1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/slab.h> 62 #include <linux/percpu-refcount.h> 63 64 #include <trace/events/block.h> 65 #include "md.h" 66 #include "md-bitmap.h" 67 #include "md-cluster.h" 68 69 #ifndef MODULE 70 static void autostart_arrays(int part); 71 #endif 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 91 static int remove_and_add_spares(struct mddev *mddev, 92 struct md_rdev *this); 93 static void mddev_detach(struct mddev *mddev); 94 95 /* 96 * Default number of read corrections we'll attempt on an rdev 97 * before ejecting it from the array. We divide the read error 98 * count by 2 for every hour elapsed between read errors. 99 */ 100 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 101 /* 102 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 103 * is 1000 KB/sec, so the extra system load does not show up that much. 104 * Increase it if you want to have more _guaranteed_ speed. Note that 105 * the RAID driver will use the maximum available bandwidth if the IO 106 * subsystem is idle. There is also an 'absolute maximum' reconstruction 107 * speed limit - in case reconstruction slows down your system despite 108 * idle IO detection. 109 * 110 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 111 * or /sys/block/mdX/md/sync_speed_{min,max} 112 */ 113 114 static int sysctl_speed_limit_min = 1000; 115 static int sysctl_speed_limit_max = 200000; 116 static inline int speed_min(struct mddev *mddev) 117 { 118 return mddev->sync_speed_min ? 119 mddev->sync_speed_min : sysctl_speed_limit_min; 120 } 121 122 static inline int speed_max(struct mddev *mddev) 123 { 124 return mddev->sync_speed_max ? 125 mddev->sync_speed_max : sysctl_speed_limit_max; 126 } 127 128 static void rdev_uninit_serial(struct md_rdev *rdev) 129 { 130 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 131 return; 132 133 kvfree(rdev->serial); 134 rdev->serial = NULL; 135 } 136 137 static void rdevs_uninit_serial(struct mddev *mddev) 138 { 139 struct md_rdev *rdev; 140 141 rdev_for_each(rdev, mddev) 142 rdev_uninit_serial(rdev); 143 } 144 145 static int rdev_init_serial(struct md_rdev *rdev) 146 { 147 /* serial_nums equals with BARRIER_BUCKETS_NR */ 148 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 149 struct serial_in_rdev *serial = NULL; 150 151 if (test_bit(CollisionCheck, &rdev->flags)) 152 return 0; 153 154 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 155 GFP_KERNEL); 156 if (!serial) 157 return -ENOMEM; 158 159 for (i = 0; i < serial_nums; i++) { 160 struct serial_in_rdev *serial_tmp = &serial[i]; 161 162 spin_lock_init(&serial_tmp->serial_lock); 163 serial_tmp->serial_rb = RB_ROOT_CACHED; 164 init_waitqueue_head(&serial_tmp->serial_io_wait); 165 } 166 167 rdev->serial = serial; 168 set_bit(CollisionCheck, &rdev->flags); 169 170 return 0; 171 } 172 173 static int rdevs_init_serial(struct mddev *mddev) 174 { 175 struct md_rdev *rdev; 176 int ret = 0; 177 178 rdev_for_each(rdev, mddev) { 179 ret = rdev_init_serial(rdev); 180 if (ret) 181 break; 182 } 183 184 /* Free all resources if pool is not existed */ 185 if (ret && !mddev->serial_info_pool) 186 rdevs_uninit_serial(mddev); 187 188 return ret; 189 } 190 191 /* 192 * rdev needs to enable serial stuffs if it meets the conditions: 193 * 1. it is multi-queue device flaged with writemostly. 194 * 2. the write-behind mode is enabled. 195 */ 196 static int rdev_need_serial(struct md_rdev *rdev) 197 { 198 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 199 rdev->bdev->bd_queue->nr_hw_queues != 1 && 200 test_bit(WriteMostly, &rdev->flags)); 201 } 202 203 /* 204 * Init resource for rdev(s), then create serial_info_pool if: 205 * 1. rdev is the first device which return true from rdev_enable_serial. 206 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 207 */ 208 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 209 bool is_suspend) 210 { 211 int ret = 0; 212 213 if (rdev && !rdev_need_serial(rdev) && 214 !test_bit(CollisionCheck, &rdev->flags)) 215 return; 216 217 if (!is_suspend) 218 mddev_suspend(mddev); 219 220 if (!rdev) 221 ret = rdevs_init_serial(mddev); 222 else 223 ret = rdev_init_serial(rdev); 224 if (ret) 225 goto abort; 226 227 if (mddev->serial_info_pool == NULL) { 228 unsigned int noio_flag; 229 230 noio_flag = memalloc_noio_save(); 231 mddev->serial_info_pool = 232 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 233 sizeof(struct serial_info)); 234 memalloc_noio_restore(noio_flag); 235 if (!mddev->serial_info_pool) { 236 rdevs_uninit_serial(mddev); 237 pr_err("can't alloc memory pool for serialization\n"); 238 } 239 } 240 241 abort: 242 if (!is_suspend) 243 mddev_resume(mddev); 244 } 245 246 /* 247 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 248 * 1. rdev is the last device flaged with CollisionCheck. 249 * 2. when bitmap is destroyed while policy is not enabled. 250 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 251 */ 252 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 253 bool is_suspend) 254 { 255 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 256 return; 257 258 if (mddev->serial_info_pool) { 259 struct md_rdev *temp; 260 int num = 0; /* used to track if other rdevs need the pool */ 261 262 if (!is_suspend) 263 mddev_suspend(mddev); 264 rdev_for_each(temp, mddev) { 265 if (!rdev) { 266 if (!mddev->serialize_policy || 267 !rdev_need_serial(temp)) 268 rdev_uninit_serial(temp); 269 else 270 num++; 271 } else if (temp != rdev && 272 test_bit(CollisionCheck, &temp->flags)) 273 num++; 274 } 275 276 if (rdev) 277 rdev_uninit_serial(rdev); 278 279 if (num) 280 pr_info("The mempool could be used by other devices\n"); 281 else { 282 mempool_destroy(mddev->serial_info_pool); 283 mddev->serial_info_pool = NULL; 284 } 285 if (!is_suspend) 286 mddev_resume(mddev); 287 } 288 } 289 290 static struct ctl_table_header *raid_table_header; 291 292 static struct ctl_table raid_table[] = { 293 { 294 .procname = "speed_limit_min", 295 .data = &sysctl_speed_limit_min, 296 .maxlen = sizeof(int), 297 .mode = S_IRUGO|S_IWUSR, 298 .proc_handler = proc_dointvec, 299 }, 300 { 301 .procname = "speed_limit_max", 302 .data = &sysctl_speed_limit_max, 303 .maxlen = sizeof(int), 304 .mode = S_IRUGO|S_IWUSR, 305 .proc_handler = proc_dointvec, 306 }, 307 { } 308 }; 309 310 static struct ctl_table raid_dir_table[] = { 311 { 312 .procname = "raid", 313 .maxlen = 0, 314 .mode = S_IRUGO|S_IXUGO, 315 .child = raid_table, 316 }, 317 { } 318 }; 319 320 static struct ctl_table raid_root_table[] = { 321 { 322 .procname = "dev", 323 .maxlen = 0, 324 .mode = 0555, 325 .child = raid_dir_table, 326 }, 327 { } 328 }; 329 330 static const struct block_device_operations md_fops; 331 332 static int start_readonly; 333 334 /* 335 * The original mechanism for creating an md device is to create 336 * a device node in /dev and to open it. This causes races with device-close. 337 * The preferred method is to write to the "new_array" module parameter. 338 * This can avoid races. 339 * Setting create_on_open to false disables the original mechanism 340 * so all the races disappear. 341 */ 342 static bool create_on_open = true; 343 344 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 345 struct mddev *mddev) 346 { 347 if (!mddev || !bioset_initialized(&mddev->bio_set)) 348 return bio_alloc(gfp_mask, nr_iovecs); 349 350 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 351 } 352 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 353 354 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 355 { 356 if (!mddev || !bioset_initialized(&mddev->sync_set)) 357 return bio_alloc(GFP_NOIO, 1); 358 359 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 360 } 361 362 /* 363 * We have a system wide 'event count' that is incremented 364 * on any 'interesting' event, and readers of /proc/mdstat 365 * can use 'poll' or 'select' to find out when the event 366 * count increases. 367 * 368 * Events are: 369 * start array, stop array, error, add device, remove device, 370 * start build, activate spare 371 */ 372 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 373 static atomic_t md_event_count; 374 void md_new_event(struct mddev *mddev) 375 { 376 atomic_inc(&md_event_count); 377 wake_up(&md_event_waiters); 378 } 379 EXPORT_SYMBOL_GPL(md_new_event); 380 381 /* 382 * Enables to iterate over all existing md arrays 383 * all_mddevs_lock protects this list. 384 */ 385 static LIST_HEAD(all_mddevs); 386 static DEFINE_SPINLOCK(all_mddevs_lock); 387 388 /* 389 * iterates through all used mddevs in the system. 390 * We take care to grab the all_mddevs_lock whenever navigating 391 * the list, and to always hold a refcount when unlocked. 392 * Any code which breaks out of this loop while own 393 * a reference to the current mddev and must mddev_put it. 394 */ 395 #define for_each_mddev(_mddev,_tmp) \ 396 \ 397 for (({ spin_lock(&all_mddevs_lock); \ 398 _tmp = all_mddevs.next; \ 399 _mddev = NULL;}); \ 400 ({ if (_tmp != &all_mddevs) \ 401 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 402 spin_unlock(&all_mddevs_lock); \ 403 if (_mddev) mddev_put(_mddev); \ 404 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 405 _tmp != &all_mddevs;}); \ 406 ({ spin_lock(&all_mddevs_lock); \ 407 _tmp = _tmp->next;}) \ 408 ) 409 410 /* Rather than calling directly into the personality make_request function, 411 * IO requests come here first so that we can check if the device is 412 * being suspended pending a reconfiguration. 413 * We hold a refcount over the call to ->make_request. By the time that 414 * call has finished, the bio has been linked into some internal structure 415 * and so is visible to ->quiesce(), so we don't need the refcount any more. 416 */ 417 static bool is_suspended(struct mddev *mddev, struct bio *bio) 418 { 419 if (mddev->suspended) 420 return true; 421 if (bio_data_dir(bio) != WRITE) 422 return false; 423 if (mddev->suspend_lo >= mddev->suspend_hi) 424 return false; 425 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 426 return false; 427 if (bio_end_sector(bio) < mddev->suspend_lo) 428 return false; 429 return true; 430 } 431 432 void md_handle_request(struct mddev *mddev, struct bio *bio) 433 { 434 check_suspended: 435 rcu_read_lock(); 436 if (is_suspended(mddev, bio)) { 437 DEFINE_WAIT(__wait); 438 for (;;) { 439 prepare_to_wait(&mddev->sb_wait, &__wait, 440 TASK_UNINTERRUPTIBLE); 441 if (!is_suspended(mddev, bio)) 442 break; 443 rcu_read_unlock(); 444 schedule(); 445 rcu_read_lock(); 446 } 447 finish_wait(&mddev->sb_wait, &__wait); 448 } 449 atomic_inc(&mddev->active_io); 450 rcu_read_unlock(); 451 452 if (!mddev->pers->make_request(mddev, bio)) { 453 atomic_dec(&mddev->active_io); 454 wake_up(&mddev->sb_wait); 455 goto check_suspended; 456 } 457 458 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 459 wake_up(&mddev->sb_wait); 460 } 461 EXPORT_SYMBOL(md_handle_request); 462 463 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 464 { 465 const int rw = bio_data_dir(bio); 466 const int sgrp = op_stat_group(bio_op(bio)); 467 struct mddev *mddev = q->queuedata; 468 unsigned int sectors; 469 470 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 471 bio_io_error(bio); 472 return BLK_QC_T_NONE; 473 } 474 475 blk_queue_split(q, &bio); 476 477 if (mddev == NULL || mddev->pers == NULL) { 478 bio_io_error(bio); 479 return BLK_QC_T_NONE; 480 } 481 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 482 if (bio_sectors(bio) != 0) 483 bio->bi_status = BLK_STS_IOERR; 484 bio_endio(bio); 485 return BLK_QC_T_NONE; 486 } 487 488 /* 489 * save the sectors now since our bio can 490 * go away inside make_request 491 */ 492 sectors = bio_sectors(bio); 493 /* bio could be mergeable after passing to underlayer */ 494 bio->bi_opf &= ~REQ_NOMERGE; 495 496 md_handle_request(mddev, bio); 497 498 part_stat_lock(); 499 part_stat_inc(&mddev->gendisk->part0, ios[sgrp]); 500 part_stat_add(&mddev->gendisk->part0, sectors[sgrp], sectors); 501 part_stat_unlock(); 502 503 return BLK_QC_T_NONE; 504 } 505 506 /* mddev_suspend makes sure no new requests are submitted 507 * to the device, and that any requests that have been submitted 508 * are completely handled. 509 * Once mddev_detach() is called and completes, the module will be 510 * completely unused. 511 */ 512 void mddev_suspend(struct mddev *mddev) 513 { 514 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 515 lockdep_assert_held(&mddev->reconfig_mutex); 516 if (mddev->suspended++) 517 return; 518 synchronize_rcu(); 519 wake_up(&mddev->sb_wait); 520 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 521 smp_mb__after_atomic(); 522 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 523 mddev->pers->quiesce(mddev, 1); 524 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 525 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 526 527 del_timer_sync(&mddev->safemode_timer); 528 } 529 EXPORT_SYMBOL_GPL(mddev_suspend); 530 531 void mddev_resume(struct mddev *mddev) 532 { 533 lockdep_assert_held(&mddev->reconfig_mutex); 534 if (--mddev->suspended) 535 return; 536 wake_up(&mddev->sb_wait); 537 mddev->pers->quiesce(mddev, 0); 538 539 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 540 md_wakeup_thread(mddev->thread); 541 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 542 } 543 EXPORT_SYMBOL_GPL(mddev_resume); 544 545 int mddev_congested(struct mddev *mddev, int bits) 546 { 547 struct md_personality *pers = mddev->pers; 548 int ret = 0; 549 550 rcu_read_lock(); 551 if (mddev->suspended) 552 ret = 1; 553 else if (pers && pers->congested) 554 ret = pers->congested(mddev, bits); 555 rcu_read_unlock(); 556 return ret; 557 } 558 EXPORT_SYMBOL_GPL(mddev_congested); 559 static int md_congested(void *data, int bits) 560 { 561 struct mddev *mddev = data; 562 return mddev_congested(mddev, bits); 563 } 564 565 /* 566 * Generic flush handling for md 567 */ 568 569 static void md_end_flush(struct bio *bio) 570 { 571 struct md_rdev *rdev = bio->bi_private; 572 struct mddev *mddev = rdev->mddev; 573 574 rdev_dec_pending(rdev, mddev); 575 576 if (atomic_dec_and_test(&mddev->flush_pending)) { 577 /* The pre-request flush has finished */ 578 queue_work(md_wq, &mddev->flush_work); 579 } 580 bio_put(bio); 581 } 582 583 static void md_submit_flush_data(struct work_struct *ws); 584 585 static void submit_flushes(struct work_struct *ws) 586 { 587 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 588 struct md_rdev *rdev; 589 590 mddev->start_flush = ktime_get_boottime(); 591 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 592 atomic_set(&mddev->flush_pending, 1); 593 rcu_read_lock(); 594 rdev_for_each_rcu(rdev, mddev) 595 if (rdev->raid_disk >= 0 && 596 !test_bit(Faulty, &rdev->flags)) { 597 /* Take two references, one is dropped 598 * when request finishes, one after 599 * we reclaim rcu_read_lock 600 */ 601 struct bio *bi; 602 atomic_inc(&rdev->nr_pending); 603 atomic_inc(&rdev->nr_pending); 604 rcu_read_unlock(); 605 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 606 bi->bi_end_io = md_end_flush; 607 bi->bi_private = rdev; 608 bio_set_dev(bi, rdev->bdev); 609 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 610 atomic_inc(&mddev->flush_pending); 611 submit_bio(bi); 612 rcu_read_lock(); 613 rdev_dec_pending(rdev, mddev); 614 } 615 rcu_read_unlock(); 616 if (atomic_dec_and_test(&mddev->flush_pending)) 617 queue_work(md_wq, &mddev->flush_work); 618 } 619 620 static void md_submit_flush_data(struct work_struct *ws) 621 { 622 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 623 struct bio *bio = mddev->flush_bio; 624 625 /* 626 * must reset flush_bio before calling into md_handle_request to avoid a 627 * deadlock, because other bios passed md_handle_request suspend check 628 * could wait for this and below md_handle_request could wait for those 629 * bios because of suspend check 630 */ 631 mddev->last_flush = mddev->start_flush; 632 mddev->flush_bio = NULL; 633 wake_up(&mddev->sb_wait); 634 635 if (bio->bi_iter.bi_size == 0) { 636 /* an empty barrier - all done */ 637 bio_endio(bio); 638 } else { 639 bio->bi_opf &= ~REQ_PREFLUSH; 640 md_handle_request(mddev, bio); 641 } 642 } 643 644 /* 645 * Manages consolidation of flushes and submitting any flushes needed for 646 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 647 * being finished in another context. Returns false if the flushing is 648 * complete but still needs the I/O portion of the bio to be processed. 649 */ 650 bool md_flush_request(struct mddev *mddev, struct bio *bio) 651 { 652 ktime_t start = ktime_get_boottime(); 653 spin_lock_irq(&mddev->lock); 654 wait_event_lock_irq(mddev->sb_wait, 655 !mddev->flush_bio || 656 ktime_after(mddev->last_flush, start), 657 mddev->lock); 658 if (!ktime_after(mddev->last_flush, start)) { 659 WARN_ON(mddev->flush_bio); 660 mddev->flush_bio = bio; 661 bio = NULL; 662 } 663 spin_unlock_irq(&mddev->lock); 664 665 if (!bio) { 666 INIT_WORK(&mddev->flush_work, submit_flushes); 667 queue_work(md_wq, &mddev->flush_work); 668 } else { 669 /* flush was performed for some other bio while we waited. */ 670 if (bio->bi_iter.bi_size == 0) 671 /* an empty barrier - all done */ 672 bio_endio(bio); 673 else { 674 bio->bi_opf &= ~REQ_PREFLUSH; 675 return false; 676 } 677 } 678 return true; 679 } 680 EXPORT_SYMBOL(md_flush_request); 681 682 static inline struct mddev *mddev_get(struct mddev *mddev) 683 { 684 atomic_inc(&mddev->active); 685 return mddev; 686 } 687 688 static void mddev_delayed_delete(struct work_struct *ws); 689 690 static void mddev_put(struct mddev *mddev) 691 { 692 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 693 return; 694 if (!mddev->raid_disks && list_empty(&mddev->disks) && 695 mddev->ctime == 0 && !mddev->hold_active) { 696 /* Array is not configured at all, and not held active, 697 * so destroy it */ 698 list_del_init(&mddev->all_mddevs); 699 700 /* 701 * Call queue_work inside the spinlock so that 702 * flush_workqueue() after mddev_find will succeed in waiting 703 * for the work to be done. 704 */ 705 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 706 queue_work(md_misc_wq, &mddev->del_work); 707 } 708 spin_unlock(&all_mddevs_lock); 709 } 710 711 static void md_safemode_timeout(struct timer_list *t); 712 713 void mddev_init(struct mddev *mddev) 714 { 715 kobject_init(&mddev->kobj, &md_ktype); 716 mutex_init(&mddev->open_mutex); 717 mutex_init(&mddev->reconfig_mutex); 718 mutex_init(&mddev->bitmap_info.mutex); 719 INIT_LIST_HEAD(&mddev->disks); 720 INIT_LIST_HEAD(&mddev->all_mddevs); 721 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 722 atomic_set(&mddev->active, 1); 723 atomic_set(&mddev->openers, 0); 724 atomic_set(&mddev->active_io, 0); 725 spin_lock_init(&mddev->lock); 726 atomic_set(&mddev->flush_pending, 0); 727 init_waitqueue_head(&mddev->sb_wait); 728 init_waitqueue_head(&mddev->recovery_wait); 729 mddev->reshape_position = MaxSector; 730 mddev->reshape_backwards = 0; 731 mddev->last_sync_action = "none"; 732 mddev->resync_min = 0; 733 mddev->resync_max = MaxSector; 734 mddev->level = LEVEL_NONE; 735 } 736 EXPORT_SYMBOL_GPL(mddev_init); 737 738 static struct mddev *mddev_find(dev_t unit) 739 { 740 struct mddev *mddev, *new = NULL; 741 742 if (unit && MAJOR(unit) != MD_MAJOR) 743 unit &= ~((1<<MdpMinorShift)-1); 744 745 retry: 746 spin_lock(&all_mddevs_lock); 747 748 if (unit) { 749 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 750 if (mddev->unit == unit) { 751 mddev_get(mddev); 752 spin_unlock(&all_mddevs_lock); 753 kfree(new); 754 return mddev; 755 } 756 757 if (new) { 758 list_add(&new->all_mddevs, &all_mddevs); 759 spin_unlock(&all_mddevs_lock); 760 new->hold_active = UNTIL_IOCTL; 761 return new; 762 } 763 } else if (new) { 764 /* find an unused unit number */ 765 static int next_minor = 512; 766 int start = next_minor; 767 int is_free = 0; 768 int dev = 0; 769 while (!is_free) { 770 dev = MKDEV(MD_MAJOR, next_minor); 771 next_minor++; 772 if (next_minor > MINORMASK) 773 next_minor = 0; 774 if (next_minor == start) { 775 /* Oh dear, all in use. */ 776 spin_unlock(&all_mddevs_lock); 777 kfree(new); 778 return NULL; 779 } 780 781 is_free = 1; 782 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 783 if (mddev->unit == dev) { 784 is_free = 0; 785 break; 786 } 787 } 788 new->unit = dev; 789 new->md_minor = MINOR(dev); 790 new->hold_active = UNTIL_STOP; 791 list_add(&new->all_mddevs, &all_mddevs); 792 spin_unlock(&all_mddevs_lock); 793 return new; 794 } 795 spin_unlock(&all_mddevs_lock); 796 797 new = kzalloc(sizeof(*new), GFP_KERNEL); 798 if (!new) 799 return NULL; 800 801 new->unit = unit; 802 if (MAJOR(unit) == MD_MAJOR) 803 new->md_minor = MINOR(unit); 804 else 805 new->md_minor = MINOR(unit) >> MdpMinorShift; 806 807 mddev_init(new); 808 809 goto retry; 810 } 811 812 static struct attribute_group md_redundancy_group; 813 814 void mddev_unlock(struct mddev *mddev) 815 { 816 if (mddev->to_remove) { 817 /* These cannot be removed under reconfig_mutex as 818 * an access to the files will try to take reconfig_mutex 819 * while holding the file unremovable, which leads to 820 * a deadlock. 821 * So hold set sysfs_active while the remove in happeing, 822 * and anything else which might set ->to_remove or my 823 * otherwise change the sysfs namespace will fail with 824 * -EBUSY if sysfs_active is still set. 825 * We set sysfs_active under reconfig_mutex and elsewhere 826 * test it under the same mutex to ensure its correct value 827 * is seen. 828 */ 829 struct attribute_group *to_remove = mddev->to_remove; 830 mddev->to_remove = NULL; 831 mddev->sysfs_active = 1; 832 mutex_unlock(&mddev->reconfig_mutex); 833 834 if (mddev->kobj.sd) { 835 if (to_remove != &md_redundancy_group) 836 sysfs_remove_group(&mddev->kobj, to_remove); 837 if (mddev->pers == NULL || 838 mddev->pers->sync_request == NULL) { 839 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 840 if (mddev->sysfs_action) 841 sysfs_put(mddev->sysfs_action); 842 mddev->sysfs_action = NULL; 843 } 844 } 845 mddev->sysfs_active = 0; 846 } else 847 mutex_unlock(&mddev->reconfig_mutex); 848 849 /* As we've dropped the mutex we need a spinlock to 850 * make sure the thread doesn't disappear 851 */ 852 spin_lock(&pers_lock); 853 md_wakeup_thread(mddev->thread); 854 wake_up(&mddev->sb_wait); 855 spin_unlock(&pers_lock); 856 } 857 EXPORT_SYMBOL_GPL(mddev_unlock); 858 859 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 860 { 861 struct md_rdev *rdev; 862 863 rdev_for_each_rcu(rdev, mddev) 864 if (rdev->desc_nr == nr) 865 return rdev; 866 867 return NULL; 868 } 869 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 870 871 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 872 { 873 struct md_rdev *rdev; 874 875 rdev_for_each(rdev, mddev) 876 if (rdev->bdev->bd_dev == dev) 877 return rdev; 878 879 return NULL; 880 } 881 882 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 883 { 884 struct md_rdev *rdev; 885 886 rdev_for_each_rcu(rdev, mddev) 887 if (rdev->bdev->bd_dev == dev) 888 return rdev; 889 890 return NULL; 891 } 892 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 893 894 static struct md_personality *find_pers(int level, char *clevel) 895 { 896 struct md_personality *pers; 897 list_for_each_entry(pers, &pers_list, list) { 898 if (level != LEVEL_NONE && pers->level == level) 899 return pers; 900 if (strcmp(pers->name, clevel)==0) 901 return pers; 902 } 903 return NULL; 904 } 905 906 /* return the offset of the super block in 512byte sectors */ 907 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 908 { 909 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 910 return MD_NEW_SIZE_SECTORS(num_sectors); 911 } 912 913 static int alloc_disk_sb(struct md_rdev *rdev) 914 { 915 rdev->sb_page = alloc_page(GFP_KERNEL); 916 if (!rdev->sb_page) 917 return -ENOMEM; 918 return 0; 919 } 920 921 void md_rdev_clear(struct md_rdev *rdev) 922 { 923 if (rdev->sb_page) { 924 put_page(rdev->sb_page); 925 rdev->sb_loaded = 0; 926 rdev->sb_page = NULL; 927 rdev->sb_start = 0; 928 rdev->sectors = 0; 929 } 930 if (rdev->bb_page) { 931 put_page(rdev->bb_page); 932 rdev->bb_page = NULL; 933 } 934 badblocks_exit(&rdev->badblocks); 935 } 936 EXPORT_SYMBOL_GPL(md_rdev_clear); 937 938 static void super_written(struct bio *bio) 939 { 940 struct md_rdev *rdev = bio->bi_private; 941 struct mddev *mddev = rdev->mddev; 942 943 if (bio->bi_status) { 944 pr_err("md: super_written gets error=%d\n", bio->bi_status); 945 md_error(mddev, rdev); 946 if (!test_bit(Faulty, &rdev->flags) 947 && (bio->bi_opf & MD_FAILFAST)) { 948 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 949 set_bit(LastDev, &rdev->flags); 950 } 951 } else 952 clear_bit(LastDev, &rdev->flags); 953 954 if (atomic_dec_and_test(&mddev->pending_writes)) 955 wake_up(&mddev->sb_wait); 956 rdev_dec_pending(rdev, mddev); 957 bio_put(bio); 958 } 959 960 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 961 sector_t sector, int size, struct page *page) 962 { 963 /* write first size bytes of page to sector of rdev 964 * Increment mddev->pending_writes before returning 965 * and decrement it on completion, waking up sb_wait 966 * if zero is reached. 967 * If an error occurred, call md_error 968 */ 969 struct bio *bio; 970 int ff = 0; 971 972 if (!page) 973 return; 974 975 if (test_bit(Faulty, &rdev->flags)) 976 return; 977 978 bio = md_bio_alloc_sync(mddev); 979 980 atomic_inc(&rdev->nr_pending); 981 982 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 983 bio->bi_iter.bi_sector = sector; 984 bio_add_page(bio, page, size, 0); 985 bio->bi_private = rdev; 986 bio->bi_end_io = super_written; 987 988 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 989 test_bit(FailFast, &rdev->flags) && 990 !test_bit(LastDev, &rdev->flags)) 991 ff = MD_FAILFAST; 992 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 993 994 atomic_inc(&mddev->pending_writes); 995 submit_bio(bio); 996 } 997 998 int md_super_wait(struct mddev *mddev) 999 { 1000 /* wait for all superblock writes that were scheduled to complete */ 1001 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1002 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1003 return -EAGAIN; 1004 return 0; 1005 } 1006 1007 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1008 struct page *page, int op, int op_flags, bool metadata_op) 1009 { 1010 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 1011 int ret; 1012 1013 if (metadata_op && rdev->meta_bdev) 1014 bio_set_dev(bio, rdev->meta_bdev); 1015 else 1016 bio_set_dev(bio, rdev->bdev); 1017 bio_set_op_attrs(bio, op, op_flags); 1018 if (metadata_op) 1019 bio->bi_iter.bi_sector = sector + rdev->sb_start; 1020 else if (rdev->mddev->reshape_position != MaxSector && 1021 (rdev->mddev->reshape_backwards == 1022 (sector >= rdev->mddev->reshape_position))) 1023 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 1024 else 1025 bio->bi_iter.bi_sector = sector + rdev->data_offset; 1026 bio_add_page(bio, page, size, 0); 1027 1028 submit_bio_wait(bio); 1029 1030 ret = !bio->bi_status; 1031 bio_put(bio); 1032 return ret; 1033 } 1034 EXPORT_SYMBOL_GPL(sync_page_io); 1035 1036 static int read_disk_sb(struct md_rdev *rdev, int size) 1037 { 1038 char b[BDEVNAME_SIZE]; 1039 1040 if (rdev->sb_loaded) 1041 return 0; 1042 1043 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1044 goto fail; 1045 rdev->sb_loaded = 1; 1046 return 0; 1047 1048 fail: 1049 pr_err("md: disabled device %s, could not read superblock.\n", 1050 bdevname(rdev->bdev,b)); 1051 return -EINVAL; 1052 } 1053 1054 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1055 { 1056 return sb1->set_uuid0 == sb2->set_uuid0 && 1057 sb1->set_uuid1 == sb2->set_uuid1 && 1058 sb1->set_uuid2 == sb2->set_uuid2 && 1059 sb1->set_uuid3 == sb2->set_uuid3; 1060 } 1061 1062 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1063 { 1064 int ret; 1065 mdp_super_t *tmp1, *tmp2; 1066 1067 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1068 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1069 1070 if (!tmp1 || !tmp2) { 1071 ret = 0; 1072 goto abort; 1073 } 1074 1075 *tmp1 = *sb1; 1076 *tmp2 = *sb2; 1077 1078 /* 1079 * nr_disks is not constant 1080 */ 1081 tmp1->nr_disks = 0; 1082 tmp2->nr_disks = 0; 1083 1084 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1085 abort: 1086 kfree(tmp1); 1087 kfree(tmp2); 1088 return ret; 1089 } 1090 1091 static u32 md_csum_fold(u32 csum) 1092 { 1093 csum = (csum & 0xffff) + (csum >> 16); 1094 return (csum & 0xffff) + (csum >> 16); 1095 } 1096 1097 static unsigned int calc_sb_csum(mdp_super_t *sb) 1098 { 1099 u64 newcsum = 0; 1100 u32 *sb32 = (u32*)sb; 1101 int i; 1102 unsigned int disk_csum, csum; 1103 1104 disk_csum = sb->sb_csum; 1105 sb->sb_csum = 0; 1106 1107 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1108 newcsum += sb32[i]; 1109 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1110 1111 #ifdef CONFIG_ALPHA 1112 /* This used to use csum_partial, which was wrong for several 1113 * reasons including that different results are returned on 1114 * different architectures. It isn't critical that we get exactly 1115 * the same return value as before (we always csum_fold before 1116 * testing, and that removes any differences). However as we 1117 * know that csum_partial always returned a 16bit value on 1118 * alphas, do a fold to maximise conformity to previous behaviour. 1119 */ 1120 sb->sb_csum = md_csum_fold(disk_csum); 1121 #else 1122 sb->sb_csum = disk_csum; 1123 #endif 1124 return csum; 1125 } 1126 1127 /* 1128 * Handle superblock details. 1129 * We want to be able to handle multiple superblock formats 1130 * so we have a common interface to them all, and an array of 1131 * different handlers. 1132 * We rely on user-space to write the initial superblock, and support 1133 * reading and updating of superblocks. 1134 * Interface methods are: 1135 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1136 * loads and validates a superblock on dev. 1137 * if refdev != NULL, compare superblocks on both devices 1138 * Return: 1139 * 0 - dev has a superblock that is compatible with refdev 1140 * 1 - dev has a superblock that is compatible and newer than refdev 1141 * so dev should be used as the refdev in future 1142 * -EINVAL superblock incompatible or invalid 1143 * -othererror e.g. -EIO 1144 * 1145 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1146 * Verify that dev is acceptable into mddev. 1147 * The first time, mddev->raid_disks will be 0, and data from 1148 * dev should be merged in. Subsequent calls check that dev 1149 * is new enough. Return 0 or -EINVAL 1150 * 1151 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1152 * Update the superblock for rdev with data in mddev 1153 * This does not write to disc. 1154 * 1155 */ 1156 1157 struct super_type { 1158 char *name; 1159 struct module *owner; 1160 int (*load_super)(struct md_rdev *rdev, 1161 struct md_rdev *refdev, 1162 int minor_version); 1163 int (*validate_super)(struct mddev *mddev, 1164 struct md_rdev *rdev); 1165 void (*sync_super)(struct mddev *mddev, 1166 struct md_rdev *rdev); 1167 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1168 sector_t num_sectors); 1169 int (*allow_new_offset)(struct md_rdev *rdev, 1170 unsigned long long new_offset); 1171 }; 1172 1173 /* 1174 * Check that the given mddev has no bitmap. 1175 * 1176 * This function is called from the run method of all personalities that do not 1177 * support bitmaps. It prints an error message and returns non-zero if mddev 1178 * has a bitmap. Otherwise, it returns 0. 1179 * 1180 */ 1181 int md_check_no_bitmap(struct mddev *mddev) 1182 { 1183 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1184 return 0; 1185 pr_warn("%s: bitmaps are not supported for %s\n", 1186 mdname(mddev), mddev->pers->name); 1187 return 1; 1188 } 1189 EXPORT_SYMBOL(md_check_no_bitmap); 1190 1191 /* 1192 * load_super for 0.90.0 1193 */ 1194 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1195 { 1196 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1197 mdp_super_t *sb; 1198 int ret; 1199 bool spare_disk = true; 1200 1201 /* 1202 * Calculate the position of the superblock (512byte sectors), 1203 * it's at the end of the disk. 1204 * 1205 * It also happens to be a multiple of 4Kb. 1206 */ 1207 rdev->sb_start = calc_dev_sboffset(rdev); 1208 1209 ret = read_disk_sb(rdev, MD_SB_BYTES); 1210 if (ret) 1211 return ret; 1212 1213 ret = -EINVAL; 1214 1215 bdevname(rdev->bdev, b); 1216 sb = page_address(rdev->sb_page); 1217 1218 if (sb->md_magic != MD_SB_MAGIC) { 1219 pr_warn("md: invalid raid superblock magic on %s\n", b); 1220 goto abort; 1221 } 1222 1223 if (sb->major_version != 0 || 1224 sb->minor_version < 90 || 1225 sb->minor_version > 91) { 1226 pr_warn("Bad version number %d.%d on %s\n", 1227 sb->major_version, sb->minor_version, b); 1228 goto abort; 1229 } 1230 1231 if (sb->raid_disks <= 0) 1232 goto abort; 1233 1234 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1235 pr_warn("md: invalid superblock checksum on %s\n", b); 1236 goto abort; 1237 } 1238 1239 rdev->preferred_minor = sb->md_minor; 1240 rdev->data_offset = 0; 1241 rdev->new_data_offset = 0; 1242 rdev->sb_size = MD_SB_BYTES; 1243 rdev->badblocks.shift = -1; 1244 1245 if (sb->level == LEVEL_MULTIPATH) 1246 rdev->desc_nr = -1; 1247 else 1248 rdev->desc_nr = sb->this_disk.number; 1249 1250 /* not spare disk, or LEVEL_MULTIPATH */ 1251 if (sb->level == LEVEL_MULTIPATH || 1252 (rdev->desc_nr >= 0 && 1253 rdev->desc_nr < MD_SB_DISKS && 1254 sb->disks[rdev->desc_nr].state & 1255 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1256 spare_disk = false; 1257 1258 if (!refdev) { 1259 if (!spare_disk) 1260 ret = 1; 1261 else 1262 ret = 0; 1263 } else { 1264 __u64 ev1, ev2; 1265 mdp_super_t *refsb = page_address(refdev->sb_page); 1266 if (!md_uuid_equal(refsb, sb)) { 1267 pr_warn("md: %s has different UUID to %s\n", 1268 b, bdevname(refdev->bdev,b2)); 1269 goto abort; 1270 } 1271 if (!md_sb_equal(refsb, sb)) { 1272 pr_warn("md: %s has same UUID but different superblock to %s\n", 1273 b, bdevname(refdev->bdev, b2)); 1274 goto abort; 1275 } 1276 ev1 = md_event(sb); 1277 ev2 = md_event(refsb); 1278 1279 if (!spare_disk && ev1 > ev2) 1280 ret = 1; 1281 else 1282 ret = 0; 1283 } 1284 rdev->sectors = rdev->sb_start; 1285 /* Limit to 4TB as metadata cannot record more than that. 1286 * (not needed for Linear and RAID0 as metadata doesn't 1287 * record this size) 1288 */ 1289 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1290 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1291 1292 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1293 /* "this cannot possibly happen" ... */ 1294 ret = -EINVAL; 1295 1296 abort: 1297 return ret; 1298 } 1299 1300 /* 1301 * validate_super for 0.90.0 1302 */ 1303 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1304 { 1305 mdp_disk_t *desc; 1306 mdp_super_t *sb = page_address(rdev->sb_page); 1307 __u64 ev1 = md_event(sb); 1308 1309 rdev->raid_disk = -1; 1310 clear_bit(Faulty, &rdev->flags); 1311 clear_bit(In_sync, &rdev->flags); 1312 clear_bit(Bitmap_sync, &rdev->flags); 1313 clear_bit(WriteMostly, &rdev->flags); 1314 1315 if (mddev->raid_disks == 0) { 1316 mddev->major_version = 0; 1317 mddev->minor_version = sb->minor_version; 1318 mddev->patch_version = sb->patch_version; 1319 mddev->external = 0; 1320 mddev->chunk_sectors = sb->chunk_size >> 9; 1321 mddev->ctime = sb->ctime; 1322 mddev->utime = sb->utime; 1323 mddev->level = sb->level; 1324 mddev->clevel[0] = 0; 1325 mddev->layout = sb->layout; 1326 mddev->raid_disks = sb->raid_disks; 1327 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1328 mddev->events = ev1; 1329 mddev->bitmap_info.offset = 0; 1330 mddev->bitmap_info.space = 0; 1331 /* bitmap can use 60 K after the 4K superblocks */ 1332 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1333 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1334 mddev->reshape_backwards = 0; 1335 1336 if (mddev->minor_version >= 91) { 1337 mddev->reshape_position = sb->reshape_position; 1338 mddev->delta_disks = sb->delta_disks; 1339 mddev->new_level = sb->new_level; 1340 mddev->new_layout = sb->new_layout; 1341 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1342 if (mddev->delta_disks < 0) 1343 mddev->reshape_backwards = 1; 1344 } else { 1345 mddev->reshape_position = MaxSector; 1346 mddev->delta_disks = 0; 1347 mddev->new_level = mddev->level; 1348 mddev->new_layout = mddev->layout; 1349 mddev->new_chunk_sectors = mddev->chunk_sectors; 1350 } 1351 if (mddev->level == 0) 1352 mddev->layout = -1; 1353 1354 if (sb->state & (1<<MD_SB_CLEAN)) 1355 mddev->recovery_cp = MaxSector; 1356 else { 1357 if (sb->events_hi == sb->cp_events_hi && 1358 sb->events_lo == sb->cp_events_lo) { 1359 mddev->recovery_cp = sb->recovery_cp; 1360 } else 1361 mddev->recovery_cp = 0; 1362 } 1363 1364 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1365 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1366 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1367 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1368 1369 mddev->max_disks = MD_SB_DISKS; 1370 1371 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1372 mddev->bitmap_info.file == NULL) { 1373 mddev->bitmap_info.offset = 1374 mddev->bitmap_info.default_offset; 1375 mddev->bitmap_info.space = 1376 mddev->bitmap_info.default_space; 1377 } 1378 1379 } else if (mddev->pers == NULL) { 1380 /* Insist on good event counter while assembling, except 1381 * for spares (which don't need an event count) */ 1382 ++ev1; 1383 if (sb->disks[rdev->desc_nr].state & ( 1384 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1385 if (ev1 < mddev->events) 1386 return -EINVAL; 1387 } else if (mddev->bitmap) { 1388 /* if adding to array with a bitmap, then we can accept an 1389 * older device ... but not too old. 1390 */ 1391 if (ev1 < mddev->bitmap->events_cleared) 1392 return 0; 1393 if (ev1 < mddev->events) 1394 set_bit(Bitmap_sync, &rdev->flags); 1395 } else { 1396 if (ev1 < mddev->events) 1397 /* just a hot-add of a new device, leave raid_disk at -1 */ 1398 return 0; 1399 } 1400 1401 if (mddev->level != LEVEL_MULTIPATH) { 1402 desc = sb->disks + rdev->desc_nr; 1403 1404 if (desc->state & (1<<MD_DISK_FAULTY)) 1405 set_bit(Faulty, &rdev->flags); 1406 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1407 desc->raid_disk < mddev->raid_disks */) { 1408 set_bit(In_sync, &rdev->flags); 1409 rdev->raid_disk = desc->raid_disk; 1410 rdev->saved_raid_disk = desc->raid_disk; 1411 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1412 /* active but not in sync implies recovery up to 1413 * reshape position. We don't know exactly where 1414 * that is, so set to zero for now */ 1415 if (mddev->minor_version >= 91) { 1416 rdev->recovery_offset = 0; 1417 rdev->raid_disk = desc->raid_disk; 1418 } 1419 } 1420 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1421 set_bit(WriteMostly, &rdev->flags); 1422 if (desc->state & (1<<MD_DISK_FAILFAST)) 1423 set_bit(FailFast, &rdev->flags); 1424 } else /* MULTIPATH are always insync */ 1425 set_bit(In_sync, &rdev->flags); 1426 return 0; 1427 } 1428 1429 /* 1430 * sync_super for 0.90.0 1431 */ 1432 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1433 { 1434 mdp_super_t *sb; 1435 struct md_rdev *rdev2; 1436 int next_spare = mddev->raid_disks; 1437 1438 /* make rdev->sb match mddev data.. 1439 * 1440 * 1/ zero out disks 1441 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1442 * 3/ any empty disks < next_spare become removed 1443 * 1444 * disks[0] gets initialised to REMOVED because 1445 * we cannot be sure from other fields if it has 1446 * been initialised or not. 1447 */ 1448 int i; 1449 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1450 1451 rdev->sb_size = MD_SB_BYTES; 1452 1453 sb = page_address(rdev->sb_page); 1454 1455 memset(sb, 0, sizeof(*sb)); 1456 1457 sb->md_magic = MD_SB_MAGIC; 1458 sb->major_version = mddev->major_version; 1459 sb->patch_version = mddev->patch_version; 1460 sb->gvalid_words = 0; /* ignored */ 1461 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1462 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1463 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1464 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1465 1466 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1467 sb->level = mddev->level; 1468 sb->size = mddev->dev_sectors / 2; 1469 sb->raid_disks = mddev->raid_disks; 1470 sb->md_minor = mddev->md_minor; 1471 sb->not_persistent = 0; 1472 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1473 sb->state = 0; 1474 sb->events_hi = (mddev->events>>32); 1475 sb->events_lo = (u32)mddev->events; 1476 1477 if (mddev->reshape_position == MaxSector) 1478 sb->minor_version = 90; 1479 else { 1480 sb->minor_version = 91; 1481 sb->reshape_position = mddev->reshape_position; 1482 sb->new_level = mddev->new_level; 1483 sb->delta_disks = mddev->delta_disks; 1484 sb->new_layout = mddev->new_layout; 1485 sb->new_chunk = mddev->new_chunk_sectors << 9; 1486 } 1487 mddev->minor_version = sb->minor_version; 1488 if (mddev->in_sync) 1489 { 1490 sb->recovery_cp = mddev->recovery_cp; 1491 sb->cp_events_hi = (mddev->events>>32); 1492 sb->cp_events_lo = (u32)mddev->events; 1493 if (mddev->recovery_cp == MaxSector) 1494 sb->state = (1<< MD_SB_CLEAN); 1495 } else 1496 sb->recovery_cp = 0; 1497 1498 sb->layout = mddev->layout; 1499 sb->chunk_size = mddev->chunk_sectors << 9; 1500 1501 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1502 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1503 1504 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1505 rdev_for_each(rdev2, mddev) { 1506 mdp_disk_t *d; 1507 int desc_nr; 1508 int is_active = test_bit(In_sync, &rdev2->flags); 1509 1510 if (rdev2->raid_disk >= 0 && 1511 sb->minor_version >= 91) 1512 /* we have nowhere to store the recovery_offset, 1513 * but if it is not below the reshape_position, 1514 * we can piggy-back on that. 1515 */ 1516 is_active = 1; 1517 if (rdev2->raid_disk < 0 || 1518 test_bit(Faulty, &rdev2->flags)) 1519 is_active = 0; 1520 if (is_active) 1521 desc_nr = rdev2->raid_disk; 1522 else 1523 desc_nr = next_spare++; 1524 rdev2->desc_nr = desc_nr; 1525 d = &sb->disks[rdev2->desc_nr]; 1526 nr_disks++; 1527 d->number = rdev2->desc_nr; 1528 d->major = MAJOR(rdev2->bdev->bd_dev); 1529 d->minor = MINOR(rdev2->bdev->bd_dev); 1530 if (is_active) 1531 d->raid_disk = rdev2->raid_disk; 1532 else 1533 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1534 if (test_bit(Faulty, &rdev2->flags)) 1535 d->state = (1<<MD_DISK_FAULTY); 1536 else if (is_active) { 1537 d->state = (1<<MD_DISK_ACTIVE); 1538 if (test_bit(In_sync, &rdev2->flags)) 1539 d->state |= (1<<MD_DISK_SYNC); 1540 active++; 1541 working++; 1542 } else { 1543 d->state = 0; 1544 spare++; 1545 working++; 1546 } 1547 if (test_bit(WriteMostly, &rdev2->flags)) 1548 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1549 if (test_bit(FailFast, &rdev2->flags)) 1550 d->state |= (1<<MD_DISK_FAILFAST); 1551 } 1552 /* now set the "removed" and "faulty" bits on any missing devices */ 1553 for (i=0 ; i < mddev->raid_disks ; i++) { 1554 mdp_disk_t *d = &sb->disks[i]; 1555 if (d->state == 0 && d->number == 0) { 1556 d->number = i; 1557 d->raid_disk = i; 1558 d->state = (1<<MD_DISK_REMOVED); 1559 d->state |= (1<<MD_DISK_FAULTY); 1560 failed++; 1561 } 1562 } 1563 sb->nr_disks = nr_disks; 1564 sb->active_disks = active; 1565 sb->working_disks = working; 1566 sb->failed_disks = failed; 1567 sb->spare_disks = spare; 1568 1569 sb->this_disk = sb->disks[rdev->desc_nr]; 1570 sb->sb_csum = calc_sb_csum(sb); 1571 } 1572 1573 /* 1574 * rdev_size_change for 0.90.0 1575 */ 1576 static unsigned long long 1577 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1578 { 1579 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1580 return 0; /* component must fit device */ 1581 if (rdev->mddev->bitmap_info.offset) 1582 return 0; /* can't move bitmap */ 1583 rdev->sb_start = calc_dev_sboffset(rdev); 1584 if (!num_sectors || num_sectors > rdev->sb_start) 1585 num_sectors = rdev->sb_start; 1586 /* Limit to 4TB as metadata cannot record more than that. 1587 * 4TB == 2^32 KB, or 2*2^32 sectors. 1588 */ 1589 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1590 num_sectors = (sector_t)(2ULL << 32) - 2; 1591 do { 1592 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1593 rdev->sb_page); 1594 } while (md_super_wait(rdev->mddev) < 0); 1595 return num_sectors; 1596 } 1597 1598 static int 1599 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1600 { 1601 /* non-zero offset changes not possible with v0.90 */ 1602 return new_offset == 0; 1603 } 1604 1605 /* 1606 * version 1 superblock 1607 */ 1608 1609 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1610 { 1611 __le32 disk_csum; 1612 u32 csum; 1613 unsigned long long newcsum; 1614 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1615 __le32 *isuper = (__le32*)sb; 1616 1617 disk_csum = sb->sb_csum; 1618 sb->sb_csum = 0; 1619 newcsum = 0; 1620 for (; size >= 4; size -= 4) 1621 newcsum += le32_to_cpu(*isuper++); 1622 1623 if (size == 2) 1624 newcsum += le16_to_cpu(*(__le16*) isuper); 1625 1626 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1627 sb->sb_csum = disk_csum; 1628 return cpu_to_le32(csum); 1629 } 1630 1631 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1632 { 1633 struct mdp_superblock_1 *sb; 1634 int ret; 1635 sector_t sb_start; 1636 sector_t sectors; 1637 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1638 int bmask; 1639 bool spare_disk = true; 1640 1641 /* 1642 * Calculate the position of the superblock in 512byte sectors. 1643 * It is always aligned to a 4K boundary and 1644 * depeding on minor_version, it can be: 1645 * 0: At least 8K, but less than 12K, from end of device 1646 * 1: At start of device 1647 * 2: 4K from start of device. 1648 */ 1649 switch(minor_version) { 1650 case 0: 1651 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1652 sb_start -= 8*2; 1653 sb_start &= ~(sector_t)(4*2-1); 1654 break; 1655 case 1: 1656 sb_start = 0; 1657 break; 1658 case 2: 1659 sb_start = 8; 1660 break; 1661 default: 1662 return -EINVAL; 1663 } 1664 rdev->sb_start = sb_start; 1665 1666 /* superblock is rarely larger than 1K, but it can be larger, 1667 * and it is safe to read 4k, so we do that 1668 */ 1669 ret = read_disk_sb(rdev, 4096); 1670 if (ret) return ret; 1671 1672 sb = page_address(rdev->sb_page); 1673 1674 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1675 sb->major_version != cpu_to_le32(1) || 1676 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1677 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1678 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1679 return -EINVAL; 1680 1681 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1682 pr_warn("md: invalid superblock checksum on %s\n", 1683 bdevname(rdev->bdev,b)); 1684 return -EINVAL; 1685 } 1686 if (le64_to_cpu(sb->data_size) < 10) { 1687 pr_warn("md: data_size too small on %s\n", 1688 bdevname(rdev->bdev,b)); 1689 return -EINVAL; 1690 } 1691 if (sb->pad0 || 1692 sb->pad3[0] || 1693 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1694 /* Some padding is non-zero, might be a new feature */ 1695 return -EINVAL; 1696 1697 rdev->preferred_minor = 0xffff; 1698 rdev->data_offset = le64_to_cpu(sb->data_offset); 1699 rdev->new_data_offset = rdev->data_offset; 1700 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1701 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1702 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1703 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1704 1705 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1706 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1707 if (rdev->sb_size & bmask) 1708 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1709 1710 if (minor_version 1711 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1712 return -EINVAL; 1713 if (minor_version 1714 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1715 return -EINVAL; 1716 1717 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1718 rdev->desc_nr = -1; 1719 else 1720 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1721 1722 if (!rdev->bb_page) { 1723 rdev->bb_page = alloc_page(GFP_KERNEL); 1724 if (!rdev->bb_page) 1725 return -ENOMEM; 1726 } 1727 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1728 rdev->badblocks.count == 0) { 1729 /* need to load the bad block list. 1730 * Currently we limit it to one page. 1731 */ 1732 s32 offset; 1733 sector_t bb_sector; 1734 __le64 *bbp; 1735 int i; 1736 int sectors = le16_to_cpu(sb->bblog_size); 1737 if (sectors > (PAGE_SIZE / 512)) 1738 return -EINVAL; 1739 offset = le32_to_cpu(sb->bblog_offset); 1740 if (offset == 0) 1741 return -EINVAL; 1742 bb_sector = (long long)offset; 1743 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1744 rdev->bb_page, REQ_OP_READ, 0, true)) 1745 return -EIO; 1746 bbp = (__le64 *)page_address(rdev->bb_page); 1747 rdev->badblocks.shift = sb->bblog_shift; 1748 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1749 u64 bb = le64_to_cpu(*bbp); 1750 int count = bb & (0x3ff); 1751 u64 sector = bb >> 10; 1752 sector <<= sb->bblog_shift; 1753 count <<= sb->bblog_shift; 1754 if (bb + 1 == 0) 1755 break; 1756 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1757 return -EINVAL; 1758 } 1759 } else if (sb->bblog_offset != 0) 1760 rdev->badblocks.shift = 0; 1761 1762 if ((le32_to_cpu(sb->feature_map) & 1763 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1764 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1765 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1766 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1767 } 1768 1769 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1770 sb->level != 0) 1771 return -EINVAL; 1772 1773 /* not spare disk, or LEVEL_MULTIPATH */ 1774 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1775 (rdev->desc_nr >= 0 && 1776 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1777 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1778 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1779 spare_disk = false; 1780 1781 if (!refdev) { 1782 if (!spare_disk) 1783 ret = 1; 1784 else 1785 ret = 0; 1786 } else { 1787 __u64 ev1, ev2; 1788 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1789 1790 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1791 sb->level != refsb->level || 1792 sb->layout != refsb->layout || 1793 sb->chunksize != refsb->chunksize) { 1794 pr_warn("md: %s has strangely different superblock to %s\n", 1795 bdevname(rdev->bdev,b), 1796 bdevname(refdev->bdev,b2)); 1797 return -EINVAL; 1798 } 1799 ev1 = le64_to_cpu(sb->events); 1800 ev2 = le64_to_cpu(refsb->events); 1801 1802 if (!spare_disk && ev1 > ev2) 1803 ret = 1; 1804 else 1805 ret = 0; 1806 } 1807 if (minor_version) { 1808 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1809 sectors -= rdev->data_offset; 1810 } else 1811 sectors = rdev->sb_start; 1812 if (sectors < le64_to_cpu(sb->data_size)) 1813 return -EINVAL; 1814 rdev->sectors = le64_to_cpu(sb->data_size); 1815 return ret; 1816 } 1817 1818 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1819 { 1820 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1821 __u64 ev1 = le64_to_cpu(sb->events); 1822 1823 rdev->raid_disk = -1; 1824 clear_bit(Faulty, &rdev->flags); 1825 clear_bit(In_sync, &rdev->flags); 1826 clear_bit(Bitmap_sync, &rdev->flags); 1827 clear_bit(WriteMostly, &rdev->flags); 1828 1829 if (mddev->raid_disks == 0) { 1830 mddev->major_version = 1; 1831 mddev->patch_version = 0; 1832 mddev->external = 0; 1833 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1834 mddev->ctime = le64_to_cpu(sb->ctime); 1835 mddev->utime = le64_to_cpu(sb->utime); 1836 mddev->level = le32_to_cpu(sb->level); 1837 mddev->clevel[0] = 0; 1838 mddev->layout = le32_to_cpu(sb->layout); 1839 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1840 mddev->dev_sectors = le64_to_cpu(sb->size); 1841 mddev->events = ev1; 1842 mddev->bitmap_info.offset = 0; 1843 mddev->bitmap_info.space = 0; 1844 /* Default location for bitmap is 1K after superblock 1845 * using 3K - total of 4K 1846 */ 1847 mddev->bitmap_info.default_offset = 1024 >> 9; 1848 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1849 mddev->reshape_backwards = 0; 1850 1851 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1852 memcpy(mddev->uuid, sb->set_uuid, 16); 1853 1854 mddev->max_disks = (4096-256)/2; 1855 1856 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1857 mddev->bitmap_info.file == NULL) { 1858 mddev->bitmap_info.offset = 1859 (__s32)le32_to_cpu(sb->bitmap_offset); 1860 /* Metadata doesn't record how much space is available. 1861 * For 1.0, we assume we can use up to the superblock 1862 * if before, else to 4K beyond superblock. 1863 * For others, assume no change is possible. 1864 */ 1865 if (mddev->minor_version > 0) 1866 mddev->bitmap_info.space = 0; 1867 else if (mddev->bitmap_info.offset > 0) 1868 mddev->bitmap_info.space = 1869 8 - mddev->bitmap_info.offset; 1870 else 1871 mddev->bitmap_info.space = 1872 -mddev->bitmap_info.offset; 1873 } 1874 1875 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1876 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1877 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1878 mddev->new_level = le32_to_cpu(sb->new_level); 1879 mddev->new_layout = le32_to_cpu(sb->new_layout); 1880 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1881 if (mddev->delta_disks < 0 || 1882 (mddev->delta_disks == 0 && 1883 (le32_to_cpu(sb->feature_map) 1884 & MD_FEATURE_RESHAPE_BACKWARDS))) 1885 mddev->reshape_backwards = 1; 1886 } else { 1887 mddev->reshape_position = MaxSector; 1888 mddev->delta_disks = 0; 1889 mddev->new_level = mddev->level; 1890 mddev->new_layout = mddev->layout; 1891 mddev->new_chunk_sectors = mddev->chunk_sectors; 1892 } 1893 1894 if (mddev->level == 0 && 1895 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1896 mddev->layout = -1; 1897 1898 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1899 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1900 1901 if (le32_to_cpu(sb->feature_map) & 1902 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1903 if (le32_to_cpu(sb->feature_map) & 1904 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1905 return -EINVAL; 1906 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1907 (le32_to_cpu(sb->feature_map) & 1908 MD_FEATURE_MULTIPLE_PPLS)) 1909 return -EINVAL; 1910 set_bit(MD_HAS_PPL, &mddev->flags); 1911 } 1912 } else if (mddev->pers == NULL) { 1913 /* Insist of good event counter while assembling, except for 1914 * spares (which don't need an event count) */ 1915 ++ev1; 1916 if (rdev->desc_nr >= 0 && 1917 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1918 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1919 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1920 if (ev1 < mddev->events) 1921 return -EINVAL; 1922 } else if (mddev->bitmap) { 1923 /* If adding to array with a bitmap, then we can accept an 1924 * older device, but not too old. 1925 */ 1926 if (ev1 < mddev->bitmap->events_cleared) 1927 return 0; 1928 if (ev1 < mddev->events) 1929 set_bit(Bitmap_sync, &rdev->flags); 1930 } else { 1931 if (ev1 < mddev->events) 1932 /* just a hot-add of a new device, leave raid_disk at -1 */ 1933 return 0; 1934 } 1935 if (mddev->level != LEVEL_MULTIPATH) { 1936 int role; 1937 if (rdev->desc_nr < 0 || 1938 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1939 role = MD_DISK_ROLE_SPARE; 1940 rdev->desc_nr = -1; 1941 } else 1942 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1943 switch(role) { 1944 case MD_DISK_ROLE_SPARE: /* spare */ 1945 break; 1946 case MD_DISK_ROLE_FAULTY: /* faulty */ 1947 set_bit(Faulty, &rdev->flags); 1948 break; 1949 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1950 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1951 /* journal device without journal feature */ 1952 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1953 return -EINVAL; 1954 } 1955 set_bit(Journal, &rdev->flags); 1956 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1957 rdev->raid_disk = 0; 1958 break; 1959 default: 1960 rdev->saved_raid_disk = role; 1961 if ((le32_to_cpu(sb->feature_map) & 1962 MD_FEATURE_RECOVERY_OFFSET)) { 1963 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1964 if (!(le32_to_cpu(sb->feature_map) & 1965 MD_FEATURE_RECOVERY_BITMAP)) 1966 rdev->saved_raid_disk = -1; 1967 } else { 1968 /* 1969 * If the array is FROZEN, then the device can't 1970 * be in_sync with rest of array. 1971 */ 1972 if (!test_bit(MD_RECOVERY_FROZEN, 1973 &mddev->recovery)) 1974 set_bit(In_sync, &rdev->flags); 1975 } 1976 rdev->raid_disk = role; 1977 break; 1978 } 1979 if (sb->devflags & WriteMostly1) 1980 set_bit(WriteMostly, &rdev->flags); 1981 if (sb->devflags & FailFast1) 1982 set_bit(FailFast, &rdev->flags); 1983 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1984 set_bit(Replacement, &rdev->flags); 1985 } else /* MULTIPATH are always insync */ 1986 set_bit(In_sync, &rdev->flags); 1987 1988 return 0; 1989 } 1990 1991 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1992 { 1993 struct mdp_superblock_1 *sb; 1994 struct md_rdev *rdev2; 1995 int max_dev, i; 1996 /* make rdev->sb match mddev and rdev data. */ 1997 1998 sb = page_address(rdev->sb_page); 1999 2000 sb->feature_map = 0; 2001 sb->pad0 = 0; 2002 sb->recovery_offset = cpu_to_le64(0); 2003 memset(sb->pad3, 0, sizeof(sb->pad3)); 2004 2005 sb->utime = cpu_to_le64((__u64)mddev->utime); 2006 sb->events = cpu_to_le64(mddev->events); 2007 if (mddev->in_sync) 2008 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2009 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2010 sb->resync_offset = cpu_to_le64(MaxSector); 2011 else 2012 sb->resync_offset = cpu_to_le64(0); 2013 2014 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2015 2016 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2017 sb->size = cpu_to_le64(mddev->dev_sectors); 2018 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2019 sb->level = cpu_to_le32(mddev->level); 2020 sb->layout = cpu_to_le32(mddev->layout); 2021 if (test_bit(FailFast, &rdev->flags)) 2022 sb->devflags |= FailFast1; 2023 else 2024 sb->devflags &= ~FailFast1; 2025 2026 if (test_bit(WriteMostly, &rdev->flags)) 2027 sb->devflags |= WriteMostly1; 2028 else 2029 sb->devflags &= ~WriteMostly1; 2030 sb->data_offset = cpu_to_le64(rdev->data_offset); 2031 sb->data_size = cpu_to_le64(rdev->sectors); 2032 2033 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2034 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2035 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2036 } 2037 2038 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2039 !test_bit(In_sync, &rdev->flags)) { 2040 sb->feature_map |= 2041 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2042 sb->recovery_offset = 2043 cpu_to_le64(rdev->recovery_offset); 2044 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2045 sb->feature_map |= 2046 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2047 } 2048 /* Note: recovery_offset and journal_tail share space */ 2049 if (test_bit(Journal, &rdev->flags)) 2050 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2051 if (test_bit(Replacement, &rdev->flags)) 2052 sb->feature_map |= 2053 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2054 2055 if (mddev->reshape_position != MaxSector) { 2056 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2057 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2058 sb->new_layout = cpu_to_le32(mddev->new_layout); 2059 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2060 sb->new_level = cpu_to_le32(mddev->new_level); 2061 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2062 if (mddev->delta_disks == 0 && 2063 mddev->reshape_backwards) 2064 sb->feature_map 2065 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2066 if (rdev->new_data_offset != rdev->data_offset) { 2067 sb->feature_map 2068 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2069 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2070 - rdev->data_offset)); 2071 } 2072 } 2073 2074 if (mddev_is_clustered(mddev)) 2075 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2076 2077 if (rdev->badblocks.count == 0) 2078 /* Nothing to do for bad blocks*/ ; 2079 else if (sb->bblog_offset == 0) 2080 /* Cannot record bad blocks on this device */ 2081 md_error(mddev, rdev); 2082 else { 2083 struct badblocks *bb = &rdev->badblocks; 2084 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2085 u64 *p = bb->page; 2086 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2087 if (bb->changed) { 2088 unsigned seq; 2089 2090 retry: 2091 seq = read_seqbegin(&bb->lock); 2092 2093 memset(bbp, 0xff, PAGE_SIZE); 2094 2095 for (i = 0 ; i < bb->count ; i++) { 2096 u64 internal_bb = p[i]; 2097 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2098 | BB_LEN(internal_bb)); 2099 bbp[i] = cpu_to_le64(store_bb); 2100 } 2101 bb->changed = 0; 2102 if (read_seqretry(&bb->lock, seq)) 2103 goto retry; 2104 2105 bb->sector = (rdev->sb_start + 2106 (int)le32_to_cpu(sb->bblog_offset)); 2107 bb->size = le16_to_cpu(sb->bblog_size); 2108 } 2109 } 2110 2111 max_dev = 0; 2112 rdev_for_each(rdev2, mddev) 2113 if (rdev2->desc_nr+1 > max_dev) 2114 max_dev = rdev2->desc_nr+1; 2115 2116 if (max_dev > le32_to_cpu(sb->max_dev)) { 2117 int bmask; 2118 sb->max_dev = cpu_to_le32(max_dev); 2119 rdev->sb_size = max_dev * 2 + 256; 2120 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2121 if (rdev->sb_size & bmask) 2122 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2123 } else 2124 max_dev = le32_to_cpu(sb->max_dev); 2125 2126 for (i=0; i<max_dev;i++) 2127 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2128 2129 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2130 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2131 2132 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2133 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2134 sb->feature_map |= 2135 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2136 else 2137 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2138 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2139 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2140 } 2141 2142 rdev_for_each(rdev2, mddev) { 2143 i = rdev2->desc_nr; 2144 if (test_bit(Faulty, &rdev2->flags)) 2145 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2146 else if (test_bit(In_sync, &rdev2->flags)) 2147 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2148 else if (test_bit(Journal, &rdev2->flags)) 2149 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2150 else if (rdev2->raid_disk >= 0) 2151 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2152 else 2153 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2154 } 2155 2156 sb->sb_csum = calc_sb_1_csum(sb); 2157 } 2158 2159 static unsigned long long 2160 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2161 { 2162 struct mdp_superblock_1 *sb; 2163 sector_t max_sectors; 2164 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2165 return 0; /* component must fit device */ 2166 if (rdev->data_offset != rdev->new_data_offset) 2167 return 0; /* too confusing */ 2168 if (rdev->sb_start < rdev->data_offset) { 2169 /* minor versions 1 and 2; superblock before data */ 2170 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2171 max_sectors -= rdev->data_offset; 2172 if (!num_sectors || num_sectors > max_sectors) 2173 num_sectors = max_sectors; 2174 } else if (rdev->mddev->bitmap_info.offset) { 2175 /* minor version 0 with bitmap we can't move */ 2176 return 0; 2177 } else { 2178 /* minor version 0; superblock after data */ 2179 sector_t sb_start; 2180 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 2181 sb_start &= ~(sector_t)(4*2 - 1); 2182 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 2183 if (!num_sectors || num_sectors > max_sectors) 2184 num_sectors = max_sectors; 2185 rdev->sb_start = sb_start; 2186 } 2187 sb = page_address(rdev->sb_page); 2188 sb->data_size = cpu_to_le64(num_sectors); 2189 sb->super_offset = cpu_to_le64(rdev->sb_start); 2190 sb->sb_csum = calc_sb_1_csum(sb); 2191 do { 2192 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2193 rdev->sb_page); 2194 } while (md_super_wait(rdev->mddev) < 0); 2195 return num_sectors; 2196 2197 } 2198 2199 static int 2200 super_1_allow_new_offset(struct md_rdev *rdev, 2201 unsigned long long new_offset) 2202 { 2203 /* All necessary checks on new >= old have been done */ 2204 struct bitmap *bitmap; 2205 if (new_offset >= rdev->data_offset) 2206 return 1; 2207 2208 /* with 1.0 metadata, there is no metadata to tread on 2209 * so we can always move back */ 2210 if (rdev->mddev->minor_version == 0) 2211 return 1; 2212 2213 /* otherwise we must be sure not to step on 2214 * any metadata, so stay: 2215 * 36K beyond start of superblock 2216 * beyond end of badblocks 2217 * beyond write-intent bitmap 2218 */ 2219 if (rdev->sb_start + (32+4)*2 > new_offset) 2220 return 0; 2221 bitmap = rdev->mddev->bitmap; 2222 if (bitmap && !rdev->mddev->bitmap_info.file && 2223 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2224 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2225 return 0; 2226 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2227 return 0; 2228 2229 return 1; 2230 } 2231 2232 static struct super_type super_types[] = { 2233 [0] = { 2234 .name = "0.90.0", 2235 .owner = THIS_MODULE, 2236 .load_super = super_90_load, 2237 .validate_super = super_90_validate, 2238 .sync_super = super_90_sync, 2239 .rdev_size_change = super_90_rdev_size_change, 2240 .allow_new_offset = super_90_allow_new_offset, 2241 }, 2242 [1] = { 2243 .name = "md-1", 2244 .owner = THIS_MODULE, 2245 .load_super = super_1_load, 2246 .validate_super = super_1_validate, 2247 .sync_super = super_1_sync, 2248 .rdev_size_change = super_1_rdev_size_change, 2249 .allow_new_offset = super_1_allow_new_offset, 2250 }, 2251 }; 2252 2253 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2254 { 2255 if (mddev->sync_super) { 2256 mddev->sync_super(mddev, rdev); 2257 return; 2258 } 2259 2260 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2261 2262 super_types[mddev->major_version].sync_super(mddev, rdev); 2263 } 2264 2265 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2266 { 2267 struct md_rdev *rdev, *rdev2; 2268 2269 rcu_read_lock(); 2270 rdev_for_each_rcu(rdev, mddev1) { 2271 if (test_bit(Faulty, &rdev->flags) || 2272 test_bit(Journal, &rdev->flags) || 2273 rdev->raid_disk == -1) 2274 continue; 2275 rdev_for_each_rcu(rdev2, mddev2) { 2276 if (test_bit(Faulty, &rdev2->flags) || 2277 test_bit(Journal, &rdev2->flags) || 2278 rdev2->raid_disk == -1) 2279 continue; 2280 if (rdev->bdev->bd_contains == 2281 rdev2->bdev->bd_contains) { 2282 rcu_read_unlock(); 2283 return 1; 2284 } 2285 } 2286 } 2287 rcu_read_unlock(); 2288 return 0; 2289 } 2290 2291 static LIST_HEAD(pending_raid_disks); 2292 2293 /* 2294 * Try to register data integrity profile for an mddev 2295 * 2296 * This is called when an array is started and after a disk has been kicked 2297 * from the array. It only succeeds if all working and active component devices 2298 * are integrity capable with matching profiles. 2299 */ 2300 int md_integrity_register(struct mddev *mddev) 2301 { 2302 struct md_rdev *rdev, *reference = NULL; 2303 2304 if (list_empty(&mddev->disks)) 2305 return 0; /* nothing to do */ 2306 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2307 return 0; /* shouldn't register, or already is */ 2308 rdev_for_each(rdev, mddev) { 2309 /* skip spares and non-functional disks */ 2310 if (test_bit(Faulty, &rdev->flags)) 2311 continue; 2312 if (rdev->raid_disk < 0) 2313 continue; 2314 if (!reference) { 2315 /* Use the first rdev as the reference */ 2316 reference = rdev; 2317 continue; 2318 } 2319 /* does this rdev's profile match the reference profile? */ 2320 if (blk_integrity_compare(reference->bdev->bd_disk, 2321 rdev->bdev->bd_disk) < 0) 2322 return -EINVAL; 2323 } 2324 if (!reference || !bdev_get_integrity(reference->bdev)) 2325 return 0; 2326 /* 2327 * All component devices are integrity capable and have matching 2328 * profiles, register the common profile for the md device. 2329 */ 2330 blk_integrity_register(mddev->gendisk, 2331 bdev_get_integrity(reference->bdev)); 2332 2333 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2334 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2335 pr_err("md: failed to create integrity pool for %s\n", 2336 mdname(mddev)); 2337 return -EINVAL; 2338 } 2339 return 0; 2340 } 2341 EXPORT_SYMBOL(md_integrity_register); 2342 2343 /* 2344 * Attempt to add an rdev, but only if it is consistent with the current 2345 * integrity profile 2346 */ 2347 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2348 { 2349 struct blk_integrity *bi_mddev; 2350 char name[BDEVNAME_SIZE]; 2351 2352 if (!mddev->gendisk) 2353 return 0; 2354 2355 bi_mddev = blk_get_integrity(mddev->gendisk); 2356 2357 if (!bi_mddev) /* nothing to do */ 2358 return 0; 2359 2360 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2361 pr_err("%s: incompatible integrity profile for %s\n", 2362 mdname(mddev), bdevname(rdev->bdev, name)); 2363 return -ENXIO; 2364 } 2365 2366 return 0; 2367 } 2368 EXPORT_SYMBOL(md_integrity_add_rdev); 2369 2370 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2371 { 2372 char b[BDEVNAME_SIZE]; 2373 struct kobject *ko; 2374 int err; 2375 2376 /* prevent duplicates */ 2377 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2378 return -EEXIST; 2379 2380 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2381 mddev->pers) 2382 return -EROFS; 2383 2384 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2385 if (!test_bit(Journal, &rdev->flags) && 2386 rdev->sectors && 2387 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2388 if (mddev->pers) { 2389 /* Cannot change size, so fail 2390 * If mddev->level <= 0, then we don't care 2391 * about aligning sizes (e.g. linear) 2392 */ 2393 if (mddev->level > 0) 2394 return -ENOSPC; 2395 } else 2396 mddev->dev_sectors = rdev->sectors; 2397 } 2398 2399 /* Verify rdev->desc_nr is unique. 2400 * If it is -1, assign a free number, else 2401 * check number is not in use 2402 */ 2403 rcu_read_lock(); 2404 if (rdev->desc_nr < 0) { 2405 int choice = 0; 2406 if (mddev->pers) 2407 choice = mddev->raid_disks; 2408 while (md_find_rdev_nr_rcu(mddev, choice)) 2409 choice++; 2410 rdev->desc_nr = choice; 2411 } else { 2412 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2413 rcu_read_unlock(); 2414 return -EBUSY; 2415 } 2416 } 2417 rcu_read_unlock(); 2418 if (!test_bit(Journal, &rdev->flags) && 2419 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2420 pr_warn("md: %s: array is limited to %d devices\n", 2421 mdname(mddev), mddev->max_disks); 2422 return -EBUSY; 2423 } 2424 bdevname(rdev->bdev,b); 2425 strreplace(b, '/', '!'); 2426 2427 rdev->mddev = mddev; 2428 pr_debug("md: bind<%s>\n", b); 2429 2430 if (mddev->raid_disks) 2431 mddev_create_serial_pool(mddev, rdev, false); 2432 2433 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2434 goto fail; 2435 2436 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2437 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2438 /* failure here is OK */; 2439 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2440 2441 list_add_rcu(&rdev->same_set, &mddev->disks); 2442 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2443 2444 /* May as well allow recovery to be retried once */ 2445 mddev->recovery_disabled++; 2446 2447 return 0; 2448 2449 fail: 2450 pr_warn("md: failed to register dev-%s for %s\n", 2451 b, mdname(mddev)); 2452 return err; 2453 } 2454 2455 static void md_delayed_delete(struct work_struct *ws) 2456 { 2457 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2458 kobject_del(&rdev->kobj); 2459 kobject_put(&rdev->kobj); 2460 } 2461 2462 static void unbind_rdev_from_array(struct md_rdev *rdev) 2463 { 2464 char b[BDEVNAME_SIZE]; 2465 2466 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2467 list_del_rcu(&rdev->same_set); 2468 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2469 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2470 rdev->mddev = NULL; 2471 sysfs_remove_link(&rdev->kobj, "block"); 2472 sysfs_put(rdev->sysfs_state); 2473 rdev->sysfs_state = NULL; 2474 rdev->badblocks.count = 0; 2475 /* We need to delay this, otherwise we can deadlock when 2476 * writing to 'remove' to "dev/state". We also need 2477 * to delay it due to rcu usage. 2478 */ 2479 synchronize_rcu(); 2480 INIT_WORK(&rdev->del_work, md_delayed_delete); 2481 kobject_get(&rdev->kobj); 2482 queue_work(md_misc_wq, &rdev->del_work); 2483 } 2484 2485 /* 2486 * prevent the device from being mounted, repartitioned or 2487 * otherwise reused by a RAID array (or any other kernel 2488 * subsystem), by bd_claiming the device. 2489 */ 2490 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2491 { 2492 int err = 0; 2493 struct block_device *bdev; 2494 char b[BDEVNAME_SIZE]; 2495 2496 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2497 shared ? (struct md_rdev *)lock_rdev : rdev); 2498 if (IS_ERR(bdev)) { 2499 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2500 return PTR_ERR(bdev); 2501 } 2502 rdev->bdev = bdev; 2503 return err; 2504 } 2505 2506 static void unlock_rdev(struct md_rdev *rdev) 2507 { 2508 struct block_device *bdev = rdev->bdev; 2509 rdev->bdev = NULL; 2510 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2511 } 2512 2513 void md_autodetect_dev(dev_t dev); 2514 2515 static void export_rdev(struct md_rdev *rdev) 2516 { 2517 char b[BDEVNAME_SIZE]; 2518 2519 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2520 md_rdev_clear(rdev); 2521 #ifndef MODULE 2522 if (test_bit(AutoDetected, &rdev->flags)) 2523 md_autodetect_dev(rdev->bdev->bd_dev); 2524 #endif 2525 unlock_rdev(rdev); 2526 kobject_put(&rdev->kobj); 2527 } 2528 2529 void md_kick_rdev_from_array(struct md_rdev *rdev) 2530 { 2531 unbind_rdev_from_array(rdev); 2532 export_rdev(rdev); 2533 } 2534 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2535 2536 static void export_array(struct mddev *mddev) 2537 { 2538 struct md_rdev *rdev; 2539 2540 while (!list_empty(&mddev->disks)) { 2541 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2542 same_set); 2543 md_kick_rdev_from_array(rdev); 2544 } 2545 mddev->raid_disks = 0; 2546 mddev->major_version = 0; 2547 } 2548 2549 static bool set_in_sync(struct mddev *mddev) 2550 { 2551 lockdep_assert_held(&mddev->lock); 2552 if (!mddev->in_sync) { 2553 mddev->sync_checkers++; 2554 spin_unlock(&mddev->lock); 2555 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2556 spin_lock(&mddev->lock); 2557 if (!mddev->in_sync && 2558 percpu_ref_is_zero(&mddev->writes_pending)) { 2559 mddev->in_sync = 1; 2560 /* 2561 * Ensure ->in_sync is visible before we clear 2562 * ->sync_checkers. 2563 */ 2564 smp_mb(); 2565 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2566 sysfs_notify_dirent_safe(mddev->sysfs_state); 2567 } 2568 if (--mddev->sync_checkers == 0) 2569 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2570 } 2571 if (mddev->safemode == 1) 2572 mddev->safemode = 0; 2573 return mddev->in_sync; 2574 } 2575 2576 static void sync_sbs(struct mddev *mddev, int nospares) 2577 { 2578 /* Update each superblock (in-memory image), but 2579 * if we are allowed to, skip spares which already 2580 * have the right event counter, or have one earlier 2581 * (which would mean they aren't being marked as dirty 2582 * with the rest of the array) 2583 */ 2584 struct md_rdev *rdev; 2585 rdev_for_each(rdev, mddev) { 2586 if (rdev->sb_events == mddev->events || 2587 (nospares && 2588 rdev->raid_disk < 0 && 2589 rdev->sb_events+1 == mddev->events)) { 2590 /* Don't update this superblock */ 2591 rdev->sb_loaded = 2; 2592 } else { 2593 sync_super(mddev, rdev); 2594 rdev->sb_loaded = 1; 2595 } 2596 } 2597 } 2598 2599 static bool does_sb_need_changing(struct mddev *mddev) 2600 { 2601 struct md_rdev *rdev; 2602 struct mdp_superblock_1 *sb; 2603 int role; 2604 2605 /* Find a good rdev */ 2606 rdev_for_each(rdev, mddev) 2607 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2608 break; 2609 2610 /* No good device found. */ 2611 if (!rdev) 2612 return false; 2613 2614 sb = page_address(rdev->sb_page); 2615 /* Check if a device has become faulty or a spare become active */ 2616 rdev_for_each(rdev, mddev) { 2617 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2618 /* Device activated? */ 2619 if (role == 0xffff && rdev->raid_disk >=0 && 2620 !test_bit(Faulty, &rdev->flags)) 2621 return true; 2622 /* Device turned faulty? */ 2623 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2624 return true; 2625 } 2626 2627 /* Check if any mddev parameters have changed */ 2628 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2629 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2630 (mddev->layout != le32_to_cpu(sb->layout)) || 2631 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2632 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2633 return true; 2634 2635 return false; 2636 } 2637 2638 void md_update_sb(struct mddev *mddev, int force_change) 2639 { 2640 struct md_rdev *rdev; 2641 int sync_req; 2642 int nospares = 0; 2643 int any_badblocks_changed = 0; 2644 int ret = -1; 2645 2646 if (mddev->ro) { 2647 if (force_change) 2648 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2649 return; 2650 } 2651 2652 repeat: 2653 if (mddev_is_clustered(mddev)) { 2654 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2655 force_change = 1; 2656 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2657 nospares = 1; 2658 ret = md_cluster_ops->metadata_update_start(mddev); 2659 /* Has someone else has updated the sb */ 2660 if (!does_sb_need_changing(mddev)) { 2661 if (ret == 0) 2662 md_cluster_ops->metadata_update_cancel(mddev); 2663 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2664 BIT(MD_SB_CHANGE_DEVS) | 2665 BIT(MD_SB_CHANGE_CLEAN)); 2666 return; 2667 } 2668 } 2669 2670 /* 2671 * First make sure individual recovery_offsets are correct 2672 * curr_resync_completed can only be used during recovery. 2673 * During reshape/resync it might use array-addresses rather 2674 * that device addresses. 2675 */ 2676 rdev_for_each(rdev, mddev) { 2677 if (rdev->raid_disk >= 0 && 2678 mddev->delta_disks >= 0 && 2679 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2680 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2681 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2682 !test_bit(Journal, &rdev->flags) && 2683 !test_bit(In_sync, &rdev->flags) && 2684 mddev->curr_resync_completed > rdev->recovery_offset) 2685 rdev->recovery_offset = mddev->curr_resync_completed; 2686 2687 } 2688 if (!mddev->persistent) { 2689 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2690 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2691 if (!mddev->external) { 2692 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2693 rdev_for_each(rdev, mddev) { 2694 if (rdev->badblocks.changed) { 2695 rdev->badblocks.changed = 0; 2696 ack_all_badblocks(&rdev->badblocks); 2697 md_error(mddev, rdev); 2698 } 2699 clear_bit(Blocked, &rdev->flags); 2700 clear_bit(BlockedBadBlocks, &rdev->flags); 2701 wake_up(&rdev->blocked_wait); 2702 } 2703 } 2704 wake_up(&mddev->sb_wait); 2705 return; 2706 } 2707 2708 spin_lock(&mddev->lock); 2709 2710 mddev->utime = ktime_get_real_seconds(); 2711 2712 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2713 force_change = 1; 2714 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2715 /* just a clean<-> dirty transition, possibly leave spares alone, 2716 * though if events isn't the right even/odd, we will have to do 2717 * spares after all 2718 */ 2719 nospares = 1; 2720 if (force_change) 2721 nospares = 0; 2722 if (mddev->degraded) 2723 /* If the array is degraded, then skipping spares is both 2724 * dangerous and fairly pointless. 2725 * Dangerous because a device that was removed from the array 2726 * might have a event_count that still looks up-to-date, 2727 * so it can be re-added without a resync. 2728 * Pointless because if there are any spares to skip, 2729 * then a recovery will happen and soon that array won't 2730 * be degraded any more and the spare can go back to sleep then. 2731 */ 2732 nospares = 0; 2733 2734 sync_req = mddev->in_sync; 2735 2736 /* If this is just a dirty<->clean transition, and the array is clean 2737 * and 'events' is odd, we can roll back to the previous clean state */ 2738 if (nospares 2739 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2740 && mddev->can_decrease_events 2741 && mddev->events != 1) { 2742 mddev->events--; 2743 mddev->can_decrease_events = 0; 2744 } else { 2745 /* otherwise we have to go forward and ... */ 2746 mddev->events ++; 2747 mddev->can_decrease_events = nospares; 2748 } 2749 2750 /* 2751 * This 64-bit counter should never wrap. 2752 * Either we are in around ~1 trillion A.C., assuming 2753 * 1 reboot per second, or we have a bug... 2754 */ 2755 WARN_ON(mddev->events == 0); 2756 2757 rdev_for_each(rdev, mddev) { 2758 if (rdev->badblocks.changed) 2759 any_badblocks_changed++; 2760 if (test_bit(Faulty, &rdev->flags)) 2761 set_bit(FaultRecorded, &rdev->flags); 2762 } 2763 2764 sync_sbs(mddev, nospares); 2765 spin_unlock(&mddev->lock); 2766 2767 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2768 mdname(mddev), mddev->in_sync); 2769 2770 if (mddev->queue) 2771 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2772 rewrite: 2773 md_bitmap_update_sb(mddev->bitmap); 2774 rdev_for_each(rdev, mddev) { 2775 char b[BDEVNAME_SIZE]; 2776 2777 if (rdev->sb_loaded != 1) 2778 continue; /* no noise on spare devices */ 2779 2780 if (!test_bit(Faulty, &rdev->flags)) { 2781 md_super_write(mddev,rdev, 2782 rdev->sb_start, rdev->sb_size, 2783 rdev->sb_page); 2784 pr_debug("md: (write) %s's sb offset: %llu\n", 2785 bdevname(rdev->bdev, b), 2786 (unsigned long long)rdev->sb_start); 2787 rdev->sb_events = mddev->events; 2788 if (rdev->badblocks.size) { 2789 md_super_write(mddev, rdev, 2790 rdev->badblocks.sector, 2791 rdev->badblocks.size << 9, 2792 rdev->bb_page); 2793 rdev->badblocks.size = 0; 2794 } 2795 2796 } else 2797 pr_debug("md: %s (skipping faulty)\n", 2798 bdevname(rdev->bdev, b)); 2799 2800 if (mddev->level == LEVEL_MULTIPATH) 2801 /* only need to write one superblock... */ 2802 break; 2803 } 2804 if (md_super_wait(mddev) < 0) 2805 goto rewrite; 2806 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2807 2808 if (mddev_is_clustered(mddev) && ret == 0) 2809 md_cluster_ops->metadata_update_finish(mddev); 2810 2811 if (mddev->in_sync != sync_req || 2812 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2813 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2814 /* have to write it out again */ 2815 goto repeat; 2816 wake_up(&mddev->sb_wait); 2817 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2818 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2819 2820 rdev_for_each(rdev, mddev) { 2821 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2822 clear_bit(Blocked, &rdev->flags); 2823 2824 if (any_badblocks_changed) 2825 ack_all_badblocks(&rdev->badblocks); 2826 clear_bit(BlockedBadBlocks, &rdev->flags); 2827 wake_up(&rdev->blocked_wait); 2828 } 2829 } 2830 EXPORT_SYMBOL(md_update_sb); 2831 2832 static int add_bound_rdev(struct md_rdev *rdev) 2833 { 2834 struct mddev *mddev = rdev->mddev; 2835 int err = 0; 2836 bool add_journal = test_bit(Journal, &rdev->flags); 2837 2838 if (!mddev->pers->hot_remove_disk || add_journal) { 2839 /* If there is hot_add_disk but no hot_remove_disk 2840 * then added disks for geometry changes, 2841 * and should be added immediately. 2842 */ 2843 super_types[mddev->major_version]. 2844 validate_super(mddev, rdev); 2845 if (add_journal) 2846 mddev_suspend(mddev); 2847 err = mddev->pers->hot_add_disk(mddev, rdev); 2848 if (add_journal) 2849 mddev_resume(mddev); 2850 if (err) { 2851 md_kick_rdev_from_array(rdev); 2852 return err; 2853 } 2854 } 2855 sysfs_notify_dirent_safe(rdev->sysfs_state); 2856 2857 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2858 if (mddev->degraded) 2859 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2860 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2861 md_new_event(mddev); 2862 md_wakeup_thread(mddev->thread); 2863 return 0; 2864 } 2865 2866 /* words written to sysfs files may, or may not, be \n terminated. 2867 * We want to accept with case. For this we use cmd_match. 2868 */ 2869 static int cmd_match(const char *cmd, const char *str) 2870 { 2871 /* See if cmd, written into a sysfs file, matches 2872 * str. They must either be the same, or cmd can 2873 * have a trailing newline 2874 */ 2875 while (*cmd && *str && *cmd == *str) { 2876 cmd++; 2877 str++; 2878 } 2879 if (*cmd == '\n') 2880 cmd++; 2881 if (*str || *cmd) 2882 return 0; 2883 return 1; 2884 } 2885 2886 struct rdev_sysfs_entry { 2887 struct attribute attr; 2888 ssize_t (*show)(struct md_rdev *, char *); 2889 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2890 }; 2891 2892 static ssize_t 2893 state_show(struct md_rdev *rdev, char *page) 2894 { 2895 char *sep = ","; 2896 size_t len = 0; 2897 unsigned long flags = READ_ONCE(rdev->flags); 2898 2899 if (test_bit(Faulty, &flags) || 2900 (!test_bit(ExternalBbl, &flags) && 2901 rdev->badblocks.unacked_exist)) 2902 len += sprintf(page+len, "faulty%s", sep); 2903 if (test_bit(In_sync, &flags)) 2904 len += sprintf(page+len, "in_sync%s", sep); 2905 if (test_bit(Journal, &flags)) 2906 len += sprintf(page+len, "journal%s", sep); 2907 if (test_bit(WriteMostly, &flags)) 2908 len += sprintf(page+len, "write_mostly%s", sep); 2909 if (test_bit(Blocked, &flags) || 2910 (rdev->badblocks.unacked_exist 2911 && !test_bit(Faulty, &flags))) 2912 len += sprintf(page+len, "blocked%s", sep); 2913 if (!test_bit(Faulty, &flags) && 2914 !test_bit(Journal, &flags) && 2915 !test_bit(In_sync, &flags)) 2916 len += sprintf(page+len, "spare%s", sep); 2917 if (test_bit(WriteErrorSeen, &flags)) 2918 len += sprintf(page+len, "write_error%s", sep); 2919 if (test_bit(WantReplacement, &flags)) 2920 len += sprintf(page+len, "want_replacement%s", sep); 2921 if (test_bit(Replacement, &flags)) 2922 len += sprintf(page+len, "replacement%s", sep); 2923 if (test_bit(ExternalBbl, &flags)) 2924 len += sprintf(page+len, "external_bbl%s", sep); 2925 if (test_bit(FailFast, &flags)) 2926 len += sprintf(page+len, "failfast%s", sep); 2927 2928 if (len) 2929 len -= strlen(sep); 2930 2931 return len+sprintf(page+len, "\n"); 2932 } 2933 2934 static ssize_t 2935 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2936 { 2937 /* can write 2938 * faulty - simulates an error 2939 * remove - disconnects the device 2940 * writemostly - sets write_mostly 2941 * -writemostly - clears write_mostly 2942 * blocked - sets the Blocked flags 2943 * -blocked - clears the Blocked and possibly simulates an error 2944 * insync - sets Insync providing device isn't active 2945 * -insync - clear Insync for a device with a slot assigned, 2946 * so that it gets rebuilt based on bitmap 2947 * write_error - sets WriteErrorSeen 2948 * -write_error - clears WriteErrorSeen 2949 * {,-}failfast - set/clear FailFast 2950 */ 2951 int err = -EINVAL; 2952 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2953 md_error(rdev->mddev, rdev); 2954 if (test_bit(Faulty, &rdev->flags)) 2955 err = 0; 2956 else 2957 err = -EBUSY; 2958 } else if (cmd_match(buf, "remove")) { 2959 if (rdev->mddev->pers) { 2960 clear_bit(Blocked, &rdev->flags); 2961 remove_and_add_spares(rdev->mddev, rdev); 2962 } 2963 if (rdev->raid_disk >= 0) 2964 err = -EBUSY; 2965 else { 2966 struct mddev *mddev = rdev->mddev; 2967 err = 0; 2968 if (mddev_is_clustered(mddev)) 2969 err = md_cluster_ops->remove_disk(mddev, rdev); 2970 2971 if (err == 0) { 2972 md_kick_rdev_from_array(rdev); 2973 if (mddev->pers) { 2974 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2975 md_wakeup_thread(mddev->thread); 2976 } 2977 md_new_event(mddev); 2978 } 2979 } 2980 } else if (cmd_match(buf, "writemostly")) { 2981 set_bit(WriteMostly, &rdev->flags); 2982 mddev_create_serial_pool(rdev->mddev, rdev, false); 2983 err = 0; 2984 } else if (cmd_match(buf, "-writemostly")) { 2985 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2986 clear_bit(WriteMostly, &rdev->flags); 2987 err = 0; 2988 } else if (cmd_match(buf, "blocked")) { 2989 set_bit(Blocked, &rdev->flags); 2990 err = 0; 2991 } else if (cmd_match(buf, "-blocked")) { 2992 if (!test_bit(Faulty, &rdev->flags) && 2993 !test_bit(ExternalBbl, &rdev->flags) && 2994 rdev->badblocks.unacked_exist) { 2995 /* metadata handler doesn't understand badblocks, 2996 * so we need to fail the device 2997 */ 2998 md_error(rdev->mddev, rdev); 2999 } 3000 clear_bit(Blocked, &rdev->flags); 3001 clear_bit(BlockedBadBlocks, &rdev->flags); 3002 wake_up(&rdev->blocked_wait); 3003 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3004 md_wakeup_thread(rdev->mddev->thread); 3005 3006 err = 0; 3007 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3008 set_bit(In_sync, &rdev->flags); 3009 err = 0; 3010 } else if (cmd_match(buf, "failfast")) { 3011 set_bit(FailFast, &rdev->flags); 3012 err = 0; 3013 } else if (cmd_match(buf, "-failfast")) { 3014 clear_bit(FailFast, &rdev->flags); 3015 err = 0; 3016 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3017 !test_bit(Journal, &rdev->flags)) { 3018 if (rdev->mddev->pers == NULL) { 3019 clear_bit(In_sync, &rdev->flags); 3020 rdev->saved_raid_disk = rdev->raid_disk; 3021 rdev->raid_disk = -1; 3022 err = 0; 3023 } 3024 } else if (cmd_match(buf, "write_error")) { 3025 set_bit(WriteErrorSeen, &rdev->flags); 3026 err = 0; 3027 } else if (cmd_match(buf, "-write_error")) { 3028 clear_bit(WriteErrorSeen, &rdev->flags); 3029 err = 0; 3030 } else if (cmd_match(buf, "want_replacement")) { 3031 /* Any non-spare device that is not a replacement can 3032 * become want_replacement at any time, but we then need to 3033 * check if recovery is needed. 3034 */ 3035 if (rdev->raid_disk >= 0 && 3036 !test_bit(Journal, &rdev->flags) && 3037 !test_bit(Replacement, &rdev->flags)) 3038 set_bit(WantReplacement, &rdev->flags); 3039 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3040 md_wakeup_thread(rdev->mddev->thread); 3041 err = 0; 3042 } else if (cmd_match(buf, "-want_replacement")) { 3043 /* Clearing 'want_replacement' is always allowed. 3044 * Once replacements starts it is too late though. 3045 */ 3046 err = 0; 3047 clear_bit(WantReplacement, &rdev->flags); 3048 } else if (cmd_match(buf, "replacement")) { 3049 /* Can only set a device as a replacement when array has not 3050 * yet been started. Once running, replacement is automatic 3051 * from spares, or by assigning 'slot'. 3052 */ 3053 if (rdev->mddev->pers) 3054 err = -EBUSY; 3055 else { 3056 set_bit(Replacement, &rdev->flags); 3057 err = 0; 3058 } 3059 } else if (cmd_match(buf, "-replacement")) { 3060 /* Similarly, can only clear Replacement before start */ 3061 if (rdev->mddev->pers) 3062 err = -EBUSY; 3063 else { 3064 clear_bit(Replacement, &rdev->flags); 3065 err = 0; 3066 } 3067 } else if (cmd_match(buf, "re-add")) { 3068 if (!rdev->mddev->pers) 3069 err = -EINVAL; 3070 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3071 rdev->saved_raid_disk >= 0) { 3072 /* clear_bit is performed _after_ all the devices 3073 * have their local Faulty bit cleared. If any writes 3074 * happen in the meantime in the local node, they 3075 * will land in the local bitmap, which will be synced 3076 * by this node eventually 3077 */ 3078 if (!mddev_is_clustered(rdev->mddev) || 3079 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3080 clear_bit(Faulty, &rdev->flags); 3081 err = add_bound_rdev(rdev); 3082 } 3083 } else 3084 err = -EBUSY; 3085 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3086 set_bit(ExternalBbl, &rdev->flags); 3087 rdev->badblocks.shift = 0; 3088 err = 0; 3089 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3090 clear_bit(ExternalBbl, &rdev->flags); 3091 err = 0; 3092 } 3093 if (!err) 3094 sysfs_notify_dirent_safe(rdev->sysfs_state); 3095 return err ? err : len; 3096 } 3097 static struct rdev_sysfs_entry rdev_state = 3098 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3099 3100 static ssize_t 3101 errors_show(struct md_rdev *rdev, char *page) 3102 { 3103 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3104 } 3105 3106 static ssize_t 3107 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3108 { 3109 unsigned int n; 3110 int rv; 3111 3112 rv = kstrtouint(buf, 10, &n); 3113 if (rv < 0) 3114 return rv; 3115 atomic_set(&rdev->corrected_errors, n); 3116 return len; 3117 } 3118 static struct rdev_sysfs_entry rdev_errors = 3119 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3120 3121 static ssize_t 3122 slot_show(struct md_rdev *rdev, char *page) 3123 { 3124 if (test_bit(Journal, &rdev->flags)) 3125 return sprintf(page, "journal\n"); 3126 else if (rdev->raid_disk < 0) 3127 return sprintf(page, "none\n"); 3128 else 3129 return sprintf(page, "%d\n", rdev->raid_disk); 3130 } 3131 3132 static ssize_t 3133 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3134 { 3135 int slot; 3136 int err; 3137 3138 if (test_bit(Journal, &rdev->flags)) 3139 return -EBUSY; 3140 if (strncmp(buf, "none", 4)==0) 3141 slot = -1; 3142 else { 3143 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3144 if (err < 0) 3145 return err; 3146 } 3147 if (rdev->mddev->pers && slot == -1) { 3148 /* Setting 'slot' on an active array requires also 3149 * updating the 'rd%d' link, and communicating 3150 * with the personality with ->hot_*_disk. 3151 * For now we only support removing 3152 * failed/spare devices. This normally happens automatically, 3153 * but not when the metadata is externally managed. 3154 */ 3155 if (rdev->raid_disk == -1) 3156 return -EEXIST; 3157 /* personality does all needed checks */ 3158 if (rdev->mddev->pers->hot_remove_disk == NULL) 3159 return -EINVAL; 3160 clear_bit(Blocked, &rdev->flags); 3161 remove_and_add_spares(rdev->mddev, rdev); 3162 if (rdev->raid_disk >= 0) 3163 return -EBUSY; 3164 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3165 md_wakeup_thread(rdev->mddev->thread); 3166 } else if (rdev->mddev->pers) { 3167 /* Activating a spare .. or possibly reactivating 3168 * if we ever get bitmaps working here. 3169 */ 3170 int err; 3171 3172 if (rdev->raid_disk != -1) 3173 return -EBUSY; 3174 3175 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3176 return -EBUSY; 3177 3178 if (rdev->mddev->pers->hot_add_disk == NULL) 3179 return -EINVAL; 3180 3181 if (slot >= rdev->mddev->raid_disks && 3182 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3183 return -ENOSPC; 3184 3185 rdev->raid_disk = slot; 3186 if (test_bit(In_sync, &rdev->flags)) 3187 rdev->saved_raid_disk = slot; 3188 else 3189 rdev->saved_raid_disk = -1; 3190 clear_bit(In_sync, &rdev->flags); 3191 clear_bit(Bitmap_sync, &rdev->flags); 3192 err = rdev->mddev->pers-> 3193 hot_add_disk(rdev->mddev, rdev); 3194 if (err) { 3195 rdev->raid_disk = -1; 3196 return err; 3197 } else 3198 sysfs_notify_dirent_safe(rdev->sysfs_state); 3199 if (sysfs_link_rdev(rdev->mddev, rdev)) 3200 /* failure here is OK */; 3201 /* don't wakeup anyone, leave that to userspace. */ 3202 } else { 3203 if (slot >= rdev->mddev->raid_disks && 3204 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3205 return -ENOSPC; 3206 rdev->raid_disk = slot; 3207 /* assume it is working */ 3208 clear_bit(Faulty, &rdev->flags); 3209 clear_bit(WriteMostly, &rdev->flags); 3210 set_bit(In_sync, &rdev->flags); 3211 sysfs_notify_dirent_safe(rdev->sysfs_state); 3212 } 3213 return len; 3214 } 3215 3216 static struct rdev_sysfs_entry rdev_slot = 3217 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3218 3219 static ssize_t 3220 offset_show(struct md_rdev *rdev, char *page) 3221 { 3222 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3223 } 3224 3225 static ssize_t 3226 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3227 { 3228 unsigned long long offset; 3229 if (kstrtoull(buf, 10, &offset) < 0) 3230 return -EINVAL; 3231 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3232 return -EBUSY; 3233 if (rdev->sectors && rdev->mddev->external) 3234 /* Must set offset before size, so overlap checks 3235 * can be sane */ 3236 return -EBUSY; 3237 rdev->data_offset = offset; 3238 rdev->new_data_offset = offset; 3239 return len; 3240 } 3241 3242 static struct rdev_sysfs_entry rdev_offset = 3243 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3244 3245 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3246 { 3247 return sprintf(page, "%llu\n", 3248 (unsigned long long)rdev->new_data_offset); 3249 } 3250 3251 static ssize_t new_offset_store(struct md_rdev *rdev, 3252 const char *buf, size_t len) 3253 { 3254 unsigned long long new_offset; 3255 struct mddev *mddev = rdev->mddev; 3256 3257 if (kstrtoull(buf, 10, &new_offset) < 0) 3258 return -EINVAL; 3259 3260 if (mddev->sync_thread || 3261 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3262 return -EBUSY; 3263 if (new_offset == rdev->data_offset) 3264 /* reset is always permitted */ 3265 ; 3266 else if (new_offset > rdev->data_offset) { 3267 /* must not push array size beyond rdev_sectors */ 3268 if (new_offset - rdev->data_offset 3269 + mddev->dev_sectors > rdev->sectors) 3270 return -E2BIG; 3271 } 3272 /* Metadata worries about other space details. */ 3273 3274 /* decreasing the offset is inconsistent with a backwards 3275 * reshape. 3276 */ 3277 if (new_offset < rdev->data_offset && 3278 mddev->reshape_backwards) 3279 return -EINVAL; 3280 /* Increasing offset is inconsistent with forwards 3281 * reshape. reshape_direction should be set to 3282 * 'backwards' first. 3283 */ 3284 if (new_offset > rdev->data_offset && 3285 !mddev->reshape_backwards) 3286 return -EINVAL; 3287 3288 if (mddev->pers && mddev->persistent && 3289 !super_types[mddev->major_version] 3290 .allow_new_offset(rdev, new_offset)) 3291 return -E2BIG; 3292 rdev->new_data_offset = new_offset; 3293 if (new_offset > rdev->data_offset) 3294 mddev->reshape_backwards = 1; 3295 else if (new_offset < rdev->data_offset) 3296 mddev->reshape_backwards = 0; 3297 3298 return len; 3299 } 3300 static struct rdev_sysfs_entry rdev_new_offset = 3301 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3302 3303 static ssize_t 3304 rdev_size_show(struct md_rdev *rdev, char *page) 3305 { 3306 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3307 } 3308 3309 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3310 { 3311 /* check if two start/length pairs overlap */ 3312 if (s1+l1 <= s2) 3313 return 0; 3314 if (s2+l2 <= s1) 3315 return 0; 3316 return 1; 3317 } 3318 3319 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3320 { 3321 unsigned long long blocks; 3322 sector_t new; 3323 3324 if (kstrtoull(buf, 10, &blocks) < 0) 3325 return -EINVAL; 3326 3327 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3328 return -EINVAL; /* sector conversion overflow */ 3329 3330 new = blocks * 2; 3331 if (new != blocks * 2) 3332 return -EINVAL; /* unsigned long long to sector_t overflow */ 3333 3334 *sectors = new; 3335 return 0; 3336 } 3337 3338 static ssize_t 3339 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3340 { 3341 struct mddev *my_mddev = rdev->mddev; 3342 sector_t oldsectors = rdev->sectors; 3343 sector_t sectors; 3344 3345 if (test_bit(Journal, &rdev->flags)) 3346 return -EBUSY; 3347 if (strict_blocks_to_sectors(buf, §ors) < 0) 3348 return -EINVAL; 3349 if (rdev->data_offset != rdev->new_data_offset) 3350 return -EINVAL; /* too confusing */ 3351 if (my_mddev->pers && rdev->raid_disk >= 0) { 3352 if (my_mddev->persistent) { 3353 sectors = super_types[my_mddev->major_version]. 3354 rdev_size_change(rdev, sectors); 3355 if (!sectors) 3356 return -EBUSY; 3357 } else if (!sectors) 3358 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3359 rdev->data_offset; 3360 if (!my_mddev->pers->resize) 3361 /* Cannot change size for RAID0 or Linear etc */ 3362 return -EINVAL; 3363 } 3364 if (sectors < my_mddev->dev_sectors) 3365 return -EINVAL; /* component must fit device */ 3366 3367 rdev->sectors = sectors; 3368 if (sectors > oldsectors && my_mddev->external) { 3369 /* Need to check that all other rdevs with the same 3370 * ->bdev do not overlap. 'rcu' is sufficient to walk 3371 * the rdev lists safely. 3372 * This check does not provide a hard guarantee, it 3373 * just helps avoid dangerous mistakes. 3374 */ 3375 struct mddev *mddev; 3376 int overlap = 0; 3377 struct list_head *tmp; 3378 3379 rcu_read_lock(); 3380 for_each_mddev(mddev, tmp) { 3381 struct md_rdev *rdev2; 3382 3383 rdev_for_each(rdev2, mddev) 3384 if (rdev->bdev == rdev2->bdev && 3385 rdev != rdev2 && 3386 overlaps(rdev->data_offset, rdev->sectors, 3387 rdev2->data_offset, 3388 rdev2->sectors)) { 3389 overlap = 1; 3390 break; 3391 } 3392 if (overlap) { 3393 mddev_put(mddev); 3394 break; 3395 } 3396 } 3397 rcu_read_unlock(); 3398 if (overlap) { 3399 /* Someone else could have slipped in a size 3400 * change here, but doing so is just silly. 3401 * We put oldsectors back because we *know* it is 3402 * safe, and trust userspace not to race with 3403 * itself 3404 */ 3405 rdev->sectors = oldsectors; 3406 return -EBUSY; 3407 } 3408 } 3409 return len; 3410 } 3411 3412 static struct rdev_sysfs_entry rdev_size = 3413 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3414 3415 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3416 { 3417 unsigned long long recovery_start = rdev->recovery_offset; 3418 3419 if (test_bit(In_sync, &rdev->flags) || 3420 recovery_start == MaxSector) 3421 return sprintf(page, "none\n"); 3422 3423 return sprintf(page, "%llu\n", recovery_start); 3424 } 3425 3426 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3427 { 3428 unsigned long long recovery_start; 3429 3430 if (cmd_match(buf, "none")) 3431 recovery_start = MaxSector; 3432 else if (kstrtoull(buf, 10, &recovery_start)) 3433 return -EINVAL; 3434 3435 if (rdev->mddev->pers && 3436 rdev->raid_disk >= 0) 3437 return -EBUSY; 3438 3439 rdev->recovery_offset = recovery_start; 3440 if (recovery_start == MaxSector) 3441 set_bit(In_sync, &rdev->flags); 3442 else 3443 clear_bit(In_sync, &rdev->flags); 3444 return len; 3445 } 3446 3447 static struct rdev_sysfs_entry rdev_recovery_start = 3448 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3449 3450 /* sysfs access to bad-blocks list. 3451 * We present two files. 3452 * 'bad-blocks' lists sector numbers and lengths of ranges that 3453 * are recorded as bad. The list is truncated to fit within 3454 * the one-page limit of sysfs. 3455 * Writing "sector length" to this file adds an acknowledged 3456 * bad block list. 3457 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3458 * been acknowledged. Writing to this file adds bad blocks 3459 * without acknowledging them. This is largely for testing. 3460 */ 3461 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3462 { 3463 return badblocks_show(&rdev->badblocks, page, 0); 3464 } 3465 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3466 { 3467 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3468 /* Maybe that ack was all we needed */ 3469 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3470 wake_up(&rdev->blocked_wait); 3471 return rv; 3472 } 3473 static struct rdev_sysfs_entry rdev_bad_blocks = 3474 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3475 3476 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3477 { 3478 return badblocks_show(&rdev->badblocks, page, 1); 3479 } 3480 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3481 { 3482 return badblocks_store(&rdev->badblocks, page, len, 1); 3483 } 3484 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3485 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3486 3487 static ssize_t 3488 ppl_sector_show(struct md_rdev *rdev, char *page) 3489 { 3490 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3491 } 3492 3493 static ssize_t 3494 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3495 { 3496 unsigned long long sector; 3497 3498 if (kstrtoull(buf, 10, §or) < 0) 3499 return -EINVAL; 3500 if (sector != (sector_t)sector) 3501 return -EINVAL; 3502 3503 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3504 rdev->raid_disk >= 0) 3505 return -EBUSY; 3506 3507 if (rdev->mddev->persistent) { 3508 if (rdev->mddev->major_version == 0) 3509 return -EINVAL; 3510 if ((sector > rdev->sb_start && 3511 sector - rdev->sb_start > S16_MAX) || 3512 (sector < rdev->sb_start && 3513 rdev->sb_start - sector > -S16_MIN)) 3514 return -EINVAL; 3515 rdev->ppl.offset = sector - rdev->sb_start; 3516 } else if (!rdev->mddev->external) { 3517 return -EBUSY; 3518 } 3519 rdev->ppl.sector = sector; 3520 return len; 3521 } 3522 3523 static struct rdev_sysfs_entry rdev_ppl_sector = 3524 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3525 3526 static ssize_t 3527 ppl_size_show(struct md_rdev *rdev, char *page) 3528 { 3529 return sprintf(page, "%u\n", rdev->ppl.size); 3530 } 3531 3532 static ssize_t 3533 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3534 { 3535 unsigned int size; 3536 3537 if (kstrtouint(buf, 10, &size) < 0) 3538 return -EINVAL; 3539 3540 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3541 rdev->raid_disk >= 0) 3542 return -EBUSY; 3543 3544 if (rdev->mddev->persistent) { 3545 if (rdev->mddev->major_version == 0) 3546 return -EINVAL; 3547 if (size > U16_MAX) 3548 return -EINVAL; 3549 } else if (!rdev->mddev->external) { 3550 return -EBUSY; 3551 } 3552 rdev->ppl.size = size; 3553 return len; 3554 } 3555 3556 static struct rdev_sysfs_entry rdev_ppl_size = 3557 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3558 3559 static struct attribute *rdev_default_attrs[] = { 3560 &rdev_state.attr, 3561 &rdev_errors.attr, 3562 &rdev_slot.attr, 3563 &rdev_offset.attr, 3564 &rdev_new_offset.attr, 3565 &rdev_size.attr, 3566 &rdev_recovery_start.attr, 3567 &rdev_bad_blocks.attr, 3568 &rdev_unack_bad_blocks.attr, 3569 &rdev_ppl_sector.attr, 3570 &rdev_ppl_size.attr, 3571 NULL, 3572 }; 3573 static ssize_t 3574 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3575 { 3576 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3577 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3578 3579 if (!entry->show) 3580 return -EIO; 3581 if (!rdev->mddev) 3582 return -ENODEV; 3583 return entry->show(rdev, page); 3584 } 3585 3586 static ssize_t 3587 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3588 const char *page, size_t length) 3589 { 3590 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3591 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3592 ssize_t rv; 3593 struct mddev *mddev = rdev->mddev; 3594 3595 if (!entry->store) 3596 return -EIO; 3597 if (!capable(CAP_SYS_ADMIN)) 3598 return -EACCES; 3599 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3600 if (!rv) { 3601 if (rdev->mddev == NULL) 3602 rv = -ENODEV; 3603 else 3604 rv = entry->store(rdev, page, length); 3605 mddev_unlock(mddev); 3606 } 3607 return rv; 3608 } 3609 3610 static void rdev_free(struct kobject *ko) 3611 { 3612 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3613 kfree(rdev); 3614 } 3615 static const struct sysfs_ops rdev_sysfs_ops = { 3616 .show = rdev_attr_show, 3617 .store = rdev_attr_store, 3618 }; 3619 static struct kobj_type rdev_ktype = { 3620 .release = rdev_free, 3621 .sysfs_ops = &rdev_sysfs_ops, 3622 .default_attrs = rdev_default_attrs, 3623 }; 3624 3625 int md_rdev_init(struct md_rdev *rdev) 3626 { 3627 rdev->desc_nr = -1; 3628 rdev->saved_raid_disk = -1; 3629 rdev->raid_disk = -1; 3630 rdev->flags = 0; 3631 rdev->data_offset = 0; 3632 rdev->new_data_offset = 0; 3633 rdev->sb_events = 0; 3634 rdev->last_read_error = 0; 3635 rdev->sb_loaded = 0; 3636 rdev->bb_page = NULL; 3637 atomic_set(&rdev->nr_pending, 0); 3638 atomic_set(&rdev->read_errors, 0); 3639 atomic_set(&rdev->corrected_errors, 0); 3640 3641 INIT_LIST_HEAD(&rdev->same_set); 3642 init_waitqueue_head(&rdev->blocked_wait); 3643 3644 /* Add space to store bad block list. 3645 * This reserves the space even on arrays where it cannot 3646 * be used - I wonder if that matters 3647 */ 3648 return badblocks_init(&rdev->badblocks, 0); 3649 } 3650 EXPORT_SYMBOL_GPL(md_rdev_init); 3651 /* 3652 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3653 * 3654 * mark the device faulty if: 3655 * 3656 * - the device is nonexistent (zero size) 3657 * - the device has no valid superblock 3658 * 3659 * a faulty rdev _never_ has rdev->sb set. 3660 */ 3661 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3662 { 3663 char b[BDEVNAME_SIZE]; 3664 int err; 3665 struct md_rdev *rdev; 3666 sector_t size; 3667 3668 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3669 if (!rdev) 3670 return ERR_PTR(-ENOMEM); 3671 3672 err = md_rdev_init(rdev); 3673 if (err) 3674 goto abort_free; 3675 err = alloc_disk_sb(rdev); 3676 if (err) 3677 goto abort_free; 3678 3679 err = lock_rdev(rdev, newdev, super_format == -2); 3680 if (err) 3681 goto abort_free; 3682 3683 kobject_init(&rdev->kobj, &rdev_ktype); 3684 3685 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3686 if (!size) { 3687 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3688 bdevname(rdev->bdev,b)); 3689 err = -EINVAL; 3690 goto abort_free; 3691 } 3692 3693 if (super_format >= 0) { 3694 err = super_types[super_format]. 3695 load_super(rdev, NULL, super_minor); 3696 if (err == -EINVAL) { 3697 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3698 bdevname(rdev->bdev,b), 3699 super_format, super_minor); 3700 goto abort_free; 3701 } 3702 if (err < 0) { 3703 pr_warn("md: could not read %s's sb, not importing!\n", 3704 bdevname(rdev->bdev,b)); 3705 goto abort_free; 3706 } 3707 } 3708 3709 return rdev; 3710 3711 abort_free: 3712 if (rdev->bdev) 3713 unlock_rdev(rdev); 3714 md_rdev_clear(rdev); 3715 kfree(rdev); 3716 return ERR_PTR(err); 3717 } 3718 3719 /* 3720 * Check a full RAID array for plausibility 3721 */ 3722 3723 static int analyze_sbs(struct mddev *mddev) 3724 { 3725 int i; 3726 struct md_rdev *rdev, *freshest, *tmp; 3727 char b[BDEVNAME_SIZE]; 3728 3729 freshest = NULL; 3730 rdev_for_each_safe(rdev, tmp, mddev) 3731 switch (super_types[mddev->major_version]. 3732 load_super(rdev, freshest, mddev->minor_version)) { 3733 case 1: 3734 freshest = rdev; 3735 break; 3736 case 0: 3737 break; 3738 default: 3739 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3740 bdevname(rdev->bdev,b)); 3741 md_kick_rdev_from_array(rdev); 3742 } 3743 3744 /* Cannot find a valid fresh disk */ 3745 if (!freshest) { 3746 pr_warn("md: cannot find a valid disk\n"); 3747 return -EINVAL; 3748 } 3749 3750 super_types[mddev->major_version]. 3751 validate_super(mddev, freshest); 3752 3753 i = 0; 3754 rdev_for_each_safe(rdev, tmp, mddev) { 3755 if (mddev->max_disks && 3756 (rdev->desc_nr >= mddev->max_disks || 3757 i > mddev->max_disks)) { 3758 pr_warn("md: %s: %s: only %d devices permitted\n", 3759 mdname(mddev), bdevname(rdev->bdev, b), 3760 mddev->max_disks); 3761 md_kick_rdev_from_array(rdev); 3762 continue; 3763 } 3764 if (rdev != freshest) { 3765 if (super_types[mddev->major_version]. 3766 validate_super(mddev, rdev)) { 3767 pr_warn("md: kicking non-fresh %s from array!\n", 3768 bdevname(rdev->bdev,b)); 3769 md_kick_rdev_from_array(rdev); 3770 continue; 3771 } 3772 } 3773 if (mddev->level == LEVEL_MULTIPATH) { 3774 rdev->desc_nr = i++; 3775 rdev->raid_disk = rdev->desc_nr; 3776 set_bit(In_sync, &rdev->flags); 3777 } else if (rdev->raid_disk >= 3778 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3779 !test_bit(Journal, &rdev->flags)) { 3780 rdev->raid_disk = -1; 3781 clear_bit(In_sync, &rdev->flags); 3782 } 3783 } 3784 3785 return 0; 3786 } 3787 3788 /* Read a fixed-point number. 3789 * Numbers in sysfs attributes should be in "standard" units where 3790 * possible, so time should be in seconds. 3791 * However we internally use a a much smaller unit such as 3792 * milliseconds or jiffies. 3793 * This function takes a decimal number with a possible fractional 3794 * component, and produces an integer which is the result of 3795 * multiplying that number by 10^'scale'. 3796 * all without any floating-point arithmetic. 3797 */ 3798 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3799 { 3800 unsigned long result = 0; 3801 long decimals = -1; 3802 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3803 if (*cp == '.') 3804 decimals = 0; 3805 else if (decimals < scale) { 3806 unsigned int value; 3807 value = *cp - '0'; 3808 result = result * 10 + value; 3809 if (decimals >= 0) 3810 decimals++; 3811 } 3812 cp++; 3813 } 3814 if (*cp == '\n') 3815 cp++; 3816 if (*cp) 3817 return -EINVAL; 3818 if (decimals < 0) 3819 decimals = 0; 3820 *res = result * int_pow(10, scale - decimals); 3821 return 0; 3822 } 3823 3824 static ssize_t 3825 safe_delay_show(struct mddev *mddev, char *page) 3826 { 3827 int msec = (mddev->safemode_delay*1000)/HZ; 3828 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3829 } 3830 static ssize_t 3831 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3832 { 3833 unsigned long msec; 3834 3835 if (mddev_is_clustered(mddev)) { 3836 pr_warn("md: Safemode is disabled for clustered mode\n"); 3837 return -EINVAL; 3838 } 3839 3840 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3841 return -EINVAL; 3842 if (msec == 0) 3843 mddev->safemode_delay = 0; 3844 else { 3845 unsigned long old_delay = mddev->safemode_delay; 3846 unsigned long new_delay = (msec*HZ)/1000; 3847 3848 if (new_delay == 0) 3849 new_delay = 1; 3850 mddev->safemode_delay = new_delay; 3851 if (new_delay < old_delay || old_delay == 0) 3852 mod_timer(&mddev->safemode_timer, jiffies+1); 3853 } 3854 return len; 3855 } 3856 static struct md_sysfs_entry md_safe_delay = 3857 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3858 3859 static ssize_t 3860 level_show(struct mddev *mddev, char *page) 3861 { 3862 struct md_personality *p; 3863 int ret; 3864 spin_lock(&mddev->lock); 3865 p = mddev->pers; 3866 if (p) 3867 ret = sprintf(page, "%s\n", p->name); 3868 else if (mddev->clevel[0]) 3869 ret = sprintf(page, "%s\n", mddev->clevel); 3870 else if (mddev->level != LEVEL_NONE) 3871 ret = sprintf(page, "%d\n", mddev->level); 3872 else 3873 ret = 0; 3874 spin_unlock(&mddev->lock); 3875 return ret; 3876 } 3877 3878 static ssize_t 3879 level_store(struct mddev *mddev, const char *buf, size_t len) 3880 { 3881 char clevel[16]; 3882 ssize_t rv; 3883 size_t slen = len; 3884 struct md_personality *pers, *oldpers; 3885 long level; 3886 void *priv, *oldpriv; 3887 struct md_rdev *rdev; 3888 3889 if (slen == 0 || slen >= sizeof(clevel)) 3890 return -EINVAL; 3891 3892 rv = mddev_lock(mddev); 3893 if (rv) 3894 return rv; 3895 3896 if (mddev->pers == NULL) { 3897 strncpy(mddev->clevel, buf, slen); 3898 if (mddev->clevel[slen-1] == '\n') 3899 slen--; 3900 mddev->clevel[slen] = 0; 3901 mddev->level = LEVEL_NONE; 3902 rv = len; 3903 goto out_unlock; 3904 } 3905 rv = -EROFS; 3906 if (mddev->ro) 3907 goto out_unlock; 3908 3909 /* request to change the personality. Need to ensure: 3910 * - array is not engaged in resync/recovery/reshape 3911 * - old personality can be suspended 3912 * - new personality will access other array. 3913 */ 3914 3915 rv = -EBUSY; 3916 if (mddev->sync_thread || 3917 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3918 mddev->reshape_position != MaxSector || 3919 mddev->sysfs_active) 3920 goto out_unlock; 3921 3922 rv = -EINVAL; 3923 if (!mddev->pers->quiesce) { 3924 pr_warn("md: %s: %s does not support online personality change\n", 3925 mdname(mddev), mddev->pers->name); 3926 goto out_unlock; 3927 } 3928 3929 /* Now find the new personality */ 3930 strncpy(clevel, buf, slen); 3931 if (clevel[slen-1] == '\n') 3932 slen--; 3933 clevel[slen] = 0; 3934 if (kstrtol(clevel, 10, &level)) 3935 level = LEVEL_NONE; 3936 3937 if (request_module("md-%s", clevel) != 0) 3938 request_module("md-level-%s", clevel); 3939 spin_lock(&pers_lock); 3940 pers = find_pers(level, clevel); 3941 if (!pers || !try_module_get(pers->owner)) { 3942 spin_unlock(&pers_lock); 3943 pr_warn("md: personality %s not loaded\n", clevel); 3944 rv = -EINVAL; 3945 goto out_unlock; 3946 } 3947 spin_unlock(&pers_lock); 3948 3949 if (pers == mddev->pers) { 3950 /* Nothing to do! */ 3951 module_put(pers->owner); 3952 rv = len; 3953 goto out_unlock; 3954 } 3955 if (!pers->takeover) { 3956 module_put(pers->owner); 3957 pr_warn("md: %s: %s does not support personality takeover\n", 3958 mdname(mddev), clevel); 3959 rv = -EINVAL; 3960 goto out_unlock; 3961 } 3962 3963 rdev_for_each(rdev, mddev) 3964 rdev->new_raid_disk = rdev->raid_disk; 3965 3966 /* ->takeover must set new_* and/or delta_disks 3967 * if it succeeds, and may set them when it fails. 3968 */ 3969 priv = pers->takeover(mddev); 3970 if (IS_ERR(priv)) { 3971 mddev->new_level = mddev->level; 3972 mddev->new_layout = mddev->layout; 3973 mddev->new_chunk_sectors = mddev->chunk_sectors; 3974 mddev->raid_disks -= mddev->delta_disks; 3975 mddev->delta_disks = 0; 3976 mddev->reshape_backwards = 0; 3977 module_put(pers->owner); 3978 pr_warn("md: %s: %s would not accept array\n", 3979 mdname(mddev), clevel); 3980 rv = PTR_ERR(priv); 3981 goto out_unlock; 3982 } 3983 3984 /* Looks like we have a winner */ 3985 mddev_suspend(mddev); 3986 mddev_detach(mddev); 3987 3988 spin_lock(&mddev->lock); 3989 oldpers = mddev->pers; 3990 oldpriv = mddev->private; 3991 mddev->pers = pers; 3992 mddev->private = priv; 3993 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3994 mddev->level = mddev->new_level; 3995 mddev->layout = mddev->new_layout; 3996 mddev->chunk_sectors = mddev->new_chunk_sectors; 3997 mddev->delta_disks = 0; 3998 mddev->reshape_backwards = 0; 3999 mddev->degraded = 0; 4000 spin_unlock(&mddev->lock); 4001 4002 if (oldpers->sync_request == NULL && 4003 mddev->external) { 4004 /* We are converting from a no-redundancy array 4005 * to a redundancy array and metadata is managed 4006 * externally so we need to be sure that writes 4007 * won't block due to a need to transition 4008 * clean->dirty 4009 * until external management is started. 4010 */ 4011 mddev->in_sync = 0; 4012 mddev->safemode_delay = 0; 4013 mddev->safemode = 0; 4014 } 4015 4016 oldpers->free(mddev, oldpriv); 4017 4018 if (oldpers->sync_request == NULL && 4019 pers->sync_request != NULL) { 4020 /* need to add the md_redundancy_group */ 4021 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4022 pr_warn("md: cannot register extra attributes for %s\n", 4023 mdname(mddev)); 4024 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4025 } 4026 if (oldpers->sync_request != NULL && 4027 pers->sync_request == NULL) { 4028 /* need to remove the md_redundancy_group */ 4029 if (mddev->to_remove == NULL) 4030 mddev->to_remove = &md_redundancy_group; 4031 } 4032 4033 module_put(oldpers->owner); 4034 4035 rdev_for_each(rdev, mddev) { 4036 if (rdev->raid_disk < 0) 4037 continue; 4038 if (rdev->new_raid_disk >= mddev->raid_disks) 4039 rdev->new_raid_disk = -1; 4040 if (rdev->new_raid_disk == rdev->raid_disk) 4041 continue; 4042 sysfs_unlink_rdev(mddev, rdev); 4043 } 4044 rdev_for_each(rdev, mddev) { 4045 if (rdev->raid_disk < 0) 4046 continue; 4047 if (rdev->new_raid_disk == rdev->raid_disk) 4048 continue; 4049 rdev->raid_disk = rdev->new_raid_disk; 4050 if (rdev->raid_disk < 0) 4051 clear_bit(In_sync, &rdev->flags); 4052 else { 4053 if (sysfs_link_rdev(mddev, rdev)) 4054 pr_warn("md: cannot register rd%d for %s after level change\n", 4055 rdev->raid_disk, mdname(mddev)); 4056 } 4057 } 4058 4059 if (pers->sync_request == NULL) { 4060 /* this is now an array without redundancy, so 4061 * it must always be in_sync 4062 */ 4063 mddev->in_sync = 1; 4064 del_timer_sync(&mddev->safemode_timer); 4065 } 4066 blk_set_stacking_limits(&mddev->queue->limits); 4067 pers->run(mddev); 4068 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4069 mddev_resume(mddev); 4070 if (!mddev->thread) 4071 md_update_sb(mddev, 1); 4072 sysfs_notify(&mddev->kobj, NULL, "level"); 4073 md_new_event(mddev); 4074 rv = len; 4075 out_unlock: 4076 mddev_unlock(mddev); 4077 return rv; 4078 } 4079 4080 static struct md_sysfs_entry md_level = 4081 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4082 4083 static ssize_t 4084 layout_show(struct mddev *mddev, char *page) 4085 { 4086 /* just a number, not meaningful for all levels */ 4087 if (mddev->reshape_position != MaxSector && 4088 mddev->layout != mddev->new_layout) 4089 return sprintf(page, "%d (%d)\n", 4090 mddev->new_layout, mddev->layout); 4091 return sprintf(page, "%d\n", mddev->layout); 4092 } 4093 4094 static ssize_t 4095 layout_store(struct mddev *mddev, const char *buf, size_t len) 4096 { 4097 unsigned int n; 4098 int err; 4099 4100 err = kstrtouint(buf, 10, &n); 4101 if (err < 0) 4102 return err; 4103 err = mddev_lock(mddev); 4104 if (err) 4105 return err; 4106 4107 if (mddev->pers) { 4108 if (mddev->pers->check_reshape == NULL) 4109 err = -EBUSY; 4110 else if (mddev->ro) 4111 err = -EROFS; 4112 else { 4113 mddev->new_layout = n; 4114 err = mddev->pers->check_reshape(mddev); 4115 if (err) 4116 mddev->new_layout = mddev->layout; 4117 } 4118 } else { 4119 mddev->new_layout = n; 4120 if (mddev->reshape_position == MaxSector) 4121 mddev->layout = n; 4122 } 4123 mddev_unlock(mddev); 4124 return err ?: len; 4125 } 4126 static struct md_sysfs_entry md_layout = 4127 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4128 4129 static ssize_t 4130 raid_disks_show(struct mddev *mddev, char *page) 4131 { 4132 if (mddev->raid_disks == 0) 4133 return 0; 4134 if (mddev->reshape_position != MaxSector && 4135 mddev->delta_disks != 0) 4136 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4137 mddev->raid_disks - mddev->delta_disks); 4138 return sprintf(page, "%d\n", mddev->raid_disks); 4139 } 4140 4141 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4142 4143 static ssize_t 4144 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4145 { 4146 unsigned int n; 4147 int err; 4148 4149 err = kstrtouint(buf, 10, &n); 4150 if (err < 0) 4151 return err; 4152 4153 err = mddev_lock(mddev); 4154 if (err) 4155 return err; 4156 if (mddev->pers) 4157 err = update_raid_disks(mddev, n); 4158 else if (mddev->reshape_position != MaxSector) { 4159 struct md_rdev *rdev; 4160 int olddisks = mddev->raid_disks - mddev->delta_disks; 4161 4162 err = -EINVAL; 4163 rdev_for_each(rdev, mddev) { 4164 if (olddisks < n && 4165 rdev->data_offset < rdev->new_data_offset) 4166 goto out_unlock; 4167 if (olddisks > n && 4168 rdev->data_offset > rdev->new_data_offset) 4169 goto out_unlock; 4170 } 4171 err = 0; 4172 mddev->delta_disks = n - olddisks; 4173 mddev->raid_disks = n; 4174 mddev->reshape_backwards = (mddev->delta_disks < 0); 4175 } else 4176 mddev->raid_disks = n; 4177 out_unlock: 4178 mddev_unlock(mddev); 4179 return err ? err : len; 4180 } 4181 static struct md_sysfs_entry md_raid_disks = 4182 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4183 4184 static ssize_t 4185 chunk_size_show(struct mddev *mddev, char *page) 4186 { 4187 if (mddev->reshape_position != MaxSector && 4188 mddev->chunk_sectors != mddev->new_chunk_sectors) 4189 return sprintf(page, "%d (%d)\n", 4190 mddev->new_chunk_sectors << 9, 4191 mddev->chunk_sectors << 9); 4192 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4193 } 4194 4195 static ssize_t 4196 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4197 { 4198 unsigned long n; 4199 int err; 4200 4201 err = kstrtoul(buf, 10, &n); 4202 if (err < 0) 4203 return err; 4204 4205 err = mddev_lock(mddev); 4206 if (err) 4207 return err; 4208 if (mddev->pers) { 4209 if (mddev->pers->check_reshape == NULL) 4210 err = -EBUSY; 4211 else if (mddev->ro) 4212 err = -EROFS; 4213 else { 4214 mddev->new_chunk_sectors = n >> 9; 4215 err = mddev->pers->check_reshape(mddev); 4216 if (err) 4217 mddev->new_chunk_sectors = mddev->chunk_sectors; 4218 } 4219 } else { 4220 mddev->new_chunk_sectors = n >> 9; 4221 if (mddev->reshape_position == MaxSector) 4222 mddev->chunk_sectors = n >> 9; 4223 } 4224 mddev_unlock(mddev); 4225 return err ?: len; 4226 } 4227 static struct md_sysfs_entry md_chunk_size = 4228 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4229 4230 static ssize_t 4231 resync_start_show(struct mddev *mddev, char *page) 4232 { 4233 if (mddev->recovery_cp == MaxSector) 4234 return sprintf(page, "none\n"); 4235 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4236 } 4237 4238 static ssize_t 4239 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4240 { 4241 unsigned long long n; 4242 int err; 4243 4244 if (cmd_match(buf, "none")) 4245 n = MaxSector; 4246 else { 4247 err = kstrtoull(buf, 10, &n); 4248 if (err < 0) 4249 return err; 4250 if (n != (sector_t)n) 4251 return -EINVAL; 4252 } 4253 4254 err = mddev_lock(mddev); 4255 if (err) 4256 return err; 4257 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4258 err = -EBUSY; 4259 4260 if (!err) { 4261 mddev->recovery_cp = n; 4262 if (mddev->pers) 4263 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4264 } 4265 mddev_unlock(mddev); 4266 return err ?: len; 4267 } 4268 static struct md_sysfs_entry md_resync_start = 4269 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4270 resync_start_show, resync_start_store); 4271 4272 /* 4273 * The array state can be: 4274 * 4275 * clear 4276 * No devices, no size, no level 4277 * Equivalent to STOP_ARRAY ioctl 4278 * inactive 4279 * May have some settings, but array is not active 4280 * all IO results in error 4281 * When written, doesn't tear down array, but just stops it 4282 * suspended (not supported yet) 4283 * All IO requests will block. The array can be reconfigured. 4284 * Writing this, if accepted, will block until array is quiescent 4285 * readonly 4286 * no resync can happen. no superblocks get written. 4287 * write requests fail 4288 * read-auto 4289 * like readonly, but behaves like 'clean' on a write request. 4290 * 4291 * clean - no pending writes, but otherwise active. 4292 * When written to inactive array, starts without resync 4293 * If a write request arrives then 4294 * if metadata is known, mark 'dirty' and switch to 'active'. 4295 * if not known, block and switch to write-pending 4296 * If written to an active array that has pending writes, then fails. 4297 * active 4298 * fully active: IO and resync can be happening. 4299 * When written to inactive array, starts with resync 4300 * 4301 * write-pending 4302 * clean, but writes are blocked waiting for 'active' to be written. 4303 * 4304 * active-idle 4305 * like active, but no writes have been seen for a while (100msec). 4306 * 4307 * broken 4308 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4309 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4310 * when a member is gone, so this state will at least alert the 4311 * user that something is wrong. 4312 */ 4313 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4314 write_pending, active_idle, broken, bad_word}; 4315 static char *array_states[] = { 4316 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4317 "write-pending", "active-idle", "broken", NULL }; 4318 4319 static int match_word(const char *word, char **list) 4320 { 4321 int n; 4322 for (n=0; list[n]; n++) 4323 if (cmd_match(word, list[n])) 4324 break; 4325 return n; 4326 } 4327 4328 static ssize_t 4329 array_state_show(struct mddev *mddev, char *page) 4330 { 4331 enum array_state st = inactive; 4332 4333 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4334 switch(mddev->ro) { 4335 case 1: 4336 st = readonly; 4337 break; 4338 case 2: 4339 st = read_auto; 4340 break; 4341 case 0: 4342 spin_lock(&mddev->lock); 4343 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4344 st = write_pending; 4345 else if (mddev->in_sync) 4346 st = clean; 4347 else if (mddev->safemode) 4348 st = active_idle; 4349 else 4350 st = active; 4351 spin_unlock(&mddev->lock); 4352 } 4353 4354 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4355 st = broken; 4356 } else { 4357 if (list_empty(&mddev->disks) && 4358 mddev->raid_disks == 0 && 4359 mddev->dev_sectors == 0) 4360 st = clear; 4361 else 4362 st = inactive; 4363 } 4364 return sprintf(page, "%s\n", array_states[st]); 4365 } 4366 4367 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4368 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4369 static int do_md_run(struct mddev *mddev); 4370 static int restart_array(struct mddev *mddev); 4371 4372 static ssize_t 4373 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4374 { 4375 int err = 0; 4376 enum array_state st = match_word(buf, array_states); 4377 4378 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4379 /* don't take reconfig_mutex when toggling between 4380 * clean and active 4381 */ 4382 spin_lock(&mddev->lock); 4383 if (st == active) { 4384 restart_array(mddev); 4385 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4386 md_wakeup_thread(mddev->thread); 4387 wake_up(&mddev->sb_wait); 4388 } else /* st == clean */ { 4389 restart_array(mddev); 4390 if (!set_in_sync(mddev)) 4391 err = -EBUSY; 4392 } 4393 if (!err) 4394 sysfs_notify_dirent_safe(mddev->sysfs_state); 4395 spin_unlock(&mddev->lock); 4396 return err ?: len; 4397 } 4398 err = mddev_lock(mddev); 4399 if (err) 4400 return err; 4401 err = -EINVAL; 4402 switch(st) { 4403 case bad_word: 4404 break; 4405 case clear: 4406 /* stopping an active array */ 4407 err = do_md_stop(mddev, 0, NULL); 4408 break; 4409 case inactive: 4410 /* stopping an active array */ 4411 if (mddev->pers) 4412 err = do_md_stop(mddev, 2, NULL); 4413 else 4414 err = 0; /* already inactive */ 4415 break; 4416 case suspended: 4417 break; /* not supported yet */ 4418 case readonly: 4419 if (mddev->pers) 4420 err = md_set_readonly(mddev, NULL); 4421 else { 4422 mddev->ro = 1; 4423 set_disk_ro(mddev->gendisk, 1); 4424 err = do_md_run(mddev); 4425 } 4426 break; 4427 case read_auto: 4428 if (mddev->pers) { 4429 if (mddev->ro == 0) 4430 err = md_set_readonly(mddev, NULL); 4431 else if (mddev->ro == 1) 4432 err = restart_array(mddev); 4433 if (err == 0) { 4434 mddev->ro = 2; 4435 set_disk_ro(mddev->gendisk, 0); 4436 } 4437 } else { 4438 mddev->ro = 2; 4439 err = do_md_run(mddev); 4440 } 4441 break; 4442 case clean: 4443 if (mddev->pers) { 4444 err = restart_array(mddev); 4445 if (err) 4446 break; 4447 spin_lock(&mddev->lock); 4448 if (!set_in_sync(mddev)) 4449 err = -EBUSY; 4450 spin_unlock(&mddev->lock); 4451 } else 4452 err = -EINVAL; 4453 break; 4454 case active: 4455 if (mddev->pers) { 4456 err = restart_array(mddev); 4457 if (err) 4458 break; 4459 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4460 wake_up(&mddev->sb_wait); 4461 err = 0; 4462 } else { 4463 mddev->ro = 0; 4464 set_disk_ro(mddev->gendisk, 0); 4465 err = do_md_run(mddev); 4466 } 4467 break; 4468 case write_pending: 4469 case active_idle: 4470 case broken: 4471 /* these cannot be set */ 4472 break; 4473 } 4474 4475 if (!err) { 4476 if (mddev->hold_active == UNTIL_IOCTL) 4477 mddev->hold_active = 0; 4478 sysfs_notify_dirent_safe(mddev->sysfs_state); 4479 } 4480 mddev_unlock(mddev); 4481 return err ?: len; 4482 } 4483 static struct md_sysfs_entry md_array_state = 4484 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4485 4486 static ssize_t 4487 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4488 return sprintf(page, "%d\n", 4489 atomic_read(&mddev->max_corr_read_errors)); 4490 } 4491 4492 static ssize_t 4493 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4494 { 4495 unsigned int n; 4496 int rv; 4497 4498 rv = kstrtouint(buf, 10, &n); 4499 if (rv < 0) 4500 return rv; 4501 atomic_set(&mddev->max_corr_read_errors, n); 4502 return len; 4503 } 4504 4505 static struct md_sysfs_entry max_corr_read_errors = 4506 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4507 max_corrected_read_errors_store); 4508 4509 static ssize_t 4510 null_show(struct mddev *mddev, char *page) 4511 { 4512 return -EINVAL; 4513 } 4514 4515 static ssize_t 4516 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4517 { 4518 /* buf must be %d:%d\n? giving major and minor numbers */ 4519 /* The new device is added to the array. 4520 * If the array has a persistent superblock, we read the 4521 * superblock to initialise info and check validity. 4522 * Otherwise, only checking done is that in bind_rdev_to_array, 4523 * which mainly checks size. 4524 */ 4525 char *e; 4526 int major = simple_strtoul(buf, &e, 10); 4527 int minor; 4528 dev_t dev; 4529 struct md_rdev *rdev; 4530 int err; 4531 4532 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4533 return -EINVAL; 4534 minor = simple_strtoul(e+1, &e, 10); 4535 if (*e && *e != '\n') 4536 return -EINVAL; 4537 dev = MKDEV(major, minor); 4538 if (major != MAJOR(dev) || 4539 minor != MINOR(dev)) 4540 return -EOVERFLOW; 4541 4542 flush_workqueue(md_misc_wq); 4543 4544 err = mddev_lock(mddev); 4545 if (err) 4546 return err; 4547 if (mddev->persistent) { 4548 rdev = md_import_device(dev, mddev->major_version, 4549 mddev->minor_version); 4550 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4551 struct md_rdev *rdev0 4552 = list_entry(mddev->disks.next, 4553 struct md_rdev, same_set); 4554 err = super_types[mddev->major_version] 4555 .load_super(rdev, rdev0, mddev->minor_version); 4556 if (err < 0) 4557 goto out; 4558 } 4559 } else if (mddev->external) 4560 rdev = md_import_device(dev, -2, -1); 4561 else 4562 rdev = md_import_device(dev, -1, -1); 4563 4564 if (IS_ERR(rdev)) { 4565 mddev_unlock(mddev); 4566 return PTR_ERR(rdev); 4567 } 4568 err = bind_rdev_to_array(rdev, mddev); 4569 out: 4570 if (err) 4571 export_rdev(rdev); 4572 mddev_unlock(mddev); 4573 if (!err) 4574 md_new_event(mddev); 4575 return err ? err : len; 4576 } 4577 4578 static struct md_sysfs_entry md_new_device = 4579 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4580 4581 static ssize_t 4582 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4583 { 4584 char *end; 4585 unsigned long chunk, end_chunk; 4586 int err; 4587 4588 err = mddev_lock(mddev); 4589 if (err) 4590 return err; 4591 if (!mddev->bitmap) 4592 goto out; 4593 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4594 while (*buf) { 4595 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4596 if (buf == end) break; 4597 if (*end == '-') { /* range */ 4598 buf = end + 1; 4599 end_chunk = simple_strtoul(buf, &end, 0); 4600 if (buf == end) break; 4601 } 4602 if (*end && !isspace(*end)) break; 4603 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4604 buf = skip_spaces(end); 4605 } 4606 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4607 out: 4608 mddev_unlock(mddev); 4609 return len; 4610 } 4611 4612 static struct md_sysfs_entry md_bitmap = 4613 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4614 4615 static ssize_t 4616 size_show(struct mddev *mddev, char *page) 4617 { 4618 return sprintf(page, "%llu\n", 4619 (unsigned long long)mddev->dev_sectors / 2); 4620 } 4621 4622 static int update_size(struct mddev *mddev, sector_t num_sectors); 4623 4624 static ssize_t 4625 size_store(struct mddev *mddev, const char *buf, size_t len) 4626 { 4627 /* If array is inactive, we can reduce the component size, but 4628 * not increase it (except from 0). 4629 * If array is active, we can try an on-line resize 4630 */ 4631 sector_t sectors; 4632 int err = strict_blocks_to_sectors(buf, §ors); 4633 4634 if (err < 0) 4635 return err; 4636 err = mddev_lock(mddev); 4637 if (err) 4638 return err; 4639 if (mddev->pers) { 4640 err = update_size(mddev, sectors); 4641 if (err == 0) 4642 md_update_sb(mddev, 1); 4643 } else { 4644 if (mddev->dev_sectors == 0 || 4645 mddev->dev_sectors > sectors) 4646 mddev->dev_sectors = sectors; 4647 else 4648 err = -ENOSPC; 4649 } 4650 mddev_unlock(mddev); 4651 return err ? err : len; 4652 } 4653 4654 static struct md_sysfs_entry md_size = 4655 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4656 4657 /* Metadata version. 4658 * This is one of 4659 * 'none' for arrays with no metadata (good luck...) 4660 * 'external' for arrays with externally managed metadata, 4661 * or N.M for internally known formats 4662 */ 4663 static ssize_t 4664 metadata_show(struct mddev *mddev, char *page) 4665 { 4666 if (mddev->persistent) 4667 return sprintf(page, "%d.%d\n", 4668 mddev->major_version, mddev->minor_version); 4669 else if (mddev->external) 4670 return sprintf(page, "external:%s\n", mddev->metadata_type); 4671 else 4672 return sprintf(page, "none\n"); 4673 } 4674 4675 static ssize_t 4676 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4677 { 4678 int major, minor; 4679 char *e; 4680 int err; 4681 /* Changing the details of 'external' metadata is 4682 * always permitted. Otherwise there must be 4683 * no devices attached to the array. 4684 */ 4685 4686 err = mddev_lock(mddev); 4687 if (err) 4688 return err; 4689 err = -EBUSY; 4690 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4691 ; 4692 else if (!list_empty(&mddev->disks)) 4693 goto out_unlock; 4694 4695 err = 0; 4696 if (cmd_match(buf, "none")) { 4697 mddev->persistent = 0; 4698 mddev->external = 0; 4699 mddev->major_version = 0; 4700 mddev->minor_version = 90; 4701 goto out_unlock; 4702 } 4703 if (strncmp(buf, "external:", 9) == 0) { 4704 size_t namelen = len-9; 4705 if (namelen >= sizeof(mddev->metadata_type)) 4706 namelen = sizeof(mddev->metadata_type)-1; 4707 strncpy(mddev->metadata_type, buf+9, namelen); 4708 mddev->metadata_type[namelen] = 0; 4709 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4710 mddev->metadata_type[--namelen] = 0; 4711 mddev->persistent = 0; 4712 mddev->external = 1; 4713 mddev->major_version = 0; 4714 mddev->minor_version = 90; 4715 goto out_unlock; 4716 } 4717 major = simple_strtoul(buf, &e, 10); 4718 err = -EINVAL; 4719 if (e==buf || *e != '.') 4720 goto out_unlock; 4721 buf = e+1; 4722 minor = simple_strtoul(buf, &e, 10); 4723 if (e==buf || (*e && *e != '\n') ) 4724 goto out_unlock; 4725 err = -ENOENT; 4726 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4727 goto out_unlock; 4728 mddev->major_version = major; 4729 mddev->minor_version = minor; 4730 mddev->persistent = 1; 4731 mddev->external = 0; 4732 err = 0; 4733 out_unlock: 4734 mddev_unlock(mddev); 4735 return err ?: len; 4736 } 4737 4738 static struct md_sysfs_entry md_metadata = 4739 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4740 4741 static ssize_t 4742 action_show(struct mddev *mddev, char *page) 4743 { 4744 char *type = "idle"; 4745 unsigned long recovery = mddev->recovery; 4746 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4747 type = "frozen"; 4748 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4749 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4750 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4751 type = "reshape"; 4752 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4753 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4754 type = "resync"; 4755 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4756 type = "check"; 4757 else 4758 type = "repair"; 4759 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4760 type = "recover"; 4761 else if (mddev->reshape_position != MaxSector) 4762 type = "reshape"; 4763 } 4764 return sprintf(page, "%s\n", type); 4765 } 4766 4767 static ssize_t 4768 action_store(struct mddev *mddev, const char *page, size_t len) 4769 { 4770 if (!mddev->pers || !mddev->pers->sync_request) 4771 return -EINVAL; 4772 4773 4774 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4775 if (cmd_match(page, "frozen")) 4776 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4777 else 4778 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4779 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4780 mddev_lock(mddev) == 0) { 4781 flush_workqueue(md_misc_wq); 4782 if (mddev->sync_thread) { 4783 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4784 md_reap_sync_thread(mddev); 4785 } 4786 mddev_unlock(mddev); 4787 } 4788 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4789 return -EBUSY; 4790 else if (cmd_match(page, "resync")) 4791 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4792 else if (cmd_match(page, "recover")) { 4793 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4794 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4795 } else if (cmd_match(page, "reshape")) { 4796 int err; 4797 if (mddev->pers->start_reshape == NULL) 4798 return -EINVAL; 4799 err = mddev_lock(mddev); 4800 if (!err) { 4801 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4802 err = -EBUSY; 4803 else { 4804 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4805 err = mddev->pers->start_reshape(mddev); 4806 } 4807 mddev_unlock(mddev); 4808 } 4809 if (err) 4810 return err; 4811 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4812 } else { 4813 if (cmd_match(page, "check")) 4814 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4815 else if (!cmd_match(page, "repair")) 4816 return -EINVAL; 4817 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4818 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4819 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4820 } 4821 if (mddev->ro == 2) { 4822 /* A write to sync_action is enough to justify 4823 * canceling read-auto mode 4824 */ 4825 mddev->ro = 0; 4826 md_wakeup_thread(mddev->sync_thread); 4827 } 4828 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4829 md_wakeup_thread(mddev->thread); 4830 sysfs_notify_dirent_safe(mddev->sysfs_action); 4831 return len; 4832 } 4833 4834 static struct md_sysfs_entry md_scan_mode = 4835 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4836 4837 static ssize_t 4838 last_sync_action_show(struct mddev *mddev, char *page) 4839 { 4840 return sprintf(page, "%s\n", mddev->last_sync_action); 4841 } 4842 4843 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4844 4845 static ssize_t 4846 mismatch_cnt_show(struct mddev *mddev, char *page) 4847 { 4848 return sprintf(page, "%llu\n", 4849 (unsigned long long) 4850 atomic64_read(&mddev->resync_mismatches)); 4851 } 4852 4853 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4854 4855 static ssize_t 4856 sync_min_show(struct mddev *mddev, char *page) 4857 { 4858 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4859 mddev->sync_speed_min ? "local": "system"); 4860 } 4861 4862 static ssize_t 4863 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4864 { 4865 unsigned int min; 4866 int rv; 4867 4868 if (strncmp(buf, "system", 6)==0) { 4869 min = 0; 4870 } else { 4871 rv = kstrtouint(buf, 10, &min); 4872 if (rv < 0) 4873 return rv; 4874 if (min == 0) 4875 return -EINVAL; 4876 } 4877 mddev->sync_speed_min = min; 4878 return len; 4879 } 4880 4881 static struct md_sysfs_entry md_sync_min = 4882 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4883 4884 static ssize_t 4885 sync_max_show(struct mddev *mddev, char *page) 4886 { 4887 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4888 mddev->sync_speed_max ? "local": "system"); 4889 } 4890 4891 static ssize_t 4892 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4893 { 4894 unsigned int max; 4895 int rv; 4896 4897 if (strncmp(buf, "system", 6)==0) { 4898 max = 0; 4899 } else { 4900 rv = kstrtouint(buf, 10, &max); 4901 if (rv < 0) 4902 return rv; 4903 if (max == 0) 4904 return -EINVAL; 4905 } 4906 mddev->sync_speed_max = max; 4907 return len; 4908 } 4909 4910 static struct md_sysfs_entry md_sync_max = 4911 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4912 4913 static ssize_t 4914 degraded_show(struct mddev *mddev, char *page) 4915 { 4916 return sprintf(page, "%d\n", mddev->degraded); 4917 } 4918 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4919 4920 static ssize_t 4921 sync_force_parallel_show(struct mddev *mddev, char *page) 4922 { 4923 return sprintf(page, "%d\n", mddev->parallel_resync); 4924 } 4925 4926 static ssize_t 4927 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4928 { 4929 long n; 4930 4931 if (kstrtol(buf, 10, &n)) 4932 return -EINVAL; 4933 4934 if (n != 0 && n != 1) 4935 return -EINVAL; 4936 4937 mddev->parallel_resync = n; 4938 4939 if (mddev->sync_thread) 4940 wake_up(&resync_wait); 4941 4942 return len; 4943 } 4944 4945 /* force parallel resync, even with shared block devices */ 4946 static struct md_sysfs_entry md_sync_force_parallel = 4947 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4948 sync_force_parallel_show, sync_force_parallel_store); 4949 4950 static ssize_t 4951 sync_speed_show(struct mddev *mddev, char *page) 4952 { 4953 unsigned long resync, dt, db; 4954 if (mddev->curr_resync == 0) 4955 return sprintf(page, "none\n"); 4956 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4957 dt = (jiffies - mddev->resync_mark) / HZ; 4958 if (!dt) dt++; 4959 db = resync - mddev->resync_mark_cnt; 4960 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4961 } 4962 4963 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4964 4965 static ssize_t 4966 sync_completed_show(struct mddev *mddev, char *page) 4967 { 4968 unsigned long long max_sectors, resync; 4969 4970 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4971 return sprintf(page, "none\n"); 4972 4973 if (mddev->curr_resync == 1 || 4974 mddev->curr_resync == 2) 4975 return sprintf(page, "delayed\n"); 4976 4977 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4978 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4979 max_sectors = mddev->resync_max_sectors; 4980 else 4981 max_sectors = mddev->dev_sectors; 4982 4983 resync = mddev->curr_resync_completed; 4984 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4985 } 4986 4987 static struct md_sysfs_entry md_sync_completed = 4988 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4989 4990 static ssize_t 4991 min_sync_show(struct mddev *mddev, char *page) 4992 { 4993 return sprintf(page, "%llu\n", 4994 (unsigned long long)mddev->resync_min); 4995 } 4996 static ssize_t 4997 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4998 { 4999 unsigned long long min; 5000 int err; 5001 5002 if (kstrtoull(buf, 10, &min)) 5003 return -EINVAL; 5004 5005 spin_lock(&mddev->lock); 5006 err = -EINVAL; 5007 if (min > mddev->resync_max) 5008 goto out_unlock; 5009 5010 err = -EBUSY; 5011 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5012 goto out_unlock; 5013 5014 /* Round down to multiple of 4K for safety */ 5015 mddev->resync_min = round_down(min, 8); 5016 err = 0; 5017 5018 out_unlock: 5019 spin_unlock(&mddev->lock); 5020 return err ?: len; 5021 } 5022 5023 static struct md_sysfs_entry md_min_sync = 5024 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5025 5026 static ssize_t 5027 max_sync_show(struct mddev *mddev, char *page) 5028 { 5029 if (mddev->resync_max == MaxSector) 5030 return sprintf(page, "max\n"); 5031 else 5032 return sprintf(page, "%llu\n", 5033 (unsigned long long)mddev->resync_max); 5034 } 5035 static ssize_t 5036 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5037 { 5038 int err; 5039 spin_lock(&mddev->lock); 5040 if (strncmp(buf, "max", 3) == 0) 5041 mddev->resync_max = MaxSector; 5042 else { 5043 unsigned long long max; 5044 int chunk; 5045 5046 err = -EINVAL; 5047 if (kstrtoull(buf, 10, &max)) 5048 goto out_unlock; 5049 if (max < mddev->resync_min) 5050 goto out_unlock; 5051 5052 err = -EBUSY; 5053 if (max < mddev->resync_max && 5054 mddev->ro == 0 && 5055 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5056 goto out_unlock; 5057 5058 /* Must be a multiple of chunk_size */ 5059 chunk = mddev->chunk_sectors; 5060 if (chunk) { 5061 sector_t temp = max; 5062 5063 err = -EINVAL; 5064 if (sector_div(temp, chunk)) 5065 goto out_unlock; 5066 } 5067 mddev->resync_max = max; 5068 } 5069 wake_up(&mddev->recovery_wait); 5070 err = 0; 5071 out_unlock: 5072 spin_unlock(&mddev->lock); 5073 return err ?: len; 5074 } 5075 5076 static struct md_sysfs_entry md_max_sync = 5077 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5078 5079 static ssize_t 5080 suspend_lo_show(struct mddev *mddev, char *page) 5081 { 5082 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5083 } 5084 5085 static ssize_t 5086 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5087 { 5088 unsigned long long new; 5089 int err; 5090 5091 err = kstrtoull(buf, 10, &new); 5092 if (err < 0) 5093 return err; 5094 if (new != (sector_t)new) 5095 return -EINVAL; 5096 5097 err = mddev_lock(mddev); 5098 if (err) 5099 return err; 5100 err = -EINVAL; 5101 if (mddev->pers == NULL || 5102 mddev->pers->quiesce == NULL) 5103 goto unlock; 5104 mddev_suspend(mddev); 5105 mddev->suspend_lo = new; 5106 mddev_resume(mddev); 5107 5108 err = 0; 5109 unlock: 5110 mddev_unlock(mddev); 5111 return err ?: len; 5112 } 5113 static struct md_sysfs_entry md_suspend_lo = 5114 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5115 5116 static ssize_t 5117 suspend_hi_show(struct mddev *mddev, char *page) 5118 { 5119 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5120 } 5121 5122 static ssize_t 5123 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5124 { 5125 unsigned long long new; 5126 int err; 5127 5128 err = kstrtoull(buf, 10, &new); 5129 if (err < 0) 5130 return err; 5131 if (new != (sector_t)new) 5132 return -EINVAL; 5133 5134 err = mddev_lock(mddev); 5135 if (err) 5136 return err; 5137 err = -EINVAL; 5138 if (mddev->pers == NULL) 5139 goto unlock; 5140 5141 mddev_suspend(mddev); 5142 mddev->suspend_hi = new; 5143 mddev_resume(mddev); 5144 5145 err = 0; 5146 unlock: 5147 mddev_unlock(mddev); 5148 return err ?: len; 5149 } 5150 static struct md_sysfs_entry md_suspend_hi = 5151 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5152 5153 static ssize_t 5154 reshape_position_show(struct mddev *mddev, char *page) 5155 { 5156 if (mddev->reshape_position != MaxSector) 5157 return sprintf(page, "%llu\n", 5158 (unsigned long long)mddev->reshape_position); 5159 strcpy(page, "none\n"); 5160 return 5; 5161 } 5162 5163 static ssize_t 5164 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5165 { 5166 struct md_rdev *rdev; 5167 unsigned long long new; 5168 int err; 5169 5170 err = kstrtoull(buf, 10, &new); 5171 if (err < 0) 5172 return err; 5173 if (new != (sector_t)new) 5174 return -EINVAL; 5175 err = mddev_lock(mddev); 5176 if (err) 5177 return err; 5178 err = -EBUSY; 5179 if (mddev->pers) 5180 goto unlock; 5181 mddev->reshape_position = new; 5182 mddev->delta_disks = 0; 5183 mddev->reshape_backwards = 0; 5184 mddev->new_level = mddev->level; 5185 mddev->new_layout = mddev->layout; 5186 mddev->new_chunk_sectors = mddev->chunk_sectors; 5187 rdev_for_each(rdev, mddev) 5188 rdev->new_data_offset = rdev->data_offset; 5189 err = 0; 5190 unlock: 5191 mddev_unlock(mddev); 5192 return err ?: len; 5193 } 5194 5195 static struct md_sysfs_entry md_reshape_position = 5196 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5197 reshape_position_store); 5198 5199 static ssize_t 5200 reshape_direction_show(struct mddev *mddev, char *page) 5201 { 5202 return sprintf(page, "%s\n", 5203 mddev->reshape_backwards ? "backwards" : "forwards"); 5204 } 5205 5206 static ssize_t 5207 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5208 { 5209 int backwards = 0; 5210 int err; 5211 5212 if (cmd_match(buf, "forwards")) 5213 backwards = 0; 5214 else if (cmd_match(buf, "backwards")) 5215 backwards = 1; 5216 else 5217 return -EINVAL; 5218 if (mddev->reshape_backwards == backwards) 5219 return len; 5220 5221 err = mddev_lock(mddev); 5222 if (err) 5223 return err; 5224 /* check if we are allowed to change */ 5225 if (mddev->delta_disks) 5226 err = -EBUSY; 5227 else if (mddev->persistent && 5228 mddev->major_version == 0) 5229 err = -EINVAL; 5230 else 5231 mddev->reshape_backwards = backwards; 5232 mddev_unlock(mddev); 5233 return err ?: len; 5234 } 5235 5236 static struct md_sysfs_entry md_reshape_direction = 5237 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5238 reshape_direction_store); 5239 5240 static ssize_t 5241 array_size_show(struct mddev *mddev, char *page) 5242 { 5243 if (mddev->external_size) 5244 return sprintf(page, "%llu\n", 5245 (unsigned long long)mddev->array_sectors/2); 5246 else 5247 return sprintf(page, "default\n"); 5248 } 5249 5250 static ssize_t 5251 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5252 { 5253 sector_t sectors; 5254 int err; 5255 5256 err = mddev_lock(mddev); 5257 if (err) 5258 return err; 5259 5260 /* cluster raid doesn't support change array_sectors */ 5261 if (mddev_is_clustered(mddev)) { 5262 mddev_unlock(mddev); 5263 return -EINVAL; 5264 } 5265 5266 if (strncmp(buf, "default", 7) == 0) { 5267 if (mddev->pers) 5268 sectors = mddev->pers->size(mddev, 0, 0); 5269 else 5270 sectors = mddev->array_sectors; 5271 5272 mddev->external_size = 0; 5273 } else { 5274 if (strict_blocks_to_sectors(buf, §ors) < 0) 5275 err = -EINVAL; 5276 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5277 err = -E2BIG; 5278 else 5279 mddev->external_size = 1; 5280 } 5281 5282 if (!err) { 5283 mddev->array_sectors = sectors; 5284 if (mddev->pers) { 5285 set_capacity(mddev->gendisk, mddev->array_sectors); 5286 revalidate_disk(mddev->gendisk); 5287 } 5288 } 5289 mddev_unlock(mddev); 5290 return err ?: len; 5291 } 5292 5293 static struct md_sysfs_entry md_array_size = 5294 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5295 array_size_store); 5296 5297 static ssize_t 5298 consistency_policy_show(struct mddev *mddev, char *page) 5299 { 5300 int ret; 5301 5302 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5303 ret = sprintf(page, "journal\n"); 5304 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5305 ret = sprintf(page, "ppl\n"); 5306 } else if (mddev->bitmap) { 5307 ret = sprintf(page, "bitmap\n"); 5308 } else if (mddev->pers) { 5309 if (mddev->pers->sync_request) 5310 ret = sprintf(page, "resync\n"); 5311 else 5312 ret = sprintf(page, "none\n"); 5313 } else { 5314 ret = sprintf(page, "unknown\n"); 5315 } 5316 5317 return ret; 5318 } 5319 5320 static ssize_t 5321 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5322 { 5323 int err = 0; 5324 5325 if (mddev->pers) { 5326 if (mddev->pers->change_consistency_policy) 5327 err = mddev->pers->change_consistency_policy(mddev, buf); 5328 else 5329 err = -EBUSY; 5330 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5331 set_bit(MD_HAS_PPL, &mddev->flags); 5332 } else { 5333 err = -EINVAL; 5334 } 5335 5336 return err ? err : len; 5337 } 5338 5339 static struct md_sysfs_entry md_consistency_policy = 5340 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5341 consistency_policy_store); 5342 5343 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5344 { 5345 return sprintf(page, "%d\n", mddev->fail_last_dev); 5346 } 5347 5348 /* 5349 * Setting fail_last_dev to true to allow last device to be forcibly removed 5350 * from RAID1/RAID10. 5351 */ 5352 static ssize_t 5353 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5354 { 5355 int ret; 5356 bool value; 5357 5358 ret = kstrtobool(buf, &value); 5359 if (ret) 5360 return ret; 5361 5362 if (value != mddev->fail_last_dev) 5363 mddev->fail_last_dev = value; 5364 5365 return len; 5366 } 5367 static struct md_sysfs_entry md_fail_last_dev = 5368 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5369 fail_last_dev_store); 5370 5371 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5372 { 5373 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5374 return sprintf(page, "n/a\n"); 5375 else 5376 return sprintf(page, "%d\n", mddev->serialize_policy); 5377 } 5378 5379 /* 5380 * Setting serialize_policy to true to enforce write IO is not reordered 5381 * for raid1. 5382 */ 5383 static ssize_t 5384 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5385 { 5386 int err; 5387 bool value; 5388 5389 err = kstrtobool(buf, &value); 5390 if (err) 5391 return err; 5392 5393 if (value == mddev->serialize_policy) 5394 return len; 5395 5396 err = mddev_lock(mddev); 5397 if (err) 5398 return err; 5399 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5400 pr_err("md: serialize_policy is only effective for raid1\n"); 5401 err = -EINVAL; 5402 goto unlock; 5403 } 5404 5405 mddev_suspend(mddev); 5406 if (value) 5407 mddev_create_serial_pool(mddev, NULL, true); 5408 else 5409 mddev_destroy_serial_pool(mddev, NULL, true); 5410 mddev->serialize_policy = value; 5411 mddev_resume(mddev); 5412 unlock: 5413 mddev_unlock(mddev); 5414 return err ?: len; 5415 } 5416 5417 static struct md_sysfs_entry md_serialize_policy = 5418 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5419 serialize_policy_store); 5420 5421 5422 static struct attribute *md_default_attrs[] = { 5423 &md_level.attr, 5424 &md_layout.attr, 5425 &md_raid_disks.attr, 5426 &md_chunk_size.attr, 5427 &md_size.attr, 5428 &md_resync_start.attr, 5429 &md_metadata.attr, 5430 &md_new_device.attr, 5431 &md_safe_delay.attr, 5432 &md_array_state.attr, 5433 &md_reshape_position.attr, 5434 &md_reshape_direction.attr, 5435 &md_array_size.attr, 5436 &max_corr_read_errors.attr, 5437 &md_consistency_policy.attr, 5438 &md_fail_last_dev.attr, 5439 &md_serialize_policy.attr, 5440 NULL, 5441 }; 5442 5443 static struct attribute *md_redundancy_attrs[] = { 5444 &md_scan_mode.attr, 5445 &md_last_scan_mode.attr, 5446 &md_mismatches.attr, 5447 &md_sync_min.attr, 5448 &md_sync_max.attr, 5449 &md_sync_speed.attr, 5450 &md_sync_force_parallel.attr, 5451 &md_sync_completed.attr, 5452 &md_min_sync.attr, 5453 &md_max_sync.attr, 5454 &md_suspend_lo.attr, 5455 &md_suspend_hi.attr, 5456 &md_bitmap.attr, 5457 &md_degraded.attr, 5458 NULL, 5459 }; 5460 static struct attribute_group md_redundancy_group = { 5461 .name = NULL, 5462 .attrs = md_redundancy_attrs, 5463 }; 5464 5465 static ssize_t 5466 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5467 { 5468 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5469 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5470 ssize_t rv; 5471 5472 if (!entry->show) 5473 return -EIO; 5474 spin_lock(&all_mddevs_lock); 5475 if (list_empty(&mddev->all_mddevs)) { 5476 spin_unlock(&all_mddevs_lock); 5477 return -EBUSY; 5478 } 5479 mddev_get(mddev); 5480 spin_unlock(&all_mddevs_lock); 5481 5482 rv = entry->show(mddev, page); 5483 mddev_put(mddev); 5484 return rv; 5485 } 5486 5487 static ssize_t 5488 md_attr_store(struct kobject *kobj, struct attribute *attr, 5489 const char *page, size_t length) 5490 { 5491 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5492 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5493 ssize_t rv; 5494 5495 if (!entry->store) 5496 return -EIO; 5497 if (!capable(CAP_SYS_ADMIN)) 5498 return -EACCES; 5499 spin_lock(&all_mddevs_lock); 5500 if (list_empty(&mddev->all_mddevs)) { 5501 spin_unlock(&all_mddevs_lock); 5502 return -EBUSY; 5503 } 5504 mddev_get(mddev); 5505 spin_unlock(&all_mddevs_lock); 5506 rv = entry->store(mddev, page, length); 5507 mddev_put(mddev); 5508 return rv; 5509 } 5510 5511 static void md_free(struct kobject *ko) 5512 { 5513 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5514 5515 if (mddev->sysfs_state) 5516 sysfs_put(mddev->sysfs_state); 5517 5518 if (mddev->gendisk) 5519 del_gendisk(mddev->gendisk); 5520 if (mddev->queue) 5521 blk_cleanup_queue(mddev->queue); 5522 if (mddev->gendisk) 5523 put_disk(mddev->gendisk); 5524 percpu_ref_exit(&mddev->writes_pending); 5525 5526 bioset_exit(&mddev->bio_set); 5527 bioset_exit(&mddev->sync_set); 5528 kfree(mddev); 5529 } 5530 5531 static const struct sysfs_ops md_sysfs_ops = { 5532 .show = md_attr_show, 5533 .store = md_attr_store, 5534 }; 5535 static struct kobj_type md_ktype = { 5536 .release = md_free, 5537 .sysfs_ops = &md_sysfs_ops, 5538 .default_attrs = md_default_attrs, 5539 }; 5540 5541 int mdp_major = 0; 5542 5543 static void mddev_delayed_delete(struct work_struct *ws) 5544 { 5545 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5546 5547 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5548 kobject_del(&mddev->kobj); 5549 kobject_put(&mddev->kobj); 5550 } 5551 5552 static void no_op(struct percpu_ref *r) {} 5553 5554 int mddev_init_writes_pending(struct mddev *mddev) 5555 { 5556 if (mddev->writes_pending.percpu_count_ptr) 5557 return 0; 5558 if (percpu_ref_init(&mddev->writes_pending, no_op, 5559 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5560 return -ENOMEM; 5561 /* We want to start with the refcount at zero */ 5562 percpu_ref_put(&mddev->writes_pending); 5563 return 0; 5564 } 5565 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5566 5567 static int md_alloc(dev_t dev, char *name) 5568 { 5569 /* 5570 * If dev is zero, name is the name of a device to allocate with 5571 * an arbitrary minor number. It will be "md_???" 5572 * If dev is non-zero it must be a device number with a MAJOR of 5573 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5574 * the device is being created by opening a node in /dev. 5575 * If "name" is not NULL, the device is being created by 5576 * writing to /sys/module/md_mod/parameters/new_array. 5577 */ 5578 static DEFINE_MUTEX(disks_mutex); 5579 struct mddev *mddev = mddev_find(dev); 5580 struct gendisk *disk; 5581 int partitioned; 5582 int shift; 5583 int unit; 5584 int error; 5585 5586 if (!mddev) 5587 return -ENODEV; 5588 5589 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5590 shift = partitioned ? MdpMinorShift : 0; 5591 unit = MINOR(mddev->unit) >> shift; 5592 5593 /* wait for any previous instance of this device to be 5594 * completely removed (mddev_delayed_delete). 5595 */ 5596 flush_workqueue(md_misc_wq); 5597 5598 mutex_lock(&disks_mutex); 5599 error = -EEXIST; 5600 if (mddev->gendisk) 5601 goto abort; 5602 5603 if (name && !dev) { 5604 /* Need to ensure that 'name' is not a duplicate. 5605 */ 5606 struct mddev *mddev2; 5607 spin_lock(&all_mddevs_lock); 5608 5609 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5610 if (mddev2->gendisk && 5611 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5612 spin_unlock(&all_mddevs_lock); 5613 goto abort; 5614 } 5615 spin_unlock(&all_mddevs_lock); 5616 } 5617 if (name && dev) 5618 /* 5619 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5620 */ 5621 mddev->hold_active = UNTIL_STOP; 5622 5623 error = -ENOMEM; 5624 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5625 if (!mddev->queue) 5626 goto abort; 5627 mddev->queue->queuedata = mddev; 5628 5629 blk_queue_make_request(mddev->queue, md_make_request); 5630 blk_set_stacking_limits(&mddev->queue->limits); 5631 5632 disk = alloc_disk(1 << shift); 5633 if (!disk) { 5634 blk_cleanup_queue(mddev->queue); 5635 mddev->queue = NULL; 5636 goto abort; 5637 } 5638 disk->major = MAJOR(mddev->unit); 5639 disk->first_minor = unit << shift; 5640 if (name) 5641 strcpy(disk->disk_name, name); 5642 else if (partitioned) 5643 sprintf(disk->disk_name, "md_d%d", unit); 5644 else 5645 sprintf(disk->disk_name, "md%d", unit); 5646 disk->fops = &md_fops; 5647 disk->private_data = mddev; 5648 disk->queue = mddev->queue; 5649 blk_queue_write_cache(mddev->queue, true, true); 5650 /* Allow extended partitions. This makes the 5651 * 'mdp' device redundant, but we can't really 5652 * remove it now. 5653 */ 5654 disk->flags |= GENHD_FL_EXT_DEVT; 5655 mddev->gendisk = disk; 5656 /* As soon as we call add_disk(), another thread could get 5657 * through to md_open, so make sure it doesn't get too far 5658 */ 5659 mutex_lock(&mddev->open_mutex); 5660 add_disk(disk); 5661 5662 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5663 if (error) { 5664 /* This isn't possible, but as kobject_init_and_add is marked 5665 * __must_check, we must do something with the result 5666 */ 5667 pr_debug("md: cannot register %s/md - name in use\n", 5668 disk->disk_name); 5669 error = 0; 5670 } 5671 if (mddev->kobj.sd && 5672 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5673 pr_debug("pointless warning\n"); 5674 mutex_unlock(&mddev->open_mutex); 5675 abort: 5676 mutex_unlock(&disks_mutex); 5677 if (!error && mddev->kobj.sd) { 5678 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5679 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5680 } 5681 mddev_put(mddev); 5682 return error; 5683 } 5684 5685 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5686 { 5687 if (create_on_open) 5688 md_alloc(dev, NULL); 5689 return NULL; 5690 } 5691 5692 static int add_named_array(const char *val, const struct kernel_param *kp) 5693 { 5694 /* 5695 * val must be "md_*" or "mdNNN". 5696 * For "md_*" we allocate an array with a large free minor number, and 5697 * set the name to val. val must not already be an active name. 5698 * For "mdNNN" we allocate an array with the minor number NNN 5699 * which must not already be in use. 5700 */ 5701 int len = strlen(val); 5702 char buf[DISK_NAME_LEN]; 5703 unsigned long devnum; 5704 5705 while (len && val[len-1] == '\n') 5706 len--; 5707 if (len >= DISK_NAME_LEN) 5708 return -E2BIG; 5709 strlcpy(buf, val, len+1); 5710 if (strncmp(buf, "md_", 3) == 0) 5711 return md_alloc(0, buf); 5712 if (strncmp(buf, "md", 2) == 0 && 5713 isdigit(buf[2]) && 5714 kstrtoul(buf+2, 10, &devnum) == 0 && 5715 devnum <= MINORMASK) 5716 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5717 5718 return -EINVAL; 5719 } 5720 5721 static void md_safemode_timeout(struct timer_list *t) 5722 { 5723 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5724 5725 mddev->safemode = 1; 5726 if (mddev->external) 5727 sysfs_notify_dirent_safe(mddev->sysfs_state); 5728 5729 md_wakeup_thread(mddev->thread); 5730 } 5731 5732 static int start_dirty_degraded; 5733 5734 int md_run(struct mddev *mddev) 5735 { 5736 int err; 5737 struct md_rdev *rdev; 5738 struct md_personality *pers; 5739 5740 if (list_empty(&mddev->disks)) 5741 /* cannot run an array with no devices.. */ 5742 return -EINVAL; 5743 5744 if (mddev->pers) 5745 return -EBUSY; 5746 /* Cannot run until previous stop completes properly */ 5747 if (mddev->sysfs_active) 5748 return -EBUSY; 5749 5750 /* 5751 * Analyze all RAID superblock(s) 5752 */ 5753 if (!mddev->raid_disks) { 5754 if (!mddev->persistent) 5755 return -EINVAL; 5756 err = analyze_sbs(mddev); 5757 if (err) 5758 return -EINVAL; 5759 } 5760 5761 if (mddev->level != LEVEL_NONE) 5762 request_module("md-level-%d", mddev->level); 5763 else if (mddev->clevel[0]) 5764 request_module("md-%s", mddev->clevel); 5765 5766 /* 5767 * Drop all container device buffers, from now on 5768 * the only valid external interface is through the md 5769 * device. 5770 */ 5771 mddev->has_superblocks = false; 5772 rdev_for_each(rdev, mddev) { 5773 if (test_bit(Faulty, &rdev->flags)) 5774 continue; 5775 sync_blockdev(rdev->bdev); 5776 invalidate_bdev(rdev->bdev); 5777 if (mddev->ro != 1 && 5778 (bdev_read_only(rdev->bdev) || 5779 bdev_read_only(rdev->meta_bdev))) { 5780 mddev->ro = 1; 5781 if (mddev->gendisk) 5782 set_disk_ro(mddev->gendisk, 1); 5783 } 5784 5785 if (rdev->sb_page) 5786 mddev->has_superblocks = true; 5787 5788 /* perform some consistency tests on the device. 5789 * We don't want the data to overlap the metadata, 5790 * Internal Bitmap issues have been handled elsewhere. 5791 */ 5792 if (rdev->meta_bdev) { 5793 /* Nothing to check */; 5794 } else if (rdev->data_offset < rdev->sb_start) { 5795 if (mddev->dev_sectors && 5796 rdev->data_offset + mddev->dev_sectors 5797 > rdev->sb_start) { 5798 pr_warn("md: %s: data overlaps metadata\n", 5799 mdname(mddev)); 5800 return -EINVAL; 5801 } 5802 } else { 5803 if (rdev->sb_start + rdev->sb_size/512 5804 > rdev->data_offset) { 5805 pr_warn("md: %s: metadata overlaps data\n", 5806 mdname(mddev)); 5807 return -EINVAL; 5808 } 5809 } 5810 sysfs_notify_dirent_safe(rdev->sysfs_state); 5811 } 5812 5813 if (!bioset_initialized(&mddev->bio_set)) { 5814 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5815 if (err) 5816 return err; 5817 } 5818 if (!bioset_initialized(&mddev->sync_set)) { 5819 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5820 if (err) 5821 return err; 5822 } 5823 5824 spin_lock(&pers_lock); 5825 pers = find_pers(mddev->level, mddev->clevel); 5826 if (!pers || !try_module_get(pers->owner)) { 5827 spin_unlock(&pers_lock); 5828 if (mddev->level != LEVEL_NONE) 5829 pr_warn("md: personality for level %d is not loaded!\n", 5830 mddev->level); 5831 else 5832 pr_warn("md: personality for level %s is not loaded!\n", 5833 mddev->clevel); 5834 err = -EINVAL; 5835 goto abort; 5836 } 5837 spin_unlock(&pers_lock); 5838 if (mddev->level != pers->level) { 5839 mddev->level = pers->level; 5840 mddev->new_level = pers->level; 5841 } 5842 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5843 5844 if (mddev->reshape_position != MaxSector && 5845 pers->start_reshape == NULL) { 5846 /* This personality cannot handle reshaping... */ 5847 module_put(pers->owner); 5848 err = -EINVAL; 5849 goto abort; 5850 } 5851 5852 if (pers->sync_request) { 5853 /* Warn if this is a potentially silly 5854 * configuration. 5855 */ 5856 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5857 struct md_rdev *rdev2; 5858 int warned = 0; 5859 5860 rdev_for_each(rdev, mddev) 5861 rdev_for_each(rdev2, mddev) { 5862 if (rdev < rdev2 && 5863 rdev->bdev->bd_contains == 5864 rdev2->bdev->bd_contains) { 5865 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5866 mdname(mddev), 5867 bdevname(rdev->bdev,b), 5868 bdevname(rdev2->bdev,b2)); 5869 warned = 1; 5870 } 5871 } 5872 5873 if (warned) 5874 pr_warn("True protection against single-disk failure might be compromised.\n"); 5875 } 5876 5877 mddev->recovery = 0; 5878 /* may be over-ridden by personality */ 5879 mddev->resync_max_sectors = mddev->dev_sectors; 5880 5881 mddev->ok_start_degraded = start_dirty_degraded; 5882 5883 if (start_readonly && mddev->ro == 0) 5884 mddev->ro = 2; /* read-only, but switch on first write */ 5885 5886 err = pers->run(mddev); 5887 if (err) 5888 pr_warn("md: pers->run() failed ...\n"); 5889 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5890 WARN_ONCE(!mddev->external_size, 5891 "%s: default size too small, but 'external_size' not in effect?\n", 5892 __func__); 5893 pr_warn("md: invalid array_size %llu > default size %llu\n", 5894 (unsigned long long)mddev->array_sectors / 2, 5895 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5896 err = -EINVAL; 5897 } 5898 if (err == 0 && pers->sync_request && 5899 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5900 struct bitmap *bitmap; 5901 5902 bitmap = md_bitmap_create(mddev, -1); 5903 if (IS_ERR(bitmap)) { 5904 err = PTR_ERR(bitmap); 5905 pr_warn("%s: failed to create bitmap (%d)\n", 5906 mdname(mddev), err); 5907 } else 5908 mddev->bitmap = bitmap; 5909 5910 } 5911 if (err) 5912 goto bitmap_abort; 5913 5914 if (mddev->bitmap_info.max_write_behind > 0) { 5915 bool create_pool = false; 5916 5917 rdev_for_each(rdev, mddev) { 5918 if (test_bit(WriteMostly, &rdev->flags) && 5919 rdev_init_serial(rdev)) 5920 create_pool = true; 5921 } 5922 if (create_pool && mddev->serial_info_pool == NULL) { 5923 mddev->serial_info_pool = 5924 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5925 sizeof(struct serial_info)); 5926 if (!mddev->serial_info_pool) { 5927 err = -ENOMEM; 5928 goto bitmap_abort; 5929 } 5930 } 5931 } 5932 5933 if (mddev->queue) { 5934 bool nonrot = true; 5935 5936 rdev_for_each(rdev, mddev) { 5937 if (rdev->raid_disk >= 0 && 5938 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5939 nonrot = false; 5940 break; 5941 } 5942 } 5943 if (mddev->degraded) 5944 nonrot = false; 5945 if (nonrot) 5946 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5947 else 5948 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5949 mddev->queue->backing_dev_info->congested_data = mddev; 5950 mddev->queue->backing_dev_info->congested_fn = md_congested; 5951 } 5952 if (pers->sync_request) { 5953 if (mddev->kobj.sd && 5954 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5955 pr_warn("md: cannot register extra attributes for %s\n", 5956 mdname(mddev)); 5957 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5958 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5959 mddev->ro = 0; 5960 5961 atomic_set(&mddev->max_corr_read_errors, 5962 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5963 mddev->safemode = 0; 5964 if (mddev_is_clustered(mddev)) 5965 mddev->safemode_delay = 0; 5966 else 5967 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5968 mddev->in_sync = 1; 5969 smp_wmb(); 5970 spin_lock(&mddev->lock); 5971 mddev->pers = pers; 5972 spin_unlock(&mddev->lock); 5973 rdev_for_each(rdev, mddev) 5974 if (rdev->raid_disk >= 0) 5975 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 5976 5977 if (mddev->degraded && !mddev->ro) 5978 /* This ensures that recovering status is reported immediately 5979 * via sysfs - until a lack of spares is confirmed. 5980 */ 5981 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5982 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5983 5984 if (mddev->sb_flags) 5985 md_update_sb(mddev, 0); 5986 5987 md_new_event(mddev); 5988 return 0; 5989 5990 bitmap_abort: 5991 mddev_detach(mddev); 5992 if (mddev->private) 5993 pers->free(mddev, mddev->private); 5994 mddev->private = NULL; 5995 module_put(pers->owner); 5996 md_bitmap_destroy(mddev); 5997 abort: 5998 bioset_exit(&mddev->bio_set); 5999 bioset_exit(&mddev->sync_set); 6000 return err; 6001 } 6002 EXPORT_SYMBOL_GPL(md_run); 6003 6004 static int do_md_run(struct mddev *mddev) 6005 { 6006 int err; 6007 6008 set_bit(MD_NOT_READY, &mddev->flags); 6009 err = md_run(mddev); 6010 if (err) 6011 goto out; 6012 err = md_bitmap_load(mddev); 6013 if (err) { 6014 md_bitmap_destroy(mddev); 6015 goto out; 6016 } 6017 6018 if (mddev_is_clustered(mddev)) 6019 md_allow_write(mddev); 6020 6021 /* run start up tasks that require md_thread */ 6022 md_start(mddev); 6023 6024 md_wakeup_thread(mddev->thread); 6025 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6026 6027 set_capacity(mddev->gendisk, mddev->array_sectors); 6028 revalidate_disk(mddev->gendisk); 6029 clear_bit(MD_NOT_READY, &mddev->flags); 6030 mddev->changed = 1; 6031 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6032 sysfs_notify_dirent_safe(mddev->sysfs_state); 6033 sysfs_notify_dirent_safe(mddev->sysfs_action); 6034 sysfs_notify(&mddev->kobj, NULL, "degraded"); 6035 out: 6036 clear_bit(MD_NOT_READY, &mddev->flags); 6037 return err; 6038 } 6039 6040 int md_start(struct mddev *mddev) 6041 { 6042 int ret = 0; 6043 6044 if (mddev->pers->start) { 6045 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6046 md_wakeup_thread(mddev->thread); 6047 ret = mddev->pers->start(mddev); 6048 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6049 md_wakeup_thread(mddev->sync_thread); 6050 } 6051 return ret; 6052 } 6053 EXPORT_SYMBOL_GPL(md_start); 6054 6055 static int restart_array(struct mddev *mddev) 6056 { 6057 struct gendisk *disk = mddev->gendisk; 6058 struct md_rdev *rdev; 6059 bool has_journal = false; 6060 bool has_readonly = false; 6061 6062 /* Complain if it has no devices */ 6063 if (list_empty(&mddev->disks)) 6064 return -ENXIO; 6065 if (!mddev->pers) 6066 return -EINVAL; 6067 if (!mddev->ro) 6068 return -EBUSY; 6069 6070 rcu_read_lock(); 6071 rdev_for_each_rcu(rdev, mddev) { 6072 if (test_bit(Journal, &rdev->flags) && 6073 !test_bit(Faulty, &rdev->flags)) 6074 has_journal = true; 6075 if (bdev_read_only(rdev->bdev)) 6076 has_readonly = true; 6077 } 6078 rcu_read_unlock(); 6079 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6080 /* Don't restart rw with journal missing/faulty */ 6081 return -EINVAL; 6082 if (has_readonly) 6083 return -EROFS; 6084 6085 mddev->safemode = 0; 6086 mddev->ro = 0; 6087 set_disk_ro(disk, 0); 6088 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6089 /* Kick recovery or resync if necessary */ 6090 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6091 md_wakeup_thread(mddev->thread); 6092 md_wakeup_thread(mddev->sync_thread); 6093 sysfs_notify_dirent_safe(mddev->sysfs_state); 6094 return 0; 6095 } 6096 6097 static void md_clean(struct mddev *mddev) 6098 { 6099 mddev->array_sectors = 0; 6100 mddev->external_size = 0; 6101 mddev->dev_sectors = 0; 6102 mddev->raid_disks = 0; 6103 mddev->recovery_cp = 0; 6104 mddev->resync_min = 0; 6105 mddev->resync_max = MaxSector; 6106 mddev->reshape_position = MaxSector; 6107 mddev->external = 0; 6108 mddev->persistent = 0; 6109 mddev->level = LEVEL_NONE; 6110 mddev->clevel[0] = 0; 6111 mddev->flags = 0; 6112 mddev->sb_flags = 0; 6113 mddev->ro = 0; 6114 mddev->metadata_type[0] = 0; 6115 mddev->chunk_sectors = 0; 6116 mddev->ctime = mddev->utime = 0; 6117 mddev->layout = 0; 6118 mddev->max_disks = 0; 6119 mddev->events = 0; 6120 mddev->can_decrease_events = 0; 6121 mddev->delta_disks = 0; 6122 mddev->reshape_backwards = 0; 6123 mddev->new_level = LEVEL_NONE; 6124 mddev->new_layout = 0; 6125 mddev->new_chunk_sectors = 0; 6126 mddev->curr_resync = 0; 6127 atomic64_set(&mddev->resync_mismatches, 0); 6128 mddev->suspend_lo = mddev->suspend_hi = 0; 6129 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6130 mddev->recovery = 0; 6131 mddev->in_sync = 0; 6132 mddev->changed = 0; 6133 mddev->degraded = 0; 6134 mddev->safemode = 0; 6135 mddev->private = NULL; 6136 mddev->cluster_info = NULL; 6137 mddev->bitmap_info.offset = 0; 6138 mddev->bitmap_info.default_offset = 0; 6139 mddev->bitmap_info.default_space = 0; 6140 mddev->bitmap_info.chunksize = 0; 6141 mddev->bitmap_info.daemon_sleep = 0; 6142 mddev->bitmap_info.max_write_behind = 0; 6143 mddev->bitmap_info.nodes = 0; 6144 } 6145 6146 static void __md_stop_writes(struct mddev *mddev) 6147 { 6148 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6149 flush_workqueue(md_misc_wq); 6150 if (mddev->sync_thread) { 6151 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6152 md_reap_sync_thread(mddev); 6153 } 6154 6155 del_timer_sync(&mddev->safemode_timer); 6156 6157 if (mddev->pers && mddev->pers->quiesce) { 6158 mddev->pers->quiesce(mddev, 1); 6159 mddev->pers->quiesce(mddev, 0); 6160 } 6161 md_bitmap_flush(mddev); 6162 6163 if (mddev->ro == 0 && 6164 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6165 mddev->sb_flags)) { 6166 /* mark array as shutdown cleanly */ 6167 if (!mddev_is_clustered(mddev)) 6168 mddev->in_sync = 1; 6169 md_update_sb(mddev, 1); 6170 } 6171 /* disable policy to guarantee rdevs free resources for serialization */ 6172 mddev->serialize_policy = 0; 6173 mddev_destroy_serial_pool(mddev, NULL, true); 6174 } 6175 6176 void md_stop_writes(struct mddev *mddev) 6177 { 6178 mddev_lock_nointr(mddev); 6179 __md_stop_writes(mddev); 6180 mddev_unlock(mddev); 6181 } 6182 EXPORT_SYMBOL_GPL(md_stop_writes); 6183 6184 static void mddev_detach(struct mddev *mddev) 6185 { 6186 md_bitmap_wait_behind_writes(mddev); 6187 if (mddev->pers && mddev->pers->quiesce) { 6188 mddev->pers->quiesce(mddev, 1); 6189 mddev->pers->quiesce(mddev, 0); 6190 } 6191 md_unregister_thread(&mddev->thread); 6192 if (mddev->queue) 6193 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6194 } 6195 6196 static void __md_stop(struct mddev *mddev) 6197 { 6198 struct md_personality *pers = mddev->pers; 6199 md_bitmap_destroy(mddev); 6200 mddev_detach(mddev); 6201 /* Ensure ->event_work is done */ 6202 flush_workqueue(md_misc_wq); 6203 spin_lock(&mddev->lock); 6204 mddev->pers = NULL; 6205 spin_unlock(&mddev->lock); 6206 pers->free(mddev, mddev->private); 6207 mddev->private = NULL; 6208 if (pers->sync_request && mddev->to_remove == NULL) 6209 mddev->to_remove = &md_redundancy_group; 6210 module_put(pers->owner); 6211 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6212 } 6213 6214 void md_stop(struct mddev *mddev) 6215 { 6216 /* stop the array and free an attached data structures. 6217 * This is called from dm-raid 6218 */ 6219 __md_stop(mddev); 6220 bioset_exit(&mddev->bio_set); 6221 bioset_exit(&mddev->sync_set); 6222 } 6223 6224 EXPORT_SYMBOL_GPL(md_stop); 6225 6226 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6227 { 6228 int err = 0; 6229 int did_freeze = 0; 6230 6231 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6232 did_freeze = 1; 6233 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6234 md_wakeup_thread(mddev->thread); 6235 } 6236 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6237 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6238 if (mddev->sync_thread) 6239 /* Thread might be blocked waiting for metadata update 6240 * which will now never happen */ 6241 wake_up_process(mddev->sync_thread->tsk); 6242 6243 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6244 return -EBUSY; 6245 mddev_unlock(mddev); 6246 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6247 &mddev->recovery)); 6248 wait_event(mddev->sb_wait, 6249 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6250 mddev_lock_nointr(mddev); 6251 6252 mutex_lock(&mddev->open_mutex); 6253 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6254 mddev->sync_thread || 6255 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6256 pr_warn("md: %s still in use.\n",mdname(mddev)); 6257 if (did_freeze) { 6258 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6259 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6260 md_wakeup_thread(mddev->thread); 6261 } 6262 err = -EBUSY; 6263 goto out; 6264 } 6265 if (mddev->pers) { 6266 __md_stop_writes(mddev); 6267 6268 err = -ENXIO; 6269 if (mddev->ro==1) 6270 goto out; 6271 mddev->ro = 1; 6272 set_disk_ro(mddev->gendisk, 1); 6273 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6274 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6275 md_wakeup_thread(mddev->thread); 6276 sysfs_notify_dirent_safe(mddev->sysfs_state); 6277 err = 0; 6278 } 6279 out: 6280 mutex_unlock(&mddev->open_mutex); 6281 return err; 6282 } 6283 6284 /* mode: 6285 * 0 - completely stop and dis-assemble array 6286 * 2 - stop but do not disassemble array 6287 */ 6288 static int do_md_stop(struct mddev *mddev, int mode, 6289 struct block_device *bdev) 6290 { 6291 struct gendisk *disk = mddev->gendisk; 6292 struct md_rdev *rdev; 6293 int did_freeze = 0; 6294 6295 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6296 did_freeze = 1; 6297 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6298 md_wakeup_thread(mddev->thread); 6299 } 6300 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6301 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6302 if (mddev->sync_thread) 6303 /* Thread might be blocked waiting for metadata update 6304 * which will now never happen */ 6305 wake_up_process(mddev->sync_thread->tsk); 6306 6307 mddev_unlock(mddev); 6308 wait_event(resync_wait, (mddev->sync_thread == NULL && 6309 !test_bit(MD_RECOVERY_RUNNING, 6310 &mddev->recovery))); 6311 mddev_lock_nointr(mddev); 6312 6313 mutex_lock(&mddev->open_mutex); 6314 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6315 mddev->sysfs_active || 6316 mddev->sync_thread || 6317 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6318 pr_warn("md: %s still in use.\n",mdname(mddev)); 6319 mutex_unlock(&mddev->open_mutex); 6320 if (did_freeze) { 6321 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6322 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6323 md_wakeup_thread(mddev->thread); 6324 } 6325 return -EBUSY; 6326 } 6327 if (mddev->pers) { 6328 if (mddev->ro) 6329 set_disk_ro(disk, 0); 6330 6331 __md_stop_writes(mddev); 6332 __md_stop(mddev); 6333 mddev->queue->backing_dev_info->congested_fn = NULL; 6334 6335 /* tell userspace to handle 'inactive' */ 6336 sysfs_notify_dirent_safe(mddev->sysfs_state); 6337 6338 rdev_for_each(rdev, mddev) 6339 if (rdev->raid_disk >= 0) 6340 sysfs_unlink_rdev(mddev, rdev); 6341 6342 set_capacity(disk, 0); 6343 mutex_unlock(&mddev->open_mutex); 6344 mddev->changed = 1; 6345 revalidate_disk(disk); 6346 6347 if (mddev->ro) 6348 mddev->ro = 0; 6349 } else 6350 mutex_unlock(&mddev->open_mutex); 6351 /* 6352 * Free resources if final stop 6353 */ 6354 if (mode == 0) { 6355 pr_info("md: %s stopped.\n", mdname(mddev)); 6356 6357 if (mddev->bitmap_info.file) { 6358 struct file *f = mddev->bitmap_info.file; 6359 spin_lock(&mddev->lock); 6360 mddev->bitmap_info.file = NULL; 6361 spin_unlock(&mddev->lock); 6362 fput(f); 6363 } 6364 mddev->bitmap_info.offset = 0; 6365 6366 export_array(mddev); 6367 6368 md_clean(mddev); 6369 if (mddev->hold_active == UNTIL_STOP) 6370 mddev->hold_active = 0; 6371 } 6372 md_new_event(mddev); 6373 sysfs_notify_dirent_safe(mddev->sysfs_state); 6374 return 0; 6375 } 6376 6377 #ifndef MODULE 6378 static void autorun_array(struct mddev *mddev) 6379 { 6380 struct md_rdev *rdev; 6381 int err; 6382 6383 if (list_empty(&mddev->disks)) 6384 return; 6385 6386 pr_info("md: running: "); 6387 6388 rdev_for_each(rdev, mddev) { 6389 char b[BDEVNAME_SIZE]; 6390 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6391 } 6392 pr_cont("\n"); 6393 6394 err = do_md_run(mddev); 6395 if (err) { 6396 pr_warn("md: do_md_run() returned %d\n", err); 6397 do_md_stop(mddev, 0, NULL); 6398 } 6399 } 6400 6401 /* 6402 * lets try to run arrays based on all disks that have arrived 6403 * until now. (those are in pending_raid_disks) 6404 * 6405 * the method: pick the first pending disk, collect all disks with 6406 * the same UUID, remove all from the pending list and put them into 6407 * the 'same_array' list. Then order this list based on superblock 6408 * update time (freshest comes first), kick out 'old' disks and 6409 * compare superblocks. If everything's fine then run it. 6410 * 6411 * If "unit" is allocated, then bump its reference count 6412 */ 6413 static void autorun_devices(int part) 6414 { 6415 struct md_rdev *rdev0, *rdev, *tmp; 6416 struct mddev *mddev; 6417 char b[BDEVNAME_SIZE]; 6418 6419 pr_info("md: autorun ...\n"); 6420 while (!list_empty(&pending_raid_disks)) { 6421 int unit; 6422 dev_t dev; 6423 LIST_HEAD(candidates); 6424 rdev0 = list_entry(pending_raid_disks.next, 6425 struct md_rdev, same_set); 6426 6427 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6428 INIT_LIST_HEAD(&candidates); 6429 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6430 if (super_90_load(rdev, rdev0, 0) >= 0) { 6431 pr_debug("md: adding %s ...\n", 6432 bdevname(rdev->bdev,b)); 6433 list_move(&rdev->same_set, &candidates); 6434 } 6435 /* 6436 * now we have a set of devices, with all of them having 6437 * mostly sane superblocks. It's time to allocate the 6438 * mddev. 6439 */ 6440 if (part) { 6441 dev = MKDEV(mdp_major, 6442 rdev0->preferred_minor << MdpMinorShift); 6443 unit = MINOR(dev) >> MdpMinorShift; 6444 } else { 6445 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6446 unit = MINOR(dev); 6447 } 6448 if (rdev0->preferred_minor != unit) { 6449 pr_warn("md: unit number in %s is bad: %d\n", 6450 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6451 break; 6452 } 6453 6454 md_probe(dev, NULL, NULL); 6455 mddev = mddev_find(dev); 6456 if (!mddev || !mddev->gendisk) { 6457 if (mddev) 6458 mddev_put(mddev); 6459 break; 6460 } 6461 if (mddev_lock(mddev)) 6462 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6463 else if (mddev->raid_disks || mddev->major_version 6464 || !list_empty(&mddev->disks)) { 6465 pr_warn("md: %s already running, cannot run %s\n", 6466 mdname(mddev), bdevname(rdev0->bdev,b)); 6467 mddev_unlock(mddev); 6468 } else { 6469 pr_debug("md: created %s\n", mdname(mddev)); 6470 mddev->persistent = 1; 6471 rdev_for_each_list(rdev, tmp, &candidates) { 6472 list_del_init(&rdev->same_set); 6473 if (bind_rdev_to_array(rdev, mddev)) 6474 export_rdev(rdev); 6475 } 6476 autorun_array(mddev); 6477 mddev_unlock(mddev); 6478 } 6479 /* on success, candidates will be empty, on error 6480 * it won't... 6481 */ 6482 rdev_for_each_list(rdev, tmp, &candidates) { 6483 list_del_init(&rdev->same_set); 6484 export_rdev(rdev); 6485 } 6486 mddev_put(mddev); 6487 } 6488 pr_info("md: ... autorun DONE.\n"); 6489 } 6490 #endif /* !MODULE */ 6491 6492 static int get_version(void __user *arg) 6493 { 6494 mdu_version_t ver; 6495 6496 ver.major = MD_MAJOR_VERSION; 6497 ver.minor = MD_MINOR_VERSION; 6498 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6499 6500 if (copy_to_user(arg, &ver, sizeof(ver))) 6501 return -EFAULT; 6502 6503 return 0; 6504 } 6505 6506 static int get_array_info(struct mddev *mddev, void __user *arg) 6507 { 6508 mdu_array_info_t info; 6509 int nr,working,insync,failed,spare; 6510 struct md_rdev *rdev; 6511 6512 nr = working = insync = failed = spare = 0; 6513 rcu_read_lock(); 6514 rdev_for_each_rcu(rdev, mddev) { 6515 nr++; 6516 if (test_bit(Faulty, &rdev->flags)) 6517 failed++; 6518 else { 6519 working++; 6520 if (test_bit(In_sync, &rdev->flags)) 6521 insync++; 6522 else if (test_bit(Journal, &rdev->flags)) 6523 /* TODO: add journal count to md_u.h */ 6524 ; 6525 else 6526 spare++; 6527 } 6528 } 6529 rcu_read_unlock(); 6530 6531 info.major_version = mddev->major_version; 6532 info.minor_version = mddev->minor_version; 6533 info.patch_version = MD_PATCHLEVEL_VERSION; 6534 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6535 info.level = mddev->level; 6536 info.size = mddev->dev_sectors / 2; 6537 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6538 info.size = -1; 6539 info.nr_disks = nr; 6540 info.raid_disks = mddev->raid_disks; 6541 info.md_minor = mddev->md_minor; 6542 info.not_persistent= !mddev->persistent; 6543 6544 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6545 info.state = 0; 6546 if (mddev->in_sync) 6547 info.state = (1<<MD_SB_CLEAN); 6548 if (mddev->bitmap && mddev->bitmap_info.offset) 6549 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6550 if (mddev_is_clustered(mddev)) 6551 info.state |= (1<<MD_SB_CLUSTERED); 6552 info.active_disks = insync; 6553 info.working_disks = working; 6554 info.failed_disks = failed; 6555 info.spare_disks = spare; 6556 6557 info.layout = mddev->layout; 6558 info.chunk_size = mddev->chunk_sectors << 9; 6559 6560 if (copy_to_user(arg, &info, sizeof(info))) 6561 return -EFAULT; 6562 6563 return 0; 6564 } 6565 6566 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6567 { 6568 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6569 char *ptr; 6570 int err; 6571 6572 file = kzalloc(sizeof(*file), GFP_NOIO); 6573 if (!file) 6574 return -ENOMEM; 6575 6576 err = 0; 6577 spin_lock(&mddev->lock); 6578 /* bitmap enabled */ 6579 if (mddev->bitmap_info.file) { 6580 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6581 sizeof(file->pathname)); 6582 if (IS_ERR(ptr)) 6583 err = PTR_ERR(ptr); 6584 else 6585 memmove(file->pathname, ptr, 6586 sizeof(file->pathname)-(ptr-file->pathname)); 6587 } 6588 spin_unlock(&mddev->lock); 6589 6590 if (err == 0 && 6591 copy_to_user(arg, file, sizeof(*file))) 6592 err = -EFAULT; 6593 6594 kfree(file); 6595 return err; 6596 } 6597 6598 static int get_disk_info(struct mddev *mddev, void __user * arg) 6599 { 6600 mdu_disk_info_t info; 6601 struct md_rdev *rdev; 6602 6603 if (copy_from_user(&info, arg, sizeof(info))) 6604 return -EFAULT; 6605 6606 rcu_read_lock(); 6607 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6608 if (rdev) { 6609 info.major = MAJOR(rdev->bdev->bd_dev); 6610 info.minor = MINOR(rdev->bdev->bd_dev); 6611 info.raid_disk = rdev->raid_disk; 6612 info.state = 0; 6613 if (test_bit(Faulty, &rdev->flags)) 6614 info.state |= (1<<MD_DISK_FAULTY); 6615 else if (test_bit(In_sync, &rdev->flags)) { 6616 info.state |= (1<<MD_DISK_ACTIVE); 6617 info.state |= (1<<MD_DISK_SYNC); 6618 } 6619 if (test_bit(Journal, &rdev->flags)) 6620 info.state |= (1<<MD_DISK_JOURNAL); 6621 if (test_bit(WriteMostly, &rdev->flags)) 6622 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6623 if (test_bit(FailFast, &rdev->flags)) 6624 info.state |= (1<<MD_DISK_FAILFAST); 6625 } else { 6626 info.major = info.minor = 0; 6627 info.raid_disk = -1; 6628 info.state = (1<<MD_DISK_REMOVED); 6629 } 6630 rcu_read_unlock(); 6631 6632 if (copy_to_user(arg, &info, sizeof(info))) 6633 return -EFAULT; 6634 6635 return 0; 6636 } 6637 6638 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6639 { 6640 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6641 struct md_rdev *rdev; 6642 dev_t dev = MKDEV(info->major,info->minor); 6643 6644 if (mddev_is_clustered(mddev) && 6645 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6646 pr_warn("%s: Cannot add to clustered mddev.\n", 6647 mdname(mddev)); 6648 return -EINVAL; 6649 } 6650 6651 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6652 return -EOVERFLOW; 6653 6654 if (!mddev->raid_disks) { 6655 int err; 6656 /* expecting a device which has a superblock */ 6657 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6658 if (IS_ERR(rdev)) { 6659 pr_warn("md: md_import_device returned %ld\n", 6660 PTR_ERR(rdev)); 6661 return PTR_ERR(rdev); 6662 } 6663 if (!list_empty(&mddev->disks)) { 6664 struct md_rdev *rdev0 6665 = list_entry(mddev->disks.next, 6666 struct md_rdev, same_set); 6667 err = super_types[mddev->major_version] 6668 .load_super(rdev, rdev0, mddev->minor_version); 6669 if (err < 0) { 6670 pr_warn("md: %s has different UUID to %s\n", 6671 bdevname(rdev->bdev,b), 6672 bdevname(rdev0->bdev,b2)); 6673 export_rdev(rdev); 6674 return -EINVAL; 6675 } 6676 } 6677 err = bind_rdev_to_array(rdev, mddev); 6678 if (err) 6679 export_rdev(rdev); 6680 return err; 6681 } 6682 6683 /* 6684 * add_new_disk can be used once the array is assembled 6685 * to add "hot spares". They must already have a superblock 6686 * written 6687 */ 6688 if (mddev->pers) { 6689 int err; 6690 if (!mddev->pers->hot_add_disk) { 6691 pr_warn("%s: personality does not support diskops!\n", 6692 mdname(mddev)); 6693 return -EINVAL; 6694 } 6695 if (mddev->persistent) 6696 rdev = md_import_device(dev, mddev->major_version, 6697 mddev->minor_version); 6698 else 6699 rdev = md_import_device(dev, -1, -1); 6700 if (IS_ERR(rdev)) { 6701 pr_warn("md: md_import_device returned %ld\n", 6702 PTR_ERR(rdev)); 6703 return PTR_ERR(rdev); 6704 } 6705 /* set saved_raid_disk if appropriate */ 6706 if (!mddev->persistent) { 6707 if (info->state & (1<<MD_DISK_SYNC) && 6708 info->raid_disk < mddev->raid_disks) { 6709 rdev->raid_disk = info->raid_disk; 6710 set_bit(In_sync, &rdev->flags); 6711 clear_bit(Bitmap_sync, &rdev->flags); 6712 } else 6713 rdev->raid_disk = -1; 6714 rdev->saved_raid_disk = rdev->raid_disk; 6715 } else 6716 super_types[mddev->major_version]. 6717 validate_super(mddev, rdev); 6718 if ((info->state & (1<<MD_DISK_SYNC)) && 6719 rdev->raid_disk != info->raid_disk) { 6720 /* This was a hot-add request, but events doesn't 6721 * match, so reject it. 6722 */ 6723 export_rdev(rdev); 6724 return -EINVAL; 6725 } 6726 6727 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6728 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6729 set_bit(WriteMostly, &rdev->flags); 6730 else 6731 clear_bit(WriteMostly, &rdev->flags); 6732 if (info->state & (1<<MD_DISK_FAILFAST)) 6733 set_bit(FailFast, &rdev->flags); 6734 else 6735 clear_bit(FailFast, &rdev->flags); 6736 6737 if (info->state & (1<<MD_DISK_JOURNAL)) { 6738 struct md_rdev *rdev2; 6739 bool has_journal = false; 6740 6741 /* make sure no existing journal disk */ 6742 rdev_for_each(rdev2, mddev) { 6743 if (test_bit(Journal, &rdev2->flags)) { 6744 has_journal = true; 6745 break; 6746 } 6747 } 6748 if (has_journal || mddev->bitmap) { 6749 export_rdev(rdev); 6750 return -EBUSY; 6751 } 6752 set_bit(Journal, &rdev->flags); 6753 } 6754 /* 6755 * check whether the device shows up in other nodes 6756 */ 6757 if (mddev_is_clustered(mddev)) { 6758 if (info->state & (1 << MD_DISK_CANDIDATE)) 6759 set_bit(Candidate, &rdev->flags); 6760 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6761 /* --add initiated by this node */ 6762 err = md_cluster_ops->add_new_disk(mddev, rdev); 6763 if (err) { 6764 export_rdev(rdev); 6765 return err; 6766 } 6767 } 6768 } 6769 6770 rdev->raid_disk = -1; 6771 err = bind_rdev_to_array(rdev, mddev); 6772 6773 if (err) 6774 export_rdev(rdev); 6775 6776 if (mddev_is_clustered(mddev)) { 6777 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6778 if (!err) { 6779 err = md_cluster_ops->new_disk_ack(mddev, 6780 err == 0); 6781 if (err) 6782 md_kick_rdev_from_array(rdev); 6783 } 6784 } else { 6785 if (err) 6786 md_cluster_ops->add_new_disk_cancel(mddev); 6787 else 6788 err = add_bound_rdev(rdev); 6789 } 6790 6791 } else if (!err) 6792 err = add_bound_rdev(rdev); 6793 6794 return err; 6795 } 6796 6797 /* otherwise, add_new_disk is only allowed 6798 * for major_version==0 superblocks 6799 */ 6800 if (mddev->major_version != 0) { 6801 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6802 return -EINVAL; 6803 } 6804 6805 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6806 int err; 6807 rdev = md_import_device(dev, -1, 0); 6808 if (IS_ERR(rdev)) { 6809 pr_warn("md: error, md_import_device() returned %ld\n", 6810 PTR_ERR(rdev)); 6811 return PTR_ERR(rdev); 6812 } 6813 rdev->desc_nr = info->number; 6814 if (info->raid_disk < mddev->raid_disks) 6815 rdev->raid_disk = info->raid_disk; 6816 else 6817 rdev->raid_disk = -1; 6818 6819 if (rdev->raid_disk < mddev->raid_disks) 6820 if (info->state & (1<<MD_DISK_SYNC)) 6821 set_bit(In_sync, &rdev->flags); 6822 6823 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6824 set_bit(WriteMostly, &rdev->flags); 6825 if (info->state & (1<<MD_DISK_FAILFAST)) 6826 set_bit(FailFast, &rdev->flags); 6827 6828 if (!mddev->persistent) { 6829 pr_debug("md: nonpersistent superblock ...\n"); 6830 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6831 } else 6832 rdev->sb_start = calc_dev_sboffset(rdev); 6833 rdev->sectors = rdev->sb_start; 6834 6835 err = bind_rdev_to_array(rdev, mddev); 6836 if (err) { 6837 export_rdev(rdev); 6838 return err; 6839 } 6840 } 6841 6842 return 0; 6843 } 6844 6845 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6846 { 6847 char b[BDEVNAME_SIZE]; 6848 struct md_rdev *rdev; 6849 6850 if (!mddev->pers) 6851 return -ENODEV; 6852 6853 rdev = find_rdev(mddev, dev); 6854 if (!rdev) 6855 return -ENXIO; 6856 6857 if (rdev->raid_disk < 0) 6858 goto kick_rdev; 6859 6860 clear_bit(Blocked, &rdev->flags); 6861 remove_and_add_spares(mddev, rdev); 6862 6863 if (rdev->raid_disk >= 0) 6864 goto busy; 6865 6866 kick_rdev: 6867 if (mddev_is_clustered(mddev)) 6868 md_cluster_ops->remove_disk(mddev, rdev); 6869 6870 md_kick_rdev_from_array(rdev); 6871 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6872 if (mddev->thread) 6873 md_wakeup_thread(mddev->thread); 6874 else 6875 md_update_sb(mddev, 1); 6876 md_new_event(mddev); 6877 6878 return 0; 6879 busy: 6880 pr_debug("md: cannot remove active disk %s from %s ...\n", 6881 bdevname(rdev->bdev,b), mdname(mddev)); 6882 return -EBUSY; 6883 } 6884 6885 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6886 { 6887 char b[BDEVNAME_SIZE]; 6888 int err; 6889 struct md_rdev *rdev; 6890 6891 if (!mddev->pers) 6892 return -ENODEV; 6893 6894 if (mddev->major_version != 0) { 6895 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6896 mdname(mddev)); 6897 return -EINVAL; 6898 } 6899 if (!mddev->pers->hot_add_disk) { 6900 pr_warn("%s: personality does not support diskops!\n", 6901 mdname(mddev)); 6902 return -EINVAL; 6903 } 6904 6905 rdev = md_import_device(dev, -1, 0); 6906 if (IS_ERR(rdev)) { 6907 pr_warn("md: error, md_import_device() returned %ld\n", 6908 PTR_ERR(rdev)); 6909 return -EINVAL; 6910 } 6911 6912 if (mddev->persistent) 6913 rdev->sb_start = calc_dev_sboffset(rdev); 6914 else 6915 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6916 6917 rdev->sectors = rdev->sb_start; 6918 6919 if (test_bit(Faulty, &rdev->flags)) { 6920 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6921 bdevname(rdev->bdev,b), mdname(mddev)); 6922 err = -EINVAL; 6923 goto abort_export; 6924 } 6925 6926 clear_bit(In_sync, &rdev->flags); 6927 rdev->desc_nr = -1; 6928 rdev->saved_raid_disk = -1; 6929 err = bind_rdev_to_array(rdev, mddev); 6930 if (err) 6931 goto abort_export; 6932 6933 /* 6934 * The rest should better be atomic, we can have disk failures 6935 * noticed in interrupt contexts ... 6936 */ 6937 6938 rdev->raid_disk = -1; 6939 6940 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6941 if (!mddev->thread) 6942 md_update_sb(mddev, 1); 6943 /* 6944 * Kick recovery, maybe this spare has to be added to the 6945 * array immediately. 6946 */ 6947 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6948 md_wakeup_thread(mddev->thread); 6949 md_new_event(mddev); 6950 return 0; 6951 6952 abort_export: 6953 export_rdev(rdev); 6954 return err; 6955 } 6956 6957 static int set_bitmap_file(struct mddev *mddev, int fd) 6958 { 6959 int err = 0; 6960 6961 if (mddev->pers) { 6962 if (!mddev->pers->quiesce || !mddev->thread) 6963 return -EBUSY; 6964 if (mddev->recovery || mddev->sync_thread) 6965 return -EBUSY; 6966 /* we should be able to change the bitmap.. */ 6967 } 6968 6969 if (fd >= 0) { 6970 struct inode *inode; 6971 struct file *f; 6972 6973 if (mddev->bitmap || mddev->bitmap_info.file) 6974 return -EEXIST; /* cannot add when bitmap is present */ 6975 f = fget(fd); 6976 6977 if (f == NULL) { 6978 pr_warn("%s: error: failed to get bitmap file\n", 6979 mdname(mddev)); 6980 return -EBADF; 6981 } 6982 6983 inode = f->f_mapping->host; 6984 if (!S_ISREG(inode->i_mode)) { 6985 pr_warn("%s: error: bitmap file must be a regular file\n", 6986 mdname(mddev)); 6987 err = -EBADF; 6988 } else if (!(f->f_mode & FMODE_WRITE)) { 6989 pr_warn("%s: error: bitmap file must open for write\n", 6990 mdname(mddev)); 6991 err = -EBADF; 6992 } else if (atomic_read(&inode->i_writecount) != 1) { 6993 pr_warn("%s: error: bitmap file is already in use\n", 6994 mdname(mddev)); 6995 err = -EBUSY; 6996 } 6997 if (err) { 6998 fput(f); 6999 return err; 7000 } 7001 mddev->bitmap_info.file = f; 7002 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7003 } else if (mddev->bitmap == NULL) 7004 return -ENOENT; /* cannot remove what isn't there */ 7005 err = 0; 7006 if (mddev->pers) { 7007 if (fd >= 0) { 7008 struct bitmap *bitmap; 7009 7010 bitmap = md_bitmap_create(mddev, -1); 7011 mddev_suspend(mddev); 7012 if (!IS_ERR(bitmap)) { 7013 mddev->bitmap = bitmap; 7014 err = md_bitmap_load(mddev); 7015 } else 7016 err = PTR_ERR(bitmap); 7017 if (err) { 7018 md_bitmap_destroy(mddev); 7019 fd = -1; 7020 } 7021 mddev_resume(mddev); 7022 } else if (fd < 0) { 7023 mddev_suspend(mddev); 7024 md_bitmap_destroy(mddev); 7025 mddev_resume(mddev); 7026 } 7027 } 7028 if (fd < 0) { 7029 struct file *f = mddev->bitmap_info.file; 7030 if (f) { 7031 spin_lock(&mddev->lock); 7032 mddev->bitmap_info.file = NULL; 7033 spin_unlock(&mddev->lock); 7034 fput(f); 7035 } 7036 } 7037 7038 return err; 7039 } 7040 7041 /* 7042 * set_array_info is used two different ways 7043 * The original usage is when creating a new array. 7044 * In this usage, raid_disks is > 0 and it together with 7045 * level, size, not_persistent,layout,chunksize determine the 7046 * shape of the array. 7047 * This will always create an array with a type-0.90.0 superblock. 7048 * The newer usage is when assembling an array. 7049 * In this case raid_disks will be 0, and the major_version field is 7050 * use to determine which style super-blocks are to be found on the devices. 7051 * The minor and patch _version numbers are also kept incase the 7052 * super_block handler wishes to interpret them. 7053 */ 7054 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 7055 { 7056 7057 if (info->raid_disks == 0) { 7058 /* just setting version number for superblock loading */ 7059 if (info->major_version < 0 || 7060 info->major_version >= ARRAY_SIZE(super_types) || 7061 super_types[info->major_version].name == NULL) { 7062 /* maybe try to auto-load a module? */ 7063 pr_warn("md: superblock version %d not known\n", 7064 info->major_version); 7065 return -EINVAL; 7066 } 7067 mddev->major_version = info->major_version; 7068 mddev->minor_version = info->minor_version; 7069 mddev->patch_version = info->patch_version; 7070 mddev->persistent = !info->not_persistent; 7071 /* ensure mddev_put doesn't delete this now that there 7072 * is some minimal configuration. 7073 */ 7074 mddev->ctime = ktime_get_real_seconds(); 7075 return 0; 7076 } 7077 mddev->major_version = MD_MAJOR_VERSION; 7078 mddev->minor_version = MD_MINOR_VERSION; 7079 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7080 mddev->ctime = ktime_get_real_seconds(); 7081 7082 mddev->level = info->level; 7083 mddev->clevel[0] = 0; 7084 mddev->dev_sectors = 2 * (sector_t)info->size; 7085 mddev->raid_disks = info->raid_disks; 7086 /* don't set md_minor, it is determined by which /dev/md* was 7087 * openned 7088 */ 7089 if (info->state & (1<<MD_SB_CLEAN)) 7090 mddev->recovery_cp = MaxSector; 7091 else 7092 mddev->recovery_cp = 0; 7093 mddev->persistent = ! info->not_persistent; 7094 mddev->external = 0; 7095 7096 mddev->layout = info->layout; 7097 if (mddev->level == 0) 7098 /* Cannot trust RAID0 layout info here */ 7099 mddev->layout = -1; 7100 mddev->chunk_sectors = info->chunk_size >> 9; 7101 7102 if (mddev->persistent) { 7103 mddev->max_disks = MD_SB_DISKS; 7104 mddev->flags = 0; 7105 mddev->sb_flags = 0; 7106 } 7107 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7108 7109 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7110 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7111 mddev->bitmap_info.offset = 0; 7112 7113 mddev->reshape_position = MaxSector; 7114 7115 /* 7116 * Generate a 128 bit UUID 7117 */ 7118 get_random_bytes(mddev->uuid, 16); 7119 7120 mddev->new_level = mddev->level; 7121 mddev->new_chunk_sectors = mddev->chunk_sectors; 7122 mddev->new_layout = mddev->layout; 7123 mddev->delta_disks = 0; 7124 mddev->reshape_backwards = 0; 7125 7126 return 0; 7127 } 7128 7129 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7130 { 7131 lockdep_assert_held(&mddev->reconfig_mutex); 7132 7133 if (mddev->external_size) 7134 return; 7135 7136 mddev->array_sectors = array_sectors; 7137 } 7138 EXPORT_SYMBOL(md_set_array_sectors); 7139 7140 static int update_size(struct mddev *mddev, sector_t num_sectors) 7141 { 7142 struct md_rdev *rdev; 7143 int rv; 7144 int fit = (num_sectors == 0); 7145 sector_t old_dev_sectors = mddev->dev_sectors; 7146 7147 if (mddev->pers->resize == NULL) 7148 return -EINVAL; 7149 /* The "num_sectors" is the number of sectors of each device that 7150 * is used. This can only make sense for arrays with redundancy. 7151 * linear and raid0 always use whatever space is available. We can only 7152 * consider changing this number if no resync or reconstruction is 7153 * happening, and if the new size is acceptable. It must fit before the 7154 * sb_start or, if that is <data_offset, it must fit before the size 7155 * of each device. If num_sectors is zero, we find the largest size 7156 * that fits. 7157 */ 7158 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7159 mddev->sync_thread) 7160 return -EBUSY; 7161 if (mddev->ro) 7162 return -EROFS; 7163 7164 rdev_for_each(rdev, mddev) { 7165 sector_t avail = rdev->sectors; 7166 7167 if (fit && (num_sectors == 0 || num_sectors > avail)) 7168 num_sectors = avail; 7169 if (avail < num_sectors) 7170 return -ENOSPC; 7171 } 7172 rv = mddev->pers->resize(mddev, num_sectors); 7173 if (!rv) { 7174 if (mddev_is_clustered(mddev)) 7175 md_cluster_ops->update_size(mddev, old_dev_sectors); 7176 else if (mddev->queue) { 7177 set_capacity(mddev->gendisk, mddev->array_sectors); 7178 revalidate_disk(mddev->gendisk); 7179 } 7180 } 7181 return rv; 7182 } 7183 7184 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7185 { 7186 int rv; 7187 struct md_rdev *rdev; 7188 /* change the number of raid disks */ 7189 if (mddev->pers->check_reshape == NULL) 7190 return -EINVAL; 7191 if (mddev->ro) 7192 return -EROFS; 7193 if (raid_disks <= 0 || 7194 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7195 return -EINVAL; 7196 if (mddev->sync_thread || 7197 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7198 mddev->reshape_position != MaxSector) 7199 return -EBUSY; 7200 7201 rdev_for_each(rdev, mddev) { 7202 if (mddev->raid_disks < raid_disks && 7203 rdev->data_offset < rdev->new_data_offset) 7204 return -EINVAL; 7205 if (mddev->raid_disks > raid_disks && 7206 rdev->data_offset > rdev->new_data_offset) 7207 return -EINVAL; 7208 } 7209 7210 mddev->delta_disks = raid_disks - mddev->raid_disks; 7211 if (mddev->delta_disks < 0) 7212 mddev->reshape_backwards = 1; 7213 else if (mddev->delta_disks > 0) 7214 mddev->reshape_backwards = 0; 7215 7216 rv = mddev->pers->check_reshape(mddev); 7217 if (rv < 0) { 7218 mddev->delta_disks = 0; 7219 mddev->reshape_backwards = 0; 7220 } 7221 return rv; 7222 } 7223 7224 /* 7225 * update_array_info is used to change the configuration of an 7226 * on-line array. 7227 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7228 * fields in the info are checked against the array. 7229 * Any differences that cannot be handled will cause an error. 7230 * Normally, only one change can be managed at a time. 7231 */ 7232 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7233 { 7234 int rv = 0; 7235 int cnt = 0; 7236 int state = 0; 7237 7238 /* calculate expected state,ignoring low bits */ 7239 if (mddev->bitmap && mddev->bitmap_info.offset) 7240 state |= (1 << MD_SB_BITMAP_PRESENT); 7241 7242 if (mddev->major_version != info->major_version || 7243 mddev->minor_version != info->minor_version || 7244 /* mddev->patch_version != info->patch_version || */ 7245 mddev->ctime != info->ctime || 7246 mddev->level != info->level || 7247 /* mddev->layout != info->layout || */ 7248 mddev->persistent != !info->not_persistent || 7249 mddev->chunk_sectors != info->chunk_size >> 9 || 7250 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7251 ((state^info->state) & 0xfffffe00) 7252 ) 7253 return -EINVAL; 7254 /* Check there is only one change */ 7255 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7256 cnt++; 7257 if (mddev->raid_disks != info->raid_disks) 7258 cnt++; 7259 if (mddev->layout != info->layout) 7260 cnt++; 7261 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7262 cnt++; 7263 if (cnt == 0) 7264 return 0; 7265 if (cnt > 1) 7266 return -EINVAL; 7267 7268 if (mddev->layout != info->layout) { 7269 /* Change layout 7270 * we don't need to do anything at the md level, the 7271 * personality will take care of it all. 7272 */ 7273 if (mddev->pers->check_reshape == NULL) 7274 return -EINVAL; 7275 else { 7276 mddev->new_layout = info->layout; 7277 rv = mddev->pers->check_reshape(mddev); 7278 if (rv) 7279 mddev->new_layout = mddev->layout; 7280 return rv; 7281 } 7282 } 7283 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7284 rv = update_size(mddev, (sector_t)info->size * 2); 7285 7286 if (mddev->raid_disks != info->raid_disks) 7287 rv = update_raid_disks(mddev, info->raid_disks); 7288 7289 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7290 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7291 rv = -EINVAL; 7292 goto err; 7293 } 7294 if (mddev->recovery || mddev->sync_thread) { 7295 rv = -EBUSY; 7296 goto err; 7297 } 7298 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7299 struct bitmap *bitmap; 7300 /* add the bitmap */ 7301 if (mddev->bitmap) { 7302 rv = -EEXIST; 7303 goto err; 7304 } 7305 if (mddev->bitmap_info.default_offset == 0) { 7306 rv = -EINVAL; 7307 goto err; 7308 } 7309 mddev->bitmap_info.offset = 7310 mddev->bitmap_info.default_offset; 7311 mddev->bitmap_info.space = 7312 mddev->bitmap_info.default_space; 7313 bitmap = md_bitmap_create(mddev, -1); 7314 mddev_suspend(mddev); 7315 if (!IS_ERR(bitmap)) { 7316 mddev->bitmap = bitmap; 7317 rv = md_bitmap_load(mddev); 7318 } else 7319 rv = PTR_ERR(bitmap); 7320 if (rv) 7321 md_bitmap_destroy(mddev); 7322 mddev_resume(mddev); 7323 } else { 7324 /* remove the bitmap */ 7325 if (!mddev->bitmap) { 7326 rv = -ENOENT; 7327 goto err; 7328 } 7329 if (mddev->bitmap->storage.file) { 7330 rv = -EINVAL; 7331 goto err; 7332 } 7333 if (mddev->bitmap_info.nodes) { 7334 /* hold PW on all the bitmap lock */ 7335 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7336 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7337 rv = -EPERM; 7338 md_cluster_ops->unlock_all_bitmaps(mddev); 7339 goto err; 7340 } 7341 7342 mddev->bitmap_info.nodes = 0; 7343 md_cluster_ops->leave(mddev); 7344 } 7345 mddev_suspend(mddev); 7346 md_bitmap_destroy(mddev); 7347 mddev_resume(mddev); 7348 mddev->bitmap_info.offset = 0; 7349 } 7350 } 7351 md_update_sb(mddev, 1); 7352 return rv; 7353 err: 7354 return rv; 7355 } 7356 7357 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7358 { 7359 struct md_rdev *rdev; 7360 int err = 0; 7361 7362 if (mddev->pers == NULL) 7363 return -ENODEV; 7364 7365 rcu_read_lock(); 7366 rdev = md_find_rdev_rcu(mddev, dev); 7367 if (!rdev) 7368 err = -ENODEV; 7369 else { 7370 md_error(mddev, rdev); 7371 if (!test_bit(Faulty, &rdev->flags)) 7372 err = -EBUSY; 7373 } 7374 rcu_read_unlock(); 7375 return err; 7376 } 7377 7378 /* 7379 * We have a problem here : there is no easy way to give a CHS 7380 * virtual geometry. We currently pretend that we have a 2 heads 7381 * 4 sectors (with a BIG number of cylinders...). This drives 7382 * dosfs just mad... ;-) 7383 */ 7384 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7385 { 7386 struct mddev *mddev = bdev->bd_disk->private_data; 7387 7388 geo->heads = 2; 7389 geo->sectors = 4; 7390 geo->cylinders = mddev->array_sectors / 8; 7391 return 0; 7392 } 7393 7394 static inline bool md_ioctl_valid(unsigned int cmd) 7395 { 7396 switch (cmd) { 7397 case ADD_NEW_DISK: 7398 case BLKROSET: 7399 case GET_ARRAY_INFO: 7400 case GET_BITMAP_FILE: 7401 case GET_DISK_INFO: 7402 case HOT_ADD_DISK: 7403 case HOT_REMOVE_DISK: 7404 case RAID_AUTORUN: 7405 case RAID_VERSION: 7406 case RESTART_ARRAY_RW: 7407 case RUN_ARRAY: 7408 case SET_ARRAY_INFO: 7409 case SET_BITMAP_FILE: 7410 case SET_DISK_FAULTY: 7411 case STOP_ARRAY: 7412 case STOP_ARRAY_RO: 7413 case CLUSTERED_DISK_NACK: 7414 return true; 7415 default: 7416 return false; 7417 } 7418 } 7419 7420 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7421 unsigned int cmd, unsigned long arg) 7422 { 7423 int err = 0; 7424 void __user *argp = (void __user *)arg; 7425 struct mddev *mddev = NULL; 7426 int ro; 7427 bool did_set_md_closing = false; 7428 7429 if (!md_ioctl_valid(cmd)) 7430 return -ENOTTY; 7431 7432 switch (cmd) { 7433 case RAID_VERSION: 7434 case GET_ARRAY_INFO: 7435 case GET_DISK_INFO: 7436 break; 7437 default: 7438 if (!capable(CAP_SYS_ADMIN)) 7439 return -EACCES; 7440 } 7441 7442 /* 7443 * Commands dealing with the RAID driver but not any 7444 * particular array: 7445 */ 7446 switch (cmd) { 7447 case RAID_VERSION: 7448 err = get_version(argp); 7449 goto out; 7450 7451 #ifndef MODULE 7452 case RAID_AUTORUN: 7453 err = 0; 7454 autostart_arrays(arg); 7455 goto out; 7456 #endif 7457 default:; 7458 } 7459 7460 /* 7461 * Commands creating/starting a new array: 7462 */ 7463 7464 mddev = bdev->bd_disk->private_data; 7465 7466 if (!mddev) { 7467 BUG(); 7468 goto out; 7469 } 7470 7471 /* Some actions do not requires the mutex */ 7472 switch (cmd) { 7473 case GET_ARRAY_INFO: 7474 if (!mddev->raid_disks && !mddev->external) 7475 err = -ENODEV; 7476 else 7477 err = get_array_info(mddev, argp); 7478 goto out; 7479 7480 case GET_DISK_INFO: 7481 if (!mddev->raid_disks && !mddev->external) 7482 err = -ENODEV; 7483 else 7484 err = get_disk_info(mddev, argp); 7485 goto out; 7486 7487 case SET_DISK_FAULTY: 7488 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7489 goto out; 7490 7491 case GET_BITMAP_FILE: 7492 err = get_bitmap_file(mddev, argp); 7493 goto out; 7494 7495 } 7496 7497 if (cmd == ADD_NEW_DISK) 7498 /* need to ensure md_delayed_delete() has completed */ 7499 flush_workqueue(md_misc_wq); 7500 7501 if (cmd == HOT_REMOVE_DISK) 7502 /* need to ensure recovery thread has run */ 7503 wait_event_interruptible_timeout(mddev->sb_wait, 7504 !test_bit(MD_RECOVERY_NEEDED, 7505 &mddev->recovery), 7506 msecs_to_jiffies(5000)); 7507 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7508 /* Need to flush page cache, and ensure no-one else opens 7509 * and writes 7510 */ 7511 mutex_lock(&mddev->open_mutex); 7512 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7513 mutex_unlock(&mddev->open_mutex); 7514 err = -EBUSY; 7515 goto out; 7516 } 7517 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7518 set_bit(MD_CLOSING, &mddev->flags); 7519 did_set_md_closing = true; 7520 mutex_unlock(&mddev->open_mutex); 7521 sync_blockdev(bdev); 7522 } 7523 err = mddev_lock(mddev); 7524 if (err) { 7525 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7526 err, cmd); 7527 goto out; 7528 } 7529 7530 if (cmd == SET_ARRAY_INFO) { 7531 mdu_array_info_t info; 7532 if (!arg) 7533 memset(&info, 0, sizeof(info)); 7534 else if (copy_from_user(&info, argp, sizeof(info))) { 7535 err = -EFAULT; 7536 goto unlock; 7537 } 7538 if (mddev->pers) { 7539 err = update_array_info(mddev, &info); 7540 if (err) { 7541 pr_warn("md: couldn't update array info. %d\n", err); 7542 goto unlock; 7543 } 7544 goto unlock; 7545 } 7546 if (!list_empty(&mddev->disks)) { 7547 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7548 err = -EBUSY; 7549 goto unlock; 7550 } 7551 if (mddev->raid_disks) { 7552 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7553 err = -EBUSY; 7554 goto unlock; 7555 } 7556 err = set_array_info(mddev, &info); 7557 if (err) { 7558 pr_warn("md: couldn't set array info. %d\n", err); 7559 goto unlock; 7560 } 7561 goto unlock; 7562 } 7563 7564 /* 7565 * Commands querying/configuring an existing array: 7566 */ 7567 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7568 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7569 if ((!mddev->raid_disks && !mddev->external) 7570 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7571 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7572 && cmd != GET_BITMAP_FILE) { 7573 err = -ENODEV; 7574 goto unlock; 7575 } 7576 7577 /* 7578 * Commands even a read-only array can execute: 7579 */ 7580 switch (cmd) { 7581 case RESTART_ARRAY_RW: 7582 err = restart_array(mddev); 7583 goto unlock; 7584 7585 case STOP_ARRAY: 7586 err = do_md_stop(mddev, 0, bdev); 7587 goto unlock; 7588 7589 case STOP_ARRAY_RO: 7590 err = md_set_readonly(mddev, bdev); 7591 goto unlock; 7592 7593 case HOT_REMOVE_DISK: 7594 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7595 goto unlock; 7596 7597 case ADD_NEW_DISK: 7598 /* We can support ADD_NEW_DISK on read-only arrays 7599 * only if we are re-adding a preexisting device. 7600 * So require mddev->pers and MD_DISK_SYNC. 7601 */ 7602 if (mddev->pers) { 7603 mdu_disk_info_t info; 7604 if (copy_from_user(&info, argp, sizeof(info))) 7605 err = -EFAULT; 7606 else if (!(info.state & (1<<MD_DISK_SYNC))) 7607 /* Need to clear read-only for this */ 7608 break; 7609 else 7610 err = add_new_disk(mddev, &info); 7611 goto unlock; 7612 } 7613 break; 7614 7615 case BLKROSET: 7616 if (get_user(ro, (int __user *)(arg))) { 7617 err = -EFAULT; 7618 goto unlock; 7619 } 7620 err = -EINVAL; 7621 7622 /* if the bdev is going readonly the value of mddev->ro 7623 * does not matter, no writes are coming 7624 */ 7625 if (ro) 7626 goto unlock; 7627 7628 /* are we are already prepared for writes? */ 7629 if (mddev->ro != 1) 7630 goto unlock; 7631 7632 /* transitioning to readauto need only happen for 7633 * arrays that call md_write_start 7634 */ 7635 if (mddev->pers) { 7636 err = restart_array(mddev); 7637 if (err == 0) { 7638 mddev->ro = 2; 7639 set_disk_ro(mddev->gendisk, 0); 7640 } 7641 } 7642 goto unlock; 7643 } 7644 7645 /* 7646 * The remaining ioctls are changing the state of the 7647 * superblock, so we do not allow them on read-only arrays. 7648 */ 7649 if (mddev->ro && mddev->pers) { 7650 if (mddev->ro == 2) { 7651 mddev->ro = 0; 7652 sysfs_notify_dirent_safe(mddev->sysfs_state); 7653 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7654 /* mddev_unlock will wake thread */ 7655 /* If a device failed while we were read-only, we 7656 * need to make sure the metadata is updated now. 7657 */ 7658 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7659 mddev_unlock(mddev); 7660 wait_event(mddev->sb_wait, 7661 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7662 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7663 mddev_lock_nointr(mddev); 7664 } 7665 } else { 7666 err = -EROFS; 7667 goto unlock; 7668 } 7669 } 7670 7671 switch (cmd) { 7672 case ADD_NEW_DISK: 7673 { 7674 mdu_disk_info_t info; 7675 if (copy_from_user(&info, argp, sizeof(info))) 7676 err = -EFAULT; 7677 else 7678 err = add_new_disk(mddev, &info); 7679 goto unlock; 7680 } 7681 7682 case CLUSTERED_DISK_NACK: 7683 if (mddev_is_clustered(mddev)) 7684 md_cluster_ops->new_disk_ack(mddev, false); 7685 else 7686 err = -EINVAL; 7687 goto unlock; 7688 7689 case HOT_ADD_DISK: 7690 err = hot_add_disk(mddev, new_decode_dev(arg)); 7691 goto unlock; 7692 7693 case RUN_ARRAY: 7694 err = do_md_run(mddev); 7695 goto unlock; 7696 7697 case SET_BITMAP_FILE: 7698 err = set_bitmap_file(mddev, (int)arg); 7699 goto unlock; 7700 7701 default: 7702 err = -EINVAL; 7703 goto unlock; 7704 } 7705 7706 unlock: 7707 if (mddev->hold_active == UNTIL_IOCTL && 7708 err != -EINVAL) 7709 mddev->hold_active = 0; 7710 mddev_unlock(mddev); 7711 out: 7712 if(did_set_md_closing) 7713 clear_bit(MD_CLOSING, &mddev->flags); 7714 return err; 7715 } 7716 #ifdef CONFIG_COMPAT 7717 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7718 unsigned int cmd, unsigned long arg) 7719 { 7720 switch (cmd) { 7721 case HOT_REMOVE_DISK: 7722 case HOT_ADD_DISK: 7723 case SET_DISK_FAULTY: 7724 case SET_BITMAP_FILE: 7725 /* These take in integer arg, do not convert */ 7726 break; 7727 default: 7728 arg = (unsigned long)compat_ptr(arg); 7729 break; 7730 } 7731 7732 return md_ioctl(bdev, mode, cmd, arg); 7733 } 7734 #endif /* CONFIG_COMPAT */ 7735 7736 static int md_open(struct block_device *bdev, fmode_t mode) 7737 { 7738 /* 7739 * Succeed if we can lock the mddev, which confirms that 7740 * it isn't being stopped right now. 7741 */ 7742 struct mddev *mddev = mddev_find(bdev->bd_dev); 7743 int err; 7744 7745 if (!mddev) 7746 return -ENODEV; 7747 7748 if (mddev->gendisk != bdev->bd_disk) { 7749 /* we are racing with mddev_put which is discarding this 7750 * bd_disk. 7751 */ 7752 mddev_put(mddev); 7753 /* Wait until bdev->bd_disk is definitely gone */ 7754 flush_workqueue(md_misc_wq); 7755 /* Then retry the open from the top */ 7756 return -ERESTARTSYS; 7757 } 7758 BUG_ON(mddev != bdev->bd_disk->private_data); 7759 7760 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7761 goto out; 7762 7763 if (test_bit(MD_CLOSING, &mddev->flags)) { 7764 mutex_unlock(&mddev->open_mutex); 7765 err = -ENODEV; 7766 goto out; 7767 } 7768 7769 err = 0; 7770 atomic_inc(&mddev->openers); 7771 mutex_unlock(&mddev->open_mutex); 7772 7773 check_disk_change(bdev); 7774 out: 7775 if (err) 7776 mddev_put(mddev); 7777 return err; 7778 } 7779 7780 static void md_release(struct gendisk *disk, fmode_t mode) 7781 { 7782 struct mddev *mddev = disk->private_data; 7783 7784 BUG_ON(!mddev); 7785 atomic_dec(&mddev->openers); 7786 mddev_put(mddev); 7787 } 7788 7789 static int md_media_changed(struct gendisk *disk) 7790 { 7791 struct mddev *mddev = disk->private_data; 7792 7793 return mddev->changed; 7794 } 7795 7796 static int md_revalidate(struct gendisk *disk) 7797 { 7798 struct mddev *mddev = disk->private_data; 7799 7800 mddev->changed = 0; 7801 return 0; 7802 } 7803 static const struct block_device_operations md_fops = 7804 { 7805 .owner = THIS_MODULE, 7806 .open = md_open, 7807 .release = md_release, 7808 .ioctl = md_ioctl, 7809 #ifdef CONFIG_COMPAT 7810 .compat_ioctl = md_compat_ioctl, 7811 #endif 7812 .getgeo = md_getgeo, 7813 .media_changed = md_media_changed, 7814 .revalidate_disk= md_revalidate, 7815 }; 7816 7817 static int md_thread(void *arg) 7818 { 7819 struct md_thread *thread = arg; 7820 7821 /* 7822 * md_thread is a 'system-thread', it's priority should be very 7823 * high. We avoid resource deadlocks individually in each 7824 * raid personality. (RAID5 does preallocation) We also use RR and 7825 * the very same RT priority as kswapd, thus we will never get 7826 * into a priority inversion deadlock. 7827 * 7828 * we definitely have to have equal or higher priority than 7829 * bdflush, otherwise bdflush will deadlock if there are too 7830 * many dirty RAID5 blocks. 7831 */ 7832 7833 allow_signal(SIGKILL); 7834 while (!kthread_should_stop()) { 7835 7836 /* We need to wait INTERRUPTIBLE so that 7837 * we don't add to the load-average. 7838 * That means we need to be sure no signals are 7839 * pending 7840 */ 7841 if (signal_pending(current)) 7842 flush_signals(current); 7843 7844 wait_event_interruptible_timeout 7845 (thread->wqueue, 7846 test_bit(THREAD_WAKEUP, &thread->flags) 7847 || kthread_should_stop() || kthread_should_park(), 7848 thread->timeout); 7849 7850 clear_bit(THREAD_WAKEUP, &thread->flags); 7851 if (kthread_should_park()) 7852 kthread_parkme(); 7853 if (!kthread_should_stop()) 7854 thread->run(thread); 7855 } 7856 7857 return 0; 7858 } 7859 7860 void md_wakeup_thread(struct md_thread *thread) 7861 { 7862 if (thread) { 7863 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7864 set_bit(THREAD_WAKEUP, &thread->flags); 7865 wake_up(&thread->wqueue); 7866 } 7867 } 7868 EXPORT_SYMBOL(md_wakeup_thread); 7869 7870 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7871 struct mddev *mddev, const char *name) 7872 { 7873 struct md_thread *thread; 7874 7875 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7876 if (!thread) 7877 return NULL; 7878 7879 init_waitqueue_head(&thread->wqueue); 7880 7881 thread->run = run; 7882 thread->mddev = mddev; 7883 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7884 thread->tsk = kthread_run(md_thread, thread, 7885 "%s_%s", 7886 mdname(thread->mddev), 7887 name); 7888 if (IS_ERR(thread->tsk)) { 7889 kfree(thread); 7890 return NULL; 7891 } 7892 return thread; 7893 } 7894 EXPORT_SYMBOL(md_register_thread); 7895 7896 void md_unregister_thread(struct md_thread **threadp) 7897 { 7898 struct md_thread *thread = *threadp; 7899 if (!thread) 7900 return; 7901 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7902 /* Locking ensures that mddev_unlock does not wake_up a 7903 * non-existent thread 7904 */ 7905 spin_lock(&pers_lock); 7906 *threadp = NULL; 7907 spin_unlock(&pers_lock); 7908 7909 kthread_stop(thread->tsk); 7910 kfree(thread); 7911 } 7912 EXPORT_SYMBOL(md_unregister_thread); 7913 7914 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7915 { 7916 if (!rdev || test_bit(Faulty, &rdev->flags)) 7917 return; 7918 7919 if (!mddev->pers || !mddev->pers->error_handler) 7920 return; 7921 mddev->pers->error_handler(mddev,rdev); 7922 if (mddev->degraded) 7923 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7924 sysfs_notify_dirent_safe(rdev->sysfs_state); 7925 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7926 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7927 md_wakeup_thread(mddev->thread); 7928 if (mddev->event_work.func) 7929 queue_work(md_misc_wq, &mddev->event_work); 7930 md_new_event(mddev); 7931 } 7932 EXPORT_SYMBOL(md_error); 7933 7934 /* seq_file implementation /proc/mdstat */ 7935 7936 static void status_unused(struct seq_file *seq) 7937 { 7938 int i = 0; 7939 struct md_rdev *rdev; 7940 7941 seq_printf(seq, "unused devices: "); 7942 7943 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7944 char b[BDEVNAME_SIZE]; 7945 i++; 7946 seq_printf(seq, "%s ", 7947 bdevname(rdev->bdev,b)); 7948 } 7949 if (!i) 7950 seq_printf(seq, "<none>"); 7951 7952 seq_printf(seq, "\n"); 7953 } 7954 7955 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7956 { 7957 sector_t max_sectors, resync, res; 7958 unsigned long dt, db = 0; 7959 sector_t rt, curr_mark_cnt, resync_mark_cnt; 7960 int scale, recovery_active; 7961 unsigned int per_milli; 7962 7963 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7964 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7965 max_sectors = mddev->resync_max_sectors; 7966 else 7967 max_sectors = mddev->dev_sectors; 7968 7969 resync = mddev->curr_resync; 7970 if (resync <= 3) { 7971 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7972 /* Still cleaning up */ 7973 resync = max_sectors; 7974 } else if (resync > max_sectors) 7975 resync = max_sectors; 7976 else 7977 resync -= atomic_read(&mddev->recovery_active); 7978 7979 if (resync == 0) { 7980 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 7981 struct md_rdev *rdev; 7982 7983 rdev_for_each(rdev, mddev) 7984 if (rdev->raid_disk >= 0 && 7985 !test_bit(Faulty, &rdev->flags) && 7986 rdev->recovery_offset != MaxSector && 7987 rdev->recovery_offset) { 7988 seq_printf(seq, "\trecover=REMOTE"); 7989 return 1; 7990 } 7991 if (mddev->reshape_position != MaxSector) 7992 seq_printf(seq, "\treshape=REMOTE"); 7993 else 7994 seq_printf(seq, "\tresync=REMOTE"); 7995 return 1; 7996 } 7997 if (mddev->recovery_cp < MaxSector) { 7998 seq_printf(seq, "\tresync=PENDING"); 7999 return 1; 8000 } 8001 return 0; 8002 } 8003 if (resync < 3) { 8004 seq_printf(seq, "\tresync=DELAYED"); 8005 return 1; 8006 } 8007 8008 WARN_ON(max_sectors == 0); 8009 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8010 * in a sector_t, and (max_sectors>>scale) will fit in a 8011 * u32, as those are the requirements for sector_div. 8012 * Thus 'scale' must be at least 10 8013 */ 8014 scale = 10; 8015 if (sizeof(sector_t) > sizeof(unsigned long)) { 8016 while ( max_sectors/2 > (1ULL<<(scale+32))) 8017 scale++; 8018 } 8019 res = (resync>>scale)*1000; 8020 sector_div(res, (u32)((max_sectors>>scale)+1)); 8021 8022 per_milli = res; 8023 { 8024 int i, x = per_milli/50, y = 20-x; 8025 seq_printf(seq, "["); 8026 for (i = 0; i < x; i++) 8027 seq_printf(seq, "="); 8028 seq_printf(seq, ">"); 8029 for (i = 0; i < y; i++) 8030 seq_printf(seq, "."); 8031 seq_printf(seq, "] "); 8032 } 8033 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8034 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8035 "reshape" : 8036 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8037 "check" : 8038 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8039 "resync" : "recovery"))), 8040 per_milli/10, per_milli % 10, 8041 (unsigned long long) resync/2, 8042 (unsigned long long) max_sectors/2); 8043 8044 /* 8045 * dt: time from mark until now 8046 * db: blocks written from mark until now 8047 * rt: remaining time 8048 * 8049 * rt is a sector_t, which is always 64bit now. We are keeping 8050 * the original algorithm, but it is not really necessary. 8051 * 8052 * Original algorithm: 8053 * So we divide before multiply in case it is 32bit and close 8054 * to the limit. 8055 * We scale the divisor (db) by 32 to avoid losing precision 8056 * near the end of resync when the number of remaining sectors 8057 * is close to 'db'. 8058 * We then divide rt by 32 after multiplying by db to compensate. 8059 * The '+1' avoids division by zero if db is very small. 8060 */ 8061 dt = ((jiffies - mddev->resync_mark) / HZ); 8062 if (!dt) dt++; 8063 8064 curr_mark_cnt = mddev->curr_mark_cnt; 8065 recovery_active = atomic_read(&mddev->recovery_active); 8066 resync_mark_cnt = mddev->resync_mark_cnt; 8067 8068 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8069 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8070 8071 rt = max_sectors - resync; /* number of remaining sectors */ 8072 rt = div64_u64(rt, db/32+1); 8073 rt *= dt; 8074 rt >>= 5; 8075 8076 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8077 ((unsigned long)rt % 60)/6); 8078 8079 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8080 return 1; 8081 } 8082 8083 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8084 { 8085 struct list_head *tmp; 8086 loff_t l = *pos; 8087 struct mddev *mddev; 8088 8089 if (l >= 0x10000) 8090 return NULL; 8091 if (!l--) 8092 /* header */ 8093 return (void*)1; 8094 8095 spin_lock(&all_mddevs_lock); 8096 list_for_each(tmp,&all_mddevs) 8097 if (!l--) { 8098 mddev = list_entry(tmp, struct mddev, all_mddevs); 8099 mddev_get(mddev); 8100 spin_unlock(&all_mddevs_lock); 8101 return mddev; 8102 } 8103 spin_unlock(&all_mddevs_lock); 8104 if (!l--) 8105 return (void*)2;/* tail */ 8106 return NULL; 8107 } 8108 8109 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8110 { 8111 struct list_head *tmp; 8112 struct mddev *next_mddev, *mddev = v; 8113 8114 ++*pos; 8115 if (v == (void*)2) 8116 return NULL; 8117 8118 spin_lock(&all_mddevs_lock); 8119 if (v == (void*)1) 8120 tmp = all_mddevs.next; 8121 else 8122 tmp = mddev->all_mddevs.next; 8123 if (tmp != &all_mddevs) 8124 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8125 else { 8126 next_mddev = (void*)2; 8127 *pos = 0x10000; 8128 } 8129 spin_unlock(&all_mddevs_lock); 8130 8131 if (v != (void*)1) 8132 mddev_put(mddev); 8133 return next_mddev; 8134 8135 } 8136 8137 static void md_seq_stop(struct seq_file *seq, void *v) 8138 { 8139 struct mddev *mddev = v; 8140 8141 if (mddev && v != (void*)1 && v != (void*)2) 8142 mddev_put(mddev); 8143 } 8144 8145 static int md_seq_show(struct seq_file *seq, void *v) 8146 { 8147 struct mddev *mddev = v; 8148 sector_t sectors; 8149 struct md_rdev *rdev; 8150 8151 if (v == (void*)1) { 8152 struct md_personality *pers; 8153 seq_printf(seq, "Personalities : "); 8154 spin_lock(&pers_lock); 8155 list_for_each_entry(pers, &pers_list, list) 8156 seq_printf(seq, "[%s] ", pers->name); 8157 8158 spin_unlock(&pers_lock); 8159 seq_printf(seq, "\n"); 8160 seq->poll_event = atomic_read(&md_event_count); 8161 return 0; 8162 } 8163 if (v == (void*)2) { 8164 status_unused(seq); 8165 return 0; 8166 } 8167 8168 spin_lock(&mddev->lock); 8169 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8170 seq_printf(seq, "%s : %sactive", mdname(mddev), 8171 mddev->pers ? "" : "in"); 8172 if (mddev->pers) { 8173 if (mddev->ro==1) 8174 seq_printf(seq, " (read-only)"); 8175 if (mddev->ro==2) 8176 seq_printf(seq, " (auto-read-only)"); 8177 seq_printf(seq, " %s", mddev->pers->name); 8178 } 8179 8180 sectors = 0; 8181 rcu_read_lock(); 8182 rdev_for_each_rcu(rdev, mddev) { 8183 char b[BDEVNAME_SIZE]; 8184 seq_printf(seq, " %s[%d]", 8185 bdevname(rdev->bdev,b), rdev->desc_nr); 8186 if (test_bit(WriteMostly, &rdev->flags)) 8187 seq_printf(seq, "(W)"); 8188 if (test_bit(Journal, &rdev->flags)) 8189 seq_printf(seq, "(J)"); 8190 if (test_bit(Faulty, &rdev->flags)) { 8191 seq_printf(seq, "(F)"); 8192 continue; 8193 } 8194 if (rdev->raid_disk < 0) 8195 seq_printf(seq, "(S)"); /* spare */ 8196 if (test_bit(Replacement, &rdev->flags)) 8197 seq_printf(seq, "(R)"); 8198 sectors += rdev->sectors; 8199 } 8200 rcu_read_unlock(); 8201 8202 if (!list_empty(&mddev->disks)) { 8203 if (mddev->pers) 8204 seq_printf(seq, "\n %llu blocks", 8205 (unsigned long long) 8206 mddev->array_sectors / 2); 8207 else 8208 seq_printf(seq, "\n %llu blocks", 8209 (unsigned long long)sectors / 2); 8210 } 8211 if (mddev->persistent) { 8212 if (mddev->major_version != 0 || 8213 mddev->minor_version != 90) { 8214 seq_printf(seq," super %d.%d", 8215 mddev->major_version, 8216 mddev->minor_version); 8217 } 8218 } else if (mddev->external) 8219 seq_printf(seq, " super external:%s", 8220 mddev->metadata_type); 8221 else 8222 seq_printf(seq, " super non-persistent"); 8223 8224 if (mddev->pers) { 8225 mddev->pers->status(seq, mddev); 8226 seq_printf(seq, "\n "); 8227 if (mddev->pers->sync_request) { 8228 if (status_resync(seq, mddev)) 8229 seq_printf(seq, "\n "); 8230 } 8231 } else 8232 seq_printf(seq, "\n "); 8233 8234 md_bitmap_status(seq, mddev->bitmap); 8235 8236 seq_printf(seq, "\n"); 8237 } 8238 spin_unlock(&mddev->lock); 8239 8240 return 0; 8241 } 8242 8243 static const struct seq_operations md_seq_ops = { 8244 .start = md_seq_start, 8245 .next = md_seq_next, 8246 .stop = md_seq_stop, 8247 .show = md_seq_show, 8248 }; 8249 8250 static int md_seq_open(struct inode *inode, struct file *file) 8251 { 8252 struct seq_file *seq; 8253 int error; 8254 8255 error = seq_open(file, &md_seq_ops); 8256 if (error) 8257 return error; 8258 8259 seq = file->private_data; 8260 seq->poll_event = atomic_read(&md_event_count); 8261 return error; 8262 } 8263 8264 static int md_unloading; 8265 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8266 { 8267 struct seq_file *seq = filp->private_data; 8268 __poll_t mask; 8269 8270 if (md_unloading) 8271 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8272 poll_wait(filp, &md_event_waiters, wait); 8273 8274 /* always allow read */ 8275 mask = EPOLLIN | EPOLLRDNORM; 8276 8277 if (seq->poll_event != atomic_read(&md_event_count)) 8278 mask |= EPOLLERR | EPOLLPRI; 8279 return mask; 8280 } 8281 8282 static const struct proc_ops mdstat_proc_ops = { 8283 .proc_open = md_seq_open, 8284 .proc_read = seq_read, 8285 .proc_lseek = seq_lseek, 8286 .proc_release = seq_release, 8287 .proc_poll = mdstat_poll, 8288 }; 8289 8290 int register_md_personality(struct md_personality *p) 8291 { 8292 pr_debug("md: %s personality registered for level %d\n", 8293 p->name, p->level); 8294 spin_lock(&pers_lock); 8295 list_add_tail(&p->list, &pers_list); 8296 spin_unlock(&pers_lock); 8297 return 0; 8298 } 8299 EXPORT_SYMBOL(register_md_personality); 8300 8301 int unregister_md_personality(struct md_personality *p) 8302 { 8303 pr_debug("md: %s personality unregistered\n", p->name); 8304 spin_lock(&pers_lock); 8305 list_del_init(&p->list); 8306 spin_unlock(&pers_lock); 8307 return 0; 8308 } 8309 EXPORT_SYMBOL(unregister_md_personality); 8310 8311 int register_md_cluster_operations(struct md_cluster_operations *ops, 8312 struct module *module) 8313 { 8314 int ret = 0; 8315 spin_lock(&pers_lock); 8316 if (md_cluster_ops != NULL) 8317 ret = -EALREADY; 8318 else { 8319 md_cluster_ops = ops; 8320 md_cluster_mod = module; 8321 } 8322 spin_unlock(&pers_lock); 8323 return ret; 8324 } 8325 EXPORT_SYMBOL(register_md_cluster_operations); 8326 8327 int unregister_md_cluster_operations(void) 8328 { 8329 spin_lock(&pers_lock); 8330 md_cluster_ops = NULL; 8331 spin_unlock(&pers_lock); 8332 return 0; 8333 } 8334 EXPORT_SYMBOL(unregister_md_cluster_operations); 8335 8336 int md_setup_cluster(struct mddev *mddev, int nodes) 8337 { 8338 if (!md_cluster_ops) 8339 request_module("md-cluster"); 8340 spin_lock(&pers_lock); 8341 /* ensure module won't be unloaded */ 8342 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8343 pr_warn("can't find md-cluster module or get it's reference.\n"); 8344 spin_unlock(&pers_lock); 8345 return -ENOENT; 8346 } 8347 spin_unlock(&pers_lock); 8348 8349 return md_cluster_ops->join(mddev, nodes); 8350 } 8351 8352 void md_cluster_stop(struct mddev *mddev) 8353 { 8354 if (!md_cluster_ops) 8355 return; 8356 md_cluster_ops->leave(mddev); 8357 module_put(md_cluster_mod); 8358 } 8359 8360 static int is_mddev_idle(struct mddev *mddev, int init) 8361 { 8362 struct md_rdev *rdev; 8363 int idle; 8364 int curr_events; 8365 8366 idle = 1; 8367 rcu_read_lock(); 8368 rdev_for_each_rcu(rdev, mddev) { 8369 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8370 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 8371 atomic_read(&disk->sync_io); 8372 /* sync IO will cause sync_io to increase before the disk_stats 8373 * as sync_io is counted when a request starts, and 8374 * disk_stats is counted when it completes. 8375 * So resync activity will cause curr_events to be smaller than 8376 * when there was no such activity. 8377 * non-sync IO will cause disk_stat to increase without 8378 * increasing sync_io so curr_events will (eventually) 8379 * be larger than it was before. Once it becomes 8380 * substantially larger, the test below will cause 8381 * the array to appear non-idle, and resync will slow 8382 * down. 8383 * If there is a lot of outstanding resync activity when 8384 * we set last_event to curr_events, then all that activity 8385 * completing might cause the array to appear non-idle 8386 * and resync will be slowed down even though there might 8387 * not have been non-resync activity. This will only 8388 * happen once though. 'last_events' will soon reflect 8389 * the state where there is little or no outstanding 8390 * resync requests, and further resync activity will 8391 * always make curr_events less than last_events. 8392 * 8393 */ 8394 if (init || curr_events - rdev->last_events > 64) { 8395 rdev->last_events = curr_events; 8396 idle = 0; 8397 } 8398 } 8399 rcu_read_unlock(); 8400 return idle; 8401 } 8402 8403 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8404 { 8405 /* another "blocks" (512byte) blocks have been synced */ 8406 atomic_sub(blocks, &mddev->recovery_active); 8407 wake_up(&mddev->recovery_wait); 8408 if (!ok) { 8409 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8410 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8411 md_wakeup_thread(mddev->thread); 8412 // stop recovery, signal do_sync .... 8413 } 8414 } 8415 EXPORT_SYMBOL(md_done_sync); 8416 8417 /* md_write_start(mddev, bi) 8418 * If we need to update some array metadata (e.g. 'active' flag 8419 * in superblock) before writing, schedule a superblock update 8420 * and wait for it to complete. 8421 * A return value of 'false' means that the write wasn't recorded 8422 * and cannot proceed as the array is being suspend. 8423 */ 8424 bool md_write_start(struct mddev *mddev, struct bio *bi) 8425 { 8426 int did_change = 0; 8427 8428 if (bio_data_dir(bi) != WRITE) 8429 return true; 8430 8431 BUG_ON(mddev->ro == 1); 8432 if (mddev->ro == 2) { 8433 /* need to switch to read/write */ 8434 mddev->ro = 0; 8435 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8436 md_wakeup_thread(mddev->thread); 8437 md_wakeup_thread(mddev->sync_thread); 8438 did_change = 1; 8439 } 8440 rcu_read_lock(); 8441 percpu_ref_get(&mddev->writes_pending); 8442 smp_mb(); /* Match smp_mb in set_in_sync() */ 8443 if (mddev->safemode == 1) 8444 mddev->safemode = 0; 8445 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8446 if (mddev->in_sync || mddev->sync_checkers) { 8447 spin_lock(&mddev->lock); 8448 if (mddev->in_sync) { 8449 mddev->in_sync = 0; 8450 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8451 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8452 md_wakeup_thread(mddev->thread); 8453 did_change = 1; 8454 } 8455 spin_unlock(&mddev->lock); 8456 } 8457 rcu_read_unlock(); 8458 if (did_change) 8459 sysfs_notify_dirent_safe(mddev->sysfs_state); 8460 if (!mddev->has_superblocks) 8461 return true; 8462 wait_event(mddev->sb_wait, 8463 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8464 mddev->suspended); 8465 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8466 percpu_ref_put(&mddev->writes_pending); 8467 return false; 8468 } 8469 return true; 8470 } 8471 EXPORT_SYMBOL(md_write_start); 8472 8473 /* md_write_inc can only be called when md_write_start() has 8474 * already been called at least once of the current request. 8475 * It increments the counter and is useful when a single request 8476 * is split into several parts. Each part causes an increment and 8477 * so needs a matching md_write_end(). 8478 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8479 * a spinlocked region. 8480 */ 8481 void md_write_inc(struct mddev *mddev, struct bio *bi) 8482 { 8483 if (bio_data_dir(bi) != WRITE) 8484 return; 8485 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8486 percpu_ref_get(&mddev->writes_pending); 8487 } 8488 EXPORT_SYMBOL(md_write_inc); 8489 8490 void md_write_end(struct mddev *mddev) 8491 { 8492 percpu_ref_put(&mddev->writes_pending); 8493 8494 if (mddev->safemode == 2) 8495 md_wakeup_thread(mddev->thread); 8496 else if (mddev->safemode_delay) 8497 /* The roundup() ensures this only performs locking once 8498 * every ->safemode_delay jiffies 8499 */ 8500 mod_timer(&mddev->safemode_timer, 8501 roundup(jiffies, mddev->safemode_delay) + 8502 mddev->safemode_delay); 8503 } 8504 8505 EXPORT_SYMBOL(md_write_end); 8506 8507 /* md_allow_write(mddev) 8508 * Calling this ensures that the array is marked 'active' so that writes 8509 * may proceed without blocking. It is important to call this before 8510 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8511 * Must be called with mddev_lock held. 8512 */ 8513 void md_allow_write(struct mddev *mddev) 8514 { 8515 if (!mddev->pers) 8516 return; 8517 if (mddev->ro) 8518 return; 8519 if (!mddev->pers->sync_request) 8520 return; 8521 8522 spin_lock(&mddev->lock); 8523 if (mddev->in_sync) { 8524 mddev->in_sync = 0; 8525 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8526 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8527 if (mddev->safemode_delay && 8528 mddev->safemode == 0) 8529 mddev->safemode = 1; 8530 spin_unlock(&mddev->lock); 8531 md_update_sb(mddev, 0); 8532 sysfs_notify_dirent_safe(mddev->sysfs_state); 8533 /* wait for the dirty state to be recorded in the metadata */ 8534 wait_event(mddev->sb_wait, 8535 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8536 } else 8537 spin_unlock(&mddev->lock); 8538 } 8539 EXPORT_SYMBOL_GPL(md_allow_write); 8540 8541 #define SYNC_MARKS 10 8542 #define SYNC_MARK_STEP (3*HZ) 8543 #define UPDATE_FREQUENCY (5*60*HZ) 8544 void md_do_sync(struct md_thread *thread) 8545 { 8546 struct mddev *mddev = thread->mddev; 8547 struct mddev *mddev2; 8548 unsigned int currspeed = 0, window; 8549 sector_t max_sectors,j, io_sectors, recovery_done; 8550 unsigned long mark[SYNC_MARKS]; 8551 unsigned long update_time; 8552 sector_t mark_cnt[SYNC_MARKS]; 8553 int last_mark,m; 8554 struct list_head *tmp; 8555 sector_t last_check; 8556 int skipped = 0; 8557 struct md_rdev *rdev; 8558 char *desc, *action = NULL; 8559 struct blk_plug plug; 8560 int ret; 8561 8562 /* just incase thread restarts... */ 8563 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8564 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8565 return; 8566 if (mddev->ro) {/* never try to sync a read-only array */ 8567 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8568 return; 8569 } 8570 8571 if (mddev_is_clustered(mddev)) { 8572 ret = md_cluster_ops->resync_start(mddev); 8573 if (ret) 8574 goto skip; 8575 8576 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8577 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8578 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8579 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8580 && ((unsigned long long)mddev->curr_resync_completed 8581 < (unsigned long long)mddev->resync_max_sectors)) 8582 goto skip; 8583 } 8584 8585 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8586 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8587 desc = "data-check"; 8588 action = "check"; 8589 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8590 desc = "requested-resync"; 8591 action = "repair"; 8592 } else 8593 desc = "resync"; 8594 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8595 desc = "reshape"; 8596 else 8597 desc = "recovery"; 8598 8599 mddev->last_sync_action = action ?: desc; 8600 8601 /* we overload curr_resync somewhat here. 8602 * 0 == not engaged in resync at all 8603 * 2 == checking that there is no conflict with another sync 8604 * 1 == like 2, but have yielded to allow conflicting resync to 8605 * commence 8606 * other == active in resync - this many blocks 8607 * 8608 * Before starting a resync we must have set curr_resync to 8609 * 2, and then checked that every "conflicting" array has curr_resync 8610 * less than ours. When we find one that is the same or higher 8611 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8612 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8613 * This will mean we have to start checking from the beginning again. 8614 * 8615 */ 8616 8617 do { 8618 int mddev2_minor = -1; 8619 mddev->curr_resync = 2; 8620 8621 try_again: 8622 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8623 goto skip; 8624 for_each_mddev(mddev2, tmp) { 8625 if (mddev2 == mddev) 8626 continue; 8627 if (!mddev->parallel_resync 8628 && mddev2->curr_resync 8629 && match_mddev_units(mddev, mddev2)) { 8630 DEFINE_WAIT(wq); 8631 if (mddev < mddev2 && mddev->curr_resync == 2) { 8632 /* arbitrarily yield */ 8633 mddev->curr_resync = 1; 8634 wake_up(&resync_wait); 8635 } 8636 if (mddev > mddev2 && mddev->curr_resync == 1) 8637 /* no need to wait here, we can wait the next 8638 * time 'round when curr_resync == 2 8639 */ 8640 continue; 8641 /* We need to wait 'interruptible' so as not to 8642 * contribute to the load average, and not to 8643 * be caught by 'softlockup' 8644 */ 8645 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8646 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8647 mddev2->curr_resync >= mddev->curr_resync) { 8648 if (mddev2_minor != mddev2->md_minor) { 8649 mddev2_minor = mddev2->md_minor; 8650 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8651 desc, mdname(mddev), 8652 mdname(mddev2)); 8653 } 8654 mddev_put(mddev2); 8655 if (signal_pending(current)) 8656 flush_signals(current); 8657 schedule(); 8658 finish_wait(&resync_wait, &wq); 8659 goto try_again; 8660 } 8661 finish_wait(&resync_wait, &wq); 8662 } 8663 } 8664 } while (mddev->curr_resync < 2); 8665 8666 j = 0; 8667 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8668 /* resync follows the size requested by the personality, 8669 * which defaults to physical size, but can be virtual size 8670 */ 8671 max_sectors = mddev->resync_max_sectors; 8672 atomic64_set(&mddev->resync_mismatches, 0); 8673 /* we don't use the checkpoint if there's a bitmap */ 8674 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8675 j = mddev->resync_min; 8676 else if (!mddev->bitmap) 8677 j = mddev->recovery_cp; 8678 8679 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8680 max_sectors = mddev->resync_max_sectors; 8681 /* 8682 * If the original node aborts reshaping then we continue the 8683 * reshaping, so set j again to avoid restart reshape from the 8684 * first beginning 8685 */ 8686 if (mddev_is_clustered(mddev) && 8687 mddev->reshape_position != MaxSector) 8688 j = mddev->reshape_position; 8689 } else { 8690 /* recovery follows the physical size of devices */ 8691 max_sectors = mddev->dev_sectors; 8692 j = MaxSector; 8693 rcu_read_lock(); 8694 rdev_for_each_rcu(rdev, mddev) 8695 if (rdev->raid_disk >= 0 && 8696 !test_bit(Journal, &rdev->flags) && 8697 !test_bit(Faulty, &rdev->flags) && 8698 !test_bit(In_sync, &rdev->flags) && 8699 rdev->recovery_offset < j) 8700 j = rdev->recovery_offset; 8701 rcu_read_unlock(); 8702 8703 /* If there is a bitmap, we need to make sure all 8704 * writes that started before we added a spare 8705 * complete before we start doing a recovery. 8706 * Otherwise the write might complete and (via 8707 * bitmap_endwrite) set a bit in the bitmap after the 8708 * recovery has checked that bit and skipped that 8709 * region. 8710 */ 8711 if (mddev->bitmap) { 8712 mddev->pers->quiesce(mddev, 1); 8713 mddev->pers->quiesce(mddev, 0); 8714 } 8715 } 8716 8717 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8718 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8719 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8720 speed_max(mddev), desc); 8721 8722 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8723 8724 io_sectors = 0; 8725 for (m = 0; m < SYNC_MARKS; m++) { 8726 mark[m] = jiffies; 8727 mark_cnt[m] = io_sectors; 8728 } 8729 last_mark = 0; 8730 mddev->resync_mark = mark[last_mark]; 8731 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8732 8733 /* 8734 * Tune reconstruction: 8735 */ 8736 window = 32 * (PAGE_SIZE / 512); 8737 pr_debug("md: using %dk window, over a total of %lluk.\n", 8738 window/2, (unsigned long long)max_sectors/2); 8739 8740 atomic_set(&mddev->recovery_active, 0); 8741 last_check = 0; 8742 8743 if (j>2) { 8744 pr_debug("md: resuming %s of %s from checkpoint.\n", 8745 desc, mdname(mddev)); 8746 mddev->curr_resync = j; 8747 } else 8748 mddev->curr_resync = 3; /* no longer delayed */ 8749 mddev->curr_resync_completed = j; 8750 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8751 md_new_event(mddev); 8752 update_time = jiffies; 8753 8754 blk_start_plug(&plug); 8755 while (j < max_sectors) { 8756 sector_t sectors; 8757 8758 skipped = 0; 8759 8760 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8761 ((mddev->curr_resync > mddev->curr_resync_completed && 8762 (mddev->curr_resync - mddev->curr_resync_completed) 8763 > (max_sectors >> 4)) || 8764 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8765 (j - mddev->curr_resync_completed)*2 8766 >= mddev->resync_max - mddev->curr_resync_completed || 8767 mddev->curr_resync_completed > mddev->resync_max 8768 )) { 8769 /* time to update curr_resync_completed */ 8770 wait_event(mddev->recovery_wait, 8771 atomic_read(&mddev->recovery_active) == 0); 8772 mddev->curr_resync_completed = j; 8773 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8774 j > mddev->recovery_cp) 8775 mddev->recovery_cp = j; 8776 update_time = jiffies; 8777 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8778 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8779 } 8780 8781 while (j >= mddev->resync_max && 8782 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8783 /* As this condition is controlled by user-space, 8784 * we can block indefinitely, so use '_interruptible' 8785 * to avoid triggering warnings. 8786 */ 8787 flush_signals(current); /* just in case */ 8788 wait_event_interruptible(mddev->recovery_wait, 8789 mddev->resync_max > j 8790 || test_bit(MD_RECOVERY_INTR, 8791 &mddev->recovery)); 8792 } 8793 8794 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8795 break; 8796 8797 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8798 if (sectors == 0) { 8799 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8800 break; 8801 } 8802 8803 if (!skipped) { /* actual IO requested */ 8804 io_sectors += sectors; 8805 atomic_add(sectors, &mddev->recovery_active); 8806 } 8807 8808 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8809 break; 8810 8811 j += sectors; 8812 if (j > max_sectors) 8813 /* when skipping, extra large numbers can be returned. */ 8814 j = max_sectors; 8815 if (j > 2) 8816 mddev->curr_resync = j; 8817 mddev->curr_mark_cnt = io_sectors; 8818 if (last_check == 0) 8819 /* this is the earliest that rebuild will be 8820 * visible in /proc/mdstat 8821 */ 8822 md_new_event(mddev); 8823 8824 if (last_check + window > io_sectors || j == max_sectors) 8825 continue; 8826 8827 last_check = io_sectors; 8828 repeat: 8829 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8830 /* step marks */ 8831 int next = (last_mark+1) % SYNC_MARKS; 8832 8833 mddev->resync_mark = mark[next]; 8834 mddev->resync_mark_cnt = mark_cnt[next]; 8835 mark[next] = jiffies; 8836 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8837 last_mark = next; 8838 } 8839 8840 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8841 break; 8842 8843 /* 8844 * this loop exits only if either when we are slower than 8845 * the 'hard' speed limit, or the system was IO-idle for 8846 * a jiffy. 8847 * the system might be non-idle CPU-wise, but we only care 8848 * about not overloading the IO subsystem. (things like an 8849 * e2fsck being done on the RAID array should execute fast) 8850 */ 8851 cond_resched(); 8852 8853 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8854 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8855 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8856 8857 if (currspeed > speed_min(mddev)) { 8858 if (currspeed > speed_max(mddev)) { 8859 msleep(500); 8860 goto repeat; 8861 } 8862 if (!is_mddev_idle(mddev, 0)) { 8863 /* 8864 * Give other IO more of a chance. 8865 * The faster the devices, the less we wait. 8866 */ 8867 wait_event(mddev->recovery_wait, 8868 !atomic_read(&mddev->recovery_active)); 8869 } 8870 } 8871 } 8872 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8873 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8874 ? "interrupted" : "done"); 8875 /* 8876 * this also signals 'finished resyncing' to md_stop 8877 */ 8878 blk_finish_plug(&plug); 8879 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8880 8881 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8882 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8883 mddev->curr_resync > 3) { 8884 mddev->curr_resync_completed = mddev->curr_resync; 8885 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8886 } 8887 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8888 8889 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8890 mddev->curr_resync > 3) { 8891 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8892 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8893 if (mddev->curr_resync >= mddev->recovery_cp) { 8894 pr_debug("md: checkpointing %s of %s.\n", 8895 desc, mdname(mddev)); 8896 if (test_bit(MD_RECOVERY_ERROR, 8897 &mddev->recovery)) 8898 mddev->recovery_cp = 8899 mddev->curr_resync_completed; 8900 else 8901 mddev->recovery_cp = 8902 mddev->curr_resync; 8903 } 8904 } else 8905 mddev->recovery_cp = MaxSector; 8906 } else { 8907 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8908 mddev->curr_resync = MaxSector; 8909 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8910 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8911 rcu_read_lock(); 8912 rdev_for_each_rcu(rdev, mddev) 8913 if (rdev->raid_disk >= 0 && 8914 mddev->delta_disks >= 0 && 8915 !test_bit(Journal, &rdev->flags) && 8916 !test_bit(Faulty, &rdev->flags) && 8917 !test_bit(In_sync, &rdev->flags) && 8918 rdev->recovery_offset < mddev->curr_resync) 8919 rdev->recovery_offset = mddev->curr_resync; 8920 rcu_read_unlock(); 8921 } 8922 } 8923 } 8924 skip: 8925 /* set CHANGE_PENDING here since maybe another update is needed, 8926 * so other nodes are informed. It should be harmless for normal 8927 * raid */ 8928 set_mask_bits(&mddev->sb_flags, 0, 8929 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8930 8931 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8932 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8933 mddev->delta_disks > 0 && 8934 mddev->pers->finish_reshape && 8935 mddev->pers->size && 8936 mddev->queue) { 8937 mddev_lock_nointr(mddev); 8938 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 8939 mddev_unlock(mddev); 8940 if (!mddev_is_clustered(mddev)) { 8941 set_capacity(mddev->gendisk, mddev->array_sectors); 8942 revalidate_disk(mddev->gendisk); 8943 } 8944 } 8945 8946 spin_lock(&mddev->lock); 8947 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8948 /* We completed so min/max setting can be forgotten if used. */ 8949 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8950 mddev->resync_min = 0; 8951 mddev->resync_max = MaxSector; 8952 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8953 mddev->resync_min = mddev->curr_resync_completed; 8954 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8955 mddev->curr_resync = 0; 8956 spin_unlock(&mddev->lock); 8957 8958 wake_up(&resync_wait); 8959 md_wakeup_thread(mddev->thread); 8960 return; 8961 } 8962 EXPORT_SYMBOL_GPL(md_do_sync); 8963 8964 static int remove_and_add_spares(struct mddev *mddev, 8965 struct md_rdev *this) 8966 { 8967 struct md_rdev *rdev; 8968 int spares = 0; 8969 int removed = 0; 8970 bool remove_some = false; 8971 8972 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8973 /* Mustn't remove devices when resync thread is running */ 8974 return 0; 8975 8976 rdev_for_each(rdev, mddev) { 8977 if ((this == NULL || rdev == this) && 8978 rdev->raid_disk >= 0 && 8979 !test_bit(Blocked, &rdev->flags) && 8980 test_bit(Faulty, &rdev->flags) && 8981 atomic_read(&rdev->nr_pending)==0) { 8982 /* Faulty non-Blocked devices with nr_pending == 0 8983 * never get nr_pending incremented, 8984 * never get Faulty cleared, and never get Blocked set. 8985 * So we can synchronize_rcu now rather than once per device 8986 */ 8987 remove_some = true; 8988 set_bit(RemoveSynchronized, &rdev->flags); 8989 } 8990 } 8991 8992 if (remove_some) 8993 synchronize_rcu(); 8994 rdev_for_each(rdev, mddev) { 8995 if ((this == NULL || rdev == this) && 8996 rdev->raid_disk >= 0 && 8997 !test_bit(Blocked, &rdev->flags) && 8998 ((test_bit(RemoveSynchronized, &rdev->flags) || 8999 (!test_bit(In_sync, &rdev->flags) && 9000 !test_bit(Journal, &rdev->flags))) && 9001 atomic_read(&rdev->nr_pending)==0)) { 9002 if (mddev->pers->hot_remove_disk( 9003 mddev, rdev) == 0) { 9004 sysfs_unlink_rdev(mddev, rdev); 9005 rdev->saved_raid_disk = rdev->raid_disk; 9006 rdev->raid_disk = -1; 9007 removed++; 9008 } 9009 } 9010 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9011 clear_bit(RemoveSynchronized, &rdev->flags); 9012 } 9013 9014 if (removed && mddev->kobj.sd) 9015 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9016 9017 if (this && removed) 9018 goto no_add; 9019 9020 rdev_for_each(rdev, mddev) { 9021 if (this && this != rdev) 9022 continue; 9023 if (test_bit(Candidate, &rdev->flags)) 9024 continue; 9025 if (rdev->raid_disk >= 0 && 9026 !test_bit(In_sync, &rdev->flags) && 9027 !test_bit(Journal, &rdev->flags) && 9028 !test_bit(Faulty, &rdev->flags)) 9029 spares++; 9030 if (rdev->raid_disk >= 0) 9031 continue; 9032 if (test_bit(Faulty, &rdev->flags)) 9033 continue; 9034 if (!test_bit(Journal, &rdev->flags)) { 9035 if (mddev->ro && 9036 ! (rdev->saved_raid_disk >= 0 && 9037 !test_bit(Bitmap_sync, &rdev->flags))) 9038 continue; 9039 9040 rdev->recovery_offset = 0; 9041 } 9042 if (mddev->pers-> 9043 hot_add_disk(mddev, rdev) == 0) { 9044 if (sysfs_link_rdev(mddev, rdev)) 9045 /* failure here is OK */; 9046 if (!test_bit(Journal, &rdev->flags)) 9047 spares++; 9048 md_new_event(mddev); 9049 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9050 } 9051 } 9052 no_add: 9053 if (removed) 9054 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9055 return spares; 9056 } 9057 9058 static void md_start_sync(struct work_struct *ws) 9059 { 9060 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9061 9062 mddev->sync_thread = md_register_thread(md_do_sync, 9063 mddev, 9064 "resync"); 9065 if (!mddev->sync_thread) { 9066 pr_warn("%s: could not start resync thread...\n", 9067 mdname(mddev)); 9068 /* leave the spares where they are, it shouldn't hurt */ 9069 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9070 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9071 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9072 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9073 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9074 wake_up(&resync_wait); 9075 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9076 &mddev->recovery)) 9077 if (mddev->sysfs_action) 9078 sysfs_notify_dirent_safe(mddev->sysfs_action); 9079 } else 9080 md_wakeup_thread(mddev->sync_thread); 9081 sysfs_notify_dirent_safe(mddev->sysfs_action); 9082 md_new_event(mddev); 9083 } 9084 9085 /* 9086 * This routine is regularly called by all per-raid-array threads to 9087 * deal with generic issues like resync and super-block update. 9088 * Raid personalities that don't have a thread (linear/raid0) do not 9089 * need this as they never do any recovery or update the superblock. 9090 * 9091 * It does not do any resync itself, but rather "forks" off other threads 9092 * to do that as needed. 9093 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9094 * "->recovery" and create a thread at ->sync_thread. 9095 * When the thread finishes it sets MD_RECOVERY_DONE 9096 * and wakeups up this thread which will reap the thread and finish up. 9097 * This thread also removes any faulty devices (with nr_pending == 0). 9098 * 9099 * The overall approach is: 9100 * 1/ if the superblock needs updating, update it. 9101 * 2/ If a recovery thread is running, don't do anything else. 9102 * 3/ If recovery has finished, clean up, possibly marking spares active. 9103 * 4/ If there are any faulty devices, remove them. 9104 * 5/ If array is degraded, try to add spares devices 9105 * 6/ If array has spares or is not in-sync, start a resync thread. 9106 */ 9107 void md_check_recovery(struct mddev *mddev) 9108 { 9109 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9110 /* Write superblock - thread that called mddev_suspend() 9111 * holds reconfig_mutex for us. 9112 */ 9113 set_bit(MD_UPDATING_SB, &mddev->flags); 9114 smp_mb__after_atomic(); 9115 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9116 md_update_sb(mddev, 0); 9117 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9118 wake_up(&mddev->sb_wait); 9119 } 9120 9121 if (mddev->suspended) 9122 return; 9123 9124 if (mddev->bitmap) 9125 md_bitmap_daemon_work(mddev); 9126 9127 if (signal_pending(current)) { 9128 if (mddev->pers->sync_request && !mddev->external) { 9129 pr_debug("md: %s in immediate safe mode\n", 9130 mdname(mddev)); 9131 mddev->safemode = 2; 9132 } 9133 flush_signals(current); 9134 } 9135 9136 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9137 return; 9138 if ( ! ( 9139 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9140 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9141 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9142 (mddev->external == 0 && mddev->safemode == 1) || 9143 (mddev->safemode == 2 9144 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9145 )) 9146 return; 9147 9148 if (mddev_trylock(mddev)) { 9149 int spares = 0; 9150 bool try_set_sync = mddev->safemode != 0; 9151 9152 if (!mddev->external && mddev->safemode == 1) 9153 mddev->safemode = 0; 9154 9155 if (mddev->ro) { 9156 struct md_rdev *rdev; 9157 if (!mddev->external && mddev->in_sync) 9158 /* 'Blocked' flag not needed as failed devices 9159 * will be recorded if array switched to read/write. 9160 * Leaving it set will prevent the device 9161 * from being removed. 9162 */ 9163 rdev_for_each(rdev, mddev) 9164 clear_bit(Blocked, &rdev->flags); 9165 /* On a read-only array we can: 9166 * - remove failed devices 9167 * - add already-in_sync devices if the array itself 9168 * is in-sync. 9169 * As we only add devices that are already in-sync, 9170 * we can activate the spares immediately. 9171 */ 9172 remove_and_add_spares(mddev, NULL); 9173 /* There is no thread, but we need to call 9174 * ->spare_active and clear saved_raid_disk 9175 */ 9176 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9177 md_reap_sync_thread(mddev); 9178 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9179 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9180 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9181 goto unlock; 9182 } 9183 9184 if (mddev_is_clustered(mddev)) { 9185 struct md_rdev *rdev; 9186 /* kick the device if another node issued a 9187 * remove disk. 9188 */ 9189 rdev_for_each(rdev, mddev) { 9190 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9191 rdev->raid_disk < 0) 9192 md_kick_rdev_from_array(rdev); 9193 } 9194 } 9195 9196 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9197 spin_lock(&mddev->lock); 9198 set_in_sync(mddev); 9199 spin_unlock(&mddev->lock); 9200 } 9201 9202 if (mddev->sb_flags) 9203 md_update_sb(mddev, 0); 9204 9205 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9206 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9207 /* resync/recovery still happening */ 9208 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9209 goto unlock; 9210 } 9211 if (mddev->sync_thread) { 9212 md_reap_sync_thread(mddev); 9213 goto unlock; 9214 } 9215 /* Set RUNNING before clearing NEEDED to avoid 9216 * any transients in the value of "sync_action". 9217 */ 9218 mddev->curr_resync_completed = 0; 9219 spin_lock(&mddev->lock); 9220 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9221 spin_unlock(&mddev->lock); 9222 /* Clear some bits that don't mean anything, but 9223 * might be left set 9224 */ 9225 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9226 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9227 9228 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9229 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9230 goto not_running; 9231 /* no recovery is running. 9232 * remove any failed drives, then 9233 * add spares if possible. 9234 * Spares are also removed and re-added, to allow 9235 * the personality to fail the re-add. 9236 */ 9237 9238 if (mddev->reshape_position != MaxSector) { 9239 if (mddev->pers->check_reshape == NULL || 9240 mddev->pers->check_reshape(mddev) != 0) 9241 /* Cannot proceed */ 9242 goto not_running; 9243 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9244 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9245 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9246 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9247 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9248 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9249 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9250 } else if (mddev->recovery_cp < MaxSector) { 9251 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9252 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9253 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9254 /* nothing to be done ... */ 9255 goto not_running; 9256 9257 if (mddev->pers->sync_request) { 9258 if (spares) { 9259 /* We are adding a device or devices to an array 9260 * which has the bitmap stored on all devices. 9261 * So make sure all bitmap pages get written 9262 */ 9263 md_bitmap_write_all(mddev->bitmap); 9264 } 9265 INIT_WORK(&mddev->del_work, md_start_sync); 9266 queue_work(md_misc_wq, &mddev->del_work); 9267 goto unlock; 9268 } 9269 not_running: 9270 if (!mddev->sync_thread) { 9271 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9272 wake_up(&resync_wait); 9273 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9274 &mddev->recovery)) 9275 if (mddev->sysfs_action) 9276 sysfs_notify_dirent_safe(mddev->sysfs_action); 9277 } 9278 unlock: 9279 wake_up(&mddev->sb_wait); 9280 mddev_unlock(mddev); 9281 } 9282 } 9283 EXPORT_SYMBOL(md_check_recovery); 9284 9285 void md_reap_sync_thread(struct mddev *mddev) 9286 { 9287 struct md_rdev *rdev; 9288 sector_t old_dev_sectors = mddev->dev_sectors; 9289 bool is_reshaped = false; 9290 9291 /* resync has finished, collect result */ 9292 md_unregister_thread(&mddev->sync_thread); 9293 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9294 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9295 mddev->degraded != mddev->raid_disks) { 9296 /* success...*/ 9297 /* activate any spares */ 9298 if (mddev->pers->spare_active(mddev)) { 9299 sysfs_notify(&mddev->kobj, NULL, 9300 "degraded"); 9301 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9302 } 9303 } 9304 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9305 mddev->pers->finish_reshape) { 9306 mddev->pers->finish_reshape(mddev); 9307 if (mddev_is_clustered(mddev)) 9308 is_reshaped = true; 9309 } 9310 9311 /* If array is no-longer degraded, then any saved_raid_disk 9312 * information must be scrapped. 9313 */ 9314 if (!mddev->degraded) 9315 rdev_for_each(rdev, mddev) 9316 rdev->saved_raid_disk = -1; 9317 9318 md_update_sb(mddev, 1); 9319 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9320 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9321 * clustered raid */ 9322 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9323 md_cluster_ops->resync_finish(mddev); 9324 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9325 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9326 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9327 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9328 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9329 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9330 /* 9331 * We call md_cluster_ops->update_size here because sync_size could 9332 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9333 * so it is time to update size across cluster. 9334 */ 9335 if (mddev_is_clustered(mddev) && is_reshaped 9336 && !test_bit(MD_CLOSING, &mddev->flags)) 9337 md_cluster_ops->update_size(mddev, old_dev_sectors); 9338 wake_up(&resync_wait); 9339 /* flag recovery needed just to double check */ 9340 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9341 sysfs_notify_dirent_safe(mddev->sysfs_action); 9342 md_new_event(mddev); 9343 if (mddev->event_work.func) 9344 queue_work(md_misc_wq, &mddev->event_work); 9345 } 9346 EXPORT_SYMBOL(md_reap_sync_thread); 9347 9348 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9349 { 9350 sysfs_notify_dirent_safe(rdev->sysfs_state); 9351 wait_event_timeout(rdev->blocked_wait, 9352 !test_bit(Blocked, &rdev->flags) && 9353 !test_bit(BlockedBadBlocks, &rdev->flags), 9354 msecs_to_jiffies(5000)); 9355 rdev_dec_pending(rdev, mddev); 9356 } 9357 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9358 9359 void md_finish_reshape(struct mddev *mddev) 9360 { 9361 /* called be personality module when reshape completes. */ 9362 struct md_rdev *rdev; 9363 9364 rdev_for_each(rdev, mddev) { 9365 if (rdev->data_offset > rdev->new_data_offset) 9366 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9367 else 9368 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9369 rdev->data_offset = rdev->new_data_offset; 9370 } 9371 } 9372 EXPORT_SYMBOL(md_finish_reshape); 9373 9374 /* Bad block management */ 9375 9376 /* Returns 1 on success, 0 on failure */ 9377 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9378 int is_new) 9379 { 9380 struct mddev *mddev = rdev->mddev; 9381 int rv; 9382 if (is_new) 9383 s += rdev->new_data_offset; 9384 else 9385 s += rdev->data_offset; 9386 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9387 if (rv == 0) { 9388 /* Make sure they get written out promptly */ 9389 if (test_bit(ExternalBbl, &rdev->flags)) 9390 sysfs_notify(&rdev->kobj, NULL, 9391 "unacknowledged_bad_blocks"); 9392 sysfs_notify_dirent_safe(rdev->sysfs_state); 9393 set_mask_bits(&mddev->sb_flags, 0, 9394 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9395 md_wakeup_thread(rdev->mddev->thread); 9396 return 1; 9397 } else 9398 return 0; 9399 } 9400 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9401 9402 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9403 int is_new) 9404 { 9405 int rv; 9406 if (is_new) 9407 s += rdev->new_data_offset; 9408 else 9409 s += rdev->data_offset; 9410 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9411 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9412 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 9413 return rv; 9414 } 9415 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9416 9417 static int md_notify_reboot(struct notifier_block *this, 9418 unsigned long code, void *x) 9419 { 9420 struct list_head *tmp; 9421 struct mddev *mddev; 9422 int need_delay = 0; 9423 9424 for_each_mddev(mddev, tmp) { 9425 if (mddev_trylock(mddev)) { 9426 if (mddev->pers) 9427 __md_stop_writes(mddev); 9428 if (mddev->persistent) 9429 mddev->safemode = 2; 9430 mddev_unlock(mddev); 9431 } 9432 need_delay = 1; 9433 } 9434 /* 9435 * certain more exotic SCSI devices are known to be 9436 * volatile wrt too early system reboots. While the 9437 * right place to handle this issue is the given 9438 * driver, we do want to have a safe RAID driver ... 9439 */ 9440 if (need_delay) 9441 mdelay(1000*1); 9442 9443 return NOTIFY_DONE; 9444 } 9445 9446 static struct notifier_block md_notifier = { 9447 .notifier_call = md_notify_reboot, 9448 .next = NULL, 9449 .priority = INT_MAX, /* before any real devices */ 9450 }; 9451 9452 static void md_geninit(void) 9453 { 9454 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9455 9456 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9457 } 9458 9459 static int __init md_init(void) 9460 { 9461 int ret = -ENOMEM; 9462 9463 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9464 if (!md_wq) 9465 goto err_wq; 9466 9467 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9468 if (!md_misc_wq) 9469 goto err_misc_wq; 9470 9471 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9472 goto err_md; 9473 9474 if ((ret = register_blkdev(0, "mdp")) < 0) 9475 goto err_mdp; 9476 mdp_major = ret; 9477 9478 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9479 md_probe, NULL, NULL); 9480 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9481 md_probe, NULL, NULL); 9482 9483 register_reboot_notifier(&md_notifier); 9484 raid_table_header = register_sysctl_table(raid_root_table); 9485 9486 md_geninit(); 9487 return 0; 9488 9489 err_mdp: 9490 unregister_blkdev(MD_MAJOR, "md"); 9491 err_md: 9492 destroy_workqueue(md_misc_wq); 9493 err_misc_wq: 9494 destroy_workqueue(md_wq); 9495 err_wq: 9496 return ret; 9497 } 9498 9499 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9500 { 9501 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9502 struct md_rdev *rdev2; 9503 int role, ret; 9504 char b[BDEVNAME_SIZE]; 9505 9506 /* 9507 * If size is changed in another node then we need to 9508 * do resize as well. 9509 */ 9510 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9511 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9512 if (ret) 9513 pr_info("md-cluster: resize failed\n"); 9514 else 9515 md_bitmap_update_sb(mddev->bitmap); 9516 } 9517 9518 /* Check for change of roles in the active devices */ 9519 rdev_for_each(rdev2, mddev) { 9520 if (test_bit(Faulty, &rdev2->flags)) 9521 continue; 9522 9523 /* Check if the roles changed */ 9524 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9525 9526 if (test_bit(Candidate, &rdev2->flags)) { 9527 if (role == 0xfffe) { 9528 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9529 md_kick_rdev_from_array(rdev2); 9530 continue; 9531 } 9532 else 9533 clear_bit(Candidate, &rdev2->flags); 9534 } 9535 9536 if (role != rdev2->raid_disk) { 9537 /* 9538 * got activated except reshape is happening. 9539 */ 9540 if (rdev2->raid_disk == -1 && role != 0xffff && 9541 !(le32_to_cpu(sb->feature_map) & 9542 MD_FEATURE_RESHAPE_ACTIVE)) { 9543 rdev2->saved_raid_disk = role; 9544 ret = remove_and_add_spares(mddev, rdev2); 9545 pr_info("Activated spare: %s\n", 9546 bdevname(rdev2->bdev,b)); 9547 /* wakeup mddev->thread here, so array could 9548 * perform resync with the new activated disk */ 9549 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9550 md_wakeup_thread(mddev->thread); 9551 } 9552 /* device faulty 9553 * We just want to do the minimum to mark the disk 9554 * as faulty. The recovery is performed by the 9555 * one who initiated the error. 9556 */ 9557 if ((role == 0xfffe) || (role == 0xfffd)) { 9558 md_error(mddev, rdev2); 9559 clear_bit(Blocked, &rdev2->flags); 9560 } 9561 } 9562 } 9563 9564 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9565 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9566 9567 /* 9568 * Since mddev->delta_disks has already updated in update_raid_disks, 9569 * so it is time to check reshape. 9570 */ 9571 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9572 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9573 /* 9574 * reshape is happening in the remote node, we need to 9575 * update reshape_position and call start_reshape. 9576 */ 9577 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9578 if (mddev->pers->update_reshape_pos) 9579 mddev->pers->update_reshape_pos(mddev); 9580 if (mddev->pers->start_reshape) 9581 mddev->pers->start_reshape(mddev); 9582 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9583 mddev->reshape_position != MaxSector && 9584 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9585 /* reshape is just done in another node. */ 9586 mddev->reshape_position = MaxSector; 9587 if (mddev->pers->update_reshape_pos) 9588 mddev->pers->update_reshape_pos(mddev); 9589 } 9590 9591 /* Finally set the event to be up to date */ 9592 mddev->events = le64_to_cpu(sb->events); 9593 } 9594 9595 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9596 { 9597 int err; 9598 struct page *swapout = rdev->sb_page; 9599 struct mdp_superblock_1 *sb; 9600 9601 /* Store the sb page of the rdev in the swapout temporary 9602 * variable in case we err in the future 9603 */ 9604 rdev->sb_page = NULL; 9605 err = alloc_disk_sb(rdev); 9606 if (err == 0) { 9607 ClearPageUptodate(rdev->sb_page); 9608 rdev->sb_loaded = 0; 9609 err = super_types[mddev->major_version]. 9610 load_super(rdev, NULL, mddev->minor_version); 9611 } 9612 if (err < 0) { 9613 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9614 __func__, __LINE__, rdev->desc_nr, err); 9615 if (rdev->sb_page) 9616 put_page(rdev->sb_page); 9617 rdev->sb_page = swapout; 9618 rdev->sb_loaded = 1; 9619 return err; 9620 } 9621 9622 sb = page_address(rdev->sb_page); 9623 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9624 * is not set 9625 */ 9626 9627 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9628 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9629 9630 /* The other node finished recovery, call spare_active to set 9631 * device In_sync and mddev->degraded 9632 */ 9633 if (rdev->recovery_offset == MaxSector && 9634 !test_bit(In_sync, &rdev->flags) && 9635 mddev->pers->spare_active(mddev)) 9636 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9637 9638 put_page(swapout); 9639 return 0; 9640 } 9641 9642 void md_reload_sb(struct mddev *mddev, int nr) 9643 { 9644 struct md_rdev *rdev; 9645 int err; 9646 9647 /* Find the rdev */ 9648 rdev_for_each_rcu(rdev, mddev) { 9649 if (rdev->desc_nr == nr) 9650 break; 9651 } 9652 9653 if (!rdev || rdev->desc_nr != nr) { 9654 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9655 return; 9656 } 9657 9658 err = read_rdev(mddev, rdev); 9659 if (err < 0) 9660 return; 9661 9662 check_sb_changes(mddev, rdev); 9663 9664 /* Read all rdev's to update recovery_offset */ 9665 rdev_for_each_rcu(rdev, mddev) { 9666 if (!test_bit(Faulty, &rdev->flags)) 9667 read_rdev(mddev, rdev); 9668 } 9669 } 9670 EXPORT_SYMBOL(md_reload_sb); 9671 9672 #ifndef MODULE 9673 9674 /* 9675 * Searches all registered partitions for autorun RAID arrays 9676 * at boot time. 9677 */ 9678 9679 static DEFINE_MUTEX(detected_devices_mutex); 9680 static LIST_HEAD(all_detected_devices); 9681 struct detected_devices_node { 9682 struct list_head list; 9683 dev_t dev; 9684 }; 9685 9686 void md_autodetect_dev(dev_t dev) 9687 { 9688 struct detected_devices_node *node_detected_dev; 9689 9690 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9691 if (node_detected_dev) { 9692 node_detected_dev->dev = dev; 9693 mutex_lock(&detected_devices_mutex); 9694 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9695 mutex_unlock(&detected_devices_mutex); 9696 } 9697 } 9698 9699 static void autostart_arrays(int part) 9700 { 9701 struct md_rdev *rdev; 9702 struct detected_devices_node *node_detected_dev; 9703 dev_t dev; 9704 int i_scanned, i_passed; 9705 9706 i_scanned = 0; 9707 i_passed = 0; 9708 9709 pr_info("md: Autodetecting RAID arrays.\n"); 9710 9711 mutex_lock(&detected_devices_mutex); 9712 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9713 i_scanned++; 9714 node_detected_dev = list_entry(all_detected_devices.next, 9715 struct detected_devices_node, list); 9716 list_del(&node_detected_dev->list); 9717 dev = node_detected_dev->dev; 9718 kfree(node_detected_dev); 9719 mutex_unlock(&detected_devices_mutex); 9720 rdev = md_import_device(dev,0, 90); 9721 mutex_lock(&detected_devices_mutex); 9722 if (IS_ERR(rdev)) 9723 continue; 9724 9725 if (test_bit(Faulty, &rdev->flags)) 9726 continue; 9727 9728 set_bit(AutoDetected, &rdev->flags); 9729 list_add(&rdev->same_set, &pending_raid_disks); 9730 i_passed++; 9731 } 9732 mutex_unlock(&detected_devices_mutex); 9733 9734 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9735 9736 autorun_devices(part); 9737 } 9738 9739 #endif /* !MODULE */ 9740 9741 static __exit void md_exit(void) 9742 { 9743 struct mddev *mddev; 9744 struct list_head *tmp; 9745 int delay = 1; 9746 9747 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9748 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9749 9750 unregister_blkdev(MD_MAJOR,"md"); 9751 unregister_blkdev(mdp_major, "mdp"); 9752 unregister_reboot_notifier(&md_notifier); 9753 unregister_sysctl_table(raid_table_header); 9754 9755 /* We cannot unload the modules while some process is 9756 * waiting for us in select() or poll() - wake them up 9757 */ 9758 md_unloading = 1; 9759 while (waitqueue_active(&md_event_waiters)) { 9760 /* not safe to leave yet */ 9761 wake_up(&md_event_waiters); 9762 msleep(delay); 9763 delay += delay; 9764 } 9765 remove_proc_entry("mdstat", NULL); 9766 9767 for_each_mddev(mddev, tmp) { 9768 export_array(mddev); 9769 mddev->ctime = 0; 9770 mddev->hold_active = 0; 9771 /* 9772 * for_each_mddev() will call mddev_put() at the end of each 9773 * iteration. As the mddev is now fully clear, this will 9774 * schedule the mddev for destruction by a workqueue, and the 9775 * destroy_workqueue() below will wait for that to complete. 9776 */ 9777 } 9778 destroy_workqueue(md_misc_wq); 9779 destroy_workqueue(md_wq); 9780 } 9781 9782 subsys_initcall(md_init); 9783 module_exit(md_exit) 9784 9785 static int get_ro(char *buffer, const struct kernel_param *kp) 9786 { 9787 return sprintf(buffer, "%d", start_readonly); 9788 } 9789 static int set_ro(const char *val, const struct kernel_param *kp) 9790 { 9791 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9792 } 9793 9794 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9795 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9796 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9797 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9798 9799 MODULE_LICENSE("GPL"); 9800 MODULE_DESCRIPTION("MD RAID framework"); 9801 MODULE_ALIAS("md"); 9802 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9803