xref: /openbmc/linux/drivers/md/md.c (revision a757e64c)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    This program is free software; you can redistribute it and/or modify
23    it under the terms of the GNU General Public License as published by
24    the Free Software Foundation; either version 2, or (at your option)
25    any later version.
26 
27    You should have received a copy of the GNU General Public License
28    (for example /usr/src/linux/COPYING); if not, write to the Free
29    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
30 */
31 
32 #include <linux/module.h>
33 #include <linux/config.h>
34 #include <linux/linkage.h>
35 #include <linux/raid/md.h>
36 #include <linux/sysctl.h>
37 #include <linux/devfs_fs_kernel.h>
38 #include <linux/buffer_head.h> /* for invalidate_bdev */
39 #include <linux/suspend.h>
40 
41 #include <linux/init.h>
42 
43 #ifdef CONFIG_KMOD
44 #include <linux/kmod.h>
45 #endif
46 
47 #include <asm/unaligned.h>
48 
49 #define MAJOR_NR MD_MAJOR
50 #define MD_DRIVER
51 
52 /* 63 partitions with the alternate major number (mdp) */
53 #define MdpMinorShift 6
54 
55 #define DEBUG 0
56 #define dprintk(x...) ((void)(DEBUG && printk(x)))
57 
58 
59 #ifndef MODULE
60 static void autostart_arrays (int part);
61 #endif
62 
63 static mdk_personality_t *pers[MAX_PERSONALITY];
64 static DEFINE_SPINLOCK(pers_lock);
65 
66 /*
67  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
68  * is 1000 KB/sec, so the extra system load does not show up that much.
69  * Increase it if you want to have more _guaranteed_ speed. Note that
70  * the RAID driver will use the maximum available bandwith if the IO
71  * subsystem is idle. There is also an 'absolute maximum' reconstruction
72  * speed limit - in case reconstruction slows down your system despite
73  * idle IO detection.
74  *
75  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
76  */
77 
78 static int sysctl_speed_limit_min = 1000;
79 static int sysctl_speed_limit_max = 200000;
80 
81 static struct ctl_table_header *raid_table_header;
82 
83 static ctl_table raid_table[] = {
84 	{
85 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
86 		.procname	= "speed_limit_min",
87 		.data		= &sysctl_speed_limit_min,
88 		.maxlen		= sizeof(int),
89 		.mode		= 0644,
90 		.proc_handler	= &proc_dointvec,
91 	},
92 	{
93 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
94 		.procname	= "speed_limit_max",
95 		.data		= &sysctl_speed_limit_max,
96 		.maxlen		= sizeof(int),
97 		.mode		= 0644,
98 		.proc_handler	= &proc_dointvec,
99 	},
100 	{ .ctl_name = 0 }
101 };
102 
103 static ctl_table raid_dir_table[] = {
104 	{
105 		.ctl_name	= DEV_RAID,
106 		.procname	= "raid",
107 		.maxlen		= 0,
108 		.mode		= 0555,
109 		.child		= raid_table,
110 	},
111 	{ .ctl_name = 0 }
112 };
113 
114 static ctl_table raid_root_table[] = {
115 	{
116 		.ctl_name	= CTL_DEV,
117 		.procname	= "dev",
118 		.maxlen		= 0,
119 		.mode		= 0555,
120 		.child		= raid_dir_table,
121 	},
122 	{ .ctl_name = 0 }
123 };
124 
125 static struct block_device_operations md_fops;
126 
127 /*
128  * Enables to iterate over all existing md arrays
129  * all_mddevs_lock protects this list.
130  */
131 static LIST_HEAD(all_mddevs);
132 static DEFINE_SPINLOCK(all_mddevs_lock);
133 
134 
135 /*
136  * iterates through all used mddevs in the system.
137  * We take care to grab the all_mddevs_lock whenever navigating
138  * the list, and to always hold a refcount when unlocked.
139  * Any code which breaks out of this loop while own
140  * a reference to the current mddev and must mddev_put it.
141  */
142 #define ITERATE_MDDEV(mddev,tmp)					\
143 									\
144 	for (({ spin_lock(&all_mddevs_lock); 				\
145 		tmp = all_mddevs.next;					\
146 		mddev = NULL;});					\
147 	     ({ if (tmp != &all_mddevs)					\
148 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
149 		spin_unlock(&all_mddevs_lock);				\
150 		if (mddev) mddev_put(mddev);				\
151 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
152 		tmp != &all_mddevs;});					\
153 	     ({ spin_lock(&all_mddevs_lock);				\
154 		tmp = tmp->next;})					\
155 		)
156 
157 
158 static int md_fail_request (request_queue_t *q, struct bio *bio)
159 {
160 	bio_io_error(bio, bio->bi_size);
161 	return 0;
162 }
163 
164 static inline mddev_t *mddev_get(mddev_t *mddev)
165 {
166 	atomic_inc(&mddev->active);
167 	return mddev;
168 }
169 
170 static void mddev_put(mddev_t *mddev)
171 {
172 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
173 		return;
174 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
175 		list_del(&mddev->all_mddevs);
176 		blk_put_queue(mddev->queue);
177 		kfree(mddev);
178 	}
179 	spin_unlock(&all_mddevs_lock);
180 }
181 
182 static mddev_t * mddev_find(dev_t unit)
183 {
184 	mddev_t *mddev, *new = NULL;
185 
186  retry:
187 	spin_lock(&all_mddevs_lock);
188 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
189 		if (mddev->unit == unit) {
190 			mddev_get(mddev);
191 			spin_unlock(&all_mddevs_lock);
192 			if (new)
193 				kfree(new);
194 			return mddev;
195 		}
196 
197 	if (new) {
198 		list_add(&new->all_mddevs, &all_mddevs);
199 		spin_unlock(&all_mddevs_lock);
200 		return new;
201 	}
202 	spin_unlock(&all_mddevs_lock);
203 
204 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
205 	if (!new)
206 		return NULL;
207 
208 	memset(new, 0, sizeof(*new));
209 
210 	new->unit = unit;
211 	if (MAJOR(unit) == MD_MAJOR)
212 		new->md_minor = MINOR(unit);
213 	else
214 		new->md_minor = MINOR(unit) >> MdpMinorShift;
215 
216 	init_MUTEX(&new->reconfig_sem);
217 	INIT_LIST_HEAD(&new->disks);
218 	INIT_LIST_HEAD(&new->all_mddevs);
219 	init_timer(&new->safemode_timer);
220 	atomic_set(&new->active, 1);
221 
222 	new->queue = blk_alloc_queue(GFP_KERNEL);
223 	if (!new->queue) {
224 		kfree(new);
225 		return NULL;
226 	}
227 
228 	blk_queue_make_request(new->queue, md_fail_request);
229 
230 	goto retry;
231 }
232 
233 static inline int mddev_lock(mddev_t * mddev)
234 {
235 	return down_interruptible(&mddev->reconfig_sem);
236 }
237 
238 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
239 {
240 	down(&mddev->reconfig_sem);
241 }
242 
243 static inline int mddev_trylock(mddev_t * mddev)
244 {
245 	return down_trylock(&mddev->reconfig_sem);
246 }
247 
248 static inline void mddev_unlock(mddev_t * mddev)
249 {
250 	up(&mddev->reconfig_sem);
251 
252 	if (mddev->thread)
253 		md_wakeup_thread(mddev->thread);
254 }
255 
256 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
257 {
258 	mdk_rdev_t * rdev;
259 	struct list_head *tmp;
260 
261 	ITERATE_RDEV(mddev,rdev,tmp) {
262 		if (rdev->desc_nr == nr)
263 			return rdev;
264 	}
265 	return NULL;
266 }
267 
268 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
269 {
270 	struct list_head *tmp;
271 	mdk_rdev_t *rdev;
272 
273 	ITERATE_RDEV(mddev,rdev,tmp) {
274 		if (rdev->bdev->bd_dev == dev)
275 			return rdev;
276 	}
277 	return NULL;
278 }
279 
280 inline static sector_t calc_dev_sboffset(struct block_device *bdev)
281 {
282 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
283 	return MD_NEW_SIZE_BLOCKS(size);
284 }
285 
286 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
287 {
288 	sector_t size;
289 
290 	size = rdev->sb_offset;
291 
292 	if (chunk_size)
293 		size &= ~((sector_t)chunk_size/1024 - 1);
294 	return size;
295 }
296 
297 static int alloc_disk_sb(mdk_rdev_t * rdev)
298 {
299 	if (rdev->sb_page)
300 		MD_BUG();
301 
302 	rdev->sb_page = alloc_page(GFP_KERNEL);
303 	if (!rdev->sb_page) {
304 		printk(KERN_ALERT "md: out of memory.\n");
305 		return -EINVAL;
306 	}
307 
308 	return 0;
309 }
310 
311 static void free_disk_sb(mdk_rdev_t * rdev)
312 {
313 	if (rdev->sb_page) {
314 		page_cache_release(rdev->sb_page);
315 		rdev->sb_loaded = 0;
316 		rdev->sb_page = NULL;
317 		rdev->sb_offset = 0;
318 		rdev->size = 0;
319 	}
320 }
321 
322 
323 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
324 {
325 	if (bio->bi_size)
326 		return 1;
327 
328 	complete((struct completion*)bio->bi_private);
329 	return 0;
330 }
331 
332 static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
333 		   struct page *page, int rw)
334 {
335 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
336 	struct completion event;
337 	int ret;
338 
339 	rw |= (1 << BIO_RW_SYNC);
340 
341 	bio->bi_bdev = bdev;
342 	bio->bi_sector = sector;
343 	bio_add_page(bio, page, size, 0);
344 	init_completion(&event);
345 	bio->bi_private = &event;
346 	bio->bi_end_io = bi_complete;
347 	submit_bio(rw, bio);
348 	wait_for_completion(&event);
349 
350 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
351 	bio_put(bio);
352 	return ret;
353 }
354 
355 static int read_disk_sb(mdk_rdev_t * rdev)
356 {
357 	char b[BDEVNAME_SIZE];
358 	if (!rdev->sb_page) {
359 		MD_BUG();
360 		return -EINVAL;
361 	}
362 	if (rdev->sb_loaded)
363 		return 0;
364 
365 
366 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
367 		goto fail;
368 	rdev->sb_loaded = 1;
369 	return 0;
370 
371 fail:
372 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
373 		bdevname(rdev->bdev,b));
374 	return -EINVAL;
375 }
376 
377 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
378 {
379 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
380 		(sb1->set_uuid1 == sb2->set_uuid1) &&
381 		(sb1->set_uuid2 == sb2->set_uuid2) &&
382 		(sb1->set_uuid3 == sb2->set_uuid3))
383 
384 		return 1;
385 
386 	return 0;
387 }
388 
389 
390 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
391 {
392 	int ret;
393 	mdp_super_t *tmp1, *tmp2;
394 
395 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
396 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
397 
398 	if (!tmp1 || !tmp2) {
399 		ret = 0;
400 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
401 		goto abort;
402 	}
403 
404 	*tmp1 = *sb1;
405 	*tmp2 = *sb2;
406 
407 	/*
408 	 * nr_disks is not constant
409 	 */
410 	tmp1->nr_disks = 0;
411 	tmp2->nr_disks = 0;
412 
413 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
414 		ret = 0;
415 	else
416 		ret = 1;
417 
418 abort:
419 	if (tmp1)
420 		kfree(tmp1);
421 	if (tmp2)
422 		kfree(tmp2);
423 
424 	return ret;
425 }
426 
427 static unsigned int calc_sb_csum(mdp_super_t * sb)
428 {
429 	unsigned int disk_csum, csum;
430 
431 	disk_csum = sb->sb_csum;
432 	sb->sb_csum = 0;
433 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
434 	sb->sb_csum = disk_csum;
435 	return csum;
436 }
437 
438 
439 /*
440  * Handle superblock details.
441  * We want to be able to handle multiple superblock formats
442  * so we have a common interface to them all, and an array of
443  * different handlers.
444  * We rely on user-space to write the initial superblock, and support
445  * reading and updating of superblocks.
446  * Interface methods are:
447  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
448  *      loads and validates a superblock on dev.
449  *      if refdev != NULL, compare superblocks on both devices
450  *    Return:
451  *      0 - dev has a superblock that is compatible with refdev
452  *      1 - dev has a superblock that is compatible and newer than refdev
453  *          so dev should be used as the refdev in future
454  *     -EINVAL superblock incompatible or invalid
455  *     -othererror e.g. -EIO
456  *
457  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
458  *      Verify that dev is acceptable into mddev.
459  *       The first time, mddev->raid_disks will be 0, and data from
460  *       dev should be merged in.  Subsequent calls check that dev
461  *       is new enough.  Return 0 or -EINVAL
462  *
463  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
464  *     Update the superblock for rdev with data in mddev
465  *     This does not write to disc.
466  *
467  */
468 
469 struct super_type  {
470 	char 		*name;
471 	struct module	*owner;
472 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
473 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
474 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
475 };
476 
477 /*
478  * load_super for 0.90.0
479  */
480 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
481 {
482 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
483 	mdp_super_t *sb;
484 	int ret;
485 	sector_t sb_offset;
486 
487 	/*
488 	 * Calculate the position of the superblock,
489 	 * it's at the end of the disk.
490 	 *
491 	 * It also happens to be a multiple of 4Kb.
492 	 */
493 	sb_offset = calc_dev_sboffset(rdev->bdev);
494 	rdev->sb_offset = sb_offset;
495 
496 	ret = read_disk_sb(rdev);
497 	if (ret) return ret;
498 
499 	ret = -EINVAL;
500 
501 	bdevname(rdev->bdev, b);
502 	sb = (mdp_super_t*)page_address(rdev->sb_page);
503 
504 	if (sb->md_magic != MD_SB_MAGIC) {
505 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
506 		       b);
507 		goto abort;
508 	}
509 
510 	if (sb->major_version != 0 ||
511 	    sb->minor_version != 90) {
512 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
513 			sb->major_version, sb->minor_version,
514 			b);
515 		goto abort;
516 	}
517 
518 	if (sb->raid_disks <= 0)
519 		goto abort;
520 
521 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
522 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
523 			b);
524 		goto abort;
525 	}
526 
527 	rdev->preferred_minor = sb->md_minor;
528 	rdev->data_offset = 0;
529 
530 	if (sb->level == LEVEL_MULTIPATH)
531 		rdev->desc_nr = -1;
532 	else
533 		rdev->desc_nr = sb->this_disk.number;
534 
535 	if (refdev == 0)
536 		ret = 1;
537 	else {
538 		__u64 ev1, ev2;
539 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
540 		if (!uuid_equal(refsb, sb)) {
541 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
542 				b, bdevname(refdev->bdev,b2));
543 			goto abort;
544 		}
545 		if (!sb_equal(refsb, sb)) {
546 			printk(KERN_WARNING "md: %s has same UUID"
547 			       " but different superblock to %s\n",
548 			       b, bdevname(refdev->bdev, b2));
549 			goto abort;
550 		}
551 		ev1 = md_event(sb);
552 		ev2 = md_event(refsb);
553 		if (ev1 > ev2)
554 			ret = 1;
555 		else
556 			ret = 0;
557 	}
558 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
559 
560  abort:
561 	return ret;
562 }
563 
564 /*
565  * validate_super for 0.90.0
566  */
567 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
568 {
569 	mdp_disk_t *desc;
570 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
571 
572 	if (mddev->raid_disks == 0) {
573 		mddev->major_version = 0;
574 		mddev->minor_version = sb->minor_version;
575 		mddev->patch_version = sb->patch_version;
576 		mddev->persistent = ! sb->not_persistent;
577 		mddev->chunk_size = sb->chunk_size;
578 		mddev->ctime = sb->ctime;
579 		mddev->utime = sb->utime;
580 		mddev->level = sb->level;
581 		mddev->layout = sb->layout;
582 		mddev->raid_disks = sb->raid_disks;
583 		mddev->size = sb->size;
584 		mddev->events = md_event(sb);
585 
586 		if (sb->state & (1<<MD_SB_CLEAN))
587 			mddev->recovery_cp = MaxSector;
588 		else {
589 			if (sb->events_hi == sb->cp_events_hi &&
590 				sb->events_lo == sb->cp_events_lo) {
591 				mddev->recovery_cp = sb->recovery_cp;
592 			} else
593 				mddev->recovery_cp = 0;
594 		}
595 
596 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
597 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
598 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
599 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
600 
601 		mddev->max_disks = MD_SB_DISKS;
602 	} else {
603 		__u64 ev1;
604 		ev1 = md_event(sb);
605 		++ev1;
606 		if (ev1 < mddev->events)
607 			return -EINVAL;
608 	}
609 	if (mddev->level != LEVEL_MULTIPATH) {
610 		rdev->raid_disk = -1;
611 		rdev->in_sync = rdev->faulty = 0;
612 		desc = sb->disks + rdev->desc_nr;
613 
614 		if (desc->state & (1<<MD_DISK_FAULTY))
615 			rdev->faulty = 1;
616 		else if (desc->state & (1<<MD_DISK_SYNC) &&
617 			 desc->raid_disk < mddev->raid_disks) {
618 			rdev->in_sync = 1;
619 			rdev->raid_disk = desc->raid_disk;
620 		}
621 	}
622 	return 0;
623 }
624 
625 /*
626  * sync_super for 0.90.0
627  */
628 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
629 {
630 	mdp_super_t *sb;
631 	struct list_head *tmp;
632 	mdk_rdev_t *rdev2;
633 	int next_spare = mddev->raid_disks;
634 
635 	/* make rdev->sb match mddev data..
636 	 *
637 	 * 1/ zero out disks
638 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
639 	 * 3/ any empty disks < next_spare become removed
640 	 *
641 	 * disks[0] gets initialised to REMOVED because
642 	 * we cannot be sure from other fields if it has
643 	 * been initialised or not.
644 	 */
645 	int i;
646 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
647 
648 	sb = (mdp_super_t*)page_address(rdev->sb_page);
649 
650 	memset(sb, 0, sizeof(*sb));
651 
652 	sb->md_magic = MD_SB_MAGIC;
653 	sb->major_version = mddev->major_version;
654 	sb->minor_version = mddev->minor_version;
655 	sb->patch_version = mddev->patch_version;
656 	sb->gvalid_words  = 0; /* ignored */
657 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
658 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
659 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
660 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
661 
662 	sb->ctime = mddev->ctime;
663 	sb->level = mddev->level;
664 	sb->size  = mddev->size;
665 	sb->raid_disks = mddev->raid_disks;
666 	sb->md_minor = mddev->md_minor;
667 	sb->not_persistent = !mddev->persistent;
668 	sb->utime = mddev->utime;
669 	sb->state = 0;
670 	sb->events_hi = (mddev->events>>32);
671 	sb->events_lo = (u32)mddev->events;
672 
673 	if (mddev->in_sync)
674 	{
675 		sb->recovery_cp = mddev->recovery_cp;
676 		sb->cp_events_hi = (mddev->events>>32);
677 		sb->cp_events_lo = (u32)mddev->events;
678 		if (mddev->recovery_cp == MaxSector)
679 			sb->state = (1<< MD_SB_CLEAN);
680 	} else
681 		sb->recovery_cp = 0;
682 
683 	sb->layout = mddev->layout;
684 	sb->chunk_size = mddev->chunk_size;
685 
686 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
687 	ITERATE_RDEV(mddev,rdev2,tmp) {
688 		mdp_disk_t *d;
689 		if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
690 			rdev2->desc_nr = rdev2->raid_disk;
691 		else
692 			rdev2->desc_nr = next_spare++;
693 		d = &sb->disks[rdev2->desc_nr];
694 		nr_disks++;
695 		d->number = rdev2->desc_nr;
696 		d->major = MAJOR(rdev2->bdev->bd_dev);
697 		d->minor = MINOR(rdev2->bdev->bd_dev);
698 		if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
699 			d->raid_disk = rdev2->raid_disk;
700 		else
701 			d->raid_disk = rdev2->desc_nr; /* compatibility */
702 		if (rdev2->faulty) {
703 			d->state = (1<<MD_DISK_FAULTY);
704 			failed++;
705 		} else if (rdev2->in_sync) {
706 			d->state = (1<<MD_DISK_ACTIVE);
707 			d->state |= (1<<MD_DISK_SYNC);
708 			active++;
709 			working++;
710 		} else {
711 			d->state = 0;
712 			spare++;
713 			working++;
714 		}
715 	}
716 
717 	/* now set the "removed" and "faulty" bits on any missing devices */
718 	for (i=0 ; i < mddev->raid_disks ; i++) {
719 		mdp_disk_t *d = &sb->disks[i];
720 		if (d->state == 0 && d->number == 0) {
721 			d->number = i;
722 			d->raid_disk = i;
723 			d->state = (1<<MD_DISK_REMOVED);
724 			d->state |= (1<<MD_DISK_FAULTY);
725 			failed++;
726 		}
727 	}
728 	sb->nr_disks = nr_disks;
729 	sb->active_disks = active;
730 	sb->working_disks = working;
731 	sb->failed_disks = failed;
732 	sb->spare_disks = spare;
733 
734 	sb->this_disk = sb->disks[rdev->desc_nr];
735 	sb->sb_csum = calc_sb_csum(sb);
736 }
737 
738 /*
739  * version 1 superblock
740  */
741 
742 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
743 {
744 	unsigned int disk_csum, csum;
745 	unsigned long long newcsum;
746 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
747 	unsigned int *isuper = (unsigned int*)sb;
748 	int i;
749 
750 	disk_csum = sb->sb_csum;
751 	sb->sb_csum = 0;
752 	newcsum = 0;
753 	for (i=0; size>=4; size -= 4 )
754 		newcsum += le32_to_cpu(*isuper++);
755 
756 	if (size == 2)
757 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
758 
759 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
760 	sb->sb_csum = disk_csum;
761 	return cpu_to_le32(csum);
762 }
763 
764 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
765 {
766 	struct mdp_superblock_1 *sb;
767 	int ret;
768 	sector_t sb_offset;
769 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
770 
771 	/*
772 	 * Calculate the position of the superblock.
773 	 * It is always aligned to a 4K boundary and
774 	 * depeding on minor_version, it can be:
775 	 * 0: At least 8K, but less than 12K, from end of device
776 	 * 1: At start of device
777 	 * 2: 4K from start of device.
778 	 */
779 	switch(minor_version) {
780 	case 0:
781 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
782 		sb_offset -= 8*2;
783 		sb_offset &= ~(4*2-1);
784 		/* convert from sectors to K */
785 		sb_offset /= 2;
786 		break;
787 	case 1:
788 		sb_offset = 0;
789 		break;
790 	case 2:
791 		sb_offset = 4;
792 		break;
793 	default:
794 		return -EINVAL;
795 	}
796 	rdev->sb_offset = sb_offset;
797 
798 	ret = read_disk_sb(rdev);
799 	if (ret) return ret;
800 
801 
802 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
803 
804 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
805 	    sb->major_version != cpu_to_le32(1) ||
806 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
807 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
808 	    sb->feature_map != 0)
809 		return -EINVAL;
810 
811 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
812 		printk("md: invalid superblock checksum on %s\n",
813 			bdevname(rdev->bdev,b));
814 		return -EINVAL;
815 	}
816 	if (le64_to_cpu(sb->data_size) < 10) {
817 		printk("md: data_size too small on %s\n",
818 		       bdevname(rdev->bdev,b));
819 		return -EINVAL;
820 	}
821 	rdev->preferred_minor = 0xffff;
822 	rdev->data_offset = le64_to_cpu(sb->data_offset);
823 
824 	if (refdev == 0)
825 		return 1;
826 	else {
827 		__u64 ev1, ev2;
828 		struct mdp_superblock_1 *refsb =
829 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
830 
831 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
832 		    sb->level != refsb->level ||
833 		    sb->layout != refsb->layout ||
834 		    sb->chunksize != refsb->chunksize) {
835 			printk(KERN_WARNING "md: %s has strangely different"
836 				" superblock to %s\n",
837 				bdevname(rdev->bdev,b),
838 				bdevname(refdev->bdev,b2));
839 			return -EINVAL;
840 		}
841 		ev1 = le64_to_cpu(sb->events);
842 		ev2 = le64_to_cpu(refsb->events);
843 
844 		if (ev1 > ev2)
845 			return 1;
846 	}
847 	if (minor_version)
848 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
849 	else
850 		rdev->size = rdev->sb_offset;
851 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
852 		return -EINVAL;
853 	rdev->size = le64_to_cpu(sb->data_size)/2;
854 	if (le32_to_cpu(sb->chunksize))
855 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
856 	return 0;
857 }
858 
859 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
860 {
861 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
862 
863 	if (mddev->raid_disks == 0) {
864 		mddev->major_version = 1;
865 		mddev->patch_version = 0;
866 		mddev->persistent = 1;
867 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
868 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
869 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
870 		mddev->level = le32_to_cpu(sb->level);
871 		mddev->layout = le32_to_cpu(sb->layout);
872 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
873 		mddev->size = le64_to_cpu(sb->size)/2;
874 		mddev->events = le64_to_cpu(sb->events);
875 
876 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
877 		memcpy(mddev->uuid, sb->set_uuid, 16);
878 
879 		mddev->max_disks =  (4096-256)/2;
880 	} else {
881 		__u64 ev1;
882 		ev1 = le64_to_cpu(sb->events);
883 		++ev1;
884 		if (ev1 < mddev->events)
885 			return -EINVAL;
886 	}
887 
888 	if (mddev->level != LEVEL_MULTIPATH) {
889 		int role;
890 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
891 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
892 		switch(role) {
893 		case 0xffff: /* spare */
894 			rdev->in_sync = 0;
895 			rdev->faulty = 0;
896 			rdev->raid_disk = -1;
897 			break;
898 		case 0xfffe: /* faulty */
899 			rdev->in_sync = 0;
900 			rdev->faulty = 1;
901 			rdev->raid_disk = -1;
902 			break;
903 		default:
904 			rdev->in_sync = 1;
905 			rdev->faulty = 0;
906 			rdev->raid_disk = role;
907 			break;
908 		}
909 	}
910 	return 0;
911 }
912 
913 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
914 {
915 	struct mdp_superblock_1 *sb;
916 	struct list_head *tmp;
917 	mdk_rdev_t *rdev2;
918 	int max_dev, i;
919 	/* make rdev->sb match mddev and rdev data. */
920 
921 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
922 
923 	sb->feature_map = 0;
924 	sb->pad0 = 0;
925 	memset(sb->pad1, 0, sizeof(sb->pad1));
926 	memset(sb->pad2, 0, sizeof(sb->pad2));
927 	memset(sb->pad3, 0, sizeof(sb->pad3));
928 
929 	sb->utime = cpu_to_le64((__u64)mddev->utime);
930 	sb->events = cpu_to_le64(mddev->events);
931 	if (mddev->in_sync)
932 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
933 	else
934 		sb->resync_offset = cpu_to_le64(0);
935 
936 	max_dev = 0;
937 	ITERATE_RDEV(mddev,rdev2,tmp)
938 		if (rdev2->desc_nr+1 > max_dev)
939 			max_dev = rdev2->desc_nr+1;
940 
941 	sb->max_dev = cpu_to_le32(max_dev);
942 	for (i=0; i<max_dev;i++)
943 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
944 
945 	ITERATE_RDEV(mddev,rdev2,tmp) {
946 		i = rdev2->desc_nr;
947 		if (rdev2->faulty)
948 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
949 		else if (rdev2->in_sync)
950 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
951 		else
952 			sb->dev_roles[i] = cpu_to_le16(0xffff);
953 	}
954 
955 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
956 	sb->sb_csum = calc_sb_1_csum(sb);
957 }
958 
959 
960 struct super_type super_types[] = {
961 	[0] = {
962 		.name	= "0.90.0",
963 		.owner	= THIS_MODULE,
964 		.load_super	= super_90_load,
965 		.validate_super	= super_90_validate,
966 		.sync_super	= super_90_sync,
967 	},
968 	[1] = {
969 		.name	= "md-1",
970 		.owner	= THIS_MODULE,
971 		.load_super	= super_1_load,
972 		.validate_super	= super_1_validate,
973 		.sync_super	= super_1_sync,
974 	},
975 };
976 
977 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
978 {
979 	struct list_head *tmp;
980 	mdk_rdev_t *rdev;
981 
982 	ITERATE_RDEV(mddev,rdev,tmp)
983 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
984 			return rdev;
985 
986 	return NULL;
987 }
988 
989 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
990 {
991 	struct list_head *tmp;
992 	mdk_rdev_t *rdev;
993 
994 	ITERATE_RDEV(mddev1,rdev,tmp)
995 		if (match_dev_unit(mddev2, rdev))
996 			return 1;
997 
998 	return 0;
999 }
1000 
1001 static LIST_HEAD(pending_raid_disks);
1002 
1003 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1004 {
1005 	mdk_rdev_t *same_pdev;
1006 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1007 
1008 	if (rdev->mddev) {
1009 		MD_BUG();
1010 		return -EINVAL;
1011 	}
1012 	same_pdev = match_dev_unit(mddev, rdev);
1013 	if (same_pdev)
1014 		printk(KERN_WARNING
1015 			"%s: WARNING: %s appears to be on the same physical"
1016 	 		" disk as %s. True\n     protection against single-disk"
1017 			" failure might be compromised.\n",
1018 			mdname(mddev), bdevname(rdev->bdev,b),
1019 			bdevname(same_pdev->bdev,b2));
1020 
1021 	/* Verify rdev->desc_nr is unique.
1022 	 * If it is -1, assign a free number, else
1023 	 * check number is not in use
1024 	 */
1025 	if (rdev->desc_nr < 0) {
1026 		int choice = 0;
1027 		if (mddev->pers) choice = mddev->raid_disks;
1028 		while (find_rdev_nr(mddev, choice))
1029 			choice++;
1030 		rdev->desc_nr = choice;
1031 	} else {
1032 		if (find_rdev_nr(mddev, rdev->desc_nr))
1033 			return -EBUSY;
1034 	}
1035 
1036 	list_add(&rdev->same_set, &mddev->disks);
1037 	rdev->mddev = mddev;
1038 	printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1039 	return 0;
1040 }
1041 
1042 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1043 {
1044 	char b[BDEVNAME_SIZE];
1045 	if (!rdev->mddev) {
1046 		MD_BUG();
1047 		return;
1048 	}
1049 	list_del_init(&rdev->same_set);
1050 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1051 	rdev->mddev = NULL;
1052 }
1053 
1054 /*
1055  * prevent the device from being mounted, repartitioned or
1056  * otherwise reused by a RAID array (or any other kernel
1057  * subsystem), by bd_claiming the device.
1058  */
1059 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1060 {
1061 	int err = 0;
1062 	struct block_device *bdev;
1063 	char b[BDEVNAME_SIZE];
1064 
1065 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1066 	if (IS_ERR(bdev)) {
1067 		printk(KERN_ERR "md: could not open %s.\n",
1068 			__bdevname(dev, b));
1069 		return PTR_ERR(bdev);
1070 	}
1071 	err = bd_claim(bdev, rdev);
1072 	if (err) {
1073 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1074 			bdevname(bdev, b));
1075 		blkdev_put(bdev);
1076 		return err;
1077 	}
1078 	rdev->bdev = bdev;
1079 	return err;
1080 }
1081 
1082 static void unlock_rdev(mdk_rdev_t *rdev)
1083 {
1084 	struct block_device *bdev = rdev->bdev;
1085 	rdev->bdev = NULL;
1086 	if (!bdev)
1087 		MD_BUG();
1088 	bd_release(bdev);
1089 	blkdev_put(bdev);
1090 }
1091 
1092 void md_autodetect_dev(dev_t dev);
1093 
1094 static void export_rdev(mdk_rdev_t * rdev)
1095 {
1096 	char b[BDEVNAME_SIZE];
1097 	printk(KERN_INFO "md: export_rdev(%s)\n",
1098 		bdevname(rdev->bdev,b));
1099 	if (rdev->mddev)
1100 		MD_BUG();
1101 	free_disk_sb(rdev);
1102 	list_del_init(&rdev->same_set);
1103 #ifndef MODULE
1104 	md_autodetect_dev(rdev->bdev->bd_dev);
1105 #endif
1106 	unlock_rdev(rdev);
1107 	kfree(rdev);
1108 }
1109 
1110 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1111 {
1112 	unbind_rdev_from_array(rdev);
1113 	export_rdev(rdev);
1114 }
1115 
1116 static void export_array(mddev_t *mddev)
1117 {
1118 	struct list_head *tmp;
1119 	mdk_rdev_t *rdev;
1120 
1121 	ITERATE_RDEV(mddev,rdev,tmp) {
1122 		if (!rdev->mddev) {
1123 			MD_BUG();
1124 			continue;
1125 		}
1126 		kick_rdev_from_array(rdev);
1127 	}
1128 	if (!list_empty(&mddev->disks))
1129 		MD_BUG();
1130 	mddev->raid_disks = 0;
1131 	mddev->major_version = 0;
1132 }
1133 
1134 static void print_desc(mdp_disk_t *desc)
1135 {
1136 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1137 		desc->major,desc->minor,desc->raid_disk,desc->state);
1138 }
1139 
1140 static void print_sb(mdp_super_t *sb)
1141 {
1142 	int i;
1143 
1144 	printk(KERN_INFO
1145 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1146 		sb->major_version, sb->minor_version, sb->patch_version,
1147 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1148 		sb->ctime);
1149 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1150 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1151 		sb->md_minor, sb->layout, sb->chunk_size);
1152 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1153 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1154 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1155 		sb->failed_disks, sb->spare_disks,
1156 		sb->sb_csum, (unsigned long)sb->events_lo);
1157 
1158 	printk(KERN_INFO);
1159 	for (i = 0; i < MD_SB_DISKS; i++) {
1160 		mdp_disk_t *desc;
1161 
1162 		desc = sb->disks + i;
1163 		if (desc->number || desc->major || desc->minor ||
1164 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1165 			printk("     D %2d: ", i);
1166 			print_desc(desc);
1167 		}
1168 	}
1169 	printk(KERN_INFO "md:     THIS: ");
1170 	print_desc(&sb->this_disk);
1171 
1172 }
1173 
1174 static void print_rdev(mdk_rdev_t *rdev)
1175 {
1176 	char b[BDEVNAME_SIZE];
1177 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1178 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1179 	       	rdev->faulty, rdev->in_sync, rdev->desc_nr);
1180 	if (rdev->sb_loaded) {
1181 		printk(KERN_INFO "md: rdev superblock:\n");
1182 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1183 	} else
1184 		printk(KERN_INFO "md: no rdev superblock!\n");
1185 }
1186 
1187 void md_print_devices(void)
1188 {
1189 	struct list_head *tmp, *tmp2;
1190 	mdk_rdev_t *rdev;
1191 	mddev_t *mddev;
1192 	char b[BDEVNAME_SIZE];
1193 
1194 	printk("\n");
1195 	printk("md:	**********************************\n");
1196 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1197 	printk("md:	**********************************\n");
1198 	ITERATE_MDDEV(mddev,tmp) {
1199 		printk("%s: ", mdname(mddev));
1200 
1201 		ITERATE_RDEV(mddev,rdev,tmp2)
1202 			printk("<%s>", bdevname(rdev->bdev,b));
1203 		printk("\n");
1204 
1205 		ITERATE_RDEV(mddev,rdev,tmp2)
1206 			print_rdev(rdev);
1207 	}
1208 	printk("md:	**********************************\n");
1209 	printk("\n");
1210 }
1211 
1212 
1213 static int write_disk_sb(mdk_rdev_t * rdev)
1214 {
1215 	char b[BDEVNAME_SIZE];
1216 	if (!rdev->sb_loaded) {
1217 		MD_BUG();
1218 		return 1;
1219 	}
1220 	if (rdev->faulty) {
1221 		MD_BUG();
1222 		return 1;
1223 	}
1224 
1225 	dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1226 		bdevname(rdev->bdev,b),
1227 	       (unsigned long long)rdev->sb_offset);
1228 
1229 	if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
1230 		return 0;
1231 
1232 	printk("md: write_disk_sb failed for device %s\n",
1233 		bdevname(rdev->bdev,b));
1234 	return 1;
1235 }
1236 
1237 static void sync_sbs(mddev_t * mddev)
1238 {
1239 	mdk_rdev_t *rdev;
1240 	struct list_head *tmp;
1241 
1242 	ITERATE_RDEV(mddev,rdev,tmp) {
1243 		super_types[mddev->major_version].
1244 			sync_super(mddev, rdev);
1245 		rdev->sb_loaded = 1;
1246 	}
1247 }
1248 
1249 static void md_update_sb(mddev_t * mddev)
1250 {
1251 	int err, count = 100;
1252 	struct list_head *tmp;
1253 	mdk_rdev_t *rdev;
1254 
1255 	mddev->sb_dirty = 0;
1256 repeat:
1257 	mddev->utime = get_seconds();
1258 	mddev->events ++;
1259 
1260 	if (!mddev->events) {
1261 		/*
1262 		 * oops, this 64-bit counter should never wrap.
1263 		 * Either we are in around ~1 trillion A.C., assuming
1264 		 * 1 reboot per second, or we have a bug:
1265 		 */
1266 		MD_BUG();
1267 		mddev->events --;
1268 	}
1269 	sync_sbs(mddev);
1270 
1271 	/*
1272 	 * do not write anything to disk if using
1273 	 * nonpersistent superblocks
1274 	 */
1275 	if (!mddev->persistent)
1276 		return;
1277 
1278 	dprintk(KERN_INFO
1279 		"md: updating %s RAID superblock on device (in sync %d)\n",
1280 		mdname(mddev),mddev->in_sync);
1281 
1282 	err = 0;
1283 	ITERATE_RDEV(mddev,rdev,tmp) {
1284 		char b[BDEVNAME_SIZE];
1285 		dprintk(KERN_INFO "md: ");
1286 		if (rdev->faulty)
1287 			dprintk("(skipping faulty ");
1288 
1289 		dprintk("%s ", bdevname(rdev->bdev,b));
1290 		if (!rdev->faulty) {
1291 			err += write_disk_sb(rdev);
1292 		} else
1293 			dprintk(")\n");
1294 		if (!err && mddev->level == LEVEL_MULTIPATH)
1295 			/* only need to write one superblock... */
1296 			break;
1297 	}
1298 	if (err) {
1299 		if (--count) {
1300 			printk(KERN_ERR "md: errors occurred during superblock"
1301 				" update, repeating\n");
1302 			goto repeat;
1303 		}
1304 		printk(KERN_ERR \
1305 			"md: excessive errors occurred during superblock update, exiting\n");
1306 	}
1307 }
1308 
1309 /*
1310  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1311  *
1312  * mark the device faulty if:
1313  *
1314  *   - the device is nonexistent (zero size)
1315  *   - the device has no valid superblock
1316  *
1317  * a faulty rdev _never_ has rdev->sb set.
1318  */
1319 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1320 {
1321 	char b[BDEVNAME_SIZE];
1322 	int err;
1323 	mdk_rdev_t *rdev;
1324 	sector_t size;
1325 
1326 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1327 	if (!rdev) {
1328 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1329 		return ERR_PTR(-ENOMEM);
1330 	}
1331 	memset(rdev, 0, sizeof(*rdev));
1332 
1333 	if ((err = alloc_disk_sb(rdev)))
1334 		goto abort_free;
1335 
1336 	err = lock_rdev(rdev, newdev);
1337 	if (err)
1338 		goto abort_free;
1339 
1340 	rdev->desc_nr = -1;
1341 	rdev->faulty = 0;
1342 	rdev->in_sync = 0;
1343 	rdev->data_offset = 0;
1344 	atomic_set(&rdev->nr_pending, 0);
1345 
1346 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1347 	if (!size) {
1348 		printk(KERN_WARNING
1349 			"md: %s has zero or unknown size, marking faulty!\n",
1350 			bdevname(rdev->bdev,b));
1351 		err = -EINVAL;
1352 		goto abort_free;
1353 	}
1354 
1355 	if (super_format >= 0) {
1356 		err = super_types[super_format].
1357 			load_super(rdev, NULL, super_minor);
1358 		if (err == -EINVAL) {
1359 			printk(KERN_WARNING
1360 				"md: %s has invalid sb, not importing!\n",
1361 				bdevname(rdev->bdev,b));
1362 			goto abort_free;
1363 		}
1364 		if (err < 0) {
1365 			printk(KERN_WARNING
1366 				"md: could not read %s's sb, not importing!\n",
1367 				bdevname(rdev->bdev,b));
1368 			goto abort_free;
1369 		}
1370 	}
1371 	INIT_LIST_HEAD(&rdev->same_set);
1372 
1373 	return rdev;
1374 
1375 abort_free:
1376 	if (rdev->sb_page) {
1377 		if (rdev->bdev)
1378 			unlock_rdev(rdev);
1379 		free_disk_sb(rdev);
1380 	}
1381 	kfree(rdev);
1382 	return ERR_PTR(err);
1383 }
1384 
1385 /*
1386  * Check a full RAID array for plausibility
1387  */
1388 
1389 
1390 static void analyze_sbs(mddev_t * mddev)
1391 {
1392 	int i;
1393 	struct list_head *tmp;
1394 	mdk_rdev_t *rdev, *freshest;
1395 	char b[BDEVNAME_SIZE];
1396 
1397 	freshest = NULL;
1398 	ITERATE_RDEV(mddev,rdev,tmp)
1399 		switch (super_types[mddev->major_version].
1400 			load_super(rdev, freshest, mddev->minor_version)) {
1401 		case 1:
1402 			freshest = rdev;
1403 			break;
1404 		case 0:
1405 			break;
1406 		default:
1407 			printk( KERN_ERR \
1408 				"md: fatal superblock inconsistency in %s"
1409 				" -- removing from array\n",
1410 				bdevname(rdev->bdev,b));
1411 			kick_rdev_from_array(rdev);
1412 		}
1413 
1414 
1415 	super_types[mddev->major_version].
1416 		validate_super(mddev, freshest);
1417 
1418 	i = 0;
1419 	ITERATE_RDEV(mddev,rdev,tmp) {
1420 		if (rdev != freshest)
1421 			if (super_types[mddev->major_version].
1422 			    validate_super(mddev, rdev)) {
1423 				printk(KERN_WARNING "md: kicking non-fresh %s"
1424 					" from array!\n",
1425 					bdevname(rdev->bdev,b));
1426 				kick_rdev_from_array(rdev);
1427 				continue;
1428 			}
1429 		if (mddev->level == LEVEL_MULTIPATH) {
1430 			rdev->desc_nr = i++;
1431 			rdev->raid_disk = rdev->desc_nr;
1432 			rdev->in_sync = 1;
1433 		}
1434 	}
1435 
1436 
1437 
1438 	if (mddev->recovery_cp != MaxSector &&
1439 	    mddev->level >= 1)
1440 		printk(KERN_ERR "md: %s: raid array is not clean"
1441 		       " -- starting background reconstruction\n",
1442 		       mdname(mddev));
1443 
1444 }
1445 
1446 int mdp_major = 0;
1447 
1448 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1449 {
1450 	static DECLARE_MUTEX(disks_sem);
1451 	mddev_t *mddev = mddev_find(dev);
1452 	struct gendisk *disk;
1453 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1454 	int shift = partitioned ? MdpMinorShift : 0;
1455 	int unit = MINOR(dev) >> shift;
1456 
1457 	if (!mddev)
1458 		return NULL;
1459 
1460 	down(&disks_sem);
1461 	if (mddev->gendisk) {
1462 		up(&disks_sem);
1463 		mddev_put(mddev);
1464 		return NULL;
1465 	}
1466 	disk = alloc_disk(1 << shift);
1467 	if (!disk) {
1468 		up(&disks_sem);
1469 		mddev_put(mddev);
1470 		return NULL;
1471 	}
1472 	disk->major = MAJOR(dev);
1473 	disk->first_minor = unit << shift;
1474 	if (partitioned) {
1475 		sprintf(disk->disk_name, "md_d%d", unit);
1476 		sprintf(disk->devfs_name, "md/d%d", unit);
1477 	} else {
1478 		sprintf(disk->disk_name, "md%d", unit);
1479 		sprintf(disk->devfs_name, "md/%d", unit);
1480 	}
1481 	disk->fops = &md_fops;
1482 	disk->private_data = mddev;
1483 	disk->queue = mddev->queue;
1484 	add_disk(disk);
1485 	mddev->gendisk = disk;
1486 	up(&disks_sem);
1487 	return NULL;
1488 }
1489 
1490 void md_wakeup_thread(mdk_thread_t *thread);
1491 
1492 static void md_safemode_timeout(unsigned long data)
1493 {
1494 	mddev_t *mddev = (mddev_t *) data;
1495 
1496 	mddev->safemode = 1;
1497 	md_wakeup_thread(mddev->thread);
1498 }
1499 
1500 
1501 static int do_md_run(mddev_t * mddev)
1502 {
1503 	int pnum, err;
1504 	int chunk_size;
1505 	struct list_head *tmp;
1506 	mdk_rdev_t *rdev;
1507 	struct gendisk *disk;
1508 	char b[BDEVNAME_SIZE];
1509 
1510 	if (list_empty(&mddev->disks))
1511 		/* cannot run an array with no devices.. */
1512 		return -EINVAL;
1513 
1514 	if (mddev->pers)
1515 		return -EBUSY;
1516 
1517 	/*
1518 	 * Analyze all RAID superblock(s)
1519 	 */
1520 	if (!mddev->raid_disks)
1521 		analyze_sbs(mddev);
1522 
1523 	chunk_size = mddev->chunk_size;
1524 	pnum = level_to_pers(mddev->level);
1525 
1526 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1527 		if (!chunk_size) {
1528 			/*
1529 			 * 'default chunksize' in the old md code used to
1530 			 * be PAGE_SIZE, baaad.
1531 			 * we abort here to be on the safe side. We don't
1532 			 * want to continue the bad practice.
1533 			 */
1534 			printk(KERN_ERR
1535 				"no chunksize specified, see 'man raidtab'\n");
1536 			return -EINVAL;
1537 		}
1538 		if (chunk_size > MAX_CHUNK_SIZE) {
1539 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1540 				chunk_size, MAX_CHUNK_SIZE);
1541 			return -EINVAL;
1542 		}
1543 		/*
1544 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1545 		 */
1546 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1547 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1548 			return -EINVAL;
1549 		}
1550 		if (chunk_size < PAGE_SIZE) {
1551 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1552 				chunk_size, PAGE_SIZE);
1553 			return -EINVAL;
1554 		}
1555 
1556 		/* devices must have minimum size of one chunk */
1557 		ITERATE_RDEV(mddev,rdev,tmp) {
1558 			if (rdev->faulty)
1559 				continue;
1560 			if (rdev->size < chunk_size / 1024) {
1561 				printk(KERN_WARNING
1562 					"md: Dev %s smaller than chunk_size:"
1563 					" %lluk < %dk\n",
1564 					bdevname(rdev->bdev,b),
1565 					(unsigned long long)rdev->size,
1566 					chunk_size / 1024);
1567 				return -EINVAL;
1568 			}
1569 		}
1570 	}
1571 
1572 #ifdef CONFIG_KMOD
1573 	if (!pers[pnum])
1574 	{
1575 		request_module("md-personality-%d", pnum);
1576 	}
1577 #endif
1578 
1579 	/*
1580 	 * Drop all container device buffers, from now on
1581 	 * the only valid external interface is through the md
1582 	 * device.
1583 	 * Also find largest hardsector size
1584 	 */
1585 	ITERATE_RDEV(mddev,rdev,tmp) {
1586 		if (rdev->faulty)
1587 			continue;
1588 		sync_blockdev(rdev->bdev);
1589 		invalidate_bdev(rdev->bdev, 0);
1590 	}
1591 
1592 	md_probe(mddev->unit, NULL, NULL);
1593 	disk = mddev->gendisk;
1594 	if (!disk)
1595 		return -ENOMEM;
1596 
1597 	spin_lock(&pers_lock);
1598 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1599 		spin_unlock(&pers_lock);
1600 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
1601 		       pnum);
1602 		return -EINVAL;
1603 	}
1604 
1605 	mddev->pers = pers[pnum];
1606 	spin_unlock(&pers_lock);
1607 
1608 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1609 
1610 	err = mddev->pers->run(mddev);
1611 	if (err) {
1612 		printk(KERN_ERR "md: pers->run() failed ...\n");
1613 		module_put(mddev->pers->owner);
1614 		mddev->pers = NULL;
1615 		return -EINVAL;
1616 	}
1617  	atomic_set(&mddev->writes_pending,0);
1618 	mddev->safemode = 0;
1619 	mddev->safemode_timer.function = md_safemode_timeout;
1620 	mddev->safemode_timer.data = (unsigned long) mddev;
1621 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1622 	mddev->in_sync = 1;
1623 
1624 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1625 
1626 	if (mddev->sb_dirty)
1627 		md_update_sb(mddev);
1628 
1629 	set_capacity(disk, mddev->array_size<<1);
1630 
1631 	/* If we call blk_queue_make_request here, it will
1632 	 * re-initialise max_sectors etc which may have been
1633 	 * refined inside -> run.  So just set the bits we need to set.
1634 	 * Most initialisation happended when we called
1635 	 * blk_queue_make_request(..., md_fail_request)
1636 	 * earlier.
1637 	 */
1638 	mddev->queue->queuedata = mddev;
1639 	mddev->queue->make_request_fn = mddev->pers->make_request;
1640 
1641 	mddev->changed = 1;
1642 	return 0;
1643 }
1644 
1645 static int restart_array(mddev_t *mddev)
1646 {
1647 	struct gendisk *disk = mddev->gendisk;
1648 	int err;
1649 
1650 	/*
1651 	 * Complain if it has no devices
1652 	 */
1653 	err = -ENXIO;
1654 	if (list_empty(&mddev->disks))
1655 		goto out;
1656 
1657 	if (mddev->pers) {
1658 		err = -EBUSY;
1659 		if (!mddev->ro)
1660 			goto out;
1661 
1662 		mddev->safemode = 0;
1663 		mddev->ro = 0;
1664 		set_disk_ro(disk, 0);
1665 
1666 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
1667 			mdname(mddev));
1668 		/*
1669 		 * Kick recovery or resync if necessary
1670 		 */
1671 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1672 		md_wakeup_thread(mddev->thread);
1673 		err = 0;
1674 	} else {
1675 		printk(KERN_ERR "md: %s has no personality assigned.\n",
1676 			mdname(mddev));
1677 		err = -EINVAL;
1678 	}
1679 
1680 out:
1681 	return err;
1682 }
1683 
1684 static int do_md_stop(mddev_t * mddev, int ro)
1685 {
1686 	int err = 0;
1687 	struct gendisk *disk = mddev->gendisk;
1688 
1689 	if (mddev->pers) {
1690 		if (atomic_read(&mddev->active)>2) {
1691 			printk("md: %s still in use.\n",mdname(mddev));
1692 			return -EBUSY;
1693 		}
1694 
1695 		if (mddev->sync_thread) {
1696 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1697 			md_unregister_thread(mddev->sync_thread);
1698 			mddev->sync_thread = NULL;
1699 		}
1700 
1701 		del_timer_sync(&mddev->safemode_timer);
1702 
1703 		invalidate_partition(disk, 0);
1704 
1705 		if (ro) {
1706 			err  = -ENXIO;
1707 			if (mddev->ro)
1708 				goto out;
1709 			mddev->ro = 1;
1710 		} else {
1711 			if (mddev->ro)
1712 				set_disk_ro(disk, 0);
1713 			blk_queue_make_request(mddev->queue, md_fail_request);
1714 			mddev->pers->stop(mddev);
1715 			module_put(mddev->pers->owner);
1716 			mddev->pers = NULL;
1717 			if (mddev->ro)
1718 				mddev->ro = 0;
1719 		}
1720 		if (!mddev->in_sync) {
1721 			/* mark array as shutdown cleanly */
1722 			mddev->in_sync = 1;
1723 			md_update_sb(mddev);
1724 		}
1725 		if (ro)
1726 			set_disk_ro(disk, 1);
1727 	}
1728 	/*
1729 	 * Free resources if final stop
1730 	 */
1731 	if (!ro) {
1732 		struct gendisk *disk;
1733 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1734 
1735 		export_array(mddev);
1736 
1737 		mddev->array_size = 0;
1738 		disk = mddev->gendisk;
1739 		if (disk)
1740 			set_capacity(disk, 0);
1741 		mddev->changed = 1;
1742 	} else
1743 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
1744 			mdname(mddev));
1745 	err = 0;
1746 out:
1747 	return err;
1748 }
1749 
1750 static void autorun_array(mddev_t *mddev)
1751 {
1752 	mdk_rdev_t *rdev;
1753 	struct list_head *tmp;
1754 	int err;
1755 
1756 	if (list_empty(&mddev->disks))
1757 		return;
1758 
1759 	printk(KERN_INFO "md: running: ");
1760 
1761 	ITERATE_RDEV(mddev,rdev,tmp) {
1762 		char b[BDEVNAME_SIZE];
1763 		printk("<%s>", bdevname(rdev->bdev,b));
1764 	}
1765 	printk("\n");
1766 
1767 	err = do_md_run (mddev);
1768 	if (err) {
1769 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1770 		do_md_stop (mddev, 0);
1771 	}
1772 }
1773 
1774 /*
1775  * lets try to run arrays based on all disks that have arrived
1776  * until now. (those are in pending_raid_disks)
1777  *
1778  * the method: pick the first pending disk, collect all disks with
1779  * the same UUID, remove all from the pending list and put them into
1780  * the 'same_array' list. Then order this list based on superblock
1781  * update time (freshest comes first), kick out 'old' disks and
1782  * compare superblocks. If everything's fine then run it.
1783  *
1784  * If "unit" is allocated, then bump its reference count
1785  */
1786 static void autorun_devices(int part)
1787 {
1788 	struct list_head candidates;
1789 	struct list_head *tmp;
1790 	mdk_rdev_t *rdev0, *rdev;
1791 	mddev_t *mddev;
1792 	char b[BDEVNAME_SIZE];
1793 
1794 	printk(KERN_INFO "md: autorun ...\n");
1795 	while (!list_empty(&pending_raid_disks)) {
1796 		dev_t dev;
1797 		rdev0 = list_entry(pending_raid_disks.next,
1798 					 mdk_rdev_t, same_set);
1799 
1800 		printk(KERN_INFO "md: considering %s ...\n",
1801 			bdevname(rdev0->bdev,b));
1802 		INIT_LIST_HEAD(&candidates);
1803 		ITERATE_RDEV_PENDING(rdev,tmp)
1804 			if (super_90_load(rdev, rdev0, 0) >= 0) {
1805 				printk(KERN_INFO "md:  adding %s ...\n",
1806 					bdevname(rdev->bdev,b));
1807 				list_move(&rdev->same_set, &candidates);
1808 			}
1809 		/*
1810 		 * now we have a set of devices, with all of them having
1811 		 * mostly sane superblocks. It's time to allocate the
1812 		 * mddev.
1813 		 */
1814 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1815 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1816 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1817 			break;
1818 		}
1819 		if (part)
1820 			dev = MKDEV(mdp_major,
1821 				    rdev0->preferred_minor << MdpMinorShift);
1822 		else
1823 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1824 
1825 		md_probe(dev, NULL, NULL);
1826 		mddev = mddev_find(dev);
1827 		if (!mddev) {
1828 			printk(KERN_ERR
1829 				"md: cannot allocate memory for md drive.\n");
1830 			break;
1831 		}
1832 		if (mddev_lock(mddev))
1833 			printk(KERN_WARNING "md: %s locked, cannot run\n",
1834 			       mdname(mddev));
1835 		else if (mddev->raid_disks || mddev->major_version
1836 			 || !list_empty(&mddev->disks)) {
1837 			printk(KERN_WARNING
1838 				"md: %s already running, cannot run %s\n",
1839 				mdname(mddev), bdevname(rdev0->bdev,b));
1840 			mddev_unlock(mddev);
1841 		} else {
1842 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
1843 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1844 				list_del_init(&rdev->same_set);
1845 				if (bind_rdev_to_array(rdev, mddev))
1846 					export_rdev(rdev);
1847 			}
1848 			autorun_array(mddev);
1849 			mddev_unlock(mddev);
1850 		}
1851 		/* on success, candidates will be empty, on error
1852 		 * it won't...
1853 		 */
1854 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1855 			export_rdev(rdev);
1856 		mddev_put(mddev);
1857 	}
1858 	printk(KERN_INFO "md: ... autorun DONE.\n");
1859 }
1860 
1861 /*
1862  * import RAID devices based on one partition
1863  * if possible, the array gets run as well.
1864  */
1865 
1866 static int autostart_array(dev_t startdev)
1867 {
1868 	char b[BDEVNAME_SIZE];
1869 	int err = -EINVAL, i;
1870 	mdp_super_t *sb = NULL;
1871 	mdk_rdev_t *start_rdev = NULL, *rdev;
1872 
1873 	start_rdev = md_import_device(startdev, 0, 0);
1874 	if (IS_ERR(start_rdev))
1875 		return err;
1876 
1877 
1878 	/* NOTE: this can only work for 0.90.0 superblocks */
1879 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1880 	if (sb->major_version != 0 ||
1881 	    sb->minor_version != 90 ) {
1882 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1883 		export_rdev(start_rdev);
1884 		return err;
1885 	}
1886 
1887 	if (start_rdev->faulty) {
1888 		printk(KERN_WARNING
1889 			"md: can not autostart based on faulty %s!\n",
1890 			bdevname(start_rdev->bdev,b));
1891 		export_rdev(start_rdev);
1892 		return err;
1893 	}
1894 	list_add(&start_rdev->same_set, &pending_raid_disks);
1895 
1896 	for (i = 0; i < MD_SB_DISKS; i++) {
1897 		mdp_disk_t *desc = sb->disks + i;
1898 		dev_t dev = MKDEV(desc->major, desc->minor);
1899 
1900 		if (!dev)
1901 			continue;
1902 		if (dev == startdev)
1903 			continue;
1904 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
1905 			continue;
1906 		rdev = md_import_device(dev, 0, 0);
1907 		if (IS_ERR(rdev))
1908 			continue;
1909 
1910 		list_add(&rdev->same_set, &pending_raid_disks);
1911 	}
1912 
1913 	/*
1914 	 * possibly return codes
1915 	 */
1916 	autorun_devices(0);
1917 	return 0;
1918 
1919 }
1920 
1921 
1922 static int get_version(void __user * arg)
1923 {
1924 	mdu_version_t ver;
1925 
1926 	ver.major = MD_MAJOR_VERSION;
1927 	ver.minor = MD_MINOR_VERSION;
1928 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
1929 
1930 	if (copy_to_user(arg, &ver, sizeof(ver)))
1931 		return -EFAULT;
1932 
1933 	return 0;
1934 }
1935 
1936 static int get_array_info(mddev_t * mddev, void __user * arg)
1937 {
1938 	mdu_array_info_t info;
1939 	int nr,working,active,failed,spare;
1940 	mdk_rdev_t *rdev;
1941 	struct list_head *tmp;
1942 
1943 	nr=working=active=failed=spare=0;
1944 	ITERATE_RDEV(mddev,rdev,tmp) {
1945 		nr++;
1946 		if (rdev->faulty)
1947 			failed++;
1948 		else {
1949 			working++;
1950 			if (rdev->in_sync)
1951 				active++;
1952 			else
1953 				spare++;
1954 		}
1955 	}
1956 
1957 	info.major_version = mddev->major_version;
1958 	info.minor_version = mddev->minor_version;
1959 	info.patch_version = MD_PATCHLEVEL_VERSION;
1960 	info.ctime         = mddev->ctime;
1961 	info.level         = mddev->level;
1962 	info.size          = mddev->size;
1963 	info.nr_disks      = nr;
1964 	info.raid_disks    = mddev->raid_disks;
1965 	info.md_minor      = mddev->md_minor;
1966 	info.not_persistent= !mddev->persistent;
1967 
1968 	info.utime         = mddev->utime;
1969 	info.state         = 0;
1970 	if (mddev->in_sync)
1971 		info.state = (1<<MD_SB_CLEAN);
1972 	info.active_disks  = active;
1973 	info.working_disks = working;
1974 	info.failed_disks  = failed;
1975 	info.spare_disks   = spare;
1976 
1977 	info.layout        = mddev->layout;
1978 	info.chunk_size    = mddev->chunk_size;
1979 
1980 	if (copy_to_user(arg, &info, sizeof(info)))
1981 		return -EFAULT;
1982 
1983 	return 0;
1984 }
1985 
1986 static int get_disk_info(mddev_t * mddev, void __user * arg)
1987 {
1988 	mdu_disk_info_t info;
1989 	unsigned int nr;
1990 	mdk_rdev_t *rdev;
1991 
1992 	if (copy_from_user(&info, arg, sizeof(info)))
1993 		return -EFAULT;
1994 
1995 	nr = info.number;
1996 
1997 	rdev = find_rdev_nr(mddev, nr);
1998 	if (rdev) {
1999 		info.major = MAJOR(rdev->bdev->bd_dev);
2000 		info.minor = MINOR(rdev->bdev->bd_dev);
2001 		info.raid_disk = rdev->raid_disk;
2002 		info.state = 0;
2003 		if (rdev->faulty)
2004 			info.state |= (1<<MD_DISK_FAULTY);
2005 		else if (rdev->in_sync) {
2006 			info.state |= (1<<MD_DISK_ACTIVE);
2007 			info.state |= (1<<MD_DISK_SYNC);
2008 		}
2009 	} else {
2010 		info.major = info.minor = 0;
2011 		info.raid_disk = -1;
2012 		info.state = (1<<MD_DISK_REMOVED);
2013 	}
2014 
2015 	if (copy_to_user(arg, &info, sizeof(info)))
2016 		return -EFAULT;
2017 
2018 	return 0;
2019 }
2020 
2021 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2022 {
2023 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2024 	mdk_rdev_t *rdev;
2025 	dev_t dev = MKDEV(info->major,info->minor);
2026 
2027 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2028 		return -EOVERFLOW;
2029 
2030 	if (!mddev->raid_disks) {
2031 		int err;
2032 		/* expecting a device which has a superblock */
2033 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2034 		if (IS_ERR(rdev)) {
2035 			printk(KERN_WARNING
2036 				"md: md_import_device returned %ld\n",
2037 				PTR_ERR(rdev));
2038 			return PTR_ERR(rdev);
2039 		}
2040 		if (!list_empty(&mddev->disks)) {
2041 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2042 							mdk_rdev_t, same_set);
2043 			int err = super_types[mddev->major_version]
2044 				.load_super(rdev, rdev0, mddev->minor_version);
2045 			if (err < 0) {
2046 				printk(KERN_WARNING
2047 					"md: %s has different UUID to %s\n",
2048 					bdevname(rdev->bdev,b),
2049 					bdevname(rdev0->bdev,b2));
2050 				export_rdev(rdev);
2051 				return -EINVAL;
2052 			}
2053 		}
2054 		err = bind_rdev_to_array(rdev, mddev);
2055 		if (err)
2056 			export_rdev(rdev);
2057 		return err;
2058 	}
2059 
2060 	/*
2061 	 * add_new_disk can be used once the array is assembled
2062 	 * to add "hot spares".  They must already have a superblock
2063 	 * written
2064 	 */
2065 	if (mddev->pers) {
2066 		int err;
2067 		if (!mddev->pers->hot_add_disk) {
2068 			printk(KERN_WARNING
2069 				"%s: personality does not support diskops!\n",
2070 			       mdname(mddev));
2071 			return -EINVAL;
2072 		}
2073 		rdev = md_import_device(dev, mddev->major_version,
2074 					mddev->minor_version);
2075 		if (IS_ERR(rdev)) {
2076 			printk(KERN_WARNING
2077 				"md: md_import_device returned %ld\n",
2078 				PTR_ERR(rdev));
2079 			return PTR_ERR(rdev);
2080 		}
2081 		rdev->in_sync = 0; /* just to be sure */
2082 		rdev->raid_disk = -1;
2083 		err = bind_rdev_to_array(rdev, mddev);
2084 		if (err)
2085 			export_rdev(rdev);
2086 		if (mddev->thread)
2087 			md_wakeup_thread(mddev->thread);
2088 		return err;
2089 	}
2090 
2091 	/* otherwise, add_new_disk is only allowed
2092 	 * for major_version==0 superblocks
2093 	 */
2094 	if (mddev->major_version != 0) {
2095 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2096 		       mdname(mddev));
2097 		return -EINVAL;
2098 	}
2099 
2100 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2101 		int err;
2102 		rdev = md_import_device (dev, -1, 0);
2103 		if (IS_ERR(rdev)) {
2104 			printk(KERN_WARNING
2105 				"md: error, md_import_device() returned %ld\n",
2106 				PTR_ERR(rdev));
2107 			return PTR_ERR(rdev);
2108 		}
2109 		rdev->desc_nr = info->number;
2110 		if (info->raid_disk < mddev->raid_disks)
2111 			rdev->raid_disk = info->raid_disk;
2112 		else
2113 			rdev->raid_disk = -1;
2114 
2115 		rdev->faulty = 0;
2116 		if (rdev->raid_disk < mddev->raid_disks)
2117 			rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2118 		else
2119 			rdev->in_sync = 0;
2120 
2121 		err = bind_rdev_to_array(rdev, mddev);
2122 		if (err) {
2123 			export_rdev(rdev);
2124 			return err;
2125 		}
2126 
2127 		if (!mddev->persistent) {
2128 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2129 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2130 		} else
2131 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2132 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2133 
2134 		if (!mddev->size || (mddev->size > rdev->size))
2135 			mddev->size = rdev->size;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2142 {
2143 	char b[BDEVNAME_SIZE];
2144 	mdk_rdev_t *rdev;
2145 
2146 	if (!mddev->pers)
2147 		return -ENODEV;
2148 
2149 	rdev = find_rdev(mddev, dev);
2150 	if (!rdev)
2151 		return -ENXIO;
2152 
2153 	if (rdev->raid_disk >= 0)
2154 		goto busy;
2155 
2156 	kick_rdev_from_array(rdev);
2157 	md_update_sb(mddev);
2158 
2159 	return 0;
2160 busy:
2161 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2162 		bdevname(rdev->bdev,b), mdname(mddev));
2163 	return -EBUSY;
2164 }
2165 
2166 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2167 {
2168 	char b[BDEVNAME_SIZE];
2169 	int err;
2170 	unsigned int size;
2171 	mdk_rdev_t *rdev;
2172 
2173 	if (!mddev->pers)
2174 		return -ENODEV;
2175 
2176 	if (mddev->major_version != 0) {
2177 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2178 			" version-0 superblocks.\n",
2179 			mdname(mddev));
2180 		return -EINVAL;
2181 	}
2182 	if (!mddev->pers->hot_add_disk) {
2183 		printk(KERN_WARNING
2184 			"%s: personality does not support diskops!\n",
2185 			mdname(mddev));
2186 		return -EINVAL;
2187 	}
2188 
2189 	rdev = md_import_device (dev, -1, 0);
2190 	if (IS_ERR(rdev)) {
2191 		printk(KERN_WARNING
2192 			"md: error, md_import_device() returned %ld\n",
2193 			PTR_ERR(rdev));
2194 		return -EINVAL;
2195 	}
2196 
2197 	if (mddev->persistent)
2198 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2199 	else
2200 		rdev->sb_offset =
2201 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2202 
2203 	size = calc_dev_size(rdev, mddev->chunk_size);
2204 	rdev->size = size;
2205 
2206 	if (size < mddev->size) {
2207 		printk(KERN_WARNING
2208 			"%s: disk size %llu blocks < array size %llu\n",
2209 			mdname(mddev), (unsigned long long)size,
2210 			(unsigned long long)mddev->size);
2211 		err = -ENOSPC;
2212 		goto abort_export;
2213 	}
2214 
2215 	if (rdev->faulty) {
2216 		printk(KERN_WARNING
2217 			"md: can not hot-add faulty %s disk to %s!\n",
2218 			bdevname(rdev->bdev,b), mdname(mddev));
2219 		err = -EINVAL;
2220 		goto abort_export;
2221 	}
2222 	rdev->in_sync = 0;
2223 	rdev->desc_nr = -1;
2224 	bind_rdev_to_array(rdev, mddev);
2225 
2226 	/*
2227 	 * The rest should better be atomic, we can have disk failures
2228 	 * noticed in interrupt contexts ...
2229 	 */
2230 
2231 	if (rdev->desc_nr == mddev->max_disks) {
2232 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2233 			mdname(mddev));
2234 		err = -EBUSY;
2235 		goto abort_unbind_export;
2236 	}
2237 
2238 	rdev->raid_disk = -1;
2239 
2240 	md_update_sb(mddev);
2241 
2242 	/*
2243 	 * Kick recovery, maybe this spare has to be added to the
2244 	 * array immediately.
2245 	 */
2246 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2247 	md_wakeup_thread(mddev->thread);
2248 
2249 	return 0;
2250 
2251 abort_unbind_export:
2252 	unbind_rdev_from_array(rdev);
2253 
2254 abort_export:
2255 	export_rdev(rdev);
2256 	return err;
2257 }
2258 
2259 /*
2260  * set_array_info is used two different ways
2261  * The original usage is when creating a new array.
2262  * In this usage, raid_disks is > 0 and it together with
2263  *  level, size, not_persistent,layout,chunksize determine the
2264  *  shape of the array.
2265  *  This will always create an array with a type-0.90.0 superblock.
2266  * The newer usage is when assembling an array.
2267  *  In this case raid_disks will be 0, and the major_version field is
2268  *  use to determine which style super-blocks are to be found on the devices.
2269  *  The minor and patch _version numbers are also kept incase the
2270  *  super_block handler wishes to interpret them.
2271  */
2272 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2273 {
2274 
2275 	if (info->raid_disks == 0) {
2276 		/* just setting version number for superblock loading */
2277 		if (info->major_version < 0 ||
2278 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2279 		    super_types[info->major_version].name == NULL) {
2280 			/* maybe try to auto-load a module? */
2281 			printk(KERN_INFO
2282 				"md: superblock version %d not known\n",
2283 				info->major_version);
2284 			return -EINVAL;
2285 		}
2286 		mddev->major_version = info->major_version;
2287 		mddev->minor_version = info->minor_version;
2288 		mddev->patch_version = info->patch_version;
2289 		return 0;
2290 	}
2291 	mddev->major_version = MD_MAJOR_VERSION;
2292 	mddev->minor_version = MD_MINOR_VERSION;
2293 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2294 	mddev->ctime         = get_seconds();
2295 
2296 	mddev->level         = info->level;
2297 	mddev->size          = info->size;
2298 	mddev->raid_disks    = info->raid_disks;
2299 	/* don't set md_minor, it is determined by which /dev/md* was
2300 	 * openned
2301 	 */
2302 	if (info->state & (1<<MD_SB_CLEAN))
2303 		mddev->recovery_cp = MaxSector;
2304 	else
2305 		mddev->recovery_cp = 0;
2306 	mddev->persistent    = ! info->not_persistent;
2307 
2308 	mddev->layout        = info->layout;
2309 	mddev->chunk_size    = info->chunk_size;
2310 
2311 	mddev->max_disks     = MD_SB_DISKS;
2312 
2313 	mddev->sb_dirty      = 1;
2314 
2315 	/*
2316 	 * Generate a 128 bit UUID
2317 	 */
2318 	get_random_bytes(mddev->uuid, 16);
2319 
2320 	return 0;
2321 }
2322 
2323 /*
2324  * update_array_info is used to change the configuration of an
2325  * on-line array.
2326  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2327  * fields in the info are checked against the array.
2328  * Any differences that cannot be handled will cause an error.
2329  * Normally, only one change can be managed at a time.
2330  */
2331 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2332 {
2333 	int rv = 0;
2334 	int cnt = 0;
2335 
2336 	if (mddev->major_version != info->major_version ||
2337 	    mddev->minor_version != info->minor_version ||
2338 /*	    mddev->patch_version != info->patch_version || */
2339 	    mddev->ctime         != info->ctime         ||
2340 	    mddev->level         != info->level         ||
2341 /*	    mddev->layout        != info->layout        || */
2342 	    !mddev->persistent	 != info->not_persistent||
2343 	    mddev->chunk_size    != info->chunk_size    )
2344 		return -EINVAL;
2345 	/* Check there is only one change */
2346 	if (mddev->size != info->size) cnt++;
2347 	if (mddev->raid_disks != info->raid_disks) cnt++;
2348 	if (mddev->layout != info->layout) cnt++;
2349 	if (cnt == 0) return 0;
2350 	if (cnt > 1) return -EINVAL;
2351 
2352 	if (mddev->layout != info->layout) {
2353 		/* Change layout
2354 		 * we don't need to do anything at the md level, the
2355 		 * personality will take care of it all.
2356 		 */
2357 		if (mddev->pers->reconfig == NULL)
2358 			return -EINVAL;
2359 		else
2360 			return mddev->pers->reconfig(mddev, info->layout, -1);
2361 	}
2362 	if (mddev->size != info->size) {
2363 		mdk_rdev_t * rdev;
2364 		struct list_head *tmp;
2365 		if (mddev->pers->resize == NULL)
2366 			return -EINVAL;
2367 		/* The "size" is the amount of each device that is used.
2368 		 * This can only make sense for arrays with redundancy.
2369 		 * linear and raid0 always use whatever space is available
2370 		 * We can only consider changing the size if no resync
2371 		 * or reconstruction is happening, and if the new size
2372 		 * is acceptable. It must fit before the sb_offset or,
2373 		 * if that is <data_offset, it must fit before the
2374 		 * size of each device.
2375 		 * If size is zero, we find the largest size that fits.
2376 		 */
2377 		if (mddev->sync_thread)
2378 			return -EBUSY;
2379 		ITERATE_RDEV(mddev,rdev,tmp) {
2380 			sector_t avail;
2381 			int fit = (info->size == 0);
2382 			if (rdev->sb_offset > rdev->data_offset)
2383 				avail = (rdev->sb_offset*2) - rdev->data_offset;
2384 			else
2385 				avail = get_capacity(rdev->bdev->bd_disk)
2386 					- rdev->data_offset;
2387 			if (fit && (info->size == 0 || info->size > avail/2))
2388 				info->size = avail/2;
2389 			if (avail < ((sector_t)info->size << 1))
2390 				return -ENOSPC;
2391 		}
2392 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2393 		if (!rv) {
2394 			struct block_device *bdev;
2395 
2396 			bdev = bdget_disk(mddev->gendisk, 0);
2397 			if (bdev) {
2398 				down(&bdev->bd_inode->i_sem);
2399 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
2400 				up(&bdev->bd_inode->i_sem);
2401 				bdput(bdev);
2402 			}
2403 		}
2404 	}
2405 	if (mddev->raid_disks    != info->raid_disks) {
2406 		/* change the number of raid disks */
2407 		if (mddev->pers->reshape == NULL)
2408 			return -EINVAL;
2409 		if (info->raid_disks <= 0 ||
2410 		    info->raid_disks >= mddev->max_disks)
2411 			return -EINVAL;
2412 		if (mddev->sync_thread)
2413 			return -EBUSY;
2414 		rv = mddev->pers->reshape(mddev, info->raid_disks);
2415 		if (!rv) {
2416 			struct block_device *bdev;
2417 
2418 			bdev = bdget_disk(mddev->gendisk, 0);
2419 			if (bdev) {
2420 				down(&bdev->bd_inode->i_sem);
2421 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
2422 				up(&bdev->bd_inode->i_sem);
2423 				bdput(bdev);
2424 			}
2425 		}
2426 	}
2427 	md_update_sb(mddev);
2428 	return rv;
2429 }
2430 
2431 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2432 {
2433 	mdk_rdev_t *rdev;
2434 
2435 	if (mddev->pers == NULL)
2436 		return -ENODEV;
2437 
2438 	rdev = find_rdev(mddev, dev);
2439 	if (!rdev)
2440 		return -ENODEV;
2441 
2442 	md_error(mddev, rdev);
2443 	return 0;
2444 }
2445 
2446 static int md_ioctl(struct inode *inode, struct file *file,
2447 			unsigned int cmd, unsigned long arg)
2448 {
2449 	int err = 0;
2450 	void __user *argp = (void __user *)arg;
2451 	struct hd_geometry __user *loc = argp;
2452 	mddev_t *mddev = NULL;
2453 
2454 	if (!capable(CAP_SYS_ADMIN))
2455 		return -EACCES;
2456 
2457 	/*
2458 	 * Commands dealing with the RAID driver but not any
2459 	 * particular array:
2460 	 */
2461 	switch (cmd)
2462 	{
2463 		case RAID_VERSION:
2464 			err = get_version(argp);
2465 			goto done;
2466 
2467 		case PRINT_RAID_DEBUG:
2468 			err = 0;
2469 			md_print_devices();
2470 			goto done;
2471 
2472 #ifndef MODULE
2473 		case RAID_AUTORUN:
2474 			err = 0;
2475 			autostart_arrays(arg);
2476 			goto done;
2477 #endif
2478 		default:;
2479 	}
2480 
2481 	/*
2482 	 * Commands creating/starting a new array:
2483 	 */
2484 
2485 	mddev = inode->i_bdev->bd_disk->private_data;
2486 
2487 	if (!mddev) {
2488 		BUG();
2489 		goto abort;
2490 	}
2491 
2492 
2493 	if (cmd == START_ARRAY) {
2494 		/* START_ARRAY doesn't need to lock the array as autostart_array
2495 		 * does the locking, and it could even be a different array
2496 		 */
2497 		static int cnt = 3;
2498 		if (cnt > 0 ) {
2499 			printk(KERN_WARNING
2500 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2501 			       "This will not be supported beyond 2.6\n",
2502 			       current->comm, current->pid);
2503 			cnt--;
2504 		}
2505 		err = autostart_array(new_decode_dev(arg));
2506 		if (err) {
2507 			printk(KERN_WARNING "md: autostart failed!\n");
2508 			goto abort;
2509 		}
2510 		goto done;
2511 	}
2512 
2513 	err = mddev_lock(mddev);
2514 	if (err) {
2515 		printk(KERN_INFO
2516 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
2517 			err, cmd);
2518 		goto abort;
2519 	}
2520 
2521 	switch (cmd)
2522 	{
2523 		case SET_ARRAY_INFO:
2524 			{
2525 				mdu_array_info_t info;
2526 				if (!arg)
2527 					memset(&info, 0, sizeof(info));
2528 				else if (copy_from_user(&info, argp, sizeof(info))) {
2529 					err = -EFAULT;
2530 					goto abort_unlock;
2531 				}
2532 				if (mddev->pers) {
2533 					err = update_array_info(mddev, &info);
2534 					if (err) {
2535 						printk(KERN_WARNING "md: couldn't update"
2536 						       " array info. %d\n", err);
2537 						goto abort_unlock;
2538 					}
2539 					goto done_unlock;
2540 				}
2541 				if (!list_empty(&mddev->disks)) {
2542 					printk(KERN_WARNING
2543 					       "md: array %s already has disks!\n",
2544 					       mdname(mddev));
2545 					err = -EBUSY;
2546 					goto abort_unlock;
2547 				}
2548 				if (mddev->raid_disks) {
2549 					printk(KERN_WARNING
2550 					       "md: array %s already initialised!\n",
2551 					       mdname(mddev));
2552 					err = -EBUSY;
2553 					goto abort_unlock;
2554 				}
2555 				err = set_array_info(mddev, &info);
2556 				if (err) {
2557 					printk(KERN_WARNING "md: couldn't set"
2558 					       " array info. %d\n", err);
2559 					goto abort_unlock;
2560 				}
2561 			}
2562 			goto done_unlock;
2563 
2564 		default:;
2565 	}
2566 
2567 	/*
2568 	 * Commands querying/configuring an existing array:
2569 	 */
2570 	/* if we are initialised yet, only ADD_NEW_DISK or STOP_ARRAY is allowed */
2571 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY && cmd != RUN_ARRAY) {
2572 		err = -ENODEV;
2573 		goto abort_unlock;
2574 	}
2575 
2576 	/*
2577 	 * Commands even a read-only array can execute:
2578 	 */
2579 	switch (cmd)
2580 	{
2581 		case GET_ARRAY_INFO:
2582 			err = get_array_info(mddev, argp);
2583 			goto done_unlock;
2584 
2585 		case GET_DISK_INFO:
2586 			err = get_disk_info(mddev, argp);
2587 			goto done_unlock;
2588 
2589 		case RESTART_ARRAY_RW:
2590 			err = restart_array(mddev);
2591 			goto done_unlock;
2592 
2593 		case STOP_ARRAY:
2594 			err = do_md_stop (mddev, 0);
2595 			goto done_unlock;
2596 
2597 		case STOP_ARRAY_RO:
2598 			err = do_md_stop (mddev, 1);
2599 			goto done_unlock;
2600 
2601 	/*
2602 	 * We have a problem here : there is no easy way to give a CHS
2603 	 * virtual geometry. We currently pretend that we have a 2 heads
2604 	 * 4 sectors (with a BIG number of cylinders...). This drives
2605 	 * dosfs just mad... ;-)
2606 	 */
2607 		case HDIO_GETGEO:
2608 			if (!loc) {
2609 				err = -EINVAL;
2610 				goto abort_unlock;
2611 			}
2612 			err = put_user (2, (char __user *) &loc->heads);
2613 			if (err)
2614 				goto abort_unlock;
2615 			err = put_user (4, (char __user *) &loc->sectors);
2616 			if (err)
2617 				goto abort_unlock;
2618 			err = put_user(get_capacity(mddev->gendisk)/8,
2619 					(short __user *) &loc->cylinders);
2620 			if (err)
2621 				goto abort_unlock;
2622 			err = put_user (get_start_sect(inode->i_bdev),
2623 						(long __user *) &loc->start);
2624 			goto done_unlock;
2625 	}
2626 
2627 	/*
2628 	 * The remaining ioctls are changing the state of the
2629 	 * superblock, so we do not allow read-only arrays
2630 	 * here:
2631 	 */
2632 	if (mddev->ro) {
2633 		err = -EROFS;
2634 		goto abort_unlock;
2635 	}
2636 
2637 	switch (cmd)
2638 	{
2639 		case ADD_NEW_DISK:
2640 		{
2641 			mdu_disk_info_t info;
2642 			if (copy_from_user(&info, argp, sizeof(info)))
2643 				err = -EFAULT;
2644 			else
2645 				err = add_new_disk(mddev, &info);
2646 			goto done_unlock;
2647 		}
2648 
2649 		case HOT_REMOVE_DISK:
2650 			err = hot_remove_disk(mddev, new_decode_dev(arg));
2651 			goto done_unlock;
2652 
2653 		case HOT_ADD_DISK:
2654 			err = hot_add_disk(mddev, new_decode_dev(arg));
2655 			goto done_unlock;
2656 
2657 		case SET_DISK_FAULTY:
2658 			err = set_disk_faulty(mddev, new_decode_dev(arg));
2659 			goto done_unlock;
2660 
2661 		case RUN_ARRAY:
2662 			err = do_md_run (mddev);
2663 			goto done_unlock;
2664 
2665 		default:
2666 			if (_IOC_TYPE(cmd) == MD_MAJOR)
2667 				printk(KERN_WARNING "md: %s(pid %d) used"
2668 					" obsolete MD ioctl, upgrade your"
2669 					" software to use new ictls.\n",
2670 					current->comm, current->pid);
2671 			err = -EINVAL;
2672 			goto abort_unlock;
2673 	}
2674 
2675 done_unlock:
2676 abort_unlock:
2677 	mddev_unlock(mddev);
2678 
2679 	return err;
2680 done:
2681 	if (err)
2682 		MD_BUG();
2683 abort:
2684 	return err;
2685 }
2686 
2687 static int md_open(struct inode *inode, struct file *file)
2688 {
2689 	/*
2690 	 * Succeed if we can lock the mddev, which confirms that
2691 	 * it isn't being stopped right now.
2692 	 */
2693 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2694 	int err;
2695 
2696 	if ((err = mddev_lock(mddev)))
2697 		goto out;
2698 
2699 	err = 0;
2700 	mddev_get(mddev);
2701 	mddev_unlock(mddev);
2702 
2703 	check_disk_change(inode->i_bdev);
2704  out:
2705 	return err;
2706 }
2707 
2708 static int md_release(struct inode *inode, struct file * file)
2709 {
2710  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2711 
2712 	if (!mddev)
2713 		BUG();
2714 	mddev_put(mddev);
2715 
2716 	return 0;
2717 }
2718 
2719 static int md_media_changed(struct gendisk *disk)
2720 {
2721 	mddev_t *mddev = disk->private_data;
2722 
2723 	return mddev->changed;
2724 }
2725 
2726 static int md_revalidate(struct gendisk *disk)
2727 {
2728 	mddev_t *mddev = disk->private_data;
2729 
2730 	mddev->changed = 0;
2731 	return 0;
2732 }
2733 static struct block_device_operations md_fops =
2734 {
2735 	.owner		= THIS_MODULE,
2736 	.open		= md_open,
2737 	.release	= md_release,
2738 	.ioctl		= md_ioctl,
2739 	.media_changed	= md_media_changed,
2740 	.revalidate_disk= md_revalidate,
2741 };
2742 
2743 int md_thread(void * arg)
2744 {
2745 	mdk_thread_t *thread = arg;
2746 
2747 	lock_kernel();
2748 
2749 	/*
2750 	 * Detach thread
2751 	 */
2752 
2753 	daemonize(thread->name, mdname(thread->mddev));
2754 
2755 	current->exit_signal = SIGCHLD;
2756 	allow_signal(SIGKILL);
2757 	thread->tsk = current;
2758 
2759 	/*
2760 	 * md_thread is a 'system-thread', it's priority should be very
2761 	 * high. We avoid resource deadlocks individually in each
2762 	 * raid personality. (RAID5 does preallocation) We also use RR and
2763 	 * the very same RT priority as kswapd, thus we will never get
2764 	 * into a priority inversion deadlock.
2765 	 *
2766 	 * we definitely have to have equal or higher priority than
2767 	 * bdflush, otherwise bdflush will deadlock if there are too
2768 	 * many dirty RAID5 blocks.
2769 	 */
2770 	unlock_kernel();
2771 
2772 	complete(thread->event);
2773 	while (thread->run) {
2774 		void (*run)(mddev_t *);
2775 
2776 		wait_event_interruptible(thread->wqueue,
2777 					 test_bit(THREAD_WAKEUP, &thread->flags));
2778 		if (current->flags & PF_FREEZE)
2779 			refrigerator(PF_FREEZE);
2780 
2781 		clear_bit(THREAD_WAKEUP, &thread->flags);
2782 
2783 		run = thread->run;
2784 		if (run)
2785 			run(thread->mddev);
2786 
2787 		if (signal_pending(current))
2788 			flush_signals(current);
2789 	}
2790 	complete(thread->event);
2791 	return 0;
2792 }
2793 
2794 void md_wakeup_thread(mdk_thread_t *thread)
2795 {
2796 	if (thread) {
2797 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
2798 		set_bit(THREAD_WAKEUP, &thread->flags);
2799 		wake_up(&thread->wqueue);
2800 	}
2801 }
2802 
2803 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
2804 				 const char *name)
2805 {
2806 	mdk_thread_t *thread;
2807 	int ret;
2808 	struct completion event;
2809 
2810 	thread = (mdk_thread_t *) kmalloc
2811 				(sizeof(mdk_thread_t), GFP_KERNEL);
2812 	if (!thread)
2813 		return NULL;
2814 
2815 	memset(thread, 0, sizeof(mdk_thread_t));
2816 	init_waitqueue_head(&thread->wqueue);
2817 
2818 	init_completion(&event);
2819 	thread->event = &event;
2820 	thread->run = run;
2821 	thread->mddev = mddev;
2822 	thread->name = name;
2823 	ret = kernel_thread(md_thread, thread, 0);
2824 	if (ret < 0) {
2825 		kfree(thread);
2826 		return NULL;
2827 	}
2828 	wait_for_completion(&event);
2829 	return thread;
2830 }
2831 
2832 void md_unregister_thread(mdk_thread_t *thread)
2833 {
2834 	struct completion event;
2835 
2836 	init_completion(&event);
2837 
2838 	thread->event = &event;
2839 
2840 	/* As soon as ->run is set to NULL, the task could disappear,
2841 	 * so we need to hold tasklist_lock until we have sent the signal
2842 	 */
2843 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
2844 	read_lock(&tasklist_lock);
2845 	thread->run = NULL;
2846 	send_sig(SIGKILL, thread->tsk, 1);
2847 	read_unlock(&tasklist_lock);
2848 	wait_for_completion(&event);
2849 	kfree(thread);
2850 }
2851 
2852 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
2853 {
2854 	if (!mddev) {
2855 		MD_BUG();
2856 		return;
2857 	}
2858 
2859 	if (!rdev || rdev->faulty)
2860 		return;
2861 
2862 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
2863 		mdname(mddev),
2864 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
2865 		__builtin_return_address(0),__builtin_return_address(1),
2866 		__builtin_return_address(2),__builtin_return_address(3));
2867 
2868 	if (!mddev->pers->error_handler)
2869 		return;
2870 	mddev->pers->error_handler(mddev,rdev);
2871 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2872 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2873 	md_wakeup_thread(mddev->thread);
2874 }
2875 
2876 /* seq_file implementation /proc/mdstat */
2877 
2878 static void status_unused(struct seq_file *seq)
2879 {
2880 	int i = 0;
2881 	mdk_rdev_t *rdev;
2882 	struct list_head *tmp;
2883 
2884 	seq_printf(seq, "unused devices: ");
2885 
2886 	ITERATE_RDEV_PENDING(rdev,tmp) {
2887 		char b[BDEVNAME_SIZE];
2888 		i++;
2889 		seq_printf(seq, "%s ",
2890 			      bdevname(rdev->bdev,b));
2891 	}
2892 	if (!i)
2893 		seq_printf(seq, "<none>");
2894 
2895 	seq_printf(seq, "\n");
2896 }
2897 
2898 
2899 static void status_resync(struct seq_file *seq, mddev_t * mddev)
2900 {
2901 	unsigned long max_blocks, resync, res, dt, db, rt;
2902 
2903 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
2904 
2905 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2906 		max_blocks = mddev->resync_max_sectors >> 1;
2907 	else
2908 		max_blocks = mddev->size;
2909 
2910 	/*
2911 	 * Should not happen.
2912 	 */
2913 	if (!max_blocks) {
2914 		MD_BUG();
2915 		return;
2916 	}
2917 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
2918 	{
2919 		int i, x = res/50, y = 20-x;
2920 		seq_printf(seq, "[");
2921 		for (i = 0; i < x; i++)
2922 			seq_printf(seq, "=");
2923 		seq_printf(seq, ">");
2924 		for (i = 0; i < y; i++)
2925 			seq_printf(seq, ".");
2926 		seq_printf(seq, "] ");
2927 	}
2928 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
2929 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
2930 		       "resync" : "recovery"),
2931 		      res/10, res % 10, resync, max_blocks);
2932 
2933 	/*
2934 	 * We do not want to overflow, so the order of operands and
2935 	 * the * 100 / 100 trick are important. We do a +1 to be
2936 	 * safe against division by zero. We only estimate anyway.
2937 	 *
2938 	 * dt: time from mark until now
2939 	 * db: blocks written from mark until now
2940 	 * rt: remaining time
2941 	 */
2942 	dt = ((jiffies - mddev->resync_mark) / HZ);
2943 	if (!dt) dt++;
2944 	db = resync - (mddev->resync_mark_cnt/2);
2945 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
2946 
2947 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
2948 
2949 	seq_printf(seq, " speed=%ldK/sec", db/dt);
2950 }
2951 
2952 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
2953 {
2954 	struct list_head *tmp;
2955 	loff_t l = *pos;
2956 	mddev_t *mddev;
2957 
2958 	if (l >= 0x10000)
2959 		return NULL;
2960 	if (!l--)
2961 		/* header */
2962 		return (void*)1;
2963 
2964 	spin_lock(&all_mddevs_lock);
2965 	list_for_each(tmp,&all_mddevs)
2966 		if (!l--) {
2967 			mddev = list_entry(tmp, mddev_t, all_mddevs);
2968 			mddev_get(mddev);
2969 			spin_unlock(&all_mddevs_lock);
2970 			return mddev;
2971 		}
2972 	spin_unlock(&all_mddevs_lock);
2973 	if (!l--)
2974 		return (void*)2;/* tail */
2975 	return NULL;
2976 }
2977 
2978 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2979 {
2980 	struct list_head *tmp;
2981 	mddev_t *next_mddev, *mddev = v;
2982 
2983 	++*pos;
2984 	if (v == (void*)2)
2985 		return NULL;
2986 
2987 	spin_lock(&all_mddevs_lock);
2988 	if (v == (void*)1)
2989 		tmp = all_mddevs.next;
2990 	else
2991 		tmp = mddev->all_mddevs.next;
2992 	if (tmp != &all_mddevs)
2993 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
2994 	else {
2995 		next_mddev = (void*)2;
2996 		*pos = 0x10000;
2997 	}
2998 	spin_unlock(&all_mddevs_lock);
2999 
3000 	if (v != (void*)1)
3001 		mddev_put(mddev);
3002 	return next_mddev;
3003 
3004 }
3005 
3006 static void md_seq_stop(struct seq_file *seq, void *v)
3007 {
3008 	mddev_t *mddev = v;
3009 
3010 	if (mddev && v != (void*)1 && v != (void*)2)
3011 		mddev_put(mddev);
3012 }
3013 
3014 static int md_seq_show(struct seq_file *seq, void *v)
3015 {
3016 	mddev_t *mddev = v;
3017 	sector_t size;
3018 	struct list_head *tmp2;
3019 	mdk_rdev_t *rdev;
3020 	int i;
3021 
3022 	if (v == (void*)1) {
3023 		seq_printf(seq, "Personalities : ");
3024 		spin_lock(&pers_lock);
3025 		for (i = 0; i < MAX_PERSONALITY; i++)
3026 			if (pers[i])
3027 				seq_printf(seq, "[%s] ", pers[i]->name);
3028 
3029 		spin_unlock(&pers_lock);
3030 		seq_printf(seq, "\n");
3031 		return 0;
3032 	}
3033 	if (v == (void*)2) {
3034 		status_unused(seq);
3035 		return 0;
3036 	}
3037 
3038 	if (mddev_lock(mddev)!=0)
3039 		return -EINTR;
3040 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3041 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3042 						mddev->pers ? "" : "in");
3043 		if (mddev->pers) {
3044 			if (mddev->ro)
3045 				seq_printf(seq, " (read-only)");
3046 			seq_printf(seq, " %s", mddev->pers->name);
3047 		}
3048 
3049 		size = 0;
3050 		ITERATE_RDEV(mddev,rdev,tmp2) {
3051 			char b[BDEVNAME_SIZE];
3052 			seq_printf(seq, " %s[%d]",
3053 				bdevname(rdev->bdev,b), rdev->desc_nr);
3054 			if (rdev->faulty) {
3055 				seq_printf(seq, "(F)");
3056 				continue;
3057 			}
3058 			size += rdev->size;
3059 		}
3060 
3061 		if (!list_empty(&mddev->disks)) {
3062 			if (mddev->pers)
3063 				seq_printf(seq, "\n      %llu blocks",
3064 					(unsigned long long)mddev->array_size);
3065 			else
3066 				seq_printf(seq, "\n      %llu blocks",
3067 					(unsigned long long)size);
3068 		}
3069 
3070 		if (mddev->pers) {
3071 			mddev->pers->status (seq, mddev);
3072 	 		seq_printf(seq, "\n      ");
3073 			if (mddev->curr_resync > 2)
3074 				status_resync (seq, mddev);
3075 			else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3076 				seq_printf(seq, "	resync=DELAYED");
3077 		}
3078 
3079 		seq_printf(seq, "\n");
3080 	}
3081 	mddev_unlock(mddev);
3082 
3083 	return 0;
3084 }
3085 
3086 static struct seq_operations md_seq_ops = {
3087 	.start  = md_seq_start,
3088 	.next   = md_seq_next,
3089 	.stop   = md_seq_stop,
3090 	.show   = md_seq_show,
3091 };
3092 
3093 static int md_seq_open(struct inode *inode, struct file *file)
3094 {
3095 	int error;
3096 
3097 	error = seq_open(file, &md_seq_ops);
3098 	return error;
3099 }
3100 
3101 static struct file_operations md_seq_fops = {
3102 	.open           = md_seq_open,
3103 	.read           = seq_read,
3104 	.llseek         = seq_lseek,
3105 	.release	= seq_release,
3106 };
3107 
3108 int register_md_personality(int pnum, mdk_personality_t *p)
3109 {
3110 	if (pnum >= MAX_PERSONALITY) {
3111 		printk(KERN_ERR
3112 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3113 		       p->name, pnum, MAX_PERSONALITY-1);
3114 		return -EINVAL;
3115 	}
3116 
3117 	spin_lock(&pers_lock);
3118 	if (pers[pnum]) {
3119 		spin_unlock(&pers_lock);
3120 		return -EBUSY;
3121 	}
3122 
3123 	pers[pnum] = p;
3124 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3125 	spin_unlock(&pers_lock);
3126 	return 0;
3127 }
3128 
3129 int unregister_md_personality(int pnum)
3130 {
3131 	if (pnum >= MAX_PERSONALITY)
3132 		return -EINVAL;
3133 
3134 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3135 	spin_lock(&pers_lock);
3136 	pers[pnum] = NULL;
3137 	spin_unlock(&pers_lock);
3138 	return 0;
3139 }
3140 
3141 static int is_mddev_idle(mddev_t *mddev)
3142 {
3143 	mdk_rdev_t * rdev;
3144 	struct list_head *tmp;
3145 	int idle;
3146 	unsigned long curr_events;
3147 
3148 	idle = 1;
3149 	ITERATE_RDEV(mddev,rdev,tmp) {
3150 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3151 		curr_events = disk_stat_read(disk, read_sectors) +
3152 				disk_stat_read(disk, write_sectors) -
3153 				atomic_read(&disk->sync_io);
3154 		/* Allow some slack between valud of curr_events and last_events,
3155 		 * as there are some uninteresting races.
3156 		 * Note: the following is an unsigned comparison.
3157 		 */
3158 		if ((curr_events - rdev->last_events + 32) > 64) {
3159 			rdev->last_events = curr_events;
3160 			idle = 0;
3161 		}
3162 	}
3163 	return idle;
3164 }
3165 
3166 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3167 {
3168 	/* another "blocks" (512byte) blocks have been synced */
3169 	atomic_sub(blocks, &mddev->recovery_active);
3170 	wake_up(&mddev->recovery_wait);
3171 	if (!ok) {
3172 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3173 		md_wakeup_thread(mddev->thread);
3174 		// stop recovery, signal do_sync ....
3175 	}
3176 }
3177 
3178 
3179 void md_write_start(mddev_t *mddev)
3180 {
3181 	if (!atomic_read(&mddev->writes_pending)) {
3182 		mddev_lock_uninterruptible(mddev);
3183 		if (mddev->in_sync) {
3184 			mddev->in_sync = 0;
3185  			del_timer(&mddev->safemode_timer);
3186 			md_update_sb(mddev);
3187 		}
3188 		atomic_inc(&mddev->writes_pending);
3189 		mddev_unlock(mddev);
3190 	} else
3191 		atomic_inc(&mddev->writes_pending);
3192 }
3193 
3194 void md_write_end(mddev_t *mddev)
3195 {
3196 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3197 		if (mddev->safemode == 2)
3198 			md_wakeup_thread(mddev->thread);
3199 		else
3200 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3201 	}
3202 }
3203 
3204 static inline void md_enter_safemode(mddev_t *mddev)
3205 {
3206 	if (!mddev->safemode) return;
3207 	if (mddev->safemode == 2 &&
3208 	    (atomic_read(&mddev->writes_pending) || mddev->in_sync ||
3209 		    mddev->recovery_cp != MaxSector))
3210 		return; /* avoid the lock */
3211 	mddev_lock_uninterruptible(mddev);
3212 	if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3213 	    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3214 		mddev->in_sync = 1;
3215 		md_update_sb(mddev);
3216 	}
3217 	mddev_unlock(mddev);
3218 
3219 	if (mddev->safemode == 1)
3220 		mddev->safemode = 0;
3221 }
3222 
3223 void md_handle_safemode(mddev_t *mddev)
3224 {
3225 	if (signal_pending(current)) {
3226 		printk(KERN_INFO "md: %s in immediate safe mode\n",
3227 			mdname(mddev));
3228 		mddev->safemode = 2;
3229 		flush_signals(current);
3230 	}
3231 	md_enter_safemode(mddev);
3232 }
3233 
3234 
3235 DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3236 
3237 #define SYNC_MARKS	10
3238 #define	SYNC_MARK_STEP	(3*HZ)
3239 static void md_do_sync(mddev_t *mddev)
3240 {
3241 	mddev_t *mddev2;
3242 	unsigned int currspeed = 0,
3243 		 window;
3244 	sector_t max_sectors,j;
3245 	unsigned long mark[SYNC_MARKS];
3246 	sector_t mark_cnt[SYNC_MARKS];
3247 	int last_mark,m;
3248 	struct list_head *tmp;
3249 	sector_t last_check;
3250 
3251 	/* just incase thread restarts... */
3252 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3253 		return;
3254 
3255 	/* we overload curr_resync somewhat here.
3256 	 * 0 == not engaged in resync at all
3257 	 * 2 == checking that there is no conflict with another sync
3258 	 * 1 == like 2, but have yielded to allow conflicting resync to
3259 	 *		commense
3260 	 * other == active in resync - this many blocks
3261 	 *
3262 	 * Before starting a resync we must have set curr_resync to
3263 	 * 2, and then checked that every "conflicting" array has curr_resync
3264 	 * less than ours.  When we find one that is the same or higher
3265 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3266 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3267 	 * This will mean we have to start checking from the beginning again.
3268 	 *
3269 	 */
3270 
3271 	do {
3272 		mddev->curr_resync = 2;
3273 
3274 	try_again:
3275 		if (signal_pending(current)) {
3276 			flush_signals(current);
3277 			goto skip;
3278 		}
3279 		ITERATE_MDDEV(mddev2,tmp) {
3280 			printk(".");
3281 			if (mddev2 == mddev)
3282 				continue;
3283 			if (mddev2->curr_resync &&
3284 			    match_mddev_units(mddev,mddev2)) {
3285 				DEFINE_WAIT(wq);
3286 				if (mddev < mddev2 && mddev->curr_resync == 2) {
3287 					/* arbitrarily yield */
3288 					mddev->curr_resync = 1;
3289 					wake_up(&resync_wait);
3290 				}
3291 				if (mddev > mddev2 && mddev->curr_resync == 1)
3292 					/* no need to wait here, we can wait the next
3293 					 * time 'round when curr_resync == 2
3294 					 */
3295 					continue;
3296 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3297 				if (!signal_pending(current)
3298 				    && mddev2->curr_resync >= mddev->curr_resync) {
3299 					printk(KERN_INFO "md: delaying resync of %s"
3300 					       " until %s has finished resync (they"
3301 					       " share one or more physical units)\n",
3302 					       mdname(mddev), mdname(mddev2));
3303 					mddev_put(mddev2);
3304 					schedule();
3305 					finish_wait(&resync_wait, &wq);
3306 					goto try_again;
3307 				}
3308 				finish_wait(&resync_wait, &wq);
3309 			}
3310 		}
3311 	} while (mddev->curr_resync < 2);
3312 
3313 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3314 		/* resync follows the size requested by the personality,
3315 		 * which default to physical size, but can be virtual size
3316 		 */
3317 		max_sectors = mddev->resync_max_sectors;
3318 	else
3319 		/* recovery follows the physical size of devices */
3320 		max_sectors = mddev->size << 1;
3321 
3322 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3323 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3324 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
3325 	printk(KERN_INFO "md: using maximum available idle IO bandwith "
3326 	       "(but not more than %d KB/sec) for reconstruction.\n",
3327 	       sysctl_speed_limit_max);
3328 
3329 	is_mddev_idle(mddev); /* this also initializes IO event counters */
3330 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3331 		j = mddev->recovery_cp;
3332 	else
3333 		j = 0;
3334 	for (m = 0; m < SYNC_MARKS; m++) {
3335 		mark[m] = jiffies;
3336 		mark_cnt[m] = j;
3337 	}
3338 	last_mark = 0;
3339 	mddev->resync_mark = mark[last_mark];
3340 	mddev->resync_mark_cnt = mark_cnt[last_mark];
3341 
3342 	/*
3343 	 * Tune reconstruction:
3344 	 */
3345 	window = 32*(PAGE_SIZE/512);
3346 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3347 		window/2,(unsigned long long) max_sectors/2);
3348 
3349 	atomic_set(&mddev->recovery_active, 0);
3350 	init_waitqueue_head(&mddev->recovery_wait);
3351 	last_check = 0;
3352 
3353 	if (j>2) {
3354 		printk(KERN_INFO
3355 			"md: resuming recovery of %s from checkpoint.\n",
3356 			mdname(mddev));
3357 		mddev->curr_resync = j;
3358 	}
3359 
3360 	while (j < max_sectors) {
3361 		int sectors;
3362 
3363 		sectors = mddev->pers->sync_request(mddev, j, currspeed < sysctl_speed_limit_min);
3364 		if (sectors < 0) {
3365 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3366 			goto out;
3367 		}
3368 		atomic_add(sectors, &mddev->recovery_active);
3369 		j += sectors;
3370 		if (j>1) mddev->curr_resync = j;
3371 
3372 		if (last_check + window > j || j == max_sectors)
3373 			continue;
3374 
3375 		last_check = j;
3376 
3377 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3378 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3379 			break;
3380 
3381 	repeat:
3382 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3383 			/* step marks */
3384 			int next = (last_mark+1) % SYNC_MARKS;
3385 
3386 			mddev->resync_mark = mark[next];
3387 			mddev->resync_mark_cnt = mark_cnt[next];
3388 			mark[next] = jiffies;
3389 			mark_cnt[next] = j - atomic_read(&mddev->recovery_active);
3390 			last_mark = next;
3391 		}
3392 
3393 
3394 		if (signal_pending(current)) {
3395 			/*
3396 			 * got a signal, exit.
3397 			 */
3398 			printk(KERN_INFO
3399 				"md: md_do_sync() got signal ... exiting\n");
3400 			flush_signals(current);
3401 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3402 			goto out;
3403 		}
3404 
3405 		/*
3406 		 * this loop exits only if either when we are slower than
3407 		 * the 'hard' speed limit, or the system was IO-idle for
3408 		 * a jiffy.
3409 		 * the system might be non-idle CPU-wise, but we only care
3410 		 * about not overloading the IO subsystem. (things like an
3411 		 * e2fsck being done on the RAID array should execute fast)
3412 		 */
3413 		mddev->queue->unplug_fn(mddev->queue);
3414 		cond_resched();
3415 
3416 		currspeed = ((unsigned long)(j-mddev->resync_mark_cnt))/2/((jiffies-mddev->resync_mark)/HZ +1) +1;
3417 
3418 		if (currspeed > sysctl_speed_limit_min) {
3419 			if ((currspeed > sysctl_speed_limit_max) ||
3420 					!is_mddev_idle(mddev)) {
3421 				msleep_interruptible(250);
3422 				goto repeat;
3423 			}
3424 		}
3425 	}
3426 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3427 	/*
3428 	 * this also signals 'finished resyncing' to md_stop
3429 	 */
3430  out:
3431 	mddev->queue->unplug_fn(mddev->queue);
3432 
3433 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3434 
3435 	/* tell personality that we are finished */
3436 	mddev->pers->sync_request(mddev, max_sectors, 1);
3437 
3438 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3439 	    mddev->curr_resync > 2 &&
3440 	    mddev->curr_resync >= mddev->recovery_cp) {
3441 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3442 			printk(KERN_INFO
3443 				"md: checkpointing recovery of %s.\n",
3444 				mdname(mddev));
3445 			mddev->recovery_cp = mddev->curr_resync;
3446 		} else
3447 			mddev->recovery_cp = MaxSector;
3448 	}
3449 
3450 	md_enter_safemode(mddev);
3451  skip:
3452 	mddev->curr_resync = 0;
3453 	wake_up(&resync_wait);
3454 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3455 	md_wakeup_thread(mddev->thread);
3456 }
3457 
3458 
3459 /*
3460  * This routine is regularly called by all per-raid-array threads to
3461  * deal with generic issues like resync and super-block update.
3462  * Raid personalities that don't have a thread (linear/raid0) do not
3463  * need this as they never do any recovery or update the superblock.
3464  *
3465  * It does not do any resync itself, but rather "forks" off other threads
3466  * to do that as needed.
3467  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3468  * "->recovery" and create a thread at ->sync_thread.
3469  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3470  * and wakeups up this thread which will reap the thread and finish up.
3471  * This thread also removes any faulty devices (with nr_pending == 0).
3472  *
3473  * The overall approach is:
3474  *  1/ if the superblock needs updating, update it.
3475  *  2/ If a recovery thread is running, don't do anything else.
3476  *  3/ If recovery has finished, clean up, possibly marking spares active.
3477  *  4/ If there are any faulty devices, remove them.
3478  *  5/ If array is degraded, try to add spares devices
3479  *  6/ If array has spares or is not in-sync, start a resync thread.
3480  */
3481 void md_check_recovery(mddev_t *mddev)
3482 {
3483 	mdk_rdev_t *rdev;
3484 	struct list_head *rtmp;
3485 
3486 
3487 	dprintk(KERN_INFO "md: recovery thread got woken up ...\n");
3488 
3489 	if (mddev->ro)
3490 		return;
3491 	if ( ! (
3492 		mddev->sb_dirty ||
3493 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3494 		test_bit(MD_RECOVERY_DONE, &mddev->recovery)
3495 		))
3496 		return;
3497 	if (mddev_trylock(mddev)==0) {
3498 		int spares =0;
3499 		if (mddev->sb_dirty)
3500 			md_update_sb(mddev);
3501 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3502 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3503 			/* resync/recovery still happening */
3504 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3505 			goto unlock;
3506 		}
3507 		if (mddev->sync_thread) {
3508 			/* resync has finished, collect result */
3509 			md_unregister_thread(mddev->sync_thread);
3510 			mddev->sync_thread = NULL;
3511 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3512 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3513 				/* success...*/
3514 				/* activate any spares */
3515 				mddev->pers->spare_active(mddev);
3516 			}
3517 			md_update_sb(mddev);
3518 			mddev->recovery = 0;
3519 			/* flag recovery needed just to double check */
3520 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3521 			goto unlock;
3522 		}
3523 		if (mddev->recovery)
3524 			/* probably just the RECOVERY_NEEDED flag */
3525 			mddev->recovery = 0;
3526 
3527 		/* no recovery is running.
3528 		 * remove any failed drives, then
3529 		 * add spares if possible.
3530 		 * Spare are also removed and re-added, to allow
3531 		 * the personality to fail the re-add.
3532 		 */
3533 		ITERATE_RDEV(mddev,rdev,rtmp)
3534 			if (rdev->raid_disk >= 0 &&
3535 			    (rdev->faulty || ! rdev->in_sync) &&
3536 			    atomic_read(&rdev->nr_pending)==0) {
3537 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3538 					rdev->raid_disk = -1;
3539 			}
3540 
3541 		if (mddev->degraded) {
3542 			ITERATE_RDEV(mddev,rdev,rtmp)
3543 				if (rdev->raid_disk < 0
3544 				    && !rdev->faulty) {
3545 					if (mddev->pers->hot_add_disk(mddev,rdev))
3546 						spares++;
3547 					else
3548 						break;
3549 				}
3550 		}
3551 
3552 		if (!spares && (mddev->recovery_cp == MaxSector )) {
3553 			/* nothing we can do ... */
3554 			goto unlock;
3555 		}
3556 		if (mddev->pers->sync_request) {
3557 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3558 			if (!spares)
3559 				set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3560 			mddev->sync_thread = md_register_thread(md_do_sync,
3561 								mddev,
3562 								"%s_resync");
3563 			if (!mddev->sync_thread) {
3564 				printk(KERN_ERR "%s: could not start resync"
3565 					" thread...\n",
3566 					mdname(mddev));
3567 				/* leave the spares where they are, it shouldn't hurt */
3568 				mddev->recovery = 0;
3569 			} else {
3570 				md_wakeup_thread(mddev->sync_thread);
3571 			}
3572 		}
3573 	unlock:
3574 		mddev_unlock(mddev);
3575 	}
3576 }
3577 
3578 int md_notify_reboot(struct notifier_block *this,
3579 					unsigned long code, void *x)
3580 {
3581 	struct list_head *tmp;
3582 	mddev_t *mddev;
3583 
3584 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3585 
3586 		printk(KERN_INFO "md: stopping all md devices.\n");
3587 
3588 		ITERATE_MDDEV(mddev,tmp)
3589 			if (mddev_trylock(mddev)==0)
3590 				do_md_stop (mddev, 1);
3591 		/*
3592 		 * certain more exotic SCSI devices are known to be
3593 		 * volatile wrt too early system reboots. While the
3594 		 * right place to handle this issue is the given
3595 		 * driver, we do want to have a safe RAID driver ...
3596 		 */
3597 		mdelay(1000*1);
3598 	}
3599 	return NOTIFY_DONE;
3600 }
3601 
3602 struct notifier_block md_notifier = {
3603 	.notifier_call	= md_notify_reboot,
3604 	.next		= NULL,
3605 	.priority	= INT_MAX, /* before any real devices */
3606 };
3607 
3608 static void md_geninit(void)
3609 {
3610 	struct proc_dir_entry *p;
3611 
3612 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3613 
3614 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
3615 	if (p)
3616 		p->proc_fops = &md_seq_fops;
3617 }
3618 
3619 int __init md_init(void)
3620 {
3621 	int minor;
3622 
3623 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3624 			" MD_SB_DISKS=%d\n",
3625 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
3626 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3627 
3628 	if (register_blkdev(MAJOR_NR, "md"))
3629 		return -1;
3630 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3631 		unregister_blkdev(MAJOR_NR, "md");
3632 		return -1;
3633 	}
3634 	devfs_mk_dir("md");
3635 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3636 				md_probe, NULL, NULL);
3637 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3638 			    md_probe, NULL, NULL);
3639 
3640 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
3641 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3642 				S_IFBLK|S_IRUSR|S_IWUSR,
3643 				"md/%d", minor);
3644 
3645 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
3646 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3647 			      S_IFBLK|S_IRUSR|S_IWUSR,
3648 			      "md/mdp%d", minor);
3649 
3650 
3651 	register_reboot_notifier(&md_notifier);
3652 	raid_table_header = register_sysctl_table(raid_root_table, 1);
3653 
3654 	md_geninit();
3655 	return (0);
3656 }
3657 
3658 
3659 #ifndef MODULE
3660 
3661 /*
3662  * Searches all registered partitions for autorun RAID arrays
3663  * at boot time.
3664  */
3665 static dev_t detected_devices[128];
3666 static int dev_cnt;
3667 
3668 void md_autodetect_dev(dev_t dev)
3669 {
3670 	if (dev_cnt >= 0 && dev_cnt < 127)
3671 		detected_devices[dev_cnt++] = dev;
3672 }
3673 
3674 
3675 static void autostart_arrays(int part)
3676 {
3677 	mdk_rdev_t *rdev;
3678 	int i;
3679 
3680 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3681 
3682 	for (i = 0; i < dev_cnt; i++) {
3683 		dev_t dev = detected_devices[i];
3684 
3685 		rdev = md_import_device(dev,0, 0);
3686 		if (IS_ERR(rdev))
3687 			continue;
3688 
3689 		if (rdev->faulty) {
3690 			MD_BUG();
3691 			continue;
3692 		}
3693 		list_add(&rdev->same_set, &pending_raid_disks);
3694 	}
3695 	dev_cnt = 0;
3696 
3697 	autorun_devices(part);
3698 }
3699 
3700 #endif
3701 
3702 static __exit void md_exit(void)
3703 {
3704 	mddev_t *mddev;
3705 	struct list_head *tmp;
3706 	int i;
3707 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3708 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
3709 	for (i=0; i < MAX_MD_DEVS; i++)
3710 		devfs_remove("md/%d", i);
3711 	for (i=0; i < MAX_MD_DEVS; i++)
3712 		devfs_remove("md/d%d", i);
3713 
3714 	devfs_remove("md");
3715 
3716 	unregister_blkdev(MAJOR_NR,"md");
3717 	unregister_blkdev(mdp_major, "mdp");
3718 	unregister_reboot_notifier(&md_notifier);
3719 	unregister_sysctl_table(raid_table_header);
3720 	remove_proc_entry("mdstat", NULL);
3721 	ITERATE_MDDEV(mddev,tmp) {
3722 		struct gendisk *disk = mddev->gendisk;
3723 		if (!disk)
3724 			continue;
3725 		export_array(mddev);
3726 		del_gendisk(disk);
3727 		put_disk(disk);
3728 		mddev->gendisk = NULL;
3729 		mddev_put(mddev);
3730 	}
3731 }
3732 
3733 module_init(md_init)
3734 module_exit(md_exit)
3735 
3736 EXPORT_SYMBOL(register_md_personality);
3737 EXPORT_SYMBOL(unregister_md_personality);
3738 EXPORT_SYMBOL(md_error);
3739 EXPORT_SYMBOL(md_done_sync);
3740 EXPORT_SYMBOL(md_write_start);
3741 EXPORT_SYMBOL(md_write_end);
3742 EXPORT_SYMBOL(md_handle_safemode);
3743 EXPORT_SYMBOL(md_register_thread);
3744 EXPORT_SYMBOL(md_unregister_thread);
3745 EXPORT_SYMBOL(md_wakeup_thread);
3746 EXPORT_SYMBOL(md_print_devices);
3747 EXPORT_SYMBOL(md_check_recovery);
3748 MODULE_LICENSE("GPL");
3749