xref: /openbmc/linux/drivers/md/md.c (revision a06c488d)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/badblocks.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57 #include "md-cluster.h"
58 
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62 
63 /* pers_list is a list of registered personalities protected
64  * by pers_lock.
65  * pers_lock does extra service to protect accesses to
66  * mddev->thread when the mutex cannot be held.
67  */
68 static LIST_HEAD(pers_list);
69 static DEFINE_SPINLOCK(pers_lock);
70 
71 struct md_cluster_operations *md_cluster_ops;
72 EXPORT_SYMBOL(md_cluster_ops);
73 struct module *md_cluster_mod;
74 EXPORT_SYMBOL(md_cluster_mod);
75 
76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
77 static struct workqueue_struct *md_wq;
78 static struct workqueue_struct *md_misc_wq;
79 
80 static int remove_and_add_spares(struct mddev *mddev,
81 				 struct md_rdev *this);
82 static void mddev_detach(struct mddev *mddev);
83 
84 /*
85  * Default number of read corrections we'll attempt on an rdev
86  * before ejecting it from the array. We divide the read error
87  * count by 2 for every hour elapsed between read errors.
88  */
89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
90 /*
91  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
92  * is 1000 KB/sec, so the extra system load does not show up that much.
93  * Increase it if you want to have more _guaranteed_ speed. Note that
94  * the RAID driver will use the maximum available bandwidth if the IO
95  * subsystem is idle. There is also an 'absolute maximum' reconstruction
96  * speed limit - in case reconstruction slows down your system despite
97  * idle IO detection.
98  *
99  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
100  * or /sys/block/mdX/md/sync_speed_{min,max}
101  */
102 
103 static int sysctl_speed_limit_min = 1000;
104 static int sysctl_speed_limit_max = 200000;
105 static inline int speed_min(struct mddev *mddev)
106 {
107 	return mddev->sync_speed_min ?
108 		mddev->sync_speed_min : sysctl_speed_limit_min;
109 }
110 
111 static inline int speed_max(struct mddev *mddev)
112 {
113 	return mddev->sync_speed_max ?
114 		mddev->sync_speed_max : sysctl_speed_limit_max;
115 }
116 
117 static struct ctl_table_header *raid_table_header;
118 
119 static struct ctl_table raid_table[] = {
120 	{
121 		.procname	= "speed_limit_min",
122 		.data		= &sysctl_speed_limit_min,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{
128 		.procname	= "speed_limit_max",
129 		.data		= &sysctl_speed_limit_max,
130 		.maxlen		= sizeof(int),
131 		.mode		= S_IRUGO|S_IWUSR,
132 		.proc_handler	= proc_dointvec,
133 	},
134 	{ }
135 };
136 
137 static struct ctl_table raid_dir_table[] = {
138 	{
139 		.procname	= "raid",
140 		.maxlen		= 0,
141 		.mode		= S_IRUGO|S_IXUGO,
142 		.child		= raid_table,
143 	},
144 	{ }
145 };
146 
147 static struct ctl_table raid_root_table[] = {
148 	{
149 		.procname	= "dev",
150 		.maxlen		= 0,
151 		.mode		= 0555,
152 		.child		= raid_dir_table,
153 	},
154 	{  }
155 };
156 
157 static const struct block_device_operations md_fops;
158 
159 static int start_readonly;
160 
161 /* bio_clone_mddev
162  * like bio_clone, but with a local bio set
163  */
164 
165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 			    struct mddev *mddev)
167 {
168 	struct bio *b;
169 
170 	if (!mddev || !mddev->bio_set)
171 		return bio_alloc(gfp_mask, nr_iovecs);
172 
173 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 	if (!b)
175 		return NULL;
176 	return b;
177 }
178 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
179 
180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
181 			    struct mddev *mddev)
182 {
183 	if (!mddev || !mddev->bio_set)
184 		return bio_clone(bio, gfp_mask);
185 
186 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
187 }
188 EXPORT_SYMBOL_GPL(bio_clone_mddev);
189 
190 /*
191  * We have a system wide 'event count' that is incremented
192  * on any 'interesting' event, and readers of /proc/mdstat
193  * can use 'poll' or 'select' to find out when the event
194  * count increases.
195  *
196  * Events are:
197  *  start array, stop array, error, add device, remove device,
198  *  start build, activate spare
199  */
200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
201 static atomic_t md_event_count;
202 void md_new_event(struct mddev *mddev)
203 {
204 	atomic_inc(&md_event_count);
205 	wake_up(&md_event_waiters);
206 }
207 EXPORT_SYMBOL_GPL(md_new_event);
208 
209 /*
210  * Enables to iterate over all existing md arrays
211  * all_mddevs_lock protects this list.
212  */
213 static LIST_HEAD(all_mddevs);
214 static DEFINE_SPINLOCK(all_mddevs_lock);
215 
216 /*
217  * iterates through all used mddevs in the system.
218  * We take care to grab the all_mddevs_lock whenever navigating
219  * the list, and to always hold a refcount when unlocked.
220  * Any code which breaks out of this loop while own
221  * a reference to the current mddev and must mddev_put it.
222  */
223 #define for_each_mddev(_mddev,_tmp)					\
224 									\
225 	for (({ spin_lock(&all_mddevs_lock);				\
226 		_tmp = all_mddevs.next;					\
227 		_mddev = NULL;});					\
228 	     ({ if (_tmp != &all_mddevs)				\
229 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
230 		spin_unlock(&all_mddevs_lock);				\
231 		if (_mddev) mddev_put(_mddev);				\
232 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
233 		_tmp != &all_mddevs;});					\
234 	     ({ spin_lock(&all_mddevs_lock);				\
235 		_tmp = _tmp->next;})					\
236 		)
237 
238 /* Rather than calling directly into the personality make_request function,
239  * IO requests come here first so that we can check if the device is
240  * being suspended pending a reconfiguration.
241  * We hold a refcount over the call to ->make_request.  By the time that
242  * call has finished, the bio has been linked into some internal structure
243  * and so is visible to ->quiesce(), so we don't need the refcount any more.
244  */
245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
246 {
247 	const int rw = bio_data_dir(bio);
248 	struct mddev *mddev = q->queuedata;
249 	unsigned int sectors;
250 	int cpu;
251 
252 	blk_queue_split(q, &bio, q->bio_split);
253 
254 	if (mddev == NULL || mddev->pers == NULL) {
255 		bio_io_error(bio);
256 		return BLK_QC_T_NONE;
257 	}
258 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 		if (bio_sectors(bio) != 0)
260 			bio->bi_error = -EROFS;
261 		bio_endio(bio);
262 		return BLK_QC_T_NONE;
263 	}
264 	smp_rmb(); /* Ensure implications of  'active' are visible */
265 	rcu_read_lock();
266 	if (mddev->suspended) {
267 		DEFINE_WAIT(__wait);
268 		for (;;) {
269 			prepare_to_wait(&mddev->sb_wait, &__wait,
270 					TASK_UNINTERRUPTIBLE);
271 			if (!mddev->suspended)
272 				break;
273 			rcu_read_unlock();
274 			schedule();
275 			rcu_read_lock();
276 		}
277 		finish_wait(&mddev->sb_wait, &__wait);
278 	}
279 	atomic_inc(&mddev->active_io);
280 	rcu_read_unlock();
281 
282 	/*
283 	 * save the sectors now since our bio can
284 	 * go away inside make_request
285 	 */
286 	sectors = bio_sectors(bio);
287 	mddev->pers->make_request(mddev, bio);
288 
289 	cpu = part_stat_lock();
290 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
291 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
292 	part_stat_unlock();
293 
294 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
295 		wake_up(&mddev->sb_wait);
296 
297 	return BLK_QC_T_NONE;
298 }
299 
300 /* mddev_suspend makes sure no new requests are submitted
301  * to the device, and that any requests that have been submitted
302  * are completely handled.
303  * Once mddev_detach() is called and completes, the module will be
304  * completely unused.
305  */
306 void mddev_suspend(struct mddev *mddev)
307 {
308 	if (mddev->suspended++)
309 		return;
310 	synchronize_rcu();
311 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
312 	mddev->pers->quiesce(mddev, 1);
313 
314 	del_timer_sync(&mddev->safemode_timer);
315 }
316 EXPORT_SYMBOL_GPL(mddev_suspend);
317 
318 void mddev_resume(struct mddev *mddev)
319 {
320 	if (--mddev->suspended)
321 		return;
322 	wake_up(&mddev->sb_wait);
323 	mddev->pers->quiesce(mddev, 0);
324 
325 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
326 	md_wakeup_thread(mddev->thread);
327 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
328 }
329 EXPORT_SYMBOL_GPL(mddev_resume);
330 
331 int mddev_congested(struct mddev *mddev, int bits)
332 {
333 	struct md_personality *pers = mddev->pers;
334 	int ret = 0;
335 
336 	rcu_read_lock();
337 	if (mddev->suspended)
338 		ret = 1;
339 	else if (pers && pers->congested)
340 		ret = pers->congested(mddev, bits);
341 	rcu_read_unlock();
342 	return ret;
343 }
344 EXPORT_SYMBOL_GPL(mddev_congested);
345 static int md_congested(void *data, int bits)
346 {
347 	struct mddev *mddev = data;
348 	return mddev_congested(mddev, bits);
349 }
350 
351 /*
352  * Generic flush handling for md
353  */
354 
355 static void md_end_flush(struct bio *bio)
356 {
357 	struct md_rdev *rdev = bio->bi_private;
358 	struct mddev *mddev = rdev->mddev;
359 
360 	rdev_dec_pending(rdev, mddev);
361 
362 	if (atomic_dec_and_test(&mddev->flush_pending)) {
363 		/* The pre-request flush has finished */
364 		queue_work(md_wq, &mddev->flush_work);
365 	}
366 	bio_put(bio);
367 }
368 
369 static void md_submit_flush_data(struct work_struct *ws);
370 
371 static void submit_flushes(struct work_struct *ws)
372 {
373 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
374 	struct md_rdev *rdev;
375 
376 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
377 	atomic_set(&mddev->flush_pending, 1);
378 	rcu_read_lock();
379 	rdev_for_each_rcu(rdev, mddev)
380 		if (rdev->raid_disk >= 0 &&
381 		    !test_bit(Faulty, &rdev->flags)) {
382 			/* Take two references, one is dropped
383 			 * when request finishes, one after
384 			 * we reclaim rcu_read_lock
385 			 */
386 			struct bio *bi;
387 			atomic_inc(&rdev->nr_pending);
388 			atomic_inc(&rdev->nr_pending);
389 			rcu_read_unlock();
390 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
391 			bi->bi_end_io = md_end_flush;
392 			bi->bi_private = rdev;
393 			bi->bi_bdev = rdev->bdev;
394 			atomic_inc(&mddev->flush_pending);
395 			submit_bio(WRITE_FLUSH, bi);
396 			rcu_read_lock();
397 			rdev_dec_pending(rdev, mddev);
398 		}
399 	rcu_read_unlock();
400 	if (atomic_dec_and_test(&mddev->flush_pending))
401 		queue_work(md_wq, &mddev->flush_work);
402 }
403 
404 static void md_submit_flush_data(struct work_struct *ws)
405 {
406 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
407 	struct bio *bio = mddev->flush_bio;
408 
409 	if (bio->bi_iter.bi_size == 0)
410 		/* an empty barrier - all done */
411 		bio_endio(bio);
412 	else {
413 		bio->bi_rw &= ~REQ_FLUSH;
414 		mddev->pers->make_request(mddev, bio);
415 	}
416 
417 	mddev->flush_bio = NULL;
418 	wake_up(&mddev->sb_wait);
419 }
420 
421 void md_flush_request(struct mddev *mddev, struct bio *bio)
422 {
423 	spin_lock_irq(&mddev->lock);
424 	wait_event_lock_irq(mddev->sb_wait,
425 			    !mddev->flush_bio,
426 			    mddev->lock);
427 	mddev->flush_bio = bio;
428 	spin_unlock_irq(&mddev->lock);
429 
430 	INIT_WORK(&mddev->flush_work, submit_flushes);
431 	queue_work(md_wq, &mddev->flush_work);
432 }
433 EXPORT_SYMBOL(md_flush_request);
434 
435 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
436 {
437 	struct mddev *mddev = cb->data;
438 	md_wakeup_thread(mddev->thread);
439 	kfree(cb);
440 }
441 EXPORT_SYMBOL(md_unplug);
442 
443 static inline struct mddev *mddev_get(struct mddev *mddev)
444 {
445 	atomic_inc(&mddev->active);
446 	return mddev;
447 }
448 
449 static void mddev_delayed_delete(struct work_struct *ws);
450 
451 static void mddev_put(struct mddev *mddev)
452 {
453 	struct bio_set *bs = NULL;
454 
455 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
456 		return;
457 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
458 	    mddev->ctime == 0 && !mddev->hold_active) {
459 		/* Array is not configured at all, and not held active,
460 		 * so destroy it */
461 		list_del_init(&mddev->all_mddevs);
462 		bs = mddev->bio_set;
463 		mddev->bio_set = NULL;
464 		if (mddev->gendisk) {
465 			/* We did a probe so need to clean up.  Call
466 			 * queue_work inside the spinlock so that
467 			 * flush_workqueue() after mddev_find will
468 			 * succeed in waiting for the work to be done.
469 			 */
470 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
471 			queue_work(md_misc_wq, &mddev->del_work);
472 		} else
473 			kfree(mddev);
474 	}
475 	spin_unlock(&all_mddevs_lock);
476 	if (bs)
477 		bioset_free(bs);
478 }
479 
480 static void md_safemode_timeout(unsigned long data);
481 
482 void mddev_init(struct mddev *mddev)
483 {
484 	mutex_init(&mddev->open_mutex);
485 	mutex_init(&mddev->reconfig_mutex);
486 	mutex_init(&mddev->bitmap_info.mutex);
487 	INIT_LIST_HEAD(&mddev->disks);
488 	INIT_LIST_HEAD(&mddev->all_mddevs);
489 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
490 		    (unsigned long) mddev);
491 	atomic_set(&mddev->active, 1);
492 	atomic_set(&mddev->openers, 0);
493 	atomic_set(&mddev->active_io, 0);
494 	spin_lock_init(&mddev->lock);
495 	atomic_set(&mddev->flush_pending, 0);
496 	init_waitqueue_head(&mddev->sb_wait);
497 	init_waitqueue_head(&mddev->recovery_wait);
498 	mddev->reshape_position = MaxSector;
499 	mddev->reshape_backwards = 0;
500 	mddev->last_sync_action = "none";
501 	mddev->resync_min = 0;
502 	mddev->resync_max = MaxSector;
503 	mddev->level = LEVEL_NONE;
504 }
505 EXPORT_SYMBOL_GPL(mddev_init);
506 
507 static struct mddev *mddev_find(dev_t unit)
508 {
509 	struct mddev *mddev, *new = NULL;
510 
511 	if (unit && MAJOR(unit) != MD_MAJOR)
512 		unit &= ~((1<<MdpMinorShift)-1);
513 
514  retry:
515 	spin_lock(&all_mddevs_lock);
516 
517 	if (unit) {
518 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
519 			if (mddev->unit == unit) {
520 				mddev_get(mddev);
521 				spin_unlock(&all_mddevs_lock);
522 				kfree(new);
523 				return mddev;
524 			}
525 
526 		if (new) {
527 			list_add(&new->all_mddevs, &all_mddevs);
528 			spin_unlock(&all_mddevs_lock);
529 			new->hold_active = UNTIL_IOCTL;
530 			return new;
531 		}
532 	} else if (new) {
533 		/* find an unused unit number */
534 		static int next_minor = 512;
535 		int start = next_minor;
536 		int is_free = 0;
537 		int dev = 0;
538 		while (!is_free) {
539 			dev = MKDEV(MD_MAJOR, next_minor);
540 			next_minor++;
541 			if (next_minor > MINORMASK)
542 				next_minor = 0;
543 			if (next_minor == start) {
544 				/* Oh dear, all in use. */
545 				spin_unlock(&all_mddevs_lock);
546 				kfree(new);
547 				return NULL;
548 			}
549 
550 			is_free = 1;
551 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
552 				if (mddev->unit == dev) {
553 					is_free = 0;
554 					break;
555 				}
556 		}
557 		new->unit = dev;
558 		new->md_minor = MINOR(dev);
559 		new->hold_active = UNTIL_STOP;
560 		list_add(&new->all_mddevs, &all_mddevs);
561 		spin_unlock(&all_mddevs_lock);
562 		return new;
563 	}
564 	spin_unlock(&all_mddevs_lock);
565 
566 	new = kzalloc(sizeof(*new), GFP_KERNEL);
567 	if (!new)
568 		return NULL;
569 
570 	new->unit = unit;
571 	if (MAJOR(unit) == MD_MAJOR)
572 		new->md_minor = MINOR(unit);
573 	else
574 		new->md_minor = MINOR(unit) >> MdpMinorShift;
575 
576 	mddev_init(new);
577 
578 	goto retry;
579 }
580 
581 static struct attribute_group md_redundancy_group;
582 
583 void mddev_unlock(struct mddev *mddev)
584 {
585 	if (mddev->to_remove) {
586 		/* These cannot be removed under reconfig_mutex as
587 		 * an access to the files will try to take reconfig_mutex
588 		 * while holding the file unremovable, which leads to
589 		 * a deadlock.
590 		 * So hold set sysfs_active while the remove in happeing,
591 		 * and anything else which might set ->to_remove or my
592 		 * otherwise change the sysfs namespace will fail with
593 		 * -EBUSY if sysfs_active is still set.
594 		 * We set sysfs_active under reconfig_mutex and elsewhere
595 		 * test it under the same mutex to ensure its correct value
596 		 * is seen.
597 		 */
598 		struct attribute_group *to_remove = mddev->to_remove;
599 		mddev->to_remove = NULL;
600 		mddev->sysfs_active = 1;
601 		mutex_unlock(&mddev->reconfig_mutex);
602 
603 		if (mddev->kobj.sd) {
604 			if (to_remove != &md_redundancy_group)
605 				sysfs_remove_group(&mddev->kobj, to_remove);
606 			if (mddev->pers == NULL ||
607 			    mddev->pers->sync_request == NULL) {
608 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
609 				if (mddev->sysfs_action)
610 					sysfs_put(mddev->sysfs_action);
611 				mddev->sysfs_action = NULL;
612 			}
613 		}
614 		mddev->sysfs_active = 0;
615 	} else
616 		mutex_unlock(&mddev->reconfig_mutex);
617 
618 	/* As we've dropped the mutex we need a spinlock to
619 	 * make sure the thread doesn't disappear
620 	 */
621 	spin_lock(&pers_lock);
622 	md_wakeup_thread(mddev->thread);
623 	spin_unlock(&pers_lock);
624 }
625 EXPORT_SYMBOL_GPL(mddev_unlock);
626 
627 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
628 {
629 	struct md_rdev *rdev;
630 
631 	rdev_for_each_rcu(rdev, mddev)
632 		if (rdev->desc_nr == nr)
633 			return rdev;
634 
635 	return NULL;
636 }
637 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
638 
639 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
640 {
641 	struct md_rdev *rdev;
642 
643 	rdev_for_each(rdev, mddev)
644 		if (rdev->bdev->bd_dev == dev)
645 			return rdev;
646 
647 	return NULL;
648 }
649 
650 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
651 {
652 	struct md_rdev *rdev;
653 
654 	rdev_for_each_rcu(rdev, mddev)
655 		if (rdev->bdev->bd_dev == dev)
656 			return rdev;
657 
658 	return NULL;
659 }
660 
661 static struct md_personality *find_pers(int level, char *clevel)
662 {
663 	struct md_personality *pers;
664 	list_for_each_entry(pers, &pers_list, list) {
665 		if (level != LEVEL_NONE && pers->level == level)
666 			return pers;
667 		if (strcmp(pers->name, clevel)==0)
668 			return pers;
669 	}
670 	return NULL;
671 }
672 
673 /* return the offset of the super block in 512byte sectors */
674 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
675 {
676 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
677 	return MD_NEW_SIZE_SECTORS(num_sectors);
678 }
679 
680 static int alloc_disk_sb(struct md_rdev *rdev)
681 {
682 	rdev->sb_page = alloc_page(GFP_KERNEL);
683 	if (!rdev->sb_page) {
684 		printk(KERN_ALERT "md: out of memory.\n");
685 		return -ENOMEM;
686 	}
687 
688 	return 0;
689 }
690 
691 void md_rdev_clear(struct md_rdev *rdev)
692 {
693 	if (rdev->sb_page) {
694 		put_page(rdev->sb_page);
695 		rdev->sb_loaded = 0;
696 		rdev->sb_page = NULL;
697 		rdev->sb_start = 0;
698 		rdev->sectors = 0;
699 	}
700 	if (rdev->bb_page) {
701 		put_page(rdev->bb_page);
702 		rdev->bb_page = NULL;
703 	}
704 	badblocks_exit(&rdev->badblocks);
705 }
706 EXPORT_SYMBOL_GPL(md_rdev_clear);
707 
708 static void super_written(struct bio *bio)
709 {
710 	struct md_rdev *rdev = bio->bi_private;
711 	struct mddev *mddev = rdev->mddev;
712 
713 	if (bio->bi_error) {
714 		printk("md: super_written gets error=%d\n", bio->bi_error);
715 		md_error(mddev, rdev);
716 	}
717 
718 	if (atomic_dec_and_test(&mddev->pending_writes))
719 		wake_up(&mddev->sb_wait);
720 	bio_put(bio);
721 }
722 
723 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
724 		   sector_t sector, int size, struct page *page)
725 {
726 	/* write first size bytes of page to sector of rdev
727 	 * Increment mddev->pending_writes before returning
728 	 * and decrement it on completion, waking up sb_wait
729 	 * if zero is reached.
730 	 * If an error occurred, call md_error
731 	 */
732 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
733 
734 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
735 	bio->bi_iter.bi_sector = sector;
736 	bio_add_page(bio, page, size, 0);
737 	bio->bi_private = rdev;
738 	bio->bi_end_io = super_written;
739 
740 	atomic_inc(&mddev->pending_writes);
741 	submit_bio(WRITE_FLUSH_FUA, bio);
742 }
743 
744 void md_super_wait(struct mddev *mddev)
745 {
746 	/* wait for all superblock writes that were scheduled to complete */
747 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
748 }
749 
750 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
751 		 struct page *page, int rw, bool metadata_op)
752 {
753 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
754 	int ret;
755 
756 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
757 		rdev->meta_bdev : rdev->bdev;
758 	if (metadata_op)
759 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
760 	else if (rdev->mddev->reshape_position != MaxSector &&
761 		 (rdev->mddev->reshape_backwards ==
762 		  (sector >= rdev->mddev->reshape_position)))
763 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
764 	else
765 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
766 	bio_add_page(bio, page, size, 0);
767 	submit_bio_wait(rw, bio);
768 
769 	ret = !bio->bi_error;
770 	bio_put(bio);
771 	return ret;
772 }
773 EXPORT_SYMBOL_GPL(sync_page_io);
774 
775 static int read_disk_sb(struct md_rdev *rdev, int size)
776 {
777 	char b[BDEVNAME_SIZE];
778 
779 	if (rdev->sb_loaded)
780 		return 0;
781 
782 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
783 		goto fail;
784 	rdev->sb_loaded = 1;
785 	return 0;
786 
787 fail:
788 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
789 		bdevname(rdev->bdev,b));
790 	return -EINVAL;
791 }
792 
793 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
794 {
795 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
796 		sb1->set_uuid1 == sb2->set_uuid1 &&
797 		sb1->set_uuid2 == sb2->set_uuid2 &&
798 		sb1->set_uuid3 == sb2->set_uuid3;
799 }
800 
801 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
802 {
803 	int ret;
804 	mdp_super_t *tmp1, *tmp2;
805 
806 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
807 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
808 
809 	if (!tmp1 || !tmp2) {
810 		ret = 0;
811 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
812 		goto abort;
813 	}
814 
815 	*tmp1 = *sb1;
816 	*tmp2 = *sb2;
817 
818 	/*
819 	 * nr_disks is not constant
820 	 */
821 	tmp1->nr_disks = 0;
822 	tmp2->nr_disks = 0;
823 
824 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
825 abort:
826 	kfree(tmp1);
827 	kfree(tmp2);
828 	return ret;
829 }
830 
831 static u32 md_csum_fold(u32 csum)
832 {
833 	csum = (csum & 0xffff) + (csum >> 16);
834 	return (csum & 0xffff) + (csum >> 16);
835 }
836 
837 static unsigned int calc_sb_csum(mdp_super_t *sb)
838 {
839 	u64 newcsum = 0;
840 	u32 *sb32 = (u32*)sb;
841 	int i;
842 	unsigned int disk_csum, csum;
843 
844 	disk_csum = sb->sb_csum;
845 	sb->sb_csum = 0;
846 
847 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
848 		newcsum += sb32[i];
849 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
850 
851 #ifdef CONFIG_ALPHA
852 	/* This used to use csum_partial, which was wrong for several
853 	 * reasons including that different results are returned on
854 	 * different architectures.  It isn't critical that we get exactly
855 	 * the same return value as before (we always csum_fold before
856 	 * testing, and that removes any differences).  However as we
857 	 * know that csum_partial always returned a 16bit value on
858 	 * alphas, do a fold to maximise conformity to previous behaviour.
859 	 */
860 	sb->sb_csum = md_csum_fold(disk_csum);
861 #else
862 	sb->sb_csum = disk_csum;
863 #endif
864 	return csum;
865 }
866 
867 /*
868  * Handle superblock details.
869  * We want to be able to handle multiple superblock formats
870  * so we have a common interface to them all, and an array of
871  * different handlers.
872  * We rely on user-space to write the initial superblock, and support
873  * reading and updating of superblocks.
874  * Interface methods are:
875  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
876  *      loads and validates a superblock on dev.
877  *      if refdev != NULL, compare superblocks on both devices
878  *    Return:
879  *      0 - dev has a superblock that is compatible with refdev
880  *      1 - dev has a superblock that is compatible and newer than refdev
881  *          so dev should be used as the refdev in future
882  *     -EINVAL superblock incompatible or invalid
883  *     -othererror e.g. -EIO
884  *
885  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
886  *      Verify that dev is acceptable into mddev.
887  *       The first time, mddev->raid_disks will be 0, and data from
888  *       dev should be merged in.  Subsequent calls check that dev
889  *       is new enough.  Return 0 or -EINVAL
890  *
891  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
892  *     Update the superblock for rdev with data in mddev
893  *     This does not write to disc.
894  *
895  */
896 
897 struct super_type  {
898 	char		    *name;
899 	struct module	    *owner;
900 	int		    (*load_super)(struct md_rdev *rdev,
901 					  struct md_rdev *refdev,
902 					  int minor_version);
903 	int		    (*validate_super)(struct mddev *mddev,
904 					      struct md_rdev *rdev);
905 	void		    (*sync_super)(struct mddev *mddev,
906 					  struct md_rdev *rdev);
907 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
908 						sector_t num_sectors);
909 	int		    (*allow_new_offset)(struct md_rdev *rdev,
910 						unsigned long long new_offset);
911 };
912 
913 /*
914  * Check that the given mddev has no bitmap.
915  *
916  * This function is called from the run method of all personalities that do not
917  * support bitmaps. It prints an error message and returns non-zero if mddev
918  * has a bitmap. Otherwise, it returns 0.
919  *
920  */
921 int md_check_no_bitmap(struct mddev *mddev)
922 {
923 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
924 		return 0;
925 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
926 		mdname(mddev), mddev->pers->name);
927 	return 1;
928 }
929 EXPORT_SYMBOL(md_check_no_bitmap);
930 
931 /*
932  * load_super for 0.90.0
933  */
934 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
935 {
936 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
937 	mdp_super_t *sb;
938 	int ret;
939 
940 	/*
941 	 * Calculate the position of the superblock (512byte sectors),
942 	 * it's at the end of the disk.
943 	 *
944 	 * It also happens to be a multiple of 4Kb.
945 	 */
946 	rdev->sb_start = calc_dev_sboffset(rdev);
947 
948 	ret = read_disk_sb(rdev, MD_SB_BYTES);
949 	if (ret) return ret;
950 
951 	ret = -EINVAL;
952 
953 	bdevname(rdev->bdev, b);
954 	sb = page_address(rdev->sb_page);
955 
956 	if (sb->md_magic != MD_SB_MAGIC) {
957 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
958 		       b);
959 		goto abort;
960 	}
961 
962 	if (sb->major_version != 0 ||
963 	    sb->minor_version < 90 ||
964 	    sb->minor_version > 91) {
965 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
966 			sb->major_version, sb->minor_version,
967 			b);
968 		goto abort;
969 	}
970 
971 	if (sb->raid_disks <= 0)
972 		goto abort;
973 
974 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
975 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
976 			b);
977 		goto abort;
978 	}
979 
980 	rdev->preferred_minor = sb->md_minor;
981 	rdev->data_offset = 0;
982 	rdev->new_data_offset = 0;
983 	rdev->sb_size = MD_SB_BYTES;
984 	rdev->badblocks.shift = -1;
985 
986 	if (sb->level == LEVEL_MULTIPATH)
987 		rdev->desc_nr = -1;
988 	else
989 		rdev->desc_nr = sb->this_disk.number;
990 
991 	if (!refdev) {
992 		ret = 1;
993 	} else {
994 		__u64 ev1, ev2;
995 		mdp_super_t *refsb = page_address(refdev->sb_page);
996 		if (!uuid_equal(refsb, sb)) {
997 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
998 				b, bdevname(refdev->bdev,b2));
999 			goto abort;
1000 		}
1001 		if (!sb_equal(refsb, sb)) {
1002 			printk(KERN_WARNING "md: %s has same UUID"
1003 			       " but different superblock to %s\n",
1004 			       b, bdevname(refdev->bdev, b2));
1005 			goto abort;
1006 		}
1007 		ev1 = md_event(sb);
1008 		ev2 = md_event(refsb);
1009 		if (ev1 > ev2)
1010 			ret = 1;
1011 		else
1012 			ret = 0;
1013 	}
1014 	rdev->sectors = rdev->sb_start;
1015 	/* Limit to 4TB as metadata cannot record more than that.
1016 	 * (not needed for Linear and RAID0 as metadata doesn't
1017 	 * record this size)
1018 	 */
1019 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1020 	    sb->level >= 1)
1021 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1022 
1023 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1024 		/* "this cannot possibly happen" ... */
1025 		ret = -EINVAL;
1026 
1027  abort:
1028 	return ret;
1029 }
1030 
1031 /*
1032  * validate_super for 0.90.0
1033  */
1034 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1035 {
1036 	mdp_disk_t *desc;
1037 	mdp_super_t *sb = page_address(rdev->sb_page);
1038 	__u64 ev1 = md_event(sb);
1039 
1040 	rdev->raid_disk = -1;
1041 	clear_bit(Faulty, &rdev->flags);
1042 	clear_bit(In_sync, &rdev->flags);
1043 	clear_bit(Bitmap_sync, &rdev->flags);
1044 	clear_bit(WriteMostly, &rdev->flags);
1045 
1046 	if (mddev->raid_disks == 0) {
1047 		mddev->major_version = 0;
1048 		mddev->minor_version = sb->minor_version;
1049 		mddev->patch_version = sb->patch_version;
1050 		mddev->external = 0;
1051 		mddev->chunk_sectors = sb->chunk_size >> 9;
1052 		mddev->ctime = sb->ctime;
1053 		mddev->utime = sb->utime;
1054 		mddev->level = sb->level;
1055 		mddev->clevel[0] = 0;
1056 		mddev->layout = sb->layout;
1057 		mddev->raid_disks = sb->raid_disks;
1058 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1059 		mddev->events = ev1;
1060 		mddev->bitmap_info.offset = 0;
1061 		mddev->bitmap_info.space = 0;
1062 		/* bitmap can use 60 K after the 4K superblocks */
1063 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1064 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1065 		mddev->reshape_backwards = 0;
1066 
1067 		if (mddev->minor_version >= 91) {
1068 			mddev->reshape_position = sb->reshape_position;
1069 			mddev->delta_disks = sb->delta_disks;
1070 			mddev->new_level = sb->new_level;
1071 			mddev->new_layout = sb->new_layout;
1072 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1073 			if (mddev->delta_disks < 0)
1074 				mddev->reshape_backwards = 1;
1075 		} else {
1076 			mddev->reshape_position = MaxSector;
1077 			mddev->delta_disks = 0;
1078 			mddev->new_level = mddev->level;
1079 			mddev->new_layout = mddev->layout;
1080 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1081 		}
1082 
1083 		if (sb->state & (1<<MD_SB_CLEAN))
1084 			mddev->recovery_cp = MaxSector;
1085 		else {
1086 			if (sb->events_hi == sb->cp_events_hi &&
1087 				sb->events_lo == sb->cp_events_lo) {
1088 				mddev->recovery_cp = sb->recovery_cp;
1089 			} else
1090 				mddev->recovery_cp = 0;
1091 		}
1092 
1093 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1094 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1095 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1096 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1097 
1098 		mddev->max_disks = MD_SB_DISKS;
1099 
1100 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1101 		    mddev->bitmap_info.file == NULL) {
1102 			mddev->bitmap_info.offset =
1103 				mddev->bitmap_info.default_offset;
1104 			mddev->bitmap_info.space =
1105 				mddev->bitmap_info.default_space;
1106 		}
1107 
1108 	} else if (mddev->pers == NULL) {
1109 		/* Insist on good event counter while assembling, except
1110 		 * for spares (which don't need an event count) */
1111 		++ev1;
1112 		if (sb->disks[rdev->desc_nr].state & (
1113 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1114 			if (ev1 < mddev->events)
1115 				return -EINVAL;
1116 	} else if (mddev->bitmap) {
1117 		/* if adding to array with a bitmap, then we can accept an
1118 		 * older device ... but not too old.
1119 		 */
1120 		if (ev1 < mddev->bitmap->events_cleared)
1121 			return 0;
1122 		if (ev1 < mddev->events)
1123 			set_bit(Bitmap_sync, &rdev->flags);
1124 	} else {
1125 		if (ev1 < mddev->events)
1126 			/* just a hot-add of a new device, leave raid_disk at -1 */
1127 			return 0;
1128 	}
1129 
1130 	if (mddev->level != LEVEL_MULTIPATH) {
1131 		desc = sb->disks + rdev->desc_nr;
1132 
1133 		if (desc->state & (1<<MD_DISK_FAULTY))
1134 			set_bit(Faulty, &rdev->flags);
1135 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1136 			    desc->raid_disk < mddev->raid_disks */) {
1137 			set_bit(In_sync, &rdev->flags);
1138 			rdev->raid_disk = desc->raid_disk;
1139 			rdev->saved_raid_disk = desc->raid_disk;
1140 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1141 			/* active but not in sync implies recovery up to
1142 			 * reshape position.  We don't know exactly where
1143 			 * that is, so set to zero for now */
1144 			if (mddev->minor_version >= 91) {
1145 				rdev->recovery_offset = 0;
1146 				rdev->raid_disk = desc->raid_disk;
1147 			}
1148 		}
1149 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1150 			set_bit(WriteMostly, &rdev->flags);
1151 	} else /* MULTIPATH are always insync */
1152 		set_bit(In_sync, &rdev->flags);
1153 	return 0;
1154 }
1155 
1156 /*
1157  * sync_super for 0.90.0
1158  */
1159 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1160 {
1161 	mdp_super_t *sb;
1162 	struct md_rdev *rdev2;
1163 	int next_spare = mddev->raid_disks;
1164 
1165 	/* make rdev->sb match mddev data..
1166 	 *
1167 	 * 1/ zero out disks
1168 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1169 	 * 3/ any empty disks < next_spare become removed
1170 	 *
1171 	 * disks[0] gets initialised to REMOVED because
1172 	 * we cannot be sure from other fields if it has
1173 	 * been initialised or not.
1174 	 */
1175 	int i;
1176 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1177 
1178 	rdev->sb_size = MD_SB_BYTES;
1179 
1180 	sb = page_address(rdev->sb_page);
1181 
1182 	memset(sb, 0, sizeof(*sb));
1183 
1184 	sb->md_magic = MD_SB_MAGIC;
1185 	sb->major_version = mddev->major_version;
1186 	sb->patch_version = mddev->patch_version;
1187 	sb->gvalid_words  = 0; /* ignored */
1188 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1189 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1190 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1191 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1192 
1193 	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1194 	sb->level = mddev->level;
1195 	sb->size = mddev->dev_sectors / 2;
1196 	sb->raid_disks = mddev->raid_disks;
1197 	sb->md_minor = mddev->md_minor;
1198 	sb->not_persistent = 0;
1199 	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1200 	sb->state = 0;
1201 	sb->events_hi = (mddev->events>>32);
1202 	sb->events_lo = (u32)mddev->events;
1203 
1204 	if (mddev->reshape_position == MaxSector)
1205 		sb->minor_version = 90;
1206 	else {
1207 		sb->minor_version = 91;
1208 		sb->reshape_position = mddev->reshape_position;
1209 		sb->new_level = mddev->new_level;
1210 		sb->delta_disks = mddev->delta_disks;
1211 		sb->new_layout = mddev->new_layout;
1212 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1213 	}
1214 	mddev->minor_version = sb->minor_version;
1215 	if (mddev->in_sync)
1216 	{
1217 		sb->recovery_cp = mddev->recovery_cp;
1218 		sb->cp_events_hi = (mddev->events>>32);
1219 		sb->cp_events_lo = (u32)mddev->events;
1220 		if (mddev->recovery_cp == MaxSector)
1221 			sb->state = (1<< MD_SB_CLEAN);
1222 	} else
1223 		sb->recovery_cp = 0;
1224 
1225 	sb->layout = mddev->layout;
1226 	sb->chunk_size = mddev->chunk_sectors << 9;
1227 
1228 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1229 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1230 
1231 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1232 	rdev_for_each(rdev2, mddev) {
1233 		mdp_disk_t *d;
1234 		int desc_nr;
1235 		int is_active = test_bit(In_sync, &rdev2->flags);
1236 
1237 		if (rdev2->raid_disk >= 0 &&
1238 		    sb->minor_version >= 91)
1239 			/* we have nowhere to store the recovery_offset,
1240 			 * but if it is not below the reshape_position,
1241 			 * we can piggy-back on that.
1242 			 */
1243 			is_active = 1;
1244 		if (rdev2->raid_disk < 0 ||
1245 		    test_bit(Faulty, &rdev2->flags))
1246 			is_active = 0;
1247 		if (is_active)
1248 			desc_nr = rdev2->raid_disk;
1249 		else
1250 			desc_nr = next_spare++;
1251 		rdev2->desc_nr = desc_nr;
1252 		d = &sb->disks[rdev2->desc_nr];
1253 		nr_disks++;
1254 		d->number = rdev2->desc_nr;
1255 		d->major = MAJOR(rdev2->bdev->bd_dev);
1256 		d->minor = MINOR(rdev2->bdev->bd_dev);
1257 		if (is_active)
1258 			d->raid_disk = rdev2->raid_disk;
1259 		else
1260 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1261 		if (test_bit(Faulty, &rdev2->flags))
1262 			d->state = (1<<MD_DISK_FAULTY);
1263 		else if (is_active) {
1264 			d->state = (1<<MD_DISK_ACTIVE);
1265 			if (test_bit(In_sync, &rdev2->flags))
1266 				d->state |= (1<<MD_DISK_SYNC);
1267 			active++;
1268 			working++;
1269 		} else {
1270 			d->state = 0;
1271 			spare++;
1272 			working++;
1273 		}
1274 		if (test_bit(WriteMostly, &rdev2->flags))
1275 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1276 	}
1277 	/* now set the "removed" and "faulty" bits on any missing devices */
1278 	for (i=0 ; i < mddev->raid_disks ; i++) {
1279 		mdp_disk_t *d = &sb->disks[i];
1280 		if (d->state == 0 && d->number == 0) {
1281 			d->number = i;
1282 			d->raid_disk = i;
1283 			d->state = (1<<MD_DISK_REMOVED);
1284 			d->state |= (1<<MD_DISK_FAULTY);
1285 			failed++;
1286 		}
1287 	}
1288 	sb->nr_disks = nr_disks;
1289 	sb->active_disks = active;
1290 	sb->working_disks = working;
1291 	sb->failed_disks = failed;
1292 	sb->spare_disks = spare;
1293 
1294 	sb->this_disk = sb->disks[rdev->desc_nr];
1295 	sb->sb_csum = calc_sb_csum(sb);
1296 }
1297 
1298 /*
1299  * rdev_size_change for 0.90.0
1300  */
1301 static unsigned long long
1302 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1303 {
1304 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1305 		return 0; /* component must fit device */
1306 	if (rdev->mddev->bitmap_info.offset)
1307 		return 0; /* can't move bitmap */
1308 	rdev->sb_start = calc_dev_sboffset(rdev);
1309 	if (!num_sectors || num_sectors > rdev->sb_start)
1310 		num_sectors = rdev->sb_start;
1311 	/* Limit to 4TB as metadata cannot record more than that.
1312 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1313 	 */
1314 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1315 	    rdev->mddev->level >= 1)
1316 		num_sectors = (sector_t)(2ULL << 32) - 2;
1317 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1318 		       rdev->sb_page);
1319 	md_super_wait(rdev->mddev);
1320 	return num_sectors;
1321 }
1322 
1323 static int
1324 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1325 {
1326 	/* non-zero offset changes not possible with v0.90 */
1327 	return new_offset == 0;
1328 }
1329 
1330 /*
1331  * version 1 superblock
1332  */
1333 
1334 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1335 {
1336 	__le32 disk_csum;
1337 	u32 csum;
1338 	unsigned long long newcsum;
1339 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1340 	__le32 *isuper = (__le32*)sb;
1341 
1342 	disk_csum = sb->sb_csum;
1343 	sb->sb_csum = 0;
1344 	newcsum = 0;
1345 	for (; size >= 4; size -= 4)
1346 		newcsum += le32_to_cpu(*isuper++);
1347 
1348 	if (size == 2)
1349 		newcsum += le16_to_cpu(*(__le16*) isuper);
1350 
1351 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1352 	sb->sb_csum = disk_csum;
1353 	return cpu_to_le32(csum);
1354 }
1355 
1356 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1357 {
1358 	struct mdp_superblock_1 *sb;
1359 	int ret;
1360 	sector_t sb_start;
1361 	sector_t sectors;
1362 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1363 	int bmask;
1364 
1365 	/*
1366 	 * Calculate the position of the superblock in 512byte sectors.
1367 	 * It is always aligned to a 4K boundary and
1368 	 * depeding on minor_version, it can be:
1369 	 * 0: At least 8K, but less than 12K, from end of device
1370 	 * 1: At start of device
1371 	 * 2: 4K from start of device.
1372 	 */
1373 	switch(minor_version) {
1374 	case 0:
1375 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1376 		sb_start -= 8*2;
1377 		sb_start &= ~(sector_t)(4*2-1);
1378 		break;
1379 	case 1:
1380 		sb_start = 0;
1381 		break;
1382 	case 2:
1383 		sb_start = 8;
1384 		break;
1385 	default:
1386 		return -EINVAL;
1387 	}
1388 	rdev->sb_start = sb_start;
1389 
1390 	/* superblock is rarely larger than 1K, but it can be larger,
1391 	 * and it is safe to read 4k, so we do that
1392 	 */
1393 	ret = read_disk_sb(rdev, 4096);
1394 	if (ret) return ret;
1395 
1396 	sb = page_address(rdev->sb_page);
1397 
1398 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1399 	    sb->major_version != cpu_to_le32(1) ||
1400 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1401 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1402 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1403 		return -EINVAL;
1404 
1405 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1406 		printk("md: invalid superblock checksum on %s\n",
1407 			bdevname(rdev->bdev,b));
1408 		return -EINVAL;
1409 	}
1410 	if (le64_to_cpu(sb->data_size) < 10) {
1411 		printk("md: data_size too small on %s\n",
1412 		       bdevname(rdev->bdev,b));
1413 		return -EINVAL;
1414 	}
1415 	if (sb->pad0 ||
1416 	    sb->pad3[0] ||
1417 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1418 		/* Some padding is non-zero, might be a new feature */
1419 		return -EINVAL;
1420 
1421 	rdev->preferred_minor = 0xffff;
1422 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1423 	rdev->new_data_offset = rdev->data_offset;
1424 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1425 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1426 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1427 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1428 
1429 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1430 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1431 	if (rdev->sb_size & bmask)
1432 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1433 
1434 	if (minor_version
1435 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1436 		return -EINVAL;
1437 	if (minor_version
1438 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1439 		return -EINVAL;
1440 
1441 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1442 		rdev->desc_nr = -1;
1443 	else
1444 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1445 
1446 	if (!rdev->bb_page) {
1447 		rdev->bb_page = alloc_page(GFP_KERNEL);
1448 		if (!rdev->bb_page)
1449 			return -ENOMEM;
1450 	}
1451 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1452 	    rdev->badblocks.count == 0) {
1453 		/* need to load the bad block list.
1454 		 * Currently we limit it to one page.
1455 		 */
1456 		s32 offset;
1457 		sector_t bb_sector;
1458 		u64 *bbp;
1459 		int i;
1460 		int sectors = le16_to_cpu(sb->bblog_size);
1461 		if (sectors > (PAGE_SIZE / 512))
1462 			return -EINVAL;
1463 		offset = le32_to_cpu(sb->bblog_offset);
1464 		if (offset == 0)
1465 			return -EINVAL;
1466 		bb_sector = (long long)offset;
1467 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1468 				  rdev->bb_page, READ, true))
1469 			return -EIO;
1470 		bbp = (u64 *)page_address(rdev->bb_page);
1471 		rdev->badblocks.shift = sb->bblog_shift;
1472 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1473 			u64 bb = le64_to_cpu(*bbp);
1474 			int count = bb & (0x3ff);
1475 			u64 sector = bb >> 10;
1476 			sector <<= sb->bblog_shift;
1477 			count <<= sb->bblog_shift;
1478 			if (bb + 1 == 0)
1479 				break;
1480 			if (badblocks_set(&rdev->badblocks, sector, count, 1))
1481 				return -EINVAL;
1482 		}
1483 	} else if (sb->bblog_offset != 0)
1484 		rdev->badblocks.shift = 0;
1485 
1486 	if (!refdev) {
1487 		ret = 1;
1488 	} else {
1489 		__u64 ev1, ev2;
1490 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1491 
1492 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1493 		    sb->level != refsb->level ||
1494 		    sb->layout != refsb->layout ||
1495 		    sb->chunksize != refsb->chunksize) {
1496 			printk(KERN_WARNING "md: %s has strangely different"
1497 				" superblock to %s\n",
1498 				bdevname(rdev->bdev,b),
1499 				bdevname(refdev->bdev,b2));
1500 			return -EINVAL;
1501 		}
1502 		ev1 = le64_to_cpu(sb->events);
1503 		ev2 = le64_to_cpu(refsb->events);
1504 
1505 		if (ev1 > ev2)
1506 			ret = 1;
1507 		else
1508 			ret = 0;
1509 	}
1510 	if (minor_version) {
1511 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1512 		sectors -= rdev->data_offset;
1513 	} else
1514 		sectors = rdev->sb_start;
1515 	if (sectors < le64_to_cpu(sb->data_size))
1516 		return -EINVAL;
1517 	rdev->sectors = le64_to_cpu(sb->data_size);
1518 	return ret;
1519 }
1520 
1521 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1522 {
1523 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1524 	__u64 ev1 = le64_to_cpu(sb->events);
1525 
1526 	rdev->raid_disk = -1;
1527 	clear_bit(Faulty, &rdev->flags);
1528 	clear_bit(In_sync, &rdev->flags);
1529 	clear_bit(Bitmap_sync, &rdev->flags);
1530 	clear_bit(WriteMostly, &rdev->flags);
1531 
1532 	if (mddev->raid_disks == 0) {
1533 		mddev->major_version = 1;
1534 		mddev->patch_version = 0;
1535 		mddev->external = 0;
1536 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1537 		mddev->ctime = le64_to_cpu(sb->ctime);
1538 		mddev->utime = le64_to_cpu(sb->utime);
1539 		mddev->level = le32_to_cpu(sb->level);
1540 		mddev->clevel[0] = 0;
1541 		mddev->layout = le32_to_cpu(sb->layout);
1542 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1543 		mddev->dev_sectors = le64_to_cpu(sb->size);
1544 		mddev->events = ev1;
1545 		mddev->bitmap_info.offset = 0;
1546 		mddev->bitmap_info.space = 0;
1547 		/* Default location for bitmap is 1K after superblock
1548 		 * using 3K - total of 4K
1549 		 */
1550 		mddev->bitmap_info.default_offset = 1024 >> 9;
1551 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1552 		mddev->reshape_backwards = 0;
1553 
1554 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1555 		memcpy(mddev->uuid, sb->set_uuid, 16);
1556 
1557 		mddev->max_disks =  (4096-256)/2;
1558 
1559 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1560 		    mddev->bitmap_info.file == NULL) {
1561 			mddev->bitmap_info.offset =
1562 				(__s32)le32_to_cpu(sb->bitmap_offset);
1563 			/* Metadata doesn't record how much space is available.
1564 			 * For 1.0, we assume we can use up to the superblock
1565 			 * if before, else to 4K beyond superblock.
1566 			 * For others, assume no change is possible.
1567 			 */
1568 			if (mddev->minor_version > 0)
1569 				mddev->bitmap_info.space = 0;
1570 			else if (mddev->bitmap_info.offset > 0)
1571 				mddev->bitmap_info.space =
1572 					8 - mddev->bitmap_info.offset;
1573 			else
1574 				mddev->bitmap_info.space =
1575 					-mddev->bitmap_info.offset;
1576 		}
1577 
1578 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1579 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1580 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1581 			mddev->new_level = le32_to_cpu(sb->new_level);
1582 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1583 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1584 			if (mddev->delta_disks < 0 ||
1585 			    (mddev->delta_disks == 0 &&
1586 			     (le32_to_cpu(sb->feature_map)
1587 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1588 				mddev->reshape_backwards = 1;
1589 		} else {
1590 			mddev->reshape_position = MaxSector;
1591 			mddev->delta_disks = 0;
1592 			mddev->new_level = mddev->level;
1593 			mddev->new_layout = mddev->layout;
1594 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1595 		}
1596 
1597 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
1598 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1599 			if (mddev->recovery_cp == MaxSector)
1600 				set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1601 		}
1602 	} else if (mddev->pers == NULL) {
1603 		/* Insist of good event counter while assembling, except for
1604 		 * spares (which don't need an event count) */
1605 		++ev1;
1606 		if (rdev->desc_nr >= 0 &&
1607 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1608 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1609 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1610 			if (ev1 < mddev->events)
1611 				return -EINVAL;
1612 	} else if (mddev->bitmap) {
1613 		/* If adding to array with a bitmap, then we can accept an
1614 		 * older device, but not too old.
1615 		 */
1616 		if (ev1 < mddev->bitmap->events_cleared)
1617 			return 0;
1618 		if (ev1 < mddev->events)
1619 			set_bit(Bitmap_sync, &rdev->flags);
1620 	} else {
1621 		if (ev1 < mddev->events)
1622 			/* just a hot-add of a new device, leave raid_disk at -1 */
1623 			return 0;
1624 	}
1625 	if (mddev->level != LEVEL_MULTIPATH) {
1626 		int role;
1627 		if (rdev->desc_nr < 0 ||
1628 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1629 			role = MD_DISK_ROLE_SPARE;
1630 			rdev->desc_nr = -1;
1631 		} else
1632 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1633 		switch(role) {
1634 		case MD_DISK_ROLE_SPARE: /* spare */
1635 			break;
1636 		case MD_DISK_ROLE_FAULTY: /* faulty */
1637 			set_bit(Faulty, &rdev->flags);
1638 			break;
1639 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1640 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1641 				/* journal device without journal feature */
1642 				printk(KERN_WARNING
1643 				  "md: journal device provided without journal feature, ignoring the device\n");
1644 				return -EINVAL;
1645 			}
1646 			set_bit(Journal, &rdev->flags);
1647 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1648 			rdev->raid_disk = 0;
1649 			break;
1650 		default:
1651 			rdev->saved_raid_disk = role;
1652 			if ((le32_to_cpu(sb->feature_map) &
1653 			     MD_FEATURE_RECOVERY_OFFSET)) {
1654 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1655 				if (!(le32_to_cpu(sb->feature_map) &
1656 				      MD_FEATURE_RECOVERY_BITMAP))
1657 					rdev->saved_raid_disk = -1;
1658 			} else
1659 				set_bit(In_sync, &rdev->flags);
1660 			rdev->raid_disk = role;
1661 			break;
1662 		}
1663 		if (sb->devflags & WriteMostly1)
1664 			set_bit(WriteMostly, &rdev->flags);
1665 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1666 			set_bit(Replacement, &rdev->flags);
1667 	} else /* MULTIPATH are always insync */
1668 		set_bit(In_sync, &rdev->flags);
1669 
1670 	return 0;
1671 }
1672 
1673 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1674 {
1675 	struct mdp_superblock_1 *sb;
1676 	struct md_rdev *rdev2;
1677 	int max_dev, i;
1678 	/* make rdev->sb match mddev and rdev data. */
1679 
1680 	sb = page_address(rdev->sb_page);
1681 
1682 	sb->feature_map = 0;
1683 	sb->pad0 = 0;
1684 	sb->recovery_offset = cpu_to_le64(0);
1685 	memset(sb->pad3, 0, sizeof(sb->pad3));
1686 
1687 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1688 	sb->events = cpu_to_le64(mddev->events);
1689 	if (mddev->in_sync)
1690 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1691 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1692 		sb->resync_offset = cpu_to_le64(MaxSector);
1693 	else
1694 		sb->resync_offset = cpu_to_le64(0);
1695 
1696 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1697 
1698 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1699 	sb->size = cpu_to_le64(mddev->dev_sectors);
1700 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1701 	sb->level = cpu_to_le32(mddev->level);
1702 	sb->layout = cpu_to_le32(mddev->layout);
1703 
1704 	if (test_bit(WriteMostly, &rdev->flags))
1705 		sb->devflags |= WriteMostly1;
1706 	else
1707 		sb->devflags &= ~WriteMostly1;
1708 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1709 	sb->data_size = cpu_to_le64(rdev->sectors);
1710 
1711 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1712 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1713 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1714 	}
1715 
1716 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1717 	    !test_bit(In_sync, &rdev->flags)) {
1718 		sb->feature_map |=
1719 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1720 		sb->recovery_offset =
1721 			cpu_to_le64(rdev->recovery_offset);
1722 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1723 			sb->feature_map |=
1724 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1725 	}
1726 	/* Note: recovery_offset and journal_tail share space  */
1727 	if (test_bit(Journal, &rdev->flags))
1728 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1729 	if (test_bit(Replacement, &rdev->flags))
1730 		sb->feature_map |=
1731 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1732 
1733 	if (mddev->reshape_position != MaxSector) {
1734 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1735 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1736 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1737 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1738 		sb->new_level = cpu_to_le32(mddev->new_level);
1739 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1740 		if (mddev->delta_disks == 0 &&
1741 		    mddev->reshape_backwards)
1742 			sb->feature_map
1743 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1744 		if (rdev->new_data_offset != rdev->data_offset) {
1745 			sb->feature_map
1746 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1747 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1748 							     - rdev->data_offset));
1749 		}
1750 	}
1751 
1752 	if (mddev_is_clustered(mddev))
1753 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1754 
1755 	if (rdev->badblocks.count == 0)
1756 		/* Nothing to do for bad blocks*/ ;
1757 	else if (sb->bblog_offset == 0)
1758 		/* Cannot record bad blocks on this device */
1759 		md_error(mddev, rdev);
1760 	else {
1761 		struct badblocks *bb = &rdev->badblocks;
1762 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1763 		u64 *p = bb->page;
1764 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1765 		if (bb->changed) {
1766 			unsigned seq;
1767 
1768 retry:
1769 			seq = read_seqbegin(&bb->lock);
1770 
1771 			memset(bbp, 0xff, PAGE_SIZE);
1772 
1773 			for (i = 0 ; i < bb->count ; i++) {
1774 				u64 internal_bb = p[i];
1775 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1776 						| BB_LEN(internal_bb));
1777 				bbp[i] = cpu_to_le64(store_bb);
1778 			}
1779 			bb->changed = 0;
1780 			if (read_seqretry(&bb->lock, seq))
1781 				goto retry;
1782 
1783 			bb->sector = (rdev->sb_start +
1784 				      (int)le32_to_cpu(sb->bblog_offset));
1785 			bb->size = le16_to_cpu(sb->bblog_size);
1786 		}
1787 	}
1788 
1789 	max_dev = 0;
1790 	rdev_for_each(rdev2, mddev)
1791 		if (rdev2->desc_nr+1 > max_dev)
1792 			max_dev = rdev2->desc_nr+1;
1793 
1794 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1795 		int bmask;
1796 		sb->max_dev = cpu_to_le32(max_dev);
1797 		rdev->sb_size = max_dev * 2 + 256;
1798 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1799 		if (rdev->sb_size & bmask)
1800 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1801 	} else
1802 		max_dev = le32_to_cpu(sb->max_dev);
1803 
1804 	for (i=0; i<max_dev;i++)
1805 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1806 
1807 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1808 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1809 
1810 	rdev_for_each(rdev2, mddev) {
1811 		i = rdev2->desc_nr;
1812 		if (test_bit(Faulty, &rdev2->flags))
1813 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1814 		else if (test_bit(In_sync, &rdev2->flags))
1815 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816 		else if (test_bit(Journal, &rdev2->flags))
1817 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1818 		else if (rdev2->raid_disk >= 0)
1819 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1820 		else
1821 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1822 	}
1823 
1824 	sb->sb_csum = calc_sb_1_csum(sb);
1825 }
1826 
1827 static unsigned long long
1828 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1829 {
1830 	struct mdp_superblock_1 *sb;
1831 	sector_t max_sectors;
1832 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1833 		return 0; /* component must fit device */
1834 	if (rdev->data_offset != rdev->new_data_offset)
1835 		return 0; /* too confusing */
1836 	if (rdev->sb_start < rdev->data_offset) {
1837 		/* minor versions 1 and 2; superblock before data */
1838 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1839 		max_sectors -= rdev->data_offset;
1840 		if (!num_sectors || num_sectors > max_sectors)
1841 			num_sectors = max_sectors;
1842 	} else if (rdev->mddev->bitmap_info.offset) {
1843 		/* minor version 0 with bitmap we can't move */
1844 		return 0;
1845 	} else {
1846 		/* minor version 0; superblock after data */
1847 		sector_t sb_start;
1848 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1849 		sb_start &= ~(sector_t)(4*2 - 1);
1850 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1851 		if (!num_sectors || num_sectors > max_sectors)
1852 			num_sectors = max_sectors;
1853 		rdev->sb_start = sb_start;
1854 	}
1855 	sb = page_address(rdev->sb_page);
1856 	sb->data_size = cpu_to_le64(num_sectors);
1857 	sb->super_offset = rdev->sb_start;
1858 	sb->sb_csum = calc_sb_1_csum(sb);
1859 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1860 		       rdev->sb_page);
1861 	md_super_wait(rdev->mddev);
1862 	return num_sectors;
1863 
1864 }
1865 
1866 static int
1867 super_1_allow_new_offset(struct md_rdev *rdev,
1868 			 unsigned long long new_offset)
1869 {
1870 	/* All necessary checks on new >= old have been done */
1871 	struct bitmap *bitmap;
1872 	if (new_offset >= rdev->data_offset)
1873 		return 1;
1874 
1875 	/* with 1.0 metadata, there is no metadata to tread on
1876 	 * so we can always move back */
1877 	if (rdev->mddev->minor_version == 0)
1878 		return 1;
1879 
1880 	/* otherwise we must be sure not to step on
1881 	 * any metadata, so stay:
1882 	 * 36K beyond start of superblock
1883 	 * beyond end of badblocks
1884 	 * beyond write-intent bitmap
1885 	 */
1886 	if (rdev->sb_start + (32+4)*2 > new_offset)
1887 		return 0;
1888 	bitmap = rdev->mddev->bitmap;
1889 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1890 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1891 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1892 		return 0;
1893 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1894 		return 0;
1895 
1896 	return 1;
1897 }
1898 
1899 static struct super_type super_types[] = {
1900 	[0] = {
1901 		.name	= "0.90.0",
1902 		.owner	= THIS_MODULE,
1903 		.load_super	    = super_90_load,
1904 		.validate_super	    = super_90_validate,
1905 		.sync_super	    = super_90_sync,
1906 		.rdev_size_change   = super_90_rdev_size_change,
1907 		.allow_new_offset   = super_90_allow_new_offset,
1908 	},
1909 	[1] = {
1910 		.name	= "md-1",
1911 		.owner	= THIS_MODULE,
1912 		.load_super	    = super_1_load,
1913 		.validate_super	    = super_1_validate,
1914 		.sync_super	    = super_1_sync,
1915 		.rdev_size_change   = super_1_rdev_size_change,
1916 		.allow_new_offset   = super_1_allow_new_offset,
1917 	},
1918 };
1919 
1920 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1921 {
1922 	if (mddev->sync_super) {
1923 		mddev->sync_super(mddev, rdev);
1924 		return;
1925 	}
1926 
1927 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1928 
1929 	super_types[mddev->major_version].sync_super(mddev, rdev);
1930 }
1931 
1932 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1933 {
1934 	struct md_rdev *rdev, *rdev2;
1935 
1936 	rcu_read_lock();
1937 	rdev_for_each_rcu(rdev, mddev1) {
1938 		if (test_bit(Faulty, &rdev->flags) ||
1939 		    test_bit(Journal, &rdev->flags) ||
1940 		    rdev->raid_disk == -1)
1941 			continue;
1942 		rdev_for_each_rcu(rdev2, mddev2) {
1943 			if (test_bit(Faulty, &rdev2->flags) ||
1944 			    test_bit(Journal, &rdev2->flags) ||
1945 			    rdev2->raid_disk == -1)
1946 				continue;
1947 			if (rdev->bdev->bd_contains ==
1948 			    rdev2->bdev->bd_contains) {
1949 				rcu_read_unlock();
1950 				return 1;
1951 			}
1952 		}
1953 	}
1954 	rcu_read_unlock();
1955 	return 0;
1956 }
1957 
1958 static LIST_HEAD(pending_raid_disks);
1959 
1960 /*
1961  * Try to register data integrity profile for an mddev
1962  *
1963  * This is called when an array is started and after a disk has been kicked
1964  * from the array. It only succeeds if all working and active component devices
1965  * are integrity capable with matching profiles.
1966  */
1967 int md_integrity_register(struct mddev *mddev)
1968 {
1969 	struct md_rdev *rdev, *reference = NULL;
1970 
1971 	if (list_empty(&mddev->disks))
1972 		return 0; /* nothing to do */
1973 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1974 		return 0; /* shouldn't register, or already is */
1975 	rdev_for_each(rdev, mddev) {
1976 		/* skip spares and non-functional disks */
1977 		if (test_bit(Faulty, &rdev->flags))
1978 			continue;
1979 		if (rdev->raid_disk < 0)
1980 			continue;
1981 		if (!reference) {
1982 			/* Use the first rdev as the reference */
1983 			reference = rdev;
1984 			continue;
1985 		}
1986 		/* does this rdev's profile match the reference profile? */
1987 		if (blk_integrity_compare(reference->bdev->bd_disk,
1988 				rdev->bdev->bd_disk) < 0)
1989 			return -EINVAL;
1990 	}
1991 	if (!reference || !bdev_get_integrity(reference->bdev))
1992 		return 0;
1993 	/*
1994 	 * All component devices are integrity capable and have matching
1995 	 * profiles, register the common profile for the md device.
1996 	 */
1997 	blk_integrity_register(mddev->gendisk,
1998 			       bdev_get_integrity(reference->bdev));
1999 
2000 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2001 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2002 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2003 		       mdname(mddev));
2004 		return -EINVAL;
2005 	}
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL(md_integrity_register);
2009 
2010 /*
2011  * Attempt to add an rdev, but only if it is consistent with the current
2012  * integrity profile
2013  */
2014 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2015 {
2016 	struct blk_integrity *bi_rdev;
2017 	struct blk_integrity *bi_mddev;
2018 	char name[BDEVNAME_SIZE];
2019 
2020 	if (!mddev->gendisk)
2021 		return 0;
2022 
2023 	bi_rdev = bdev_get_integrity(rdev->bdev);
2024 	bi_mddev = blk_get_integrity(mddev->gendisk);
2025 
2026 	if (!bi_mddev) /* nothing to do */
2027 		return 0;
2028 
2029 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2030 		printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2031 				mdname(mddev), bdevname(rdev->bdev, name));
2032 		return -ENXIO;
2033 	}
2034 
2035 	return 0;
2036 }
2037 EXPORT_SYMBOL(md_integrity_add_rdev);
2038 
2039 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2040 {
2041 	char b[BDEVNAME_SIZE];
2042 	struct kobject *ko;
2043 	int err;
2044 
2045 	/* prevent duplicates */
2046 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2047 		return -EEXIST;
2048 
2049 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2050 	if (!test_bit(Journal, &rdev->flags) &&
2051 	    rdev->sectors &&
2052 	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2053 		if (mddev->pers) {
2054 			/* Cannot change size, so fail
2055 			 * If mddev->level <= 0, then we don't care
2056 			 * about aligning sizes (e.g. linear)
2057 			 */
2058 			if (mddev->level > 0)
2059 				return -ENOSPC;
2060 		} else
2061 			mddev->dev_sectors = rdev->sectors;
2062 	}
2063 
2064 	/* Verify rdev->desc_nr is unique.
2065 	 * If it is -1, assign a free number, else
2066 	 * check number is not in use
2067 	 */
2068 	rcu_read_lock();
2069 	if (rdev->desc_nr < 0) {
2070 		int choice = 0;
2071 		if (mddev->pers)
2072 			choice = mddev->raid_disks;
2073 		while (md_find_rdev_nr_rcu(mddev, choice))
2074 			choice++;
2075 		rdev->desc_nr = choice;
2076 	} else {
2077 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2078 			rcu_read_unlock();
2079 			return -EBUSY;
2080 		}
2081 	}
2082 	rcu_read_unlock();
2083 	if (!test_bit(Journal, &rdev->flags) &&
2084 	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2085 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2086 		       mdname(mddev), mddev->max_disks);
2087 		return -EBUSY;
2088 	}
2089 	bdevname(rdev->bdev,b);
2090 	strreplace(b, '/', '!');
2091 
2092 	rdev->mddev = mddev;
2093 	printk(KERN_INFO "md: bind<%s>\n", b);
2094 
2095 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2096 		goto fail;
2097 
2098 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2099 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2100 		/* failure here is OK */;
2101 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2102 
2103 	list_add_rcu(&rdev->same_set, &mddev->disks);
2104 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2105 
2106 	/* May as well allow recovery to be retried once */
2107 	mddev->recovery_disabled++;
2108 
2109 	return 0;
2110 
2111  fail:
2112 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2113 	       b, mdname(mddev));
2114 	return err;
2115 }
2116 
2117 static void md_delayed_delete(struct work_struct *ws)
2118 {
2119 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2120 	kobject_del(&rdev->kobj);
2121 	kobject_put(&rdev->kobj);
2122 }
2123 
2124 static void unbind_rdev_from_array(struct md_rdev *rdev)
2125 {
2126 	char b[BDEVNAME_SIZE];
2127 
2128 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2129 	list_del_rcu(&rdev->same_set);
2130 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2131 	rdev->mddev = NULL;
2132 	sysfs_remove_link(&rdev->kobj, "block");
2133 	sysfs_put(rdev->sysfs_state);
2134 	rdev->sysfs_state = NULL;
2135 	rdev->badblocks.count = 0;
2136 	/* We need to delay this, otherwise we can deadlock when
2137 	 * writing to 'remove' to "dev/state".  We also need
2138 	 * to delay it due to rcu usage.
2139 	 */
2140 	synchronize_rcu();
2141 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2142 	kobject_get(&rdev->kobj);
2143 	queue_work(md_misc_wq, &rdev->del_work);
2144 }
2145 
2146 /*
2147  * prevent the device from being mounted, repartitioned or
2148  * otherwise reused by a RAID array (or any other kernel
2149  * subsystem), by bd_claiming the device.
2150  */
2151 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2152 {
2153 	int err = 0;
2154 	struct block_device *bdev;
2155 	char b[BDEVNAME_SIZE];
2156 
2157 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2158 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2159 	if (IS_ERR(bdev)) {
2160 		printk(KERN_ERR "md: could not open %s.\n",
2161 			__bdevname(dev, b));
2162 		return PTR_ERR(bdev);
2163 	}
2164 	rdev->bdev = bdev;
2165 	return err;
2166 }
2167 
2168 static void unlock_rdev(struct md_rdev *rdev)
2169 {
2170 	struct block_device *bdev = rdev->bdev;
2171 	rdev->bdev = NULL;
2172 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2173 }
2174 
2175 void md_autodetect_dev(dev_t dev);
2176 
2177 static void export_rdev(struct md_rdev *rdev)
2178 {
2179 	char b[BDEVNAME_SIZE];
2180 
2181 	printk(KERN_INFO "md: export_rdev(%s)\n",
2182 		bdevname(rdev->bdev,b));
2183 	md_rdev_clear(rdev);
2184 #ifndef MODULE
2185 	if (test_bit(AutoDetected, &rdev->flags))
2186 		md_autodetect_dev(rdev->bdev->bd_dev);
2187 #endif
2188 	unlock_rdev(rdev);
2189 	kobject_put(&rdev->kobj);
2190 }
2191 
2192 void md_kick_rdev_from_array(struct md_rdev *rdev)
2193 {
2194 	unbind_rdev_from_array(rdev);
2195 	export_rdev(rdev);
2196 }
2197 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2198 
2199 static void export_array(struct mddev *mddev)
2200 {
2201 	struct md_rdev *rdev;
2202 
2203 	while (!list_empty(&mddev->disks)) {
2204 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2205 					same_set);
2206 		md_kick_rdev_from_array(rdev);
2207 	}
2208 	mddev->raid_disks = 0;
2209 	mddev->major_version = 0;
2210 }
2211 
2212 static void sync_sbs(struct mddev *mddev, int nospares)
2213 {
2214 	/* Update each superblock (in-memory image), but
2215 	 * if we are allowed to, skip spares which already
2216 	 * have the right event counter, or have one earlier
2217 	 * (which would mean they aren't being marked as dirty
2218 	 * with the rest of the array)
2219 	 */
2220 	struct md_rdev *rdev;
2221 	rdev_for_each(rdev, mddev) {
2222 		if (rdev->sb_events == mddev->events ||
2223 		    (nospares &&
2224 		     rdev->raid_disk < 0 &&
2225 		     rdev->sb_events+1 == mddev->events)) {
2226 			/* Don't update this superblock */
2227 			rdev->sb_loaded = 2;
2228 		} else {
2229 			sync_super(mddev, rdev);
2230 			rdev->sb_loaded = 1;
2231 		}
2232 	}
2233 }
2234 
2235 static bool does_sb_need_changing(struct mddev *mddev)
2236 {
2237 	struct md_rdev *rdev;
2238 	struct mdp_superblock_1 *sb;
2239 	int role;
2240 
2241 	/* Find a good rdev */
2242 	rdev_for_each(rdev, mddev)
2243 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2244 			break;
2245 
2246 	/* No good device found. */
2247 	if (!rdev)
2248 		return false;
2249 
2250 	sb = page_address(rdev->sb_page);
2251 	/* Check if a device has become faulty or a spare become active */
2252 	rdev_for_each(rdev, mddev) {
2253 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2254 		/* Device activated? */
2255 		if (role == 0xffff && rdev->raid_disk >=0 &&
2256 		    !test_bit(Faulty, &rdev->flags))
2257 			return true;
2258 		/* Device turned faulty? */
2259 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2260 			return true;
2261 	}
2262 
2263 	/* Check if any mddev parameters have changed */
2264 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2265 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2266 	    (mddev->layout != le64_to_cpu(sb->layout)) ||
2267 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2268 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2269 		return true;
2270 
2271 	return false;
2272 }
2273 
2274 void md_update_sb(struct mddev *mddev, int force_change)
2275 {
2276 	struct md_rdev *rdev;
2277 	int sync_req;
2278 	int nospares = 0;
2279 	int any_badblocks_changed = 0;
2280 	int ret = -1;
2281 
2282 	if (mddev->ro) {
2283 		if (force_change)
2284 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2285 		return;
2286 	}
2287 
2288 	if (mddev_is_clustered(mddev)) {
2289 		if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2290 			force_change = 1;
2291 		ret = md_cluster_ops->metadata_update_start(mddev);
2292 		/* Has someone else has updated the sb */
2293 		if (!does_sb_need_changing(mddev)) {
2294 			if (ret == 0)
2295 				md_cluster_ops->metadata_update_cancel(mddev);
2296 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2297 			return;
2298 		}
2299 	}
2300 repeat:
2301 	/* First make sure individual recovery_offsets are correct */
2302 	rdev_for_each(rdev, mddev) {
2303 		if (rdev->raid_disk >= 0 &&
2304 		    mddev->delta_disks >= 0 &&
2305 		    !test_bit(Journal, &rdev->flags) &&
2306 		    !test_bit(In_sync, &rdev->flags) &&
2307 		    mddev->curr_resync_completed > rdev->recovery_offset)
2308 				rdev->recovery_offset = mddev->curr_resync_completed;
2309 
2310 	}
2311 	if (!mddev->persistent) {
2312 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2313 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2314 		if (!mddev->external) {
2315 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2316 			rdev_for_each(rdev, mddev) {
2317 				if (rdev->badblocks.changed) {
2318 					rdev->badblocks.changed = 0;
2319 					ack_all_badblocks(&rdev->badblocks);
2320 					md_error(mddev, rdev);
2321 				}
2322 				clear_bit(Blocked, &rdev->flags);
2323 				clear_bit(BlockedBadBlocks, &rdev->flags);
2324 				wake_up(&rdev->blocked_wait);
2325 			}
2326 		}
2327 		wake_up(&mddev->sb_wait);
2328 		return;
2329 	}
2330 
2331 	spin_lock(&mddev->lock);
2332 
2333 	mddev->utime = ktime_get_real_seconds();
2334 
2335 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2336 		force_change = 1;
2337 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2338 		/* just a clean<-> dirty transition, possibly leave spares alone,
2339 		 * though if events isn't the right even/odd, we will have to do
2340 		 * spares after all
2341 		 */
2342 		nospares = 1;
2343 	if (force_change)
2344 		nospares = 0;
2345 	if (mddev->degraded)
2346 		/* If the array is degraded, then skipping spares is both
2347 		 * dangerous and fairly pointless.
2348 		 * Dangerous because a device that was removed from the array
2349 		 * might have a event_count that still looks up-to-date,
2350 		 * so it can be re-added without a resync.
2351 		 * Pointless because if there are any spares to skip,
2352 		 * then a recovery will happen and soon that array won't
2353 		 * be degraded any more and the spare can go back to sleep then.
2354 		 */
2355 		nospares = 0;
2356 
2357 	sync_req = mddev->in_sync;
2358 
2359 	/* If this is just a dirty<->clean transition, and the array is clean
2360 	 * and 'events' is odd, we can roll back to the previous clean state */
2361 	if (nospares
2362 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2363 	    && mddev->can_decrease_events
2364 	    && mddev->events != 1) {
2365 		mddev->events--;
2366 		mddev->can_decrease_events = 0;
2367 	} else {
2368 		/* otherwise we have to go forward and ... */
2369 		mddev->events ++;
2370 		mddev->can_decrease_events = nospares;
2371 	}
2372 
2373 	/*
2374 	 * This 64-bit counter should never wrap.
2375 	 * Either we are in around ~1 trillion A.C., assuming
2376 	 * 1 reboot per second, or we have a bug...
2377 	 */
2378 	WARN_ON(mddev->events == 0);
2379 
2380 	rdev_for_each(rdev, mddev) {
2381 		if (rdev->badblocks.changed)
2382 			any_badblocks_changed++;
2383 		if (test_bit(Faulty, &rdev->flags))
2384 			set_bit(FaultRecorded, &rdev->flags);
2385 	}
2386 
2387 	sync_sbs(mddev, nospares);
2388 	spin_unlock(&mddev->lock);
2389 
2390 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2391 		 mdname(mddev), mddev->in_sync);
2392 
2393 	bitmap_update_sb(mddev->bitmap);
2394 	rdev_for_each(rdev, mddev) {
2395 		char b[BDEVNAME_SIZE];
2396 
2397 		if (rdev->sb_loaded != 1)
2398 			continue; /* no noise on spare devices */
2399 
2400 		if (!test_bit(Faulty, &rdev->flags)) {
2401 			md_super_write(mddev,rdev,
2402 				       rdev->sb_start, rdev->sb_size,
2403 				       rdev->sb_page);
2404 			pr_debug("md: (write) %s's sb offset: %llu\n",
2405 				 bdevname(rdev->bdev, b),
2406 				 (unsigned long long)rdev->sb_start);
2407 			rdev->sb_events = mddev->events;
2408 			if (rdev->badblocks.size) {
2409 				md_super_write(mddev, rdev,
2410 					       rdev->badblocks.sector,
2411 					       rdev->badblocks.size << 9,
2412 					       rdev->bb_page);
2413 				rdev->badblocks.size = 0;
2414 			}
2415 
2416 		} else
2417 			pr_debug("md: %s (skipping faulty)\n",
2418 				 bdevname(rdev->bdev, b));
2419 
2420 		if (mddev->level == LEVEL_MULTIPATH)
2421 			/* only need to write one superblock... */
2422 			break;
2423 	}
2424 	md_super_wait(mddev);
2425 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2426 
2427 	spin_lock(&mddev->lock);
2428 	if (mddev->in_sync != sync_req ||
2429 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2430 		/* have to write it out again */
2431 		spin_unlock(&mddev->lock);
2432 		goto repeat;
2433 	}
2434 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2435 	spin_unlock(&mddev->lock);
2436 	wake_up(&mddev->sb_wait);
2437 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2438 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2439 
2440 	rdev_for_each(rdev, mddev) {
2441 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2442 			clear_bit(Blocked, &rdev->flags);
2443 
2444 		if (any_badblocks_changed)
2445 			ack_all_badblocks(&rdev->badblocks);
2446 		clear_bit(BlockedBadBlocks, &rdev->flags);
2447 		wake_up(&rdev->blocked_wait);
2448 	}
2449 
2450 	if (mddev_is_clustered(mddev) && ret == 0)
2451 		md_cluster_ops->metadata_update_finish(mddev);
2452 }
2453 EXPORT_SYMBOL(md_update_sb);
2454 
2455 static int add_bound_rdev(struct md_rdev *rdev)
2456 {
2457 	struct mddev *mddev = rdev->mddev;
2458 	int err = 0;
2459 	bool add_journal = test_bit(Journal, &rdev->flags);
2460 
2461 	if (!mddev->pers->hot_remove_disk || add_journal) {
2462 		/* If there is hot_add_disk but no hot_remove_disk
2463 		 * then added disks for geometry changes,
2464 		 * and should be added immediately.
2465 		 */
2466 		super_types[mddev->major_version].
2467 			validate_super(mddev, rdev);
2468 		if (add_journal)
2469 			mddev_suspend(mddev);
2470 		err = mddev->pers->hot_add_disk(mddev, rdev);
2471 		if (add_journal)
2472 			mddev_resume(mddev);
2473 		if (err) {
2474 			unbind_rdev_from_array(rdev);
2475 			export_rdev(rdev);
2476 			return err;
2477 		}
2478 	}
2479 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2480 
2481 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2482 	if (mddev->degraded)
2483 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2484 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2485 	md_new_event(mddev);
2486 	md_wakeup_thread(mddev->thread);
2487 	return 0;
2488 }
2489 
2490 /* words written to sysfs files may, or may not, be \n terminated.
2491  * We want to accept with case. For this we use cmd_match.
2492  */
2493 static int cmd_match(const char *cmd, const char *str)
2494 {
2495 	/* See if cmd, written into a sysfs file, matches
2496 	 * str.  They must either be the same, or cmd can
2497 	 * have a trailing newline
2498 	 */
2499 	while (*cmd && *str && *cmd == *str) {
2500 		cmd++;
2501 		str++;
2502 	}
2503 	if (*cmd == '\n')
2504 		cmd++;
2505 	if (*str || *cmd)
2506 		return 0;
2507 	return 1;
2508 }
2509 
2510 struct rdev_sysfs_entry {
2511 	struct attribute attr;
2512 	ssize_t (*show)(struct md_rdev *, char *);
2513 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2514 };
2515 
2516 static ssize_t
2517 state_show(struct md_rdev *rdev, char *page)
2518 {
2519 	char *sep = "";
2520 	size_t len = 0;
2521 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2522 
2523 	if (test_bit(Faulty, &flags) ||
2524 	    rdev->badblocks.unacked_exist) {
2525 		len+= sprintf(page+len, "%sfaulty",sep);
2526 		sep = ",";
2527 	}
2528 	if (test_bit(In_sync, &flags)) {
2529 		len += sprintf(page+len, "%sin_sync",sep);
2530 		sep = ",";
2531 	}
2532 	if (test_bit(Journal, &flags)) {
2533 		len += sprintf(page+len, "%sjournal",sep);
2534 		sep = ",";
2535 	}
2536 	if (test_bit(WriteMostly, &flags)) {
2537 		len += sprintf(page+len, "%swrite_mostly",sep);
2538 		sep = ",";
2539 	}
2540 	if (test_bit(Blocked, &flags) ||
2541 	    (rdev->badblocks.unacked_exist
2542 	     && !test_bit(Faulty, &flags))) {
2543 		len += sprintf(page+len, "%sblocked", sep);
2544 		sep = ",";
2545 	}
2546 	if (!test_bit(Faulty, &flags) &&
2547 	    !test_bit(Journal, &flags) &&
2548 	    !test_bit(In_sync, &flags)) {
2549 		len += sprintf(page+len, "%sspare", sep);
2550 		sep = ",";
2551 	}
2552 	if (test_bit(WriteErrorSeen, &flags)) {
2553 		len += sprintf(page+len, "%swrite_error", sep);
2554 		sep = ",";
2555 	}
2556 	if (test_bit(WantReplacement, &flags)) {
2557 		len += sprintf(page+len, "%swant_replacement", sep);
2558 		sep = ",";
2559 	}
2560 	if (test_bit(Replacement, &flags)) {
2561 		len += sprintf(page+len, "%sreplacement", sep);
2562 		sep = ",";
2563 	}
2564 
2565 	return len+sprintf(page+len, "\n");
2566 }
2567 
2568 static ssize_t
2569 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2570 {
2571 	/* can write
2572 	 *  faulty  - simulates an error
2573 	 *  remove  - disconnects the device
2574 	 *  writemostly - sets write_mostly
2575 	 *  -writemostly - clears write_mostly
2576 	 *  blocked - sets the Blocked flags
2577 	 *  -blocked - clears the Blocked and possibly simulates an error
2578 	 *  insync - sets Insync providing device isn't active
2579 	 *  -insync - clear Insync for a device with a slot assigned,
2580 	 *            so that it gets rebuilt based on bitmap
2581 	 *  write_error - sets WriteErrorSeen
2582 	 *  -write_error - clears WriteErrorSeen
2583 	 */
2584 	int err = -EINVAL;
2585 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2586 		md_error(rdev->mddev, rdev);
2587 		if (test_bit(Faulty, &rdev->flags))
2588 			err = 0;
2589 		else
2590 			err = -EBUSY;
2591 	} else if (cmd_match(buf, "remove")) {
2592 		if (rdev->raid_disk >= 0)
2593 			err = -EBUSY;
2594 		else {
2595 			struct mddev *mddev = rdev->mddev;
2596 			err = 0;
2597 			if (mddev_is_clustered(mddev))
2598 				err = md_cluster_ops->remove_disk(mddev, rdev);
2599 
2600 			if (err == 0) {
2601 				md_kick_rdev_from_array(rdev);
2602 				if (mddev->pers)
2603 					md_update_sb(mddev, 1);
2604 				md_new_event(mddev);
2605 			}
2606 		}
2607 	} else if (cmd_match(buf, "writemostly")) {
2608 		set_bit(WriteMostly, &rdev->flags);
2609 		err = 0;
2610 	} else if (cmd_match(buf, "-writemostly")) {
2611 		clear_bit(WriteMostly, &rdev->flags);
2612 		err = 0;
2613 	} else if (cmd_match(buf, "blocked")) {
2614 		set_bit(Blocked, &rdev->flags);
2615 		err = 0;
2616 	} else if (cmd_match(buf, "-blocked")) {
2617 		if (!test_bit(Faulty, &rdev->flags) &&
2618 		    rdev->badblocks.unacked_exist) {
2619 			/* metadata handler doesn't understand badblocks,
2620 			 * so we need to fail the device
2621 			 */
2622 			md_error(rdev->mddev, rdev);
2623 		}
2624 		clear_bit(Blocked, &rdev->flags);
2625 		clear_bit(BlockedBadBlocks, &rdev->flags);
2626 		wake_up(&rdev->blocked_wait);
2627 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2628 		md_wakeup_thread(rdev->mddev->thread);
2629 
2630 		err = 0;
2631 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2632 		set_bit(In_sync, &rdev->flags);
2633 		err = 0;
2634 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2635 		   !test_bit(Journal, &rdev->flags)) {
2636 		if (rdev->mddev->pers == NULL) {
2637 			clear_bit(In_sync, &rdev->flags);
2638 			rdev->saved_raid_disk = rdev->raid_disk;
2639 			rdev->raid_disk = -1;
2640 			err = 0;
2641 		}
2642 	} else if (cmd_match(buf, "write_error")) {
2643 		set_bit(WriteErrorSeen, &rdev->flags);
2644 		err = 0;
2645 	} else if (cmd_match(buf, "-write_error")) {
2646 		clear_bit(WriteErrorSeen, &rdev->flags);
2647 		err = 0;
2648 	} else if (cmd_match(buf, "want_replacement")) {
2649 		/* Any non-spare device that is not a replacement can
2650 		 * become want_replacement at any time, but we then need to
2651 		 * check if recovery is needed.
2652 		 */
2653 		if (rdev->raid_disk >= 0 &&
2654 		    !test_bit(Journal, &rdev->flags) &&
2655 		    !test_bit(Replacement, &rdev->flags))
2656 			set_bit(WantReplacement, &rdev->flags);
2657 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2658 		md_wakeup_thread(rdev->mddev->thread);
2659 		err = 0;
2660 	} else if (cmd_match(buf, "-want_replacement")) {
2661 		/* Clearing 'want_replacement' is always allowed.
2662 		 * Once replacements starts it is too late though.
2663 		 */
2664 		err = 0;
2665 		clear_bit(WantReplacement, &rdev->flags);
2666 	} else if (cmd_match(buf, "replacement")) {
2667 		/* Can only set a device as a replacement when array has not
2668 		 * yet been started.  Once running, replacement is automatic
2669 		 * from spares, or by assigning 'slot'.
2670 		 */
2671 		if (rdev->mddev->pers)
2672 			err = -EBUSY;
2673 		else {
2674 			set_bit(Replacement, &rdev->flags);
2675 			err = 0;
2676 		}
2677 	} else if (cmd_match(buf, "-replacement")) {
2678 		/* Similarly, can only clear Replacement before start */
2679 		if (rdev->mddev->pers)
2680 			err = -EBUSY;
2681 		else {
2682 			clear_bit(Replacement, &rdev->flags);
2683 			err = 0;
2684 		}
2685 	} else if (cmd_match(buf, "re-add")) {
2686 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2687 			/* clear_bit is performed _after_ all the devices
2688 			 * have their local Faulty bit cleared. If any writes
2689 			 * happen in the meantime in the local node, they
2690 			 * will land in the local bitmap, which will be synced
2691 			 * by this node eventually
2692 			 */
2693 			if (!mddev_is_clustered(rdev->mddev) ||
2694 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2695 				clear_bit(Faulty, &rdev->flags);
2696 				err = add_bound_rdev(rdev);
2697 			}
2698 		} else
2699 			err = -EBUSY;
2700 	}
2701 	if (!err)
2702 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2703 	return err ? err : len;
2704 }
2705 static struct rdev_sysfs_entry rdev_state =
2706 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2707 
2708 static ssize_t
2709 errors_show(struct md_rdev *rdev, char *page)
2710 {
2711 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2712 }
2713 
2714 static ssize_t
2715 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2716 {
2717 	unsigned int n;
2718 	int rv;
2719 
2720 	rv = kstrtouint(buf, 10, &n);
2721 	if (rv < 0)
2722 		return rv;
2723 	atomic_set(&rdev->corrected_errors, n);
2724 	return len;
2725 }
2726 static struct rdev_sysfs_entry rdev_errors =
2727 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2728 
2729 static ssize_t
2730 slot_show(struct md_rdev *rdev, char *page)
2731 {
2732 	if (test_bit(Journal, &rdev->flags))
2733 		return sprintf(page, "journal\n");
2734 	else if (rdev->raid_disk < 0)
2735 		return sprintf(page, "none\n");
2736 	else
2737 		return sprintf(page, "%d\n", rdev->raid_disk);
2738 }
2739 
2740 static ssize_t
2741 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2742 {
2743 	int slot;
2744 	int err;
2745 
2746 	if (test_bit(Journal, &rdev->flags))
2747 		return -EBUSY;
2748 	if (strncmp(buf, "none", 4)==0)
2749 		slot = -1;
2750 	else {
2751 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2752 		if (err < 0)
2753 			return err;
2754 	}
2755 	if (rdev->mddev->pers && slot == -1) {
2756 		/* Setting 'slot' on an active array requires also
2757 		 * updating the 'rd%d' link, and communicating
2758 		 * with the personality with ->hot_*_disk.
2759 		 * For now we only support removing
2760 		 * failed/spare devices.  This normally happens automatically,
2761 		 * but not when the metadata is externally managed.
2762 		 */
2763 		if (rdev->raid_disk == -1)
2764 			return -EEXIST;
2765 		/* personality does all needed checks */
2766 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2767 			return -EINVAL;
2768 		clear_bit(Blocked, &rdev->flags);
2769 		remove_and_add_spares(rdev->mddev, rdev);
2770 		if (rdev->raid_disk >= 0)
2771 			return -EBUSY;
2772 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2773 		md_wakeup_thread(rdev->mddev->thread);
2774 	} else if (rdev->mddev->pers) {
2775 		/* Activating a spare .. or possibly reactivating
2776 		 * if we ever get bitmaps working here.
2777 		 */
2778 		int err;
2779 
2780 		if (rdev->raid_disk != -1)
2781 			return -EBUSY;
2782 
2783 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2784 			return -EBUSY;
2785 
2786 		if (rdev->mddev->pers->hot_add_disk == NULL)
2787 			return -EINVAL;
2788 
2789 		if (slot >= rdev->mddev->raid_disks &&
2790 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2791 			return -ENOSPC;
2792 
2793 		rdev->raid_disk = slot;
2794 		if (test_bit(In_sync, &rdev->flags))
2795 			rdev->saved_raid_disk = slot;
2796 		else
2797 			rdev->saved_raid_disk = -1;
2798 		clear_bit(In_sync, &rdev->flags);
2799 		clear_bit(Bitmap_sync, &rdev->flags);
2800 		err = rdev->mddev->pers->
2801 			hot_add_disk(rdev->mddev, rdev);
2802 		if (err) {
2803 			rdev->raid_disk = -1;
2804 			return err;
2805 		} else
2806 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2807 		if (sysfs_link_rdev(rdev->mddev, rdev))
2808 			/* failure here is OK */;
2809 		/* don't wakeup anyone, leave that to userspace. */
2810 	} else {
2811 		if (slot >= rdev->mddev->raid_disks &&
2812 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2813 			return -ENOSPC;
2814 		rdev->raid_disk = slot;
2815 		/* assume it is working */
2816 		clear_bit(Faulty, &rdev->flags);
2817 		clear_bit(WriteMostly, &rdev->flags);
2818 		set_bit(In_sync, &rdev->flags);
2819 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2820 	}
2821 	return len;
2822 }
2823 
2824 static struct rdev_sysfs_entry rdev_slot =
2825 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2826 
2827 static ssize_t
2828 offset_show(struct md_rdev *rdev, char *page)
2829 {
2830 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2831 }
2832 
2833 static ssize_t
2834 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2835 {
2836 	unsigned long long offset;
2837 	if (kstrtoull(buf, 10, &offset) < 0)
2838 		return -EINVAL;
2839 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2840 		return -EBUSY;
2841 	if (rdev->sectors && rdev->mddev->external)
2842 		/* Must set offset before size, so overlap checks
2843 		 * can be sane */
2844 		return -EBUSY;
2845 	rdev->data_offset = offset;
2846 	rdev->new_data_offset = offset;
2847 	return len;
2848 }
2849 
2850 static struct rdev_sysfs_entry rdev_offset =
2851 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2852 
2853 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2854 {
2855 	return sprintf(page, "%llu\n",
2856 		       (unsigned long long)rdev->new_data_offset);
2857 }
2858 
2859 static ssize_t new_offset_store(struct md_rdev *rdev,
2860 				const char *buf, size_t len)
2861 {
2862 	unsigned long long new_offset;
2863 	struct mddev *mddev = rdev->mddev;
2864 
2865 	if (kstrtoull(buf, 10, &new_offset) < 0)
2866 		return -EINVAL;
2867 
2868 	if (mddev->sync_thread ||
2869 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2870 		return -EBUSY;
2871 	if (new_offset == rdev->data_offset)
2872 		/* reset is always permitted */
2873 		;
2874 	else if (new_offset > rdev->data_offset) {
2875 		/* must not push array size beyond rdev_sectors */
2876 		if (new_offset - rdev->data_offset
2877 		    + mddev->dev_sectors > rdev->sectors)
2878 				return -E2BIG;
2879 	}
2880 	/* Metadata worries about other space details. */
2881 
2882 	/* decreasing the offset is inconsistent with a backwards
2883 	 * reshape.
2884 	 */
2885 	if (new_offset < rdev->data_offset &&
2886 	    mddev->reshape_backwards)
2887 		return -EINVAL;
2888 	/* Increasing offset is inconsistent with forwards
2889 	 * reshape.  reshape_direction should be set to
2890 	 * 'backwards' first.
2891 	 */
2892 	if (new_offset > rdev->data_offset &&
2893 	    !mddev->reshape_backwards)
2894 		return -EINVAL;
2895 
2896 	if (mddev->pers && mddev->persistent &&
2897 	    !super_types[mddev->major_version]
2898 	    .allow_new_offset(rdev, new_offset))
2899 		return -E2BIG;
2900 	rdev->new_data_offset = new_offset;
2901 	if (new_offset > rdev->data_offset)
2902 		mddev->reshape_backwards = 1;
2903 	else if (new_offset < rdev->data_offset)
2904 		mddev->reshape_backwards = 0;
2905 
2906 	return len;
2907 }
2908 static struct rdev_sysfs_entry rdev_new_offset =
2909 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2910 
2911 static ssize_t
2912 rdev_size_show(struct md_rdev *rdev, char *page)
2913 {
2914 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2915 }
2916 
2917 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2918 {
2919 	/* check if two start/length pairs overlap */
2920 	if (s1+l1 <= s2)
2921 		return 0;
2922 	if (s2+l2 <= s1)
2923 		return 0;
2924 	return 1;
2925 }
2926 
2927 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2928 {
2929 	unsigned long long blocks;
2930 	sector_t new;
2931 
2932 	if (kstrtoull(buf, 10, &blocks) < 0)
2933 		return -EINVAL;
2934 
2935 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2936 		return -EINVAL; /* sector conversion overflow */
2937 
2938 	new = blocks * 2;
2939 	if (new != blocks * 2)
2940 		return -EINVAL; /* unsigned long long to sector_t overflow */
2941 
2942 	*sectors = new;
2943 	return 0;
2944 }
2945 
2946 static ssize_t
2947 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2948 {
2949 	struct mddev *my_mddev = rdev->mddev;
2950 	sector_t oldsectors = rdev->sectors;
2951 	sector_t sectors;
2952 
2953 	if (test_bit(Journal, &rdev->flags))
2954 		return -EBUSY;
2955 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2956 		return -EINVAL;
2957 	if (rdev->data_offset != rdev->new_data_offset)
2958 		return -EINVAL; /* too confusing */
2959 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2960 		if (my_mddev->persistent) {
2961 			sectors = super_types[my_mddev->major_version].
2962 				rdev_size_change(rdev, sectors);
2963 			if (!sectors)
2964 				return -EBUSY;
2965 		} else if (!sectors)
2966 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2967 				rdev->data_offset;
2968 		if (!my_mddev->pers->resize)
2969 			/* Cannot change size for RAID0 or Linear etc */
2970 			return -EINVAL;
2971 	}
2972 	if (sectors < my_mddev->dev_sectors)
2973 		return -EINVAL; /* component must fit device */
2974 
2975 	rdev->sectors = sectors;
2976 	if (sectors > oldsectors && my_mddev->external) {
2977 		/* Need to check that all other rdevs with the same
2978 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2979 		 * the rdev lists safely.
2980 		 * This check does not provide a hard guarantee, it
2981 		 * just helps avoid dangerous mistakes.
2982 		 */
2983 		struct mddev *mddev;
2984 		int overlap = 0;
2985 		struct list_head *tmp;
2986 
2987 		rcu_read_lock();
2988 		for_each_mddev(mddev, tmp) {
2989 			struct md_rdev *rdev2;
2990 
2991 			rdev_for_each(rdev2, mddev)
2992 				if (rdev->bdev == rdev2->bdev &&
2993 				    rdev != rdev2 &&
2994 				    overlaps(rdev->data_offset, rdev->sectors,
2995 					     rdev2->data_offset,
2996 					     rdev2->sectors)) {
2997 					overlap = 1;
2998 					break;
2999 				}
3000 			if (overlap) {
3001 				mddev_put(mddev);
3002 				break;
3003 			}
3004 		}
3005 		rcu_read_unlock();
3006 		if (overlap) {
3007 			/* Someone else could have slipped in a size
3008 			 * change here, but doing so is just silly.
3009 			 * We put oldsectors back because we *know* it is
3010 			 * safe, and trust userspace not to race with
3011 			 * itself
3012 			 */
3013 			rdev->sectors = oldsectors;
3014 			return -EBUSY;
3015 		}
3016 	}
3017 	return len;
3018 }
3019 
3020 static struct rdev_sysfs_entry rdev_size =
3021 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3022 
3023 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3024 {
3025 	unsigned long long recovery_start = rdev->recovery_offset;
3026 
3027 	if (test_bit(In_sync, &rdev->flags) ||
3028 	    recovery_start == MaxSector)
3029 		return sprintf(page, "none\n");
3030 
3031 	return sprintf(page, "%llu\n", recovery_start);
3032 }
3033 
3034 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3035 {
3036 	unsigned long long recovery_start;
3037 
3038 	if (cmd_match(buf, "none"))
3039 		recovery_start = MaxSector;
3040 	else if (kstrtoull(buf, 10, &recovery_start))
3041 		return -EINVAL;
3042 
3043 	if (rdev->mddev->pers &&
3044 	    rdev->raid_disk >= 0)
3045 		return -EBUSY;
3046 
3047 	rdev->recovery_offset = recovery_start;
3048 	if (recovery_start == MaxSector)
3049 		set_bit(In_sync, &rdev->flags);
3050 	else
3051 		clear_bit(In_sync, &rdev->flags);
3052 	return len;
3053 }
3054 
3055 static struct rdev_sysfs_entry rdev_recovery_start =
3056 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3057 
3058 /* sysfs access to bad-blocks list.
3059  * We present two files.
3060  * 'bad-blocks' lists sector numbers and lengths of ranges that
3061  *    are recorded as bad.  The list is truncated to fit within
3062  *    the one-page limit of sysfs.
3063  *    Writing "sector length" to this file adds an acknowledged
3064  *    bad block list.
3065  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3066  *    been acknowledged.  Writing to this file adds bad blocks
3067  *    without acknowledging them.  This is largely for testing.
3068  */
3069 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3070 {
3071 	return badblocks_show(&rdev->badblocks, page, 0);
3072 }
3073 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3074 {
3075 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3076 	/* Maybe that ack was all we needed */
3077 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3078 		wake_up(&rdev->blocked_wait);
3079 	return rv;
3080 }
3081 static struct rdev_sysfs_entry rdev_bad_blocks =
3082 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3083 
3084 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3085 {
3086 	return badblocks_show(&rdev->badblocks, page, 1);
3087 }
3088 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3089 {
3090 	return badblocks_store(&rdev->badblocks, page, len, 1);
3091 }
3092 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3093 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3094 
3095 static struct attribute *rdev_default_attrs[] = {
3096 	&rdev_state.attr,
3097 	&rdev_errors.attr,
3098 	&rdev_slot.attr,
3099 	&rdev_offset.attr,
3100 	&rdev_new_offset.attr,
3101 	&rdev_size.attr,
3102 	&rdev_recovery_start.attr,
3103 	&rdev_bad_blocks.attr,
3104 	&rdev_unack_bad_blocks.attr,
3105 	NULL,
3106 };
3107 static ssize_t
3108 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3109 {
3110 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3111 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3112 
3113 	if (!entry->show)
3114 		return -EIO;
3115 	if (!rdev->mddev)
3116 		return -EBUSY;
3117 	return entry->show(rdev, page);
3118 }
3119 
3120 static ssize_t
3121 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3122 	      const char *page, size_t length)
3123 {
3124 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3125 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3126 	ssize_t rv;
3127 	struct mddev *mddev = rdev->mddev;
3128 
3129 	if (!entry->store)
3130 		return -EIO;
3131 	if (!capable(CAP_SYS_ADMIN))
3132 		return -EACCES;
3133 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3134 	if (!rv) {
3135 		if (rdev->mddev == NULL)
3136 			rv = -EBUSY;
3137 		else
3138 			rv = entry->store(rdev, page, length);
3139 		mddev_unlock(mddev);
3140 	}
3141 	return rv;
3142 }
3143 
3144 static void rdev_free(struct kobject *ko)
3145 {
3146 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3147 	kfree(rdev);
3148 }
3149 static const struct sysfs_ops rdev_sysfs_ops = {
3150 	.show		= rdev_attr_show,
3151 	.store		= rdev_attr_store,
3152 };
3153 static struct kobj_type rdev_ktype = {
3154 	.release	= rdev_free,
3155 	.sysfs_ops	= &rdev_sysfs_ops,
3156 	.default_attrs	= rdev_default_attrs,
3157 };
3158 
3159 int md_rdev_init(struct md_rdev *rdev)
3160 {
3161 	rdev->desc_nr = -1;
3162 	rdev->saved_raid_disk = -1;
3163 	rdev->raid_disk = -1;
3164 	rdev->flags = 0;
3165 	rdev->data_offset = 0;
3166 	rdev->new_data_offset = 0;
3167 	rdev->sb_events = 0;
3168 	rdev->last_read_error.tv_sec  = 0;
3169 	rdev->last_read_error.tv_nsec = 0;
3170 	rdev->sb_loaded = 0;
3171 	rdev->bb_page = NULL;
3172 	atomic_set(&rdev->nr_pending, 0);
3173 	atomic_set(&rdev->read_errors, 0);
3174 	atomic_set(&rdev->corrected_errors, 0);
3175 
3176 	INIT_LIST_HEAD(&rdev->same_set);
3177 	init_waitqueue_head(&rdev->blocked_wait);
3178 
3179 	/* Add space to store bad block list.
3180 	 * This reserves the space even on arrays where it cannot
3181 	 * be used - I wonder if that matters
3182 	 */
3183 	return badblocks_init(&rdev->badblocks, 0);
3184 }
3185 EXPORT_SYMBOL_GPL(md_rdev_init);
3186 /*
3187  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3188  *
3189  * mark the device faulty if:
3190  *
3191  *   - the device is nonexistent (zero size)
3192  *   - the device has no valid superblock
3193  *
3194  * a faulty rdev _never_ has rdev->sb set.
3195  */
3196 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3197 {
3198 	char b[BDEVNAME_SIZE];
3199 	int err;
3200 	struct md_rdev *rdev;
3201 	sector_t size;
3202 
3203 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3204 	if (!rdev) {
3205 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3206 		return ERR_PTR(-ENOMEM);
3207 	}
3208 
3209 	err = md_rdev_init(rdev);
3210 	if (err)
3211 		goto abort_free;
3212 	err = alloc_disk_sb(rdev);
3213 	if (err)
3214 		goto abort_free;
3215 
3216 	err = lock_rdev(rdev, newdev, super_format == -2);
3217 	if (err)
3218 		goto abort_free;
3219 
3220 	kobject_init(&rdev->kobj, &rdev_ktype);
3221 
3222 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3223 	if (!size) {
3224 		printk(KERN_WARNING
3225 			"md: %s has zero or unknown size, marking faulty!\n",
3226 			bdevname(rdev->bdev,b));
3227 		err = -EINVAL;
3228 		goto abort_free;
3229 	}
3230 
3231 	if (super_format >= 0) {
3232 		err = super_types[super_format].
3233 			load_super(rdev, NULL, super_minor);
3234 		if (err == -EINVAL) {
3235 			printk(KERN_WARNING
3236 				"md: %s does not have a valid v%d.%d "
3237 			       "superblock, not importing!\n",
3238 				bdevname(rdev->bdev,b),
3239 			       super_format, super_minor);
3240 			goto abort_free;
3241 		}
3242 		if (err < 0) {
3243 			printk(KERN_WARNING
3244 				"md: could not read %s's sb, not importing!\n",
3245 				bdevname(rdev->bdev,b));
3246 			goto abort_free;
3247 		}
3248 	}
3249 
3250 	return rdev;
3251 
3252 abort_free:
3253 	if (rdev->bdev)
3254 		unlock_rdev(rdev);
3255 	md_rdev_clear(rdev);
3256 	kfree(rdev);
3257 	return ERR_PTR(err);
3258 }
3259 
3260 /*
3261  * Check a full RAID array for plausibility
3262  */
3263 
3264 static void analyze_sbs(struct mddev *mddev)
3265 {
3266 	int i;
3267 	struct md_rdev *rdev, *freshest, *tmp;
3268 	char b[BDEVNAME_SIZE];
3269 
3270 	freshest = NULL;
3271 	rdev_for_each_safe(rdev, tmp, mddev)
3272 		switch (super_types[mddev->major_version].
3273 			load_super(rdev, freshest, mddev->minor_version)) {
3274 		case 1:
3275 			freshest = rdev;
3276 			break;
3277 		case 0:
3278 			break;
3279 		default:
3280 			printk( KERN_ERR \
3281 				"md: fatal superblock inconsistency in %s"
3282 				" -- removing from array\n",
3283 				bdevname(rdev->bdev,b));
3284 			md_kick_rdev_from_array(rdev);
3285 		}
3286 
3287 	super_types[mddev->major_version].
3288 		validate_super(mddev, freshest);
3289 
3290 	i = 0;
3291 	rdev_for_each_safe(rdev, tmp, mddev) {
3292 		if (mddev->max_disks &&
3293 		    (rdev->desc_nr >= mddev->max_disks ||
3294 		     i > mddev->max_disks)) {
3295 			printk(KERN_WARNING
3296 			       "md: %s: %s: only %d devices permitted\n",
3297 			       mdname(mddev), bdevname(rdev->bdev, b),
3298 			       mddev->max_disks);
3299 			md_kick_rdev_from_array(rdev);
3300 			continue;
3301 		}
3302 		if (rdev != freshest) {
3303 			if (super_types[mddev->major_version].
3304 			    validate_super(mddev, rdev)) {
3305 				printk(KERN_WARNING "md: kicking non-fresh %s"
3306 					" from array!\n",
3307 					bdevname(rdev->bdev,b));
3308 				md_kick_rdev_from_array(rdev);
3309 				continue;
3310 			}
3311 		}
3312 		if (mddev->level == LEVEL_MULTIPATH) {
3313 			rdev->desc_nr = i++;
3314 			rdev->raid_disk = rdev->desc_nr;
3315 			set_bit(In_sync, &rdev->flags);
3316 		} else if (rdev->raid_disk >=
3317 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3318 			   !test_bit(Journal, &rdev->flags)) {
3319 			rdev->raid_disk = -1;
3320 			clear_bit(In_sync, &rdev->flags);
3321 		}
3322 	}
3323 }
3324 
3325 /* Read a fixed-point number.
3326  * Numbers in sysfs attributes should be in "standard" units where
3327  * possible, so time should be in seconds.
3328  * However we internally use a a much smaller unit such as
3329  * milliseconds or jiffies.
3330  * This function takes a decimal number with a possible fractional
3331  * component, and produces an integer which is the result of
3332  * multiplying that number by 10^'scale'.
3333  * all without any floating-point arithmetic.
3334  */
3335 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3336 {
3337 	unsigned long result = 0;
3338 	long decimals = -1;
3339 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3340 		if (*cp == '.')
3341 			decimals = 0;
3342 		else if (decimals < scale) {
3343 			unsigned int value;
3344 			value = *cp - '0';
3345 			result = result * 10 + value;
3346 			if (decimals >= 0)
3347 				decimals++;
3348 		}
3349 		cp++;
3350 	}
3351 	if (*cp == '\n')
3352 		cp++;
3353 	if (*cp)
3354 		return -EINVAL;
3355 	if (decimals < 0)
3356 		decimals = 0;
3357 	while (decimals < scale) {
3358 		result *= 10;
3359 		decimals ++;
3360 	}
3361 	*res = result;
3362 	return 0;
3363 }
3364 
3365 static ssize_t
3366 safe_delay_show(struct mddev *mddev, char *page)
3367 {
3368 	int msec = (mddev->safemode_delay*1000)/HZ;
3369 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3370 }
3371 static ssize_t
3372 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3373 {
3374 	unsigned long msec;
3375 
3376 	if (mddev_is_clustered(mddev)) {
3377 		pr_info("md: Safemode is disabled for clustered mode\n");
3378 		return -EINVAL;
3379 	}
3380 
3381 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3382 		return -EINVAL;
3383 	if (msec == 0)
3384 		mddev->safemode_delay = 0;
3385 	else {
3386 		unsigned long old_delay = mddev->safemode_delay;
3387 		unsigned long new_delay = (msec*HZ)/1000;
3388 
3389 		if (new_delay == 0)
3390 			new_delay = 1;
3391 		mddev->safemode_delay = new_delay;
3392 		if (new_delay < old_delay || old_delay == 0)
3393 			mod_timer(&mddev->safemode_timer, jiffies+1);
3394 	}
3395 	return len;
3396 }
3397 static struct md_sysfs_entry md_safe_delay =
3398 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3399 
3400 static ssize_t
3401 level_show(struct mddev *mddev, char *page)
3402 {
3403 	struct md_personality *p;
3404 	int ret;
3405 	spin_lock(&mddev->lock);
3406 	p = mddev->pers;
3407 	if (p)
3408 		ret = sprintf(page, "%s\n", p->name);
3409 	else if (mddev->clevel[0])
3410 		ret = sprintf(page, "%s\n", mddev->clevel);
3411 	else if (mddev->level != LEVEL_NONE)
3412 		ret = sprintf(page, "%d\n", mddev->level);
3413 	else
3414 		ret = 0;
3415 	spin_unlock(&mddev->lock);
3416 	return ret;
3417 }
3418 
3419 static ssize_t
3420 level_store(struct mddev *mddev, const char *buf, size_t len)
3421 {
3422 	char clevel[16];
3423 	ssize_t rv;
3424 	size_t slen = len;
3425 	struct md_personality *pers, *oldpers;
3426 	long level;
3427 	void *priv, *oldpriv;
3428 	struct md_rdev *rdev;
3429 
3430 	if (slen == 0 || slen >= sizeof(clevel))
3431 		return -EINVAL;
3432 
3433 	rv = mddev_lock(mddev);
3434 	if (rv)
3435 		return rv;
3436 
3437 	if (mddev->pers == NULL) {
3438 		strncpy(mddev->clevel, buf, slen);
3439 		if (mddev->clevel[slen-1] == '\n')
3440 			slen--;
3441 		mddev->clevel[slen] = 0;
3442 		mddev->level = LEVEL_NONE;
3443 		rv = len;
3444 		goto out_unlock;
3445 	}
3446 	rv = -EROFS;
3447 	if (mddev->ro)
3448 		goto out_unlock;
3449 
3450 	/* request to change the personality.  Need to ensure:
3451 	 *  - array is not engaged in resync/recovery/reshape
3452 	 *  - old personality can be suspended
3453 	 *  - new personality will access other array.
3454 	 */
3455 
3456 	rv = -EBUSY;
3457 	if (mddev->sync_thread ||
3458 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3459 	    mddev->reshape_position != MaxSector ||
3460 	    mddev->sysfs_active)
3461 		goto out_unlock;
3462 
3463 	rv = -EINVAL;
3464 	if (!mddev->pers->quiesce) {
3465 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3466 		       mdname(mddev), mddev->pers->name);
3467 		goto out_unlock;
3468 	}
3469 
3470 	/* Now find the new personality */
3471 	strncpy(clevel, buf, slen);
3472 	if (clevel[slen-1] == '\n')
3473 		slen--;
3474 	clevel[slen] = 0;
3475 	if (kstrtol(clevel, 10, &level))
3476 		level = LEVEL_NONE;
3477 
3478 	if (request_module("md-%s", clevel) != 0)
3479 		request_module("md-level-%s", clevel);
3480 	spin_lock(&pers_lock);
3481 	pers = find_pers(level, clevel);
3482 	if (!pers || !try_module_get(pers->owner)) {
3483 		spin_unlock(&pers_lock);
3484 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3485 		rv = -EINVAL;
3486 		goto out_unlock;
3487 	}
3488 	spin_unlock(&pers_lock);
3489 
3490 	if (pers == mddev->pers) {
3491 		/* Nothing to do! */
3492 		module_put(pers->owner);
3493 		rv = len;
3494 		goto out_unlock;
3495 	}
3496 	if (!pers->takeover) {
3497 		module_put(pers->owner);
3498 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3499 		       mdname(mddev), clevel);
3500 		rv = -EINVAL;
3501 		goto out_unlock;
3502 	}
3503 
3504 	rdev_for_each(rdev, mddev)
3505 		rdev->new_raid_disk = rdev->raid_disk;
3506 
3507 	/* ->takeover must set new_* and/or delta_disks
3508 	 * if it succeeds, and may set them when it fails.
3509 	 */
3510 	priv = pers->takeover(mddev);
3511 	if (IS_ERR(priv)) {
3512 		mddev->new_level = mddev->level;
3513 		mddev->new_layout = mddev->layout;
3514 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3515 		mddev->raid_disks -= mddev->delta_disks;
3516 		mddev->delta_disks = 0;
3517 		mddev->reshape_backwards = 0;
3518 		module_put(pers->owner);
3519 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3520 		       mdname(mddev), clevel);
3521 		rv = PTR_ERR(priv);
3522 		goto out_unlock;
3523 	}
3524 
3525 	/* Looks like we have a winner */
3526 	mddev_suspend(mddev);
3527 	mddev_detach(mddev);
3528 
3529 	spin_lock(&mddev->lock);
3530 	oldpers = mddev->pers;
3531 	oldpriv = mddev->private;
3532 	mddev->pers = pers;
3533 	mddev->private = priv;
3534 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3535 	mddev->level = mddev->new_level;
3536 	mddev->layout = mddev->new_layout;
3537 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3538 	mddev->delta_disks = 0;
3539 	mddev->reshape_backwards = 0;
3540 	mddev->degraded = 0;
3541 	spin_unlock(&mddev->lock);
3542 
3543 	if (oldpers->sync_request == NULL &&
3544 	    mddev->external) {
3545 		/* We are converting from a no-redundancy array
3546 		 * to a redundancy array and metadata is managed
3547 		 * externally so we need to be sure that writes
3548 		 * won't block due to a need to transition
3549 		 *      clean->dirty
3550 		 * until external management is started.
3551 		 */
3552 		mddev->in_sync = 0;
3553 		mddev->safemode_delay = 0;
3554 		mddev->safemode = 0;
3555 	}
3556 
3557 	oldpers->free(mddev, oldpriv);
3558 
3559 	if (oldpers->sync_request == NULL &&
3560 	    pers->sync_request != NULL) {
3561 		/* need to add the md_redundancy_group */
3562 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3563 			printk(KERN_WARNING
3564 			       "md: cannot register extra attributes for %s\n",
3565 			       mdname(mddev));
3566 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3567 	}
3568 	if (oldpers->sync_request != NULL &&
3569 	    pers->sync_request == NULL) {
3570 		/* need to remove the md_redundancy_group */
3571 		if (mddev->to_remove == NULL)
3572 			mddev->to_remove = &md_redundancy_group;
3573 	}
3574 
3575 	rdev_for_each(rdev, mddev) {
3576 		if (rdev->raid_disk < 0)
3577 			continue;
3578 		if (rdev->new_raid_disk >= mddev->raid_disks)
3579 			rdev->new_raid_disk = -1;
3580 		if (rdev->new_raid_disk == rdev->raid_disk)
3581 			continue;
3582 		sysfs_unlink_rdev(mddev, rdev);
3583 	}
3584 	rdev_for_each(rdev, mddev) {
3585 		if (rdev->raid_disk < 0)
3586 			continue;
3587 		if (rdev->new_raid_disk == rdev->raid_disk)
3588 			continue;
3589 		rdev->raid_disk = rdev->new_raid_disk;
3590 		if (rdev->raid_disk < 0)
3591 			clear_bit(In_sync, &rdev->flags);
3592 		else {
3593 			if (sysfs_link_rdev(mddev, rdev))
3594 				printk(KERN_WARNING "md: cannot register rd%d"
3595 				       " for %s after level change\n",
3596 				       rdev->raid_disk, mdname(mddev));
3597 		}
3598 	}
3599 
3600 	if (pers->sync_request == NULL) {
3601 		/* this is now an array without redundancy, so
3602 		 * it must always be in_sync
3603 		 */
3604 		mddev->in_sync = 1;
3605 		del_timer_sync(&mddev->safemode_timer);
3606 	}
3607 	blk_set_stacking_limits(&mddev->queue->limits);
3608 	pers->run(mddev);
3609 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3610 	mddev_resume(mddev);
3611 	if (!mddev->thread)
3612 		md_update_sb(mddev, 1);
3613 	sysfs_notify(&mddev->kobj, NULL, "level");
3614 	md_new_event(mddev);
3615 	rv = len;
3616 out_unlock:
3617 	mddev_unlock(mddev);
3618 	return rv;
3619 }
3620 
3621 static struct md_sysfs_entry md_level =
3622 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3623 
3624 static ssize_t
3625 layout_show(struct mddev *mddev, char *page)
3626 {
3627 	/* just a number, not meaningful for all levels */
3628 	if (mddev->reshape_position != MaxSector &&
3629 	    mddev->layout != mddev->new_layout)
3630 		return sprintf(page, "%d (%d)\n",
3631 			       mddev->new_layout, mddev->layout);
3632 	return sprintf(page, "%d\n", mddev->layout);
3633 }
3634 
3635 static ssize_t
3636 layout_store(struct mddev *mddev, const char *buf, size_t len)
3637 {
3638 	unsigned int n;
3639 	int err;
3640 
3641 	err = kstrtouint(buf, 10, &n);
3642 	if (err < 0)
3643 		return err;
3644 	err = mddev_lock(mddev);
3645 	if (err)
3646 		return err;
3647 
3648 	if (mddev->pers) {
3649 		if (mddev->pers->check_reshape == NULL)
3650 			err = -EBUSY;
3651 		else if (mddev->ro)
3652 			err = -EROFS;
3653 		else {
3654 			mddev->new_layout = n;
3655 			err = mddev->pers->check_reshape(mddev);
3656 			if (err)
3657 				mddev->new_layout = mddev->layout;
3658 		}
3659 	} else {
3660 		mddev->new_layout = n;
3661 		if (mddev->reshape_position == MaxSector)
3662 			mddev->layout = n;
3663 	}
3664 	mddev_unlock(mddev);
3665 	return err ?: len;
3666 }
3667 static struct md_sysfs_entry md_layout =
3668 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3669 
3670 static ssize_t
3671 raid_disks_show(struct mddev *mddev, char *page)
3672 {
3673 	if (mddev->raid_disks == 0)
3674 		return 0;
3675 	if (mddev->reshape_position != MaxSector &&
3676 	    mddev->delta_disks != 0)
3677 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3678 			       mddev->raid_disks - mddev->delta_disks);
3679 	return sprintf(page, "%d\n", mddev->raid_disks);
3680 }
3681 
3682 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3683 
3684 static ssize_t
3685 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3686 {
3687 	unsigned int n;
3688 	int err;
3689 
3690 	err = kstrtouint(buf, 10, &n);
3691 	if (err < 0)
3692 		return err;
3693 
3694 	err = mddev_lock(mddev);
3695 	if (err)
3696 		return err;
3697 	if (mddev->pers)
3698 		err = update_raid_disks(mddev, n);
3699 	else if (mddev->reshape_position != MaxSector) {
3700 		struct md_rdev *rdev;
3701 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3702 
3703 		err = -EINVAL;
3704 		rdev_for_each(rdev, mddev) {
3705 			if (olddisks < n &&
3706 			    rdev->data_offset < rdev->new_data_offset)
3707 				goto out_unlock;
3708 			if (olddisks > n &&
3709 			    rdev->data_offset > rdev->new_data_offset)
3710 				goto out_unlock;
3711 		}
3712 		err = 0;
3713 		mddev->delta_disks = n - olddisks;
3714 		mddev->raid_disks = n;
3715 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3716 	} else
3717 		mddev->raid_disks = n;
3718 out_unlock:
3719 	mddev_unlock(mddev);
3720 	return err ? err : len;
3721 }
3722 static struct md_sysfs_entry md_raid_disks =
3723 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3724 
3725 static ssize_t
3726 chunk_size_show(struct mddev *mddev, char *page)
3727 {
3728 	if (mddev->reshape_position != MaxSector &&
3729 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3730 		return sprintf(page, "%d (%d)\n",
3731 			       mddev->new_chunk_sectors << 9,
3732 			       mddev->chunk_sectors << 9);
3733 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3734 }
3735 
3736 static ssize_t
3737 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3738 {
3739 	unsigned long n;
3740 	int err;
3741 
3742 	err = kstrtoul(buf, 10, &n);
3743 	if (err < 0)
3744 		return err;
3745 
3746 	err = mddev_lock(mddev);
3747 	if (err)
3748 		return err;
3749 	if (mddev->pers) {
3750 		if (mddev->pers->check_reshape == NULL)
3751 			err = -EBUSY;
3752 		else if (mddev->ro)
3753 			err = -EROFS;
3754 		else {
3755 			mddev->new_chunk_sectors = n >> 9;
3756 			err = mddev->pers->check_reshape(mddev);
3757 			if (err)
3758 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3759 		}
3760 	} else {
3761 		mddev->new_chunk_sectors = n >> 9;
3762 		if (mddev->reshape_position == MaxSector)
3763 			mddev->chunk_sectors = n >> 9;
3764 	}
3765 	mddev_unlock(mddev);
3766 	return err ?: len;
3767 }
3768 static struct md_sysfs_entry md_chunk_size =
3769 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3770 
3771 static ssize_t
3772 resync_start_show(struct mddev *mddev, char *page)
3773 {
3774 	if (mddev->recovery_cp == MaxSector)
3775 		return sprintf(page, "none\n");
3776 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3777 }
3778 
3779 static ssize_t
3780 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3781 {
3782 	unsigned long long n;
3783 	int err;
3784 
3785 	if (cmd_match(buf, "none"))
3786 		n = MaxSector;
3787 	else {
3788 		err = kstrtoull(buf, 10, &n);
3789 		if (err < 0)
3790 			return err;
3791 		if (n != (sector_t)n)
3792 			return -EINVAL;
3793 	}
3794 
3795 	err = mddev_lock(mddev);
3796 	if (err)
3797 		return err;
3798 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3799 		err = -EBUSY;
3800 
3801 	if (!err) {
3802 		mddev->recovery_cp = n;
3803 		if (mddev->pers)
3804 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3805 	}
3806 	mddev_unlock(mddev);
3807 	return err ?: len;
3808 }
3809 static struct md_sysfs_entry md_resync_start =
3810 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3811 		resync_start_show, resync_start_store);
3812 
3813 /*
3814  * The array state can be:
3815  *
3816  * clear
3817  *     No devices, no size, no level
3818  *     Equivalent to STOP_ARRAY ioctl
3819  * inactive
3820  *     May have some settings, but array is not active
3821  *        all IO results in error
3822  *     When written, doesn't tear down array, but just stops it
3823  * suspended (not supported yet)
3824  *     All IO requests will block. The array can be reconfigured.
3825  *     Writing this, if accepted, will block until array is quiescent
3826  * readonly
3827  *     no resync can happen.  no superblocks get written.
3828  *     write requests fail
3829  * read-auto
3830  *     like readonly, but behaves like 'clean' on a write request.
3831  *
3832  * clean - no pending writes, but otherwise active.
3833  *     When written to inactive array, starts without resync
3834  *     If a write request arrives then
3835  *       if metadata is known, mark 'dirty' and switch to 'active'.
3836  *       if not known, block and switch to write-pending
3837  *     If written to an active array that has pending writes, then fails.
3838  * active
3839  *     fully active: IO and resync can be happening.
3840  *     When written to inactive array, starts with resync
3841  *
3842  * write-pending
3843  *     clean, but writes are blocked waiting for 'active' to be written.
3844  *
3845  * active-idle
3846  *     like active, but no writes have been seen for a while (100msec).
3847  *
3848  */
3849 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3850 		   write_pending, active_idle, bad_word};
3851 static char *array_states[] = {
3852 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3853 	"write-pending", "active-idle", NULL };
3854 
3855 static int match_word(const char *word, char **list)
3856 {
3857 	int n;
3858 	for (n=0; list[n]; n++)
3859 		if (cmd_match(word, list[n]))
3860 			break;
3861 	return n;
3862 }
3863 
3864 static ssize_t
3865 array_state_show(struct mddev *mddev, char *page)
3866 {
3867 	enum array_state st = inactive;
3868 
3869 	if (mddev->pers)
3870 		switch(mddev->ro) {
3871 		case 1:
3872 			st = readonly;
3873 			break;
3874 		case 2:
3875 			st = read_auto;
3876 			break;
3877 		case 0:
3878 			if (mddev->in_sync)
3879 				st = clean;
3880 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3881 				st = write_pending;
3882 			else if (mddev->safemode)
3883 				st = active_idle;
3884 			else
3885 				st = active;
3886 		}
3887 	else {
3888 		if (list_empty(&mddev->disks) &&
3889 		    mddev->raid_disks == 0 &&
3890 		    mddev->dev_sectors == 0)
3891 			st = clear;
3892 		else
3893 			st = inactive;
3894 	}
3895 	return sprintf(page, "%s\n", array_states[st]);
3896 }
3897 
3898 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3899 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3900 static int do_md_run(struct mddev *mddev);
3901 static int restart_array(struct mddev *mddev);
3902 
3903 static ssize_t
3904 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3905 {
3906 	int err;
3907 	enum array_state st = match_word(buf, array_states);
3908 
3909 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3910 		/* don't take reconfig_mutex when toggling between
3911 		 * clean and active
3912 		 */
3913 		spin_lock(&mddev->lock);
3914 		if (st == active) {
3915 			restart_array(mddev);
3916 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3917 			wake_up(&mddev->sb_wait);
3918 			err = 0;
3919 		} else /* st == clean */ {
3920 			restart_array(mddev);
3921 			if (atomic_read(&mddev->writes_pending) == 0) {
3922 				if (mddev->in_sync == 0) {
3923 					mddev->in_sync = 1;
3924 					if (mddev->safemode == 1)
3925 						mddev->safemode = 0;
3926 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3927 				}
3928 				err = 0;
3929 			} else
3930 				err = -EBUSY;
3931 		}
3932 		spin_unlock(&mddev->lock);
3933 		return err ?: len;
3934 	}
3935 	err = mddev_lock(mddev);
3936 	if (err)
3937 		return err;
3938 	err = -EINVAL;
3939 	switch(st) {
3940 	case bad_word:
3941 		break;
3942 	case clear:
3943 		/* stopping an active array */
3944 		err = do_md_stop(mddev, 0, NULL);
3945 		break;
3946 	case inactive:
3947 		/* stopping an active array */
3948 		if (mddev->pers)
3949 			err = do_md_stop(mddev, 2, NULL);
3950 		else
3951 			err = 0; /* already inactive */
3952 		break;
3953 	case suspended:
3954 		break; /* not supported yet */
3955 	case readonly:
3956 		if (mddev->pers)
3957 			err = md_set_readonly(mddev, NULL);
3958 		else {
3959 			mddev->ro = 1;
3960 			set_disk_ro(mddev->gendisk, 1);
3961 			err = do_md_run(mddev);
3962 		}
3963 		break;
3964 	case read_auto:
3965 		if (mddev->pers) {
3966 			if (mddev->ro == 0)
3967 				err = md_set_readonly(mddev, NULL);
3968 			else if (mddev->ro == 1)
3969 				err = restart_array(mddev);
3970 			if (err == 0) {
3971 				mddev->ro = 2;
3972 				set_disk_ro(mddev->gendisk, 0);
3973 			}
3974 		} else {
3975 			mddev->ro = 2;
3976 			err = do_md_run(mddev);
3977 		}
3978 		break;
3979 	case clean:
3980 		if (mddev->pers) {
3981 			err = restart_array(mddev);
3982 			if (err)
3983 				break;
3984 			spin_lock(&mddev->lock);
3985 			if (atomic_read(&mddev->writes_pending) == 0) {
3986 				if (mddev->in_sync == 0) {
3987 					mddev->in_sync = 1;
3988 					if (mddev->safemode == 1)
3989 						mddev->safemode = 0;
3990 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3991 				}
3992 				err = 0;
3993 			} else
3994 				err = -EBUSY;
3995 			spin_unlock(&mddev->lock);
3996 		} else
3997 			err = -EINVAL;
3998 		break;
3999 	case active:
4000 		if (mddev->pers) {
4001 			err = restart_array(mddev);
4002 			if (err)
4003 				break;
4004 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4005 			wake_up(&mddev->sb_wait);
4006 			err = 0;
4007 		} else {
4008 			mddev->ro = 0;
4009 			set_disk_ro(mddev->gendisk, 0);
4010 			err = do_md_run(mddev);
4011 		}
4012 		break;
4013 	case write_pending:
4014 	case active_idle:
4015 		/* these cannot be set */
4016 		break;
4017 	}
4018 
4019 	if (!err) {
4020 		if (mddev->hold_active == UNTIL_IOCTL)
4021 			mddev->hold_active = 0;
4022 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4023 	}
4024 	mddev_unlock(mddev);
4025 	return err ?: len;
4026 }
4027 static struct md_sysfs_entry md_array_state =
4028 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4029 
4030 static ssize_t
4031 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4032 	return sprintf(page, "%d\n",
4033 		       atomic_read(&mddev->max_corr_read_errors));
4034 }
4035 
4036 static ssize_t
4037 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4038 {
4039 	unsigned int n;
4040 	int rv;
4041 
4042 	rv = kstrtouint(buf, 10, &n);
4043 	if (rv < 0)
4044 		return rv;
4045 	atomic_set(&mddev->max_corr_read_errors, n);
4046 	return len;
4047 }
4048 
4049 static struct md_sysfs_entry max_corr_read_errors =
4050 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4051 	max_corrected_read_errors_store);
4052 
4053 static ssize_t
4054 null_show(struct mddev *mddev, char *page)
4055 {
4056 	return -EINVAL;
4057 }
4058 
4059 static ssize_t
4060 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4061 {
4062 	/* buf must be %d:%d\n? giving major and minor numbers */
4063 	/* The new device is added to the array.
4064 	 * If the array has a persistent superblock, we read the
4065 	 * superblock to initialise info and check validity.
4066 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4067 	 * which mainly checks size.
4068 	 */
4069 	char *e;
4070 	int major = simple_strtoul(buf, &e, 10);
4071 	int minor;
4072 	dev_t dev;
4073 	struct md_rdev *rdev;
4074 	int err;
4075 
4076 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4077 		return -EINVAL;
4078 	minor = simple_strtoul(e+1, &e, 10);
4079 	if (*e && *e != '\n')
4080 		return -EINVAL;
4081 	dev = MKDEV(major, minor);
4082 	if (major != MAJOR(dev) ||
4083 	    minor != MINOR(dev))
4084 		return -EOVERFLOW;
4085 
4086 	flush_workqueue(md_misc_wq);
4087 
4088 	err = mddev_lock(mddev);
4089 	if (err)
4090 		return err;
4091 	if (mddev->persistent) {
4092 		rdev = md_import_device(dev, mddev->major_version,
4093 					mddev->minor_version);
4094 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4095 			struct md_rdev *rdev0
4096 				= list_entry(mddev->disks.next,
4097 					     struct md_rdev, same_set);
4098 			err = super_types[mddev->major_version]
4099 				.load_super(rdev, rdev0, mddev->minor_version);
4100 			if (err < 0)
4101 				goto out;
4102 		}
4103 	} else if (mddev->external)
4104 		rdev = md_import_device(dev, -2, -1);
4105 	else
4106 		rdev = md_import_device(dev, -1, -1);
4107 
4108 	if (IS_ERR(rdev)) {
4109 		mddev_unlock(mddev);
4110 		return PTR_ERR(rdev);
4111 	}
4112 	err = bind_rdev_to_array(rdev, mddev);
4113  out:
4114 	if (err)
4115 		export_rdev(rdev);
4116 	mddev_unlock(mddev);
4117 	return err ? err : len;
4118 }
4119 
4120 static struct md_sysfs_entry md_new_device =
4121 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4122 
4123 static ssize_t
4124 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4125 {
4126 	char *end;
4127 	unsigned long chunk, end_chunk;
4128 	int err;
4129 
4130 	err = mddev_lock(mddev);
4131 	if (err)
4132 		return err;
4133 	if (!mddev->bitmap)
4134 		goto out;
4135 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4136 	while (*buf) {
4137 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4138 		if (buf == end) break;
4139 		if (*end == '-') { /* range */
4140 			buf = end + 1;
4141 			end_chunk = simple_strtoul(buf, &end, 0);
4142 			if (buf == end) break;
4143 		}
4144 		if (*end && !isspace(*end)) break;
4145 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4146 		buf = skip_spaces(end);
4147 	}
4148 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4149 out:
4150 	mddev_unlock(mddev);
4151 	return len;
4152 }
4153 
4154 static struct md_sysfs_entry md_bitmap =
4155 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4156 
4157 static ssize_t
4158 size_show(struct mddev *mddev, char *page)
4159 {
4160 	return sprintf(page, "%llu\n",
4161 		(unsigned long long)mddev->dev_sectors / 2);
4162 }
4163 
4164 static int update_size(struct mddev *mddev, sector_t num_sectors);
4165 
4166 static ssize_t
4167 size_store(struct mddev *mddev, const char *buf, size_t len)
4168 {
4169 	/* If array is inactive, we can reduce the component size, but
4170 	 * not increase it (except from 0).
4171 	 * If array is active, we can try an on-line resize
4172 	 */
4173 	sector_t sectors;
4174 	int err = strict_blocks_to_sectors(buf, &sectors);
4175 
4176 	if (err < 0)
4177 		return err;
4178 	err = mddev_lock(mddev);
4179 	if (err)
4180 		return err;
4181 	if (mddev->pers) {
4182 		err = update_size(mddev, sectors);
4183 		md_update_sb(mddev, 1);
4184 	} else {
4185 		if (mddev->dev_sectors == 0 ||
4186 		    mddev->dev_sectors > sectors)
4187 			mddev->dev_sectors = sectors;
4188 		else
4189 			err = -ENOSPC;
4190 	}
4191 	mddev_unlock(mddev);
4192 	return err ? err : len;
4193 }
4194 
4195 static struct md_sysfs_entry md_size =
4196 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4197 
4198 /* Metadata version.
4199  * This is one of
4200  *   'none' for arrays with no metadata (good luck...)
4201  *   'external' for arrays with externally managed metadata,
4202  * or N.M for internally known formats
4203  */
4204 static ssize_t
4205 metadata_show(struct mddev *mddev, char *page)
4206 {
4207 	if (mddev->persistent)
4208 		return sprintf(page, "%d.%d\n",
4209 			       mddev->major_version, mddev->minor_version);
4210 	else if (mddev->external)
4211 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4212 	else
4213 		return sprintf(page, "none\n");
4214 }
4215 
4216 static ssize_t
4217 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4218 {
4219 	int major, minor;
4220 	char *e;
4221 	int err;
4222 	/* Changing the details of 'external' metadata is
4223 	 * always permitted.  Otherwise there must be
4224 	 * no devices attached to the array.
4225 	 */
4226 
4227 	err = mddev_lock(mddev);
4228 	if (err)
4229 		return err;
4230 	err = -EBUSY;
4231 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4232 		;
4233 	else if (!list_empty(&mddev->disks))
4234 		goto out_unlock;
4235 
4236 	err = 0;
4237 	if (cmd_match(buf, "none")) {
4238 		mddev->persistent = 0;
4239 		mddev->external = 0;
4240 		mddev->major_version = 0;
4241 		mddev->minor_version = 90;
4242 		goto out_unlock;
4243 	}
4244 	if (strncmp(buf, "external:", 9) == 0) {
4245 		size_t namelen = len-9;
4246 		if (namelen >= sizeof(mddev->metadata_type))
4247 			namelen = sizeof(mddev->metadata_type)-1;
4248 		strncpy(mddev->metadata_type, buf+9, namelen);
4249 		mddev->metadata_type[namelen] = 0;
4250 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4251 			mddev->metadata_type[--namelen] = 0;
4252 		mddev->persistent = 0;
4253 		mddev->external = 1;
4254 		mddev->major_version = 0;
4255 		mddev->minor_version = 90;
4256 		goto out_unlock;
4257 	}
4258 	major = simple_strtoul(buf, &e, 10);
4259 	err = -EINVAL;
4260 	if (e==buf || *e != '.')
4261 		goto out_unlock;
4262 	buf = e+1;
4263 	minor = simple_strtoul(buf, &e, 10);
4264 	if (e==buf || (*e && *e != '\n') )
4265 		goto out_unlock;
4266 	err = -ENOENT;
4267 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4268 		goto out_unlock;
4269 	mddev->major_version = major;
4270 	mddev->minor_version = minor;
4271 	mddev->persistent = 1;
4272 	mddev->external = 0;
4273 	err = 0;
4274 out_unlock:
4275 	mddev_unlock(mddev);
4276 	return err ?: len;
4277 }
4278 
4279 static struct md_sysfs_entry md_metadata =
4280 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4281 
4282 static ssize_t
4283 action_show(struct mddev *mddev, char *page)
4284 {
4285 	char *type = "idle";
4286 	unsigned long recovery = mddev->recovery;
4287 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4288 		type = "frozen";
4289 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4290 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4291 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4292 			type = "reshape";
4293 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4294 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4295 				type = "resync";
4296 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4297 				type = "check";
4298 			else
4299 				type = "repair";
4300 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4301 			type = "recover";
4302 		else if (mddev->reshape_position != MaxSector)
4303 			type = "reshape";
4304 	}
4305 	return sprintf(page, "%s\n", type);
4306 }
4307 
4308 static ssize_t
4309 action_store(struct mddev *mddev, const char *page, size_t len)
4310 {
4311 	if (!mddev->pers || !mddev->pers->sync_request)
4312 		return -EINVAL;
4313 
4314 
4315 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4316 		if (cmd_match(page, "frozen"))
4317 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4318 		else
4319 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4320 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4321 		    mddev_lock(mddev) == 0) {
4322 			flush_workqueue(md_misc_wq);
4323 			if (mddev->sync_thread) {
4324 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4325 				md_reap_sync_thread(mddev);
4326 			}
4327 			mddev_unlock(mddev);
4328 		}
4329 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4330 		return -EBUSY;
4331 	else if (cmd_match(page, "resync"))
4332 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4333 	else if (cmd_match(page, "recover")) {
4334 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4335 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4336 	} else if (cmd_match(page, "reshape")) {
4337 		int err;
4338 		if (mddev->pers->start_reshape == NULL)
4339 			return -EINVAL;
4340 		err = mddev_lock(mddev);
4341 		if (!err) {
4342 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4343 				err =  -EBUSY;
4344 			else {
4345 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4346 				err = mddev->pers->start_reshape(mddev);
4347 			}
4348 			mddev_unlock(mddev);
4349 		}
4350 		if (err)
4351 			return err;
4352 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4353 	} else {
4354 		if (cmd_match(page, "check"))
4355 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4356 		else if (!cmd_match(page, "repair"))
4357 			return -EINVAL;
4358 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4359 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4360 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4361 	}
4362 	if (mddev->ro == 2) {
4363 		/* A write to sync_action is enough to justify
4364 		 * canceling read-auto mode
4365 		 */
4366 		mddev->ro = 0;
4367 		md_wakeup_thread(mddev->sync_thread);
4368 	}
4369 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4370 	md_wakeup_thread(mddev->thread);
4371 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4372 	return len;
4373 }
4374 
4375 static struct md_sysfs_entry md_scan_mode =
4376 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4377 
4378 static ssize_t
4379 last_sync_action_show(struct mddev *mddev, char *page)
4380 {
4381 	return sprintf(page, "%s\n", mddev->last_sync_action);
4382 }
4383 
4384 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4385 
4386 static ssize_t
4387 mismatch_cnt_show(struct mddev *mddev, char *page)
4388 {
4389 	return sprintf(page, "%llu\n",
4390 		       (unsigned long long)
4391 		       atomic64_read(&mddev->resync_mismatches));
4392 }
4393 
4394 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4395 
4396 static ssize_t
4397 sync_min_show(struct mddev *mddev, char *page)
4398 {
4399 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4400 		       mddev->sync_speed_min ? "local": "system");
4401 }
4402 
4403 static ssize_t
4404 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4405 {
4406 	unsigned int min;
4407 	int rv;
4408 
4409 	if (strncmp(buf, "system", 6)==0) {
4410 		min = 0;
4411 	} else {
4412 		rv = kstrtouint(buf, 10, &min);
4413 		if (rv < 0)
4414 			return rv;
4415 		if (min == 0)
4416 			return -EINVAL;
4417 	}
4418 	mddev->sync_speed_min = min;
4419 	return len;
4420 }
4421 
4422 static struct md_sysfs_entry md_sync_min =
4423 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4424 
4425 static ssize_t
4426 sync_max_show(struct mddev *mddev, char *page)
4427 {
4428 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4429 		       mddev->sync_speed_max ? "local": "system");
4430 }
4431 
4432 static ssize_t
4433 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4434 {
4435 	unsigned int max;
4436 	int rv;
4437 
4438 	if (strncmp(buf, "system", 6)==0) {
4439 		max = 0;
4440 	} else {
4441 		rv = kstrtouint(buf, 10, &max);
4442 		if (rv < 0)
4443 			return rv;
4444 		if (max == 0)
4445 			return -EINVAL;
4446 	}
4447 	mddev->sync_speed_max = max;
4448 	return len;
4449 }
4450 
4451 static struct md_sysfs_entry md_sync_max =
4452 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4453 
4454 static ssize_t
4455 degraded_show(struct mddev *mddev, char *page)
4456 {
4457 	return sprintf(page, "%d\n", mddev->degraded);
4458 }
4459 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4460 
4461 static ssize_t
4462 sync_force_parallel_show(struct mddev *mddev, char *page)
4463 {
4464 	return sprintf(page, "%d\n", mddev->parallel_resync);
4465 }
4466 
4467 static ssize_t
4468 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4469 {
4470 	long n;
4471 
4472 	if (kstrtol(buf, 10, &n))
4473 		return -EINVAL;
4474 
4475 	if (n != 0 && n != 1)
4476 		return -EINVAL;
4477 
4478 	mddev->parallel_resync = n;
4479 
4480 	if (mddev->sync_thread)
4481 		wake_up(&resync_wait);
4482 
4483 	return len;
4484 }
4485 
4486 /* force parallel resync, even with shared block devices */
4487 static struct md_sysfs_entry md_sync_force_parallel =
4488 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4489        sync_force_parallel_show, sync_force_parallel_store);
4490 
4491 static ssize_t
4492 sync_speed_show(struct mddev *mddev, char *page)
4493 {
4494 	unsigned long resync, dt, db;
4495 	if (mddev->curr_resync == 0)
4496 		return sprintf(page, "none\n");
4497 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4498 	dt = (jiffies - mddev->resync_mark) / HZ;
4499 	if (!dt) dt++;
4500 	db = resync - mddev->resync_mark_cnt;
4501 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4502 }
4503 
4504 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4505 
4506 static ssize_t
4507 sync_completed_show(struct mddev *mddev, char *page)
4508 {
4509 	unsigned long long max_sectors, resync;
4510 
4511 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4512 		return sprintf(page, "none\n");
4513 
4514 	if (mddev->curr_resync == 1 ||
4515 	    mddev->curr_resync == 2)
4516 		return sprintf(page, "delayed\n");
4517 
4518 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4519 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4520 		max_sectors = mddev->resync_max_sectors;
4521 	else
4522 		max_sectors = mddev->dev_sectors;
4523 
4524 	resync = mddev->curr_resync_completed;
4525 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4526 }
4527 
4528 static struct md_sysfs_entry md_sync_completed =
4529 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4530 
4531 static ssize_t
4532 min_sync_show(struct mddev *mddev, char *page)
4533 {
4534 	return sprintf(page, "%llu\n",
4535 		       (unsigned long long)mddev->resync_min);
4536 }
4537 static ssize_t
4538 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4539 {
4540 	unsigned long long min;
4541 	int err;
4542 
4543 	if (kstrtoull(buf, 10, &min))
4544 		return -EINVAL;
4545 
4546 	spin_lock(&mddev->lock);
4547 	err = -EINVAL;
4548 	if (min > mddev->resync_max)
4549 		goto out_unlock;
4550 
4551 	err = -EBUSY;
4552 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4553 		goto out_unlock;
4554 
4555 	/* Round down to multiple of 4K for safety */
4556 	mddev->resync_min = round_down(min, 8);
4557 	err = 0;
4558 
4559 out_unlock:
4560 	spin_unlock(&mddev->lock);
4561 	return err ?: len;
4562 }
4563 
4564 static struct md_sysfs_entry md_min_sync =
4565 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4566 
4567 static ssize_t
4568 max_sync_show(struct mddev *mddev, char *page)
4569 {
4570 	if (mddev->resync_max == MaxSector)
4571 		return sprintf(page, "max\n");
4572 	else
4573 		return sprintf(page, "%llu\n",
4574 			       (unsigned long long)mddev->resync_max);
4575 }
4576 static ssize_t
4577 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4578 {
4579 	int err;
4580 	spin_lock(&mddev->lock);
4581 	if (strncmp(buf, "max", 3) == 0)
4582 		mddev->resync_max = MaxSector;
4583 	else {
4584 		unsigned long long max;
4585 		int chunk;
4586 
4587 		err = -EINVAL;
4588 		if (kstrtoull(buf, 10, &max))
4589 			goto out_unlock;
4590 		if (max < mddev->resync_min)
4591 			goto out_unlock;
4592 
4593 		err = -EBUSY;
4594 		if (max < mddev->resync_max &&
4595 		    mddev->ro == 0 &&
4596 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4597 			goto out_unlock;
4598 
4599 		/* Must be a multiple of chunk_size */
4600 		chunk = mddev->chunk_sectors;
4601 		if (chunk) {
4602 			sector_t temp = max;
4603 
4604 			err = -EINVAL;
4605 			if (sector_div(temp, chunk))
4606 				goto out_unlock;
4607 		}
4608 		mddev->resync_max = max;
4609 	}
4610 	wake_up(&mddev->recovery_wait);
4611 	err = 0;
4612 out_unlock:
4613 	spin_unlock(&mddev->lock);
4614 	return err ?: len;
4615 }
4616 
4617 static struct md_sysfs_entry md_max_sync =
4618 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4619 
4620 static ssize_t
4621 suspend_lo_show(struct mddev *mddev, char *page)
4622 {
4623 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4624 }
4625 
4626 static ssize_t
4627 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4628 {
4629 	unsigned long long old, new;
4630 	int err;
4631 
4632 	err = kstrtoull(buf, 10, &new);
4633 	if (err < 0)
4634 		return err;
4635 	if (new != (sector_t)new)
4636 		return -EINVAL;
4637 
4638 	err = mddev_lock(mddev);
4639 	if (err)
4640 		return err;
4641 	err = -EINVAL;
4642 	if (mddev->pers == NULL ||
4643 	    mddev->pers->quiesce == NULL)
4644 		goto unlock;
4645 	old = mddev->suspend_lo;
4646 	mddev->suspend_lo = new;
4647 	if (new >= old)
4648 		/* Shrinking suspended region */
4649 		mddev->pers->quiesce(mddev, 2);
4650 	else {
4651 		/* Expanding suspended region - need to wait */
4652 		mddev->pers->quiesce(mddev, 1);
4653 		mddev->pers->quiesce(mddev, 0);
4654 	}
4655 	err = 0;
4656 unlock:
4657 	mddev_unlock(mddev);
4658 	return err ?: len;
4659 }
4660 static struct md_sysfs_entry md_suspend_lo =
4661 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4662 
4663 static ssize_t
4664 suspend_hi_show(struct mddev *mddev, char *page)
4665 {
4666 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4667 }
4668 
4669 static ssize_t
4670 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4671 {
4672 	unsigned long long old, new;
4673 	int err;
4674 
4675 	err = kstrtoull(buf, 10, &new);
4676 	if (err < 0)
4677 		return err;
4678 	if (new != (sector_t)new)
4679 		return -EINVAL;
4680 
4681 	err = mddev_lock(mddev);
4682 	if (err)
4683 		return err;
4684 	err = -EINVAL;
4685 	if (mddev->pers == NULL ||
4686 	    mddev->pers->quiesce == NULL)
4687 		goto unlock;
4688 	old = mddev->suspend_hi;
4689 	mddev->suspend_hi = new;
4690 	if (new <= old)
4691 		/* Shrinking suspended region */
4692 		mddev->pers->quiesce(mddev, 2);
4693 	else {
4694 		/* Expanding suspended region - need to wait */
4695 		mddev->pers->quiesce(mddev, 1);
4696 		mddev->pers->quiesce(mddev, 0);
4697 	}
4698 	err = 0;
4699 unlock:
4700 	mddev_unlock(mddev);
4701 	return err ?: len;
4702 }
4703 static struct md_sysfs_entry md_suspend_hi =
4704 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4705 
4706 static ssize_t
4707 reshape_position_show(struct mddev *mddev, char *page)
4708 {
4709 	if (mddev->reshape_position != MaxSector)
4710 		return sprintf(page, "%llu\n",
4711 			       (unsigned long long)mddev->reshape_position);
4712 	strcpy(page, "none\n");
4713 	return 5;
4714 }
4715 
4716 static ssize_t
4717 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4718 {
4719 	struct md_rdev *rdev;
4720 	unsigned long long new;
4721 	int err;
4722 
4723 	err = kstrtoull(buf, 10, &new);
4724 	if (err < 0)
4725 		return err;
4726 	if (new != (sector_t)new)
4727 		return -EINVAL;
4728 	err = mddev_lock(mddev);
4729 	if (err)
4730 		return err;
4731 	err = -EBUSY;
4732 	if (mddev->pers)
4733 		goto unlock;
4734 	mddev->reshape_position = new;
4735 	mddev->delta_disks = 0;
4736 	mddev->reshape_backwards = 0;
4737 	mddev->new_level = mddev->level;
4738 	mddev->new_layout = mddev->layout;
4739 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4740 	rdev_for_each(rdev, mddev)
4741 		rdev->new_data_offset = rdev->data_offset;
4742 	err = 0;
4743 unlock:
4744 	mddev_unlock(mddev);
4745 	return err ?: len;
4746 }
4747 
4748 static struct md_sysfs_entry md_reshape_position =
4749 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4750        reshape_position_store);
4751 
4752 static ssize_t
4753 reshape_direction_show(struct mddev *mddev, char *page)
4754 {
4755 	return sprintf(page, "%s\n",
4756 		       mddev->reshape_backwards ? "backwards" : "forwards");
4757 }
4758 
4759 static ssize_t
4760 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4761 {
4762 	int backwards = 0;
4763 	int err;
4764 
4765 	if (cmd_match(buf, "forwards"))
4766 		backwards = 0;
4767 	else if (cmd_match(buf, "backwards"))
4768 		backwards = 1;
4769 	else
4770 		return -EINVAL;
4771 	if (mddev->reshape_backwards == backwards)
4772 		return len;
4773 
4774 	err = mddev_lock(mddev);
4775 	if (err)
4776 		return err;
4777 	/* check if we are allowed to change */
4778 	if (mddev->delta_disks)
4779 		err = -EBUSY;
4780 	else if (mddev->persistent &&
4781 	    mddev->major_version == 0)
4782 		err =  -EINVAL;
4783 	else
4784 		mddev->reshape_backwards = backwards;
4785 	mddev_unlock(mddev);
4786 	return err ?: len;
4787 }
4788 
4789 static struct md_sysfs_entry md_reshape_direction =
4790 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4791        reshape_direction_store);
4792 
4793 static ssize_t
4794 array_size_show(struct mddev *mddev, char *page)
4795 {
4796 	if (mddev->external_size)
4797 		return sprintf(page, "%llu\n",
4798 			       (unsigned long long)mddev->array_sectors/2);
4799 	else
4800 		return sprintf(page, "default\n");
4801 }
4802 
4803 static ssize_t
4804 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4805 {
4806 	sector_t sectors;
4807 	int err;
4808 
4809 	err = mddev_lock(mddev);
4810 	if (err)
4811 		return err;
4812 
4813 	if (strncmp(buf, "default", 7) == 0) {
4814 		if (mddev->pers)
4815 			sectors = mddev->pers->size(mddev, 0, 0);
4816 		else
4817 			sectors = mddev->array_sectors;
4818 
4819 		mddev->external_size = 0;
4820 	} else {
4821 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4822 			err = -EINVAL;
4823 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4824 			err = -E2BIG;
4825 		else
4826 			mddev->external_size = 1;
4827 	}
4828 
4829 	if (!err) {
4830 		mddev->array_sectors = sectors;
4831 		if (mddev->pers) {
4832 			set_capacity(mddev->gendisk, mddev->array_sectors);
4833 			revalidate_disk(mddev->gendisk);
4834 		}
4835 	}
4836 	mddev_unlock(mddev);
4837 	return err ?: len;
4838 }
4839 
4840 static struct md_sysfs_entry md_array_size =
4841 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4842        array_size_store);
4843 
4844 static struct attribute *md_default_attrs[] = {
4845 	&md_level.attr,
4846 	&md_layout.attr,
4847 	&md_raid_disks.attr,
4848 	&md_chunk_size.attr,
4849 	&md_size.attr,
4850 	&md_resync_start.attr,
4851 	&md_metadata.attr,
4852 	&md_new_device.attr,
4853 	&md_safe_delay.attr,
4854 	&md_array_state.attr,
4855 	&md_reshape_position.attr,
4856 	&md_reshape_direction.attr,
4857 	&md_array_size.attr,
4858 	&max_corr_read_errors.attr,
4859 	NULL,
4860 };
4861 
4862 static struct attribute *md_redundancy_attrs[] = {
4863 	&md_scan_mode.attr,
4864 	&md_last_scan_mode.attr,
4865 	&md_mismatches.attr,
4866 	&md_sync_min.attr,
4867 	&md_sync_max.attr,
4868 	&md_sync_speed.attr,
4869 	&md_sync_force_parallel.attr,
4870 	&md_sync_completed.attr,
4871 	&md_min_sync.attr,
4872 	&md_max_sync.attr,
4873 	&md_suspend_lo.attr,
4874 	&md_suspend_hi.attr,
4875 	&md_bitmap.attr,
4876 	&md_degraded.attr,
4877 	NULL,
4878 };
4879 static struct attribute_group md_redundancy_group = {
4880 	.name = NULL,
4881 	.attrs = md_redundancy_attrs,
4882 };
4883 
4884 static ssize_t
4885 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4886 {
4887 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4888 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4889 	ssize_t rv;
4890 
4891 	if (!entry->show)
4892 		return -EIO;
4893 	spin_lock(&all_mddevs_lock);
4894 	if (list_empty(&mddev->all_mddevs)) {
4895 		spin_unlock(&all_mddevs_lock);
4896 		return -EBUSY;
4897 	}
4898 	mddev_get(mddev);
4899 	spin_unlock(&all_mddevs_lock);
4900 
4901 	rv = entry->show(mddev, page);
4902 	mddev_put(mddev);
4903 	return rv;
4904 }
4905 
4906 static ssize_t
4907 md_attr_store(struct kobject *kobj, struct attribute *attr,
4908 	      const char *page, size_t length)
4909 {
4910 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4911 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4912 	ssize_t rv;
4913 
4914 	if (!entry->store)
4915 		return -EIO;
4916 	if (!capable(CAP_SYS_ADMIN))
4917 		return -EACCES;
4918 	spin_lock(&all_mddevs_lock);
4919 	if (list_empty(&mddev->all_mddevs)) {
4920 		spin_unlock(&all_mddevs_lock);
4921 		return -EBUSY;
4922 	}
4923 	mddev_get(mddev);
4924 	spin_unlock(&all_mddevs_lock);
4925 	rv = entry->store(mddev, page, length);
4926 	mddev_put(mddev);
4927 	return rv;
4928 }
4929 
4930 static void md_free(struct kobject *ko)
4931 {
4932 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4933 
4934 	if (mddev->sysfs_state)
4935 		sysfs_put(mddev->sysfs_state);
4936 
4937 	if (mddev->queue)
4938 		blk_cleanup_queue(mddev->queue);
4939 	if (mddev->gendisk) {
4940 		del_gendisk(mddev->gendisk);
4941 		put_disk(mddev->gendisk);
4942 	}
4943 
4944 	kfree(mddev);
4945 }
4946 
4947 static const struct sysfs_ops md_sysfs_ops = {
4948 	.show	= md_attr_show,
4949 	.store	= md_attr_store,
4950 };
4951 static struct kobj_type md_ktype = {
4952 	.release	= md_free,
4953 	.sysfs_ops	= &md_sysfs_ops,
4954 	.default_attrs	= md_default_attrs,
4955 };
4956 
4957 int mdp_major = 0;
4958 
4959 static void mddev_delayed_delete(struct work_struct *ws)
4960 {
4961 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4962 
4963 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4964 	kobject_del(&mddev->kobj);
4965 	kobject_put(&mddev->kobj);
4966 }
4967 
4968 static int md_alloc(dev_t dev, char *name)
4969 {
4970 	static DEFINE_MUTEX(disks_mutex);
4971 	struct mddev *mddev = mddev_find(dev);
4972 	struct gendisk *disk;
4973 	int partitioned;
4974 	int shift;
4975 	int unit;
4976 	int error;
4977 
4978 	if (!mddev)
4979 		return -ENODEV;
4980 
4981 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4982 	shift = partitioned ? MdpMinorShift : 0;
4983 	unit = MINOR(mddev->unit) >> shift;
4984 
4985 	/* wait for any previous instance of this device to be
4986 	 * completely removed (mddev_delayed_delete).
4987 	 */
4988 	flush_workqueue(md_misc_wq);
4989 
4990 	mutex_lock(&disks_mutex);
4991 	error = -EEXIST;
4992 	if (mddev->gendisk)
4993 		goto abort;
4994 
4995 	if (name) {
4996 		/* Need to ensure that 'name' is not a duplicate.
4997 		 */
4998 		struct mddev *mddev2;
4999 		spin_lock(&all_mddevs_lock);
5000 
5001 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5002 			if (mddev2->gendisk &&
5003 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5004 				spin_unlock(&all_mddevs_lock);
5005 				goto abort;
5006 			}
5007 		spin_unlock(&all_mddevs_lock);
5008 	}
5009 
5010 	error = -ENOMEM;
5011 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
5012 	if (!mddev->queue)
5013 		goto abort;
5014 	mddev->queue->queuedata = mddev;
5015 
5016 	blk_queue_make_request(mddev->queue, md_make_request);
5017 	blk_set_stacking_limits(&mddev->queue->limits);
5018 
5019 	disk = alloc_disk(1 << shift);
5020 	if (!disk) {
5021 		blk_cleanup_queue(mddev->queue);
5022 		mddev->queue = NULL;
5023 		goto abort;
5024 	}
5025 	disk->major = MAJOR(mddev->unit);
5026 	disk->first_minor = unit << shift;
5027 	if (name)
5028 		strcpy(disk->disk_name, name);
5029 	else if (partitioned)
5030 		sprintf(disk->disk_name, "md_d%d", unit);
5031 	else
5032 		sprintf(disk->disk_name, "md%d", unit);
5033 	disk->fops = &md_fops;
5034 	disk->private_data = mddev;
5035 	disk->queue = mddev->queue;
5036 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5037 	/* Allow extended partitions.  This makes the
5038 	 * 'mdp' device redundant, but we can't really
5039 	 * remove it now.
5040 	 */
5041 	disk->flags |= GENHD_FL_EXT_DEVT;
5042 	mddev->gendisk = disk;
5043 	/* As soon as we call add_disk(), another thread could get
5044 	 * through to md_open, so make sure it doesn't get too far
5045 	 */
5046 	mutex_lock(&mddev->open_mutex);
5047 	add_disk(disk);
5048 
5049 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5050 				     &disk_to_dev(disk)->kobj, "%s", "md");
5051 	if (error) {
5052 		/* This isn't possible, but as kobject_init_and_add is marked
5053 		 * __must_check, we must do something with the result
5054 		 */
5055 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5056 		       disk->disk_name);
5057 		error = 0;
5058 	}
5059 	if (mddev->kobj.sd &&
5060 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5061 		printk(KERN_DEBUG "pointless warning\n");
5062 	mutex_unlock(&mddev->open_mutex);
5063  abort:
5064 	mutex_unlock(&disks_mutex);
5065 	if (!error && mddev->kobj.sd) {
5066 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5067 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5068 	}
5069 	mddev_put(mddev);
5070 	return error;
5071 }
5072 
5073 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5074 {
5075 	md_alloc(dev, NULL);
5076 	return NULL;
5077 }
5078 
5079 static int add_named_array(const char *val, struct kernel_param *kp)
5080 {
5081 	/* val must be "md_*" where * is not all digits.
5082 	 * We allocate an array with a large free minor number, and
5083 	 * set the name to val.  val must not already be an active name.
5084 	 */
5085 	int len = strlen(val);
5086 	char buf[DISK_NAME_LEN];
5087 
5088 	while (len && val[len-1] == '\n')
5089 		len--;
5090 	if (len >= DISK_NAME_LEN)
5091 		return -E2BIG;
5092 	strlcpy(buf, val, len+1);
5093 	if (strncmp(buf, "md_", 3) != 0)
5094 		return -EINVAL;
5095 	return md_alloc(0, buf);
5096 }
5097 
5098 static void md_safemode_timeout(unsigned long data)
5099 {
5100 	struct mddev *mddev = (struct mddev *) data;
5101 
5102 	if (!atomic_read(&mddev->writes_pending)) {
5103 		mddev->safemode = 1;
5104 		if (mddev->external)
5105 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5106 	}
5107 	md_wakeup_thread(mddev->thread);
5108 }
5109 
5110 static int start_dirty_degraded;
5111 
5112 int md_run(struct mddev *mddev)
5113 {
5114 	int err;
5115 	struct md_rdev *rdev;
5116 	struct md_personality *pers;
5117 
5118 	if (list_empty(&mddev->disks))
5119 		/* cannot run an array with no devices.. */
5120 		return -EINVAL;
5121 
5122 	if (mddev->pers)
5123 		return -EBUSY;
5124 	/* Cannot run until previous stop completes properly */
5125 	if (mddev->sysfs_active)
5126 		return -EBUSY;
5127 
5128 	/*
5129 	 * Analyze all RAID superblock(s)
5130 	 */
5131 	if (!mddev->raid_disks) {
5132 		if (!mddev->persistent)
5133 			return -EINVAL;
5134 		analyze_sbs(mddev);
5135 	}
5136 
5137 	if (mddev->level != LEVEL_NONE)
5138 		request_module("md-level-%d", mddev->level);
5139 	else if (mddev->clevel[0])
5140 		request_module("md-%s", mddev->clevel);
5141 
5142 	/*
5143 	 * Drop all container device buffers, from now on
5144 	 * the only valid external interface is through the md
5145 	 * device.
5146 	 */
5147 	rdev_for_each(rdev, mddev) {
5148 		if (test_bit(Faulty, &rdev->flags))
5149 			continue;
5150 		sync_blockdev(rdev->bdev);
5151 		invalidate_bdev(rdev->bdev);
5152 
5153 		/* perform some consistency tests on the device.
5154 		 * We don't want the data to overlap the metadata,
5155 		 * Internal Bitmap issues have been handled elsewhere.
5156 		 */
5157 		if (rdev->meta_bdev) {
5158 			/* Nothing to check */;
5159 		} else if (rdev->data_offset < rdev->sb_start) {
5160 			if (mddev->dev_sectors &&
5161 			    rdev->data_offset + mddev->dev_sectors
5162 			    > rdev->sb_start) {
5163 				printk("md: %s: data overlaps metadata\n",
5164 				       mdname(mddev));
5165 				return -EINVAL;
5166 			}
5167 		} else {
5168 			if (rdev->sb_start + rdev->sb_size/512
5169 			    > rdev->data_offset) {
5170 				printk("md: %s: metadata overlaps data\n",
5171 				       mdname(mddev));
5172 				return -EINVAL;
5173 			}
5174 		}
5175 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5176 	}
5177 
5178 	if (mddev->bio_set == NULL)
5179 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5180 
5181 	spin_lock(&pers_lock);
5182 	pers = find_pers(mddev->level, mddev->clevel);
5183 	if (!pers || !try_module_get(pers->owner)) {
5184 		spin_unlock(&pers_lock);
5185 		if (mddev->level != LEVEL_NONE)
5186 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5187 			       mddev->level);
5188 		else
5189 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5190 			       mddev->clevel);
5191 		return -EINVAL;
5192 	}
5193 	spin_unlock(&pers_lock);
5194 	if (mddev->level != pers->level) {
5195 		mddev->level = pers->level;
5196 		mddev->new_level = pers->level;
5197 	}
5198 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5199 
5200 	if (mddev->reshape_position != MaxSector &&
5201 	    pers->start_reshape == NULL) {
5202 		/* This personality cannot handle reshaping... */
5203 		module_put(pers->owner);
5204 		return -EINVAL;
5205 	}
5206 
5207 	if (pers->sync_request) {
5208 		/* Warn if this is a potentially silly
5209 		 * configuration.
5210 		 */
5211 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5212 		struct md_rdev *rdev2;
5213 		int warned = 0;
5214 
5215 		rdev_for_each(rdev, mddev)
5216 			rdev_for_each(rdev2, mddev) {
5217 				if (rdev < rdev2 &&
5218 				    rdev->bdev->bd_contains ==
5219 				    rdev2->bdev->bd_contains) {
5220 					printk(KERN_WARNING
5221 					       "%s: WARNING: %s appears to be"
5222 					       " on the same physical disk as"
5223 					       " %s.\n",
5224 					       mdname(mddev),
5225 					       bdevname(rdev->bdev,b),
5226 					       bdevname(rdev2->bdev,b2));
5227 					warned = 1;
5228 				}
5229 			}
5230 
5231 		if (warned)
5232 			printk(KERN_WARNING
5233 			       "True protection against single-disk"
5234 			       " failure might be compromised.\n");
5235 	}
5236 
5237 	mddev->recovery = 0;
5238 	/* may be over-ridden by personality */
5239 	mddev->resync_max_sectors = mddev->dev_sectors;
5240 
5241 	mddev->ok_start_degraded = start_dirty_degraded;
5242 
5243 	if (start_readonly && mddev->ro == 0)
5244 		mddev->ro = 2; /* read-only, but switch on first write */
5245 
5246 	err = pers->run(mddev);
5247 	if (err)
5248 		printk(KERN_ERR "md: pers->run() failed ...\n");
5249 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5250 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5251 			  " but 'external_size' not in effect?\n", __func__);
5252 		printk(KERN_ERR
5253 		       "md: invalid array_size %llu > default size %llu\n",
5254 		       (unsigned long long)mddev->array_sectors / 2,
5255 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5256 		err = -EINVAL;
5257 	}
5258 	if (err == 0 && pers->sync_request &&
5259 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5260 		struct bitmap *bitmap;
5261 
5262 		bitmap = bitmap_create(mddev, -1);
5263 		if (IS_ERR(bitmap)) {
5264 			err = PTR_ERR(bitmap);
5265 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5266 			       mdname(mddev), err);
5267 		} else
5268 			mddev->bitmap = bitmap;
5269 
5270 	}
5271 	if (err) {
5272 		mddev_detach(mddev);
5273 		if (mddev->private)
5274 			pers->free(mddev, mddev->private);
5275 		mddev->private = NULL;
5276 		module_put(pers->owner);
5277 		bitmap_destroy(mddev);
5278 		return err;
5279 	}
5280 	if (mddev->queue) {
5281 		mddev->queue->backing_dev_info.congested_data = mddev;
5282 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5283 	}
5284 	if (pers->sync_request) {
5285 		if (mddev->kobj.sd &&
5286 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5287 			printk(KERN_WARNING
5288 			       "md: cannot register extra attributes for %s\n",
5289 			       mdname(mddev));
5290 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5291 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5292 		mddev->ro = 0;
5293 
5294 	atomic_set(&mddev->writes_pending,0);
5295 	atomic_set(&mddev->max_corr_read_errors,
5296 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5297 	mddev->safemode = 0;
5298 	if (mddev_is_clustered(mddev))
5299 		mddev->safemode_delay = 0;
5300 	else
5301 		mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5302 	mddev->in_sync = 1;
5303 	smp_wmb();
5304 	spin_lock(&mddev->lock);
5305 	mddev->pers = pers;
5306 	spin_unlock(&mddev->lock);
5307 	rdev_for_each(rdev, mddev)
5308 		if (rdev->raid_disk >= 0)
5309 			if (sysfs_link_rdev(mddev, rdev))
5310 				/* failure here is OK */;
5311 
5312 	if (mddev->degraded && !mddev->ro)
5313 		/* This ensures that recovering status is reported immediately
5314 		 * via sysfs - until a lack of spares is confirmed.
5315 		 */
5316 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5317 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5318 
5319 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5320 		md_update_sb(mddev, 0);
5321 
5322 	md_new_event(mddev);
5323 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5324 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5325 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5326 	return 0;
5327 }
5328 EXPORT_SYMBOL_GPL(md_run);
5329 
5330 static int do_md_run(struct mddev *mddev)
5331 {
5332 	int err;
5333 
5334 	err = md_run(mddev);
5335 	if (err)
5336 		goto out;
5337 	err = bitmap_load(mddev);
5338 	if (err) {
5339 		bitmap_destroy(mddev);
5340 		goto out;
5341 	}
5342 
5343 	if (mddev_is_clustered(mddev))
5344 		md_allow_write(mddev);
5345 
5346 	md_wakeup_thread(mddev->thread);
5347 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5348 
5349 	set_capacity(mddev->gendisk, mddev->array_sectors);
5350 	revalidate_disk(mddev->gendisk);
5351 	mddev->changed = 1;
5352 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5353 out:
5354 	return err;
5355 }
5356 
5357 static int restart_array(struct mddev *mddev)
5358 {
5359 	struct gendisk *disk = mddev->gendisk;
5360 
5361 	/* Complain if it has no devices */
5362 	if (list_empty(&mddev->disks))
5363 		return -ENXIO;
5364 	if (!mddev->pers)
5365 		return -EINVAL;
5366 	if (!mddev->ro)
5367 		return -EBUSY;
5368 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5369 		struct md_rdev *rdev;
5370 		bool has_journal = false;
5371 
5372 		rcu_read_lock();
5373 		rdev_for_each_rcu(rdev, mddev) {
5374 			if (test_bit(Journal, &rdev->flags) &&
5375 			    !test_bit(Faulty, &rdev->flags)) {
5376 				has_journal = true;
5377 				break;
5378 			}
5379 		}
5380 		rcu_read_unlock();
5381 
5382 		/* Don't restart rw with journal missing/faulty */
5383 		if (!has_journal)
5384 			return -EINVAL;
5385 	}
5386 
5387 	mddev->safemode = 0;
5388 	mddev->ro = 0;
5389 	set_disk_ro(disk, 0);
5390 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5391 		mdname(mddev));
5392 	/* Kick recovery or resync if necessary */
5393 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5394 	md_wakeup_thread(mddev->thread);
5395 	md_wakeup_thread(mddev->sync_thread);
5396 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5397 	return 0;
5398 }
5399 
5400 static void md_clean(struct mddev *mddev)
5401 {
5402 	mddev->array_sectors = 0;
5403 	mddev->external_size = 0;
5404 	mddev->dev_sectors = 0;
5405 	mddev->raid_disks = 0;
5406 	mddev->recovery_cp = 0;
5407 	mddev->resync_min = 0;
5408 	mddev->resync_max = MaxSector;
5409 	mddev->reshape_position = MaxSector;
5410 	mddev->external = 0;
5411 	mddev->persistent = 0;
5412 	mddev->level = LEVEL_NONE;
5413 	mddev->clevel[0] = 0;
5414 	mddev->flags = 0;
5415 	mddev->ro = 0;
5416 	mddev->metadata_type[0] = 0;
5417 	mddev->chunk_sectors = 0;
5418 	mddev->ctime = mddev->utime = 0;
5419 	mddev->layout = 0;
5420 	mddev->max_disks = 0;
5421 	mddev->events = 0;
5422 	mddev->can_decrease_events = 0;
5423 	mddev->delta_disks = 0;
5424 	mddev->reshape_backwards = 0;
5425 	mddev->new_level = LEVEL_NONE;
5426 	mddev->new_layout = 0;
5427 	mddev->new_chunk_sectors = 0;
5428 	mddev->curr_resync = 0;
5429 	atomic64_set(&mddev->resync_mismatches, 0);
5430 	mddev->suspend_lo = mddev->suspend_hi = 0;
5431 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5432 	mddev->recovery = 0;
5433 	mddev->in_sync = 0;
5434 	mddev->changed = 0;
5435 	mddev->degraded = 0;
5436 	mddev->safemode = 0;
5437 	mddev->private = NULL;
5438 	mddev->bitmap_info.offset = 0;
5439 	mddev->bitmap_info.default_offset = 0;
5440 	mddev->bitmap_info.default_space = 0;
5441 	mddev->bitmap_info.chunksize = 0;
5442 	mddev->bitmap_info.daemon_sleep = 0;
5443 	mddev->bitmap_info.max_write_behind = 0;
5444 }
5445 
5446 static void __md_stop_writes(struct mddev *mddev)
5447 {
5448 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5449 	flush_workqueue(md_misc_wq);
5450 	if (mddev->sync_thread) {
5451 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5452 		md_reap_sync_thread(mddev);
5453 	}
5454 
5455 	del_timer_sync(&mddev->safemode_timer);
5456 
5457 	bitmap_flush(mddev);
5458 	md_super_wait(mddev);
5459 
5460 	if (mddev->ro == 0 &&
5461 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5462 	     (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5463 		/* mark array as shutdown cleanly */
5464 		if (!mddev_is_clustered(mddev))
5465 			mddev->in_sync = 1;
5466 		md_update_sb(mddev, 1);
5467 	}
5468 }
5469 
5470 void md_stop_writes(struct mddev *mddev)
5471 {
5472 	mddev_lock_nointr(mddev);
5473 	__md_stop_writes(mddev);
5474 	mddev_unlock(mddev);
5475 }
5476 EXPORT_SYMBOL_GPL(md_stop_writes);
5477 
5478 static void mddev_detach(struct mddev *mddev)
5479 {
5480 	struct bitmap *bitmap = mddev->bitmap;
5481 	/* wait for behind writes to complete */
5482 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5483 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5484 		       mdname(mddev));
5485 		/* need to kick something here to make sure I/O goes? */
5486 		wait_event(bitmap->behind_wait,
5487 			   atomic_read(&bitmap->behind_writes) == 0);
5488 	}
5489 	if (mddev->pers && mddev->pers->quiesce) {
5490 		mddev->pers->quiesce(mddev, 1);
5491 		mddev->pers->quiesce(mddev, 0);
5492 	}
5493 	md_unregister_thread(&mddev->thread);
5494 	if (mddev->queue)
5495 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5496 }
5497 
5498 static void __md_stop(struct mddev *mddev)
5499 {
5500 	struct md_personality *pers = mddev->pers;
5501 	mddev_detach(mddev);
5502 	/* Ensure ->event_work is done */
5503 	flush_workqueue(md_misc_wq);
5504 	spin_lock(&mddev->lock);
5505 	mddev->pers = NULL;
5506 	spin_unlock(&mddev->lock);
5507 	pers->free(mddev, mddev->private);
5508 	mddev->private = NULL;
5509 	if (pers->sync_request && mddev->to_remove == NULL)
5510 		mddev->to_remove = &md_redundancy_group;
5511 	module_put(pers->owner);
5512 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5513 }
5514 
5515 void md_stop(struct mddev *mddev)
5516 {
5517 	/* stop the array and free an attached data structures.
5518 	 * This is called from dm-raid
5519 	 */
5520 	__md_stop(mddev);
5521 	bitmap_destroy(mddev);
5522 	if (mddev->bio_set)
5523 		bioset_free(mddev->bio_set);
5524 }
5525 
5526 EXPORT_SYMBOL_GPL(md_stop);
5527 
5528 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5529 {
5530 	int err = 0;
5531 	int did_freeze = 0;
5532 
5533 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5534 		did_freeze = 1;
5535 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5536 		md_wakeup_thread(mddev->thread);
5537 	}
5538 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5539 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5540 	if (mddev->sync_thread)
5541 		/* Thread might be blocked waiting for metadata update
5542 		 * which will now never happen */
5543 		wake_up_process(mddev->sync_thread->tsk);
5544 
5545 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5546 		return -EBUSY;
5547 	mddev_unlock(mddev);
5548 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5549 					  &mddev->recovery));
5550 	wait_event(mddev->sb_wait,
5551 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5552 	mddev_lock_nointr(mddev);
5553 
5554 	mutex_lock(&mddev->open_mutex);
5555 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5556 	    mddev->sync_thread ||
5557 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5558 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5559 		printk("md: %s still in use.\n",mdname(mddev));
5560 		if (did_freeze) {
5561 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5562 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5563 			md_wakeup_thread(mddev->thread);
5564 		}
5565 		err = -EBUSY;
5566 		goto out;
5567 	}
5568 	if (mddev->pers) {
5569 		__md_stop_writes(mddev);
5570 
5571 		err  = -ENXIO;
5572 		if (mddev->ro==1)
5573 			goto out;
5574 		mddev->ro = 1;
5575 		set_disk_ro(mddev->gendisk, 1);
5576 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5577 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5578 		md_wakeup_thread(mddev->thread);
5579 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5580 		err = 0;
5581 	}
5582 out:
5583 	mutex_unlock(&mddev->open_mutex);
5584 	return err;
5585 }
5586 
5587 /* mode:
5588  *   0 - completely stop and dis-assemble array
5589  *   2 - stop but do not disassemble array
5590  */
5591 static int do_md_stop(struct mddev *mddev, int mode,
5592 		      struct block_device *bdev)
5593 {
5594 	struct gendisk *disk = mddev->gendisk;
5595 	struct md_rdev *rdev;
5596 	int did_freeze = 0;
5597 
5598 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5599 		did_freeze = 1;
5600 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5601 		md_wakeup_thread(mddev->thread);
5602 	}
5603 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5604 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5605 	if (mddev->sync_thread)
5606 		/* Thread might be blocked waiting for metadata update
5607 		 * which will now never happen */
5608 		wake_up_process(mddev->sync_thread->tsk);
5609 
5610 	mddev_unlock(mddev);
5611 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5612 				 !test_bit(MD_RECOVERY_RUNNING,
5613 					   &mddev->recovery)));
5614 	mddev_lock_nointr(mddev);
5615 
5616 	mutex_lock(&mddev->open_mutex);
5617 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5618 	    mddev->sysfs_active ||
5619 	    mddev->sync_thread ||
5620 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5621 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5622 		printk("md: %s still in use.\n",mdname(mddev));
5623 		mutex_unlock(&mddev->open_mutex);
5624 		if (did_freeze) {
5625 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5626 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5627 			md_wakeup_thread(mddev->thread);
5628 		}
5629 		return -EBUSY;
5630 	}
5631 	if (mddev->pers) {
5632 		if (mddev->ro)
5633 			set_disk_ro(disk, 0);
5634 
5635 		__md_stop_writes(mddev);
5636 		__md_stop(mddev);
5637 		mddev->queue->backing_dev_info.congested_fn = NULL;
5638 
5639 		/* tell userspace to handle 'inactive' */
5640 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5641 
5642 		rdev_for_each(rdev, mddev)
5643 			if (rdev->raid_disk >= 0)
5644 				sysfs_unlink_rdev(mddev, rdev);
5645 
5646 		set_capacity(disk, 0);
5647 		mutex_unlock(&mddev->open_mutex);
5648 		mddev->changed = 1;
5649 		revalidate_disk(disk);
5650 
5651 		if (mddev->ro)
5652 			mddev->ro = 0;
5653 	} else
5654 		mutex_unlock(&mddev->open_mutex);
5655 	/*
5656 	 * Free resources if final stop
5657 	 */
5658 	if (mode == 0) {
5659 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5660 
5661 		bitmap_destroy(mddev);
5662 		if (mddev->bitmap_info.file) {
5663 			struct file *f = mddev->bitmap_info.file;
5664 			spin_lock(&mddev->lock);
5665 			mddev->bitmap_info.file = NULL;
5666 			spin_unlock(&mddev->lock);
5667 			fput(f);
5668 		}
5669 		mddev->bitmap_info.offset = 0;
5670 
5671 		export_array(mddev);
5672 
5673 		md_clean(mddev);
5674 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5675 		if (mddev->hold_active == UNTIL_STOP)
5676 			mddev->hold_active = 0;
5677 	}
5678 	md_new_event(mddev);
5679 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5680 	return 0;
5681 }
5682 
5683 #ifndef MODULE
5684 static void autorun_array(struct mddev *mddev)
5685 {
5686 	struct md_rdev *rdev;
5687 	int err;
5688 
5689 	if (list_empty(&mddev->disks))
5690 		return;
5691 
5692 	printk(KERN_INFO "md: running: ");
5693 
5694 	rdev_for_each(rdev, mddev) {
5695 		char b[BDEVNAME_SIZE];
5696 		printk("<%s>", bdevname(rdev->bdev,b));
5697 	}
5698 	printk("\n");
5699 
5700 	err = do_md_run(mddev);
5701 	if (err) {
5702 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5703 		do_md_stop(mddev, 0, NULL);
5704 	}
5705 }
5706 
5707 /*
5708  * lets try to run arrays based on all disks that have arrived
5709  * until now. (those are in pending_raid_disks)
5710  *
5711  * the method: pick the first pending disk, collect all disks with
5712  * the same UUID, remove all from the pending list and put them into
5713  * the 'same_array' list. Then order this list based on superblock
5714  * update time (freshest comes first), kick out 'old' disks and
5715  * compare superblocks. If everything's fine then run it.
5716  *
5717  * If "unit" is allocated, then bump its reference count
5718  */
5719 static void autorun_devices(int part)
5720 {
5721 	struct md_rdev *rdev0, *rdev, *tmp;
5722 	struct mddev *mddev;
5723 	char b[BDEVNAME_SIZE];
5724 
5725 	printk(KERN_INFO "md: autorun ...\n");
5726 	while (!list_empty(&pending_raid_disks)) {
5727 		int unit;
5728 		dev_t dev;
5729 		LIST_HEAD(candidates);
5730 		rdev0 = list_entry(pending_raid_disks.next,
5731 					 struct md_rdev, same_set);
5732 
5733 		printk(KERN_INFO "md: considering %s ...\n",
5734 			bdevname(rdev0->bdev,b));
5735 		INIT_LIST_HEAD(&candidates);
5736 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5737 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5738 				printk(KERN_INFO "md:  adding %s ...\n",
5739 					bdevname(rdev->bdev,b));
5740 				list_move(&rdev->same_set, &candidates);
5741 			}
5742 		/*
5743 		 * now we have a set of devices, with all of them having
5744 		 * mostly sane superblocks. It's time to allocate the
5745 		 * mddev.
5746 		 */
5747 		if (part) {
5748 			dev = MKDEV(mdp_major,
5749 				    rdev0->preferred_minor << MdpMinorShift);
5750 			unit = MINOR(dev) >> MdpMinorShift;
5751 		} else {
5752 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5753 			unit = MINOR(dev);
5754 		}
5755 		if (rdev0->preferred_minor != unit) {
5756 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5757 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5758 			break;
5759 		}
5760 
5761 		md_probe(dev, NULL, NULL);
5762 		mddev = mddev_find(dev);
5763 		if (!mddev || !mddev->gendisk) {
5764 			if (mddev)
5765 				mddev_put(mddev);
5766 			printk(KERN_ERR
5767 				"md: cannot allocate memory for md drive.\n");
5768 			break;
5769 		}
5770 		if (mddev_lock(mddev))
5771 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5772 			       mdname(mddev));
5773 		else if (mddev->raid_disks || mddev->major_version
5774 			 || !list_empty(&mddev->disks)) {
5775 			printk(KERN_WARNING
5776 				"md: %s already running, cannot run %s\n",
5777 				mdname(mddev), bdevname(rdev0->bdev,b));
5778 			mddev_unlock(mddev);
5779 		} else {
5780 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5781 			mddev->persistent = 1;
5782 			rdev_for_each_list(rdev, tmp, &candidates) {
5783 				list_del_init(&rdev->same_set);
5784 				if (bind_rdev_to_array(rdev, mddev))
5785 					export_rdev(rdev);
5786 			}
5787 			autorun_array(mddev);
5788 			mddev_unlock(mddev);
5789 		}
5790 		/* on success, candidates will be empty, on error
5791 		 * it won't...
5792 		 */
5793 		rdev_for_each_list(rdev, tmp, &candidates) {
5794 			list_del_init(&rdev->same_set);
5795 			export_rdev(rdev);
5796 		}
5797 		mddev_put(mddev);
5798 	}
5799 	printk(KERN_INFO "md: ... autorun DONE.\n");
5800 }
5801 #endif /* !MODULE */
5802 
5803 static int get_version(void __user *arg)
5804 {
5805 	mdu_version_t ver;
5806 
5807 	ver.major = MD_MAJOR_VERSION;
5808 	ver.minor = MD_MINOR_VERSION;
5809 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5810 
5811 	if (copy_to_user(arg, &ver, sizeof(ver)))
5812 		return -EFAULT;
5813 
5814 	return 0;
5815 }
5816 
5817 static int get_array_info(struct mddev *mddev, void __user *arg)
5818 {
5819 	mdu_array_info_t info;
5820 	int nr,working,insync,failed,spare;
5821 	struct md_rdev *rdev;
5822 
5823 	nr = working = insync = failed = spare = 0;
5824 	rcu_read_lock();
5825 	rdev_for_each_rcu(rdev, mddev) {
5826 		nr++;
5827 		if (test_bit(Faulty, &rdev->flags))
5828 			failed++;
5829 		else {
5830 			working++;
5831 			if (test_bit(In_sync, &rdev->flags))
5832 				insync++;
5833 			else
5834 				spare++;
5835 		}
5836 	}
5837 	rcu_read_unlock();
5838 
5839 	info.major_version = mddev->major_version;
5840 	info.minor_version = mddev->minor_version;
5841 	info.patch_version = MD_PATCHLEVEL_VERSION;
5842 	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
5843 	info.level         = mddev->level;
5844 	info.size          = mddev->dev_sectors / 2;
5845 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5846 		info.size = -1;
5847 	info.nr_disks      = nr;
5848 	info.raid_disks    = mddev->raid_disks;
5849 	info.md_minor      = mddev->md_minor;
5850 	info.not_persistent= !mddev->persistent;
5851 
5852 	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
5853 	info.state         = 0;
5854 	if (mddev->in_sync)
5855 		info.state = (1<<MD_SB_CLEAN);
5856 	if (mddev->bitmap && mddev->bitmap_info.offset)
5857 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5858 	if (mddev_is_clustered(mddev))
5859 		info.state |= (1<<MD_SB_CLUSTERED);
5860 	info.active_disks  = insync;
5861 	info.working_disks = working;
5862 	info.failed_disks  = failed;
5863 	info.spare_disks   = spare;
5864 
5865 	info.layout        = mddev->layout;
5866 	info.chunk_size    = mddev->chunk_sectors << 9;
5867 
5868 	if (copy_to_user(arg, &info, sizeof(info)))
5869 		return -EFAULT;
5870 
5871 	return 0;
5872 }
5873 
5874 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5875 {
5876 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5877 	char *ptr;
5878 	int err;
5879 
5880 	file = kzalloc(sizeof(*file), GFP_NOIO);
5881 	if (!file)
5882 		return -ENOMEM;
5883 
5884 	err = 0;
5885 	spin_lock(&mddev->lock);
5886 	/* bitmap enabled */
5887 	if (mddev->bitmap_info.file) {
5888 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5889 				sizeof(file->pathname));
5890 		if (IS_ERR(ptr))
5891 			err = PTR_ERR(ptr);
5892 		else
5893 			memmove(file->pathname, ptr,
5894 				sizeof(file->pathname)-(ptr-file->pathname));
5895 	}
5896 	spin_unlock(&mddev->lock);
5897 
5898 	if (err == 0 &&
5899 	    copy_to_user(arg, file, sizeof(*file)))
5900 		err = -EFAULT;
5901 
5902 	kfree(file);
5903 	return err;
5904 }
5905 
5906 static int get_disk_info(struct mddev *mddev, void __user * arg)
5907 {
5908 	mdu_disk_info_t info;
5909 	struct md_rdev *rdev;
5910 
5911 	if (copy_from_user(&info, arg, sizeof(info)))
5912 		return -EFAULT;
5913 
5914 	rcu_read_lock();
5915 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5916 	if (rdev) {
5917 		info.major = MAJOR(rdev->bdev->bd_dev);
5918 		info.minor = MINOR(rdev->bdev->bd_dev);
5919 		info.raid_disk = rdev->raid_disk;
5920 		info.state = 0;
5921 		if (test_bit(Faulty, &rdev->flags))
5922 			info.state |= (1<<MD_DISK_FAULTY);
5923 		else if (test_bit(In_sync, &rdev->flags)) {
5924 			info.state |= (1<<MD_DISK_ACTIVE);
5925 			info.state |= (1<<MD_DISK_SYNC);
5926 		}
5927 		if (test_bit(Journal, &rdev->flags))
5928 			info.state |= (1<<MD_DISK_JOURNAL);
5929 		if (test_bit(WriteMostly, &rdev->flags))
5930 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5931 	} else {
5932 		info.major = info.minor = 0;
5933 		info.raid_disk = -1;
5934 		info.state = (1<<MD_DISK_REMOVED);
5935 	}
5936 	rcu_read_unlock();
5937 
5938 	if (copy_to_user(arg, &info, sizeof(info)))
5939 		return -EFAULT;
5940 
5941 	return 0;
5942 }
5943 
5944 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5945 {
5946 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5947 	struct md_rdev *rdev;
5948 	dev_t dev = MKDEV(info->major,info->minor);
5949 
5950 	if (mddev_is_clustered(mddev) &&
5951 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5952 		pr_err("%s: Cannot add to clustered mddev.\n",
5953 			       mdname(mddev));
5954 		return -EINVAL;
5955 	}
5956 
5957 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5958 		return -EOVERFLOW;
5959 
5960 	if (!mddev->raid_disks) {
5961 		int err;
5962 		/* expecting a device which has a superblock */
5963 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5964 		if (IS_ERR(rdev)) {
5965 			printk(KERN_WARNING
5966 				"md: md_import_device returned %ld\n",
5967 				PTR_ERR(rdev));
5968 			return PTR_ERR(rdev);
5969 		}
5970 		if (!list_empty(&mddev->disks)) {
5971 			struct md_rdev *rdev0
5972 				= list_entry(mddev->disks.next,
5973 					     struct md_rdev, same_set);
5974 			err = super_types[mddev->major_version]
5975 				.load_super(rdev, rdev0, mddev->minor_version);
5976 			if (err < 0) {
5977 				printk(KERN_WARNING
5978 					"md: %s has different UUID to %s\n",
5979 					bdevname(rdev->bdev,b),
5980 					bdevname(rdev0->bdev,b2));
5981 				export_rdev(rdev);
5982 				return -EINVAL;
5983 			}
5984 		}
5985 		err = bind_rdev_to_array(rdev, mddev);
5986 		if (err)
5987 			export_rdev(rdev);
5988 		return err;
5989 	}
5990 
5991 	/*
5992 	 * add_new_disk can be used once the array is assembled
5993 	 * to add "hot spares".  They must already have a superblock
5994 	 * written
5995 	 */
5996 	if (mddev->pers) {
5997 		int err;
5998 		if (!mddev->pers->hot_add_disk) {
5999 			printk(KERN_WARNING
6000 				"%s: personality does not support diskops!\n",
6001 			       mdname(mddev));
6002 			return -EINVAL;
6003 		}
6004 		if (mddev->persistent)
6005 			rdev = md_import_device(dev, mddev->major_version,
6006 						mddev->minor_version);
6007 		else
6008 			rdev = md_import_device(dev, -1, -1);
6009 		if (IS_ERR(rdev)) {
6010 			printk(KERN_WARNING
6011 				"md: md_import_device returned %ld\n",
6012 				PTR_ERR(rdev));
6013 			return PTR_ERR(rdev);
6014 		}
6015 		/* set saved_raid_disk if appropriate */
6016 		if (!mddev->persistent) {
6017 			if (info->state & (1<<MD_DISK_SYNC)  &&
6018 			    info->raid_disk < mddev->raid_disks) {
6019 				rdev->raid_disk = info->raid_disk;
6020 				set_bit(In_sync, &rdev->flags);
6021 				clear_bit(Bitmap_sync, &rdev->flags);
6022 			} else
6023 				rdev->raid_disk = -1;
6024 			rdev->saved_raid_disk = rdev->raid_disk;
6025 		} else
6026 			super_types[mddev->major_version].
6027 				validate_super(mddev, rdev);
6028 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6029 		     rdev->raid_disk != info->raid_disk) {
6030 			/* This was a hot-add request, but events doesn't
6031 			 * match, so reject it.
6032 			 */
6033 			export_rdev(rdev);
6034 			return -EINVAL;
6035 		}
6036 
6037 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6038 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6039 			set_bit(WriteMostly, &rdev->flags);
6040 		else
6041 			clear_bit(WriteMostly, &rdev->flags);
6042 
6043 		if (info->state & (1<<MD_DISK_JOURNAL)) {
6044 			struct md_rdev *rdev2;
6045 			bool has_journal = false;
6046 
6047 			/* make sure no existing journal disk */
6048 			rdev_for_each(rdev2, mddev) {
6049 				if (test_bit(Journal, &rdev2->flags)) {
6050 					has_journal = true;
6051 					break;
6052 				}
6053 			}
6054 			if (has_journal) {
6055 				export_rdev(rdev);
6056 				return -EBUSY;
6057 			}
6058 			set_bit(Journal, &rdev->flags);
6059 		}
6060 		/*
6061 		 * check whether the device shows up in other nodes
6062 		 */
6063 		if (mddev_is_clustered(mddev)) {
6064 			if (info->state & (1 << MD_DISK_CANDIDATE))
6065 				set_bit(Candidate, &rdev->flags);
6066 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6067 				/* --add initiated by this node */
6068 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6069 				if (err) {
6070 					export_rdev(rdev);
6071 					return err;
6072 				}
6073 			}
6074 		}
6075 
6076 		rdev->raid_disk = -1;
6077 		err = bind_rdev_to_array(rdev, mddev);
6078 
6079 		if (err)
6080 			export_rdev(rdev);
6081 
6082 		if (mddev_is_clustered(mddev)) {
6083 			if (info->state & (1 << MD_DISK_CANDIDATE))
6084 				md_cluster_ops->new_disk_ack(mddev, (err == 0));
6085 			else {
6086 				if (err)
6087 					md_cluster_ops->add_new_disk_cancel(mddev);
6088 				else
6089 					err = add_bound_rdev(rdev);
6090 			}
6091 
6092 		} else if (!err)
6093 			err = add_bound_rdev(rdev);
6094 
6095 		return err;
6096 	}
6097 
6098 	/* otherwise, add_new_disk is only allowed
6099 	 * for major_version==0 superblocks
6100 	 */
6101 	if (mddev->major_version != 0) {
6102 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6103 		       mdname(mddev));
6104 		return -EINVAL;
6105 	}
6106 
6107 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6108 		int err;
6109 		rdev = md_import_device(dev, -1, 0);
6110 		if (IS_ERR(rdev)) {
6111 			printk(KERN_WARNING
6112 				"md: error, md_import_device() returned %ld\n",
6113 				PTR_ERR(rdev));
6114 			return PTR_ERR(rdev);
6115 		}
6116 		rdev->desc_nr = info->number;
6117 		if (info->raid_disk < mddev->raid_disks)
6118 			rdev->raid_disk = info->raid_disk;
6119 		else
6120 			rdev->raid_disk = -1;
6121 
6122 		if (rdev->raid_disk < mddev->raid_disks)
6123 			if (info->state & (1<<MD_DISK_SYNC))
6124 				set_bit(In_sync, &rdev->flags);
6125 
6126 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6127 			set_bit(WriteMostly, &rdev->flags);
6128 
6129 		if (!mddev->persistent) {
6130 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
6131 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6132 		} else
6133 			rdev->sb_start = calc_dev_sboffset(rdev);
6134 		rdev->sectors = rdev->sb_start;
6135 
6136 		err = bind_rdev_to_array(rdev, mddev);
6137 		if (err) {
6138 			export_rdev(rdev);
6139 			return err;
6140 		}
6141 	}
6142 
6143 	return 0;
6144 }
6145 
6146 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6147 {
6148 	char b[BDEVNAME_SIZE];
6149 	struct md_rdev *rdev;
6150 
6151 	rdev = find_rdev(mddev, dev);
6152 	if (!rdev)
6153 		return -ENXIO;
6154 
6155 	if (rdev->raid_disk < 0)
6156 		goto kick_rdev;
6157 
6158 	clear_bit(Blocked, &rdev->flags);
6159 	remove_and_add_spares(mddev, rdev);
6160 
6161 	if (rdev->raid_disk >= 0)
6162 		goto busy;
6163 
6164 kick_rdev:
6165 	if (mddev_is_clustered(mddev))
6166 		md_cluster_ops->remove_disk(mddev, rdev);
6167 
6168 	md_kick_rdev_from_array(rdev);
6169 	md_update_sb(mddev, 1);
6170 	md_new_event(mddev);
6171 
6172 	return 0;
6173 busy:
6174 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6175 		bdevname(rdev->bdev,b), mdname(mddev));
6176 	return -EBUSY;
6177 }
6178 
6179 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6180 {
6181 	char b[BDEVNAME_SIZE];
6182 	int err;
6183 	struct md_rdev *rdev;
6184 
6185 	if (!mddev->pers)
6186 		return -ENODEV;
6187 
6188 	if (mddev->major_version != 0) {
6189 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6190 			" version-0 superblocks.\n",
6191 			mdname(mddev));
6192 		return -EINVAL;
6193 	}
6194 	if (!mddev->pers->hot_add_disk) {
6195 		printk(KERN_WARNING
6196 			"%s: personality does not support diskops!\n",
6197 			mdname(mddev));
6198 		return -EINVAL;
6199 	}
6200 
6201 	rdev = md_import_device(dev, -1, 0);
6202 	if (IS_ERR(rdev)) {
6203 		printk(KERN_WARNING
6204 			"md: error, md_import_device() returned %ld\n",
6205 			PTR_ERR(rdev));
6206 		return -EINVAL;
6207 	}
6208 
6209 	if (mddev->persistent)
6210 		rdev->sb_start = calc_dev_sboffset(rdev);
6211 	else
6212 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6213 
6214 	rdev->sectors = rdev->sb_start;
6215 
6216 	if (test_bit(Faulty, &rdev->flags)) {
6217 		printk(KERN_WARNING
6218 			"md: can not hot-add faulty %s disk to %s!\n",
6219 			bdevname(rdev->bdev,b), mdname(mddev));
6220 		err = -EINVAL;
6221 		goto abort_export;
6222 	}
6223 
6224 	clear_bit(In_sync, &rdev->flags);
6225 	rdev->desc_nr = -1;
6226 	rdev->saved_raid_disk = -1;
6227 	err = bind_rdev_to_array(rdev, mddev);
6228 	if (err)
6229 		goto abort_export;
6230 
6231 	/*
6232 	 * The rest should better be atomic, we can have disk failures
6233 	 * noticed in interrupt contexts ...
6234 	 */
6235 
6236 	rdev->raid_disk = -1;
6237 
6238 	md_update_sb(mddev, 1);
6239 	/*
6240 	 * Kick recovery, maybe this spare has to be added to the
6241 	 * array immediately.
6242 	 */
6243 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6244 	md_wakeup_thread(mddev->thread);
6245 	md_new_event(mddev);
6246 	return 0;
6247 
6248 abort_export:
6249 	export_rdev(rdev);
6250 	return err;
6251 }
6252 
6253 static int set_bitmap_file(struct mddev *mddev, int fd)
6254 {
6255 	int err = 0;
6256 
6257 	if (mddev->pers) {
6258 		if (!mddev->pers->quiesce || !mddev->thread)
6259 			return -EBUSY;
6260 		if (mddev->recovery || mddev->sync_thread)
6261 			return -EBUSY;
6262 		/* we should be able to change the bitmap.. */
6263 	}
6264 
6265 	if (fd >= 0) {
6266 		struct inode *inode;
6267 		struct file *f;
6268 
6269 		if (mddev->bitmap || mddev->bitmap_info.file)
6270 			return -EEXIST; /* cannot add when bitmap is present */
6271 		f = fget(fd);
6272 
6273 		if (f == NULL) {
6274 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6275 			       mdname(mddev));
6276 			return -EBADF;
6277 		}
6278 
6279 		inode = f->f_mapping->host;
6280 		if (!S_ISREG(inode->i_mode)) {
6281 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6282 			       mdname(mddev));
6283 			err = -EBADF;
6284 		} else if (!(f->f_mode & FMODE_WRITE)) {
6285 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6286 			       mdname(mddev));
6287 			err = -EBADF;
6288 		} else if (atomic_read(&inode->i_writecount) != 1) {
6289 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6290 			       mdname(mddev));
6291 			err = -EBUSY;
6292 		}
6293 		if (err) {
6294 			fput(f);
6295 			return err;
6296 		}
6297 		mddev->bitmap_info.file = f;
6298 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6299 	} else if (mddev->bitmap == NULL)
6300 		return -ENOENT; /* cannot remove what isn't there */
6301 	err = 0;
6302 	if (mddev->pers) {
6303 		mddev->pers->quiesce(mddev, 1);
6304 		if (fd >= 0) {
6305 			struct bitmap *bitmap;
6306 
6307 			bitmap = bitmap_create(mddev, -1);
6308 			if (!IS_ERR(bitmap)) {
6309 				mddev->bitmap = bitmap;
6310 				err = bitmap_load(mddev);
6311 			} else
6312 				err = PTR_ERR(bitmap);
6313 		}
6314 		if (fd < 0 || err) {
6315 			bitmap_destroy(mddev);
6316 			fd = -1; /* make sure to put the file */
6317 		}
6318 		mddev->pers->quiesce(mddev, 0);
6319 	}
6320 	if (fd < 0) {
6321 		struct file *f = mddev->bitmap_info.file;
6322 		if (f) {
6323 			spin_lock(&mddev->lock);
6324 			mddev->bitmap_info.file = NULL;
6325 			spin_unlock(&mddev->lock);
6326 			fput(f);
6327 		}
6328 	}
6329 
6330 	return err;
6331 }
6332 
6333 /*
6334  * set_array_info is used two different ways
6335  * The original usage is when creating a new array.
6336  * In this usage, raid_disks is > 0 and it together with
6337  *  level, size, not_persistent,layout,chunksize determine the
6338  *  shape of the array.
6339  *  This will always create an array with a type-0.90.0 superblock.
6340  * The newer usage is when assembling an array.
6341  *  In this case raid_disks will be 0, and the major_version field is
6342  *  use to determine which style super-blocks are to be found on the devices.
6343  *  The minor and patch _version numbers are also kept incase the
6344  *  super_block handler wishes to interpret them.
6345  */
6346 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6347 {
6348 
6349 	if (info->raid_disks == 0) {
6350 		/* just setting version number for superblock loading */
6351 		if (info->major_version < 0 ||
6352 		    info->major_version >= ARRAY_SIZE(super_types) ||
6353 		    super_types[info->major_version].name == NULL) {
6354 			/* maybe try to auto-load a module? */
6355 			printk(KERN_INFO
6356 				"md: superblock version %d not known\n",
6357 				info->major_version);
6358 			return -EINVAL;
6359 		}
6360 		mddev->major_version = info->major_version;
6361 		mddev->minor_version = info->minor_version;
6362 		mddev->patch_version = info->patch_version;
6363 		mddev->persistent = !info->not_persistent;
6364 		/* ensure mddev_put doesn't delete this now that there
6365 		 * is some minimal configuration.
6366 		 */
6367 		mddev->ctime         = ktime_get_real_seconds();
6368 		return 0;
6369 	}
6370 	mddev->major_version = MD_MAJOR_VERSION;
6371 	mddev->minor_version = MD_MINOR_VERSION;
6372 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6373 	mddev->ctime         = ktime_get_real_seconds();
6374 
6375 	mddev->level         = info->level;
6376 	mddev->clevel[0]     = 0;
6377 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6378 	mddev->raid_disks    = info->raid_disks;
6379 	/* don't set md_minor, it is determined by which /dev/md* was
6380 	 * openned
6381 	 */
6382 	if (info->state & (1<<MD_SB_CLEAN))
6383 		mddev->recovery_cp = MaxSector;
6384 	else
6385 		mddev->recovery_cp = 0;
6386 	mddev->persistent    = ! info->not_persistent;
6387 	mddev->external	     = 0;
6388 
6389 	mddev->layout        = info->layout;
6390 	mddev->chunk_sectors = info->chunk_size >> 9;
6391 
6392 	mddev->max_disks     = MD_SB_DISKS;
6393 
6394 	if (mddev->persistent)
6395 		mddev->flags         = 0;
6396 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6397 
6398 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6399 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6400 	mddev->bitmap_info.offset = 0;
6401 
6402 	mddev->reshape_position = MaxSector;
6403 
6404 	/*
6405 	 * Generate a 128 bit UUID
6406 	 */
6407 	get_random_bytes(mddev->uuid, 16);
6408 
6409 	mddev->new_level = mddev->level;
6410 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6411 	mddev->new_layout = mddev->layout;
6412 	mddev->delta_disks = 0;
6413 	mddev->reshape_backwards = 0;
6414 
6415 	return 0;
6416 }
6417 
6418 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6419 {
6420 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6421 
6422 	if (mddev->external_size)
6423 		return;
6424 
6425 	mddev->array_sectors = array_sectors;
6426 }
6427 EXPORT_SYMBOL(md_set_array_sectors);
6428 
6429 static int update_size(struct mddev *mddev, sector_t num_sectors)
6430 {
6431 	struct md_rdev *rdev;
6432 	int rv;
6433 	int fit = (num_sectors == 0);
6434 
6435 	if (mddev->pers->resize == NULL)
6436 		return -EINVAL;
6437 	/* The "num_sectors" is the number of sectors of each device that
6438 	 * is used.  This can only make sense for arrays with redundancy.
6439 	 * linear and raid0 always use whatever space is available. We can only
6440 	 * consider changing this number if no resync or reconstruction is
6441 	 * happening, and if the new size is acceptable. It must fit before the
6442 	 * sb_start or, if that is <data_offset, it must fit before the size
6443 	 * of each device.  If num_sectors is zero, we find the largest size
6444 	 * that fits.
6445 	 */
6446 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6447 	    mddev->sync_thread)
6448 		return -EBUSY;
6449 	if (mddev->ro)
6450 		return -EROFS;
6451 
6452 	rdev_for_each(rdev, mddev) {
6453 		sector_t avail = rdev->sectors;
6454 
6455 		if (fit && (num_sectors == 0 || num_sectors > avail))
6456 			num_sectors = avail;
6457 		if (avail < num_sectors)
6458 			return -ENOSPC;
6459 	}
6460 	rv = mddev->pers->resize(mddev, num_sectors);
6461 	if (!rv)
6462 		revalidate_disk(mddev->gendisk);
6463 	return rv;
6464 }
6465 
6466 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6467 {
6468 	int rv;
6469 	struct md_rdev *rdev;
6470 	/* change the number of raid disks */
6471 	if (mddev->pers->check_reshape == NULL)
6472 		return -EINVAL;
6473 	if (mddev->ro)
6474 		return -EROFS;
6475 	if (raid_disks <= 0 ||
6476 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6477 		return -EINVAL;
6478 	if (mddev->sync_thread ||
6479 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6480 	    mddev->reshape_position != MaxSector)
6481 		return -EBUSY;
6482 
6483 	rdev_for_each(rdev, mddev) {
6484 		if (mddev->raid_disks < raid_disks &&
6485 		    rdev->data_offset < rdev->new_data_offset)
6486 			return -EINVAL;
6487 		if (mddev->raid_disks > raid_disks &&
6488 		    rdev->data_offset > rdev->new_data_offset)
6489 			return -EINVAL;
6490 	}
6491 
6492 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6493 	if (mddev->delta_disks < 0)
6494 		mddev->reshape_backwards = 1;
6495 	else if (mddev->delta_disks > 0)
6496 		mddev->reshape_backwards = 0;
6497 
6498 	rv = mddev->pers->check_reshape(mddev);
6499 	if (rv < 0) {
6500 		mddev->delta_disks = 0;
6501 		mddev->reshape_backwards = 0;
6502 	}
6503 	return rv;
6504 }
6505 
6506 /*
6507  * update_array_info is used to change the configuration of an
6508  * on-line array.
6509  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6510  * fields in the info are checked against the array.
6511  * Any differences that cannot be handled will cause an error.
6512  * Normally, only one change can be managed at a time.
6513  */
6514 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6515 {
6516 	int rv = 0;
6517 	int cnt = 0;
6518 	int state = 0;
6519 
6520 	/* calculate expected state,ignoring low bits */
6521 	if (mddev->bitmap && mddev->bitmap_info.offset)
6522 		state |= (1 << MD_SB_BITMAP_PRESENT);
6523 
6524 	if (mddev->major_version != info->major_version ||
6525 	    mddev->minor_version != info->minor_version ||
6526 /*	    mddev->patch_version != info->patch_version || */
6527 	    mddev->ctime         != info->ctime         ||
6528 	    mddev->level         != info->level         ||
6529 /*	    mddev->layout        != info->layout        || */
6530 	    mddev->persistent	 != !info->not_persistent ||
6531 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6532 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6533 	    ((state^info->state) & 0xfffffe00)
6534 		)
6535 		return -EINVAL;
6536 	/* Check there is only one change */
6537 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6538 		cnt++;
6539 	if (mddev->raid_disks != info->raid_disks)
6540 		cnt++;
6541 	if (mddev->layout != info->layout)
6542 		cnt++;
6543 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6544 		cnt++;
6545 	if (cnt == 0)
6546 		return 0;
6547 	if (cnt > 1)
6548 		return -EINVAL;
6549 
6550 	if (mddev->layout != info->layout) {
6551 		/* Change layout
6552 		 * we don't need to do anything at the md level, the
6553 		 * personality will take care of it all.
6554 		 */
6555 		if (mddev->pers->check_reshape == NULL)
6556 			return -EINVAL;
6557 		else {
6558 			mddev->new_layout = info->layout;
6559 			rv = mddev->pers->check_reshape(mddev);
6560 			if (rv)
6561 				mddev->new_layout = mddev->layout;
6562 			return rv;
6563 		}
6564 	}
6565 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6566 		rv = update_size(mddev, (sector_t)info->size * 2);
6567 
6568 	if (mddev->raid_disks    != info->raid_disks)
6569 		rv = update_raid_disks(mddev, info->raid_disks);
6570 
6571 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6572 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6573 			rv = -EINVAL;
6574 			goto err;
6575 		}
6576 		if (mddev->recovery || mddev->sync_thread) {
6577 			rv = -EBUSY;
6578 			goto err;
6579 		}
6580 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6581 			struct bitmap *bitmap;
6582 			/* add the bitmap */
6583 			if (mddev->bitmap) {
6584 				rv = -EEXIST;
6585 				goto err;
6586 			}
6587 			if (mddev->bitmap_info.default_offset == 0) {
6588 				rv = -EINVAL;
6589 				goto err;
6590 			}
6591 			mddev->bitmap_info.offset =
6592 				mddev->bitmap_info.default_offset;
6593 			mddev->bitmap_info.space =
6594 				mddev->bitmap_info.default_space;
6595 			mddev->pers->quiesce(mddev, 1);
6596 			bitmap = bitmap_create(mddev, -1);
6597 			if (!IS_ERR(bitmap)) {
6598 				mddev->bitmap = bitmap;
6599 				rv = bitmap_load(mddev);
6600 			} else
6601 				rv = PTR_ERR(bitmap);
6602 			if (rv)
6603 				bitmap_destroy(mddev);
6604 			mddev->pers->quiesce(mddev, 0);
6605 		} else {
6606 			/* remove the bitmap */
6607 			if (!mddev->bitmap) {
6608 				rv = -ENOENT;
6609 				goto err;
6610 			}
6611 			if (mddev->bitmap->storage.file) {
6612 				rv = -EINVAL;
6613 				goto err;
6614 			}
6615 			if (mddev->bitmap_info.nodes) {
6616 				/* hold PW on all the bitmap lock */
6617 				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6618 					printk("md: can't change bitmap to none since the"
6619 					       " array is in use by more than one node\n");
6620 					rv = -EPERM;
6621 					md_cluster_ops->unlock_all_bitmaps(mddev);
6622 					goto err;
6623 				}
6624 
6625 				mddev->bitmap_info.nodes = 0;
6626 				md_cluster_ops->leave(mddev);
6627 			}
6628 			mddev->pers->quiesce(mddev, 1);
6629 			bitmap_destroy(mddev);
6630 			mddev->pers->quiesce(mddev, 0);
6631 			mddev->bitmap_info.offset = 0;
6632 		}
6633 	}
6634 	md_update_sb(mddev, 1);
6635 	return rv;
6636 err:
6637 	return rv;
6638 }
6639 
6640 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6641 {
6642 	struct md_rdev *rdev;
6643 	int err = 0;
6644 
6645 	if (mddev->pers == NULL)
6646 		return -ENODEV;
6647 
6648 	rcu_read_lock();
6649 	rdev = find_rdev_rcu(mddev, dev);
6650 	if (!rdev)
6651 		err =  -ENODEV;
6652 	else {
6653 		md_error(mddev, rdev);
6654 		if (!test_bit(Faulty, &rdev->flags))
6655 			err = -EBUSY;
6656 	}
6657 	rcu_read_unlock();
6658 	return err;
6659 }
6660 
6661 /*
6662  * We have a problem here : there is no easy way to give a CHS
6663  * virtual geometry. We currently pretend that we have a 2 heads
6664  * 4 sectors (with a BIG number of cylinders...). This drives
6665  * dosfs just mad... ;-)
6666  */
6667 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6668 {
6669 	struct mddev *mddev = bdev->bd_disk->private_data;
6670 
6671 	geo->heads = 2;
6672 	geo->sectors = 4;
6673 	geo->cylinders = mddev->array_sectors / 8;
6674 	return 0;
6675 }
6676 
6677 static inline bool md_ioctl_valid(unsigned int cmd)
6678 {
6679 	switch (cmd) {
6680 	case ADD_NEW_DISK:
6681 	case BLKROSET:
6682 	case GET_ARRAY_INFO:
6683 	case GET_BITMAP_FILE:
6684 	case GET_DISK_INFO:
6685 	case HOT_ADD_DISK:
6686 	case HOT_REMOVE_DISK:
6687 	case RAID_AUTORUN:
6688 	case RAID_VERSION:
6689 	case RESTART_ARRAY_RW:
6690 	case RUN_ARRAY:
6691 	case SET_ARRAY_INFO:
6692 	case SET_BITMAP_FILE:
6693 	case SET_DISK_FAULTY:
6694 	case STOP_ARRAY:
6695 	case STOP_ARRAY_RO:
6696 	case CLUSTERED_DISK_NACK:
6697 		return true;
6698 	default:
6699 		return false;
6700 	}
6701 }
6702 
6703 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6704 			unsigned int cmd, unsigned long arg)
6705 {
6706 	int err = 0;
6707 	void __user *argp = (void __user *)arg;
6708 	struct mddev *mddev = NULL;
6709 	int ro;
6710 
6711 	if (!md_ioctl_valid(cmd))
6712 		return -ENOTTY;
6713 
6714 	switch (cmd) {
6715 	case RAID_VERSION:
6716 	case GET_ARRAY_INFO:
6717 	case GET_DISK_INFO:
6718 		break;
6719 	default:
6720 		if (!capable(CAP_SYS_ADMIN))
6721 			return -EACCES;
6722 	}
6723 
6724 	/*
6725 	 * Commands dealing with the RAID driver but not any
6726 	 * particular array:
6727 	 */
6728 	switch (cmd) {
6729 	case RAID_VERSION:
6730 		err = get_version(argp);
6731 		goto out;
6732 
6733 #ifndef MODULE
6734 	case RAID_AUTORUN:
6735 		err = 0;
6736 		autostart_arrays(arg);
6737 		goto out;
6738 #endif
6739 	default:;
6740 	}
6741 
6742 	/*
6743 	 * Commands creating/starting a new array:
6744 	 */
6745 
6746 	mddev = bdev->bd_disk->private_data;
6747 
6748 	if (!mddev) {
6749 		BUG();
6750 		goto out;
6751 	}
6752 
6753 	/* Some actions do not requires the mutex */
6754 	switch (cmd) {
6755 	case GET_ARRAY_INFO:
6756 		if (!mddev->raid_disks && !mddev->external)
6757 			err = -ENODEV;
6758 		else
6759 			err = get_array_info(mddev, argp);
6760 		goto out;
6761 
6762 	case GET_DISK_INFO:
6763 		if (!mddev->raid_disks && !mddev->external)
6764 			err = -ENODEV;
6765 		else
6766 			err = get_disk_info(mddev, argp);
6767 		goto out;
6768 
6769 	case SET_DISK_FAULTY:
6770 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6771 		goto out;
6772 
6773 	case GET_BITMAP_FILE:
6774 		err = get_bitmap_file(mddev, argp);
6775 		goto out;
6776 
6777 	}
6778 
6779 	if (cmd == ADD_NEW_DISK)
6780 		/* need to ensure md_delayed_delete() has completed */
6781 		flush_workqueue(md_misc_wq);
6782 
6783 	if (cmd == HOT_REMOVE_DISK)
6784 		/* need to ensure recovery thread has run */
6785 		wait_event_interruptible_timeout(mddev->sb_wait,
6786 						 !test_bit(MD_RECOVERY_NEEDED,
6787 							   &mddev->flags),
6788 						 msecs_to_jiffies(5000));
6789 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6790 		/* Need to flush page cache, and ensure no-one else opens
6791 		 * and writes
6792 		 */
6793 		mutex_lock(&mddev->open_mutex);
6794 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6795 			mutex_unlock(&mddev->open_mutex);
6796 			err = -EBUSY;
6797 			goto out;
6798 		}
6799 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6800 		mutex_unlock(&mddev->open_mutex);
6801 		sync_blockdev(bdev);
6802 	}
6803 	err = mddev_lock(mddev);
6804 	if (err) {
6805 		printk(KERN_INFO
6806 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6807 			err, cmd);
6808 		goto out;
6809 	}
6810 
6811 	if (cmd == SET_ARRAY_INFO) {
6812 		mdu_array_info_t info;
6813 		if (!arg)
6814 			memset(&info, 0, sizeof(info));
6815 		else if (copy_from_user(&info, argp, sizeof(info))) {
6816 			err = -EFAULT;
6817 			goto unlock;
6818 		}
6819 		if (mddev->pers) {
6820 			err = update_array_info(mddev, &info);
6821 			if (err) {
6822 				printk(KERN_WARNING "md: couldn't update"
6823 				       " array info. %d\n", err);
6824 				goto unlock;
6825 			}
6826 			goto unlock;
6827 		}
6828 		if (!list_empty(&mddev->disks)) {
6829 			printk(KERN_WARNING
6830 			       "md: array %s already has disks!\n",
6831 			       mdname(mddev));
6832 			err = -EBUSY;
6833 			goto unlock;
6834 		}
6835 		if (mddev->raid_disks) {
6836 			printk(KERN_WARNING
6837 			       "md: array %s already initialised!\n",
6838 			       mdname(mddev));
6839 			err = -EBUSY;
6840 			goto unlock;
6841 		}
6842 		err = set_array_info(mddev, &info);
6843 		if (err) {
6844 			printk(KERN_WARNING "md: couldn't set"
6845 			       " array info. %d\n", err);
6846 			goto unlock;
6847 		}
6848 		goto unlock;
6849 	}
6850 
6851 	/*
6852 	 * Commands querying/configuring an existing array:
6853 	 */
6854 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6855 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6856 	if ((!mddev->raid_disks && !mddev->external)
6857 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6858 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6859 	    && cmd != GET_BITMAP_FILE) {
6860 		err = -ENODEV;
6861 		goto unlock;
6862 	}
6863 
6864 	/*
6865 	 * Commands even a read-only array can execute:
6866 	 */
6867 	switch (cmd) {
6868 	case RESTART_ARRAY_RW:
6869 		err = restart_array(mddev);
6870 		goto unlock;
6871 
6872 	case STOP_ARRAY:
6873 		err = do_md_stop(mddev, 0, bdev);
6874 		goto unlock;
6875 
6876 	case STOP_ARRAY_RO:
6877 		err = md_set_readonly(mddev, bdev);
6878 		goto unlock;
6879 
6880 	case HOT_REMOVE_DISK:
6881 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6882 		goto unlock;
6883 
6884 	case ADD_NEW_DISK:
6885 		/* We can support ADD_NEW_DISK on read-only arrays
6886 		 * on if we are re-adding a preexisting device.
6887 		 * So require mddev->pers and MD_DISK_SYNC.
6888 		 */
6889 		if (mddev->pers) {
6890 			mdu_disk_info_t info;
6891 			if (copy_from_user(&info, argp, sizeof(info)))
6892 				err = -EFAULT;
6893 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6894 				/* Need to clear read-only for this */
6895 				break;
6896 			else
6897 				err = add_new_disk(mddev, &info);
6898 			goto unlock;
6899 		}
6900 		break;
6901 
6902 	case BLKROSET:
6903 		if (get_user(ro, (int __user *)(arg))) {
6904 			err = -EFAULT;
6905 			goto unlock;
6906 		}
6907 		err = -EINVAL;
6908 
6909 		/* if the bdev is going readonly the value of mddev->ro
6910 		 * does not matter, no writes are coming
6911 		 */
6912 		if (ro)
6913 			goto unlock;
6914 
6915 		/* are we are already prepared for writes? */
6916 		if (mddev->ro != 1)
6917 			goto unlock;
6918 
6919 		/* transitioning to readauto need only happen for
6920 		 * arrays that call md_write_start
6921 		 */
6922 		if (mddev->pers) {
6923 			err = restart_array(mddev);
6924 			if (err == 0) {
6925 				mddev->ro = 2;
6926 				set_disk_ro(mddev->gendisk, 0);
6927 			}
6928 		}
6929 		goto unlock;
6930 	}
6931 
6932 	/*
6933 	 * The remaining ioctls are changing the state of the
6934 	 * superblock, so we do not allow them on read-only arrays.
6935 	 */
6936 	if (mddev->ro && mddev->pers) {
6937 		if (mddev->ro == 2) {
6938 			mddev->ro = 0;
6939 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6940 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6941 			/* mddev_unlock will wake thread */
6942 			/* If a device failed while we were read-only, we
6943 			 * need to make sure the metadata is updated now.
6944 			 */
6945 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6946 				mddev_unlock(mddev);
6947 				wait_event(mddev->sb_wait,
6948 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6949 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6950 				mddev_lock_nointr(mddev);
6951 			}
6952 		} else {
6953 			err = -EROFS;
6954 			goto unlock;
6955 		}
6956 	}
6957 
6958 	switch (cmd) {
6959 	case ADD_NEW_DISK:
6960 	{
6961 		mdu_disk_info_t info;
6962 		if (copy_from_user(&info, argp, sizeof(info)))
6963 			err = -EFAULT;
6964 		else
6965 			err = add_new_disk(mddev, &info);
6966 		goto unlock;
6967 	}
6968 
6969 	case CLUSTERED_DISK_NACK:
6970 		if (mddev_is_clustered(mddev))
6971 			md_cluster_ops->new_disk_ack(mddev, false);
6972 		else
6973 			err = -EINVAL;
6974 		goto unlock;
6975 
6976 	case HOT_ADD_DISK:
6977 		err = hot_add_disk(mddev, new_decode_dev(arg));
6978 		goto unlock;
6979 
6980 	case RUN_ARRAY:
6981 		err = do_md_run(mddev);
6982 		goto unlock;
6983 
6984 	case SET_BITMAP_FILE:
6985 		err = set_bitmap_file(mddev, (int)arg);
6986 		goto unlock;
6987 
6988 	default:
6989 		err = -EINVAL;
6990 		goto unlock;
6991 	}
6992 
6993 unlock:
6994 	if (mddev->hold_active == UNTIL_IOCTL &&
6995 	    err != -EINVAL)
6996 		mddev->hold_active = 0;
6997 	mddev_unlock(mddev);
6998 out:
6999 	return err;
7000 }
7001 #ifdef CONFIG_COMPAT
7002 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7003 		    unsigned int cmd, unsigned long arg)
7004 {
7005 	switch (cmd) {
7006 	case HOT_REMOVE_DISK:
7007 	case HOT_ADD_DISK:
7008 	case SET_DISK_FAULTY:
7009 	case SET_BITMAP_FILE:
7010 		/* These take in integer arg, do not convert */
7011 		break;
7012 	default:
7013 		arg = (unsigned long)compat_ptr(arg);
7014 		break;
7015 	}
7016 
7017 	return md_ioctl(bdev, mode, cmd, arg);
7018 }
7019 #endif /* CONFIG_COMPAT */
7020 
7021 static int md_open(struct block_device *bdev, fmode_t mode)
7022 {
7023 	/*
7024 	 * Succeed if we can lock the mddev, which confirms that
7025 	 * it isn't being stopped right now.
7026 	 */
7027 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7028 	int err;
7029 
7030 	if (!mddev)
7031 		return -ENODEV;
7032 
7033 	if (mddev->gendisk != bdev->bd_disk) {
7034 		/* we are racing with mddev_put which is discarding this
7035 		 * bd_disk.
7036 		 */
7037 		mddev_put(mddev);
7038 		/* Wait until bdev->bd_disk is definitely gone */
7039 		flush_workqueue(md_misc_wq);
7040 		/* Then retry the open from the top */
7041 		return -ERESTARTSYS;
7042 	}
7043 	BUG_ON(mddev != bdev->bd_disk->private_data);
7044 
7045 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7046 		goto out;
7047 
7048 	err = 0;
7049 	atomic_inc(&mddev->openers);
7050 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
7051 	mutex_unlock(&mddev->open_mutex);
7052 
7053 	check_disk_change(bdev);
7054  out:
7055 	return err;
7056 }
7057 
7058 static void md_release(struct gendisk *disk, fmode_t mode)
7059 {
7060 	struct mddev *mddev = disk->private_data;
7061 
7062 	BUG_ON(!mddev);
7063 	atomic_dec(&mddev->openers);
7064 	mddev_put(mddev);
7065 }
7066 
7067 static int md_media_changed(struct gendisk *disk)
7068 {
7069 	struct mddev *mddev = disk->private_data;
7070 
7071 	return mddev->changed;
7072 }
7073 
7074 static int md_revalidate(struct gendisk *disk)
7075 {
7076 	struct mddev *mddev = disk->private_data;
7077 
7078 	mddev->changed = 0;
7079 	return 0;
7080 }
7081 static const struct block_device_operations md_fops =
7082 {
7083 	.owner		= THIS_MODULE,
7084 	.open		= md_open,
7085 	.release	= md_release,
7086 	.ioctl		= md_ioctl,
7087 #ifdef CONFIG_COMPAT
7088 	.compat_ioctl	= md_compat_ioctl,
7089 #endif
7090 	.getgeo		= md_getgeo,
7091 	.media_changed  = md_media_changed,
7092 	.revalidate_disk= md_revalidate,
7093 };
7094 
7095 static int md_thread(void *arg)
7096 {
7097 	struct md_thread *thread = arg;
7098 
7099 	/*
7100 	 * md_thread is a 'system-thread', it's priority should be very
7101 	 * high. We avoid resource deadlocks individually in each
7102 	 * raid personality. (RAID5 does preallocation) We also use RR and
7103 	 * the very same RT priority as kswapd, thus we will never get
7104 	 * into a priority inversion deadlock.
7105 	 *
7106 	 * we definitely have to have equal or higher priority than
7107 	 * bdflush, otherwise bdflush will deadlock if there are too
7108 	 * many dirty RAID5 blocks.
7109 	 */
7110 
7111 	allow_signal(SIGKILL);
7112 	while (!kthread_should_stop()) {
7113 
7114 		/* We need to wait INTERRUPTIBLE so that
7115 		 * we don't add to the load-average.
7116 		 * That means we need to be sure no signals are
7117 		 * pending
7118 		 */
7119 		if (signal_pending(current))
7120 			flush_signals(current);
7121 
7122 		wait_event_interruptible_timeout
7123 			(thread->wqueue,
7124 			 test_bit(THREAD_WAKEUP, &thread->flags)
7125 			 || kthread_should_stop(),
7126 			 thread->timeout);
7127 
7128 		clear_bit(THREAD_WAKEUP, &thread->flags);
7129 		if (!kthread_should_stop())
7130 			thread->run(thread);
7131 	}
7132 
7133 	return 0;
7134 }
7135 
7136 void md_wakeup_thread(struct md_thread *thread)
7137 {
7138 	if (thread) {
7139 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7140 		set_bit(THREAD_WAKEUP, &thread->flags);
7141 		wake_up(&thread->wqueue);
7142 	}
7143 }
7144 EXPORT_SYMBOL(md_wakeup_thread);
7145 
7146 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7147 		struct mddev *mddev, const char *name)
7148 {
7149 	struct md_thread *thread;
7150 
7151 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7152 	if (!thread)
7153 		return NULL;
7154 
7155 	init_waitqueue_head(&thread->wqueue);
7156 
7157 	thread->run = run;
7158 	thread->mddev = mddev;
7159 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7160 	thread->tsk = kthread_run(md_thread, thread,
7161 				  "%s_%s",
7162 				  mdname(thread->mddev),
7163 				  name);
7164 	if (IS_ERR(thread->tsk)) {
7165 		kfree(thread);
7166 		return NULL;
7167 	}
7168 	return thread;
7169 }
7170 EXPORT_SYMBOL(md_register_thread);
7171 
7172 void md_unregister_thread(struct md_thread **threadp)
7173 {
7174 	struct md_thread *thread = *threadp;
7175 	if (!thread)
7176 		return;
7177 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7178 	/* Locking ensures that mddev_unlock does not wake_up a
7179 	 * non-existent thread
7180 	 */
7181 	spin_lock(&pers_lock);
7182 	*threadp = NULL;
7183 	spin_unlock(&pers_lock);
7184 
7185 	kthread_stop(thread->tsk);
7186 	kfree(thread);
7187 }
7188 EXPORT_SYMBOL(md_unregister_thread);
7189 
7190 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7191 {
7192 	if (!rdev || test_bit(Faulty, &rdev->flags))
7193 		return;
7194 
7195 	if (!mddev->pers || !mddev->pers->error_handler)
7196 		return;
7197 	mddev->pers->error_handler(mddev,rdev);
7198 	if (mddev->degraded)
7199 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7200 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7201 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7202 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7203 	md_wakeup_thread(mddev->thread);
7204 	if (mddev->event_work.func)
7205 		queue_work(md_misc_wq, &mddev->event_work);
7206 	md_new_event(mddev);
7207 }
7208 EXPORT_SYMBOL(md_error);
7209 
7210 /* seq_file implementation /proc/mdstat */
7211 
7212 static void status_unused(struct seq_file *seq)
7213 {
7214 	int i = 0;
7215 	struct md_rdev *rdev;
7216 
7217 	seq_printf(seq, "unused devices: ");
7218 
7219 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7220 		char b[BDEVNAME_SIZE];
7221 		i++;
7222 		seq_printf(seq, "%s ",
7223 			      bdevname(rdev->bdev,b));
7224 	}
7225 	if (!i)
7226 		seq_printf(seq, "<none>");
7227 
7228 	seq_printf(seq, "\n");
7229 }
7230 
7231 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7232 {
7233 	sector_t max_sectors, resync, res;
7234 	unsigned long dt, db;
7235 	sector_t rt;
7236 	int scale;
7237 	unsigned int per_milli;
7238 
7239 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7240 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7241 		max_sectors = mddev->resync_max_sectors;
7242 	else
7243 		max_sectors = mddev->dev_sectors;
7244 
7245 	resync = mddev->curr_resync;
7246 	if (resync <= 3) {
7247 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7248 			/* Still cleaning up */
7249 			resync = max_sectors;
7250 	} else
7251 		resync -= atomic_read(&mddev->recovery_active);
7252 
7253 	if (resync == 0) {
7254 		if (mddev->recovery_cp < MaxSector) {
7255 			seq_printf(seq, "\tresync=PENDING");
7256 			return 1;
7257 		}
7258 		return 0;
7259 	}
7260 	if (resync < 3) {
7261 		seq_printf(seq, "\tresync=DELAYED");
7262 		return 1;
7263 	}
7264 
7265 	WARN_ON(max_sectors == 0);
7266 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7267 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7268 	 * u32, as those are the requirements for sector_div.
7269 	 * Thus 'scale' must be at least 10
7270 	 */
7271 	scale = 10;
7272 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7273 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7274 			scale++;
7275 	}
7276 	res = (resync>>scale)*1000;
7277 	sector_div(res, (u32)((max_sectors>>scale)+1));
7278 
7279 	per_milli = res;
7280 	{
7281 		int i, x = per_milli/50, y = 20-x;
7282 		seq_printf(seq, "[");
7283 		for (i = 0; i < x; i++)
7284 			seq_printf(seq, "=");
7285 		seq_printf(seq, ">");
7286 		for (i = 0; i < y; i++)
7287 			seq_printf(seq, ".");
7288 		seq_printf(seq, "] ");
7289 	}
7290 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7291 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7292 		    "reshape" :
7293 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7294 		     "check" :
7295 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7296 		      "resync" : "recovery"))),
7297 		   per_milli/10, per_milli % 10,
7298 		   (unsigned long long) resync/2,
7299 		   (unsigned long long) max_sectors/2);
7300 
7301 	/*
7302 	 * dt: time from mark until now
7303 	 * db: blocks written from mark until now
7304 	 * rt: remaining time
7305 	 *
7306 	 * rt is a sector_t, so could be 32bit or 64bit.
7307 	 * So we divide before multiply in case it is 32bit and close
7308 	 * to the limit.
7309 	 * We scale the divisor (db) by 32 to avoid losing precision
7310 	 * near the end of resync when the number of remaining sectors
7311 	 * is close to 'db'.
7312 	 * We then divide rt by 32 after multiplying by db to compensate.
7313 	 * The '+1' avoids division by zero if db is very small.
7314 	 */
7315 	dt = ((jiffies - mddev->resync_mark) / HZ);
7316 	if (!dt) dt++;
7317 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7318 		- mddev->resync_mark_cnt;
7319 
7320 	rt = max_sectors - resync;    /* number of remaining sectors */
7321 	sector_div(rt, db/32+1);
7322 	rt *= dt;
7323 	rt >>= 5;
7324 
7325 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7326 		   ((unsigned long)rt % 60)/6);
7327 
7328 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7329 	return 1;
7330 }
7331 
7332 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7333 {
7334 	struct list_head *tmp;
7335 	loff_t l = *pos;
7336 	struct mddev *mddev;
7337 
7338 	if (l >= 0x10000)
7339 		return NULL;
7340 	if (!l--)
7341 		/* header */
7342 		return (void*)1;
7343 
7344 	spin_lock(&all_mddevs_lock);
7345 	list_for_each(tmp,&all_mddevs)
7346 		if (!l--) {
7347 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7348 			mddev_get(mddev);
7349 			spin_unlock(&all_mddevs_lock);
7350 			return mddev;
7351 		}
7352 	spin_unlock(&all_mddevs_lock);
7353 	if (!l--)
7354 		return (void*)2;/* tail */
7355 	return NULL;
7356 }
7357 
7358 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7359 {
7360 	struct list_head *tmp;
7361 	struct mddev *next_mddev, *mddev = v;
7362 
7363 	++*pos;
7364 	if (v == (void*)2)
7365 		return NULL;
7366 
7367 	spin_lock(&all_mddevs_lock);
7368 	if (v == (void*)1)
7369 		tmp = all_mddevs.next;
7370 	else
7371 		tmp = mddev->all_mddevs.next;
7372 	if (tmp != &all_mddevs)
7373 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7374 	else {
7375 		next_mddev = (void*)2;
7376 		*pos = 0x10000;
7377 	}
7378 	spin_unlock(&all_mddevs_lock);
7379 
7380 	if (v != (void*)1)
7381 		mddev_put(mddev);
7382 	return next_mddev;
7383 
7384 }
7385 
7386 static void md_seq_stop(struct seq_file *seq, void *v)
7387 {
7388 	struct mddev *mddev = v;
7389 
7390 	if (mddev && v != (void*)1 && v != (void*)2)
7391 		mddev_put(mddev);
7392 }
7393 
7394 static int md_seq_show(struct seq_file *seq, void *v)
7395 {
7396 	struct mddev *mddev = v;
7397 	sector_t sectors;
7398 	struct md_rdev *rdev;
7399 
7400 	if (v == (void*)1) {
7401 		struct md_personality *pers;
7402 		seq_printf(seq, "Personalities : ");
7403 		spin_lock(&pers_lock);
7404 		list_for_each_entry(pers, &pers_list, list)
7405 			seq_printf(seq, "[%s] ", pers->name);
7406 
7407 		spin_unlock(&pers_lock);
7408 		seq_printf(seq, "\n");
7409 		seq->poll_event = atomic_read(&md_event_count);
7410 		return 0;
7411 	}
7412 	if (v == (void*)2) {
7413 		status_unused(seq);
7414 		return 0;
7415 	}
7416 
7417 	spin_lock(&mddev->lock);
7418 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7419 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7420 						mddev->pers ? "" : "in");
7421 		if (mddev->pers) {
7422 			if (mddev->ro==1)
7423 				seq_printf(seq, " (read-only)");
7424 			if (mddev->ro==2)
7425 				seq_printf(seq, " (auto-read-only)");
7426 			seq_printf(seq, " %s", mddev->pers->name);
7427 		}
7428 
7429 		sectors = 0;
7430 		rcu_read_lock();
7431 		rdev_for_each_rcu(rdev, mddev) {
7432 			char b[BDEVNAME_SIZE];
7433 			seq_printf(seq, " %s[%d]",
7434 				bdevname(rdev->bdev,b), rdev->desc_nr);
7435 			if (test_bit(WriteMostly, &rdev->flags))
7436 				seq_printf(seq, "(W)");
7437 			if (test_bit(Journal, &rdev->flags))
7438 				seq_printf(seq, "(J)");
7439 			if (test_bit(Faulty, &rdev->flags)) {
7440 				seq_printf(seq, "(F)");
7441 				continue;
7442 			}
7443 			if (rdev->raid_disk < 0)
7444 				seq_printf(seq, "(S)"); /* spare */
7445 			if (test_bit(Replacement, &rdev->flags))
7446 				seq_printf(seq, "(R)");
7447 			sectors += rdev->sectors;
7448 		}
7449 		rcu_read_unlock();
7450 
7451 		if (!list_empty(&mddev->disks)) {
7452 			if (mddev->pers)
7453 				seq_printf(seq, "\n      %llu blocks",
7454 					   (unsigned long long)
7455 					   mddev->array_sectors / 2);
7456 			else
7457 				seq_printf(seq, "\n      %llu blocks",
7458 					   (unsigned long long)sectors / 2);
7459 		}
7460 		if (mddev->persistent) {
7461 			if (mddev->major_version != 0 ||
7462 			    mddev->minor_version != 90) {
7463 				seq_printf(seq," super %d.%d",
7464 					   mddev->major_version,
7465 					   mddev->minor_version);
7466 			}
7467 		} else if (mddev->external)
7468 			seq_printf(seq, " super external:%s",
7469 				   mddev->metadata_type);
7470 		else
7471 			seq_printf(seq, " super non-persistent");
7472 
7473 		if (mddev->pers) {
7474 			mddev->pers->status(seq, mddev);
7475 			seq_printf(seq, "\n      ");
7476 			if (mddev->pers->sync_request) {
7477 				if (status_resync(seq, mddev))
7478 					seq_printf(seq, "\n      ");
7479 			}
7480 		} else
7481 			seq_printf(seq, "\n       ");
7482 
7483 		bitmap_status(seq, mddev->bitmap);
7484 
7485 		seq_printf(seq, "\n");
7486 	}
7487 	spin_unlock(&mddev->lock);
7488 
7489 	return 0;
7490 }
7491 
7492 static const struct seq_operations md_seq_ops = {
7493 	.start  = md_seq_start,
7494 	.next   = md_seq_next,
7495 	.stop   = md_seq_stop,
7496 	.show   = md_seq_show,
7497 };
7498 
7499 static int md_seq_open(struct inode *inode, struct file *file)
7500 {
7501 	struct seq_file *seq;
7502 	int error;
7503 
7504 	error = seq_open(file, &md_seq_ops);
7505 	if (error)
7506 		return error;
7507 
7508 	seq = file->private_data;
7509 	seq->poll_event = atomic_read(&md_event_count);
7510 	return error;
7511 }
7512 
7513 static int md_unloading;
7514 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7515 {
7516 	struct seq_file *seq = filp->private_data;
7517 	int mask;
7518 
7519 	if (md_unloading)
7520 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7521 	poll_wait(filp, &md_event_waiters, wait);
7522 
7523 	/* always allow read */
7524 	mask = POLLIN | POLLRDNORM;
7525 
7526 	if (seq->poll_event != atomic_read(&md_event_count))
7527 		mask |= POLLERR | POLLPRI;
7528 	return mask;
7529 }
7530 
7531 static const struct file_operations md_seq_fops = {
7532 	.owner		= THIS_MODULE,
7533 	.open           = md_seq_open,
7534 	.read           = seq_read,
7535 	.llseek         = seq_lseek,
7536 	.release	= seq_release_private,
7537 	.poll		= mdstat_poll,
7538 };
7539 
7540 int register_md_personality(struct md_personality *p)
7541 {
7542 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7543 						p->name, p->level);
7544 	spin_lock(&pers_lock);
7545 	list_add_tail(&p->list, &pers_list);
7546 	spin_unlock(&pers_lock);
7547 	return 0;
7548 }
7549 EXPORT_SYMBOL(register_md_personality);
7550 
7551 int unregister_md_personality(struct md_personality *p)
7552 {
7553 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7554 	spin_lock(&pers_lock);
7555 	list_del_init(&p->list);
7556 	spin_unlock(&pers_lock);
7557 	return 0;
7558 }
7559 EXPORT_SYMBOL(unregister_md_personality);
7560 
7561 int register_md_cluster_operations(struct md_cluster_operations *ops,
7562 				   struct module *module)
7563 {
7564 	int ret = 0;
7565 	spin_lock(&pers_lock);
7566 	if (md_cluster_ops != NULL)
7567 		ret = -EALREADY;
7568 	else {
7569 		md_cluster_ops = ops;
7570 		md_cluster_mod = module;
7571 	}
7572 	spin_unlock(&pers_lock);
7573 	return ret;
7574 }
7575 EXPORT_SYMBOL(register_md_cluster_operations);
7576 
7577 int unregister_md_cluster_operations(void)
7578 {
7579 	spin_lock(&pers_lock);
7580 	md_cluster_ops = NULL;
7581 	spin_unlock(&pers_lock);
7582 	return 0;
7583 }
7584 EXPORT_SYMBOL(unregister_md_cluster_operations);
7585 
7586 int md_setup_cluster(struct mddev *mddev, int nodes)
7587 {
7588 	int err;
7589 
7590 	err = request_module("md-cluster");
7591 	if (err) {
7592 		pr_err("md-cluster module not found.\n");
7593 		return -ENOENT;
7594 	}
7595 
7596 	spin_lock(&pers_lock);
7597 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7598 		spin_unlock(&pers_lock);
7599 		return -ENOENT;
7600 	}
7601 	spin_unlock(&pers_lock);
7602 
7603 	return md_cluster_ops->join(mddev, nodes);
7604 }
7605 
7606 void md_cluster_stop(struct mddev *mddev)
7607 {
7608 	if (!md_cluster_ops)
7609 		return;
7610 	md_cluster_ops->leave(mddev);
7611 	module_put(md_cluster_mod);
7612 }
7613 
7614 static int is_mddev_idle(struct mddev *mddev, int init)
7615 {
7616 	struct md_rdev *rdev;
7617 	int idle;
7618 	int curr_events;
7619 
7620 	idle = 1;
7621 	rcu_read_lock();
7622 	rdev_for_each_rcu(rdev, mddev) {
7623 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7624 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7625 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7626 			      atomic_read(&disk->sync_io);
7627 		/* sync IO will cause sync_io to increase before the disk_stats
7628 		 * as sync_io is counted when a request starts, and
7629 		 * disk_stats is counted when it completes.
7630 		 * So resync activity will cause curr_events to be smaller than
7631 		 * when there was no such activity.
7632 		 * non-sync IO will cause disk_stat to increase without
7633 		 * increasing sync_io so curr_events will (eventually)
7634 		 * be larger than it was before.  Once it becomes
7635 		 * substantially larger, the test below will cause
7636 		 * the array to appear non-idle, and resync will slow
7637 		 * down.
7638 		 * If there is a lot of outstanding resync activity when
7639 		 * we set last_event to curr_events, then all that activity
7640 		 * completing might cause the array to appear non-idle
7641 		 * and resync will be slowed down even though there might
7642 		 * not have been non-resync activity.  This will only
7643 		 * happen once though.  'last_events' will soon reflect
7644 		 * the state where there is little or no outstanding
7645 		 * resync requests, and further resync activity will
7646 		 * always make curr_events less than last_events.
7647 		 *
7648 		 */
7649 		if (init || curr_events - rdev->last_events > 64) {
7650 			rdev->last_events = curr_events;
7651 			idle = 0;
7652 		}
7653 	}
7654 	rcu_read_unlock();
7655 	return idle;
7656 }
7657 
7658 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7659 {
7660 	/* another "blocks" (512byte) blocks have been synced */
7661 	atomic_sub(blocks, &mddev->recovery_active);
7662 	wake_up(&mddev->recovery_wait);
7663 	if (!ok) {
7664 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7665 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7666 		md_wakeup_thread(mddev->thread);
7667 		// stop recovery, signal do_sync ....
7668 	}
7669 }
7670 EXPORT_SYMBOL(md_done_sync);
7671 
7672 /* md_write_start(mddev, bi)
7673  * If we need to update some array metadata (e.g. 'active' flag
7674  * in superblock) before writing, schedule a superblock update
7675  * and wait for it to complete.
7676  */
7677 void md_write_start(struct mddev *mddev, struct bio *bi)
7678 {
7679 	int did_change = 0;
7680 	if (bio_data_dir(bi) != WRITE)
7681 		return;
7682 
7683 	BUG_ON(mddev->ro == 1);
7684 	if (mddev->ro == 2) {
7685 		/* need to switch to read/write */
7686 		mddev->ro = 0;
7687 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7688 		md_wakeup_thread(mddev->thread);
7689 		md_wakeup_thread(mddev->sync_thread);
7690 		did_change = 1;
7691 	}
7692 	atomic_inc(&mddev->writes_pending);
7693 	if (mddev->safemode == 1)
7694 		mddev->safemode = 0;
7695 	if (mddev->in_sync) {
7696 		spin_lock(&mddev->lock);
7697 		if (mddev->in_sync) {
7698 			mddev->in_sync = 0;
7699 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7700 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7701 			md_wakeup_thread(mddev->thread);
7702 			did_change = 1;
7703 		}
7704 		spin_unlock(&mddev->lock);
7705 	}
7706 	if (did_change)
7707 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7708 	wait_event(mddev->sb_wait,
7709 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7710 }
7711 EXPORT_SYMBOL(md_write_start);
7712 
7713 void md_write_end(struct mddev *mddev)
7714 {
7715 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7716 		if (mddev->safemode == 2)
7717 			md_wakeup_thread(mddev->thread);
7718 		else if (mddev->safemode_delay)
7719 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7720 	}
7721 }
7722 EXPORT_SYMBOL(md_write_end);
7723 
7724 /* md_allow_write(mddev)
7725  * Calling this ensures that the array is marked 'active' so that writes
7726  * may proceed without blocking.  It is important to call this before
7727  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7728  * Must be called with mddev_lock held.
7729  *
7730  * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
7731  * is dropped, so return -EAGAIN after notifying userspace.
7732  */
7733 int md_allow_write(struct mddev *mddev)
7734 {
7735 	if (!mddev->pers)
7736 		return 0;
7737 	if (mddev->ro)
7738 		return 0;
7739 	if (!mddev->pers->sync_request)
7740 		return 0;
7741 
7742 	spin_lock(&mddev->lock);
7743 	if (mddev->in_sync) {
7744 		mddev->in_sync = 0;
7745 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7746 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7747 		if (mddev->safemode_delay &&
7748 		    mddev->safemode == 0)
7749 			mddev->safemode = 1;
7750 		spin_unlock(&mddev->lock);
7751 		md_update_sb(mddev, 0);
7752 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7753 	} else
7754 		spin_unlock(&mddev->lock);
7755 
7756 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7757 		return -EAGAIN;
7758 	else
7759 		return 0;
7760 }
7761 EXPORT_SYMBOL_GPL(md_allow_write);
7762 
7763 #define SYNC_MARKS	10
7764 #define	SYNC_MARK_STEP	(3*HZ)
7765 #define UPDATE_FREQUENCY (5*60*HZ)
7766 void md_do_sync(struct md_thread *thread)
7767 {
7768 	struct mddev *mddev = thread->mddev;
7769 	struct mddev *mddev2;
7770 	unsigned int currspeed = 0,
7771 		 window;
7772 	sector_t max_sectors,j, io_sectors, recovery_done;
7773 	unsigned long mark[SYNC_MARKS];
7774 	unsigned long update_time;
7775 	sector_t mark_cnt[SYNC_MARKS];
7776 	int last_mark,m;
7777 	struct list_head *tmp;
7778 	sector_t last_check;
7779 	int skipped = 0;
7780 	struct md_rdev *rdev;
7781 	char *desc, *action = NULL;
7782 	struct blk_plug plug;
7783 	bool cluster_resync_finished = false;
7784 
7785 	/* just incase thread restarts... */
7786 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7787 		return;
7788 	if (mddev->ro) {/* never try to sync a read-only array */
7789 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7790 		return;
7791 	}
7792 
7793 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7794 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7795 			desc = "data-check";
7796 			action = "check";
7797 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7798 			desc = "requested-resync";
7799 			action = "repair";
7800 		} else
7801 			desc = "resync";
7802 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7803 		desc = "reshape";
7804 	else
7805 		desc = "recovery";
7806 
7807 	mddev->last_sync_action = action ?: desc;
7808 
7809 	/* we overload curr_resync somewhat here.
7810 	 * 0 == not engaged in resync at all
7811 	 * 2 == checking that there is no conflict with another sync
7812 	 * 1 == like 2, but have yielded to allow conflicting resync to
7813 	 *		commense
7814 	 * other == active in resync - this many blocks
7815 	 *
7816 	 * Before starting a resync we must have set curr_resync to
7817 	 * 2, and then checked that every "conflicting" array has curr_resync
7818 	 * less than ours.  When we find one that is the same or higher
7819 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7820 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7821 	 * This will mean we have to start checking from the beginning again.
7822 	 *
7823 	 */
7824 
7825 	do {
7826 		mddev->curr_resync = 2;
7827 
7828 	try_again:
7829 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7830 			goto skip;
7831 		for_each_mddev(mddev2, tmp) {
7832 			if (mddev2 == mddev)
7833 				continue;
7834 			if (!mddev->parallel_resync
7835 			&&  mddev2->curr_resync
7836 			&&  match_mddev_units(mddev, mddev2)) {
7837 				DEFINE_WAIT(wq);
7838 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7839 					/* arbitrarily yield */
7840 					mddev->curr_resync = 1;
7841 					wake_up(&resync_wait);
7842 				}
7843 				if (mddev > mddev2 && mddev->curr_resync == 1)
7844 					/* no need to wait here, we can wait the next
7845 					 * time 'round when curr_resync == 2
7846 					 */
7847 					continue;
7848 				/* We need to wait 'interruptible' so as not to
7849 				 * contribute to the load average, and not to
7850 				 * be caught by 'softlockup'
7851 				 */
7852 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7853 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7854 				    mddev2->curr_resync >= mddev->curr_resync) {
7855 					printk(KERN_INFO "md: delaying %s of %s"
7856 					       " until %s has finished (they"
7857 					       " share one or more physical units)\n",
7858 					       desc, mdname(mddev), mdname(mddev2));
7859 					mddev_put(mddev2);
7860 					if (signal_pending(current))
7861 						flush_signals(current);
7862 					schedule();
7863 					finish_wait(&resync_wait, &wq);
7864 					goto try_again;
7865 				}
7866 				finish_wait(&resync_wait, &wq);
7867 			}
7868 		}
7869 	} while (mddev->curr_resync < 2);
7870 
7871 	j = 0;
7872 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7873 		/* resync follows the size requested by the personality,
7874 		 * which defaults to physical size, but can be virtual size
7875 		 */
7876 		max_sectors = mddev->resync_max_sectors;
7877 		atomic64_set(&mddev->resync_mismatches, 0);
7878 		/* we don't use the checkpoint if there's a bitmap */
7879 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7880 			j = mddev->resync_min;
7881 		else if (!mddev->bitmap)
7882 			j = mddev->recovery_cp;
7883 
7884 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7885 		max_sectors = mddev->resync_max_sectors;
7886 	else {
7887 		/* recovery follows the physical size of devices */
7888 		max_sectors = mddev->dev_sectors;
7889 		j = MaxSector;
7890 		rcu_read_lock();
7891 		rdev_for_each_rcu(rdev, mddev)
7892 			if (rdev->raid_disk >= 0 &&
7893 			    !test_bit(Journal, &rdev->flags) &&
7894 			    !test_bit(Faulty, &rdev->flags) &&
7895 			    !test_bit(In_sync, &rdev->flags) &&
7896 			    rdev->recovery_offset < j)
7897 				j = rdev->recovery_offset;
7898 		rcu_read_unlock();
7899 
7900 		/* If there is a bitmap, we need to make sure all
7901 		 * writes that started before we added a spare
7902 		 * complete before we start doing a recovery.
7903 		 * Otherwise the write might complete and (via
7904 		 * bitmap_endwrite) set a bit in the bitmap after the
7905 		 * recovery has checked that bit and skipped that
7906 		 * region.
7907 		 */
7908 		if (mddev->bitmap) {
7909 			mddev->pers->quiesce(mddev, 1);
7910 			mddev->pers->quiesce(mddev, 0);
7911 		}
7912 	}
7913 
7914 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7915 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7916 		" %d KB/sec/disk.\n", speed_min(mddev));
7917 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7918 	       "(but not more than %d KB/sec) for %s.\n",
7919 	       speed_max(mddev), desc);
7920 
7921 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7922 
7923 	io_sectors = 0;
7924 	for (m = 0; m < SYNC_MARKS; m++) {
7925 		mark[m] = jiffies;
7926 		mark_cnt[m] = io_sectors;
7927 	}
7928 	last_mark = 0;
7929 	mddev->resync_mark = mark[last_mark];
7930 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7931 
7932 	/*
7933 	 * Tune reconstruction:
7934 	 */
7935 	window = 32*(PAGE_SIZE/512);
7936 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7937 		window/2, (unsigned long long)max_sectors/2);
7938 
7939 	atomic_set(&mddev->recovery_active, 0);
7940 	last_check = 0;
7941 
7942 	if (j>2) {
7943 		printk(KERN_INFO
7944 		       "md: resuming %s of %s from checkpoint.\n",
7945 		       desc, mdname(mddev));
7946 		mddev->curr_resync = j;
7947 	} else
7948 		mddev->curr_resync = 3; /* no longer delayed */
7949 	mddev->curr_resync_completed = j;
7950 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7951 	md_new_event(mddev);
7952 	update_time = jiffies;
7953 
7954 	blk_start_plug(&plug);
7955 	while (j < max_sectors) {
7956 		sector_t sectors;
7957 
7958 		skipped = 0;
7959 
7960 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7961 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7962 		      (mddev->curr_resync - mddev->curr_resync_completed)
7963 		      > (max_sectors >> 4)) ||
7964 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7965 		     (j - mddev->curr_resync_completed)*2
7966 		     >= mddev->resync_max - mddev->curr_resync_completed ||
7967 		     mddev->curr_resync_completed > mddev->resync_max
7968 			    )) {
7969 			/* time to update curr_resync_completed */
7970 			wait_event(mddev->recovery_wait,
7971 				   atomic_read(&mddev->recovery_active) == 0);
7972 			mddev->curr_resync_completed = j;
7973 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7974 			    j > mddev->recovery_cp)
7975 				mddev->recovery_cp = j;
7976 			update_time = jiffies;
7977 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7978 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7979 		}
7980 
7981 		while (j >= mddev->resync_max &&
7982 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7983 			/* As this condition is controlled by user-space,
7984 			 * we can block indefinitely, so use '_interruptible'
7985 			 * to avoid triggering warnings.
7986 			 */
7987 			flush_signals(current); /* just in case */
7988 			wait_event_interruptible(mddev->recovery_wait,
7989 						 mddev->resync_max > j
7990 						 || test_bit(MD_RECOVERY_INTR,
7991 							     &mddev->recovery));
7992 		}
7993 
7994 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7995 			break;
7996 
7997 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7998 		if (sectors == 0) {
7999 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8000 			break;
8001 		}
8002 
8003 		if (!skipped) { /* actual IO requested */
8004 			io_sectors += sectors;
8005 			atomic_add(sectors, &mddev->recovery_active);
8006 		}
8007 
8008 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8009 			break;
8010 
8011 		j += sectors;
8012 		if (j > max_sectors)
8013 			/* when skipping, extra large numbers can be returned. */
8014 			j = max_sectors;
8015 		if (j > 2)
8016 			mddev->curr_resync = j;
8017 		mddev->curr_mark_cnt = io_sectors;
8018 		if (last_check == 0)
8019 			/* this is the earliest that rebuild will be
8020 			 * visible in /proc/mdstat
8021 			 */
8022 			md_new_event(mddev);
8023 
8024 		if (last_check + window > io_sectors || j == max_sectors)
8025 			continue;
8026 
8027 		last_check = io_sectors;
8028 	repeat:
8029 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8030 			/* step marks */
8031 			int next = (last_mark+1) % SYNC_MARKS;
8032 
8033 			mddev->resync_mark = mark[next];
8034 			mddev->resync_mark_cnt = mark_cnt[next];
8035 			mark[next] = jiffies;
8036 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8037 			last_mark = next;
8038 		}
8039 
8040 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8041 			break;
8042 
8043 		/*
8044 		 * this loop exits only if either when we are slower than
8045 		 * the 'hard' speed limit, or the system was IO-idle for
8046 		 * a jiffy.
8047 		 * the system might be non-idle CPU-wise, but we only care
8048 		 * about not overloading the IO subsystem. (things like an
8049 		 * e2fsck being done on the RAID array should execute fast)
8050 		 */
8051 		cond_resched();
8052 
8053 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8054 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8055 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8056 
8057 		if (currspeed > speed_min(mddev)) {
8058 			if (currspeed > speed_max(mddev)) {
8059 				msleep(500);
8060 				goto repeat;
8061 			}
8062 			if (!is_mddev_idle(mddev, 0)) {
8063 				/*
8064 				 * Give other IO more of a chance.
8065 				 * The faster the devices, the less we wait.
8066 				 */
8067 				wait_event(mddev->recovery_wait,
8068 					   !atomic_read(&mddev->recovery_active));
8069 			}
8070 		}
8071 	}
8072 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8073 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8074 	       ? "interrupted" : "done");
8075 	/*
8076 	 * this also signals 'finished resyncing' to md_stop
8077 	 */
8078 	blk_finish_plug(&plug);
8079 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8080 
8081 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8082 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8083 	    mddev->curr_resync > 2) {
8084 		mddev->curr_resync_completed = mddev->curr_resync;
8085 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8086 	}
8087 	/* tell personality and other nodes that we are finished */
8088 	if (mddev_is_clustered(mddev)) {
8089 		md_cluster_ops->resync_finish(mddev);
8090 		cluster_resync_finished = true;
8091 	}
8092 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8093 
8094 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8095 	    mddev->curr_resync > 2) {
8096 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8097 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8098 				if (mddev->curr_resync >= mddev->recovery_cp) {
8099 					printk(KERN_INFO
8100 					       "md: checkpointing %s of %s.\n",
8101 					       desc, mdname(mddev));
8102 					if (test_bit(MD_RECOVERY_ERROR,
8103 						&mddev->recovery))
8104 						mddev->recovery_cp =
8105 							mddev->curr_resync_completed;
8106 					else
8107 						mddev->recovery_cp =
8108 							mddev->curr_resync;
8109 				}
8110 			} else
8111 				mddev->recovery_cp = MaxSector;
8112 		} else {
8113 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8114 				mddev->curr_resync = MaxSector;
8115 			rcu_read_lock();
8116 			rdev_for_each_rcu(rdev, mddev)
8117 				if (rdev->raid_disk >= 0 &&
8118 				    mddev->delta_disks >= 0 &&
8119 				    !test_bit(Journal, &rdev->flags) &&
8120 				    !test_bit(Faulty, &rdev->flags) &&
8121 				    !test_bit(In_sync, &rdev->flags) &&
8122 				    rdev->recovery_offset < mddev->curr_resync)
8123 					rdev->recovery_offset = mddev->curr_resync;
8124 			rcu_read_unlock();
8125 		}
8126 	}
8127  skip:
8128 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
8129 
8130 	if (mddev_is_clustered(mddev) &&
8131 	    test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8132 	    !cluster_resync_finished)
8133 		md_cluster_ops->resync_finish(mddev);
8134 
8135 	spin_lock(&mddev->lock);
8136 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8137 		/* We completed so min/max setting can be forgotten if used. */
8138 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8139 			mddev->resync_min = 0;
8140 		mddev->resync_max = MaxSector;
8141 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8142 		mddev->resync_min = mddev->curr_resync_completed;
8143 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8144 	mddev->curr_resync = 0;
8145 	spin_unlock(&mddev->lock);
8146 
8147 	wake_up(&resync_wait);
8148 	md_wakeup_thread(mddev->thread);
8149 	return;
8150 }
8151 EXPORT_SYMBOL_GPL(md_do_sync);
8152 
8153 static int remove_and_add_spares(struct mddev *mddev,
8154 				 struct md_rdev *this)
8155 {
8156 	struct md_rdev *rdev;
8157 	int spares = 0;
8158 	int removed = 0;
8159 
8160 	rdev_for_each(rdev, mddev)
8161 		if ((this == NULL || rdev == this) &&
8162 		    rdev->raid_disk >= 0 &&
8163 		    !test_bit(Blocked, &rdev->flags) &&
8164 		    (test_bit(Faulty, &rdev->flags) ||
8165 		     (!test_bit(In_sync, &rdev->flags) &&
8166 		      !test_bit(Journal, &rdev->flags))) &&
8167 		    atomic_read(&rdev->nr_pending)==0) {
8168 			if (mddev->pers->hot_remove_disk(
8169 				    mddev, rdev) == 0) {
8170 				sysfs_unlink_rdev(mddev, rdev);
8171 				rdev->raid_disk = -1;
8172 				removed++;
8173 			}
8174 		}
8175 	if (removed && mddev->kobj.sd)
8176 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8177 
8178 	if (this && removed)
8179 		goto no_add;
8180 
8181 	rdev_for_each(rdev, mddev) {
8182 		if (this && this != rdev)
8183 			continue;
8184 		if (test_bit(Candidate, &rdev->flags))
8185 			continue;
8186 		if (rdev->raid_disk >= 0 &&
8187 		    !test_bit(In_sync, &rdev->flags) &&
8188 		    !test_bit(Journal, &rdev->flags) &&
8189 		    !test_bit(Faulty, &rdev->flags))
8190 			spares++;
8191 		if (rdev->raid_disk >= 0)
8192 			continue;
8193 		if (test_bit(Faulty, &rdev->flags))
8194 			continue;
8195 		if (!test_bit(Journal, &rdev->flags)) {
8196 			if (mddev->ro &&
8197 			    ! (rdev->saved_raid_disk >= 0 &&
8198 			       !test_bit(Bitmap_sync, &rdev->flags)))
8199 				continue;
8200 
8201 			rdev->recovery_offset = 0;
8202 		}
8203 		if (mddev->pers->
8204 		    hot_add_disk(mddev, rdev) == 0) {
8205 			if (sysfs_link_rdev(mddev, rdev))
8206 				/* failure here is OK */;
8207 			if (!test_bit(Journal, &rdev->flags))
8208 				spares++;
8209 			md_new_event(mddev);
8210 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8211 		}
8212 	}
8213 no_add:
8214 	if (removed)
8215 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8216 	return spares;
8217 }
8218 
8219 static void md_start_sync(struct work_struct *ws)
8220 {
8221 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8222 	int ret = 0;
8223 
8224 	if (mddev_is_clustered(mddev)) {
8225 		ret = md_cluster_ops->resync_start(mddev);
8226 		if (ret) {
8227 			mddev->sync_thread = NULL;
8228 			goto out;
8229 		}
8230 	}
8231 
8232 	mddev->sync_thread = md_register_thread(md_do_sync,
8233 						mddev,
8234 						"resync");
8235 out:
8236 	if (!mddev->sync_thread) {
8237 		if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8238 			printk(KERN_ERR "%s: could not start resync"
8239 			       " thread...\n",
8240 			       mdname(mddev));
8241 		/* leave the spares where they are, it shouldn't hurt */
8242 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8243 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8244 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8245 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8246 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8247 		wake_up(&resync_wait);
8248 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8249 				       &mddev->recovery))
8250 			if (mddev->sysfs_action)
8251 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8252 	} else
8253 		md_wakeup_thread(mddev->sync_thread);
8254 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8255 	md_new_event(mddev);
8256 }
8257 
8258 /*
8259  * This routine is regularly called by all per-raid-array threads to
8260  * deal with generic issues like resync and super-block update.
8261  * Raid personalities that don't have a thread (linear/raid0) do not
8262  * need this as they never do any recovery or update the superblock.
8263  *
8264  * It does not do any resync itself, but rather "forks" off other threads
8265  * to do that as needed.
8266  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8267  * "->recovery" and create a thread at ->sync_thread.
8268  * When the thread finishes it sets MD_RECOVERY_DONE
8269  * and wakeups up this thread which will reap the thread and finish up.
8270  * This thread also removes any faulty devices (with nr_pending == 0).
8271  *
8272  * The overall approach is:
8273  *  1/ if the superblock needs updating, update it.
8274  *  2/ If a recovery thread is running, don't do anything else.
8275  *  3/ If recovery has finished, clean up, possibly marking spares active.
8276  *  4/ If there are any faulty devices, remove them.
8277  *  5/ If array is degraded, try to add spares devices
8278  *  6/ If array has spares or is not in-sync, start a resync thread.
8279  */
8280 void md_check_recovery(struct mddev *mddev)
8281 {
8282 	if (mddev->suspended)
8283 		return;
8284 
8285 	if (mddev->bitmap)
8286 		bitmap_daemon_work(mddev);
8287 
8288 	if (signal_pending(current)) {
8289 		if (mddev->pers->sync_request && !mddev->external) {
8290 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8291 			       mdname(mddev));
8292 			mddev->safemode = 2;
8293 		}
8294 		flush_signals(current);
8295 	}
8296 
8297 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8298 		return;
8299 	if ( ! (
8300 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8301 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8302 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8303 		test_bit(MD_RELOAD_SB, &mddev->flags) ||
8304 		(mddev->external == 0 && mddev->safemode == 1) ||
8305 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8306 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8307 		))
8308 		return;
8309 
8310 	if (mddev_trylock(mddev)) {
8311 		int spares = 0;
8312 
8313 		if (mddev->ro) {
8314 			struct md_rdev *rdev;
8315 			if (!mddev->external && mddev->in_sync)
8316 				/* 'Blocked' flag not needed as failed devices
8317 				 * will be recorded if array switched to read/write.
8318 				 * Leaving it set will prevent the device
8319 				 * from being removed.
8320 				 */
8321 				rdev_for_each(rdev, mddev)
8322 					clear_bit(Blocked, &rdev->flags);
8323 			/* On a read-only array we can:
8324 			 * - remove failed devices
8325 			 * - add already-in_sync devices if the array itself
8326 			 *   is in-sync.
8327 			 * As we only add devices that are already in-sync,
8328 			 * we can activate the spares immediately.
8329 			 */
8330 			remove_and_add_spares(mddev, NULL);
8331 			/* There is no thread, but we need to call
8332 			 * ->spare_active and clear saved_raid_disk
8333 			 */
8334 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8335 			md_reap_sync_thread(mddev);
8336 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8337 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8338 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8339 			goto unlock;
8340 		}
8341 
8342 		if (mddev_is_clustered(mddev)) {
8343 			struct md_rdev *rdev;
8344 			/* kick the device if another node issued a
8345 			 * remove disk.
8346 			 */
8347 			rdev_for_each(rdev, mddev) {
8348 				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8349 						rdev->raid_disk < 0)
8350 					md_kick_rdev_from_array(rdev);
8351 			}
8352 
8353 			if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
8354 				md_reload_sb(mddev, mddev->good_device_nr);
8355 		}
8356 
8357 		if (!mddev->external) {
8358 			int did_change = 0;
8359 			spin_lock(&mddev->lock);
8360 			if (mddev->safemode &&
8361 			    !atomic_read(&mddev->writes_pending) &&
8362 			    !mddev->in_sync &&
8363 			    mddev->recovery_cp == MaxSector) {
8364 				mddev->in_sync = 1;
8365 				did_change = 1;
8366 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8367 			}
8368 			if (mddev->safemode == 1)
8369 				mddev->safemode = 0;
8370 			spin_unlock(&mddev->lock);
8371 			if (did_change)
8372 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8373 		}
8374 
8375 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
8376 			md_update_sb(mddev, 0);
8377 
8378 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8379 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8380 			/* resync/recovery still happening */
8381 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8382 			goto unlock;
8383 		}
8384 		if (mddev->sync_thread) {
8385 			md_reap_sync_thread(mddev);
8386 			goto unlock;
8387 		}
8388 		/* Set RUNNING before clearing NEEDED to avoid
8389 		 * any transients in the value of "sync_action".
8390 		 */
8391 		mddev->curr_resync_completed = 0;
8392 		spin_lock(&mddev->lock);
8393 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8394 		spin_unlock(&mddev->lock);
8395 		/* Clear some bits that don't mean anything, but
8396 		 * might be left set
8397 		 */
8398 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8399 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8400 
8401 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8402 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8403 			goto not_running;
8404 		/* no recovery is running.
8405 		 * remove any failed drives, then
8406 		 * add spares if possible.
8407 		 * Spares are also removed and re-added, to allow
8408 		 * the personality to fail the re-add.
8409 		 */
8410 
8411 		if (mddev->reshape_position != MaxSector) {
8412 			if (mddev->pers->check_reshape == NULL ||
8413 			    mddev->pers->check_reshape(mddev) != 0)
8414 				/* Cannot proceed */
8415 				goto not_running;
8416 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8417 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8418 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8419 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8420 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8421 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8422 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8423 		} else if (mddev->recovery_cp < MaxSector) {
8424 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8425 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8426 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8427 			/* nothing to be done ... */
8428 			goto not_running;
8429 
8430 		if (mddev->pers->sync_request) {
8431 			if (spares) {
8432 				/* We are adding a device or devices to an array
8433 				 * which has the bitmap stored on all devices.
8434 				 * So make sure all bitmap pages get written
8435 				 */
8436 				bitmap_write_all(mddev->bitmap);
8437 			}
8438 			INIT_WORK(&mddev->del_work, md_start_sync);
8439 			queue_work(md_misc_wq, &mddev->del_work);
8440 			goto unlock;
8441 		}
8442 	not_running:
8443 		if (!mddev->sync_thread) {
8444 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8445 			wake_up(&resync_wait);
8446 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8447 					       &mddev->recovery))
8448 				if (mddev->sysfs_action)
8449 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8450 		}
8451 	unlock:
8452 		wake_up(&mddev->sb_wait);
8453 		mddev_unlock(mddev);
8454 	}
8455 }
8456 EXPORT_SYMBOL(md_check_recovery);
8457 
8458 void md_reap_sync_thread(struct mddev *mddev)
8459 {
8460 	struct md_rdev *rdev;
8461 
8462 	/* resync has finished, collect result */
8463 	md_unregister_thread(&mddev->sync_thread);
8464 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8465 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8466 		/* success...*/
8467 		/* activate any spares */
8468 		if (mddev->pers->spare_active(mddev)) {
8469 			sysfs_notify(&mddev->kobj, NULL,
8470 				     "degraded");
8471 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8472 		}
8473 	}
8474 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8475 	    mddev->pers->finish_reshape)
8476 		mddev->pers->finish_reshape(mddev);
8477 
8478 	/* If array is no-longer degraded, then any saved_raid_disk
8479 	 * information must be scrapped.
8480 	 */
8481 	if (!mddev->degraded)
8482 		rdev_for_each(rdev, mddev)
8483 			rdev->saved_raid_disk = -1;
8484 
8485 	md_update_sb(mddev, 1);
8486 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8487 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8488 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8489 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8490 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8491 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8492 	wake_up(&resync_wait);
8493 	/* flag recovery needed just to double check */
8494 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8495 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8496 	md_new_event(mddev);
8497 	if (mddev->event_work.func)
8498 		queue_work(md_misc_wq, &mddev->event_work);
8499 }
8500 EXPORT_SYMBOL(md_reap_sync_thread);
8501 
8502 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8503 {
8504 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8505 	wait_event_timeout(rdev->blocked_wait,
8506 			   !test_bit(Blocked, &rdev->flags) &&
8507 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8508 			   msecs_to_jiffies(5000));
8509 	rdev_dec_pending(rdev, mddev);
8510 }
8511 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8512 
8513 void md_finish_reshape(struct mddev *mddev)
8514 {
8515 	/* called be personality module when reshape completes. */
8516 	struct md_rdev *rdev;
8517 
8518 	rdev_for_each(rdev, mddev) {
8519 		if (rdev->data_offset > rdev->new_data_offset)
8520 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8521 		else
8522 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8523 		rdev->data_offset = rdev->new_data_offset;
8524 	}
8525 }
8526 EXPORT_SYMBOL(md_finish_reshape);
8527 
8528 /* Bad block management */
8529 
8530 /* Returns 1 on success, 0 on failure */
8531 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8532 		       int is_new)
8533 {
8534 	int rv;
8535 	if (is_new)
8536 		s += rdev->new_data_offset;
8537 	else
8538 		s += rdev->data_offset;
8539 	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8540 	if (rv == 0) {
8541 		/* Make sure they get written out promptly */
8542 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8543 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8544 		set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8545 		md_wakeup_thread(rdev->mddev->thread);
8546 		return 1;
8547 	} else
8548 		return 0;
8549 }
8550 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8551 
8552 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8553 			 int is_new)
8554 {
8555 	if (is_new)
8556 		s += rdev->new_data_offset;
8557 	else
8558 		s += rdev->data_offset;
8559 	return badblocks_clear(&rdev->badblocks,
8560 				  s, sectors);
8561 }
8562 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8563 
8564 static int md_notify_reboot(struct notifier_block *this,
8565 			    unsigned long code, void *x)
8566 {
8567 	struct list_head *tmp;
8568 	struct mddev *mddev;
8569 	int need_delay = 0;
8570 
8571 	for_each_mddev(mddev, tmp) {
8572 		if (mddev_trylock(mddev)) {
8573 			if (mddev->pers)
8574 				__md_stop_writes(mddev);
8575 			if (mddev->persistent)
8576 				mddev->safemode = 2;
8577 			mddev_unlock(mddev);
8578 		}
8579 		need_delay = 1;
8580 	}
8581 	/*
8582 	 * certain more exotic SCSI devices are known to be
8583 	 * volatile wrt too early system reboots. While the
8584 	 * right place to handle this issue is the given
8585 	 * driver, we do want to have a safe RAID driver ...
8586 	 */
8587 	if (need_delay)
8588 		mdelay(1000*1);
8589 
8590 	return NOTIFY_DONE;
8591 }
8592 
8593 static struct notifier_block md_notifier = {
8594 	.notifier_call	= md_notify_reboot,
8595 	.next		= NULL,
8596 	.priority	= INT_MAX, /* before any real devices */
8597 };
8598 
8599 static void md_geninit(void)
8600 {
8601 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8602 
8603 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8604 }
8605 
8606 static int __init md_init(void)
8607 {
8608 	int ret = -ENOMEM;
8609 
8610 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8611 	if (!md_wq)
8612 		goto err_wq;
8613 
8614 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8615 	if (!md_misc_wq)
8616 		goto err_misc_wq;
8617 
8618 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8619 		goto err_md;
8620 
8621 	if ((ret = register_blkdev(0, "mdp")) < 0)
8622 		goto err_mdp;
8623 	mdp_major = ret;
8624 
8625 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8626 			    md_probe, NULL, NULL);
8627 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8628 			    md_probe, NULL, NULL);
8629 
8630 	register_reboot_notifier(&md_notifier);
8631 	raid_table_header = register_sysctl_table(raid_root_table);
8632 
8633 	md_geninit();
8634 	return 0;
8635 
8636 err_mdp:
8637 	unregister_blkdev(MD_MAJOR, "md");
8638 err_md:
8639 	destroy_workqueue(md_misc_wq);
8640 err_misc_wq:
8641 	destroy_workqueue(md_wq);
8642 err_wq:
8643 	return ret;
8644 }
8645 
8646 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8647 {
8648 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8649 	struct md_rdev *rdev2;
8650 	int role, ret;
8651 	char b[BDEVNAME_SIZE];
8652 
8653 	/* Check for change of roles in the active devices */
8654 	rdev_for_each(rdev2, mddev) {
8655 		if (test_bit(Faulty, &rdev2->flags))
8656 			continue;
8657 
8658 		/* Check if the roles changed */
8659 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8660 
8661 		if (test_bit(Candidate, &rdev2->flags)) {
8662 			if (role == 0xfffe) {
8663 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
8664 				md_kick_rdev_from_array(rdev2);
8665 				continue;
8666 			}
8667 			else
8668 				clear_bit(Candidate, &rdev2->flags);
8669 		}
8670 
8671 		if (role != rdev2->raid_disk) {
8672 			/* got activated */
8673 			if (rdev2->raid_disk == -1 && role != 0xffff) {
8674 				rdev2->saved_raid_disk = role;
8675 				ret = remove_and_add_spares(mddev, rdev2);
8676 				pr_info("Activated spare: %s\n",
8677 						bdevname(rdev2->bdev,b));
8678 			}
8679 			/* device faulty
8680 			 * We just want to do the minimum to mark the disk
8681 			 * as faulty. The recovery is performed by the
8682 			 * one who initiated the error.
8683 			 */
8684 			if ((role == 0xfffe) || (role == 0xfffd)) {
8685 				md_error(mddev, rdev2);
8686 				clear_bit(Blocked, &rdev2->flags);
8687 			}
8688 		}
8689 	}
8690 
8691 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
8692 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
8693 
8694 	/* Finally set the event to be up to date */
8695 	mddev->events = le64_to_cpu(sb->events);
8696 }
8697 
8698 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8699 {
8700 	int err;
8701 	struct page *swapout = rdev->sb_page;
8702 	struct mdp_superblock_1 *sb;
8703 
8704 	/* Store the sb page of the rdev in the swapout temporary
8705 	 * variable in case we err in the future
8706 	 */
8707 	rdev->sb_page = NULL;
8708 	alloc_disk_sb(rdev);
8709 	ClearPageUptodate(rdev->sb_page);
8710 	rdev->sb_loaded = 0;
8711 	err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
8712 
8713 	if (err < 0) {
8714 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8715 				__func__, __LINE__, rdev->desc_nr, err);
8716 		put_page(rdev->sb_page);
8717 		rdev->sb_page = swapout;
8718 		rdev->sb_loaded = 1;
8719 		return err;
8720 	}
8721 
8722 	sb = page_address(rdev->sb_page);
8723 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8724 	 * is not set
8725 	 */
8726 
8727 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
8728 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
8729 
8730 	/* The other node finished recovery, call spare_active to set
8731 	 * device In_sync and mddev->degraded
8732 	 */
8733 	if (rdev->recovery_offset == MaxSector &&
8734 	    !test_bit(In_sync, &rdev->flags) &&
8735 	    mddev->pers->spare_active(mddev))
8736 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8737 
8738 	put_page(swapout);
8739 	return 0;
8740 }
8741 
8742 void md_reload_sb(struct mddev *mddev, int nr)
8743 {
8744 	struct md_rdev *rdev;
8745 	int err;
8746 
8747 	/* Find the rdev */
8748 	rdev_for_each_rcu(rdev, mddev) {
8749 		if (rdev->desc_nr == nr)
8750 			break;
8751 	}
8752 
8753 	if (!rdev || rdev->desc_nr != nr) {
8754 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
8755 		return;
8756 	}
8757 
8758 	err = read_rdev(mddev, rdev);
8759 	if (err < 0)
8760 		return;
8761 
8762 	check_sb_changes(mddev, rdev);
8763 
8764 	/* Read all rdev's to update recovery_offset */
8765 	rdev_for_each_rcu(rdev, mddev)
8766 		read_rdev(mddev, rdev);
8767 }
8768 EXPORT_SYMBOL(md_reload_sb);
8769 
8770 #ifndef MODULE
8771 
8772 /*
8773  * Searches all registered partitions for autorun RAID arrays
8774  * at boot time.
8775  */
8776 
8777 static LIST_HEAD(all_detected_devices);
8778 struct detected_devices_node {
8779 	struct list_head list;
8780 	dev_t dev;
8781 };
8782 
8783 void md_autodetect_dev(dev_t dev)
8784 {
8785 	struct detected_devices_node *node_detected_dev;
8786 
8787 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8788 	if (node_detected_dev) {
8789 		node_detected_dev->dev = dev;
8790 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8791 	} else {
8792 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8793 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8794 	}
8795 }
8796 
8797 static void autostart_arrays(int part)
8798 {
8799 	struct md_rdev *rdev;
8800 	struct detected_devices_node *node_detected_dev;
8801 	dev_t dev;
8802 	int i_scanned, i_passed;
8803 
8804 	i_scanned = 0;
8805 	i_passed = 0;
8806 
8807 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8808 
8809 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8810 		i_scanned++;
8811 		node_detected_dev = list_entry(all_detected_devices.next,
8812 					struct detected_devices_node, list);
8813 		list_del(&node_detected_dev->list);
8814 		dev = node_detected_dev->dev;
8815 		kfree(node_detected_dev);
8816 		rdev = md_import_device(dev,0, 90);
8817 		if (IS_ERR(rdev))
8818 			continue;
8819 
8820 		if (test_bit(Faulty, &rdev->flags))
8821 			continue;
8822 
8823 		set_bit(AutoDetected, &rdev->flags);
8824 		list_add(&rdev->same_set, &pending_raid_disks);
8825 		i_passed++;
8826 	}
8827 
8828 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8829 						i_scanned, i_passed);
8830 
8831 	autorun_devices(part);
8832 }
8833 
8834 #endif /* !MODULE */
8835 
8836 static __exit void md_exit(void)
8837 {
8838 	struct mddev *mddev;
8839 	struct list_head *tmp;
8840 	int delay = 1;
8841 
8842 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8843 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8844 
8845 	unregister_blkdev(MD_MAJOR,"md");
8846 	unregister_blkdev(mdp_major, "mdp");
8847 	unregister_reboot_notifier(&md_notifier);
8848 	unregister_sysctl_table(raid_table_header);
8849 
8850 	/* We cannot unload the modules while some process is
8851 	 * waiting for us in select() or poll() - wake them up
8852 	 */
8853 	md_unloading = 1;
8854 	while (waitqueue_active(&md_event_waiters)) {
8855 		/* not safe to leave yet */
8856 		wake_up(&md_event_waiters);
8857 		msleep(delay);
8858 		delay += delay;
8859 	}
8860 	remove_proc_entry("mdstat", NULL);
8861 
8862 	for_each_mddev(mddev, tmp) {
8863 		export_array(mddev);
8864 		mddev->hold_active = 0;
8865 	}
8866 	destroy_workqueue(md_misc_wq);
8867 	destroy_workqueue(md_wq);
8868 }
8869 
8870 subsys_initcall(md_init);
8871 module_exit(md_exit)
8872 
8873 static int get_ro(char *buffer, struct kernel_param *kp)
8874 {
8875 	return sprintf(buffer, "%d", start_readonly);
8876 }
8877 static int set_ro(const char *val, struct kernel_param *kp)
8878 {
8879 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
8880 }
8881 
8882 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8883 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8884 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8885 
8886 MODULE_LICENSE("GPL");
8887 MODULE_DESCRIPTION("MD RAID framework");
8888 MODULE_ALIAS("md");
8889 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8890