xref: /openbmc/linux/drivers/md/md.c (revision 97da55fc)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76 
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95 
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 	return mddev->sync_speed_min ?
101 		mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103 
104 static inline int speed_max(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_max ?
107 		mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109 
110 static struct ctl_table_header *raid_table_header;
111 
112 static ctl_table raid_table[] = {
113 	{
114 		.procname	= "speed_limit_min",
115 		.data		= &sysctl_speed_limit_min,
116 		.maxlen		= sizeof(int),
117 		.mode		= S_IRUGO|S_IWUSR,
118 		.proc_handler	= proc_dointvec,
119 	},
120 	{
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{ }
128 };
129 
130 static ctl_table raid_dir_table[] = {
131 	{
132 		.procname	= "raid",
133 		.maxlen		= 0,
134 		.mode		= S_IRUGO|S_IXUGO,
135 		.child		= raid_table,
136 	},
137 	{ }
138 };
139 
140 static ctl_table raid_root_table[] = {
141 	{
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{  }
148 };
149 
150 static const struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157 
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159 			    struct mddev *mddev)
160 {
161 	struct bio *b;
162 
163 	if (!mddev || !mddev->bio_set)
164 		return bio_alloc(gfp_mask, nr_iovecs);
165 
166 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167 	if (!b)
168 		return NULL;
169 	return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172 
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174 			    struct mddev *mddev)
175 {
176 	if (!mddev || !mddev->bio_set)
177 		return bio_clone(bio, gfp_mask);
178 
179 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182 
183 void md_trim_bio(struct bio *bio, int offset, int size)
184 {
185 	/* 'bio' is a cloned bio which we need to trim to match
186 	 * the given offset and size.
187 	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
188 	 */
189 	int i;
190 	struct bio_vec *bvec;
191 	int sofar = 0;
192 
193 	size <<= 9;
194 	if (offset == 0 && size == bio->bi_size)
195 		return;
196 
197 	bio->bi_sector += offset;
198 	bio->bi_size = size;
199 	offset <<= 9;
200 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201 
202 	while (bio->bi_idx < bio->bi_vcnt &&
203 	       bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
204 		/* remove this whole bio_vec */
205 		offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
206 		bio->bi_idx++;
207 	}
208 	if (bio->bi_idx < bio->bi_vcnt) {
209 		bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
210 		bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
211 	}
212 	/* avoid any complications with bi_idx being non-zero*/
213 	if (bio->bi_idx) {
214 		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
215 			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
216 		bio->bi_vcnt -= bio->bi_idx;
217 		bio->bi_idx = 0;
218 	}
219 	/* Make sure vcnt and last bv are not too big */
220 	bio_for_each_segment(bvec, bio, i) {
221 		if (sofar + bvec->bv_len > size)
222 			bvec->bv_len = size - sofar;
223 		if (bvec->bv_len == 0) {
224 			bio->bi_vcnt = i;
225 			break;
226 		}
227 		sofar += bvec->bv_len;
228 	}
229 }
230 EXPORT_SYMBOL_GPL(md_trim_bio);
231 
232 /*
233  * We have a system wide 'event count' that is incremented
234  * on any 'interesting' event, and readers of /proc/mdstat
235  * can use 'poll' or 'select' to find out when the event
236  * count increases.
237  *
238  * Events are:
239  *  start array, stop array, error, add device, remove device,
240  *  start build, activate spare
241  */
242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
243 static atomic_t md_event_count;
244 void md_new_event(struct mddev *mddev)
245 {
246 	atomic_inc(&md_event_count);
247 	wake_up(&md_event_waiters);
248 }
249 EXPORT_SYMBOL_GPL(md_new_event);
250 
251 /* Alternate version that can be called from interrupts
252  * when calling sysfs_notify isn't needed.
253  */
254 static void md_new_event_inintr(struct mddev *mddev)
255 {
256 	atomic_inc(&md_event_count);
257 	wake_up(&md_event_waiters);
258 }
259 
260 /*
261  * Enables to iterate over all existing md arrays
262  * all_mddevs_lock protects this list.
263  */
264 static LIST_HEAD(all_mddevs);
265 static DEFINE_SPINLOCK(all_mddevs_lock);
266 
267 
268 /*
269  * iterates through all used mddevs in the system.
270  * We take care to grab the all_mddevs_lock whenever navigating
271  * the list, and to always hold a refcount when unlocked.
272  * Any code which breaks out of this loop while own
273  * a reference to the current mddev and must mddev_put it.
274  */
275 #define for_each_mddev(_mddev,_tmp)					\
276 									\
277 	for (({ spin_lock(&all_mddevs_lock); 				\
278 		_tmp = all_mddevs.next;					\
279 		_mddev = NULL;});					\
280 	     ({ if (_tmp != &all_mddevs)				\
281 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
282 		spin_unlock(&all_mddevs_lock);				\
283 		if (_mddev) mddev_put(_mddev);				\
284 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
285 		_tmp != &all_mddevs;});					\
286 	     ({ spin_lock(&all_mddevs_lock);				\
287 		_tmp = _tmp->next;})					\
288 		)
289 
290 
291 /* Rather than calling directly into the personality make_request function,
292  * IO requests come here first so that we can check if the device is
293  * being suspended pending a reconfiguration.
294  * We hold a refcount over the call to ->make_request.  By the time that
295  * call has finished, the bio has been linked into some internal structure
296  * and so is visible to ->quiesce(), so we don't need the refcount any more.
297  */
298 static void md_make_request(struct request_queue *q, struct bio *bio)
299 {
300 	const int rw = bio_data_dir(bio);
301 	struct mddev *mddev = q->queuedata;
302 	int cpu;
303 	unsigned int sectors;
304 
305 	if (mddev == NULL || mddev->pers == NULL
306 	    || !mddev->ready) {
307 		bio_io_error(bio);
308 		return;
309 	}
310 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
311 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
312 		return;
313 	}
314 	smp_rmb(); /* Ensure implications of  'active' are visible */
315 	rcu_read_lock();
316 	if (mddev->suspended) {
317 		DEFINE_WAIT(__wait);
318 		for (;;) {
319 			prepare_to_wait(&mddev->sb_wait, &__wait,
320 					TASK_UNINTERRUPTIBLE);
321 			if (!mddev->suspended)
322 				break;
323 			rcu_read_unlock();
324 			schedule();
325 			rcu_read_lock();
326 		}
327 		finish_wait(&mddev->sb_wait, &__wait);
328 	}
329 	atomic_inc(&mddev->active_io);
330 	rcu_read_unlock();
331 
332 	/*
333 	 * save the sectors now since our bio can
334 	 * go away inside make_request
335 	 */
336 	sectors = bio_sectors(bio);
337 	mddev->pers->make_request(mddev, bio);
338 
339 	cpu = part_stat_lock();
340 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
341 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
342 	part_stat_unlock();
343 
344 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
345 		wake_up(&mddev->sb_wait);
346 }
347 
348 /* mddev_suspend makes sure no new requests are submitted
349  * to the device, and that any requests that have been submitted
350  * are completely handled.
351  * Once ->stop is called and completes, the module will be completely
352  * unused.
353  */
354 void mddev_suspend(struct mddev *mddev)
355 {
356 	BUG_ON(mddev->suspended);
357 	mddev->suspended = 1;
358 	synchronize_rcu();
359 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
360 	mddev->pers->quiesce(mddev, 1);
361 
362 	del_timer_sync(&mddev->safemode_timer);
363 }
364 EXPORT_SYMBOL_GPL(mddev_suspend);
365 
366 void mddev_resume(struct mddev *mddev)
367 {
368 	mddev->suspended = 0;
369 	wake_up(&mddev->sb_wait);
370 	mddev->pers->quiesce(mddev, 0);
371 
372 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
373 	md_wakeup_thread(mddev->thread);
374 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
375 }
376 EXPORT_SYMBOL_GPL(mddev_resume);
377 
378 int mddev_congested(struct mddev *mddev, int bits)
379 {
380 	return mddev->suspended;
381 }
382 EXPORT_SYMBOL(mddev_congested);
383 
384 /*
385  * Generic flush handling for md
386  */
387 
388 static void md_end_flush(struct bio *bio, int err)
389 {
390 	struct md_rdev *rdev = bio->bi_private;
391 	struct mddev *mddev = rdev->mddev;
392 
393 	rdev_dec_pending(rdev, mddev);
394 
395 	if (atomic_dec_and_test(&mddev->flush_pending)) {
396 		/* The pre-request flush has finished */
397 		queue_work(md_wq, &mddev->flush_work);
398 	}
399 	bio_put(bio);
400 }
401 
402 static void md_submit_flush_data(struct work_struct *ws);
403 
404 static void submit_flushes(struct work_struct *ws)
405 {
406 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
407 	struct md_rdev *rdev;
408 
409 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
410 	atomic_set(&mddev->flush_pending, 1);
411 	rcu_read_lock();
412 	rdev_for_each_rcu(rdev, mddev)
413 		if (rdev->raid_disk >= 0 &&
414 		    !test_bit(Faulty, &rdev->flags)) {
415 			/* Take two references, one is dropped
416 			 * when request finishes, one after
417 			 * we reclaim rcu_read_lock
418 			 */
419 			struct bio *bi;
420 			atomic_inc(&rdev->nr_pending);
421 			atomic_inc(&rdev->nr_pending);
422 			rcu_read_unlock();
423 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
424 			bi->bi_end_io = md_end_flush;
425 			bi->bi_private = rdev;
426 			bi->bi_bdev = rdev->bdev;
427 			atomic_inc(&mddev->flush_pending);
428 			submit_bio(WRITE_FLUSH, bi);
429 			rcu_read_lock();
430 			rdev_dec_pending(rdev, mddev);
431 		}
432 	rcu_read_unlock();
433 	if (atomic_dec_and_test(&mddev->flush_pending))
434 		queue_work(md_wq, &mddev->flush_work);
435 }
436 
437 static void md_submit_flush_data(struct work_struct *ws)
438 {
439 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440 	struct bio *bio = mddev->flush_bio;
441 
442 	if (bio->bi_size == 0)
443 		/* an empty barrier - all done */
444 		bio_endio(bio, 0);
445 	else {
446 		bio->bi_rw &= ~REQ_FLUSH;
447 		mddev->pers->make_request(mddev, bio);
448 	}
449 
450 	mddev->flush_bio = NULL;
451 	wake_up(&mddev->sb_wait);
452 }
453 
454 void md_flush_request(struct mddev *mddev, struct bio *bio)
455 {
456 	spin_lock_irq(&mddev->write_lock);
457 	wait_event_lock_irq(mddev->sb_wait,
458 			    !mddev->flush_bio,
459 			    mddev->write_lock);
460 	mddev->flush_bio = bio;
461 	spin_unlock_irq(&mddev->write_lock);
462 
463 	INIT_WORK(&mddev->flush_work, submit_flushes);
464 	queue_work(md_wq, &mddev->flush_work);
465 }
466 EXPORT_SYMBOL(md_flush_request);
467 
468 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
469 {
470 	struct mddev *mddev = cb->data;
471 	md_wakeup_thread(mddev->thread);
472 	kfree(cb);
473 }
474 EXPORT_SYMBOL(md_unplug);
475 
476 static inline struct mddev *mddev_get(struct mddev *mddev)
477 {
478 	atomic_inc(&mddev->active);
479 	return mddev;
480 }
481 
482 static void mddev_delayed_delete(struct work_struct *ws);
483 
484 static void mddev_put(struct mddev *mddev)
485 {
486 	struct bio_set *bs = NULL;
487 
488 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
489 		return;
490 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
491 	    mddev->ctime == 0 && !mddev->hold_active) {
492 		/* Array is not configured at all, and not held active,
493 		 * so destroy it */
494 		list_del_init(&mddev->all_mddevs);
495 		bs = mddev->bio_set;
496 		mddev->bio_set = NULL;
497 		if (mddev->gendisk) {
498 			/* We did a probe so need to clean up.  Call
499 			 * queue_work inside the spinlock so that
500 			 * flush_workqueue() after mddev_find will
501 			 * succeed in waiting for the work to be done.
502 			 */
503 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
504 			queue_work(md_misc_wq, &mddev->del_work);
505 		} else
506 			kfree(mddev);
507 	}
508 	spin_unlock(&all_mddevs_lock);
509 	if (bs)
510 		bioset_free(bs);
511 }
512 
513 void mddev_init(struct mddev *mddev)
514 {
515 	mutex_init(&mddev->open_mutex);
516 	mutex_init(&mddev->reconfig_mutex);
517 	mutex_init(&mddev->bitmap_info.mutex);
518 	INIT_LIST_HEAD(&mddev->disks);
519 	INIT_LIST_HEAD(&mddev->all_mddevs);
520 	init_timer(&mddev->safemode_timer);
521 	atomic_set(&mddev->active, 1);
522 	atomic_set(&mddev->openers, 0);
523 	atomic_set(&mddev->active_io, 0);
524 	spin_lock_init(&mddev->write_lock);
525 	atomic_set(&mddev->flush_pending, 0);
526 	init_waitqueue_head(&mddev->sb_wait);
527 	init_waitqueue_head(&mddev->recovery_wait);
528 	mddev->reshape_position = MaxSector;
529 	mddev->reshape_backwards = 0;
530 	mddev->resync_min = 0;
531 	mddev->resync_max = MaxSector;
532 	mddev->level = LEVEL_NONE;
533 }
534 EXPORT_SYMBOL_GPL(mddev_init);
535 
536 static struct mddev * mddev_find(dev_t unit)
537 {
538 	struct mddev *mddev, *new = NULL;
539 
540 	if (unit && MAJOR(unit) != MD_MAJOR)
541 		unit &= ~((1<<MdpMinorShift)-1);
542 
543  retry:
544 	spin_lock(&all_mddevs_lock);
545 
546 	if (unit) {
547 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
548 			if (mddev->unit == unit) {
549 				mddev_get(mddev);
550 				spin_unlock(&all_mddevs_lock);
551 				kfree(new);
552 				return mddev;
553 			}
554 
555 		if (new) {
556 			list_add(&new->all_mddevs, &all_mddevs);
557 			spin_unlock(&all_mddevs_lock);
558 			new->hold_active = UNTIL_IOCTL;
559 			return new;
560 		}
561 	} else if (new) {
562 		/* find an unused unit number */
563 		static int next_minor = 512;
564 		int start = next_minor;
565 		int is_free = 0;
566 		int dev = 0;
567 		while (!is_free) {
568 			dev = MKDEV(MD_MAJOR, next_minor);
569 			next_minor++;
570 			if (next_minor > MINORMASK)
571 				next_minor = 0;
572 			if (next_minor == start) {
573 				/* Oh dear, all in use. */
574 				spin_unlock(&all_mddevs_lock);
575 				kfree(new);
576 				return NULL;
577 			}
578 
579 			is_free = 1;
580 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
581 				if (mddev->unit == dev) {
582 					is_free = 0;
583 					break;
584 				}
585 		}
586 		new->unit = dev;
587 		new->md_minor = MINOR(dev);
588 		new->hold_active = UNTIL_STOP;
589 		list_add(&new->all_mddevs, &all_mddevs);
590 		spin_unlock(&all_mddevs_lock);
591 		return new;
592 	}
593 	spin_unlock(&all_mddevs_lock);
594 
595 	new = kzalloc(sizeof(*new), GFP_KERNEL);
596 	if (!new)
597 		return NULL;
598 
599 	new->unit = unit;
600 	if (MAJOR(unit) == MD_MAJOR)
601 		new->md_minor = MINOR(unit);
602 	else
603 		new->md_minor = MINOR(unit) >> MdpMinorShift;
604 
605 	mddev_init(new);
606 
607 	goto retry;
608 }
609 
610 static inline int mddev_lock(struct mddev * mddev)
611 {
612 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
613 }
614 
615 static inline int mddev_is_locked(struct mddev *mddev)
616 {
617 	return mutex_is_locked(&mddev->reconfig_mutex);
618 }
619 
620 static inline int mddev_trylock(struct mddev * mddev)
621 {
622 	return mutex_trylock(&mddev->reconfig_mutex);
623 }
624 
625 static struct attribute_group md_redundancy_group;
626 
627 static void mddev_unlock(struct mddev * mddev)
628 {
629 	if (mddev->to_remove) {
630 		/* These cannot be removed under reconfig_mutex as
631 		 * an access to the files will try to take reconfig_mutex
632 		 * while holding the file unremovable, which leads to
633 		 * a deadlock.
634 		 * So hold set sysfs_active while the remove in happeing,
635 		 * and anything else which might set ->to_remove or my
636 		 * otherwise change the sysfs namespace will fail with
637 		 * -EBUSY if sysfs_active is still set.
638 		 * We set sysfs_active under reconfig_mutex and elsewhere
639 		 * test it under the same mutex to ensure its correct value
640 		 * is seen.
641 		 */
642 		struct attribute_group *to_remove = mddev->to_remove;
643 		mddev->to_remove = NULL;
644 		mddev->sysfs_active = 1;
645 		mutex_unlock(&mddev->reconfig_mutex);
646 
647 		if (mddev->kobj.sd) {
648 			if (to_remove != &md_redundancy_group)
649 				sysfs_remove_group(&mddev->kobj, to_remove);
650 			if (mddev->pers == NULL ||
651 			    mddev->pers->sync_request == NULL) {
652 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
653 				if (mddev->sysfs_action)
654 					sysfs_put(mddev->sysfs_action);
655 				mddev->sysfs_action = NULL;
656 			}
657 		}
658 		mddev->sysfs_active = 0;
659 	} else
660 		mutex_unlock(&mddev->reconfig_mutex);
661 
662 	/* As we've dropped the mutex we need a spinlock to
663 	 * make sure the thread doesn't disappear
664 	 */
665 	spin_lock(&pers_lock);
666 	md_wakeup_thread(mddev->thread);
667 	spin_unlock(&pers_lock);
668 }
669 
670 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
671 {
672 	struct md_rdev *rdev;
673 
674 	rdev_for_each(rdev, mddev)
675 		if (rdev->desc_nr == nr)
676 			return rdev;
677 
678 	return NULL;
679 }
680 
681 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
682 {
683 	struct md_rdev *rdev;
684 
685 	rdev_for_each_rcu(rdev, mddev)
686 		if (rdev->desc_nr == nr)
687 			return rdev;
688 
689 	return NULL;
690 }
691 
692 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
693 {
694 	struct md_rdev *rdev;
695 
696 	rdev_for_each(rdev, mddev)
697 		if (rdev->bdev->bd_dev == dev)
698 			return rdev;
699 
700 	return NULL;
701 }
702 
703 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
704 {
705 	struct md_rdev *rdev;
706 
707 	rdev_for_each_rcu(rdev, mddev)
708 		if (rdev->bdev->bd_dev == dev)
709 			return rdev;
710 
711 	return NULL;
712 }
713 
714 static struct md_personality *find_pers(int level, char *clevel)
715 {
716 	struct md_personality *pers;
717 	list_for_each_entry(pers, &pers_list, list) {
718 		if (level != LEVEL_NONE && pers->level == level)
719 			return pers;
720 		if (strcmp(pers->name, clevel)==0)
721 			return pers;
722 	}
723 	return NULL;
724 }
725 
726 /* return the offset of the super block in 512byte sectors */
727 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
728 {
729 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
730 	return MD_NEW_SIZE_SECTORS(num_sectors);
731 }
732 
733 static int alloc_disk_sb(struct md_rdev * rdev)
734 {
735 	if (rdev->sb_page)
736 		MD_BUG();
737 
738 	rdev->sb_page = alloc_page(GFP_KERNEL);
739 	if (!rdev->sb_page) {
740 		printk(KERN_ALERT "md: out of memory.\n");
741 		return -ENOMEM;
742 	}
743 
744 	return 0;
745 }
746 
747 void md_rdev_clear(struct md_rdev *rdev)
748 {
749 	if (rdev->sb_page) {
750 		put_page(rdev->sb_page);
751 		rdev->sb_loaded = 0;
752 		rdev->sb_page = NULL;
753 		rdev->sb_start = 0;
754 		rdev->sectors = 0;
755 	}
756 	if (rdev->bb_page) {
757 		put_page(rdev->bb_page);
758 		rdev->bb_page = NULL;
759 	}
760 	kfree(rdev->badblocks.page);
761 	rdev->badblocks.page = NULL;
762 }
763 EXPORT_SYMBOL_GPL(md_rdev_clear);
764 
765 static void super_written(struct bio *bio, int error)
766 {
767 	struct md_rdev *rdev = bio->bi_private;
768 	struct mddev *mddev = rdev->mddev;
769 
770 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
771 		printk("md: super_written gets error=%d, uptodate=%d\n",
772 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
773 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
774 		md_error(mddev, rdev);
775 	}
776 
777 	if (atomic_dec_and_test(&mddev->pending_writes))
778 		wake_up(&mddev->sb_wait);
779 	bio_put(bio);
780 }
781 
782 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
783 		   sector_t sector, int size, struct page *page)
784 {
785 	/* write first size bytes of page to sector of rdev
786 	 * Increment mddev->pending_writes before returning
787 	 * and decrement it on completion, waking up sb_wait
788 	 * if zero is reached.
789 	 * If an error occurred, call md_error
790 	 */
791 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
792 
793 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
794 	bio->bi_sector = sector;
795 	bio_add_page(bio, page, size, 0);
796 	bio->bi_private = rdev;
797 	bio->bi_end_io = super_written;
798 
799 	atomic_inc(&mddev->pending_writes);
800 	submit_bio(WRITE_FLUSH_FUA, bio);
801 }
802 
803 void md_super_wait(struct mddev *mddev)
804 {
805 	/* wait for all superblock writes that were scheduled to complete */
806 	DEFINE_WAIT(wq);
807 	for(;;) {
808 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
809 		if (atomic_read(&mddev->pending_writes)==0)
810 			break;
811 		schedule();
812 	}
813 	finish_wait(&mddev->sb_wait, &wq);
814 }
815 
816 static void bi_complete(struct bio *bio, int error)
817 {
818 	complete((struct completion*)bio->bi_private);
819 }
820 
821 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
822 		 struct page *page, int rw, bool metadata_op)
823 {
824 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
825 	struct completion event;
826 	int ret;
827 
828 	rw |= REQ_SYNC;
829 
830 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
831 		rdev->meta_bdev : rdev->bdev;
832 	if (metadata_op)
833 		bio->bi_sector = sector + rdev->sb_start;
834 	else if (rdev->mddev->reshape_position != MaxSector &&
835 		 (rdev->mddev->reshape_backwards ==
836 		  (sector >= rdev->mddev->reshape_position)))
837 		bio->bi_sector = sector + rdev->new_data_offset;
838 	else
839 		bio->bi_sector = sector + rdev->data_offset;
840 	bio_add_page(bio, page, size, 0);
841 	init_completion(&event);
842 	bio->bi_private = &event;
843 	bio->bi_end_io = bi_complete;
844 	submit_bio(rw, bio);
845 	wait_for_completion(&event);
846 
847 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
848 	bio_put(bio);
849 	return ret;
850 }
851 EXPORT_SYMBOL_GPL(sync_page_io);
852 
853 static int read_disk_sb(struct md_rdev * rdev, int size)
854 {
855 	char b[BDEVNAME_SIZE];
856 	if (!rdev->sb_page) {
857 		MD_BUG();
858 		return -EINVAL;
859 	}
860 	if (rdev->sb_loaded)
861 		return 0;
862 
863 
864 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
865 		goto fail;
866 	rdev->sb_loaded = 1;
867 	return 0;
868 
869 fail:
870 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
871 		bdevname(rdev->bdev,b));
872 	return -EINVAL;
873 }
874 
875 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
876 {
877 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
878 		sb1->set_uuid1 == sb2->set_uuid1 &&
879 		sb1->set_uuid2 == sb2->set_uuid2 &&
880 		sb1->set_uuid3 == sb2->set_uuid3;
881 }
882 
883 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
884 {
885 	int ret;
886 	mdp_super_t *tmp1, *tmp2;
887 
888 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
889 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
890 
891 	if (!tmp1 || !tmp2) {
892 		ret = 0;
893 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
894 		goto abort;
895 	}
896 
897 	*tmp1 = *sb1;
898 	*tmp2 = *sb2;
899 
900 	/*
901 	 * nr_disks is not constant
902 	 */
903 	tmp1->nr_disks = 0;
904 	tmp2->nr_disks = 0;
905 
906 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
907 abort:
908 	kfree(tmp1);
909 	kfree(tmp2);
910 	return ret;
911 }
912 
913 
914 static u32 md_csum_fold(u32 csum)
915 {
916 	csum = (csum & 0xffff) + (csum >> 16);
917 	return (csum & 0xffff) + (csum >> 16);
918 }
919 
920 static unsigned int calc_sb_csum(mdp_super_t * sb)
921 {
922 	u64 newcsum = 0;
923 	u32 *sb32 = (u32*)sb;
924 	int i;
925 	unsigned int disk_csum, csum;
926 
927 	disk_csum = sb->sb_csum;
928 	sb->sb_csum = 0;
929 
930 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
931 		newcsum += sb32[i];
932 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
933 
934 
935 #ifdef CONFIG_ALPHA
936 	/* This used to use csum_partial, which was wrong for several
937 	 * reasons including that different results are returned on
938 	 * different architectures.  It isn't critical that we get exactly
939 	 * the same return value as before (we always csum_fold before
940 	 * testing, and that removes any differences).  However as we
941 	 * know that csum_partial always returned a 16bit value on
942 	 * alphas, do a fold to maximise conformity to previous behaviour.
943 	 */
944 	sb->sb_csum = md_csum_fold(disk_csum);
945 #else
946 	sb->sb_csum = disk_csum;
947 #endif
948 	return csum;
949 }
950 
951 
952 /*
953  * Handle superblock details.
954  * We want to be able to handle multiple superblock formats
955  * so we have a common interface to them all, and an array of
956  * different handlers.
957  * We rely on user-space to write the initial superblock, and support
958  * reading and updating of superblocks.
959  * Interface methods are:
960  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
961  *      loads and validates a superblock on dev.
962  *      if refdev != NULL, compare superblocks on both devices
963  *    Return:
964  *      0 - dev has a superblock that is compatible with refdev
965  *      1 - dev has a superblock that is compatible and newer than refdev
966  *          so dev should be used as the refdev in future
967  *     -EINVAL superblock incompatible or invalid
968  *     -othererror e.g. -EIO
969  *
970  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
971  *      Verify that dev is acceptable into mddev.
972  *       The first time, mddev->raid_disks will be 0, and data from
973  *       dev should be merged in.  Subsequent calls check that dev
974  *       is new enough.  Return 0 or -EINVAL
975  *
976  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
977  *     Update the superblock for rdev with data in mddev
978  *     This does not write to disc.
979  *
980  */
981 
982 struct super_type  {
983 	char		    *name;
984 	struct module	    *owner;
985 	int		    (*load_super)(struct md_rdev *rdev,
986 					  struct md_rdev *refdev,
987 					  int minor_version);
988 	int		    (*validate_super)(struct mddev *mddev,
989 					      struct md_rdev *rdev);
990 	void		    (*sync_super)(struct mddev *mddev,
991 					  struct md_rdev *rdev);
992 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
993 						sector_t num_sectors);
994 	int		    (*allow_new_offset)(struct md_rdev *rdev,
995 						unsigned long long new_offset);
996 };
997 
998 /*
999  * Check that the given mddev has no bitmap.
1000  *
1001  * This function is called from the run method of all personalities that do not
1002  * support bitmaps. It prints an error message and returns non-zero if mddev
1003  * has a bitmap. Otherwise, it returns 0.
1004  *
1005  */
1006 int md_check_no_bitmap(struct mddev *mddev)
1007 {
1008 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1009 		return 0;
1010 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1011 		mdname(mddev), mddev->pers->name);
1012 	return 1;
1013 }
1014 EXPORT_SYMBOL(md_check_no_bitmap);
1015 
1016 /*
1017  * load_super for 0.90.0
1018  */
1019 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1020 {
1021 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1022 	mdp_super_t *sb;
1023 	int ret;
1024 
1025 	/*
1026 	 * Calculate the position of the superblock (512byte sectors),
1027 	 * it's at the end of the disk.
1028 	 *
1029 	 * It also happens to be a multiple of 4Kb.
1030 	 */
1031 	rdev->sb_start = calc_dev_sboffset(rdev);
1032 
1033 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1034 	if (ret) return ret;
1035 
1036 	ret = -EINVAL;
1037 
1038 	bdevname(rdev->bdev, b);
1039 	sb = page_address(rdev->sb_page);
1040 
1041 	if (sb->md_magic != MD_SB_MAGIC) {
1042 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1043 		       b);
1044 		goto abort;
1045 	}
1046 
1047 	if (sb->major_version != 0 ||
1048 	    sb->minor_version < 90 ||
1049 	    sb->minor_version > 91) {
1050 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1051 			sb->major_version, sb->minor_version,
1052 			b);
1053 		goto abort;
1054 	}
1055 
1056 	if (sb->raid_disks <= 0)
1057 		goto abort;
1058 
1059 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1060 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1061 			b);
1062 		goto abort;
1063 	}
1064 
1065 	rdev->preferred_minor = sb->md_minor;
1066 	rdev->data_offset = 0;
1067 	rdev->new_data_offset = 0;
1068 	rdev->sb_size = MD_SB_BYTES;
1069 	rdev->badblocks.shift = -1;
1070 
1071 	if (sb->level == LEVEL_MULTIPATH)
1072 		rdev->desc_nr = -1;
1073 	else
1074 		rdev->desc_nr = sb->this_disk.number;
1075 
1076 	if (!refdev) {
1077 		ret = 1;
1078 	} else {
1079 		__u64 ev1, ev2;
1080 		mdp_super_t *refsb = page_address(refdev->sb_page);
1081 		if (!uuid_equal(refsb, sb)) {
1082 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1083 				b, bdevname(refdev->bdev,b2));
1084 			goto abort;
1085 		}
1086 		if (!sb_equal(refsb, sb)) {
1087 			printk(KERN_WARNING "md: %s has same UUID"
1088 			       " but different superblock to %s\n",
1089 			       b, bdevname(refdev->bdev, b2));
1090 			goto abort;
1091 		}
1092 		ev1 = md_event(sb);
1093 		ev2 = md_event(refsb);
1094 		if (ev1 > ev2)
1095 			ret = 1;
1096 		else
1097 			ret = 0;
1098 	}
1099 	rdev->sectors = rdev->sb_start;
1100 	/* Limit to 4TB as metadata cannot record more than that.
1101 	 * (not needed for Linear and RAID0 as metadata doesn't
1102 	 * record this size)
1103 	 */
1104 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1105 		rdev->sectors = (2ULL << 32) - 2;
1106 
1107 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1108 		/* "this cannot possibly happen" ... */
1109 		ret = -EINVAL;
1110 
1111  abort:
1112 	return ret;
1113 }
1114 
1115 /*
1116  * validate_super for 0.90.0
1117  */
1118 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1119 {
1120 	mdp_disk_t *desc;
1121 	mdp_super_t *sb = page_address(rdev->sb_page);
1122 	__u64 ev1 = md_event(sb);
1123 
1124 	rdev->raid_disk = -1;
1125 	clear_bit(Faulty, &rdev->flags);
1126 	clear_bit(In_sync, &rdev->flags);
1127 	clear_bit(WriteMostly, &rdev->flags);
1128 
1129 	if (mddev->raid_disks == 0) {
1130 		mddev->major_version = 0;
1131 		mddev->minor_version = sb->minor_version;
1132 		mddev->patch_version = sb->patch_version;
1133 		mddev->external = 0;
1134 		mddev->chunk_sectors = sb->chunk_size >> 9;
1135 		mddev->ctime = sb->ctime;
1136 		mddev->utime = sb->utime;
1137 		mddev->level = sb->level;
1138 		mddev->clevel[0] = 0;
1139 		mddev->layout = sb->layout;
1140 		mddev->raid_disks = sb->raid_disks;
1141 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1142 		mddev->events = ev1;
1143 		mddev->bitmap_info.offset = 0;
1144 		mddev->bitmap_info.space = 0;
1145 		/* bitmap can use 60 K after the 4K superblocks */
1146 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1147 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1148 		mddev->reshape_backwards = 0;
1149 
1150 		if (mddev->minor_version >= 91) {
1151 			mddev->reshape_position = sb->reshape_position;
1152 			mddev->delta_disks = sb->delta_disks;
1153 			mddev->new_level = sb->new_level;
1154 			mddev->new_layout = sb->new_layout;
1155 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1156 			if (mddev->delta_disks < 0)
1157 				mddev->reshape_backwards = 1;
1158 		} else {
1159 			mddev->reshape_position = MaxSector;
1160 			mddev->delta_disks = 0;
1161 			mddev->new_level = mddev->level;
1162 			mddev->new_layout = mddev->layout;
1163 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1164 		}
1165 
1166 		if (sb->state & (1<<MD_SB_CLEAN))
1167 			mddev->recovery_cp = MaxSector;
1168 		else {
1169 			if (sb->events_hi == sb->cp_events_hi &&
1170 				sb->events_lo == sb->cp_events_lo) {
1171 				mddev->recovery_cp = sb->recovery_cp;
1172 			} else
1173 				mddev->recovery_cp = 0;
1174 		}
1175 
1176 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1177 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1178 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1179 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1180 
1181 		mddev->max_disks = MD_SB_DISKS;
1182 
1183 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1184 		    mddev->bitmap_info.file == NULL) {
1185 			mddev->bitmap_info.offset =
1186 				mddev->bitmap_info.default_offset;
1187 			mddev->bitmap_info.space =
1188 				mddev->bitmap_info.space;
1189 		}
1190 
1191 	} else if (mddev->pers == NULL) {
1192 		/* Insist on good event counter while assembling, except
1193 		 * for spares (which don't need an event count) */
1194 		++ev1;
1195 		if (sb->disks[rdev->desc_nr].state & (
1196 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1197 			if (ev1 < mddev->events)
1198 				return -EINVAL;
1199 	} else if (mddev->bitmap) {
1200 		/* if adding to array with a bitmap, then we can accept an
1201 		 * older device ... but not too old.
1202 		 */
1203 		if (ev1 < mddev->bitmap->events_cleared)
1204 			return 0;
1205 	} else {
1206 		if (ev1 < mddev->events)
1207 			/* just a hot-add of a new device, leave raid_disk at -1 */
1208 			return 0;
1209 	}
1210 
1211 	if (mddev->level != LEVEL_MULTIPATH) {
1212 		desc = sb->disks + rdev->desc_nr;
1213 
1214 		if (desc->state & (1<<MD_DISK_FAULTY))
1215 			set_bit(Faulty, &rdev->flags);
1216 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1217 			    desc->raid_disk < mddev->raid_disks */) {
1218 			set_bit(In_sync, &rdev->flags);
1219 			rdev->raid_disk = desc->raid_disk;
1220 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1221 			/* active but not in sync implies recovery up to
1222 			 * reshape position.  We don't know exactly where
1223 			 * that is, so set to zero for now */
1224 			if (mddev->minor_version >= 91) {
1225 				rdev->recovery_offset = 0;
1226 				rdev->raid_disk = desc->raid_disk;
1227 			}
1228 		}
1229 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1230 			set_bit(WriteMostly, &rdev->flags);
1231 	} else /* MULTIPATH are always insync */
1232 		set_bit(In_sync, &rdev->flags);
1233 	return 0;
1234 }
1235 
1236 /*
1237  * sync_super for 0.90.0
1238  */
1239 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1240 {
1241 	mdp_super_t *sb;
1242 	struct md_rdev *rdev2;
1243 	int next_spare = mddev->raid_disks;
1244 
1245 
1246 	/* make rdev->sb match mddev data..
1247 	 *
1248 	 * 1/ zero out disks
1249 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1250 	 * 3/ any empty disks < next_spare become removed
1251 	 *
1252 	 * disks[0] gets initialised to REMOVED because
1253 	 * we cannot be sure from other fields if it has
1254 	 * been initialised or not.
1255 	 */
1256 	int i;
1257 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1258 
1259 	rdev->sb_size = MD_SB_BYTES;
1260 
1261 	sb = page_address(rdev->sb_page);
1262 
1263 	memset(sb, 0, sizeof(*sb));
1264 
1265 	sb->md_magic = MD_SB_MAGIC;
1266 	sb->major_version = mddev->major_version;
1267 	sb->patch_version = mddev->patch_version;
1268 	sb->gvalid_words  = 0; /* ignored */
1269 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1270 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1271 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1272 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1273 
1274 	sb->ctime = mddev->ctime;
1275 	sb->level = mddev->level;
1276 	sb->size = mddev->dev_sectors / 2;
1277 	sb->raid_disks = mddev->raid_disks;
1278 	sb->md_minor = mddev->md_minor;
1279 	sb->not_persistent = 0;
1280 	sb->utime = mddev->utime;
1281 	sb->state = 0;
1282 	sb->events_hi = (mddev->events>>32);
1283 	sb->events_lo = (u32)mddev->events;
1284 
1285 	if (mddev->reshape_position == MaxSector)
1286 		sb->minor_version = 90;
1287 	else {
1288 		sb->minor_version = 91;
1289 		sb->reshape_position = mddev->reshape_position;
1290 		sb->new_level = mddev->new_level;
1291 		sb->delta_disks = mddev->delta_disks;
1292 		sb->new_layout = mddev->new_layout;
1293 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1294 	}
1295 	mddev->minor_version = sb->minor_version;
1296 	if (mddev->in_sync)
1297 	{
1298 		sb->recovery_cp = mddev->recovery_cp;
1299 		sb->cp_events_hi = (mddev->events>>32);
1300 		sb->cp_events_lo = (u32)mddev->events;
1301 		if (mddev->recovery_cp == MaxSector)
1302 			sb->state = (1<< MD_SB_CLEAN);
1303 	} else
1304 		sb->recovery_cp = 0;
1305 
1306 	sb->layout = mddev->layout;
1307 	sb->chunk_size = mddev->chunk_sectors << 9;
1308 
1309 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1310 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1311 
1312 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1313 	rdev_for_each(rdev2, mddev) {
1314 		mdp_disk_t *d;
1315 		int desc_nr;
1316 		int is_active = test_bit(In_sync, &rdev2->flags);
1317 
1318 		if (rdev2->raid_disk >= 0 &&
1319 		    sb->minor_version >= 91)
1320 			/* we have nowhere to store the recovery_offset,
1321 			 * but if it is not below the reshape_position,
1322 			 * we can piggy-back on that.
1323 			 */
1324 			is_active = 1;
1325 		if (rdev2->raid_disk < 0 ||
1326 		    test_bit(Faulty, &rdev2->flags))
1327 			is_active = 0;
1328 		if (is_active)
1329 			desc_nr = rdev2->raid_disk;
1330 		else
1331 			desc_nr = next_spare++;
1332 		rdev2->desc_nr = desc_nr;
1333 		d = &sb->disks[rdev2->desc_nr];
1334 		nr_disks++;
1335 		d->number = rdev2->desc_nr;
1336 		d->major = MAJOR(rdev2->bdev->bd_dev);
1337 		d->minor = MINOR(rdev2->bdev->bd_dev);
1338 		if (is_active)
1339 			d->raid_disk = rdev2->raid_disk;
1340 		else
1341 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1342 		if (test_bit(Faulty, &rdev2->flags))
1343 			d->state = (1<<MD_DISK_FAULTY);
1344 		else if (is_active) {
1345 			d->state = (1<<MD_DISK_ACTIVE);
1346 			if (test_bit(In_sync, &rdev2->flags))
1347 				d->state |= (1<<MD_DISK_SYNC);
1348 			active++;
1349 			working++;
1350 		} else {
1351 			d->state = 0;
1352 			spare++;
1353 			working++;
1354 		}
1355 		if (test_bit(WriteMostly, &rdev2->flags))
1356 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1357 	}
1358 	/* now set the "removed" and "faulty" bits on any missing devices */
1359 	for (i=0 ; i < mddev->raid_disks ; i++) {
1360 		mdp_disk_t *d = &sb->disks[i];
1361 		if (d->state == 0 && d->number == 0) {
1362 			d->number = i;
1363 			d->raid_disk = i;
1364 			d->state = (1<<MD_DISK_REMOVED);
1365 			d->state |= (1<<MD_DISK_FAULTY);
1366 			failed++;
1367 		}
1368 	}
1369 	sb->nr_disks = nr_disks;
1370 	sb->active_disks = active;
1371 	sb->working_disks = working;
1372 	sb->failed_disks = failed;
1373 	sb->spare_disks = spare;
1374 
1375 	sb->this_disk = sb->disks[rdev->desc_nr];
1376 	sb->sb_csum = calc_sb_csum(sb);
1377 }
1378 
1379 /*
1380  * rdev_size_change for 0.90.0
1381  */
1382 static unsigned long long
1383 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1384 {
1385 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1386 		return 0; /* component must fit device */
1387 	if (rdev->mddev->bitmap_info.offset)
1388 		return 0; /* can't move bitmap */
1389 	rdev->sb_start = calc_dev_sboffset(rdev);
1390 	if (!num_sectors || num_sectors > rdev->sb_start)
1391 		num_sectors = rdev->sb_start;
1392 	/* Limit to 4TB as metadata cannot record more than that.
1393 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1394 	 */
1395 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1396 		num_sectors = (2ULL << 32) - 2;
1397 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1398 		       rdev->sb_page);
1399 	md_super_wait(rdev->mddev);
1400 	return num_sectors;
1401 }
1402 
1403 static int
1404 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1405 {
1406 	/* non-zero offset changes not possible with v0.90 */
1407 	return new_offset == 0;
1408 }
1409 
1410 /*
1411  * version 1 superblock
1412  */
1413 
1414 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1415 {
1416 	__le32 disk_csum;
1417 	u32 csum;
1418 	unsigned long long newcsum;
1419 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1420 	__le32 *isuper = (__le32*)sb;
1421 
1422 	disk_csum = sb->sb_csum;
1423 	sb->sb_csum = 0;
1424 	newcsum = 0;
1425 	for (; size >= 4; size -= 4)
1426 		newcsum += le32_to_cpu(*isuper++);
1427 
1428 	if (size == 2)
1429 		newcsum += le16_to_cpu(*(__le16*) isuper);
1430 
1431 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1432 	sb->sb_csum = disk_csum;
1433 	return cpu_to_le32(csum);
1434 }
1435 
1436 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1437 			    int acknowledged);
1438 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1439 {
1440 	struct mdp_superblock_1 *sb;
1441 	int ret;
1442 	sector_t sb_start;
1443 	sector_t sectors;
1444 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1445 	int bmask;
1446 
1447 	/*
1448 	 * Calculate the position of the superblock in 512byte sectors.
1449 	 * It is always aligned to a 4K boundary and
1450 	 * depeding on minor_version, it can be:
1451 	 * 0: At least 8K, but less than 12K, from end of device
1452 	 * 1: At start of device
1453 	 * 2: 4K from start of device.
1454 	 */
1455 	switch(minor_version) {
1456 	case 0:
1457 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1458 		sb_start -= 8*2;
1459 		sb_start &= ~(sector_t)(4*2-1);
1460 		break;
1461 	case 1:
1462 		sb_start = 0;
1463 		break;
1464 	case 2:
1465 		sb_start = 8;
1466 		break;
1467 	default:
1468 		return -EINVAL;
1469 	}
1470 	rdev->sb_start = sb_start;
1471 
1472 	/* superblock is rarely larger than 1K, but it can be larger,
1473 	 * and it is safe to read 4k, so we do that
1474 	 */
1475 	ret = read_disk_sb(rdev, 4096);
1476 	if (ret) return ret;
1477 
1478 
1479 	sb = page_address(rdev->sb_page);
1480 
1481 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1482 	    sb->major_version != cpu_to_le32(1) ||
1483 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1484 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1485 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1486 		return -EINVAL;
1487 
1488 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1489 		printk("md: invalid superblock checksum on %s\n",
1490 			bdevname(rdev->bdev,b));
1491 		return -EINVAL;
1492 	}
1493 	if (le64_to_cpu(sb->data_size) < 10) {
1494 		printk("md: data_size too small on %s\n",
1495 		       bdevname(rdev->bdev,b));
1496 		return -EINVAL;
1497 	}
1498 	if (sb->pad0 ||
1499 	    sb->pad3[0] ||
1500 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1501 		/* Some padding is non-zero, might be a new feature */
1502 		return -EINVAL;
1503 
1504 	rdev->preferred_minor = 0xffff;
1505 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1506 	rdev->new_data_offset = rdev->data_offset;
1507 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1508 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1509 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1510 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1511 
1512 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1513 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1514 	if (rdev->sb_size & bmask)
1515 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1516 
1517 	if (minor_version
1518 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1519 		return -EINVAL;
1520 	if (minor_version
1521 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1522 		return -EINVAL;
1523 
1524 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1525 		rdev->desc_nr = -1;
1526 	else
1527 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1528 
1529 	if (!rdev->bb_page) {
1530 		rdev->bb_page = alloc_page(GFP_KERNEL);
1531 		if (!rdev->bb_page)
1532 			return -ENOMEM;
1533 	}
1534 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1535 	    rdev->badblocks.count == 0) {
1536 		/* need to load the bad block list.
1537 		 * Currently we limit it to one page.
1538 		 */
1539 		s32 offset;
1540 		sector_t bb_sector;
1541 		u64 *bbp;
1542 		int i;
1543 		int sectors = le16_to_cpu(sb->bblog_size);
1544 		if (sectors > (PAGE_SIZE / 512))
1545 			return -EINVAL;
1546 		offset = le32_to_cpu(sb->bblog_offset);
1547 		if (offset == 0)
1548 			return -EINVAL;
1549 		bb_sector = (long long)offset;
1550 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1551 				  rdev->bb_page, READ, true))
1552 			return -EIO;
1553 		bbp = (u64 *)page_address(rdev->bb_page);
1554 		rdev->badblocks.shift = sb->bblog_shift;
1555 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1556 			u64 bb = le64_to_cpu(*bbp);
1557 			int count = bb & (0x3ff);
1558 			u64 sector = bb >> 10;
1559 			sector <<= sb->bblog_shift;
1560 			count <<= sb->bblog_shift;
1561 			if (bb + 1 == 0)
1562 				break;
1563 			if (md_set_badblocks(&rdev->badblocks,
1564 					     sector, count, 1) == 0)
1565 				return -EINVAL;
1566 		}
1567 	} else if (sb->bblog_offset == 0)
1568 		rdev->badblocks.shift = -1;
1569 
1570 	if (!refdev) {
1571 		ret = 1;
1572 	} else {
1573 		__u64 ev1, ev2;
1574 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1575 
1576 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1577 		    sb->level != refsb->level ||
1578 		    sb->layout != refsb->layout ||
1579 		    sb->chunksize != refsb->chunksize) {
1580 			printk(KERN_WARNING "md: %s has strangely different"
1581 				" superblock to %s\n",
1582 				bdevname(rdev->bdev,b),
1583 				bdevname(refdev->bdev,b2));
1584 			return -EINVAL;
1585 		}
1586 		ev1 = le64_to_cpu(sb->events);
1587 		ev2 = le64_to_cpu(refsb->events);
1588 
1589 		if (ev1 > ev2)
1590 			ret = 1;
1591 		else
1592 			ret = 0;
1593 	}
1594 	if (minor_version) {
1595 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1596 		sectors -= rdev->data_offset;
1597 	} else
1598 		sectors = rdev->sb_start;
1599 	if (sectors < le64_to_cpu(sb->data_size))
1600 		return -EINVAL;
1601 	rdev->sectors = le64_to_cpu(sb->data_size);
1602 	return ret;
1603 }
1604 
1605 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1606 {
1607 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1608 	__u64 ev1 = le64_to_cpu(sb->events);
1609 
1610 	rdev->raid_disk = -1;
1611 	clear_bit(Faulty, &rdev->flags);
1612 	clear_bit(In_sync, &rdev->flags);
1613 	clear_bit(WriteMostly, &rdev->flags);
1614 
1615 	if (mddev->raid_disks == 0) {
1616 		mddev->major_version = 1;
1617 		mddev->patch_version = 0;
1618 		mddev->external = 0;
1619 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1620 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1621 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1622 		mddev->level = le32_to_cpu(sb->level);
1623 		mddev->clevel[0] = 0;
1624 		mddev->layout = le32_to_cpu(sb->layout);
1625 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1626 		mddev->dev_sectors = le64_to_cpu(sb->size);
1627 		mddev->events = ev1;
1628 		mddev->bitmap_info.offset = 0;
1629 		mddev->bitmap_info.space = 0;
1630 		/* Default location for bitmap is 1K after superblock
1631 		 * using 3K - total of 4K
1632 		 */
1633 		mddev->bitmap_info.default_offset = 1024 >> 9;
1634 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1635 		mddev->reshape_backwards = 0;
1636 
1637 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1638 		memcpy(mddev->uuid, sb->set_uuid, 16);
1639 
1640 		mddev->max_disks =  (4096-256)/2;
1641 
1642 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1643 		    mddev->bitmap_info.file == NULL) {
1644 			mddev->bitmap_info.offset =
1645 				(__s32)le32_to_cpu(sb->bitmap_offset);
1646 			/* Metadata doesn't record how much space is available.
1647 			 * For 1.0, we assume we can use up to the superblock
1648 			 * if before, else to 4K beyond superblock.
1649 			 * For others, assume no change is possible.
1650 			 */
1651 			if (mddev->minor_version > 0)
1652 				mddev->bitmap_info.space = 0;
1653 			else if (mddev->bitmap_info.offset > 0)
1654 				mddev->bitmap_info.space =
1655 					8 - mddev->bitmap_info.offset;
1656 			else
1657 				mddev->bitmap_info.space =
1658 					-mddev->bitmap_info.offset;
1659 		}
1660 
1661 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1662 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1663 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1664 			mddev->new_level = le32_to_cpu(sb->new_level);
1665 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1666 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1667 			if (mddev->delta_disks < 0 ||
1668 			    (mddev->delta_disks == 0 &&
1669 			     (le32_to_cpu(sb->feature_map)
1670 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1671 				mddev->reshape_backwards = 1;
1672 		} else {
1673 			mddev->reshape_position = MaxSector;
1674 			mddev->delta_disks = 0;
1675 			mddev->new_level = mddev->level;
1676 			mddev->new_layout = mddev->layout;
1677 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1678 		}
1679 
1680 	} else if (mddev->pers == NULL) {
1681 		/* Insist of good event counter while assembling, except for
1682 		 * spares (which don't need an event count) */
1683 		++ev1;
1684 		if (rdev->desc_nr >= 0 &&
1685 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1686 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1687 			if (ev1 < mddev->events)
1688 				return -EINVAL;
1689 	} else if (mddev->bitmap) {
1690 		/* If adding to array with a bitmap, then we can accept an
1691 		 * older device, but not too old.
1692 		 */
1693 		if (ev1 < mddev->bitmap->events_cleared)
1694 			return 0;
1695 	} else {
1696 		if (ev1 < mddev->events)
1697 			/* just a hot-add of a new device, leave raid_disk at -1 */
1698 			return 0;
1699 	}
1700 	if (mddev->level != LEVEL_MULTIPATH) {
1701 		int role;
1702 		if (rdev->desc_nr < 0 ||
1703 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1704 			role = 0xffff;
1705 			rdev->desc_nr = -1;
1706 		} else
1707 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1708 		switch(role) {
1709 		case 0xffff: /* spare */
1710 			break;
1711 		case 0xfffe: /* faulty */
1712 			set_bit(Faulty, &rdev->flags);
1713 			break;
1714 		default:
1715 			if ((le32_to_cpu(sb->feature_map) &
1716 			     MD_FEATURE_RECOVERY_OFFSET))
1717 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1718 			else
1719 				set_bit(In_sync, &rdev->flags);
1720 			rdev->raid_disk = role;
1721 			break;
1722 		}
1723 		if (sb->devflags & WriteMostly1)
1724 			set_bit(WriteMostly, &rdev->flags);
1725 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1726 			set_bit(Replacement, &rdev->flags);
1727 	} else /* MULTIPATH are always insync */
1728 		set_bit(In_sync, &rdev->flags);
1729 
1730 	return 0;
1731 }
1732 
1733 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1734 {
1735 	struct mdp_superblock_1 *sb;
1736 	struct md_rdev *rdev2;
1737 	int max_dev, i;
1738 	/* make rdev->sb match mddev and rdev data. */
1739 
1740 	sb = page_address(rdev->sb_page);
1741 
1742 	sb->feature_map = 0;
1743 	sb->pad0 = 0;
1744 	sb->recovery_offset = cpu_to_le64(0);
1745 	memset(sb->pad3, 0, sizeof(sb->pad3));
1746 
1747 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1748 	sb->events = cpu_to_le64(mddev->events);
1749 	if (mddev->in_sync)
1750 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1751 	else
1752 		sb->resync_offset = cpu_to_le64(0);
1753 
1754 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1755 
1756 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1757 	sb->size = cpu_to_le64(mddev->dev_sectors);
1758 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1759 	sb->level = cpu_to_le32(mddev->level);
1760 	sb->layout = cpu_to_le32(mddev->layout);
1761 
1762 	if (test_bit(WriteMostly, &rdev->flags))
1763 		sb->devflags |= WriteMostly1;
1764 	else
1765 		sb->devflags &= ~WriteMostly1;
1766 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1767 	sb->data_size = cpu_to_le64(rdev->sectors);
1768 
1769 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1770 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1771 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1772 	}
1773 
1774 	if (rdev->raid_disk >= 0 &&
1775 	    !test_bit(In_sync, &rdev->flags)) {
1776 		sb->feature_map |=
1777 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1778 		sb->recovery_offset =
1779 			cpu_to_le64(rdev->recovery_offset);
1780 	}
1781 	if (test_bit(Replacement, &rdev->flags))
1782 		sb->feature_map |=
1783 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1784 
1785 	if (mddev->reshape_position != MaxSector) {
1786 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1787 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1788 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1789 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1790 		sb->new_level = cpu_to_le32(mddev->new_level);
1791 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1792 		if (mddev->delta_disks == 0 &&
1793 		    mddev->reshape_backwards)
1794 			sb->feature_map
1795 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1796 		if (rdev->new_data_offset != rdev->data_offset) {
1797 			sb->feature_map
1798 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1799 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1800 							     - rdev->data_offset));
1801 		}
1802 	}
1803 
1804 	if (rdev->badblocks.count == 0)
1805 		/* Nothing to do for bad blocks*/ ;
1806 	else if (sb->bblog_offset == 0)
1807 		/* Cannot record bad blocks on this device */
1808 		md_error(mddev, rdev);
1809 	else {
1810 		struct badblocks *bb = &rdev->badblocks;
1811 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1812 		u64 *p = bb->page;
1813 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1814 		if (bb->changed) {
1815 			unsigned seq;
1816 
1817 retry:
1818 			seq = read_seqbegin(&bb->lock);
1819 
1820 			memset(bbp, 0xff, PAGE_SIZE);
1821 
1822 			for (i = 0 ; i < bb->count ; i++) {
1823 				u64 internal_bb = p[i];
1824 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1825 						| BB_LEN(internal_bb));
1826 				bbp[i] = cpu_to_le64(store_bb);
1827 			}
1828 			bb->changed = 0;
1829 			if (read_seqretry(&bb->lock, seq))
1830 				goto retry;
1831 
1832 			bb->sector = (rdev->sb_start +
1833 				      (int)le32_to_cpu(sb->bblog_offset));
1834 			bb->size = le16_to_cpu(sb->bblog_size);
1835 		}
1836 	}
1837 
1838 	max_dev = 0;
1839 	rdev_for_each(rdev2, mddev)
1840 		if (rdev2->desc_nr+1 > max_dev)
1841 			max_dev = rdev2->desc_nr+1;
1842 
1843 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1844 		int bmask;
1845 		sb->max_dev = cpu_to_le32(max_dev);
1846 		rdev->sb_size = max_dev * 2 + 256;
1847 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1848 		if (rdev->sb_size & bmask)
1849 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1850 	} else
1851 		max_dev = le32_to_cpu(sb->max_dev);
1852 
1853 	for (i=0; i<max_dev;i++)
1854 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1855 
1856 	rdev_for_each(rdev2, mddev) {
1857 		i = rdev2->desc_nr;
1858 		if (test_bit(Faulty, &rdev2->flags))
1859 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1860 		else if (test_bit(In_sync, &rdev2->flags))
1861 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1862 		else if (rdev2->raid_disk >= 0)
1863 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1864 		else
1865 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1866 	}
1867 
1868 	sb->sb_csum = calc_sb_1_csum(sb);
1869 }
1870 
1871 static unsigned long long
1872 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1873 {
1874 	struct mdp_superblock_1 *sb;
1875 	sector_t max_sectors;
1876 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1877 		return 0; /* component must fit device */
1878 	if (rdev->data_offset != rdev->new_data_offset)
1879 		return 0; /* too confusing */
1880 	if (rdev->sb_start < rdev->data_offset) {
1881 		/* minor versions 1 and 2; superblock before data */
1882 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1883 		max_sectors -= rdev->data_offset;
1884 		if (!num_sectors || num_sectors > max_sectors)
1885 			num_sectors = max_sectors;
1886 	} else if (rdev->mddev->bitmap_info.offset) {
1887 		/* minor version 0 with bitmap we can't move */
1888 		return 0;
1889 	} else {
1890 		/* minor version 0; superblock after data */
1891 		sector_t sb_start;
1892 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1893 		sb_start &= ~(sector_t)(4*2 - 1);
1894 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1895 		if (!num_sectors || num_sectors > max_sectors)
1896 			num_sectors = max_sectors;
1897 		rdev->sb_start = sb_start;
1898 	}
1899 	sb = page_address(rdev->sb_page);
1900 	sb->data_size = cpu_to_le64(num_sectors);
1901 	sb->super_offset = rdev->sb_start;
1902 	sb->sb_csum = calc_sb_1_csum(sb);
1903 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1904 		       rdev->sb_page);
1905 	md_super_wait(rdev->mddev);
1906 	return num_sectors;
1907 
1908 }
1909 
1910 static int
1911 super_1_allow_new_offset(struct md_rdev *rdev,
1912 			 unsigned long long new_offset)
1913 {
1914 	/* All necessary checks on new >= old have been done */
1915 	struct bitmap *bitmap;
1916 	if (new_offset >= rdev->data_offset)
1917 		return 1;
1918 
1919 	/* with 1.0 metadata, there is no metadata to tread on
1920 	 * so we can always move back */
1921 	if (rdev->mddev->minor_version == 0)
1922 		return 1;
1923 
1924 	/* otherwise we must be sure not to step on
1925 	 * any metadata, so stay:
1926 	 * 36K beyond start of superblock
1927 	 * beyond end of badblocks
1928 	 * beyond write-intent bitmap
1929 	 */
1930 	if (rdev->sb_start + (32+4)*2 > new_offset)
1931 		return 0;
1932 	bitmap = rdev->mddev->bitmap;
1933 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1934 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1935 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1936 		return 0;
1937 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1938 		return 0;
1939 
1940 	return 1;
1941 }
1942 
1943 static struct super_type super_types[] = {
1944 	[0] = {
1945 		.name	= "0.90.0",
1946 		.owner	= THIS_MODULE,
1947 		.load_super	    = super_90_load,
1948 		.validate_super	    = super_90_validate,
1949 		.sync_super	    = super_90_sync,
1950 		.rdev_size_change   = super_90_rdev_size_change,
1951 		.allow_new_offset   = super_90_allow_new_offset,
1952 	},
1953 	[1] = {
1954 		.name	= "md-1",
1955 		.owner	= THIS_MODULE,
1956 		.load_super	    = super_1_load,
1957 		.validate_super	    = super_1_validate,
1958 		.sync_super	    = super_1_sync,
1959 		.rdev_size_change   = super_1_rdev_size_change,
1960 		.allow_new_offset   = super_1_allow_new_offset,
1961 	},
1962 };
1963 
1964 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1965 {
1966 	if (mddev->sync_super) {
1967 		mddev->sync_super(mddev, rdev);
1968 		return;
1969 	}
1970 
1971 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1972 
1973 	super_types[mddev->major_version].sync_super(mddev, rdev);
1974 }
1975 
1976 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1977 {
1978 	struct md_rdev *rdev, *rdev2;
1979 
1980 	rcu_read_lock();
1981 	rdev_for_each_rcu(rdev, mddev1)
1982 		rdev_for_each_rcu(rdev2, mddev2)
1983 			if (rdev->bdev->bd_contains ==
1984 			    rdev2->bdev->bd_contains) {
1985 				rcu_read_unlock();
1986 				return 1;
1987 			}
1988 	rcu_read_unlock();
1989 	return 0;
1990 }
1991 
1992 static LIST_HEAD(pending_raid_disks);
1993 
1994 /*
1995  * Try to register data integrity profile for an mddev
1996  *
1997  * This is called when an array is started and after a disk has been kicked
1998  * from the array. It only succeeds if all working and active component devices
1999  * are integrity capable with matching profiles.
2000  */
2001 int md_integrity_register(struct mddev *mddev)
2002 {
2003 	struct md_rdev *rdev, *reference = NULL;
2004 
2005 	if (list_empty(&mddev->disks))
2006 		return 0; /* nothing to do */
2007 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2008 		return 0; /* shouldn't register, or already is */
2009 	rdev_for_each(rdev, mddev) {
2010 		/* skip spares and non-functional disks */
2011 		if (test_bit(Faulty, &rdev->flags))
2012 			continue;
2013 		if (rdev->raid_disk < 0)
2014 			continue;
2015 		if (!reference) {
2016 			/* Use the first rdev as the reference */
2017 			reference = rdev;
2018 			continue;
2019 		}
2020 		/* does this rdev's profile match the reference profile? */
2021 		if (blk_integrity_compare(reference->bdev->bd_disk,
2022 				rdev->bdev->bd_disk) < 0)
2023 			return -EINVAL;
2024 	}
2025 	if (!reference || !bdev_get_integrity(reference->bdev))
2026 		return 0;
2027 	/*
2028 	 * All component devices are integrity capable and have matching
2029 	 * profiles, register the common profile for the md device.
2030 	 */
2031 	if (blk_integrity_register(mddev->gendisk,
2032 			bdev_get_integrity(reference->bdev)) != 0) {
2033 		printk(KERN_ERR "md: failed to register integrity for %s\n",
2034 			mdname(mddev));
2035 		return -EINVAL;
2036 	}
2037 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2038 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2039 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2040 		       mdname(mddev));
2041 		return -EINVAL;
2042 	}
2043 	return 0;
2044 }
2045 EXPORT_SYMBOL(md_integrity_register);
2046 
2047 /* Disable data integrity if non-capable/non-matching disk is being added */
2048 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2049 {
2050 	struct blk_integrity *bi_rdev;
2051 	struct blk_integrity *bi_mddev;
2052 
2053 	if (!mddev->gendisk)
2054 		return;
2055 
2056 	bi_rdev = bdev_get_integrity(rdev->bdev);
2057 	bi_mddev = blk_get_integrity(mddev->gendisk);
2058 
2059 	if (!bi_mddev) /* nothing to do */
2060 		return;
2061 	if (rdev->raid_disk < 0) /* skip spares */
2062 		return;
2063 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2064 					     rdev->bdev->bd_disk) >= 0)
2065 		return;
2066 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2067 	blk_integrity_unregister(mddev->gendisk);
2068 }
2069 EXPORT_SYMBOL(md_integrity_add_rdev);
2070 
2071 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2072 {
2073 	char b[BDEVNAME_SIZE];
2074 	struct kobject *ko;
2075 	char *s;
2076 	int err;
2077 
2078 	if (rdev->mddev) {
2079 		MD_BUG();
2080 		return -EINVAL;
2081 	}
2082 
2083 	/* prevent duplicates */
2084 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2085 		return -EEXIST;
2086 
2087 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2088 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2089 			rdev->sectors < mddev->dev_sectors)) {
2090 		if (mddev->pers) {
2091 			/* Cannot change size, so fail
2092 			 * If mddev->level <= 0, then we don't care
2093 			 * about aligning sizes (e.g. linear)
2094 			 */
2095 			if (mddev->level > 0)
2096 				return -ENOSPC;
2097 		} else
2098 			mddev->dev_sectors = rdev->sectors;
2099 	}
2100 
2101 	/* Verify rdev->desc_nr is unique.
2102 	 * If it is -1, assign a free number, else
2103 	 * check number is not in use
2104 	 */
2105 	if (rdev->desc_nr < 0) {
2106 		int choice = 0;
2107 		if (mddev->pers) choice = mddev->raid_disks;
2108 		while (find_rdev_nr(mddev, choice))
2109 			choice++;
2110 		rdev->desc_nr = choice;
2111 	} else {
2112 		if (find_rdev_nr(mddev, rdev->desc_nr))
2113 			return -EBUSY;
2114 	}
2115 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2116 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2117 		       mdname(mddev), mddev->max_disks);
2118 		return -EBUSY;
2119 	}
2120 	bdevname(rdev->bdev,b);
2121 	while ( (s=strchr(b, '/')) != NULL)
2122 		*s = '!';
2123 
2124 	rdev->mddev = mddev;
2125 	printk(KERN_INFO "md: bind<%s>\n", b);
2126 
2127 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2128 		goto fail;
2129 
2130 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2131 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2132 		/* failure here is OK */;
2133 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2134 
2135 	list_add_rcu(&rdev->same_set, &mddev->disks);
2136 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2137 
2138 	/* May as well allow recovery to be retried once */
2139 	mddev->recovery_disabled++;
2140 
2141 	return 0;
2142 
2143  fail:
2144 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2145 	       b, mdname(mddev));
2146 	return err;
2147 }
2148 
2149 static void md_delayed_delete(struct work_struct *ws)
2150 {
2151 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2152 	kobject_del(&rdev->kobj);
2153 	kobject_put(&rdev->kobj);
2154 }
2155 
2156 static void unbind_rdev_from_array(struct md_rdev * rdev)
2157 {
2158 	char b[BDEVNAME_SIZE];
2159 	if (!rdev->mddev) {
2160 		MD_BUG();
2161 		return;
2162 	}
2163 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2164 	list_del_rcu(&rdev->same_set);
2165 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2166 	rdev->mddev = NULL;
2167 	sysfs_remove_link(&rdev->kobj, "block");
2168 	sysfs_put(rdev->sysfs_state);
2169 	rdev->sysfs_state = NULL;
2170 	rdev->badblocks.count = 0;
2171 	/* We need to delay this, otherwise we can deadlock when
2172 	 * writing to 'remove' to "dev/state".  We also need
2173 	 * to delay it due to rcu usage.
2174 	 */
2175 	synchronize_rcu();
2176 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2177 	kobject_get(&rdev->kobj);
2178 	queue_work(md_misc_wq, &rdev->del_work);
2179 }
2180 
2181 /*
2182  * prevent the device from being mounted, repartitioned or
2183  * otherwise reused by a RAID array (or any other kernel
2184  * subsystem), by bd_claiming the device.
2185  */
2186 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2187 {
2188 	int err = 0;
2189 	struct block_device *bdev;
2190 	char b[BDEVNAME_SIZE];
2191 
2192 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2193 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2194 	if (IS_ERR(bdev)) {
2195 		printk(KERN_ERR "md: could not open %s.\n",
2196 			__bdevname(dev, b));
2197 		return PTR_ERR(bdev);
2198 	}
2199 	rdev->bdev = bdev;
2200 	return err;
2201 }
2202 
2203 static void unlock_rdev(struct md_rdev *rdev)
2204 {
2205 	struct block_device *bdev = rdev->bdev;
2206 	rdev->bdev = NULL;
2207 	if (!bdev)
2208 		MD_BUG();
2209 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2210 }
2211 
2212 void md_autodetect_dev(dev_t dev);
2213 
2214 static void export_rdev(struct md_rdev * rdev)
2215 {
2216 	char b[BDEVNAME_SIZE];
2217 	printk(KERN_INFO "md: export_rdev(%s)\n",
2218 		bdevname(rdev->bdev,b));
2219 	if (rdev->mddev)
2220 		MD_BUG();
2221 	md_rdev_clear(rdev);
2222 #ifndef MODULE
2223 	if (test_bit(AutoDetected, &rdev->flags))
2224 		md_autodetect_dev(rdev->bdev->bd_dev);
2225 #endif
2226 	unlock_rdev(rdev);
2227 	kobject_put(&rdev->kobj);
2228 }
2229 
2230 static void kick_rdev_from_array(struct md_rdev * rdev)
2231 {
2232 	unbind_rdev_from_array(rdev);
2233 	export_rdev(rdev);
2234 }
2235 
2236 static void export_array(struct mddev *mddev)
2237 {
2238 	struct md_rdev *rdev, *tmp;
2239 
2240 	rdev_for_each_safe(rdev, tmp, mddev) {
2241 		if (!rdev->mddev) {
2242 			MD_BUG();
2243 			continue;
2244 		}
2245 		kick_rdev_from_array(rdev);
2246 	}
2247 	if (!list_empty(&mddev->disks))
2248 		MD_BUG();
2249 	mddev->raid_disks = 0;
2250 	mddev->major_version = 0;
2251 }
2252 
2253 static void print_desc(mdp_disk_t *desc)
2254 {
2255 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2256 		desc->major,desc->minor,desc->raid_disk,desc->state);
2257 }
2258 
2259 static void print_sb_90(mdp_super_t *sb)
2260 {
2261 	int i;
2262 
2263 	printk(KERN_INFO
2264 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2265 		sb->major_version, sb->minor_version, sb->patch_version,
2266 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2267 		sb->ctime);
2268 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2269 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2270 		sb->md_minor, sb->layout, sb->chunk_size);
2271 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2272 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2273 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2274 		sb->failed_disks, sb->spare_disks,
2275 		sb->sb_csum, (unsigned long)sb->events_lo);
2276 
2277 	printk(KERN_INFO);
2278 	for (i = 0; i < MD_SB_DISKS; i++) {
2279 		mdp_disk_t *desc;
2280 
2281 		desc = sb->disks + i;
2282 		if (desc->number || desc->major || desc->minor ||
2283 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2284 			printk("     D %2d: ", i);
2285 			print_desc(desc);
2286 		}
2287 	}
2288 	printk(KERN_INFO "md:     THIS: ");
2289 	print_desc(&sb->this_disk);
2290 }
2291 
2292 static void print_sb_1(struct mdp_superblock_1 *sb)
2293 {
2294 	__u8 *uuid;
2295 
2296 	uuid = sb->set_uuid;
2297 	printk(KERN_INFO
2298 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2299 	       "md:    Name: \"%s\" CT:%llu\n",
2300 		le32_to_cpu(sb->major_version),
2301 		le32_to_cpu(sb->feature_map),
2302 		uuid,
2303 		sb->set_name,
2304 		(unsigned long long)le64_to_cpu(sb->ctime)
2305 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2306 
2307 	uuid = sb->device_uuid;
2308 	printk(KERN_INFO
2309 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2310 			" RO:%llu\n"
2311 	       "md:     Dev:%08x UUID: %pU\n"
2312 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2313 	       "md:         (MaxDev:%u) \n",
2314 		le32_to_cpu(sb->level),
2315 		(unsigned long long)le64_to_cpu(sb->size),
2316 		le32_to_cpu(sb->raid_disks),
2317 		le32_to_cpu(sb->layout),
2318 		le32_to_cpu(sb->chunksize),
2319 		(unsigned long long)le64_to_cpu(sb->data_offset),
2320 		(unsigned long long)le64_to_cpu(sb->data_size),
2321 		(unsigned long long)le64_to_cpu(sb->super_offset),
2322 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2323 		le32_to_cpu(sb->dev_number),
2324 		uuid,
2325 		sb->devflags,
2326 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2327 		(unsigned long long)le64_to_cpu(sb->events),
2328 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2329 		le32_to_cpu(sb->sb_csum),
2330 		le32_to_cpu(sb->max_dev)
2331 		);
2332 }
2333 
2334 static void print_rdev(struct md_rdev *rdev, int major_version)
2335 {
2336 	char b[BDEVNAME_SIZE];
2337 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2338 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2339 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2340 	        rdev->desc_nr);
2341 	if (rdev->sb_loaded) {
2342 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2343 		switch (major_version) {
2344 		case 0:
2345 			print_sb_90(page_address(rdev->sb_page));
2346 			break;
2347 		case 1:
2348 			print_sb_1(page_address(rdev->sb_page));
2349 			break;
2350 		}
2351 	} else
2352 		printk(KERN_INFO "md: no rdev superblock!\n");
2353 }
2354 
2355 static void md_print_devices(void)
2356 {
2357 	struct list_head *tmp;
2358 	struct md_rdev *rdev;
2359 	struct mddev *mddev;
2360 	char b[BDEVNAME_SIZE];
2361 
2362 	printk("\n");
2363 	printk("md:	**********************************\n");
2364 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2365 	printk("md:	**********************************\n");
2366 	for_each_mddev(mddev, tmp) {
2367 
2368 		if (mddev->bitmap)
2369 			bitmap_print_sb(mddev->bitmap);
2370 		else
2371 			printk("%s: ", mdname(mddev));
2372 		rdev_for_each(rdev, mddev)
2373 			printk("<%s>", bdevname(rdev->bdev,b));
2374 		printk("\n");
2375 
2376 		rdev_for_each(rdev, mddev)
2377 			print_rdev(rdev, mddev->major_version);
2378 	}
2379 	printk("md:	**********************************\n");
2380 	printk("\n");
2381 }
2382 
2383 
2384 static void sync_sbs(struct mddev * mddev, int nospares)
2385 {
2386 	/* Update each superblock (in-memory image), but
2387 	 * if we are allowed to, skip spares which already
2388 	 * have the right event counter, or have one earlier
2389 	 * (which would mean they aren't being marked as dirty
2390 	 * with the rest of the array)
2391 	 */
2392 	struct md_rdev *rdev;
2393 	rdev_for_each(rdev, mddev) {
2394 		if (rdev->sb_events == mddev->events ||
2395 		    (nospares &&
2396 		     rdev->raid_disk < 0 &&
2397 		     rdev->sb_events+1 == mddev->events)) {
2398 			/* Don't update this superblock */
2399 			rdev->sb_loaded = 2;
2400 		} else {
2401 			sync_super(mddev, rdev);
2402 			rdev->sb_loaded = 1;
2403 		}
2404 	}
2405 }
2406 
2407 static void md_update_sb(struct mddev * mddev, int force_change)
2408 {
2409 	struct md_rdev *rdev;
2410 	int sync_req;
2411 	int nospares = 0;
2412 	int any_badblocks_changed = 0;
2413 
2414 repeat:
2415 	/* First make sure individual recovery_offsets are correct */
2416 	rdev_for_each(rdev, mddev) {
2417 		if (rdev->raid_disk >= 0 &&
2418 		    mddev->delta_disks >= 0 &&
2419 		    !test_bit(In_sync, &rdev->flags) &&
2420 		    mddev->curr_resync_completed > rdev->recovery_offset)
2421 				rdev->recovery_offset = mddev->curr_resync_completed;
2422 
2423 	}
2424 	if (!mddev->persistent) {
2425 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2426 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2427 		if (!mddev->external) {
2428 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2429 			rdev_for_each(rdev, mddev) {
2430 				if (rdev->badblocks.changed) {
2431 					rdev->badblocks.changed = 0;
2432 					md_ack_all_badblocks(&rdev->badblocks);
2433 					md_error(mddev, rdev);
2434 				}
2435 				clear_bit(Blocked, &rdev->flags);
2436 				clear_bit(BlockedBadBlocks, &rdev->flags);
2437 				wake_up(&rdev->blocked_wait);
2438 			}
2439 		}
2440 		wake_up(&mddev->sb_wait);
2441 		return;
2442 	}
2443 
2444 	spin_lock_irq(&mddev->write_lock);
2445 
2446 	mddev->utime = get_seconds();
2447 
2448 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2449 		force_change = 1;
2450 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2451 		/* just a clean<-> dirty transition, possibly leave spares alone,
2452 		 * though if events isn't the right even/odd, we will have to do
2453 		 * spares after all
2454 		 */
2455 		nospares = 1;
2456 	if (force_change)
2457 		nospares = 0;
2458 	if (mddev->degraded)
2459 		/* If the array is degraded, then skipping spares is both
2460 		 * dangerous and fairly pointless.
2461 		 * Dangerous because a device that was removed from the array
2462 		 * might have a event_count that still looks up-to-date,
2463 		 * so it can be re-added without a resync.
2464 		 * Pointless because if there are any spares to skip,
2465 		 * then a recovery will happen and soon that array won't
2466 		 * be degraded any more and the spare can go back to sleep then.
2467 		 */
2468 		nospares = 0;
2469 
2470 	sync_req = mddev->in_sync;
2471 
2472 	/* If this is just a dirty<->clean transition, and the array is clean
2473 	 * and 'events' is odd, we can roll back to the previous clean state */
2474 	if (nospares
2475 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2476 	    && mddev->can_decrease_events
2477 	    && mddev->events != 1) {
2478 		mddev->events--;
2479 		mddev->can_decrease_events = 0;
2480 	} else {
2481 		/* otherwise we have to go forward and ... */
2482 		mddev->events ++;
2483 		mddev->can_decrease_events = nospares;
2484 	}
2485 
2486 	if (!mddev->events) {
2487 		/*
2488 		 * oops, this 64-bit counter should never wrap.
2489 		 * Either we are in around ~1 trillion A.C., assuming
2490 		 * 1 reboot per second, or we have a bug:
2491 		 */
2492 		MD_BUG();
2493 		mddev->events --;
2494 	}
2495 
2496 	rdev_for_each(rdev, mddev) {
2497 		if (rdev->badblocks.changed)
2498 			any_badblocks_changed++;
2499 		if (test_bit(Faulty, &rdev->flags))
2500 			set_bit(FaultRecorded, &rdev->flags);
2501 	}
2502 
2503 	sync_sbs(mddev, nospares);
2504 	spin_unlock_irq(&mddev->write_lock);
2505 
2506 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2507 		 mdname(mddev), mddev->in_sync);
2508 
2509 	bitmap_update_sb(mddev->bitmap);
2510 	rdev_for_each(rdev, mddev) {
2511 		char b[BDEVNAME_SIZE];
2512 
2513 		if (rdev->sb_loaded != 1)
2514 			continue; /* no noise on spare devices */
2515 
2516 		if (!test_bit(Faulty, &rdev->flags) &&
2517 		    rdev->saved_raid_disk == -1) {
2518 			md_super_write(mddev,rdev,
2519 				       rdev->sb_start, rdev->sb_size,
2520 				       rdev->sb_page);
2521 			pr_debug("md: (write) %s's sb offset: %llu\n",
2522 				 bdevname(rdev->bdev, b),
2523 				 (unsigned long long)rdev->sb_start);
2524 			rdev->sb_events = mddev->events;
2525 			if (rdev->badblocks.size) {
2526 				md_super_write(mddev, rdev,
2527 					       rdev->badblocks.sector,
2528 					       rdev->badblocks.size << 9,
2529 					       rdev->bb_page);
2530 				rdev->badblocks.size = 0;
2531 			}
2532 
2533 		} else if (test_bit(Faulty, &rdev->flags))
2534 			pr_debug("md: %s (skipping faulty)\n",
2535 				 bdevname(rdev->bdev, b));
2536 		else
2537 			pr_debug("(skipping incremental s/r ");
2538 
2539 		if (mddev->level == LEVEL_MULTIPATH)
2540 			/* only need to write one superblock... */
2541 			break;
2542 	}
2543 	md_super_wait(mddev);
2544 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2545 
2546 	spin_lock_irq(&mddev->write_lock);
2547 	if (mddev->in_sync != sync_req ||
2548 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2549 		/* have to write it out again */
2550 		spin_unlock_irq(&mddev->write_lock);
2551 		goto repeat;
2552 	}
2553 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2554 	spin_unlock_irq(&mddev->write_lock);
2555 	wake_up(&mddev->sb_wait);
2556 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2557 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2558 
2559 	rdev_for_each(rdev, mddev) {
2560 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2561 			clear_bit(Blocked, &rdev->flags);
2562 
2563 		if (any_badblocks_changed)
2564 			md_ack_all_badblocks(&rdev->badblocks);
2565 		clear_bit(BlockedBadBlocks, &rdev->flags);
2566 		wake_up(&rdev->blocked_wait);
2567 	}
2568 }
2569 
2570 /* words written to sysfs files may, or may not, be \n terminated.
2571  * We want to accept with case. For this we use cmd_match.
2572  */
2573 static int cmd_match(const char *cmd, const char *str)
2574 {
2575 	/* See if cmd, written into a sysfs file, matches
2576 	 * str.  They must either be the same, or cmd can
2577 	 * have a trailing newline
2578 	 */
2579 	while (*cmd && *str && *cmd == *str) {
2580 		cmd++;
2581 		str++;
2582 	}
2583 	if (*cmd == '\n')
2584 		cmd++;
2585 	if (*str || *cmd)
2586 		return 0;
2587 	return 1;
2588 }
2589 
2590 struct rdev_sysfs_entry {
2591 	struct attribute attr;
2592 	ssize_t (*show)(struct md_rdev *, char *);
2593 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2594 };
2595 
2596 static ssize_t
2597 state_show(struct md_rdev *rdev, char *page)
2598 {
2599 	char *sep = "";
2600 	size_t len = 0;
2601 
2602 	if (test_bit(Faulty, &rdev->flags) ||
2603 	    rdev->badblocks.unacked_exist) {
2604 		len+= sprintf(page+len, "%sfaulty",sep);
2605 		sep = ",";
2606 	}
2607 	if (test_bit(In_sync, &rdev->flags)) {
2608 		len += sprintf(page+len, "%sin_sync",sep);
2609 		sep = ",";
2610 	}
2611 	if (test_bit(WriteMostly, &rdev->flags)) {
2612 		len += sprintf(page+len, "%swrite_mostly",sep);
2613 		sep = ",";
2614 	}
2615 	if (test_bit(Blocked, &rdev->flags) ||
2616 	    (rdev->badblocks.unacked_exist
2617 	     && !test_bit(Faulty, &rdev->flags))) {
2618 		len += sprintf(page+len, "%sblocked", sep);
2619 		sep = ",";
2620 	}
2621 	if (!test_bit(Faulty, &rdev->flags) &&
2622 	    !test_bit(In_sync, &rdev->flags)) {
2623 		len += sprintf(page+len, "%sspare", sep);
2624 		sep = ",";
2625 	}
2626 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2627 		len += sprintf(page+len, "%swrite_error", sep);
2628 		sep = ",";
2629 	}
2630 	if (test_bit(WantReplacement, &rdev->flags)) {
2631 		len += sprintf(page+len, "%swant_replacement", sep);
2632 		sep = ",";
2633 	}
2634 	if (test_bit(Replacement, &rdev->flags)) {
2635 		len += sprintf(page+len, "%sreplacement", sep);
2636 		sep = ",";
2637 	}
2638 
2639 	return len+sprintf(page+len, "\n");
2640 }
2641 
2642 static ssize_t
2643 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2644 {
2645 	/* can write
2646 	 *  faulty  - simulates an error
2647 	 *  remove  - disconnects the device
2648 	 *  writemostly - sets write_mostly
2649 	 *  -writemostly - clears write_mostly
2650 	 *  blocked - sets the Blocked flags
2651 	 *  -blocked - clears the Blocked and possibly simulates an error
2652 	 *  insync - sets Insync providing device isn't active
2653 	 *  write_error - sets WriteErrorSeen
2654 	 *  -write_error - clears WriteErrorSeen
2655 	 */
2656 	int err = -EINVAL;
2657 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2658 		md_error(rdev->mddev, rdev);
2659 		if (test_bit(Faulty, &rdev->flags))
2660 			err = 0;
2661 		else
2662 			err = -EBUSY;
2663 	} else if (cmd_match(buf, "remove")) {
2664 		if (rdev->raid_disk >= 0)
2665 			err = -EBUSY;
2666 		else {
2667 			struct mddev *mddev = rdev->mddev;
2668 			kick_rdev_from_array(rdev);
2669 			if (mddev->pers)
2670 				md_update_sb(mddev, 1);
2671 			md_new_event(mddev);
2672 			err = 0;
2673 		}
2674 	} else if (cmd_match(buf, "writemostly")) {
2675 		set_bit(WriteMostly, &rdev->flags);
2676 		err = 0;
2677 	} else if (cmd_match(buf, "-writemostly")) {
2678 		clear_bit(WriteMostly, &rdev->flags);
2679 		err = 0;
2680 	} else if (cmd_match(buf, "blocked")) {
2681 		set_bit(Blocked, &rdev->flags);
2682 		err = 0;
2683 	} else if (cmd_match(buf, "-blocked")) {
2684 		if (!test_bit(Faulty, &rdev->flags) &&
2685 		    rdev->badblocks.unacked_exist) {
2686 			/* metadata handler doesn't understand badblocks,
2687 			 * so we need to fail the device
2688 			 */
2689 			md_error(rdev->mddev, rdev);
2690 		}
2691 		clear_bit(Blocked, &rdev->flags);
2692 		clear_bit(BlockedBadBlocks, &rdev->flags);
2693 		wake_up(&rdev->blocked_wait);
2694 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2695 		md_wakeup_thread(rdev->mddev->thread);
2696 
2697 		err = 0;
2698 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2699 		set_bit(In_sync, &rdev->flags);
2700 		err = 0;
2701 	} else if (cmd_match(buf, "write_error")) {
2702 		set_bit(WriteErrorSeen, &rdev->flags);
2703 		err = 0;
2704 	} else if (cmd_match(buf, "-write_error")) {
2705 		clear_bit(WriteErrorSeen, &rdev->flags);
2706 		err = 0;
2707 	} else if (cmd_match(buf, "want_replacement")) {
2708 		/* Any non-spare device that is not a replacement can
2709 		 * become want_replacement at any time, but we then need to
2710 		 * check if recovery is needed.
2711 		 */
2712 		if (rdev->raid_disk >= 0 &&
2713 		    !test_bit(Replacement, &rdev->flags))
2714 			set_bit(WantReplacement, &rdev->flags);
2715 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2716 		md_wakeup_thread(rdev->mddev->thread);
2717 		err = 0;
2718 	} else if (cmd_match(buf, "-want_replacement")) {
2719 		/* Clearing 'want_replacement' is always allowed.
2720 		 * Once replacements starts it is too late though.
2721 		 */
2722 		err = 0;
2723 		clear_bit(WantReplacement, &rdev->flags);
2724 	} else if (cmd_match(buf, "replacement")) {
2725 		/* Can only set a device as a replacement when array has not
2726 		 * yet been started.  Once running, replacement is automatic
2727 		 * from spares, or by assigning 'slot'.
2728 		 */
2729 		if (rdev->mddev->pers)
2730 			err = -EBUSY;
2731 		else {
2732 			set_bit(Replacement, &rdev->flags);
2733 			err = 0;
2734 		}
2735 	} else if (cmd_match(buf, "-replacement")) {
2736 		/* Similarly, can only clear Replacement before start */
2737 		if (rdev->mddev->pers)
2738 			err = -EBUSY;
2739 		else {
2740 			clear_bit(Replacement, &rdev->flags);
2741 			err = 0;
2742 		}
2743 	}
2744 	if (!err)
2745 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2746 	return err ? err : len;
2747 }
2748 static struct rdev_sysfs_entry rdev_state =
2749 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2750 
2751 static ssize_t
2752 errors_show(struct md_rdev *rdev, char *page)
2753 {
2754 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2755 }
2756 
2757 static ssize_t
2758 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2759 {
2760 	char *e;
2761 	unsigned long n = simple_strtoul(buf, &e, 10);
2762 	if (*buf && (*e == 0 || *e == '\n')) {
2763 		atomic_set(&rdev->corrected_errors, n);
2764 		return len;
2765 	}
2766 	return -EINVAL;
2767 }
2768 static struct rdev_sysfs_entry rdev_errors =
2769 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2770 
2771 static ssize_t
2772 slot_show(struct md_rdev *rdev, char *page)
2773 {
2774 	if (rdev->raid_disk < 0)
2775 		return sprintf(page, "none\n");
2776 	else
2777 		return sprintf(page, "%d\n", rdev->raid_disk);
2778 }
2779 
2780 static ssize_t
2781 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2782 {
2783 	char *e;
2784 	int err;
2785 	int slot = simple_strtoul(buf, &e, 10);
2786 	if (strncmp(buf, "none", 4)==0)
2787 		slot = -1;
2788 	else if (e==buf || (*e && *e!= '\n'))
2789 		return -EINVAL;
2790 	if (rdev->mddev->pers && slot == -1) {
2791 		/* Setting 'slot' on an active array requires also
2792 		 * updating the 'rd%d' link, and communicating
2793 		 * with the personality with ->hot_*_disk.
2794 		 * For now we only support removing
2795 		 * failed/spare devices.  This normally happens automatically,
2796 		 * but not when the metadata is externally managed.
2797 		 */
2798 		if (rdev->raid_disk == -1)
2799 			return -EEXIST;
2800 		/* personality does all needed checks */
2801 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2802 			return -EINVAL;
2803 		err = rdev->mddev->pers->
2804 			hot_remove_disk(rdev->mddev, rdev);
2805 		if (err)
2806 			return err;
2807 		sysfs_unlink_rdev(rdev->mddev, rdev);
2808 		rdev->raid_disk = -1;
2809 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2810 		md_wakeup_thread(rdev->mddev->thread);
2811 	} else if (rdev->mddev->pers) {
2812 		/* Activating a spare .. or possibly reactivating
2813 		 * if we ever get bitmaps working here.
2814 		 */
2815 
2816 		if (rdev->raid_disk != -1)
2817 			return -EBUSY;
2818 
2819 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2820 			return -EBUSY;
2821 
2822 		if (rdev->mddev->pers->hot_add_disk == NULL)
2823 			return -EINVAL;
2824 
2825 		if (slot >= rdev->mddev->raid_disks &&
2826 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2827 			return -ENOSPC;
2828 
2829 		rdev->raid_disk = slot;
2830 		if (test_bit(In_sync, &rdev->flags))
2831 			rdev->saved_raid_disk = slot;
2832 		else
2833 			rdev->saved_raid_disk = -1;
2834 		clear_bit(In_sync, &rdev->flags);
2835 		err = rdev->mddev->pers->
2836 			hot_add_disk(rdev->mddev, rdev);
2837 		if (err) {
2838 			rdev->raid_disk = -1;
2839 			return err;
2840 		} else
2841 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2842 		if (sysfs_link_rdev(rdev->mddev, rdev))
2843 			/* failure here is OK */;
2844 		/* don't wakeup anyone, leave that to userspace. */
2845 	} else {
2846 		if (slot >= rdev->mddev->raid_disks &&
2847 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2848 			return -ENOSPC;
2849 		rdev->raid_disk = slot;
2850 		/* assume it is working */
2851 		clear_bit(Faulty, &rdev->flags);
2852 		clear_bit(WriteMostly, &rdev->flags);
2853 		set_bit(In_sync, &rdev->flags);
2854 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2855 	}
2856 	return len;
2857 }
2858 
2859 
2860 static struct rdev_sysfs_entry rdev_slot =
2861 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2862 
2863 static ssize_t
2864 offset_show(struct md_rdev *rdev, char *page)
2865 {
2866 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2867 }
2868 
2869 static ssize_t
2870 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2871 {
2872 	unsigned long long offset;
2873 	if (strict_strtoull(buf, 10, &offset) < 0)
2874 		return -EINVAL;
2875 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2876 		return -EBUSY;
2877 	if (rdev->sectors && rdev->mddev->external)
2878 		/* Must set offset before size, so overlap checks
2879 		 * can be sane */
2880 		return -EBUSY;
2881 	rdev->data_offset = offset;
2882 	rdev->new_data_offset = offset;
2883 	return len;
2884 }
2885 
2886 static struct rdev_sysfs_entry rdev_offset =
2887 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2888 
2889 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2890 {
2891 	return sprintf(page, "%llu\n",
2892 		       (unsigned long long)rdev->new_data_offset);
2893 }
2894 
2895 static ssize_t new_offset_store(struct md_rdev *rdev,
2896 				const char *buf, size_t len)
2897 {
2898 	unsigned long long new_offset;
2899 	struct mddev *mddev = rdev->mddev;
2900 
2901 	if (strict_strtoull(buf, 10, &new_offset) < 0)
2902 		return -EINVAL;
2903 
2904 	if (mddev->sync_thread)
2905 		return -EBUSY;
2906 	if (new_offset == rdev->data_offset)
2907 		/* reset is always permitted */
2908 		;
2909 	else if (new_offset > rdev->data_offset) {
2910 		/* must not push array size beyond rdev_sectors */
2911 		if (new_offset - rdev->data_offset
2912 		    + mddev->dev_sectors > rdev->sectors)
2913 				return -E2BIG;
2914 	}
2915 	/* Metadata worries about other space details. */
2916 
2917 	/* decreasing the offset is inconsistent with a backwards
2918 	 * reshape.
2919 	 */
2920 	if (new_offset < rdev->data_offset &&
2921 	    mddev->reshape_backwards)
2922 		return -EINVAL;
2923 	/* Increasing offset is inconsistent with forwards
2924 	 * reshape.  reshape_direction should be set to
2925 	 * 'backwards' first.
2926 	 */
2927 	if (new_offset > rdev->data_offset &&
2928 	    !mddev->reshape_backwards)
2929 		return -EINVAL;
2930 
2931 	if (mddev->pers && mddev->persistent &&
2932 	    !super_types[mddev->major_version]
2933 	    .allow_new_offset(rdev, new_offset))
2934 		return -E2BIG;
2935 	rdev->new_data_offset = new_offset;
2936 	if (new_offset > rdev->data_offset)
2937 		mddev->reshape_backwards = 1;
2938 	else if (new_offset < rdev->data_offset)
2939 		mddev->reshape_backwards = 0;
2940 
2941 	return len;
2942 }
2943 static struct rdev_sysfs_entry rdev_new_offset =
2944 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2945 
2946 static ssize_t
2947 rdev_size_show(struct md_rdev *rdev, char *page)
2948 {
2949 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2950 }
2951 
2952 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2953 {
2954 	/* check if two start/length pairs overlap */
2955 	if (s1+l1 <= s2)
2956 		return 0;
2957 	if (s2+l2 <= s1)
2958 		return 0;
2959 	return 1;
2960 }
2961 
2962 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2963 {
2964 	unsigned long long blocks;
2965 	sector_t new;
2966 
2967 	if (strict_strtoull(buf, 10, &blocks) < 0)
2968 		return -EINVAL;
2969 
2970 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2971 		return -EINVAL; /* sector conversion overflow */
2972 
2973 	new = blocks * 2;
2974 	if (new != blocks * 2)
2975 		return -EINVAL; /* unsigned long long to sector_t overflow */
2976 
2977 	*sectors = new;
2978 	return 0;
2979 }
2980 
2981 static ssize_t
2982 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2983 {
2984 	struct mddev *my_mddev = rdev->mddev;
2985 	sector_t oldsectors = rdev->sectors;
2986 	sector_t sectors;
2987 
2988 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2989 		return -EINVAL;
2990 	if (rdev->data_offset != rdev->new_data_offset)
2991 		return -EINVAL; /* too confusing */
2992 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2993 		if (my_mddev->persistent) {
2994 			sectors = super_types[my_mddev->major_version].
2995 				rdev_size_change(rdev, sectors);
2996 			if (!sectors)
2997 				return -EBUSY;
2998 		} else if (!sectors)
2999 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3000 				rdev->data_offset;
3001 		if (!my_mddev->pers->resize)
3002 			/* Cannot change size for RAID0 or Linear etc */
3003 			return -EINVAL;
3004 	}
3005 	if (sectors < my_mddev->dev_sectors)
3006 		return -EINVAL; /* component must fit device */
3007 
3008 	rdev->sectors = sectors;
3009 	if (sectors > oldsectors && my_mddev->external) {
3010 		/* need to check that all other rdevs with the same ->bdev
3011 		 * do not overlap.  We need to unlock the mddev to avoid
3012 		 * a deadlock.  We have already changed rdev->sectors, and if
3013 		 * we have to change it back, we will have the lock again.
3014 		 */
3015 		struct mddev *mddev;
3016 		int overlap = 0;
3017 		struct list_head *tmp;
3018 
3019 		mddev_unlock(my_mddev);
3020 		for_each_mddev(mddev, tmp) {
3021 			struct md_rdev *rdev2;
3022 
3023 			mddev_lock(mddev);
3024 			rdev_for_each(rdev2, mddev)
3025 				if (rdev->bdev == rdev2->bdev &&
3026 				    rdev != rdev2 &&
3027 				    overlaps(rdev->data_offset, rdev->sectors,
3028 					     rdev2->data_offset,
3029 					     rdev2->sectors)) {
3030 					overlap = 1;
3031 					break;
3032 				}
3033 			mddev_unlock(mddev);
3034 			if (overlap) {
3035 				mddev_put(mddev);
3036 				break;
3037 			}
3038 		}
3039 		mddev_lock(my_mddev);
3040 		if (overlap) {
3041 			/* Someone else could have slipped in a size
3042 			 * change here, but doing so is just silly.
3043 			 * We put oldsectors back because we *know* it is
3044 			 * safe, and trust userspace not to race with
3045 			 * itself
3046 			 */
3047 			rdev->sectors = oldsectors;
3048 			return -EBUSY;
3049 		}
3050 	}
3051 	return len;
3052 }
3053 
3054 static struct rdev_sysfs_entry rdev_size =
3055 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3056 
3057 
3058 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3059 {
3060 	unsigned long long recovery_start = rdev->recovery_offset;
3061 
3062 	if (test_bit(In_sync, &rdev->flags) ||
3063 	    recovery_start == MaxSector)
3064 		return sprintf(page, "none\n");
3065 
3066 	return sprintf(page, "%llu\n", recovery_start);
3067 }
3068 
3069 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3070 {
3071 	unsigned long long recovery_start;
3072 
3073 	if (cmd_match(buf, "none"))
3074 		recovery_start = MaxSector;
3075 	else if (strict_strtoull(buf, 10, &recovery_start))
3076 		return -EINVAL;
3077 
3078 	if (rdev->mddev->pers &&
3079 	    rdev->raid_disk >= 0)
3080 		return -EBUSY;
3081 
3082 	rdev->recovery_offset = recovery_start;
3083 	if (recovery_start == MaxSector)
3084 		set_bit(In_sync, &rdev->flags);
3085 	else
3086 		clear_bit(In_sync, &rdev->flags);
3087 	return len;
3088 }
3089 
3090 static struct rdev_sysfs_entry rdev_recovery_start =
3091 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3092 
3093 
3094 static ssize_t
3095 badblocks_show(struct badblocks *bb, char *page, int unack);
3096 static ssize_t
3097 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3098 
3099 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3100 {
3101 	return badblocks_show(&rdev->badblocks, page, 0);
3102 }
3103 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3104 {
3105 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3106 	/* Maybe that ack was all we needed */
3107 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3108 		wake_up(&rdev->blocked_wait);
3109 	return rv;
3110 }
3111 static struct rdev_sysfs_entry rdev_bad_blocks =
3112 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3113 
3114 
3115 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3116 {
3117 	return badblocks_show(&rdev->badblocks, page, 1);
3118 }
3119 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3120 {
3121 	return badblocks_store(&rdev->badblocks, page, len, 1);
3122 }
3123 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3124 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3125 
3126 static struct attribute *rdev_default_attrs[] = {
3127 	&rdev_state.attr,
3128 	&rdev_errors.attr,
3129 	&rdev_slot.attr,
3130 	&rdev_offset.attr,
3131 	&rdev_new_offset.attr,
3132 	&rdev_size.attr,
3133 	&rdev_recovery_start.attr,
3134 	&rdev_bad_blocks.attr,
3135 	&rdev_unack_bad_blocks.attr,
3136 	NULL,
3137 };
3138 static ssize_t
3139 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3140 {
3141 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3142 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3143 	struct mddev *mddev = rdev->mddev;
3144 	ssize_t rv;
3145 
3146 	if (!entry->show)
3147 		return -EIO;
3148 
3149 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3150 	if (!rv) {
3151 		if (rdev->mddev == NULL)
3152 			rv = -EBUSY;
3153 		else
3154 			rv = entry->show(rdev, page);
3155 		mddev_unlock(mddev);
3156 	}
3157 	return rv;
3158 }
3159 
3160 static ssize_t
3161 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3162 	      const char *page, size_t length)
3163 {
3164 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3165 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3166 	ssize_t rv;
3167 	struct mddev *mddev = rdev->mddev;
3168 
3169 	if (!entry->store)
3170 		return -EIO;
3171 	if (!capable(CAP_SYS_ADMIN))
3172 		return -EACCES;
3173 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3174 	if (!rv) {
3175 		if (rdev->mddev == NULL)
3176 			rv = -EBUSY;
3177 		else
3178 			rv = entry->store(rdev, page, length);
3179 		mddev_unlock(mddev);
3180 	}
3181 	return rv;
3182 }
3183 
3184 static void rdev_free(struct kobject *ko)
3185 {
3186 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3187 	kfree(rdev);
3188 }
3189 static const struct sysfs_ops rdev_sysfs_ops = {
3190 	.show		= rdev_attr_show,
3191 	.store		= rdev_attr_store,
3192 };
3193 static struct kobj_type rdev_ktype = {
3194 	.release	= rdev_free,
3195 	.sysfs_ops	= &rdev_sysfs_ops,
3196 	.default_attrs	= rdev_default_attrs,
3197 };
3198 
3199 int md_rdev_init(struct md_rdev *rdev)
3200 {
3201 	rdev->desc_nr = -1;
3202 	rdev->saved_raid_disk = -1;
3203 	rdev->raid_disk = -1;
3204 	rdev->flags = 0;
3205 	rdev->data_offset = 0;
3206 	rdev->new_data_offset = 0;
3207 	rdev->sb_events = 0;
3208 	rdev->last_read_error.tv_sec  = 0;
3209 	rdev->last_read_error.tv_nsec = 0;
3210 	rdev->sb_loaded = 0;
3211 	rdev->bb_page = NULL;
3212 	atomic_set(&rdev->nr_pending, 0);
3213 	atomic_set(&rdev->read_errors, 0);
3214 	atomic_set(&rdev->corrected_errors, 0);
3215 
3216 	INIT_LIST_HEAD(&rdev->same_set);
3217 	init_waitqueue_head(&rdev->blocked_wait);
3218 
3219 	/* Add space to store bad block list.
3220 	 * This reserves the space even on arrays where it cannot
3221 	 * be used - I wonder if that matters
3222 	 */
3223 	rdev->badblocks.count = 0;
3224 	rdev->badblocks.shift = 0;
3225 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3226 	seqlock_init(&rdev->badblocks.lock);
3227 	if (rdev->badblocks.page == NULL)
3228 		return -ENOMEM;
3229 
3230 	return 0;
3231 }
3232 EXPORT_SYMBOL_GPL(md_rdev_init);
3233 /*
3234  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3235  *
3236  * mark the device faulty if:
3237  *
3238  *   - the device is nonexistent (zero size)
3239  *   - the device has no valid superblock
3240  *
3241  * a faulty rdev _never_ has rdev->sb set.
3242  */
3243 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3244 {
3245 	char b[BDEVNAME_SIZE];
3246 	int err;
3247 	struct md_rdev *rdev;
3248 	sector_t size;
3249 
3250 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3251 	if (!rdev) {
3252 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3253 		return ERR_PTR(-ENOMEM);
3254 	}
3255 
3256 	err = md_rdev_init(rdev);
3257 	if (err)
3258 		goto abort_free;
3259 	err = alloc_disk_sb(rdev);
3260 	if (err)
3261 		goto abort_free;
3262 
3263 	err = lock_rdev(rdev, newdev, super_format == -2);
3264 	if (err)
3265 		goto abort_free;
3266 
3267 	kobject_init(&rdev->kobj, &rdev_ktype);
3268 
3269 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3270 	if (!size) {
3271 		printk(KERN_WARNING
3272 			"md: %s has zero or unknown size, marking faulty!\n",
3273 			bdevname(rdev->bdev,b));
3274 		err = -EINVAL;
3275 		goto abort_free;
3276 	}
3277 
3278 	if (super_format >= 0) {
3279 		err = super_types[super_format].
3280 			load_super(rdev, NULL, super_minor);
3281 		if (err == -EINVAL) {
3282 			printk(KERN_WARNING
3283 				"md: %s does not have a valid v%d.%d "
3284 			       "superblock, not importing!\n",
3285 				bdevname(rdev->bdev,b),
3286 			       super_format, super_minor);
3287 			goto abort_free;
3288 		}
3289 		if (err < 0) {
3290 			printk(KERN_WARNING
3291 				"md: could not read %s's sb, not importing!\n",
3292 				bdevname(rdev->bdev,b));
3293 			goto abort_free;
3294 		}
3295 	}
3296 	if (super_format == -1)
3297 		/* hot-add for 0.90, or non-persistent: so no badblocks */
3298 		rdev->badblocks.shift = -1;
3299 
3300 	return rdev;
3301 
3302 abort_free:
3303 	if (rdev->bdev)
3304 		unlock_rdev(rdev);
3305 	md_rdev_clear(rdev);
3306 	kfree(rdev);
3307 	return ERR_PTR(err);
3308 }
3309 
3310 /*
3311  * Check a full RAID array for plausibility
3312  */
3313 
3314 
3315 static void analyze_sbs(struct mddev * mddev)
3316 {
3317 	int i;
3318 	struct md_rdev *rdev, *freshest, *tmp;
3319 	char b[BDEVNAME_SIZE];
3320 
3321 	freshest = NULL;
3322 	rdev_for_each_safe(rdev, tmp, mddev)
3323 		switch (super_types[mddev->major_version].
3324 			load_super(rdev, freshest, mddev->minor_version)) {
3325 		case 1:
3326 			freshest = rdev;
3327 			break;
3328 		case 0:
3329 			break;
3330 		default:
3331 			printk( KERN_ERR \
3332 				"md: fatal superblock inconsistency in %s"
3333 				" -- removing from array\n",
3334 				bdevname(rdev->bdev,b));
3335 			kick_rdev_from_array(rdev);
3336 		}
3337 
3338 
3339 	super_types[mddev->major_version].
3340 		validate_super(mddev, freshest);
3341 
3342 	i = 0;
3343 	rdev_for_each_safe(rdev, tmp, mddev) {
3344 		if (mddev->max_disks &&
3345 		    (rdev->desc_nr >= mddev->max_disks ||
3346 		     i > mddev->max_disks)) {
3347 			printk(KERN_WARNING
3348 			       "md: %s: %s: only %d devices permitted\n",
3349 			       mdname(mddev), bdevname(rdev->bdev, b),
3350 			       mddev->max_disks);
3351 			kick_rdev_from_array(rdev);
3352 			continue;
3353 		}
3354 		if (rdev != freshest)
3355 			if (super_types[mddev->major_version].
3356 			    validate_super(mddev, rdev)) {
3357 				printk(KERN_WARNING "md: kicking non-fresh %s"
3358 					" from array!\n",
3359 					bdevname(rdev->bdev,b));
3360 				kick_rdev_from_array(rdev);
3361 				continue;
3362 			}
3363 		if (mddev->level == LEVEL_MULTIPATH) {
3364 			rdev->desc_nr = i++;
3365 			rdev->raid_disk = rdev->desc_nr;
3366 			set_bit(In_sync, &rdev->flags);
3367 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3368 			rdev->raid_disk = -1;
3369 			clear_bit(In_sync, &rdev->flags);
3370 		}
3371 	}
3372 }
3373 
3374 /* Read a fixed-point number.
3375  * Numbers in sysfs attributes should be in "standard" units where
3376  * possible, so time should be in seconds.
3377  * However we internally use a a much smaller unit such as
3378  * milliseconds or jiffies.
3379  * This function takes a decimal number with a possible fractional
3380  * component, and produces an integer which is the result of
3381  * multiplying that number by 10^'scale'.
3382  * all without any floating-point arithmetic.
3383  */
3384 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3385 {
3386 	unsigned long result = 0;
3387 	long decimals = -1;
3388 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3389 		if (*cp == '.')
3390 			decimals = 0;
3391 		else if (decimals < scale) {
3392 			unsigned int value;
3393 			value = *cp - '0';
3394 			result = result * 10 + value;
3395 			if (decimals >= 0)
3396 				decimals++;
3397 		}
3398 		cp++;
3399 	}
3400 	if (*cp == '\n')
3401 		cp++;
3402 	if (*cp)
3403 		return -EINVAL;
3404 	if (decimals < 0)
3405 		decimals = 0;
3406 	while (decimals < scale) {
3407 		result *= 10;
3408 		decimals ++;
3409 	}
3410 	*res = result;
3411 	return 0;
3412 }
3413 
3414 
3415 static void md_safemode_timeout(unsigned long data);
3416 
3417 static ssize_t
3418 safe_delay_show(struct mddev *mddev, char *page)
3419 {
3420 	int msec = (mddev->safemode_delay*1000)/HZ;
3421 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3422 }
3423 static ssize_t
3424 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3425 {
3426 	unsigned long msec;
3427 
3428 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3429 		return -EINVAL;
3430 	if (msec == 0)
3431 		mddev->safemode_delay = 0;
3432 	else {
3433 		unsigned long old_delay = mddev->safemode_delay;
3434 		mddev->safemode_delay = (msec*HZ)/1000;
3435 		if (mddev->safemode_delay == 0)
3436 			mddev->safemode_delay = 1;
3437 		if (mddev->safemode_delay < old_delay)
3438 			md_safemode_timeout((unsigned long)mddev);
3439 	}
3440 	return len;
3441 }
3442 static struct md_sysfs_entry md_safe_delay =
3443 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3444 
3445 static ssize_t
3446 level_show(struct mddev *mddev, char *page)
3447 {
3448 	struct md_personality *p = mddev->pers;
3449 	if (p)
3450 		return sprintf(page, "%s\n", p->name);
3451 	else if (mddev->clevel[0])
3452 		return sprintf(page, "%s\n", mddev->clevel);
3453 	else if (mddev->level != LEVEL_NONE)
3454 		return sprintf(page, "%d\n", mddev->level);
3455 	else
3456 		return 0;
3457 }
3458 
3459 static ssize_t
3460 level_store(struct mddev *mddev, const char *buf, size_t len)
3461 {
3462 	char clevel[16];
3463 	ssize_t rv = len;
3464 	struct md_personality *pers;
3465 	long level;
3466 	void *priv;
3467 	struct md_rdev *rdev;
3468 
3469 	if (mddev->pers == NULL) {
3470 		if (len == 0)
3471 			return 0;
3472 		if (len >= sizeof(mddev->clevel))
3473 			return -ENOSPC;
3474 		strncpy(mddev->clevel, buf, len);
3475 		if (mddev->clevel[len-1] == '\n')
3476 			len--;
3477 		mddev->clevel[len] = 0;
3478 		mddev->level = LEVEL_NONE;
3479 		return rv;
3480 	}
3481 
3482 	/* request to change the personality.  Need to ensure:
3483 	 *  - array is not engaged in resync/recovery/reshape
3484 	 *  - old personality can be suspended
3485 	 *  - new personality will access other array.
3486 	 */
3487 
3488 	if (mddev->sync_thread ||
3489 	    mddev->reshape_position != MaxSector ||
3490 	    mddev->sysfs_active)
3491 		return -EBUSY;
3492 
3493 	if (!mddev->pers->quiesce) {
3494 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3495 		       mdname(mddev), mddev->pers->name);
3496 		return -EINVAL;
3497 	}
3498 
3499 	/* Now find the new personality */
3500 	if (len == 0 || len >= sizeof(clevel))
3501 		return -EINVAL;
3502 	strncpy(clevel, buf, len);
3503 	if (clevel[len-1] == '\n')
3504 		len--;
3505 	clevel[len] = 0;
3506 	if (strict_strtol(clevel, 10, &level))
3507 		level = LEVEL_NONE;
3508 
3509 	if (request_module("md-%s", clevel) != 0)
3510 		request_module("md-level-%s", clevel);
3511 	spin_lock(&pers_lock);
3512 	pers = find_pers(level, clevel);
3513 	if (!pers || !try_module_get(pers->owner)) {
3514 		spin_unlock(&pers_lock);
3515 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3516 		return -EINVAL;
3517 	}
3518 	spin_unlock(&pers_lock);
3519 
3520 	if (pers == mddev->pers) {
3521 		/* Nothing to do! */
3522 		module_put(pers->owner);
3523 		return rv;
3524 	}
3525 	if (!pers->takeover) {
3526 		module_put(pers->owner);
3527 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3528 		       mdname(mddev), clevel);
3529 		return -EINVAL;
3530 	}
3531 
3532 	rdev_for_each(rdev, mddev)
3533 		rdev->new_raid_disk = rdev->raid_disk;
3534 
3535 	/* ->takeover must set new_* and/or delta_disks
3536 	 * if it succeeds, and may set them when it fails.
3537 	 */
3538 	priv = pers->takeover(mddev);
3539 	if (IS_ERR(priv)) {
3540 		mddev->new_level = mddev->level;
3541 		mddev->new_layout = mddev->layout;
3542 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3543 		mddev->raid_disks -= mddev->delta_disks;
3544 		mddev->delta_disks = 0;
3545 		mddev->reshape_backwards = 0;
3546 		module_put(pers->owner);
3547 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3548 		       mdname(mddev), clevel);
3549 		return PTR_ERR(priv);
3550 	}
3551 
3552 	/* Looks like we have a winner */
3553 	mddev_suspend(mddev);
3554 	mddev->pers->stop(mddev);
3555 
3556 	if (mddev->pers->sync_request == NULL &&
3557 	    pers->sync_request != NULL) {
3558 		/* need to add the md_redundancy_group */
3559 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3560 			printk(KERN_WARNING
3561 			       "md: cannot register extra attributes for %s\n",
3562 			       mdname(mddev));
3563 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3564 	}
3565 	if (mddev->pers->sync_request != NULL &&
3566 	    pers->sync_request == NULL) {
3567 		/* need to remove the md_redundancy_group */
3568 		if (mddev->to_remove == NULL)
3569 			mddev->to_remove = &md_redundancy_group;
3570 	}
3571 
3572 	if (mddev->pers->sync_request == NULL &&
3573 	    mddev->external) {
3574 		/* We are converting from a no-redundancy array
3575 		 * to a redundancy array and metadata is managed
3576 		 * externally so we need to be sure that writes
3577 		 * won't block due to a need to transition
3578 		 *      clean->dirty
3579 		 * until external management is started.
3580 		 */
3581 		mddev->in_sync = 0;
3582 		mddev->safemode_delay = 0;
3583 		mddev->safemode = 0;
3584 	}
3585 
3586 	rdev_for_each(rdev, mddev) {
3587 		if (rdev->raid_disk < 0)
3588 			continue;
3589 		if (rdev->new_raid_disk >= mddev->raid_disks)
3590 			rdev->new_raid_disk = -1;
3591 		if (rdev->new_raid_disk == rdev->raid_disk)
3592 			continue;
3593 		sysfs_unlink_rdev(mddev, rdev);
3594 	}
3595 	rdev_for_each(rdev, mddev) {
3596 		if (rdev->raid_disk < 0)
3597 			continue;
3598 		if (rdev->new_raid_disk == rdev->raid_disk)
3599 			continue;
3600 		rdev->raid_disk = rdev->new_raid_disk;
3601 		if (rdev->raid_disk < 0)
3602 			clear_bit(In_sync, &rdev->flags);
3603 		else {
3604 			if (sysfs_link_rdev(mddev, rdev))
3605 				printk(KERN_WARNING "md: cannot register rd%d"
3606 				       " for %s after level change\n",
3607 				       rdev->raid_disk, mdname(mddev));
3608 		}
3609 	}
3610 
3611 	module_put(mddev->pers->owner);
3612 	mddev->pers = pers;
3613 	mddev->private = priv;
3614 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3615 	mddev->level = mddev->new_level;
3616 	mddev->layout = mddev->new_layout;
3617 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3618 	mddev->delta_disks = 0;
3619 	mddev->reshape_backwards = 0;
3620 	mddev->degraded = 0;
3621 	if (mddev->pers->sync_request == NULL) {
3622 		/* this is now an array without redundancy, so
3623 		 * it must always be in_sync
3624 		 */
3625 		mddev->in_sync = 1;
3626 		del_timer_sync(&mddev->safemode_timer);
3627 	}
3628 	pers->run(mddev);
3629 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3630 	mddev_resume(mddev);
3631 	sysfs_notify(&mddev->kobj, NULL, "level");
3632 	md_new_event(mddev);
3633 	return rv;
3634 }
3635 
3636 static struct md_sysfs_entry md_level =
3637 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3638 
3639 
3640 static ssize_t
3641 layout_show(struct mddev *mddev, char *page)
3642 {
3643 	/* just a number, not meaningful for all levels */
3644 	if (mddev->reshape_position != MaxSector &&
3645 	    mddev->layout != mddev->new_layout)
3646 		return sprintf(page, "%d (%d)\n",
3647 			       mddev->new_layout, mddev->layout);
3648 	return sprintf(page, "%d\n", mddev->layout);
3649 }
3650 
3651 static ssize_t
3652 layout_store(struct mddev *mddev, const char *buf, size_t len)
3653 {
3654 	char *e;
3655 	unsigned long n = simple_strtoul(buf, &e, 10);
3656 
3657 	if (!*buf || (*e && *e != '\n'))
3658 		return -EINVAL;
3659 
3660 	if (mddev->pers) {
3661 		int err;
3662 		if (mddev->pers->check_reshape == NULL)
3663 			return -EBUSY;
3664 		mddev->new_layout = n;
3665 		err = mddev->pers->check_reshape(mddev);
3666 		if (err) {
3667 			mddev->new_layout = mddev->layout;
3668 			return err;
3669 		}
3670 	} else {
3671 		mddev->new_layout = n;
3672 		if (mddev->reshape_position == MaxSector)
3673 			mddev->layout = n;
3674 	}
3675 	return len;
3676 }
3677 static struct md_sysfs_entry md_layout =
3678 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3679 
3680 
3681 static ssize_t
3682 raid_disks_show(struct mddev *mddev, char *page)
3683 {
3684 	if (mddev->raid_disks == 0)
3685 		return 0;
3686 	if (mddev->reshape_position != MaxSector &&
3687 	    mddev->delta_disks != 0)
3688 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3689 			       mddev->raid_disks - mddev->delta_disks);
3690 	return sprintf(page, "%d\n", mddev->raid_disks);
3691 }
3692 
3693 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3694 
3695 static ssize_t
3696 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3697 {
3698 	char *e;
3699 	int rv = 0;
3700 	unsigned long n = simple_strtoul(buf, &e, 10);
3701 
3702 	if (!*buf || (*e && *e != '\n'))
3703 		return -EINVAL;
3704 
3705 	if (mddev->pers)
3706 		rv = update_raid_disks(mddev, n);
3707 	else if (mddev->reshape_position != MaxSector) {
3708 		struct md_rdev *rdev;
3709 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3710 
3711 		rdev_for_each(rdev, mddev) {
3712 			if (olddisks < n &&
3713 			    rdev->data_offset < rdev->new_data_offset)
3714 				return -EINVAL;
3715 			if (olddisks > n &&
3716 			    rdev->data_offset > rdev->new_data_offset)
3717 				return -EINVAL;
3718 		}
3719 		mddev->delta_disks = n - olddisks;
3720 		mddev->raid_disks = n;
3721 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3722 	} else
3723 		mddev->raid_disks = n;
3724 	return rv ? rv : len;
3725 }
3726 static struct md_sysfs_entry md_raid_disks =
3727 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3728 
3729 static ssize_t
3730 chunk_size_show(struct mddev *mddev, char *page)
3731 {
3732 	if (mddev->reshape_position != MaxSector &&
3733 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3734 		return sprintf(page, "%d (%d)\n",
3735 			       mddev->new_chunk_sectors << 9,
3736 			       mddev->chunk_sectors << 9);
3737 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3738 }
3739 
3740 static ssize_t
3741 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3742 {
3743 	char *e;
3744 	unsigned long n = simple_strtoul(buf, &e, 10);
3745 
3746 	if (!*buf || (*e && *e != '\n'))
3747 		return -EINVAL;
3748 
3749 	if (mddev->pers) {
3750 		int err;
3751 		if (mddev->pers->check_reshape == NULL)
3752 			return -EBUSY;
3753 		mddev->new_chunk_sectors = n >> 9;
3754 		err = mddev->pers->check_reshape(mddev);
3755 		if (err) {
3756 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3757 			return err;
3758 		}
3759 	} else {
3760 		mddev->new_chunk_sectors = n >> 9;
3761 		if (mddev->reshape_position == MaxSector)
3762 			mddev->chunk_sectors = n >> 9;
3763 	}
3764 	return len;
3765 }
3766 static struct md_sysfs_entry md_chunk_size =
3767 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3768 
3769 static ssize_t
3770 resync_start_show(struct mddev *mddev, char *page)
3771 {
3772 	if (mddev->recovery_cp == MaxSector)
3773 		return sprintf(page, "none\n");
3774 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3775 }
3776 
3777 static ssize_t
3778 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3779 {
3780 	char *e;
3781 	unsigned long long n = simple_strtoull(buf, &e, 10);
3782 
3783 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3784 		return -EBUSY;
3785 	if (cmd_match(buf, "none"))
3786 		n = MaxSector;
3787 	else if (!*buf || (*e && *e != '\n'))
3788 		return -EINVAL;
3789 
3790 	mddev->recovery_cp = n;
3791 	if (mddev->pers)
3792 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3793 	return len;
3794 }
3795 static struct md_sysfs_entry md_resync_start =
3796 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3797 
3798 /*
3799  * The array state can be:
3800  *
3801  * clear
3802  *     No devices, no size, no level
3803  *     Equivalent to STOP_ARRAY ioctl
3804  * inactive
3805  *     May have some settings, but array is not active
3806  *        all IO results in error
3807  *     When written, doesn't tear down array, but just stops it
3808  * suspended (not supported yet)
3809  *     All IO requests will block. The array can be reconfigured.
3810  *     Writing this, if accepted, will block until array is quiescent
3811  * readonly
3812  *     no resync can happen.  no superblocks get written.
3813  *     write requests fail
3814  * read-auto
3815  *     like readonly, but behaves like 'clean' on a write request.
3816  *
3817  * clean - no pending writes, but otherwise active.
3818  *     When written to inactive array, starts without resync
3819  *     If a write request arrives then
3820  *       if metadata is known, mark 'dirty' and switch to 'active'.
3821  *       if not known, block and switch to write-pending
3822  *     If written to an active array that has pending writes, then fails.
3823  * active
3824  *     fully active: IO and resync can be happening.
3825  *     When written to inactive array, starts with resync
3826  *
3827  * write-pending
3828  *     clean, but writes are blocked waiting for 'active' to be written.
3829  *
3830  * active-idle
3831  *     like active, but no writes have been seen for a while (100msec).
3832  *
3833  */
3834 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3835 		   write_pending, active_idle, bad_word};
3836 static char *array_states[] = {
3837 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3838 	"write-pending", "active-idle", NULL };
3839 
3840 static int match_word(const char *word, char **list)
3841 {
3842 	int n;
3843 	for (n=0; list[n]; n++)
3844 		if (cmd_match(word, list[n]))
3845 			break;
3846 	return n;
3847 }
3848 
3849 static ssize_t
3850 array_state_show(struct mddev *mddev, char *page)
3851 {
3852 	enum array_state st = inactive;
3853 
3854 	if (mddev->pers)
3855 		switch(mddev->ro) {
3856 		case 1:
3857 			st = readonly;
3858 			break;
3859 		case 2:
3860 			st = read_auto;
3861 			break;
3862 		case 0:
3863 			if (mddev->in_sync)
3864 				st = clean;
3865 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3866 				st = write_pending;
3867 			else if (mddev->safemode)
3868 				st = active_idle;
3869 			else
3870 				st = active;
3871 		}
3872 	else {
3873 		if (list_empty(&mddev->disks) &&
3874 		    mddev->raid_disks == 0 &&
3875 		    mddev->dev_sectors == 0)
3876 			st = clear;
3877 		else
3878 			st = inactive;
3879 	}
3880 	return sprintf(page, "%s\n", array_states[st]);
3881 }
3882 
3883 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3884 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3885 static int do_md_run(struct mddev * mddev);
3886 static int restart_array(struct mddev *mddev);
3887 
3888 static ssize_t
3889 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3890 {
3891 	int err = -EINVAL;
3892 	enum array_state st = match_word(buf, array_states);
3893 	switch(st) {
3894 	case bad_word:
3895 		break;
3896 	case clear:
3897 		/* stopping an active array */
3898 		err = do_md_stop(mddev, 0, NULL);
3899 		break;
3900 	case inactive:
3901 		/* stopping an active array */
3902 		if (mddev->pers)
3903 			err = do_md_stop(mddev, 2, NULL);
3904 		else
3905 			err = 0; /* already inactive */
3906 		break;
3907 	case suspended:
3908 		break; /* not supported yet */
3909 	case readonly:
3910 		if (mddev->pers)
3911 			err = md_set_readonly(mddev, NULL);
3912 		else {
3913 			mddev->ro = 1;
3914 			set_disk_ro(mddev->gendisk, 1);
3915 			err = do_md_run(mddev);
3916 		}
3917 		break;
3918 	case read_auto:
3919 		if (mddev->pers) {
3920 			if (mddev->ro == 0)
3921 				err = md_set_readonly(mddev, NULL);
3922 			else if (mddev->ro == 1)
3923 				err = restart_array(mddev);
3924 			if (err == 0) {
3925 				mddev->ro = 2;
3926 				set_disk_ro(mddev->gendisk, 0);
3927 			}
3928 		} else {
3929 			mddev->ro = 2;
3930 			err = do_md_run(mddev);
3931 		}
3932 		break;
3933 	case clean:
3934 		if (mddev->pers) {
3935 			restart_array(mddev);
3936 			spin_lock_irq(&mddev->write_lock);
3937 			if (atomic_read(&mddev->writes_pending) == 0) {
3938 				if (mddev->in_sync == 0) {
3939 					mddev->in_sync = 1;
3940 					if (mddev->safemode == 1)
3941 						mddev->safemode = 0;
3942 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3943 				}
3944 				err = 0;
3945 			} else
3946 				err = -EBUSY;
3947 			spin_unlock_irq(&mddev->write_lock);
3948 		} else
3949 			err = -EINVAL;
3950 		break;
3951 	case active:
3952 		if (mddev->pers) {
3953 			restart_array(mddev);
3954 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3955 			wake_up(&mddev->sb_wait);
3956 			err = 0;
3957 		} else {
3958 			mddev->ro = 0;
3959 			set_disk_ro(mddev->gendisk, 0);
3960 			err = do_md_run(mddev);
3961 		}
3962 		break;
3963 	case write_pending:
3964 	case active_idle:
3965 		/* these cannot be set */
3966 		break;
3967 	}
3968 	if (err)
3969 		return err;
3970 	else {
3971 		if (mddev->hold_active == UNTIL_IOCTL)
3972 			mddev->hold_active = 0;
3973 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3974 		return len;
3975 	}
3976 }
3977 static struct md_sysfs_entry md_array_state =
3978 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3979 
3980 static ssize_t
3981 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3982 	return sprintf(page, "%d\n",
3983 		       atomic_read(&mddev->max_corr_read_errors));
3984 }
3985 
3986 static ssize_t
3987 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3988 {
3989 	char *e;
3990 	unsigned long n = simple_strtoul(buf, &e, 10);
3991 
3992 	if (*buf && (*e == 0 || *e == '\n')) {
3993 		atomic_set(&mddev->max_corr_read_errors, n);
3994 		return len;
3995 	}
3996 	return -EINVAL;
3997 }
3998 
3999 static struct md_sysfs_entry max_corr_read_errors =
4000 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4001 	max_corrected_read_errors_store);
4002 
4003 static ssize_t
4004 null_show(struct mddev *mddev, char *page)
4005 {
4006 	return -EINVAL;
4007 }
4008 
4009 static ssize_t
4010 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4011 {
4012 	/* buf must be %d:%d\n? giving major and minor numbers */
4013 	/* The new device is added to the array.
4014 	 * If the array has a persistent superblock, we read the
4015 	 * superblock to initialise info and check validity.
4016 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4017 	 * which mainly checks size.
4018 	 */
4019 	char *e;
4020 	int major = simple_strtoul(buf, &e, 10);
4021 	int minor;
4022 	dev_t dev;
4023 	struct md_rdev *rdev;
4024 	int err;
4025 
4026 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4027 		return -EINVAL;
4028 	minor = simple_strtoul(e+1, &e, 10);
4029 	if (*e && *e != '\n')
4030 		return -EINVAL;
4031 	dev = MKDEV(major, minor);
4032 	if (major != MAJOR(dev) ||
4033 	    minor != MINOR(dev))
4034 		return -EOVERFLOW;
4035 
4036 
4037 	if (mddev->persistent) {
4038 		rdev = md_import_device(dev, mddev->major_version,
4039 					mddev->minor_version);
4040 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4041 			struct md_rdev *rdev0
4042 				= list_entry(mddev->disks.next,
4043 					     struct md_rdev, same_set);
4044 			err = super_types[mddev->major_version]
4045 				.load_super(rdev, rdev0, mddev->minor_version);
4046 			if (err < 0)
4047 				goto out;
4048 		}
4049 	} else if (mddev->external)
4050 		rdev = md_import_device(dev, -2, -1);
4051 	else
4052 		rdev = md_import_device(dev, -1, -1);
4053 
4054 	if (IS_ERR(rdev))
4055 		return PTR_ERR(rdev);
4056 	err = bind_rdev_to_array(rdev, mddev);
4057  out:
4058 	if (err)
4059 		export_rdev(rdev);
4060 	return err ? err : len;
4061 }
4062 
4063 static struct md_sysfs_entry md_new_device =
4064 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4065 
4066 static ssize_t
4067 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4068 {
4069 	char *end;
4070 	unsigned long chunk, end_chunk;
4071 
4072 	if (!mddev->bitmap)
4073 		goto out;
4074 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4075 	while (*buf) {
4076 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4077 		if (buf == end) break;
4078 		if (*end == '-') { /* range */
4079 			buf = end + 1;
4080 			end_chunk = simple_strtoul(buf, &end, 0);
4081 			if (buf == end) break;
4082 		}
4083 		if (*end && !isspace(*end)) break;
4084 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4085 		buf = skip_spaces(end);
4086 	}
4087 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4088 out:
4089 	return len;
4090 }
4091 
4092 static struct md_sysfs_entry md_bitmap =
4093 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4094 
4095 static ssize_t
4096 size_show(struct mddev *mddev, char *page)
4097 {
4098 	return sprintf(page, "%llu\n",
4099 		(unsigned long long)mddev->dev_sectors / 2);
4100 }
4101 
4102 static int update_size(struct mddev *mddev, sector_t num_sectors);
4103 
4104 static ssize_t
4105 size_store(struct mddev *mddev, const char *buf, size_t len)
4106 {
4107 	/* If array is inactive, we can reduce the component size, but
4108 	 * not increase it (except from 0).
4109 	 * If array is active, we can try an on-line resize
4110 	 */
4111 	sector_t sectors;
4112 	int err = strict_blocks_to_sectors(buf, &sectors);
4113 
4114 	if (err < 0)
4115 		return err;
4116 	if (mddev->pers) {
4117 		err = update_size(mddev, sectors);
4118 		md_update_sb(mddev, 1);
4119 	} else {
4120 		if (mddev->dev_sectors == 0 ||
4121 		    mddev->dev_sectors > sectors)
4122 			mddev->dev_sectors = sectors;
4123 		else
4124 			err = -ENOSPC;
4125 	}
4126 	return err ? err : len;
4127 }
4128 
4129 static struct md_sysfs_entry md_size =
4130 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4131 
4132 
4133 /* Metadata version.
4134  * This is one of
4135  *   'none' for arrays with no metadata (good luck...)
4136  *   'external' for arrays with externally managed metadata,
4137  * or N.M for internally known formats
4138  */
4139 static ssize_t
4140 metadata_show(struct mddev *mddev, char *page)
4141 {
4142 	if (mddev->persistent)
4143 		return sprintf(page, "%d.%d\n",
4144 			       mddev->major_version, mddev->minor_version);
4145 	else if (mddev->external)
4146 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4147 	else
4148 		return sprintf(page, "none\n");
4149 }
4150 
4151 static ssize_t
4152 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4153 {
4154 	int major, minor;
4155 	char *e;
4156 	/* Changing the details of 'external' metadata is
4157 	 * always permitted.  Otherwise there must be
4158 	 * no devices attached to the array.
4159 	 */
4160 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4161 		;
4162 	else if (!list_empty(&mddev->disks))
4163 		return -EBUSY;
4164 
4165 	if (cmd_match(buf, "none")) {
4166 		mddev->persistent = 0;
4167 		mddev->external = 0;
4168 		mddev->major_version = 0;
4169 		mddev->minor_version = 90;
4170 		return len;
4171 	}
4172 	if (strncmp(buf, "external:", 9) == 0) {
4173 		size_t namelen = len-9;
4174 		if (namelen >= sizeof(mddev->metadata_type))
4175 			namelen = sizeof(mddev->metadata_type)-1;
4176 		strncpy(mddev->metadata_type, buf+9, namelen);
4177 		mddev->metadata_type[namelen] = 0;
4178 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4179 			mddev->metadata_type[--namelen] = 0;
4180 		mddev->persistent = 0;
4181 		mddev->external = 1;
4182 		mddev->major_version = 0;
4183 		mddev->minor_version = 90;
4184 		return len;
4185 	}
4186 	major = simple_strtoul(buf, &e, 10);
4187 	if (e==buf || *e != '.')
4188 		return -EINVAL;
4189 	buf = e+1;
4190 	minor = simple_strtoul(buf, &e, 10);
4191 	if (e==buf || (*e && *e != '\n') )
4192 		return -EINVAL;
4193 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4194 		return -ENOENT;
4195 	mddev->major_version = major;
4196 	mddev->minor_version = minor;
4197 	mddev->persistent = 1;
4198 	mddev->external = 0;
4199 	return len;
4200 }
4201 
4202 static struct md_sysfs_entry md_metadata =
4203 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4204 
4205 static ssize_t
4206 action_show(struct mddev *mddev, char *page)
4207 {
4208 	char *type = "idle";
4209 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4210 		type = "frozen";
4211 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4212 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4213 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4214 			type = "reshape";
4215 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4216 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4217 				type = "resync";
4218 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4219 				type = "check";
4220 			else
4221 				type = "repair";
4222 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4223 			type = "recover";
4224 	}
4225 	return sprintf(page, "%s\n", type);
4226 }
4227 
4228 static void reap_sync_thread(struct mddev *mddev);
4229 
4230 static ssize_t
4231 action_store(struct mddev *mddev, const char *page, size_t len)
4232 {
4233 	if (!mddev->pers || !mddev->pers->sync_request)
4234 		return -EINVAL;
4235 
4236 	if (cmd_match(page, "frozen"))
4237 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4238 	else
4239 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4240 
4241 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4242 		if (mddev->sync_thread) {
4243 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4244 			reap_sync_thread(mddev);
4245 		}
4246 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4247 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4248 		return -EBUSY;
4249 	else if (cmd_match(page, "resync"))
4250 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4251 	else if (cmd_match(page, "recover")) {
4252 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4253 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4254 	} else if (cmd_match(page, "reshape")) {
4255 		int err;
4256 		if (mddev->pers->start_reshape == NULL)
4257 			return -EINVAL;
4258 		err = mddev->pers->start_reshape(mddev);
4259 		if (err)
4260 			return err;
4261 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4262 	} else {
4263 		if (cmd_match(page, "check"))
4264 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4265 		else if (!cmd_match(page, "repair"))
4266 			return -EINVAL;
4267 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4268 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4269 	}
4270 	if (mddev->ro == 2) {
4271 		/* A write to sync_action is enough to justify
4272 		 * canceling read-auto mode
4273 		 */
4274 		mddev->ro = 0;
4275 		md_wakeup_thread(mddev->sync_thread);
4276 	}
4277 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4278 	md_wakeup_thread(mddev->thread);
4279 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4280 	return len;
4281 }
4282 
4283 static ssize_t
4284 mismatch_cnt_show(struct mddev *mddev, char *page)
4285 {
4286 	return sprintf(page, "%llu\n",
4287 		       (unsigned long long)
4288 		       atomic64_read(&mddev->resync_mismatches));
4289 }
4290 
4291 static struct md_sysfs_entry md_scan_mode =
4292 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4293 
4294 
4295 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4296 
4297 static ssize_t
4298 sync_min_show(struct mddev *mddev, char *page)
4299 {
4300 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4301 		       mddev->sync_speed_min ? "local": "system");
4302 }
4303 
4304 static ssize_t
4305 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4306 {
4307 	int min;
4308 	char *e;
4309 	if (strncmp(buf, "system", 6)==0) {
4310 		mddev->sync_speed_min = 0;
4311 		return len;
4312 	}
4313 	min = simple_strtoul(buf, &e, 10);
4314 	if (buf == e || (*e && *e != '\n') || min <= 0)
4315 		return -EINVAL;
4316 	mddev->sync_speed_min = min;
4317 	return len;
4318 }
4319 
4320 static struct md_sysfs_entry md_sync_min =
4321 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4322 
4323 static ssize_t
4324 sync_max_show(struct mddev *mddev, char *page)
4325 {
4326 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4327 		       mddev->sync_speed_max ? "local": "system");
4328 }
4329 
4330 static ssize_t
4331 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4332 {
4333 	int max;
4334 	char *e;
4335 	if (strncmp(buf, "system", 6)==0) {
4336 		mddev->sync_speed_max = 0;
4337 		return len;
4338 	}
4339 	max = simple_strtoul(buf, &e, 10);
4340 	if (buf == e || (*e && *e != '\n') || max <= 0)
4341 		return -EINVAL;
4342 	mddev->sync_speed_max = max;
4343 	return len;
4344 }
4345 
4346 static struct md_sysfs_entry md_sync_max =
4347 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4348 
4349 static ssize_t
4350 degraded_show(struct mddev *mddev, char *page)
4351 {
4352 	return sprintf(page, "%d\n", mddev->degraded);
4353 }
4354 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4355 
4356 static ssize_t
4357 sync_force_parallel_show(struct mddev *mddev, char *page)
4358 {
4359 	return sprintf(page, "%d\n", mddev->parallel_resync);
4360 }
4361 
4362 static ssize_t
4363 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4364 {
4365 	long n;
4366 
4367 	if (strict_strtol(buf, 10, &n))
4368 		return -EINVAL;
4369 
4370 	if (n != 0 && n != 1)
4371 		return -EINVAL;
4372 
4373 	mddev->parallel_resync = n;
4374 
4375 	if (mddev->sync_thread)
4376 		wake_up(&resync_wait);
4377 
4378 	return len;
4379 }
4380 
4381 /* force parallel resync, even with shared block devices */
4382 static struct md_sysfs_entry md_sync_force_parallel =
4383 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4384        sync_force_parallel_show, sync_force_parallel_store);
4385 
4386 static ssize_t
4387 sync_speed_show(struct mddev *mddev, char *page)
4388 {
4389 	unsigned long resync, dt, db;
4390 	if (mddev->curr_resync == 0)
4391 		return sprintf(page, "none\n");
4392 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4393 	dt = (jiffies - mddev->resync_mark) / HZ;
4394 	if (!dt) dt++;
4395 	db = resync - mddev->resync_mark_cnt;
4396 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4397 }
4398 
4399 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4400 
4401 static ssize_t
4402 sync_completed_show(struct mddev *mddev, char *page)
4403 {
4404 	unsigned long long max_sectors, resync;
4405 
4406 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4407 		return sprintf(page, "none\n");
4408 
4409 	if (mddev->curr_resync == 1 ||
4410 	    mddev->curr_resync == 2)
4411 		return sprintf(page, "delayed\n");
4412 
4413 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4414 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4415 		max_sectors = mddev->resync_max_sectors;
4416 	else
4417 		max_sectors = mddev->dev_sectors;
4418 
4419 	resync = mddev->curr_resync_completed;
4420 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4421 }
4422 
4423 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4424 
4425 static ssize_t
4426 min_sync_show(struct mddev *mddev, char *page)
4427 {
4428 	return sprintf(page, "%llu\n",
4429 		       (unsigned long long)mddev->resync_min);
4430 }
4431 static ssize_t
4432 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4433 {
4434 	unsigned long long min;
4435 	if (strict_strtoull(buf, 10, &min))
4436 		return -EINVAL;
4437 	if (min > mddev->resync_max)
4438 		return -EINVAL;
4439 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4440 		return -EBUSY;
4441 
4442 	/* Must be a multiple of chunk_size */
4443 	if (mddev->chunk_sectors) {
4444 		sector_t temp = min;
4445 		if (sector_div(temp, mddev->chunk_sectors))
4446 			return -EINVAL;
4447 	}
4448 	mddev->resync_min = min;
4449 
4450 	return len;
4451 }
4452 
4453 static struct md_sysfs_entry md_min_sync =
4454 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4455 
4456 static ssize_t
4457 max_sync_show(struct mddev *mddev, char *page)
4458 {
4459 	if (mddev->resync_max == MaxSector)
4460 		return sprintf(page, "max\n");
4461 	else
4462 		return sprintf(page, "%llu\n",
4463 			       (unsigned long long)mddev->resync_max);
4464 }
4465 static ssize_t
4466 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4467 {
4468 	if (strncmp(buf, "max", 3) == 0)
4469 		mddev->resync_max = MaxSector;
4470 	else {
4471 		unsigned long long max;
4472 		if (strict_strtoull(buf, 10, &max))
4473 			return -EINVAL;
4474 		if (max < mddev->resync_min)
4475 			return -EINVAL;
4476 		if (max < mddev->resync_max &&
4477 		    mddev->ro == 0 &&
4478 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4479 			return -EBUSY;
4480 
4481 		/* Must be a multiple of chunk_size */
4482 		if (mddev->chunk_sectors) {
4483 			sector_t temp = max;
4484 			if (sector_div(temp, mddev->chunk_sectors))
4485 				return -EINVAL;
4486 		}
4487 		mddev->resync_max = max;
4488 	}
4489 	wake_up(&mddev->recovery_wait);
4490 	return len;
4491 }
4492 
4493 static struct md_sysfs_entry md_max_sync =
4494 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4495 
4496 static ssize_t
4497 suspend_lo_show(struct mddev *mddev, char *page)
4498 {
4499 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4500 }
4501 
4502 static ssize_t
4503 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4504 {
4505 	char *e;
4506 	unsigned long long new = simple_strtoull(buf, &e, 10);
4507 	unsigned long long old = mddev->suspend_lo;
4508 
4509 	if (mddev->pers == NULL ||
4510 	    mddev->pers->quiesce == NULL)
4511 		return -EINVAL;
4512 	if (buf == e || (*e && *e != '\n'))
4513 		return -EINVAL;
4514 
4515 	mddev->suspend_lo = new;
4516 	if (new >= old)
4517 		/* Shrinking suspended region */
4518 		mddev->pers->quiesce(mddev, 2);
4519 	else {
4520 		/* Expanding suspended region - need to wait */
4521 		mddev->pers->quiesce(mddev, 1);
4522 		mddev->pers->quiesce(mddev, 0);
4523 	}
4524 	return len;
4525 }
4526 static struct md_sysfs_entry md_suspend_lo =
4527 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4528 
4529 
4530 static ssize_t
4531 suspend_hi_show(struct mddev *mddev, char *page)
4532 {
4533 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4534 }
4535 
4536 static ssize_t
4537 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4538 {
4539 	char *e;
4540 	unsigned long long new = simple_strtoull(buf, &e, 10);
4541 	unsigned long long old = mddev->suspend_hi;
4542 
4543 	if (mddev->pers == NULL ||
4544 	    mddev->pers->quiesce == NULL)
4545 		return -EINVAL;
4546 	if (buf == e || (*e && *e != '\n'))
4547 		return -EINVAL;
4548 
4549 	mddev->suspend_hi = new;
4550 	if (new <= old)
4551 		/* Shrinking suspended region */
4552 		mddev->pers->quiesce(mddev, 2);
4553 	else {
4554 		/* Expanding suspended region - need to wait */
4555 		mddev->pers->quiesce(mddev, 1);
4556 		mddev->pers->quiesce(mddev, 0);
4557 	}
4558 	return len;
4559 }
4560 static struct md_sysfs_entry md_suspend_hi =
4561 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4562 
4563 static ssize_t
4564 reshape_position_show(struct mddev *mddev, char *page)
4565 {
4566 	if (mddev->reshape_position != MaxSector)
4567 		return sprintf(page, "%llu\n",
4568 			       (unsigned long long)mddev->reshape_position);
4569 	strcpy(page, "none\n");
4570 	return 5;
4571 }
4572 
4573 static ssize_t
4574 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4575 {
4576 	struct md_rdev *rdev;
4577 	char *e;
4578 	unsigned long long new = simple_strtoull(buf, &e, 10);
4579 	if (mddev->pers)
4580 		return -EBUSY;
4581 	if (buf == e || (*e && *e != '\n'))
4582 		return -EINVAL;
4583 	mddev->reshape_position = new;
4584 	mddev->delta_disks = 0;
4585 	mddev->reshape_backwards = 0;
4586 	mddev->new_level = mddev->level;
4587 	mddev->new_layout = mddev->layout;
4588 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4589 	rdev_for_each(rdev, mddev)
4590 		rdev->new_data_offset = rdev->data_offset;
4591 	return len;
4592 }
4593 
4594 static struct md_sysfs_entry md_reshape_position =
4595 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4596        reshape_position_store);
4597 
4598 static ssize_t
4599 reshape_direction_show(struct mddev *mddev, char *page)
4600 {
4601 	return sprintf(page, "%s\n",
4602 		       mddev->reshape_backwards ? "backwards" : "forwards");
4603 }
4604 
4605 static ssize_t
4606 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4607 {
4608 	int backwards = 0;
4609 	if (cmd_match(buf, "forwards"))
4610 		backwards = 0;
4611 	else if (cmd_match(buf, "backwards"))
4612 		backwards = 1;
4613 	else
4614 		return -EINVAL;
4615 	if (mddev->reshape_backwards == backwards)
4616 		return len;
4617 
4618 	/* check if we are allowed to change */
4619 	if (mddev->delta_disks)
4620 		return -EBUSY;
4621 
4622 	if (mddev->persistent &&
4623 	    mddev->major_version == 0)
4624 		return -EINVAL;
4625 
4626 	mddev->reshape_backwards = backwards;
4627 	return len;
4628 }
4629 
4630 static struct md_sysfs_entry md_reshape_direction =
4631 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4632        reshape_direction_store);
4633 
4634 static ssize_t
4635 array_size_show(struct mddev *mddev, char *page)
4636 {
4637 	if (mddev->external_size)
4638 		return sprintf(page, "%llu\n",
4639 			       (unsigned long long)mddev->array_sectors/2);
4640 	else
4641 		return sprintf(page, "default\n");
4642 }
4643 
4644 static ssize_t
4645 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4646 {
4647 	sector_t sectors;
4648 
4649 	if (strncmp(buf, "default", 7) == 0) {
4650 		if (mddev->pers)
4651 			sectors = mddev->pers->size(mddev, 0, 0);
4652 		else
4653 			sectors = mddev->array_sectors;
4654 
4655 		mddev->external_size = 0;
4656 	} else {
4657 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4658 			return -EINVAL;
4659 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4660 			return -E2BIG;
4661 
4662 		mddev->external_size = 1;
4663 	}
4664 
4665 	mddev->array_sectors = sectors;
4666 	if (mddev->pers) {
4667 		set_capacity(mddev->gendisk, mddev->array_sectors);
4668 		revalidate_disk(mddev->gendisk);
4669 	}
4670 	return len;
4671 }
4672 
4673 static struct md_sysfs_entry md_array_size =
4674 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4675        array_size_store);
4676 
4677 static struct attribute *md_default_attrs[] = {
4678 	&md_level.attr,
4679 	&md_layout.attr,
4680 	&md_raid_disks.attr,
4681 	&md_chunk_size.attr,
4682 	&md_size.attr,
4683 	&md_resync_start.attr,
4684 	&md_metadata.attr,
4685 	&md_new_device.attr,
4686 	&md_safe_delay.attr,
4687 	&md_array_state.attr,
4688 	&md_reshape_position.attr,
4689 	&md_reshape_direction.attr,
4690 	&md_array_size.attr,
4691 	&max_corr_read_errors.attr,
4692 	NULL,
4693 };
4694 
4695 static struct attribute *md_redundancy_attrs[] = {
4696 	&md_scan_mode.attr,
4697 	&md_mismatches.attr,
4698 	&md_sync_min.attr,
4699 	&md_sync_max.attr,
4700 	&md_sync_speed.attr,
4701 	&md_sync_force_parallel.attr,
4702 	&md_sync_completed.attr,
4703 	&md_min_sync.attr,
4704 	&md_max_sync.attr,
4705 	&md_suspend_lo.attr,
4706 	&md_suspend_hi.attr,
4707 	&md_bitmap.attr,
4708 	&md_degraded.attr,
4709 	NULL,
4710 };
4711 static struct attribute_group md_redundancy_group = {
4712 	.name = NULL,
4713 	.attrs = md_redundancy_attrs,
4714 };
4715 
4716 
4717 static ssize_t
4718 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4719 {
4720 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4721 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4722 	ssize_t rv;
4723 
4724 	if (!entry->show)
4725 		return -EIO;
4726 	spin_lock(&all_mddevs_lock);
4727 	if (list_empty(&mddev->all_mddevs)) {
4728 		spin_unlock(&all_mddevs_lock);
4729 		return -EBUSY;
4730 	}
4731 	mddev_get(mddev);
4732 	spin_unlock(&all_mddevs_lock);
4733 
4734 	rv = mddev_lock(mddev);
4735 	if (!rv) {
4736 		rv = entry->show(mddev, page);
4737 		mddev_unlock(mddev);
4738 	}
4739 	mddev_put(mddev);
4740 	return rv;
4741 }
4742 
4743 static ssize_t
4744 md_attr_store(struct kobject *kobj, struct attribute *attr,
4745 	      const char *page, size_t length)
4746 {
4747 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4748 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4749 	ssize_t rv;
4750 
4751 	if (!entry->store)
4752 		return -EIO;
4753 	if (!capable(CAP_SYS_ADMIN))
4754 		return -EACCES;
4755 	spin_lock(&all_mddevs_lock);
4756 	if (list_empty(&mddev->all_mddevs)) {
4757 		spin_unlock(&all_mddevs_lock);
4758 		return -EBUSY;
4759 	}
4760 	mddev_get(mddev);
4761 	spin_unlock(&all_mddevs_lock);
4762 	if (entry->store == new_dev_store)
4763 		flush_workqueue(md_misc_wq);
4764 	rv = mddev_lock(mddev);
4765 	if (!rv) {
4766 		rv = entry->store(mddev, page, length);
4767 		mddev_unlock(mddev);
4768 	}
4769 	mddev_put(mddev);
4770 	return rv;
4771 }
4772 
4773 static void md_free(struct kobject *ko)
4774 {
4775 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4776 
4777 	if (mddev->sysfs_state)
4778 		sysfs_put(mddev->sysfs_state);
4779 
4780 	if (mddev->gendisk) {
4781 		del_gendisk(mddev->gendisk);
4782 		put_disk(mddev->gendisk);
4783 	}
4784 	if (mddev->queue)
4785 		blk_cleanup_queue(mddev->queue);
4786 
4787 	kfree(mddev);
4788 }
4789 
4790 static const struct sysfs_ops md_sysfs_ops = {
4791 	.show	= md_attr_show,
4792 	.store	= md_attr_store,
4793 };
4794 static struct kobj_type md_ktype = {
4795 	.release	= md_free,
4796 	.sysfs_ops	= &md_sysfs_ops,
4797 	.default_attrs	= md_default_attrs,
4798 };
4799 
4800 int mdp_major = 0;
4801 
4802 static void mddev_delayed_delete(struct work_struct *ws)
4803 {
4804 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4805 
4806 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4807 	kobject_del(&mddev->kobj);
4808 	kobject_put(&mddev->kobj);
4809 }
4810 
4811 static int md_alloc(dev_t dev, char *name)
4812 {
4813 	static DEFINE_MUTEX(disks_mutex);
4814 	struct mddev *mddev = mddev_find(dev);
4815 	struct gendisk *disk;
4816 	int partitioned;
4817 	int shift;
4818 	int unit;
4819 	int error;
4820 
4821 	if (!mddev)
4822 		return -ENODEV;
4823 
4824 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4825 	shift = partitioned ? MdpMinorShift : 0;
4826 	unit = MINOR(mddev->unit) >> shift;
4827 
4828 	/* wait for any previous instance of this device to be
4829 	 * completely removed (mddev_delayed_delete).
4830 	 */
4831 	flush_workqueue(md_misc_wq);
4832 
4833 	mutex_lock(&disks_mutex);
4834 	error = -EEXIST;
4835 	if (mddev->gendisk)
4836 		goto abort;
4837 
4838 	if (name) {
4839 		/* Need to ensure that 'name' is not a duplicate.
4840 		 */
4841 		struct mddev *mddev2;
4842 		spin_lock(&all_mddevs_lock);
4843 
4844 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4845 			if (mddev2->gendisk &&
4846 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4847 				spin_unlock(&all_mddevs_lock);
4848 				goto abort;
4849 			}
4850 		spin_unlock(&all_mddevs_lock);
4851 	}
4852 
4853 	error = -ENOMEM;
4854 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4855 	if (!mddev->queue)
4856 		goto abort;
4857 	mddev->queue->queuedata = mddev;
4858 
4859 	blk_queue_make_request(mddev->queue, md_make_request);
4860 	blk_set_stacking_limits(&mddev->queue->limits);
4861 
4862 	disk = alloc_disk(1 << shift);
4863 	if (!disk) {
4864 		blk_cleanup_queue(mddev->queue);
4865 		mddev->queue = NULL;
4866 		goto abort;
4867 	}
4868 	disk->major = MAJOR(mddev->unit);
4869 	disk->first_minor = unit << shift;
4870 	if (name)
4871 		strcpy(disk->disk_name, name);
4872 	else if (partitioned)
4873 		sprintf(disk->disk_name, "md_d%d", unit);
4874 	else
4875 		sprintf(disk->disk_name, "md%d", unit);
4876 	disk->fops = &md_fops;
4877 	disk->private_data = mddev;
4878 	disk->queue = mddev->queue;
4879 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4880 	/* Allow extended partitions.  This makes the
4881 	 * 'mdp' device redundant, but we can't really
4882 	 * remove it now.
4883 	 */
4884 	disk->flags |= GENHD_FL_EXT_DEVT;
4885 	mddev->gendisk = disk;
4886 	/* As soon as we call add_disk(), another thread could get
4887 	 * through to md_open, so make sure it doesn't get too far
4888 	 */
4889 	mutex_lock(&mddev->open_mutex);
4890 	add_disk(disk);
4891 
4892 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4893 				     &disk_to_dev(disk)->kobj, "%s", "md");
4894 	if (error) {
4895 		/* This isn't possible, but as kobject_init_and_add is marked
4896 		 * __must_check, we must do something with the result
4897 		 */
4898 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4899 		       disk->disk_name);
4900 		error = 0;
4901 	}
4902 	if (mddev->kobj.sd &&
4903 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4904 		printk(KERN_DEBUG "pointless warning\n");
4905 	mutex_unlock(&mddev->open_mutex);
4906  abort:
4907 	mutex_unlock(&disks_mutex);
4908 	if (!error && mddev->kobj.sd) {
4909 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4910 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4911 	}
4912 	mddev_put(mddev);
4913 	return error;
4914 }
4915 
4916 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4917 {
4918 	md_alloc(dev, NULL);
4919 	return NULL;
4920 }
4921 
4922 static int add_named_array(const char *val, struct kernel_param *kp)
4923 {
4924 	/* val must be "md_*" where * is not all digits.
4925 	 * We allocate an array with a large free minor number, and
4926 	 * set the name to val.  val must not already be an active name.
4927 	 */
4928 	int len = strlen(val);
4929 	char buf[DISK_NAME_LEN];
4930 
4931 	while (len && val[len-1] == '\n')
4932 		len--;
4933 	if (len >= DISK_NAME_LEN)
4934 		return -E2BIG;
4935 	strlcpy(buf, val, len+1);
4936 	if (strncmp(buf, "md_", 3) != 0)
4937 		return -EINVAL;
4938 	return md_alloc(0, buf);
4939 }
4940 
4941 static void md_safemode_timeout(unsigned long data)
4942 {
4943 	struct mddev *mddev = (struct mddev *) data;
4944 
4945 	if (!atomic_read(&mddev->writes_pending)) {
4946 		mddev->safemode = 1;
4947 		if (mddev->external)
4948 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4949 	}
4950 	md_wakeup_thread(mddev->thread);
4951 }
4952 
4953 static int start_dirty_degraded;
4954 
4955 int md_run(struct mddev *mddev)
4956 {
4957 	int err;
4958 	struct md_rdev *rdev;
4959 	struct md_personality *pers;
4960 
4961 	if (list_empty(&mddev->disks))
4962 		/* cannot run an array with no devices.. */
4963 		return -EINVAL;
4964 
4965 	if (mddev->pers)
4966 		return -EBUSY;
4967 	/* Cannot run until previous stop completes properly */
4968 	if (mddev->sysfs_active)
4969 		return -EBUSY;
4970 
4971 	/*
4972 	 * Analyze all RAID superblock(s)
4973 	 */
4974 	if (!mddev->raid_disks) {
4975 		if (!mddev->persistent)
4976 			return -EINVAL;
4977 		analyze_sbs(mddev);
4978 	}
4979 
4980 	if (mddev->level != LEVEL_NONE)
4981 		request_module("md-level-%d", mddev->level);
4982 	else if (mddev->clevel[0])
4983 		request_module("md-%s", mddev->clevel);
4984 
4985 	/*
4986 	 * Drop all container device buffers, from now on
4987 	 * the only valid external interface is through the md
4988 	 * device.
4989 	 */
4990 	rdev_for_each(rdev, mddev) {
4991 		if (test_bit(Faulty, &rdev->flags))
4992 			continue;
4993 		sync_blockdev(rdev->bdev);
4994 		invalidate_bdev(rdev->bdev);
4995 
4996 		/* perform some consistency tests on the device.
4997 		 * We don't want the data to overlap the metadata,
4998 		 * Internal Bitmap issues have been handled elsewhere.
4999 		 */
5000 		if (rdev->meta_bdev) {
5001 			/* Nothing to check */;
5002 		} else if (rdev->data_offset < rdev->sb_start) {
5003 			if (mddev->dev_sectors &&
5004 			    rdev->data_offset + mddev->dev_sectors
5005 			    > rdev->sb_start) {
5006 				printk("md: %s: data overlaps metadata\n",
5007 				       mdname(mddev));
5008 				return -EINVAL;
5009 			}
5010 		} else {
5011 			if (rdev->sb_start + rdev->sb_size/512
5012 			    > rdev->data_offset) {
5013 				printk("md: %s: metadata overlaps data\n",
5014 				       mdname(mddev));
5015 				return -EINVAL;
5016 			}
5017 		}
5018 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5019 	}
5020 
5021 	if (mddev->bio_set == NULL)
5022 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5023 
5024 	spin_lock(&pers_lock);
5025 	pers = find_pers(mddev->level, mddev->clevel);
5026 	if (!pers || !try_module_get(pers->owner)) {
5027 		spin_unlock(&pers_lock);
5028 		if (mddev->level != LEVEL_NONE)
5029 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5030 			       mddev->level);
5031 		else
5032 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5033 			       mddev->clevel);
5034 		return -EINVAL;
5035 	}
5036 	mddev->pers = pers;
5037 	spin_unlock(&pers_lock);
5038 	if (mddev->level != pers->level) {
5039 		mddev->level = pers->level;
5040 		mddev->new_level = pers->level;
5041 	}
5042 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5043 
5044 	if (mddev->reshape_position != MaxSector &&
5045 	    pers->start_reshape == NULL) {
5046 		/* This personality cannot handle reshaping... */
5047 		mddev->pers = NULL;
5048 		module_put(pers->owner);
5049 		return -EINVAL;
5050 	}
5051 
5052 	if (pers->sync_request) {
5053 		/* Warn if this is a potentially silly
5054 		 * configuration.
5055 		 */
5056 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5057 		struct md_rdev *rdev2;
5058 		int warned = 0;
5059 
5060 		rdev_for_each(rdev, mddev)
5061 			rdev_for_each(rdev2, mddev) {
5062 				if (rdev < rdev2 &&
5063 				    rdev->bdev->bd_contains ==
5064 				    rdev2->bdev->bd_contains) {
5065 					printk(KERN_WARNING
5066 					       "%s: WARNING: %s appears to be"
5067 					       " on the same physical disk as"
5068 					       " %s.\n",
5069 					       mdname(mddev),
5070 					       bdevname(rdev->bdev,b),
5071 					       bdevname(rdev2->bdev,b2));
5072 					warned = 1;
5073 				}
5074 			}
5075 
5076 		if (warned)
5077 			printk(KERN_WARNING
5078 			       "True protection against single-disk"
5079 			       " failure might be compromised.\n");
5080 	}
5081 
5082 	mddev->recovery = 0;
5083 	/* may be over-ridden by personality */
5084 	mddev->resync_max_sectors = mddev->dev_sectors;
5085 
5086 	mddev->ok_start_degraded = start_dirty_degraded;
5087 
5088 	if (start_readonly && mddev->ro == 0)
5089 		mddev->ro = 2; /* read-only, but switch on first write */
5090 
5091 	err = mddev->pers->run(mddev);
5092 	if (err)
5093 		printk(KERN_ERR "md: pers->run() failed ...\n");
5094 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5095 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5096 			  " but 'external_size' not in effect?\n", __func__);
5097 		printk(KERN_ERR
5098 		       "md: invalid array_size %llu > default size %llu\n",
5099 		       (unsigned long long)mddev->array_sectors / 2,
5100 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5101 		err = -EINVAL;
5102 		mddev->pers->stop(mddev);
5103 	}
5104 	if (err == 0 && mddev->pers->sync_request &&
5105 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5106 		err = bitmap_create(mddev);
5107 		if (err) {
5108 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5109 			       mdname(mddev), err);
5110 			mddev->pers->stop(mddev);
5111 		}
5112 	}
5113 	if (err) {
5114 		module_put(mddev->pers->owner);
5115 		mddev->pers = NULL;
5116 		bitmap_destroy(mddev);
5117 		return err;
5118 	}
5119 	if (mddev->pers->sync_request) {
5120 		if (mddev->kobj.sd &&
5121 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5122 			printk(KERN_WARNING
5123 			       "md: cannot register extra attributes for %s\n",
5124 			       mdname(mddev));
5125 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5126 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5127 		mddev->ro = 0;
5128 
5129  	atomic_set(&mddev->writes_pending,0);
5130 	atomic_set(&mddev->max_corr_read_errors,
5131 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5132 	mddev->safemode = 0;
5133 	mddev->safemode_timer.function = md_safemode_timeout;
5134 	mddev->safemode_timer.data = (unsigned long) mddev;
5135 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5136 	mddev->in_sync = 1;
5137 	smp_wmb();
5138 	mddev->ready = 1;
5139 	rdev_for_each(rdev, mddev)
5140 		if (rdev->raid_disk >= 0)
5141 			if (sysfs_link_rdev(mddev, rdev))
5142 				/* failure here is OK */;
5143 
5144 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5145 
5146 	if (mddev->flags)
5147 		md_update_sb(mddev, 0);
5148 
5149 	md_new_event(mddev);
5150 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5151 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5152 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5153 	return 0;
5154 }
5155 EXPORT_SYMBOL_GPL(md_run);
5156 
5157 static int do_md_run(struct mddev *mddev)
5158 {
5159 	int err;
5160 
5161 	err = md_run(mddev);
5162 	if (err)
5163 		goto out;
5164 	err = bitmap_load(mddev);
5165 	if (err) {
5166 		bitmap_destroy(mddev);
5167 		goto out;
5168 	}
5169 
5170 	md_wakeup_thread(mddev->thread);
5171 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5172 
5173 	set_capacity(mddev->gendisk, mddev->array_sectors);
5174 	revalidate_disk(mddev->gendisk);
5175 	mddev->changed = 1;
5176 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5177 out:
5178 	return err;
5179 }
5180 
5181 static int restart_array(struct mddev *mddev)
5182 {
5183 	struct gendisk *disk = mddev->gendisk;
5184 
5185 	/* Complain if it has no devices */
5186 	if (list_empty(&mddev->disks))
5187 		return -ENXIO;
5188 	if (!mddev->pers)
5189 		return -EINVAL;
5190 	if (!mddev->ro)
5191 		return -EBUSY;
5192 	mddev->safemode = 0;
5193 	mddev->ro = 0;
5194 	set_disk_ro(disk, 0);
5195 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5196 		mdname(mddev));
5197 	/* Kick recovery or resync if necessary */
5198 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5199 	md_wakeup_thread(mddev->thread);
5200 	md_wakeup_thread(mddev->sync_thread);
5201 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5202 	return 0;
5203 }
5204 
5205 /* similar to deny_write_access, but accounts for our holding a reference
5206  * to the file ourselves */
5207 static int deny_bitmap_write_access(struct file * file)
5208 {
5209 	struct inode *inode = file->f_mapping->host;
5210 
5211 	spin_lock(&inode->i_lock);
5212 	if (atomic_read(&inode->i_writecount) > 1) {
5213 		spin_unlock(&inode->i_lock);
5214 		return -ETXTBSY;
5215 	}
5216 	atomic_set(&inode->i_writecount, -1);
5217 	spin_unlock(&inode->i_lock);
5218 
5219 	return 0;
5220 }
5221 
5222 void restore_bitmap_write_access(struct file *file)
5223 {
5224 	struct inode *inode = file->f_mapping->host;
5225 
5226 	spin_lock(&inode->i_lock);
5227 	atomic_set(&inode->i_writecount, 1);
5228 	spin_unlock(&inode->i_lock);
5229 }
5230 
5231 static void md_clean(struct mddev *mddev)
5232 {
5233 	mddev->array_sectors = 0;
5234 	mddev->external_size = 0;
5235 	mddev->dev_sectors = 0;
5236 	mddev->raid_disks = 0;
5237 	mddev->recovery_cp = 0;
5238 	mddev->resync_min = 0;
5239 	mddev->resync_max = MaxSector;
5240 	mddev->reshape_position = MaxSector;
5241 	mddev->external = 0;
5242 	mddev->persistent = 0;
5243 	mddev->level = LEVEL_NONE;
5244 	mddev->clevel[0] = 0;
5245 	mddev->flags = 0;
5246 	mddev->ro = 0;
5247 	mddev->metadata_type[0] = 0;
5248 	mddev->chunk_sectors = 0;
5249 	mddev->ctime = mddev->utime = 0;
5250 	mddev->layout = 0;
5251 	mddev->max_disks = 0;
5252 	mddev->events = 0;
5253 	mddev->can_decrease_events = 0;
5254 	mddev->delta_disks = 0;
5255 	mddev->reshape_backwards = 0;
5256 	mddev->new_level = LEVEL_NONE;
5257 	mddev->new_layout = 0;
5258 	mddev->new_chunk_sectors = 0;
5259 	mddev->curr_resync = 0;
5260 	atomic64_set(&mddev->resync_mismatches, 0);
5261 	mddev->suspend_lo = mddev->suspend_hi = 0;
5262 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5263 	mddev->recovery = 0;
5264 	mddev->in_sync = 0;
5265 	mddev->changed = 0;
5266 	mddev->degraded = 0;
5267 	mddev->safemode = 0;
5268 	mddev->merge_check_needed = 0;
5269 	mddev->bitmap_info.offset = 0;
5270 	mddev->bitmap_info.default_offset = 0;
5271 	mddev->bitmap_info.default_space = 0;
5272 	mddev->bitmap_info.chunksize = 0;
5273 	mddev->bitmap_info.daemon_sleep = 0;
5274 	mddev->bitmap_info.max_write_behind = 0;
5275 }
5276 
5277 static void __md_stop_writes(struct mddev *mddev)
5278 {
5279 	if (mddev->sync_thread) {
5280 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5281 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5282 		reap_sync_thread(mddev);
5283 	}
5284 
5285 	del_timer_sync(&mddev->safemode_timer);
5286 
5287 	bitmap_flush(mddev);
5288 	md_super_wait(mddev);
5289 
5290 	if (!mddev->in_sync || mddev->flags) {
5291 		/* mark array as shutdown cleanly */
5292 		mddev->in_sync = 1;
5293 		md_update_sb(mddev, 1);
5294 	}
5295 }
5296 
5297 void md_stop_writes(struct mddev *mddev)
5298 {
5299 	mddev_lock(mddev);
5300 	__md_stop_writes(mddev);
5301 	mddev_unlock(mddev);
5302 }
5303 EXPORT_SYMBOL_GPL(md_stop_writes);
5304 
5305 static void __md_stop(struct mddev *mddev)
5306 {
5307 	mddev->ready = 0;
5308 	mddev->pers->stop(mddev);
5309 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5310 		mddev->to_remove = &md_redundancy_group;
5311 	module_put(mddev->pers->owner);
5312 	mddev->pers = NULL;
5313 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5314 }
5315 
5316 void md_stop(struct mddev *mddev)
5317 {
5318 	/* stop the array and free an attached data structures.
5319 	 * This is called from dm-raid
5320 	 */
5321 	__md_stop(mddev);
5322 	bitmap_destroy(mddev);
5323 	if (mddev->bio_set)
5324 		bioset_free(mddev->bio_set);
5325 }
5326 
5327 EXPORT_SYMBOL_GPL(md_stop);
5328 
5329 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5330 {
5331 	int err = 0;
5332 	mutex_lock(&mddev->open_mutex);
5333 	if (atomic_read(&mddev->openers) > !!bdev) {
5334 		printk("md: %s still in use.\n",mdname(mddev));
5335 		err = -EBUSY;
5336 		goto out;
5337 	}
5338 	if (bdev)
5339 		sync_blockdev(bdev);
5340 	if (mddev->pers) {
5341 		__md_stop_writes(mddev);
5342 
5343 		err  = -ENXIO;
5344 		if (mddev->ro==1)
5345 			goto out;
5346 		mddev->ro = 1;
5347 		set_disk_ro(mddev->gendisk, 1);
5348 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5349 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5350 		err = 0;
5351 	}
5352 out:
5353 	mutex_unlock(&mddev->open_mutex);
5354 	return err;
5355 }
5356 
5357 /* mode:
5358  *   0 - completely stop and dis-assemble array
5359  *   2 - stop but do not disassemble array
5360  */
5361 static int do_md_stop(struct mddev * mddev, int mode,
5362 		      struct block_device *bdev)
5363 {
5364 	struct gendisk *disk = mddev->gendisk;
5365 	struct md_rdev *rdev;
5366 
5367 	mutex_lock(&mddev->open_mutex);
5368 	if (atomic_read(&mddev->openers) > !!bdev ||
5369 	    mddev->sysfs_active) {
5370 		printk("md: %s still in use.\n",mdname(mddev));
5371 		mutex_unlock(&mddev->open_mutex);
5372 		return -EBUSY;
5373 	}
5374 	if (bdev)
5375 		/* It is possible IO was issued on some other
5376 		 * open file which was closed before we took ->open_mutex.
5377 		 * As that was not the last close __blkdev_put will not
5378 		 * have called sync_blockdev, so we must.
5379 		 */
5380 		sync_blockdev(bdev);
5381 
5382 	if (mddev->pers) {
5383 		if (mddev->ro)
5384 			set_disk_ro(disk, 0);
5385 
5386 		__md_stop_writes(mddev);
5387 		__md_stop(mddev);
5388 		mddev->queue->merge_bvec_fn = NULL;
5389 		mddev->queue->backing_dev_info.congested_fn = NULL;
5390 
5391 		/* tell userspace to handle 'inactive' */
5392 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5393 
5394 		rdev_for_each(rdev, mddev)
5395 			if (rdev->raid_disk >= 0)
5396 				sysfs_unlink_rdev(mddev, rdev);
5397 
5398 		set_capacity(disk, 0);
5399 		mutex_unlock(&mddev->open_mutex);
5400 		mddev->changed = 1;
5401 		revalidate_disk(disk);
5402 
5403 		if (mddev->ro)
5404 			mddev->ro = 0;
5405 	} else
5406 		mutex_unlock(&mddev->open_mutex);
5407 	/*
5408 	 * Free resources if final stop
5409 	 */
5410 	if (mode == 0) {
5411 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5412 
5413 		bitmap_destroy(mddev);
5414 		if (mddev->bitmap_info.file) {
5415 			restore_bitmap_write_access(mddev->bitmap_info.file);
5416 			fput(mddev->bitmap_info.file);
5417 			mddev->bitmap_info.file = NULL;
5418 		}
5419 		mddev->bitmap_info.offset = 0;
5420 
5421 		export_array(mddev);
5422 
5423 		md_clean(mddev);
5424 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5425 		if (mddev->hold_active == UNTIL_STOP)
5426 			mddev->hold_active = 0;
5427 	}
5428 	blk_integrity_unregister(disk);
5429 	md_new_event(mddev);
5430 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5431 	return 0;
5432 }
5433 
5434 #ifndef MODULE
5435 static void autorun_array(struct mddev *mddev)
5436 {
5437 	struct md_rdev *rdev;
5438 	int err;
5439 
5440 	if (list_empty(&mddev->disks))
5441 		return;
5442 
5443 	printk(KERN_INFO "md: running: ");
5444 
5445 	rdev_for_each(rdev, mddev) {
5446 		char b[BDEVNAME_SIZE];
5447 		printk("<%s>", bdevname(rdev->bdev,b));
5448 	}
5449 	printk("\n");
5450 
5451 	err = do_md_run(mddev);
5452 	if (err) {
5453 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5454 		do_md_stop(mddev, 0, NULL);
5455 	}
5456 }
5457 
5458 /*
5459  * lets try to run arrays based on all disks that have arrived
5460  * until now. (those are in pending_raid_disks)
5461  *
5462  * the method: pick the first pending disk, collect all disks with
5463  * the same UUID, remove all from the pending list and put them into
5464  * the 'same_array' list. Then order this list based on superblock
5465  * update time (freshest comes first), kick out 'old' disks and
5466  * compare superblocks. If everything's fine then run it.
5467  *
5468  * If "unit" is allocated, then bump its reference count
5469  */
5470 static void autorun_devices(int part)
5471 {
5472 	struct md_rdev *rdev0, *rdev, *tmp;
5473 	struct mddev *mddev;
5474 	char b[BDEVNAME_SIZE];
5475 
5476 	printk(KERN_INFO "md: autorun ...\n");
5477 	while (!list_empty(&pending_raid_disks)) {
5478 		int unit;
5479 		dev_t dev;
5480 		LIST_HEAD(candidates);
5481 		rdev0 = list_entry(pending_raid_disks.next,
5482 					 struct md_rdev, same_set);
5483 
5484 		printk(KERN_INFO "md: considering %s ...\n",
5485 			bdevname(rdev0->bdev,b));
5486 		INIT_LIST_HEAD(&candidates);
5487 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5488 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5489 				printk(KERN_INFO "md:  adding %s ...\n",
5490 					bdevname(rdev->bdev,b));
5491 				list_move(&rdev->same_set, &candidates);
5492 			}
5493 		/*
5494 		 * now we have a set of devices, with all of them having
5495 		 * mostly sane superblocks. It's time to allocate the
5496 		 * mddev.
5497 		 */
5498 		if (part) {
5499 			dev = MKDEV(mdp_major,
5500 				    rdev0->preferred_minor << MdpMinorShift);
5501 			unit = MINOR(dev) >> MdpMinorShift;
5502 		} else {
5503 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5504 			unit = MINOR(dev);
5505 		}
5506 		if (rdev0->preferred_minor != unit) {
5507 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5508 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5509 			break;
5510 		}
5511 
5512 		md_probe(dev, NULL, NULL);
5513 		mddev = mddev_find(dev);
5514 		if (!mddev || !mddev->gendisk) {
5515 			if (mddev)
5516 				mddev_put(mddev);
5517 			printk(KERN_ERR
5518 				"md: cannot allocate memory for md drive.\n");
5519 			break;
5520 		}
5521 		if (mddev_lock(mddev))
5522 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5523 			       mdname(mddev));
5524 		else if (mddev->raid_disks || mddev->major_version
5525 			 || !list_empty(&mddev->disks)) {
5526 			printk(KERN_WARNING
5527 				"md: %s already running, cannot run %s\n",
5528 				mdname(mddev), bdevname(rdev0->bdev,b));
5529 			mddev_unlock(mddev);
5530 		} else {
5531 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5532 			mddev->persistent = 1;
5533 			rdev_for_each_list(rdev, tmp, &candidates) {
5534 				list_del_init(&rdev->same_set);
5535 				if (bind_rdev_to_array(rdev, mddev))
5536 					export_rdev(rdev);
5537 			}
5538 			autorun_array(mddev);
5539 			mddev_unlock(mddev);
5540 		}
5541 		/* on success, candidates will be empty, on error
5542 		 * it won't...
5543 		 */
5544 		rdev_for_each_list(rdev, tmp, &candidates) {
5545 			list_del_init(&rdev->same_set);
5546 			export_rdev(rdev);
5547 		}
5548 		mddev_put(mddev);
5549 	}
5550 	printk(KERN_INFO "md: ... autorun DONE.\n");
5551 }
5552 #endif /* !MODULE */
5553 
5554 static int get_version(void __user * arg)
5555 {
5556 	mdu_version_t ver;
5557 
5558 	ver.major = MD_MAJOR_VERSION;
5559 	ver.minor = MD_MINOR_VERSION;
5560 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5561 
5562 	if (copy_to_user(arg, &ver, sizeof(ver)))
5563 		return -EFAULT;
5564 
5565 	return 0;
5566 }
5567 
5568 static int get_array_info(struct mddev * mddev, void __user * arg)
5569 {
5570 	mdu_array_info_t info;
5571 	int nr,working,insync,failed,spare;
5572 	struct md_rdev *rdev;
5573 
5574 	nr = working = insync = failed = spare = 0;
5575 	rcu_read_lock();
5576 	rdev_for_each_rcu(rdev, mddev) {
5577 		nr++;
5578 		if (test_bit(Faulty, &rdev->flags))
5579 			failed++;
5580 		else {
5581 			working++;
5582 			if (test_bit(In_sync, &rdev->flags))
5583 				insync++;
5584 			else
5585 				spare++;
5586 		}
5587 	}
5588 	rcu_read_unlock();
5589 
5590 	info.major_version = mddev->major_version;
5591 	info.minor_version = mddev->minor_version;
5592 	info.patch_version = MD_PATCHLEVEL_VERSION;
5593 	info.ctime         = mddev->ctime;
5594 	info.level         = mddev->level;
5595 	info.size          = mddev->dev_sectors / 2;
5596 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5597 		info.size = -1;
5598 	info.nr_disks      = nr;
5599 	info.raid_disks    = mddev->raid_disks;
5600 	info.md_minor      = mddev->md_minor;
5601 	info.not_persistent= !mddev->persistent;
5602 
5603 	info.utime         = mddev->utime;
5604 	info.state         = 0;
5605 	if (mddev->in_sync)
5606 		info.state = (1<<MD_SB_CLEAN);
5607 	if (mddev->bitmap && mddev->bitmap_info.offset)
5608 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5609 	info.active_disks  = insync;
5610 	info.working_disks = working;
5611 	info.failed_disks  = failed;
5612 	info.spare_disks   = spare;
5613 
5614 	info.layout        = mddev->layout;
5615 	info.chunk_size    = mddev->chunk_sectors << 9;
5616 
5617 	if (copy_to_user(arg, &info, sizeof(info)))
5618 		return -EFAULT;
5619 
5620 	return 0;
5621 }
5622 
5623 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5624 {
5625 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5626 	char *ptr, *buf = NULL;
5627 	int err = -ENOMEM;
5628 
5629 	if (md_allow_write(mddev))
5630 		file = kmalloc(sizeof(*file), GFP_NOIO);
5631 	else
5632 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5633 
5634 	if (!file)
5635 		goto out;
5636 
5637 	/* bitmap disabled, zero the first byte and copy out */
5638 	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5639 		file->pathname[0] = '\0';
5640 		goto copy_out;
5641 	}
5642 
5643 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5644 	if (!buf)
5645 		goto out;
5646 
5647 	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5648 		     buf, sizeof(file->pathname));
5649 	if (IS_ERR(ptr))
5650 		goto out;
5651 
5652 	strcpy(file->pathname, ptr);
5653 
5654 copy_out:
5655 	err = 0;
5656 	if (copy_to_user(arg, file, sizeof(*file)))
5657 		err = -EFAULT;
5658 out:
5659 	kfree(buf);
5660 	kfree(file);
5661 	return err;
5662 }
5663 
5664 static int get_disk_info(struct mddev * mddev, void __user * arg)
5665 {
5666 	mdu_disk_info_t info;
5667 	struct md_rdev *rdev;
5668 
5669 	if (copy_from_user(&info, arg, sizeof(info)))
5670 		return -EFAULT;
5671 
5672 	rcu_read_lock();
5673 	rdev = find_rdev_nr_rcu(mddev, info.number);
5674 	if (rdev) {
5675 		info.major = MAJOR(rdev->bdev->bd_dev);
5676 		info.minor = MINOR(rdev->bdev->bd_dev);
5677 		info.raid_disk = rdev->raid_disk;
5678 		info.state = 0;
5679 		if (test_bit(Faulty, &rdev->flags))
5680 			info.state |= (1<<MD_DISK_FAULTY);
5681 		else if (test_bit(In_sync, &rdev->flags)) {
5682 			info.state |= (1<<MD_DISK_ACTIVE);
5683 			info.state |= (1<<MD_DISK_SYNC);
5684 		}
5685 		if (test_bit(WriteMostly, &rdev->flags))
5686 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5687 	} else {
5688 		info.major = info.minor = 0;
5689 		info.raid_disk = -1;
5690 		info.state = (1<<MD_DISK_REMOVED);
5691 	}
5692 	rcu_read_unlock();
5693 
5694 	if (copy_to_user(arg, &info, sizeof(info)))
5695 		return -EFAULT;
5696 
5697 	return 0;
5698 }
5699 
5700 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5701 {
5702 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5703 	struct md_rdev *rdev;
5704 	dev_t dev = MKDEV(info->major,info->minor);
5705 
5706 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5707 		return -EOVERFLOW;
5708 
5709 	if (!mddev->raid_disks) {
5710 		int err;
5711 		/* expecting a device which has a superblock */
5712 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5713 		if (IS_ERR(rdev)) {
5714 			printk(KERN_WARNING
5715 				"md: md_import_device returned %ld\n",
5716 				PTR_ERR(rdev));
5717 			return PTR_ERR(rdev);
5718 		}
5719 		if (!list_empty(&mddev->disks)) {
5720 			struct md_rdev *rdev0
5721 				= list_entry(mddev->disks.next,
5722 					     struct md_rdev, same_set);
5723 			err = super_types[mddev->major_version]
5724 				.load_super(rdev, rdev0, mddev->minor_version);
5725 			if (err < 0) {
5726 				printk(KERN_WARNING
5727 					"md: %s has different UUID to %s\n",
5728 					bdevname(rdev->bdev,b),
5729 					bdevname(rdev0->bdev,b2));
5730 				export_rdev(rdev);
5731 				return -EINVAL;
5732 			}
5733 		}
5734 		err = bind_rdev_to_array(rdev, mddev);
5735 		if (err)
5736 			export_rdev(rdev);
5737 		return err;
5738 	}
5739 
5740 	/*
5741 	 * add_new_disk can be used once the array is assembled
5742 	 * to add "hot spares".  They must already have a superblock
5743 	 * written
5744 	 */
5745 	if (mddev->pers) {
5746 		int err;
5747 		if (!mddev->pers->hot_add_disk) {
5748 			printk(KERN_WARNING
5749 				"%s: personality does not support diskops!\n",
5750 			       mdname(mddev));
5751 			return -EINVAL;
5752 		}
5753 		if (mddev->persistent)
5754 			rdev = md_import_device(dev, mddev->major_version,
5755 						mddev->minor_version);
5756 		else
5757 			rdev = md_import_device(dev, -1, -1);
5758 		if (IS_ERR(rdev)) {
5759 			printk(KERN_WARNING
5760 				"md: md_import_device returned %ld\n",
5761 				PTR_ERR(rdev));
5762 			return PTR_ERR(rdev);
5763 		}
5764 		/* set saved_raid_disk if appropriate */
5765 		if (!mddev->persistent) {
5766 			if (info->state & (1<<MD_DISK_SYNC)  &&
5767 			    info->raid_disk < mddev->raid_disks) {
5768 				rdev->raid_disk = info->raid_disk;
5769 				set_bit(In_sync, &rdev->flags);
5770 			} else
5771 				rdev->raid_disk = -1;
5772 		} else
5773 			super_types[mddev->major_version].
5774 				validate_super(mddev, rdev);
5775 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5776 		     rdev->raid_disk != info->raid_disk) {
5777 			/* This was a hot-add request, but events doesn't
5778 			 * match, so reject it.
5779 			 */
5780 			export_rdev(rdev);
5781 			return -EINVAL;
5782 		}
5783 
5784 		if (test_bit(In_sync, &rdev->flags))
5785 			rdev->saved_raid_disk = rdev->raid_disk;
5786 		else
5787 			rdev->saved_raid_disk = -1;
5788 
5789 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5790 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5791 			set_bit(WriteMostly, &rdev->flags);
5792 		else
5793 			clear_bit(WriteMostly, &rdev->flags);
5794 
5795 		rdev->raid_disk = -1;
5796 		err = bind_rdev_to_array(rdev, mddev);
5797 		if (!err && !mddev->pers->hot_remove_disk) {
5798 			/* If there is hot_add_disk but no hot_remove_disk
5799 			 * then added disks for geometry changes,
5800 			 * and should be added immediately.
5801 			 */
5802 			super_types[mddev->major_version].
5803 				validate_super(mddev, rdev);
5804 			err = mddev->pers->hot_add_disk(mddev, rdev);
5805 			if (err)
5806 				unbind_rdev_from_array(rdev);
5807 		}
5808 		if (err)
5809 			export_rdev(rdev);
5810 		else
5811 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5812 
5813 		md_update_sb(mddev, 1);
5814 		if (mddev->degraded)
5815 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5816 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5817 		if (!err)
5818 			md_new_event(mddev);
5819 		md_wakeup_thread(mddev->thread);
5820 		return err;
5821 	}
5822 
5823 	/* otherwise, add_new_disk is only allowed
5824 	 * for major_version==0 superblocks
5825 	 */
5826 	if (mddev->major_version != 0) {
5827 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5828 		       mdname(mddev));
5829 		return -EINVAL;
5830 	}
5831 
5832 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5833 		int err;
5834 		rdev = md_import_device(dev, -1, 0);
5835 		if (IS_ERR(rdev)) {
5836 			printk(KERN_WARNING
5837 				"md: error, md_import_device() returned %ld\n",
5838 				PTR_ERR(rdev));
5839 			return PTR_ERR(rdev);
5840 		}
5841 		rdev->desc_nr = info->number;
5842 		if (info->raid_disk < mddev->raid_disks)
5843 			rdev->raid_disk = info->raid_disk;
5844 		else
5845 			rdev->raid_disk = -1;
5846 
5847 		if (rdev->raid_disk < mddev->raid_disks)
5848 			if (info->state & (1<<MD_DISK_SYNC))
5849 				set_bit(In_sync, &rdev->flags);
5850 
5851 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5852 			set_bit(WriteMostly, &rdev->flags);
5853 
5854 		if (!mddev->persistent) {
5855 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5856 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5857 		} else
5858 			rdev->sb_start = calc_dev_sboffset(rdev);
5859 		rdev->sectors = rdev->sb_start;
5860 
5861 		err = bind_rdev_to_array(rdev, mddev);
5862 		if (err) {
5863 			export_rdev(rdev);
5864 			return err;
5865 		}
5866 	}
5867 
5868 	return 0;
5869 }
5870 
5871 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5872 {
5873 	char b[BDEVNAME_SIZE];
5874 	struct md_rdev *rdev;
5875 
5876 	rdev = find_rdev(mddev, dev);
5877 	if (!rdev)
5878 		return -ENXIO;
5879 
5880 	if (rdev->raid_disk >= 0)
5881 		goto busy;
5882 
5883 	kick_rdev_from_array(rdev);
5884 	md_update_sb(mddev, 1);
5885 	md_new_event(mddev);
5886 
5887 	return 0;
5888 busy:
5889 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5890 		bdevname(rdev->bdev,b), mdname(mddev));
5891 	return -EBUSY;
5892 }
5893 
5894 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5895 {
5896 	char b[BDEVNAME_SIZE];
5897 	int err;
5898 	struct md_rdev *rdev;
5899 
5900 	if (!mddev->pers)
5901 		return -ENODEV;
5902 
5903 	if (mddev->major_version != 0) {
5904 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5905 			" version-0 superblocks.\n",
5906 			mdname(mddev));
5907 		return -EINVAL;
5908 	}
5909 	if (!mddev->pers->hot_add_disk) {
5910 		printk(KERN_WARNING
5911 			"%s: personality does not support diskops!\n",
5912 			mdname(mddev));
5913 		return -EINVAL;
5914 	}
5915 
5916 	rdev = md_import_device(dev, -1, 0);
5917 	if (IS_ERR(rdev)) {
5918 		printk(KERN_WARNING
5919 			"md: error, md_import_device() returned %ld\n",
5920 			PTR_ERR(rdev));
5921 		return -EINVAL;
5922 	}
5923 
5924 	if (mddev->persistent)
5925 		rdev->sb_start = calc_dev_sboffset(rdev);
5926 	else
5927 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5928 
5929 	rdev->sectors = rdev->sb_start;
5930 
5931 	if (test_bit(Faulty, &rdev->flags)) {
5932 		printk(KERN_WARNING
5933 			"md: can not hot-add faulty %s disk to %s!\n",
5934 			bdevname(rdev->bdev,b), mdname(mddev));
5935 		err = -EINVAL;
5936 		goto abort_export;
5937 	}
5938 	clear_bit(In_sync, &rdev->flags);
5939 	rdev->desc_nr = -1;
5940 	rdev->saved_raid_disk = -1;
5941 	err = bind_rdev_to_array(rdev, mddev);
5942 	if (err)
5943 		goto abort_export;
5944 
5945 	/*
5946 	 * The rest should better be atomic, we can have disk failures
5947 	 * noticed in interrupt contexts ...
5948 	 */
5949 
5950 	rdev->raid_disk = -1;
5951 
5952 	md_update_sb(mddev, 1);
5953 
5954 	/*
5955 	 * Kick recovery, maybe this spare has to be added to the
5956 	 * array immediately.
5957 	 */
5958 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5959 	md_wakeup_thread(mddev->thread);
5960 	md_new_event(mddev);
5961 	return 0;
5962 
5963 abort_export:
5964 	export_rdev(rdev);
5965 	return err;
5966 }
5967 
5968 static int set_bitmap_file(struct mddev *mddev, int fd)
5969 {
5970 	int err;
5971 
5972 	if (mddev->pers) {
5973 		if (!mddev->pers->quiesce)
5974 			return -EBUSY;
5975 		if (mddev->recovery || mddev->sync_thread)
5976 			return -EBUSY;
5977 		/* we should be able to change the bitmap.. */
5978 	}
5979 
5980 
5981 	if (fd >= 0) {
5982 		if (mddev->bitmap)
5983 			return -EEXIST; /* cannot add when bitmap is present */
5984 		mddev->bitmap_info.file = fget(fd);
5985 
5986 		if (mddev->bitmap_info.file == NULL) {
5987 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5988 			       mdname(mddev));
5989 			return -EBADF;
5990 		}
5991 
5992 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5993 		if (err) {
5994 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5995 			       mdname(mddev));
5996 			fput(mddev->bitmap_info.file);
5997 			mddev->bitmap_info.file = NULL;
5998 			return err;
5999 		}
6000 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6001 	} else if (mddev->bitmap == NULL)
6002 		return -ENOENT; /* cannot remove what isn't there */
6003 	err = 0;
6004 	if (mddev->pers) {
6005 		mddev->pers->quiesce(mddev, 1);
6006 		if (fd >= 0) {
6007 			err = bitmap_create(mddev);
6008 			if (!err)
6009 				err = bitmap_load(mddev);
6010 		}
6011 		if (fd < 0 || err) {
6012 			bitmap_destroy(mddev);
6013 			fd = -1; /* make sure to put the file */
6014 		}
6015 		mddev->pers->quiesce(mddev, 0);
6016 	}
6017 	if (fd < 0) {
6018 		if (mddev->bitmap_info.file) {
6019 			restore_bitmap_write_access(mddev->bitmap_info.file);
6020 			fput(mddev->bitmap_info.file);
6021 		}
6022 		mddev->bitmap_info.file = NULL;
6023 	}
6024 
6025 	return err;
6026 }
6027 
6028 /*
6029  * set_array_info is used two different ways
6030  * The original usage is when creating a new array.
6031  * In this usage, raid_disks is > 0 and it together with
6032  *  level, size, not_persistent,layout,chunksize determine the
6033  *  shape of the array.
6034  *  This will always create an array with a type-0.90.0 superblock.
6035  * The newer usage is when assembling an array.
6036  *  In this case raid_disks will be 0, and the major_version field is
6037  *  use to determine which style super-blocks are to be found on the devices.
6038  *  The minor and patch _version numbers are also kept incase the
6039  *  super_block handler wishes to interpret them.
6040  */
6041 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6042 {
6043 
6044 	if (info->raid_disks == 0) {
6045 		/* just setting version number for superblock loading */
6046 		if (info->major_version < 0 ||
6047 		    info->major_version >= ARRAY_SIZE(super_types) ||
6048 		    super_types[info->major_version].name == NULL) {
6049 			/* maybe try to auto-load a module? */
6050 			printk(KERN_INFO
6051 				"md: superblock version %d not known\n",
6052 				info->major_version);
6053 			return -EINVAL;
6054 		}
6055 		mddev->major_version = info->major_version;
6056 		mddev->minor_version = info->minor_version;
6057 		mddev->patch_version = info->patch_version;
6058 		mddev->persistent = !info->not_persistent;
6059 		/* ensure mddev_put doesn't delete this now that there
6060 		 * is some minimal configuration.
6061 		 */
6062 		mddev->ctime         = get_seconds();
6063 		return 0;
6064 	}
6065 	mddev->major_version = MD_MAJOR_VERSION;
6066 	mddev->minor_version = MD_MINOR_VERSION;
6067 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6068 	mddev->ctime         = get_seconds();
6069 
6070 	mddev->level         = info->level;
6071 	mddev->clevel[0]     = 0;
6072 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6073 	mddev->raid_disks    = info->raid_disks;
6074 	/* don't set md_minor, it is determined by which /dev/md* was
6075 	 * openned
6076 	 */
6077 	if (info->state & (1<<MD_SB_CLEAN))
6078 		mddev->recovery_cp = MaxSector;
6079 	else
6080 		mddev->recovery_cp = 0;
6081 	mddev->persistent    = ! info->not_persistent;
6082 	mddev->external	     = 0;
6083 
6084 	mddev->layout        = info->layout;
6085 	mddev->chunk_sectors = info->chunk_size >> 9;
6086 
6087 	mddev->max_disks     = MD_SB_DISKS;
6088 
6089 	if (mddev->persistent)
6090 		mddev->flags         = 0;
6091 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6092 
6093 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6094 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6095 	mddev->bitmap_info.offset = 0;
6096 
6097 	mddev->reshape_position = MaxSector;
6098 
6099 	/*
6100 	 * Generate a 128 bit UUID
6101 	 */
6102 	get_random_bytes(mddev->uuid, 16);
6103 
6104 	mddev->new_level = mddev->level;
6105 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6106 	mddev->new_layout = mddev->layout;
6107 	mddev->delta_disks = 0;
6108 	mddev->reshape_backwards = 0;
6109 
6110 	return 0;
6111 }
6112 
6113 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6114 {
6115 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6116 
6117 	if (mddev->external_size)
6118 		return;
6119 
6120 	mddev->array_sectors = array_sectors;
6121 }
6122 EXPORT_SYMBOL(md_set_array_sectors);
6123 
6124 static int update_size(struct mddev *mddev, sector_t num_sectors)
6125 {
6126 	struct md_rdev *rdev;
6127 	int rv;
6128 	int fit = (num_sectors == 0);
6129 
6130 	if (mddev->pers->resize == NULL)
6131 		return -EINVAL;
6132 	/* The "num_sectors" is the number of sectors of each device that
6133 	 * is used.  This can only make sense for arrays with redundancy.
6134 	 * linear and raid0 always use whatever space is available. We can only
6135 	 * consider changing this number if no resync or reconstruction is
6136 	 * happening, and if the new size is acceptable. It must fit before the
6137 	 * sb_start or, if that is <data_offset, it must fit before the size
6138 	 * of each device.  If num_sectors is zero, we find the largest size
6139 	 * that fits.
6140 	 */
6141 	if (mddev->sync_thread)
6142 		return -EBUSY;
6143 
6144 	rdev_for_each(rdev, mddev) {
6145 		sector_t avail = rdev->sectors;
6146 
6147 		if (fit && (num_sectors == 0 || num_sectors > avail))
6148 			num_sectors = avail;
6149 		if (avail < num_sectors)
6150 			return -ENOSPC;
6151 	}
6152 	rv = mddev->pers->resize(mddev, num_sectors);
6153 	if (!rv)
6154 		revalidate_disk(mddev->gendisk);
6155 	return rv;
6156 }
6157 
6158 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6159 {
6160 	int rv;
6161 	struct md_rdev *rdev;
6162 	/* change the number of raid disks */
6163 	if (mddev->pers->check_reshape == NULL)
6164 		return -EINVAL;
6165 	if (raid_disks <= 0 ||
6166 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6167 		return -EINVAL;
6168 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6169 		return -EBUSY;
6170 
6171 	rdev_for_each(rdev, mddev) {
6172 		if (mddev->raid_disks < raid_disks &&
6173 		    rdev->data_offset < rdev->new_data_offset)
6174 			return -EINVAL;
6175 		if (mddev->raid_disks > raid_disks &&
6176 		    rdev->data_offset > rdev->new_data_offset)
6177 			return -EINVAL;
6178 	}
6179 
6180 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6181 	if (mddev->delta_disks < 0)
6182 		mddev->reshape_backwards = 1;
6183 	else if (mddev->delta_disks > 0)
6184 		mddev->reshape_backwards = 0;
6185 
6186 	rv = mddev->pers->check_reshape(mddev);
6187 	if (rv < 0) {
6188 		mddev->delta_disks = 0;
6189 		mddev->reshape_backwards = 0;
6190 	}
6191 	return rv;
6192 }
6193 
6194 
6195 /*
6196  * update_array_info is used to change the configuration of an
6197  * on-line array.
6198  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6199  * fields in the info are checked against the array.
6200  * Any differences that cannot be handled will cause an error.
6201  * Normally, only one change can be managed at a time.
6202  */
6203 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6204 {
6205 	int rv = 0;
6206 	int cnt = 0;
6207 	int state = 0;
6208 
6209 	/* calculate expected state,ignoring low bits */
6210 	if (mddev->bitmap && mddev->bitmap_info.offset)
6211 		state |= (1 << MD_SB_BITMAP_PRESENT);
6212 
6213 	if (mddev->major_version != info->major_version ||
6214 	    mddev->minor_version != info->minor_version ||
6215 /*	    mddev->patch_version != info->patch_version || */
6216 	    mddev->ctime         != info->ctime         ||
6217 	    mddev->level         != info->level         ||
6218 /*	    mddev->layout        != info->layout        || */
6219 	    !mddev->persistent	 != info->not_persistent||
6220 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6221 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6222 	    ((state^info->state) & 0xfffffe00)
6223 		)
6224 		return -EINVAL;
6225 	/* Check there is only one change */
6226 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6227 		cnt++;
6228 	if (mddev->raid_disks != info->raid_disks)
6229 		cnt++;
6230 	if (mddev->layout != info->layout)
6231 		cnt++;
6232 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6233 		cnt++;
6234 	if (cnt == 0)
6235 		return 0;
6236 	if (cnt > 1)
6237 		return -EINVAL;
6238 
6239 	if (mddev->layout != info->layout) {
6240 		/* Change layout
6241 		 * we don't need to do anything at the md level, the
6242 		 * personality will take care of it all.
6243 		 */
6244 		if (mddev->pers->check_reshape == NULL)
6245 			return -EINVAL;
6246 		else {
6247 			mddev->new_layout = info->layout;
6248 			rv = mddev->pers->check_reshape(mddev);
6249 			if (rv)
6250 				mddev->new_layout = mddev->layout;
6251 			return rv;
6252 		}
6253 	}
6254 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6255 		rv = update_size(mddev, (sector_t)info->size * 2);
6256 
6257 	if (mddev->raid_disks    != info->raid_disks)
6258 		rv = update_raid_disks(mddev, info->raid_disks);
6259 
6260 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6261 		if (mddev->pers->quiesce == NULL)
6262 			return -EINVAL;
6263 		if (mddev->recovery || mddev->sync_thread)
6264 			return -EBUSY;
6265 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6266 			/* add the bitmap */
6267 			if (mddev->bitmap)
6268 				return -EEXIST;
6269 			if (mddev->bitmap_info.default_offset == 0)
6270 				return -EINVAL;
6271 			mddev->bitmap_info.offset =
6272 				mddev->bitmap_info.default_offset;
6273 			mddev->bitmap_info.space =
6274 				mddev->bitmap_info.default_space;
6275 			mddev->pers->quiesce(mddev, 1);
6276 			rv = bitmap_create(mddev);
6277 			if (!rv)
6278 				rv = bitmap_load(mddev);
6279 			if (rv)
6280 				bitmap_destroy(mddev);
6281 			mddev->pers->quiesce(mddev, 0);
6282 		} else {
6283 			/* remove the bitmap */
6284 			if (!mddev->bitmap)
6285 				return -ENOENT;
6286 			if (mddev->bitmap->storage.file)
6287 				return -EINVAL;
6288 			mddev->pers->quiesce(mddev, 1);
6289 			bitmap_destroy(mddev);
6290 			mddev->pers->quiesce(mddev, 0);
6291 			mddev->bitmap_info.offset = 0;
6292 		}
6293 	}
6294 	md_update_sb(mddev, 1);
6295 	return rv;
6296 }
6297 
6298 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6299 {
6300 	struct md_rdev *rdev;
6301 	int err = 0;
6302 
6303 	if (mddev->pers == NULL)
6304 		return -ENODEV;
6305 
6306 	rcu_read_lock();
6307 	rdev = find_rdev_rcu(mddev, dev);
6308 	if (!rdev)
6309 		err =  -ENODEV;
6310 	else {
6311 		md_error(mddev, rdev);
6312 		if (!test_bit(Faulty, &rdev->flags))
6313 			err = -EBUSY;
6314 	}
6315 	rcu_read_unlock();
6316 	return err;
6317 }
6318 
6319 /*
6320  * We have a problem here : there is no easy way to give a CHS
6321  * virtual geometry. We currently pretend that we have a 2 heads
6322  * 4 sectors (with a BIG number of cylinders...). This drives
6323  * dosfs just mad... ;-)
6324  */
6325 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6326 {
6327 	struct mddev *mddev = bdev->bd_disk->private_data;
6328 
6329 	geo->heads = 2;
6330 	geo->sectors = 4;
6331 	geo->cylinders = mddev->array_sectors / 8;
6332 	return 0;
6333 }
6334 
6335 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6336 			unsigned int cmd, unsigned long arg)
6337 {
6338 	int err = 0;
6339 	void __user *argp = (void __user *)arg;
6340 	struct mddev *mddev = NULL;
6341 	int ro;
6342 
6343 	switch (cmd) {
6344 	case RAID_VERSION:
6345 	case GET_ARRAY_INFO:
6346 	case GET_DISK_INFO:
6347 		break;
6348 	default:
6349 		if (!capable(CAP_SYS_ADMIN))
6350 			return -EACCES;
6351 	}
6352 
6353 	/*
6354 	 * Commands dealing with the RAID driver but not any
6355 	 * particular array:
6356 	 */
6357 	switch (cmd) {
6358 	case RAID_VERSION:
6359 		err = get_version(argp);
6360 		goto done;
6361 
6362 	case PRINT_RAID_DEBUG:
6363 		err = 0;
6364 		md_print_devices();
6365 		goto done;
6366 
6367 #ifndef MODULE
6368 	case RAID_AUTORUN:
6369 		err = 0;
6370 		autostart_arrays(arg);
6371 		goto done;
6372 #endif
6373 	default:;
6374 	}
6375 
6376 	/*
6377 	 * Commands creating/starting a new array:
6378 	 */
6379 
6380 	mddev = bdev->bd_disk->private_data;
6381 
6382 	if (!mddev) {
6383 		BUG();
6384 		goto abort;
6385 	}
6386 
6387 	/* Some actions do not requires the mutex */
6388 	switch (cmd) {
6389 	case GET_ARRAY_INFO:
6390 		if (!mddev->raid_disks && !mddev->external)
6391 			err = -ENODEV;
6392 		else
6393 			err = get_array_info(mddev, argp);
6394 		goto abort;
6395 
6396 	case GET_DISK_INFO:
6397 		if (!mddev->raid_disks && !mddev->external)
6398 			err = -ENODEV;
6399 		else
6400 			err = get_disk_info(mddev, argp);
6401 		goto abort;
6402 
6403 	case SET_DISK_FAULTY:
6404 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6405 		goto abort;
6406 	}
6407 
6408 	if (cmd == ADD_NEW_DISK)
6409 		/* need to ensure md_delayed_delete() has completed */
6410 		flush_workqueue(md_misc_wq);
6411 
6412 	err = mddev_lock(mddev);
6413 	if (err) {
6414 		printk(KERN_INFO
6415 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6416 			err, cmd);
6417 		goto abort;
6418 	}
6419 
6420 	if (cmd == SET_ARRAY_INFO) {
6421 		mdu_array_info_t info;
6422 		if (!arg)
6423 			memset(&info, 0, sizeof(info));
6424 		else if (copy_from_user(&info, argp, sizeof(info))) {
6425 			err = -EFAULT;
6426 			goto abort_unlock;
6427 		}
6428 		if (mddev->pers) {
6429 			err = update_array_info(mddev, &info);
6430 			if (err) {
6431 				printk(KERN_WARNING "md: couldn't update"
6432 				       " array info. %d\n", err);
6433 				goto abort_unlock;
6434 			}
6435 			goto done_unlock;
6436 		}
6437 		if (!list_empty(&mddev->disks)) {
6438 			printk(KERN_WARNING
6439 			       "md: array %s already has disks!\n",
6440 			       mdname(mddev));
6441 			err = -EBUSY;
6442 			goto abort_unlock;
6443 		}
6444 		if (mddev->raid_disks) {
6445 			printk(KERN_WARNING
6446 			       "md: array %s already initialised!\n",
6447 			       mdname(mddev));
6448 			err = -EBUSY;
6449 			goto abort_unlock;
6450 		}
6451 		err = set_array_info(mddev, &info);
6452 		if (err) {
6453 			printk(KERN_WARNING "md: couldn't set"
6454 			       " array info. %d\n", err);
6455 			goto abort_unlock;
6456 		}
6457 		goto done_unlock;
6458 	}
6459 
6460 	/*
6461 	 * Commands querying/configuring an existing array:
6462 	 */
6463 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6464 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6465 	if ((!mddev->raid_disks && !mddev->external)
6466 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6467 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6468 	    && cmd != GET_BITMAP_FILE) {
6469 		err = -ENODEV;
6470 		goto abort_unlock;
6471 	}
6472 
6473 	/*
6474 	 * Commands even a read-only array can execute:
6475 	 */
6476 	switch (cmd) {
6477 	case GET_BITMAP_FILE:
6478 		err = get_bitmap_file(mddev, argp);
6479 		goto done_unlock;
6480 
6481 	case RESTART_ARRAY_RW:
6482 		err = restart_array(mddev);
6483 		goto done_unlock;
6484 
6485 	case STOP_ARRAY:
6486 		err = do_md_stop(mddev, 0, bdev);
6487 		goto done_unlock;
6488 
6489 	case STOP_ARRAY_RO:
6490 		err = md_set_readonly(mddev, bdev);
6491 		goto done_unlock;
6492 
6493 	case BLKROSET:
6494 		if (get_user(ro, (int __user *)(arg))) {
6495 			err = -EFAULT;
6496 			goto done_unlock;
6497 		}
6498 		err = -EINVAL;
6499 
6500 		/* if the bdev is going readonly the value of mddev->ro
6501 		 * does not matter, no writes are coming
6502 		 */
6503 		if (ro)
6504 			goto done_unlock;
6505 
6506 		/* are we are already prepared for writes? */
6507 		if (mddev->ro != 1)
6508 			goto done_unlock;
6509 
6510 		/* transitioning to readauto need only happen for
6511 		 * arrays that call md_write_start
6512 		 */
6513 		if (mddev->pers) {
6514 			err = restart_array(mddev);
6515 			if (err == 0) {
6516 				mddev->ro = 2;
6517 				set_disk_ro(mddev->gendisk, 0);
6518 			}
6519 		}
6520 		goto done_unlock;
6521 	}
6522 
6523 	/*
6524 	 * The remaining ioctls are changing the state of the
6525 	 * superblock, so we do not allow them on read-only arrays.
6526 	 * However non-MD ioctls (e.g. get-size) will still come through
6527 	 * here and hit the 'default' below, so only disallow
6528 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6529 	 */
6530 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6531 		if (mddev->ro == 2) {
6532 			mddev->ro = 0;
6533 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6534 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6535 			/* mddev_unlock will wake thread */
6536 			/* If a device failed while we were read-only, we
6537 			 * need to make sure the metadata is updated now.
6538 			 */
6539 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6540 				mddev_unlock(mddev);
6541 				wait_event(mddev->sb_wait,
6542 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6543 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6544 				mddev_lock(mddev);
6545 			}
6546 		} else {
6547 			err = -EROFS;
6548 			goto abort_unlock;
6549 		}
6550 	}
6551 
6552 	switch (cmd) {
6553 	case ADD_NEW_DISK:
6554 	{
6555 		mdu_disk_info_t info;
6556 		if (copy_from_user(&info, argp, sizeof(info)))
6557 			err = -EFAULT;
6558 		else
6559 			err = add_new_disk(mddev, &info);
6560 		goto done_unlock;
6561 	}
6562 
6563 	case HOT_REMOVE_DISK:
6564 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6565 		goto done_unlock;
6566 
6567 	case HOT_ADD_DISK:
6568 		err = hot_add_disk(mddev, new_decode_dev(arg));
6569 		goto done_unlock;
6570 
6571 	case RUN_ARRAY:
6572 		err = do_md_run(mddev);
6573 		goto done_unlock;
6574 
6575 	case SET_BITMAP_FILE:
6576 		err = set_bitmap_file(mddev, (int)arg);
6577 		goto done_unlock;
6578 
6579 	default:
6580 		err = -EINVAL;
6581 		goto abort_unlock;
6582 	}
6583 
6584 done_unlock:
6585 abort_unlock:
6586 	if (mddev->hold_active == UNTIL_IOCTL &&
6587 	    err != -EINVAL)
6588 		mddev->hold_active = 0;
6589 	mddev_unlock(mddev);
6590 
6591 	return err;
6592 done:
6593 	if (err)
6594 		MD_BUG();
6595 abort:
6596 	return err;
6597 }
6598 #ifdef CONFIG_COMPAT
6599 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6600 		    unsigned int cmd, unsigned long arg)
6601 {
6602 	switch (cmd) {
6603 	case HOT_REMOVE_DISK:
6604 	case HOT_ADD_DISK:
6605 	case SET_DISK_FAULTY:
6606 	case SET_BITMAP_FILE:
6607 		/* These take in integer arg, do not convert */
6608 		break;
6609 	default:
6610 		arg = (unsigned long)compat_ptr(arg);
6611 		break;
6612 	}
6613 
6614 	return md_ioctl(bdev, mode, cmd, arg);
6615 }
6616 #endif /* CONFIG_COMPAT */
6617 
6618 static int md_open(struct block_device *bdev, fmode_t mode)
6619 {
6620 	/*
6621 	 * Succeed if we can lock the mddev, which confirms that
6622 	 * it isn't being stopped right now.
6623 	 */
6624 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6625 	int err;
6626 
6627 	if (!mddev)
6628 		return -ENODEV;
6629 
6630 	if (mddev->gendisk != bdev->bd_disk) {
6631 		/* we are racing with mddev_put which is discarding this
6632 		 * bd_disk.
6633 		 */
6634 		mddev_put(mddev);
6635 		/* Wait until bdev->bd_disk is definitely gone */
6636 		flush_workqueue(md_misc_wq);
6637 		/* Then retry the open from the top */
6638 		return -ERESTARTSYS;
6639 	}
6640 	BUG_ON(mddev != bdev->bd_disk->private_data);
6641 
6642 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6643 		goto out;
6644 
6645 	err = 0;
6646 	atomic_inc(&mddev->openers);
6647 	mutex_unlock(&mddev->open_mutex);
6648 
6649 	check_disk_change(bdev);
6650  out:
6651 	return err;
6652 }
6653 
6654 static int md_release(struct gendisk *disk, fmode_t mode)
6655 {
6656  	struct mddev *mddev = disk->private_data;
6657 
6658 	BUG_ON(!mddev);
6659 	atomic_dec(&mddev->openers);
6660 	mddev_put(mddev);
6661 
6662 	return 0;
6663 }
6664 
6665 static int md_media_changed(struct gendisk *disk)
6666 {
6667 	struct mddev *mddev = disk->private_data;
6668 
6669 	return mddev->changed;
6670 }
6671 
6672 static int md_revalidate(struct gendisk *disk)
6673 {
6674 	struct mddev *mddev = disk->private_data;
6675 
6676 	mddev->changed = 0;
6677 	return 0;
6678 }
6679 static const struct block_device_operations md_fops =
6680 {
6681 	.owner		= THIS_MODULE,
6682 	.open		= md_open,
6683 	.release	= md_release,
6684 	.ioctl		= md_ioctl,
6685 #ifdef CONFIG_COMPAT
6686 	.compat_ioctl	= md_compat_ioctl,
6687 #endif
6688 	.getgeo		= md_getgeo,
6689 	.media_changed  = md_media_changed,
6690 	.revalidate_disk= md_revalidate,
6691 };
6692 
6693 static int md_thread(void * arg)
6694 {
6695 	struct md_thread *thread = arg;
6696 
6697 	/*
6698 	 * md_thread is a 'system-thread', it's priority should be very
6699 	 * high. We avoid resource deadlocks individually in each
6700 	 * raid personality. (RAID5 does preallocation) We also use RR and
6701 	 * the very same RT priority as kswapd, thus we will never get
6702 	 * into a priority inversion deadlock.
6703 	 *
6704 	 * we definitely have to have equal or higher priority than
6705 	 * bdflush, otherwise bdflush will deadlock if there are too
6706 	 * many dirty RAID5 blocks.
6707 	 */
6708 
6709 	allow_signal(SIGKILL);
6710 	while (!kthread_should_stop()) {
6711 
6712 		/* We need to wait INTERRUPTIBLE so that
6713 		 * we don't add to the load-average.
6714 		 * That means we need to be sure no signals are
6715 		 * pending
6716 		 */
6717 		if (signal_pending(current))
6718 			flush_signals(current);
6719 
6720 		wait_event_interruptible_timeout
6721 			(thread->wqueue,
6722 			 test_bit(THREAD_WAKEUP, &thread->flags)
6723 			 || kthread_should_stop(),
6724 			 thread->timeout);
6725 
6726 		clear_bit(THREAD_WAKEUP, &thread->flags);
6727 		if (!kthread_should_stop())
6728 			thread->run(thread);
6729 	}
6730 
6731 	return 0;
6732 }
6733 
6734 void md_wakeup_thread(struct md_thread *thread)
6735 {
6736 	if (thread) {
6737 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6738 		set_bit(THREAD_WAKEUP, &thread->flags);
6739 		wake_up(&thread->wqueue);
6740 	}
6741 }
6742 
6743 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6744 		struct mddev *mddev, const char *name)
6745 {
6746 	struct md_thread *thread;
6747 
6748 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6749 	if (!thread)
6750 		return NULL;
6751 
6752 	init_waitqueue_head(&thread->wqueue);
6753 
6754 	thread->run = run;
6755 	thread->mddev = mddev;
6756 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6757 	thread->tsk = kthread_run(md_thread, thread,
6758 				  "%s_%s",
6759 				  mdname(thread->mddev),
6760 				  name);
6761 	if (IS_ERR(thread->tsk)) {
6762 		kfree(thread);
6763 		return NULL;
6764 	}
6765 	return thread;
6766 }
6767 
6768 void md_unregister_thread(struct md_thread **threadp)
6769 {
6770 	struct md_thread *thread = *threadp;
6771 	if (!thread)
6772 		return;
6773 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6774 	/* Locking ensures that mddev_unlock does not wake_up a
6775 	 * non-existent thread
6776 	 */
6777 	spin_lock(&pers_lock);
6778 	*threadp = NULL;
6779 	spin_unlock(&pers_lock);
6780 
6781 	kthread_stop(thread->tsk);
6782 	kfree(thread);
6783 }
6784 
6785 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6786 {
6787 	if (!mddev) {
6788 		MD_BUG();
6789 		return;
6790 	}
6791 
6792 	if (!rdev || test_bit(Faulty, &rdev->flags))
6793 		return;
6794 
6795 	if (!mddev->pers || !mddev->pers->error_handler)
6796 		return;
6797 	mddev->pers->error_handler(mddev,rdev);
6798 	if (mddev->degraded)
6799 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6800 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6801 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6802 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6803 	md_wakeup_thread(mddev->thread);
6804 	if (mddev->event_work.func)
6805 		queue_work(md_misc_wq, &mddev->event_work);
6806 	md_new_event_inintr(mddev);
6807 }
6808 
6809 /* seq_file implementation /proc/mdstat */
6810 
6811 static void status_unused(struct seq_file *seq)
6812 {
6813 	int i = 0;
6814 	struct md_rdev *rdev;
6815 
6816 	seq_printf(seq, "unused devices: ");
6817 
6818 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6819 		char b[BDEVNAME_SIZE];
6820 		i++;
6821 		seq_printf(seq, "%s ",
6822 			      bdevname(rdev->bdev,b));
6823 	}
6824 	if (!i)
6825 		seq_printf(seq, "<none>");
6826 
6827 	seq_printf(seq, "\n");
6828 }
6829 
6830 
6831 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6832 {
6833 	sector_t max_sectors, resync, res;
6834 	unsigned long dt, db;
6835 	sector_t rt;
6836 	int scale;
6837 	unsigned int per_milli;
6838 
6839 	if (mddev->curr_resync <= 3)
6840 		resync = 0;
6841 	else
6842 		resync = mddev->curr_resync
6843 			- atomic_read(&mddev->recovery_active);
6844 
6845 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6846 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6847 		max_sectors = mddev->resync_max_sectors;
6848 	else
6849 		max_sectors = mddev->dev_sectors;
6850 
6851 	/*
6852 	 * Should not happen.
6853 	 */
6854 	if (!max_sectors) {
6855 		MD_BUG();
6856 		return;
6857 	}
6858 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6859 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6860 	 * u32, as those are the requirements for sector_div.
6861 	 * Thus 'scale' must be at least 10
6862 	 */
6863 	scale = 10;
6864 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6865 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6866 			scale++;
6867 	}
6868 	res = (resync>>scale)*1000;
6869 	sector_div(res, (u32)((max_sectors>>scale)+1));
6870 
6871 	per_milli = res;
6872 	{
6873 		int i, x = per_milli/50, y = 20-x;
6874 		seq_printf(seq, "[");
6875 		for (i = 0; i < x; i++)
6876 			seq_printf(seq, "=");
6877 		seq_printf(seq, ">");
6878 		for (i = 0; i < y; i++)
6879 			seq_printf(seq, ".");
6880 		seq_printf(seq, "] ");
6881 	}
6882 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6883 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6884 		    "reshape" :
6885 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6886 		     "check" :
6887 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6888 		      "resync" : "recovery"))),
6889 		   per_milli/10, per_milli % 10,
6890 		   (unsigned long long) resync/2,
6891 		   (unsigned long long) max_sectors/2);
6892 
6893 	/*
6894 	 * dt: time from mark until now
6895 	 * db: blocks written from mark until now
6896 	 * rt: remaining time
6897 	 *
6898 	 * rt is a sector_t, so could be 32bit or 64bit.
6899 	 * So we divide before multiply in case it is 32bit and close
6900 	 * to the limit.
6901 	 * We scale the divisor (db) by 32 to avoid losing precision
6902 	 * near the end of resync when the number of remaining sectors
6903 	 * is close to 'db'.
6904 	 * We then divide rt by 32 after multiplying by db to compensate.
6905 	 * The '+1' avoids division by zero if db is very small.
6906 	 */
6907 	dt = ((jiffies - mddev->resync_mark) / HZ);
6908 	if (!dt) dt++;
6909 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6910 		- mddev->resync_mark_cnt;
6911 
6912 	rt = max_sectors - resync;    /* number of remaining sectors */
6913 	sector_div(rt, db/32+1);
6914 	rt *= dt;
6915 	rt >>= 5;
6916 
6917 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6918 		   ((unsigned long)rt % 60)/6);
6919 
6920 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6921 }
6922 
6923 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6924 {
6925 	struct list_head *tmp;
6926 	loff_t l = *pos;
6927 	struct mddev *mddev;
6928 
6929 	if (l >= 0x10000)
6930 		return NULL;
6931 	if (!l--)
6932 		/* header */
6933 		return (void*)1;
6934 
6935 	spin_lock(&all_mddevs_lock);
6936 	list_for_each(tmp,&all_mddevs)
6937 		if (!l--) {
6938 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6939 			mddev_get(mddev);
6940 			spin_unlock(&all_mddevs_lock);
6941 			return mddev;
6942 		}
6943 	spin_unlock(&all_mddevs_lock);
6944 	if (!l--)
6945 		return (void*)2;/* tail */
6946 	return NULL;
6947 }
6948 
6949 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6950 {
6951 	struct list_head *tmp;
6952 	struct mddev *next_mddev, *mddev = v;
6953 
6954 	++*pos;
6955 	if (v == (void*)2)
6956 		return NULL;
6957 
6958 	spin_lock(&all_mddevs_lock);
6959 	if (v == (void*)1)
6960 		tmp = all_mddevs.next;
6961 	else
6962 		tmp = mddev->all_mddevs.next;
6963 	if (tmp != &all_mddevs)
6964 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6965 	else {
6966 		next_mddev = (void*)2;
6967 		*pos = 0x10000;
6968 	}
6969 	spin_unlock(&all_mddevs_lock);
6970 
6971 	if (v != (void*)1)
6972 		mddev_put(mddev);
6973 	return next_mddev;
6974 
6975 }
6976 
6977 static void md_seq_stop(struct seq_file *seq, void *v)
6978 {
6979 	struct mddev *mddev = v;
6980 
6981 	if (mddev && v != (void*)1 && v != (void*)2)
6982 		mddev_put(mddev);
6983 }
6984 
6985 static int md_seq_show(struct seq_file *seq, void *v)
6986 {
6987 	struct mddev *mddev = v;
6988 	sector_t sectors;
6989 	struct md_rdev *rdev;
6990 
6991 	if (v == (void*)1) {
6992 		struct md_personality *pers;
6993 		seq_printf(seq, "Personalities : ");
6994 		spin_lock(&pers_lock);
6995 		list_for_each_entry(pers, &pers_list, list)
6996 			seq_printf(seq, "[%s] ", pers->name);
6997 
6998 		spin_unlock(&pers_lock);
6999 		seq_printf(seq, "\n");
7000 		seq->poll_event = atomic_read(&md_event_count);
7001 		return 0;
7002 	}
7003 	if (v == (void*)2) {
7004 		status_unused(seq);
7005 		return 0;
7006 	}
7007 
7008 	if (mddev_lock(mddev) < 0)
7009 		return -EINTR;
7010 
7011 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7012 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7013 						mddev->pers ? "" : "in");
7014 		if (mddev->pers) {
7015 			if (mddev->ro==1)
7016 				seq_printf(seq, " (read-only)");
7017 			if (mddev->ro==2)
7018 				seq_printf(seq, " (auto-read-only)");
7019 			seq_printf(seq, " %s", mddev->pers->name);
7020 		}
7021 
7022 		sectors = 0;
7023 		rdev_for_each(rdev, mddev) {
7024 			char b[BDEVNAME_SIZE];
7025 			seq_printf(seq, " %s[%d]",
7026 				bdevname(rdev->bdev,b), rdev->desc_nr);
7027 			if (test_bit(WriteMostly, &rdev->flags))
7028 				seq_printf(seq, "(W)");
7029 			if (test_bit(Faulty, &rdev->flags)) {
7030 				seq_printf(seq, "(F)");
7031 				continue;
7032 			}
7033 			if (rdev->raid_disk < 0)
7034 				seq_printf(seq, "(S)"); /* spare */
7035 			if (test_bit(Replacement, &rdev->flags))
7036 				seq_printf(seq, "(R)");
7037 			sectors += rdev->sectors;
7038 		}
7039 
7040 		if (!list_empty(&mddev->disks)) {
7041 			if (mddev->pers)
7042 				seq_printf(seq, "\n      %llu blocks",
7043 					   (unsigned long long)
7044 					   mddev->array_sectors / 2);
7045 			else
7046 				seq_printf(seq, "\n      %llu blocks",
7047 					   (unsigned long long)sectors / 2);
7048 		}
7049 		if (mddev->persistent) {
7050 			if (mddev->major_version != 0 ||
7051 			    mddev->minor_version != 90) {
7052 				seq_printf(seq," super %d.%d",
7053 					   mddev->major_version,
7054 					   mddev->minor_version);
7055 			}
7056 		} else if (mddev->external)
7057 			seq_printf(seq, " super external:%s",
7058 				   mddev->metadata_type);
7059 		else
7060 			seq_printf(seq, " super non-persistent");
7061 
7062 		if (mddev->pers) {
7063 			mddev->pers->status(seq, mddev);
7064 	 		seq_printf(seq, "\n      ");
7065 			if (mddev->pers->sync_request) {
7066 				if (mddev->curr_resync > 2) {
7067 					status_resync(seq, mddev);
7068 					seq_printf(seq, "\n      ");
7069 				} else if (mddev->curr_resync >= 1)
7070 					seq_printf(seq, "\tresync=DELAYED\n      ");
7071 				else if (mddev->recovery_cp < MaxSector)
7072 					seq_printf(seq, "\tresync=PENDING\n      ");
7073 			}
7074 		} else
7075 			seq_printf(seq, "\n       ");
7076 
7077 		bitmap_status(seq, mddev->bitmap);
7078 
7079 		seq_printf(seq, "\n");
7080 	}
7081 	mddev_unlock(mddev);
7082 
7083 	return 0;
7084 }
7085 
7086 static const struct seq_operations md_seq_ops = {
7087 	.start  = md_seq_start,
7088 	.next   = md_seq_next,
7089 	.stop   = md_seq_stop,
7090 	.show   = md_seq_show,
7091 };
7092 
7093 static int md_seq_open(struct inode *inode, struct file *file)
7094 {
7095 	struct seq_file *seq;
7096 	int error;
7097 
7098 	error = seq_open(file, &md_seq_ops);
7099 	if (error)
7100 		return error;
7101 
7102 	seq = file->private_data;
7103 	seq->poll_event = atomic_read(&md_event_count);
7104 	return error;
7105 }
7106 
7107 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7108 {
7109 	struct seq_file *seq = filp->private_data;
7110 	int mask;
7111 
7112 	poll_wait(filp, &md_event_waiters, wait);
7113 
7114 	/* always allow read */
7115 	mask = POLLIN | POLLRDNORM;
7116 
7117 	if (seq->poll_event != atomic_read(&md_event_count))
7118 		mask |= POLLERR | POLLPRI;
7119 	return mask;
7120 }
7121 
7122 static const struct file_operations md_seq_fops = {
7123 	.owner		= THIS_MODULE,
7124 	.open           = md_seq_open,
7125 	.read           = seq_read,
7126 	.llseek         = seq_lseek,
7127 	.release	= seq_release_private,
7128 	.poll		= mdstat_poll,
7129 };
7130 
7131 int register_md_personality(struct md_personality *p)
7132 {
7133 	spin_lock(&pers_lock);
7134 	list_add_tail(&p->list, &pers_list);
7135 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7136 	spin_unlock(&pers_lock);
7137 	return 0;
7138 }
7139 
7140 int unregister_md_personality(struct md_personality *p)
7141 {
7142 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7143 	spin_lock(&pers_lock);
7144 	list_del_init(&p->list);
7145 	spin_unlock(&pers_lock);
7146 	return 0;
7147 }
7148 
7149 static int is_mddev_idle(struct mddev *mddev, int init)
7150 {
7151 	struct md_rdev * rdev;
7152 	int idle;
7153 	int curr_events;
7154 
7155 	idle = 1;
7156 	rcu_read_lock();
7157 	rdev_for_each_rcu(rdev, mddev) {
7158 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7159 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7160 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7161 			      atomic_read(&disk->sync_io);
7162 		/* sync IO will cause sync_io to increase before the disk_stats
7163 		 * as sync_io is counted when a request starts, and
7164 		 * disk_stats is counted when it completes.
7165 		 * So resync activity will cause curr_events to be smaller than
7166 		 * when there was no such activity.
7167 		 * non-sync IO will cause disk_stat to increase without
7168 		 * increasing sync_io so curr_events will (eventually)
7169 		 * be larger than it was before.  Once it becomes
7170 		 * substantially larger, the test below will cause
7171 		 * the array to appear non-idle, and resync will slow
7172 		 * down.
7173 		 * If there is a lot of outstanding resync activity when
7174 		 * we set last_event to curr_events, then all that activity
7175 		 * completing might cause the array to appear non-idle
7176 		 * and resync will be slowed down even though there might
7177 		 * not have been non-resync activity.  This will only
7178 		 * happen once though.  'last_events' will soon reflect
7179 		 * the state where there is little or no outstanding
7180 		 * resync requests, and further resync activity will
7181 		 * always make curr_events less than last_events.
7182 		 *
7183 		 */
7184 		if (init || curr_events - rdev->last_events > 64) {
7185 			rdev->last_events = curr_events;
7186 			idle = 0;
7187 		}
7188 	}
7189 	rcu_read_unlock();
7190 	return idle;
7191 }
7192 
7193 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7194 {
7195 	/* another "blocks" (512byte) blocks have been synced */
7196 	atomic_sub(blocks, &mddev->recovery_active);
7197 	wake_up(&mddev->recovery_wait);
7198 	if (!ok) {
7199 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7200 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7201 		md_wakeup_thread(mddev->thread);
7202 		// stop recovery, signal do_sync ....
7203 	}
7204 }
7205 
7206 
7207 /* md_write_start(mddev, bi)
7208  * If we need to update some array metadata (e.g. 'active' flag
7209  * in superblock) before writing, schedule a superblock update
7210  * and wait for it to complete.
7211  */
7212 void md_write_start(struct mddev *mddev, struct bio *bi)
7213 {
7214 	int did_change = 0;
7215 	if (bio_data_dir(bi) != WRITE)
7216 		return;
7217 
7218 	BUG_ON(mddev->ro == 1);
7219 	if (mddev->ro == 2) {
7220 		/* need to switch to read/write */
7221 		mddev->ro = 0;
7222 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7223 		md_wakeup_thread(mddev->thread);
7224 		md_wakeup_thread(mddev->sync_thread);
7225 		did_change = 1;
7226 	}
7227 	atomic_inc(&mddev->writes_pending);
7228 	if (mddev->safemode == 1)
7229 		mddev->safemode = 0;
7230 	if (mddev->in_sync) {
7231 		spin_lock_irq(&mddev->write_lock);
7232 		if (mddev->in_sync) {
7233 			mddev->in_sync = 0;
7234 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7235 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7236 			md_wakeup_thread(mddev->thread);
7237 			did_change = 1;
7238 		}
7239 		spin_unlock_irq(&mddev->write_lock);
7240 	}
7241 	if (did_change)
7242 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7243 	wait_event(mddev->sb_wait,
7244 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7245 }
7246 
7247 void md_write_end(struct mddev *mddev)
7248 {
7249 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7250 		if (mddev->safemode == 2)
7251 			md_wakeup_thread(mddev->thread);
7252 		else if (mddev->safemode_delay)
7253 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7254 	}
7255 }
7256 
7257 /* md_allow_write(mddev)
7258  * Calling this ensures that the array is marked 'active' so that writes
7259  * may proceed without blocking.  It is important to call this before
7260  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7261  * Must be called with mddev_lock held.
7262  *
7263  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7264  * is dropped, so return -EAGAIN after notifying userspace.
7265  */
7266 int md_allow_write(struct mddev *mddev)
7267 {
7268 	if (!mddev->pers)
7269 		return 0;
7270 	if (mddev->ro)
7271 		return 0;
7272 	if (!mddev->pers->sync_request)
7273 		return 0;
7274 
7275 	spin_lock_irq(&mddev->write_lock);
7276 	if (mddev->in_sync) {
7277 		mddev->in_sync = 0;
7278 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7279 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7280 		if (mddev->safemode_delay &&
7281 		    mddev->safemode == 0)
7282 			mddev->safemode = 1;
7283 		spin_unlock_irq(&mddev->write_lock);
7284 		md_update_sb(mddev, 0);
7285 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7286 	} else
7287 		spin_unlock_irq(&mddev->write_lock);
7288 
7289 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7290 		return -EAGAIN;
7291 	else
7292 		return 0;
7293 }
7294 EXPORT_SYMBOL_GPL(md_allow_write);
7295 
7296 #define SYNC_MARKS	10
7297 #define	SYNC_MARK_STEP	(3*HZ)
7298 #define UPDATE_FREQUENCY (5*60*HZ)
7299 void md_do_sync(struct md_thread *thread)
7300 {
7301 	struct mddev *mddev = thread->mddev;
7302 	struct mddev *mddev2;
7303 	unsigned int currspeed = 0,
7304 		 window;
7305 	sector_t max_sectors,j, io_sectors;
7306 	unsigned long mark[SYNC_MARKS];
7307 	unsigned long update_time;
7308 	sector_t mark_cnt[SYNC_MARKS];
7309 	int last_mark,m;
7310 	struct list_head *tmp;
7311 	sector_t last_check;
7312 	int skipped = 0;
7313 	struct md_rdev *rdev;
7314 	char *desc;
7315 	struct blk_plug plug;
7316 
7317 	/* just incase thread restarts... */
7318 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7319 		return;
7320 	if (mddev->ro) /* never try to sync a read-only array */
7321 		return;
7322 
7323 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7324 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7325 			desc = "data-check";
7326 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7327 			desc = "requested-resync";
7328 		else
7329 			desc = "resync";
7330 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7331 		desc = "reshape";
7332 	else
7333 		desc = "recovery";
7334 
7335 	/* we overload curr_resync somewhat here.
7336 	 * 0 == not engaged in resync at all
7337 	 * 2 == checking that there is no conflict with another sync
7338 	 * 1 == like 2, but have yielded to allow conflicting resync to
7339 	 *		commense
7340 	 * other == active in resync - this many blocks
7341 	 *
7342 	 * Before starting a resync we must have set curr_resync to
7343 	 * 2, and then checked that every "conflicting" array has curr_resync
7344 	 * less than ours.  When we find one that is the same or higher
7345 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7346 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7347 	 * This will mean we have to start checking from the beginning again.
7348 	 *
7349 	 */
7350 
7351 	do {
7352 		mddev->curr_resync = 2;
7353 
7354 	try_again:
7355 		if (kthread_should_stop())
7356 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7357 
7358 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7359 			goto skip;
7360 		for_each_mddev(mddev2, tmp) {
7361 			if (mddev2 == mddev)
7362 				continue;
7363 			if (!mddev->parallel_resync
7364 			&&  mddev2->curr_resync
7365 			&&  match_mddev_units(mddev, mddev2)) {
7366 				DEFINE_WAIT(wq);
7367 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7368 					/* arbitrarily yield */
7369 					mddev->curr_resync = 1;
7370 					wake_up(&resync_wait);
7371 				}
7372 				if (mddev > mddev2 && mddev->curr_resync == 1)
7373 					/* no need to wait here, we can wait the next
7374 					 * time 'round when curr_resync == 2
7375 					 */
7376 					continue;
7377 				/* We need to wait 'interruptible' so as not to
7378 				 * contribute to the load average, and not to
7379 				 * be caught by 'softlockup'
7380 				 */
7381 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7382 				if (!kthread_should_stop() &&
7383 				    mddev2->curr_resync >= mddev->curr_resync) {
7384 					printk(KERN_INFO "md: delaying %s of %s"
7385 					       " until %s has finished (they"
7386 					       " share one or more physical units)\n",
7387 					       desc, mdname(mddev), mdname(mddev2));
7388 					mddev_put(mddev2);
7389 					if (signal_pending(current))
7390 						flush_signals(current);
7391 					schedule();
7392 					finish_wait(&resync_wait, &wq);
7393 					goto try_again;
7394 				}
7395 				finish_wait(&resync_wait, &wq);
7396 			}
7397 		}
7398 	} while (mddev->curr_resync < 2);
7399 
7400 	j = 0;
7401 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7402 		/* resync follows the size requested by the personality,
7403 		 * which defaults to physical size, but can be virtual size
7404 		 */
7405 		max_sectors = mddev->resync_max_sectors;
7406 		atomic64_set(&mddev->resync_mismatches, 0);
7407 		/* we don't use the checkpoint if there's a bitmap */
7408 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7409 			j = mddev->resync_min;
7410 		else if (!mddev->bitmap)
7411 			j = mddev->recovery_cp;
7412 
7413 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7414 		max_sectors = mddev->resync_max_sectors;
7415 	else {
7416 		/* recovery follows the physical size of devices */
7417 		max_sectors = mddev->dev_sectors;
7418 		j = MaxSector;
7419 		rcu_read_lock();
7420 		rdev_for_each_rcu(rdev, mddev)
7421 			if (rdev->raid_disk >= 0 &&
7422 			    !test_bit(Faulty, &rdev->flags) &&
7423 			    !test_bit(In_sync, &rdev->flags) &&
7424 			    rdev->recovery_offset < j)
7425 				j = rdev->recovery_offset;
7426 		rcu_read_unlock();
7427 	}
7428 
7429 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7430 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7431 		" %d KB/sec/disk.\n", speed_min(mddev));
7432 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7433 	       "(but not more than %d KB/sec) for %s.\n",
7434 	       speed_max(mddev), desc);
7435 
7436 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7437 
7438 	io_sectors = 0;
7439 	for (m = 0; m < SYNC_MARKS; m++) {
7440 		mark[m] = jiffies;
7441 		mark_cnt[m] = io_sectors;
7442 	}
7443 	last_mark = 0;
7444 	mddev->resync_mark = mark[last_mark];
7445 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7446 
7447 	/*
7448 	 * Tune reconstruction:
7449 	 */
7450 	window = 32*(PAGE_SIZE/512);
7451 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7452 		window/2, (unsigned long long)max_sectors/2);
7453 
7454 	atomic_set(&mddev->recovery_active, 0);
7455 	last_check = 0;
7456 
7457 	if (j>2) {
7458 		printk(KERN_INFO
7459 		       "md: resuming %s of %s from checkpoint.\n",
7460 		       desc, mdname(mddev));
7461 		mddev->curr_resync = j;
7462 	} else
7463 		mddev->curr_resync = 3; /* no longer delayed */
7464 	mddev->curr_resync_completed = j;
7465 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7466 	md_new_event(mddev);
7467 	update_time = jiffies;
7468 
7469 	blk_start_plug(&plug);
7470 	while (j < max_sectors) {
7471 		sector_t sectors;
7472 
7473 		skipped = 0;
7474 
7475 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7476 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7477 		      (mddev->curr_resync - mddev->curr_resync_completed)
7478 		      > (max_sectors >> 4)) ||
7479 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7480 		     (j - mddev->curr_resync_completed)*2
7481 		     >= mddev->resync_max - mddev->curr_resync_completed
7482 			    )) {
7483 			/* time to update curr_resync_completed */
7484 			wait_event(mddev->recovery_wait,
7485 				   atomic_read(&mddev->recovery_active) == 0);
7486 			mddev->curr_resync_completed = j;
7487 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7488 			    j > mddev->recovery_cp)
7489 				mddev->recovery_cp = j;
7490 			update_time = jiffies;
7491 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7492 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7493 		}
7494 
7495 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7496 			/* As this condition is controlled by user-space,
7497 			 * we can block indefinitely, so use '_interruptible'
7498 			 * to avoid triggering warnings.
7499 			 */
7500 			flush_signals(current); /* just in case */
7501 			wait_event_interruptible(mddev->recovery_wait,
7502 						 mddev->resync_max > j
7503 						 || kthread_should_stop());
7504 		}
7505 
7506 		if (kthread_should_stop())
7507 			goto interrupted;
7508 
7509 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7510 						  currspeed < speed_min(mddev));
7511 		if (sectors == 0) {
7512 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7513 			goto out;
7514 		}
7515 
7516 		if (!skipped) { /* actual IO requested */
7517 			io_sectors += sectors;
7518 			atomic_add(sectors, &mddev->recovery_active);
7519 		}
7520 
7521 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7522 			break;
7523 
7524 		j += sectors;
7525 		if (j > 2)
7526 			mddev->curr_resync = j;
7527 		mddev->curr_mark_cnt = io_sectors;
7528 		if (last_check == 0)
7529 			/* this is the earliest that rebuild will be
7530 			 * visible in /proc/mdstat
7531 			 */
7532 			md_new_event(mddev);
7533 
7534 		if (last_check + window > io_sectors || j == max_sectors)
7535 			continue;
7536 
7537 		last_check = io_sectors;
7538 	repeat:
7539 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7540 			/* step marks */
7541 			int next = (last_mark+1) % SYNC_MARKS;
7542 
7543 			mddev->resync_mark = mark[next];
7544 			mddev->resync_mark_cnt = mark_cnt[next];
7545 			mark[next] = jiffies;
7546 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7547 			last_mark = next;
7548 		}
7549 
7550 
7551 		if (kthread_should_stop())
7552 			goto interrupted;
7553 
7554 
7555 		/*
7556 		 * this loop exits only if either when we are slower than
7557 		 * the 'hard' speed limit, or the system was IO-idle for
7558 		 * a jiffy.
7559 		 * the system might be non-idle CPU-wise, but we only care
7560 		 * about not overloading the IO subsystem. (things like an
7561 		 * e2fsck being done on the RAID array should execute fast)
7562 		 */
7563 		cond_resched();
7564 
7565 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7566 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7567 
7568 		if (currspeed > speed_min(mddev)) {
7569 			if ((currspeed > speed_max(mddev)) ||
7570 					!is_mddev_idle(mddev, 0)) {
7571 				msleep(500);
7572 				goto repeat;
7573 			}
7574 		}
7575 	}
7576 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7577 	/*
7578 	 * this also signals 'finished resyncing' to md_stop
7579 	 */
7580  out:
7581 	blk_finish_plug(&plug);
7582 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7583 
7584 	/* tell personality that we are finished */
7585 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7586 
7587 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7588 	    mddev->curr_resync > 2) {
7589 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7590 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7591 				if (mddev->curr_resync >= mddev->recovery_cp) {
7592 					printk(KERN_INFO
7593 					       "md: checkpointing %s of %s.\n",
7594 					       desc, mdname(mddev));
7595 					if (test_bit(MD_RECOVERY_ERROR,
7596 						&mddev->recovery))
7597 						mddev->recovery_cp =
7598 							mddev->curr_resync_completed;
7599 					else
7600 						mddev->recovery_cp =
7601 							mddev->curr_resync;
7602 				}
7603 			} else
7604 				mddev->recovery_cp = MaxSector;
7605 		} else {
7606 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7607 				mddev->curr_resync = MaxSector;
7608 			rcu_read_lock();
7609 			rdev_for_each_rcu(rdev, mddev)
7610 				if (rdev->raid_disk >= 0 &&
7611 				    mddev->delta_disks >= 0 &&
7612 				    !test_bit(Faulty, &rdev->flags) &&
7613 				    !test_bit(In_sync, &rdev->flags) &&
7614 				    rdev->recovery_offset < mddev->curr_resync)
7615 					rdev->recovery_offset = mddev->curr_resync;
7616 			rcu_read_unlock();
7617 		}
7618 	}
7619  skip:
7620 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7621 
7622 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7623 		/* We completed so min/max setting can be forgotten if used. */
7624 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7625 			mddev->resync_min = 0;
7626 		mddev->resync_max = MaxSector;
7627 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7628 		mddev->resync_min = mddev->curr_resync_completed;
7629 	mddev->curr_resync = 0;
7630 	wake_up(&resync_wait);
7631 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7632 	md_wakeup_thread(mddev->thread);
7633 	return;
7634 
7635  interrupted:
7636 	/*
7637 	 * got a signal, exit.
7638 	 */
7639 	printk(KERN_INFO
7640 	       "md: md_do_sync() got signal ... exiting\n");
7641 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7642 	goto out;
7643 
7644 }
7645 EXPORT_SYMBOL_GPL(md_do_sync);
7646 
7647 static int remove_and_add_spares(struct mddev *mddev)
7648 {
7649 	struct md_rdev *rdev;
7650 	int spares = 0;
7651 	int removed = 0;
7652 
7653 	rdev_for_each(rdev, mddev)
7654 		if (rdev->raid_disk >= 0 &&
7655 		    !test_bit(Blocked, &rdev->flags) &&
7656 		    (test_bit(Faulty, &rdev->flags) ||
7657 		     ! test_bit(In_sync, &rdev->flags)) &&
7658 		    atomic_read(&rdev->nr_pending)==0) {
7659 			if (mddev->pers->hot_remove_disk(
7660 				    mddev, rdev) == 0) {
7661 				sysfs_unlink_rdev(mddev, rdev);
7662 				rdev->raid_disk = -1;
7663 				removed++;
7664 			}
7665 		}
7666 	if (removed)
7667 		sysfs_notify(&mddev->kobj, NULL,
7668 			     "degraded");
7669 
7670 
7671 	rdev_for_each(rdev, mddev) {
7672 		if (rdev->raid_disk >= 0 &&
7673 		    !test_bit(In_sync, &rdev->flags) &&
7674 		    !test_bit(Faulty, &rdev->flags))
7675 			spares++;
7676 		if (rdev->raid_disk < 0
7677 		    && !test_bit(Faulty, &rdev->flags)) {
7678 			rdev->recovery_offset = 0;
7679 			if (mddev->pers->
7680 			    hot_add_disk(mddev, rdev) == 0) {
7681 				if (sysfs_link_rdev(mddev, rdev))
7682 					/* failure here is OK */;
7683 				spares++;
7684 				md_new_event(mddev);
7685 				set_bit(MD_CHANGE_DEVS, &mddev->flags);
7686 			}
7687 		}
7688 	}
7689 	if (removed)
7690 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7691 	return spares;
7692 }
7693 
7694 static void reap_sync_thread(struct mddev *mddev)
7695 {
7696 	struct md_rdev *rdev;
7697 
7698 	/* resync has finished, collect result */
7699 	md_unregister_thread(&mddev->sync_thread);
7700 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7701 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7702 		/* success...*/
7703 		/* activate any spares */
7704 		if (mddev->pers->spare_active(mddev)) {
7705 			sysfs_notify(&mddev->kobj, NULL,
7706 				     "degraded");
7707 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7708 		}
7709 	}
7710 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7711 	    mddev->pers->finish_reshape)
7712 		mddev->pers->finish_reshape(mddev);
7713 
7714 	/* If array is no-longer degraded, then any saved_raid_disk
7715 	 * information must be scrapped.  Also if any device is now
7716 	 * In_sync we must scrape the saved_raid_disk for that device
7717 	 * do the superblock for an incrementally recovered device
7718 	 * written out.
7719 	 */
7720 	rdev_for_each(rdev, mddev)
7721 		if (!mddev->degraded ||
7722 		    test_bit(In_sync, &rdev->flags))
7723 			rdev->saved_raid_disk = -1;
7724 
7725 	md_update_sb(mddev, 1);
7726 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7727 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7728 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7729 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7730 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7731 	/* flag recovery needed just to double check */
7732 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7733 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7734 	md_new_event(mddev);
7735 	if (mddev->event_work.func)
7736 		queue_work(md_misc_wq, &mddev->event_work);
7737 }
7738 
7739 /*
7740  * This routine is regularly called by all per-raid-array threads to
7741  * deal with generic issues like resync and super-block update.
7742  * Raid personalities that don't have a thread (linear/raid0) do not
7743  * need this as they never do any recovery or update the superblock.
7744  *
7745  * It does not do any resync itself, but rather "forks" off other threads
7746  * to do that as needed.
7747  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7748  * "->recovery" and create a thread at ->sync_thread.
7749  * When the thread finishes it sets MD_RECOVERY_DONE
7750  * and wakeups up this thread which will reap the thread and finish up.
7751  * This thread also removes any faulty devices (with nr_pending == 0).
7752  *
7753  * The overall approach is:
7754  *  1/ if the superblock needs updating, update it.
7755  *  2/ If a recovery thread is running, don't do anything else.
7756  *  3/ If recovery has finished, clean up, possibly marking spares active.
7757  *  4/ If there are any faulty devices, remove them.
7758  *  5/ If array is degraded, try to add spares devices
7759  *  6/ If array has spares or is not in-sync, start a resync thread.
7760  */
7761 void md_check_recovery(struct mddev *mddev)
7762 {
7763 	if (mddev->suspended)
7764 		return;
7765 
7766 	if (mddev->bitmap)
7767 		bitmap_daemon_work(mddev);
7768 
7769 	if (signal_pending(current)) {
7770 		if (mddev->pers->sync_request && !mddev->external) {
7771 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7772 			       mdname(mddev));
7773 			mddev->safemode = 2;
7774 		}
7775 		flush_signals(current);
7776 	}
7777 
7778 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7779 		return;
7780 	if ( ! (
7781 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7782 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7783 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7784 		(mddev->external == 0 && mddev->safemode == 1) ||
7785 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7786 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7787 		))
7788 		return;
7789 
7790 	if (mddev_trylock(mddev)) {
7791 		int spares = 0;
7792 
7793 		if (mddev->ro) {
7794 			/* Only thing we do on a ro array is remove
7795 			 * failed devices.
7796 			 */
7797 			struct md_rdev *rdev;
7798 			rdev_for_each(rdev, mddev)
7799 				if (rdev->raid_disk >= 0 &&
7800 				    !test_bit(Blocked, &rdev->flags) &&
7801 				    test_bit(Faulty, &rdev->flags) &&
7802 				    atomic_read(&rdev->nr_pending)==0) {
7803 					if (mddev->pers->hot_remove_disk(
7804 						    mddev, rdev) == 0) {
7805 						sysfs_unlink_rdev(mddev, rdev);
7806 						rdev->raid_disk = -1;
7807 					}
7808 				}
7809 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7810 			goto unlock;
7811 		}
7812 
7813 		if (!mddev->external) {
7814 			int did_change = 0;
7815 			spin_lock_irq(&mddev->write_lock);
7816 			if (mddev->safemode &&
7817 			    !atomic_read(&mddev->writes_pending) &&
7818 			    !mddev->in_sync &&
7819 			    mddev->recovery_cp == MaxSector) {
7820 				mddev->in_sync = 1;
7821 				did_change = 1;
7822 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7823 			}
7824 			if (mddev->safemode == 1)
7825 				mddev->safemode = 0;
7826 			spin_unlock_irq(&mddev->write_lock);
7827 			if (did_change)
7828 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7829 		}
7830 
7831 		if (mddev->flags)
7832 			md_update_sb(mddev, 0);
7833 
7834 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7835 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7836 			/* resync/recovery still happening */
7837 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7838 			goto unlock;
7839 		}
7840 		if (mddev->sync_thread) {
7841 			reap_sync_thread(mddev);
7842 			goto unlock;
7843 		}
7844 		/* Set RUNNING before clearing NEEDED to avoid
7845 		 * any transients in the value of "sync_action".
7846 		 */
7847 		mddev->curr_resync_completed = 0;
7848 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7849 		/* Clear some bits that don't mean anything, but
7850 		 * might be left set
7851 		 */
7852 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7853 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7854 
7855 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7856 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7857 			goto unlock;
7858 		/* no recovery is running.
7859 		 * remove any failed drives, then
7860 		 * add spares if possible.
7861 		 * Spares are also removed and re-added, to allow
7862 		 * the personality to fail the re-add.
7863 		 */
7864 
7865 		if (mddev->reshape_position != MaxSector) {
7866 			if (mddev->pers->check_reshape == NULL ||
7867 			    mddev->pers->check_reshape(mddev) != 0)
7868 				/* Cannot proceed */
7869 				goto unlock;
7870 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7871 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7872 		} else if ((spares = remove_and_add_spares(mddev))) {
7873 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7874 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7875 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7876 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7877 		} else if (mddev->recovery_cp < MaxSector) {
7878 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7879 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7880 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7881 			/* nothing to be done ... */
7882 			goto unlock;
7883 
7884 		if (mddev->pers->sync_request) {
7885 			if (spares) {
7886 				/* We are adding a device or devices to an array
7887 				 * which has the bitmap stored on all devices.
7888 				 * So make sure all bitmap pages get written
7889 				 */
7890 				bitmap_write_all(mddev->bitmap);
7891 			}
7892 			mddev->sync_thread = md_register_thread(md_do_sync,
7893 								mddev,
7894 								"resync");
7895 			if (!mddev->sync_thread) {
7896 				printk(KERN_ERR "%s: could not start resync"
7897 					" thread...\n",
7898 					mdname(mddev));
7899 				/* leave the spares where they are, it shouldn't hurt */
7900 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7901 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7902 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7903 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7904 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7905 			} else
7906 				md_wakeup_thread(mddev->sync_thread);
7907 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7908 			md_new_event(mddev);
7909 		}
7910 	unlock:
7911 		if (!mddev->sync_thread) {
7912 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7913 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7914 					       &mddev->recovery))
7915 				if (mddev->sysfs_action)
7916 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7917 		}
7918 		mddev_unlock(mddev);
7919 	}
7920 }
7921 
7922 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7923 {
7924 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7925 	wait_event_timeout(rdev->blocked_wait,
7926 			   !test_bit(Blocked, &rdev->flags) &&
7927 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7928 			   msecs_to_jiffies(5000));
7929 	rdev_dec_pending(rdev, mddev);
7930 }
7931 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7932 
7933 void md_finish_reshape(struct mddev *mddev)
7934 {
7935 	/* called be personality module when reshape completes. */
7936 	struct md_rdev *rdev;
7937 
7938 	rdev_for_each(rdev, mddev) {
7939 		if (rdev->data_offset > rdev->new_data_offset)
7940 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7941 		else
7942 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7943 		rdev->data_offset = rdev->new_data_offset;
7944 	}
7945 }
7946 EXPORT_SYMBOL(md_finish_reshape);
7947 
7948 /* Bad block management.
7949  * We can record which blocks on each device are 'bad' and so just
7950  * fail those blocks, or that stripe, rather than the whole device.
7951  * Entries in the bad-block table are 64bits wide.  This comprises:
7952  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7953  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7954  *  A 'shift' can be set so that larger blocks are tracked and
7955  *  consequently larger devices can be covered.
7956  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7957  *
7958  * Locking of the bad-block table uses a seqlock so md_is_badblock
7959  * might need to retry if it is very unlucky.
7960  * We will sometimes want to check for bad blocks in a bi_end_io function,
7961  * so we use the write_seqlock_irq variant.
7962  *
7963  * When looking for a bad block we specify a range and want to
7964  * know if any block in the range is bad.  So we binary-search
7965  * to the last range that starts at-or-before the given endpoint,
7966  * (or "before the sector after the target range")
7967  * then see if it ends after the given start.
7968  * We return
7969  *  0 if there are no known bad blocks in the range
7970  *  1 if there are known bad block which are all acknowledged
7971  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7972  * plus the start/length of the first bad section we overlap.
7973  */
7974 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7975 		   sector_t *first_bad, int *bad_sectors)
7976 {
7977 	int hi;
7978 	int lo;
7979 	u64 *p = bb->page;
7980 	int rv;
7981 	sector_t target = s + sectors;
7982 	unsigned seq;
7983 
7984 	if (bb->shift > 0) {
7985 		/* round the start down, and the end up */
7986 		s >>= bb->shift;
7987 		target += (1<<bb->shift) - 1;
7988 		target >>= bb->shift;
7989 		sectors = target - s;
7990 	}
7991 	/* 'target' is now the first block after the bad range */
7992 
7993 retry:
7994 	seq = read_seqbegin(&bb->lock);
7995 	lo = 0;
7996 	rv = 0;
7997 	hi = bb->count;
7998 
7999 	/* Binary search between lo and hi for 'target'
8000 	 * i.e. for the last range that starts before 'target'
8001 	 */
8002 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8003 	 * are known not to be the last range before target.
8004 	 * VARIANT: hi-lo is the number of possible
8005 	 * ranges, and decreases until it reaches 1
8006 	 */
8007 	while (hi - lo > 1) {
8008 		int mid = (lo + hi) / 2;
8009 		sector_t a = BB_OFFSET(p[mid]);
8010 		if (a < target)
8011 			/* This could still be the one, earlier ranges
8012 			 * could not. */
8013 			lo = mid;
8014 		else
8015 			/* This and later ranges are definitely out. */
8016 			hi = mid;
8017 	}
8018 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8019 	if (hi > lo) {
8020 		/* need to check all range that end after 's' to see if
8021 		 * any are unacknowledged.
8022 		 */
8023 		while (lo >= 0 &&
8024 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8025 			if (BB_OFFSET(p[lo]) < target) {
8026 				/* starts before the end, and finishes after
8027 				 * the start, so they must overlap
8028 				 */
8029 				if (rv != -1 && BB_ACK(p[lo]))
8030 					rv = 1;
8031 				else
8032 					rv = -1;
8033 				*first_bad = BB_OFFSET(p[lo]);
8034 				*bad_sectors = BB_LEN(p[lo]);
8035 			}
8036 			lo--;
8037 		}
8038 	}
8039 
8040 	if (read_seqretry(&bb->lock, seq))
8041 		goto retry;
8042 
8043 	return rv;
8044 }
8045 EXPORT_SYMBOL_GPL(md_is_badblock);
8046 
8047 /*
8048  * Add a range of bad blocks to the table.
8049  * This might extend the table, or might contract it
8050  * if two adjacent ranges can be merged.
8051  * We binary-search to find the 'insertion' point, then
8052  * decide how best to handle it.
8053  */
8054 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8055 			    int acknowledged)
8056 {
8057 	u64 *p;
8058 	int lo, hi;
8059 	int rv = 1;
8060 
8061 	if (bb->shift < 0)
8062 		/* badblocks are disabled */
8063 		return 0;
8064 
8065 	if (bb->shift) {
8066 		/* round the start down, and the end up */
8067 		sector_t next = s + sectors;
8068 		s >>= bb->shift;
8069 		next += (1<<bb->shift) - 1;
8070 		next >>= bb->shift;
8071 		sectors = next - s;
8072 	}
8073 
8074 	write_seqlock_irq(&bb->lock);
8075 
8076 	p = bb->page;
8077 	lo = 0;
8078 	hi = bb->count;
8079 	/* Find the last range that starts at-or-before 's' */
8080 	while (hi - lo > 1) {
8081 		int mid = (lo + hi) / 2;
8082 		sector_t a = BB_OFFSET(p[mid]);
8083 		if (a <= s)
8084 			lo = mid;
8085 		else
8086 			hi = mid;
8087 	}
8088 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8089 		hi = lo;
8090 
8091 	if (hi > lo) {
8092 		/* we found a range that might merge with the start
8093 		 * of our new range
8094 		 */
8095 		sector_t a = BB_OFFSET(p[lo]);
8096 		sector_t e = a + BB_LEN(p[lo]);
8097 		int ack = BB_ACK(p[lo]);
8098 		if (e >= s) {
8099 			/* Yes, we can merge with a previous range */
8100 			if (s == a && s + sectors >= e)
8101 				/* new range covers old */
8102 				ack = acknowledged;
8103 			else
8104 				ack = ack && acknowledged;
8105 
8106 			if (e < s + sectors)
8107 				e = s + sectors;
8108 			if (e - a <= BB_MAX_LEN) {
8109 				p[lo] = BB_MAKE(a, e-a, ack);
8110 				s = e;
8111 			} else {
8112 				/* does not all fit in one range,
8113 				 * make p[lo] maximal
8114 				 */
8115 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8116 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8117 				s = a + BB_MAX_LEN;
8118 			}
8119 			sectors = e - s;
8120 		}
8121 	}
8122 	if (sectors && hi < bb->count) {
8123 		/* 'hi' points to the first range that starts after 's'.
8124 		 * Maybe we can merge with the start of that range */
8125 		sector_t a = BB_OFFSET(p[hi]);
8126 		sector_t e = a + BB_LEN(p[hi]);
8127 		int ack = BB_ACK(p[hi]);
8128 		if (a <= s + sectors) {
8129 			/* merging is possible */
8130 			if (e <= s + sectors) {
8131 				/* full overlap */
8132 				e = s + sectors;
8133 				ack = acknowledged;
8134 			} else
8135 				ack = ack && acknowledged;
8136 
8137 			a = s;
8138 			if (e - a <= BB_MAX_LEN) {
8139 				p[hi] = BB_MAKE(a, e-a, ack);
8140 				s = e;
8141 			} else {
8142 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8143 				s = a + BB_MAX_LEN;
8144 			}
8145 			sectors = e - s;
8146 			lo = hi;
8147 			hi++;
8148 		}
8149 	}
8150 	if (sectors == 0 && hi < bb->count) {
8151 		/* we might be able to combine lo and hi */
8152 		/* Note: 's' is at the end of 'lo' */
8153 		sector_t a = BB_OFFSET(p[hi]);
8154 		int lolen = BB_LEN(p[lo]);
8155 		int hilen = BB_LEN(p[hi]);
8156 		int newlen = lolen + hilen - (s - a);
8157 		if (s >= a && newlen < BB_MAX_LEN) {
8158 			/* yes, we can combine them */
8159 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8160 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8161 			memmove(p + hi, p + hi + 1,
8162 				(bb->count - hi - 1) * 8);
8163 			bb->count--;
8164 		}
8165 	}
8166 	while (sectors) {
8167 		/* didn't merge (it all).
8168 		 * Need to add a range just before 'hi' */
8169 		if (bb->count >= MD_MAX_BADBLOCKS) {
8170 			/* No room for more */
8171 			rv = 0;
8172 			break;
8173 		} else {
8174 			int this_sectors = sectors;
8175 			memmove(p + hi + 1, p + hi,
8176 				(bb->count - hi) * 8);
8177 			bb->count++;
8178 
8179 			if (this_sectors > BB_MAX_LEN)
8180 				this_sectors = BB_MAX_LEN;
8181 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8182 			sectors -= this_sectors;
8183 			s += this_sectors;
8184 		}
8185 	}
8186 
8187 	bb->changed = 1;
8188 	if (!acknowledged)
8189 		bb->unacked_exist = 1;
8190 	write_sequnlock_irq(&bb->lock);
8191 
8192 	return rv;
8193 }
8194 
8195 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8196 		       int is_new)
8197 {
8198 	int rv;
8199 	if (is_new)
8200 		s += rdev->new_data_offset;
8201 	else
8202 		s += rdev->data_offset;
8203 	rv = md_set_badblocks(&rdev->badblocks,
8204 			      s, sectors, 0);
8205 	if (rv) {
8206 		/* Make sure they get written out promptly */
8207 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8208 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8209 		md_wakeup_thread(rdev->mddev->thread);
8210 	}
8211 	return rv;
8212 }
8213 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8214 
8215 /*
8216  * Remove a range of bad blocks from the table.
8217  * This may involve extending the table if we spilt a region,
8218  * but it must not fail.  So if the table becomes full, we just
8219  * drop the remove request.
8220  */
8221 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8222 {
8223 	u64 *p;
8224 	int lo, hi;
8225 	sector_t target = s + sectors;
8226 	int rv = 0;
8227 
8228 	if (bb->shift > 0) {
8229 		/* When clearing we round the start up and the end down.
8230 		 * This should not matter as the shift should align with
8231 		 * the block size and no rounding should ever be needed.
8232 		 * However it is better the think a block is bad when it
8233 		 * isn't than to think a block is not bad when it is.
8234 		 */
8235 		s += (1<<bb->shift) - 1;
8236 		s >>= bb->shift;
8237 		target >>= bb->shift;
8238 		sectors = target - s;
8239 	}
8240 
8241 	write_seqlock_irq(&bb->lock);
8242 
8243 	p = bb->page;
8244 	lo = 0;
8245 	hi = bb->count;
8246 	/* Find the last range that starts before 'target' */
8247 	while (hi - lo > 1) {
8248 		int mid = (lo + hi) / 2;
8249 		sector_t a = BB_OFFSET(p[mid]);
8250 		if (a < target)
8251 			lo = mid;
8252 		else
8253 			hi = mid;
8254 	}
8255 	if (hi > lo) {
8256 		/* p[lo] is the last range that could overlap the
8257 		 * current range.  Earlier ranges could also overlap,
8258 		 * but only this one can overlap the end of the range.
8259 		 */
8260 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8261 			/* Partial overlap, leave the tail of this range */
8262 			int ack = BB_ACK(p[lo]);
8263 			sector_t a = BB_OFFSET(p[lo]);
8264 			sector_t end = a + BB_LEN(p[lo]);
8265 
8266 			if (a < s) {
8267 				/* we need to split this range */
8268 				if (bb->count >= MD_MAX_BADBLOCKS) {
8269 					rv = 0;
8270 					goto out;
8271 				}
8272 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8273 				bb->count++;
8274 				p[lo] = BB_MAKE(a, s-a, ack);
8275 				lo++;
8276 			}
8277 			p[lo] = BB_MAKE(target, end - target, ack);
8278 			/* there is no longer an overlap */
8279 			hi = lo;
8280 			lo--;
8281 		}
8282 		while (lo >= 0 &&
8283 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8284 			/* This range does overlap */
8285 			if (BB_OFFSET(p[lo]) < s) {
8286 				/* Keep the early parts of this range. */
8287 				int ack = BB_ACK(p[lo]);
8288 				sector_t start = BB_OFFSET(p[lo]);
8289 				p[lo] = BB_MAKE(start, s - start, ack);
8290 				/* now low doesn't overlap, so.. */
8291 				break;
8292 			}
8293 			lo--;
8294 		}
8295 		/* 'lo' is strictly before, 'hi' is strictly after,
8296 		 * anything between needs to be discarded
8297 		 */
8298 		if (hi - lo > 1) {
8299 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8300 			bb->count -= (hi - lo - 1);
8301 		}
8302 	}
8303 
8304 	bb->changed = 1;
8305 out:
8306 	write_sequnlock_irq(&bb->lock);
8307 	return rv;
8308 }
8309 
8310 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8311 			 int is_new)
8312 {
8313 	if (is_new)
8314 		s += rdev->new_data_offset;
8315 	else
8316 		s += rdev->data_offset;
8317 	return md_clear_badblocks(&rdev->badblocks,
8318 				  s, sectors);
8319 }
8320 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8321 
8322 /*
8323  * Acknowledge all bad blocks in a list.
8324  * This only succeeds if ->changed is clear.  It is used by
8325  * in-kernel metadata updates
8326  */
8327 void md_ack_all_badblocks(struct badblocks *bb)
8328 {
8329 	if (bb->page == NULL || bb->changed)
8330 		/* no point even trying */
8331 		return;
8332 	write_seqlock_irq(&bb->lock);
8333 
8334 	if (bb->changed == 0 && bb->unacked_exist) {
8335 		u64 *p = bb->page;
8336 		int i;
8337 		for (i = 0; i < bb->count ; i++) {
8338 			if (!BB_ACK(p[i])) {
8339 				sector_t start = BB_OFFSET(p[i]);
8340 				int len = BB_LEN(p[i]);
8341 				p[i] = BB_MAKE(start, len, 1);
8342 			}
8343 		}
8344 		bb->unacked_exist = 0;
8345 	}
8346 	write_sequnlock_irq(&bb->lock);
8347 }
8348 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8349 
8350 /* sysfs access to bad-blocks list.
8351  * We present two files.
8352  * 'bad-blocks' lists sector numbers and lengths of ranges that
8353  *    are recorded as bad.  The list is truncated to fit within
8354  *    the one-page limit of sysfs.
8355  *    Writing "sector length" to this file adds an acknowledged
8356  *    bad block list.
8357  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8358  *    been acknowledged.  Writing to this file adds bad blocks
8359  *    without acknowledging them.  This is largely for testing.
8360  */
8361 
8362 static ssize_t
8363 badblocks_show(struct badblocks *bb, char *page, int unack)
8364 {
8365 	size_t len;
8366 	int i;
8367 	u64 *p = bb->page;
8368 	unsigned seq;
8369 
8370 	if (bb->shift < 0)
8371 		return 0;
8372 
8373 retry:
8374 	seq = read_seqbegin(&bb->lock);
8375 
8376 	len = 0;
8377 	i = 0;
8378 
8379 	while (len < PAGE_SIZE && i < bb->count) {
8380 		sector_t s = BB_OFFSET(p[i]);
8381 		unsigned int length = BB_LEN(p[i]);
8382 		int ack = BB_ACK(p[i]);
8383 		i++;
8384 
8385 		if (unack && ack)
8386 			continue;
8387 
8388 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8389 				(unsigned long long)s << bb->shift,
8390 				length << bb->shift);
8391 	}
8392 	if (unack && len == 0)
8393 		bb->unacked_exist = 0;
8394 
8395 	if (read_seqretry(&bb->lock, seq))
8396 		goto retry;
8397 
8398 	return len;
8399 }
8400 
8401 #define DO_DEBUG 1
8402 
8403 static ssize_t
8404 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8405 {
8406 	unsigned long long sector;
8407 	int length;
8408 	char newline;
8409 #ifdef DO_DEBUG
8410 	/* Allow clearing via sysfs *only* for testing/debugging.
8411 	 * Normally only a successful write may clear a badblock
8412 	 */
8413 	int clear = 0;
8414 	if (page[0] == '-') {
8415 		clear = 1;
8416 		page++;
8417 	}
8418 #endif /* DO_DEBUG */
8419 
8420 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8421 	case 3:
8422 		if (newline != '\n')
8423 			return -EINVAL;
8424 	case 2:
8425 		if (length <= 0)
8426 			return -EINVAL;
8427 		break;
8428 	default:
8429 		return -EINVAL;
8430 	}
8431 
8432 #ifdef DO_DEBUG
8433 	if (clear) {
8434 		md_clear_badblocks(bb, sector, length);
8435 		return len;
8436 	}
8437 #endif /* DO_DEBUG */
8438 	if (md_set_badblocks(bb, sector, length, !unack))
8439 		return len;
8440 	else
8441 		return -ENOSPC;
8442 }
8443 
8444 static int md_notify_reboot(struct notifier_block *this,
8445 			    unsigned long code, void *x)
8446 {
8447 	struct list_head *tmp;
8448 	struct mddev *mddev;
8449 	int need_delay = 0;
8450 
8451 	for_each_mddev(mddev, tmp) {
8452 		if (mddev_trylock(mddev)) {
8453 			if (mddev->pers)
8454 				__md_stop_writes(mddev);
8455 			mddev->safemode = 2;
8456 			mddev_unlock(mddev);
8457 		}
8458 		need_delay = 1;
8459 	}
8460 	/*
8461 	 * certain more exotic SCSI devices are known to be
8462 	 * volatile wrt too early system reboots. While the
8463 	 * right place to handle this issue is the given
8464 	 * driver, we do want to have a safe RAID driver ...
8465 	 */
8466 	if (need_delay)
8467 		mdelay(1000*1);
8468 
8469 	return NOTIFY_DONE;
8470 }
8471 
8472 static struct notifier_block md_notifier = {
8473 	.notifier_call	= md_notify_reboot,
8474 	.next		= NULL,
8475 	.priority	= INT_MAX, /* before any real devices */
8476 };
8477 
8478 static void md_geninit(void)
8479 {
8480 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8481 
8482 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8483 }
8484 
8485 static int __init md_init(void)
8486 {
8487 	int ret = -ENOMEM;
8488 
8489 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8490 	if (!md_wq)
8491 		goto err_wq;
8492 
8493 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8494 	if (!md_misc_wq)
8495 		goto err_misc_wq;
8496 
8497 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8498 		goto err_md;
8499 
8500 	if ((ret = register_blkdev(0, "mdp")) < 0)
8501 		goto err_mdp;
8502 	mdp_major = ret;
8503 
8504 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8505 			    md_probe, NULL, NULL);
8506 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8507 			    md_probe, NULL, NULL);
8508 
8509 	register_reboot_notifier(&md_notifier);
8510 	raid_table_header = register_sysctl_table(raid_root_table);
8511 
8512 	md_geninit();
8513 	return 0;
8514 
8515 err_mdp:
8516 	unregister_blkdev(MD_MAJOR, "md");
8517 err_md:
8518 	destroy_workqueue(md_misc_wq);
8519 err_misc_wq:
8520 	destroy_workqueue(md_wq);
8521 err_wq:
8522 	return ret;
8523 }
8524 
8525 #ifndef MODULE
8526 
8527 /*
8528  * Searches all registered partitions for autorun RAID arrays
8529  * at boot time.
8530  */
8531 
8532 static LIST_HEAD(all_detected_devices);
8533 struct detected_devices_node {
8534 	struct list_head list;
8535 	dev_t dev;
8536 };
8537 
8538 void md_autodetect_dev(dev_t dev)
8539 {
8540 	struct detected_devices_node *node_detected_dev;
8541 
8542 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8543 	if (node_detected_dev) {
8544 		node_detected_dev->dev = dev;
8545 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8546 	} else {
8547 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8548 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8549 	}
8550 }
8551 
8552 
8553 static void autostart_arrays(int part)
8554 {
8555 	struct md_rdev *rdev;
8556 	struct detected_devices_node *node_detected_dev;
8557 	dev_t dev;
8558 	int i_scanned, i_passed;
8559 
8560 	i_scanned = 0;
8561 	i_passed = 0;
8562 
8563 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8564 
8565 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8566 		i_scanned++;
8567 		node_detected_dev = list_entry(all_detected_devices.next,
8568 					struct detected_devices_node, list);
8569 		list_del(&node_detected_dev->list);
8570 		dev = node_detected_dev->dev;
8571 		kfree(node_detected_dev);
8572 		rdev = md_import_device(dev,0, 90);
8573 		if (IS_ERR(rdev))
8574 			continue;
8575 
8576 		if (test_bit(Faulty, &rdev->flags)) {
8577 			MD_BUG();
8578 			continue;
8579 		}
8580 		set_bit(AutoDetected, &rdev->flags);
8581 		list_add(&rdev->same_set, &pending_raid_disks);
8582 		i_passed++;
8583 	}
8584 
8585 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8586 						i_scanned, i_passed);
8587 
8588 	autorun_devices(part);
8589 }
8590 
8591 #endif /* !MODULE */
8592 
8593 static __exit void md_exit(void)
8594 {
8595 	struct mddev *mddev;
8596 	struct list_head *tmp;
8597 
8598 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8599 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8600 
8601 	unregister_blkdev(MD_MAJOR,"md");
8602 	unregister_blkdev(mdp_major, "mdp");
8603 	unregister_reboot_notifier(&md_notifier);
8604 	unregister_sysctl_table(raid_table_header);
8605 	remove_proc_entry("mdstat", NULL);
8606 	for_each_mddev(mddev, tmp) {
8607 		export_array(mddev);
8608 		mddev->hold_active = 0;
8609 	}
8610 	destroy_workqueue(md_misc_wq);
8611 	destroy_workqueue(md_wq);
8612 }
8613 
8614 subsys_initcall(md_init);
8615 module_exit(md_exit)
8616 
8617 static int get_ro(char *buffer, struct kernel_param *kp)
8618 {
8619 	return sprintf(buffer, "%d", start_readonly);
8620 }
8621 static int set_ro(const char *val, struct kernel_param *kp)
8622 {
8623 	char *e;
8624 	int num = simple_strtoul(val, &e, 10);
8625 	if (*val && (*e == '\0' || *e == '\n')) {
8626 		start_readonly = num;
8627 		return 0;
8628 	}
8629 	return -EINVAL;
8630 }
8631 
8632 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8633 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8634 
8635 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8636 
8637 EXPORT_SYMBOL(register_md_personality);
8638 EXPORT_SYMBOL(unregister_md_personality);
8639 EXPORT_SYMBOL(md_error);
8640 EXPORT_SYMBOL(md_done_sync);
8641 EXPORT_SYMBOL(md_write_start);
8642 EXPORT_SYMBOL(md_write_end);
8643 EXPORT_SYMBOL(md_register_thread);
8644 EXPORT_SYMBOL(md_unregister_thread);
8645 EXPORT_SYMBOL(md_wakeup_thread);
8646 EXPORT_SYMBOL(md_check_recovery);
8647 MODULE_LICENSE("GPL");
8648 MODULE_DESCRIPTION("MD RAID framework");
8649 MODULE_ALIAS("md");
8650 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8651