xref: /openbmc/linux/drivers/md/md.c (revision a1e58bbd)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
47 
48 #include <linux/init.h>
49 
50 #include <linux/file.h>
51 
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55 
56 #include <asm/unaligned.h>
57 
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60 
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63 
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66 
67 
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71 
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74 
75 static void md_print_devices(void);
76 
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 
79 /*
80  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81  * is 1000 KB/sec, so the extra system load does not show up that much.
82  * Increase it if you want to have more _guaranteed_ speed. Note that
83  * the RAID driver will use the maximum available bandwidth if the IO
84  * subsystem is idle. There is also an 'absolute maximum' reconstruction
85  * speed limit - in case reconstruction slows down your system despite
86  * idle IO detection.
87  *
88  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89  * or /sys/block/mdX/md/sync_speed_{min,max}
90  */
91 
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
95 {
96 	return mddev->sync_speed_min ?
97 		mddev->sync_speed_min : sysctl_speed_limit_min;
98 }
99 
100 static inline int speed_max(mddev_t *mddev)
101 {
102 	return mddev->sync_speed_max ?
103 		mddev->sync_speed_max : sysctl_speed_limit_max;
104 }
105 
106 static struct ctl_table_header *raid_table_header;
107 
108 static ctl_table raid_table[] = {
109 	{
110 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
111 		.procname	= "speed_limit_min",
112 		.data		= &sysctl_speed_limit_min,
113 		.maxlen		= sizeof(int),
114 		.mode		= S_IRUGO|S_IWUSR,
115 		.proc_handler	= &proc_dointvec,
116 	},
117 	{
118 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
119 		.procname	= "speed_limit_max",
120 		.data		= &sysctl_speed_limit_max,
121 		.maxlen		= sizeof(int),
122 		.mode		= S_IRUGO|S_IWUSR,
123 		.proc_handler	= &proc_dointvec,
124 	},
125 	{ .ctl_name = 0 }
126 };
127 
128 static ctl_table raid_dir_table[] = {
129 	{
130 		.ctl_name	= DEV_RAID,
131 		.procname	= "raid",
132 		.maxlen		= 0,
133 		.mode		= S_IRUGO|S_IXUGO,
134 		.child		= raid_table,
135 	},
136 	{ .ctl_name = 0 }
137 };
138 
139 static ctl_table raid_root_table[] = {
140 	{
141 		.ctl_name	= CTL_DEV,
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{ .ctl_name = 0 }
148 };
149 
150 static struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /*
155  * We have a system wide 'event count' that is incremented
156  * on any 'interesting' event, and readers of /proc/mdstat
157  * can use 'poll' or 'select' to find out when the event
158  * count increases.
159  *
160  * Events are:
161  *  start array, stop array, error, add device, remove device,
162  *  start build, activate spare
163  */
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
167 {
168 	atomic_inc(&md_event_count);
169 	wake_up(&md_event_waiters);
170 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 }
172 EXPORT_SYMBOL_GPL(md_new_event);
173 
174 /* Alternate version that can be called from interrupts
175  * when calling sysfs_notify isn't needed.
176  */
177 static void md_new_event_inintr(mddev_t *mddev)
178 {
179 	atomic_inc(&md_event_count);
180 	wake_up(&md_event_waiters);
181 }
182 
183 /*
184  * Enables to iterate over all existing md arrays
185  * all_mddevs_lock protects this list.
186  */
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
189 
190 
191 /*
192  * iterates through all used mddevs in the system.
193  * We take care to grab the all_mddevs_lock whenever navigating
194  * the list, and to always hold a refcount when unlocked.
195  * Any code which breaks out of this loop while own
196  * a reference to the current mddev and must mddev_put it.
197  */
198 #define for_each_mddev(mddev,tmp)					\
199 									\
200 	for (({ spin_lock(&all_mddevs_lock); 				\
201 		tmp = all_mddevs.next;					\
202 		mddev = NULL;});					\
203 	     ({ if (tmp != &all_mddevs)					\
204 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 		spin_unlock(&all_mddevs_lock);				\
206 		if (mddev) mddev_put(mddev);				\
207 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
208 		tmp != &all_mddevs;});					\
209 	     ({ spin_lock(&all_mddevs_lock);				\
210 		tmp = tmp->next;})					\
211 		)
212 
213 
214 static int md_fail_request (struct request_queue *q, struct bio *bio)
215 {
216 	bio_io_error(bio);
217 	return 0;
218 }
219 
220 static inline mddev_t *mddev_get(mddev_t *mddev)
221 {
222 	atomic_inc(&mddev->active);
223 	return mddev;
224 }
225 
226 static void mddev_put(mddev_t *mddev)
227 {
228 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 		return;
230 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 		list_del(&mddev->all_mddevs);
232 		spin_unlock(&all_mddevs_lock);
233 		blk_cleanup_queue(mddev->queue);
234 		kobject_put(&mddev->kobj);
235 	} else
236 		spin_unlock(&all_mddevs_lock);
237 }
238 
239 static mddev_t * mddev_find(dev_t unit)
240 {
241 	mddev_t *mddev, *new = NULL;
242 
243  retry:
244 	spin_lock(&all_mddevs_lock);
245 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 		if (mddev->unit == unit) {
247 			mddev_get(mddev);
248 			spin_unlock(&all_mddevs_lock);
249 			kfree(new);
250 			return mddev;
251 		}
252 
253 	if (new) {
254 		list_add(&new->all_mddevs, &all_mddevs);
255 		spin_unlock(&all_mddevs_lock);
256 		return new;
257 	}
258 	spin_unlock(&all_mddevs_lock);
259 
260 	new = kzalloc(sizeof(*new), GFP_KERNEL);
261 	if (!new)
262 		return NULL;
263 
264 	new->unit = unit;
265 	if (MAJOR(unit) == MD_MAJOR)
266 		new->md_minor = MINOR(unit);
267 	else
268 		new->md_minor = MINOR(unit) >> MdpMinorShift;
269 
270 	mutex_init(&new->reconfig_mutex);
271 	INIT_LIST_HEAD(&new->disks);
272 	INIT_LIST_HEAD(&new->all_mddevs);
273 	init_timer(&new->safemode_timer);
274 	atomic_set(&new->active, 1);
275 	spin_lock_init(&new->write_lock);
276 	init_waitqueue_head(&new->sb_wait);
277 	new->reshape_position = MaxSector;
278 	new->resync_max = MaxSector;
279 
280 	new->queue = blk_alloc_queue(GFP_KERNEL);
281 	if (!new->queue) {
282 		kfree(new);
283 		return NULL;
284 	}
285 	set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
286 
287 	blk_queue_make_request(new->queue, md_fail_request);
288 
289 	goto retry;
290 }
291 
292 static inline int mddev_lock(mddev_t * mddev)
293 {
294 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
295 }
296 
297 static inline int mddev_trylock(mddev_t * mddev)
298 {
299 	return mutex_trylock(&mddev->reconfig_mutex);
300 }
301 
302 static inline void mddev_unlock(mddev_t * mddev)
303 {
304 	mutex_unlock(&mddev->reconfig_mutex);
305 
306 	md_wakeup_thread(mddev->thread);
307 }
308 
309 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
310 {
311 	mdk_rdev_t * rdev;
312 	struct list_head *tmp;
313 
314 	rdev_for_each(rdev, tmp, mddev) {
315 		if (rdev->desc_nr == nr)
316 			return rdev;
317 	}
318 	return NULL;
319 }
320 
321 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
322 {
323 	struct list_head *tmp;
324 	mdk_rdev_t *rdev;
325 
326 	rdev_for_each(rdev, tmp, mddev) {
327 		if (rdev->bdev->bd_dev == dev)
328 			return rdev;
329 	}
330 	return NULL;
331 }
332 
333 static struct mdk_personality *find_pers(int level, char *clevel)
334 {
335 	struct mdk_personality *pers;
336 	list_for_each_entry(pers, &pers_list, list) {
337 		if (level != LEVEL_NONE && pers->level == level)
338 			return pers;
339 		if (strcmp(pers->name, clevel)==0)
340 			return pers;
341 	}
342 	return NULL;
343 }
344 
345 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
346 {
347 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
348 	return MD_NEW_SIZE_BLOCKS(size);
349 }
350 
351 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
352 {
353 	sector_t size;
354 
355 	size = rdev->sb_offset;
356 
357 	if (chunk_size)
358 		size &= ~((sector_t)chunk_size/1024 - 1);
359 	return size;
360 }
361 
362 static int alloc_disk_sb(mdk_rdev_t * rdev)
363 {
364 	if (rdev->sb_page)
365 		MD_BUG();
366 
367 	rdev->sb_page = alloc_page(GFP_KERNEL);
368 	if (!rdev->sb_page) {
369 		printk(KERN_ALERT "md: out of memory.\n");
370 		return -EINVAL;
371 	}
372 
373 	return 0;
374 }
375 
376 static void free_disk_sb(mdk_rdev_t * rdev)
377 {
378 	if (rdev->sb_page) {
379 		put_page(rdev->sb_page);
380 		rdev->sb_loaded = 0;
381 		rdev->sb_page = NULL;
382 		rdev->sb_offset = 0;
383 		rdev->size = 0;
384 	}
385 }
386 
387 
388 static void super_written(struct bio *bio, int error)
389 {
390 	mdk_rdev_t *rdev = bio->bi_private;
391 	mddev_t *mddev = rdev->mddev;
392 
393 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
394 		printk("md: super_written gets error=%d, uptodate=%d\n",
395 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
396 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
397 		md_error(mddev, rdev);
398 	}
399 
400 	if (atomic_dec_and_test(&mddev->pending_writes))
401 		wake_up(&mddev->sb_wait);
402 	bio_put(bio);
403 }
404 
405 static void super_written_barrier(struct bio *bio, int error)
406 {
407 	struct bio *bio2 = bio->bi_private;
408 	mdk_rdev_t *rdev = bio2->bi_private;
409 	mddev_t *mddev = rdev->mddev;
410 
411 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
412 	    error == -EOPNOTSUPP) {
413 		unsigned long flags;
414 		/* barriers don't appear to be supported :-( */
415 		set_bit(BarriersNotsupp, &rdev->flags);
416 		mddev->barriers_work = 0;
417 		spin_lock_irqsave(&mddev->write_lock, flags);
418 		bio2->bi_next = mddev->biolist;
419 		mddev->biolist = bio2;
420 		spin_unlock_irqrestore(&mddev->write_lock, flags);
421 		wake_up(&mddev->sb_wait);
422 		bio_put(bio);
423 	} else {
424 		bio_put(bio2);
425 		bio->bi_private = rdev;
426 		super_written(bio, error);
427 	}
428 }
429 
430 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
431 		   sector_t sector, int size, struct page *page)
432 {
433 	/* write first size bytes of page to sector of rdev
434 	 * Increment mddev->pending_writes before returning
435 	 * and decrement it on completion, waking up sb_wait
436 	 * if zero is reached.
437 	 * If an error occurred, call md_error
438 	 *
439 	 * As we might need to resubmit the request if BIO_RW_BARRIER
440 	 * causes ENOTSUPP, we allocate a spare bio...
441 	 */
442 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
443 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
444 
445 	bio->bi_bdev = rdev->bdev;
446 	bio->bi_sector = sector;
447 	bio_add_page(bio, page, size, 0);
448 	bio->bi_private = rdev;
449 	bio->bi_end_io = super_written;
450 	bio->bi_rw = rw;
451 
452 	atomic_inc(&mddev->pending_writes);
453 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
454 		struct bio *rbio;
455 		rw |= (1<<BIO_RW_BARRIER);
456 		rbio = bio_clone(bio, GFP_NOIO);
457 		rbio->bi_private = bio;
458 		rbio->bi_end_io = super_written_barrier;
459 		submit_bio(rw, rbio);
460 	} else
461 		submit_bio(rw, bio);
462 }
463 
464 void md_super_wait(mddev_t *mddev)
465 {
466 	/* wait for all superblock writes that were scheduled to complete.
467 	 * if any had to be retried (due to BARRIER problems), retry them
468 	 */
469 	DEFINE_WAIT(wq);
470 	for(;;) {
471 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
472 		if (atomic_read(&mddev->pending_writes)==0)
473 			break;
474 		while (mddev->biolist) {
475 			struct bio *bio;
476 			spin_lock_irq(&mddev->write_lock);
477 			bio = mddev->biolist;
478 			mddev->biolist = bio->bi_next ;
479 			bio->bi_next = NULL;
480 			spin_unlock_irq(&mddev->write_lock);
481 			submit_bio(bio->bi_rw, bio);
482 		}
483 		schedule();
484 	}
485 	finish_wait(&mddev->sb_wait, &wq);
486 }
487 
488 static void bi_complete(struct bio *bio, int error)
489 {
490 	complete((struct completion*)bio->bi_private);
491 }
492 
493 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
494 		   struct page *page, int rw)
495 {
496 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
497 	struct completion event;
498 	int ret;
499 
500 	rw |= (1 << BIO_RW_SYNC);
501 
502 	bio->bi_bdev = bdev;
503 	bio->bi_sector = sector;
504 	bio_add_page(bio, page, size, 0);
505 	init_completion(&event);
506 	bio->bi_private = &event;
507 	bio->bi_end_io = bi_complete;
508 	submit_bio(rw, bio);
509 	wait_for_completion(&event);
510 
511 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
512 	bio_put(bio);
513 	return ret;
514 }
515 EXPORT_SYMBOL_GPL(sync_page_io);
516 
517 static int read_disk_sb(mdk_rdev_t * rdev, int size)
518 {
519 	char b[BDEVNAME_SIZE];
520 	if (!rdev->sb_page) {
521 		MD_BUG();
522 		return -EINVAL;
523 	}
524 	if (rdev->sb_loaded)
525 		return 0;
526 
527 
528 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
529 		goto fail;
530 	rdev->sb_loaded = 1;
531 	return 0;
532 
533 fail:
534 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
535 		bdevname(rdev->bdev,b));
536 	return -EINVAL;
537 }
538 
539 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
540 {
541 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
542 		(sb1->set_uuid1 == sb2->set_uuid1) &&
543 		(sb1->set_uuid2 == sb2->set_uuid2) &&
544 		(sb1->set_uuid3 == sb2->set_uuid3))
545 
546 		return 1;
547 
548 	return 0;
549 }
550 
551 
552 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
553 {
554 	int ret;
555 	mdp_super_t *tmp1, *tmp2;
556 
557 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
558 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
559 
560 	if (!tmp1 || !tmp2) {
561 		ret = 0;
562 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
563 		goto abort;
564 	}
565 
566 	*tmp1 = *sb1;
567 	*tmp2 = *sb2;
568 
569 	/*
570 	 * nr_disks is not constant
571 	 */
572 	tmp1->nr_disks = 0;
573 	tmp2->nr_disks = 0;
574 
575 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
576 		ret = 0;
577 	else
578 		ret = 1;
579 
580 abort:
581 	kfree(tmp1);
582 	kfree(tmp2);
583 	return ret;
584 }
585 
586 
587 static u32 md_csum_fold(u32 csum)
588 {
589 	csum = (csum & 0xffff) + (csum >> 16);
590 	return (csum & 0xffff) + (csum >> 16);
591 }
592 
593 static unsigned int calc_sb_csum(mdp_super_t * sb)
594 {
595 	u64 newcsum = 0;
596 	u32 *sb32 = (u32*)sb;
597 	int i;
598 	unsigned int disk_csum, csum;
599 
600 	disk_csum = sb->sb_csum;
601 	sb->sb_csum = 0;
602 
603 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
604 		newcsum += sb32[i];
605 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
606 
607 
608 #ifdef CONFIG_ALPHA
609 	/* This used to use csum_partial, which was wrong for several
610 	 * reasons including that different results are returned on
611 	 * different architectures.  It isn't critical that we get exactly
612 	 * the same return value as before (we always csum_fold before
613 	 * testing, and that removes any differences).  However as we
614 	 * know that csum_partial always returned a 16bit value on
615 	 * alphas, do a fold to maximise conformity to previous behaviour.
616 	 */
617 	sb->sb_csum = md_csum_fold(disk_csum);
618 #else
619 	sb->sb_csum = disk_csum;
620 #endif
621 	return csum;
622 }
623 
624 
625 /*
626  * Handle superblock details.
627  * We want to be able to handle multiple superblock formats
628  * so we have a common interface to them all, and an array of
629  * different handlers.
630  * We rely on user-space to write the initial superblock, and support
631  * reading and updating of superblocks.
632  * Interface methods are:
633  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
634  *      loads and validates a superblock on dev.
635  *      if refdev != NULL, compare superblocks on both devices
636  *    Return:
637  *      0 - dev has a superblock that is compatible with refdev
638  *      1 - dev has a superblock that is compatible and newer than refdev
639  *          so dev should be used as the refdev in future
640  *     -EINVAL superblock incompatible or invalid
641  *     -othererror e.g. -EIO
642  *
643  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
644  *      Verify that dev is acceptable into mddev.
645  *       The first time, mddev->raid_disks will be 0, and data from
646  *       dev should be merged in.  Subsequent calls check that dev
647  *       is new enough.  Return 0 or -EINVAL
648  *
649  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
650  *     Update the superblock for rdev with data in mddev
651  *     This does not write to disc.
652  *
653  */
654 
655 struct super_type  {
656 	char 		*name;
657 	struct module	*owner;
658 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
659 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
660 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
661 };
662 
663 /*
664  * load_super for 0.90.0
665  */
666 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
667 {
668 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
669 	mdp_super_t *sb;
670 	int ret;
671 	sector_t sb_offset;
672 
673 	/*
674 	 * Calculate the position of the superblock,
675 	 * it's at the end of the disk.
676 	 *
677 	 * It also happens to be a multiple of 4Kb.
678 	 */
679 	sb_offset = calc_dev_sboffset(rdev->bdev);
680 	rdev->sb_offset = sb_offset;
681 
682 	ret = read_disk_sb(rdev, MD_SB_BYTES);
683 	if (ret) return ret;
684 
685 	ret = -EINVAL;
686 
687 	bdevname(rdev->bdev, b);
688 	sb = (mdp_super_t*)page_address(rdev->sb_page);
689 
690 	if (sb->md_magic != MD_SB_MAGIC) {
691 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
692 		       b);
693 		goto abort;
694 	}
695 
696 	if (sb->major_version != 0 ||
697 	    sb->minor_version < 90 ||
698 	    sb->minor_version > 91) {
699 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
700 			sb->major_version, sb->minor_version,
701 			b);
702 		goto abort;
703 	}
704 
705 	if (sb->raid_disks <= 0)
706 		goto abort;
707 
708 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
709 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
710 			b);
711 		goto abort;
712 	}
713 
714 	rdev->preferred_minor = sb->md_minor;
715 	rdev->data_offset = 0;
716 	rdev->sb_size = MD_SB_BYTES;
717 
718 	if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
719 		if (sb->level != 1 && sb->level != 4
720 		    && sb->level != 5 && sb->level != 6
721 		    && sb->level != 10) {
722 			/* FIXME use a better test */
723 			printk(KERN_WARNING
724 			       "md: bitmaps not supported for this level.\n");
725 			goto abort;
726 		}
727 	}
728 
729 	if (sb->level == LEVEL_MULTIPATH)
730 		rdev->desc_nr = -1;
731 	else
732 		rdev->desc_nr = sb->this_disk.number;
733 
734 	if (refdev == 0)
735 		ret = 1;
736 	else {
737 		__u64 ev1, ev2;
738 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
739 		if (!uuid_equal(refsb, sb)) {
740 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
741 				b, bdevname(refdev->bdev,b2));
742 			goto abort;
743 		}
744 		if (!sb_equal(refsb, sb)) {
745 			printk(KERN_WARNING "md: %s has same UUID"
746 			       " but different superblock to %s\n",
747 			       b, bdevname(refdev->bdev, b2));
748 			goto abort;
749 		}
750 		ev1 = md_event(sb);
751 		ev2 = md_event(refsb);
752 		if (ev1 > ev2)
753 			ret = 1;
754 		else
755 			ret = 0;
756 	}
757 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
758 
759 	if (rdev->size < sb->size && sb->level > 1)
760 		/* "this cannot possibly happen" ... */
761 		ret = -EINVAL;
762 
763  abort:
764 	return ret;
765 }
766 
767 /*
768  * validate_super for 0.90.0
769  */
770 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
771 {
772 	mdp_disk_t *desc;
773 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
774 	__u64 ev1 = md_event(sb);
775 
776 	rdev->raid_disk = -1;
777 	clear_bit(Faulty, &rdev->flags);
778 	clear_bit(In_sync, &rdev->flags);
779 	clear_bit(WriteMostly, &rdev->flags);
780 	clear_bit(BarriersNotsupp, &rdev->flags);
781 
782 	if (mddev->raid_disks == 0) {
783 		mddev->major_version = 0;
784 		mddev->minor_version = sb->minor_version;
785 		mddev->patch_version = sb->patch_version;
786 		mddev->external = 0;
787 		mddev->chunk_size = sb->chunk_size;
788 		mddev->ctime = sb->ctime;
789 		mddev->utime = sb->utime;
790 		mddev->level = sb->level;
791 		mddev->clevel[0] = 0;
792 		mddev->layout = sb->layout;
793 		mddev->raid_disks = sb->raid_disks;
794 		mddev->size = sb->size;
795 		mddev->events = ev1;
796 		mddev->bitmap_offset = 0;
797 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
798 
799 		if (mddev->minor_version >= 91) {
800 			mddev->reshape_position = sb->reshape_position;
801 			mddev->delta_disks = sb->delta_disks;
802 			mddev->new_level = sb->new_level;
803 			mddev->new_layout = sb->new_layout;
804 			mddev->new_chunk = sb->new_chunk;
805 		} else {
806 			mddev->reshape_position = MaxSector;
807 			mddev->delta_disks = 0;
808 			mddev->new_level = mddev->level;
809 			mddev->new_layout = mddev->layout;
810 			mddev->new_chunk = mddev->chunk_size;
811 		}
812 
813 		if (sb->state & (1<<MD_SB_CLEAN))
814 			mddev->recovery_cp = MaxSector;
815 		else {
816 			if (sb->events_hi == sb->cp_events_hi &&
817 				sb->events_lo == sb->cp_events_lo) {
818 				mddev->recovery_cp = sb->recovery_cp;
819 			} else
820 				mddev->recovery_cp = 0;
821 		}
822 
823 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
824 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
825 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
826 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
827 
828 		mddev->max_disks = MD_SB_DISKS;
829 
830 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
831 		    mddev->bitmap_file == NULL)
832 			mddev->bitmap_offset = mddev->default_bitmap_offset;
833 
834 	} else if (mddev->pers == NULL) {
835 		/* Insist on good event counter while assembling */
836 		++ev1;
837 		if (ev1 < mddev->events)
838 			return -EINVAL;
839 	} else if (mddev->bitmap) {
840 		/* if adding to array with a bitmap, then we can accept an
841 		 * older device ... but not too old.
842 		 */
843 		if (ev1 < mddev->bitmap->events_cleared)
844 			return 0;
845 	} else {
846 		if (ev1 < mddev->events)
847 			/* just a hot-add of a new device, leave raid_disk at -1 */
848 			return 0;
849 	}
850 
851 	if (mddev->level != LEVEL_MULTIPATH) {
852 		desc = sb->disks + rdev->desc_nr;
853 
854 		if (desc->state & (1<<MD_DISK_FAULTY))
855 			set_bit(Faulty, &rdev->flags);
856 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
857 			    desc->raid_disk < mddev->raid_disks */) {
858 			set_bit(In_sync, &rdev->flags);
859 			rdev->raid_disk = desc->raid_disk;
860 		}
861 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
862 			set_bit(WriteMostly, &rdev->flags);
863 	} else /* MULTIPATH are always insync */
864 		set_bit(In_sync, &rdev->flags);
865 	return 0;
866 }
867 
868 /*
869  * sync_super for 0.90.0
870  */
871 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
872 {
873 	mdp_super_t *sb;
874 	struct list_head *tmp;
875 	mdk_rdev_t *rdev2;
876 	int next_spare = mddev->raid_disks;
877 
878 
879 	/* make rdev->sb match mddev data..
880 	 *
881 	 * 1/ zero out disks
882 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
883 	 * 3/ any empty disks < next_spare become removed
884 	 *
885 	 * disks[0] gets initialised to REMOVED because
886 	 * we cannot be sure from other fields if it has
887 	 * been initialised or not.
888 	 */
889 	int i;
890 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
891 
892 	rdev->sb_size = MD_SB_BYTES;
893 
894 	sb = (mdp_super_t*)page_address(rdev->sb_page);
895 
896 	memset(sb, 0, sizeof(*sb));
897 
898 	sb->md_magic = MD_SB_MAGIC;
899 	sb->major_version = mddev->major_version;
900 	sb->patch_version = mddev->patch_version;
901 	sb->gvalid_words  = 0; /* ignored */
902 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
903 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
904 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
905 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
906 
907 	sb->ctime = mddev->ctime;
908 	sb->level = mddev->level;
909 	sb->size  = mddev->size;
910 	sb->raid_disks = mddev->raid_disks;
911 	sb->md_minor = mddev->md_minor;
912 	sb->not_persistent = 0;
913 	sb->utime = mddev->utime;
914 	sb->state = 0;
915 	sb->events_hi = (mddev->events>>32);
916 	sb->events_lo = (u32)mddev->events;
917 
918 	if (mddev->reshape_position == MaxSector)
919 		sb->minor_version = 90;
920 	else {
921 		sb->minor_version = 91;
922 		sb->reshape_position = mddev->reshape_position;
923 		sb->new_level = mddev->new_level;
924 		sb->delta_disks = mddev->delta_disks;
925 		sb->new_layout = mddev->new_layout;
926 		sb->new_chunk = mddev->new_chunk;
927 	}
928 	mddev->minor_version = sb->minor_version;
929 	if (mddev->in_sync)
930 	{
931 		sb->recovery_cp = mddev->recovery_cp;
932 		sb->cp_events_hi = (mddev->events>>32);
933 		sb->cp_events_lo = (u32)mddev->events;
934 		if (mddev->recovery_cp == MaxSector)
935 			sb->state = (1<< MD_SB_CLEAN);
936 	} else
937 		sb->recovery_cp = 0;
938 
939 	sb->layout = mddev->layout;
940 	sb->chunk_size = mddev->chunk_size;
941 
942 	if (mddev->bitmap && mddev->bitmap_file == NULL)
943 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
944 
945 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
946 	rdev_for_each(rdev2, tmp, mddev) {
947 		mdp_disk_t *d;
948 		int desc_nr;
949 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
950 		    && !test_bit(Faulty, &rdev2->flags))
951 			desc_nr = rdev2->raid_disk;
952 		else
953 			desc_nr = next_spare++;
954 		rdev2->desc_nr = desc_nr;
955 		d = &sb->disks[rdev2->desc_nr];
956 		nr_disks++;
957 		d->number = rdev2->desc_nr;
958 		d->major = MAJOR(rdev2->bdev->bd_dev);
959 		d->minor = MINOR(rdev2->bdev->bd_dev);
960 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
961 		    && !test_bit(Faulty, &rdev2->flags))
962 			d->raid_disk = rdev2->raid_disk;
963 		else
964 			d->raid_disk = rdev2->desc_nr; /* compatibility */
965 		if (test_bit(Faulty, &rdev2->flags))
966 			d->state = (1<<MD_DISK_FAULTY);
967 		else if (test_bit(In_sync, &rdev2->flags)) {
968 			d->state = (1<<MD_DISK_ACTIVE);
969 			d->state |= (1<<MD_DISK_SYNC);
970 			active++;
971 			working++;
972 		} else {
973 			d->state = 0;
974 			spare++;
975 			working++;
976 		}
977 		if (test_bit(WriteMostly, &rdev2->flags))
978 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
979 	}
980 	/* now set the "removed" and "faulty" bits on any missing devices */
981 	for (i=0 ; i < mddev->raid_disks ; i++) {
982 		mdp_disk_t *d = &sb->disks[i];
983 		if (d->state == 0 && d->number == 0) {
984 			d->number = i;
985 			d->raid_disk = i;
986 			d->state = (1<<MD_DISK_REMOVED);
987 			d->state |= (1<<MD_DISK_FAULTY);
988 			failed++;
989 		}
990 	}
991 	sb->nr_disks = nr_disks;
992 	sb->active_disks = active;
993 	sb->working_disks = working;
994 	sb->failed_disks = failed;
995 	sb->spare_disks = spare;
996 
997 	sb->this_disk = sb->disks[rdev->desc_nr];
998 	sb->sb_csum = calc_sb_csum(sb);
999 }
1000 
1001 /*
1002  * version 1 superblock
1003  */
1004 
1005 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1006 {
1007 	__le32 disk_csum;
1008 	u32 csum;
1009 	unsigned long long newcsum;
1010 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1011 	__le32 *isuper = (__le32*)sb;
1012 	int i;
1013 
1014 	disk_csum = sb->sb_csum;
1015 	sb->sb_csum = 0;
1016 	newcsum = 0;
1017 	for (i=0; size>=4; size -= 4 )
1018 		newcsum += le32_to_cpu(*isuper++);
1019 
1020 	if (size == 2)
1021 		newcsum += le16_to_cpu(*(__le16*) isuper);
1022 
1023 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1024 	sb->sb_csum = disk_csum;
1025 	return cpu_to_le32(csum);
1026 }
1027 
1028 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1029 {
1030 	struct mdp_superblock_1 *sb;
1031 	int ret;
1032 	sector_t sb_offset;
1033 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1034 	int bmask;
1035 
1036 	/*
1037 	 * Calculate the position of the superblock.
1038 	 * It is always aligned to a 4K boundary and
1039 	 * depeding on minor_version, it can be:
1040 	 * 0: At least 8K, but less than 12K, from end of device
1041 	 * 1: At start of device
1042 	 * 2: 4K from start of device.
1043 	 */
1044 	switch(minor_version) {
1045 	case 0:
1046 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1047 		sb_offset -= 8*2;
1048 		sb_offset &= ~(sector_t)(4*2-1);
1049 		/* convert from sectors to K */
1050 		sb_offset /= 2;
1051 		break;
1052 	case 1:
1053 		sb_offset = 0;
1054 		break;
1055 	case 2:
1056 		sb_offset = 4;
1057 		break;
1058 	default:
1059 		return -EINVAL;
1060 	}
1061 	rdev->sb_offset = sb_offset;
1062 
1063 	/* superblock is rarely larger than 1K, but it can be larger,
1064 	 * and it is safe to read 4k, so we do that
1065 	 */
1066 	ret = read_disk_sb(rdev, 4096);
1067 	if (ret) return ret;
1068 
1069 
1070 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1071 
1072 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1073 	    sb->major_version != cpu_to_le32(1) ||
1074 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1075 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1076 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1077 		return -EINVAL;
1078 
1079 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1080 		printk("md: invalid superblock checksum on %s\n",
1081 			bdevname(rdev->bdev,b));
1082 		return -EINVAL;
1083 	}
1084 	if (le64_to_cpu(sb->data_size) < 10) {
1085 		printk("md: data_size too small on %s\n",
1086 		       bdevname(rdev->bdev,b));
1087 		return -EINVAL;
1088 	}
1089 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1090 		if (sb->level != cpu_to_le32(1) &&
1091 		    sb->level != cpu_to_le32(4) &&
1092 		    sb->level != cpu_to_le32(5) &&
1093 		    sb->level != cpu_to_le32(6) &&
1094 		    sb->level != cpu_to_le32(10)) {
1095 			printk(KERN_WARNING
1096 			       "md: bitmaps not supported for this level.\n");
1097 			return -EINVAL;
1098 		}
1099 	}
1100 
1101 	rdev->preferred_minor = 0xffff;
1102 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1103 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1104 
1105 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1106 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1107 	if (rdev->sb_size & bmask)
1108 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1109 
1110 	if (minor_version
1111 	    && rdev->data_offset < sb_offset + (rdev->sb_size/512))
1112 		return -EINVAL;
1113 
1114 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1115 		rdev->desc_nr = -1;
1116 	else
1117 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1118 
1119 	if (refdev == 0)
1120 		ret = 1;
1121 	else {
1122 		__u64 ev1, ev2;
1123 		struct mdp_superblock_1 *refsb =
1124 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1125 
1126 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1127 		    sb->level != refsb->level ||
1128 		    sb->layout != refsb->layout ||
1129 		    sb->chunksize != refsb->chunksize) {
1130 			printk(KERN_WARNING "md: %s has strangely different"
1131 				" superblock to %s\n",
1132 				bdevname(rdev->bdev,b),
1133 				bdevname(refdev->bdev,b2));
1134 			return -EINVAL;
1135 		}
1136 		ev1 = le64_to_cpu(sb->events);
1137 		ev2 = le64_to_cpu(refsb->events);
1138 
1139 		if (ev1 > ev2)
1140 			ret = 1;
1141 		else
1142 			ret = 0;
1143 	}
1144 	if (minor_version)
1145 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1146 	else
1147 		rdev->size = rdev->sb_offset;
1148 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1149 		return -EINVAL;
1150 	rdev->size = le64_to_cpu(sb->data_size)/2;
1151 	if (le32_to_cpu(sb->chunksize))
1152 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1153 
1154 	if (le64_to_cpu(sb->size) > rdev->size*2)
1155 		return -EINVAL;
1156 	return ret;
1157 }
1158 
1159 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1160 {
1161 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1162 	__u64 ev1 = le64_to_cpu(sb->events);
1163 
1164 	rdev->raid_disk = -1;
1165 	clear_bit(Faulty, &rdev->flags);
1166 	clear_bit(In_sync, &rdev->flags);
1167 	clear_bit(WriteMostly, &rdev->flags);
1168 	clear_bit(BarriersNotsupp, &rdev->flags);
1169 
1170 	if (mddev->raid_disks == 0) {
1171 		mddev->major_version = 1;
1172 		mddev->patch_version = 0;
1173 		mddev->external = 0;
1174 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1175 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1176 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1177 		mddev->level = le32_to_cpu(sb->level);
1178 		mddev->clevel[0] = 0;
1179 		mddev->layout = le32_to_cpu(sb->layout);
1180 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1181 		mddev->size = le64_to_cpu(sb->size)/2;
1182 		mddev->events = ev1;
1183 		mddev->bitmap_offset = 0;
1184 		mddev->default_bitmap_offset = 1024 >> 9;
1185 
1186 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1187 		memcpy(mddev->uuid, sb->set_uuid, 16);
1188 
1189 		mddev->max_disks =  (4096-256)/2;
1190 
1191 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1192 		    mddev->bitmap_file == NULL )
1193 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1194 
1195 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1196 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1197 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1198 			mddev->new_level = le32_to_cpu(sb->new_level);
1199 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1200 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1201 		} else {
1202 			mddev->reshape_position = MaxSector;
1203 			mddev->delta_disks = 0;
1204 			mddev->new_level = mddev->level;
1205 			mddev->new_layout = mddev->layout;
1206 			mddev->new_chunk = mddev->chunk_size;
1207 		}
1208 
1209 	} else if (mddev->pers == NULL) {
1210 		/* Insist of good event counter while assembling */
1211 		++ev1;
1212 		if (ev1 < mddev->events)
1213 			return -EINVAL;
1214 	} else if (mddev->bitmap) {
1215 		/* If adding to array with a bitmap, then we can accept an
1216 		 * older device, but not too old.
1217 		 */
1218 		if (ev1 < mddev->bitmap->events_cleared)
1219 			return 0;
1220 	} else {
1221 		if (ev1 < mddev->events)
1222 			/* just a hot-add of a new device, leave raid_disk at -1 */
1223 			return 0;
1224 	}
1225 	if (mddev->level != LEVEL_MULTIPATH) {
1226 		int role;
1227 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1228 		switch(role) {
1229 		case 0xffff: /* spare */
1230 			break;
1231 		case 0xfffe: /* faulty */
1232 			set_bit(Faulty, &rdev->flags);
1233 			break;
1234 		default:
1235 			if ((le32_to_cpu(sb->feature_map) &
1236 			     MD_FEATURE_RECOVERY_OFFSET))
1237 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1238 			else
1239 				set_bit(In_sync, &rdev->flags);
1240 			rdev->raid_disk = role;
1241 			break;
1242 		}
1243 		if (sb->devflags & WriteMostly1)
1244 			set_bit(WriteMostly, &rdev->flags);
1245 	} else /* MULTIPATH are always insync */
1246 		set_bit(In_sync, &rdev->flags);
1247 
1248 	return 0;
1249 }
1250 
1251 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1252 {
1253 	struct mdp_superblock_1 *sb;
1254 	struct list_head *tmp;
1255 	mdk_rdev_t *rdev2;
1256 	int max_dev, i;
1257 	/* make rdev->sb match mddev and rdev data. */
1258 
1259 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1260 
1261 	sb->feature_map = 0;
1262 	sb->pad0 = 0;
1263 	sb->recovery_offset = cpu_to_le64(0);
1264 	memset(sb->pad1, 0, sizeof(sb->pad1));
1265 	memset(sb->pad2, 0, sizeof(sb->pad2));
1266 	memset(sb->pad3, 0, sizeof(sb->pad3));
1267 
1268 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1269 	sb->events = cpu_to_le64(mddev->events);
1270 	if (mddev->in_sync)
1271 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1272 	else
1273 		sb->resync_offset = cpu_to_le64(0);
1274 
1275 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1276 
1277 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1278 	sb->size = cpu_to_le64(mddev->size<<1);
1279 
1280 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1281 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1282 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1283 	}
1284 
1285 	if (rdev->raid_disk >= 0 &&
1286 	    !test_bit(In_sync, &rdev->flags) &&
1287 	    rdev->recovery_offset > 0) {
1288 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1289 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1290 	}
1291 
1292 	if (mddev->reshape_position != MaxSector) {
1293 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1294 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1295 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1296 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1297 		sb->new_level = cpu_to_le32(mddev->new_level);
1298 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1299 	}
1300 
1301 	max_dev = 0;
1302 	rdev_for_each(rdev2, tmp, mddev)
1303 		if (rdev2->desc_nr+1 > max_dev)
1304 			max_dev = rdev2->desc_nr+1;
1305 
1306 	if (max_dev > le32_to_cpu(sb->max_dev))
1307 		sb->max_dev = cpu_to_le32(max_dev);
1308 	for (i=0; i<max_dev;i++)
1309 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1310 
1311 	rdev_for_each(rdev2, tmp, mddev) {
1312 		i = rdev2->desc_nr;
1313 		if (test_bit(Faulty, &rdev2->flags))
1314 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1315 		else if (test_bit(In_sync, &rdev2->flags))
1316 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1317 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1318 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1319 		else
1320 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1321 	}
1322 
1323 	sb->sb_csum = calc_sb_1_csum(sb);
1324 }
1325 
1326 
1327 static struct super_type super_types[] = {
1328 	[0] = {
1329 		.name	= "0.90.0",
1330 		.owner	= THIS_MODULE,
1331 		.load_super	= super_90_load,
1332 		.validate_super	= super_90_validate,
1333 		.sync_super	= super_90_sync,
1334 	},
1335 	[1] = {
1336 		.name	= "md-1",
1337 		.owner	= THIS_MODULE,
1338 		.load_super	= super_1_load,
1339 		.validate_super	= super_1_validate,
1340 		.sync_super	= super_1_sync,
1341 	},
1342 };
1343 
1344 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1345 {
1346 	struct list_head *tmp, *tmp2;
1347 	mdk_rdev_t *rdev, *rdev2;
1348 
1349 	rdev_for_each(rdev, tmp, mddev1)
1350 		rdev_for_each(rdev2, tmp2, mddev2)
1351 			if (rdev->bdev->bd_contains ==
1352 			    rdev2->bdev->bd_contains)
1353 				return 1;
1354 
1355 	return 0;
1356 }
1357 
1358 static LIST_HEAD(pending_raid_disks);
1359 
1360 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1361 {
1362 	char b[BDEVNAME_SIZE];
1363 	struct kobject *ko;
1364 	char *s;
1365 	int err;
1366 
1367 	if (rdev->mddev) {
1368 		MD_BUG();
1369 		return -EINVAL;
1370 	}
1371 	/* make sure rdev->size exceeds mddev->size */
1372 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1373 		if (mddev->pers) {
1374 			/* Cannot change size, so fail
1375 			 * If mddev->level <= 0, then we don't care
1376 			 * about aligning sizes (e.g. linear)
1377 			 */
1378 			if (mddev->level > 0)
1379 				return -ENOSPC;
1380 		} else
1381 			mddev->size = rdev->size;
1382 	}
1383 
1384 	/* Verify rdev->desc_nr is unique.
1385 	 * If it is -1, assign a free number, else
1386 	 * check number is not in use
1387 	 */
1388 	if (rdev->desc_nr < 0) {
1389 		int choice = 0;
1390 		if (mddev->pers) choice = mddev->raid_disks;
1391 		while (find_rdev_nr(mddev, choice))
1392 			choice++;
1393 		rdev->desc_nr = choice;
1394 	} else {
1395 		if (find_rdev_nr(mddev, rdev->desc_nr))
1396 			return -EBUSY;
1397 	}
1398 	bdevname(rdev->bdev,b);
1399 	while ( (s=strchr(b, '/')) != NULL)
1400 		*s = '!';
1401 
1402 	rdev->mddev = mddev;
1403 	printk(KERN_INFO "md: bind<%s>\n", b);
1404 
1405 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1406 		goto fail;
1407 
1408 	if (rdev->bdev->bd_part)
1409 		ko = &rdev->bdev->bd_part->dev.kobj;
1410 	else
1411 		ko = &rdev->bdev->bd_disk->dev.kobj;
1412 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1413 		kobject_del(&rdev->kobj);
1414 		goto fail;
1415 	}
1416 	list_add(&rdev->same_set, &mddev->disks);
1417 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1418 	return 0;
1419 
1420  fail:
1421 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1422 	       b, mdname(mddev));
1423 	return err;
1424 }
1425 
1426 static void md_delayed_delete(struct work_struct *ws)
1427 {
1428 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1429 	kobject_del(&rdev->kobj);
1430 	kobject_put(&rdev->kobj);
1431 }
1432 
1433 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1434 {
1435 	char b[BDEVNAME_SIZE];
1436 	if (!rdev->mddev) {
1437 		MD_BUG();
1438 		return;
1439 	}
1440 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1441 	list_del_init(&rdev->same_set);
1442 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1443 	rdev->mddev = NULL;
1444 	sysfs_remove_link(&rdev->kobj, "block");
1445 
1446 	/* We need to delay this, otherwise we can deadlock when
1447 	 * writing to 'remove' to "dev/state"
1448 	 */
1449 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1450 	kobject_get(&rdev->kobj);
1451 	schedule_work(&rdev->del_work);
1452 }
1453 
1454 /*
1455  * prevent the device from being mounted, repartitioned or
1456  * otherwise reused by a RAID array (or any other kernel
1457  * subsystem), by bd_claiming the device.
1458  */
1459 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1460 {
1461 	int err = 0;
1462 	struct block_device *bdev;
1463 	char b[BDEVNAME_SIZE];
1464 
1465 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1466 	if (IS_ERR(bdev)) {
1467 		printk(KERN_ERR "md: could not open %s.\n",
1468 			__bdevname(dev, b));
1469 		return PTR_ERR(bdev);
1470 	}
1471 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1472 	if (err) {
1473 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1474 			bdevname(bdev, b));
1475 		blkdev_put(bdev);
1476 		return err;
1477 	}
1478 	if (!shared)
1479 		set_bit(AllReserved, &rdev->flags);
1480 	rdev->bdev = bdev;
1481 	return err;
1482 }
1483 
1484 static void unlock_rdev(mdk_rdev_t *rdev)
1485 {
1486 	struct block_device *bdev = rdev->bdev;
1487 	rdev->bdev = NULL;
1488 	if (!bdev)
1489 		MD_BUG();
1490 	bd_release(bdev);
1491 	blkdev_put(bdev);
1492 }
1493 
1494 void md_autodetect_dev(dev_t dev);
1495 
1496 static void export_rdev(mdk_rdev_t * rdev)
1497 {
1498 	char b[BDEVNAME_SIZE];
1499 	printk(KERN_INFO "md: export_rdev(%s)\n",
1500 		bdevname(rdev->bdev,b));
1501 	if (rdev->mddev)
1502 		MD_BUG();
1503 	free_disk_sb(rdev);
1504 	list_del_init(&rdev->same_set);
1505 #ifndef MODULE
1506 	if (test_bit(AutoDetected, &rdev->flags))
1507 		md_autodetect_dev(rdev->bdev->bd_dev);
1508 #endif
1509 	unlock_rdev(rdev);
1510 	kobject_put(&rdev->kobj);
1511 }
1512 
1513 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1514 {
1515 	unbind_rdev_from_array(rdev);
1516 	export_rdev(rdev);
1517 }
1518 
1519 static void export_array(mddev_t *mddev)
1520 {
1521 	struct list_head *tmp;
1522 	mdk_rdev_t *rdev;
1523 
1524 	rdev_for_each(rdev, tmp, mddev) {
1525 		if (!rdev->mddev) {
1526 			MD_BUG();
1527 			continue;
1528 		}
1529 		kick_rdev_from_array(rdev);
1530 	}
1531 	if (!list_empty(&mddev->disks))
1532 		MD_BUG();
1533 	mddev->raid_disks = 0;
1534 	mddev->major_version = 0;
1535 }
1536 
1537 static void print_desc(mdp_disk_t *desc)
1538 {
1539 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1540 		desc->major,desc->minor,desc->raid_disk,desc->state);
1541 }
1542 
1543 static void print_sb(mdp_super_t *sb)
1544 {
1545 	int i;
1546 
1547 	printk(KERN_INFO
1548 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1549 		sb->major_version, sb->minor_version, sb->patch_version,
1550 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1551 		sb->ctime);
1552 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1553 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1554 		sb->md_minor, sb->layout, sb->chunk_size);
1555 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1556 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1557 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1558 		sb->failed_disks, sb->spare_disks,
1559 		sb->sb_csum, (unsigned long)sb->events_lo);
1560 
1561 	printk(KERN_INFO);
1562 	for (i = 0; i < MD_SB_DISKS; i++) {
1563 		mdp_disk_t *desc;
1564 
1565 		desc = sb->disks + i;
1566 		if (desc->number || desc->major || desc->minor ||
1567 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1568 			printk("     D %2d: ", i);
1569 			print_desc(desc);
1570 		}
1571 	}
1572 	printk(KERN_INFO "md:     THIS: ");
1573 	print_desc(&sb->this_disk);
1574 
1575 }
1576 
1577 static void print_rdev(mdk_rdev_t *rdev)
1578 {
1579 	char b[BDEVNAME_SIZE];
1580 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1581 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1582 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1583 	        rdev->desc_nr);
1584 	if (rdev->sb_loaded) {
1585 		printk(KERN_INFO "md: rdev superblock:\n");
1586 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1587 	} else
1588 		printk(KERN_INFO "md: no rdev superblock!\n");
1589 }
1590 
1591 static void md_print_devices(void)
1592 {
1593 	struct list_head *tmp, *tmp2;
1594 	mdk_rdev_t *rdev;
1595 	mddev_t *mddev;
1596 	char b[BDEVNAME_SIZE];
1597 
1598 	printk("\n");
1599 	printk("md:	**********************************\n");
1600 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1601 	printk("md:	**********************************\n");
1602 	for_each_mddev(mddev, tmp) {
1603 
1604 		if (mddev->bitmap)
1605 			bitmap_print_sb(mddev->bitmap);
1606 		else
1607 			printk("%s: ", mdname(mddev));
1608 		rdev_for_each(rdev, tmp2, mddev)
1609 			printk("<%s>", bdevname(rdev->bdev,b));
1610 		printk("\n");
1611 
1612 		rdev_for_each(rdev, tmp2, mddev)
1613 			print_rdev(rdev);
1614 	}
1615 	printk("md:	**********************************\n");
1616 	printk("\n");
1617 }
1618 
1619 
1620 static void sync_sbs(mddev_t * mddev, int nospares)
1621 {
1622 	/* Update each superblock (in-memory image), but
1623 	 * if we are allowed to, skip spares which already
1624 	 * have the right event counter, or have one earlier
1625 	 * (which would mean they aren't being marked as dirty
1626 	 * with the rest of the array)
1627 	 */
1628 	mdk_rdev_t *rdev;
1629 	struct list_head *tmp;
1630 
1631 	rdev_for_each(rdev, tmp, mddev) {
1632 		if (rdev->sb_events == mddev->events ||
1633 		    (nospares &&
1634 		     rdev->raid_disk < 0 &&
1635 		     (rdev->sb_events&1)==0 &&
1636 		     rdev->sb_events+1 == mddev->events)) {
1637 			/* Don't update this superblock */
1638 			rdev->sb_loaded = 2;
1639 		} else {
1640 			super_types[mddev->major_version].
1641 				sync_super(mddev, rdev);
1642 			rdev->sb_loaded = 1;
1643 		}
1644 	}
1645 }
1646 
1647 static void md_update_sb(mddev_t * mddev, int force_change)
1648 {
1649 	struct list_head *tmp;
1650 	mdk_rdev_t *rdev;
1651 	int sync_req;
1652 	int nospares = 0;
1653 
1654 repeat:
1655 	spin_lock_irq(&mddev->write_lock);
1656 
1657 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1658 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1659 		force_change = 1;
1660 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1661 		/* just a clean<-> dirty transition, possibly leave spares alone,
1662 		 * though if events isn't the right even/odd, we will have to do
1663 		 * spares after all
1664 		 */
1665 		nospares = 1;
1666 	if (force_change)
1667 		nospares = 0;
1668 	if (mddev->degraded)
1669 		/* If the array is degraded, then skipping spares is both
1670 		 * dangerous and fairly pointless.
1671 		 * Dangerous because a device that was removed from the array
1672 		 * might have a event_count that still looks up-to-date,
1673 		 * so it can be re-added without a resync.
1674 		 * Pointless because if there are any spares to skip,
1675 		 * then a recovery will happen and soon that array won't
1676 		 * be degraded any more and the spare can go back to sleep then.
1677 		 */
1678 		nospares = 0;
1679 
1680 	sync_req = mddev->in_sync;
1681 	mddev->utime = get_seconds();
1682 
1683 	/* If this is just a dirty<->clean transition, and the array is clean
1684 	 * and 'events' is odd, we can roll back to the previous clean state */
1685 	if (nospares
1686 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1687 	    && (mddev->events & 1)
1688 	    && mddev->events != 1)
1689 		mddev->events--;
1690 	else {
1691 		/* otherwise we have to go forward and ... */
1692 		mddev->events ++;
1693 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1694 			/* .. if the array isn't clean, insist on an odd 'events' */
1695 			if ((mddev->events&1)==0) {
1696 				mddev->events++;
1697 				nospares = 0;
1698 			}
1699 		} else {
1700 			/* otherwise insist on an even 'events' (for clean states) */
1701 			if ((mddev->events&1)) {
1702 				mddev->events++;
1703 				nospares = 0;
1704 			}
1705 		}
1706 	}
1707 
1708 	if (!mddev->events) {
1709 		/*
1710 		 * oops, this 64-bit counter should never wrap.
1711 		 * Either we are in around ~1 trillion A.C., assuming
1712 		 * 1 reboot per second, or we have a bug:
1713 		 */
1714 		MD_BUG();
1715 		mddev->events --;
1716 	}
1717 
1718 	/*
1719 	 * do not write anything to disk if using
1720 	 * nonpersistent superblocks
1721 	 */
1722 	if (!mddev->persistent) {
1723 		if (!mddev->external)
1724 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1725 
1726 		spin_unlock_irq(&mddev->write_lock);
1727 		wake_up(&mddev->sb_wait);
1728 		return;
1729 	}
1730 	sync_sbs(mddev, nospares);
1731 	spin_unlock_irq(&mddev->write_lock);
1732 
1733 	dprintk(KERN_INFO
1734 		"md: updating %s RAID superblock on device (in sync %d)\n",
1735 		mdname(mddev),mddev->in_sync);
1736 
1737 	bitmap_update_sb(mddev->bitmap);
1738 	rdev_for_each(rdev, tmp, mddev) {
1739 		char b[BDEVNAME_SIZE];
1740 		dprintk(KERN_INFO "md: ");
1741 		if (rdev->sb_loaded != 1)
1742 			continue; /* no noise on spare devices */
1743 		if (test_bit(Faulty, &rdev->flags))
1744 			dprintk("(skipping faulty ");
1745 
1746 		dprintk("%s ", bdevname(rdev->bdev,b));
1747 		if (!test_bit(Faulty, &rdev->flags)) {
1748 			md_super_write(mddev,rdev,
1749 				       rdev->sb_offset<<1, rdev->sb_size,
1750 				       rdev->sb_page);
1751 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1752 				bdevname(rdev->bdev,b),
1753 				(unsigned long long)rdev->sb_offset);
1754 			rdev->sb_events = mddev->events;
1755 
1756 		} else
1757 			dprintk(")\n");
1758 		if (mddev->level == LEVEL_MULTIPATH)
1759 			/* only need to write one superblock... */
1760 			break;
1761 	}
1762 	md_super_wait(mddev);
1763 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1764 
1765 	spin_lock_irq(&mddev->write_lock);
1766 	if (mddev->in_sync != sync_req ||
1767 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1768 		/* have to write it out again */
1769 		spin_unlock_irq(&mddev->write_lock);
1770 		goto repeat;
1771 	}
1772 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1773 	spin_unlock_irq(&mddev->write_lock);
1774 	wake_up(&mddev->sb_wait);
1775 
1776 }
1777 
1778 /* words written to sysfs files may, or my not, be \n terminated.
1779  * We want to accept with case. For this we use cmd_match.
1780  */
1781 static int cmd_match(const char *cmd, const char *str)
1782 {
1783 	/* See if cmd, written into a sysfs file, matches
1784 	 * str.  They must either be the same, or cmd can
1785 	 * have a trailing newline
1786 	 */
1787 	while (*cmd && *str && *cmd == *str) {
1788 		cmd++;
1789 		str++;
1790 	}
1791 	if (*cmd == '\n')
1792 		cmd++;
1793 	if (*str || *cmd)
1794 		return 0;
1795 	return 1;
1796 }
1797 
1798 struct rdev_sysfs_entry {
1799 	struct attribute attr;
1800 	ssize_t (*show)(mdk_rdev_t *, char *);
1801 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1802 };
1803 
1804 static ssize_t
1805 state_show(mdk_rdev_t *rdev, char *page)
1806 {
1807 	char *sep = "";
1808 	size_t len = 0;
1809 
1810 	if (test_bit(Faulty, &rdev->flags)) {
1811 		len+= sprintf(page+len, "%sfaulty",sep);
1812 		sep = ",";
1813 	}
1814 	if (test_bit(In_sync, &rdev->flags)) {
1815 		len += sprintf(page+len, "%sin_sync",sep);
1816 		sep = ",";
1817 	}
1818 	if (test_bit(WriteMostly, &rdev->flags)) {
1819 		len += sprintf(page+len, "%swrite_mostly",sep);
1820 		sep = ",";
1821 	}
1822 	if (!test_bit(Faulty, &rdev->flags) &&
1823 	    !test_bit(In_sync, &rdev->flags)) {
1824 		len += sprintf(page+len, "%sspare", sep);
1825 		sep = ",";
1826 	}
1827 	return len+sprintf(page+len, "\n");
1828 }
1829 
1830 static ssize_t
1831 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1832 {
1833 	/* can write
1834 	 *  faulty  - simulates and error
1835 	 *  remove  - disconnects the device
1836 	 *  writemostly - sets write_mostly
1837 	 *  -writemostly - clears write_mostly
1838 	 */
1839 	int err = -EINVAL;
1840 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1841 		md_error(rdev->mddev, rdev);
1842 		err = 0;
1843 	} else if (cmd_match(buf, "remove")) {
1844 		if (rdev->raid_disk >= 0)
1845 			err = -EBUSY;
1846 		else {
1847 			mddev_t *mddev = rdev->mddev;
1848 			kick_rdev_from_array(rdev);
1849 			if (mddev->pers)
1850 				md_update_sb(mddev, 1);
1851 			md_new_event(mddev);
1852 			err = 0;
1853 		}
1854 	} else if (cmd_match(buf, "writemostly")) {
1855 		set_bit(WriteMostly, &rdev->flags);
1856 		err = 0;
1857 	} else if (cmd_match(buf, "-writemostly")) {
1858 		clear_bit(WriteMostly, &rdev->flags);
1859 		err = 0;
1860 	}
1861 	return err ? err : len;
1862 }
1863 static struct rdev_sysfs_entry rdev_state =
1864 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1865 
1866 static ssize_t
1867 errors_show(mdk_rdev_t *rdev, char *page)
1868 {
1869 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1870 }
1871 
1872 static ssize_t
1873 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1874 {
1875 	char *e;
1876 	unsigned long n = simple_strtoul(buf, &e, 10);
1877 	if (*buf && (*e == 0 || *e == '\n')) {
1878 		atomic_set(&rdev->corrected_errors, n);
1879 		return len;
1880 	}
1881 	return -EINVAL;
1882 }
1883 static struct rdev_sysfs_entry rdev_errors =
1884 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1885 
1886 static ssize_t
1887 slot_show(mdk_rdev_t *rdev, char *page)
1888 {
1889 	if (rdev->raid_disk < 0)
1890 		return sprintf(page, "none\n");
1891 	else
1892 		return sprintf(page, "%d\n", rdev->raid_disk);
1893 }
1894 
1895 static ssize_t
1896 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1897 {
1898 	char *e;
1899 	int err;
1900 	char nm[20];
1901 	int slot = simple_strtoul(buf, &e, 10);
1902 	if (strncmp(buf, "none", 4)==0)
1903 		slot = -1;
1904 	else if (e==buf || (*e && *e!= '\n'))
1905 		return -EINVAL;
1906 	if (rdev->mddev->pers) {
1907 		/* Setting 'slot' on an active array requires also
1908 		 * updating the 'rd%d' link, and communicating
1909 		 * with the personality with ->hot_*_disk.
1910 		 * For now we only support removing
1911 		 * failed/spare devices.  This normally happens automatically,
1912 		 * but not when the metadata is externally managed.
1913 		 */
1914 		if (slot != -1)
1915 			return -EBUSY;
1916 		if (rdev->raid_disk == -1)
1917 			return -EEXIST;
1918 		/* personality does all needed checks */
1919 		if (rdev->mddev->pers->hot_add_disk == NULL)
1920 			return -EINVAL;
1921 		err = rdev->mddev->pers->
1922 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
1923 		if (err)
1924 			return err;
1925 		sprintf(nm, "rd%d", rdev->raid_disk);
1926 		sysfs_remove_link(&rdev->mddev->kobj, nm);
1927 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1928 		md_wakeup_thread(rdev->mddev->thread);
1929 	} else {
1930 		if (slot >= rdev->mddev->raid_disks)
1931 			return -ENOSPC;
1932 		rdev->raid_disk = slot;
1933 		/* assume it is working */
1934 		clear_bit(Faulty, &rdev->flags);
1935 		clear_bit(WriteMostly, &rdev->flags);
1936 		set_bit(In_sync, &rdev->flags);
1937 	}
1938 	return len;
1939 }
1940 
1941 
1942 static struct rdev_sysfs_entry rdev_slot =
1943 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1944 
1945 static ssize_t
1946 offset_show(mdk_rdev_t *rdev, char *page)
1947 {
1948 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1949 }
1950 
1951 static ssize_t
1952 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1953 {
1954 	char *e;
1955 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1956 	if (e==buf || (*e && *e != '\n'))
1957 		return -EINVAL;
1958 	if (rdev->mddev->pers)
1959 		return -EBUSY;
1960 	if (rdev->size && rdev->mddev->external)
1961 		/* Must set offset before size, so overlap checks
1962 		 * can be sane */
1963 		return -EBUSY;
1964 	rdev->data_offset = offset;
1965 	return len;
1966 }
1967 
1968 static struct rdev_sysfs_entry rdev_offset =
1969 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1970 
1971 static ssize_t
1972 rdev_size_show(mdk_rdev_t *rdev, char *page)
1973 {
1974 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1975 }
1976 
1977 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
1978 {
1979 	/* check if two start/length pairs overlap */
1980 	if (s1+l1 <= s2)
1981 		return 0;
1982 	if (s2+l2 <= s1)
1983 		return 0;
1984 	return 1;
1985 }
1986 
1987 static ssize_t
1988 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1989 {
1990 	char *e;
1991 	unsigned long long size = simple_strtoull(buf, &e, 10);
1992 	unsigned long long oldsize = rdev->size;
1993 	mddev_t *my_mddev = rdev->mddev;
1994 
1995 	if (e==buf || (*e && *e != '\n'))
1996 		return -EINVAL;
1997 	if (my_mddev->pers)
1998 		return -EBUSY;
1999 	rdev->size = size;
2000 	if (size > oldsize && rdev->mddev->external) {
2001 		/* need to check that all other rdevs with the same ->bdev
2002 		 * do not overlap.  We need to unlock the mddev to avoid
2003 		 * a deadlock.  We have already changed rdev->size, and if
2004 		 * we have to change it back, we will have the lock again.
2005 		 */
2006 		mddev_t *mddev;
2007 		int overlap = 0;
2008 		struct list_head *tmp, *tmp2;
2009 
2010 		mddev_unlock(my_mddev);
2011 		for_each_mddev(mddev, tmp) {
2012 			mdk_rdev_t *rdev2;
2013 
2014 			mddev_lock(mddev);
2015 			rdev_for_each(rdev2, tmp2, mddev)
2016 				if (test_bit(AllReserved, &rdev2->flags) ||
2017 				    (rdev->bdev == rdev2->bdev &&
2018 				     rdev != rdev2 &&
2019 				     overlaps(rdev->data_offset, rdev->size,
2020 					    rdev2->data_offset, rdev2->size))) {
2021 					overlap = 1;
2022 					break;
2023 				}
2024 			mddev_unlock(mddev);
2025 			if (overlap) {
2026 				mddev_put(mddev);
2027 				break;
2028 			}
2029 		}
2030 		mddev_lock(my_mddev);
2031 		if (overlap) {
2032 			/* Someone else could have slipped in a size
2033 			 * change here, but doing so is just silly.
2034 			 * We put oldsize back because we *know* it is
2035 			 * safe, and trust userspace not to race with
2036 			 * itself
2037 			 */
2038 			rdev->size = oldsize;
2039 			return -EBUSY;
2040 		}
2041 	}
2042 	if (size < my_mddev->size || my_mddev->size == 0)
2043 		my_mddev->size = size;
2044 	return len;
2045 }
2046 
2047 static struct rdev_sysfs_entry rdev_size =
2048 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2049 
2050 static struct attribute *rdev_default_attrs[] = {
2051 	&rdev_state.attr,
2052 	&rdev_errors.attr,
2053 	&rdev_slot.attr,
2054 	&rdev_offset.attr,
2055 	&rdev_size.attr,
2056 	NULL,
2057 };
2058 static ssize_t
2059 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2060 {
2061 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2062 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2063 	mddev_t *mddev = rdev->mddev;
2064 	ssize_t rv;
2065 
2066 	if (!entry->show)
2067 		return -EIO;
2068 
2069 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2070 	if (!rv) {
2071 		if (rdev->mddev == NULL)
2072 			rv = -EBUSY;
2073 		else
2074 			rv = entry->show(rdev, page);
2075 		mddev_unlock(mddev);
2076 	}
2077 	return rv;
2078 }
2079 
2080 static ssize_t
2081 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2082 	      const char *page, size_t length)
2083 {
2084 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2085 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2086 	ssize_t rv;
2087 	mddev_t *mddev = rdev->mddev;
2088 
2089 	if (!entry->store)
2090 		return -EIO;
2091 	if (!capable(CAP_SYS_ADMIN))
2092 		return -EACCES;
2093 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2094 	if (!rv) {
2095 		if (rdev->mddev == NULL)
2096 			rv = -EBUSY;
2097 		else
2098 			rv = entry->store(rdev, page, length);
2099 		mddev_unlock(rdev->mddev);
2100 	}
2101 	return rv;
2102 }
2103 
2104 static void rdev_free(struct kobject *ko)
2105 {
2106 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2107 	kfree(rdev);
2108 }
2109 static struct sysfs_ops rdev_sysfs_ops = {
2110 	.show		= rdev_attr_show,
2111 	.store		= rdev_attr_store,
2112 };
2113 static struct kobj_type rdev_ktype = {
2114 	.release	= rdev_free,
2115 	.sysfs_ops	= &rdev_sysfs_ops,
2116 	.default_attrs	= rdev_default_attrs,
2117 };
2118 
2119 /*
2120  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2121  *
2122  * mark the device faulty if:
2123  *
2124  *   - the device is nonexistent (zero size)
2125  *   - the device has no valid superblock
2126  *
2127  * a faulty rdev _never_ has rdev->sb set.
2128  */
2129 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2130 {
2131 	char b[BDEVNAME_SIZE];
2132 	int err;
2133 	mdk_rdev_t *rdev;
2134 	sector_t size;
2135 
2136 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2137 	if (!rdev) {
2138 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2139 		return ERR_PTR(-ENOMEM);
2140 	}
2141 
2142 	if ((err = alloc_disk_sb(rdev)))
2143 		goto abort_free;
2144 
2145 	err = lock_rdev(rdev, newdev, super_format == -2);
2146 	if (err)
2147 		goto abort_free;
2148 
2149 	kobject_init(&rdev->kobj, &rdev_ktype);
2150 
2151 	rdev->desc_nr = -1;
2152 	rdev->saved_raid_disk = -1;
2153 	rdev->raid_disk = -1;
2154 	rdev->flags = 0;
2155 	rdev->data_offset = 0;
2156 	rdev->sb_events = 0;
2157 	atomic_set(&rdev->nr_pending, 0);
2158 	atomic_set(&rdev->read_errors, 0);
2159 	atomic_set(&rdev->corrected_errors, 0);
2160 
2161 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2162 	if (!size) {
2163 		printk(KERN_WARNING
2164 			"md: %s has zero or unknown size, marking faulty!\n",
2165 			bdevname(rdev->bdev,b));
2166 		err = -EINVAL;
2167 		goto abort_free;
2168 	}
2169 
2170 	if (super_format >= 0) {
2171 		err = super_types[super_format].
2172 			load_super(rdev, NULL, super_minor);
2173 		if (err == -EINVAL) {
2174 			printk(KERN_WARNING
2175 				"md: %s does not have a valid v%d.%d "
2176 			       "superblock, not importing!\n",
2177 				bdevname(rdev->bdev,b),
2178 			       super_format, super_minor);
2179 			goto abort_free;
2180 		}
2181 		if (err < 0) {
2182 			printk(KERN_WARNING
2183 				"md: could not read %s's sb, not importing!\n",
2184 				bdevname(rdev->bdev,b));
2185 			goto abort_free;
2186 		}
2187 	}
2188 	INIT_LIST_HEAD(&rdev->same_set);
2189 
2190 	return rdev;
2191 
2192 abort_free:
2193 	if (rdev->sb_page) {
2194 		if (rdev->bdev)
2195 			unlock_rdev(rdev);
2196 		free_disk_sb(rdev);
2197 	}
2198 	kfree(rdev);
2199 	return ERR_PTR(err);
2200 }
2201 
2202 /*
2203  * Check a full RAID array for plausibility
2204  */
2205 
2206 
2207 static void analyze_sbs(mddev_t * mddev)
2208 {
2209 	int i;
2210 	struct list_head *tmp;
2211 	mdk_rdev_t *rdev, *freshest;
2212 	char b[BDEVNAME_SIZE];
2213 
2214 	freshest = NULL;
2215 	rdev_for_each(rdev, tmp, mddev)
2216 		switch (super_types[mddev->major_version].
2217 			load_super(rdev, freshest, mddev->minor_version)) {
2218 		case 1:
2219 			freshest = rdev;
2220 			break;
2221 		case 0:
2222 			break;
2223 		default:
2224 			printk( KERN_ERR \
2225 				"md: fatal superblock inconsistency in %s"
2226 				" -- removing from array\n",
2227 				bdevname(rdev->bdev,b));
2228 			kick_rdev_from_array(rdev);
2229 		}
2230 
2231 
2232 	super_types[mddev->major_version].
2233 		validate_super(mddev, freshest);
2234 
2235 	i = 0;
2236 	rdev_for_each(rdev, tmp, mddev) {
2237 		if (rdev != freshest)
2238 			if (super_types[mddev->major_version].
2239 			    validate_super(mddev, rdev)) {
2240 				printk(KERN_WARNING "md: kicking non-fresh %s"
2241 					" from array!\n",
2242 					bdevname(rdev->bdev,b));
2243 				kick_rdev_from_array(rdev);
2244 				continue;
2245 			}
2246 		if (mddev->level == LEVEL_MULTIPATH) {
2247 			rdev->desc_nr = i++;
2248 			rdev->raid_disk = rdev->desc_nr;
2249 			set_bit(In_sync, &rdev->flags);
2250 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2251 			rdev->raid_disk = -1;
2252 			clear_bit(In_sync, &rdev->flags);
2253 		}
2254 	}
2255 
2256 
2257 
2258 	if (mddev->recovery_cp != MaxSector &&
2259 	    mddev->level >= 1)
2260 		printk(KERN_ERR "md: %s: raid array is not clean"
2261 		       " -- starting background reconstruction\n",
2262 		       mdname(mddev));
2263 
2264 }
2265 
2266 static ssize_t
2267 safe_delay_show(mddev_t *mddev, char *page)
2268 {
2269 	int msec = (mddev->safemode_delay*1000)/HZ;
2270 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2271 }
2272 static ssize_t
2273 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2274 {
2275 	int scale=1;
2276 	int dot=0;
2277 	int i;
2278 	unsigned long msec;
2279 	char buf[30];
2280 	char *e;
2281 	/* remove a period, and count digits after it */
2282 	if (len >= sizeof(buf))
2283 		return -EINVAL;
2284 	strlcpy(buf, cbuf, len);
2285 	buf[len] = 0;
2286 	for (i=0; i<len; i++) {
2287 		if (dot) {
2288 			if (isdigit(buf[i])) {
2289 				buf[i-1] = buf[i];
2290 				scale *= 10;
2291 			}
2292 			buf[i] = 0;
2293 		} else if (buf[i] == '.') {
2294 			dot=1;
2295 			buf[i] = 0;
2296 		}
2297 	}
2298 	msec = simple_strtoul(buf, &e, 10);
2299 	if (e == buf || (*e && *e != '\n'))
2300 		return -EINVAL;
2301 	msec = (msec * 1000) / scale;
2302 	if (msec == 0)
2303 		mddev->safemode_delay = 0;
2304 	else {
2305 		mddev->safemode_delay = (msec*HZ)/1000;
2306 		if (mddev->safemode_delay == 0)
2307 			mddev->safemode_delay = 1;
2308 	}
2309 	return len;
2310 }
2311 static struct md_sysfs_entry md_safe_delay =
2312 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2313 
2314 static ssize_t
2315 level_show(mddev_t *mddev, char *page)
2316 {
2317 	struct mdk_personality *p = mddev->pers;
2318 	if (p)
2319 		return sprintf(page, "%s\n", p->name);
2320 	else if (mddev->clevel[0])
2321 		return sprintf(page, "%s\n", mddev->clevel);
2322 	else if (mddev->level != LEVEL_NONE)
2323 		return sprintf(page, "%d\n", mddev->level);
2324 	else
2325 		return 0;
2326 }
2327 
2328 static ssize_t
2329 level_store(mddev_t *mddev, const char *buf, size_t len)
2330 {
2331 	ssize_t rv = len;
2332 	if (mddev->pers)
2333 		return -EBUSY;
2334 	if (len == 0)
2335 		return 0;
2336 	if (len >= sizeof(mddev->clevel))
2337 		return -ENOSPC;
2338 	strncpy(mddev->clevel, buf, len);
2339 	if (mddev->clevel[len-1] == '\n')
2340 		len--;
2341 	mddev->clevel[len] = 0;
2342 	mddev->level = LEVEL_NONE;
2343 	return rv;
2344 }
2345 
2346 static struct md_sysfs_entry md_level =
2347 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2348 
2349 
2350 static ssize_t
2351 layout_show(mddev_t *mddev, char *page)
2352 {
2353 	/* just a number, not meaningful for all levels */
2354 	if (mddev->reshape_position != MaxSector &&
2355 	    mddev->layout != mddev->new_layout)
2356 		return sprintf(page, "%d (%d)\n",
2357 			       mddev->new_layout, mddev->layout);
2358 	return sprintf(page, "%d\n", mddev->layout);
2359 }
2360 
2361 static ssize_t
2362 layout_store(mddev_t *mddev, const char *buf, size_t len)
2363 {
2364 	char *e;
2365 	unsigned long n = simple_strtoul(buf, &e, 10);
2366 
2367 	if (!*buf || (*e && *e != '\n'))
2368 		return -EINVAL;
2369 
2370 	if (mddev->pers)
2371 		return -EBUSY;
2372 	if (mddev->reshape_position != MaxSector)
2373 		mddev->new_layout = n;
2374 	else
2375 		mddev->layout = n;
2376 	return len;
2377 }
2378 static struct md_sysfs_entry md_layout =
2379 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2380 
2381 
2382 static ssize_t
2383 raid_disks_show(mddev_t *mddev, char *page)
2384 {
2385 	if (mddev->raid_disks == 0)
2386 		return 0;
2387 	if (mddev->reshape_position != MaxSector &&
2388 	    mddev->delta_disks != 0)
2389 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2390 			       mddev->raid_disks - mddev->delta_disks);
2391 	return sprintf(page, "%d\n", mddev->raid_disks);
2392 }
2393 
2394 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2395 
2396 static ssize_t
2397 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2398 {
2399 	char *e;
2400 	int rv = 0;
2401 	unsigned long n = simple_strtoul(buf, &e, 10);
2402 
2403 	if (!*buf || (*e && *e != '\n'))
2404 		return -EINVAL;
2405 
2406 	if (mddev->pers)
2407 		rv = update_raid_disks(mddev, n);
2408 	else if (mddev->reshape_position != MaxSector) {
2409 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2410 		mddev->delta_disks = n - olddisks;
2411 		mddev->raid_disks = n;
2412 	} else
2413 		mddev->raid_disks = n;
2414 	return rv ? rv : len;
2415 }
2416 static struct md_sysfs_entry md_raid_disks =
2417 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2418 
2419 static ssize_t
2420 chunk_size_show(mddev_t *mddev, char *page)
2421 {
2422 	if (mddev->reshape_position != MaxSector &&
2423 	    mddev->chunk_size != mddev->new_chunk)
2424 		return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2425 			       mddev->chunk_size);
2426 	return sprintf(page, "%d\n", mddev->chunk_size);
2427 }
2428 
2429 static ssize_t
2430 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2431 {
2432 	/* can only set chunk_size if array is not yet active */
2433 	char *e;
2434 	unsigned long n = simple_strtoul(buf, &e, 10);
2435 
2436 	if (!*buf || (*e && *e != '\n'))
2437 		return -EINVAL;
2438 
2439 	if (mddev->pers)
2440 		return -EBUSY;
2441 	else if (mddev->reshape_position != MaxSector)
2442 		mddev->new_chunk = n;
2443 	else
2444 		mddev->chunk_size = n;
2445 	return len;
2446 }
2447 static struct md_sysfs_entry md_chunk_size =
2448 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2449 
2450 static ssize_t
2451 resync_start_show(mddev_t *mddev, char *page)
2452 {
2453 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2454 }
2455 
2456 static ssize_t
2457 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2458 {
2459 	/* can only set chunk_size if array is not yet active */
2460 	char *e;
2461 	unsigned long long n = simple_strtoull(buf, &e, 10);
2462 
2463 	if (mddev->pers)
2464 		return -EBUSY;
2465 	if (!*buf || (*e && *e != '\n'))
2466 		return -EINVAL;
2467 
2468 	mddev->recovery_cp = n;
2469 	return len;
2470 }
2471 static struct md_sysfs_entry md_resync_start =
2472 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2473 
2474 /*
2475  * The array state can be:
2476  *
2477  * clear
2478  *     No devices, no size, no level
2479  *     Equivalent to STOP_ARRAY ioctl
2480  * inactive
2481  *     May have some settings, but array is not active
2482  *        all IO results in error
2483  *     When written, doesn't tear down array, but just stops it
2484  * suspended (not supported yet)
2485  *     All IO requests will block. The array can be reconfigured.
2486  *     Writing this, if accepted, will block until array is quiessent
2487  * readonly
2488  *     no resync can happen.  no superblocks get written.
2489  *     write requests fail
2490  * read-auto
2491  *     like readonly, but behaves like 'clean' on a write request.
2492  *
2493  * clean - no pending writes, but otherwise active.
2494  *     When written to inactive array, starts without resync
2495  *     If a write request arrives then
2496  *       if metadata is known, mark 'dirty' and switch to 'active'.
2497  *       if not known, block and switch to write-pending
2498  *     If written to an active array that has pending writes, then fails.
2499  * active
2500  *     fully active: IO and resync can be happening.
2501  *     When written to inactive array, starts with resync
2502  *
2503  * write-pending
2504  *     clean, but writes are blocked waiting for 'active' to be written.
2505  *
2506  * active-idle
2507  *     like active, but no writes have been seen for a while (100msec).
2508  *
2509  */
2510 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2511 		   write_pending, active_idle, bad_word};
2512 static char *array_states[] = {
2513 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2514 	"write-pending", "active-idle", NULL };
2515 
2516 static int match_word(const char *word, char **list)
2517 {
2518 	int n;
2519 	for (n=0; list[n]; n++)
2520 		if (cmd_match(word, list[n]))
2521 			break;
2522 	return n;
2523 }
2524 
2525 static ssize_t
2526 array_state_show(mddev_t *mddev, char *page)
2527 {
2528 	enum array_state st = inactive;
2529 
2530 	if (mddev->pers)
2531 		switch(mddev->ro) {
2532 		case 1:
2533 			st = readonly;
2534 			break;
2535 		case 2:
2536 			st = read_auto;
2537 			break;
2538 		case 0:
2539 			if (mddev->in_sync)
2540 				st = clean;
2541 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2542 				st = write_pending;
2543 			else if (mddev->safemode)
2544 				st = active_idle;
2545 			else
2546 				st = active;
2547 		}
2548 	else {
2549 		if (list_empty(&mddev->disks) &&
2550 		    mddev->raid_disks == 0 &&
2551 		    mddev->size == 0)
2552 			st = clear;
2553 		else
2554 			st = inactive;
2555 	}
2556 	return sprintf(page, "%s\n", array_states[st]);
2557 }
2558 
2559 static int do_md_stop(mddev_t * mddev, int ro);
2560 static int do_md_run(mddev_t * mddev);
2561 static int restart_array(mddev_t *mddev);
2562 
2563 static ssize_t
2564 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2565 {
2566 	int err = -EINVAL;
2567 	enum array_state st = match_word(buf, array_states);
2568 	switch(st) {
2569 	case bad_word:
2570 		break;
2571 	case clear:
2572 		/* stopping an active array */
2573 		if (atomic_read(&mddev->active) > 1)
2574 			return -EBUSY;
2575 		err = do_md_stop(mddev, 0);
2576 		break;
2577 	case inactive:
2578 		/* stopping an active array */
2579 		if (mddev->pers) {
2580 			if (atomic_read(&mddev->active) > 1)
2581 				return -EBUSY;
2582 			err = do_md_stop(mddev, 2);
2583 		} else
2584 			err = 0; /* already inactive */
2585 		break;
2586 	case suspended:
2587 		break; /* not supported yet */
2588 	case readonly:
2589 		if (mddev->pers)
2590 			err = do_md_stop(mddev, 1);
2591 		else {
2592 			mddev->ro = 1;
2593 			err = do_md_run(mddev);
2594 		}
2595 		break;
2596 	case read_auto:
2597 		/* stopping an active array */
2598 		if (mddev->pers) {
2599 			err = do_md_stop(mddev, 1);
2600 			if (err == 0)
2601 				mddev->ro = 2; /* FIXME mark devices writable */
2602 		} else {
2603 			mddev->ro = 2;
2604 			err = do_md_run(mddev);
2605 		}
2606 		break;
2607 	case clean:
2608 		if (mddev->pers) {
2609 			restart_array(mddev);
2610 			spin_lock_irq(&mddev->write_lock);
2611 			if (atomic_read(&mddev->writes_pending) == 0) {
2612 				if (mddev->in_sync == 0) {
2613 					mddev->in_sync = 1;
2614 					if (mddev->persistent)
2615 						set_bit(MD_CHANGE_CLEAN,
2616 							&mddev->flags);
2617 				}
2618 				err = 0;
2619 			} else
2620 				err = -EBUSY;
2621 			spin_unlock_irq(&mddev->write_lock);
2622 		} else {
2623 			mddev->ro = 0;
2624 			mddev->recovery_cp = MaxSector;
2625 			err = do_md_run(mddev);
2626 		}
2627 		break;
2628 	case active:
2629 		if (mddev->pers) {
2630 			restart_array(mddev);
2631 			if (mddev->external)
2632 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2633 			wake_up(&mddev->sb_wait);
2634 			err = 0;
2635 		} else {
2636 			mddev->ro = 0;
2637 			err = do_md_run(mddev);
2638 		}
2639 		break;
2640 	case write_pending:
2641 	case active_idle:
2642 		/* these cannot be set */
2643 		break;
2644 	}
2645 	if (err)
2646 		return err;
2647 	else
2648 		return len;
2649 }
2650 static struct md_sysfs_entry md_array_state =
2651 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2652 
2653 static ssize_t
2654 null_show(mddev_t *mddev, char *page)
2655 {
2656 	return -EINVAL;
2657 }
2658 
2659 static ssize_t
2660 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2661 {
2662 	/* buf must be %d:%d\n? giving major and minor numbers */
2663 	/* The new device is added to the array.
2664 	 * If the array has a persistent superblock, we read the
2665 	 * superblock to initialise info and check validity.
2666 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2667 	 * which mainly checks size.
2668 	 */
2669 	char *e;
2670 	int major = simple_strtoul(buf, &e, 10);
2671 	int minor;
2672 	dev_t dev;
2673 	mdk_rdev_t *rdev;
2674 	int err;
2675 
2676 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2677 		return -EINVAL;
2678 	minor = simple_strtoul(e+1, &e, 10);
2679 	if (*e && *e != '\n')
2680 		return -EINVAL;
2681 	dev = MKDEV(major, minor);
2682 	if (major != MAJOR(dev) ||
2683 	    minor != MINOR(dev))
2684 		return -EOVERFLOW;
2685 
2686 
2687 	if (mddev->persistent) {
2688 		rdev = md_import_device(dev, mddev->major_version,
2689 					mddev->minor_version);
2690 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2691 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2692 						       mdk_rdev_t, same_set);
2693 			err = super_types[mddev->major_version]
2694 				.load_super(rdev, rdev0, mddev->minor_version);
2695 			if (err < 0)
2696 				goto out;
2697 		}
2698 	} else if (mddev->external)
2699 		rdev = md_import_device(dev, -2, -1);
2700 	else
2701 		rdev = md_import_device(dev, -1, -1);
2702 
2703 	if (IS_ERR(rdev))
2704 		return PTR_ERR(rdev);
2705 	err = bind_rdev_to_array(rdev, mddev);
2706  out:
2707 	if (err)
2708 		export_rdev(rdev);
2709 	return err ? err : len;
2710 }
2711 
2712 static struct md_sysfs_entry md_new_device =
2713 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2714 
2715 static ssize_t
2716 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2717 {
2718 	char *end;
2719 	unsigned long chunk, end_chunk;
2720 
2721 	if (!mddev->bitmap)
2722 		goto out;
2723 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2724 	while (*buf) {
2725 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
2726 		if (buf == end) break;
2727 		if (*end == '-') { /* range */
2728 			buf = end + 1;
2729 			end_chunk = simple_strtoul(buf, &end, 0);
2730 			if (buf == end) break;
2731 		}
2732 		if (*end && !isspace(*end)) break;
2733 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2734 		buf = end;
2735 		while (isspace(*buf)) buf++;
2736 	}
2737 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2738 out:
2739 	return len;
2740 }
2741 
2742 static struct md_sysfs_entry md_bitmap =
2743 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2744 
2745 static ssize_t
2746 size_show(mddev_t *mddev, char *page)
2747 {
2748 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2749 }
2750 
2751 static int update_size(mddev_t *mddev, unsigned long size);
2752 
2753 static ssize_t
2754 size_store(mddev_t *mddev, const char *buf, size_t len)
2755 {
2756 	/* If array is inactive, we can reduce the component size, but
2757 	 * not increase it (except from 0).
2758 	 * If array is active, we can try an on-line resize
2759 	 */
2760 	char *e;
2761 	int err = 0;
2762 	unsigned long long size = simple_strtoull(buf, &e, 10);
2763 	if (!*buf || *buf == '\n' ||
2764 	    (*e && *e != '\n'))
2765 		return -EINVAL;
2766 
2767 	if (mddev->pers) {
2768 		err = update_size(mddev, size);
2769 		md_update_sb(mddev, 1);
2770 	} else {
2771 		if (mddev->size == 0 ||
2772 		    mddev->size > size)
2773 			mddev->size = size;
2774 		else
2775 			err = -ENOSPC;
2776 	}
2777 	return err ? err : len;
2778 }
2779 
2780 static struct md_sysfs_entry md_size =
2781 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2782 
2783 
2784 /* Metdata version.
2785  * This is one of
2786  *   'none' for arrays with no metadata (good luck...)
2787  *   'external' for arrays with externally managed metadata,
2788  * or N.M for internally known formats
2789  */
2790 static ssize_t
2791 metadata_show(mddev_t *mddev, char *page)
2792 {
2793 	if (mddev->persistent)
2794 		return sprintf(page, "%d.%d\n",
2795 			       mddev->major_version, mddev->minor_version);
2796 	else if (mddev->external)
2797 		return sprintf(page, "external:%s\n", mddev->metadata_type);
2798 	else
2799 		return sprintf(page, "none\n");
2800 }
2801 
2802 static ssize_t
2803 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2804 {
2805 	int major, minor;
2806 	char *e;
2807 	if (!list_empty(&mddev->disks))
2808 		return -EBUSY;
2809 
2810 	if (cmd_match(buf, "none")) {
2811 		mddev->persistent = 0;
2812 		mddev->external = 0;
2813 		mddev->major_version = 0;
2814 		mddev->minor_version = 90;
2815 		return len;
2816 	}
2817 	if (strncmp(buf, "external:", 9) == 0) {
2818 		size_t namelen = len-9;
2819 		if (namelen >= sizeof(mddev->metadata_type))
2820 			namelen = sizeof(mddev->metadata_type)-1;
2821 		strncpy(mddev->metadata_type, buf+9, namelen);
2822 		mddev->metadata_type[namelen] = 0;
2823 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
2824 			mddev->metadata_type[--namelen] = 0;
2825 		mddev->persistent = 0;
2826 		mddev->external = 1;
2827 		mddev->major_version = 0;
2828 		mddev->minor_version = 90;
2829 		return len;
2830 	}
2831 	major = simple_strtoul(buf, &e, 10);
2832 	if (e==buf || *e != '.')
2833 		return -EINVAL;
2834 	buf = e+1;
2835 	minor = simple_strtoul(buf, &e, 10);
2836 	if (e==buf || (*e && *e != '\n') )
2837 		return -EINVAL;
2838 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2839 		return -ENOENT;
2840 	mddev->major_version = major;
2841 	mddev->minor_version = minor;
2842 	mddev->persistent = 1;
2843 	mddev->external = 0;
2844 	return len;
2845 }
2846 
2847 static struct md_sysfs_entry md_metadata =
2848 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2849 
2850 static ssize_t
2851 action_show(mddev_t *mddev, char *page)
2852 {
2853 	char *type = "idle";
2854 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2855 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2856 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2857 			type = "reshape";
2858 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2859 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2860 				type = "resync";
2861 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2862 				type = "check";
2863 			else
2864 				type = "repair";
2865 		} else
2866 			type = "recover";
2867 	}
2868 	return sprintf(page, "%s\n", type);
2869 }
2870 
2871 static ssize_t
2872 action_store(mddev_t *mddev, const char *page, size_t len)
2873 {
2874 	if (!mddev->pers || !mddev->pers->sync_request)
2875 		return -EINVAL;
2876 
2877 	if (cmd_match(page, "idle")) {
2878 		if (mddev->sync_thread) {
2879 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2880 			md_unregister_thread(mddev->sync_thread);
2881 			mddev->sync_thread = NULL;
2882 			mddev->recovery = 0;
2883 		}
2884 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2885 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2886 		return -EBUSY;
2887 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2888 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2889 	else if (cmd_match(page, "reshape")) {
2890 		int err;
2891 		if (mddev->pers->start_reshape == NULL)
2892 			return -EINVAL;
2893 		err = mddev->pers->start_reshape(mddev);
2894 		if (err)
2895 			return err;
2896 	} else {
2897 		if (cmd_match(page, "check"))
2898 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2899 		else if (!cmd_match(page, "repair"))
2900 			return -EINVAL;
2901 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2902 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2903 	}
2904 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2905 	md_wakeup_thread(mddev->thread);
2906 	return len;
2907 }
2908 
2909 static ssize_t
2910 mismatch_cnt_show(mddev_t *mddev, char *page)
2911 {
2912 	return sprintf(page, "%llu\n",
2913 		       (unsigned long long) mddev->resync_mismatches);
2914 }
2915 
2916 static struct md_sysfs_entry md_scan_mode =
2917 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2918 
2919 
2920 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2921 
2922 static ssize_t
2923 sync_min_show(mddev_t *mddev, char *page)
2924 {
2925 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2926 		       mddev->sync_speed_min ? "local": "system");
2927 }
2928 
2929 static ssize_t
2930 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2931 {
2932 	int min;
2933 	char *e;
2934 	if (strncmp(buf, "system", 6)==0) {
2935 		mddev->sync_speed_min = 0;
2936 		return len;
2937 	}
2938 	min = simple_strtoul(buf, &e, 10);
2939 	if (buf == e || (*e && *e != '\n') || min <= 0)
2940 		return -EINVAL;
2941 	mddev->sync_speed_min = min;
2942 	return len;
2943 }
2944 
2945 static struct md_sysfs_entry md_sync_min =
2946 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2947 
2948 static ssize_t
2949 sync_max_show(mddev_t *mddev, char *page)
2950 {
2951 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2952 		       mddev->sync_speed_max ? "local": "system");
2953 }
2954 
2955 static ssize_t
2956 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2957 {
2958 	int max;
2959 	char *e;
2960 	if (strncmp(buf, "system", 6)==0) {
2961 		mddev->sync_speed_max = 0;
2962 		return len;
2963 	}
2964 	max = simple_strtoul(buf, &e, 10);
2965 	if (buf == e || (*e && *e != '\n') || max <= 0)
2966 		return -EINVAL;
2967 	mddev->sync_speed_max = max;
2968 	return len;
2969 }
2970 
2971 static struct md_sysfs_entry md_sync_max =
2972 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2973 
2974 static ssize_t
2975 degraded_show(mddev_t *mddev, char *page)
2976 {
2977 	return sprintf(page, "%d\n", mddev->degraded);
2978 }
2979 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
2980 
2981 static ssize_t
2982 sync_speed_show(mddev_t *mddev, char *page)
2983 {
2984 	unsigned long resync, dt, db;
2985 	resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2986 	dt = ((jiffies - mddev->resync_mark) / HZ);
2987 	if (!dt) dt++;
2988 	db = resync - (mddev->resync_mark_cnt);
2989 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2990 }
2991 
2992 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2993 
2994 static ssize_t
2995 sync_completed_show(mddev_t *mddev, char *page)
2996 {
2997 	unsigned long max_blocks, resync;
2998 
2999 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3000 		max_blocks = mddev->resync_max_sectors;
3001 	else
3002 		max_blocks = mddev->size << 1;
3003 
3004 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3005 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
3006 }
3007 
3008 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3009 
3010 static ssize_t
3011 max_sync_show(mddev_t *mddev, char *page)
3012 {
3013 	if (mddev->resync_max == MaxSector)
3014 		return sprintf(page, "max\n");
3015 	else
3016 		return sprintf(page, "%llu\n",
3017 			       (unsigned long long)mddev->resync_max);
3018 }
3019 static ssize_t
3020 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3021 {
3022 	if (strncmp(buf, "max", 3) == 0)
3023 		mddev->resync_max = MaxSector;
3024 	else {
3025 		char *ep;
3026 		unsigned long long max = simple_strtoull(buf, &ep, 10);
3027 		if (ep == buf || (*ep != 0 && *ep != '\n'))
3028 			return -EINVAL;
3029 		if (max < mddev->resync_max &&
3030 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3031 			return -EBUSY;
3032 
3033 		/* Must be a multiple of chunk_size */
3034 		if (mddev->chunk_size) {
3035 			if (max & (sector_t)((mddev->chunk_size>>9)-1))
3036 				return -EINVAL;
3037 		}
3038 		mddev->resync_max = max;
3039 	}
3040 	wake_up(&mddev->recovery_wait);
3041 	return len;
3042 }
3043 
3044 static struct md_sysfs_entry md_max_sync =
3045 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3046 
3047 static ssize_t
3048 suspend_lo_show(mddev_t *mddev, char *page)
3049 {
3050 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3051 }
3052 
3053 static ssize_t
3054 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3055 {
3056 	char *e;
3057 	unsigned long long new = simple_strtoull(buf, &e, 10);
3058 
3059 	if (mddev->pers->quiesce == NULL)
3060 		return -EINVAL;
3061 	if (buf == e || (*e && *e != '\n'))
3062 		return -EINVAL;
3063 	if (new >= mddev->suspend_hi ||
3064 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3065 		mddev->suspend_lo = new;
3066 		mddev->pers->quiesce(mddev, 2);
3067 		return len;
3068 	} else
3069 		return -EINVAL;
3070 }
3071 static struct md_sysfs_entry md_suspend_lo =
3072 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3073 
3074 
3075 static ssize_t
3076 suspend_hi_show(mddev_t *mddev, char *page)
3077 {
3078 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3079 }
3080 
3081 static ssize_t
3082 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3083 {
3084 	char *e;
3085 	unsigned long long new = simple_strtoull(buf, &e, 10);
3086 
3087 	if (mddev->pers->quiesce == NULL)
3088 		return -EINVAL;
3089 	if (buf == e || (*e && *e != '\n'))
3090 		return -EINVAL;
3091 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3092 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3093 		mddev->suspend_hi = new;
3094 		mddev->pers->quiesce(mddev, 1);
3095 		mddev->pers->quiesce(mddev, 0);
3096 		return len;
3097 	} else
3098 		return -EINVAL;
3099 }
3100 static struct md_sysfs_entry md_suspend_hi =
3101 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3102 
3103 static ssize_t
3104 reshape_position_show(mddev_t *mddev, char *page)
3105 {
3106 	if (mddev->reshape_position != MaxSector)
3107 		return sprintf(page, "%llu\n",
3108 			       (unsigned long long)mddev->reshape_position);
3109 	strcpy(page, "none\n");
3110 	return 5;
3111 }
3112 
3113 static ssize_t
3114 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3115 {
3116 	char *e;
3117 	unsigned long long new = simple_strtoull(buf, &e, 10);
3118 	if (mddev->pers)
3119 		return -EBUSY;
3120 	if (buf == e || (*e && *e != '\n'))
3121 		return -EINVAL;
3122 	mddev->reshape_position = new;
3123 	mddev->delta_disks = 0;
3124 	mddev->new_level = mddev->level;
3125 	mddev->new_layout = mddev->layout;
3126 	mddev->new_chunk = mddev->chunk_size;
3127 	return len;
3128 }
3129 
3130 static struct md_sysfs_entry md_reshape_position =
3131 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3132        reshape_position_store);
3133 
3134 
3135 static struct attribute *md_default_attrs[] = {
3136 	&md_level.attr,
3137 	&md_layout.attr,
3138 	&md_raid_disks.attr,
3139 	&md_chunk_size.attr,
3140 	&md_size.attr,
3141 	&md_resync_start.attr,
3142 	&md_metadata.attr,
3143 	&md_new_device.attr,
3144 	&md_safe_delay.attr,
3145 	&md_array_state.attr,
3146 	&md_reshape_position.attr,
3147 	NULL,
3148 };
3149 
3150 static struct attribute *md_redundancy_attrs[] = {
3151 	&md_scan_mode.attr,
3152 	&md_mismatches.attr,
3153 	&md_sync_min.attr,
3154 	&md_sync_max.attr,
3155 	&md_sync_speed.attr,
3156 	&md_sync_completed.attr,
3157 	&md_max_sync.attr,
3158 	&md_suspend_lo.attr,
3159 	&md_suspend_hi.attr,
3160 	&md_bitmap.attr,
3161 	&md_degraded.attr,
3162 	NULL,
3163 };
3164 static struct attribute_group md_redundancy_group = {
3165 	.name = NULL,
3166 	.attrs = md_redundancy_attrs,
3167 };
3168 
3169 
3170 static ssize_t
3171 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3172 {
3173 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3174 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3175 	ssize_t rv;
3176 
3177 	if (!entry->show)
3178 		return -EIO;
3179 	rv = mddev_lock(mddev);
3180 	if (!rv) {
3181 		rv = entry->show(mddev, page);
3182 		mddev_unlock(mddev);
3183 	}
3184 	return rv;
3185 }
3186 
3187 static ssize_t
3188 md_attr_store(struct kobject *kobj, struct attribute *attr,
3189 	      const char *page, size_t length)
3190 {
3191 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3192 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3193 	ssize_t rv;
3194 
3195 	if (!entry->store)
3196 		return -EIO;
3197 	if (!capable(CAP_SYS_ADMIN))
3198 		return -EACCES;
3199 	rv = mddev_lock(mddev);
3200 	if (!rv) {
3201 		rv = entry->store(mddev, page, length);
3202 		mddev_unlock(mddev);
3203 	}
3204 	return rv;
3205 }
3206 
3207 static void md_free(struct kobject *ko)
3208 {
3209 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3210 	kfree(mddev);
3211 }
3212 
3213 static struct sysfs_ops md_sysfs_ops = {
3214 	.show	= md_attr_show,
3215 	.store	= md_attr_store,
3216 };
3217 static struct kobj_type md_ktype = {
3218 	.release	= md_free,
3219 	.sysfs_ops	= &md_sysfs_ops,
3220 	.default_attrs	= md_default_attrs,
3221 };
3222 
3223 int mdp_major = 0;
3224 
3225 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3226 {
3227 	static DEFINE_MUTEX(disks_mutex);
3228 	mddev_t *mddev = mddev_find(dev);
3229 	struct gendisk *disk;
3230 	int partitioned = (MAJOR(dev) != MD_MAJOR);
3231 	int shift = partitioned ? MdpMinorShift : 0;
3232 	int unit = MINOR(dev) >> shift;
3233 	int error;
3234 
3235 	if (!mddev)
3236 		return NULL;
3237 
3238 	mutex_lock(&disks_mutex);
3239 	if (mddev->gendisk) {
3240 		mutex_unlock(&disks_mutex);
3241 		mddev_put(mddev);
3242 		return NULL;
3243 	}
3244 	disk = alloc_disk(1 << shift);
3245 	if (!disk) {
3246 		mutex_unlock(&disks_mutex);
3247 		mddev_put(mddev);
3248 		return NULL;
3249 	}
3250 	disk->major = MAJOR(dev);
3251 	disk->first_minor = unit << shift;
3252 	if (partitioned)
3253 		sprintf(disk->disk_name, "md_d%d", unit);
3254 	else
3255 		sprintf(disk->disk_name, "md%d", unit);
3256 	disk->fops = &md_fops;
3257 	disk->private_data = mddev;
3258 	disk->queue = mddev->queue;
3259 	add_disk(disk);
3260 	mddev->gendisk = disk;
3261 	mutex_unlock(&disks_mutex);
3262 	error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj,
3263 				     "%s", "md");
3264 	if (error)
3265 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3266 		       disk->disk_name);
3267 	else
3268 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
3269 	return NULL;
3270 }
3271 
3272 static void md_safemode_timeout(unsigned long data)
3273 {
3274 	mddev_t *mddev = (mddev_t *) data;
3275 
3276 	mddev->safemode = 1;
3277 	md_wakeup_thread(mddev->thread);
3278 }
3279 
3280 static int start_dirty_degraded;
3281 
3282 static int do_md_run(mddev_t * mddev)
3283 {
3284 	int err;
3285 	int chunk_size;
3286 	struct list_head *tmp;
3287 	mdk_rdev_t *rdev;
3288 	struct gendisk *disk;
3289 	struct mdk_personality *pers;
3290 	char b[BDEVNAME_SIZE];
3291 
3292 	if (list_empty(&mddev->disks))
3293 		/* cannot run an array with no devices.. */
3294 		return -EINVAL;
3295 
3296 	if (mddev->pers)
3297 		return -EBUSY;
3298 
3299 	/*
3300 	 * Analyze all RAID superblock(s)
3301 	 */
3302 	if (!mddev->raid_disks) {
3303 		if (!mddev->persistent)
3304 			return -EINVAL;
3305 		analyze_sbs(mddev);
3306 	}
3307 
3308 	chunk_size = mddev->chunk_size;
3309 
3310 	if (chunk_size) {
3311 		if (chunk_size > MAX_CHUNK_SIZE) {
3312 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3313 				chunk_size, MAX_CHUNK_SIZE);
3314 			return -EINVAL;
3315 		}
3316 		/*
3317 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3318 		 */
3319 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3320 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3321 			return -EINVAL;
3322 		}
3323 		if (chunk_size < PAGE_SIZE) {
3324 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3325 				chunk_size, PAGE_SIZE);
3326 			return -EINVAL;
3327 		}
3328 
3329 		/* devices must have minimum size of one chunk */
3330 		rdev_for_each(rdev, tmp, mddev) {
3331 			if (test_bit(Faulty, &rdev->flags))
3332 				continue;
3333 			if (rdev->size < chunk_size / 1024) {
3334 				printk(KERN_WARNING
3335 					"md: Dev %s smaller than chunk_size:"
3336 					" %lluk < %dk\n",
3337 					bdevname(rdev->bdev,b),
3338 					(unsigned long long)rdev->size,
3339 					chunk_size / 1024);
3340 				return -EINVAL;
3341 			}
3342 		}
3343 	}
3344 
3345 #ifdef CONFIG_KMOD
3346 	if (mddev->level != LEVEL_NONE)
3347 		request_module("md-level-%d", mddev->level);
3348 	else if (mddev->clevel[0])
3349 		request_module("md-%s", mddev->clevel);
3350 #endif
3351 
3352 	/*
3353 	 * Drop all container device buffers, from now on
3354 	 * the only valid external interface is through the md
3355 	 * device.
3356 	 */
3357 	rdev_for_each(rdev, tmp, mddev) {
3358 		if (test_bit(Faulty, &rdev->flags))
3359 			continue;
3360 		sync_blockdev(rdev->bdev);
3361 		invalidate_bdev(rdev->bdev);
3362 
3363 		/* perform some consistency tests on the device.
3364 		 * We don't want the data to overlap the metadata,
3365 		 * Internal Bitmap issues has handled elsewhere.
3366 		 */
3367 		if (rdev->data_offset < rdev->sb_offset) {
3368 			if (mddev->size &&
3369 			    rdev->data_offset + mddev->size*2
3370 			    > rdev->sb_offset*2) {
3371 				printk("md: %s: data overlaps metadata\n",
3372 				       mdname(mddev));
3373 				return -EINVAL;
3374 			}
3375 		} else {
3376 			if (rdev->sb_offset*2 + rdev->sb_size/512
3377 			    > rdev->data_offset) {
3378 				printk("md: %s: metadata overlaps data\n",
3379 				       mdname(mddev));
3380 				return -EINVAL;
3381 			}
3382 		}
3383 	}
3384 
3385 	md_probe(mddev->unit, NULL, NULL);
3386 	disk = mddev->gendisk;
3387 	if (!disk)
3388 		return -ENOMEM;
3389 
3390 	spin_lock(&pers_lock);
3391 	pers = find_pers(mddev->level, mddev->clevel);
3392 	if (!pers || !try_module_get(pers->owner)) {
3393 		spin_unlock(&pers_lock);
3394 		if (mddev->level != LEVEL_NONE)
3395 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3396 			       mddev->level);
3397 		else
3398 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3399 			       mddev->clevel);
3400 		return -EINVAL;
3401 	}
3402 	mddev->pers = pers;
3403 	spin_unlock(&pers_lock);
3404 	mddev->level = pers->level;
3405 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3406 
3407 	if (mddev->reshape_position != MaxSector &&
3408 	    pers->start_reshape == NULL) {
3409 		/* This personality cannot handle reshaping... */
3410 		mddev->pers = NULL;
3411 		module_put(pers->owner);
3412 		return -EINVAL;
3413 	}
3414 
3415 	if (pers->sync_request) {
3416 		/* Warn if this is a potentially silly
3417 		 * configuration.
3418 		 */
3419 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3420 		mdk_rdev_t *rdev2;
3421 		struct list_head *tmp2;
3422 		int warned = 0;
3423 		rdev_for_each(rdev, tmp, mddev) {
3424 			rdev_for_each(rdev2, tmp2, mddev) {
3425 				if (rdev < rdev2 &&
3426 				    rdev->bdev->bd_contains ==
3427 				    rdev2->bdev->bd_contains) {
3428 					printk(KERN_WARNING
3429 					       "%s: WARNING: %s appears to be"
3430 					       " on the same physical disk as"
3431 					       " %s.\n",
3432 					       mdname(mddev),
3433 					       bdevname(rdev->bdev,b),
3434 					       bdevname(rdev2->bdev,b2));
3435 					warned = 1;
3436 				}
3437 			}
3438 		}
3439 		if (warned)
3440 			printk(KERN_WARNING
3441 			       "True protection against single-disk"
3442 			       " failure might be compromised.\n");
3443 	}
3444 
3445 	mddev->recovery = 0;
3446 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3447 	mddev->barriers_work = 1;
3448 	mddev->ok_start_degraded = start_dirty_degraded;
3449 
3450 	if (start_readonly)
3451 		mddev->ro = 2; /* read-only, but switch on first write */
3452 
3453 	err = mddev->pers->run(mddev);
3454 	if (!err && mddev->pers->sync_request) {
3455 		err = bitmap_create(mddev);
3456 		if (err) {
3457 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3458 			       mdname(mddev), err);
3459 			mddev->pers->stop(mddev);
3460 		}
3461 	}
3462 	if (err) {
3463 		printk(KERN_ERR "md: pers->run() failed ...\n");
3464 		module_put(mddev->pers->owner);
3465 		mddev->pers = NULL;
3466 		bitmap_destroy(mddev);
3467 		return err;
3468 	}
3469 	if (mddev->pers->sync_request) {
3470 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3471 			printk(KERN_WARNING
3472 			       "md: cannot register extra attributes for %s\n",
3473 			       mdname(mddev));
3474 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
3475 		mddev->ro = 0;
3476 
3477  	atomic_set(&mddev->writes_pending,0);
3478 	mddev->safemode = 0;
3479 	mddev->safemode_timer.function = md_safemode_timeout;
3480 	mddev->safemode_timer.data = (unsigned long) mddev;
3481 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3482 	mddev->in_sync = 1;
3483 
3484 	rdev_for_each(rdev, tmp, mddev)
3485 		if (rdev->raid_disk >= 0) {
3486 			char nm[20];
3487 			sprintf(nm, "rd%d", rdev->raid_disk);
3488 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3489 				printk("md: cannot register %s for %s\n",
3490 				       nm, mdname(mddev));
3491 		}
3492 
3493 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3494 
3495 	if (mddev->flags)
3496 		md_update_sb(mddev, 0);
3497 
3498 	set_capacity(disk, mddev->array_size<<1);
3499 
3500 	/* If we call blk_queue_make_request here, it will
3501 	 * re-initialise max_sectors etc which may have been
3502 	 * refined inside -> run.  So just set the bits we need to set.
3503 	 * Most initialisation happended when we called
3504 	 * blk_queue_make_request(..., md_fail_request)
3505 	 * earlier.
3506 	 */
3507 	mddev->queue->queuedata = mddev;
3508 	mddev->queue->make_request_fn = mddev->pers->make_request;
3509 
3510 	/* If there is a partially-recovered drive we need to
3511 	 * start recovery here.  If we leave it to md_check_recovery,
3512 	 * it will remove the drives and not do the right thing
3513 	 */
3514 	if (mddev->degraded && !mddev->sync_thread) {
3515 		struct list_head *rtmp;
3516 		int spares = 0;
3517 		rdev_for_each(rdev, rtmp, mddev)
3518 			if (rdev->raid_disk >= 0 &&
3519 			    !test_bit(In_sync, &rdev->flags) &&
3520 			    !test_bit(Faulty, &rdev->flags))
3521 				/* complete an interrupted recovery */
3522 				spares++;
3523 		if (spares && mddev->pers->sync_request) {
3524 			mddev->recovery = 0;
3525 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3526 			mddev->sync_thread = md_register_thread(md_do_sync,
3527 								mddev,
3528 								"%s_resync");
3529 			if (!mddev->sync_thread) {
3530 				printk(KERN_ERR "%s: could not start resync"
3531 				       " thread...\n",
3532 				       mdname(mddev));
3533 				/* leave the spares where they are, it shouldn't hurt */
3534 				mddev->recovery = 0;
3535 			}
3536 		}
3537 	}
3538 	md_wakeup_thread(mddev->thread);
3539 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3540 
3541 	mddev->changed = 1;
3542 	md_new_event(mddev);
3543 	kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE);
3544 	return 0;
3545 }
3546 
3547 static int restart_array(mddev_t *mddev)
3548 {
3549 	struct gendisk *disk = mddev->gendisk;
3550 	int err;
3551 
3552 	/*
3553 	 * Complain if it has no devices
3554 	 */
3555 	err = -ENXIO;
3556 	if (list_empty(&mddev->disks))
3557 		goto out;
3558 
3559 	if (mddev->pers) {
3560 		err = -EBUSY;
3561 		if (!mddev->ro)
3562 			goto out;
3563 
3564 		mddev->safemode = 0;
3565 		mddev->ro = 0;
3566 		set_disk_ro(disk, 0);
3567 
3568 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
3569 			mdname(mddev));
3570 		/*
3571 		 * Kick recovery or resync if necessary
3572 		 */
3573 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3574 		md_wakeup_thread(mddev->thread);
3575 		md_wakeup_thread(mddev->sync_thread);
3576 		err = 0;
3577 	} else
3578 		err = -EINVAL;
3579 
3580 out:
3581 	return err;
3582 }
3583 
3584 /* similar to deny_write_access, but accounts for our holding a reference
3585  * to the file ourselves */
3586 static int deny_bitmap_write_access(struct file * file)
3587 {
3588 	struct inode *inode = file->f_mapping->host;
3589 
3590 	spin_lock(&inode->i_lock);
3591 	if (atomic_read(&inode->i_writecount) > 1) {
3592 		spin_unlock(&inode->i_lock);
3593 		return -ETXTBSY;
3594 	}
3595 	atomic_set(&inode->i_writecount, -1);
3596 	spin_unlock(&inode->i_lock);
3597 
3598 	return 0;
3599 }
3600 
3601 static void restore_bitmap_write_access(struct file *file)
3602 {
3603 	struct inode *inode = file->f_mapping->host;
3604 
3605 	spin_lock(&inode->i_lock);
3606 	atomic_set(&inode->i_writecount, 1);
3607 	spin_unlock(&inode->i_lock);
3608 }
3609 
3610 /* mode:
3611  *   0 - completely stop and dis-assemble array
3612  *   1 - switch to readonly
3613  *   2 - stop but do not disassemble array
3614  */
3615 static int do_md_stop(mddev_t * mddev, int mode)
3616 {
3617 	int err = 0;
3618 	struct gendisk *disk = mddev->gendisk;
3619 
3620 	if (mddev->pers) {
3621 		if (atomic_read(&mddev->active)>2) {
3622 			printk("md: %s still in use.\n",mdname(mddev));
3623 			return -EBUSY;
3624 		}
3625 
3626 		if (mddev->sync_thread) {
3627 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3628 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3629 			md_unregister_thread(mddev->sync_thread);
3630 			mddev->sync_thread = NULL;
3631 		}
3632 
3633 		del_timer_sync(&mddev->safemode_timer);
3634 
3635 		invalidate_partition(disk, 0);
3636 
3637 		switch(mode) {
3638 		case 1: /* readonly */
3639 			err  = -ENXIO;
3640 			if (mddev->ro==1)
3641 				goto out;
3642 			mddev->ro = 1;
3643 			break;
3644 		case 0: /* disassemble */
3645 		case 2: /* stop */
3646 			bitmap_flush(mddev);
3647 			md_super_wait(mddev);
3648 			if (mddev->ro)
3649 				set_disk_ro(disk, 0);
3650 			blk_queue_make_request(mddev->queue, md_fail_request);
3651 			mddev->pers->stop(mddev);
3652 			mddev->queue->merge_bvec_fn = NULL;
3653 			mddev->queue->unplug_fn = NULL;
3654 			mddev->queue->backing_dev_info.congested_fn = NULL;
3655 			if (mddev->pers->sync_request)
3656 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3657 
3658 			module_put(mddev->pers->owner);
3659 			mddev->pers = NULL;
3660 
3661 			set_capacity(disk, 0);
3662 			mddev->changed = 1;
3663 
3664 			if (mddev->ro)
3665 				mddev->ro = 0;
3666 		}
3667 		if (!mddev->in_sync || mddev->flags) {
3668 			/* mark array as shutdown cleanly */
3669 			mddev->in_sync = 1;
3670 			md_update_sb(mddev, 1);
3671 		}
3672 		if (mode == 1)
3673 			set_disk_ro(disk, 1);
3674 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3675 	}
3676 
3677 	/*
3678 	 * Free resources if final stop
3679 	 */
3680 	if (mode == 0) {
3681 		mdk_rdev_t *rdev;
3682 		struct list_head *tmp;
3683 
3684 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3685 
3686 		bitmap_destroy(mddev);
3687 		if (mddev->bitmap_file) {
3688 			restore_bitmap_write_access(mddev->bitmap_file);
3689 			fput(mddev->bitmap_file);
3690 			mddev->bitmap_file = NULL;
3691 		}
3692 		mddev->bitmap_offset = 0;
3693 
3694 		rdev_for_each(rdev, tmp, mddev)
3695 			if (rdev->raid_disk >= 0) {
3696 				char nm[20];
3697 				sprintf(nm, "rd%d", rdev->raid_disk);
3698 				sysfs_remove_link(&mddev->kobj, nm);
3699 			}
3700 
3701 		/* make sure all md_delayed_delete calls have finished */
3702 		flush_scheduled_work();
3703 
3704 		export_array(mddev);
3705 
3706 		mddev->array_size = 0;
3707 		mddev->size = 0;
3708 		mddev->raid_disks = 0;
3709 		mddev->recovery_cp = 0;
3710 		mddev->resync_max = MaxSector;
3711 		mddev->reshape_position = MaxSector;
3712 		mddev->external = 0;
3713 		mddev->persistent = 0;
3714 
3715 	} else if (mddev->pers)
3716 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3717 			mdname(mddev));
3718 	err = 0;
3719 	md_new_event(mddev);
3720 out:
3721 	return err;
3722 }
3723 
3724 #ifndef MODULE
3725 static void autorun_array(mddev_t *mddev)
3726 {
3727 	mdk_rdev_t *rdev;
3728 	struct list_head *tmp;
3729 	int err;
3730 
3731 	if (list_empty(&mddev->disks))
3732 		return;
3733 
3734 	printk(KERN_INFO "md: running: ");
3735 
3736 	rdev_for_each(rdev, tmp, mddev) {
3737 		char b[BDEVNAME_SIZE];
3738 		printk("<%s>", bdevname(rdev->bdev,b));
3739 	}
3740 	printk("\n");
3741 
3742 	err = do_md_run (mddev);
3743 	if (err) {
3744 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3745 		do_md_stop (mddev, 0);
3746 	}
3747 }
3748 
3749 /*
3750  * lets try to run arrays based on all disks that have arrived
3751  * until now. (those are in pending_raid_disks)
3752  *
3753  * the method: pick the first pending disk, collect all disks with
3754  * the same UUID, remove all from the pending list and put them into
3755  * the 'same_array' list. Then order this list based on superblock
3756  * update time (freshest comes first), kick out 'old' disks and
3757  * compare superblocks. If everything's fine then run it.
3758  *
3759  * If "unit" is allocated, then bump its reference count
3760  */
3761 static void autorun_devices(int part)
3762 {
3763 	struct list_head *tmp;
3764 	mdk_rdev_t *rdev0, *rdev;
3765 	mddev_t *mddev;
3766 	char b[BDEVNAME_SIZE];
3767 
3768 	printk(KERN_INFO "md: autorun ...\n");
3769 	while (!list_empty(&pending_raid_disks)) {
3770 		int unit;
3771 		dev_t dev;
3772 		LIST_HEAD(candidates);
3773 		rdev0 = list_entry(pending_raid_disks.next,
3774 					 mdk_rdev_t, same_set);
3775 
3776 		printk(KERN_INFO "md: considering %s ...\n",
3777 			bdevname(rdev0->bdev,b));
3778 		INIT_LIST_HEAD(&candidates);
3779 		rdev_for_each_list(rdev, tmp, pending_raid_disks)
3780 			if (super_90_load(rdev, rdev0, 0) >= 0) {
3781 				printk(KERN_INFO "md:  adding %s ...\n",
3782 					bdevname(rdev->bdev,b));
3783 				list_move(&rdev->same_set, &candidates);
3784 			}
3785 		/*
3786 		 * now we have a set of devices, with all of them having
3787 		 * mostly sane superblocks. It's time to allocate the
3788 		 * mddev.
3789 		 */
3790 		if (part) {
3791 			dev = MKDEV(mdp_major,
3792 				    rdev0->preferred_minor << MdpMinorShift);
3793 			unit = MINOR(dev) >> MdpMinorShift;
3794 		} else {
3795 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3796 			unit = MINOR(dev);
3797 		}
3798 		if (rdev0->preferred_minor != unit) {
3799 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3800 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3801 			break;
3802 		}
3803 
3804 		md_probe(dev, NULL, NULL);
3805 		mddev = mddev_find(dev);
3806 		if (!mddev) {
3807 			printk(KERN_ERR
3808 				"md: cannot allocate memory for md drive.\n");
3809 			break;
3810 		}
3811 		if (mddev_lock(mddev))
3812 			printk(KERN_WARNING "md: %s locked, cannot run\n",
3813 			       mdname(mddev));
3814 		else if (mddev->raid_disks || mddev->major_version
3815 			 || !list_empty(&mddev->disks)) {
3816 			printk(KERN_WARNING
3817 				"md: %s already running, cannot run %s\n",
3818 				mdname(mddev), bdevname(rdev0->bdev,b));
3819 			mddev_unlock(mddev);
3820 		} else {
3821 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
3822 			mddev->persistent = 1;
3823 			rdev_for_each_list(rdev, tmp, candidates) {
3824 				list_del_init(&rdev->same_set);
3825 				if (bind_rdev_to_array(rdev, mddev))
3826 					export_rdev(rdev);
3827 			}
3828 			autorun_array(mddev);
3829 			mddev_unlock(mddev);
3830 		}
3831 		/* on success, candidates will be empty, on error
3832 		 * it won't...
3833 		 */
3834 		rdev_for_each_list(rdev, tmp, candidates)
3835 			export_rdev(rdev);
3836 		mddev_put(mddev);
3837 	}
3838 	printk(KERN_INFO "md: ... autorun DONE.\n");
3839 }
3840 #endif /* !MODULE */
3841 
3842 static int get_version(void __user * arg)
3843 {
3844 	mdu_version_t ver;
3845 
3846 	ver.major = MD_MAJOR_VERSION;
3847 	ver.minor = MD_MINOR_VERSION;
3848 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3849 
3850 	if (copy_to_user(arg, &ver, sizeof(ver)))
3851 		return -EFAULT;
3852 
3853 	return 0;
3854 }
3855 
3856 static int get_array_info(mddev_t * mddev, void __user * arg)
3857 {
3858 	mdu_array_info_t info;
3859 	int nr,working,active,failed,spare;
3860 	mdk_rdev_t *rdev;
3861 	struct list_head *tmp;
3862 
3863 	nr=working=active=failed=spare=0;
3864 	rdev_for_each(rdev, tmp, mddev) {
3865 		nr++;
3866 		if (test_bit(Faulty, &rdev->flags))
3867 			failed++;
3868 		else {
3869 			working++;
3870 			if (test_bit(In_sync, &rdev->flags))
3871 				active++;
3872 			else
3873 				spare++;
3874 		}
3875 	}
3876 
3877 	info.major_version = mddev->major_version;
3878 	info.minor_version = mddev->minor_version;
3879 	info.patch_version = MD_PATCHLEVEL_VERSION;
3880 	info.ctime         = mddev->ctime;
3881 	info.level         = mddev->level;
3882 	info.size          = mddev->size;
3883 	if (info.size != mddev->size) /* overflow */
3884 		info.size = -1;
3885 	info.nr_disks      = nr;
3886 	info.raid_disks    = mddev->raid_disks;
3887 	info.md_minor      = mddev->md_minor;
3888 	info.not_persistent= !mddev->persistent;
3889 
3890 	info.utime         = mddev->utime;
3891 	info.state         = 0;
3892 	if (mddev->in_sync)
3893 		info.state = (1<<MD_SB_CLEAN);
3894 	if (mddev->bitmap && mddev->bitmap_offset)
3895 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3896 	info.active_disks  = active;
3897 	info.working_disks = working;
3898 	info.failed_disks  = failed;
3899 	info.spare_disks   = spare;
3900 
3901 	info.layout        = mddev->layout;
3902 	info.chunk_size    = mddev->chunk_size;
3903 
3904 	if (copy_to_user(arg, &info, sizeof(info)))
3905 		return -EFAULT;
3906 
3907 	return 0;
3908 }
3909 
3910 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3911 {
3912 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3913 	char *ptr, *buf = NULL;
3914 	int err = -ENOMEM;
3915 
3916 	md_allow_write(mddev);
3917 
3918 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3919 	if (!file)
3920 		goto out;
3921 
3922 	/* bitmap disabled, zero the first byte and copy out */
3923 	if (!mddev->bitmap || !mddev->bitmap->file) {
3924 		file->pathname[0] = '\0';
3925 		goto copy_out;
3926 	}
3927 
3928 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3929 	if (!buf)
3930 		goto out;
3931 
3932 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3933 	if (!ptr)
3934 		goto out;
3935 
3936 	strcpy(file->pathname, ptr);
3937 
3938 copy_out:
3939 	err = 0;
3940 	if (copy_to_user(arg, file, sizeof(*file)))
3941 		err = -EFAULT;
3942 out:
3943 	kfree(buf);
3944 	kfree(file);
3945 	return err;
3946 }
3947 
3948 static int get_disk_info(mddev_t * mddev, void __user * arg)
3949 {
3950 	mdu_disk_info_t info;
3951 	unsigned int nr;
3952 	mdk_rdev_t *rdev;
3953 
3954 	if (copy_from_user(&info, arg, sizeof(info)))
3955 		return -EFAULT;
3956 
3957 	nr = info.number;
3958 
3959 	rdev = find_rdev_nr(mddev, nr);
3960 	if (rdev) {
3961 		info.major = MAJOR(rdev->bdev->bd_dev);
3962 		info.minor = MINOR(rdev->bdev->bd_dev);
3963 		info.raid_disk = rdev->raid_disk;
3964 		info.state = 0;
3965 		if (test_bit(Faulty, &rdev->flags))
3966 			info.state |= (1<<MD_DISK_FAULTY);
3967 		else if (test_bit(In_sync, &rdev->flags)) {
3968 			info.state |= (1<<MD_DISK_ACTIVE);
3969 			info.state |= (1<<MD_DISK_SYNC);
3970 		}
3971 		if (test_bit(WriteMostly, &rdev->flags))
3972 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3973 	} else {
3974 		info.major = info.minor = 0;
3975 		info.raid_disk = -1;
3976 		info.state = (1<<MD_DISK_REMOVED);
3977 	}
3978 
3979 	if (copy_to_user(arg, &info, sizeof(info)))
3980 		return -EFAULT;
3981 
3982 	return 0;
3983 }
3984 
3985 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3986 {
3987 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3988 	mdk_rdev_t *rdev;
3989 	dev_t dev = MKDEV(info->major,info->minor);
3990 
3991 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3992 		return -EOVERFLOW;
3993 
3994 	if (!mddev->raid_disks) {
3995 		int err;
3996 		/* expecting a device which has a superblock */
3997 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3998 		if (IS_ERR(rdev)) {
3999 			printk(KERN_WARNING
4000 				"md: md_import_device returned %ld\n",
4001 				PTR_ERR(rdev));
4002 			return PTR_ERR(rdev);
4003 		}
4004 		if (!list_empty(&mddev->disks)) {
4005 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4006 							mdk_rdev_t, same_set);
4007 			int err = super_types[mddev->major_version]
4008 				.load_super(rdev, rdev0, mddev->minor_version);
4009 			if (err < 0) {
4010 				printk(KERN_WARNING
4011 					"md: %s has different UUID to %s\n",
4012 					bdevname(rdev->bdev,b),
4013 					bdevname(rdev0->bdev,b2));
4014 				export_rdev(rdev);
4015 				return -EINVAL;
4016 			}
4017 		}
4018 		err = bind_rdev_to_array(rdev, mddev);
4019 		if (err)
4020 			export_rdev(rdev);
4021 		return err;
4022 	}
4023 
4024 	/*
4025 	 * add_new_disk can be used once the array is assembled
4026 	 * to add "hot spares".  They must already have a superblock
4027 	 * written
4028 	 */
4029 	if (mddev->pers) {
4030 		int err;
4031 		if (!mddev->pers->hot_add_disk) {
4032 			printk(KERN_WARNING
4033 				"%s: personality does not support diskops!\n",
4034 			       mdname(mddev));
4035 			return -EINVAL;
4036 		}
4037 		if (mddev->persistent)
4038 			rdev = md_import_device(dev, mddev->major_version,
4039 						mddev->minor_version);
4040 		else
4041 			rdev = md_import_device(dev, -1, -1);
4042 		if (IS_ERR(rdev)) {
4043 			printk(KERN_WARNING
4044 				"md: md_import_device returned %ld\n",
4045 				PTR_ERR(rdev));
4046 			return PTR_ERR(rdev);
4047 		}
4048 		/* set save_raid_disk if appropriate */
4049 		if (!mddev->persistent) {
4050 			if (info->state & (1<<MD_DISK_SYNC)  &&
4051 			    info->raid_disk < mddev->raid_disks)
4052 				rdev->raid_disk = info->raid_disk;
4053 			else
4054 				rdev->raid_disk = -1;
4055 		} else
4056 			super_types[mddev->major_version].
4057 				validate_super(mddev, rdev);
4058 		rdev->saved_raid_disk = rdev->raid_disk;
4059 
4060 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
4061 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4062 			set_bit(WriteMostly, &rdev->flags);
4063 
4064 		rdev->raid_disk = -1;
4065 		err = bind_rdev_to_array(rdev, mddev);
4066 		if (!err && !mddev->pers->hot_remove_disk) {
4067 			/* If there is hot_add_disk but no hot_remove_disk
4068 			 * then added disks for geometry changes,
4069 			 * and should be added immediately.
4070 			 */
4071 			super_types[mddev->major_version].
4072 				validate_super(mddev, rdev);
4073 			err = mddev->pers->hot_add_disk(mddev, rdev);
4074 			if (err)
4075 				unbind_rdev_from_array(rdev);
4076 		}
4077 		if (err)
4078 			export_rdev(rdev);
4079 
4080 		md_update_sb(mddev, 1);
4081 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4082 		md_wakeup_thread(mddev->thread);
4083 		return err;
4084 	}
4085 
4086 	/* otherwise, add_new_disk is only allowed
4087 	 * for major_version==0 superblocks
4088 	 */
4089 	if (mddev->major_version != 0) {
4090 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4091 		       mdname(mddev));
4092 		return -EINVAL;
4093 	}
4094 
4095 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
4096 		int err;
4097 		rdev = md_import_device (dev, -1, 0);
4098 		if (IS_ERR(rdev)) {
4099 			printk(KERN_WARNING
4100 				"md: error, md_import_device() returned %ld\n",
4101 				PTR_ERR(rdev));
4102 			return PTR_ERR(rdev);
4103 		}
4104 		rdev->desc_nr = info->number;
4105 		if (info->raid_disk < mddev->raid_disks)
4106 			rdev->raid_disk = info->raid_disk;
4107 		else
4108 			rdev->raid_disk = -1;
4109 
4110 		if (rdev->raid_disk < mddev->raid_disks)
4111 			if (info->state & (1<<MD_DISK_SYNC))
4112 				set_bit(In_sync, &rdev->flags);
4113 
4114 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4115 			set_bit(WriteMostly, &rdev->flags);
4116 
4117 		if (!mddev->persistent) {
4118 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
4119 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4120 		} else
4121 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4122 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
4123 
4124 		err = bind_rdev_to_array(rdev, mddev);
4125 		if (err) {
4126 			export_rdev(rdev);
4127 			return err;
4128 		}
4129 	}
4130 
4131 	return 0;
4132 }
4133 
4134 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4135 {
4136 	char b[BDEVNAME_SIZE];
4137 	mdk_rdev_t *rdev;
4138 
4139 	if (!mddev->pers)
4140 		return -ENODEV;
4141 
4142 	rdev = find_rdev(mddev, dev);
4143 	if (!rdev)
4144 		return -ENXIO;
4145 
4146 	if (rdev->raid_disk >= 0)
4147 		goto busy;
4148 
4149 	kick_rdev_from_array(rdev);
4150 	md_update_sb(mddev, 1);
4151 	md_new_event(mddev);
4152 
4153 	return 0;
4154 busy:
4155 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
4156 		bdevname(rdev->bdev,b), mdname(mddev));
4157 	return -EBUSY;
4158 }
4159 
4160 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4161 {
4162 	char b[BDEVNAME_SIZE];
4163 	int err;
4164 	unsigned int size;
4165 	mdk_rdev_t *rdev;
4166 
4167 	if (!mddev->pers)
4168 		return -ENODEV;
4169 
4170 	if (mddev->major_version != 0) {
4171 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4172 			" version-0 superblocks.\n",
4173 			mdname(mddev));
4174 		return -EINVAL;
4175 	}
4176 	if (!mddev->pers->hot_add_disk) {
4177 		printk(KERN_WARNING
4178 			"%s: personality does not support diskops!\n",
4179 			mdname(mddev));
4180 		return -EINVAL;
4181 	}
4182 
4183 	rdev = md_import_device (dev, -1, 0);
4184 	if (IS_ERR(rdev)) {
4185 		printk(KERN_WARNING
4186 			"md: error, md_import_device() returned %ld\n",
4187 			PTR_ERR(rdev));
4188 		return -EINVAL;
4189 	}
4190 
4191 	if (mddev->persistent)
4192 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4193 	else
4194 		rdev->sb_offset =
4195 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4196 
4197 	size = calc_dev_size(rdev, mddev->chunk_size);
4198 	rdev->size = size;
4199 
4200 	if (test_bit(Faulty, &rdev->flags)) {
4201 		printk(KERN_WARNING
4202 			"md: can not hot-add faulty %s disk to %s!\n",
4203 			bdevname(rdev->bdev,b), mdname(mddev));
4204 		err = -EINVAL;
4205 		goto abort_export;
4206 	}
4207 	clear_bit(In_sync, &rdev->flags);
4208 	rdev->desc_nr = -1;
4209 	rdev->saved_raid_disk = -1;
4210 	err = bind_rdev_to_array(rdev, mddev);
4211 	if (err)
4212 		goto abort_export;
4213 
4214 	/*
4215 	 * The rest should better be atomic, we can have disk failures
4216 	 * noticed in interrupt contexts ...
4217 	 */
4218 
4219 	if (rdev->desc_nr == mddev->max_disks) {
4220 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4221 			mdname(mddev));
4222 		err = -EBUSY;
4223 		goto abort_unbind_export;
4224 	}
4225 
4226 	rdev->raid_disk = -1;
4227 
4228 	md_update_sb(mddev, 1);
4229 
4230 	/*
4231 	 * Kick recovery, maybe this spare has to be added to the
4232 	 * array immediately.
4233 	 */
4234 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4235 	md_wakeup_thread(mddev->thread);
4236 	md_new_event(mddev);
4237 	return 0;
4238 
4239 abort_unbind_export:
4240 	unbind_rdev_from_array(rdev);
4241 
4242 abort_export:
4243 	export_rdev(rdev);
4244 	return err;
4245 }
4246 
4247 static int set_bitmap_file(mddev_t *mddev, int fd)
4248 {
4249 	int err;
4250 
4251 	if (mddev->pers) {
4252 		if (!mddev->pers->quiesce)
4253 			return -EBUSY;
4254 		if (mddev->recovery || mddev->sync_thread)
4255 			return -EBUSY;
4256 		/* we should be able to change the bitmap.. */
4257 	}
4258 
4259 
4260 	if (fd >= 0) {
4261 		if (mddev->bitmap)
4262 			return -EEXIST; /* cannot add when bitmap is present */
4263 		mddev->bitmap_file = fget(fd);
4264 
4265 		if (mddev->bitmap_file == NULL) {
4266 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4267 			       mdname(mddev));
4268 			return -EBADF;
4269 		}
4270 
4271 		err = deny_bitmap_write_access(mddev->bitmap_file);
4272 		if (err) {
4273 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4274 			       mdname(mddev));
4275 			fput(mddev->bitmap_file);
4276 			mddev->bitmap_file = NULL;
4277 			return err;
4278 		}
4279 		mddev->bitmap_offset = 0; /* file overrides offset */
4280 	} else if (mddev->bitmap == NULL)
4281 		return -ENOENT; /* cannot remove what isn't there */
4282 	err = 0;
4283 	if (mddev->pers) {
4284 		mddev->pers->quiesce(mddev, 1);
4285 		if (fd >= 0)
4286 			err = bitmap_create(mddev);
4287 		if (fd < 0 || err) {
4288 			bitmap_destroy(mddev);
4289 			fd = -1; /* make sure to put the file */
4290 		}
4291 		mddev->pers->quiesce(mddev, 0);
4292 	}
4293 	if (fd < 0) {
4294 		if (mddev->bitmap_file) {
4295 			restore_bitmap_write_access(mddev->bitmap_file);
4296 			fput(mddev->bitmap_file);
4297 		}
4298 		mddev->bitmap_file = NULL;
4299 	}
4300 
4301 	return err;
4302 }
4303 
4304 /*
4305  * set_array_info is used two different ways
4306  * The original usage is when creating a new array.
4307  * In this usage, raid_disks is > 0 and it together with
4308  *  level, size, not_persistent,layout,chunksize determine the
4309  *  shape of the array.
4310  *  This will always create an array with a type-0.90.0 superblock.
4311  * The newer usage is when assembling an array.
4312  *  In this case raid_disks will be 0, and the major_version field is
4313  *  use to determine which style super-blocks are to be found on the devices.
4314  *  The minor and patch _version numbers are also kept incase the
4315  *  super_block handler wishes to interpret them.
4316  */
4317 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4318 {
4319 
4320 	if (info->raid_disks == 0) {
4321 		/* just setting version number for superblock loading */
4322 		if (info->major_version < 0 ||
4323 		    info->major_version >= ARRAY_SIZE(super_types) ||
4324 		    super_types[info->major_version].name == NULL) {
4325 			/* maybe try to auto-load a module? */
4326 			printk(KERN_INFO
4327 				"md: superblock version %d not known\n",
4328 				info->major_version);
4329 			return -EINVAL;
4330 		}
4331 		mddev->major_version = info->major_version;
4332 		mddev->minor_version = info->minor_version;
4333 		mddev->patch_version = info->patch_version;
4334 		mddev->persistent = !info->not_persistent;
4335 		return 0;
4336 	}
4337 	mddev->major_version = MD_MAJOR_VERSION;
4338 	mddev->minor_version = MD_MINOR_VERSION;
4339 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
4340 	mddev->ctime         = get_seconds();
4341 
4342 	mddev->level         = info->level;
4343 	mddev->clevel[0]     = 0;
4344 	mddev->size          = info->size;
4345 	mddev->raid_disks    = info->raid_disks;
4346 	/* don't set md_minor, it is determined by which /dev/md* was
4347 	 * openned
4348 	 */
4349 	if (info->state & (1<<MD_SB_CLEAN))
4350 		mddev->recovery_cp = MaxSector;
4351 	else
4352 		mddev->recovery_cp = 0;
4353 	mddev->persistent    = ! info->not_persistent;
4354 	mddev->external	     = 0;
4355 
4356 	mddev->layout        = info->layout;
4357 	mddev->chunk_size    = info->chunk_size;
4358 
4359 	mddev->max_disks     = MD_SB_DISKS;
4360 
4361 	if (mddev->persistent)
4362 		mddev->flags         = 0;
4363 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4364 
4365 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4366 	mddev->bitmap_offset = 0;
4367 
4368 	mddev->reshape_position = MaxSector;
4369 
4370 	/*
4371 	 * Generate a 128 bit UUID
4372 	 */
4373 	get_random_bytes(mddev->uuid, 16);
4374 
4375 	mddev->new_level = mddev->level;
4376 	mddev->new_chunk = mddev->chunk_size;
4377 	mddev->new_layout = mddev->layout;
4378 	mddev->delta_disks = 0;
4379 
4380 	return 0;
4381 }
4382 
4383 static int update_size(mddev_t *mddev, unsigned long size)
4384 {
4385 	mdk_rdev_t * rdev;
4386 	int rv;
4387 	struct list_head *tmp;
4388 	int fit = (size == 0);
4389 
4390 	if (mddev->pers->resize == NULL)
4391 		return -EINVAL;
4392 	/* The "size" is the amount of each device that is used.
4393 	 * This can only make sense for arrays with redundancy.
4394 	 * linear and raid0 always use whatever space is available
4395 	 * We can only consider changing the size if no resync
4396 	 * or reconstruction is happening, and if the new size
4397 	 * is acceptable. It must fit before the sb_offset or,
4398 	 * if that is <data_offset, it must fit before the
4399 	 * size of each device.
4400 	 * If size is zero, we find the largest size that fits.
4401 	 */
4402 	if (mddev->sync_thread)
4403 		return -EBUSY;
4404 	rdev_for_each(rdev, tmp, mddev) {
4405 		sector_t avail;
4406 		avail = rdev->size * 2;
4407 
4408 		if (fit && (size == 0 || size > avail/2))
4409 			size = avail/2;
4410 		if (avail < ((sector_t)size << 1))
4411 			return -ENOSPC;
4412 	}
4413 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
4414 	if (!rv) {
4415 		struct block_device *bdev;
4416 
4417 		bdev = bdget_disk(mddev->gendisk, 0);
4418 		if (bdev) {
4419 			mutex_lock(&bdev->bd_inode->i_mutex);
4420 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4421 			mutex_unlock(&bdev->bd_inode->i_mutex);
4422 			bdput(bdev);
4423 		}
4424 	}
4425 	return rv;
4426 }
4427 
4428 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4429 {
4430 	int rv;
4431 	/* change the number of raid disks */
4432 	if (mddev->pers->check_reshape == NULL)
4433 		return -EINVAL;
4434 	if (raid_disks <= 0 ||
4435 	    raid_disks >= mddev->max_disks)
4436 		return -EINVAL;
4437 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4438 		return -EBUSY;
4439 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4440 
4441 	rv = mddev->pers->check_reshape(mddev);
4442 	return rv;
4443 }
4444 
4445 
4446 /*
4447  * update_array_info is used to change the configuration of an
4448  * on-line array.
4449  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4450  * fields in the info are checked against the array.
4451  * Any differences that cannot be handled will cause an error.
4452  * Normally, only one change can be managed at a time.
4453  */
4454 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4455 {
4456 	int rv = 0;
4457 	int cnt = 0;
4458 	int state = 0;
4459 
4460 	/* calculate expected state,ignoring low bits */
4461 	if (mddev->bitmap && mddev->bitmap_offset)
4462 		state |= (1 << MD_SB_BITMAP_PRESENT);
4463 
4464 	if (mddev->major_version != info->major_version ||
4465 	    mddev->minor_version != info->minor_version ||
4466 /*	    mddev->patch_version != info->patch_version || */
4467 	    mddev->ctime         != info->ctime         ||
4468 	    mddev->level         != info->level         ||
4469 /*	    mddev->layout        != info->layout        || */
4470 	    !mddev->persistent	 != info->not_persistent||
4471 	    mddev->chunk_size    != info->chunk_size    ||
4472 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4473 	    ((state^info->state) & 0xfffffe00)
4474 		)
4475 		return -EINVAL;
4476 	/* Check there is only one change */
4477 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4478 	if (mddev->raid_disks != info->raid_disks) cnt++;
4479 	if (mddev->layout != info->layout) cnt++;
4480 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4481 	if (cnt == 0) return 0;
4482 	if (cnt > 1) return -EINVAL;
4483 
4484 	if (mddev->layout != info->layout) {
4485 		/* Change layout
4486 		 * we don't need to do anything at the md level, the
4487 		 * personality will take care of it all.
4488 		 */
4489 		if (mddev->pers->reconfig == NULL)
4490 			return -EINVAL;
4491 		else
4492 			return mddev->pers->reconfig(mddev, info->layout, -1);
4493 	}
4494 	if (info->size >= 0 && mddev->size != info->size)
4495 		rv = update_size(mddev, info->size);
4496 
4497 	if (mddev->raid_disks    != info->raid_disks)
4498 		rv = update_raid_disks(mddev, info->raid_disks);
4499 
4500 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4501 		if (mddev->pers->quiesce == NULL)
4502 			return -EINVAL;
4503 		if (mddev->recovery || mddev->sync_thread)
4504 			return -EBUSY;
4505 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4506 			/* add the bitmap */
4507 			if (mddev->bitmap)
4508 				return -EEXIST;
4509 			if (mddev->default_bitmap_offset == 0)
4510 				return -EINVAL;
4511 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4512 			mddev->pers->quiesce(mddev, 1);
4513 			rv = bitmap_create(mddev);
4514 			if (rv)
4515 				bitmap_destroy(mddev);
4516 			mddev->pers->quiesce(mddev, 0);
4517 		} else {
4518 			/* remove the bitmap */
4519 			if (!mddev->bitmap)
4520 				return -ENOENT;
4521 			if (mddev->bitmap->file)
4522 				return -EINVAL;
4523 			mddev->pers->quiesce(mddev, 1);
4524 			bitmap_destroy(mddev);
4525 			mddev->pers->quiesce(mddev, 0);
4526 			mddev->bitmap_offset = 0;
4527 		}
4528 	}
4529 	md_update_sb(mddev, 1);
4530 	return rv;
4531 }
4532 
4533 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4534 {
4535 	mdk_rdev_t *rdev;
4536 
4537 	if (mddev->pers == NULL)
4538 		return -ENODEV;
4539 
4540 	rdev = find_rdev(mddev, dev);
4541 	if (!rdev)
4542 		return -ENODEV;
4543 
4544 	md_error(mddev, rdev);
4545 	return 0;
4546 }
4547 
4548 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4549 {
4550 	mddev_t *mddev = bdev->bd_disk->private_data;
4551 
4552 	geo->heads = 2;
4553 	geo->sectors = 4;
4554 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4555 	return 0;
4556 }
4557 
4558 static int md_ioctl(struct inode *inode, struct file *file,
4559 			unsigned int cmd, unsigned long arg)
4560 {
4561 	int err = 0;
4562 	void __user *argp = (void __user *)arg;
4563 	mddev_t *mddev = NULL;
4564 
4565 	if (!capable(CAP_SYS_ADMIN))
4566 		return -EACCES;
4567 
4568 	/*
4569 	 * Commands dealing with the RAID driver but not any
4570 	 * particular array:
4571 	 */
4572 	switch (cmd)
4573 	{
4574 		case RAID_VERSION:
4575 			err = get_version(argp);
4576 			goto done;
4577 
4578 		case PRINT_RAID_DEBUG:
4579 			err = 0;
4580 			md_print_devices();
4581 			goto done;
4582 
4583 #ifndef MODULE
4584 		case RAID_AUTORUN:
4585 			err = 0;
4586 			autostart_arrays(arg);
4587 			goto done;
4588 #endif
4589 		default:;
4590 	}
4591 
4592 	/*
4593 	 * Commands creating/starting a new array:
4594 	 */
4595 
4596 	mddev = inode->i_bdev->bd_disk->private_data;
4597 
4598 	if (!mddev) {
4599 		BUG();
4600 		goto abort;
4601 	}
4602 
4603 	err = mddev_lock(mddev);
4604 	if (err) {
4605 		printk(KERN_INFO
4606 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4607 			err, cmd);
4608 		goto abort;
4609 	}
4610 
4611 	switch (cmd)
4612 	{
4613 		case SET_ARRAY_INFO:
4614 			{
4615 				mdu_array_info_t info;
4616 				if (!arg)
4617 					memset(&info, 0, sizeof(info));
4618 				else if (copy_from_user(&info, argp, sizeof(info))) {
4619 					err = -EFAULT;
4620 					goto abort_unlock;
4621 				}
4622 				if (mddev->pers) {
4623 					err = update_array_info(mddev, &info);
4624 					if (err) {
4625 						printk(KERN_WARNING "md: couldn't update"
4626 						       " array info. %d\n", err);
4627 						goto abort_unlock;
4628 					}
4629 					goto done_unlock;
4630 				}
4631 				if (!list_empty(&mddev->disks)) {
4632 					printk(KERN_WARNING
4633 					       "md: array %s already has disks!\n",
4634 					       mdname(mddev));
4635 					err = -EBUSY;
4636 					goto abort_unlock;
4637 				}
4638 				if (mddev->raid_disks) {
4639 					printk(KERN_WARNING
4640 					       "md: array %s already initialised!\n",
4641 					       mdname(mddev));
4642 					err = -EBUSY;
4643 					goto abort_unlock;
4644 				}
4645 				err = set_array_info(mddev, &info);
4646 				if (err) {
4647 					printk(KERN_WARNING "md: couldn't set"
4648 					       " array info. %d\n", err);
4649 					goto abort_unlock;
4650 				}
4651 			}
4652 			goto done_unlock;
4653 
4654 		default:;
4655 	}
4656 
4657 	/*
4658 	 * Commands querying/configuring an existing array:
4659 	 */
4660 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4661 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4662 	if ((!mddev->raid_disks && !mddev->external)
4663 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4664 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4665 	    && cmd != GET_BITMAP_FILE) {
4666 		err = -ENODEV;
4667 		goto abort_unlock;
4668 	}
4669 
4670 	/*
4671 	 * Commands even a read-only array can execute:
4672 	 */
4673 	switch (cmd)
4674 	{
4675 		case GET_ARRAY_INFO:
4676 			err = get_array_info(mddev, argp);
4677 			goto done_unlock;
4678 
4679 		case GET_BITMAP_FILE:
4680 			err = get_bitmap_file(mddev, argp);
4681 			goto done_unlock;
4682 
4683 		case GET_DISK_INFO:
4684 			err = get_disk_info(mddev, argp);
4685 			goto done_unlock;
4686 
4687 		case RESTART_ARRAY_RW:
4688 			err = restart_array(mddev);
4689 			goto done_unlock;
4690 
4691 		case STOP_ARRAY:
4692 			err = do_md_stop (mddev, 0);
4693 			goto done_unlock;
4694 
4695 		case STOP_ARRAY_RO:
4696 			err = do_md_stop (mddev, 1);
4697 			goto done_unlock;
4698 
4699 	/*
4700 	 * We have a problem here : there is no easy way to give a CHS
4701 	 * virtual geometry. We currently pretend that we have a 2 heads
4702 	 * 4 sectors (with a BIG number of cylinders...). This drives
4703 	 * dosfs just mad... ;-)
4704 	 */
4705 	}
4706 
4707 	/*
4708 	 * The remaining ioctls are changing the state of the
4709 	 * superblock, so we do not allow them on read-only arrays.
4710 	 * However non-MD ioctls (e.g. get-size) will still come through
4711 	 * here and hit the 'default' below, so only disallow
4712 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4713 	 */
4714 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
4715 	    mddev->ro && mddev->pers) {
4716 		if (mddev->ro == 2) {
4717 			mddev->ro = 0;
4718 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4719 		md_wakeup_thread(mddev->thread);
4720 
4721 		} else {
4722 			err = -EROFS;
4723 			goto abort_unlock;
4724 		}
4725 	}
4726 
4727 	switch (cmd)
4728 	{
4729 		case ADD_NEW_DISK:
4730 		{
4731 			mdu_disk_info_t info;
4732 			if (copy_from_user(&info, argp, sizeof(info)))
4733 				err = -EFAULT;
4734 			else
4735 				err = add_new_disk(mddev, &info);
4736 			goto done_unlock;
4737 		}
4738 
4739 		case HOT_REMOVE_DISK:
4740 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4741 			goto done_unlock;
4742 
4743 		case HOT_ADD_DISK:
4744 			err = hot_add_disk(mddev, new_decode_dev(arg));
4745 			goto done_unlock;
4746 
4747 		case SET_DISK_FAULTY:
4748 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4749 			goto done_unlock;
4750 
4751 		case RUN_ARRAY:
4752 			err = do_md_run (mddev);
4753 			goto done_unlock;
4754 
4755 		case SET_BITMAP_FILE:
4756 			err = set_bitmap_file(mddev, (int)arg);
4757 			goto done_unlock;
4758 
4759 		default:
4760 			err = -EINVAL;
4761 			goto abort_unlock;
4762 	}
4763 
4764 done_unlock:
4765 abort_unlock:
4766 	mddev_unlock(mddev);
4767 
4768 	return err;
4769 done:
4770 	if (err)
4771 		MD_BUG();
4772 abort:
4773 	return err;
4774 }
4775 
4776 static int md_open(struct inode *inode, struct file *file)
4777 {
4778 	/*
4779 	 * Succeed if we can lock the mddev, which confirms that
4780 	 * it isn't being stopped right now.
4781 	 */
4782 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4783 	int err;
4784 
4785 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4786 		goto out;
4787 
4788 	err = 0;
4789 	mddev_get(mddev);
4790 	mddev_unlock(mddev);
4791 
4792 	check_disk_change(inode->i_bdev);
4793  out:
4794 	return err;
4795 }
4796 
4797 static int md_release(struct inode *inode, struct file * file)
4798 {
4799  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4800 
4801 	BUG_ON(!mddev);
4802 	mddev_put(mddev);
4803 
4804 	return 0;
4805 }
4806 
4807 static int md_media_changed(struct gendisk *disk)
4808 {
4809 	mddev_t *mddev = disk->private_data;
4810 
4811 	return mddev->changed;
4812 }
4813 
4814 static int md_revalidate(struct gendisk *disk)
4815 {
4816 	mddev_t *mddev = disk->private_data;
4817 
4818 	mddev->changed = 0;
4819 	return 0;
4820 }
4821 static struct block_device_operations md_fops =
4822 {
4823 	.owner		= THIS_MODULE,
4824 	.open		= md_open,
4825 	.release	= md_release,
4826 	.ioctl		= md_ioctl,
4827 	.getgeo		= md_getgeo,
4828 	.media_changed	= md_media_changed,
4829 	.revalidate_disk= md_revalidate,
4830 };
4831 
4832 static int md_thread(void * arg)
4833 {
4834 	mdk_thread_t *thread = arg;
4835 
4836 	/*
4837 	 * md_thread is a 'system-thread', it's priority should be very
4838 	 * high. We avoid resource deadlocks individually in each
4839 	 * raid personality. (RAID5 does preallocation) We also use RR and
4840 	 * the very same RT priority as kswapd, thus we will never get
4841 	 * into a priority inversion deadlock.
4842 	 *
4843 	 * we definitely have to have equal or higher priority than
4844 	 * bdflush, otherwise bdflush will deadlock if there are too
4845 	 * many dirty RAID5 blocks.
4846 	 */
4847 
4848 	allow_signal(SIGKILL);
4849 	while (!kthread_should_stop()) {
4850 
4851 		/* We need to wait INTERRUPTIBLE so that
4852 		 * we don't add to the load-average.
4853 		 * That means we need to be sure no signals are
4854 		 * pending
4855 		 */
4856 		if (signal_pending(current))
4857 			flush_signals(current);
4858 
4859 		wait_event_interruptible_timeout
4860 			(thread->wqueue,
4861 			 test_bit(THREAD_WAKEUP, &thread->flags)
4862 			 || kthread_should_stop(),
4863 			 thread->timeout);
4864 
4865 		clear_bit(THREAD_WAKEUP, &thread->flags);
4866 
4867 		thread->run(thread->mddev);
4868 	}
4869 
4870 	return 0;
4871 }
4872 
4873 void md_wakeup_thread(mdk_thread_t *thread)
4874 {
4875 	if (thread) {
4876 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4877 		set_bit(THREAD_WAKEUP, &thread->flags);
4878 		wake_up(&thread->wqueue);
4879 	}
4880 }
4881 
4882 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4883 				 const char *name)
4884 {
4885 	mdk_thread_t *thread;
4886 
4887 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4888 	if (!thread)
4889 		return NULL;
4890 
4891 	init_waitqueue_head(&thread->wqueue);
4892 
4893 	thread->run = run;
4894 	thread->mddev = mddev;
4895 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4896 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4897 	if (IS_ERR(thread->tsk)) {
4898 		kfree(thread);
4899 		return NULL;
4900 	}
4901 	return thread;
4902 }
4903 
4904 void md_unregister_thread(mdk_thread_t *thread)
4905 {
4906 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
4907 
4908 	kthread_stop(thread->tsk);
4909 	kfree(thread);
4910 }
4911 
4912 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4913 {
4914 	if (!mddev) {
4915 		MD_BUG();
4916 		return;
4917 	}
4918 
4919 	if (!rdev || test_bit(Faulty, &rdev->flags))
4920 		return;
4921 /*
4922 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4923 		mdname(mddev),
4924 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4925 		__builtin_return_address(0),__builtin_return_address(1),
4926 		__builtin_return_address(2),__builtin_return_address(3));
4927 */
4928 	if (!mddev->pers)
4929 		return;
4930 	if (!mddev->pers->error_handler)
4931 		return;
4932 	mddev->pers->error_handler(mddev,rdev);
4933 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4934 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4935 	md_wakeup_thread(mddev->thread);
4936 	md_new_event_inintr(mddev);
4937 }
4938 
4939 /* seq_file implementation /proc/mdstat */
4940 
4941 static void status_unused(struct seq_file *seq)
4942 {
4943 	int i = 0;
4944 	mdk_rdev_t *rdev;
4945 	struct list_head *tmp;
4946 
4947 	seq_printf(seq, "unused devices: ");
4948 
4949 	rdev_for_each_list(rdev, tmp, pending_raid_disks) {
4950 		char b[BDEVNAME_SIZE];
4951 		i++;
4952 		seq_printf(seq, "%s ",
4953 			      bdevname(rdev->bdev,b));
4954 	}
4955 	if (!i)
4956 		seq_printf(seq, "<none>");
4957 
4958 	seq_printf(seq, "\n");
4959 }
4960 
4961 
4962 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4963 {
4964 	sector_t max_blocks, resync, res;
4965 	unsigned long dt, db, rt;
4966 	int scale;
4967 	unsigned int per_milli;
4968 
4969 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4970 
4971 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4972 		max_blocks = mddev->resync_max_sectors >> 1;
4973 	else
4974 		max_blocks = mddev->size;
4975 
4976 	/*
4977 	 * Should not happen.
4978 	 */
4979 	if (!max_blocks) {
4980 		MD_BUG();
4981 		return;
4982 	}
4983 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
4984 	 * in a sector_t, and (max_blocks>>scale) will fit in a
4985 	 * u32, as those are the requirements for sector_div.
4986 	 * Thus 'scale' must be at least 10
4987 	 */
4988 	scale = 10;
4989 	if (sizeof(sector_t) > sizeof(unsigned long)) {
4990 		while ( max_blocks/2 > (1ULL<<(scale+32)))
4991 			scale++;
4992 	}
4993 	res = (resync>>scale)*1000;
4994 	sector_div(res, (u32)((max_blocks>>scale)+1));
4995 
4996 	per_milli = res;
4997 	{
4998 		int i, x = per_milli/50, y = 20-x;
4999 		seq_printf(seq, "[");
5000 		for (i = 0; i < x; i++)
5001 			seq_printf(seq, "=");
5002 		seq_printf(seq, ">");
5003 		for (i = 0; i < y; i++)
5004 			seq_printf(seq, ".");
5005 		seq_printf(seq, "] ");
5006 	}
5007 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5008 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5009 		    "reshape" :
5010 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5011 		     "check" :
5012 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5013 		      "resync" : "recovery"))),
5014 		   per_milli/10, per_milli % 10,
5015 		   (unsigned long long) resync,
5016 		   (unsigned long long) max_blocks);
5017 
5018 	/*
5019 	 * We do not want to overflow, so the order of operands and
5020 	 * the * 100 / 100 trick are important. We do a +1 to be
5021 	 * safe against division by zero. We only estimate anyway.
5022 	 *
5023 	 * dt: time from mark until now
5024 	 * db: blocks written from mark until now
5025 	 * rt: remaining time
5026 	 */
5027 	dt = ((jiffies - mddev->resync_mark) / HZ);
5028 	if (!dt) dt++;
5029 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5030 		- mddev->resync_mark_cnt;
5031 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5032 
5033 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5034 
5035 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5036 }
5037 
5038 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5039 {
5040 	struct list_head *tmp;
5041 	loff_t l = *pos;
5042 	mddev_t *mddev;
5043 
5044 	if (l >= 0x10000)
5045 		return NULL;
5046 	if (!l--)
5047 		/* header */
5048 		return (void*)1;
5049 
5050 	spin_lock(&all_mddevs_lock);
5051 	list_for_each(tmp,&all_mddevs)
5052 		if (!l--) {
5053 			mddev = list_entry(tmp, mddev_t, all_mddevs);
5054 			mddev_get(mddev);
5055 			spin_unlock(&all_mddevs_lock);
5056 			return mddev;
5057 		}
5058 	spin_unlock(&all_mddevs_lock);
5059 	if (!l--)
5060 		return (void*)2;/* tail */
5061 	return NULL;
5062 }
5063 
5064 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5065 {
5066 	struct list_head *tmp;
5067 	mddev_t *next_mddev, *mddev = v;
5068 
5069 	++*pos;
5070 	if (v == (void*)2)
5071 		return NULL;
5072 
5073 	spin_lock(&all_mddevs_lock);
5074 	if (v == (void*)1)
5075 		tmp = all_mddevs.next;
5076 	else
5077 		tmp = mddev->all_mddevs.next;
5078 	if (tmp != &all_mddevs)
5079 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5080 	else {
5081 		next_mddev = (void*)2;
5082 		*pos = 0x10000;
5083 	}
5084 	spin_unlock(&all_mddevs_lock);
5085 
5086 	if (v != (void*)1)
5087 		mddev_put(mddev);
5088 	return next_mddev;
5089 
5090 }
5091 
5092 static void md_seq_stop(struct seq_file *seq, void *v)
5093 {
5094 	mddev_t *mddev = v;
5095 
5096 	if (mddev && v != (void*)1 && v != (void*)2)
5097 		mddev_put(mddev);
5098 }
5099 
5100 struct mdstat_info {
5101 	int event;
5102 };
5103 
5104 static int md_seq_show(struct seq_file *seq, void *v)
5105 {
5106 	mddev_t *mddev = v;
5107 	sector_t size;
5108 	struct list_head *tmp2;
5109 	mdk_rdev_t *rdev;
5110 	struct mdstat_info *mi = seq->private;
5111 	struct bitmap *bitmap;
5112 
5113 	if (v == (void*)1) {
5114 		struct mdk_personality *pers;
5115 		seq_printf(seq, "Personalities : ");
5116 		spin_lock(&pers_lock);
5117 		list_for_each_entry(pers, &pers_list, list)
5118 			seq_printf(seq, "[%s] ", pers->name);
5119 
5120 		spin_unlock(&pers_lock);
5121 		seq_printf(seq, "\n");
5122 		mi->event = atomic_read(&md_event_count);
5123 		return 0;
5124 	}
5125 	if (v == (void*)2) {
5126 		status_unused(seq);
5127 		return 0;
5128 	}
5129 
5130 	if (mddev_lock(mddev) < 0)
5131 		return -EINTR;
5132 
5133 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5134 		seq_printf(seq, "%s : %sactive", mdname(mddev),
5135 						mddev->pers ? "" : "in");
5136 		if (mddev->pers) {
5137 			if (mddev->ro==1)
5138 				seq_printf(seq, " (read-only)");
5139 			if (mddev->ro==2)
5140 				seq_printf(seq, " (auto-read-only)");
5141 			seq_printf(seq, " %s", mddev->pers->name);
5142 		}
5143 
5144 		size = 0;
5145 		rdev_for_each(rdev, tmp2, mddev) {
5146 			char b[BDEVNAME_SIZE];
5147 			seq_printf(seq, " %s[%d]",
5148 				bdevname(rdev->bdev,b), rdev->desc_nr);
5149 			if (test_bit(WriteMostly, &rdev->flags))
5150 				seq_printf(seq, "(W)");
5151 			if (test_bit(Faulty, &rdev->flags)) {
5152 				seq_printf(seq, "(F)");
5153 				continue;
5154 			} else if (rdev->raid_disk < 0)
5155 				seq_printf(seq, "(S)"); /* spare */
5156 			size += rdev->size;
5157 		}
5158 
5159 		if (!list_empty(&mddev->disks)) {
5160 			if (mddev->pers)
5161 				seq_printf(seq, "\n      %llu blocks",
5162 					(unsigned long long)mddev->array_size);
5163 			else
5164 				seq_printf(seq, "\n      %llu blocks",
5165 					(unsigned long long)size);
5166 		}
5167 		if (mddev->persistent) {
5168 			if (mddev->major_version != 0 ||
5169 			    mddev->minor_version != 90) {
5170 				seq_printf(seq," super %d.%d",
5171 					   mddev->major_version,
5172 					   mddev->minor_version);
5173 			}
5174 		} else if (mddev->external)
5175 			seq_printf(seq, " super external:%s",
5176 				   mddev->metadata_type);
5177 		else
5178 			seq_printf(seq, " super non-persistent");
5179 
5180 		if (mddev->pers) {
5181 			mddev->pers->status (seq, mddev);
5182 	 		seq_printf(seq, "\n      ");
5183 			if (mddev->pers->sync_request) {
5184 				if (mddev->curr_resync > 2) {
5185 					status_resync (seq, mddev);
5186 					seq_printf(seq, "\n      ");
5187 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5188 					seq_printf(seq, "\tresync=DELAYED\n      ");
5189 				else if (mddev->recovery_cp < MaxSector)
5190 					seq_printf(seq, "\tresync=PENDING\n      ");
5191 			}
5192 		} else
5193 			seq_printf(seq, "\n       ");
5194 
5195 		if ((bitmap = mddev->bitmap)) {
5196 			unsigned long chunk_kb;
5197 			unsigned long flags;
5198 			spin_lock_irqsave(&bitmap->lock, flags);
5199 			chunk_kb = bitmap->chunksize >> 10;
5200 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5201 				"%lu%s chunk",
5202 				bitmap->pages - bitmap->missing_pages,
5203 				bitmap->pages,
5204 				(bitmap->pages - bitmap->missing_pages)
5205 					<< (PAGE_SHIFT - 10),
5206 				chunk_kb ? chunk_kb : bitmap->chunksize,
5207 				chunk_kb ? "KB" : "B");
5208 			if (bitmap->file) {
5209 				seq_printf(seq, ", file: ");
5210 				seq_path(seq, &bitmap->file->f_path, " \t\n");
5211 			}
5212 
5213 			seq_printf(seq, "\n");
5214 			spin_unlock_irqrestore(&bitmap->lock, flags);
5215 		}
5216 
5217 		seq_printf(seq, "\n");
5218 	}
5219 	mddev_unlock(mddev);
5220 
5221 	return 0;
5222 }
5223 
5224 static struct seq_operations md_seq_ops = {
5225 	.start  = md_seq_start,
5226 	.next   = md_seq_next,
5227 	.stop   = md_seq_stop,
5228 	.show   = md_seq_show,
5229 };
5230 
5231 static int md_seq_open(struct inode *inode, struct file *file)
5232 {
5233 	int error;
5234 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5235 	if (mi == NULL)
5236 		return -ENOMEM;
5237 
5238 	error = seq_open(file, &md_seq_ops);
5239 	if (error)
5240 		kfree(mi);
5241 	else {
5242 		struct seq_file *p = file->private_data;
5243 		p->private = mi;
5244 		mi->event = atomic_read(&md_event_count);
5245 	}
5246 	return error;
5247 }
5248 
5249 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5250 {
5251 	struct seq_file *m = filp->private_data;
5252 	struct mdstat_info *mi = m->private;
5253 	int mask;
5254 
5255 	poll_wait(filp, &md_event_waiters, wait);
5256 
5257 	/* always allow read */
5258 	mask = POLLIN | POLLRDNORM;
5259 
5260 	if (mi->event != atomic_read(&md_event_count))
5261 		mask |= POLLERR | POLLPRI;
5262 	return mask;
5263 }
5264 
5265 static const struct file_operations md_seq_fops = {
5266 	.owner		= THIS_MODULE,
5267 	.open           = md_seq_open,
5268 	.read           = seq_read,
5269 	.llseek         = seq_lseek,
5270 	.release	= seq_release_private,
5271 	.poll		= mdstat_poll,
5272 };
5273 
5274 int register_md_personality(struct mdk_personality *p)
5275 {
5276 	spin_lock(&pers_lock);
5277 	list_add_tail(&p->list, &pers_list);
5278 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5279 	spin_unlock(&pers_lock);
5280 	return 0;
5281 }
5282 
5283 int unregister_md_personality(struct mdk_personality *p)
5284 {
5285 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5286 	spin_lock(&pers_lock);
5287 	list_del_init(&p->list);
5288 	spin_unlock(&pers_lock);
5289 	return 0;
5290 }
5291 
5292 static int is_mddev_idle(mddev_t *mddev)
5293 {
5294 	mdk_rdev_t * rdev;
5295 	struct list_head *tmp;
5296 	int idle;
5297 	long curr_events;
5298 
5299 	idle = 1;
5300 	rdev_for_each(rdev, tmp, mddev) {
5301 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5302 		curr_events = disk_stat_read(disk, sectors[0]) +
5303 				disk_stat_read(disk, sectors[1]) -
5304 				atomic_read(&disk->sync_io);
5305 		/* sync IO will cause sync_io to increase before the disk_stats
5306 		 * as sync_io is counted when a request starts, and
5307 		 * disk_stats is counted when it completes.
5308 		 * So resync activity will cause curr_events to be smaller than
5309 		 * when there was no such activity.
5310 		 * non-sync IO will cause disk_stat to increase without
5311 		 * increasing sync_io so curr_events will (eventually)
5312 		 * be larger than it was before.  Once it becomes
5313 		 * substantially larger, the test below will cause
5314 		 * the array to appear non-idle, and resync will slow
5315 		 * down.
5316 		 * If there is a lot of outstanding resync activity when
5317 		 * we set last_event to curr_events, then all that activity
5318 		 * completing might cause the array to appear non-idle
5319 		 * and resync will be slowed down even though there might
5320 		 * not have been non-resync activity.  This will only
5321 		 * happen once though.  'last_events' will soon reflect
5322 		 * the state where there is little or no outstanding
5323 		 * resync requests, and further resync activity will
5324 		 * always make curr_events less than last_events.
5325 		 *
5326 		 */
5327 		if (curr_events - rdev->last_events > 4096) {
5328 			rdev->last_events = curr_events;
5329 			idle = 0;
5330 		}
5331 	}
5332 	return idle;
5333 }
5334 
5335 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5336 {
5337 	/* another "blocks" (512byte) blocks have been synced */
5338 	atomic_sub(blocks, &mddev->recovery_active);
5339 	wake_up(&mddev->recovery_wait);
5340 	if (!ok) {
5341 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5342 		md_wakeup_thread(mddev->thread);
5343 		// stop recovery, signal do_sync ....
5344 	}
5345 }
5346 
5347 
5348 /* md_write_start(mddev, bi)
5349  * If we need to update some array metadata (e.g. 'active' flag
5350  * in superblock) before writing, schedule a superblock update
5351  * and wait for it to complete.
5352  */
5353 void md_write_start(mddev_t *mddev, struct bio *bi)
5354 {
5355 	if (bio_data_dir(bi) != WRITE)
5356 		return;
5357 
5358 	BUG_ON(mddev->ro == 1);
5359 	if (mddev->ro == 2) {
5360 		/* need to switch to read/write */
5361 		mddev->ro = 0;
5362 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5363 		md_wakeup_thread(mddev->thread);
5364 		md_wakeup_thread(mddev->sync_thread);
5365 	}
5366 	atomic_inc(&mddev->writes_pending);
5367 	if (mddev->in_sync) {
5368 		spin_lock_irq(&mddev->write_lock);
5369 		if (mddev->in_sync) {
5370 			mddev->in_sync = 0;
5371 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5372 			md_wakeup_thread(mddev->thread);
5373 		}
5374 		spin_unlock_irq(&mddev->write_lock);
5375 	}
5376 	wait_event(mddev->sb_wait, mddev->flags==0);
5377 }
5378 
5379 void md_write_end(mddev_t *mddev)
5380 {
5381 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5382 		if (mddev->safemode == 2)
5383 			md_wakeup_thread(mddev->thread);
5384 		else if (mddev->safemode_delay)
5385 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5386 	}
5387 }
5388 
5389 /* md_allow_write(mddev)
5390  * Calling this ensures that the array is marked 'active' so that writes
5391  * may proceed without blocking.  It is important to call this before
5392  * attempting a GFP_KERNEL allocation while holding the mddev lock.
5393  * Must be called with mddev_lock held.
5394  */
5395 void md_allow_write(mddev_t *mddev)
5396 {
5397 	if (!mddev->pers)
5398 		return;
5399 	if (mddev->ro)
5400 		return;
5401 
5402 	spin_lock_irq(&mddev->write_lock);
5403 	if (mddev->in_sync) {
5404 		mddev->in_sync = 0;
5405 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5406 		if (mddev->safemode_delay &&
5407 		    mddev->safemode == 0)
5408 			mddev->safemode = 1;
5409 		spin_unlock_irq(&mddev->write_lock);
5410 		md_update_sb(mddev, 0);
5411 	} else
5412 		spin_unlock_irq(&mddev->write_lock);
5413 }
5414 EXPORT_SYMBOL_GPL(md_allow_write);
5415 
5416 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5417 
5418 #define SYNC_MARKS	10
5419 #define	SYNC_MARK_STEP	(3*HZ)
5420 void md_do_sync(mddev_t *mddev)
5421 {
5422 	mddev_t *mddev2;
5423 	unsigned int currspeed = 0,
5424 		 window;
5425 	sector_t max_sectors,j, io_sectors;
5426 	unsigned long mark[SYNC_MARKS];
5427 	sector_t mark_cnt[SYNC_MARKS];
5428 	int last_mark,m;
5429 	struct list_head *tmp;
5430 	sector_t last_check;
5431 	int skipped = 0;
5432 	struct list_head *rtmp;
5433 	mdk_rdev_t *rdev;
5434 	char *desc;
5435 
5436 	/* just incase thread restarts... */
5437 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5438 		return;
5439 	if (mddev->ro) /* never try to sync a read-only array */
5440 		return;
5441 
5442 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5443 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5444 			desc = "data-check";
5445 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5446 			desc = "requested-resync";
5447 		else
5448 			desc = "resync";
5449 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5450 		desc = "reshape";
5451 	else
5452 		desc = "recovery";
5453 
5454 	/* we overload curr_resync somewhat here.
5455 	 * 0 == not engaged in resync at all
5456 	 * 2 == checking that there is no conflict with another sync
5457 	 * 1 == like 2, but have yielded to allow conflicting resync to
5458 	 *		commense
5459 	 * other == active in resync - this many blocks
5460 	 *
5461 	 * Before starting a resync we must have set curr_resync to
5462 	 * 2, and then checked that every "conflicting" array has curr_resync
5463 	 * less than ours.  When we find one that is the same or higher
5464 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5465 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5466 	 * This will mean we have to start checking from the beginning again.
5467 	 *
5468 	 */
5469 
5470 	do {
5471 		mddev->curr_resync = 2;
5472 
5473 	try_again:
5474 		if (kthread_should_stop()) {
5475 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5476 			goto skip;
5477 		}
5478 		for_each_mddev(mddev2, tmp) {
5479 			if (mddev2 == mddev)
5480 				continue;
5481 			if (mddev2->curr_resync &&
5482 			    match_mddev_units(mddev,mddev2)) {
5483 				DEFINE_WAIT(wq);
5484 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5485 					/* arbitrarily yield */
5486 					mddev->curr_resync = 1;
5487 					wake_up(&resync_wait);
5488 				}
5489 				if (mddev > mddev2 && mddev->curr_resync == 1)
5490 					/* no need to wait here, we can wait the next
5491 					 * time 'round when curr_resync == 2
5492 					 */
5493 					continue;
5494 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5495 				if (!kthread_should_stop() &&
5496 				    mddev2->curr_resync >= mddev->curr_resync) {
5497 					printk(KERN_INFO "md: delaying %s of %s"
5498 					       " until %s has finished (they"
5499 					       " share one or more physical units)\n",
5500 					       desc, mdname(mddev), mdname(mddev2));
5501 					mddev_put(mddev2);
5502 					schedule();
5503 					finish_wait(&resync_wait, &wq);
5504 					goto try_again;
5505 				}
5506 				finish_wait(&resync_wait, &wq);
5507 			}
5508 		}
5509 	} while (mddev->curr_resync < 2);
5510 
5511 	j = 0;
5512 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5513 		/* resync follows the size requested by the personality,
5514 		 * which defaults to physical size, but can be virtual size
5515 		 */
5516 		max_sectors = mddev->resync_max_sectors;
5517 		mddev->resync_mismatches = 0;
5518 		/* we don't use the checkpoint if there's a bitmap */
5519 		if (!mddev->bitmap &&
5520 		    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5521 			j = mddev->recovery_cp;
5522 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5523 		max_sectors = mddev->size << 1;
5524 	else {
5525 		/* recovery follows the physical size of devices */
5526 		max_sectors = mddev->size << 1;
5527 		j = MaxSector;
5528 		rdev_for_each(rdev, rtmp, mddev)
5529 			if (rdev->raid_disk >= 0 &&
5530 			    !test_bit(Faulty, &rdev->flags) &&
5531 			    !test_bit(In_sync, &rdev->flags) &&
5532 			    rdev->recovery_offset < j)
5533 				j = rdev->recovery_offset;
5534 	}
5535 
5536 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5537 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
5538 		" %d KB/sec/disk.\n", speed_min(mddev));
5539 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5540 	       "(but not more than %d KB/sec) for %s.\n",
5541 	       speed_max(mddev), desc);
5542 
5543 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5544 
5545 	io_sectors = 0;
5546 	for (m = 0; m < SYNC_MARKS; m++) {
5547 		mark[m] = jiffies;
5548 		mark_cnt[m] = io_sectors;
5549 	}
5550 	last_mark = 0;
5551 	mddev->resync_mark = mark[last_mark];
5552 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5553 
5554 	/*
5555 	 * Tune reconstruction:
5556 	 */
5557 	window = 32*(PAGE_SIZE/512);
5558 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5559 		window/2,(unsigned long long) max_sectors/2);
5560 
5561 	atomic_set(&mddev->recovery_active, 0);
5562 	init_waitqueue_head(&mddev->recovery_wait);
5563 	last_check = 0;
5564 
5565 	if (j>2) {
5566 		printk(KERN_INFO
5567 		       "md: resuming %s of %s from checkpoint.\n",
5568 		       desc, mdname(mddev));
5569 		mddev->curr_resync = j;
5570 	}
5571 
5572 	while (j < max_sectors) {
5573 		sector_t sectors;
5574 
5575 		skipped = 0;
5576 		if (j >= mddev->resync_max) {
5577 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5578 			wait_event(mddev->recovery_wait,
5579 				   mddev->resync_max > j
5580 				   || kthread_should_stop());
5581 		}
5582 		if (kthread_should_stop())
5583 			goto interrupted;
5584 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5585 						  currspeed < speed_min(mddev));
5586 		if (sectors == 0) {
5587 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5588 			goto out;
5589 		}
5590 
5591 		if (!skipped) { /* actual IO requested */
5592 			io_sectors += sectors;
5593 			atomic_add(sectors, &mddev->recovery_active);
5594 		}
5595 
5596 		j += sectors;
5597 		if (j>1) mddev->curr_resync = j;
5598 		mddev->curr_mark_cnt = io_sectors;
5599 		if (last_check == 0)
5600 			/* this is the earliers that rebuilt will be
5601 			 * visible in /proc/mdstat
5602 			 */
5603 			md_new_event(mddev);
5604 
5605 		if (last_check + window > io_sectors || j == max_sectors)
5606 			continue;
5607 
5608 		last_check = io_sectors;
5609 
5610 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5611 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5612 			break;
5613 
5614 	repeat:
5615 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5616 			/* step marks */
5617 			int next = (last_mark+1) % SYNC_MARKS;
5618 
5619 			mddev->resync_mark = mark[next];
5620 			mddev->resync_mark_cnt = mark_cnt[next];
5621 			mark[next] = jiffies;
5622 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5623 			last_mark = next;
5624 		}
5625 
5626 
5627 		if (kthread_should_stop())
5628 			goto interrupted;
5629 
5630 
5631 		/*
5632 		 * this loop exits only if either when we are slower than
5633 		 * the 'hard' speed limit, or the system was IO-idle for
5634 		 * a jiffy.
5635 		 * the system might be non-idle CPU-wise, but we only care
5636 		 * about not overloading the IO subsystem. (things like an
5637 		 * e2fsck being done on the RAID array should execute fast)
5638 		 */
5639 		blk_unplug(mddev->queue);
5640 		cond_resched();
5641 
5642 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5643 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5644 
5645 		if (currspeed > speed_min(mddev)) {
5646 			if ((currspeed > speed_max(mddev)) ||
5647 					!is_mddev_idle(mddev)) {
5648 				msleep(500);
5649 				goto repeat;
5650 			}
5651 		}
5652 	}
5653 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5654 	/*
5655 	 * this also signals 'finished resyncing' to md_stop
5656 	 */
5657  out:
5658 	blk_unplug(mddev->queue);
5659 
5660 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5661 
5662 	/* tell personality that we are finished */
5663 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5664 
5665 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5666 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5667 	    mddev->curr_resync > 2) {
5668 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5669 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5670 				if (mddev->curr_resync >= mddev->recovery_cp) {
5671 					printk(KERN_INFO
5672 					       "md: checkpointing %s of %s.\n",
5673 					       desc, mdname(mddev));
5674 					mddev->recovery_cp = mddev->curr_resync;
5675 				}
5676 			} else
5677 				mddev->recovery_cp = MaxSector;
5678 		} else {
5679 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5680 				mddev->curr_resync = MaxSector;
5681 			rdev_for_each(rdev, rtmp, mddev)
5682 				if (rdev->raid_disk >= 0 &&
5683 				    !test_bit(Faulty, &rdev->flags) &&
5684 				    !test_bit(In_sync, &rdev->flags) &&
5685 				    rdev->recovery_offset < mddev->curr_resync)
5686 					rdev->recovery_offset = mddev->curr_resync;
5687 		}
5688 	}
5689 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5690 
5691  skip:
5692 	mddev->curr_resync = 0;
5693 	mddev->resync_max = MaxSector;
5694 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5695 	wake_up(&resync_wait);
5696 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5697 	md_wakeup_thread(mddev->thread);
5698 	return;
5699 
5700  interrupted:
5701 	/*
5702 	 * got a signal, exit.
5703 	 */
5704 	printk(KERN_INFO
5705 	       "md: md_do_sync() got signal ... exiting\n");
5706 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5707 	goto out;
5708 
5709 }
5710 EXPORT_SYMBOL_GPL(md_do_sync);
5711 
5712 
5713 static int remove_and_add_spares(mddev_t *mddev)
5714 {
5715 	mdk_rdev_t *rdev;
5716 	struct list_head *rtmp;
5717 	int spares = 0;
5718 
5719 	rdev_for_each(rdev, rtmp, mddev)
5720 		if (rdev->raid_disk >= 0 &&
5721 		    !mddev->external &&
5722 		    (test_bit(Faulty, &rdev->flags) ||
5723 		     ! test_bit(In_sync, &rdev->flags)) &&
5724 		    atomic_read(&rdev->nr_pending)==0) {
5725 			if (mddev->pers->hot_remove_disk(
5726 				    mddev, rdev->raid_disk)==0) {
5727 				char nm[20];
5728 				sprintf(nm,"rd%d", rdev->raid_disk);
5729 				sysfs_remove_link(&mddev->kobj, nm);
5730 				rdev->raid_disk = -1;
5731 			}
5732 		}
5733 
5734 	if (mddev->degraded) {
5735 		rdev_for_each(rdev, rtmp, mddev)
5736 			if (rdev->raid_disk < 0
5737 			    && !test_bit(Faulty, &rdev->flags)) {
5738 				rdev->recovery_offset = 0;
5739 				if (mddev->pers->hot_add_disk(mddev,rdev)) {
5740 					char nm[20];
5741 					sprintf(nm, "rd%d", rdev->raid_disk);
5742 					if (sysfs_create_link(&mddev->kobj,
5743 							      &rdev->kobj, nm))
5744 						printk(KERN_WARNING
5745 						       "md: cannot register "
5746 						       "%s for %s\n",
5747 						       nm, mdname(mddev));
5748 					spares++;
5749 					md_new_event(mddev);
5750 				} else
5751 					break;
5752 			}
5753 	}
5754 	return spares;
5755 }
5756 /*
5757  * This routine is regularly called by all per-raid-array threads to
5758  * deal with generic issues like resync and super-block update.
5759  * Raid personalities that don't have a thread (linear/raid0) do not
5760  * need this as they never do any recovery or update the superblock.
5761  *
5762  * It does not do any resync itself, but rather "forks" off other threads
5763  * to do that as needed.
5764  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5765  * "->recovery" and create a thread at ->sync_thread.
5766  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5767  * and wakeups up this thread which will reap the thread and finish up.
5768  * This thread also removes any faulty devices (with nr_pending == 0).
5769  *
5770  * The overall approach is:
5771  *  1/ if the superblock needs updating, update it.
5772  *  2/ If a recovery thread is running, don't do anything else.
5773  *  3/ If recovery has finished, clean up, possibly marking spares active.
5774  *  4/ If there are any faulty devices, remove them.
5775  *  5/ If array is degraded, try to add spares devices
5776  *  6/ If array has spares or is not in-sync, start a resync thread.
5777  */
5778 void md_check_recovery(mddev_t *mddev)
5779 {
5780 	mdk_rdev_t *rdev;
5781 	struct list_head *rtmp;
5782 
5783 
5784 	if (mddev->bitmap)
5785 		bitmap_daemon_work(mddev->bitmap);
5786 
5787 	if (mddev->ro)
5788 		return;
5789 
5790 	if (signal_pending(current)) {
5791 		if (mddev->pers->sync_request) {
5792 			printk(KERN_INFO "md: %s in immediate safe mode\n",
5793 			       mdname(mddev));
5794 			mddev->safemode = 2;
5795 		}
5796 		flush_signals(current);
5797 	}
5798 
5799 	if ( ! (
5800 		(mddev->flags && !mddev->external) ||
5801 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5802 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5803 		(mddev->safemode == 1) ||
5804 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5805 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5806 		))
5807 		return;
5808 
5809 	if (mddev_trylock(mddev)) {
5810 		int spares = 0;
5811 
5812 		spin_lock_irq(&mddev->write_lock);
5813 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5814 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5815 			mddev->in_sync = 1;
5816 			if (mddev->persistent)
5817 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5818 		}
5819 		if (mddev->safemode == 1)
5820 			mddev->safemode = 0;
5821 		spin_unlock_irq(&mddev->write_lock);
5822 
5823 		if (mddev->flags)
5824 			md_update_sb(mddev, 0);
5825 
5826 
5827 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5828 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5829 			/* resync/recovery still happening */
5830 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5831 			goto unlock;
5832 		}
5833 		if (mddev->sync_thread) {
5834 			/* resync has finished, collect result */
5835 			md_unregister_thread(mddev->sync_thread);
5836 			mddev->sync_thread = NULL;
5837 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5838 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5839 				/* success...*/
5840 				/* activate any spares */
5841 				mddev->pers->spare_active(mddev);
5842 			}
5843 			md_update_sb(mddev, 1);
5844 
5845 			/* if array is no-longer degraded, then any saved_raid_disk
5846 			 * information must be scrapped
5847 			 */
5848 			if (!mddev->degraded)
5849 				rdev_for_each(rdev, rtmp, mddev)
5850 					rdev->saved_raid_disk = -1;
5851 
5852 			mddev->recovery = 0;
5853 			/* flag recovery needed just to double check */
5854 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5855 			md_new_event(mddev);
5856 			goto unlock;
5857 		}
5858 		/* Clear some bits that don't mean anything, but
5859 		 * might be left set
5860 		 */
5861 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5862 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5863 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5864 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5865 
5866 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5867 			goto unlock;
5868 		/* no recovery is running.
5869 		 * remove any failed drives, then
5870 		 * add spares if possible.
5871 		 * Spare are also removed and re-added, to allow
5872 		 * the personality to fail the re-add.
5873 		 */
5874 
5875 		if (mddev->reshape_position != MaxSector) {
5876 			if (mddev->pers->check_reshape(mddev) != 0)
5877 				/* Cannot proceed */
5878 				goto unlock;
5879 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5880 		} else if ((spares = remove_and_add_spares(mddev))) {
5881 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5882 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5883 		} else if (mddev->recovery_cp < MaxSector) {
5884 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5885 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5886 			/* nothing to be done ... */
5887 			goto unlock;
5888 
5889 		if (mddev->pers->sync_request) {
5890 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5891 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5892 				/* We are adding a device or devices to an array
5893 				 * which has the bitmap stored on all devices.
5894 				 * So make sure all bitmap pages get written
5895 				 */
5896 				bitmap_write_all(mddev->bitmap);
5897 			}
5898 			mddev->sync_thread = md_register_thread(md_do_sync,
5899 								mddev,
5900 								"%s_resync");
5901 			if (!mddev->sync_thread) {
5902 				printk(KERN_ERR "%s: could not start resync"
5903 					" thread...\n",
5904 					mdname(mddev));
5905 				/* leave the spares where they are, it shouldn't hurt */
5906 				mddev->recovery = 0;
5907 			} else
5908 				md_wakeup_thread(mddev->sync_thread);
5909 			md_new_event(mddev);
5910 		}
5911 	unlock:
5912 		mddev_unlock(mddev);
5913 	}
5914 }
5915 
5916 static int md_notify_reboot(struct notifier_block *this,
5917 			    unsigned long code, void *x)
5918 {
5919 	struct list_head *tmp;
5920 	mddev_t *mddev;
5921 
5922 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5923 
5924 		printk(KERN_INFO "md: stopping all md devices.\n");
5925 
5926 		for_each_mddev(mddev, tmp)
5927 			if (mddev_trylock(mddev)) {
5928 				do_md_stop (mddev, 1);
5929 				mddev_unlock(mddev);
5930 			}
5931 		/*
5932 		 * certain more exotic SCSI devices are known to be
5933 		 * volatile wrt too early system reboots. While the
5934 		 * right place to handle this issue is the given
5935 		 * driver, we do want to have a safe RAID driver ...
5936 		 */
5937 		mdelay(1000*1);
5938 	}
5939 	return NOTIFY_DONE;
5940 }
5941 
5942 static struct notifier_block md_notifier = {
5943 	.notifier_call	= md_notify_reboot,
5944 	.next		= NULL,
5945 	.priority	= INT_MAX, /* before any real devices */
5946 };
5947 
5948 static void md_geninit(void)
5949 {
5950 	struct proc_dir_entry *p;
5951 
5952 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5953 
5954 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
5955 	if (p)
5956 		p->proc_fops = &md_seq_fops;
5957 }
5958 
5959 static int __init md_init(void)
5960 {
5961 	if (register_blkdev(MAJOR_NR, "md"))
5962 		return -1;
5963 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5964 		unregister_blkdev(MAJOR_NR, "md");
5965 		return -1;
5966 	}
5967 	blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5968 			    md_probe, NULL, NULL);
5969 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5970 			    md_probe, NULL, NULL);
5971 
5972 	register_reboot_notifier(&md_notifier);
5973 	raid_table_header = register_sysctl_table(raid_root_table);
5974 
5975 	md_geninit();
5976 	return (0);
5977 }
5978 
5979 
5980 #ifndef MODULE
5981 
5982 /*
5983  * Searches all registered partitions for autorun RAID arrays
5984  * at boot time.
5985  */
5986 
5987 static LIST_HEAD(all_detected_devices);
5988 struct detected_devices_node {
5989 	struct list_head list;
5990 	dev_t dev;
5991 };
5992 
5993 void md_autodetect_dev(dev_t dev)
5994 {
5995 	struct detected_devices_node *node_detected_dev;
5996 
5997 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
5998 	if (node_detected_dev) {
5999 		node_detected_dev->dev = dev;
6000 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
6001 	} else {
6002 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6003 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6004 	}
6005 }
6006 
6007 
6008 static void autostart_arrays(int part)
6009 {
6010 	mdk_rdev_t *rdev;
6011 	struct detected_devices_node *node_detected_dev;
6012 	dev_t dev;
6013 	int i_scanned, i_passed;
6014 
6015 	i_scanned = 0;
6016 	i_passed = 0;
6017 
6018 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6019 
6020 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6021 		i_scanned++;
6022 		node_detected_dev = list_entry(all_detected_devices.next,
6023 					struct detected_devices_node, list);
6024 		list_del(&node_detected_dev->list);
6025 		dev = node_detected_dev->dev;
6026 		kfree(node_detected_dev);
6027 		rdev = md_import_device(dev,0, 90);
6028 		if (IS_ERR(rdev))
6029 			continue;
6030 
6031 		if (test_bit(Faulty, &rdev->flags)) {
6032 			MD_BUG();
6033 			continue;
6034 		}
6035 		set_bit(AutoDetected, &rdev->flags);
6036 		list_add(&rdev->same_set, &pending_raid_disks);
6037 		i_passed++;
6038 	}
6039 
6040 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6041 						i_scanned, i_passed);
6042 
6043 	autorun_devices(part);
6044 }
6045 
6046 #endif /* !MODULE */
6047 
6048 static __exit void md_exit(void)
6049 {
6050 	mddev_t *mddev;
6051 	struct list_head *tmp;
6052 
6053 	blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
6054 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6055 
6056 	unregister_blkdev(MAJOR_NR,"md");
6057 	unregister_blkdev(mdp_major, "mdp");
6058 	unregister_reboot_notifier(&md_notifier);
6059 	unregister_sysctl_table(raid_table_header);
6060 	remove_proc_entry("mdstat", NULL);
6061 	for_each_mddev(mddev, tmp) {
6062 		struct gendisk *disk = mddev->gendisk;
6063 		if (!disk)
6064 			continue;
6065 		export_array(mddev);
6066 		del_gendisk(disk);
6067 		put_disk(disk);
6068 		mddev->gendisk = NULL;
6069 		mddev_put(mddev);
6070 	}
6071 }
6072 
6073 subsys_initcall(md_init);
6074 module_exit(md_exit)
6075 
6076 static int get_ro(char *buffer, struct kernel_param *kp)
6077 {
6078 	return sprintf(buffer, "%d", start_readonly);
6079 }
6080 static int set_ro(const char *val, struct kernel_param *kp)
6081 {
6082 	char *e;
6083 	int num = simple_strtoul(val, &e, 10);
6084 	if (*val && (*e == '\0' || *e == '\n')) {
6085 		start_readonly = num;
6086 		return 0;
6087 	}
6088 	return -EINVAL;
6089 }
6090 
6091 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6092 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6093 
6094 
6095 EXPORT_SYMBOL(register_md_personality);
6096 EXPORT_SYMBOL(unregister_md_personality);
6097 EXPORT_SYMBOL(md_error);
6098 EXPORT_SYMBOL(md_done_sync);
6099 EXPORT_SYMBOL(md_write_start);
6100 EXPORT_SYMBOL(md_write_end);
6101 EXPORT_SYMBOL(md_register_thread);
6102 EXPORT_SYMBOL(md_unregister_thread);
6103 EXPORT_SYMBOL(md_wakeup_thread);
6104 EXPORT_SYMBOL(md_check_recovery);
6105 MODULE_LICENSE("GPL");
6106 MODULE_ALIAS("md");
6107 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
6108