1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 static struct workqueue_struct *md_wq; 73 static struct workqueue_struct *md_misc_wq; 74 75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 76 77 /* 78 * Default number of read corrections we'll attempt on an rdev 79 * before ejecting it from the array. We divide the read error 80 * count by 2 for every hour elapsed between read errors. 81 */ 82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 83 /* 84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 85 * is 1000 KB/sec, so the extra system load does not show up that much. 86 * Increase it if you want to have more _guaranteed_ speed. Note that 87 * the RAID driver will use the maximum available bandwidth if the IO 88 * subsystem is idle. There is also an 'absolute maximum' reconstruction 89 * speed limit - in case reconstruction slows down your system despite 90 * idle IO detection. 91 * 92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 93 * or /sys/block/mdX/md/sync_speed_{min,max} 94 */ 95 96 static int sysctl_speed_limit_min = 1000; 97 static int sysctl_speed_limit_max = 200000; 98 static inline int speed_min(struct mddev *mddev) 99 { 100 return mddev->sync_speed_min ? 101 mddev->sync_speed_min : sysctl_speed_limit_min; 102 } 103 104 static inline int speed_max(struct mddev *mddev) 105 { 106 return mddev->sync_speed_max ? 107 mddev->sync_speed_max : sysctl_speed_limit_max; 108 } 109 110 static struct ctl_table_header *raid_table_header; 111 112 static ctl_table raid_table[] = { 113 { 114 .procname = "speed_limit_min", 115 .data = &sysctl_speed_limit_min, 116 .maxlen = sizeof(int), 117 .mode = S_IRUGO|S_IWUSR, 118 .proc_handler = proc_dointvec, 119 }, 120 { 121 .procname = "speed_limit_max", 122 .data = &sysctl_speed_limit_max, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = proc_dointvec, 126 }, 127 { } 128 }; 129 130 static ctl_table raid_dir_table[] = { 131 { 132 .procname = "raid", 133 .maxlen = 0, 134 .mode = S_IRUGO|S_IXUGO, 135 .child = raid_table, 136 }, 137 { } 138 }; 139 140 static ctl_table raid_root_table[] = { 141 { 142 .procname = "dev", 143 .maxlen = 0, 144 .mode = 0555, 145 .child = raid_dir_table, 146 }, 147 { } 148 }; 149 150 static const struct block_device_operations md_fops; 151 152 static int start_readonly; 153 154 /* bio_clone_mddev 155 * like bio_clone, but with a local bio set 156 */ 157 158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 159 struct mddev *mddev) 160 { 161 struct bio *b; 162 163 if (!mddev || !mddev->bio_set) 164 return bio_alloc(gfp_mask, nr_iovecs); 165 166 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 167 if (!b) 168 return NULL; 169 return b; 170 } 171 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 172 173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 174 struct mddev *mddev) 175 { 176 if (!mddev || !mddev->bio_set) 177 return bio_clone(bio, gfp_mask); 178 179 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 180 } 181 EXPORT_SYMBOL_GPL(bio_clone_mddev); 182 183 void md_trim_bio(struct bio *bio, int offset, int size) 184 { 185 /* 'bio' is a cloned bio which we need to trim to match 186 * the given offset and size. 187 * This requires adjusting bi_sector, bi_size, and bi_io_vec 188 */ 189 int i; 190 struct bio_vec *bvec; 191 int sofar = 0; 192 193 size <<= 9; 194 if (offset == 0 && size == bio->bi_size) 195 return; 196 197 bio->bi_sector += offset; 198 bio->bi_size = size; 199 offset <<= 9; 200 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 201 202 while (bio->bi_idx < bio->bi_vcnt && 203 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) { 204 /* remove this whole bio_vec */ 205 offset -= bio->bi_io_vec[bio->bi_idx].bv_len; 206 bio->bi_idx++; 207 } 208 if (bio->bi_idx < bio->bi_vcnt) { 209 bio->bi_io_vec[bio->bi_idx].bv_offset += offset; 210 bio->bi_io_vec[bio->bi_idx].bv_len -= offset; 211 } 212 /* avoid any complications with bi_idx being non-zero*/ 213 if (bio->bi_idx) { 214 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx, 215 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec)); 216 bio->bi_vcnt -= bio->bi_idx; 217 bio->bi_idx = 0; 218 } 219 /* Make sure vcnt and last bv are not too big */ 220 bio_for_each_segment(bvec, bio, i) { 221 if (sofar + bvec->bv_len > size) 222 bvec->bv_len = size - sofar; 223 if (bvec->bv_len == 0) { 224 bio->bi_vcnt = i; 225 break; 226 } 227 sofar += bvec->bv_len; 228 } 229 } 230 EXPORT_SYMBOL_GPL(md_trim_bio); 231 232 /* 233 * We have a system wide 'event count' that is incremented 234 * on any 'interesting' event, and readers of /proc/mdstat 235 * can use 'poll' or 'select' to find out when the event 236 * count increases. 237 * 238 * Events are: 239 * start array, stop array, error, add device, remove device, 240 * start build, activate spare 241 */ 242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 243 static atomic_t md_event_count; 244 void md_new_event(struct mddev *mddev) 245 { 246 atomic_inc(&md_event_count); 247 wake_up(&md_event_waiters); 248 } 249 EXPORT_SYMBOL_GPL(md_new_event); 250 251 /* Alternate version that can be called from interrupts 252 * when calling sysfs_notify isn't needed. 253 */ 254 static void md_new_event_inintr(struct mddev *mddev) 255 { 256 atomic_inc(&md_event_count); 257 wake_up(&md_event_waiters); 258 } 259 260 /* 261 * Enables to iterate over all existing md arrays 262 * all_mddevs_lock protects this list. 263 */ 264 static LIST_HEAD(all_mddevs); 265 static DEFINE_SPINLOCK(all_mddevs_lock); 266 267 268 /* 269 * iterates through all used mddevs in the system. 270 * We take care to grab the all_mddevs_lock whenever navigating 271 * the list, and to always hold a refcount when unlocked. 272 * Any code which breaks out of this loop while own 273 * a reference to the current mddev and must mddev_put it. 274 */ 275 #define for_each_mddev(_mddev,_tmp) \ 276 \ 277 for (({ spin_lock(&all_mddevs_lock); \ 278 _tmp = all_mddevs.next; \ 279 _mddev = NULL;}); \ 280 ({ if (_tmp != &all_mddevs) \ 281 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 282 spin_unlock(&all_mddevs_lock); \ 283 if (_mddev) mddev_put(_mddev); \ 284 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 285 _tmp != &all_mddevs;}); \ 286 ({ spin_lock(&all_mddevs_lock); \ 287 _tmp = _tmp->next;}) \ 288 ) 289 290 291 /* Rather than calling directly into the personality make_request function, 292 * IO requests come here first so that we can check if the device is 293 * being suspended pending a reconfiguration. 294 * We hold a refcount over the call to ->make_request. By the time that 295 * call has finished, the bio has been linked into some internal structure 296 * and so is visible to ->quiesce(), so we don't need the refcount any more. 297 */ 298 static void md_make_request(struct request_queue *q, struct bio *bio) 299 { 300 const int rw = bio_data_dir(bio); 301 struct mddev *mddev = q->queuedata; 302 int cpu; 303 unsigned int sectors; 304 305 if (mddev == NULL || mddev->pers == NULL 306 || !mddev->ready) { 307 bio_io_error(bio); 308 return; 309 } 310 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 311 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS); 312 return; 313 } 314 smp_rmb(); /* Ensure implications of 'active' are visible */ 315 rcu_read_lock(); 316 if (mddev->suspended) { 317 DEFINE_WAIT(__wait); 318 for (;;) { 319 prepare_to_wait(&mddev->sb_wait, &__wait, 320 TASK_UNINTERRUPTIBLE); 321 if (!mddev->suspended) 322 break; 323 rcu_read_unlock(); 324 schedule(); 325 rcu_read_lock(); 326 } 327 finish_wait(&mddev->sb_wait, &__wait); 328 } 329 atomic_inc(&mddev->active_io); 330 rcu_read_unlock(); 331 332 /* 333 * save the sectors now since our bio can 334 * go away inside make_request 335 */ 336 sectors = bio_sectors(bio); 337 mddev->pers->make_request(mddev, bio); 338 339 cpu = part_stat_lock(); 340 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 341 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 342 part_stat_unlock(); 343 344 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 345 wake_up(&mddev->sb_wait); 346 } 347 348 /* mddev_suspend makes sure no new requests are submitted 349 * to the device, and that any requests that have been submitted 350 * are completely handled. 351 * Once ->stop is called and completes, the module will be completely 352 * unused. 353 */ 354 void mddev_suspend(struct mddev *mddev) 355 { 356 BUG_ON(mddev->suspended); 357 mddev->suspended = 1; 358 synchronize_rcu(); 359 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 360 mddev->pers->quiesce(mddev, 1); 361 362 del_timer_sync(&mddev->safemode_timer); 363 } 364 EXPORT_SYMBOL_GPL(mddev_suspend); 365 366 void mddev_resume(struct mddev *mddev) 367 { 368 mddev->suspended = 0; 369 wake_up(&mddev->sb_wait); 370 mddev->pers->quiesce(mddev, 0); 371 372 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 373 md_wakeup_thread(mddev->thread); 374 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 375 } 376 EXPORT_SYMBOL_GPL(mddev_resume); 377 378 int mddev_congested(struct mddev *mddev, int bits) 379 { 380 return mddev->suspended; 381 } 382 EXPORT_SYMBOL(mddev_congested); 383 384 /* 385 * Generic flush handling for md 386 */ 387 388 static void md_end_flush(struct bio *bio, int err) 389 { 390 struct md_rdev *rdev = bio->bi_private; 391 struct mddev *mddev = rdev->mddev; 392 393 rdev_dec_pending(rdev, mddev); 394 395 if (atomic_dec_and_test(&mddev->flush_pending)) { 396 /* The pre-request flush has finished */ 397 queue_work(md_wq, &mddev->flush_work); 398 } 399 bio_put(bio); 400 } 401 402 static void md_submit_flush_data(struct work_struct *ws); 403 404 static void submit_flushes(struct work_struct *ws) 405 { 406 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 407 struct md_rdev *rdev; 408 409 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 410 atomic_set(&mddev->flush_pending, 1); 411 rcu_read_lock(); 412 rdev_for_each_rcu(rdev, mddev) 413 if (rdev->raid_disk >= 0 && 414 !test_bit(Faulty, &rdev->flags)) { 415 /* Take two references, one is dropped 416 * when request finishes, one after 417 * we reclaim rcu_read_lock 418 */ 419 struct bio *bi; 420 atomic_inc(&rdev->nr_pending); 421 atomic_inc(&rdev->nr_pending); 422 rcu_read_unlock(); 423 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 424 bi->bi_end_io = md_end_flush; 425 bi->bi_private = rdev; 426 bi->bi_bdev = rdev->bdev; 427 atomic_inc(&mddev->flush_pending); 428 submit_bio(WRITE_FLUSH, bi); 429 rcu_read_lock(); 430 rdev_dec_pending(rdev, mddev); 431 } 432 rcu_read_unlock(); 433 if (atomic_dec_and_test(&mddev->flush_pending)) 434 queue_work(md_wq, &mddev->flush_work); 435 } 436 437 static void md_submit_flush_data(struct work_struct *ws) 438 { 439 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 440 struct bio *bio = mddev->flush_bio; 441 442 if (bio->bi_size == 0) 443 /* an empty barrier - all done */ 444 bio_endio(bio, 0); 445 else { 446 bio->bi_rw &= ~REQ_FLUSH; 447 mddev->pers->make_request(mddev, bio); 448 } 449 450 mddev->flush_bio = NULL; 451 wake_up(&mddev->sb_wait); 452 } 453 454 void md_flush_request(struct mddev *mddev, struct bio *bio) 455 { 456 spin_lock_irq(&mddev->write_lock); 457 wait_event_lock_irq(mddev->sb_wait, 458 !mddev->flush_bio, 459 mddev->write_lock); 460 mddev->flush_bio = bio; 461 spin_unlock_irq(&mddev->write_lock); 462 463 INIT_WORK(&mddev->flush_work, submit_flushes); 464 queue_work(md_wq, &mddev->flush_work); 465 } 466 EXPORT_SYMBOL(md_flush_request); 467 468 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 469 { 470 struct mddev *mddev = cb->data; 471 md_wakeup_thread(mddev->thread); 472 kfree(cb); 473 } 474 EXPORT_SYMBOL(md_unplug); 475 476 static inline struct mddev *mddev_get(struct mddev *mddev) 477 { 478 atomic_inc(&mddev->active); 479 return mddev; 480 } 481 482 static void mddev_delayed_delete(struct work_struct *ws); 483 484 static void mddev_put(struct mddev *mddev) 485 { 486 struct bio_set *bs = NULL; 487 488 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 489 return; 490 if (!mddev->raid_disks && list_empty(&mddev->disks) && 491 mddev->ctime == 0 && !mddev->hold_active) { 492 /* Array is not configured at all, and not held active, 493 * so destroy it */ 494 list_del_init(&mddev->all_mddevs); 495 bs = mddev->bio_set; 496 mddev->bio_set = NULL; 497 if (mddev->gendisk) { 498 /* We did a probe so need to clean up. Call 499 * queue_work inside the spinlock so that 500 * flush_workqueue() after mddev_find will 501 * succeed in waiting for the work to be done. 502 */ 503 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 504 queue_work(md_misc_wq, &mddev->del_work); 505 } else 506 kfree(mddev); 507 } 508 spin_unlock(&all_mddevs_lock); 509 if (bs) 510 bioset_free(bs); 511 } 512 513 void mddev_init(struct mddev *mddev) 514 { 515 mutex_init(&mddev->open_mutex); 516 mutex_init(&mddev->reconfig_mutex); 517 mutex_init(&mddev->bitmap_info.mutex); 518 INIT_LIST_HEAD(&mddev->disks); 519 INIT_LIST_HEAD(&mddev->all_mddevs); 520 init_timer(&mddev->safemode_timer); 521 atomic_set(&mddev->active, 1); 522 atomic_set(&mddev->openers, 0); 523 atomic_set(&mddev->active_io, 0); 524 spin_lock_init(&mddev->write_lock); 525 atomic_set(&mddev->flush_pending, 0); 526 init_waitqueue_head(&mddev->sb_wait); 527 init_waitqueue_head(&mddev->recovery_wait); 528 mddev->reshape_position = MaxSector; 529 mddev->reshape_backwards = 0; 530 mddev->resync_min = 0; 531 mddev->resync_max = MaxSector; 532 mddev->level = LEVEL_NONE; 533 } 534 EXPORT_SYMBOL_GPL(mddev_init); 535 536 static struct mddev * mddev_find(dev_t unit) 537 { 538 struct mddev *mddev, *new = NULL; 539 540 if (unit && MAJOR(unit) != MD_MAJOR) 541 unit &= ~((1<<MdpMinorShift)-1); 542 543 retry: 544 spin_lock(&all_mddevs_lock); 545 546 if (unit) { 547 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 548 if (mddev->unit == unit) { 549 mddev_get(mddev); 550 spin_unlock(&all_mddevs_lock); 551 kfree(new); 552 return mddev; 553 } 554 555 if (new) { 556 list_add(&new->all_mddevs, &all_mddevs); 557 spin_unlock(&all_mddevs_lock); 558 new->hold_active = UNTIL_IOCTL; 559 return new; 560 } 561 } else if (new) { 562 /* find an unused unit number */ 563 static int next_minor = 512; 564 int start = next_minor; 565 int is_free = 0; 566 int dev = 0; 567 while (!is_free) { 568 dev = MKDEV(MD_MAJOR, next_minor); 569 next_minor++; 570 if (next_minor > MINORMASK) 571 next_minor = 0; 572 if (next_minor == start) { 573 /* Oh dear, all in use. */ 574 spin_unlock(&all_mddevs_lock); 575 kfree(new); 576 return NULL; 577 } 578 579 is_free = 1; 580 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 581 if (mddev->unit == dev) { 582 is_free = 0; 583 break; 584 } 585 } 586 new->unit = dev; 587 new->md_minor = MINOR(dev); 588 new->hold_active = UNTIL_STOP; 589 list_add(&new->all_mddevs, &all_mddevs); 590 spin_unlock(&all_mddevs_lock); 591 return new; 592 } 593 spin_unlock(&all_mddevs_lock); 594 595 new = kzalloc(sizeof(*new), GFP_KERNEL); 596 if (!new) 597 return NULL; 598 599 new->unit = unit; 600 if (MAJOR(unit) == MD_MAJOR) 601 new->md_minor = MINOR(unit); 602 else 603 new->md_minor = MINOR(unit) >> MdpMinorShift; 604 605 mddev_init(new); 606 607 goto retry; 608 } 609 610 static inline int mddev_lock(struct mddev * mddev) 611 { 612 return mutex_lock_interruptible(&mddev->reconfig_mutex); 613 } 614 615 static inline int mddev_is_locked(struct mddev *mddev) 616 { 617 return mutex_is_locked(&mddev->reconfig_mutex); 618 } 619 620 static inline int mddev_trylock(struct mddev * mddev) 621 { 622 return mutex_trylock(&mddev->reconfig_mutex); 623 } 624 625 static struct attribute_group md_redundancy_group; 626 627 static void mddev_unlock(struct mddev * mddev) 628 { 629 if (mddev->to_remove) { 630 /* These cannot be removed under reconfig_mutex as 631 * an access to the files will try to take reconfig_mutex 632 * while holding the file unremovable, which leads to 633 * a deadlock. 634 * So hold set sysfs_active while the remove in happeing, 635 * and anything else which might set ->to_remove or my 636 * otherwise change the sysfs namespace will fail with 637 * -EBUSY if sysfs_active is still set. 638 * We set sysfs_active under reconfig_mutex and elsewhere 639 * test it under the same mutex to ensure its correct value 640 * is seen. 641 */ 642 struct attribute_group *to_remove = mddev->to_remove; 643 mddev->to_remove = NULL; 644 mddev->sysfs_active = 1; 645 mutex_unlock(&mddev->reconfig_mutex); 646 647 if (mddev->kobj.sd) { 648 if (to_remove != &md_redundancy_group) 649 sysfs_remove_group(&mddev->kobj, to_remove); 650 if (mddev->pers == NULL || 651 mddev->pers->sync_request == NULL) { 652 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 653 if (mddev->sysfs_action) 654 sysfs_put(mddev->sysfs_action); 655 mddev->sysfs_action = NULL; 656 } 657 } 658 mddev->sysfs_active = 0; 659 } else 660 mutex_unlock(&mddev->reconfig_mutex); 661 662 /* As we've dropped the mutex we need a spinlock to 663 * make sure the thread doesn't disappear 664 */ 665 spin_lock(&pers_lock); 666 md_wakeup_thread(mddev->thread); 667 spin_unlock(&pers_lock); 668 } 669 670 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 671 { 672 struct md_rdev *rdev; 673 674 rdev_for_each(rdev, mddev) 675 if (rdev->desc_nr == nr) 676 return rdev; 677 678 return NULL; 679 } 680 681 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr) 682 { 683 struct md_rdev *rdev; 684 685 rdev_for_each_rcu(rdev, mddev) 686 if (rdev->desc_nr == nr) 687 return rdev; 688 689 return NULL; 690 } 691 692 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 693 { 694 struct md_rdev *rdev; 695 696 rdev_for_each(rdev, mddev) 697 if (rdev->bdev->bd_dev == dev) 698 return rdev; 699 700 return NULL; 701 } 702 703 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 704 { 705 struct md_rdev *rdev; 706 707 rdev_for_each_rcu(rdev, mddev) 708 if (rdev->bdev->bd_dev == dev) 709 return rdev; 710 711 return NULL; 712 } 713 714 static struct md_personality *find_pers(int level, char *clevel) 715 { 716 struct md_personality *pers; 717 list_for_each_entry(pers, &pers_list, list) { 718 if (level != LEVEL_NONE && pers->level == level) 719 return pers; 720 if (strcmp(pers->name, clevel)==0) 721 return pers; 722 } 723 return NULL; 724 } 725 726 /* return the offset of the super block in 512byte sectors */ 727 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 728 { 729 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 730 return MD_NEW_SIZE_SECTORS(num_sectors); 731 } 732 733 static int alloc_disk_sb(struct md_rdev * rdev) 734 { 735 if (rdev->sb_page) 736 MD_BUG(); 737 738 rdev->sb_page = alloc_page(GFP_KERNEL); 739 if (!rdev->sb_page) { 740 printk(KERN_ALERT "md: out of memory.\n"); 741 return -ENOMEM; 742 } 743 744 return 0; 745 } 746 747 void md_rdev_clear(struct md_rdev *rdev) 748 { 749 if (rdev->sb_page) { 750 put_page(rdev->sb_page); 751 rdev->sb_loaded = 0; 752 rdev->sb_page = NULL; 753 rdev->sb_start = 0; 754 rdev->sectors = 0; 755 } 756 if (rdev->bb_page) { 757 put_page(rdev->bb_page); 758 rdev->bb_page = NULL; 759 } 760 kfree(rdev->badblocks.page); 761 rdev->badblocks.page = NULL; 762 } 763 EXPORT_SYMBOL_GPL(md_rdev_clear); 764 765 static void super_written(struct bio *bio, int error) 766 { 767 struct md_rdev *rdev = bio->bi_private; 768 struct mddev *mddev = rdev->mddev; 769 770 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 771 printk("md: super_written gets error=%d, uptodate=%d\n", 772 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 773 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 774 md_error(mddev, rdev); 775 } 776 777 if (atomic_dec_and_test(&mddev->pending_writes)) 778 wake_up(&mddev->sb_wait); 779 bio_put(bio); 780 } 781 782 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 783 sector_t sector, int size, struct page *page) 784 { 785 /* write first size bytes of page to sector of rdev 786 * Increment mddev->pending_writes before returning 787 * and decrement it on completion, waking up sb_wait 788 * if zero is reached. 789 * If an error occurred, call md_error 790 */ 791 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 792 793 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 794 bio->bi_sector = sector; 795 bio_add_page(bio, page, size, 0); 796 bio->bi_private = rdev; 797 bio->bi_end_io = super_written; 798 799 atomic_inc(&mddev->pending_writes); 800 submit_bio(WRITE_FLUSH_FUA, bio); 801 } 802 803 void md_super_wait(struct mddev *mddev) 804 { 805 /* wait for all superblock writes that were scheduled to complete */ 806 DEFINE_WAIT(wq); 807 for(;;) { 808 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 809 if (atomic_read(&mddev->pending_writes)==0) 810 break; 811 schedule(); 812 } 813 finish_wait(&mddev->sb_wait, &wq); 814 } 815 816 static void bi_complete(struct bio *bio, int error) 817 { 818 complete((struct completion*)bio->bi_private); 819 } 820 821 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 822 struct page *page, int rw, bool metadata_op) 823 { 824 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 825 struct completion event; 826 int ret; 827 828 rw |= REQ_SYNC; 829 830 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 831 rdev->meta_bdev : rdev->bdev; 832 if (metadata_op) 833 bio->bi_sector = sector + rdev->sb_start; 834 else if (rdev->mddev->reshape_position != MaxSector && 835 (rdev->mddev->reshape_backwards == 836 (sector >= rdev->mddev->reshape_position))) 837 bio->bi_sector = sector + rdev->new_data_offset; 838 else 839 bio->bi_sector = sector + rdev->data_offset; 840 bio_add_page(bio, page, size, 0); 841 init_completion(&event); 842 bio->bi_private = &event; 843 bio->bi_end_io = bi_complete; 844 submit_bio(rw, bio); 845 wait_for_completion(&event); 846 847 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 848 bio_put(bio); 849 return ret; 850 } 851 EXPORT_SYMBOL_GPL(sync_page_io); 852 853 static int read_disk_sb(struct md_rdev * rdev, int size) 854 { 855 char b[BDEVNAME_SIZE]; 856 if (!rdev->sb_page) { 857 MD_BUG(); 858 return -EINVAL; 859 } 860 if (rdev->sb_loaded) 861 return 0; 862 863 864 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 865 goto fail; 866 rdev->sb_loaded = 1; 867 return 0; 868 869 fail: 870 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 871 bdevname(rdev->bdev,b)); 872 return -EINVAL; 873 } 874 875 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 876 { 877 return sb1->set_uuid0 == sb2->set_uuid0 && 878 sb1->set_uuid1 == sb2->set_uuid1 && 879 sb1->set_uuid2 == sb2->set_uuid2 && 880 sb1->set_uuid3 == sb2->set_uuid3; 881 } 882 883 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 884 { 885 int ret; 886 mdp_super_t *tmp1, *tmp2; 887 888 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 889 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 890 891 if (!tmp1 || !tmp2) { 892 ret = 0; 893 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 894 goto abort; 895 } 896 897 *tmp1 = *sb1; 898 *tmp2 = *sb2; 899 900 /* 901 * nr_disks is not constant 902 */ 903 tmp1->nr_disks = 0; 904 tmp2->nr_disks = 0; 905 906 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 907 abort: 908 kfree(tmp1); 909 kfree(tmp2); 910 return ret; 911 } 912 913 914 static u32 md_csum_fold(u32 csum) 915 { 916 csum = (csum & 0xffff) + (csum >> 16); 917 return (csum & 0xffff) + (csum >> 16); 918 } 919 920 static unsigned int calc_sb_csum(mdp_super_t * sb) 921 { 922 u64 newcsum = 0; 923 u32 *sb32 = (u32*)sb; 924 int i; 925 unsigned int disk_csum, csum; 926 927 disk_csum = sb->sb_csum; 928 sb->sb_csum = 0; 929 930 for (i = 0; i < MD_SB_BYTES/4 ; i++) 931 newcsum += sb32[i]; 932 csum = (newcsum & 0xffffffff) + (newcsum>>32); 933 934 935 #ifdef CONFIG_ALPHA 936 /* This used to use csum_partial, which was wrong for several 937 * reasons including that different results are returned on 938 * different architectures. It isn't critical that we get exactly 939 * the same return value as before (we always csum_fold before 940 * testing, and that removes any differences). However as we 941 * know that csum_partial always returned a 16bit value on 942 * alphas, do a fold to maximise conformity to previous behaviour. 943 */ 944 sb->sb_csum = md_csum_fold(disk_csum); 945 #else 946 sb->sb_csum = disk_csum; 947 #endif 948 return csum; 949 } 950 951 952 /* 953 * Handle superblock details. 954 * We want to be able to handle multiple superblock formats 955 * so we have a common interface to them all, and an array of 956 * different handlers. 957 * We rely on user-space to write the initial superblock, and support 958 * reading and updating of superblocks. 959 * Interface methods are: 960 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 961 * loads and validates a superblock on dev. 962 * if refdev != NULL, compare superblocks on both devices 963 * Return: 964 * 0 - dev has a superblock that is compatible with refdev 965 * 1 - dev has a superblock that is compatible and newer than refdev 966 * so dev should be used as the refdev in future 967 * -EINVAL superblock incompatible or invalid 968 * -othererror e.g. -EIO 969 * 970 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 971 * Verify that dev is acceptable into mddev. 972 * The first time, mddev->raid_disks will be 0, and data from 973 * dev should be merged in. Subsequent calls check that dev 974 * is new enough. Return 0 or -EINVAL 975 * 976 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 977 * Update the superblock for rdev with data in mddev 978 * This does not write to disc. 979 * 980 */ 981 982 struct super_type { 983 char *name; 984 struct module *owner; 985 int (*load_super)(struct md_rdev *rdev, 986 struct md_rdev *refdev, 987 int minor_version); 988 int (*validate_super)(struct mddev *mddev, 989 struct md_rdev *rdev); 990 void (*sync_super)(struct mddev *mddev, 991 struct md_rdev *rdev); 992 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 993 sector_t num_sectors); 994 int (*allow_new_offset)(struct md_rdev *rdev, 995 unsigned long long new_offset); 996 }; 997 998 /* 999 * Check that the given mddev has no bitmap. 1000 * 1001 * This function is called from the run method of all personalities that do not 1002 * support bitmaps. It prints an error message and returns non-zero if mddev 1003 * has a bitmap. Otherwise, it returns 0. 1004 * 1005 */ 1006 int md_check_no_bitmap(struct mddev *mddev) 1007 { 1008 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1009 return 0; 1010 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 1011 mdname(mddev), mddev->pers->name); 1012 return 1; 1013 } 1014 EXPORT_SYMBOL(md_check_no_bitmap); 1015 1016 /* 1017 * load_super for 0.90.0 1018 */ 1019 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1020 { 1021 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1022 mdp_super_t *sb; 1023 int ret; 1024 1025 /* 1026 * Calculate the position of the superblock (512byte sectors), 1027 * it's at the end of the disk. 1028 * 1029 * It also happens to be a multiple of 4Kb. 1030 */ 1031 rdev->sb_start = calc_dev_sboffset(rdev); 1032 1033 ret = read_disk_sb(rdev, MD_SB_BYTES); 1034 if (ret) return ret; 1035 1036 ret = -EINVAL; 1037 1038 bdevname(rdev->bdev, b); 1039 sb = page_address(rdev->sb_page); 1040 1041 if (sb->md_magic != MD_SB_MAGIC) { 1042 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 1043 b); 1044 goto abort; 1045 } 1046 1047 if (sb->major_version != 0 || 1048 sb->minor_version < 90 || 1049 sb->minor_version > 91) { 1050 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1051 sb->major_version, sb->minor_version, 1052 b); 1053 goto abort; 1054 } 1055 1056 if (sb->raid_disks <= 0) 1057 goto abort; 1058 1059 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1060 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1061 b); 1062 goto abort; 1063 } 1064 1065 rdev->preferred_minor = sb->md_minor; 1066 rdev->data_offset = 0; 1067 rdev->new_data_offset = 0; 1068 rdev->sb_size = MD_SB_BYTES; 1069 rdev->badblocks.shift = -1; 1070 1071 if (sb->level == LEVEL_MULTIPATH) 1072 rdev->desc_nr = -1; 1073 else 1074 rdev->desc_nr = sb->this_disk.number; 1075 1076 if (!refdev) { 1077 ret = 1; 1078 } else { 1079 __u64 ev1, ev2; 1080 mdp_super_t *refsb = page_address(refdev->sb_page); 1081 if (!uuid_equal(refsb, sb)) { 1082 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1083 b, bdevname(refdev->bdev,b2)); 1084 goto abort; 1085 } 1086 if (!sb_equal(refsb, sb)) { 1087 printk(KERN_WARNING "md: %s has same UUID" 1088 " but different superblock to %s\n", 1089 b, bdevname(refdev->bdev, b2)); 1090 goto abort; 1091 } 1092 ev1 = md_event(sb); 1093 ev2 = md_event(refsb); 1094 if (ev1 > ev2) 1095 ret = 1; 1096 else 1097 ret = 0; 1098 } 1099 rdev->sectors = rdev->sb_start; 1100 /* Limit to 4TB as metadata cannot record more than that. 1101 * (not needed for Linear and RAID0 as metadata doesn't 1102 * record this size) 1103 */ 1104 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1105 rdev->sectors = (2ULL << 32) - 2; 1106 1107 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1108 /* "this cannot possibly happen" ... */ 1109 ret = -EINVAL; 1110 1111 abort: 1112 return ret; 1113 } 1114 1115 /* 1116 * validate_super for 0.90.0 1117 */ 1118 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1119 { 1120 mdp_disk_t *desc; 1121 mdp_super_t *sb = page_address(rdev->sb_page); 1122 __u64 ev1 = md_event(sb); 1123 1124 rdev->raid_disk = -1; 1125 clear_bit(Faulty, &rdev->flags); 1126 clear_bit(In_sync, &rdev->flags); 1127 clear_bit(WriteMostly, &rdev->flags); 1128 1129 if (mddev->raid_disks == 0) { 1130 mddev->major_version = 0; 1131 mddev->minor_version = sb->minor_version; 1132 mddev->patch_version = sb->patch_version; 1133 mddev->external = 0; 1134 mddev->chunk_sectors = sb->chunk_size >> 9; 1135 mddev->ctime = sb->ctime; 1136 mddev->utime = sb->utime; 1137 mddev->level = sb->level; 1138 mddev->clevel[0] = 0; 1139 mddev->layout = sb->layout; 1140 mddev->raid_disks = sb->raid_disks; 1141 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1142 mddev->events = ev1; 1143 mddev->bitmap_info.offset = 0; 1144 mddev->bitmap_info.space = 0; 1145 /* bitmap can use 60 K after the 4K superblocks */ 1146 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1147 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1148 mddev->reshape_backwards = 0; 1149 1150 if (mddev->minor_version >= 91) { 1151 mddev->reshape_position = sb->reshape_position; 1152 mddev->delta_disks = sb->delta_disks; 1153 mddev->new_level = sb->new_level; 1154 mddev->new_layout = sb->new_layout; 1155 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1156 if (mddev->delta_disks < 0) 1157 mddev->reshape_backwards = 1; 1158 } else { 1159 mddev->reshape_position = MaxSector; 1160 mddev->delta_disks = 0; 1161 mddev->new_level = mddev->level; 1162 mddev->new_layout = mddev->layout; 1163 mddev->new_chunk_sectors = mddev->chunk_sectors; 1164 } 1165 1166 if (sb->state & (1<<MD_SB_CLEAN)) 1167 mddev->recovery_cp = MaxSector; 1168 else { 1169 if (sb->events_hi == sb->cp_events_hi && 1170 sb->events_lo == sb->cp_events_lo) { 1171 mddev->recovery_cp = sb->recovery_cp; 1172 } else 1173 mddev->recovery_cp = 0; 1174 } 1175 1176 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1177 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1178 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1179 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1180 1181 mddev->max_disks = MD_SB_DISKS; 1182 1183 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1184 mddev->bitmap_info.file == NULL) { 1185 mddev->bitmap_info.offset = 1186 mddev->bitmap_info.default_offset; 1187 mddev->bitmap_info.space = 1188 mddev->bitmap_info.space; 1189 } 1190 1191 } else if (mddev->pers == NULL) { 1192 /* Insist on good event counter while assembling, except 1193 * for spares (which don't need an event count) */ 1194 ++ev1; 1195 if (sb->disks[rdev->desc_nr].state & ( 1196 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1197 if (ev1 < mddev->events) 1198 return -EINVAL; 1199 } else if (mddev->bitmap) { 1200 /* if adding to array with a bitmap, then we can accept an 1201 * older device ... but not too old. 1202 */ 1203 if (ev1 < mddev->bitmap->events_cleared) 1204 return 0; 1205 } else { 1206 if (ev1 < mddev->events) 1207 /* just a hot-add of a new device, leave raid_disk at -1 */ 1208 return 0; 1209 } 1210 1211 if (mddev->level != LEVEL_MULTIPATH) { 1212 desc = sb->disks + rdev->desc_nr; 1213 1214 if (desc->state & (1<<MD_DISK_FAULTY)) 1215 set_bit(Faulty, &rdev->flags); 1216 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1217 desc->raid_disk < mddev->raid_disks */) { 1218 set_bit(In_sync, &rdev->flags); 1219 rdev->raid_disk = desc->raid_disk; 1220 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1221 /* active but not in sync implies recovery up to 1222 * reshape position. We don't know exactly where 1223 * that is, so set to zero for now */ 1224 if (mddev->minor_version >= 91) { 1225 rdev->recovery_offset = 0; 1226 rdev->raid_disk = desc->raid_disk; 1227 } 1228 } 1229 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1230 set_bit(WriteMostly, &rdev->flags); 1231 } else /* MULTIPATH are always insync */ 1232 set_bit(In_sync, &rdev->flags); 1233 return 0; 1234 } 1235 1236 /* 1237 * sync_super for 0.90.0 1238 */ 1239 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1240 { 1241 mdp_super_t *sb; 1242 struct md_rdev *rdev2; 1243 int next_spare = mddev->raid_disks; 1244 1245 1246 /* make rdev->sb match mddev data.. 1247 * 1248 * 1/ zero out disks 1249 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1250 * 3/ any empty disks < next_spare become removed 1251 * 1252 * disks[0] gets initialised to REMOVED because 1253 * we cannot be sure from other fields if it has 1254 * been initialised or not. 1255 */ 1256 int i; 1257 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1258 1259 rdev->sb_size = MD_SB_BYTES; 1260 1261 sb = page_address(rdev->sb_page); 1262 1263 memset(sb, 0, sizeof(*sb)); 1264 1265 sb->md_magic = MD_SB_MAGIC; 1266 sb->major_version = mddev->major_version; 1267 sb->patch_version = mddev->patch_version; 1268 sb->gvalid_words = 0; /* ignored */ 1269 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1270 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1271 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1272 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1273 1274 sb->ctime = mddev->ctime; 1275 sb->level = mddev->level; 1276 sb->size = mddev->dev_sectors / 2; 1277 sb->raid_disks = mddev->raid_disks; 1278 sb->md_minor = mddev->md_minor; 1279 sb->not_persistent = 0; 1280 sb->utime = mddev->utime; 1281 sb->state = 0; 1282 sb->events_hi = (mddev->events>>32); 1283 sb->events_lo = (u32)mddev->events; 1284 1285 if (mddev->reshape_position == MaxSector) 1286 sb->minor_version = 90; 1287 else { 1288 sb->minor_version = 91; 1289 sb->reshape_position = mddev->reshape_position; 1290 sb->new_level = mddev->new_level; 1291 sb->delta_disks = mddev->delta_disks; 1292 sb->new_layout = mddev->new_layout; 1293 sb->new_chunk = mddev->new_chunk_sectors << 9; 1294 } 1295 mddev->minor_version = sb->minor_version; 1296 if (mddev->in_sync) 1297 { 1298 sb->recovery_cp = mddev->recovery_cp; 1299 sb->cp_events_hi = (mddev->events>>32); 1300 sb->cp_events_lo = (u32)mddev->events; 1301 if (mddev->recovery_cp == MaxSector) 1302 sb->state = (1<< MD_SB_CLEAN); 1303 } else 1304 sb->recovery_cp = 0; 1305 1306 sb->layout = mddev->layout; 1307 sb->chunk_size = mddev->chunk_sectors << 9; 1308 1309 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1310 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1311 1312 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1313 rdev_for_each(rdev2, mddev) { 1314 mdp_disk_t *d; 1315 int desc_nr; 1316 int is_active = test_bit(In_sync, &rdev2->flags); 1317 1318 if (rdev2->raid_disk >= 0 && 1319 sb->minor_version >= 91) 1320 /* we have nowhere to store the recovery_offset, 1321 * but if it is not below the reshape_position, 1322 * we can piggy-back on that. 1323 */ 1324 is_active = 1; 1325 if (rdev2->raid_disk < 0 || 1326 test_bit(Faulty, &rdev2->flags)) 1327 is_active = 0; 1328 if (is_active) 1329 desc_nr = rdev2->raid_disk; 1330 else 1331 desc_nr = next_spare++; 1332 rdev2->desc_nr = desc_nr; 1333 d = &sb->disks[rdev2->desc_nr]; 1334 nr_disks++; 1335 d->number = rdev2->desc_nr; 1336 d->major = MAJOR(rdev2->bdev->bd_dev); 1337 d->minor = MINOR(rdev2->bdev->bd_dev); 1338 if (is_active) 1339 d->raid_disk = rdev2->raid_disk; 1340 else 1341 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1342 if (test_bit(Faulty, &rdev2->flags)) 1343 d->state = (1<<MD_DISK_FAULTY); 1344 else if (is_active) { 1345 d->state = (1<<MD_DISK_ACTIVE); 1346 if (test_bit(In_sync, &rdev2->flags)) 1347 d->state |= (1<<MD_DISK_SYNC); 1348 active++; 1349 working++; 1350 } else { 1351 d->state = 0; 1352 spare++; 1353 working++; 1354 } 1355 if (test_bit(WriteMostly, &rdev2->flags)) 1356 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1357 } 1358 /* now set the "removed" and "faulty" bits on any missing devices */ 1359 for (i=0 ; i < mddev->raid_disks ; i++) { 1360 mdp_disk_t *d = &sb->disks[i]; 1361 if (d->state == 0 && d->number == 0) { 1362 d->number = i; 1363 d->raid_disk = i; 1364 d->state = (1<<MD_DISK_REMOVED); 1365 d->state |= (1<<MD_DISK_FAULTY); 1366 failed++; 1367 } 1368 } 1369 sb->nr_disks = nr_disks; 1370 sb->active_disks = active; 1371 sb->working_disks = working; 1372 sb->failed_disks = failed; 1373 sb->spare_disks = spare; 1374 1375 sb->this_disk = sb->disks[rdev->desc_nr]; 1376 sb->sb_csum = calc_sb_csum(sb); 1377 } 1378 1379 /* 1380 * rdev_size_change for 0.90.0 1381 */ 1382 static unsigned long long 1383 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1384 { 1385 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1386 return 0; /* component must fit device */ 1387 if (rdev->mddev->bitmap_info.offset) 1388 return 0; /* can't move bitmap */ 1389 rdev->sb_start = calc_dev_sboffset(rdev); 1390 if (!num_sectors || num_sectors > rdev->sb_start) 1391 num_sectors = rdev->sb_start; 1392 /* Limit to 4TB as metadata cannot record more than that. 1393 * 4TB == 2^32 KB, or 2*2^32 sectors. 1394 */ 1395 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1396 num_sectors = (2ULL << 32) - 2; 1397 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1398 rdev->sb_page); 1399 md_super_wait(rdev->mddev); 1400 return num_sectors; 1401 } 1402 1403 static int 1404 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1405 { 1406 /* non-zero offset changes not possible with v0.90 */ 1407 return new_offset == 0; 1408 } 1409 1410 /* 1411 * version 1 superblock 1412 */ 1413 1414 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1415 { 1416 __le32 disk_csum; 1417 u32 csum; 1418 unsigned long long newcsum; 1419 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1420 __le32 *isuper = (__le32*)sb; 1421 1422 disk_csum = sb->sb_csum; 1423 sb->sb_csum = 0; 1424 newcsum = 0; 1425 for (; size >= 4; size -= 4) 1426 newcsum += le32_to_cpu(*isuper++); 1427 1428 if (size == 2) 1429 newcsum += le16_to_cpu(*(__le16*) isuper); 1430 1431 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1432 sb->sb_csum = disk_csum; 1433 return cpu_to_le32(csum); 1434 } 1435 1436 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1437 int acknowledged); 1438 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1439 { 1440 struct mdp_superblock_1 *sb; 1441 int ret; 1442 sector_t sb_start; 1443 sector_t sectors; 1444 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1445 int bmask; 1446 1447 /* 1448 * Calculate the position of the superblock in 512byte sectors. 1449 * It is always aligned to a 4K boundary and 1450 * depeding on minor_version, it can be: 1451 * 0: At least 8K, but less than 12K, from end of device 1452 * 1: At start of device 1453 * 2: 4K from start of device. 1454 */ 1455 switch(minor_version) { 1456 case 0: 1457 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1458 sb_start -= 8*2; 1459 sb_start &= ~(sector_t)(4*2-1); 1460 break; 1461 case 1: 1462 sb_start = 0; 1463 break; 1464 case 2: 1465 sb_start = 8; 1466 break; 1467 default: 1468 return -EINVAL; 1469 } 1470 rdev->sb_start = sb_start; 1471 1472 /* superblock is rarely larger than 1K, but it can be larger, 1473 * and it is safe to read 4k, so we do that 1474 */ 1475 ret = read_disk_sb(rdev, 4096); 1476 if (ret) return ret; 1477 1478 1479 sb = page_address(rdev->sb_page); 1480 1481 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1482 sb->major_version != cpu_to_le32(1) || 1483 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1484 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1485 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1486 return -EINVAL; 1487 1488 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1489 printk("md: invalid superblock checksum on %s\n", 1490 bdevname(rdev->bdev,b)); 1491 return -EINVAL; 1492 } 1493 if (le64_to_cpu(sb->data_size) < 10) { 1494 printk("md: data_size too small on %s\n", 1495 bdevname(rdev->bdev,b)); 1496 return -EINVAL; 1497 } 1498 if (sb->pad0 || 1499 sb->pad3[0] || 1500 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1501 /* Some padding is non-zero, might be a new feature */ 1502 return -EINVAL; 1503 1504 rdev->preferred_minor = 0xffff; 1505 rdev->data_offset = le64_to_cpu(sb->data_offset); 1506 rdev->new_data_offset = rdev->data_offset; 1507 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1508 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1509 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1510 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1511 1512 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1513 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1514 if (rdev->sb_size & bmask) 1515 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1516 1517 if (minor_version 1518 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1519 return -EINVAL; 1520 if (minor_version 1521 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1522 return -EINVAL; 1523 1524 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1525 rdev->desc_nr = -1; 1526 else 1527 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1528 1529 if (!rdev->bb_page) { 1530 rdev->bb_page = alloc_page(GFP_KERNEL); 1531 if (!rdev->bb_page) 1532 return -ENOMEM; 1533 } 1534 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1535 rdev->badblocks.count == 0) { 1536 /* need to load the bad block list. 1537 * Currently we limit it to one page. 1538 */ 1539 s32 offset; 1540 sector_t bb_sector; 1541 u64 *bbp; 1542 int i; 1543 int sectors = le16_to_cpu(sb->bblog_size); 1544 if (sectors > (PAGE_SIZE / 512)) 1545 return -EINVAL; 1546 offset = le32_to_cpu(sb->bblog_offset); 1547 if (offset == 0) 1548 return -EINVAL; 1549 bb_sector = (long long)offset; 1550 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1551 rdev->bb_page, READ, true)) 1552 return -EIO; 1553 bbp = (u64 *)page_address(rdev->bb_page); 1554 rdev->badblocks.shift = sb->bblog_shift; 1555 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1556 u64 bb = le64_to_cpu(*bbp); 1557 int count = bb & (0x3ff); 1558 u64 sector = bb >> 10; 1559 sector <<= sb->bblog_shift; 1560 count <<= sb->bblog_shift; 1561 if (bb + 1 == 0) 1562 break; 1563 if (md_set_badblocks(&rdev->badblocks, 1564 sector, count, 1) == 0) 1565 return -EINVAL; 1566 } 1567 } else if (sb->bblog_offset == 0) 1568 rdev->badblocks.shift = -1; 1569 1570 if (!refdev) { 1571 ret = 1; 1572 } else { 1573 __u64 ev1, ev2; 1574 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1575 1576 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1577 sb->level != refsb->level || 1578 sb->layout != refsb->layout || 1579 sb->chunksize != refsb->chunksize) { 1580 printk(KERN_WARNING "md: %s has strangely different" 1581 " superblock to %s\n", 1582 bdevname(rdev->bdev,b), 1583 bdevname(refdev->bdev,b2)); 1584 return -EINVAL; 1585 } 1586 ev1 = le64_to_cpu(sb->events); 1587 ev2 = le64_to_cpu(refsb->events); 1588 1589 if (ev1 > ev2) 1590 ret = 1; 1591 else 1592 ret = 0; 1593 } 1594 if (minor_version) { 1595 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1596 sectors -= rdev->data_offset; 1597 } else 1598 sectors = rdev->sb_start; 1599 if (sectors < le64_to_cpu(sb->data_size)) 1600 return -EINVAL; 1601 rdev->sectors = le64_to_cpu(sb->data_size); 1602 return ret; 1603 } 1604 1605 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1606 { 1607 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1608 __u64 ev1 = le64_to_cpu(sb->events); 1609 1610 rdev->raid_disk = -1; 1611 clear_bit(Faulty, &rdev->flags); 1612 clear_bit(In_sync, &rdev->flags); 1613 clear_bit(WriteMostly, &rdev->flags); 1614 1615 if (mddev->raid_disks == 0) { 1616 mddev->major_version = 1; 1617 mddev->patch_version = 0; 1618 mddev->external = 0; 1619 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1620 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1621 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1622 mddev->level = le32_to_cpu(sb->level); 1623 mddev->clevel[0] = 0; 1624 mddev->layout = le32_to_cpu(sb->layout); 1625 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1626 mddev->dev_sectors = le64_to_cpu(sb->size); 1627 mddev->events = ev1; 1628 mddev->bitmap_info.offset = 0; 1629 mddev->bitmap_info.space = 0; 1630 /* Default location for bitmap is 1K after superblock 1631 * using 3K - total of 4K 1632 */ 1633 mddev->bitmap_info.default_offset = 1024 >> 9; 1634 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1635 mddev->reshape_backwards = 0; 1636 1637 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1638 memcpy(mddev->uuid, sb->set_uuid, 16); 1639 1640 mddev->max_disks = (4096-256)/2; 1641 1642 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1643 mddev->bitmap_info.file == NULL) { 1644 mddev->bitmap_info.offset = 1645 (__s32)le32_to_cpu(sb->bitmap_offset); 1646 /* Metadata doesn't record how much space is available. 1647 * For 1.0, we assume we can use up to the superblock 1648 * if before, else to 4K beyond superblock. 1649 * For others, assume no change is possible. 1650 */ 1651 if (mddev->minor_version > 0) 1652 mddev->bitmap_info.space = 0; 1653 else if (mddev->bitmap_info.offset > 0) 1654 mddev->bitmap_info.space = 1655 8 - mddev->bitmap_info.offset; 1656 else 1657 mddev->bitmap_info.space = 1658 -mddev->bitmap_info.offset; 1659 } 1660 1661 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1662 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1663 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1664 mddev->new_level = le32_to_cpu(sb->new_level); 1665 mddev->new_layout = le32_to_cpu(sb->new_layout); 1666 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1667 if (mddev->delta_disks < 0 || 1668 (mddev->delta_disks == 0 && 1669 (le32_to_cpu(sb->feature_map) 1670 & MD_FEATURE_RESHAPE_BACKWARDS))) 1671 mddev->reshape_backwards = 1; 1672 } else { 1673 mddev->reshape_position = MaxSector; 1674 mddev->delta_disks = 0; 1675 mddev->new_level = mddev->level; 1676 mddev->new_layout = mddev->layout; 1677 mddev->new_chunk_sectors = mddev->chunk_sectors; 1678 } 1679 1680 } else if (mddev->pers == NULL) { 1681 /* Insist of good event counter while assembling, except for 1682 * spares (which don't need an event count) */ 1683 ++ev1; 1684 if (rdev->desc_nr >= 0 && 1685 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1686 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1687 if (ev1 < mddev->events) 1688 return -EINVAL; 1689 } else if (mddev->bitmap) { 1690 /* If adding to array with a bitmap, then we can accept an 1691 * older device, but not too old. 1692 */ 1693 if (ev1 < mddev->bitmap->events_cleared) 1694 return 0; 1695 } else { 1696 if (ev1 < mddev->events) 1697 /* just a hot-add of a new device, leave raid_disk at -1 */ 1698 return 0; 1699 } 1700 if (mddev->level != LEVEL_MULTIPATH) { 1701 int role; 1702 if (rdev->desc_nr < 0 || 1703 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1704 role = 0xffff; 1705 rdev->desc_nr = -1; 1706 } else 1707 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1708 switch(role) { 1709 case 0xffff: /* spare */ 1710 break; 1711 case 0xfffe: /* faulty */ 1712 set_bit(Faulty, &rdev->flags); 1713 break; 1714 default: 1715 if ((le32_to_cpu(sb->feature_map) & 1716 MD_FEATURE_RECOVERY_OFFSET)) 1717 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1718 else 1719 set_bit(In_sync, &rdev->flags); 1720 rdev->raid_disk = role; 1721 break; 1722 } 1723 if (sb->devflags & WriteMostly1) 1724 set_bit(WriteMostly, &rdev->flags); 1725 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1726 set_bit(Replacement, &rdev->flags); 1727 } else /* MULTIPATH are always insync */ 1728 set_bit(In_sync, &rdev->flags); 1729 1730 return 0; 1731 } 1732 1733 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1734 { 1735 struct mdp_superblock_1 *sb; 1736 struct md_rdev *rdev2; 1737 int max_dev, i; 1738 /* make rdev->sb match mddev and rdev data. */ 1739 1740 sb = page_address(rdev->sb_page); 1741 1742 sb->feature_map = 0; 1743 sb->pad0 = 0; 1744 sb->recovery_offset = cpu_to_le64(0); 1745 memset(sb->pad3, 0, sizeof(sb->pad3)); 1746 1747 sb->utime = cpu_to_le64((__u64)mddev->utime); 1748 sb->events = cpu_to_le64(mddev->events); 1749 if (mddev->in_sync) 1750 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1751 else 1752 sb->resync_offset = cpu_to_le64(0); 1753 1754 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1755 1756 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1757 sb->size = cpu_to_le64(mddev->dev_sectors); 1758 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1759 sb->level = cpu_to_le32(mddev->level); 1760 sb->layout = cpu_to_le32(mddev->layout); 1761 1762 if (test_bit(WriteMostly, &rdev->flags)) 1763 sb->devflags |= WriteMostly1; 1764 else 1765 sb->devflags &= ~WriteMostly1; 1766 sb->data_offset = cpu_to_le64(rdev->data_offset); 1767 sb->data_size = cpu_to_le64(rdev->sectors); 1768 1769 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1770 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1771 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1772 } 1773 1774 if (rdev->raid_disk >= 0 && 1775 !test_bit(In_sync, &rdev->flags)) { 1776 sb->feature_map |= 1777 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1778 sb->recovery_offset = 1779 cpu_to_le64(rdev->recovery_offset); 1780 } 1781 if (test_bit(Replacement, &rdev->flags)) 1782 sb->feature_map |= 1783 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1784 1785 if (mddev->reshape_position != MaxSector) { 1786 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1787 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1788 sb->new_layout = cpu_to_le32(mddev->new_layout); 1789 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1790 sb->new_level = cpu_to_le32(mddev->new_level); 1791 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1792 if (mddev->delta_disks == 0 && 1793 mddev->reshape_backwards) 1794 sb->feature_map 1795 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1796 if (rdev->new_data_offset != rdev->data_offset) { 1797 sb->feature_map 1798 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1799 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1800 - rdev->data_offset)); 1801 } 1802 } 1803 1804 if (rdev->badblocks.count == 0) 1805 /* Nothing to do for bad blocks*/ ; 1806 else if (sb->bblog_offset == 0) 1807 /* Cannot record bad blocks on this device */ 1808 md_error(mddev, rdev); 1809 else { 1810 struct badblocks *bb = &rdev->badblocks; 1811 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1812 u64 *p = bb->page; 1813 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1814 if (bb->changed) { 1815 unsigned seq; 1816 1817 retry: 1818 seq = read_seqbegin(&bb->lock); 1819 1820 memset(bbp, 0xff, PAGE_SIZE); 1821 1822 for (i = 0 ; i < bb->count ; i++) { 1823 u64 internal_bb = p[i]; 1824 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1825 | BB_LEN(internal_bb)); 1826 bbp[i] = cpu_to_le64(store_bb); 1827 } 1828 bb->changed = 0; 1829 if (read_seqretry(&bb->lock, seq)) 1830 goto retry; 1831 1832 bb->sector = (rdev->sb_start + 1833 (int)le32_to_cpu(sb->bblog_offset)); 1834 bb->size = le16_to_cpu(sb->bblog_size); 1835 } 1836 } 1837 1838 max_dev = 0; 1839 rdev_for_each(rdev2, mddev) 1840 if (rdev2->desc_nr+1 > max_dev) 1841 max_dev = rdev2->desc_nr+1; 1842 1843 if (max_dev > le32_to_cpu(sb->max_dev)) { 1844 int bmask; 1845 sb->max_dev = cpu_to_le32(max_dev); 1846 rdev->sb_size = max_dev * 2 + 256; 1847 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1848 if (rdev->sb_size & bmask) 1849 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1850 } else 1851 max_dev = le32_to_cpu(sb->max_dev); 1852 1853 for (i=0; i<max_dev;i++) 1854 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1855 1856 rdev_for_each(rdev2, mddev) { 1857 i = rdev2->desc_nr; 1858 if (test_bit(Faulty, &rdev2->flags)) 1859 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1860 else if (test_bit(In_sync, &rdev2->flags)) 1861 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1862 else if (rdev2->raid_disk >= 0) 1863 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1864 else 1865 sb->dev_roles[i] = cpu_to_le16(0xffff); 1866 } 1867 1868 sb->sb_csum = calc_sb_1_csum(sb); 1869 } 1870 1871 static unsigned long long 1872 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1873 { 1874 struct mdp_superblock_1 *sb; 1875 sector_t max_sectors; 1876 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1877 return 0; /* component must fit device */ 1878 if (rdev->data_offset != rdev->new_data_offset) 1879 return 0; /* too confusing */ 1880 if (rdev->sb_start < rdev->data_offset) { 1881 /* minor versions 1 and 2; superblock before data */ 1882 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1883 max_sectors -= rdev->data_offset; 1884 if (!num_sectors || num_sectors > max_sectors) 1885 num_sectors = max_sectors; 1886 } else if (rdev->mddev->bitmap_info.offset) { 1887 /* minor version 0 with bitmap we can't move */ 1888 return 0; 1889 } else { 1890 /* minor version 0; superblock after data */ 1891 sector_t sb_start; 1892 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1893 sb_start &= ~(sector_t)(4*2 - 1); 1894 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1895 if (!num_sectors || num_sectors > max_sectors) 1896 num_sectors = max_sectors; 1897 rdev->sb_start = sb_start; 1898 } 1899 sb = page_address(rdev->sb_page); 1900 sb->data_size = cpu_to_le64(num_sectors); 1901 sb->super_offset = rdev->sb_start; 1902 sb->sb_csum = calc_sb_1_csum(sb); 1903 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1904 rdev->sb_page); 1905 md_super_wait(rdev->mddev); 1906 return num_sectors; 1907 1908 } 1909 1910 static int 1911 super_1_allow_new_offset(struct md_rdev *rdev, 1912 unsigned long long new_offset) 1913 { 1914 /* All necessary checks on new >= old have been done */ 1915 struct bitmap *bitmap; 1916 if (new_offset >= rdev->data_offset) 1917 return 1; 1918 1919 /* with 1.0 metadata, there is no metadata to tread on 1920 * so we can always move back */ 1921 if (rdev->mddev->minor_version == 0) 1922 return 1; 1923 1924 /* otherwise we must be sure not to step on 1925 * any metadata, so stay: 1926 * 36K beyond start of superblock 1927 * beyond end of badblocks 1928 * beyond write-intent bitmap 1929 */ 1930 if (rdev->sb_start + (32+4)*2 > new_offset) 1931 return 0; 1932 bitmap = rdev->mddev->bitmap; 1933 if (bitmap && !rdev->mddev->bitmap_info.file && 1934 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1935 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1936 return 0; 1937 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1938 return 0; 1939 1940 return 1; 1941 } 1942 1943 static struct super_type super_types[] = { 1944 [0] = { 1945 .name = "0.90.0", 1946 .owner = THIS_MODULE, 1947 .load_super = super_90_load, 1948 .validate_super = super_90_validate, 1949 .sync_super = super_90_sync, 1950 .rdev_size_change = super_90_rdev_size_change, 1951 .allow_new_offset = super_90_allow_new_offset, 1952 }, 1953 [1] = { 1954 .name = "md-1", 1955 .owner = THIS_MODULE, 1956 .load_super = super_1_load, 1957 .validate_super = super_1_validate, 1958 .sync_super = super_1_sync, 1959 .rdev_size_change = super_1_rdev_size_change, 1960 .allow_new_offset = super_1_allow_new_offset, 1961 }, 1962 }; 1963 1964 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1965 { 1966 if (mddev->sync_super) { 1967 mddev->sync_super(mddev, rdev); 1968 return; 1969 } 1970 1971 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1972 1973 super_types[mddev->major_version].sync_super(mddev, rdev); 1974 } 1975 1976 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1977 { 1978 struct md_rdev *rdev, *rdev2; 1979 1980 rcu_read_lock(); 1981 rdev_for_each_rcu(rdev, mddev1) 1982 rdev_for_each_rcu(rdev2, mddev2) 1983 if (rdev->bdev->bd_contains == 1984 rdev2->bdev->bd_contains) { 1985 rcu_read_unlock(); 1986 return 1; 1987 } 1988 rcu_read_unlock(); 1989 return 0; 1990 } 1991 1992 static LIST_HEAD(pending_raid_disks); 1993 1994 /* 1995 * Try to register data integrity profile for an mddev 1996 * 1997 * This is called when an array is started and after a disk has been kicked 1998 * from the array. It only succeeds if all working and active component devices 1999 * are integrity capable with matching profiles. 2000 */ 2001 int md_integrity_register(struct mddev *mddev) 2002 { 2003 struct md_rdev *rdev, *reference = NULL; 2004 2005 if (list_empty(&mddev->disks)) 2006 return 0; /* nothing to do */ 2007 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2008 return 0; /* shouldn't register, or already is */ 2009 rdev_for_each(rdev, mddev) { 2010 /* skip spares and non-functional disks */ 2011 if (test_bit(Faulty, &rdev->flags)) 2012 continue; 2013 if (rdev->raid_disk < 0) 2014 continue; 2015 if (!reference) { 2016 /* Use the first rdev as the reference */ 2017 reference = rdev; 2018 continue; 2019 } 2020 /* does this rdev's profile match the reference profile? */ 2021 if (blk_integrity_compare(reference->bdev->bd_disk, 2022 rdev->bdev->bd_disk) < 0) 2023 return -EINVAL; 2024 } 2025 if (!reference || !bdev_get_integrity(reference->bdev)) 2026 return 0; 2027 /* 2028 * All component devices are integrity capable and have matching 2029 * profiles, register the common profile for the md device. 2030 */ 2031 if (blk_integrity_register(mddev->gendisk, 2032 bdev_get_integrity(reference->bdev)) != 0) { 2033 printk(KERN_ERR "md: failed to register integrity for %s\n", 2034 mdname(mddev)); 2035 return -EINVAL; 2036 } 2037 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2038 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2039 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2040 mdname(mddev)); 2041 return -EINVAL; 2042 } 2043 return 0; 2044 } 2045 EXPORT_SYMBOL(md_integrity_register); 2046 2047 /* Disable data integrity if non-capable/non-matching disk is being added */ 2048 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2049 { 2050 struct blk_integrity *bi_rdev; 2051 struct blk_integrity *bi_mddev; 2052 2053 if (!mddev->gendisk) 2054 return; 2055 2056 bi_rdev = bdev_get_integrity(rdev->bdev); 2057 bi_mddev = blk_get_integrity(mddev->gendisk); 2058 2059 if (!bi_mddev) /* nothing to do */ 2060 return; 2061 if (rdev->raid_disk < 0) /* skip spares */ 2062 return; 2063 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2064 rdev->bdev->bd_disk) >= 0) 2065 return; 2066 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2067 blk_integrity_unregister(mddev->gendisk); 2068 } 2069 EXPORT_SYMBOL(md_integrity_add_rdev); 2070 2071 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2072 { 2073 char b[BDEVNAME_SIZE]; 2074 struct kobject *ko; 2075 char *s; 2076 int err; 2077 2078 if (rdev->mddev) { 2079 MD_BUG(); 2080 return -EINVAL; 2081 } 2082 2083 /* prevent duplicates */ 2084 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2085 return -EEXIST; 2086 2087 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2088 if (rdev->sectors && (mddev->dev_sectors == 0 || 2089 rdev->sectors < mddev->dev_sectors)) { 2090 if (mddev->pers) { 2091 /* Cannot change size, so fail 2092 * If mddev->level <= 0, then we don't care 2093 * about aligning sizes (e.g. linear) 2094 */ 2095 if (mddev->level > 0) 2096 return -ENOSPC; 2097 } else 2098 mddev->dev_sectors = rdev->sectors; 2099 } 2100 2101 /* Verify rdev->desc_nr is unique. 2102 * If it is -1, assign a free number, else 2103 * check number is not in use 2104 */ 2105 if (rdev->desc_nr < 0) { 2106 int choice = 0; 2107 if (mddev->pers) choice = mddev->raid_disks; 2108 while (find_rdev_nr(mddev, choice)) 2109 choice++; 2110 rdev->desc_nr = choice; 2111 } else { 2112 if (find_rdev_nr(mddev, rdev->desc_nr)) 2113 return -EBUSY; 2114 } 2115 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2116 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2117 mdname(mddev), mddev->max_disks); 2118 return -EBUSY; 2119 } 2120 bdevname(rdev->bdev,b); 2121 while ( (s=strchr(b, '/')) != NULL) 2122 *s = '!'; 2123 2124 rdev->mddev = mddev; 2125 printk(KERN_INFO "md: bind<%s>\n", b); 2126 2127 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2128 goto fail; 2129 2130 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2131 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2132 /* failure here is OK */; 2133 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2134 2135 list_add_rcu(&rdev->same_set, &mddev->disks); 2136 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2137 2138 /* May as well allow recovery to be retried once */ 2139 mddev->recovery_disabled++; 2140 2141 return 0; 2142 2143 fail: 2144 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2145 b, mdname(mddev)); 2146 return err; 2147 } 2148 2149 static void md_delayed_delete(struct work_struct *ws) 2150 { 2151 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2152 kobject_del(&rdev->kobj); 2153 kobject_put(&rdev->kobj); 2154 } 2155 2156 static void unbind_rdev_from_array(struct md_rdev * rdev) 2157 { 2158 char b[BDEVNAME_SIZE]; 2159 if (!rdev->mddev) { 2160 MD_BUG(); 2161 return; 2162 } 2163 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2164 list_del_rcu(&rdev->same_set); 2165 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2166 rdev->mddev = NULL; 2167 sysfs_remove_link(&rdev->kobj, "block"); 2168 sysfs_put(rdev->sysfs_state); 2169 rdev->sysfs_state = NULL; 2170 rdev->badblocks.count = 0; 2171 /* We need to delay this, otherwise we can deadlock when 2172 * writing to 'remove' to "dev/state". We also need 2173 * to delay it due to rcu usage. 2174 */ 2175 synchronize_rcu(); 2176 INIT_WORK(&rdev->del_work, md_delayed_delete); 2177 kobject_get(&rdev->kobj); 2178 queue_work(md_misc_wq, &rdev->del_work); 2179 } 2180 2181 /* 2182 * prevent the device from being mounted, repartitioned or 2183 * otherwise reused by a RAID array (or any other kernel 2184 * subsystem), by bd_claiming the device. 2185 */ 2186 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2187 { 2188 int err = 0; 2189 struct block_device *bdev; 2190 char b[BDEVNAME_SIZE]; 2191 2192 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2193 shared ? (struct md_rdev *)lock_rdev : rdev); 2194 if (IS_ERR(bdev)) { 2195 printk(KERN_ERR "md: could not open %s.\n", 2196 __bdevname(dev, b)); 2197 return PTR_ERR(bdev); 2198 } 2199 rdev->bdev = bdev; 2200 return err; 2201 } 2202 2203 static void unlock_rdev(struct md_rdev *rdev) 2204 { 2205 struct block_device *bdev = rdev->bdev; 2206 rdev->bdev = NULL; 2207 if (!bdev) 2208 MD_BUG(); 2209 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2210 } 2211 2212 void md_autodetect_dev(dev_t dev); 2213 2214 static void export_rdev(struct md_rdev * rdev) 2215 { 2216 char b[BDEVNAME_SIZE]; 2217 printk(KERN_INFO "md: export_rdev(%s)\n", 2218 bdevname(rdev->bdev,b)); 2219 if (rdev->mddev) 2220 MD_BUG(); 2221 md_rdev_clear(rdev); 2222 #ifndef MODULE 2223 if (test_bit(AutoDetected, &rdev->flags)) 2224 md_autodetect_dev(rdev->bdev->bd_dev); 2225 #endif 2226 unlock_rdev(rdev); 2227 kobject_put(&rdev->kobj); 2228 } 2229 2230 static void kick_rdev_from_array(struct md_rdev * rdev) 2231 { 2232 unbind_rdev_from_array(rdev); 2233 export_rdev(rdev); 2234 } 2235 2236 static void export_array(struct mddev *mddev) 2237 { 2238 struct md_rdev *rdev, *tmp; 2239 2240 rdev_for_each_safe(rdev, tmp, mddev) { 2241 if (!rdev->mddev) { 2242 MD_BUG(); 2243 continue; 2244 } 2245 kick_rdev_from_array(rdev); 2246 } 2247 if (!list_empty(&mddev->disks)) 2248 MD_BUG(); 2249 mddev->raid_disks = 0; 2250 mddev->major_version = 0; 2251 } 2252 2253 static void print_desc(mdp_disk_t *desc) 2254 { 2255 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2256 desc->major,desc->minor,desc->raid_disk,desc->state); 2257 } 2258 2259 static void print_sb_90(mdp_super_t *sb) 2260 { 2261 int i; 2262 2263 printk(KERN_INFO 2264 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2265 sb->major_version, sb->minor_version, sb->patch_version, 2266 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2267 sb->ctime); 2268 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2269 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2270 sb->md_minor, sb->layout, sb->chunk_size); 2271 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2272 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2273 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2274 sb->failed_disks, sb->spare_disks, 2275 sb->sb_csum, (unsigned long)sb->events_lo); 2276 2277 printk(KERN_INFO); 2278 for (i = 0; i < MD_SB_DISKS; i++) { 2279 mdp_disk_t *desc; 2280 2281 desc = sb->disks + i; 2282 if (desc->number || desc->major || desc->minor || 2283 desc->raid_disk || (desc->state && (desc->state != 4))) { 2284 printk(" D %2d: ", i); 2285 print_desc(desc); 2286 } 2287 } 2288 printk(KERN_INFO "md: THIS: "); 2289 print_desc(&sb->this_disk); 2290 } 2291 2292 static void print_sb_1(struct mdp_superblock_1 *sb) 2293 { 2294 __u8 *uuid; 2295 2296 uuid = sb->set_uuid; 2297 printk(KERN_INFO 2298 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2299 "md: Name: \"%s\" CT:%llu\n", 2300 le32_to_cpu(sb->major_version), 2301 le32_to_cpu(sb->feature_map), 2302 uuid, 2303 sb->set_name, 2304 (unsigned long long)le64_to_cpu(sb->ctime) 2305 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2306 2307 uuid = sb->device_uuid; 2308 printk(KERN_INFO 2309 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2310 " RO:%llu\n" 2311 "md: Dev:%08x UUID: %pU\n" 2312 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2313 "md: (MaxDev:%u) \n", 2314 le32_to_cpu(sb->level), 2315 (unsigned long long)le64_to_cpu(sb->size), 2316 le32_to_cpu(sb->raid_disks), 2317 le32_to_cpu(sb->layout), 2318 le32_to_cpu(sb->chunksize), 2319 (unsigned long long)le64_to_cpu(sb->data_offset), 2320 (unsigned long long)le64_to_cpu(sb->data_size), 2321 (unsigned long long)le64_to_cpu(sb->super_offset), 2322 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2323 le32_to_cpu(sb->dev_number), 2324 uuid, 2325 sb->devflags, 2326 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2327 (unsigned long long)le64_to_cpu(sb->events), 2328 (unsigned long long)le64_to_cpu(sb->resync_offset), 2329 le32_to_cpu(sb->sb_csum), 2330 le32_to_cpu(sb->max_dev) 2331 ); 2332 } 2333 2334 static void print_rdev(struct md_rdev *rdev, int major_version) 2335 { 2336 char b[BDEVNAME_SIZE]; 2337 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2338 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2339 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2340 rdev->desc_nr); 2341 if (rdev->sb_loaded) { 2342 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2343 switch (major_version) { 2344 case 0: 2345 print_sb_90(page_address(rdev->sb_page)); 2346 break; 2347 case 1: 2348 print_sb_1(page_address(rdev->sb_page)); 2349 break; 2350 } 2351 } else 2352 printk(KERN_INFO "md: no rdev superblock!\n"); 2353 } 2354 2355 static void md_print_devices(void) 2356 { 2357 struct list_head *tmp; 2358 struct md_rdev *rdev; 2359 struct mddev *mddev; 2360 char b[BDEVNAME_SIZE]; 2361 2362 printk("\n"); 2363 printk("md: **********************************\n"); 2364 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2365 printk("md: **********************************\n"); 2366 for_each_mddev(mddev, tmp) { 2367 2368 if (mddev->bitmap) 2369 bitmap_print_sb(mddev->bitmap); 2370 else 2371 printk("%s: ", mdname(mddev)); 2372 rdev_for_each(rdev, mddev) 2373 printk("<%s>", bdevname(rdev->bdev,b)); 2374 printk("\n"); 2375 2376 rdev_for_each(rdev, mddev) 2377 print_rdev(rdev, mddev->major_version); 2378 } 2379 printk("md: **********************************\n"); 2380 printk("\n"); 2381 } 2382 2383 2384 static void sync_sbs(struct mddev * mddev, int nospares) 2385 { 2386 /* Update each superblock (in-memory image), but 2387 * if we are allowed to, skip spares which already 2388 * have the right event counter, or have one earlier 2389 * (which would mean they aren't being marked as dirty 2390 * with the rest of the array) 2391 */ 2392 struct md_rdev *rdev; 2393 rdev_for_each(rdev, mddev) { 2394 if (rdev->sb_events == mddev->events || 2395 (nospares && 2396 rdev->raid_disk < 0 && 2397 rdev->sb_events+1 == mddev->events)) { 2398 /* Don't update this superblock */ 2399 rdev->sb_loaded = 2; 2400 } else { 2401 sync_super(mddev, rdev); 2402 rdev->sb_loaded = 1; 2403 } 2404 } 2405 } 2406 2407 static void md_update_sb(struct mddev * mddev, int force_change) 2408 { 2409 struct md_rdev *rdev; 2410 int sync_req; 2411 int nospares = 0; 2412 int any_badblocks_changed = 0; 2413 2414 repeat: 2415 /* First make sure individual recovery_offsets are correct */ 2416 rdev_for_each(rdev, mddev) { 2417 if (rdev->raid_disk >= 0 && 2418 mddev->delta_disks >= 0 && 2419 !test_bit(In_sync, &rdev->flags) && 2420 mddev->curr_resync_completed > rdev->recovery_offset) 2421 rdev->recovery_offset = mddev->curr_resync_completed; 2422 2423 } 2424 if (!mddev->persistent) { 2425 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2426 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2427 if (!mddev->external) { 2428 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2429 rdev_for_each(rdev, mddev) { 2430 if (rdev->badblocks.changed) { 2431 rdev->badblocks.changed = 0; 2432 md_ack_all_badblocks(&rdev->badblocks); 2433 md_error(mddev, rdev); 2434 } 2435 clear_bit(Blocked, &rdev->flags); 2436 clear_bit(BlockedBadBlocks, &rdev->flags); 2437 wake_up(&rdev->blocked_wait); 2438 } 2439 } 2440 wake_up(&mddev->sb_wait); 2441 return; 2442 } 2443 2444 spin_lock_irq(&mddev->write_lock); 2445 2446 mddev->utime = get_seconds(); 2447 2448 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2449 force_change = 1; 2450 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2451 /* just a clean<-> dirty transition, possibly leave spares alone, 2452 * though if events isn't the right even/odd, we will have to do 2453 * spares after all 2454 */ 2455 nospares = 1; 2456 if (force_change) 2457 nospares = 0; 2458 if (mddev->degraded) 2459 /* If the array is degraded, then skipping spares is both 2460 * dangerous and fairly pointless. 2461 * Dangerous because a device that was removed from the array 2462 * might have a event_count that still looks up-to-date, 2463 * so it can be re-added without a resync. 2464 * Pointless because if there are any spares to skip, 2465 * then a recovery will happen and soon that array won't 2466 * be degraded any more and the spare can go back to sleep then. 2467 */ 2468 nospares = 0; 2469 2470 sync_req = mddev->in_sync; 2471 2472 /* If this is just a dirty<->clean transition, and the array is clean 2473 * and 'events' is odd, we can roll back to the previous clean state */ 2474 if (nospares 2475 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2476 && mddev->can_decrease_events 2477 && mddev->events != 1) { 2478 mddev->events--; 2479 mddev->can_decrease_events = 0; 2480 } else { 2481 /* otherwise we have to go forward and ... */ 2482 mddev->events ++; 2483 mddev->can_decrease_events = nospares; 2484 } 2485 2486 if (!mddev->events) { 2487 /* 2488 * oops, this 64-bit counter should never wrap. 2489 * Either we are in around ~1 trillion A.C., assuming 2490 * 1 reboot per second, or we have a bug: 2491 */ 2492 MD_BUG(); 2493 mddev->events --; 2494 } 2495 2496 rdev_for_each(rdev, mddev) { 2497 if (rdev->badblocks.changed) 2498 any_badblocks_changed++; 2499 if (test_bit(Faulty, &rdev->flags)) 2500 set_bit(FaultRecorded, &rdev->flags); 2501 } 2502 2503 sync_sbs(mddev, nospares); 2504 spin_unlock_irq(&mddev->write_lock); 2505 2506 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2507 mdname(mddev), mddev->in_sync); 2508 2509 bitmap_update_sb(mddev->bitmap); 2510 rdev_for_each(rdev, mddev) { 2511 char b[BDEVNAME_SIZE]; 2512 2513 if (rdev->sb_loaded != 1) 2514 continue; /* no noise on spare devices */ 2515 2516 if (!test_bit(Faulty, &rdev->flags) && 2517 rdev->saved_raid_disk == -1) { 2518 md_super_write(mddev,rdev, 2519 rdev->sb_start, rdev->sb_size, 2520 rdev->sb_page); 2521 pr_debug("md: (write) %s's sb offset: %llu\n", 2522 bdevname(rdev->bdev, b), 2523 (unsigned long long)rdev->sb_start); 2524 rdev->sb_events = mddev->events; 2525 if (rdev->badblocks.size) { 2526 md_super_write(mddev, rdev, 2527 rdev->badblocks.sector, 2528 rdev->badblocks.size << 9, 2529 rdev->bb_page); 2530 rdev->badblocks.size = 0; 2531 } 2532 2533 } else if (test_bit(Faulty, &rdev->flags)) 2534 pr_debug("md: %s (skipping faulty)\n", 2535 bdevname(rdev->bdev, b)); 2536 else 2537 pr_debug("(skipping incremental s/r "); 2538 2539 if (mddev->level == LEVEL_MULTIPATH) 2540 /* only need to write one superblock... */ 2541 break; 2542 } 2543 md_super_wait(mddev); 2544 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2545 2546 spin_lock_irq(&mddev->write_lock); 2547 if (mddev->in_sync != sync_req || 2548 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2549 /* have to write it out again */ 2550 spin_unlock_irq(&mddev->write_lock); 2551 goto repeat; 2552 } 2553 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2554 spin_unlock_irq(&mddev->write_lock); 2555 wake_up(&mddev->sb_wait); 2556 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2557 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2558 2559 rdev_for_each(rdev, mddev) { 2560 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2561 clear_bit(Blocked, &rdev->flags); 2562 2563 if (any_badblocks_changed) 2564 md_ack_all_badblocks(&rdev->badblocks); 2565 clear_bit(BlockedBadBlocks, &rdev->flags); 2566 wake_up(&rdev->blocked_wait); 2567 } 2568 } 2569 2570 /* words written to sysfs files may, or may not, be \n terminated. 2571 * We want to accept with case. For this we use cmd_match. 2572 */ 2573 static int cmd_match(const char *cmd, const char *str) 2574 { 2575 /* See if cmd, written into a sysfs file, matches 2576 * str. They must either be the same, or cmd can 2577 * have a trailing newline 2578 */ 2579 while (*cmd && *str && *cmd == *str) { 2580 cmd++; 2581 str++; 2582 } 2583 if (*cmd == '\n') 2584 cmd++; 2585 if (*str || *cmd) 2586 return 0; 2587 return 1; 2588 } 2589 2590 struct rdev_sysfs_entry { 2591 struct attribute attr; 2592 ssize_t (*show)(struct md_rdev *, char *); 2593 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2594 }; 2595 2596 static ssize_t 2597 state_show(struct md_rdev *rdev, char *page) 2598 { 2599 char *sep = ""; 2600 size_t len = 0; 2601 2602 if (test_bit(Faulty, &rdev->flags) || 2603 rdev->badblocks.unacked_exist) { 2604 len+= sprintf(page+len, "%sfaulty",sep); 2605 sep = ","; 2606 } 2607 if (test_bit(In_sync, &rdev->flags)) { 2608 len += sprintf(page+len, "%sin_sync",sep); 2609 sep = ","; 2610 } 2611 if (test_bit(WriteMostly, &rdev->flags)) { 2612 len += sprintf(page+len, "%swrite_mostly",sep); 2613 sep = ","; 2614 } 2615 if (test_bit(Blocked, &rdev->flags) || 2616 (rdev->badblocks.unacked_exist 2617 && !test_bit(Faulty, &rdev->flags))) { 2618 len += sprintf(page+len, "%sblocked", sep); 2619 sep = ","; 2620 } 2621 if (!test_bit(Faulty, &rdev->flags) && 2622 !test_bit(In_sync, &rdev->flags)) { 2623 len += sprintf(page+len, "%sspare", sep); 2624 sep = ","; 2625 } 2626 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2627 len += sprintf(page+len, "%swrite_error", sep); 2628 sep = ","; 2629 } 2630 if (test_bit(WantReplacement, &rdev->flags)) { 2631 len += sprintf(page+len, "%swant_replacement", sep); 2632 sep = ","; 2633 } 2634 if (test_bit(Replacement, &rdev->flags)) { 2635 len += sprintf(page+len, "%sreplacement", sep); 2636 sep = ","; 2637 } 2638 2639 return len+sprintf(page+len, "\n"); 2640 } 2641 2642 static ssize_t 2643 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2644 { 2645 /* can write 2646 * faulty - simulates an error 2647 * remove - disconnects the device 2648 * writemostly - sets write_mostly 2649 * -writemostly - clears write_mostly 2650 * blocked - sets the Blocked flags 2651 * -blocked - clears the Blocked and possibly simulates an error 2652 * insync - sets Insync providing device isn't active 2653 * write_error - sets WriteErrorSeen 2654 * -write_error - clears WriteErrorSeen 2655 */ 2656 int err = -EINVAL; 2657 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2658 md_error(rdev->mddev, rdev); 2659 if (test_bit(Faulty, &rdev->flags)) 2660 err = 0; 2661 else 2662 err = -EBUSY; 2663 } else if (cmd_match(buf, "remove")) { 2664 if (rdev->raid_disk >= 0) 2665 err = -EBUSY; 2666 else { 2667 struct mddev *mddev = rdev->mddev; 2668 kick_rdev_from_array(rdev); 2669 if (mddev->pers) 2670 md_update_sb(mddev, 1); 2671 md_new_event(mddev); 2672 err = 0; 2673 } 2674 } else if (cmd_match(buf, "writemostly")) { 2675 set_bit(WriteMostly, &rdev->flags); 2676 err = 0; 2677 } else if (cmd_match(buf, "-writemostly")) { 2678 clear_bit(WriteMostly, &rdev->flags); 2679 err = 0; 2680 } else if (cmd_match(buf, "blocked")) { 2681 set_bit(Blocked, &rdev->flags); 2682 err = 0; 2683 } else if (cmd_match(buf, "-blocked")) { 2684 if (!test_bit(Faulty, &rdev->flags) && 2685 rdev->badblocks.unacked_exist) { 2686 /* metadata handler doesn't understand badblocks, 2687 * so we need to fail the device 2688 */ 2689 md_error(rdev->mddev, rdev); 2690 } 2691 clear_bit(Blocked, &rdev->flags); 2692 clear_bit(BlockedBadBlocks, &rdev->flags); 2693 wake_up(&rdev->blocked_wait); 2694 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2695 md_wakeup_thread(rdev->mddev->thread); 2696 2697 err = 0; 2698 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2699 set_bit(In_sync, &rdev->flags); 2700 err = 0; 2701 } else if (cmd_match(buf, "write_error")) { 2702 set_bit(WriteErrorSeen, &rdev->flags); 2703 err = 0; 2704 } else if (cmd_match(buf, "-write_error")) { 2705 clear_bit(WriteErrorSeen, &rdev->flags); 2706 err = 0; 2707 } else if (cmd_match(buf, "want_replacement")) { 2708 /* Any non-spare device that is not a replacement can 2709 * become want_replacement at any time, but we then need to 2710 * check if recovery is needed. 2711 */ 2712 if (rdev->raid_disk >= 0 && 2713 !test_bit(Replacement, &rdev->flags)) 2714 set_bit(WantReplacement, &rdev->flags); 2715 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2716 md_wakeup_thread(rdev->mddev->thread); 2717 err = 0; 2718 } else if (cmd_match(buf, "-want_replacement")) { 2719 /* Clearing 'want_replacement' is always allowed. 2720 * Once replacements starts it is too late though. 2721 */ 2722 err = 0; 2723 clear_bit(WantReplacement, &rdev->flags); 2724 } else if (cmd_match(buf, "replacement")) { 2725 /* Can only set a device as a replacement when array has not 2726 * yet been started. Once running, replacement is automatic 2727 * from spares, or by assigning 'slot'. 2728 */ 2729 if (rdev->mddev->pers) 2730 err = -EBUSY; 2731 else { 2732 set_bit(Replacement, &rdev->flags); 2733 err = 0; 2734 } 2735 } else if (cmd_match(buf, "-replacement")) { 2736 /* Similarly, can only clear Replacement before start */ 2737 if (rdev->mddev->pers) 2738 err = -EBUSY; 2739 else { 2740 clear_bit(Replacement, &rdev->flags); 2741 err = 0; 2742 } 2743 } 2744 if (!err) 2745 sysfs_notify_dirent_safe(rdev->sysfs_state); 2746 return err ? err : len; 2747 } 2748 static struct rdev_sysfs_entry rdev_state = 2749 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2750 2751 static ssize_t 2752 errors_show(struct md_rdev *rdev, char *page) 2753 { 2754 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2755 } 2756 2757 static ssize_t 2758 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2759 { 2760 char *e; 2761 unsigned long n = simple_strtoul(buf, &e, 10); 2762 if (*buf && (*e == 0 || *e == '\n')) { 2763 atomic_set(&rdev->corrected_errors, n); 2764 return len; 2765 } 2766 return -EINVAL; 2767 } 2768 static struct rdev_sysfs_entry rdev_errors = 2769 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2770 2771 static ssize_t 2772 slot_show(struct md_rdev *rdev, char *page) 2773 { 2774 if (rdev->raid_disk < 0) 2775 return sprintf(page, "none\n"); 2776 else 2777 return sprintf(page, "%d\n", rdev->raid_disk); 2778 } 2779 2780 static ssize_t 2781 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2782 { 2783 char *e; 2784 int err; 2785 int slot = simple_strtoul(buf, &e, 10); 2786 if (strncmp(buf, "none", 4)==0) 2787 slot = -1; 2788 else if (e==buf || (*e && *e!= '\n')) 2789 return -EINVAL; 2790 if (rdev->mddev->pers && slot == -1) { 2791 /* Setting 'slot' on an active array requires also 2792 * updating the 'rd%d' link, and communicating 2793 * with the personality with ->hot_*_disk. 2794 * For now we only support removing 2795 * failed/spare devices. This normally happens automatically, 2796 * but not when the metadata is externally managed. 2797 */ 2798 if (rdev->raid_disk == -1) 2799 return -EEXIST; 2800 /* personality does all needed checks */ 2801 if (rdev->mddev->pers->hot_remove_disk == NULL) 2802 return -EINVAL; 2803 err = rdev->mddev->pers-> 2804 hot_remove_disk(rdev->mddev, rdev); 2805 if (err) 2806 return err; 2807 sysfs_unlink_rdev(rdev->mddev, rdev); 2808 rdev->raid_disk = -1; 2809 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2810 md_wakeup_thread(rdev->mddev->thread); 2811 } else if (rdev->mddev->pers) { 2812 /* Activating a spare .. or possibly reactivating 2813 * if we ever get bitmaps working here. 2814 */ 2815 2816 if (rdev->raid_disk != -1) 2817 return -EBUSY; 2818 2819 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2820 return -EBUSY; 2821 2822 if (rdev->mddev->pers->hot_add_disk == NULL) 2823 return -EINVAL; 2824 2825 if (slot >= rdev->mddev->raid_disks && 2826 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2827 return -ENOSPC; 2828 2829 rdev->raid_disk = slot; 2830 if (test_bit(In_sync, &rdev->flags)) 2831 rdev->saved_raid_disk = slot; 2832 else 2833 rdev->saved_raid_disk = -1; 2834 clear_bit(In_sync, &rdev->flags); 2835 err = rdev->mddev->pers-> 2836 hot_add_disk(rdev->mddev, rdev); 2837 if (err) { 2838 rdev->raid_disk = -1; 2839 return err; 2840 } else 2841 sysfs_notify_dirent_safe(rdev->sysfs_state); 2842 if (sysfs_link_rdev(rdev->mddev, rdev)) 2843 /* failure here is OK */; 2844 /* don't wakeup anyone, leave that to userspace. */ 2845 } else { 2846 if (slot >= rdev->mddev->raid_disks && 2847 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2848 return -ENOSPC; 2849 rdev->raid_disk = slot; 2850 /* assume it is working */ 2851 clear_bit(Faulty, &rdev->flags); 2852 clear_bit(WriteMostly, &rdev->flags); 2853 set_bit(In_sync, &rdev->flags); 2854 sysfs_notify_dirent_safe(rdev->sysfs_state); 2855 } 2856 return len; 2857 } 2858 2859 2860 static struct rdev_sysfs_entry rdev_slot = 2861 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2862 2863 static ssize_t 2864 offset_show(struct md_rdev *rdev, char *page) 2865 { 2866 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2867 } 2868 2869 static ssize_t 2870 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2871 { 2872 unsigned long long offset; 2873 if (strict_strtoull(buf, 10, &offset) < 0) 2874 return -EINVAL; 2875 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2876 return -EBUSY; 2877 if (rdev->sectors && rdev->mddev->external) 2878 /* Must set offset before size, so overlap checks 2879 * can be sane */ 2880 return -EBUSY; 2881 rdev->data_offset = offset; 2882 rdev->new_data_offset = offset; 2883 return len; 2884 } 2885 2886 static struct rdev_sysfs_entry rdev_offset = 2887 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2888 2889 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2890 { 2891 return sprintf(page, "%llu\n", 2892 (unsigned long long)rdev->new_data_offset); 2893 } 2894 2895 static ssize_t new_offset_store(struct md_rdev *rdev, 2896 const char *buf, size_t len) 2897 { 2898 unsigned long long new_offset; 2899 struct mddev *mddev = rdev->mddev; 2900 2901 if (strict_strtoull(buf, 10, &new_offset) < 0) 2902 return -EINVAL; 2903 2904 if (mddev->sync_thread) 2905 return -EBUSY; 2906 if (new_offset == rdev->data_offset) 2907 /* reset is always permitted */ 2908 ; 2909 else if (new_offset > rdev->data_offset) { 2910 /* must not push array size beyond rdev_sectors */ 2911 if (new_offset - rdev->data_offset 2912 + mddev->dev_sectors > rdev->sectors) 2913 return -E2BIG; 2914 } 2915 /* Metadata worries about other space details. */ 2916 2917 /* decreasing the offset is inconsistent with a backwards 2918 * reshape. 2919 */ 2920 if (new_offset < rdev->data_offset && 2921 mddev->reshape_backwards) 2922 return -EINVAL; 2923 /* Increasing offset is inconsistent with forwards 2924 * reshape. reshape_direction should be set to 2925 * 'backwards' first. 2926 */ 2927 if (new_offset > rdev->data_offset && 2928 !mddev->reshape_backwards) 2929 return -EINVAL; 2930 2931 if (mddev->pers && mddev->persistent && 2932 !super_types[mddev->major_version] 2933 .allow_new_offset(rdev, new_offset)) 2934 return -E2BIG; 2935 rdev->new_data_offset = new_offset; 2936 if (new_offset > rdev->data_offset) 2937 mddev->reshape_backwards = 1; 2938 else if (new_offset < rdev->data_offset) 2939 mddev->reshape_backwards = 0; 2940 2941 return len; 2942 } 2943 static struct rdev_sysfs_entry rdev_new_offset = 2944 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2945 2946 static ssize_t 2947 rdev_size_show(struct md_rdev *rdev, char *page) 2948 { 2949 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2950 } 2951 2952 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2953 { 2954 /* check if two start/length pairs overlap */ 2955 if (s1+l1 <= s2) 2956 return 0; 2957 if (s2+l2 <= s1) 2958 return 0; 2959 return 1; 2960 } 2961 2962 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2963 { 2964 unsigned long long blocks; 2965 sector_t new; 2966 2967 if (strict_strtoull(buf, 10, &blocks) < 0) 2968 return -EINVAL; 2969 2970 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2971 return -EINVAL; /* sector conversion overflow */ 2972 2973 new = blocks * 2; 2974 if (new != blocks * 2) 2975 return -EINVAL; /* unsigned long long to sector_t overflow */ 2976 2977 *sectors = new; 2978 return 0; 2979 } 2980 2981 static ssize_t 2982 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2983 { 2984 struct mddev *my_mddev = rdev->mddev; 2985 sector_t oldsectors = rdev->sectors; 2986 sector_t sectors; 2987 2988 if (strict_blocks_to_sectors(buf, §ors) < 0) 2989 return -EINVAL; 2990 if (rdev->data_offset != rdev->new_data_offset) 2991 return -EINVAL; /* too confusing */ 2992 if (my_mddev->pers && rdev->raid_disk >= 0) { 2993 if (my_mddev->persistent) { 2994 sectors = super_types[my_mddev->major_version]. 2995 rdev_size_change(rdev, sectors); 2996 if (!sectors) 2997 return -EBUSY; 2998 } else if (!sectors) 2999 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3000 rdev->data_offset; 3001 if (!my_mddev->pers->resize) 3002 /* Cannot change size for RAID0 or Linear etc */ 3003 return -EINVAL; 3004 } 3005 if (sectors < my_mddev->dev_sectors) 3006 return -EINVAL; /* component must fit device */ 3007 3008 rdev->sectors = sectors; 3009 if (sectors > oldsectors && my_mddev->external) { 3010 /* need to check that all other rdevs with the same ->bdev 3011 * do not overlap. We need to unlock the mddev to avoid 3012 * a deadlock. We have already changed rdev->sectors, and if 3013 * we have to change it back, we will have the lock again. 3014 */ 3015 struct mddev *mddev; 3016 int overlap = 0; 3017 struct list_head *tmp; 3018 3019 mddev_unlock(my_mddev); 3020 for_each_mddev(mddev, tmp) { 3021 struct md_rdev *rdev2; 3022 3023 mddev_lock(mddev); 3024 rdev_for_each(rdev2, mddev) 3025 if (rdev->bdev == rdev2->bdev && 3026 rdev != rdev2 && 3027 overlaps(rdev->data_offset, rdev->sectors, 3028 rdev2->data_offset, 3029 rdev2->sectors)) { 3030 overlap = 1; 3031 break; 3032 } 3033 mddev_unlock(mddev); 3034 if (overlap) { 3035 mddev_put(mddev); 3036 break; 3037 } 3038 } 3039 mddev_lock(my_mddev); 3040 if (overlap) { 3041 /* Someone else could have slipped in a size 3042 * change here, but doing so is just silly. 3043 * We put oldsectors back because we *know* it is 3044 * safe, and trust userspace not to race with 3045 * itself 3046 */ 3047 rdev->sectors = oldsectors; 3048 return -EBUSY; 3049 } 3050 } 3051 return len; 3052 } 3053 3054 static struct rdev_sysfs_entry rdev_size = 3055 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3056 3057 3058 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3059 { 3060 unsigned long long recovery_start = rdev->recovery_offset; 3061 3062 if (test_bit(In_sync, &rdev->flags) || 3063 recovery_start == MaxSector) 3064 return sprintf(page, "none\n"); 3065 3066 return sprintf(page, "%llu\n", recovery_start); 3067 } 3068 3069 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3070 { 3071 unsigned long long recovery_start; 3072 3073 if (cmd_match(buf, "none")) 3074 recovery_start = MaxSector; 3075 else if (strict_strtoull(buf, 10, &recovery_start)) 3076 return -EINVAL; 3077 3078 if (rdev->mddev->pers && 3079 rdev->raid_disk >= 0) 3080 return -EBUSY; 3081 3082 rdev->recovery_offset = recovery_start; 3083 if (recovery_start == MaxSector) 3084 set_bit(In_sync, &rdev->flags); 3085 else 3086 clear_bit(In_sync, &rdev->flags); 3087 return len; 3088 } 3089 3090 static struct rdev_sysfs_entry rdev_recovery_start = 3091 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3092 3093 3094 static ssize_t 3095 badblocks_show(struct badblocks *bb, char *page, int unack); 3096 static ssize_t 3097 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3098 3099 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3100 { 3101 return badblocks_show(&rdev->badblocks, page, 0); 3102 } 3103 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3104 { 3105 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3106 /* Maybe that ack was all we needed */ 3107 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3108 wake_up(&rdev->blocked_wait); 3109 return rv; 3110 } 3111 static struct rdev_sysfs_entry rdev_bad_blocks = 3112 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3113 3114 3115 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3116 { 3117 return badblocks_show(&rdev->badblocks, page, 1); 3118 } 3119 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3120 { 3121 return badblocks_store(&rdev->badblocks, page, len, 1); 3122 } 3123 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3124 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3125 3126 static struct attribute *rdev_default_attrs[] = { 3127 &rdev_state.attr, 3128 &rdev_errors.attr, 3129 &rdev_slot.attr, 3130 &rdev_offset.attr, 3131 &rdev_new_offset.attr, 3132 &rdev_size.attr, 3133 &rdev_recovery_start.attr, 3134 &rdev_bad_blocks.attr, 3135 &rdev_unack_bad_blocks.attr, 3136 NULL, 3137 }; 3138 static ssize_t 3139 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3140 { 3141 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3142 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3143 struct mddev *mddev = rdev->mddev; 3144 ssize_t rv; 3145 3146 if (!entry->show) 3147 return -EIO; 3148 3149 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3150 if (!rv) { 3151 if (rdev->mddev == NULL) 3152 rv = -EBUSY; 3153 else 3154 rv = entry->show(rdev, page); 3155 mddev_unlock(mddev); 3156 } 3157 return rv; 3158 } 3159 3160 static ssize_t 3161 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3162 const char *page, size_t length) 3163 { 3164 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3165 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3166 ssize_t rv; 3167 struct mddev *mddev = rdev->mddev; 3168 3169 if (!entry->store) 3170 return -EIO; 3171 if (!capable(CAP_SYS_ADMIN)) 3172 return -EACCES; 3173 rv = mddev ? mddev_lock(mddev): -EBUSY; 3174 if (!rv) { 3175 if (rdev->mddev == NULL) 3176 rv = -EBUSY; 3177 else 3178 rv = entry->store(rdev, page, length); 3179 mddev_unlock(mddev); 3180 } 3181 return rv; 3182 } 3183 3184 static void rdev_free(struct kobject *ko) 3185 { 3186 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3187 kfree(rdev); 3188 } 3189 static const struct sysfs_ops rdev_sysfs_ops = { 3190 .show = rdev_attr_show, 3191 .store = rdev_attr_store, 3192 }; 3193 static struct kobj_type rdev_ktype = { 3194 .release = rdev_free, 3195 .sysfs_ops = &rdev_sysfs_ops, 3196 .default_attrs = rdev_default_attrs, 3197 }; 3198 3199 int md_rdev_init(struct md_rdev *rdev) 3200 { 3201 rdev->desc_nr = -1; 3202 rdev->saved_raid_disk = -1; 3203 rdev->raid_disk = -1; 3204 rdev->flags = 0; 3205 rdev->data_offset = 0; 3206 rdev->new_data_offset = 0; 3207 rdev->sb_events = 0; 3208 rdev->last_read_error.tv_sec = 0; 3209 rdev->last_read_error.tv_nsec = 0; 3210 rdev->sb_loaded = 0; 3211 rdev->bb_page = NULL; 3212 atomic_set(&rdev->nr_pending, 0); 3213 atomic_set(&rdev->read_errors, 0); 3214 atomic_set(&rdev->corrected_errors, 0); 3215 3216 INIT_LIST_HEAD(&rdev->same_set); 3217 init_waitqueue_head(&rdev->blocked_wait); 3218 3219 /* Add space to store bad block list. 3220 * This reserves the space even on arrays where it cannot 3221 * be used - I wonder if that matters 3222 */ 3223 rdev->badblocks.count = 0; 3224 rdev->badblocks.shift = 0; 3225 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3226 seqlock_init(&rdev->badblocks.lock); 3227 if (rdev->badblocks.page == NULL) 3228 return -ENOMEM; 3229 3230 return 0; 3231 } 3232 EXPORT_SYMBOL_GPL(md_rdev_init); 3233 /* 3234 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3235 * 3236 * mark the device faulty if: 3237 * 3238 * - the device is nonexistent (zero size) 3239 * - the device has no valid superblock 3240 * 3241 * a faulty rdev _never_ has rdev->sb set. 3242 */ 3243 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3244 { 3245 char b[BDEVNAME_SIZE]; 3246 int err; 3247 struct md_rdev *rdev; 3248 sector_t size; 3249 3250 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3251 if (!rdev) { 3252 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3253 return ERR_PTR(-ENOMEM); 3254 } 3255 3256 err = md_rdev_init(rdev); 3257 if (err) 3258 goto abort_free; 3259 err = alloc_disk_sb(rdev); 3260 if (err) 3261 goto abort_free; 3262 3263 err = lock_rdev(rdev, newdev, super_format == -2); 3264 if (err) 3265 goto abort_free; 3266 3267 kobject_init(&rdev->kobj, &rdev_ktype); 3268 3269 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3270 if (!size) { 3271 printk(KERN_WARNING 3272 "md: %s has zero or unknown size, marking faulty!\n", 3273 bdevname(rdev->bdev,b)); 3274 err = -EINVAL; 3275 goto abort_free; 3276 } 3277 3278 if (super_format >= 0) { 3279 err = super_types[super_format]. 3280 load_super(rdev, NULL, super_minor); 3281 if (err == -EINVAL) { 3282 printk(KERN_WARNING 3283 "md: %s does not have a valid v%d.%d " 3284 "superblock, not importing!\n", 3285 bdevname(rdev->bdev,b), 3286 super_format, super_minor); 3287 goto abort_free; 3288 } 3289 if (err < 0) { 3290 printk(KERN_WARNING 3291 "md: could not read %s's sb, not importing!\n", 3292 bdevname(rdev->bdev,b)); 3293 goto abort_free; 3294 } 3295 } 3296 if (super_format == -1) 3297 /* hot-add for 0.90, or non-persistent: so no badblocks */ 3298 rdev->badblocks.shift = -1; 3299 3300 return rdev; 3301 3302 abort_free: 3303 if (rdev->bdev) 3304 unlock_rdev(rdev); 3305 md_rdev_clear(rdev); 3306 kfree(rdev); 3307 return ERR_PTR(err); 3308 } 3309 3310 /* 3311 * Check a full RAID array for plausibility 3312 */ 3313 3314 3315 static void analyze_sbs(struct mddev * mddev) 3316 { 3317 int i; 3318 struct md_rdev *rdev, *freshest, *tmp; 3319 char b[BDEVNAME_SIZE]; 3320 3321 freshest = NULL; 3322 rdev_for_each_safe(rdev, tmp, mddev) 3323 switch (super_types[mddev->major_version]. 3324 load_super(rdev, freshest, mddev->minor_version)) { 3325 case 1: 3326 freshest = rdev; 3327 break; 3328 case 0: 3329 break; 3330 default: 3331 printk( KERN_ERR \ 3332 "md: fatal superblock inconsistency in %s" 3333 " -- removing from array\n", 3334 bdevname(rdev->bdev,b)); 3335 kick_rdev_from_array(rdev); 3336 } 3337 3338 3339 super_types[mddev->major_version]. 3340 validate_super(mddev, freshest); 3341 3342 i = 0; 3343 rdev_for_each_safe(rdev, tmp, mddev) { 3344 if (mddev->max_disks && 3345 (rdev->desc_nr >= mddev->max_disks || 3346 i > mddev->max_disks)) { 3347 printk(KERN_WARNING 3348 "md: %s: %s: only %d devices permitted\n", 3349 mdname(mddev), bdevname(rdev->bdev, b), 3350 mddev->max_disks); 3351 kick_rdev_from_array(rdev); 3352 continue; 3353 } 3354 if (rdev != freshest) 3355 if (super_types[mddev->major_version]. 3356 validate_super(mddev, rdev)) { 3357 printk(KERN_WARNING "md: kicking non-fresh %s" 3358 " from array!\n", 3359 bdevname(rdev->bdev,b)); 3360 kick_rdev_from_array(rdev); 3361 continue; 3362 } 3363 if (mddev->level == LEVEL_MULTIPATH) { 3364 rdev->desc_nr = i++; 3365 rdev->raid_disk = rdev->desc_nr; 3366 set_bit(In_sync, &rdev->flags); 3367 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3368 rdev->raid_disk = -1; 3369 clear_bit(In_sync, &rdev->flags); 3370 } 3371 } 3372 } 3373 3374 /* Read a fixed-point number. 3375 * Numbers in sysfs attributes should be in "standard" units where 3376 * possible, so time should be in seconds. 3377 * However we internally use a a much smaller unit such as 3378 * milliseconds or jiffies. 3379 * This function takes a decimal number with a possible fractional 3380 * component, and produces an integer which is the result of 3381 * multiplying that number by 10^'scale'. 3382 * all without any floating-point arithmetic. 3383 */ 3384 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3385 { 3386 unsigned long result = 0; 3387 long decimals = -1; 3388 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3389 if (*cp == '.') 3390 decimals = 0; 3391 else if (decimals < scale) { 3392 unsigned int value; 3393 value = *cp - '0'; 3394 result = result * 10 + value; 3395 if (decimals >= 0) 3396 decimals++; 3397 } 3398 cp++; 3399 } 3400 if (*cp == '\n') 3401 cp++; 3402 if (*cp) 3403 return -EINVAL; 3404 if (decimals < 0) 3405 decimals = 0; 3406 while (decimals < scale) { 3407 result *= 10; 3408 decimals ++; 3409 } 3410 *res = result; 3411 return 0; 3412 } 3413 3414 3415 static void md_safemode_timeout(unsigned long data); 3416 3417 static ssize_t 3418 safe_delay_show(struct mddev *mddev, char *page) 3419 { 3420 int msec = (mddev->safemode_delay*1000)/HZ; 3421 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3422 } 3423 static ssize_t 3424 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3425 { 3426 unsigned long msec; 3427 3428 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3429 return -EINVAL; 3430 if (msec == 0) 3431 mddev->safemode_delay = 0; 3432 else { 3433 unsigned long old_delay = mddev->safemode_delay; 3434 mddev->safemode_delay = (msec*HZ)/1000; 3435 if (mddev->safemode_delay == 0) 3436 mddev->safemode_delay = 1; 3437 if (mddev->safemode_delay < old_delay) 3438 md_safemode_timeout((unsigned long)mddev); 3439 } 3440 return len; 3441 } 3442 static struct md_sysfs_entry md_safe_delay = 3443 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3444 3445 static ssize_t 3446 level_show(struct mddev *mddev, char *page) 3447 { 3448 struct md_personality *p = mddev->pers; 3449 if (p) 3450 return sprintf(page, "%s\n", p->name); 3451 else if (mddev->clevel[0]) 3452 return sprintf(page, "%s\n", mddev->clevel); 3453 else if (mddev->level != LEVEL_NONE) 3454 return sprintf(page, "%d\n", mddev->level); 3455 else 3456 return 0; 3457 } 3458 3459 static ssize_t 3460 level_store(struct mddev *mddev, const char *buf, size_t len) 3461 { 3462 char clevel[16]; 3463 ssize_t rv = len; 3464 struct md_personality *pers; 3465 long level; 3466 void *priv; 3467 struct md_rdev *rdev; 3468 3469 if (mddev->pers == NULL) { 3470 if (len == 0) 3471 return 0; 3472 if (len >= sizeof(mddev->clevel)) 3473 return -ENOSPC; 3474 strncpy(mddev->clevel, buf, len); 3475 if (mddev->clevel[len-1] == '\n') 3476 len--; 3477 mddev->clevel[len] = 0; 3478 mddev->level = LEVEL_NONE; 3479 return rv; 3480 } 3481 3482 /* request to change the personality. Need to ensure: 3483 * - array is not engaged in resync/recovery/reshape 3484 * - old personality can be suspended 3485 * - new personality will access other array. 3486 */ 3487 3488 if (mddev->sync_thread || 3489 mddev->reshape_position != MaxSector || 3490 mddev->sysfs_active) 3491 return -EBUSY; 3492 3493 if (!mddev->pers->quiesce) { 3494 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3495 mdname(mddev), mddev->pers->name); 3496 return -EINVAL; 3497 } 3498 3499 /* Now find the new personality */ 3500 if (len == 0 || len >= sizeof(clevel)) 3501 return -EINVAL; 3502 strncpy(clevel, buf, len); 3503 if (clevel[len-1] == '\n') 3504 len--; 3505 clevel[len] = 0; 3506 if (strict_strtol(clevel, 10, &level)) 3507 level = LEVEL_NONE; 3508 3509 if (request_module("md-%s", clevel) != 0) 3510 request_module("md-level-%s", clevel); 3511 spin_lock(&pers_lock); 3512 pers = find_pers(level, clevel); 3513 if (!pers || !try_module_get(pers->owner)) { 3514 spin_unlock(&pers_lock); 3515 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3516 return -EINVAL; 3517 } 3518 spin_unlock(&pers_lock); 3519 3520 if (pers == mddev->pers) { 3521 /* Nothing to do! */ 3522 module_put(pers->owner); 3523 return rv; 3524 } 3525 if (!pers->takeover) { 3526 module_put(pers->owner); 3527 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3528 mdname(mddev), clevel); 3529 return -EINVAL; 3530 } 3531 3532 rdev_for_each(rdev, mddev) 3533 rdev->new_raid_disk = rdev->raid_disk; 3534 3535 /* ->takeover must set new_* and/or delta_disks 3536 * if it succeeds, and may set them when it fails. 3537 */ 3538 priv = pers->takeover(mddev); 3539 if (IS_ERR(priv)) { 3540 mddev->new_level = mddev->level; 3541 mddev->new_layout = mddev->layout; 3542 mddev->new_chunk_sectors = mddev->chunk_sectors; 3543 mddev->raid_disks -= mddev->delta_disks; 3544 mddev->delta_disks = 0; 3545 mddev->reshape_backwards = 0; 3546 module_put(pers->owner); 3547 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3548 mdname(mddev), clevel); 3549 return PTR_ERR(priv); 3550 } 3551 3552 /* Looks like we have a winner */ 3553 mddev_suspend(mddev); 3554 mddev->pers->stop(mddev); 3555 3556 if (mddev->pers->sync_request == NULL && 3557 pers->sync_request != NULL) { 3558 /* need to add the md_redundancy_group */ 3559 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3560 printk(KERN_WARNING 3561 "md: cannot register extra attributes for %s\n", 3562 mdname(mddev)); 3563 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3564 } 3565 if (mddev->pers->sync_request != NULL && 3566 pers->sync_request == NULL) { 3567 /* need to remove the md_redundancy_group */ 3568 if (mddev->to_remove == NULL) 3569 mddev->to_remove = &md_redundancy_group; 3570 } 3571 3572 if (mddev->pers->sync_request == NULL && 3573 mddev->external) { 3574 /* We are converting from a no-redundancy array 3575 * to a redundancy array and metadata is managed 3576 * externally so we need to be sure that writes 3577 * won't block due to a need to transition 3578 * clean->dirty 3579 * until external management is started. 3580 */ 3581 mddev->in_sync = 0; 3582 mddev->safemode_delay = 0; 3583 mddev->safemode = 0; 3584 } 3585 3586 rdev_for_each(rdev, mddev) { 3587 if (rdev->raid_disk < 0) 3588 continue; 3589 if (rdev->new_raid_disk >= mddev->raid_disks) 3590 rdev->new_raid_disk = -1; 3591 if (rdev->new_raid_disk == rdev->raid_disk) 3592 continue; 3593 sysfs_unlink_rdev(mddev, rdev); 3594 } 3595 rdev_for_each(rdev, mddev) { 3596 if (rdev->raid_disk < 0) 3597 continue; 3598 if (rdev->new_raid_disk == rdev->raid_disk) 3599 continue; 3600 rdev->raid_disk = rdev->new_raid_disk; 3601 if (rdev->raid_disk < 0) 3602 clear_bit(In_sync, &rdev->flags); 3603 else { 3604 if (sysfs_link_rdev(mddev, rdev)) 3605 printk(KERN_WARNING "md: cannot register rd%d" 3606 " for %s after level change\n", 3607 rdev->raid_disk, mdname(mddev)); 3608 } 3609 } 3610 3611 module_put(mddev->pers->owner); 3612 mddev->pers = pers; 3613 mddev->private = priv; 3614 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3615 mddev->level = mddev->new_level; 3616 mddev->layout = mddev->new_layout; 3617 mddev->chunk_sectors = mddev->new_chunk_sectors; 3618 mddev->delta_disks = 0; 3619 mddev->reshape_backwards = 0; 3620 mddev->degraded = 0; 3621 if (mddev->pers->sync_request == NULL) { 3622 /* this is now an array without redundancy, so 3623 * it must always be in_sync 3624 */ 3625 mddev->in_sync = 1; 3626 del_timer_sync(&mddev->safemode_timer); 3627 } 3628 pers->run(mddev); 3629 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3630 mddev_resume(mddev); 3631 sysfs_notify(&mddev->kobj, NULL, "level"); 3632 md_new_event(mddev); 3633 return rv; 3634 } 3635 3636 static struct md_sysfs_entry md_level = 3637 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3638 3639 3640 static ssize_t 3641 layout_show(struct mddev *mddev, char *page) 3642 { 3643 /* just a number, not meaningful for all levels */ 3644 if (mddev->reshape_position != MaxSector && 3645 mddev->layout != mddev->new_layout) 3646 return sprintf(page, "%d (%d)\n", 3647 mddev->new_layout, mddev->layout); 3648 return sprintf(page, "%d\n", mddev->layout); 3649 } 3650 3651 static ssize_t 3652 layout_store(struct mddev *mddev, const char *buf, size_t len) 3653 { 3654 char *e; 3655 unsigned long n = simple_strtoul(buf, &e, 10); 3656 3657 if (!*buf || (*e && *e != '\n')) 3658 return -EINVAL; 3659 3660 if (mddev->pers) { 3661 int err; 3662 if (mddev->pers->check_reshape == NULL) 3663 return -EBUSY; 3664 mddev->new_layout = n; 3665 err = mddev->pers->check_reshape(mddev); 3666 if (err) { 3667 mddev->new_layout = mddev->layout; 3668 return err; 3669 } 3670 } else { 3671 mddev->new_layout = n; 3672 if (mddev->reshape_position == MaxSector) 3673 mddev->layout = n; 3674 } 3675 return len; 3676 } 3677 static struct md_sysfs_entry md_layout = 3678 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3679 3680 3681 static ssize_t 3682 raid_disks_show(struct mddev *mddev, char *page) 3683 { 3684 if (mddev->raid_disks == 0) 3685 return 0; 3686 if (mddev->reshape_position != MaxSector && 3687 mddev->delta_disks != 0) 3688 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3689 mddev->raid_disks - mddev->delta_disks); 3690 return sprintf(page, "%d\n", mddev->raid_disks); 3691 } 3692 3693 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3694 3695 static ssize_t 3696 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3697 { 3698 char *e; 3699 int rv = 0; 3700 unsigned long n = simple_strtoul(buf, &e, 10); 3701 3702 if (!*buf || (*e && *e != '\n')) 3703 return -EINVAL; 3704 3705 if (mddev->pers) 3706 rv = update_raid_disks(mddev, n); 3707 else if (mddev->reshape_position != MaxSector) { 3708 struct md_rdev *rdev; 3709 int olddisks = mddev->raid_disks - mddev->delta_disks; 3710 3711 rdev_for_each(rdev, mddev) { 3712 if (olddisks < n && 3713 rdev->data_offset < rdev->new_data_offset) 3714 return -EINVAL; 3715 if (olddisks > n && 3716 rdev->data_offset > rdev->new_data_offset) 3717 return -EINVAL; 3718 } 3719 mddev->delta_disks = n - olddisks; 3720 mddev->raid_disks = n; 3721 mddev->reshape_backwards = (mddev->delta_disks < 0); 3722 } else 3723 mddev->raid_disks = n; 3724 return rv ? rv : len; 3725 } 3726 static struct md_sysfs_entry md_raid_disks = 3727 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3728 3729 static ssize_t 3730 chunk_size_show(struct mddev *mddev, char *page) 3731 { 3732 if (mddev->reshape_position != MaxSector && 3733 mddev->chunk_sectors != mddev->new_chunk_sectors) 3734 return sprintf(page, "%d (%d)\n", 3735 mddev->new_chunk_sectors << 9, 3736 mddev->chunk_sectors << 9); 3737 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3738 } 3739 3740 static ssize_t 3741 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3742 { 3743 char *e; 3744 unsigned long n = simple_strtoul(buf, &e, 10); 3745 3746 if (!*buf || (*e && *e != '\n')) 3747 return -EINVAL; 3748 3749 if (mddev->pers) { 3750 int err; 3751 if (mddev->pers->check_reshape == NULL) 3752 return -EBUSY; 3753 mddev->new_chunk_sectors = n >> 9; 3754 err = mddev->pers->check_reshape(mddev); 3755 if (err) { 3756 mddev->new_chunk_sectors = mddev->chunk_sectors; 3757 return err; 3758 } 3759 } else { 3760 mddev->new_chunk_sectors = n >> 9; 3761 if (mddev->reshape_position == MaxSector) 3762 mddev->chunk_sectors = n >> 9; 3763 } 3764 return len; 3765 } 3766 static struct md_sysfs_entry md_chunk_size = 3767 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3768 3769 static ssize_t 3770 resync_start_show(struct mddev *mddev, char *page) 3771 { 3772 if (mddev->recovery_cp == MaxSector) 3773 return sprintf(page, "none\n"); 3774 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3775 } 3776 3777 static ssize_t 3778 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3779 { 3780 char *e; 3781 unsigned long long n = simple_strtoull(buf, &e, 10); 3782 3783 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3784 return -EBUSY; 3785 if (cmd_match(buf, "none")) 3786 n = MaxSector; 3787 else if (!*buf || (*e && *e != '\n')) 3788 return -EINVAL; 3789 3790 mddev->recovery_cp = n; 3791 if (mddev->pers) 3792 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3793 return len; 3794 } 3795 static struct md_sysfs_entry md_resync_start = 3796 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3797 3798 /* 3799 * The array state can be: 3800 * 3801 * clear 3802 * No devices, no size, no level 3803 * Equivalent to STOP_ARRAY ioctl 3804 * inactive 3805 * May have some settings, but array is not active 3806 * all IO results in error 3807 * When written, doesn't tear down array, but just stops it 3808 * suspended (not supported yet) 3809 * All IO requests will block. The array can be reconfigured. 3810 * Writing this, if accepted, will block until array is quiescent 3811 * readonly 3812 * no resync can happen. no superblocks get written. 3813 * write requests fail 3814 * read-auto 3815 * like readonly, but behaves like 'clean' on a write request. 3816 * 3817 * clean - no pending writes, but otherwise active. 3818 * When written to inactive array, starts without resync 3819 * If a write request arrives then 3820 * if metadata is known, mark 'dirty' and switch to 'active'. 3821 * if not known, block and switch to write-pending 3822 * If written to an active array that has pending writes, then fails. 3823 * active 3824 * fully active: IO and resync can be happening. 3825 * When written to inactive array, starts with resync 3826 * 3827 * write-pending 3828 * clean, but writes are blocked waiting for 'active' to be written. 3829 * 3830 * active-idle 3831 * like active, but no writes have been seen for a while (100msec). 3832 * 3833 */ 3834 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3835 write_pending, active_idle, bad_word}; 3836 static char *array_states[] = { 3837 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3838 "write-pending", "active-idle", NULL }; 3839 3840 static int match_word(const char *word, char **list) 3841 { 3842 int n; 3843 for (n=0; list[n]; n++) 3844 if (cmd_match(word, list[n])) 3845 break; 3846 return n; 3847 } 3848 3849 static ssize_t 3850 array_state_show(struct mddev *mddev, char *page) 3851 { 3852 enum array_state st = inactive; 3853 3854 if (mddev->pers) 3855 switch(mddev->ro) { 3856 case 1: 3857 st = readonly; 3858 break; 3859 case 2: 3860 st = read_auto; 3861 break; 3862 case 0: 3863 if (mddev->in_sync) 3864 st = clean; 3865 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3866 st = write_pending; 3867 else if (mddev->safemode) 3868 st = active_idle; 3869 else 3870 st = active; 3871 } 3872 else { 3873 if (list_empty(&mddev->disks) && 3874 mddev->raid_disks == 0 && 3875 mddev->dev_sectors == 0) 3876 st = clear; 3877 else 3878 st = inactive; 3879 } 3880 return sprintf(page, "%s\n", array_states[st]); 3881 } 3882 3883 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev); 3884 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev); 3885 static int do_md_run(struct mddev * mddev); 3886 static int restart_array(struct mddev *mddev); 3887 3888 static ssize_t 3889 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3890 { 3891 int err = -EINVAL; 3892 enum array_state st = match_word(buf, array_states); 3893 switch(st) { 3894 case bad_word: 3895 break; 3896 case clear: 3897 /* stopping an active array */ 3898 err = do_md_stop(mddev, 0, NULL); 3899 break; 3900 case inactive: 3901 /* stopping an active array */ 3902 if (mddev->pers) 3903 err = do_md_stop(mddev, 2, NULL); 3904 else 3905 err = 0; /* already inactive */ 3906 break; 3907 case suspended: 3908 break; /* not supported yet */ 3909 case readonly: 3910 if (mddev->pers) 3911 err = md_set_readonly(mddev, NULL); 3912 else { 3913 mddev->ro = 1; 3914 set_disk_ro(mddev->gendisk, 1); 3915 err = do_md_run(mddev); 3916 } 3917 break; 3918 case read_auto: 3919 if (mddev->pers) { 3920 if (mddev->ro == 0) 3921 err = md_set_readonly(mddev, NULL); 3922 else if (mddev->ro == 1) 3923 err = restart_array(mddev); 3924 if (err == 0) { 3925 mddev->ro = 2; 3926 set_disk_ro(mddev->gendisk, 0); 3927 } 3928 } else { 3929 mddev->ro = 2; 3930 err = do_md_run(mddev); 3931 } 3932 break; 3933 case clean: 3934 if (mddev->pers) { 3935 restart_array(mddev); 3936 spin_lock_irq(&mddev->write_lock); 3937 if (atomic_read(&mddev->writes_pending) == 0) { 3938 if (mddev->in_sync == 0) { 3939 mddev->in_sync = 1; 3940 if (mddev->safemode == 1) 3941 mddev->safemode = 0; 3942 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3943 } 3944 err = 0; 3945 } else 3946 err = -EBUSY; 3947 spin_unlock_irq(&mddev->write_lock); 3948 } else 3949 err = -EINVAL; 3950 break; 3951 case active: 3952 if (mddev->pers) { 3953 restart_array(mddev); 3954 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3955 wake_up(&mddev->sb_wait); 3956 err = 0; 3957 } else { 3958 mddev->ro = 0; 3959 set_disk_ro(mddev->gendisk, 0); 3960 err = do_md_run(mddev); 3961 } 3962 break; 3963 case write_pending: 3964 case active_idle: 3965 /* these cannot be set */ 3966 break; 3967 } 3968 if (err) 3969 return err; 3970 else { 3971 if (mddev->hold_active == UNTIL_IOCTL) 3972 mddev->hold_active = 0; 3973 sysfs_notify_dirent_safe(mddev->sysfs_state); 3974 return len; 3975 } 3976 } 3977 static struct md_sysfs_entry md_array_state = 3978 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3979 3980 static ssize_t 3981 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3982 return sprintf(page, "%d\n", 3983 atomic_read(&mddev->max_corr_read_errors)); 3984 } 3985 3986 static ssize_t 3987 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3988 { 3989 char *e; 3990 unsigned long n = simple_strtoul(buf, &e, 10); 3991 3992 if (*buf && (*e == 0 || *e == '\n')) { 3993 atomic_set(&mddev->max_corr_read_errors, n); 3994 return len; 3995 } 3996 return -EINVAL; 3997 } 3998 3999 static struct md_sysfs_entry max_corr_read_errors = 4000 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4001 max_corrected_read_errors_store); 4002 4003 static ssize_t 4004 null_show(struct mddev *mddev, char *page) 4005 { 4006 return -EINVAL; 4007 } 4008 4009 static ssize_t 4010 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4011 { 4012 /* buf must be %d:%d\n? giving major and minor numbers */ 4013 /* The new device is added to the array. 4014 * If the array has a persistent superblock, we read the 4015 * superblock to initialise info and check validity. 4016 * Otherwise, only checking done is that in bind_rdev_to_array, 4017 * which mainly checks size. 4018 */ 4019 char *e; 4020 int major = simple_strtoul(buf, &e, 10); 4021 int minor; 4022 dev_t dev; 4023 struct md_rdev *rdev; 4024 int err; 4025 4026 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4027 return -EINVAL; 4028 minor = simple_strtoul(e+1, &e, 10); 4029 if (*e && *e != '\n') 4030 return -EINVAL; 4031 dev = MKDEV(major, minor); 4032 if (major != MAJOR(dev) || 4033 minor != MINOR(dev)) 4034 return -EOVERFLOW; 4035 4036 4037 if (mddev->persistent) { 4038 rdev = md_import_device(dev, mddev->major_version, 4039 mddev->minor_version); 4040 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4041 struct md_rdev *rdev0 4042 = list_entry(mddev->disks.next, 4043 struct md_rdev, same_set); 4044 err = super_types[mddev->major_version] 4045 .load_super(rdev, rdev0, mddev->minor_version); 4046 if (err < 0) 4047 goto out; 4048 } 4049 } else if (mddev->external) 4050 rdev = md_import_device(dev, -2, -1); 4051 else 4052 rdev = md_import_device(dev, -1, -1); 4053 4054 if (IS_ERR(rdev)) 4055 return PTR_ERR(rdev); 4056 err = bind_rdev_to_array(rdev, mddev); 4057 out: 4058 if (err) 4059 export_rdev(rdev); 4060 return err ? err : len; 4061 } 4062 4063 static struct md_sysfs_entry md_new_device = 4064 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4065 4066 static ssize_t 4067 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4068 { 4069 char *end; 4070 unsigned long chunk, end_chunk; 4071 4072 if (!mddev->bitmap) 4073 goto out; 4074 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4075 while (*buf) { 4076 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4077 if (buf == end) break; 4078 if (*end == '-') { /* range */ 4079 buf = end + 1; 4080 end_chunk = simple_strtoul(buf, &end, 0); 4081 if (buf == end) break; 4082 } 4083 if (*end && !isspace(*end)) break; 4084 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4085 buf = skip_spaces(end); 4086 } 4087 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4088 out: 4089 return len; 4090 } 4091 4092 static struct md_sysfs_entry md_bitmap = 4093 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4094 4095 static ssize_t 4096 size_show(struct mddev *mddev, char *page) 4097 { 4098 return sprintf(page, "%llu\n", 4099 (unsigned long long)mddev->dev_sectors / 2); 4100 } 4101 4102 static int update_size(struct mddev *mddev, sector_t num_sectors); 4103 4104 static ssize_t 4105 size_store(struct mddev *mddev, const char *buf, size_t len) 4106 { 4107 /* If array is inactive, we can reduce the component size, but 4108 * not increase it (except from 0). 4109 * If array is active, we can try an on-line resize 4110 */ 4111 sector_t sectors; 4112 int err = strict_blocks_to_sectors(buf, §ors); 4113 4114 if (err < 0) 4115 return err; 4116 if (mddev->pers) { 4117 err = update_size(mddev, sectors); 4118 md_update_sb(mddev, 1); 4119 } else { 4120 if (mddev->dev_sectors == 0 || 4121 mddev->dev_sectors > sectors) 4122 mddev->dev_sectors = sectors; 4123 else 4124 err = -ENOSPC; 4125 } 4126 return err ? err : len; 4127 } 4128 4129 static struct md_sysfs_entry md_size = 4130 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4131 4132 4133 /* Metadata version. 4134 * This is one of 4135 * 'none' for arrays with no metadata (good luck...) 4136 * 'external' for arrays with externally managed metadata, 4137 * or N.M for internally known formats 4138 */ 4139 static ssize_t 4140 metadata_show(struct mddev *mddev, char *page) 4141 { 4142 if (mddev->persistent) 4143 return sprintf(page, "%d.%d\n", 4144 mddev->major_version, mddev->minor_version); 4145 else if (mddev->external) 4146 return sprintf(page, "external:%s\n", mddev->metadata_type); 4147 else 4148 return sprintf(page, "none\n"); 4149 } 4150 4151 static ssize_t 4152 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4153 { 4154 int major, minor; 4155 char *e; 4156 /* Changing the details of 'external' metadata is 4157 * always permitted. Otherwise there must be 4158 * no devices attached to the array. 4159 */ 4160 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4161 ; 4162 else if (!list_empty(&mddev->disks)) 4163 return -EBUSY; 4164 4165 if (cmd_match(buf, "none")) { 4166 mddev->persistent = 0; 4167 mddev->external = 0; 4168 mddev->major_version = 0; 4169 mddev->minor_version = 90; 4170 return len; 4171 } 4172 if (strncmp(buf, "external:", 9) == 0) { 4173 size_t namelen = len-9; 4174 if (namelen >= sizeof(mddev->metadata_type)) 4175 namelen = sizeof(mddev->metadata_type)-1; 4176 strncpy(mddev->metadata_type, buf+9, namelen); 4177 mddev->metadata_type[namelen] = 0; 4178 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4179 mddev->metadata_type[--namelen] = 0; 4180 mddev->persistent = 0; 4181 mddev->external = 1; 4182 mddev->major_version = 0; 4183 mddev->minor_version = 90; 4184 return len; 4185 } 4186 major = simple_strtoul(buf, &e, 10); 4187 if (e==buf || *e != '.') 4188 return -EINVAL; 4189 buf = e+1; 4190 minor = simple_strtoul(buf, &e, 10); 4191 if (e==buf || (*e && *e != '\n') ) 4192 return -EINVAL; 4193 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4194 return -ENOENT; 4195 mddev->major_version = major; 4196 mddev->minor_version = minor; 4197 mddev->persistent = 1; 4198 mddev->external = 0; 4199 return len; 4200 } 4201 4202 static struct md_sysfs_entry md_metadata = 4203 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4204 4205 static ssize_t 4206 action_show(struct mddev *mddev, char *page) 4207 { 4208 char *type = "idle"; 4209 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4210 type = "frozen"; 4211 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4212 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4213 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4214 type = "reshape"; 4215 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4216 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4217 type = "resync"; 4218 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4219 type = "check"; 4220 else 4221 type = "repair"; 4222 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4223 type = "recover"; 4224 } 4225 return sprintf(page, "%s\n", type); 4226 } 4227 4228 static void reap_sync_thread(struct mddev *mddev); 4229 4230 static ssize_t 4231 action_store(struct mddev *mddev, const char *page, size_t len) 4232 { 4233 if (!mddev->pers || !mddev->pers->sync_request) 4234 return -EINVAL; 4235 4236 if (cmd_match(page, "frozen")) 4237 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4238 else 4239 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4240 4241 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4242 if (mddev->sync_thread) { 4243 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4244 reap_sync_thread(mddev); 4245 } 4246 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4247 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4248 return -EBUSY; 4249 else if (cmd_match(page, "resync")) 4250 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4251 else if (cmd_match(page, "recover")) { 4252 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4253 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4254 } else if (cmd_match(page, "reshape")) { 4255 int err; 4256 if (mddev->pers->start_reshape == NULL) 4257 return -EINVAL; 4258 err = mddev->pers->start_reshape(mddev); 4259 if (err) 4260 return err; 4261 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4262 } else { 4263 if (cmd_match(page, "check")) 4264 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4265 else if (!cmd_match(page, "repair")) 4266 return -EINVAL; 4267 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4268 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4269 } 4270 if (mddev->ro == 2) { 4271 /* A write to sync_action is enough to justify 4272 * canceling read-auto mode 4273 */ 4274 mddev->ro = 0; 4275 md_wakeup_thread(mddev->sync_thread); 4276 } 4277 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4278 md_wakeup_thread(mddev->thread); 4279 sysfs_notify_dirent_safe(mddev->sysfs_action); 4280 return len; 4281 } 4282 4283 static ssize_t 4284 mismatch_cnt_show(struct mddev *mddev, char *page) 4285 { 4286 return sprintf(page, "%llu\n", 4287 (unsigned long long) 4288 atomic64_read(&mddev->resync_mismatches)); 4289 } 4290 4291 static struct md_sysfs_entry md_scan_mode = 4292 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4293 4294 4295 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4296 4297 static ssize_t 4298 sync_min_show(struct mddev *mddev, char *page) 4299 { 4300 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4301 mddev->sync_speed_min ? "local": "system"); 4302 } 4303 4304 static ssize_t 4305 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4306 { 4307 int min; 4308 char *e; 4309 if (strncmp(buf, "system", 6)==0) { 4310 mddev->sync_speed_min = 0; 4311 return len; 4312 } 4313 min = simple_strtoul(buf, &e, 10); 4314 if (buf == e || (*e && *e != '\n') || min <= 0) 4315 return -EINVAL; 4316 mddev->sync_speed_min = min; 4317 return len; 4318 } 4319 4320 static struct md_sysfs_entry md_sync_min = 4321 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4322 4323 static ssize_t 4324 sync_max_show(struct mddev *mddev, char *page) 4325 { 4326 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4327 mddev->sync_speed_max ? "local": "system"); 4328 } 4329 4330 static ssize_t 4331 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4332 { 4333 int max; 4334 char *e; 4335 if (strncmp(buf, "system", 6)==0) { 4336 mddev->sync_speed_max = 0; 4337 return len; 4338 } 4339 max = simple_strtoul(buf, &e, 10); 4340 if (buf == e || (*e && *e != '\n') || max <= 0) 4341 return -EINVAL; 4342 mddev->sync_speed_max = max; 4343 return len; 4344 } 4345 4346 static struct md_sysfs_entry md_sync_max = 4347 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4348 4349 static ssize_t 4350 degraded_show(struct mddev *mddev, char *page) 4351 { 4352 return sprintf(page, "%d\n", mddev->degraded); 4353 } 4354 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4355 4356 static ssize_t 4357 sync_force_parallel_show(struct mddev *mddev, char *page) 4358 { 4359 return sprintf(page, "%d\n", mddev->parallel_resync); 4360 } 4361 4362 static ssize_t 4363 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4364 { 4365 long n; 4366 4367 if (strict_strtol(buf, 10, &n)) 4368 return -EINVAL; 4369 4370 if (n != 0 && n != 1) 4371 return -EINVAL; 4372 4373 mddev->parallel_resync = n; 4374 4375 if (mddev->sync_thread) 4376 wake_up(&resync_wait); 4377 4378 return len; 4379 } 4380 4381 /* force parallel resync, even with shared block devices */ 4382 static struct md_sysfs_entry md_sync_force_parallel = 4383 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4384 sync_force_parallel_show, sync_force_parallel_store); 4385 4386 static ssize_t 4387 sync_speed_show(struct mddev *mddev, char *page) 4388 { 4389 unsigned long resync, dt, db; 4390 if (mddev->curr_resync == 0) 4391 return sprintf(page, "none\n"); 4392 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4393 dt = (jiffies - mddev->resync_mark) / HZ; 4394 if (!dt) dt++; 4395 db = resync - mddev->resync_mark_cnt; 4396 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4397 } 4398 4399 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4400 4401 static ssize_t 4402 sync_completed_show(struct mddev *mddev, char *page) 4403 { 4404 unsigned long long max_sectors, resync; 4405 4406 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4407 return sprintf(page, "none\n"); 4408 4409 if (mddev->curr_resync == 1 || 4410 mddev->curr_resync == 2) 4411 return sprintf(page, "delayed\n"); 4412 4413 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4414 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4415 max_sectors = mddev->resync_max_sectors; 4416 else 4417 max_sectors = mddev->dev_sectors; 4418 4419 resync = mddev->curr_resync_completed; 4420 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4421 } 4422 4423 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4424 4425 static ssize_t 4426 min_sync_show(struct mddev *mddev, char *page) 4427 { 4428 return sprintf(page, "%llu\n", 4429 (unsigned long long)mddev->resync_min); 4430 } 4431 static ssize_t 4432 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4433 { 4434 unsigned long long min; 4435 if (strict_strtoull(buf, 10, &min)) 4436 return -EINVAL; 4437 if (min > mddev->resync_max) 4438 return -EINVAL; 4439 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4440 return -EBUSY; 4441 4442 /* Must be a multiple of chunk_size */ 4443 if (mddev->chunk_sectors) { 4444 sector_t temp = min; 4445 if (sector_div(temp, mddev->chunk_sectors)) 4446 return -EINVAL; 4447 } 4448 mddev->resync_min = min; 4449 4450 return len; 4451 } 4452 4453 static struct md_sysfs_entry md_min_sync = 4454 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4455 4456 static ssize_t 4457 max_sync_show(struct mddev *mddev, char *page) 4458 { 4459 if (mddev->resync_max == MaxSector) 4460 return sprintf(page, "max\n"); 4461 else 4462 return sprintf(page, "%llu\n", 4463 (unsigned long long)mddev->resync_max); 4464 } 4465 static ssize_t 4466 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4467 { 4468 if (strncmp(buf, "max", 3) == 0) 4469 mddev->resync_max = MaxSector; 4470 else { 4471 unsigned long long max; 4472 if (strict_strtoull(buf, 10, &max)) 4473 return -EINVAL; 4474 if (max < mddev->resync_min) 4475 return -EINVAL; 4476 if (max < mddev->resync_max && 4477 mddev->ro == 0 && 4478 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4479 return -EBUSY; 4480 4481 /* Must be a multiple of chunk_size */ 4482 if (mddev->chunk_sectors) { 4483 sector_t temp = max; 4484 if (sector_div(temp, mddev->chunk_sectors)) 4485 return -EINVAL; 4486 } 4487 mddev->resync_max = max; 4488 } 4489 wake_up(&mddev->recovery_wait); 4490 return len; 4491 } 4492 4493 static struct md_sysfs_entry md_max_sync = 4494 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4495 4496 static ssize_t 4497 suspend_lo_show(struct mddev *mddev, char *page) 4498 { 4499 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4500 } 4501 4502 static ssize_t 4503 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4504 { 4505 char *e; 4506 unsigned long long new = simple_strtoull(buf, &e, 10); 4507 unsigned long long old = mddev->suspend_lo; 4508 4509 if (mddev->pers == NULL || 4510 mddev->pers->quiesce == NULL) 4511 return -EINVAL; 4512 if (buf == e || (*e && *e != '\n')) 4513 return -EINVAL; 4514 4515 mddev->suspend_lo = new; 4516 if (new >= old) 4517 /* Shrinking suspended region */ 4518 mddev->pers->quiesce(mddev, 2); 4519 else { 4520 /* Expanding suspended region - need to wait */ 4521 mddev->pers->quiesce(mddev, 1); 4522 mddev->pers->quiesce(mddev, 0); 4523 } 4524 return len; 4525 } 4526 static struct md_sysfs_entry md_suspend_lo = 4527 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4528 4529 4530 static ssize_t 4531 suspend_hi_show(struct mddev *mddev, char *page) 4532 { 4533 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4534 } 4535 4536 static ssize_t 4537 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4538 { 4539 char *e; 4540 unsigned long long new = simple_strtoull(buf, &e, 10); 4541 unsigned long long old = mddev->suspend_hi; 4542 4543 if (mddev->pers == NULL || 4544 mddev->pers->quiesce == NULL) 4545 return -EINVAL; 4546 if (buf == e || (*e && *e != '\n')) 4547 return -EINVAL; 4548 4549 mddev->suspend_hi = new; 4550 if (new <= old) 4551 /* Shrinking suspended region */ 4552 mddev->pers->quiesce(mddev, 2); 4553 else { 4554 /* Expanding suspended region - need to wait */ 4555 mddev->pers->quiesce(mddev, 1); 4556 mddev->pers->quiesce(mddev, 0); 4557 } 4558 return len; 4559 } 4560 static struct md_sysfs_entry md_suspend_hi = 4561 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4562 4563 static ssize_t 4564 reshape_position_show(struct mddev *mddev, char *page) 4565 { 4566 if (mddev->reshape_position != MaxSector) 4567 return sprintf(page, "%llu\n", 4568 (unsigned long long)mddev->reshape_position); 4569 strcpy(page, "none\n"); 4570 return 5; 4571 } 4572 4573 static ssize_t 4574 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4575 { 4576 struct md_rdev *rdev; 4577 char *e; 4578 unsigned long long new = simple_strtoull(buf, &e, 10); 4579 if (mddev->pers) 4580 return -EBUSY; 4581 if (buf == e || (*e && *e != '\n')) 4582 return -EINVAL; 4583 mddev->reshape_position = new; 4584 mddev->delta_disks = 0; 4585 mddev->reshape_backwards = 0; 4586 mddev->new_level = mddev->level; 4587 mddev->new_layout = mddev->layout; 4588 mddev->new_chunk_sectors = mddev->chunk_sectors; 4589 rdev_for_each(rdev, mddev) 4590 rdev->new_data_offset = rdev->data_offset; 4591 return len; 4592 } 4593 4594 static struct md_sysfs_entry md_reshape_position = 4595 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4596 reshape_position_store); 4597 4598 static ssize_t 4599 reshape_direction_show(struct mddev *mddev, char *page) 4600 { 4601 return sprintf(page, "%s\n", 4602 mddev->reshape_backwards ? "backwards" : "forwards"); 4603 } 4604 4605 static ssize_t 4606 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4607 { 4608 int backwards = 0; 4609 if (cmd_match(buf, "forwards")) 4610 backwards = 0; 4611 else if (cmd_match(buf, "backwards")) 4612 backwards = 1; 4613 else 4614 return -EINVAL; 4615 if (mddev->reshape_backwards == backwards) 4616 return len; 4617 4618 /* check if we are allowed to change */ 4619 if (mddev->delta_disks) 4620 return -EBUSY; 4621 4622 if (mddev->persistent && 4623 mddev->major_version == 0) 4624 return -EINVAL; 4625 4626 mddev->reshape_backwards = backwards; 4627 return len; 4628 } 4629 4630 static struct md_sysfs_entry md_reshape_direction = 4631 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4632 reshape_direction_store); 4633 4634 static ssize_t 4635 array_size_show(struct mddev *mddev, char *page) 4636 { 4637 if (mddev->external_size) 4638 return sprintf(page, "%llu\n", 4639 (unsigned long long)mddev->array_sectors/2); 4640 else 4641 return sprintf(page, "default\n"); 4642 } 4643 4644 static ssize_t 4645 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4646 { 4647 sector_t sectors; 4648 4649 if (strncmp(buf, "default", 7) == 0) { 4650 if (mddev->pers) 4651 sectors = mddev->pers->size(mddev, 0, 0); 4652 else 4653 sectors = mddev->array_sectors; 4654 4655 mddev->external_size = 0; 4656 } else { 4657 if (strict_blocks_to_sectors(buf, §ors) < 0) 4658 return -EINVAL; 4659 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4660 return -E2BIG; 4661 4662 mddev->external_size = 1; 4663 } 4664 4665 mddev->array_sectors = sectors; 4666 if (mddev->pers) { 4667 set_capacity(mddev->gendisk, mddev->array_sectors); 4668 revalidate_disk(mddev->gendisk); 4669 } 4670 return len; 4671 } 4672 4673 static struct md_sysfs_entry md_array_size = 4674 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4675 array_size_store); 4676 4677 static struct attribute *md_default_attrs[] = { 4678 &md_level.attr, 4679 &md_layout.attr, 4680 &md_raid_disks.attr, 4681 &md_chunk_size.attr, 4682 &md_size.attr, 4683 &md_resync_start.attr, 4684 &md_metadata.attr, 4685 &md_new_device.attr, 4686 &md_safe_delay.attr, 4687 &md_array_state.attr, 4688 &md_reshape_position.attr, 4689 &md_reshape_direction.attr, 4690 &md_array_size.attr, 4691 &max_corr_read_errors.attr, 4692 NULL, 4693 }; 4694 4695 static struct attribute *md_redundancy_attrs[] = { 4696 &md_scan_mode.attr, 4697 &md_mismatches.attr, 4698 &md_sync_min.attr, 4699 &md_sync_max.attr, 4700 &md_sync_speed.attr, 4701 &md_sync_force_parallel.attr, 4702 &md_sync_completed.attr, 4703 &md_min_sync.attr, 4704 &md_max_sync.attr, 4705 &md_suspend_lo.attr, 4706 &md_suspend_hi.attr, 4707 &md_bitmap.attr, 4708 &md_degraded.attr, 4709 NULL, 4710 }; 4711 static struct attribute_group md_redundancy_group = { 4712 .name = NULL, 4713 .attrs = md_redundancy_attrs, 4714 }; 4715 4716 4717 static ssize_t 4718 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4719 { 4720 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4721 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4722 ssize_t rv; 4723 4724 if (!entry->show) 4725 return -EIO; 4726 spin_lock(&all_mddevs_lock); 4727 if (list_empty(&mddev->all_mddevs)) { 4728 spin_unlock(&all_mddevs_lock); 4729 return -EBUSY; 4730 } 4731 mddev_get(mddev); 4732 spin_unlock(&all_mddevs_lock); 4733 4734 rv = mddev_lock(mddev); 4735 if (!rv) { 4736 rv = entry->show(mddev, page); 4737 mddev_unlock(mddev); 4738 } 4739 mddev_put(mddev); 4740 return rv; 4741 } 4742 4743 static ssize_t 4744 md_attr_store(struct kobject *kobj, struct attribute *attr, 4745 const char *page, size_t length) 4746 { 4747 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4748 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4749 ssize_t rv; 4750 4751 if (!entry->store) 4752 return -EIO; 4753 if (!capable(CAP_SYS_ADMIN)) 4754 return -EACCES; 4755 spin_lock(&all_mddevs_lock); 4756 if (list_empty(&mddev->all_mddevs)) { 4757 spin_unlock(&all_mddevs_lock); 4758 return -EBUSY; 4759 } 4760 mddev_get(mddev); 4761 spin_unlock(&all_mddevs_lock); 4762 if (entry->store == new_dev_store) 4763 flush_workqueue(md_misc_wq); 4764 rv = mddev_lock(mddev); 4765 if (!rv) { 4766 rv = entry->store(mddev, page, length); 4767 mddev_unlock(mddev); 4768 } 4769 mddev_put(mddev); 4770 return rv; 4771 } 4772 4773 static void md_free(struct kobject *ko) 4774 { 4775 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4776 4777 if (mddev->sysfs_state) 4778 sysfs_put(mddev->sysfs_state); 4779 4780 if (mddev->gendisk) { 4781 del_gendisk(mddev->gendisk); 4782 put_disk(mddev->gendisk); 4783 } 4784 if (mddev->queue) 4785 blk_cleanup_queue(mddev->queue); 4786 4787 kfree(mddev); 4788 } 4789 4790 static const struct sysfs_ops md_sysfs_ops = { 4791 .show = md_attr_show, 4792 .store = md_attr_store, 4793 }; 4794 static struct kobj_type md_ktype = { 4795 .release = md_free, 4796 .sysfs_ops = &md_sysfs_ops, 4797 .default_attrs = md_default_attrs, 4798 }; 4799 4800 int mdp_major = 0; 4801 4802 static void mddev_delayed_delete(struct work_struct *ws) 4803 { 4804 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4805 4806 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4807 kobject_del(&mddev->kobj); 4808 kobject_put(&mddev->kobj); 4809 } 4810 4811 static int md_alloc(dev_t dev, char *name) 4812 { 4813 static DEFINE_MUTEX(disks_mutex); 4814 struct mddev *mddev = mddev_find(dev); 4815 struct gendisk *disk; 4816 int partitioned; 4817 int shift; 4818 int unit; 4819 int error; 4820 4821 if (!mddev) 4822 return -ENODEV; 4823 4824 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4825 shift = partitioned ? MdpMinorShift : 0; 4826 unit = MINOR(mddev->unit) >> shift; 4827 4828 /* wait for any previous instance of this device to be 4829 * completely removed (mddev_delayed_delete). 4830 */ 4831 flush_workqueue(md_misc_wq); 4832 4833 mutex_lock(&disks_mutex); 4834 error = -EEXIST; 4835 if (mddev->gendisk) 4836 goto abort; 4837 4838 if (name) { 4839 /* Need to ensure that 'name' is not a duplicate. 4840 */ 4841 struct mddev *mddev2; 4842 spin_lock(&all_mddevs_lock); 4843 4844 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4845 if (mddev2->gendisk && 4846 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4847 spin_unlock(&all_mddevs_lock); 4848 goto abort; 4849 } 4850 spin_unlock(&all_mddevs_lock); 4851 } 4852 4853 error = -ENOMEM; 4854 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4855 if (!mddev->queue) 4856 goto abort; 4857 mddev->queue->queuedata = mddev; 4858 4859 blk_queue_make_request(mddev->queue, md_make_request); 4860 blk_set_stacking_limits(&mddev->queue->limits); 4861 4862 disk = alloc_disk(1 << shift); 4863 if (!disk) { 4864 blk_cleanup_queue(mddev->queue); 4865 mddev->queue = NULL; 4866 goto abort; 4867 } 4868 disk->major = MAJOR(mddev->unit); 4869 disk->first_minor = unit << shift; 4870 if (name) 4871 strcpy(disk->disk_name, name); 4872 else if (partitioned) 4873 sprintf(disk->disk_name, "md_d%d", unit); 4874 else 4875 sprintf(disk->disk_name, "md%d", unit); 4876 disk->fops = &md_fops; 4877 disk->private_data = mddev; 4878 disk->queue = mddev->queue; 4879 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4880 /* Allow extended partitions. This makes the 4881 * 'mdp' device redundant, but we can't really 4882 * remove it now. 4883 */ 4884 disk->flags |= GENHD_FL_EXT_DEVT; 4885 mddev->gendisk = disk; 4886 /* As soon as we call add_disk(), another thread could get 4887 * through to md_open, so make sure it doesn't get too far 4888 */ 4889 mutex_lock(&mddev->open_mutex); 4890 add_disk(disk); 4891 4892 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4893 &disk_to_dev(disk)->kobj, "%s", "md"); 4894 if (error) { 4895 /* This isn't possible, but as kobject_init_and_add is marked 4896 * __must_check, we must do something with the result 4897 */ 4898 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4899 disk->disk_name); 4900 error = 0; 4901 } 4902 if (mddev->kobj.sd && 4903 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4904 printk(KERN_DEBUG "pointless warning\n"); 4905 mutex_unlock(&mddev->open_mutex); 4906 abort: 4907 mutex_unlock(&disks_mutex); 4908 if (!error && mddev->kobj.sd) { 4909 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4910 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4911 } 4912 mddev_put(mddev); 4913 return error; 4914 } 4915 4916 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4917 { 4918 md_alloc(dev, NULL); 4919 return NULL; 4920 } 4921 4922 static int add_named_array(const char *val, struct kernel_param *kp) 4923 { 4924 /* val must be "md_*" where * is not all digits. 4925 * We allocate an array with a large free minor number, and 4926 * set the name to val. val must not already be an active name. 4927 */ 4928 int len = strlen(val); 4929 char buf[DISK_NAME_LEN]; 4930 4931 while (len && val[len-1] == '\n') 4932 len--; 4933 if (len >= DISK_NAME_LEN) 4934 return -E2BIG; 4935 strlcpy(buf, val, len+1); 4936 if (strncmp(buf, "md_", 3) != 0) 4937 return -EINVAL; 4938 return md_alloc(0, buf); 4939 } 4940 4941 static void md_safemode_timeout(unsigned long data) 4942 { 4943 struct mddev *mddev = (struct mddev *) data; 4944 4945 if (!atomic_read(&mddev->writes_pending)) { 4946 mddev->safemode = 1; 4947 if (mddev->external) 4948 sysfs_notify_dirent_safe(mddev->sysfs_state); 4949 } 4950 md_wakeup_thread(mddev->thread); 4951 } 4952 4953 static int start_dirty_degraded; 4954 4955 int md_run(struct mddev *mddev) 4956 { 4957 int err; 4958 struct md_rdev *rdev; 4959 struct md_personality *pers; 4960 4961 if (list_empty(&mddev->disks)) 4962 /* cannot run an array with no devices.. */ 4963 return -EINVAL; 4964 4965 if (mddev->pers) 4966 return -EBUSY; 4967 /* Cannot run until previous stop completes properly */ 4968 if (mddev->sysfs_active) 4969 return -EBUSY; 4970 4971 /* 4972 * Analyze all RAID superblock(s) 4973 */ 4974 if (!mddev->raid_disks) { 4975 if (!mddev->persistent) 4976 return -EINVAL; 4977 analyze_sbs(mddev); 4978 } 4979 4980 if (mddev->level != LEVEL_NONE) 4981 request_module("md-level-%d", mddev->level); 4982 else if (mddev->clevel[0]) 4983 request_module("md-%s", mddev->clevel); 4984 4985 /* 4986 * Drop all container device buffers, from now on 4987 * the only valid external interface is through the md 4988 * device. 4989 */ 4990 rdev_for_each(rdev, mddev) { 4991 if (test_bit(Faulty, &rdev->flags)) 4992 continue; 4993 sync_blockdev(rdev->bdev); 4994 invalidate_bdev(rdev->bdev); 4995 4996 /* perform some consistency tests on the device. 4997 * We don't want the data to overlap the metadata, 4998 * Internal Bitmap issues have been handled elsewhere. 4999 */ 5000 if (rdev->meta_bdev) { 5001 /* Nothing to check */; 5002 } else if (rdev->data_offset < rdev->sb_start) { 5003 if (mddev->dev_sectors && 5004 rdev->data_offset + mddev->dev_sectors 5005 > rdev->sb_start) { 5006 printk("md: %s: data overlaps metadata\n", 5007 mdname(mddev)); 5008 return -EINVAL; 5009 } 5010 } else { 5011 if (rdev->sb_start + rdev->sb_size/512 5012 > rdev->data_offset) { 5013 printk("md: %s: metadata overlaps data\n", 5014 mdname(mddev)); 5015 return -EINVAL; 5016 } 5017 } 5018 sysfs_notify_dirent_safe(rdev->sysfs_state); 5019 } 5020 5021 if (mddev->bio_set == NULL) 5022 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 5023 5024 spin_lock(&pers_lock); 5025 pers = find_pers(mddev->level, mddev->clevel); 5026 if (!pers || !try_module_get(pers->owner)) { 5027 spin_unlock(&pers_lock); 5028 if (mddev->level != LEVEL_NONE) 5029 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5030 mddev->level); 5031 else 5032 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5033 mddev->clevel); 5034 return -EINVAL; 5035 } 5036 mddev->pers = pers; 5037 spin_unlock(&pers_lock); 5038 if (mddev->level != pers->level) { 5039 mddev->level = pers->level; 5040 mddev->new_level = pers->level; 5041 } 5042 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5043 5044 if (mddev->reshape_position != MaxSector && 5045 pers->start_reshape == NULL) { 5046 /* This personality cannot handle reshaping... */ 5047 mddev->pers = NULL; 5048 module_put(pers->owner); 5049 return -EINVAL; 5050 } 5051 5052 if (pers->sync_request) { 5053 /* Warn if this is a potentially silly 5054 * configuration. 5055 */ 5056 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5057 struct md_rdev *rdev2; 5058 int warned = 0; 5059 5060 rdev_for_each(rdev, mddev) 5061 rdev_for_each(rdev2, mddev) { 5062 if (rdev < rdev2 && 5063 rdev->bdev->bd_contains == 5064 rdev2->bdev->bd_contains) { 5065 printk(KERN_WARNING 5066 "%s: WARNING: %s appears to be" 5067 " on the same physical disk as" 5068 " %s.\n", 5069 mdname(mddev), 5070 bdevname(rdev->bdev,b), 5071 bdevname(rdev2->bdev,b2)); 5072 warned = 1; 5073 } 5074 } 5075 5076 if (warned) 5077 printk(KERN_WARNING 5078 "True protection against single-disk" 5079 " failure might be compromised.\n"); 5080 } 5081 5082 mddev->recovery = 0; 5083 /* may be over-ridden by personality */ 5084 mddev->resync_max_sectors = mddev->dev_sectors; 5085 5086 mddev->ok_start_degraded = start_dirty_degraded; 5087 5088 if (start_readonly && mddev->ro == 0) 5089 mddev->ro = 2; /* read-only, but switch on first write */ 5090 5091 err = mddev->pers->run(mddev); 5092 if (err) 5093 printk(KERN_ERR "md: pers->run() failed ...\n"); 5094 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5095 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5096 " but 'external_size' not in effect?\n", __func__); 5097 printk(KERN_ERR 5098 "md: invalid array_size %llu > default size %llu\n", 5099 (unsigned long long)mddev->array_sectors / 2, 5100 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5101 err = -EINVAL; 5102 mddev->pers->stop(mddev); 5103 } 5104 if (err == 0 && mddev->pers->sync_request && 5105 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5106 err = bitmap_create(mddev); 5107 if (err) { 5108 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5109 mdname(mddev), err); 5110 mddev->pers->stop(mddev); 5111 } 5112 } 5113 if (err) { 5114 module_put(mddev->pers->owner); 5115 mddev->pers = NULL; 5116 bitmap_destroy(mddev); 5117 return err; 5118 } 5119 if (mddev->pers->sync_request) { 5120 if (mddev->kobj.sd && 5121 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5122 printk(KERN_WARNING 5123 "md: cannot register extra attributes for %s\n", 5124 mdname(mddev)); 5125 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5126 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5127 mddev->ro = 0; 5128 5129 atomic_set(&mddev->writes_pending,0); 5130 atomic_set(&mddev->max_corr_read_errors, 5131 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5132 mddev->safemode = 0; 5133 mddev->safemode_timer.function = md_safemode_timeout; 5134 mddev->safemode_timer.data = (unsigned long) mddev; 5135 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5136 mddev->in_sync = 1; 5137 smp_wmb(); 5138 mddev->ready = 1; 5139 rdev_for_each(rdev, mddev) 5140 if (rdev->raid_disk >= 0) 5141 if (sysfs_link_rdev(mddev, rdev)) 5142 /* failure here is OK */; 5143 5144 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5145 5146 if (mddev->flags) 5147 md_update_sb(mddev, 0); 5148 5149 md_new_event(mddev); 5150 sysfs_notify_dirent_safe(mddev->sysfs_state); 5151 sysfs_notify_dirent_safe(mddev->sysfs_action); 5152 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5153 return 0; 5154 } 5155 EXPORT_SYMBOL_GPL(md_run); 5156 5157 static int do_md_run(struct mddev *mddev) 5158 { 5159 int err; 5160 5161 err = md_run(mddev); 5162 if (err) 5163 goto out; 5164 err = bitmap_load(mddev); 5165 if (err) { 5166 bitmap_destroy(mddev); 5167 goto out; 5168 } 5169 5170 md_wakeup_thread(mddev->thread); 5171 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5172 5173 set_capacity(mddev->gendisk, mddev->array_sectors); 5174 revalidate_disk(mddev->gendisk); 5175 mddev->changed = 1; 5176 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5177 out: 5178 return err; 5179 } 5180 5181 static int restart_array(struct mddev *mddev) 5182 { 5183 struct gendisk *disk = mddev->gendisk; 5184 5185 /* Complain if it has no devices */ 5186 if (list_empty(&mddev->disks)) 5187 return -ENXIO; 5188 if (!mddev->pers) 5189 return -EINVAL; 5190 if (!mddev->ro) 5191 return -EBUSY; 5192 mddev->safemode = 0; 5193 mddev->ro = 0; 5194 set_disk_ro(disk, 0); 5195 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5196 mdname(mddev)); 5197 /* Kick recovery or resync if necessary */ 5198 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5199 md_wakeup_thread(mddev->thread); 5200 md_wakeup_thread(mddev->sync_thread); 5201 sysfs_notify_dirent_safe(mddev->sysfs_state); 5202 return 0; 5203 } 5204 5205 /* similar to deny_write_access, but accounts for our holding a reference 5206 * to the file ourselves */ 5207 static int deny_bitmap_write_access(struct file * file) 5208 { 5209 struct inode *inode = file->f_mapping->host; 5210 5211 spin_lock(&inode->i_lock); 5212 if (atomic_read(&inode->i_writecount) > 1) { 5213 spin_unlock(&inode->i_lock); 5214 return -ETXTBSY; 5215 } 5216 atomic_set(&inode->i_writecount, -1); 5217 spin_unlock(&inode->i_lock); 5218 5219 return 0; 5220 } 5221 5222 void restore_bitmap_write_access(struct file *file) 5223 { 5224 struct inode *inode = file->f_mapping->host; 5225 5226 spin_lock(&inode->i_lock); 5227 atomic_set(&inode->i_writecount, 1); 5228 spin_unlock(&inode->i_lock); 5229 } 5230 5231 static void md_clean(struct mddev *mddev) 5232 { 5233 mddev->array_sectors = 0; 5234 mddev->external_size = 0; 5235 mddev->dev_sectors = 0; 5236 mddev->raid_disks = 0; 5237 mddev->recovery_cp = 0; 5238 mddev->resync_min = 0; 5239 mddev->resync_max = MaxSector; 5240 mddev->reshape_position = MaxSector; 5241 mddev->external = 0; 5242 mddev->persistent = 0; 5243 mddev->level = LEVEL_NONE; 5244 mddev->clevel[0] = 0; 5245 mddev->flags = 0; 5246 mddev->ro = 0; 5247 mddev->metadata_type[0] = 0; 5248 mddev->chunk_sectors = 0; 5249 mddev->ctime = mddev->utime = 0; 5250 mddev->layout = 0; 5251 mddev->max_disks = 0; 5252 mddev->events = 0; 5253 mddev->can_decrease_events = 0; 5254 mddev->delta_disks = 0; 5255 mddev->reshape_backwards = 0; 5256 mddev->new_level = LEVEL_NONE; 5257 mddev->new_layout = 0; 5258 mddev->new_chunk_sectors = 0; 5259 mddev->curr_resync = 0; 5260 atomic64_set(&mddev->resync_mismatches, 0); 5261 mddev->suspend_lo = mddev->suspend_hi = 0; 5262 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5263 mddev->recovery = 0; 5264 mddev->in_sync = 0; 5265 mddev->changed = 0; 5266 mddev->degraded = 0; 5267 mddev->safemode = 0; 5268 mddev->merge_check_needed = 0; 5269 mddev->bitmap_info.offset = 0; 5270 mddev->bitmap_info.default_offset = 0; 5271 mddev->bitmap_info.default_space = 0; 5272 mddev->bitmap_info.chunksize = 0; 5273 mddev->bitmap_info.daemon_sleep = 0; 5274 mddev->bitmap_info.max_write_behind = 0; 5275 } 5276 5277 static void __md_stop_writes(struct mddev *mddev) 5278 { 5279 if (mddev->sync_thread) { 5280 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5281 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5282 reap_sync_thread(mddev); 5283 } 5284 5285 del_timer_sync(&mddev->safemode_timer); 5286 5287 bitmap_flush(mddev); 5288 md_super_wait(mddev); 5289 5290 if (!mddev->in_sync || mddev->flags) { 5291 /* mark array as shutdown cleanly */ 5292 mddev->in_sync = 1; 5293 md_update_sb(mddev, 1); 5294 } 5295 } 5296 5297 void md_stop_writes(struct mddev *mddev) 5298 { 5299 mddev_lock(mddev); 5300 __md_stop_writes(mddev); 5301 mddev_unlock(mddev); 5302 } 5303 EXPORT_SYMBOL_GPL(md_stop_writes); 5304 5305 static void __md_stop(struct mddev *mddev) 5306 { 5307 mddev->ready = 0; 5308 mddev->pers->stop(mddev); 5309 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5310 mddev->to_remove = &md_redundancy_group; 5311 module_put(mddev->pers->owner); 5312 mddev->pers = NULL; 5313 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5314 } 5315 5316 void md_stop(struct mddev *mddev) 5317 { 5318 /* stop the array and free an attached data structures. 5319 * This is called from dm-raid 5320 */ 5321 __md_stop(mddev); 5322 bitmap_destroy(mddev); 5323 if (mddev->bio_set) 5324 bioset_free(mddev->bio_set); 5325 } 5326 5327 EXPORT_SYMBOL_GPL(md_stop); 5328 5329 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5330 { 5331 int err = 0; 5332 mutex_lock(&mddev->open_mutex); 5333 if (atomic_read(&mddev->openers) > !!bdev) { 5334 printk("md: %s still in use.\n",mdname(mddev)); 5335 err = -EBUSY; 5336 goto out; 5337 } 5338 if (bdev) 5339 sync_blockdev(bdev); 5340 if (mddev->pers) { 5341 __md_stop_writes(mddev); 5342 5343 err = -ENXIO; 5344 if (mddev->ro==1) 5345 goto out; 5346 mddev->ro = 1; 5347 set_disk_ro(mddev->gendisk, 1); 5348 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5349 sysfs_notify_dirent_safe(mddev->sysfs_state); 5350 err = 0; 5351 } 5352 out: 5353 mutex_unlock(&mddev->open_mutex); 5354 return err; 5355 } 5356 5357 /* mode: 5358 * 0 - completely stop and dis-assemble array 5359 * 2 - stop but do not disassemble array 5360 */ 5361 static int do_md_stop(struct mddev * mddev, int mode, 5362 struct block_device *bdev) 5363 { 5364 struct gendisk *disk = mddev->gendisk; 5365 struct md_rdev *rdev; 5366 5367 mutex_lock(&mddev->open_mutex); 5368 if (atomic_read(&mddev->openers) > !!bdev || 5369 mddev->sysfs_active) { 5370 printk("md: %s still in use.\n",mdname(mddev)); 5371 mutex_unlock(&mddev->open_mutex); 5372 return -EBUSY; 5373 } 5374 if (bdev) 5375 /* It is possible IO was issued on some other 5376 * open file which was closed before we took ->open_mutex. 5377 * As that was not the last close __blkdev_put will not 5378 * have called sync_blockdev, so we must. 5379 */ 5380 sync_blockdev(bdev); 5381 5382 if (mddev->pers) { 5383 if (mddev->ro) 5384 set_disk_ro(disk, 0); 5385 5386 __md_stop_writes(mddev); 5387 __md_stop(mddev); 5388 mddev->queue->merge_bvec_fn = NULL; 5389 mddev->queue->backing_dev_info.congested_fn = NULL; 5390 5391 /* tell userspace to handle 'inactive' */ 5392 sysfs_notify_dirent_safe(mddev->sysfs_state); 5393 5394 rdev_for_each(rdev, mddev) 5395 if (rdev->raid_disk >= 0) 5396 sysfs_unlink_rdev(mddev, rdev); 5397 5398 set_capacity(disk, 0); 5399 mutex_unlock(&mddev->open_mutex); 5400 mddev->changed = 1; 5401 revalidate_disk(disk); 5402 5403 if (mddev->ro) 5404 mddev->ro = 0; 5405 } else 5406 mutex_unlock(&mddev->open_mutex); 5407 /* 5408 * Free resources if final stop 5409 */ 5410 if (mode == 0) { 5411 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5412 5413 bitmap_destroy(mddev); 5414 if (mddev->bitmap_info.file) { 5415 restore_bitmap_write_access(mddev->bitmap_info.file); 5416 fput(mddev->bitmap_info.file); 5417 mddev->bitmap_info.file = NULL; 5418 } 5419 mddev->bitmap_info.offset = 0; 5420 5421 export_array(mddev); 5422 5423 md_clean(mddev); 5424 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5425 if (mddev->hold_active == UNTIL_STOP) 5426 mddev->hold_active = 0; 5427 } 5428 blk_integrity_unregister(disk); 5429 md_new_event(mddev); 5430 sysfs_notify_dirent_safe(mddev->sysfs_state); 5431 return 0; 5432 } 5433 5434 #ifndef MODULE 5435 static void autorun_array(struct mddev *mddev) 5436 { 5437 struct md_rdev *rdev; 5438 int err; 5439 5440 if (list_empty(&mddev->disks)) 5441 return; 5442 5443 printk(KERN_INFO "md: running: "); 5444 5445 rdev_for_each(rdev, mddev) { 5446 char b[BDEVNAME_SIZE]; 5447 printk("<%s>", bdevname(rdev->bdev,b)); 5448 } 5449 printk("\n"); 5450 5451 err = do_md_run(mddev); 5452 if (err) { 5453 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5454 do_md_stop(mddev, 0, NULL); 5455 } 5456 } 5457 5458 /* 5459 * lets try to run arrays based on all disks that have arrived 5460 * until now. (those are in pending_raid_disks) 5461 * 5462 * the method: pick the first pending disk, collect all disks with 5463 * the same UUID, remove all from the pending list and put them into 5464 * the 'same_array' list. Then order this list based on superblock 5465 * update time (freshest comes first), kick out 'old' disks and 5466 * compare superblocks. If everything's fine then run it. 5467 * 5468 * If "unit" is allocated, then bump its reference count 5469 */ 5470 static void autorun_devices(int part) 5471 { 5472 struct md_rdev *rdev0, *rdev, *tmp; 5473 struct mddev *mddev; 5474 char b[BDEVNAME_SIZE]; 5475 5476 printk(KERN_INFO "md: autorun ...\n"); 5477 while (!list_empty(&pending_raid_disks)) { 5478 int unit; 5479 dev_t dev; 5480 LIST_HEAD(candidates); 5481 rdev0 = list_entry(pending_raid_disks.next, 5482 struct md_rdev, same_set); 5483 5484 printk(KERN_INFO "md: considering %s ...\n", 5485 bdevname(rdev0->bdev,b)); 5486 INIT_LIST_HEAD(&candidates); 5487 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5488 if (super_90_load(rdev, rdev0, 0) >= 0) { 5489 printk(KERN_INFO "md: adding %s ...\n", 5490 bdevname(rdev->bdev,b)); 5491 list_move(&rdev->same_set, &candidates); 5492 } 5493 /* 5494 * now we have a set of devices, with all of them having 5495 * mostly sane superblocks. It's time to allocate the 5496 * mddev. 5497 */ 5498 if (part) { 5499 dev = MKDEV(mdp_major, 5500 rdev0->preferred_minor << MdpMinorShift); 5501 unit = MINOR(dev) >> MdpMinorShift; 5502 } else { 5503 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5504 unit = MINOR(dev); 5505 } 5506 if (rdev0->preferred_minor != unit) { 5507 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5508 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5509 break; 5510 } 5511 5512 md_probe(dev, NULL, NULL); 5513 mddev = mddev_find(dev); 5514 if (!mddev || !mddev->gendisk) { 5515 if (mddev) 5516 mddev_put(mddev); 5517 printk(KERN_ERR 5518 "md: cannot allocate memory for md drive.\n"); 5519 break; 5520 } 5521 if (mddev_lock(mddev)) 5522 printk(KERN_WARNING "md: %s locked, cannot run\n", 5523 mdname(mddev)); 5524 else if (mddev->raid_disks || mddev->major_version 5525 || !list_empty(&mddev->disks)) { 5526 printk(KERN_WARNING 5527 "md: %s already running, cannot run %s\n", 5528 mdname(mddev), bdevname(rdev0->bdev,b)); 5529 mddev_unlock(mddev); 5530 } else { 5531 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5532 mddev->persistent = 1; 5533 rdev_for_each_list(rdev, tmp, &candidates) { 5534 list_del_init(&rdev->same_set); 5535 if (bind_rdev_to_array(rdev, mddev)) 5536 export_rdev(rdev); 5537 } 5538 autorun_array(mddev); 5539 mddev_unlock(mddev); 5540 } 5541 /* on success, candidates will be empty, on error 5542 * it won't... 5543 */ 5544 rdev_for_each_list(rdev, tmp, &candidates) { 5545 list_del_init(&rdev->same_set); 5546 export_rdev(rdev); 5547 } 5548 mddev_put(mddev); 5549 } 5550 printk(KERN_INFO "md: ... autorun DONE.\n"); 5551 } 5552 #endif /* !MODULE */ 5553 5554 static int get_version(void __user * arg) 5555 { 5556 mdu_version_t ver; 5557 5558 ver.major = MD_MAJOR_VERSION; 5559 ver.minor = MD_MINOR_VERSION; 5560 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5561 5562 if (copy_to_user(arg, &ver, sizeof(ver))) 5563 return -EFAULT; 5564 5565 return 0; 5566 } 5567 5568 static int get_array_info(struct mddev * mddev, void __user * arg) 5569 { 5570 mdu_array_info_t info; 5571 int nr,working,insync,failed,spare; 5572 struct md_rdev *rdev; 5573 5574 nr = working = insync = failed = spare = 0; 5575 rcu_read_lock(); 5576 rdev_for_each_rcu(rdev, mddev) { 5577 nr++; 5578 if (test_bit(Faulty, &rdev->flags)) 5579 failed++; 5580 else { 5581 working++; 5582 if (test_bit(In_sync, &rdev->flags)) 5583 insync++; 5584 else 5585 spare++; 5586 } 5587 } 5588 rcu_read_unlock(); 5589 5590 info.major_version = mddev->major_version; 5591 info.minor_version = mddev->minor_version; 5592 info.patch_version = MD_PATCHLEVEL_VERSION; 5593 info.ctime = mddev->ctime; 5594 info.level = mddev->level; 5595 info.size = mddev->dev_sectors / 2; 5596 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5597 info.size = -1; 5598 info.nr_disks = nr; 5599 info.raid_disks = mddev->raid_disks; 5600 info.md_minor = mddev->md_minor; 5601 info.not_persistent= !mddev->persistent; 5602 5603 info.utime = mddev->utime; 5604 info.state = 0; 5605 if (mddev->in_sync) 5606 info.state = (1<<MD_SB_CLEAN); 5607 if (mddev->bitmap && mddev->bitmap_info.offset) 5608 info.state = (1<<MD_SB_BITMAP_PRESENT); 5609 info.active_disks = insync; 5610 info.working_disks = working; 5611 info.failed_disks = failed; 5612 info.spare_disks = spare; 5613 5614 info.layout = mddev->layout; 5615 info.chunk_size = mddev->chunk_sectors << 9; 5616 5617 if (copy_to_user(arg, &info, sizeof(info))) 5618 return -EFAULT; 5619 5620 return 0; 5621 } 5622 5623 static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5624 { 5625 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5626 char *ptr, *buf = NULL; 5627 int err = -ENOMEM; 5628 5629 if (md_allow_write(mddev)) 5630 file = kmalloc(sizeof(*file), GFP_NOIO); 5631 else 5632 file = kmalloc(sizeof(*file), GFP_KERNEL); 5633 5634 if (!file) 5635 goto out; 5636 5637 /* bitmap disabled, zero the first byte and copy out */ 5638 if (!mddev->bitmap || !mddev->bitmap->storage.file) { 5639 file->pathname[0] = '\0'; 5640 goto copy_out; 5641 } 5642 5643 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5644 if (!buf) 5645 goto out; 5646 5647 ptr = d_path(&mddev->bitmap->storage.file->f_path, 5648 buf, sizeof(file->pathname)); 5649 if (IS_ERR(ptr)) 5650 goto out; 5651 5652 strcpy(file->pathname, ptr); 5653 5654 copy_out: 5655 err = 0; 5656 if (copy_to_user(arg, file, sizeof(*file))) 5657 err = -EFAULT; 5658 out: 5659 kfree(buf); 5660 kfree(file); 5661 return err; 5662 } 5663 5664 static int get_disk_info(struct mddev * mddev, void __user * arg) 5665 { 5666 mdu_disk_info_t info; 5667 struct md_rdev *rdev; 5668 5669 if (copy_from_user(&info, arg, sizeof(info))) 5670 return -EFAULT; 5671 5672 rcu_read_lock(); 5673 rdev = find_rdev_nr_rcu(mddev, info.number); 5674 if (rdev) { 5675 info.major = MAJOR(rdev->bdev->bd_dev); 5676 info.minor = MINOR(rdev->bdev->bd_dev); 5677 info.raid_disk = rdev->raid_disk; 5678 info.state = 0; 5679 if (test_bit(Faulty, &rdev->flags)) 5680 info.state |= (1<<MD_DISK_FAULTY); 5681 else if (test_bit(In_sync, &rdev->flags)) { 5682 info.state |= (1<<MD_DISK_ACTIVE); 5683 info.state |= (1<<MD_DISK_SYNC); 5684 } 5685 if (test_bit(WriteMostly, &rdev->flags)) 5686 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5687 } else { 5688 info.major = info.minor = 0; 5689 info.raid_disk = -1; 5690 info.state = (1<<MD_DISK_REMOVED); 5691 } 5692 rcu_read_unlock(); 5693 5694 if (copy_to_user(arg, &info, sizeof(info))) 5695 return -EFAULT; 5696 5697 return 0; 5698 } 5699 5700 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5701 { 5702 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5703 struct md_rdev *rdev; 5704 dev_t dev = MKDEV(info->major,info->minor); 5705 5706 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5707 return -EOVERFLOW; 5708 5709 if (!mddev->raid_disks) { 5710 int err; 5711 /* expecting a device which has a superblock */ 5712 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5713 if (IS_ERR(rdev)) { 5714 printk(KERN_WARNING 5715 "md: md_import_device returned %ld\n", 5716 PTR_ERR(rdev)); 5717 return PTR_ERR(rdev); 5718 } 5719 if (!list_empty(&mddev->disks)) { 5720 struct md_rdev *rdev0 5721 = list_entry(mddev->disks.next, 5722 struct md_rdev, same_set); 5723 err = super_types[mddev->major_version] 5724 .load_super(rdev, rdev0, mddev->minor_version); 5725 if (err < 0) { 5726 printk(KERN_WARNING 5727 "md: %s has different UUID to %s\n", 5728 bdevname(rdev->bdev,b), 5729 bdevname(rdev0->bdev,b2)); 5730 export_rdev(rdev); 5731 return -EINVAL; 5732 } 5733 } 5734 err = bind_rdev_to_array(rdev, mddev); 5735 if (err) 5736 export_rdev(rdev); 5737 return err; 5738 } 5739 5740 /* 5741 * add_new_disk can be used once the array is assembled 5742 * to add "hot spares". They must already have a superblock 5743 * written 5744 */ 5745 if (mddev->pers) { 5746 int err; 5747 if (!mddev->pers->hot_add_disk) { 5748 printk(KERN_WARNING 5749 "%s: personality does not support diskops!\n", 5750 mdname(mddev)); 5751 return -EINVAL; 5752 } 5753 if (mddev->persistent) 5754 rdev = md_import_device(dev, mddev->major_version, 5755 mddev->minor_version); 5756 else 5757 rdev = md_import_device(dev, -1, -1); 5758 if (IS_ERR(rdev)) { 5759 printk(KERN_WARNING 5760 "md: md_import_device returned %ld\n", 5761 PTR_ERR(rdev)); 5762 return PTR_ERR(rdev); 5763 } 5764 /* set saved_raid_disk if appropriate */ 5765 if (!mddev->persistent) { 5766 if (info->state & (1<<MD_DISK_SYNC) && 5767 info->raid_disk < mddev->raid_disks) { 5768 rdev->raid_disk = info->raid_disk; 5769 set_bit(In_sync, &rdev->flags); 5770 } else 5771 rdev->raid_disk = -1; 5772 } else 5773 super_types[mddev->major_version]. 5774 validate_super(mddev, rdev); 5775 if ((info->state & (1<<MD_DISK_SYNC)) && 5776 rdev->raid_disk != info->raid_disk) { 5777 /* This was a hot-add request, but events doesn't 5778 * match, so reject it. 5779 */ 5780 export_rdev(rdev); 5781 return -EINVAL; 5782 } 5783 5784 if (test_bit(In_sync, &rdev->flags)) 5785 rdev->saved_raid_disk = rdev->raid_disk; 5786 else 5787 rdev->saved_raid_disk = -1; 5788 5789 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5790 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5791 set_bit(WriteMostly, &rdev->flags); 5792 else 5793 clear_bit(WriteMostly, &rdev->flags); 5794 5795 rdev->raid_disk = -1; 5796 err = bind_rdev_to_array(rdev, mddev); 5797 if (!err && !mddev->pers->hot_remove_disk) { 5798 /* If there is hot_add_disk but no hot_remove_disk 5799 * then added disks for geometry changes, 5800 * and should be added immediately. 5801 */ 5802 super_types[mddev->major_version]. 5803 validate_super(mddev, rdev); 5804 err = mddev->pers->hot_add_disk(mddev, rdev); 5805 if (err) 5806 unbind_rdev_from_array(rdev); 5807 } 5808 if (err) 5809 export_rdev(rdev); 5810 else 5811 sysfs_notify_dirent_safe(rdev->sysfs_state); 5812 5813 md_update_sb(mddev, 1); 5814 if (mddev->degraded) 5815 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5816 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5817 if (!err) 5818 md_new_event(mddev); 5819 md_wakeup_thread(mddev->thread); 5820 return err; 5821 } 5822 5823 /* otherwise, add_new_disk is only allowed 5824 * for major_version==0 superblocks 5825 */ 5826 if (mddev->major_version != 0) { 5827 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5828 mdname(mddev)); 5829 return -EINVAL; 5830 } 5831 5832 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5833 int err; 5834 rdev = md_import_device(dev, -1, 0); 5835 if (IS_ERR(rdev)) { 5836 printk(KERN_WARNING 5837 "md: error, md_import_device() returned %ld\n", 5838 PTR_ERR(rdev)); 5839 return PTR_ERR(rdev); 5840 } 5841 rdev->desc_nr = info->number; 5842 if (info->raid_disk < mddev->raid_disks) 5843 rdev->raid_disk = info->raid_disk; 5844 else 5845 rdev->raid_disk = -1; 5846 5847 if (rdev->raid_disk < mddev->raid_disks) 5848 if (info->state & (1<<MD_DISK_SYNC)) 5849 set_bit(In_sync, &rdev->flags); 5850 5851 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5852 set_bit(WriteMostly, &rdev->flags); 5853 5854 if (!mddev->persistent) { 5855 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5856 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5857 } else 5858 rdev->sb_start = calc_dev_sboffset(rdev); 5859 rdev->sectors = rdev->sb_start; 5860 5861 err = bind_rdev_to_array(rdev, mddev); 5862 if (err) { 5863 export_rdev(rdev); 5864 return err; 5865 } 5866 } 5867 5868 return 0; 5869 } 5870 5871 static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5872 { 5873 char b[BDEVNAME_SIZE]; 5874 struct md_rdev *rdev; 5875 5876 rdev = find_rdev(mddev, dev); 5877 if (!rdev) 5878 return -ENXIO; 5879 5880 if (rdev->raid_disk >= 0) 5881 goto busy; 5882 5883 kick_rdev_from_array(rdev); 5884 md_update_sb(mddev, 1); 5885 md_new_event(mddev); 5886 5887 return 0; 5888 busy: 5889 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5890 bdevname(rdev->bdev,b), mdname(mddev)); 5891 return -EBUSY; 5892 } 5893 5894 static int hot_add_disk(struct mddev * mddev, dev_t dev) 5895 { 5896 char b[BDEVNAME_SIZE]; 5897 int err; 5898 struct md_rdev *rdev; 5899 5900 if (!mddev->pers) 5901 return -ENODEV; 5902 5903 if (mddev->major_version != 0) { 5904 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5905 " version-0 superblocks.\n", 5906 mdname(mddev)); 5907 return -EINVAL; 5908 } 5909 if (!mddev->pers->hot_add_disk) { 5910 printk(KERN_WARNING 5911 "%s: personality does not support diskops!\n", 5912 mdname(mddev)); 5913 return -EINVAL; 5914 } 5915 5916 rdev = md_import_device(dev, -1, 0); 5917 if (IS_ERR(rdev)) { 5918 printk(KERN_WARNING 5919 "md: error, md_import_device() returned %ld\n", 5920 PTR_ERR(rdev)); 5921 return -EINVAL; 5922 } 5923 5924 if (mddev->persistent) 5925 rdev->sb_start = calc_dev_sboffset(rdev); 5926 else 5927 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5928 5929 rdev->sectors = rdev->sb_start; 5930 5931 if (test_bit(Faulty, &rdev->flags)) { 5932 printk(KERN_WARNING 5933 "md: can not hot-add faulty %s disk to %s!\n", 5934 bdevname(rdev->bdev,b), mdname(mddev)); 5935 err = -EINVAL; 5936 goto abort_export; 5937 } 5938 clear_bit(In_sync, &rdev->flags); 5939 rdev->desc_nr = -1; 5940 rdev->saved_raid_disk = -1; 5941 err = bind_rdev_to_array(rdev, mddev); 5942 if (err) 5943 goto abort_export; 5944 5945 /* 5946 * The rest should better be atomic, we can have disk failures 5947 * noticed in interrupt contexts ... 5948 */ 5949 5950 rdev->raid_disk = -1; 5951 5952 md_update_sb(mddev, 1); 5953 5954 /* 5955 * Kick recovery, maybe this spare has to be added to the 5956 * array immediately. 5957 */ 5958 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5959 md_wakeup_thread(mddev->thread); 5960 md_new_event(mddev); 5961 return 0; 5962 5963 abort_export: 5964 export_rdev(rdev); 5965 return err; 5966 } 5967 5968 static int set_bitmap_file(struct mddev *mddev, int fd) 5969 { 5970 int err; 5971 5972 if (mddev->pers) { 5973 if (!mddev->pers->quiesce) 5974 return -EBUSY; 5975 if (mddev->recovery || mddev->sync_thread) 5976 return -EBUSY; 5977 /* we should be able to change the bitmap.. */ 5978 } 5979 5980 5981 if (fd >= 0) { 5982 if (mddev->bitmap) 5983 return -EEXIST; /* cannot add when bitmap is present */ 5984 mddev->bitmap_info.file = fget(fd); 5985 5986 if (mddev->bitmap_info.file == NULL) { 5987 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5988 mdname(mddev)); 5989 return -EBADF; 5990 } 5991 5992 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5993 if (err) { 5994 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5995 mdname(mddev)); 5996 fput(mddev->bitmap_info.file); 5997 mddev->bitmap_info.file = NULL; 5998 return err; 5999 } 6000 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6001 } else if (mddev->bitmap == NULL) 6002 return -ENOENT; /* cannot remove what isn't there */ 6003 err = 0; 6004 if (mddev->pers) { 6005 mddev->pers->quiesce(mddev, 1); 6006 if (fd >= 0) { 6007 err = bitmap_create(mddev); 6008 if (!err) 6009 err = bitmap_load(mddev); 6010 } 6011 if (fd < 0 || err) { 6012 bitmap_destroy(mddev); 6013 fd = -1; /* make sure to put the file */ 6014 } 6015 mddev->pers->quiesce(mddev, 0); 6016 } 6017 if (fd < 0) { 6018 if (mddev->bitmap_info.file) { 6019 restore_bitmap_write_access(mddev->bitmap_info.file); 6020 fput(mddev->bitmap_info.file); 6021 } 6022 mddev->bitmap_info.file = NULL; 6023 } 6024 6025 return err; 6026 } 6027 6028 /* 6029 * set_array_info is used two different ways 6030 * The original usage is when creating a new array. 6031 * In this usage, raid_disks is > 0 and it together with 6032 * level, size, not_persistent,layout,chunksize determine the 6033 * shape of the array. 6034 * This will always create an array with a type-0.90.0 superblock. 6035 * The newer usage is when assembling an array. 6036 * In this case raid_disks will be 0, and the major_version field is 6037 * use to determine which style super-blocks are to be found on the devices. 6038 * The minor and patch _version numbers are also kept incase the 6039 * super_block handler wishes to interpret them. 6040 */ 6041 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 6042 { 6043 6044 if (info->raid_disks == 0) { 6045 /* just setting version number for superblock loading */ 6046 if (info->major_version < 0 || 6047 info->major_version >= ARRAY_SIZE(super_types) || 6048 super_types[info->major_version].name == NULL) { 6049 /* maybe try to auto-load a module? */ 6050 printk(KERN_INFO 6051 "md: superblock version %d not known\n", 6052 info->major_version); 6053 return -EINVAL; 6054 } 6055 mddev->major_version = info->major_version; 6056 mddev->minor_version = info->minor_version; 6057 mddev->patch_version = info->patch_version; 6058 mddev->persistent = !info->not_persistent; 6059 /* ensure mddev_put doesn't delete this now that there 6060 * is some minimal configuration. 6061 */ 6062 mddev->ctime = get_seconds(); 6063 return 0; 6064 } 6065 mddev->major_version = MD_MAJOR_VERSION; 6066 mddev->minor_version = MD_MINOR_VERSION; 6067 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6068 mddev->ctime = get_seconds(); 6069 6070 mddev->level = info->level; 6071 mddev->clevel[0] = 0; 6072 mddev->dev_sectors = 2 * (sector_t)info->size; 6073 mddev->raid_disks = info->raid_disks; 6074 /* don't set md_minor, it is determined by which /dev/md* was 6075 * openned 6076 */ 6077 if (info->state & (1<<MD_SB_CLEAN)) 6078 mddev->recovery_cp = MaxSector; 6079 else 6080 mddev->recovery_cp = 0; 6081 mddev->persistent = ! info->not_persistent; 6082 mddev->external = 0; 6083 6084 mddev->layout = info->layout; 6085 mddev->chunk_sectors = info->chunk_size >> 9; 6086 6087 mddev->max_disks = MD_SB_DISKS; 6088 6089 if (mddev->persistent) 6090 mddev->flags = 0; 6091 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6092 6093 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6094 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6095 mddev->bitmap_info.offset = 0; 6096 6097 mddev->reshape_position = MaxSector; 6098 6099 /* 6100 * Generate a 128 bit UUID 6101 */ 6102 get_random_bytes(mddev->uuid, 16); 6103 6104 mddev->new_level = mddev->level; 6105 mddev->new_chunk_sectors = mddev->chunk_sectors; 6106 mddev->new_layout = mddev->layout; 6107 mddev->delta_disks = 0; 6108 mddev->reshape_backwards = 0; 6109 6110 return 0; 6111 } 6112 6113 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6114 { 6115 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6116 6117 if (mddev->external_size) 6118 return; 6119 6120 mddev->array_sectors = array_sectors; 6121 } 6122 EXPORT_SYMBOL(md_set_array_sectors); 6123 6124 static int update_size(struct mddev *mddev, sector_t num_sectors) 6125 { 6126 struct md_rdev *rdev; 6127 int rv; 6128 int fit = (num_sectors == 0); 6129 6130 if (mddev->pers->resize == NULL) 6131 return -EINVAL; 6132 /* The "num_sectors" is the number of sectors of each device that 6133 * is used. This can only make sense for arrays with redundancy. 6134 * linear and raid0 always use whatever space is available. We can only 6135 * consider changing this number if no resync or reconstruction is 6136 * happening, and if the new size is acceptable. It must fit before the 6137 * sb_start or, if that is <data_offset, it must fit before the size 6138 * of each device. If num_sectors is zero, we find the largest size 6139 * that fits. 6140 */ 6141 if (mddev->sync_thread) 6142 return -EBUSY; 6143 6144 rdev_for_each(rdev, mddev) { 6145 sector_t avail = rdev->sectors; 6146 6147 if (fit && (num_sectors == 0 || num_sectors > avail)) 6148 num_sectors = avail; 6149 if (avail < num_sectors) 6150 return -ENOSPC; 6151 } 6152 rv = mddev->pers->resize(mddev, num_sectors); 6153 if (!rv) 6154 revalidate_disk(mddev->gendisk); 6155 return rv; 6156 } 6157 6158 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6159 { 6160 int rv; 6161 struct md_rdev *rdev; 6162 /* change the number of raid disks */ 6163 if (mddev->pers->check_reshape == NULL) 6164 return -EINVAL; 6165 if (raid_disks <= 0 || 6166 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6167 return -EINVAL; 6168 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6169 return -EBUSY; 6170 6171 rdev_for_each(rdev, mddev) { 6172 if (mddev->raid_disks < raid_disks && 6173 rdev->data_offset < rdev->new_data_offset) 6174 return -EINVAL; 6175 if (mddev->raid_disks > raid_disks && 6176 rdev->data_offset > rdev->new_data_offset) 6177 return -EINVAL; 6178 } 6179 6180 mddev->delta_disks = raid_disks - mddev->raid_disks; 6181 if (mddev->delta_disks < 0) 6182 mddev->reshape_backwards = 1; 6183 else if (mddev->delta_disks > 0) 6184 mddev->reshape_backwards = 0; 6185 6186 rv = mddev->pers->check_reshape(mddev); 6187 if (rv < 0) { 6188 mddev->delta_disks = 0; 6189 mddev->reshape_backwards = 0; 6190 } 6191 return rv; 6192 } 6193 6194 6195 /* 6196 * update_array_info is used to change the configuration of an 6197 * on-line array. 6198 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6199 * fields in the info are checked against the array. 6200 * Any differences that cannot be handled will cause an error. 6201 * Normally, only one change can be managed at a time. 6202 */ 6203 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6204 { 6205 int rv = 0; 6206 int cnt = 0; 6207 int state = 0; 6208 6209 /* calculate expected state,ignoring low bits */ 6210 if (mddev->bitmap && mddev->bitmap_info.offset) 6211 state |= (1 << MD_SB_BITMAP_PRESENT); 6212 6213 if (mddev->major_version != info->major_version || 6214 mddev->minor_version != info->minor_version || 6215 /* mddev->patch_version != info->patch_version || */ 6216 mddev->ctime != info->ctime || 6217 mddev->level != info->level || 6218 /* mddev->layout != info->layout || */ 6219 !mddev->persistent != info->not_persistent|| 6220 mddev->chunk_sectors != info->chunk_size >> 9 || 6221 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6222 ((state^info->state) & 0xfffffe00) 6223 ) 6224 return -EINVAL; 6225 /* Check there is only one change */ 6226 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6227 cnt++; 6228 if (mddev->raid_disks != info->raid_disks) 6229 cnt++; 6230 if (mddev->layout != info->layout) 6231 cnt++; 6232 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6233 cnt++; 6234 if (cnt == 0) 6235 return 0; 6236 if (cnt > 1) 6237 return -EINVAL; 6238 6239 if (mddev->layout != info->layout) { 6240 /* Change layout 6241 * we don't need to do anything at the md level, the 6242 * personality will take care of it all. 6243 */ 6244 if (mddev->pers->check_reshape == NULL) 6245 return -EINVAL; 6246 else { 6247 mddev->new_layout = info->layout; 6248 rv = mddev->pers->check_reshape(mddev); 6249 if (rv) 6250 mddev->new_layout = mddev->layout; 6251 return rv; 6252 } 6253 } 6254 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6255 rv = update_size(mddev, (sector_t)info->size * 2); 6256 6257 if (mddev->raid_disks != info->raid_disks) 6258 rv = update_raid_disks(mddev, info->raid_disks); 6259 6260 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6261 if (mddev->pers->quiesce == NULL) 6262 return -EINVAL; 6263 if (mddev->recovery || mddev->sync_thread) 6264 return -EBUSY; 6265 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6266 /* add the bitmap */ 6267 if (mddev->bitmap) 6268 return -EEXIST; 6269 if (mddev->bitmap_info.default_offset == 0) 6270 return -EINVAL; 6271 mddev->bitmap_info.offset = 6272 mddev->bitmap_info.default_offset; 6273 mddev->bitmap_info.space = 6274 mddev->bitmap_info.default_space; 6275 mddev->pers->quiesce(mddev, 1); 6276 rv = bitmap_create(mddev); 6277 if (!rv) 6278 rv = bitmap_load(mddev); 6279 if (rv) 6280 bitmap_destroy(mddev); 6281 mddev->pers->quiesce(mddev, 0); 6282 } else { 6283 /* remove the bitmap */ 6284 if (!mddev->bitmap) 6285 return -ENOENT; 6286 if (mddev->bitmap->storage.file) 6287 return -EINVAL; 6288 mddev->pers->quiesce(mddev, 1); 6289 bitmap_destroy(mddev); 6290 mddev->pers->quiesce(mddev, 0); 6291 mddev->bitmap_info.offset = 0; 6292 } 6293 } 6294 md_update_sb(mddev, 1); 6295 return rv; 6296 } 6297 6298 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6299 { 6300 struct md_rdev *rdev; 6301 int err = 0; 6302 6303 if (mddev->pers == NULL) 6304 return -ENODEV; 6305 6306 rcu_read_lock(); 6307 rdev = find_rdev_rcu(mddev, dev); 6308 if (!rdev) 6309 err = -ENODEV; 6310 else { 6311 md_error(mddev, rdev); 6312 if (!test_bit(Faulty, &rdev->flags)) 6313 err = -EBUSY; 6314 } 6315 rcu_read_unlock(); 6316 return err; 6317 } 6318 6319 /* 6320 * We have a problem here : there is no easy way to give a CHS 6321 * virtual geometry. We currently pretend that we have a 2 heads 6322 * 4 sectors (with a BIG number of cylinders...). This drives 6323 * dosfs just mad... ;-) 6324 */ 6325 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6326 { 6327 struct mddev *mddev = bdev->bd_disk->private_data; 6328 6329 geo->heads = 2; 6330 geo->sectors = 4; 6331 geo->cylinders = mddev->array_sectors / 8; 6332 return 0; 6333 } 6334 6335 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6336 unsigned int cmd, unsigned long arg) 6337 { 6338 int err = 0; 6339 void __user *argp = (void __user *)arg; 6340 struct mddev *mddev = NULL; 6341 int ro; 6342 6343 switch (cmd) { 6344 case RAID_VERSION: 6345 case GET_ARRAY_INFO: 6346 case GET_DISK_INFO: 6347 break; 6348 default: 6349 if (!capable(CAP_SYS_ADMIN)) 6350 return -EACCES; 6351 } 6352 6353 /* 6354 * Commands dealing with the RAID driver but not any 6355 * particular array: 6356 */ 6357 switch (cmd) { 6358 case RAID_VERSION: 6359 err = get_version(argp); 6360 goto done; 6361 6362 case PRINT_RAID_DEBUG: 6363 err = 0; 6364 md_print_devices(); 6365 goto done; 6366 6367 #ifndef MODULE 6368 case RAID_AUTORUN: 6369 err = 0; 6370 autostart_arrays(arg); 6371 goto done; 6372 #endif 6373 default:; 6374 } 6375 6376 /* 6377 * Commands creating/starting a new array: 6378 */ 6379 6380 mddev = bdev->bd_disk->private_data; 6381 6382 if (!mddev) { 6383 BUG(); 6384 goto abort; 6385 } 6386 6387 /* Some actions do not requires the mutex */ 6388 switch (cmd) { 6389 case GET_ARRAY_INFO: 6390 if (!mddev->raid_disks && !mddev->external) 6391 err = -ENODEV; 6392 else 6393 err = get_array_info(mddev, argp); 6394 goto abort; 6395 6396 case GET_DISK_INFO: 6397 if (!mddev->raid_disks && !mddev->external) 6398 err = -ENODEV; 6399 else 6400 err = get_disk_info(mddev, argp); 6401 goto abort; 6402 6403 case SET_DISK_FAULTY: 6404 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6405 goto abort; 6406 } 6407 6408 if (cmd == ADD_NEW_DISK) 6409 /* need to ensure md_delayed_delete() has completed */ 6410 flush_workqueue(md_misc_wq); 6411 6412 err = mddev_lock(mddev); 6413 if (err) { 6414 printk(KERN_INFO 6415 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6416 err, cmd); 6417 goto abort; 6418 } 6419 6420 if (cmd == SET_ARRAY_INFO) { 6421 mdu_array_info_t info; 6422 if (!arg) 6423 memset(&info, 0, sizeof(info)); 6424 else if (copy_from_user(&info, argp, sizeof(info))) { 6425 err = -EFAULT; 6426 goto abort_unlock; 6427 } 6428 if (mddev->pers) { 6429 err = update_array_info(mddev, &info); 6430 if (err) { 6431 printk(KERN_WARNING "md: couldn't update" 6432 " array info. %d\n", err); 6433 goto abort_unlock; 6434 } 6435 goto done_unlock; 6436 } 6437 if (!list_empty(&mddev->disks)) { 6438 printk(KERN_WARNING 6439 "md: array %s already has disks!\n", 6440 mdname(mddev)); 6441 err = -EBUSY; 6442 goto abort_unlock; 6443 } 6444 if (mddev->raid_disks) { 6445 printk(KERN_WARNING 6446 "md: array %s already initialised!\n", 6447 mdname(mddev)); 6448 err = -EBUSY; 6449 goto abort_unlock; 6450 } 6451 err = set_array_info(mddev, &info); 6452 if (err) { 6453 printk(KERN_WARNING "md: couldn't set" 6454 " array info. %d\n", err); 6455 goto abort_unlock; 6456 } 6457 goto done_unlock; 6458 } 6459 6460 /* 6461 * Commands querying/configuring an existing array: 6462 */ 6463 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6464 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6465 if ((!mddev->raid_disks && !mddev->external) 6466 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6467 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6468 && cmd != GET_BITMAP_FILE) { 6469 err = -ENODEV; 6470 goto abort_unlock; 6471 } 6472 6473 /* 6474 * Commands even a read-only array can execute: 6475 */ 6476 switch (cmd) { 6477 case GET_BITMAP_FILE: 6478 err = get_bitmap_file(mddev, argp); 6479 goto done_unlock; 6480 6481 case RESTART_ARRAY_RW: 6482 err = restart_array(mddev); 6483 goto done_unlock; 6484 6485 case STOP_ARRAY: 6486 err = do_md_stop(mddev, 0, bdev); 6487 goto done_unlock; 6488 6489 case STOP_ARRAY_RO: 6490 err = md_set_readonly(mddev, bdev); 6491 goto done_unlock; 6492 6493 case BLKROSET: 6494 if (get_user(ro, (int __user *)(arg))) { 6495 err = -EFAULT; 6496 goto done_unlock; 6497 } 6498 err = -EINVAL; 6499 6500 /* if the bdev is going readonly the value of mddev->ro 6501 * does not matter, no writes are coming 6502 */ 6503 if (ro) 6504 goto done_unlock; 6505 6506 /* are we are already prepared for writes? */ 6507 if (mddev->ro != 1) 6508 goto done_unlock; 6509 6510 /* transitioning to readauto need only happen for 6511 * arrays that call md_write_start 6512 */ 6513 if (mddev->pers) { 6514 err = restart_array(mddev); 6515 if (err == 0) { 6516 mddev->ro = 2; 6517 set_disk_ro(mddev->gendisk, 0); 6518 } 6519 } 6520 goto done_unlock; 6521 } 6522 6523 /* 6524 * The remaining ioctls are changing the state of the 6525 * superblock, so we do not allow them on read-only arrays. 6526 * However non-MD ioctls (e.g. get-size) will still come through 6527 * here and hit the 'default' below, so only disallow 6528 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6529 */ 6530 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6531 if (mddev->ro == 2) { 6532 mddev->ro = 0; 6533 sysfs_notify_dirent_safe(mddev->sysfs_state); 6534 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6535 /* mddev_unlock will wake thread */ 6536 /* If a device failed while we were read-only, we 6537 * need to make sure the metadata is updated now. 6538 */ 6539 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6540 mddev_unlock(mddev); 6541 wait_event(mddev->sb_wait, 6542 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6543 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6544 mddev_lock(mddev); 6545 } 6546 } else { 6547 err = -EROFS; 6548 goto abort_unlock; 6549 } 6550 } 6551 6552 switch (cmd) { 6553 case ADD_NEW_DISK: 6554 { 6555 mdu_disk_info_t info; 6556 if (copy_from_user(&info, argp, sizeof(info))) 6557 err = -EFAULT; 6558 else 6559 err = add_new_disk(mddev, &info); 6560 goto done_unlock; 6561 } 6562 6563 case HOT_REMOVE_DISK: 6564 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6565 goto done_unlock; 6566 6567 case HOT_ADD_DISK: 6568 err = hot_add_disk(mddev, new_decode_dev(arg)); 6569 goto done_unlock; 6570 6571 case RUN_ARRAY: 6572 err = do_md_run(mddev); 6573 goto done_unlock; 6574 6575 case SET_BITMAP_FILE: 6576 err = set_bitmap_file(mddev, (int)arg); 6577 goto done_unlock; 6578 6579 default: 6580 err = -EINVAL; 6581 goto abort_unlock; 6582 } 6583 6584 done_unlock: 6585 abort_unlock: 6586 if (mddev->hold_active == UNTIL_IOCTL && 6587 err != -EINVAL) 6588 mddev->hold_active = 0; 6589 mddev_unlock(mddev); 6590 6591 return err; 6592 done: 6593 if (err) 6594 MD_BUG(); 6595 abort: 6596 return err; 6597 } 6598 #ifdef CONFIG_COMPAT 6599 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6600 unsigned int cmd, unsigned long arg) 6601 { 6602 switch (cmd) { 6603 case HOT_REMOVE_DISK: 6604 case HOT_ADD_DISK: 6605 case SET_DISK_FAULTY: 6606 case SET_BITMAP_FILE: 6607 /* These take in integer arg, do not convert */ 6608 break; 6609 default: 6610 arg = (unsigned long)compat_ptr(arg); 6611 break; 6612 } 6613 6614 return md_ioctl(bdev, mode, cmd, arg); 6615 } 6616 #endif /* CONFIG_COMPAT */ 6617 6618 static int md_open(struct block_device *bdev, fmode_t mode) 6619 { 6620 /* 6621 * Succeed if we can lock the mddev, which confirms that 6622 * it isn't being stopped right now. 6623 */ 6624 struct mddev *mddev = mddev_find(bdev->bd_dev); 6625 int err; 6626 6627 if (!mddev) 6628 return -ENODEV; 6629 6630 if (mddev->gendisk != bdev->bd_disk) { 6631 /* we are racing with mddev_put which is discarding this 6632 * bd_disk. 6633 */ 6634 mddev_put(mddev); 6635 /* Wait until bdev->bd_disk is definitely gone */ 6636 flush_workqueue(md_misc_wq); 6637 /* Then retry the open from the top */ 6638 return -ERESTARTSYS; 6639 } 6640 BUG_ON(mddev != bdev->bd_disk->private_data); 6641 6642 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6643 goto out; 6644 6645 err = 0; 6646 atomic_inc(&mddev->openers); 6647 mutex_unlock(&mddev->open_mutex); 6648 6649 check_disk_change(bdev); 6650 out: 6651 return err; 6652 } 6653 6654 static int md_release(struct gendisk *disk, fmode_t mode) 6655 { 6656 struct mddev *mddev = disk->private_data; 6657 6658 BUG_ON(!mddev); 6659 atomic_dec(&mddev->openers); 6660 mddev_put(mddev); 6661 6662 return 0; 6663 } 6664 6665 static int md_media_changed(struct gendisk *disk) 6666 { 6667 struct mddev *mddev = disk->private_data; 6668 6669 return mddev->changed; 6670 } 6671 6672 static int md_revalidate(struct gendisk *disk) 6673 { 6674 struct mddev *mddev = disk->private_data; 6675 6676 mddev->changed = 0; 6677 return 0; 6678 } 6679 static const struct block_device_operations md_fops = 6680 { 6681 .owner = THIS_MODULE, 6682 .open = md_open, 6683 .release = md_release, 6684 .ioctl = md_ioctl, 6685 #ifdef CONFIG_COMPAT 6686 .compat_ioctl = md_compat_ioctl, 6687 #endif 6688 .getgeo = md_getgeo, 6689 .media_changed = md_media_changed, 6690 .revalidate_disk= md_revalidate, 6691 }; 6692 6693 static int md_thread(void * arg) 6694 { 6695 struct md_thread *thread = arg; 6696 6697 /* 6698 * md_thread is a 'system-thread', it's priority should be very 6699 * high. We avoid resource deadlocks individually in each 6700 * raid personality. (RAID5 does preallocation) We also use RR and 6701 * the very same RT priority as kswapd, thus we will never get 6702 * into a priority inversion deadlock. 6703 * 6704 * we definitely have to have equal or higher priority than 6705 * bdflush, otherwise bdflush will deadlock if there are too 6706 * many dirty RAID5 blocks. 6707 */ 6708 6709 allow_signal(SIGKILL); 6710 while (!kthread_should_stop()) { 6711 6712 /* We need to wait INTERRUPTIBLE so that 6713 * we don't add to the load-average. 6714 * That means we need to be sure no signals are 6715 * pending 6716 */ 6717 if (signal_pending(current)) 6718 flush_signals(current); 6719 6720 wait_event_interruptible_timeout 6721 (thread->wqueue, 6722 test_bit(THREAD_WAKEUP, &thread->flags) 6723 || kthread_should_stop(), 6724 thread->timeout); 6725 6726 clear_bit(THREAD_WAKEUP, &thread->flags); 6727 if (!kthread_should_stop()) 6728 thread->run(thread); 6729 } 6730 6731 return 0; 6732 } 6733 6734 void md_wakeup_thread(struct md_thread *thread) 6735 { 6736 if (thread) { 6737 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6738 set_bit(THREAD_WAKEUP, &thread->flags); 6739 wake_up(&thread->wqueue); 6740 } 6741 } 6742 6743 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 6744 struct mddev *mddev, const char *name) 6745 { 6746 struct md_thread *thread; 6747 6748 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6749 if (!thread) 6750 return NULL; 6751 6752 init_waitqueue_head(&thread->wqueue); 6753 6754 thread->run = run; 6755 thread->mddev = mddev; 6756 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6757 thread->tsk = kthread_run(md_thread, thread, 6758 "%s_%s", 6759 mdname(thread->mddev), 6760 name); 6761 if (IS_ERR(thread->tsk)) { 6762 kfree(thread); 6763 return NULL; 6764 } 6765 return thread; 6766 } 6767 6768 void md_unregister_thread(struct md_thread **threadp) 6769 { 6770 struct md_thread *thread = *threadp; 6771 if (!thread) 6772 return; 6773 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6774 /* Locking ensures that mddev_unlock does not wake_up a 6775 * non-existent thread 6776 */ 6777 spin_lock(&pers_lock); 6778 *threadp = NULL; 6779 spin_unlock(&pers_lock); 6780 6781 kthread_stop(thread->tsk); 6782 kfree(thread); 6783 } 6784 6785 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6786 { 6787 if (!mddev) { 6788 MD_BUG(); 6789 return; 6790 } 6791 6792 if (!rdev || test_bit(Faulty, &rdev->flags)) 6793 return; 6794 6795 if (!mddev->pers || !mddev->pers->error_handler) 6796 return; 6797 mddev->pers->error_handler(mddev,rdev); 6798 if (mddev->degraded) 6799 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6800 sysfs_notify_dirent_safe(rdev->sysfs_state); 6801 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6802 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6803 md_wakeup_thread(mddev->thread); 6804 if (mddev->event_work.func) 6805 queue_work(md_misc_wq, &mddev->event_work); 6806 md_new_event_inintr(mddev); 6807 } 6808 6809 /* seq_file implementation /proc/mdstat */ 6810 6811 static void status_unused(struct seq_file *seq) 6812 { 6813 int i = 0; 6814 struct md_rdev *rdev; 6815 6816 seq_printf(seq, "unused devices: "); 6817 6818 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6819 char b[BDEVNAME_SIZE]; 6820 i++; 6821 seq_printf(seq, "%s ", 6822 bdevname(rdev->bdev,b)); 6823 } 6824 if (!i) 6825 seq_printf(seq, "<none>"); 6826 6827 seq_printf(seq, "\n"); 6828 } 6829 6830 6831 static void status_resync(struct seq_file *seq, struct mddev * mddev) 6832 { 6833 sector_t max_sectors, resync, res; 6834 unsigned long dt, db; 6835 sector_t rt; 6836 int scale; 6837 unsigned int per_milli; 6838 6839 if (mddev->curr_resync <= 3) 6840 resync = 0; 6841 else 6842 resync = mddev->curr_resync 6843 - atomic_read(&mddev->recovery_active); 6844 6845 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6846 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6847 max_sectors = mddev->resync_max_sectors; 6848 else 6849 max_sectors = mddev->dev_sectors; 6850 6851 /* 6852 * Should not happen. 6853 */ 6854 if (!max_sectors) { 6855 MD_BUG(); 6856 return; 6857 } 6858 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6859 * in a sector_t, and (max_sectors>>scale) will fit in a 6860 * u32, as those are the requirements for sector_div. 6861 * Thus 'scale' must be at least 10 6862 */ 6863 scale = 10; 6864 if (sizeof(sector_t) > sizeof(unsigned long)) { 6865 while ( max_sectors/2 > (1ULL<<(scale+32))) 6866 scale++; 6867 } 6868 res = (resync>>scale)*1000; 6869 sector_div(res, (u32)((max_sectors>>scale)+1)); 6870 6871 per_milli = res; 6872 { 6873 int i, x = per_milli/50, y = 20-x; 6874 seq_printf(seq, "["); 6875 for (i = 0; i < x; i++) 6876 seq_printf(seq, "="); 6877 seq_printf(seq, ">"); 6878 for (i = 0; i < y; i++) 6879 seq_printf(seq, "."); 6880 seq_printf(seq, "] "); 6881 } 6882 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6883 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6884 "reshape" : 6885 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6886 "check" : 6887 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6888 "resync" : "recovery"))), 6889 per_milli/10, per_milli % 10, 6890 (unsigned long long) resync/2, 6891 (unsigned long long) max_sectors/2); 6892 6893 /* 6894 * dt: time from mark until now 6895 * db: blocks written from mark until now 6896 * rt: remaining time 6897 * 6898 * rt is a sector_t, so could be 32bit or 64bit. 6899 * So we divide before multiply in case it is 32bit and close 6900 * to the limit. 6901 * We scale the divisor (db) by 32 to avoid losing precision 6902 * near the end of resync when the number of remaining sectors 6903 * is close to 'db'. 6904 * We then divide rt by 32 after multiplying by db to compensate. 6905 * The '+1' avoids division by zero if db is very small. 6906 */ 6907 dt = ((jiffies - mddev->resync_mark) / HZ); 6908 if (!dt) dt++; 6909 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6910 - mddev->resync_mark_cnt; 6911 6912 rt = max_sectors - resync; /* number of remaining sectors */ 6913 sector_div(rt, db/32+1); 6914 rt *= dt; 6915 rt >>= 5; 6916 6917 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6918 ((unsigned long)rt % 60)/6); 6919 6920 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6921 } 6922 6923 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6924 { 6925 struct list_head *tmp; 6926 loff_t l = *pos; 6927 struct mddev *mddev; 6928 6929 if (l >= 0x10000) 6930 return NULL; 6931 if (!l--) 6932 /* header */ 6933 return (void*)1; 6934 6935 spin_lock(&all_mddevs_lock); 6936 list_for_each(tmp,&all_mddevs) 6937 if (!l--) { 6938 mddev = list_entry(tmp, struct mddev, all_mddevs); 6939 mddev_get(mddev); 6940 spin_unlock(&all_mddevs_lock); 6941 return mddev; 6942 } 6943 spin_unlock(&all_mddevs_lock); 6944 if (!l--) 6945 return (void*)2;/* tail */ 6946 return NULL; 6947 } 6948 6949 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6950 { 6951 struct list_head *tmp; 6952 struct mddev *next_mddev, *mddev = v; 6953 6954 ++*pos; 6955 if (v == (void*)2) 6956 return NULL; 6957 6958 spin_lock(&all_mddevs_lock); 6959 if (v == (void*)1) 6960 tmp = all_mddevs.next; 6961 else 6962 tmp = mddev->all_mddevs.next; 6963 if (tmp != &all_mddevs) 6964 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 6965 else { 6966 next_mddev = (void*)2; 6967 *pos = 0x10000; 6968 } 6969 spin_unlock(&all_mddevs_lock); 6970 6971 if (v != (void*)1) 6972 mddev_put(mddev); 6973 return next_mddev; 6974 6975 } 6976 6977 static void md_seq_stop(struct seq_file *seq, void *v) 6978 { 6979 struct mddev *mddev = v; 6980 6981 if (mddev && v != (void*)1 && v != (void*)2) 6982 mddev_put(mddev); 6983 } 6984 6985 static int md_seq_show(struct seq_file *seq, void *v) 6986 { 6987 struct mddev *mddev = v; 6988 sector_t sectors; 6989 struct md_rdev *rdev; 6990 6991 if (v == (void*)1) { 6992 struct md_personality *pers; 6993 seq_printf(seq, "Personalities : "); 6994 spin_lock(&pers_lock); 6995 list_for_each_entry(pers, &pers_list, list) 6996 seq_printf(seq, "[%s] ", pers->name); 6997 6998 spin_unlock(&pers_lock); 6999 seq_printf(seq, "\n"); 7000 seq->poll_event = atomic_read(&md_event_count); 7001 return 0; 7002 } 7003 if (v == (void*)2) { 7004 status_unused(seq); 7005 return 0; 7006 } 7007 7008 if (mddev_lock(mddev) < 0) 7009 return -EINTR; 7010 7011 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7012 seq_printf(seq, "%s : %sactive", mdname(mddev), 7013 mddev->pers ? "" : "in"); 7014 if (mddev->pers) { 7015 if (mddev->ro==1) 7016 seq_printf(seq, " (read-only)"); 7017 if (mddev->ro==2) 7018 seq_printf(seq, " (auto-read-only)"); 7019 seq_printf(seq, " %s", mddev->pers->name); 7020 } 7021 7022 sectors = 0; 7023 rdev_for_each(rdev, mddev) { 7024 char b[BDEVNAME_SIZE]; 7025 seq_printf(seq, " %s[%d]", 7026 bdevname(rdev->bdev,b), rdev->desc_nr); 7027 if (test_bit(WriteMostly, &rdev->flags)) 7028 seq_printf(seq, "(W)"); 7029 if (test_bit(Faulty, &rdev->flags)) { 7030 seq_printf(seq, "(F)"); 7031 continue; 7032 } 7033 if (rdev->raid_disk < 0) 7034 seq_printf(seq, "(S)"); /* spare */ 7035 if (test_bit(Replacement, &rdev->flags)) 7036 seq_printf(seq, "(R)"); 7037 sectors += rdev->sectors; 7038 } 7039 7040 if (!list_empty(&mddev->disks)) { 7041 if (mddev->pers) 7042 seq_printf(seq, "\n %llu blocks", 7043 (unsigned long long) 7044 mddev->array_sectors / 2); 7045 else 7046 seq_printf(seq, "\n %llu blocks", 7047 (unsigned long long)sectors / 2); 7048 } 7049 if (mddev->persistent) { 7050 if (mddev->major_version != 0 || 7051 mddev->minor_version != 90) { 7052 seq_printf(seq," super %d.%d", 7053 mddev->major_version, 7054 mddev->minor_version); 7055 } 7056 } else if (mddev->external) 7057 seq_printf(seq, " super external:%s", 7058 mddev->metadata_type); 7059 else 7060 seq_printf(seq, " super non-persistent"); 7061 7062 if (mddev->pers) { 7063 mddev->pers->status(seq, mddev); 7064 seq_printf(seq, "\n "); 7065 if (mddev->pers->sync_request) { 7066 if (mddev->curr_resync > 2) { 7067 status_resync(seq, mddev); 7068 seq_printf(seq, "\n "); 7069 } else if (mddev->curr_resync >= 1) 7070 seq_printf(seq, "\tresync=DELAYED\n "); 7071 else if (mddev->recovery_cp < MaxSector) 7072 seq_printf(seq, "\tresync=PENDING\n "); 7073 } 7074 } else 7075 seq_printf(seq, "\n "); 7076 7077 bitmap_status(seq, mddev->bitmap); 7078 7079 seq_printf(seq, "\n"); 7080 } 7081 mddev_unlock(mddev); 7082 7083 return 0; 7084 } 7085 7086 static const struct seq_operations md_seq_ops = { 7087 .start = md_seq_start, 7088 .next = md_seq_next, 7089 .stop = md_seq_stop, 7090 .show = md_seq_show, 7091 }; 7092 7093 static int md_seq_open(struct inode *inode, struct file *file) 7094 { 7095 struct seq_file *seq; 7096 int error; 7097 7098 error = seq_open(file, &md_seq_ops); 7099 if (error) 7100 return error; 7101 7102 seq = file->private_data; 7103 seq->poll_event = atomic_read(&md_event_count); 7104 return error; 7105 } 7106 7107 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7108 { 7109 struct seq_file *seq = filp->private_data; 7110 int mask; 7111 7112 poll_wait(filp, &md_event_waiters, wait); 7113 7114 /* always allow read */ 7115 mask = POLLIN | POLLRDNORM; 7116 7117 if (seq->poll_event != atomic_read(&md_event_count)) 7118 mask |= POLLERR | POLLPRI; 7119 return mask; 7120 } 7121 7122 static const struct file_operations md_seq_fops = { 7123 .owner = THIS_MODULE, 7124 .open = md_seq_open, 7125 .read = seq_read, 7126 .llseek = seq_lseek, 7127 .release = seq_release_private, 7128 .poll = mdstat_poll, 7129 }; 7130 7131 int register_md_personality(struct md_personality *p) 7132 { 7133 spin_lock(&pers_lock); 7134 list_add_tail(&p->list, &pers_list); 7135 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7136 spin_unlock(&pers_lock); 7137 return 0; 7138 } 7139 7140 int unregister_md_personality(struct md_personality *p) 7141 { 7142 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7143 spin_lock(&pers_lock); 7144 list_del_init(&p->list); 7145 spin_unlock(&pers_lock); 7146 return 0; 7147 } 7148 7149 static int is_mddev_idle(struct mddev *mddev, int init) 7150 { 7151 struct md_rdev * rdev; 7152 int idle; 7153 int curr_events; 7154 7155 idle = 1; 7156 rcu_read_lock(); 7157 rdev_for_each_rcu(rdev, mddev) { 7158 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7159 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7160 (int)part_stat_read(&disk->part0, sectors[1]) - 7161 atomic_read(&disk->sync_io); 7162 /* sync IO will cause sync_io to increase before the disk_stats 7163 * as sync_io is counted when a request starts, and 7164 * disk_stats is counted when it completes. 7165 * So resync activity will cause curr_events to be smaller than 7166 * when there was no such activity. 7167 * non-sync IO will cause disk_stat to increase without 7168 * increasing sync_io so curr_events will (eventually) 7169 * be larger than it was before. Once it becomes 7170 * substantially larger, the test below will cause 7171 * the array to appear non-idle, and resync will slow 7172 * down. 7173 * If there is a lot of outstanding resync activity when 7174 * we set last_event to curr_events, then all that activity 7175 * completing might cause the array to appear non-idle 7176 * and resync will be slowed down even though there might 7177 * not have been non-resync activity. This will only 7178 * happen once though. 'last_events' will soon reflect 7179 * the state where there is little or no outstanding 7180 * resync requests, and further resync activity will 7181 * always make curr_events less than last_events. 7182 * 7183 */ 7184 if (init || curr_events - rdev->last_events > 64) { 7185 rdev->last_events = curr_events; 7186 idle = 0; 7187 } 7188 } 7189 rcu_read_unlock(); 7190 return idle; 7191 } 7192 7193 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7194 { 7195 /* another "blocks" (512byte) blocks have been synced */ 7196 atomic_sub(blocks, &mddev->recovery_active); 7197 wake_up(&mddev->recovery_wait); 7198 if (!ok) { 7199 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7200 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7201 md_wakeup_thread(mddev->thread); 7202 // stop recovery, signal do_sync .... 7203 } 7204 } 7205 7206 7207 /* md_write_start(mddev, bi) 7208 * If we need to update some array metadata (e.g. 'active' flag 7209 * in superblock) before writing, schedule a superblock update 7210 * and wait for it to complete. 7211 */ 7212 void md_write_start(struct mddev *mddev, struct bio *bi) 7213 { 7214 int did_change = 0; 7215 if (bio_data_dir(bi) != WRITE) 7216 return; 7217 7218 BUG_ON(mddev->ro == 1); 7219 if (mddev->ro == 2) { 7220 /* need to switch to read/write */ 7221 mddev->ro = 0; 7222 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7223 md_wakeup_thread(mddev->thread); 7224 md_wakeup_thread(mddev->sync_thread); 7225 did_change = 1; 7226 } 7227 atomic_inc(&mddev->writes_pending); 7228 if (mddev->safemode == 1) 7229 mddev->safemode = 0; 7230 if (mddev->in_sync) { 7231 spin_lock_irq(&mddev->write_lock); 7232 if (mddev->in_sync) { 7233 mddev->in_sync = 0; 7234 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7235 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7236 md_wakeup_thread(mddev->thread); 7237 did_change = 1; 7238 } 7239 spin_unlock_irq(&mddev->write_lock); 7240 } 7241 if (did_change) 7242 sysfs_notify_dirent_safe(mddev->sysfs_state); 7243 wait_event(mddev->sb_wait, 7244 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7245 } 7246 7247 void md_write_end(struct mddev *mddev) 7248 { 7249 if (atomic_dec_and_test(&mddev->writes_pending)) { 7250 if (mddev->safemode == 2) 7251 md_wakeup_thread(mddev->thread); 7252 else if (mddev->safemode_delay) 7253 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7254 } 7255 } 7256 7257 /* md_allow_write(mddev) 7258 * Calling this ensures that the array is marked 'active' so that writes 7259 * may proceed without blocking. It is important to call this before 7260 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7261 * Must be called with mddev_lock held. 7262 * 7263 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7264 * is dropped, so return -EAGAIN after notifying userspace. 7265 */ 7266 int md_allow_write(struct mddev *mddev) 7267 { 7268 if (!mddev->pers) 7269 return 0; 7270 if (mddev->ro) 7271 return 0; 7272 if (!mddev->pers->sync_request) 7273 return 0; 7274 7275 spin_lock_irq(&mddev->write_lock); 7276 if (mddev->in_sync) { 7277 mddev->in_sync = 0; 7278 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7279 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7280 if (mddev->safemode_delay && 7281 mddev->safemode == 0) 7282 mddev->safemode = 1; 7283 spin_unlock_irq(&mddev->write_lock); 7284 md_update_sb(mddev, 0); 7285 sysfs_notify_dirent_safe(mddev->sysfs_state); 7286 } else 7287 spin_unlock_irq(&mddev->write_lock); 7288 7289 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7290 return -EAGAIN; 7291 else 7292 return 0; 7293 } 7294 EXPORT_SYMBOL_GPL(md_allow_write); 7295 7296 #define SYNC_MARKS 10 7297 #define SYNC_MARK_STEP (3*HZ) 7298 #define UPDATE_FREQUENCY (5*60*HZ) 7299 void md_do_sync(struct md_thread *thread) 7300 { 7301 struct mddev *mddev = thread->mddev; 7302 struct mddev *mddev2; 7303 unsigned int currspeed = 0, 7304 window; 7305 sector_t max_sectors,j, io_sectors; 7306 unsigned long mark[SYNC_MARKS]; 7307 unsigned long update_time; 7308 sector_t mark_cnt[SYNC_MARKS]; 7309 int last_mark,m; 7310 struct list_head *tmp; 7311 sector_t last_check; 7312 int skipped = 0; 7313 struct md_rdev *rdev; 7314 char *desc; 7315 struct blk_plug plug; 7316 7317 /* just incase thread restarts... */ 7318 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7319 return; 7320 if (mddev->ro) /* never try to sync a read-only array */ 7321 return; 7322 7323 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7324 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 7325 desc = "data-check"; 7326 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7327 desc = "requested-resync"; 7328 else 7329 desc = "resync"; 7330 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7331 desc = "reshape"; 7332 else 7333 desc = "recovery"; 7334 7335 /* we overload curr_resync somewhat here. 7336 * 0 == not engaged in resync at all 7337 * 2 == checking that there is no conflict with another sync 7338 * 1 == like 2, but have yielded to allow conflicting resync to 7339 * commense 7340 * other == active in resync - this many blocks 7341 * 7342 * Before starting a resync we must have set curr_resync to 7343 * 2, and then checked that every "conflicting" array has curr_resync 7344 * less than ours. When we find one that is the same or higher 7345 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7346 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7347 * This will mean we have to start checking from the beginning again. 7348 * 7349 */ 7350 7351 do { 7352 mddev->curr_resync = 2; 7353 7354 try_again: 7355 if (kthread_should_stop()) 7356 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7357 7358 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7359 goto skip; 7360 for_each_mddev(mddev2, tmp) { 7361 if (mddev2 == mddev) 7362 continue; 7363 if (!mddev->parallel_resync 7364 && mddev2->curr_resync 7365 && match_mddev_units(mddev, mddev2)) { 7366 DEFINE_WAIT(wq); 7367 if (mddev < mddev2 && mddev->curr_resync == 2) { 7368 /* arbitrarily yield */ 7369 mddev->curr_resync = 1; 7370 wake_up(&resync_wait); 7371 } 7372 if (mddev > mddev2 && mddev->curr_resync == 1) 7373 /* no need to wait here, we can wait the next 7374 * time 'round when curr_resync == 2 7375 */ 7376 continue; 7377 /* We need to wait 'interruptible' so as not to 7378 * contribute to the load average, and not to 7379 * be caught by 'softlockup' 7380 */ 7381 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7382 if (!kthread_should_stop() && 7383 mddev2->curr_resync >= mddev->curr_resync) { 7384 printk(KERN_INFO "md: delaying %s of %s" 7385 " until %s has finished (they" 7386 " share one or more physical units)\n", 7387 desc, mdname(mddev), mdname(mddev2)); 7388 mddev_put(mddev2); 7389 if (signal_pending(current)) 7390 flush_signals(current); 7391 schedule(); 7392 finish_wait(&resync_wait, &wq); 7393 goto try_again; 7394 } 7395 finish_wait(&resync_wait, &wq); 7396 } 7397 } 7398 } while (mddev->curr_resync < 2); 7399 7400 j = 0; 7401 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7402 /* resync follows the size requested by the personality, 7403 * which defaults to physical size, but can be virtual size 7404 */ 7405 max_sectors = mddev->resync_max_sectors; 7406 atomic64_set(&mddev->resync_mismatches, 0); 7407 /* we don't use the checkpoint if there's a bitmap */ 7408 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7409 j = mddev->resync_min; 7410 else if (!mddev->bitmap) 7411 j = mddev->recovery_cp; 7412 7413 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7414 max_sectors = mddev->resync_max_sectors; 7415 else { 7416 /* recovery follows the physical size of devices */ 7417 max_sectors = mddev->dev_sectors; 7418 j = MaxSector; 7419 rcu_read_lock(); 7420 rdev_for_each_rcu(rdev, mddev) 7421 if (rdev->raid_disk >= 0 && 7422 !test_bit(Faulty, &rdev->flags) && 7423 !test_bit(In_sync, &rdev->flags) && 7424 rdev->recovery_offset < j) 7425 j = rdev->recovery_offset; 7426 rcu_read_unlock(); 7427 } 7428 7429 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7430 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7431 " %d KB/sec/disk.\n", speed_min(mddev)); 7432 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7433 "(but not more than %d KB/sec) for %s.\n", 7434 speed_max(mddev), desc); 7435 7436 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7437 7438 io_sectors = 0; 7439 for (m = 0; m < SYNC_MARKS; m++) { 7440 mark[m] = jiffies; 7441 mark_cnt[m] = io_sectors; 7442 } 7443 last_mark = 0; 7444 mddev->resync_mark = mark[last_mark]; 7445 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7446 7447 /* 7448 * Tune reconstruction: 7449 */ 7450 window = 32*(PAGE_SIZE/512); 7451 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7452 window/2, (unsigned long long)max_sectors/2); 7453 7454 atomic_set(&mddev->recovery_active, 0); 7455 last_check = 0; 7456 7457 if (j>2) { 7458 printk(KERN_INFO 7459 "md: resuming %s of %s from checkpoint.\n", 7460 desc, mdname(mddev)); 7461 mddev->curr_resync = j; 7462 } else 7463 mddev->curr_resync = 3; /* no longer delayed */ 7464 mddev->curr_resync_completed = j; 7465 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7466 md_new_event(mddev); 7467 update_time = jiffies; 7468 7469 blk_start_plug(&plug); 7470 while (j < max_sectors) { 7471 sector_t sectors; 7472 7473 skipped = 0; 7474 7475 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7476 ((mddev->curr_resync > mddev->curr_resync_completed && 7477 (mddev->curr_resync - mddev->curr_resync_completed) 7478 > (max_sectors >> 4)) || 7479 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7480 (j - mddev->curr_resync_completed)*2 7481 >= mddev->resync_max - mddev->curr_resync_completed 7482 )) { 7483 /* time to update curr_resync_completed */ 7484 wait_event(mddev->recovery_wait, 7485 atomic_read(&mddev->recovery_active) == 0); 7486 mddev->curr_resync_completed = j; 7487 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 7488 j > mddev->recovery_cp) 7489 mddev->recovery_cp = j; 7490 update_time = jiffies; 7491 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7492 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7493 } 7494 7495 while (j >= mddev->resync_max && !kthread_should_stop()) { 7496 /* As this condition is controlled by user-space, 7497 * we can block indefinitely, so use '_interruptible' 7498 * to avoid triggering warnings. 7499 */ 7500 flush_signals(current); /* just in case */ 7501 wait_event_interruptible(mddev->recovery_wait, 7502 mddev->resync_max > j 7503 || kthread_should_stop()); 7504 } 7505 7506 if (kthread_should_stop()) 7507 goto interrupted; 7508 7509 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7510 currspeed < speed_min(mddev)); 7511 if (sectors == 0) { 7512 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7513 goto out; 7514 } 7515 7516 if (!skipped) { /* actual IO requested */ 7517 io_sectors += sectors; 7518 atomic_add(sectors, &mddev->recovery_active); 7519 } 7520 7521 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7522 break; 7523 7524 j += sectors; 7525 if (j > 2) 7526 mddev->curr_resync = j; 7527 mddev->curr_mark_cnt = io_sectors; 7528 if (last_check == 0) 7529 /* this is the earliest that rebuild will be 7530 * visible in /proc/mdstat 7531 */ 7532 md_new_event(mddev); 7533 7534 if (last_check + window > io_sectors || j == max_sectors) 7535 continue; 7536 7537 last_check = io_sectors; 7538 repeat: 7539 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7540 /* step marks */ 7541 int next = (last_mark+1) % SYNC_MARKS; 7542 7543 mddev->resync_mark = mark[next]; 7544 mddev->resync_mark_cnt = mark_cnt[next]; 7545 mark[next] = jiffies; 7546 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7547 last_mark = next; 7548 } 7549 7550 7551 if (kthread_should_stop()) 7552 goto interrupted; 7553 7554 7555 /* 7556 * this loop exits only if either when we are slower than 7557 * the 'hard' speed limit, or the system was IO-idle for 7558 * a jiffy. 7559 * the system might be non-idle CPU-wise, but we only care 7560 * about not overloading the IO subsystem. (things like an 7561 * e2fsck being done on the RAID array should execute fast) 7562 */ 7563 cond_resched(); 7564 7565 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7566 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7567 7568 if (currspeed > speed_min(mddev)) { 7569 if ((currspeed > speed_max(mddev)) || 7570 !is_mddev_idle(mddev, 0)) { 7571 msleep(500); 7572 goto repeat; 7573 } 7574 } 7575 } 7576 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 7577 /* 7578 * this also signals 'finished resyncing' to md_stop 7579 */ 7580 out: 7581 blk_finish_plug(&plug); 7582 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7583 7584 /* tell personality that we are finished */ 7585 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7586 7587 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7588 mddev->curr_resync > 2) { 7589 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7590 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7591 if (mddev->curr_resync >= mddev->recovery_cp) { 7592 printk(KERN_INFO 7593 "md: checkpointing %s of %s.\n", 7594 desc, mdname(mddev)); 7595 if (test_bit(MD_RECOVERY_ERROR, 7596 &mddev->recovery)) 7597 mddev->recovery_cp = 7598 mddev->curr_resync_completed; 7599 else 7600 mddev->recovery_cp = 7601 mddev->curr_resync; 7602 } 7603 } else 7604 mddev->recovery_cp = MaxSector; 7605 } else { 7606 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7607 mddev->curr_resync = MaxSector; 7608 rcu_read_lock(); 7609 rdev_for_each_rcu(rdev, mddev) 7610 if (rdev->raid_disk >= 0 && 7611 mddev->delta_disks >= 0 && 7612 !test_bit(Faulty, &rdev->flags) && 7613 !test_bit(In_sync, &rdev->flags) && 7614 rdev->recovery_offset < mddev->curr_resync) 7615 rdev->recovery_offset = mddev->curr_resync; 7616 rcu_read_unlock(); 7617 } 7618 } 7619 skip: 7620 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7621 7622 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7623 /* We completed so min/max setting can be forgotten if used. */ 7624 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7625 mddev->resync_min = 0; 7626 mddev->resync_max = MaxSector; 7627 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7628 mddev->resync_min = mddev->curr_resync_completed; 7629 mddev->curr_resync = 0; 7630 wake_up(&resync_wait); 7631 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7632 md_wakeup_thread(mddev->thread); 7633 return; 7634 7635 interrupted: 7636 /* 7637 * got a signal, exit. 7638 */ 7639 printk(KERN_INFO 7640 "md: md_do_sync() got signal ... exiting\n"); 7641 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7642 goto out; 7643 7644 } 7645 EXPORT_SYMBOL_GPL(md_do_sync); 7646 7647 static int remove_and_add_spares(struct mddev *mddev) 7648 { 7649 struct md_rdev *rdev; 7650 int spares = 0; 7651 int removed = 0; 7652 7653 rdev_for_each(rdev, mddev) 7654 if (rdev->raid_disk >= 0 && 7655 !test_bit(Blocked, &rdev->flags) && 7656 (test_bit(Faulty, &rdev->flags) || 7657 ! test_bit(In_sync, &rdev->flags)) && 7658 atomic_read(&rdev->nr_pending)==0) { 7659 if (mddev->pers->hot_remove_disk( 7660 mddev, rdev) == 0) { 7661 sysfs_unlink_rdev(mddev, rdev); 7662 rdev->raid_disk = -1; 7663 removed++; 7664 } 7665 } 7666 if (removed) 7667 sysfs_notify(&mddev->kobj, NULL, 7668 "degraded"); 7669 7670 7671 rdev_for_each(rdev, mddev) { 7672 if (rdev->raid_disk >= 0 && 7673 !test_bit(In_sync, &rdev->flags) && 7674 !test_bit(Faulty, &rdev->flags)) 7675 spares++; 7676 if (rdev->raid_disk < 0 7677 && !test_bit(Faulty, &rdev->flags)) { 7678 rdev->recovery_offset = 0; 7679 if (mddev->pers-> 7680 hot_add_disk(mddev, rdev) == 0) { 7681 if (sysfs_link_rdev(mddev, rdev)) 7682 /* failure here is OK */; 7683 spares++; 7684 md_new_event(mddev); 7685 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7686 } 7687 } 7688 } 7689 if (removed) 7690 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7691 return spares; 7692 } 7693 7694 static void reap_sync_thread(struct mddev *mddev) 7695 { 7696 struct md_rdev *rdev; 7697 7698 /* resync has finished, collect result */ 7699 md_unregister_thread(&mddev->sync_thread); 7700 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7701 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7702 /* success...*/ 7703 /* activate any spares */ 7704 if (mddev->pers->spare_active(mddev)) { 7705 sysfs_notify(&mddev->kobj, NULL, 7706 "degraded"); 7707 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7708 } 7709 } 7710 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7711 mddev->pers->finish_reshape) 7712 mddev->pers->finish_reshape(mddev); 7713 7714 /* If array is no-longer degraded, then any saved_raid_disk 7715 * information must be scrapped. Also if any device is now 7716 * In_sync we must scrape the saved_raid_disk for that device 7717 * do the superblock for an incrementally recovered device 7718 * written out. 7719 */ 7720 rdev_for_each(rdev, mddev) 7721 if (!mddev->degraded || 7722 test_bit(In_sync, &rdev->flags)) 7723 rdev->saved_raid_disk = -1; 7724 7725 md_update_sb(mddev, 1); 7726 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7727 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7728 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7729 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7730 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7731 /* flag recovery needed just to double check */ 7732 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7733 sysfs_notify_dirent_safe(mddev->sysfs_action); 7734 md_new_event(mddev); 7735 if (mddev->event_work.func) 7736 queue_work(md_misc_wq, &mddev->event_work); 7737 } 7738 7739 /* 7740 * This routine is regularly called by all per-raid-array threads to 7741 * deal with generic issues like resync and super-block update. 7742 * Raid personalities that don't have a thread (linear/raid0) do not 7743 * need this as they never do any recovery or update the superblock. 7744 * 7745 * It does not do any resync itself, but rather "forks" off other threads 7746 * to do that as needed. 7747 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7748 * "->recovery" and create a thread at ->sync_thread. 7749 * When the thread finishes it sets MD_RECOVERY_DONE 7750 * and wakeups up this thread which will reap the thread and finish up. 7751 * This thread also removes any faulty devices (with nr_pending == 0). 7752 * 7753 * The overall approach is: 7754 * 1/ if the superblock needs updating, update it. 7755 * 2/ If a recovery thread is running, don't do anything else. 7756 * 3/ If recovery has finished, clean up, possibly marking spares active. 7757 * 4/ If there are any faulty devices, remove them. 7758 * 5/ If array is degraded, try to add spares devices 7759 * 6/ If array has spares or is not in-sync, start a resync thread. 7760 */ 7761 void md_check_recovery(struct mddev *mddev) 7762 { 7763 if (mddev->suspended) 7764 return; 7765 7766 if (mddev->bitmap) 7767 bitmap_daemon_work(mddev); 7768 7769 if (signal_pending(current)) { 7770 if (mddev->pers->sync_request && !mddev->external) { 7771 printk(KERN_INFO "md: %s in immediate safe mode\n", 7772 mdname(mddev)); 7773 mddev->safemode = 2; 7774 } 7775 flush_signals(current); 7776 } 7777 7778 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7779 return; 7780 if ( ! ( 7781 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7782 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7783 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7784 (mddev->external == 0 && mddev->safemode == 1) || 7785 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7786 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7787 )) 7788 return; 7789 7790 if (mddev_trylock(mddev)) { 7791 int spares = 0; 7792 7793 if (mddev->ro) { 7794 /* Only thing we do on a ro array is remove 7795 * failed devices. 7796 */ 7797 struct md_rdev *rdev; 7798 rdev_for_each(rdev, mddev) 7799 if (rdev->raid_disk >= 0 && 7800 !test_bit(Blocked, &rdev->flags) && 7801 test_bit(Faulty, &rdev->flags) && 7802 atomic_read(&rdev->nr_pending)==0) { 7803 if (mddev->pers->hot_remove_disk( 7804 mddev, rdev) == 0) { 7805 sysfs_unlink_rdev(mddev, rdev); 7806 rdev->raid_disk = -1; 7807 } 7808 } 7809 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7810 goto unlock; 7811 } 7812 7813 if (!mddev->external) { 7814 int did_change = 0; 7815 spin_lock_irq(&mddev->write_lock); 7816 if (mddev->safemode && 7817 !atomic_read(&mddev->writes_pending) && 7818 !mddev->in_sync && 7819 mddev->recovery_cp == MaxSector) { 7820 mddev->in_sync = 1; 7821 did_change = 1; 7822 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7823 } 7824 if (mddev->safemode == 1) 7825 mddev->safemode = 0; 7826 spin_unlock_irq(&mddev->write_lock); 7827 if (did_change) 7828 sysfs_notify_dirent_safe(mddev->sysfs_state); 7829 } 7830 7831 if (mddev->flags) 7832 md_update_sb(mddev, 0); 7833 7834 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7835 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7836 /* resync/recovery still happening */ 7837 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7838 goto unlock; 7839 } 7840 if (mddev->sync_thread) { 7841 reap_sync_thread(mddev); 7842 goto unlock; 7843 } 7844 /* Set RUNNING before clearing NEEDED to avoid 7845 * any transients in the value of "sync_action". 7846 */ 7847 mddev->curr_resync_completed = 0; 7848 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7849 /* Clear some bits that don't mean anything, but 7850 * might be left set 7851 */ 7852 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7853 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7854 7855 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7856 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7857 goto unlock; 7858 /* no recovery is running. 7859 * remove any failed drives, then 7860 * add spares if possible. 7861 * Spares are also removed and re-added, to allow 7862 * the personality to fail the re-add. 7863 */ 7864 7865 if (mddev->reshape_position != MaxSector) { 7866 if (mddev->pers->check_reshape == NULL || 7867 mddev->pers->check_reshape(mddev) != 0) 7868 /* Cannot proceed */ 7869 goto unlock; 7870 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7871 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7872 } else if ((spares = remove_and_add_spares(mddev))) { 7873 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7874 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7875 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7876 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7877 } else if (mddev->recovery_cp < MaxSector) { 7878 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7879 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7880 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7881 /* nothing to be done ... */ 7882 goto unlock; 7883 7884 if (mddev->pers->sync_request) { 7885 if (spares) { 7886 /* We are adding a device or devices to an array 7887 * which has the bitmap stored on all devices. 7888 * So make sure all bitmap pages get written 7889 */ 7890 bitmap_write_all(mddev->bitmap); 7891 } 7892 mddev->sync_thread = md_register_thread(md_do_sync, 7893 mddev, 7894 "resync"); 7895 if (!mddev->sync_thread) { 7896 printk(KERN_ERR "%s: could not start resync" 7897 " thread...\n", 7898 mdname(mddev)); 7899 /* leave the spares where they are, it shouldn't hurt */ 7900 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7901 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7902 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7903 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7904 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7905 } else 7906 md_wakeup_thread(mddev->sync_thread); 7907 sysfs_notify_dirent_safe(mddev->sysfs_action); 7908 md_new_event(mddev); 7909 } 7910 unlock: 7911 if (!mddev->sync_thread) { 7912 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7913 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7914 &mddev->recovery)) 7915 if (mddev->sysfs_action) 7916 sysfs_notify_dirent_safe(mddev->sysfs_action); 7917 } 7918 mddev_unlock(mddev); 7919 } 7920 } 7921 7922 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 7923 { 7924 sysfs_notify_dirent_safe(rdev->sysfs_state); 7925 wait_event_timeout(rdev->blocked_wait, 7926 !test_bit(Blocked, &rdev->flags) && 7927 !test_bit(BlockedBadBlocks, &rdev->flags), 7928 msecs_to_jiffies(5000)); 7929 rdev_dec_pending(rdev, mddev); 7930 } 7931 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7932 7933 void md_finish_reshape(struct mddev *mddev) 7934 { 7935 /* called be personality module when reshape completes. */ 7936 struct md_rdev *rdev; 7937 7938 rdev_for_each(rdev, mddev) { 7939 if (rdev->data_offset > rdev->new_data_offset) 7940 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 7941 else 7942 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 7943 rdev->data_offset = rdev->new_data_offset; 7944 } 7945 } 7946 EXPORT_SYMBOL(md_finish_reshape); 7947 7948 /* Bad block management. 7949 * We can record which blocks on each device are 'bad' and so just 7950 * fail those blocks, or that stripe, rather than the whole device. 7951 * Entries in the bad-block table are 64bits wide. This comprises: 7952 * Length of bad-range, in sectors: 0-511 for lengths 1-512 7953 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 7954 * A 'shift' can be set so that larger blocks are tracked and 7955 * consequently larger devices can be covered. 7956 * 'Acknowledged' flag - 1 bit. - the most significant bit. 7957 * 7958 * Locking of the bad-block table uses a seqlock so md_is_badblock 7959 * might need to retry if it is very unlucky. 7960 * We will sometimes want to check for bad blocks in a bi_end_io function, 7961 * so we use the write_seqlock_irq variant. 7962 * 7963 * When looking for a bad block we specify a range and want to 7964 * know if any block in the range is bad. So we binary-search 7965 * to the last range that starts at-or-before the given endpoint, 7966 * (or "before the sector after the target range") 7967 * then see if it ends after the given start. 7968 * We return 7969 * 0 if there are no known bad blocks in the range 7970 * 1 if there are known bad block which are all acknowledged 7971 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 7972 * plus the start/length of the first bad section we overlap. 7973 */ 7974 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 7975 sector_t *first_bad, int *bad_sectors) 7976 { 7977 int hi; 7978 int lo; 7979 u64 *p = bb->page; 7980 int rv; 7981 sector_t target = s + sectors; 7982 unsigned seq; 7983 7984 if (bb->shift > 0) { 7985 /* round the start down, and the end up */ 7986 s >>= bb->shift; 7987 target += (1<<bb->shift) - 1; 7988 target >>= bb->shift; 7989 sectors = target - s; 7990 } 7991 /* 'target' is now the first block after the bad range */ 7992 7993 retry: 7994 seq = read_seqbegin(&bb->lock); 7995 lo = 0; 7996 rv = 0; 7997 hi = bb->count; 7998 7999 /* Binary search between lo and hi for 'target' 8000 * i.e. for the last range that starts before 'target' 8001 */ 8002 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 8003 * are known not to be the last range before target. 8004 * VARIANT: hi-lo is the number of possible 8005 * ranges, and decreases until it reaches 1 8006 */ 8007 while (hi - lo > 1) { 8008 int mid = (lo + hi) / 2; 8009 sector_t a = BB_OFFSET(p[mid]); 8010 if (a < target) 8011 /* This could still be the one, earlier ranges 8012 * could not. */ 8013 lo = mid; 8014 else 8015 /* This and later ranges are definitely out. */ 8016 hi = mid; 8017 } 8018 /* 'lo' might be the last that started before target, but 'hi' isn't */ 8019 if (hi > lo) { 8020 /* need to check all range that end after 's' to see if 8021 * any are unacknowledged. 8022 */ 8023 while (lo >= 0 && 8024 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8025 if (BB_OFFSET(p[lo]) < target) { 8026 /* starts before the end, and finishes after 8027 * the start, so they must overlap 8028 */ 8029 if (rv != -1 && BB_ACK(p[lo])) 8030 rv = 1; 8031 else 8032 rv = -1; 8033 *first_bad = BB_OFFSET(p[lo]); 8034 *bad_sectors = BB_LEN(p[lo]); 8035 } 8036 lo--; 8037 } 8038 } 8039 8040 if (read_seqretry(&bb->lock, seq)) 8041 goto retry; 8042 8043 return rv; 8044 } 8045 EXPORT_SYMBOL_GPL(md_is_badblock); 8046 8047 /* 8048 * Add a range of bad blocks to the table. 8049 * This might extend the table, or might contract it 8050 * if two adjacent ranges can be merged. 8051 * We binary-search to find the 'insertion' point, then 8052 * decide how best to handle it. 8053 */ 8054 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8055 int acknowledged) 8056 { 8057 u64 *p; 8058 int lo, hi; 8059 int rv = 1; 8060 8061 if (bb->shift < 0) 8062 /* badblocks are disabled */ 8063 return 0; 8064 8065 if (bb->shift) { 8066 /* round the start down, and the end up */ 8067 sector_t next = s + sectors; 8068 s >>= bb->shift; 8069 next += (1<<bb->shift) - 1; 8070 next >>= bb->shift; 8071 sectors = next - s; 8072 } 8073 8074 write_seqlock_irq(&bb->lock); 8075 8076 p = bb->page; 8077 lo = 0; 8078 hi = bb->count; 8079 /* Find the last range that starts at-or-before 's' */ 8080 while (hi - lo > 1) { 8081 int mid = (lo + hi) / 2; 8082 sector_t a = BB_OFFSET(p[mid]); 8083 if (a <= s) 8084 lo = mid; 8085 else 8086 hi = mid; 8087 } 8088 if (hi > lo && BB_OFFSET(p[lo]) > s) 8089 hi = lo; 8090 8091 if (hi > lo) { 8092 /* we found a range that might merge with the start 8093 * of our new range 8094 */ 8095 sector_t a = BB_OFFSET(p[lo]); 8096 sector_t e = a + BB_LEN(p[lo]); 8097 int ack = BB_ACK(p[lo]); 8098 if (e >= s) { 8099 /* Yes, we can merge with a previous range */ 8100 if (s == a && s + sectors >= e) 8101 /* new range covers old */ 8102 ack = acknowledged; 8103 else 8104 ack = ack && acknowledged; 8105 8106 if (e < s + sectors) 8107 e = s + sectors; 8108 if (e - a <= BB_MAX_LEN) { 8109 p[lo] = BB_MAKE(a, e-a, ack); 8110 s = e; 8111 } else { 8112 /* does not all fit in one range, 8113 * make p[lo] maximal 8114 */ 8115 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8116 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8117 s = a + BB_MAX_LEN; 8118 } 8119 sectors = e - s; 8120 } 8121 } 8122 if (sectors && hi < bb->count) { 8123 /* 'hi' points to the first range that starts after 's'. 8124 * Maybe we can merge with the start of that range */ 8125 sector_t a = BB_OFFSET(p[hi]); 8126 sector_t e = a + BB_LEN(p[hi]); 8127 int ack = BB_ACK(p[hi]); 8128 if (a <= s + sectors) { 8129 /* merging is possible */ 8130 if (e <= s + sectors) { 8131 /* full overlap */ 8132 e = s + sectors; 8133 ack = acknowledged; 8134 } else 8135 ack = ack && acknowledged; 8136 8137 a = s; 8138 if (e - a <= BB_MAX_LEN) { 8139 p[hi] = BB_MAKE(a, e-a, ack); 8140 s = e; 8141 } else { 8142 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8143 s = a + BB_MAX_LEN; 8144 } 8145 sectors = e - s; 8146 lo = hi; 8147 hi++; 8148 } 8149 } 8150 if (sectors == 0 && hi < bb->count) { 8151 /* we might be able to combine lo and hi */ 8152 /* Note: 's' is at the end of 'lo' */ 8153 sector_t a = BB_OFFSET(p[hi]); 8154 int lolen = BB_LEN(p[lo]); 8155 int hilen = BB_LEN(p[hi]); 8156 int newlen = lolen + hilen - (s - a); 8157 if (s >= a && newlen < BB_MAX_LEN) { 8158 /* yes, we can combine them */ 8159 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8160 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8161 memmove(p + hi, p + hi + 1, 8162 (bb->count - hi - 1) * 8); 8163 bb->count--; 8164 } 8165 } 8166 while (sectors) { 8167 /* didn't merge (it all). 8168 * Need to add a range just before 'hi' */ 8169 if (bb->count >= MD_MAX_BADBLOCKS) { 8170 /* No room for more */ 8171 rv = 0; 8172 break; 8173 } else { 8174 int this_sectors = sectors; 8175 memmove(p + hi + 1, p + hi, 8176 (bb->count - hi) * 8); 8177 bb->count++; 8178 8179 if (this_sectors > BB_MAX_LEN) 8180 this_sectors = BB_MAX_LEN; 8181 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8182 sectors -= this_sectors; 8183 s += this_sectors; 8184 } 8185 } 8186 8187 bb->changed = 1; 8188 if (!acknowledged) 8189 bb->unacked_exist = 1; 8190 write_sequnlock_irq(&bb->lock); 8191 8192 return rv; 8193 } 8194 8195 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8196 int is_new) 8197 { 8198 int rv; 8199 if (is_new) 8200 s += rdev->new_data_offset; 8201 else 8202 s += rdev->data_offset; 8203 rv = md_set_badblocks(&rdev->badblocks, 8204 s, sectors, 0); 8205 if (rv) { 8206 /* Make sure they get written out promptly */ 8207 sysfs_notify_dirent_safe(rdev->sysfs_state); 8208 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8209 md_wakeup_thread(rdev->mddev->thread); 8210 } 8211 return rv; 8212 } 8213 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8214 8215 /* 8216 * Remove a range of bad blocks from the table. 8217 * This may involve extending the table if we spilt a region, 8218 * but it must not fail. So if the table becomes full, we just 8219 * drop the remove request. 8220 */ 8221 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8222 { 8223 u64 *p; 8224 int lo, hi; 8225 sector_t target = s + sectors; 8226 int rv = 0; 8227 8228 if (bb->shift > 0) { 8229 /* When clearing we round the start up and the end down. 8230 * This should not matter as the shift should align with 8231 * the block size and no rounding should ever be needed. 8232 * However it is better the think a block is bad when it 8233 * isn't than to think a block is not bad when it is. 8234 */ 8235 s += (1<<bb->shift) - 1; 8236 s >>= bb->shift; 8237 target >>= bb->shift; 8238 sectors = target - s; 8239 } 8240 8241 write_seqlock_irq(&bb->lock); 8242 8243 p = bb->page; 8244 lo = 0; 8245 hi = bb->count; 8246 /* Find the last range that starts before 'target' */ 8247 while (hi - lo > 1) { 8248 int mid = (lo + hi) / 2; 8249 sector_t a = BB_OFFSET(p[mid]); 8250 if (a < target) 8251 lo = mid; 8252 else 8253 hi = mid; 8254 } 8255 if (hi > lo) { 8256 /* p[lo] is the last range that could overlap the 8257 * current range. Earlier ranges could also overlap, 8258 * but only this one can overlap the end of the range. 8259 */ 8260 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8261 /* Partial overlap, leave the tail of this range */ 8262 int ack = BB_ACK(p[lo]); 8263 sector_t a = BB_OFFSET(p[lo]); 8264 sector_t end = a + BB_LEN(p[lo]); 8265 8266 if (a < s) { 8267 /* we need to split this range */ 8268 if (bb->count >= MD_MAX_BADBLOCKS) { 8269 rv = 0; 8270 goto out; 8271 } 8272 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8273 bb->count++; 8274 p[lo] = BB_MAKE(a, s-a, ack); 8275 lo++; 8276 } 8277 p[lo] = BB_MAKE(target, end - target, ack); 8278 /* there is no longer an overlap */ 8279 hi = lo; 8280 lo--; 8281 } 8282 while (lo >= 0 && 8283 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8284 /* This range does overlap */ 8285 if (BB_OFFSET(p[lo]) < s) { 8286 /* Keep the early parts of this range. */ 8287 int ack = BB_ACK(p[lo]); 8288 sector_t start = BB_OFFSET(p[lo]); 8289 p[lo] = BB_MAKE(start, s - start, ack); 8290 /* now low doesn't overlap, so.. */ 8291 break; 8292 } 8293 lo--; 8294 } 8295 /* 'lo' is strictly before, 'hi' is strictly after, 8296 * anything between needs to be discarded 8297 */ 8298 if (hi - lo > 1) { 8299 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8300 bb->count -= (hi - lo - 1); 8301 } 8302 } 8303 8304 bb->changed = 1; 8305 out: 8306 write_sequnlock_irq(&bb->lock); 8307 return rv; 8308 } 8309 8310 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8311 int is_new) 8312 { 8313 if (is_new) 8314 s += rdev->new_data_offset; 8315 else 8316 s += rdev->data_offset; 8317 return md_clear_badblocks(&rdev->badblocks, 8318 s, sectors); 8319 } 8320 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8321 8322 /* 8323 * Acknowledge all bad blocks in a list. 8324 * This only succeeds if ->changed is clear. It is used by 8325 * in-kernel metadata updates 8326 */ 8327 void md_ack_all_badblocks(struct badblocks *bb) 8328 { 8329 if (bb->page == NULL || bb->changed) 8330 /* no point even trying */ 8331 return; 8332 write_seqlock_irq(&bb->lock); 8333 8334 if (bb->changed == 0 && bb->unacked_exist) { 8335 u64 *p = bb->page; 8336 int i; 8337 for (i = 0; i < bb->count ; i++) { 8338 if (!BB_ACK(p[i])) { 8339 sector_t start = BB_OFFSET(p[i]); 8340 int len = BB_LEN(p[i]); 8341 p[i] = BB_MAKE(start, len, 1); 8342 } 8343 } 8344 bb->unacked_exist = 0; 8345 } 8346 write_sequnlock_irq(&bb->lock); 8347 } 8348 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8349 8350 /* sysfs access to bad-blocks list. 8351 * We present two files. 8352 * 'bad-blocks' lists sector numbers and lengths of ranges that 8353 * are recorded as bad. The list is truncated to fit within 8354 * the one-page limit of sysfs. 8355 * Writing "sector length" to this file adds an acknowledged 8356 * bad block list. 8357 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8358 * been acknowledged. Writing to this file adds bad blocks 8359 * without acknowledging them. This is largely for testing. 8360 */ 8361 8362 static ssize_t 8363 badblocks_show(struct badblocks *bb, char *page, int unack) 8364 { 8365 size_t len; 8366 int i; 8367 u64 *p = bb->page; 8368 unsigned seq; 8369 8370 if (bb->shift < 0) 8371 return 0; 8372 8373 retry: 8374 seq = read_seqbegin(&bb->lock); 8375 8376 len = 0; 8377 i = 0; 8378 8379 while (len < PAGE_SIZE && i < bb->count) { 8380 sector_t s = BB_OFFSET(p[i]); 8381 unsigned int length = BB_LEN(p[i]); 8382 int ack = BB_ACK(p[i]); 8383 i++; 8384 8385 if (unack && ack) 8386 continue; 8387 8388 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8389 (unsigned long long)s << bb->shift, 8390 length << bb->shift); 8391 } 8392 if (unack && len == 0) 8393 bb->unacked_exist = 0; 8394 8395 if (read_seqretry(&bb->lock, seq)) 8396 goto retry; 8397 8398 return len; 8399 } 8400 8401 #define DO_DEBUG 1 8402 8403 static ssize_t 8404 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8405 { 8406 unsigned long long sector; 8407 int length; 8408 char newline; 8409 #ifdef DO_DEBUG 8410 /* Allow clearing via sysfs *only* for testing/debugging. 8411 * Normally only a successful write may clear a badblock 8412 */ 8413 int clear = 0; 8414 if (page[0] == '-') { 8415 clear = 1; 8416 page++; 8417 } 8418 #endif /* DO_DEBUG */ 8419 8420 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8421 case 3: 8422 if (newline != '\n') 8423 return -EINVAL; 8424 case 2: 8425 if (length <= 0) 8426 return -EINVAL; 8427 break; 8428 default: 8429 return -EINVAL; 8430 } 8431 8432 #ifdef DO_DEBUG 8433 if (clear) { 8434 md_clear_badblocks(bb, sector, length); 8435 return len; 8436 } 8437 #endif /* DO_DEBUG */ 8438 if (md_set_badblocks(bb, sector, length, !unack)) 8439 return len; 8440 else 8441 return -ENOSPC; 8442 } 8443 8444 static int md_notify_reboot(struct notifier_block *this, 8445 unsigned long code, void *x) 8446 { 8447 struct list_head *tmp; 8448 struct mddev *mddev; 8449 int need_delay = 0; 8450 8451 for_each_mddev(mddev, tmp) { 8452 if (mddev_trylock(mddev)) { 8453 if (mddev->pers) 8454 __md_stop_writes(mddev); 8455 mddev->safemode = 2; 8456 mddev_unlock(mddev); 8457 } 8458 need_delay = 1; 8459 } 8460 /* 8461 * certain more exotic SCSI devices are known to be 8462 * volatile wrt too early system reboots. While the 8463 * right place to handle this issue is the given 8464 * driver, we do want to have a safe RAID driver ... 8465 */ 8466 if (need_delay) 8467 mdelay(1000*1); 8468 8469 return NOTIFY_DONE; 8470 } 8471 8472 static struct notifier_block md_notifier = { 8473 .notifier_call = md_notify_reboot, 8474 .next = NULL, 8475 .priority = INT_MAX, /* before any real devices */ 8476 }; 8477 8478 static void md_geninit(void) 8479 { 8480 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8481 8482 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8483 } 8484 8485 static int __init md_init(void) 8486 { 8487 int ret = -ENOMEM; 8488 8489 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8490 if (!md_wq) 8491 goto err_wq; 8492 8493 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8494 if (!md_misc_wq) 8495 goto err_misc_wq; 8496 8497 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8498 goto err_md; 8499 8500 if ((ret = register_blkdev(0, "mdp")) < 0) 8501 goto err_mdp; 8502 mdp_major = ret; 8503 8504 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8505 md_probe, NULL, NULL); 8506 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8507 md_probe, NULL, NULL); 8508 8509 register_reboot_notifier(&md_notifier); 8510 raid_table_header = register_sysctl_table(raid_root_table); 8511 8512 md_geninit(); 8513 return 0; 8514 8515 err_mdp: 8516 unregister_blkdev(MD_MAJOR, "md"); 8517 err_md: 8518 destroy_workqueue(md_misc_wq); 8519 err_misc_wq: 8520 destroy_workqueue(md_wq); 8521 err_wq: 8522 return ret; 8523 } 8524 8525 #ifndef MODULE 8526 8527 /* 8528 * Searches all registered partitions for autorun RAID arrays 8529 * at boot time. 8530 */ 8531 8532 static LIST_HEAD(all_detected_devices); 8533 struct detected_devices_node { 8534 struct list_head list; 8535 dev_t dev; 8536 }; 8537 8538 void md_autodetect_dev(dev_t dev) 8539 { 8540 struct detected_devices_node *node_detected_dev; 8541 8542 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8543 if (node_detected_dev) { 8544 node_detected_dev->dev = dev; 8545 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8546 } else { 8547 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8548 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8549 } 8550 } 8551 8552 8553 static void autostart_arrays(int part) 8554 { 8555 struct md_rdev *rdev; 8556 struct detected_devices_node *node_detected_dev; 8557 dev_t dev; 8558 int i_scanned, i_passed; 8559 8560 i_scanned = 0; 8561 i_passed = 0; 8562 8563 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8564 8565 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8566 i_scanned++; 8567 node_detected_dev = list_entry(all_detected_devices.next, 8568 struct detected_devices_node, list); 8569 list_del(&node_detected_dev->list); 8570 dev = node_detected_dev->dev; 8571 kfree(node_detected_dev); 8572 rdev = md_import_device(dev,0, 90); 8573 if (IS_ERR(rdev)) 8574 continue; 8575 8576 if (test_bit(Faulty, &rdev->flags)) { 8577 MD_BUG(); 8578 continue; 8579 } 8580 set_bit(AutoDetected, &rdev->flags); 8581 list_add(&rdev->same_set, &pending_raid_disks); 8582 i_passed++; 8583 } 8584 8585 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8586 i_scanned, i_passed); 8587 8588 autorun_devices(part); 8589 } 8590 8591 #endif /* !MODULE */ 8592 8593 static __exit void md_exit(void) 8594 { 8595 struct mddev *mddev; 8596 struct list_head *tmp; 8597 8598 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8599 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8600 8601 unregister_blkdev(MD_MAJOR,"md"); 8602 unregister_blkdev(mdp_major, "mdp"); 8603 unregister_reboot_notifier(&md_notifier); 8604 unregister_sysctl_table(raid_table_header); 8605 remove_proc_entry("mdstat", NULL); 8606 for_each_mddev(mddev, tmp) { 8607 export_array(mddev); 8608 mddev->hold_active = 0; 8609 } 8610 destroy_workqueue(md_misc_wq); 8611 destroy_workqueue(md_wq); 8612 } 8613 8614 subsys_initcall(md_init); 8615 module_exit(md_exit) 8616 8617 static int get_ro(char *buffer, struct kernel_param *kp) 8618 { 8619 return sprintf(buffer, "%d", start_readonly); 8620 } 8621 static int set_ro(const char *val, struct kernel_param *kp) 8622 { 8623 char *e; 8624 int num = simple_strtoul(val, &e, 10); 8625 if (*val && (*e == '\0' || *e == '\n')) { 8626 start_readonly = num; 8627 return 0; 8628 } 8629 return -EINVAL; 8630 } 8631 8632 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8633 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8634 8635 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8636 8637 EXPORT_SYMBOL(register_md_personality); 8638 EXPORT_SYMBOL(unregister_md_personality); 8639 EXPORT_SYMBOL(md_error); 8640 EXPORT_SYMBOL(md_done_sync); 8641 EXPORT_SYMBOL(md_write_start); 8642 EXPORT_SYMBOL(md_write_end); 8643 EXPORT_SYMBOL(md_register_thread); 8644 EXPORT_SYMBOL(md_unregister_thread); 8645 EXPORT_SYMBOL(md_wakeup_thread); 8646 EXPORT_SYMBOL(md_check_recovery); 8647 MODULE_LICENSE("GPL"); 8648 MODULE_DESCRIPTION("MD RAID framework"); 8649 MODULE_ALIAS("md"); 8650 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8651