1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 static struct workqueue_struct *md_wq; 73 static struct workqueue_struct *md_misc_wq; 74 75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 76 77 /* 78 * Default number of read corrections we'll attempt on an rdev 79 * before ejecting it from the array. We divide the read error 80 * count by 2 for every hour elapsed between read errors. 81 */ 82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 83 /* 84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 85 * is 1000 KB/sec, so the extra system load does not show up that much. 86 * Increase it if you want to have more _guaranteed_ speed. Note that 87 * the RAID driver will use the maximum available bandwidth if the IO 88 * subsystem is idle. There is also an 'absolute maximum' reconstruction 89 * speed limit - in case reconstruction slows down your system despite 90 * idle IO detection. 91 * 92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 93 * or /sys/block/mdX/md/sync_speed_{min,max} 94 */ 95 96 static int sysctl_speed_limit_min = 1000; 97 static int sysctl_speed_limit_max = 200000; 98 static inline int speed_min(struct mddev *mddev) 99 { 100 return mddev->sync_speed_min ? 101 mddev->sync_speed_min : sysctl_speed_limit_min; 102 } 103 104 static inline int speed_max(struct mddev *mddev) 105 { 106 return mddev->sync_speed_max ? 107 mddev->sync_speed_max : sysctl_speed_limit_max; 108 } 109 110 static struct ctl_table_header *raid_table_header; 111 112 static ctl_table raid_table[] = { 113 { 114 .procname = "speed_limit_min", 115 .data = &sysctl_speed_limit_min, 116 .maxlen = sizeof(int), 117 .mode = S_IRUGO|S_IWUSR, 118 .proc_handler = proc_dointvec, 119 }, 120 { 121 .procname = "speed_limit_max", 122 .data = &sysctl_speed_limit_max, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = proc_dointvec, 126 }, 127 { } 128 }; 129 130 static ctl_table raid_dir_table[] = { 131 { 132 .procname = "raid", 133 .maxlen = 0, 134 .mode = S_IRUGO|S_IXUGO, 135 .child = raid_table, 136 }, 137 { } 138 }; 139 140 static ctl_table raid_root_table[] = { 141 { 142 .procname = "dev", 143 .maxlen = 0, 144 .mode = 0555, 145 .child = raid_dir_table, 146 }, 147 { } 148 }; 149 150 static const struct block_device_operations md_fops; 151 152 static int start_readonly; 153 154 /* bio_clone_mddev 155 * like bio_clone, but with a local bio set 156 */ 157 158 static void mddev_bio_destructor(struct bio *bio) 159 { 160 struct mddev *mddev, **mddevp; 161 162 mddevp = (void*)bio; 163 mddev = mddevp[-1]; 164 165 bio_free(bio, mddev->bio_set); 166 } 167 168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 169 struct mddev *mddev) 170 { 171 struct bio *b; 172 struct mddev **mddevp; 173 174 if (!mddev || !mddev->bio_set) 175 return bio_alloc(gfp_mask, nr_iovecs); 176 177 b = bio_alloc_bioset(gfp_mask, nr_iovecs, 178 mddev->bio_set); 179 if (!b) 180 return NULL; 181 mddevp = (void*)b; 182 mddevp[-1] = mddev; 183 b->bi_destructor = mddev_bio_destructor; 184 return b; 185 } 186 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 187 188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 189 struct mddev *mddev) 190 { 191 struct bio *b; 192 struct mddev **mddevp; 193 194 if (!mddev || !mddev->bio_set) 195 return bio_clone(bio, gfp_mask); 196 197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, 198 mddev->bio_set); 199 if (!b) 200 return NULL; 201 mddevp = (void*)b; 202 mddevp[-1] = mddev; 203 b->bi_destructor = mddev_bio_destructor; 204 __bio_clone(b, bio); 205 if (bio_integrity(bio)) { 206 int ret; 207 208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set); 209 210 if (ret < 0) { 211 bio_put(b); 212 return NULL; 213 } 214 } 215 216 return b; 217 } 218 EXPORT_SYMBOL_GPL(bio_clone_mddev); 219 220 void md_trim_bio(struct bio *bio, int offset, int size) 221 { 222 /* 'bio' is a cloned bio which we need to trim to match 223 * the given offset and size. 224 * This requires adjusting bi_sector, bi_size, and bi_io_vec 225 */ 226 int i; 227 struct bio_vec *bvec; 228 int sofar = 0; 229 230 size <<= 9; 231 if (offset == 0 && size == bio->bi_size) 232 return; 233 234 bio->bi_sector += offset; 235 bio->bi_size = size; 236 offset <<= 9; 237 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 238 239 while (bio->bi_idx < bio->bi_vcnt && 240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) { 241 /* remove this whole bio_vec */ 242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len; 243 bio->bi_idx++; 244 } 245 if (bio->bi_idx < bio->bi_vcnt) { 246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset; 247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset; 248 } 249 /* avoid any complications with bi_idx being non-zero*/ 250 if (bio->bi_idx) { 251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx, 252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec)); 253 bio->bi_vcnt -= bio->bi_idx; 254 bio->bi_idx = 0; 255 } 256 /* Make sure vcnt and last bv are not too big */ 257 bio_for_each_segment(bvec, bio, i) { 258 if (sofar + bvec->bv_len > size) 259 bvec->bv_len = size - sofar; 260 if (bvec->bv_len == 0) { 261 bio->bi_vcnt = i; 262 break; 263 } 264 sofar += bvec->bv_len; 265 } 266 } 267 EXPORT_SYMBOL_GPL(md_trim_bio); 268 269 /* 270 * We have a system wide 'event count' that is incremented 271 * on any 'interesting' event, and readers of /proc/mdstat 272 * can use 'poll' or 'select' to find out when the event 273 * count increases. 274 * 275 * Events are: 276 * start array, stop array, error, add device, remove device, 277 * start build, activate spare 278 */ 279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 280 static atomic_t md_event_count; 281 void md_new_event(struct mddev *mddev) 282 { 283 atomic_inc(&md_event_count); 284 wake_up(&md_event_waiters); 285 } 286 EXPORT_SYMBOL_GPL(md_new_event); 287 288 /* Alternate version that can be called from interrupts 289 * when calling sysfs_notify isn't needed. 290 */ 291 static void md_new_event_inintr(struct mddev *mddev) 292 { 293 atomic_inc(&md_event_count); 294 wake_up(&md_event_waiters); 295 } 296 297 /* 298 * Enables to iterate over all existing md arrays 299 * all_mddevs_lock protects this list. 300 */ 301 static LIST_HEAD(all_mddevs); 302 static DEFINE_SPINLOCK(all_mddevs_lock); 303 304 305 /* 306 * iterates through all used mddevs in the system. 307 * We take care to grab the all_mddevs_lock whenever navigating 308 * the list, and to always hold a refcount when unlocked. 309 * Any code which breaks out of this loop while own 310 * a reference to the current mddev and must mddev_put it. 311 */ 312 #define for_each_mddev(_mddev,_tmp) \ 313 \ 314 for (({ spin_lock(&all_mddevs_lock); \ 315 _tmp = all_mddevs.next; \ 316 _mddev = NULL;}); \ 317 ({ if (_tmp != &all_mddevs) \ 318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 319 spin_unlock(&all_mddevs_lock); \ 320 if (_mddev) mddev_put(_mddev); \ 321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 322 _tmp != &all_mddevs;}); \ 323 ({ spin_lock(&all_mddevs_lock); \ 324 _tmp = _tmp->next;}) \ 325 ) 326 327 328 /* Rather than calling directly into the personality make_request function, 329 * IO requests come here first so that we can check if the device is 330 * being suspended pending a reconfiguration. 331 * We hold a refcount over the call to ->make_request. By the time that 332 * call has finished, the bio has been linked into some internal structure 333 * and so is visible to ->quiesce(), so we don't need the refcount any more. 334 */ 335 static void md_make_request(struct request_queue *q, struct bio *bio) 336 { 337 const int rw = bio_data_dir(bio); 338 struct mddev *mddev = q->queuedata; 339 int cpu; 340 unsigned int sectors; 341 342 if (mddev == NULL || mddev->pers == NULL 343 || !mddev->ready) { 344 bio_io_error(bio); 345 return; 346 } 347 smp_rmb(); /* Ensure implications of 'active' are visible */ 348 rcu_read_lock(); 349 if (mddev->suspended) { 350 DEFINE_WAIT(__wait); 351 for (;;) { 352 prepare_to_wait(&mddev->sb_wait, &__wait, 353 TASK_UNINTERRUPTIBLE); 354 if (!mddev->suspended) 355 break; 356 rcu_read_unlock(); 357 schedule(); 358 rcu_read_lock(); 359 } 360 finish_wait(&mddev->sb_wait, &__wait); 361 } 362 atomic_inc(&mddev->active_io); 363 rcu_read_unlock(); 364 365 /* 366 * save the sectors now since our bio can 367 * go away inside make_request 368 */ 369 sectors = bio_sectors(bio); 370 mddev->pers->make_request(mddev, bio); 371 372 cpu = part_stat_lock(); 373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 375 part_stat_unlock(); 376 377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 378 wake_up(&mddev->sb_wait); 379 } 380 381 /* mddev_suspend makes sure no new requests are submitted 382 * to the device, and that any requests that have been submitted 383 * are completely handled. 384 * Once ->stop is called and completes, the module will be completely 385 * unused. 386 */ 387 void mddev_suspend(struct mddev *mddev) 388 { 389 BUG_ON(mddev->suspended); 390 mddev->suspended = 1; 391 synchronize_rcu(); 392 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 393 mddev->pers->quiesce(mddev, 1); 394 395 del_timer_sync(&mddev->safemode_timer); 396 } 397 EXPORT_SYMBOL_GPL(mddev_suspend); 398 399 void mddev_resume(struct mddev *mddev) 400 { 401 mddev->suspended = 0; 402 wake_up(&mddev->sb_wait); 403 mddev->pers->quiesce(mddev, 0); 404 405 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 406 md_wakeup_thread(mddev->thread); 407 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 408 } 409 EXPORT_SYMBOL_GPL(mddev_resume); 410 411 int mddev_congested(struct mddev *mddev, int bits) 412 { 413 return mddev->suspended; 414 } 415 EXPORT_SYMBOL(mddev_congested); 416 417 /* 418 * Generic flush handling for md 419 */ 420 421 static void md_end_flush(struct bio *bio, int err) 422 { 423 struct md_rdev *rdev = bio->bi_private; 424 struct mddev *mddev = rdev->mddev; 425 426 rdev_dec_pending(rdev, mddev); 427 428 if (atomic_dec_and_test(&mddev->flush_pending)) { 429 /* The pre-request flush has finished */ 430 queue_work(md_wq, &mddev->flush_work); 431 } 432 bio_put(bio); 433 } 434 435 static void md_submit_flush_data(struct work_struct *ws); 436 437 static void submit_flushes(struct work_struct *ws) 438 { 439 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 440 struct md_rdev *rdev; 441 442 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 443 atomic_set(&mddev->flush_pending, 1); 444 rcu_read_lock(); 445 rdev_for_each_rcu(rdev, mddev) 446 if (rdev->raid_disk >= 0 && 447 !test_bit(Faulty, &rdev->flags)) { 448 /* Take two references, one is dropped 449 * when request finishes, one after 450 * we reclaim rcu_read_lock 451 */ 452 struct bio *bi; 453 atomic_inc(&rdev->nr_pending); 454 atomic_inc(&rdev->nr_pending); 455 rcu_read_unlock(); 456 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 457 bi->bi_end_io = md_end_flush; 458 bi->bi_private = rdev; 459 bi->bi_bdev = rdev->bdev; 460 atomic_inc(&mddev->flush_pending); 461 submit_bio(WRITE_FLUSH, bi); 462 rcu_read_lock(); 463 rdev_dec_pending(rdev, mddev); 464 } 465 rcu_read_unlock(); 466 if (atomic_dec_and_test(&mddev->flush_pending)) 467 queue_work(md_wq, &mddev->flush_work); 468 } 469 470 static void md_submit_flush_data(struct work_struct *ws) 471 { 472 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 473 struct bio *bio = mddev->flush_bio; 474 475 if (bio->bi_size == 0) 476 /* an empty barrier - all done */ 477 bio_endio(bio, 0); 478 else { 479 bio->bi_rw &= ~REQ_FLUSH; 480 mddev->pers->make_request(mddev, bio); 481 } 482 483 mddev->flush_bio = NULL; 484 wake_up(&mddev->sb_wait); 485 } 486 487 void md_flush_request(struct mddev *mddev, struct bio *bio) 488 { 489 spin_lock_irq(&mddev->write_lock); 490 wait_event_lock_irq(mddev->sb_wait, 491 !mddev->flush_bio, 492 mddev->write_lock, /*nothing*/); 493 mddev->flush_bio = bio; 494 spin_unlock_irq(&mddev->write_lock); 495 496 INIT_WORK(&mddev->flush_work, submit_flushes); 497 queue_work(md_wq, &mddev->flush_work); 498 } 499 EXPORT_SYMBOL(md_flush_request); 500 501 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 502 { 503 struct mddev *mddev = cb->data; 504 md_wakeup_thread(mddev->thread); 505 kfree(cb); 506 } 507 EXPORT_SYMBOL(md_unplug); 508 509 static inline struct mddev *mddev_get(struct mddev *mddev) 510 { 511 atomic_inc(&mddev->active); 512 return mddev; 513 } 514 515 static void mddev_delayed_delete(struct work_struct *ws); 516 517 static void mddev_put(struct mddev *mddev) 518 { 519 struct bio_set *bs = NULL; 520 521 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 522 return; 523 if (!mddev->raid_disks && list_empty(&mddev->disks) && 524 mddev->ctime == 0 && !mddev->hold_active) { 525 /* Array is not configured at all, and not held active, 526 * so destroy it */ 527 list_del_init(&mddev->all_mddevs); 528 bs = mddev->bio_set; 529 mddev->bio_set = NULL; 530 if (mddev->gendisk) { 531 /* We did a probe so need to clean up. Call 532 * queue_work inside the spinlock so that 533 * flush_workqueue() after mddev_find will 534 * succeed in waiting for the work to be done. 535 */ 536 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 537 queue_work(md_misc_wq, &mddev->del_work); 538 } else 539 kfree(mddev); 540 } 541 spin_unlock(&all_mddevs_lock); 542 if (bs) 543 bioset_free(bs); 544 } 545 546 void mddev_init(struct mddev *mddev) 547 { 548 mutex_init(&mddev->open_mutex); 549 mutex_init(&mddev->reconfig_mutex); 550 mutex_init(&mddev->bitmap_info.mutex); 551 INIT_LIST_HEAD(&mddev->disks); 552 INIT_LIST_HEAD(&mddev->all_mddevs); 553 init_timer(&mddev->safemode_timer); 554 atomic_set(&mddev->active, 1); 555 atomic_set(&mddev->openers, 0); 556 atomic_set(&mddev->active_io, 0); 557 spin_lock_init(&mddev->write_lock); 558 atomic_set(&mddev->flush_pending, 0); 559 init_waitqueue_head(&mddev->sb_wait); 560 init_waitqueue_head(&mddev->recovery_wait); 561 mddev->reshape_position = MaxSector; 562 mddev->reshape_backwards = 0; 563 mddev->resync_min = 0; 564 mddev->resync_max = MaxSector; 565 mddev->level = LEVEL_NONE; 566 } 567 EXPORT_SYMBOL_GPL(mddev_init); 568 569 static struct mddev * mddev_find(dev_t unit) 570 { 571 struct mddev *mddev, *new = NULL; 572 573 if (unit && MAJOR(unit) != MD_MAJOR) 574 unit &= ~((1<<MdpMinorShift)-1); 575 576 retry: 577 spin_lock(&all_mddevs_lock); 578 579 if (unit) { 580 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 581 if (mddev->unit == unit) { 582 mddev_get(mddev); 583 spin_unlock(&all_mddevs_lock); 584 kfree(new); 585 return mddev; 586 } 587 588 if (new) { 589 list_add(&new->all_mddevs, &all_mddevs); 590 spin_unlock(&all_mddevs_lock); 591 new->hold_active = UNTIL_IOCTL; 592 return new; 593 } 594 } else if (new) { 595 /* find an unused unit number */ 596 static int next_minor = 512; 597 int start = next_minor; 598 int is_free = 0; 599 int dev = 0; 600 while (!is_free) { 601 dev = MKDEV(MD_MAJOR, next_minor); 602 next_minor++; 603 if (next_minor > MINORMASK) 604 next_minor = 0; 605 if (next_minor == start) { 606 /* Oh dear, all in use. */ 607 spin_unlock(&all_mddevs_lock); 608 kfree(new); 609 return NULL; 610 } 611 612 is_free = 1; 613 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 614 if (mddev->unit == dev) { 615 is_free = 0; 616 break; 617 } 618 } 619 new->unit = dev; 620 new->md_minor = MINOR(dev); 621 new->hold_active = UNTIL_STOP; 622 list_add(&new->all_mddevs, &all_mddevs); 623 spin_unlock(&all_mddevs_lock); 624 return new; 625 } 626 spin_unlock(&all_mddevs_lock); 627 628 new = kzalloc(sizeof(*new), GFP_KERNEL); 629 if (!new) 630 return NULL; 631 632 new->unit = unit; 633 if (MAJOR(unit) == MD_MAJOR) 634 new->md_minor = MINOR(unit); 635 else 636 new->md_minor = MINOR(unit) >> MdpMinorShift; 637 638 mddev_init(new); 639 640 goto retry; 641 } 642 643 static inline int mddev_lock(struct mddev * mddev) 644 { 645 return mutex_lock_interruptible(&mddev->reconfig_mutex); 646 } 647 648 static inline int mddev_is_locked(struct mddev *mddev) 649 { 650 return mutex_is_locked(&mddev->reconfig_mutex); 651 } 652 653 static inline int mddev_trylock(struct mddev * mddev) 654 { 655 return mutex_trylock(&mddev->reconfig_mutex); 656 } 657 658 static struct attribute_group md_redundancy_group; 659 660 static void mddev_unlock(struct mddev * mddev) 661 { 662 if (mddev->to_remove) { 663 /* These cannot be removed under reconfig_mutex as 664 * an access to the files will try to take reconfig_mutex 665 * while holding the file unremovable, which leads to 666 * a deadlock. 667 * So hold set sysfs_active while the remove in happeing, 668 * and anything else which might set ->to_remove or my 669 * otherwise change the sysfs namespace will fail with 670 * -EBUSY if sysfs_active is still set. 671 * We set sysfs_active under reconfig_mutex and elsewhere 672 * test it under the same mutex to ensure its correct value 673 * is seen. 674 */ 675 struct attribute_group *to_remove = mddev->to_remove; 676 mddev->to_remove = NULL; 677 mddev->sysfs_active = 1; 678 mutex_unlock(&mddev->reconfig_mutex); 679 680 if (mddev->kobj.sd) { 681 if (to_remove != &md_redundancy_group) 682 sysfs_remove_group(&mddev->kobj, to_remove); 683 if (mddev->pers == NULL || 684 mddev->pers->sync_request == NULL) { 685 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 686 if (mddev->sysfs_action) 687 sysfs_put(mddev->sysfs_action); 688 mddev->sysfs_action = NULL; 689 } 690 } 691 mddev->sysfs_active = 0; 692 } else 693 mutex_unlock(&mddev->reconfig_mutex); 694 695 /* As we've dropped the mutex we need a spinlock to 696 * make sure the thread doesn't disappear 697 */ 698 spin_lock(&pers_lock); 699 md_wakeup_thread(mddev->thread); 700 spin_unlock(&pers_lock); 701 } 702 703 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 704 { 705 struct md_rdev *rdev; 706 707 rdev_for_each(rdev, mddev) 708 if (rdev->desc_nr == nr) 709 return rdev; 710 711 return NULL; 712 } 713 714 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev) 715 { 716 struct md_rdev *rdev; 717 718 rdev_for_each(rdev, mddev) 719 if (rdev->bdev->bd_dev == dev) 720 return rdev; 721 722 return NULL; 723 } 724 725 static struct md_personality *find_pers(int level, char *clevel) 726 { 727 struct md_personality *pers; 728 list_for_each_entry(pers, &pers_list, list) { 729 if (level != LEVEL_NONE && pers->level == level) 730 return pers; 731 if (strcmp(pers->name, clevel)==0) 732 return pers; 733 } 734 return NULL; 735 } 736 737 /* return the offset of the super block in 512byte sectors */ 738 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 739 { 740 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 741 return MD_NEW_SIZE_SECTORS(num_sectors); 742 } 743 744 static int alloc_disk_sb(struct md_rdev * rdev) 745 { 746 if (rdev->sb_page) 747 MD_BUG(); 748 749 rdev->sb_page = alloc_page(GFP_KERNEL); 750 if (!rdev->sb_page) { 751 printk(KERN_ALERT "md: out of memory.\n"); 752 return -ENOMEM; 753 } 754 755 return 0; 756 } 757 758 void md_rdev_clear(struct md_rdev *rdev) 759 { 760 if (rdev->sb_page) { 761 put_page(rdev->sb_page); 762 rdev->sb_loaded = 0; 763 rdev->sb_page = NULL; 764 rdev->sb_start = 0; 765 rdev->sectors = 0; 766 } 767 if (rdev->bb_page) { 768 put_page(rdev->bb_page); 769 rdev->bb_page = NULL; 770 } 771 kfree(rdev->badblocks.page); 772 rdev->badblocks.page = NULL; 773 } 774 EXPORT_SYMBOL_GPL(md_rdev_clear); 775 776 static void super_written(struct bio *bio, int error) 777 { 778 struct md_rdev *rdev = bio->bi_private; 779 struct mddev *mddev = rdev->mddev; 780 781 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 782 printk("md: super_written gets error=%d, uptodate=%d\n", 783 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 784 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 785 md_error(mddev, rdev); 786 } 787 788 if (atomic_dec_and_test(&mddev->pending_writes)) 789 wake_up(&mddev->sb_wait); 790 bio_put(bio); 791 } 792 793 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 794 sector_t sector, int size, struct page *page) 795 { 796 /* write first size bytes of page to sector of rdev 797 * Increment mddev->pending_writes before returning 798 * and decrement it on completion, waking up sb_wait 799 * if zero is reached. 800 * If an error occurred, call md_error 801 */ 802 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 803 804 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 805 bio->bi_sector = sector; 806 bio_add_page(bio, page, size, 0); 807 bio->bi_private = rdev; 808 bio->bi_end_io = super_written; 809 810 atomic_inc(&mddev->pending_writes); 811 submit_bio(WRITE_FLUSH_FUA, bio); 812 } 813 814 void md_super_wait(struct mddev *mddev) 815 { 816 /* wait for all superblock writes that were scheduled to complete */ 817 DEFINE_WAIT(wq); 818 for(;;) { 819 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 820 if (atomic_read(&mddev->pending_writes)==0) 821 break; 822 schedule(); 823 } 824 finish_wait(&mddev->sb_wait, &wq); 825 } 826 827 static void bi_complete(struct bio *bio, int error) 828 { 829 complete((struct completion*)bio->bi_private); 830 } 831 832 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 833 struct page *page, int rw, bool metadata_op) 834 { 835 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 836 struct completion event; 837 int ret; 838 839 rw |= REQ_SYNC; 840 841 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 842 rdev->meta_bdev : rdev->bdev; 843 if (metadata_op) 844 bio->bi_sector = sector + rdev->sb_start; 845 else if (rdev->mddev->reshape_position != MaxSector && 846 (rdev->mddev->reshape_backwards == 847 (sector >= rdev->mddev->reshape_position))) 848 bio->bi_sector = sector + rdev->new_data_offset; 849 else 850 bio->bi_sector = sector + rdev->data_offset; 851 bio_add_page(bio, page, size, 0); 852 init_completion(&event); 853 bio->bi_private = &event; 854 bio->bi_end_io = bi_complete; 855 submit_bio(rw, bio); 856 wait_for_completion(&event); 857 858 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 859 bio_put(bio); 860 return ret; 861 } 862 EXPORT_SYMBOL_GPL(sync_page_io); 863 864 static int read_disk_sb(struct md_rdev * rdev, int size) 865 { 866 char b[BDEVNAME_SIZE]; 867 if (!rdev->sb_page) { 868 MD_BUG(); 869 return -EINVAL; 870 } 871 if (rdev->sb_loaded) 872 return 0; 873 874 875 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 876 goto fail; 877 rdev->sb_loaded = 1; 878 return 0; 879 880 fail: 881 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 882 bdevname(rdev->bdev,b)); 883 return -EINVAL; 884 } 885 886 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 887 { 888 return sb1->set_uuid0 == sb2->set_uuid0 && 889 sb1->set_uuid1 == sb2->set_uuid1 && 890 sb1->set_uuid2 == sb2->set_uuid2 && 891 sb1->set_uuid3 == sb2->set_uuid3; 892 } 893 894 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 895 { 896 int ret; 897 mdp_super_t *tmp1, *tmp2; 898 899 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 900 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 901 902 if (!tmp1 || !tmp2) { 903 ret = 0; 904 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 905 goto abort; 906 } 907 908 *tmp1 = *sb1; 909 *tmp2 = *sb2; 910 911 /* 912 * nr_disks is not constant 913 */ 914 tmp1->nr_disks = 0; 915 tmp2->nr_disks = 0; 916 917 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 918 abort: 919 kfree(tmp1); 920 kfree(tmp2); 921 return ret; 922 } 923 924 925 static u32 md_csum_fold(u32 csum) 926 { 927 csum = (csum & 0xffff) + (csum >> 16); 928 return (csum & 0xffff) + (csum >> 16); 929 } 930 931 static unsigned int calc_sb_csum(mdp_super_t * sb) 932 { 933 u64 newcsum = 0; 934 u32 *sb32 = (u32*)sb; 935 int i; 936 unsigned int disk_csum, csum; 937 938 disk_csum = sb->sb_csum; 939 sb->sb_csum = 0; 940 941 for (i = 0; i < MD_SB_BYTES/4 ; i++) 942 newcsum += sb32[i]; 943 csum = (newcsum & 0xffffffff) + (newcsum>>32); 944 945 946 #ifdef CONFIG_ALPHA 947 /* This used to use csum_partial, which was wrong for several 948 * reasons including that different results are returned on 949 * different architectures. It isn't critical that we get exactly 950 * the same return value as before (we always csum_fold before 951 * testing, and that removes any differences). However as we 952 * know that csum_partial always returned a 16bit value on 953 * alphas, do a fold to maximise conformity to previous behaviour. 954 */ 955 sb->sb_csum = md_csum_fold(disk_csum); 956 #else 957 sb->sb_csum = disk_csum; 958 #endif 959 return csum; 960 } 961 962 963 /* 964 * Handle superblock details. 965 * We want to be able to handle multiple superblock formats 966 * so we have a common interface to them all, and an array of 967 * different handlers. 968 * We rely on user-space to write the initial superblock, and support 969 * reading and updating of superblocks. 970 * Interface methods are: 971 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 972 * loads and validates a superblock on dev. 973 * if refdev != NULL, compare superblocks on both devices 974 * Return: 975 * 0 - dev has a superblock that is compatible with refdev 976 * 1 - dev has a superblock that is compatible and newer than refdev 977 * so dev should be used as the refdev in future 978 * -EINVAL superblock incompatible or invalid 979 * -othererror e.g. -EIO 980 * 981 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 982 * Verify that dev is acceptable into mddev. 983 * The first time, mddev->raid_disks will be 0, and data from 984 * dev should be merged in. Subsequent calls check that dev 985 * is new enough. Return 0 or -EINVAL 986 * 987 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 988 * Update the superblock for rdev with data in mddev 989 * This does not write to disc. 990 * 991 */ 992 993 struct super_type { 994 char *name; 995 struct module *owner; 996 int (*load_super)(struct md_rdev *rdev, 997 struct md_rdev *refdev, 998 int minor_version); 999 int (*validate_super)(struct mddev *mddev, 1000 struct md_rdev *rdev); 1001 void (*sync_super)(struct mddev *mddev, 1002 struct md_rdev *rdev); 1003 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1004 sector_t num_sectors); 1005 int (*allow_new_offset)(struct md_rdev *rdev, 1006 unsigned long long new_offset); 1007 }; 1008 1009 /* 1010 * Check that the given mddev has no bitmap. 1011 * 1012 * This function is called from the run method of all personalities that do not 1013 * support bitmaps. It prints an error message and returns non-zero if mddev 1014 * has a bitmap. Otherwise, it returns 0. 1015 * 1016 */ 1017 int md_check_no_bitmap(struct mddev *mddev) 1018 { 1019 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1020 return 0; 1021 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 1022 mdname(mddev), mddev->pers->name); 1023 return 1; 1024 } 1025 EXPORT_SYMBOL(md_check_no_bitmap); 1026 1027 /* 1028 * load_super for 0.90.0 1029 */ 1030 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1031 { 1032 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1033 mdp_super_t *sb; 1034 int ret; 1035 1036 /* 1037 * Calculate the position of the superblock (512byte sectors), 1038 * it's at the end of the disk. 1039 * 1040 * It also happens to be a multiple of 4Kb. 1041 */ 1042 rdev->sb_start = calc_dev_sboffset(rdev); 1043 1044 ret = read_disk_sb(rdev, MD_SB_BYTES); 1045 if (ret) return ret; 1046 1047 ret = -EINVAL; 1048 1049 bdevname(rdev->bdev, b); 1050 sb = page_address(rdev->sb_page); 1051 1052 if (sb->md_magic != MD_SB_MAGIC) { 1053 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 1054 b); 1055 goto abort; 1056 } 1057 1058 if (sb->major_version != 0 || 1059 sb->minor_version < 90 || 1060 sb->minor_version > 91) { 1061 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1062 sb->major_version, sb->minor_version, 1063 b); 1064 goto abort; 1065 } 1066 1067 if (sb->raid_disks <= 0) 1068 goto abort; 1069 1070 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1071 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1072 b); 1073 goto abort; 1074 } 1075 1076 rdev->preferred_minor = sb->md_minor; 1077 rdev->data_offset = 0; 1078 rdev->new_data_offset = 0; 1079 rdev->sb_size = MD_SB_BYTES; 1080 rdev->badblocks.shift = -1; 1081 1082 if (sb->level == LEVEL_MULTIPATH) 1083 rdev->desc_nr = -1; 1084 else 1085 rdev->desc_nr = sb->this_disk.number; 1086 1087 if (!refdev) { 1088 ret = 1; 1089 } else { 1090 __u64 ev1, ev2; 1091 mdp_super_t *refsb = page_address(refdev->sb_page); 1092 if (!uuid_equal(refsb, sb)) { 1093 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1094 b, bdevname(refdev->bdev,b2)); 1095 goto abort; 1096 } 1097 if (!sb_equal(refsb, sb)) { 1098 printk(KERN_WARNING "md: %s has same UUID" 1099 " but different superblock to %s\n", 1100 b, bdevname(refdev->bdev, b2)); 1101 goto abort; 1102 } 1103 ev1 = md_event(sb); 1104 ev2 = md_event(refsb); 1105 if (ev1 > ev2) 1106 ret = 1; 1107 else 1108 ret = 0; 1109 } 1110 rdev->sectors = rdev->sb_start; 1111 /* Limit to 4TB as metadata cannot record more than that. 1112 * (not needed for Linear and RAID0 as metadata doesn't 1113 * record this size) 1114 */ 1115 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1116 rdev->sectors = (2ULL << 32) - 2; 1117 1118 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1119 /* "this cannot possibly happen" ... */ 1120 ret = -EINVAL; 1121 1122 abort: 1123 return ret; 1124 } 1125 1126 /* 1127 * validate_super for 0.90.0 1128 */ 1129 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1130 { 1131 mdp_disk_t *desc; 1132 mdp_super_t *sb = page_address(rdev->sb_page); 1133 __u64 ev1 = md_event(sb); 1134 1135 rdev->raid_disk = -1; 1136 clear_bit(Faulty, &rdev->flags); 1137 clear_bit(In_sync, &rdev->flags); 1138 clear_bit(WriteMostly, &rdev->flags); 1139 1140 if (mddev->raid_disks == 0) { 1141 mddev->major_version = 0; 1142 mddev->minor_version = sb->minor_version; 1143 mddev->patch_version = sb->patch_version; 1144 mddev->external = 0; 1145 mddev->chunk_sectors = sb->chunk_size >> 9; 1146 mddev->ctime = sb->ctime; 1147 mddev->utime = sb->utime; 1148 mddev->level = sb->level; 1149 mddev->clevel[0] = 0; 1150 mddev->layout = sb->layout; 1151 mddev->raid_disks = sb->raid_disks; 1152 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1153 mddev->events = ev1; 1154 mddev->bitmap_info.offset = 0; 1155 mddev->bitmap_info.space = 0; 1156 /* bitmap can use 60 K after the 4K superblocks */ 1157 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1158 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1159 mddev->reshape_backwards = 0; 1160 1161 if (mddev->minor_version >= 91) { 1162 mddev->reshape_position = sb->reshape_position; 1163 mddev->delta_disks = sb->delta_disks; 1164 mddev->new_level = sb->new_level; 1165 mddev->new_layout = sb->new_layout; 1166 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1167 if (mddev->delta_disks < 0) 1168 mddev->reshape_backwards = 1; 1169 } else { 1170 mddev->reshape_position = MaxSector; 1171 mddev->delta_disks = 0; 1172 mddev->new_level = mddev->level; 1173 mddev->new_layout = mddev->layout; 1174 mddev->new_chunk_sectors = mddev->chunk_sectors; 1175 } 1176 1177 if (sb->state & (1<<MD_SB_CLEAN)) 1178 mddev->recovery_cp = MaxSector; 1179 else { 1180 if (sb->events_hi == sb->cp_events_hi && 1181 sb->events_lo == sb->cp_events_lo) { 1182 mddev->recovery_cp = sb->recovery_cp; 1183 } else 1184 mddev->recovery_cp = 0; 1185 } 1186 1187 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1188 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1189 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1190 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1191 1192 mddev->max_disks = MD_SB_DISKS; 1193 1194 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1195 mddev->bitmap_info.file == NULL) { 1196 mddev->bitmap_info.offset = 1197 mddev->bitmap_info.default_offset; 1198 mddev->bitmap_info.space = 1199 mddev->bitmap_info.space; 1200 } 1201 1202 } else if (mddev->pers == NULL) { 1203 /* Insist on good event counter while assembling, except 1204 * for spares (which don't need an event count) */ 1205 ++ev1; 1206 if (sb->disks[rdev->desc_nr].state & ( 1207 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1208 if (ev1 < mddev->events) 1209 return -EINVAL; 1210 } else if (mddev->bitmap) { 1211 /* if adding to array with a bitmap, then we can accept an 1212 * older device ... but not too old. 1213 */ 1214 if (ev1 < mddev->bitmap->events_cleared) 1215 return 0; 1216 } else { 1217 if (ev1 < mddev->events) 1218 /* just a hot-add of a new device, leave raid_disk at -1 */ 1219 return 0; 1220 } 1221 1222 if (mddev->level != LEVEL_MULTIPATH) { 1223 desc = sb->disks + rdev->desc_nr; 1224 1225 if (desc->state & (1<<MD_DISK_FAULTY)) 1226 set_bit(Faulty, &rdev->flags); 1227 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1228 desc->raid_disk < mddev->raid_disks */) { 1229 set_bit(In_sync, &rdev->flags); 1230 rdev->raid_disk = desc->raid_disk; 1231 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1232 /* active but not in sync implies recovery up to 1233 * reshape position. We don't know exactly where 1234 * that is, so set to zero for now */ 1235 if (mddev->minor_version >= 91) { 1236 rdev->recovery_offset = 0; 1237 rdev->raid_disk = desc->raid_disk; 1238 } 1239 } 1240 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1241 set_bit(WriteMostly, &rdev->flags); 1242 } else /* MULTIPATH are always insync */ 1243 set_bit(In_sync, &rdev->flags); 1244 return 0; 1245 } 1246 1247 /* 1248 * sync_super for 0.90.0 1249 */ 1250 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1251 { 1252 mdp_super_t *sb; 1253 struct md_rdev *rdev2; 1254 int next_spare = mddev->raid_disks; 1255 1256 1257 /* make rdev->sb match mddev data.. 1258 * 1259 * 1/ zero out disks 1260 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1261 * 3/ any empty disks < next_spare become removed 1262 * 1263 * disks[0] gets initialised to REMOVED because 1264 * we cannot be sure from other fields if it has 1265 * been initialised or not. 1266 */ 1267 int i; 1268 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1269 1270 rdev->sb_size = MD_SB_BYTES; 1271 1272 sb = page_address(rdev->sb_page); 1273 1274 memset(sb, 0, sizeof(*sb)); 1275 1276 sb->md_magic = MD_SB_MAGIC; 1277 sb->major_version = mddev->major_version; 1278 sb->patch_version = mddev->patch_version; 1279 sb->gvalid_words = 0; /* ignored */ 1280 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1281 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1282 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1283 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1284 1285 sb->ctime = mddev->ctime; 1286 sb->level = mddev->level; 1287 sb->size = mddev->dev_sectors / 2; 1288 sb->raid_disks = mddev->raid_disks; 1289 sb->md_minor = mddev->md_minor; 1290 sb->not_persistent = 0; 1291 sb->utime = mddev->utime; 1292 sb->state = 0; 1293 sb->events_hi = (mddev->events>>32); 1294 sb->events_lo = (u32)mddev->events; 1295 1296 if (mddev->reshape_position == MaxSector) 1297 sb->minor_version = 90; 1298 else { 1299 sb->minor_version = 91; 1300 sb->reshape_position = mddev->reshape_position; 1301 sb->new_level = mddev->new_level; 1302 sb->delta_disks = mddev->delta_disks; 1303 sb->new_layout = mddev->new_layout; 1304 sb->new_chunk = mddev->new_chunk_sectors << 9; 1305 } 1306 mddev->minor_version = sb->minor_version; 1307 if (mddev->in_sync) 1308 { 1309 sb->recovery_cp = mddev->recovery_cp; 1310 sb->cp_events_hi = (mddev->events>>32); 1311 sb->cp_events_lo = (u32)mddev->events; 1312 if (mddev->recovery_cp == MaxSector) 1313 sb->state = (1<< MD_SB_CLEAN); 1314 } else 1315 sb->recovery_cp = 0; 1316 1317 sb->layout = mddev->layout; 1318 sb->chunk_size = mddev->chunk_sectors << 9; 1319 1320 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1321 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1322 1323 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1324 rdev_for_each(rdev2, mddev) { 1325 mdp_disk_t *d; 1326 int desc_nr; 1327 int is_active = test_bit(In_sync, &rdev2->flags); 1328 1329 if (rdev2->raid_disk >= 0 && 1330 sb->minor_version >= 91) 1331 /* we have nowhere to store the recovery_offset, 1332 * but if it is not below the reshape_position, 1333 * we can piggy-back on that. 1334 */ 1335 is_active = 1; 1336 if (rdev2->raid_disk < 0 || 1337 test_bit(Faulty, &rdev2->flags)) 1338 is_active = 0; 1339 if (is_active) 1340 desc_nr = rdev2->raid_disk; 1341 else 1342 desc_nr = next_spare++; 1343 rdev2->desc_nr = desc_nr; 1344 d = &sb->disks[rdev2->desc_nr]; 1345 nr_disks++; 1346 d->number = rdev2->desc_nr; 1347 d->major = MAJOR(rdev2->bdev->bd_dev); 1348 d->minor = MINOR(rdev2->bdev->bd_dev); 1349 if (is_active) 1350 d->raid_disk = rdev2->raid_disk; 1351 else 1352 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1353 if (test_bit(Faulty, &rdev2->flags)) 1354 d->state = (1<<MD_DISK_FAULTY); 1355 else if (is_active) { 1356 d->state = (1<<MD_DISK_ACTIVE); 1357 if (test_bit(In_sync, &rdev2->flags)) 1358 d->state |= (1<<MD_DISK_SYNC); 1359 active++; 1360 working++; 1361 } else { 1362 d->state = 0; 1363 spare++; 1364 working++; 1365 } 1366 if (test_bit(WriteMostly, &rdev2->flags)) 1367 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1368 } 1369 /* now set the "removed" and "faulty" bits on any missing devices */ 1370 for (i=0 ; i < mddev->raid_disks ; i++) { 1371 mdp_disk_t *d = &sb->disks[i]; 1372 if (d->state == 0 && d->number == 0) { 1373 d->number = i; 1374 d->raid_disk = i; 1375 d->state = (1<<MD_DISK_REMOVED); 1376 d->state |= (1<<MD_DISK_FAULTY); 1377 failed++; 1378 } 1379 } 1380 sb->nr_disks = nr_disks; 1381 sb->active_disks = active; 1382 sb->working_disks = working; 1383 sb->failed_disks = failed; 1384 sb->spare_disks = spare; 1385 1386 sb->this_disk = sb->disks[rdev->desc_nr]; 1387 sb->sb_csum = calc_sb_csum(sb); 1388 } 1389 1390 /* 1391 * rdev_size_change for 0.90.0 1392 */ 1393 static unsigned long long 1394 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1395 { 1396 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1397 return 0; /* component must fit device */ 1398 if (rdev->mddev->bitmap_info.offset) 1399 return 0; /* can't move bitmap */ 1400 rdev->sb_start = calc_dev_sboffset(rdev); 1401 if (!num_sectors || num_sectors > rdev->sb_start) 1402 num_sectors = rdev->sb_start; 1403 /* Limit to 4TB as metadata cannot record more than that. 1404 * 4TB == 2^32 KB, or 2*2^32 sectors. 1405 */ 1406 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1407 num_sectors = (2ULL << 32) - 2; 1408 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1409 rdev->sb_page); 1410 md_super_wait(rdev->mddev); 1411 return num_sectors; 1412 } 1413 1414 static int 1415 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1416 { 1417 /* non-zero offset changes not possible with v0.90 */ 1418 return new_offset == 0; 1419 } 1420 1421 /* 1422 * version 1 superblock 1423 */ 1424 1425 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1426 { 1427 __le32 disk_csum; 1428 u32 csum; 1429 unsigned long long newcsum; 1430 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1431 __le32 *isuper = (__le32*)sb; 1432 int i; 1433 1434 disk_csum = sb->sb_csum; 1435 sb->sb_csum = 0; 1436 newcsum = 0; 1437 for (i=0; size>=4; size -= 4 ) 1438 newcsum += le32_to_cpu(*isuper++); 1439 1440 if (size == 2) 1441 newcsum += le16_to_cpu(*(__le16*) isuper); 1442 1443 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1444 sb->sb_csum = disk_csum; 1445 return cpu_to_le32(csum); 1446 } 1447 1448 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1449 int acknowledged); 1450 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1451 { 1452 struct mdp_superblock_1 *sb; 1453 int ret; 1454 sector_t sb_start; 1455 sector_t sectors; 1456 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1457 int bmask; 1458 1459 /* 1460 * Calculate the position of the superblock in 512byte sectors. 1461 * It is always aligned to a 4K boundary and 1462 * depeding on minor_version, it can be: 1463 * 0: At least 8K, but less than 12K, from end of device 1464 * 1: At start of device 1465 * 2: 4K from start of device. 1466 */ 1467 switch(minor_version) { 1468 case 0: 1469 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1470 sb_start -= 8*2; 1471 sb_start &= ~(sector_t)(4*2-1); 1472 break; 1473 case 1: 1474 sb_start = 0; 1475 break; 1476 case 2: 1477 sb_start = 8; 1478 break; 1479 default: 1480 return -EINVAL; 1481 } 1482 rdev->sb_start = sb_start; 1483 1484 /* superblock is rarely larger than 1K, but it can be larger, 1485 * and it is safe to read 4k, so we do that 1486 */ 1487 ret = read_disk_sb(rdev, 4096); 1488 if (ret) return ret; 1489 1490 1491 sb = page_address(rdev->sb_page); 1492 1493 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1494 sb->major_version != cpu_to_le32(1) || 1495 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1496 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1497 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1498 return -EINVAL; 1499 1500 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1501 printk("md: invalid superblock checksum on %s\n", 1502 bdevname(rdev->bdev,b)); 1503 return -EINVAL; 1504 } 1505 if (le64_to_cpu(sb->data_size) < 10) { 1506 printk("md: data_size too small on %s\n", 1507 bdevname(rdev->bdev,b)); 1508 return -EINVAL; 1509 } 1510 if (sb->pad0 || 1511 sb->pad3[0] || 1512 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1513 /* Some padding is non-zero, might be a new feature */ 1514 return -EINVAL; 1515 1516 rdev->preferred_minor = 0xffff; 1517 rdev->data_offset = le64_to_cpu(sb->data_offset); 1518 rdev->new_data_offset = rdev->data_offset; 1519 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1520 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1521 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1522 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1523 1524 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1525 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1526 if (rdev->sb_size & bmask) 1527 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1528 1529 if (minor_version 1530 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1531 return -EINVAL; 1532 if (minor_version 1533 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1534 return -EINVAL; 1535 1536 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1537 rdev->desc_nr = -1; 1538 else 1539 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1540 1541 if (!rdev->bb_page) { 1542 rdev->bb_page = alloc_page(GFP_KERNEL); 1543 if (!rdev->bb_page) 1544 return -ENOMEM; 1545 } 1546 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1547 rdev->badblocks.count == 0) { 1548 /* need to load the bad block list. 1549 * Currently we limit it to one page. 1550 */ 1551 s32 offset; 1552 sector_t bb_sector; 1553 u64 *bbp; 1554 int i; 1555 int sectors = le16_to_cpu(sb->bblog_size); 1556 if (sectors > (PAGE_SIZE / 512)) 1557 return -EINVAL; 1558 offset = le32_to_cpu(sb->bblog_offset); 1559 if (offset == 0) 1560 return -EINVAL; 1561 bb_sector = (long long)offset; 1562 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1563 rdev->bb_page, READ, true)) 1564 return -EIO; 1565 bbp = (u64 *)page_address(rdev->bb_page); 1566 rdev->badblocks.shift = sb->bblog_shift; 1567 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1568 u64 bb = le64_to_cpu(*bbp); 1569 int count = bb & (0x3ff); 1570 u64 sector = bb >> 10; 1571 sector <<= sb->bblog_shift; 1572 count <<= sb->bblog_shift; 1573 if (bb + 1 == 0) 1574 break; 1575 if (md_set_badblocks(&rdev->badblocks, 1576 sector, count, 1) == 0) 1577 return -EINVAL; 1578 } 1579 } else if (sb->bblog_offset == 0) 1580 rdev->badblocks.shift = -1; 1581 1582 if (!refdev) { 1583 ret = 1; 1584 } else { 1585 __u64 ev1, ev2; 1586 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1587 1588 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1589 sb->level != refsb->level || 1590 sb->layout != refsb->layout || 1591 sb->chunksize != refsb->chunksize) { 1592 printk(KERN_WARNING "md: %s has strangely different" 1593 " superblock to %s\n", 1594 bdevname(rdev->bdev,b), 1595 bdevname(refdev->bdev,b2)); 1596 return -EINVAL; 1597 } 1598 ev1 = le64_to_cpu(sb->events); 1599 ev2 = le64_to_cpu(refsb->events); 1600 1601 if (ev1 > ev2) 1602 ret = 1; 1603 else 1604 ret = 0; 1605 } 1606 if (minor_version) { 1607 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1608 sectors -= rdev->data_offset; 1609 } else 1610 sectors = rdev->sb_start; 1611 if (sectors < le64_to_cpu(sb->data_size)) 1612 return -EINVAL; 1613 rdev->sectors = le64_to_cpu(sb->data_size); 1614 return ret; 1615 } 1616 1617 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1618 { 1619 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1620 __u64 ev1 = le64_to_cpu(sb->events); 1621 1622 rdev->raid_disk = -1; 1623 clear_bit(Faulty, &rdev->flags); 1624 clear_bit(In_sync, &rdev->flags); 1625 clear_bit(WriteMostly, &rdev->flags); 1626 1627 if (mddev->raid_disks == 0) { 1628 mddev->major_version = 1; 1629 mddev->patch_version = 0; 1630 mddev->external = 0; 1631 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1632 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1633 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1634 mddev->level = le32_to_cpu(sb->level); 1635 mddev->clevel[0] = 0; 1636 mddev->layout = le32_to_cpu(sb->layout); 1637 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1638 mddev->dev_sectors = le64_to_cpu(sb->size); 1639 mddev->events = ev1; 1640 mddev->bitmap_info.offset = 0; 1641 mddev->bitmap_info.space = 0; 1642 /* Default location for bitmap is 1K after superblock 1643 * using 3K - total of 4K 1644 */ 1645 mddev->bitmap_info.default_offset = 1024 >> 9; 1646 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1647 mddev->reshape_backwards = 0; 1648 1649 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1650 memcpy(mddev->uuid, sb->set_uuid, 16); 1651 1652 mddev->max_disks = (4096-256)/2; 1653 1654 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1655 mddev->bitmap_info.file == NULL) { 1656 mddev->bitmap_info.offset = 1657 (__s32)le32_to_cpu(sb->bitmap_offset); 1658 /* Metadata doesn't record how much space is available. 1659 * For 1.0, we assume we can use up to the superblock 1660 * if before, else to 4K beyond superblock. 1661 * For others, assume no change is possible. 1662 */ 1663 if (mddev->minor_version > 0) 1664 mddev->bitmap_info.space = 0; 1665 else if (mddev->bitmap_info.offset > 0) 1666 mddev->bitmap_info.space = 1667 8 - mddev->bitmap_info.offset; 1668 else 1669 mddev->bitmap_info.space = 1670 -mddev->bitmap_info.offset; 1671 } 1672 1673 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1674 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1675 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1676 mddev->new_level = le32_to_cpu(sb->new_level); 1677 mddev->new_layout = le32_to_cpu(sb->new_layout); 1678 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1679 if (mddev->delta_disks < 0 || 1680 (mddev->delta_disks == 0 && 1681 (le32_to_cpu(sb->feature_map) 1682 & MD_FEATURE_RESHAPE_BACKWARDS))) 1683 mddev->reshape_backwards = 1; 1684 } else { 1685 mddev->reshape_position = MaxSector; 1686 mddev->delta_disks = 0; 1687 mddev->new_level = mddev->level; 1688 mddev->new_layout = mddev->layout; 1689 mddev->new_chunk_sectors = mddev->chunk_sectors; 1690 } 1691 1692 } else if (mddev->pers == NULL) { 1693 /* Insist of good event counter while assembling, except for 1694 * spares (which don't need an event count) */ 1695 ++ev1; 1696 if (rdev->desc_nr >= 0 && 1697 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1698 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1699 if (ev1 < mddev->events) 1700 return -EINVAL; 1701 } else if (mddev->bitmap) { 1702 /* If adding to array with a bitmap, then we can accept an 1703 * older device, but not too old. 1704 */ 1705 if (ev1 < mddev->bitmap->events_cleared) 1706 return 0; 1707 } else { 1708 if (ev1 < mddev->events) 1709 /* just a hot-add of a new device, leave raid_disk at -1 */ 1710 return 0; 1711 } 1712 if (mddev->level != LEVEL_MULTIPATH) { 1713 int role; 1714 if (rdev->desc_nr < 0 || 1715 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1716 role = 0xffff; 1717 rdev->desc_nr = -1; 1718 } else 1719 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1720 switch(role) { 1721 case 0xffff: /* spare */ 1722 break; 1723 case 0xfffe: /* faulty */ 1724 set_bit(Faulty, &rdev->flags); 1725 break; 1726 default: 1727 if ((le32_to_cpu(sb->feature_map) & 1728 MD_FEATURE_RECOVERY_OFFSET)) 1729 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1730 else 1731 set_bit(In_sync, &rdev->flags); 1732 rdev->raid_disk = role; 1733 break; 1734 } 1735 if (sb->devflags & WriteMostly1) 1736 set_bit(WriteMostly, &rdev->flags); 1737 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1738 set_bit(Replacement, &rdev->flags); 1739 } else /* MULTIPATH are always insync */ 1740 set_bit(In_sync, &rdev->flags); 1741 1742 return 0; 1743 } 1744 1745 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1746 { 1747 struct mdp_superblock_1 *sb; 1748 struct md_rdev *rdev2; 1749 int max_dev, i; 1750 /* make rdev->sb match mddev and rdev data. */ 1751 1752 sb = page_address(rdev->sb_page); 1753 1754 sb->feature_map = 0; 1755 sb->pad0 = 0; 1756 sb->recovery_offset = cpu_to_le64(0); 1757 memset(sb->pad3, 0, sizeof(sb->pad3)); 1758 1759 sb->utime = cpu_to_le64((__u64)mddev->utime); 1760 sb->events = cpu_to_le64(mddev->events); 1761 if (mddev->in_sync) 1762 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1763 else 1764 sb->resync_offset = cpu_to_le64(0); 1765 1766 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1767 1768 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1769 sb->size = cpu_to_le64(mddev->dev_sectors); 1770 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1771 sb->level = cpu_to_le32(mddev->level); 1772 sb->layout = cpu_to_le32(mddev->layout); 1773 1774 if (test_bit(WriteMostly, &rdev->flags)) 1775 sb->devflags |= WriteMostly1; 1776 else 1777 sb->devflags &= ~WriteMostly1; 1778 sb->data_offset = cpu_to_le64(rdev->data_offset); 1779 sb->data_size = cpu_to_le64(rdev->sectors); 1780 1781 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1782 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1783 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1784 } 1785 1786 if (rdev->raid_disk >= 0 && 1787 !test_bit(In_sync, &rdev->flags)) { 1788 sb->feature_map |= 1789 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1790 sb->recovery_offset = 1791 cpu_to_le64(rdev->recovery_offset); 1792 } 1793 if (test_bit(Replacement, &rdev->flags)) 1794 sb->feature_map |= 1795 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1796 1797 if (mddev->reshape_position != MaxSector) { 1798 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1799 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1800 sb->new_layout = cpu_to_le32(mddev->new_layout); 1801 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1802 sb->new_level = cpu_to_le32(mddev->new_level); 1803 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1804 if (mddev->delta_disks == 0 && 1805 mddev->reshape_backwards) 1806 sb->feature_map 1807 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1808 if (rdev->new_data_offset != rdev->data_offset) { 1809 sb->feature_map 1810 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1811 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1812 - rdev->data_offset)); 1813 } 1814 } 1815 1816 if (rdev->badblocks.count == 0) 1817 /* Nothing to do for bad blocks*/ ; 1818 else if (sb->bblog_offset == 0) 1819 /* Cannot record bad blocks on this device */ 1820 md_error(mddev, rdev); 1821 else { 1822 struct badblocks *bb = &rdev->badblocks; 1823 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1824 u64 *p = bb->page; 1825 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1826 if (bb->changed) { 1827 unsigned seq; 1828 1829 retry: 1830 seq = read_seqbegin(&bb->lock); 1831 1832 memset(bbp, 0xff, PAGE_SIZE); 1833 1834 for (i = 0 ; i < bb->count ; i++) { 1835 u64 internal_bb = *p++; 1836 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1837 | BB_LEN(internal_bb)); 1838 *bbp++ = cpu_to_le64(store_bb); 1839 } 1840 bb->changed = 0; 1841 if (read_seqretry(&bb->lock, seq)) 1842 goto retry; 1843 1844 bb->sector = (rdev->sb_start + 1845 (int)le32_to_cpu(sb->bblog_offset)); 1846 bb->size = le16_to_cpu(sb->bblog_size); 1847 } 1848 } 1849 1850 max_dev = 0; 1851 rdev_for_each(rdev2, mddev) 1852 if (rdev2->desc_nr+1 > max_dev) 1853 max_dev = rdev2->desc_nr+1; 1854 1855 if (max_dev > le32_to_cpu(sb->max_dev)) { 1856 int bmask; 1857 sb->max_dev = cpu_to_le32(max_dev); 1858 rdev->sb_size = max_dev * 2 + 256; 1859 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1860 if (rdev->sb_size & bmask) 1861 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1862 } else 1863 max_dev = le32_to_cpu(sb->max_dev); 1864 1865 for (i=0; i<max_dev;i++) 1866 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1867 1868 rdev_for_each(rdev2, mddev) { 1869 i = rdev2->desc_nr; 1870 if (test_bit(Faulty, &rdev2->flags)) 1871 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1872 else if (test_bit(In_sync, &rdev2->flags)) 1873 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1874 else if (rdev2->raid_disk >= 0) 1875 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1876 else 1877 sb->dev_roles[i] = cpu_to_le16(0xffff); 1878 } 1879 1880 sb->sb_csum = calc_sb_1_csum(sb); 1881 } 1882 1883 static unsigned long long 1884 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1885 { 1886 struct mdp_superblock_1 *sb; 1887 sector_t max_sectors; 1888 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1889 return 0; /* component must fit device */ 1890 if (rdev->data_offset != rdev->new_data_offset) 1891 return 0; /* too confusing */ 1892 if (rdev->sb_start < rdev->data_offset) { 1893 /* minor versions 1 and 2; superblock before data */ 1894 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1895 max_sectors -= rdev->data_offset; 1896 if (!num_sectors || num_sectors > max_sectors) 1897 num_sectors = max_sectors; 1898 } else if (rdev->mddev->bitmap_info.offset) { 1899 /* minor version 0 with bitmap we can't move */ 1900 return 0; 1901 } else { 1902 /* minor version 0; superblock after data */ 1903 sector_t sb_start; 1904 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1905 sb_start &= ~(sector_t)(4*2 - 1); 1906 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1907 if (!num_sectors || num_sectors > max_sectors) 1908 num_sectors = max_sectors; 1909 rdev->sb_start = sb_start; 1910 } 1911 sb = page_address(rdev->sb_page); 1912 sb->data_size = cpu_to_le64(num_sectors); 1913 sb->super_offset = rdev->sb_start; 1914 sb->sb_csum = calc_sb_1_csum(sb); 1915 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1916 rdev->sb_page); 1917 md_super_wait(rdev->mddev); 1918 return num_sectors; 1919 1920 } 1921 1922 static int 1923 super_1_allow_new_offset(struct md_rdev *rdev, 1924 unsigned long long new_offset) 1925 { 1926 /* All necessary checks on new >= old have been done */ 1927 struct bitmap *bitmap; 1928 if (new_offset >= rdev->data_offset) 1929 return 1; 1930 1931 /* with 1.0 metadata, there is no metadata to tread on 1932 * so we can always move back */ 1933 if (rdev->mddev->minor_version == 0) 1934 return 1; 1935 1936 /* otherwise we must be sure not to step on 1937 * any metadata, so stay: 1938 * 36K beyond start of superblock 1939 * beyond end of badblocks 1940 * beyond write-intent bitmap 1941 */ 1942 if (rdev->sb_start + (32+4)*2 > new_offset) 1943 return 0; 1944 bitmap = rdev->mddev->bitmap; 1945 if (bitmap && !rdev->mddev->bitmap_info.file && 1946 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1947 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1948 return 0; 1949 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1950 return 0; 1951 1952 return 1; 1953 } 1954 1955 static struct super_type super_types[] = { 1956 [0] = { 1957 .name = "0.90.0", 1958 .owner = THIS_MODULE, 1959 .load_super = super_90_load, 1960 .validate_super = super_90_validate, 1961 .sync_super = super_90_sync, 1962 .rdev_size_change = super_90_rdev_size_change, 1963 .allow_new_offset = super_90_allow_new_offset, 1964 }, 1965 [1] = { 1966 .name = "md-1", 1967 .owner = THIS_MODULE, 1968 .load_super = super_1_load, 1969 .validate_super = super_1_validate, 1970 .sync_super = super_1_sync, 1971 .rdev_size_change = super_1_rdev_size_change, 1972 .allow_new_offset = super_1_allow_new_offset, 1973 }, 1974 }; 1975 1976 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1977 { 1978 if (mddev->sync_super) { 1979 mddev->sync_super(mddev, rdev); 1980 return; 1981 } 1982 1983 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1984 1985 super_types[mddev->major_version].sync_super(mddev, rdev); 1986 } 1987 1988 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1989 { 1990 struct md_rdev *rdev, *rdev2; 1991 1992 rcu_read_lock(); 1993 rdev_for_each_rcu(rdev, mddev1) 1994 rdev_for_each_rcu(rdev2, mddev2) 1995 if (rdev->bdev->bd_contains == 1996 rdev2->bdev->bd_contains) { 1997 rcu_read_unlock(); 1998 return 1; 1999 } 2000 rcu_read_unlock(); 2001 return 0; 2002 } 2003 2004 static LIST_HEAD(pending_raid_disks); 2005 2006 /* 2007 * Try to register data integrity profile for an mddev 2008 * 2009 * This is called when an array is started and after a disk has been kicked 2010 * from the array. It only succeeds if all working and active component devices 2011 * are integrity capable with matching profiles. 2012 */ 2013 int md_integrity_register(struct mddev *mddev) 2014 { 2015 struct md_rdev *rdev, *reference = NULL; 2016 2017 if (list_empty(&mddev->disks)) 2018 return 0; /* nothing to do */ 2019 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2020 return 0; /* shouldn't register, or already is */ 2021 rdev_for_each(rdev, mddev) { 2022 /* skip spares and non-functional disks */ 2023 if (test_bit(Faulty, &rdev->flags)) 2024 continue; 2025 if (rdev->raid_disk < 0) 2026 continue; 2027 if (!reference) { 2028 /* Use the first rdev as the reference */ 2029 reference = rdev; 2030 continue; 2031 } 2032 /* does this rdev's profile match the reference profile? */ 2033 if (blk_integrity_compare(reference->bdev->bd_disk, 2034 rdev->bdev->bd_disk) < 0) 2035 return -EINVAL; 2036 } 2037 if (!reference || !bdev_get_integrity(reference->bdev)) 2038 return 0; 2039 /* 2040 * All component devices are integrity capable and have matching 2041 * profiles, register the common profile for the md device. 2042 */ 2043 if (blk_integrity_register(mddev->gendisk, 2044 bdev_get_integrity(reference->bdev)) != 0) { 2045 printk(KERN_ERR "md: failed to register integrity for %s\n", 2046 mdname(mddev)); 2047 return -EINVAL; 2048 } 2049 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2050 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2051 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2052 mdname(mddev)); 2053 return -EINVAL; 2054 } 2055 return 0; 2056 } 2057 EXPORT_SYMBOL(md_integrity_register); 2058 2059 /* Disable data integrity if non-capable/non-matching disk is being added */ 2060 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2061 { 2062 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 2063 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 2064 2065 if (!bi_mddev) /* nothing to do */ 2066 return; 2067 if (rdev->raid_disk < 0) /* skip spares */ 2068 return; 2069 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2070 rdev->bdev->bd_disk) >= 0) 2071 return; 2072 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2073 blk_integrity_unregister(mddev->gendisk); 2074 } 2075 EXPORT_SYMBOL(md_integrity_add_rdev); 2076 2077 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2078 { 2079 char b[BDEVNAME_SIZE]; 2080 struct kobject *ko; 2081 char *s; 2082 int err; 2083 2084 if (rdev->mddev) { 2085 MD_BUG(); 2086 return -EINVAL; 2087 } 2088 2089 /* prevent duplicates */ 2090 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2091 return -EEXIST; 2092 2093 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2094 if (rdev->sectors && (mddev->dev_sectors == 0 || 2095 rdev->sectors < mddev->dev_sectors)) { 2096 if (mddev->pers) { 2097 /* Cannot change size, so fail 2098 * If mddev->level <= 0, then we don't care 2099 * about aligning sizes (e.g. linear) 2100 */ 2101 if (mddev->level > 0) 2102 return -ENOSPC; 2103 } else 2104 mddev->dev_sectors = rdev->sectors; 2105 } 2106 2107 /* Verify rdev->desc_nr is unique. 2108 * If it is -1, assign a free number, else 2109 * check number is not in use 2110 */ 2111 if (rdev->desc_nr < 0) { 2112 int choice = 0; 2113 if (mddev->pers) choice = mddev->raid_disks; 2114 while (find_rdev_nr(mddev, choice)) 2115 choice++; 2116 rdev->desc_nr = choice; 2117 } else { 2118 if (find_rdev_nr(mddev, rdev->desc_nr)) 2119 return -EBUSY; 2120 } 2121 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2122 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2123 mdname(mddev), mddev->max_disks); 2124 return -EBUSY; 2125 } 2126 bdevname(rdev->bdev,b); 2127 while ( (s=strchr(b, '/')) != NULL) 2128 *s = '!'; 2129 2130 rdev->mddev = mddev; 2131 printk(KERN_INFO "md: bind<%s>\n", b); 2132 2133 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2134 goto fail; 2135 2136 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2137 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2138 /* failure here is OK */; 2139 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2140 2141 list_add_rcu(&rdev->same_set, &mddev->disks); 2142 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2143 2144 /* May as well allow recovery to be retried once */ 2145 mddev->recovery_disabled++; 2146 2147 return 0; 2148 2149 fail: 2150 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2151 b, mdname(mddev)); 2152 return err; 2153 } 2154 2155 static void md_delayed_delete(struct work_struct *ws) 2156 { 2157 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2158 kobject_del(&rdev->kobj); 2159 kobject_put(&rdev->kobj); 2160 } 2161 2162 static void unbind_rdev_from_array(struct md_rdev * rdev) 2163 { 2164 char b[BDEVNAME_SIZE]; 2165 if (!rdev->mddev) { 2166 MD_BUG(); 2167 return; 2168 } 2169 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2170 list_del_rcu(&rdev->same_set); 2171 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2172 rdev->mddev = NULL; 2173 sysfs_remove_link(&rdev->kobj, "block"); 2174 sysfs_put(rdev->sysfs_state); 2175 rdev->sysfs_state = NULL; 2176 rdev->badblocks.count = 0; 2177 /* We need to delay this, otherwise we can deadlock when 2178 * writing to 'remove' to "dev/state". We also need 2179 * to delay it due to rcu usage. 2180 */ 2181 synchronize_rcu(); 2182 INIT_WORK(&rdev->del_work, md_delayed_delete); 2183 kobject_get(&rdev->kobj); 2184 queue_work(md_misc_wq, &rdev->del_work); 2185 } 2186 2187 /* 2188 * prevent the device from being mounted, repartitioned or 2189 * otherwise reused by a RAID array (or any other kernel 2190 * subsystem), by bd_claiming the device. 2191 */ 2192 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2193 { 2194 int err = 0; 2195 struct block_device *bdev; 2196 char b[BDEVNAME_SIZE]; 2197 2198 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2199 shared ? (struct md_rdev *)lock_rdev : rdev); 2200 if (IS_ERR(bdev)) { 2201 printk(KERN_ERR "md: could not open %s.\n", 2202 __bdevname(dev, b)); 2203 return PTR_ERR(bdev); 2204 } 2205 rdev->bdev = bdev; 2206 return err; 2207 } 2208 2209 static void unlock_rdev(struct md_rdev *rdev) 2210 { 2211 struct block_device *bdev = rdev->bdev; 2212 rdev->bdev = NULL; 2213 if (!bdev) 2214 MD_BUG(); 2215 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2216 } 2217 2218 void md_autodetect_dev(dev_t dev); 2219 2220 static void export_rdev(struct md_rdev * rdev) 2221 { 2222 char b[BDEVNAME_SIZE]; 2223 printk(KERN_INFO "md: export_rdev(%s)\n", 2224 bdevname(rdev->bdev,b)); 2225 if (rdev->mddev) 2226 MD_BUG(); 2227 md_rdev_clear(rdev); 2228 #ifndef MODULE 2229 if (test_bit(AutoDetected, &rdev->flags)) 2230 md_autodetect_dev(rdev->bdev->bd_dev); 2231 #endif 2232 unlock_rdev(rdev); 2233 kobject_put(&rdev->kobj); 2234 } 2235 2236 static void kick_rdev_from_array(struct md_rdev * rdev) 2237 { 2238 unbind_rdev_from_array(rdev); 2239 export_rdev(rdev); 2240 } 2241 2242 static void export_array(struct mddev *mddev) 2243 { 2244 struct md_rdev *rdev, *tmp; 2245 2246 rdev_for_each_safe(rdev, tmp, mddev) { 2247 if (!rdev->mddev) { 2248 MD_BUG(); 2249 continue; 2250 } 2251 kick_rdev_from_array(rdev); 2252 } 2253 if (!list_empty(&mddev->disks)) 2254 MD_BUG(); 2255 mddev->raid_disks = 0; 2256 mddev->major_version = 0; 2257 } 2258 2259 static void print_desc(mdp_disk_t *desc) 2260 { 2261 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2262 desc->major,desc->minor,desc->raid_disk,desc->state); 2263 } 2264 2265 static void print_sb_90(mdp_super_t *sb) 2266 { 2267 int i; 2268 2269 printk(KERN_INFO 2270 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2271 sb->major_version, sb->minor_version, sb->patch_version, 2272 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2273 sb->ctime); 2274 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2275 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2276 sb->md_minor, sb->layout, sb->chunk_size); 2277 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2278 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2279 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2280 sb->failed_disks, sb->spare_disks, 2281 sb->sb_csum, (unsigned long)sb->events_lo); 2282 2283 printk(KERN_INFO); 2284 for (i = 0; i < MD_SB_DISKS; i++) { 2285 mdp_disk_t *desc; 2286 2287 desc = sb->disks + i; 2288 if (desc->number || desc->major || desc->minor || 2289 desc->raid_disk || (desc->state && (desc->state != 4))) { 2290 printk(" D %2d: ", i); 2291 print_desc(desc); 2292 } 2293 } 2294 printk(KERN_INFO "md: THIS: "); 2295 print_desc(&sb->this_disk); 2296 } 2297 2298 static void print_sb_1(struct mdp_superblock_1 *sb) 2299 { 2300 __u8 *uuid; 2301 2302 uuid = sb->set_uuid; 2303 printk(KERN_INFO 2304 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2305 "md: Name: \"%s\" CT:%llu\n", 2306 le32_to_cpu(sb->major_version), 2307 le32_to_cpu(sb->feature_map), 2308 uuid, 2309 sb->set_name, 2310 (unsigned long long)le64_to_cpu(sb->ctime) 2311 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2312 2313 uuid = sb->device_uuid; 2314 printk(KERN_INFO 2315 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2316 " RO:%llu\n" 2317 "md: Dev:%08x UUID: %pU\n" 2318 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2319 "md: (MaxDev:%u) \n", 2320 le32_to_cpu(sb->level), 2321 (unsigned long long)le64_to_cpu(sb->size), 2322 le32_to_cpu(sb->raid_disks), 2323 le32_to_cpu(sb->layout), 2324 le32_to_cpu(sb->chunksize), 2325 (unsigned long long)le64_to_cpu(sb->data_offset), 2326 (unsigned long long)le64_to_cpu(sb->data_size), 2327 (unsigned long long)le64_to_cpu(sb->super_offset), 2328 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2329 le32_to_cpu(sb->dev_number), 2330 uuid, 2331 sb->devflags, 2332 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2333 (unsigned long long)le64_to_cpu(sb->events), 2334 (unsigned long long)le64_to_cpu(sb->resync_offset), 2335 le32_to_cpu(sb->sb_csum), 2336 le32_to_cpu(sb->max_dev) 2337 ); 2338 } 2339 2340 static void print_rdev(struct md_rdev *rdev, int major_version) 2341 { 2342 char b[BDEVNAME_SIZE]; 2343 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2344 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2345 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2346 rdev->desc_nr); 2347 if (rdev->sb_loaded) { 2348 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2349 switch (major_version) { 2350 case 0: 2351 print_sb_90(page_address(rdev->sb_page)); 2352 break; 2353 case 1: 2354 print_sb_1(page_address(rdev->sb_page)); 2355 break; 2356 } 2357 } else 2358 printk(KERN_INFO "md: no rdev superblock!\n"); 2359 } 2360 2361 static void md_print_devices(void) 2362 { 2363 struct list_head *tmp; 2364 struct md_rdev *rdev; 2365 struct mddev *mddev; 2366 char b[BDEVNAME_SIZE]; 2367 2368 printk("\n"); 2369 printk("md: **********************************\n"); 2370 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2371 printk("md: **********************************\n"); 2372 for_each_mddev(mddev, tmp) { 2373 2374 if (mddev->bitmap) 2375 bitmap_print_sb(mddev->bitmap); 2376 else 2377 printk("%s: ", mdname(mddev)); 2378 rdev_for_each(rdev, mddev) 2379 printk("<%s>", bdevname(rdev->bdev,b)); 2380 printk("\n"); 2381 2382 rdev_for_each(rdev, mddev) 2383 print_rdev(rdev, mddev->major_version); 2384 } 2385 printk("md: **********************************\n"); 2386 printk("\n"); 2387 } 2388 2389 2390 static void sync_sbs(struct mddev * mddev, int nospares) 2391 { 2392 /* Update each superblock (in-memory image), but 2393 * if we are allowed to, skip spares which already 2394 * have the right event counter, or have one earlier 2395 * (which would mean they aren't being marked as dirty 2396 * with the rest of the array) 2397 */ 2398 struct md_rdev *rdev; 2399 rdev_for_each(rdev, mddev) { 2400 if (rdev->sb_events == mddev->events || 2401 (nospares && 2402 rdev->raid_disk < 0 && 2403 rdev->sb_events+1 == mddev->events)) { 2404 /* Don't update this superblock */ 2405 rdev->sb_loaded = 2; 2406 } else { 2407 sync_super(mddev, rdev); 2408 rdev->sb_loaded = 1; 2409 } 2410 } 2411 } 2412 2413 static void md_update_sb(struct mddev * mddev, int force_change) 2414 { 2415 struct md_rdev *rdev; 2416 int sync_req; 2417 int nospares = 0; 2418 int any_badblocks_changed = 0; 2419 2420 repeat: 2421 /* First make sure individual recovery_offsets are correct */ 2422 rdev_for_each(rdev, mddev) { 2423 if (rdev->raid_disk >= 0 && 2424 mddev->delta_disks >= 0 && 2425 !test_bit(In_sync, &rdev->flags) && 2426 mddev->curr_resync_completed > rdev->recovery_offset) 2427 rdev->recovery_offset = mddev->curr_resync_completed; 2428 2429 } 2430 if (!mddev->persistent) { 2431 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2432 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2433 if (!mddev->external) { 2434 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2435 rdev_for_each(rdev, mddev) { 2436 if (rdev->badblocks.changed) { 2437 rdev->badblocks.changed = 0; 2438 md_ack_all_badblocks(&rdev->badblocks); 2439 md_error(mddev, rdev); 2440 } 2441 clear_bit(Blocked, &rdev->flags); 2442 clear_bit(BlockedBadBlocks, &rdev->flags); 2443 wake_up(&rdev->blocked_wait); 2444 } 2445 } 2446 wake_up(&mddev->sb_wait); 2447 return; 2448 } 2449 2450 spin_lock_irq(&mddev->write_lock); 2451 2452 mddev->utime = get_seconds(); 2453 2454 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2455 force_change = 1; 2456 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2457 /* just a clean<-> dirty transition, possibly leave spares alone, 2458 * though if events isn't the right even/odd, we will have to do 2459 * spares after all 2460 */ 2461 nospares = 1; 2462 if (force_change) 2463 nospares = 0; 2464 if (mddev->degraded) 2465 /* If the array is degraded, then skipping spares is both 2466 * dangerous and fairly pointless. 2467 * Dangerous because a device that was removed from the array 2468 * might have a event_count that still looks up-to-date, 2469 * so it can be re-added without a resync. 2470 * Pointless because if there are any spares to skip, 2471 * then a recovery will happen and soon that array won't 2472 * be degraded any more and the spare can go back to sleep then. 2473 */ 2474 nospares = 0; 2475 2476 sync_req = mddev->in_sync; 2477 2478 /* If this is just a dirty<->clean transition, and the array is clean 2479 * and 'events' is odd, we can roll back to the previous clean state */ 2480 if (nospares 2481 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2482 && mddev->can_decrease_events 2483 && mddev->events != 1) { 2484 mddev->events--; 2485 mddev->can_decrease_events = 0; 2486 } else { 2487 /* otherwise we have to go forward and ... */ 2488 mddev->events ++; 2489 mddev->can_decrease_events = nospares; 2490 } 2491 2492 if (!mddev->events) { 2493 /* 2494 * oops, this 64-bit counter should never wrap. 2495 * Either we are in around ~1 trillion A.C., assuming 2496 * 1 reboot per second, or we have a bug: 2497 */ 2498 MD_BUG(); 2499 mddev->events --; 2500 } 2501 2502 rdev_for_each(rdev, mddev) { 2503 if (rdev->badblocks.changed) 2504 any_badblocks_changed++; 2505 if (test_bit(Faulty, &rdev->flags)) 2506 set_bit(FaultRecorded, &rdev->flags); 2507 } 2508 2509 sync_sbs(mddev, nospares); 2510 spin_unlock_irq(&mddev->write_lock); 2511 2512 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2513 mdname(mddev), mddev->in_sync); 2514 2515 bitmap_update_sb(mddev->bitmap); 2516 rdev_for_each(rdev, mddev) { 2517 char b[BDEVNAME_SIZE]; 2518 2519 if (rdev->sb_loaded != 1) 2520 continue; /* no noise on spare devices */ 2521 2522 if (!test_bit(Faulty, &rdev->flags) && 2523 rdev->saved_raid_disk == -1) { 2524 md_super_write(mddev,rdev, 2525 rdev->sb_start, rdev->sb_size, 2526 rdev->sb_page); 2527 pr_debug("md: (write) %s's sb offset: %llu\n", 2528 bdevname(rdev->bdev, b), 2529 (unsigned long long)rdev->sb_start); 2530 rdev->sb_events = mddev->events; 2531 if (rdev->badblocks.size) { 2532 md_super_write(mddev, rdev, 2533 rdev->badblocks.sector, 2534 rdev->badblocks.size << 9, 2535 rdev->bb_page); 2536 rdev->badblocks.size = 0; 2537 } 2538 2539 } else if (test_bit(Faulty, &rdev->flags)) 2540 pr_debug("md: %s (skipping faulty)\n", 2541 bdevname(rdev->bdev, b)); 2542 else 2543 pr_debug("(skipping incremental s/r "); 2544 2545 if (mddev->level == LEVEL_MULTIPATH) 2546 /* only need to write one superblock... */ 2547 break; 2548 } 2549 md_super_wait(mddev); 2550 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2551 2552 spin_lock_irq(&mddev->write_lock); 2553 if (mddev->in_sync != sync_req || 2554 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2555 /* have to write it out again */ 2556 spin_unlock_irq(&mddev->write_lock); 2557 goto repeat; 2558 } 2559 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2560 spin_unlock_irq(&mddev->write_lock); 2561 wake_up(&mddev->sb_wait); 2562 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2563 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2564 2565 rdev_for_each(rdev, mddev) { 2566 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2567 clear_bit(Blocked, &rdev->flags); 2568 2569 if (any_badblocks_changed) 2570 md_ack_all_badblocks(&rdev->badblocks); 2571 clear_bit(BlockedBadBlocks, &rdev->flags); 2572 wake_up(&rdev->blocked_wait); 2573 } 2574 } 2575 2576 /* words written to sysfs files may, or may not, be \n terminated. 2577 * We want to accept with case. For this we use cmd_match. 2578 */ 2579 static int cmd_match(const char *cmd, const char *str) 2580 { 2581 /* See if cmd, written into a sysfs file, matches 2582 * str. They must either be the same, or cmd can 2583 * have a trailing newline 2584 */ 2585 while (*cmd && *str && *cmd == *str) { 2586 cmd++; 2587 str++; 2588 } 2589 if (*cmd == '\n') 2590 cmd++; 2591 if (*str || *cmd) 2592 return 0; 2593 return 1; 2594 } 2595 2596 struct rdev_sysfs_entry { 2597 struct attribute attr; 2598 ssize_t (*show)(struct md_rdev *, char *); 2599 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2600 }; 2601 2602 static ssize_t 2603 state_show(struct md_rdev *rdev, char *page) 2604 { 2605 char *sep = ""; 2606 size_t len = 0; 2607 2608 if (test_bit(Faulty, &rdev->flags) || 2609 rdev->badblocks.unacked_exist) { 2610 len+= sprintf(page+len, "%sfaulty",sep); 2611 sep = ","; 2612 } 2613 if (test_bit(In_sync, &rdev->flags)) { 2614 len += sprintf(page+len, "%sin_sync",sep); 2615 sep = ","; 2616 } 2617 if (test_bit(WriteMostly, &rdev->flags)) { 2618 len += sprintf(page+len, "%swrite_mostly",sep); 2619 sep = ","; 2620 } 2621 if (test_bit(Blocked, &rdev->flags) || 2622 (rdev->badblocks.unacked_exist 2623 && !test_bit(Faulty, &rdev->flags))) { 2624 len += sprintf(page+len, "%sblocked", sep); 2625 sep = ","; 2626 } 2627 if (!test_bit(Faulty, &rdev->flags) && 2628 !test_bit(In_sync, &rdev->flags)) { 2629 len += sprintf(page+len, "%sspare", sep); 2630 sep = ","; 2631 } 2632 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2633 len += sprintf(page+len, "%swrite_error", sep); 2634 sep = ","; 2635 } 2636 if (test_bit(WantReplacement, &rdev->flags)) { 2637 len += sprintf(page+len, "%swant_replacement", sep); 2638 sep = ","; 2639 } 2640 if (test_bit(Replacement, &rdev->flags)) { 2641 len += sprintf(page+len, "%sreplacement", sep); 2642 sep = ","; 2643 } 2644 2645 return len+sprintf(page+len, "\n"); 2646 } 2647 2648 static ssize_t 2649 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2650 { 2651 /* can write 2652 * faulty - simulates an error 2653 * remove - disconnects the device 2654 * writemostly - sets write_mostly 2655 * -writemostly - clears write_mostly 2656 * blocked - sets the Blocked flags 2657 * -blocked - clears the Blocked and possibly simulates an error 2658 * insync - sets Insync providing device isn't active 2659 * write_error - sets WriteErrorSeen 2660 * -write_error - clears WriteErrorSeen 2661 */ 2662 int err = -EINVAL; 2663 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2664 md_error(rdev->mddev, rdev); 2665 if (test_bit(Faulty, &rdev->flags)) 2666 err = 0; 2667 else 2668 err = -EBUSY; 2669 } else if (cmd_match(buf, "remove")) { 2670 if (rdev->raid_disk >= 0) 2671 err = -EBUSY; 2672 else { 2673 struct mddev *mddev = rdev->mddev; 2674 kick_rdev_from_array(rdev); 2675 if (mddev->pers) 2676 md_update_sb(mddev, 1); 2677 md_new_event(mddev); 2678 err = 0; 2679 } 2680 } else if (cmd_match(buf, "writemostly")) { 2681 set_bit(WriteMostly, &rdev->flags); 2682 err = 0; 2683 } else if (cmd_match(buf, "-writemostly")) { 2684 clear_bit(WriteMostly, &rdev->flags); 2685 err = 0; 2686 } else if (cmd_match(buf, "blocked")) { 2687 set_bit(Blocked, &rdev->flags); 2688 err = 0; 2689 } else if (cmd_match(buf, "-blocked")) { 2690 if (!test_bit(Faulty, &rdev->flags) && 2691 rdev->badblocks.unacked_exist) { 2692 /* metadata handler doesn't understand badblocks, 2693 * so we need to fail the device 2694 */ 2695 md_error(rdev->mddev, rdev); 2696 } 2697 clear_bit(Blocked, &rdev->flags); 2698 clear_bit(BlockedBadBlocks, &rdev->flags); 2699 wake_up(&rdev->blocked_wait); 2700 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2701 md_wakeup_thread(rdev->mddev->thread); 2702 2703 err = 0; 2704 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2705 set_bit(In_sync, &rdev->flags); 2706 err = 0; 2707 } else if (cmd_match(buf, "write_error")) { 2708 set_bit(WriteErrorSeen, &rdev->flags); 2709 err = 0; 2710 } else if (cmd_match(buf, "-write_error")) { 2711 clear_bit(WriteErrorSeen, &rdev->flags); 2712 err = 0; 2713 } else if (cmd_match(buf, "want_replacement")) { 2714 /* Any non-spare device that is not a replacement can 2715 * become want_replacement at any time, but we then need to 2716 * check if recovery is needed. 2717 */ 2718 if (rdev->raid_disk >= 0 && 2719 !test_bit(Replacement, &rdev->flags)) 2720 set_bit(WantReplacement, &rdev->flags); 2721 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2722 md_wakeup_thread(rdev->mddev->thread); 2723 err = 0; 2724 } else if (cmd_match(buf, "-want_replacement")) { 2725 /* Clearing 'want_replacement' is always allowed. 2726 * Once replacements starts it is too late though. 2727 */ 2728 err = 0; 2729 clear_bit(WantReplacement, &rdev->flags); 2730 } else if (cmd_match(buf, "replacement")) { 2731 /* Can only set a device as a replacement when array has not 2732 * yet been started. Once running, replacement is automatic 2733 * from spares, or by assigning 'slot'. 2734 */ 2735 if (rdev->mddev->pers) 2736 err = -EBUSY; 2737 else { 2738 set_bit(Replacement, &rdev->flags); 2739 err = 0; 2740 } 2741 } else if (cmd_match(buf, "-replacement")) { 2742 /* Similarly, can only clear Replacement before start */ 2743 if (rdev->mddev->pers) 2744 err = -EBUSY; 2745 else { 2746 clear_bit(Replacement, &rdev->flags); 2747 err = 0; 2748 } 2749 } 2750 if (!err) 2751 sysfs_notify_dirent_safe(rdev->sysfs_state); 2752 return err ? err : len; 2753 } 2754 static struct rdev_sysfs_entry rdev_state = 2755 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2756 2757 static ssize_t 2758 errors_show(struct md_rdev *rdev, char *page) 2759 { 2760 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2761 } 2762 2763 static ssize_t 2764 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2765 { 2766 char *e; 2767 unsigned long n = simple_strtoul(buf, &e, 10); 2768 if (*buf && (*e == 0 || *e == '\n')) { 2769 atomic_set(&rdev->corrected_errors, n); 2770 return len; 2771 } 2772 return -EINVAL; 2773 } 2774 static struct rdev_sysfs_entry rdev_errors = 2775 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2776 2777 static ssize_t 2778 slot_show(struct md_rdev *rdev, char *page) 2779 { 2780 if (rdev->raid_disk < 0) 2781 return sprintf(page, "none\n"); 2782 else 2783 return sprintf(page, "%d\n", rdev->raid_disk); 2784 } 2785 2786 static ssize_t 2787 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2788 { 2789 char *e; 2790 int err; 2791 int slot = simple_strtoul(buf, &e, 10); 2792 if (strncmp(buf, "none", 4)==0) 2793 slot = -1; 2794 else if (e==buf || (*e && *e!= '\n')) 2795 return -EINVAL; 2796 if (rdev->mddev->pers && slot == -1) { 2797 /* Setting 'slot' on an active array requires also 2798 * updating the 'rd%d' link, and communicating 2799 * with the personality with ->hot_*_disk. 2800 * For now we only support removing 2801 * failed/spare devices. This normally happens automatically, 2802 * but not when the metadata is externally managed. 2803 */ 2804 if (rdev->raid_disk == -1) 2805 return -EEXIST; 2806 /* personality does all needed checks */ 2807 if (rdev->mddev->pers->hot_remove_disk == NULL) 2808 return -EINVAL; 2809 err = rdev->mddev->pers-> 2810 hot_remove_disk(rdev->mddev, rdev); 2811 if (err) 2812 return err; 2813 sysfs_unlink_rdev(rdev->mddev, rdev); 2814 rdev->raid_disk = -1; 2815 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2816 md_wakeup_thread(rdev->mddev->thread); 2817 } else if (rdev->mddev->pers) { 2818 /* Activating a spare .. or possibly reactivating 2819 * if we ever get bitmaps working here. 2820 */ 2821 2822 if (rdev->raid_disk != -1) 2823 return -EBUSY; 2824 2825 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2826 return -EBUSY; 2827 2828 if (rdev->mddev->pers->hot_add_disk == NULL) 2829 return -EINVAL; 2830 2831 if (slot >= rdev->mddev->raid_disks && 2832 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2833 return -ENOSPC; 2834 2835 rdev->raid_disk = slot; 2836 if (test_bit(In_sync, &rdev->flags)) 2837 rdev->saved_raid_disk = slot; 2838 else 2839 rdev->saved_raid_disk = -1; 2840 clear_bit(In_sync, &rdev->flags); 2841 err = rdev->mddev->pers-> 2842 hot_add_disk(rdev->mddev, rdev); 2843 if (err) { 2844 rdev->raid_disk = -1; 2845 return err; 2846 } else 2847 sysfs_notify_dirent_safe(rdev->sysfs_state); 2848 if (sysfs_link_rdev(rdev->mddev, rdev)) 2849 /* failure here is OK */; 2850 /* don't wakeup anyone, leave that to userspace. */ 2851 } else { 2852 if (slot >= rdev->mddev->raid_disks && 2853 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2854 return -ENOSPC; 2855 rdev->raid_disk = slot; 2856 /* assume it is working */ 2857 clear_bit(Faulty, &rdev->flags); 2858 clear_bit(WriteMostly, &rdev->flags); 2859 set_bit(In_sync, &rdev->flags); 2860 sysfs_notify_dirent_safe(rdev->sysfs_state); 2861 } 2862 return len; 2863 } 2864 2865 2866 static struct rdev_sysfs_entry rdev_slot = 2867 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2868 2869 static ssize_t 2870 offset_show(struct md_rdev *rdev, char *page) 2871 { 2872 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2873 } 2874 2875 static ssize_t 2876 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2877 { 2878 unsigned long long offset; 2879 if (strict_strtoull(buf, 10, &offset) < 0) 2880 return -EINVAL; 2881 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2882 return -EBUSY; 2883 if (rdev->sectors && rdev->mddev->external) 2884 /* Must set offset before size, so overlap checks 2885 * can be sane */ 2886 return -EBUSY; 2887 rdev->data_offset = offset; 2888 rdev->new_data_offset = offset; 2889 return len; 2890 } 2891 2892 static struct rdev_sysfs_entry rdev_offset = 2893 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2894 2895 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2896 { 2897 return sprintf(page, "%llu\n", 2898 (unsigned long long)rdev->new_data_offset); 2899 } 2900 2901 static ssize_t new_offset_store(struct md_rdev *rdev, 2902 const char *buf, size_t len) 2903 { 2904 unsigned long long new_offset; 2905 struct mddev *mddev = rdev->mddev; 2906 2907 if (strict_strtoull(buf, 10, &new_offset) < 0) 2908 return -EINVAL; 2909 2910 if (mddev->sync_thread) 2911 return -EBUSY; 2912 if (new_offset == rdev->data_offset) 2913 /* reset is always permitted */ 2914 ; 2915 else if (new_offset > rdev->data_offset) { 2916 /* must not push array size beyond rdev_sectors */ 2917 if (new_offset - rdev->data_offset 2918 + mddev->dev_sectors > rdev->sectors) 2919 return -E2BIG; 2920 } 2921 /* Metadata worries about other space details. */ 2922 2923 /* decreasing the offset is inconsistent with a backwards 2924 * reshape. 2925 */ 2926 if (new_offset < rdev->data_offset && 2927 mddev->reshape_backwards) 2928 return -EINVAL; 2929 /* Increasing offset is inconsistent with forwards 2930 * reshape. reshape_direction should be set to 2931 * 'backwards' first. 2932 */ 2933 if (new_offset > rdev->data_offset && 2934 !mddev->reshape_backwards) 2935 return -EINVAL; 2936 2937 if (mddev->pers && mddev->persistent && 2938 !super_types[mddev->major_version] 2939 .allow_new_offset(rdev, new_offset)) 2940 return -E2BIG; 2941 rdev->new_data_offset = new_offset; 2942 if (new_offset > rdev->data_offset) 2943 mddev->reshape_backwards = 1; 2944 else if (new_offset < rdev->data_offset) 2945 mddev->reshape_backwards = 0; 2946 2947 return len; 2948 } 2949 static struct rdev_sysfs_entry rdev_new_offset = 2950 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2951 2952 static ssize_t 2953 rdev_size_show(struct md_rdev *rdev, char *page) 2954 { 2955 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2956 } 2957 2958 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2959 { 2960 /* check if two start/length pairs overlap */ 2961 if (s1+l1 <= s2) 2962 return 0; 2963 if (s2+l2 <= s1) 2964 return 0; 2965 return 1; 2966 } 2967 2968 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2969 { 2970 unsigned long long blocks; 2971 sector_t new; 2972 2973 if (strict_strtoull(buf, 10, &blocks) < 0) 2974 return -EINVAL; 2975 2976 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2977 return -EINVAL; /* sector conversion overflow */ 2978 2979 new = blocks * 2; 2980 if (new != blocks * 2) 2981 return -EINVAL; /* unsigned long long to sector_t overflow */ 2982 2983 *sectors = new; 2984 return 0; 2985 } 2986 2987 static ssize_t 2988 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2989 { 2990 struct mddev *my_mddev = rdev->mddev; 2991 sector_t oldsectors = rdev->sectors; 2992 sector_t sectors; 2993 2994 if (strict_blocks_to_sectors(buf, §ors) < 0) 2995 return -EINVAL; 2996 if (rdev->data_offset != rdev->new_data_offset) 2997 return -EINVAL; /* too confusing */ 2998 if (my_mddev->pers && rdev->raid_disk >= 0) { 2999 if (my_mddev->persistent) { 3000 sectors = super_types[my_mddev->major_version]. 3001 rdev_size_change(rdev, sectors); 3002 if (!sectors) 3003 return -EBUSY; 3004 } else if (!sectors) 3005 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3006 rdev->data_offset; 3007 } 3008 if (sectors < my_mddev->dev_sectors) 3009 return -EINVAL; /* component must fit device */ 3010 3011 rdev->sectors = sectors; 3012 if (sectors > oldsectors && my_mddev->external) { 3013 /* need to check that all other rdevs with the same ->bdev 3014 * do not overlap. We need to unlock the mddev to avoid 3015 * a deadlock. We have already changed rdev->sectors, and if 3016 * we have to change it back, we will have the lock again. 3017 */ 3018 struct mddev *mddev; 3019 int overlap = 0; 3020 struct list_head *tmp; 3021 3022 mddev_unlock(my_mddev); 3023 for_each_mddev(mddev, tmp) { 3024 struct md_rdev *rdev2; 3025 3026 mddev_lock(mddev); 3027 rdev_for_each(rdev2, mddev) 3028 if (rdev->bdev == rdev2->bdev && 3029 rdev != rdev2 && 3030 overlaps(rdev->data_offset, rdev->sectors, 3031 rdev2->data_offset, 3032 rdev2->sectors)) { 3033 overlap = 1; 3034 break; 3035 } 3036 mddev_unlock(mddev); 3037 if (overlap) { 3038 mddev_put(mddev); 3039 break; 3040 } 3041 } 3042 mddev_lock(my_mddev); 3043 if (overlap) { 3044 /* Someone else could have slipped in a size 3045 * change here, but doing so is just silly. 3046 * We put oldsectors back because we *know* it is 3047 * safe, and trust userspace not to race with 3048 * itself 3049 */ 3050 rdev->sectors = oldsectors; 3051 return -EBUSY; 3052 } 3053 } 3054 return len; 3055 } 3056 3057 static struct rdev_sysfs_entry rdev_size = 3058 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3059 3060 3061 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3062 { 3063 unsigned long long recovery_start = rdev->recovery_offset; 3064 3065 if (test_bit(In_sync, &rdev->flags) || 3066 recovery_start == MaxSector) 3067 return sprintf(page, "none\n"); 3068 3069 return sprintf(page, "%llu\n", recovery_start); 3070 } 3071 3072 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3073 { 3074 unsigned long long recovery_start; 3075 3076 if (cmd_match(buf, "none")) 3077 recovery_start = MaxSector; 3078 else if (strict_strtoull(buf, 10, &recovery_start)) 3079 return -EINVAL; 3080 3081 if (rdev->mddev->pers && 3082 rdev->raid_disk >= 0) 3083 return -EBUSY; 3084 3085 rdev->recovery_offset = recovery_start; 3086 if (recovery_start == MaxSector) 3087 set_bit(In_sync, &rdev->flags); 3088 else 3089 clear_bit(In_sync, &rdev->flags); 3090 return len; 3091 } 3092 3093 static struct rdev_sysfs_entry rdev_recovery_start = 3094 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3095 3096 3097 static ssize_t 3098 badblocks_show(struct badblocks *bb, char *page, int unack); 3099 static ssize_t 3100 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3101 3102 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3103 { 3104 return badblocks_show(&rdev->badblocks, page, 0); 3105 } 3106 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3107 { 3108 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3109 /* Maybe that ack was all we needed */ 3110 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3111 wake_up(&rdev->blocked_wait); 3112 return rv; 3113 } 3114 static struct rdev_sysfs_entry rdev_bad_blocks = 3115 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3116 3117 3118 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3119 { 3120 return badblocks_show(&rdev->badblocks, page, 1); 3121 } 3122 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3123 { 3124 return badblocks_store(&rdev->badblocks, page, len, 1); 3125 } 3126 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3127 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3128 3129 static struct attribute *rdev_default_attrs[] = { 3130 &rdev_state.attr, 3131 &rdev_errors.attr, 3132 &rdev_slot.attr, 3133 &rdev_offset.attr, 3134 &rdev_new_offset.attr, 3135 &rdev_size.attr, 3136 &rdev_recovery_start.attr, 3137 &rdev_bad_blocks.attr, 3138 &rdev_unack_bad_blocks.attr, 3139 NULL, 3140 }; 3141 static ssize_t 3142 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3143 { 3144 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3145 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3146 struct mddev *mddev = rdev->mddev; 3147 ssize_t rv; 3148 3149 if (!entry->show) 3150 return -EIO; 3151 3152 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3153 if (!rv) { 3154 if (rdev->mddev == NULL) 3155 rv = -EBUSY; 3156 else 3157 rv = entry->show(rdev, page); 3158 mddev_unlock(mddev); 3159 } 3160 return rv; 3161 } 3162 3163 static ssize_t 3164 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3165 const char *page, size_t length) 3166 { 3167 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3168 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3169 ssize_t rv; 3170 struct mddev *mddev = rdev->mddev; 3171 3172 if (!entry->store) 3173 return -EIO; 3174 if (!capable(CAP_SYS_ADMIN)) 3175 return -EACCES; 3176 rv = mddev ? mddev_lock(mddev): -EBUSY; 3177 if (!rv) { 3178 if (rdev->mddev == NULL) 3179 rv = -EBUSY; 3180 else 3181 rv = entry->store(rdev, page, length); 3182 mddev_unlock(mddev); 3183 } 3184 return rv; 3185 } 3186 3187 static void rdev_free(struct kobject *ko) 3188 { 3189 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3190 kfree(rdev); 3191 } 3192 static const struct sysfs_ops rdev_sysfs_ops = { 3193 .show = rdev_attr_show, 3194 .store = rdev_attr_store, 3195 }; 3196 static struct kobj_type rdev_ktype = { 3197 .release = rdev_free, 3198 .sysfs_ops = &rdev_sysfs_ops, 3199 .default_attrs = rdev_default_attrs, 3200 }; 3201 3202 int md_rdev_init(struct md_rdev *rdev) 3203 { 3204 rdev->desc_nr = -1; 3205 rdev->saved_raid_disk = -1; 3206 rdev->raid_disk = -1; 3207 rdev->flags = 0; 3208 rdev->data_offset = 0; 3209 rdev->new_data_offset = 0; 3210 rdev->sb_events = 0; 3211 rdev->last_read_error.tv_sec = 0; 3212 rdev->last_read_error.tv_nsec = 0; 3213 rdev->sb_loaded = 0; 3214 rdev->bb_page = NULL; 3215 atomic_set(&rdev->nr_pending, 0); 3216 atomic_set(&rdev->read_errors, 0); 3217 atomic_set(&rdev->corrected_errors, 0); 3218 3219 INIT_LIST_HEAD(&rdev->same_set); 3220 init_waitqueue_head(&rdev->blocked_wait); 3221 3222 /* Add space to store bad block list. 3223 * This reserves the space even on arrays where it cannot 3224 * be used - I wonder if that matters 3225 */ 3226 rdev->badblocks.count = 0; 3227 rdev->badblocks.shift = 0; 3228 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3229 seqlock_init(&rdev->badblocks.lock); 3230 if (rdev->badblocks.page == NULL) 3231 return -ENOMEM; 3232 3233 return 0; 3234 } 3235 EXPORT_SYMBOL_GPL(md_rdev_init); 3236 /* 3237 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3238 * 3239 * mark the device faulty if: 3240 * 3241 * - the device is nonexistent (zero size) 3242 * - the device has no valid superblock 3243 * 3244 * a faulty rdev _never_ has rdev->sb set. 3245 */ 3246 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3247 { 3248 char b[BDEVNAME_SIZE]; 3249 int err; 3250 struct md_rdev *rdev; 3251 sector_t size; 3252 3253 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3254 if (!rdev) { 3255 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3256 return ERR_PTR(-ENOMEM); 3257 } 3258 3259 err = md_rdev_init(rdev); 3260 if (err) 3261 goto abort_free; 3262 err = alloc_disk_sb(rdev); 3263 if (err) 3264 goto abort_free; 3265 3266 err = lock_rdev(rdev, newdev, super_format == -2); 3267 if (err) 3268 goto abort_free; 3269 3270 kobject_init(&rdev->kobj, &rdev_ktype); 3271 3272 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3273 if (!size) { 3274 printk(KERN_WARNING 3275 "md: %s has zero or unknown size, marking faulty!\n", 3276 bdevname(rdev->bdev,b)); 3277 err = -EINVAL; 3278 goto abort_free; 3279 } 3280 3281 if (super_format >= 0) { 3282 err = super_types[super_format]. 3283 load_super(rdev, NULL, super_minor); 3284 if (err == -EINVAL) { 3285 printk(KERN_WARNING 3286 "md: %s does not have a valid v%d.%d " 3287 "superblock, not importing!\n", 3288 bdevname(rdev->bdev,b), 3289 super_format, super_minor); 3290 goto abort_free; 3291 } 3292 if (err < 0) { 3293 printk(KERN_WARNING 3294 "md: could not read %s's sb, not importing!\n", 3295 bdevname(rdev->bdev,b)); 3296 goto abort_free; 3297 } 3298 } 3299 if (super_format == -1) 3300 /* hot-add for 0.90, or non-persistent: so no badblocks */ 3301 rdev->badblocks.shift = -1; 3302 3303 return rdev; 3304 3305 abort_free: 3306 if (rdev->bdev) 3307 unlock_rdev(rdev); 3308 md_rdev_clear(rdev); 3309 kfree(rdev); 3310 return ERR_PTR(err); 3311 } 3312 3313 /* 3314 * Check a full RAID array for plausibility 3315 */ 3316 3317 3318 static void analyze_sbs(struct mddev * mddev) 3319 { 3320 int i; 3321 struct md_rdev *rdev, *freshest, *tmp; 3322 char b[BDEVNAME_SIZE]; 3323 3324 freshest = NULL; 3325 rdev_for_each_safe(rdev, tmp, mddev) 3326 switch (super_types[mddev->major_version]. 3327 load_super(rdev, freshest, mddev->minor_version)) { 3328 case 1: 3329 freshest = rdev; 3330 break; 3331 case 0: 3332 break; 3333 default: 3334 printk( KERN_ERR \ 3335 "md: fatal superblock inconsistency in %s" 3336 " -- removing from array\n", 3337 bdevname(rdev->bdev,b)); 3338 kick_rdev_from_array(rdev); 3339 } 3340 3341 3342 super_types[mddev->major_version]. 3343 validate_super(mddev, freshest); 3344 3345 i = 0; 3346 rdev_for_each_safe(rdev, tmp, mddev) { 3347 if (mddev->max_disks && 3348 (rdev->desc_nr >= mddev->max_disks || 3349 i > mddev->max_disks)) { 3350 printk(KERN_WARNING 3351 "md: %s: %s: only %d devices permitted\n", 3352 mdname(mddev), bdevname(rdev->bdev, b), 3353 mddev->max_disks); 3354 kick_rdev_from_array(rdev); 3355 continue; 3356 } 3357 if (rdev != freshest) 3358 if (super_types[mddev->major_version]. 3359 validate_super(mddev, rdev)) { 3360 printk(KERN_WARNING "md: kicking non-fresh %s" 3361 " from array!\n", 3362 bdevname(rdev->bdev,b)); 3363 kick_rdev_from_array(rdev); 3364 continue; 3365 } 3366 if (mddev->level == LEVEL_MULTIPATH) { 3367 rdev->desc_nr = i++; 3368 rdev->raid_disk = rdev->desc_nr; 3369 set_bit(In_sync, &rdev->flags); 3370 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3371 rdev->raid_disk = -1; 3372 clear_bit(In_sync, &rdev->flags); 3373 } 3374 } 3375 } 3376 3377 /* Read a fixed-point number. 3378 * Numbers in sysfs attributes should be in "standard" units where 3379 * possible, so time should be in seconds. 3380 * However we internally use a a much smaller unit such as 3381 * milliseconds or jiffies. 3382 * This function takes a decimal number with a possible fractional 3383 * component, and produces an integer which is the result of 3384 * multiplying that number by 10^'scale'. 3385 * all without any floating-point arithmetic. 3386 */ 3387 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3388 { 3389 unsigned long result = 0; 3390 long decimals = -1; 3391 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3392 if (*cp == '.') 3393 decimals = 0; 3394 else if (decimals < scale) { 3395 unsigned int value; 3396 value = *cp - '0'; 3397 result = result * 10 + value; 3398 if (decimals >= 0) 3399 decimals++; 3400 } 3401 cp++; 3402 } 3403 if (*cp == '\n') 3404 cp++; 3405 if (*cp) 3406 return -EINVAL; 3407 if (decimals < 0) 3408 decimals = 0; 3409 while (decimals < scale) { 3410 result *= 10; 3411 decimals ++; 3412 } 3413 *res = result; 3414 return 0; 3415 } 3416 3417 3418 static void md_safemode_timeout(unsigned long data); 3419 3420 static ssize_t 3421 safe_delay_show(struct mddev *mddev, char *page) 3422 { 3423 int msec = (mddev->safemode_delay*1000)/HZ; 3424 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3425 } 3426 static ssize_t 3427 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3428 { 3429 unsigned long msec; 3430 3431 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3432 return -EINVAL; 3433 if (msec == 0) 3434 mddev->safemode_delay = 0; 3435 else { 3436 unsigned long old_delay = mddev->safemode_delay; 3437 mddev->safemode_delay = (msec*HZ)/1000; 3438 if (mddev->safemode_delay == 0) 3439 mddev->safemode_delay = 1; 3440 if (mddev->safemode_delay < old_delay) 3441 md_safemode_timeout((unsigned long)mddev); 3442 } 3443 return len; 3444 } 3445 static struct md_sysfs_entry md_safe_delay = 3446 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3447 3448 static ssize_t 3449 level_show(struct mddev *mddev, char *page) 3450 { 3451 struct md_personality *p = mddev->pers; 3452 if (p) 3453 return sprintf(page, "%s\n", p->name); 3454 else if (mddev->clevel[0]) 3455 return sprintf(page, "%s\n", mddev->clevel); 3456 else if (mddev->level != LEVEL_NONE) 3457 return sprintf(page, "%d\n", mddev->level); 3458 else 3459 return 0; 3460 } 3461 3462 static ssize_t 3463 level_store(struct mddev *mddev, const char *buf, size_t len) 3464 { 3465 char clevel[16]; 3466 ssize_t rv = len; 3467 struct md_personality *pers; 3468 long level; 3469 void *priv; 3470 struct md_rdev *rdev; 3471 3472 if (mddev->pers == NULL) { 3473 if (len == 0) 3474 return 0; 3475 if (len >= sizeof(mddev->clevel)) 3476 return -ENOSPC; 3477 strncpy(mddev->clevel, buf, len); 3478 if (mddev->clevel[len-1] == '\n') 3479 len--; 3480 mddev->clevel[len] = 0; 3481 mddev->level = LEVEL_NONE; 3482 return rv; 3483 } 3484 3485 /* request to change the personality. Need to ensure: 3486 * - array is not engaged in resync/recovery/reshape 3487 * - old personality can be suspended 3488 * - new personality will access other array. 3489 */ 3490 3491 if (mddev->sync_thread || 3492 mddev->reshape_position != MaxSector || 3493 mddev->sysfs_active) 3494 return -EBUSY; 3495 3496 if (!mddev->pers->quiesce) { 3497 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3498 mdname(mddev), mddev->pers->name); 3499 return -EINVAL; 3500 } 3501 3502 /* Now find the new personality */ 3503 if (len == 0 || len >= sizeof(clevel)) 3504 return -EINVAL; 3505 strncpy(clevel, buf, len); 3506 if (clevel[len-1] == '\n') 3507 len--; 3508 clevel[len] = 0; 3509 if (strict_strtol(clevel, 10, &level)) 3510 level = LEVEL_NONE; 3511 3512 if (request_module("md-%s", clevel) != 0) 3513 request_module("md-level-%s", clevel); 3514 spin_lock(&pers_lock); 3515 pers = find_pers(level, clevel); 3516 if (!pers || !try_module_get(pers->owner)) { 3517 spin_unlock(&pers_lock); 3518 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3519 return -EINVAL; 3520 } 3521 spin_unlock(&pers_lock); 3522 3523 if (pers == mddev->pers) { 3524 /* Nothing to do! */ 3525 module_put(pers->owner); 3526 return rv; 3527 } 3528 if (!pers->takeover) { 3529 module_put(pers->owner); 3530 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3531 mdname(mddev), clevel); 3532 return -EINVAL; 3533 } 3534 3535 rdev_for_each(rdev, mddev) 3536 rdev->new_raid_disk = rdev->raid_disk; 3537 3538 /* ->takeover must set new_* and/or delta_disks 3539 * if it succeeds, and may set them when it fails. 3540 */ 3541 priv = pers->takeover(mddev); 3542 if (IS_ERR(priv)) { 3543 mddev->new_level = mddev->level; 3544 mddev->new_layout = mddev->layout; 3545 mddev->new_chunk_sectors = mddev->chunk_sectors; 3546 mddev->raid_disks -= mddev->delta_disks; 3547 mddev->delta_disks = 0; 3548 mddev->reshape_backwards = 0; 3549 module_put(pers->owner); 3550 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3551 mdname(mddev), clevel); 3552 return PTR_ERR(priv); 3553 } 3554 3555 /* Looks like we have a winner */ 3556 mddev_suspend(mddev); 3557 mddev->pers->stop(mddev); 3558 3559 if (mddev->pers->sync_request == NULL && 3560 pers->sync_request != NULL) { 3561 /* need to add the md_redundancy_group */ 3562 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3563 printk(KERN_WARNING 3564 "md: cannot register extra attributes for %s\n", 3565 mdname(mddev)); 3566 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3567 } 3568 if (mddev->pers->sync_request != NULL && 3569 pers->sync_request == NULL) { 3570 /* need to remove the md_redundancy_group */ 3571 if (mddev->to_remove == NULL) 3572 mddev->to_remove = &md_redundancy_group; 3573 } 3574 3575 if (mddev->pers->sync_request == NULL && 3576 mddev->external) { 3577 /* We are converting from a no-redundancy array 3578 * to a redundancy array and metadata is managed 3579 * externally so we need to be sure that writes 3580 * won't block due to a need to transition 3581 * clean->dirty 3582 * until external management is started. 3583 */ 3584 mddev->in_sync = 0; 3585 mddev->safemode_delay = 0; 3586 mddev->safemode = 0; 3587 } 3588 3589 rdev_for_each(rdev, mddev) { 3590 if (rdev->raid_disk < 0) 3591 continue; 3592 if (rdev->new_raid_disk >= mddev->raid_disks) 3593 rdev->new_raid_disk = -1; 3594 if (rdev->new_raid_disk == rdev->raid_disk) 3595 continue; 3596 sysfs_unlink_rdev(mddev, rdev); 3597 } 3598 rdev_for_each(rdev, mddev) { 3599 if (rdev->raid_disk < 0) 3600 continue; 3601 if (rdev->new_raid_disk == rdev->raid_disk) 3602 continue; 3603 rdev->raid_disk = rdev->new_raid_disk; 3604 if (rdev->raid_disk < 0) 3605 clear_bit(In_sync, &rdev->flags); 3606 else { 3607 if (sysfs_link_rdev(mddev, rdev)) 3608 printk(KERN_WARNING "md: cannot register rd%d" 3609 " for %s after level change\n", 3610 rdev->raid_disk, mdname(mddev)); 3611 } 3612 } 3613 3614 module_put(mddev->pers->owner); 3615 mddev->pers = pers; 3616 mddev->private = priv; 3617 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3618 mddev->level = mddev->new_level; 3619 mddev->layout = mddev->new_layout; 3620 mddev->chunk_sectors = mddev->new_chunk_sectors; 3621 mddev->delta_disks = 0; 3622 mddev->reshape_backwards = 0; 3623 mddev->degraded = 0; 3624 if (mddev->pers->sync_request == NULL) { 3625 /* this is now an array without redundancy, so 3626 * it must always be in_sync 3627 */ 3628 mddev->in_sync = 1; 3629 del_timer_sync(&mddev->safemode_timer); 3630 } 3631 pers->run(mddev); 3632 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3633 mddev_resume(mddev); 3634 sysfs_notify(&mddev->kobj, NULL, "level"); 3635 md_new_event(mddev); 3636 return rv; 3637 } 3638 3639 static struct md_sysfs_entry md_level = 3640 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3641 3642 3643 static ssize_t 3644 layout_show(struct mddev *mddev, char *page) 3645 { 3646 /* just a number, not meaningful for all levels */ 3647 if (mddev->reshape_position != MaxSector && 3648 mddev->layout != mddev->new_layout) 3649 return sprintf(page, "%d (%d)\n", 3650 mddev->new_layout, mddev->layout); 3651 return sprintf(page, "%d\n", mddev->layout); 3652 } 3653 3654 static ssize_t 3655 layout_store(struct mddev *mddev, const char *buf, size_t len) 3656 { 3657 char *e; 3658 unsigned long n = simple_strtoul(buf, &e, 10); 3659 3660 if (!*buf || (*e && *e != '\n')) 3661 return -EINVAL; 3662 3663 if (mddev->pers) { 3664 int err; 3665 if (mddev->pers->check_reshape == NULL) 3666 return -EBUSY; 3667 mddev->new_layout = n; 3668 err = mddev->pers->check_reshape(mddev); 3669 if (err) { 3670 mddev->new_layout = mddev->layout; 3671 return err; 3672 } 3673 } else { 3674 mddev->new_layout = n; 3675 if (mddev->reshape_position == MaxSector) 3676 mddev->layout = n; 3677 } 3678 return len; 3679 } 3680 static struct md_sysfs_entry md_layout = 3681 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3682 3683 3684 static ssize_t 3685 raid_disks_show(struct mddev *mddev, char *page) 3686 { 3687 if (mddev->raid_disks == 0) 3688 return 0; 3689 if (mddev->reshape_position != MaxSector && 3690 mddev->delta_disks != 0) 3691 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3692 mddev->raid_disks - mddev->delta_disks); 3693 return sprintf(page, "%d\n", mddev->raid_disks); 3694 } 3695 3696 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3697 3698 static ssize_t 3699 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3700 { 3701 char *e; 3702 int rv = 0; 3703 unsigned long n = simple_strtoul(buf, &e, 10); 3704 3705 if (!*buf || (*e && *e != '\n')) 3706 return -EINVAL; 3707 3708 if (mddev->pers) 3709 rv = update_raid_disks(mddev, n); 3710 else if (mddev->reshape_position != MaxSector) { 3711 struct md_rdev *rdev; 3712 int olddisks = mddev->raid_disks - mddev->delta_disks; 3713 3714 rdev_for_each(rdev, mddev) { 3715 if (olddisks < n && 3716 rdev->data_offset < rdev->new_data_offset) 3717 return -EINVAL; 3718 if (olddisks > n && 3719 rdev->data_offset > rdev->new_data_offset) 3720 return -EINVAL; 3721 } 3722 mddev->delta_disks = n - olddisks; 3723 mddev->raid_disks = n; 3724 mddev->reshape_backwards = (mddev->delta_disks < 0); 3725 } else 3726 mddev->raid_disks = n; 3727 return rv ? rv : len; 3728 } 3729 static struct md_sysfs_entry md_raid_disks = 3730 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3731 3732 static ssize_t 3733 chunk_size_show(struct mddev *mddev, char *page) 3734 { 3735 if (mddev->reshape_position != MaxSector && 3736 mddev->chunk_sectors != mddev->new_chunk_sectors) 3737 return sprintf(page, "%d (%d)\n", 3738 mddev->new_chunk_sectors << 9, 3739 mddev->chunk_sectors << 9); 3740 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3741 } 3742 3743 static ssize_t 3744 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3745 { 3746 char *e; 3747 unsigned long n = simple_strtoul(buf, &e, 10); 3748 3749 if (!*buf || (*e && *e != '\n')) 3750 return -EINVAL; 3751 3752 if (mddev->pers) { 3753 int err; 3754 if (mddev->pers->check_reshape == NULL) 3755 return -EBUSY; 3756 mddev->new_chunk_sectors = n >> 9; 3757 err = mddev->pers->check_reshape(mddev); 3758 if (err) { 3759 mddev->new_chunk_sectors = mddev->chunk_sectors; 3760 return err; 3761 } 3762 } else { 3763 mddev->new_chunk_sectors = n >> 9; 3764 if (mddev->reshape_position == MaxSector) 3765 mddev->chunk_sectors = n >> 9; 3766 } 3767 return len; 3768 } 3769 static struct md_sysfs_entry md_chunk_size = 3770 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3771 3772 static ssize_t 3773 resync_start_show(struct mddev *mddev, char *page) 3774 { 3775 if (mddev->recovery_cp == MaxSector) 3776 return sprintf(page, "none\n"); 3777 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3778 } 3779 3780 static ssize_t 3781 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3782 { 3783 char *e; 3784 unsigned long long n = simple_strtoull(buf, &e, 10); 3785 3786 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3787 return -EBUSY; 3788 if (cmd_match(buf, "none")) 3789 n = MaxSector; 3790 else if (!*buf || (*e && *e != '\n')) 3791 return -EINVAL; 3792 3793 mddev->recovery_cp = n; 3794 return len; 3795 } 3796 static struct md_sysfs_entry md_resync_start = 3797 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3798 3799 /* 3800 * The array state can be: 3801 * 3802 * clear 3803 * No devices, no size, no level 3804 * Equivalent to STOP_ARRAY ioctl 3805 * inactive 3806 * May have some settings, but array is not active 3807 * all IO results in error 3808 * When written, doesn't tear down array, but just stops it 3809 * suspended (not supported yet) 3810 * All IO requests will block. The array can be reconfigured. 3811 * Writing this, if accepted, will block until array is quiescent 3812 * readonly 3813 * no resync can happen. no superblocks get written. 3814 * write requests fail 3815 * read-auto 3816 * like readonly, but behaves like 'clean' on a write request. 3817 * 3818 * clean - no pending writes, but otherwise active. 3819 * When written to inactive array, starts without resync 3820 * If a write request arrives then 3821 * if metadata is known, mark 'dirty' and switch to 'active'. 3822 * if not known, block and switch to write-pending 3823 * If written to an active array that has pending writes, then fails. 3824 * active 3825 * fully active: IO and resync can be happening. 3826 * When written to inactive array, starts with resync 3827 * 3828 * write-pending 3829 * clean, but writes are blocked waiting for 'active' to be written. 3830 * 3831 * active-idle 3832 * like active, but no writes have been seen for a while (100msec). 3833 * 3834 */ 3835 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3836 write_pending, active_idle, bad_word}; 3837 static char *array_states[] = { 3838 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3839 "write-pending", "active-idle", NULL }; 3840 3841 static int match_word(const char *word, char **list) 3842 { 3843 int n; 3844 for (n=0; list[n]; n++) 3845 if (cmd_match(word, list[n])) 3846 break; 3847 return n; 3848 } 3849 3850 static ssize_t 3851 array_state_show(struct mddev *mddev, char *page) 3852 { 3853 enum array_state st = inactive; 3854 3855 if (mddev->pers) 3856 switch(mddev->ro) { 3857 case 1: 3858 st = readonly; 3859 break; 3860 case 2: 3861 st = read_auto; 3862 break; 3863 case 0: 3864 if (mddev->in_sync) 3865 st = clean; 3866 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3867 st = write_pending; 3868 else if (mddev->safemode) 3869 st = active_idle; 3870 else 3871 st = active; 3872 } 3873 else { 3874 if (list_empty(&mddev->disks) && 3875 mddev->raid_disks == 0 && 3876 mddev->dev_sectors == 0) 3877 st = clear; 3878 else 3879 st = inactive; 3880 } 3881 return sprintf(page, "%s\n", array_states[st]); 3882 } 3883 3884 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev); 3885 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev); 3886 static int do_md_run(struct mddev * mddev); 3887 static int restart_array(struct mddev *mddev); 3888 3889 static ssize_t 3890 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3891 { 3892 int err = -EINVAL; 3893 enum array_state st = match_word(buf, array_states); 3894 switch(st) { 3895 case bad_word: 3896 break; 3897 case clear: 3898 /* stopping an active array */ 3899 err = do_md_stop(mddev, 0, NULL); 3900 break; 3901 case inactive: 3902 /* stopping an active array */ 3903 if (mddev->pers) 3904 err = do_md_stop(mddev, 2, NULL); 3905 else 3906 err = 0; /* already inactive */ 3907 break; 3908 case suspended: 3909 break; /* not supported yet */ 3910 case readonly: 3911 if (mddev->pers) 3912 err = md_set_readonly(mddev, NULL); 3913 else { 3914 mddev->ro = 1; 3915 set_disk_ro(mddev->gendisk, 1); 3916 err = do_md_run(mddev); 3917 } 3918 break; 3919 case read_auto: 3920 if (mddev->pers) { 3921 if (mddev->ro == 0) 3922 err = md_set_readonly(mddev, NULL); 3923 else if (mddev->ro == 1) 3924 err = restart_array(mddev); 3925 if (err == 0) { 3926 mddev->ro = 2; 3927 set_disk_ro(mddev->gendisk, 0); 3928 } 3929 } else { 3930 mddev->ro = 2; 3931 err = do_md_run(mddev); 3932 } 3933 break; 3934 case clean: 3935 if (mddev->pers) { 3936 restart_array(mddev); 3937 spin_lock_irq(&mddev->write_lock); 3938 if (atomic_read(&mddev->writes_pending) == 0) { 3939 if (mddev->in_sync == 0) { 3940 mddev->in_sync = 1; 3941 if (mddev->safemode == 1) 3942 mddev->safemode = 0; 3943 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3944 } 3945 err = 0; 3946 } else 3947 err = -EBUSY; 3948 spin_unlock_irq(&mddev->write_lock); 3949 } else 3950 err = -EINVAL; 3951 break; 3952 case active: 3953 if (mddev->pers) { 3954 restart_array(mddev); 3955 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3956 wake_up(&mddev->sb_wait); 3957 err = 0; 3958 } else { 3959 mddev->ro = 0; 3960 set_disk_ro(mddev->gendisk, 0); 3961 err = do_md_run(mddev); 3962 } 3963 break; 3964 case write_pending: 3965 case active_idle: 3966 /* these cannot be set */ 3967 break; 3968 } 3969 if (err) 3970 return err; 3971 else { 3972 if (mddev->hold_active == UNTIL_IOCTL) 3973 mddev->hold_active = 0; 3974 sysfs_notify_dirent_safe(mddev->sysfs_state); 3975 return len; 3976 } 3977 } 3978 static struct md_sysfs_entry md_array_state = 3979 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3980 3981 static ssize_t 3982 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3983 return sprintf(page, "%d\n", 3984 atomic_read(&mddev->max_corr_read_errors)); 3985 } 3986 3987 static ssize_t 3988 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3989 { 3990 char *e; 3991 unsigned long n = simple_strtoul(buf, &e, 10); 3992 3993 if (*buf && (*e == 0 || *e == '\n')) { 3994 atomic_set(&mddev->max_corr_read_errors, n); 3995 return len; 3996 } 3997 return -EINVAL; 3998 } 3999 4000 static struct md_sysfs_entry max_corr_read_errors = 4001 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4002 max_corrected_read_errors_store); 4003 4004 static ssize_t 4005 null_show(struct mddev *mddev, char *page) 4006 { 4007 return -EINVAL; 4008 } 4009 4010 static ssize_t 4011 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4012 { 4013 /* buf must be %d:%d\n? giving major and minor numbers */ 4014 /* The new device is added to the array. 4015 * If the array has a persistent superblock, we read the 4016 * superblock to initialise info and check validity. 4017 * Otherwise, only checking done is that in bind_rdev_to_array, 4018 * which mainly checks size. 4019 */ 4020 char *e; 4021 int major = simple_strtoul(buf, &e, 10); 4022 int minor; 4023 dev_t dev; 4024 struct md_rdev *rdev; 4025 int err; 4026 4027 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4028 return -EINVAL; 4029 minor = simple_strtoul(e+1, &e, 10); 4030 if (*e && *e != '\n') 4031 return -EINVAL; 4032 dev = MKDEV(major, minor); 4033 if (major != MAJOR(dev) || 4034 minor != MINOR(dev)) 4035 return -EOVERFLOW; 4036 4037 4038 if (mddev->persistent) { 4039 rdev = md_import_device(dev, mddev->major_version, 4040 mddev->minor_version); 4041 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4042 struct md_rdev *rdev0 4043 = list_entry(mddev->disks.next, 4044 struct md_rdev, same_set); 4045 err = super_types[mddev->major_version] 4046 .load_super(rdev, rdev0, mddev->minor_version); 4047 if (err < 0) 4048 goto out; 4049 } 4050 } else if (mddev->external) 4051 rdev = md_import_device(dev, -2, -1); 4052 else 4053 rdev = md_import_device(dev, -1, -1); 4054 4055 if (IS_ERR(rdev)) 4056 return PTR_ERR(rdev); 4057 err = bind_rdev_to_array(rdev, mddev); 4058 out: 4059 if (err) 4060 export_rdev(rdev); 4061 return err ? err : len; 4062 } 4063 4064 static struct md_sysfs_entry md_new_device = 4065 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4066 4067 static ssize_t 4068 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4069 { 4070 char *end; 4071 unsigned long chunk, end_chunk; 4072 4073 if (!mddev->bitmap) 4074 goto out; 4075 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4076 while (*buf) { 4077 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4078 if (buf == end) break; 4079 if (*end == '-') { /* range */ 4080 buf = end + 1; 4081 end_chunk = simple_strtoul(buf, &end, 0); 4082 if (buf == end) break; 4083 } 4084 if (*end && !isspace(*end)) break; 4085 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4086 buf = skip_spaces(end); 4087 } 4088 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4089 out: 4090 return len; 4091 } 4092 4093 static struct md_sysfs_entry md_bitmap = 4094 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4095 4096 static ssize_t 4097 size_show(struct mddev *mddev, char *page) 4098 { 4099 return sprintf(page, "%llu\n", 4100 (unsigned long long)mddev->dev_sectors / 2); 4101 } 4102 4103 static int update_size(struct mddev *mddev, sector_t num_sectors); 4104 4105 static ssize_t 4106 size_store(struct mddev *mddev, const char *buf, size_t len) 4107 { 4108 /* If array is inactive, we can reduce the component size, but 4109 * not increase it (except from 0). 4110 * If array is active, we can try an on-line resize 4111 */ 4112 sector_t sectors; 4113 int err = strict_blocks_to_sectors(buf, §ors); 4114 4115 if (err < 0) 4116 return err; 4117 if (mddev->pers) { 4118 err = update_size(mddev, sectors); 4119 md_update_sb(mddev, 1); 4120 } else { 4121 if (mddev->dev_sectors == 0 || 4122 mddev->dev_sectors > sectors) 4123 mddev->dev_sectors = sectors; 4124 else 4125 err = -ENOSPC; 4126 } 4127 return err ? err : len; 4128 } 4129 4130 static struct md_sysfs_entry md_size = 4131 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4132 4133 4134 /* Metdata version. 4135 * This is one of 4136 * 'none' for arrays with no metadata (good luck...) 4137 * 'external' for arrays with externally managed metadata, 4138 * or N.M for internally known formats 4139 */ 4140 static ssize_t 4141 metadata_show(struct mddev *mddev, char *page) 4142 { 4143 if (mddev->persistent) 4144 return sprintf(page, "%d.%d\n", 4145 mddev->major_version, mddev->minor_version); 4146 else if (mddev->external) 4147 return sprintf(page, "external:%s\n", mddev->metadata_type); 4148 else 4149 return sprintf(page, "none\n"); 4150 } 4151 4152 static ssize_t 4153 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4154 { 4155 int major, minor; 4156 char *e; 4157 /* Changing the details of 'external' metadata is 4158 * always permitted. Otherwise there must be 4159 * no devices attached to the array. 4160 */ 4161 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4162 ; 4163 else if (!list_empty(&mddev->disks)) 4164 return -EBUSY; 4165 4166 if (cmd_match(buf, "none")) { 4167 mddev->persistent = 0; 4168 mddev->external = 0; 4169 mddev->major_version = 0; 4170 mddev->minor_version = 90; 4171 return len; 4172 } 4173 if (strncmp(buf, "external:", 9) == 0) { 4174 size_t namelen = len-9; 4175 if (namelen >= sizeof(mddev->metadata_type)) 4176 namelen = sizeof(mddev->metadata_type)-1; 4177 strncpy(mddev->metadata_type, buf+9, namelen); 4178 mddev->metadata_type[namelen] = 0; 4179 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4180 mddev->metadata_type[--namelen] = 0; 4181 mddev->persistent = 0; 4182 mddev->external = 1; 4183 mddev->major_version = 0; 4184 mddev->minor_version = 90; 4185 return len; 4186 } 4187 major = simple_strtoul(buf, &e, 10); 4188 if (e==buf || *e != '.') 4189 return -EINVAL; 4190 buf = e+1; 4191 minor = simple_strtoul(buf, &e, 10); 4192 if (e==buf || (*e && *e != '\n') ) 4193 return -EINVAL; 4194 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4195 return -ENOENT; 4196 mddev->major_version = major; 4197 mddev->minor_version = minor; 4198 mddev->persistent = 1; 4199 mddev->external = 0; 4200 return len; 4201 } 4202 4203 static struct md_sysfs_entry md_metadata = 4204 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4205 4206 static ssize_t 4207 action_show(struct mddev *mddev, char *page) 4208 { 4209 char *type = "idle"; 4210 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4211 type = "frozen"; 4212 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4213 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4214 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4215 type = "reshape"; 4216 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4217 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4218 type = "resync"; 4219 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4220 type = "check"; 4221 else 4222 type = "repair"; 4223 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4224 type = "recover"; 4225 } 4226 return sprintf(page, "%s\n", type); 4227 } 4228 4229 static void reap_sync_thread(struct mddev *mddev); 4230 4231 static ssize_t 4232 action_store(struct mddev *mddev, const char *page, size_t len) 4233 { 4234 if (!mddev->pers || !mddev->pers->sync_request) 4235 return -EINVAL; 4236 4237 if (cmd_match(page, "frozen")) 4238 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4239 else 4240 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4241 4242 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4243 if (mddev->sync_thread) { 4244 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4245 reap_sync_thread(mddev); 4246 } 4247 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4248 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4249 return -EBUSY; 4250 else if (cmd_match(page, "resync")) 4251 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4252 else if (cmd_match(page, "recover")) { 4253 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4255 } else if (cmd_match(page, "reshape")) { 4256 int err; 4257 if (mddev->pers->start_reshape == NULL) 4258 return -EINVAL; 4259 err = mddev->pers->start_reshape(mddev); 4260 if (err) 4261 return err; 4262 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4263 } else { 4264 if (cmd_match(page, "check")) 4265 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4266 else if (!cmd_match(page, "repair")) 4267 return -EINVAL; 4268 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4269 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4270 } 4271 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4272 md_wakeup_thread(mddev->thread); 4273 sysfs_notify_dirent_safe(mddev->sysfs_action); 4274 return len; 4275 } 4276 4277 static ssize_t 4278 mismatch_cnt_show(struct mddev *mddev, char *page) 4279 { 4280 return sprintf(page, "%llu\n", 4281 (unsigned long long) mddev->resync_mismatches); 4282 } 4283 4284 static struct md_sysfs_entry md_scan_mode = 4285 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4286 4287 4288 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4289 4290 static ssize_t 4291 sync_min_show(struct mddev *mddev, char *page) 4292 { 4293 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4294 mddev->sync_speed_min ? "local": "system"); 4295 } 4296 4297 static ssize_t 4298 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4299 { 4300 int min; 4301 char *e; 4302 if (strncmp(buf, "system", 6)==0) { 4303 mddev->sync_speed_min = 0; 4304 return len; 4305 } 4306 min = simple_strtoul(buf, &e, 10); 4307 if (buf == e || (*e && *e != '\n') || min <= 0) 4308 return -EINVAL; 4309 mddev->sync_speed_min = min; 4310 return len; 4311 } 4312 4313 static struct md_sysfs_entry md_sync_min = 4314 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4315 4316 static ssize_t 4317 sync_max_show(struct mddev *mddev, char *page) 4318 { 4319 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4320 mddev->sync_speed_max ? "local": "system"); 4321 } 4322 4323 static ssize_t 4324 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4325 { 4326 int max; 4327 char *e; 4328 if (strncmp(buf, "system", 6)==0) { 4329 mddev->sync_speed_max = 0; 4330 return len; 4331 } 4332 max = simple_strtoul(buf, &e, 10); 4333 if (buf == e || (*e && *e != '\n') || max <= 0) 4334 return -EINVAL; 4335 mddev->sync_speed_max = max; 4336 return len; 4337 } 4338 4339 static struct md_sysfs_entry md_sync_max = 4340 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4341 4342 static ssize_t 4343 degraded_show(struct mddev *mddev, char *page) 4344 { 4345 return sprintf(page, "%d\n", mddev->degraded); 4346 } 4347 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4348 4349 static ssize_t 4350 sync_force_parallel_show(struct mddev *mddev, char *page) 4351 { 4352 return sprintf(page, "%d\n", mddev->parallel_resync); 4353 } 4354 4355 static ssize_t 4356 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4357 { 4358 long n; 4359 4360 if (strict_strtol(buf, 10, &n)) 4361 return -EINVAL; 4362 4363 if (n != 0 && n != 1) 4364 return -EINVAL; 4365 4366 mddev->parallel_resync = n; 4367 4368 if (mddev->sync_thread) 4369 wake_up(&resync_wait); 4370 4371 return len; 4372 } 4373 4374 /* force parallel resync, even with shared block devices */ 4375 static struct md_sysfs_entry md_sync_force_parallel = 4376 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4377 sync_force_parallel_show, sync_force_parallel_store); 4378 4379 static ssize_t 4380 sync_speed_show(struct mddev *mddev, char *page) 4381 { 4382 unsigned long resync, dt, db; 4383 if (mddev->curr_resync == 0) 4384 return sprintf(page, "none\n"); 4385 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4386 dt = (jiffies - mddev->resync_mark) / HZ; 4387 if (!dt) dt++; 4388 db = resync - mddev->resync_mark_cnt; 4389 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4390 } 4391 4392 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4393 4394 static ssize_t 4395 sync_completed_show(struct mddev *mddev, char *page) 4396 { 4397 unsigned long long max_sectors, resync; 4398 4399 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4400 return sprintf(page, "none\n"); 4401 4402 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4403 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4404 max_sectors = mddev->resync_max_sectors; 4405 else 4406 max_sectors = mddev->dev_sectors; 4407 4408 resync = mddev->curr_resync_completed; 4409 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4410 } 4411 4412 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4413 4414 static ssize_t 4415 min_sync_show(struct mddev *mddev, char *page) 4416 { 4417 return sprintf(page, "%llu\n", 4418 (unsigned long long)mddev->resync_min); 4419 } 4420 static ssize_t 4421 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4422 { 4423 unsigned long long min; 4424 if (strict_strtoull(buf, 10, &min)) 4425 return -EINVAL; 4426 if (min > mddev->resync_max) 4427 return -EINVAL; 4428 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4429 return -EBUSY; 4430 4431 /* Must be a multiple of chunk_size */ 4432 if (mddev->chunk_sectors) { 4433 sector_t temp = min; 4434 if (sector_div(temp, mddev->chunk_sectors)) 4435 return -EINVAL; 4436 } 4437 mddev->resync_min = min; 4438 4439 return len; 4440 } 4441 4442 static struct md_sysfs_entry md_min_sync = 4443 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4444 4445 static ssize_t 4446 max_sync_show(struct mddev *mddev, char *page) 4447 { 4448 if (mddev->resync_max == MaxSector) 4449 return sprintf(page, "max\n"); 4450 else 4451 return sprintf(page, "%llu\n", 4452 (unsigned long long)mddev->resync_max); 4453 } 4454 static ssize_t 4455 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4456 { 4457 if (strncmp(buf, "max", 3) == 0) 4458 mddev->resync_max = MaxSector; 4459 else { 4460 unsigned long long max; 4461 if (strict_strtoull(buf, 10, &max)) 4462 return -EINVAL; 4463 if (max < mddev->resync_min) 4464 return -EINVAL; 4465 if (max < mddev->resync_max && 4466 mddev->ro == 0 && 4467 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4468 return -EBUSY; 4469 4470 /* Must be a multiple of chunk_size */ 4471 if (mddev->chunk_sectors) { 4472 sector_t temp = max; 4473 if (sector_div(temp, mddev->chunk_sectors)) 4474 return -EINVAL; 4475 } 4476 mddev->resync_max = max; 4477 } 4478 wake_up(&mddev->recovery_wait); 4479 return len; 4480 } 4481 4482 static struct md_sysfs_entry md_max_sync = 4483 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4484 4485 static ssize_t 4486 suspend_lo_show(struct mddev *mddev, char *page) 4487 { 4488 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4489 } 4490 4491 static ssize_t 4492 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4493 { 4494 char *e; 4495 unsigned long long new = simple_strtoull(buf, &e, 10); 4496 unsigned long long old = mddev->suspend_lo; 4497 4498 if (mddev->pers == NULL || 4499 mddev->pers->quiesce == NULL) 4500 return -EINVAL; 4501 if (buf == e || (*e && *e != '\n')) 4502 return -EINVAL; 4503 4504 mddev->suspend_lo = new; 4505 if (new >= old) 4506 /* Shrinking suspended region */ 4507 mddev->pers->quiesce(mddev, 2); 4508 else { 4509 /* Expanding suspended region - need to wait */ 4510 mddev->pers->quiesce(mddev, 1); 4511 mddev->pers->quiesce(mddev, 0); 4512 } 4513 return len; 4514 } 4515 static struct md_sysfs_entry md_suspend_lo = 4516 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4517 4518 4519 static ssize_t 4520 suspend_hi_show(struct mddev *mddev, char *page) 4521 { 4522 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4523 } 4524 4525 static ssize_t 4526 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4527 { 4528 char *e; 4529 unsigned long long new = simple_strtoull(buf, &e, 10); 4530 unsigned long long old = mddev->suspend_hi; 4531 4532 if (mddev->pers == NULL || 4533 mddev->pers->quiesce == NULL) 4534 return -EINVAL; 4535 if (buf == e || (*e && *e != '\n')) 4536 return -EINVAL; 4537 4538 mddev->suspend_hi = new; 4539 if (new <= old) 4540 /* Shrinking suspended region */ 4541 mddev->pers->quiesce(mddev, 2); 4542 else { 4543 /* Expanding suspended region - need to wait */ 4544 mddev->pers->quiesce(mddev, 1); 4545 mddev->pers->quiesce(mddev, 0); 4546 } 4547 return len; 4548 } 4549 static struct md_sysfs_entry md_suspend_hi = 4550 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4551 4552 static ssize_t 4553 reshape_position_show(struct mddev *mddev, char *page) 4554 { 4555 if (mddev->reshape_position != MaxSector) 4556 return sprintf(page, "%llu\n", 4557 (unsigned long long)mddev->reshape_position); 4558 strcpy(page, "none\n"); 4559 return 5; 4560 } 4561 4562 static ssize_t 4563 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4564 { 4565 struct md_rdev *rdev; 4566 char *e; 4567 unsigned long long new = simple_strtoull(buf, &e, 10); 4568 if (mddev->pers) 4569 return -EBUSY; 4570 if (buf == e || (*e && *e != '\n')) 4571 return -EINVAL; 4572 mddev->reshape_position = new; 4573 mddev->delta_disks = 0; 4574 mddev->reshape_backwards = 0; 4575 mddev->new_level = mddev->level; 4576 mddev->new_layout = mddev->layout; 4577 mddev->new_chunk_sectors = mddev->chunk_sectors; 4578 rdev_for_each(rdev, mddev) 4579 rdev->new_data_offset = rdev->data_offset; 4580 return len; 4581 } 4582 4583 static struct md_sysfs_entry md_reshape_position = 4584 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4585 reshape_position_store); 4586 4587 static ssize_t 4588 reshape_direction_show(struct mddev *mddev, char *page) 4589 { 4590 return sprintf(page, "%s\n", 4591 mddev->reshape_backwards ? "backwards" : "forwards"); 4592 } 4593 4594 static ssize_t 4595 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4596 { 4597 int backwards = 0; 4598 if (cmd_match(buf, "forwards")) 4599 backwards = 0; 4600 else if (cmd_match(buf, "backwards")) 4601 backwards = 1; 4602 else 4603 return -EINVAL; 4604 if (mddev->reshape_backwards == backwards) 4605 return len; 4606 4607 /* check if we are allowed to change */ 4608 if (mddev->delta_disks) 4609 return -EBUSY; 4610 4611 if (mddev->persistent && 4612 mddev->major_version == 0) 4613 return -EINVAL; 4614 4615 mddev->reshape_backwards = backwards; 4616 return len; 4617 } 4618 4619 static struct md_sysfs_entry md_reshape_direction = 4620 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4621 reshape_direction_store); 4622 4623 static ssize_t 4624 array_size_show(struct mddev *mddev, char *page) 4625 { 4626 if (mddev->external_size) 4627 return sprintf(page, "%llu\n", 4628 (unsigned long long)mddev->array_sectors/2); 4629 else 4630 return sprintf(page, "default\n"); 4631 } 4632 4633 static ssize_t 4634 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4635 { 4636 sector_t sectors; 4637 4638 if (strncmp(buf, "default", 7) == 0) { 4639 if (mddev->pers) 4640 sectors = mddev->pers->size(mddev, 0, 0); 4641 else 4642 sectors = mddev->array_sectors; 4643 4644 mddev->external_size = 0; 4645 } else { 4646 if (strict_blocks_to_sectors(buf, §ors) < 0) 4647 return -EINVAL; 4648 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4649 return -E2BIG; 4650 4651 mddev->external_size = 1; 4652 } 4653 4654 mddev->array_sectors = sectors; 4655 if (mddev->pers) { 4656 set_capacity(mddev->gendisk, mddev->array_sectors); 4657 revalidate_disk(mddev->gendisk); 4658 } 4659 return len; 4660 } 4661 4662 static struct md_sysfs_entry md_array_size = 4663 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4664 array_size_store); 4665 4666 static struct attribute *md_default_attrs[] = { 4667 &md_level.attr, 4668 &md_layout.attr, 4669 &md_raid_disks.attr, 4670 &md_chunk_size.attr, 4671 &md_size.attr, 4672 &md_resync_start.attr, 4673 &md_metadata.attr, 4674 &md_new_device.attr, 4675 &md_safe_delay.attr, 4676 &md_array_state.attr, 4677 &md_reshape_position.attr, 4678 &md_reshape_direction.attr, 4679 &md_array_size.attr, 4680 &max_corr_read_errors.attr, 4681 NULL, 4682 }; 4683 4684 static struct attribute *md_redundancy_attrs[] = { 4685 &md_scan_mode.attr, 4686 &md_mismatches.attr, 4687 &md_sync_min.attr, 4688 &md_sync_max.attr, 4689 &md_sync_speed.attr, 4690 &md_sync_force_parallel.attr, 4691 &md_sync_completed.attr, 4692 &md_min_sync.attr, 4693 &md_max_sync.attr, 4694 &md_suspend_lo.attr, 4695 &md_suspend_hi.attr, 4696 &md_bitmap.attr, 4697 &md_degraded.attr, 4698 NULL, 4699 }; 4700 static struct attribute_group md_redundancy_group = { 4701 .name = NULL, 4702 .attrs = md_redundancy_attrs, 4703 }; 4704 4705 4706 static ssize_t 4707 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4708 { 4709 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4710 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4711 ssize_t rv; 4712 4713 if (!entry->show) 4714 return -EIO; 4715 spin_lock(&all_mddevs_lock); 4716 if (list_empty(&mddev->all_mddevs)) { 4717 spin_unlock(&all_mddevs_lock); 4718 return -EBUSY; 4719 } 4720 mddev_get(mddev); 4721 spin_unlock(&all_mddevs_lock); 4722 4723 rv = mddev_lock(mddev); 4724 if (!rv) { 4725 rv = entry->show(mddev, page); 4726 mddev_unlock(mddev); 4727 } 4728 mddev_put(mddev); 4729 return rv; 4730 } 4731 4732 static ssize_t 4733 md_attr_store(struct kobject *kobj, struct attribute *attr, 4734 const char *page, size_t length) 4735 { 4736 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4737 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4738 ssize_t rv; 4739 4740 if (!entry->store) 4741 return -EIO; 4742 if (!capable(CAP_SYS_ADMIN)) 4743 return -EACCES; 4744 spin_lock(&all_mddevs_lock); 4745 if (list_empty(&mddev->all_mddevs)) { 4746 spin_unlock(&all_mddevs_lock); 4747 return -EBUSY; 4748 } 4749 mddev_get(mddev); 4750 spin_unlock(&all_mddevs_lock); 4751 rv = mddev_lock(mddev); 4752 if (!rv) { 4753 rv = entry->store(mddev, page, length); 4754 mddev_unlock(mddev); 4755 } 4756 mddev_put(mddev); 4757 return rv; 4758 } 4759 4760 static void md_free(struct kobject *ko) 4761 { 4762 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4763 4764 if (mddev->sysfs_state) 4765 sysfs_put(mddev->sysfs_state); 4766 4767 if (mddev->gendisk) { 4768 del_gendisk(mddev->gendisk); 4769 put_disk(mddev->gendisk); 4770 } 4771 if (mddev->queue) 4772 blk_cleanup_queue(mddev->queue); 4773 4774 kfree(mddev); 4775 } 4776 4777 static const struct sysfs_ops md_sysfs_ops = { 4778 .show = md_attr_show, 4779 .store = md_attr_store, 4780 }; 4781 static struct kobj_type md_ktype = { 4782 .release = md_free, 4783 .sysfs_ops = &md_sysfs_ops, 4784 .default_attrs = md_default_attrs, 4785 }; 4786 4787 int mdp_major = 0; 4788 4789 static void mddev_delayed_delete(struct work_struct *ws) 4790 { 4791 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4792 4793 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4794 kobject_del(&mddev->kobj); 4795 kobject_put(&mddev->kobj); 4796 } 4797 4798 static int md_alloc(dev_t dev, char *name) 4799 { 4800 static DEFINE_MUTEX(disks_mutex); 4801 struct mddev *mddev = mddev_find(dev); 4802 struct gendisk *disk; 4803 int partitioned; 4804 int shift; 4805 int unit; 4806 int error; 4807 4808 if (!mddev) 4809 return -ENODEV; 4810 4811 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4812 shift = partitioned ? MdpMinorShift : 0; 4813 unit = MINOR(mddev->unit) >> shift; 4814 4815 /* wait for any previous instance of this device to be 4816 * completely removed (mddev_delayed_delete). 4817 */ 4818 flush_workqueue(md_misc_wq); 4819 4820 mutex_lock(&disks_mutex); 4821 error = -EEXIST; 4822 if (mddev->gendisk) 4823 goto abort; 4824 4825 if (name) { 4826 /* Need to ensure that 'name' is not a duplicate. 4827 */ 4828 struct mddev *mddev2; 4829 spin_lock(&all_mddevs_lock); 4830 4831 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4832 if (mddev2->gendisk && 4833 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4834 spin_unlock(&all_mddevs_lock); 4835 goto abort; 4836 } 4837 spin_unlock(&all_mddevs_lock); 4838 } 4839 4840 error = -ENOMEM; 4841 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4842 if (!mddev->queue) 4843 goto abort; 4844 mddev->queue->queuedata = mddev; 4845 4846 blk_queue_make_request(mddev->queue, md_make_request); 4847 blk_set_stacking_limits(&mddev->queue->limits); 4848 4849 disk = alloc_disk(1 << shift); 4850 if (!disk) { 4851 blk_cleanup_queue(mddev->queue); 4852 mddev->queue = NULL; 4853 goto abort; 4854 } 4855 disk->major = MAJOR(mddev->unit); 4856 disk->first_minor = unit << shift; 4857 if (name) 4858 strcpy(disk->disk_name, name); 4859 else if (partitioned) 4860 sprintf(disk->disk_name, "md_d%d", unit); 4861 else 4862 sprintf(disk->disk_name, "md%d", unit); 4863 disk->fops = &md_fops; 4864 disk->private_data = mddev; 4865 disk->queue = mddev->queue; 4866 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4867 /* Allow extended partitions. This makes the 4868 * 'mdp' device redundant, but we can't really 4869 * remove it now. 4870 */ 4871 disk->flags |= GENHD_FL_EXT_DEVT; 4872 mddev->gendisk = disk; 4873 /* As soon as we call add_disk(), another thread could get 4874 * through to md_open, so make sure it doesn't get too far 4875 */ 4876 mutex_lock(&mddev->open_mutex); 4877 add_disk(disk); 4878 4879 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4880 &disk_to_dev(disk)->kobj, "%s", "md"); 4881 if (error) { 4882 /* This isn't possible, but as kobject_init_and_add is marked 4883 * __must_check, we must do something with the result 4884 */ 4885 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4886 disk->disk_name); 4887 error = 0; 4888 } 4889 if (mddev->kobj.sd && 4890 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4891 printk(KERN_DEBUG "pointless warning\n"); 4892 mutex_unlock(&mddev->open_mutex); 4893 abort: 4894 mutex_unlock(&disks_mutex); 4895 if (!error && mddev->kobj.sd) { 4896 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4897 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4898 } 4899 mddev_put(mddev); 4900 return error; 4901 } 4902 4903 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4904 { 4905 md_alloc(dev, NULL); 4906 return NULL; 4907 } 4908 4909 static int add_named_array(const char *val, struct kernel_param *kp) 4910 { 4911 /* val must be "md_*" where * is not all digits. 4912 * We allocate an array with a large free minor number, and 4913 * set the name to val. val must not already be an active name. 4914 */ 4915 int len = strlen(val); 4916 char buf[DISK_NAME_LEN]; 4917 4918 while (len && val[len-1] == '\n') 4919 len--; 4920 if (len >= DISK_NAME_LEN) 4921 return -E2BIG; 4922 strlcpy(buf, val, len+1); 4923 if (strncmp(buf, "md_", 3) != 0) 4924 return -EINVAL; 4925 return md_alloc(0, buf); 4926 } 4927 4928 static void md_safemode_timeout(unsigned long data) 4929 { 4930 struct mddev *mddev = (struct mddev *) data; 4931 4932 if (!atomic_read(&mddev->writes_pending)) { 4933 mddev->safemode = 1; 4934 if (mddev->external) 4935 sysfs_notify_dirent_safe(mddev->sysfs_state); 4936 } 4937 md_wakeup_thread(mddev->thread); 4938 } 4939 4940 static int start_dirty_degraded; 4941 4942 int md_run(struct mddev *mddev) 4943 { 4944 int err; 4945 struct md_rdev *rdev; 4946 struct md_personality *pers; 4947 4948 if (list_empty(&mddev->disks)) 4949 /* cannot run an array with no devices.. */ 4950 return -EINVAL; 4951 4952 if (mddev->pers) 4953 return -EBUSY; 4954 /* Cannot run until previous stop completes properly */ 4955 if (mddev->sysfs_active) 4956 return -EBUSY; 4957 4958 /* 4959 * Analyze all RAID superblock(s) 4960 */ 4961 if (!mddev->raid_disks) { 4962 if (!mddev->persistent) 4963 return -EINVAL; 4964 analyze_sbs(mddev); 4965 } 4966 4967 if (mddev->level != LEVEL_NONE) 4968 request_module("md-level-%d", mddev->level); 4969 else if (mddev->clevel[0]) 4970 request_module("md-%s", mddev->clevel); 4971 4972 /* 4973 * Drop all container device buffers, from now on 4974 * the only valid external interface is through the md 4975 * device. 4976 */ 4977 rdev_for_each(rdev, mddev) { 4978 if (test_bit(Faulty, &rdev->flags)) 4979 continue; 4980 sync_blockdev(rdev->bdev); 4981 invalidate_bdev(rdev->bdev); 4982 4983 /* perform some consistency tests on the device. 4984 * We don't want the data to overlap the metadata, 4985 * Internal Bitmap issues have been handled elsewhere. 4986 */ 4987 if (rdev->meta_bdev) { 4988 /* Nothing to check */; 4989 } else if (rdev->data_offset < rdev->sb_start) { 4990 if (mddev->dev_sectors && 4991 rdev->data_offset + mddev->dev_sectors 4992 > rdev->sb_start) { 4993 printk("md: %s: data overlaps metadata\n", 4994 mdname(mddev)); 4995 return -EINVAL; 4996 } 4997 } else { 4998 if (rdev->sb_start + rdev->sb_size/512 4999 > rdev->data_offset) { 5000 printk("md: %s: metadata overlaps data\n", 5001 mdname(mddev)); 5002 return -EINVAL; 5003 } 5004 } 5005 sysfs_notify_dirent_safe(rdev->sysfs_state); 5006 } 5007 5008 if (mddev->bio_set == NULL) 5009 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 5010 sizeof(struct mddev *)); 5011 5012 spin_lock(&pers_lock); 5013 pers = find_pers(mddev->level, mddev->clevel); 5014 if (!pers || !try_module_get(pers->owner)) { 5015 spin_unlock(&pers_lock); 5016 if (mddev->level != LEVEL_NONE) 5017 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5018 mddev->level); 5019 else 5020 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5021 mddev->clevel); 5022 return -EINVAL; 5023 } 5024 mddev->pers = pers; 5025 spin_unlock(&pers_lock); 5026 if (mddev->level != pers->level) { 5027 mddev->level = pers->level; 5028 mddev->new_level = pers->level; 5029 } 5030 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5031 5032 if (mddev->reshape_position != MaxSector && 5033 pers->start_reshape == NULL) { 5034 /* This personality cannot handle reshaping... */ 5035 mddev->pers = NULL; 5036 module_put(pers->owner); 5037 return -EINVAL; 5038 } 5039 5040 if (pers->sync_request) { 5041 /* Warn if this is a potentially silly 5042 * configuration. 5043 */ 5044 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5045 struct md_rdev *rdev2; 5046 int warned = 0; 5047 5048 rdev_for_each(rdev, mddev) 5049 rdev_for_each(rdev2, mddev) { 5050 if (rdev < rdev2 && 5051 rdev->bdev->bd_contains == 5052 rdev2->bdev->bd_contains) { 5053 printk(KERN_WARNING 5054 "%s: WARNING: %s appears to be" 5055 " on the same physical disk as" 5056 " %s.\n", 5057 mdname(mddev), 5058 bdevname(rdev->bdev,b), 5059 bdevname(rdev2->bdev,b2)); 5060 warned = 1; 5061 } 5062 } 5063 5064 if (warned) 5065 printk(KERN_WARNING 5066 "True protection against single-disk" 5067 " failure might be compromised.\n"); 5068 } 5069 5070 mddev->recovery = 0; 5071 /* may be over-ridden by personality */ 5072 mddev->resync_max_sectors = mddev->dev_sectors; 5073 5074 mddev->ok_start_degraded = start_dirty_degraded; 5075 5076 if (start_readonly && mddev->ro == 0) 5077 mddev->ro = 2; /* read-only, but switch on first write */ 5078 5079 err = mddev->pers->run(mddev); 5080 if (err) 5081 printk(KERN_ERR "md: pers->run() failed ...\n"); 5082 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5083 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5084 " but 'external_size' not in effect?\n", __func__); 5085 printk(KERN_ERR 5086 "md: invalid array_size %llu > default size %llu\n", 5087 (unsigned long long)mddev->array_sectors / 2, 5088 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5089 err = -EINVAL; 5090 mddev->pers->stop(mddev); 5091 } 5092 if (err == 0 && mddev->pers->sync_request && 5093 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5094 err = bitmap_create(mddev); 5095 if (err) { 5096 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5097 mdname(mddev), err); 5098 mddev->pers->stop(mddev); 5099 } 5100 } 5101 if (err) { 5102 module_put(mddev->pers->owner); 5103 mddev->pers = NULL; 5104 bitmap_destroy(mddev); 5105 return err; 5106 } 5107 if (mddev->pers->sync_request) { 5108 if (mddev->kobj.sd && 5109 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5110 printk(KERN_WARNING 5111 "md: cannot register extra attributes for %s\n", 5112 mdname(mddev)); 5113 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5114 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5115 mddev->ro = 0; 5116 5117 atomic_set(&mddev->writes_pending,0); 5118 atomic_set(&mddev->max_corr_read_errors, 5119 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5120 mddev->safemode = 0; 5121 mddev->safemode_timer.function = md_safemode_timeout; 5122 mddev->safemode_timer.data = (unsigned long) mddev; 5123 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5124 mddev->in_sync = 1; 5125 smp_wmb(); 5126 mddev->ready = 1; 5127 rdev_for_each(rdev, mddev) 5128 if (rdev->raid_disk >= 0) 5129 if (sysfs_link_rdev(mddev, rdev)) 5130 /* failure here is OK */; 5131 5132 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5133 5134 if (mddev->flags) 5135 md_update_sb(mddev, 0); 5136 5137 md_new_event(mddev); 5138 sysfs_notify_dirent_safe(mddev->sysfs_state); 5139 sysfs_notify_dirent_safe(mddev->sysfs_action); 5140 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5141 return 0; 5142 } 5143 EXPORT_SYMBOL_GPL(md_run); 5144 5145 static int do_md_run(struct mddev *mddev) 5146 { 5147 int err; 5148 5149 err = md_run(mddev); 5150 if (err) 5151 goto out; 5152 err = bitmap_load(mddev); 5153 if (err) { 5154 bitmap_destroy(mddev); 5155 goto out; 5156 } 5157 5158 md_wakeup_thread(mddev->thread); 5159 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5160 5161 set_capacity(mddev->gendisk, mddev->array_sectors); 5162 revalidate_disk(mddev->gendisk); 5163 mddev->changed = 1; 5164 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5165 out: 5166 return err; 5167 } 5168 5169 static int restart_array(struct mddev *mddev) 5170 { 5171 struct gendisk *disk = mddev->gendisk; 5172 5173 /* Complain if it has no devices */ 5174 if (list_empty(&mddev->disks)) 5175 return -ENXIO; 5176 if (!mddev->pers) 5177 return -EINVAL; 5178 if (!mddev->ro) 5179 return -EBUSY; 5180 mddev->safemode = 0; 5181 mddev->ro = 0; 5182 set_disk_ro(disk, 0); 5183 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5184 mdname(mddev)); 5185 /* Kick recovery or resync if necessary */ 5186 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5187 md_wakeup_thread(mddev->thread); 5188 md_wakeup_thread(mddev->sync_thread); 5189 sysfs_notify_dirent_safe(mddev->sysfs_state); 5190 return 0; 5191 } 5192 5193 /* similar to deny_write_access, but accounts for our holding a reference 5194 * to the file ourselves */ 5195 static int deny_bitmap_write_access(struct file * file) 5196 { 5197 struct inode *inode = file->f_mapping->host; 5198 5199 spin_lock(&inode->i_lock); 5200 if (atomic_read(&inode->i_writecount) > 1) { 5201 spin_unlock(&inode->i_lock); 5202 return -ETXTBSY; 5203 } 5204 atomic_set(&inode->i_writecount, -1); 5205 spin_unlock(&inode->i_lock); 5206 5207 return 0; 5208 } 5209 5210 void restore_bitmap_write_access(struct file *file) 5211 { 5212 struct inode *inode = file->f_mapping->host; 5213 5214 spin_lock(&inode->i_lock); 5215 atomic_set(&inode->i_writecount, 1); 5216 spin_unlock(&inode->i_lock); 5217 } 5218 5219 static void md_clean(struct mddev *mddev) 5220 { 5221 mddev->array_sectors = 0; 5222 mddev->external_size = 0; 5223 mddev->dev_sectors = 0; 5224 mddev->raid_disks = 0; 5225 mddev->recovery_cp = 0; 5226 mddev->resync_min = 0; 5227 mddev->resync_max = MaxSector; 5228 mddev->reshape_position = MaxSector; 5229 mddev->external = 0; 5230 mddev->persistent = 0; 5231 mddev->level = LEVEL_NONE; 5232 mddev->clevel[0] = 0; 5233 mddev->flags = 0; 5234 mddev->ro = 0; 5235 mddev->metadata_type[0] = 0; 5236 mddev->chunk_sectors = 0; 5237 mddev->ctime = mddev->utime = 0; 5238 mddev->layout = 0; 5239 mddev->max_disks = 0; 5240 mddev->events = 0; 5241 mddev->can_decrease_events = 0; 5242 mddev->delta_disks = 0; 5243 mddev->reshape_backwards = 0; 5244 mddev->new_level = LEVEL_NONE; 5245 mddev->new_layout = 0; 5246 mddev->new_chunk_sectors = 0; 5247 mddev->curr_resync = 0; 5248 mddev->resync_mismatches = 0; 5249 mddev->suspend_lo = mddev->suspend_hi = 0; 5250 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5251 mddev->recovery = 0; 5252 mddev->in_sync = 0; 5253 mddev->changed = 0; 5254 mddev->degraded = 0; 5255 mddev->safemode = 0; 5256 mddev->merge_check_needed = 0; 5257 mddev->bitmap_info.offset = 0; 5258 mddev->bitmap_info.default_offset = 0; 5259 mddev->bitmap_info.default_space = 0; 5260 mddev->bitmap_info.chunksize = 0; 5261 mddev->bitmap_info.daemon_sleep = 0; 5262 mddev->bitmap_info.max_write_behind = 0; 5263 } 5264 5265 static void __md_stop_writes(struct mddev *mddev) 5266 { 5267 if (mddev->sync_thread) { 5268 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5269 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5270 reap_sync_thread(mddev); 5271 } 5272 5273 del_timer_sync(&mddev->safemode_timer); 5274 5275 bitmap_flush(mddev); 5276 md_super_wait(mddev); 5277 5278 if (!mddev->in_sync || mddev->flags) { 5279 /* mark array as shutdown cleanly */ 5280 mddev->in_sync = 1; 5281 md_update_sb(mddev, 1); 5282 } 5283 } 5284 5285 void md_stop_writes(struct mddev *mddev) 5286 { 5287 mddev_lock(mddev); 5288 __md_stop_writes(mddev); 5289 mddev_unlock(mddev); 5290 } 5291 EXPORT_SYMBOL_GPL(md_stop_writes); 5292 5293 void md_stop(struct mddev *mddev) 5294 { 5295 mddev->ready = 0; 5296 mddev->pers->stop(mddev); 5297 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5298 mddev->to_remove = &md_redundancy_group; 5299 module_put(mddev->pers->owner); 5300 mddev->pers = NULL; 5301 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5302 } 5303 EXPORT_SYMBOL_GPL(md_stop); 5304 5305 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5306 { 5307 int err = 0; 5308 mutex_lock(&mddev->open_mutex); 5309 if (atomic_read(&mddev->openers) > !!bdev) { 5310 printk("md: %s still in use.\n",mdname(mddev)); 5311 err = -EBUSY; 5312 goto out; 5313 } 5314 if (bdev) 5315 sync_blockdev(bdev); 5316 if (mddev->pers) { 5317 __md_stop_writes(mddev); 5318 5319 err = -ENXIO; 5320 if (mddev->ro==1) 5321 goto out; 5322 mddev->ro = 1; 5323 set_disk_ro(mddev->gendisk, 1); 5324 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5325 sysfs_notify_dirent_safe(mddev->sysfs_state); 5326 err = 0; 5327 } 5328 out: 5329 mutex_unlock(&mddev->open_mutex); 5330 return err; 5331 } 5332 5333 /* mode: 5334 * 0 - completely stop and dis-assemble array 5335 * 2 - stop but do not disassemble array 5336 */ 5337 static int do_md_stop(struct mddev * mddev, int mode, 5338 struct block_device *bdev) 5339 { 5340 struct gendisk *disk = mddev->gendisk; 5341 struct md_rdev *rdev; 5342 5343 mutex_lock(&mddev->open_mutex); 5344 if (atomic_read(&mddev->openers) > !!bdev || 5345 mddev->sysfs_active) { 5346 printk("md: %s still in use.\n",mdname(mddev)); 5347 mutex_unlock(&mddev->open_mutex); 5348 return -EBUSY; 5349 } 5350 if (bdev) 5351 /* It is possible IO was issued on some other 5352 * open file which was closed before we took ->open_mutex. 5353 * As that was not the last close __blkdev_put will not 5354 * have called sync_blockdev, so we must. 5355 */ 5356 sync_blockdev(bdev); 5357 5358 if (mddev->pers) { 5359 if (mddev->ro) 5360 set_disk_ro(disk, 0); 5361 5362 __md_stop_writes(mddev); 5363 md_stop(mddev); 5364 mddev->queue->merge_bvec_fn = NULL; 5365 mddev->queue->backing_dev_info.congested_fn = NULL; 5366 5367 /* tell userspace to handle 'inactive' */ 5368 sysfs_notify_dirent_safe(mddev->sysfs_state); 5369 5370 rdev_for_each(rdev, mddev) 5371 if (rdev->raid_disk >= 0) 5372 sysfs_unlink_rdev(mddev, rdev); 5373 5374 set_capacity(disk, 0); 5375 mutex_unlock(&mddev->open_mutex); 5376 mddev->changed = 1; 5377 revalidate_disk(disk); 5378 5379 if (mddev->ro) 5380 mddev->ro = 0; 5381 } else 5382 mutex_unlock(&mddev->open_mutex); 5383 /* 5384 * Free resources if final stop 5385 */ 5386 if (mode == 0) { 5387 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5388 5389 bitmap_destroy(mddev); 5390 if (mddev->bitmap_info.file) { 5391 restore_bitmap_write_access(mddev->bitmap_info.file); 5392 fput(mddev->bitmap_info.file); 5393 mddev->bitmap_info.file = NULL; 5394 } 5395 mddev->bitmap_info.offset = 0; 5396 5397 export_array(mddev); 5398 5399 md_clean(mddev); 5400 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5401 if (mddev->hold_active == UNTIL_STOP) 5402 mddev->hold_active = 0; 5403 } 5404 blk_integrity_unregister(disk); 5405 md_new_event(mddev); 5406 sysfs_notify_dirent_safe(mddev->sysfs_state); 5407 return 0; 5408 } 5409 5410 #ifndef MODULE 5411 static void autorun_array(struct mddev *mddev) 5412 { 5413 struct md_rdev *rdev; 5414 int err; 5415 5416 if (list_empty(&mddev->disks)) 5417 return; 5418 5419 printk(KERN_INFO "md: running: "); 5420 5421 rdev_for_each(rdev, mddev) { 5422 char b[BDEVNAME_SIZE]; 5423 printk("<%s>", bdevname(rdev->bdev,b)); 5424 } 5425 printk("\n"); 5426 5427 err = do_md_run(mddev); 5428 if (err) { 5429 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5430 do_md_stop(mddev, 0, NULL); 5431 } 5432 } 5433 5434 /* 5435 * lets try to run arrays based on all disks that have arrived 5436 * until now. (those are in pending_raid_disks) 5437 * 5438 * the method: pick the first pending disk, collect all disks with 5439 * the same UUID, remove all from the pending list and put them into 5440 * the 'same_array' list. Then order this list based on superblock 5441 * update time (freshest comes first), kick out 'old' disks and 5442 * compare superblocks. If everything's fine then run it. 5443 * 5444 * If "unit" is allocated, then bump its reference count 5445 */ 5446 static void autorun_devices(int part) 5447 { 5448 struct md_rdev *rdev0, *rdev, *tmp; 5449 struct mddev *mddev; 5450 char b[BDEVNAME_SIZE]; 5451 5452 printk(KERN_INFO "md: autorun ...\n"); 5453 while (!list_empty(&pending_raid_disks)) { 5454 int unit; 5455 dev_t dev; 5456 LIST_HEAD(candidates); 5457 rdev0 = list_entry(pending_raid_disks.next, 5458 struct md_rdev, same_set); 5459 5460 printk(KERN_INFO "md: considering %s ...\n", 5461 bdevname(rdev0->bdev,b)); 5462 INIT_LIST_HEAD(&candidates); 5463 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5464 if (super_90_load(rdev, rdev0, 0) >= 0) { 5465 printk(KERN_INFO "md: adding %s ...\n", 5466 bdevname(rdev->bdev,b)); 5467 list_move(&rdev->same_set, &candidates); 5468 } 5469 /* 5470 * now we have a set of devices, with all of them having 5471 * mostly sane superblocks. It's time to allocate the 5472 * mddev. 5473 */ 5474 if (part) { 5475 dev = MKDEV(mdp_major, 5476 rdev0->preferred_minor << MdpMinorShift); 5477 unit = MINOR(dev) >> MdpMinorShift; 5478 } else { 5479 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5480 unit = MINOR(dev); 5481 } 5482 if (rdev0->preferred_minor != unit) { 5483 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5484 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5485 break; 5486 } 5487 5488 md_probe(dev, NULL, NULL); 5489 mddev = mddev_find(dev); 5490 if (!mddev || !mddev->gendisk) { 5491 if (mddev) 5492 mddev_put(mddev); 5493 printk(KERN_ERR 5494 "md: cannot allocate memory for md drive.\n"); 5495 break; 5496 } 5497 if (mddev_lock(mddev)) 5498 printk(KERN_WARNING "md: %s locked, cannot run\n", 5499 mdname(mddev)); 5500 else if (mddev->raid_disks || mddev->major_version 5501 || !list_empty(&mddev->disks)) { 5502 printk(KERN_WARNING 5503 "md: %s already running, cannot run %s\n", 5504 mdname(mddev), bdevname(rdev0->bdev,b)); 5505 mddev_unlock(mddev); 5506 } else { 5507 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5508 mddev->persistent = 1; 5509 rdev_for_each_list(rdev, tmp, &candidates) { 5510 list_del_init(&rdev->same_set); 5511 if (bind_rdev_to_array(rdev, mddev)) 5512 export_rdev(rdev); 5513 } 5514 autorun_array(mddev); 5515 mddev_unlock(mddev); 5516 } 5517 /* on success, candidates will be empty, on error 5518 * it won't... 5519 */ 5520 rdev_for_each_list(rdev, tmp, &candidates) { 5521 list_del_init(&rdev->same_set); 5522 export_rdev(rdev); 5523 } 5524 mddev_put(mddev); 5525 } 5526 printk(KERN_INFO "md: ... autorun DONE.\n"); 5527 } 5528 #endif /* !MODULE */ 5529 5530 static int get_version(void __user * arg) 5531 { 5532 mdu_version_t ver; 5533 5534 ver.major = MD_MAJOR_VERSION; 5535 ver.minor = MD_MINOR_VERSION; 5536 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5537 5538 if (copy_to_user(arg, &ver, sizeof(ver))) 5539 return -EFAULT; 5540 5541 return 0; 5542 } 5543 5544 static int get_array_info(struct mddev * mddev, void __user * arg) 5545 { 5546 mdu_array_info_t info; 5547 int nr,working,insync,failed,spare; 5548 struct md_rdev *rdev; 5549 5550 nr=working=insync=failed=spare=0; 5551 rdev_for_each(rdev, mddev) { 5552 nr++; 5553 if (test_bit(Faulty, &rdev->flags)) 5554 failed++; 5555 else { 5556 working++; 5557 if (test_bit(In_sync, &rdev->flags)) 5558 insync++; 5559 else 5560 spare++; 5561 } 5562 } 5563 5564 info.major_version = mddev->major_version; 5565 info.minor_version = mddev->minor_version; 5566 info.patch_version = MD_PATCHLEVEL_VERSION; 5567 info.ctime = mddev->ctime; 5568 info.level = mddev->level; 5569 info.size = mddev->dev_sectors / 2; 5570 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5571 info.size = -1; 5572 info.nr_disks = nr; 5573 info.raid_disks = mddev->raid_disks; 5574 info.md_minor = mddev->md_minor; 5575 info.not_persistent= !mddev->persistent; 5576 5577 info.utime = mddev->utime; 5578 info.state = 0; 5579 if (mddev->in_sync) 5580 info.state = (1<<MD_SB_CLEAN); 5581 if (mddev->bitmap && mddev->bitmap_info.offset) 5582 info.state = (1<<MD_SB_BITMAP_PRESENT); 5583 info.active_disks = insync; 5584 info.working_disks = working; 5585 info.failed_disks = failed; 5586 info.spare_disks = spare; 5587 5588 info.layout = mddev->layout; 5589 info.chunk_size = mddev->chunk_sectors << 9; 5590 5591 if (copy_to_user(arg, &info, sizeof(info))) 5592 return -EFAULT; 5593 5594 return 0; 5595 } 5596 5597 static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5598 { 5599 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5600 char *ptr, *buf = NULL; 5601 int err = -ENOMEM; 5602 5603 if (md_allow_write(mddev)) 5604 file = kmalloc(sizeof(*file), GFP_NOIO); 5605 else 5606 file = kmalloc(sizeof(*file), GFP_KERNEL); 5607 5608 if (!file) 5609 goto out; 5610 5611 /* bitmap disabled, zero the first byte and copy out */ 5612 if (!mddev->bitmap || !mddev->bitmap->storage.file) { 5613 file->pathname[0] = '\0'; 5614 goto copy_out; 5615 } 5616 5617 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5618 if (!buf) 5619 goto out; 5620 5621 ptr = d_path(&mddev->bitmap->storage.file->f_path, 5622 buf, sizeof(file->pathname)); 5623 if (IS_ERR(ptr)) 5624 goto out; 5625 5626 strcpy(file->pathname, ptr); 5627 5628 copy_out: 5629 err = 0; 5630 if (copy_to_user(arg, file, sizeof(*file))) 5631 err = -EFAULT; 5632 out: 5633 kfree(buf); 5634 kfree(file); 5635 return err; 5636 } 5637 5638 static int get_disk_info(struct mddev * mddev, void __user * arg) 5639 { 5640 mdu_disk_info_t info; 5641 struct md_rdev *rdev; 5642 5643 if (copy_from_user(&info, arg, sizeof(info))) 5644 return -EFAULT; 5645 5646 rdev = find_rdev_nr(mddev, info.number); 5647 if (rdev) { 5648 info.major = MAJOR(rdev->bdev->bd_dev); 5649 info.minor = MINOR(rdev->bdev->bd_dev); 5650 info.raid_disk = rdev->raid_disk; 5651 info.state = 0; 5652 if (test_bit(Faulty, &rdev->flags)) 5653 info.state |= (1<<MD_DISK_FAULTY); 5654 else if (test_bit(In_sync, &rdev->flags)) { 5655 info.state |= (1<<MD_DISK_ACTIVE); 5656 info.state |= (1<<MD_DISK_SYNC); 5657 } 5658 if (test_bit(WriteMostly, &rdev->flags)) 5659 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5660 } else { 5661 info.major = info.minor = 0; 5662 info.raid_disk = -1; 5663 info.state = (1<<MD_DISK_REMOVED); 5664 } 5665 5666 if (copy_to_user(arg, &info, sizeof(info))) 5667 return -EFAULT; 5668 5669 return 0; 5670 } 5671 5672 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5673 { 5674 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5675 struct md_rdev *rdev; 5676 dev_t dev = MKDEV(info->major,info->minor); 5677 5678 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5679 return -EOVERFLOW; 5680 5681 if (!mddev->raid_disks) { 5682 int err; 5683 /* expecting a device which has a superblock */ 5684 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5685 if (IS_ERR(rdev)) { 5686 printk(KERN_WARNING 5687 "md: md_import_device returned %ld\n", 5688 PTR_ERR(rdev)); 5689 return PTR_ERR(rdev); 5690 } 5691 if (!list_empty(&mddev->disks)) { 5692 struct md_rdev *rdev0 5693 = list_entry(mddev->disks.next, 5694 struct md_rdev, same_set); 5695 err = super_types[mddev->major_version] 5696 .load_super(rdev, rdev0, mddev->minor_version); 5697 if (err < 0) { 5698 printk(KERN_WARNING 5699 "md: %s has different UUID to %s\n", 5700 bdevname(rdev->bdev,b), 5701 bdevname(rdev0->bdev,b2)); 5702 export_rdev(rdev); 5703 return -EINVAL; 5704 } 5705 } 5706 err = bind_rdev_to_array(rdev, mddev); 5707 if (err) 5708 export_rdev(rdev); 5709 return err; 5710 } 5711 5712 /* 5713 * add_new_disk can be used once the array is assembled 5714 * to add "hot spares". They must already have a superblock 5715 * written 5716 */ 5717 if (mddev->pers) { 5718 int err; 5719 if (!mddev->pers->hot_add_disk) { 5720 printk(KERN_WARNING 5721 "%s: personality does not support diskops!\n", 5722 mdname(mddev)); 5723 return -EINVAL; 5724 } 5725 if (mddev->persistent) 5726 rdev = md_import_device(dev, mddev->major_version, 5727 mddev->minor_version); 5728 else 5729 rdev = md_import_device(dev, -1, -1); 5730 if (IS_ERR(rdev)) { 5731 printk(KERN_WARNING 5732 "md: md_import_device returned %ld\n", 5733 PTR_ERR(rdev)); 5734 return PTR_ERR(rdev); 5735 } 5736 /* set saved_raid_disk if appropriate */ 5737 if (!mddev->persistent) { 5738 if (info->state & (1<<MD_DISK_SYNC) && 5739 info->raid_disk < mddev->raid_disks) { 5740 rdev->raid_disk = info->raid_disk; 5741 set_bit(In_sync, &rdev->flags); 5742 } else 5743 rdev->raid_disk = -1; 5744 } else 5745 super_types[mddev->major_version]. 5746 validate_super(mddev, rdev); 5747 if ((info->state & (1<<MD_DISK_SYNC)) && 5748 rdev->raid_disk != info->raid_disk) { 5749 /* This was a hot-add request, but events doesn't 5750 * match, so reject it. 5751 */ 5752 export_rdev(rdev); 5753 return -EINVAL; 5754 } 5755 5756 if (test_bit(In_sync, &rdev->flags)) 5757 rdev->saved_raid_disk = rdev->raid_disk; 5758 else 5759 rdev->saved_raid_disk = -1; 5760 5761 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5762 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5763 set_bit(WriteMostly, &rdev->flags); 5764 else 5765 clear_bit(WriteMostly, &rdev->flags); 5766 5767 rdev->raid_disk = -1; 5768 err = bind_rdev_to_array(rdev, mddev); 5769 if (!err && !mddev->pers->hot_remove_disk) { 5770 /* If there is hot_add_disk but no hot_remove_disk 5771 * then added disks for geometry changes, 5772 * and should be added immediately. 5773 */ 5774 super_types[mddev->major_version]. 5775 validate_super(mddev, rdev); 5776 err = mddev->pers->hot_add_disk(mddev, rdev); 5777 if (err) 5778 unbind_rdev_from_array(rdev); 5779 } 5780 if (err) 5781 export_rdev(rdev); 5782 else 5783 sysfs_notify_dirent_safe(rdev->sysfs_state); 5784 5785 md_update_sb(mddev, 1); 5786 if (mddev->degraded) 5787 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5788 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5789 if (!err) 5790 md_new_event(mddev); 5791 md_wakeup_thread(mddev->thread); 5792 return err; 5793 } 5794 5795 /* otherwise, add_new_disk is only allowed 5796 * for major_version==0 superblocks 5797 */ 5798 if (mddev->major_version != 0) { 5799 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5800 mdname(mddev)); 5801 return -EINVAL; 5802 } 5803 5804 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5805 int err; 5806 rdev = md_import_device(dev, -1, 0); 5807 if (IS_ERR(rdev)) { 5808 printk(KERN_WARNING 5809 "md: error, md_import_device() returned %ld\n", 5810 PTR_ERR(rdev)); 5811 return PTR_ERR(rdev); 5812 } 5813 rdev->desc_nr = info->number; 5814 if (info->raid_disk < mddev->raid_disks) 5815 rdev->raid_disk = info->raid_disk; 5816 else 5817 rdev->raid_disk = -1; 5818 5819 if (rdev->raid_disk < mddev->raid_disks) 5820 if (info->state & (1<<MD_DISK_SYNC)) 5821 set_bit(In_sync, &rdev->flags); 5822 5823 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5824 set_bit(WriteMostly, &rdev->flags); 5825 5826 if (!mddev->persistent) { 5827 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5828 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5829 } else 5830 rdev->sb_start = calc_dev_sboffset(rdev); 5831 rdev->sectors = rdev->sb_start; 5832 5833 err = bind_rdev_to_array(rdev, mddev); 5834 if (err) { 5835 export_rdev(rdev); 5836 return err; 5837 } 5838 } 5839 5840 return 0; 5841 } 5842 5843 static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5844 { 5845 char b[BDEVNAME_SIZE]; 5846 struct md_rdev *rdev; 5847 5848 rdev = find_rdev(mddev, dev); 5849 if (!rdev) 5850 return -ENXIO; 5851 5852 if (rdev->raid_disk >= 0) 5853 goto busy; 5854 5855 kick_rdev_from_array(rdev); 5856 md_update_sb(mddev, 1); 5857 md_new_event(mddev); 5858 5859 return 0; 5860 busy: 5861 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5862 bdevname(rdev->bdev,b), mdname(mddev)); 5863 return -EBUSY; 5864 } 5865 5866 static int hot_add_disk(struct mddev * mddev, dev_t dev) 5867 { 5868 char b[BDEVNAME_SIZE]; 5869 int err; 5870 struct md_rdev *rdev; 5871 5872 if (!mddev->pers) 5873 return -ENODEV; 5874 5875 if (mddev->major_version != 0) { 5876 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5877 " version-0 superblocks.\n", 5878 mdname(mddev)); 5879 return -EINVAL; 5880 } 5881 if (!mddev->pers->hot_add_disk) { 5882 printk(KERN_WARNING 5883 "%s: personality does not support diskops!\n", 5884 mdname(mddev)); 5885 return -EINVAL; 5886 } 5887 5888 rdev = md_import_device(dev, -1, 0); 5889 if (IS_ERR(rdev)) { 5890 printk(KERN_WARNING 5891 "md: error, md_import_device() returned %ld\n", 5892 PTR_ERR(rdev)); 5893 return -EINVAL; 5894 } 5895 5896 if (mddev->persistent) 5897 rdev->sb_start = calc_dev_sboffset(rdev); 5898 else 5899 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5900 5901 rdev->sectors = rdev->sb_start; 5902 5903 if (test_bit(Faulty, &rdev->flags)) { 5904 printk(KERN_WARNING 5905 "md: can not hot-add faulty %s disk to %s!\n", 5906 bdevname(rdev->bdev,b), mdname(mddev)); 5907 err = -EINVAL; 5908 goto abort_export; 5909 } 5910 clear_bit(In_sync, &rdev->flags); 5911 rdev->desc_nr = -1; 5912 rdev->saved_raid_disk = -1; 5913 err = bind_rdev_to_array(rdev, mddev); 5914 if (err) 5915 goto abort_export; 5916 5917 /* 5918 * The rest should better be atomic, we can have disk failures 5919 * noticed in interrupt contexts ... 5920 */ 5921 5922 rdev->raid_disk = -1; 5923 5924 md_update_sb(mddev, 1); 5925 5926 /* 5927 * Kick recovery, maybe this spare has to be added to the 5928 * array immediately. 5929 */ 5930 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5931 md_wakeup_thread(mddev->thread); 5932 md_new_event(mddev); 5933 return 0; 5934 5935 abort_export: 5936 export_rdev(rdev); 5937 return err; 5938 } 5939 5940 static int set_bitmap_file(struct mddev *mddev, int fd) 5941 { 5942 int err; 5943 5944 if (mddev->pers) { 5945 if (!mddev->pers->quiesce) 5946 return -EBUSY; 5947 if (mddev->recovery || mddev->sync_thread) 5948 return -EBUSY; 5949 /* we should be able to change the bitmap.. */ 5950 } 5951 5952 5953 if (fd >= 0) { 5954 if (mddev->bitmap) 5955 return -EEXIST; /* cannot add when bitmap is present */ 5956 mddev->bitmap_info.file = fget(fd); 5957 5958 if (mddev->bitmap_info.file == NULL) { 5959 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5960 mdname(mddev)); 5961 return -EBADF; 5962 } 5963 5964 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5965 if (err) { 5966 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5967 mdname(mddev)); 5968 fput(mddev->bitmap_info.file); 5969 mddev->bitmap_info.file = NULL; 5970 return err; 5971 } 5972 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5973 } else if (mddev->bitmap == NULL) 5974 return -ENOENT; /* cannot remove what isn't there */ 5975 err = 0; 5976 if (mddev->pers) { 5977 mddev->pers->quiesce(mddev, 1); 5978 if (fd >= 0) { 5979 err = bitmap_create(mddev); 5980 if (!err) 5981 err = bitmap_load(mddev); 5982 } 5983 if (fd < 0 || err) { 5984 bitmap_destroy(mddev); 5985 fd = -1; /* make sure to put the file */ 5986 } 5987 mddev->pers->quiesce(mddev, 0); 5988 } 5989 if (fd < 0) { 5990 if (mddev->bitmap_info.file) { 5991 restore_bitmap_write_access(mddev->bitmap_info.file); 5992 fput(mddev->bitmap_info.file); 5993 } 5994 mddev->bitmap_info.file = NULL; 5995 } 5996 5997 return err; 5998 } 5999 6000 /* 6001 * set_array_info is used two different ways 6002 * The original usage is when creating a new array. 6003 * In this usage, raid_disks is > 0 and it together with 6004 * level, size, not_persistent,layout,chunksize determine the 6005 * shape of the array. 6006 * This will always create an array with a type-0.90.0 superblock. 6007 * The newer usage is when assembling an array. 6008 * In this case raid_disks will be 0, and the major_version field is 6009 * use to determine which style super-blocks are to be found on the devices. 6010 * The minor and patch _version numbers are also kept incase the 6011 * super_block handler wishes to interpret them. 6012 */ 6013 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 6014 { 6015 6016 if (info->raid_disks == 0) { 6017 /* just setting version number for superblock loading */ 6018 if (info->major_version < 0 || 6019 info->major_version >= ARRAY_SIZE(super_types) || 6020 super_types[info->major_version].name == NULL) { 6021 /* maybe try to auto-load a module? */ 6022 printk(KERN_INFO 6023 "md: superblock version %d not known\n", 6024 info->major_version); 6025 return -EINVAL; 6026 } 6027 mddev->major_version = info->major_version; 6028 mddev->minor_version = info->minor_version; 6029 mddev->patch_version = info->patch_version; 6030 mddev->persistent = !info->not_persistent; 6031 /* ensure mddev_put doesn't delete this now that there 6032 * is some minimal configuration. 6033 */ 6034 mddev->ctime = get_seconds(); 6035 return 0; 6036 } 6037 mddev->major_version = MD_MAJOR_VERSION; 6038 mddev->minor_version = MD_MINOR_VERSION; 6039 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6040 mddev->ctime = get_seconds(); 6041 6042 mddev->level = info->level; 6043 mddev->clevel[0] = 0; 6044 mddev->dev_sectors = 2 * (sector_t)info->size; 6045 mddev->raid_disks = info->raid_disks; 6046 /* don't set md_minor, it is determined by which /dev/md* was 6047 * openned 6048 */ 6049 if (info->state & (1<<MD_SB_CLEAN)) 6050 mddev->recovery_cp = MaxSector; 6051 else 6052 mddev->recovery_cp = 0; 6053 mddev->persistent = ! info->not_persistent; 6054 mddev->external = 0; 6055 6056 mddev->layout = info->layout; 6057 mddev->chunk_sectors = info->chunk_size >> 9; 6058 6059 mddev->max_disks = MD_SB_DISKS; 6060 6061 if (mddev->persistent) 6062 mddev->flags = 0; 6063 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6064 6065 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6066 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6067 mddev->bitmap_info.offset = 0; 6068 6069 mddev->reshape_position = MaxSector; 6070 6071 /* 6072 * Generate a 128 bit UUID 6073 */ 6074 get_random_bytes(mddev->uuid, 16); 6075 6076 mddev->new_level = mddev->level; 6077 mddev->new_chunk_sectors = mddev->chunk_sectors; 6078 mddev->new_layout = mddev->layout; 6079 mddev->delta_disks = 0; 6080 mddev->reshape_backwards = 0; 6081 6082 return 0; 6083 } 6084 6085 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6086 { 6087 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6088 6089 if (mddev->external_size) 6090 return; 6091 6092 mddev->array_sectors = array_sectors; 6093 } 6094 EXPORT_SYMBOL(md_set_array_sectors); 6095 6096 static int update_size(struct mddev *mddev, sector_t num_sectors) 6097 { 6098 struct md_rdev *rdev; 6099 int rv; 6100 int fit = (num_sectors == 0); 6101 6102 if (mddev->pers->resize == NULL) 6103 return -EINVAL; 6104 /* The "num_sectors" is the number of sectors of each device that 6105 * is used. This can only make sense for arrays with redundancy. 6106 * linear and raid0 always use whatever space is available. We can only 6107 * consider changing this number if no resync or reconstruction is 6108 * happening, and if the new size is acceptable. It must fit before the 6109 * sb_start or, if that is <data_offset, it must fit before the size 6110 * of each device. If num_sectors is zero, we find the largest size 6111 * that fits. 6112 */ 6113 if (mddev->sync_thread) 6114 return -EBUSY; 6115 6116 rdev_for_each(rdev, mddev) { 6117 sector_t avail = rdev->sectors; 6118 6119 if (fit && (num_sectors == 0 || num_sectors > avail)) 6120 num_sectors = avail; 6121 if (avail < num_sectors) 6122 return -ENOSPC; 6123 } 6124 rv = mddev->pers->resize(mddev, num_sectors); 6125 if (!rv) 6126 revalidate_disk(mddev->gendisk); 6127 return rv; 6128 } 6129 6130 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6131 { 6132 int rv; 6133 struct md_rdev *rdev; 6134 /* change the number of raid disks */ 6135 if (mddev->pers->check_reshape == NULL) 6136 return -EINVAL; 6137 if (raid_disks <= 0 || 6138 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6139 return -EINVAL; 6140 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6141 return -EBUSY; 6142 6143 rdev_for_each(rdev, mddev) { 6144 if (mddev->raid_disks < raid_disks && 6145 rdev->data_offset < rdev->new_data_offset) 6146 return -EINVAL; 6147 if (mddev->raid_disks > raid_disks && 6148 rdev->data_offset > rdev->new_data_offset) 6149 return -EINVAL; 6150 } 6151 6152 mddev->delta_disks = raid_disks - mddev->raid_disks; 6153 if (mddev->delta_disks < 0) 6154 mddev->reshape_backwards = 1; 6155 else if (mddev->delta_disks > 0) 6156 mddev->reshape_backwards = 0; 6157 6158 rv = mddev->pers->check_reshape(mddev); 6159 if (rv < 0) { 6160 mddev->delta_disks = 0; 6161 mddev->reshape_backwards = 0; 6162 } 6163 return rv; 6164 } 6165 6166 6167 /* 6168 * update_array_info is used to change the configuration of an 6169 * on-line array. 6170 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6171 * fields in the info are checked against the array. 6172 * Any differences that cannot be handled will cause an error. 6173 * Normally, only one change can be managed at a time. 6174 */ 6175 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6176 { 6177 int rv = 0; 6178 int cnt = 0; 6179 int state = 0; 6180 6181 /* calculate expected state,ignoring low bits */ 6182 if (mddev->bitmap && mddev->bitmap_info.offset) 6183 state |= (1 << MD_SB_BITMAP_PRESENT); 6184 6185 if (mddev->major_version != info->major_version || 6186 mddev->minor_version != info->minor_version || 6187 /* mddev->patch_version != info->patch_version || */ 6188 mddev->ctime != info->ctime || 6189 mddev->level != info->level || 6190 /* mddev->layout != info->layout || */ 6191 !mddev->persistent != info->not_persistent|| 6192 mddev->chunk_sectors != info->chunk_size >> 9 || 6193 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6194 ((state^info->state) & 0xfffffe00) 6195 ) 6196 return -EINVAL; 6197 /* Check there is only one change */ 6198 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6199 cnt++; 6200 if (mddev->raid_disks != info->raid_disks) 6201 cnt++; 6202 if (mddev->layout != info->layout) 6203 cnt++; 6204 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6205 cnt++; 6206 if (cnt == 0) 6207 return 0; 6208 if (cnt > 1) 6209 return -EINVAL; 6210 6211 if (mddev->layout != info->layout) { 6212 /* Change layout 6213 * we don't need to do anything at the md level, the 6214 * personality will take care of it all. 6215 */ 6216 if (mddev->pers->check_reshape == NULL) 6217 return -EINVAL; 6218 else { 6219 mddev->new_layout = info->layout; 6220 rv = mddev->pers->check_reshape(mddev); 6221 if (rv) 6222 mddev->new_layout = mddev->layout; 6223 return rv; 6224 } 6225 } 6226 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6227 rv = update_size(mddev, (sector_t)info->size * 2); 6228 6229 if (mddev->raid_disks != info->raid_disks) 6230 rv = update_raid_disks(mddev, info->raid_disks); 6231 6232 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6233 if (mddev->pers->quiesce == NULL) 6234 return -EINVAL; 6235 if (mddev->recovery || mddev->sync_thread) 6236 return -EBUSY; 6237 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6238 /* add the bitmap */ 6239 if (mddev->bitmap) 6240 return -EEXIST; 6241 if (mddev->bitmap_info.default_offset == 0) 6242 return -EINVAL; 6243 mddev->bitmap_info.offset = 6244 mddev->bitmap_info.default_offset; 6245 mddev->bitmap_info.space = 6246 mddev->bitmap_info.default_space; 6247 mddev->pers->quiesce(mddev, 1); 6248 rv = bitmap_create(mddev); 6249 if (!rv) 6250 rv = bitmap_load(mddev); 6251 if (rv) 6252 bitmap_destroy(mddev); 6253 mddev->pers->quiesce(mddev, 0); 6254 } else { 6255 /* remove the bitmap */ 6256 if (!mddev->bitmap) 6257 return -ENOENT; 6258 if (mddev->bitmap->storage.file) 6259 return -EINVAL; 6260 mddev->pers->quiesce(mddev, 1); 6261 bitmap_destroy(mddev); 6262 mddev->pers->quiesce(mddev, 0); 6263 mddev->bitmap_info.offset = 0; 6264 } 6265 } 6266 md_update_sb(mddev, 1); 6267 return rv; 6268 } 6269 6270 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6271 { 6272 struct md_rdev *rdev; 6273 6274 if (mddev->pers == NULL) 6275 return -ENODEV; 6276 6277 rdev = find_rdev(mddev, dev); 6278 if (!rdev) 6279 return -ENODEV; 6280 6281 md_error(mddev, rdev); 6282 if (!test_bit(Faulty, &rdev->flags)) 6283 return -EBUSY; 6284 return 0; 6285 } 6286 6287 /* 6288 * We have a problem here : there is no easy way to give a CHS 6289 * virtual geometry. We currently pretend that we have a 2 heads 6290 * 4 sectors (with a BIG number of cylinders...). This drives 6291 * dosfs just mad... ;-) 6292 */ 6293 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6294 { 6295 struct mddev *mddev = bdev->bd_disk->private_data; 6296 6297 geo->heads = 2; 6298 geo->sectors = 4; 6299 geo->cylinders = mddev->array_sectors / 8; 6300 return 0; 6301 } 6302 6303 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6304 unsigned int cmd, unsigned long arg) 6305 { 6306 int err = 0; 6307 void __user *argp = (void __user *)arg; 6308 struct mddev *mddev = NULL; 6309 int ro; 6310 6311 switch (cmd) { 6312 case RAID_VERSION: 6313 case GET_ARRAY_INFO: 6314 case GET_DISK_INFO: 6315 break; 6316 default: 6317 if (!capable(CAP_SYS_ADMIN)) 6318 return -EACCES; 6319 } 6320 6321 /* 6322 * Commands dealing with the RAID driver but not any 6323 * particular array: 6324 */ 6325 switch (cmd) 6326 { 6327 case RAID_VERSION: 6328 err = get_version(argp); 6329 goto done; 6330 6331 case PRINT_RAID_DEBUG: 6332 err = 0; 6333 md_print_devices(); 6334 goto done; 6335 6336 #ifndef MODULE 6337 case RAID_AUTORUN: 6338 err = 0; 6339 autostart_arrays(arg); 6340 goto done; 6341 #endif 6342 default:; 6343 } 6344 6345 /* 6346 * Commands creating/starting a new array: 6347 */ 6348 6349 mddev = bdev->bd_disk->private_data; 6350 6351 if (!mddev) { 6352 BUG(); 6353 goto abort; 6354 } 6355 6356 err = mddev_lock(mddev); 6357 if (err) { 6358 printk(KERN_INFO 6359 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6360 err, cmd); 6361 goto abort; 6362 } 6363 6364 switch (cmd) 6365 { 6366 case SET_ARRAY_INFO: 6367 { 6368 mdu_array_info_t info; 6369 if (!arg) 6370 memset(&info, 0, sizeof(info)); 6371 else if (copy_from_user(&info, argp, sizeof(info))) { 6372 err = -EFAULT; 6373 goto abort_unlock; 6374 } 6375 if (mddev->pers) { 6376 err = update_array_info(mddev, &info); 6377 if (err) { 6378 printk(KERN_WARNING "md: couldn't update" 6379 " array info. %d\n", err); 6380 goto abort_unlock; 6381 } 6382 goto done_unlock; 6383 } 6384 if (!list_empty(&mddev->disks)) { 6385 printk(KERN_WARNING 6386 "md: array %s already has disks!\n", 6387 mdname(mddev)); 6388 err = -EBUSY; 6389 goto abort_unlock; 6390 } 6391 if (mddev->raid_disks) { 6392 printk(KERN_WARNING 6393 "md: array %s already initialised!\n", 6394 mdname(mddev)); 6395 err = -EBUSY; 6396 goto abort_unlock; 6397 } 6398 err = set_array_info(mddev, &info); 6399 if (err) { 6400 printk(KERN_WARNING "md: couldn't set" 6401 " array info. %d\n", err); 6402 goto abort_unlock; 6403 } 6404 } 6405 goto done_unlock; 6406 6407 default:; 6408 } 6409 6410 /* 6411 * Commands querying/configuring an existing array: 6412 */ 6413 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6414 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6415 if ((!mddev->raid_disks && !mddev->external) 6416 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6417 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6418 && cmd != GET_BITMAP_FILE) { 6419 err = -ENODEV; 6420 goto abort_unlock; 6421 } 6422 6423 /* 6424 * Commands even a read-only array can execute: 6425 */ 6426 switch (cmd) 6427 { 6428 case GET_ARRAY_INFO: 6429 err = get_array_info(mddev, argp); 6430 goto done_unlock; 6431 6432 case GET_BITMAP_FILE: 6433 err = get_bitmap_file(mddev, argp); 6434 goto done_unlock; 6435 6436 case GET_DISK_INFO: 6437 err = get_disk_info(mddev, argp); 6438 goto done_unlock; 6439 6440 case RESTART_ARRAY_RW: 6441 err = restart_array(mddev); 6442 goto done_unlock; 6443 6444 case STOP_ARRAY: 6445 err = do_md_stop(mddev, 0, bdev); 6446 goto done_unlock; 6447 6448 case STOP_ARRAY_RO: 6449 err = md_set_readonly(mddev, bdev); 6450 goto done_unlock; 6451 6452 case BLKROSET: 6453 if (get_user(ro, (int __user *)(arg))) { 6454 err = -EFAULT; 6455 goto done_unlock; 6456 } 6457 err = -EINVAL; 6458 6459 /* if the bdev is going readonly the value of mddev->ro 6460 * does not matter, no writes are coming 6461 */ 6462 if (ro) 6463 goto done_unlock; 6464 6465 /* are we are already prepared for writes? */ 6466 if (mddev->ro != 1) 6467 goto done_unlock; 6468 6469 /* transitioning to readauto need only happen for 6470 * arrays that call md_write_start 6471 */ 6472 if (mddev->pers) { 6473 err = restart_array(mddev); 6474 if (err == 0) { 6475 mddev->ro = 2; 6476 set_disk_ro(mddev->gendisk, 0); 6477 } 6478 } 6479 goto done_unlock; 6480 } 6481 6482 /* 6483 * The remaining ioctls are changing the state of the 6484 * superblock, so we do not allow them on read-only arrays. 6485 * However non-MD ioctls (e.g. get-size) will still come through 6486 * here and hit the 'default' below, so only disallow 6487 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6488 */ 6489 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6490 if (mddev->ro == 2) { 6491 mddev->ro = 0; 6492 sysfs_notify_dirent_safe(mddev->sysfs_state); 6493 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6494 md_wakeup_thread(mddev->thread); 6495 } else { 6496 err = -EROFS; 6497 goto abort_unlock; 6498 } 6499 } 6500 6501 switch (cmd) 6502 { 6503 case ADD_NEW_DISK: 6504 { 6505 mdu_disk_info_t info; 6506 if (copy_from_user(&info, argp, sizeof(info))) 6507 err = -EFAULT; 6508 else 6509 err = add_new_disk(mddev, &info); 6510 goto done_unlock; 6511 } 6512 6513 case HOT_REMOVE_DISK: 6514 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6515 goto done_unlock; 6516 6517 case HOT_ADD_DISK: 6518 err = hot_add_disk(mddev, new_decode_dev(arg)); 6519 goto done_unlock; 6520 6521 case SET_DISK_FAULTY: 6522 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6523 goto done_unlock; 6524 6525 case RUN_ARRAY: 6526 err = do_md_run(mddev); 6527 goto done_unlock; 6528 6529 case SET_BITMAP_FILE: 6530 err = set_bitmap_file(mddev, (int)arg); 6531 goto done_unlock; 6532 6533 default: 6534 err = -EINVAL; 6535 goto abort_unlock; 6536 } 6537 6538 done_unlock: 6539 abort_unlock: 6540 if (mddev->hold_active == UNTIL_IOCTL && 6541 err != -EINVAL) 6542 mddev->hold_active = 0; 6543 mddev_unlock(mddev); 6544 6545 return err; 6546 done: 6547 if (err) 6548 MD_BUG(); 6549 abort: 6550 return err; 6551 } 6552 #ifdef CONFIG_COMPAT 6553 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6554 unsigned int cmd, unsigned long arg) 6555 { 6556 switch (cmd) { 6557 case HOT_REMOVE_DISK: 6558 case HOT_ADD_DISK: 6559 case SET_DISK_FAULTY: 6560 case SET_BITMAP_FILE: 6561 /* These take in integer arg, do not convert */ 6562 break; 6563 default: 6564 arg = (unsigned long)compat_ptr(arg); 6565 break; 6566 } 6567 6568 return md_ioctl(bdev, mode, cmd, arg); 6569 } 6570 #endif /* CONFIG_COMPAT */ 6571 6572 static int md_open(struct block_device *bdev, fmode_t mode) 6573 { 6574 /* 6575 * Succeed if we can lock the mddev, which confirms that 6576 * it isn't being stopped right now. 6577 */ 6578 struct mddev *mddev = mddev_find(bdev->bd_dev); 6579 int err; 6580 6581 if (!mddev) 6582 return -ENODEV; 6583 6584 if (mddev->gendisk != bdev->bd_disk) { 6585 /* we are racing with mddev_put which is discarding this 6586 * bd_disk. 6587 */ 6588 mddev_put(mddev); 6589 /* Wait until bdev->bd_disk is definitely gone */ 6590 flush_workqueue(md_misc_wq); 6591 /* Then retry the open from the top */ 6592 return -ERESTARTSYS; 6593 } 6594 BUG_ON(mddev != bdev->bd_disk->private_data); 6595 6596 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6597 goto out; 6598 6599 err = 0; 6600 atomic_inc(&mddev->openers); 6601 mutex_unlock(&mddev->open_mutex); 6602 6603 check_disk_change(bdev); 6604 out: 6605 return err; 6606 } 6607 6608 static int md_release(struct gendisk *disk, fmode_t mode) 6609 { 6610 struct mddev *mddev = disk->private_data; 6611 6612 BUG_ON(!mddev); 6613 atomic_dec(&mddev->openers); 6614 mddev_put(mddev); 6615 6616 return 0; 6617 } 6618 6619 static int md_media_changed(struct gendisk *disk) 6620 { 6621 struct mddev *mddev = disk->private_data; 6622 6623 return mddev->changed; 6624 } 6625 6626 static int md_revalidate(struct gendisk *disk) 6627 { 6628 struct mddev *mddev = disk->private_data; 6629 6630 mddev->changed = 0; 6631 return 0; 6632 } 6633 static const struct block_device_operations md_fops = 6634 { 6635 .owner = THIS_MODULE, 6636 .open = md_open, 6637 .release = md_release, 6638 .ioctl = md_ioctl, 6639 #ifdef CONFIG_COMPAT 6640 .compat_ioctl = md_compat_ioctl, 6641 #endif 6642 .getgeo = md_getgeo, 6643 .media_changed = md_media_changed, 6644 .revalidate_disk= md_revalidate, 6645 }; 6646 6647 static int md_thread(void * arg) 6648 { 6649 struct md_thread *thread = arg; 6650 6651 /* 6652 * md_thread is a 'system-thread', it's priority should be very 6653 * high. We avoid resource deadlocks individually in each 6654 * raid personality. (RAID5 does preallocation) We also use RR and 6655 * the very same RT priority as kswapd, thus we will never get 6656 * into a priority inversion deadlock. 6657 * 6658 * we definitely have to have equal or higher priority than 6659 * bdflush, otherwise bdflush will deadlock if there are too 6660 * many dirty RAID5 blocks. 6661 */ 6662 6663 allow_signal(SIGKILL); 6664 while (!kthread_should_stop()) { 6665 6666 /* We need to wait INTERRUPTIBLE so that 6667 * we don't add to the load-average. 6668 * That means we need to be sure no signals are 6669 * pending 6670 */ 6671 if (signal_pending(current)) 6672 flush_signals(current); 6673 6674 wait_event_interruptible_timeout 6675 (thread->wqueue, 6676 test_bit(THREAD_WAKEUP, &thread->flags) 6677 || kthread_should_stop(), 6678 thread->timeout); 6679 6680 clear_bit(THREAD_WAKEUP, &thread->flags); 6681 if (!kthread_should_stop()) 6682 thread->run(thread->mddev); 6683 } 6684 6685 return 0; 6686 } 6687 6688 void md_wakeup_thread(struct md_thread *thread) 6689 { 6690 if (thread) { 6691 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6692 set_bit(THREAD_WAKEUP, &thread->flags); 6693 wake_up(&thread->wqueue); 6694 } 6695 } 6696 6697 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev, 6698 const char *name) 6699 { 6700 struct md_thread *thread; 6701 6702 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6703 if (!thread) 6704 return NULL; 6705 6706 init_waitqueue_head(&thread->wqueue); 6707 6708 thread->run = run; 6709 thread->mddev = mddev; 6710 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6711 thread->tsk = kthread_run(md_thread, thread, 6712 "%s_%s", 6713 mdname(thread->mddev), 6714 name); 6715 if (IS_ERR(thread->tsk)) { 6716 kfree(thread); 6717 return NULL; 6718 } 6719 return thread; 6720 } 6721 6722 void md_unregister_thread(struct md_thread **threadp) 6723 { 6724 struct md_thread *thread = *threadp; 6725 if (!thread) 6726 return; 6727 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6728 /* Locking ensures that mddev_unlock does not wake_up a 6729 * non-existent thread 6730 */ 6731 spin_lock(&pers_lock); 6732 *threadp = NULL; 6733 spin_unlock(&pers_lock); 6734 6735 kthread_stop(thread->tsk); 6736 kfree(thread); 6737 } 6738 6739 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6740 { 6741 if (!mddev) { 6742 MD_BUG(); 6743 return; 6744 } 6745 6746 if (!rdev || test_bit(Faulty, &rdev->flags)) 6747 return; 6748 6749 if (!mddev->pers || !mddev->pers->error_handler) 6750 return; 6751 mddev->pers->error_handler(mddev,rdev); 6752 if (mddev->degraded) 6753 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6754 sysfs_notify_dirent_safe(rdev->sysfs_state); 6755 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6756 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6757 md_wakeup_thread(mddev->thread); 6758 if (mddev->event_work.func) 6759 queue_work(md_misc_wq, &mddev->event_work); 6760 md_new_event_inintr(mddev); 6761 } 6762 6763 /* seq_file implementation /proc/mdstat */ 6764 6765 static void status_unused(struct seq_file *seq) 6766 { 6767 int i = 0; 6768 struct md_rdev *rdev; 6769 6770 seq_printf(seq, "unused devices: "); 6771 6772 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6773 char b[BDEVNAME_SIZE]; 6774 i++; 6775 seq_printf(seq, "%s ", 6776 bdevname(rdev->bdev,b)); 6777 } 6778 if (!i) 6779 seq_printf(seq, "<none>"); 6780 6781 seq_printf(seq, "\n"); 6782 } 6783 6784 6785 static void status_resync(struct seq_file *seq, struct mddev * mddev) 6786 { 6787 sector_t max_sectors, resync, res; 6788 unsigned long dt, db; 6789 sector_t rt; 6790 int scale; 6791 unsigned int per_milli; 6792 6793 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 6794 6795 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6796 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6797 max_sectors = mddev->resync_max_sectors; 6798 else 6799 max_sectors = mddev->dev_sectors; 6800 6801 /* 6802 * Should not happen. 6803 */ 6804 if (!max_sectors) { 6805 MD_BUG(); 6806 return; 6807 } 6808 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6809 * in a sector_t, and (max_sectors>>scale) will fit in a 6810 * u32, as those are the requirements for sector_div. 6811 * Thus 'scale' must be at least 10 6812 */ 6813 scale = 10; 6814 if (sizeof(sector_t) > sizeof(unsigned long)) { 6815 while ( max_sectors/2 > (1ULL<<(scale+32))) 6816 scale++; 6817 } 6818 res = (resync>>scale)*1000; 6819 sector_div(res, (u32)((max_sectors>>scale)+1)); 6820 6821 per_milli = res; 6822 { 6823 int i, x = per_milli/50, y = 20-x; 6824 seq_printf(seq, "["); 6825 for (i = 0; i < x; i++) 6826 seq_printf(seq, "="); 6827 seq_printf(seq, ">"); 6828 for (i = 0; i < y; i++) 6829 seq_printf(seq, "."); 6830 seq_printf(seq, "] "); 6831 } 6832 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6833 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6834 "reshape" : 6835 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6836 "check" : 6837 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6838 "resync" : "recovery"))), 6839 per_milli/10, per_milli % 10, 6840 (unsigned long long) resync/2, 6841 (unsigned long long) max_sectors/2); 6842 6843 /* 6844 * dt: time from mark until now 6845 * db: blocks written from mark until now 6846 * rt: remaining time 6847 * 6848 * rt is a sector_t, so could be 32bit or 64bit. 6849 * So we divide before multiply in case it is 32bit and close 6850 * to the limit. 6851 * We scale the divisor (db) by 32 to avoid losing precision 6852 * near the end of resync when the number of remaining sectors 6853 * is close to 'db'. 6854 * We then divide rt by 32 after multiplying by db to compensate. 6855 * The '+1' avoids division by zero if db is very small. 6856 */ 6857 dt = ((jiffies - mddev->resync_mark) / HZ); 6858 if (!dt) dt++; 6859 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6860 - mddev->resync_mark_cnt; 6861 6862 rt = max_sectors - resync; /* number of remaining sectors */ 6863 sector_div(rt, db/32+1); 6864 rt *= dt; 6865 rt >>= 5; 6866 6867 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6868 ((unsigned long)rt % 60)/6); 6869 6870 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6871 } 6872 6873 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6874 { 6875 struct list_head *tmp; 6876 loff_t l = *pos; 6877 struct mddev *mddev; 6878 6879 if (l >= 0x10000) 6880 return NULL; 6881 if (!l--) 6882 /* header */ 6883 return (void*)1; 6884 6885 spin_lock(&all_mddevs_lock); 6886 list_for_each(tmp,&all_mddevs) 6887 if (!l--) { 6888 mddev = list_entry(tmp, struct mddev, all_mddevs); 6889 mddev_get(mddev); 6890 spin_unlock(&all_mddevs_lock); 6891 return mddev; 6892 } 6893 spin_unlock(&all_mddevs_lock); 6894 if (!l--) 6895 return (void*)2;/* tail */ 6896 return NULL; 6897 } 6898 6899 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6900 { 6901 struct list_head *tmp; 6902 struct mddev *next_mddev, *mddev = v; 6903 6904 ++*pos; 6905 if (v == (void*)2) 6906 return NULL; 6907 6908 spin_lock(&all_mddevs_lock); 6909 if (v == (void*)1) 6910 tmp = all_mddevs.next; 6911 else 6912 tmp = mddev->all_mddevs.next; 6913 if (tmp != &all_mddevs) 6914 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 6915 else { 6916 next_mddev = (void*)2; 6917 *pos = 0x10000; 6918 } 6919 spin_unlock(&all_mddevs_lock); 6920 6921 if (v != (void*)1) 6922 mddev_put(mddev); 6923 return next_mddev; 6924 6925 } 6926 6927 static void md_seq_stop(struct seq_file *seq, void *v) 6928 { 6929 struct mddev *mddev = v; 6930 6931 if (mddev && v != (void*)1 && v != (void*)2) 6932 mddev_put(mddev); 6933 } 6934 6935 static int md_seq_show(struct seq_file *seq, void *v) 6936 { 6937 struct mddev *mddev = v; 6938 sector_t sectors; 6939 struct md_rdev *rdev; 6940 6941 if (v == (void*)1) { 6942 struct md_personality *pers; 6943 seq_printf(seq, "Personalities : "); 6944 spin_lock(&pers_lock); 6945 list_for_each_entry(pers, &pers_list, list) 6946 seq_printf(seq, "[%s] ", pers->name); 6947 6948 spin_unlock(&pers_lock); 6949 seq_printf(seq, "\n"); 6950 seq->poll_event = atomic_read(&md_event_count); 6951 return 0; 6952 } 6953 if (v == (void*)2) { 6954 status_unused(seq); 6955 return 0; 6956 } 6957 6958 if (mddev_lock(mddev) < 0) 6959 return -EINTR; 6960 6961 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6962 seq_printf(seq, "%s : %sactive", mdname(mddev), 6963 mddev->pers ? "" : "in"); 6964 if (mddev->pers) { 6965 if (mddev->ro==1) 6966 seq_printf(seq, " (read-only)"); 6967 if (mddev->ro==2) 6968 seq_printf(seq, " (auto-read-only)"); 6969 seq_printf(seq, " %s", mddev->pers->name); 6970 } 6971 6972 sectors = 0; 6973 rdev_for_each(rdev, mddev) { 6974 char b[BDEVNAME_SIZE]; 6975 seq_printf(seq, " %s[%d]", 6976 bdevname(rdev->bdev,b), rdev->desc_nr); 6977 if (test_bit(WriteMostly, &rdev->flags)) 6978 seq_printf(seq, "(W)"); 6979 if (test_bit(Faulty, &rdev->flags)) { 6980 seq_printf(seq, "(F)"); 6981 continue; 6982 } 6983 if (rdev->raid_disk < 0) 6984 seq_printf(seq, "(S)"); /* spare */ 6985 if (test_bit(Replacement, &rdev->flags)) 6986 seq_printf(seq, "(R)"); 6987 sectors += rdev->sectors; 6988 } 6989 6990 if (!list_empty(&mddev->disks)) { 6991 if (mddev->pers) 6992 seq_printf(seq, "\n %llu blocks", 6993 (unsigned long long) 6994 mddev->array_sectors / 2); 6995 else 6996 seq_printf(seq, "\n %llu blocks", 6997 (unsigned long long)sectors / 2); 6998 } 6999 if (mddev->persistent) { 7000 if (mddev->major_version != 0 || 7001 mddev->minor_version != 90) { 7002 seq_printf(seq," super %d.%d", 7003 mddev->major_version, 7004 mddev->minor_version); 7005 } 7006 } else if (mddev->external) 7007 seq_printf(seq, " super external:%s", 7008 mddev->metadata_type); 7009 else 7010 seq_printf(seq, " super non-persistent"); 7011 7012 if (mddev->pers) { 7013 mddev->pers->status(seq, mddev); 7014 seq_printf(seq, "\n "); 7015 if (mddev->pers->sync_request) { 7016 if (mddev->curr_resync > 2) { 7017 status_resync(seq, mddev); 7018 seq_printf(seq, "\n "); 7019 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 7020 seq_printf(seq, "\tresync=DELAYED\n "); 7021 else if (mddev->recovery_cp < MaxSector) 7022 seq_printf(seq, "\tresync=PENDING\n "); 7023 } 7024 } else 7025 seq_printf(seq, "\n "); 7026 7027 bitmap_status(seq, mddev->bitmap); 7028 7029 seq_printf(seq, "\n"); 7030 } 7031 mddev_unlock(mddev); 7032 7033 return 0; 7034 } 7035 7036 static const struct seq_operations md_seq_ops = { 7037 .start = md_seq_start, 7038 .next = md_seq_next, 7039 .stop = md_seq_stop, 7040 .show = md_seq_show, 7041 }; 7042 7043 static int md_seq_open(struct inode *inode, struct file *file) 7044 { 7045 struct seq_file *seq; 7046 int error; 7047 7048 error = seq_open(file, &md_seq_ops); 7049 if (error) 7050 return error; 7051 7052 seq = file->private_data; 7053 seq->poll_event = atomic_read(&md_event_count); 7054 return error; 7055 } 7056 7057 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7058 { 7059 struct seq_file *seq = filp->private_data; 7060 int mask; 7061 7062 poll_wait(filp, &md_event_waiters, wait); 7063 7064 /* always allow read */ 7065 mask = POLLIN | POLLRDNORM; 7066 7067 if (seq->poll_event != atomic_read(&md_event_count)) 7068 mask |= POLLERR | POLLPRI; 7069 return mask; 7070 } 7071 7072 static const struct file_operations md_seq_fops = { 7073 .owner = THIS_MODULE, 7074 .open = md_seq_open, 7075 .read = seq_read, 7076 .llseek = seq_lseek, 7077 .release = seq_release_private, 7078 .poll = mdstat_poll, 7079 }; 7080 7081 int register_md_personality(struct md_personality *p) 7082 { 7083 spin_lock(&pers_lock); 7084 list_add_tail(&p->list, &pers_list); 7085 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7086 spin_unlock(&pers_lock); 7087 return 0; 7088 } 7089 7090 int unregister_md_personality(struct md_personality *p) 7091 { 7092 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7093 spin_lock(&pers_lock); 7094 list_del_init(&p->list); 7095 spin_unlock(&pers_lock); 7096 return 0; 7097 } 7098 7099 static int is_mddev_idle(struct mddev *mddev, int init) 7100 { 7101 struct md_rdev * rdev; 7102 int idle; 7103 int curr_events; 7104 7105 idle = 1; 7106 rcu_read_lock(); 7107 rdev_for_each_rcu(rdev, mddev) { 7108 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7109 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7110 (int)part_stat_read(&disk->part0, sectors[1]) - 7111 atomic_read(&disk->sync_io); 7112 /* sync IO will cause sync_io to increase before the disk_stats 7113 * as sync_io is counted when a request starts, and 7114 * disk_stats is counted when it completes. 7115 * So resync activity will cause curr_events to be smaller than 7116 * when there was no such activity. 7117 * non-sync IO will cause disk_stat to increase without 7118 * increasing sync_io so curr_events will (eventually) 7119 * be larger than it was before. Once it becomes 7120 * substantially larger, the test below will cause 7121 * the array to appear non-idle, and resync will slow 7122 * down. 7123 * If there is a lot of outstanding resync activity when 7124 * we set last_event to curr_events, then all that activity 7125 * completing might cause the array to appear non-idle 7126 * and resync will be slowed down even though there might 7127 * not have been non-resync activity. This will only 7128 * happen once though. 'last_events' will soon reflect 7129 * the state where there is little or no outstanding 7130 * resync requests, and further resync activity will 7131 * always make curr_events less than last_events. 7132 * 7133 */ 7134 if (init || curr_events - rdev->last_events > 64) { 7135 rdev->last_events = curr_events; 7136 idle = 0; 7137 } 7138 } 7139 rcu_read_unlock(); 7140 return idle; 7141 } 7142 7143 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7144 { 7145 /* another "blocks" (512byte) blocks have been synced */ 7146 atomic_sub(blocks, &mddev->recovery_active); 7147 wake_up(&mddev->recovery_wait); 7148 if (!ok) { 7149 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7150 md_wakeup_thread(mddev->thread); 7151 // stop recovery, signal do_sync .... 7152 } 7153 } 7154 7155 7156 /* md_write_start(mddev, bi) 7157 * If we need to update some array metadata (e.g. 'active' flag 7158 * in superblock) before writing, schedule a superblock update 7159 * and wait for it to complete. 7160 */ 7161 void md_write_start(struct mddev *mddev, struct bio *bi) 7162 { 7163 int did_change = 0; 7164 if (bio_data_dir(bi) != WRITE) 7165 return; 7166 7167 BUG_ON(mddev->ro == 1); 7168 if (mddev->ro == 2) { 7169 /* need to switch to read/write */ 7170 mddev->ro = 0; 7171 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7172 md_wakeup_thread(mddev->thread); 7173 md_wakeup_thread(mddev->sync_thread); 7174 did_change = 1; 7175 } 7176 atomic_inc(&mddev->writes_pending); 7177 if (mddev->safemode == 1) 7178 mddev->safemode = 0; 7179 if (mddev->in_sync) { 7180 spin_lock_irq(&mddev->write_lock); 7181 if (mddev->in_sync) { 7182 mddev->in_sync = 0; 7183 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7184 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7185 md_wakeup_thread(mddev->thread); 7186 did_change = 1; 7187 } 7188 spin_unlock_irq(&mddev->write_lock); 7189 } 7190 if (did_change) 7191 sysfs_notify_dirent_safe(mddev->sysfs_state); 7192 wait_event(mddev->sb_wait, 7193 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7194 } 7195 7196 void md_write_end(struct mddev *mddev) 7197 { 7198 if (atomic_dec_and_test(&mddev->writes_pending)) { 7199 if (mddev->safemode == 2) 7200 md_wakeup_thread(mddev->thread); 7201 else if (mddev->safemode_delay) 7202 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7203 } 7204 } 7205 7206 /* md_allow_write(mddev) 7207 * Calling this ensures that the array is marked 'active' so that writes 7208 * may proceed without blocking. It is important to call this before 7209 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7210 * Must be called with mddev_lock held. 7211 * 7212 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7213 * is dropped, so return -EAGAIN after notifying userspace. 7214 */ 7215 int md_allow_write(struct mddev *mddev) 7216 { 7217 if (!mddev->pers) 7218 return 0; 7219 if (mddev->ro) 7220 return 0; 7221 if (!mddev->pers->sync_request) 7222 return 0; 7223 7224 spin_lock_irq(&mddev->write_lock); 7225 if (mddev->in_sync) { 7226 mddev->in_sync = 0; 7227 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7228 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7229 if (mddev->safemode_delay && 7230 mddev->safemode == 0) 7231 mddev->safemode = 1; 7232 spin_unlock_irq(&mddev->write_lock); 7233 md_update_sb(mddev, 0); 7234 sysfs_notify_dirent_safe(mddev->sysfs_state); 7235 } else 7236 spin_unlock_irq(&mddev->write_lock); 7237 7238 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7239 return -EAGAIN; 7240 else 7241 return 0; 7242 } 7243 EXPORT_SYMBOL_GPL(md_allow_write); 7244 7245 #define SYNC_MARKS 10 7246 #define SYNC_MARK_STEP (3*HZ) 7247 void md_do_sync(struct mddev *mddev) 7248 { 7249 struct mddev *mddev2; 7250 unsigned int currspeed = 0, 7251 window; 7252 sector_t max_sectors,j, io_sectors; 7253 unsigned long mark[SYNC_MARKS]; 7254 sector_t mark_cnt[SYNC_MARKS]; 7255 int last_mark,m; 7256 struct list_head *tmp; 7257 sector_t last_check; 7258 int skipped = 0; 7259 struct md_rdev *rdev; 7260 char *desc; 7261 struct blk_plug plug; 7262 7263 /* just incase thread restarts... */ 7264 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7265 return; 7266 if (mddev->ro) /* never try to sync a read-only array */ 7267 return; 7268 7269 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7270 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 7271 desc = "data-check"; 7272 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7273 desc = "requested-resync"; 7274 else 7275 desc = "resync"; 7276 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7277 desc = "reshape"; 7278 else 7279 desc = "recovery"; 7280 7281 /* we overload curr_resync somewhat here. 7282 * 0 == not engaged in resync at all 7283 * 2 == checking that there is no conflict with another sync 7284 * 1 == like 2, but have yielded to allow conflicting resync to 7285 * commense 7286 * other == active in resync - this many blocks 7287 * 7288 * Before starting a resync we must have set curr_resync to 7289 * 2, and then checked that every "conflicting" array has curr_resync 7290 * less than ours. When we find one that is the same or higher 7291 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7292 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7293 * This will mean we have to start checking from the beginning again. 7294 * 7295 */ 7296 7297 do { 7298 mddev->curr_resync = 2; 7299 7300 try_again: 7301 if (kthread_should_stop()) 7302 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7303 7304 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7305 goto skip; 7306 for_each_mddev(mddev2, tmp) { 7307 if (mddev2 == mddev) 7308 continue; 7309 if (!mddev->parallel_resync 7310 && mddev2->curr_resync 7311 && match_mddev_units(mddev, mddev2)) { 7312 DEFINE_WAIT(wq); 7313 if (mddev < mddev2 && mddev->curr_resync == 2) { 7314 /* arbitrarily yield */ 7315 mddev->curr_resync = 1; 7316 wake_up(&resync_wait); 7317 } 7318 if (mddev > mddev2 && mddev->curr_resync == 1) 7319 /* no need to wait here, we can wait the next 7320 * time 'round when curr_resync == 2 7321 */ 7322 continue; 7323 /* We need to wait 'interruptible' so as not to 7324 * contribute to the load average, and not to 7325 * be caught by 'softlockup' 7326 */ 7327 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7328 if (!kthread_should_stop() && 7329 mddev2->curr_resync >= mddev->curr_resync) { 7330 printk(KERN_INFO "md: delaying %s of %s" 7331 " until %s has finished (they" 7332 " share one or more physical units)\n", 7333 desc, mdname(mddev), mdname(mddev2)); 7334 mddev_put(mddev2); 7335 if (signal_pending(current)) 7336 flush_signals(current); 7337 schedule(); 7338 finish_wait(&resync_wait, &wq); 7339 goto try_again; 7340 } 7341 finish_wait(&resync_wait, &wq); 7342 } 7343 } 7344 } while (mddev->curr_resync < 2); 7345 7346 j = 0; 7347 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7348 /* resync follows the size requested by the personality, 7349 * which defaults to physical size, but can be virtual size 7350 */ 7351 max_sectors = mddev->resync_max_sectors; 7352 mddev->resync_mismatches = 0; 7353 /* we don't use the checkpoint if there's a bitmap */ 7354 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7355 j = mddev->resync_min; 7356 else if (!mddev->bitmap) 7357 j = mddev->recovery_cp; 7358 7359 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7360 max_sectors = mddev->resync_max_sectors; 7361 else { 7362 /* recovery follows the physical size of devices */ 7363 max_sectors = mddev->dev_sectors; 7364 j = MaxSector; 7365 rcu_read_lock(); 7366 rdev_for_each_rcu(rdev, mddev) 7367 if (rdev->raid_disk >= 0 && 7368 !test_bit(Faulty, &rdev->flags) && 7369 !test_bit(In_sync, &rdev->flags) && 7370 rdev->recovery_offset < j) 7371 j = rdev->recovery_offset; 7372 rcu_read_unlock(); 7373 } 7374 7375 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7376 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7377 " %d KB/sec/disk.\n", speed_min(mddev)); 7378 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7379 "(but not more than %d KB/sec) for %s.\n", 7380 speed_max(mddev), desc); 7381 7382 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7383 7384 io_sectors = 0; 7385 for (m = 0; m < SYNC_MARKS; m++) { 7386 mark[m] = jiffies; 7387 mark_cnt[m] = io_sectors; 7388 } 7389 last_mark = 0; 7390 mddev->resync_mark = mark[last_mark]; 7391 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7392 7393 /* 7394 * Tune reconstruction: 7395 */ 7396 window = 32*(PAGE_SIZE/512); 7397 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7398 window/2, (unsigned long long)max_sectors/2); 7399 7400 atomic_set(&mddev->recovery_active, 0); 7401 last_check = 0; 7402 7403 if (j>2) { 7404 printk(KERN_INFO 7405 "md: resuming %s of %s from checkpoint.\n", 7406 desc, mdname(mddev)); 7407 mddev->curr_resync = j; 7408 } 7409 mddev->curr_resync_completed = j; 7410 7411 blk_start_plug(&plug); 7412 while (j < max_sectors) { 7413 sector_t sectors; 7414 7415 skipped = 0; 7416 7417 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7418 ((mddev->curr_resync > mddev->curr_resync_completed && 7419 (mddev->curr_resync - mddev->curr_resync_completed) 7420 > (max_sectors >> 4)) || 7421 (j - mddev->curr_resync_completed)*2 7422 >= mddev->resync_max - mddev->curr_resync_completed 7423 )) { 7424 /* time to update curr_resync_completed */ 7425 wait_event(mddev->recovery_wait, 7426 atomic_read(&mddev->recovery_active) == 0); 7427 mddev->curr_resync_completed = j; 7428 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7429 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7430 } 7431 7432 while (j >= mddev->resync_max && !kthread_should_stop()) { 7433 /* As this condition is controlled by user-space, 7434 * we can block indefinitely, so use '_interruptible' 7435 * to avoid triggering warnings. 7436 */ 7437 flush_signals(current); /* just in case */ 7438 wait_event_interruptible(mddev->recovery_wait, 7439 mddev->resync_max > j 7440 || kthread_should_stop()); 7441 } 7442 7443 if (kthread_should_stop()) 7444 goto interrupted; 7445 7446 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7447 currspeed < speed_min(mddev)); 7448 if (sectors == 0) { 7449 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7450 goto out; 7451 } 7452 7453 if (!skipped) { /* actual IO requested */ 7454 io_sectors += sectors; 7455 atomic_add(sectors, &mddev->recovery_active); 7456 } 7457 7458 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7459 break; 7460 7461 j += sectors; 7462 if (j>1) mddev->curr_resync = j; 7463 mddev->curr_mark_cnt = io_sectors; 7464 if (last_check == 0) 7465 /* this is the earliest that rebuild will be 7466 * visible in /proc/mdstat 7467 */ 7468 md_new_event(mddev); 7469 7470 if (last_check + window > io_sectors || j == max_sectors) 7471 continue; 7472 7473 last_check = io_sectors; 7474 repeat: 7475 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7476 /* step marks */ 7477 int next = (last_mark+1) % SYNC_MARKS; 7478 7479 mddev->resync_mark = mark[next]; 7480 mddev->resync_mark_cnt = mark_cnt[next]; 7481 mark[next] = jiffies; 7482 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7483 last_mark = next; 7484 } 7485 7486 7487 if (kthread_should_stop()) 7488 goto interrupted; 7489 7490 7491 /* 7492 * this loop exits only if either when we are slower than 7493 * the 'hard' speed limit, or the system was IO-idle for 7494 * a jiffy. 7495 * the system might be non-idle CPU-wise, but we only care 7496 * about not overloading the IO subsystem. (things like an 7497 * e2fsck being done on the RAID array should execute fast) 7498 */ 7499 cond_resched(); 7500 7501 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7502 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7503 7504 if (currspeed > speed_min(mddev)) { 7505 if ((currspeed > speed_max(mddev)) || 7506 !is_mddev_idle(mddev, 0)) { 7507 msleep(500); 7508 goto repeat; 7509 } 7510 } 7511 } 7512 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 7513 /* 7514 * this also signals 'finished resyncing' to md_stop 7515 */ 7516 out: 7517 blk_finish_plug(&plug); 7518 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7519 7520 /* tell personality that we are finished */ 7521 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7522 7523 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7524 mddev->curr_resync > 2) { 7525 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7526 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7527 if (mddev->curr_resync >= mddev->recovery_cp) { 7528 printk(KERN_INFO 7529 "md: checkpointing %s of %s.\n", 7530 desc, mdname(mddev)); 7531 mddev->recovery_cp = 7532 mddev->curr_resync_completed; 7533 } 7534 } else 7535 mddev->recovery_cp = MaxSector; 7536 } else { 7537 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7538 mddev->curr_resync = MaxSector; 7539 rcu_read_lock(); 7540 rdev_for_each_rcu(rdev, mddev) 7541 if (rdev->raid_disk >= 0 && 7542 mddev->delta_disks >= 0 && 7543 !test_bit(Faulty, &rdev->flags) && 7544 !test_bit(In_sync, &rdev->flags) && 7545 rdev->recovery_offset < mddev->curr_resync) 7546 rdev->recovery_offset = mddev->curr_resync; 7547 rcu_read_unlock(); 7548 } 7549 } 7550 skip: 7551 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7552 7553 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7554 /* We completed so min/max setting can be forgotten if used. */ 7555 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7556 mddev->resync_min = 0; 7557 mddev->resync_max = MaxSector; 7558 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7559 mddev->resync_min = mddev->curr_resync_completed; 7560 mddev->curr_resync = 0; 7561 wake_up(&resync_wait); 7562 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7563 md_wakeup_thread(mddev->thread); 7564 return; 7565 7566 interrupted: 7567 /* 7568 * got a signal, exit. 7569 */ 7570 printk(KERN_INFO 7571 "md: md_do_sync() got signal ... exiting\n"); 7572 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7573 goto out; 7574 7575 } 7576 EXPORT_SYMBOL_GPL(md_do_sync); 7577 7578 static int remove_and_add_spares(struct mddev *mddev) 7579 { 7580 struct md_rdev *rdev; 7581 int spares = 0; 7582 int removed = 0; 7583 7584 mddev->curr_resync_completed = 0; 7585 7586 rdev_for_each(rdev, mddev) 7587 if (rdev->raid_disk >= 0 && 7588 !test_bit(Blocked, &rdev->flags) && 7589 (test_bit(Faulty, &rdev->flags) || 7590 ! test_bit(In_sync, &rdev->flags)) && 7591 atomic_read(&rdev->nr_pending)==0) { 7592 if (mddev->pers->hot_remove_disk( 7593 mddev, rdev) == 0) { 7594 sysfs_unlink_rdev(mddev, rdev); 7595 rdev->raid_disk = -1; 7596 removed++; 7597 } 7598 } 7599 if (removed) 7600 sysfs_notify(&mddev->kobj, NULL, 7601 "degraded"); 7602 7603 7604 rdev_for_each(rdev, mddev) { 7605 if (rdev->raid_disk >= 0 && 7606 !test_bit(In_sync, &rdev->flags) && 7607 !test_bit(Faulty, &rdev->flags)) 7608 spares++; 7609 if (rdev->raid_disk < 0 7610 && !test_bit(Faulty, &rdev->flags)) { 7611 rdev->recovery_offset = 0; 7612 if (mddev->pers-> 7613 hot_add_disk(mddev, rdev) == 0) { 7614 if (sysfs_link_rdev(mddev, rdev)) 7615 /* failure here is OK */; 7616 spares++; 7617 md_new_event(mddev); 7618 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7619 } 7620 } 7621 } 7622 return spares; 7623 } 7624 7625 static void reap_sync_thread(struct mddev *mddev) 7626 { 7627 struct md_rdev *rdev; 7628 7629 /* resync has finished, collect result */ 7630 md_unregister_thread(&mddev->sync_thread); 7631 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7632 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7633 /* success...*/ 7634 /* activate any spares */ 7635 if (mddev->pers->spare_active(mddev)) 7636 sysfs_notify(&mddev->kobj, NULL, 7637 "degraded"); 7638 } 7639 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7640 mddev->pers->finish_reshape) 7641 mddev->pers->finish_reshape(mddev); 7642 7643 /* If array is no-longer degraded, then any saved_raid_disk 7644 * information must be scrapped. Also if any device is now 7645 * In_sync we must scrape the saved_raid_disk for that device 7646 * do the superblock for an incrementally recovered device 7647 * written out. 7648 */ 7649 rdev_for_each(rdev, mddev) 7650 if (!mddev->degraded || 7651 test_bit(In_sync, &rdev->flags)) 7652 rdev->saved_raid_disk = -1; 7653 7654 md_update_sb(mddev, 1); 7655 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7656 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7657 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7658 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7659 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7660 /* flag recovery needed just to double check */ 7661 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7662 sysfs_notify_dirent_safe(mddev->sysfs_action); 7663 md_new_event(mddev); 7664 if (mddev->event_work.func) 7665 queue_work(md_misc_wq, &mddev->event_work); 7666 } 7667 7668 /* 7669 * This routine is regularly called by all per-raid-array threads to 7670 * deal with generic issues like resync and super-block update. 7671 * Raid personalities that don't have a thread (linear/raid0) do not 7672 * need this as they never do any recovery or update the superblock. 7673 * 7674 * It does not do any resync itself, but rather "forks" off other threads 7675 * to do that as needed. 7676 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7677 * "->recovery" and create a thread at ->sync_thread. 7678 * When the thread finishes it sets MD_RECOVERY_DONE 7679 * and wakeups up this thread which will reap the thread and finish up. 7680 * This thread also removes any faulty devices (with nr_pending == 0). 7681 * 7682 * The overall approach is: 7683 * 1/ if the superblock needs updating, update it. 7684 * 2/ If a recovery thread is running, don't do anything else. 7685 * 3/ If recovery has finished, clean up, possibly marking spares active. 7686 * 4/ If there are any faulty devices, remove them. 7687 * 5/ If array is degraded, try to add spares devices 7688 * 6/ If array has spares or is not in-sync, start a resync thread. 7689 */ 7690 void md_check_recovery(struct mddev *mddev) 7691 { 7692 if (mddev->suspended) 7693 return; 7694 7695 if (mddev->bitmap) 7696 bitmap_daemon_work(mddev); 7697 7698 if (signal_pending(current)) { 7699 if (mddev->pers->sync_request && !mddev->external) { 7700 printk(KERN_INFO "md: %s in immediate safe mode\n", 7701 mdname(mddev)); 7702 mddev->safemode = 2; 7703 } 7704 flush_signals(current); 7705 } 7706 7707 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7708 return; 7709 if ( ! ( 7710 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7711 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7712 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7713 (mddev->external == 0 && mddev->safemode == 1) || 7714 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7715 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7716 )) 7717 return; 7718 7719 if (mddev_trylock(mddev)) { 7720 int spares = 0; 7721 7722 if (mddev->ro) { 7723 /* Only thing we do on a ro array is remove 7724 * failed devices. 7725 */ 7726 struct md_rdev *rdev; 7727 rdev_for_each(rdev, mddev) 7728 if (rdev->raid_disk >= 0 && 7729 !test_bit(Blocked, &rdev->flags) && 7730 test_bit(Faulty, &rdev->flags) && 7731 atomic_read(&rdev->nr_pending)==0) { 7732 if (mddev->pers->hot_remove_disk( 7733 mddev, rdev) == 0) { 7734 sysfs_unlink_rdev(mddev, rdev); 7735 rdev->raid_disk = -1; 7736 } 7737 } 7738 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7739 goto unlock; 7740 } 7741 7742 if (!mddev->external) { 7743 int did_change = 0; 7744 spin_lock_irq(&mddev->write_lock); 7745 if (mddev->safemode && 7746 !atomic_read(&mddev->writes_pending) && 7747 !mddev->in_sync && 7748 mddev->recovery_cp == MaxSector) { 7749 mddev->in_sync = 1; 7750 did_change = 1; 7751 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7752 } 7753 if (mddev->safemode == 1) 7754 mddev->safemode = 0; 7755 spin_unlock_irq(&mddev->write_lock); 7756 if (did_change) 7757 sysfs_notify_dirent_safe(mddev->sysfs_state); 7758 } 7759 7760 if (mddev->flags) 7761 md_update_sb(mddev, 0); 7762 7763 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7764 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7765 /* resync/recovery still happening */ 7766 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7767 goto unlock; 7768 } 7769 if (mddev->sync_thread) { 7770 reap_sync_thread(mddev); 7771 goto unlock; 7772 } 7773 /* Set RUNNING before clearing NEEDED to avoid 7774 * any transients in the value of "sync_action". 7775 */ 7776 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7777 /* Clear some bits that don't mean anything, but 7778 * might be left set 7779 */ 7780 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7781 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7782 7783 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7784 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7785 goto unlock; 7786 /* no recovery is running. 7787 * remove any failed drives, then 7788 * add spares if possible. 7789 * Spare are also removed and re-added, to allow 7790 * the personality to fail the re-add. 7791 */ 7792 7793 if (mddev->reshape_position != MaxSector) { 7794 if (mddev->pers->check_reshape == NULL || 7795 mddev->pers->check_reshape(mddev) != 0) 7796 /* Cannot proceed */ 7797 goto unlock; 7798 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7799 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7800 } else if ((spares = remove_and_add_spares(mddev))) { 7801 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7802 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7803 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7804 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7805 } else if (mddev->recovery_cp < MaxSector) { 7806 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7807 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7808 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7809 /* nothing to be done ... */ 7810 goto unlock; 7811 7812 if (mddev->pers->sync_request) { 7813 if (spares) { 7814 /* We are adding a device or devices to an array 7815 * which has the bitmap stored on all devices. 7816 * So make sure all bitmap pages get written 7817 */ 7818 bitmap_write_all(mddev->bitmap); 7819 } 7820 mddev->sync_thread = md_register_thread(md_do_sync, 7821 mddev, 7822 "resync"); 7823 if (!mddev->sync_thread) { 7824 printk(KERN_ERR "%s: could not start resync" 7825 " thread...\n", 7826 mdname(mddev)); 7827 /* leave the spares where they are, it shouldn't hurt */ 7828 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7829 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7830 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7831 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7832 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7833 } else 7834 md_wakeup_thread(mddev->sync_thread); 7835 sysfs_notify_dirent_safe(mddev->sysfs_action); 7836 md_new_event(mddev); 7837 } 7838 unlock: 7839 if (!mddev->sync_thread) { 7840 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7841 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7842 &mddev->recovery)) 7843 if (mddev->sysfs_action) 7844 sysfs_notify_dirent_safe(mddev->sysfs_action); 7845 } 7846 mddev_unlock(mddev); 7847 } 7848 } 7849 7850 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 7851 { 7852 sysfs_notify_dirent_safe(rdev->sysfs_state); 7853 wait_event_timeout(rdev->blocked_wait, 7854 !test_bit(Blocked, &rdev->flags) && 7855 !test_bit(BlockedBadBlocks, &rdev->flags), 7856 msecs_to_jiffies(5000)); 7857 rdev_dec_pending(rdev, mddev); 7858 } 7859 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7860 7861 void md_finish_reshape(struct mddev *mddev) 7862 { 7863 /* called be personality module when reshape completes. */ 7864 struct md_rdev *rdev; 7865 7866 rdev_for_each(rdev, mddev) { 7867 if (rdev->data_offset > rdev->new_data_offset) 7868 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 7869 else 7870 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 7871 rdev->data_offset = rdev->new_data_offset; 7872 } 7873 } 7874 EXPORT_SYMBOL(md_finish_reshape); 7875 7876 /* Bad block management. 7877 * We can record which blocks on each device are 'bad' and so just 7878 * fail those blocks, or that stripe, rather than the whole device. 7879 * Entries in the bad-block table are 64bits wide. This comprises: 7880 * Length of bad-range, in sectors: 0-511 for lengths 1-512 7881 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 7882 * A 'shift' can be set so that larger blocks are tracked and 7883 * consequently larger devices can be covered. 7884 * 'Acknowledged' flag - 1 bit. - the most significant bit. 7885 * 7886 * Locking of the bad-block table uses a seqlock so md_is_badblock 7887 * might need to retry if it is very unlucky. 7888 * We will sometimes want to check for bad blocks in a bi_end_io function, 7889 * so we use the write_seqlock_irq variant. 7890 * 7891 * When looking for a bad block we specify a range and want to 7892 * know if any block in the range is bad. So we binary-search 7893 * to the last range that starts at-or-before the given endpoint, 7894 * (or "before the sector after the target range") 7895 * then see if it ends after the given start. 7896 * We return 7897 * 0 if there are no known bad blocks in the range 7898 * 1 if there are known bad block which are all acknowledged 7899 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 7900 * plus the start/length of the first bad section we overlap. 7901 */ 7902 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 7903 sector_t *first_bad, int *bad_sectors) 7904 { 7905 int hi; 7906 int lo = 0; 7907 u64 *p = bb->page; 7908 int rv = 0; 7909 sector_t target = s + sectors; 7910 unsigned seq; 7911 7912 if (bb->shift > 0) { 7913 /* round the start down, and the end up */ 7914 s >>= bb->shift; 7915 target += (1<<bb->shift) - 1; 7916 target >>= bb->shift; 7917 sectors = target - s; 7918 } 7919 /* 'target' is now the first block after the bad range */ 7920 7921 retry: 7922 seq = read_seqbegin(&bb->lock); 7923 7924 hi = bb->count; 7925 7926 /* Binary search between lo and hi for 'target' 7927 * i.e. for the last range that starts before 'target' 7928 */ 7929 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 7930 * are known not to be the last range before target. 7931 * VARIANT: hi-lo is the number of possible 7932 * ranges, and decreases until it reaches 1 7933 */ 7934 while (hi - lo > 1) { 7935 int mid = (lo + hi) / 2; 7936 sector_t a = BB_OFFSET(p[mid]); 7937 if (a < target) 7938 /* This could still be the one, earlier ranges 7939 * could not. */ 7940 lo = mid; 7941 else 7942 /* This and later ranges are definitely out. */ 7943 hi = mid; 7944 } 7945 /* 'lo' might be the last that started before target, but 'hi' isn't */ 7946 if (hi > lo) { 7947 /* need to check all range that end after 's' to see if 7948 * any are unacknowledged. 7949 */ 7950 while (lo >= 0 && 7951 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 7952 if (BB_OFFSET(p[lo]) < target) { 7953 /* starts before the end, and finishes after 7954 * the start, so they must overlap 7955 */ 7956 if (rv != -1 && BB_ACK(p[lo])) 7957 rv = 1; 7958 else 7959 rv = -1; 7960 *first_bad = BB_OFFSET(p[lo]); 7961 *bad_sectors = BB_LEN(p[lo]); 7962 } 7963 lo--; 7964 } 7965 } 7966 7967 if (read_seqretry(&bb->lock, seq)) 7968 goto retry; 7969 7970 return rv; 7971 } 7972 EXPORT_SYMBOL_GPL(md_is_badblock); 7973 7974 /* 7975 * Add a range of bad blocks to the table. 7976 * This might extend the table, or might contract it 7977 * if two adjacent ranges can be merged. 7978 * We binary-search to find the 'insertion' point, then 7979 * decide how best to handle it. 7980 */ 7981 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 7982 int acknowledged) 7983 { 7984 u64 *p; 7985 int lo, hi; 7986 int rv = 1; 7987 7988 if (bb->shift < 0) 7989 /* badblocks are disabled */ 7990 return 0; 7991 7992 if (bb->shift) { 7993 /* round the start down, and the end up */ 7994 sector_t next = s + sectors; 7995 s >>= bb->shift; 7996 next += (1<<bb->shift) - 1; 7997 next >>= bb->shift; 7998 sectors = next - s; 7999 } 8000 8001 write_seqlock_irq(&bb->lock); 8002 8003 p = bb->page; 8004 lo = 0; 8005 hi = bb->count; 8006 /* Find the last range that starts at-or-before 's' */ 8007 while (hi - lo > 1) { 8008 int mid = (lo + hi) / 2; 8009 sector_t a = BB_OFFSET(p[mid]); 8010 if (a <= s) 8011 lo = mid; 8012 else 8013 hi = mid; 8014 } 8015 if (hi > lo && BB_OFFSET(p[lo]) > s) 8016 hi = lo; 8017 8018 if (hi > lo) { 8019 /* we found a range that might merge with the start 8020 * of our new range 8021 */ 8022 sector_t a = BB_OFFSET(p[lo]); 8023 sector_t e = a + BB_LEN(p[lo]); 8024 int ack = BB_ACK(p[lo]); 8025 if (e >= s) { 8026 /* Yes, we can merge with a previous range */ 8027 if (s == a && s + sectors >= e) 8028 /* new range covers old */ 8029 ack = acknowledged; 8030 else 8031 ack = ack && acknowledged; 8032 8033 if (e < s + sectors) 8034 e = s + sectors; 8035 if (e - a <= BB_MAX_LEN) { 8036 p[lo] = BB_MAKE(a, e-a, ack); 8037 s = e; 8038 } else { 8039 /* does not all fit in one range, 8040 * make p[lo] maximal 8041 */ 8042 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8043 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8044 s = a + BB_MAX_LEN; 8045 } 8046 sectors = e - s; 8047 } 8048 } 8049 if (sectors && hi < bb->count) { 8050 /* 'hi' points to the first range that starts after 's'. 8051 * Maybe we can merge with the start of that range */ 8052 sector_t a = BB_OFFSET(p[hi]); 8053 sector_t e = a + BB_LEN(p[hi]); 8054 int ack = BB_ACK(p[hi]); 8055 if (a <= s + sectors) { 8056 /* merging is possible */ 8057 if (e <= s + sectors) { 8058 /* full overlap */ 8059 e = s + sectors; 8060 ack = acknowledged; 8061 } else 8062 ack = ack && acknowledged; 8063 8064 a = s; 8065 if (e - a <= BB_MAX_LEN) { 8066 p[hi] = BB_MAKE(a, e-a, ack); 8067 s = e; 8068 } else { 8069 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8070 s = a + BB_MAX_LEN; 8071 } 8072 sectors = e - s; 8073 lo = hi; 8074 hi++; 8075 } 8076 } 8077 if (sectors == 0 && hi < bb->count) { 8078 /* we might be able to combine lo and hi */ 8079 /* Note: 's' is at the end of 'lo' */ 8080 sector_t a = BB_OFFSET(p[hi]); 8081 int lolen = BB_LEN(p[lo]); 8082 int hilen = BB_LEN(p[hi]); 8083 int newlen = lolen + hilen - (s - a); 8084 if (s >= a && newlen < BB_MAX_LEN) { 8085 /* yes, we can combine them */ 8086 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8087 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8088 memmove(p + hi, p + hi + 1, 8089 (bb->count - hi - 1) * 8); 8090 bb->count--; 8091 } 8092 } 8093 while (sectors) { 8094 /* didn't merge (it all). 8095 * Need to add a range just before 'hi' */ 8096 if (bb->count >= MD_MAX_BADBLOCKS) { 8097 /* No room for more */ 8098 rv = 0; 8099 break; 8100 } else { 8101 int this_sectors = sectors; 8102 memmove(p + hi + 1, p + hi, 8103 (bb->count - hi) * 8); 8104 bb->count++; 8105 8106 if (this_sectors > BB_MAX_LEN) 8107 this_sectors = BB_MAX_LEN; 8108 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8109 sectors -= this_sectors; 8110 s += this_sectors; 8111 } 8112 } 8113 8114 bb->changed = 1; 8115 if (!acknowledged) 8116 bb->unacked_exist = 1; 8117 write_sequnlock_irq(&bb->lock); 8118 8119 return rv; 8120 } 8121 8122 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8123 int is_new) 8124 { 8125 int rv; 8126 if (is_new) 8127 s += rdev->new_data_offset; 8128 else 8129 s += rdev->data_offset; 8130 rv = md_set_badblocks(&rdev->badblocks, 8131 s, sectors, 0); 8132 if (rv) { 8133 /* Make sure they get written out promptly */ 8134 sysfs_notify_dirent_safe(rdev->sysfs_state); 8135 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8136 md_wakeup_thread(rdev->mddev->thread); 8137 } 8138 return rv; 8139 } 8140 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8141 8142 /* 8143 * Remove a range of bad blocks from the table. 8144 * This may involve extending the table if we spilt a region, 8145 * but it must not fail. So if the table becomes full, we just 8146 * drop the remove request. 8147 */ 8148 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8149 { 8150 u64 *p; 8151 int lo, hi; 8152 sector_t target = s + sectors; 8153 int rv = 0; 8154 8155 if (bb->shift > 0) { 8156 /* When clearing we round the start up and the end down. 8157 * This should not matter as the shift should align with 8158 * the block size and no rounding should ever be needed. 8159 * However it is better the think a block is bad when it 8160 * isn't than to think a block is not bad when it is. 8161 */ 8162 s += (1<<bb->shift) - 1; 8163 s >>= bb->shift; 8164 target >>= bb->shift; 8165 sectors = target - s; 8166 } 8167 8168 write_seqlock_irq(&bb->lock); 8169 8170 p = bb->page; 8171 lo = 0; 8172 hi = bb->count; 8173 /* Find the last range that starts before 'target' */ 8174 while (hi - lo > 1) { 8175 int mid = (lo + hi) / 2; 8176 sector_t a = BB_OFFSET(p[mid]); 8177 if (a < target) 8178 lo = mid; 8179 else 8180 hi = mid; 8181 } 8182 if (hi > lo) { 8183 /* p[lo] is the last range that could overlap the 8184 * current range. Earlier ranges could also overlap, 8185 * but only this one can overlap the end of the range. 8186 */ 8187 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8188 /* Partial overlap, leave the tail of this range */ 8189 int ack = BB_ACK(p[lo]); 8190 sector_t a = BB_OFFSET(p[lo]); 8191 sector_t end = a + BB_LEN(p[lo]); 8192 8193 if (a < s) { 8194 /* we need to split this range */ 8195 if (bb->count >= MD_MAX_BADBLOCKS) { 8196 rv = 0; 8197 goto out; 8198 } 8199 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8200 bb->count++; 8201 p[lo] = BB_MAKE(a, s-a, ack); 8202 lo++; 8203 } 8204 p[lo] = BB_MAKE(target, end - target, ack); 8205 /* there is no longer an overlap */ 8206 hi = lo; 8207 lo--; 8208 } 8209 while (lo >= 0 && 8210 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8211 /* This range does overlap */ 8212 if (BB_OFFSET(p[lo]) < s) { 8213 /* Keep the early parts of this range. */ 8214 int ack = BB_ACK(p[lo]); 8215 sector_t start = BB_OFFSET(p[lo]); 8216 p[lo] = BB_MAKE(start, s - start, ack); 8217 /* now low doesn't overlap, so.. */ 8218 break; 8219 } 8220 lo--; 8221 } 8222 /* 'lo' is strictly before, 'hi' is strictly after, 8223 * anything between needs to be discarded 8224 */ 8225 if (hi - lo > 1) { 8226 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8227 bb->count -= (hi - lo - 1); 8228 } 8229 } 8230 8231 bb->changed = 1; 8232 out: 8233 write_sequnlock_irq(&bb->lock); 8234 return rv; 8235 } 8236 8237 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8238 int is_new) 8239 { 8240 if (is_new) 8241 s += rdev->new_data_offset; 8242 else 8243 s += rdev->data_offset; 8244 return md_clear_badblocks(&rdev->badblocks, 8245 s, sectors); 8246 } 8247 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8248 8249 /* 8250 * Acknowledge all bad blocks in a list. 8251 * This only succeeds if ->changed is clear. It is used by 8252 * in-kernel metadata updates 8253 */ 8254 void md_ack_all_badblocks(struct badblocks *bb) 8255 { 8256 if (bb->page == NULL || bb->changed) 8257 /* no point even trying */ 8258 return; 8259 write_seqlock_irq(&bb->lock); 8260 8261 if (bb->changed == 0 && bb->unacked_exist) { 8262 u64 *p = bb->page; 8263 int i; 8264 for (i = 0; i < bb->count ; i++) { 8265 if (!BB_ACK(p[i])) { 8266 sector_t start = BB_OFFSET(p[i]); 8267 int len = BB_LEN(p[i]); 8268 p[i] = BB_MAKE(start, len, 1); 8269 } 8270 } 8271 bb->unacked_exist = 0; 8272 } 8273 write_sequnlock_irq(&bb->lock); 8274 } 8275 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8276 8277 /* sysfs access to bad-blocks list. 8278 * We present two files. 8279 * 'bad-blocks' lists sector numbers and lengths of ranges that 8280 * are recorded as bad. The list is truncated to fit within 8281 * the one-page limit of sysfs. 8282 * Writing "sector length" to this file adds an acknowledged 8283 * bad block list. 8284 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8285 * been acknowledged. Writing to this file adds bad blocks 8286 * without acknowledging them. This is largely for testing. 8287 */ 8288 8289 static ssize_t 8290 badblocks_show(struct badblocks *bb, char *page, int unack) 8291 { 8292 size_t len; 8293 int i; 8294 u64 *p = bb->page; 8295 unsigned seq; 8296 8297 if (bb->shift < 0) 8298 return 0; 8299 8300 retry: 8301 seq = read_seqbegin(&bb->lock); 8302 8303 len = 0; 8304 i = 0; 8305 8306 while (len < PAGE_SIZE && i < bb->count) { 8307 sector_t s = BB_OFFSET(p[i]); 8308 unsigned int length = BB_LEN(p[i]); 8309 int ack = BB_ACK(p[i]); 8310 i++; 8311 8312 if (unack && ack) 8313 continue; 8314 8315 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8316 (unsigned long long)s << bb->shift, 8317 length << bb->shift); 8318 } 8319 if (unack && len == 0) 8320 bb->unacked_exist = 0; 8321 8322 if (read_seqretry(&bb->lock, seq)) 8323 goto retry; 8324 8325 return len; 8326 } 8327 8328 #define DO_DEBUG 1 8329 8330 static ssize_t 8331 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8332 { 8333 unsigned long long sector; 8334 int length; 8335 char newline; 8336 #ifdef DO_DEBUG 8337 /* Allow clearing via sysfs *only* for testing/debugging. 8338 * Normally only a successful write may clear a badblock 8339 */ 8340 int clear = 0; 8341 if (page[0] == '-') { 8342 clear = 1; 8343 page++; 8344 } 8345 #endif /* DO_DEBUG */ 8346 8347 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8348 case 3: 8349 if (newline != '\n') 8350 return -EINVAL; 8351 case 2: 8352 if (length <= 0) 8353 return -EINVAL; 8354 break; 8355 default: 8356 return -EINVAL; 8357 } 8358 8359 #ifdef DO_DEBUG 8360 if (clear) { 8361 md_clear_badblocks(bb, sector, length); 8362 return len; 8363 } 8364 #endif /* DO_DEBUG */ 8365 if (md_set_badblocks(bb, sector, length, !unack)) 8366 return len; 8367 else 8368 return -ENOSPC; 8369 } 8370 8371 static int md_notify_reboot(struct notifier_block *this, 8372 unsigned long code, void *x) 8373 { 8374 struct list_head *tmp; 8375 struct mddev *mddev; 8376 int need_delay = 0; 8377 8378 for_each_mddev(mddev, tmp) { 8379 if (mddev_trylock(mddev)) { 8380 if (mddev->pers) 8381 __md_stop_writes(mddev); 8382 mddev->safemode = 2; 8383 mddev_unlock(mddev); 8384 } 8385 need_delay = 1; 8386 } 8387 /* 8388 * certain more exotic SCSI devices are known to be 8389 * volatile wrt too early system reboots. While the 8390 * right place to handle this issue is the given 8391 * driver, we do want to have a safe RAID driver ... 8392 */ 8393 if (need_delay) 8394 mdelay(1000*1); 8395 8396 return NOTIFY_DONE; 8397 } 8398 8399 static struct notifier_block md_notifier = { 8400 .notifier_call = md_notify_reboot, 8401 .next = NULL, 8402 .priority = INT_MAX, /* before any real devices */ 8403 }; 8404 8405 static void md_geninit(void) 8406 { 8407 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8408 8409 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8410 } 8411 8412 static int __init md_init(void) 8413 { 8414 int ret = -ENOMEM; 8415 8416 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8417 if (!md_wq) 8418 goto err_wq; 8419 8420 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8421 if (!md_misc_wq) 8422 goto err_misc_wq; 8423 8424 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8425 goto err_md; 8426 8427 if ((ret = register_blkdev(0, "mdp")) < 0) 8428 goto err_mdp; 8429 mdp_major = ret; 8430 8431 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8432 md_probe, NULL, NULL); 8433 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8434 md_probe, NULL, NULL); 8435 8436 register_reboot_notifier(&md_notifier); 8437 raid_table_header = register_sysctl_table(raid_root_table); 8438 8439 md_geninit(); 8440 return 0; 8441 8442 err_mdp: 8443 unregister_blkdev(MD_MAJOR, "md"); 8444 err_md: 8445 destroy_workqueue(md_misc_wq); 8446 err_misc_wq: 8447 destroy_workqueue(md_wq); 8448 err_wq: 8449 return ret; 8450 } 8451 8452 #ifndef MODULE 8453 8454 /* 8455 * Searches all registered partitions for autorun RAID arrays 8456 * at boot time. 8457 */ 8458 8459 static LIST_HEAD(all_detected_devices); 8460 struct detected_devices_node { 8461 struct list_head list; 8462 dev_t dev; 8463 }; 8464 8465 void md_autodetect_dev(dev_t dev) 8466 { 8467 struct detected_devices_node *node_detected_dev; 8468 8469 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8470 if (node_detected_dev) { 8471 node_detected_dev->dev = dev; 8472 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8473 } else { 8474 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8475 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8476 } 8477 } 8478 8479 8480 static void autostart_arrays(int part) 8481 { 8482 struct md_rdev *rdev; 8483 struct detected_devices_node *node_detected_dev; 8484 dev_t dev; 8485 int i_scanned, i_passed; 8486 8487 i_scanned = 0; 8488 i_passed = 0; 8489 8490 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8491 8492 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8493 i_scanned++; 8494 node_detected_dev = list_entry(all_detected_devices.next, 8495 struct detected_devices_node, list); 8496 list_del(&node_detected_dev->list); 8497 dev = node_detected_dev->dev; 8498 kfree(node_detected_dev); 8499 rdev = md_import_device(dev,0, 90); 8500 if (IS_ERR(rdev)) 8501 continue; 8502 8503 if (test_bit(Faulty, &rdev->flags)) { 8504 MD_BUG(); 8505 continue; 8506 } 8507 set_bit(AutoDetected, &rdev->flags); 8508 list_add(&rdev->same_set, &pending_raid_disks); 8509 i_passed++; 8510 } 8511 8512 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8513 i_scanned, i_passed); 8514 8515 autorun_devices(part); 8516 } 8517 8518 #endif /* !MODULE */ 8519 8520 static __exit void md_exit(void) 8521 { 8522 struct mddev *mddev; 8523 struct list_head *tmp; 8524 8525 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8526 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8527 8528 unregister_blkdev(MD_MAJOR,"md"); 8529 unregister_blkdev(mdp_major, "mdp"); 8530 unregister_reboot_notifier(&md_notifier); 8531 unregister_sysctl_table(raid_table_header); 8532 remove_proc_entry("mdstat", NULL); 8533 for_each_mddev(mddev, tmp) { 8534 export_array(mddev); 8535 mddev->hold_active = 0; 8536 } 8537 destroy_workqueue(md_misc_wq); 8538 destroy_workqueue(md_wq); 8539 } 8540 8541 subsys_initcall(md_init); 8542 module_exit(md_exit) 8543 8544 static int get_ro(char *buffer, struct kernel_param *kp) 8545 { 8546 return sprintf(buffer, "%d", start_readonly); 8547 } 8548 static int set_ro(const char *val, struct kernel_param *kp) 8549 { 8550 char *e; 8551 int num = simple_strtoul(val, &e, 10); 8552 if (*val && (*e == '\0' || *e == '\n')) { 8553 start_readonly = num; 8554 return 0; 8555 } 8556 return -EINVAL; 8557 } 8558 8559 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8560 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8561 8562 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8563 8564 EXPORT_SYMBOL(register_md_personality); 8565 EXPORT_SYMBOL(unregister_md_personality); 8566 EXPORT_SYMBOL(md_error); 8567 EXPORT_SYMBOL(md_done_sync); 8568 EXPORT_SYMBOL(md_write_start); 8569 EXPORT_SYMBOL(md_write_end); 8570 EXPORT_SYMBOL(md_register_thread); 8571 EXPORT_SYMBOL(md_unregister_thread); 8572 EXPORT_SYMBOL(md_wakeup_thread); 8573 EXPORT_SYMBOL(md_check_recovery); 8574 MODULE_LICENSE("GPL"); 8575 MODULE_DESCRIPTION("MD RAID framework"); 8576 MODULE_ALIAS("md"); 8577 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8578