le32(csum); 1511 } 1512 1513 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1514 { 1515 struct mdp_superblock_1 *sb; 1516 int ret; 1517 sector_t sb_start; 1518 sector_t sectors; 1519 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1520 int bmask; 1521 1522 /* 1523 * Calculate the position of the superblock in 512byte sectors. 1524 * It is always aligned to a 4K boundary and 1525 * depeding on minor_version, it can be: 1526 * 0: At least 8K, but less than 12K, from end of device 1527 * 1: At start of device 1528 * 2: 4K from start of device. 1529 */ 1530 switch(minor_version) { 1531 case 0: 1532 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1533 sb_start -= 8*2; 1534 sb_start &= ~(sector_t)(4*2-1); 1535 break; 1536 case 1: 1537 sb_start = 0; 1538 break; 1539 case 2: 1540 sb_start = 8; 1541 break; 1542 default: 1543 return -EINVAL; 1544 } 1545 rdev->sb_start = sb_start; 1546 1547 /* superblock is rarely larger than 1K, but it can be larger, 1548 * and it is safe to read 4k, so we do that 1549 */ 1550 ret = read_disk_sb(rdev, 4096); 1551 if (ret) return ret; 1552 1553 sb = page_address(rdev->sb_page); 1554 1555 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1556 sb->major_version != cpu_to_le32(1) || 1557 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1558 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1559 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1560 return -EINVAL; 1561 1562 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1563 pr_warn("md: invalid superblock checksum on %s\n", 1564 bdevname(rdev->bdev,b)); 1565 return -EINVAL; 1566 } 1567 if (le64_to_cpu(sb->data_size) < 10) { 1568 pr_warn("md: data_size too small on %s\n", 1569 bdevname(rdev->bdev,b)); 1570 return -EINVAL; 1571 } 1572 if (sb->pad0 || 1573 sb->pad3[0] || 1574 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1575 /* Some padding is non-zero, might be a new feature */ 1576 return -EINVAL; 1577 1578 rdev->preferred_minor = 0xffff; 1579 rdev->data_offset = le64_to_cpu(sb->data_offset); 1580 rdev->new_data_offset = rdev->data_offset; 1581 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1582 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1583 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1584 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1585 1586 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1587 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1588 if (rdev->sb_size & bmask) 1589 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1590 1591 if (minor_version 1592 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1593 return -EINVAL; 1594 if (minor_version 1595 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1596 return -EINVAL; 1597 1598 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1599 rdev->desc_nr = -1; 1600 else 1601 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1602 1603 if (!rdev->bb_page) { 1604 rdev->bb_page = alloc_page(GFP_KERNEL); 1605 if (!rdev->bb_page) 1606 return -ENOMEM; 1607 } 1608 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1609 rdev->badblocks.count == 0) { 1610 /* need to load the bad block list. 1611 * Currently we limit it to one page. 1612 */ 1613 s32 offset; 1614 sector_t bb_sector; 1615 __le64 *bbp; 1616 int i; 1617 int sectors = le16_to_cpu(sb->bblog_size); 1618 if (sectors > (PAGE_SIZE / 512)) 1619 return -EINVAL; 1620 offset = le32_to_cpu(sb->bblog_offset); 1621 if (offset == 0) 1622 return -EINVAL; 1623 bb_sector = (long long)offset; 1624 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1625 rdev->bb_page, REQ_OP_READ, 0, true)) 1626 return -EIO; 1627 bbp = (__le64 *)page_address(rdev->bb_page); 1628 rdev->badblocks.shift = sb->bblog_shift; 1629 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1630 u64 bb = le64_to_cpu(*bbp); 1631 int count = bb & (0x3ff); 1632 u64 sector = bb >> 10; 1633 sector <<= sb->bblog_shift; 1634 count <<= sb->bblog_shift; 1635 if (bb + 1 == 0) 1636 break; 1637 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1638 return -EINVAL; 1639 } 1640 } else if (sb->bblog_offset != 0) 1641 rdev->badblocks.shift = 0; 1642 1643 if ((le32_to_cpu(sb->feature_map) & 1644 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1645 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1646 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1647 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1648 } 1649 1650 if (!refdev) { 1651 ret = 1; 1652 } else { 1653 __u64 ev1, ev2; 1654 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1655 1656 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1657 sb->level != refsb->level || 1658 sb->layout != refsb->layout || 1659 sb->chunksize != refsb->chunksize) { 1660 pr_warn("md: %s has strangely different superblock to %s\n", 1661 bdevname(rdev->bdev,b), 1662 bdevname(refdev->bdev,b2)); 1663 return -EINVAL; 1664 } 1665 ev1 = le64_to_cpu(sb->events); 1666 ev2 = le64_to_cpu(refsb->events); 1667 1668 if (ev1 > ev2) 1669 ret = 1; 1670 else 1671 ret = 0; 1672 } 1673 if (minor_version) { 1674 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1675 sectors -= rdev->data_offset; 1676 } else 1677 sectors = rdev->sb_start; 1678 if (sectors < le64_to_cpu(sb->data_size)) 1679 return -EINVAL; 1680 rdev->sectors = le64_to_cpu(sb->data_size); 1681 return ret; 1682 } 1683 1684 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1685 { 1686 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1687 __u64 ev1 = le64_to_cpu(sb->events); 1688 1689 rdev->raid_disk = -1; 1690 clear_bit(Faulty, &rdev->flags); 1691 clear_bit(In_sync, &rdev->flags); 1692 clear_bit(Bitmap_sync, &rdev->flags); 1693 clear_bit(WriteMostly, &rdev->flags); 1694 1695 if (mddev->raid_disks == 0) { 1696 mddev->major_version = 1; 1697 mddev->patch_version = 0; 1698 mddev->external = 0; 1699 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1700 mddev->ctime = le64_to_cpu(sb->ctime); 1701 mddev->utime = le64_to_cpu(sb->utime); 1702 mddev->level = le32_to_cpu(sb->level); 1703 mddev->clevel[0] = 0; 1704 mddev->layout = le32_to_cpu(sb->layout); 1705 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1706 mddev->dev_sectors = le64_to_cpu(sb->size); 1707 mddev->events = ev1; 1708 mddev->bitmap_info.offset = 0; 1709 mddev->bitmap_info.space = 0; 1710 /* Default location for bitmap is 1K after superblock 1711 * using 3K - total of 4K 1712 */ 1713 mddev->bitmap_info.default_offset = 1024 >> 9; 1714 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1715 mddev->reshape_backwards = 0; 1716 1717 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1718 memcpy(mddev->uuid, sb->set_uuid, 16); 1719 1720 mddev->max_disks = (4096-256)/2; 1721 1722 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1723 mddev->bitmap_info.file == NULL) { 1724 mddev->bitmap_info.offset = 1725 (__s32)le32_to_cpu(sb->bitmap_offset); 1726 /* Metadata doesn't record how much space is available. 1727 * For 1.0, we assume we can use up to the superblock 1728 * if before, else to 4K beyond superblock. 1729 * For others, assume no change is possible. 1730 */ 1731 if (mddev->minor_version > 0) 1732 mddev->bitmap_info.space = 0; 1733 else if (mddev->bitmap_info.offset > 0) 1734 mddev->bitmap_info.space = 1735 8 - mddev->bitmap_info.offset; 1736 else 1737 mddev->bitmap_info.space = 1738 -mddev->bitmap_info.offset; 1739 } 1740 1741 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1742 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1743 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1744 mddev->new_level = le32_to_cpu(sb->new_level); 1745 mddev->new_layout = le32_to_cpu(sb->new_layout); 1746 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1747 if (mddev->delta_disks < 0 || 1748 (mddev->delta_disks == 0 && 1749 (le32_to_cpu(sb->feature_map) 1750 & MD_FEATURE_RESHAPE_BACKWARDS))) 1751 mddev->reshape_backwards = 1; 1752 } else { 1753 mddev->reshape_position = MaxSector; 1754 mddev->delta_disks = 0; 1755 mddev->new_level = mddev->level; 1756 mddev->new_layout = mddev->layout; 1757 mddev->new_chunk_sectors = mddev->chunk_sectors; 1758 } 1759 1760 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1761 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1762 1763 if (le32_to_cpu(sb->feature_map) & 1764 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1765 if (le32_to_cpu(sb->feature_map) & 1766 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1767 return -EINVAL; 1768 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1769 (le32_to_cpu(sb->feature_map) & 1770 MD_FEATURE_MULTIPLE_PPLS)) 1771 return -EINVAL; 1772 set_bit(MD_HAS_PPL, &mddev->flags); 1773 } 1774 } else if (mddev->pers == NULL) { 1775 /* Insist of good event counter while assembling, except for 1776 * spares (which don't need an event count) */ 1777 ++ev1; 1778 if (rdev->desc_nr >= 0 && 1779 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1780 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1781 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1782 if (ev1 < mddev->events) 1783 return -EINVAL; 1784 } else if (mddev->bitmap) { 1785 /* If adding to array with a bitmap, then we can accept an 1786 * older device, but not too old. 1787 */ 1788 if (ev1 < mddev->bitmap->events_cleared) 1789 return 0; 1790 if (ev1 < mddev->events) 1791 set_bit(Bitmap_sync, &rdev->flags); 1792 } else { 1793 if (ev1 < mddev->events) 1794 /* just a hot-add of a new device, leave raid_disk at -1 */ 1795 return 0; 1796 } 1797 if (mddev->level != LEVEL_MULTIPATH) { 1798 int role; 1799 if (rdev->desc_nr < 0 || 1800 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1801 role = MD_DISK_ROLE_SPARE; 1802 rdev->desc_nr = -1; 1803 } else 1804 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1805 switch(role) { 1806 case MD_DISK_ROLE_SPARE: /* spare */ 1807 break; 1808 case MD_DISK_ROLE_FAULTY: /* faulty */ 1809 set_bit(Faulty, &rdev->flags); 1810 break; 1811 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1812 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1813 /* journal device without journal feature */ 1814 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1815 return -EINVAL; 1816 } 1817 set_bit(Journal, &rdev->flags); 1818 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1819 rdev->raid_disk = 0; 1820 break; 1821 default: 1822 rdev->saved_raid_disk = role; 1823 if ((le32_to_cpu(sb->feature_map) & 1824 MD_FEATURE_RECOVERY_OFFSET)) { 1825 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1826 if (!(le32_to_cpu(sb->feature_map) & 1827 MD_FEATURE_RECOVERY_BITMAP)) 1828 rdev->saved_raid_disk = -1; 1829 } else 1830 set_bit(In_sync, &rdev->flags); 1831 rdev->raid_disk = role; 1832 break; 1833 } 1834 if (sb->devflags & WriteMostly1) 1835 set_bit(WriteMostly, &rdev->flags); 1836 if (sb->devflags & FailFast1) 1837 set_bit(FailFast, &rdev->flags); 1838 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1839 set_bit(Replacement, &rdev->flags); 1840 } else /* MULTIPATH are always insync */ 1841 set_bit(In_sync, &rdev->flags); 1842 1843 return 0; 1844 } 1845 1846 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1847 { 1848 struct mdp_superblock_1 *sb; 1849 struct md_rdev *rdev2; 1850 int max_dev, i; 1851 /* make rdev->sb match mddev and rdev data. */ 1852 1853 sb = page_address(rdev->sb_page); 1854 1855 sb->feature_map = 0; 1856 sb->pad0 = 0; 1857 sb->recovery_offset = cpu_to_le64(0); 1858 memset(sb->pad3, 0, sizeof(sb->pad3)); 1859 1860 sb->utime = cpu_to_le64((__u64)mddev->utime); 1861 sb->events = cpu_to_le64(mddev->events); 1862 if (mddev->in_sync) 1863 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1864 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1865 sb->resync_offset = cpu_to_le64(MaxSector); 1866 else 1867 sb->resync_offset = cpu_to_le64(0); 1868 1869 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1870 1871 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1872 sb->size = cpu_to_le64(mddev->dev_sectors); 1873 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1874 sb->level = cpu_to_le32(mddev->level); 1875 sb->layout = cpu_to_le32(mddev->layout); 1876 if (test_bit(FailFast, &rdev->flags)) 1877 sb->devflags |= FailFast1; 1878 else 1879 sb->devflags &= ~FailFast1; 1880 1881 if (test_bit(WriteMostly, &rdev->flags)) 1882 sb->devflags |= WriteMostly1; 1883 else 1884 sb->devflags &= ~WriteMostly1; 1885 sb->data_offset = cpu_to_le64(rdev->data_offset); 1886 sb->data_size = cpu_to_le64(rdev->sectors); 1887 1888 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1889 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1890 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1891 } 1892 1893 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1894 !test_bit(In_sync, &rdev->flags)) { 1895 sb->feature_map |= 1896 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1897 sb->recovery_offset = 1898 cpu_to_le64(rdev->recovery_offset); 1899 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1900 sb->feature_map |= 1901 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1902 } 1903 /* Note: recovery_offset and journal_tail share space */ 1904 if (test_bit(Journal, &rdev->flags)) 1905 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1906 if (test_bit(Replacement, &rdev->flags)) 1907 sb->feature_map |= 1908 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1909 1910 if (mddev->reshape_position != MaxSector) { 1911 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1912 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1913 sb->new_layout = cpu_to_le32(mddev->new_layout); 1914 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1915 sb->new_level = cpu_to_le32(mddev->new_level); 1916 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1917 if (mddev->delta_disks == 0 && 1918 mddev->reshape_backwards) 1919 sb->feature_map 1920 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1921 if (rdev->new_data_offset != rdev->data_offset) { 1922 sb->feature_map 1923 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1924 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1925 - rdev->data_offset)); 1926 } 1927 } 1928 1929 if (mddev_is_clustered(mddev)) 1930 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1931 1932 if (rdev->badblocks.count == 0) 1933 /* Nothing to do for bad blocks*/ ; 1934 else if (sb->bblog_offset == 0) 1935 /* Cannot record bad blocks on this device */ 1936 md_error(mddev, rdev); 1937 else { 1938 struct badblocks *bb = &rdev->badblocks; 1939 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 1940 u64 *p = bb->page; 1941 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1942 if (bb->changed) { 1943 unsigned seq; 1944 1945 retry: 1946 seq = read_seqbegin(&bb->lock); 1947 1948 memset(bbp, 0xff, PAGE_SIZE); 1949 1950 for (i = 0 ; i < bb->count ; i++) { 1951 u64 internal_bb = p[i]; 1952 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1953 | BB_LEN(internal_bb)); 1954 bbp[i] = cpu_to_le64(store_bb); 1955 } 1956 bb->changed = 0; 1957 if (read_seqretry(&bb->lock, seq)) 1958 goto retry; 1959 1960 bb->sector = (rdev->sb_start + 1961 (int)le32_to_cpu(sb->bblog_offset)); 1962 bb->size = le16_to_cpu(sb->bblog_size); 1963 } 1964 } 1965 1966 max_dev = 0; 1967 rdev_for_each(rdev2, mddev) 1968 if (rdev2->desc_nr+1 > max_dev) 1969 max_dev = rdev2->desc_nr+1; 1970 1971 if (max_dev > le32_to_cpu(sb->max_dev)) { 1972 int bmask; 1973 sb->max_dev = cpu_to_le32(max_dev); 1974 rdev->sb_size = max_dev * 2 + 256; 1975 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1976 if (rdev->sb_size & bmask) 1977 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1978 } else 1979 max_dev = le32_to_cpu(sb->max_dev); 1980 1981 for (i=0; i<max_dev;i++) 1982 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1983 1984 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1985 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1986 1987 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 1988 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 1989 sb->feature_map |= 1990 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 1991 else 1992 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 1993 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 1994 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 1995 } 1996 1997 rdev_for_each(rdev2, mddev) { 1998 i = rdev2->desc_nr; 1999 if (test_bit(Faulty, &rdev2->flags)) 2000 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2001 else if (test_bit(In_sync, &rdev2->flags)) 2002 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2003 else if (test_bit(Journal, &rdev2->flags)) 2004 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2005 else if (rdev2->raid_disk >= 0) 2006 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2007 else 2008 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2009 } 2010 2011 sb->sb_csum = calc_sb_1_csum(sb); 2012 } 2013 2014 static unsigned long long 2015 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2016 { 2017 struct mdp_superblock_1 *sb; 2018 sector_t max_sectors; 2019 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2020 return 0; /* component must fit device */ 2021 if (rdev->data_offset != rdev->new_data_offset) 2022 return 0; /* too confusing */ 2023 if (rdev->sb_start < rdev->data_offset) { 2024 /* minor versions 1 and 2; superblock before data */ 2025 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2026 max_sectors -= rdev->data_offset; 2027 if (!num_sectors || num_sectors > max_sectors) 2028 num_sectors = max_sectors; 2029 } else if (rdev->mddev->bitmap_info.offset) { 2030 /* minor version 0 with bitmap we can't move */ 2031 return 0; 2032 } else { 2033 /* minor version 0; superblock after data */ 2034 sector_t sb_start; 2035 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 2036 sb_start &= ~(sector_t)(4*2 - 1); 2037 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 2038 if (!num_sectors || num_sectors > max_sectors) 2039 num_sectors = max_sectors; 2040 rdev->sb_start = sb_start; 2041 } 2042 sb = page_address(rdev->sb_page); 2043 sb->data_size = cpu_to_le64(num_sectors); 2044 sb->super_offset = cpu_to_le64(rdev->sb_start); 2045 sb->sb_csum = calc_sb_1_csum(sb); 2046 do { 2047 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2048 rdev->sb_page); 2049 } while (md_super_wait(rdev->mddev) < 0); 2050 return num_sectors; 2051 2052 } 2053 2054 static int 2055 super_1_allow_new_offset(struct md_rdev *rdev, 2056 unsigned long long new_offset) 2057 { 2058 /* All necessary checks on new >= old have been done */ 2059 struct bitmap *bitmap; 2060 if (new_offset >= rdev->data_offset) 2061 return 1; 2062 2063 /* with 1.0 metadata, there is no metadata to tread on 2064 * so we can always move back */ 2065 if (rdev->mddev->minor_version == 0) 2066 return 1; 2067 2068 /* otherwise we must be sure not to step on 2069 * any metadata, so stay: 2070 * 36K beyond start of superblock 2071 * beyond end of badblocks 2072 * beyond write-intent bitmap 2073 */ 2074 if (rdev->sb_start + (32+4)*2 > new_offset) 2075 return 0; 2076 bitmap = rdev->mddev->bitmap; 2077 if (bitmap && !rdev->mddev->bitmap_info.file && 2078 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2079 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2080 return 0; 2081 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2082 return 0; 2083 2084 return 1; 2085 } 2086 2087 static struct super_type super_types[] = { 2088 [0] = { 2089 .name = "0.90.0", 2090 .owner = THIS_MODULE, 2091 .load_super = super_90_load, 2092 .validate_super = super_90_validate, 2093 .sync_super = super_90_sync, 2094 .rdev_size_change = super_90_rdev_size_change, 2095 .allow_new_offset = super_90_allow_new_offset, 2096 }, 2097 [1] = { 2098 .name = "md-1", 2099 .owner = THIS_MODULE, 2100 .load_super = super_1_load, 2101 .validate_super = super_1_validate, 2102 .sync_super = super_1_sync, 2103 .rdev_size_change = super_1_rdev_size_change, 2104 .allow_new_offset = super_1_allow_new_offset, 2105 }, 2106 }; 2107 2108 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2109 { 2110 if (mddev->sync_super) { 2111 mddev->sync_super(mddev, rdev); 2112 return; 2113 } 2114 2115 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2116 2117 super_types[mddev->major_version].sync_super(mddev, rdev); 2118 } 2119 2120 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2121 { 2122 struct md_rdev *rdev, *rdev2; 2123 2124 rcu_read_lock(); 2125 rdev_for_each_rcu(rdev, mddev1) { 2126 if (test_bit(Faulty, &rdev->flags) || 2127 test_bit(Journal, &rdev->flags) || 2128 rdev->raid_disk == -1) 2129 continue; 2130 rdev_for_each_rcu(rdev2, mddev2) { 2131 if (test_bit(Faulty, &rdev2->flags) || 2132 test_bit(Journal, &rdev2->flags) || 2133 rdev2->raid_disk == -1) 2134 continue; 2135 if (rdev->bdev->bd_contains == 2136 rdev2->bdev->bd_contains) { 2137 rcu_read_unlock(); 2138 return 1; 2139 } 2140 } 2141 } 2142 rcu_read_unlock(); 2143 return 0; 2144 } 2145 2146 static LIST_HEAD(pending_raid_disks); 2147 2148 /* 2149 * Try to register data integrity profile for an mddev 2150 * 2151 * This is called when an array is started and after a disk has been kicked 2152 * from the array. It only succeeds if all working and active component devices 2153 * are integrity capable with matching profiles. 2154 */ 2155 int md_integrity_register(struct mddev *mddev) 2156 { 2157 struct md_rdev *rdev, *reference = NULL; 2158 2159 if (list_empty(&mddev->disks)) 2160 return 0; /* nothing to do */ 2161 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2162 return 0; /* shouldn't register, or already is */ 2163 rdev_for_each(rdev, mddev) { 2164 /* skip spares and non-functional disks */ 2165 if (test_bit(Faulty, &rdev->flags)) 2166 continue; 2167 if (rdev->raid_disk < 0) 2168 continue; 2169 if (!reference) { 2170 /* Use the first rdev as the reference */ 2171 reference = rdev; 2172 continue; 2173 } 2174 /* does this rdev's profile match the reference profile? */ 2175 if (blk_integrity_compare(reference->bdev->bd_disk, 2176 rdev->bdev->bd_disk) < 0) 2177 return -EINVAL; 2178 } 2179 if (!reference || !bdev_get_integrity(reference->bdev)) 2180 return 0; 2181 /* 2182 * All component devices are integrity capable and have matching 2183 * profiles, register the common profile for the md device. 2184 */ 2185 blk_integrity_register(mddev->gendisk, 2186 bdev_get_integrity(reference->bdev)); 2187 2188 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2189 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2190 pr_err("md: failed to create integrity pool for %s\n", 2191 mdname(mddev)); 2192 return -EINVAL; 2193 } 2194 return 0; 2195 } 2196 EXPORT_SYMBOL(md_integrity_register); 2197 2198 /* 2199 * Attempt to add an rdev, but only if it is consistent with the current 2200 * integrity profile 2201 */ 2202 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2203 { 2204 struct blk_integrity *bi_mddev; 2205 char name[BDEVNAME_SIZE]; 2206 2207 if (!mddev->gendisk) 2208 return 0; 2209 2210 bi_mddev = blk_get_integrity(mddev->gendisk); 2211 2212 if (!bi_mddev) /* nothing to do */ 2213 return 0; 2214 2215 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2216 pr_err("%s: incompatible integrity profile for %s\n", 2217 mdname(mddev), bdevname(rdev->bdev, name)); 2218 return -ENXIO; 2219 } 2220 2221 return 0; 2222 } 2223 EXPORT_SYMBOL(md_integrity_add_rdev); 2224 2225 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2226 { 2227 char b[BDEVNAME_SIZE]; 2228 struct kobject *ko; 2229 int err; 2230 2231 /* prevent duplicates */ 2232 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2233 return -EEXIST; 2234 2235 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2236 mddev->pers) 2237 return -EROFS; 2238 2239 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2240 if (!test_bit(Journal, &rdev->flags) && 2241 rdev->sectors && 2242 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2243 if (mddev->pers) { 2244 /* Cannot change size, so fail 2245 * If mddev->level <= 0, then we don't care 2246 * about aligning sizes (e.g. linear) 2247 */ 2248 if (mddev->level > 0) 2249 return -ENOSPC; 2250 } else 2251 mddev->dev_sectors = rdev->sectors; 2252 } 2253 2254 /* Verify rdev->desc_nr is unique. 2255 * If it is -1, assign a free number, else 2256 * check number is not in use 2257 */ 2258 rcu_read_lock(); 2259 if (rdev->desc_nr < 0) { 2260 int choice = 0; 2261 if (mddev->pers) 2262 choice = mddev->raid_disks; 2263 while (md_find_rdev_nr_rcu(mddev, choice)) 2264 choice++; 2265 rdev->desc_nr = choice; 2266 } else { 2267 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2268 rcu_read_unlock(); 2269 return -EBUSY; 2270 } 2271 } 2272 rcu_read_unlock(); 2273 if (!test_bit(Journal, &rdev->flags) && 2274 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2275 pr_warn("md: %s: array is limited to %d devices\n", 2276 mdname(mddev), mddev->max_disks); 2277 return -EBUSY; 2278 } 2279 bdevname(rdev->bdev,b); 2280 strreplace(b, '/', '!'); 2281 2282 rdev->mddev = mddev; 2283 pr_debug("md: bind<%s>\n", b); 2284 2285 if (mddev->raid_disks) 2286 mddev_create_wb_pool(mddev, rdev, false); 2287 2288 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2289 goto fail; 2290 2291 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2292 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2293 /* failure here is OK */; 2294 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2295 2296 list_add_rcu(&rdev->same_set, &mddev->disks); 2297 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2298 2299 /* May as well allow recovery to be retried once */ 2300 mddev->recovery_disabled++; 2301 2302 return 0; 2303 2304 fail: 2305 pr_warn("md: failed to register dev-%s for %s\n", 2306 b, mdname(mddev)); 2307 return err; 2308 } 2309 2310 static void md_delayed_delete(struct work_struct *ws) 2311 { 2312 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2313 kobject_del(&rdev->kobj); 2314 kobject_put(&rdev->kobj); 2315 } 2316 2317 static void unbind_rdev_from_array(struct md_rdev *rdev) 2318 { 2319 char b[BDEVNAME_SIZE]; 2320 2321 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2322 list_del_rcu(&rdev->same_set); 2323 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2324 mddev_destroy_wb_pool(rdev->mddev, rdev); 2325 rdev->mddev = NULL; 2326 sysfs_remove_link(&rdev->kobj, "block"); 2327 sysfs_put(rdev->sysfs_state); 2328 rdev->sysfs_state = NULL; 2329 rdev->badblocks.count = 0; 2330 /* We need to delay this, otherwise we can deadlock when 2331 * writing to 'remove' to "dev/state". We also need 2332 * to delay it due to rcu usage. 2333 */ 2334 synchronize_rcu(); 2335 INIT_WORK(&rdev->del_work, md_delayed_delete); 2336 kobject_get(&rdev->kobj); 2337 queue_work(md_misc_wq, &rdev->del_work); 2338 } 2339 2340 /* 2341 * prevent the device from being mounted, repartitioned or 2342 * otherwise reused by a RAID array (or any other kernel 2343 * subsystem), by bd_claiming the device. 2344 */ 2345 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2346 { 2347 int err = 0; 2348 struct block_device *bdev; 2349 char b[BDEVNAME_SIZE]; 2350 2351 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2352 shared ? (struct md_rdev *)lock_rdev : rdev); 2353 if (IS_ERR(bdev)) { 2354 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2355 return PTR_ERR(bdev); 2356 } 2357 rdev->bdev = bdev; 2358 return err; 2359 } 2360 2361 static void unlock_rdev(struct md_rdev *rdev) 2362 { 2363 struct block_device *bdev = rdev->bdev; 2364 rdev->bdev = NULL; 2365 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2366 } 2367 2368 void md_autodetect_dev(dev_t dev); 2369 2370 static void export_rdev(struct md_rdev *rdev) 2371 { 2372 char b[BDEVNAME_SIZE]; 2373 2374 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2375 md_rdev_clear(rdev); 2376 #ifndef MODULE 2377 if (test_bit(AutoDetected, &rdev->flags)) 2378 md_autodetect_dev(rdev->bdev->bd_dev); 2379 #endif 2380 unlock_rdev(rdev); 2381 kobject_put(&rdev->kobj); 2382 } 2383 2384 void md_kick_rdev_from_array(struct md_rdev *rdev) 2385 { 2386 unbind_rdev_from_array(rdev); 2387 export_rdev(rdev); 2388 } 2389 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2390 2391 static void export_array(struct mddev *mddev) 2392 { 2393 struct md_rdev *rdev; 2394 2395 while (!list_empty(&mddev->disks)) { 2396 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2397 same_set); 2398 md_kick_rdev_from_array(rdev); 2399 } 2400 mddev->raid_disks = 0; 2401 mddev->major_version = 0; 2402 } 2403 2404 static bool set_in_sync(struct mddev *mddev) 2405 { 2406 lockdep_assert_held(&mddev->lock); 2407 if (!mddev->in_sync) { 2408 mddev->sync_checkers++; 2409 spin_unlock(&mddev->lock); 2410 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2411 spin_lock(&mddev->lock); 2412 if (!mddev->in_sync && 2413 percpu_ref_is_zero(&mddev->writes_pending)) { 2414 mddev->in_sync = 1; 2415 /* 2416 * Ensure ->in_sync is visible before we clear 2417 * ->sync_checkers. 2418 */ 2419 smp_mb(); 2420 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2421 sysfs_notify_dirent_safe(mddev->sysfs_state); 2422 } 2423 if (--mddev->sync_checkers == 0) 2424 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2425 } 2426 if (mddev->safemode == 1) 2427 mddev->safemode = 0; 2428 return mddev->in_sync; 2429 } 2430 2431 static void sync_sbs(struct mddev *mddev, int nospares) 2432 { 2433 /* Update each superblock (in-memory image), but 2434 * if we are allowed to, skip spares which already 2435 * have the right event counter, or have one earlier 2436 * (which would mean they aren't being marked as dirty 2437 * with the rest of the array) 2438 */ 2439 struct md_rdev *rdev; 2440 rdev_for_each(rdev, mddev) { 2441 if (rdev->sb_events == mddev->events || 2442 (nospares && 2443 rdev->raid_disk < 0 && 2444 rdev->sb_events+1 == mddev->events)) { 2445 /* Don't update this superblock */ 2446 rdev->sb_loaded = 2; 2447 } else { 2448 sync_super(mddev, rdev); 2449 rdev->sb_loaded = 1; 2450 } 2451 } 2452 } 2453 2454 static bool does_sb_need_changing(struct mddev *mddev) 2455 { 2456 struct md_rdev *rdev; 2457 struct mdp_superblock_1 *sb; 2458 int role; 2459 2460 /* Find a good rdev */ 2461 rdev_for_each(rdev, mddev) 2462 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2463 break; 2464 2465 /* No good device found. */ 2466 if (!rdev) 2467 return false; 2468 2469 sb = page_address(rdev->sb_page); 2470 /* Check if a device has become faulty or a spare become active */ 2471 rdev_for_each(rdev, mddev) { 2472 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2473 /* Device activated? */ 2474 if (role == 0xffff && rdev->raid_disk >=0 && 2475 !test_bit(Faulty, &rdev->flags)) 2476 return true; 2477 /* Device turned faulty? */ 2478 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2479 return true; 2480 } 2481 2482 /* Check if any mddev parameters have changed */ 2483 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2484 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2485 (mddev->layout != le32_to_cpu(sb->layout)) || 2486 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2487 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2488 return true; 2489 2490 return false; 2491 } 2492 2493 void md_update_sb(struct mddev *mddev, int force_change) 2494 { 2495 struct md_rdev *rdev; 2496 int sync_req; 2497 int nospares = 0; 2498 int any_badblocks_changed = 0; 2499 int ret = -1; 2500 2501 if (mddev->ro) { 2502 if (force_change) 2503 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2504 return; 2505 } 2506 2507 repeat: 2508 if (mddev_is_clustered(mddev)) { 2509 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2510 force_change = 1; 2511 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2512 nospares = 1; 2513 ret = md_cluster_ops->metadata_update_start(mddev); 2514 /* Has someone else has updated the sb */ 2515 if (!does_sb_need_changing(mddev)) { 2516 if (ret == 0) 2517 md_cluster_ops->metadata_update_cancel(mddev); 2518 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2519 BIT(MD_SB_CHANGE_DEVS) | 2520 BIT(MD_SB_CHANGE_CLEAN)); 2521 return; 2522 } 2523 } 2524 2525 /* 2526 * First make sure individual recovery_offsets are correct 2527 * curr_resync_completed can only be used during recovery. 2528 * During reshape/resync it might use array-addresses rather 2529 * that device addresses. 2530 */ 2531 rdev_for_each(rdev, mddev) { 2532 if (rdev->raid_disk >= 0 && 2533 mddev->delta_disks >= 0 && 2534 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2535 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2536 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2537 !test_bit(Journal, &rdev->flags) && 2538 !test_bit(In_sync, &rdev->flags) && 2539 mddev->curr_resync_completed > rdev->recovery_offset) 2540 rdev->recovery_offset = mddev->curr_resync_completed; 2541 2542 } 2543 if (!mddev->persistent) { 2544 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2545 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2546 if (!mddev->external) { 2547 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2548 rdev_for_each(rdev, mddev) { 2549 if (rdev->badblocks.changed) { 2550 rdev->badblocks.changed = 0; 2551 ack_all_badblocks(&rdev->badblocks); 2552 md_error(mddev, rdev); 2553 } 2554 clear_bit(Blocked, &rdev->flags); 2555 clear_bit(BlockedBadBlocks, &rdev->flags); 2556 wake_up(&rdev->blocked_wait); 2557 } 2558 } 2559 wake_up(&mddev->sb_wait); 2560 return; 2561 } 2562 2563 spin_lock(&mddev->lock); 2564 2565 mddev->utime = ktime_get_real_seconds(); 2566 2567 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2568 force_change = 1; 2569 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2570 /* just a clean<-> dirty transition, possibly leave spares alone, 2571 * though if events isn't the right even/odd, we will have to do 2572 * spares after all 2573 */ 2574 nospares = 1; 2575 if (force_change) 2576 nospares = 0; 2577 if (mddev->degraded) 2578 /* If the array is degraded, then skipping spares is both 2579 * dangerous and fairly pointless. 2580 * Dangerous because a device that was removed from the array 2581 * might have a event_count that still looks up-to-date, 2582 * so it can be re-added without a resync. 2583 * Pointless because if there are any spares to skip, 2584 * then a recovery will happen and soon that array won't 2585 * be degraded any more and the spare can go back to sleep then. 2586 */ 2587 nospares = 0; 2588 2589 sync_req = mddev->in_sync; 2590 2591 /* If this is just a dirty<->clean transition, and the array is clean 2592 * and 'events' is odd, we can roll back to the previous clean state */ 2593 if (nospares 2594 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2595 && mddev->can_decrease_events 2596 && mddev->events != 1) { 2597 mddev->events--; 2598 mddev->can_decrease_events = 0; 2599 } else { 2600 /* otherwise we have to go forward and ... */ 2601 mddev->events ++; 2602 mddev->can_decrease_events = nospares; 2603 } 2604 2605 /* 2606 * This 64-bit counter should never wrap. 2607 * Either we are in around ~1 trillion A.C., assuming 2608 * 1 reboot per second, or we have a bug... 2609 */ 2610 WARN_ON(mddev->events == 0); 2611 2612 rdev_for_each(rdev, mddev) { 2613 if (rdev->badblocks.changed) 2614 any_badblocks_changed++; 2615 if (test_bit(Faulty, &rdev->flags)) 2616 set_bit(FaultRecorded, &rdev->flags); 2617 } 2618 2619 sync_sbs(mddev, nospares); 2620 spin_unlock(&mddev->lock); 2621 2622 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2623 mdname(mddev), mddev->in_sync); 2624 2625 if (mddev->queue) 2626 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2627 rewrite: 2628 md_bitmap_update_sb(mddev->bitmap); 2629 rdev_for_each(rdev, mddev) { 2630 char b[BDEVNAME_SIZE]; 2631 2632 if (rdev->sb_loaded != 1) 2633 continue; /* no noise on spare devices */ 2634 2635 if (!test_bit(Faulty, &rdev->flags)) { 2636 md_super_write(mddev,rdev, 2637 rdev->sb_start, rdev->sb_size, 2638 rdev->sb_page); 2639 pr_debug("md: (write) %s's sb offset: %llu\n", 2640 bdevname(rdev->bdev, b), 2641 (unsigned long long)rdev->sb_start); 2642 rdev->sb_events = mddev->events; 2643 if (rdev->badblocks.size) { 2644 md_super_write(mddev, rdev, 2645 rdev->badblocks.sector, 2646 rdev->badblocks.size << 9, 2647 rdev->bb_page); 2648 rdev->badblocks.size = 0; 2649 } 2650 2651 } else 2652 pr_debug("md: %s (skipping faulty)\n", 2653 bdevname(rdev->bdev, b)); 2654 2655 if (mddev->level == LEVEL_MULTIPATH) 2656 /* only need to write one superblock... */ 2657 break; 2658 } 2659 if (md_super_wait(mddev) < 0) 2660 goto rewrite; 2661 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2662 2663 if (mddev_is_clustered(mddev) && ret == 0) 2664 md_cluster_ops->metadata_update_finish(mddev); 2665 2666 if (mddev->in_sync != sync_req || 2667 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2668 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2669 /* have to write it out again */ 2670 goto repeat; 2671 wake_up(&mddev->sb_wait); 2672 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2673 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2674 2675 rdev_for_each(rdev, mddev) { 2676 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2677 clear_bit(Blocked, &rdev->flags); 2678 2679 if (any_badblocks_changed) 2680 ack_all_badblocks(&rdev->badblocks); 2681 clear_bit(BlockedBadBlocks, &rdev->flags); 2682 wake_up(&rdev->blocked_wait); 2683 } 2684 } 2685 EXPORT_SYMBOL(md_update_sb); 2686 2687 static int add_bound_rdev(struct md_rdev *rdev) 2688 { 2689 struct mddev *mddev = rdev->mddev; 2690 int err = 0; 2691 bool add_journal = test_bit(Journal, &rdev->flags); 2692 2693 if (!mddev->pers->hot_remove_disk || add_journal) { 2694 /* If there is hot_add_disk but no hot_remove_disk 2695 * then added disks for geometry changes, 2696 * and should be added immediately. 2697 */ 2698 super_types[mddev->major_version]. 2699 validate_super(mddev, rdev); 2700 if (add_journal) 2701 mddev_suspend(mddev); 2702 err = mddev->pers->hot_add_disk(mddev, rdev); 2703 if (add_journal) 2704 mddev_resume(mddev); 2705 if (err) { 2706 md_kick_rdev_from_array(rdev); 2707 return err; 2708 } 2709 } 2710 sysfs_notify_dirent_safe(rdev->sysfs_state); 2711 2712 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2713 if (mddev->degraded) 2714 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2715 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2716 md_new_event(mddev); 2717 md_wakeup_thread(mddev->thread); 2718 return 0; 2719 } 2720 2721 /* words written to sysfs files may, or may not, be \n terminated. 2722 * We want to accept with case. For this we use cmd_match. 2723 */ 2724 static int cmd_match(const char *cmd, const char *str) 2725 { 2726 /* See if cmd, written into a sysfs file, matches 2727 * str. They must either be the same, or cmd can 2728 * have a trailing newline 2729 */ 2730 while (*cmd && *str && *cmd == *str) { 2731 cmd++; 2732 str++; 2733 } 2734 if (*cmd == '\n') 2735 cmd++; 2736 if (*str || *cmd) 2737 return 0; 2738 return 1; 2739 } 2740 2741 struct rdev_sysfs_entry { 2742 struct attribute attr; 2743 ssize_t (*show)(struct md_rdev *, char *); 2744 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2745 }; 2746 2747 static ssize_t 2748 state_show(struct md_rdev *rdev, char *page) 2749 { 2750 char *sep = ","; 2751 size_t len = 0; 2752 unsigned long flags = READ_ONCE(rdev->flags); 2753 2754 if (test_bit(Faulty, &flags) || 2755 (!test_bit(ExternalBbl, &flags) && 2756 rdev->badblocks.unacked_exist)) 2757 len += sprintf(page+len, "faulty%s", sep); 2758 if (test_bit(In_sync, &flags)) 2759 len += sprintf(page+len, "in_sync%s", sep); 2760 if (test_bit(Journal, &flags)) 2761 len += sprintf(page+len, "journal%s", sep); 2762 if (test_bit(WriteMostly, &flags)) 2763 len += sprintf(page+len, "write_mostly%s", sep); 2764 if (test_bit(Blocked, &flags) || 2765 (rdev->badblocks.unacked_exist 2766 && !test_bit(Faulty, &flags))) 2767 len += sprintf(page+len, "blocked%s", sep); 2768 if (!test_bit(Faulty, &flags) && 2769 !test_bit(Journal, &flags) && 2770 !test_bit(In_sync, &flags)) 2771 len += sprintf(page+len, "spare%s", sep); 2772 if (test_bit(WriteErrorSeen, &flags)) 2773 len += sprintf(page+len, "write_error%s", sep); 2774 if (test_bit(WantReplacement, &flags)) 2775 len += sprintf(page+len, "want_replacement%s", sep); 2776 if (test_bit(Replacement, &flags)) 2777 len += sprintf(page+len, "replacement%s", sep); 2778 if (test_bit(ExternalBbl, &flags)) 2779 len += sprintf(page+len, "external_bbl%s", sep); 2780 if (test_bit(FailFast, &flags)) 2781 len += sprintf(page+len, "failfast%s", sep); 2782 2783 if (len) 2784 len -= strlen(sep); 2785 2786 return len+sprintf(page+len, "\n"); 2787 } 2788 2789 static ssize_t 2790 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2791 { 2792 /* can write 2793 * faulty - simulates an error 2794 * remove - disconnects the device 2795 * writemostly - sets write_mostly 2796 * -writemostly - clears write_mostly 2797 * blocked - sets the Blocked flags 2798 * -blocked - clears the Blocked and possibly simulates an error 2799 * insync - sets Insync providing device isn't active 2800 * -insync - clear Insync for a device with a slot assigned, 2801 * so that it gets rebuilt based on bitmap 2802 * write_error - sets WriteErrorSeen 2803 * -write_error - clears WriteErrorSeen 2804 * {,-}failfast - set/clear FailFast 2805 */ 2806 int err = -EINVAL; 2807 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2808 md_error(rdev->mddev, rdev); 2809 if (test_bit(Faulty, &rdev->flags)) 2810 err = 0; 2811 else 2812 err = -EBUSY; 2813 } else if (cmd_match(buf, "remove")) { 2814 if (rdev->mddev->pers) { 2815 clear_bit(Blocked, &rdev->flags); 2816 remove_and_add_spares(rdev->mddev, rdev); 2817 } 2818 if (rdev->raid_disk >= 0) 2819 err = -EBUSY; 2820 else { 2821 struct mddev *mddev = rdev->mddev; 2822 err = 0; 2823 if (mddev_is_clustered(mddev)) 2824 err = md_cluster_ops->remove_disk(mddev, rdev); 2825 2826 if (err == 0) { 2827 md_kick_rdev_from_array(rdev); 2828 if (mddev->pers) { 2829 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2830 md_wakeup_thread(mddev->thread); 2831 } 2832 md_new_event(mddev); 2833 } 2834 } 2835 } else if (cmd_match(buf, "writemostly")) { 2836 set_bit(WriteMostly, &rdev->flags); 2837 mddev_create_wb_pool(rdev->mddev, rdev, false); 2838 err = 0; 2839 } else if (cmd_match(buf, "-writemostly")) { 2840 mddev_destroy_wb_pool(rdev->mddev, rdev); 2841 clear_bit(WriteMostly, &rdev->flags); 2842 err = 0; 2843 } else if (cmd_match(buf, "blocked")) { 2844 set_bit(Blocked, &rdev->flags); 2845 err = 0; 2846 } else if (cmd_match(buf, "-blocked")) { 2847 if (!test_bit(Faulty, &rdev->flags) && 2848 !test_bit(ExternalBbl, &rdev->flags) && 2849 rdev->badblocks.unacked_exist) { 2850 /* metadata handler doesn't understand badblocks, 2851 * so we need to fail the device 2852 */ 2853 md_error(rdev->mddev, rdev); 2854 } 2855 clear_bit(Blocked, &rdev->flags); 2856 clear_bit(BlockedBadBlocks, &rdev->flags); 2857 wake_up(&rdev->blocked_wait); 2858 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2859 md_wakeup_thread(rdev->mddev->thread); 2860 2861 err = 0; 2862 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2863 set_bit(In_sync, &rdev->flags); 2864 err = 0; 2865 } else if (cmd_match(buf, "failfast")) { 2866 set_bit(FailFast, &rdev->flags); 2867 err = 0; 2868 } else if (cmd_match(buf, "-failfast")) { 2869 clear_bit(FailFast, &rdev->flags); 2870 err = 0; 2871 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2872 !test_bit(Journal, &rdev->flags)) { 2873 if (rdev->mddev->pers == NULL) { 2874 clear_bit(In_sync, &rdev->flags); 2875 rdev->saved_raid_disk = rdev->raid_disk; 2876 rdev->raid_disk = -1; 2877 err = 0; 2878 } 2879 } else if (cmd_match(buf, "write_error")) { 2880 set_bit(WriteErrorSeen, &rdev->flags); 2881 err = 0; 2882 } else if (cmd_match(buf, "-write_error")) { 2883 clear_bit(WriteErrorSeen, &rdev->flags); 2884 err = 0; 2885 } else if (cmd_match(buf, "want_replacement")) { 2886 /* Any non-spare device that is not a replacement can 2887 * become want_replacement at any time, but we then need to 2888 * check if recovery is needed. 2889 */ 2890 if (rdev->raid_disk >= 0 && 2891 !test_bit(Journal, &rdev->flags) && 2892 !test_bit(Replacement, &rdev->flags)) 2893 set_bit(WantReplacement, &rdev->flags); 2894 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2895 md_wakeup_thread(rdev->mddev->thread); 2896 err = 0; 2897 } else if (cmd_match(buf, "-want_replacement")) { 2898 /* Clearing 'want_replacement' is always allowed. 2899 * Once replacements starts it is too late though. 2900 */ 2901 err = 0; 2902 clear_bit(WantReplacement, &rdev->flags); 2903 } else if (cmd_match(buf, "replacement")) { 2904 /* Can only set a device as a replacement when array has not 2905 * yet been started. Once running, replacement is automatic 2906 * from spares, or by assigning 'slot'. 2907 */ 2908 if (rdev->mddev->pers) 2909 err = -EBUSY; 2910 else { 2911 set_bit(Replacement, &rdev->flags); 2912 err = 0; 2913 } 2914 } else if (cmd_match(buf, "-replacement")) { 2915 /* Similarly, can only clear Replacement before start */ 2916 if (rdev->mddev->pers) 2917 err = -EBUSY; 2918 else { 2919 clear_bit(Replacement, &rdev->flags); 2920 err = 0; 2921 } 2922 } else if (cmd_match(buf, "re-add")) { 2923 if (!rdev->mddev->pers) 2924 err = -EINVAL; 2925 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 2926 rdev->saved_raid_disk >= 0) { 2927 /* clear_bit is performed _after_ all the devices 2928 * have their local Faulty bit cleared. If any writes 2929 * happen in the meantime in the local node, they 2930 * will land in the local bitmap, which will be synced 2931 * by this node eventually 2932 */ 2933 if (!mddev_is_clustered(rdev->mddev) || 2934 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2935 clear_bit(Faulty, &rdev->flags); 2936 err = add_bound_rdev(rdev); 2937 } 2938 } else 2939 err = -EBUSY; 2940 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2941 set_bit(ExternalBbl, &rdev->flags); 2942 rdev->badblocks.shift = 0; 2943 err = 0; 2944 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2945 clear_bit(ExternalBbl, &rdev->flags); 2946 err = 0; 2947 } 2948 if (!err) 2949 sysfs_notify_dirent_safe(rdev->sysfs_state); 2950 return err ? err : len; 2951 } 2952 static struct rdev_sysfs_entry rdev_state = 2953 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2954 2955 static ssize_t 2956 errors_show(struct md_rdev *rdev, char *page) 2957 { 2958 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2959 } 2960 2961 static ssize_t 2962 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2963 { 2964 unsigned int n; 2965 int rv; 2966 2967 rv = kstrtouint(buf, 10, &n); 2968 if (rv < 0) 2969 return rv; 2970 atomic_set(&rdev->corrected_errors, n); 2971 return len; 2972 } 2973 static struct rdev_sysfs_entry rdev_errors = 2974 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2975 2976 static ssize_t 2977 slot_show(struct md_rdev *rdev, char *page) 2978 { 2979 if (test_bit(Journal, &rdev->flags)) 2980 return sprintf(page, "journal\n"); 2981 else if (rdev->raid_disk < 0) 2982 return sprintf(page, "none\n"); 2983 else 2984 return sprintf(page, "%d\n", rdev->raid_disk); 2985 } 2986 2987 static ssize_t 2988 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2989 { 2990 int slot; 2991 int err; 2992 2993 if (test_bit(Journal, &rdev->flags)) 2994 return -EBUSY; 2995 if (strncmp(buf, "none", 4)==0) 2996 slot = -1; 2997 else { 2998 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2999 if (err < 0) 3000 return err; 3001 } 3002 if (rdev->mddev->pers && slot == -1) { 3003 /* Setting 'slot' on an active array requires also 3004 * updating the 'rd%d' link, and communicating 3005 * with the personality with ->hot_*_disk. 3006 * For now we only support removing 3007 * failed/spare devices. This normally happens automatically, 3008 * but not when the metadata is externally managed. 3009 */ 3010 if (rdev->raid_disk == -1) 3011 return -EEXIST; 3012 /* personality does all needed checks */ 3013 if (rdev->mddev->pers->hot_remove_disk == NULL) 3014 return -EINVAL; 3015 clear_bit(Blocked, &rdev->flags); 3016 remove_and_add_spares(rdev->mddev, rdev); 3017 if (rdev->raid_disk >= 0) 3018 return -EBUSY; 3019 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3020 md_wakeup_thread(rdev->mddev->thread); 3021 } else if (rdev->mddev->pers) { 3022 /* Activating a spare .. or possibly reactivating 3023 * if we ever get bitmaps working here. 3024 */ 3025 int err; 3026 3027 if (rdev->raid_disk != -1) 3028 return -EBUSY; 3029 3030 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3031 return -EBUSY; 3032 3033 if (rdev->mddev->pers->hot_add_disk == NULL) 3034 return -EINVAL; 3035 3036 if (slot >= rdev->mddev->raid_disks && 3037 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3038 return -ENOSPC; 3039 3040 rdev->raid_disk = slot; 3041 if (test_bit(In_sync, &rdev->flags)) 3042 rdev->saved_raid_disk = slot; 3043 else 3044 rdev->saved_raid_disk = -1; 3045 clear_bit(In_sync, &rdev->flags); 3046 clear_bit(Bitmap_sync, &rdev->flags); 3047 err = rdev->mddev->pers-> 3048 hot_add_disk(rdev->mddev, rdev); 3049 if (err) { 3050 rdev->raid_disk = -1; 3051 return err; 3052 } else 3053 sysfs_notify_dirent_safe(rdev->sysfs_state); 3054 if (sysfs_link_rdev(rdev->mddev, rdev)) 3055 /* failure here is OK */; 3056 /* don't wakeup anyone, leave that to userspace. */ 3057 } else { 3058 if (slot >= rdev->mddev->raid_disks && 3059 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3060 return -ENOSPC; 3061 rdev->raid_disk = slot; 3062 /* assume it is working */ 3063 clear_bit(Faulty, &rdev->flags); 3064 clear_bit(WriteMostly, &rdev->flags); 3065 set_bit(In_sync, &rdev->flags); 3066 sysfs_notify_dirent_safe(rdev->sysfs_state); 3067 } 3068 return len; 3069 } 3070 3071 static struct rdev_sysfs_entry rdev_slot = 3072 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3073 3074 static ssize_t 3075 offset_show(struct md_rdev *rdev, char *page) 3076 { 3077 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3078 } 3079 3080 static ssize_t 3081 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3082 { 3083 unsigned long long offset; 3084 if (kstrtoull(buf, 10, &offset) < 0) 3085 return -EINVAL; 3086 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3087 return -EBUSY; 3088 if (rdev->sectors && rdev->mddev->external) 3089 /* Must set offset before size, so overlap checks 3090 * can be sane */ 3091 return -EBUSY; 3092 rdev->data_offset = offset; 3093 rdev->new_data_offset = offset; 3094 return len; 3095 } 3096 3097 static struct rdev_sysfs_entry rdev_offset = 3098 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3099 3100 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3101 { 3102 return sprintf(page, "%llu\n", 3103 (unsigned long long)rdev->new_data_offset); 3104 } 3105 3106 static ssize_t new_offset_store(struct md_rdev *rdev, 3107 const char *buf, size_t len) 3108 { 3109 unsigned long long new_offset; 3110 struct mddev *mddev = rdev->mddev; 3111 3112 if (kstrtoull(buf, 10, &new_offset) < 0) 3113 return -EINVAL; 3114 3115 if (mddev->sync_thread || 3116 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3117 return -EBUSY; 3118 if (new_offset == rdev->data_offset) 3119 /* reset is always permitted */ 3120 ; 3121 else if (new_offset > rdev->data_offset) { 3122 /* must not push array size beyond rdev_sectors */ 3123 if (new_offset - rdev->data_offset 3124 + mddev->dev_sectors > rdev->sectors) 3125 return -E2BIG; 3126 } 3127 /* Metadata worries about other space details. */ 3128 3129 /* decreasing the offset is inconsistent with a backwards 3130 * reshape. 3131 */ 3132 if (new_offset < rdev->data_offset && 3133 mddev->reshape_backwards) 3134 return -EINVAL; 3135 /* Increasing offset is inconsistent with forwards 3136 * reshape. reshape_direction should be set to 3137 * 'backwards' first. 3138 */ 3139 if (new_offset > rdev->data_offset && 3140 !mddev->reshape_backwards) 3141 return -EINVAL; 3142 3143 if (mddev->pers && mddev->persistent && 3144 !super_types[mddev->major_version] 3145 .allow_new_offset(rdev, new_offset)) 3146 return -E2BIG; 3147 rdev->new_data_offset = new_offset; 3148 if (new_offset > rdev->data_offset) 3149 mddev->reshape_backwards = 1; 3150 else if (new_offset < rdev->data_offset) 3151 mddev->reshape_backwards = 0; 3152 3153 return len; 3154 } 3155 static struct rdev_sysfs_entry rdev_new_offset = 3156 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3157 3158 static ssize_t 3159 rdev_size_show(struct md_rdev *rdev, char *page) 3160 { 3161 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3162 } 3163 3164 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3165 { 3166 /* check if two start/length pairs overlap */ 3167 if (s1+l1 <= s2) 3168 return 0; 3169 if (s2+l2 <= s1) 3170 return 0; 3171 return 1; 3172 } 3173 3174 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3175 { 3176 unsigned long long blocks; 3177 sector_t new; 3178 3179 if (kstrtoull(buf, 10, &blocks) < 0) 3180 return -EINVAL; 3181 3182 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3183 return -EINVAL; /* sector conversion overflow */ 3184 3185 new = blocks * 2; 3186 if (new != blocks * 2) 3187 return -EINVAL; /* unsigned long long to sector_t overflow */ 3188 3189 *sectors = new; 3190 return 0; 3191 } 3192 3193 static ssize_t 3194 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3195 { 3196 struct mddev *my_mddev = rdev->mddev; 3197 sector_t oldsectors = rdev->sectors; 3198 sector_t sectors; 3199 3200 if (test_bit(Journal, &rdev->flags)) 3201 return -EBUSY; 3202 if (strict_blocks_to_sectors(buf, §ors) < 0) 3203 return -EINVAL; 3204 if (rdev->data_offset != rdev->new_data_offset) 3205 return -EINVAL; /* too confusing */ 3206 if (my_mddev->pers && rdev->raid_disk >= 0) { 3207 if (my_mddev->persistent) { 3208 sectors = super_types[my_mddev->major_version]. 3209 rdev_size_change(rdev, sectors); 3210 if (!sectors) 3211 return -EBUSY; 3212 } else if (!sectors) 3213 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3214 rdev->data_offset; 3215 if (!my_mddev->pers->resize) 3216 /* Cannot change size for RAID0 or Linear etc */ 3217 return -EINVAL; 3218 } 3219 if (sectors < my_mddev->dev_sectors) 3220 return -EINVAL; /* component must fit device */ 3221 3222 rdev->sectors = sectors; 3223 if (sectors > oldsectors && my_mddev->external) { 3224 /* Need to check that all other rdevs with the same 3225 * ->bdev do not overlap. 'rcu' is sufficient to walk 3226 * the rdev lists safely. 3227 * This check does not provide a hard guarantee, it 3228 * just helps avoid dangerous mistakes. 3229 */ 3230 struct mddev *mddev; 3231 int overlap = 0; 3232 struct list_head *tmp; 3233 3234 rcu_read_lock(); 3235 for_each_mddev(mddev, tmp) { 3236 struct md_rdev *rdev2; 3237 3238 rdev_for_each(rdev2, mddev) 3239 if (rdev->bdev == rdev2->bdev && 3240 rdev != rdev2 && 3241 overlaps(rdev->data_offset, rdev->sectors, 3242 rdev2->data_offset, 3243 rdev2->sectors)) { 3244 overlap = 1; 3245 break; 3246 } 3247 if (overlap) { 3248 mddev_put(mddev); 3249 break; 3250 } 3251 } 3252 rcu_read_unlock(); 3253 if (overlap) { 3254 /* Someone else could have slipped in a size 3255 * change here, but doing so is just silly. 3256 * We put oldsectors back because we *know* it is 3257 * safe, and trust userspace not to race with 3258 * itself 3259 */ 3260 rdev->sectors = oldsectors; 3261 return -EBUSY; 3262 } 3263 } 3264 return len; 3265 } 3266 3267 static struct rdev_sysfs_entry rdev_size = 3268 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3269 3270 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3271 { 3272 unsigned long long recovery_start = rdev->recovery_offset; 3273 3274 if (test_bit(In_sync, &rdev->flags) || 3275 recovery_start == MaxSector) 3276 return sprintf(page, "none\n"); 3277 3278 return sprintf(page, "%llu\n", recovery_start); 3279 } 3280 3281 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3282 { 3283 unsigned long long recovery_start; 3284 3285 if (cmd_match(buf, "none")) 3286 recovery_start = MaxSector; 3287 else if (kstrtoull(buf, 10, &recovery_start)) 3288 return -EINVAL; 3289 3290 if (rdev->mddev->pers && 3291 rdev->raid_disk >= 0) 3292 return -EBUSY; 3293 3294 rdev->recovery_offset = recovery_start; 3295 if (recovery_start == MaxSector) 3296 set_bit(In_sync, &rdev->flags); 3297 else 3298 clear_bit(In_sync, &rdev->flags); 3299 return len; 3300 } 3301 3302 static struct rdev_sysfs_entry rdev_recovery_start = 3303 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3304 3305 /* sysfs access to bad-blocks list. 3306 * We present two files. 3307 * 'bad-blocks' lists sector numbers and lengths of ranges that 3308 * are recorded as bad. The list is truncated to fit within 3309 * the one-page limit of sysfs. 3310 * Writing "sector length" to this file adds an acknowledged 3311 * bad block list. 3312 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3313 * been acknowledged. Writing to this file adds bad blocks 3314 * without acknowledging them. This is largely for testing. 3315 */ 3316 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3317 { 3318 return badblocks_show(&rdev->badblocks, page, 0); 3319 } 3320 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3321 { 3322 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3323 /* Maybe that ack was all we needed */ 3324 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3325 wake_up(&rdev->blocked_wait); 3326 return rv; 3327 } 3328 static struct rdev_sysfs_entry rdev_bad_blocks = 3329 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3330 3331 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3332 { 3333 return badblocks_show(&rdev->badblocks, page, 1); 3334 } 3335 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3336 { 3337 return badblocks_store(&rdev->badblocks, page, len, 1); 3338 } 3339 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3340 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3341 3342 static ssize_t 3343 ppl_sector_show(struct md_rdev *rdev, char *page) 3344 { 3345 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3346 } 3347 3348 static ssize_t 3349 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3350 { 3351 unsigned long long sector; 3352 3353 if (kstrtoull(buf, 10, §or) < 0) 3354 return -EINVAL; 3355 if (sector != (sector_t)sector) 3356 return -EINVAL; 3357 3358 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3359 rdev->raid_disk >= 0) 3360 return -EBUSY; 3361 3362 if (rdev->mddev->persistent) { 3363 if (rdev->mddev->major_version == 0) 3364 return -EINVAL; 3365 if ((sector > rdev->sb_start && 3366 sector - rdev->sb_start > S16_MAX) || 3367 (sector < rdev->sb_start && 3368 rdev->sb_start - sector > -S16_MIN)) 3369 return -EINVAL; 3370 rdev->ppl.offset = sector - rdev->sb_start; 3371 } else if (!rdev->mddev->external) { 3372 return -EBUSY; 3373 } 3374 rdev->ppl.sector = sector; 3375 return len; 3376 } 3377 3378 static struct rdev_sysfs_entry rdev_ppl_sector = 3379 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3380 3381 static ssize_t 3382 ppl_size_show(struct md_rdev *rdev, char *page) 3383 { 3384 return sprintf(page, "%u\n", rdev->ppl.size); 3385 } 3386 3387 static ssize_t 3388 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3389 { 3390 unsigned int size; 3391 3392 if (kstrtouint(buf, 10, &size) < 0) 3393 return -EINVAL; 3394 3395 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3396 rdev->raid_disk >= 0) 3397 return -EBUSY; 3398 3399 if (rdev->mddev->persistent) { 3400 if (rdev->mddev->major_version == 0) 3401 return -EINVAL; 3402 if (size > U16_MAX) 3403 return -EINVAL; 3404 } else if (!rdev->mddev->external) { 3405 return -EBUSY; 3406 } 3407 rdev->ppl.size = size; 3408 return len; 3409 } 3410 3411 static struct rdev_sysfs_entry rdev_ppl_size = 3412 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3413 3414 static struct attribute *rdev_default_attrs[] = { 3415 &rdev_state.attr, 3416 &rdev_errors.attr, 3417 &rdev_slot.attr, 3418 &rdev_offset.attr, 3419 &rdev_new_offset.attr, 3420 &rdev_size.attr, 3421 &rdev_recovery_start.attr, 3422 &rdev_bad_blocks.attr, 3423 &rdev_unack_bad_blocks.attr, 3424 &rdev_ppl_sector.attr, 3425 &rdev_ppl_size.attr, 3426 NULL, 3427 }; 3428 static ssize_t 3429 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3430 { 3431 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3432 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3433 3434 if (!entry->show) 3435 return -EIO; 3436 if (!rdev->mddev) 3437 return -ENODEV; 3438 return entry->show(rdev, page); 3439 } 3440 3441 static ssize_t 3442 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3443 const char *page, size_t length) 3444 { 3445 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3446 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3447 ssize_t rv; 3448 struct mddev *mddev = rdev->mddev; 3449 3450 if (!entry->store) 3451 return -EIO; 3452 if (!capable(CAP_SYS_ADMIN)) 3453 return -EACCES; 3454 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3455 if (!rv) { 3456 if (rdev->mddev == NULL) 3457 rv = -ENODEV; 3458 else 3459 rv = entry->store(rdev, page, length); 3460 mddev_unlock(mddev); 3461 } 3462 return rv; 3463 } 3464 3465 static void rdev_free(struct kobject *ko) 3466 { 3467 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3468 kfree(rdev); 3469 } 3470 static const struct sysfs_ops rdev_sysfs_ops = { 3471 .show = rdev_attr_show, 3472 .store = rdev_attr_store, 3473 }; 3474 static struct kobj_type rdev_ktype = { 3475 .release = rdev_free, 3476 .sysfs_ops = &rdev_sysfs_ops, 3477 .default_attrs = rdev_default_attrs, 3478 }; 3479 3480 int md_rdev_init(struct md_rdev *rdev) 3481 { 3482 rdev->desc_nr = -1; 3483 rdev->saved_raid_disk = -1; 3484 rdev->raid_disk = -1; 3485 rdev->flags = 0; 3486 rdev->data_offset = 0; 3487 rdev->new_data_offset = 0; 3488 rdev->sb_events = 0; 3489 rdev->last_read_error = 0; 3490 rdev->sb_loaded = 0; 3491 rdev->bb_page = NULL; 3492 atomic_set(&rdev->nr_pending, 0); 3493 atomic_set(&rdev->read_errors, 0); 3494 atomic_set(&rdev->corrected_errors, 0); 3495 3496 INIT_LIST_HEAD(&rdev->same_set); 3497 init_waitqueue_head(&rdev->blocked_wait); 3498 3499 /* Add space to store bad block list. 3500 * This reserves the space even on arrays where it cannot 3501 * be used - I wonder if that matters 3502 */ 3503 return badblocks_init(&rdev->badblocks, 0); 3504 } 3505 EXPORT_SYMBOL_GPL(md_rdev_init); 3506 /* 3507 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3508 * 3509 * mark the device faulty if: 3510 * 3511 * - the device is nonexistent (zero size) 3512 * - the device has no valid superblock 3513 * 3514 * a faulty rdev _never_ has rdev->sb set. 3515 */ 3516 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3517 { 3518 char b[BDEVNAME_SIZE]; 3519 int err; 3520 struct md_rdev *rdev; 3521 sector_t size; 3522 3523 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3524 if (!rdev) 3525 return ERR_PTR(-ENOMEM); 3526 3527 err = md_rdev_init(rdev); 3528 if (err) 3529 goto abort_free; 3530 err = alloc_disk_sb(rdev); 3531 if (err) 3532 goto abort_free; 3533 3534 err = lock_rdev(rdev, newdev, super_format == -2); 3535 if (err) 3536 goto abort_free; 3537 3538 kobject_init(&rdev->kobj, &rdev_ktype); 3539 3540 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3541 if (!size) { 3542 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3543 bdevname(rdev->bdev,b)); 3544 err = -EINVAL; 3545 goto abort_free; 3546 } 3547 3548 if (super_format >= 0) { 3549 err = super_types[super_format]. 3550 load_super(rdev, NULL, super_minor); 3551 if (err == -EINVAL) { 3552 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3553 bdevname(rdev->bdev,b), 3554 super_format, super_minor); 3555 goto abort_free; 3556 } 3557 if (err < 0) { 3558 pr_warn("md: could not read %s's sb, not importing!\n", 3559 bdevname(rdev->bdev,b)); 3560 goto abort_free; 3561 } 3562 } 3563 3564 return rdev; 3565 3566 abort_free: 3567 if (rdev->bdev) 3568 unlock_rdev(rdev); 3569 md_rdev_clear(rdev); 3570 kfree(rdev); 3571 return ERR_PTR(err); 3572 } 3573 3574 /* 3575 * Check a full RAID array for plausibility 3576 */ 3577 3578 static void analyze_sbs(struct mddev *mddev) 3579 { 3580 int i; 3581 struct md_rdev *rdev, *freshest, *tmp; 3582 char b[BDEVNAME_SIZE]; 3583 3584 freshest = NULL; 3585 rdev_for_each_safe(rdev, tmp, mddev) 3586 switch (super_types[mddev->major_version]. 3587 load_super(rdev, freshest, mddev->minor_version)) { 3588 case 1: 3589 freshest = rdev; 3590 break; 3591 case 0: 3592 break; 3593 default: 3594 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3595 bdevname(rdev->bdev,b)); 3596 md_kick_rdev_from_array(rdev); 3597 } 3598 3599 super_types[mddev->major_version]. 3600 validate_super(mddev, freshest); 3601 3602 i = 0; 3603 rdev_for_each_safe(rdev, tmp, mddev) { 3604 if (mddev->max_disks && 3605 (rdev->desc_nr >= mddev->max_disks || 3606 i > mddev->max_disks)) { 3607 pr_warn("md: %s: %s: only %d devices permitted\n", 3608 mdname(mddev), bdevname(rdev->bdev, b), 3609 mddev->max_disks); 3610 md_kick_rdev_from_array(rdev); 3611 continue; 3612 } 3613 if (rdev != freshest) { 3614 if (super_types[mddev->major_version]. 3615 validate_super(mddev, rdev)) { 3616 pr_warn("md: kicking non-fresh %s from array!\n", 3617 bdevname(rdev->bdev,b)); 3618 md_kick_rdev_from_array(rdev); 3619 continue; 3620 } 3621 } 3622 if (mddev->level == LEVEL_MULTIPATH) { 3623 rdev->desc_nr = i++; 3624 rdev->raid_disk = rdev->desc_nr; 3625 set_bit(In_sync, &rdev->flags); 3626 } else if (rdev->raid_disk >= 3627 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3628 !test_bit(Journal, &rdev->flags)) { 3629 rdev->raid_disk = -1; 3630 clear_bit(In_sync, &rdev->flags); 3631 } 3632 } 3633 } 3634 3635 /* Read a fixed-point number. 3636 * Numbers in sysfs attributes should be in "standard" units where 3637 * possible, so time should be in seconds. 3638 * However we internally use a a much smaller unit such as 3639 * milliseconds or jiffies. 3640 * This function takes a decimal number with a possible fractional 3641 * component, and produces an integer which is the result of 3642 * multiplying that number by 10^'scale'. 3643 * all without any floating-point arithmetic. 3644 */ 3645 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3646 { 3647 unsigned long result = 0; 3648 long decimals = -1; 3649 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3650 if (*cp == '.') 3651 decimals = 0; 3652 else if (decimals < scale) { 3653 unsigned int value; 3654 value = *cp - '0'; 3655 result = result * 10 + value; 3656 if (decimals >= 0) 3657 decimals++; 3658 } 3659 cp++; 3660 } 3661 if (*cp == '\n') 3662 cp++; 3663 if (*cp) 3664 return -EINVAL; 3665 if (decimals < 0) 3666 decimals = 0; 3667 while (decimals < scale) { 3668 result *= 10; 3669 decimals ++; 3670 } 3671 *res = result; 3672 return 0; 3673 } 3674 3675 static ssize_t 3676 safe_delay_show(struct mddev *mddev, char *page) 3677 { 3678 int msec = (mddev->safemode_delay*1000)/HZ; 3679 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3680 } 3681 static ssize_t 3682 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3683 { 3684 unsigned long msec; 3685 3686 if (mddev_is_clustered(mddev)) { 3687 pr_warn("md: Safemode is disabled for clustered mode\n"); 3688 return -EINVAL; 3689 } 3690 3691 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3692 return -EINVAL; 3693 if (msec == 0) 3694 mddev->safemode_delay = 0; 3695 else { 3696 unsigned long old_delay = mddev->safemode_delay; 3697 unsigned long new_delay = (msec*HZ)/1000; 3698 3699 if (new_delay == 0) 3700 new_delay = 1; 3701 mddev->safemode_delay = new_delay; 3702 if (new_delay < old_delay || old_delay == 0) 3703 mod_timer(&mddev->safemode_timer, jiffies+1); 3704 } 3705 return len; 3706 } 3707 static struct md_sysfs_entry md_safe_delay = 3708 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3709 3710 static ssize_t 3711 level_show(struct mddev *mddev, char *page) 3712 { 3713 struct md_personality *p; 3714 int ret; 3715 spin_lock(&mddev->lock); 3716 p = mddev->pers; 3717 if (p) 3718 ret = sprintf(page, "%s\n", p->name); 3719 else if (mddev->clevel[0]) 3720 ret = sprintf(page, "%s\n", mddev->clevel); 3721 else if (mddev->level != LEVEL_NONE) 3722 ret = sprintf(page, "%d\n", mddev->level); 3723 else 3724 ret = 0; 3725 spin_unlock(&mddev->lock); 3726 return ret; 3727 } 3728 3729 static ssize_t 3730 level_store(struct mddev *mddev, const char *buf, size_t len) 3731 { 3732 char clevel[16]; 3733 ssize_t rv; 3734 size_t slen = len; 3735 struct md_personality *pers, *oldpers; 3736 long level; 3737 void *priv, *oldpriv; 3738 struct md_rdev *rdev; 3739 3740 if (slen == 0 || slen >= sizeof(clevel)) 3741 return -EINVAL; 3742 3743 rv = mddev_lock(mddev); 3744 if (rv) 3745 return rv; 3746 3747 if (mddev->pers == NULL) { 3748 strncpy(mddev->clevel, buf, slen); 3749 if (mddev->clevel[slen-1] == '\n') 3750 slen--; 3751 mddev->clevel[slen] = 0; 3752 mddev->level = LEVEL_NONE; 3753 rv = len; 3754 goto out_unlock; 3755 } 3756 rv = -EROFS; 3757 if (mddev->ro) 3758 goto out_unlock; 3759 3760 /* request to change the personality. Need to ensure: 3761 * - array is not engaged in resync/recovery/reshape 3762 * - old personality can be suspended 3763 * - new personality will access other array. 3764 */ 3765 3766 rv = -EBUSY; 3767 if (mddev->sync_thread || 3768 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3769 mddev->reshape_position != MaxSector || 3770 mddev->sysfs_active) 3771 goto out_unlock; 3772 3773 rv = -EINVAL; 3774 if (!mddev->pers->quiesce) { 3775 pr_warn("md: %s: %s does not support online personality change\n", 3776 mdname(mddev), mddev->pers->name); 3777 goto out_unlock; 3778 } 3779 3780 /* Now find the new personality */ 3781 strncpy(clevel, buf, slen); 3782 if (clevel[slen-1] == '\n') 3783 slen--; 3784 clevel[slen] = 0; 3785 if (kstrtol(clevel, 10, &level)) 3786 level = LEVEL_NONE; 3787 3788 if (request_module("md-%s", clevel) != 0) 3789 request_module("md-level-%s", clevel); 3790 spin_lock(&pers_lock); 3791 pers = find_pers(level, clevel); 3792 if (!pers || !try_module_get(pers->owner)) { 3793 spin_unlock(&pers_lock); 3794 pr_warn("md: personality %s not loaded\n", clevel); 3795 rv = -EINVAL; 3796 goto out_unlock; 3797 } 3798 spin_unlock(&pers_lock); 3799 3800 if (pers == mddev->pers) { 3801 /* Nothing to do! */ 3802 module_put(pers->owner); 3803 rv = len; 3804 goto out_unlock; 3805 } 3806 if (!pers->takeover) { 3807 module_put(pers->owner); 3808 pr_warn("md: %s: %s does not support personality takeover\n", 3809 mdname(mddev), clevel); 3810 rv = -EINVAL; 3811 goto out_unlock; 3812 } 3813 3814 rdev_for_each(rdev, mddev) 3815 rdev->new_raid_disk = rdev->raid_disk; 3816 3817 /* ->takeover must set new_* and/or delta_disks 3818 * if it succeeds, and may set them when it fails. 3819 */ 3820 priv = pers->takeover(mddev); 3821 if (IS_ERR(priv)) { 3822 mddev->new_level = mddev->level; 3823 mddev->new_layout = mddev->layout; 3824 mddev->new_chunk_sectors = mddev->chunk_sectors; 3825 mddev->raid_disks -= mddev->delta_disks; 3826 mddev->delta_disks = 0; 3827 mddev->reshape_backwards = 0; 3828 module_put(pers->owner); 3829 pr_warn("md: %s: %s would not accept array\n", 3830 mdname(mddev), clevel); 3831 rv = PTR_ERR(priv); 3832 goto out_unlock; 3833 } 3834 3835 /* Looks like we have a winner */ 3836 mddev_suspend(mddev); 3837 mddev_detach(mddev); 3838 3839 spin_lock(&mddev->lock); 3840 oldpers = mddev->pers; 3841 oldpriv = mddev->private; 3842 mddev->pers = pers; 3843 mddev->private = priv; 3844 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3845 mddev->level = mddev->new_level; 3846 mddev->layout = mddev->new_layout; 3847 mddev->chunk_sectors = mddev->new_chunk_sectors; 3848 mddev->delta_disks = 0; 3849 mddev->reshape_backwards = 0; 3850 mddev->degraded = 0; 3851 spin_unlock(&mddev->lock); 3852 3853 if (oldpers->sync_request == NULL && 3854 mddev->external) { 3855 /* We are converting from a no-redundancy array 3856 * to a redundancy array and metadata is managed 3857 * externally so we need to be sure that writes 3858 * won't block due to a need to transition 3859 * clean->dirty 3860 * until external management is started. 3861 */ 3862 mddev->in_sync = 0; 3863 mddev->safemode_delay = 0; 3864 mddev->safemode = 0; 3865 } 3866 3867 oldpers->free(mddev, oldpriv); 3868 3869 if (oldpers->sync_request == NULL && 3870 pers->sync_request != NULL) { 3871 /* need to add the md_redundancy_group */ 3872 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3873 pr_warn("md: cannot register extra attributes for %s\n", 3874 mdname(mddev)); 3875 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3876 } 3877 if (oldpers->sync_request != NULL && 3878 pers->sync_request == NULL) { 3879 /* need to remove the md_redundancy_group */ 3880 if (mddev->to_remove == NULL) 3881 mddev->to_remove = &md_redundancy_group; 3882 } 3883 3884 module_put(oldpers->owner); 3885 3886 rdev_for_each(rdev, mddev) { 3887 if (rdev->raid_disk < 0) 3888 continue; 3889 if (rdev->new_raid_disk >= mddev->raid_disks) 3890 rdev->new_raid_disk = -1; 3891 if (rdev->new_raid_disk == rdev->raid_disk) 3892 continue; 3893 sysfs_unlink_rdev(mddev, rdev); 3894 } 3895 rdev_for_each(rdev, mddev) { 3896 if (rdev->raid_disk < 0) 3897 continue; 3898 if (rdev->new_raid_disk == rdev->raid_disk) 3899 continue; 3900 rdev->raid_disk = rdev->new_raid_disk; 3901 if (rdev->raid_disk < 0) 3902 clear_bit(In_sync, &rdev->flags); 3903 else { 3904 if (sysfs_link_rdev(mddev, rdev)) 3905 pr_warn("md: cannot register rd%d for %s after level change\n", 3906 rdev->raid_disk, mdname(mddev)); 3907 } 3908 } 3909 3910 if (pers->sync_request == NULL) { 3911 /* this is now an array without redundancy, so 3912 * it must always be in_sync 3913 */ 3914 mddev->in_sync = 1; 3915 del_timer_sync(&mddev->safemode_timer); 3916 } 3917 blk_set_stacking_limits(&mddev->queue->limits); 3918 pers->run(mddev); 3919 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3920 mddev_resume(mddev); 3921 if (!mddev->thread) 3922 md_update_sb(mddev, 1); 3923 sysfs_notify(&mddev->kobj, NULL, "level"); 3924 md_new_event(mddev); 3925 rv = len; 3926 out_unlock: 3927 mddev_unlock(mddev); 3928 return rv; 3929 } 3930 3931 static struct md_sysfs_entry md_level = 3932 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3933 3934 static ssize_t 3935 layout_show(struct mddev *mddev, char *page) 3936 { 3937 /* just a number, not meaningful for all levels */ 3938 if (mddev->reshape_position != MaxSector && 3939 mddev->layout != mddev->new_layout) 3940 return sprintf(page, "%d (%d)\n", 3941 mddev->new_layout, mddev->layout); 3942 return sprintf(page, "%d\n", mddev->layout); 3943 } 3944 3945 static ssize_t 3946 layout_store(struct mddev *mddev, const char *buf, size_t len) 3947 { 3948 unsigned int n; 3949 int err; 3950 3951 err = kstrtouint(buf, 10, &n); 3952 if (err < 0) 3953 return err; 3954 err = mddev_lock(mddev); 3955 if (err) 3956 return err; 3957 3958 if (mddev->pers) { 3959 if (mddev->pers->check_reshape == NULL) 3960 err = -EBUSY; 3961 else if (mddev->ro) 3962 err = -EROFS; 3963 else { 3964 mddev->new_layout = n; 3965 err = mddev->pers->check_reshape(mddev); 3966 if (err) 3967 mddev->new_layout = mddev->layout; 3968 } 3969 } else { 3970 mddev->new_layout = n; 3971 if (mddev->reshape_position == MaxSector) 3972 mddev->layout = n; 3973 } 3974 mddev_unlock(mddev); 3975 return err ?: len; 3976 } 3977 static struct md_sysfs_entry md_layout = 3978 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3979 3980 static ssize_t 3981 raid_disks_show(struct mddev *mddev, char *page) 3982 { 3983 if (mddev->raid_disks == 0) 3984 return 0; 3985 if (mddev->reshape_position != MaxSector && 3986 mddev->delta_disks != 0) 3987 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3988 mddev->raid_disks - mddev->delta_disks); 3989 return sprintf(page, "%d\n", mddev->raid_disks); 3990 } 3991 3992 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3993 3994 static ssize_t 3995 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3996 { 3997 unsigned int n; 3998 int err; 3999 4000 err = kstrtouint(buf, 10, &n); 4001 if (err < 0) 4002 return err; 4003 4004 err = mddev_lock(mddev); 4005 if (err) 4006 return err; 4007 if (mddev->pers) 4008 err = update_raid_disks(mddev, n); 4009 else if (mddev->reshape_position != MaxSector) { 4010 struct md_rdev *rdev; 4011 int olddisks = mddev->raid_disks - mddev->delta_disks; 4012 4013 err = -EINVAL; 4014 rdev_for_each(rdev, mddev) { 4015 if (olddisks < n && 4016 rdev->data_offset < rdev->new_data_offset) 4017 goto out_unlock; 4018 if (olddisks > n && 4019 rdev->data_offset > rdev->new_data_offset) 4020 goto out_unlock; 4021 } 4022 err = 0; 4023 mddev->delta_disks = n - olddisks; 4024 mddev->raid_disks = n; 4025 mddev->reshape_backwards = (mddev->delta_disks < 0); 4026 } else 4027 mddev->raid_disks = n; 4028 out_unlock: 4029 mddev_unlock(mddev); 4030 return err ? err : len; 4031 } 4032 static struct md_sysfs_entry md_raid_disks = 4033 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4034 4035 static ssize_t 4036 chunk_size_show(struct mddev *mddev, char *page) 4037 { 4038 if (mddev->reshape_position != MaxSector && 4039 mddev->chunk_sectors != mddev->new_chunk_sectors) 4040 return sprintf(page, "%d (%d)\n", 4041 mddev->new_chunk_sectors << 9, 4042 mddev->chunk_sectors << 9); 4043 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4044 } 4045 4046 static ssize_t 4047 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4048 { 4049 unsigned long n; 4050 int err; 4051 4052 err = kstrtoul(buf, 10, &n); 4053 if (err < 0) 4054 return err; 4055 4056 err = mddev_lock(mddev); 4057 if (err) 4058 return err; 4059 if (mddev->pers) { 4060 if (mddev->pers->check_reshape == NULL) 4061 err = -EBUSY; 4062 else if (mddev->ro) 4063 err = -EROFS; 4064 else { 4065 mddev->new_chunk_sectors = n >> 9; 4066 err = mddev->pers->check_reshape(mddev); 4067 if (err) 4068 mddev->new_chunk_sectors = mddev->chunk_sectors; 4069 } 4070 } else { 4071 mddev->new_chunk_sectors = n >> 9; 4072 if (mddev->reshape_position == MaxSector) 4073 mddev->chunk_sectors = n >> 9; 4074 } 4075 mddev_unlock(mddev); 4076 return err ?: len; 4077 } 4078 static struct md_sysfs_entry md_chunk_size = 4079 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4080 4081 static ssize_t 4082 resync_start_show(struct mddev *mddev, char *page) 4083 { 4084 if (mddev->recovery_cp == MaxSector) 4085 return sprintf(page, "none\n"); 4086 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4087 } 4088 4089 static ssize_t 4090 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4091 { 4092 unsigned long long n; 4093 int err; 4094 4095 if (cmd_match(buf, "none")) 4096 n = MaxSector; 4097 else { 4098 err = kstrtoull(buf, 10, &n); 4099 if (err < 0) 4100 return err; 4101 if (n != (sector_t)n) 4102 return -EINVAL; 4103 } 4104 4105 err = mddev_lock(mddev); 4106 if (err) 4107 return err; 4108 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4109 err = -EBUSY; 4110 4111 if (!err) { 4112 mddev->recovery_cp = n; 4113 if (mddev->pers) 4114 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4115 } 4116 mddev_unlock(mddev); 4117 return err ?: len; 4118 } 4119 static struct md_sysfs_entry md_resync_start = 4120 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4121 resync_start_show, resync_start_store); 4122 4123 /* 4124 * The array state can be: 4125 * 4126 * clear 4127 * No devices, no size, no level 4128 * Equivalent to STOP_ARRAY ioctl 4129 * inactive 4130 * May have some settings, but array is not active 4131 * all IO results in error 4132 * When written, doesn't tear down array, but just stops it 4133 * suspended (not supported yet) 4134 * All IO requests will block. The array can be reconfigured. 4135 * Writing this, if accepted, will block until array is quiescent 4136 * readonly 4137 * no resync can happen. no superblocks get written. 4138 * write requests fail 4139 * read-auto 4140 * like readonly, but behaves like 'clean' on a write request. 4141 * 4142 * clean - no pending writes, but otherwise active. 4143 * When written to inactive array, starts without resync 4144 * If a write request arrives then 4145 * if metadata is known, mark 'dirty' and switch to 'active'. 4146 * if not known, block and switch to write-pending 4147 * If written to an active array that has pending writes, then fails. 4148 * active 4149 * fully active: IO and resync can be happening. 4150 * When written to inactive array, starts with resync 4151 * 4152 * write-pending 4153 * clean, but writes are blocked waiting for 'active' to be written. 4154 * 4155 * active-idle 4156 * like active, but no writes have been seen for a while (100msec). 4157 * 4158 */ 4159 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4160 write_pending, active_idle, bad_word}; 4161 static char *array_states[] = { 4162 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4163 "write-pending", "active-idle", NULL }; 4164 4165 static int match_word(const char *word, char **list) 4166 { 4167 int n; 4168 for (n=0; list[n]; n++) 4169 if (cmd_match(word, list[n])) 4170 break; 4171 return n; 4172 } 4173 4174 static ssize_t 4175 array_state_show(struct mddev *mddev, char *page) 4176 { 4177 enum array_state st = inactive; 4178 4179 if (mddev->pers) 4180 switch(mddev->ro) { 4181 case 1: 4182 st = readonly; 4183 break; 4184 case 2: 4185 st = read_auto; 4186 break; 4187 case 0: 4188 spin_lock(&mddev->lock); 4189 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4190 st = write_pending; 4191 else if (mddev->in_sync) 4192 st = clean; 4193 else if (mddev->safemode) 4194 st = active_idle; 4195 else 4196 st = active; 4197 spin_unlock(&mddev->lock); 4198 } 4199 else { 4200 if (list_empty(&mddev->disks) && 4201 mddev->raid_disks == 0 && 4202 mddev->dev_sectors == 0) 4203 st = clear; 4204 else 4205 st = inactive; 4206 } 4207 return sprintf(page, "%s\n", array_states[st]); 4208 } 4209 4210 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4211 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4212 static int do_md_run(struct mddev *mddev); 4213 static int restart_array(struct mddev *mddev); 4214 4215 static ssize_t 4216 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4217 { 4218 int err = 0; 4219 enum array_state st = match_word(buf, array_states); 4220 4221 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4222 /* don't take reconfig_mutex when toggling between 4223 * clean and active 4224 */ 4225 spin_lock(&mddev->lock); 4226 if (st == active) { 4227 restart_array(mddev); 4228 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4229 md_wakeup_thread(mddev->thread); 4230 wake_up(&mddev->sb_wait); 4231 } else /* st == clean */ { 4232 restart_array(mddev); 4233 if (!set_in_sync(mddev)) 4234 err = -EBUSY; 4235 } 4236 if (!err) 4237 sysfs_notify_dirent_safe(mddev->sysfs_state); 4238 spin_unlock(&mddev->lock); 4239 return err ?: len; 4240 } 4241 err = mddev_lock(mddev); 4242 if (err) 4243 return err; 4244 err = -EINVAL; 4245 switch(st) { 4246 case bad_word: 4247 break; 4248 case clear: 4249 /* stopping an active array */ 4250 err = do_md_stop(mddev, 0, NULL); 4251 break; 4252 case inactive: 4253 /* stopping an active array */ 4254 if (mddev->pers) 4255 err = do_md_stop(mddev, 2, NULL); 4256 else 4257 err = 0; /* already inactive */ 4258 break; 4259 case suspended: 4260 break; /* not supported yet */ 4261 case readonly: 4262 if (mddev->pers) 4263 err = md_set_readonly(mddev, NULL); 4264 else { 4265 mddev->ro = 1; 4266 set_disk_ro(mddev->gendisk, 1); 4267 err = do_md_run(mddev); 4268 } 4269 break; 4270 case read_auto: 4271 if (mddev->pers) { 4272 if (mddev->ro == 0) 4273 err = md_set_readonly(mddev, NULL); 4274 else if (mddev->ro == 1) 4275 err = restart_array(mddev); 4276 if (err == 0) { 4277 mddev->ro = 2; 4278 set_disk_ro(mddev->gendisk, 0); 4279 } 4280 } else { 4281 mddev->ro = 2; 4282 err = do_md_run(mddev); 4283 } 4284 break; 4285 case clean: 4286 if (mddev->pers) { 4287 err = restart_array(mddev); 4288 if (err) 4289 break; 4290 spin_lock(&mddev->lock); 4291 if (!set_in_sync(mddev)) 4292 err = -EBUSY; 4293 spin_unlock(&mddev->lock); 4294 } else 4295 err = -EINVAL; 4296 break; 4297 case active: 4298 if (mddev->pers) { 4299 err = restart_array(mddev); 4300 if (err) 4301 break; 4302 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4303 wake_up(&mddev->sb_wait); 4304 err = 0; 4305 } else { 4306 mddev->ro = 0; 4307 set_disk_ro(mddev->gendisk, 0); 4308 err = do_md_run(mddev); 4309 } 4310 break; 4311 case write_pending: 4312 case active_idle: 4313 /* these cannot be set */ 4314 break; 4315 } 4316 4317 if (!err) { 4318 if (mddev->hold_active == UNTIL_IOCTL) 4319 mddev->hold_active = 0; 4320 sysfs_notify_dirent_safe(mddev->sysfs_state); 4321 } 4322 mddev_unlock(mddev); 4323 return err ?: len; 4324 } 4325 static struct md_sysfs_entry md_array_state = 4326 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4327 4328 static ssize_t 4329 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4330 return sprintf(page, "%d\n", 4331 atomic_read(&mddev->max_corr_read_errors)); 4332 } 4333 4334 static ssize_t 4335 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4336 { 4337 unsigned int n; 4338 int rv; 4339 4340 rv = kstrtouint(buf, 10, &n); 4341 if (rv < 0) 4342 return rv; 4343 atomic_set(&mddev->max_corr_read_errors, n); 4344 return len; 4345 } 4346 4347 static struct md_sysfs_entry max_corr_read_errors = 4348 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4349 max_corrected_read_errors_store); 4350 4351 static ssize_t 4352 null_show(struct mddev *mddev, char *page) 4353 { 4354 return -EINVAL; 4355 } 4356 4357 static ssize_t 4358 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4359 { 4360 /* buf must be %d:%d\n? giving major and minor numbers */ 4361 /* The new device is added to the array. 4362 * If the array has a persistent superblock, we read the 4363 * superblock to initialise info and check validity. 4364 * Otherwise, only checking done is that in bind_rdev_to_array, 4365 * which mainly checks size. 4366 */ 4367 char *e; 4368 int major = simple_strtoul(buf, &e, 10); 4369 int minor; 4370 dev_t dev; 4371 struct md_rdev *rdev; 4372 int err; 4373 4374 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4375 return -EINVAL; 4376 minor = simple_strtoul(e+1, &e, 10); 4377 if (*e && *e != '\n') 4378 return -EINVAL; 4379 dev = MKDEV(major, minor); 4380 if (major != MAJOR(dev) || 4381 minor != MINOR(dev)) 4382 return -EOVERFLOW; 4383 4384 flush_workqueue(md_misc_wq); 4385 4386 err = mddev_lock(mddev); 4387 if (err) 4388 return err; 4389 if (mddev->persistent) { 4390 rdev = md_import_device(dev, mddev->major_version, 4391 mddev->minor_version); 4392 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4393 struct md_rdev *rdev0 4394 = list_entry(mddev->disks.next, 4395 struct md_rdev, same_set); 4396 err = super_types[mddev->major_version] 4397 .load_super(rdev, rdev0, mddev->minor_version); 4398 if (err < 0) 4399 goto out; 4400 } 4401 } else if (mddev->external) 4402 rdev = md_import_device(dev, -2, -1); 4403 else 4404 rdev = md_import_device(dev, -1, -1); 4405 4406 if (IS_ERR(rdev)) { 4407 mddev_unlock(mddev); 4408 return PTR_ERR(rdev); 4409 } 4410 err = bind_rdev_to_array(rdev, mddev); 4411 out: 4412 if (err) 4413 export_rdev(rdev); 4414 mddev_unlock(mddev); 4415 if (!err) 4416 md_new_event(mddev); 4417 return err ? err : len; 4418 } 4419 4420 static struct md_sysfs_entry md_new_device = 4421 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4422 4423 static ssize_t 4424 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4425 { 4426 char *end; 4427 unsigned long chunk, end_chunk; 4428 int err; 4429 4430 err = mddev_lock(mddev); 4431 if (err) 4432 return err; 4433 if (!mddev->bitmap) 4434 goto out; 4435 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4436 while (*buf) { 4437 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4438 if (buf == end) break; 4439 if (*end == '-') { /* range */ 4440 buf = end + 1; 4441 end_chunk = simple_strtoul(buf, &end, 0); 4442 if (buf == end) break; 4443 } 4444 if (*end && !isspace(*end)) break; 4445 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4446 buf = skip_spaces(end); 4447 } 4448 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4449 out: 4450 mddev_unlock(mddev); 4451 return len; 4452 } 4453 4454 static struct md_sysfs_entry md_bitmap = 4455 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4456 4457 static ssize_t 4458 size_show(struct mddev *mddev, char *page) 4459 { 4460 return sprintf(page, "%llu\n", 4461 (unsigned long long)mddev->dev_sectors / 2); 4462 } 4463 4464 static int update_size(struct mddev *mddev, sector_t num_sectors); 4465 4466 static ssize_t 4467 size_store(struct mddev *mddev, const char *buf, size_t len) 4468 { 4469 /* If array is inactive, we can reduce the component size, but 4470 * not increase it (except from 0). 4471 * If array is active, we can try an on-line resize 4472 */ 4473 sector_t sectors; 4474 int err = strict_blocks_to_sectors(buf, §ors); 4475 4476 if (err < 0) 4477 return err; 4478 err = mddev_lock(mddev); 4479 if (err) 4480 return err; 4481 if (mddev->pers) { 4482 err = update_size(mddev, sectors); 4483 if (err == 0) 4484 md_update_sb(mddev, 1); 4485 } else { 4486 if (mddev->dev_sectors == 0 || 4487 mddev->dev_sectors > sectors) 4488 mddev->dev_sectors = sectors; 4489 else 4490 err = -ENOSPC; 4491 } 4492 mddev_unlock(mddev); 4493 return err ? err : len; 4494 } 4495 4496 static struct md_sysfs_entry md_size = 4497 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4498 4499 /* Metadata version. 4500 * This is one of 4501 * 'none' for arrays with no metadata (good luck...) 4502 * 'external' for arrays with externally managed metadata, 4503 * or N.M for internally known formats 4504 */ 4505 static ssize_t 4506 metadata_show(struct mddev *mddev, char *page) 4507 { 4508 if (mddev->persistent) 4509 return sprintf(page, "%d.%d\n", 4510 mddev->major_version, mddev->minor_version); 4511 else if (mddev->external) 4512 return sprintf(page, "external:%s\n", mddev->metadata_type); 4513 else 4514 return sprintf(page, "none\n"); 4515 } 4516 4517 static ssize_t 4518 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4519 { 4520 int major, minor; 4521 char *e; 4522 int err; 4523 /* Changing the details of 'external' metadata is 4524 * always permitted. Otherwise there must be 4525 * no devices attached to the array. 4526 */ 4527 4528 err = mddev_lock(mddev); 4529 if (err) 4530 return err; 4531 err = -EBUSY; 4532 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4533 ; 4534 else if (!list_empty(&mddev->disks)) 4535 goto out_unlock; 4536 4537 err = 0; 4538 if (cmd_match(buf, "none")) { 4539 mddev->persistent = 0; 4540 mddev->external = 0; 4541 mddev->major_version = 0; 4542 mddev->minor_version = 90; 4543 goto out_unlock; 4544 } 4545 if (strncmp(buf, "external:", 9) == 0) { 4546 size_t namelen = len-9; 4547 if (namelen >= sizeof(mddev->metadata_type)) 4548 namelen = sizeof(mddev->metadata_type)-1; 4549 strncpy(mddev->metadata_type, buf+9, namelen); 4550 mddev->metadata_type[namelen] = 0; 4551 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4552 mddev->metadata_type[--namelen] = 0; 4553 mddev->persistent = 0; 4554 mddev->external = 1; 4555 mddev->major_version = 0; 4556 mddev->minor_version = 90; 4557 goto out_unlock; 4558 } 4559 major = simple_strtoul(buf, &e, 10); 4560 err = -EINVAL; 4561 if (e==buf || *e != '.') 4562 goto out_unlock; 4563 buf = e+1; 4564 minor = simple_strtoul(buf, &e, 10); 4565 if (e==buf || (*e && *e != '\n') ) 4566 goto out_unlock; 4567 err = -ENOENT; 4568 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4569 goto out_unlock; 4570 mddev->major_version = major; 4571 mddev->minor_version = minor; 4572 mddev->persistent = 1; 4573 mddev->external = 0; 4574 err = 0; 4575 out_unlock: 4576 mddev_unlock(mddev); 4577 return err ?: len; 4578 } 4579 4580 static struct md_sysfs_entry md_metadata = 4581 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4582 4583 static ssize_t 4584 action_show(struct mddev *mddev, char *page) 4585 { 4586 char *type = "idle"; 4587 unsigned long recovery = mddev->recovery; 4588 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4589 type = "frozen"; 4590 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4591 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4592 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4593 type = "reshape"; 4594 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4595 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4596 type = "resync"; 4597 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4598 type = "check"; 4599 else 4600 type = "repair"; 4601 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4602 type = "recover"; 4603 else if (mddev->reshape_position != MaxSector) 4604 type = "reshape"; 4605 } 4606 return sprintf(page, "%s\n", type); 4607 } 4608 4609 static ssize_t 4610 action_store(struct mddev *mddev, const char *page, size_t len) 4611 { 4612 if (!mddev->pers || !mddev->pers->sync_request) 4613 return -EINVAL; 4614 4615 4616 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4617 if (cmd_match(page, "frozen")) 4618 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4619 else 4620 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4621 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4622 mddev_lock(mddev) == 0) { 4623 flush_workqueue(md_misc_wq); 4624 if (mddev->sync_thread) { 4625 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4626 md_reap_sync_thread(mddev); 4627 } 4628 mddev_unlock(mddev); 4629 } 4630 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4631 return -EBUSY; 4632 else if (cmd_match(page, "resync")) 4633 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4634 else if (cmd_match(page, "recover")) { 4635 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4636 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4637 } else if (cmd_match(page, "reshape")) { 4638 int err; 4639 if (mddev->pers->start_reshape == NULL) 4640 return -EINVAL; 4641 err = mddev_lock(mddev); 4642 if (!err) { 4643 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4644 err = -EBUSY; 4645 else { 4646 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4647 err = mddev->pers->start_reshape(mddev); 4648 } 4649 mddev_unlock(mddev); 4650 } 4651 if (err) 4652 return err; 4653 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4654 } else { 4655 if (cmd_match(page, "check")) 4656 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4657 else if (!cmd_match(page, "repair")) 4658 return -EINVAL; 4659 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4660 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4661 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4662 } 4663 if (mddev->ro == 2) { 4664 /* A write to sync_action is enough to justify 4665 * canceling read-auto mode 4666 */ 4667 mddev->ro = 0; 4668 md_wakeup_thread(mddev->sync_thread); 4669 } 4670 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4671 md_wakeup_thread(mddev->thread); 4672 sysfs_notify_dirent_safe(mddev->sysfs_action); 4673 return len; 4674 } 4675 4676 static struct md_sysfs_entry md_scan_mode = 4677 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4678 4679 static ssize_t 4680 last_sync_action_show(struct mddev *mddev, char *page) 4681 { 4682 return sprintf(page, "%s\n", mddev->last_sync_action); 4683 } 4684 4685 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4686 4687 static ssize_t 4688 mismatch_cnt_show(struct mddev *mddev, char *page) 4689 { 4690 return sprintf(page, "%llu\n", 4691 (unsigned long long) 4692 atomic64_read(&mddev->resync_mismatches)); 4693 } 4694 4695 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4696 4697 static ssize_t 4698 sync_min_show(struct mddev *mddev, char *page) 4699 { 4700 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4701 mddev->sync_speed_min ? "local": "system"); 4702 } 4703 4704 static ssize_t 4705 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4706 { 4707 unsigned int min; 4708 int rv; 4709 4710 if (strncmp(buf, "system", 6)==0) { 4711 min = 0; 4712 } else { 4713 rv = kstrtouint(buf, 10, &min); 4714 if (rv < 0) 4715 return rv; 4716 if (min == 0) 4717 return -EINVAL; 4718 } 4719 mddev->sync_speed_min = min; 4720 return len; 4721 } 4722 4723 static struct md_sysfs_entry md_sync_min = 4724 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4725 4726 static ssize_t 4727 sync_max_show(struct mddev *mddev, char *page) 4728 { 4729 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4730 mddev->sync_speed_max ? "local": "system"); 4731 } 4732 4733 static ssize_t 4734 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4735 { 4736 unsigned int max; 4737 int rv; 4738 4739 if (strncmp(buf, "system", 6)==0) { 4740 max = 0; 4741 } else { 4742 rv = kstrtouint(buf, 10, &max); 4743 if (rv < 0) 4744 return rv; 4745 if (max == 0) 4746 return -EINVAL; 4747 } 4748 mddev->sync_speed_max = max; 4749 return len; 4750 } 4751 4752 static struct md_sysfs_entry md_sync_max = 4753 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4754 4755 static ssize_t 4756 degraded_show(struct mddev *mddev, char *page) 4757 { 4758 return sprintf(page, "%d\n", mddev->degraded); 4759 } 4760 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4761 4762 static ssize_t 4763 sync_force_parallel_show(struct mddev *mddev, char *page) 4764 { 4765 return sprintf(page, "%d\n", mddev->parallel_resync); 4766 } 4767 4768 static ssize_t 4769 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4770 { 4771 long n; 4772 4773 if (kstrtol(buf, 10, &n)) 4774 return -EINVAL; 4775 4776 if (n != 0 && n != 1) 4777 return -EINVAL; 4778 4779 mddev->parallel_resync = n; 4780 4781 if (mddev->sync_thread) 4782 wake_up(&resync_wait); 4783 4784 return len; 4785 } 4786 4787 /* force parallel resync, even with shared block devices */ 4788 static struct md_sysfs_entry md_sync_force_parallel = 4789 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4790 sync_force_parallel_show, sync_force_parallel_store); 4791 4792 static ssize_t 4793 sync_speed_show(struct mddev *mddev, char *page) 4794 { 4795 unsigned long resync, dt, db; 4796 if (mddev->curr_resync == 0) 4797 return sprintf(page, "none\n"); 4798 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4799 dt = (jiffies - mddev->resync_mark) / HZ; 4800 if (!dt) dt++; 4801 db = resync - mddev->resync_mark_cnt; 4802 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4803 } 4804 4805 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4806 4807 static ssize_t 4808 sync_completed_show(struct mddev *mddev, char *page) 4809 { 4810 unsigned long long max_sectors, resync; 4811 4812 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4813 return sprintf(page, "none\n"); 4814 4815 if (mddev->curr_resync == 1 || 4816 mddev->curr_resync == 2) 4817 return sprintf(page, "delayed\n"); 4818 4819 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4820 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4821 max_sectors = mddev->resync_max_sectors; 4822 else 4823 max_sectors = mddev->dev_sectors; 4824 4825 resync = mddev->curr_resync_completed; 4826 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4827 } 4828 4829 static struct md_sysfs_entry md_sync_completed = 4830 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4831 4832 static ssize_t 4833 min_sync_show(struct mddev *mddev, char *page) 4834 { 4835 return sprintf(page, "%llu\n", 4836 (unsigned long long)mddev->resync_min); 4837 } 4838 static ssize_t 4839 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4840 { 4841 unsigned long long min; 4842 int err; 4843 4844 if (kstrtoull(buf, 10, &min)) 4845 return -EINVAL; 4846 4847 spin_lock(&mddev->lock); 4848 err = -EINVAL; 4849 if (min > mddev->resync_max) 4850 goto out_unlock; 4851 4852 err = -EBUSY; 4853 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4854 goto out_unlock; 4855 4856 /* Round down to multiple of 4K for safety */ 4857 mddev->resync_min = round_down(min, 8); 4858 err = 0; 4859 4860 out_unlock: 4861 spin_unlock(&mddev->lock); 4862 return err ?: len; 4863 } 4864 4865 static struct md_sysfs_entry md_min_sync = 4866 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4867 4868 static ssize_t 4869 max_sync_show(struct mddev *mddev, char *page) 4870 { 4871 if (mddev->resync_max == MaxSector) 4872 return sprintf(page, "max\n"); 4873 else 4874 return sprintf(page, "%llu\n", 4875 (unsigned long long)mddev->resync_max); 4876 } 4877 static ssize_t 4878 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4879 { 4880 int err; 4881 spin_lock(&mddev->lock); 4882 if (strncmp(buf, "max", 3) == 0) 4883 mddev->resync_max = MaxSector; 4884 else { 4885 unsigned long long max; 4886 int chunk; 4887 4888 err = -EINVAL; 4889 if (kstrtoull(buf, 10, &max)) 4890 goto out_unlock; 4891 if (max < mddev->resync_min) 4892 goto out_unlock; 4893 4894 err = -EBUSY; 4895 if (max < mddev->resync_max && 4896 mddev->ro == 0 && 4897 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4898 goto out_unlock; 4899 4900 /* Must be a multiple of chunk_size */ 4901 chunk = mddev->chunk_sectors; 4902 if (chunk) { 4903 sector_t temp = max; 4904 4905 err = -EINVAL; 4906 if (sector_div(temp, chunk)) 4907 goto out_unlock; 4908 } 4909 mddev->resync_max = max; 4910 } 4911 wake_up(&mddev->recovery_wait); 4912 err = 0; 4913 out_unlock: 4914 spin_unlock(&mddev->lock); 4915 return err ?: len; 4916 } 4917 4918 static struct md_sysfs_entry md_max_sync = 4919 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4920 4921 static ssize_t 4922 suspend_lo_show(struct mddev *mddev, char *page) 4923 { 4924 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4925 } 4926 4927 static ssize_t 4928 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4929 { 4930 unsigned long long new; 4931 int err; 4932 4933 err = kstrtoull(buf, 10, &new); 4934 if (err < 0) 4935 return err; 4936 if (new != (sector_t)new) 4937 return -EINVAL; 4938 4939 err = mddev_lock(mddev); 4940 if (err) 4941 return err; 4942 err = -EINVAL; 4943 if (mddev->pers == NULL || 4944 mddev->pers->quiesce == NULL) 4945 goto unlock; 4946 mddev_suspend(mddev); 4947 mddev->suspend_lo = new; 4948 mddev_resume(mddev); 4949 4950 err = 0; 4951 unlock: 4952 mddev_unlock(mddev); 4953 return err ?: len; 4954 } 4955 static struct md_sysfs_entry md_suspend_lo = 4956 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4957 4958 static ssize_t 4959 suspend_hi_show(struct mddev *mddev, char *page) 4960 { 4961 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4962 } 4963 4964 static ssize_t 4965 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4966 { 4967 unsigned long long new; 4968 int err; 4969 4970 err = kstrtoull(buf, 10, &new); 4971 if (err < 0) 4972 return err; 4973 if (new != (sector_t)new) 4974 return -EINVAL; 4975 4976 err = mddev_lock(mddev); 4977 if (err) 4978 return err; 4979 err = -EINVAL; 4980 if (mddev->pers == NULL) 4981 goto unlock; 4982 4983 mddev_suspend(mddev); 4984 mddev->suspend_hi = new; 4985 mddev_resume(mddev); 4986 4987 err = 0; 4988 unlock: 4989 mddev_unlock(mddev); 4990 return err ?: len; 4991 } 4992 static struct md_sysfs_entry md_suspend_hi = 4993 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4994 4995 static ssize_t 4996 reshape_position_show(struct mddev *mddev, char *page) 4997 { 4998 if (mddev->reshape_position != MaxSector) 4999 return sprintf(page, "%llu\n", 5000 (unsigned long long)mddev->reshape_position); 5001 strcpy(page, "none\n"); 5002 return 5; 5003 } 5004 5005 static ssize_t 5006 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5007 { 5008 struct md_rdev *rdev; 5009 unsigned long long new; 5010 int err; 5011 5012 err = kstrtoull(buf, 10, &new); 5013 if (err < 0) 5014 return err; 5015 if (new != (sector_t)new) 5016 return -EINVAL; 5017 err = mddev_lock(mddev); 5018 if (err) 5019 return err; 5020 err = -EBUSY; 5021 if (mddev->pers) 5022 goto unlock; 5023 mddev->reshape_position = new; 5024 mddev->delta_disks = 0; 5025 mddev->reshape_backwards = 0; 5026 mddev->new_level = mddev->level; 5027 mddev->new_layout = mddev->layout; 5028 mddev->new_chunk_sectors = mddev->chunk_sectors; 5029 rdev_for_each(rdev, mddev) 5030 rdev->new_data_offset = rdev->data_offset; 5031 err = 0; 5032 unlock: 5033 mddev_unlock(mddev); 5034 return err ?: len; 5035 } 5036 5037 static struct md_sysfs_entry md_reshape_position = 5038 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5039 reshape_position_store); 5040 5041 static ssize_t 5042 reshape_direction_show(struct mddev *mddev, char *page) 5043 { 5044 return sprintf(page, "%s\n", 5045 mddev->reshape_backwards ? "backwards" : "forwards"); 5046 } 5047 5048 static ssize_t 5049 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5050 { 5051 int backwards = 0; 5052 int err; 5053 5054 if (cmd_match(buf, "forwards")) 5055 backwards = 0; 5056 else if (cmd_match(buf, "backwards")) 5057 backwards = 1; 5058 else 5059 return -EINVAL; 5060 if (mddev->reshape_backwards == backwards) 5061 return len; 5062 5063 err = mddev_lock(mddev); 5064 if (err) 5065 return err; 5066 /* check if we are allowed to change */ 5067 if (mddev->delta_disks) 5068 err = -EBUSY; 5069 else if (mddev->persistent && 5070 mddev->major_version == 0) 5071 err = -EINVAL; 5072 else 5073 mddev->reshape_backwards = backwards; 5074 mddev_unlock(mddev); 5075 return err ?: len; 5076 } 5077 5078 static struct md_sysfs_entry md_reshape_direction = 5079 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5080 reshape_direction_store); 5081 5082 static ssize_t 5083 array_size_show(struct mddev *mddev, char *page) 5084 { 5085 if (mddev->external_size) 5086 return sprintf(page, "%llu\n", 5087 (unsigned long long)mddev->array_sectors/2); 5088 else 5089 return sprintf(page, "default\n"); 5090 } 5091 5092 static ssize_t 5093 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5094 { 5095 sector_t sectors; 5096 int err; 5097 5098 err = mddev_lock(mddev); 5099 if (err) 5100 return err; 5101 5102 /* cluster raid doesn't support change array_sectors */ 5103 if (mddev_is_clustered(mddev)) { 5104 mddev_unlock(mddev); 5105 return -EINVAL; 5106 } 5107 5108 if (strncmp(buf, "default", 7) == 0) { 5109 if (mddev->pers) 5110 sectors = mddev->pers->size(mddev, 0, 0); 5111 else 5112 sectors = mddev->array_sectors; 5113 5114 mddev->external_size = 0; 5115 } else { 5116 if (strict_blocks_to_sectors(buf, §ors) < 0) 5117 err = -EINVAL; 5118 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5119 err = -E2BIG; 5120 else 5121 mddev->external_size = 1; 5122 } 5123 5124 if (!err) { 5125 mddev->array_sectors = sectors; 5126 if (mddev->pers) { 5127 set_capacity(mddev->gendisk, mddev->array_sectors); 5128 revalidate_disk(mddev->gendisk); 5129 } 5130 } 5131 mddev_unlock(mddev); 5132 return err ?: len; 5133 } 5134 5135 static struct md_sysfs_entry md_array_size = 5136 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5137 array_size_store); 5138 5139 static ssize_t 5140 consistency_policy_show(struct mddev *mddev, char *page) 5141 { 5142 int ret; 5143 5144 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5145 ret = sprintf(page, "journal\n"); 5146 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5147 ret = sprintf(page, "ppl\n"); 5148 } else if (mddev->bitmap) { 5149 ret = sprintf(page, "bitmap\n"); 5150 } else if (mddev->pers) { 5151 if (mddev->pers->sync_request) 5152 ret = sprintf(page, "resync\n"); 5153 else 5154 ret = sprintf(page, "none\n"); 5155 } else { 5156 ret = sprintf(page, "unknown\n"); 5157 } 5158 5159 return ret; 5160 } 5161 5162 static ssize_t 5163 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5164 { 5165 int err = 0; 5166 5167 if (mddev->pers) { 5168 if (mddev->pers->change_consistency_policy) 5169 err = mddev->pers->change_consistency_policy(mddev, buf); 5170 else 5171 err = -EBUSY; 5172 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5173 set_bit(MD_HAS_PPL, &mddev->flags); 5174 } else { 5175 err = -EINVAL; 5176 } 5177 5178 return err ? err : len; 5179 } 5180 5181 static struct md_sysfs_entry md_consistency_policy = 5182 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5183 consistency_policy_store); 5184 5185 static struct attribute *md_default_attrs[] = { 5186 &md_level.attr, 5187 &md_layout.attr, 5188 &md_raid_disks.attr, 5189 &md_chunk_size.attr, 5190 &md_size.attr, 5191 &md_resync_start.attr, 5192 &md_metadata.attr, 5193 &md_new_device.attr, 5194 &md_safe_delay.attr, 5195 &md_array_state.attr, 5196 &md_reshape_position.attr, 5197 &md_reshape_direction.attr, 5198 &md_array_size.attr, 5199 &max_corr_read_errors.attr, 5200 &md_consistency_policy.attr, 5201 NULL, 5202 }; 5203 5204 static struct attribute *md_redundancy_attrs[] = { 5205 &md_scan_mode.attr, 5206 &md_last_scan_mode.attr, 5207 &md_mismatches.attr, 5208 &md_sync_min.attr, 5209 &md_sync_max.attr, 5210 &md_sync_speed.attr, 5211 &md_sync_force_parallel.attr, 5212 &md_sync_completed.attr, 5213 &md_min_sync.attr, 5214 &md_max_sync.attr, 5215 &md_suspend_lo.attr, 5216 &md_suspend_hi.attr, 5217 &md_bitmap.attr, 5218 &md_degraded.attr, 5219 NULL, 5220 }; 5221 static struct attribute_group md_redundancy_group = { 5222 .name = NULL, 5223 .attrs = md_redundancy_attrs, 5224 }; 5225 5226 static ssize_t 5227 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5228 { 5229 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5230 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5231 ssize_t rv; 5232 5233 if (!entry->show) 5234 return -EIO; 5235 spin_lock(&all_mddevs_lock); 5236 if (list_empty(&mddev->all_mddevs)) { 5237 spin_unlock(&all_mddevs_lock); 5238 return -EBUSY; 5239 } 5240 mddev_get(mddev); 5241 spin_unlock(&all_mddevs_lock); 5242 5243 rv = entry->show(mddev, page); 5244 mddev_put(mddev); 5245 return rv; 5246 } 5247 5248 static ssize_t 5249 md_attr_store(struct kobject *kobj, struct attribute *attr, 5250 const char *page, size_t length) 5251 { 5252 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5253 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5254 ssize_t rv; 5255 5256 if (!entry->store) 5257 return -EIO; 5258 if (!capable(CAP_SYS_ADMIN)) 5259 return -EACCES; 5260 spin_lock(&all_mddevs_lock); 5261 if (list_empty(&mddev->all_mddevs)) { 5262 spin_unlock(&all_mddevs_lock); 5263 return -EBUSY; 5264 } 5265 mddev_get(mddev); 5266 spin_unlock(&all_mddevs_lock); 5267 rv = entry->store(mddev, page, length); 5268 mddev_put(mddev); 5269 return rv; 5270 } 5271 5272 static void md_free(struct kobject *ko) 5273 { 5274 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5275 5276 if (mddev->sysfs_state) 5277 sysfs_put(mddev->sysfs_state); 5278 5279 if (mddev->gendisk) 5280 del_gendisk(mddev->gendisk); 5281 if (mddev->queue) 5282 blk_cleanup_queue(mddev->queue); 5283 if (mddev->gendisk) 5284 put_disk(mddev->gendisk); 5285 percpu_ref_exit(&mddev->writes_pending); 5286 5287 bioset_exit(&mddev->bio_set); 5288 bioset_exit(&mddev->sync_set); 5289 kfree(mddev); 5290 } 5291 5292 static const struct sysfs_ops md_sysfs_ops = { 5293 .show = md_attr_show, 5294 .store = md_attr_store, 5295 }; 5296 static struct kobj_type md_ktype = { 5297 .release = md_free, 5298 .sysfs_ops = &md_sysfs_ops, 5299 .default_attrs = md_default_attrs, 5300 }; 5301 5302 int mdp_major = 0; 5303 5304 static void mddev_delayed_delete(struct work_struct *ws) 5305 { 5306 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5307 5308 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5309 kobject_del(&mddev->kobj); 5310 kobject_put(&mddev->kobj); 5311 } 5312 5313 static void no_op(struct percpu_ref *r) {} 5314 5315 int mddev_init_writes_pending(struct mddev *mddev) 5316 { 5317 if (mddev->writes_pending.percpu_count_ptr) 5318 return 0; 5319 if (percpu_ref_init(&mddev->writes_pending, no_op, 5320 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5321 return -ENOMEM; 5322 /* We want to start with the refcount at zero */ 5323 percpu_ref_put(&mddev->writes_pending); 5324 return 0; 5325 } 5326 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5327 5328 static int md_alloc(dev_t dev, char *name) 5329 { 5330 /* 5331 * If dev is zero, name is the name of a device to allocate with 5332 * an arbitrary minor number. It will be "md_???" 5333 * If dev is non-zero it must be a device number with a MAJOR of 5334 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5335 * the device is being created by opening a node in /dev. 5336 * If "name" is not NULL, the device is being created by 5337 * writing to /sys/module/md_mod/parameters/new_array. 5338 */ 5339 static DEFINE_MUTEX(disks_mutex); 5340 struct mddev *mddev = mddev_find(dev); 5341 struct gendisk *disk; 5342 int partitioned; 5343 int shift; 5344 int unit; 5345 int error; 5346 5347 if (!mddev) 5348 return -ENODEV; 5349 5350 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5351 shift = partitioned ? MdpMinorShift : 0; 5352 unit = MINOR(mddev->unit) >> shift; 5353 5354 /* wait for any previous instance of this device to be 5355 * completely removed (mddev_delayed_delete). 5356 */ 5357 flush_workqueue(md_misc_wq); 5358 5359 mutex_lock(&disks_mutex); 5360 error = -EEXIST; 5361 if (mddev->gendisk) 5362 goto abort; 5363 5364 if (name && !dev) { 5365 /* Need to ensure that 'name' is not a duplicate. 5366 */ 5367 struct mddev *mddev2; 5368 spin_lock(&all_mddevs_lock); 5369 5370 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5371 if (mddev2->gendisk && 5372 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5373 spin_unlock(&all_mddevs_lock); 5374 goto abort; 5375 } 5376 spin_unlock(&all_mddevs_lock); 5377 } 5378 if (name && dev) 5379 /* 5380 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5381 */ 5382 mddev->hold_active = UNTIL_STOP; 5383 5384 error = -ENOMEM; 5385 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5386 if (!mddev->queue) 5387 goto abort; 5388 mddev->queue->queuedata = mddev; 5389 5390 blk_queue_make_request(mddev->queue, md_make_request); 5391 blk_set_stacking_limits(&mddev->queue->limits); 5392 5393 disk = alloc_disk(1 << shift); 5394 if (!disk) { 5395 blk_cleanup_queue(mddev->queue); 5396 mddev->queue = NULL; 5397 goto abort; 5398 } 5399 disk->major = MAJOR(mddev->unit); 5400 disk->first_minor = unit << shift; 5401 if (name) 5402 strcpy(disk->disk_name, name); 5403 else if (partitioned) 5404 sprintf(disk->disk_name, "md_d%d", unit); 5405 else 5406 sprintf(disk->disk_name, "md%d", unit); 5407 disk->fops = &md_fops; 5408 disk->private_data = mddev; 5409 disk->queue = mddev->queue; 5410 blk_queue_write_cache(mddev->queue, true, true); 5411 /* Allow extended partitions. This makes the 5412 * 'mdp' device redundant, but we can't really 5413 * remove it now. 5414 */ 5415 disk->flags |= GENHD_FL_EXT_DEVT; 5416 mddev->gendisk = disk; 5417 /* As soon as we call add_disk(), another thread could get 5418 * through to md_open, so make sure it doesn't get too far 5419 */ 5420 mutex_lock(&mddev->open_mutex); 5421 add_disk(disk); 5422 5423 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5424 if (error) { 5425 /* This isn't possible, but as kobject_init_and_add is marked 5426 * __must_check, we must do something with the result 5427 */ 5428 pr_debug("md: cannot register %s/md - name in use\n", 5429 disk->disk_name); 5430 error = 0; 5431 } 5432 if (mddev->kobj.sd && 5433 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5434 pr_debug("pointless warning\n"); 5435 mutex_unlock(&mddev->open_mutex); 5436 abort: 5437 mutex_unlock(&disks_mutex); 5438 if (!error && mddev->kobj.sd) { 5439 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5440 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5441 } 5442 mddev_put(mddev); 5443 return error; 5444 } 5445 5446 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5447 { 5448 if (create_on_open) 5449 md_alloc(dev, NULL); 5450 return NULL; 5451 } 5452 5453 static int add_named_array(const char *val, const struct kernel_param *kp) 5454 { 5455 /* 5456 * val must be "md_*" or "mdNNN". 5457 * For "md_*" we allocate an array with a large free minor number, and 5458 * set the name to val. val must not already be an active name. 5459 * For "mdNNN" we allocate an array with the minor number NNN 5460 * which must not already be in use. 5461 */ 5462 int len = strlen(val); 5463 char buf[DISK_NAME_LEN]; 5464 unsigned long devnum; 5465 5466 while (len && val[len-1] == '\n') 5467 len--; 5468 if (len >= DISK_NAME_LEN) 5469 return -E2BIG; 5470 strlcpy(buf, val, len+1); 5471 if (strncmp(buf, "md_", 3) == 0) 5472 return md_alloc(0, buf); 5473 if (strncmp(buf, "md", 2) == 0 && 5474 isdigit(buf[2]) && 5475 kstrtoul(buf+2, 10, &devnum) == 0 && 5476 devnum <= MINORMASK) 5477 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5478 5479 return -EINVAL; 5480 } 5481 5482 static void md_safemode_timeout(struct timer_list *t) 5483 { 5484 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5485 5486 mddev->safemode = 1; 5487 if (mddev->external) 5488 sysfs_notify_dirent_safe(mddev->sysfs_state); 5489 5490 md_wakeup_thread(mddev->thread); 5491 } 5492 5493 static int start_dirty_degraded; 5494 5495 int md_run(struct mddev *mddev) 5496 { 5497 int err; 5498 struct md_rdev *rdev; 5499 struct md_personality *pers; 5500 5501 if (list_empty(&mddev->disks)) 5502 /* cannot run an array with no devices.. */ 5503 return -EINVAL; 5504 5505 if (mddev->pers) 5506 return -EBUSY; 5507 /* Cannot run until previous stop completes properly */ 5508 if (mddev->sysfs_active) 5509 return -EBUSY; 5510 5511 /* 5512 * Analyze all RAID superblock(s) 5513 */ 5514 if (!mddev->raid_disks) { 5515 if (!mddev->persistent) 5516 return -EINVAL; 5517 analyze_sbs(mddev); 5518 } 5519 5520 if (mddev->level != LEVEL_NONE) 5521 request_module("md-level-%d", mddev->level); 5522 else if (mddev->clevel[0]) 5523 request_module("md-%s", mddev->clevel); 5524 5525 /* 5526 * Drop all container device buffers, from now on 5527 * the only valid external interface is through the md 5528 * device. 5529 */ 5530 mddev->has_superblocks = false; 5531 rdev_for_each(rdev, mddev) { 5532 if (test_bit(Faulty, &rdev->flags)) 5533 continue; 5534 sync_blockdev(rdev->bdev); 5535 invalidate_bdev(rdev->bdev); 5536 if (mddev->ro != 1 && 5537 (bdev_read_only(rdev->bdev) || 5538 bdev_read_only(rdev->meta_bdev))) { 5539 mddev->ro = 1; 5540 if (mddev->gendisk) 5541 set_disk_ro(mddev->gendisk, 1); 5542 } 5543 5544 if (rdev->sb_page) 5545 mddev->has_superblocks = true; 5546 5547 /* perform some consistency tests on the device. 5548 * We don't want the data to overlap the metadata, 5549 * Internal Bitmap issues have been handled elsewhere. 5550 */ 5551 if (rdev->meta_bdev) { 5552 /* Nothing to check */; 5553 } else if (rdev->data_offset < rdev->sb_start) { 5554 if (mddev->dev_sectors && 5555 rdev->data_offset + mddev->dev_sectors 5556 > rdev->sb_start) { 5557 pr_warn("md: %s: data overlaps metadata\n", 5558 mdname(mddev)); 5559 return -EINVAL; 5560 } 5561 } else { 5562 if (rdev->sb_start + rdev->sb_size/512 5563 > rdev->data_offset) { 5564 pr_warn("md: %s: metadata overlaps data\n", 5565 mdname(mddev)); 5566 return -EINVAL; 5567 } 5568 } 5569 sysfs_notify_dirent_safe(rdev->sysfs_state); 5570 } 5571 5572 if (!bioset_initialized(&mddev->bio_set)) { 5573 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5574 if (err) 5575 return err; 5576 } 5577 if (!bioset_initialized(&mddev->sync_set)) { 5578 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5579 if (err) 5580 return err; 5581 } 5582 5583 spin_lock(&pers_lock); 5584 pers = find_pers(mddev->level, mddev->clevel); 5585 if (!pers || !try_module_get(pers->owner)) { 5586 spin_unlock(&pers_lock); 5587 if (mddev->level != LEVEL_NONE) 5588 pr_warn("md: personality for level %d is not loaded!\n", 5589 mddev->level); 5590 else 5591 pr_warn("md: personality for level %s is not loaded!\n", 5592 mddev->clevel); 5593 err = -EINVAL; 5594 goto abort; 5595 } 5596 spin_unlock(&pers_lock); 5597 if (mddev->level != pers->level) { 5598 mddev->level = pers->level; 5599 mddev->new_level = pers->level; 5600 } 5601 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5602 5603 if (mddev->reshape_position != MaxSector && 5604 pers->start_reshape == NULL) { 5605 /* This personality cannot handle reshaping... */ 5606 module_put(pers->owner); 5607 err = -EINVAL; 5608 goto abort; 5609 } 5610 5611 if (pers->sync_request) { 5612 /* Warn if this is a potentially silly 5613 * configuration. 5614 */ 5615 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5616 struct md_rdev *rdev2; 5617 int warned = 0; 5618 5619 rdev_for_each(rdev, mddev) 5620 rdev_for_each(rdev2, mddev) { 5621 if (rdev < rdev2 && 5622 rdev->bdev->bd_contains == 5623 rdev2->bdev->bd_contains) { 5624 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5625 mdname(mddev), 5626 bdevname(rdev->bdev,b), 5627 bdevname(rdev2->bdev,b2)); 5628 warned = 1; 5629 } 5630 } 5631 5632 if (warned) 5633 pr_warn("True protection against single-disk failure might be compromised.\n"); 5634 } 5635 5636 mddev->recovery = 0; 5637 /* may be over-ridden by personality */ 5638 mddev->resync_max_sectors = mddev->dev_sectors; 5639 5640 mddev->ok_start_degraded = start_dirty_degraded; 5641 5642 if (start_readonly && mddev->ro == 0) 5643 mddev->ro = 2; /* read-only, but switch on first write */ 5644 5645 err = pers->run(mddev); 5646 if (err) 5647 pr_warn("md: pers->run() failed ...\n"); 5648 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5649 WARN_ONCE(!mddev->external_size, 5650 "%s: default size too small, but 'external_size' not in effect?\n", 5651 __func__); 5652 pr_warn("md: invalid array_size %llu > default size %llu\n", 5653 (unsigned long long)mddev->array_sectors / 2, 5654 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5655 err = -EINVAL; 5656 } 5657 if (err == 0 && pers->sync_request && 5658 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5659 struct bitmap *bitmap; 5660 5661 bitmap = md_bitmap_create(mddev, -1); 5662 if (IS_ERR(bitmap)) { 5663 err = PTR_ERR(bitmap); 5664 pr_warn("%s: failed to create bitmap (%d)\n", 5665 mdname(mddev), err); 5666 } else 5667 mddev->bitmap = bitmap; 5668 5669 } 5670 if (err) 5671 goto bitmap_abort; 5672 5673 if (mddev->bitmap_info.max_write_behind > 0) { 5674 bool creat_pool = false; 5675 5676 rdev_for_each(rdev, mddev) { 5677 if (test_bit(WriteMostly, &rdev->flags) && 5678 rdev_init_wb(rdev)) 5679 creat_pool = true; 5680 } 5681 if (creat_pool && mddev->wb_info_pool == NULL) { 5682 mddev->wb_info_pool = 5683 mempool_create_kmalloc_pool(NR_WB_INFOS, 5684 sizeof(struct wb_info)); 5685 if (!mddev->wb_info_pool) { 5686 err = -ENOMEM; 5687 goto bitmap_abort; 5688 } 5689 } 5690 } 5691 5692 if (mddev->queue) { 5693 bool nonrot = true; 5694 5695 rdev_for_each(rdev, mddev) { 5696 if (rdev->raid_disk >= 0 && 5697 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5698 nonrot = false; 5699 break; 5700 } 5701 } 5702 if (mddev->degraded) 5703 nonrot = false; 5704 if (nonrot) 5705 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5706 else 5707 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5708 mddev->queue->backing_dev_info->congested_data = mddev; 5709 mddev->queue->backing_dev_info->congested_fn = md_congested; 5710 } 5711 if (pers->sync_request) { 5712 if (mddev->kobj.sd && 5713 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5714 pr_warn("md: cannot register extra attributes for %s\n", 5715 mdname(mddev)); 5716 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5717 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5718 mddev->ro = 0; 5719 5720 atomic_set(&mddev->max_corr_read_errors, 5721 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5722 mddev->safemode = 0; 5723 if (mddev_is_clustered(mddev)) 5724 mddev->safemode_delay = 0; 5725 else 5726 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5727 mddev->in_sync = 1; 5728 smp_wmb(); 5729 spin_lock(&mddev->lock); 5730 mddev->pers = pers; 5731 spin_unlock(&mddev->lock); 5732 rdev_for_each(rdev, mddev) 5733 if (rdev->raid_disk >= 0) 5734 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 5735 5736 if (mddev->degraded && !mddev->ro) 5737 /* This ensures that recovering status is reported immediately 5738 * via sysfs - until a lack of spares is confirmed. 5739 */ 5740 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5741 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5742 5743 if (mddev->sb_flags) 5744 md_update_sb(mddev, 0); 5745 5746 md_new_event(mddev); 5747 sysfs_notify_dirent_safe(mddev->sysfs_state); 5748 sysfs_notify_dirent_safe(mddev->sysfs_action); 5749 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5750 return 0; 5751 5752 bitmap_abort: 5753 mddev_detach(mddev); 5754 if (mddev->private) 5755 pers->free(mddev, mddev->private); 5756 mddev->private = NULL; 5757 module_put(pers->owner); 5758 md_bitmap_destroy(mddev); 5759 abort: 5760 bioset_exit(&mddev->bio_set); 5761 bioset_exit(&mddev->sync_set); 5762 return err; 5763 } 5764 EXPORT_SYMBOL_GPL(md_run); 5765 5766 static int do_md_run(struct mddev *mddev) 5767 { 5768 int err; 5769 5770 err = md_run(mddev); 5771 if (err) 5772 goto out; 5773 err = md_bitmap_load(mddev); 5774 if (err) { 5775 md_bitmap_destroy(mddev); 5776 goto out; 5777 } 5778 5779 if (mddev_is_clustered(mddev)) 5780 md_allow_write(mddev); 5781 5782 /* run start up tasks that require md_thread */ 5783 md_start(mddev); 5784 5785 md_wakeup_thread(mddev->thread); 5786 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5787 5788 set_capacity(mddev->gendisk, mddev->array_sectors); 5789 revalidate_disk(mddev->gendisk); 5790 mddev->changed = 1; 5791 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5792 out: 5793 return err; 5794 } 5795 5796 int md_start(struct mddev *mddev) 5797 { 5798 int ret = 0; 5799 5800 if (mddev->pers->start) { 5801 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5802 md_wakeup_thread(mddev->thread); 5803 ret = mddev->pers->start(mddev); 5804 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5805 md_wakeup_thread(mddev->sync_thread); 5806 } 5807 return ret; 5808 } 5809 EXPORT_SYMBOL_GPL(md_start); 5810 5811 static int restart_array(struct mddev *mddev) 5812 { 5813 struct gendisk *disk = mddev->gendisk; 5814 struct md_rdev *rdev; 5815 bool has_journal = false; 5816 bool has_readonly = false; 5817 5818 /* Complain if it has no devices */ 5819 if (list_empty(&mddev->disks)) 5820 return -ENXIO; 5821 if (!mddev->pers) 5822 return -EINVAL; 5823 if (!mddev->ro) 5824 return -EBUSY; 5825 5826 rcu_read_lock(); 5827 rdev_for_each_rcu(rdev, mddev) { 5828 if (test_bit(Journal, &rdev->flags) && 5829 !test_bit(Faulty, &rdev->flags)) 5830 has_journal = true; 5831 if (bdev_read_only(rdev->bdev)) 5832 has_readonly = true; 5833 } 5834 rcu_read_unlock(); 5835 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5836 /* Don't restart rw with journal missing/faulty */ 5837 return -EINVAL; 5838 if (has_readonly) 5839 return -EROFS; 5840 5841 mddev->safemode = 0; 5842 mddev->ro = 0; 5843 set_disk_ro(disk, 0); 5844 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5845 /* Kick recovery or resync if necessary */ 5846 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5847 md_wakeup_thread(mddev->thread); 5848 md_wakeup_thread(mddev->sync_thread); 5849 sysfs_notify_dirent_safe(mddev->sysfs_state); 5850 return 0; 5851 } 5852 5853 static void md_clean(struct mddev *mddev) 5854 { 5855 mddev->array_sectors = 0; 5856 mddev->external_size = 0; 5857 mddev->dev_sectors = 0; 5858 mddev->raid_disks = 0; 5859 mddev->recovery_cp = 0; 5860 mddev->resync_min = 0; 5861 mddev->resync_max = MaxSector; 5862 mddev->reshape_position = MaxSector; 5863 mddev->external = 0; 5864 mddev->persistent = 0; 5865 mddev->level = LEVEL_NONE; 5866 mddev->clevel[0] = 0; 5867 mddev->flags = 0; 5868 mddev->sb_flags = 0; 5869 mddev->ro = 0; 5870 mddev->metadata_type[0] = 0; 5871 mddev->chunk_sectors = 0; 5872 mddev->ctime = mddev->utime = 0; 5873 mddev->layout = 0; 5874 mddev->max_disks = 0; 5875 mddev->events = 0; 5876 mddev->can_decrease_events = 0; 5877 mddev->delta_disks = 0; 5878 mddev->reshape_backwards = 0; 5879 mddev->new_level = LEVEL_NONE; 5880 mddev->new_layout = 0; 5881 mddev->new_chunk_sectors = 0; 5882 mddev->curr_resync = 0; 5883 atomic64_set(&mddev->resync_mismatches, 0); 5884 mddev->suspend_lo = mddev->suspend_hi = 0; 5885 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5886 mddev->recovery = 0; 5887 mddev->in_sync = 0; 5888 mddev->changed = 0; 5889 mddev->degraded = 0; 5890 mddev->safemode = 0; 5891 mddev->private = NULL; 5892 mddev->cluster_info = NULL; 5893 mddev->bitmap_info.offset = 0; 5894 mddev->bitmap_info.default_offset = 0; 5895 mddev->bitmap_info.default_space = 0; 5896 mddev->bitmap_info.chunksize = 0; 5897 mddev->bitmap_info.daemon_sleep = 0; 5898 mddev->bitmap_info.max_write_behind = 0; 5899 mddev->bitmap_info.nodes = 0; 5900 } 5901 5902 static void __md_stop_writes(struct mddev *mddev) 5903 { 5904 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5905 flush_workqueue(md_misc_wq); 5906 if (mddev->sync_thread) { 5907 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5908 md_reap_sync_thread(mddev); 5909 } 5910 5911 del_timer_sync(&mddev->safemode_timer); 5912 5913 if (mddev->pers && mddev->pers->quiesce) { 5914 mddev->pers->quiesce(mddev, 1); 5915 mddev->pers->quiesce(mddev, 0); 5916 } 5917 md_bitmap_flush(mddev); 5918 5919 if (mddev->ro == 0 && 5920 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5921 mddev->sb_flags)) { 5922 /* mark array as shutdown cleanly */ 5923 if (!mddev_is_clustered(mddev)) 5924 mddev->in_sync = 1; 5925 md_update_sb(mddev, 1); 5926 } 5927 mempool_destroy(mddev->wb_info_pool); 5928 mddev->wb_info_pool = NULL; 5929 } 5930 5931 void md_stop_writes(struct mddev *mddev) 5932 { 5933 mddev_lock_nointr(mddev); 5934 __md_stop_writes(mddev); 5935 mddev_unlock(mddev); 5936 } 5937 EXPORT_SYMBOL_GPL(md_stop_writes); 5938 5939 static void mddev_detach(struct mddev *mddev) 5940 { 5941 md_bitmap_wait_behind_writes(mddev); 5942 if (mddev->pers && mddev->pers->quiesce) { 5943 mddev->pers->quiesce(mddev, 1); 5944 mddev->pers->quiesce(mddev, 0); 5945 } 5946 md_unregister_thread(&mddev->thread); 5947 if (mddev->queue) 5948 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5949 } 5950 5951 static void __md_stop(struct mddev *mddev) 5952 { 5953 struct md_personality *pers = mddev->pers; 5954 md_bitmap_destroy(mddev); 5955 mddev_detach(mddev); 5956 /* Ensure ->event_work is done */ 5957 flush_workqueue(md_misc_wq); 5958 spin_lock(&mddev->lock); 5959 mddev->pers = NULL; 5960 spin_unlock(&mddev->lock); 5961 pers->free(mddev, mddev->private); 5962 mddev->private = NULL; 5963 if (pers->sync_request && mddev->to_remove == NULL) 5964 mddev->to_remove = &md_redundancy_group; 5965 module_put(pers->owner); 5966 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5967 } 5968 5969 void md_stop(struct mddev *mddev) 5970 { 5971 /* stop the array and free an attached data structures. 5972 * This is called from dm-raid 5973 */ 5974 __md_stop(mddev); 5975 bioset_exit(&mddev->bio_set); 5976 bioset_exit(&mddev->sync_set); 5977 } 5978 5979 EXPORT_SYMBOL_GPL(md_stop); 5980 5981 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5982 { 5983 int err = 0; 5984 int did_freeze = 0; 5985 5986 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5987 did_freeze = 1; 5988 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5989 md_wakeup_thread(mddev->thread); 5990 } 5991 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5992 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5993 if (mddev->sync_thread) 5994 /* Thread might be blocked waiting for metadata update 5995 * which will now never happen */ 5996 wake_up_process(mddev->sync_thread->tsk); 5997 5998 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 5999 return -EBUSY; 6000 mddev_unlock(mddev); 6001 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6002 &mddev->recovery)); 6003 wait_event(mddev->sb_wait, 6004 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6005 mddev_lock_nointr(mddev); 6006 6007 mutex_lock(&mddev->open_mutex); 6008 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6009 mddev->sync_thread || 6010 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6011 pr_warn("md: %s still in use.\n",mdname(mddev)); 6012 if (did_freeze) { 6013 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6014 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6015 md_wakeup_thread(mddev->thread); 6016 } 6017 err = -EBUSY; 6018 goto out; 6019 } 6020 if (mddev->pers) { 6021 __md_stop_writes(mddev); 6022 6023 err = -ENXIO; 6024 if (mddev->ro==1) 6025 goto out; 6026 mddev->ro = 1; 6027 set_disk_ro(mddev->gendisk, 1); 6028 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6029 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6030 md_wakeup_thread(mddev->thread); 6031 sysfs_notify_dirent_safe(mddev->sysfs_state); 6032 err = 0; 6033 } 6034 out: 6035 mutex_unlock(&mddev->open_mutex); 6036 return err; 6037 } 6038 6039 /* mode: 6040 * 0 - completely stop and dis-assemble array 6041 * 2 - stop but do not disassemble array 6042 */ 6043 static int do_md_stop(struct mddev *mddev, int mode, 6044 struct block_device *bdev) 6045 { 6046 struct gendisk *disk = mddev->gendisk; 6047 struct md_rdev *rdev; 6048 int did_freeze = 0; 6049 6050 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6051 did_freeze = 1; 6052 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6053 md_wakeup_thread(mddev->thread); 6054 } 6055 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6056 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6057 if (mddev->sync_thread) 6058 /* Thread might be blocked waiting for metadata update 6059 * which will now never happen */ 6060 wake_up_process(mddev->sync_thread->tsk); 6061 6062 mddev_unlock(mddev); 6063 wait_event(resync_wait, (mddev->sync_thread == NULL && 6064 !test_bit(MD_RECOVERY_RUNNING, 6065 &mddev->recovery))); 6066 mddev_lock_nointr(mddev); 6067 6068 mutex_lock(&mddev->open_mutex); 6069 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6070 mddev->sysfs_active || 6071 mddev->sync_thread || 6072 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6073 pr_warn("md: %s still in use.\n",mdname(mddev)); 6074 mutex_unlock(&mddev->open_mutex); 6075 if (did_freeze) { 6076 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6077 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6078 md_wakeup_thread(mddev->thread); 6079 } 6080 return -EBUSY; 6081 } 6082 if (mddev->pers) { 6083 if (mddev->ro) 6084 set_disk_ro(disk, 0); 6085 6086 __md_stop_writes(mddev); 6087 __md_stop(mddev); 6088 mddev->queue->backing_dev_info->congested_fn = NULL; 6089 6090 /* tell userspace to handle 'inactive' */ 6091 sysfs_notify_dirent_safe(mddev->sysfs_state); 6092 6093 rdev_for_each(rdev, mddev) 6094 if (rdev->raid_disk >= 0) 6095 sysfs_unlink_rdev(mddev, rdev); 6096 6097 set_capacity(disk, 0); 6098 mutex_unlock(&mddev->open_mutex); 6099 mddev->changed = 1; 6100 revalidate_disk(disk); 6101 6102 if (mddev->ro) 6103 mddev->ro = 0; 6104 } else 6105 mutex_unlock(&mddev->open_mutex); 6106 /* 6107 * Free resources if final stop 6108 */ 6109 if (mode == 0) { 6110 pr_info("md: %s stopped.\n", mdname(mddev)); 6111 6112 if (mddev->bitmap_info.file) { 6113 struct file *f = mddev->bitmap_info.file; 6114 spin_lock(&mddev->lock); 6115 mddev->bitmap_info.file = NULL; 6116 spin_unlock(&mddev->lock); 6117 fput(f); 6118 } 6119 mddev->bitmap_info.offset = 0; 6120 6121 export_array(mddev); 6122 6123 md_clean(mddev); 6124 if (mddev->hold_active == UNTIL_STOP) 6125 mddev->hold_active = 0; 6126 } 6127 md_new_event(mddev); 6128 sysfs_notify_dirent_safe(mddev->sysfs_state); 6129 return 0; 6130 } 6131 6132 #ifndef MODULE 6133 static void autorun_array(struct mddev *mddev) 6134 { 6135 struct md_rdev *rdev; 6136 int err; 6137 6138 if (list_empty(&mddev->disks)) 6139 return; 6140 6141 pr_info("md: running: "); 6142 6143 rdev_for_each(rdev, mddev) { 6144 char b[BDEVNAME_SIZE]; 6145 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6146 } 6147 pr_cont("\n"); 6148 6149 err = do_md_run(mddev); 6150 if (err) { 6151 pr_warn("md: do_md_run() returned %d\n", err); 6152 do_md_stop(mddev, 0, NULL); 6153 } 6154 } 6155 6156 /* 6157 * lets try to run arrays based on all disks that have arrived 6158 * until now. (those are in pending_raid_disks) 6159 * 6160 * the method: pick the first pending disk, collect all disks with 6161 * the same UUID, remove all from the pending list and put them into 6162 * the 'same_array' list. Then order this list based on superblock 6163 * update time (freshest comes first), kick out 'old' disks and 6164 * compare superblocks. If everything's fine then run it. 6165 * 6166 * If "unit" is allocated, then bump its reference count 6167 */ 6168 static void autorun_devices(int part) 6169 { 6170 struct md_rdev *rdev0, *rdev, *tmp; 6171 struct mddev *mddev; 6172 char b[BDEVNAME_SIZE]; 6173 6174 pr_info("md: autorun ...\n"); 6175 while (!list_empty(&pending_raid_disks)) { 6176 int unit; 6177 dev_t dev; 6178 LIST_HEAD(candidates); 6179 rdev0 = list_entry(pending_raid_disks.next, 6180 struct md_rdev, same_set); 6181 6182 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6183 INIT_LIST_HEAD(&candidates); 6184 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6185 if (super_90_load(rdev, rdev0, 0) >= 0) { 6186 pr_debug("md: adding %s ...\n", 6187 bdevname(rdev->bdev,b)); 6188 list_move(&rdev->same_set, &candidates); 6189 } 6190 /* 6191 * now we have a set of devices, with all of them having 6192 * mostly sane superblocks. It's time to allocate the 6193 * mddev. 6194 */ 6195 if (part) { 6196 dev = MKDEV(mdp_major, 6197 rdev0->preferred_minor << MdpMinorShift); 6198 unit = MINOR(dev) >> MdpMinorShift; 6199 } else { 6200 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6201 unit = MINOR(dev); 6202 } 6203 if (rdev0->preferred_minor != unit) { 6204 pr_warn("md: unit number in %s is bad: %d\n", 6205 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6206 break; 6207 } 6208 6209 md_probe(dev, NULL, NULL); 6210 mddev = mddev_find(dev); 6211 if (!mddev || !mddev->gendisk) { 6212 if (mddev) 6213 mddev_put(mddev); 6214 break; 6215 } 6216 if (mddev_lock(mddev)) 6217 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6218 else if (mddev->raid_disks || mddev->major_version 6219 || !list_empty(&mddev->disks)) { 6220 pr_warn("md: %s already running, cannot run %s\n", 6221 mdname(mddev), bdevname(rdev0->bdev,b)); 6222 mddev_unlock(mddev); 6223 } else { 6224 pr_debug("md: created %s\n", mdname(mddev)); 6225 mddev->persistent = 1; 6226 rdev_for_each_list(rdev, tmp, &candidates) { 6227 list_del_init(&rdev->same_set); 6228 if (bind_rdev_to_array(rdev, mddev)) 6229 export_rdev(rdev); 6230 } 6231 autorun_array(mddev); 6232 mddev_unlock(mddev); 6233 } 6234 /* on success, candidates will be empty, on error 6235 * it won't... 6236 */ 6237 rdev_for_each_list(rdev, tmp, &candidates) { 6238 list_del_init(&rdev->same_set); 6239 export_rdev(rdev); 6240 } 6241 mddev_put(mddev); 6242 } 6243 pr_info("md: ... autorun DONE.\n"); 6244 } 6245 #endif /* !MODULE */ 6246 6247 static int get_version(void __user *arg) 6248 { 6249 mdu_version_t ver; 6250 6251 ver.major = MD_MAJOR_VERSION; 6252 ver.minor = MD_MINOR_VERSION; 6253 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6254 6255 if (copy_to_user(arg, &ver, sizeof(ver))) 6256 return -EFAULT; 6257 6258 return 0; 6259 } 6260 6261 static int get_array_info(struct mddev *mddev, void __user *arg) 6262 { 6263 mdu_array_info_t info; 6264 int nr,working,insync,failed,spare; 6265 struct md_rdev *rdev; 6266 6267 nr = working = insync = failed = spare = 0; 6268 rcu_read_lock(); 6269 rdev_for_each_rcu(rdev, mddev) { 6270 nr++; 6271 if (test_bit(Faulty, &rdev->flags)) 6272 failed++; 6273 else { 6274 working++; 6275 if (test_bit(In_sync, &rdev->flags)) 6276 insync++; 6277 else if (test_bit(Journal, &rdev->flags)) 6278 /* TODO: add journal count to md_u.h */ 6279 ; 6280 else 6281 spare++; 6282 } 6283 } 6284 rcu_read_unlock(); 6285 6286 info.major_version = mddev->major_version; 6287 info.minor_version = mddev->minor_version; 6288 info.patch_version = MD_PATCHLEVEL_VERSION; 6289 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6290 info.level = mddev->level; 6291 info.size = mddev->dev_sectors / 2; 6292 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6293 info.size = -1; 6294 info.nr_disks = nr; 6295 info.raid_disks = mddev->raid_disks; 6296 info.md_minor = mddev->md_minor; 6297 info.not_persistent= !mddev->persistent; 6298 6299 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6300 info.state = 0; 6301 if (mddev->in_sync) 6302 info.state = (1<<MD_SB_CLEAN); 6303 if (mddev->bitmap && mddev->bitmap_info.offset) 6304 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6305 if (mddev_is_clustered(mddev)) 6306 info.state |= (1<<MD_SB_CLUSTERED); 6307 info.active_disks = insync; 6308 info.working_disks = working; 6309 info.failed_disks = failed; 6310 info.spare_disks = spare; 6311 6312 info.layout = mddev->layout; 6313 info.chunk_size = mddev->chunk_sectors << 9; 6314 6315 if (copy_to_user(arg, &info, sizeof(info))) 6316 return -EFAULT; 6317 6318 return 0; 6319 } 6320 6321 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6322 { 6323 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6324 char *ptr; 6325 int err; 6326 6327 file = kzalloc(sizeof(*file), GFP_NOIO); 6328 if (!file) 6329 return -ENOMEM; 6330 6331 err = 0; 6332 spin_lock(&mddev->lock); 6333 /* bitmap enabled */ 6334 if (mddev->bitmap_info.file) { 6335 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6336 sizeof(file->pathname)); 6337 if (IS_ERR(ptr)) 6338 err = PTR_ERR(ptr); 6339 else 6340 memmove(file->pathname, ptr, 6341 sizeof(file->pathname)-(ptr-file->pathname)); 6342 } 6343 spin_unlock(&mddev->lock); 6344 6345 if (err == 0 && 6346 copy_to_user(arg, file, sizeof(*file))) 6347 err = -EFAULT; 6348 6349 kfree(file); 6350 return err; 6351 } 6352 6353 static int get_disk_info(struct mddev *mddev, void __user * arg) 6354 { 6355 mdu_disk_info_t info; 6356 struct md_rdev *rdev; 6357 6358 if (copy_from_user(&info, arg, sizeof(info))) 6359 return -EFAULT; 6360 6361 rcu_read_lock(); 6362 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6363 if (rdev) { 6364 info.major = MAJOR(rdev->bdev->bd_dev); 6365 info.minor = MINOR(rdev->bdev->bd_dev); 6366 info.raid_disk = rdev->raid_disk; 6367 info.state = 0; 6368 if (test_bit(Faulty, &rdev->flags)) 6369 info.state |= (1<<MD_DISK_FAULTY); 6370 else if (test_bit(In_sync, &rdev->flags)) { 6371 info.state |= (1<<MD_DISK_ACTIVE); 6372 info.state |= (1<<MD_DISK_SYNC); 6373 } 6374 if (test_bit(Journal, &rdev->flags)) 6375 info.state |= (1<<MD_DISK_JOURNAL); 6376 if (test_bit(WriteMostly, &rdev->flags)) 6377 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6378 if (test_bit(FailFast, &rdev->flags)) 6379 info.state |= (1<<MD_DISK_FAILFAST); 6380 } else { 6381 info.major = info.minor = 0; 6382 info.raid_disk = -1; 6383 info.state = (1<<MD_DISK_REMOVED); 6384 } 6385 rcu_read_unlock(); 6386 6387 if (copy_to_user(arg, &info, sizeof(info))) 6388 return -EFAULT; 6389 6390 return 0; 6391 } 6392 6393 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6394 { 6395 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6396 struct md_rdev *rdev; 6397 dev_t dev = MKDEV(info->major,info->minor); 6398 6399 if (mddev_is_clustered(mddev) && 6400 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6401 pr_warn("%s: Cannot add to clustered mddev.\n", 6402 mdname(mddev)); 6403 return -EINVAL; 6404 } 6405 6406 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6407 return -EOVERFLOW; 6408 6409 if (!mddev->raid_disks) { 6410 int err; 6411 /* expecting a device which has a superblock */ 6412 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6413 if (IS_ERR(rdev)) { 6414 pr_warn("md: md_import_device returned %ld\n", 6415 PTR_ERR(rdev)); 6416 return PTR_ERR(rdev); 6417 } 6418 if (!list_empty(&mddev->disks)) { 6419 struct md_rdev *rdev0 6420 = list_entry(mddev->disks.next, 6421 struct md_rdev, same_set); 6422 err = super_types[mddev->major_version] 6423 .load_super(rdev, rdev0, mddev->minor_version); 6424 if (err < 0) { 6425 pr_warn("md: %s has different UUID to %s\n", 6426 bdevname(rdev->bdev,b), 6427 bdevname(rdev0->bdev,b2)); 6428 export_rdev(rdev); 6429 return -EINVAL; 6430 } 6431 } 6432 err = bind_rdev_to_array(rdev, mddev); 6433 if (err) 6434 export_rdev(rdev); 6435 return err; 6436 } 6437 6438 /* 6439 * add_new_disk can be used once the array is assembled 6440 * to add "hot spares". They must already have a superblock 6441 * written 6442 */ 6443 if (mddev->pers) { 6444 int err; 6445 if (!mddev->pers->hot_add_disk) { 6446 pr_warn("%s: personality does not support diskops!\n", 6447 mdname(mddev)); 6448 return -EINVAL; 6449 } 6450 if (mddev->persistent) 6451 rdev = md_import_device(dev, mddev->major_version, 6452 mddev->minor_version); 6453 else 6454 rdev = md_import_device(dev, -1, -1); 6455 if (IS_ERR(rdev)) { 6456 pr_warn("md: md_import_device returned %ld\n", 6457 PTR_ERR(rdev)); 6458 return PTR_ERR(rdev); 6459 } 6460 /* set saved_raid_disk if appropriate */ 6461 if (!mddev->persistent) { 6462 if (info->state & (1<<MD_DISK_SYNC) && 6463 info->raid_disk < mddev->raid_disks) { 6464 rdev->raid_disk = info->raid_disk; 6465 set_bit(In_sync, &rdev->flags); 6466 clear_bit(Bitmap_sync, &rdev->flags); 6467 } else 6468 rdev->raid_disk = -1; 6469 rdev->saved_raid_disk = rdev->raid_disk; 6470 } else 6471 super_types[mddev->major_version]. 6472 validate_super(mddev, rdev); 6473 if ((info->state & (1<<MD_DISK_SYNC)) && 6474 rdev->raid_disk != info->raid_disk) { 6475 /* This was a hot-add request, but events doesn't 6476 * match, so reject it. 6477 */ 6478 export_rdev(rdev); 6479 return -EINVAL; 6480 } 6481 6482 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6483 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6484 set_bit(WriteMostly, &rdev->flags); 6485 else 6486 clear_bit(WriteMostly, &rdev->flags); 6487 if (info->state & (1<<MD_DISK_FAILFAST)) 6488 set_bit(FailFast, &rdev->flags); 6489 else 6490 clear_bit(FailFast, &rdev->flags); 6491 6492 if (info->state & (1<<MD_DISK_JOURNAL)) { 6493 struct md_rdev *rdev2; 6494 bool has_journal = false; 6495 6496 /* make sure no existing journal disk */ 6497 rdev_for_each(rdev2, mddev) { 6498 if (test_bit(Journal, &rdev2->flags)) { 6499 has_journal = true; 6500 break; 6501 } 6502 } 6503 if (has_journal || mddev->bitmap) { 6504 export_rdev(rdev); 6505 return -EBUSY; 6506 } 6507 set_bit(Journal, &rdev->flags); 6508 } 6509 /* 6510 * check whether the device shows up in other nodes 6511 */ 6512 if (mddev_is_clustered(mddev)) { 6513 if (info->state & (1 << MD_DISK_CANDIDATE)) 6514 set_bit(Candidate, &rdev->flags); 6515 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6516 /* --add initiated by this node */ 6517 err = md_cluster_ops->add_new_disk(mddev, rdev); 6518 if (err) { 6519 export_rdev(rdev); 6520 return err; 6521 } 6522 } 6523 } 6524 6525 rdev->raid_disk = -1; 6526 err = bind_rdev_to_array(rdev, mddev); 6527 6528 if (err) 6529 export_rdev(rdev); 6530 6531 if (mddev_is_clustered(mddev)) { 6532 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6533 if (!err) { 6534 err = md_cluster_ops->new_disk_ack(mddev, 6535 err == 0); 6536 if (err) 6537 md_kick_rdev_from_array(rdev); 6538 } 6539 } else { 6540 if (err) 6541 md_cluster_ops->add_new_disk_cancel(mddev); 6542 else 6543 err = add_bound_rdev(rdev); 6544 } 6545 6546 } else if (!err) 6547 err = add_bound_rdev(rdev); 6548 6549 return err; 6550 } 6551 6552 /* otherwise, add_new_disk is only allowed 6553 * for major_version==0 superblocks 6554 */ 6555 if (mddev->major_version != 0) { 6556 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6557 return -EINVAL; 6558 } 6559 6560 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6561 int err; 6562 rdev = md_import_device(dev, -1, 0); 6563 if (IS_ERR(rdev)) { 6564 pr_warn("md: error, md_import_device() returned %ld\n", 6565 PTR_ERR(rdev)); 6566 return PTR_ERR(rdev); 6567 } 6568 rdev->desc_nr = info->number; 6569 if (info->raid_disk < mddev->raid_disks) 6570 rdev->raid_disk = info->raid_disk; 6571 else 6572 rdev->raid_disk = -1; 6573 6574 if (rdev->raid_disk < mddev->raid_disks) 6575 if (info->state & (1<<MD_DISK_SYNC)) 6576 set_bit(In_sync, &rdev->flags); 6577 6578 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6579 set_bit(WriteMostly, &rdev->flags); 6580 if (info->state & (1<<MD_DISK_FAILFAST)) 6581 set_bit(FailFast, &rdev->flags); 6582 6583 if (!mddev->persistent) { 6584 pr_debug("md: nonpersistent superblock ...\n"); 6585 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6586 } else 6587 rdev->sb_start = calc_dev_sboffset(rdev); 6588 rdev->sectors = rdev->sb_start; 6589 6590 err = bind_rdev_to_array(rdev, mddev); 6591 if (err) { 6592 export_rdev(rdev); 6593 return err; 6594 } 6595 } 6596 6597 return 0; 6598 } 6599 6600 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6601 { 6602 char b[BDEVNAME_SIZE]; 6603 struct md_rdev *rdev; 6604 6605 if (!mddev->pers) 6606 return -ENODEV; 6607 6608 rdev = find_rdev(mddev, dev); 6609 if (!rdev) 6610 return -ENXIO; 6611 6612 if (rdev->raid_disk < 0) 6613 goto kick_rdev; 6614 6615 clear_bit(Blocked, &rdev->flags); 6616 remove_and_add_spares(mddev, rdev); 6617 6618 if (rdev->raid_disk >= 0) 6619 goto busy; 6620 6621 kick_rdev: 6622 if (mddev_is_clustered(mddev)) 6623 md_cluster_ops->remove_disk(mddev, rdev); 6624 6625 md_kick_rdev_from_array(rdev); 6626 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6627 if (mddev->thread) 6628 md_wakeup_thread(mddev->thread); 6629 else 6630 md_update_sb(mddev, 1); 6631 md_new_event(mddev); 6632 6633 return 0; 6634 busy: 6635 pr_debug("md: cannot remove active disk %s from %s ...\n", 6636 bdevname(rdev->bdev,b), mdname(mddev)); 6637 return -EBUSY; 6638 } 6639 6640 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6641 { 6642 char b[BDEVNAME_SIZE]; 6643 int err; 6644 struct md_rdev *rdev; 6645 6646 if (!mddev->pers) 6647 return -ENODEV; 6648 6649 if (mddev->major_version != 0) { 6650 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6651 mdname(mddev)); 6652 return -EINVAL; 6653 } 6654 if (!mddev->pers->hot_add_disk) { 6655 pr_warn("%s: personality does not support diskops!\n", 6656 mdname(mddev)); 6657 return -EINVAL; 6658 } 6659 6660 rdev = md_import_device(dev, -1, 0); 6661 if (IS_ERR(rdev)) { 6662 pr_warn("md: error, md_import_device() returned %ld\n", 6663 PTR_ERR(rdev)); 6664 return -EINVAL; 6665 } 6666 6667 if (mddev->persistent) 6668 rdev->sb_start = calc_dev_sboffset(rdev); 6669 else 6670 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6671 6672 rdev->sectors = rdev->sb_start; 6673 6674 if (test_bit(Faulty, &rdev->flags)) { 6675 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6676 bdevname(rdev->bdev,b), mdname(mddev)); 6677 err = -EINVAL; 6678 goto abort_export; 6679 } 6680 6681 clear_bit(In_sync, &rdev->flags); 6682 rdev->desc_nr = -1; 6683 rdev->saved_raid_disk = -1; 6684 err = bind_rdev_to_array(rdev, mddev); 6685 if (err) 6686 goto abort_export; 6687 6688 /* 6689 * The rest should better be atomic, we can have disk failures 6690 * noticed in interrupt contexts ... 6691 */ 6692 6693 rdev->raid_disk = -1; 6694 6695 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6696 if (!mddev->thread) 6697 md_update_sb(mddev, 1); 6698 /* 6699 * Kick recovery, maybe this spare has to be added to the 6700 * array immediately. 6701 */ 6702 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6703 md_wakeup_thread(mddev->thread); 6704 md_new_event(mddev); 6705 return 0; 6706 6707 abort_export: 6708 export_rdev(rdev); 6709 return err; 6710 } 6711 6712 static int set_bitmap_file(struct mddev *mddev, int fd) 6713 { 6714 int err = 0; 6715 6716 if (mddev->pers) { 6717 if (!mddev->pers->quiesce || !mddev->thread) 6718 return -EBUSY; 6719 if (mddev->recovery || mddev->sync_thread) 6720 return -EBUSY; 6721 /* we should be able to change the bitmap.. */ 6722 } 6723 6724 if (fd >= 0) { 6725 struct inode *inode; 6726 struct file *f; 6727 6728 if (mddev->bitmap || mddev->bitmap_info.file) 6729 return -EEXIST; /* cannot add when bitmap is present */ 6730 f = fget(fd); 6731 6732 if (f == NULL) { 6733 pr_warn("%s: error: failed to get bitmap file\n", 6734 mdname(mddev)); 6735 return -EBADF; 6736 } 6737 6738 inode = f->f_mapping->host; 6739 if (!S_ISREG(inode->i_mode)) { 6740 pr_warn("%s: error: bitmap file must be a regular file\n", 6741 mdname(mddev)); 6742 err = -EBADF; 6743 } else if (!(f->f_mode & FMODE_WRITE)) { 6744 pr_warn("%s: error: bitmap file must open for write\n", 6745 mdname(mddev)); 6746 err = -EBADF; 6747 } else if (atomic_read(&inode->i_writecount) != 1) { 6748 pr_warn("%s: error: bitmap file is already in use\n", 6749 mdname(mddev)); 6750 err = -EBUSY; 6751 } 6752 if (err) { 6753 fput(f); 6754 return err; 6755 } 6756 mddev->bitmap_info.file = f; 6757 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6758 } else if (mddev->bitmap == NULL) 6759 return -ENOENT; /* cannot remove what isn't there */ 6760 err = 0; 6761 if (mddev->pers) { 6762 if (fd >= 0) { 6763 struct bitmap *bitmap; 6764 6765 bitmap = md_bitmap_create(mddev, -1); 6766 mddev_suspend(mddev); 6767 if (!IS_ERR(bitmap)) { 6768 mddev->bitmap = bitmap; 6769 err = md_bitmap_load(mddev); 6770 } else 6771 err = PTR_ERR(bitmap); 6772 if (err) { 6773 md_bitmap_destroy(mddev); 6774 fd = -1; 6775 } 6776 mddev_resume(mddev); 6777 } else if (fd < 0) { 6778 mddev_suspend(mddev); 6779 md_bitmap_destroy(mddev); 6780 mddev_resume(mddev); 6781 } 6782 } 6783 if (fd < 0) { 6784 struct file *f = mddev->bitmap_info.file; 6785 if (f) { 6786 spin_lock(&mddev->lock); 6787 mddev->bitmap_info.file = NULL; 6788 spin_unlock(&mddev->lock); 6789 fput(f); 6790 } 6791 } 6792 6793 return err; 6794 } 6795 6796 /* 6797 * set_array_info is used two different ways 6798 * The original usage is when creating a new array. 6799 * In this usage, raid_disks is > 0 and it together with 6800 * level, size, not_persistent,layout,chunksize determine the 6801 * shape of the array. 6802 * This will always create an array with a type-0.90.0 superblock. 6803 * The newer usage is when assembling an array. 6804 * In this case raid_disks will be 0, and the major_version field is 6805 * use to determine which style super-blocks are to be found on the devices. 6806 * The minor and patch _version numbers are also kept incase the 6807 * super_block handler wishes to interpret them. 6808 */ 6809 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6810 { 6811 6812 if (info->raid_disks == 0) { 6813 /* just setting version number for superblock loading */ 6814 if (info->major_version < 0 || 6815 info->major_version >= ARRAY_SIZE(super_types) || 6816 super_types[info->major_version].name == NULL) { 6817 /* maybe try to auto-load a module? */ 6818 pr_warn("md: superblock version %d not known\n", 6819 info->major_version); 6820 return -EINVAL; 6821 } 6822 mddev->major_version = info->major_version; 6823 mddev->minor_version = info->minor_version; 6824 mddev->patch_version = info->patch_version; 6825 mddev->persistent = !info->not_persistent; 6826 /* ensure mddev_put doesn't delete this now that there 6827 * is some minimal configuration. 6828 */ 6829 mddev->ctime = ktime_get_real_seconds(); 6830 return 0; 6831 } 6832 mddev->major_version = MD_MAJOR_VERSION; 6833 mddev->minor_version = MD_MINOR_VERSION; 6834 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6835 mddev->ctime = ktime_get_real_seconds(); 6836 6837 mddev->level = info->level; 6838 mddev->clevel[0] = 0; 6839 mddev->dev_sectors = 2 * (sector_t)info->size; 6840 mddev->raid_disks = info->raid_disks; 6841 /* don't set md_minor, it is determined by which /dev/md* was 6842 * openned 6843 */ 6844 if (info->state & (1<<MD_SB_CLEAN)) 6845 mddev->recovery_cp = MaxSector; 6846 else 6847 mddev->recovery_cp = 0; 6848 mddev->persistent = ! info->not_persistent; 6849 mddev->external = 0; 6850 6851 mddev->layout = info->layout; 6852 mddev->chunk_sectors = info->chunk_size >> 9; 6853 6854 if (mddev->persistent) { 6855 mddev->max_disks = MD_SB_DISKS; 6856 mddev->flags = 0; 6857 mddev->sb_flags = 0; 6858 } 6859 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6860 6861 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6862 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6863 mddev->bitmap_info.offset = 0; 6864 6865 mddev->reshape_position = MaxSector; 6866 6867 /* 6868 * Generate a 128 bit UUID 6869 */ 6870 get_random_bytes(mddev->uuid, 16); 6871 6872 mddev->new_level = mddev->level; 6873 mddev->new_chunk_sectors = mddev->chunk_sectors; 6874 mddev->new_layout = mddev->layout; 6875 mddev->delta_disks = 0; 6876 mddev->reshape_backwards = 0; 6877 6878 return 0; 6879 } 6880 6881 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6882 { 6883 lockdep_assert_held(&mddev->reconfig_mutex); 6884 6885 if (mddev->external_size) 6886 return; 6887 6888 mddev->array_sectors = array_sectors; 6889 } 6890 EXPORT_SYMBOL(md_set_array_sectors); 6891 6892 static int update_size(struct mddev *mddev, sector_t num_sectors) 6893 { 6894 struct md_rdev *rdev; 6895 int rv; 6896 int fit = (num_sectors == 0); 6897 sector_t old_dev_sectors = mddev->dev_sectors; 6898 6899 if (mddev->pers->resize == NULL) 6900 return -EINVAL; 6901 /* The "num_sectors" is the number of sectors of each device that 6902 * is used. This can only make sense for arrays with redundancy. 6903 * linear and raid0 always use whatever space is available. We can only 6904 * consider changing this number if no resync or reconstruction is 6905 * happening, and if the new size is acceptable. It must fit before the 6906 * sb_start or, if that is <data_offset, it must fit before the size 6907 * of each device. If num_sectors is zero, we find the largest size 6908 * that fits. 6909 */ 6910 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6911 mddev->sync_thread) 6912 return -EBUSY; 6913 if (mddev->ro) 6914 return -EROFS; 6915 6916 rdev_for_each(rdev, mddev) { 6917 sector_t avail = rdev->sectors; 6918 6919 if (fit && (num_sectors == 0 || num_sectors > avail)) 6920 num_sectors = avail; 6921 if (avail < num_sectors) 6922 return -ENOSPC; 6923 } 6924 rv = mddev->pers->resize(mddev, num_sectors); 6925 if (!rv) { 6926 if (mddev_is_clustered(mddev)) 6927 md_cluster_ops->update_size(mddev, old_dev_sectors); 6928 else if (mddev->queue) { 6929 set_capacity(mddev->gendisk, mddev->array_sectors); 6930 revalidate_disk(mddev->gendisk); 6931 } 6932 } 6933 return rv; 6934 } 6935 6936 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6937 { 6938 int rv; 6939 struct md_rdev *rdev; 6940 /* change the number of raid disks */ 6941 if (mddev->pers->check_reshape == NULL) 6942 return -EINVAL; 6943 if (mddev->ro) 6944 return -EROFS; 6945 if (raid_disks <= 0 || 6946 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6947 return -EINVAL; 6948 if (mddev->sync_thread || 6949 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6950 mddev->reshape_position != MaxSector) 6951 return -EBUSY; 6952 6953 rdev_for_each(rdev, mddev) { 6954 if (mddev->raid_disks < raid_disks && 6955 rdev->data_offset < rdev->new_data_offset) 6956 return -EINVAL; 6957 if (mddev->raid_disks > raid_disks && 6958 rdev->data_offset > rdev->new_data_offset) 6959 return -EINVAL; 6960 } 6961 6962 mddev->delta_disks = raid_disks - mddev->raid_disks; 6963 if (mddev->delta_disks < 0) 6964 mddev->reshape_backwards = 1; 6965 else if (mddev->delta_disks > 0) 6966 mddev->reshape_backwards = 0; 6967 6968 rv = mddev->pers->check_reshape(mddev); 6969 if (rv < 0) { 6970 mddev->delta_disks = 0; 6971 mddev->reshape_backwards = 0; 6972 } 6973 return rv; 6974 } 6975 6976 /* 6977 * update_array_info is used to change the configuration of an 6978 * on-line array. 6979 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6980 * fields in the info are checked against the array. 6981 * Any differences that cannot be handled will cause an error. 6982 * Normally, only one change can be managed at a time. 6983 */ 6984 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6985 { 6986 int rv = 0; 6987 int cnt = 0; 6988 int state = 0; 6989 6990 /* calculate expected state,ignoring low bits */ 6991 if (mddev->bitmap && mddev->bitmap_info.offset) 6992 state |= (1 << MD_SB_BITMAP_PRESENT); 6993 6994 if (mddev->major_version != info->major_version || 6995 mddev->minor_version != info->minor_version || 6996 /* mddev->patch_version != info->patch_version || */ 6997 mddev->ctime != info->ctime || 6998 mddev->level != info->level || 6999 /* mddev->layout != info->layout || */ 7000 mddev->persistent != !info->not_persistent || 7001 mddev->chunk_sectors != info->chunk_size >> 9 || 7002 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7003 ((state^info->state) & 0xfffffe00) 7004 ) 7005 return -EINVAL; 7006 /* Check there is only one change */ 7007 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7008 cnt++; 7009 if (mddev->raid_disks != info->raid_disks) 7010 cnt++; 7011 if (mddev->layout != info->layout) 7012 cnt++; 7013 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7014 cnt++; 7015 if (cnt == 0) 7016 return 0; 7017 if (cnt > 1) 7018 return -EINVAL; 7019 7020 if (mddev->layout != info->layout) { 7021 /* Change layout 7022 * we don't need to do anything at the md level, the 7023 * personality will take care of it all. 7024 */ 7025 if (mddev->pers->check_reshape == NULL) 7026 return -EINVAL; 7027 else { 7028 mddev->new_layout = info->layout; 7029 rv = mddev->pers->check_reshape(mddev); 7030 if (rv) 7031 mddev->new_layout = mddev->layout; 7032 return rv; 7033 } 7034 } 7035 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7036 rv = update_size(mddev, (sector_t)info->size * 2); 7037 7038 if (mddev->raid_disks != info->raid_disks) 7039 rv = update_raid_disks(mddev, info->raid_disks); 7040 7041 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7042 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7043 rv = -EINVAL; 7044 goto err; 7045 } 7046 if (mddev->recovery || mddev->sync_thread) { 7047 rv = -EBUSY; 7048 goto err; 7049 } 7050 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7051 struct bitmap *bitmap; 7052 /* add the bitmap */ 7053 if (mddev->bitmap) { 7054 rv = -EEXIST; 7055 goto err; 7056 } 7057 if (mddev->bitmap_info.default_offset == 0) { 7058 rv = -EINVAL; 7059 goto err; 7060 } 7061 mddev->bitmap_info.offset = 7062 mddev->bitmap_info.default_offset; 7063 mddev->bitmap_info.space = 7064 mddev->bitmap_info.default_space; 7065 bitmap = md_bitmap_create(mddev, -1); 7066 mddev_suspend(mddev); 7067 if (!IS_ERR(bitmap)) { 7068 mddev->bitmap = bitmap; 7069 rv = md_bitmap_load(mddev); 7070 } else 7071 rv = PTR_ERR(bitmap); 7072 if (rv) 7073 md_bitmap_destroy(mddev); 7074 mddev_resume(mddev); 7075 } else { 7076 /* remove the bitmap */ 7077 if (!mddev->bitmap) { 7078 rv = -ENOENT; 7079 goto err; 7080 } 7081 if (mddev->bitmap->storage.file) { 7082 rv = -EINVAL; 7083 goto err; 7084 } 7085 if (mddev->bitmap_info.nodes) { 7086 /* hold PW on all the bitmap lock */ 7087 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7088 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7089 rv = -EPERM; 7090 md_cluster_ops->unlock_all_bitmaps(mddev); 7091 goto err; 7092 } 7093 7094 mddev->bitmap_info.nodes = 0; 7095 md_cluster_ops->leave(mddev); 7096 } 7097 mddev_suspend(mddev); 7098 md_bitmap_destroy(mddev); 7099 mddev_resume(mddev); 7100 mddev->bitmap_info.offset = 0; 7101 } 7102 } 7103 md_update_sb(mddev, 1); 7104 return rv; 7105 err: 7106 return rv; 7107 } 7108 7109 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7110 { 7111 struct md_rdev *rdev; 7112 int err = 0; 7113 7114 if (mddev->pers == NULL) 7115 return -ENODEV; 7116 7117 rcu_read_lock(); 7118 rdev = md_find_rdev_rcu(mddev, dev); 7119 if (!rdev) 7120 err = -ENODEV; 7121 else { 7122 md_error(mddev, rdev); 7123 if (!test_bit(Faulty, &rdev->flags)) 7124 err = -EBUSY; 7125 } 7126 rcu_read_unlock(); 7127 return err; 7128 } 7129 7130 /* 7131 * We have a problem here : there is no easy way to give a CHS 7132 * virtual geometry. We currently pretend that we have a 2 heads 7133 * 4 sectors (with a BIG number of cylinders...). This drives 7134 * dosfs just mad... ;-) 7135 */ 7136 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7137 { 7138 struct mddev *mddev = bdev->bd_disk->private_data; 7139 7140 geo->heads = 2; 7141 geo->sectors = 4; 7142 geo->cylinders = mddev->array_sectors / 8; 7143 return 0; 7144 } 7145 7146 static inline bool md_ioctl_valid(unsigned int cmd) 7147 { 7148 switch (cmd) { 7149 case ADD_NEW_DISK: 7150 case BLKROSET: 7151 case GET_ARRAY_INFO: 7152 case GET_BITMAP_FILE: 7153 case GET_DISK_INFO: 7154 case HOT_ADD_DISK: 7155 case HOT_REMOVE_DISK: 7156 case RAID_AUTORUN: 7157 case RAID_VERSION: 7158 case RESTART_ARRAY_RW: 7159 case RUN_ARRAY: 7160 case SET_ARRAY_INFO: 7161 case SET_BITMAP_FILE: 7162 case SET_DISK_FAULTY: 7163 case STOP_ARRAY: 7164 case STOP_ARRAY_RO: 7165 case CLUSTERED_DISK_NACK: 7166 return true; 7167 default: 7168 return false; 7169 } 7170 } 7171 7172 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7173 unsigned int cmd, unsigned long arg) 7174 { 7175 int err = 0; 7176 void __user *argp = (void __user *)arg; 7177 struct mddev *mddev = NULL; 7178 int ro; 7179 bool did_set_md_closing = false; 7180 7181 if (!md_ioctl_valid(cmd)) 7182 return -ENOTTY; 7183 7184 switch (cmd) { 7185 case RAID_VERSION: 7186 case GET_ARRAY_INFO: 7187 case GET_DISK_INFO: 7188 break; 7189 default: 7190 if (!capable(CAP_SYS_ADMIN)) 7191 return -EACCES; 7192 } 7193 7194 /* 7195 * Commands dealing with the RAID driver but not any 7196 * particular array: 7197 */ 7198 switch (cmd) { 7199 case RAID_VERSION: 7200 err = get_version(argp); 7201 goto out; 7202 7203 #ifndef MODULE 7204 case RAID_AUTORUN: 7205 err = 0; 7206 autostart_arrays(arg); 7207 goto out; 7208 #endif 7209 default:; 7210 } 7211 7212 /* 7213 * Commands creating/starting a new array: 7214 */ 7215 7216 mddev = bdev->bd_disk->private_data; 7217 7218 if (!mddev) { 7219 BUG(); 7220 goto out; 7221 } 7222 7223 /* Some actions do not requires the mutex */ 7224 switch (cmd) { 7225 case GET_ARRAY_INFO: 7226 if (!mddev->raid_disks && !mddev->external) 7227 err = -ENODEV; 7228 else 7229 err = get_array_info(mddev, argp); 7230 goto out; 7231 7232 case GET_DISK_INFO: 7233 if (!mddev->raid_disks && !mddev->external) 7234 err = -ENODEV; 7235 else 7236 err = get_disk_info(mddev, argp); 7237 goto out; 7238 7239 case SET_DISK_FAULTY: 7240 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7241 goto out; 7242 7243 case GET_BITMAP_FILE: 7244 err = get_bitmap_file(mddev, argp); 7245 goto out; 7246 7247 } 7248 7249 if (cmd == ADD_NEW_DISK) 7250 /* need to ensure md_delayed_delete() has completed */ 7251 flush_workqueue(md_misc_wq); 7252 7253 if (cmd == HOT_REMOVE_DISK) 7254 /* need to ensure recovery thread has run */ 7255 wait_event_interruptible_timeout(mddev->sb_wait, 7256 !test_bit(MD_RECOVERY_NEEDED, 7257 &mddev->recovery), 7258 msecs_to_jiffies(5000)); 7259 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7260 /* Need to flush page cache, and ensure no-one else opens 7261 * and writes 7262 */ 7263 mutex_lock(&mddev->open_mutex); 7264 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7265 mutex_unlock(&mddev->open_mutex); 7266 err = -EBUSY; 7267 goto out; 7268 } 7269 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7270 set_bit(MD_CLOSING, &mddev->flags); 7271 did_set_md_closing = true; 7272 mutex_unlock(&mddev->open_mutex); 7273 sync_blockdev(bdev); 7274 } 7275 err = mddev_lock(mddev); 7276 if (err) { 7277 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7278 err, cmd); 7279 goto out; 7280 } 7281 7282 if (cmd == SET_ARRAY_INFO) { 7283 mdu_array_info_t info; 7284 if (!arg) 7285 memset(&info, 0, sizeof(info)); 7286 else if (copy_from_user(&info, argp, sizeof(info))) { 7287 err = -EFAULT; 7288 goto unlock; 7289 } 7290 if (mddev->pers) { 7291 err = update_array_info(mddev, &info); 7292 if (err) { 7293 pr_warn("md: couldn't update array info. %d\n", err); 7294 goto unlock; 7295 } 7296 goto unlock; 7297 } 7298 if (!list_empty(&mddev->disks)) { 7299 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7300 err = -EBUSY; 7301 goto unlock; 7302 } 7303 if (mddev->raid_disks) { 7304 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7305 err = -EBUSY; 7306 goto unlock; 7307 } 7308 err = set_array_info(mddev, &info); 7309 if (err) { 7310 pr_warn("md: couldn't set array info. %d\n", err); 7311 goto unlock; 7312 } 7313 goto unlock; 7314 } 7315 7316 /* 7317 * Commands querying/configuring an existing array: 7318 */ 7319 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7320 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7321 if ((!mddev->raid_disks && !mddev->external) 7322 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7323 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7324 && cmd != GET_BITMAP_FILE) { 7325 err = -ENODEV; 7326 goto unlock; 7327 } 7328 7329 /* 7330 * Commands even a read-only array can execute: 7331 */ 7332 switch (cmd) { 7333 case RESTART_ARRAY_RW: 7334 err = restart_array(mddev); 7335 goto unlock; 7336 7337 case STOP_ARRAY: 7338 err = do_md_stop(mddev, 0, bdev); 7339 goto unlock; 7340 7341 case STOP_ARRAY_RO: 7342 err = md_set_readonly(mddev, bdev); 7343 goto unlock; 7344 7345 case HOT_REMOVE_DISK: 7346 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7347 goto unlock; 7348 7349 case ADD_NEW_DISK: 7350 /* We can support ADD_NEW_DISK on read-only arrays 7351 * only if we are re-adding a preexisting device. 7352 * So require mddev->pers and MD_DISK_SYNC. 7353 */ 7354 if (mddev->pers) { 7355 mdu_disk_info_t info; 7356 if (copy_from_user(&info, argp, sizeof(info))) 7357 err = -EFAULT; 7358 else if (!(info.state & (1<<MD_DISK_SYNC))) 7359 /* Need to clear read-only for this */ 7360 break; 7361 else 7362 err = add_new_disk(mddev, &info); 7363 goto unlock; 7364 } 7365 break; 7366 7367 case BLKROSET: 7368 if (get_user(ro, (int __user *)(arg))) { 7369 err = -EFAULT; 7370 goto unlock; 7371 } 7372 err = -EINVAL; 7373 7374 /* if the bdev is going readonly the value of mddev->ro 7375 * does not matter, no writes are coming 7376 */ 7377 if (ro) 7378 goto unlock; 7379 7380 /* are we are already prepared for writes? */ 7381 if (mddev->ro != 1) 7382 goto unlock; 7383 7384 /* transitioning to readauto need only happen for 7385 * arrays that call md_write_start 7386 */ 7387 if (mddev->pers) { 7388 err = restart_array(mddev); 7389 if (err == 0) { 7390 mddev->ro = 2; 7391 set_disk_ro(mddev->gendisk, 0); 7392 } 7393 } 7394 goto unlock; 7395 } 7396 7397 /* 7398 * The remaining ioctls are changing the state of the 7399 * superblock, so we do not allow them on read-only arrays. 7400 */ 7401 if (mddev->ro && mddev->pers) { 7402 if (mddev->ro == 2) { 7403 mddev->ro = 0; 7404 sysfs_notify_dirent_safe(mddev->sysfs_state); 7405 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7406 /* mddev_unlock will wake thread */ 7407 /* If a device failed while we were read-only, we 7408 * need to make sure the metadata is updated now. 7409 */ 7410 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7411 mddev_unlock(mddev); 7412 wait_event(mddev->sb_wait, 7413 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7414 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7415 mddev_lock_nointr(mddev); 7416 } 7417 } else { 7418 err = -EROFS; 7419 goto unlock; 7420 } 7421 } 7422 7423 switch (cmd) { 7424 case ADD_NEW_DISK: 7425 { 7426 mdu_disk_info_t info; 7427 if (copy_from_user(&info, argp, sizeof(info))) 7428 err = -EFAULT; 7429 else 7430 err = add_new_disk(mddev, &info); 7431 goto unlock; 7432 } 7433 7434 case CLUSTERED_DISK_NACK: 7435 if (mddev_is_clustered(mddev)) 7436 md_cluster_ops->new_disk_ack(mddev, false); 7437 else 7438 err = -EINVAL; 7439 goto unlock; 7440 7441 case HOT_ADD_DISK: 7442 err = hot_add_disk(mddev, new_decode_dev(arg)); 7443 goto unlock; 7444 7445 case RUN_ARRAY: 7446 err = do_md_run(mddev); 7447 goto unlock; 7448 7449 case SET_BITMAP_FILE: 7450 err = set_bitmap_file(mddev, (int)arg); 7451 goto unlock; 7452 7453 default: 7454 err = -EINVAL; 7455 goto unlock; 7456 } 7457 7458 unlock: 7459 if (mddev->hold_active == UNTIL_IOCTL && 7460 err != -EINVAL) 7461 mddev->hold_active = 0; 7462 mddev_unlock(mddev); 7463 out: 7464 if(did_set_md_closing) 7465 clear_bit(MD_CLOSING, &mddev->flags); 7466 return err; 7467 } 7468 #ifdef CONFIG_COMPAT 7469 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7470 unsigned int cmd, unsigned long arg) 7471 { 7472 switch (cmd) { 7473 case HOT_REMOVE_DISK: 7474 case HOT_ADD_DISK: 7475 case SET_DISK_FAULTY: 7476 case SET_BITMAP_FILE: 7477 /* These take in integer arg, do not convert */ 7478 break; 7479 default: 7480 arg = (unsigned long)compat_ptr(arg); 7481 break; 7482 } 7483 7484 return md_ioctl(bdev, mode, cmd, arg); 7485 } 7486 #endif /* CONFIG_COMPAT */ 7487 7488 static int md_open(struct block_device *bdev, fmode_t mode) 7489 { 7490 /* 7491 * Succeed if we can lock the mddev, which confirms that 7492 * it isn't being stopped right now. 7493 */ 7494 struct mddev *mddev = mddev_find(bdev->bd_dev); 7495 int err; 7496 7497 if (!mddev) 7498 return -ENODEV; 7499 7500 if (mddev->gendisk != bdev->bd_disk) { 7501 /* we are racing with mddev_put which is discarding this 7502 * bd_disk. 7503 */ 7504 mddev_put(mddev); 7505 /* Wait until bdev->bd_disk is definitely gone */ 7506 flush_workqueue(md_misc_wq); 7507 /* Then retry the open from the top */ 7508 return -ERESTARTSYS; 7509 } 7510 BUG_ON(mddev != bdev->bd_disk->private_data); 7511 7512 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7513 goto out; 7514 7515 if (test_bit(MD_CLOSING, &mddev->flags)) { 7516 mutex_unlock(&mddev->open_mutex); 7517 err = -ENODEV; 7518 goto out; 7519 } 7520 7521 err = 0; 7522 atomic_inc(&mddev->openers); 7523 mutex_unlock(&mddev->open_mutex); 7524 7525 check_disk_change(bdev); 7526 out: 7527 if (err) 7528 mddev_put(mddev); 7529 return err; 7530 } 7531 7532 static void md_release(struct gendisk *disk, fmode_t mode) 7533 { 7534 struct mddev *mddev = disk->private_data; 7535 7536 BUG_ON(!mddev); 7537 atomic_dec(&mddev->openers); 7538 mddev_put(mddev); 7539 } 7540 7541 static int md_media_changed(struct gendisk *disk) 7542 { 7543 struct mddev *mddev = disk->private_data; 7544 7545 return mddev->changed; 7546 } 7547 7548 static int md_revalidate(struct gendisk *disk) 7549 { 7550 struct mddev *mddev = disk->private_data; 7551 7552 mddev->changed = 0; 7553 return 0; 7554 } 7555 static const struct block_device_operations md_fops = 7556 { 7557 .owner = THIS_MODULE, 7558 .open = md_open, 7559 .release = md_release, 7560 .ioctl = md_ioctl, 7561 #ifdef CONFIG_COMPAT 7562 .compat_ioctl = md_compat_ioctl, 7563 #endif 7564 .getgeo = md_getgeo, 7565 .media_changed = md_media_changed, 7566 .revalidate_disk= md_revalidate, 7567 }; 7568 7569 static int md_thread(void *arg) 7570 { 7571 struct md_thread *thread = arg; 7572 7573 /* 7574 * md_thread is a 'system-thread', it's priority should be very 7575 * high. We avoid resource deadlocks individually in each 7576 * raid personality. (RAID5 does preallocation) We also use RR and 7577 * the very same RT priority as kswapd, thus we will never get 7578 * into a priority inversion deadlock. 7579 * 7580 * we definitely have to have equal or higher priority than 7581 * bdflush, otherwise bdflush will deadlock if there are too 7582 * many dirty RAID5 blocks. 7583 */ 7584 7585 allow_signal(SIGKILL); 7586 while (!kthread_should_stop()) { 7587 7588 /* We need to wait INTERRUPTIBLE so that 7589 * we don't add to the load-average. 7590 * That means we need to be sure no signals are 7591 * pending 7592 */ 7593 if (signal_pending(current)) 7594 flush_signals(current); 7595 7596 wait_event_interruptible_timeout 7597 (thread->wqueue, 7598 test_bit(THREAD_WAKEUP, &thread->flags) 7599 || kthread_should_stop() || kthread_should_park(), 7600 thread->timeout); 7601 7602 clear_bit(THREAD_WAKEUP, &thread->flags); 7603 if (kthread_should_park()) 7604 kthread_parkme(); 7605 if (!kthread_should_stop()) 7606 thread->run(thread); 7607 } 7608 7609 return 0; 7610 } 7611 7612 void md_wakeup_thread(struct md_thread *thread) 7613 { 7614 if (thread) { 7615 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7616 set_bit(THREAD_WAKEUP, &thread->flags); 7617 wake_up(&thread->wqueue); 7618 } 7619 } 7620 EXPORT_SYMBOL(md_wakeup_thread); 7621 7622 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7623 struct mddev *mddev, const char *name) 7624 { 7625 struct md_thread *thread; 7626 7627 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7628 if (!thread) 7629 return NULL; 7630 7631 init_waitqueue_head(&thread->wqueue); 7632 7633 thread->run = run; 7634 thread->mddev = mddev; 7635 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7636 thread->tsk = kthread_run(md_thread, thread, 7637 "%s_%s", 7638 mdname(thread->mddev), 7639 name); 7640 if (IS_ERR(thread->tsk)) { 7641 kfree(thread); 7642 return NULL; 7643 } 7644 return thread; 7645 } 7646 EXPORT_SYMBOL(md_register_thread); 7647 7648 void md_unregister_thread(struct md_thread **threadp) 7649 { 7650 struct md_thread *thread = *threadp; 7651 if (!thread) 7652 return; 7653 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7654 /* Locking ensures that mddev_unlock does not wake_up a 7655 * non-existent thread 7656 */ 7657 spin_lock(&pers_lock); 7658 *threadp = NULL; 7659 spin_unlock(&pers_lock); 7660 7661 kthread_stop(thread->tsk); 7662 kfree(thread); 7663 } 7664 EXPORT_SYMBOL(md_unregister_thread); 7665 7666 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7667 { 7668 if (!rdev || test_bit(Faulty, &rdev->flags)) 7669 return; 7670 7671 if (!mddev->pers || !mddev->pers->error_handler) 7672 return; 7673 mddev->pers->error_handler(mddev,rdev); 7674 if (mddev->degraded) 7675 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7676 sysfs_notify_dirent_safe(rdev->sysfs_state); 7677 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7678 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7679 md_wakeup_thread(mddev->thread); 7680 if (mddev->event_work.func) 7681 queue_work(md_misc_wq, &mddev->event_work); 7682 md_new_event(mddev); 7683 } 7684 EXPORT_SYMBOL(md_error); 7685 7686 /* seq_file implementation /proc/mdstat */ 7687 7688 static void status_unused(struct seq_file *seq) 7689 { 7690 int i = 0; 7691 struct md_rdev *rdev; 7692 7693 seq_printf(seq, "unused devices: "); 7694 7695 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7696 char b[BDEVNAME_SIZE]; 7697 i++; 7698 seq_printf(seq, "%s ", 7699 bdevname(rdev->bdev,b)); 7700 } 7701 if (!i) 7702 seq_printf(seq, "<none>"); 7703 7704 seq_printf(seq, "\n"); 7705 } 7706 7707 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7708 { 7709 sector_t max_sectors, resync, res; 7710 unsigned long dt, db = 0; 7711 sector_t rt, curr_mark_cnt, resync_mark_cnt; 7712 int scale, recovery_active; 7713 unsigned int per_milli; 7714 7715 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7716 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7717 max_sectors = mddev->resync_max_sectors; 7718 else 7719 max_sectors = mddev->dev_sectors; 7720 7721 resync = mddev->curr_resync; 7722 if (resync <= 3) { 7723 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7724 /* Still cleaning up */ 7725 resync = max_sectors; 7726 } else if (resync > max_sectors) 7727 resync = max_sectors; 7728 else 7729 resync -= atomic_read(&mddev->recovery_active); 7730 7731 if (resync == 0) { 7732 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 7733 struct md_rdev *rdev; 7734 7735 rdev_for_each(rdev, mddev) 7736 if (rdev->raid_disk >= 0 && 7737 !test_bit(Faulty, &rdev->flags) && 7738 rdev->recovery_offset != MaxSector && 7739 rdev->recovery_offset) { 7740 seq_printf(seq, "\trecover=REMOTE"); 7741 return 1; 7742 } 7743 if (mddev->reshape_position != MaxSector) 7744 seq_printf(seq, "\treshape=REMOTE"); 7745 else 7746 seq_printf(seq, "\tresync=REMOTE"); 7747 return 1; 7748 } 7749 if (mddev->recovery_cp < MaxSector) { 7750 seq_printf(seq, "\tresync=PENDING"); 7751 return 1; 7752 } 7753 return 0; 7754 } 7755 if (resync < 3) { 7756 seq_printf(seq, "\tresync=DELAYED"); 7757 return 1; 7758 } 7759 7760 WARN_ON(max_sectors == 0); 7761 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7762 * in a sector_t, and (max_sectors>>scale) will fit in a 7763 * u32, as those are the requirements for sector_div. 7764 * Thus 'scale' must be at least 10 7765 */ 7766 scale = 10; 7767 if (sizeof(sector_t) > sizeof(unsigned long)) { 7768 while ( max_sectors/2 > (1ULL<<(scale+32))) 7769 scale++; 7770 } 7771 res = (resync>>scale)*1000; 7772 sector_div(res, (u32)((max_sectors>>scale)+1)); 7773 7774 per_milli = res; 7775 { 7776 int i, x = per_milli/50, y = 20-x; 7777 seq_printf(seq, "["); 7778 for (i = 0; i < x; i++) 7779 seq_printf(seq, "="); 7780 seq_printf(seq, ">"); 7781 for (i = 0; i < y; i++) 7782 seq_printf(seq, "."); 7783 seq_printf(seq, "] "); 7784 } 7785 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7786 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7787 "reshape" : 7788 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7789 "check" : 7790 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7791 "resync" : "recovery"))), 7792 per_milli/10, per_milli % 10, 7793 (unsigned long long) resync/2, 7794 (unsigned long long) max_sectors/2); 7795 7796 /* 7797 * dt: time from mark until now 7798 * db: blocks written from mark until now 7799 * rt: remaining time 7800 * 7801 * rt is a sector_t, which is always 64bit now. We are keeping 7802 * the original algorithm, but it is not really necessary. 7803 * 7804 * Original algorithm: 7805 * So we divide before multiply in case it is 32bit and close 7806 * to the limit. 7807 * We scale the divisor (db) by 32 to avoid losing precision 7808 * near the end of resync when the number of remaining sectors 7809 * is close to 'db'. 7810 * We then divide rt by 32 after multiplying by db to compensate. 7811 * The '+1' avoids division by zero if db is very small. 7812 */ 7813 dt = ((jiffies - mddev->resync_mark) / HZ); 7814 if (!dt) dt++; 7815 7816 curr_mark_cnt = mddev->curr_mark_cnt; 7817 recovery_active = atomic_read(&mddev->recovery_active); 7818 resync_mark_cnt = mddev->resync_mark_cnt; 7819 7820 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 7821 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 7822 7823 rt = max_sectors - resync; /* number of remaining sectors */ 7824 rt = div64_u64(rt, db/32+1); 7825 rt *= dt; 7826 rt >>= 5; 7827 7828 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7829 ((unsigned long)rt % 60)/6); 7830 7831 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7832 return 1; 7833 } 7834 7835 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7836 { 7837 struct list_head *tmp; 7838 loff_t l = *pos; 7839 struct mddev *mddev; 7840 7841 if (l >= 0x10000) 7842 return NULL; 7843 if (!l--) 7844 /* header */ 7845 return (void*)1; 7846 7847 spin_lock(&all_mddevs_lock); 7848 list_for_each(tmp,&all_mddevs) 7849 if (!l--) { 7850 mddev = list_entry(tmp, struct mddev, all_mddevs); 7851 mddev_get(mddev); 7852 spin_unlock(&all_mddevs_lock); 7853 return mddev; 7854 } 7855 spin_unlock(&all_mddevs_lock); 7856 if (!l--) 7857 return (void*)2;/* tail */ 7858 return NULL; 7859 } 7860 7861 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7862 { 7863 struct list_head *tmp; 7864 struct mddev *next_mddev, *mddev = v; 7865 7866 ++*pos; 7867 if (v == (void*)2) 7868 return NULL; 7869 7870 spin_lock(&all_mddevs_lock); 7871 if (v == (void*)1) 7872 tmp = all_mddevs.next; 7873 else 7874 tmp = mddev->all_mddevs.next; 7875 if (tmp != &all_mddevs) 7876 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7877 else { 7878 next_mddev = (void*)2; 7879 *pos = 0x10000; 7880 } 7881 spin_unlock(&all_mddevs_lock); 7882 7883 if (v != (void*)1) 7884 mddev_put(mddev); 7885 return next_mddev; 7886 7887 } 7888 7889 static void md_seq_stop(struct seq_file *seq, void *v) 7890 { 7891 struct mddev *mddev = v; 7892 7893 if (mddev && v != (void*)1 && v != (void*)2) 7894 mddev_put(mddev); 7895 } 7896 7897 static int md_seq_show(struct seq_file *seq, void *v) 7898 { 7899 struct mddev *mddev = v; 7900 sector_t sectors; 7901 struct md_rdev *rdev; 7902 7903 if (v == (void*)1) { 7904 struct md_personality *pers; 7905 seq_printf(seq, "Personalities : "); 7906 spin_lock(&pers_lock); 7907 list_for_each_entry(pers, &pers_list, list) 7908 seq_printf(seq, "[%s] ", pers->name); 7909 7910 spin_unlock(&pers_lock); 7911 seq_printf(seq, "\n"); 7912 seq->poll_event = atomic_read(&md_event_count); 7913 return 0; 7914 } 7915 if (v == (void*)2) { 7916 status_unused(seq); 7917 return 0; 7918 } 7919 7920 spin_lock(&mddev->lock); 7921 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7922 seq_printf(seq, "%s : %sactive", mdname(mddev), 7923 mddev->pers ? "" : "in"); 7924 if (mddev->pers) { 7925 if (mddev->ro==1) 7926 seq_printf(seq, " (read-only)"); 7927 if (mddev->ro==2) 7928 seq_printf(seq, " (auto-read-only)"); 7929 seq_printf(seq, " %s", mddev->pers->name); 7930 } 7931 7932 sectors = 0; 7933 rcu_read_lock(); 7934 rdev_for_each_rcu(rdev, mddev) { 7935 char b[BDEVNAME_SIZE]; 7936 seq_printf(seq, " %s[%d]", 7937 bdevname(rdev->bdev,b), rdev->desc_nr); 7938 if (test_bit(WriteMostly, &rdev->flags)) 7939 seq_printf(seq, "(W)"); 7940 if (test_bit(Journal, &rdev->flags)) 7941 seq_printf(seq, "(J)"); 7942 if (test_bit(Faulty, &rdev->flags)) { 7943 seq_printf(seq, "(F)"); 7944 continue; 7945 } 7946 if (rdev->raid_disk < 0) 7947 seq_printf(seq, "(S)"); /* spare */ 7948 if (test_bit(Replacement, &rdev->flags)) 7949 seq_printf(seq, "(R)"); 7950 sectors += rdev->sectors; 7951 } 7952 rcu_read_unlock(); 7953 7954 if (!list_empty(&mddev->disks)) { 7955 if (mddev->pers) 7956 seq_printf(seq, "\n %llu blocks", 7957 (unsigned long long) 7958 mddev->array_sectors / 2); 7959 else 7960 seq_printf(seq, "\n %llu blocks", 7961 (unsigned long long)sectors / 2); 7962 } 7963 if (mddev->persistent) { 7964 if (mddev->major_version != 0 || 7965 mddev->minor_version != 90) { 7966 seq_printf(seq," super %d.%d", 7967 mddev->major_version, 7968 mddev->minor_version); 7969 } 7970 } else if (mddev->external) 7971 seq_printf(seq, " super external:%s", 7972 mddev->metadata_type); 7973 else 7974 seq_printf(seq, " super non-persistent"); 7975 7976 if (mddev->pers) { 7977 mddev->pers->status(seq, mddev); 7978 seq_printf(seq, "\n "); 7979 if (mddev->pers->sync_request) { 7980 if (status_resync(seq, mddev)) 7981 seq_printf(seq, "\n "); 7982 } 7983 } else 7984 seq_printf(seq, "\n "); 7985 7986 md_bitmap_status(seq, mddev->bitmap); 7987 7988 seq_printf(seq, "\n"); 7989 } 7990 spin_unlock(&mddev->lock); 7991 7992 return 0; 7993 } 7994 7995 static const struct seq_operations md_seq_ops = { 7996 .start = md_seq_start, 7997 .next = md_seq_next, 7998 .stop = md_seq_stop, 7999 .show = md_seq_show, 8000 }; 8001 8002 static int md_seq_open(struct inode *inode, struct file *file) 8003 { 8004 struct seq_file *seq; 8005 int error; 8006 8007 error = seq_open(file, &md_seq_ops); 8008 if (error) 8009 return error; 8010 8011 seq = file->private_data; 8012 seq->poll_event = atomic_read(&md_event_count); 8013 return error; 8014 } 8015 8016 static int md_unloading; 8017 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8018 { 8019 struct seq_file *seq = filp->private_data; 8020 __poll_t mask; 8021 8022 if (md_unloading) 8023 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8024 poll_wait(filp, &md_event_waiters, wait); 8025 8026 /* always allow read */ 8027 mask = EPOLLIN | EPOLLRDNORM; 8028 8029 if (seq->poll_event != atomic_read(&md_event_count)) 8030 mask |= EPOLLERR | EPOLLPRI; 8031 return mask; 8032 } 8033 8034 static const struct file_operations md_seq_fops = { 8035 .owner = THIS_MODULE, 8036 .open = md_seq_open, 8037 .read = seq_read, 8038 .llseek = seq_lseek, 8039 .release = seq_release, 8040 .poll = mdstat_poll, 8041 }; 8042 8043 int register_md_personality(struct md_personality *p) 8044 { 8045 pr_debug("md: %s personality registered for level %d\n", 8046 p->name, p->level); 8047 spin_lock(&pers_lock); 8048 list_add_tail(&p->list, &pers_list); 8049 spin_unlock(&pers_lock); 8050 return 0; 8051 } 8052 EXPORT_SYMBOL(register_md_personality); 8053 8054 int unregister_md_personality(struct md_personality *p) 8055 { 8056 pr_debug("md: %s personality unregistered\n", p->name); 8057 spin_lock(&pers_lock); 8058 list_del_init(&p->list); 8059 spin_unlock(&pers_lock); 8060 return 0; 8061 } 8062 EXPORT_SYMBOL(unregister_md_personality); 8063 8064 int register_md_cluster_operations(struct md_cluster_operations *ops, 8065 struct module *module) 8066 { 8067 int ret = 0; 8068 spin_lock(&pers_lock); 8069 if (md_cluster_ops != NULL) 8070 ret = -EALREADY; 8071 else { 8072 md_cluster_ops = ops; 8073 md_cluster_mod = module; 8074 } 8075 spin_unlock(&pers_lock); 8076 return ret; 8077 } 8078 EXPORT_SYMBOL(register_md_cluster_operations); 8079 8080 int unregister_md_cluster_operations(void) 8081 { 8082 spin_lock(&pers_lock); 8083 md_cluster_ops = NULL; 8084 spin_unlock(&pers_lock); 8085 return 0; 8086 } 8087 EXPORT_SYMBOL(unregister_md_cluster_operations); 8088 8089 int md_setup_cluster(struct mddev *mddev, int nodes) 8090 { 8091 if (!md_cluster_ops) 8092 request_module("md-cluster"); 8093 spin_lock(&pers_lock); 8094 /* ensure module won't be unloaded */ 8095 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8096 pr_warn("can't find md-cluster module or get it's reference.\n"); 8097 spin_unlock(&pers_lock); 8098 return -ENOENT; 8099 } 8100 spin_unlock(&pers_lock); 8101 8102 return md_cluster_ops->join(mddev, nodes); 8103 } 8104 8105 void md_cluster_stop(struct mddev *mddev) 8106 { 8107 if (!md_cluster_ops) 8108 return; 8109 md_cluster_ops->leave(mddev); 8110 module_put(md_cluster_mod); 8111 } 8112 8113 static int is_mddev_idle(struct mddev *mddev, int init) 8114 { 8115 struct md_rdev *rdev; 8116 int idle; 8117 int curr_events; 8118 8119 idle = 1; 8120 rcu_read_lock(); 8121 rdev_for_each_rcu(rdev, mddev) { 8122 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8123 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 8124 atomic_read(&disk->sync_io); 8125 /* sync IO will cause sync_io to increase before the disk_stats 8126 * as sync_io is counted when a request starts, and 8127 * disk_stats is counted when it completes. 8128 * So resync activity will cause curr_events to be smaller than 8129 * when there was no such activity. 8130 * non-sync IO will cause disk_stat to increase without 8131 * increasing sync_io so curr_events will (eventually) 8132 * be larger than it was before. Once it becomes 8133 * substantially larger, the test below will cause 8134 * the array to appear non-idle, and resync will slow 8135 * down. 8136 * If there is a lot of outstanding resync activity when 8137 * we set last_event to curr_events, then all that activity 8138 * completing might cause the array to appear non-idle 8139 * and resync will be slowed down even though there might 8140 * not have been non-resync activity. This will only 8141 * happen once though. 'last_events' will soon reflect 8142 * the state where there is little or no outstanding 8143 * resync requests, and further resync activity will 8144 * always make curr_events less than last_events. 8145 * 8146 */ 8147 if (init || curr_events - rdev->last_events > 64) { 8148 rdev->last_events = curr_events; 8149 idle = 0; 8150 } 8151 } 8152 rcu_read_unlock(); 8153 return idle; 8154 } 8155 8156 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8157 { 8158 /* another "blocks" (512byte) blocks have been synced */ 8159 atomic_sub(blocks, &mddev->recovery_active); 8160 wake_up(&mddev->recovery_wait); 8161 if (!ok) { 8162 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8163 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8164 md_wakeup_thread(mddev->thread); 8165 // stop recovery, signal do_sync .... 8166 } 8167 } 8168 EXPORT_SYMBOL(md_done_sync); 8169 8170 /* md_write_start(mddev, bi) 8171 * If we need to update some array metadata (e.g. 'active' flag 8172 * in superblock) before writing, schedule a superblock update 8173 * and wait for it to complete. 8174 * A return value of 'false' means that the write wasn't recorded 8175 * and cannot proceed as the array is being suspend. 8176 */ 8177 bool md_write_start(struct mddev *mddev, struct bio *bi) 8178 { 8179 int did_change = 0; 8180 8181 if (bio_data_dir(bi) != WRITE) 8182 return true; 8183 8184 BUG_ON(mddev->ro == 1); 8185 if (mddev->ro == 2) { 8186 /* need to switch to read/write */ 8187 mddev->ro = 0; 8188 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8189 md_wakeup_thread(mddev->thread); 8190 md_wakeup_thread(mddev->sync_thread); 8191 did_change = 1; 8192 } 8193 rcu_read_lock(); 8194 percpu_ref_get(&mddev->writes_pending); 8195 smp_mb(); /* Match smp_mb in set_in_sync() */ 8196 if (mddev->safemode == 1) 8197 mddev->safemode = 0; 8198 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8199 if (mddev->in_sync || mddev->sync_checkers) { 8200 spin_lock(&mddev->lock); 8201 if (mddev->in_sync) { 8202 mddev->in_sync = 0; 8203 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8204 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8205 md_wakeup_thread(mddev->thread); 8206 did_change = 1; 8207 } 8208 spin_unlock(&mddev->lock); 8209 } 8210 rcu_read_unlock(); 8211 if (did_change) 8212 sysfs_notify_dirent_safe(mddev->sysfs_state); 8213 if (!mddev->has_superblocks) 8214 return true; 8215 wait_event(mddev->sb_wait, 8216 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8217 mddev->suspended); 8218 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8219 percpu_ref_put(&mddev->writes_pending); 8220 return false; 8221 } 8222 return true; 8223 } 8224 EXPORT_SYMBOL(md_write_start); 8225 8226 /* md_write_inc can only be called when md_write_start() has 8227 * already been called at least once of the current request. 8228 * It increments the counter and is useful when a single request 8229 * is split into several parts. Each part causes an increment and 8230 * so needs a matching md_write_end(). 8231 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8232 * a spinlocked region. 8233 */ 8234 void md_write_inc(struct mddev *mddev, struct bio *bi) 8235 { 8236 if (bio_data_dir(bi) != WRITE) 8237 return; 8238 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8239 percpu_ref_get(&mddev->writes_pending); 8240 } 8241 EXPORT_SYMBOL(md_write_inc); 8242 8243 void md_write_end(struct mddev *mddev) 8244 { 8245 percpu_ref_put(&mddev->writes_pending); 8246 8247 if (mddev->safemode == 2) 8248 md_wakeup_thread(mddev->thread); 8249 else if (mddev->safemode_delay) 8250 /* The roundup() ensures this only performs locking once 8251 * every ->safemode_delay jiffies 8252 */ 8253 mod_timer(&mddev->safemode_timer, 8254 roundup(jiffies, mddev->safemode_delay) + 8255 mddev->safemode_delay); 8256 } 8257 8258 EXPORT_SYMBOL(md_write_end); 8259 8260 /* md_allow_write(mddev) 8261 * Calling this ensures that the array is marked 'active' so that writes 8262 * may proceed without blocking. It is important to call this before 8263 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8264 * Must be called with mddev_lock held. 8265 */ 8266 void md_allow_write(struct mddev *mddev) 8267 { 8268 if (!mddev->pers) 8269 return; 8270 if (mddev->ro) 8271 return; 8272 if (!mddev->pers->sync_request) 8273 return; 8274 8275 spin_lock(&mddev->lock); 8276 if (mddev->in_sync) { 8277 mddev->in_sync = 0; 8278 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8279 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8280 if (mddev->safemode_delay && 8281 mddev->safemode == 0) 8282 mddev->safemode = 1; 8283 spin_unlock(&mddev->lock); 8284 md_update_sb(mddev, 0); 8285 sysfs_notify_dirent_safe(mddev->sysfs_state); 8286 /* wait for the dirty state to be recorded in the metadata */ 8287 wait_event(mddev->sb_wait, 8288 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8289 } else 8290 spin_unlock(&mddev->lock); 8291 } 8292 EXPORT_SYMBOL_GPL(md_allow_write); 8293 8294 #define SYNC_MARKS 10 8295 #define SYNC_MARK_STEP (3*HZ) 8296 #define UPDATE_FREQUENCY (5*60*HZ) 8297 void md_do_sync(struct md_thread *thread) 8298 { 8299 struct mddev *mddev = thread->mddev; 8300 struct mddev *mddev2; 8301 unsigned int currspeed = 0, window; 8302 sector_t max_sectors,j, io_sectors, recovery_done; 8303 unsigned long mark[SYNC_MARKS]; 8304 unsigned long update_time; 8305 sector_t mark_cnt[SYNC_MARKS]; 8306 int last_mark,m; 8307 struct list_head *tmp; 8308 sector_t last_check; 8309 int skipped = 0; 8310 struct md_rdev *rdev; 8311 char *desc, *action = NULL; 8312 struct blk_plug plug; 8313 int ret; 8314 8315 /* just incase thread restarts... */ 8316 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8317 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8318 return; 8319 if (mddev->ro) {/* never try to sync a read-only array */ 8320 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8321 return; 8322 } 8323 8324 if (mddev_is_clustered(mddev)) { 8325 ret = md_cluster_ops->resync_start(mddev); 8326 if (ret) 8327 goto skip; 8328 8329 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8330 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8331 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8332 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8333 && ((unsigned long long)mddev->curr_resync_completed 8334 < (unsigned long long)mddev->resync_max_sectors)) 8335 goto skip; 8336 } 8337 8338 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8339 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8340 desc = "data-check"; 8341 action = "check"; 8342 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8343 desc = "requested-resync"; 8344 action = "repair"; 8345 } else 8346 desc = "resync"; 8347 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8348 desc = "reshape"; 8349 else 8350 desc = "recovery"; 8351 8352 mddev->last_sync_action = action ?: desc; 8353 8354 /* we overload curr_resync somewhat here. 8355 * 0 == not engaged in resync at all 8356 * 2 == checking that there is no conflict with another sync 8357 * 1 == like 2, but have yielded to allow conflicting resync to 8358 * commence 8359 * other == active in resync - this many blocks 8360 * 8361 * Before starting a resync we must have set curr_resync to 8362 * 2, and then checked that every "conflicting" array has curr_resync 8363 * less than ours. When we find one that is the same or higher 8364 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8365 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8366 * This will mean we have to start checking from the beginning again. 8367 * 8368 */ 8369 8370 do { 8371 int mddev2_minor = -1; 8372 mddev->curr_resync = 2; 8373 8374 try_again: 8375 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8376 goto skip; 8377 for_each_mddev(mddev2, tmp) { 8378 if (mddev2 == mddev) 8379 continue; 8380 if (!mddev->parallel_resync 8381 && mddev2->curr_resync 8382 && match_mddev_units(mddev, mddev2)) { 8383 DEFINE_WAIT(wq); 8384 if (mddev < mddev2 && mddev->curr_resync == 2) { 8385 /* arbitrarily yield */ 8386 mddev->curr_resync = 1; 8387 wake_up(&resync_wait); 8388 } 8389 if (mddev > mddev2 && mddev->curr_resync == 1) 8390 /* no need to wait here, we can wait the next 8391 * time 'round when curr_resync == 2 8392 */ 8393 continue; 8394 /* We need to wait 'interruptible' so as not to 8395 * contribute to the load average, and not to 8396 * be caught by 'softlockup' 8397 */ 8398 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8399 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8400 mddev2->curr_resync >= mddev->curr_resync) { 8401 if (mddev2_minor != mddev2->md_minor) { 8402 mddev2_minor = mddev2->md_minor; 8403 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8404 desc, mdname(mddev), 8405 mdname(mddev2)); 8406 } 8407 mddev_put(mddev2); 8408 if (signal_pending(current)) 8409 flush_signals(current); 8410 schedule(); 8411 finish_wait(&resync_wait, &wq); 8412 goto try_again; 8413 } 8414 finish_wait(&resync_wait, &wq); 8415 } 8416 } 8417 } while (mddev->curr_resync < 2); 8418 8419 j = 0; 8420 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8421 /* resync follows the size requested by the personality, 8422 * which defaults to physical size, but can be virtual size 8423 */ 8424 max_sectors = mddev->resync_max_sectors; 8425 atomic64_set(&mddev->resync_mismatches, 0); 8426 /* we don't use the checkpoint if there's a bitmap */ 8427 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8428 j = mddev->resync_min; 8429 else if (!mddev->bitmap) 8430 j = mddev->recovery_cp; 8431 8432 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8433 max_sectors = mddev->resync_max_sectors; 8434 /* 8435 * If the original node aborts reshaping then we continue the 8436 * reshaping, so set j again to avoid restart reshape from the 8437 * first beginning 8438 */ 8439 if (mddev_is_clustered(mddev) && 8440 mddev->reshape_position != MaxSector) 8441 j = mddev->reshape_position; 8442 } else { 8443 /* recovery follows the physical size of devices */ 8444 max_sectors = mddev->dev_sectors; 8445 j = MaxSector; 8446 rcu_read_lock(); 8447 rdev_for_each_rcu(rdev, mddev) 8448 if (rdev->raid_disk >= 0 && 8449 !test_bit(Journal, &rdev->flags) && 8450 !test_bit(Faulty, &rdev->flags) && 8451 !test_bit(In_sync, &rdev->flags) && 8452 rdev->recovery_offset < j) 8453 j = rdev->recovery_offset; 8454 rcu_read_unlock(); 8455 8456 /* If there is a bitmap, we need to make sure all 8457 * writes that started before we added a spare 8458 * complete before we start doing a recovery. 8459 * Otherwise the write might complete and (via 8460 * bitmap_endwrite) set a bit in the bitmap after the 8461 * recovery has checked that bit and skipped that 8462 * region. 8463 */ 8464 if (mddev->bitmap) { 8465 mddev->pers->quiesce(mddev, 1); 8466 mddev->pers->quiesce(mddev, 0); 8467 } 8468 } 8469 8470 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8471 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8472 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8473 speed_max(mddev), desc); 8474 8475 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8476 8477 io_sectors = 0; 8478 for (m = 0; m < SYNC_MARKS; m++) { 8479 mark[m] = jiffies; 8480 mark_cnt[m] = io_sectors; 8481 } 8482 last_mark = 0; 8483 mddev->resync_mark = mark[last_mark]; 8484 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8485 8486 /* 8487 * Tune reconstruction: 8488 */ 8489 window = 32 * (PAGE_SIZE / 512); 8490 pr_debug("md: using %dk window, over a total of %lluk.\n", 8491 window/2, (unsigned long long)max_sectors/2); 8492 8493 atomic_set(&mddev->recovery_active, 0); 8494 last_check = 0; 8495 8496 if (j>2) { 8497 pr_debug("md: resuming %s of %s from checkpoint.\n", 8498 desc, mdname(mddev)); 8499 mddev->curr_resync = j; 8500 } else 8501 mddev->curr_resync = 3; /* no longer delayed */ 8502 mddev->curr_resync_completed = j; 8503 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8504 md_new_event(mddev); 8505 update_time = jiffies; 8506 8507 blk_start_plug(&plug); 8508 while (j < max_sectors) { 8509 sector_t sectors; 8510 8511 skipped = 0; 8512 8513 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8514 ((mddev->curr_resync > mddev->curr_resync_completed && 8515 (mddev->curr_resync - mddev->curr_resync_completed) 8516 > (max_sectors >> 4)) || 8517 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8518 (j - mddev->curr_resync_completed)*2 8519 >= mddev->resync_max - mddev->curr_resync_completed || 8520 mddev->curr_resync_completed > mddev->resync_max 8521 )) { 8522 /* time to update curr_resync_completed */ 8523 wait_event(mddev->recovery_wait, 8524 atomic_read(&mddev->recovery_active) == 0); 8525 mddev->curr_resync_completed = j; 8526 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8527 j > mddev->recovery_cp) 8528 mddev->recovery_cp = j; 8529 update_time = jiffies; 8530 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8531 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8532 } 8533 8534 while (j >= mddev->resync_max && 8535 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8536 /* As this condition is controlled by user-space, 8537 * we can block indefinitely, so use '_interruptible' 8538 * to avoid triggering warnings. 8539 */ 8540 flush_signals(current); /* just in case */ 8541 wait_event_interruptible(mddev->recovery_wait, 8542 mddev->resync_max > j 8543 || test_bit(MD_RECOVERY_INTR, 8544 &mddev->recovery)); 8545 } 8546 8547 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8548 break; 8549 8550 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8551 if (sectors == 0) { 8552 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8553 break; 8554 } 8555 8556 if (!skipped) { /* actual IO requested */ 8557 io_sectors += sectors; 8558 atomic_add(sectors, &mddev->recovery_active); 8559 } 8560 8561 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8562 break; 8563 8564 j += sectors; 8565 if (j > max_sectors) 8566 /* when skipping, extra large numbers can be returned. */ 8567 j = max_sectors; 8568 if (j > 2) 8569 mddev->curr_resync = j; 8570 mddev->curr_mark_cnt = io_sectors; 8571 if (last_check == 0) 8572 /* this is the earliest that rebuild will be 8573 * visible in /proc/mdstat 8574 */ 8575 md_new_event(mddev); 8576 8577 if (last_check + window > io_sectors || j == max_sectors) 8578 continue; 8579 8580 last_check = io_sectors; 8581 repeat: 8582 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8583 /* step marks */ 8584 int next = (last_mark+1) % SYNC_MARKS; 8585 8586 mddev->resync_mark = mark[next]; 8587 mddev->resync_mark_cnt = mark_cnt[next]; 8588 mark[next] = jiffies; 8589 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8590 last_mark = next; 8591 } 8592 8593 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8594 break; 8595 8596 /* 8597 * this loop exits only if either when we are slower than 8598 * the 'hard' speed limit, or the system was IO-idle for 8599 * a jiffy. 8600 * the system might be non-idle CPU-wise, but we only care 8601 * about not overloading the IO subsystem. (things like an 8602 * e2fsck being done on the RAID array should execute fast) 8603 */ 8604 cond_resched(); 8605 8606 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8607 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8608 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8609 8610 if (currspeed > speed_min(mddev)) { 8611 if (currspeed > speed_max(mddev)) { 8612 msleep(500); 8613 goto repeat; 8614 } 8615 if (!is_mddev_idle(mddev, 0)) { 8616 /* 8617 * Give other IO more of a chance. 8618 * The faster the devices, the less we wait. 8619 */ 8620 wait_event(mddev->recovery_wait, 8621 !atomic_read(&mddev->recovery_active)); 8622 } 8623 } 8624 } 8625 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8626 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8627 ? "interrupted" : "done"); 8628 /* 8629 * this also signals 'finished resyncing' to md_stop 8630 */ 8631 blk_finish_plug(&plug); 8632 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8633 8634 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8635 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8636 mddev->curr_resync > 3) { 8637 mddev->curr_resync_completed = mddev->curr_resync; 8638 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8639 } 8640 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8641 8642 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8643 mddev->curr_resync > 3) { 8644 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8645 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8646 if (mddev->curr_resync >= mddev->recovery_cp) { 8647 pr_debug("md: checkpointing %s of %s.\n", 8648 desc, mdname(mddev)); 8649 if (test_bit(MD_RECOVERY_ERROR, 8650 &mddev->recovery)) 8651 mddev->recovery_cp = 8652 mddev->curr_resync_completed; 8653 else 8654 mddev->recovery_cp = 8655 mddev->curr_resync; 8656 } 8657 } else 8658 mddev->recovery_cp = MaxSector; 8659 } else { 8660 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8661 mddev->curr_resync = MaxSector; 8662 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8663 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8664 rcu_read_lock(); 8665 rdev_for_each_rcu(rdev, mddev) 8666 if (rdev->raid_disk >= 0 && 8667 mddev->delta_disks >= 0 && 8668 !test_bit(Journal, &rdev->flags) && 8669 !test_bit(Faulty, &rdev->flags) && 8670 !test_bit(In_sync, &rdev->flags) && 8671 rdev->recovery_offset < mddev->curr_resync) 8672 rdev->recovery_offset = mddev->curr_resync; 8673 rcu_read_unlock(); 8674 } 8675 } 8676 } 8677 skip: 8678 /* set CHANGE_PENDING here since maybe another update is needed, 8679 * so other nodes are informed. It should be harmless for normal 8680 * raid */ 8681 set_mask_bits(&mddev->sb_flags, 0, 8682 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8683 8684 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8685 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8686 mddev->delta_disks > 0 && 8687 mddev->pers->finish_reshape && 8688 mddev->pers->size && 8689 mddev->queue) { 8690 mddev_lock_nointr(mddev); 8691 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 8692 mddev_unlock(mddev); 8693 if (!mddev_is_clustered(mddev)) { 8694 set_capacity(mddev->gendisk, mddev->array_sectors); 8695 revalidate_disk(mddev->gendisk); 8696 } 8697 } 8698 8699 spin_lock(&mddev->lock); 8700 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8701 /* We completed so min/max setting can be forgotten if used. */ 8702 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8703 mddev->resync_min = 0; 8704 mddev->resync_max = MaxSector; 8705 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8706 mddev->resync_min = mddev->curr_resync_completed; 8707 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8708 mddev->curr_resync = 0; 8709 spin_unlock(&mddev->lock); 8710 8711 wake_up(&resync_wait); 8712 md_wakeup_thread(mddev->thread); 8713 return; 8714 } 8715 EXPORT_SYMBOL_GPL(md_do_sync); 8716 8717 static int remove_and_add_spares(struct mddev *mddev, 8718 struct md_rdev *this) 8719 { 8720 struct md_rdev *rdev; 8721 int spares = 0; 8722 int removed = 0; 8723 bool remove_some = false; 8724 8725 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8726 /* Mustn't remove devices when resync thread is running */ 8727 return 0; 8728 8729 rdev_for_each(rdev, mddev) { 8730 if ((this == NULL || rdev == this) && 8731 rdev->raid_disk >= 0 && 8732 !test_bit(Blocked, &rdev->flags) && 8733 test_bit(Faulty, &rdev->flags) && 8734 atomic_read(&rdev->nr_pending)==0) { 8735 /* Faulty non-Blocked devices with nr_pending == 0 8736 * never get nr_pending incremented, 8737 * never get Faulty cleared, and never get Blocked set. 8738 * So we can synchronize_rcu now rather than once per device 8739 */ 8740 remove_some = true; 8741 set_bit(RemoveSynchronized, &rdev->flags); 8742 } 8743 } 8744 8745 if (remove_some) 8746 synchronize_rcu(); 8747 rdev_for_each(rdev, mddev) { 8748 if ((this == NULL || rdev == this) && 8749 rdev->raid_disk >= 0 && 8750 !test_bit(Blocked, &rdev->flags) && 8751 ((test_bit(RemoveSynchronized, &rdev->flags) || 8752 (!test_bit(In_sync, &rdev->flags) && 8753 !test_bit(Journal, &rdev->flags))) && 8754 atomic_read(&rdev->nr_pending)==0)) { 8755 if (mddev->pers->hot_remove_disk( 8756 mddev, rdev) == 0) { 8757 sysfs_unlink_rdev(mddev, rdev); 8758 rdev->saved_raid_disk = rdev->raid_disk; 8759 rdev->raid_disk = -1; 8760 removed++; 8761 } 8762 } 8763 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8764 clear_bit(RemoveSynchronized, &rdev->flags); 8765 } 8766 8767 if (removed && mddev->kobj.sd) 8768 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8769 8770 if (this && removed) 8771 goto no_add; 8772 8773 rdev_for_each(rdev, mddev) { 8774 if (this && this != rdev) 8775 continue; 8776 if (test_bit(Candidate, &rdev->flags)) 8777 continue; 8778 if (rdev->raid_disk >= 0 && 8779 !test_bit(In_sync, &rdev->flags) && 8780 !test_bit(Journal, &rdev->flags) && 8781 !test_bit(Faulty, &rdev->flags)) 8782 spares++; 8783 if (rdev->raid_disk >= 0) 8784 continue; 8785 if (test_bit(Faulty, &rdev->flags)) 8786 continue; 8787 if (!test_bit(Journal, &rdev->flags)) { 8788 if (mddev->ro && 8789 ! (rdev->saved_raid_disk >= 0 && 8790 !test_bit(Bitmap_sync, &rdev->flags))) 8791 continue; 8792 8793 rdev->recovery_offset = 0; 8794 } 8795 if (mddev->pers-> 8796 hot_add_disk(mddev, rdev) == 0) { 8797 if (sysfs_link_rdev(mddev, rdev)) 8798 /* failure here is OK */; 8799 if (!test_bit(Journal, &rdev->flags)) 8800 spares++; 8801 md_new_event(mddev); 8802 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8803 } 8804 } 8805 no_add: 8806 if (removed) 8807 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8808 return spares; 8809 } 8810 8811 static void md_start_sync(struct work_struct *ws) 8812 { 8813 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8814 8815 mddev->sync_thread = md_register_thread(md_do_sync, 8816 mddev, 8817 "resync"); 8818 if (!mddev->sync_thread) { 8819 pr_warn("%s: could not start resync thread...\n", 8820 mdname(mddev)); 8821 /* leave the spares where they are, it shouldn't hurt */ 8822 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8823 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8824 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8825 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8826 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8827 wake_up(&resync_wait); 8828 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8829 &mddev->recovery)) 8830 if (mddev->sysfs_action) 8831 sysfs_notify_dirent_safe(mddev->sysfs_action); 8832 } else 8833 md_wakeup_thread(mddev->sync_thread); 8834 sysfs_notify_dirent_safe(mddev->sysfs_action); 8835 md_new_event(mddev); 8836 } 8837 8838 /* 8839 * This routine is regularly called by all per-raid-array threads to 8840 * deal with generic issues like resync and super-block update. 8841 * Raid personalities that don't have a thread (linear/raid0) do not 8842 * need this as they never do any recovery or update the superblock. 8843 * 8844 * It does not do any resync itself, but rather "forks" off other threads 8845 * to do that as needed. 8846 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8847 * "->recovery" and create a thread at ->sync_thread. 8848 * When the thread finishes it sets MD_RECOVERY_DONE 8849 * and wakeups up this thread which will reap the thread and finish up. 8850 * This thread also removes any faulty devices (with nr_pending == 0). 8851 * 8852 * The overall approach is: 8853 * 1/ if the superblock needs updating, update it. 8854 * 2/ If a recovery thread is running, don't do anything else. 8855 * 3/ If recovery has finished, clean up, possibly marking spares active. 8856 * 4/ If there are any faulty devices, remove them. 8857 * 5/ If array is degraded, try to add spares devices 8858 * 6/ If array has spares or is not in-sync, start a resync thread. 8859 */ 8860 void md_check_recovery(struct mddev *mddev) 8861 { 8862 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 8863 /* Write superblock - thread that called mddev_suspend() 8864 * holds reconfig_mutex for us. 8865 */ 8866 set_bit(MD_UPDATING_SB, &mddev->flags); 8867 smp_mb__after_atomic(); 8868 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 8869 md_update_sb(mddev, 0); 8870 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 8871 wake_up(&mddev->sb_wait); 8872 } 8873 8874 if (mddev->suspended) 8875 return; 8876 8877 if (mddev->bitmap) 8878 md_bitmap_daemon_work(mddev); 8879 8880 if (signal_pending(current)) { 8881 if (mddev->pers->sync_request && !mddev->external) { 8882 pr_debug("md: %s in immediate safe mode\n", 8883 mdname(mddev)); 8884 mddev->safemode = 2; 8885 } 8886 flush_signals(current); 8887 } 8888 8889 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8890 return; 8891 if ( ! ( 8892 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8893 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8894 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8895 (mddev->external == 0 && mddev->safemode == 1) || 8896 (mddev->safemode == 2 8897 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8898 )) 8899 return; 8900 8901 if (mddev_trylock(mddev)) { 8902 int spares = 0; 8903 8904 if (!mddev->external && mddev->safemode == 1) 8905 mddev->safemode = 0; 8906 8907 if (mddev->ro) { 8908 struct md_rdev *rdev; 8909 if (!mddev->external && mddev->in_sync) 8910 /* 'Blocked' flag not needed as failed devices 8911 * will be recorded if array switched to read/write. 8912 * Leaving it set will prevent the device 8913 * from being removed. 8914 */ 8915 rdev_for_each(rdev, mddev) 8916 clear_bit(Blocked, &rdev->flags); 8917 /* On a read-only array we can: 8918 * - remove failed devices 8919 * - add already-in_sync devices if the array itself 8920 * is in-sync. 8921 * As we only add devices that are already in-sync, 8922 * we can activate the spares immediately. 8923 */ 8924 remove_and_add_spares(mddev, NULL); 8925 /* There is no thread, but we need to call 8926 * ->spare_active and clear saved_raid_disk 8927 */ 8928 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8929 md_reap_sync_thread(mddev); 8930 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8931 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8932 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8933 goto unlock; 8934 } 8935 8936 if (mddev_is_clustered(mddev)) { 8937 struct md_rdev *rdev; 8938 /* kick the device if another node issued a 8939 * remove disk. 8940 */ 8941 rdev_for_each(rdev, mddev) { 8942 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8943 rdev->raid_disk < 0) 8944 md_kick_rdev_from_array(rdev); 8945 } 8946 } 8947 8948 if (!mddev->external && !mddev->in_sync) { 8949 spin_lock(&mddev->lock); 8950 set_in_sync(mddev); 8951 spin_unlock(&mddev->lock); 8952 } 8953 8954 if (mddev->sb_flags) 8955 md_update_sb(mddev, 0); 8956 8957 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8958 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8959 /* resync/recovery still happening */ 8960 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8961 goto unlock; 8962 } 8963 if (mddev->sync_thread) { 8964 md_reap_sync_thread(mddev); 8965 goto unlock; 8966 } 8967 /* Set RUNNING before clearing NEEDED to avoid 8968 * any transients in the value of "sync_action". 8969 */ 8970 mddev->curr_resync_completed = 0; 8971 spin_lock(&mddev->lock); 8972 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8973 spin_unlock(&mddev->lock); 8974 /* Clear some bits that don't mean anything, but 8975 * might be left set 8976 */ 8977 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8978 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8979 8980 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8981 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8982 goto not_running; 8983 /* no recovery is running. 8984 * remove any failed drives, then 8985 * add spares if possible. 8986 * Spares are also removed and re-added, to allow 8987 * the personality to fail the re-add. 8988 */ 8989 8990 if (mddev->reshape_position != MaxSector) { 8991 if (mddev->pers->check_reshape == NULL || 8992 mddev->pers->check_reshape(mddev) != 0) 8993 /* Cannot proceed */ 8994 goto not_running; 8995 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8996 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8997 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8998 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8999 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9000 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9001 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9002 } else if (mddev->recovery_cp < MaxSector) { 9003 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9004 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9005 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9006 /* nothing to be done ... */ 9007 goto not_running; 9008 9009 if (mddev->pers->sync_request) { 9010 if (spares) { 9011 /* We are adding a device or devices to an array 9012 * which has the bitmap stored on all devices. 9013 * So make sure all bitmap pages get written 9014 */ 9015 md_bitmap_write_all(mddev->bitmap); 9016 } 9017 INIT_WORK(&mddev->del_work, md_start_sync); 9018 queue_work(md_misc_wq, &mddev->del_work); 9019 goto unlock; 9020 } 9021 not_running: 9022 if (!mddev->sync_thread) { 9023 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9024 wake_up(&resync_wait); 9025 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9026 &mddev->recovery)) 9027 if (mddev->sysfs_action) 9028 sysfs_notify_dirent_safe(mddev->sysfs_action); 9029 } 9030 unlock: 9031 wake_up(&mddev->sb_wait); 9032 mddev_unlock(mddev); 9033 } 9034 } 9035 EXPORT_SYMBOL(md_check_recovery); 9036 9037 void md_reap_sync_thread(struct mddev *mddev) 9038 { 9039 struct md_rdev *rdev; 9040 sector_t old_dev_sectors = mddev->dev_sectors; 9041 bool is_reshaped = false; 9042 9043 /* resync has finished, collect result */ 9044 md_unregister_thread(&mddev->sync_thread); 9045 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9046 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 9047 /* success...*/ 9048 /* activate any spares */ 9049 if (mddev->pers->spare_active(mddev)) { 9050 sysfs_notify(&mddev->kobj, NULL, 9051 "degraded"); 9052 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9053 } 9054 } 9055 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9056 mddev->pers->finish_reshape) { 9057 mddev->pers->finish_reshape(mddev); 9058 if (mddev_is_clustered(mddev)) 9059 is_reshaped = true; 9060 } 9061 9062 /* If array is no-longer degraded, then any saved_raid_disk 9063 * information must be scrapped. 9064 */ 9065 if (!mddev->degraded) 9066 rdev_for_each(rdev, mddev) 9067 rdev->saved_raid_disk = -1; 9068 9069 md_update_sb(mddev, 1); 9070 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9071 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9072 * clustered raid */ 9073 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9074 md_cluster_ops->resync_finish(mddev); 9075 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9076 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9077 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9078 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9079 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9080 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9081 /* 9082 * We call md_cluster_ops->update_size here because sync_size could 9083 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9084 * so it is time to update size across cluster. 9085 */ 9086 if (mddev_is_clustered(mddev) && is_reshaped 9087 && !test_bit(MD_CLOSING, &mddev->flags)) 9088 md_cluster_ops->update_size(mddev, old_dev_sectors); 9089 wake_up(&resync_wait); 9090 /* flag recovery needed just to double check */ 9091 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9092 sysfs_notify_dirent_safe(mddev->sysfs_action); 9093 md_new_event(mddev); 9094 if (mddev->event_work.func) 9095 queue_work(md_misc_wq, &mddev->event_work); 9096 } 9097 EXPORT_SYMBOL(md_reap_sync_thread); 9098 9099 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9100 { 9101 sysfs_notify_dirent_safe(rdev->sysfs_state); 9102 wait_event_timeout(rdev->blocked_wait, 9103 !test_bit(Blocked, &rdev->flags) && 9104 !test_bit(BlockedBadBlocks, &rdev->flags), 9105 msecs_to_jiffies(5000)); 9106 rdev_dec_pending(rdev, mddev); 9107 } 9108 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9109 9110 void md_finish_reshape(struct mddev *mddev) 9111 { 9112 /* called be personality module when reshape completes. */ 9113 struct md_rdev *rdev; 9114 9115 rdev_for_each(rdev, mddev) { 9116 if (rdev->data_offset > rdev->new_data_offset) 9117 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9118 else 9119 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9120 rdev->data_offset = rdev->new_data_offset; 9121 } 9122 } 9123 EXPORT_SYMBOL(md_finish_reshape); 9124 9125 /* Bad block management */ 9126 9127 /* Returns 1 on success, 0 on failure */ 9128 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9129 int is_new) 9130 { 9131 struct mddev *mddev = rdev->mddev; 9132 int rv; 9133 if (is_new) 9134 s += rdev->new_data_offset; 9135 else 9136 s += rdev->data_offset; 9137 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9138 if (rv == 0) { 9139 /* Make sure they get written out promptly */ 9140 if (test_bit(ExternalBbl, &rdev->flags)) 9141 sysfs_notify(&rdev->kobj, NULL, 9142 "unacknowledged_bad_blocks"); 9143 sysfs_notify_dirent_safe(rdev->sysfs_state); 9144 set_mask_bits(&mddev->sb_flags, 0, 9145 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9146 md_wakeup_thread(rdev->mddev->thread); 9147 return 1; 9148 } else 9149 return 0; 9150 } 9151 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9152 9153 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9154 int is_new) 9155 { 9156 int rv; 9157 if (is_new) 9158 s += rdev->new_data_offset; 9159 else 9160 s += rdev->data_offset; 9161 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9162 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9163 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 9164 return rv; 9165 } 9166 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9167 9168 static int md_notify_reboot(struct notifier_block *this, 9169 unsigned long code, void *x) 9170 { 9171 struct list_head *tmp; 9172 struct mddev *mddev; 9173 int need_delay = 0; 9174 9175 for_each_mddev(mddev, tmp) { 9176 if (mddev_trylock(mddev)) { 9177 if (mddev->pers) 9178 __md_stop_writes(mddev); 9179 if (mddev->persistent) 9180 mddev->safemode = 2; 9181 mddev_unlock(mddev); 9182 } 9183 need_delay = 1; 9184 } 9185 /* 9186 * certain more exotic SCSI devices are known to be 9187 * volatile wrt too early system reboots. While the 9188 * right place to handle this issue is the given 9189 * driver, we do want to have a safe RAID driver ... 9190 */ 9191 if (need_delay) 9192 mdelay(1000*1); 9193 9194 return NOTIFY_DONE; 9195 } 9196 9197 static struct notifier_block md_notifier = { 9198 .notifier_call = md_notify_reboot, 9199 .next = NULL, 9200 .priority = INT_MAX, /* before any real devices */ 9201 }; 9202 9203 static void md_geninit(void) 9204 { 9205 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9206 9207 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9208 } 9209 9210 static int __init md_init(void) 9211 { 9212 int ret = -ENOMEM; 9213 9214 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9215 if (!md_wq) 9216 goto err_wq; 9217 9218 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9219 if (!md_misc_wq) 9220 goto err_misc_wq; 9221 9222 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9223 goto err_md; 9224 9225 if ((ret = register_blkdev(0, "mdp")) < 0) 9226 goto err_mdp; 9227 mdp_major = ret; 9228 9229 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9230 md_probe, NULL, NULL); 9231 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9232 md_probe, NULL, NULL); 9233 9234 register_reboot_notifier(&md_notifier); 9235 raid_table_header = register_sysctl_table(raid_root_table); 9236 9237 md_geninit(); 9238 return 0; 9239 9240 err_mdp: 9241 unregister_blkdev(MD_MAJOR, "md"); 9242 err_md: 9243 destroy_workqueue(md_misc_wq); 9244 err_misc_wq: 9245 destroy_workqueue(md_wq); 9246 err_wq: 9247 return ret; 9248 } 9249 9250 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9251 { 9252 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9253 struct md_rdev *rdev2; 9254 int role, ret; 9255 char b[BDEVNAME_SIZE]; 9256 9257 /* 9258 * If size is changed in another node then we need to 9259 * do resize as well. 9260 */ 9261 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9262 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9263 if (ret) 9264 pr_info("md-cluster: resize failed\n"); 9265 else 9266 md_bitmap_update_sb(mddev->bitmap); 9267 } 9268 9269 /* Check for change of roles in the active devices */ 9270 rdev_for_each(rdev2, mddev) { 9271 if (test_bit(Faulty, &rdev2->flags)) 9272 continue; 9273 9274 /* Check if the roles changed */ 9275 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9276 9277 if (test_bit(Candidate, &rdev2->flags)) { 9278 if (role == 0xfffe) { 9279 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9280 md_kick_rdev_from_array(rdev2); 9281 continue; 9282 } 9283 else 9284 clear_bit(Candidate, &rdev2->flags); 9285 } 9286 9287 if (role != rdev2->raid_disk) { 9288 /* 9289 * got activated except reshape is happening. 9290 */ 9291 if (rdev2->raid_disk == -1 && role != 0xffff && 9292 !(le32_to_cpu(sb->feature_map) & 9293 MD_FEATURE_RESHAPE_ACTIVE)) { 9294 rdev2->saved_raid_disk = role; 9295 ret = remove_and_add_spares(mddev, rdev2); 9296 pr_info("Activated spare: %s\n", 9297 bdevname(rdev2->bdev,b)); 9298 /* wakeup mddev->thread here, so array could 9299 * perform resync with the new activated disk */ 9300 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9301 md_wakeup_thread(mddev->thread); 9302 } 9303 /* device faulty 9304 * We just want to do the minimum to mark the disk 9305 * as faulty. The recovery is performed by the 9306 * one who initiated the error. 9307 */ 9308 if ((role == 0xfffe) || (role == 0xfffd)) { 9309 md_error(mddev, rdev2); 9310 clear_bit(Blocked, &rdev2->flags); 9311 } 9312 } 9313 } 9314 9315 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9316 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9317 9318 /* 9319 * Since mddev->delta_disks has already updated in update_raid_disks, 9320 * so it is time to check reshape. 9321 */ 9322 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9323 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9324 /* 9325 * reshape is happening in the remote node, we need to 9326 * update reshape_position and call start_reshape. 9327 */ 9328 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9329 if (mddev->pers->update_reshape_pos) 9330 mddev->pers->update_reshape_pos(mddev); 9331 if (mddev->pers->start_reshape) 9332 mddev->pers->start_reshape(mddev); 9333 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9334 mddev->reshape_position != MaxSector && 9335 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9336 /* reshape is just done in another node. */ 9337 mddev->reshape_position = MaxSector; 9338 if (mddev->pers->update_reshape_pos) 9339 mddev->pers->update_reshape_pos(mddev); 9340 } 9341 9342 /* Finally set the event to be up to date */ 9343 mddev->events = le64_to_cpu(sb->events); 9344 } 9345 9346 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9347 { 9348 int err; 9349 struct page *swapout = rdev->sb_page; 9350 struct mdp_superblock_1 *sb; 9351 9352 /* Store the sb page of the rdev in the swapout temporary 9353 * variable in case we err in the future 9354 */ 9355 rdev->sb_page = NULL; 9356 err = alloc_disk_sb(rdev); 9357 if (err == 0) { 9358 ClearPageUptodate(rdev->sb_page); 9359 rdev->sb_loaded = 0; 9360 err = super_types[mddev->major_version]. 9361 load_super(rdev, NULL, mddev->minor_version); 9362 } 9363 if (err < 0) { 9364 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9365 __func__, __LINE__, rdev->desc_nr, err); 9366 if (rdev->sb_page) 9367 put_page(rdev->sb_page); 9368 rdev->sb_page = swapout; 9369 rdev->sb_loaded = 1; 9370 return err; 9371 } 9372 9373 sb = page_address(rdev->sb_page); 9374 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9375 * is not set 9376 */ 9377 9378 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9379 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9380 9381 /* The other node finished recovery, call spare_active to set 9382 * device In_sync and mddev->degraded 9383 */ 9384 if (rdev->recovery_offset == MaxSector && 9385 !test_bit(In_sync, &rdev->flags) && 9386 mddev->pers->spare_active(mddev)) 9387 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9388 9389 put_page(swapout); 9390 return 0; 9391 } 9392 9393 void md_reload_sb(struct mddev *mddev, int nr) 9394 { 9395 struct md_rdev *rdev; 9396 int err; 9397 9398 /* Find the rdev */ 9399 rdev_for_each_rcu(rdev, mddev) { 9400 if (rdev->desc_nr == nr) 9401 break; 9402 } 9403 9404 if (!rdev || rdev->desc_nr != nr) { 9405 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9406 return; 9407 } 9408 9409 err = read_rdev(mddev, rdev); 9410 if (err < 0) 9411 return; 9412 9413 check_sb_changes(mddev, rdev); 9414 9415 /* Read all rdev's to update recovery_offset */ 9416 rdev_for_each_rcu(rdev, mddev) { 9417 if (!test_bit(Faulty, &rdev->flags)) 9418 read_rdev(mddev, rdev); 9419 } 9420 } 9421 EXPORT_SYMBOL(md_reload_sb); 9422 9423 #ifndef MODULE 9424 9425 /* 9426 * Searches all registered partitions for autorun RAID arrays 9427 * at boot time. 9428 */ 9429 9430 static DEFINE_MUTEX(detected_devices_mutex); 9431 static LIST_HEAD(all_detected_devices); 9432 struct detected_devices_node { 9433 struct list_head list; 9434 dev_t dev; 9435 }; 9436 9437 void md_autodetect_dev(dev_t dev) 9438 { 9439 struct detected_devices_node *node_detected_dev; 9440 9441 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9442 if (node_detected_dev) { 9443 node_detected_dev->dev = dev; 9444 mutex_lock(&detected_devices_mutex); 9445 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9446 mutex_unlock(&detected_devices_mutex); 9447 } 9448 } 9449 9450 static void autostart_arrays(int part) 9451 { 9452 struct md_rdev *rdev; 9453 struct detected_devices_node *node_detected_dev; 9454 dev_t dev; 9455 int i_scanned, i_passed; 9456 9457 i_scanned = 0; 9458 i_passed = 0; 9459 9460 pr_info("md: Autodetecting RAID arrays.\n"); 9461 9462 mutex_lock(&detected_devices_mutex); 9463 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9464 i_scanned++; 9465 node_detected_dev = list_entry(all_detected_devices.next, 9466 struct detected_devices_node, list); 9467 list_del(&node_detected_dev->list); 9468 dev = node_detected_dev->dev; 9469 kfree(node_detected_dev); 9470 mutex_unlock(&detected_devices_mutex); 9471 rdev = md_import_device(dev,0, 90); 9472 mutex_lock(&detected_devices_mutex); 9473 if (IS_ERR(rdev)) 9474 continue; 9475 9476 if (test_bit(Faulty, &rdev->flags)) 9477 continue; 9478 9479 set_bit(AutoDetected, &rdev->flags); 9480 list_add(&rdev->same_set, &pending_raid_disks); 9481 i_passed++; 9482 } 9483 mutex_unlock(&detected_devices_mutex); 9484 9485 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9486 9487 autorun_devices(part); 9488 } 9489 9490 #endif /* !MODULE */ 9491 9492 static __exit void md_exit(void) 9493 { 9494 struct mddev *mddev; 9495 struct list_head *tmp; 9496 int delay = 1; 9497 9498 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9499 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9500 9501 unregister_blkdev(MD_MAJOR,"md"); 9502 unregister_blkdev(mdp_major, "mdp"); 9503 unregister_reboot_notifier(&md_notifier); 9504 unregister_sysctl_table(raid_table_header); 9505 9506 /* We cannot unload the modules while some process is 9507 * waiting for us in select() or poll() - wake them up 9508 */ 9509 md_unloading = 1; 9510 while (waitqueue_active(&md_event_waiters)) { 9511 /* not safe to leave yet */ 9512 wake_up(&md_event_waiters); 9513 msleep(delay); 9514 delay += delay; 9515 } 9516 remove_proc_entry("mdstat", NULL); 9517 9518 for_each_mddev(mddev, tmp) { 9519 export_array(mddev); 9520 mddev->ctime = 0; 9521 mddev->hold_active = 0; 9522 /* 9523 * for_each_mddev() will call mddev_put() at the end of each 9524 * iteration. As the mddev is now fully clear, this will 9525 * schedule the mddev for destruction by a workqueue, and the 9526 * destroy_workqueue() below will wait for that to complete. 9527 */ 9528 } 9529 destroy_workqueue(md_misc_wq); 9530 destroy_workqueue(md_wq); 9531 } 9532 9533 subsys_initcall(md_init); 9534 module_exit(md_exit) 9535 9536 static int get_ro(char *buffer, const struct kernel_param *kp) 9537 { 9538 return sprintf(buffer, "%d", start_readonly); 9539 } 9540 static int set_ro(const char *val, const struct kernel_param *kp) 9541 { 9542 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9543 } 9544 9545 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9546 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9547 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9548 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9549 9550 MODULE_LICENSE("GPL"); 9551 MODULE_DESCRIPTION("MD RAID framework"); 9552 MODULE_ALIAS("md"); 9553 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9554