xref: /openbmc/linux/drivers/md/md.c (revision a59511d1)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/badblocks.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57 #include "md-cluster.h"
58 
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62 
63 /* pers_list is a list of registered personalities protected
64  * by pers_lock.
65  * pers_lock does extra service to protect accesses to
66  * mddev->thread when the mutex cannot be held.
67  */
68 static LIST_HEAD(pers_list);
69 static DEFINE_SPINLOCK(pers_lock);
70 
71 struct md_cluster_operations *md_cluster_ops;
72 EXPORT_SYMBOL(md_cluster_ops);
73 struct module *md_cluster_mod;
74 EXPORT_SYMBOL(md_cluster_mod);
75 
76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
77 static struct workqueue_struct *md_wq;
78 static struct workqueue_struct *md_misc_wq;
79 
80 static int remove_and_add_spares(struct mddev *mddev,
81 				 struct md_rdev *this);
82 static void mddev_detach(struct mddev *mddev);
83 
84 /*
85  * Default number of read corrections we'll attempt on an rdev
86  * before ejecting it from the array. We divide the read error
87  * count by 2 for every hour elapsed between read errors.
88  */
89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
90 /*
91  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
92  * is 1000 KB/sec, so the extra system load does not show up that much.
93  * Increase it if you want to have more _guaranteed_ speed. Note that
94  * the RAID driver will use the maximum available bandwidth if the IO
95  * subsystem is idle. There is also an 'absolute maximum' reconstruction
96  * speed limit - in case reconstruction slows down your system despite
97  * idle IO detection.
98  *
99  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
100  * or /sys/block/mdX/md/sync_speed_{min,max}
101  */
102 
103 static int sysctl_speed_limit_min = 1000;
104 static int sysctl_speed_limit_max = 200000;
105 static inline int speed_min(struct mddev *mddev)
106 {
107 	return mddev->sync_speed_min ?
108 		mddev->sync_speed_min : sysctl_speed_limit_min;
109 }
110 
111 static inline int speed_max(struct mddev *mddev)
112 {
113 	return mddev->sync_speed_max ?
114 		mddev->sync_speed_max : sysctl_speed_limit_max;
115 }
116 
117 static struct ctl_table_header *raid_table_header;
118 
119 static struct ctl_table raid_table[] = {
120 	{
121 		.procname	= "speed_limit_min",
122 		.data		= &sysctl_speed_limit_min,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{
128 		.procname	= "speed_limit_max",
129 		.data		= &sysctl_speed_limit_max,
130 		.maxlen		= sizeof(int),
131 		.mode		= S_IRUGO|S_IWUSR,
132 		.proc_handler	= proc_dointvec,
133 	},
134 	{ }
135 };
136 
137 static struct ctl_table raid_dir_table[] = {
138 	{
139 		.procname	= "raid",
140 		.maxlen		= 0,
141 		.mode		= S_IRUGO|S_IXUGO,
142 		.child		= raid_table,
143 	},
144 	{ }
145 };
146 
147 static struct ctl_table raid_root_table[] = {
148 	{
149 		.procname	= "dev",
150 		.maxlen		= 0,
151 		.mode		= 0555,
152 		.child		= raid_dir_table,
153 	},
154 	{  }
155 };
156 
157 static const struct block_device_operations md_fops;
158 
159 static int start_readonly;
160 
161 /* bio_clone_mddev
162  * like bio_clone, but with a local bio set
163  */
164 
165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 			    struct mddev *mddev)
167 {
168 	struct bio *b;
169 
170 	if (!mddev || !mddev->bio_set)
171 		return bio_alloc(gfp_mask, nr_iovecs);
172 
173 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 	if (!b)
175 		return NULL;
176 	return b;
177 }
178 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
179 
180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
181 			    struct mddev *mddev)
182 {
183 	if (!mddev || !mddev->bio_set)
184 		return bio_clone(bio, gfp_mask);
185 
186 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
187 }
188 EXPORT_SYMBOL_GPL(bio_clone_mddev);
189 
190 /*
191  * We have a system wide 'event count' that is incremented
192  * on any 'interesting' event, and readers of /proc/mdstat
193  * can use 'poll' or 'select' to find out when the event
194  * count increases.
195  *
196  * Events are:
197  *  start array, stop array, error, add device, remove device,
198  *  start build, activate spare
199  */
200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
201 static atomic_t md_event_count;
202 void md_new_event(struct mddev *mddev)
203 {
204 	atomic_inc(&md_event_count);
205 	wake_up(&md_event_waiters);
206 }
207 EXPORT_SYMBOL_GPL(md_new_event);
208 
209 /*
210  * Enables to iterate over all existing md arrays
211  * all_mddevs_lock protects this list.
212  */
213 static LIST_HEAD(all_mddevs);
214 static DEFINE_SPINLOCK(all_mddevs_lock);
215 
216 /*
217  * iterates through all used mddevs in the system.
218  * We take care to grab the all_mddevs_lock whenever navigating
219  * the list, and to always hold a refcount when unlocked.
220  * Any code which breaks out of this loop while own
221  * a reference to the current mddev and must mddev_put it.
222  */
223 #define for_each_mddev(_mddev,_tmp)					\
224 									\
225 	for (({ spin_lock(&all_mddevs_lock);				\
226 		_tmp = all_mddevs.next;					\
227 		_mddev = NULL;});					\
228 	     ({ if (_tmp != &all_mddevs)				\
229 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
230 		spin_unlock(&all_mddevs_lock);				\
231 		if (_mddev) mddev_put(_mddev);				\
232 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
233 		_tmp != &all_mddevs;});					\
234 	     ({ spin_lock(&all_mddevs_lock);				\
235 		_tmp = _tmp->next;})					\
236 		)
237 
238 /* Rather than calling directly into the personality make_request function,
239  * IO requests come here first so that we can check if the device is
240  * being suspended pending a reconfiguration.
241  * We hold a refcount over the call to ->make_request.  By the time that
242  * call has finished, the bio has been linked into some internal structure
243  * and so is visible to ->quiesce(), so we don't need the refcount any more.
244  */
245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
246 {
247 	const int rw = bio_data_dir(bio);
248 	struct mddev *mddev = q->queuedata;
249 	unsigned int sectors;
250 	int cpu;
251 
252 	blk_queue_split(q, &bio, q->bio_split);
253 
254 	if (mddev == NULL || mddev->pers == NULL) {
255 		bio_io_error(bio);
256 		return BLK_QC_T_NONE;
257 	}
258 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 		if (bio_sectors(bio) != 0)
260 			bio->bi_error = -EROFS;
261 		bio_endio(bio);
262 		return BLK_QC_T_NONE;
263 	}
264 	smp_rmb(); /* Ensure implications of  'active' are visible */
265 	rcu_read_lock();
266 	if (mddev->suspended) {
267 		DEFINE_WAIT(__wait);
268 		for (;;) {
269 			prepare_to_wait(&mddev->sb_wait, &__wait,
270 					TASK_UNINTERRUPTIBLE);
271 			if (!mddev->suspended)
272 				break;
273 			rcu_read_unlock();
274 			schedule();
275 			rcu_read_lock();
276 		}
277 		finish_wait(&mddev->sb_wait, &__wait);
278 	}
279 	atomic_inc(&mddev->active_io);
280 	rcu_read_unlock();
281 
282 	/*
283 	 * save the sectors now since our bio can
284 	 * go away inside make_request
285 	 */
286 	sectors = bio_sectors(bio);
287 	mddev->pers->make_request(mddev, bio);
288 
289 	cpu = part_stat_lock();
290 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
291 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
292 	part_stat_unlock();
293 
294 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
295 		wake_up(&mddev->sb_wait);
296 
297 	return BLK_QC_T_NONE;
298 }
299 
300 /* mddev_suspend makes sure no new requests are submitted
301  * to the device, and that any requests that have been submitted
302  * are completely handled.
303  * Once mddev_detach() is called and completes, the module will be
304  * completely unused.
305  */
306 void mddev_suspend(struct mddev *mddev)
307 {
308 	WARN_ON_ONCE(current == mddev->thread->tsk);
309 	if (mddev->suspended++)
310 		return;
311 	synchronize_rcu();
312 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
313 	mddev->pers->quiesce(mddev, 1);
314 
315 	del_timer_sync(&mddev->safemode_timer);
316 }
317 EXPORT_SYMBOL_GPL(mddev_suspend);
318 
319 void mddev_resume(struct mddev *mddev)
320 {
321 	if (--mddev->suspended)
322 		return;
323 	wake_up(&mddev->sb_wait);
324 	mddev->pers->quiesce(mddev, 0);
325 
326 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327 	md_wakeup_thread(mddev->thread);
328 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331 
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334 	struct md_personality *pers = mddev->pers;
335 	int ret = 0;
336 
337 	rcu_read_lock();
338 	if (mddev->suspended)
339 		ret = 1;
340 	else if (pers && pers->congested)
341 		ret = pers->congested(mddev, bits);
342 	rcu_read_unlock();
343 	return ret;
344 }
345 EXPORT_SYMBOL_GPL(mddev_congested);
346 static int md_congested(void *data, int bits)
347 {
348 	struct mddev *mddev = data;
349 	return mddev_congested(mddev, bits);
350 }
351 
352 /*
353  * Generic flush handling for md
354  */
355 
356 static void md_end_flush(struct bio *bio)
357 {
358 	struct md_rdev *rdev = bio->bi_private;
359 	struct mddev *mddev = rdev->mddev;
360 
361 	rdev_dec_pending(rdev, mddev);
362 
363 	if (atomic_dec_and_test(&mddev->flush_pending)) {
364 		/* The pre-request flush has finished */
365 		queue_work(md_wq, &mddev->flush_work);
366 	}
367 	bio_put(bio);
368 }
369 
370 static void md_submit_flush_data(struct work_struct *ws);
371 
372 static void submit_flushes(struct work_struct *ws)
373 {
374 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
375 	struct md_rdev *rdev;
376 
377 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
378 	atomic_set(&mddev->flush_pending, 1);
379 	rcu_read_lock();
380 	rdev_for_each_rcu(rdev, mddev)
381 		if (rdev->raid_disk >= 0 &&
382 		    !test_bit(Faulty, &rdev->flags)) {
383 			/* Take two references, one is dropped
384 			 * when request finishes, one after
385 			 * we reclaim rcu_read_lock
386 			 */
387 			struct bio *bi;
388 			atomic_inc(&rdev->nr_pending);
389 			atomic_inc(&rdev->nr_pending);
390 			rcu_read_unlock();
391 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
392 			bi->bi_end_io = md_end_flush;
393 			bi->bi_private = rdev;
394 			bi->bi_bdev = rdev->bdev;
395 			atomic_inc(&mddev->flush_pending);
396 			submit_bio(WRITE_FLUSH, bi);
397 			rcu_read_lock();
398 			rdev_dec_pending(rdev, mddev);
399 		}
400 	rcu_read_unlock();
401 	if (atomic_dec_and_test(&mddev->flush_pending))
402 		queue_work(md_wq, &mddev->flush_work);
403 }
404 
405 static void md_submit_flush_data(struct work_struct *ws)
406 {
407 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
408 	struct bio *bio = mddev->flush_bio;
409 
410 	if (bio->bi_iter.bi_size == 0)
411 		/* an empty barrier - all done */
412 		bio_endio(bio);
413 	else {
414 		bio->bi_rw &= ~REQ_FLUSH;
415 		mddev->pers->make_request(mddev, bio);
416 	}
417 
418 	mddev->flush_bio = NULL;
419 	wake_up(&mddev->sb_wait);
420 }
421 
422 void md_flush_request(struct mddev *mddev, struct bio *bio)
423 {
424 	spin_lock_irq(&mddev->lock);
425 	wait_event_lock_irq(mddev->sb_wait,
426 			    !mddev->flush_bio,
427 			    mddev->lock);
428 	mddev->flush_bio = bio;
429 	spin_unlock_irq(&mddev->lock);
430 
431 	INIT_WORK(&mddev->flush_work, submit_flushes);
432 	queue_work(md_wq, &mddev->flush_work);
433 }
434 EXPORT_SYMBOL(md_flush_request);
435 
436 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
437 {
438 	struct mddev *mddev = cb->data;
439 	md_wakeup_thread(mddev->thread);
440 	kfree(cb);
441 }
442 EXPORT_SYMBOL(md_unplug);
443 
444 static inline struct mddev *mddev_get(struct mddev *mddev)
445 {
446 	atomic_inc(&mddev->active);
447 	return mddev;
448 }
449 
450 static void mddev_delayed_delete(struct work_struct *ws);
451 
452 static void mddev_put(struct mddev *mddev)
453 {
454 	struct bio_set *bs = NULL;
455 
456 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
457 		return;
458 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
459 	    mddev->ctime == 0 && !mddev->hold_active) {
460 		/* Array is not configured at all, and not held active,
461 		 * so destroy it */
462 		list_del_init(&mddev->all_mddevs);
463 		bs = mddev->bio_set;
464 		mddev->bio_set = NULL;
465 		if (mddev->gendisk) {
466 			/* We did a probe so need to clean up.  Call
467 			 * queue_work inside the spinlock so that
468 			 * flush_workqueue() after mddev_find will
469 			 * succeed in waiting for the work to be done.
470 			 */
471 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
472 			queue_work(md_misc_wq, &mddev->del_work);
473 		} else
474 			kfree(mddev);
475 	}
476 	spin_unlock(&all_mddevs_lock);
477 	if (bs)
478 		bioset_free(bs);
479 }
480 
481 static void md_safemode_timeout(unsigned long data);
482 
483 void mddev_init(struct mddev *mddev)
484 {
485 	mutex_init(&mddev->open_mutex);
486 	mutex_init(&mddev->reconfig_mutex);
487 	mutex_init(&mddev->bitmap_info.mutex);
488 	INIT_LIST_HEAD(&mddev->disks);
489 	INIT_LIST_HEAD(&mddev->all_mddevs);
490 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
491 		    (unsigned long) mddev);
492 	atomic_set(&mddev->active, 1);
493 	atomic_set(&mddev->openers, 0);
494 	atomic_set(&mddev->active_io, 0);
495 	spin_lock_init(&mddev->lock);
496 	atomic_set(&mddev->flush_pending, 0);
497 	init_waitqueue_head(&mddev->sb_wait);
498 	init_waitqueue_head(&mddev->recovery_wait);
499 	mddev->reshape_position = MaxSector;
500 	mddev->reshape_backwards = 0;
501 	mddev->last_sync_action = "none";
502 	mddev->resync_min = 0;
503 	mddev->resync_max = MaxSector;
504 	mddev->level = LEVEL_NONE;
505 }
506 EXPORT_SYMBOL_GPL(mddev_init);
507 
508 static struct mddev *mddev_find(dev_t unit)
509 {
510 	struct mddev *mddev, *new = NULL;
511 
512 	if (unit && MAJOR(unit) != MD_MAJOR)
513 		unit &= ~((1<<MdpMinorShift)-1);
514 
515  retry:
516 	spin_lock(&all_mddevs_lock);
517 
518 	if (unit) {
519 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
520 			if (mddev->unit == unit) {
521 				mddev_get(mddev);
522 				spin_unlock(&all_mddevs_lock);
523 				kfree(new);
524 				return mddev;
525 			}
526 
527 		if (new) {
528 			list_add(&new->all_mddevs, &all_mddevs);
529 			spin_unlock(&all_mddevs_lock);
530 			new->hold_active = UNTIL_IOCTL;
531 			return new;
532 		}
533 	} else if (new) {
534 		/* find an unused unit number */
535 		static int next_minor = 512;
536 		int start = next_minor;
537 		int is_free = 0;
538 		int dev = 0;
539 		while (!is_free) {
540 			dev = MKDEV(MD_MAJOR, next_minor);
541 			next_minor++;
542 			if (next_minor > MINORMASK)
543 				next_minor = 0;
544 			if (next_minor == start) {
545 				/* Oh dear, all in use. */
546 				spin_unlock(&all_mddevs_lock);
547 				kfree(new);
548 				return NULL;
549 			}
550 
551 			is_free = 1;
552 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
553 				if (mddev->unit == dev) {
554 					is_free = 0;
555 					break;
556 				}
557 		}
558 		new->unit = dev;
559 		new->md_minor = MINOR(dev);
560 		new->hold_active = UNTIL_STOP;
561 		list_add(&new->all_mddevs, &all_mddevs);
562 		spin_unlock(&all_mddevs_lock);
563 		return new;
564 	}
565 	spin_unlock(&all_mddevs_lock);
566 
567 	new = kzalloc(sizeof(*new), GFP_KERNEL);
568 	if (!new)
569 		return NULL;
570 
571 	new->unit = unit;
572 	if (MAJOR(unit) == MD_MAJOR)
573 		new->md_minor = MINOR(unit);
574 	else
575 		new->md_minor = MINOR(unit) >> MdpMinorShift;
576 
577 	mddev_init(new);
578 
579 	goto retry;
580 }
581 
582 static struct attribute_group md_redundancy_group;
583 
584 void mddev_unlock(struct mddev *mddev)
585 {
586 	if (mddev->to_remove) {
587 		/* These cannot be removed under reconfig_mutex as
588 		 * an access to the files will try to take reconfig_mutex
589 		 * while holding the file unremovable, which leads to
590 		 * a deadlock.
591 		 * So hold set sysfs_active while the remove in happeing,
592 		 * and anything else which might set ->to_remove or my
593 		 * otherwise change the sysfs namespace will fail with
594 		 * -EBUSY if sysfs_active is still set.
595 		 * We set sysfs_active under reconfig_mutex and elsewhere
596 		 * test it under the same mutex to ensure its correct value
597 		 * is seen.
598 		 */
599 		struct attribute_group *to_remove = mddev->to_remove;
600 		mddev->to_remove = NULL;
601 		mddev->sysfs_active = 1;
602 		mutex_unlock(&mddev->reconfig_mutex);
603 
604 		if (mddev->kobj.sd) {
605 			if (to_remove != &md_redundancy_group)
606 				sysfs_remove_group(&mddev->kobj, to_remove);
607 			if (mddev->pers == NULL ||
608 			    mddev->pers->sync_request == NULL) {
609 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
610 				if (mddev->sysfs_action)
611 					sysfs_put(mddev->sysfs_action);
612 				mddev->sysfs_action = NULL;
613 			}
614 		}
615 		mddev->sysfs_active = 0;
616 	} else
617 		mutex_unlock(&mddev->reconfig_mutex);
618 
619 	/* As we've dropped the mutex we need a spinlock to
620 	 * make sure the thread doesn't disappear
621 	 */
622 	spin_lock(&pers_lock);
623 	md_wakeup_thread(mddev->thread);
624 	spin_unlock(&pers_lock);
625 }
626 EXPORT_SYMBOL_GPL(mddev_unlock);
627 
628 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
629 {
630 	struct md_rdev *rdev;
631 
632 	rdev_for_each_rcu(rdev, mddev)
633 		if (rdev->desc_nr == nr)
634 			return rdev;
635 
636 	return NULL;
637 }
638 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
639 
640 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
641 {
642 	struct md_rdev *rdev;
643 
644 	rdev_for_each(rdev, mddev)
645 		if (rdev->bdev->bd_dev == dev)
646 			return rdev;
647 
648 	return NULL;
649 }
650 
651 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
652 {
653 	struct md_rdev *rdev;
654 
655 	rdev_for_each_rcu(rdev, mddev)
656 		if (rdev->bdev->bd_dev == dev)
657 			return rdev;
658 
659 	return NULL;
660 }
661 
662 static struct md_personality *find_pers(int level, char *clevel)
663 {
664 	struct md_personality *pers;
665 	list_for_each_entry(pers, &pers_list, list) {
666 		if (level != LEVEL_NONE && pers->level == level)
667 			return pers;
668 		if (strcmp(pers->name, clevel)==0)
669 			return pers;
670 	}
671 	return NULL;
672 }
673 
674 /* return the offset of the super block in 512byte sectors */
675 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
676 {
677 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
678 	return MD_NEW_SIZE_SECTORS(num_sectors);
679 }
680 
681 static int alloc_disk_sb(struct md_rdev *rdev)
682 {
683 	rdev->sb_page = alloc_page(GFP_KERNEL);
684 	if (!rdev->sb_page) {
685 		printk(KERN_ALERT "md: out of memory.\n");
686 		return -ENOMEM;
687 	}
688 
689 	return 0;
690 }
691 
692 void md_rdev_clear(struct md_rdev *rdev)
693 {
694 	if (rdev->sb_page) {
695 		put_page(rdev->sb_page);
696 		rdev->sb_loaded = 0;
697 		rdev->sb_page = NULL;
698 		rdev->sb_start = 0;
699 		rdev->sectors = 0;
700 	}
701 	if (rdev->bb_page) {
702 		put_page(rdev->bb_page);
703 		rdev->bb_page = NULL;
704 	}
705 	badblocks_exit(&rdev->badblocks);
706 }
707 EXPORT_SYMBOL_GPL(md_rdev_clear);
708 
709 static void super_written(struct bio *bio)
710 {
711 	struct md_rdev *rdev = bio->bi_private;
712 	struct mddev *mddev = rdev->mddev;
713 
714 	if (bio->bi_error) {
715 		printk("md: super_written gets error=%d\n", bio->bi_error);
716 		md_error(mddev, rdev);
717 	}
718 
719 	if (atomic_dec_and_test(&mddev->pending_writes))
720 		wake_up(&mddev->sb_wait);
721 	bio_put(bio);
722 }
723 
724 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
725 		   sector_t sector, int size, struct page *page)
726 {
727 	/* write first size bytes of page to sector of rdev
728 	 * Increment mddev->pending_writes before returning
729 	 * and decrement it on completion, waking up sb_wait
730 	 * if zero is reached.
731 	 * If an error occurred, call md_error
732 	 */
733 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
734 
735 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
736 	bio->bi_iter.bi_sector = sector;
737 	bio_add_page(bio, page, size, 0);
738 	bio->bi_private = rdev;
739 	bio->bi_end_io = super_written;
740 
741 	atomic_inc(&mddev->pending_writes);
742 	submit_bio(WRITE_FLUSH_FUA, bio);
743 }
744 
745 void md_super_wait(struct mddev *mddev)
746 {
747 	/* wait for all superblock writes that were scheduled to complete */
748 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
749 }
750 
751 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
752 		 struct page *page, int rw, bool metadata_op)
753 {
754 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
755 	int ret;
756 
757 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
758 		rdev->meta_bdev : rdev->bdev;
759 	if (metadata_op)
760 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
761 	else if (rdev->mddev->reshape_position != MaxSector &&
762 		 (rdev->mddev->reshape_backwards ==
763 		  (sector >= rdev->mddev->reshape_position)))
764 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
765 	else
766 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
767 	bio_add_page(bio, page, size, 0);
768 	submit_bio_wait(rw, bio);
769 
770 	ret = !bio->bi_error;
771 	bio_put(bio);
772 	return ret;
773 }
774 EXPORT_SYMBOL_GPL(sync_page_io);
775 
776 static int read_disk_sb(struct md_rdev *rdev, int size)
777 {
778 	char b[BDEVNAME_SIZE];
779 
780 	if (rdev->sb_loaded)
781 		return 0;
782 
783 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
784 		goto fail;
785 	rdev->sb_loaded = 1;
786 	return 0;
787 
788 fail:
789 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
790 		bdevname(rdev->bdev,b));
791 	return -EINVAL;
792 }
793 
794 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
795 {
796 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
797 		sb1->set_uuid1 == sb2->set_uuid1 &&
798 		sb1->set_uuid2 == sb2->set_uuid2 &&
799 		sb1->set_uuid3 == sb2->set_uuid3;
800 }
801 
802 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
803 {
804 	int ret;
805 	mdp_super_t *tmp1, *tmp2;
806 
807 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
808 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
809 
810 	if (!tmp1 || !tmp2) {
811 		ret = 0;
812 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
813 		goto abort;
814 	}
815 
816 	*tmp1 = *sb1;
817 	*tmp2 = *sb2;
818 
819 	/*
820 	 * nr_disks is not constant
821 	 */
822 	tmp1->nr_disks = 0;
823 	tmp2->nr_disks = 0;
824 
825 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
826 abort:
827 	kfree(tmp1);
828 	kfree(tmp2);
829 	return ret;
830 }
831 
832 static u32 md_csum_fold(u32 csum)
833 {
834 	csum = (csum & 0xffff) + (csum >> 16);
835 	return (csum & 0xffff) + (csum >> 16);
836 }
837 
838 static unsigned int calc_sb_csum(mdp_super_t *sb)
839 {
840 	u64 newcsum = 0;
841 	u32 *sb32 = (u32*)sb;
842 	int i;
843 	unsigned int disk_csum, csum;
844 
845 	disk_csum = sb->sb_csum;
846 	sb->sb_csum = 0;
847 
848 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
849 		newcsum += sb32[i];
850 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
851 
852 #ifdef CONFIG_ALPHA
853 	/* This used to use csum_partial, which was wrong for several
854 	 * reasons including that different results are returned on
855 	 * different architectures.  It isn't critical that we get exactly
856 	 * the same return value as before (we always csum_fold before
857 	 * testing, and that removes any differences).  However as we
858 	 * know that csum_partial always returned a 16bit value on
859 	 * alphas, do a fold to maximise conformity to previous behaviour.
860 	 */
861 	sb->sb_csum = md_csum_fold(disk_csum);
862 #else
863 	sb->sb_csum = disk_csum;
864 #endif
865 	return csum;
866 }
867 
868 /*
869  * Handle superblock details.
870  * We want to be able to handle multiple superblock formats
871  * so we have a common interface to them all, and an array of
872  * different handlers.
873  * We rely on user-space to write the initial superblock, and support
874  * reading and updating of superblocks.
875  * Interface methods are:
876  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
877  *      loads and validates a superblock on dev.
878  *      if refdev != NULL, compare superblocks on both devices
879  *    Return:
880  *      0 - dev has a superblock that is compatible with refdev
881  *      1 - dev has a superblock that is compatible and newer than refdev
882  *          so dev should be used as the refdev in future
883  *     -EINVAL superblock incompatible or invalid
884  *     -othererror e.g. -EIO
885  *
886  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
887  *      Verify that dev is acceptable into mddev.
888  *       The first time, mddev->raid_disks will be 0, and data from
889  *       dev should be merged in.  Subsequent calls check that dev
890  *       is new enough.  Return 0 or -EINVAL
891  *
892  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
893  *     Update the superblock for rdev with data in mddev
894  *     This does not write to disc.
895  *
896  */
897 
898 struct super_type  {
899 	char		    *name;
900 	struct module	    *owner;
901 	int		    (*load_super)(struct md_rdev *rdev,
902 					  struct md_rdev *refdev,
903 					  int minor_version);
904 	int		    (*validate_super)(struct mddev *mddev,
905 					      struct md_rdev *rdev);
906 	void		    (*sync_super)(struct mddev *mddev,
907 					  struct md_rdev *rdev);
908 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
909 						sector_t num_sectors);
910 	int		    (*allow_new_offset)(struct md_rdev *rdev,
911 						unsigned long long new_offset);
912 };
913 
914 /*
915  * Check that the given mddev has no bitmap.
916  *
917  * This function is called from the run method of all personalities that do not
918  * support bitmaps. It prints an error message and returns non-zero if mddev
919  * has a bitmap. Otherwise, it returns 0.
920  *
921  */
922 int md_check_no_bitmap(struct mddev *mddev)
923 {
924 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
925 		return 0;
926 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
927 		mdname(mddev), mddev->pers->name);
928 	return 1;
929 }
930 EXPORT_SYMBOL(md_check_no_bitmap);
931 
932 /*
933  * load_super for 0.90.0
934  */
935 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
936 {
937 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
938 	mdp_super_t *sb;
939 	int ret;
940 
941 	/*
942 	 * Calculate the position of the superblock (512byte sectors),
943 	 * it's at the end of the disk.
944 	 *
945 	 * It also happens to be a multiple of 4Kb.
946 	 */
947 	rdev->sb_start = calc_dev_sboffset(rdev);
948 
949 	ret = read_disk_sb(rdev, MD_SB_BYTES);
950 	if (ret) return ret;
951 
952 	ret = -EINVAL;
953 
954 	bdevname(rdev->bdev, b);
955 	sb = page_address(rdev->sb_page);
956 
957 	if (sb->md_magic != MD_SB_MAGIC) {
958 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
959 		       b);
960 		goto abort;
961 	}
962 
963 	if (sb->major_version != 0 ||
964 	    sb->minor_version < 90 ||
965 	    sb->minor_version > 91) {
966 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
967 			sb->major_version, sb->minor_version,
968 			b);
969 		goto abort;
970 	}
971 
972 	if (sb->raid_disks <= 0)
973 		goto abort;
974 
975 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
976 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
977 			b);
978 		goto abort;
979 	}
980 
981 	rdev->preferred_minor = sb->md_minor;
982 	rdev->data_offset = 0;
983 	rdev->new_data_offset = 0;
984 	rdev->sb_size = MD_SB_BYTES;
985 	rdev->badblocks.shift = -1;
986 
987 	if (sb->level == LEVEL_MULTIPATH)
988 		rdev->desc_nr = -1;
989 	else
990 		rdev->desc_nr = sb->this_disk.number;
991 
992 	if (!refdev) {
993 		ret = 1;
994 	} else {
995 		__u64 ev1, ev2;
996 		mdp_super_t *refsb = page_address(refdev->sb_page);
997 		if (!uuid_equal(refsb, sb)) {
998 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
999 				b, bdevname(refdev->bdev,b2));
1000 			goto abort;
1001 		}
1002 		if (!sb_equal(refsb, sb)) {
1003 			printk(KERN_WARNING "md: %s has same UUID"
1004 			       " but different superblock to %s\n",
1005 			       b, bdevname(refdev->bdev, b2));
1006 			goto abort;
1007 		}
1008 		ev1 = md_event(sb);
1009 		ev2 = md_event(refsb);
1010 		if (ev1 > ev2)
1011 			ret = 1;
1012 		else
1013 			ret = 0;
1014 	}
1015 	rdev->sectors = rdev->sb_start;
1016 	/* Limit to 4TB as metadata cannot record more than that.
1017 	 * (not needed for Linear and RAID0 as metadata doesn't
1018 	 * record this size)
1019 	 */
1020 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1021 	    sb->level >= 1)
1022 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1023 
1024 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1025 		/* "this cannot possibly happen" ... */
1026 		ret = -EINVAL;
1027 
1028  abort:
1029 	return ret;
1030 }
1031 
1032 /*
1033  * validate_super for 0.90.0
1034  */
1035 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1036 {
1037 	mdp_disk_t *desc;
1038 	mdp_super_t *sb = page_address(rdev->sb_page);
1039 	__u64 ev1 = md_event(sb);
1040 
1041 	rdev->raid_disk = -1;
1042 	clear_bit(Faulty, &rdev->flags);
1043 	clear_bit(In_sync, &rdev->flags);
1044 	clear_bit(Bitmap_sync, &rdev->flags);
1045 	clear_bit(WriteMostly, &rdev->flags);
1046 
1047 	if (mddev->raid_disks == 0) {
1048 		mddev->major_version = 0;
1049 		mddev->minor_version = sb->minor_version;
1050 		mddev->patch_version = sb->patch_version;
1051 		mddev->external = 0;
1052 		mddev->chunk_sectors = sb->chunk_size >> 9;
1053 		mddev->ctime = sb->ctime;
1054 		mddev->utime = sb->utime;
1055 		mddev->level = sb->level;
1056 		mddev->clevel[0] = 0;
1057 		mddev->layout = sb->layout;
1058 		mddev->raid_disks = sb->raid_disks;
1059 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1060 		mddev->events = ev1;
1061 		mddev->bitmap_info.offset = 0;
1062 		mddev->bitmap_info.space = 0;
1063 		/* bitmap can use 60 K after the 4K superblocks */
1064 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1065 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1066 		mddev->reshape_backwards = 0;
1067 
1068 		if (mddev->minor_version >= 91) {
1069 			mddev->reshape_position = sb->reshape_position;
1070 			mddev->delta_disks = sb->delta_disks;
1071 			mddev->new_level = sb->new_level;
1072 			mddev->new_layout = sb->new_layout;
1073 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1074 			if (mddev->delta_disks < 0)
1075 				mddev->reshape_backwards = 1;
1076 		} else {
1077 			mddev->reshape_position = MaxSector;
1078 			mddev->delta_disks = 0;
1079 			mddev->new_level = mddev->level;
1080 			mddev->new_layout = mddev->layout;
1081 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1082 		}
1083 
1084 		if (sb->state & (1<<MD_SB_CLEAN))
1085 			mddev->recovery_cp = MaxSector;
1086 		else {
1087 			if (sb->events_hi == sb->cp_events_hi &&
1088 				sb->events_lo == sb->cp_events_lo) {
1089 				mddev->recovery_cp = sb->recovery_cp;
1090 			} else
1091 				mddev->recovery_cp = 0;
1092 		}
1093 
1094 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1095 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1096 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1097 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1098 
1099 		mddev->max_disks = MD_SB_DISKS;
1100 
1101 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1102 		    mddev->bitmap_info.file == NULL) {
1103 			mddev->bitmap_info.offset =
1104 				mddev->bitmap_info.default_offset;
1105 			mddev->bitmap_info.space =
1106 				mddev->bitmap_info.default_space;
1107 		}
1108 
1109 	} else if (mddev->pers == NULL) {
1110 		/* Insist on good event counter while assembling, except
1111 		 * for spares (which don't need an event count) */
1112 		++ev1;
1113 		if (sb->disks[rdev->desc_nr].state & (
1114 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1115 			if (ev1 < mddev->events)
1116 				return -EINVAL;
1117 	} else if (mddev->bitmap) {
1118 		/* if adding to array with a bitmap, then we can accept an
1119 		 * older device ... but not too old.
1120 		 */
1121 		if (ev1 < mddev->bitmap->events_cleared)
1122 			return 0;
1123 		if (ev1 < mddev->events)
1124 			set_bit(Bitmap_sync, &rdev->flags);
1125 	} else {
1126 		if (ev1 < mddev->events)
1127 			/* just a hot-add of a new device, leave raid_disk at -1 */
1128 			return 0;
1129 	}
1130 
1131 	if (mddev->level != LEVEL_MULTIPATH) {
1132 		desc = sb->disks + rdev->desc_nr;
1133 
1134 		if (desc->state & (1<<MD_DISK_FAULTY))
1135 			set_bit(Faulty, &rdev->flags);
1136 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1137 			    desc->raid_disk < mddev->raid_disks */) {
1138 			set_bit(In_sync, &rdev->flags);
1139 			rdev->raid_disk = desc->raid_disk;
1140 			rdev->saved_raid_disk = desc->raid_disk;
1141 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1142 			/* active but not in sync implies recovery up to
1143 			 * reshape position.  We don't know exactly where
1144 			 * that is, so set to zero for now */
1145 			if (mddev->minor_version >= 91) {
1146 				rdev->recovery_offset = 0;
1147 				rdev->raid_disk = desc->raid_disk;
1148 			}
1149 		}
1150 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1151 			set_bit(WriteMostly, &rdev->flags);
1152 	} else /* MULTIPATH are always insync */
1153 		set_bit(In_sync, &rdev->flags);
1154 	return 0;
1155 }
1156 
1157 /*
1158  * sync_super for 0.90.0
1159  */
1160 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1161 {
1162 	mdp_super_t *sb;
1163 	struct md_rdev *rdev2;
1164 	int next_spare = mddev->raid_disks;
1165 
1166 	/* make rdev->sb match mddev data..
1167 	 *
1168 	 * 1/ zero out disks
1169 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1170 	 * 3/ any empty disks < next_spare become removed
1171 	 *
1172 	 * disks[0] gets initialised to REMOVED because
1173 	 * we cannot be sure from other fields if it has
1174 	 * been initialised or not.
1175 	 */
1176 	int i;
1177 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1178 
1179 	rdev->sb_size = MD_SB_BYTES;
1180 
1181 	sb = page_address(rdev->sb_page);
1182 
1183 	memset(sb, 0, sizeof(*sb));
1184 
1185 	sb->md_magic = MD_SB_MAGIC;
1186 	sb->major_version = mddev->major_version;
1187 	sb->patch_version = mddev->patch_version;
1188 	sb->gvalid_words  = 0; /* ignored */
1189 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1190 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1191 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1192 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1193 
1194 	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1195 	sb->level = mddev->level;
1196 	sb->size = mddev->dev_sectors / 2;
1197 	sb->raid_disks = mddev->raid_disks;
1198 	sb->md_minor = mddev->md_minor;
1199 	sb->not_persistent = 0;
1200 	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1201 	sb->state = 0;
1202 	sb->events_hi = (mddev->events>>32);
1203 	sb->events_lo = (u32)mddev->events;
1204 
1205 	if (mddev->reshape_position == MaxSector)
1206 		sb->minor_version = 90;
1207 	else {
1208 		sb->minor_version = 91;
1209 		sb->reshape_position = mddev->reshape_position;
1210 		sb->new_level = mddev->new_level;
1211 		sb->delta_disks = mddev->delta_disks;
1212 		sb->new_layout = mddev->new_layout;
1213 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1214 	}
1215 	mddev->minor_version = sb->minor_version;
1216 	if (mddev->in_sync)
1217 	{
1218 		sb->recovery_cp = mddev->recovery_cp;
1219 		sb->cp_events_hi = (mddev->events>>32);
1220 		sb->cp_events_lo = (u32)mddev->events;
1221 		if (mddev->recovery_cp == MaxSector)
1222 			sb->state = (1<< MD_SB_CLEAN);
1223 	} else
1224 		sb->recovery_cp = 0;
1225 
1226 	sb->layout = mddev->layout;
1227 	sb->chunk_size = mddev->chunk_sectors << 9;
1228 
1229 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1230 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1231 
1232 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1233 	rdev_for_each(rdev2, mddev) {
1234 		mdp_disk_t *d;
1235 		int desc_nr;
1236 		int is_active = test_bit(In_sync, &rdev2->flags);
1237 
1238 		if (rdev2->raid_disk >= 0 &&
1239 		    sb->minor_version >= 91)
1240 			/* we have nowhere to store the recovery_offset,
1241 			 * but if it is not below the reshape_position,
1242 			 * we can piggy-back on that.
1243 			 */
1244 			is_active = 1;
1245 		if (rdev2->raid_disk < 0 ||
1246 		    test_bit(Faulty, &rdev2->flags))
1247 			is_active = 0;
1248 		if (is_active)
1249 			desc_nr = rdev2->raid_disk;
1250 		else
1251 			desc_nr = next_spare++;
1252 		rdev2->desc_nr = desc_nr;
1253 		d = &sb->disks[rdev2->desc_nr];
1254 		nr_disks++;
1255 		d->number = rdev2->desc_nr;
1256 		d->major = MAJOR(rdev2->bdev->bd_dev);
1257 		d->minor = MINOR(rdev2->bdev->bd_dev);
1258 		if (is_active)
1259 			d->raid_disk = rdev2->raid_disk;
1260 		else
1261 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1262 		if (test_bit(Faulty, &rdev2->flags))
1263 			d->state = (1<<MD_DISK_FAULTY);
1264 		else if (is_active) {
1265 			d->state = (1<<MD_DISK_ACTIVE);
1266 			if (test_bit(In_sync, &rdev2->flags))
1267 				d->state |= (1<<MD_DISK_SYNC);
1268 			active++;
1269 			working++;
1270 		} else {
1271 			d->state = 0;
1272 			spare++;
1273 			working++;
1274 		}
1275 		if (test_bit(WriteMostly, &rdev2->flags))
1276 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1277 	}
1278 	/* now set the "removed" and "faulty" bits on any missing devices */
1279 	for (i=0 ; i < mddev->raid_disks ; i++) {
1280 		mdp_disk_t *d = &sb->disks[i];
1281 		if (d->state == 0 && d->number == 0) {
1282 			d->number = i;
1283 			d->raid_disk = i;
1284 			d->state = (1<<MD_DISK_REMOVED);
1285 			d->state |= (1<<MD_DISK_FAULTY);
1286 			failed++;
1287 		}
1288 	}
1289 	sb->nr_disks = nr_disks;
1290 	sb->active_disks = active;
1291 	sb->working_disks = working;
1292 	sb->failed_disks = failed;
1293 	sb->spare_disks = spare;
1294 
1295 	sb->this_disk = sb->disks[rdev->desc_nr];
1296 	sb->sb_csum = calc_sb_csum(sb);
1297 }
1298 
1299 /*
1300  * rdev_size_change for 0.90.0
1301  */
1302 static unsigned long long
1303 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1304 {
1305 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1306 		return 0; /* component must fit device */
1307 	if (rdev->mddev->bitmap_info.offset)
1308 		return 0; /* can't move bitmap */
1309 	rdev->sb_start = calc_dev_sboffset(rdev);
1310 	if (!num_sectors || num_sectors > rdev->sb_start)
1311 		num_sectors = rdev->sb_start;
1312 	/* Limit to 4TB as metadata cannot record more than that.
1313 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1314 	 */
1315 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1316 	    rdev->mddev->level >= 1)
1317 		num_sectors = (sector_t)(2ULL << 32) - 2;
1318 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1319 		       rdev->sb_page);
1320 	md_super_wait(rdev->mddev);
1321 	return num_sectors;
1322 }
1323 
1324 static int
1325 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1326 {
1327 	/* non-zero offset changes not possible with v0.90 */
1328 	return new_offset == 0;
1329 }
1330 
1331 /*
1332  * version 1 superblock
1333  */
1334 
1335 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1336 {
1337 	__le32 disk_csum;
1338 	u32 csum;
1339 	unsigned long long newcsum;
1340 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1341 	__le32 *isuper = (__le32*)sb;
1342 
1343 	disk_csum = sb->sb_csum;
1344 	sb->sb_csum = 0;
1345 	newcsum = 0;
1346 	for (; size >= 4; size -= 4)
1347 		newcsum += le32_to_cpu(*isuper++);
1348 
1349 	if (size == 2)
1350 		newcsum += le16_to_cpu(*(__le16*) isuper);
1351 
1352 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1353 	sb->sb_csum = disk_csum;
1354 	return cpu_to_le32(csum);
1355 }
1356 
1357 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1358 {
1359 	struct mdp_superblock_1 *sb;
1360 	int ret;
1361 	sector_t sb_start;
1362 	sector_t sectors;
1363 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1364 	int bmask;
1365 
1366 	/*
1367 	 * Calculate the position of the superblock in 512byte sectors.
1368 	 * It is always aligned to a 4K boundary and
1369 	 * depeding on minor_version, it can be:
1370 	 * 0: At least 8K, but less than 12K, from end of device
1371 	 * 1: At start of device
1372 	 * 2: 4K from start of device.
1373 	 */
1374 	switch(minor_version) {
1375 	case 0:
1376 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1377 		sb_start -= 8*2;
1378 		sb_start &= ~(sector_t)(4*2-1);
1379 		break;
1380 	case 1:
1381 		sb_start = 0;
1382 		break;
1383 	case 2:
1384 		sb_start = 8;
1385 		break;
1386 	default:
1387 		return -EINVAL;
1388 	}
1389 	rdev->sb_start = sb_start;
1390 
1391 	/* superblock is rarely larger than 1K, but it can be larger,
1392 	 * and it is safe to read 4k, so we do that
1393 	 */
1394 	ret = read_disk_sb(rdev, 4096);
1395 	if (ret) return ret;
1396 
1397 	sb = page_address(rdev->sb_page);
1398 
1399 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1400 	    sb->major_version != cpu_to_le32(1) ||
1401 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1402 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1403 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1404 		return -EINVAL;
1405 
1406 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1407 		printk("md: invalid superblock checksum on %s\n",
1408 			bdevname(rdev->bdev,b));
1409 		return -EINVAL;
1410 	}
1411 	if (le64_to_cpu(sb->data_size) < 10) {
1412 		printk("md: data_size too small on %s\n",
1413 		       bdevname(rdev->bdev,b));
1414 		return -EINVAL;
1415 	}
1416 	if (sb->pad0 ||
1417 	    sb->pad3[0] ||
1418 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1419 		/* Some padding is non-zero, might be a new feature */
1420 		return -EINVAL;
1421 
1422 	rdev->preferred_minor = 0xffff;
1423 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1424 	rdev->new_data_offset = rdev->data_offset;
1425 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1426 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1427 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1428 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1429 
1430 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1431 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1432 	if (rdev->sb_size & bmask)
1433 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1434 
1435 	if (minor_version
1436 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1437 		return -EINVAL;
1438 	if (minor_version
1439 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1440 		return -EINVAL;
1441 
1442 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1443 		rdev->desc_nr = -1;
1444 	else
1445 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1446 
1447 	if (!rdev->bb_page) {
1448 		rdev->bb_page = alloc_page(GFP_KERNEL);
1449 		if (!rdev->bb_page)
1450 			return -ENOMEM;
1451 	}
1452 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1453 	    rdev->badblocks.count == 0) {
1454 		/* need to load the bad block list.
1455 		 * Currently we limit it to one page.
1456 		 */
1457 		s32 offset;
1458 		sector_t bb_sector;
1459 		u64 *bbp;
1460 		int i;
1461 		int sectors = le16_to_cpu(sb->bblog_size);
1462 		if (sectors > (PAGE_SIZE / 512))
1463 			return -EINVAL;
1464 		offset = le32_to_cpu(sb->bblog_offset);
1465 		if (offset == 0)
1466 			return -EINVAL;
1467 		bb_sector = (long long)offset;
1468 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1469 				  rdev->bb_page, READ, true))
1470 			return -EIO;
1471 		bbp = (u64 *)page_address(rdev->bb_page);
1472 		rdev->badblocks.shift = sb->bblog_shift;
1473 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1474 			u64 bb = le64_to_cpu(*bbp);
1475 			int count = bb & (0x3ff);
1476 			u64 sector = bb >> 10;
1477 			sector <<= sb->bblog_shift;
1478 			count <<= sb->bblog_shift;
1479 			if (bb + 1 == 0)
1480 				break;
1481 			if (badblocks_set(&rdev->badblocks, sector, count, 1))
1482 				return -EINVAL;
1483 		}
1484 	} else if (sb->bblog_offset != 0)
1485 		rdev->badblocks.shift = 0;
1486 
1487 	if (!refdev) {
1488 		ret = 1;
1489 	} else {
1490 		__u64 ev1, ev2;
1491 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1492 
1493 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1494 		    sb->level != refsb->level ||
1495 		    sb->layout != refsb->layout ||
1496 		    sb->chunksize != refsb->chunksize) {
1497 			printk(KERN_WARNING "md: %s has strangely different"
1498 				" superblock to %s\n",
1499 				bdevname(rdev->bdev,b),
1500 				bdevname(refdev->bdev,b2));
1501 			return -EINVAL;
1502 		}
1503 		ev1 = le64_to_cpu(sb->events);
1504 		ev2 = le64_to_cpu(refsb->events);
1505 
1506 		if (ev1 > ev2)
1507 			ret = 1;
1508 		else
1509 			ret = 0;
1510 	}
1511 	if (minor_version) {
1512 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1513 		sectors -= rdev->data_offset;
1514 	} else
1515 		sectors = rdev->sb_start;
1516 	if (sectors < le64_to_cpu(sb->data_size))
1517 		return -EINVAL;
1518 	rdev->sectors = le64_to_cpu(sb->data_size);
1519 	return ret;
1520 }
1521 
1522 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1523 {
1524 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1525 	__u64 ev1 = le64_to_cpu(sb->events);
1526 
1527 	rdev->raid_disk = -1;
1528 	clear_bit(Faulty, &rdev->flags);
1529 	clear_bit(In_sync, &rdev->flags);
1530 	clear_bit(Bitmap_sync, &rdev->flags);
1531 	clear_bit(WriteMostly, &rdev->flags);
1532 
1533 	if (mddev->raid_disks == 0) {
1534 		mddev->major_version = 1;
1535 		mddev->patch_version = 0;
1536 		mddev->external = 0;
1537 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1538 		mddev->ctime = le64_to_cpu(sb->ctime);
1539 		mddev->utime = le64_to_cpu(sb->utime);
1540 		mddev->level = le32_to_cpu(sb->level);
1541 		mddev->clevel[0] = 0;
1542 		mddev->layout = le32_to_cpu(sb->layout);
1543 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1544 		mddev->dev_sectors = le64_to_cpu(sb->size);
1545 		mddev->events = ev1;
1546 		mddev->bitmap_info.offset = 0;
1547 		mddev->bitmap_info.space = 0;
1548 		/* Default location for bitmap is 1K after superblock
1549 		 * using 3K - total of 4K
1550 		 */
1551 		mddev->bitmap_info.default_offset = 1024 >> 9;
1552 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1553 		mddev->reshape_backwards = 0;
1554 
1555 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1556 		memcpy(mddev->uuid, sb->set_uuid, 16);
1557 
1558 		mddev->max_disks =  (4096-256)/2;
1559 
1560 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1561 		    mddev->bitmap_info.file == NULL) {
1562 			mddev->bitmap_info.offset =
1563 				(__s32)le32_to_cpu(sb->bitmap_offset);
1564 			/* Metadata doesn't record how much space is available.
1565 			 * For 1.0, we assume we can use up to the superblock
1566 			 * if before, else to 4K beyond superblock.
1567 			 * For others, assume no change is possible.
1568 			 */
1569 			if (mddev->minor_version > 0)
1570 				mddev->bitmap_info.space = 0;
1571 			else if (mddev->bitmap_info.offset > 0)
1572 				mddev->bitmap_info.space =
1573 					8 - mddev->bitmap_info.offset;
1574 			else
1575 				mddev->bitmap_info.space =
1576 					-mddev->bitmap_info.offset;
1577 		}
1578 
1579 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1580 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1581 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1582 			mddev->new_level = le32_to_cpu(sb->new_level);
1583 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1584 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1585 			if (mddev->delta_disks < 0 ||
1586 			    (mddev->delta_disks == 0 &&
1587 			     (le32_to_cpu(sb->feature_map)
1588 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1589 				mddev->reshape_backwards = 1;
1590 		} else {
1591 			mddev->reshape_position = MaxSector;
1592 			mddev->delta_disks = 0;
1593 			mddev->new_level = mddev->level;
1594 			mddev->new_layout = mddev->layout;
1595 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1596 		}
1597 
1598 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
1599 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1600 			if (mddev->recovery_cp == MaxSector)
1601 				set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1602 		}
1603 	} else if (mddev->pers == NULL) {
1604 		/* Insist of good event counter while assembling, except for
1605 		 * spares (which don't need an event count) */
1606 		++ev1;
1607 		if (rdev->desc_nr >= 0 &&
1608 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1609 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1610 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1611 			if (ev1 < mddev->events)
1612 				return -EINVAL;
1613 	} else if (mddev->bitmap) {
1614 		/* If adding to array with a bitmap, then we can accept an
1615 		 * older device, but not too old.
1616 		 */
1617 		if (ev1 < mddev->bitmap->events_cleared)
1618 			return 0;
1619 		if (ev1 < mddev->events)
1620 			set_bit(Bitmap_sync, &rdev->flags);
1621 	} else {
1622 		if (ev1 < mddev->events)
1623 			/* just a hot-add of a new device, leave raid_disk at -1 */
1624 			return 0;
1625 	}
1626 	if (mddev->level != LEVEL_MULTIPATH) {
1627 		int role;
1628 		if (rdev->desc_nr < 0 ||
1629 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1630 			role = MD_DISK_ROLE_SPARE;
1631 			rdev->desc_nr = -1;
1632 		} else
1633 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1634 		switch(role) {
1635 		case MD_DISK_ROLE_SPARE: /* spare */
1636 			break;
1637 		case MD_DISK_ROLE_FAULTY: /* faulty */
1638 			set_bit(Faulty, &rdev->flags);
1639 			break;
1640 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1641 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1642 				/* journal device without journal feature */
1643 				printk(KERN_WARNING
1644 				  "md: journal device provided without journal feature, ignoring the device\n");
1645 				return -EINVAL;
1646 			}
1647 			set_bit(Journal, &rdev->flags);
1648 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1649 			rdev->raid_disk = 0;
1650 			break;
1651 		default:
1652 			rdev->saved_raid_disk = role;
1653 			if ((le32_to_cpu(sb->feature_map) &
1654 			     MD_FEATURE_RECOVERY_OFFSET)) {
1655 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1656 				if (!(le32_to_cpu(sb->feature_map) &
1657 				      MD_FEATURE_RECOVERY_BITMAP))
1658 					rdev->saved_raid_disk = -1;
1659 			} else
1660 				set_bit(In_sync, &rdev->flags);
1661 			rdev->raid_disk = role;
1662 			break;
1663 		}
1664 		if (sb->devflags & WriteMostly1)
1665 			set_bit(WriteMostly, &rdev->flags);
1666 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1667 			set_bit(Replacement, &rdev->flags);
1668 	} else /* MULTIPATH are always insync */
1669 		set_bit(In_sync, &rdev->flags);
1670 
1671 	return 0;
1672 }
1673 
1674 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1675 {
1676 	struct mdp_superblock_1 *sb;
1677 	struct md_rdev *rdev2;
1678 	int max_dev, i;
1679 	/* make rdev->sb match mddev and rdev data. */
1680 
1681 	sb = page_address(rdev->sb_page);
1682 
1683 	sb->feature_map = 0;
1684 	sb->pad0 = 0;
1685 	sb->recovery_offset = cpu_to_le64(0);
1686 	memset(sb->pad3, 0, sizeof(sb->pad3));
1687 
1688 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1689 	sb->events = cpu_to_le64(mddev->events);
1690 	if (mddev->in_sync)
1691 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1692 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1693 		sb->resync_offset = cpu_to_le64(MaxSector);
1694 	else
1695 		sb->resync_offset = cpu_to_le64(0);
1696 
1697 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1698 
1699 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1700 	sb->size = cpu_to_le64(mddev->dev_sectors);
1701 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1702 	sb->level = cpu_to_le32(mddev->level);
1703 	sb->layout = cpu_to_le32(mddev->layout);
1704 
1705 	if (test_bit(WriteMostly, &rdev->flags))
1706 		sb->devflags |= WriteMostly1;
1707 	else
1708 		sb->devflags &= ~WriteMostly1;
1709 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1710 	sb->data_size = cpu_to_le64(rdev->sectors);
1711 
1712 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1713 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1714 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1715 	}
1716 
1717 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1718 	    !test_bit(In_sync, &rdev->flags)) {
1719 		sb->feature_map |=
1720 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1721 		sb->recovery_offset =
1722 			cpu_to_le64(rdev->recovery_offset);
1723 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1724 			sb->feature_map |=
1725 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1726 	}
1727 	/* Note: recovery_offset and journal_tail share space  */
1728 	if (test_bit(Journal, &rdev->flags))
1729 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1730 	if (test_bit(Replacement, &rdev->flags))
1731 		sb->feature_map |=
1732 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1733 
1734 	if (mddev->reshape_position != MaxSector) {
1735 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1736 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1737 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1738 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1739 		sb->new_level = cpu_to_le32(mddev->new_level);
1740 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1741 		if (mddev->delta_disks == 0 &&
1742 		    mddev->reshape_backwards)
1743 			sb->feature_map
1744 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1745 		if (rdev->new_data_offset != rdev->data_offset) {
1746 			sb->feature_map
1747 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1748 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1749 							     - rdev->data_offset));
1750 		}
1751 	}
1752 
1753 	if (mddev_is_clustered(mddev))
1754 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1755 
1756 	if (rdev->badblocks.count == 0)
1757 		/* Nothing to do for bad blocks*/ ;
1758 	else if (sb->bblog_offset == 0)
1759 		/* Cannot record bad blocks on this device */
1760 		md_error(mddev, rdev);
1761 	else {
1762 		struct badblocks *bb = &rdev->badblocks;
1763 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1764 		u64 *p = bb->page;
1765 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1766 		if (bb->changed) {
1767 			unsigned seq;
1768 
1769 retry:
1770 			seq = read_seqbegin(&bb->lock);
1771 
1772 			memset(bbp, 0xff, PAGE_SIZE);
1773 
1774 			for (i = 0 ; i < bb->count ; i++) {
1775 				u64 internal_bb = p[i];
1776 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1777 						| BB_LEN(internal_bb));
1778 				bbp[i] = cpu_to_le64(store_bb);
1779 			}
1780 			bb->changed = 0;
1781 			if (read_seqretry(&bb->lock, seq))
1782 				goto retry;
1783 
1784 			bb->sector = (rdev->sb_start +
1785 				      (int)le32_to_cpu(sb->bblog_offset));
1786 			bb->size = le16_to_cpu(sb->bblog_size);
1787 		}
1788 	}
1789 
1790 	max_dev = 0;
1791 	rdev_for_each(rdev2, mddev)
1792 		if (rdev2->desc_nr+1 > max_dev)
1793 			max_dev = rdev2->desc_nr+1;
1794 
1795 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1796 		int bmask;
1797 		sb->max_dev = cpu_to_le32(max_dev);
1798 		rdev->sb_size = max_dev * 2 + 256;
1799 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1800 		if (rdev->sb_size & bmask)
1801 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1802 	} else
1803 		max_dev = le32_to_cpu(sb->max_dev);
1804 
1805 	for (i=0; i<max_dev;i++)
1806 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1807 
1808 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1809 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1810 
1811 	rdev_for_each(rdev2, mddev) {
1812 		i = rdev2->desc_nr;
1813 		if (test_bit(Faulty, &rdev2->flags))
1814 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1815 		else if (test_bit(In_sync, &rdev2->flags))
1816 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1817 		else if (test_bit(Journal, &rdev2->flags))
1818 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1819 		else if (rdev2->raid_disk >= 0)
1820 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1821 		else
1822 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1823 	}
1824 
1825 	sb->sb_csum = calc_sb_1_csum(sb);
1826 }
1827 
1828 static unsigned long long
1829 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1830 {
1831 	struct mdp_superblock_1 *sb;
1832 	sector_t max_sectors;
1833 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1834 		return 0; /* component must fit device */
1835 	if (rdev->data_offset != rdev->new_data_offset)
1836 		return 0; /* too confusing */
1837 	if (rdev->sb_start < rdev->data_offset) {
1838 		/* minor versions 1 and 2; superblock before data */
1839 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1840 		max_sectors -= rdev->data_offset;
1841 		if (!num_sectors || num_sectors > max_sectors)
1842 			num_sectors = max_sectors;
1843 	} else if (rdev->mddev->bitmap_info.offset) {
1844 		/* minor version 0 with bitmap we can't move */
1845 		return 0;
1846 	} else {
1847 		/* minor version 0; superblock after data */
1848 		sector_t sb_start;
1849 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1850 		sb_start &= ~(sector_t)(4*2 - 1);
1851 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1852 		if (!num_sectors || num_sectors > max_sectors)
1853 			num_sectors = max_sectors;
1854 		rdev->sb_start = sb_start;
1855 	}
1856 	sb = page_address(rdev->sb_page);
1857 	sb->data_size = cpu_to_le64(num_sectors);
1858 	sb->super_offset = rdev->sb_start;
1859 	sb->sb_csum = calc_sb_1_csum(sb);
1860 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1861 		       rdev->sb_page);
1862 	md_super_wait(rdev->mddev);
1863 	return num_sectors;
1864 
1865 }
1866 
1867 static int
1868 super_1_allow_new_offset(struct md_rdev *rdev,
1869 			 unsigned long long new_offset)
1870 {
1871 	/* All necessary checks on new >= old have been done */
1872 	struct bitmap *bitmap;
1873 	if (new_offset >= rdev->data_offset)
1874 		return 1;
1875 
1876 	/* with 1.0 metadata, there is no metadata to tread on
1877 	 * so we can always move back */
1878 	if (rdev->mddev->minor_version == 0)
1879 		return 1;
1880 
1881 	/* otherwise we must be sure not to step on
1882 	 * any metadata, so stay:
1883 	 * 36K beyond start of superblock
1884 	 * beyond end of badblocks
1885 	 * beyond write-intent bitmap
1886 	 */
1887 	if (rdev->sb_start + (32+4)*2 > new_offset)
1888 		return 0;
1889 	bitmap = rdev->mddev->bitmap;
1890 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1891 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1892 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1893 		return 0;
1894 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1895 		return 0;
1896 
1897 	return 1;
1898 }
1899 
1900 static struct super_type super_types[] = {
1901 	[0] = {
1902 		.name	= "0.90.0",
1903 		.owner	= THIS_MODULE,
1904 		.load_super	    = super_90_load,
1905 		.validate_super	    = super_90_validate,
1906 		.sync_super	    = super_90_sync,
1907 		.rdev_size_change   = super_90_rdev_size_change,
1908 		.allow_new_offset   = super_90_allow_new_offset,
1909 	},
1910 	[1] = {
1911 		.name	= "md-1",
1912 		.owner	= THIS_MODULE,
1913 		.load_super	    = super_1_load,
1914 		.validate_super	    = super_1_validate,
1915 		.sync_super	    = super_1_sync,
1916 		.rdev_size_change   = super_1_rdev_size_change,
1917 		.allow_new_offset   = super_1_allow_new_offset,
1918 	},
1919 };
1920 
1921 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1922 {
1923 	if (mddev->sync_super) {
1924 		mddev->sync_super(mddev, rdev);
1925 		return;
1926 	}
1927 
1928 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1929 
1930 	super_types[mddev->major_version].sync_super(mddev, rdev);
1931 }
1932 
1933 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1934 {
1935 	struct md_rdev *rdev, *rdev2;
1936 
1937 	rcu_read_lock();
1938 	rdev_for_each_rcu(rdev, mddev1) {
1939 		if (test_bit(Faulty, &rdev->flags) ||
1940 		    test_bit(Journal, &rdev->flags) ||
1941 		    rdev->raid_disk == -1)
1942 			continue;
1943 		rdev_for_each_rcu(rdev2, mddev2) {
1944 			if (test_bit(Faulty, &rdev2->flags) ||
1945 			    test_bit(Journal, &rdev2->flags) ||
1946 			    rdev2->raid_disk == -1)
1947 				continue;
1948 			if (rdev->bdev->bd_contains ==
1949 			    rdev2->bdev->bd_contains) {
1950 				rcu_read_unlock();
1951 				return 1;
1952 			}
1953 		}
1954 	}
1955 	rcu_read_unlock();
1956 	return 0;
1957 }
1958 
1959 static LIST_HEAD(pending_raid_disks);
1960 
1961 /*
1962  * Try to register data integrity profile for an mddev
1963  *
1964  * This is called when an array is started and after a disk has been kicked
1965  * from the array. It only succeeds if all working and active component devices
1966  * are integrity capable with matching profiles.
1967  */
1968 int md_integrity_register(struct mddev *mddev)
1969 {
1970 	struct md_rdev *rdev, *reference = NULL;
1971 
1972 	if (list_empty(&mddev->disks))
1973 		return 0; /* nothing to do */
1974 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1975 		return 0; /* shouldn't register, or already is */
1976 	rdev_for_each(rdev, mddev) {
1977 		/* skip spares and non-functional disks */
1978 		if (test_bit(Faulty, &rdev->flags))
1979 			continue;
1980 		if (rdev->raid_disk < 0)
1981 			continue;
1982 		if (!reference) {
1983 			/* Use the first rdev as the reference */
1984 			reference = rdev;
1985 			continue;
1986 		}
1987 		/* does this rdev's profile match the reference profile? */
1988 		if (blk_integrity_compare(reference->bdev->bd_disk,
1989 				rdev->bdev->bd_disk) < 0)
1990 			return -EINVAL;
1991 	}
1992 	if (!reference || !bdev_get_integrity(reference->bdev))
1993 		return 0;
1994 	/*
1995 	 * All component devices are integrity capable and have matching
1996 	 * profiles, register the common profile for the md device.
1997 	 */
1998 	blk_integrity_register(mddev->gendisk,
1999 			       bdev_get_integrity(reference->bdev));
2000 
2001 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2002 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2003 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2004 		       mdname(mddev));
2005 		return -EINVAL;
2006 	}
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL(md_integrity_register);
2010 
2011 /*
2012  * Attempt to add an rdev, but only if it is consistent with the current
2013  * integrity profile
2014  */
2015 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2016 {
2017 	struct blk_integrity *bi_rdev;
2018 	struct blk_integrity *bi_mddev;
2019 	char name[BDEVNAME_SIZE];
2020 
2021 	if (!mddev->gendisk)
2022 		return 0;
2023 
2024 	bi_rdev = bdev_get_integrity(rdev->bdev);
2025 	bi_mddev = blk_get_integrity(mddev->gendisk);
2026 
2027 	if (!bi_mddev) /* nothing to do */
2028 		return 0;
2029 
2030 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2031 		printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2032 				mdname(mddev), bdevname(rdev->bdev, name));
2033 		return -ENXIO;
2034 	}
2035 
2036 	return 0;
2037 }
2038 EXPORT_SYMBOL(md_integrity_add_rdev);
2039 
2040 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2041 {
2042 	char b[BDEVNAME_SIZE];
2043 	struct kobject *ko;
2044 	int err;
2045 
2046 	/* prevent duplicates */
2047 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2048 		return -EEXIST;
2049 
2050 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2051 	if (!test_bit(Journal, &rdev->flags) &&
2052 	    rdev->sectors &&
2053 	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2054 		if (mddev->pers) {
2055 			/* Cannot change size, so fail
2056 			 * If mddev->level <= 0, then we don't care
2057 			 * about aligning sizes (e.g. linear)
2058 			 */
2059 			if (mddev->level > 0)
2060 				return -ENOSPC;
2061 		} else
2062 			mddev->dev_sectors = rdev->sectors;
2063 	}
2064 
2065 	/* Verify rdev->desc_nr is unique.
2066 	 * If it is -1, assign a free number, else
2067 	 * check number is not in use
2068 	 */
2069 	rcu_read_lock();
2070 	if (rdev->desc_nr < 0) {
2071 		int choice = 0;
2072 		if (mddev->pers)
2073 			choice = mddev->raid_disks;
2074 		while (md_find_rdev_nr_rcu(mddev, choice))
2075 			choice++;
2076 		rdev->desc_nr = choice;
2077 	} else {
2078 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2079 			rcu_read_unlock();
2080 			return -EBUSY;
2081 		}
2082 	}
2083 	rcu_read_unlock();
2084 	if (!test_bit(Journal, &rdev->flags) &&
2085 	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2086 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2087 		       mdname(mddev), mddev->max_disks);
2088 		return -EBUSY;
2089 	}
2090 	bdevname(rdev->bdev,b);
2091 	strreplace(b, '/', '!');
2092 
2093 	rdev->mddev = mddev;
2094 	printk(KERN_INFO "md: bind<%s>\n", b);
2095 
2096 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2097 		goto fail;
2098 
2099 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2100 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2101 		/* failure here is OK */;
2102 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2103 
2104 	list_add_rcu(&rdev->same_set, &mddev->disks);
2105 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2106 
2107 	/* May as well allow recovery to be retried once */
2108 	mddev->recovery_disabled++;
2109 
2110 	return 0;
2111 
2112  fail:
2113 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2114 	       b, mdname(mddev));
2115 	return err;
2116 }
2117 
2118 static void md_delayed_delete(struct work_struct *ws)
2119 {
2120 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2121 	kobject_del(&rdev->kobj);
2122 	kobject_put(&rdev->kobj);
2123 }
2124 
2125 static void unbind_rdev_from_array(struct md_rdev *rdev)
2126 {
2127 	char b[BDEVNAME_SIZE];
2128 
2129 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2130 	list_del_rcu(&rdev->same_set);
2131 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2132 	rdev->mddev = NULL;
2133 	sysfs_remove_link(&rdev->kobj, "block");
2134 	sysfs_put(rdev->sysfs_state);
2135 	rdev->sysfs_state = NULL;
2136 	rdev->badblocks.count = 0;
2137 	/* We need to delay this, otherwise we can deadlock when
2138 	 * writing to 'remove' to "dev/state".  We also need
2139 	 * to delay it due to rcu usage.
2140 	 */
2141 	synchronize_rcu();
2142 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2143 	kobject_get(&rdev->kobj);
2144 	queue_work(md_misc_wq, &rdev->del_work);
2145 }
2146 
2147 /*
2148  * prevent the device from being mounted, repartitioned or
2149  * otherwise reused by a RAID array (or any other kernel
2150  * subsystem), by bd_claiming the device.
2151  */
2152 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2153 {
2154 	int err = 0;
2155 	struct block_device *bdev;
2156 	char b[BDEVNAME_SIZE];
2157 
2158 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2159 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2160 	if (IS_ERR(bdev)) {
2161 		printk(KERN_ERR "md: could not open %s.\n",
2162 			__bdevname(dev, b));
2163 		return PTR_ERR(bdev);
2164 	}
2165 	rdev->bdev = bdev;
2166 	return err;
2167 }
2168 
2169 static void unlock_rdev(struct md_rdev *rdev)
2170 {
2171 	struct block_device *bdev = rdev->bdev;
2172 	rdev->bdev = NULL;
2173 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2174 }
2175 
2176 void md_autodetect_dev(dev_t dev);
2177 
2178 static void export_rdev(struct md_rdev *rdev)
2179 {
2180 	char b[BDEVNAME_SIZE];
2181 
2182 	printk(KERN_INFO "md: export_rdev(%s)\n",
2183 		bdevname(rdev->bdev,b));
2184 	md_rdev_clear(rdev);
2185 #ifndef MODULE
2186 	if (test_bit(AutoDetected, &rdev->flags))
2187 		md_autodetect_dev(rdev->bdev->bd_dev);
2188 #endif
2189 	unlock_rdev(rdev);
2190 	kobject_put(&rdev->kobj);
2191 }
2192 
2193 void md_kick_rdev_from_array(struct md_rdev *rdev)
2194 {
2195 	unbind_rdev_from_array(rdev);
2196 	export_rdev(rdev);
2197 }
2198 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2199 
2200 static void export_array(struct mddev *mddev)
2201 {
2202 	struct md_rdev *rdev;
2203 
2204 	while (!list_empty(&mddev->disks)) {
2205 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2206 					same_set);
2207 		md_kick_rdev_from_array(rdev);
2208 	}
2209 	mddev->raid_disks = 0;
2210 	mddev->major_version = 0;
2211 }
2212 
2213 static void sync_sbs(struct mddev *mddev, int nospares)
2214 {
2215 	/* Update each superblock (in-memory image), but
2216 	 * if we are allowed to, skip spares which already
2217 	 * have the right event counter, or have one earlier
2218 	 * (which would mean they aren't being marked as dirty
2219 	 * with the rest of the array)
2220 	 */
2221 	struct md_rdev *rdev;
2222 	rdev_for_each(rdev, mddev) {
2223 		if (rdev->sb_events == mddev->events ||
2224 		    (nospares &&
2225 		     rdev->raid_disk < 0 &&
2226 		     rdev->sb_events+1 == mddev->events)) {
2227 			/* Don't update this superblock */
2228 			rdev->sb_loaded = 2;
2229 		} else {
2230 			sync_super(mddev, rdev);
2231 			rdev->sb_loaded = 1;
2232 		}
2233 	}
2234 }
2235 
2236 static bool does_sb_need_changing(struct mddev *mddev)
2237 {
2238 	struct md_rdev *rdev;
2239 	struct mdp_superblock_1 *sb;
2240 	int role;
2241 
2242 	/* Find a good rdev */
2243 	rdev_for_each(rdev, mddev)
2244 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2245 			break;
2246 
2247 	/* No good device found. */
2248 	if (!rdev)
2249 		return false;
2250 
2251 	sb = page_address(rdev->sb_page);
2252 	/* Check if a device has become faulty or a spare become active */
2253 	rdev_for_each(rdev, mddev) {
2254 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2255 		/* Device activated? */
2256 		if (role == 0xffff && rdev->raid_disk >=0 &&
2257 		    !test_bit(Faulty, &rdev->flags))
2258 			return true;
2259 		/* Device turned faulty? */
2260 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2261 			return true;
2262 	}
2263 
2264 	/* Check if any mddev parameters have changed */
2265 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2266 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2267 	    (mddev->layout != le64_to_cpu(sb->layout)) ||
2268 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2269 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2270 		return true;
2271 
2272 	return false;
2273 }
2274 
2275 void md_update_sb(struct mddev *mddev, int force_change)
2276 {
2277 	struct md_rdev *rdev;
2278 	int sync_req;
2279 	int nospares = 0;
2280 	int any_badblocks_changed = 0;
2281 	int ret = -1;
2282 
2283 	if (mddev->ro) {
2284 		if (force_change)
2285 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2286 		return;
2287 	}
2288 
2289 	if (mddev_is_clustered(mddev)) {
2290 		if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2291 			force_change = 1;
2292 		ret = md_cluster_ops->metadata_update_start(mddev);
2293 		/* Has someone else has updated the sb */
2294 		if (!does_sb_need_changing(mddev)) {
2295 			if (ret == 0)
2296 				md_cluster_ops->metadata_update_cancel(mddev);
2297 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2298 			return;
2299 		}
2300 	}
2301 repeat:
2302 	/* First make sure individual recovery_offsets are correct */
2303 	rdev_for_each(rdev, mddev) {
2304 		if (rdev->raid_disk >= 0 &&
2305 		    mddev->delta_disks >= 0 &&
2306 		    !test_bit(Journal, &rdev->flags) &&
2307 		    !test_bit(In_sync, &rdev->flags) &&
2308 		    mddev->curr_resync_completed > rdev->recovery_offset)
2309 				rdev->recovery_offset = mddev->curr_resync_completed;
2310 
2311 	}
2312 	if (!mddev->persistent) {
2313 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2314 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2315 		if (!mddev->external) {
2316 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2317 			rdev_for_each(rdev, mddev) {
2318 				if (rdev->badblocks.changed) {
2319 					rdev->badblocks.changed = 0;
2320 					ack_all_badblocks(&rdev->badblocks);
2321 					md_error(mddev, rdev);
2322 				}
2323 				clear_bit(Blocked, &rdev->flags);
2324 				clear_bit(BlockedBadBlocks, &rdev->flags);
2325 				wake_up(&rdev->blocked_wait);
2326 			}
2327 		}
2328 		wake_up(&mddev->sb_wait);
2329 		return;
2330 	}
2331 
2332 	spin_lock(&mddev->lock);
2333 
2334 	mddev->utime = ktime_get_real_seconds();
2335 
2336 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2337 		force_change = 1;
2338 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2339 		/* just a clean<-> dirty transition, possibly leave spares alone,
2340 		 * though if events isn't the right even/odd, we will have to do
2341 		 * spares after all
2342 		 */
2343 		nospares = 1;
2344 	if (force_change)
2345 		nospares = 0;
2346 	if (mddev->degraded)
2347 		/* If the array is degraded, then skipping spares is both
2348 		 * dangerous and fairly pointless.
2349 		 * Dangerous because a device that was removed from the array
2350 		 * might have a event_count that still looks up-to-date,
2351 		 * so it can be re-added without a resync.
2352 		 * Pointless because if there are any spares to skip,
2353 		 * then a recovery will happen and soon that array won't
2354 		 * be degraded any more and the spare can go back to sleep then.
2355 		 */
2356 		nospares = 0;
2357 
2358 	sync_req = mddev->in_sync;
2359 
2360 	/* If this is just a dirty<->clean transition, and the array is clean
2361 	 * and 'events' is odd, we can roll back to the previous clean state */
2362 	if (nospares
2363 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2364 	    && mddev->can_decrease_events
2365 	    && mddev->events != 1) {
2366 		mddev->events--;
2367 		mddev->can_decrease_events = 0;
2368 	} else {
2369 		/* otherwise we have to go forward and ... */
2370 		mddev->events ++;
2371 		mddev->can_decrease_events = nospares;
2372 	}
2373 
2374 	/*
2375 	 * This 64-bit counter should never wrap.
2376 	 * Either we are in around ~1 trillion A.C., assuming
2377 	 * 1 reboot per second, or we have a bug...
2378 	 */
2379 	WARN_ON(mddev->events == 0);
2380 
2381 	rdev_for_each(rdev, mddev) {
2382 		if (rdev->badblocks.changed)
2383 			any_badblocks_changed++;
2384 		if (test_bit(Faulty, &rdev->flags))
2385 			set_bit(FaultRecorded, &rdev->flags);
2386 	}
2387 
2388 	sync_sbs(mddev, nospares);
2389 	spin_unlock(&mddev->lock);
2390 
2391 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2392 		 mdname(mddev), mddev->in_sync);
2393 
2394 	bitmap_update_sb(mddev->bitmap);
2395 	rdev_for_each(rdev, mddev) {
2396 		char b[BDEVNAME_SIZE];
2397 
2398 		if (rdev->sb_loaded != 1)
2399 			continue; /* no noise on spare devices */
2400 
2401 		if (!test_bit(Faulty, &rdev->flags)) {
2402 			md_super_write(mddev,rdev,
2403 				       rdev->sb_start, rdev->sb_size,
2404 				       rdev->sb_page);
2405 			pr_debug("md: (write) %s's sb offset: %llu\n",
2406 				 bdevname(rdev->bdev, b),
2407 				 (unsigned long long)rdev->sb_start);
2408 			rdev->sb_events = mddev->events;
2409 			if (rdev->badblocks.size) {
2410 				md_super_write(mddev, rdev,
2411 					       rdev->badblocks.sector,
2412 					       rdev->badblocks.size << 9,
2413 					       rdev->bb_page);
2414 				rdev->badblocks.size = 0;
2415 			}
2416 
2417 		} else
2418 			pr_debug("md: %s (skipping faulty)\n",
2419 				 bdevname(rdev->bdev, b));
2420 
2421 		if (mddev->level == LEVEL_MULTIPATH)
2422 			/* only need to write one superblock... */
2423 			break;
2424 	}
2425 	md_super_wait(mddev);
2426 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2427 
2428 	spin_lock(&mddev->lock);
2429 	if (mddev->in_sync != sync_req ||
2430 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2431 		/* have to write it out again */
2432 		spin_unlock(&mddev->lock);
2433 		goto repeat;
2434 	}
2435 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2436 	spin_unlock(&mddev->lock);
2437 	wake_up(&mddev->sb_wait);
2438 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2439 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2440 
2441 	rdev_for_each(rdev, mddev) {
2442 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2443 			clear_bit(Blocked, &rdev->flags);
2444 
2445 		if (any_badblocks_changed)
2446 			ack_all_badblocks(&rdev->badblocks);
2447 		clear_bit(BlockedBadBlocks, &rdev->flags);
2448 		wake_up(&rdev->blocked_wait);
2449 	}
2450 
2451 	if (mddev_is_clustered(mddev) && ret == 0)
2452 		md_cluster_ops->metadata_update_finish(mddev);
2453 }
2454 EXPORT_SYMBOL(md_update_sb);
2455 
2456 static int add_bound_rdev(struct md_rdev *rdev)
2457 {
2458 	struct mddev *mddev = rdev->mddev;
2459 	int err = 0;
2460 	bool add_journal = test_bit(Journal, &rdev->flags);
2461 
2462 	if (!mddev->pers->hot_remove_disk || add_journal) {
2463 		/* If there is hot_add_disk but no hot_remove_disk
2464 		 * then added disks for geometry changes,
2465 		 * and should be added immediately.
2466 		 */
2467 		super_types[mddev->major_version].
2468 			validate_super(mddev, rdev);
2469 		if (add_journal)
2470 			mddev_suspend(mddev);
2471 		err = mddev->pers->hot_add_disk(mddev, rdev);
2472 		if (add_journal)
2473 			mddev_resume(mddev);
2474 		if (err) {
2475 			unbind_rdev_from_array(rdev);
2476 			export_rdev(rdev);
2477 			return err;
2478 		}
2479 	}
2480 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2481 
2482 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2483 	if (mddev->degraded)
2484 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2485 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2486 	md_new_event(mddev);
2487 	md_wakeup_thread(mddev->thread);
2488 	return 0;
2489 }
2490 
2491 /* words written to sysfs files may, or may not, be \n terminated.
2492  * We want to accept with case. For this we use cmd_match.
2493  */
2494 static int cmd_match(const char *cmd, const char *str)
2495 {
2496 	/* See if cmd, written into a sysfs file, matches
2497 	 * str.  They must either be the same, or cmd can
2498 	 * have a trailing newline
2499 	 */
2500 	while (*cmd && *str && *cmd == *str) {
2501 		cmd++;
2502 		str++;
2503 	}
2504 	if (*cmd == '\n')
2505 		cmd++;
2506 	if (*str || *cmd)
2507 		return 0;
2508 	return 1;
2509 }
2510 
2511 struct rdev_sysfs_entry {
2512 	struct attribute attr;
2513 	ssize_t (*show)(struct md_rdev *, char *);
2514 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2515 };
2516 
2517 static ssize_t
2518 state_show(struct md_rdev *rdev, char *page)
2519 {
2520 	char *sep = "";
2521 	size_t len = 0;
2522 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2523 
2524 	if (test_bit(Faulty, &flags) ||
2525 	    rdev->badblocks.unacked_exist) {
2526 		len+= sprintf(page+len, "%sfaulty",sep);
2527 		sep = ",";
2528 	}
2529 	if (test_bit(In_sync, &flags)) {
2530 		len += sprintf(page+len, "%sin_sync",sep);
2531 		sep = ",";
2532 	}
2533 	if (test_bit(Journal, &flags)) {
2534 		len += sprintf(page+len, "%sjournal",sep);
2535 		sep = ",";
2536 	}
2537 	if (test_bit(WriteMostly, &flags)) {
2538 		len += sprintf(page+len, "%swrite_mostly",sep);
2539 		sep = ",";
2540 	}
2541 	if (test_bit(Blocked, &flags) ||
2542 	    (rdev->badblocks.unacked_exist
2543 	     && !test_bit(Faulty, &flags))) {
2544 		len += sprintf(page+len, "%sblocked", sep);
2545 		sep = ",";
2546 	}
2547 	if (!test_bit(Faulty, &flags) &&
2548 	    !test_bit(Journal, &flags) &&
2549 	    !test_bit(In_sync, &flags)) {
2550 		len += sprintf(page+len, "%sspare", sep);
2551 		sep = ",";
2552 	}
2553 	if (test_bit(WriteErrorSeen, &flags)) {
2554 		len += sprintf(page+len, "%swrite_error", sep);
2555 		sep = ",";
2556 	}
2557 	if (test_bit(WantReplacement, &flags)) {
2558 		len += sprintf(page+len, "%swant_replacement", sep);
2559 		sep = ",";
2560 	}
2561 	if (test_bit(Replacement, &flags)) {
2562 		len += sprintf(page+len, "%sreplacement", sep);
2563 		sep = ",";
2564 	}
2565 
2566 	return len+sprintf(page+len, "\n");
2567 }
2568 
2569 static ssize_t
2570 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2571 {
2572 	/* can write
2573 	 *  faulty  - simulates an error
2574 	 *  remove  - disconnects the device
2575 	 *  writemostly - sets write_mostly
2576 	 *  -writemostly - clears write_mostly
2577 	 *  blocked - sets the Blocked flags
2578 	 *  -blocked - clears the Blocked and possibly simulates an error
2579 	 *  insync - sets Insync providing device isn't active
2580 	 *  -insync - clear Insync for a device with a slot assigned,
2581 	 *            so that it gets rebuilt based on bitmap
2582 	 *  write_error - sets WriteErrorSeen
2583 	 *  -write_error - clears WriteErrorSeen
2584 	 */
2585 	int err = -EINVAL;
2586 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2587 		md_error(rdev->mddev, rdev);
2588 		if (test_bit(Faulty, &rdev->flags))
2589 			err = 0;
2590 		else
2591 			err = -EBUSY;
2592 	} else if (cmd_match(buf, "remove")) {
2593 		if (rdev->raid_disk >= 0)
2594 			err = -EBUSY;
2595 		else {
2596 			struct mddev *mddev = rdev->mddev;
2597 			err = 0;
2598 			if (mddev_is_clustered(mddev))
2599 				err = md_cluster_ops->remove_disk(mddev, rdev);
2600 
2601 			if (err == 0) {
2602 				md_kick_rdev_from_array(rdev);
2603 				if (mddev->pers)
2604 					md_update_sb(mddev, 1);
2605 				md_new_event(mddev);
2606 			}
2607 		}
2608 	} else if (cmd_match(buf, "writemostly")) {
2609 		set_bit(WriteMostly, &rdev->flags);
2610 		err = 0;
2611 	} else if (cmd_match(buf, "-writemostly")) {
2612 		clear_bit(WriteMostly, &rdev->flags);
2613 		err = 0;
2614 	} else if (cmd_match(buf, "blocked")) {
2615 		set_bit(Blocked, &rdev->flags);
2616 		err = 0;
2617 	} else if (cmd_match(buf, "-blocked")) {
2618 		if (!test_bit(Faulty, &rdev->flags) &&
2619 		    rdev->badblocks.unacked_exist) {
2620 			/* metadata handler doesn't understand badblocks,
2621 			 * so we need to fail the device
2622 			 */
2623 			md_error(rdev->mddev, rdev);
2624 		}
2625 		clear_bit(Blocked, &rdev->flags);
2626 		clear_bit(BlockedBadBlocks, &rdev->flags);
2627 		wake_up(&rdev->blocked_wait);
2628 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2629 		md_wakeup_thread(rdev->mddev->thread);
2630 
2631 		err = 0;
2632 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2633 		set_bit(In_sync, &rdev->flags);
2634 		err = 0;
2635 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2636 		   !test_bit(Journal, &rdev->flags)) {
2637 		if (rdev->mddev->pers == NULL) {
2638 			clear_bit(In_sync, &rdev->flags);
2639 			rdev->saved_raid_disk = rdev->raid_disk;
2640 			rdev->raid_disk = -1;
2641 			err = 0;
2642 		}
2643 	} else if (cmd_match(buf, "write_error")) {
2644 		set_bit(WriteErrorSeen, &rdev->flags);
2645 		err = 0;
2646 	} else if (cmd_match(buf, "-write_error")) {
2647 		clear_bit(WriteErrorSeen, &rdev->flags);
2648 		err = 0;
2649 	} else if (cmd_match(buf, "want_replacement")) {
2650 		/* Any non-spare device that is not a replacement can
2651 		 * become want_replacement at any time, but we then need to
2652 		 * check if recovery is needed.
2653 		 */
2654 		if (rdev->raid_disk >= 0 &&
2655 		    !test_bit(Journal, &rdev->flags) &&
2656 		    !test_bit(Replacement, &rdev->flags))
2657 			set_bit(WantReplacement, &rdev->flags);
2658 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2659 		md_wakeup_thread(rdev->mddev->thread);
2660 		err = 0;
2661 	} else if (cmd_match(buf, "-want_replacement")) {
2662 		/* Clearing 'want_replacement' is always allowed.
2663 		 * Once replacements starts it is too late though.
2664 		 */
2665 		err = 0;
2666 		clear_bit(WantReplacement, &rdev->flags);
2667 	} else if (cmd_match(buf, "replacement")) {
2668 		/* Can only set a device as a replacement when array has not
2669 		 * yet been started.  Once running, replacement is automatic
2670 		 * from spares, or by assigning 'slot'.
2671 		 */
2672 		if (rdev->mddev->pers)
2673 			err = -EBUSY;
2674 		else {
2675 			set_bit(Replacement, &rdev->flags);
2676 			err = 0;
2677 		}
2678 	} else if (cmd_match(buf, "-replacement")) {
2679 		/* Similarly, can only clear Replacement before start */
2680 		if (rdev->mddev->pers)
2681 			err = -EBUSY;
2682 		else {
2683 			clear_bit(Replacement, &rdev->flags);
2684 			err = 0;
2685 		}
2686 	} else if (cmd_match(buf, "re-add")) {
2687 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2688 			/* clear_bit is performed _after_ all the devices
2689 			 * have their local Faulty bit cleared. If any writes
2690 			 * happen in the meantime in the local node, they
2691 			 * will land in the local bitmap, which will be synced
2692 			 * by this node eventually
2693 			 */
2694 			if (!mddev_is_clustered(rdev->mddev) ||
2695 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2696 				clear_bit(Faulty, &rdev->flags);
2697 				err = add_bound_rdev(rdev);
2698 			}
2699 		} else
2700 			err = -EBUSY;
2701 	}
2702 	if (!err)
2703 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2704 	return err ? err : len;
2705 }
2706 static struct rdev_sysfs_entry rdev_state =
2707 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2708 
2709 static ssize_t
2710 errors_show(struct md_rdev *rdev, char *page)
2711 {
2712 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2713 }
2714 
2715 static ssize_t
2716 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2717 {
2718 	unsigned int n;
2719 	int rv;
2720 
2721 	rv = kstrtouint(buf, 10, &n);
2722 	if (rv < 0)
2723 		return rv;
2724 	atomic_set(&rdev->corrected_errors, n);
2725 	return len;
2726 }
2727 static struct rdev_sysfs_entry rdev_errors =
2728 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2729 
2730 static ssize_t
2731 slot_show(struct md_rdev *rdev, char *page)
2732 {
2733 	if (test_bit(Journal, &rdev->flags))
2734 		return sprintf(page, "journal\n");
2735 	else if (rdev->raid_disk < 0)
2736 		return sprintf(page, "none\n");
2737 	else
2738 		return sprintf(page, "%d\n", rdev->raid_disk);
2739 }
2740 
2741 static ssize_t
2742 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2743 {
2744 	int slot;
2745 	int err;
2746 
2747 	if (test_bit(Journal, &rdev->flags))
2748 		return -EBUSY;
2749 	if (strncmp(buf, "none", 4)==0)
2750 		slot = -1;
2751 	else {
2752 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2753 		if (err < 0)
2754 			return err;
2755 	}
2756 	if (rdev->mddev->pers && slot == -1) {
2757 		/* Setting 'slot' on an active array requires also
2758 		 * updating the 'rd%d' link, and communicating
2759 		 * with the personality with ->hot_*_disk.
2760 		 * For now we only support removing
2761 		 * failed/spare devices.  This normally happens automatically,
2762 		 * but not when the metadata is externally managed.
2763 		 */
2764 		if (rdev->raid_disk == -1)
2765 			return -EEXIST;
2766 		/* personality does all needed checks */
2767 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2768 			return -EINVAL;
2769 		clear_bit(Blocked, &rdev->flags);
2770 		remove_and_add_spares(rdev->mddev, rdev);
2771 		if (rdev->raid_disk >= 0)
2772 			return -EBUSY;
2773 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2774 		md_wakeup_thread(rdev->mddev->thread);
2775 	} else if (rdev->mddev->pers) {
2776 		/* Activating a spare .. or possibly reactivating
2777 		 * if we ever get bitmaps working here.
2778 		 */
2779 		int err;
2780 
2781 		if (rdev->raid_disk != -1)
2782 			return -EBUSY;
2783 
2784 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2785 			return -EBUSY;
2786 
2787 		if (rdev->mddev->pers->hot_add_disk == NULL)
2788 			return -EINVAL;
2789 
2790 		if (slot >= rdev->mddev->raid_disks &&
2791 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2792 			return -ENOSPC;
2793 
2794 		rdev->raid_disk = slot;
2795 		if (test_bit(In_sync, &rdev->flags))
2796 			rdev->saved_raid_disk = slot;
2797 		else
2798 			rdev->saved_raid_disk = -1;
2799 		clear_bit(In_sync, &rdev->flags);
2800 		clear_bit(Bitmap_sync, &rdev->flags);
2801 		err = rdev->mddev->pers->
2802 			hot_add_disk(rdev->mddev, rdev);
2803 		if (err) {
2804 			rdev->raid_disk = -1;
2805 			return err;
2806 		} else
2807 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2808 		if (sysfs_link_rdev(rdev->mddev, rdev))
2809 			/* failure here is OK */;
2810 		/* don't wakeup anyone, leave that to userspace. */
2811 	} else {
2812 		if (slot >= rdev->mddev->raid_disks &&
2813 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2814 			return -ENOSPC;
2815 		rdev->raid_disk = slot;
2816 		/* assume it is working */
2817 		clear_bit(Faulty, &rdev->flags);
2818 		clear_bit(WriteMostly, &rdev->flags);
2819 		set_bit(In_sync, &rdev->flags);
2820 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2821 	}
2822 	return len;
2823 }
2824 
2825 static struct rdev_sysfs_entry rdev_slot =
2826 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2827 
2828 static ssize_t
2829 offset_show(struct md_rdev *rdev, char *page)
2830 {
2831 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2832 }
2833 
2834 static ssize_t
2835 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2836 {
2837 	unsigned long long offset;
2838 	if (kstrtoull(buf, 10, &offset) < 0)
2839 		return -EINVAL;
2840 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2841 		return -EBUSY;
2842 	if (rdev->sectors && rdev->mddev->external)
2843 		/* Must set offset before size, so overlap checks
2844 		 * can be sane */
2845 		return -EBUSY;
2846 	rdev->data_offset = offset;
2847 	rdev->new_data_offset = offset;
2848 	return len;
2849 }
2850 
2851 static struct rdev_sysfs_entry rdev_offset =
2852 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2853 
2854 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2855 {
2856 	return sprintf(page, "%llu\n",
2857 		       (unsigned long long)rdev->new_data_offset);
2858 }
2859 
2860 static ssize_t new_offset_store(struct md_rdev *rdev,
2861 				const char *buf, size_t len)
2862 {
2863 	unsigned long long new_offset;
2864 	struct mddev *mddev = rdev->mddev;
2865 
2866 	if (kstrtoull(buf, 10, &new_offset) < 0)
2867 		return -EINVAL;
2868 
2869 	if (mddev->sync_thread ||
2870 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2871 		return -EBUSY;
2872 	if (new_offset == rdev->data_offset)
2873 		/* reset is always permitted */
2874 		;
2875 	else if (new_offset > rdev->data_offset) {
2876 		/* must not push array size beyond rdev_sectors */
2877 		if (new_offset - rdev->data_offset
2878 		    + mddev->dev_sectors > rdev->sectors)
2879 				return -E2BIG;
2880 	}
2881 	/* Metadata worries about other space details. */
2882 
2883 	/* decreasing the offset is inconsistent with a backwards
2884 	 * reshape.
2885 	 */
2886 	if (new_offset < rdev->data_offset &&
2887 	    mddev->reshape_backwards)
2888 		return -EINVAL;
2889 	/* Increasing offset is inconsistent with forwards
2890 	 * reshape.  reshape_direction should be set to
2891 	 * 'backwards' first.
2892 	 */
2893 	if (new_offset > rdev->data_offset &&
2894 	    !mddev->reshape_backwards)
2895 		return -EINVAL;
2896 
2897 	if (mddev->pers && mddev->persistent &&
2898 	    !super_types[mddev->major_version]
2899 	    .allow_new_offset(rdev, new_offset))
2900 		return -E2BIG;
2901 	rdev->new_data_offset = new_offset;
2902 	if (new_offset > rdev->data_offset)
2903 		mddev->reshape_backwards = 1;
2904 	else if (new_offset < rdev->data_offset)
2905 		mddev->reshape_backwards = 0;
2906 
2907 	return len;
2908 }
2909 static struct rdev_sysfs_entry rdev_new_offset =
2910 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2911 
2912 static ssize_t
2913 rdev_size_show(struct md_rdev *rdev, char *page)
2914 {
2915 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2916 }
2917 
2918 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2919 {
2920 	/* check if two start/length pairs overlap */
2921 	if (s1+l1 <= s2)
2922 		return 0;
2923 	if (s2+l2 <= s1)
2924 		return 0;
2925 	return 1;
2926 }
2927 
2928 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2929 {
2930 	unsigned long long blocks;
2931 	sector_t new;
2932 
2933 	if (kstrtoull(buf, 10, &blocks) < 0)
2934 		return -EINVAL;
2935 
2936 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2937 		return -EINVAL; /* sector conversion overflow */
2938 
2939 	new = blocks * 2;
2940 	if (new != blocks * 2)
2941 		return -EINVAL; /* unsigned long long to sector_t overflow */
2942 
2943 	*sectors = new;
2944 	return 0;
2945 }
2946 
2947 static ssize_t
2948 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2949 {
2950 	struct mddev *my_mddev = rdev->mddev;
2951 	sector_t oldsectors = rdev->sectors;
2952 	sector_t sectors;
2953 
2954 	if (test_bit(Journal, &rdev->flags))
2955 		return -EBUSY;
2956 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2957 		return -EINVAL;
2958 	if (rdev->data_offset != rdev->new_data_offset)
2959 		return -EINVAL; /* too confusing */
2960 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2961 		if (my_mddev->persistent) {
2962 			sectors = super_types[my_mddev->major_version].
2963 				rdev_size_change(rdev, sectors);
2964 			if (!sectors)
2965 				return -EBUSY;
2966 		} else if (!sectors)
2967 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2968 				rdev->data_offset;
2969 		if (!my_mddev->pers->resize)
2970 			/* Cannot change size for RAID0 or Linear etc */
2971 			return -EINVAL;
2972 	}
2973 	if (sectors < my_mddev->dev_sectors)
2974 		return -EINVAL; /* component must fit device */
2975 
2976 	rdev->sectors = sectors;
2977 	if (sectors > oldsectors && my_mddev->external) {
2978 		/* Need to check that all other rdevs with the same
2979 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2980 		 * the rdev lists safely.
2981 		 * This check does not provide a hard guarantee, it
2982 		 * just helps avoid dangerous mistakes.
2983 		 */
2984 		struct mddev *mddev;
2985 		int overlap = 0;
2986 		struct list_head *tmp;
2987 
2988 		rcu_read_lock();
2989 		for_each_mddev(mddev, tmp) {
2990 			struct md_rdev *rdev2;
2991 
2992 			rdev_for_each(rdev2, mddev)
2993 				if (rdev->bdev == rdev2->bdev &&
2994 				    rdev != rdev2 &&
2995 				    overlaps(rdev->data_offset, rdev->sectors,
2996 					     rdev2->data_offset,
2997 					     rdev2->sectors)) {
2998 					overlap = 1;
2999 					break;
3000 				}
3001 			if (overlap) {
3002 				mddev_put(mddev);
3003 				break;
3004 			}
3005 		}
3006 		rcu_read_unlock();
3007 		if (overlap) {
3008 			/* Someone else could have slipped in a size
3009 			 * change here, but doing so is just silly.
3010 			 * We put oldsectors back because we *know* it is
3011 			 * safe, and trust userspace not to race with
3012 			 * itself
3013 			 */
3014 			rdev->sectors = oldsectors;
3015 			return -EBUSY;
3016 		}
3017 	}
3018 	return len;
3019 }
3020 
3021 static struct rdev_sysfs_entry rdev_size =
3022 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3023 
3024 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3025 {
3026 	unsigned long long recovery_start = rdev->recovery_offset;
3027 
3028 	if (test_bit(In_sync, &rdev->flags) ||
3029 	    recovery_start == MaxSector)
3030 		return sprintf(page, "none\n");
3031 
3032 	return sprintf(page, "%llu\n", recovery_start);
3033 }
3034 
3035 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3036 {
3037 	unsigned long long recovery_start;
3038 
3039 	if (cmd_match(buf, "none"))
3040 		recovery_start = MaxSector;
3041 	else if (kstrtoull(buf, 10, &recovery_start))
3042 		return -EINVAL;
3043 
3044 	if (rdev->mddev->pers &&
3045 	    rdev->raid_disk >= 0)
3046 		return -EBUSY;
3047 
3048 	rdev->recovery_offset = recovery_start;
3049 	if (recovery_start == MaxSector)
3050 		set_bit(In_sync, &rdev->flags);
3051 	else
3052 		clear_bit(In_sync, &rdev->flags);
3053 	return len;
3054 }
3055 
3056 static struct rdev_sysfs_entry rdev_recovery_start =
3057 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3058 
3059 /* sysfs access to bad-blocks list.
3060  * We present two files.
3061  * 'bad-blocks' lists sector numbers and lengths of ranges that
3062  *    are recorded as bad.  The list is truncated to fit within
3063  *    the one-page limit of sysfs.
3064  *    Writing "sector length" to this file adds an acknowledged
3065  *    bad block list.
3066  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3067  *    been acknowledged.  Writing to this file adds bad blocks
3068  *    without acknowledging them.  This is largely for testing.
3069  */
3070 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3071 {
3072 	return badblocks_show(&rdev->badblocks, page, 0);
3073 }
3074 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3075 {
3076 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3077 	/* Maybe that ack was all we needed */
3078 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3079 		wake_up(&rdev->blocked_wait);
3080 	return rv;
3081 }
3082 static struct rdev_sysfs_entry rdev_bad_blocks =
3083 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3084 
3085 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3086 {
3087 	return badblocks_show(&rdev->badblocks, page, 1);
3088 }
3089 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3090 {
3091 	return badblocks_store(&rdev->badblocks, page, len, 1);
3092 }
3093 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3094 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3095 
3096 static struct attribute *rdev_default_attrs[] = {
3097 	&rdev_state.attr,
3098 	&rdev_errors.attr,
3099 	&rdev_slot.attr,
3100 	&rdev_offset.attr,
3101 	&rdev_new_offset.attr,
3102 	&rdev_size.attr,
3103 	&rdev_recovery_start.attr,
3104 	&rdev_bad_blocks.attr,
3105 	&rdev_unack_bad_blocks.attr,
3106 	NULL,
3107 };
3108 static ssize_t
3109 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3110 {
3111 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3112 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3113 
3114 	if (!entry->show)
3115 		return -EIO;
3116 	if (!rdev->mddev)
3117 		return -EBUSY;
3118 	return entry->show(rdev, page);
3119 }
3120 
3121 static ssize_t
3122 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3123 	      const char *page, size_t length)
3124 {
3125 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3126 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3127 	ssize_t rv;
3128 	struct mddev *mddev = rdev->mddev;
3129 
3130 	if (!entry->store)
3131 		return -EIO;
3132 	if (!capable(CAP_SYS_ADMIN))
3133 		return -EACCES;
3134 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3135 	if (!rv) {
3136 		if (rdev->mddev == NULL)
3137 			rv = -EBUSY;
3138 		else
3139 			rv = entry->store(rdev, page, length);
3140 		mddev_unlock(mddev);
3141 	}
3142 	return rv;
3143 }
3144 
3145 static void rdev_free(struct kobject *ko)
3146 {
3147 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3148 	kfree(rdev);
3149 }
3150 static const struct sysfs_ops rdev_sysfs_ops = {
3151 	.show		= rdev_attr_show,
3152 	.store		= rdev_attr_store,
3153 };
3154 static struct kobj_type rdev_ktype = {
3155 	.release	= rdev_free,
3156 	.sysfs_ops	= &rdev_sysfs_ops,
3157 	.default_attrs	= rdev_default_attrs,
3158 };
3159 
3160 int md_rdev_init(struct md_rdev *rdev)
3161 {
3162 	rdev->desc_nr = -1;
3163 	rdev->saved_raid_disk = -1;
3164 	rdev->raid_disk = -1;
3165 	rdev->flags = 0;
3166 	rdev->data_offset = 0;
3167 	rdev->new_data_offset = 0;
3168 	rdev->sb_events = 0;
3169 	rdev->last_read_error.tv_sec  = 0;
3170 	rdev->last_read_error.tv_nsec = 0;
3171 	rdev->sb_loaded = 0;
3172 	rdev->bb_page = NULL;
3173 	atomic_set(&rdev->nr_pending, 0);
3174 	atomic_set(&rdev->read_errors, 0);
3175 	atomic_set(&rdev->corrected_errors, 0);
3176 
3177 	INIT_LIST_HEAD(&rdev->same_set);
3178 	init_waitqueue_head(&rdev->blocked_wait);
3179 
3180 	/* Add space to store bad block list.
3181 	 * This reserves the space even on arrays where it cannot
3182 	 * be used - I wonder if that matters
3183 	 */
3184 	return badblocks_init(&rdev->badblocks, 0);
3185 }
3186 EXPORT_SYMBOL_GPL(md_rdev_init);
3187 /*
3188  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3189  *
3190  * mark the device faulty if:
3191  *
3192  *   - the device is nonexistent (zero size)
3193  *   - the device has no valid superblock
3194  *
3195  * a faulty rdev _never_ has rdev->sb set.
3196  */
3197 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3198 {
3199 	char b[BDEVNAME_SIZE];
3200 	int err;
3201 	struct md_rdev *rdev;
3202 	sector_t size;
3203 
3204 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3205 	if (!rdev) {
3206 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3207 		return ERR_PTR(-ENOMEM);
3208 	}
3209 
3210 	err = md_rdev_init(rdev);
3211 	if (err)
3212 		goto abort_free;
3213 	err = alloc_disk_sb(rdev);
3214 	if (err)
3215 		goto abort_free;
3216 
3217 	err = lock_rdev(rdev, newdev, super_format == -2);
3218 	if (err)
3219 		goto abort_free;
3220 
3221 	kobject_init(&rdev->kobj, &rdev_ktype);
3222 
3223 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3224 	if (!size) {
3225 		printk(KERN_WARNING
3226 			"md: %s has zero or unknown size, marking faulty!\n",
3227 			bdevname(rdev->bdev,b));
3228 		err = -EINVAL;
3229 		goto abort_free;
3230 	}
3231 
3232 	if (super_format >= 0) {
3233 		err = super_types[super_format].
3234 			load_super(rdev, NULL, super_minor);
3235 		if (err == -EINVAL) {
3236 			printk(KERN_WARNING
3237 				"md: %s does not have a valid v%d.%d "
3238 			       "superblock, not importing!\n",
3239 				bdevname(rdev->bdev,b),
3240 			       super_format, super_minor);
3241 			goto abort_free;
3242 		}
3243 		if (err < 0) {
3244 			printk(KERN_WARNING
3245 				"md: could not read %s's sb, not importing!\n",
3246 				bdevname(rdev->bdev,b));
3247 			goto abort_free;
3248 		}
3249 	}
3250 
3251 	return rdev;
3252 
3253 abort_free:
3254 	if (rdev->bdev)
3255 		unlock_rdev(rdev);
3256 	md_rdev_clear(rdev);
3257 	kfree(rdev);
3258 	return ERR_PTR(err);
3259 }
3260 
3261 /*
3262  * Check a full RAID array for plausibility
3263  */
3264 
3265 static void analyze_sbs(struct mddev *mddev)
3266 {
3267 	int i;
3268 	struct md_rdev *rdev, *freshest, *tmp;
3269 	char b[BDEVNAME_SIZE];
3270 
3271 	freshest = NULL;
3272 	rdev_for_each_safe(rdev, tmp, mddev)
3273 		switch (super_types[mddev->major_version].
3274 			load_super(rdev, freshest, mddev->minor_version)) {
3275 		case 1:
3276 			freshest = rdev;
3277 			break;
3278 		case 0:
3279 			break;
3280 		default:
3281 			printk( KERN_ERR \
3282 				"md: fatal superblock inconsistency in %s"
3283 				" -- removing from array\n",
3284 				bdevname(rdev->bdev,b));
3285 			md_kick_rdev_from_array(rdev);
3286 		}
3287 
3288 	super_types[mddev->major_version].
3289 		validate_super(mddev, freshest);
3290 
3291 	i = 0;
3292 	rdev_for_each_safe(rdev, tmp, mddev) {
3293 		if (mddev->max_disks &&
3294 		    (rdev->desc_nr >= mddev->max_disks ||
3295 		     i > mddev->max_disks)) {
3296 			printk(KERN_WARNING
3297 			       "md: %s: %s: only %d devices permitted\n",
3298 			       mdname(mddev), bdevname(rdev->bdev, b),
3299 			       mddev->max_disks);
3300 			md_kick_rdev_from_array(rdev);
3301 			continue;
3302 		}
3303 		if (rdev != freshest) {
3304 			if (super_types[mddev->major_version].
3305 			    validate_super(mddev, rdev)) {
3306 				printk(KERN_WARNING "md: kicking non-fresh %s"
3307 					" from array!\n",
3308 					bdevname(rdev->bdev,b));
3309 				md_kick_rdev_from_array(rdev);
3310 				continue;
3311 			}
3312 		}
3313 		if (mddev->level == LEVEL_MULTIPATH) {
3314 			rdev->desc_nr = i++;
3315 			rdev->raid_disk = rdev->desc_nr;
3316 			set_bit(In_sync, &rdev->flags);
3317 		} else if (rdev->raid_disk >=
3318 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3319 			   !test_bit(Journal, &rdev->flags)) {
3320 			rdev->raid_disk = -1;
3321 			clear_bit(In_sync, &rdev->flags);
3322 		}
3323 	}
3324 }
3325 
3326 /* Read a fixed-point number.
3327  * Numbers in sysfs attributes should be in "standard" units where
3328  * possible, so time should be in seconds.
3329  * However we internally use a a much smaller unit such as
3330  * milliseconds or jiffies.
3331  * This function takes a decimal number with a possible fractional
3332  * component, and produces an integer which is the result of
3333  * multiplying that number by 10^'scale'.
3334  * all without any floating-point arithmetic.
3335  */
3336 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3337 {
3338 	unsigned long result = 0;
3339 	long decimals = -1;
3340 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3341 		if (*cp == '.')
3342 			decimals = 0;
3343 		else if (decimals < scale) {
3344 			unsigned int value;
3345 			value = *cp - '0';
3346 			result = result * 10 + value;
3347 			if (decimals >= 0)
3348 				decimals++;
3349 		}
3350 		cp++;
3351 	}
3352 	if (*cp == '\n')
3353 		cp++;
3354 	if (*cp)
3355 		return -EINVAL;
3356 	if (decimals < 0)
3357 		decimals = 0;
3358 	while (decimals < scale) {
3359 		result *= 10;
3360 		decimals ++;
3361 	}
3362 	*res = result;
3363 	return 0;
3364 }
3365 
3366 static ssize_t
3367 safe_delay_show(struct mddev *mddev, char *page)
3368 {
3369 	int msec = (mddev->safemode_delay*1000)/HZ;
3370 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3371 }
3372 static ssize_t
3373 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3374 {
3375 	unsigned long msec;
3376 
3377 	if (mddev_is_clustered(mddev)) {
3378 		pr_info("md: Safemode is disabled for clustered mode\n");
3379 		return -EINVAL;
3380 	}
3381 
3382 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3383 		return -EINVAL;
3384 	if (msec == 0)
3385 		mddev->safemode_delay = 0;
3386 	else {
3387 		unsigned long old_delay = mddev->safemode_delay;
3388 		unsigned long new_delay = (msec*HZ)/1000;
3389 
3390 		if (new_delay == 0)
3391 			new_delay = 1;
3392 		mddev->safemode_delay = new_delay;
3393 		if (new_delay < old_delay || old_delay == 0)
3394 			mod_timer(&mddev->safemode_timer, jiffies+1);
3395 	}
3396 	return len;
3397 }
3398 static struct md_sysfs_entry md_safe_delay =
3399 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3400 
3401 static ssize_t
3402 level_show(struct mddev *mddev, char *page)
3403 {
3404 	struct md_personality *p;
3405 	int ret;
3406 	spin_lock(&mddev->lock);
3407 	p = mddev->pers;
3408 	if (p)
3409 		ret = sprintf(page, "%s\n", p->name);
3410 	else if (mddev->clevel[0])
3411 		ret = sprintf(page, "%s\n", mddev->clevel);
3412 	else if (mddev->level != LEVEL_NONE)
3413 		ret = sprintf(page, "%d\n", mddev->level);
3414 	else
3415 		ret = 0;
3416 	spin_unlock(&mddev->lock);
3417 	return ret;
3418 }
3419 
3420 static ssize_t
3421 level_store(struct mddev *mddev, const char *buf, size_t len)
3422 {
3423 	char clevel[16];
3424 	ssize_t rv;
3425 	size_t slen = len;
3426 	struct md_personality *pers, *oldpers;
3427 	long level;
3428 	void *priv, *oldpriv;
3429 	struct md_rdev *rdev;
3430 
3431 	if (slen == 0 || slen >= sizeof(clevel))
3432 		return -EINVAL;
3433 
3434 	rv = mddev_lock(mddev);
3435 	if (rv)
3436 		return rv;
3437 
3438 	if (mddev->pers == NULL) {
3439 		strncpy(mddev->clevel, buf, slen);
3440 		if (mddev->clevel[slen-1] == '\n')
3441 			slen--;
3442 		mddev->clevel[slen] = 0;
3443 		mddev->level = LEVEL_NONE;
3444 		rv = len;
3445 		goto out_unlock;
3446 	}
3447 	rv = -EROFS;
3448 	if (mddev->ro)
3449 		goto out_unlock;
3450 
3451 	/* request to change the personality.  Need to ensure:
3452 	 *  - array is not engaged in resync/recovery/reshape
3453 	 *  - old personality can be suspended
3454 	 *  - new personality will access other array.
3455 	 */
3456 
3457 	rv = -EBUSY;
3458 	if (mddev->sync_thread ||
3459 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3460 	    mddev->reshape_position != MaxSector ||
3461 	    mddev->sysfs_active)
3462 		goto out_unlock;
3463 
3464 	rv = -EINVAL;
3465 	if (!mddev->pers->quiesce) {
3466 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3467 		       mdname(mddev), mddev->pers->name);
3468 		goto out_unlock;
3469 	}
3470 
3471 	/* Now find the new personality */
3472 	strncpy(clevel, buf, slen);
3473 	if (clevel[slen-1] == '\n')
3474 		slen--;
3475 	clevel[slen] = 0;
3476 	if (kstrtol(clevel, 10, &level))
3477 		level = LEVEL_NONE;
3478 
3479 	if (request_module("md-%s", clevel) != 0)
3480 		request_module("md-level-%s", clevel);
3481 	spin_lock(&pers_lock);
3482 	pers = find_pers(level, clevel);
3483 	if (!pers || !try_module_get(pers->owner)) {
3484 		spin_unlock(&pers_lock);
3485 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3486 		rv = -EINVAL;
3487 		goto out_unlock;
3488 	}
3489 	spin_unlock(&pers_lock);
3490 
3491 	if (pers == mddev->pers) {
3492 		/* Nothing to do! */
3493 		module_put(pers->owner);
3494 		rv = len;
3495 		goto out_unlock;
3496 	}
3497 	if (!pers->takeover) {
3498 		module_put(pers->owner);
3499 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3500 		       mdname(mddev), clevel);
3501 		rv = -EINVAL;
3502 		goto out_unlock;
3503 	}
3504 
3505 	rdev_for_each(rdev, mddev)
3506 		rdev->new_raid_disk = rdev->raid_disk;
3507 
3508 	/* ->takeover must set new_* and/or delta_disks
3509 	 * if it succeeds, and may set them when it fails.
3510 	 */
3511 	priv = pers->takeover(mddev);
3512 	if (IS_ERR(priv)) {
3513 		mddev->new_level = mddev->level;
3514 		mddev->new_layout = mddev->layout;
3515 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3516 		mddev->raid_disks -= mddev->delta_disks;
3517 		mddev->delta_disks = 0;
3518 		mddev->reshape_backwards = 0;
3519 		module_put(pers->owner);
3520 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3521 		       mdname(mddev), clevel);
3522 		rv = PTR_ERR(priv);
3523 		goto out_unlock;
3524 	}
3525 
3526 	/* Looks like we have a winner */
3527 	mddev_suspend(mddev);
3528 	mddev_detach(mddev);
3529 
3530 	spin_lock(&mddev->lock);
3531 	oldpers = mddev->pers;
3532 	oldpriv = mddev->private;
3533 	mddev->pers = pers;
3534 	mddev->private = priv;
3535 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3536 	mddev->level = mddev->new_level;
3537 	mddev->layout = mddev->new_layout;
3538 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3539 	mddev->delta_disks = 0;
3540 	mddev->reshape_backwards = 0;
3541 	mddev->degraded = 0;
3542 	spin_unlock(&mddev->lock);
3543 
3544 	if (oldpers->sync_request == NULL &&
3545 	    mddev->external) {
3546 		/* We are converting from a no-redundancy array
3547 		 * to a redundancy array and metadata is managed
3548 		 * externally so we need to be sure that writes
3549 		 * won't block due to a need to transition
3550 		 *      clean->dirty
3551 		 * until external management is started.
3552 		 */
3553 		mddev->in_sync = 0;
3554 		mddev->safemode_delay = 0;
3555 		mddev->safemode = 0;
3556 	}
3557 
3558 	oldpers->free(mddev, oldpriv);
3559 
3560 	if (oldpers->sync_request == NULL &&
3561 	    pers->sync_request != NULL) {
3562 		/* need to add the md_redundancy_group */
3563 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3564 			printk(KERN_WARNING
3565 			       "md: cannot register extra attributes for %s\n",
3566 			       mdname(mddev));
3567 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3568 	}
3569 	if (oldpers->sync_request != NULL &&
3570 	    pers->sync_request == NULL) {
3571 		/* need to remove the md_redundancy_group */
3572 		if (mddev->to_remove == NULL)
3573 			mddev->to_remove = &md_redundancy_group;
3574 	}
3575 
3576 	rdev_for_each(rdev, mddev) {
3577 		if (rdev->raid_disk < 0)
3578 			continue;
3579 		if (rdev->new_raid_disk >= mddev->raid_disks)
3580 			rdev->new_raid_disk = -1;
3581 		if (rdev->new_raid_disk == rdev->raid_disk)
3582 			continue;
3583 		sysfs_unlink_rdev(mddev, rdev);
3584 	}
3585 	rdev_for_each(rdev, mddev) {
3586 		if (rdev->raid_disk < 0)
3587 			continue;
3588 		if (rdev->new_raid_disk == rdev->raid_disk)
3589 			continue;
3590 		rdev->raid_disk = rdev->new_raid_disk;
3591 		if (rdev->raid_disk < 0)
3592 			clear_bit(In_sync, &rdev->flags);
3593 		else {
3594 			if (sysfs_link_rdev(mddev, rdev))
3595 				printk(KERN_WARNING "md: cannot register rd%d"
3596 				       " for %s after level change\n",
3597 				       rdev->raid_disk, mdname(mddev));
3598 		}
3599 	}
3600 
3601 	if (pers->sync_request == NULL) {
3602 		/* this is now an array without redundancy, so
3603 		 * it must always be in_sync
3604 		 */
3605 		mddev->in_sync = 1;
3606 		del_timer_sync(&mddev->safemode_timer);
3607 	}
3608 	blk_set_stacking_limits(&mddev->queue->limits);
3609 	pers->run(mddev);
3610 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3611 	mddev_resume(mddev);
3612 	if (!mddev->thread)
3613 		md_update_sb(mddev, 1);
3614 	sysfs_notify(&mddev->kobj, NULL, "level");
3615 	md_new_event(mddev);
3616 	rv = len;
3617 out_unlock:
3618 	mddev_unlock(mddev);
3619 	return rv;
3620 }
3621 
3622 static struct md_sysfs_entry md_level =
3623 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3624 
3625 static ssize_t
3626 layout_show(struct mddev *mddev, char *page)
3627 {
3628 	/* just a number, not meaningful for all levels */
3629 	if (mddev->reshape_position != MaxSector &&
3630 	    mddev->layout != mddev->new_layout)
3631 		return sprintf(page, "%d (%d)\n",
3632 			       mddev->new_layout, mddev->layout);
3633 	return sprintf(page, "%d\n", mddev->layout);
3634 }
3635 
3636 static ssize_t
3637 layout_store(struct mddev *mddev, const char *buf, size_t len)
3638 {
3639 	unsigned int n;
3640 	int err;
3641 
3642 	err = kstrtouint(buf, 10, &n);
3643 	if (err < 0)
3644 		return err;
3645 	err = mddev_lock(mddev);
3646 	if (err)
3647 		return err;
3648 
3649 	if (mddev->pers) {
3650 		if (mddev->pers->check_reshape == NULL)
3651 			err = -EBUSY;
3652 		else if (mddev->ro)
3653 			err = -EROFS;
3654 		else {
3655 			mddev->new_layout = n;
3656 			err = mddev->pers->check_reshape(mddev);
3657 			if (err)
3658 				mddev->new_layout = mddev->layout;
3659 		}
3660 	} else {
3661 		mddev->new_layout = n;
3662 		if (mddev->reshape_position == MaxSector)
3663 			mddev->layout = n;
3664 	}
3665 	mddev_unlock(mddev);
3666 	return err ?: len;
3667 }
3668 static struct md_sysfs_entry md_layout =
3669 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3670 
3671 static ssize_t
3672 raid_disks_show(struct mddev *mddev, char *page)
3673 {
3674 	if (mddev->raid_disks == 0)
3675 		return 0;
3676 	if (mddev->reshape_position != MaxSector &&
3677 	    mddev->delta_disks != 0)
3678 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3679 			       mddev->raid_disks - mddev->delta_disks);
3680 	return sprintf(page, "%d\n", mddev->raid_disks);
3681 }
3682 
3683 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3684 
3685 static ssize_t
3686 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3687 {
3688 	unsigned int n;
3689 	int err;
3690 
3691 	err = kstrtouint(buf, 10, &n);
3692 	if (err < 0)
3693 		return err;
3694 
3695 	err = mddev_lock(mddev);
3696 	if (err)
3697 		return err;
3698 	if (mddev->pers)
3699 		err = update_raid_disks(mddev, n);
3700 	else if (mddev->reshape_position != MaxSector) {
3701 		struct md_rdev *rdev;
3702 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3703 
3704 		err = -EINVAL;
3705 		rdev_for_each(rdev, mddev) {
3706 			if (olddisks < n &&
3707 			    rdev->data_offset < rdev->new_data_offset)
3708 				goto out_unlock;
3709 			if (olddisks > n &&
3710 			    rdev->data_offset > rdev->new_data_offset)
3711 				goto out_unlock;
3712 		}
3713 		err = 0;
3714 		mddev->delta_disks = n - olddisks;
3715 		mddev->raid_disks = n;
3716 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3717 	} else
3718 		mddev->raid_disks = n;
3719 out_unlock:
3720 	mddev_unlock(mddev);
3721 	return err ? err : len;
3722 }
3723 static struct md_sysfs_entry md_raid_disks =
3724 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3725 
3726 static ssize_t
3727 chunk_size_show(struct mddev *mddev, char *page)
3728 {
3729 	if (mddev->reshape_position != MaxSector &&
3730 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3731 		return sprintf(page, "%d (%d)\n",
3732 			       mddev->new_chunk_sectors << 9,
3733 			       mddev->chunk_sectors << 9);
3734 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3735 }
3736 
3737 static ssize_t
3738 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3739 {
3740 	unsigned long n;
3741 	int err;
3742 
3743 	err = kstrtoul(buf, 10, &n);
3744 	if (err < 0)
3745 		return err;
3746 
3747 	err = mddev_lock(mddev);
3748 	if (err)
3749 		return err;
3750 	if (mddev->pers) {
3751 		if (mddev->pers->check_reshape == NULL)
3752 			err = -EBUSY;
3753 		else if (mddev->ro)
3754 			err = -EROFS;
3755 		else {
3756 			mddev->new_chunk_sectors = n >> 9;
3757 			err = mddev->pers->check_reshape(mddev);
3758 			if (err)
3759 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3760 		}
3761 	} else {
3762 		mddev->new_chunk_sectors = n >> 9;
3763 		if (mddev->reshape_position == MaxSector)
3764 			mddev->chunk_sectors = n >> 9;
3765 	}
3766 	mddev_unlock(mddev);
3767 	return err ?: len;
3768 }
3769 static struct md_sysfs_entry md_chunk_size =
3770 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3771 
3772 static ssize_t
3773 resync_start_show(struct mddev *mddev, char *page)
3774 {
3775 	if (mddev->recovery_cp == MaxSector)
3776 		return sprintf(page, "none\n");
3777 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3778 }
3779 
3780 static ssize_t
3781 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3782 {
3783 	unsigned long long n;
3784 	int err;
3785 
3786 	if (cmd_match(buf, "none"))
3787 		n = MaxSector;
3788 	else {
3789 		err = kstrtoull(buf, 10, &n);
3790 		if (err < 0)
3791 			return err;
3792 		if (n != (sector_t)n)
3793 			return -EINVAL;
3794 	}
3795 
3796 	err = mddev_lock(mddev);
3797 	if (err)
3798 		return err;
3799 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3800 		err = -EBUSY;
3801 
3802 	if (!err) {
3803 		mddev->recovery_cp = n;
3804 		if (mddev->pers)
3805 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3806 	}
3807 	mddev_unlock(mddev);
3808 	return err ?: len;
3809 }
3810 static struct md_sysfs_entry md_resync_start =
3811 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3812 		resync_start_show, resync_start_store);
3813 
3814 /*
3815  * The array state can be:
3816  *
3817  * clear
3818  *     No devices, no size, no level
3819  *     Equivalent to STOP_ARRAY ioctl
3820  * inactive
3821  *     May have some settings, but array is not active
3822  *        all IO results in error
3823  *     When written, doesn't tear down array, but just stops it
3824  * suspended (not supported yet)
3825  *     All IO requests will block. The array can be reconfigured.
3826  *     Writing this, if accepted, will block until array is quiescent
3827  * readonly
3828  *     no resync can happen.  no superblocks get written.
3829  *     write requests fail
3830  * read-auto
3831  *     like readonly, but behaves like 'clean' on a write request.
3832  *
3833  * clean - no pending writes, but otherwise active.
3834  *     When written to inactive array, starts without resync
3835  *     If a write request arrives then
3836  *       if metadata is known, mark 'dirty' and switch to 'active'.
3837  *       if not known, block and switch to write-pending
3838  *     If written to an active array that has pending writes, then fails.
3839  * active
3840  *     fully active: IO and resync can be happening.
3841  *     When written to inactive array, starts with resync
3842  *
3843  * write-pending
3844  *     clean, but writes are blocked waiting for 'active' to be written.
3845  *
3846  * active-idle
3847  *     like active, but no writes have been seen for a while (100msec).
3848  *
3849  */
3850 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3851 		   write_pending, active_idle, bad_word};
3852 static char *array_states[] = {
3853 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3854 	"write-pending", "active-idle", NULL };
3855 
3856 static int match_word(const char *word, char **list)
3857 {
3858 	int n;
3859 	for (n=0; list[n]; n++)
3860 		if (cmd_match(word, list[n]))
3861 			break;
3862 	return n;
3863 }
3864 
3865 static ssize_t
3866 array_state_show(struct mddev *mddev, char *page)
3867 {
3868 	enum array_state st = inactive;
3869 
3870 	if (mddev->pers)
3871 		switch(mddev->ro) {
3872 		case 1:
3873 			st = readonly;
3874 			break;
3875 		case 2:
3876 			st = read_auto;
3877 			break;
3878 		case 0:
3879 			if (mddev->in_sync)
3880 				st = clean;
3881 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3882 				st = write_pending;
3883 			else if (mddev->safemode)
3884 				st = active_idle;
3885 			else
3886 				st = active;
3887 		}
3888 	else {
3889 		if (list_empty(&mddev->disks) &&
3890 		    mddev->raid_disks == 0 &&
3891 		    mddev->dev_sectors == 0)
3892 			st = clear;
3893 		else
3894 			st = inactive;
3895 	}
3896 	return sprintf(page, "%s\n", array_states[st]);
3897 }
3898 
3899 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3900 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3901 static int do_md_run(struct mddev *mddev);
3902 static int restart_array(struct mddev *mddev);
3903 
3904 static ssize_t
3905 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3906 {
3907 	int err;
3908 	enum array_state st = match_word(buf, array_states);
3909 
3910 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3911 		/* don't take reconfig_mutex when toggling between
3912 		 * clean and active
3913 		 */
3914 		spin_lock(&mddev->lock);
3915 		if (st == active) {
3916 			restart_array(mddev);
3917 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3918 			wake_up(&mddev->sb_wait);
3919 			err = 0;
3920 		} else /* st == clean */ {
3921 			restart_array(mddev);
3922 			if (atomic_read(&mddev->writes_pending) == 0) {
3923 				if (mddev->in_sync == 0) {
3924 					mddev->in_sync = 1;
3925 					if (mddev->safemode == 1)
3926 						mddev->safemode = 0;
3927 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3928 				}
3929 				err = 0;
3930 			} else
3931 				err = -EBUSY;
3932 		}
3933 		spin_unlock(&mddev->lock);
3934 		return err ?: len;
3935 	}
3936 	err = mddev_lock(mddev);
3937 	if (err)
3938 		return err;
3939 	err = -EINVAL;
3940 	switch(st) {
3941 	case bad_word:
3942 		break;
3943 	case clear:
3944 		/* stopping an active array */
3945 		err = do_md_stop(mddev, 0, NULL);
3946 		break;
3947 	case inactive:
3948 		/* stopping an active array */
3949 		if (mddev->pers)
3950 			err = do_md_stop(mddev, 2, NULL);
3951 		else
3952 			err = 0; /* already inactive */
3953 		break;
3954 	case suspended:
3955 		break; /* not supported yet */
3956 	case readonly:
3957 		if (mddev->pers)
3958 			err = md_set_readonly(mddev, NULL);
3959 		else {
3960 			mddev->ro = 1;
3961 			set_disk_ro(mddev->gendisk, 1);
3962 			err = do_md_run(mddev);
3963 		}
3964 		break;
3965 	case read_auto:
3966 		if (mddev->pers) {
3967 			if (mddev->ro == 0)
3968 				err = md_set_readonly(mddev, NULL);
3969 			else if (mddev->ro == 1)
3970 				err = restart_array(mddev);
3971 			if (err == 0) {
3972 				mddev->ro = 2;
3973 				set_disk_ro(mddev->gendisk, 0);
3974 			}
3975 		} else {
3976 			mddev->ro = 2;
3977 			err = do_md_run(mddev);
3978 		}
3979 		break;
3980 	case clean:
3981 		if (mddev->pers) {
3982 			err = restart_array(mddev);
3983 			if (err)
3984 				break;
3985 			spin_lock(&mddev->lock);
3986 			if (atomic_read(&mddev->writes_pending) == 0) {
3987 				if (mddev->in_sync == 0) {
3988 					mddev->in_sync = 1;
3989 					if (mddev->safemode == 1)
3990 						mddev->safemode = 0;
3991 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3992 				}
3993 				err = 0;
3994 			} else
3995 				err = -EBUSY;
3996 			spin_unlock(&mddev->lock);
3997 		} else
3998 			err = -EINVAL;
3999 		break;
4000 	case active:
4001 		if (mddev->pers) {
4002 			err = restart_array(mddev);
4003 			if (err)
4004 				break;
4005 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4006 			wake_up(&mddev->sb_wait);
4007 			err = 0;
4008 		} else {
4009 			mddev->ro = 0;
4010 			set_disk_ro(mddev->gendisk, 0);
4011 			err = do_md_run(mddev);
4012 		}
4013 		break;
4014 	case write_pending:
4015 	case active_idle:
4016 		/* these cannot be set */
4017 		break;
4018 	}
4019 
4020 	if (!err) {
4021 		if (mddev->hold_active == UNTIL_IOCTL)
4022 			mddev->hold_active = 0;
4023 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4024 	}
4025 	mddev_unlock(mddev);
4026 	return err ?: len;
4027 }
4028 static struct md_sysfs_entry md_array_state =
4029 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4030 
4031 static ssize_t
4032 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4033 	return sprintf(page, "%d\n",
4034 		       atomic_read(&mddev->max_corr_read_errors));
4035 }
4036 
4037 static ssize_t
4038 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4039 {
4040 	unsigned int n;
4041 	int rv;
4042 
4043 	rv = kstrtouint(buf, 10, &n);
4044 	if (rv < 0)
4045 		return rv;
4046 	atomic_set(&mddev->max_corr_read_errors, n);
4047 	return len;
4048 }
4049 
4050 static struct md_sysfs_entry max_corr_read_errors =
4051 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4052 	max_corrected_read_errors_store);
4053 
4054 static ssize_t
4055 null_show(struct mddev *mddev, char *page)
4056 {
4057 	return -EINVAL;
4058 }
4059 
4060 static ssize_t
4061 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4062 {
4063 	/* buf must be %d:%d\n? giving major and minor numbers */
4064 	/* The new device is added to the array.
4065 	 * If the array has a persistent superblock, we read the
4066 	 * superblock to initialise info and check validity.
4067 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4068 	 * which mainly checks size.
4069 	 */
4070 	char *e;
4071 	int major = simple_strtoul(buf, &e, 10);
4072 	int minor;
4073 	dev_t dev;
4074 	struct md_rdev *rdev;
4075 	int err;
4076 
4077 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4078 		return -EINVAL;
4079 	minor = simple_strtoul(e+1, &e, 10);
4080 	if (*e && *e != '\n')
4081 		return -EINVAL;
4082 	dev = MKDEV(major, minor);
4083 	if (major != MAJOR(dev) ||
4084 	    minor != MINOR(dev))
4085 		return -EOVERFLOW;
4086 
4087 	flush_workqueue(md_misc_wq);
4088 
4089 	err = mddev_lock(mddev);
4090 	if (err)
4091 		return err;
4092 	if (mddev->persistent) {
4093 		rdev = md_import_device(dev, mddev->major_version,
4094 					mddev->minor_version);
4095 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4096 			struct md_rdev *rdev0
4097 				= list_entry(mddev->disks.next,
4098 					     struct md_rdev, same_set);
4099 			err = super_types[mddev->major_version]
4100 				.load_super(rdev, rdev0, mddev->minor_version);
4101 			if (err < 0)
4102 				goto out;
4103 		}
4104 	} else if (mddev->external)
4105 		rdev = md_import_device(dev, -2, -1);
4106 	else
4107 		rdev = md_import_device(dev, -1, -1);
4108 
4109 	if (IS_ERR(rdev)) {
4110 		mddev_unlock(mddev);
4111 		return PTR_ERR(rdev);
4112 	}
4113 	err = bind_rdev_to_array(rdev, mddev);
4114  out:
4115 	if (err)
4116 		export_rdev(rdev);
4117 	mddev_unlock(mddev);
4118 	return err ? err : len;
4119 }
4120 
4121 static struct md_sysfs_entry md_new_device =
4122 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4123 
4124 static ssize_t
4125 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4126 {
4127 	char *end;
4128 	unsigned long chunk, end_chunk;
4129 	int err;
4130 
4131 	err = mddev_lock(mddev);
4132 	if (err)
4133 		return err;
4134 	if (!mddev->bitmap)
4135 		goto out;
4136 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4137 	while (*buf) {
4138 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4139 		if (buf == end) break;
4140 		if (*end == '-') { /* range */
4141 			buf = end + 1;
4142 			end_chunk = simple_strtoul(buf, &end, 0);
4143 			if (buf == end) break;
4144 		}
4145 		if (*end && !isspace(*end)) break;
4146 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4147 		buf = skip_spaces(end);
4148 	}
4149 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4150 out:
4151 	mddev_unlock(mddev);
4152 	return len;
4153 }
4154 
4155 static struct md_sysfs_entry md_bitmap =
4156 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4157 
4158 static ssize_t
4159 size_show(struct mddev *mddev, char *page)
4160 {
4161 	return sprintf(page, "%llu\n",
4162 		(unsigned long long)mddev->dev_sectors / 2);
4163 }
4164 
4165 static int update_size(struct mddev *mddev, sector_t num_sectors);
4166 
4167 static ssize_t
4168 size_store(struct mddev *mddev, const char *buf, size_t len)
4169 {
4170 	/* If array is inactive, we can reduce the component size, but
4171 	 * not increase it (except from 0).
4172 	 * If array is active, we can try an on-line resize
4173 	 */
4174 	sector_t sectors;
4175 	int err = strict_blocks_to_sectors(buf, &sectors);
4176 
4177 	if (err < 0)
4178 		return err;
4179 	err = mddev_lock(mddev);
4180 	if (err)
4181 		return err;
4182 	if (mddev->pers) {
4183 		err = update_size(mddev, sectors);
4184 		md_update_sb(mddev, 1);
4185 	} else {
4186 		if (mddev->dev_sectors == 0 ||
4187 		    mddev->dev_sectors > sectors)
4188 			mddev->dev_sectors = sectors;
4189 		else
4190 			err = -ENOSPC;
4191 	}
4192 	mddev_unlock(mddev);
4193 	return err ? err : len;
4194 }
4195 
4196 static struct md_sysfs_entry md_size =
4197 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4198 
4199 /* Metadata version.
4200  * This is one of
4201  *   'none' for arrays with no metadata (good luck...)
4202  *   'external' for arrays with externally managed metadata,
4203  * or N.M for internally known formats
4204  */
4205 static ssize_t
4206 metadata_show(struct mddev *mddev, char *page)
4207 {
4208 	if (mddev->persistent)
4209 		return sprintf(page, "%d.%d\n",
4210 			       mddev->major_version, mddev->minor_version);
4211 	else if (mddev->external)
4212 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4213 	else
4214 		return sprintf(page, "none\n");
4215 }
4216 
4217 static ssize_t
4218 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4219 {
4220 	int major, minor;
4221 	char *e;
4222 	int err;
4223 	/* Changing the details of 'external' metadata is
4224 	 * always permitted.  Otherwise there must be
4225 	 * no devices attached to the array.
4226 	 */
4227 
4228 	err = mddev_lock(mddev);
4229 	if (err)
4230 		return err;
4231 	err = -EBUSY;
4232 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4233 		;
4234 	else if (!list_empty(&mddev->disks))
4235 		goto out_unlock;
4236 
4237 	err = 0;
4238 	if (cmd_match(buf, "none")) {
4239 		mddev->persistent = 0;
4240 		mddev->external = 0;
4241 		mddev->major_version = 0;
4242 		mddev->minor_version = 90;
4243 		goto out_unlock;
4244 	}
4245 	if (strncmp(buf, "external:", 9) == 0) {
4246 		size_t namelen = len-9;
4247 		if (namelen >= sizeof(mddev->metadata_type))
4248 			namelen = sizeof(mddev->metadata_type)-1;
4249 		strncpy(mddev->metadata_type, buf+9, namelen);
4250 		mddev->metadata_type[namelen] = 0;
4251 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4252 			mddev->metadata_type[--namelen] = 0;
4253 		mddev->persistent = 0;
4254 		mddev->external = 1;
4255 		mddev->major_version = 0;
4256 		mddev->minor_version = 90;
4257 		goto out_unlock;
4258 	}
4259 	major = simple_strtoul(buf, &e, 10);
4260 	err = -EINVAL;
4261 	if (e==buf || *e != '.')
4262 		goto out_unlock;
4263 	buf = e+1;
4264 	minor = simple_strtoul(buf, &e, 10);
4265 	if (e==buf || (*e && *e != '\n') )
4266 		goto out_unlock;
4267 	err = -ENOENT;
4268 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4269 		goto out_unlock;
4270 	mddev->major_version = major;
4271 	mddev->minor_version = minor;
4272 	mddev->persistent = 1;
4273 	mddev->external = 0;
4274 	err = 0;
4275 out_unlock:
4276 	mddev_unlock(mddev);
4277 	return err ?: len;
4278 }
4279 
4280 static struct md_sysfs_entry md_metadata =
4281 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4282 
4283 static ssize_t
4284 action_show(struct mddev *mddev, char *page)
4285 {
4286 	char *type = "idle";
4287 	unsigned long recovery = mddev->recovery;
4288 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4289 		type = "frozen";
4290 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4291 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4292 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4293 			type = "reshape";
4294 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4295 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4296 				type = "resync";
4297 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4298 				type = "check";
4299 			else
4300 				type = "repair";
4301 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4302 			type = "recover";
4303 		else if (mddev->reshape_position != MaxSector)
4304 			type = "reshape";
4305 	}
4306 	return sprintf(page, "%s\n", type);
4307 }
4308 
4309 static ssize_t
4310 action_store(struct mddev *mddev, const char *page, size_t len)
4311 {
4312 	if (!mddev->pers || !mddev->pers->sync_request)
4313 		return -EINVAL;
4314 
4315 
4316 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4317 		if (cmd_match(page, "frozen"))
4318 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4319 		else
4320 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4321 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4322 		    mddev_lock(mddev) == 0) {
4323 			flush_workqueue(md_misc_wq);
4324 			if (mddev->sync_thread) {
4325 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4326 				md_reap_sync_thread(mddev);
4327 			}
4328 			mddev_unlock(mddev);
4329 		}
4330 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4331 		return -EBUSY;
4332 	else if (cmd_match(page, "resync"))
4333 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4334 	else if (cmd_match(page, "recover")) {
4335 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4336 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4337 	} else if (cmd_match(page, "reshape")) {
4338 		int err;
4339 		if (mddev->pers->start_reshape == NULL)
4340 			return -EINVAL;
4341 		err = mddev_lock(mddev);
4342 		if (!err) {
4343 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4344 				err =  -EBUSY;
4345 			else {
4346 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4347 				err = mddev->pers->start_reshape(mddev);
4348 			}
4349 			mddev_unlock(mddev);
4350 		}
4351 		if (err)
4352 			return err;
4353 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4354 	} else {
4355 		if (cmd_match(page, "check"))
4356 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4357 		else if (!cmd_match(page, "repair"))
4358 			return -EINVAL;
4359 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4360 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4361 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4362 	}
4363 	if (mddev->ro == 2) {
4364 		/* A write to sync_action is enough to justify
4365 		 * canceling read-auto mode
4366 		 */
4367 		mddev->ro = 0;
4368 		md_wakeup_thread(mddev->sync_thread);
4369 	}
4370 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4371 	md_wakeup_thread(mddev->thread);
4372 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4373 	return len;
4374 }
4375 
4376 static struct md_sysfs_entry md_scan_mode =
4377 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4378 
4379 static ssize_t
4380 last_sync_action_show(struct mddev *mddev, char *page)
4381 {
4382 	return sprintf(page, "%s\n", mddev->last_sync_action);
4383 }
4384 
4385 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4386 
4387 static ssize_t
4388 mismatch_cnt_show(struct mddev *mddev, char *page)
4389 {
4390 	return sprintf(page, "%llu\n",
4391 		       (unsigned long long)
4392 		       atomic64_read(&mddev->resync_mismatches));
4393 }
4394 
4395 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4396 
4397 static ssize_t
4398 sync_min_show(struct mddev *mddev, char *page)
4399 {
4400 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4401 		       mddev->sync_speed_min ? "local": "system");
4402 }
4403 
4404 static ssize_t
4405 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4406 {
4407 	unsigned int min;
4408 	int rv;
4409 
4410 	if (strncmp(buf, "system", 6)==0) {
4411 		min = 0;
4412 	} else {
4413 		rv = kstrtouint(buf, 10, &min);
4414 		if (rv < 0)
4415 			return rv;
4416 		if (min == 0)
4417 			return -EINVAL;
4418 	}
4419 	mddev->sync_speed_min = min;
4420 	return len;
4421 }
4422 
4423 static struct md_sysfs_entry md_sync_min =
4424 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4425 
4426 static ssize_t
4427 sync_max_show(struct mddev *mddev, char *page)
4428 {
4429 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4430 		       mddev->sync_speed_max ? "local": "system");
4431 }
4432 
4433 static ssize_t
4434 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4435 {
4436 	unsigned int max;
4437 	int rv;
4438 
4439 	if (strncmp(buf, "system", 6)==0) {
4440 		max = 0;
4441 	} else {
4442 		rv = kstrtouint(buf, 10, &max);
4443 		if (rv < 0)
4444 			return rv;
4445 		if (max == 0)
4446 			return -EINVAL;
4447 	}
4448 	mddev->sync_speed_max = max;
4449 	return len;
4450 }
4451 
4452 static struct md_sysfs_entry md_sync_max =
4453 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4454 
4455 static ssize_t
4456 degraded_show(struct mddev *mddev, char *page)
4457 {
4458 	return sprintf(page, "%d\n", mddev->degraded);
4459 }
4460 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4461 
4462 static ssize_t
4463 sync_force_parallel_show(struct mddev *mddev, char *page)
4464 {
4465 	return sprintf(page, "%d\n", mddev->parallel_resync);
4466 }
4467 
4468 static ssize_t
4469 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4470 {
4471 	long n;
4472 
4473 	if (kstrtol(buf, 10, &n))
4474 		return -EINVAL;
4475 
4476 	if (n != 0 && n != 1)
4477 		return -EINVAL;
4478 
4479 	mddev->parallel_resync = n;
4480 
4481 	if (mddev->sync_thread)
4482 		wake_up(&resync_wait);
4483 
4484 	return len;
4485 }
4486 
4487 /* force parallel resync, even with shared block devices */
4488 static struct md_sysfs_entry md_sync_force_parallel =
4489 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4490        sync_force_parallel_show, sync_force_parallel_store);
4491 
4492 static ssize_t
4493 sync_speed_show(struct mddev *mddev, char *page)
4494 {
4495 	unsigned long resync, dt, db;
4496 	if (mddev->curr_resync == 0)
4497 		return sprintf(page, "none\n");
4498 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4499 	dt = (jiffies - mddev->resync_mark) / HZ;
4500 	if (!dt) dt++;
4501 	db = resync - mddev->resync_mark_cnt;
4502 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4503 }
4504 
4505 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4506 
4507 static ssize_t
4508 sync_completed_show(struct mddev *mddev, char *page)
4509 {
4510 	unsigned long long max_sectors, resync;
4511 
4512 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4513 		return sprintf(page, "none\n");
4514 
4515 	if (mddev->curr_resync == 1 ||
4516 	    mddev->curr_resync == 2)
4517 		return sprintf(page, "delayed\n");
4518 
4519 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4520 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4521 		max_sectors = mddev->resync_max_sectors;
4522 	else
4523 		max_sectors = mddev->dev_sectors;
4524 
4525 	resync = mddev->curr_resync_completed;
4526 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4527 }
4528 
4529 static struct md_sysfs_entry md_sync_completed =
4530 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4531 
4532 static ssize_t
4533 min_sync_show(struct mddev *mddev, char *page)
4534 {
4535 	return sprintf(page, "%llu\n",
4536 		       (unsigned long long)mddev->resync_min);
4537 }
4538 static ssize_t
4539 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4540 {
4541 	unsigned long long min;
4542 	int err;
4543 
4544 	if (kstrtoull(buf, 10, &min))
4545 		return -EINVAL;
4546 
4547 	spin_lock(&mddev->lock);
4548 	err = -EINVAL;
4549 	if (min > mddev->resync_max)
4550 		goto out_unlock;
4551 
4552 	err = -EBUSY;
4553 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4554 		goto out_unlock;
4555 
4556 	/* Round down to multiple of 4K for safety */
4557 	mddev->resync_min = round_down(min, 8);
4558 	err = 0;
4559 
4560 out_unlock:
4561 	spin_unlock(&mddev->lock);
4562 	return err ?: len;
4563 }
4564 
4565 static struct md_sysfs_entry md_min_sync =
4566 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4567 
4568 static ssize_t
4569 max_sync_show(struct mddev *mddev, char *page)
4570 {
4571 	if (mddev->resync_max == MaxSector)
4572 		return sprintf(page, "max\n");
4573 	else
4574 		return sprintf(page, "%llu\n",
4575 			       (unsigned long long)mddev->resync_max);
4576 }
4577 static ssize_t
4578 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4579 {
4580 	int err;
4581 	spin_lock(&mddev->lock);
4582 	if (strncmp(buf, "max", 3) == 0)
4583 		mddev->resync_max = MaxSector;
4584 	else {
4585 		unsigned long long max;
4586 		int chunk;
4587 
4588 		err = -EINVAL;
4589 		if (kstrtoull(buf, 10, &max))
4590 			goto out_unlock;
4591 		if (max < mddev->resync_min)
4592 			goto out_unlock;
4593 
4594 		err = -EBUSY;
4595 		if (max < mddev->resync_max &&
4596 		    mddev->ro == 0 &&
4597 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4598 			goto out_unlock;
4599 
4600 		/* Must be a multiple of chunk_size */
4601 		chunk = mddev->chunk_sectors;
4602 		if (chunk) {
4603 			sector_t temp = max;
4604 
4605 			err = -EINVAL;
4606 			if (sector_div(temp, chunk))
4607 				goto out_unlock;
4608 		}
4609 		mddev->resync_max = max;
4610 	}
4611 	wake_up(&mddev->recovery_wait);
4612 	err = 0;
4613 out_unlock:
4614 	spin_unlock(&mddev->lock);
4615 	return err ?: len;
4616 }
4617 
4618 static struct md_sysfs_entry md_max_sync =
4619 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4620 
4621 static ssize_t
4622 suspend_lo_show(struct mddev *mddev, char *page)
4623 {
4624 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4625 }
4626 
4627 static ssize_t
4628 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4629 {
4630 	unsigned long long old, new;
4631 	int err;
4632 
4633 	err = kstrtoull(buf, 10, &new);
4634 	if (err < 0)
4635 		return err;
4636 	if (new != (sector_t)new)
4637 		return -EINVAL;
4638 
4639 	err = mddev_lock(mddev);
4640 	if (err)
4641 		return err;
4642 	err = -EINVAL;
4643 	if (mddev->pers == NULL ||
4644 	    mddev->pers->quiesce == NULL)
4645 		goto unlock;
4646 	old = mddev->suspend_lo;
4647 	mddev->suspend_lo = new;
4648 	if (new >= old)
4649 		/* Shrinking suspended region */
4650 		mddev->pers->quiesce(mddev, 2);
4651 	else {
4652 		/* Expanding suspended region - need to wait */
4653 		mddev->pers->quiesce(mddev, 1);
4654 		mddev->pers->quiesce(mddev, 0);
4655 	}
4656 	err = 0;
4657 unlock:
4658 	mddev_unlock(mddev);
4659 	return err ?: len;
4660 }
4661 static struct md_sysfs_entry md_suspend_lo =
4662 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4663 
4664 static ssize_t
4665 suspend_hi_show(struct mddev *mddev, char *page)
4666 {
4667 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4668 }
4669 
4670 static ssize_t
4671 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4672 {
4673 	unsigned long long old, new;
4674 	int err;
4675 
4676 	err = kstrtoull(buf, 10, &new);
4677 	if (err < 0)
4678 		return err;
4679 	if (new != (sector_t)new)
4680 		return -EINVAL;
4681 
4682 	err = mddev_lock(mddev);
4683 	if (err)
4684 		return err;
4685 	err = -EINVAL;
4686 	if (mddev->pers == NULL ||
4687 	    mddev->pers->quiesce == NULL)
4688 		goto unlock;
4689 	old = mddev->suspend_hi;
4690 	mddev->suspend_hi = new;
4691 	if (new <= old)
4692 		/* Shrinking suspended region */
4693 		mddev->pers->quiesce(mddev, 2);
4694 	else {
4695 		/* Expanding suspended region - need to wait */
4696 		mddev->pers->quiesce(mddev, 1);
4697 		mddev->pers->quiesce(mddev, 0);
4698 	}
4699 	err = 0;
4700 unlock:
4701 	mddev_unlock(mddev);
4702 	return err ?: len;
4703 }
4704 static struct md_sysfs_entry md_suspend_hi =
4705 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4706 
4707 static ssize_t
4708 reshape_position_show(struct mddev *mddev, char *page)
4709 {
4710 	if (mddev->reshape_position != MaxSector)
4711 		return sprintf(page, "%llu\n",
4712 			       (unsigned long long)mddev->reshape_position);
4713 	strcpy(page, "none\n");
4714 	return 5;
4715 }
4716 
4717 static ssize_t
4718 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4719 {
4720 	struct md_rdev *rdev;
4721 	unsigned long long new;
4722 	int err;
4723 
4724 	err = kstrtoull(buf, 10, &new);
4725 	if (err < 0)
4726 		return err;
4727 	if (new != (sector_t)new)
4728 		return -EINVAL;
4729 	err = mddev_lock(mddev);
4730 	if (err)
4731 		return err;
4732 	err = -EBUSY;
4733 	if (mddev->pers)
4734 		goto unlock;
4735 	mddev->reshape_position = new;
4736 	mddev->delta_disks = 0;
4737 	mddev->reshape_backwards = 0;
4738 	mddev->new_level = mddev->level;
4739 	mddev->new_layout = mddev->layout;
4740 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4741 	rdev_for_each(rdev, mddev)
4742 		rdev->new_data_offset = rdev->data_offset;
4743 	err = 0;
4744 unlock:
4745 	mddev_unlock(mddev);
4746 	return err ?: len;
4747 }
4748 
4749 static struct md_sysfs_entry md_reshape_position =
4750 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4751        reshape_position_store);
4752 
4753 static ssize_t
4754 reshape_direction_show(struct mddev *mddev, char *page)
4755 {
4756 	return sprintf(page, "%s\n",
4757 		       mddev->reshape_backwards ? "backwards" : "forwards");
4758 }
4759 
4760 static ssize_t
4761 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4762 {
4763 	int backwards = 0;
4764 	int err;
4765 
4766 	if (cmd_match(buf, "forwards"))
4767 		backwards = 0;
4768 	else if (cmd_match(buf, "backwards"))
4769 		backwards = 1;
4770 	else
4771 		return -EINVAL;
4772 	if (mddev->reshape_backwards == backwards)
4773 		return len;
4774 
4775 	err = mddev_lock(mddev);
4776 	if (err)
4777 		return err;
4778 	/* check if we are allowed to change */
4779 	if (mddev->delta_disks)
4780 		err = -EBUSY;
4781 	else if (mddev->persistent &&
4782 	    mddev->major_version == 0)
4783 		err =  -EINVAL;
4784 	else
4785 		mddev->reshape_backwards = backwards;
4786 	mddev_unlock(mddev);
4787 	return err ?: len;
4788 }
4789 
4790 static struct md_sysfs_entry md_reshape_direction =
4791 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4792        reshape_direction_store);
4793 
4794 static ssize_t
4795 array_size_show(struct mddev *mddev, char *page)
4796 {
4797 	if (mddev->external_size)
4798 		return sprintf(page, "%llu\n",
4799 			       (unsigned long long)mddev->array_sectors/2);
4800 	else
4801 		return sprintf(page, "default\n");
4802 }
4803 
4804 static ssize_t
4805 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4806 {
4807 	sector_t sectors;
4808 	int err;
4809 
4810 	err = mddev_lock(mddev);
4811 	if (err)
4812 		return err;
4813 
4814 	if (strncmp(buf, "default", 7) == 0) {
4815 		if (mddev->pers)
4816 			sectors = mddev->pers->size(mddev, 0, 0);
4817 		else
4818 			sectors = mddev->array_sectors;
4819 
4820 		mddev->external_size = 0;
4821 	} else {
4822 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4823 			err = -EINVAL;
4824 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4825 			err = -E2BIG;
4826 		else
4827 			mddev->external_size = 1;
4828 	}
4829 
4830 	if (!err) {
4831 		mddev->array_sectors = sectors;
4832 		if (mddev->pers) {
4833 			set_capacity(mddev->gendisk, mddev->array_sectors);
4834 			revalidate_disk(mddev->gendisk);
4835 		}
4836 	}
4837 	mddev_unlock(mddev);
4838 	return err ?: len;
4839 }
4840 
4841 static struct md_sysfs_entry md_array_size =
4842 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4843        array_size_store);
4844 
4845 static struct attribute *md_default_attrs[] = {
4846 	&md_level.attr,
4847 	&md_layout.attr,
4848 	&md_raid_disks.attr,
4849 	&md_chunk_size.attr,
4850 	&md_size.attr,
4851 	&md_resync_start.attr,
4852 	&md_metadata.attr,
4853 	&md_new_device.attr,
4854 	&md_safe_delay.attr,
4855 	&md_array_state.attr,
4856 	&md_reshape_position.attr,
4857 	&md_reshape_direction.attr,
4858 	&md_array_size.attr,
4859 	&max_corr_read_errors.attr,
4860 	NULL,
4861 };
4862 
4863 static struct attribute *md_redundancy_attrs[] = {
4864 	&md_scan_mode.attr,
4865 	&md_last_scan_mode.attr,
4866 	&md_mismatches.attr,
4867 	&md_sync_min.attr,
4868 	&md_sync_max.attr,
4869 	&md_sync_speed.attr,
4870 	&md_sync_force_parallel.attr,
4871 	&md_sync_completed.attr,
4872 	&md_min_sync.attr,
4873 	&md_max_sync.attr,
4874 	&md_suspend_lo.attr,
4875 	&md_suspend_hi.attr,
4876 	&md_bitmap.attr,
4877 	&md_degraded.attr,
4878 	NULL,
4879 };
4880 static struct attribute_group md_redundancy_group = {
4881 	.name = NULL,
4882 	.attrs = md_redundancy_attrs,
4883 };
4884 
4885 static ssize_t
4886 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4887 {
4888 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4889 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4890 	ssize_t rv;
4891 
4892 	if (!entry->show)
4893 		return -EIO;
4894 	spin_lock(&all_mddevs_lock);
4895 	if (list_empty(&mddev->all_mddevs)) {
4896 		spin_unlock(&all_mddevs_lock);
4897 		return -EBUSY;
4898 	}
4899 	mddev_get(mddev);
4900 	spin_unlock(&all_mddevs_lock);
4901 
4902 	rv = entry->show(mddev, page);
4903 	mddev_put(mddev);
4904 	return rv;
4905 }
4906 
4907 static ssize_t
4908 md_attr_store(struct kobject *kobj, struct attribute *attr,
4909 	      const char *page, size_t length)
4910 {
4911 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4912 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4913 	ssize_t rv;
4914 
4915 	if (!entry->store)
4916 		return -EIO;
4917 	if (!capable(CAP_SYS_ADMIN))
4918 		return -EACCES;
4919 	spin_lock(&all_mddevs_lock);
4920 	if (list_empty(&mddev->all_mddevs)) {
4921 		spin_unlock(&all_mddevs_lock);
4922 		return -EBUSY;
4923 	}
4924 	mddev_get(mddev);
4925 	spin_unlock(&all_mddevs_lock);
4926 	rv = entry->store(mddev, page, length);
4927 	mddev_put(mddev);
4928 	return rv;
4929 }
4930 
4931 static void md_free(struct kobject *ko)
4932 {
4933 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4934 
4935 	if (mddev->sysfs_state)
4936 		sysfs_put(mddev->sysfs_state);
4937 
4938 	if (mddev->queue)
4939 		blk_cleanup_queue(mddev->queue);
4940 	if (mddev->gendisk) {
4941 		del_gendisk(mddev->gendisk);
4942 		put_disk(mddev->gendisk);
4943 	}
4944 
4945 	kfree(mddev);
4946 }
4947 
4948 static const struct sysfs_ops md_sysfs_ops = {
4949 	.show	= md_attr_show,
4950 	.store	= md_attr_store,
4951 };
4952 static struct kobj_type md_ktype = {
4953 	.release	= md_free,
4954 	.sysfs_ops	= &md_sysfs_ops,
4955 	.default_attrs	= md_default_attrs,
4956 };
4957 
4958 int mdp_major = 0;
4959 
4960 static void mddev_delayed_delete(struct work_struct *ws)
4961 {
4962 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4963 
4964 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4965 	kobject_del(&mddev->kobj);
4966 	kobject_put(&mddev->kobj);
4967 }
4968 
4969 static int md_alloc(dev_t dev, char *name)
4970 {
4971 	static DEFINE_MUTEX(disks_mutex);
4972 	struct mddev *mddev = mddev_find(dev);
4973 	struct gendisk *disk;
4974 	int partitioned;
4975 	int shift;
4976 	int unit;
4977 	int error;
4978 
4979 	if (!mddev)
4980 		return -ENODEV;
4981 
4982 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4983 	shift = partitioned ? MdpMinorShift : 0;
4984 	unit = MINOR(mddev->unit) >> shift;
4985 
4986 	/* wait for any previous instance of this device to be
4987 	 * completely removed (mddev_delayed_delete).
4988 	 */
4989 	flush_workqueue(md_misc_wq);
4990 
4991 	mutex_lock(&disks_mutex);
4992 	error = -EEXIST;
4993 	if (mddev->gendisk)
4994 		goto abort;
4995 
4996 	if (name) {
4997 		/* Need to ensure that 'name' is not a duplicate.
4998 		 */
4999 		struct mddev *mddev2;
5000 		spin_lock(&all_mddevs_lock);
5001 
5002 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5003 			if (mddev2->gendisk &&
5004 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5005 				spin_unlock(&all_mddevs_lock);
5006 				goto abort;
5007 			}
5008 		spin_unlock(&all_mddevs_lock);
5009 	}
5010 
5011 	error = -ENOMEM;
5012 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
5013 	if (!mddev->queue)
5014 		goto abort;
5015 	mddev->queue->queuedata = mddev;
5016 
5017 	blk_queue_make_request(mddev->queue, md_make_request);
5018 	blk_set_stacking_limits(&mddev->queue->limits);
5019 
5020 	disk = alloc_disk(1 << shift);
5021 	if (!disk) {
5022 		blk_cleanup_queue(mddev->queue);
5023 		mddev->queue = NULL;
5024 		goto abort;
5025 	}
5026 	disk->major = MAJOR(mddev->unit);
5027 	disk->first_minor = unit << shift;
5028 	if (name)
5029 		strcpy(disk->disk_name, name);
5030 	else if (partitioned)
5031 		sprintf(disk->disk_name, "md_d%d", unit);
5032 	else
5033 		sprintf(disk->disk_name, "md%d", unit);
5034 	disk->fops = &md_fops;
5035 	disk->private_data = mddev;
5036 	disk->queue = mddev->queue;
5037 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5038 	/* Allow extended partitions.  This makes the
5039 	 * 'mdp' device redundant, but we can't really
5040 	 * remove it now.
5041 	 */
5042 	disk->flags |= GENHD_FL_EXT_DEVT;
5043 	mddev->gendisk = disk;
5044 	/* As soon as we call add_disk(), another thread could get
5045 	 * through to md_open, so make sure it doesn't get too far
5046 	 */
5047 	mutex_lock(&mddev->open_mutex);
5048 	add_disk(disk);
5049 
5050 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5051 				     &disk_to_dev(disk)->kobj, "%s", "md");
5052 	if (error) {
5053 		/* This isn't possible, but as kobject_init_and_add is marked
5054 		 * __must_check, we must do something with the result
5055 		 */
5056 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5057 		       disk->disk_name);
5058 		error = 0;
5059 	}
5060 	if (mddev->kobj.sd &&
5061 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5062 		printk(KERN_DEBUG "pointless warning\n");
5063 	mutex_unlock(&mddev->open_mutex);
5064  abort:
5065 	mutex_unlock(&disks_mutex);
5066 	if (!error && mddev->kobj.sd) {
5067 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5068 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5069 	}
5070 	mddev_put(mddev);
5071 	return error;
5072 }
5073 
5074 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5075 {
5076 	md_alloc(dev, NULL);
5077 	return NULL;
5078 }
5079 
5080 static int add_named_array(const char *val, struct kernel_param *kp)
5081 {
5082 	/* val must be "md_*" where * is not all digits.
5083 	 * We allocate an array with a large free minor number, and
5084 	 * set the name to val.  val must not already be an active name.
5085 	 */
5086 	int len = strlen(val);
5087 	char buf[DISK_NAME_LEN];
5088 
5089 	while (len && val[len-1] == '\n')
5090 		len--;
5091 	if (len >= DISK_NAME_LEN)
5092 		return -E2BIG;
5093 	strlcpy(buf, val, len+1);
5094 	if (strncmp(buf, "md_", 3) != 0)
5095 		return -EINVAL;
5096 	return md_alloc(0, buf);
5097 }
5098 
5099 static void md_safemode_timeout(unsigned long data)
5100 {
5101 	struct mddev *mddev = (struct mddev *) data;
5102 
5103 	if (!atomic_read(&mddev->writes_pending)) {
5104 		mddev->safemode = 1;
5105 		if (mddev->external)
5106 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5107 	}
5108 	md_wakeup_thread(mddev->thread);
5109 }
5110 
5111 static int start_dirty_degraded;
5112 
5113 int md_run(struct mddev *mddev)
5114 {
5115 	int err;
5116 	struct md_rdev *rdev;
5117 	struct md_personality *pers;
5118 
5119 	if (list_empty(&mddev->disks))
5120 		/* cannot run an array with no devices.. */
5121 		return -EINVAL;
5122 
5123 	if (mddev->pers)
5124 		return -EBUSY;
5125 	/* Cannot run until previous stop completes properly */
5126 	if (mddev->sysfs_active)
5127 		return -EBUSY;
5128 
5129 	/*
5130 	 * Analyze all RAID superblock(s)
5131 	 */
5132 	if (!mddev->raid_disks) {
5133 		if (!mddev->persistent)
5134 			return -EINVAL;
5135 		analyze_sbs(mddev);
5136 	}
5137 
5138 	if (mddev->level != LEVEL_NONE)
5139 		request_module("md-level-%d", mddev->level);
5140 	else if (mddev->clevel[0])
5141 		request_module("md-%s", mddev->clevel);
5142 
5143 	/*
5144 	 * Drop all container device buffers, from now on
5145 	 * the only valid external interface is through the md
5146 	 * device.
5147 	 */
5148 	rdev_for_each(rdev, mddev) {
5149 		if (test_bit(Faulty, &rdev->flags))
5150 			continue;
5151 		sync_blockdev(rdev->bdev);
5152 		invalidate_bdev(rdev->bdev);
5153 
5154 		/* perform some consistency tests on the device.
5155 		 * We don't want the data to overlap the metadata,
5156 		 * Internal Bitmap issues have been handled elsewhere.
5157 		 */
5158 		if (rdev->meta_bdev) {
5159 			/* Nothing to check */;
5160 		} else if (rdev->data_offset < rdev->sb_start) {
5161 			if (mddev->dev_sectors &&
5162 			    rdev->data_offset + mddev->dev_sectors
5163 			    > rdev->sb_start) {
5164 				printk("md: %s: data overlaps metadata\n",
5165 				       mdname(mddev));
5166 				return -EINVAL;
5167 			}
5168 		} else {
5169 			if (rdev->sb_start + rdev->sb_size/512
5170 			    > rdev->data_offset) {
5171 				printk("md: %s: metadata overlaps data\n",
5172 				       mdname(mddev));
5173 				return -EINVAL;
5174 			}
5175 		}
5176 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5177 	}
5178 
5179 	if (mddev->bio_set == NULL)
5180 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5181 
5182 	spin_lock(&pers_lock);
5183 	pers = find_pers(mddev->level, mddev->clevel);
5184 	if (!pers || !try_module_get(pers->owner)) {
5185 		spin_unlock(&pers_lock);
5186 		if (mddev->level != LEVEL_NONE)
5187 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5188 			       mddev->level);
5189 		else
5190 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5191 			       mddev->clevel);
5192 		return -EINVAL;
5193 	}
5194 	spin_unlock(&pers_lock);
5195 	if (mddev->level != pers->level) {
5196 		mddev->level = pers->level;
5197 		mddev->new_level = pers->level;
5198 	}
5199 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5200 
5201 	if (mddev->reshape_position != MaxSector &&
5202 	    pers->start_reshape == NULL) {
5203 		/* This personality cannot handle reshaping... */
5204 		module_put(pers->owner);
5205 		return -EINVAL;
5206 	}
5207 
5208 	if (pers->sync_request) {
5209 		/* Warn if this is a potentially silly
5210 		 * configuration.
5211 		 */
5212 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5213 		struct md_rdev *rdev2;
5214 		int warned = 0;
5215 
5216 		rdev_for_each(rdev, mddev)
5217 			rdev_for_each(rdev2, mddev) {
5218 				if (rdev < rdev2 &&
5219 				    rdev->bdev->bd_contains ==
5220 				    rdev2->bdev->bd_contains) {
5221 					printk(KERN_WARNING
5222 					       "%s: WARNING: %s appears to be"
5223 					       " on the same physical disk as"
5224 					       " %s.\n",
5225 					       mdname(mddev),
5226 					       bdevname(rdev->bdev,b),
5227 					       bdevname(rdev2->bdev,b2));
5228 					warned = 1;
5229 				}
5230 			}
5231 
5232 		if (warned)
5233 			printk(KERN_WARNING
5234 			       "True protection against single-disk"
5235 			       " failure might be compromised.\n");
5236 	}
5237 
5238 	mddev->recovery = 0;
5239 	/* may be over-ridden by personality */
5240 	mddev->resync_max_sectors = mddev->dev_sectors;
5241 
5242 	mddev->ok_start_degraded = start_dirty_degraded;
5243 
5244 	if (start_readonly && mddev->ro == 0)
5245 		mddev->ro = 2; /* read-only, but switch on first write */
5246 
5247 	err = pers->run(mddev);
5248 	if (err)
5249 		printk(KERN_ERR "md: pers->run() failed ...\n");
5250 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5251 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5252 			  " but 'external_size' not in effect?\n", __func__);
5253 		printk(KERN_ERR
5254 		       "md: invalid array_size %llu > default size %llu\n",
5255 		       (unsigned long long)mddev->array_sectors / 2,
5256 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5257 		err = -EINVAL;
5258 	}
5259 	if (err == 0 && pers->sync_request &&
5260 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5261 		struct bitmap *bitmap;
5262 
5263 		bitmap = bitmap_create(mddev, -1);
5264 		if (IS_ERR(bitmap)) {
5265 			err = PTR_ERR(bitmap);
5266 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5267 			       mdname(mddev), err);
5268 		} else
5269 			mddev->bitmap = bitmap;
5270 
5271 	}
5272 	if (err) {
5273 		mddev_detach(mddev);
5274 		if (mddev->private)
5275 			pers->free(mddev, mddev->private);
5276 		mddev->private = NULL;
5277 		module_put(pers->owner);
5278 		bitmap_destroy(mddev);
5279 		return err;
5280 	}
5281 	if (mddev->queue) {
5282 		mddev->queue->backing_dev_info.congested_data = mddev;
5283 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5284 	}
5285 	if (pers->sync_request) {
5286 		if (mddev->kobj.sd &&
5287 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5288 			printk(KERN_WARNING
5289 			       "md: cannot register extra attributes for %s\n",
5290 			       mdname(mddev));
5291 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5292 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5293 		mddev->ro = 0;
5294 
5295 	atomic_set(&mddev->writes_pending,0);
5296 	atomic_set(&mddev->max_corr_read_errors,
5297 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5298 	mddev->safemode = 0;
5299 	if (mddev_is_clustered(mddev))
5300 		mddev->safemode_delay = 0;
5301 	else
5302 		mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5303 	mddev->in_sync = 1;
5304 	smp_wmb();
5305 	spin_lock(&mddev->lock);
5306 	mddev->pers = pers;
5307 	spin_unlock(&mddev->lock);
5308 	rdev_for_each(rdev, mddev)
5309 		if (rdev->raid_disk >= 0)
5310 			if (sysfs_link_rdev(mddev, rdev))
5311 				/* failure here is OK */;
5312 
5313 	if (mddev->degraded && !mddev->ro)
5314 		/* This ensures that recovering status is reported immediately
5315 		 * via sysfs - until a lack of spares is confirmed.
5316 		 */
5317 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5318 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5319 
5320 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5321 		md_update_sb(mddev, 0);
5322 
5323 	md_new_event(mddev);
5324 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5325 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5326 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5327 	return 0;
5328 }
5329 EXPORT_SYMBOL_GPL(md_run);
5330 
5331 static int do_md_run(struct mddev *mddev)
5332 {
5333 	int err;
5334 
5335 	err = md_run(mddev);
5336 	if (err)
5337 		goto out;
5338 	err = bitmap_load(mddev);
5339 	if (err) {
5340 		bitmap_destroy(mddev);
5341 		goto out;
5342 	}
5343 
5344 	if (mddev_is_clustered(mddev))
5345 		md_allow_write(mddev);
5346 
5347 	md_wakeup_thread(mddev->thread);
5348 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5349 
5350 	set_capacity(mddev->gendisk, mddev->array_sectors);
5351 	revalidate_disk(mddev->gendisk);
5352 	mddev->changed = 1;
5353 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5354 out:
5355 	return err;
5356 }
5357 
5358 static int restart_array(struct mddev *mddev)
5359 {
5360 	struct gendisk *disk = mddev->gendisk;
5361 
5362 	/* Complain if it has no devices */
5363 	if (list_empty(&mddev->disks))
5364 		return -ENXIO;
5365 	if (!mddev->pers)
5366 		return -EINVAL;
5367 	if (!mddev->ro)
5368 		return -EBUSY;
5369 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5370 		struct md_rdev *rdev;
5371 		bool has_journal = false;
5372 
5373 		rcu_read_lock();
5374 		rdev_for_each_rcu(rdev, mddev) {
5375 			if (test_bit(Journal, &rdev->flags) &&
5376 			    !test_bit(Faulty, &rdev->flags)) {
5377 				has_journal = true;
5378 				break;
5379 			}
5380 		}
5381 		rcu_read_unlock();
5382 
5383 		/* Don't restart rw with journal missing/faulty */
5384 		if (!has_journal)
5385 			return -EINVAL;
5386 	}
5387 
5388 	mddev->safemode = 0;
5389 	mddev->ro = 0;
5390 	set_disk_ro(disk, 0);
5391 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5392 		mdname(mddev));
5393 	/* Kick recovery or resync if necessary */
5394 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5395 	md_wakeup_thread(mddev->thread);
5396 	md_wakeup_thread(mddev->sync_thread);
5397 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5398 	return 0;
5399 }
5400 
5401 static void md_clean(struct mddev *mddev)
5402 {
5403 	mddev->array_sectors = 0;
5404 	mddev->external_size = 0;
5405 	mddev->dev_sectors = 0;
5406 	mddev->raid_disks = 0;
5407 	mddev->recovery_cp = 0;
5408 	mddev->resync_min = 0;
5409 	mddev->resync_max = MaxSector;
5410 	mddev->reshape_position = MaxSector;
5411 	mddev->external = 0;
5412 	mddev->persistent = 0;
5413 	mddev->level = LEVEL_NONE;
5414 	mddev->clevel[0] = 0;
5415 	mddev->flags = 0;
5416 	mddev->ro = 0;
5417 	mddev->metadata_type[0] = 0;
5418 	mddev->chunk_sectors = 0;
5419 	mddev->ctime = mddev->utime = 0;
5420 	mddev->layout = 0;
5421 	mddev->max_disks = 0;
5422 	mddev->events = 0;
5423 	mddev->can_decrease_events = 0;
5424 	mddev->delta_disks = 0;
5425 	mddev->reshape_backwards = 0;
5426 	mddev->new_level = LEVEL_NONE;
5427 	mddev->new_layout = 0;
5428 	mddev->new_chunk_sectors = 0;
5429 	mddev->curr_resync = 0;
5430 	atomic64_set(&mddev->resync_mismatches, 0);
5431 	mddev->suspend_lo = mddev->suspend_hi = 0;
5432 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5433 	mddev->recovery = 0;
5434 	mddev->in_sync = 0;
5435 	mddev->changed = 0;
5436 	mddev->degraded = 0;
5437 	mddev->safemode = 0;
5438 	mddev->private = NULL;
5439 	mddev->bitmap_info.offset = 0;
5440 	mddev->bitmap_info.default_offset = 0;
5441 	mddev->bitmap_info.default_space = 0;
5442 	mddev->bitmap_info.chunksize = 0;
5443 	mddev->bitmap_info.daemon_sleep = 0;
5444 	mddev->bitmap_info.max_write_behind = 0;
5445 }
5446 
5447 static void __md_stop_writes(struct mddev *mddev)
5448 {
5449 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5450 	flush_workqueue(md_misc_wq);
5451 	if (mddev->sync_thread) {
5452 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5453 		md_reap_sync_thread(mddev);
5454 	}
5455 
5456 	del_timer_sync(&mddev->safemode_timer);
5457 
5458 	bitmap_flush(mddev);
5459 	md_super_wait(mddev);
5460 
5461 	if (mddev->ro == 0 &&
5462 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5463 	     (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5464 		/* mark array as shutdown cleanly */
5465 		if (!mddev_is_clustered(mddev))
5466 			mddev->in_sync = 1;
5467 		md_update_sb(mddev, 1);
5468 	}
5469 }
5470 
5471 void md_stop_writes(struct mddev *mddev)
5472 {
5473 	mddev_lock_nointr(mddev);
5474 	__md_stop_writes(mddev);
5475 	mddev_unlock(mddev);
5476 }
5477 EXPORT_SYMBOL_GPL(md_stop_writes);
5478 
5479 static void mddev_detach(struct mddev *mddev)
5480 {
5481 	struct bitmap *bitmap = mddev->bitmap;
5482 	/* wait for behind writes to complete */
5483 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5484 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5485 		       mdname(mddev));
5486 		/* need to kick something here to make sure I/O goes? */
5487 		wait_event(bitmap->behind_wait,
5488 			   atomic_read(&bitmap->behind_writes) == 0);
5489 	}
5490 	if (mddev->pers && mddev->pers->quiesce) {
5491 		mddev->pers->quiesce(mddev, 1);
5492 		mddev->pers->quiesce(mddev, 0);
5493 	}
5494 	md_unregister_thread(&mddev->thread);
5495 	if (mddev->queue)
5496 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5497 }
5498 
5499 static void __md_stop(struct mddev *mddev)
5500 {
5501 	struct md_personality *pers = mddev->pers;
5502 	mddev_detach(mddev);
5503 	/* Ensure ->event_work is done */
5504 	flush_workqueue(md_misc_wq);
5505 	spin_lock(&mddev->lock);
5506 	mddev->pers = NULL;
5507 	spin_unlock(&mddev->lock);
5508 	pers->free(mddev, mddev->private);
5509 	mddev->private = NULL;
5510 	if (pers->sync_request && mddev->to_remove == NULL)
5511 		mddev->to_remove = &md_redundancy_group;
5512 	module_put(pers->owner);
5513 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5514 }
5515 
5516 void md_stop(struct mddev *mddev)
5517 {
5518 	/* stop the array and free an attached data structures.
5519 	 * This is called from dm-raid
5520 	 */
5521 	__md_stop(mddev);
5522 	bitmap_destroy(mddev);
5523 	if (mddev->bio_set)
5524 		bioset_free(mddev->bio_set);
5525 }
5526 
5527 EXPORT_SYMBOL_GPL(md_stop);
5528 
5529 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5530 {
5531 	int err = 0;
5532 	int did_freeze = 0;
5533 
5534 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5535 		did_freeze = 1;
5536 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5537 		md_wakeup_thread(mddev->thread);
5538 	}
5539 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5540 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5541 	if (mddev->sync_thread)
5542 		/* Thread might be blocked waiting for metadata update
5543 		 * which will now never happen */
5544 		wake_up_process(mddev->sync_thread->tsk);
5545 
5546 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5547 		return -EBUSY;
5548 	mddev_unlock(mddev);
5549 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5550 					  &mddev->recovery));
5551 	wait_event(mddev->sb_wait,
5552 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5553 	mddev_lock_nointr(mddev);
5554 
5555 	mutex_lock(&mddev->open_mutex);
5556 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5557 	    mddev->sync_thread ||
5558 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5559 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5560 		printk("md: %s still in use.\n",mdname(mddev));
5561 		if (did_freeze) {
5562 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5563 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5564 			md_wakeup_thread(mddev->thread);
5565 		}
5566 		err = -EBUSY;
5567 		goto out;
5568 	}
5569 	if (mddev->pers) {
5570 		__md_stop_writes(mddev);
5571 
5572 		err  = -ENXIO;
5573 		if (mddev->ro==1)
5574 			goto out;
5575 		mddev->ro = 1;
5576 		set_disk_ro(mddev->gendisk, 1);
5577 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5578 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5579 		md_wakeup_thread(mddev->thread);
5580 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5581 		err = 0;
5582 	}
5583 out:
5584 	mutex_unlock(&mddev->open_mutex);
5585 	return err;
5586 }
5587 
5588 /* mode:
5589  *   0 - completely stop and dis-assemble array
5590  *   2 - stop but do not disassemble array
5591  */
5592 static int do_md_stop(struct mddev *mddev, int mode,
5593 		      struct block_device *bdev)
5594 {
5595 	struct gendisk *disk = mddev->gendisk;
5596 	struct md_rdev *rdev;
5597 	int did_freeze = 0;
5598 
5599 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5600 		did_freeze = 1;
5601 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5602 		md_wakeup_thread(mddev->thread);
5603 	}
5604 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5605 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5606 	if (mddev->sync_thread)
5607 		/* Thread might be blocked waiting for metadata update
5608 		 * which will now never happen */
5609 		wake_up_process(mddev->sync_thread->tsk);
5610 
5611 	mddev_unlock(mddev);
5612 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5613 				 !test_bit(MD_RECOVERY_RUNNING,
5614 					   &mddev->recovery)));
5615 	mddev_lock_nointr(mddev);
5616 
5617 	mutex_lock(&mddev->open_mutex);
5618 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5619 	    mddev->sysfs_active ||
5620 	    mddev->sync_thread ||
5621 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5622 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5623 		printk("md: %s still in use.\n",mdname(mddev));
5624 		mutex_unlock(&mddev->open_mutex);
5625 		if (did_freeze) {
5626 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5627 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5628 			md_wakeup_thread(mddev->thread);
5629 		}
5630 		return -EBUSY;
5631 	}
5632 	if (mddev->pers) {
5633 		if (mddev->ro)
5634 			set_disk_ro(disk, 0);
5635 
5636 		__md_stop_writes(mddev);
5637 		__md_stop(mddev);
5638 		mddev->queue->backing_dev_info.congested_fn = NULL;
5639 
5640 		/* tell userspace to handle 'inactive' */
5641 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5642 
5643 		rdev_for_each(rdev, mddev)
5644 			if (rdev->raid_disk >= 0)
5645 				sysfs_unlink_rdev(mddev, rdev);
5646 
5647 		set_capacity(disk, 0);
5648 		mutex_unlock(&mddev->open_mutex);
5649 		mddev->changed = 1;
5650 		revalidate_disk(disk);
5651 
5652 		if (mddev->ro)
5653 			mddev->ro = 0;
5654 	} else
5655 		mutex_unlock(&mddev->open_mutex);
5656 	/*
5657 	 * Free resources if final stop
5658 	 */
5659 	if (mode == 0) {
5660 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5661 
5662 		bitmap_destroy(mddev);
5663 		if (mddev->bitmap_info.file) {
5664 			struct file *f = mddev->bitmap_info.file;
5665 			spin_lock(&mddev->lock);
5666 			mddev->bitmap_info.file = NULL;
5667 			spin_unlock(&mddev->lock);
5668 			fput(f);
5669 		}
5670 		mddev->bitmap_info.offset = 0;
5671 
5672 		export_array(mddev);
5673 
5674 		md_clean(mddev);
5675 		if (mddev->hold_active == UNTIL_STOP)
5676 			mddev->hold_active = 0;
5677 	}
5678 	md_new_event(mddev);
5679 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5680 	return 0;
5681 }
5682 
5683 #ifndef MODULE
5684 static void autorun_array(struct mddev *mddev)
5685 {
5686 	struct md_rdev *rdev;
5687 	int err;
5688 
5689 	if (list_empty(&mddev->disks))
5690 		return;
5691 
5692 	printk(KERN_INFO "md: running: ");
5693 
5694 	rdev_for_each(rdev, mddev) {
5695 		char b[BDEVNAME_SIZE];
5696 		printk("<%s>", bdevname(rdev->bdev,b));
5697 	}
5698 	printk("\n");
5699 
5700 	err = do_md_run(mddev);
5701 	if (err) {
5702 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5703 		do_md_stop(mddev, 0, NULL);
5704 	}
5705 }
5706 
5707 /*
5708  * lets try to run arrays based on all disks that have arrived
5709  * until now. (those are in pending_raid_disks)
5710  *
5711  * the method: pick the first pending disk, collect all disks with
5712  * the same UUID, remove all from the pending list and put them into
5713  * the 'same_array' list. Then order this list based on superblock
5714  * update time (freshest comes first), kick out 'old' disks and
5715  * compare superblocks. If everything's fine then run it.
5716  *
5717  * If "unit" is allocated, then bump its reference count
5718  */
5719 static void autorun_devices(int part)
5720 {
5721 	struct md_rdev *rdev0, *rdev, *tmp;
5722 	struct mddev *mddev;
5723 	char b[BDEVNAME_SIZE];
5724 
5725 	printk(KERN_INFO "md: autorun ...\n");
5726 	while (!list_empty(&pending_raid_disks)) {
5727 		int unit;
5728 		dev_t dev;
5729 		LIST_HEAD(candidates);
5730 		rdev0 = list_entry(pending_raid_disks.next,
5731 					 struct md_rdev, same_set);
5732 
5733 		printk(KERN_INFO "md: considering %s ...\n",
5734 			bdevname(rdev0->bdev,b));
5735 		INIT_LIST_HEAD(&candidates);
5736 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5737 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5738 				printk(KERN_INFO "md:  adding %s ...\n",
5739 					bdevname(rdev->bdev,b));
5740 				list_move(&rdev->same_set, &candidates);
5741 			}
5742 		/*
5743 		 * now we have a set of devices, with all of them having
5744 		 * mostly sane superblocks. It's time to allocate the
5745 		 * mddev.
5746 		 */
5747 		if (part) {
5748 			dev = MKDEV(mdp_major,
5749 				    rdev0->preferred_minor << MdpMinorShift);
5750 			unit = MINOR(dev) >> MdpMinorShift;
5751 		} else {
5752 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5753 			unit = MINOR(dev);
5754 		}
5755 		if (rdev0->preferred_minor != unit) {
5756 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5757 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5758 			break;
5759 		}
5760 
5761 		md_probe(dev, NULL, NULL);
5762 		mddev = mddev_find(dev);
5763 		if (!mddev || !mddev->gendisk) {
5764 			if (mddev)
5765 				mddev_put(mddev);
5766 			printk(KERN_ERR
5767 				"md: cannot allocate memory for md drive.\n");
5768 			break;
5769 		}
5770 		if (mddev_lock(mddev))
5771 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5772 			       mdname(mddev));
5773 		else if (mddev->raid_disks || mddev->major_version
5774 			 || !list_empty(&mddev->disks)) {
5775 			printk(KERN_WARNING
5776 				"md: %s already running, cannot run %s\n",
5777 				mdname(mddev), bdevname(rdev0->bdev,b));
5778 			mddev_unlock(mddev);
5779 		} else {
5780 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5781 			mddev->persistent = 1;
5782 			rdev_for_each_list(rdev, tmp, &candidates) {
5783 				list_del_init(&rdev->same_set);
5784 				if (bind_rdev_to_array(rdev, mddev))
5785 					export_rdev(rdev);
5786 			}
5787 			autorun_array(mddev);
5788 			mddev_unlock(mddev);
5789 		}
5790 		/* on success, candidates will be empty, on error
5791 		 * it won't...
5792 		 */
5793 		rdev_for_each_list(rdev, tmp, &candidates) {
5794 			list_del_init(&rdev->same_set);
5795 			export_rdev(rdev);
5796 		}
5797 		mddev_put(mddev);
5798 	}
5799 	printk(KERN_INFO "md: ... autorun DONE.\n");
5800 }
5801 #endif /* !MODULE */
5802 
5803 static int get_version(void __user *arg)
5804 {
5805 	mdu_version_t ver;
5806 
5807 	ver.major = MD_MAJOR_VERSION;
5808 	ver.minor = MD_MINOR_VERSION;
5809 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5810 
5811 	if (copy_to_user(arg, &ver, sizeof(ver)))
5812 		return -EFAULT;
5813 
5814 	return 0;
5815 }
5816 
5817 static int get_array_info(struct mddev *mddev, void __user *arg)
5818 {
5819 	mdu_array_info_t info;
5820 	int nr,working,insync,failed,spare;
5821 	struct md_rdev *rdev;
5822 
5823 	nr = working = insync = failed = spare = 0;
5824 	rcu_read_lock();
5825 	rdev_for_each_rcu(rdev, mddev) {
5826 		nr++;
5827 		if (test_bit(Faulty, &rdev->flags))
5828 			failed++;
5829 		else {
5830 			working++;
5831 			if (test_bit(In_sync, &rdev->flags))
5832 				insync++;
5833 			else
5834 				spare++;
5835 		}
5836 	}
5837 	rcu_read_unlock();
5838 
5839 	info.major_version = mddev->major_version;
5840 	info.minor_version = mddev->minor_version;
5841 	info.patch_version = MD_PATCHLEVEL_VERSION;
5842 	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
5843 	info.level         = mddev->level;
5844 	info.size          = mddev->dev_sectors / 2;
5845 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5846 		info.size = -1;
5847 	info.nr_disks      = nr;
5848 	info.raid_disks    = mddev->raid_disks;
5849 	info.md_minor      = mddev->md_minor;
5850 	info.not_persistent= !mddev->persistent;
5851 
5852 	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
5853 	info.state         = 0;
5854 	if (mddev->in_sync)
5855 		info.state = (1<<MD_SB_CLEAN);
5856 	if (mddev->bitmap && mddev->bitmap_info.offset)
5857 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5858 	if (mddev_is_clustered(mddev))
5859 		info.state |= (1<<MD_SB_CLUSTERED);
5860 	info.active_disks  = insync;
5861 	info.working_disks = working;
5862 	info.failed_disks  = failed;
5863 	info.spare_disks   = spare;
5864 
5865 	info.layout        = mddev->layout;
5866 	info.chunk_size    = mddev->chunk_sectors << 9;
5867 
5868 	if (copy_to_user(arg, &info, sizeof(info)))
5869 		return -EFAULT;
5870 
5871 	return 0;
5872 }
5873 
5874 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5875 {
5876 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5877 	char *ptr;
5878 	int err;
5879 
5880 	file = kzalloc(sizeof(*file), GFP_NOIO);
5881 	if (!file)
5882 		return -ENOMEM;
5883 
5884 	err = 0;
5885 	spin_lock(&mddev->lock);
5886 	/* bitmap enabled */
5887 	if (mddev->bitmap_info.file) {
5888 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5889 				sizeof(file->pathname));
5890 		if (IS_ERR(ptr))
5891 			err = PTR_ERR(ptr);
5892 		else
5893 			memmove(file->pathname, ptr,
5894 				sizeof(file->pathname)-(ptr-file->pathname));
5895 	}
5896 	spin_unlock(&mddev->lock);
5897 
5898 	if (err == 0 &&
5899 	    copy_to_user(arg, file, sizeof(*file)))
5900 		err = -EFAULT;
5901 
5902 	kfree(file);
5903 	return err;
5904 }
5905 
5906 static int get_disk_info(struct mddev *mddev, void __user * arg)
5907 {
5908 	mdu_disk_info_t info;
5909 	struct md_rdev *rdev;
5910 
5911 	if (copy_from_user(&info, arg, sizeof(info)))
5912 		return -EFAULT;
5913 
5914 	rcu_read_lock();
5915 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5916 	if (rdev) {
5917 		info.major = MAJOR(rdev->bdev->bd_dev);
5918 		info.minor = MINOR(rdev->bdev->bd_dev);
5919 		info.raid_disk = rdev->raid_disk;
5920 		info.state = 0;
5921 		if (test_bit(Faulty, &rdev->flags))
5922 			info.state |= (1<<MD_DISK_FAULTY);
5923 		else if (test_bit(In_sync, &rdev->flags)) {
5924 			info.state |= (1<<MD_DISK_ACTIVE);
5925 			info.state |= (1<<MD_DISK_SYNC);
5926 		}
5927 		if (test_bit(Journal, &rdev->flags))
5928 			info.state |= (1<<MD_DISK_JOURNAL);
5929 		if (test_bit(WriteMostly, &rdev->flags))
5930 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5931 	} else {
5932 		info.major = info.minor = 0;
5933 		info.raid_disk = -1;
5934 		info.state = (1<<MD_DISK_REMOVED);
5935 	}
5936 	rcu_read_unlock();
5937 
5938 	if (copy_to_user(arg, &info, sizeof(info)))
5939 		return -EFAULT;
5940 
5941 	return 0;
5942 }
5943 
5944 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5945 {
5946 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5947 	struct md_rdev *rdev;
5948 	dev_t dev = MKDEV(info->major,info->minor);
5949 
5950 	if (mddev_is_clustered(mddev) &&
5951 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5952 		pr_err("%s: Cannot add to clustered mddev.\n",
5953 			       mdname(mddev));
5954 		return -EINVAL;
5955 	}
5956 
5957 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5958 		return -EOVERFLOW;
5959 
5960 	if (!mddev->raid_disks) {
5961 		int err;
5962 		/* expecting a device which has a superblock */
5963 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5964 		if (IS_ERR(rdev)) {
5965 			printk(KERN_WARNING
5966 				"md: md_import_device returned %ld\n",
5967 				PTR_ERR(rdev));
5968 			return PTR_ERR(rdev);
5969 		}
5970 		if (!list_empty(&mddev->disks)) {
5971 			struct md_rdev *rdev0
5972 				= list_entry(mddev->disks.next,
5973 					     struct md_rdev, same_set);
5974 			err = super_types[mddev->major_version]
5975 				.load_super(rdev, rdev0, mddev->minor_version);
5976 			if (err < 0) {
5977 				printk(KERN_WARNING
5978 					"md: %s has different UUID to %s\n",
5979 					bdevname(rdev->bdev,b),
5980 					bdevname(rdev0->bdev,b2));
5981 				export_rdev(rdev);
5982 				return -EINVAL;
5983 			}
5984 		}
5985 		err = bind_rdev_to_array(rdev, mddev);
5986 		if (err)
5987 			export_rdev(rdev);
5988 		return err;
5989 	}
5990 
5991 	/*
5992 	 * add_new_disk can be used once the array is assembled
5993 	 * to add "hot spares".  They must already have a superblock
5994 	 * written
5995 	 */
5996 	if (mddev->pers) {
5997 		int err;
5998 		if (!mddev->pers->hot_add_disk) {
5999 			printk(KERN_WARNING
6000 				"%s: personality does not support diskops!\n",
6001 			       mdname(mddev));
6002 			return -EINVAL;
6003 		}
6004 		if (mddev->persistent)
6005 			rdev = md_import_device(dev, mddev->major_version,
6006 						mddev->minor_version);
6007 		else
6008 			rdev = md_import_device(dev, -1, -1);
6009 		if (IS_ERR(rdev)) {
6010 			printk(KERN_WARNING
6011 				"md: md_import_device returned %ld\n",
6012 				PTR_ERR(rdev));
6013 			return PTR_ERR(rdev);
6014 		}
6015 		/* set saved_raid_disk if appropriate */
6016 		if (!mddev->persistent) {
6017 			if (info->state & (1<<MD_DISK_SYNC)  &&
6018 			    info->raid_disk < mddev->raid_disks) {
6019 				rdev->raid_disk = info->raid_disk;
6020 				set_bit(In_sync, &rdev->flags);
6021 				clear_bit(Bitmap_sync, &rdev->flags);
6022 			} else
6023 				rdev->raid_disk = -1;
6024 			rdev->saved_raid_disk = rdev->raid_disk;
6025 		} else
6026 			super_types[mddev->major_version].
6027 				validate_super(mddev, rdev);
6028 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6029 		     rdev->raid_disk != info->raid_disk) {
6030 			/* This was a hot-add request, but events doesn't
6031 			 * match, so reject it.
6032 			 */
6033 			export_rdev(rdev);
6034 			return -EINVAL;
6035 		}
6036 
6037 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6038 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6039 			set_bit(WriteMostly, &rdev->flags);
6040 		else
6041 			clear_bit(WriteMostly, &rdev->flags);
6042 
6043 		if (info->state & (1<<MD_DISK_JOURNAL)) {
6044 			struct md_rdev *rdev2;
6045 			bool has_journal = false;
6046 
6047 			/* make sure no existing journal disk */
6048 			rdev_for_each(rdev2, mddev) {
6049 				if (test_bit(Journal, &rdev2->flags)) {
6050 					has_journal = true;
6051 					break;
6052 				}
6053 			}
6054 			if (has_journal) {
6055 				export_rdev(rdev);
6056 				return -EBUSY;
6057 			}
6058 			set_bit(Journal, &rdev->flags);
6059 		}
6060 		/*
6061 		 * check whether the device shows up in other nodes
6062 		 */
6063 		if (mddev_is_clustered(mddev)) {
6064 			if (info->state & (1 << MD_DISK_CANDIDATE))
6065 				set_bit(Candidate, &rdev->flags);
6066 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6067 				/* --add initiated by this node */
6068 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6069 				if (err) {
6070 					export_rdev(rdev);
6071 					return err;
6072 				}
6073 			}
6074 		}
6075 
6076 		rdev->raid_disk = -1;
6077 		err = bind_rdev_to_array(rdev, mddev);
6078 
6079 		if (err)
6080 			export_rdev(rdev);
6081 
6082 		if (mddev_is_clustered(mddev)) {
6083 			if (info->state & (1 << MD_DISK_CANDIDATE))
6084 				md_cluster_ops->new_disk_ack(mddev, (err == 0));
6085 			else {
6086 				if (err)
6087 					md_cluster_ops->add_new_disk_cancel(mddev);
6088 				else
6089 					err = add_bound_rdev(rdev);
6090 			}
6091 
6092 		} else if (!err)
6093 			err = add_bound_rdev(rdev);
6094 
6095 		return err;
6096 	}
6097 
6098 	/* otherwise, add_new_disk is only allowed
6099 	 * for major_version==0 superblocks
6100 	 */
6101 	if (mddev->major_version != 0) {
6102 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6103 		       mdname(mddev));
6104 		return -EINVAL;
6105 	}
6106 
6107 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6108 		int err;
6109 		rdev = md_import_device(dev, -1, 0);
6110 		if (IS_ERR(rdev)) {
6111 			printk(KERN_WARNING
6112 				"md: error, md_import_device() returned %ld\n",
6113 				PTR_ERR(rdev));
6114 			return PTR_ERR(rdev);
6115 		}
6116 		rdev->desc_nr = info->number;
6117 		if (info->raid_disk < mddev->raid_disks)
6118 			rdev->raid_disk = info->raid_disk;
6119 		else
6120 			rdev->raid_disk = -1;
6121 
6122 		if (rdev->raid_disk < mddev->raid_disks)
6123 			if (info->state & (1<<MD_DISK_SYNC))
6124 				set_bit(In_sync, &rdev->flags);
6125 
6126 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6127 			set_bit(WriteMostly, &rdev->flags);
6128 
6129 		if (!mddev->persistent) {
6130 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
6131 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6132 		} else
6133 			rdev->sb_start = calc_dev_sboffset(rdev);
6134 		rdev->sectors = rdev->sb_start;
6135 
6136 		err = bind_rdev_to_array(rdev, mddev);
6137 		if (err) {
6138 			export_rdev(rdev);
6139 			return err;
6140 		}
6141 	}
6142 
6143 	return 0;
6144 }
6145 
6146 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6147 {
6148 	char b[BDEVNAME_SIZE];
6149 	struct md_rdev *rdev;
6150 
6151 	rdev = find_rdev(mddev, dev);
6152 	if (!rdev)
6153 		return -ENXIO;
6154 
6155 	if (rdev->raid_disk < 0)
6156 		goto kick_rdev;
6157 
6158 	clear_bit(Blocked, &rdev->flags);
6159 	remove_and_add_spares(mddev, rdev);
6160 
6161 	if (rdev->raid_disk >= 0)
6162 		goto busy;
6163 
6164 kick_rdev:
6165 	if (mddev_is_clustered(mddev))
6166 		md_cluster_ops->remove_disk(mddev, rdev);
6167 
6168 	md_kick_rdev_from_array(rdev);
6169 	md_update_sb(mddev, 1);
6170 	md_new_event(mddev);
6171 
6172 	return 0;
6173 busy:
6174 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6175 		bdevname(rdev->bdev,b), mdname(mddev));
6176 	return -EBUSY;
6177 }
6178 
6179 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6180 {
6181 	char b[BDEVNAME_SIZE];
6182 	int err;
6183 	struct md_rdev *rdev;
6184 
6185 	if (!mddev->pers)
6186 		return -ENODEV;
6187 
6188 	if (mddev->major_version != 0) {
6189 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6190 			" version-0 superblocks.\n",
6191 			mdname(mddev));
6192 		return -EINVAL;
6193 	}
6194 	if (!mddev->pers->hot_add_disk) {
6195 		printk(KERN_WARNING
6196 			"%s: personality does not support diskops!\n",
6197 			mdname(mddev));
6198 		return -EINVAL;
6199 	}
6200 
6201 	rdev = md_import_device(dev, -1, 0);
6202 	if (IS_ERR(rdev)) {
6203 		printk(KERN_WARNING
6204 			"md: error, md_import_device() returned %ld\n",
6205 			PTR_ERR(rdev));
6206 		return -EINVAL;
6207 	}
6208 
6209 	if (mddev->persistent)
6210 		rdev->sb_start = calc_dev_sboffset(rdev);
6211 	else
6212 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6213 
6214 	rdev->sectors = rdev->sb_start;
6215 
6216 	if (test_bit(Faulty, &rdev->flags)) {
6217 		printk(KERN_WARNING
6218 			"md: can not hot-add faulty %s disk to %s!\n",
6219 			bdevname(rdev->bdev,b), mdname(mddev));
6220 		err = -EINVAL;
6221 		goto abort_export;
6222 	}
6223 
6224 	clear_bit(In_sync, &rdev->flags);
6225 	rdev->desc_nr = -1;
6226 	rdev->saved_raid_disk = -1;
6227 	err = bind_rdev_to_array(rdev, mddev);
6228 	if (err)
6229 		goto abort_export;
6230 
6231 	/*
6232 	 * The rest should better be atomic, we can have disk failures
6233 	 * noticed in interrupt contexts ...
6234 	 */
6235 
6236 	rdev->raid_disk = -1;
6237 
6238 	md_update_sb(mddev, 1);
6239 	/*
6240 	 * Kick recovery, maybe this spare has to be added to the
6241 	 * array immediately.
6242 	 */
6243 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6244 	md_wakeup_thread(mddev->thread);
6245 	md_new_event(mddev);
6246 	return 0;
6247 
6248 abort_export:
6249 	export_rdev(rdev);
6250 	return err;
6251 }
6252 
6253 static int set_bitmap_file(struct mddev *mddev, int fd)
6254 {
6255 	int err = 0;
6256 
6257 	if (mddev->pers) {
6258 		if (!mddev->pers->quiesce || !mddev->thread)
6259 			return -EBUSY;
6260 		if (mddev->recovery || mddev->sync_thread)
6261 			return -EBUSY;
6262 		/* we should be able to change the bitmap.. */
6263 	}
6264 
6265 	if (fd >= 0) {
6266 		struct inode *inode;
6267 		struct file *f;
6268 
6269 		if (mddev->bitmap || mddev->bitmap_info.file)
6270 			return -EEXIST; /* cannot add when bitmap is present */
6271 		f = fget(fd);
6272 
6273 		if (f == NULL) {
6274 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6275 			       mdname(mddev));
6276 			return -EBADF;
6277 		}
6278 
6279 		inode = f->f_mapping->host;
6280 		if (!S_ISREG(inode->i_mode)) {
6281 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6282 			       mdname(mddev));
6283 			err = -EBADF;
6284 		} else if (!(f->f_mode & FMODE_WRITE)) {
6285 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6286 			       mdname(mddev));
6287 			err = -EBADF;
6288 		} else if (atomic_read(&inode->i_writecount) != 1) {
6289 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6290 			       mdname(mddev));
6291 			err = -EBUSY;
6292 		}
6293 		if (err) {
6294 			fput(f);
6295 			return err;
6296 		}
6297 		mddev->bitmap_info.file = f;
6298 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6299 	} else if (mddev->bitmap == NULL)
6300 		return -ENOENT; /* cannot remove what isn't there */
6301 	err = 0;
6302 	if (mddev->pers) {
6303 		mddev->pers->quiesce(mddev, 1);
6304 		if (fd >= 0) {
6305 			struct bitmap *bitmap;
6306 
6307 			bitmap = bitmap_create(mddev, -1);
6308 			if (!IS_ERR(bitmap)) {
6309 				mddev->bitmap = bitmap;
6310 				err = bitmap_load(mddev);
6311 			} else
6312 				err = PTR_ERR(bitmap);
6313 		}
6314 		if (fd < 0 || err) {
6315 			bitmap_destroy(mddev);
6316 			fd = -1; /* make sure to put the file */
6317 		}
6318 		mddev->pers->quiesce(mddev, 0);
6319 	}
6320 	if (fd < 0) {
6321 		struct file *f = mddev->bitmap_info.file;
6322 		if (f) {
6323 			spin_lock(&mddev->lock);
6324 			mddev->bitmap_info.file = NULL;
6325 			spin_unlock(&mddev->lock);
6326 			fput(f);
6327 		}
6328 	}
6329 
6330 	return err;
6331 }
6332 
6333 /*
6334  * set_array_info is used two different ways
6335  * The original usage is when creating a new array.
6336  * In this usage, raid_disks is > 0 and it together with
6337  *  level, size, not_persistent,layout,chunksize determine the
6338  *  shape of the array.
6339  *  This will always create an array with a type-0.90.0 superblock.
6340  * The newer usage is when assembling an array.
6341  *  In this case raid_disks will be 0, and the major_version field is
6342  *  use to determine which style super-blocks are to be found on the devices.
6343  *  The minor and patch _version numbers are also kept incase the
6344  *  super_block handler wishes to interpret them.
6345  */
6346 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6347 {
6348 
6349 	if (info->raid_disks == 0) {
6350 		/* just setting version number for superblock loading */
6351 		if (info->major_version < 0 ||
6352 		    info->major_version >= ARRAY_SIZE(super_types) ||
6353 		    super_types[info->major_version].name == NULL) {
6354 			/* maybe try to auto-load a module? */
6355 			printk(KERN_INFO
6356 				"md: superblock version %d not known\n",
6357 				info->major_version);
6358 			return -EINVAL;
6359 		}
6360 		mddev->major_version = info->major_version;
6361 		mddev->minor_version = info->minor_version;
6362 		mddev->patch_version = info->patch_version;
6363 		mddev->persistent = !info->not_persistent;
6364 		/* ensure mddev_put doesn't delete this now that there
6365 		 * is some minimal configuration.
6366 		 */
6367 		mddev->ctime         = ktime_get_real_seconds();
6368 		return 0;
6369 	}
6370 	mddev->major_version = MD_MAJOR_VERSION;
6371 	mddev->minor_version = MD_MINOR_VERSION;
6372 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6373 	mddev->ctime         = ktime_get_real_seconds();
6374 
6375 	mddev->level         = info->level;
6376 	mddev->clevel[0]     = 0;
6377 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6378 	mddev->raid_disks    = info->raid_disks;
6379 	/* don't set md_minor, it is determined by which /dev/md* was
6380 	 * openned
6381 	 */
6382 	if (info->state & (1<<MD_SB_CLEAN))
6383 		mddev->recovery_cp = MaxSector;
6384 	else
6385 		mddev->recovery_cp = 0;
6386 	mddev->persistent    = ! info->not_persistent;
6387 	mddev->external	     = 0;
6388 
6389 	mddev->layout        = info->layout;
6390 	mddev->chunk_sectors = info->chunk_size >> 9;
6391 
6392 	mddev->max_disks     = MD_SB_DISKS;
6393 
6394 	if (mddev->persistent)
6395 		mddev->flags         = 0;
6396 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6397 
6398 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6399 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6400 	mddev->bitmap_info.offset = 0;
6401 
6402 	mddev->reshape_position = MaxSector;
6403 
6404 	/*
6405 	 * Generate a 128 bit UUID
6406 	 */
6407 	get_random_bytes(mddev->uuid, 16);
6408 
6409 	mddev->new_level = mddev->level;
6410 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6411 	mddev->new_layout = mddev->layout;
6412 	mddev->delta_disks = 0;
6413 	mddev->reshape_backwards = 0;
6414 
6415 	return 0;
6416 }
6417 
6418 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6419 {
6420 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6421 
6422 	if (mddev->external_size)
6423 		return;
6424 
6425 	mddev->array_sectors = array_sectors;
6426 }
6427 EXPORT_SYMBOL(md_set_array_sectors);
6428 
6429 static int update_size(struct mddev *mddev, sector_t num_sectors)
6430 {
6431 	struct md_rdev *rdev;
6432 	int rv;
6433 	int fit = (num_sectors == 0);
6434 
6435 	if (mddev->pers->resize == NULL)
6436 		return -EINVAL;
6437 	/* The "num_sectors" is the number of sectors of each device that
6438 	 * is used.  This can only make sense for arrays with redundancy.
6439 	 * linear and raid0 always use whatever space is available. We can only
6440 	 * consider changing this number if no resync or reconstruction is
6441 	 * happening, and if the new size is acceptable. It must fit before the
6442 	 * sb_start or, if that is <data_offset, it must fit before the size
6443 	 * of each device.  If num_sectors is zero, we find the largest size
6444 	 * that fits.
6445 	 */
6446 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6447 	    mddev->sync_thread)
6448 		return -EBUSY;
6449 	if (mddev->ro)
6450 		return -EROFS;
6451 
6452 	rdev_for_each(rdev, mddev) {
6453 		sector_t avail = rdev->sectors;
6454 
6455 		if (fit && (num_sectors == 0 || num_sectors > avail))
6456 			num_sectors = avail;
6457 		if (avail < num_sectors)
6458 			return -ENOSPC;
6459 	}
6460 	rv = mddev->pers->resize(mddev, num_sectors);
6461 	if (!rv)
6462 		revalidate_disk(mddev->gendisk);
6463 	return rv;
6464 }
6465 
6466 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6467 {
6468 	int rv;
6469 	struct md_rdev *rdev;
6470 	/* change the number of raid disks */
6471 	if (mddev->pers->check_reshape == NULL)
6472 		return -EINVAL;
6473 	if (mddev->ro)
6474 		return -EROFS;
6475 	if (raid_disks <= 0 ||
6476 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6477 		return -EINVAL;
6478 	if (mddev->sync_thread ||
6479 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6480 	    mddev->reshape_position != MaxSector)
6481 		return -EBUSY;
6482 
6483 	rdev_for_each(rdev, mddev) {
6484 		if (mddev->raid_disks < raid_disks &&
6485 		    rdev->data_offset < rdev->new_data_offset)
6486 			return -EINVAL;
6487 		if (mddev->raid_disks > raid_disks &&
6488 		    rdev->data_offset > rdev->new_data_offset)
6489 			return -EINVAL;
6490 	}
6491 
6492 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6493 	if (mddev->delta_disks < 0)
6494 		mddev->reshape_backwards = 1;
6495 	else if (mddev->delta_disks > 0)
6496 		mddev->reshape_backwards = 0;
6497 
6498 	rv = mddev->pers->check_reshape(mddev);
6499 	if (rv < 0) {
6500 		mddev->delta_disks = 0;
6501 		mddev->reshape_backwards = 0;
6502 	}
6503 	return rv;
6504 }
6505 
6506 /*
6507  * update_array_info is used to change the configuration of an
6508  * on-line array.
6509  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6510  * fields in the info are checked against the array.
6511  * Any differences that cannot be handled will cause an error.
6512  * Normally, only one change can be managed at a time.
6513  */
6514 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6515 {
6516 	int rv = 0;
6517 	int cnt = 0;
6518 	int state = 0;
6519 
6520 	/* calculate expected state,ignoring low bits */
6521 	if (mddev->bitmap && mddev->bitmap_info.offset)
6522 		state |= (1 << MD_SB_BITMAP_PRESENT);
6523 
6524 	if (mddev->major_version != info->major_version ||
6525 	    mddev->minor_version != info->minor_version ||
6526 /*	    mddev->patch_version != info->patch_version || */
6527 	    mddev->ctime         != info->ctime         ||
6528 	    mddev->level         != info->level         ||
6529 /*	    mddev->layout        != info->layout        || */
6530 	    mddev->persistent	 != !info->not_persistent ||
6531 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6532 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6533 	    ((state^info->state) & 0xfffffe00)
6534 		)
6535 		return -EINVAL;
6536 	/* Check there is only one change */
6537 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6538 		cnt++;
6539 	if (mddev->raid_disks != info->raid_disks)
6540 		cnt++;
6541 	if (mddev->layout != info->layout)
6542 		cnt++;
6543 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6544 		cnt++;
6545 	if (cnt == 0)
6546 		return 0;
6547 	if (cnt > 1)
6548 		return -EINVAL;
6549 
6550 	if (mddev->layout != info->layout) {
6551 		/* Change layout
6552 		 * we don't need to do anything at the md level, the
6553 		 * personality will take care of it all.
6554 		 */
6555 		if (mddev->pers->check_reshape == NULL)
6556 			return -EINVAL;
6557 		else {
6558 			mddev->new_layout = info->layout;
6559 			rv = mddev->pers->check_reshape(mddev);
6560 			if (rv)
6561 				mddev->new_layout = mddev->layout;
6562 			return rv;
6563 		}
6564 	}
6565 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6566 		rv = update_size(mddev, (sector_t)info->size * 2);
6567 
6568 	if (mddev->raid_disks    != info->raid_disks)
6569 		rv = update_raid_disks(mddev, info->raid_disks);
6570 
6571 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6572 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6573 			rv = -EINVAL;
6574 			goto err;
6575 		}
6576 		if (mddev->recovery || mddev->sync_thread) {
6577 			rv = -EBUSY;
6578 			goto err;
6579 		}
6580 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6581 			struct bitmap *bitmap;
6582 			/* add the bitmap */
6583 			if (mddev->bitmap) {
6584 				rv = -EEXIST;
6585 				goto err;
6586 			}
6587 			if (mddev->bitmap_info.default_offset == 0) {
6588 				rv = -EINVAL;
6589 				goto err;
6590 			}
6591 			mddev->bitmap_info.offset =
6592 				mddev->bitmap_info.default_offset;
6593 			mddev->bitmap_info.space =
6594 				mddev->bitmap_info.default_space;
6595 			mddev->pers->quiesce(mddev, 1);
6596 			bitmap = bitmap_create(mddev, -1);
6597 			if (!IS_ERR(bitmap)) {
6598 				mddev->bitmap = bitmap;
6599 				rv = bitmap_load(mddev);
6600 			} else
6601 				rv = PTR_ERR(bitmap);
6602 			if (rv)
6603 				bitmap_destroy(mddev);
6604 			mddev->pers->quiesce(mddev, 0);
6605 		} else {
6606 			/* remove the bitmap */
6607 			if (!mddev->bitmap) {
6608 				rv = -ENOENT;
6609 				goto err;
6610 			}
6611 			if (mddev->bitmap->storage.file) {
6612 				rv = -EINVAL;
6613 				goto err;
6614 			}
6615 			if (mddev->bitmap_info.nodes) {
6616 				/* hold PW on all the bitmap lock */
6617 				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6618 					printk("md: can't change bitmap to none since the"
6619 					       " array is in use by more than one node\n");
6620 					rv = -EPERM;
6621 					md_cluster_ops->unlock_all_bitmaps(mddev);
6622 					goto err;
6623 				}
6624 
6625 				mddev->bitmap_info.nodes = 0;
6626 				md_cluster_ops->leave(mddev);
6627 			}
6628 			mddev->pers->quiesce(mddev, 1);
6629 			bitmap_destroy(mddev);
6630 			mddev->pers->quiesce(mddev, 0);
6631 			mddev->bitmap_info.offset = 0;
6632 		}
6633 	}
6634 	md_update_sb(mddev, 1);
6635 	return rv;
6636 err:
6637 	return rv;
6638 }
6639 
6640 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6641 {
6642 	struct md_rdev *rdev;
6643 	int err = 0;
6644 
6645 	if (mddev->pers == NULL)
6646 		return -ENODEV;
6647 
6648 	rcu_read_lock();
6649 	rdev = find_rdev_rcu(mddev, dev);
6650 	if (!rdev)
6651 		err =  -ENODEV;
6652 	else {
6653 		md_error(mddev, rdev);
6654 		if (!test_bit(Faulty, &rdev->flags))
6655 			err = -EBUSY;
6656 	}
6657 	rcu_read_unlock();
6658 	return err;
6659 }
6660 
6661 /*
6662  * We have a problem here : there is no easy way to give a CHS
6663  * virtual geometry. We currently pretend that we have a 2 heads
6664  * 4 sectors (with a BIG number of cylinders...). This drives
6665  * dosfs just mad... ;-)
6666  */
6667 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6668 {
6669 	struct mddev *mddev = bdev->bd_disk->private_data;
6670 
6671 	geo->heads = 2;
6672 	geo->sectors = 4;
6673 	geo->cylinders = mddev->array_sectors / 8;
6674 	return 0;
6675 }
6676 
6677 static inline bool md_ioctl_valid(unsigned int cmd)
6678 {
6679 	switch (cmd) {
6680 	case ADD_NEW_DISK:
6681 	case BLKROSET:
6682 	case GET_ARRAY_INFO:
6683 	case GET_BITMAP_FILE:
6684 	case GET_DISK_INFO:
6685 	case HOT_ADD_DISK:
6686 	case HOT_REMOVE_DISK:
6687 	case RAID_AUTORUN:
6688 	case RAID_VERSION:
6689 	case RESTART_ARRAY_RW:
6690 	case RUN_ARRAY:
6691 	case SET_ARRAY_INFO:
6692 	case SET_BITMAP_FILE:
6693 	case SET_DISK_FAULTY:
6694 	case STOP_ARRAY:
6695 	case STOP_ARRAY_RO:
6696 	case CLUSTERED_DISK_NACK:
6697 		return true;
6698 	default:
6699 		return false;
6700 	}
6701 }
6702 
6703 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6704 			unsigned int cmd, unsigned long arg)
6705 {
6706 	int err = 0;
6707 	void __user *argp = (void __user *)arg;
6708 	struct mddev *mddev = NULL;
6709 	int ro;
6710 
6711 	if (!md_ioctl_valid(cmd))
6712 		return -ENOTTY;
6713 
6714 	switch (cmd) {
6715 	case RAID_VERSION:
6716 	case GET_ARRAY_INFO:
6717 	case GET_DISK_INFO:
6718 		break;
6719 	default:
6720 		if (!capable(CAP_SYS_ADMIN))
6721 			return -EACCES;
6722 	}
6723 
6724 	/*
6725 	 * Commands dealing with the RAID driver but not any
6726 	 * particular array:
6727 	 */
6728 	switch (cmd) {
6729 	case RAID_VERSION:
6730 		err = get_version(argp);
6731 		goto out;
6732 
6733 #ifndef MODULE
6734 	case RAID_AUTORUN:
6735 		err = 0;
6736 		autostart_arrays(arg);
6737 		goto out;
6738 #endif
6739 	default:;
6740 	}
6741 
6742 	/*
6743 	 * Commands creating/starting a new array:
6744 	 */
6745 
6746 	mddev = bdev->bd_disk->private_data;
6747 
6748 	if (!mddev) {
6749 		BUG();
6750 		goto out;
6751 	}
6752 
6753 	/* Some actions do not requires the mutex */
6754 	switch (cmd) {
6755 	case GET_ARRAY_INFO:
6756 		if (!mddev->raid_disks && !mddev->external)
6757 			err = -ENODEV;
6758 		else
6759 			err = get_array_info(mddev, argp);
6760 		goto out;
6761 
6762 	case GET_DISK_INFO:
6763 		if (!mddev->raid_disks && !mddev->external)
6764 			err = -ENODEV;
6765 		else
6766 			err = get_disk_info(mddev, argp);
6767 		goto out;
6768 
6769 	case SET_DISK_FAULTY:
6770 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6771 		goto out;
6772 
6773 	case GET_BITMAP_FILE:
6774 		err = get_bitmap_file(mddev, argp);
6775 		goto out;
6776 
6777 	}
6778 
6779 	if (cmd == ADD_NEW_DISK)
6780 		/* need to ensure md_delayed_delete() has completed */
6781 		flush_workqueue(md_misc_wq);
6782 
6783 	if (cmd == HOT_REMOVE_DISK)
6784 		/* need to ensure recovery thread has run */
6785 		wait_event_interruptible_timeout(mddev->sb_wait,
6786 						 !test_bit(MD_RECOVERY_NEEDED,
6787 							   &mddev->flags),
6788 						 msecs_to_jiffies(5000));
6789 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6790 		/* Need to flush page cache, and ensure no-one else opens
6791 		 * and writes
6792 		 */
6793 		mutex_lock(&mddev->open_mutex);
6794 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6795 			mutex_unlock(&mddev->open_mutex);
6796 			err = -EBUSY;
6797 			goto out;
6798 		}
6799 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6800 		mutex_unlock(&mddev->open_mutex);
6801 		sync_blockdev(bdev);
6802 	}
6803 	err = mddev_lock(mddev);
6804 	if (err) {
6805 		printk(KERN_INFO
6806 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6807 			err, cmd);
6808 		goto out;
6809 	}
6810 
6811 	if (cmd == SET_ARRAY_INFO) {
6812 		mdu_array_info_t info;
6813 		if (!arg)
6814 			memset(&info, 0, sizeof(info));
6815 		else if (copy_from_user(&info, argp, sizeof(info))) {
6816 			err = -EFAULT;
6817 			goto unlock;
6818 		}
6819 		if (mddev->pers) {
6820 			err = update_array_info(mddev, &info);
6821 			if (err) {
6822 				printk(KERN_WARNING "md: couldn't update"
6823 				       " array info. %d\n", err);
6824 				goto unlock;
6825 			}
6826 			goto unlock;
6827 		}
6828 		if (!list_empty(&mddev->disks)) {
6829 			printk(KERN_WARNING
6830 			       "md: array %s already has disks!\n",
6831 			       mdname(mddev));
6832 			err = -EBUSY;
6833 			goto unlock;
6834 		}
6835 		if (mddev->raid_disks) {
6836 			printk(KERN_WARNING
6837 			       "md: array %s already initialised!\n",
6838 			       mdname(mddev));
6839 			err = -EBUSY;
6840 			goto unlock;
6841 		}
6842 		err = set_array_info(mddev, &info);
6843 		if (err) {
6844 			printk(KERN_WARNING "md: couldn't set"
6845 			       " array info. %d\n", err);
6846 			goto unlock;
6847 		}
6848 		goto unlock;
6849 	}
6850 
6851 	/*
6852 	 * Commands querying/configuring an existing array:
6853 	 */
6854 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6855 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6856 	if ((!mddev->raid_disks && !mddev->external)
6857 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6858 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6859 	    && cmd != GET_BITMAP_FILE) {
6860 		err = -ENODEV;
6861 		goto unlock;
6862 	}
6863 
6864 	/*
6865 	 * Commands even a read-only array can execute:
6866 	 */
6867 	switch (cmd) {
6868 	case RESTART_ARRAY_RW:
6869 		err = restart_array(mddev);
6870 		goto unlock;
6871 
6872 	case STOP_ARRAY:
6873 		err = do_md_stop(mddev, 0, bdev);
6874 		goto unlock;
6875 
6876 	case STOP_ARRAY_RO:
6877 		err = md_set_readonly(mddev, bdev);
6878 		goto unlock;
6879 
6880 	case HOT_REMOVE_DISK:
6881 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6882 		goto unlock;
6883 
6884 	case ADD_NEW_DISK:
6885 		/* We can support ADD_NEW_DISK on read-only arrays
6886 		 * on if we are re-adding a preexisting device.
6887 		 * So require mddev->pers and MD_DISK_SYNC.
6888 		 */
6889 		if (mddev->pers) {
6890 			mdu_disk_info_t info;
6891 			if (copy_from_user(&info, argp, sizeof(info)))
6892 				err = -EFAULT;
6893 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6894 				/* Need to clear read-only for this */
6895 				break;
6896 			else
6897 				err = add_new_disk(mddev, &info);
6898 			goto unlock;
6899 		}
6900 		break;
6901 
6902 	case BLKROSET:
6903 		if (get_user(ro, (int __user *)(arg))) {
6904 			err = -EFAULT;
6905 			goto unlock;
6906 		}
6907 		err = -EINVAL;
6908 
6909 		/* if the bdev is going readonly the value of mddev->ro
6910 		 * does not matter, no writes are coming
6911 		 */
6912 		if (ro)
6913 			goto unlock;
6914 
6915 		/* are we are already prepared for writes? */
6916 		if (mddev->ro != 1)
6917 			goto unlock;
6918 
6919 		/* transitioning to readauto need only happen for
6920 		 * arrays that call md_write_start
6921 		 */
6922 		if (mddev->pers) {
6923 			err = restart_array(mddev);
6924 			if (err == 0) {
6925 				mddev->ro = 2;
6926 				set_disk_ro(mddev->gendisk, 0);
6927 			}
6928 		}
6929 		goto unlock;
6930 	}
6931 
6932 	/*
6933 	 * The remaining ioctls are changing the state of the
6934 	 * superblock, so we do not allow them on read-only arrays.
6935 	 */
6936 	if (mddev->ro && mddev->pers) {
6937 		if (mddev->ro == 2) {
6938 			mddev->ro = 0;
6939 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6940 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6941 			/* mddev_unlock will wake thread */
6942 			/* If a device failed while we were read-only, we
6943 			 * need to make sure the metadata is updated now.
6944 			 */
6945 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6946 				mddev_unlock(mddev);
6947 				wait_event(mddev->sb_wait,
6948 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6949 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6950 				mddev_lock_nointr(mddev);
6951 			}
6952 		} else {
6953 			err = -EROFS;
6954 			goto unlock;
6955 		}
6956 	}
6957 
6958 	switch (cmd) {
6959 	case ADD_NEW_DISK:
6960 	{
6961 		mdu_disk_info_t info;
6962 		if (copy_from_user(&info, argp, sizeof(info)))
6963 			err = -EFAULT;
6964 		else
6965 			err = add_new_disk(mddev, &info);
6966 		goto unlock;
6967 	}
6968 
6969 	case CLUSTERED_DISK_NACK:
6970 		if (mddev_is_clustered(mddev))
6971 			md_cluster_ops->new_disk_ack(mddev, false);
6972 		else
6973 			err = -EINVAL;
6974 		goto unlock;
6975 
6976 	case HOT_ADD_DISK:
6977 		err = hot_add_disk(mddev, new_decode_dev(arg));
6978 		goto unlock;
6979 
6980 	case RUN_ARRAY:
6981 		err = do_md_run(mddev);
6982 		goto unlock;
6983 
6984 	case SET_BITMAP_FILE:
6985 		err = set_bitmap_file(mddev, (int)arg);
6986 		goto unlock;
6987 
6988 	default:
6989 		err = -EINVAL;
6990 		goto unlock;
6991 	}
6992 
6993 unlock:
6994 	if (mddev->hold_active == UNTIL_IOCTL &&
6995 	    err != -EINVAL)
6996 		mddev->hold_active = 0;
6997 	mddev_unlock(mddev);
6998 out:
6999 	return err;
7000 }
7001 #ifdef CONFIG_COMPAT
7002 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7003 		    unsigned int cmd, unsigned long arg)
7004 {
7005 	switch (cmd) {
7006 	case HOT_REMOVE_DISK:
7007 	case HOT_ADD_DISK:
7008 	case SET_DISK_FAULTY:
7009 	case SET_BITMAP_FILE:
7010 		/* These take in integer arg, do not convert */
7011 		break;
7012 	default:
7013 		arg = (unsigned long)compat_ptr(arg);
7014 		break;
7015 	}
7016 
7017 	return md_ioctl(bdev, mode, cmd, arg);
7018 }
7019 #endif /* CONFIG_COMPAT */
7020 
7021 static int md_open(struct block_device *bdev, fmode_t mode)
7022 {
7023 	/*
7024 	 * Succeed if we can lock the mddev, which confirms that
7025 	 * it isn't being stopped right now.
7026 	 */
7027 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7028 	int err;
7029 
7030 	if (!mddev)
7031 		return -ENODEV;
7032 
7033 	if (mddev->gendisk != bdev->bd_disk) {
7034 		/* we are racing with mddev_put which is discarding this
7035 		 * bd_disk.
7036 		 */
7037 		mddev_put(mddev);
7038 		/* Wait until bdev->bd_disk is definitely gone */
7039 		flush_workqueue(md_misc_wq);
7040 		/* Then retry the open from the top */
7041 		return -ERESTARTSYS;
7042 	}
7043 	BUG_ON(mddev != bdev->bd_disk->private_data);
7044 
7045 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7046 		goto out;
7047 
7048 	err = 0;
7049 	atomic_inc(&mddev->openers);
7050 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
7051 	mutex_unlock(&mddev->open_mutex);
7052 
7053 	check_disk_change(bdev);
7054  out:
7055 	return err;
7056 }
7057 
7058 static void md_release(struct gendisk *disk, fmode_t mode)
7059 {
7060 	struct mddev *mddev = disk->private_data;
7061 
7062 	BUG_ON(!mddev);
7063 	atomic_dec(&mddev->openers);
7064 	mddev_put(mddev);
7065 }
7066 
7067 static int md_media_changed(struct gendisk *disk)
7068 {
7069 	struct mddev *mddev = disk->private_data;
7070 
7071 	return mddev->changed;
7072 }
7073 
7074 static int md_revalidate(struct gendisk *disk)
7075 {
7076 	struct mddev *mddev = disk->private_data;
7077 
7078 	mddev->changed = 0;
7079 	return 0;
7080 }
7081 static const struct block_device_operations md_fops =
7082 {
7083 	.owner		= THIS_MODULE,
7084 	.open		= md_open,
7085 	.release	= md_release,
7086 	.ioctl		= md_ioctl,
7087 #ifdef CONFIG_COMPAT
7088 	.compat_ioctl	= md_compat_ioctl,
7089 #endif
7090 	.getgeo		= md_getgeo,
7091 	.media_changed  = md_media_changed,
7092 	.revalidate_disk= md_revalidate,
7093 };
7094 
7095 static int md_thread(void *arg)
7096 {
7097 	struct md_thread *thread = arg;
7098 
7099 	/*
7100 	 * md_thread is a 'system-thread', it's priority should be very
7101 	 * high. We avoid resource deadlocks individually in each
7102 	 * raid personality. (RAID5 does preallocation) We also use RR and
7103 	 * the very same RT priority as kswapd, thus we will never get
7104 	 * into a priority inversion deadlock.
7105 	 *
7106 	 * we definitely have to have equal or higher priority than
7107 	 * bdflush, otherwise bdflush will deadlock if there are too
7108 	 * many dirty RAID5 blocks.
7109 	 */
7110 
7111 	allow_signal(SIGKILL);
7112 	while (!kthread_should_stop()) {
7113 
7114 		/* We need to wait INTERRUPTIBLE so that
7115 		 * we don't add to the load-average.
7116 		 * That means we need to be sure no signals are
7117 		 * pending
7118 		 */
7119 		if (signal_pending(current))
7120 			flush_signals(current);
7121 
7122 		wait_event_interruptible_timeout
7123 			(thread->wqueue,
7124 			 test_bit(THREAD_WAKEUP, &thread->flags)
7125 			 || kthread_should_stop(),
7126 			 thread->timeout);
7127 
7128 		clear_bit(THREAD_WAKEUP, &thread->flags);
7129 		if (!kthread_should_stop())
7130 			thread->run(thread);
7131 	}
7132 
7133 	return 0;
7134 }
7135 
7136 void md_wakeup_thread(struct md_thread *thread)
7137 {
7138 	if (thread) {
7139 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7140 		set_bit(THREAD_WAKEUP, &thread->flags);
7141 		wake_up(&thread->wqueue);
7142 	}
7143 }
7144 EXPORT_SYMBOL(md_wakeup_thread);
7145 
7146 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7147 		struct mddev *mddev, const char *name)
7148 {
7149 	struct md_thread *thread;
7150 
7151 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7152 	if (!thread)
7153 		return NULL;
7154 
7155 	init_waitqueue_head(&thread->wqueue);
7156 
7157 	thread->run = run;
7158 	thread->mddev = mddev;
7159 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7160 	thread->tsk = kthread_run(md_thread, thread,
7161 				  "%s_%s",
7162 				  mdname(thread->mddev),
7163 				  name);
7164 	if (IS_ERR(thread->tsk)) {
7165 		kfree(thread);
7166 		return NULL;
7167 	}
7168 	return thread;
7169 }
7170 EXPORT_SYMBOL(md_register_thread);
7171 
7172 void md_unregister_thread(struct md_thread **threadp)
7173 {
7174 	struct md_thread *thread = *threadp;
7175 	if (!thread)
7176 		return;
7177 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7178 	/* Locking ensures that mddev_unlock does not wake_up a
7179 	 * non-existent thread
7180 	 */
7181 	spin_lock(&pers_lock);
7182 	*threadp = NULL;
7183 	spin_unlock(&pers_lock);
7184 
7185 	kthread_stop(thread->tsk);
7186 	kfree(thread);
7187 }
7188 EXPORT_SYMBOL(md_unregister_thread);
7189 
7190 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7191 {
7192 	if (!rdev || test_bit(Faulty, &rdev->flags))
7193 		return;
7194 
7195 	if (!mddev->pers || !mddev->pers->error_handler)
7196 		return;
7197 	mddev->pers->error_handler(mddev,rdev);
7198 	if (mddev->degraded)
7199 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7200 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7201 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7202 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7203 	md_wakeup_thread(mddev->thread);
7204 	if (mddev->event_work.func)
7205 		queue_work(md_misc_wq, &mddev->event_work);
7206 	md_new_event(mddev);
7207 }
7208 EXPORT_SYMBOL(md_error);
7209 
7210 /* seq_file implementation /proc/mdstat */
7211 
7212 static void status_unused(struct seq_file *seq)
7213 {
7214 	int i = 0;
7215 	struct md_rdev *rdev;
7216 
7217 	seq_printf(seq, "unused devices: ");
7218 
7219 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7220 		char b[BDEVNAME_SIZE];
7221 		i++;
7222 		seq_printf(seq, "%s ",
7223 			      bdevname(rdev->bdev,b));
7224 	}
7225 	if (!i)
7226 		seq_printf(seq, "<none>");
7227 
7228 	seq_printf(seq, "\n");
7229 }
7230 
7231 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7232 {
7233 	sector_t max_sectors, resync, res;
7234 	unsigned long dt, db;
7235 	sector_t rt;
7236 	int scale;
7237 	unsigned int per_milli;
7238 
7239 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7240 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7241 		max_sectors = mddev->resync_max_sectors;
7242 	else
7243 		max_sectors = mddev->dev_sectors;
7244 
7245 	resync = mddev->curr_resync;
7246 	if (resync <= 3) {
7247 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7248 			/* Still cleaning up */
7249 			resync = max_sectors;
7250 	} else
7251 		resync -= atomic_read(&mddev->recovery_active);
7252 
7253 	if (resync == 0) {
7254 		if (mddev->recovery_cp < MaxSector) {
7255 			seq_printf(seq, "\tresync=PENDING");
7256 			return 1;
7257 		}
7258 		return 0;
7259 	}
7260 	if (resync < 3) {
7261 		seq_printf(seq, "\tresync=DELAYED");
7262 		return 1;
7263 	}
7264 
7265 	WARN_ON(max_sectors == 0);
7266 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7267 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7268 	 * u32, as those are the requirements for sector_div.
7269 	 * Thus 'scale' must be at least 10
7270 	 */
7271 	scale = 10;
7272 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7273 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7274 			scale++;
7275 	}
7276 	res = (resync>>scale)*1000;
7277 	sector_div(res, (u32)((max_sectors>>scale)+1));
7278 
7279 	per_milli = res;
7280 	{
7281 		int i, x = per_milli/50, y = 20-x;
7282 		seq_printf(seq, "[");
7283 		for (i = 0; i < x; i++)
7284 			seq_printf(seq, "=");
7285 		seq_printf(seq, ">");
7286 		for (i = 0; i < y; i++)
7287 			seq_printf(seq, ".");
7288 		seq_printf(seq, "] ");
7289 	}
7290 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7291 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7292 		    "reshape" :
7293 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7294 		     "check" :
7295 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7296 		      "resync" : "recovery"))),
7297 		   per_milli/10, per_milli % 10,
7298 		   (unsigned long long) resync/2,
7299 		   (unsigned long long) max_sectors/2);
7300 
7301 	/*
7302 	 * dt: time from mark until now
7303 	 * db: blocks written from mark until now
7304 	 * rt: remaining time
7305 	 *
7306 	 * rt is a sector_t, so could be 32bit or 64bit.
7307 	 * So we divide before multiply in case it is 32bit and close
7308 	 * to the limit.
7309 	 * We scale the divisor (db) by 32 to avoid losing precision
7310 	 * near the end of resync when the number of remaining sectors
7311 	 * is close to 'db'.
7312 	 * We then divide rt by 32 after multiplying by db to compensate.
7313 	 * The '+1' avoids division by zero if db is very small.
7314 	 */
7315 	dt = ((jiffies - mddev->resync_mark) / HZ);
7316 	if (!dt) dt++;
7317 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7318 		- mddev->resync_mark_cnt;
7319 
7320 	rt = max_sectors - resync;    /* number of remaining sectors */
7321 	sector_div(rt, db/32+1);
7322 	rt *= dt;
7323 	rt >>= 5;
7324 
7325 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7326 		   ((unsigned long)rt % 60)/6);
7327 
7328 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7329 	return 1;
7330 }
7331 
7332 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7333 {
7334 	struct list_head *tmp;
7335 	loff_t l = *pos;
7336 	struct mddev *mddev;
7337 
7338 	if (l >= 0x10000)
7339 		return NULL;
7340 	if (!l--)
7341 		/* header */
7342 		return (void*)1;
7343 
7344 	spin_lock(&all_mddevs_lock);
7345 	list_for_each(tmp,&all_mddevs)
7346 		if (!l--) {
7347 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7348 			mddev_get(mddev);
7349 			spin_unlock(&all_mddevs_lock);
7350 			return mddev;
7351 		}
7352 	spin_unlock(&all_mddevs_lock);
7353 	if (!l--)
7354 		return (void*)2;/* tail */
7355 	return NULL;
7356 }
7357 
7358 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7359 {
7360 	struct list_head *tmp;
7361 	struct mddev *next_mddev, *mddev = v;
7362 
7363 	++*pos;
7364 	if (v == (void*)2)
7365 		return NULL;
7366 
7367 	spin_lock(&all_mddevs_lock);
7368 	if (v == (void*)1)
7369 		tmp = all_mddevs.next;
7370 	else
7371 		tmp = mddev->all_mddevs.next;
7372 	if (tmp != &all_mddevs)
7373 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7374 	else {
7375 		next_mddev = (void*)2;
7376 		*pos = 0x10000;
7377 	}
7378 	spin_unlock(&all_mddevs_lock);
7379 
7380 	if (v != (void*)1)
7381 		mddev_put(mddev);
7382 	return next_mddev;
7383 
7384 }
7385 
7386 static void md_seq_stop(struct seq_file *seq, void *v)
7387 {
7388 	struct mddev *mddev = v;
7389 
7390 	if (mddev && v != (void*)1 && v != (void*)2)
7391 		mddev_put(mddev);
7392 }
7393 
7394 static int md_seq_show(struct seq_file *seq, void *v)
7395 {
7396 	struct mddev *mddev = v;
7397 	sector_t sectors;
7398 	struct md_rdev *rdev;
7399 
7400 	if (v == (void*)1) {
7401 		struct md_personality *pers;
7402 		seq_printf(seq, "Personalities : ");
7403 		spin_lock(&pers_lock);
7404 		list_for_each_entry(pers, &pers_list, list)
7405 			seq_printf(seq, "[%s] ", pers->name);
7406 
7407 		spin_unlock(&pers_lock);
7408 		seq_printf(seq, "\n");
7409 		seq->poll_event = atomic_read(&md_event_count);
7410 		return 0;
7411 	}
7412 	if (v == (void*)2) {
7413 		status_unused(seq);
7414 		return 0;
7415 	}
7416 
7417 	spin_lock(&mddev->lock);
7418 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7419 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7420 						mddev->pers ? "" : "in");
7421 		if (mddev->pers) {
7422 			if (mddev->ro==1)
7423 				seq_printf(seq, " (read-only)");
7424 			if (mddev->ro==2)
7425 				seq_printf(seq, " (auto-read-only)");
7426 			seq_printf(seq, " %s", mddev->pers->name);
7427 		}
7428 
7429 		sectors = 0;
7430 		rcu_read_lock();
7431 		rdev_for_each_rcu(rdev, mddev) {
7432 			char b[BDEVNAME_SIZE];
7433 			seq_printf(seq, " %s[%d]",
7434 				bdevname(rdev->bdev,b), rdev->desc_nr);
7435 			if (test_bit(WriteMostly, &rdev->flags))
7436 				seq_printf(seq, "(W)");
7437 			if (test_bit(Journal, &rdev->flags))
7438 				seq_printf(seq, "(J)");
7439 			if (test_bit(Faulty, &rdev->flags)) {
7440 				seq_printf(seq, "(F)");
7441 				continue;
7442 			}
7443 			if (rdev->raid_disk < 0)
7444 				seq_printf(seq, "(S)"); /* spare */
7445 			if (test_bit(Replacement, &rdev->flags))
7446 				seq_printf(seq, "(R)");
7447 			sectors += rdev->sectors;
7448 		}
7449 		rcu_read_unlock();
7450 
7451 		if (!list_empty(&mddev->disks)) {
7452 			if (mddev->pers)
7453 				seq_printf(seq, "\n      %llu blocks",
7454 					   (unsigned long long)
7455 					   mddev->array_sectors / 2);
7456 			else
7457 				seq_printf(seq, "\n      %llu blocks",
7458 					   (unsigned long long)sectors / 2);
7459 		}
7460 		if (mddev->persistent) {
7461 			if (mddev->major_version != 0 ||
7462 			    mddev->minor_version != 90) {
7463 				seq_printf(seq," super %d.%d",
7464 					   mddev->major_version,
7465 					   mddev->minor_version);
7466 			}
7467 		} else if (mddev->external)
7468 			seq_printf(seq, " super external:%s",
7469 				   mddev->metadata_type);
7470 		else
7471 			seq_printf(seq, " super non-persistent");
7472 
7473 		if (mddev->pers) {
7474 			mddev->pers->status(seq, mddev);
7475 			seq_printf(seq, "\n      ");
7476 			if (mddev->pers->sync_request) {
7477 				if (status_resync(seq, mddev))
7478 					seq_printf(seq, "\n      ");
7479 			}
7480 		} else
7481 			seq_printf(seq, "\n       ");
7482 
7483 		bitmap_status(seq, mddev->bitmap);
7484 
7485 		seq_printf(seq, "\n");
7486 	}
7487 	spin_unlock(&mddev->lock);
7488 
7489 	return 0;
7490 }
7491 
7492 static const struct seq_operations md_seq_ops = {
7493 	.start  = md_seq_start,
7494 	.next   = md_seq_next,
7495 	.stop   = md_seq_stop,
7496 	.show   = md_seq_show,
7497 };
7498 
7499 static int md_seq_open(struct inode *inode, struct file *file)
7500 {
7501 	struct seq_file *seq;
7502 	int error;
7503 
7504 	error = seq_open(file, &md_seq_ops);
7505 	if (error)
7506 		return error;
7507 
7508 	seq = file->private_data;
7509 	seq->poll_event = atomic_read(&md_event_count);
7510 	return error;
7511 }
7512 
7513 static int md_unloading;
7514 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7515 {
7516 	struct seq_file *seq = filp->private_data;
7517 	int mask;
7518 
7519 	if (md_unloading)
7520 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7521 	poll_wait(filp, &md_event_waiters, wait);
7522 
7523 	/* always allow read */
7524 	mask = POLLIN | POLLRDNORM;
7525 
7526 	if (seq->poll_event != atomic_read(&md_event_count))
7527 		mask |= POLLERR | POLLPRI;
7528 	return mask;
7529 }
7530 
7531 static const struct file_operations md_seq_fops = {
7532 	.owner		= THIS_MODULE,
7533 	.open           = md_seq_open,
7534 	.read           = seq_read,
7535 	.llseek         = seq_lseek,
7536 	.release	= seq_release_private,
7537 	.poll		= mdstat_poll,
7538 };
7539 
7540 int register_md_personality(struct md_personality *p)
7541 {
7542 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7543 						p->name, p->level);
7544 	spin_lock(&pers_lock);
7545 	list_add_tail(&p->list, &pers_list);
7546 	spin_unlock(&pers_lock);
7547 	return 0;
7548 }
7549 EXPORT_SYMBOL(register_md_personality);
7550 
7551 int unregister_md_personality(struct md_personality *p)
7552 {
7553 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7554 	spin_lock(&pers_lock);
7555 	list_del_init(&p->list);
7556 	spin_unlock(&pers_lock);
7557 	return 0;
7558 }
7559 EXPORT_SYMBOL(unregister_md_personality);
7560 
7561 int register_md_cluster_operations(struct md_cluster_operations *ops,
7562 				   struct module *module)
7563 {
7564 	int ret = 0;
7565 	spin_lock(&pers_lock);
7566 	if (md_cluster_ops != NULL)
7567 		ret = -EALREADY;
7568 	else {
7569 		md_cluster_ops = ops;
7570 		md_cluster_mod = module;
7571 	}
7572 	spin_unlock(&pers_lock);
7573 	return ret;
7574 }
7575 EXPORT_SYMBOL(register_md_cluster_operations);
7576 
7577 int unregister_md_cluster_operations(void)
7578 {
7579 	spin_lock(&pers_lock);
7580 	md_cluster_ops = NULL;
7581 	spin_unlock(&pers_lock);
7582 	return 0;
7583 }
7584 EXPORT_SYMBOL(unregister_md_cluster_operations);
7585 
7586 int md_setup_cluster(struct mddev *mddev, int nodes)
7587 {
7588 	int err;
7589 
7590 	err = request_module("md-cluster");
7591 	if (err) {
7592 		pr_err("md-cluster module not found.\n");
7593 		return -ENOENT;
7594 	}
7595 
7596 	spin_lock(&pers_lock);
7597 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7598 		spin_unlock(&pers_lock);
7599 		return -ENOENT;
7600 	}
7601 	spin_unlock(&pers_lock);
7602 
7603 	return md_cluster_ops->join(mddev, nodes);
7604 }
7605 
7606 void md_cluster_stop(struct mddev *mddev)
7607 {
7608 	if (!md_cluster_ops)
7609 		return;
7610 	md_cluster_ops->leave(mddev);
7611 	module_put(md_cluster_mod);
7612 }
7613 
7614 static int is_mddev_idle(struct mddev *mddev, int init)
7615 {
7616 	struct md_rdev *rdev;
7617 	int idle;
7618 	int curr_events;
7619 
7620 	idle = 1;
7621 	rcu_read_lock();
7622 	rdev_for_each_rcu(rdev, mddev) {
7623 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7624 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7625 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7626 			      atomic_read(&disk->sync_io);
7627 		/* sync IO will cause sync_io to increase before the disk_stats
7628 		 * as sync_io is counted when a request starts, and
7629 		 * disk_stats is counted when it completes.
7630 		 * So resync activity will cause curr_events to be smaller than
7631 		 * when there was no such activity.
7632 		 * non-sync IO will cause disk_stat to increase without
7633 		 * increasing sync_io so curr_events will (eventually)
7634 		 * be larger than it was before.  Once it becomes
7635 		 * substantially larger, the test below will cause
7636 		 * the array to appear non-idle, and resync will slow
7637 		 * down.
7638 		 * If there is a lot of outstanding resync activity when
7639 		 * we set last_event to curr_events, then all that activity
7640 		 * completing might cause the array to appear non-idle
7641 		 * and resync will be slowed down even though there might
7642 		 * not have been non-resync activity.  This will only
7643 		 * happen once though.  'last_events' will soon reflect
7644 		 * the state where there is little or no outstanding
7645 		 * resync requests, and further resync activity will
7646 		 * always make curr_events less than last_events.
7647 		 *
7648 		 */
7649 		if (init || curr_events - rdev->last_events > 64) {
7650 			rdev->last_events = curr_events;
7651 			idle = 0;
7652 		}
7653 	}
7654 	rcu_read_unlock();
7655 	return idle;
7656 }
7657 
7658 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7659 {
7660 	/* another "blocks" (512byte) blocks have been synced */
7661 	atomic_sub(blocks, &mddev->recovery_active);
7662 	wake_up(&mddev->recovery_wait);
7663 	if (!ok) {
7664 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7665 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7666 		md_wakeup_thread(mddev->thread);
7667 		// stop recovery, signal do_sync ....
7668 	}
7669 }
7670 EXPORT_SYMBOL(md_done_sync);
7671 
7672 /* md_write_start(mddev, bi)
7673  * If we need to update some array metadata (e.g. 'active' flag
7674  * in superblock) before writing, schedule a superblock update
7675  * and wait for it to complete.
7676  */
7677 void md_write_start(struct mddev *mddev, struct bio *bi)
7678 {
7679 	int did_change = 0;
7680 	if (bio_data_dir(bi) != WRITE)
7681 		return;
7682 
7683 	BUG_ON(mddev->ro == 1);
7684 	if (mddev->ro == 2) {
7685 		/* need to switch to read/write */
7686 		mddev->ro = 0;
7687 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7688 		md_wakeup_thread(mddev->thread);
7689 		md_wakeup_thread(mddev->sync_thread);
7690 		did_change = 1;
7691 	}
7692 	atomic_inc(&mddev->writes_pending);
7693 	if (mddev->safemode == 1)
7694 		mddev->safemode = 0;
7695 	if (mddev->in_sync) {
7696 		spin_lock(&mddev->lock);
7697 		if (mddev->in_sync) {
7698 			mddev->in_sync = 0;
7699 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7700 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7701 			md_wakeup_thread(mddev->thread);
7702 			did_change = 1;
7703 		}
7704 		spin_unlock(&mddev->lock);
7705 	}
7706 	if (did_change)
7707 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7708 	wait_event(mddev->sb_wait,
7709 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7710 }
7711 EXPORT_SYMBOL(md_write_start);
7712 
7713 void md_write_end(struct mddev *mddev)
7714 {
7715 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7716 		if (mddev->safemode == 2)
7717 			md_wakeup_thread(mddev->thread);
7718 		else if (mddev->safemode_delay)
7719 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7720 	}
7721 }
7722 EXPORT_SYMBOL(md_write_end);
7723 
7724 /* md_allow_write(mddev)
7725  * Calling this ensures that the array is marked 'active' so that writes
7726  * may proceed without blocking.  It is important to call this before
7727  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7728  * Must be called with mddev_lock held.
7729  *
7730  * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
7731  * is dropped, so return -EAGAIN after notifying userspace.
7732  */
7733 int md_allow_write(struct mddev *mddev)
7734 {
7735 	if (!mddev->pers)
7736 		return 0;
7737 	if (mddev->ro)
7738 		return 0;
7739 	if (!mddev->pers->sync_request)
7740 		return 0;
7741 
7742 	spin_lock(&mddev->lock);
7743 	if (mddev->in_sync) {
7744 		mddev->in_sync = 0;
7745 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7746 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7747 		if (mddev->safemode_delay &&
7748 		    mddev->safemode == 0)
7749 			mddev->safemode = 1;
7750 		spin_unlock(&mddev->lock);
7751 		md_update_sb(mddev, 0);
7752 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7753 	} else
7754 		spin_unlock(&mddev->lock);
7755 
7756 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7757 		return -EAGAIN;
7758 	else
7759 		return 0;
7760 }
7761 EXPORT_SYMBOL_GPL(md_allow_write);
7762 
7763 #define SYNC_MARKS	10
7764 #define	SYNC_MARK_STEP	(3*HZ)
7765 #define UPDATE_FREQUENCY (5*60*HZ)
7766 void md_do_sync(struct md_thread *thread)
7767 {
7768 	struct mddev *mddev = thread->mddev;
7769 	struct mddev *mddev2;
7770 	unsigned int currspeed = 0,
7771 		 window;
7772 	sector_t max_sectors,j, io_sectors, recovery_done;
7773 	unsigned long mark[SYNC_MARKS];
7774 	unsigned long update_time;
7775 	sector_t mark_cnt[SYNC_MARKS];
7776 	int last_mark,m;
7777 	struct list_head *tmp;
7778 	sector_t last_check;
7779 	int skipped = 0;
7780 	struct md_rdev *rdev;
7781 	char *desc, *action = NULL;
7782 	struct blk_plug plug;
7783 	bool cluster_resync_finished = false;
7784 
7785 	/* just incase thread restarts... */
7786 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7787 		return;
7788 	if (mddev->ro) {/* never try to sync a read-only array */
7789 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7790 		return;
7791 	}
7792 
7793 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7794 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7795 			desc = "data-check";
7796 			action = "check";
7797 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7798 			desc = "requested-resync";
7799 			action = "repair";
7800 		} else
7801 			desc = "resync";
7802 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7803 		desc = "reshape";
7804 	else
7805 		desc = "recovery";
7806 
7807 	mddev->last_sync_action = action ?: desc;
7808 
7809 	/* we overload curr_resync somewhat here.
7810 	 * 0 == not engaged in resync at all
7811 	 * 2 == checking that there is no conflict with another sync
7812 	 * 1 == like 2, but have yielded to allow conflicting resync to
7813 	 *		commense
7814 	 * other == active in resync - this many blocks
7815 	 *
7816 	 * Before starting a resync we must have set curr_resync to
7817 	 * 2, and then checked that every "conflicting" array has curr_resync
7818 	 * less than ours.  When we find one that is the same or higher
7819 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7820 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7821 	 * This will mean we have to start checking from the beginning again.
7822 	 *
7823 	 */
7824 
7825 	do {
7826 		mddev->curr_resync = 2;
7827 
7828 	try_again:
7829 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7830 			goto skip;
7831 		for_each_mddev(mddev2, tmp) {
7832 			if (mddev2 == mddev)
7833 				continue;
7834 			if (!mddev->parallel_resync
7835 			&&  mddev2->curr_resync
7836 			&&  match_mddev_units(mddev, mddev2)) {
7837 				DEFINE_WAIT(wq);
7838 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7839 					/* arbitrarily yield */
7840 					mddev->curr_resync = 1;
7841 					wake_up(&resync_wait);
7842 				}
7843 				if (mddev > mddev2 && mddev->curr_resync == 1)
7844 					/* no need to wait here, we can wait the next
7845 					 * time 'round when curr_resync == 2
7846 					 */
7847 					continue;
7848 				/* We need to wait 'interruptible' so as not to
7849 				 * contribute to the load average, and not to
7850 				 * be caught by 'softlockup'
7851 				 */
7852 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7853 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7854 				    mddev2->curr_resync >= mddev->curr_resync) {
7855 					printk(KERN_INFO "md: delaying %s of %s"
7856 					       " until %s has finished (they"
7857 					       " share one or more physical units)\n",
7858 					       desc, mdname(mddev), mdname(mddev2));
7859 					mddev_put(mddev2);
7860 					if (signal_pending(current))
7861 						flush_signals(current);
7862 					schedule();
7863 					finish_wait(&resync_wait, &wq);
7864 					goto try_again;
7865 				}
7866 				finish_wait(&resync_wait, &wq);
7867 			}
7868 		}
7869 	} while (mddev->curr_resync < 2);
7870 
7871 	j = 0;
7872 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7873 		/* resync follows the size requested by the personality,
7874 		 * which defaults to physical size, but can be virtual size
7875 		 */
7876 		max_sectors = mddev->resync_max_sectors;
7877 		atomic64_set(&mddev->resync_mismatches, 0);
7878 		/* we don't use the checkpoint if there's a bitmap */
7879 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7880 			j = mddev->resync_min;
7881 		else if (!mddev->bitmap)
7882 			j = mddev->recovery_cp;
7883 
7884 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7885 		max_sectors = mddev->resync_max_sectors;
7886 	else {
7887 		/* recovery follows the physical size of devices */
7888 		max_sectors = mddev->dev_sectors;
7889 		j = MaxSector;
7890 		rcu_read_lock();
7891 		rdev_for_each_rcu(rdev, mddev)
7892 			if (rdev->raid_disk >= 0 &&
7893 			    !test_bit(Journal, &rdev->flags) &&
7894 			    !test_bit(Faulty, &rdev->flags) &&
7895 			    !test_bit(In_sync, &rdev->flags) &&
7896 			    rdev->recovery_offset < j)
7897 				j = rdev->recovery_offset;
7898 		rcu_read_unlock();
7899 
7900 		/* If there is a bitmap, we need to make sure all
7901 		 * writes that started before we added a spare
7902 		 * complete before we start doing a recovery.
7903 		 * Otherwise the write might complete and (via
7904 		 * bitmap_endwrite) set a bit in the bitmap after the
7905 		 * recovery has checked that bit and skipped that
7906 		 * region.
7907 		 */
7908 		if (mddev->bitmap) {
7909 			mddev->pers->quiesce(mddev, 1);
7910 			mddev->pers->quiesce(mddev, 0);
7911 		}
7912 	}
7913 
7914 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7915 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7916 		" %d KB/sec/disk.\n", speed_min(mddev));
7917 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7918 	       "(but not more than %d KB/sec) for %s.\n",
7919 	       speed_max(mddev), desc);
7920 
7921 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7922 
7923 	io_sectors = 0;
7924 	for (m = 0; m < SYNC_MARKS; m++) {
7925 		mark[m] = jiffies;
7926 		mark_cnt[m] = io_sectors;
7927 	}
7928 	last_mark = 0;
7929 	mddev->resync_mark = mark[last_mark];
7930 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7931 
7932 	/*
7933 	 * Tune reconstruction:
7934 	 */
7935 	window = 32*(PAGE_SIZE/512);
7936 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7937 		window/2, (unsigned long long)max_sectors/2);
7938 
7939 	atomic_set(&mddev->recovery_active, 0);
7940 	last_check = 0;
7941 
7942 	if (j>2) {
7943 		printk(KERN_INFO
7944 		       "md: resuming %s of %s from checkpoint.\n",
7945 		       desc, mdname(mddev));
7946 		mddev->curr_resync = j;
7947 	} else
7948 		mddev->curr_resync = 3; /* no longer delayed */
7949 	mddev->curr_resync_completed = j;
7950 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7951 	md_new_event(mddev);
7952 	update_time = jiffies;
7953 
7954 	blk_start_plug(&plug);
7955 	while (j < max_sectors) {
7956 		sector_t sectors;
7957 
7958 		skipped = 0;
7959 
7960 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7961 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7962 		      (mddev->curr_resync - mddev->curr_resync_completed)
7963 		      > (max_sectors >> 4)) ||
7964 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7965 		     (j - mddev->curr_resync_completed)*2
7966 		     >= mddev->resync_max - mddev->curr_resync_completed ||
7967 		     mddev->curr_resync_completed > mddev->resync_max
7968 			    )) {
7969 			/* time to update curr_resync_completed */
7970 			wait_event(mddev->recovery_wait,
7971 				   atomic_read(&mddev->recovery_active) == 0);
7972 			mddev->curr_resync_completed = j;
7973 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7974 			    j > mddev->recovery_cp)
7975 				mddev->recovery_cp = j;
7976 			update_time = jiffies;
7977 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7978 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7979 		}
7980 
7981 		while (j >= mddev->resync_max &&
7982 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7983 			/* As this condition is controlled by user-space,
7984 			 * we can block indefinitely, so use '_interruptible'
7985 			 * to avoid triggering warnings.
7986 			 */
7987 			flush_signals(current); /* just in case */
7988 			wait_event_interruptible(mddev->recovery_wait,
7989 						 mddev->resync_max > j
7990 						 || test_bit(MD_RECOVERY_INTR,
7991 							     &mddev->recovery));
7992 		}
7993 
7994 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7995 			break;
7996 
7997 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7998 		if (sectors == 0) {
7999 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8000 			break;
8001 		}
8002 
8003 		if (!skipped) { /* actual IO requested */
8004 			io_sectors += sectors;
8005 			atomic_add(sectors, &mddev->recovery_active);
8006 		}
8007 
8008 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8009 			break;
8010 
8011 		j += sectors;
8012 		if (j > max_sectors)
8013 			/* when skipping, extra large numbers can be returned. */
8014 			j = max_sectors;
8015 		if (j > 2)
8016 			mddev->curr_resync = j;
8017 		mddev->curr_mark_cnt = io_sectors;
8018 		if (last_check == 0)
8019 			/* this is the earliest that rebuild will be
8020 			 * visible in /proc/mdstat
8021 			 */
8022 			md_new_event(mddev);
8023 
8024 		if (last_check + window > io_sectors || j == max_sectors)
8025 			continue;
8026 
8027 		last_check = io_sectors;
8028 	repeat:
8029 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8030 			/* step marks */
8031 			int next = (last_mark+1) % SYNC_MARKS;
8032 
8033 			mddev->resync_mark = mark[next];
8034 			mddev->resync_mark_cnt = mark_cnt[next];
8035 			mark[next] = jiffies;
8036 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8037 			last_mark = next;
8038 		}
8039 
8040 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8041 			break;
8042 
8043 		/*
8044 		 * this loop exits only if either when we are slower than
8045 		 * the 'hard' speed limit, or the system was IO-idle for
8046 		 * a jiffy.
8047 		 * the system might be non-idle CPU-wise, but we only care
8048 		 * about not overloading the IO subsystem. (things like an
8049 		 * e2fsck being done on the RAID array should execute fast)
8050 		 */
8051 		cond_resched();
8052 
8053 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8054 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8055 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8056 
8057 		if (currspeed > speed_min(mddev)) {
8058 			if (currspeed > speed_max(mddev)) {
8059 				msleep(500);
8060 				goto repeat;
8061 			}
8062 			if (!is_mddev_idle(mddev, 0)) {
8063 				/*
8064 				 * Give other IO more of a chance.
8065 				 * The faster the devices, the less we wait.
8066 				 */
8067 				wait_event(mddev->recovery_wait,
8068 					   !atomic_read(&mddev->recovery_active));
8069 			}
8070 		}
8071 	}
8072 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8073 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8074 	       ? "interrupted" : "done");
8075 	/*
8076 	 * this also signals 'finished resyncing' to md_stop
8077 	 */
8078 	blk_finish_plug(&plug);
8079 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8080 
8081 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8082 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8083 	    mddev->curr_resync > 2) {
8084 		mddev->curr_resync_completed = mddev->curr_resync;
8085 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8086 	}
8087 	/* tell personality and other nodes that we are finished */
8088 	if (mddev_is_clustered(mddev)) {
8089 		md_cluster_ops->resync_finish(mddev);
8090 		cluster_resync_finished = true;
8091 	}
8092 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8093 
8094 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8095 	    mddev->curr_resync > 2) {
8096 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8097 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8098 				if (mddev->curr_resync >= mddev->recovery_cp) {
8099 					printk(KERN_INFO
8100 					       "md: checkpointing %s of %s.\n",
8101 					       desc, mdname(mddev));
8102 					if (test_bit(MD_RECOVERY_ERROR,
8103 						&mddev->recovery))
8104 						mddev->recovery_cp =
8105 							mddev->curr_resync_completed;
8106 					else
8107 						mddev->recovery_cp =
8108 							mddev->curr_resync;
8109 				}
8110 			} else
8111 				mddev->recovery_cp = MaxSector;
8112 		} else {
8113 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8114 				mddev->curr_resync = MaxSector;
8115 			rcu_read_lock();
8116 			rdev_for_each_rcu(rdev, mddev)
8117 				if (rdev->raid_disk >= 0 &&
8118 				    mddev->delta_disks >= 0 &&
8119 				    !test_bit(Journal, &rdev->flags) &&
8120 				    !test_bit(Faulty, &rdev->flags) &&
8121 				    !test_bit(In_sync, &rdev->flags) &&
8122 				    rdev->recovery_offset < mddev->curr_resync)
8123 					rdev->recovery_offset = mddev->curr_resync;
8124 			rcu_read_unlock();
8125 		}
8126 	}
8127  skip:
8128 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
8129 
8130 	if (mddev_is_clustered(mddev) &&
8131 	    test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8132 	    !cluster_resync_finished)
8133 		md_cluster_ops->resync_finish(mddev);
8134 
8135 	spin_lock(&mddev->lock);
8136 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8137 		/* We completed so min/max setting can be forgotten if used. */
8138 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8139 			mddev->resync_min = 0;
8140 		mddev->resync_max = MaxSector;
8141 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8142 		mddev->resync_min = mddev->curr_resync_completed;
8143 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8144 	mddev->curr_resync = 0;
8145 	spin_unlock(&mddev->lock);
8146 
8147 	wake_up(&resync_wait);
8148 	md_wakeup_thread(mddev->thread);
8149 	return;
8150 }
8151 EXPORT_SYMBOL_GPL(md_do_sync);
8152 
8153 static int remove_and_add_spares(struct mddev *mddev,
8154 				 struct md_rdev *this)
8155 {
8156 	struct md_rdev *rdev;
8157 	int spares = 0;
8158 	int removed = 0;
8159 
8160 	rdev_for_each(rdev, mddev)
8161 		if ((this == NULL || rdev == this) &&
8162 		    rdev->raid_disk >= 0 &&
8163 		    !test_bit(Blocked, &rdev->flags) &&
8164 		    (test_bit(Faulty, &rdev->flags) ||
8165 		     (!test_bit(In_sync, &rdev->flags) &&
8166 		      !test_bit(Journal, &rdev->flags))) &&
8167 		    atomic_read(&rdev->nr_pending)==0) {
8168 			if (mddev->pers->hot_remove_disk(
8169 				    mddev, rdev) == 0) {
8170 				sysfs_unlink_rdev(mddev, rdev);
8171 				rdev->raid_disk = -1;
8172 				removed++;
8173 			}
8174 		}
8175 	if (removed && mddev->kobj.sd)
8176 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8177 
8178 	if (this && removed)
8179 		goto no_add;
8180 
8181 	rdev_for_each(rdev, mddev) {
8182 		if (this && this != rdev)
8183 			continue;
8184 		if (test_bit(Candidate, &rdev->flags))
8185 			continue;
8186 		if (rdev->raid_disk >= 0 &&
8187 		    !test_bit(In_sync, &rdev->flags) &&
8188 		    !test_bit(Journal, &rdev->flags) &&
8189 		    !test_bit(Faulty, &rdev->flags))
8190 			spares++;
8191 		if (rdev->raid_disk >= 0)
8192 			continue;
8193 		if (test_bit(Faulty, &rdev->flags))
8194 			continue;
8195 		if (!test_bit(Journal, &rdev->flags)) {
8196 			if (mddev->ro &&
8197 			    ! (rdev->saved_raid_disk >= 0 &&
8198 			       !test_bit(Bitmap_sync, &rdev->flags)))
8199 				continue;
8200 
8201 			rdev->recovery_offset = 0;
8202 		}
8203 		if (mddev->pers->
8204 		    hot_add_disk(mddev, rdev) == 0) {
8205 			if (sysfs_link_rdev(mddev, rdev))
8206 				/* failure here is OK */;
8207 			if (!test_bit(Journal, &rdev->flags))
8208 				spares++;
8209 			md_new_event(mddev);
8210 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8211 		}
8212 	}
8213 no_add:
8214 	if (removed)
8215 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8216 	return spares;
8217 }
8218 
8219 static void md_start_sync(struct work_struct *ws)
8220 {
8221 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8222 	int ret = 0;
8223 
8224 	if (mddev_is_clustered(mddev)) {
8225 		ret = md_cluster_ops->resync_start(mddev);
8226 		if (ret) {
8227 			mddev->sync_thread = NULL;
8228 			goto out;
8229 		}
8230 	}
8231 
8232 	mddev->sync_thread = md_register_thread(md_do_sync,
8233 						mddev,
8234 						"resync");
8235 out:
8236 	if (!mddev->sync_thread) {
8237 		if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8238 			printk(KERN_ERR "%s: could not start resync"
8239 			       " thread...\n",
8240 			       mdname(mddev));
8241 		/* leave the spares where they are, it shouldn't hurt */
8242 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8243 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8244 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8245 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8246 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8247 		wake_up(&resync_wait);
8248 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8249 				       &mddev->recovery))
8250 			if (mddev->sysfs_action)
8251 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8252 	} else
8253 		md_wakeup_thread(mddev->sync_thread);
8254 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8255 	md_new_event(mddev);
8256 }
8257 
8258 /*
8259  * This routine is regularly called by all per-raid-array threads to
8260  * deal with generic issues like resync and super-block update.
8261  * Raid personalities that don't have a thread (linear/raid0) do not
8262  * need this as they never do any recovery or update the superblock.
8263  *
8264  * It does not do any resync itself, but rather "forks" off other threads
8265  * to do that as needed.
8266  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8267  * "->recovery" and create a thread at ->sync_thread.
8268  * When the thread finishes it sets MD_RECOVERY_DONE
8269  * and wakeups up this thread which will reap the thread and finish up.
8270  * This thread also removes any faulty devices (with nr_pending == 0).
8271  *
8272  * The overall approach is:
8273  *  1/ if the superblock needs updating, update it.
8274  *  2/ If a recovery thread is running, don't do anything else.
8275  *  3/ If recovery has finished, clean up, possibly marking spares active.
8276  *  4/ If there are any faulty devices, remove them.
8277  *  5/ If array is degraded, try to add spares devices
8278  *  6/ If array has spares or is not in-sync, start a resync thread.
8279  */
8280 void md_check_recovery(struct mddev *mddev)
8281 {
8282 	if (mddev->suspended)
8283 		return;
8284 
8285 	if (mddev->bitmap)
8286 		bitmap_daemon_work(mddev);
8287 
8288 	if (signal_pending(current)) {
8289 		if (mddev->pers->sync_request && !mddev->external) {
8290 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8291 			       mdname(mddev));
8292 			mddev->safemode = 2;
8293 		}
8294 		flush_signals(current);
8295 	}
8296 
8297 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8298 		return;
8299 	if ( ! (
8300 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8301 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8302 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8303 		test_bit(MD_RELOAD_SB, &mddev->flags) ||
8304 		(mddev->external == 0 && mddev->safemode == 1) ||
8305 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8306 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8307 		))
8308 		return;
8309 
8310 	if (mddev_trylock(mddev)) {
8311 		int spares = 0;
8312 
8313 		if (mddev->ro) {
8314 			struct md_rdev *rdev;
8315 			if (!mddev->external && mddev->in_sync)
8316 				/* 'Blocked' flag not needed as failed devices
8317 				 * will be recorded if array switched to read/write.
8318 				 * Leaving it set will prevent the device
8319 				 * from being removed.
8320 				 */
8321 				rdev_for_each(rdev, mddev)
8322 					clear_bit(Blocked, &rdev->flags);
8323 			/* On a read-only array we can:
8324 			 * - remove failed devices
8325 			 * - add already-in_sync devices if the array itself
8326 			 *   is in-sync.
8327 			 * As we only add devices that are already in-sync,
8328 			 * we can activate the spares immediately.
8329 			 */
8330 			remove_and_add_spares(mddev, NULL);
8331 			/* There is no thread, but we need to call
8332 			 * ->spare_active and clear saved_raid_disk
8333 			 */
8334 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8335 			md_reap_sync_thread(mddev);
8336 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8337 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8338 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8339 			goto unlock;
8340 		}
8341 
8342 		if (mddev_is_clustered(mddev)) {
8343 			struct md_rdev *rdev;
8344 			/* kick the device if another node issued a
8345 			 * remove disk.
8346 			 */
8347 			rdev_for_each(rdev, mddev) {
8348 				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8349 						rdev->raid_disk < 0)
8350 					md_kick_rdev_from_array(rdev);
8351 			}
8352 
8353 			if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
8354 				md_reload_sb(mddev, mddev->good_device_nr);
8355 		}
8356 
8357 		if (!mddev->external) {
8358 			int did_change = 0;
8359 			spin_lock(&mddev->lock);
8360 			if (mddev->safemode &&
8361 			    !atomic_read(&mddev->writes_pending) &&
8362 			    !mddev->in_sync &&
8363 			    mddev->recovery_cp == MaxSector) {
8364 				mddev->in_sync = 1;
8365 				did_change = 1;
8366 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8367 			}
8368 			if (mddev->safemode == 1)
8369 				mddev->safemode = 0;
8370 			spin_unlock(&mddev->lock);
8371 			if (did_change)
8372 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8373 		}
8374 
8375 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
8376 			md_update_sb(mddev, 0);
8377 
8378 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8379 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8380 			/* resync/recovery still happening */
8381 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8382 			goto unlock;
8383 		}
8384 		if (mddev->sync_thread) {
8385 			md_reap_sync_thread(mddev);
8386 			goto unlock;
8387 		}
8388 		/* Set RUNNING before clearing NEEDED to avoid
8389 		 * any transients in the value of "sync_action".
8390 		 */
8391 		mddev->curr_resync_completed = 0;
8392 		spin_lock(&mddev->lock);
8393 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8394 		spin_unlock(&mddev->lock);
8395 		/* Clear some bits that don't mean anything, but
8396 		 * might be left set
8397 		 */
8398 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8399 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8400 
8401 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8402 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8403 			goto not_running;
8404 		/* no recovery is running.
8405 		 * remove any failed drives, then
8406 		 * add spares if possible.
8407 		 * Spares are also removed and re-added, to allow
8408 		 * the personality to fail the re-add.
8409 		 */
8410 
8411 		if (mddev->reshape_position != MaxSector) {
8412 			if (mddev->pers->check_reshape == NULL ||
8413 			    mddev->pers->check_reshape(mddev) != 0)
8414 				/* Cannot proceed */
8415 				goto not_running;
8416 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8417 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8418 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8419 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8420 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8421 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8422 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8423 		} else if (mddev->recovery_cp < MaxSector) {
8424 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8425 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8426 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8427 			/* nothing to be done ... */
8428 			goto not_running;
8429 
8430 		if (mddev->pers->sync_request) {
8431 			if (spares) {
8432 				/* We are adding a device or devices to an array
8433 				 * which has the bitmap stored on all devices.
8434 				 * So make sure all bitmap pages get written
8435 				 */
8436 				bitmap_write_all(mddev->bitmap);
8437 			}
8438 			INIT_WORK(&mddev->del_work, md_start_sync);
8439 			queue_work(md_misc_wq, &mddev->del_work);
8440 			goto unlock;
8441 		}
8442 	not_running:
8443 		if (!mddev->sync_thread) {
8444 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8445 			wake_up(&resync_wait);
8446 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8447 					       &mddev->recovery))
8448 				if (mddev->sysfs_action)
8449 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8450 		}
8451 	unlock:
8452 		wake_up(&mddev->sb_wait);
8453 		mddev_unlock(mddev);
8454 	}
8455 }
8456 EXPORT_SYMBOL(md_check_recovery);
8457 
8458 void md_reap_sync_thread(struct mddev *mddev)
8459 {
8460 	struct md_rdev *rdev;
8461 
8462 	/* resync has finished, collect result */
8463 	md_unregister_thread(&mddev->sync_thread);
8464 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8465 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8466 		/* success...*/
8467 		/* activate any spares */
8468 		if (mddev->pers->spare_active(mddev)) {
8469 			sysfs_notify(&mddev->kobj, NULL,
8470 				     "degraded");
8471 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8472 		}
8473 	}
8474 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8475 	    mddev->pers->finish_reshape)
8476 		mddev->pers->finish_reshape(mddev);
8477 
8478 	/* If array is no-longer degraded, then any saved_raid_disk
8479 	 * information must be scrapped.
8480 	 */
8481 	if (!mddev->degraded)
8482 		rdev_for_each(rdev, mddev)
8483 			rdev->saved_raid_disk = -1;
8484 
8485 	md_update_sb(mddev, 1);
8486 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8487 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8488 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8489 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8490 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8491 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8492 	wake_up(&resync_wait);
8493 	/* flag recovery needed just to double check */
8494 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8495 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8496 	md_new_event(mddev);
8497 	if (mddev->event_work.func)
8498 		queue_work(md_misc_wq, &mddev->event_work);
8499 }
8500 EXPORT_SYMBOL(md_reap_sync_thread);
8501 
8502 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8503 {
8504 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8505 	wait_event_timeout(rdev->blocked_wait,
8506 			   !test_bit(Blocked, &rdev->flags) &&
8507 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8508 			   msecs_to_jiffies(5000));
8509 	rdev_dec_pending(rdev, mddev);
8510 }
8511 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8512 
8513 void md_finish_reshape(struct mddev *mddev)
8514 {
8515 	/* called be personality module when reshape completes. */
8516 	struct md_rdev *rdev;
8517 
8518 	rdev_for_each(rdev, mddev) {
8519 		if (rdev->data_offset > rdev->new_data_offset)
8520 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8521 		else
8522 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8523 		rdev->data_offset = rdev->new_data_offset;
8524 	}
8525 }
8526 EXPORT_SYMBOL(md_finish_reshape);
8527 
8528 /* Bad block management */
8529 
8530 /* Returns 1 on success, 0 on failure */
8531 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8532 		       int is_new)
8533 {
8534 	int rv;
8535 	if (is_new)
8536 		s += rdev->new_data_offset;
8537 	else
8538 		s += rdev->data_offset;
8539 	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8540 	if (rv == 0) {
8541 		/* Make sure they get written out promptly */
8542 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8543 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8544 		set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8545 		md_wakeup_thread(rdev->mddev->thread);
8546 		return 1;
8547 	} else
8548 		return 0;
8549 }
8550 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8551 
8552 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8553 			 int is_new)
8554 {
8555 	if (is_new)
8556 		s += rdev->new_data_offset;
8557 	else
8558 		s += rdev->data_offset;
8559 	return badblocks_clear(&rdev->badblocks,
8560 				  s, sectors);
8561 }
8562 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8563 
8564 static int md_notify_reboot(struct notifier_block *this,
8565 			    unsigned long code, void *x)
8566 {
8567 	struct list_head *tmp;
8568 	struct mddev *mddev;
8569 	int need_delay = 0;
8570 
8571 	for_each_mddev(mddev, tmp) {
8572 		if (mddev_trylock(mddev)) {
8573 			if (mddev->pers)
8574 				__md_stop_writes(mddev);
8575 			if (mddev->persistent)
8576 				mddev->safemode = 2;
8577 			mddev_unlock(mddev);
8578 		}
8579 		need_delay = 1;
8580 	}
8581 	/*
8582 	 * certain more exotic SCSI devices are known to be
8583 	 * volatile wrt too early system reboots. While the
8584 	 * right place to handle this issue is the given
8585 	 * driver, we do want to have a safe RAID driver ...
8586 	 */
8587 	if (need_delay)
8588 		mdelay(1000*1);
8589 
8590 	return NOTIFY_DONE;
8591 }
8592 
8593 static struct notifier_block md_notifier = {
8594 	.notifier_call	= md_notify_reboot,
8595 	.next		= NULL,
8596 	.priority	= INT_MAX, /* before any real devices */
8597 };
8598 
8599 static void md_geninit(void)
8600 {
8601 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8602 
8603 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8604 }
8605 
8606 static int __init md_init(void)
8607 {
8608 	int ret = -ENOMEM;
8609 
8610 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8611 	if (!md_wq)
8612 		goto err_wq;
8613 
8614 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8615 	if (!md_misc_wq)
8616 		goto err_misc_wq;
8617 
8618 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8619 		goto err_md;
8620 
8621 	if ((ret = register_blkdev(0, "mdp")) < 0)
8622 		goto err_mdp;
8623 	mdp_major = ret;
8624 
8625 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8626 			    md_probe, NULL, NULL);
8627 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8628 			    md_probe, NULL, NULL);
8629 
8630 	register_reboot_notifier(&md_notifier);
8631 	raid_table_header = register_sysctl_table(raid_root_table);
8632 
8633 	md_geninit();
8634 	return 0;
8635 
8636 err_mdp:
8637 	unregister_blkdev(MD_MAJOR, "md");
8638 err_md:
8639 	destroy_workqueue(md_misc_wq);
8640 err_misc_wq:
8641 	destroy_workqueue(md_wq);
8642 err_wq:
8643 	return ret;
8644 }
8645 
8646 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8647 {
8648 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8649 	struct md_rdev *rdev2;
8650 	int role, ret;
8651 	char b[BDEVNAME_SIZE];
8652 
8653 	/* Check for change of roles in the active devices */
8654 	rdev_for_each(rdev2, mddev) {
8655 		if (test_bit(Faulty, &rdev2->flags))
8656 			continue;
8657 
8658 		/* Check if the roles changed */
8659 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8660 
8661 		if (test_bit(Candidate, &rdev2->flags)) {
8662 			if (role == 0xfffe) {
8663 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
8664 				md_kick_rdev_from_array(rdev2);
8665 				continue;
8666 			}
8667 			else
8668 				clear_bit(Candidate, &rdev2->flags);
8669 		}
8670 
8671 		if (role != rdev2->raid_disk) {
8672 			/* got activated */
8673 			if (rdev2->raid_disk == -1 && role != 0xffff) {
8674 				rdev2->saved_raid_disk = role;
8675 				ret = remove_and_add_spares(mddev, rdev2);
8676 				pr_info("Activated spare: %s\n",
8677 						bdevname(rdev2->bdev,b));
8678 			}
8679 			/* device faulty
8680 			 * We just want to do the minimum to mark the disk
8681 			 * as faulty. The recovery is performed by the
8682 			 * one who initiated the error.
8683 			 */
8684 			if ((role == 0xfffe) || (role == 0xfffd)) {
8685 				md_error(mddev, rdev2);
8686 				clear_bit(Blocked, &rdev2->flags);
8687 			}
8688 		}
8689 	}
8690 
8691 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
8692 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
8693 
8694 	/* Finally set the event to be up to date */
8695 	mddev->events = le64_to_cpu(sb->events);
8696 }
8697 
8698 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8699 {
8700 	int err;
8701 	struct page *swapout = rdev->sb_page;
8702 	struct mdp_superblock_1 *sb;
8703 
8704 	/* Store the sb page of the rdev in the swapout temporary
8705 	 * variable in case we err in the future
8706 	 */
8707 	rdev->sb_page = NULL;
8708 	alloc_disk_sb(rdev);
8709 	ClearPageUptodate(rdev->sb_page);
8710 	rdev->sb_loaded = 0;
8711 	err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
8712 
8713 	if (err < 0) {
8714 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8715 				__func__, __LINE__, rdev->desc_nr, err);
8716 		put_page(rdev->sb_page);
8717 		rdev->sb_page = swapout;
8718 		rdev->sb_loaded = 1;
8719 		return err;
8720 	}
8721 
8722 	sb = page_address(rdev->sb_page);
8723 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8724 	 * is not set
8725 	 */
8726 
8727 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
8728 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
8729 
8730 	/* The other node finished recovery, call spare_active to set
8731 	 * device In_sync and mddev->degraded
8732 	 */
8733 	if (rdev->recovery_offset == MaxSector &&
8734 	    !test_bit(In_sync, &rdev->flags) &&
8735 	    mddev->pers->spare_active(mddev))
8736 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8737 
8738 	put_page(swapout);
8739 	return 0;
8740 }
8741 
8742 void md_reload_sb(struct mddev *mddev, int nr)
8743 {
8744 	struct md_rdev *rdev;
8745 	int err;
8746 
8747 	/* Find the rdev */
8748 	rdev_for_each_rcu(rdev, mddev) {
8749 		if (rdev->desc_nr == nr)
8750 			break;
8751 	}
8752 
8753 	if (!rdev || rdev->desc_nr != nr) {
8754 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
8755 		return;
8756 	}
8757 
8758 	err = read_rdev(mddev, rdev);
8759 	if (err < 0)
8760 		return;
8761 
8762 	check_sb_changes(mddev, rdev);
8763 
8764 	/* Read all rdev's to update recovery_offset */
8765 	rdev_for_each_rcu(rdev, mddev)
8766 		read_rdev(mddev, rdev);
8767 }
8768 EXPORT_SYMBOL(md_reload_sb);
8769 
8770 #ifndef MODULE
8771 
8772 /*
8773  * Searches all registered partitions for autorun RAID arrays
8774  * at boot time.
8775  */
8776 
8777 static LIST_HEAD(all_detected_devices);
8778 struct detected_devices_node {
8779 	struct list_head list;
8780 	dev_t dev;
8781 };
8782 
8783 void md_autodetect_dev(dev_t dev)
8784 {
8785 	struct detected_devices_node *node_detected_dev;
8786 
8787 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8788 	if (node_detected_dev) {
8789 		node_detected_dev->dev = dev;
8790 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8791 	} else {
8792 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8793 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8794 	}
8795 }
8796 
8797 static void autostart_arrays(int part)
8798 {
8799 	struct md_rdev *rdev;
8800 	struct detected_devices_node *node_detected_dev;
8801 	dev_t dev;
8802 	int i_scanned, i_passed;
8803 
8804 	i_scanned = 0;
8805 	i_passed = 0;
8806 
8807 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8808 
8809 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8810 		i_scanned++;
8811 		node_detected_dev = list_entry(all_detected_devices.next,
8812 					struct detected_devices_node, list);
8813 		list_del(&node_detected_dev->list);
8814 		dev = node_detected_dev->dev;
8815 		kfree(node_detected_dev);
8816 		rdev = md_import_device(dev,0, 90);
8817 		if (IS_ERR(rdev))
8818 			continue;
8819 
8820 		if (test_bit(Faulty, &rdev->flags))
8821 			continue;
8822 
8823 		set_bit(AutoDetected, &rdev->flags);
8824 		list_add(&rdev->same_set, &pending_raid_disks);
8825 		i_passed++;
8826 	}
8827 
8828 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8829 						i_scanned, i_passed);
8830 
8831 	autorun_devices(part);
8832 }
8833 
8834 #endif /* !MODULE */
8835 
8836 static __exit void md_exit(void)
8837 {
8838 	struct mddev *mddev;
8839 	struct list_head *tmp;
8840 	int delay = 1;
8841 
8842 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8843 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8844 
8845 	unregister_blkdev(MD_MAJOR,"md");
8846 	unregister_blkdev(mdp_major, "mdp");
8847 	unregister_reboot_notifier(&md_notifier);
8848 	unregister_sysctl_table(raid_table_header);
8849 
8850 	/* We cannot unload the modules while some process is
8851 	 * waiting for us in select() or poll() - wake them up
8852 	 */
8853 	md_unloading = 1;
8854 	while (waitqueue_active(&md_event_waiters)) {
8855 		/* not safe to leave yet */
8856 		wake_up(&md_event_waiters);
8857 		msleep(delay);
8858 		delay += delay;
8859 	}
8860 	remove_proc_entry("mdstat", NULL);
8861 
8862 	for_each_mddev(mddev, tmp) {
8863 		export_array(mddev);
8864 		mddev->hold_active = 0;
8865 	}
8866 	destroy_workqueue(md_misc_wq);
8867 	destroy_workqueue(md_wq);
8868 }
8869 
8870 subsys_initcall(md_init);
8871 module_exit(md_exit)
8872 
8873 static int get_ro(char *buffer, struct kernel_param *kp)
8874 {
8875 	return sprintf(buffer, "%d", start_readonly);
8876 }
8877 static int set_ro(const char *val, struct kernel_param *kp)
8878 {
8879 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
8880 }
8881 
8882 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8883 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8884 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8885 
8886 MODULE_LICENSE("GPL");
8887 MODULE_DESCRIPTION("MD RAID framework");
8888 MODULE_ALIAS("md");
8889 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8890