xref: /openbmc/linux/drivers/md/md.c (revision a9701a30)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 
46 #include <linux/init.h>
47 
48 #include <linux/file.h>
49 
50 #ifdef CONFIG_KMOD
51 #include <linux/kmod.h>
52 #endif
53 
54 #include <asm/unaligned.h>
55 
56 #define MAJOR_NR MD_MAJOR
57 #define MD_DRIVER
58 
59 /* 63 partitions with the alternate major number (mdp) */
60 #define MdpMinorShift 6
61 
62 #define DEBUG 0
63 #define dprintk(x...) ((void)(DEBUG && printk(x)))
64 
65 
66 #ifndef MODULE
67 static void autostart_arrays (int part);
68 #endif
69 
70 static mdk_personality_t *pers[MAX_PERSONALITY];
71 static DEFINE_SPINLOCK(pers_lock);
72 
73 /*
74  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75  * is 1000 KB/sec, so the extra system load does not show up that much.
76  * Increase it if you want to have more _guaranteed_ speed. Note that
77  * the RAID driver will use the maximum available bandwidth if the IO
78  * subsystem is idle. There is also an 'absolute maximum' reconstruction
79  * speed limit - in case reconstruction slows down your system despite
80  * idle IO detection.
81  *
82  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
83  */
84 
85 static int sysctl_speed_limit_min = 1000;
86 static int sysctl_speed_limit_max = 200000;
87 
88 static struct ctl_table_header *raid_table_header;
89 
90 static ctl_table raid_table[] = {
91 	{
92 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
93 		.procname	= "speed_limit_min",
94 		.data		= &sysctl_speed_limit_min,
95 		.maxlen		= sizeof(int),
96 		.mode		= 0644,
97 		.proc_handler	= &proc_dointvec,
98 	},
99 	{
100 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
101 		.procname	= "speed_limit_max",
102 		.data		= &sysctl_speed_limit_max,
103 		.maxlen		= sizeof(int),
104 		.mode		= 0644,
105 		.proc_handler	= &proc_dointvec,
106 	},
107 	{ .ctl_name = 0 }
108 };
109 
110 static ctl_table raid_dir_table[] = {
111 	{
112 		.ctl_name	= DEV_RAID,
113 		.procname	= "raid",
114 		.maxlen		= 0,
115 		.mode		= 0555,
116 		.child		= raid_table,
117 	},
118 	{ .ctl_name = 0 }
119 };
120 
121 static ctl_table raid_root_table[] = {
122 	{
123 		.ctl_name	= CTL_DEV,
124 		.procname	= "dev",
125 		.maxlen		= 0,
126 		.mode		= 0555,
127 		.child		= raid_dir_table,
128 	},
129 	{ .ctl_name = 0 }
130 };
131 
132 static struct block_device_operations md_fops;
133 
134 /*
135  * Enables to iterate over all existing md arrays
136  * all_mddevs_lock protects this list.
137  */
138 static LIST_HEAD(all_mddevs);
139 static DEFINE_SPINLOCK(all_mddevs_lock);
140 
141 
142 /*
143  * iterates through all used mddevs in the system.
144  * We take care to grab the all_mddevs_lock whenever navigating
145  * the list, and to always hold a refcount when unlocked.
146  * Any code which breaks out of this loop while own
147  * a reference to the current mddev and must mddev_put it.
148  */
149 #define ITERATE_MDDEV(mddev,tmp)					\
150 									\
151 	for (({ spin_lock(&all_mddevs_lock); 				\
152 		tmp = all_mddevs.next;					\
153 		mddev = NULL;});					\
154 	     ({ if (tmp != &all_mddevs)					\
155 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
156 		spin_unlock(&all_mddevs_lock);				\
157 		if (mddev) mddev_put(mddev);				\
158 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
159 		tmp != &all_mddevs;});					\
160 	     ({ spin_lock(&all_mddevs_lock);				\
161 		tmp = tmp->next;})					\
162 		)
163 
164 
165 static int md_fail_request (request_queue_t *q, struct bio *bio)
166 {
167 	bio_io_error(bio, bio->bi_size);
168 	return 0;
169 }
170 
171 static inline mddev_t *mddev_get(mddev_t *mddev)
172 {
173 	atomic_inc(&mddev->active);
174 	return mddev;
175 }
176 
177 static void mddev_put(mddev_t *mddev)
178 {
179 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
180 		return;
181 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
182 		list_del(&mddev->all_mddevs);
183 		blk_put_queue(mddev->queue);
184 		kobject_unregister(&mddev->kobj);
185 	}
186 	spin_unlock(&all_mddevs_lock);
187 }
188 
189 static mddev_t * mddev_find(dev_t unit)
190 {
191 	mddev_t *mddev, *new = NULL;
192 
193  retry:
194 	spin_lock(&all_mddevs_lock);
195 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
196 		if (mddev->unit == unit) {
197 			mddev_get(mddev);
198 			spin_unlock(&all_mddevs_lock);
199 			kfree(new);
200 			return mddev;
201 		}
202 
203 	if (new) {
204 		list_add(&new->all_mddevs, &all_mddevs);
205 		spin_unlock(&all_mddevs_lock);
206 		return new;
207 	}
208 	spin_unlock(&all_mddevs_lock);
209 
210 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
211 	if (!new)
212 		return NULL;
213 
214 	memset(new, 0, sizeof(*new));
215 
216 	new->unit = unit;
217 	if (MAJOR(unit) == MD_MAJOR)
218 		new->md_minor = MINOR(unit);
219 	else
220 		new->md_minor = MINOR(unit) >> MdpMinorShift;
221 
222 	init_MUTEX(&new->reconfig_sem);
223 	INIT_LIST_HEAD(&new->disks);
224 	INIT_LIST_HEAD(&new->all_mddevs);
225 	init_timer(&new->safemode_timer);
226 	atomic_set(&new->active, 1);
227 	spin_lock_init(&new->write_lock);
228 	init_waitqueue_head(&new->sb_wait);
229 
230 	new->queue = blk_alloc_queue(GFP_KERNEL);
231 	if (!new->queue) {
232 		kfree(new);
233 		return NULL;
234 	}
235 
236 	blk_queue_make_request(new->queue, md_fail_request);
237 
238 	goto retry;
239 }
240 
241 static inline int mddev_lock(mddev_t * mddev)
242 {
243 	return down_interruptible(&mddev->reconfig_sem);
244 }
245 
246 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
247 {
248 	down(&mddev->reconfig_sem);
249 }
250 
251 static inline int mddev_trylock(mddev_t * mddev)
252 {
253 	return down_trylock(&mddev->reconfig_sem);
254 }
255 
256 static inline void mddev_unlock(mddev_t * mddev)
257 {
258 	up(&mddev->reconfig_sem);
259 
260 	md_wakeup_thread(mddev->thread);
261 }
262 
263 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
264 {
265 	mdk_rdev_t * rdev;
266 	struct list_head *tmp;
267 
268 	ITERATE_RDEV(mddev,rdev,tmp) {
269 		if (rdev->desc_nr == nr)
270 			return rdev;
271 	}
272 	return NULL;
273 }
274 
275 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
276 {
277 	struct list_head *tmp;
278 	mdk_rdev_t *rdev;
279 
280 	ITERATE_RDEV(mddev,rdev,tmp) {
281 		if (rdev->bdev->bd_dev == dev)
282 			return rdev;
283 	}
284 	return NULL;
285 }
286 
287 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
288 {
289 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
290 	return MD_NEW_SIZE_BLOCKS(size);
291 }
292 
293 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
294 {
295 	sector_t size;
296 
297 	size = rdev->sb_offset;
298 
299 	if (chunk_size)
300 		size &= ~((sector_t)chunk_size/1024 - 1);
301 	return size;
302 }
303 
304 static int alloc_disk_sb(mdk_rdev_t * rdev)
305 {
306 	if (rdev->sb_page)
307 		MD_BUG();
308 
309 	rdev->sb_page = alloc_page(GFP_KERNEL);
310 	if (!rdev->sb_page) {
311 		printk(KERN_ALERT "md: out of memory.\n");
312 		return -EINVAL;
313 	}
314 
315 	return 0;
316 }
317 
318 static void free_disk_sb(mdk_rdev_t * rdev)
319 {
320 	if (rdev->sb_page) {
321 		page_cache_release(rdev->sb_page);
322 		rdev->sb_loaded = 0;
323 		rdev->sb_page = NULL;
324 		rdev->sb_offset = 0;
325 		rdev->size = 0;
326 	}
327 }
328 
329 
330 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
331 {
332 	mdk_rdev_t *rdev = bio->bi_private;
333 	mddev_t *mddev = rdev->mddev;
334 	if (bio->bi_size)
335 		return 1;
336 
337 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
338 		md_error(mddev, rdev);
339 
340 	if (atomic_dec_and_test(&mddev->pending_writes))
341 		wake_up(&mddev->sb_wait);
342 	bio_put(bio);
343 	return 0;
344 }
345 
346 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
347 {
348 	struct bio *bio2 = bio->bi_private;
349 	mdk_rdev_t *rdev = bio2->bi_private;
350 	mddev_t *mddev = rdev->mddev;
351 	if (bio->bi_size)
352 		return 1;
353 
354 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
355 	    error == -EOPNOTSUPP) {
356 		unsigned long flags;
357 		/* barriers don't appear to be supported :-( */
358 		set_bit(BarriersNotsupp, &rdev->flags);
359 		mddev->barriers_work = 0;
360 		spin_lock_irqsave(&mddev->write_lock, flags);
361 		bio2->bi_next = mddev->biolist;
362 		mddev->biolist = bio2;
363 		spin_unlock_irqrestore(&mddev->write_lock, flags);
364 		wake_up(&mddev->sb_wait);
365 		bio_put(bio);
366 		return 0;
367 	}
368 	bio_put(bio2);
369 	bio->bi_private = rdev;
370 	return super_written(bio, bytes_done, error);
371 }
372 
373 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
374 		   sector_t sector, int size, struct page *page)
375 {
376 	/* write first size bytes of page to sector of rdev
377 	 * Increment mddev->pending_writes before returning
378 	 * and decrement it on completion, waking up sb_wait
379 	 * if zero is reached.
380 	 * If an error occurred, call md_error
381 	 *
382 	 * As we might need to resubmit the request if BIO_RW_BARRIER
383 	 * causes ENOTSUPP, we allocate a spare bio...
384 	 */
385 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
386 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
387 
388 	bio->bi_bdev = rdev->bdev;
389 	bio->bi_sector = sector;
390 	bio_add_page(bio, page, size, 0);
391 	bio->bi_private = rdev;
392 	bio->bi_end_io = super_written;
393 	bio->bi_rw = rw;
394 
395 	atomic_inc(&mddev->pending_writes);
396 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
397 		struct bio *rbio;
398 		rw |= (1<<BIO_RW_BARRIER);
399 		rbio = bio_clone(bio, GFP_NOIO);
400 		rbio->bi_private = bio;
401 		rbio->bi_end_io = super_written_barrier;
402 		submit_bio(rw, rbio);
403 	} else
404 		submit_bio(rw, bio);
405 }
406 
407 void md_super_wait(mddev_t *mddev)
408 {
409 	/* wait for all superblock writes that were scheduled to complete.
410 	 * if any had to be retried (due to BARRIER problems), retry them
411 	 */
412 	DEFINE_WAIT(wq);
413 	for(;;) {
414 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
415 		if (atomic_read(&mddev->pending_writes)==0)
416 			break;
417 		while (mddev->biolist) {
418 			struct bio *bio;
419 			spin_lock_irq(&mddev->write_lock);
420 			bio = mddev->biolist;
421 			mddev->biolist = bio->bi_next ;
422 			bio->bi_next = NULL;
423 			spin_unlock_irq(&mddev->write_lock);
424 			submit_bio(bio->bi_rw, bio);
425 		}
426 		schedule();
427 	}
428 	finish_wait(&mddev->sb_wait, &wq);
429 }
430 
431 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
432 {
433 	if (bio->bi_size)
434 		return 1;
435 
436 	complete((struct completion*)bio->bi_private);
437 	return 0;
438 }
439 
440 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
441 		   struct page *page, int rw)
442 {
443 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
444 	struct completion event;
445 	int ret;
446 
447 	rw |= (1 << BIO_RW_SYNC);
448 
449 	bio->bi_bdev = bdev;
450 	bio->bi_sector = sector;
451 	bio_add_page(bio, page, size, 0);
452 	init_completion(&event);
453 	bio->bi_private = &event;
454 	bio->bi_end_io = bi_complete;
455 	submit_bio(rw, bio);
456 	wait_for_completion(&event);
457 
458 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
459 	bio_put(bio);
460 	return ret;
461 }
462 
463 static int read_disk_sb(mdk_rdev_t * rdev, int size)
464 {
465 	char b[BDEVNAME_SIZE];
466 	if (!rdev->sb_page) {
467 		MD_BUG();
468 		return -EINVAL;
469 	}
470 	if (rdev->sb_loaded)
471 		return 0;
472 
473 
474 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
475 		goto fail;
476 	rdev->sb_loaded = 1;
477 	return 0;
478 
479 fail:
480 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
481 		bdevname(rdev->bdev,b));
482 	return -EINVAL;
483 }
484 
485 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
486 {
487 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
488 		(sb1->set_uuid1 == sb2->set_uuid1) &&
489 		(sb1->set_uuid2 == sb2->set_uuid2) &&
490 		(sb1->set_uuid3 == sb2->set_uuid3))
491 
492 		return 1;
493 
494 	return 0;
495 }
496 
497 
498 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
499 {
500 	int ret;
501 	mdp_super_t *tmp1, *tmp2;
502 
503 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
504 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
505 
506 	if (!tmp1 || !tmp2) {
507 		ret = 0;
508 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
509 		goto abort;
510 	}
511 
512 	*tmp1 = *sb1;
513 	*tmp2 = *sb2;
514 
515 	/*
516 	 * nr_disks is not constant
517 	 */
518 	tmp1->nr_disks = 0;
519 	tmp2->nr_disks = 0;
520 
521 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
522 		ret = 0;
523 	else
524 		ret = 1;
525 
526 abort:
527 	kfree(tmp1);
528 	kfree(tmp2);
529 	return ret;
530 }
531 
532 static unsigned int calc_sb_csum(mdp_super_t * sb)
533 {
534 	unsigned int disk_csum, csum;
535 
536 	disk_csum = sb->sb_csum;
537 	sb->sb_csum = 0;
538 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
539 	sb->sb_csum = disk_csum;
540 	return csum;
541 }
542 
543 
544 /*
545  * Handle superblock details.
546  * We want to be able to handle multiple superblock formats
547  * so we have a common interface to them all, and an array of
548  * different handlers.
549  * We rely on user-space to write the initial superblock, and support
550  * reading and updating of superblocks.
551  * Interface methods are:
552  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
553  *      loads and validates a superblock on dev.
554  *      if refdev != NULL, compare superblocks on both devices
555  *    Return:
556  *      0 - dev has a superblock that is compatible with refdev
557  *      1 - dev has a superblock that is compatible and newer than refdev
558  *          so dev should be used as the refdev in future
559  *     -EINVAL superblock incompatible or invalid
560  *     -othererror e.g. -EIO
561  *
562  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
563  *      Verify that dev is acceptable into mddev.
564  *       The first time, mddev->raid_disks will be 0, and data from
565  *       dev should be merged in.  Subsequent calls check that dev
566  *       is new enough.  Return 0 or -EINVAL
567  *
568  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
569  *     Update the superblock for rdev with data in mddev
570  *     This does not write to disc.
571  *
572  */
573 
574 struct super_type  {
575 	char 		*name;
576 	struct module	*owner;
577 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
578 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
579 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
580 };
581 
582 /*
583  * load_super for 0.90.0
584  */
585 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
586 {
587 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
588 	mdp_super_t *sb;
589 	int ret;
590 	sector_t sb_offset;
591 
592 	/*
593 	 * Calculate the position of the superblock,
594 	 * it's at the end of the disk.
595 	 *
596 	 * It also happens to be a multiple of 4Kb.
597 	 */
598 	sb_offset = calc_dev_sboffset(rdev->bdev);
599 	rdev->sb_offset = sb_offset;
600 
601 	ret = read_disk_sb(rdev, MD_SB_BYTES);
602 	if (ret) return ret;
603 
604 	ret = -EINVAL;
605 
606 	bdevname(rdev->bdev, b);
607 	sb = (mdp_super_t*)page_address(rdev->sb_page);
608 
609 	if (sb->md_magic != MD_SB_MAGIC) {
610 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
611 		       b);
612 		goto abort;
613 	}
614 
615 	if (sb->major_version != 0 ||
616 	    sb->minor_version != 90) {
617 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
618 			sb->major_version, sb->minor_version,
619 			b);
620 		goto abort;
621 	}
622 
623 	if (sb->raid_disks <= 0)
624 		goto abort;
625 
626 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
627 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
628 			b);
629 		goto abort;
630 	}
631 
632 	rdev->preferred_minor = sb->md_minor;
633 	rdev->data_offset = 0;
634 	rdev->sb_size = MD_SB_BYTES;
635 
636 	if (sb->level == LEVEL_MULTIPATH)
637 		rdev->desc_nr = -1;
638 	else
639 		rdev->desc_nr = sb->this_disk.number;
640 
641 	if (refdev == 0)
642 		ret = 1;
643 	else {
644 		__u64 ev1, ev2;
645 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
646 		if (!uuid_equal(refsb, sb)) {
647 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
648 				b, bdevname(refdev->bdev,b2));
649 			goto abort;
650 		}
651 		if (!sb_equal(refsb, sb)) {
652 			printk(KERN_WARNING "md: %s has same UUID"
653 			       " but different superblock to %s\n",
654 			       b, bdevname(refdev->bdev, b2));
655 			goto abort;
656 		}
657 		ev1 = md_event(sb);
658 		ev2 = md_event(refsb);
659 		if (ev1 > ev2)
660 			ret = 1;
661 		else
662 			ret = 0;
663 	}
664 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
665 
666  abort:
667 	return ret;
668 }
669 
670 /*
671  * validate_super for 0.90.0
672  */
673 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
674 {
675 	mdp_disk_t *desc;
676 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
677 
678 	rdev->raid_disk = -1;
679 	rdev->flags = 0;
680 	if (mddev->raid_disks == 0) {
681 		mddev->major_version = 0;
682 		mddev->minor_version = sb->minor_version;
683 		mddev->patch_version = sb->patch_version;
684 		mddev->persistent = ! sb->not_persistent;
685 		mddev->chunk_size = sb->chunk_size;
686 		mddev->ctime = sb->ctime;
687 		mddev->utime = sb->utime;
688 		mddev->level = sb->level;
689 		mddev->layout = sb->layout;
690 		mddev->raid_disks = sb->raid_disks;
691 		mddev->size = sb->size;
692 		mddev->events = md_event(sb);
693 		mddev->bitmap_offset = 0;
694 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
695 
696 		if (sb->state & (1<<MD_SB_CLEAN))
697 			mddev->recovery_cp = MaxSector;
698 		else {
699 			if (sb->events_hi == sb->cp_events_hi &&
700 				sb->events_lo == sb->cp_events_lo) {
701 				mddev->recovery_cp = sb->recovery_cp;
702 			} else
703 				mddev->recovery_cp = 0;
704 		}
705 
706 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
707 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
708 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
709 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
710 
711 		mddev->max_disks = MD_SB_DISKS;
712 
713 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
714 		    mddev->bitmap_file == NULL) {
715 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
716 				/* FIXME use a better test */
717 				printk(KERN_WARNING "md: bitmaps only support for raid1\n");
718 				return -EINVAL;
719 			}
720 			mddev->bitmap_offset = mddev->default_bitmap_offset;
721 		}
722 
723 	} else if (mddev->pers == NULL) {
724 		/* Insist on good event counter while assembling */
725 		__u64 ev1 = md_event(sb);
726 		++ev1;
727 		if (ev1 < mddev->events)
728 			return -EINVAL;
729 	} else if (mddev->bitmap) {
730 		/* if adding to array with a bitmap, then we can accept an
731 		 * older device ... but not too old.
732 		 */
733 		__u64 ev1 = md_event(sb);
734 		if (ev1 < mddev->bitmap->events_cleared)
735 			return 0;
736 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
737 		return 0;
738 
739 	if (mddev->level != LEVEL_MULTIPATH) {
740 		desc = sb->disks + rdev->desc_nr;
741 
742 		if (desc->state & (1<<MD_DISK_FAULTY))
743 			set_bit(Faulty, &rdev->flags);
744 		else if (desc->state & (1<<MD_DISK_SYNC) &&
745 			 desc->raid_disk < mddev->raid_disks) {
746 			set_bit(In_sync, &rdev->flags);
747 			rdev->raid_disk = desc->raid_disk;
748 		}
749 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
750 			set_bit(WriteMostly, &rdev->flags);
751 	} else /* MULTIPATH are always insync */
752 		set_bit(In_sync, &rdev->flags);
753 	return 0;
754 }
755 
756 /*
757  * sync_super for 0.90.0
758  */
759 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
760 {
761 	mdp_super_t *sb;
762 	struct list_head *tmp;
763 	mdk_rdev_t *rdev2;
764 	int next_spare = mddev->raid_disks;
765 	char nm[20];
766 
767 	/* make rdev->sb match mddev data..
768 	 *
769 	 * 1/ zero out disks
770 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
771 	 * 3/ any empty disks < next_spare become removed
772 	 *
773 	 * disks[0] gets initialised to REMOVED because
774 	 * we cannot be sure from other fields if it has
775 	 * been initialised or not.
776 	 */
777 	int i;
778 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
779 	unsigned int fixdesc=0;
780 
781 	rdev->sb_size = MD_SB_BYTES;
782 
783 	sb = (mdp_super_t*)page_address(rdev->sb_page);
784 
785 	memset(sb, 0, sizeof(*sb));
786 
787 	sb->md_magic = MD_SB_MAGIC;
788 	sb->major_version = mddev->major_version;
789 	sb->minor_version = mddev->minor_version;
790 	sb->patch_version = mddev->patch_version;
791 	sb->gvalid_words  = 0; /* ignored */
792 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
793 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
794 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
795 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
796 
797 	sb->ctime = mddev->ctime;
798 	sb->level = mddev->level;
799 	sb->size  = mddev->size;
800 	sb->raid_disks = mddev->raid_disks;
801 	sb->md_minor = mddev->md_minor;
802 	sb->not_persistent = !mddev->persistent;
803 	sb->utime = mddev->utime;
804 	sb->state = 0;
805 	sb->events_hi = (mddev->events>>32);
806 	sb->events_lo = (u32)mddev->events;
807 
808 	if (mddev->in_sync)
809 	{
810 		sb->recovery_cp = mddev->recovery_cp;
811 		sb->cp_events_hi = (mddev->events>>32);
812 		sb->cp_events_lo = (u32)mddev->events;
813 		if (mddev->recovery_cp == MaxSector)
814 			sb->state = (1<< MD_SB_CLEAN);
815 	} else
816 		sb->recovery_cp = 0;
817 
818 	sb->layout = mddev->layout;
819 	sb->chunk_size = mddev->chunk_size;
820 
821 	if (mddev->bitmap && mddev->bitmap_file == NULL)
822 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
823 
824 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
825 	ITERATE_RDEV(mddev,rdev2,tmp) {
826 		mdp_disk_t *d;
827 		int desc_nr;
828 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
829 		    && !test_bit(Faulty, &rdev2->flags))
830 			desc_nr = rdev2->raid_disk;
831 		else
832 			desc_nr = next_spare++;
833 		if (desc_nr != rdev2->desc_nr) {
834 			fixdesc |= (1 << desc_nr);
835 			rdev2->desc_nr = desc_nr;
836 			if (rdev2->raid_disk >= 0) {
837 				sprintf(nm, "rd%d", rdev2->raid_disk);
838 				sysfs_remove_link(&mddev->kobj, nm);
839 			}
840 			sysfs_remove_link(&rdev2->kobj, "block");
841 			kobject_del(&rdev2->kobj);
842 		}
843 		d = &sb->disks[rdev2->desc_nr];
844 		nr_disks++;
845 		d->number = rdev2->desc_nr;
846 		d->major = MAJOR(rdev2->bdev->bd_dev);
847 		d->minor = MINOR(rdev2->bdev->bd_dev);
848 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
849 		    && !test_bit(Faulty, &rdev2->flags))
850 			d->raid_disk = rdev2->raid_disk;
851 		else
852 			d->raid_disk = rdev2->desc_nr; /* compatibility */
853 		if (test_bit(Faulty, &rdev2->flags)) {
854 			d->state = (1<<MD_DISK_FAULTY);
855 			failed++;
856 		} else if (test_bit(In_sync, &rdev2->flags)) {
857 			d->state = (1<<MD_DISK_ACTIVE);
858 			d->state |= (1<<MD_DISK_SYNC);
859 			active++;
860 			working++;
861 		} else {
862 			d->state = 0;
863 			spare++;
864 			working++;
865 		}
866 		if (test_bit(WriteMostly, &rdev2->flags))
867 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
868 	}
869 	if (fixdesc)
870 		ITERATE_RDEV(mddev,rdev2,tmp)
871 			if (fixdesc & (1<<rdev2->desc_nr)) {
872 				snprintf(rdev2->kobj.name, KOBJ_NAME_LEN, "dev%d",
873 					 rdev2->desc_nr);
874 				/* kobject_add gets a ref on the parent, so
875 				 * we have to drop the one we already have
876 				 */
877 				kobject_add(&rdev2->kobj);
878 				kobject_put(rdev->kobj.parent);
879 				sysfs_create_link(&rdev2->kobj,
880 						  &rdev2->bdev->bd_disk->kobj,
881 						  "block");
882 				if (rdev2->raid_disk >= 0) {
883 					sprintf(nm, "rd%d", rdev2->raid_disk);
884 					sysfs_create_link(&mddev->kobj,
885 							  &rdev2->kobj, nm);
886 				}
887 			}
888 	/* now set the "removed" and "faulty" bits on any missing devices */
889 	for (i=0 ; i < mddev->raid_disks ; i++) {
890 		mdp_disk_t *d = &sb->disks[i];
891 		if (d->state == 0 && d->number == 0) {
892 			d->number = i;
893 			d->raid_disk = i;
894 			d->state = (1<<MD_DISK_REMOVED);
895 			d->state |= (1<<MD_DISK_FAULTY);
896 			failed++;
897 		}
898 	}
899 	sb->nr_disks = nr_disks;
900 	sb->active_disks = active;
901 	sb->working_disks = working;
902 	sb->failed_disks = failed;
903 	sb->spare_disks = spare;
904 
905 	sb->this_disk = sb->disks[rdev->desc_nr];
906 	sb->sb_csum = calc_sb_csum(sb);
907 }
908 
909 /*
910  * version 1 superblock
911  */
912 
913 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
914 {
915 	unsigned int disk_csum, csum;
916 	unsigned long long newcsum;
917 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
918 	unsigned int *isuper = (unsigned int*)sb;
919 	int i;
920 
921 	disk_csum = sb->sb_csum;
922 	sb->sb_csum = 0;
923 	newcsum = 0;
924 	for (i=0; size>=4; size -= 4 )
925 		newcsum += le32_to_cpu(*isuper++);
926 
927 	if (size == 2)
928 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
929 
930 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
931 	sb->sb_csum = disk_csum;
932 	return cpu_to_le32(csum);
933 }
934 
935 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
936 {
937 	struct mdp_superblock_1 *sb;
938 	int ret;
939 	sector_t sb_offset;
940 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
941 	int bmask;
942 
943 	/*
944 	 * Calculate the position of the superblock.
945 	 * It is always aligned to a 4K boundary and
946 	 * depeding on minor_version, it can be:
947 	 * 0: At least 8K, but less than 12K, from end of device
948 	 * 1: At start of device
949 	 * 2: 4K from start of device.
950 	 */
951 	switch(minor_version) {
952 	case 0:
953 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
954 		sb_offset -= 8*2;
955 		sb_offset &= ~(sector_t)(4*2-1);
956 		/* convert from sectors to K */
957 		sb_offset /= 2;
958 		break;
959 	case 1:
960 		sb_offset = 0;
961 		break;
962 	case 2:
963 		sb_offset = 4;
964 		break;
965 	default:
966 		return -EINVAL;
967 	}
968 	rdev->sb_offset = sb_offset;
969 
970 	/* superblock is rarely larger than 1K, but it can be larger,
971 	 * and it is safe to read 4k, so we do that
972 	 */
973 	ret = read_disk_sb(rdev, 4096);
974 	if (ret) return ret;
975 
976 
977 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
978 
979 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
980 	    sb->major_version != cpu_to_le32(1) ||
981 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
982 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
983 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
984 		return -EINVAL;
985 
986 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
987 		printk("md: invalid superblock checksum on %s\n",
988 			bdevname(rdev->bdev,b));
989 		return -EINVAL;
990 	}
991 	if (le64_to_cpu(sb->data_size) < 10) {
992 		printk("md: data_size too small on %s\n",
993 		       bdevname(rdev->bdev,b));
994 		return -EINVAL;
995 	}
996 	rdev->preferred_minor = 0xffff;
997 	rdev->data_offset = le64_to_cpu(sb->data_offset);
998 
999 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1000 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1001 	if (rdev->sb_size & bmask)
1002 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1003 
1004 	if (refdev == 0)
1005 		return 1;
1006 	else {
1007 		__u64 ev1, ev2;
1008 		struct mdp_superblock_1 *refsb =
1009 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1010 
1011 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1012 		    sb->level != refsb->level ||
1013 		    sb->layout != refsb->layout ||
1014 		    sb->chunksize != refsb->chunksize) {
1015 			printk(KERN_WARNING "md: %s has strangely different"
1016 				" superblock to %s\n",
1017 				bdevname(rdev->bdev,b),
1018 				bdevname(refdev->bdev,b2));
1019 			return -EINVAL;
1020 		}
1021 		ev1 = le64_to_cpu(sb->events);
1022 		ev2 = le64_to_cpu(refsb->events);
1023 
1024 		if (ev1 > ev2)
1025 			return 1;
1026 	}
1027 	if (minor_version)
1028 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1029 	else
1030 		rdev->size = rdev->sb_offset;
1031 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1032 		return -EINVAL;
1033 	rdev->size = le64_to_cpu(sb->data_size)/2;
1034 	if (le32_to_cpu(sb->chunksize))
1035 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1036 	return 0;
1037 }
1038 
1039 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1040 {
1041 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1042 
1043 	rdev->raid_disk = -1;
1044 	rdev->flags = 0;
1045 	if (mddev->raid_disks == 0) {
1046 		mddev->major_version = 1;
1047 		mddev->patch_version = 0;
1048 		mddev->persistent = 1;
1049 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1050 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1051 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1052 		mddev->level = le32_to_cpu(sb->level);
1053 		mddev->layout = le32_to_cpu(sb->layout);
1054 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1055 		mddev->size = le64_to_cpu(sb->size)/2;
1056 		mddev->events = le64_to_cpu(sb->events);
1057 		mddev->bitmap_offset = 0;
1058 		mddev->default_bitmap_offset = 0;
1059 		mddev->default_bitmap_offset = 1024;
1060 
1061 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1062 		memcpy(mddev->uuid, sb->set_uuid, 16);
1063 
1064 		mddev->max_disks =  (4096-256)/2;
1065 
1066 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1067 		    mddev->bitmap_file == NULL ) {
1068 			if (mddev->level != 1) {
1069 				printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
1070 				return -EINVAL;
1071 			}
1072 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1073 		}
1074 	} else if (mddev->pers == NULL) {
1075 		/* Insist of good event counter while assembling */
1076 		__u64 ev1 = le64_to_cpu(sb->events);
1077 		++ev1;
1078 		if (ev1 < mddev->events)
1079 			return -EINVAL;
1080 	} else if (mddev->bitmap) {
1081 		/* If adding to array with a bitmap, then we can accept an
1082 		 * older device, but not too old.
1083 		 */
1084 		__u64 ev1 = le64_to_cpu(sb->events);
1085 		if (ev1 < mddev->bitmap->events_cleared)
1086 			return 0;
1087 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1088 		return 0;
1089 
1090 	if (mddev->level != LEVEL_MULTIPATH) {
1091 		int role;
1092 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1093 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1094 		switch(role) {
1095 		case 0xffff: /* spare */
1096 			break;
1097 		case 0xfffe: /* faulty */
1098 			set_bit(Faulty, &rdev->flags);
1099 			break;
1100 		default:
1101 			set_bit(In_sync, &rdev->flags);
1102 			rdev->raid_disk = role;
1103 			break;
1104 		}
1105 		if (sb->devflags & WriteMostly1)
1106 			set_bit(WriteMostly, &rdev->flags);
1107 	} else /* MULTIPATH are always insync */
1108 		set_bit(In_sync, &rdev->flags);
1109 
1110 	return 0;
1111 }
1112 
1113 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1114 {
1115 	struct mdp_superblock_1 *sb;
1116 	struct list_head *tmp;
1117 	mdk_rdev_t *rdev2;
1118 	int max_dev, i;
1119 	/* make rdev->sb match mddev and rdev data. */
1120 
1121 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1122 
1123 	sb->feature_map = 0;
1124 	sb->pad0 = 0;
1125 	memset(sb->pad1, 0, sizeof(sb->pad1));
1126 	memset(sb->pad2, 0, sizeof(sb->pad2));
1127 	memset(sb->pad3, 0, sizeof(sb->pad3));
1128 
1129 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1130 	sb->events = cpu_to_le64(mddev->events);
1131 	if (mddev->in_sync)
1132 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1133 	else
1134 		sb->resync_offset = cpu_to_le64(0);
1135 
1136 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1137 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1138 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1139 	}
1140 
1141 	max_dev = 0;
1142 	ITERATE_RDEV(mddev,rdev2,tmp)
1143 		if (rdev2->desc_nr+1 > max_dev)
1144 			max_dev = rdev2->desc_nr+1;
1145 
1146 	sb->max_dev = cpu_to_le32(max_dev);
1147 	for (i=0; i<max_dev;i++)
1148 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1149 
1150 	ITERATE_RDEV(mddev,rdev2,tmp) {
1151 		i = rdev2->desc_nr;
1152 		if (test_bit(Faulty, &rdev2->flags))
1153 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1154 		else if (test_bit(In_sync, &rdev2->flags))
1155 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1156 		else
1157 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1158 	}
1159 
1160 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1161 	sb->sb_csum = calc_sb_1_csum(sb);
1162 }
1163 
1164 
1165 static struct super_type super_types[] = {
1166 	[0] = {
1167 		.name	= "0.90.0",
1168 		.owner	= THIS_MODULE,
1169 		.load_super	= super_90_load,
1170 		.validate_super	= super_90_validate,
1171 		.sync_super	= super_90_sync,
1172 	},
1173 	[1] = {
1174 		.name	= "md-1",
1175 		.owner	= THIS_MODULE,
1176 		.load_super	= super_1_load,
1177 		.validate_super	= super_1_validate,
1178 		.sync_super	= super_1_sync,
1179 	},
1180 };
1181 
1182 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1183 {
1184 	struct list_head *tmp;
1185 	mdk_rdev_t *rdev;
1186 
1187 	ITERATE_RDEV(mddev,rdev,tmp)
1188 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1189 			return rdev;
1190 
1191 	return NULL;
1192 }
1193 
1194 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1195 {
1196 	struct list_head *tmp;
1197 	mdk_rdev_t *rdev;
1198 
1199 	ITERATE_RDEV(mddev1,rdev,tmp)
1200 		if (match_dev_unit(mddev2, rdev))
1201 			return 1;
1202 
1203 	return 0;
1204 }
1205 
1206 static LIST_HEAD(pending_raid_disks);
1207 
1208 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1209 {
1210 	mdk_rdev_t *same_pdev;
1211 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1212 
1213 	if (rdev->mddev) {
1214 		MD_BUG();
1215 		return -EINVAL;
1216 	}
1217 	same_pdev = match_dev_unit(mddev, rdev);
1218 	if (same_pdev)
1219 		printk(KERN_WARNING
1220 			"%s: WARNING: %s appears to be on the same physical"
1221 	 		" disk as %s. True\n     protection against single-disk"
1222 			" failure might be compromised.\n",
1223 			mdname(mddev), bdevname(rdev->bdev,b),
1224 			bdevname(same_pdev->bdev,b2));
1225 
1226 	/* Verify rdev->desc_nr is unique.
1227 	 * If it is -1, assign a free number, else
1228 	 * check number is not in use
1229 	 */
1230 	if (rdev->desc_nr < 0) {
1231 		int choice = 0;
1232 		if (mddev->pers) choice = mddev->raid_disks;
1233 		while (find_rdev_nr(mddev, choice))
1234 			choice++;
1235 		rdev->desc_nr = choice;
1236 	} else {
1237 		if (find_rdev_nr(mddev, rdev->desc_nr))
1238 			return -EBUSY;
1239 	}
1240 
1241 	list_add(&rdev->same_set, &mddev->disks);
1242 	rdev->mddev = mddev;
1243 	printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1244 
1245 	rdev->kobj.k_name = NULL;
1246 	snprintf(rdev->kobj.name, KOBJ_NAME_LEN, "dev%d", rdev->desc_nr);
1247 	rdev->kobj.parent = &mddev->kobj;
1248 	kobject_add(&rdev->kobj);
1249 
1250 	sysfs_create_link(&rdev->kobj, &rdev->bdev->bd_disk->kobj, "block");
1251 	return 0;
1252 }
1253 
1254 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1255 {
1256 	char b[BDEVNAME_SIZE];
1257 	if (!rdev->mddev) {
1258 		MD_BUG();
1259 		return;
1260 	}
1261 	list_del_init(&rdev->same_set);
1262 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1263 	rdev->mddev = NULL;
1264 	sysfs_remove_link(&rdev->kobj, "block");
1265 	kobject_del(&rdev->kobj);
1266 }
1267 
1268 /*
1269  * prevent the device from being mounted, repartitioned or
1270  * otherwise reused by a RAID array (or any other kernel
1271  * subsystem), by bd_claiming the device.
1272  */
1273 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1274 {
1275 	int err = 0;
1276 	struct block_device *bdev;
1277 	char b[BDEVNAME_SIZE];
1278 
1279 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1280 	if (IS_ERR(bdev)) {
1281 		printk(KERN_ERR "md: could not open %s.\n",
1282 			__bdevname(dev, b));
1283 		return PTR_ERR(bdev);
1284 	}
1285 	err = bd_claim(bdev, rdev);
1286 	if (err) {
1287 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1288 			bdevname(bdev, b));
1289 		blkdev_put(bdev);
1290 		return err;
1291 	}
1292 	rdev->bdev = bdev;
1293 	return err;
1294 }
1295 
1296 static void unlock_rdev(mdk_rdev_t *rdev)
1297 {
1298 	struct block_device *bdev = rdev->bdev;
1299 	rdev->bdev = NULL;
1300 	if (!bdev)
1301 		MD_BUG();
1302 	bd_release(bdev);
1303 	blkdev_put(bdev);
1304 }
1305 
1306 void md_autodetect_dev(dev_t dev);
1307 
1308 static void export_rdev(mdk_rdev_t * rdev)
1309 {
1310 	char b[BDEVNAME_SIZE];
1311 	printk(KERN_INFO "md: export_rdev(%s)\n",
1312 		bdevname(rdev->bdev,b));
1313 	if (rdev->mddev)
1314 		MD_BUG();
1315 	free_disk_sb(rdev);
1316 	list_del_init(&rdev->same_set);
1317 #ifndef MODULE
1318 	md_autodetect_dev(rdev->bdev->bd_dev);
1319 #endif
1320 	unlock_rdev(rdev);
1321 	kobject_put(&rdev->kobj);
1322 }
1323 
1324 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1325 {
1326 	unbind_rdev_from_array(rdev);
1327 	export_rdev(rdev);
1328 }
1329 
1330 static void export_array(mddev_t *mddev)
1331 {
1332 	struct list_head *tmp;
1333 	mdk_rdev_t *rdev;
1334 
1335 	ITERATE_RDEV(mddev,rdev,tmp) {
1336 		if (!rdev->mddev) {
1337 			MD_BUG();
1338 			continue;
1339 		}
1340 		kick_rdev_from_array(rdev);
1341 	}
1342 	if (!list_empty(&mddev->disks))
1343 		MD_BUG();
1344 	mddev->raid_disks = 0;
1345 	mddev->major_version = 0;
1346 }
1347 
1348 static void print_desc(mdp_disk_t *desc)
1349 {
1350 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1351 		desc->major,desc->minor,desc->raid_disk,desc->state);
1352 }
1353 
1354 static void print_sb(mdp_super_t *sb)
1355 {
1356 	int i;
1357 
1358 	printk(KERN_INFO
1359 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1360 		sb->major_version, sb->minor_version, sb->patch_version,
1361 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1362 		sb->ctime);
1363 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1364 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1365 		sb->md_minor, sb->layout, sb->chunk_size);
1366 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1367 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1368 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1369 		sb->failed_disks, sb->spare_disks,
1370 		sb->sb_csum, (unsigned long)sb->events_lo);
1371 
1372 	printk(KERN_INFO);
1373 	for (i = 0; i < MD_SB_DISKS; i++) {
1374 		mdp_disk_t *desc;
1375 
1376 		desc = sb->disks + i;
1377 		if (desc->number || desc->major || desc->minor ||
1378 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1379 			printk("     D %2d: ", i);
1380 			print_desc(desc);
1381 		}
1382 	}
1383 	printk(KERN_INFO "md:     THIS: ");
1384 	print_desc(&sb->this_disk);
1385 
1386 }
1387 
1388 static void print_rdev(mdk_rdev_t *rdev)
1389 {
1390 	char b[BDEVNAME_SIZE];
1391 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1392 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1393 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1394 	        rdev->desc_nr);
1395 	if (rdev->sb_loaded) {
1396 		printk(KERN_INFO "md: rdev superblock:\n");
1397 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1398 	} else
1399 		printk(KERN_INFO "md: no rdev superblock!\n");
1400 }
1401 
1402 void md_print_devices(void)
1403 {
1404 	struct list_head *tmp, *tmp2;
1405 	mdk_rdev_t *rdev;
1406 	mddev_t *mddev;
1407 	char b[BDEVNAME_SIZE];
1408 
1409 	printk("\n");
1410 	printk("md:	**********************************\n");
1411 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1412 	printk("md:	**********************************\n");
1413 	ITERATE_MDDEV(mddev,tmp) {
1414 
1415 		if (mddev->bitmap)
1416 			bitmap_print_sb(mddev->bitmap);
1417 		else
1418 			printk("%s: ", mdname(mddev));
1419 		ITERATE_RDEV(mddev,rdev,tmp2)
1420 			printk("<%s>", bdevname(rdev->bdev,b));
1421 		printk("\n");
1422 
1423 		ITERATE_RDEV(mddev,rdev,tmp2)
1424 			print_rdev(rdev);
1425 	}
1426 	printk("md:	**********************************\n");
1427 	printk("\n");
1428 }
1429 
1430 
1431 static void sync_sbs(mddev_t * mddev)
1432 {
1433 	mdk_rdev_t *rdev;
1434 	struct list_head *tmp;
1435 
1436 	ITERATE_RDEV(mddev,rdev,tmp) {
1437 		super_types[mddev->major_version].
1438 			sync_super(mddev, rdev);
1439 		rdev->sb_loaded = 1;
1440 	}
1441 }
1442 
1443 static void md_update_sb(mddev_t * mddev)
1444 {
1445 	int err;
1446 	struct list_head *tmp;
1447 	mdk_rdev_t *rdev;
1448 	int sync_req;
1449 
1450 repeat:
1451 	spin_lock_irq(&mddev->write_lock);
1452 	sync_req = mddev->in_sync;
1453 	mddev->utime = get_seconds();
1454 	mddev->events ++;
1455 
1456 	if (!mddev->events) {
1457 		/*
1458 		 * oops, this 64-bit counter should never wrap.
1459 		 * Either we are in around ~1 trillion A.C., assuming
1460 		 * 1 reboot per second, or we have a bug:
1461 		 */
1462 		MD_BUG();
1463 		mddev->events --;
1464 	}
1465 	mddev->sb_dirty = 2;
1466 	sync_sbs(mddev);
1467 
1468 	/*
1469 	 * do not write anything to disk if using
1470 	 * nonpersistent superblocks
1471 	 */
1472 	if (!mddev->persistent) {
1473 		mddev->sb_dirty = 0;
1474 		spin_unlock_irq(&mddev->write_lock);
1475 		wake_up(&mddev->sb_wait);
1476 		return;
1477 	}
1478 	spin_unlock_irq(&mddev->write_lock);
1479 
1480 	dprintk(KERN_INFO
1481 		"md: updating %s RAID superblock on device (in sync %d)\n",
1482 		mdname(mddev),mddev->in_sync);
1483 
1484 	err = bitmap_update_sb(mddev->bitmap);
1485 	ITERATE_RDEV(mddev,rdev,tmp) {
1486 		char b[BDEVNAME_SIZE];
1487 		dprintk(KERN_INFO "md: ");
1488 		if (test_bit(Faulty, &rdev->flags))
1489 			dprintk("(skipping faulty ");
1490 
1491 		dprintk("%s ", bdevname(rdev->bdev,b));
1492 		if (!test_bit(Faulty, &rdev->flags)) {
1493 			md_super_write(mddev,rdev,
1494 				       rdev->sb_offset<<1, rdev->sb_size,
1495 				       rdev->sb_page);
1496 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1497 				bdevname(rdev->bdev,b),
1498 				(unsigned long long)rdev->sb_offset);
1499 
1500 		} else
1501 			dprintk(")\n");
1502 		if (mddev->level == LEVEL_MULTIPATH)
1503 			/* only need to write one superblock... */
1504 			break;
1505 	}
1506 	md_super_wait(mddev);
1507 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1508 
1509 	spin_lock_irq(&mddev->write_lock);
1510 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1511 		/* have to write it out again */
1512 		spin_unlock_irq(&mddev->write_lock);
1513 		goto repeat;
1514 	}
1515 	mddev->sb_dirty = 0;
1516 	spin_unlock_irq(&mddev->write_lock);
1517 	wake_up(&mddev->sb_wait);
1518 
1519 }
1520 
1521 struct rdev_sysfs_entry {
1522 	struct attribute attr;
1523 	ssize_t (*show)(mdk_rdev_t *, char *);
1524 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1525 };
1526 
1527 static ssize_t
1528 rdev_show_state(mdk_rdev_t *rdev, char *page)
1529 {
1530 	char *sep = "";
1531 	int len=0;
1532 
1533 	if (test_bit(Faulty, &rdev->flags)) {
1534 		len+= sprintf(page+len, "%sfaulty",sep);
1535 		sep = ",";
1536 	}
1537 	if (test_bit(In_sync, &rdev->flags)) {
1538 		len += sprintf(page+len, "%sin_sync",sep);
1539 		sep = ",";
1540 	}
1541 	if (!test_bit(Faulty, &rdev->flags) &&
1542 	    !test_bit(In_sync, &rdev->flags)) {
1543 		len += sprintf(page+len, "%sspare", sep);
1544 		sep = ",";
1545 	}
1546 	return len+sprintf(page+len, "\n");
1547 }
1548 
1549 static struct rdev_sysfs_entry rdev_state = {
1550 	.attr = {.name = "state", .mode = S_IRUGO },
1551 	.show = rdev_show_state,
1552 };
1553 
1554 static ssize_t
1555 rdev_show_super(mdk_rdev_t *rdev, char *page)
1556 {
1557 	if (rdev->sb_loaded && rdev->sb_size) {
1558 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1559 		return rdev->sb_size;
1560 	} else
1561 		return 0;
1562 }
1563 static struct rdev_sysfs_entry rdev_super = {
1564 	.attr = {.name = "super", .mode = S_IRUGO },
1565 	.show = rdev_show_super,
1566 };
1567 static struct attribute *rdev_default_attrs[] = {
1568 	&rdev_state.attr,
1569 	&rdev_super.attr,
1570 	NULL,
1571 };
1572 static ssize_t
1573 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1574 {
1575 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1576 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1577 
1578 	if (!entry->show)
1579 		return -EIO;
1580 	return entry->show(rdev, page);
1581 }
1582 
1583 static ssize_t
1584 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1585 	      const char *page, size_t length)
1586 {
1587 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1588 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1589 
1590 	if (!entry->store)
1591 		return -EIO;
1592 	return entry->store(rdev, page, length);
1593 }
1594 
1595 static void rdev_free(struct kobject *ko)
1596 {
1597 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1598 	kfree(rdev);
1599 }
1600 static struct sysfs_ops rdev_sysfs_ops = {
1601 	.show		= rdev_attr_show,
1602 	.store		= rdev_attr_store,
1603 };
1604 static struct kobj_type rdev_ktype = {
1605 	.release	= rdev_free,
1606 	.sysfs_ops	= &rdev_sysfs_ops,
1607 	.default_attrs	= rdev_default_attrs,
1608 };
1609 
1610 /*
1611  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1612  *
1613  * mark the device faulty if:
1614  *
1615  *   - the device is nonexistent (zero size)
1616  *   - the device has no valid superblock
1617  *
1618  * a faulty rdev _never_ has rdev->sb set.
1619  */
1620 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1621 {
1622 	char b[BDEVNAME_SIZE];
1623 	int err;
1624 	mdk_rdev_t *rdev;
1625 	sector_t size;
1626 
1627 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1628 	if (!rdev) {
1629 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1630 		return ERR_PTR(-ENOMEM);
1631 	}
1632 	memset(rdev, 0, sizeof(*rdev));
1633 
1634 	if ((err = alloc_disk_sb(rdev)))
1635 		goto abort_free;
1636 
1637 	err = lock_rdev(rdev, newdev);
1638 	if (err)
1639 		goto abort_free;
1640 
1641 	rdev->kobj.parent = NULL;
1642 	rdev->kobj.ktype = &rdev_ktype;
1643 	kobject_init(&rdev->kobj);
1644 
1645 	rdev->desc_nr = -1;
1646 	rdev->flags = 0;
1647 	rdev->data_offset = 0;
1648 	atomic_set(&rdev->nr_pending, 0);
1649 	atomic_set(&rdev->read_errors, 0);
1650 
1651 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1652 	if (!size) {
1653 		printk(KERN_WARNING
1654 			"md: %s has zero or unknown size, marking faulty!\n",
1655 			bdevname(rdev->bdev,b));
1656 		err = -EINVAL;
1657 		goto abort_free;
1658 	}
1659 
1660 	if (super_format >= 0) {
1661 		err = super_types[super_format].
1662 			load_super(rdev, NULL, super_minor);
1663 		if (err == -EINVAL) {
1664 			printk(KERN_WARNING
1665 				"md: %s has invalid sb, not importing!\n",
1666 				bdevname(rdev->bdev,b));
1667 			goto abort_free;
1668 		}
1669 		if (err < 0) {
1670 			printk(KERN_WARNING
1671 				"md: could not read %s's sb, not importing!\n",
1672 				bdevname(rdev->bdev,b));
1673 			goto abort_free;
1674 		}
1675 	}
1676 	INIT_LIST_HEAD(&rdev->same_set);
1677 
1678 	return rdev;
1679 
1680 abort_free:
1681 	if (rdev->sb_page) {
1682 		if (rdev->bdev)
1683 			unlock_rdev(rdev);
1684 		free_disk_sb(rdev);
1685 	}
1686 	kfree(rdev);
1687 	return ERR_PTR(err);
1688 }
1689 
1690 /*
1691  * Check a full RAID array for plausibility
1692  */
1693 
1694 
1695 static void analyze_sbs(mddev_t * mddev)
1696 {
1697 	int i;
1698 	struct list_head *tmp;
1699 	mdk_rdev_t *rdev, *freshest;
1700 	char b[BDEVNAME_SIZE];
1701 
1702 	freshest = NULL;
1703 	ITERATE_RDEV(mddev,rdev,tmp)
1704 		switch (super_types[mddev->major_version].
1705 			load_super(rdev, freshest, mddev->minor_version)) {
1706 		case 1:
1707 			freshest = rdev;
1708 			break;
1709 		case 0:
1710 			break;
1711 		default:
1712 			printk( KERN_ERR \
1713 				"md: fatal superblock inconsistency in %s"
1714 				" -- removing from array\n",
1715 				bdevname(rdev->bdev,b));
1716 			kick_rdev_from_array(rdev);
1717 		}
1718 
1719 
1720 	super_types[mddev->major_version].
1721 		validate_super(mddev, freshest);
1722 
1723 	i = 0;
1724 	ITERATE_RDEV(mddev,rdev,tmp) {
1725 		if (rdev != freshest)
1726 			if (super_types[mddev->major_version].
1727 			    validate_super(mddev, rdev)) {
1728 				printk(KERN_WARNING "md: kicking non-fresh %s"
1729 					" from array!\n",
1730 					bdevname(rdev->bdev,b));
1731 				kick_rdev_from_array(rdev);
1732 				continue;
1733 			}
1734 		if (mddev->level == LEVEL_MULTIPATH) {
1735 			rdev->desc_nr = i++;
1736 			rdev->raid_disk = rdev->desc_nr;
1737 			set_bit(In_sync, &rdev->flags);
1738 		}
1739 	}
1740 
1741 
1742 
1743 	if (mddev->recovery_cp != MaxSector &&
1744 	    mddev->level >= 1)
1745 		printk(KERN_ERR "md: %s: raid array is not clean"
1746 		       " -- starting background reconstruction\n",
1747 		       mdname(mddev));
1748 
1749 }
1750 
1751 static ssize_t
1752 md_show_level(mddev_t *mddev, char *page)
1753 {
1754 	mdk_personality_t *p = mddev->pers;
1755 	if (p == NULL)
1756 		return 0;
1757 	if (mddev->level >= 0)
1758 		return sprintf(page, "RAID-%d\n", mddev->level);
1759 	else
1760 		return sprintf(page, "%s\n", p->name);
1761 }
1762 
1763 static struct md_sysfs_entry md_level = {
1764 	.attr = {.name = "level", .mode = S_IRUGO },
1765 	.show = md_show_level,
1766 };
1767 
1768 static ssize_t
1769 md_show_rdisks(mddev_t *mddev, char *page)
1770 {
1771 	return sprintf(page, "%d\n", mddev->raid_disks);
1772 }
1773 
1774 static struct md_sysfs_entry md_raid_disks = {
1775 	.attr = {.name = "raid_disks", .mode = S_IRUGO },
1776 	.show = md_show_rdisks,
1777 };
1778 
1779 static ssize_t
1780 md_show_scan(mddev_t *mddev, char *page)
1781 {
1782 	char *type = "none";
1783 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1784 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1785 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1786 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1787 				type = "resync";
1788 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1789 				type = "check";
1790 			else
1791 				type = "repair";
1792 		} else
1793 			type = "recover";
1794 	}
1795 	return sprintf(page, "%s\n", type);
1796 }
1797 
1798 static ssize_t
1799 md_store_scan(mddev_t *mddev, const char *page, size_t len)
1800 {
1801 	int canscan=0;
1802 
1803 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1804 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1805 		return -EBUSY;
1806 	down(&mddev->reconfig_sem);
1807 	if (mddev->pers && mddev->pers->sync_request)
1808 		canscan=1;
1809 	up(&mddev->reconfig_sem);
1810 	if (!canscan)
1811 		return -EINVAL;
1812 
1813 	if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
1814 		set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1815 	else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
1816 		return -EINVAL;
1817 	set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1818 	set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1819 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1820 	md_wakeup_thread(mddev->thread);
1821 	return len;
1822 }
1823 
1824 static ssize_t
1825 md_show_mismatch(mddev_t *mddev, char *page)
1826 {
1827 	return sprintf(page, "%llu\n",
1828 		       (unsigned long long) mddev->resync_mismatches);
1829 }
1830 
1831 static struct md_sysfs_entry md_scan_mode = {
1832 	.attr = {.name = "scan_mode", .mode = S_IRUGO|S_IWUSR },
1833 	.show = md_show_scan,
1834 	.store = md_store_scan,
1835 };
1836 
1837 static struct md_sysfs_entry md_mismatches = {
1838 	.attr = {.name = "mismatch_cnt", .mode = S_IRUGO },
1839 	.show = md_show_mismatch,
1840 };
1841 
1842 static struct attribute *md_default_attrs[] = {
1843 	&md_level.attr,
1844 	&md_raid_disks.attr,
1845 	&md_scan_mode.attr,
1846 	&md_mismatches.attr,
1847 	NULL,
1848 };
1849 
1850 static ssize_t
1851 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1852 {
1853 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1854 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1855 
1856 	if (!entry->show)
1857 		return -EIO;
1858 	return entry->show(mddev, page);
1859 }
1860 
1861 static ssize_t
1862 md_attr_store(struct kobject *kobj, struct attribute *attr,
1863 	      const char *page, size_t length)
1864 {
1865 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1866 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1867 
1868 	if (!entry->store)
1869 		return -EIO;
1870 	return entry->store(mddev, page, length);
1871 }
1872 
1873 static void md_free(struct kobject *ko)
1874 {
1875 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
1876 	kfree(mddev);
1877 }
1878 
1879 static struct sysfs_ops md_sysfs_ops = {
1880 	.show	= md_attr_show,
1881 	.store	= md_attr_store,
1882 };
1883 static struct kobj_type md_ktype = {
1884 	.release	= md_free,
1885 	.sysfs_ops	= &md_sysfs_ops,
1886 	.default_attrs	= md_default_attrs,
1887 };
1888 
1889 int mdp_major = 0;
1890 
1891 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1892 {
1893 	static DECLARE_MUTEX(disks_sem);
1894 	mddev_t *mddev = mddev_find(dev);
1895 	struct gendisk *disk;
1896 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1897 	int shift = partitioned ? MdpMinorShift : 0;
1898 	int unit = MINOR(dev) >> shift;
1899 
1900 	if (!mddev)
1901 		return NULL;
1902 
1903 	down(&disks_sem);
1904 	if (mddev->gendisk) {
1905 		up(&disks_sem);
1906 		mddev_put(mddev);
1907 		return NULL;
1908 	}
1909 	disk = alloc_disk(1 << shift);
1910 	if (!disk) {
1911 		up(&disks_sem);
1912 		mddev_put(mddev);
1913 		return NULL;
1914 	}
1915 	disk->major = MAJOR(dev);
1916 	disk->first_minor = unit << shift;
1917 	if (partitioned) {
1918 		sprintf(disk->disk_name, "md_d%d", unit);
1919 		sprintf(disk->devfs_name, "md/d%d", unit);
1920 	} else {
1921 		sprintf(disk->disk_name, "md%d", unit);
1922 		sprintf(disk->devfs_name, "md/%d", unit);
1923 	}
1924 	disk->fops = &md_fops;
1925 	disk->private_data = mddev;
1926 	disk->queue = mddev->queue;
1927 	add_disk(disk);
1928 	mddev->gendisk = disk;
1929 	up(&disks_sem);
1930 	mddev->kobj.parent = &disk->kobj;
1931 	mddev->kobj.k_name = NULL;
1932 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1933 	mddev->kobj.ktype = &md_ktype;
1934 	kobject_register(&mddev->kobj);
1935 	return NULL;
1936 }
1937 
1938 void md_wakeup_thread(mdk_thread_t *thread);
1939 
1940 static void md_safemode_timeout(unsigned long data)
1941 {
1942 	mddev_t *mddev = (mddev_t *) data;
1943 
1944 	mddev->safemode = 1;
1945 	md_wakeup_thread(mddev->thread);
1946 }
1947 
1948 
1949 static int do_md_run(mddev_t * mddev)
1950 {
1951 	int pnum, err;
1952 	int chunk_size;
1953 	struct list_head *tmp;
1954 	mdk_rdev_t *rdev;
1955 	struct gendisk *disk;
1956 	char b[BDEVNAME_SIZE];
1957 
1958 	if (list_empty(&mddev->disks))
1959 		/* cannot run an array with no devices.. */
1960 		return -EINVAL;
1961 
1962 	if (mddev->pers)
1963 		return -EBUSY;
1964 
1965 	/*
1966 	 * Analyze all RAID superblock(s)
1967 	 */
1968 	if (!mddev->raid_disks)
1969 		analyze_sbs(mddev);
1970 
1971 	chunk_size = mddev->chunk_size;
1972 	pnum = level_to_pers(mddev->level);
1973 
1974 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1975 		if (!chunk_size) {
1976 			/*
1977 			 * 'default chunksize' in the old md code used to
1978 			 * be PAGE_SIZE, baaad.
1979 			 * we abort here to be on the safe side. We don't
1980 			 * want to continue the bad practice.
1981 			 */
1982 			printk(KERN_ERR
1983 				"no chunksize specified, see 'man raidtab'\n");
1984 			return -EINVAL;
1985 		}
1986 		if (chunk_size > MAX_CHUNK_SIZE) {
1987 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1988 				chunk_size, MAX_CHUNK_SIZE);
1989 			return -EINVAL;
1990 		}
1991 		/*
1992 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1993 		 */
1994 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1995 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1996 			return -EINVAL;
1997 		}
1998 		if (chunk_size < PAGE_SIZE) {
1999 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2000 				chunk_size, PAGE_SIZE);
2001 			return -EINVAL;
2002 		}
2003 
2004 		/* devices must have minimum size of one chunk */
2005 		ITERATE_RDEV(mddev,rdev,tmp) {
2006 			if (test_bit(Faulty, &rdev->flags))
2007 				continue;
2008 			if (rdev->size < chunk_size / 1024) {
2009 				printk(KERN_WARNING
2010 					"md: Dev %s smaller than chunk_size:"
2011 					" %lluk < %dk\n",
2012 					bdevname(rdev->bdev,b),
2013 					(unsigned long long)rdev->size,
2014 					chunk_size / 1024);
2015 				return -EINVAL;
2016 			}
2017 		}
2018 	}
2019 
2020 #ifdef CONFIG_KMOD
2021 	if (!pers[pnum])
2022 	{
2023 		request_module("md-personality-%d", pnum);
2024 	}
2025 #endif
2026 
2027 	/*
2028 	 * Drop all container device buffers, from now on
2029 	 * the only valid external interface is through the md
2030 	 * device.
2031 	 * Also find largest hardsector size
2032 	 */
2033 	ITERATE_RDEV(mddev,rdev,tmp) {
2034 		if (test_bit(Faulty, &rdev->flags))
2035 			continue;
2036 		sync_blockdev(rdev->bdev);
2037 		invalidate_bdev(rdev->bdev, 0);
2038 	}
2039 
2040 	md_probe(mddev->unit, NULL, NULL);
2041 	disk = mddev->gendisk;
2042 	if (!disk)
2043 		return -ENOMEM;
2044 
2045 	spin_lock(&pers_lock);
2046 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
2047 		spin_unlock(&pers_lock);
2048 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
2049 		       pnum);
2050 		return -EINVAL;
2051 	}
2052 
2053 	mddev->pers = pers[pnum];
2054 	spin_unlock(&pers_lock);
2055 
2056 	mddev->recovery = 0;
2057 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2058 	mddev->barriers_work = 1;
2059 
2060 	/* before we start the array running, initialise the bitmap */
2061 	err = bitmap_create(mddev);
2062 	if (err)
2063 		printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2064 			mdname(mddev), err);
2065 	else
2066 		err = mddev->pers->run(mddev);
2067 	if (err) {
2068 		printk(KERN_ERR "md: pers->run() failed ...\n");
2069 		module_put(mddev->pers->owner);
2070 		mddev->pers = NULL;
2071 		bitmap_destroy(mddev);
2072 		return err;
2073 	}
2074  	atomic_set(&mddev->writes_pending,0);
2075 	mddev->safemode = 0;
2076 	mddev->safemode_timer.function = md_safemode_timeout;
2077 	mddev->safemode_timer.data = (unsigned long) mddev;
2078 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2079 	mddev->in_sync = 1;
2080 
2081 	ITERATE_RDEV(mddev,rdev,tmp)
2082 		if (rdev->raid_disk >= 0) {
2083 			char nm[20];
2084 			sprintf(nm, "rd%d", rdev->raid_disk);
2085 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2086 		}
2087 
2088 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2089 	md_wakeup_thread(mddev->thread);
2090 
2091 	if (mddev->sb_dirty)
2092 		md_update_sb(mddev);
2093 
2094 	set_capacity(disk, mddev->array_size<<1);
2095 
2096 	/* If we call blk_queue_make_request here, it will
2097 	 * re-initialise max_sectors etc which may have been
2098 	 * refined inside -> run.  So just set the bits we need to set.
2099 	 * Most initialisation happended when we called
2100 	 * blk_queue_make_request(..., md_fail_request)
2101 	 * earlier.
2102 	 */
2103 	mddev->queue->queuedata = mddev;
2104 	mddev->queue->make_request_fn = mddev->pers->make_request;
2105 
2106 	mddev->changed = 1;
2107 	return 0;
2108 }
2109 
2110 static int restart_array(mddev_t *mddev)
2111 {
2112 	struct gendisk *disk = mddev->gendisk;
2113 	int err;
2114 
2115 	/*
2116 	 * Complain if it has no devices
2117 	 */
2118 	err = -ENXIO;
2119 	if (list_empty(&mddev->disks))
2120 		goto out;
2121 
2122 	if (mddev->pers) {
2123 		err = -EBUSY;
2124 		if (!mddev->ro)
2125 			goto out;
2126 
2127 		mddev->safemode = 0;
2128 		mddev->ro = 0;
2129 		set_disk_ro(disk, 0);
2130 
2131 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2132 			mdname(mddev));
2133 		/*
2134 		 * Kick recovery or resync if necessary
2135 		 */
2136 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2137 		md_wakeup_thread(mddev->thread);
2138 		err = 0;
2139 	} else {
2140 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2141 			mdname(mddev));
2142 		err = -EINVAL;
2143 	}
2144 
2145 out:
2146 	return err;
2147 }
2148 
2149 static int do_md_stop(mddev_t * mddev, int ro)
2150 {
2151 	int err = 0;
2152 	struct gendisk *disk = mddev->gendisk;
2153 
2154 	if (mddev->pers) {
2155 		if (atomic_read(&mddev->active)>2) {
2156 			printk("md: %s still in use.\n",mdname(mddev));
2157 			return -EBUSY;
2158 		}
2159 
2160 		if (mddev->sync_thread) {
2161 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2162 			md_unregister_thread(mddev->sync_thread);
2163 			mddev->sync_thread = NULL;
2164 		}
2165 
2166 		del_timer_sync(&mddev->safemode_timer);
2167 
2168 		invalidate_partition(disk, 0);
2169 
2170 		if (ro) {
2171 			err  = -ENXIO;
2172 			if (mddev->ro)
2173 				goto out;
2174 			mddev->ro = 1;
2175 		} else {
2176 			bitmap_flush(mddev);
2177 			md_super_wait(mddev);
2178 			if (mddev->ro)
2179 				set_disk_ro(disk, 0);
2180 			blk_queue_make_request(mddev->queue, md_fail_request);
2181 			mddev->pers->stop(mddev);
2182 			module_put(mddev->pers->owner);
2183 			mddev->pers = NULL;
2184 			if (mddev->ro)
2185 				mddev->ro = 0;
2186 		}
2187 		if (!mddev->in_sync) {
2188 			/* mark array as shutdown cleanly */
2189 			mddev->in_sync = 1;
2190 			md_update_sb(mddev);
2191 		}
2192 		if (ro)
2193 			set_disk_ro(disk, 1);
2194 	}
2195 
2196 	bitmap_destroy(mddev);
2197 	if (mddev->bitmap_file) {
2198 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2199 		fput(mddev->bitmap_file);
2200 		mddev->bitmap_file = NULL;
2201 	}
2202 	mddev->bitmap_offset = 0;
2203 
2204 	/*
2205 	 * Free resources if final stop
2206 	 */
2207 	if (!ro) {
2208 		mdk_rdev_t *rdev;
2209 		struct list_head *tmp;
2210 		struct gendisk *disk;
2211 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2212 
2213 		ITERATE_RDEV(mddev,rdev,tmp)
2214 			if (rdev->raid_disk >= 0) {
2215 				char nm[20];
2216 				sprintf(nm, "rd%d", rdev->raid_disk);
2217 				sysfs_remove_link(&mddev->kobj, nm);
2218 			}
2219 
2220 		export_array(mddev);
2221 
2222 		mddev->array_size = 0;
2223 		disk = mddev->gendisk;
2224 		if (disk)
2225 			set_capacity(disk, 0);
2226 		mddev->changed = 1;
2227 	} else
2228 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2229 			mdname(mddev));
2230 	err = 0;
2231 out:
2232 	return err;
2233 }
2234 
2235 static void autorun_array(mddev_t *mddev)
2236 {
2237 	mdk_rdev_t *rdev;
2238 	struct list_head *tmp;
2239 	int err;
2240 
2241 	if (list_empty(&mddev->disks))
2242 		return;
2243 
2244 	printk(KERN_INFO "md: running: ");
2245 
2246 	ITERATE_RDEV(mddev,rdev,tmp) {
2247 		char b[BDEVNAME_SIZE];
2248 		printk("<%s>", bdevname(rdev->bdev,b));
2249 	}
2250 	printk("\n");
2251 
2252 	err = do_md_run (mddev);
2253 	if (err) {
2254 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2255 		do_md_stop (mddev, 0);
2256 	}
2257 }
2258 
2259 /*
2260  * lets try to run arrays based on all disks that have arrived
2261  * until now. (those are in pending_raid_disks)
2262  *
2263  * the method: pick the first pending disk, collect all disks with
2264  * the same UUID, remove all from the pending list and put them into
2265  * the 'same_array' list. Then order this list based on superblock
2266  * update time (freshest comes first), kick out 'old' disks and
2267  * compare superblocks. If everything's fine then run it.
2268  *
2269  * If "unit" is allocated, then bump its reference count
2270  */
2271 static void autorun_devices(int part)
2272 {
2273 	struct list_head candidates;
2274 	struct list_head *tmp;
2275 	mdk_rdev_t *rdev0, *rdev;
2276 	mddev_t *mddev;
2277 	char b[BDEVNAME_SIZE];
2278 
2279 	printk(KERN_INFO "md: autorun ...\n");
2280 	while (!list_empty(&pending_raid_disks)) {
2281 		dev_t dev;
2282 		rdev0 = list_entry(pending_raid_disks.next,
2283 					 mdk_rdev_t, same_set);
2284 
2285 		printk(KERN_INFO "md: considering %s ...\n",
2286 			bdevname(rdev0->bdev,b));
2287 		INIT_LIST_HEAD(&candidates);
2288 		ITERATE_RDEV_PENDING(rdev,tmp)
2289 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2290 				printk(KERN_INFO "md:  adding %s ...\n",
2291 					bdevname(rdev->bdev,b));
2292 				list_move(&rdev->same_set, &candidates);
2293 			}
2294 		/*
2295 		 * now we have a set of devices, with all of them having
2296 		 * mostly sane superblocks. It's time to allocate the
2297 		 * mddev.
2298 		 */
2299 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2300 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2301 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2302 			break;
2303 		}
2304 		if (part)
2305 			dev = MKDEV(mdp_major,
2306 				    rdev0->preferred_minor << MdpMinorShift);
2307 		else
2308 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2309 
2310 		md_probe(dev, NULL, NULL);
2311 		mddev = mddev_find(dev);
2312 		if (!mddev) {
2313 			printk(KERN_ERR
2314 				"md: cannot allocate memory for md drive.\n");
2315 			break;
2316 		}
2317 		if (mddev_lock(mddev))
2318 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2319 			       mdname(mddev));
2320 		else if (mddev->raid_disks || mddev->major_version
2321 			 || !list_empty(&mddev->disks)) {
2322 			printk(KERN_WARNING
2323 				"md: %s already running, cannot run %s\n",
2324 				mdname(mddev), bdevname(rdev0->bdev,b));
2325 			mddev_unlock(mddev);
2326 		} else {
2327 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2328 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2329 				list_del_init(&rdev->same_set);
2330 				if (bind_rdev_to_array(rdev, mddev))
2331 					export_rdev(rdev);
2332 			}
2333 			autorun_array(mddev);
2334 			mddev_unlock(mddev);
2335 		}
2336 		/* on success, candidates will be empty, on error
2337 		 * it won't...
2338 		 */
2339 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2340 			export_rdev(rdev);
2341 		mddev_put(mddev);
2342 	}
2343 	printk(KERN_INFO "md: ... autorun DONE.\n");
2344 }
2345 
2346 /*
2347  * import RAID devices based on one partition
2348  * if possible, the array gets run as well.
2349  */
2350 
2351 static int autostart_array(dev_t startdev)
2352 {
2353 	char b[BDEVNAME_SIZE];
2354 	int err = -EINVAL, i;
2355 	mdp_super_t *sb = NULL;
2356 	mdk_rdev_t *start_rdev = NULL, *rdev;
2357 
2358 	start_rdev = md_import_device(startdev, 0, 0);
2359 	if (IS_ERR(start_rdev))
2360 		return err;
2361 
2362 
2363 	/* NOTE: this can only work for 0.90.0 superblocks */
2364 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2365 	if (sb->major_version != 0 ||
2366 	    sb->minor_version != 90 ) {
2367 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2368 		export_rdev(start_rdev);
2369 		return err;
2370 	}
2371 
2372 	if (test_bit(Faulty, &start_rdev->flags)) {
2373 		printk(KERN_WARNING
2374 			"md: can not autostart based on faulty %s!\n",
2375 			bdevname(start_rdev->bdev,b));
2376 		export_rdev(start_rdev);
2377 		return err;
2378 	}
2379 	list_add(&start_rdev->same_set, &pending_raid_disks);
2380 
2381 	for (i = 0; i < MD_SB_DISKS; i++) {
2382 		mdp_disk_t *desc = sb->disks + i;
2383 		dev_t dev = MKDEV(desc->major, desc->minor);
2384 
2385 		if (!dev)
2386 			continue;
2387 		if (dev == startdev)
2388 			continue;
2389 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2390 			continue;
2391 		rdev = md_import_device(dev, 0, 0);
2392 		if (IS_ERR(rdev))
2393 			continue;
2394 
2395 		list_add(&rdev->same_set, &pending_raid_disks);
2396 	}
2397 
2398 	/*
2399 	 * possibly return codes
2400 	 */
2401 	autorun_devices(0);
2402 	return 0;
2403 
2404 }
2405 
2406 
2407 static int get_version(void __user * arg)
2408 {
2409 	mdu_version_t ver;
2410 
2411 	ver.major = MD_MAJOR_VERSION;
2412 	ver.minor = MD_MINOR_VERSION;
2413 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2414 
2415 	if (copy_to_user(arg, &ver, sizeof(ver)))
2416 		return -EFAULT;
2417 
2418 	return 0;
2419 }
2420 
2421 static int get_array_info(mddev_t * mddev, void __user * arg)
2422 {
2423 	mdu_array_info_t info;
2424 	int nr,working,active,failed,spare;
2425 	mdk_rdev_t *rdev;
2426 	struct list_head *tmp;
2427 
2428 	nr=working=active=failed=spare=0;
2429 	ITERATE_RDEV(mddev,rdev,tmp) {
2430 		nr++;
2431 		if (test_bit(Faulty, &rdev->flags))
2432 			failed++;
2433 		else {
2434 			working++;
2435 			if (test_bit(In_sync, &rdev->flags))
2436 				active++;
2437 			else
2438 				spare++;
2439 		}
2440 	}
2441 
2442 	info.major_version = mddev->major_version;
2443 	info.minor_version = mddev->minor_version;
2444 	info.patch_version = MD_PATCHLEVEL_VERSION;
2445 	info.ctime         = mddev->ctime;
2446 	info.level         = mddev->level;
2447 	info.size          = mddev->size;
2448 	info.nr_disks      = nr;
2449 	info.raid_disks    = mddev->raid_disks;
2450 	info.md_minor      = mddev->md_minor;
2451 	info.not_persistent= !mddev->persistent;
2452 
2453 	info.utime         = mddev->utime;
2454 	info.state         = 0;
2455 	if (mddev->in_sync)
2456 		info.state = (1<<MD_SB_CLEAN);
2457 	if (mddev->bitmap && mddev->bitmap_offset)
2458 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2459 	info.active_disks  = active;
2460 	info.working_disks = working;
2461 	info.failed_disks  = failed;
2462 	info.spare_disks   = spare;
2463 
2464 	info.layout        = mddev->layout;
2465 	info.chunk_size    = mddev->chunk_size;
2466 
2467 	if (copy_to_user(arg, &info, sizeof(info)))
2468 		return -EFAULT;
2469 
2470 	return 0;
2471 }
2472 
2473 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2474 {
2475 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2476 	char *ptr, *buf = NULL;
2477 	int err = -ENOMEM;
2478 
2479 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2480 	if (!file)
2481 		goto out;
2482 
2483 	/* bitmap disabled, zero the first byte and copy out */
2484 	if (!mddev->bitmap || !mddev->bitmap->file) {
2485 		file->pathname[0] = '\0';
2486 		goto copy_out;
2487 	}
2488 
2489 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2490 	if (!buf)
2491 		goto out;
2492 
2493 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2494 	if (!ptr)
2495 		goto out;
2496 
2497 	strcpy(file->pathname, ptr);
2498 
2499 copy_out:
2500 	err = 0;
2501 	if (copy_to_user(arg, file, sizeof(*file)))
2502 		err = -EFAULT;
2503 out:
2504 	kfree(buf);
2505 	kfree(file);
2506 	return err;
2507 }
2508 
2509 static int get_disk_info(mddev_t * mddev, void __user * arg)
2510 {
2511 	mdu_disk_info_t info;
2512 	unsigned int nr;
2513 	mdk_rdev_t *rdev;
2514 
2515 	if (copy_from_user(&info, arg, sizeof(info)))
2516 		return -EFAULT;
2517 
2518 	nr = info.number;
2519 
2520 	rdev = find_rdev_nr(mddev, nr);
2521 	if (rdev) {
2522 		info.major = MAJOR(rdev->bdev->bd_dev);
2523 		info.minor = MINOR(rdev->bdev->bd_dev);
2524 		info.raid_disk = rdev->raid_disk;
2525 		info.state = 0;
2526 		if (test_bit(Faulty, &rdev->flags))
2527 			info.state |= (1<<MD_DISK_FAULTY);
2528 		else if (test_bit(In_sync, &rdev->flags)) {
2529 			info.state |= (1<<MD_DISK_ACTIVE);
2530 			info.state |= (1<<MD_DISK_SYNC);
2531 		}
2532 		if (test_bit(WriteMostly, &rdev->flags))
2533 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2534 	} else {
2535 		info.major = info.minor = 0;
2536 		info.raid_disk = -1;
2537 		info.state = (1<<MD_DISK_REMOVED);
2538 	}
2539 
2540 	if (copy_to_user(arg, &info, sizeof(info)))
2541 		return -EFAULT;
2542 
2543 	return 0;
2544 }
2545 
2546 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2547 {
2548 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2549 	mdk_rdev_t *rdev;
2550 	dev_t dev = MKDEV(info->major,info->minor);
2551 
2552 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2553 		return -EOVERFLOW;
2554 
2555 	if (!mddev->raid_disks) {
2556 		int err;
2557 		/* expecting a device which has a superblock */
2558 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2559 		if (IS_ERR(rdev)) {
2560 			printk(KERN_WARNING
2561 				"md: md_import_device returned %ld\n",
2562 				PTR_ERR(rdev));
2563 			return PTR_ERR(rdev);
2564 		}
2565 		if (!list_empty(&mddev->disks)) {
2566 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2567 							mdk_rdev_t, same_set);
2568 			int err = super_types[mddev->major_version]
2569 				.load_super(rdev, rdev0, mddev->minor_version);
2570 			if (err < 0) {
2571 				printk(KERN_WARNING
2572 					"md: %s has different UUID to %s\n",
2573 					bdevname(rdev->bdev,b),
2574 					bdevname(rdev0->bdev,b2));
2575 				export_rdev(rdev);
2576 				return -EINVAL;
2577 			}
2578 		}
2579 		err = bind_rdev_to_array(rdev, mddev);
2580 		if (err)
2581 			export_rdev(rdev);
2582 		return err;
2583 	}
2584 
2585 	/*
2586 	 * add_new_disk can be used once the array is assembled
2587 	 * to add "hot spares".  They must already have a superblock
2588 	 * written
2589 	 */
2590 	if (mddev->pers) {
2591 		int err;
2592 		if (!mddev->pers->hot_add_disk) {
2593 			printk(KERN_WARNING
2594 				"%s: personality does not support diskops!\n",
2595 			       mdname(mddev));
2596 			return -EINVAL;
2597 		}
2598 		if (mddev->persistent)
2599 			rdev = md_import_device(dev, mddev->major_version,
2600 						mddev->minor_version);
2601 		else
2602 			rdev = md_import_device(dev, -1, -1);
2603 		if (IS_ERR(rdev)) {
2604 			printk(KERN_WARNING
2605 				"md: md_import_device returned %ld\n",
2606 				PTR_ERR(rdev));
2607 			return PTR_ERR(rdev);
2608 		}
2609 		/* set save_raid_disk if appropriate */
2610 		if (!mddev->persistent) {
2611 			if (info->state & (1<<MD_DISK_SYNC)  &&
2612 			    info->raid_disk < mddev->raid_disks)
2613 				rdev->raid_disk = info->raid_disk;
2614 			else
2615 				rdev->raid_disk = -1;
2616 		} else
2617 			super_types[mddev->major_version].
2618 				validate_super(mddev, rdev);
2619 		rdev->saved_raid_disk = rdev->raid_disk;
2620 
2621 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
2622 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2623 			set_bit(WriteMostly, &rdev->flags);
2624 
2625 		rdev->raid_disk = -1;
2626 		err = bind_rdev_to_array(rdev, mddev);
2627 		if (err)
2628 			export_rdev(rdev);
2629 
2630 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2631 		md_wakeup_thread(mddev->thread);
2632 		return err;
2633 	}
2634 
2635 	/* otherwise, add_new_disk is only allowed
2636 	 * for major_version==0 superblocks
2637 	 */
2638 	if (mddev->major_version != 0) {
2639 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2640 		       mdname(mddev));
2641 		return -EINVAL;
2642 	}
2643 
2644 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2645 		int err;
2646 		rdev = md_import_device (dev, -1, 0);
2647 		if (IS_ERR(rdev)) {
2648 			printk(KERN_WARNING
2649 				"md: error, md_import_device() returned %ld\n",
2650 				PTR_ERR(rdev));
2651 			return PTR_ERR(rdev);
2652 		}
2653 		rdev->desc_nr = info->number;
2654 		if (info->raid_disk < mddev->raid_disks)
2655 			rdev->raid_disk = info->raid_disk;
2656 		else
2657 			rdev->raid_disk = -1;
2658 
2659 		rdev->flags = 0;
2660 
2661 		if (rdev->raid_disk < mddev->raid_disks)
2662 			if (info->state & (1<<MD_DISK_SYNC))
2663 				set_bit(In_sync, &rdev->flags);
2664 
2665 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2666 			set_bit(WriteMostly, &rdev->flags);
2667 
2668 		err = bind_rdev_to_array(rdev, mddev);
2669 		if (err) {
2670 			export_rdev(rdev);
2671 			return err;
2672 		}
2673 
2674 		if (!mddev->persistent) {
2675 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2676 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2677 		} else
2678 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2679 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2680 
2681 		if (!mddev->size || (mddev->size > rdev->size))
2682 			mddev->size = rdev->size;
2683 	}
2684 
2685 	return 0;
2686 }
2687 
2688 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2689 {
2690 	char b[BDEVNAME_SIZE];
2691 	mdk_rdev_t *rdev;
2692 
2693 	if (!mddev->pers)
2694 		return -ENODEV;
2695 
2696 	rdev = find_rdev(mddev, dev);
2697 	if (!rdev)
2698 		return -ENXIO;
2699 
2700 	if (rdev->raid_disk >= 0)
2701 		goto busy;
2702 
2703 	kick_rdev_from_array(rdev);
2704 	md_update_sb(mddev);
2705 
2706 	return 0;
2707 busy:
2708 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2709 		bdevname(rdev->bdev,b), mdname(mddev));
2710 	return -EBUSY;
2711 }
2712 
2713 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2714 {
2715 	char b[BDEVNAME_SIZE];
2716 	int err;
2717 	unsigned int size;
2718 	mdk_rdev_t *rdev;
2719 
2720 	if (!mddev->pers)
2721 		return -ENODEV;
2722 
2723 	if (mddev->major_version != 0) {
2724 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2725 			" version-0 superblocks.\n",
2726 			mdname(mddev));
2727 		return -EINVAL;
2728 	}
2729 	if (!mddev->pers->hot_add_disk) {
2730 		printk(KERN_WARNING
2731 			"%s: personality does not support diskops!\n",
2732 			mdname(mddev));
2733 		return -EINVAL;
2734 	}
2735 
2736 	rdev = md_import_device (dev, -1, 0);
2737 	if (IS_ERR(rdev)) {
2738 		printk(KERN_WARNING
2739 			"md: error, md_import_device() returned %ld\n",
2740 			PTR_ERR(rdev));
2741 		return -EINVAL;
2742 	}
2743 
2744 	if (mddev->persistent)
2745 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2746 	else
2747 		rdev->sb_offset =
2748 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2749 
2750 	size = calc_dev_size(rdev, mddev->chunk_size);
2751 	rdev->size = size;
2752 
2753 	if (size < mddev->size) {
2754 		printk(KERN_WARNING
2755 			"%s: disk size %llu blocks < array size %llu\n",
2756 			mdname(mddev), (unsigned long long)size,
2757 			(unsigned long long)mddev->size);
2758 		err = -ENOSPC;
2759 		goto abort_export;
2760 	}
2761 
2762 	if (test_bit(Faulty, &rdev->flags)) {
2763 		printk(KERN_WARNING
2764 			"md: can not hot-add faulty %s disk to %s!\n",
2765 			bdevname(rdev->bdev,b), mdname(mddev));
2766 		err = -EINVAL;
2767 		goto abort_export;
2768 	}
2769 	clear_bit(In_sync, &rdev->flags);
2770 	rdev->desc_nr = -1;
2771 	bind_rdev_to_array(rdev, mddev);
2772 
2773 	/*
2774 	 * The rest should better be atomic, we can have disk failures
2775 	 * noticed in interrupt contexts ...
2776 	 */
2777 
2778 	if (rdev->desc_nr == mddev->max_disks) {
2779 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2780 			mdname(mddev));
2781 		err = -EBUSY;
2782 		goto abort_unbind_export;
2783 	}
2784 
2785 	rdev->raid_disk = -1;
2786 
2787 	md_update_sb(mddev);
2788 
2789 	/*
2790 	 * Kick recovery, maybe this spare has to be added to the
2791 	 * array immediately.
2792 	 */
2793 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2794 	md_wakeup_thread(mddev->thread);
2795 
2796 	return 0;
2797 
2798 abort_unbind_export:
2799 	unbind_rdev_from_array(rdev);
2800 
2801 abort_export:
2802 	export_rdev(rdev);
2803 	return err;
2804 }
2805 
2806 /* similar to deny_write_access, but accounts for our holding a reference
2807  * to the file ourselves */
2808 static int deny_bitmap_write_access(struct file * file)
2809 {
2810 	struct inode *inode = file->f_mapping->host;
2811 
2812 	spin_lock(&inode->i_lock);
2813 	if (atomic_read(&inode->i_writecount) > 1) {
2814 		spin_unlock(&inode->i_lock);
2815 		return -ETXTBSY;
2816 	}
2817 	atomic_set(&inode->i_writecount, -1);
2818 	spin_unlock(&inode->i_lock);
2819 
2820 	return 0;
2821 }
2822 
2823 static int set_bitmap_file(mddev_t *mddev, int fd)
2824 {
2825 	int err;
2826 
2827 	if (mddev->pers) {
2828 		if (!mddev->pers->quiesce)
2829 			return -EBUSY;
2830 		if (mddev->recovery || mddev->sync_thread)
2831 			return -EBUSY;
2832 		/* we should be able to change the bitmap.. */
2833 	}
2834 
2835 
2836 	if (fd >= 0) {
2837 		if (mddev->bitmap)
2838 			return -EEXIST; /* cannot add when bitmap is present */
2839 		mddev->bitmap_file = fget(fd);
2840 
2841 		if (mddev->bitmap_file == NULL) {
2842 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2843 			       mdname(mddev));
2844 			return -EBADF;
2845 		}
2846 
2847 		err = deny_bitmap_write_access(mddev->bitmap_file);
2848 		if (err) {
2849 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2850 			       mdname(mddev));
2851 			fput(mddev->bitmap_file);
2852 			mddev->bitmap_file = NULL;
2853 			return err;
2854 		}
2855 		mddev->bitmap_offset = 0; /* file overrides offset */
2856 	} else if (mddev->bitmap == NULL)
2857 		return -ENOENT; /* cannot remove what isn't there */
2858 	err = 0;
2859 	if (mddev->pers) {
2860 		mddev->pers->quiesce(mddev, 1);
2861 		if (fd >= 0)
2862 			err = bitmap_create(mddev);
2863 		if (fd < 0 || err)
2864 			bitmap_destroy(mddev);
2865 		mddev->pers->quiesce(mddev, 0);
2866 	} else if (fd < 0) {
2867 		if (mddev->bitmap_file)
2868 			fput(mddev->bitmap_file);
2869 		mddev->bitmap_file = NULL;
2870 	}
2871 
2872 	return err;
2873 }
2874 
2875 /*
2876  * set_array_info is used two different ways
2877  * The original usage is when creating a new array.
2878  * In this usage, raid_disks is > 0 and it together with
2879  *  level, size, not_persistent,layout,chunksize determine the
2880  *  shape of the array.
2881  *  This will always create an array with a type-0.90.0 superblock.
2882  * The newer usage is when assembling an array.
2883  *  In this case raid_disks will be 0, and the major_version field is
2884  *  use to determine which style super-blocks are to be found on the devices.
2885  *  The minor and patch _version numbers are also kept incase the
2886  *  super_block handler wishes to interpret them.
2887  */
2888 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2889 {
2890 
2891 	if (info->raid_disks == 0) {
2892 		/* just setting version number for superblock loading */
2893 		if (info->major_version < 0 ||
2894 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2895 		    super_types[info->major_version].name == NULL) {
2896 			/* maybe try to auto-load a module? */
2897 			printk(KERN_INFO
2898 				"md: superblock version %d not known\n",
2899 				info->major_version);
2900 			return -EINVAL;
2901 		}
2902 		mddev->major_version = info->major_version;
2903 		mddev->minor_version = info->minor_version;
2904 		mddev->patch_version = info->patch_version;
2905 		return 0;
2906 	}
2907 	mddev->major_version = MD_MAJOR_VERSION;
2908 	mddev->minor_version = MD_MINOR_VERSION;
2909 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2910 	mddev->ctime         = get_seconds();
2911 
2912 	mddev->level         = info->level;
2913 	mddev->size          = info->size;
2914 	mddev->raid_disks    = info->raid_disks;
2915 	/* don't set md_minor, it is determined by which /dev/md* was
2916 	 * openned
2917 	 */
2918 	if (info->state & (1<<MD_SB_CLEAN))
2919 		mddev->recovery_cp = MaxSector;
2920 	else
2921 		mddev->recovery_cp = 0;
2922 	mddev->persistent    = ! info->not_persistent;
2923 
2924 	mddev->layout        = info->layout;
2925 	mddev->chunk_size    = info->chunk_size;
2926 
2927 	mddev->max_disks     = MD_SB_DISKS;
2928 
2929 	mddev->sb_dirty      = 1;
2930 
2931 	/*
2932 	 * Generate a 128 bit UUID
2933 	 */
2934 	get_random_bytes(mddev->uuid, 16);
2935 
2936 	return 0;
2937 }
2938 
2939 /*
2940  * update_array_info is used to change the configuration of an
2941  * on-line array.
2942  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2943  * fields in the info are checked against the array.
2944  * Any differences that cannot be handled will cause an error.
2945  * Normally, only one change can be managed at a time.
2946  */
2947 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2948 {
2949 	int rv = 0;
2950 	int cnt = 0;
2951 	int state = 0;
2952 
2953 	/* calculate expected state,ignoring low bits */
2954 	if (mddev->bitmap && mddev->bitmap_offset)
2955 		state |= (1 << MD_SB_BITMAP_PRESENT);
2956 
2957 	if (mddev->major_version != info->major_version ||
2958 	    mddev->minor_version != info->minor_version ||
2959 /*	    mddev->patch_version != info->patch_version || */
2960 	    mddev->ctime         != info->ctime         ||
2961 	    mddev->level         != info->level         ||
2962 /*	    mddev->layout        != info->layout        || */
2963 	    !mddev->persistent	 != info->not_persistent||
2964 	    mddev->chunk_size    != info->chunk_size    ||
2965 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2966 	    ((state^info->state) & 0xfffffe00)
2967 		)
2968 		return -EINVAL;
2969 	/* Check there is only one change */
2970 	if (mddev->size != info->size) cnt++;
2971 	if (mddev->raid_disks != info->raid_disks) cnt++;
2972 	if (mddev->layout != info->layout) cnt++;
2973 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
2974 	if (cnt == 0) return 0;
2975 	if (cnt > 1) return -EINVAL;
2976 
2977 	if (mddev->layout != info->layout) {
2978 		/* Change layout
2979 		 * we don't need to do anything at the md level, the
2980 		 * personality will take care of it all.
2981 		 */
2982 		if (mddev->pers->reconfig == NULL)
2983 			return -EINVAL;
2984 		else
2985 			return mddev->pers->reconfig(mddev, info->layout, -1);
2986 	}
2987 	if (mddev->size != info->size) {
2988 		mdk_rdev_t * rdev;
2989 		struct list_head *tmp;
2990 		if (mddev->pers->resize == NULL)
2991 			return -EINVAL;
2992 		/* The "size" is the amount of each device that is used.
2993 		 * This can only make sense for arrays with redundancy.
2994 		 * linear and raid0 always use whatever space is available
2995 		 * We can only consider changing the size if no resync
2996 		 * or reconstruction is happening, and if the new size
2997 		 * is acceptable. It must fit before the sb_offset or,
2998 		 * if that is <data_offset, it must fit before the
2999 		 * size of each device.
3000 		 * If size is zero, we find the largest size that fits.
3001 		 */
3002 		if (mddev->sync_thread)
3003 			return -EBUSY;
3004 		ITERATE_RDEV(mddev,rdev,tmp) {
3005 			sector_t avail;
3006 			int fit = (info->size == 0);
3007 			if (rdev->sb_offset > rdev->data_offset)
3008 				avail = (rdev->sb_offset*2) - rdev->data_offset;
3009 			else
3010 				avail = get_capacity(rdev->bdev->bd_disk)
3011 					- rdev->data_offset;
3012 			if (fit && (info->size == 0 || info->size > avail/2))
3013 				info->size = avail/2;
3014 			if (avail < ((sector_t)info->size << 1))
3015 				return -ENOSPC;
3016 		}
3017 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
3018 		if (!rv) {
3019 			struct block_device *bdev;
3020 
3021 			bdev = bdget_disk(mddev->gendisk, 0);
3022 			if (bdev) {
3023 				down(&bdev->bd_inode->i_sem);
3024 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3025 				up(&bdev->bd_inode->i_sem);
3026 				bdput(bdev);
3027 			}
3028 		}
3029 	}
3030 	if (mddev->raid_disks    != info->raid_disks) {
3031 		/* change the number of raid disks */
3032 		if (mddev->pers->reshape == NULL)
3033 			return -EINVAL;
3034 		if (info->raid_disks <= 0 ||
3035 		    info->raid_disks >= mddev->max_disks)
3036 			return -EINVAL;
3037 		if (mddev->sync_thread)
3038 			return -EBUSY;
3039 		rv = mddev->pers->reshape(mddev, info->raid_disks);
3040 		if (!rv) {
3041 			struct block_device *bdev;
3042 
3043 			bdev = bdget_disk(mddev->gendisk, 0);
3044 			if (bdev) {
3045 				down(&bdev->bd_inode->i_sem);
3046 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3047 				up(&bdev->bd_inode->i_sem);
3048 				bdput(bdev);
3049 			}
3050 		}
3051 	}
3052 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3053 		if (mddev->pers->quiesce == NULL)
3054 			return -EINVAL;
3055 		if (mddev->recovery || mddev->sync_thread)
3056 			return -EBUSY;
3057 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3058 			/* add the bitmap */
3059 			if (mddev->bitmap)
3060 				return -EEXIST;
3061 			if (mddev->default_bitmap_offset == 0)
3062 				return -EINVAL;
3063 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3064 			mddev->pers->quiesce(mddev, 1);
3065 			rv = bitmap_create(mddev);
3066 			if (rv)
3067 				bitmap_destroy(mddev);
3068 			mddev->pers->quiesce(mddev, 0);
3069 		} else {
3070 			/* remove the bitmap */
3071 			if (!mddev->bitmap)
3072 				return -ENOENT;
3073 			if (mddev->bitmap->file)
3074 				return -EINVAL;
3075 			mddev->pers->quiesce(mddev, 1);
3076 			bitmap_destroy(mddev);
3077 			mddev->pers->quiesce(mddev, 0);
3078 			mddev->bitmap_offset = 0;
3079 		}
3080 	}
3081 	md_update_sb(mddev);
3082 	return rv;
3083 }
3084 
3085 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3086 {
3087 	mdk_rdev_t *rdev;
3088 
3089 	if (mddev->pers == NULL)
3090 		return -ENODEV;
3091 
3092 	rdev = find_rdev(mddev, dev);
3093 	if (!rdev)
3094 		return -ENODEV;
3095 
3096 	md_error(mddev, rdev);
3097 	return 0;
3098 }
3099 
3100 static int md_ioctl(struct inode *inode, struct file *file,
3101 			unsigned int cmd, unsigned long arg)
3102 {
3103 	int err = 0;
3104 	void __user *argp = (void __user *)arg;
3105 	struct hd_geometry __user *loc = argp;
3106 	mddev_t *mddev = NULL;
3107 
3108 	if (!capable(CAP_SYS_ADMIN))
3109 		return -EACCES;
3110 
3111 	/*
3112 	 * Commands dealing with the RAID driver but not any
3113 	 * particular array:
3114 	 */
3115 	switch (cmd)
3116 	{
3117 		case RAID_VERSION:
3118 			err = get_version(argp);
3119 			goto done;
3120 
3121 		case PRINT_RAID_DEBUG:
3122 			err = 0;
3123 			md_print_devices();
3124 			goto done;
3125 
3126 #ifndef MODULE
3127 		case RAID_AUTORUN:
3128 			err = 0;
3129 			autostart_arrays(arg);
3130 			goto done;
3131 #endif
3132 		default:;
3133 	}
3134 
3135 	/*
3136 	 * Commands creating/starting a new array:
3137 	 */
3138 
3139 	mddev = inode->i_bdev->bd_disk->private_data;
3140 
3141 	if (!mddev) {
3142 		BUG();
3143 		goto abort;
3144 	}
3145 
3146 
3147 	if (cmd == START_ARRAY) {
3148 		/* START_ARRAY doesn't need to lock the array as autostart_array
3149 		 * does the locking, and it could even be a different array
3150 		 */
3151 		static int cnt = 3;
3152 		if (cnt > 0 ) {
3153 			printk(KERN_WARNING
3154 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3155 			       "This will not be supported beyond 2.6\n",
3156 			       current->comm, current->pid);
3157 			cnt--;
3158 		}
3159 		err = autostart_array(new_decode_dev(arg));
3160 		if (err) {
3161 			printk(KERN_WARNING "md: autostart failed!\n");
3162 			goto abort;
3163 		}
3164 		goto done;
3165 	}
3166 
3167 	err = mddev_lock(mddev);
3168 	if (err) {
3169 		printk(KERN_INFO
3170 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3171 			err, cmd);
3172 		goto abort;
3173 	}
3174 
3175 	switch (cmd)
3176 	{
3177 		case SET_ARRAY_INFO:
3178 			{
3179 				mdu_array_info_t info;
3180 				if (!arg)
3181 					memset(&info, 0, sizeof(info));
3182 				else if (copy_from_user(&info, argp, sizeof(info))) {
3183 					err = -EFAULT;
3184 					goto abort_unlock;
3185 				}
3186 				if (mddev->pers) {
3187 					err = update_array_info(mddev, &info);
3188 					if (err) {
3189 						printk(KERN_WARNING "md: couldn't update"
3190 						       " array info. %d\n", err);
3191 						goto abort_unlock;
3192 					}
3193 					goto done_unlock;
3194 				}
3195 				if (!list_empty(&mddev->disks)) {
3196 					printk(KERN_WARNING
3197 					       "md: array %s already has disks!\n",
3198 					       mdname(mddev));
3199 					err = -EBUSY;
3200 					goto abort_unlock;
3201 				}
3202 				if (mddev->raid_disks) {
3203 					printk(KERN_WARNING
3204 					       "md: array %s already initialised!\n",
3205 					       mdname(mddev));
3206 					err = -EBUSY;
3207 					goto abort_unlock;
3208 				}
3209 				err = set_array_info(mddev, &info);
3210 				if (err) {
3211 					printk(KERN_WARNING "md: couldn't set"
3212 					       " array info. %d\n", err);
3213 					goto abort_unlock;
3214 				}
3215 			}
3216 			goto done_unlock;
3217 
3218 		default:;
3219 	}
3220 
3221 	/*
3222 	 * Commands querying/configuring an existing array:
3223 	 */
3224 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3225 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3226 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3227 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3228 		err = -ENODEV;
3229 		goto abort_unlock;
3230 	}
3231 
3232 	/*
3233 	 * Commands even a read-only array can execute:
3234 	 */
3235 	switch (cmd)
3236 	{
3237 		case GET_ARRAY_INFO:
3238 			err = get_array_info(mddev, argp);
3239 			goto done_unlock;
3240 
3241 		case GET_BITMAP_FILE:
3242 			err = get_bitmap_file(mddev, argp);
3243 			goto done_unlock;
3244 
3245 		case GET_DISK_INFO:
3246 			err = get_disk_info(mddev, argp);
3247 			goto done_unlock;
3248 
3249 		case RESTART_ARRAY_RW:
3250 			err = restart_array(mddev);
3251 			goto done_unlock;
3252 
3253 		case STOP_ARRAY:
3254 			err = do_md_stop (mddev, 0);
3255 			goto done_unlock;
3256 
3257 		case STOP_ARRAY_RO:
3258 			err = do_md_stop (mddev, 1);
3259 			goto done_unlock;
3260 
3261 	/*
3262 	 * We have a problem here : there is no easy way to give a CHS
3263 	 * virtual geometry. We currently pretend that we have a 2 heads
3264 	 * 4 sectors (with a BIG number of cylinders...). This drives
3265 	 * dosfs just mad... ;-)
3266 	 */
3267 		case HDIO_GETGEO:
3268 			if (!loc) {
3269 				err = -EINVAL;
3270 				goto abort_unlock;
3271 			}
3272 			err = put_user (2, (char __user *) &loc->heads);
3273 			if (err)
3274 				goto abort_unlock;
3275 			err = put_user (4, (char __user *) &loc->sectors);
3276 			if (err)
3277 				goto abort_unlock;
3278 			err = put_user(get_capacity(mddev->gendisk)/8,
3279 					(short __user *) &loc->cylinders);
3280 			if (err)
3281 				goto abort_unlock;
3282 			err = put_user (get_start_sect(inode->i_bdev),
3283 						(long __user *) &loc->start);
3284 			goto done_unlock;
3285 	}
3286 
3287 	/*
3288 	 * The remaining ioctls are changing the state of the
3289 	 * superblock, so we do not allow read-only arrays
3290 	 * here:
3291 	 */
3292 	if (mddev->ro) {
3293 		err = -EROFS;
3294 		goto abort_unlock;
3295 	}
3296 
3297 	switch (cmd)
3298 	{
3299 		case ADD_NEW_DISK:
3300 		{
3301 			mdu_disk_info_t info;
3302 			if (copy_from_user(&info, argp, sizeof(info)))
3303 				err = -EFAULT;
3304 			else
3305 				err = add_new_disk(mddev, &info);
3306 			goto done_unlock;
3307 		}
3308 
3309 		case HOT_REMOVE_DISK:
3310 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3311 			goto done_unlock;
3312 
3313 		case HOT_ADD_DISK:
3314 			err = hot_add_disk(mddev, new_decode_dev(arg));
3315 			goto done_unlock;
3316 
3317 		case SET_DISK_FAULTY:
3318 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3319 			goto done_unlock;
3320 
3321 		case RUN_ARRAY:
3322 			err = do_md_run (mddev);
3323 			goto done_unlock;
3324 
3325 		case SET_BITMAP_FILE:
3326 			err = set_bitmap_file(mddev, (int)arg);
3327 			goto done_unlock;
3328 
3329 		default:
3330 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3331 				printk(KERN_WARNING "md: %s(pid %d) used"
3332 					" obsolete MD ioctl, upgrade your"
3333 					" software to use new ictls.\n",
3334 					current->comm, current->pid);
3335 			err = -EINVAL;
3336 			goto abort_unlock;
3337 	}
3338 
3339 done_unlock:
3340 abort_unlock:
3341 	mddev_unlock(mddev);
3342 
3343 	return err;
3344 done:
3345 	if (err)
3346 		MD_BUG();
3347 abort:
3348 	return err;
3349 }
3350 
3351 static int md_open(struct inode *inode, struct file *file)
3352 {
3353 	/*
3354 	 * Succeed if we can lock the mddev, which confirms that
3355 	 * it isn't being stopped right now.
3356 	 */
3357 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3358 	int err;
3359 
3360 	if ((err = mddev_lock(mddev)))
3361 		goto out;
3362 
3363 	err = 0;
3364 	mddev_get(mddev);
3365 	mddev_unlock(mddev);
3366 
3367 	check_disk_change(inode->i_bdev);
3368  out:
3369 	return err;
3370 }
3371 
3372 static int md_release(struct inode *inode, struct file * file)
3373 {
3374  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3375 
3376 	if (!mddev)
3377 		BUG();
3378 	mddev_put(mddev);
3379 
3380 	return 0;
3381 }
3382 
3383 static int md_media_changed(struct gendisk *disk)
3384 {
3385 	mddev_t *mddev = disk->private_data;
3386 
3387 	return mddev->changed;
3388 }
3389 
3390 static int md_revalidate(struct gendisk *disk)
3391 {
3392 	mddev_t *mddev = disk->private_data;
3393 
3394 	mddev->changed = 0;
3395 	return 0;
3396 }
3397 static struct block_device_operations md_fops =
3398 {
3399 	.owner		= THIS_MODULE,
3400 	.open		= md_open,
3401 	.release	= md_release,
3402 	.ioctl		= md_ioctl,
3403 	.media_changed	= md_media_changed,
3404 	.revalidate_disk= md_revalidate,
3405 };
3406 
3407 static int md_thread(void * arg)
3408 {
3409 	mdk_thread_t *thread = arg;
3410 
3411 	/*
3412 	 * md_thread is a 'system-thread', it's priority should be very
3413 	 * high. We avoid resource deadlocks individually in each
3414 	 * raid personality. (RAID5 does preallocation) We also use RR and
3415 	 * the very same RT priority as kswapd, thus we will never get
3416 	 * into a priority inversion deadlock.
3417 	 *
3418 	 * we definitely have to have equal or higher priority than
3419 	 * bdflush, otherwise bdflush will deadlock if there are too
3420 	 * many dirty RAID5 blocks.
3421 	 */
3422 
3423 	allow_signal(SIGKILL);
3424 	complete(thread->event);
3425 	while (!kthread_should_stop()) {
3426 		void (*run)(mddev_t *);
3427 
3428 		wait_event_interruptible_timeout(thread->wqueue,
3429 						 test_bit(THREAD_WAKEUP, &thread->flags)
3430 						 || kthread_should_stop(),
3431 						 thread->timeout);
3432 		try_to_freeze();
3433 
3434 		clear_bit(THREAD_WAKEUP, &thread->flags);
3435 
3436 		run = thread->run;
3437 		if (run)
3438 			run(thread->mddev);
3439 	}
3440 
3441 	return 0;
3442 }
3443 
3444 void md_wakeup_thread(mdk_thread_t *thread)
3445 {
3446 	if (thread) {
3447 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3448 		set_bit(THREAD_WAKEUP, &thread->flags);
3449 		wake_up(&thread->wqueue);
3450 	}
3451 }
3452 
3453 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3454 				 const char *name)
3455 {
3456 	mdk_thread_t *thread;
3457 	struct completion event;
3458 
3459 	thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3460 	if (!thread)
3461 		return NULL;
3462 
3463 	memset(thread, 0, sizeof(mdk_thread_t));
3464 	init_waitqueue_head(&thread->wqueue);
3465 
3466 	init_completion(&event);
3467 	thread->event = &event;
3468 	thread->run = run;
3469 	thread->mddev = mddev;
3470 	thread->name = name;
3471 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3472 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3473 	if (IS_ERR(thread->tsk)) {
3474 		kfree(thread);
3475 		return NULL;
3476 	}
3477 	wait_for_completion(&event);
3478 	return thread;
3479 }
3480 
3481 void md_unregister_thread(mdk_thread_t *thread)
3482 {
3483 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3484 
3485 	kthread_stop(thread->tsk);
3486 	kfree(thread);
3487 }
3488 
3489 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3490 {
3491 	if (!mddev) {
3492 		MD_BUG();
3493 		return;
3494 	}
3495 
3496 	if (!rdev || test_bit(Faulty, &rdev->flags))
3497 		return;
3498 /*
3499 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3500 		mdname(mddev),
3501 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3502 		__builtin_return_address(0),__builtin_return_address(1),
3503 		__builtin_return_address(2),__builtin_return_address(3));
3504 */
3505 	if (!mddev->pers->error_handler)
3506 		return;
3507 	mddev->pers->error_handler(mddev,rdev);
3508 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3509 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3510 	md_wakeup_thread(mddev->thread);
3511 }
3512 
3513 /* seq_file implementation /proc/mdstat */
3514 
3515 static void status_unused(struct seq_file *seq)
3516 {
3517 	int i = 0;
3518 	mdk_rdev_t *rdev;
3519 	struct list_head *tmp;
3520 
3521 	seq_printf(seq, "unused devices: ");
3522 
3523 	ITERATE_RDEV_PENDING(rdev,tmp) {
3524 		char b[BDEVNAME_SIZE];
3525 		i++;
3526 		seq_printf(seq, "%s ",
3527 			      bdevname(rdev->bdev,b));
3528 	}
3529 	if (!i)
3530 		seq_printf(seq, "<none>");
3531 
3532 	seq_printf(seq, "\n");
3533 }
3534 
3535 
3536 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3537 {
3538 	unsigned long max_blocks, resync, res, dt, db, rt;
3539 
3540 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3541 
3542 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3543 		max_blocks = mddev->resync_max_sectors >> 1;
3544 	else
3545 		max_blocks = mddev->size;
3546 
3547 	/*
3548 	 * Should not happen.
3549 	 */
3550 	if (!max_blocks) {
3551 		MD_BUG();
3552 		return;
3553 	}
3554 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3555 	{
3556 		int i, x = res/50, y = 20-x;
3557 		seq_printf(seq, "[");
3558 		for (i = 0; i < x; i++)
3559 			seq_printf(seq, "=");
3560 		seq_printf(seq, ">");
3561 		for (i = 0; i < y; i++)
3562 			seq_printf(seq, ".");
3563 		seq_printf(seq, "] ");
3564 	}
3565 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3566 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3567 		       "resync" : "recovery"),
3568 		      res/10, res % 10, resync, max_blocks);
3569 
3570 	/*
3571 	 * We do not want to overflow, so the order of operands and
3572 	 * the * 100 / 100 trick are important. We do a +1 to be
3573 	 * safe against division by zero. We only estimate anyway.
3574 	 *
3575 	 * dt: time from mark until now
3576 	 * db: blocks written from mark until now
3577 	 * rt: remaining time
3578 	 */
3579 	dt = ((jiffies - mddev->resync_mark) / HZ);
3580 	if (!dt) dt++;
3581 	db = resync - (mddev->resync_mark_cnt/2);
3582 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3583 
3584 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3585 
3586 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3587 }
3588 
3589 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3590 {
3591 	struct list_head *tmp;
3592 	loff_t l = *pos;
3593 	mddev_t *mddev;
3594 
3595 	if (l >= 0x10000)
3596 		return NULL;
3597 	if (!l--)
3598 		/* header */
3599 		return (void*)1;
3600 
3601 	spin_lock(&all_mddevs_lock);
3602 	list_for_each(tmp,&all_mddevs)
3603 		if (!l--) {
3604 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3605 			mddev_get(mddev);
3606 			spin_unlock(&all_mddevs_lock);
3607 			return mddev;
3608 		}
3609 	spin_unlock(&all_mddevs_lock);
3610 	if (!l--)
3611 		return (void*)2;/* tail */
3612 	return NULL;
3613 }
3614 
3615 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3616 {
3617 	struct list_head *tmp;
3618 	mddev_t *next_mddev, *mddev = v;
3619 
3620 	++*pos;
3621 	if (v == (void*)2)
3622 		return NULL;
3623 
3624 	spin_lock(&all_mddevs_lock);
3625 	if (v == (void*)1)
3626 		tmp = all_mddevs.next;
3627 	else
3628 		tmp = mddev->all_mddevs.next;
3629 	if (tmp != &all_mddevs)
3630 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3631 	else {
3632 		next_mddev = (void*)2;
3633 		*pos = 0x10000;
3634 	}
3635 	spin_unlock(&all_mddevs_lock);
3636 
3637 	if (v != (void*)1)
3638 		mddev_put(mddev);
3639 	return next_mddev;
3640 
3641 }
3642 
3643 static void md_seq_stop(struct seq_file *seq, void *v)
3644 {
3645 	mddev_t *mddev = v;
3646 
3647 	if (mddev && v != (void*)1 && v != (void*)2)
3648 		mddev_put(mddev);
3649 }
3650 
3651 static int md_seq_show(struct seq_file *seq, void *v)
3652 {
3653 	mddev_t *mddev = v;
3654 	sector_t size;
3655 	struct list_head *tmp2;
3656 	mdk_rdev_t *rdev;
3657 	int i;
3658 	struct bitmap *bitmap;
3659 
3660 	if (v == (void*)1) {
3661 		seq_printf(seq, "Personalities : ");
3662 		spin_lock(&pers_lock);
3663 		for (i = 0; i < MAX_PERSONALITY; i++)
3664 			if (pers[i])
3665 				seq_printf(seq, "[%s] ", pers[i]->name);
3666 
3667 		spin_unlock(&pers_lock);
3668 		seq_printf(seq, "\n");
3669 		return 0;
3670 	}
3671 	if (v == (void*)2) {
3672 		status_unused(seq);
3673 		return 0;
3674 	}
3675 
3676 	if (mddev_lock(mddev)!=0)
3677 		return -EINTR;
3678 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3679 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3680 						mddev->pers ? "" : "in");
3681 		if (mddev->pers) {
3682 			if (mddev->ro)
3683 				seq_printf(seq, " (read-only)");
3684 			seq_printf(seq, " %s", mddev->pers->name);
3685 		}
3686 
3687 		size = 0;
3688 		ITERATE_RDEV(mddev,rdev,tmp2) {
3689 			char b[BDEVNAME_SIZE];
3690 			seq_printf(seq, " %s[%d]",
3691 				bdevname(rdev->bdev,b), rdev->desc_nr);
3692 			if (test_bit(WriteMostly, &rdev->flags))
3693 				seq_printf(seq, "(W)");
3694 			if (test_bit(Faulty, &rdev->flags)) {
3695 				seq_printf(seq, "(F)");
3696 				continue;
3697 			} else if (rdev->raid_disk < 0)
3698 				seq_printf(seq, "(S)"); /* spare */
3699 			size += rdev->size;
3700 		}
3701 
3702 		if (!list_empty(&mddev->disks)) {
3703 			if (mddev->pers)
3704 				seq_printf(seq, "\n      %llu blocks",
3705 					(unsigned long long)mddev->array_size);
3706 			else
3707 				seq_printf(seq, "\n      %llu blocks",
3708 					(unsigned long long)size);
3709 		}
3710 		if (mddev->persistent) {
3711 			if (mddev->major_version != 0 ||
3712 			    mddev->minor_version != 90) {
3713 				seq_printf(seq," super %d.%d",
3714 					   mddev->major_version,
3715 					   mddev->minor_version);
3716 			}
3717 		} else
3718 			seq_printf(seq, " super non-persistent");
3719 
3720 		if (mddev->pers) {
3721 			mddev->pers->status (seq, mddev);
3722 	 		seq_printf(seq, "\n      ");
3723 			if (mddev->curr_resync > 2) {
3724 				status_resync (seq, mddev);
3725 				seq_printf(seq, "\n      ");
3726 			} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3727 				seq_printf(seq, "	resync=DELAYED\n      ");
3728 		} else
3729 			seq_printf(seq, "\n       ");
3730 
3731 		if ((bitmap = mddev->bitmap)) {
3732 			unsigned long chunk_kb;
3733 			unsigned long flags;
3734 			spin_lock_irqsave(&bitmap->lock, flags);
3735 			chunk_kb = bitmap->chunksize >> 10;
3736 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3737 				"%lu%s chunk",
3738 				bitmap->pages - bitmap->missing_pages,
3739 				bitmap->pages,
3740 				(bitmap->pages - bitmap->missing_pages)
3741 					<< (PAGE_SHIFT - 10),
3742 				chunk_kb ? chunk_kb : bitmap->chunksize,
3743 				chunk_kb ? "KB" : "B");
3744 			if (bitmap->file) {
3745 				seq_printf(seq, ", file: ");
3746 				seq_path(seq, bitmap->file->f_vfsmnt,
3747 					 bitmap->file->f_dentry," \t\n");
3748 			}
3749 
3750 			seq_printf(seq, "\n");
3751 			spin_unlock_irqrestore(&bitmap->lock, flags);
3752 		}
3753 
3754 		seq_printf(seq, "\n");
3755 	}
3756 	mddev_unlock(mddev);
3757 
3758 	return 0;
3759 }
3760 
3761 static struct seq_operations md_seq_ops = {
3762 	.start  = md_seq_start,
3763 	.next   = md_seq_next,
3764 	.stop   = md_seq_stop,
3765 	.show   = md_seq_show,
3766 };
3767 
3768 static int md_seq_open(struct inode *inode, struct file *file)
3769 {
3770 	int error;
3771 
3772 	error = seq_open(file, &md_seq_ops);
3773 	return error;
3774 }
3775 
3776 static struct file_operations md_seq_fops = {
3777 	.open           = md_seq_open,
3778 	.read           = seq_read,
3779 	.llseek         = seq_lseek,
3780 	.release	= seq_release,
3781 };
3782 
3783 int register_md_personality(int pnum, mdk_personality_t *p)
3784 {
3785 	if (pnum >= MAX_PERSONALITY) {
3786 		printk(KERN_ERR
3787 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3788 		       p->name, pnum, MAX_PERSONALITY-1);
3789 		return -EINVAL;
3790 	}
3791 
3792 	spin_lock(&pers_lock);
3793 	if (pers[pnum]) {
3794 		spin_unlock(&pers_lock);
3795 		return -EBUSY;
3796 	}
3797 
3798 	pers[pnum] = p;
3799 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3800 	spin_unlock(&pers_lock);
3801 	return 0;
3802 }
3803 
3804 int unregister_md_personality(int pnum)
3805 {
3806 	if (pnum >= MAX_PERSONALITY)
3807 		return -EINVAL;
3808 
3809 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3810 	spin_lock(&pers_lock);
3811 	pers[pnum] = NULL;
3812 	spin_unlock(&pers_lock);
3813 	return 0;
3814 }
3815 
3816 static int is_mddev_idle(mddev_t *mddev)
3817 {
3818 	mdk_rdev_t * rdev;
3819 	struct list_head *tmp;
3820 	int idle;
3821 	unsigned long curr_events;
3822 
3823 	idle = 1;
3824 	ITERATE_RDEV(mddev,rdev,tmp) {
3825 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3826 		curr_events = disk_stat_read(disk, sectors[0]) +
3827 				disk_stat_read(disk, sectors[1]) -
3828 				atomic_read(&disk->sync_io);
3829 		/* Allow some slack between valud of curr_events and last_events,
3830 		 * as there are some uninteresting races.
3831 		 * Note: the following is an unsigned comparison.
3832 		 */
3833 		if ((curr_events - rdev->last_events + 32) > 64) {
3834 			rdev->last_events = curr_events;
3835 			idle = 0;
3836 		}
3837 	}
3838 	return idle;
3839 }
3840 
3841 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3842 {
3843 	/* another "blocks" (512byte) blocks have been synced */
3844 	atomic_sub(blocks, &mddev->recovery_active);
3845 	wake_up(&mddev->recovery_wait);
3846 	if (!ok) {
3847 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3848 		md_wakeup_thread(mddev->thread);
3849 		// stop recovery, signal do_sync ....
3850 	}
3851 }
3852 
3853 
3854 /* md_write_start(mddev, bi)
3855  * If we need to update some array metadata (e.g. 'active' flag
3856  * in superblock) before writing, schedule a superblock update
3857  * and wait for it to complete.
3858  */
3859 void md_write_start(mddev_t *mddev, struct bio *bi)
3860 {
3861 	if (bio_data_dir(bi) != WRITE)
3862 		return;
3863 
3864 	atomic_inc(&mddev->writes_pending);
3865 	if (mddev->in_sync) {
3866 		spin_lock_irq(&mddev->write_lock);
3867 		if (mddev->in_sync) {
3868 			mddev->in_sync = 0;
3869 			mddev->sb_dirty = 1;
3870 			md_wakeup_thread(mddev->thread);
3871 		}
3872 		spin_unlock_irq(&mddev->write_lock);
3873 	}
3874 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3875 }
3876 
3877 void md_write_end(mddev_t *mddev)
3878 {
3879 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3880 		if (mddev->safemode == 2)
3881 			md_wakeup_thread(mddev->thread);
3882 		else
3883 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3884 	}
3885 }
3886 
3887 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3888 
3889 #define SYNC_MARKS	10
3890 #define	SYNC_MARK_STEP	(3*HZ)
3891 static void md_do_sync(mddev_t *mddev)
3892 {
3893 	mddev_t *mddev2;
3894 	unsigned int currspeed = 0,
3895 		 window;
3896 	sector_t max_sectors,j, io_sectors;
3897 	unsigned long mark[SYNC_MARKS];
3898 	sector_t mark_cnt[SYNC_MARKS];
3899 	int last_mark,m;
3900 	struct list_head *tmp;
3901 	sector_t last_check;
3902 	int skipped = 0;
3903 
3904 	/* just incase thread restarts... */
3905 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3906 		return;
3907 
3908 	/* we overload curr_resync somewhat here.
3909 	 * 0 == not engaged in resync at all
3910 	 * 2 == checking that there is no conflict with another sync
3911 	 * 1 == like 2, but have yielded to allow conflicting resync to
3912 	 *		commense
3913 	 * other == active in resync - this many blocks
3914 	 *
3915 	 * Before starting a resync we must have set curr_resync to
3916 	 * 2, and then checked that every "conflicting" array has curr_resync
3917 	 * less than ours.  When we find one that is the same or higher
3918 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3919 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3920 	 * This will mean we have to start checking from the beginning again.
3921 	 *
3922 	 */
3923 
3924 	do {
3925 		mddev->curr_resync = 2;
3926 
3927 	try_again:
3928 		if (signal_pending(current) ||
3929 		    kthread_should_stop()) {
3930 			flush_signals(current);
3931 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3932 			goto skip;
3933 		}
3934 		ITERATE_MDDEV(mddev2,tmp) {
3935 			if (mddev2 == mddev)
3936 				continue;
3937 			if (mddev2->curr_resync &&
3938 			    match_mddev_units(mddev,mddev2)) {
3939 				DEFINE_WAIT(wq);
3940 				if (mddev < mddev2 && mddev->curr_resync == 2) {
3941 					/* arbitrarily yield */
3942 					mddev->curr_resync = 1;
3943 					wake_up(&resync_wait);
3944 				}
3945 				if (mddev > mddev2 && mddev->curr_resync == 1)
3946 					/* no need to wait here, we can wait the next
3947 					 * time 'round when curr_resync == 2
3948 					 */
3949 					continue;
3950 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3951 				if (!signal_pending(current) &&
3952 				    !kthread_should_stop() &&
3953 				    mddev2->curr_resync >= mddev->curr_resync) {
3954 					printk(KERN_INFO "md: delaying resync of %s"
3955 					       " until %s has finished resync (they"
3956 					       " share one or more physical units)\n",
3957 					       mdname(mddev), mdname(mddev2));
3958 					mddev_put(mddev2);
3959 					schedule();
3960 					finish_wait(&resync_wait, &wq);
3961 					goto try_again;
3962 				}
3963 				finish_wait(&resync_wait, &wq);
3964 			}
3965 		}
3966 	} while (mddev->curr_resync < 2);
3967 
3968 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3969 		/* resync follows the size requested by the personality,
3970 		 * which defaults to physical size, but can be virtual size
3971 		 */
3972 		max_sectors = mddev->resync_max_sectors;
3973 		mddev->resync_mismatches = 0;
3974 	} else
3975 		/* recovery follows the physical size of devices */
3976 		max_sectors = mddev->size << 1;
3977 
3978 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3979 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3980 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
3981 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
3982 	       "(but not more than %d KB/sec) for reconstruction.\n",
3983 	       sysctl_speed_limit_max);
3984 
3985 	is_mddev_idle(mddev); /* this also initializes IO event counters */
3986 	/* we don't use the checkpoint if there's a bitmap */
3987 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
3988 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3989 		j = mddev->recovery_cp;
3990 	else
3991 		j = 0;
3992 	io_sectors = 0;
3993 	for (m = 0; m < SYNC_MARKS; m++) {
3994 		mark[m] = jiffies;
3995 		mark_cnt[m] = io_sectors;
3996 	}
3997 	last_mark = 0;
3998 	mddev->resync_mark = mark[last_mark];
3999 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4000 
4001 	/*
4002 	 * Tune reconstruction:
4003 	 */
4004 	window = 32*(PAGE_SIZE/512);
4005 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4006 		window/2,(unsigned long long) max_sectors/2);
4007 
4008 	atomic_set(&mddev->recovery_active, 0);
4009 	init_waitqueue_head(&mddev->recovery_wait);
4010 	last_check = 0;
4011 
4012 	if (j>2) {
4013 		printk(KERN_INFO
4014 			"md: resuming recovery of %s from checkpoint.\n",
4015 			mdname(mddev));
4016 		mddev->curr_resync = j;
4017 	}
4018 
4019 	while (j < max_sectors) {
4020 		sector_t sectors;
4021 
4022 		skipped = 0;
4023 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4024 					    currspeed < sysctl_speed_limit_min);
4025 		if (sectors == 0) {
4026 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4027 			goto out;
4028 		}
4029 
4030 		if (!skipped) { /* actual IO requested */
4031 			io_sectors += sectors;
4032 			atomic_add(sectors, &mddev->recovery_active);
4033 		}
4034 
4035 		j += sectors;
4036 		if (j>1) mddev->curr_resync = j;
4037 
4038 
4039 		if (last_check + window > io_sectors || j == max_sectors)
4040 			continue;
4041 
4042 		last_check = io_sectors;
4043 
4044 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4045 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4046 			break;
4047 
4048 	repeat:
4049 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4050 			/* step marks */
4051 			int next = (last_mark+1) % SYNC_MARKS;
4052 
4053 			mddev->resync_mark = mark[next];
4054 			mddev->resync_mark_cnt = mark_cnt[next];
4055 			mark[next] = jiffies;
4056 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4057 			last_mark = next;
4058 		}
4059 
4060 
4061 		if (signal_pending(current) || kthread_should_stop()) {
4062 			/*
4063 			 * got a signal, exit.
4064 			 */
4065 			printk(KERN_INFO
4066 				"md: md_do_sync() got signal ... exiting\n");
4067 			flush_signals(current);
4068 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4069 			goto out;
4070 		}
4071 
4072 		/*
4073 		 * this loop exits only if either when we are slower than
4074 		 * the 'hard' speed limit, or the system was IO-idle for
4075 		 * a jiffy.
4076 		 * the system might be non-idle CPU-wise, but we only care
4077 		 * about not overloading the IO subsystem. (things like an
4078 		 * e2fsck being done on the RAID array should execute fast)
4079 		 */
4080 		mddev->queue->unplug_fn(mddev->queue);
4081 		cond_resched();
4082 
4083 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4084 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4085 
4086 		if (currspeed > sysctl_speed_limit_min) {
4087 			if ((currspeed > sysctl_speed_limit_max) ||
4088 					!is_mddev_idle(mddev)) {
4089 				msleep_interruptible(250);
4090 				goto repeat;
4091 			}
4092 		}
4093 	}
4094 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4095 	/*
4096 	 * this also signals 'finished resyncing' to md_stop
4097 	 */
4098  out:
4099 	mddev->queue->unplug_fn(mddev->queue);
4100 
4101 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4102 
4103 	/* tell personality that we are finished */
4104 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4105 
4106 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4107 	    mddev->curr_resync > 2 &&
4108 	    mddev->curr_resync >= mddev->recovery_cp) {
4109 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4110 			printk(KERN_INFO
4111 				"md: checkpointing recovery of %s.\n",
4112 				mdname(mddev));
4113 			mddev->recovery_cp = mddev->curr_resync;
4114 		} else
4115 			mddev->recovery_cp = MaxSector;
4116 	}
4117 
4118  skip:
4119 	mddev->curr_resync = 0;
4120 	wake_up(&resync_wait);
4121 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4122 	md_wakeup_thread(mddev->thread);
4123 }
4124 
4125 
4126 /*
4127  * This routine is regularly called by all per-raid-array threads to
4128  * deal with generic issues like resync and super-block update.
4129  * Raid personalities that don't have a thread (linear/raid0) do not
4130  * need this as they never do any recovery or update the superblock.
4131  *
4132  * It does not do any resync itself, but rather "forks" off other threads
4133  * to do that as needed.
4134  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4135  * "->recovery" and create a thread at ->sync_thread.
4136  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4137  * and wakeups up this thread which will reap the thread and finish up.
4138  * This thread also removes any faulty devices (with nr_pending == 0).
4139  *
4140  * The overall approach is:
4141  *  1/ if the superblock needs updating, update it.
4142  *  2/ If a recovery thread is running, don't do anything else.
4143  *  3/ If recovery has finished, clean up, possibly marking spares active.
4144  *  4/ If there are any faulty devices, remove them.
4145  *  5/ If array is degraded, try to add spares devices
4146  *  6/ If array has spares or is not in-sync, start a resync thread.
4147  */
4148 void md_check_recovery(mddev_t *mddev)
4149 {
4150 	mdk_rdev_t *rdev;
4151 	struct list_head *rtmp;
4152 
4153 
4154 	if (mddev->bitmap)
4155 		bitmap_daemon_work(mddev->bitmap);
4156 
4157 	if (mddev->ro)
4158 		return;
4159 
4160 	if (signal_pending(current)) {
4161 		if (mddev->pers->sync_request) {
4162 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4163 			       mdname(mddev));
4164 			mddev->safemode = 2;
4165 		}
4166 		flush_signals(current);
4167 	}
4168 
4169 	if ( ! (
4170 		mddev->sb_dirty ||
4171 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4172 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4173 		(mddev->safemode == 1) ||
4174 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4175 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4176 		))
4177 		return;
4178 
4179 	if (mddev_trylock(mddev)==0) {
4180 		int spares =0;
4181 
4182 		spin_lock_irq(&mddev->write_lock);
4183 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4184 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4185 			mddev->in_sync = 1;
4186 			mddev->sb_dirty = 1;
4187 		}
4188 		if (mddev->safemode == 1)
4189 			mddev->safemode = 0;
4190 		spin_unlock_irq(&mddev->write_lock);
4191 
4192 		if (mddev->sb_dirty)
4193 			md_update_sb(mddev);
4194 
4195 
4196 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4197 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4198 			/* resync/recovery still happening */
4199 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4200 			goto unlock;
4201 		}
4202 		if (mddev->sync_thread) {
4203 			/* resync has finished, collect result */
4204 			md_unregister_thread(mddev->sync_thread);
4205 			mddev->sync_thread = NULL;
4206 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4207 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4208 				/* success...*/
4209 				/* activate any spares */
4210 				mddev->pers->spare_active(mddev);
4211 			}
4212 			md_update_sb(mddev);
4213 
4214 			/* if array is no-longer degraded, then any saved_raid_disk
4215 			 * information must be scrapped
4216 			 */
4217 			if (!mddev->degraded)
4218 				ITERATE_RDEV(mddev,rdev,rtmp)
4219 					rdev->saved_raid_disk = -1;
4220 
4221 			mddev->recovery = 0;
4222 			/* flag recovery needed just to double check */
4223 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4224 			goto unlock;
4225 		}
4226 		/* Clear some bits that don't mean anything, but
4227 		 * might be left set
4228 		 */
4229 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4230 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4231 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4232 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4233 
4234 		/* no recovery is running.
4235 		 * remove any failed drives, then
4236 		 * add spares if possible.
4237 		 * Spare are also removed and re-added, to allow
4238 		 * the personality to fail the re-add.
4239 		 */
4240 		ITERATE_RDEV(mddev,rdev,rtmp)
4241 			if (rdev->raid_disk >= 0 &&
4242 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4243 			    atomic_read(&rdev->nr_pending)==0) {
4244 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4245 					char nm[20];
4246 					sprintf(nm,"rd%d", rdev->raid_disk);
4247 					sysfs_remove_link(&mddev->kobj, nm);
4248 					rdev->raid_disk = -1;
4249 				}
4250 			}
4251 
4252 		if (mddev->degraded) {
4253 			ITERATE_RDEV(mddev,rdev,rtmp)
4254 				if (rdev->raid_disk < 0
4255 				    && !test_bit(Faulty, &rdev->flags)) {
4256 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4257 						char nm[20];
4258 						sprintf(nm, "rd%d", rdev->raid_disk);
4259 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4260 						spares++;
4261 					} else
4262 						break;
4263 				}
4264 		}
4265 
4266 		if (spares) {
4267 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4268 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4269 		} else if (mddev->recovery_cp < MaxSector) {
4270 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4271 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4272 			/* nothing to be done ... */
4273 			goto unlock;
4274 
4275 		if (mddev->pers->sync_request) {
4276 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4277 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4278 				/* We are adding a device or devices to an array
4279 				 * which has the bitmap stored on all devices.
4280 				 * So make sure all bitmap pages get written
4281 				 */
4282 				bitmap_write_all(mddev->bitmap);
4283 			}
4284 			mddev->sync_thread = md_register_thread(md_do_sync,
4285 								mddev,
4286 								"%s_resync");
4287 			if (!mddev->sync_thread) {
4288 				printk(KERN_ERR "%s: could not start resync"
4289 					" thread...\n",
4290 					mdname(mddev));
4291 				/* leave the spares where they are, it shouldn't hurt */
4292 				mddev->recovery = 0;
4293 			} else {
4294 				md_wakeup_thread(mddev->sync_thread);
4295 			}
4296 		}
4297 	unlock:
4298 		mddev_unlock(mddev);
4299 	}
4300 }
4301 
4302 static int md_notify_reboot(struct notifier_block *this,
4303 			    unsigned long code, void *x)
4304 {
4305 	struct list_head *tmp;
4306 	mddev_t *mddev;
4307 
4308 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4309 
4310 		printk(KERN_INFO "md: stopping all md devices.\n");
4311 
4312 		ITERATE_MDDEV(mddev,tmp)
4313 			if (mddev_trylock(mddev)==0)
4314 				do_md_stop (mddev, 1);
4315 		/*
4316 		 * certain more exotic SCSI devices are known to be
4317 		 * volatile wrt too early system reboots. While the
4318 		 * right place to handle this issue is the given
4319 		 * driver, we do want to have a safe RAID driver ...
4320 		 */
4321 		mdelay(1000*1);
4322 	}
4323 	return NOTIFY_DONE;
4324 }
4325 
4326 static struct notifier_block md_notifier = {
4327 	.notifier_call	= md_notify_reboot,
4328 	.next		= NULL,
4329 	.priority	= INT_MAX, /* before any real devices */
4330 };
4331 
4332 static void md_geninit(void)
4333 {
4334 	struct proc_dir_entry *p;
4335 
4336 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4337 
4338 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4339 	if (p)
4340 		p->proc_fops = &md_seq_fops;
4341 }
4342 
4343 static int __init md_init(void)
4344 {
4345 	int minor;
4346 
4347 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4348 			" MD_SB_DISKS=%d\n",
4349 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4350 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4351 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4352 			BITMAP_MINOR);
4353 
4354 	if (register_blkdev(MAJOR_NR, "md"))
4355 		return -1;
4356 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4357 		unregister_blkdev(MAJOR_NR, "md");
4358 		return -1;
4359 	}
4360 	devfs_mk_dir("md");
4361 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4362 				md_probe, NULL, NULL);
4363 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4364 			    md_probe, NULL, NULL);
4365 
4366 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4367 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4368 				S_IFBLK|S_IRUSR|S_IWUSR,
4369 				"md/%d", minor);
4370 
4371 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4372 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4373 			      S_IFBLK|S_IRUSR|S_IWUSR,
4374 			      "md/mdp%d", minor);
4375 
4376 
4377 	register_reboot_notifier(&md_notifier);
4378 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4379 
4380 	md_geninit();
4381 	return (0);
4382 }
4383 
4384 
4385 #ifndef MODULE
4386 
4387 /*
4388  * Searches all registered partitions for autorun RAID arrays
4389  * at boot time.
4390  */
4391 static dev_t detected_devices[128];
4392 static int dev_cnt;
4393 
4394 void md_autodetect_dev(dev_t dev)
4395 {
4396 	if (dev_cnt >= 0 && dev_cnt < 127)
4397 		detected_devices[dev_cnt++] = dev;
4398 }
4399 
4400 
4401 static void autostart_arrays(int part)
4402 {
4403 	mdk_rdev_t *rdev;
4404 	int i;
4405 
4406 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4407 
4408 	for (i = 0; i < dev_cnt; i++) {
4409 		dev_t dev = detected_devices[i];
4410 
4411 		rdev = md_import_device(dev,0, 0);
4412 		if (IS_ERR(rdev))
4413 			continue;
4414 
4415 		if (test_bit(Faulty, &rdev->flags)) {
4416 			MD_BUG();
4417 			continue;
4418 		}
4419 		list_add(&rdev->same_set, &pending_raid_disks);
4420 	}
4421 	dev_cnt = 0;
4422 
4423 	autorun_devices(part);
4424 }
4425 
4426 #endif
4427 
4428 static __exit void md_exit(void)
4429 {
4430 	mddev_t *mddev;
4431 	struct list_head *tmp;
4432 	int i;
4433 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4434 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4435 	for (i=0; i < MAX_MD_DEVS; i++)
4436 		devfs_remove("md/%d", i);
4437 	for (i=0; i < MAX_MD_DEVS; i++)
4438 		devfs_remove("md/d%d", i);
4439 
4440 	devfs_remove("md");
4441 
4442 	unregister_blkdev(MAJOR_NR,"md");
4443 	unregister_blkdev(mdp_major, "mdp");
4444 	unregister_reboot_notifier(&md_notifier);
4445 	unregister_sysctl_table(raid_table_header);
4446 	remove_proc_entry("mdstat", NULL);
4447 	ITERATE_MDDEV(mddev,tmp) {
4448 		struct gendisk *disk = mddev->gendisk;
4449 		if (!disk)
4450 			continue;
4451 		export_array(mddev);
4452 		del_gendisk(disk);
4453 		put_disk(disk);
4454 		mddev->gendisk = NULL;
4455 		mddev_put(mddev);
4456 	}
4457 }
4458 
4459 module_init(md_init)
4460 module_exit(md_exit)
4461 
4462 EXPORT_SYMBOL(register_md_personality);
4463 EXPORT_SYMBOL(unregister_md_personality);
4464 EXPORT_SYMBOL(md_error);
4465 EXPORT_SYMBOL(md_done_sync);
4466 EXPORT_SYMBOL(md_write_start);
4467 EXPORT_SYMBOL(md_write_end);
4468 EXPORT_SYMBOL(md_register_thread);
4469 EXPORT_SYMBOL(md_unregister_thread);
4470 EXPORT_SYMBOL(md_wakeup_thread);
4471 EXPORT_SYMBOL(md_print_devices);
4472 EXPORT_SYMBOL(md_check_recovery);
4473 MODULE_LICENSE("GPL");
4474 MODULE_ALIAS("md");
4475 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4476