xref: /openbmc/linux/drivers/md/md.c (revision 96de1e66)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 
46 #include <linux/init.h>
47 
48 #include <linux/file.h>
49 
50 #ifdef CONFIG_KMOD
51 #include <linux/kmod.h>
52 #endif
53 
54 #include <asm/unaligned.h>
55 
56 #define MAJOR_NR MD_MAJOR
57 #define MD_DRIVER
58 
59 /* 63 partitions with the alternate major number (mdp) */
60 #define MdpMinorShift 6
61 
62 #define DEBUG 0
63 #define dprintk(x...) ((void)(DEBUG && printk(x)))
64 
65 
66 #ifndef MODULE
67 static void autostart_arrays (int part);
68 #endif
69 
70 static mdk_personality_t *pers[MAX_PERSONALITY];
71 static DEFINE_SPINLOCK(pers_lock);
72 
73 /*
74  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75  * is 1000 KB/sec, so the extra system load does not show up that much.
76  * Increase it if you want to have more _guaranteed_ speed. Note that
77  * the RAID driver will use the maximum available bandwidth if the IO
78  * subsystem is idle. There is also an 'absolute maximum' reconstruction
79  * speed limit - in case reconstruction slows down your system despite
80  * idle IO detection.
81  *
82  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
83  */
84 
85 static int sysctl_speed_limit_min = 1000;
86 static int sysctl_speed_limit_max = 200000;
87 
88 static struct ctl_table_header *raid_table_header;
89 
90 static ctl_table raid_table[] = {
91 	{
92 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
93 		.procname	= "speed_limit_min",
94 		.data		= &sysctl_speed_limit_min,
95 		.maxlen		= sizeof(int),
96 		.mode		= 0644,
97 		.proc_handler	= &proc_dointvec,
98 	},
99 	{
100 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
101 		.procname	= "speed_limit_max",
102 		.data		= &sysctl_speed_limit_max,
103 		.maxlen		= sizeof(int),
104 		.mode		= 0644,
105 		.proc_handler	= &proc_dointvec,
106 	},
107 	{ .ctl_name = 0 }
108 };
109 
110 static ctl_table raid_dir_table[] = {
111 	{
112 		.ctl_name	= DEV_RAID,
113 		.procname	= "raid",
114 		.maxlen		= 0,
115 		.mode		= 0555,
116 		.child		= raid_table,
117 	},
118 	{ .ctl_name = 0 }
119 };
120 
121 static ctl_table raid_root_table[] = {
122 	{
123 		.ctl_name	= CTL_DEV,
124 		.procname	= "dev",
125 		.maxlen		= 0,
126 		.mode		= 0555,
127 		.child		= raid_dir_table,
128 	},
129 	{ .ctl_name = 0 }
130 };
131 
132 static struct block_device_operations md_fops;
133 
134 static int start_readonly;
135 
136 /*
137  * Enables to iterate over all existing md arrays
138  * all_mddevs_lock protects this list.
139  */
140 static LIST_HEAD(all_mddevs);
141 static DEFINE_SPINLOCK(all_mddevs_lock);
142 
143 
144 /*
145  * iterates through all used mddevs in the system.
146  * We take care to grab the all_mddevs_lock whenever navigating
147  * the list, and to always hold a refcount when unlocked.
148  * Any code which breaks out of this loop while own
149  * a reference to the current mddev and must mddev_put it.
150  */
151 #define ITERATE_MDDEV(mddev,tmp)					\
152 									\
153 	for (({ spin_lock(&all_mddevs_lock); 				\
154 		tmp = all_mddevs.next;					\
155 		mddev = NULL;});					\
156 	     ({ if (tmp != &all_mddevs)					\
157 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
158 		spin_unlock(&all_mddevs_lock);				\
159 		if (mddev) mddev_put(mddev);				\
160 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
161 		tmp != &all_mddevs;});					\
162 	     ({ spin_lock(&all_mddevs_lock);				\
163 		tmp = tmp->next;})					\
164 		)
165 
166 
167 static int md_fail_request (request_queue_t *q, struct bio *bio)
168 {
169 	bio_io_error(bio, bio->bi_size);
170 	return 0;
171 }
172 
173 static inline mddev_t *mddev_get(mddev_t *mddev)
174 {
175 	atomic_inc(&mddev->active);
176 	return mddev;
177 }
178 
179 static void mddev_put(mddev_t *mddev)
180 {
181 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
182 		return;
183 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
184 		list_del(&mddev->all_mddevs);
185 		blk_put_queue(mddev->queue);
186 		kobject_unregister(&mddev->kobj);
187 	}
188 	spin_unlock(&all_mddevs_lock);
189 }
190 
191 static mddev_t * mddev_find(dev_t unit)
192 {
193 	mddev_t *mddev, *new = NULL;
194 
195  retry:
196 	spin_lock(&all_mddevs_lock);
197 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
198 		if (mddev->unit == unit) {
199 			mddev_get(mddev);
200 			spin_unlock(&all_mddevs_lock);
201 			kfree(new);
202 			return mddev;
203 		}
204 
205 	if (new) {
206 		list_add(&new->all_mddevs, &all_mddevs);
207 		spin_unlock(&all_mddevs_lock);
208 		return new;
209 	}
210 	spin_unlock(&all_mddevs_lock);
211 
212 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
213 	if (!new)
214 		return NULL;
215 
216 	memset(new, 0, sizeof(*new));
217 
218 	new->unit = unit;
219 	if (MAJOR(unit) == MD_MAJOR)
220 		new->md_minor = MINOR(unit);
221 	else
222 		new->md_minor = MINOR(unit) >> MdpMinorShift;
223 
224 	init_MUTEX(&new->reconfig_sem);
225 	INIT_LIST_HEAD(&new->disks);
226 	INIT_LIST_HEAD(&new->all_mddevs);
227 	init_timer(&new->safemode_timer);
228 	atomic_set(&new->active, 1);
229 	spin_lock_init(&new->write_lock);
230 	init_waitqueue_head(&new->sb_wait);
231 
232 	new->queue = blk_alloc_queue(GFP_KERNEL);
233 	if (!new->queue) {
234 		kfree(new);
235 		return NULL;
236 	}
237 
238 	blk_queue_make_request(new->queue, md_fail_request);
239 
240 	goto retry;
241 }
242 
243 static inline int mddev_lock(mddev_t * mddev)
244 {
245 	return down_interruptible(&mddev->reconfig_sem);
246 }
247 
248 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
249 {
250 	down(&mddev->reconfig_sem);
251 }
252 
253 static inline int mddev_trylock(mddev_t * mddev)
254 {
255 	return down_trylock(&mddev->reconfig_sem);
256 }
257 
258 static inline void mddev_unlock(mddev_t * mddev)
259 {
260 	up(&mddev->reconfig_sem);
261 
262 	md_wakeup_thread(mddev->thread);
263 }
264 
265 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
266 {
267 	mdk_rdev_t * rdev;
268 	struct list_head *tmp;
269 
270 	ITERATE_RDEV(mddev,rdev,tmp) {
271 		if (rdev->desc_nr == nr)
272 			return rdev;
273 	}
274 	return NULL;
275 }
276 
277 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
278 {
279 	struct list_head *tmp;
280 	mdk_rdev_t *rdev;
281 
282 	ITERATE_RDEV(mddev,rdev,tmp) {
283 		if (rdev->bdev->bd_dev == dev)
284 			return rdev;
285 	}
286 	return NULL;
287 }
288 
289 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
290 {
291 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
292 	return MD_NEW_SIZE_BLOCKS(size);
293 }
294 
295 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
296 {
297 	sector_t size;
298 
299 	size = rdev->sb_offset;
300 
301 	if (chunk_size)
302 		size &= ~((sector_t)chunk_size/1024 - 1);
303 	return size;
304 }
305 
306 static int alloc_disk_sb(mdk_rdev_t * rdev)
307 {
308 	if (rdev->sb_page)
309 		MD_BUG();
310 
311 	rdev->sb_page = alloc_page(GFP_KERNEL);
312 	if (!rdev->sb_page) {
313 		printk(KERN_ALERT "md: out of memory.\n");
314 		return -EINVAL;
315 	}
316 
317 	return 0;
318 }
319 
320 static void free_disk_sb(mdk_rdev_t * rdev)
321 {
322 	if (rdev->sb_page) {
323 		page_cache_release(rdev->sb_page);
324 		rdev->sb_loaded = 0;
325 		rdev->sb_page = NULL;
326 		rdev->sb_offset = 0;
327 		rdev->size = 0;
328 	}
329 }
330 
331 
332 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
333 {
334 	mdk_rdev_t *rdev = bio->bi_private;
335 	mddev_t *mddev = rdev->mddev;
336 	if (bio->bi_size)
337 		return 1;
338 
339 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
340 		md_error(mddev, rdev);
341 
342 	if (atomic_dec_and_test(&mddev->pending_writes))
343 		wake_up(&mddev->sb_wait);
344 	bio_put(bio);
345 	return 0;
346 }
347 
348 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
349 {
350 	struct bio *bio2 = bio->bi_private;
351 	mdk_rdev_t *rdev = bio2->bi_private;
352 	mddev_t *mddev = rdev->mddev;
353 	if (bio->bi_size)
354 		return 1;
355 
356 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
357 	    error == -EOPNOTSUPP) {
358 		unsigned long flags;
359 		/* barriers don't appear to be supported :-( */
360 		set_bit(BarriersNotsupp, &rdev->flags);
361 		mddev->barriers_work = 0;
362 		spin_lock_irqsave(&mddev->write_lock, flags);
363 		bio2->bi_next = mddev->biolist;
364 		mddev->biolist = bio2;
365 		spin_unlock_irqrestore(&mddev->write_lock, flags);
366 		wake_up(&mddev->sb_wait);
367 		bio_put(bio);
368 		return 0;
369 	}
370 	bio_put(bio2);
371 	bio->bi_private = rdev;
372 	return super_written(bio, bytes_done, error);
373 }
374 
375 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
376 		   sector_t sector, int size, struct page *page)
377 {
378 	/* write first size bytes of page to sector of rdev
379 	 * Increment mddev->pending_writes before returning
380 	 * and decrement it on completion, waking up sb_wait
381 	 * if zero is reached.
382 	 * If an error occurred, call md_error
383 	 *
384 	 * As we might need to resubmit the request if BIO_RW_BARRIER
385 	 * causes ENOTSUPP, we allocate a spare bio...
386 	 */
387 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
388 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
389 
390 	bio->bi_bdev = rdev->bdev;
391 	bio->bi_sector = sector;
392 	bio_add_page(bio, page, size, 0);
393 	bio->bi_private = rdev;
394 	bio->bi_end_io = super_written;
395 	bio->bi_rw = rw;
396 
397 	atomic_inc(&mddev->pending_writes);
398 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
399 		struct bio *rbio;
400 		rw |= (1<<BIO_RW_BARRIER);
401 		rbio = bio_clone(bio, GFP_NOIO);
402 		rbio->bi_private = bio;
403 		rbio->bi_end_io = super_written_barrier;
404 		submit_bio(rw, rbio);
405 	} else
406 		submit_bio(rw, bio);
407 }
408 
409 void md_super_wait(mddev_t *mddev)
410 {
411 	/* wait for all superblock writes that were scheduled to complete.
412 	 * if any had to be retried (due to BARRIER problems), retry them
413 	 */
414 	DEFINE_WAIT(wq);
415 	for(;;) {
416 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
417 		if (atomic_read(&mddev->pending_writes)==0)
418 			break;
419 		while (mddev->biolist) {
420 			struct bio *bio;
421 			spin_lock_irq(&mddev->write_lock);
422 			bio = mddev->biolist;
423 			mddev->biolist = bio->bi_next ;
424 			bio->bi_next = NULL;
425 			spin_unlock_irq(&mddev->write_lock);
426 			submit_bio(bio->bi_rw, bio);
427 		}
428 		schedule();
429 	}
430 	finish_wait(&mddev->sb_wait, &wq);
431 }
432 
433 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
434 {
435 	if (bio->bi_size)
436 		return 1;
437 
438 	complete((struct completion*)bio->bi_private);
439 	return 0;
440 }
441 
442 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
443 		   struct page *page, int rw)
444 {
445 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
446 	struct completion event;
447 	int ret;
448 
449 	rw |= (1 << BIO_RW_SYNC);
450 
451 	bio->bi_bdev = bdev;
452 	bio->bi_sector = sector;
453 	bio_add_page(bio, page, size, 0);
454 	init_completion(&event);
455 	bio->bi_private = &event;
456 	bio->bi_end_io = bi_complete;
457 	submit_bio(rw, bio);
458 	wait_for_completion(&event);
459 
460 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
461 	bio_put(bio);
462 	return ret;
463 }
464 
465 static int read_disk_sb(mdk_rdev_t * rdev, int size)
466 {
467 	char b[BDEVNAME_SIZE];
468 	if (!rdev->sb_page) {
469 		MD_BUG();
470 		return -EINVAL;
471 	}
472 	if (rdev->sb_loaded)
473 		return 0;
474 
475 
476 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
477 		goto fail;
478 	rdev->sb_loaded = 1;
479 	return 0;
480 
481 fail:
482 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
483 		bdevname(rdev->bdev,b));
484 	return -EINVAL;
485 }
486 
487 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
488 {
489 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
490 		(sb1->set_uuid1 == sb2->set_uuid1) &&
491 		(sb1->set_uuid2 == sb2->set_uuid2) &&
492 		(sb1->set_uuid3 == sb2->set_uuid3))
493 
494 		return 1;
495 
496 	return 0;
497 }
498 
499 
500 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
501 {
502 	int ret;
503 	mdp_super_t *tmp1, *tmp2;
504 
505 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
506 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
507 
508 	if (!tmp1 || !tmp2) {
509 		ret = 0;
510 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
511 		goto abort;
512 	}
513 
514 	*tmp1 = *sb1;
515 	*tmp2 = *sb2;
516 
517 	/*
518 	 * nr_disks is not constant
519 	 */
520 	tmp1->nr_disks = 0;
521 	tmp2->nr_disks = 0;
522 
523 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
524 		ret = 0;
525 	else
526 		ret = 1;
527 
528 abort:
529 	kfree(tmp1);
530 	kfree(tmp2);
531 	return ret;
532 }
533 
534 static unsigned int calc_sb_csum(mdp_super_t * sb)
535 {
536 	unsigned int disk_csum, csum;
537 
538 	disk_csum = sb->sb_csum;
539 	sb->sb_csum = 0;
540 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
541 	sb->sb_csum = disk_csum;
542 	return csum;
543 }
544 
545 
546 /*
547  * Handle superblock details.
548  * We want to be able to handle multiple superblock formats
549  * so we have a common interface to them all, and an array of
550  * different handlers.
551  * We rely on user-space to write the initial superblock, and support
552  * reading and updating of superblocks.
553  * Interface methods are:
554  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
555  *      loads and validates a superblock on dev.
556  *      if refdev != NULL, compare superblocks on both devices
557  *    Return:
558  *      0 - dev has a superblock that is compatible with refdev
559  *      1 - dev has a superblock that is compatible and newer than refdev
560  *          so dev should be used as the refdev in future
561  *     -EINVAL superblock incompatible or invalid
562  *     -othererror e.g. -EIO
563  *
564  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
565  *      Verify that dev is acceptable into mddev.
566  *       The first time, mddev->raid_disks will be 0, and data from
567  *       dev should be merged in.  Subsequent calls check that dev
568  *       is new enough.  Return 0 or -EINVAL
569  *
570  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
571  *     Update the superblock for rdev with data in mddev
572  *     This does not write to disc.
573  *
574  */
575 
576 struct super_type  {
577 	char 		*name;
578 	struct module	*owner;
579 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
580 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
581 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
582 };
583 
584 /*
585  * load_super for 0.90.0
586  */
587 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
588 {
589 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
590 	mdp_super_t *sb;
591 	int ret;
592 	sector_t sb_offset;
593 
594 	/*
595 	 * Calculate the position of the superblock,
596 	 * it's at the end of the disk.
597 	 *
598 	 * It also happens to be a multiple of 4Kb.
599 	 */
600 	sb_offset = calc_dev_sboffset(rdev->bdev);
601 	rdev->sb_offset = sb_offset;
602 
603 	ret = read_disk_sb(rdev, MD_SB_BYTES);
604 	if (ret) return ret;
605 
606 	ret = -EINVAL;
607 
608 	bdevname(rdev->bdev, b);
609 	sb = (mdp_super_t*)page_address(rdev->sb_page);
610 
611 	if (sb->md_magic != MD_SB_MAGIC) {
612 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
613 		       b);
614 		goto abort;
615 	}
616 
617 	if (sb->major_version != 0 ||
618 	    sb->minor_version != 90) {
619 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
620 			sb->major_version, sb->minor_version,
621 			b);
622 		goto abort;
623 	}
624 
625 	if (sb->raid_disks <= 0)
626 		goto abort;
627 
628 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
629 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
630 			b);
631 		goto abort;
632 	}
633 
634 	rdev->preferred_minor = sb->md_minor;
635 	rdev->data_offset = 0;
636 	rdev->sb_size = MD_SB_BYTES;
637 
638 	if (sb->level == LEVEL_MULTIPATH)
639 		rdev->desc_nr = -1;
640 	else
641 		rdev->desc_nr = sb->this_disk.number;
642 
643 	if (refdev == 0)
644 		ret = 1;
645 	else {
646 		__u64 ev1, ev2;
647 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
648 		if (!uuid_equal(refsb, sb)) {
649 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
650 				b, bdevname(refdev->bdev,b2));
651 			goto abort;
652 		}
653 		if (!sb_equal(refsb, sb)) {
654 			printk(KERN_WARNING "md: %s has same UUID"
655 			       " but different superblock to %s\n",
656 			       b, bdevname(refdev->bdev, b2));
657 			goto abort;
658 		}
659 		ev1 = md_event(sb);
660 		ev2 = md_event(refsb);
661 		if (ev1 > ev2)
662 			ret = 1;
663 		else
664 			ret = 0;
665 	}
666 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
667 
668  abort:
669 	return ret;
670 }
671 
672 /*
673  * validate_super for 0.90.0
674  */
675 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
676 {
677 	mdp_disk_t *desc;
678 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
679 
680 	rdev->raid_disk = -1;
681 	rdev->flags = 0;
682 	if (mddev->raid_disks == 0) {
683 		mddev->major_version = 0;
684 		mddev->minor_version = sb->minor_version;
685 		mddev->patch_version = sb->patch_version;
686 		mddev->persistent = ! sb->not_persistent;
687 		mddev->chunk_size = sb->chunk_size;
688 		mddev->ctime = sb->ctime;
689 		mddev->utime = sb->utime;
690 		mddev->level = sb->level;
691 		mddev->layout = sb->layout;
692 		mddev->raid_disks = sb->raid_disks;
693 		mddev->size = sb->size;
694 		mddev->events = md_event(sb);
695 		mddev->bitmap_offset = 0;
696 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
697 
698 		if (sb->state & (1<<MD_SB_CLEAN))
699 			mddev->recovery_cp = MaxSector;
700 		else {
701 			if (sb->events_hi == sb->cp_events_hi &&
702 				sb->events_lo == sb->cp_events_lo) {
703 				mddev->recovery_cp = sb->recovery_cp;
704 			} else
705 				mddev->recovery_cp = 0;
706 		}
707 
708 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
709 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
710 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
711 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
712 
713 		mddev->max_disks = MD_SB_DISKS;
714 
715 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
716 		    mddev->bitmap_file == NULL) {
717 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
718 				/* FIXME use a better test */
719 				printk(KERN_WARNING "md: bitmaps only support for raid1\n");
720 				return -EINVAL;
721 			}
722 			mddev->bitmap_offset = mddev->default_bitmap_offset;
723 		}
724 
725 	} else if (mddev->pers == NULL) {
726 		/* Insist on good event counter while assembling */
727 		__u64 ev1 = md_event(sb);
728 		++ev1;
729 		if (ev1 < mddev->events)
730 			return -EINVAL;
731 	} else if (mddev->bitmap) {
732 		/* if adding to array with a bitmap, then we can accept an
733 		 * older device ... but not too old.
734 		 */
735 		__u64 ev1 = md_event(sb);
736 		if (ev1 < mddev->bitmap->events_cleared)
737 			return 0;
738 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
739 		return 0;
740 
741 	if (mddev->level != LEVEL_MULTIPATH) {
742 		desc = sb->disks + rdev->desc_nr;
743 
744 		if (desc->state & (1<<MD_DISK_FAULTY))
745 			set_bit(Faulty, &rdev->flags);
746 		else if (desc->state & (1<<MD_DISK_SYNC) &&
747 			 desc->raid_disk < mddev->raid_disks) {
748 			set_bit(In_sync, &rdev->flags);
749 			rdev->raid_disk = desc->raid_disk;
750 		}
751 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
752 			set_bit(WriteMostly, &rdev->flags);
753 	} else /* MULTIPATH are always insync */
754 		set_bit(In_sync, &rdev->flags);
755 	return 0;
756 }
757 
758 /*
759  * sync_super for 0.90.0
760  */
761 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
762 {
763 	mdp_super_t *sb;
764 	struct list_head *tmp;
765 	mdk_rdev_t *rdev2;
766 	int next_spare = mddev->raid_disks;
767 
768 
769 	/* make rdev->sb match mddev data..
770 	 *
771 	 * 1/ zero out disks
772 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
773 	 * 3/ any empty disks < next_spare become removed
774 	 *
775 	 * disks[0] gets initialised to REMOVED because
776 	 * we cannot be sure from other fields if it has
777 	 * been initialised or not.
778 	 */
779 	int i;
780 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
781 
782 	rdev->sb_size = MD_SB_BYTES;
783 
784 	sb = (mdp_super_t*)page_address(rdev->sb_page);
785 
786 	memset(sb, 0, sizeof(*sb));
787 
788 	sb->md_magic = MD_SB_MAGIC;
789 	sb->major_version = mddev->major_version;
790 	sb->minor_version = mddev->minor_version;
791 	sb->patch_version = mddev->patch_version;
792 	sb->gvalid_words  = 0; /* ignored */
793 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
794 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
795 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
796 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
797 
798 	sb->ctime = mddev->ctime;
799 	sb->level = mddev->level;
800 	sb->size  = mddev->size;
801 	sb->raid_disks = mddev->raid_disks;
802 	sb->md_minor = mddev->md_minor;
803 	sb->not_persistent = !mddev->persistent;
804 	sb->utime = mddev->utime;
805 	sb->state = 0;
806 	sb->events_hi = (mddev->events>>32);
807 	sb->events_lo = (u32)mddev->events;
808 
809 	if (mddev->in_sync)
810 	{
811 		sb->recovery_cp = mddev->recovery_cp;
812 		sb->cp_events_hi = (mddev->events>>32);
813 		sb->cp_events_lo = (u32)mddev->events;
814 		if (mddev->recovery_cp == MaxSector)
815 			sb->state = (1<< MD_SB_CLEAN);
816 	} else
817 		sb->recovery_cp = 0;
818 
819 	sb->layout = mddev->layout;
820 	sb->chunk_size = mddev->chunk_size;
821 
822 	if (mddev->bitmap && mddev->bitmap_file == NULL)
823 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
824 
825 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
826 	ITERATE_RDEV(mddev,rdev2,tmp) {
827 		mdp_disk_t *d;
828 		int desc_nr;
829 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
830 		    && !test_bit(Faulty, &rdev2->flags))
831 			desc_nr = rdev2->raid_disk;
832 		else
833 			desc_nr = next_spare++;
834 		rdev2->desc_nr = desc_nr;
835 		d = &sb->disks[rdev2->desc_nr];
836 		nr_disks++;
837 		d->number = rdev2->desc_nr;
838 		d->major = MAJOR(rdev2->bdev->bd_dev);
839 		d->minor = MINOR(rdev2->bdev->bd_dev);
840 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
841 		    && !test_bit(Faulty, &rdev2->flags))
842 			d->raid_disk = rdev2->raid_disk;
843 		else
844 			d->raid_disk = rdev2->desc_nr; /* compatibility */
845 		if (test_bit(Faulty, &rdev2->flags)) {
846 			d->state = (1<<MD_DISK_FAULTY);
847 			failed++;
848 		} else if (test_bit(In_sync, &rdev2->flags)) {
849 			d->state = (1<<MD_DISK_ACTIVE);
850 			d->state |= (1<<MD_DISK_SYNC);
851 			active++;
852 			working++;
853 		} else {
854 			d->state = 0;
855 			spare++;
856 			working++;
857 		}
858 		if (test_bit(WriteMostly, &rdev2->flags))
859 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
860 	}
861 	/* now set the "removed" and "faulty" bits on any missing devices */
862 	for (i=0 ; i < mddev->raid_disks ; i++) {
863 		mdp_disk_t *d = &sb->disks[i];
864 		if (d->state == 0 && d->number == 0) {
865 			d->number = i;
866 			d->raid_disk = i;
867 			d->state = (1<<MD_DISK_REMOVED);
868 			d->state |= (1<<MD_DISK_FAULTY);
869 			failed++;
870 		}
871 	}
872 	sb->nr_disks = nr_disks;
873 	sb->active_disks = active;
874 	sb->working_disks = working;
875 	sb->failed_disks = failed;
876 	sb->spare_disks = spare;
877 
878 	sb->this_disk = sb->disks[rdev->desc_nr];
879 	sb->sb_csum = calc_sb_csum(sb);
880 }
881 
882 /*
883  * version 1 superblock
884  */
885 
886 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
887 {
888 	unsigned int disk_csum, csum;
889 	unsigned long long newcsum;
890 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
891 	unsigned int *isuper = (unsigned int*)sb;
892 	int i;
893 
894 	disk_csum = sb->sb_csum;
895 	sb->sb_csum = 0;
896 	newcsum = 0;
897 	for (i=0; size>=4; size -= 4 )
898 		newcsum += le32_to_cpu(*isuper++);
899 
900 	if (size == 2)
901 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
902 
903 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
904 	sb->sb_csum = disk_csum;
905 	return cpu_to_le32(csum);
906 }
907 
908 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
909 {
910 	struct mdp_superblock_1 *sb;
911 	int ret;
912 	sector_t sb_offset;
913 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
914 	int bmask;
915 
916 	/*
917 	 * Calculate the position of the superblock.
918 	 * It is always aligned to a 4K boundary and
919 	 * depeding on minor_version, it can be:
920 	 * 0: At least 8K, but less than 12K, from end of device
921 	 * 1: At start of device
922 	 * 2: 4K from start of device.
923 	 */
924 	switch(minor_version) {
925 	case 0:
926 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
927 		sb_offset -= 8*2;
928 		sb_offset &= ~(sector_t)(4*2-1);
929 		/* convert from sectors to K */
930 		sb_offset /= 2;
931 		break;
932 	case 1:
933 		sb_offset = 0;
934 		break;
935 	case 2:
936 		sb_offset = 4;
937 		break;
938 	default:
939 		return -EINVAL;
940 	}
941 	rdev->sb_offset = sb_offset;
942 
943 	/* superblock is rarely larger than 1K, but it can be larger,
944 	 * and it is safe to read 4k, so we do that
945 	 */
946 	ret = read_disk_sb(rdev, 4096);
947 	if (ret) return ret;
948 
949 
950 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
951 
952 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
953 	    sb->major_version != cpu_to_le32(1) ||
954 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
955 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
956 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
957 		return -EINVAL;
958 
959 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
960 		printk("md: invalid superblock checksum on %s\n",
961 			bdevname(rdev->bdev,b));
962 		return -EINVAL;
963 	}
964 	if (le64_to_cpu(sb->data_size) < 10) {
965 		printk("md: data_size too small on %s\n",
966 		       bdevname(rdev->bdev,b));
967 		return -EINVAL;
968 	}
969 	rdev->preferred_minor = 0xffff;
970 	rdev->data_offset = le64_to_cpu(sb->data_offset);
971 
972 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
973 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
974 	if (rdev->sb_size & bmask)
975 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
976 
977 	if (refdev == 0)
978 		return 1;
979 	else {
980 		__u64 ev1, ev2;
981 		struct mdp_superblock_1 *refsb =
982 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
983 
984 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
985 		    sb->level != refsb->level ||
986 		    sb->layout != refsb->layout ||
987 		    sb->chunksize != refsb->chunksize) {
988 			printk(KERN_WARNING "md: %s has strangely different"
989 				" superblock to %s\n",
990 				bdevname(rdev->bdev,b),
991 				bdevname(refdev->bdev,b2));
992 			return -EINVAL;
993 		}
994 		ev1 = le64_to_cpu(sb->events);
995 		ev2 = le64_to_cpu(refsb->events);
996 
997 		if (ev1 > ev2)
998 			return 1;
999 	}
1000 	if (minor_version)
1001 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1002 	else
1003 		rdev->size = rdev->sb_offset;
1004 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1005 		return -EINVAL;
1006 	rdev->size = le64_to_cpu(sb->data_size)/2;
1007 	if (le32_to_cpu(sb->chunksize))
1008 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1009 	return 0;
1010 }
1011 
1012 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1013 {
1014 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1015 
1016 	rdev->raid_disk = -1;
1017 	rdev->flags = 0;
1018 	if (mddev->raid_disks == 0) {
1019 		mddev->major_version = 1;
1020 		mddev->patch_version = 0;
1021 		mddev->persistent = 1;
1022 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1023 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1024 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1025 		mddev->level = le32_to_cpu(sb->level);
1026 		mddev->layout = le32_to_cpu(sb->layout);
1027 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1028 		mddev->size = le64_to_cpu(sb->size)/2;
1029 		mddev->events = le64_to_cpu(sb->events);
1030 		mddev->bitmap_offset = 0;
1031 		mddev->default_bitmap_offset = 0;
1032 		mddev->default_bitmap_offset = 1024;
1033 
1034 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1035 		memcpy(mddev->uuid, sb->set_uuid, 16);
1036 
1037 		mddev->max_disks =  (4096-256)/2;
1038 
1039 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1040 		    mddev->bitmap_file == NULL ) {
1041 			if (mddev->level != 1) {
1042 				printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
1043 				return -EINVAL;
1044 			}
1045 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1046 		}
1047 	} else if (mddev->pers == NULL) {
1048 		/* Insist of good event counter while assembling */
1049 		__u64 ev1 = le64_to_cpu(sb->events);
1050 		++ev1;
1051 		if (ev1 < mddev->events)
1052 			return -EINVAL;
1053 	} else if (mddev->bitmap) {
1054 		/* If adding to array with a bitmap, then we can accept an
1055 		 * older device, but not too old.
1056 		 */
1057 		__u64 ev1 = le64_to_cpu(sb->events);
1058 		if (ev1 < mddev->bitmap->events_cleared)
1059 			return 0;
1060 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1061 		return 0;
1062 
1063 	if (mddev->level != LEVEL_MULTIPATH) {
1064 		int role;
1065 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1066 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1067 		switch(role) {
1068 		case 0xffff: /* spare */
1069 			break;
1070 		case 0xfffe: /* faulty */
1071 			set_bit(Faulty, &rdev->flags);
1072 			break;
1073 		default:
1074 			set_bit(In_sync, &rdev->flags);
1075 			rdev->raid_disk = role;
1076 			break;
1077 		}
1078 		if (sb->devflags & WriteMostly1)
1079 			set_bit(WriteMostly, &rdev->flags);
1080 	} else /* MULTIPATH are always insync */
1081 		set_bit(In_sync, &rdev->flags);
1082 
1083 	return 0;
1084 }
1085 
1086 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1087 {
1088 	struct mdp_superblock_1 *sb;
1089 	struct list_head *tmp;
1090 	mdk_rdev_t *rdev2;
1091 	int max_dev, i;
1092 	/* make rdev->sb match mddev and rdev data. */
1093 
1094 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1095 
1096 	sb->feature_map = 0;
1097 	sb->pad0 = 0;
1098 	memset(sb->pad1, 0, sizeof(sb->pad1));
1099 	memset(sb->pad2, 0, sizeof(sb->pad2));
1100 	memset(sb->pad3, 0, sizeof(sb->pad3));
1101 
1102 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1103 	sb->events = cpu_to_le64(mddev->events);
1104 	if (mddev->in_sync)
1105 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1106 	else
1107 		sb->resync_offset = cpu_to_le64(0);
1108 
1109 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1110 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1111 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1112 	}
1113 
1114 	max_dev = 0;
1115 	ITERATE_RDEV(mddev,rdev2,tmp)
1116 		if (rdev2->desc_nr+1 > max_dev)
1117 			max_dev = rdev2->desc_nr+1;
1118 
1119 	sb->max_dev = cpu_to_le32(max_dev);
1120 	for (i=0; i<max_dev;i++)
1121 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1122 
1123 	ITERATE_RDEV(mddev,rdev2,tmp) {
1124 		i = rdev2->desc_nr;
1125 		if (test_bit(Faulty, &rdev2->flags))
1126 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1127 		else if (test_bit(In_sync, &rdev2->flags))
1128 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1129 		else
1130 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1131 	}
1132 
1133 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1134 	sb->sb_csum = calc_sb_1_csum(sb);
1135 }
1136 
1137 
1138 static struct super_type super_types[] = {
1139 	[0] = {
1140 		.name	= "0.90.0",
1141 		.owner	= THIS_MODULE,
1142 		.load_super	= super_90_load,
1143 		.validate_super	= super_90_validate,
1144 		.sync_super	= super_90_sync,
1145 	},
1146 	[1] = {
1147 		.name	= "md-1",
1148 		.owner	= THIS_MODULE,
1149 		.load_super	= super_1_load,
1150 		.validate_super	= super_1_validate,
1151 		.sync_super	= super_1_sync,
1152 	},
1153 };
1154 
1155 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1156 {
1157 	struct list_head *tmp;
1158 	mdk_rdev_t *rdev;
1159 
1160 	ITERATE_RDEV(mddev,rdev,tmp)
1161 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1162 			return rdev;
1163 
1164 	return NULL;
1165 }
1166 
1167 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1168 {
1169 	struct list_head *tmp;
1170 	mdk_rdev_t *rdev;
1171 
1172 	ITERATE_RDEV(mddev1,rdev,tmp)
1173 		if (match_dev_unit(mddev2, rdev))
1174 			return 1;
1175 
1176 	return 0;
1177 }
1178 
1179 static LIST_HEAD(pending_raid_disks);
1180 
1181 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1182 {
1183 	mdk_rdev_t *same_pdev;
1184 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1185 	struct kobject *ko;
1186 
1187 	if (rdev->mddev) {
1188 		MD_BUG();
1189 		return -EINVAL;
1190 	}
1191 	same_pdev = match_dev_unit(mddev, rdev);
1192 	if (same_pdev)
1193 		printk(KERN_WARNING
1194 			"%s: WARNING: %s appears to be on the same physical"
1195 	 		" disk as %s. True\n     protection against single-disk"
1196 			" failure might be compromised.\n",
1197 			mdname(mddev), bdevname(rdev->bdev,b),
1198 			bdevname(same_pdev->bdev,b2));
1199 
1200 	/* Verify rdev->desc_nr is unique.
1201 	 * If it is -1, assign a free number, else
1202 	 * check number is not in use
1203 	 */
1204 	if (rdev->desc_nr < 0) {
1205 		int choice = 0;
1206 		if (mddev->pers) choice = mddev->raid_disks;
1207 		while (find_rdev_nr(mddev, choice))
1208 			choice++;
1209 		rdev->desc_nr = choice;
1210 	} else {
1211 		if (find_rdev_nr(mddev, rdev->desc_nr))
1212 			return -EBUSY;
1213 	}
1214 	bdevname(rdev->bdev,b);
1215 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1216 		return -ENOMEM;
1217 
1218 	list_add(&rdev->same_set, &mddev->disks);
1219 	rdev->mddev = mddev;
1220 	printk(KERN_INFO "md: bind<%s>\n", b);
1221 
1222 	rdev->kobj.parent = &mddev->kobj;
1223 	kobject_add(&rdev->kobj);
1224 
1225 	if (rdev->bdev->bd_part)
1226 		ko = &rdev->bdev->bd_part->kobj;
1227 	else
1228 		ko = &rdev->bdev->bd_disk->kobj;
1229 	sysfs_create_link(&rdev->kobj, ko, "block");
1230 	return 0;
1231 }
1232 
1233 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1234 {
1235 	char b[BDEVNAME_SIZE];
1236 	if (!rdev->mddev) {
1237 		MD_BUG();
1238 		return;
1239 	}
1240 	list_del_init(&rdev->same_set);
1241 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1242 	rdev->mddev = NULL;
1243 	sysfs_remove_link(&rdev->kobj, "block");
1244 	kobject_del(&rdev->kobj);
1245 }
1246 
1247 /*
1248  * prevent the device from being mounted, repartitioned or
1249  * otherwise reused by a RAID array (or any other kernel
1250  * subsystem), by bd_claiming the device.
1251  */
1252 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1253 {
1254 	int err = 0;
1255 	struct block_device *bdev;
1256 	char b[BDEVNAME_SIZE];
1257 
1258 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1259 	if (IS_ERR(bdev)) {
1260 		printk(KERN_ERR "md: could not open %s.\n",
1261 			__bdevname(dev, b));
1262 		return PTR_ERR(bdev);
1263 	}
1264 	err = bd_claim(bdev, rdev);
1265 	if (err) {
1266 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1267 			bdevname(bdev, b));
1268 		blkdev_put(bdev);
1269 		return err;
1270 	}
1271 	rdev->bdev = bdev;
1272 	return err;
1273 }
1274 
1275 static void unlock_rdev(mdk_rdev_t *rdev)
1276 {
1277 	struct block_device *bdev = rdev->bdev;
1278 	rdev->bdev = NULL;
1279 	if (!bdev)
1280 		MD_BUG();
1281 	bd_release(bdev);
1282 	blkdev_put(bdev);
1283 }
1284 
1285 void md_autodetect_dev(dev_t dev);
1286 
1287 static void export_rdev(mdk_rdev_t * rdev)
1288 {
1289 	char b[BDEVNAME_SIZE];
1290 	printk(KERN_INFO "md: export_rdev(%s)\n",
1291 		bdevname(rdev->bdev,b));
1292 	if (rdev->mddev)
1293 		MD_BUG();
1294 	free_disk_sb(rdev);
1295 	list_del_init(&rdev->same_set);
1296 #ifndef MODULE
1297 	md_autodetect_dev(rdev->bdev->bd_dev);
1298 #endif
1299 	unlock_rdev(rdev);
1300 	kobject_put(&rdev->kobj);
1301 }
1302 
1303 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1304 {
1305 	unbind_rdev_from_array(rdev);
1306 	export_rdev(rdev);
1307 }
1308 
1309 static void export_array(mddev_t *mddev)
1310 {
1311 	struct list_head *tmp;
1312 	mdk_rdev_t *rdev;
1313 
1314 	ITERATE_RDEV(mddev,rdev,tmp) {
1315 		if (!rdev->mddev) {
1316 			MD_BUG();
1317 			continue;
1318 		}
1319 		kick_rdev_from_array(rdev);
1320 	}
1321 	if (!list_empty(&mddev->disks))
1322 		MD_BUG();
1323 	mddev->raid_disks = 0;
1324 	mddev->major_version = 0;
1325 }
1326 
1327 static void print_desc(mdp_disk_t *desc)
1328 {
1329 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1330 		desc->major,desc->minor,desc->raid_disk,desc->state);
1331 }
1332 
1333 static void print_sb(mdp_super_t *sb)
1334 {
1335 	int i;
1336 
1337 	printk(KERN_INFO
1338 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1339 		sb->major_version, sb->minor_version, sb->patch_version,
1340 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1341 		sb->ctime);
1342 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1343 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1344 		sb->md_minor, sb->layout, sb->chunk_size);
1345 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1346 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1347 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1348 		sb->failed_disks, sb->spare_disks,
1349 		sb->sb_csum, (unsigned long)sb->events_lo);
1350 
1351 	printk(KERN_INFO);
1352 	for (i = 0; i < MD_SB_DISKS; i++) {
1353 		mdp_disk_t *desc;
1354 
1355 		desc = sb->disks + i;
1356 		if (desc->number || desc->major || desc->minor ||
1357 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1358 			printk("     D %2d: ", i);
1359 			print_desc(desc);
1360 		}
1361 	}
1362 	printk(KERN_INFO "md:     THIS: ");
1363 	print_desc(&sb->this_disk);
1364 
1365 }
1366 
1367 static void print_rdev(mdk_rdev_t *rdev)
1368 {
1369 	char b[BDEVNAME_SIZE];
1370 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1371 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1372 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1373 	        rdev->desc_nr);
1374 	if (rdev->sb_loaded) {
1375 		printk(KERN_INFO "md: rdev superblock:\n");
1376 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1377 	} else
1378 		printk(KERN_INFO "md: no rdev superblock!\n");
1379 }
1380 
1381 void md_print_devices(void)
1382 {
1383 	struct list_head *tmp, *tmp2;
1384 	mdk_rdev_t *rdev;
1385 	mddev_t *mddev;
1386 	char b[BDEVNAME_SIZE];
1387 
1388 	printk("\n");
1389 	printk("md:	**********************************\n");
1390 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1391 	printk("md:	**********************************\n");
1392 	ITERATE_MDDEV(mddev,tmp) {
1393 
1394 		if (mddev->bitmap)
1395 			bitmap_print_sb(mddev->bitmap);
1396 		else
1397 			printk("%s: ", mdname(mddev));
1398 		ITERATE_RDEV(mddev,rdev,tmp2)
1399 			printk("<%s>", bdevname(rdev->bdev,b));
1400 		printk("\n");
1401 
1402 		ITERATE_RDEV(mddev,rdev,tmp2)
1403 			print_rdev(rdev);
1404 	}
1405 	printk("md:	**********************************\n");
1406 	printk("\n");
1407 }
1408 
1409 
1410 static void sync_sbs(mddev_t * mddev)
1411 {
1412 	mdk_rdev_t *rdev;
1413 	struct list_head *tmp;
1414 
1415 	ITERATE_RDEV(mddev,rdev,tmp) {
1416 		super_types[mddev->major_version].
1417 			sync_super(mddev, rdev);
1418 		rdev->sb_loaded = 1;
1419 	}
1420 }
1421 
1422 static void md_update_sb(mddev_t * mddev)
1423 {
1424 	int err;
1425 	struct list_head *tmp;
1426 	mdk_rdev_t *rdev;
1427 	int sync_req;
1428 
1429 repeat:
1430 	spin_lock_irq(&mddev->write_lock);
1431 	sync_req = mddev->in_sync;
1432 	mddev->utime = get_seconds();
1433 	mddev->events ++;
1434 
1435 	if (!mddev->events) {
1436 		/*
1437 		 * oops, this 64-bit counter should never wrap.
1438 		 * Either we are in around ~1 trillion A.C., assuming
1439 		 * 1 reboot per second, or we have a bug:
1440 		 */
1441 		MD_BUG();
1442 		mddev->events --;
1443 	}
1444 	mddev->sb_dirty = 2;
1445 	sync_sbs(mddev);
1446 
1447 	/*
1448 	 * do not write anything to disk if using
1449 	 * nonpersistent superblocks
1450 	 */
1451 	if (!mddev->persistent) {
1452 		mddev->sb_dirty = 0;
1453 		spin_unlock_irq(&mddev->write_lock);
1454 		wake_up(&mddev->sb_wait);
1455 		return;
1456 	}
1457 	spin_unlock_irq(&mddev->write_lock);
1458 
1459 	dprintk(KERN_INFO
1460 		"md: updating %s RAID superblock on device (in sync %d)\n",
1461 		mdname(mddev),mddev->in_sync);
1462 
1463 	err = bitmap_update_sb(mddev->bitmap);
1464 	ITERATE_RDEV(mddev,rdev,tmp) {
1465 		char b[BDEVNAME_SIZE];
1466 		dprintk(KERN_INFO "md: ");
1467 		if (test_bit(Faulty, &rdev->flags))
1468 			dprintk("(skipping faulty ");
1469 
1470 		dprintk("%s ", bdevname(rdev->bdev,b));
1471 		if (!test_bit(Faulty, &rdev->flags)) {
1472 			md_super_write(mddev,rdev,
1473 				       rdev->sb_offset<<1, rdev->sb_size,
1474 				       rdev->sb_page);
1475 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1476 				bdevname(rdev->bdev,b),
1477 				(unsigned long long)rdev->sb_offset);
1478 
1479 		} else
1480 			dprintk(")\n");
1481 		if (mddev->level == LEVEL_MULTIPATH)
1482 			/* only need to write one superblock... */
1483 			break;
1484 	}
1485 	md_super_wait(mddev);
1486 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1487 
1488 	spin_lock_irq(&mddev->write_lock);
1489 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1490 		/* have to write it out again */
1491 		spin_unlock_irq(&mddev->write_lock);
1492 		goto repeat;
1493 	}
1494 	mddev->sb_dirty = 0;
1495 	spin_unlock_irq(&mddev->write_lock);
1496 	wake_up(&mddev->sb_wait);
1497 
1498 }
1499 
1500 struct rdev_sysfs_entry {
1501 	struct attribute attr;
1502 	ssize_t (*show)(mdk_rdev_t *, char *);
1503 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1504 };
1505 
1506 static ssize_t
1507 state_show(mdk_rdev_t *rdev, char *page)
1508 {
1509 	char *sep = "";
1510 	int len=0;
1511 
1512 	if (test_bit(Faulty, &rdev->flags)) {
1513 		len+= sprintf(page+len, "%sfaulty",sep);
1514 		sep = ",";
1515 	}
1516 	if (test_bit(In_sync, &rdev->flags)) {
1517 		len += sprintf(page+len, "%sin_sync",sep);
1518 		sep = ",";
1519 	}
1520 	if (!test_bit(Faulty, &rdev->flags) &&
1521 	    !test_bit(In_sync, &rdev->flags)) {
1522 		len += sprintf(page+len, "%sspare", sep);
1523 		sep = ",";
1524 	}
1525 	return len+sprintf(page+len, "\n");
1526 }
1527 
1528 static struct rdev_sysfs_entry
1529 rdev_state = __ATTR_RO(state);
1530 
1531 static ssize_t
1532 super_show(mdk_rdev_t *rdev, char *page)
1533 {
1534 	if (rdev->sb_loaded && rdev->sb_size) {
1535 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1536 		return rdev->sb_size;
1537 	} else
1538 		return 0;
1539 }
1540 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1541 
1542 static struct attribute *rdev_default_attrs[] = {
1543 	&rdev_state.attr,
1544 	&rdev_super.attr,
1545 	NULL,
1546 };
1547 static ssize_t
1548 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1549 {
1550 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1551 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1552 
1553 	if (!entry->show)
1554 		return -EIO;
1555 	return entry->show(rdev, page);
1556 }
1557 
1558 static ssize_t
1559 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1560 	      const char *page, size_t length)
1561 {
1562 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1563 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1564 
1565 	if (!entry->store)
1566 		return -EIO;
1567 	return entry->store(rdev, page, length);
1568 }
1569 
1570 static void rdev_free(struct kobject *ko)
1571 {
1572 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1573 	kfree(rdev);
1574 }
1575 static struct sysfs_ops rdev_sysfs_ops = {
1576 	.show		= rdev_attr_show,
1577 	.store		= rdev_attr_store,
1578 };
1579 static struct kobj_type rdev_ktype = {
1580 	.release	= rdev_free,
1581 	.sysfs_ops	= &rdev_sysfs_ops,
1582 	.default_attrs	= rdev_default_attrs,
1583 };
1584 
1585 /*
1586  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1587  *
1588  * mark the device faulty if:
1589  *
1590  *   - the device is nonexistent (zero size)
1591  *   - the device has no valid superblock
1592  *
1593  * a faulty rdev _never_ has rdev->sb set.
1594  */
1595 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1596 {
1597 	char b[BDEVNAME_SIZE];
1598 	int err;
1599 	mdk_rdev_t *rdev;
1600 	sector_t size;
1601 
1602 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1603 	if (!rdev) {
1604 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1605 		return ERR_PTR(-ENOMEM);
1606 	}
1607 	memset(rdev, 0, sizeof(*rdev));
1608 
1609 	if ((err = alloc_disk_sb(rdev)))
1610 		goto abort_free;
1611 
1612 	err = lock_rdev(rdev, newdev);
1613 	if (err)
1614 		goto abort_free;
1615 
1616 	rdev->kobj.parent = NULL;
1617 	rdev->kobj.ktype = &rdev_ktype;
1618 	kobject_init(&rdev->kobj);
1619 
1620 	rdev->desc_nr = -1;
1621 	rdev->flags = 0;
1622 	rdev->data_offset = 0;
1623 	atomic_set(&rdev->nr_pending, 0);
1624 	atomic_set(&rdev->read_errors, 0);
1625 
1626 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1627 	if (!size) {
1628 		printk(KERN_WARNING
1629 			"md: %s has zero or unknown size, marking faulty!\n",
1630 			bdevname(rdev->bdev,b));
1631 		err = -EINVAL;
1632 		goto abort_free;
1633 	}
1634 
1635 	if (super_format >= 0) {
1636 		err = super_types[super_format].
1637 			load_super(rdev, NULL, super_minor);
1638 		if (err == -EINVAL) {
1639 			printk(KERN_WARNING
1640 				"md: %s has invalid sb, not importing!\n",
1641 				bdevname(rdev->bdev,b));
1642 			goto abort_free;
1643 		}
1644 		if (err < 0) {
1645 			printk(KERN_WARNING
1646 				"md: could not read %s's sb, not importing!\n",
1647 				bdevname(rdev->bdev,b));
1648 			goto abort_free;
1649 		}
1650 	}
1651 	INIT_LIST_HEAD(&rdev->same_set);
1652 
1653 	return rdev;
1654 
1655 abort_free:
1656 	if (rdev->sb_page) {
1657 		if (rdev->bdev)
1658 			unlock_rdev(rdev);
1659 		free_disk_sb(rdev);
1660 	}
1661 	kfree(rdev);
1662 	return ERR_PTR(err);
1663 }
1664 
1665 /*
1666  * Check a full RAID array for plausibility
1667  */
1668 
1669 
1670 static void analyze_sbs(mddev_t * mddev)
1671 {
1672 	int i;
1673 	struct list_head *tmp;
1674 	mdk_rdev_t *rdev, *freshest;
1675 	char b[BDEVNAME_SIZE];
1676 
1677 	freshest = NULL;
1678 	ITERATE_RDEV(mddev,rdev,tmp)
1679 		switch (super_types[mddev->major_version].
1680 			load_super(rdev, freshest, mddev->minor_version)) {
1681 		case 1:
1682 			freshest = rdev;
1683 			break;
1684 		case 0:
1685 			break;
1686 		default:
1687 			printk( KERN_ERR \
1688 				"md: fatal superblock inconsistency in %s"
1689 				" -- removing from array\n",
1690 				bdevname(rdev->bdev,b));
1691 			kick_rdev_from_array(rdev);
1692 		}
1693 
1694 
1695 	super_types[mddev->major_version].
1696 		validate_super(mddev, freshest);
1697 
1698 	i = 0;
1699 	ITERATE_RDEV(mddev,rdev,tmp) {
1700 		if (rdev != freshest)
1701 			if (super_types[mddev->major_version].
1702 			    validate_super(mddev, rdev)) {
1703 				printk(KERN_WARNING "md: kicking non-fresh %s"
1704 					" from array!\n",
1705 					bdevname(rdev->bdev,b));
1706 				kick_rdev_from_array(rdev);
1707 				continue;
1708 			}
1709 		if (mddev->level == LEVEL_MULTIPATH) {
1710 			rdev->desc_nr = i++;
1711 			rdev->raid_disk = rdev->desc_nr;
1712 			set_bit(In_sync, &rdev->flags);
1713 		}
1714 	}
1715 
1716 
1717 
1718 	if (mddev->recovery_cp != MaxSector &&
1719 	    mddev->level >= 1)
1720 		printk(KERN_ERR "md: %s: raid array is not clean"
1721 		       " -- starting background reconstruction\n",
1722 		       mdname(mddev));
1723 
1724 }
1725 
1726 static ssize_t
1727 level_show(mddev_t *mddev, char *page)
1728 {
1729 	mdk_personality_t *p = mddev->pers;
1730 	if (p == NULL)
1731 		return 0;
1732 	if (mddev->level >= 0)
1733 		return sprintf(page, "RAID-%d\n", mddev->level);
1734 	else
1735 		return sprintf(page, "%s\n", p->name);
1736 }
1737 
1738 static struct md_sysfs_entry md_level = __ATTR_RO(level);
1739 
1740 static ssize_t
1741 raid_disks_show(mddev_t *mddev, char *page)
1742 {
1743 	return sprintf(page, "%d\n", mddev->raid_disks);
1744 }
1745 
1746 static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
1747 
1748 static ssize_t
1749 md_show_scan(mddev_t *mddev, char *page)
1750 {
1751 	char *type = "none";
1752 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1753 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1754 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1755 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1756 				type = "resync";
1757 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1758 				type = "check";
1759 			else
1760 				type = "repair";
1761 		} else
1762 			type = "recover";
1763 	}
1764 	return sprintf(page, "%s\n", type);
1765 }
1766 
1767 static ssize_t
1768 md_store_scan(mddev_t *mddev, const char *page, size_t len)
1769 {
1770 	int canscan=0;
1771 
1772 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1773 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1774 		return -EBUSY;
1775 
1776 	if (mddev->pers && mddev->pers->sync_request)
1777 		canscan=1;
1778 
1779 	if (!canscan)
1780 		return -EINVAL;
1781 
1782 	if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
1783 		set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1784 	else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
1785 		return -EINVAL;
1786 	set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1787 	set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1788 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1789 	md_wakeup_thread(mddev->thread);
1790 	return len;
1791 }
1792 
1793 static ssize_t
1794 mismatch_cnt_show(mddev_t *mddev, char *page)
1795 {
1796 	return sprintf(page, "%llu\n",
1797 		       (unsigned long long) mddev->resync_mismatches);
1798 }
1799 
1800 static struct md_sysfs_entry
1801 md_scan_mode = __ATTR(scan_mode, S_IRUGO|S_IWUSR, md_show_scan, md_store_scan);
1802 
1803 
1804 static struct md_sysfs_entry
1805 md_mismatches = __ATTR_RO(mismatch_cnt);
1806 
1807 static struct attribute *md_default_attrs[] = {
1808 	&md_level.attr,
1809 	&md_raid_disks.attr,
1810 	&md_scan_mode.attr,
1811 	&md_mismatches.attr,
1812 	NULL,
1813 };
1814 
1815 static ssize_t
1816 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1817 {
1818 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1819 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1820 	ssize_t rv;
1821 
1822 	if (!entry->show)
1823 		return -EIO;
1824 	mddev_lock(mddev);
1825 	rv = entry->show(mddev, page);
1826 	mddev_unlock(mddev);
1827 	return rv;
1828 }
1829 
1830 static ssize_t
1831 md_attr_store(struct kobject *kobj, struct attribute *attr,
1832 	      const char *page, size_t length)
1833 {
1834 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1835 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1836 	ssize_t rv;
1837 
1838 	if (!entry->store)
1839 		return -EIO;
1840 	mddev_lock(mddev);
1841 	rv = entry->store(mddev, page, length);
1842 	mddev_unlock(mddev);
1843 	return rv;
1844 }
1845 
1846 static void md_free(struct kobject *ko)
1847 {
1848 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
1849 	kfree(mddev);
1850 }
1851 
1852 static struct sysfs_ops md_sysfs_ops = {
1853 	.show	= md_attr_show,
1854 	.store	= md_attr_store,
1855 };
1856 static struct kobj_type md_ktype = {
1857 	.release	= md_free,
1858 	.sysfs_ops	= &md_sysfs_ops,
1859 	.default_attrs	= md_default_attrs,
1860 };
1861 
1862 int mdp_major = 0;
1863 
1864 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1865 {
1866 	static DECLARE_MUTEX(disks_sem);
1867 	mddev_t *mddev = mddev_find(dev);
1868 	struct gendisk *disk;
1869 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1870 	int shift = partitioned ? MdpMinorShift : 0;
1871 	int unit = MINOR(dev) >> shift;
1872 
1873 	if (!mddev)
1874 		return NULL;
1875 
1876 	down(&disks_sem);
1877 	if (mddev->gendisk) {
1878 		up(&disks_sem);
1879 		mddev_put(mddev);
1880 		return NULL;
1881 	}
1882 	disk = alloc_disk(1 << shift);
1883 	if (!disk) {
1884 		up(&disks_sem);
1885 		mddev_put(mddev);
1886 		return NULL;
1887 	}
1888 	disk->major = MAJOR(dev);
1889 	disk->first_minor = unit << shift;
1890 	if (partitioned) {
1891 		sprintf(disk->disk_name, "md_d%d", unit);
1892 		sprintf(disk->devfs_name, "md/d%d", unit);
1893 	} else {
1894 		sprintf(disk->disk_name, "md%d", unit);
1895 		sprintf(disk->devfs_name, "md/%d", unit);
1896 	}
1897 	disk->fops = &md_fops;
1898 	disk->private_data = mddev;
1899 	disk->queue = mddev->queue;
1900 	add_disk(disk);
1901 	mddev->gendisk = disk;
1902 	up(&disks_sem);
1903 	mddev->kobj.parent = &disk->kobj;
1904 	mddev->kobj.k_name = NULL;
1905 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1906 	mddev->kobj.ktype = &md_ktype;
1907 	kobject_register(&mddev->kobj);
1908 	return NULL;
1909 }
1910 
1911 void md_wakeup_thread(mdk_thread_t *thread);
1912 
1913 static void md_safemode_timeout(unsigned long data)
1914 {
1915 	mddev_t *mddev = (mddev_t *) data;
1916 
1917 	mddev->safemode = 1;
1918 	md_wakeup_thread(mddev->thread);
1919 }
1920 
1921 
1922 static int do_md_run(mddev_t * mddev)
1923 {
1924 	int pnum, err;
1925 	int chunk_size;
1926 	struct list_head *tmp;
1927 	mdk_rdev_t *rdev;
1928 	struct gendisk *disk;
1929 	char b[BDEVNAME_SIZE];
1930 
1931 	if (list_empty(&mddev->disks))
1932 		/* cannot run an array with no devices.. */
1933 		return -EINVAL;
1934 
1935 	if (mddev->pers)
1936 		return -EBUSY;
1937 
1938 	/*
1939 	 * Analyze all RAID superblock(s)
1940 	 */
1941 	if (!mddev->raid_disks)
1942 		analyze_sbs(mddev);
1943 
1944 	chunk_size = mddev->chunk_size;
1945 	pnum = level_to_pers(mddev->level);
1946 
1947 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1948 		if (!chunk_size) {
1949 			/*
1950 			 * 'default chunksize' in the old md code used to
1951 			 * be PAGE_SIZE, baaad.
1952 			 * we abort here to be on the safe side. We don't
1953 			 * want to continue the bad practice.
1954 			 */
1955 			printk(KERN_ERR
1956 				"no chunksize specified, see 'man raidtab'\n");
1957 			return -EINVAL;
1958 		}
1959 		if (chunk_size > MAX_CHUNK_SIZE) {
1960 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1961 				chunk_size, MAX_CHUNK_SIZE);
1962 			return -EINVAL;
1963 		}
1964 		/*
1965 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1966 		 */
1967 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1968 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1969 			return -EINVAL;
1970 		}
1971 		if (chunk_size < PAGE_SIZE) {
1972 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1973 				chunk_size, PAGE_SIZE);
1974 			return -EINVAL;
1975 		}
1976 
1977 		/* devices must have minimum size of one chunk */
1978 		ITERATE_RDEV(mddev,rdev,tmp) {
1979 			if (test_bit(Faulty, &rdev->flags))
1980 				continue;
1981 			if (rdev->size < chunk_size / 1024) {
1982 				printk(KERN_WARNING
1983 					"md: Dev %s smaller than chunk_size:"
1984 					" %lluk < %dk\n",
1985 					bdevname(rdev->bdev,b),
1986 					(unsigned long long)rdev->size,
1987 					chunk_size / 1024);
1988 				return -EINVAL;
1989 			}
1990 		}
1991 	}
1992 
1993 #ifdef CONFIG_KMOD
1994 	if (!pers[pnum])
1995 	{
1996 		request_module("md-personality-%d", pnum);
1997 	}
1998 #endif
1999 
2000 	/*
2001 	 * Drop all container device buffers, from now on
2002 	 * the only valid external interface is through the md
2003 	 * device.
2004 	 * Also find largest hardsector size
2005 	 */
2006 	ITERATE_RDEV(mddev,rdev,tmp) {
2007 		if (test_bit(Faulty, &rdev->flags))
2008 			continue;
2009 		sync_blockdev(rdev->bdev);
2010 		invalidate_bdev(rdev->bdev, 0);
2011 	}
2012 
2013 	md_probe(mddev->unit, NULL, NULL);
2014 	disk = mddev->gendisk;
2015 	if (!disk)
2016 		return -ENOMEM;
2017 
2018 	spin_lock(&pers_lock);
2019 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
2020 		spin_unlock(&pers_lock);
2021 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
2022 		       pnum);
2023 		return -EINVAL;
2024 	}
2025 
2026 	mddev->pers = pers[pnum];
2027 	spin_unlock(&pers_lock);
2028 
2029 	mddev->recovery = 0;
2030 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2031 	mddev->barriers_work = 1;
2032 
2033 	if (start_readonly)
2034 		mddev->ro = 2; /* read-only, but switch on first write */
2035 
2036 	/* before we start the array running, initialise the bitmap */
2037 	err = bitmap_create(mddev);
2038 	if (err)
2039 		printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2040 			mdname(mddev), err);
2041 	else
2042 		err = mddev->pers->run(mddev);
2043 	if (err) {
2044 		printk(KERN_ERR "md: pers->run() failed ...\n");
2045 		module_put(mddev->pers->owner);
2046 		mddev->pers = NULL;
2047 		bitmap_destroy(mddev);
2048 		return err;
2049 	}
2050  	atomic_set(&mddev->writes_pending,0);
2051 	mddev->safemode = 0;
2052 	mddev->safemode_timer.function = md_safemode_timeout;
2053 	mddev->safemode_timer.data = (unsigned long) mddev;
2054 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2055 	mddev->in_sync = 1;
2056 
2057 	ITERATE_RDEV(mddev,rdev,tmp)
2058 		if (rdev->raid_disk >= 0) {
2059 			char nm[20];
2060 			sprintf(nm, "rd%d", rdev->raid_disk);
2061 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2062 		}
2063 
2064 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2065 	md_wakeup_thread(mddev->thread);
2066 
2067 	if (mddev->sb_dirty)
2068 		md_update_sb(mddev);
2069 
2070 	set_capacity(disk, mddev->array_size<<1);
2071 
2072 	/* If we call blk_queue_make_request here, it will
2073 	 * re-initialise max_sectors etc which may have been
2074 	 * refined inside -> run.  So just set the bits we need to set.
2075 	 * Most initialisation happended when we called
2076 	 * blk_queue_make_request(..., md_fail_request)
2077 	 * earlier.
2078 	 */
2079 	mddev->queue->queuedata = mddev;
2080 	mddev->queue->make_request_fn = mddev->pers->make_request;
2081 
2082 	mddev->changed = 1;
2083 	return 0;
2084 }
2085 
2086 static int restart_array(mddev_t *mddev)
2087 {
2088 	struct gendisk *disk = mddev->gendisk;
2089 	int err;
2090 
2091 	/*
2092 	 * Complain if it has no devices
2093 	 */
2094 	err = -ENXIO;
2095 	if (list_empty(&mddev->disks))
2096 		goto out;
2097 
2098 	if (mddev->pers) {
2099 		err = -EBUSY;
2100 		if (!mddev->ro)
2101 			goto out;
2102 
2103 		mddev->safemode = 0;
2104 		mddev->ro = 0;
2105 		set_disk_ro(disk, 0);
2106 
2107 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2108 			mdname(mddev));
2109 		/*
2110 		 * Kick recovery or resync if necessary
2111 		 */
2112 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2113 		md_wakeup_thread(mddev->thread);
2114 		err = 0;
2115 	} else {
2116 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2117 			mdname(mddev));
2118 		err = -EINVAL;
2119 	}
2120 
2121 out:
2122 	return err;
2123 }
2124 
2125 static int do_md_stop(mddev_t * mddev, int ro)
2126 {
2127 	int err = 0;
2128 	struct gendisk *disk = mddev->gendisk;
2129 
2130 	if (mddev->pers) {
2131 		if (atomic_read(&mddev->active)>2) {
2132 			printk("md: %s still in use.\n",mdname(mddev));
2133 			return -EBUSY;
2134 		}
2135 
2136 		if (mddev->sync_thread) {
2137 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2138 			md_unregister_thread(mddev->sync_thread);
2139 			mddev->sync_thread = NULL;
2140 		}
2141 
2142 		del_timer_sync(&mddev->safemode_timer);
2143 
2144 		invalidate_partition(disk, 0);
2145 
2146 		if (ro) {
2147 			err  = -ENXIO;
2148 			if (mddev->ro==1)
2149 				goto out;
2150 			mddev->ro = 1;
2151 		} else {
2152 			bitmap_flush(mddev);
2153 			md_super_wait(mddev);
2154 			if (mddev->ro)
2155 				set_disk_ro(disk, 0);
2156 			blk_queue_make_request(mddev->queue, md_fail_request);
2157 			mddev->pers->stop(mddev);
2158 			module_put(mddev->pers->owner);
2159 			mddev->pers = NULL;
2160 			if (mddev->ro)
2161 				mddev->ro = 0;
2162 		}
2163 		if (!mddev->in_sync) {
2164 			/* mark array as shutdown cleanly */
2165 			mddev->in_sync = 1;
2166 			md_update_sb(mddev);
2167 		}
2168 		if (ro)
2169 			set_disk_ro(disk, 1);
2170 	}
2171 
2172 	bitmap_destroy(mddev);
2173 	if (mddev->bitmap_file) {
2174 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2175 		fput(mddev->bitmap_file);
2176 		mddev->bitmap_file = NULL;
2177 	}
2178 	mddev->bitmap_offset = 0;
2179 
2180 	/*
2181 	 * Free resources if final stop
2182 	 */
2183 	if (!ro) {
2184 		mdk_rdev_t *rdev;
2185 		struct list_head *tmp;
2186 		struct gendisk *disk;
2187 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2188 
2189 		ITERATE_RDEV(mddev,rdev,tmp)
2190 			if (rdev->raid_disk >= 0) {
2191 				char nm[20];
2192 				sprintf(nm, "rd%d", rdev->raid_disk);
2193 				sysfs_remove_link(&mddev->kobj, nm);
2194 			}
2195 
2196 		export_array(mddev);
2197 
2198 		mddev->array_size = 0;
2199 		disk = mddev->gendisk;
2200 		if (disk)
2201 			set_capacity(disk, 0);
2202 		mddev->changed = 1;
2203 	} else
2204 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2205 			mdname(mddev));
2206 	err = 0;
2207 out:
2208 	return err;
2209 }
2210 
2211 static void autorun_array(mddev_t *mddev)
2212 {
2213 	mdk_rdev_t *rdev;
2214 	struct list_head *tmp;
2215 	int err;
2216 
2217 	if (list_empty(&mddev->disks))
2218 		return;
2219 
2220 	printk(KERN_INFO "md: running: ");
2221 
2222 	ITERATE_RDEV(mddev,rdev,tmp) {
2223 		char b[BDEVNAME_SIZE];
2224 		printk("<%s>", bdevname(rdev->bdev,b));
2225 	}
2226 	printk("\n");
2227 
2228 	err = do_md_run (mddev);
2229 	if (err) {
2230 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2231 		do_md_stop (mddev, 0);
2232 	}
2233 }
2234 
2235 /*
2236  * lets try to run arrays based on all disks that have arrived
2237  * until now. (those are in pending_raid_disks)
2238  *
2239  * the method: pick the first pending disk, collect all disks with
2240  * the same UUID, remove all from the pending list and put them into
2241  * the 'same_array' list. Then order this list based on superblock
2242  * update time (freshest comes first), kick out 'old' disks and
2243  * compare superblocks. If everything's fine then run it.
2244  *
2245  * If "unit" is allocated, then bump its reference count
2246  */
2247 static void autorun_devices(int part)
2248 {
2249 	struct list_head candidates;
2250 	struct list_head *tmp;
2251 	mdk_rdev_t *rdev0, *rdev;
2252 	mddev_t *mddev;
2253 	char b[BDEVNAME_SIZE];
2254 
2255 	printk(KERN_INFO "md: autorun ...\n");
2256 	while (!list_empty(&pending_raid_disks)) {
2257 		dev_t dev;
2258 		rdev0 = list_entry(pending_raid_disks.next,
2259 					 mdk_rdev_t, same_set);
2260 
2261 		printk(KERN_INFO "md: considering %s ...\n",
2262 			bdevname(rdev0->bdev,b));
2263 		INIT_LIST_HEAD(&candidates);
2264 		ITERATE_RDEV_PENDING(rdev,tmp)
2265 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2266 				printk(KERN_INFO "md:  adding %s ...\n",
2267 					bdevname(rdev->bdev,b));
2268 				list_move(&rdev->same_set, &candidates);
2269 			}
2270 		/*
2271 		 * now we have a set of devices, with all of them having
2272 		 * mostly sane superblocks. It's time to allocate the
2273 		 * mddev.
2274 		 */
2275 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2276 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2277 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2278 			break;
2279 		}
2280 		if (part)
2281 			dev = MKDEV(mdp_major,
2282 				    rdev0->preferred_minor << MdpMinorShift);
2283 		else
2284 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2285 
2286 		md_probe(dev, NULL, NULL);
2287 		mddev = mddev_find(dev);
2288 		if (!mddev) {
2289 			printk(KERN_ERR
2290 				"md: cannot allocate memory for md drive.\n");
2291 			break;
2292 		}
2293 		if (mddev_lock(mddev))
2294 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2295 			       mdname(mddev));
2296 		else if (mddev->raid_disks || mddev->major_version
2297 			 || !list_empty(&mddev->disks)) {
2298 			printk(KERN_WARNING
2299 				"md: %s already running, cannot run %s\n",
2300 				mdname(mddev), bdevname(rdev0->bdev,b));
2301 			mddev_unlock(mddev);
2302 		} else {
2303 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2304 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2305 				list_del_init(&rdev->same_set);
2306 				if (bind_rdev_to_array(rdev, mddev))
2307 					export_rdev(rdev);
2308 			}
2309 			autorun_array(mddev);
2310 			mddev_unlock(mddev);
2311 		}
2312 		/* on success, candidates will be empty, on error
2313 		 * it won't...
2314 		 */
2315 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2316 			export_rdev(rdev);
2317 		mddev_put(mddev);
2318 	}
2319 	printk(KERN_INFO "md: ... autorun DONE.\n");
2320 }
2321 
2322 /*
2323  * import RAID devices based on one partition
2324  * if possible, the array gets run as well.
2325  */
2326 
2327 static int autostart_array(dev_t startdev)
2328 {
2329 	char b[BDEVNAME_SIZE];
2330 	int err = -EINVAL, i;
2331 	mdp_super_t *sb = NULL;
2332 	mdk_rdev_t *start_rdev = NULL, *rdev;
2333 
2334 	start_rdev = md_import_device(startdev, 0, 0);
2335 	if (IS_ERR(start_rdev))
2336 		return err;
2337 
2338 
2339 	/* NOTE: this can only work for 0.90.0 superblocks */
2340 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2341 	if (sb->major_version != 0 ||
2342 	    sb->minor_version != 90 ) {
2343 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2344 		export_rdev(start_rdev);
2345 		return err;
2346 	}
2347 
2348 	if (test_bit(Faulty, &start_rdev->flags)) {
2349 		printk(KERN_WARNING
2350 			"md: can not autostart based on faulty %s!\n",
2351 			bdevname(start_rdev->bdev,b));
2352 		export_rdev(start_rdev);
2353 		return err;
2354 	}
2355 	list_add(&start_rdev->same_set, &pending_raid_disks);
2356 
2357 	for (i = 0; i < MD_SB_DISKS; i++) {
2358 		mdp_disk_t *desc = sb->disks + i;
2359 		dev_t dev = MKDEV(desc->major, desc->minor);
2360 
2361 		if (!dev)
2362 			continue;
2363 		if (dev == startdev)
2364 			continue;
2365 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2366 			continue;
2367 		rdev = md_import_device(dev, 0, 0);
2368 		if (IS_ERR(rdev))
2369 			continue;
2370 
2371 		list_add(&rdev->same_set, &pending_raid_disks);
2372 	}
2373 
2374 	/*
2375 	 * possibly return codes
2376 	 */
2377 	autorun_devices(0);
2378 	return 0;
2379 
2380 }
2381 
2382 
2383 static int get_version(void __user * arg)
2384 {
2385 	mdu_version_t ver;
2386 
2387 	ver.major = MD_MAJOR_VERSION;
2388 	ver.minor = MD_MINOR_VERSION;
2389 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2390 
2391 	if (copy_to_user(arg, &ver, sizeof(ver)))
2392 		return -EFAULT;
2393 
2394 	return 0;
2395 }
2396 
2397 static int get_array_info(mddev_t * mddev, void __user * arg)
2398 {
2399 	mdu_array_info_t info;
2400 	int nr,working,active,failed,spare;
2401 	mdk_rdev_t *rdev;
2402 	struct list_head *tmp;
2403 
2404 	nr=working=active=failed=spare=0;
2405 	ITERATE_RDEV(mddev,rdev,tmp) {
2406 		nr++;
2407 		if (test_bit(Faulty, &rdev->flags))
2408 			failed++;
2409 		else {
2410 			working++;
2411 			if (test_bit(In_sync, &rdev->flags))
2412 				active++;
2413 			else
2414 				spare++;
2415 		}
2416 	}
2417 
2418 	info.major_version = mddev->major_version;
2419 	info.minor_version = mddev->minor_version;
2420 	info.patch_version = MD_PATCHLEVEL_VERSION;
2421 	info.ctime         = mddev->ctime;
2422 	info.level         = mddev->level;
2423 	info.size          = mddev->size;
2424 	info.nr_disks      = nr;
2425 	info.raid_disks    = mddev->raid_disks;
2426 	info.md_minor      = mddev->md_minor;
2427 	info.not_persistent= !mddev->persistent;
2428 
2429 	info.utime         = mddev->utime;
2430 	info.state         = 0;
2431 	if (mddev->in_sync)
2432 		info.state = (1<<MD_SB_CLEAN);
2433 	if (mddev->bitmap && mddev->bitmap_offset)
2434 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2435 	info.active_disks  = active;
2436 	info.working_disks = working;
2437 	info.failed_disks  = failed;
2438 	info.spare_disks   = spare;
2439 
2440 	info.layout        = mddev->layout;
2441 	info.chunk_size    = mddev->chunk_size;
2442 
2443 	if (copy_to_user(arg, &info, sizeof(info)))
2444 		return -EFAULT;
2445 
2446 	return 0;
2447 }
2448 
2449 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2450 {
2451 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2452 	char *ptr, *buf = NULL;
2453 	int err = -ENOMEM;
2454 
2455 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2456 	if (!file)
2457 		goto out;
2458 
2459 	/* bitmap disabled, zero the first byte and copy out */
2460 	if (!mddev->bitmap || !mddev->bitmap->file) {
2461 		file->pathname[0] = '\0';
2462 		goto copy_out;
2463 	}
2464 
2465 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2466 	if (!buf)
2467 		goto out;
2468 
2469 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2470 	if (!ptr)
2471 		goto out;
2472 
2473 	strcpy(file->pathname, ptr);
2474 
2475 copy_out:
2476 	err = 0;
2477 	if (copy_to_user(arg, file, sizeof(*file)))
2478 		err = -EFAULT;
2479 out:
2480 	kfree(buf);
2481 	kfree(file);
2482 	return err;
2483 }
2484 
2485 static int get_disk_info(mddev_t * mddev, void __user * arg)
2486 {
2487 	mdu_disk_info_t info;
2488 	unsigned int nr;
2489 	mdk_rdev_t *rdev;
2490 
2491 	if (copy_from_user(&info, arg, sizeof(info)))
2492 		return -EFAULT;
2493 
2494 	nr = info.number;
2495 
2496 	rdev = find_rdev_nr(mddev, nr);
2497 	if (rdev) {
2498 		info.major = MAJOR(rdev->bdev->bd_dev);
2499 		info.minor = MINOR(rdev->bdev->bd_dev);
2500 		info.raid_disk = rdev->raid_disk;
2501 		info.state = 0;
2502 		if (test_bit(Faulty, &rdev->flags))
2503 			info.state |= (1<<MD_DISK_FAULTY);
2504 		else if (test_bit(In_sync, &rdev->flags)) {
2505 			info.state |= (1<<MD_DISK_ACTIVE);
2506 			info.state |= (1<<MD_DISK_SYNC);
2507 		}
2508 		if (test_bit(WriteMostly, &rdev->flags))
2509 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2510 	} else {
2511 		info.major = info.minor = 0;
2512 		info.raid_disk = -1;
2513 		info.state = (1<<MD_DISK_REMOVED);
2514 	}
2515 
2516 	if (copy_to_user(arg, &info, sizeof(info)))
2517 		return -EFAULT;
2518 
2519 	return 0;
2520 }
2521 
2522 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2523 {
2524 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2525 	mdk_rdev_t *rdev;
2526 	dev_t dev = MKDEV(info->major,info->minor);
2527 
2528 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2529 		return -EOVERFLOW;
2530 
2531 	if (!mddev->raid_disks) {
2532 		int err;
2533 		/* expecting a device which has a superblock */
2534 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2535 		if (IS_ERR(rdev)) {
2536 			printk(KERN_WARNING
2537 				"md: md_import_device returned %ld\n",
2538 				PTR_ERR(rdev));
2539 			return PTR_ERR(rdev);
2540 		}
2541 		if (!list_empty(&mddev->disks)) {
2542 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2543 							mdk_rdev_t, same_set);
2544 			int err = super_types[mddev->major_version]
2545 				.load_super(rdev, rdev0, mddev->minor_version);
2546 			if (err < 0) {
2547 				printk(KERN_WARNING
2548 					"md: %s has different UUID to %s\n",
2549 					bdevname(rdev->bdev,b),
2550 					bdevname(rdev0->bdev,b2));
2551 				export_rdev(rdev);
2552 				return -EINVAL;
2553 			}
2554 		}
2555 		err = bind_rdev_to_array(rdev, mddev);
2556 		if (err)
2557 			export_rdev(rdev);
2558 		return err;
2559 	}
2560 
2561 	/*
2562 	 * add_new_disk can be used once the array is assembled
2563 	 * to add "hot spares".  They must already have a superblock
2564 	 * written
2565 	 */
2566 	if (mddev->pers) {
2567 		int err;
2568 		if (!mddev->pers->hot_add_disk) {
2569 			printk(KERN_WARNING
2570 				"%s: personality does not support diskops!\n",
2571 			       mdname(mddev));
2572 			return -EINVAL;
2573 		}
2574 		if (mddev->persistent)
2575 			rdev = md_import_device(dev, mddev->major_version,
2576 						mddev->minor_version);
2577 		else
2578 			rdev = md_import_device(dev, -1, -1);
2579 		if (IS_ERR(rdev)) {
2580 			printk(KERN_WARNING
2581 				"md: md_import_device returned %ld\n",
2582 				PTR_ERR(rdev));
2583 			return PTR_ERR(rdev);
2584 		}
2585 		/* set save_raid_disk if appropriate */
2586 		if (!mddev->persistent) {
2587 			if (info->state & (1<<MD_DISK_SYNC)  &&
2588 			    info->raid_disk < mddev->raid_disks)
2589 				rdev->raid_disk = info->raid_disk;
2590 			else
2591 				rdev->raid_disk = -1;
2592 		} else
2593 			super_types[mddev->major_version].
2594 				validate_super(mddev, rdev);
2595 		rdev->saved_raid_disk = rdev->raid_disk;
2596 
2597 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
2598 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2599 			set_bit(WriteMostly, &rdev->flags);
2600 
2601 		rdev->raid_disk = -1;
2602 		err = bind_rdev_to_array(rdev, mddev);
2603 		if (err)
2604 			export_rdev(rdev);
2605 
2606 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2607 		md_wakeup_thread(mddev->thread);
2608 		return err;
2609 	}
2610 
2611 	/* otherwise, add_new_disk is only allowed
2612 	 * for major_version==0 superblocks
2613 	 */
2614 	if (mddev->major_version != 0) {
2615 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2616 		       mdname(mddev));
2617 		return -EINVAL;
2618 	}
2619 
2620 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2621 		int err;
2622 		rdev = md_import_device (dev, -1, 0);
2623 		if (IS_ERR(rdev)) {
2624 			printk(KERN_WARNING
2625 				"md: error, md_import_device() returned %ld\n",
2626 				PTR_ERR(rdev));
2627 			return PTR_ERR(rdev);
2628 		}
2629 		rdev->desc_nr = info->number;
2630 		if (info->raid_disk < mddev->raid_disks)
2631 			rdev->raid_disk = info->raid_disk;
2632 		else
2633 			rdev->raid_disk = -1;
2634 
2635 		rdev->flags = 0;
2636 
2637 		if (rdev->raid_disk < mddev->raid_disks)
2638 			if (info->state & (1<<MD_DISK_SYNC))
2639 				set_bit(In_sync, &rdev->flags);
2640 
2641 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2642 			set_bit(WriteMostly, &rdev->flags);
2643 
2644 		err = bind_rdev_to_array(rdev, mddev);
2645 		if (err) {
2646 			export_rdev(rdev);
2647 			return err;
2648 		}
2649 
2650 		if (!mddev->persistent) {
2651 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2652 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2653 		} else
2654 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2655 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2656 
2657 		if (!mddev->size || (mddev->size > rdev->size))
2658 			mddev->size = rdev->size;
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2665 {
2666 	char b[BDEVNAME_SIZE];
2667 	mdk_rdev_t *rdev;
2668 
2669 	if (!mddev->pers)
2670 		return -ENODEV;
2671 
2672 	rdev = find_rdev(mddev, dev);
2673 	if (!rdev)
2674 		return -ENXIO;
2675 
2676 	if (rdev->raid_disk >= 0)
2677 		goto busy;
2678 
2679 	kick_rdev_from_array(rdev);
2680 	md_update_sb(mddev);
2681 
2682 	return 0;
2683 busy:
2684 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2685 		bdevname(rdev->bdev,b), mdname(mddev));
2686 	return -EBUSY;
2687 }
2688 
2689 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2690 {
2691 	char b[BDEVNAME_SIZE];
2692 	int err;
2693 	unsigned int size;
2694 	mdk_rdev_t *rdev;
2695 
2696 	if (!mddev->pers)
2697 		return -ENODEV;
2698 
2699 	if (mddev->major_version != 0) {
2700 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2701 			" version-0 superblocks.\n",
2702 			mdname(mddev));
2703 		return -EINVAL;
2704 	}
2705 	if (!mddev->pers->hot_add_disk) {
2706 		printk(KERN_WARNING
2707 			"%s: personality does not support diskops!\n",
2708 			mdname(mddev));
2709 		return -EINVAL;
2710 	}
2711 
2712 	rdev = md_import_device (dev, -1, 0);
2713 	if (IS_ERR(rdev)) {
2714 		printk(KERN_WARNING
2715 			"md: error, md_import_device() returned %ld\n",
2716 			PTR_ERR(rdev));
2717 		return -EINVAL;
2718 	}
2719 
2720 	if (mddev->persistent)
2721 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2722 	else
2723 		rdev->sb_offset =
2724 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2725 
2726 	size = calc_dev_size(rdev, mddev->chunk_size);
2727 	rdev->size = size;
2728 
2729 	if (size < mddev->size) {
2730 		printk(KERN_WARNING
2731 			"%s: disk size %llu blocks < array size %llu\n",
2732 			mdname(mddev), (unsigned long long)size,
2733 			(unsigned long long)mddev->size);
2734 		err = -ENOSPC;
2735 		goto abort_export;
2736 	}
2737 
2738 	if (test_bit(Faulty, &rdev->flags)) {
2739 		printk(KERN_WARNING
2740 			"md: can not hot-add faulty %s disk to %s!\n",
2741 			bdevname(rdev->bdev,b), mdname(mddev));
2742 		err = -EINVAL;
2743 		goto abort_export;
2744 	}
2745 	clear_bit(In_sync, &rdev->flags);
2746 	rdev->desc_nr = -1;
2747 	bind_rdev_to_array(rdev, mddev);
2748 
2749 	/*
2750 	 * The rest should better be atomic, we can have disk failures
2751 	 * noticed in interrupt contexts ...
2752 	 */
2753 
2754 	if (rdev->desc_nr == mddev->max_disks) {
2755 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2756 			mdname(mddev));
2757 		err = -EBUSY;
2758 		goto abort_unbind_export;
2759 	}
2760 
2761 	rdev->raid_disk = -1;
2762 
2763 	md_update_sb(mddev);
2764 
2765 	/*
2766 	 * Kick recovery, maybe this spare has to be added to the
2767 	 * array immediately.
2768 	 */
2769 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2770 	md_wakeup_thread(mddev->thread);
2771 
2772 	return 0;
2773 
2774 abort_unbind_export:
2775 	unbind_rdev_from_array(rdev);
2776 
2777 abort_export:
2778 	export_rdev(rdev);
2779 	return err;
2780 }
2781 
2782 /* similar to deny_write_access, but accounts for our holding a reference
2783  * to the file ourselves */
2784 static int deny_bitmap_write_access(struct file * file)
2785 {
2786 	struct inode *inode = file->f_mapping->host;
2787 
2788 	spin_lock(&inode->i_lock);
2789 	if (atomic_read(&inode->i_writecount) > 1) {
2790 		spin_unlock(&inode->i_lock);
2791 		return -ETXTBSY;
2792 	}
2793 	atomic_set(&inode->i_writecount, -1);
2794 	spin_unlock(&inode->i_lock);
2795 
2796 	return 0;
2797 }
2798 
2799 static int set_bitmap_file(mddev_t *mddev, int fd)
2800 {
2801 	int err;
2802 
2803 	if (mddev->pers) {
2804 		if (!mddev->pers->quiesce)
2805 			return -EBUSY;
2806 		if (mddev->recovery || mddev->sync_thread)
2807 			return -EBUSY;
2808 		/* we should be able to change the bitmap.. */
2809 	}
2810 
2811 
2812 	if (fd >= 0) {
2813 		if (mddev->bitmap)
2814 			return -EEXIST; /* cannot add when bitmap is present */
2815 		mddev->bitmap_file = fget(fd);
2816 
2817 		if (mddev->bitmap_file == NULL) {
2818 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2819 			       mdname(mddev));
2820 			return -EBADF;
2821 		}
2822 
2823 		err = deny_bitmap_write_access(mddev->bitmap_file);
2824 		if (err) {
2825 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2826 			       mdname(mddev));
2827 			fput(mddev->bitmap_file);
2828 			mddev->bitmap_file = NULL;
2829 			return err;
2830 		}
2831 		mddev->bitmap_offset = 0; /* file overrides offset */
2832 	} else if (mddev->bitmap == NULL)
2833 		return -ENOENT; /* cannot remove what isn't there */
2834 	err = 0;
2835 	if (mddev->pers) {
2836 		mddev->pers->quiesce(mddev, 1);
2837 		if (fd >= 0)
2838 			err = bitmap_create(mddev);
2839 		if (fd < 0 || err)
2840 			bitmap_destroy(mddev);
2841 		mddev->pers->quiesce(mddev, 0);
2842 	} else if (fd < 0) {
2843 		if (mddev->bitmap_file)
2844 			fput(mddev->bitmap_file);
2845 		mddev->bitmap_file = NULL;
2846 	}
2847 
2848 	return err;
2849 }
2850 
2851 /*
2852  * set_array_info is used two different ways
2853  * The original usage is when creating a new array.
2854  * In this usage, raid_disks is > 0 and it together with
2855  *  level, size, not_persistent,layout,chunksize determine the
2856  *  shape of the array.
2857  *  This will always create an array with a type-0.90.0 superblock.
2858  * The newer usage is when assembling an array.
2859  *  In this case raid_disks will be 0, and the major_version field is
2860  *  use to determine which style super-blocks are to be found on the devices.
2861  *  The minor and patch _version numbers are also kept incase the
2862  *  super_block handler wishes to interpret them.
2863  */
2864 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2865 {
2866 
2867 	if (info->raid_disks == 0) {
2868 		/* just setting version number for superblock loading */
2869 		if (info->major_version < 0 ||
2870 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2871 		    super_types[info->major_version].name == NULL) {
2872 			/* maybe try to auto-load a module? */
2873 			printk(KERN_INFO
2874 				"md: superblock version %d not known\n",
2875 				info->major_version);
2876 			return -EINVAL;
2877 		}
2878 		mddev->major_version = info->major_version;
2879 		mddev->minor_version = info->minor_version;
2880 		mddev->patch_version = info->patch_version;
2881 		return 0;
2882 	}
2883 	mddev->major_version = MD_MAJOR_VERSION;
2884 	mddev->minor_version = MD_MINOR_VERSION;
2885 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2886 	mddev->ctime         = get_seconds();
2887 
2888 	mddev->level         = info->level;
2889 	mddev->size          = info->size;
2890 	mddev->raid_disks    = info->raid_disks;
2891 	/* don't set md_minor, it is determined by which /dev/md* was
2892 	 * openned
2893 	 */
2894 	if (info->state & (1<<MD_SB_CLEAN))
2895 		mddev->recovery_cp = MaxSector;
2896 	else
2897 		mddev->recovery_cp = 0;
2898 	mddev->persistent    = ! info->not_persistent;
2899 
2900 	mddev->layout        = info->layout;
2901 	mddev->chunk_size    = info->chunk_size;
2902 
2903 	mddev->max_disks     = MD_SB_DISKS;
2904 
2905 	mddev->sb_dirty      = 1;
2906 
2907 	/*
2908 	 * Generate a 128 bit UUID
2909 	 */
2910 	get_random_bytes(mddev->uuid, 16);
2911 
2912 	return 0;
2913 }
2914 
2915 /*
2916  * update_array_info is used to change the configuration of an
2917  * on-line array.
2918  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2919  * fields in the info are checked against the array.
2920  * Any differences that cannot be handled will cause an error.
2921  * Normally, only one change can be managed at a time.
2922  */
2923 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2924 {
2925 	int rv = 0;
2926 	int cnt = 0;
2927 	int state = 0;
2928 
2929 	/* calculate expected state,ignoring low bits */
2930 	if (mddev->bitmap && mddev->bitmap_offset)
2931 		state |= (1 << MD_SB_BITMAP_PRESENT);
2932 
2933 	if (mddev->major_version != info->major_version ||
2934 	    mddev->minor_version != info->minor_version ||
2935 /*	    mddev->patch_version != info->patch_version || */
2936 	    mddev->ctime         != info->ctime         ||
2937 	    mddev->level         != info->level         ||
2938 /*	    mddev->layout        != info->layout        || */
2939 	    !mddev->persistent	 != info->not_persistent||
2940 	    mddev->chunk_size    != info->chunk_size    ||
2941 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2942 	    ((state^info->state) & 0xfffffe00)
2943 		)
2944 		return -EINVAL;
2945 	/* Check there is only one change */
2946 	if (mddev->size != info->size) cnt++;
2947 	if (mddev->raid_disks != info->raid_disks) cnt++;
2948 	if (mddev->layout != info->layout) cnt++;
2949 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
2950 	if (cnt == 0) return 0;
2951 	if (cnt > 1) return -EINVAL;
2952 
2953 	if (mddev->layout != info->layout) {
2954 		/* Change layout
2955 		 * we don't need to do anything at the md level, the
2956 		 * personality will take care of it all.
2957 		 */
2958 		if (mddev->pers->reconfig == NULL)
2959 			return -EINVAL;
2960 		else
2961 			return mddev->pers->reconfig(mddev, info->layout, -1);
2962 	}
2963 	if (mddev->size != info->size) {
2964 		mdk_rdev_t * rdev;
2965 		struct list_head *tmp;
2966 		if (mddev->pers->resize == NULL)
2967 			return -EINVAL;
2968 		/* The "size" is the amount of each device that is used.
2969 		 * This can only make sense for arrays with redundancy.
2970 		 * linear and raid0 always use whatever space is available
2971 		 * We can only consider changing the size if no resync
2972 		 * or reconstruction is happening, and if the new size
2973 		 * is acceptable. It must fit before the sb_offset or,
2974 		 * if that is <data_offset, it must fit before the
2975 		 * size of each device.
2976 		 * If size is zero, we find the largest size that fits.
2977 		 */
2978 		if (mddev->sync_thread)
2979 			return -EBUSY;
2980 		ITERATE_RDEV(mddev,rdev,tmp) {
2981 			sector_t avail;
2982 			int fit = (info->size == 0);
2983 			if (rdev->sb_offset > rdev->data_offset)
2984 				avail = (rdev->sb_offset*2) - rdev->data_offset;
2985 			else
2986 				avail = get_capacity(rdev->bdev->bd_disk)
2987 					- rdev->data_offset;
2988 			if (fit && (info->size == 0 || info->size > avail/2))
2989 				info->size = avail/2;
2990 			if (avail < ((sector_t)info->size << 1))
2991 				return -ENOSPC;
2992 		}
2993 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2994 		if (!rv) {
2995 			struct block_device *bdev;
2996 
2997 			bdev = bdget_disk(mddev->gendisk, 0);
2998 			if (bdev) {
2999 				down(&bdev->bd_inode->i_sem);
3000 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3001 				up(&bdev->bd_inode->i_sem);
3002 				bdput(bdev);
3003 			}
3004 		}
3005 	}
3006 	if (mddev->raid_disks    != info->raid_disks) {
3007 		/* change the number of raid disks */
3008 		if (mddev->pers->reshape == NULL)
3009 			return -EINVAL;
3010 		if (info->raid_disks <= 0 ||
3011 		    info->raid_disks >= mddev->max_disks)
3012 			return -EINVAL;
3013 		if (mddev->sync_thread)
3014 			return -EBUSY;
3015 		rv = mddev->pers->reshape(mddev, info->raid_disks);
3016 		if (!rv) {
3017 			struct block_device *bdev;
3018 
3019 			bdev = bdget_disk(mddev->gendisk, 0);
3020 			if (bdev) {
3021 				down(&bdev->bd_inode->i_sem);
3022 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3023 				up(&bdev->bd_inode->i_sem);
3024 				bdput(bdev);
3025 			}
3026 		}
3027 	}
3028 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3029 		if (mddev->pers->quiesce == NULL)
3030 			return -EINVAL;
3031 		if (mddev->recovery || mddev->sync_thread)
3032 			return -EBUSY;
3033 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3034 			/* add the bitmap */
3035 			if (mddev->bitmap)
3036 				return -EEXIST;
3037 			if (mddev->default_bitmap_offset == 0)
3038 				return -EINVAL;
3039 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3040 			mddev->pers->quiesce(mddev, 1);
3041 			rv = bitmap_create(mddev);
3042 			if (rv)
3043 				bitmap_destroy(mddev);
3044 			mddev->pers->quiesce(mddev, 0);
3045 		} else {
3046 			/* remove the bitmap */
3047 			if (!mddev->bitmap)
3048 				return -ENOENT;
3049 			if (mddev->bitmap->file)
3050 				return -EINVAL;
3051 			mddev->pers->quiesce(mddev, 1);
3052 			bitmap_destroy(mddev);
3053 			mddev->pers->quiesce(mddev, 0);
3054 			mddev->bitmap_offset = 0;
3055 		}
3056 	}
3057 	md_update_sb(mddev);
3058 	return rv;
3059 }
3060 
3061 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3062 {
3063 	mdk_rdev_t *rdev;
3064 
3065 	if (mddev->pers == NULL)
3066 		return -ENODEV;
3067 
3068 	rdev = find_rdev(mddev, dev);
3069 	if (!rdev)
3070 		return -ENODEV;
3071 
3072 	md_error(mddev, rdev);
3073 	return 0;
3074 }
3075 
3076 static int md_ioctl(struct inode *inode, struct file *file,
3077 			unsigned int cmd, unsigned long arg)
3078 {
3079 	int err = 0;
3080 	void __user *argp = (void __user *)arg;
3081 	struct hd_geometry __user *loc = argp;
3082 	mddev_t *mddev = NULL;
3083 
3084 	if (!capable(CAP_SYS_ADMIN))
3085 		return -EACCES;
3086 
3087 	/*
3088 	 * Commands dealing with the RAID driver but not any
3089 	 * particular array:
3090 	 */
3091 	switch (cmd)
3092 	{
3093 		case RAID_VERSION:
3094 			err = get_version(argp);
3095 			goto done;
3096 
3097 		case PRINT_RAID_DEBUG:
3098 			err = 0;
3099 			md_print_devices();
3100 			goto done;
3101 
3102 #ifndef MODULE
3103 		case RAID_AUTORUN:
3104 			err = 0;
3105 			autostart_arrays(arg);
3106 			goto done;
3107 #endif
3108 		default:;
3109 	}
3110 
3111 	/*
3112 	 * Commands creating/starting a new array:
3113 	 */
3114 
3115 	mddev = inode->i_bdev->bd_disk->private_data;
3116 
3117 	if (!mddev) {
3118 		BUG();
3119 		goto abort;
3120 	}
3121 
3122 
3123 	if (cmd == START_ARRAY) {
3124 		/* START_ARRAY doesn't need to lock the array as autostart_array
3125 		 * does the locking, and it could even be a different array
3126 		 */
3127 		static int cnt = 3;
3128 		if (cnt > 0 ) {
3129 			printk(KERN_WARNING
3130 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3131 			       "This will not be supported beyond 2.6\n",
3132 			       current->comm, current->pid);
3133 			cnt--;
3134 		}
3135 		err = autostart_array(new_decode_dev(arg));
3136 		if (err) {
3137 			printk(KERN_WARNING "md: autostart failed!\n");
3138 			goto abort;
3139 		}
3140 		goto done;
3141 	}
3142 
3143 	err = mddev_lock(mddev);
3144 	if (err) {
3145 		printk(KERN_INFO
3146 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3147 			err, cmd);
3148 		goto abort;
3149 	}
3150 
3151 	switch (cmd)
3152 	{
3153 		case SET_ARRAY_INFO:
3154 			{
3155 				mdu_array_info_t info;
3156 				if (!arg)
3157 					memset(&info, 0, sizeof(info));
3158 				else if (copy_from_user(&info, argp, sizeof(info))) {
3159 					err = -EFAULT;
3160 					goto abort_unlock;
3161 				}
3162 				if (mddev->pers) {
3163 					err = update_array_info(mddev, &info);
3164 					if (err) {
3165 						printk(KERN_WARNING "md: couldn't update"
3166 						       " array info. %d\n", err);
3167 						goto abort_unlock;
3168 					}
3169 					goto done_unlock;
3170 				}
3171 				if (!list_empty(&mddev->disks)) {
3172 					printk(KERN_WARNING
3173 					       "md: array %s already has disks!\n",
3174 					       mdname(mddev));
3175 					err = -EBUSY;
3176 					goto abort_unlock;
3177 				}
3178 				if (mddev->raid_disks) {
3179 					printk(KERN_WARNING
3180 					       "md: array %s already initialised!\n",
3181 					       mdname(mddev));
3182 					err = -EBUSY;
3183 					goto abort_unlock;
3184 				}
3185 				err = set_array_info(mddev, &info);
3186 				if (err) {
3187 					printk(KERN_WARNING "md: couldn't set"
3188 					       " array info. %d\n", err);
3189 					goto abort_unlock;
3190 				}
3191 			}
3192 			goto done_unlock;
3193 
3194 		default:;
3195 	}
3196 
3197 	/*
3198 	 * Commands querying/configuring an existing array:
3199 	 */
3200 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3201 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3202 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3203 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3204 		err = -ENODEV;
3205 		goto abort_unlock;
3206 	}
3207 
3208 	/*
3209 	 * Commands even a read-only array can execute:
3210 	 */
3211 	switch (cmd)
3212 	{
3213 		case GET_ARRAY_INFO:
3214 			err = get_array_info(mddev, argp);
3215 			goto done_unlock;
3216 
3217 		case GET_BITMAP_FILE:
3218 			err = get_bitmap_file(mddev, argp);
3219 			goto done_unlock;
3220 
3221 		case GET_DISK_INFO:
3222 			err = get_disk_info(mddev, argp);
3223 			goto done_unlock;
3224 
3225 		case RESTART_ARRAY_RW:
3226 			err = restart_array(mddev);
3227 			goto done_unlock;
3228 
3229 		case STOP_ARRAY:
3230 			err = do_md_stop (mddev, 0);
3231 			goto done_unlock;
3232 
3233 		case STOP_ARRAY_RO:
3234 			err = do_md_stop (mddev, 1);
3235 			goto done_unlock;
3236 
3237 	/*
3238 	 * We have a problem here : there is no easy way to give a CHS
3239 	 * virtual geometry. We currently pretend that we have a 2 heads
3240 	 * 4 sectors (with a BIG number of cylinders...). This drives
3241 	 * dosfs just mad... ;-)
3242 	 */
3243 		case HDIO_GETGEO:
3244 			if (!loc) {
3245 				err = -EINVAL;
3246 				goto abort_unlock;
3247 			}
3248 			err = put_user (2, (char __user *) &loc->heads);
3249 			if (err)
3250 				goto abort_unlock;
3251 			err = put_user (4, (char __user *) &loc->sectors);
3252 			if (err)
3253 				goto abort_unlock;
3254 			err = put_user(get_capacity(mddev->gendisk)/8,
3255 					(short __user *) &loc->cylinders);
3256 			if (err)
3257 				goto abort_unlock;
3258 			err = put_user (get_start_sect(inode->i_bdev),
3259 						(long __user *) &loc->start);
3260 			goto done_unlock;
3261 	}
3262 
3263 	/*
3264 	 * The remaining ioctls are changing the state of the
3265 	 * superblock, so we do not allow them on read-only arrays.
3266 	 * However non-MD ioctls (e.g. get-size) will still come through
3267 	 * here and hit the 'default' below, so only disallow
3268 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3269 	 */
3270 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3271 	    mddev->ro && mddev->pers) {
3272 		if (mddev->ro == 2) {
3273 			mddev->ro = 0;
3274 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3275 		md_wakeup_thread(mddev->thread);
3276 
3277 		} else {
3278 			err = -EROFS;
3279 			goto abort_unlock;
3280 		}
3281 	}
3282 
3283 	switch (cmd)
3284 	{
3285 		case ADD_NEW_DISK:
3286 		{
3287 			mdu_disk_info_t info;
3288 			if (copy_from_user(&info, argp, sizeof(info)))
3289 				err = -EFAULT;
3290 			else
3291 				err = add_new_disk(mddev, &info);
3292 			goto done_unlock;
3293 		}
3294 
3295 		case HOT_REMOVE_DISK:
3296 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3297 			goto done_unlock;
3298 
3299 		case HOT_ADD_DISK:
3300 			err = hot_add_disk(mddev, new_decode_dev(arg));
3301 			goto done_unlock;
3302 
3303 		case SET_DISK_FAULTY:
3304 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3305 			goto done_unlock;
3306 
3307 		case RUN_ARRAY:
3308 			err = do_md_run (mddev);
3309 			goto done_unlock;
3310 
3311 		case SET_BITMAP_FILE:
3312 			err = set_bitmap_file(mddev, (int)arg);
3313 			goto done_unlock;
3314 
3315 		default:
3316 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3317 				printk(KERN_WARNING "md: %s(pid %d) used"
3318 					" obsolete MD ioctl, upgrade your"
3319 					" software to use new ictls.\n",
3320 					current->comm, current->pid);
3321 			err = -EINVAL;
3322 			goto abort_unlock;
3323 	}
3324 
3325 done_unlock:
3326 abort_unlock:
3327 	mddev_unlock(mddev);
3328 
3329 	return err;
3330 done:
3331 	if (err)
3332 		MD_BUG();
3333 abort:
3334 	return err;
3335 }
3336 
3337 static int md_open(struct inode *inode, struct file *file)
3338 {
3339 	/*
3340 	 * Succeed if we can lock the mddev, which confirms that
3341 	 * it isn't being stopped right now.
3342 	 */
3343 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3344 	int err;
3345 
3346 	if ((err = mddev_lock(mddev)))
3347 		goto out;
3348 
3349 	err = 0;
3350 	mddev_get(mddev);
3351 	mddev_unlock(mddev);
3352 
3353 	check_disk_change(inode->i_bdev);
3354  out:
3355 	return err;
3356 }
3357 
3358 static int md_release(struct inode *inode, struct file * file)
3359 {
3360  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3361 
3362 	if (!mddev)
3363 		BUG();
3364 	mddev_put(mddev);
3365 
3366 	return 0;
3367 }
3368 
3369 static int md_media_changed(struct gendisk *disk)
3370 {
3371 	mddev_t *mddev = disk->private_data;
3372 
3373 	return mddev->changed;
3374 }
3375 
3376 static int md_revalidate(struct gendisk *disk)
3377 {
3378 	mddev_t *mddev = disk->private_data;
3379 
3380 	mddev->changed = 0;
3381 	return 0;
3382 }
3383 static struct block_device_operations md_fops =
3384 {
3385 	.owner		= THIS_MODULE,
3386 	.open		= md_open,
3387 	.release	= md_release,
3388 	.ioctl		= md_ioctl,
3389 	.media_changed	= md_media_changed,
3390 	.revalidate_disk= md_revalidate,
3391 };
3392 
3393 static int md_thread(void * arg)
3394 {
3395 	mdk_thread_t *thread = arg;
3396 
3397 	/*
3398 	 * md_thread is a 'system-thread', it's priority should be very
3399 	 * high. We avoid resource deadlocks individually in each
3400 	 * raid personality. (RAID5 does preallocation) We also use RR and
3401 	 * the very same RT priority as kswapd, thus we will never get
3402 	 * into a priority inversion deadlock.
3403 	 *
3404 	 * we definitely have to have equal or higher priority than
3405 	 * bdflush, otherwise bdflush will deadlock if there are too
3406 	 * many dirty RAID5 blocks.
3407 	 */
3408 
3409 	allow_signal(SIGKILL);
3410 	complete(thread->event);
3411 	while (!kthread_should_stop()) {
3412 		void (*run)(mddev_t *);
3413 
3414 		wait_event_interruptible_timeout(thread->wqueue,
3415 						 test_bit(THREAD_WAKEUP, &thread->flags)
3416 						 || kthread_should_stop(),
3417 						 thread->timeout);
3418 		try_to_freeze();
3419 
3420 		clear_bit(THREAD_WAKEUP, &thread->flags);
3421 
3422 		run = thread->run;
3423 		if (run)
3424 			run(thread->mddev);
3425 	}
3426 
3427 	return 0;
3428 }
3429 
3430 void md_wakeup_thread(mdk_thread_t *thread)
3431 {
3432 	if (thread) {
3433 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3434 		set_bit(THREAD_WAKEUP, &thread->flags);
3435 		wake_up(&thread->wqueue);
3436 	}
3437 }
3438 
3439 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3440 				 const char *name)
3441 {
3442 	mdk_thread_t *thread;
3443 	struct completion event;
3444 
3445 	thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3446 	if (!thread)
3447 		return NULL;
3448 
3449 	memset(thread, 0, sizeof(mdk_thread_t));
3450 	init_waitqueue_head(&thread->wqueue);
3451 
3452 	init_completion(&event);
3453 	thread->event = &event;
3454 	thread->run = run;
3455 	thread->mddev = mddev;
3456 	thread->name = name;
3457 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3458 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3459 	if (IS_ERR(thread->tsk)) {
3460 		kfree(thread);
3461 		return NULL;
3462 	}
3463 	wait_for_completion(&event);
3464 	return thread;
3465 }
3466 
3467 void md_unregister_thread(mdk_thread_t *thread)
3468 {
3469 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3470 
3471 	kthread_stop(thread->tsk);
3472 	kfree(thread);
3473 }
3474 
3475 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3476 {
3477 	if (!mddev) {
3478 		MD_BUG();
3479 		return;
3480 	}
3481 
3482 	if (!rdev || test_bit(Faulty, &rdev->flags))
3483 		return;
3484 /*
3485 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3486 		mdname(mddev),
3487 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3488 		__builtin_return_address(0),__builtin_return_address(1),
3489 		__builtin_return_address(2),__builtin_return_address(3));
3490 */
3491 	if (!mddev->pers->error_handler)
3492 		return;
3493 	mddev->pers->error_handler(mddev,rdev);
3494 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3495 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3496 	md_wakeup_thread(mddev->thread);
3497 }
3498 
3499 /* seq_file implementation /proc/mdstat */
3500 
3501 static void status_unused(struct seq_file *seq)
3502 {
3503 	int i = 0;
3504 	mdk_rdev_t *rdev;
3505 	struct list_head *tmp;
3506 
3507 	seq_printf(seq, "unused devices: ");
3508 
3509 	ITERATE_RDEV_PENDING(rdev,tmp) {
3510 		char b[BDEVNAME_SIZE];
3511 		i++;
3512 		seq_printf(seq, "%s ",
3513 			      bdevname(rdev->bdev,b));
3514 	}
3515 	if (!i)
3516 		seq_printf(seq, "<none>");
3517 
3518 	seq_printf(seq, "\n");
3519 }
3520 
3521 
3522 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3523 {
3524 	unsigned long max_blocks, resync, res, dt, db, rt;
3525 
3526 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3527 
3528 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3529 		max_blocks = mddev->resync_max_sectors >> 1;
3530 	else
3531 		max_blocks = mddev->size;
3532 
3533 	/*
3534 	 * Should not happen.
3535 	 */
3536 	if (!max_blocks) {
3537 		MD_BUG();
3538 		return;
3539 	}
3540 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3541 	{
3542 		int i, x = res/50, y = 20-x;
3543 		seq_printf(seq, "[");
3544 		for (i = 0; i < x; i++)
3545 			seq_printf(seq, "=");
3546 		seq_printf(seq, ">");
3547 		for (i = 0; i < y; i++)
3548 			seq_printf(seq, ".");
3549 		seq_printf(seq, "] ");
3550 	}
3551 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3552 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3553 		       "resync" : "recovery"),
3554 		      res/10, res % 10, resync, max_blocks);
3555 
3556 	/*
3557 	 * We do not want to overflow, so the order of operands and
3558 	 * the * 100 / 100 trick are important. We do a +1 to be
3559 	 * safe against division by zero. We only estimate anyway.
3560 	 *
3561 	 * dt: time from mark until now
3562 	 * db: blocks written from mark until now
3563 	 * rt: remaining time
3564 	 */
3565 	dt = ((jiffies - mddev->resync_mark) / HZ);
3566 	if (!dt) dt++;
3567 	db = resync - (mddev->resync_mark_cnt/2);
3568 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3569 
3570 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3571 
3572 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3573 }
3574 
3575 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3576 {
3577 	struct list_head *tmp;
3578 	loff_t l = *pos;
3579 	mddev_t *mddev;
3580 
3581 	if (l >= 0x10000)
3582 		return NULL;
3583 	if (!l--)
3584 		/* header */
3585 		return (void*)1;
3586 
3587 	spin_lock(&all_mddevs_lock);
3588 	list_for_each(tmp,&all_mddevs)
3589 		if (!l--) {
3590 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3591 			mddev_get(mddev);
3592 			spin_unlock(&all_mddevs_lock);
3593 			return mddev;
3594 		}
3595 	spin_unlock(&all_mddevs_lock);
3596 	if (!l--)
3597 		return (void*)2;/* tail */
3598 	return NULL;
3599 }
3600 
3601 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3602 {
3603 	struct list_head *tmp;
3604 	mddev_t *next_mddev, *mddev = v;
3605 
3606 	++*pos;
3607 	if (v == (void*)2)
3608 		return NULL;
3609 
3610 	spin_lock(&all_mddevs_lock);
3611 	if (v == (void*)1)
3612 		tmp = all_mddevs.next;
3613 	else
3614 		tmp = mddev->all_mddevs.next;
3615 	if (tmp != &all_mddevs)
3616 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3617 	else {
3618 		next_mddev = (void*)2;
3619 		*pos = 0x10000;
3620 	}
3621 	spin_unlock(&all_mddevs_lock);
3622 
3623 	if (v != (void*)1)
3624 		mddev_put(mddev);
3625 	return next_mddev;
3626 
3627 }
3628 
3629 static void md_seq_stop(struct seq_file *seq, void *v)
3630 {
3631 	mddev_t *mddev = v;
3632 
3633 	if (mddev && v != (void*)1 && v != (void*)2)
3634 		mddev_put(mddev);
3635 }
3636 
3637 static int md_seq_show(struct seq_file *seq, void *v)
3638 {
3639 	mddev_t *mddev = v;
3640 	sector_t size;
3641 	struct list_head *tmp2;
3642 	mdk_rdev_t *rdev;
3643 	int i;
3644 	struct bitmap *bitmap;
3645 
3646 	if (v == (void*)1) {
3647 		seq_printf(seq, "Personalities : ");
3648 		spin_lock(&pers_lock);
3649 		for (i = 0; i < MAX_PERSONALITY; i++)
3650 			if (pers[i])
3651 				seq_printf(seq, "[%s] ", pers[i]->name);
3652 
3653 		spin_unlock(&pers_lock);
3654 		seq_printf(seq, "\n");
3655 		return 0;
3656 	}
3657 	if (v == (void*)2) {
3658 		status_unused(seq);
3659 		return 0;
3660 	}
3661 
3662 	if (mddev_lock(mddev)!=0)
3663 		return -EINTR;
3664 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3665 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3666 						mddev->pers ? "" : "in");
3667 		if (mddev->pers) {
3668 			if (mddev->ro==1)
3669 				seq_printf(seq, " (read-only)");
3670 			if (mddev->ro==2)
3671 				seq_printf(seq, "(auto-read-only)");
3672 			seq_printf(seq, " %s", mddev->pers->name);
3673 		}
3674 
3675 		size = 0;
3676 		ITERATE_RDEV(mddev,rdev,tmp2) {
3677 			char b[BDEVNAME_SIZE];
3678 			seq_printf(seq, " %s[%d]",
3679 				bdevname(rdev->bdev,b), rdev->desc_nr);
3680 			if (test_bit(WriteMostly, &rdev->flags))
3681 				seq_printf(seq, "(W)");
3682 			if (test_bit(Faulty, &rdev->flags)) {
3683 				seq_printf(seq, "(F)");
3684 				continue;
3685 			} else if (rdev->raid_disk < 0)
3686 				seq_printf(seq, "(S)"); /* spare */
3687 			size += rdev->size;
3688 		}
3689 
3690 		if (!list_empty(&mddev->disks)) {
3691 			if (mddev->pers)
3692 				seq_printf(seq, "\n      %llu blocks",
3693 					(unsigned long long)mddev->array_size);
3694 			else
3695 				seq_printf(seq, "\n      %llu blocks",
3696 					(unsigned long long)size);
3697 		}
3698 		if (mddev->persistent) {
3699 			if (mddev->major_version != 0 ||
3700 			    mddev->minor_version != 90) {
3701 				seq_printf(seq," super %d.%d",
3702 					   mddev->major_version,
3703 					   mddev->minor_version);
3704 			}
3705 		} else
3706 			seq_printf(seq, " super non-persistent");
3707 
3708 		if (mddev->pers) {
3709 			mddev->pers->status (seq, mddev);
3710 	 		seq_printf(seq, "\n      ");
3711 			if (mddev->curr_resync > 2) {
3712 				status_resync (seq, mddev);
3713 				seq_printf(seq, "\n      ");
3714 			} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3715 				seq_printf(seq, "\tresync=DELAYED\n      ");
3716 			else if (mddev->recovery_cp < MaxSector)
3717 				seq_printf(seq, "\tresync=PENDING\n      ");
3718 		} else
3719 			seq_printf(seq, "\n       ");
3720 
3721 		if ((bitmap = mddev->bitmap)) {
3722 			unsigned long chunk_kb;
3723 			unsigned long flags;
3724 			spin_lock_irqsave(&bitmap->lock, flags);
3725 			chunk_kb = bitmap->chunksize >> 10;
3726 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3727 				"%lu%s chunk",
3728 				bitmap->pages - bitmap->missing_pages,
3729 				bitmap->pages,
3730 				(bitmap->pages - bitmap->missing_pages)
3731 					<< (PAGE_SHIFT - 10),
3732 				chunk_kb ? chunk_kb : bitmap->chunksize,
3733 				chunk_kb ? "KB" : "B");
3734 			if (bitmap->file) {
3735 				seq_printf(seq, ", file: ");
3736 				seq_path(seq, bitmap->file->f_vfsmnt,
3737 					 bitmap->file->f_dentry," \t\n");
3738 			}
3739 
3740 			seq_printf(seq, "\n");
3741 			spin_unlock_irqrestore(&bitmap->lock, flags);
3742 		}
3743 
3744 		seq_printf(seq, "\n");
3745 	}
3746 	mddev_unlock(mddev);
3747 
3748 	return 0;
3749 }
3750 
3751 static struct seq_operations md_seq_ops = {
3752 	.start  = md_seq_start,
3753 	.next   = md_seq_next,
3754 	.stop   = md_seq_stop,
3755 	.show   = md_seq_show,
3756 };
3757 
3758 static int md_seq_open(struct inode *inode, struct file *file)
3759 {
3760 	int error;
3761 
3762 	error = seq_open(file, &md_seq_ops);
3763 	return error;
3764 }
3765 
3766 static struct file_operations md_seq_fops = {
3767 	.open           = md_seq_open,
3768 	.read           = seq_read,
3769 	.llseek         = seq_lseek,
3770 	.release	= seq_release,
3771 };
3772 
3773 int register_md_personality(int pnum, mdk_personality_t *p)
3774 {
3775 	if (pnum >= MAX_PERSONALITY) {
3776 		printk(KERN_ERR
3777 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3778 		       p->name, pnum, MAX_PERSONALITY-1);
3779 		return -EINVAL;
3780 	}
3781 
3782 	spin_lock(&pers_lock);
3783 	if (pers[pnum]) {
3784 		spin_unlock(&pers_lock);
3785 		return -EBUSY;
3786 	}
3787 
3788 	pers[pnum] = p;
3789 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3790 	spin_unlock(&pers_lock);
3791 	return 0;
3792 }
3793 
3794 int unregister_md_personality(int pnum)
3795 {
3796 	if (pnum >= MAX_PERSONALITY)
3797 		return -EINVAL;
3798 
3799 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3800 	spin_lock(&pers_lock);
3801 	pers[pnum] = NULL;
3802 	spin_unlock(&pers_lock);
3803 	return 0;
3804 }
3805 
3806 static int is_mddev_idle(mddev_t *mddev)
3807 {
3808 	mdk_rdev_t * rdev;
3809 	struct list_head *tmp;
3810 	int idle;
3811 	unsigned long curr_events;
3812 
3813 	idle = 1;
3814 	ITERATE_RDEV(mddev,rdev,tmp) {
3815 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3816 		curr_events = disk_stat_read(disk, sectors[0]) +
3817 				disk_stat_read(disk, sectors[1]) -
3818 				atomic_read(&disk->sync_io);
3819 		/* Allow some slack between valud of curr_events and last_events,
3820 		 * as there are some uninteresting races.
3821 		 * Note: the following is an unsigned comparison.
3822 		 */
3823 		if ((curr_events - rdev->last_events + 32) > 64) {
3824 			rdev->last_events = curr_events;
3825 			idle = 0;
3826 		}
3827 	}
3828 	return idle;
3829 }
3830 
3831 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3832 {
3833 	/* another "blocks" (512byte) blocks have been synced */
3834 	atomic_sub(blocks, &mddev->recovery_active);
3835 	wake_up(&mddev->recovery_wait);
3836 	if (!ok) {
3837 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3838 		md_wakeup_thread(mddev->thread);
3839 		// stop recovery, signal do_sync ....
3840 	}
3841 }
3842 
3843 
3844 /* md_write_start(mddev, bi)
3845  * If we need to update some array metadata (e.g. 'active' flag
3846  * in superblock) before writing, schedule a superblock update
3847  * and wait for it to complete.
3848  */
3849 void md_write_start(mddev_t *mddev, struct bio *bi)
3850 {
3851 	if (bio_data_dir(bi) != WRITE)
3852 		return;
3853 
3854 	BUG_ON(mddev->ro == 1);
3855 	if (mddev->ro == 2) {
3856 		/* need to switch to read/write */
3857 		mddev->ro = 0;
3858 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3859 		md_wakeup_thread(mddev->thread);
3860 	}
3861 	atomic_inc(&mddev->writes_pending);
3862 	if (mddev->in_sync) {
3863 		spin_lock_irq(&mddev->write_lock);
3864 		if (mddev->in_sync) {
3865 			mddev->in_sync = 0;
3866 			mddev->sb_dirty = 1;
3867 			md_wakeup_thread(mddev->thread);
3868 		}
3869 		spin_unlock_irq(&mddev->write_lock);
3870 	}
3871 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3872 }
3873 
3874 void md_write_end(mddev_t *mddev)
3875 {
3876 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3877 		if (mddev->safemode == 2)
3878 			md_wakeup_thread(mddev->thread);
3879 		else
3880 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3881 	}
3882 }
3883 
3884 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3885 
3886 #define SYNC_MARKS	10
3887 #define	SYNC_MARK_STEP	(3*HZ)
3888 static void md_do_sync(mddev_t *mddev)
3889 {
3890 	mddev_t *mddev2;
3891 	unsigned int currspeed = 0,
3892 		 window;
3893 	sector_t max_sectors,j, io_sectors;
3894 	unsigned long mark[SYNC_MARKS];
3895 	sector_t mark_cnt[SYNC_MARKS];
3896 	int last_mark,m;
3897 	struct list_head *tmp;
3898 	sector_t last_check;
3899 	int skipped = 0;
3900 
3901 	/* just incase thread restarts... */
3902 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3903 		return;
3904 
3905 	/* we overload curr_resync somewhat here.
3906 	 * 0 == not engaged in resync at all
3907 	 * 2 == checking that there is no conflict with another sync
3908 	 * 1 == like 2, but have yielded to allow conflicting resync to
3909 	 *		commense
3910 	 * other == active in resync - this many blocks
3911 	 *
3912 	 * Before starting a resync we must have set curr_resync to
3913 	 * 2, and then checked that every "conflicting" array has curr_resync
3914 	 * less than ours.  When we find one that is the same or higher
3915 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3916 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3917 	 * This will mean we have to start checking from the beginning again.
3918 	 *
3919 	 */
3920 
3921 	do {
3922 		mddev->curr_resync = 2;
3923 
3924 	try_again:
3925 		if (signal_pending(current) ||
3926 		    kthread_should_stop()) {
3927 			flush_signals(current);
3928 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3929 			goto skip;
3930 		}
3931 		ITERATE_MDDEV(mddev2,tmp) {
3932 			if (mddev2 == mddev)
3933 				continue;
3934 			if (mddev2->curr_resync &&
3935 			    match_mddev_units(mddev,mddev2)) {
3936 				DEFINE_WAIT(wq);
3937 				if (mddev < mddev2 && mddev->curr_resync == 2) {
3938 					/* arbitrarily yield */
3939 					mddev->curr_resync = 1;
3940 					wake_up(&resync_wait);
3941 				}
3942 				if (mddev > mddev2 && mddev->curr_resync == 1)
3943 					/* no need to wait here, we can wait the next
3944 					 * time 'round when curr_resync == 2
3945 					 */
3946 					continue;
3947 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3948 				if (!signal_pending(current) &&
3949 				    !kthread_should_stop() &&
3950 				    mddev2->curr_resync >= mddev->curr_resync) {
3951 					printk(KERN_INFO "md: delaying resync of %s"
3952 					       " until %s has finished resync (they"
3953 					       " share one or more physical units)\n",
3954 					       mdname(mddev), mdname(mddev2));
3955 					mddev_put(mddev2);
3956 					schedule();
3957 					finish_wait(&resync_wait, &wq);
3958 					goto try_again;
3959 				}
3960 				finish_wait(&resync_wait, &wq);
3961 			}
3962 		}
3963 	} while (mddev->curr_resync < 2);
3964 
3965 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3966 		/* resync follows the size requested by the personality,
3967 		 * which defaults to physical size, but can be virtual size
3968 		 */
3969 		max_sectors = mddev->resync_max_sectors;
3970 		mddev->resync_mismatches = 0;
3971 	} else
3972 		/* recovery follows the physical size of devices */
3973 		max_sectors = mddev->size << 1;
3974 
3975 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3976 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3977 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
3978 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
3979 	       "(but not more than %d KB/sec) for reconstruction.\n",
3980 	       sysctl_speed_limit_max);
3981 
3982 	is_mddev_idle(mddev); /* this also initializes IO event counters */
3983 	/* we don't use the checkpoint if there's a bitmap */
3984 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
3985 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3986 		j = mddev->recovery_cp;
3987 	else
3988 		j = 0;
3989 	io_sectors = 0;
3990 	for (m = 0; m < SYNC_MARKS; m++) {
3991 		mark[m] = jiffies;
3992 		mark_cnt[m] = io_sectors;
3993 	}
3994 	last_mark = 0;
3995 	mddev->resync_mark = mark[last_mark];
3996 	mddev->resync_mark_cnt = mark_cnt[last_mark];
3997 
3998 	/*
3999 	 * Tune reconstruction:
4000 	 */
4001 	window = 32*(PAGE_SIZE/512);
4002 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4003 		window/2,(unsigned long long) max_sectors/2);
4004 
4005 	atomic_set(&mddev->recovery_active, 0);
4006 	init_waitqueue_head(&mddev->recovery_wait);
4007 	last_check = 0;
4008 
4009 	if (j>2) {
4010 		printk(KERN_INFO
4011 			"md: resuming recovery of %s from checkpoint.\n",
4012 			mdname(mddev));
4013 		mddev->curr_resync = j;
4014 	}
4015 
4016 	while (j < max_sectors) {
4017 		sector_t sectors;
4018 
4019 		skipped = 0;
4020 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4021 					    currspeed < sysctl_speed_limit_min);
4022 		if (sectors == 0) {
4023 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4024 			goto out;
4025 		}
4026 
4027 		if (!skipped) { /* actual IO requested */
4028 			io_sectors += sectors;
4029 			atomic_add(sectors, &mddev->recovery_active);
4030 		}
4031 
4032 		j += sectors;
4033 		if (j>1) mddev->curr_resync = j;
4034 
4035 
4036 		if (last_check + window > io_sectors || j == max_sectors)
4037 			continue;
4038 
4039 		last_check = io_sectors;
4040 
4041 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4042 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4043 			break;
4044 
4045 	repeat:
4046 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4047 			/* step marks */
4048 			int next = (last_mark+1) % SYNC_MARKS;
4049 
4050 			mddev->resync_mark = mark[next];
4051 			mddev->resync_mark_cnt = mark_cnt[next];
4052 			mark[next] = jiffies;
4053 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4054 			last_mark = next;
4055 		}
4056 
4057 
4058 		if (signal_pending(current) || kthread_should_stop()) {
4059 			/*
4060 			 * got a signal, exit.
4061 			 */
4062 			printk(KERN_INFO
4063 				"md: md_do_sync() got signal ... exiting\n");
4064 			flush_signals(current);
4065 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4066 			goto out;
4067 		}
4068 
4069 		/*
4070 		 * this loop exits only if either when we are slower than
4071 		 * the 'hard' speed limit, or the system was IO-idle for
4072 		 * a jiffy.
4073 		 * the system might be non-idle CPU-wise, but we only care
4074 		 * about not overloading the IO subsystem. (things like an
4075 		 * e2fsck being done on the RAID array should execute fast)
4076 		 */
4077 		mddev->queue->unplug_fn(mddev->queue);
4078 		cond_resched();
4079 
4080 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4081 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4082 
4083 		if (currspeed > sysctl_speed_limit_min) {
4084 			if ((currspeed > sysctl_speed_limit_max) ||
4085 					!is_mddev_idle(mddev)) {
4086 				msleep_interruptible(250);
4087 				goto repeat;
4088 			}
4089 		}
4090 	}
4091 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4092 	/*
4093 	 * this also signals 'finished resyncing' to md_stop
4094 	 */
4095  out:
4096 	mddev->queue->unplug_fn(mddev->queue);
4097 
4098 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4099 
4100 	/* tell personality that we are finished */
4101 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4102 
4103 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4104 	    mddev->curr_resync > 2 &&
4105 	    mddev->curr_resync >= mddev->recovery_cp) {
4106 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4107 			printk(KERN_INFO
4108 				"md: checkpointing recovery of %s.\n",
4109 				mdname(mddev));
4110 			mddev->recovery_cp = mddev->curr_resync;
4111 		} else
4112 			mddev->recovery_cp = MaxSector;
4113 	}
4114 
4115  skip:
4116 	mddev->curr_resync = 0;
4117 	wake_up(&resync_wait);
4118 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4119 	md_wakeup_thread(mddev->thread);
4120 }
4121 
4122 
4123 /*
4124  * This routine is regularly called by all per-raid-array threads to
4125  * deal with generic issues like resync and super-block update.
4126  * Raid personalities that don't have a thread (linear/raid0) do not
4127  * need this as they never do any recovery or update the superblock.
4128  *
4129  * It does not do any resync itself, but rather "forks" off other threads
4130  * to do that as needed.
4131  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4132  * "->recovery" and create a thread at ->sync_thread.
4133  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4134  * and wakeups up this thread which will reap the thread and finish up.
4135  * This thread also removes any faulty devices (with nr_pending == 0).
4136  *
4137  * The overall approach is:
4138  *  1/ if the superblock needs updating, update it.
4139  *  2/ If a recovery thread is running, don't do anything else.
4140  *  3/ If recovery has finished, clean up, possibly marking spares active.
4141  *  4/ If there are any faulty devices, remove them.
4142  *  5/ If array is degraded, try to add spares devices
4143  *  6/ If array has spares or is not in-sync, start a resync thread.
4144  */
4145 void md_check_recovery(mddev_t *mddev)
4146 {
4147 	mdk_rdev_t *rdev;
4148 	struct list_head *rtmp;
4149 
4150 
4151 	if (mddev->bitmap)
4152 		bitmap_daemon_work(mddev->bitmap);
4153 
4154 	if (mddev->ro)
4155 		return;
4156 
4157 	if (signal_pending(current)) {
4158 		if (mddev->pers->sync_request) {
4159 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4160 			       mdname(mddev));
4161 			mddev->safemode = 2;
4162 		}
4163 		flush_signals(current);
4164 	}
4165 
4166 	if ( ! (
4167 		mddev->sb_dirty ||
4168 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4169 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4170 		(mddev->safemode == 1) ||
4171 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4172 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4173 		))
4174 		return;
4175 
4176 	if (mddev_trylock(mddev)==0) {
4177 		int spares =0;
4178 
4179 		spin_lock_irq(&mddev->write_lock);
4180 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4181 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4182 			mddev->in_sync = 1;
4183 			mddev->sb_dirty = 1;
4184 		}
4185 		if (mddev->safemode == 1)
4186 			mddev->safemode = 0;
4187 		spin_unlock_irq(&mddev->write_lock);
4188 
4189 		if (mddev->sb_dirty)
4190 			md_update_sb(mddev);
4191 
4192 
4193 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4194 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4195 			/* resync/recovery still happening */
4196 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4197 			goto unlock;
4198 		}
4199 		if (mddev->sync_thread) {
4200 			/* resync has finished, collect result */
4201 			md_unregister_thread(mddev->sync_thread);
4202 			mddev->sync_thread = NULL;
4203 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4204 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4205 				/* success...*/
4206 				/* activate any spares */
4207 				mddev->pers->spare_active(mddev);
4208 			}
4209 			md_update_sb(mddev);
4210 
4211 			/* if array is no-longer degraded, then any saved_raid_disk
4212 			 * information must be scrapped
4213 			 */
4214 			if (!mddev->degraded)
4215 				ITERATE_RDEV(mddev,rdev,rtmp)
4216 					rdev->saved_raid_disk = -1;
4217 
4218 			mddev->recovery = 0;
4219 			/* flag recovery needed just to double check */
4220 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4221 			goto unlock;
4222 		}
4223 		/* Clear some bits that don't mean anything, but
4224 		 * might be left set
4225 		 */
4226 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4227 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4228 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4229 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4230 
4231 		/* no recovery is running.
4232 		 * remove any failed drives, then
4233 		 * add spares if possible.
4234 		 * Spare are also removed and re-added, to allow
4235 		 * the personality to fail the re-add.
4236 		 */
4237 		ITERATE_RDEV(mddev,rdev,rtmp)
4238 			if (rdev->raid_disk >= 0 &&
4239 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4240 			    atomic_read(&rdev->nr_pending)==0) {
4241 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4242 					char nm[20];
4243 					sprintf(nm,"rd%d", rdev->raid_disk);
4244 					sysfs_remove_link(&mddev->kobj, nm);
4245 					rdev->raid_disk = -1;
4246 				}
4247 			}
4248 
4249 		if (mddev->degraded) {
4250 			ITERATE_RDEV(mddev,rdev,rtmp)
4251 				if (rdev->raid_disk < 0
4252 				    && !test_bit(Faulty, &rdev->flags)) {
4253 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4254 						char nm[20];
4255 						sprintf(nm, "rd%d", rdev->raid_disk);
4256 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4257 						spares++;
4258 					} else
4259 						break;
4260 				}
4261 		}
4262 
4263 		if (spares) {
4264 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4265 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4266 		} else if (mddev->recovery_cp < MaxSector) {
4267 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4268 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4269 			/* nothing to be done ... */
4270 			goto unlock;
4271 
4272 		if (mddev->pers->sync_request) {
4273 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4274 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4275 				/* We are adding a device or devices to an array
4276 				 * which has the bitmap stored on all devices.
4277 				 * So make sure all bitmap pages get written
4278 				 */
4279 				bitmap_write_all(mddev->bitmap);
4280 			}
4281 			mddev->sync_thread = md_register_thread(md_do_sync,
4282 								mddev,
4283 								"%s_resync");
4284 			if (!mddev->sync_thread) {
4285 				printk(KERN_ERR "%s: could not start resync"
4286 					" thread...\n",
4287 					mdname(mddev));
4288 				/* leave the spares where they are, it shouldn't hurt */
4289 				mddev->recovery = 0;
4290 			} else {
4291 				md_wakeup_thread(mddev->sync_thread);
4292 			}
4293 		}
4294 	unlock:
4295 		mddev_unlock(mddev);
4296 	}
4297 }
4298 
4299 static int md_notify_reboot(struct notifier_block *this,
4300 			    unsigned long code, void *x)
4301 {
4302 	struct list_head *tmp;
4303 	mddev_t *mddev;
4304 
4305 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4306 
4307 		printk(KERN_INFO "md: stopping all md devices.\n");
4308 
4309 		ITERATE_MDDEV(mddev,tmp)
4310 			if (mddev_trylock(mddev)==0)
4311 				do_md_stop (mddev, 1);
4312 		/*
4313 		 * certain more exotic SCSI devices are known to be
4314 		 * volatile wrt too early system reboots. While the
4315 		 * right place to handle this issue is the given
4316 		 * driver, we do want to have a safe RAID driver ...
4317 		 */
4318 		mdelay(1000*1);
4319 	}
4320 	return NOTIFY_DONE;
4321 }
4322 
4323 static struct notifier_block md_notifier = {
4324 	.notifier_call	= md_notify_reboot,
4325 	.next		= NULL,
4326 	.priority	= INT_MAX, /* before any real devices */
4327 };
4328 
4329 static void md_geninit(void)
4330 {
4331 	struct proc_dir_entry *p;
4332 
4333 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4334 
4335 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4336 	if (p)
4337 		p->proc_fops = &md_seq_fops;
4338 }
4339 
4340 static int __init md_init(void)
4341 {
4342 	int minor;
4343 
4344 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4345 			" MD_SB_DISKS=%d\n",
4346 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4347 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4348 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4349 			BITMAP_MINOR);
4350 
4351 	if (register_blkdev(MAJOR_NR, "md"))
4352 		return -1;
4353 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4354 		unregister_blkdev(MAJOR_NR, "md");
4355 		return -1;
4356 	}
4357 	devfs_mk_dir("md");
4358 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4359 				md_probe, NULL, NULL);
4360 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4361 			    md_probe, NULL, NULL);
4362 
4363 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4364 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4365 				S_IFBLK|S_IRUSR|S_IWUSR,
4366 				"md/%d", minor);
4367 
4368 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4369 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4370 			      S_IFBLK|S_IRUSR|S_IWUSR,
4371 			      "md/mdp%d", minor);
4372 
4373 
4374 	register_reboot_notifier(&md_notifier);
4375 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4376 
4377 	md_geninit();
4378 	return (0);
4379 }
4380 
4381 
4382 #ifndef MODULE
4383 
4384 /*
4385  * Searches all registered partitions for autorun RAID arrays
4386  * at boot time.
4387  */
4388 static dev_t detected_devices[128];
4389 static int dev_cnt;
4390 
4391 void md_autodetect_dev(dev_t dev)
4392 {
4393 	if (dev_cnt >= 0 && dev_cnt < 127)
4394 		detected_devices[dev_cnt++] = dev;
4395 }
4396 
4397 
4398 static void autostart_arrays(int part)
4399 {
4400 	mdk_rdev_t *rdev;
4401 	int i;
4402 
4403 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4404 
4405 	for (i = 0; i < dev_cnt; i++) {
4406 		dev_t dev = detected_devices[i];
4407 
4408 		rdev = md_import_device(dev,0, 0);
4409 		if (IS_ERR(rdev))
4410 			continue;
4411 
4412 		if (test_bit(Faulty, &rdev->flags)) {
4413 			MD_BUG();
4414 			continue;
4415 		}
4416 		list_add(&rdev->same_set, &pending_raid_disks);
4417 	}
4418 	dev_cnt = 0;
4419 
4420 	autorun_devices(part);
4421 }
4422 
4423 #endif
4424 
4425 static __exit void md_exit(void)
4426 {
4427 	mddev_t *mddev;
4428 	struct list_head *tmp;
4429 	int i;
4430 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4431 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4432 	for (i=0; i < MAX_MD_DEVS; i++)
4433 		devfs_remove("md/%d", i);
4434 	for (i=0; i < MAX_MD_DEVS; i++)
4435 		devfs_remove("md/d%d", i);
4436 
4437 	devfs_remove("md");
4438 
4439 	unregister_blkdev(MAJOR_NR,"md");
4440 	unregister_blkdev(mdp_major, "mdp");
4441 	unregister_reboot_notifier(&md_notifier);
4442 	unregister_sysctl_table(raid_table_header);
4443 	remove_proc_entry("mdstat", NULL);
4444 	ITERATE_MDDEV(mddev,tmp) {
4445 		struct gendisk *disk = mddev->gendisk;
4446 		if (!disk)
4447 			continue;
4448 		export_array(mddev);
4449 		del_gendisk(disk);
4450 		put_disk(disk);
4451 		mddev->gendisk = NULL;
4452 		mddev_put(mddev);
4453 	}
4454 }
4455 
4456 module_init(md_init)
4457 module_exit(md_exit)
4458 
4459 static int get_ro(char *buffer, struct kernel_param *kp)
4460 {
4461 	return sprintf(buffer, "%d", start_readonly);
4462 }
4463 static int set_ro(const char *val, struct kernel_param *kp)
4464 {
4465 	char *e;
4466 	int num = simple_strtoul(val, &e, 10);
4467 	if (*val && (*e == '\0' || *e == '\n')) {
4468 		start_readonly = num;
4469 		return 0;;
4470 	}
4471 	return -EINVAL;
4472 }
4473 
4474 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4475 
4476 EXPORT_SYMBOL(register_md_personality);
4477 EXPORT_SYMBOL(unregister_md_personality);
4478 EXPORT_SYMBOL(md_error);
4479 EXPORT_SYMBOL(md_done_sync);
4480 EXPORT_SYMBOL(md_write_start);
4481 EXPORT_SYMBOL(md_write_end);
4482 EXPORT_SYMBOL(md_register_thread);
4483 EXPORT_SYMBOL(md_unregister_thread);
4484 EXPORT_SYMBOL(md_wakeup_thread);
4485 EXPORT_SYMBOL(md_print_devices);
4486 EXPORT_SYMBOL(md_check_recovery);
4487 MODULE_LICENSE("GPL");
4488 MODULE_ALIAS("md");
4489 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4490