xref: /openbmc/linux/drivers/md/md.c (revision a885c8c4)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46 
47 #include <linux/init.h>
48 
49 #include <linux/file.h>
50 
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54 
55 #include <asm/unaligned.h>
56 
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59 
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62 
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65 
66 
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70 
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73 
74 /*
75  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
76  * is 1000 KB/sec, so the extra system load does not show up that much.
77  * Increase it if you want to have more _guaranteed_ speed. Note that
78  * the RAID driver will use the maximum available bandwidth if the IO
79  * subsystem is idle. There is also an 'absolute maximum' reconstruction
80  * speed limit - in case reconstruction slows down your system despite
81  * idle IO detection.
82  *
83  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84  * or /sys/block/mdX/md/sync_speed_{min,max}
85  */
86 
87 static int sysctl_speed_limit_min = 1000;
88 static int sysctl_speed_limit_max = 200000;
89 static inline int speed_min(mddev_t *mddev)
90 {
91 	return mddev->sync_speed_min ?
92 		mddev->sync_speed_min : sysctl_speed_limit_min;
93 }
94 
95 static inline int speed_max(mddev_t *mddev)
96 {
97 	return mddev->sync_speed_max ?
98 		mddev->sync_speed_max : sysctl_speed_limit_max;
99 }
100 
101 static struct ctl_table_header *raid_table_header;
102 
103 static ctl_table raid_table[] = {
104 	{
105 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
106 		.procname	= "speed_limit_min",
107 		.data		= &sysctl_speed_limit_min,
108 		.maxlen		= sizeof(int),
109 		.mode		= 0644,
110 		.proc_handler	= &proc_dointvec,
111 	},
112 	{
113 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
114 		.procname	= "speed_limit_max",
115 		.data		= &sysctl_speed_limit_max,
116 		.maxlen		= sizeof(int),
117 		.mode		= 0644,
118 		.proc_handler	= &proc_dointvec,
119 	},
120 	{ .ctl_name = 0 }
121 };
122 
123 static ctl_table raid_dir_table[] = {
124 	{
125 		.ctl_name	= DEV_RAID,
126 		.procname	= "raid",
127 		.maxlen		= 0,
128 		.mode		= 0555,
129 		.child		= raid_table,
130 	},
131 	{ .ctl_name = 0 }
132 };
133 
134 static ctl_table raid_root_table[] = {
135 	{
136 		.ctl_name	= CTL_DEV,
137 		.procname	= "dev",
138 		.maxlen		= 0,
139 		.mode		= 0555,
140 		.child		= raid_dir_table,
141 	},
142 	{ .ctl_name = 0 }
143 };
144 
145 static struct block_device_operations md_fops;
146 
147 static int start_readonly;
148 
149 /*
150  * We have a system wide 'event count' that is incremented
151  * on any 'interesting' event, and readers of /proc/mdstat
152  * can use 'poll' or 'select' to find out when the event
153  * count increases.
154  *
155  * Events are:
156  *  start array, stop array, error, add device, remove device,
157  *  start build, activate spare
158  */
159 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
160 static atomic_t md_event_count;
161 static void md_new_event(mddev_t *mddev)
162 {
163 	atomic_inc(&md_event_count);
164 	wake_up(&md_event_waiters);
165 }
166 
167 /*
168  * Enables to iterate over all existing md arrays
169  * all_mddevs_lock protects this list.
170  */
171 static LIST_HEAD(all_mddevs);
172 static DEFINE_SPINLOCK(all_mddevs_lock);
173 
174 
175 /*
176  * iterates through all used mddevs in the system.
177  * We take care to grab the all_mddevs_lock whenever navigating
178  * the list, and to always hold a refcount when unlocked.
179  * Any code which breaks out of this loop while own
180  * a reference to the current mddev and must mddev_put it.
181  */
182 #define ITERATE_MDDEV(mddev,tmp)					\
183 									\
184 	for (({ spin_lock(&all_mddevs_lock); 				\
185 		tmp = all_mddevs.next;					\
186 		mddev = NULL;});					\
187 	     ({ if (tmp != &all_mddevs)					\
188 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
189 		spin_unlock(&all_mddevs_lock);				\
190 		if (mddev) mddev_put(mddev);				\
191 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
192 		tmp != &all_mddevs;});					\
193 	     ({ spin_lock(&all_mddevs_lock);				\
194 		tmp = tmp->next;})					\
195 		)
196 
197 
198 static int md_fail_request (request_queue_t *q, struct bio *bio)
199 {
200 	bio_io_error(bio, bio->bi_size);
201 	return 0;
202 }
203 
204 static inline mddev_t *mddev_get(mddev_t *mddev)
205 {
206 	atomic_inc(&mddev->active);
207 	return mddev;
208 }
209 
210 static void mddev_put(mddev_t *mddev)
211 {
212 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
213 		return;
214 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
215 		list_del(&mddev->all_mddevs);
216 		blk_put_queue(mddev->queue);
217 		kobject_unregister(&mddev->kobj);
218 	}
219 	spin_unlock(&all_mddevs_lock);
220 }
221 
222 static mddev_t * mddev_find(dev_t unit)
223 {
224 	mddev_t *mddev, *new = NULL;
225 
226  retry:
227 	spin_lock(&all_mddevs_lock);
228 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
229 		if (mddev->unit == unit) {
230 			mddev_get(mddev);
231 			spin_unlock(&all_mddevs_lock);
232 			kfree(new);
233 			return mddev;
234 		}
235 
236 	if (new) {
237 		list_add(&new->all_mddevs, &all_mddevs);
238 		spin_unlock(&all_mddevs_lock);
239 		return new;
240 	}
241 	spin_unlock(&all_mddevs_lock);
242 
243 	new = kzalloc(sizeof(*new), GFP_KERNEL);
244 	if (!new)
245 		return NULL;
246 
247 	new->unit = unit;
248 	if (MAJOR(unit) == MD_MAJOR)
249 		new->md_minor = MINOR(unit);
250 	else
251 		new->md_minor = MINOR(unit) >> MdpMinorShift;
252 
253 	init_MUTEX(&new->reconfig_sem);
254 	INIT_LIST_HEAD(&new->disks);
255 	INIT_LIST_HEAD(&new->all_mddevs);
256 	init_timer(&new->safemode_timer);
257 	atomic_set(&new->active, 1);
258 	spin_lock_init(&new->write_lock);
259 	init_waitqueue_head(&new->sb_wait);
260 
261 	new->queue = blk_alloc_queue(GFP_KERNEL);
262 	if (!new->queue) {
263 		kfree(new);
264 		return NULL;
265 	}
266 
267 	blk_queue_make_request(new->queue, md_fail_request);
268 
269 	goto retry;
270 }
271 
272 static inline int mddev_lock(mddev_t * mddev)
273 {
274 	return down_interruptible(&mddev->reconfig_sem);
275 }
276 
277 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
278 {
279 	down(&mddev->reconfig_sem);
280 }
281 
282 static inline int mddev_trylock(mddev_t * mddev)
283 {
284 	return down_trylock(&mddev->reconfig_sem);
285 }
286 
287 static inline void mddev_unlock(mddev_t * mddev)
288 {
289 	up(&mddev->reconfig_sem);
290 
291 	md_wakeup_thread(mddev->thread);
292 }
293 
294 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
295 {
296 	mdk_rdev_t * rdev;
297 	struct list_head *tmp;
298 
299 	ITERATE_RDEV(mddev,rdev,tmp) {
300 		if (rdev->desc_nr == nr)
301 			return rdev;
302 	}
303 	return NULL;
304 }
305 
306 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
307 {
308 	struct list_head *tmp;
309 	mdk_rdev_t *rdev;
310 
311 	ITERATE_RDEV(mddev,rdev,tmp) {
312 		if (rdev->bdev->bd_dev == dev)
313 			return rdev;
314 	}
315 	return NULL;
316 }
317 
318 static struct mdk_personality *find_pers(int level, char *clevel)
319 {
320 	struct mdk_personality *pers;
321 	list_for_each_entry(pers, &pers_list, list) {
322 		if (level != LEVEL_NONE && pers->level == level)
323 			return pers;
324 		if (strcmp(pers->name, clevel)==0)
325 			return pers;
326 	}
327 	return NULL;
328 }
329 
330 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
331 {
332 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
333 	return MD_NEW_SIZE_BLOCKS(size);
334 }
335 
336 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
337 {
338 	sector_t size;
339 
340 	size = rdev->sb_offset;
341 
342 	if (chunk_size)
343 		size &= ~((sector_t)chunk_size/1024 - 1);
344 	return size;
345 }
346 
347 static int alloc_disk_sb(mdk_rdev_t * rdev)
348 {
349 	if (rdev->sb_page)
350 		MD_BUG();
351 
352 	rdev->sb_page = alloc_page(GFP_KERNEL);
353 	if (!rdev->sb_page) {
354 		printk(KERN_ALERT "md: out of memory.\n");
355 		return -EINVAL;
356 	}
357 
358 	return 0;
359 }
360 
361 static void free_disk_sb(mdk_rdev_t * rdev)
362 {
363 	if (rdev->sb_page) {
364 		put_page(rdev->sb_page);
365 		rdev->sb_loaded = 0;
366 		rdev->sb_page = NULL;
367 		rdev->sb_offset = 0;
368 		rdev->size = 0;
369 	}
370 }
371 
372 
373 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
374 {
375 	mdk_rdev_t *rdev = bio->bi_private;
376 	mddev_t *mddev = rdev->mddev;
377 	if (bio->bi_size)
378 		return 1;
379 
380 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
381 		md_error(mddev, rdev);
382 
383 	if (atomic_dec_and_test(&mddev->pending_writes))
384 		wake_up(&mddev->sb_wait);
385 	bio_put(bio);
386 	return 0;
387 }
388 
389 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
390 {
391 	struct bio *bio2 = bio->bi_private;
392 	mdk_rdev_t *rdev = bio2->bi_private;
393 	mddev_t *mddev = rdev->mddev;
394 	if (bio->bi_size)
395 		return 1;
396 
397 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
398 	    error == -EOPNOTSUPP) {
399 		unsigned long flags;
400 		/* barriers don't appear to be supported :-( */
401 		set_bit(BarriersNotsupp, &rdev->flags);
402 		mddev->barriers_work = 0;
403 		spin_lock_irqsave(&mddev->write_lock, flags);
404 		bio2->bi_next = mddev->biolist;
405 		mddev->biolist = bio2;
406 		spin_unlock_irqrestore(&mddev->write_lock, flags);
407 		wake_up(&mddev->sb_wait);
408 		bio_put(bio);
409 		return 0;
410 	}
411 	bio_put(bio2);
412 	bio->bi_private = rdev;
413 	return super_written(bio, bytes_done, error);
414 }
415 
416 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
417 		   sector_t sector, int size, struct page *page)
418 {
419 	/* write first size bytes of page to sector of rdev
420 	 * Increment mddev->pending_writes before returning
421 	 * and decrement it on completion, waking up sb_wait
422 	 * if zero is reached.
423 	 * If an error occurred, call md_error
424 	 *
425 	 * As we might need to resubmit the request if BIO_RW_BARRIER
426 	 * causes ENOTSUPP, we allocate a spare bio...
427 	 */
428 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
429 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
430 
431 	bio->bi_bdev = rdev->bdev;
432 	bio->bi_sector = sector;
433 	bio_add_page(bio, page, size, 0);
434 	bio->bi_private = rdev;
435 	bio->bi_end_io = super_written;
436 	bio->bi_rw = rw;
437 
438 	atomic_inc(&mddev->pending_writes);
439 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
440 		struct bio *rbio;
441 		rw |= (1<<BIO_RW_BARRIER);
442 		rbio = bio_clone(bio, GFP_NOIO);
443 		rbio->bi_private = bio;
444 		rbio->bi_end_io = super_written_barrier;
445 		submit_bio(rw, rbio);
446 	} else
447 		submit_bio(rw, bio);
448 }
449 
450 void md_super_wait(mddev_t *mddev)
451 {
452 	/* wait for all superblock writes that were scheduled to complete.
453 	 * if any had to be retried (due to BARRIER problems), retry them
454 	 */
455 	DEFINE_WAIT(wq);
456 	for(;;) {
457 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
458 		if (atomic_read(&mddev->pending_writes)==0)
459 			break;
460 		while (mddev->biolist) {
461 			struct bio *bio;
462 			spin_lock_irq(&mddev->write_lock);
463 			bio = mddev->biolist;
464 			mddev->biolist = bio->bi_next ;
465 			bio->bi_next = NULL;
466 			spin_unlock_irq(&mddev->write_lock);
467 			submit_bio(bio->bi_rw, bio);
468 		}
469 		schedule();
470 	}
471 	finish_wait(&mddev->sb_wait, &wq);
472 }
473 
474 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
475 {
476 	if (bio->bi_size)
477 		return 1;
478 
479 	complete((struct completion*)bio->bi_private);
480 	return 0;
481 }
482 
483 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
484 		   struct page *page, int rw)
485 {
486 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
487 	struct completion event;
488 	int ret;
489 
490 	rw |= (1 << BIO_RW_SYNC);
491 
492 	bio->bi_bdev = bdev;
493 	bio->bi_sector = sector;
494 	bio_add_page(bio, page, size, 0);
495 	init_completion(&event);
496 	bio->bi_private = &event;
497 	bio->bi_end_io = bi_complete;
498 	submit_bio(rw, bio);
499 	wait_for_completion(&event);
500 
501 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
502 	bio_put(bio);
503 	return ret;
504 }
505 EXPORT_SYMBOL_GPL(sync_page_io);
506 
507 static int read_disk_sb(mdk_rdev_t * rdev, int size)
508 {
509 	char b[BDEVNAME_SIZE];
510 	if (!rdev->sb_page) {
511 		MD_BUG();
512 		return -EINVAL;
513 	}
514 	if (rdev->sb_loaded)
515 		return 0;
516 
517 
518 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
519 		goto fail;
520 	rdev->sb_loaded = 1;
521 	return 0;
522 
523 fail:
524 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
525 		bdevname(rdev->bdev,b));
526 	return -EINVAL;
527 }
528 
529 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
530 {
531 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
532 		(sb1->set_uuid1 == sb2->set_uuid1) &&
533 		(sb1->set_uuid2 == sb2->set_uuid2) &&
534 		(sb1->set_uuid3 == sb2->set_uuid3))
535 
536 		return 1;
537 
538 	return 0;
539 }
540 
541 
542 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
543 {
544 	int ret;
545 	mdp_super_t *tmp1, *tmp2;
546 
547 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
548 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
549 
550 	if (!tmp1 || !tmp2) {
551 		ret = 0;
552 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
553 		goto abort;
554 	}
555 
556 	*tmp1 = *sb1;
557 	*tmp2 = *sb2;
558 
559 	/*
560 	 * nr_disks is not constant
561 	 */
562 	tmp1->nr_disks = 0;
563 	tmp2->nr_disks = 0;
564 
565 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
566 		ret = 0;
567 	else
568 		ret = 1;
569 
570 abort:
571 	kfree(tmp1);
572 	kfree(tmp2);
573 	return ret;
574 }
575 
576 static unsigned int calc_sb_csum(mdp_super_t * sb)
577 {
578 	unsigned int disk_csum, csum;
579 
580 	disk_csum = sb->sb_csum;
581 	sb->sb_csum = 0;
582 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
583 	sb->sb_csum = disk_csum;
584 	return csum;
585 }
586 
587 
588 /*
589  * Handle superblock details.
590  * We want to be able to handle multiple superblock formats
591  * so we have a common interface to them all, and an array of
592  * different handlers.
593  * We rely on user-space to write the initial superblock, and support
594  * reading and updating of superblocks.
595  * Interface methods are:
596  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
597  *      loads and validates a superblock on dev.
598  *      if refdev != NULL, compare superblocks on both devices
599  *    Return:
600  *      0 - dev has a superblock that is compatible with refdev
601  *      1 - dev has a superblock that is compatible and newer than refdev
602  *          so dev should be used as the refdev in future
603  *     -EINVAL superblock incompatible or invalid
604  *     -othererror e.g. -EIO
605  *
606  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
607  *      Verify that dev is acceptable into mddev.
608  *       The first time, mddev->raid_disks will be 0, and data from
609  *       dev should be merged in.  Subsequent calls check that dev
610  *       is new enough.  Return 0 or -EINVAL
611  *
612  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
613  *     Update the superblock for rdev with data in mddev
614  *     This does not write to disc.
615  *
616  */
617 
618 struct super_type  {
619 	char 		*name;
620 	struct module	*owner;
621 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
622 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
623 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
624 };
625 
626 /*
627  * load_super for 0.90.0
628  */
629 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
630 {
631 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
632 	mdp_super_t *sb;
633 	int ret;
634 	sector_t sb_offset;
635 
636 	/*
637 	 * Calculate the position of the superblock,
638 	 * it's at the end of the disk.
639 	 *
640 	 * It also happens to be a multiple of 4Kb.
641 	 */
642 	sb_offset = calc_dev_sboffset(rdev->bdev);
643 	rdev->sb_offset = sb_offset;
644 
645 	ret = read_disk_sb(rdev, MD_SB_BYTES);
646 	if (ret) return ret;
647 
648 	ret = -EINVAL;
649 
650 	bdevname(rdev->bdev, b);
651 	sb = (mdp_super_t*)page_address(rdev->sb_page);
652 
653 	if (sb->md_magic != MD_SB_MAGIC) {
654 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
655 		       b);
656 		goto abort;
657 	}
658 
659 	if (sb->major_version != 0 ||
660 	    sb->minor_version != 90) {
661 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
662 			sb->major_version, sb->minor_version,
663 			b);
664 		goto abort;
665 	}
666 
667 	if (sb->raid_disks <= 0)
668 		goto abort;
669 
670 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
671 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
672 			b);
673 		goto abort;
674 	}
675 
676 	rdev->preferred_minor = sb->md_minor;
677 	rdev->data_offset = 0;
678 	rdev->sb_size = MD_SB_BYTES;
679 
680 	if (sb->level == LEVEL_MULTIPATH)
681 		rdev->desc_nr = -1;
682 	else
683 		rdev->desc_nr = sb->this_disk.number;
684 
685 	if (refdev == 0)
686 		ret = 1;
687 	else {
688 		__u64 ev1, ev2;
689 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
690 		if (!uuid_equal(refsb, sb)) {
691 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
692 				b, bdevname(refdev->bdev,b2));
693 			goto abort;
694 		}
695 		if (!sb_equal(refsb, sb)) {
696 			printk(KERN_WARNING "md: %s has same UUID"
697 			       " but different superblock to %s\n",
698 			       b, bdevname(refdev->bdev, b2));
699 			goto abort;
700 		}
701 		ev1 = md_event(sb);
702 		ev2 = md_event(refsb);
703 		if (ev1 > ev2)
704 			ret = 1;
705 		else
706 			ret = 0;
707 	}
708 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
709 
710 	if (rdev->size < sb->size && sb->level > 1)
711 		/* "this cannot possibly happen" ... */
712 		ret = -EINVAL;
713 
714  abort:
715 	return ret;
716 }
717 
718 /*
719  * validate_super for 0.90.0
720  */
721 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
722 {
723 	mdp_disk_t *desc;
724 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
725 
726 	rdev->raid_disk = -1;
727 	rdev->flags = 0;
728 	if (mddev->raid_disks == 0) {
729 		mddev->major_version = 0;
730 		mddev->minor_version = sb->minor_version;
731 		mddev->patch_version = sb->patch_version;
732 		mddev->persistent = ! sb->not_persistent;
733 		mddev->chunk_size = sb->chunk_size;
734 		mddev->ctime = sb->ctime;
735 		mddev->utime = sb->utime;
736 		mddev->level = sb->level;
737 		mddev->clevel[0] = 0;
738 		mddev->layout = sb->layout;
739 		mddev->raid_disks = sb->raid_disks;
740 		mddev->size = sb->size;
741 		mddev->events = md_event(sb);
742 		mddev->bitmap_offset = 0;
743 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
744 
745 		if (sb->state & (1<<MD_SB_CLEAN))
746 			mddev->recovery_cp = MaxSector;
747 		else {
748 			if (sb->events_hi == sb->cp_events_hi &&
749 				sb->events_lo == sb->cp_events_lo) {
750 				mddev->recovery_cp = sb->recovery_cp;
751 			} else
752 				mddev->recovery_cp = 0;
753 		}
754 
755 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
756 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
757 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
758 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
759 
760 		mddev->max_disks = MD_SB_DISKS;
761 
762 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
763 		    mddev->bitmap_file == NULL) {
764 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
765 			    && mddev->level != 10) {
766 				/* FIXME use a better test */
767 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
768 				return -EINVAL;
769 			}
770 			mddev->bitmap_offset = mddev->default_bitmap_offset;
771 		}
772 
773 	} else if (mddev->pers == NULL) {
774 		/* Insist on good event counter while assembling */
775 		__u64 ev1 = md_event(sb);
776 		++ev1;
777 		if (ev1 < mddev->events)
778 			return -EINVAL;
779 	} else if (mddev->bitmap) {
780 		/* if adding to array with a bitmap, then we can accept an
781 		 * older device ... but not too old.
782 		 */
783 		__u64 ev1 = md_event(sb);
784 		if (ev1 < mddev->bitmap->events_cleared)
785 			return 0;
786 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
787 		return 0;
788 
789 	if (mddev->level != LEVEL_MULTIPATH) {
790 		desc = sb->disks + rdev->desc_nr;
791 
792 		if (desc->state & (1<<MD_DISK_FAULTY))
793 			set_bit(Faulty, &rdev->flags);
794 		else if (desc->state & (1<<MD_DISK_SYNC) &&
795 			 desc->raid_disk < mddev->raid_disks) {
796 			set_bit(In_sync, &rdev->flags);
797 			rdev->raid_disk = desc->raid_disk;
798 		}
799 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
800 			set_bit(WriteMostly, &rdev->flags);
801 	} else /* MULTIPATH are always insync */
802 		set_bit(In_sync, &rdev->flags);
803 	return 0;
804 }
805 
806 /*
807  * sync_super for 0.90.0
808  */
809 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
810 {
811 	mdp_super_t *sb;
812 	struct list_head *tmp;
813 	mdk_rdev_t *rdev2;
814 	int next_spare = mddev->raid_disks;
815 
816 
817 	/* make rdev->sb match mddev data..
818 	 *
819 	 * 1/ zero out disks
820 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
821 	 * 3/ any empty disks < next_spare become removed
822 	 *
823 	 * disks[0] gets initialised to REMOVED because
824 	 * we cannot be sure from other fields if it has
825 	 * been initialised or not.
826 	 */
827 	int i;
828 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
829 
830 	rdev->sb_size = MD_SB_BYTES;
831 
832 	sb = (mdp_super_t*)page_address(rdev->sb_page);
833 
834 	memset(sb, 0, sizeof(*sb));
835 
836 	sb->md_magic = MD_SB_MAGIC;
837 	sb->major_version = mddev->major_version;
838 	sb->minor_version = mddev->minor_version;
839 	sb->patch_version = mddev->patch_version;
840 	sb->gvalid_words  = 0; /* ignored */
841 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
842 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
843 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
844 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
845 
846 	sb->ctime = mddev->ctime;
847 	sb->level = mddev->level;
848 	sb->size  = mddev->size;
849 	sb->raid_disks = mddev->raid_disks;
850 	sb->md_minor = mddev->md_minor;
851 	sb->not_persistent = !mddev->persistent;
852 	sb->utime = mddev->utime;
853 	sb->state = 0;
854 	sb->events_hi = (mddev->events>>32);
855 	sb->events_lo = (u32)mddev->events;
856 
857 	if (mddev->in_sync)
858 	{
859 		sb->recovery_cp = mddev->recovery_cp;
860 		sb->cp_events_hi = (mddev->events>>32);
861 		sb->cp_events_lo = (u32)mddev->events;
862 		if (mddev->recovery_cp == MaxSector)
863 			sb->state = (1<< MD_SB_CLEAN);
864 	} else
865 		sb->recovery_cp = 0;
866 
867 	sb->layout = mddev->layout;
868 	sb->chunk_size = mddev->chunk_size;
869 
870 	if (mddev->bitmap && mddev->bitmap_file == NULL)
871 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
872 
873 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
874 	ITERATE_RDEV(mddev,rdev2,tmp) {
875 		mdp_disk_t *d;
876 		int desc_nr;
877 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
878 		    && !test_bit(Faulty, &rdev2->flags))
879 			desc_nr = rdev2->raid_disk;
880 		else
881 			desc_nr = next_spare++;
882 		rdev2->desc_nr = desc_nr;
883 		d = &sb->disks[rdev2->desc_nr];
884 		nr_disks++;
885 		d->number = rdev2->desc_nr;
886 		d->major = MAJOR(rdev2->bdev->bd_dev);
887 		d->minor = MINOR(rdev2->bdev->bd_dev);
888 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
889 		    && !test_bit(Faulty, &rdev2->flags))
890 			d->raid_disk = rdev2->raid_disk;
891 		else
892 			d->raid_disk = rdev2->desc_nr; /* compatibility */
893 		if (test_bit(Faulty, &rdev2->flags)) {
894 			d->state = (1<<MD_DISK_FAULTY);
895 			failed++;
896 		} else if (test_bit(In_sync, &rdev2->flags)) {
897 			d->state = (1<<MD_DISK_ACTIVE);
898 			d->state |= (1<<MD_DISK_SYNC);
899 			active++;
900 			working++;
901 		} else {
902 			d->state = 0;
903 			spare++;
904 			working++;
905 		}
906 		if (test_bit(WriteMostly, &rdev2->flags))
907 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
908 	}
909 	/* now set the "removed" and "faulty" bits on any missing devices */
910 	for (i=0 ; i < mddev->raid_disks ; i++) {
911 		mdp_disk_t *d = &sb->disks[i];
912 		if (d->state == 0 && d->number == 0) {
913 			d->number = i;
914 			d->raid_disk = i;
915 			d->state = (1<<MD_DISK_REMOVED);
916 			d->state |= (1<<MD_DISK_FAULTY);
917 			failed++;
918 		}
919 	}
920 	sb->nr_disks = nr_disks;
921 	sb->active_disks = active;
922 	sb->working_disks = working;
923 	sb->failed_disks = failed;
924 	sb->spare_disks = spare;
925 
926 	sb->this_disk = sb->disks[rdev->desc_nr];
927 	sb->sb_csum = calc_sb_csum(sb);
928 }
929 
930 /*
931  * version 1 superblock
932  */
933 
934 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
935 {
936 	unsigned int disk_csum, csum;
937 	unsigned long long newcsum;
938 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
939 	unsigned int *isuper = (unsigned int*)sb;
940 	int i;
941 
942 	disk_csum = sb->sb_csum;
943 	sb->sb_csum = 0;
944 	newcsum = 0;
945 	for (i=0; size>=4; size -= 4 )
946 		newcsum += le32_to_cpu(*isuper++);
947 
948 	if (size == 2)
949 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
950 
951 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
952 	sb->sb_csum = disk_csum;
953 	return cpu_to_le32(csum);
954 }
955 
956 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
957 {
958 	struct mdp_superblock_1 *sb;
959 	int ret;
960 	sector_t sb_offset;
961 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962 	int bmask;
963 
964 	/*
965 	 * Calculate the position of the superblock.
966 	 * It is always aligned to a 4K boundary and
967 	 * depeding on minor_version, it can be:
968 	 * 0: At least 8K, but less than 12K, from end of device
969 	 * 1: At start of device
970 	 * 2: 4K from start of device.
971 	 */
972 	switch(minor_version) {
973 	case 0:
974 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
975 		sb_offset -= 8*2;
976 		sb_offset &= ~(sector_t)(4*2-1);
977 		/* convert from sectors to K */
978 		sb_offset /= 2;
979 		break;
980 	case 1:
981 		sb_offset = 0;
982 		break;
983 	case 2:
984 		sb_offset = 4;
985 		break;
986 	default:
987 		return -EINVAL;
988 	}
989 	rdev->sb_offset = sb_offset;
990 
991 	/* superblock is rarely larger than 1K, but it can be larger,
992 	 * and it is safe to read 4k, so we do that
993 	 */
994 	ret = read_disk_sb(rdev, 4096);
995 	if (ret) return ret;
996 
997 
998 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
999 
1000 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1001 	    sb->major_version != cpu_to_le32(1) ||
1002 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1003 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1004 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1005 		return -EINVAL;
1006 
1007 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1008 		printk("md: invalid superblock checksum on %s\n",
1009 			bdevname(rdev->bdev,b));
1010 		return -EINVAL;
1011 	}
1012 	if (le64_to_cpu(sb->data_size) < 10) {
1013 		printk("md: data_size too small on %s\n",
1014 		       bdevname(rdev->bdev,b));
1015 		return -EINVAL;
1016 	}
1017 	rdev->preferred_minor = 0xffff;
1018 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1019 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1020 
1021 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1022 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1023 	if (rdev->sb_size & bmask)
1024 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1025 
1026 	if (refdev == 0)
1027 		return 1;
1028 	else {
1029 		__u64 ev1, ev2;
1030 		struct mdp_superblock_1 *refsb =
1031 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1032 
1033 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1034 		    sb->level != refsb->level ||
1035 		    sb->layout != refsb->layout ||
1036 		    sb->chunksize != refsb->chunksize) {
1037 			printk(KERN_WARNING "md: %s has strangely different"
1038 				" superblock to %s\n",
1039 				bdevname(rdev->bdev,b),
1040 				bdevname(refdev->bdev,b2));
1041 			return -EINVAL;
1042 		}
1043 		ev1 = le64_to_cpu(sb->events);
1044 		ev2 = le64_to_cpu(refsb->events);
1045 
1046 		if (ev1 > ev2)
1047 			return 1;
1048 	}
1049 	if (minor_version)
1050 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1051 	else
1052 		rdev->size = rdev->sb_offset;
1053 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1054 		return -EINVAL;
1055 	rdev->size = le64_to_cpu(sb->data_size)/2;
1056 	if (le32_to_cpu(sb->chunksize))
1057 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1058 
1059 	if (le32_to_cpu(sb->size) > rdev->size*2)
1060 		return -EINVAL;
1061 	return 0;
1062 }
1063 
1064 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1065 {
1066 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1067 
1068 	rdev->raid_disk = -1;
1069 	rdev->flags = 0;
1070 	if (mddev->raid_disks == 0) {
1071 		mddev->major_version = 1;
1072 		mddev->patch_version = 0;
1073 		mddev->persistent = 1;
1074 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1075 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1076 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1077 		mddev->level = le32_to_cpu(sb->level);
1078 		mddev->clevel[0] = 0;
1079 		mddev->layout = le32_to_cpu(sb->layout);
1080 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1081 		mddev->size = le64_to_cpu(sb->size)/2;
1082 		mddev->events = le64_to_cpu(sb->events);
1083 		mddev->bitmap_offset = 0;
1084 		mddev->default_bitmap_offset = 1024;
1085 
1086 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1087 		memcpy(mddev->uuid, sb->set_uuid, 16);
1088 
1089 		mddev->max_disks =  (4096-256)/2;
1090 
1091 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1092 		    mddev->bitmap_file == NULL ) {
1093 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1094 			    && mddev->level != 10) {
1095 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1096 				return -EINVAL;
1097 			}
1098 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1099 		}
1100 	} else if (mddev->pers == NULL) {
1101 		/* Insist of good event counter while assembling */
1102 		__u64 ev1 = le64_to_cpu(sb->events);
1103 		++ev1;
1104 		if (ev1 < mddev->events)
1105 			return -EINVAL;
1106 	} else if (mddev->bitmap) {
1107 		/* If adding to array with a bitmap, then we can accept an
1108 		 * older device, but not too old.
1109 		 */
1110 		__u64 ev1 = le64_to_cpu(sb->events);
1111 		if (ev1 < mddev->bitmap->events_cleared)
1112 			return 0;
1113 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1114 		return 0;
1115 
1116 	if (mddev->level != LEVEL_MULTIPATH) {
1117 		int role;
1118 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1119 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1120 		switch(role) {
1121 		case 0xffff: /* spare */
1122 			break;
1123 		case 0xfffe: /* faulty */
1124 			set_bit(Faulty, &rdev->flags);
1125 			break;
1126 		default:
1127 			set_bit(In_sync, &rdev->flags);
1128 			rdev->raid_disk = role;
1129 			break;
1130 		}
1131 		if (sb->devflags & WriteMostly1)
1132 			set_bit(WriteMostly, &rdev->flags);
1133 	} else /* MULTIPATH are always insync */
1134 		set_bit(In_sync, &rdev->flags);
1135 
1136 	return 0;
1137 }
1138 
1139 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1140 {
1141 	struct mdp_superblock_1 *sb;
1142 	struct list_head *tmp;
1143 	mdk_rdev_t *rdev2;
1144 	int max_dev, i;
1145 	/* make rdev->sb match mddev and rdev data. */
1146 
1147 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1148 
1149 	sb->feature_map = 0;
1150 	sb->pad0 = 0;
1151 	memset(sb->pad1, 0, sizeof(sb->pad1));
1152 	memset(sb->pad2, 0, sizeof(sb->pad2));
1153 	memset(sb->pad3, 0, sizeof(sb->pad3));
1154 
1155 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1156 	sb->events = cpu_to_le64(mddev->events);
1157 	if (mddev->in_sync)
1158 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1159 	else
1160 		sb->resync_offset = cpu_to_le64(0);
1161 
1162 	sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1163 
1164 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1165 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1166 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1167 	}
1168 
1169 	max_dev = 0;
1170 	ITERATE_RDEV(mddev,rdev2,tmp)
1171 		if (rdev2->desc_nr+1 > max_dev)
1172 			max_dev = rdev2->desc_nr+1;
1173 
1174 	sb->max_dev = cpu_to_le32(max_dev);
1175 	for (i=0; i<max_dev;i++)
1176 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1177 
1178 	ITERATE_RDEV(mddev,rdev2,tmp) {
1179 		i = rdev2->desc_nr;
1180 		if (test_bit(Faulty, &rdev2->flags))
1181 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1182 		else if (test_bit(In_sync, &rdev2->flags))
1183 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1184 		else
1185 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1186 	}
1187 
1188 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1189 	sb->sb_csum = calc_sb_1_csum(sb);
1190 }
1191 
1192 
1193 static struct super_type super_types[] = {
1194 	[0] = {
1195 		.name	= "0.90.0",
1196 		.owner	= THIS_MODULE,
1197 		.load_super	= super_90_load,
1198 		.validate_super	= super_90_validate,
1199 		.sync_super	= super_90_sync,
1200 	},
1201 	[1] = {
1202 		.name	= "md-1",
1203 		.owner	= THIS_MODULE,
1204 		.load_super	= super_1_load,
1205 		.validate_super	= super_1_validate,
1206 		.sync_super	= super_1_sync,
1207 	},
1208 };
1209 
1210 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1211 {
1212 	struct list_head *tmp;
1213 	mdk_rdev_t *rdev;
1214 
1215 	ITERATE_RDEV(mddev,rdev,tmp)
1216 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1217 			return rdev;
1218 
1219 	return NULL;
1220 }
1221 
1222 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1223 {
1224 	struct list_head *tmp;
1225 	mdk_rdev_t *rdev;
1226 
1227 	ITERATE_RDEV(mddev1,rdev,tmp)
1228 		if (match_dev_unit(mddev2, rdev))
1229 			return 1;
1230 
1231 	return 0;
1232 }
1233 
1234 static LIST_HEAD(pending_raid_disks);
1235 
1236 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1237 {
1238 	mdk_rdev_t *same_pdev;
1239 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1240 	struct kobject *ko;
1241 
1242 	if (rdev->mddev) {
1243 		MD_BUG();
1244 		return -EINVAL;
1245 	}
1246 	/* make sure rdev->size exceeds mddev->size */
1247 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1248 		if (mddev->pers)
1249 			/* Cannot change size, so fail */
1250 			return -ENOSPC;
1251 		else
1252 			mddev->size = rdev->size;
1253 	}
1254 	same_pdev = match_dev_unit(mddev, rdev);
1255 	if (same_pdev)
1256 		printk(KERN_WARNING
1257 			"%s: WARNING: %s appears to be on the same physical"
1258 	 		" disk as %s. True\n     protection against single-disk"
1259 			" failure might be compromised.\n",
1260 			mdname(mddev), bdevname(rdev->bdev,b),
1261 			bdevname(same_pdev->bdev,b2));
1262 
1263 	/* Verify rdev->desc_nr is unique.
1264 	 * If it is -1, assign a free number, else
1265 	 * check number is not in use
1266 	 */
1267 	if (rdev->desc_nr < 0) {
1268 		int choice = 0;
1269 		if (mddev->pers) choice = mddev->raid_disks;
1270 		while (find_rdev_nr(mddev, choice))
1271 			choice++;
1272 		rdev->desc_nr = choice;
1273 	} else {
1274 		if (find_rdev_nr(mddev, rdev->desc_nr))
1275 			return -EBUSY;
1276 	}
1277 	bdevname(rdev->bdev,b);
1278 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1279 		return -ENOMEM;
1280 
1281 	list_add(&rdev->same_set, &mddev->disks);
1282 	rdev->mddev = mddev;
1283 	printk(KERN_INFO "md: bind<%s>\n", b);
1284 
1285 	rdev->kobj.parent = &mddev->kobj;
1286 	kobject_add(&rdev->kobj);
1287 
1288 	if (rdev->bdev->bd_part)
1289 		ko = &rdev->bdev->bd_part->kobj;
1290 	else
1291 		ko = &rdev->bdev->bd_disk->kobj;
1292 	sysfs_create_link(&rdev->kobj, ko, "block");
1293 	return 0;
1294 }
1295 
1296 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1297 {
1298 	char b[BDEVNAME_SIZE];
1299 	if (!rdev->mddev) {
1300 		MD_BUG();
1301 		return;
1302 	}
1303 	list_del_init(&rdev->same_set);
1304 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1305 	rdev->mddev = NULL;
1306 	sysfs_remove_link(&rdev->kobj, "block");
1307 	kobject_del(&rdev->kobj);
1308 }
1309 
1310 /*
1311  * prevent the device from being mounted, repartitioned or
1312  * otherwise reused by a RAID array (or any other kernel
1313  * subsystem), by bd_claiming the device.
1314  */
1315 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1316 {
1317 	int err = 0;
1318 	struct block_device *bdev;
1319 	char b[BDEVNAME_SIZE];
1320 
1321 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1322 	if (IS_ERR(bdev)) {
1323 		printk(KERN_ERR "md: could not open %s.\n",
1324 			__bdevname(dev, b));
1325 		return PTR_ERR(bdev);
1326 	}
1327 	err = bd_claim(bdev, rdev);
1328 	if (err) {
1329 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1330 			bdevname(bdev, b));
1331 		blkdev_put(bdev);
1332 		return err;
1333 	}
1334 	rdev->bdev = bdev;
1335 	return err;
1336 }
1337 
1338 static void unlock_rdev(mdk_rdev_t *rdev)
1339 {
1340 	struct block_device *bdev = rdev->bdev;
1341 	rdev->bdev = NULL;
1342 	if (!bdev)
1343 		MD_BUG();
1344 	bd_release(bdev);
1345 	blkdev_put(bdev);
1346 }
1347 
1348 void md_autodetect_dev(dev_t dev);
1349 
1350 static void export_rdev(mdk_rdev_t * rdev)
1351 {
1352 	char b[BDEVNAME_SIZE];
1353 	printk(KERN_INFO "md: export_rdev(%s)\n",
1354 		bdevname(rdev->bdev,b));
1355 	if (rdev->mddev)
1356 		MD_BUG();
1357 	free_disk_sb(rdev);
1358 	list_del_init(&rdev->same_set);
1359 #ifndef MODULE
1360 	md_autodetect_dev(rdev->bdev->bd_dev);
1361 #endif
1362 	unlock_rdev(rdev);
1363 	kobject_put(&rdev->kobj);
1364 }
1365 
1366 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1367 {
1368 	unbind_rdev_from_array(rdev);
1369 	export_rdev(rdev);
1370 }
1371 
1372 static void export_array(mddev_t *mddev)
1373 {
1374 	struct list_head *tmp;
1375 	mdk_rdev_t *rdev;
1376 
1377 	ITERATE_RDEV(mddev,rdev,tmp) {
1378 		if (!rdev->mddev) {
1379 			MD_BUG();
1380 			continue;
1381 		}
1382 		kick_rdev_from_array(rdev);
1383 	}
1384 	if (!list_empty(&mddev->disks))
1385 		MD_BUG();
1386 	mddev->raid_disks = 0;
1387 	mddev->major_version = 0;
1388 }
1389 
1390 static void print_desc(mdp_disk_t *desc)
1391 {
1392 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1393 		desc->major,desc->minor,desc->raid_disk,desc->state);
1394 }
1395 
1396 static void print_sb(mdp_super_t *sb)
1397 {
1398 	int i;
1399 
1400 	printk(KERN_INFO
1401 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1402 		sb->major_version, sb->minor_version, sb->patch_version,
1403 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1404 		sb->ctime);
1405 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1406 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1407 		sb->md_minor, sb->layout, sb->chunk_size);
1408 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1409 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1410 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1411 		sb->failed_disks, sb->spare_disks,
1412 		sb->sb_csum, (unsigned long)sb->events_lo);
1413 
1414 	printk(KERN_INFO);
1415 	for (i = 0; i < MD_SB_DISKS; i++) {
1416 		mdp_disk_t *desc;
1417 
1418 		desc = sb->disks + i;
1419 		if (desc->number || desc->major || desc->minor ||
1420 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1421 			printk("     D %2d: ", i);
1422 			print_desc(desc);
1423 		}
1424 	}
1425 	printk(KERN_INFO "md:     THIS: ");
1426 	print_desc(&sb->this_disk);
1427 
1428 }
1429 
1430 static void print_rdev(mdk_rdev_t *rdev)
1431 {
1432 	char b[BDEVNAME_SIZE];
1433 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1434 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1435 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1436 	        rdev->desc_nr);
1437 	if (rdev->sb_loaded) {
1438 		printk(KERN_INFO "md: rdev superblock:\n");
1439 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1440 	} else
1441 		printk(KERN_INFO "md: no rdev superblock!\n");
1442 }
1443 
1444 void md_print_devices(void)
1445 {
1446 	struct list_head *tmp, *tmp2;
1447 	mdk_rdev_t *rdev;
1448 	mddev_t *mddev;
1449 	char b[BDEVNAME_SIZE];
1450 
1451 	printk("\n");
1452 	printk("md:	**********************************\n");
1453 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1454 	printk("md:	**********************************\n");
1455 	ITERATE_MDDEV(mddev,tmp) {
1456 
1457 		if (mddev->bitmap)
1458 			bitmap_print_sb(mddev->bitmap);
1459 		else
1460 			printk("%s: ", mdname(mddev));
1461 		ITERATE_RDEV(mddev,rdev,tmp2)
1462 			printk("<%s>", bdevname(rdev->bdev,b));
1463 		printk("\n");
1464 
1465 		ITERATE_RDEV(mddev,rdev,tmp2)
1466 			print_rdev(rdev);
1467 	}
1468 	printk("md:	**********************************\n");
1469 	printk("\n");
1470 }
1471 
1472 
1473 static void sync_sbs(mddev_t * mddev)
1474 {
1475 	mdk_rdev_t *rdev;
1476 	struct list_head *tmp;
1477 
1478 	ITERATE_RDEV(mddev,rdev,tmp) {
1479 		super_types[mddev->major_version].
1480 			sync_super(mddev, rdev);
1481 		rdev->sb_loaded = 1;
1482 	}
1483 }
1484 
1485 static void md_update_sb(mddev_t * mddev)
1486 {
1487 	int err;
1488 	struct list_head *tmp;
1489 	mdk_rdev_t *rdev;
1490 	int sync_req;
1491 
1492 repeat:
1493 	spin_lock_irq(&mddev->write_lock);
1494 	sync_req = mddev->in_sync;
1495 	mddev->utime = get_seconds();
1496 	mddev->events ++;
1497 
1498 	if (!mddev->events) {
1499 		/*
1500 		 * oops, this 64-bit counter should never wrap.
1501 		 * Either we are in around ~1 trillion A.C., assuming
1502 		 * 1 reboot per second, or we have a bug:
1503 		 */
1504 		MD_BUG();
1505 		mddev->events --;
1506 	}
1507 	mddev->sb_dirty = 2;
1508 	sync_sbs(mddev);
1509 
1510 	/*
1511 	 * do not write anything to disk if using
1512 	 * nonpersistent superblocks
1513 	 */
1514 	if (!mddev->persistent) {
1515 		mddev->sb_dirty = 0;
1516 		spin_unlock_irq(&mddev->write_lock);
1517 		wake_up(&mddev->sb_wait);
1518 		return;
1519 	}
1520 	spin_unlock_irq(&mddev->write_lock);
1521 
1522 	dprintk(KERN_INFO
1523 		"md: updating %s RAID superblock on device (in sync %d)\n",
1524 		mdname(mddev),mddev->in_sync);
1525 
1526 	err = bitmap_update_sb(mddev->bitmap);
1527 	ITERATE_RDEV(mddev,rdev,tmp) {
1528 		char b[BDEVNAME_SIZE];
1529 		dprintk(KERN_INFO "md: ");
1530 		if (test_bit(Faulty, &rdev->flags))
1531 			dprintk("(skipping faulty ");
1532 
1533 		dprintk("%s ", bdevname(rdev->bdev,b));
1534 		if (!test_bit(Faulty, &rdev->flags)) {
1535 			md_super_write(mddev,rdev,
1536 				       rdev->sb_offset<<1, rdev->sb_size,
1537 				       rdev->sb_page);
1538 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1539 				bdevname(rdev->bdev,b),
1540 				(unsigned long long)rdev->sb_offset);
1541 
1542 		} else
1543 			dprintk(")\n");
1544 		if (mddev->level == LEVEL_MULTIPATH)
1545 			/* only need to write one superblock... */
1546 			break;
1547 	}
1548 	md_super_wait(mddev);
1549 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1550 
1551 	spin_lock_irq(&mddev->write_lock);
1552 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1553 		/* have to write it out again */
1554 		spin_unlock_irq(&mddev->write_lock);
1555 		goto repeat;
1556 	}
1557 	mddev->sb_dirty = 0;
1558 	spin_unlock_irq(&mddev->write_lock);
1559 	wake_up(&mddev->sb_wait);
1560 
1561 }
1562 
1563 /* words written to sysfs files may, or my not, be \n terminated.
1564  * We want to accept with case. For this we use cmd_match.
1565  */
1566 static int cmd_match(const char *cmd, const char *str)
1567 {
1568 	/* See if cmd, written into a sysfs file, matches
1569 	 * str.  They must either be the same, or cmd can
1570 	 * have a trailing newline
1571 	 */
1572 	while (*cmd && *str && *cmd == *str) {
1573 		cmd++;
1574 		str++;
1575 	}
1576 	if (*cmd == '\n')
1577 		cmd++;
1578 	if (*str || *cmd)
1579 		return 0;
1580 	return 1;
1581 }
1582 
1583 struct rdev_sysfs_entry {
1584 	struct attribute attr;
1585 	ssize_t (*show)(mdk_rdev_t *, char *);
1586 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1587 };
1588 
1589 static ssize_t
1590 state_show(mdk_rdev_t *rdev, char *page)
1591 {
1592 	char *sep = "";
1593 	int len=0;
1594 
1595 	if (test_bit(Faulty, &rdev->flags)) {
1596 		len+= sprintf(page+len, "%sfaulty",sep);
1597 		sep = ",";
1598 	}
1599 	if (test_bit(In_sync, &rdev->flags)) {
1600 		len += sprintf(page+len, "%sin_sync",sep);
1601 		sep = ",";
1602 	}
1603 	if (!test_bit(Faulty, &rdev->flags) &&
1604 	    !test_bit(In_sync, &rdev->flags)) {
1605 		len += sprintf(page+len, "%sspare", sep);
1606 		sep = ",";
1607 	}
1608 	return len+sprintf(page+len, "\n");
1609 }
1610 
1611 static struct rdev_sysfs_entry
1612 rdev_state = __ATTR_RO(state);
1613 
1614 static ssize_t
1615 super_show(mdk_rdev_t *rdev, char *page)
1616 {
1617 	if (rdev->sb_loaded && rdev->sb_size) {
1618 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1619 		return rdev->sb_size;
1620 	} else
1621 		return 0;
1622 }
1623 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1624 
1625 static ssize_t
1626 errors_show(mdk_rdev_t *rdev, char *page)
1627 {
1628 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1629 }
1630 
1631 static ssize_t
1632 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1633 {
1634 	char *e;
1635 	unsigned long n = simple_strtoul(buf, &e, 10);
1636 	if (*buf && (*e == 0 || *e == '\n')) {
1637 		atomic_set(&rdev->corrected_errors, n);
1638 		return len;
1639 	}
1640 	return -EINVAL;
1641 }
1642 static struct rdev_sysfs_entry rdev_errors =
1643 __ATTR(errors, 0644, errors_show, errors_store);
1644 
1645 static ssize_t
1646 slot_show(mdk_rdev_t *rdev, char *page)
1647 {
1648 	if (rdev->raid_disk < 0)
1649 		return sprintf(page, "none\n");
1650 	else
1651 		return sprintf(page, "%d\n", rdev->raid_disk);
1652 }
1653 
1654 static ssize_t
1655 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1656 {
1657 	char *e;
1658 	int slot = simple_strtoul(buf, &e, 10);
1659 	if (strncmp(buf, "none", 4)==0)
1660 		slot = -1;
1661 	else if (e==buf || (*e && *e!= '\n'))
1662 		return -EINVAL;
1663 	if (rdev->mddev->pers)
1664 		/* Cannot set slot in active array (yet) */
1665 		return -EBUSY;
1666 	if (slot >= rdev->mddev->raid_disks)
1667 		return -ENOSPC;
1668 	rdev->raid_disk = slot;
1669 	/* assume it is working */
1670 	rdev->flags = 0;
1671 	set_bit(In_sync, &rdev->flags);
1672 	return len;
1673 }
1674 
1675 
1676 static struct rdev_sysfs_entry rdev_slot =
1677 __ATTR(slot, 0644, slot_show, slot_store);
1678 
1679 static ssize_t
1680 offset_show(mdk_rdev_t *rdev, char *page)
1681 {
1682 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1683 }
1684 
1685 static ssize_t
1686 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1687 {
1688 	char *e;
1689 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1690 	if (e==buf || (*e && *e != '\n'))
1691 		return -EINVAL;
1692 	if (rdev->mddev->pers)
1693 		return -EBUSY;
1694 	rdev->data_offset = offset;
1695 	return len;
1696 }
1697 
1698 static struct rdev_sysfs_entry rdev_offset =
1699 __ATTR(offset, 0644, offset_show, offset_store);
1700 
1701 static ssize_t
1702 rdev_size_show(mdk_rdev_t *rdev, char *page)
1703 {
1704 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1705 }
1706 
1707 static ssize_t
1708 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1709 {
1710 	char *e;
1711 	unsigned long long size = simple_strtoull(buf, &e, 10);
1712 	if (e==buf || (*e && *e != '\n'))
1713 		return -EINVAL;
1714 	if (rdev->mddev->pers)
1715 		return -EBUSY;
1716 	rdev->size = size;
1717 	if (size < rdev->mddev->size || rdev->mddev->size == 0)
1718 		rdev->mddev->size = size;
1719 	return len;
1720 }
1721 
1722 static struct rdev_sysfs_entry rdev_size =
1723 __ATTR(size, 0644, rdev_size_show, rdev_size_store);
1724 
1725 static struct attribute *rdev_default_attrs[] = {
1726 	&rdev_state.attr,
1727 	&rdev_super.attr,
1728 	&rdev_errors.attr,
1729 	&rdev_slot.attr,
1730 	&rdev_offset.attr,
1731 	&rdev_size.attr,
1732 	NULL,
1733 };
1734 static ssize_t
1735 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1736 {
1737 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1738 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1739 
1740 	if (!entry->show)
1741 		return -EIO;
1742 	return entry->show(rdev, page);
1743 }
1744 
1745 static ssize_t
1746 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1747 	      const char *page, size_t length)
1748 {
1749 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1750 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1751 
1752 	if (!entry->store)
1753 		return -EIO;
1754 	return entry->store(rdev, page, length);
1755 }
1756 
1757 static void rdev_free(struct kobject *ko)
1758 {
1759 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1760 	kfree(rdev);
1761 }
1762 static struct sysfs_ops rdev_sysfs_ops = {
1763 	.show		= rdev_attr_show,
1764 	.store		= rdev_attr_store,
1765 };
1766 static struct kobj_type rdev_ktype = {
1767 	.release	= rdev_free,
1768 	.sysfs_ops	= &rdev_sysfs_ops,
1769 	.default_attrs	= rdev_default_attrs,
1770 };
1771 
1772 /*
1773  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1774  *
1775  * mark the device faulty if:
1776  *
1777  *   - the device is nonexistent (zero size)
1778  *   - the device has no valid superblock
1779  *
1780  * a faulty rdev _never_ has rdev->sb set.
1781  */
1782 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1783 {
1784 	char b[BDEVNAME_SIZE];
1785 	int err;
1786 	mdk_rdev_t *rdev;
1787 	sector_t size;
1788 
1789 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1790 	if (!rdev) {
1791 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1792 		return ERR_PTR(-ENOMEM);
1793 	}
1794 
1795 	if ((err = alloc_disk_sb(rdev)))
1796 		goto abort_free;
1797 
1798 	err = lock_rdev(rdev, newdev);
1799 	if (err)
1800 		goto abort_free;
1801 
1802 	rdev->kobj.parent = NULL;
1803 	rdev->kobj.ktype = &rdev_ktype;
1804 	kobject_init(&rdev->kobj);
1805 
1806 	rdev->desc_nr = -1;
1807 	rdev->flags = 0;
1808 	rdev->data_offset = 0;
1809 	atomic_set(&rdev->nr_pending, 0);
1810 	atomic_set(&rdev->read_errors, 0);
1811 	atomic_set(&rdev->corrected_errors, 0);
1812 
1813 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1814 	if (!size) {
1815 		printk(KERN_WARNING
1816 			"md: %s has zero or unknown size, marking faulty!\n",
1817 			bdevname(rdev->bdev,b));
1818 		err = -EINVAL;
1819 		goto abort_free;
1820 	}
1821 
1822 	if (super_format >= 0) {
1823 		err = super_types[super_format].
1824 			load_super(rdev, NULL, super_minor);
1825 		if (err == -EINVAL) {
1826 			printk(KERN_WARNING
1827 				"md: %s has invalid sb, not importing!\n",
1828 				bdevname(rdev->bdev,b));
1829 			goto abort_free;
1830 		}
1831 		if (err < 0) {
1832 			printk(KERN_WARNING
1833 				"md: could not read %s's sb, not importing!\n",
1834 				bdevname(rdev->bdev,b));
1835 			goto abort_free;
1836 		}
1837 	}
1838 	INIT_LIST_HEAD(&rdev->same_set);
1839 
1840 	return rdev;
1841 
1842 abort_free:
1843 	if (rdev->sb_page) {
1844 		if (rdev->bdev)
1845 			unlock_rdev(rdev);
1846 		free_disk_sb(rdev);
1847 	}
1848 	kfree(rdev);
1849 	return ERR_PTR(err);
1850 }
1851 
1852 /*
1853  * Check a full RAID array for plausibility
1854  */
1855 
1856 
1857 static void analyze_sbs(mddev_t * mddev)
1858 {
1859 	int i;
1860 	struct list_head *tmp;
1861 	mdk_rdev_t *rdev, *freshest;
1862 	char b[BDEVNAME_SIZE];
1863 
1864 	freshest = NULL;
1865 	ITERATE_RDEV(mddev,rdev,tmp)
1866 		switch (super_types[mddev->major_version].
1867 			load_super(rdev, freshest, mddev->minor_version)) {
1868 		case 1:
1869 			freshest = rdev;
1870 			break;
1871 		case 0:
1872 			break;
1873 		default:
1874 			printk( KERN_ERR \
1875 				"md: fatal superblock inconsistency in %s"
1876 				" -- removing from array\n",
1877 				bdevname(rdev->bdev,b));
1878 			kick_rdev_from_array(rdev);
1879 		}
1880 
1881 
1882 	super_types[mddev->major_version].
1883 		validate_super(mddev, freshest);
1884 
1885 	i = 0;
1886 	ITERATE_RDEV(mddev,rdev,tmp) {
1887 		if (rdev != freshest)
1888 			if (super_types[mddev->major_version].
1889 			    validate_super(mddev, rdev)) {
1890 				printk(KERN_WARNING "md: kicking non-fresh %s"
1891 					" from array!\n",
1892 					bdevname(rdev->bdev,b));
1893 				kick_rdev_from_array(rdev);
1894 				continue;
1895 			}
1896 		if (mddev->level == LEVEL_MULTIPATH) {
1897 			rdev->desc_nr = i++;
1898 			rdev->raid_disk = rdev->desc_nr;
1899 			set_bit(In_sync, &rdev->flags);
1900 		}
1901 	}
1902 
1903 
1904 
1905 	if (mddev->recovery_cp != MaxSector &&
1906 	    mddev->level >= 1)
1907 		printk(KERN_ERR "md: %s: raid array is not clean"
1908 		       " -- starting background reconstruction\n",
1909 		       mdname(mddev));
1910 
1911 }
1912 
1913 static ssize_t
1914 level_show(mddev_t *mddev, char *page)
1915 {
1916 	struct mdk_personality *p = mddev->pers;
1917 	if (p)
1918 		return sprintf(page, "%s\n", p->name);
1919 	else if (mddev->clevel[0])
1920 		return sprintf(page, "%s\n", mddev->clevel);
1921 	else if (mddev->level != LEVEL_NONE)
1922 		return sprintf(page, "%d\n", mddev->level);
1923 	else
1924 		return 0;
1925 }
1926 
1927 static ssize_t
1928 level_store(mddev_t *mddev, const char *buf, size_t len)
1929 {
1930 	int rv = len;
1931 	if (mddev->pers)
1932 		return -EBUSY;
1933 	if (len == 0)
1934 		return 0;
1935 	if (len >= sizeof(mddev->clevel))
1936 		return -ENOSPC;
1937 	strncpy(mddev->clevel, buf, len);
1938 	if (mddev->clevel[len-1] == '\n')
1939 		len--;
1940 	mddev->clevel[len] = 0;
1941 	mddev->level = LEVEL_NONE;
1942 	return rv;
1943 }
1944 
1945 static struct md_sysfs_entry md_level =
1946 __ATTR(level, 0644, level_show, level_store);
1947 
1948 static ssize_t
1949 raid_disks_show(mddev_t *mddev, char *page)
1950 {
1951 	if (mddev->raid_disks == 0)
1952 		return 0;
1953 	return sprintf(page, "%d\n", mddev->raid_disks);
1954 }
1955 
1956 static int update_raid_disks(mddev_t *mddev, int raid_disks);
1957 
1958 static ssize_t
1959 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
1960 {
1961 	/* can only set raid_disks if array is not yet active */
1962 	char *e;
1963 	int rv = 0;
1964 	unsigned long n = simple_strtoul(buf, &e, 10);
1965 
1966 	if (!*buf || (*e && *e != '\n'))
1967 		return -EINVAL;
1968 
1969 	if (mddev->pers)
1970 		rv = update_raid_disks(mddev, n);
1971 	else
1972 		mddev->raid_disks = n;
1973 	return rv ? rv : len;
1974 }
1975 static struct md_sysfs_entry md_raid_disks =
1976 __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
1977 
1978 static ssize_t
1979 chunk_size_show(mddev_t *mddev, char *page)
1980 {
1981 	return sprintf(page, "%d\n", mddev->chunk_size);
1982 }
1983 
1984 static ssize_t
1985 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
1986 {
1987 	/* can only set chunk_size if array is not yet active */
1988 	char *e;
1989 	unsigned long n = simple_strtoul(buf, &e, 10);
1990 
1991 	if (mddev->pers)
1992 		return -EBUSY;
1993 	if (!*buf || (*e && *e != '\n'))
1994 		return -EINVAL;
1995 
1996 	mddev->chunk_size = n;
1997 	return len;
1998 }
1999 static struct md_sysfs_entry md_chunk_size =
2000 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
2001 
2002 static ssize_t
2003 null_show(mddev_t *mddev, char *page)
2004 {
2005 	return -EINVAL;
2006 }
2007 
2008 static ssize_t
2009 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2010 {
2011 	/* buf must be %d:%d\n? giving major and minor numbers */
2012 	/* The new device is added to the array.
2013 	 * If the array has a persistent superblock, we read the
2014 	 * superblock to initialise info and check validity.
2015 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2016 	 * which mainly checks size.
2017 	 */
2018 	char *e;
2019 	int major = simple_strtoul(buf, &e, 10);
2020 	int minor;
2021 	dev_t dev;
2022 	mdk_rdev_t *rdev;
2023 	int err;
2024 
2025 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2026 		return -EINVAL;
2027 	minor = simple_strtoul(e+1, &e, 10);
2028 	if (*e && *e != '\n')
2029 		return -EINVAL;
2030 	dev = MKDEV(major, minor);
2031 	if (major != MAJOR(dev) ||
2032 	    minor != MINOR(dev))
2033 		return -EOVERFLOW;
2034 
2035 
2036 	if (mddev->persistent) {
2037 		rdev = md_import_device(dev, mddev->major_version,
2038 					mddev->minor_version);
2039 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2040 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2041 						       mdk_rdev_t, same_set);
2042 			err = super_types[mddev->major_version]
2043 				.load_super(rdev, rdev0, mddev->minor_version);
2044 			if (err < 0)
2045 				goto out;
2046 		}
2047 	} else
2048 		rdev = md_import_device(dev, -1, -1);
2049 
2050 	if (IS_ERR(rdev))
2051 		return PTR_ERR(rdev);
2052 	err = bind_rdev_to_array(rdev, mddev);
2053  out:
2054 	if (err)
2055 		export_rdev(rdev);
2056 	return err ? err : len;
2057 }
2058 
2059 static struct md_sysfs_entry md_new_device =
2060 __ATTR(new_dev, 0200, null_show, new_dev_store);
2061 
2062 static ssize_t
2063 size_show(mddev_t *mddev, char *page)
2064 {
2065 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2066 }
2067 
2068 static int update_size(mddev_t *mddev, unsigned long size);
2069 
2070 static ssize_t
2071 size_store(mddev_t *mddev, const char *buf, size_t len)
2072 {
2073 	/* If array is inactive, we can reduce the component size, but
2074 	 * not increase it (except from 0).
2075 	 * If array is active, we can try an on-line resize
2076 	 */
2077 	char *e;
2078 	int err = 0;
2079 	unsigned long long size = simple_strtoull(buf, &e, 10);
2080 	if (!*buf || *buf == '\n' ||
2081 	    (*e && *e != '\n'))
2082 		return -EINVAL;
2083 
2084 	if (mddev->pers) {
2085 		err = update_size(mddev, size);
2086 		md_update_sb(mddev);
2087 	} else {
2088 		if (mddev->size == 0 ||
2089 		    mddev->size > size)
2090 			mddev->size = size;
2091 		else
2092 			err = -ENOSPC;
2093 	}
2094 	return err ? err : len;
2095 }
2096 
2097 static struct md_sysfs_entry md_size =
2098 __ATTR(component_size, 0644, size_show, size_store);
2099 
2100 
2101 /* Metdata version.
2102  * This is either 'none' for arrays with externally managed metadata,
2103  * or N.M for internally known formats
2104  */
2105 static ssize_t
2106 metadata_show(mddev_t *mddev, char *page)
2107 {
2108 	if (mddev->persistent)
2109 		return sprintf(page, "%d.%d\n",
2110 			       mddev->major_version, mddev->minor_version);
2111 	else
2112 		return sprintf(page, "none\n");
2113 }
2114 
2115 static ssize_t
2116 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2117 {
2118 	int major, minor;
2119 	char *e;
2120 	if (!list_empty(&mddev->disks))
2121 		return -EBUSY;
2122 
2123 	if (cmd_match(buf, "none")) {
2124 		mddev->persistent = 0;
2125 		mddev->major_version = 0;
2126 		mddev->minor_version = 90;
2127 		return len;
2128 	}
2129 	major = simple_strtoul(buf, &e, 10);
2130 	if (e==buf || *e != '.')
2131 		return -EINVAL;
2132 	buf = e+1;
2133 	minor = simple_strtoul(buf, &e, 10);
2134 	if (e==buf || *e != '\n')
2135 		return -EINVAL;
2136 	if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2137 	    super_types[major].name == NULL)
2138 		return -ENOENT;
2139 	mddev->major_version = major;
2140 	mddev->minor_version = minor;
2141 	mddev->persistent = 1;
2142 	return len;
2143 }
2144 
2145 static struct md_sysfs_entry md_metadata =
2146 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
2147 
2148 static ssize_t
2149 action_show(mddev_t *mddev, char *page)
2150 {
2151 	char *type = "idle";
2152 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2153 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2154 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2155 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2156 				type = "resync";
2157 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2158 				type = "check";
2159 			else
2160 				type = "repair";
2161 		} else
2162 			type = "recover";
2163 	}
2164 	return sprintf(page, "%s\n", type);
2165 }
2166 
2167 static ssize_t
2168 action_store(mddev_t *mddev, const char *page, size_t len)
2169 {
2170 	if (!mddev->pers || !mddev->pers->sync_request)
2171 		return -EINVAL;
2172 
2173 	if (cmd_match(page, "idle")) {
2174 		if (mddev->sync_thread) {
2175 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2176 			md_unregister_thread(mddev->sync_thread);
2177 			mddev->sync_thread = NULL;
2178 			mddev->recovery = 0;
2179 		}
2180 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2181 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2182 		return -EBUSY;
2183 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2184 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2185 	else {
2186 		if (cmd_match(page, "check"))
2187 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2188 		else if (cmd_match(page, "repair"))
2189 			return -EINVAL;
2190 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2191 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2192 	}
2193 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2194 	md_wakeup_thread(mddev->thread);
2195 	return len;
2196 }
2197 
2198 static ssize_t
2199 mismatch_cnt_show(mddev_t *mddev, char *page)
2200 {
2201 	return sprintf(page, "%llu\n",
2202 		       (unsigned long long) mddev->resync_mismatches);
2203 }
2204 
2205 static struct md_sysfs_entry
2206 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2207 
2208 
2209 static struct md_sysfs_entry
2210 md_mismatches = __ATTR_RO(mismatch_cnt);
2211 
2212 static ssize_t
2213 sync_min_show(mddev_t *mddev, char *page)
2214 {
2215 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2216 		       mddev->sync_speed_min ? "local": "system");
2217 }
2218 
2219 static ssize_t
2220 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2221 {
2222 	int min;
2223 	char *e;
2224 	if (strncmp(buf, "system", 6)==0) {
2225 		mddev->sync_speed_min = 0;
2226 		return len;
2227 	}
2228 	min = simple_strtoul(buf, &e, 10);
2229 	if (buf == e || (*e && *e != '\n') || min <= 0)
2230 		return -EINVAL;
2231 	mddev->sync_speed_min = min;
2232 	return len;
2233 }
2234 
2235 static struct md_sysfs_entry md_sync_min =
2236 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2237 
2238 static ssize_t
2239 sync_max_show(mddev_t *mddev, char *page)
2240 {
2241 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2242 		       mddev->sync_speed_max ? "local": "system");
2243 }
2244 
2245 static ssize_t
2246 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2247 {
2248 	int max;
2249 	char *e;
2250 	if (strncmp(buf, "system", 6)==0) {
2251 		mddev->sync_speed_max = 0;
2252 		return len;
2253 	}
2254 	max = simple_strtoul(buf, &e, 10);
2255 	if (buf == e || (*e && *e != '\n') || max <= 0)
2256 		return -EINVAL;
2257 	mddev->sync_speed_max = max;
2258 	return len;
2259 }
2260 
2261 static struct md_sysfs_entry md_sync_max =
2262 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2263 
2264 
2265 static ssize_t
2266 sync_speed_show(mddev_t *mddev, char *page)
2267 {
2268 	unsigned long resync, dt, db;
2269 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2270 	dt = ((jiffies - mddev->resync_mark) / HZ);
2271 	if (!dt) dt++;
2272 	db = resync - (mddev->resync_mark_cnt);
2273 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2274 }
2275 
2276 static struct md_sysfs_entry
2277 md_sync_speed = __ATTR_RO(sync_speed);
2278 
2279 static ssize_t
2280 sync_completed_show(mddev_t *mddev, char *page)
2281 {
2282 	unsigned long max_blocks, resync;
2283 
2284 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2285 		max_blocks = mddev->resync_max_sectors;
2286 	else
2287 		max_blocks = mddev->size << 1;
2288 
2289 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2290 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2291 }
2292 
2293 static struct md_sysfs_entry
2294 md_sync_completed = __ATTR_RO(sync_completed);
2295 
2296 static struct attribute *md_default_attrs[] = {
2297 	&md_level.attr,
2298 	&md_raid_disks.attr,
2299 	&md_chunk_size.attr,
2300 	&md_size.attr,
2301 	&md_metadata.attr,
2302 	&md_new_device.attr,
2303 	NULL,
2304 };
2305 
2306 static struct attribute *md_redundancy_attrs[] = {
2307 	&md_scan_mode.attr,
2308 	&md_mismatches.attr,
2309 	&md_sync_min.attr,
2310 	&md_sync_max.attr,
2311 	&md_sync_speed.attr,
2312 	&md_sync_completed.attr,
2313 	NULL,
2314 };
2315 static struct attribute_group md_redundancy_group = {
2316 	.name = NULL,
2317 	.attrs = md_redundancy_attrs,
2318 };
2319 
2320 
2321 static ssize_t
2322 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2323 {
2324 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2325 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2326 	ssize_t rv;
2327 
2328 	if (!entry->show)
2329 		return -EIO;
2330 	mddev_lock(mddev);
2331 	rv = entry->show(mddev, page);
2332 	mddev_unlock(mddev);
2333 	return rv;
2334 }
2335 
2336 static ssize_t
2337 md_attr_store(struct kobject *kobj, struct attribute *attr,
2338 	      const char *page, size_t length)
2339 {
2340 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2341 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2342 	ssize_t rv;
2343 
2344 	if (!entry->store)
2345 		return -EIO;
2346 	mddev_lock(mddev);
2347 	rv = entry->store(mddev, page, length);
2348 	mddev_unlock(mddev);
2349 	return rv;
2350 }
2351 
2352 static void md_free(struct kobject *ko)
2353 {
2354 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
2355 	kfree(mddev);
2356 }
2357 
2358 static struct sysfs_ops md_sysfs_ops = {
2359 	.show	= md_attr_show,
2360 	.store	= md_attr_store,
2361 };
2362 static struct kobj_type md_ktype = {
2363 	.release	= md_free,
2364 	.sysfs_ops	= &md_sysfs_ops,
2365 	.default_attrs	= md_default_attrs,
2366 };
2367 
2368 int mdp_major = 0;
2369 
2370 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2371 {
2372 	static DECLARE_MUTEX(disks_sem);
2373 	mddev_t *mddev = mddev_find(dev);
2374 	struct gendisk *disk;
2375 	int partitioned = (MAJOR(dev) != MD_MAJOR);
2376 	int shift = partitioned ? MdpMinorShift : 0;
2377 	int unit = MINOR(dev) >> shift;
2378 
2379 	if (!mddev)
2380 		return NULL;
2381 
2382 	down(&disks_sem);
2383 	if (mddev->gendisk) {
2384 		up(&disks_sem);
2385 		mddev_put(mddev);
2386 		return NULL;
2387 	}
2388 	disk = alloc_disk(1 << shift);
2389 	if (!disk) {
2390 		up(&disks_sem);
2391 		mddev_put(mddev);
2392 		return NULL;
2393 	}
2394 	disk->major = MAJOR(dev);
2395 	disk->first_minor = unit << shift;
2396 	if (partitioned) {
2397 		sprintf(disk->disk_name, "md_d%d", unit);
2398 		sprintf(disk->devfs_name, "md/d%d", unit);
2399 	} else {
2400 		sprintf(disk->disk_name, "md%d", unit);
2401 		sprintf(disk->devfs_name, "md/%d", unit);
2402 	}
2403 	disk->fops = &md_fops;
2404 	disk->private_data = mddev;
2405 	disk->queue = mddev->queue;
2406 	add_disk(disk);
2407 	mddev->gendisk = disk;
2408 	up(&disks_sem);
2409 	mddev->kobj.parent = &disk->kobj;
2410 	mddev->kobj.k_name = NULL;
2411 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2412 	mddev->kobj.ktype = &md_ktype;
2413 	kobject_register(&mddev->kobj);
2414 	return NULL;
2415 }
2416 
2417 void md_wakeup_thread(mdk_thread_t *thread);
2418 
2419 static void md_safemode_timeout(unsigned long data)
2420 {
2421 	mddev_t *mddev = (mddev_t *) data;
2422 
2423 	mddev->safemode = 1;
2424 	md_wakeup_thread(mddev->thread);
2425 }
2426 
2427 static int start_dirty_degraded;
2428 
2429 static int do_md_run(mddev_t * mddev)
2430 {
2431 	int err;
2432 	int chunk_size;
2433 	struct list_head *tmp;
2434 	mdk_rdev_t *rdev;
2435 	struct gendisk *disk;
2436 	struct mdk_personality *pers;
2437 	char b[BDEVNAME_SIZE];
2438 
2439 	if (list_empty(&mddev->disks))
2440 		/* cannot run an array with no devices.. */
2441 		return -EINVAL;
2442 
2443 	if (mddev->pers)
2444 		return -EBUSY;
2445 
2446 	/*
2447 	 * Analyze all RAID superblock(s)
2448 	 */
2449 	if (!mddev->raid_disks)
2450 		analyze_sbs(mddev);
2451 
2452 	chunk_size = mddev->chunk_size;
2453 
2454 	if (chunk_size) {
2455 		if (chunk_size > MAX_CHUNK_SIZE) {
2456 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
2457 				chunk_size, MAX_CHUNK_SIZE);
2458 			return -EINVAL;
2459 		}
2460 		/*
2461 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2462 		 */
2463 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
2464 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2465 			return -EINVAL;
2466 		}
2467 		if (chunk_size < PAGE_SIZE) {
2468 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2469 				chunk_size, PAGE_SIZE);
2470 			return -EINVAL;
2471 		}
2472 
2473 		/* devices must have minimum size of one chunk */
2474 		ITERATE_RDEV(mddev,rdev,tmp) {
2475 			if (test_bit(Faulty, &rdev->flags))
2476 				continue;
2477 			if (rdev->size < chunk_size / 1024) {
2478 				printk(KERN_WARNING
2479 					"md: Dev %s smaller than chunk_size:"
2480 					" %lluk < %dk\n",
2481 					bdevname(rdev->bdev,b),
2482 					(unsigned long long)rdev->size,
2483 					chunk_size / 1024);
2484 				return -EINVAL;
2485 			}
2486 		}
2487 	}
2488 
2489 #ifdef CONFIG_KMOD
2490 	if (mddev->level != LEVEL_NONE)
2491 		request_module("md-level-%d", mddev->level);
2492 	else if (mddev->clevel[0])
2493 		request_module("md-%s", mddev->clevel);
2494 #endif
2495 
2496 	/*
2497 	 * Drop all container device buffers, from now on
2498 	 * the only valid external interface is through the md
2499 	 * device.
2500 	 * Also find largest hardsector size
2501 	 */
2502 	ITERATE_RDEV(mddev,rdev,tmp) {
2503 		if (test_bit(Faulty, &rdev->flags))
2504 			continue;
2505 		sync_blockdev(rdev->bdev);
2506 		invalidate_bdev(rdev->bdev, 0);
2507 	}
2508 
2509 	md_probe(mddev->unit, NULL, NULL);
2510 	disk = mddev->gendisk;
2511 	if (!disk)
2512 		return -ENOMEM;
2513 
2514 	spin_lock(&pers_lock);
2515 	pers = find_pers(mddev->level, mddev->clevel);
2516 	if (!pers || !try_module_get(pers->owner)) {
2517 		spin_unlock(&pers_lock);
2518 		if (mddev->level != LEVEL_NONE)
2519 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2520 			       mddev->level);
2521 		else
2522 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
2523 			       mddev->clevel);
2524 		return -EINVAL;
2525 	}
2526 	mddev->pers = pers;
2527 	spin_unlock(&pers_lock);
2528 	mddev->level = pers->level;
2529 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2530 
2531 	mddev->recovery = 0;
2532 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2533 	mddev->barriers_work = 1;
2534 	mddev->ok_start_degraded = start_dirty_degraded;
2535 
2536 	if (start_readonly)
2537 		mddev->ro = 2; /* read-only, but switch on first write */
2538 
2539 	err = mddev->pers->run(mddev);
2540 	if (!err && mddev->pers->sync_request) {
2541 		err = bitmap_create(mddev);
2542 		if (err) {
2543 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2544 			       mdname(mddev), err);
2545 			mddev->pers->stop(mddev);
2546 		}
2547 	}
2548 	if (err) {
2549 		printk(KERN_ERR "md: pers->run() failed ...\n");
2550 		module_put(mddev->pers->owner);
2551 		mddev->pers = NULL;
2552 		bitmap_destroy(mddev);
2553 		return err;
2554 	}
2555 	if (mddev->pers->sync_request)
2556 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2557 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
2558 		mddev->ro = 0;
2559 
2560  	atomic_set(&mddev->writes_pending,0);
2561 	mddev->safemode = 0;
2562 	mddev->safemode_timer.function = md_safemode_timeout;
2563 	mddev->safemode_timer.data = (unsigned long) mddev;
2564 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2565 	mddev->in_sync = 1;
2566 
2567 	ITERATE_RDEV(mddev,rdev,tmp)
2568 		if (rdev->raid_disk >= 0) {
2569 			char nm[20];
2570 			sprintf(nm, "rd%d", rdev->raid_disk);
2571 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2572 		}
2573 
2574 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2575 	md_wakeup_thread(mddev->thread);
2576 
2577 	if (mddev->sb_dirty)
2578 		md_update_sb(mddev);
2579 
2580 	set_capacity(disk, mddev->array_size<<1);
2581 
2582 	/* If we call blk_queue_make_request here, it will
2583 	 * re-initialise max_sectors etc which may have been
2584 	 * refined inside -> run.  So just set the bits we need to set.
2585 	 * Most initialisation happended when we called
2586 	 * blk_queue_make_request(..., md_fail_request)
2587 	 * earlier.
2588 	 */
2589 	mddev->queue->queuedata = mddev;
2590 	mddev->queue->make_request_fn = mddev->pers->make_request;
2591 
2592 	mddev->changed = 1;
2593 	md_new_event(mddev);
2594 	return 0;
2595 }
2596 
2597 static int restart_array(mddev_t *mddev)
2598 {
2599 	struct gendisk *disk = mddev->gendisk;
2600 	int err;
2601 
2602 	/*
2603 	 * Complain if it has no devices
2604 	 */
2605 	err = -ENXIO;
2606 	if (list_empty(&mddev->disks))
2607 		goto out;
2608 
2609 	if (mddev->pers) {
2610 		err = -EBUSY;
2611 		if (!mddev->ro)
2612 			goto out;
2613 
2614 		mddev->safemode = 0;
2615 		mddev->ro = 0;
2616 		set_disk_ro(disk, 0);
2617 
2618 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2619 			mdname(mddev));
2620 		/*
2621 		 * Kick recovery or resync if necessary
2622 		 */
2623 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2624 		md_wakeup_thread(mddev->thread);
2625 		err = 0;
2626 	} else {
2627 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2628 			mdname(mddev));
2629 		err = -EINVAL;
2630 	}
2631 
2632 out:
2633 	return err;
2634 }
2635 
2636 static int do_md_stop(mddev_t * mddev, int ro)
2637 {
2638 	int err = 0;
2639 	struct gendisk *disk = mddev->gendisk;
2640 
2641 	if (mddev->pers) {
2642 		if (atomic_read(&mddev->active)>2) {
2643 			printk("md: %s still in use.\n",mdname(mddev));
2644 			return -EBUSY;
2645 		}
2646 
2647 		if (mddev->sync_thread) {
2648 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2649 			md_unregister_thread(mddev->sync_thread);
2650 			mddev->sync_thread = NULL;
2651 		}
2652 
2653 		del_timer_sync(&mddev->safemode_timer);
2654 
2655 		invalidate_partition(disk, 0);
2656 
2657 		if (ro) {
2658 			err  = -ENXIO;
2659 			if (mddev->ro==1)
2660 				goto out;
2661 			mddev->ro = 1;
2662 		} else {
2663 			bitmap_flush(mddev);
2664 			md_super_wait(mddev);
2665 			if (mddev->ro)
2666 				set_disk_ro(disk, 0);
2667 			blk_queue_make_request(mddev->queue, md_fail_request);
2668 			mddev->pers->stop(mddev);
2669 			if (mddev->pers->sync_request)
2670 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2671 
2672 			module_put(mddev->pers->owner);
2673 			mddev->pers = NULL;
2674 			if (mddev->ro)
2675 				mddev->ro = 0;
2676 		}
2677 		if (!mddev->in_sync) {
2678 			/* mark array as shutdown cleanly */
2679 			mddev->in_sync = 1;
2680 			md_update_sb(mddev);
2681 		}
2682 		if (ro)
2683 			set_disk_ro(disk, 1);
2684 	}
2685 
2686 	bitmap_destroy(mddev);
2687 	if (mddev->bitmap_file) {
2688 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2689 		fput(mddev->bitmap_file);
2690 		mddev->bitmap_file = NULL;
2691 	}
2692 	mddev->bitmap_offset = 0;
2693 
2694 	/*
2695 	 * Free resources if final stop
2696 	 */
2697 	if (!ro) {
2698 		mdk_rdev_t *rdev;
2699 		struct list_head *tmp;
2700 		struct gendisk *disk;
2701 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2702 
2703 		ITERATE_RDEV(mddev,rdev,tmp)
2704 			if (rdev->raid_disk >= 0) {
2705 				char nm[20];
2706 				sprintf(nm, "rd%d", rdev->raid_disk);
2707 				sysfs_remove_link(&mddev->kobj, nm);
2708 			}
2709 
2710 		export_array(mddev);
2711 
2712 		mddev->array_size = 0;
2713 		disk = mddev->gendisk;
2714 		if (disk)
2715 			set_capacity(disk, 0);
2716 		mddev->changed = 1;
2717 	} else
2718 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2719 			mdname(mddev));
2720 	err = 0;
2721 	md_new_event(mddev);
2722 out:
2723 	return err;
2724 }
2725 
2726 static void autorun_array(mddev_t *mddev)
2727 {
2728 	mdk_rdev_t *rdev;
2729 	struct list_head *tmp;
2730 	int err;
2731 
2732 	if (list_empty(&mddev->disks))
2733 		return;
2734 
2735 	printk(KERN_INFO "md: running: ");
2736 
2737 	ITERATE_RDEV(mddev,rdev,tmp) {
2738 		char b[BDEVNAME_SIZE];
2739 		printk("<%s>", bdevname(rdev->bdev,b));
2740 	}
2741 	printk("\n");
2742 
2743 	err = do_md_run (mddev);
2744 	if (err) {
2745 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2746 		do_md_stop (mddev, 0);
2747 	}
2748 }
2749 
2750 /*
2751  * lets try to run arrays based on all disks that have arrived
2752  * until now. (those are in pending_raid_disks)
2753  *
2754  * the method: pick the first pending disk, collect all disks with
2755  * the same UUID, remove all from the pending list and put them into
2756  * the 'same_array' list. Then order this list based on superblock
2757  * update time (freshest comes first), kick out 'old' disks and
2758  * compare superblocks. If everything's fine then run it.
2759  *
2760  * If "unit" is allocated, then bump its reference count
2761  */
2762 static void autorun_devices(int part)
2763 {
2764 	struct list_head candidates;
2765 	struct list_head *tmp;
2766 	mdk_rdev_t *rdev0, *rdev;
2767 	mddev_t *mddev;
2768 	char b[BDEVNAME_SIZE];
2769 
2770 	printk(KERN_INFO "md: autorun ...\n");
2771 	while (!list_empty(&pending_raid_disks)) {
2772 		dev_t dev;
2773 		rdev0 = list_entry(pending_raid_disks.next,
2774 					 mdk_rdev_t, same_set);
2775 
2776 		printk(KERN_INFO "md: considering %s ...\n",
2777 			bdevname(rdev0->bdev,b));
2778 		INIT_LIST_HEAD(&candidates);
2779 		ITERATE_RDEV_PENDING(rdev,tmp)
2780 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2781 				printk(KERN_INFO "md:  adding %s ...\n",
2782 					bdevname(rdev->bdev,b));
2783 				list_move(&rdev->same_set, &candidates);
2784 			}
2785 		/*
2786 		 * now we have a set of devices, with all of them having
2787 		 * mostly sane superblocks. It's time to allocate the
2788 		 * mddev.
2789 		 */
2790 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2791 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2792 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2793 			break;
2794 		}
2795 		if (part)
2796 			dev = MKDEV(mdp_major,
2797 				    rdev0->preferred_minor << MdpMinorShift);
2798 		else
2799 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2800 
2801 		md_probe(dev, NULL, NULL);
2802 		mddev = mddev_find(dev);
2803 		if (!mddev) {
2804 			printk(KERN_ERR
2805 				"md: cannot allocate memory for md drive.\n");
2806 			break;
2807 		}
2808 		if (mddev_lock(mddev))
2809 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2810 			       mdname(mddev));
2811 		else if (mddev->raid_disks || mddev->major_version
2812 			 || !list_empty(&mddev->disks)) {
2813 			printk(KERN_WARNING
2814 				"md: %s already running, cannot run %s\n",
2815 				mdname(mddev), bdevname(rdev0->bdev,b));
2816 			mddev_unlock(mddev);
2817 		} else {
2818 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2819 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2820 				list_del_init(&rdev->same_set);
2821 				if (bind_rdev_to_array(rdev, mddev))
2822 					export_rdev(rdev);
2823 			}
2824 			autorun_array(mddev);
2825 			mddev_unlock(mddev);
2826 		}
2827 		/* on success, candidates will be empty, on error
2828 		 * it won't...
2829 		 */
2830 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2831 			export_rdev(rdev);
2832 		mddev_put(mddev);
2833 	}
2834 	printk(KERN_INFO "md: ... autorun DONE.\n");
2835 }
2836 
2837 /*
2838  * import RAID devices based on one partition
2839  * if possible, the array gets run as well.
2840  */
2841 
2842 static int autostart_array(dev_t startdev)
2843 {
2844 	char b[BDEVNAME_SIZE];
2845 	int err = -EINVAL, i;
2846 	mdp_super_t *sb = NULL;
2847 	mdk_rdev_t *start_rdev = NULL, *rdev;
2848 
2849 	start_rdev = md_import_device(startdev, 0, 0);
2850 	if (IS_ERR(start_rdev))
2851 		return err;
2852 
2853 
2854 	/* NOTE: this can only work for 0.90.0 superblocks */
2855 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2856 	if (sb->major_version != 0 ||
2857 	    sb->minor_version != 90 ) {
2858 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2859 		export_rdev(start_rdev);
2860 		return err;
2861 	}
2862 
2863 	if (test_bit(Faulty, &start_rdev->flags)) {
2864 		printk(KERN_WARNING
2865 			"md: can not autostart based on faulty %s!\n",
2866 			bdevname(start_rdev->bdev,b));
2867 		export_rdev(start_rdev);
2868 		return err;
2869 	}
2870 	list_add(&start_rdev->same_set, &pending_raid_disks);
2871 
2872 	for (i = 0; i < MD_SB_DISKS; i++) {
2873 		mdp_disk_t *desc = sb->disks + i;
2874 		dev_t dev = MKDEV(desc->major, desc->minor);
2875 
2876 		if (!dev)
2877 			continue;
2878 		if (dev == startdev)
2879 			continue;
2880 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2881 			continue;
2882 		rdev = md_import_device(dev, 0, 0);
2883 		if (IS_ERR(rdev))
2884 			continue;
2885 
2886 		list_add(&rdev->same_set, &pending_raid_disks);
2887 	}
2888 
2889 	/*
2890 	 * possibly return codes
2891 	 */
2892 	autorun_devices(0);
2893 	return 0;
2894 
2895 }
2896 
2897 
2898 static int get_version(void __user * arg)
2899 {
2900 	mdu_version_t ver;
2901 
2902 	ver.major = MD_MAJOR_VERSION;
2903 	ver.minor = MD_MINOR_VERSION;
2904 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2905 
2906 	if (copy_to_user(arg, &ver, sizeof(ver)))
2907 		return -EFAULT;
2908 
2909 	return 0;
2910 }
2911 
2912 static int get_array_info(mddev_t * mddev, void __user * arg)
2913 {
2914 	mdu_array_info_t info;
2915 	int nr,working,active,failed,spare;
2916 	mdk_rdev_t *rdev;
2917 	struct list_head *tmp;
2918 
2919 	nr=working=active=failed=spare=0;
2920 	ITERATE_RDEV(mddev,rdev,tmp) {
2921 		nr++;
2922 		if (test_bit(Faulty, &rdev->flags))
2923 			failed++;
2924 		else {
2925 			working++;
2926 			if (test_bit(In_sync, &rdev->flags))
2927 				active++;
2928 			else
2929 				spare++;
2930 		}
2931 	}
2932 
2933 	info.major_version = mddev->major_version;
2934 	info.minor_version = mddev->minor_version;
2935 	info.patch_version = MD_PATCHLEVEL_VERSION;
2936 	info.ctime         = mddev->ctime;
2937 	info.level         = mddev->level;
2938 	info.size          = mddev->size;
2939 	info.nr_disks      = nr;
2940 	info.raid_disks    = mddev->raid_disks;
2941 	info.md_minor      = mddev->md_minor;
2942 	info.not_persistent= !mddev->persistent;
2943 
2944 	info.utime         = mddev->utime;
2945 	info.state         = 0;
2946 	if (mddev->in_sync)
2947 		info.state = (1<<MD_SB_CLEAN);
2948 	if (mddev->bitmap && mddev->bitmap_offset)
2949 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2950 	info.active_disks  = active;
2951 	info.working_disks = working;
2952 	info.failed_disks  = failed;
2953 	info.spare_disks   = spare;
2954 
2955 	info.layout        = mddev->layout;
2956 	info.chunk_size    = mddev->chunk_size;
2957 
2958 	if (copy_to_user(arg, &info, sizeof(info)))
2959 		return -EFAULT;
2960 
2961 	return 0;
2962 }
2963 
2964 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2965 {
2966 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2967 	char *ptr, *buf = NULL;
2968 	int err = -ENOMEM;
2969 
2970 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2971 	if (!file)
2972 		goto out;
2973 
2974 	/* bitmap disabled, zero the first byte and copy out */
2975 	if (!mddev->bitmap || !mddev->bitmap->file) {
2976 		file->pathname[0] = '\0';
2977 		goto copy_out;
2978 	}
2979 
2980 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2981 	if (!buf)
2982 		goto out;
2983 
2984 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2985 	if (!ptr)
2986 		goto out;
2987 
2988 	strcpy(file->pathname, ptr);
2989 
2990 copy_out:
2991 	err = 0;
2992 	if (copy_to_user(arg, file, sizeof(*file)))
2993 		err = -EFAULT;
2994 out:
2995 	kfree(buf);
2996 	kfree(file);
2997 	return err;
2998 }
2999 
3000 static int get_disk_info(mddev_t * mddev, void __user * arg)
3001 {
3002 	mdu_disk_info_t info;
3003 	unsigned int nr;
3004 	mdk_rdev_t *rdev;
3005 
3006 	if (copy_from_user(&info, arg, sizeof(info)))
3007 		return -EFAULT;
3008 
3009 	nr = info.number;
3010 
3011 	rdev = find_rdev_nr(mddev, nr);
3012 	if (rdev) {
3013 		info.major = MAJOR(rdev->bdev->bd_dev);
3014 		info.minor = MINOR(rdev->bdev->bd_dev);
3015 		info.raid_disk = rdev->raid_disk;
3016 		info.state = 0;
3017 		if (test_bit(Faulty, &rdev->flags))
3018 			info.state |= (1<<MD_DISK_FAULTY);
3019 		else if (test_bit(In_sync, &rdev->flags)) {
3020 			info.state |= (1<<MD_DISK_ACTIVE);
3021 			info.state |= (1<<MD_DISK_SYNC);
3022 		}
3023 		if (test_bit(WriteMostly, &rdev->flags))
3024 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3025 	} else {
3026 		info.major = info.minor = 0;
3027 		info.raid_disk = -1;
3028 		info.state = (1<<MD_DISK_REMOVED);
3029 	}
3030 
3031 	if (copy_to_user(arg, &info, sizeof(info)))
3032 		return -EFAULT;
3033 
3034 	return 0;
3035 }
3036 
3037 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3038 {
3039 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3040 	mdk_rdev_t *rdev;
3041 	dev_t dev = MKDEV(info->major,info->minor);
3042 
3043 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3044 		return -EOVERFLOW;
3045 
3046 	if (!mddev->raid_disks) {
3047 		int err;
3048 		/* expecting a device which has a superblock */
3049 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3050 		if (IS_ERR(rdev)) {
3051 			printk(KERN_WARNING
3052 				"md: md_import_device returned %ld\n",
3053 				PTR_ERR(rdev));
3054 			return PTR_ERR(rdev);
3055 		}
3056 		if (!list_empty(&mddev->disks)) {
3057 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3058 							mdk_rdev_t, same_set);
3059 			int err = super_types[mddev->major_version]
3060 				.load_super(rdev, rdev0, mddev->minor_version);
3061 			if (err < 0) {
3062 				printk(KERN_WARNING
3063 					"md: %s has different UUID to %s\n",
3064 					bdevname(rdev->bdev,b),
3065 					bdevname(rdev0->bdev,b2));
3066 				export_rdev(rdev);
3067 				return -EINVAL;
3068 			}
3069 		}
3070 		err = bind_rdev_to_array(rdev, mddev);
3071 		if (err)
3072 			export_rdev(rdev);
3073 		return err;
3074 	}
3075 
3076 	/*
3077 	 * add_new_disk can be used once the array is assembled
3078 	 * to add "hot spares".  They must already have a superblock
3079 	 * written
3080 	 */
3081 	if (mddev->pers) {
3082 		int err;
3083 		if (!mddev->pers->hot_add_disk) {
3084 			printk(KERN_WARNING
3085 				"%s: personality does not support diskops!\n",
3086 			       mdname(mddev));
3087 			return -EINVAL;
3088 		}
3089 		if (mddev->persistent)
3090 			rdev = md_import_device(dev, mddev->major_version,
3091 						mddev->minor_version);
3092 		else
3093 			rdev = md_import_device(dev, -1, -1);
3094 		if (IS_ERR(rdev)) {
3095 			printk(KERN_WARNING
3096 				"md: md_import_device returned %ld\n",
3097 				PTR_ERR(rdev));
3098 			return PTR_ERR(rdev);
3099 		}
3100 		/* set save_raid_disk if appropriate */
3101 		if (!mddev->persistent) {
3102 			if (info->state & (1<<MD_DISK_SYNC)  &&
3103 			    info->raid_disk < mddev->raid_disks)
3104 				rdev->raid_disk = info->raid_disk;
3105 			else
3106 				rdev->raid_disk = -1;
3107 		} else
3108 			super_types[mddev->major_version].
3109 				validate_super(mddev, rdev);
3110 		rdev->saved_raid_disk = rdev->raid_disk;
3111 
3112 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
3113 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3114 			set_bit(WriteMostly, &rdev->flags);
3115 
3116 		rdev->raid_disk = -1;
3117 		err = bind_rdev_to_array(rdev, mddev);
3118 		if (err)
3119 			export_rdev(rdev);
3120 
3121 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3122 		md_wakeup_thread(mddev->thread);
3123 		return err;
3124 	}
3125 
3126 	/* otherwise, add_new_disk is only allowed
3127 	 * for major_version==0 superblocks
3128 	 */
3129 	if (mddev->major_version != 0) {
3130 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3131 		       mdname(mddev));
3132 		return -EINVAL;
3133 	}
3134 
3135 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
3136 		int err;
3137 		rdev = md_import_device (dev, -1, 0);
3138 		if (IS_ERR(rdev)) {
3139 			printk(KERN_WARNING
3140 				"md: error, md_import_device() returned %ld\n",
3141 				PTR_ERR(rdev));
3142 			return PTR_ERR(rdev);
3143 		}
3144 		rdev->desc_nr = info->number;
3145 		if (info->raid_disk < mddev->raid_disks)
3146 			rdev->raid_disk = info->raid_disk;
3147 		else
3148 			rdev->raid_disk = -1;
3149 
3150 		rdev->flags = 0;
3151 
3152 		if (rdev->raid_disk < mddev->raid_disks)
3153 			if (info->state & (1<<MD_DISK_SYNC))
3154 				set_bit(In_sync, &rdev->flags);
3155 
3156 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3157 			set_bit(WriteMostly, &rdev->flags);
3158 
3159 		if (!mddev->persistent) {
3160 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
3161 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3162 		} else
3163 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3164 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3165 
3166 		err = bind_rdev_to_array(rdev, mddev);
3167 		if (err) {
3168 			export_rdev(rdev);
3169 			return err;
3170 		}
3171 	}
3172 
3173 	return 0;
3174 }
3175 
3176 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3177 {
3178 	char b[BDEVNAME_SIZE];
3179 	mdk_rdev_t *rdev;
3180 
3181 	if (!mddev->pers)
3182 		return -ENODEV;
3183 
3184 	rdev = find_rdev(mddev, dev);
3185 	if (!rdev)
3186 		return -ENXIO;
3187 
3188 	if (rdev->raid_disk >= 0)
3189 		goto busy;
3190 
3191 	kick_rdev_from_array(rdev);
3192 	md_update_sb(mddev);
3193 	md_new_event(mddev);
3194 
3195 	return 0;
3196 busy:
3197 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3198 		bdevname(rdev->bdev,b), mdname(mddev));
3199 	return -EBUSY;
3200 }
3201 
3202 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3203 {
3204 	char b[BDEVNAME_SIZE];
3205 	int err;
3206 	unsigned int size;
3207 	mdk_rdev_t *rdev;
3208 
3209 	if (!mddev->pers)
3210 		return -ENODEV;
3211 
3212 	if (mddev->major_version != 0) {
3213 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3214 			" version-0 superblocks.\n",
3215 			mdname(mddev));
3216 		return -EINVAL;
3217 	}
3218 	if (!mddev->pers->hot_add_disk) {
3219 		printk(KERN_WARNING
3220 			"%s: personality does not support diskops!\n",
3221 			mdname(mddev));
3222 		return -EINVAL;
3223 	}
3224 
3225 	rdev = md_import_device (dev, -1, 0);
3226 	if (IS_ERR(rdev)) {
3227 		printk(KERN_WARNING
3228 			"md: error, md_import_device() returned %ld\n",
3229 			PTR_ERR(rdev));
3230 		return -EINVAL;
3231 	}
3232 
3233 	if (mddev->persistent)
3234 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3235 	else
3236 		rdev->sb_offset =
3237 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3238 
3239 	size = calc_dev_size(rdev, mddev->chunk_size);
3240 	rdev->size = size;
3241 
3242 	if (test_bit(Faulty, &rdev->flags)) {
3243 		printk(KERN_WARNING
3244 			"md: can not hot-add faulty %s disk to %s!\n",
3245 			bdevname(rdev->bdev,b), mdname(mddev));
3246 		err = -EINVAL;
3247 		goto abort_export;
3248 	}
3249 	clear_bit(In_sync, &rdev->flags);
3250 	rdev->desc_nr = -1;
3251 	err = bind_rdev_to_array(rdev, mddev);
3252 	if (err)
3253 		goto abort_export;
3254 
3255 	/*
3256 	 * The rest should better be atomic, we can have disk failures
3257 	 * noticed in interrupt contexts ...
3258 	 */
3259 
3260 	if (rdev->desc_nr == mddev->max_disks) {
3261 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3262 			mdname(mddev));
3263 		err = -EBUSY;
3264 		goto abort_unbind_export;
3265 	}
3266 
3267 	rdev->raid_disk = -1;
3268 
3269 	md_update_sb(mddev);
3270 
3271 	/*
3272 	 * Kick recovery, maybe this spare has to be added to the
3273 	 * array immediately.
3274 	 */
3275 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3276 	md_wakeup_thread(mddev->thread);
3277 	md_new_event(mddev);
3278 	return 0;
3279 
3280 abort_unbind_export:
3281 	unbind_rdev_from_array(rdev);
3282 
3283 abort_export:
3284 	export_rdev(rdev);
3285 	return err;
3286 }
3287 
3288 /* similar to deny_write_access, but accounts for our holding a reference
3289  * to the file ourselves */
3290 static int deny_bitmap_write_access(struct file * file)
3291 {
3292 	struct inode *inode = file->f_mapping->host;
3293 
3294 	spin_lock(&inode->i_lock);
3295 	if (atomic_read(&inode->i_writecount) > 1) {
3296 		spin_unlock(&inode->i_lock);
3297 		return -ETXTBSY;
3298 	}
3299 	atomic_set(&inode->i_writecount, -1);
3300 	spin_unlock(&inode->i_lock);
3301 
3302 	return 0;
3303 }
3304 
3305 static int set_bitmap_file(mddev_t *mddev, int fd)
3306 {
3307 	int err;
3308 
3309 	if (mddev->pers) {
3310 		if (!mddev->pers->quiesce)
3311 			return -EBUSY;
3312 		if (mddev->recovery || mddev->sync_thread)
3313 			return -EBUSY;
3314 		/* we should be able to change the bitmap.. */
3315 	}
3316 
3317 
3318 	if (fd >= 0) {
3319 		if (mddev->bitmap)
3320 			return -EEXIST; /* cannot add when bitmap is present */
3321 		mddev->bitmap_file = fget(fd);
3322 
3323 		if (mddev->bitmap_file == NULL) {
3324 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3325 			       mdname(mddev));
3326 			return -EBADF;
3327 		}
3328 
3329 		err = deny_bitmap_write_access(mddev->bitmap_file);
3330 		if (err) {
3331 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3332 			       mdname(mddev));
3333 			fput(mddev->bitmap_file);
3334 			mddev->bitmap_file = NULL;
3335 			return err;
3336 		}
3337 		mddev->bitmap_offset = 0; /* file overrides offset */
3338 	} else if (mddev->bitmap == NULL)
3339 		return -ENOENT; /* cannot remove what isn't there */
3340 	err = 0;
3341 	if (mddev->pers) {
3342 		mddev->pers->quiesce(mddev, 1);
3343 		if (fd >= 0)
3344 			err = bitmap_create(mddev);
3345 		if (fd < 0 || err)
3346 			bitmap_destroy(mddev);
3347 		mddev->pers->quiesce(mddev, 0);
3348 	} else if (fd < 0) {
3349 		if (mddev->bitmap_file)
3350 			fput(mddev->bitmap_file);
3351 		mddev->bitmap_file = NULL;
3352 	}
3353 
3354 	return err;
3355 }
3356 
3357 /*
3358  * set_array_info is used two different ways
3359  * The original usage is when creating a new array.
3360  * In this usage, raid_disks is > 0 and it together with
3361  *  level, size, not_persistent,layout,chunksize determine the
3362  *  shape of the array.
3363  *  This will always create an array with a type-0.90.0 superblock.
3364  * The newer usage is when assembling an array.
3365  *  In this case raid_disks will be 0, and the major_version field is
3366  *  use to determine which style super-blocks are to be found on the devices.
3367  *  The minor and patch _version numbers are also kept incase the
3368  *  super_block handler wishes to interpret them.
3369  */
3370 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3371 {
3372 
3373 	if (info->raid_disks == 0) {
3374 		/* just setting version number for superblock loading */
3375 		if (info->major_version < 0 ||
3376 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3377 		    super_types[info->major_version].name == NULL) {
3378 			/* maybe try to auto-load a module? */
3379 			printk(KERN_INFO
3380 				"md: superblock version %d not known\n",
3381 				info->major_version);
3382 			return -EINVAL;
3383 		}
3384 		mddev->major_version = info->major_version;
3385 		mddev->minor_version = info->minor_version;
3386 		mddev->patch_version = info->patch_version;
3387 		return 0;
3388 	}
3389 	mddev->major_version = MD_MAJOR_VERSION;
3390 	mddev->minor_version = MD_MINOR_VERSION;
3391 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
3392 	mddev->ctime         = get_seconds();
3393 
3394 	mddev->level         = info->level;
3395 	mddev->size          = info->size;
3396 	mddev->raid_disks    = info->raid_disks;
3397 	/* don't set md_minor, it is determined by which /dev/md* was
3398 	 * openned
3399 	 */
3400 	if (info->state & (1<<MD_SB_CLEAN))
3401 		mddev->recovery_cp = MaxSector;
3402 	else
3403 		mddev->recovery_cp = 0;
3404 	mddev->persistent    = ! info->not_persistent;
3405 
3406 	mddev->layout        = info->layout;
3407 	mddev->chunk_size    = info->chunk_size;
3408 
3409 	mddev->max_disks     = MD_SB_DISKS;
3410 
3411 	mddev->sb_dirty      = 1;
3412 
3413 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
3414 	mddev->bitmap_offset = 0;
3415 
3416 	/*
3417 	 * Generate a 128 bit UUID
3418 	 */
3419 	get_random_bytes(mddev->uuid, 16);
3420 
3421 	return 0;
3422 }
3423 
3424 static int update_size(mddev_t *mddev, unsigned long size)
3425 {
3426 	mdk_rdev_t * rdev;
3427 	int rv;
3428 	struct list_head *tmp;
3429 
3430 	if (mddev->pers->resize == NULL)
3431 		return -EINVAL;
3432 	/* The "size" is the amount of each device that is used.
3433 	 * This can only make sense for arrays with redundancy.
3434 	 * linear and raid0 always use whatever space is available
3435 	 * We can only consider changing the size if no resync
3436 	 * or reconstruction is happening, and if the new size
3437 	 * is acceptable. It must fit before the sb_offset or,
3438 	 * if that is <data_offset, it must fit before the
3439 	 * size of each device.
3440 	 * If size is zero, we find the largest size that fits.
3441 	 */
3442 	if (mddev->sync_thread)
3443 		return -EBUSY;
3444 	ITERATE_RDEV(mddev,rdev,tmp) {
3445 		sector_t avail;
3446 		int fit = (size == 0);
3447 		if (rdev->sb_offset > rdev->data_offset)
3448 			avail = (rdev->sb_offset*2) - rdev->data_offset;
3449 		else
3450 			avail = get_capacity(rdev->bdev->bd_disk)
3451 				- rdev->data_offset;
3452 		if (fit && (size == 0 || size > avail/2))
3453 			size = avail/2;
3454 		if (avail < ((sector_t)size << 1))
3455 			return -ENOSPC;
3456 	}
3457 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
3458 	if (!rv) {
3459 		struct block_device *bdev;
3460 
3461 		bdev = bdget_disk(mddev->gendisk, 0);
3462 		if (bdev) {
3463 			down(&bdev->bd_inode->i_sem);
3464 			i_size_write(bdev->bd_inode, mddev->array_size << 10);
3465 			up(&bdev->bd_inode->i_sem);
3466 			bdput(bdev);
3467 		}
3468 	}
3469 	return rv;
3470 }
3471 
3472 static int update_raid_disks(mddev_t *mddev, int raid_disks)
3473 {
3474 	int rv;
3475 	/* change the number of raid disks */
3476 	if (mddev->pers->reshape == NULL)
3477 		return -EINVAL;
3478 	if (raid_disks <= 0 ||
3479 	    raid_disks >= mddev->max_disks)
3480 		return -EINVAL;
3481 	if (mddev->sync_thread)
3482 		return -EBUSY;
3483 	rv = mddev->pers->reshape(mddev, raid_disks);
3484 	if (!rv) {
3485 		struct block_device *bdev;
3486 
3487 		bdev = bdget_disk(mddev->gendisk, 0);
3488 		if (bdev) {
3489 			down(&bdev->bd_inode->i_sem);
3490 			i_size_write(bdev->bd_inode, mddev->array_size << 10);
3491 			up(&bdev->bd_inode->i_sem);
3492 			bdput(bdev);
3493 		}
3494 	}
3495 	return rv;
3496 }
3497 
3498 
3499 /*
3500  * update_array_info is used to change the configuration of an
3501  * on-line array.
3502  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
3503  * fields in the info are checked against the array.
3504  * Any differences that cannot be handled will cause an error.
3505  * Normally, only one change can be managed at a time.
3506  */
3507 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
3508 {
3509 	int rv = 0;
3510 	int cnt = 0;
3511 	int state = 0;
3512 
3513 	/* calculate expected state,ignoring low bits */
3514 	if (mddev->bitmap && mddev->bitmap_offset)
3515 		state |= (1 << MD_SB_BITMAP_PRESENT);
3516 
3517 	if (mddev->major_version != info->major_version ||
3518 	    mddev->minor_version != info->minor_version ||
3519 /*	    mddev->patch_version != info->patch_version || */
3520 	    mddev->ctime         != info->ctime         ||
3521 	    mddev->level         != info->level         ||
3522 /*	    mddev->layout        != info->layout        || */
3523 	    !mddev->persistent	 != info->not_persistent||
3524 	    mddev->chunk_size    != info->chunk_size    ||
3525 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3526 	    ((state^info->state) & 0xfffffe00)
3527 		)
3528 		return -EINVAL;
3529 	/* Check there is only one change */
3530 	if (mddev->size != info->size) cnt++;
3531 	if (mddev->raid_disks != info->raid_disks) cnt++;
3532 	if (mddev->layout != info->layout) cnt++;
3533 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3534 	if (cnt == 0) return 0;
3535 	if (cnt > 1) return -EINVAL;
3536 
3537 	if (mddev->layout != info->layout) {
3538 		/* Change layout
3539 		 * we don't need to do anything at the md level, the
3540 		 * personality will take care of it all.
3541 		 */
3542 		if (mddev->pers->reconfig == NULL)
3543 			return -EINVAL;
3544 		else
3545 			return mddev->pers->reconfig(mddev, info->layout, -1);
3546 	}
3547 	if (mddev->size != info->size)
3548 		rv = update_size(mddev, info->size);
3549 
3550 	if (mddev->raid_disks    != info->raid_disks)
3551 		rv = update_raid_disks(mddev, info->raid_disks);
3552 
3553 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3554 		if (mddev->pers->quiesce == NULL)
3555 			return -EINVAL;
3556 		if (mddev->recovery || mddev->sync_thread)
3557 			return -EBUSY;
3558 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3559 			/* add the bitmap */
3560 			if (mddev->bitmap)
3561 				return -EEXIST;
3562 			if (mddev->default_bitmap_offset == 0)
3563 				return -EINVAL;
3564 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3565 			mddev->pers->quiesce(mddev, 1);
3566 			rv = bitmap_create(mddev);
3567 			if (rv)
3568 				bitmap_destroy(mddev);
3569 			mddev->pers->quiesce(mddev, 0);
3570 		} else {
3571 			/* remove the bitmap */
3572 			if (!mddev->bitmap)
3573 				return -ENOENT;
3574 			if (mddev->bitmap->file)
3575 				return -EINVAL;
3576 			mddev->pers->quiesce(mddev, 1);
3577 			bitmap_destroy(mddev);
3578 			mddev->pers->quiesce(mddev, 0);
3579 			mddev->bitmap_offset = 0;
3580 		}
3581 	}
3582 	md_update_sb(mddev);
3583 	return rv;
3584 }
3585 
3586 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3587 {
3588 	mdk_rdev_t *rdev;
3589 
3590 	if (mddev->pers == NULL)
3591 		return -ENODEV;
3592 
3593 	rdev = find_rdev(mddev, dev);
3594 	if (!rdev)
3595 		return -ENODEV;
3596 
3597 	md_error(mddev, rdev);
3598 	return 0;
3599 }
3600 
3601 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3602 {
3603 	mddev_t *mddev = bdev->bd_disk->private_data;
3604 
3605 	geo->heads = 2;
3606 	geo->sectors = 4;
3607 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
3608 	return 0;
3609 }
3610 
3611 static int md_ioctl(struct inode *inode, struct file *file,
3612 			unsigned int cmd, unsigned long arg)
3613 {
3614 	int err = 0;
3615 	void __user *argp = (void __user *)arg;
3616 	mddev_t *mddev = NULL;
3617 
3618 	if (!capable(CAP_SYS_ADMIN))
3619 		return -EACCES;
3620 
3621 	/*
3622 	 * Commands dealing with the RAID driver but not any
3623 	 * particular array:
3624 	 */
3625 	switch (cmd)
3626 	{
3627 		case RAID_VERSION:
3628 			err = get_version(argp);
3629 			goto done;
3630 
3631 		case PRINT_RAID_DEBUG:
3632 			err = 0;
3633 			md_print_devices();
3634 			goto done;
3635 
3636 #ifndef MODULE
3637 		case RAID_AUTORUN:
3638 			err = 0;
3639 			autostart_arrays(arg);
3640 			goto done;
3641 #endif
3642 		default:;
3643 	}
3644 
3645 	/*
3646 	 * Commands creating/starting a new array:
3647 	 */
3648 
3649 	mddev = inode->i_bdev->bd_disk->private_data;
3650 
3651 	if (!mddev) {
3652 		BUG();
3653 		goto abort;
3654 	}
3655 
3656 
3657 	if (cmd == START_ARRAY) {
3658 		/* START_ARRAY doesn't need to lock the array as autostart_array
3659 		 * does the locking, and it could even be a different array
3660 		 */
3661 		static int cnt = 3;
3662 		if (cnt > 0 ) {
3663 			printk(KERN_WARNING
3664 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3665 			       "This will not be supported beyond July 2006\n",
3666 			       current->comm, current->pid);
3667 			cnt--;
3668 		}
3669 		err = autostart_array(new_decode_dev(arg));
3670 		if (err) {
3671 			printk(KERN_WARNING "md: autostart failed!\n");
3672 			goto abort;
3673 		}
3674 		goto done;
3675 	}
3676 
3677 	err = mddev_lock(mddev);
3678 	if (err) {
3679 		printk(KERN_INFO
3680 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3681 			err, cmd);
3682 		goto abort;
3683 	}
3684 
3685 	switch (cmd)
3686 	{
3687 		case SET_ARRAY_INFO:
3688 			{
3689 				mdu_array_info_t info;
3690 				if (!arg)
3691 					memset(&info, 0, sizeof(info));
3692 				else if (copy_from_user(&info, argp, sizeof(info))) {
3693 					err = -EFAULT;
3694 					goto abort_unlock;
3695 				}
3696 				if (mddev->pers) {
3697 					err = update_array_info(mddev, &info);
3698 					if (err) {
3699 						printk(KERN_WARNING "md: couldn't update"
3700 						       " array info. %d\n", err);
3701 						goto abort_unlock;
3702 					}
3703 					goto done_unlock;
3704 				}
3705 				if (!list_empty(&mddev->disks)) {
3706 					printk(KERN_WARNING
3707 					       "md: array %s already has disks!\n",
3708 					       mdname(mddev));
3709 					err = -EBUSY;
3710 					goto abort_unlock;
3711 				}
3712 				if (mddev->raid_disks) {
3713 					printk(KERN_WARNING
3714 					       "md: array %s already initialised!\n",
3715 					       mdname(mddev));
3716 					err = -EBUSY;
3717 					goto abort_unlock;
3718 				}
3719 				err = set_array_info(mddev, &info);
3720 				if (err) {
3721 					printk(KERN_WARNING "md: couldn't set"
3722 					       " array info. %d\n", err);
3723 					goto abort_unlock;
3724 				}
3725 			}
3726 			goto done_unlock;
3727 
3728 		default:;
3729 	}
3730 
3731 	/*
3732 	 * Commands querying/configuring an existing array:
3733 	 */
3734 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3735 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3736 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3737 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3738 		err = -ENODEV;
3739 		goto abort_unlock;
3740 	}
3741 
3742 	/*
3743 	 * Commands even a read-only array can execute:
3744 	 */
3745 	switch (cmd)
3746 	{
3747 		case GET_ARRAY_INFO:
3748 			err = get_array_info(mddev, argp);
3749 			goto done_unlock;
3750 
3751 		case GET_BITMAP_FILE:
3752 			err = get_bitmap_file(mddev, argp);
3753 			goto done_unlock;
3754 
3755 		case GET_DISK_INFO:
3756 			err = get_disk_info(mddev, argp);
3757 			goto done_unlock;
3758 
3759 		case RESTART_ARRAY_RW:
3760 			err = restart_array(mddev);
3761 			goto done_unlock;
3762 
3763 		case STOP_ARRAY:
3764 			err = do_md_stop (mddev, 0);
3765 			goto done_unlock;
3766 
3767 		case STOP_ARRAY_RO:
3768 			err = do_md_stop (mddev, 1);
3769 			goto done_unlock;
3770 
3771 	/*
3772 	 * We have a problem here : there is no easy way to give a CHS
3773 	 * virtual geometry. We currently pretend that we have a 2 heads
3774 	 * 4 sectors (with a BIG number of cylinders...). This drives
3775 	 * dosfs just mad... ;-)
3776 	 */
3777 	}
3778 
3779 	/*
3780 	 * The remaining ioctls are changing the state of the
3781 	 * superblock, so we do not allow them on read-only arrays.
3782 	 * However non-MD ioctls (e.g. get-size) will still come through
3783 	 * here and hit the 'default' below, so only disallow
3784 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3785 	 */
3786 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3787 	    mddev->ro && mddev->pers) {
3788 		if (mddev->ro == 2) {
3789 			mddev->ro = 0;
3790 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3791 		md_wakeup_thread(mddev->thread);
3792 
3793 		} else {
3794 			err = -EROFS;
3795 			goto abort_unlock;
3796 		}
3797 	}
3798 
3799 	switch (cmd)
3800 	{
3801 		case ADD_NEW_DISK:
3802 		{
3803 			mdu_disk_info_t info;
3804 			if (copy_from_user(&info, argp, sizeof(info)))
3805 				err = -EFAULT;
3806 			else
3807 				err = add_new_disk(mddev, &info);
3808 			goto done_unlock;
3809 		}
3810 
3811 		case HOT_REMOVE_DISK:
3812 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3813 			goto done_unlock;
3814 
3815 		case HOT_ADD_DISK:
3816 			err = hot_add_disk(mddev, new_decode_dev(arg));
3817 			goto done_unlock;
3818 
3819 		case SET_DISK_FAULTY:
3820 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3821 			goto done_unlock;
3822 
3823 		case RUN_ARRAY:
3824 			err = do_md_run (mddev);
3825 			goto done_unlock;
3826 
3827 		case SET_BITMAP_FILE:
3828 			err = set_bitmap_file(mddev, (int)arg);
3829 			goto done_unlock;
3830 
3831 		default:
3832 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3833 				printk(KERN_WARNING "md: %s(pid %d) used"
3834 					" obsolete MD ioctl, upgrade your"
3835 					" software to use new ictls.\n",
3836 					current->comm, current->pid);
3837 			err = -EINVAL;
3838 			goto abort_unlock;
3839 	}
3840 
3841 done_unlock:
3842 abort_unlock:
3843 	mddev_unlock(mddev);
3844 
3845 	return err;
3846 done:
3847 	if (err)
3848 		MD_BUG();
3849 abort:
3850 	return err;
3851 }
3852 
3853 static int md_open(struct inode *inode, struct file *file)
3854 {
3855 	/*
3856 	 * Succeed if we can lock the mddev, which confirms that
3857 	 * it isn't being stopped right now.
3858 	 */
3859 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3860 	int err;
3861 
3862 	if ((err = mddev_lock(mddev)))
3863 		goto out;
3864 
3865 	err = 0;
3866 	mddev_get(mddev);
3867 	mddev_unlock(mddev);
3868 
3869 	check_disk_change(inode->i_bdev);
3870  out:
3871 	return err;
3872 }
3873 
3874 static int md_release(struct inode *inode, struct file * file)
3875 {
3876  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3877 
3878 	if (!mddev)
3879 		BUG();
3880 	mddev_put(mddev);
3881 
3882 	return 0;
3883 }
3884 
3885 static int md_media_changed(struct gendisk *disk)
3886 {
3887 	mddev_t *mddev = disk->private_data;
3888 
3889 	return mddev->changed;
3890 }
3891 
3892 static int md_revalidate(struct gendisk *disk)
3893 {
3894 	mddev_t *mddev = disk->private_data;
3895 
3896 	mddev->changed = 0;
3897 	return 0;
3898 }
3899 static struct block_device_operations md_fops =
3900 {
3901 	.owner		= THIS_MODULE,
3902 	.open		= md_open,
3903 	.release	= md_release,
3904 	.ioctl		= md_ioctl,
3905 	.getgeo		= md_getgeo,
3906 	.media_changed	= md_media_changed,
3907 	.revalidate_disk= md_revalidate,
3908 };
3909 
3910 static int md_thread(void * arg)
3911 {
3912 	mdk_thread_t *thread = arg;
3913 
3914 	/*
3915 	 * md_thread is a 'system-thread', it's priority should be very
3916 	 * high. We avoid resource deadlocks individually in each
3917 	 * raid personality. (RAID5 does preallocation) We also use RR and
3918 	 * the very same RT priority as kswapd, thus we will never get
3919 	 * into a priority inversion deadlock.
3920 	 *
3921 	 * we definitely have to have equal or higher priority than
3922 	 * bdflush, otherwise bdflush will deadlock if there are too
3923 	 * many dirty RAID5 blocks.
3924 	 */
3925 
3926 	allow_signal(SIGKILL);
3927 	while (!kthread_should_stop()) {
3928 
3929 		/* We need to wait INTERRUPTIBLE so that
3930 		 * we don't add to the load-average.
3931 		 * That means we need to be sure no signals are
3932 		 * pending
3933 		 */
3934 		if (signal_pending(current))
3935 			flush_signals(current);
3936 
3937 		wait_event_interruptible_timeout
3938 			(thread->wqueue,
3939 			 test_bit(THREAD_WAKEUP, &thread->flags)
3940 			 || kthread_should_stop(),
3941 			 thread->timeout);
3942 		try_to_freeze();
3943 
3944 		clear_bit(THREAD_WAKEUP, &thread->flags);
3945 
3946 		thread->run(thread->mddev);
3947 	}
3948 
3949 	return 0;
3950 }
3951 
3952 void md_wakeup_thread(mdk_thread_t *thread)
3953 {
3954 	if (thread) {
3955 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3956 		set_bit(THREAD_WAKEUP, &thread->flags);
3957 		wake_up(&thread->wqueue);
3958 	}
3959 }
3960 
3961 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3962 				 const char *name)
3963 {
3964 	mdk_thread_t *thread;
3965 
3966 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3967 	if (!thread)
3968 		return NULL;
3969 
3970 	init_waitqueue_head(&thread->wqueue);
3971 
3972 	thread->run = run;
3973 	thread->mddev = mddev;
3974 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3975 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3976 	if (IS_ERR(thread->tsk)) {
3977 		kfree(thread);
3978 		return NULL;
3979 	}
3980 	return thread;
3981 }
3982 
3983 void md_unregister_thread(mdk_thread_t *thread)
3984 {
3985 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3986 
3987 	kthread_stop(thread->tsk);
3988 	kfree(thread);
3989 }
3990 
3991 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3992 {
3993 	if (!mddev) {
3994 		MD_BUG();
3995 		return;
3996 	}
3997 
3998 	if (!rdev || test_bit(Faulty, &rdev->flags))
3999 		return;
4000 /*
4001 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4002 		mdname(mddev),
4003 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4004 		__builtin_return_address(0),__builtin_return_address(1),
4005 		__builtin_return_address(2),__builtin_return_address(3));
4006 */
4007 	if (!mddev->pers->error_handler)
4008 		return;
4009 	mddev->pers->error_handler(mddev,rdev);
4010 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4011 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4012 	md_wakeup_thread(mddev->thread);
4013 	md_new_event(mddev);
4014 }
4015 
4016 /* seq_file implementation /proc/mdstat */
4017 
4018 static void status_unused(struct seq_file *seq)
4019 {
4020 	int i = 0;
4021 	mdk_rdev_t *rdev;
4022 	struct list_head *tmp;
4023 
4024 	seq_printf(seq, "unused devices: ");
4025 
4026 	ITERATE_RDEV_PENDING(rdev,tmp) {
4027 		char b[BDEVNAME_SIZE];
4028 		i++;
4029 		seq_printf(seq, "%s ",
4030 			      bdevname(rdev->bdev,b));
4031 	}
4032 	if (!i)
4033 		seq_printf(seq, "<none>");
4034 
4035 	seq_printf(seq, "\n");
4036 }
4037 
4038 
4039 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4040 {
4041 	unsigned long max_blocks, resync, res, dt, db, rt;
4042 
4043 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4044 
4045 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4046 		max_blocks = mddev->resync_max_sectors >> 1;
4047 	else
4048 		max_blocks = mddev->size;
4049 
4050 	/*
4051 	 * Should not happen.
4052 	 */
4053 	if (!max_blocks) {
4054 		MD_BUG();
4055 		return;
4056 	}
4057 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
4058 	{
4059 		int i, x = res/50, y = 20-x;
4060 		seq_printf(seq, "[");
4061 		for (i = 0; i < x; i++)
4062 			seq_printf(seq, "=");
4063 		seq_printf(seq, ">");
4064 		for (i = 0; i < y; i++)
4065 			seq_printf(seq, ".");
4066 		seq_printf(seq, "] ");
4067 	}
4068 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
4069 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4070 		       "resync" : "recovery"),
4071 		      res/10, res % 10, resync, max_blocks);
4072 
4073 	/*
4074 	 * We do not want to overflow, so the order of operands and
4075 	 * the * 100 / 100 trick are important. We do a +1 to be
4076 	 * safe against division by zero. We only estimate anyway.
4077 	 *
4078 	 * dt: time from mark until now
4079 	 * db: blocks written from mark until now
4080 	 * rt: remaining time
4081 	 */
4082 	dt = ((jiffies - mddev->resync_mark) / HZ);
4083 	if (!dt) dt++;
4084 	db = resync - (mddev->resync_mark_cnt/2);
4085 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
4086 
4087 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4088 
4089 	seq_printf(seq, " speed=%ldK/sec", db/dt);
4090 }
4091 
4092 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4093 {
4094 	struct list_head *tmp;
4095 	loff_t l = *pos;
4096 	mddev_t *mddev;
4097 
4098 	if (l >= 0x10000)
4099 		return NULL;
4100 	if (!l--)
4101 		/* header */
4102 		return (void*)1;
4103 
4104 	spin_lock(&all_mddevs_lock);
4105 	list_for_each(tmp,&all_mddevs)
4106 		if (!l--) {
4107 			mddev = list_entry(tmp, mddev_t, all_mddevs);
4108 			mddev_get(mddev);
4109 			spin_unlock(&all_mddevs_lock);
4110 			return mddev;
4111 		}
4112 	spin_unlock(&all_mddevs_lock);
4113 	if (!l--)
4114 		return (void*)2;/* tail */
4115 	return NULL;
4116 }
4117 
4118 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4119 {
4120 	struct list_head *tmp;
4121 	mddev_t *next_mddev, *mddev = v;
4122 
4123 	++*pos;
4124 	if (v == (void*)2)
4125 		return NULL;
4126 
4127 	spin_lock(&all_mddevs_lock);
4128 	if (v == (void*)1)
4129 		tmp = all_mddevs.next;
4130 	else
4131 		tmp = mddev->all_mddevs.next;
4132 	if (tmp != &all_mddevs)
4133 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4134 	else {
4135 		next_mddev = (void*)2;
4136 		*pos = 0x10000;
4137 	}
4138 	spin_unlock(&all_mddevs_lock);
4139 
4140 	if (v != (void*)1)
4141 		mddev_put(mddev);
4142 	return next_mddev;
4143 
4144 }
4145 
4146 static void md_seq_stop(struct seq_file *seq, void *v)
4147 {
4148 	mddev_t *mddev = v;
4149 
4150 	if (mddev && v != (void*)1 && v != (void*)2)
4151 		mddev_put(mddev);
4152 }
4153 
4154 struct mdstat_info {
4155 	int event;
4156 };
4157 
4158 static int md_seq_show(struct seq_file *seq, void *v)
4159 {
4160 	mddev_t *mddev = v;
4161 	sector_t size;
4162 	struct list_head *tmp2;
4163 	mdk_rdev_t *rdev;
4164 	struct mdstat_info *mi = seq->private;
4165 	struct bitmap *bitmap;
4166 
4167 	if (v == (void*)1) {
4168 		struct mdk_personality *pers;
4169 		seq_printf(seq, "Personalities : ");
4170 		spin_lock(&pers_lock);
4171 		list_for_each_entry(pers, &pers_list, list)
4172 			seq_printf(seq, "[%s] ", pers->name);
4173 
4174 		spin_unlock(&pers_lock);
4175 		seq_printf(seq, "\n");
4176 		mi->event = atomic_read(&md_event_count);
4177 		return 0;
4178 	}
4179 	if (v == (void*)2) {
4180 		status_unused(seq);
4181 		return 0;
4182 	}
4183 
4184 	if (mddev_lock(mddev)!=0)
4185 		return -EINTR;
4186 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4187 		seq_printf(seq, "%s : %sactive", mdname(mddev),
4188 						mddev->pers ? "" : "in");
4189 		if (mddev->pers) {
4190 			if (mddev->ro==1)
4191 				seq_printf(seq, " (read-only)");
4192 			if (mddev->ro==2)
4193 				seq_printf(seq, "(auto-read-only)");
4194 			seq_printf(seq, " %s", mddev->pers->name);
4195 		}
4196 
4197 		size = 0;
4198 		ITERATE_RDEV(mddev,rdev,tmp2) {
4199 			char b[BDEVNAME_SIZE];
4200 			seq_printf(seq, " %s[%d]",
4201 				bdevname(rdev->bdev,b), rdev->desc_nr);
4202 			if (test_bit(WriteMostly, &rdev->flags))
4203 				seq_printf(seq, "(W)");
4204 			if (test_bit(Faulty, &rdev->flags)) {
4205 				seq_printf(seq, "(F)");
4206 				continue;
4207 			} else if (rdev->raid_disk < 0)
4208 				seq_printf(seq, "(S)"); /* spare */
4209 			size += rdev->size;
4210 		}
4211 
4212 		if (!list_empty(&mddev->disks)) {
4213 			if (mddev->pers)
4214 				seq_printf(seq, "\n      %llu blocks",
4215 					(unsigned long long)mddev->array_size);
4216 			else
4217 				seq_printf(seq, "\n      %llu blocks",
4218 					(unsigned long long)size);
4219 		}
4220 		if (mddev->persistent) {
4221 			if (mddev->major_version != 0 ||
4222 			    mddev->minor_version != 90) {
4223 				seq_printf(seq," super %d.%d",
4224 					   mddev->major_version,
4225 					   mddev->minor_version);
4226 			}
4227 		} else
4228 			seq_printf(seq, " super non-persistent");
4229 
4230 		if (mddev->pers) {
4231 			mddev->pers->status (seq, mddev);
4232 	 		seq_printf(seq, "\n      ");
4233 			if (mddev->pers->sync_request) {
4234 				if (mddev->curr_resync > 2) {
4235 					status_resync (seq, mddev);
4236 					seq_printf(seq, "\n      ");
4237 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4238 					seq_printf(seq, "\tresync=DELAYED\n      ");
4239 				else if (mddev->recovery_cp < MaxSector)
4240 					seq_printf(seq, "\tresync=PENDING\n      ");
4241 			}
4242 		} else
4243 			seq_printf(seq, "\n       ");
4244 
4245 		if ((bitmap = mddev->bitmap)) {
4246 			unsigned long chunk_kb;
4247 			unsigned long flags;
4248 			spin_lock_irqsave(&bitmap->lock, flags);
4249 			chunk_kb = bitmap->chunksize >> 10;
4250 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4251 				"%lu%s chunk",
4252 				bitmap->pages - bitmap->missing_pages,
4253 				bitmap->pages,
4254 				(bitmap->pages - bitmap->missing_pages)
4255 					<< (PAGE_SHIFT - 10),
4256 				chunk_kb ? chunk_kb : bitmap->chunksize,
4257 				chunk_kb ? "KB" : "B");
4258 			if (bitmap->file) {
4259 				seq_printf(seq, ", file: ");
4260 				seq_path(seq, bitmap->file->f_vfsmnt,
4261 					 bitmap->file->f_dentry," \t\n");
4262 			}
4263 
4264 			seq_printf(seq, "\n");
4265 			spin_unlock_irqrestore(&bitmap->lock, flags);
4266 		}
4267 
4268 		seq_printf(seq, "\n");
4269 	}
4270 	mddev_unlock(mddev);
4271 
4272 	return 0;
4273 }
4274 
4275 static struct seq_operations md_seq_ops = {
4276 	.start  = md_seq_start,
4277 	.next   = md_seq_next,
4278 	.stop   = md_seq_stop,
4279 	.show   = md_seq_show,
4280 };
4281 
4282 static int md_seq_open(struct inode *inode, struct file *file)
4283 {
4284 	int error;
4285 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4286 	if (mi == NULL)
4287 		return -ENOMEM;
4288 
4289 	error = seq_open(file, &md_seq_ops);
4290 	if (error)
4291 		kfree(mi);
4292 	else {
4293 		struct seq_file *p = file->private_data;
4294 		p->private = mi;
4295 		mi->event = atomic_read(&md_event_count);
4296 	}
4297 	return error;
4298 }
4299 
4300 static int md_seq_release(struct inode *inode, struct file *file)
4301 {
4302 	struct seq_file *m = file->private_data;
4303 	struct mdstat_info *mi = m->private;
4304 	m->private = NULL;
4305 	kfree(mi);
4306 	return seq_release(inode, file);
4307 }
4308 
4309 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4310 {
4311 	struct seq_file *m = filp->private_data;
4312 	struct mdstat_info *mi = m->private;
4313 	int mask;
4314 
4315 	poll_wait(filp, &md_event_waiters, wait);
4316 
4317 	/* always allow read */
4318 	mask = POLLIN | POLLRDNORM;
4319 
4320 	if (mi->event != atomic_read(&md_event_count))
4321 		mask |= POLLERR | POLLPRI;
4322 	return mask;
4323 }
4324 
4325 static struct file_operations md_seq_fops = {
4326 	.open           = md_seq_open,
4327 	.read           = seq_read,
4328 	.llseek         = seq_lseek,
4329 	.release	= md_seq_release,
4330 	.poll		= mdstat_poll,
4331 };
4332 
4333 int register_md_personality(struct mdk_personality *p)
4334 {
4335 	spin_lock(&pers_lock);
4336 	list_add_tail(&p->list, &pers_list);
4337 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4338 	spin_unlock(&pers_lock);
4339 	return 0;
4340 }
4341 
4342 int unregister_md_personality(struct mdk_personality *p)
4343 {
4344 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4345 	spin_lock(&pers_lock);
4346 	list_del_init(&p->list);
4347 	spin_unlock(&pers_lock);
4348 	return 0;
4349 }
4350 
4351 static int is_mddev_idle(mddev_t *mddev)
4352 {
4353 	mdk_rdev_t * rdev;
4354 	struct list_head *tmp;
4355 	int idle;
4356 	unsigned long curr_events;
4357 
4358 	idle = 1;
4359 	ITERATE_RDEV(mddev,rdev,tmp) {
4360 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4361 		curr_events = disk_stat_read(disk, sectors[0]) +
4362 				disk_stat_read(disk, sectors[1]) -
4363 				atomic_read(&disk->sync_io);
4364 		/* The difference between curr_events and last_events
4365 		 * will be affected by any new non-sync IO (making
4366 		 * curr_events bigger) and any difference in the amount of
4367 		 * in-flight syncio (making current_events bigger or smaller)
4368 		 * The amount in-flight is currently limited to
4369 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4370 		 * which is at most 4096 sectors.
4371 		 * These numbers are fairly fragile and should be made
4372 		 * more robust, probably by enforcing the
4373 		 * 'window size' that md_do_sync sort-of uses.
4374 		 *
4375 		 * Note: the following is an unsigned comparison.
4376 		 */
4377 		if ((curr_events - rdev->last_events + 4096) > 8192) {
4378 			rdev->last_events = curr_events;
4379 			idle = 0;
4380 		}
4381 	}
4382 	return idle;
4383 }
4384 
4385 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4386 {
4387 	/* another "blocks" (512byte) blocks have been synced */
4388 	atomic_sub(blocks, &mddev->recovery_active);
4389 	wake_up(&mddev->recovery_wait);
4390 	if (!ok) {
4391 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4392 		md_wakeup_thread(mddev->thread);
4393 		// stop recovery, signal do_sync ....
4394 	}
4395 }
4396 
4397 
4398 /* md_write_start(mddev, bi)
4399  * If we need to update some array metadata (e.g. 'active' flag
4400  * in superblock) before writing, schedule a superblock update
4401  * and wait for it to complete.
4402  */
4403 void md_write_start(mddev_t *mddev, struct bio *bi)
4404 {
4405 	if (bio_data_dir(bi) != WRITE)
4406 		return;
4407 
4408 	BUG_ON(mddev->ro == 1);
4409 	if (mddev->ro == 2) {
4410 		/* need to switch to read/write */
4411 		mddev->ro = 0;
4412 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4413 		md_wakeup_thread(mddev->thread);
4414 	}
4415 	atomic_inc(&mddev->writes_pending);
4416 	if (mddev->in_sync) {
4417 		spin_lock_irq(&mddev->write_lock);
4418 		if (mddev->in_sync) {
4419 			mddev->in_sync = 0;
4420 			mddev->sb_dirty = 1;
4421 			md_wakeup_thread(mddev->thread);
4422 		}
4423 		spin_unlock_irq(&mddev->write_lock);
4424 	}
4425 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
4426 }
4427 
4428 void md_write_end(mddev_t *mddev)
4429 {
4430 	if (atomic_dec_and_test(&mddev->writes_pending)) {
4431 		if (mddev->safemode == 2)
4432 			md_wakeup_thread(mddev->thread);
4433 		else
4434 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
4435 	}
4436 }
4437 
4438 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
4439 
4440 #define SYNC_MARKS	10
4441 #define	SYNC_MARK_STEP	(3*HZ)
4442 static void md_do_sync(mddev_t *mddev)
4443 {
4444 	mddev_t *mddev2;
4445 	unsigned int currspeed = 0,
4446 		 window;
4447 	sector_t max_sectors,j, io_sectors;
4448 	unsigned long mark[SYNC_MARKS];
4449 	sector_t mark_cnt[SYNC_MARKS];
4450 	int last_mark,m;
4451 	struct list_head *tmp;
4452 	sector_t last_check;
4453 	int skipped = 0;
4454 
4455 	/* just incase thread restarts... */
4456 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4457 		return;
4458 
4459 	/* we overload curr_resync somewhat here.
4460 	 * 0 == not engaged in resync at all
4461 	 * 2 == checking that there is no conflict with another sync
4462 	 * 1 == like 2, but have yielded to allow conflicting resync to
4463 	 *		commense
4464 	 * other == active in resync - this many blocks
4465 	 *
4466 	 * Before starting a resync we must have set curr_resync to
4467 	 * 2, and then checked that every "conflicting" array has curr_resync
4468 	 * less than ours.  When we find one that is the same or higher
4469 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
4470 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4471 	 * This will mean we have to start checking from the beginning again.
4472 	 *
4473 	 */
4474 
4475 	do {
4476 		mddev->curr_resync = 2;
4477 
4478 	try_again:
4479 		if (kthread_should_stop()) {
4480 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4481 			goto skip;
4482 		}
4483 		ITERATE_MDDEV(mddev2,tmp) {
4484 			if (mddev2 == mddev)
4485 				continue;
4486 			if (mddev2->curr_resync &&
4487 			    match_mddev_units(mddev,mddev2)) {
4488 				DEFINE_WAIT(wq);
4489 				if (mddev < mddev2 && mddev->curr_resync == 2) {
4490 					/* arbitrarily yield */
4491 					mddev->curr_resync = 1;
4492 					wake_up(&resync_wait);
4493 				}
4494 				if (mddev > mddev2 && mddev->curr_resync == 1)
4495 					/* no need to wait here, we can wait the next
4496 					 * time 'round when curr_resync == 2
4497 					 */
4498 					continue;
4499 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4500 				if (!kthread_should_stop() &&
4501 				    mddev2->curr_resync >= mddev->curr_resync) {
4502 					printk(KERN_INFO "md: delaying resync of %s"
4503 					       " until %s has finished resync (they"
4504 					       " share one or more physical units)\n",
4505 					       mdname(mddev), mdname(mddev2));
4506 					mddev_put(mddev2);
4507 					schedule();
4508 					finish_wait(&resync_wait, &wq);
4509 					goto try_again;
4510 				}
4511 				finish_wait(&resync_wait, &wq);
4512 			}
4513 		}
4514 	} while (mddev->curr_resync < 2);
4515 
4516 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4517 		/* resync follows the size requested by the personality,
4518 		 * which defaults to physical size, but can be virtual size
4519 		 */
4520 		max_sectors = mddev->resync_max_sectors;
4521 		mddev->resync_mismatches = 0;
4522 	} else
4523 		/* recovery follows the physical size of devices */
4524 		max_sectors = mddev->size << 1;
4525 
4526 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4527 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4528 		" %d KB/sec/disc.\n", speed_min(mddev));
4529 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4530 	       "(but not more than %d KB/sec) for reconstruction.\n",
4531 	       speed_max(mddev));
4532 
4533 	is_mddev_idle(mddev); /* this also initializes IO event counters */
4534 	/* we don't use the checkpoint if there's a bitmap */
4535 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4536 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4537 		j = mddev->recovery_cp;
4538 	else
4539 		j = 0;
4540 	io_sectors = 0;
4541 	for (m = 0; m < SYNC_MARKS; m++) {
4542 		mark[m] = jiffies;
4543 		mark_cnt[m] = io_sectors;
4544 	}
4545 	last_mark = 0;
4546 	mddev->resync_mark = mark[last_mark];
4547 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4548 
4549 	/*
4550 	 * Tune reconstruction:
4551 	 */
4552 	window = 32*(PAGE_SIZE/512);
4553 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4554 		window/2,(unsigned long long) max_sectors/2);
4555 
4556 	atomic_set(&mddev->recovery_active, 0);
4557 	init_waitqueue_head(&mddev->recovery_wait);
4558 	last_check = 0;
4559 
4560 	if (j>2) {
4561 		printk(KERN_INFO
4562 			"md: resuming recovery of %s from checkpoint.\n",
4563 			mdname(mddev));
4564 		mddev->curr_resync = j;
4565 	}
4566 
4567 	while (j < max_sectors) {
4568 		sector_t sectors;
4569 
4570 		skipped = 0;
4571 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4572 					    currspeed < speed_min(mddev));
4573 		if (sectors == 0) {
4574 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4575 			goto out;
4576 		}
4577 
4578 		if (!skipped) { /* actual IO requested */
4579 			io_sectors += sectors;
4580 			atomic_add(sectors, &mddev->recovery_active);
4581 		}
4582 
4583 		j += sectors;
4584 		if (j>1) mddev->curr_resync = j;
4585 		if (last_check == 0)
4586 			/* this is the earliers that rebuilt will be
4587 			 * visible in /proc/mdstat
4588 			 */
4589 			md_new_event(mddev);
4590 
4591 		if (last_check + window > io_sectors || j == max_sectors)
4592 			continue;
4593 
4594 		last_check = io_sectors;
4595 
4596 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4597 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4598 			break;
4599 
4600 	repeat:
4601 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4602 			/* step marks */
4603 			int next = (last_mark+1) % SYNC_MARKS;
4604 
4605 			mddev->resync_mark = mark[next];
4606 			mddev->resync_mark_cnt = mark_cnt[next];
4607 			mark[next] = jiffies;
4608 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4609 			last_mark = next;
4610 		}
4611 
4612 
4613 		if (kthread_should_stop()) {
4614 			/*
4615 			 * got a signal, exit.
4616 			 */
4617 			printk(KERN_INFO
4618 				"md: md_do_sync() got signal ... exiting\n");
4619 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4620 			goto out;
4621 		}
4622 
4623 		/*
4624 		 * this loop exits only if either when we are slower than
4625 		 * the 'hard' speed limit, or the system was IO-idle for
4626 		 * a jiffy.
4627 		 * the system might be non-idle CPU-wise, but we only care
4628 		 * about not overloading the IO subsystem. (things like an
4629 		 * e2fsck being done on the RAID array should execute fast)
4630 		 */
4631 		mddev->queue->unplug_fn(mddev->queue);
4632 		cond_resched();
4633 
4634 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4635 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4636 
4637 		if (currspeed > speed_min(mddev)) {
4638 			if ((currspeed > speed_max(mddev)) ||
4639 					!is_mddev_idle(mddev)) {
4640 				msleep(500);
4641 				goto repeat;
4642 			}
4643 		}
4644 	}
4645 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4646 	/*
4647 	 * this also signals 'finished resyncing' to md_stop
4648 	 */
4649  out:
4650 	mddev->queue->unplug_fn(mddev->queue);
4651 
4652 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4653 
4654 	/* tell personality that we are finished */
4655 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4656 
4657 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4658 	    mddev->curr_resync > 2 &&
4659 	    mddev->curr_resync >= mddev->recovery_cp) {
4660 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4661 			printk(KERN_INFO
4662 				"md: checkpointing recovery of %s.\n",
4663 				mdname(mddev));
4664 			mddev->recovery_cp = mddev->curr_resync;
4665 		} else
4666 			mddev->recovery_cp = MaxSector;
4667 	}
4668 
4669  skip:
4670 	mddev->curr_resync = 0;
4671 	wake_up(&resync_wait);
4672 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4673 	md_wakeup_thread(mddev->thread);
4674 }
4675 
4676 
4677 /*
4678  * This routine is regularly called by all per-raid-array threads to
4679  * deal with generic issues like resync and super-block update.
4680  * Raid personalities that don't have a thread (linear/raid0) do not
4681  * need this as they never do any recovery or update the superblock.
4682  *
4683  * It does not do any resync itself, but rather "forks" off other threads
4684  * to do that as needed.
4685  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4686  * "->recovery" and create a thread at ->sync_thread.
4687  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4688  * and wakeups up this thread which will reap the thread and finish up.
4689  * This thread also removes any faulty devices (with nr_pending == 0).
4690  *
4691  * The overall approach is:
4692  *  1/ if the superblock needs updating, update it.
4693  *  2/ If a recovery thread is running, don't do anything else.
4694  *  3/ If recovery has finished, clean up, possibly marking spares active.
4695  *  4/ If there are any faulty devices, remove them.
4696  *  5/ If array is degraded, try to add spares devices
4697  *  6/ If array has spares or is not in-sync, start a resync thread.
4698  */
4699 void md_check_recovery(mddev_t *mddev)
4700 {
4701 	mdk_rdev_t *rdev;
4702 	struct list_head *rtmp;
4703 
4704 
4705 	if (mddev->bitmap)
4706 		bitmap_daemon_work(mddev->bitmap);
4707 
4708 	if (mddev->ro)
4709 		return;
4710 
4711 	if (signal_pending(current)) {
4712 		if (mddev->pers->sync_request) {
4713 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4714 			       mdname(mddev));
4715 			mddev->safemode = 2;
4716 		}
4717 		flush_signals(current);
4718 	}
4719 
4720 	if ( ! (
4721 		mddev->sb_dirty ||
4722 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4723 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4724 		(mddev->safemode == 1) ||
4725 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4726 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4727 		))
4728 		return;
4729 
4730 	if (mddev_trylock(mddev)==0) {
4731 		int spares =0;
4732 
4733 		spin_lock_irq(&mddev->write_lock);
4734 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4735 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4736 			mddev->in_sync = 1;
4737 			mddev->sb_dirty = 1;
4738 		}
4739 		if (mddev->safemode == 1)
4740 			mddev->safemode = 0;
4741 		spin_unlock_irq(&mddev->write_lock);
4742 
4743 		if (mddev->sb_dirty)
4744 			md_update_sb(mddev);
4745 
4746 
4747 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4748 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4749 			/* resync/recovery still happening */
4750 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4751 			goto unlock;
4752 		}
4753 		if (mddev->sync_thread) {
4754 			/* resync has finished, collect result */
4755 			md_unregister_thread(mddev->sync_thread);
4756 			mddev->sync_thread = NULL;
4757 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4758 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4759 				/* success...*/
4760 				/* activate any spares */
4761 				mddev->pers->spare_active(mddev);
4762 			}
4763 			md_update_sb(mddev);
4764 
4765 			/* if array is no-longer degraded, then any saved_raid_disk
4766 			 * information must be scrapped
4767 			 */
4768 			if (!mddev->degraded)
4769 				ITERATE_RDEV(mddev,rdev,rtmp)
4770 					rdev->saved_raid_disk = -1;
4771 
4772 			mddev->recovery = 0;
4773 			/* flag recovery needed just to double check */
4774 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4775 			md_new_event(mddev);
4776 			goto unlock;
4777 		}
4778 		/* Clear some bits that don't mean anything, but
4779 		 * might be left set
4780 		 */
4781 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4782 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4783 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4784 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4785 
4786 		/* no recovery is running.
4787 		 * remove any failed drives, then
4788 		 * add spares if possible.
4789 		 * Spare are also removed and re-added, to allow
4790 		 * the personality to fail the re-add.
4791 		 */
4792 		ITERATE_RDEV(mddev,rdev,rtmp)
4793 			if (rdev->raid_disk >= 0 &&
4794 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4795 			    atomic_read(&rdev->nr_pending)==0) {
4796 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4797 					char nm[20];
4798 					sprintf(nm,"rd%d", rdev->raid_disk);
4799 					sysfs_remove_link(&mddev->kobj, nm);
4800 					rdev->raid_disk = -1;
4801 				}
4802 			}
4803 
4804 		if (mddev->degraded) {
4805 			ITERATE_RDEV(mddev,rdev,rtmp)
4806 				if (rdev->raid_disk < 0
4807 				    && !test_bit(Faulty, &rdev->flags)) {
4808 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4809 						char nm[20];
4810 						sprintf(nm, "rd%d", rdev->raid_disk);
4811 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4812 						spares++;
4813 						md_new_event(mddev);
4814 					} else
4815 						break;
4816 				}
4817 		}
4818 
4819 		if (spares) {
4820 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4821 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4822 		} else if (mddev->recovery_cp < MaxSector) {
4823 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4824 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4825 			/* nothing to be done ... */
4826 			goto unlock;
4827 
4828 		if (mddev->pers->sync_request) {
4829 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4830 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4831 				/* We are adding a device or devices to an array
4832 				 * which has the bitmap stored on all devices.
4833 				 * So make sure all bitmap pages get written
4834 				 */
4835 				bitmap_write_all(mddev->bitmap);
4836 			}
4837 			mddev->sync_thread = md_register_thread(md_do_sync,
4838 								mddev,
4839 								"%s_resync");
4840 			if (!mddev->sync_thread) {
4841 				printk(KERN_ERR "%s: could not start resync"
4842 					" thread...\n",
4843 					mdname(mddev));
4844 				/* leave the spares where they are, it shouldn't hurt */
4845 				mddev->recovery = 0;
4846 			} else
4847 				md_wakeup_thread(mddev->sync_thread);
4848 			md_new_event(mddev);
4849 		}
4850 	unlock:
4851 		mddev_unlock(mddev);
4852 	}
4853 }
4854 
4855 static int md_notify_reboot(struct notifier_block *this,
4856 			    unsigned long code, void *x)
4857 {
4858 	struct list_head *tmp;
4859 	mddev_t *mddev;
4860 
4861 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4862 
4863 		printk(KERN_INFO "md: stopping all md devices.\n");
4864 
4865 		ITERATE_MDDEV(mddev,tmp)
4866 			if (mddev_trylock(mddev)==0)
4867 				do_md_stop (mddev, 1);
4868 		/*
4869 		 * certain more exotic SCSI devices are known to be
4870 		 * volatile wrt too early system reboots. While the
4871 		 * right place to handle this issue is the given
4872 		 * driver, we do want to have a safe RAID driver ...
4873 		 */
4874 		mdelay(1000*1);
4875 	}
4876 	return NOTIFY_DONE;
4877 }
4878 
4879 static struct notifier_block md_notifier = {
4880 	.notifier_call	= md_notify_reboot,
4881 	.next		= NULL,
4882 	.priority	= INT_MAX, /* before any real devices */
4883 };
4884 
4885 static void md_geninit(void)
4886 {
4887 	struct proc_dir_entry *p;
4888 
4889 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4890 
4891 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4892 	if (p)
4893 		p->proc_fops = &md_seq_fops;
4894 }
4895 
4896 static int __init md_init(void)
4897 {
4898 	int minor;
4899 
4900 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4901 			" MD_SB_DISKS=%d\n",
4902 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4903 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4904 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4905 			BITMAP_MINOR);
4906 
4907 	if (register_blkdev(MAJOR_NR, "md"))
4908 		return -1;
4909 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4910 		unregister_blkdev(MAJOR_NR, "md");
4911 		return -1;
4912 	}
4913 	devfs_mk_dir("md");
4914 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4915 				md_probe, NULL, NULL);
4916 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4917 			    md_probe, NULL, NULL);
4918 
4919 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4920 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4921 				S_IFBLK|S_IRUSR|S_IWUSR,
4922 				"md/%d", minor);
4923 
4924 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4925 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4926 			      S_IFBLK|S_IRUSR|S_IWUSR,
4927 			      "md/mdp%d", minor);
4928 
4929 
4930 	register_reboot_notifier(&md_notifier);
4931 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4932 
4933 	md_geninit();
4934 	return (0);
4935 }
4936 
4937 
4938 #ifndef MODULE
4939 
4940 /*
4941  * Searches all registered partitions for autorun RAID arrays
4942  * at boot time.
4943  */
4944 static dev_t detected_devices[128];
4945 static int dev_cnt;
4946 
4947 void md_autodetect_dev(dev_t dev)
4948 {
4949 	if (dev_cnt >= 0 && dev_cnt < 127)
4950 		detected_devices[dev_cnt++] = dev;
4951 }
4952 
4953 
4954 static void autostart_arrays(int part)
4955 {
4956 	mdk_rdev_t *rdev;
4957 	int i;
4958 
4959 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4960 
4961 	for (i = 0; i < dev_cnt; i++) {
4962 		dev_t dev = detected_devices[i];
4963 
4964 		rdev = md_import_device(dev,0, 0);
4965 		if (IS_ERR(rdev))
4966 			continue;
4967 
4968 		if (test_bit(Faulty, &rdev->flags)) {
4969 			MD_BUG();
4970 			continue;
4971 		}
4972 		list_add(&rdev->same_set, &pending_raid_disks);
4973 	}
4974 	dev_cnt = 0;
4975 
4976 	autorun_devices(part);
4977 }
4978 
4979 #endif
4980 
4981 static __exit void md_exit(void)
4982 {
4983 	mddev_t *mddev;
4984 	struct list_head *tmp;
4985 	int i;
4986 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4987 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4988 	for (i=0; i < MAX_MD_DEVS; i++)
4989 		devfs_remove("md/%d", i);
4990 	for (i=0; i < MAX_MD_DEVS; i++)
4991 		devfs_remove("md/d%d", i);
4992 
4993 	devfs_remove("md");
4994 
4995 	unregister_blkdev(MAJOR_NR,"md");
4996 	unregister_blkdev(mdp_major, "mdp");
4997 	unregister_reboot_notifier(&md_notifier);
4998 	unregister_sysctl_table(raid_table_header);
4999 	remove_proc_entry("mdstat", NULL);
5000 	ITERATE_MDDEV(mddev,tmp) {
5001 		struct gendisk *disk = mddev->gendisk;
5002 		if (!disk)
5003 			continue;
5004 		export_array(mddev);
5005 		del_gendisk(disk);
5006 		put_disk(disk);
5007 		mddev->gendisk = NULL;
5008 		mddev_put(mddev);
5009 	}
5010 }
5011 
5012 module_init(md_init)
5013 module_exit(md_exit)
5014 
5015 static int get_ro(char *buffer, struct kernel_param *kp)
5016 {
5017 	return sprintf(buffer, "%d", start_readonly);
5018 }
5019 static int set_ro(const char *val, struct kernel_param *kp)
5020 {
5021 	char *e;
5022 	int num = simple_strtoul(val, &e, 10);
5023 	if (*val && (*e == '\0' || *e == '\n')) {
5024 		start_readonly = num;
5025 		return 0;
5026 	}
5027 	return -EINVAL;
5028 }
5029 
5030 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
5031 module_param(start_dirty_degraded, int, 0644);
5032 
5033 
5034 EXPORT_SYMBOL(register_md_personality);
5035 EXPORT_SYMBOL(unregister_md_personality);
5036 EXPORT_SYMBOL(md_error);
5037 EXPORT_SYMBOL(md_done_sync);
5038 EXPORT_SYMBOL(md_write_start);
5039 EXPORT_SYMBOL(md_write_end);
5040 EXPORT_SYMBOL(md_register_thread);
5041 EXPORT_SYMBOL(md_unregister_thread);
5042 EXPORT_SYMBOL(md_wakeup_thread);
5043 EXPORT_SYMBOL(md_print_devices);
5044 EXPORT_SYMBOL(md_check_recovery);
5045 MODULE_LICENSE("GPL");
5046 MODULE_ALIAS("md");
5047 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
5048