1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 static struct workqueue_struct *md_wq; 73 static struct workqueue_struct *md_misc_wq; 74 75 static int remove_and_add_spares(struct mddev *mddev, 76 struct md_rdev *this); 77 78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 79 80 /* 81 * Default number of read corrections we'll attempt on an rdev 82 * before ejecting it from the array. We divide the read error 83 * count by 2 for every hour elapsed between read errors. 84 */ 85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 86 /* 87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 88 * is 1000 KB/sec, so the extra system load does not show up that much. 89 * Increase it if you want to have more _guaranteed_ speed. Note that 90 * the RAID driver will use the maximum available bandwidth if the IO 91 * subsystem is idle. There is also an 'absolute maximum' reconstruction 92 * speed limit - in case reconstruction slows down your system despite 93 * idle IO detection. 94 * 95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 96 * or /sys/block/mdX/md/sync_speed_{min,max} 97 */ 98 99 static int sysctl_speed_limit_min = 1000; 100 static int sysctl_speed_limit_max = 200000; 101 static inline int speed_min(struct mddev *mddev) 102 { 103 return mddev->sync_speed_min ? 104 mddev->sync_speed_min : sysctl_speed_limit_min; 105 } 106 107 static inline int speed_max(struct mddev *mddev) 108 { 109 return mddev->sync_speed_max ? 110 mddev->sync_speed_max : sysctl_speed_limit_max; 111 } 112 113 static struct ctl_table_header *raid_table_header; 114 115 static struct ctl_table raid_table[] = { 116 { 117 .procname = "speed_limit_min", 118 .data = &sysctl_speed_limit_min, 119 .maxlen = sizeof(int), 120 .mode = S_IRUGO|S_IWUSR, 121 .proc_handler = proc_dointvec, 122 }, 123 { 124 .procname = "speed_limit_max", 125 .data = &sysctl_speed_limit_max, 126 .maxlen = sizeof(int), 127 .mode = S_IRUGO|S_IWUSR, 128 .proc_handler = proc_dointvec, 129 }, 130 { } 131 }; 132 133 static struct ctl_table raid_dir_table[] = { 134 { 135 .procname = "raid", 136 .maxlen = 0, 137 .mode = S_IRUGO|S_IXUGO, 138 .child = raid_table, 139 }, 140 { } 141 }; 142 143 static struct ctl_table raid_root_table[] = { 144 { 145 .procname = "dev", 146 .maxlen = 0, 147 .mode = 0555, 148 .child = raid_dir_table, 149 }, 150 { } 151 }; 152 153 static const struct block_device_operations md_fops; 154 155 static int start_readonly; 156 157 /* bio_clone_mddev 158 * like bio_clone, but with a local bio set 159 */ 160 161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 162 struct mddev *mddev) 163 { 164 struct bio *b; 165 166 if (!mddev || !mddev->bio_set) 167 return bio_alloc(gfp_mask, nr_iovecs); 168 169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 170 if (!b) 171 return NULL; 172 return b; 173 } 174 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 175 176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 177 struct mddev *mddev) 178 { 179 if (!mddev || !mddev->bio_set) 180 return bio_clone(bio, gfp_mask); 181 182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 183 } 184 EXPORT_SYMBOL_GPL(bio_clone_mddev); 185 186 /* 187 * We have a system wide 'event count' that is incremented 188 * on any 'interesting' event, and readers of /proc/mdstat 189 * can use 'poll' or 'select' to find out when the event 190 * count increases. 191 * 192 * Events are: 193 * start array, stop array, error, add device, remove device, 194 * start build, activate spare 195 */ 196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 197 static atomic_t md_event_count; 198 void md_new_event(struct mddev *mddev) 199 { 200 atomic_inc(&md_event_count); 201 wake_up(&md_event_waiters); 202 } 203 EXPORT_SYMBOL_GPL(md_new_event); 204 205 /* Alternate version that can be called from interrupts 206 * when calling sysfs_notify isn't needed. 207 */ 208 static void md_new_event_inintr(struct mddev *mddev) 209 { 210 atomic_inc(&md_event_count); 211 wake_up(&md_event_waiters); 212 } 213 214 /* 215 * Enables to iterate over all existing md arrays 216 * all_mddevs_lock protects this list. 217 */ 218 static LIST_HEAD(all_mddevs); 219 static DEFINE_SPINLOCK(all_mddevs_lock); 220 221 222 /* 223 * iterates through all used mddevs in the system. 224 * We take care to grab the all_mddevs_lock whenever navigating 225 * the list, and to always hold a refcount when unlocked. 226 * Any code which breaks out of this loop while own 227 * a reference to the current mddev and must mddev_put it. 228 */ 229 #define for_each_mddev(_mddev,_tmp) \ 230 \ 231 for (({ spin_lock(&all_mddevs_lock); \ 232 _tmp = all_mddevs.next; \ 233 _mddev = NULL;}); \ 234 ({ if (_tmp != &all_mddevs) \ 235 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 236 spin_unlock(&all_mddevs_lock); \ 237 if (_mddev) mddev_put(_mddev); \ 238 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 239 _tmp != &all_mddevs;}); \ 240 ({ spin_lock(&all_mddevs_lock); \ 241 _tmp = _tmp->next;}) \ 242 ) 243 244 245 /* Rather than calling directly into the personality make_request function, 246 * IO requests come here first so that we can check if the device is 247 * being suspended pending a reconfiguration. 248 * We hold a refcount over the call to ->make_request. By the time that 249 * call has finished, the bio has been linked into some internal structure 250 * and so is visible to ->quiesce(), so we don't need the refcount any more. 251 */ 252 static void md_make_request(struct request_queue *q, struct bio *bio) 253 { 254 const int rw = bio_data_dir(bio); 255 struct mddev *mddev = q->queuedata; 256 int cpu; 257 unsigned int sectors; 258 259 if (mddev == NULL || mddev->pers == NULL 260 || !mddev->ready) { 261 bio_io_error(bio); 262 return; 263 } 264 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 265 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS); 266 return; 267 } 268 smp_rmb(); /* Ensure implications of 'active' are visible */ 269 rcu_read_lock(); 270 if (mddev->suspended) { 271 DEFINE_WAIT(__wait); 272 for (;;) { 273 prepare_to_wait(&mddev->sb_wait, &__wait, 274 TASK_UNINTERRUPTIBLE); 275 if (!mddev->suspended) 276 break; 277 rcu_read_unlock(); 278 schedule(); 279 rcu_read_lock(); 280 } 281 finish_wait(&mddev->sb_wait, &__wait); 282 } 283 atomic_inc(&mddev->active_io); 284 rcu_read_unlock(); 285 286 /* 287 * save the sectors now since our bio can 288 * go away inside make_request 289 */ 290 sectors = bio_sectors(bio); 291 mddev->pers->make_request(mddev, bio); 292 293 cpu = part_stat_lock(); 294 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 295 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 296 part_stat_unlock(); 297 298 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 299 wake_up(&mddev->sb_wait); 300 } 301 302 /* mddev_suspend makes sure no new requests are submitted 303 * to the device, and that any requests that have been submitted 304 * are completely handled. 305 * Once ->stop is called and completes, the module will be completely 306 * unused. 307 */ 308 void mddev_suspend(struct mddev *mddev) 309 { 310 BUG_ON(mddev->suspended); 311 mddev->suspended = 1; 312 synchronize_rcu(); 313 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 314 mddev->pers->quiesce(mddev, 1); 315 316 del_timer_sync(&mddev->safemode_timer); 317 } 318 EXPORT_SYMBOL_GPL(mddev_suspend); 319 320 void mddev_resume(struct mddev *mddev) 321 { 322 mddev->suspended = 0; 323 wake_up(&mddev->sb_wait); 324 mddev->pers->quiesce(mddev, 0); 325 326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 327 md_wakeup_thread(mddev->thread); 328 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 329 } 330 EXPORT_SYMBOL_GPL(mddev_resume); 331 332 int mddev_congested(struct mddev *mddev, int bits) 333 { 334 return mddev->suspended; 335 } 336 EXPORT_SYMBOL(mddev_congested); 337 338 /* 339 * Generic flush handling for md 340 */ 341 342 static void md_end_flush(struct bio *bio, int err) 343 { 344 struct md_rdev *rdev = bio->bi_private; 345 struct mddev *mddev = rdev->mddev; 346 347 rdev_dec_pending(rdev, mddev); 348 349 if (atomic_dec_and_test(&mddev->flush_pending)) { 350 /* The pre-request flush has finished */ 351 queue_work(md_wq, &mddev->flush_work); 352 } 353 bio_put(bio); 354 } 355 356 static void md_submit_flush_data(struct work_struct *ws); 357 358 static void submit_flushes(struct work_struct *ws) 359 { 360 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 361 struct md_rdev *rdev; 362 363 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 364 atomic_set(&mddev->flush_pending, 1); 365 rcu_read_lock(); 366 rdev_for_each_rcu(rdev, mddev) 367 if (rdev->raid_disk >= 0 && 368 !test_bit(Faulty, &rdev->flags)) { 369 /* Take two references, one is dropped 370 * when request finishes, one after 371 * we reclaim rcu_read_lock 372 */ 373 struct bio *bi; 374 atomic_inc(&rdev->nr_pending); 375 atomic_inc(&rdev->nr_pending); 376 rcu_read_unlock(); 377 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 378 bi->bi_end_io = md_end_flush; 379 bi->bi_private = rdev; 380 bi->bi_bdev = rdev->bdev; 381 atomic_inc(&mddev->flush_pending); 382 submit_bio(WRITE_FLUSH, bi); 383 rcu_read_lock(); 384 rdev_dec_pending(rdev, mddev); 385 } 386 rcu_read_unlock(); 387 if (atomic_dec_and_test(&mddev->flush_pending)) 388 queue_work(md_wq, &mddev->flush_work); 389 } 390 391 static void md_submit_flush_data(struct work_struct *ws) 392 { 393 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 394 struct bio *bio = mddev->flush_bio; 395 396 if (bio->bi_size == 0) 397 /* an empty barrier - all done */ 398 bio_endio(bio, 0); 399 else { 400 bio->bi_rw &= ~REQ_FLUSH; 401 mddev->pers->make_request(mddev, bio); 402 } 403 404 mddev->flush_bio = NULL; 405 wake_up(&mddev->sb_wait); 406 } 407 408 void md_flush_request(struct mddev *mddev, struct bio *bio) 409 { 410 spin_lock_irq(&mddev->write_lock); 411 wait_event_lock_irq(mddev->sb_wait, 412 !mddev->flush_bio, 413 mddev->write_lock); 414 mddev->flush_bio = bio; 415 spin_unlock_irq(&mddev->write_lock); 416 417 INIT_WORK(&mddev->flush_work, submit_flushes); 418 queue_work(md_wq, &mddev->flush_work); 419 } 420 EXPORT_SYMBOL(md_flush_request); 421 422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 423 { 424 struct mddev *mddev = cb->data; 425 md_wakeup_thread(mddev->thread); 426 kfree(cb); 427 } 428 EXPORT_SYMBOL(md_unplug); 429 430 static inline struct mddev *mddev_get(struct mddev *mddev) 431 { 432 atomic_inc(&mddev->active); 433 return mddev; 434 } 435 436 static void mddev_delayed_delete(struct work_struct *ws); 437 438 static void mddev_put(struct mddev *mddev) 439 { 440 struct bio_set *bs = NULL; 441 442 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 443 return; 444 if (!mddev->raid_disks && list_empty(&mddev->disks) && 445 mddev->ctime == 0 && !mddev->hold_active) { 446 /* Array is not configured at all, and not held active, 447 * so destroy it */ 448 list_del_init(&mddev->all_mddevs); 449 bs = mddev->bio_set; 450 mddev->bio_set = NULL; 451 if (mddev->gendisk) { 452 /* We did a probe so need to clean up. Call 453 * queue_work inside the spinlock so that 454 * flush_workqueue() after mddev_find will 455 * succeed in waiting for the work to be done. 456 */ 457 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 458 queue_work(md_misc_wq, &mddev->del_work); 459 } else 460 kfree(mddev); 461 } 462 spin_unlock(&all_mddevs_lock); 463 if (bs) 464 bioset_free(bs); 465 } 466 467 void mddev_init(struct mddev *mddev) 468 { 469 mutex_init(&mddev->open_mutex); 470 mutex_init(&mddev->reconfig_mutex); 471 mutex_init(&mddev->bitmap_info.mutex); 472 INIT_LIST_HEAD(&mddev->disks); 473 INIT_LIST_HEAD(&mddev->all_mddevs); 474 init_timer(&mddev->safemode_timer); 475 atomic_set(&mddev->active, 1); 476 atomic_set(&mddev->openers, 0); 477 atomic_set(&mddev->active_io, 0); 478 spin_lock_init(&mddev->write_lock); 479 atomic_set(&mddev->flush_pending, 0); 480 init_waitqueue_head(&mddev->sb_wait); 481 init_waitqueue_head(&mddev->recovery_wait); 482 mddev->reshape_position = MaxSector; 483 mddev->reshape_backwards = 0; 484 mddev->last_sync_action = "none"; 485 mddev->resync_min = 0; 486 mddev->resync_max = MaxSector; 487 mddev->level = LEVEL_NONE; 488 } 489 EXPORT_SYMBOL_GPL(mddev_init); 490 491 static struct mddev * mddev_find(dev_t unit) 492 { 493 struct mddev *mddev, *new = NULL; 494 495 if (unit && MAJOR(unit) != MD_MAJOR) 496 unit &= ~((1<<MdpMinorShift)-1); 497 498 retry: 499 spin_lock(&all_mddevs_lock); 500 501 if (unit) { 502 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 503 if (mddev->unit == unit) { 504 mddev_get(mddev); 505 spin_unlock(&all_mddevs_lock); 506 kfree(new); 507 return mddev; 508 } 509 510 if (new) { 511 list_add(&new->all_mddevs, &all_mddevs); 512 spin_unlock(&all_mddevs_lock); 513 new->hold_active = UNTIL_IOCTL; 514 return new; 515 } 516 } else if (new) { 517 /* find an unused unit number */ 518 static int next_minor = 512; 519 int start = next_minor; 520 int is_free = 0; 521 int dev = 0; 522 while (!is_free) { 523 dev = MKDEV(MD_MAJOR, next_minor); 524 next_minor++; 525 if (next_minor > MINORMASK) 526 next_minor = 0; 527 if (next_minor == start) { 528 /* Oh dear, all in use. */ 529 spin_unlock(&all_mddevs_lock); 530 kfree(new); 531 return NULL; 532 } 533 534 is_free = 1; 535 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 536 if (mddev->unit == dev) { 537 is_free = 0; 538 break; 539 } 540 } 541 new->unit = dev; 542 new->md_minor = MINOR(dev); 543 new->hold_active = UNTIL_STOP; 544 list_add(&new->all_mddevs, &all_mddevs); 545 spin_unlock(&all_mddevs_lock); 546 return new; 547 } 548 spin_unlock(&all_mddevs_lock); 549 550 new = kzalloc(sizeof(*new), GFP_KERNEL); 551 if (!new) 552 return NULL; 553 554 new->unit = unit; 555 if (MAJOR(unit) == MD_MAJOR) 556 new->md_minor = MINOR(unit); 557 else 558 new->md_minor = MINOR(unit) >> MdpMinorShift; 559 560 mddev_init(new); 561 562 goto retry; 563 } 564 565 static inline int __must_check mddev_lock(struct mddev * mddev) 566 { 567 return mutex_lock_interruptible(&mddev->reconfig_mutex); 568 } 569 570 /* Sometimes we need to take the lock in a situation where 571 * failure due to interrupts is not acceptable. 572 */ 573 static inline void mddev_lock_nointr(struct mddev * mddev) 574 { 575 mutex_lock(&mddev->reconfig_mutex); 576 } 577 578 static inline int mddev_is_locked(struct mddev *mddev) 579 { 580 return mutex_is_locked(&mddev->reconfig_mutex); 581 } 582 583 static inline int mddev_trylock(struct mddev * mddev) 584 { 585 return mutex_trylock(&mddev->reconfig_mutex); 586 } 587 588 static struct attribute_group md_redundancy_group; 589 590 static void mddev_unlock(struct mddev * mddev) 591 { 592 if (mddev->to_remove) { 593 /* These cannot be removed under reconfig_mutex as 594 * an access to the files will try to take reconfig_mutex 595 * while holding the file unremovable, which leads to 596 * a deadlock. 597 * So hold set sysfs_active while the remove in happeing, 598 * and anything else which might set ->to_remove or my 599 * otherwise change the sysfs namespace will fail with 600 * -EBUSY if sysfs_active is still set. 601 * We set sysfs_active under reconfig_mutex and elsewhere 602 * test it under the same mutex to ensure its correct value 603 * is seen. 604 */ 605 struct attribute_group *to_remove = mddev->to_remove; 606 mddev->to_remove = NULL; 607 mddev->sysfs_active = 1; 608 mutex_unlock(&mddev->reconfig_mutex); 609 610 if (mddev->kobj.sd) { 611 if (to_remove != &md_redundancy_group) 612 sysfs_remove_group(&mddev->kobj, to_remove); 613 if (mddev->pers == NULL || 614 mddev->pers->sync_request == NULL) { 615 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 616 if (mddev->sysfs_action) 617 sysfs_put(mddev->sysfs_action); 618 mddev->sysfs_action = NULL; 619 } 620 } 621 mddev->sysfs_active = 0; 622 } else 623 mutex_unlock(&mddev->reconfig_mutex); 624 625 /* As we've dropped the mutex we need a spinlock to 626 * make sure the thread doesn't disappear 627 */ 628 spin_lock(&pers_lock); 629 md_wakeup_thread(mddev->thread); 630 spin_unlock(&pers_lock); 631 } 632 633 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 634 { 635 struct md_rdev *rdev; 636 637 rdev_for_each(rdev, mddev) 638 if (rdev->desc_nr == nr) 639 return rdev; 640 641 return NULL; 642 } 643 644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr) 645 { 646 struct md_rdev *rdev; 647 648 rdev_for_each_rcu(rdev, mddev) 649 if (rdev->desc_nr == nr) 650 return rdev; 651 652 return NULL; 653 } 654 655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 656 { 657 struct md_rdev *rdev; 658 659 rdev_for_each(rdev, mddev) 660 if (rdev->bdev->bd_dev == dev) 661 return rdev; 662 663 return NULL; 664 } 665 666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 667 { 668 struct md_rdev *rdev; 669 670 rdev_for_each_rcu(rdev, mddev) 671 if (rdev->bdev->bd_dev == dev) 672 return rdev; 673 674 return NULL; 675 } 676 677 static struct md_personality *find_pers(int level, char *clevel) 678 { 679 struct md_personality *pers; 680 list_for_each_entry(pers, &pers_list, list) { 681 if (level != LEVEL_NONE && pers->level == level) 682 return pers; 683 if (strcmp(pers->name, clevel)==0) 684 return pers; 685 } 686 return NULL; 687 } 688 689 /* return the offset of the super block in 512byte sectors */ 690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 691 { 692 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 693 return MD_NEW_SIZE_SECTORS(num_sectors); 694 } 695 696 static int alloc_disk_sb(struct md_rdev * rdev) 697 { 698 if (rdev->sb_page) 699 MD_BUG(); 700 701 rdev->sb_page = alloc_page(GFP_KERNEL); 702 if (!rdev->sb_page) { 703 printk(KERN_ALERT "md: out of memory.\n"); 704 return -ENOMEM; 705 } 706 707 return 0; 708 } 709 710 void md_rdev_clear(struct md_rdev *rdev) 711 { 712 if (rdev->sb_page) { 713 put_page(rdev->sb_page); 714 rdev->sb_loaded = 0; 715 rdev->sb_page = NULL; 716 rdev->sb_start = 0; 717 rdev->sectors = 0; 718 } 719 if (rdev->bb_page) { 720 put_page(rdev->bb_page); 721 rdev->bb_page = NULL; 722 } 723 kfree(rdev->badblocks.page); 724 rdev->badblocks.page = NULL; 725 } 726 EXPORT_SYMBOL_GPL(md_rdev_clear); 727 728 static void super_written(struct bio *bio, int error) 729 { 730 struct md_rdev *rdev = bio->bi_private; 731 struct mddev *mddev = rdev->mddev; 732 733 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 734 printk("md: super_written gets error=%d, uptodate=%d\n", 735 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 736 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 737 md_error(mddev, rdev); 738 } 739 740 if (atomic_dec_and_test(&mddev->pending_writes)) 741 wake_up(&mddev->sb_wait); 742 bio_put(bio); 743 } 744 745 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 746 sector_t sector, int size, struct page *page) 747 { 748 /* write first size bytes of page to sector of rdev 749 * Increment mddev->pending_writes before returning 750 * and decrement it on completion, waking up sb_wait 751 * if zero is reached. 752 * If an error occurred, call md_error 753 */ 754 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 755 756 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 757 bio->bi_sector = sector; 758 bio_add_page(bio, page, size, 0); 759 bio->bi_private = rdev; 760 bio->bi_end_io = super_written; 761 762 atomic_inc(&mddev->pending_writes); 763 submit_bio(WRITE_FLUSH_FUA, bio); 764 } 765 766 void md_super_wait(struct mddev *mddev) 767 { 768 /* wait for all superblock writes that were scheduled to complete */ 769 DEFINE_WAIT(wq); 770 for(;;) { 771 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 772 if (atomic_read(&mddev->pending_writes)==0) 773 break; 774 schedule(); 775 } 776 finish_wait(&mddev->sb_wait, &wq); 777 } 778 779 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 780 struct page *page, int rw, bool metadata_op) 781 { 782 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 783 int ret; 784 785 rw |= REQ_SYNC; 786 787 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 788 rdev->meta_bdev : rdev->bdev; 789 if (metadata_op) 790 bio->bi_sector = sector + rdev->sb_start; 791 else if (rdev->mddev->reshape_position != MaxSector && 792 (rdev->mddev->reshape_backwards == 793 (sector >= rdev->mddev->reshape_position))) 794 bio->bi_sector = sector + rdev->new_data_offset; 795 else 796 bio->bi_sector = sector + rdev->data_offset; 797 bio_add_page(bio, page, size, 0); 798 submit_bio_wait(rw, bio); 799 800 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 801 bio_put(bio); 802 return ret; 803 } 804 EXPORT_SYMBOL_GPL(sync_page_io); 805 806 static int read_disk_sb(struct md_rdev * rdev, int size) 807 { 808 char b[BDEVNAME_SIZE]; 809 if (!rdev->sb_page) { 810 MD_BUG(); 811 return -EINVAL; 812 } 813 if (rdev->sb_loaded) 814 return 0; 815 816 817 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 818 goto fail; 819 rdev->sb_loaded = 1; 820 return 0; 821 822 fail: 823 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 824 bdevname(rdev->bdev,b)); 825 return -EINVAL; 826 } 827 828 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 829 { 830 return sb1->set_uuid0 == sb2->set_uuid0 && 831 sb1->set_uuid1 == sb2->set_uuid1 && 832 sb1->set_uuid2 == sb2->set_uuid2 && 833 sb1->set_uuid3 == sb2->set_uuid3; 834 } 835 836 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 837 { 838 int ret; 839 mdp_super_t *tmp1, *tmp2; 840 841 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 842 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 843 844 if (!tmp1 || !tmp2) { 845 ret = 0; 846 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 847 goto abort; 848 } 849 850 *tmp1 = *sb1; 851 *tmp2 = *sb2; 852 853 /* 854 * nr_disks is not constant 855 */ 856 tmp1->nr_disks = 0; 857 tmp2->nr_disks = 0; 858 859 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 860 abort: 861 kfree(tmp1); 862 kfree(tmp2); 863 return ret; 864 } 865 866 867 static u32 md_csum_fold(u32 csum) 868 { 869 csum = (csum & 0xffff) + (csum >> 16); 870 return (csum & 0xffff) + (csum >> 16); 871 } 872 873 static unsigned int calc_sb_csum(mdp_super_t * sb) 874 { 875 u64 newcsum = 0; 876 u32 *sb32 = (u32*)sb; 877 int i; 878 unsigned int disk_csum, csum; 879 880 disk_csum = sb->sb_csum; 881 sb->sb_csum = 0; 882 883 for (i = 0; i < MD_SB_BYTES/4 ; i++) 884 newcsum += sb32[i]; 885 csum = (newcsum & 0xffffffff) + (newcsum>>32); 886 887 888 #ifdef CONFIG_ALPHA 889 /* This used to use csum_partial, which was wrong for several 890 * reasons including that different results are returned on 891 * different architectures. It isn't critical that we get exactly 892 * the same return value as before (we always csum_fold before 893 * testing, and that removes any differences). However as we 894 * know that csum_partial always returned a 16bit value on 895 * alphas, do a fold to maximise conformity to previous behaviour. 896 */ 897 sb->sb_csum = md_csum_fold(disk_csum); 898 #else 899 sb->sb_csum = disk_csum; 900 #endif 901 return csum; 902 } 903 904 905 /* 906 * Handle superblock details. 907 * We want to be able to handle multiple superblock formats 908 * so we have a common interface to them all, and an array of 909 * different handlers. 910 * We rely on user-space to write the initial superblock, and support 911 * reading and updating of superblocks. 912 * Interface methods are: 913 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 914 * loads and validates a superblock on dev. 915 * if refdev != NULL, compare superblocks on both devices 916 * Return: 917 * 0 - dev has a superblock that is compatible with refdev 918 * 1 - dev has a superblock that is compatible and newer than refdev 919 * so dev should be used as the refdev in future 920 * -EINVAL superblock incompatible or invalid 921 * -othererror e.g. -EIO 922 * 923 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 924 * Verify that dev is acceptable into mddev. 925 * The first time, mddev->raid_disks will be 0, and data from 926 * dev should be merged in. Subsequent calls check that dev 927 * is new enough. Return 0 or -EINVAL 928 * 929 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 930 * Update the superblock for rdev with data in mddev 931 * This does not write to disc. 932 * 933 */ 934 935 struct super_type { 936 char *name; 937 struct module *owner; 938 int (*load_super)(struct md_rdev *rdev, 939 struct md_rdev *refdev, 940 int minor_version); 941 int (*validate_super)(struct mddev *mddev, 942 struct md_rdev *rdev); 943 void (*sync_super)(struct mddev *mddev, 944 struct md_rdev *rdev); 945 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 946 sector_t num_sectors); 947 int (*allow_new_offset)(struct md_rdev *rdev, 948 unsigned long long new_offset); 949 }; 950 951 /* 952 * Check that the given mddev has no bitmap. 953 * 954 * This function is called from the run method of all personalities that do not 955 * support bitmaps. It prints an error message and returns non-zero if mddev 956 * has a bitmap. Otherwise, it returns 0. 957 * 958 */ 959 int md_check_no_bitmap(struct mddev *mddev) 960 { 961 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 962 return 0; 963 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 964 mdname(mddev), mddev->pers->name); 965 return 1; 966 } 967 EXPORT_SYMBOL(md_check_no_bitmap); 968 969 /* 970 * load_super for 0.90.0 971 */ 972 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 973 { 974 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 975 mdp_super_t *sb; 976 int ret; 977 978 /* 979 * Calculate the position of the superblock (512byte sectors), 980 * it's at the end of the disk. 981 * 982 * It also happens to be a multiple of 4Kb. 983 */ 984 rdev->sb_start = calc_dev_sboffset(rdev); 985 986 ret = read_disk_sb(rdev, MD_SB_BYTES); 987 if (ret) return ret; 988 989 ret = -EINVAL; 990 991 bdevname(rdev->bdev, b); 992 sb = page_address(rdev->sb_page); 993 994 if (sb->md_magic != MD_SB_MAGIC) { 995 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 996 b); 997 goto abort; 998 } 999 1000 if (sb->major_version != 0 || 1001 sb->minor_version < 90 || 1002 sb->minor_version > 91) { 1003 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1004 sb->major_version, sb->minor_version, 1005 b); 1006 goto abort; 1007 } 1008 1009 if (sb->raid_disks <= 0) 1010 goto abort; 1011 1012 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1013 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1014 b); 1015 goto abort; 1016 } 1017 1018 rdev->preferred_minor = sb->md_minor; 1019 rdev->data_offset = 0; 1020 rdev->new_data_offset = 0; 1021 rdev->sb_size = MD_SB_BYTES; 1022 rdev->badblocks.shift = -1; 1023 1024 if (sb->level == LEVEL_MULTIPATH) 1025 rdev->desc_nr = -1; 1026 else 1027 rdev->desc_nr = sb->this_disk.number; 1028 1029 if (!refdev) { 1030 ret = 1; 1031 } else { 1032 __u64 ev1, ev2; 1033 mdp_super_t *refsb = page_address(refdev->sb_page); 1034 if (!uuid_equal(refsb, sb)) { 1035 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1036 b, bdevname(refdev->bdev,b2)); 1037 goto abort; 1038 } 1039 if (!sb_equal(refsb, sb)) { 1040 printk(KERN_WARNING "md: %s has same UUID" 1041 " but different superblock to %s\n", 1042 b, bdevname(refdev->bdev, b2)); 1043 goto abort; 1044 } 1045 ev1 = md_event(sb); 1046 ev2 = md_event(refsb); 1047 if (ev1 > ev2) 1048 ret = 1; 1049 else 1050 ret = 0; 1051 } 1052 rdev->sectors = rdev->sb_start; 1053 /* Limit to 4TB as metadata cannot record more than that. 1054 * (not needed for Linear and RAID0 as metadata doesn't 1055 * record this size) 1056 */ 1057 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1058 rdev->sectors = (2ULL << 32) - 2; 1059 1060 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1061 /* "this cannot possibly happen" ... */ 1062 ret = -EINVAL; 1063 1064 abort: 1065 return ret; 1066 } 1067 1068 /* 1069 * validate_super for 0.90.0 1070 */ 1071 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1072 { 1073 mdp_disk_t *desc; 1074 mdp_super_t *sb = page_address(rdev->sb_page); 1075 __u64 ev1 = md_event(sb); 1076 1077 rdev->raid_disk = -1; 1078 clear_bit(Faulty, &rdev->flags); 1079 clear_bit(In_sync, &rdev->flags); 1080 clear_bit(WriteMostly, &rdev->flags); 1081 1082 if (mddev->raid_disks == 0) { 1083 mddev->major_version = 0; 1084 mddev->minor_version = sb->minor_version; 1085 mddev->patch_version = sb->patch_version; 1086 mddev->external = 0; 1087 mddev->chunk_sectors = sb->chunk_size >> 9; 1088 mddev->ctime = sb->ctime; 1089 mddev->utime = sb->utime; 1090 mddev->level = sb->level; 1091 mddev->clevel[0] = 0; 1092 mddev->layout = sb->layout; 1093 mddev->raid_disks = sb->raid_disks; 1094 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1095 mddev->events = ev1; 1096 mddev->bitmap_info.offset = 0; 1097 mddev->bitmap_info.space = 0; 1098 /* bitmap can use 60 K after the 4K superblocks */ 1099 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1100 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1101 mddev->reshape_backwards = 0; 1102 1103 if (mddev->minor_version >= 91) { 1104 mddev->reshape_position = sb->reshape_position; 1105 mddev->delta_disks = sb->delta_disks; 1106 mddev->new_level = sb->new_level; 1107 mddev->new_layout = sb->new_layout; 1108 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1109 if (mddev->delta_disks < 0) 1110 mddev->reshape_backwards = 1; 1111 } else { 1112 mddev->reshape_position = MaxSector; 1113 mddev->delta_disks = 0; 1114 mddev->new_level = mddev->level; 1115 mddev->new_layout = mddev->layout; 1116 mddev->new_chunk_sectors = mddev->chunk_sectors; 1117 } 1118 1119 if (sb->state & (1<<MD_SB_CLEAN)) 1120 mddev->recovery_cp = MaxSector; 1121 else { 1122 if (sb->events_hi == sb->cp_events_hi && 1123 sb->events_lo == sb->cp_events_lo) { 1124 mddev->recovery_cp = sb->recovery_cp; 1125 } else 1126 mddev->recovery_cp = 0; 1127 } 1128 1129 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1130 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1131 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1132 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1133 1134 mddev->max_disks = MD_SB_DISKS; 1135 1136 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1137 mddev->bitmap_info.file == NULL) { 1138 mddev->bitmap_info.offset = 1139 mddev->bitmap_info.default_offset; 1140 mddev->bitmap_info.space = 1141 mddev->bitmap_info.default_space; 1142 } 1143 1144 } else if (mddev->pers == NULL) { 1145 /* Insist on good event counter while assembling, except 1146 * for spares (which don't need an event count) */ 1147 ++ev1; 1148 if (sb->disks[rdev->desc_nr].state & ( 1149 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1150 if (ev1 < mddev->events) 1151 return -EINVAL; 1152 } else if (mddev->bitmap) { 1153 /* if adding to array with a bitmap, then we can accept an 1154 * older device ... but not too old. 1155 */ 1156 if (ev1 < mddev->bitmap->events_cleared) 1157 return 0; 1158 } else { 1159 if (ev1 < mddev->events) 1160 /* just a hot-add of a new device, leave raid_disk at -1 */ 1161 return 0; 1162 } 1163 1164 if (mddev->level != LEVEL_MULTIPATH) { 1165 desc = sb->disks + rdev->desc_nr; 1166 1167 if (desc->state & (1<<MD_DISK_FAULTY)) 1168 set_bit(Faulty, &rdev->flags); 1169 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1170 desc->raid_disk < mddev->raid_disks */) { 1171 set_bit(In_sync, &rdev->flags); 1172 rdev->raid_disk = desc->raid_disk; 1173 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1174 /* active but not in sync implies recovery up to 1175 * reshape position. We don't know exactly where 1176 * that is, so set to zero for now */ 1177 if (mddev->minor_version >= 91) { 1178 rdev->recovery_offset = 0; 1179 rdev->raid_disk = desc->raid_disk; 1180 } 1181 } 1182 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1183 set_bit(WriteMostly, &rdev->flags); 1184 } else /* MULTIPATH are always insync */ 1185 set_bit(In_sync, &rdev->flags); 1186 return 0; 1187 } 1188 1189 /* 1190 * sync_super for 0.90.0 1191 */ 1192 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1193 { 1194 mdp_super_t *sb; 1195 struct md_rdev *rdev2; 1196 int next_spare = mddev->raid_disks; 1197 1198 1199 /* make rdev->sb match mddev data.. 1200 * 1201 * 1/ zero out disks 1202 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1203 * 3/ any empty disks < next_spare become removed 1204 * 1205 * disks[0] gets initialised to REMOVED because 1206 * we cannot be sure from other fields if it has 1207 * been initialised or not. 1208 */ 1209 int i; 1210 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1211 1212 rdev->sb_size = MD_SB_BYTES; 1213 1214 sb = page_address(rdev->sb_page); 1215 1216 memset(sb, 0, sizeof(*sb)); 1217 1218 sb->md_magic = MD_SB_MAGIC; 1219 sb->major_version = mddev->major_version; 1220 sb->patch_version = mddev->patch_version; 1221 sb->gvalid_words = 0; /* ignored */ 1222 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1223 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1224 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1225 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1226 1227 sb->ctime = mddev->ctime; 1228 sb->level = mddev->level; 1229 sb->size = mddev->dev_sectors / 2; 1230 sb->raid_disks = mddev->raid_disks; 1231 sb->md_minor = mddev->md_minor; 1232 sb->not_persistent = 0; 1233 sb->utime = mddev->utime; 1234 sb->state = 0; 1235 sb->events_hi = (mddev->events>>32); 1236 sb->events_lo = (u32)mddev->events; 1237 1238 if (mddev->reshape_position == MaxSector) 1239 sb->minor_version = 90; 1240 else { 1241 sb->minor_version = 91; 1242 sb->reshape_position = mddev->reshape_position; 1243 sb->new_level = mddev->new_level; 1244 sb->delta_disks = mddev->delta_disks; 1245 sb->new_layout = mddev->new_layout; 1246 sb->new_chunk = mddev->new_chunk_sectors << 9; 1247 } 1248 mddev->minor_version = sb->minor_version; 1249 if (mddev->in_sync) 1250 { 1251 sb->recovery_cp = mddev->recovery_cp; 1252 sb->cp_events_hi = (mddev->events>>32); 1253 sb->cp_events_lo = (u32)mddev->events; 1254 if (mddev->recovery_cp == MaxSector) 1255 sb->state = (1<< MD_SB_CLEAN); 1256 } else 1257 sb->recovery_cp = 0; 1258 1259 sb->layout = mddev->layout; 1260 sb->chunk_size = mddev->chunk_sectors << 9; 1261 1262 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1263 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1264 1265 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1266 rdev_for_each(rdev2, mddev) { 1267 mdp_disk_t *d; 1268 int desc_nr; 1269 int is_active = test_bit(In_sync, &rdev2->flags); 1270 1271 if (rdev2->raid_disk >= 0 && 1272 sb->minor_version >= 91) 1273 /* we have nowhere to store the recovery_offset, 1274 * but if it is not below the reshape_position, 1275 * we can piggy-back on that. 1276 */ 1277 is_active = 1; 1278 if (rdev2->raid_disk < 0 || 1279 test_bit(Faulty, &rdev2->flags)) 1280 is_active = 0; 1281 if (is_active) 1282 desc_nr = rdev2->raid_disk; 1283 else 1284 desc_nr = next_spare++; 1285 rdev2->desc_nr = desc_nr; 1286 d = &sb->disks[rdev2->desc_nr]; 1287 nr_disks++; 1288 d->number = rdev2->desc_nr; 1289 d->major = MAJOR(rdev2->bdev->bd_dev); 1290 d->minor = MINOR(rdev2->bdev->bd_dev); 1291 if (is_active) 1292 d->raid_disk = rdev2->raid_disk; 1293 else 1294 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1295 if (test_bit(Faulty, &rdev2->flags)) 1296 d->state = (1<<MD_DISK_FAULTY); 1297 else if (is_active) { 1298 d->state = (1<<MD_DISK_ACTIVE); 1299 if (test_bit(In_sync, &rdev2->flags)) 1300 d->state |= (1<<MD_DISK_SYNC); 1301 active++; 1302 working++; 1303 } else { 1304 d->state = 0; 1305 spare++; 1306 working++; 1307 } 1308 if (test_bit(WriteMostly, &rdev2->flags)) 1309 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1310 } 1311 /* now set the "removed" and "faulty" bits on any missing devices */ 1312 for (i=0 ; i < mddev->raid_disks ; i++) { 1313 mdp_disk_t *d = &sb->disks[i]; 1314 if (d->state == 0 && d->number == 0) { 1315 d->number = i; 1316 d->raid_disk = i; 1317 d->state = (1<<MD_DISK_REMOVED); 1318 d->state |= (1<<MD_DISK_FAULTY); 1319 failed++; 1320 } 1321 } 1322 sb->nr_disks = nr_disks; 1323 sb->active_disks = active; 1324 sb->working_disks = working; 1325 sb->failed_disks = failed; 1326 sb->spare_disks = spare; 1327 1328 sb->this_disk = sb->disks[rdev->desc_nr]; 1329 sb->sb_csum = calc_sb_csum(sb); 1330 } 1331 1332 /* 1333 * rdev_size_change for 0.90.0 1334 */ 1335 static unsigned long long 1336 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1337 { 1338 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1339 return 0; /* component must fit device */ 1340 if (rdev->mddev->bitmap_info.offset) 1341 return 0; /* can't move bitmap */ 1342 rdev->sb_start = calc_dev_sboffset(rdev); 1343 if (!num_sectors || num_sectors > rdev->sb_start) 1344 num_sectors = rdev->sb_start; 1345 /* Limit to 4TB as metadata cannot record more than that. 1346 * 4TB == 2^32 KB, or 2*2^32 sectors. 1347 */ 1348 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1349 num_sectors = (2ULL << 32) - 2; 1350 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1351 rdev->sb_page); 1352 md_super_wait(rdev->mddev); 1353 return num_sectors; 1354 } 1355 1356 static int 1357 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1358 { 1359 /* non-zero offset changes not possible with v0.90 */ 1360 return new_offset == 0; 1361 } 1362 1363 /* 1364 * version 1 superblock 1365 */ 1366 1367 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1368 { 1369 __le32 disk_csum; 1370 u32 csum; 1371 unsigned long long newcsum; 1372 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1373 __le32 *isuper = (__le32*)sb; 1374 1375 disk_csum = sb->sb_csum; 1376 sb->sb_csum = 0; 1377 newcsum = 0; 1378 for (; size >= 4; size -= 4) 1379 newcsum += le32_to_cpu(*isuper++); 1380 1381 if (size == 2) 1382 newcsum += le16_to_cpu(*(__le16*) isuper); 1383 1384 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1385 sb->sb_csum = disk_csum; 1386 return cpu_to_le32(csum); 1387 } 1388 1389 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1390 int acknowledged); 1391 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1392 { 1393 struct mdp_superblock_1 *sb; 1394 int ret; 1395 sector_t sb_start; 1396 sector_t sectors; 1397 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1398 int bmask; 1399 1400 /* 1401 * Calculate the position of the superblock in 512byte sectors. 1402 * It is always aligned to a 4K boundary and 1403 * depeding on minor_version, it can be: 1404 * 0: At least 8K, but less than 12K, from end of device 1405 * 1: At start of device 1406 * 2: 4K from start of device. 1407 */ 1408 switch(minor_version) { 1409 case 0: 1410 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1411 sb_start -= 8*2; 1412 sb_start &= ~(sector_t)(4*2-1); 1413 break; 1414 case 1: 1415 sb_start = 0; 1416 break; 1417 case 2: 1418 sb_start = 8; 1419 break; 1420 default: 1421 return -EINVAL; 1422 } 1423 rdev->sb_start = sb_start; 1424 1425 /* superblock is rarely larger than 1K, but it can be larger, 1426 * and it is safe to read 4k, so we do that 1427 */ 1428 ret = read_disk_sb(rdev, 4096); 1429 if (ret) return ret; 1430 1431 1432 sb = page_address(rdev->sb_page); 1433 1434 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1435 sb->major_version != cpu_to_le32(1) || 1436 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1437 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1438 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1439 return -EINVAL; 1440 1441 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1442 printk("md: invalid superblock checksum on %s\n", 1443 bdevname(rdev->bdev,b)); 1444 return -EINVAL; 1445 } 1446 if (le64_to_cpu(sb->data_size) < 10) { 1447 printk("md: data_size too small on %s\n", 1448 bdevname(rdev->bdev,b)); 1449 return -EINVAL; 1450 } 1451 if (sb->pad0 || 1452 sb->pad3[0] || 1453 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1454 /* Some padding is non-zero, might be a new feature */ 1455 return -EINVAL; 1456 1457 rdev->preferred_minor = 0xffff; 1458 rdev->data_offset = le64_to_cpu(sb->data_offset); 1459 rdev->new_data_offset = rdev->data_offset; 1460 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1461 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1462 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1463 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1464 1465 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1466 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1467 if (rdev->sb_size & bmask) 1468 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1469 1470 if (minor_version 1471 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1472 return -EINVAL; 1473 if (minor_version 1474 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1475 return -EINVAL; 1476 1477 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1478 rdev->desc_nr = -1; 1479 else 1480 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1481 1482 if (!rdev->bb_page) { 1483 rdev->bb_page = alloc_page(GFP_KERNEL); 1484 if (!rdev->bb_page) 1485 return -ENOMEM; 1486 } 1487 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1488 rdev->badblocks.count == 0) { 1489 /* need to load the bad block list. 1490 * Currently we limit it to one page. 1491 */ 1492 s32 offset; 1493 sector_t bb_sector; 1494 u64 *bbp; 1495 int i; 1496 int sectors = le16_to_cpu(sb->bblog_size); 1497 if (sectors > (PAGE_SIZE / 512)) 1498 return -EINVAL; 1499 offset = le32_to_cpu(sb->bblog_offset); 1500 if (offset == 0) 1501 return -EINVAL; 1502 bb_sector = (long long)offset; 1503 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1504 rdev->bb_page, READ, true)) 1505 return -EIO; 1506 bbp = (u64 *)page_address(rdev->bb_page); 1507 rdev->badblocks.shift = sb->bblog_shift; 1508 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1509 u64 bb = le64_to_cpu(*bbp); 1510 int count = bb & (0x3ff); 1511 u64 sector = bb >> 10; 1512 sector <<= sb->bblog_shift; 1513 count <<= sb->bblog_shift; 1514 if (bb + 1 == 0) 1515 break; 1516 if (md_set_badblocks(&rdev->badblocks, 1517 sector, count, 1) == 0) 1518 return -EINVAL; 1519 } 1520 } else if (sb->bblog_offset != 0) 1521 rdev->badblocks.shift = 0; 1522 1523 if (!refdev) { 1524 ret = 1; 1525 } else { 1526 __u64 ev1, ev2; 1527 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1528 1529 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1530 sb->level != refsb->level || 1531 sb->layout != refsb->layout || 1532 sb->chunksize != refsb->chunksize) { 1533 printk(KERN_WARNING "md: %s has strangely different" 1534 " superblock to %s\n", 1535 bdevname(rdev->bdev,b), 1536 bdevname(refdev->bdev,b2)); 1537 return -EINVAL; 1538 } 1539 ev1 = le64_to_cpu(sb->events); 1540 ev2 = le64_to_cpu(refsb->events); 1541 1542 if (ev1 > ev2) 1543 ret = 1; 1544 else 1545 ret = 0; 1546 } 1547 if (minor_version) { 1548 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1549 sectors -= rdev->data_offset; 1550 } else 1551 sectors = rdev->sb_start; 1552 if (sectors < le64_to_cpu(sb->data_size)) 1553 return -EINVAL; 1554 rdev->sectors = le64_to_cpu(sb->data_size); 1555 return ret; 1556 } 1557 1558 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1559 { 1560 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1561 __u64 ev1 = le64_to_cpu(sb->events); 1562 1563 rdev->raid_disk = -1; 1564 clear_bit(Faulty, &rdev->flags); 1565 clear_bit(In_sync, &rdev->flags); 1566 clear_bit(WriteMostly, &rdev->flags); 1567 1568 if (mddev->raid_disks == 0) { 1569 mddev->major_version = 1; 1570 mddev->patch_version = 0; 1571 mddev->external = 0; 1572 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1573 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1574 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1575 mddev->level = le32_to_cpu(sb->level); 1576 mddev->clevel[0] = 0; 1577 mddev->layout = le32_to_cpu(sb->layout); 1578 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1579 mddev->dev_sectors = le64_to_cpu(sb->size); 1580 mddev->events = ev1; 1581 mddev->bitmap_info.offset = 0; 1582 mddev->bitmap_info.space = 0; 1583 /* Default location for bitmap is 1K after superblock 1584 * using 3K - total of 4K 1585 */ 1586 mddev->bitmap_info.default_offset = 1024 >> 9; 1587 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1588 mddev->reshape_backwards = 0; 1589 1590 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1591 memcpy(mddev->uuid, sb->set_uuid, 16); 1592 1593 mddev->max_disks = (4096-256)/2; 1594 1595 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1596 mddev->bitmap_info.file == NULL) { 1597 mddev->bitmap_info.offset = 1598 (__s32)le32_to_cpu(sb->bitmap_offset); 1599 /* Metadata doesn't record how much space is available. 1600 * For 1.0, we assume we can use up to the superblock 1601 * if before, else to 4K beyond superblock. 1602 * For others, assume no change is possible. 1603 */ 1604 if (mddev->minor_version > 0) 1605 mddev->bitmap_info.space = 0; 1606 else if (mddev->bitmap_info.offset > 0) 1607 mddev->bitmap_info.space = 1608 8 - mddev->bitmap_info.offset; 1609 else 1610 mddev->bitmap_info.space = 1611 -mddev->bitmap_info.offset; 1612 } 1613 1614 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1615 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1616 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1617 mddev->new_level = le32_to_cpu(sb->new_level); 1618 mddev->new_layout = le32_to_cpu(sb->new_layout); 1619 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1620 if (mddev->delta_disks < 0 || 1621 (mddev->delta_disks == 0 && 1622 (le32_to_cpu(sb->feature_map) 1623 & MD_FEATURE_RESHAPE_BACKWARDS))) 1624 mddev->reshape_backwards = 1; 1625 } else { 1626 mddev->reshape_position = MaxSector; 1627 mddev->delta_disks = 0; 1628 mddev->new_level = mddev->level; 1629 mddev->new_layout = mddev->layout; 1630 mddev->new_chunk_sectors = mddev->chunk_sectors; 1631 } 1632 1633 } else if (mddev->pers == NULL) { 1634 /* Insist of good event counter while assembling, except for 1635 * spares (which don't need an event count) */ 1636 ++ev1; 1637 if (rdev->desc_nr >= 0 && 1638 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1639 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1640 if (ev1 < mddev->events) 1641 return -EINVAL; 1642 } else if (mddev->bitmap) { 1643 /* If adding to array with a bitmap, then we can accept an 1644 * older device, but not too old. 1645 */ 1646 if (ev1 < mddev->bitmap->events_cleared) 1647 return 0; 1648 } else { 1649 if (ev1 < mddev->events) 1650 /* just a hot-add of a new device, leave raid_disk at -1 */ 1651 return 0; 1652 } 1653 if (mddev->level != LEVEL_MULTIPATH) { 1654 int role; 1655 if (rdev->desc_nr < 0 || 1656 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1657 role = 0xffff; 1658 rdev->desc_nr = -1; 1659 } else 1660 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1661 switch(role) { 1662 case 0xffff: /* spare */ 1663 break; 1664 case 0xfffe: /* faulty */ 1665 set_bit(Faulty, &rdev->flags); 1666 break; 1667 default: 1668 if ((le32_to_cpu(sb->feature_map) & 1669 MD_FEATURE_RECOVERY_OFFSET)) 1670 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1671 else 1672 set_bit(In_sync, &rdev->flags); 1673 rdev->raid_disk = role; 1674 break; 1675 } 1676 if (sb->devflags & WriteMostly1) 1677 set_bit(WriteMostly, &rdev->flags); 1678 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1679 set_bit(Replacement, &rdev->flags); 1680 } else /* MULTIPATH are always insync */ 1681 set_bit(In_sync, &rdev->flags); 1682 1683 return 0; 1684 } 1685 1686 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1687 { 1688 struct mdp_superblock_1 *sb; 1689 struct md_rdev *rdev2; 1690 int max_dev, i; 1691 /* make rdev->sb match mddev and rdev data. */ 1692 1693 sb = page_address(rdev->sb_page); 1694 1695 sb->feature_map = 0; 1696 sb->pad0 = 0; 1697 sb->recovery_offset = cpu_to_le64(0); 1698 memset(sb->pad3, 0, sizeof(sb->pad3)); 1699 1700 sb->utime = cpu_to_le64((__u64)mddev->utime); 1701 sb->events = cpu_to_le64(mddev->events); 1702 if (mddev->in_sync) 1703 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1704 else 1705 sb->resync_offset = cpu_to_le64(0); 1706 1707 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1708 1709 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1710 sb->size = cpu_to_le64(mddev->dev_sectors); 1711 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1712 sb->level = cpu_to_le32(mddev->level); 1713 sb->layout = cpu_to_le32(mddev->layout); 1714 1715 if (test_bit(WriteMostly, &rdev->flags)) 1716 sb->devflags |= WriteMostly1; 1717 else 1718 sb->devflags &= ~WriteMostly1; 1719 sb->data_offset = cpu_to_le64(rdev->data_offset); 1720 sb->data_size = cpu_to_le64(rdev->sectors); 1721 1722 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1723 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1724 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1725 } 1726 1727 if (rdev->raid_disk >= 0 && 1728 !test_bit(In_sync, &rdev->flags)) { 1729 sb->feature_map |= 1730 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1731 sb->recovery_offset = 1732 cpu_to_le64(rdev->recovery_offset); 1733 } 1734 if (test_bit(Replacement, &rdev->flags)) 1735 sb->feature_map |= 1736 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1737 1738 if (mddev->reshape_position != MaxSector) { 1739 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1740 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1741 sb->new_layout = cpu_to_le32(mddev->new_layout); 1742 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1743 sb->new_level = cpu_to_le32(mddev->new_level); 1744 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1745 if (mddev->delta_disks == 0 && 1746 mddev->reshape_backwards) 1747 sb->feature_map 1748 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1749 if (rdev->new_data_offset != rdev->data_offset) { 1750 sb->feature_map 1751 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1752 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1753 - rdev->data_offset)); 1754 } 1755 } 1756 1757 if (rdev->badblocks.count == 0) 1758 /* Nothing to do for bad blocks*/ ; 1759 else if (sb->bblog_offset == 0) 1760 /* Cannot record bad blocks on this device */ 1761 md_error(mddev, rdev); 1762 else { 1763 struct badblocks *bb = &rdev->badblocks; 1764 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1765 u64 *p = bb->page; 1766 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1767 if (bb->changed) { 1768 unsigned seq; 1769 1770 retry: 1771 seq = read_seqbegin(&bb->lock); 1772 1773 memset(bbp, 0xff, PAGE_SIZE); 1774 1775 for (i = 0 ; i < bb->count ; i++) { 1776 u64 internal_bb = p[i]; 1777 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1778 | BB_LEN(internal_bb)); 1779 bbp[i] = cpu_to_le64(store_bb); 1780 } 1781 bb->changed = 0; 1782 if (read_seqretry(&bb->lock, seq)) 1783 goto retry; 1784 1785 bb->sector = (rdev->sb_start + 1786 (int)le32_to_cpu(sb->bblog_offset)); 1787 bb->size = le16_to_cpu(sb->bblog_size); 1788 } 1789 } 1790 1791 max_dev = 0; 1792 rdev_for_each(rdev2, mddev) 1793 if (rdev2->desc_nr+1 > max_dev) 1794 max_dev = rdev2->desc_nr+1; 1795 1796 if (max_dev > le32_to_cpu(sb->max_dev)) { 1797 int bmask; 1798 sb->max_dev = cpu_to_le32(max_dev); 1799 rdev->sb_size = max_dev * 2 + 256; 1800 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1801 if (rdev->sb_size & bmask) 1802 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1803 } else 1804 max_dev = le32_to_cpu(sb->max_dev); 1805 1806 for (i=0; i<max_dev;i++) 1807 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1808 1809 rdev_for_each(rdev2, mddev) { 1810 i = rdev2->desc_nr; 1811 if (test_bit(Faulty, &rdev2->flags)) 1812 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1813 else if (test_bit(In_sync, &rdev2->flags)) 1814 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1815 else if (rdev2->raid_disk >= 0) 1816 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1817 else 1818 sb->dev_roles[i] = cpu_to_le16(0xffff); 1819 } 1820 1821 sb->sb_csum = calc_sb_1_csum(sb); 1822 } 1823 1824 static unsigned long long 1825 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1826 { 1827 struct mdp_superblock_1 *sb; 1828 sector_t max_sectors; 1829 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1830 return 0; /* component must fit device */ 1831 if (rdev->data_offset != rdev->new_data_offset) 1832 return 0; /* too confusing */ 1833 if (rdev->sb_start < rdev->data_offset) { 1834 /* minor versions 1 and 2; superblock before data */ 1835 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1836 max_sectors -= rdev->data_offset; 1837 if (!num_sectors || num_sectors > max_sectors) 1838 num_sectors = max_sectors; 1839 } else if (rdev->mddev->bitmap_info.offset) { 1840 /* minor version 0 with bitmap we can't move */ 1841 return 0; 1842 } else { 1843 /* minor version 0; superblock after data */ 1844 sector_t sb_start; 1845 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1846 sb_start &= ~(sector_t)(4*2 - 1); 1847 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1848 if (!num_sectors || num_sectors > max_sectors) 1849 num_sectors = max_sectors; 1850 rdev->sb_start = sb_start; 1851 } 1852 sb = page_address(rdev->sb_page); 1853 sb->data_size = cpu_to_le64(num_sectors); 1854 sb->super_offset = rdev->sb_start; 1855 sb->sb_csum = calc_sb_1_csum(sb); 1856 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1857 rdev->sb_page); 1858 md_super_wait(rdev->mddev); 1859 return num_sectors; 1860 1861 } 1862 1863 static int 1864 super_1_allow_new_offset(struct md_rdev *rdev, 1865 unsigned long long new_offset) 1866 { 1867 /* All necessary checks on new >= old have been done */ 1868 struct bitmap *bitmap; 1869 if (new_offset >= rdev->data_offset) 1870 return 1; 1871 1872 /* with 1.0 metadata, there is no metadata to tread on 1873 * so we can always move back */ 1874 if (rdev->mddev->minor_version == 0) 1875 return 1; 1876 1877 /* otherwise we must be sure not to step on 1878 * any metadata, so stay: 1879 * 36K beyond start of superblock 1880 * beyond end of badblocks 1881 * beyond write-intent bitmap 1882 */ 1883 if (rdev->sb_start + (32+4)*2 > new_offset) 1884 return 0; 1885 bitmap = rdev->mddev->bitmap; 1886 if (bitmap && !rdev->mddev->bitmap_info.file && 1887 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1888 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1889 return 0; 1890 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1891 return 0; 1892 1893 return 1; 1894 } 1895 1896 static struct super_type super_types[] = { 1897 [0] = { 1898 .name = "0.90.0", 1899 .owner = THIS_MODULE, 1900 .load_super = super_90_load, 1901 .validate_super = super_90_validate, 1902 .sync_super = super_90_sync, 1903 .rdev_size_change = super_90_rdev_size_change, 1904 .allow_new_offset = super_90_allow_new_offset, 1905 }, 1906 [1] = { 1907 .name = "md-1", 1908 .owner = THIS_MODULE, 1909 .load_super = super_1_load, 1910 .validate_super = super_1_validate, 1911 .sync_super = super_1_sync, 1912 .rdev_size_change = super_1_rdev_size_change, 1913 .allow_new_offset = super_1_allow_new_offset, 1914 }, 1915 }; 1916 1917 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1918 { 1919 if (mddev->sync_super) { 1920 mddev->sync_super(mddev, rdev); 1921 return; 1922 } 1923 1924 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1925 1926 super_types[mddev->major_version].sync_super(mddev, rdev); 1927 } 1928 1929 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1930 { 1931 struct md_rdev *rdev, *rdev2; 1932 1933 rcu_read_lock(); 1934 rdev_for_each_rcu(rdev, mddev1) 1935 rdev_for_each_rcu(rdev2, mddev2) 1936 if (rdev->bdev->bd_contains == 1937 rdev2->bdev->bd_contains) { 1938 rcu_read_unlock(); 1939 return 1; 1940 } 1941 rcu_read_unlock(); 1942 return 0; 1943 } 1944 1945 static LIST_HEAD(pending_raid_disks); 1946 1947 /* 1948 * Try to register data integrity profile for an mddev 1949 * 1950 * This is called when an array is started and after a disk has been kicked 1951 * from the array. It only succeeds if all working and active component devices 1952 * are integrity capable with matching profiles. 1953 */ 1954 int md_integrity_register(struct mddev *mddev) 1955 { 1956 struct md_rdev *rdev, *reference = NULL; 1957 1958 if (list_empty(&mddev->disks)) 1959 return 0; /* nothing to do */ 1960 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1961 return 0; /* shouldn't register, or already is */ 1962 rdev_for_each(rdev, mddev) { 1963 /* skip spares and non-functional disks */ 1964 if (test_bit(Faulty, &rdev->flags)) 1965 continue; 1966 if (rdev->raid_disk < 0) 1967 continue; 1968 if (!reference) { 1969 /* Use the first rdev as the reference */ 1970 reference = rdev; 1971 continue; 1972 } 1973 /* does this rdev's profile match the reference profile? */ 1974 if (blk_integrity_compare(reference->bdev->bd_disk, 1975 rdev->bdev->bd_disk) < 0) 1976 return -EINVAL; 1977 } 1978 if (!reference || !bdev_get_integrity(reference->bdev)) 1979 return 0; 1980 /* 1981 * All component devices are integrity capable and have matching 1982 * profiles, register the common profile for the md device. 1983 */ 1984 if (blk_integrity_register(mddev->gendisk, 1985 bdev_get_integrity(reference->bdev)) != 0) { 1986 printk(KERN_ERR "md: failed to register integrity for %s\n", 1987 mdname(mddev)); 1988 return -EINVAL; 1989 } 1990 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 1991 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 1992 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 1993 mdname(mddev)); 1994 return -EINVAL; 1995 } 1996 return 0; 1997 } 1998 EXPORT_SYMBOL(md_integrity_register); 1999 2000 /* Disable data integrity if non-capable/non-matching disk is being added */ 2001 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2002 { 2003 struct blk_integrity *bi_rdev; 2004 struct blk_integrity *bi_mddev; 2005 2006 if (!mddev->gendisk) 2007 return; 2008 2009 bi_rdev = bdev_get_integrity(rdev->bdev); 2010 bi_mddev = blk_get_integrity(mddev->gendisk); 2011 2012 if (!bi_mddev) /* nothing to do */ 2013 return; 2014 if (rdev->raid_disk < 0) /* skip spares */ 2015 return; 2016 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2017 rdev->bdev->bd_disk) >= 0) 2018 return; 2019 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2020 blk_integrity_unregister(mddev->gendisk); 2021 } 2022 EXPORT_SYMBOL(md_integrity_add_rdev); 2023 2024 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2025 { 2026 char b[BDEVNAME_SIZE]; 2027 struct kobject *ko; 2028 char *s; 2029 int err; 2030 2031 if (rdev->mddev) { 2032 MD_BUG(); 2033 return -EINVAL; 2034 } 2035 2036 /* prevent duplicates */ 2037 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2038 return -EEXIST; 2039 2040 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2041 if (rdev->sectors && (mddev->dev_sectors == 0 || 2042 rdev->sectors < mddev->dev_sectors)) { 2043 if (mddev->pers) { 2044 /* Cannot change size, so fail 2045 * If mddev->level <= 0, then we don't care 2046 * about aligning sizes (e.g. linear) 2047 */ 2048 if (mddev->level > 0) 2049 return -ENOSPC; 2050 } else 2051 mddev->dev_sectors = rdev->sectors; 2052 } 2053 2054 /* Verify rdev->desc_nr is unique. 2055 * If it is -1, assign a free number, else 2056 * check number is not in use 2057 */ 2058 if (rdev->desc_nr < 0) { 2059 int choice = 0; 2060 if (mddev->pers) choice = mddev->raid_disks; 2061 while (find_rdev_nr(mddev, choice)) 2062 choice++; 2063 rdev->desc_nr = choice; 2064 } else { 2065 if (find_rdev_nr(mddev, rdev->desc_nr)) 2066 return -EBUSY; 2067 } 2068 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2069 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2070 mdname(mddev), mddev->max_disks); 2071 return -EBUSY; 2072 } 2073 bdevname(rdev->bdev,b); 2074 while ( (s=strchr(b, '/')) != NULL) 2075 *s = '!'; 2076 2077 rdev->mddev = mddev; 2078 printk(KERN_INFO "md: bind<%s>\n", b); 2079 2080 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2081 goto fail; 2082 2083 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2084 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2085 /* failure here is OK */; 2086 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2087 2088 list_add_rcu(&rdev->same_set, &mddev->disks); 2089 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2090 2091 /* May as well allow recovery to be retried once */ 2092 mddev->recovery_disabled++; 2093 2094 return 0; 2095 2096 fail: 2097 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2098 b, mdname(mddev)); 2099 return err; 2100 } 2101 2102 static void md_delayed_delete(struct work_struct *ws) 2103 { 2104 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2105 kobject_del(&rdev->kobj); 2106 kobject_put(&rdev->kobj); 2107 } 2108 2109 static void unbind_rdev_from_array(struct md_rdev * rdev) 2110 { 2111 char b[BDEVNAME_SIZE]; 2112 if (!rdev->mddev) { 2113 MD_BUG(); 2114 return; 2115 } 2116 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2117 list_del_rcu(&rdev->same_set); 2118 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2119 rdev->mddev = NULL; 2120 sysfs_remove_link(&rdev->kobj, "block"); 2121 sysfs_put(rdev->sysfs_state); 2122 rdev->sysfs_state = NULL; 2123 rdev->badblocks.count = 0; 2124 /* We need to delay this, otherwise we can deadlock when 2125 * writing to 'remove' to "dev/state". We also need 2126 * to delay it due to rcu usage. 2127 */ 2128 synchronize_rcu(); 2129 INIT_WORK(&rdev->del_work, md_delayed_delete); 2130 kobject_get(&rdev->kobj); 2131 queue_work(md_misc_wq, &rdev->del_work); 2132 } 2133 2134 /* 2135 * prevent the device from being mounted, repartitioned or 2136 * otherwise reused by a RAID array (or any other kernel 2137 * subsystem), by bd_claiming the device. 2138 */ 2139 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2140 { 2141 int err = 0; 2142 struct block_device *bdev; 2143 char b[BDEVNAME_SIZE]; 2144 2145 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2146 shared ? (struct md_rdev *)lock_rdev : rdev); 2147 if (IS_ERR(bdev)) { 2148 printk(KERN_ERR "md: could not open %s.\n", 2149 __bdevname(dev, b)); 2150 return PTR_ERR(bdev); 2151 } 2152 rdev->bdev = bdev; 2153 return err; 2154 } 2155 2156 static void unlock_rdev(struct md_rdev *rdev) 2157 { 2158 struct block_device *bdev = rdev->bdev; 2159 rdev->bdev = NULL; 2160 if (!bdev) 2161 MD_BUG(); 2162 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2163 } 2164 2165 void md_autodetect_dev(dev_t dev); 2166 2167 static void export_rdev(struct md_rdev * rdev) 2168 { 2169 char b[BDEVNAME_SIZE]; 2170 printk(KERN_INFO "md: export_rdev(%s)\n", 2171 bdevname(rdev->bdev,b)); 2172 if (rdev->mddev) 2173 MD_BUG(); 2174 md_rdev_clear(rdev); 2175 #ifndef MODULE 2176 if (test_bit(AutoDetected, &rdev->flags)) 2177 md_autodetect_dev(rdev->bdev->bd_dev); 2178 #endif 2179 unlock_rdev(rdev); 2180 kobject_put(&rdev->kobj); 2181 } 2182 2183 static void kick_rdev_from_array(struct md_rdev * rdev) 2184 { 2185 unbind_rdev_from_array(rdev); 2186 export_rdev(rdev); 2187 } 2188 2189 static void export_array(struct mddev *mddev) 2190 { 2191 struct md_rdev *rdev, *tmp; 2192 2193 rdev_for_each_safe(rdev, tmp, mddev) { 2194 if (!rdev->mddev) { 2195 MD_BUG(); 2196 continue; 2197 } 2198 kick_rdev_from_array(rdev); 2199 } 2200 if (!list_empty(&mddev->disks)) 2201 MD_BUG(); 2202 mddev->raid_disks = 0; 2203 mddev->major_version = 0; 2204 } 2205 2206 static void print_desc(mdp_disk_t *desc) 2207 { 2208 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2209 desc->major,desc->minor,desc->raid_disk,desc->state); 2210 } 2211 2212 static void print_sb_90(mdp_super_t *sb) 2213 { 2214 int i; 2215 2216 printk(KERN_INFO 2217 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2218 sb->major_version, sb->minor_version, sb->patch_version, 2219 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2220 sb->ctime); 2221 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2222 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2223 sb->md_minor, sb->layout, sb->chunk_size); 2224 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2225 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2226 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2227 sb->failed_disks, sb->spare_disks, 2228 sb->sb_csum, (unsigned long)sb->events_lo); 2229 2230 printk(KERN_INFO); 2231 for (i = 0; i < MD_SB_DISKS; i++) { 2232 mdp_disk_t *desc; 2233 2234 desc = sb->disks + i; 2235 if (desc->number || desc->major || desc->minor || 2236 desc->raid_disk || (desc->state && (desc->state != 4))) { 2237 printk(" D %2d: ", i); 2238 print_desc(desc); 2239 } 2240 } 2241 printk(KERN_INFO "md: THIS: "); 2242 print_desc(&sb->this_disk); 2243 } 2244 2245 static void print_sb_1(struct mdp_superblock_1 *sb) 2246 { 2247 __u8 *uuid; 2248 2249 uuid = sb->set_uuid; 2250 printk(KERN_INFO 2251 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2252 "md: Name: \"%s\" CT:%llu\n", 2253 le32_to_cpu(sb->major_version), 2254 le32_to_cpu(sb->feature_map), 2255 uuid, 2256 sb->set_name, 2257 (unsigned long long)le64_to_cpu(sb->ctime) 2258 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2259 2260 uuid = sb->device_uuid; 2261 printk(KERN_INFO 2262 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2263 " RO:%llu\n" 2264 "md: Dev:%08x UUID: %pU\n" 2265 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2266 "md: (MaxDev:%u) \n", 2267 le32_to_cpu(sb->level), 2268 (unsigned long long)le64_to_cpu(sb->size), 2269 le32_to_cpu(sb->raid_disks), 2270 le32_to_cpu(sb->layout), 2271 le32_to_cpu(sb->chunksize), 2272 (unsigned long long)le64_to_cpu(sb->data_offset), 2273 (unsigned long long)le64_to_cpu(sb->data_size), 2274 (unsigned long long)le64_to_cpu(sb->super_offset), 2275 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2276 le32_to_cpu(sb->dev_number), 2277 uuid, 2278 sb->devflags, 2279 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2280 (unsigned long long)le64_to_cpu(sb->events), 2281 (unsigned long long)le64_to_cpu(sb->resync_offset), 2282 le32_to_cpu(sb->sb_csum), 2283 le32_to_cpu(sb->max_dev) 2284 ); 2285 } 2286 2287 static void print_rdev(struct md_rdev *rdev, int major_version) 2288 { 2289 char b[BDEVNAME_SIZE]; 2290 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2291 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2292 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2293 rdev->desc_nr); 2294 if (rdev->sb_loaded) { 2295 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2296 switch (major_version) { 2297 case 0: 2298 print_sb_90(page_address(rdev->sb_page)); 2299 break; 2300 case 1: 2301 print_sb_1(page_address(rdev->sb_page)); 2302 break; 2303 } 2304 } else 2305 printk(KERN_INFO "md: no rdev superblock!\n"); 2306 } 2307 2308 static void md_print_devices(void) 2309 { 2310 struct list_head *tmp; 2311 struct md_rdev *rdev; 2312 struct mddev *mddev; 2313 char b[BDEVNAME_SIZE]; 2314 2315 printk("\n"); 2316 printk("md: **********************************\n"); 2317 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2318 printk("md: **********************************\n"); 2319 for_each_mddev(mddev, tmp) { 2320 2321 if (mddev->bitmap) 2322 bitmap_print_sb(mddev->bitmap); 2323 else 2324 printk("%s: ", mdname(mddev)); 2325 rdev_for_each(rdev, mddev) 2326 printk("<%s>", bdevname(rdev->bdev,b)); 2327 printk("\n"); 2328 2329 rdev_for_each(rdev, mddev) 2330 print_rdev(rdev, mddev->major_version); 2331 } 2332 printk("md: **********************************\n"); 2333 printk("\n"); 2334 } 2335 2336 2337 static void sync_sbs(struct mddev * mddev, int nospares) 2338 { 2339 /* Update each superblock (in-memory image), but 2340 * if we are allowed to, skip spares which already 2341 * have the right event counter, or have one earlier 2342 * (which would mean they aren't being marked as dirty 2343 * with the rest of the array) 2344 */ 2345 struct md_rdev *rdev; 2346 rdev_for_each(rdev, mddev) { 2347 if (rdev->sb_events == mddev->events || 2348 (nospares && 2349 rdev->raid_disk < 0 && 2350 rdev->sb_events+1 == mddev->events)) { 2351 /* Don't update this superblock */ 2352 rdev->sb_loaded = 2; 2353 } else { 2354 sync_super(mddev, rdev); 2355 rdev->sb_loaded = 1; 2356 } 2357 } 2358 } 2359 2360 static void md_update_sb(struct mddev * mddev, int force_change) 2361 { 2362 struct md_rdev *rdev; 2363 int sync_req; 2364 int nospares = 0; 2365 int any_badblocks_changed = 0; 2366 2367 if (mddev->ro) { 2368 if (force_change) 2369 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2370 return; 2371 } 2372 repeat: 2373 /* First make sure individual recovery_offsets are correct */ 2374 rdev_for_each(rdev, mddev) { 2375 if (rdev->raid_disk >= 0 && 2376 mddev->delta_disks >= 0 && 2377 !test_bit(In_sync, &rdev->flags) && 2378 mddev->curr_resync_completed > rdev->recovery_offset) 2379 rdev->recovery_offset = mddev->curr_resync_completed; 2380 2381 } 2382 if (!mddev->persistent) { 2383 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2384 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2385 if (!mddev->external) { 2386 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2387 rdev_for_each(rdev, mddev) { 2388 if (rdev->badblocks.changed) { 2389 rdev->badblocks.changed = 0; 2390 md_ack_all_badblocks(&rdev->badblocks); 2391 md_error(mddev, rdev); 2392 } 2393 clear_bit(Blocked, &rdev->flags); 2394 clear_bit(BlockedBadBlocks, &rdev->flags); 2395 wake_up(&rdev->blocked_wait); 2396 } 2397 } 2398 wake_up(&mddev->sb_wait); 2399 return; 2400 } 2401 2402 spin_lock_irq(&mddev->write_lock); 2403 2404 mddev->utime = get_seconds(); 2405 2406 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2407 force_change = 1; 2408 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2409 /* just a clean<-> dirty transition, possibly leave spares alone, 2410 * though if events isn't the right even/odd, we will have to do 2411 * spares after all 2412 */ 2413 nospares = 1; 2414 if (force_change) 2415 nospares = 0; 2416 if (mddev->degraded) 2417 /* If the array is degraded, then skipping spares is both 2418 * dangerous and fairly pointless. 2419 * Dangerous because a device that was removed from the array 2420 * might have a event_count that still looks up-to-date, 2421 * so it can be re-added without a resync. 2422 * Pointless because if there are any spares to skip, 2423 * then a recovery will happen and soon that array won't 2424 * be degraded any more and the spare can go back to sleep then. 2425 */ 2426 nospares = 0; 2427 2428 sync_req = mddev->in_sync; 2429 2430 /* If this is just a dirty<->clean transition, and the array is clean 2431 * and 'events' is odd, we can roll back to the previous clean state */ 2432 if (nospares 2433 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2434 && mddev->can_decrease_events 2435 && mddev->events != 1) { 2436 mddev->events--; 2437 mddev->can_decrease_events = 0; 2438 } else { 2439 /* otherwise we have to go forward and ... */ 2440 mddev->events ++; 2441 mddev->can_decrease_events = nospares; 2442 } 2443 2444 if (!mddev->events) { 2445 /* 2446 * oops, this 64-bit counter should never wrap. 2447 * Either we are in around ~1 trillion A.C., assuming 2448 * 1 reboot per second, or we have a bug: 2449 */ 2450 MD_BUG(); 2451 mddev->events --; 2452 } 2453 2454 rdev_for_each(rdev, mddev) { 2455 if (rdev->badblocks.changed) 2456 any_badblocks_changed++; 2457 if (test_bit(Faulty, &rdev->flags)) 2458 set_bit(FaultRecorded, &rdev->flags); 2459 } 2460 2461 sync_sbs(mddev, nospares); 2462 spin_unlock_irq(&mddev->write_lock); 2463 2464 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2465 mdname(mddev), mddev->in_sync); 2466 2467 bitmap_update_sb(mddev->bitmap); 2468 rdev_for_each(rdev, mddev) { 2469 char b[BDEVNAME_SIZE]; 2470 2471 if (rdev->sb_loaded != 1) 2472 continue; /* no noise on spare devices */ 2473 2474 if (!test_bit(Faulty, &rdev->flags) && 2475 rdev->saved_raid_disk == -1) { 2476 md_super_write(mddev,rdev, 2477 rdev->sb_start, rdev->sb_size, 2478 rdev->sb_page); 2479 pr_debug("md: (write) %s's sb offset: %llu\n", 2480 bdevname(rdev->bdev, b), 2481 (unsigned long long)rdev->sb_start); 2482 rdev->sb_events = mddev->events; 2483 if (rdev->badblocks.size) { 2484 md_super_write(mddev, rdev, 2485 rdev->badblocks.sector, 2486 rdev->badblocks.size << 9, 2487 rdev->bb_page); 2488 rdev->badblocks.size = 0; 2489 } 2490 2491 } else if (test_bit(Faulty, &rdev->flags)) 2492 pr_debug("md: %s (skipping faulty)\n", 2493 bdevname(rdev->bdev, b)); 2494 else 2495 pr_debug("(skipping incremental s/r "); 2496 2497 if (mddev->level == LEVEL_MULTIPATH) 2498 /* only need to write one superblock... */ 2499 break; 2500 } 2501 md_super_wait(mddev); 2502 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2503 2504 spin_lock_irq(&mddev->write_lock); 2505 if (mddev->in_sync != sync_req || 2506 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2507 /* have to write it out again */ 2508 spin_unlock_irq(&mddev->write_lock); 2509 goto repeat; 2510 } 2511 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2512 spin_unlock_irq(&mddev->write_lock); 2513 wake_up(&mddev->sb_wait); 2514 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2515 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2516 2517 rdev_for_each(rdev, mddev) { 2518 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2519 clear_bit(Blocked, &rdev->flags); 2520 2521 if (any_badblocks_changed) 2522 md_ack_all_badblocks(&rdev->badblocks); 2523 clear_bit(BlockedBadBlocks, &rdev->flags); 2524 wake_up(&rdev->blocked_wait); 2525 } 2526 } 2527 2528 /* words written to sysfs files may, or may not, be \n terminated. 2529 * We want to accept with case. For this we use cmd_match. 2530 */ 2531 static int cmd_match(const char *cmd, const char *str) 2532 { 2533 /* See if cmd, written into a sysfs file, matches 2534 * str. They must either be the same, or cmd can 2535 * have a trailing newline 2536 */ 2537 while (*cmd && *str && *cmd == *str) { 2538 cmd++; 2539 str++; 2540 } 2541 if (*cmd == '\n') 2542 cmd++; 2543 if (*str || *cmd) 2544 return 0; 2545 return 1; 2546 } 2547 2548 struct rdev_sysfs_entry { 2549 struct attribute attr; 2550 ssize_t (*show)(struct md_rdev *, char *); 2551 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2552 }; 2553 2554 static ssize_t 2555 state_show(struct md_rdev *rdev, char *page) 2556 { 2557 char *sep = ""; 2558 size_t len = 0; 2559 2560 if (test_bit(Faulty, &rdev->flags) || 2561 rdev->badblocks.unacked_exist) { 2562 len+= sprintf(page+len, "%sfaulty",sep); 2563 sep = ","; 2564 } 2565 if (test_bit(In_sync, &rdev->flags)) { 2566 len += sprintf(page+len, "%sin_sync",sep); 2567 sep = ","; 2568 } 2569 if (test_bit(WriteMostly, &rdev->flags)) { 2570 len += sprintf(page+len, "%swrite_mostly",sep); 2571 sep = ","; 2572 } 2573 if (test_bit(Blocked, &rdev->flags) || 2574 (rdev->badblocks.unacked_exist 2575 && !test_bit(Faulty, &rdev->flags))) { 2576 len += sprintf(page+len, "%sblocked", sep); 2577 sep = ","; 2578 } 2579 if (!test_bit(Faulty, &rdev->flags) && 2580 !test_bit(In_sync, &rdev->flags)) { 2581 len += sprintf(page+len, "%sspare", sep); 2582 sep = ","; 2583 } 2584 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2585 len += sprintf(page+len, "%swrite_error", sep); 2586 sep = ","; 2587 } 2588 if (test_bit(WantReplacement, &rdev->flags)) { 2589 len += sprintf(page+len, "%swant_replacement", sep); 2590 sep = ","; 2591 } 2592 if (test_bit(Replacement, &rdev->flags)) { 2593 len += sprintf(page+len, "%sreplacement", sep); 2594 sep = ","; 2595 } 2596 2597 return len+sprintf(page+len, "\n"); 2598 } 2599 2600 static ssize_t 2601 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2602 { 2603 /* can write 2604 * faulty - simulates an error 2605 * remove - disconnects the device 2606 * writemostly - sets write_mostly 2607 * -writemostly - clears write_mostly 2608 * blocked - sets the Blocked flags 2609 * -blocked - clears the Blocked and possibly simulates an error 2610 * insync - sets Insync providing device isn't active 2611 * write_error - sets WriteErrorSeen 2612 * -write_error - clears WriteErrorSeen 2613 */ 2614 int err = -EINVAL; 2615 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2616 md_error(rdev->mddev, rdev); 2617 if (test_bit(Faulty, &rdev->flags)) 2618 err = 0; 2619 else 2620 err = -EBUSY; 2621 } else if (cmd_match(buf, "remove")) { 2622 if (rdev->raid_disk >= 0) 2623 err = -EBUSY; 2624 else { 2625 struct mddev *mddev = rdev->mddev; 2626 kick_rdev_from_array(rdev); 2627 if (mddev->pers) 2628 md_update_sb(mddev, 1); 2629 md_new_event(mddev); 2630 err = 0; 2631 } 2632 } else if (cmd_match(buf, "writemostly")) { 2633 set_bit(WriteMostly, &rdev->flags); 2634 err = 0; 2635 } else if (cmd_match(buf, "-writemostly")) { 2636 clear_bit(WriteMostly, &rdev->flags); 2637 err = 0; 2638 } else if (cmd_match(buf, "blocked")) { 2639 set_bit(Blocked, &rdev->flags); 2640 err = 0; 2641 } else if (cmd_match(buf, "-blocked")) { 2642 if (!test_bit(Faulty, &rdev->flags) && 2643 rdev->badblocks.unacked_exist) { 2644 /* metadata handler doesn't understand badblocks, 2645 * so we need to fail the device 2646 */ 2647 md_error(rdev->mddev, rdev); 2648 } 2649 clear_bit(Blocked, &rdev->flags); 2650 clear_bit(BlockedBadBlocks, &rdev->flags); 2651 wake_up(&rdev->blocked_wait); 2652 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2653 md_wakeup_thread(rdev->mddev->thread); 2654 2655 err = 0; 2656 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2657 set_bit(In_sync, &rdev->flags); 2658 err = 0; 2659 } else if (cmd_match(buf, "write_error")) { 2660 set_bit(WriteErrorSeen, &rdev->flags); 2661 err = 0; 2662 } else if (cmd_match(buf, "-write_error")) { 2663 clear_bit(WriteErrorSeen, &rdev->flags); 2664 err = 0; 2665 } else if (cmd_match(buf, "want_replacement")) { 2666 /* Any non-spare device that is not a replacement can 2667 * become want_replacement at any time, but we then need to 2668 * check if recovery is needed. 2669 */ 2670 if (rdev->raid_disk >= 0 && 2671 !test_bit(Replacement, &rdev->flags)) 2672 set_bit(WantReplacement, &rdev->flags); 2673 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2674 md_wakeup_thread(rdev->mddev->thread); 2675 err = 0; 2676 } else if (cmd_match(buf, "-want_replacement")) { 2677 /* Clearing 'want_replacement' is always allowed. 2678 * Once replacements starts it is too late though. 2679 */ 2680 err = 0; 2681 clear_bit(WantReplacement, &rdev->flags); 2682 } else if (cmd_match(buf, "replacement")) { 2683 /* Can only set a device as a replacement when array has not 2684 * yet been started. Once running, replacement is automatic 2685 * from spares, or by assigning 'slot'. 2686 */ 2687 if (rdev->mddev->pers) 2688 err = -EBUSY; 2689 else { 2690 set_bit(Replacement, &rdev->flags); 2691 err = 0; 2692 } 2693 } else if (cmd_match(buf, "-replacement")) { 2694 /* Similarly, can only clear Replacement before start */ 2695 if (rdev->mddev->pers) 2696 err = -EBUSY; 2697 else { 2698 clear_bit(Replacement, &rdev->flags); 2699 err = 0; 2700 } 2701 } 2702 if (!err) 2703 sysfs_notify_dirent_safe(rdev->sysfs_state); 2704 return err ? err : len; 2705 } 2706 static struct rdev_sysfs_entry rdev_state = 2707 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2708 2709 static ssize_t 2710 errors_show(struct md_rdev *rdev, char *page) 2711 { 2712 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2713 } 2714 2715 static ssize_t 2716 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2717 { 2718 char *e; 2719 unsigned long n = simple_strtoul(buf, &e, 10); 2720 if (*buf && (*e == 0 || *e == '\n')) { 2721 atomic_set(&rdev->corrected_errors, n); 2722 return len; 2723 } 2724 return -EINVAL; 2725 } 2726 static struct rdev_sysfs_entry rdev_errors = 2727 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2728 2729 static ssize_t 2730 slot_show(struct md_rdev *rdev, char *page) 2731 { 2732 if (rdev->raid_disk < 0) 2733 return sprintf(page, "none\n"); 2734 else 2735 return sprintf(page, "%d\n", rdev->raid_disk); 2736 } 2737 2738 static ssize_t 2739 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2740 { 2741 char *e; 2742 int err; 2743 int slot = simple_strtoul(buf, &e, 10); 2744 if (strncmp(buf, "none", 4)==0) 2745 slot = -1; 2746 else if (e==buf || (*e && *e!= '\n')) 2747 return -EINVAL; 2748 if (rdev->mddev->pers && slot == -1) { 2749 /* Setting 'slot' on an active array requires also 2750 * updating the 'rd%d' link, and communicating 2751 * with the personality with ->hot_*_disk. 2752 * For now we only support removing 2753 * failed/spare devices. This normally happens automatically, 2754 * but not when the metadata is externally managed. 2755 */ 2756 if (rdev->raid_disk == -1) 2757 return -EEXIST; 2758 /* personality does all needed checks */ 2759 if (rdev->mddev->pers->hot_remove_disk == NULL) 2760 return -EINVAL; 2761 clear_bit(Blocked, &rdev->flags); 2762 remove_and_add_spares(rdev->mddev, rdev); 2763 if (rdev->raid_disk >= 0) 2764 return -EBUSY; 2765 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2766 md_wakeup_thread(rdev->mddev->thread); 2767 } else if (rdev->mddev->pers) { 2768 /* Activating a spare .. or possibly reactivating 2769 * if we ever get bitmaps working here. 2770 */ 2771 2772 if (rdev->raid_disk != -1) 2773 return -EBUSY; 2774 2775 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2776 return -EBUSY; 2777 2778 if (rdev->mddev->pers->hot_add_disk == NULL) 2779 return -EINVAL; 2780 2781 if (slot >= rdev->mddev->raid_disks && 2782 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2783 return -ENOSPC; 2784 2785 rdev->raid_disk = slot; 2786 if (test_bit(In_sync, &rdev->flags)) 2787 rdev->saved_raid_disk = slot; 2788 else 2789 rdev->saved_raid_disk = -1; 2790 clear_bit(In_sync, &rdev->flags); 2791 err = rdev->mddev->pers-> 2792 hot_add_disk(rdev->mddev, rdev); 2793 if (err) { 2794 rdev->raid_disk = -1; 2795 return err; 2796 } else 2797 sysfs_notify_dirent_safe(rdev->sysfs_state); 2798 if (sysfs_link_rdev(rdev->mddev, rdev)) 2799 /* failure here is OK */; 2800 /* don't wakeup anyone, leave that to userspace. */ 2801 } else { 2802 if (slot >= rdev->mddev->raid_disks && 2803 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2804 return -ENOSPC; 2805 rdev->raid_disk = slot; 2806 /* assume it is working */ 2807 clear_bit(Faulty, &rdev->flags); 2808 clear_bit(WriteMostly, &rdev->flags); 2809 set_bit(In_sync, &rdev->flags); 2810 sysfs_notify_dirent_safe(rdev->sysfs_state); 2811 } 2812 return len; 2813 } 2814 2815 2816 static struct rdev_sysfs_entry rdev_slot = 2817 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2818 2819 static ssize_t 2820 offset_show(struct md_rdev *rdev, char *page) 2821 { 2822 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2823 } 2824 2825 static ssize_t 2826 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2827 { 2828 unsigned long long offset; 2829 if (kstrtoull(buf, 10, &offset) < 0) 2830 return -EINVAL; 2831 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2832 return -EBUSY; 2833 if (rdev->sectors && rdev->mddev->external) 2834 /* Must set offset before size, so overlap checks 2835 * can be sane */ 2836 return -EBUSY; 2837 rdev->data_offset = offset; 2838 rdev->new_data_offset = offset; 2839 return len; 2840 } 2841 2842 static struct rdev_sysfs_entry rdev_offset = 2843 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2844 2845 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2846 { 2847 return sprintf(page, "%llu\n", 2848 (unsigned long long)rdev->new_data_offset); 2849 } 2850 2851 static ssize_t new_offset_store(struct md_rdev *rdev, 2852 const char *buf, size_t len) 2853 { 2854 unsigned long long new_offset; 2855 struct mddev *mddev = rdev->mddev; 2856 2857 if (kstrtoull(buf, 10, &new_offset) < 0) 2858 return -EINVAL; 2859 2860 if (mddev->sync_thread) 2861 return -EBUSY; 2862 if (new_offset == rdev->data_offset) 2863 /* reset is always permitted */ 2864 ; 2865 else if (new_offset > rdev->data_offset) { 2866 /* must not push array size beyond rdev_sectors */ 2867 if (new_offset - rdev->data_offset 2868 + mddev->dev_sectors > rdev->sectors) 2869 return -E2BIG; 2870 } 2871 /* Metadata worries about other space details. */ 2872 2873 /* decreasing the offset is inconsistent with a backwards 2874 * reshape. 2875 */ 2876 if (new_offset < rdev->data_offset && 2877 mddev->reshape_backwards) 2878 return -EINVAL; 2879 /* Increasing offset is inconsistent with forwards 2880 * reshape. reshape_direction should be set to 2881 * 'backwards' first. 2882 */ 2883 if (new_offset > rdev->data_offset && 2884 !mddev->reshape_backwards) 2885 return -EINVAL; 2886 2887 if (mddev->pers && mddev->persistent && 2888 !super_types[mddev->major_version] 2889 .allow_new_offset(rdev, new_offset)) 2890 return -E2BIG; 2891 rdev->new_data_offset = new_offset; 2892 if (new_offset > rdev->data_offset) 2893 mddev->reshape_backwards = 1; 2894 else if (new_offset < rdev->data_offset) 2895 mddev->reshape_backwards = 0; 2896 2897 return len; 2898 } 2899 static struct rdev_sysfs_entry rdev_new_offset = 2900 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2901 2902 static ssize_t 2903 rdev_size_show(struct md_rdev *rdev, char *page) 2904 { 2905 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2906 } 2907 2908 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2909 { 2910 /* check if two start/length pairs overlap */ 2911 if (s1+l1 <= s2) 2912 return 0; 2913 if (s2+l2 <= s1) 2914 return 0; 2915 return 1; 2916 } 2917 2918 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2919 { 2920 unsigned long long blocks; 2921 sector_t new; 2922 2923 if (kstrtoull(buf, 10, &blocks) < 0) 2924 return -EINVAL; 2925 2926 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2927 return -EINVAL; /* sector conversion overflow */ 2928 2929 new = blocks * 2; 2930 if (new != blocks * 2) 2931 return -EINVAL; /* unsigned long long to sector_t overflow */ 2932 2933 *sectors = new; 2934 return 0; 2935 } 2936 2937 static ssize_t 2938 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2939 { 2940 struct mddev *my_mddev = rdev->mddev; 2941 sector_t oldsectors = rdev->sectors; 2942 sector_t sectors; 2943 2944 if (strict_blocks_to_sectors(buf, §ors) < 0) 2945 return -EINVAL; 2946 if (rdev->data_offset != rdev->new_data_offset) 2947 return -EINVAL; /* too confusing */ 2948 if (my_mddev->pers && rdev->raid_disk >= 0) { 2949 if (my_mddev->persistent) { 2950 sectors = super_types[my_mddev->major_version]. 2951 rdev_size_change(rdev, sectors); 2952 if (!sectors) 2953 return -EBUSY; 2954 } else if (!sectors) 2955 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2956 rdev->data_offset; 2957 if (!my_mddev->pers->resize) 2958 /* Cannot change size for RAID0 or Linear etc */ 2959 return -EINVAL; 2960 } 2961 if (sectors < my_mddev->dev_sectors) 2962 return -EINVAL; /* component must fit device */ 2963 2964 rdev->sectors = sectors; 2965 if (sectors > oldsectors && my_mddev->external) { 2966 /* need to check that all other rdevs with the same ->bdev 2967 * do not overlap. We need to unlock the mddev to avoid 2968 * a deadlock. We have already changed rdev->sectors, and if 2969 * we have to change it back, we will have the lock again. 2970 */ 2971 struct mddev *mddev; 2972 int overlap = 0; 2973 struct list_head *tmp; 2974 2975 mddev_unlock(my_mddev); 2976 for_each_mddev(mddev, tmp) { 2977 struct md_rdev *rdev2; 2978 2979 mddev_lock_nointr(mddev); 2980 rdev_for_each(rdev2, mddev) 2981 if (rdev->bdev == rdev2->bdev && 2982 rdev != rdev2 && 2983 overlaps(rdev->data_offset, rdev->sectors, 2984 rdev2->data_offset, 2985 rdev2->sectors)) { 2986 overlap = 1; 2987 break; 2988 } 2989 mddev_unlock(mddev); 2990 if (overlap) { 2991 mddev_put(mddev); 2992 break; 2993 } 2994 } 2995 mddev_lock_nointr(my_mddev); 2996 if (overlap) { 2997 /* Someone else could have slipped in a size 2998 * change here, but doing so is just silly. 2999 * We put oldsectors back because we *know* it is 3000 * safe, and trust userspace not to race with 3001 * itself 3002 */ 3003 rdev->sectors = oldsectors; 3004 return -EBUSY; 3005 } 3006 } 3007 return len; 3008 } 3009 3010 static struct rdev_sysfs_entry rdev_size = 3011 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3012 3013 3014 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3015 { 3016 unsigned long long recovery_start = rdev->recovery_offset; 3017 3018 if (test_bit(In_sync, &rdev->flags) || 3019 recovery_start == MaxSector) 3020 return sprintf(page, "none\n"); 3021 3022 return sprintf(page, "%llu\n", recovery_start); 3023 } 3024 3025 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3026 { 3027 unsigned long long recovery_start; 3028 3029 if (cmd_match(buf, "none")) 3030 recovery_start = MaxSector; 3031 else if (kstrtoull(buf, 10, &recovery_start)) 3032 return -EINVAL; 3033 3034 if (rdev->mddev->pers && 3035 rdev->raid_disk >= 0) 3036 return -EBUSY; 3037 3038 rdev->recovery_offset = recovery_start; 3039 if (recovery_start == MaxSector) 3040 set_bit(In_sync, &rdev->flags); 3041 else 3042 clear_bit(In_sync, &rdev->flags); 3043 return len; 3044 } 3045 3046 static struct rdev_sysfs_entry rdev_recovery_start = 3047 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3048 3049 3050 static ssize_t 3051 badblocks_show(struct badblocks *bb, char *page, int unack); 3052 static ssize_t 3053 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3054 3055 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3056 { 3057 return badblocks_show(&rdev->badblocks, page, 0); 3058 } 3059 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3060 { 3061 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3062 /* Maybe that ack was all we needed */ 3063 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3064 wake_up(&rdev->blocked_wait); 3065 return rv; 3066 } 3067 static struct rdev_sysfs_entry rdev_bad_blocks = 3068 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3069 3070 3071 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3072 { 3073 return badblocks_show(&rdev->badblocks, page, 1); 3074 } 3075 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3076 { 3077 return badblocks_store(&rdev->badblocks, page, len, 1); 3078 } 3079 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3080 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3081 3082 static struct attribute *rdev_default_attrs[] = { 3083 &rdev_state.attr, 3084 &rdev_errors.attr, 3085 &rdev_slot.attr, 3086 &rdev_offset.attr, 3087 &rdev_new_offset.attr, 3088 &rdev_size.attr, 3089 &rdev_recovery_start.attr, 3090 &rdev_bad_blocks.attr, 3091 &rdev_unack_bad_blocks.attr, 3092 NULL, 3093 }; 3094 static ssize_t 3095 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3096 { 3097 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3098 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3099 struct mddev *mddev = rdev->mddev; 3100 ssize_t rv; 3101 3102 if (!entry->show) 3103 return -EIO; 3104 3105 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3106 if (!rv) { 3107 if (rdev->mddev == NULL) 3108 rv = -EBUSY; 3109 else 3110 rv = entry->show(rdev, page); 3111 mddev_unlock(mddev); 3112 } 3113 return rv; 3114 } 3115 3116 static ssize_t 3117 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3118 const char *page, size_t length) 3119 { 3120 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3121 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3122 ssize_t rv; 3123 struct mddev *mddev = rdev->mddev; 3124 3125 if (!entry->store) 3126 return -EIO; 3127 if (!capable(CAP_SYS_ADMIN)) 3128 return -EACCES; 3129 rv = mddev ? mddev_lock(mddev): -EBUSY; 3130 if (!rv) { 3131 if (rdev->mddev == NULL) 3132 rv = -EBUSY; 3133 else 3134 rv = entry->store(rdev, page, length); 3135 mddev_unlock(mddev); 3136 } 3137 return rv; 3138 } 3139 3140 static void rdev_free(struct kobject *ko) 3141 { 3142 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3143 kfree(rdev); 3144 } 3145 static const struct sysfs_ops rdev_sysfs_ops = { 3146 .show = rdev_attr_show, 3147 .store = rdev_attr_store, 3148 }; 3149 static struct kobj_type rdev_ktype = { 3150 .release = rdev_free, 3151 .sysfs_ops = &rdev_sysfs_ops, 3152 .default_attrs = rdev_default_attrs, 3153 }; 3154 3155 int md_rdev_init(struct md_rdev *rdev) 3156 { 3157 rdev->desc_nr = -1; 3158 rdev->saved_raid_disk = -1; 3159 rdev->raid_disk = -1; 3160 rdev->flags = 0; 3161 rdev->data_offset = 0; 3162 rdev->new_data_offset = 0; 3163 rdev->sb_events = 0; 3164 rdev->last_read_error.tv_sec = 0; 3165 rdev->last_read_error.tv_nsec = 0; 3166 rdev->sb_loaded = 0; 3167 rdev->bb_page = NULL; 3168 atomic_set(&rdev->nr_pending, 0); 3169 atomic_set(&rdev->read_errors, 0); 3170 atomic_set(&rdev->corrected_errors, 0); 3171 3172 INIT_LIST_HEAD(&rdev->same_set); 3173 init_waitqueue_head(&rdev->blocked_wait); 3174 3175 /* Add space to store bad block list. 3176 * This reserves the space even on arrays where it cannot 3177 * be used - I wonder if that matters 3178 */ 3179 rdev->badblocks.count = 0; 3180 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */ 3181 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3182 seqlock_init(&rdev->badblocks.lock); 3183 if (rdev->badblocks.page == NULL) 3184 return -ENOMEM; 3185 3186 return 0; 3187 } 3188 EXPORT_SYMBOL_GPL(md_rdev_init); 3189 /* 3190 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3191 * 3192 * mark the device faulty if: 3193 * 3194 * - the device is nonexistent (zero size) 3195 * - the device has no valid superblock 3196 * 3197 * a faulty rdev _never_ has rdev->sb set. 3198 */ 3199 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3200 { 3201 char b[BDEVNAME_SIZE]; 3202 int err; 3203 struct md_rdev *rdev; 3204 sector_t size; 3205 3206 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3207 if (!rdev) { 3208 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3209 return ERR_PTR(-ENOMEM); 3210 } 3211 3212 err = md_rdev_init(rdev); 3213 if (err) 3214 goto abort_free; 3215 err = alloc_disk_sb(rdev); 3216 if (err) 3217 goto abort_free; 3218 3219 err = lock_rdev(rdev, newdev, super_format == -2); 3220 if (err) 3221 goto abort_free; 3222 3223 kobject_init(&rdev->kobj, &rdev_ktype); 3224 3225 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3226 if (!size) { 3227 printk(KERN_WARNING 3228 "md: %s has zero or unknown size, marking faulty!\n", 3229 bdevname(rdev->bdev,b)); 3230 err = -EINVAL; 3231 goto abort_free; 3232 } 3233 3234 if (super_format >= 0) { 3235 err = super_types[super_format]. 3236 load_super(rdev, NULL, super_minor); 3237 if (err == -EINVAL) { 3238 printk(KERN_WARNING 3239 "md: %s does not have a valid v%d.%d " 3240 "superblock, not importing!\n", 3241 bdevname(rdev->bdev,b), 3242 super_format, super_minor); 3243 goto abort_free; 3244 } 3245 if (err < 0) { 3246 printk(KERN_WARNING 3247 "md: could not read %s's sb, not importing!\n", 3248 bdevname(rdev->bdev,b)); 3249 goto abort_free; 3250 } 3251 } 3252 3253 return rdev; 3254 3255 abort_free: 3256 if (rdev->bdev) 3257 unlock_rdev(rdev); 3258 md_rdev_clear(rdev); 3259 kfree(rdev); 3260 return ERR_PTR(err); 3261 } 3262 3263 /* 3264 * Check a full RAID array for plausibility 3265 */ 3266 3267 3268 static void analyze_sbs(struct mddev * mddev) 3269 { 3270 int i; 3271 struct md_rdev *rdev, *freshest, *tmp; 3272 char b[BDEVNAME_SIZE]; 3273 3274 freshest = NULL; 3275 rdev_for_each_safe(rdev, tmp, mddev) 3276 switch (super_types[mddev->major_version]. 3277 load_super(rdev, freshest, mddev->minor_version)) { 3278 case 1: 3279 freshest = rdev; 3280 break; 3281 case 0: 3282 break; 3283 default: 3284 printk( KERN_ERR \ 3285 "md: fatal superblock inconsistency in %s" 3286 " -- removing from array\n", 3287 bdevname(rdev->bdev,b)); 3288 kick_rdev_from_array(rdev); 3289 } 3290 3291 3292 super_types[mddev->major_version]. 3293 validate_super(mddev, freshest); 3294 3295 i = 0; 3296 rdev_for_each_safe(rdev, tmp, mddev) { 3297 if (mddev->max_disks && 3298 (rdev->desc_nr >= mddev->max_disks || 3299 i > mddev->max_disks)) { 3300 printk(KERN_WARNING 3301 "md: %s: %s: only %d devices permitted\n", 3302 mdname(mddev), bdevname(rdev->bdev, b), 3303 mddev->max_disks); 3304 kick_rdev_from_array(rdev); 3305 continue; 3306 } 3307 if (rdev != freshest) 3308 if (super_types[mddev->major_version]. 3309 validate_super(mddev, rdev)) { 3310 printk(KERN_WARNING "md: kicking non-fresh %s" 3311 " from array!\n", 3312 bdevname(rdev->bdev,b)); 3313 kick_rdev_from_array(rdev); 3314 continue; 3315 } 3316 if (mddev->level == LEVEL_MULTIPATH) { 3317 rdev->desc_nr = i++; 3318 rdev->raid_disk = rdev->desc_nr; 3319 set_bit(In_sync, &rdev->flags); 3320 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3321 rdev->raid_disk = -1; 3322 clear_bit(In_sync, &rdev->flags); 3323 } 3324 } 3325 } 3326 3327 /* Read a fixed-point number. 3328 * Numbers in sysfs attributes should be in "standard" units where 3329 * possible, so time should be in seconds. 3330 * However we internally use a a much smaller unit such as 3331 * milliseconds or jiffies. 3332 * This function takes a decimal number with a possible fractional 3333 * component, and produces an integer which is the result of 3334 * multiplying that number by 10^'scale'. 3335 * all without any floating-point arithmetic. 3336 */ 3337 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3338 { 3339 unsigned long result = 0; 3340 long decimals = -1; 3341 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3342 if (*cp == '.') 3343 decimals = 0; 3344 else if (decimals < scale) { 3345 unsigned int value; 3346 value = *cp - '0'; 3347 result = result * 10 + value; 3348 if (decimals >= 0) 3349 decimals++; 3350 } 3351 cp++; 3352 } 3353 if (*cp == '\n') 3354 cp++; 3355 if (*cp) 3356 return -EINVAL; 3357 if (decimals < 0) 3358 decimals = 0; 3359 while (decimals < scale) { 3360 result *= 10; 3361 decimals ++; 3362 } 3363 *res = result; 3364 return 0; 3365 } 3366 3367 3368 static void md_safemode_timeout(unsigned long data); 3369 3370 static ssize_t 3371 safe_delay_show(struct mddev *mddev, char *page) 3372 { 3373 int msec = (mddev->safemode_delay*1000)/HZ; 3374 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3375 } 3376 static ssize_t 3377 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3378 { 3379 unsigned long msec; 3380 3381 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3382 return -EINVAL; 3383 if (msec == 0) 3384 mddev->safemode_delay = 0; 3385 else { 3386 unsigned long old_delay = mddev->safemode_delay; 3387 mddev->safemode_delay = (msec*HZ)/1000; 3388 if (mddev->safemode_delay == 0) 3389 mddev->safemode_delay = 1; 3390 if (mddev->safemode_delay < old_delay || old_delay == 0) 3391 md_safemode_timeout((unsigned long)mddev); 3392 } 3393 return len; 3394 } 3395 static struct md_sysfs_entry md_safe_delay = 3396 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3397 3398 static ssize_t 3399 level_show(struct mddev *mddev, char *page) 3400 { 3401 struct md_personality *p = mddev->pers; 3402 if (p) 3403 return sprintf(page, "%s\n", p->name); 3404 else if (mddev->clevel[0]) 3405 return sprintf(page, "%s\n", mddev->clevel); 3406 else if (mddev->level != LEVEL_NONE) 3407 return sprintf(page, "%d\n", mddev->level); 3408 else 3409 return 0; 3410 } 3411 3412 static ssize_t 3413 level_store(struct mddev *mddev, const char *buf, size_t len) 3414 { 3415 char clevel[16]; 3416 ssize_t rv = len; 3417 struct md_personality *pers; 3418 long level; 3419 void *priv; 3420 struct md_rdev *rdev; 3421 3422 if (mddev->pers == NULL) { 3423 if (len == 0) 3424 return 0; 3425 if (len >= sizeof(mddev->clevel)) 3426 return -ENOSPC; 3427 strncpy(mddev->clevel, buf, len); 3428 if (mddev->clevel[len-1] == '\n') 3429 len--; 3430 mddev->clevel[len] = 0; 3431 mddev->level = LEVEL_NONE; 3432 return rv; 3433 } 3434 3435 /* request to change the personality. Need to ensure: 3436 * - array is not engaged in resync/recovery/reshape 3437 * - old personality can be suspended 3438 * - new personality will access other array. 3439 */ 3440 3441 if (mddev->sync_thread || 3442 mddev->reshape_position != MaxSector || 3443 mddev->sysfs_active) 3444 return -EBUSY; 3445 3446 if (!mddev->pers->quiesce) { 3447 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3448 mdname(mddev), mddev->pers->name); 3449 return -EINVAL; 3450 } 3451 3452 /* Now find the new personality */ 3453 if (len == 0 || len >= sizeof(clevel)) 3454 return -EINVAL; 3455 strncpy(clevel, buf, len); 3456 if (clevel[len-1] == '\n') 3457 len--; 3458 clevel[len] = 0; 3459 if (kstrtol(clevel, 10, &level)) 3460 level = LEVEL_NONE; 3461 3462 if (request_module("md-%s", clevel) != 0) 3463 request_module("md-level-%s", clevel); 3464 spin_lock(&pers_lock); 3465 pers = find_pers(level, clevel); 3466 if (!pers || !try_module_get(pers->owner)) { 3467 spin_unlock(&pers_lock); 3468 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3469 return -EINVAL; 3470 } 3471 spin_unlock(&pers_lock); 3472 3473 if (pers == mddev->pers) { 3474 /* Nothing to do! */ 3475 module_put(pers->owner); 3476 return rv; 3477 } 3478 if (!pers->takeover) { 3479 module_put(pers->owner); 3480 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3481 mdname(mddev), clevel); 3482 return -EINVAL; 3483 } 3484 3485 rdev_for_each(rdev, mddev) 3486 rdev->new_raid_disk = rdev->raid_disk; 3487 3488 /* ->takeover must set new_* and/or delta_disks 3489 * if it succeeds, and may set them when it fails. 3490 */ 3491 priv = pers->takeover(mddev); 3492 if (IS_ERR(priv)) { 3493 mddev->new_level = mddev->level; 3494 mddev->new_layout = mddev->layout; 3495 mddev->new_chunk_sectors = mddev->chunk_sectors; 3496 mddev->raid_disks -= mddev->delta_disks; 3497 mddev->delta_disks = 0; 3498 mddev->reshape_backwards = 0; 3499 module_put(pers->owner); 3500 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3501 mdname(mddev), clevel); 3502 return PTR_ERR(priv); 3503 } 3504 3505 /* Looks like we have a winner */ 3506 mddev_suspend(mddev); 3507 mddev->pers->stop(mddev); 3508 3509 if (mddev->pers->sync_request == NULL && 3510 pers->sync_request != NULL) { 3511 /* need to add the md_redundancy_group */ 3512 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3513 printk(KERN_WARNING 3514 "md: cannot register extra attributes for %s\n", 3515 mdname(mddev)); 3516 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3517 } 3518 if (mddev->pers->sync_request != NULL && 3519 pers->sync_request == NULL) { 3520 /* need to remove the md_redundancy_group */ 3521 if (mddev->to_remove == NULL) 3522 mddev->to_remove = &md_redundancy_group; 3523 } 3524 3525 if (mddev->pers->sync_request == NULL && 3526 mddev->external) { 3527 /* We are converting from a no-redundancy array 3528 * to a redundancy array and metadata is managed 3529 * externally so we need to be sure that writes 3530 * won't block due to a need to transition 3531 * clean->dirty 3532 * until external management is started. 3533 */ 3534 mddev->in_sync = 0; 3535 mddev->safemode_delay = 0; 3536 mddev->safemode = 0; 3537 } 3538 3539 rdev_for_each(rdev, mddev) { 3540 if (rdev->raid_disk < 0) 3541 continue; 3542 if (rdev->new_raid_disk >= mddev->raid_disks) 3543 rdev->new_raid_disk = -1; 3544 if (rdev->new_raid_disk == rdev->raid_disk) 3545 continue; 3546 sysfs_unlink_rdev(mddev, rdev); 3547 } 3548 rdev_for_each(rdev, mddev) { 3549 if (rdev->raid_disk < 0) 3550 continue; 3551 if (rdev->new_raid_disk == rdev->raid_disk) 3552 continue; 3553 rdev->raid_disk = rdev->new_raid_disk; 3554 if (rdev->raid_disk < 0) 3555 clear_bit(In_sync, &rdev->flags); 3556 else { 3557 if (sysfs_link_rdev(mddev, rdev)) 3558 printk(KERN_WARNING "md: cannot register rd%d" 3559 " for %s after level change\n", 3560 rdev->raid_disk, mdname(mddev)); 3561 } 3562 } 3563 3564 module_put(mddev->pers->owner); 3565 mddev->pers = pers; 3566 mddev->private = priv; 3567 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3568 mddev->level = mddev->new_level; 3569 mddev->layout = mddev->new_layout; 3570 mddev->chunk_sectors = mddev->new_chunk_sectors; 3571 mddev->delta_disks = 0; 3572 mddev->reshape_backwards = 0; 3573 mddev->degraded = 0; 3574 if (mddev->pers->sync_request == NULL) { 3575 /* this is now an array without redundancy, so 3576 * it must always be in_sync 3577 */ 3578 mddev->in_sync = 1; 3579 del_timer_sync(&mddev->safemode_timer); 3580 } 3581 blk_set_stacking_limits(&mddev->queue->limits); 3582 pers->run(mddev); 3583 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3584 mddev_resume(mddev); 3585 sysfs_notify(&mddev->kobj, NULL, "level"); 3586 md_new_event(mddev); 3587 return rv; 3588 } 3589 3590 static struct md_sysfs_entry md_level = 3591 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3592 3593 3594 static ssize_t 3595 layout_show(struct mddev *mddev, char *page) 3596 { 3597 /* just a number, not meaningful for all levels */ 3598 if (mddev->reshape_position != MaxSector && 3599 mddev->layout != mddev->new_layout) 3600 return sprintf(page, "%d (%d)\n", 3601 mddev->new_layout, mddev->layout); 3602 return sprintf(page, "%d\n", mddev->layout); 3603 } 3604 3605 static ssize_t 3606 layout_store(struct mddev *mddev, const char *buf, size_t len) 3607 { 3608 char *e; 3609 unsigned long n = simple_strtoul(buf, &e, 10); 3610 3611 if (!*buf || (*e && *e != '\n')) 3612 return -EINVAL; 3613 3614 if (mddev->pers) { 3615 int err; 3616 if (mddev->pers->check_reshape == NULL) 3617 return -EBUSY; 3618 mddev->new_layout = n; 3619 err = mddev->pers->check_reshape(mddev); 3620 if (err) { 3621 mddev->new_layout = mddev->layout; 3622 return err; 3623 } 3624 } else { 3625 mddev->new_layout = n; 3626 if (mddev->reshape_position == MaxSector) 3627 mddev->layout = n; 3628 } 3629 return len; 3630 } 3631 static struct md_sysfs_entry md_layout = 3632 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3633 3634 3635 static ssize_t 3636 raid_disks_show(struct mddev *mddev, char *page) 3637 { 3638 if (mddev->raid_disks == 0) 3639 return 0; 3640 if (mddev->reshape_position != MaxSector && 3641 mddev->delta_disks != 0) 3642 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3643 mddev->raid_disks - mddev->delta_disks); 3644 return sprintf(page, "%d\n", mddev->raid_disks); 3645 } 3646 3647 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3648 3649 static ssize_t 3650 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3651 { 3652 char *e; 3653 int rv = 0; 3654 unsigned long n = simple_strtoul(buf, &e, 10); 3655 3656 if (!*buf || (*e && *e != '\n')) 3657 return -EINVAL; 3658 3659 if (mddev->pers) 3660 rv = update_raid_disks(mddev, n); 3661 else if (mddev->reshape_position != MaxSector) { 3662 struct md_rdev *rdev; 3663 int olddisks = mddev->raid_disks - mddev->delta_disks; 3664 3665 rdev_for_each(rdev, mddev) { 3666 if (olddisks < n && 3667 rdev->data_offset < rdev->new_data_offset) 3668 return -EINVAL; 3669 if (olddisks > n && 3670 rdev->data_offset > rdev->new_data_offset) 3671 return -EINVAL; 3672 } 3673 mddev->delta_disks = n - olddisks; 3674 mddev->raid_disks = n; 3675 mddev->reshape_backwards = (mddev->delta_disks < 0); 3676 } else 3677 mddev->raid_disks = n; 3678 return rv ? rv : len; 3679 } 3680 static struct md_sysfs_entry md_raid_disks = 3681 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3682 3683 static ssize_t 3684 chunk_size_show(struct mddev *mddev, char *page) 3685 { 3686 if (mddev->reshape_position != MaxSector && 3687 mddev->chunk_sectors != mddev->new_chunk_sectors) 3688 return sprintf(page, "%d (%d)\n", 3689 mddev->new_chunk_sectors << 9, 3690 mddev->chunk_sectors << 9); 3691 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3692 } 3693 3694 static ssize_t 3695 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3696 { 3697 char *e; 3698 unsigned long n = simple_strtoul(buf, &e, 10); 3699 3700 if (!*buf || (*e && *e != '\n')) 3701 return -EINVAL; 3702 3703 if (mddev->pers) { 3704 int err; 3705 if (mddev->pers->check_reshape == NULL) 3706 return -EBUSY; 3707 mddev->new_chunk_sectors = n >> 9; 3708 err = mddev->pers->check_reshape(mddev); 3709 if (err) { 3710 mddev->new_chunk_sectors = mddev->chunk_sectors; 3711 return err; 3712 } 3713 } else { 3714 mddev->new_chunk_sectors = n >> 9; 3715 if (mddev->reshape_position == MaxSector) 3716 mddev->chunk_sectors = n >> 9; 3717 } 3718 return len; 3719 } 3720 static struct md_sysfs_entry md_chunk_size = 3721 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3722 3723 static ssize_t 3724 resync_start_show(struct mddev *mddev, char *page) 3725 { 3726 if (mddev->recovery_cp == MaxSector) 3727 return sprintf(page, "none\n"); 3728 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3729 } 3730 3731 static ssize_t 3732 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3733 { 3734 char *e; 3735 unsigned long long n = simple_strtoull(buf, &e, 10); 3736 3737 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3738 return -EBUSY; 3739 if (cmd_match(buf, "none")) 3740 n = MaxSector; 3741 else if (!*buf || (*e && *e != '\n')) 3742 return -EINVAL; 3743 3744 mddev->recovery_cp = n; 3745 if (mddev->pers) 3746 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3747 return len; 3748 } 3749 static struct md_sysfs_entry md_resync_start = 3750 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3751 3752 /* 3753 * The array state can be: 3754 * 3755 * clear 3756 * No devices, no size, no level 3757 * Equivalent to STOP_ARRAY ioctl 3758 * inactive 3759 * May have some settings, but array is not active 3760 * all IO results in error 3761 * When written, doesn't tear down array, but just stops it 3762 * suspended (not supported yet) 3763 * All IO requests will block. The array can be reconfigured. 3764 * Writing this, if accepted, will block until array is quiescent 3765 * readonly 3766 * no resync can happen. no superblocks get written. 3767 * write requests fail 3768 * read-auto 3769 * like readonly, but behaves like 'clean' on a write request. 3770 * 3771 * clean - no pending writes, but otherwise active. 3772 * When written to inactive array, starts without resync 3773 * If a write request arrives then 3774 * if metadata is known, mark 'dirty' and switch to 'active'. 3775 * if not known, block and switch to write-pending 3776 * If written to an active array that has pending writes, then fails. 3777 * active 3778 * fully active: IO and resync can be happening. 3779 * When written to inactive array, starts with resync 3780 * 3781 * write-pending 3782 * clean, but writes are blocked waiting for 'active' to be written. 3783 * 3784 * active-idle 3785 * like active, but no writes have been seen for a while (100msec). 3786 * 3787 */ 3788 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3789 write_pending, active_idle, bad_word}; 3790 static char *array_states[] = { 3791 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3792 "write-pending", "active-idle", NULL }; 3793 3794 static int match_word(const char *word, char **list) 3795 { 3796 int n; 3797 for (n=0; list[n]; n++) 3798 if (cmd_match(word, list[n])) 3799 break; 3800 return n; 3801 } 3802 3803 static ssize_t 3804 array_state_show(struct mddev *mddev, char *page) 3805 { 3806 enum array_state st = inactive; 3807 3808 if (mddev->pers) 3809 switch(mddev->ro) { 3810 case 1: 3811 st = readonly; 3812 break; 3813 case 2: 3814 st = read_auto; 3815 break; 3816 case 0: 3817 if (mddev->in_sync) 3818 st = clean; 3819 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3820 st = write_pending; 3821 else if (mddev->safemode) 3822 st = active_idle; 3823 else 3824 st = active; 3825 } 3826 else { 3827 if (list_empty(&mddev->disks) && 3828 mddev->raid_disks == 0 && 3829 mddev->dev_sectors == 0) 3830 st = clear; 3831 else 3832 st = inactive; 3833 } 3834 return sprintf(page, "%s\n", array_states[st]); 3835 } 3836 3837 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev); 3838 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev); 3839 static int do_md_run(struct mddev * mddev); 3840 static int restart_array(struct mddev *mddev); 3841 3842 static ssize_t 3843 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3844 { 3845 int err = -EINVAL; 3846 enum array_state st = match_word(buf, array_states); 3847 switch(st) { 3848 case bad_word: 3849 break; 3850 case clear: 3851 /* stopping an active array */ 3852 err = do_md_stop(mddev, 0, NULL); 3853 break; 3854 case inactive: 3855 /* stopping an active array */ 3856 if (mddev->pers) 3857 err = do_md_stop(mddev, 2, NULL); 3858 else 3859 err = 0; /* already inactive */ 3860 break; 3861 case suspended: 3862 break; /* not supported yet */ 3863 case readonly: 3864 if (mddev->pers) 3865 err = md_set_readonly(mddev, NULL); 3866 else { 3867 mddev->ro = 1; 3868 set_disk_ro(mddev->gendisk, 1); 3869 err = do_md_run(mddev); 3870 } 3871 break; 3872 case read_auto: 3873 if (mddev->pers) { 3874 if (mddev->ro == 0) 3875 err = md_set_readonly(mddev, NULL); 3876 else if (mddev->ro == 1) 3877 err = restart_array(mddev); 3878 if (err == 0) { 3879 mddev->ro = 2; 3880 set_disk_ro(mddev->gendisk, 0); 3881 } 3882 } else { 3883 mddev->ro = 2; 3884 err = do_md_run(mddev); 3885 } 3886 break; 3887 case clean: 3888 if (mddev->pers) { 3889 restart_array(mddev); 3890 spin_lock_irq(&mddev->write_lock); 3891 if (atomic_read(&mddev->writes_pending) == 0) { 3892 if (mddev->in_sync == 0) { 3893 mddev->in_sync = 1; 3894 if (mddev->safemode == 1) 3895 mddev->safemode = 0; 3896 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3897 } 3898 err = 0; 3899 } else 3900 err = -EBUSY; 3901 spin_unlock_irq(&mddev->write_lock); 3902 } else 3903 err = -EINVAL; 3904 break; 3905 case active: 3906 if (mddev->pers) { 3907 restart_array(mddev); 3908 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3909 wake_up(&mddev->sb_wait); 3910 err = 0; 3911 } else { 3912 mddev->ro = 0; 3913 set_disk_ro(mddev->gendisk, 0); 3914 err = do_md_run(mddev); 3915 } 3916 break; 3917 case write_pending: 3918 case active_idle: 3919 /* these cannot be set */ 3920 break; 3921 } 3922 if (err) 3923 return err; 3924 else { 3925 if (mddev->hold_active == UNTIL_IOCTL) 3926 mddev->hold_active = 0; 3927 sysfs_notify_dirent_safe(mddev->sysfs_state); 3928 return len; 3929 } 3930 } 3931 static struct md_sysfs_entry md_array_state = 3932 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3933 3934 static ssize_t 3935 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3936 return sprintf(page, "%d\n", 3937 atomic_read(&mddev->max_corr_read_errors)); 3938 } 3939 3940 static ssize_t 3941 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3942 { 3943 char *e; 3944 unsigned long n = simple_strtoul(buf, &e, 10); 3945 3946 if (*buf && (*e == 0 || *e == '\n')) { 3947 atomic_set(&mddev->max_corr_read_errors, n); 3948 return len; 3949 } 3950 return -EINVAL; 3951 } 3952 3953 static struct md_sysfs_entry max_corr_read_errors = 3954 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3955 max_corrected_read_errors_store); 3956 3957 static ssize_t 3958 null_show(struct mddev *mddev, char *page) 3959 { 3960 return -EINVAL; 3961 } 3962 3963 static ssize_t 3964 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 3965 { 3966 /* buf must be %d:%d\n? giving major and minor numbers */ 3967 /* The new device is added to the array. 3968 * If the array has a persistent superblock, we read the 3969 * superblock to initialise info and check validity. 3970 * Otherwise, only checking done is that in bind_rdev_to_array, 3971 * which mainly checks size. 3972 */ 3973 char *e; 3974 int major = simple_strtoul(buf, &e, 10); 3975 int minor; 3976 dev_t dev; 3977 struct md_rdev *rdev; 3978 int err; 3979 3980 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3981 return -EINVAL; 3982 minor = simple_strtoul(e+1, &e, 10); 3983 if (*e && *e != '\n') 3984 return -EINVAL; 3985 dev = MKDEV(major, minor); 3986 if (major != MAJOR(dev) || 3987 minor != MINOR(dev)) 3988 return -EOVERFLOW; 3989 3990 3991 if (mddev->persistent) { 3992 rdev = md_import_device(dev, mddev->major_version, 3993 mddev->minor_version); 3994 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3995 struct md_rdev *rdev0 3996 = list_entry(mddev->disks.next, 3997 struct md_rdev, same_set); 3998 err = super_types[mddev->major_version] 3999 .load_super(rdev, rdev0, mddev->minor_version); 4000 if (err < 0) 4001 goto out; 4002 } 4003 } else if (mddev->external) 4004 rdev = md_import_device(dev, -2, -1); 4005 else 4006 rdev = md_import_device(dev, -1, -1); 4007 4008 if (IS_ERR(rdev)) 4009 return PTR_ERR(rdev); 4010 err = bind_rdev_to_array(rdev, mddev); 4011 out: 4012 if (err) 4013 export_rdev(rdev); 4014 return err ? err : len; 4015 } 4016 4017 static struct md_sysfs_entry md_new_device = 4018 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4019 4020 static ssize_t 4021 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4022 { 4023 char *end; 4024 unsigned long chunk, end_chunk; 4025 4026 if (!mddev->bitmap) 4027 goto out; 4028 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4029 while (*buf) { 4030 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4031 if (buf == end) break; 4032 if (*end == '-') { /* range */ 4033 buf = end + 1; 4034 end_chunk = simple_strtoul(buf, &end, 0); 4035 if (buf == end) break; 4036 } 4037 if (*end && !isspace(*end)) break; 4038 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4039 buf = skip_spaces(end); 4040 } 4041 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4042 out: 4043 return len; 4044 } 4045 4046 static struct md_sysfs_entry md_bitmap = 4047 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4048 4049 static ssize_t 4050 size_show(struct mddev *mddev, char *page) 4051 { 4052 return sprintf(page, "%llu\n", 4053 (unsigned long long)mddev->dev_sectors / 2); 4054 } 4055 4056 static int update_size(struct mddev *mddev, sector_t num_sectors); 4057 4058 static ssize_t 4059 size_store(struct mddev *mddev, const char *buf, size_t len) 4060 { 4061 /* If array is inactive, we can reduce the component size, but 4062 * not increase it (except from 0). 4063 * If array is active, we can try an on-line resize 4064 */ 4065 sector_t sectors; 4066 int err = strict_blocks_to_sectors(buf, §ors); 4067 4068 if (err < 0) 4069 return err; 4070 if (mddev->pers) { 4071 err = update_size(mddev, sectors); 4072 md_update_sb(mddev, 1); 4073 } else { 4074 if (mddev->dev_sectors == 0 || 4075 mddev->dev_sectors > sectors) 4076 mddev->dev_sectors = sectors; 4077 else 4078 err = -ENOSPC; 4079 } 4080 return err ? err : len; 4081 } 4082 4083 static struct md_sysfs_entry md_size = 4084 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4085 4086 4087 /* Metadata version. 4088 * This is one of 4089 * 'none' for arrays with no metadata (good luck...) 4090 * 'external' for arrays with externally managed metadata, 4091 * or N.M for internally known formats 4092 */ 4093 static ssize_t 4094 metadata_show(struct mddev *mddev, char *page) 4095 { 4096 if (mddev->persistent) 4097 return sprintf(page, "%d.%d\n", 4098 mddev->major_version, mddev->minor_version); 4099 else if (mddev->external) 4100 return sprintf(page, "external:%s\n", mddev->metadata_type); 4101 else 4102 return sprintf(page, "none\n"); 4103 } 4104 4105 static ssize_t 4106 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4107 { 4108 int major, minor; 4109 char *e; 4110 /* Changing the details of 'external' metadata is 4111 * always permitted. Otherwise there must be 4112 * no devices attached to the array. 4113 */ 4114 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4115 ; 4116 else if (!list_empty(&mddev->disks)) 4117 return -EBUSY; 4118 4119 if (cmd_match(buf, "none")) { 4120 mddev->persistent = 0; 4121 mddev->external = 0; 4122 mddev->major_version = 0; 4123 mddev->minor_version = 90; 4124 return len; 4125 } 4126 if (strncmp(buf, "external:", 9) == 0) { 4127 size_t namelen = len-9; 4128 if (namelen >= sizeof(mddev->metadata_type)) 4129 namelen = sizeof(mddev->metadata_type)-1; 4130 strncpy(mddev->metadata_type, buf+9, namelen); 4131 mddev->metadata_type[namelen] = 0; 4132 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4133 mddev->metadata_type[--namelen] = 0; 4134 mddev->persistent = 0; 4135 mddev->external = 1; 4136 mddev->major_version = 0; 4137 mddev->minor_version = 90; 4138 return len; 4139 } 4140 major = simple_strtoul(buf, &e, 10); 4141 if (e==buf || *e != '.') 4142 return -EINVAL; 4143 buf = e+1; 4144 minor = simple_strtoul(buf, &e, 10); 4145 if (e==buf || (*e && *e != '\n') ) 4146 return -EINVAL; 4147 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4148 return -ENOENT; 4149 mddev->major_version = major; 4150 mddev->minor_version = minor; 4151 mddev->persistent = 1; 4152 mddev->external = 0; 4153 return len; 4154 } 4155 4156 static struct md_sysfs_entry md_metadata = 4157 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4158 4159 static ssize_t 4160 action_show(struct mddev *mddev, char *page) 4161 { 4162 char *type = "idle"; 4163 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4164 type = "frozen"; 4165 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4166 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4167 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4168 type = "reshape"; 4169 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4170 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4171 type = "resync"; 4172 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4173 type = "check"; 4174 else 4175 type = "repair"; 4176 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4177 type = "recover"; 4178 } 4179 return sprintf(page, "%s\n", type); 4180 } 4181 4182 static ssize_t 4183 action_store(struct mddev *mddev, const char *page, size_t len) 4184 { 4185 if (!mddev->pers || !mddev->pers->sync_request) 4186 return -EINVAL; 4187 4188 if (cmd_match(page, "frozen")) 4189 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4190 else 4191 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4192 4193 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4194 if (mddev->sync_thread) { 4195 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4196 md_reap_sync_thread(mddev); 4197 } 4198 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4199 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4200 return -EBUSY; 4201 else if (cmd_match(page, "resync")) 4202 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4203 else if (cmd_match(page, "recover")) { 4204 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4205 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4206 } else if (cmd_match(page, "reshape")) { 4207 int err; 4208 if (mddev->pers->start_reshape == NULL) 4209 return -EINVAL; 4210 err = mddev->pers->start_reshape(mddev); 4211 if (err) 4212 return err; 4213 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4214 } else { 4215 if (cmd_match(page, "check")) 4216 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4217 else if (!cmd_match(page, "repair")) 4218 return -EINVAL; 4219 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4220 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4221 } 4222 if (mddev->ro == 2) { 4223 /* A write to sync_action is enough to justify 4224 * canceling read-auto mode 4225 */ 4226 mddev->ro = 0; 4227 md_wakeup_thread(mddev->sync_thread); 4228 } 4229 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4230 md_wakeup_thread(mddev->thread); 4231 sysfs_notify_dirent_safe(mddev->sysfs_action); 4232 return len; 4233 } 4234 4235 static struct md_sysfs_entry md_scan_mode = 4236 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4237 4238 static ssize_t 4239 last_sync_action_show(struct mddev *mddev, char *page) 4240 { 4241 return sprintf(page, "%s\n", mddev->last_sync_action); 4242 } 4243 4244 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4245 4246 static ssize_t 4247 mismatch_cnt_show(struct mddev *mddev, char *page) 4248 { 4249 return sprintf(page, "%llu\n", 4250 (unsigned long long) 4251 atomic64_read(&mddev->resync_mismatches)); 4252 } 4253 4254 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4255 4256 static ssize_t 4257 sync_min_show(struct mddev *mddev, char *page) 4258 { 4259 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4260 mddev->sync_speed_min ? "local": "system"); 4261 } 4262 4263 static ssize_t 4264 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4265 { 4266 int min; 4267 char *e; 4268 if (strncmp(buf, "system", 6)==0) { 4269 mddev->sync_speed_min = 0; 4270 return len; 4271 } 4272 min = simple_strtoul(buf, &e, 10); 4273 if (buf == e || (*e && *e != '\n') || min <= 0) 4274 return -EINVAL; 4275 mddev->sync_speed_min = min; 4276 return len; 4277 } 4278 4279 static struct md_sysfs_entry md_sync_min = 4280 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4281 4282 static ssize_t 4283 sync_max_show(struct mddev *mddev, char *page) 4284 { 4285 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4286 mddev->sync_speed_max ? "local": "system"); 4287 } 4288 4289 static ssize_t 4290 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4291 { 4292 int max; 4293 char *e; 4294 if (strncmp(buf, "system", 6)==0) { 4295 mddev->sync_speed_max = 0; 4296 return len; 4297 } 4298 max = simple_strtoul(buf, &e, 10); 4299 if (buf == e || (*e && *e != '\n') || max <= 0) 4300 return -EINVAL; 4301 mddev->sync_speed_max = max; 4302 return len; 4303 } 4304 4305 static struct md_sysfs_entry md_sync_max = 4306 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4307 4308 static ssize_t 4309 degraded_show(struct mddev *mddev, char *page) 4310 { 4311 return sprintf(page, "%d\n", mddev->degraded); 4312 } 4313 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4314 4315 static ssize_t 4316 sync_force_parallel_show(struct mddev *mddev, char *page) 4317 { 4318 return sprintf(page, "%d\n", mddev->parallel_resync); 4319 } 4320 4321 static ssize_t 4322 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4323 { 4324 long n; 4325 4326 if (kstrtol(buf, 10, &n)) 4327 return -EINVAL; 4328 4329 if (n != 0 && n != 1) 4330 return -EINVAL; 4331 4332 mddev->parallel_resync = n; 4333 4334 if (mddev->sync_thread) 4335 wake_up(&resync_wait); 4336 4337 return len; 4338 } 4339 4340 /* force parallel resync, even with shared block devices */ 4341 static struct md_sysfs_entry md_sync_force_parallel = 4342 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4343 sync_force_parallel_show, sync_force_parallel_store); 4344 4345 static ssize_t 4346 sync_speed_show(struct mddev *mddev, char *page) 4347 { 4348 unsigned long resync, dt, db; 4349 if (mddev->curr_resync == 0) 4350 return sprintf(page, "none\n"); 4351 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4352 dt = (jiffies - mddev->resync_mark) / HZ; 4353 if (!dt) dt++; 4354 db = resync - mddev->resync_mark_cnt; 4355 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4356 } 4357 4358 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4359 4360 static ssize_t 4361 sync_completed_show(struct mddev *mddev, char *page) 4362 { 4363 unsigned long long max_sectors, resync; 4364 4365 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4366 return sprintf(page, "none\n"); 4367 4368 if (mddev->curr_resync == 1 || 4369 mddev->curr_resync == 2) 4370 return sprintf(page, "delayed\n"); 4371 4372 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4373 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4374 max_sectors = mddev->resync_max_sectors; 4375 else 4376 max_sectors = mddev->dev_sectors; 4377 4378 resync = mddev->curr_resync_completed; 4379 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4380 } 4381 4382 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4383 4384 static ssize_t 4385 min_sync_show(struct mddev *mddev, char *page) 4386 { 4387 return sprintf(page, "%llu\n", 4388 (unsigned long long)mddev->resync_min); 4389 } 4390 static ssize_t 4391 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4392 { 4393 unsigned long long min; 4394 if (kstrtoull(buf, 10, &min)) 4395 return -EINVAL; 4396 if (min > mddev->resync_max) 4397 return -EINVAL; 4398 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4399 return -EBUSY; 4400 4401 /* Must be a multiple of chunk_size */ 4402 if (mddev->chunk_sectors) { 4403 sector_t temp = min; 4404 if (sector_div(temp, mddev->chunk_sectors)) 4405 return -EINVAL; 4406 } 4407 mddev->resync_min = min; 4408 4409 return len; 4410 } 4411 4412 static struct md_sysfs_entry md_min_sync = 4413 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4414 4415 static ssize_t 4416 max_sync_show(struct mddev *mddev, char *page) 4417 { 4418 if (mddev->resync_max == MaxSector) 4419 return sprintf(page, "max\n"); 4420 else 4421 return sprintf(page, "%llu\n", 4422 (unsigned long long)mddev->resync_max); 4423 } 4424 static ssize_t 4425 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4426 { 4427 if (strncmp(buf, "max", 3) == 0) 4428 mddev->resync_max = MaxSector; 4429 else { 4430 unsigned long long max; 4431 if (kstrtoull(buf, 10, &max)) 4432 return -EINVAL; 4433 if (max < mddev->resync_min) 4434 return -EINVAL; 4435 if (max < mddev->resync_max && 4436 mddev->ro == 0 && 4437 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4438 return -EBUSY; 4439 4440 /* Must be a multiple of chunk_size */ 4441 if (mddev->chunk_sectors) { 4442 sector_t temp = max; 4443 if (sector_div(temp, mddev->chunk_sectors)) 4444 return -EINVAL; 4445 } 4446 mddev->resync_max = max; 4447 } 4448 wake_up(&mddev->recovery_wait); 4449 return len; 4450 } 4451 4452 static struct md_sysfs_entry md_max_sync = 4453 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4454 4455 static ssize_t 4456 suspend_lo_show(struct mddev *mddev, char *page) 4457 { 4458 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4459 } 4460 4461 static ssize_t 4462 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4463 { 4464 char *e; 4465 unsigned long long new = simple_strtoull(buf, &e, 10); 4466 unsigned long long old = mddev->suspend_lo; 4467 4468 if (mddev->pers == NULL || 4469 mddev->pers->quiesce == NULL) 4470 return -EINVAL; 4471 if (buf == e || (*e && *e != '\n')) 4472 return -EINVAL; 4473 4474 mddev->suspend_lo = new; 4475 if (new >= old) 4476 /* Shrinking suspended region */ 4477 mddev->pers->quiesce(mddev, 2); 4478 else { 4479 /* Expanding suspended region - need to wait */ 4480 mddev->pers->quiesce(mddev, 1); 4481 mddev->pers->quiesce(mddev, 0); 4482 } 4483 return len; 4484 } 4485 static struct md_sysfs_entry md_suspend_lo = 4486 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4487 4488 4489 static ssize_t 4490 suspend_hi_show(struct mddev *mddev, char *page) 4491 { 4492 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4493 } 4494 4495 static ssize_t 4496 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4497 { 4498 char *e; 4499 unsigned long long new = simple_strtoull(buf, &e, 10); 4500 unsigned long long old = mddev->suspend_hi; 4501 4502 if (mddev->pers == NULL || 4503 mddev->pers->quiesce == NULL) 4504 return -EINVAL; 4505 if (buf == e || (*e && *e != '\n')) 4506 return -EINVAL; 4507 4508 mddev->suspend_hi = new; 4509 if (new <= old) 4510 /* Shrinking suspended region */ 4511 mddev->pers->quiesce(mddev, 2); 4512 else { 4513 /* Expanding suspended region - need to wait */ 4514 mddev->pers->quiesce(mddev, 1); 4515 mddev->pers->quiesce(mddev, 0); 4516 } 4517 return len; 4518 } 4519 static struct md_sysfs_entry md_suspend_hi = 4520 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4521 4522 static ssize_t 4523 reshape_position_show(struct mddev *mddev, char *page) 4524 { 4525 if (mddev->reshape_position != MaxSector) 4526 return sprintf(page, "%llu\n", 4527 (unsigned long long)mddev->reshape_position); 4528 strcpy(page, "none\n"); 4529 return 5; 4530 } 4531 4532 static ssize_t 4533 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4534 { 4535 struct md_rdev *rdev; 4536 char *e; 4537 unsigned long long new = simple_strtoull(buf, &e, 10); 4538 if (mddev->pers) 4539 return -EBUSY; 4540 if (buf == e || (*e && *e != '\n')) 4541 return -EINVAL; 4542 mddev->reshape_position = new; 4543 mddev->delta_disks = 0; 4544 mddev->reshape_backwards = 0; 4545 mddev->new_level = mddev->level; 4546 mddev->new_layout = mddev->layout; 4547 mddev->new_chunk_sectors = mddev->chunk_sectors; 4548 rdev_for_each(rdev, mddev) 4549 rdev->new_data_offset = rdev->data_offset; 4550 return len; 4551 } 4552 4553 static struct md_sysfs_entry md_reshape_position = 4554 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4555 reshape_position_store); 4556 4557 static ssize_t 4558 reshape_direction_show(struct mddev *mddev, char *page) 4559 { 4560 return sprintf(page, "%s\n", 4561 mddev->reshape_backwards ? "backwards" : "forwards"); 4562 } 4563 4564 static ssize_t 4565 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4566 { 4567 int backwards = 0; 4568 if (cmd_match(buf, "forwards")) 4569 backwards = 0; 4570 else if (cmd_match(buf, "backwards")) 4571 backwards = 1; 4572 else 4573 return -EINVAL; 4574 if (mddev->reshape_backwards == backwards) 4575 return len; 4576 4577 /* check if we are allowed to change */ 4578 if (mddev->delta_disks) 4579 return -EBUSY; 4580 4581 if (mddev->persistent && 4582 mddev->major_version == 0) 4583 return -EINVAL; 4584 4585 mddev->reshape_backwards = backwards; 4586 return len; 4587 } 4588 4589 static struct md_sysfs_entry md_reshape_direction = 4590 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4591 reshape_direction_store); 4592 4593 static ssize_t 4594 array_size_show(struct mddev *mddev, char *page) 4595 { 4596 if (mddev->external_size) 4597 return sprintf(page, "%llu\n", 4598 (unsigned long long)mddev->array_sectors/2); 4599 else 4600 return sprintf(page, "default\n"); 4601 } 4602 4603 static ssize_t 4604 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4605 { 4606 sector_t sectors; 4607 4608 if (strncmp(buf, "default", 7) == 0) { 4609 if (mddev->pers) 4610 sectors = mddev->pers->size(mddev, 0, 0); 4611 else 4612 sectors = mddev->array_sectors; 4613 4614 mddev->external_size = 0; 4615 } else { 4616 if (strict_blocks_to_sectors(buf, §ors) < 0) 4617 return -EINVAL; 4618 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4619 return -E2BIG; 4620 4621 mddev->external_size = 1; 4622 } 4623 4624 mddev->array_sectors = sectors; 4625 if (mddev->pers) { 4626 set_capacity(mddev->gendisk, mddev->array_sectors); 4627 revalidate_disk(mddev->gendisk); 4628 } 4629 return len; 4630 } 4631 4632 static struct md_sysfs_entry md_array_size = 4633 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4634 array_size_store); 4635 4636 static struct attribute *md_default_attrs[] = { 4637 &md_level.attr, 4638 &md_layout.attr, 4639 &md_raid_disks.attr, 4640 &md_chunk_size.attr, 4641 &md_size.attr, 4642 &md_resync_start.attr, 4643 &md_metadata.attr, 4644 &md_new_device.attr, 4645 &md_safe_delay.attr, 4646 &md_array_state.attr, 4647 &md_reshape_position.attr, 4648 &md_reshape_direction.attr, 4649 &md_array_size.attr, 4650 &max_corr_read_errors.attr, 4651 NULL, 4652 }; 4653 4654 static struct attribute *md_redundancy_attrs[] = { 4655 &md_scan_mode.attr, 4656 &md_last_scan_mode.attr, 4657 &md_mismatches.attr, 4658 &md_sync_min.attr, 4659 &md_sync_max.attr, 4660 &md_sync_speed.attr, 4661 &md_sync_force_parallel.attr, 4662 &md_sync_completed.attr, 4663 &md_min_sync.attr, 4664 &md_max_sync.attr, 4665 &md_suspend_lo.attr, 4666 &md_suspend_hi.attr, 4667 &md_bitmap.attr, 4668 &md_degraded.attr, 4669 NULL, 4670 }; 4671 static struct attribute_group md_redundancy_group = { 4672 .name = NULL, 4673 .attrs = md_redundancy_attrs, 4674 }; 4675 4676 4677 static ssize_t 4678 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4679 { 4680 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4681 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4682 ssize_t rv; 4683 4684 if (!entry->show) 4685 return -EIO; 4686 spin_lock(&all_mddevs_lock); 4687 if (list_empty(&mddev->all_mddevs)) { 4688 spin_unlock(&all_mddevs_lock); 4689 return -EBUSY; 4690 } 4691 mddev_get(mddev); 4692 spin_unlock(&all_mddevs_lock); 4693 4694 rv = mddev_lock(mddev); 4695 if (!rv) { 4696 rv = entry->show(mddev, page); 4697 mddev_unlock(mddev); 4698 } 4699 mddev_put(mddev); 4700 return rv; 4701 } 4702 4703 static ssize_t 4704 md_attr_store(struct kobject *kobj, struct attribute *attr, 4705 const char *page, size_t length) 4706 { 4707 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4708 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4709 ssize_t rv; 4710 4711 if (!entry->store) 4712 return -EIO; 4713 if (!capable(CAP_SYS_ADMIN)) 4714 return -EACCES; 4715 spin_lock(&all_mddevs_lock); 4716 if (list_empty(&mddev->all_mddevs)) { 4717 spin_unlock(&all_mddevs_lock); 4718 return -EBUSY; 4719 } 4720 mddev_get(mddev); 4721 spin_unlock(&all_mddevs_lock); 4722 if (entry->store == new_dev_store) 4723 flush_workqueue(md_misc_wq); 4724 rv = mddev_lock(mddev); 4725 if (!rv) { 4726 rv = entry->store(mddev, page, length); 4727 mddev_unlock(mddev); 4728 } 4729 mddev_put(mddev); 4730 return rv; 4731 } 4732 4733 static void md_free(struct kobject *ko) 4734 { 4735 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4736 4737 if (mddev->sysfs_state) 4738 sysfs_put(mddev->sysfs_state); 4739 4740 if (mddev->gendisk) { 4741 del_gendisk(mddev->gendisk); 4742 put_disk(mddev->gendisk); 4743 } 4744 if (mddev->queue) 4745 blk_cleanup_queue(mddev->queue); 4746 4747 kfree(mddev); 4748 } 4749 4750 static const struct sysfs_ops md_sysfs_ops = { 4751 .show = md_attr_show, 4752 .store = md_attr_store, 4753 }; 4754 static struct kobj_type md_ktype = { 4755 .release = md_free, 4756 .sysfs_ops = &md_sysfs_ops, 4757 .default_attrs = md_default_attrs, 4758 }; 4759 4760 int mdp_major = 0; 4761 4762 static void mddev_delayed_delete(struct work_struct *ws) 4763 { 4764 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4765 4766 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4767 kobject_del(&mddev->kobj); 4768 kobject_put(&mddev->kobj); 4769 } 4770 4771 static int md_alloc(dev_t dev, char *name) 4772 { 4773 static DEFINE_MUTEX(disks_mutex); 4774 struct mddev *mddev = mddev_find(dev); 4775 struct gendisk *disk; 4776 int partitioned; 4777 int shift; 4778 int unit; 4779 int error; 4780 4781 if (!mddev) 4782 return -ENODEV; 4783 4784 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4785 shift = partitioned ? MdpMinorShift : 0; 4786 unit = MINOR(mddev->unit) >> shift; 4787 4788 /* wait for any previous instance of this device to be 4789 * completely removed (mddev_delayed_delete). 4790 */ 4791 flush_workqueue(md_misc_wq); 4792 4793 mutex_lock(&disks_mutex); 4794 error = -EEXIST; 4795 if (mddev->gendisk) 4796 goto abort; 4797 4798 if (name) { 4799 /* Need to ensure that 'name' is not a duplicate. 4800 */ 4801 struct mddev *mddev2; 4802 spin_lock(&all_mddevs_lock); 4803 4804 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4805 if (mddev2->gendisk && 4806 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4807 spin_unlock(&all_mddevs_lock); 4808 goto abort; 4809 } 4810 spin_unlock(&all_mddevs_lock); 4811 } 4812 4813 error = -ENOMEM; 4814 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4815 if (!mddev->queue) 4816 goto abort; 4817 mddev->queue->queuedata = mddev; 4818 4819 blk_queue_make_request(mddev->queue, md_make_request); 4820 blk_set_stacking_limits(&mddev->queue->limits); 4821 4822 disk = alloc_disk(1 << shift); 4823 if (!disk) { 4824 blk_cleanup_queue(mddev->queue); 4825 mddev->queue = NULL; 4826 goto abort; 4827 } 4828 disk->major = MAJOR(mddev->unit); 4829 disk->first_minor = unit << shift; 4830 if (name) 4831 strcpy(disk->disk_name, name); 4832 else if (partitioned) 4833 sprintf(disk->disk_name, "md_d%d", unit); 4834 else 4835 sprintf(disk->disk_name, "md%d", unit); 4836 disk->fops = &md_fops; 4837 disk->private_data = mddev; 4838 disk->queue = mddev->queue; 4839 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4840 /* Allow extended partitions. This makes the 4841 * 'mdp' device redundant, but we can't really 4842 * remove it now. 4843 */ 4844 disk->flags |= GENHD_FL_EXT_DEVT; 4845 mddev->gendisk = disk; 4846 /* As soon as we call add_disk(), another thread could get 4847 * through to md_open, so make sure it doesn't get too far 4848 */ 4849 mutex_lock(&mddev->open_mutex); 4850 add_disk(disk); 4851 4852 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4853 &disk_to_dev(disk)->kobj, "%s", "md"); 4854 if (error) { 4855 /* This isn't possible, but as kobject_init_and_add is marked 4856 * __must_check, we must do something with the result 4857 */ 4858 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4859 disk->disk_name); 4860 error = 0; 4861 } 4862 if (mddev->kobj.sd && 4863 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4864 printk(KERN_DEBUG "pointless warning\n"); 4865 mutex_unlock(&mddev->open_mutex); 4866 abort: 4867 mutex_unlock(&disks_mutex); 4868 if (!error && mddev->kobj.sd) { 4869 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4870 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4871 } 4872 mddev_put(mddev); 4873 return error; 4874 } 4875 4876 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4877 { 4878 md_alloc(dev, NULL); 4879 return NULL; 4880 } 4881 4882 static int add_named_array(const char *val, struct kernel_param *kp) 4883 { 4884 /* val must be "md_*" where * is not all digits. 4885 * We allocate an array with a large free minor number, and 4886 * set the name to val. val must not already be an active name. 4887 */ 4888 int len = strlen(val); 4889 char buf[DISK_NAME_LEN]; 4890 4891 while (len && val[len-1] == '\n') 4892 len--; 4893 if (len >= DISK_NAME_LEN) 4894 return -E2BIG; 4895 strlcpy(buf, val, len+1); 4896 if (strncmp(buf, "md_", 3) != 0) 4897 return -EINVAL; 4898 return md_alloc(0, buf); 4899 } 4900 4901 static void md_safemode_timeout(unsigned long data) 4902 { 4903 struct mddev *mddev = (struct mddev *) data; 4904 4905 if (!atomic_read(&mddev->writes_pending)) { 4906 mddev->safemode = 1; 4907 if (mddev->external) 4908 sysfs_notify_dirent_safe(mddev->sysfs_state); 4909 } 4910 md_wakeup_thread(mddev->thread); 4911 } 4912 4913 static int start_dirty_degraded; 4914 4915 int md_run(struct mddev *mddev) 4916 { 4917 int err; 4918 struct md_rdev *rdev; 4919 struct md_personality *pers; 4920 4921 if (list_empty(&mddev->disks)) 4922 /* cannot run an array with no devices.. */ 4923 return -EINVAL; 4924 4925 if (mddev->pers) 4926 return -EBUSY; 4927 /* Cannot run until previous stop completes properly */ 4928 if (mddev->sysfs_active) 4929 return -EBUSY; 4930 4931 /* 4932 * Analyze all RAID superblock(s) 4933 */ 4934 if (!mddev->raid_disks) { 4935 if (!mddev->persistent) 4936 return -EINVAL; 4937 analyze_sbs(mddev); 4938 } 4939 4940 if (mddev->level != LEVEL_NONE) 4941 request_module("md-level-%d", mddev->level); 4942 else if (mddev->clevel[0]) 4943 request_module("md-%s", mddev->clevel); 4944 4945 /* 4946 * Drop all container device buffers, from now on 4947 * the only valid external interface is through the md 4948 * device. 4949 */ 4950 rdev_for_each(rdev, mddev) { 4951 if (test_bit(Faulty, &rdev->flags)) 4952 continue; 4953 sync_blockdev(rdev->bdev); 4954 invalidate_bdev(rdev->bdev); 4955 4956 /* perform some consistency tests on the device. 4957 * We don't want the data to overlap the metadata, 4958 * Internal Bitmap issues have been handled elsewhere. 4959 */ 4960 if (rdev->meta_bdev) { 4961 /* Nothing to check */; 4962 } else if (rdev->data_offset < rdev->sb_start) { 4963 if (mddev->dev_sectors && 4964 rdev->data_offset + mddev->dev_sectors 4965 > rdev->sb_start) { 4966 printk("md: %s: data overlaps metadata\n", 4967 mdname(mddev)); 4968 return -EINVAL; 4969 } 4970 } else { 4971 if (rdev->sb_start + rdev->sb_size/512 4972 > rdev->data_offset) { 4973 printk("md: %s: metadata overlaps data\n", 4974 mdname(mddev)); 4975 return -EINVAL; 4976 } 4977 } 4978 sysfs_notify_dirent_safe(rdev->sysfs_state); 4979 } 4980 4981 if (mddev->bio_set == NULL) 4982 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 4983 4984 spin_lock(&pers_lock); 4985 pers = find_pers(mddev->level, mddev->clevel); 4986 if (!pers || !try_module_get(pers->owner)) { 4987 spin_unlock(&pers_lock); 4988 if (mddev->level != LEVEL_NONE) 4989 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4990 mddev->level); 4991 else 4992 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4993 mddev->clevel); 4994 return -EINVAL; 4995 } 4996 mddev->pers = pers; 4997 spin_unlock(&pers_lock); 4998 if (mddev->level != pers->level) { 4999 mddev->level = pers->level; 5000 mddev->new_level = pers->level; 5001 } 5002 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5003 5004 if (mddev->reshape_position != MaxSector && 5005 pers->start_reshape == NULL) { 5006 /* This personality cannot handle reshaping... */ 5007 mddev->pers = NULL; 5008 module_put(pers->owner); 5009 return -EINVAL; 5010 } 5011 5012 if (pers->sync_request) { 5013 /* Warn if this is a potentially silly 5014 * configuration. 5015 */ 5016 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5017 struct md_rdev *rdev2; 5018 int warned = 0; 5019 5020 rdev_for_each(rdev, mddev) 5021 rdev_for_each(rdev2, mddev) { 5022 if (rdev < rdev2 && 5023 rdev->bdev->bd_contains == 5024 rdev2->bdev->bd_contains) { 5025 printk(KERN_WARNING 5026 "%s: WARNING: %s appears to be" 5027 " on the same physical disk as" 5028 " %s.\n", 5029 mdname(mddev), 5030 bdevname(rdev->bdev,b), 5031 bdevname(rdev2->bdev,b2)); 5032 warned = 1; 5033 } 5034 } 5035 5036 if (warned) 5037 printk(KERN_WARNING 5038 "True protection against single-disk" 5039 " failure might be compromised.\n"); 5040 } 5041 5042 mddev->recovery = 0; 5043 /* may be over-ridden by personality */ 5044 mddev->resync_max_sectors = mddev->dev_sectors; 5045 5046 mddev->ok_start_degraded = start_dirty_degraded; 5047 5048 if (start_readonly && mddev->ro == 0) 5049 mddev->ro = 2; /* read-only, but switch on first write */ 5050 5051 err = mddev->pers->run(mddev); 5052 if (err) 5053 printk(KERN_ERR "md: pers->run() failed ...\n"); 5054 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5055 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5056 " but 'external_size' not in effect?\n", __func__); 5057 printk(KERN_ERR 5058 "md: invalid array_size %llu > default size %llu\n", 5059 (unsigned long long)mddev->array_sectors / 2, 5060 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5061 err = -EINVAL; 5062 mddev->pers->stop(mddev); 5063 } 5064 if (err == 0 && mddev->pers->sync_request && 5065 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5066 err = bitmap_create(mddev); 5067 if (err) { 5068 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5069 mdname(mddev), err); 5070 mddev->pers->stop(mddev); 5071 } 5072 } 5073 if (err) { 5074 module_put(mddev->pers->owner); 5075 mddev->pers = NULL; 5076 bitmap_destroy(mddev); 5077 return err; 5078 } 5079 if (mddev->pers->sync_request) { 5080 if (mddev->kobj.sd && 5081 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5082 printk(KERN_WARNING 5083 "md: cannot register extra attributes for %s\n", 5084 mdname(mddev)); 5085 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5086 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5087 mddev->ro = 0; 5088 5089 atomic_set(&mddev->writes_pending,0); 5090 atomic_set(&mddev->max_corr_read_errors, 5091 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5092 mddev->safemode = 0; 5093 mddev->safemode_timer.function = md_safemode_timeout; 5094 mddev->safemode_timer.data = (unsigned long) mddev; 5095 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5096 mddev->in_sync = 1; 5097 smp_wmb(); 5098 mddev->ready = 1; 5099 rdev_for_each(rdev, mddev) 5100 if (rdev->raid_disk >= 0) 5101 if (sysfs_link_rdev(mddev, rdev)) 5102 /* failure here is OK */; 5103 5104 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5105 5106 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5107 md_update_sb(mddev, 0); 5108 5109 md_new_event(mddev); 5110 sysfs_notify_dirent_safe(mddev->sysfs_state); 5111 sysfs_notify_dirent_safe(mddev->sysfs_action); 5112 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5113 return 0; 5114 } 5115 EXPORT_SYMBOL_GPL(md_run); 5116 5117 static int do_md_run(struct mddev *mddev) 5118 { 5119 int err; 5120 5121 err = md_run(mddev); 5122 if (err) 5123 goto out; 5124 err = bitmap_load(mddev); 5125 if (err) { 5126 bitmap_destroy(mddev); 5127 goto out; 5128 } 5129 5130 md_wakeup_thread(mddev->thread); 5131 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5132 5133 set_capacity(mddev->gendisk, mddev->array_sectors); 5134 revalidate_disk(mddev->gendisk); 5135 mddev->changed = 1; 5136 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5137 out: 5138 return err; 5139 } 5140 5141 static int restart_array(struct mddev *mddev) 5142 { 5143 struct gendisk *disk = mddev->gendisk; 5144 5145 /* Complain if it has no devices */ 5146 if (list_empty(&mddev->disks)) 5147 return -ENXIO; 5148 if (!mddev->pers) 5149 return -EINVAL; 5150 if (!mddev->ro) 5151 return -EBUSY; 5152 mddev->safemode = 0; 5153 mddev->ro = 0; 5154 set_disk_ro(disk, 0); 5155 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5156 mdname(mddev)); 5157 /* Kick recovery or resync if necessary */ 5158 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5159 md_wakeup_thread(mddev->thread); 5160 md_wakeup_thread(mddev->sync_thread); 5161 sysfs_notify_dirent_safe(mddev->sysfs_state); 5162 return 0; 5163 } 5164 5165 /* similar to deny_write_access, but accounts for our holding a reference 5166 * to the file ourselves */ 5167 static int deny_bitmap_write_access(struct file * file) 5168 { 5169 struct inode *inode = file->f_mapping->host; 5170 5171 spin_lock(&inode->i_lock); 5172 if (atomic_read(&inode->i_writecount) > 1) { 5173 spin_unlock(&inode->i_lock); 5174 return -ETXTBSY; 5175 } 5176 atomic_set(&inode->i_writecount, -1); 5177 spin_unlock(&inode->i_lock); 5178 5179 return 0; 5180 } 5181 5182 void restore_bitmap_write_access(struct file *file) 5183 { 5184 struct inode *inode = file->f_mapping->host; 5185 5186 spin_lock(&inode->i_lock); 5187 atomic_set(&inode->i_writecount, 1); 5188 spin_unlock(&inode->i_lock); 5189 } 5190 5191 static void md_clean(struct mddev *mddev) 5192 { 5193 mddev->array_sectors = 0; 5194 mddev->external_size = 0; 5195 mddev->dev_sectors = 0; 5196 mddev->raid_disks = 0; 5197 mddev->recovery_cp = 0; 5198 mddev->resync_min = 0; 5199 mddev->resync_max = MaxSector; 5200 mddev->reshape_position = MaxSector; 5201 mddev->external = 0; 5202 mddev->persistent = 0; 5203 mddev->level = LEVEL_NONE; 5204 mddev->clevel[0] = 0; 5205 mddev->flags = 0; 5206 mddev->ro = 0; 5207 mddev->metadata_type[0] = 0; 5208 mddev->chunk_sectors = 0; 5209 mddev->ctime = mddev->utime = 0; 5210 mddev->layout = 0; 5211 mddev->max_disks = 0; 5212 mddev->events = 0; 5213 mddev->can_decrease_events = 0; 5214 mddev->delta_disks = 0; 5215 mddev->reshape_backwards = 0; 5216 mddev->new_level = LEVEL_NONE; 5217 mddev->new_layout = 0; 5218 mddev->new_chunk_sectors = 0; 5219 mddev->curr_resync = 0; 5220 atomic64_set(&mddev->resync_mismatches, 0); 5221 mddev->suspend_lo = mddev->suspend_hi = 0; 5222 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5223 mddev->recovery = 0; 5224 mddev->in_sync = 0; 5225 mddev->changed = 0; 5226 mddev->degraded = 0; 5227 mddev->safemode = 0; 5228 mddev->merge_check_needed = 0; 5229 mddev->bitmap_info.offset = 0; 5230 mddev->bitmap_info.default_offset = 0; 5231 mddev->bitmap_info.default_space = 0; 5232 mddev->bitmap_info.chunksize = 0; 5233 mddev->bitmap_info.daemon_sleep = 0; 5234 mddev->bitmap_info.max_write_behind = 0; 5235 } 5236 5237 static void __md_stop_writes(struct mddev *mddev) 5238 { 5239 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5240 if (mddev->sync_thread) { 5241 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5242 md_reap_sync_thread(mddev); 5243 } 5244 5245 del_timer_sync(&mddev->safemode_timer); 5246 5247 bitmap_flush(mddev); 5248 md_super_wait(mddev); 5249 5250 if (mddev->ro == 0 && 5251 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5252 /* mark array as shutdown cleanly */ 5253 mddev->in_sync = 1; 5254 md_update_sb(mddev, 1); 5255 } 5256 } 5257 5258 void md_stop_writes(struct mddev *mddev) 5259 { 5260 mddev_lock_nointr(mddev); 5261 __md_stop_writes(mddev); 5262 mddev_unlock(mddev); 5263 } 5264 EXPORT_SYMBOL_GPL(md_stop_writes); 5265 5266 static void __md_stop(struct mddev *mddev) 5267 { 5268 mddev->ready = 0; 5269 mddev->pers->stop(mddev); 5270 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5271 mddev->to_remove = &md_redundancy_group; 5272 module_put(mddev->pers->owner); 5273 mddev->pers = NULL; 5274 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5275 } 5276 5277 void md_stop(struct mddev *mddev) 5278 { 5279 /* stop the array and free an attached data structures. 5280 * This is called from dm-raid 5281 */ 5282 __md_stop(mddev); 5283 bitmap_destroy(mddev); 5284 if (mddev->bio_set) 5285 bioset_free(mddev->bio_set); 5286 } 5287 5288 EXPORT_SYMBOL_GPL(md_stop); 5289 5290 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5291 { 5292 int err = 0; 5293 int did_freeze = 0; 5294 5295 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5296 did_freeze = 1; 5297 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5298 md_wakeup_thread(mddev->thread); 5299 } 5300 if (mddev->sync_thread) { 5301 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5302 /* Thread might be blocked waiting for metadata update 5303 * which will now never happen */ 5304 wake_up_process(mddev->sync_thread->tsk); 5305 } 5306 mddev_unlock(mddev); 5307 wait_event(resync_wait, mddev->sync_thread == NULL); 5308 mddev_lock_nointr(mddev); 5309 5310 mutex_lock(&mddev->open_mutex); 5311 if (atomic_read(&mddev->openers) > !!bdev || 5312 mddev->sync_thread || 5313 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5314 printk("md: %s still in use.\n",mdname(mddev)); 5315 if (did_freeze) { 5316 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5317 md_wakeup_thread(mddev->thread); 5318 } 5319 err = -EBUSY; 5320 goto out; 5321 } 5322 if (mddev->pers) { 5323 __md_stop_writes(mddev); 5324 5325 err = -ENXIO; 5326 if (mddev->ro==1) 5327 goto out; 5328 mddev->ro = 1; 5329 set_disk_ro(mddev->gendisk, 1); 5330 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5331 sysfs_notify_dirent_safe(mddev->sysfs_state); 5332 err = 0; 5333 } 5334 out: 5335 mutex_unlock(&mddev->open_mutex); 5336 return err; 5337 } 5338 5339 /* mode: 5340 * 0 - completely stop and dis-assemble array 5341 * 2 - stop but do not disassemble array 5342 */ 5343 static int do_md_stop(struct mddev * mddev, int mode, 5344 struct block_device *bdev) 5345 { 5346 struct gendisk *disk = mddev->gendisk; 5347 struct md_rdev *rdev; 5348 int did_freeze = 0; 5349 5350 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5351 did_freeze = 1; 5352 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5353 md_wakeup_thread(mddev->thread); 5354 } 5355 if (mddev->sync_thread) { 5356 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5357 /* Thread might be blocked waiting for metadata update 5358 * which will now never happen */ 5359 wake_up_process(mddev->sync_thread->tsk); 5360 } 5361 mddev_unlock(mddev); 5362 wait_event(resync_wait, mddev->sync_thread == NULL); 5363 mddev_lock_nointr(mddev); 5364 5365 mutex_lock(&mddev->open_mutex); 5366 if (atomic_read(&mddev->openers) > !!bdev || 5367 mddev->sysfs_active || 5368 mddev->sync_thread || 5369 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5370 printk("md: %s still in use.\n",mdname(mddev)); 5371 mutex_unlock(&mddev->open_mutex); 5372 if (did_freeze) { 5373 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5374 md_wakeup_thread(mddev->thread); 5375 } 5376 return -EBUSY; 5377 } 5378 if (mddev->pers) { 5379 if (mddev->ro) 5380 set_disk_ro(disk, 0); 5381 5382 __md_stop_writes(mddev); 5383 __md_stop(mddev); 5384 mddev->queue->merge_bvec_fn = NULL; 5385 mddev->queue->backing_dev_info.congested_fn = NULL; 5386 5387 /* tell userspace to handle 'inactive' */ 5388 sysfs_notify_dirent_safe(mddev->sysfs_state); 5389 5390 rdev_for_each(rdev, mddev) 5391 if (rdev->raid_disk >= 0) 5392 sysfs_unlink_rdev(mddev, rdev); 5393 5394 set_capacity(disk, 0); 5395 mutex_unlock(&mddev->open_mutex); 5396 mddev->changed = 1; 5397 revalidate_disk(disk); 5398 5399 if (mddev->ro) 5400 mddev->ro = 0; 5401 } else 5402 mutex_unlock(&mddev->open_mutex); 5403 /* 5404 * Free resources if final stop 5405 */ 5406 if (mode == 0) { 5407 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5408 5409 bitmap_destroy(mddev); 5410 if (mddev->bitmap_info.file) { 5411 restore_bitmap_write_access(mddev->bitmap_info.file); 5412 fput(mddev->bitmap_info.file); 5413 mddev->bitmap_info.file = NULL; 5414 } 5415 mddev->bitmap_info.offset = 0; 5416 5417 export_array(mddev); 5418 5419 md_clean(mddev); 5420 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5421 if (mddev->hold_active == UNTIL_STOP) 5422 mddev->hold_active = 0; 5423 } 5424 blk_integrity_unregister(disk); 5425 md_new_event(mddev); 5426 sysfs_notify_dirent_safe(mddev->sysfs_state); 5427 return 0; 5428 } 5429 5430 #ifndef MODULE 5431 static void autorun_array(struct mddev *mddev) 5432 { 5433 struct md_rdev *rdev; 5434 int err; 5435 5436 if (list_empty(&mddev->disks)) 5437 return; 5438 5439 printk(KERN_INFO "md: running: "); 5440 5441 rdev_for_each(rdev, mddev) { 5442 char b[BDEVNAME_SIZE]; 5443 printk("<%s>", bdevname(rdev->bdev,b)); 5444 } 5445 printk("\n"); 5446 5447 err = do_md_run(mddev); 5448 if (err) { 5449 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5450 do_md_stop(mddev, 0, NULL); 5451 } 5452 } 5453 5454 /* 5455 * lets try to run arrays based on all disks that have arrived 5456 * until now. (those are in pending_raid_disks) 5457 * 5458 * the method: pick the first pending disk, collect all disks with 5459 * the same UUID, remove all from the pending list and put them into 5460 * the 'same_array' list. Then order this list based on superblock 5461 * update time (freshest comes first), kick out 'old' disks and 5462 * compare superblocks. If everything's fine then run it. 5463 * 5464 * If "unit" is allocated, then bump its reference count 5465 */ 5466 static void autorun_devices(int part) 5467 { 5468 struct md_rdev *rdev0, *rdev, *tmp; 5469 struct mddev *mddev; 5470 char b[BDEVNAME_SIZE]; 5471 5472 printk(KERN_INFO "md: autorun ...\n"); 5473 while (!list_empty(&pending_raid_disks)) { 5474 int unit; 5475 dev_t dev; 5476 LIST_HEAD(candidates); 5477 rdev0 = list_entry(pending_raid_disks.next, 5478 struct md_rdev, same_set); 5479 5480 printk(KERN_INFO "md: considering %s ...\n", 5481 bdevname(rdev0->bdev,b)); 5482 INIT_LIST_HEAD(&candidates); 5483 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5484 if (super_90_load(rdev, rdev0, 0) >= 0) { 5485 printk(KERN_INFO "md: adding %s ...\n", 5486 bdevname(rdev->bdev,b)); 5487 list_move(&rdev->same_set, &candidates); 5488 } 5489 /* 5490 * now we have a set of devices, with all of them having 5491 * mostly sane superblocks. It's time to allocate the 5492 * mddev. 5493 */ 5494 if (part) { 5495 dev = MKDEV(mdp_major, 5496 rdev0->preferred_minor << MdpMinorShift); 5497 unit = MINOR(dev) >> MdpMinorShift; 5498 } else { 5499 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5500 unit = MINOR(dev); 5501 } 5502 if (rdev0->preferred_minor != unit) { 5503 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5504 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5505 break; 5506 } 5507 5508 md_probe(dev, NULL, NULL); 5509 mddev = mddev_find(dev); 5510 if (!mddev || !mddev->gendisk) { 5511 if (mddev) 5512 mddev_put(mddev); 5513 printk(KERN_ERR 5514 "md: cannot allocate memory for md drive.\n"); 5515 break; 5516 } 5517 if (mddev_lock(mddev)) 5518 printk(KERN_WARNING "md: %s locked, cannot run\n", 5519 mdname(mddev)); 5520 else if (mddev->raid_disks || mddev->major_version 5521 || !list_empty(&mddev->disks)) { 5522 printk(KERN_WARNING 5523 "md: %s already running, cannot run %s\n", 5524 mdname(mddev), bdevname(rdev0->bdev,b)); 5525 mddev_unlock(mddev); 5526 } else { 5527 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5528 mddev->persistent = 1; 5529 rdev_for_each_list(rdev, tmp, &candidates) { 5530 list_del_init(&rdev->same_set); 5531 if (bind_rdev_to_array(rdev, mddev)) 5532 export_rdev(rdev); 5533 } 5534 autorun_array(mddev); 5535 mddev_unlock(mddev); 5536 } 5537 /* on success, candidates will be empty, on error 5538 * it won't... 5539 */ 5540 rdev_for_each_list(rdev, tmp, &candidates) { 5541 list_del_init(&rdev->same_set); 5542 export_rdev(rdev); 5543 } 5544 mddev_put(mddev); 5545 } 5546 printk(KERN_INFO "md: ... autorun DONE.\n"); 5547 } 5548 #endif /* !MODULE */ 5549 5550 static int get_version(void __user * arg) 5551 { 5552 mdu_version_t ver; 5553 5554 ver.major = MD_MAJOR_VERSION; 5555 ver.minor = MD_MINOR_VERSION; 5556 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5557 5558 if (copy_to_user(arg, &ver, sizeof(ver))) 5559 return -EFAULT; 5560 5561 return 0; 5562 } 5563 5564 static int get_array_info(struct mddev * mddev, void __user * arg) 5565 { 5566 mdu_array_info_t info; 5567 int nr,working,insync,failed,spare; 5568 struct md_rdev *rdev; 5569 5570 nr = working = insync = failed = spare = 0; 5571 rcu_read_lock(); 5572 rdev_for_each_rcu(rdev, mddev) { 5573 nr++; 5574 if (test_bit(Faulty, &rdev->flags)) 5575 failed++; 5576 else { 5577 working++; 5578 if (test_bit(In_sync, &rdev->flags)) 5579 insync++; 5580 else 5581 spare++; 5582 } 5583 } 5584 rcu_read_unlock(); 5585 5586 info.major_version = mddev->major_version; 5587 info.minor_version = mddev->minor_version; 5588 info.patch_version = MD_PATCHLEVEL_VERSION; 5589 info.ctime = mddev->ctime; 5590 info.level = mddev->level; 5591 info.size = mddev->dev_sectors / 2; 5592 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5593 info.size = -1; 5594 info.nr_disks = nr; 5595 info.raid_disks = mddev->raid_disks; 5596 info.md_minor = mddev->md_minor; 5597 info.not_persistent= !mddev->persistent; 5598 5599 info.utime = mddev->utime; 5600 info.state = 0; 5601 if (mddev->in_sync) 5602 info.state = (1<<MD_SB_CLEAN); 5603 if (mddev->bitmap && mddev->bitmap_info.offset) 5604 info.state = (1<<MD_SB_BITMAP_PRESENT); 5605 info.active_disks = insync; 5606 info.working_disks = working; 5607 info.failed_disks = failed; 5608 info.spare_disks = spare; 5609 5610 info.layout = mddev->layout; 5611 info.chunk_size = mddev->chunk_sectors << 9; 5612 5613 if (copy_to_user(arg, &info, sizeof(info))) 5614 return -EFAULT; 5615 5616 return 0; 5617 } 5618 5619 static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5620 { 5621 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5622 char *ptr, *buf = NULL; 5623 int err = -ENOMEM; 5624 5625 file = kmalloc(sizeof(*file), GFP_NOIO); 5626 5627 if (!file) 5628 goto out; 5629 5630 /* bitmap disabled, zero the first byte and copy out */ 5631 if (!mddev->bitmap || !mddev->bitmap->storage.file) { 5632 file->pathname[0] = '\0'; 5633 goto copy_out; 5634 } 5635 5636 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5637 if (!buf) 5638 goto out; 5639 5640 ptr = d_path(&mddev->bitmap->storage.file->f_path, 5641 buf, sizeof(file->pathname)); 5642 if (IS_ERR(ptr)) 5643 goto out; 5644 5645 strcpy(file->pathname, ptr); 5646 5647 copy_out: 5648 err = 0; 5649 if (copy_to_user(arg, file, sizeof(*file))) 5650 err = -EFAULT; 5651 out: 5652 kfree(buf); 5653 kfree(file); 5654 return err; 5655 } 5656 5657 static int get_disk_info(struct mddev * mddev, void __user * arg) 5658 { 5659 mdu_disk_info_t info; 5660 struct md_rdev *rdev; 5661 5662 if (copy_from_user(&info, arg, sizeof(info))) 5663 return -EFAULT; 5664 5665 rcu_read_lock(); 5666 rdev = find_rdev_nr_rcu(mddev, info.number); 5667 if (rdev) { 5668 info.major = MAJOR(rdev->bdev->bd_dev); 5669 info.minor = MINOR(rdev->bdev->bd_dev); 5670 info.raid_disk = rdev->raid_disk; 5671 info.state = 0; 5672 if (test_bit(Faulty, &rdev->flags)) 5673 info.state |= (1<<MD_DISK_FAULTY); 5674 else if (test_bit(In_sync, &rdev->flags)) { 5675 info.state |= (1<<MD_DISK_ACTIVE); 5676 info.state |= (1<<MD_DISK_SYNC); 5677 } 5678 if (test_bit(WriteMostly, &rdev->flags)) 5679 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5680 } else { 5681 info.major = info.minor = 0; 5682 info.raid_disk = -1; 5683 info.state = (1<<MD_DISK_REMOVED); 5684 } 5685 rcu_read_unlock(); 5686 5687 if (copy_to_user(arg, &info, sizeof(info))) 5688 return -EFAULT; 5689 5690 return 0; 5691 } 5692 5693 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5694 { 5695 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5696 struct md_rdev *rdev; 5697 dev_t dev = MKDEV(info->major,info->minor); 5698 5699 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5700 return -EOVERFLOW; 5701 5702 if (!mddev->raid_disks) { 5703 int err; 5704 /* expecting a device which has a superblock */ 5705 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5706 if (IS_ERR(rdev)) { 5707 printk(KERN_WARNING 5708 "md: md_import_device returned %ld\n", 5709 PTR_ERR(rdev)); 5710 return PTR_ERR(rdev); 5711 } 5712 if (!list_empty(&mddev->disks)) { 5713 struct md_rdev *rdev0 5714 = list_entry(mddev->disks.next, 5715 struct md_rdev, same_set); 5716 err = super_types[mddev->major_version] 5717 .load_super(rdev, rdev0, mddev->minor_version); 5718 if (err < 0) { 5719 printk(KERN_WARNING 5720 "md: %s has different UUID to %s\n", 5721 bdevname(rdev->bdev,b), 5722 bdevname(rdev0->bdev,b2)); 5723 export_rdev(rdev); 5724 return -EINVAL; 5725 } 5726 } 5727 err = bind_rdev_to_array(rdev, mddev); 5728 if (err) 5729 export_rdev(rdev); 5730 return err; 5731 } 5732 5733 /* 5734 * add_new_disk can be used once the array is assembled 5735 * to add "hot spares". They must already have a superblock 5736 * written 5737 */ 5738 if (mddev->pers) { 5739 int err; 5740 if (!mddev->pers->hot_add_disk) { 5741 printk(KERN_WARNING 5742 "%s: personality does not support diskops!\n", 5743 mdname(mddev)); 5744 return -EINVAL; 5745 } 5746 if (mddev->persistent) 5747 rdev = md_import_device(dev, mddev->major_version, 5748 mddev->minor_version); 5749 else 5750 rdev = md_import_device(dev, -1, -1); 5751 if (IS_ERR(rdev)) { 5752 printk(KERN_WARNING 5753 "md: md_import_device returned %ld\n", 5754 PTR_ERR(rdev)); 5755 return PTR_ERR(rdev); 5756 } 5757 /* set saved_raid_disk if appropriate */ 5758 if (!mddev->persistent) { 5759 if (info->state & (1<<MD_DISK_SYNC) && 5760 info->raid_disk < mddev->raid_disks) { 5761 rdev->raid_disk = info->raid_disk; 5762 set_bit(In_sync, &rdev->flags); 5763 } else 5764 rdev->raid_disk = -1; 5765 } else 5766 super_types[mddev->major_version]. 5767 validate_super(mddev, rdev); 5768 if ((info->state & (1<<MD_DISK_SYNC)) && 5769 rdev->raid_disk != info->raid_disk) { 5770 /* This was a hot-add request, but events doesn't 5771 * match, so reject it. 5772 */ 5773 export_rdev(rdev); 5774 return -EINVAL; 5775 } 5776 5777 if (test_bit(In_sync, &rdev->flags)) 5778 rdev->saved_raid_disk = rdev->raid_disk; 5779 else 5780 rdev->saved_raid_disk = -1; 5781 5782 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5783 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5784 set_bit(WriteMostly, &rdev->flags); 5785 else 5786 clear_bit(WriteMostly, &rdev->flags); 5787 5788 rdev->raid_disk = -1; 5789 err = bind_rdev_to_array(rdev, mddev); 5790 if (!err && !mddev->pers->hot_remove_disk) { 5791 /* If there is hot_add_disk but no hot_remove_disk 5792 * then added disks for geometry changes, 5793 * and should be added immediately. 5794 */ 5795 super_types[mddev->major_version]. 5796 validate_super(mddev, rdev); 5797 err = mddev->pers->hot_add_disk(mddev, rdev); 5798 if (err) 5799 unbind_rdev_from_array(rdev); 5800 } 5801 if (err) 5802 export_rdev(rdev); 5803 else 5804 sysfs_notify_dirent_safe(rdev->sysfs_state); 5805 5806 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5807 if (mddev->degraded) 5808 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5809 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5810 if (!err) 5811 md_new_event(mddev); 5812 md_wakeup_thread(mddev->thread); 5813 return err; 5814 } 5815 5816 /* otherwise, add_new_disk is only allowed 5817 * for major_version==0 superblocks 5818 */ 5819 if (mddev->major_version != 0) { 5820 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5821 mdname(mddev)); 5822 return -EINVAL; 5823 } 5824 5825 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5826 int err; 5827 rdev = md_import_device(dev, -1, 0); 5828 if (IS_ERR(rdev)) { 5829 printk(KERN_WARNING 5830 "md: error, md_import_device() returned %ld\n", 5831 PTR_ERR(rdev)); 5832 return PTR_ERR(rdev); 5833 } 5834 rdev->desc_nr = info->number; 5835 if (info->raid_disk < mddev->raid_disks) 5836 rdev->raid_disk = info->raid_disk; 5837 else 5838 rdev->raid_disk = -1; 5839 5840 if (rdev->raid_disk < mddev->raid_disks) 5841 if (info->state & (1<<MD_DISK_SYNC)) 5842 set_bit(In_sync, &rdev->flags); 5843 5844 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5845 set_bit(WriteMostly, &rdev->flags); 5846 5847 if (!mddev->persistent) { 5848 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5849 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5850 } else 5851 rdev->sb_start = calc_dev_sboffset(rdev); 5852 rdev->sectors = rdev->sb_start; 5853 5854 err = bind_rdev_to_array(rdev, mddev); 5855 if (err) { 5856 export_rdev(rdev); 5857 return err; 5858 } 5859 } 5860 5861 return 0; 5862 } 5863 5864 static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5865 { 5866 char b[BDEVNAME_SIZE]; 5867 struct md_rdev *rdev; 5868 5869 rdev = find_rdev(mddev, dev); 5870 if (!rdev) 5871 return -ENXIO; 5872 5873 clear_bit(Blocked, &rdev->flags); 5874 remove_and_add_spares(mddev, rdev); 5875 5876 if (rdev->raid_disk >= 0) 5877 goto busy; 5878 5879 kick_rdev_from_array(rdev); 5880 md_update_sb(mddev, 1); 5881 md_new_event(mddev); 5882 5883 return 0; 5884 busy: 5885 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5886 bdevname(rdev->bdev,b), mdname(mddev)); 5887 return -EBUSY; 5888 } 5889 5890 static int hot_add_disk(struct mddev * mddev, dev_t dev) 5891 { 5892 char b[BDEVNAME_SIZE]; 5893 int err; 5894 struct md_rdev *rdev; 5895 5896 if (!mddev->pers) 5897 return -ENODEV; 5898 5899 if (mddev->major_version != 0) { 5900 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5901 " version-0 superblocks.\n", 5902 mdname(mddev)); 5903 return -EINVAL; 5904 } 5905 if (!mddev->pers->hot_add_disk) { 5906 printk(KERN_WARNING 5907 "%s: personality does not support diskops!\n", 5908 mdname(mddev)); 5909 return -EINVAL; 5910 } 5911 5912 rdev = md_import_device(dev, -1, 0); 5913 if (IS_ERR(rdev)) { 5914 printk(KERN_WARNING 5915 "md: error, md_import_device() returned %ld\n", 5916 PTR_ERR(rdev)); 5917 return -EINVAL; 5918 } 5919 5920 if (mddev->persistent) 5921 rdev->sb_start = calc_dev_sboffset(rdev); 5922 else 5923 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5924 5925 rdev->sectors = rdev->sb_start; 5926 5927 if (test_bit(Faulty, &rdev->flags)) { 5928 printk(KERN_WARNING 5929 "md: can not hot-add faulty %s disk to %s!\n", 5930 bdevname(rdev->bdev,b), mdname(mddev)); 5931 err = -EINVAL; 5932 goto abort_export; 5933 } 5934 clear_bit(In_sync, &rdev->flags); 5935 rdev->desc_nr = -1; 5936 rdev->saved_raid_disk = -1; 5937 err = bind_rdev_to_array(rdev, mddev); 5938 if (err) 5939 goto abort_export; 5940 5941 /* 5942 * The rest should better be atomic, we can have disk failures 5943 * noticed in interrupt contexts ... 5944 */ 5945 5946 rdev->raid_disk = -1; 5947 5948 md_update_sb(mddev, 1); 5949 5950 /* 5951 * Kick recovery, maybe this spare has to be added to the 5952 * array immediately. 5953 */ 5954 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5955 md_wakeup_thread(mddev->thread); 5956 md_new_event(mddev); 5957 return 0; 5958 5959 abort_export: 5960 export_rdev(rdev); 5961 return err; 5962 } 5963 5964 static int set_bitmap_file(struct mddev *mddev, int fd) 5965 { 5966 int err; 5967 5968 if (mddev->pers) { 5969 if (!mddev->pers->quiesce) 5970 return -EBUSY; 5971 if (mddev->recovery || mddev->sync_thread) 5972 return -EBUSY; 5973 /* we should be able to change the bitmap.. */ 5974 } 5975 5976 5977 if (fd >= 0) { 5978 if (mddev->bitmap) 5979 return -EEXIST; /* cannot add when bitmap is present */ 5980 mddev->bitmap_info.file = fget(fd); 5981 5982 if (mddev->bitmap_info.file == NULL) { 5983 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5984 mdname(mddev)); 5985 return -EBADF; 5986 } 5987 5988 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5989 if (err) { 5990 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5991 mdname(mddev)); 5992 fput(mddev->bitmap_info.file); 5993 mddev->bitmap_info.file = NULL; 5994 return err; 5995 } 5996 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5997 } else if (mddev->bitmap == NULL) 5998 return -ENOENT; /* cannot remove what isn't there */ 5999 err = 0; 6000 if (mddev->pers) { 6001 mddev->pers->quiesce(mddev, 1); 6002 if (fd >= 0) { 6003 err = bitmap_create(mddev); 6004 if (!err) 6005 err = bitmap_load(mddev); 6006 } 6007 if (fd < 0 || err) { 6008 bitmap_destroy(mddev); 6009 fd = -1; /* make sure to put the file */ 6010 } 6011 mddev->pers->quiesce(mddev, 0); 6012 } 6013 if (fd < 0) { 6014 if (mddev->bitmap_info.file) { 6015 restore_bitmap_write_access(mddev->bitmap_info.file); 6016 fput(mddev->bitmap_info.file); 6017 } 6018 mddev->bitmap_info.file = NULL; 6019 } 6020 6021 return err; 6022 } 6023 6024 /* 6025 * set_array_info is used two different ways 6026 * The original usage is when creating a new array. 6027 * In this usage, raid_disks is > 0 and it together with 6028 * level, size, not_persistent,layout,chunksize determine the 6029 * shape of the array. 6030 * This will always create an array with a type-0.90.0 superblock. 6031 * The newer usage is when assembling an array. 6032 * In this case raid_disks will be 0, and the major_version field is 6033 * use to determine which style super-blocks are to be found on the devices. 6034 * The minor and patch _version numbers are also kept incase the 6035 * super_block handler wishes to interpret them. 6036 */ 6037 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 6038 { 6039 6040 if (info->raid_disks == 0) { 6041 /* just setting version number for superblock loading */ 6042 if (info->major_version < 0 || 6043 info->major_version >= ARRAY_SIZE(super_types) || 6044 super_types[info->major_version].name == NULL) { 6045 /* maybe try to auto-load a module? */ 6046 printk(KERN_INFO 6047 "md: superblock version %d not known\n", 6048 info->major_version); 6049 return -EINVAL; 6050 } 6051 mddev->major_version = info->major_version; 6052 mddev->minor_version = info->minor_version; 6053 mddev->patch_version = info->patch_version; 6054 mddev->persistent = !info->not_persistent; 6055 /* ensure mddev_put doesn't delete this now that there 6056 * is some minimal configuration. 6057 */ 6058 mddev->ctime = get_seconds(); 6059 return 0; 6060 } 6061 mddev->major_version = MD_MAJOR_VERSION; 6062 mddev->minor_version = MD_MINOR_VERSION; 6063 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6064 mddev->ctime = get_seconds(); 6065 6066 mddev->level = info->level; 6067 mddev->clevel[0] = 0; 6068 mddev->dev_sectors = 2 * (sector_t)info->size; 6069 mddev->raid_disks = info->raid_disks; 6070 /* don't set md_minor, it is determined by which /dev/md* was 6071 * openned 6072 */ 6073 if (info->state & (1<<MD_SB_CLEAN)) 6074 mddev->recovery_cp = MaxSector; 6075 else 6076 mddev->recovery_cp = 0; 6077 mddev->persistent = ! info->not_persistent; 6078 mddev->external = 0; 6079 6080 mddev->layout = info->layout; 6081 mddev->chunk_sectors = info->chunk_size >> 9; 6082 6083 mddev->max_disks = MD_SB_DISKS; 6084 6085 if (mddev->persistent) 6086 mddev->flags = 0; 6087 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6088 6089 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6090 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6091 mddev->bitmap_info.offset = 0; 6092 6093 mddev->reshape_position = MaxSector; 6094 6095 /* 6096 * Generate a 128 bit UUID 6097 */ 6098 get_random_bytes(mddev->uuid, 16); 6099 6100 mddev->new_level = mddev->level; 6101 mddev->new_chunk_sectors = mddev->chunk_sectors; 6102 mddev->new_layout = mddev->layout; 6103 mddev->delta_disks = 0; 6104 mddev->reshape_backwards = 0; 6105 6106 return 0; 6107 } 6108 6109 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6110 { 6111 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6112 6113 if (mddev->external_size) 6114 return; 6115 6116 mddev->array_sectors = array_sectors; 6117 } 6118 EXPORT_SYMBOL(md_set_array_sectors); 6119 6120 static int update_size(struct mddev *mddev, sector_t num_sectors) 6121 { 6122 struct md_rdev *rdev; 6123 int rv; 6124 int fit = (num_sectors == 0); 6125 6126 if (mddev->pers->resize == NULL) 6127 return -EINVAL; 6128 /* The "num_sectors" is the number of sectors of each device that 6129 * is used. This can only make sense for arrays with redundancy. 6130 * linear and raid0 always use whatever space is available. We can only 6131 * consider changing this number if no resync or reconstruction is 6132 * happening, and if the new size is acceptable. It must fit before the 6133 * sb_start or, if that is <data_offset, it must fit before the size 6134 * of each device. If num_sectors is zero, we find the largest size 6135 * that fits. 6136 */ 6137 if (mddev->sync_thread) 6138 return -EBUSY; 6139 6140 rdev_for_each(rdev, mddev) { 6141 sector_t avail = rdev->sectors; 6142 6143 if (fit && (num_sectors == 0 || num_sectors > avail)) 6144 num_sectors = avail; 6145 if (avail < num_sectors) 6146 return -ENOSPC; 6147 } 6148 rv = mddev->pers->resize(mddev, num_sectors); 6149 if (!rv) 6150 revalidate_disk(mddev->gendisk); 6151 return rv; 6152 } 6153 6154 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6155 { 6156 int rv; 6157 struct md_rdev *rdev; 6158 /* change the number of raid disks */ 6159 if (mddev->pers->check_reshape == NULL) 6160 return -EINVAL; 6161 if (raid_disks <= 0 || 6162 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6163 return -EINVAL; 6164 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6165 return -EBUSY; 6166 6167 rdev_for_each(rdev, mddev) { 6168 if (mddev->raid_disks < raid_disks && 6169 rdev->data_offset < rdev->new_data_offset) 6170 return -EINVAL; 6171 if (mddev->raid_disks > raid_disks && 6172 rdev->data_offset > rdev->new_data_offset) 6173 return -EINVAL; 6174 } 6175 6176 mddev->delta_disks = raid_disks - mddev->raid_disks; 6177 if (mddev->delta_disks < 0) 6178 mddev->reshape_backwards = 1; 6179 else if (mddev->delta_disks > 0) 6180 mddev->reshape_backwards = 0; 6181 6182 rv = mddev->pers->check_reshape(mddev); 6183 if (rv < 0) { 6184 mddev->delta_disks = 0; 6185 mddev->reshape_backwards = 0; 6186 } 6187 return rv; 6188 } 6189 6190 6191 /* 6192 * update_array_info is used to change the configuration of an 6193 * on-line array. 6194 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6195 * fields in the info are checked against the array. 6196 * Any differences that cannot be handled will cause an error. 6197 * Normally, only one change can be managed at a time. 6198 */ 6199 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6200 { 6201 int rv = 0; 6202 int cnt = 0; 6203 int state = 0; 6204 6205 /* calculate expected state,ignoring low bits */ 6206 if (mddev->bitmap && mddev->bitmap_info.offset) 6207 state |= (1 << MD_SB_BITMAP_PRESENT); 6208 6209 if (mddev->major_version != info->major_version || 6210 mddev->minor_version != info->minor_version || 6211 /* mddev->patch_version != info->patch_version || */ 6212 mddev->ctime != info->ctime || 6213 mddev->level != info->level || 6214 /* mddev->layout != info->layout || */ 6215 !mddev->persistent != info->not_persistent|| 6216 mddev->chunk_sectors != info->chunk_size >> 9 || 6217 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6218 ((state^info->state) & 0xfffffe00) 6219 ) 6220 return -EINVAL; 6221 /* Check there is only one change */ 6222 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6223 cnt++; 6224 if (mddev->raid_disks != info->raid_disks) 6225 cnt++; 6226 if (mddev->layout != info->layout) 6227 cnt++; 6228 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6229 cnt++; 6230 if (cnt == 0) 6231 return 0; 6232 if (cnt > 1) 6233 return -EINVAL; 6234 6235 if (mddev->layout != info->layout) { 6236 /* Change layout 6237 * we don't need to do anything at the md level, the 6238 * personality will take care of it all. 6239 */ 6240 if (mddev->pers->check_reshape == NULL) 6241 return -EINVAL; 6242 else { 6243 mddev->new_layout = info->layout; 6244 rv = mddev->pers->check_reshape(mddev); 6245 if (rv) 6246 mddev->new_layout = mddev->layout; 6247 return rv; 6248 } 6249 } 6250 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6251 rv = update_size(mddev, (sector_t)info->size * 2); 6252 6253 if (mddev->raid_disks != info->raid_disks) 6254 rv = update_raid_disks(mddev, info->raid_disks); 6255 6256 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6257 if (mddev->pers->quiesce == NULL) 6258 return -EINVAL; 6259 if (mddev->recovery || mddev->sync_thread) 6260 return -EBUSY; 6261 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6262 /* add the bitmap */ 6263 if (mddev->bitmap) 6264 return -EEXIST; 6265 if (mddev->bitmap_info.default_offset == 0) 6266 return -EINVAL; 6267 mddev->bitmap_info.offset = 6268 mddev->bitmap_info.default_offset; 6269 mddev->bitmap_info.space = 6270 mddev->bitmap_info.default_space; 6271 mddev->pers->quiesce(mddev, 1); 6272 rv = bitmap_create(mddev); 6273 if (!rv) 6274 rv = bitmap_load(mddev); 6275 if (rv) 6276 bitmap_destroy(mddev); 6277 mddev->pers->quiesce(mddev, 0); 6278 } else { 6279 /* remove the bitmap */ 6280 if (!mddev->bitmap) 6281 return -ENOENT; 6282 if (mddev->bitmap->storage.file) 6283 return -EINVAL; 6284 mddev->pers->quiesce(mddev, 1); 6285 bitmap_destroy(mddev); 6286 mddev->pers->quiesce(mddev, 0); 6287 mddev->bitmap_info.offset = 0; 6288 } 6289 } 6290 md_update_sb(mddev, 1); 6291 return rv; 6292 } 6293 6294 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6295 { 6296 struct md_rdev *rdev; 6297 int err = 0; 6298 6299 if (mddev->pers == NULL) 6300 return -ENODEV; 6301 6302 rcu_read_lock(); 6303 rdev = find_rdev_rcu(mddev, dev); 6304 if (!rdev) 6305 err = -ENODEV; 6306 else { 6307 md_error(mddev, rdev); 6308 if (!test_bit(Faulty, &rdev->flags)) 6309 err = -EBUSY; 6310 } 6311 rcu_read_unlock(); 6312 return err; 6313 } 6314 6315 /* 6316 * We have a problem here : there is no easy way to give a CHS 6317 * virtual geometry. We currently pretend that we have a 2 heads 6318 * 4 sectors (with a BIG number of cylinders...). This drives 6319 * dosfs just mad... ;-) 6320 */ 6321 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6322 { 6323 struct mddev *mddev = bdev->bd_disk->private_data; 6324 6325 geo->heads = 2; 6326 geo->sectors = 4; 6327 geo->cylinders = mddev->array_sectors / 8; 6328 return 0; 6329 } 6330 6331 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6332 unsigned int cmd, unsigned long arg) 6333 { 6334 int err = 0; 6335 void __user *argp = (void __user *)arg; 6336 struct mddev *mddev = NULL; 6337 int ro; 6338 6339 switch (cmd) { 6340 case RAID_VERSION: 6341 case GET_ARRAY_INFO: 6342 case GET_DISK_INFO: 6343 break; 6344 default: 6345 if (!capable(CAP_SYS_ADMIN)) 6346 return -EACCES; 6347 } 6348 6349 /* 6350 * Commands dealing with the RAID driver but not any 6351 * particular array: 6352 */ 6353 switch (cmd) { 6354 case RAID_VERSION: 6355 err = get_version(argp); 6356 goto done; 6357 6358 case PRINT_RAID_DEBUG: 6359 err = 0; 6360 md_print_devices(); 6361 goto done; 6362 6363 #ifndef MODULE 6364 case RAID_AUTORUN: 6365 err = 0; 6366 autostart_arrays(arg); 6367 goto done; 6368 #endif 6369 default:; 6370 } 6371 6372 /* 6373 * Commands creating/starting a new array: 6374 */ 6375 6376 mddev = bdev->bd_disk->private_data; 6377 6378 if (!mddev) { 6379 BUG(); 6380 goto abort; 6381 } 6382 6383 /* Some actions do not requires the mutex */ 6384 switch (cmd) { 6385 case GET_ARRAY_INFO: 6386 if (!mddev->raid_disks && !mddev->external) 6387 err = -ENODEV; 6388 else 6389 err = get_array_info(mddev, argp); 6390 goto abort; 6391 6392 case GET_DISK_INFO: 6393 if (!mddev->raid_disks && !mddev->external) 6394 err = -ENODEV; 6395 else 6396 err = get_disk_info(mddev, argp); 6397 goto abort; 6398 6399 case SET_DISK_FAULTY: 6400 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6401 goto abort; 6402 } 6403 6404 if (cmd == ADD_NEW_DISK) 6405 /* need to ensure md_delayed_delete() has completed */ 6406 flush_workqueue(md_misc_wq); 6407 6408 if (cmd == HOT_REMOVE_DISK) 6409 /* need to ensure recovery thread has run */ 6410 wait_event_interruptible_timeout(mddev->sb_wait, 6411 !test_bit(MD_RECOVERY_NEEDED, 6412 &mddev->flags), 6413 msecs_to_jiffies(5000)); 6414 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6415 /* Need to flush page cache, and ensure no-one else opens 6416 * and writes 6417 */ 6418 mutex_lock(&mddev->open_mutex); 6419 if (atomic_read(&mddev->openers) > 1) { 6420 mutex_unlock(&mddev->open_mutex); 6421 err = -EBUSY; 6422 goto abort; 6423 } 6424 set_bit(MD_STILL_CLOSED, &mddev->flags); 6425 mutex_unlock(&mddev->open_mutex); 6426 sync_blockdev(bdev); 6427 } 6428 err = mddev_lock(mddev); 6429 if (err) { 6430 printk(KERN_INFO 6431 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6432 err, cmd); 6433 goto abort; 6434 } 6435 6436 if (cmd == SET_ARRAY_INFO) { 6437 mdu_array_info_t info; 6438 if (!arg) 6439 memset(&info, 0, sizeof(info)); 6440 else if (copy_from_user(&info, argp, sizeof(info))) { 6441 err = -EFAULT; 6442 goto abort_unlock; 6443 } 6444 if (mddev->pers) { 6445 err = update_array_info(mddev, &info); 6446 if (err) { 6447 printk(KERN_WARNING "md: couldn't update" 6448 " array info. %d\n", err); 6449 goto abort_unlock; 6450 } 6451 goto done_unlock; 6452 } 6453 if (!list_empty(&mddev->disks)) { 6454 printk(KERN_WARNING 6455 "md: array %s already has disks!\n", 6456 mdname(mddev)); 6457 err = -EBUSY; 6458 goto abort_unlock; 6459 } 6460 if (mddev->raid_disks) { 6461 printk(KERN_WARNING 6462 "md: array %s already initialised!\n", 6463 mdname(mddev)); 6464 err = -EBUSY; 6465 goto abort_unlock; 6466 } 6467 err = set_array_info(mddev, &info); 6468 if (err) { 6469 printk(KERN_WARNING "md: couldn't set" 6470 " array info. %d\n", err); 6471 goto abort_unlock; 6472 } 6473 goto done_unlock; 6474 } 6475 6476 /* 6477 * Commands querying/configuring an existing array: 6478 */ 6479 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6480 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6481 if ((!mddev->raid_disks && !mddev->external) 6482 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6483 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6484 && cmd != GET_BITMAP_FILE) { 6485 err = -ENODEV; 6486 goto abort_unlock; 6487 } 6488 6489 /* 6490 * Commands even a read-only array can execute: 6491 */ 6492 switch (cmd) { 6493 case GET_BITMAP_FILE: 6494 err = get_bitmap_file(mddev, argp); 6495 goto done_unlock; 6496 6497 case RESTART_ARRAY_RW: 6498 err = restart_array(mddev); 6499 goto done_unlock; 6500 6501 case STOP_ARRAY: 6502 err = do_md_stop(mddev, 0, bdev); 6503 goto done_unlock; 6504 6505 case STOP_ARRAY_RO: 6506 err = md_set_readonly(mddev, bdev); 6507 goto done_unlock; 6508 6509 case HOT_REMOVE_DISK: 6510 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6511 goto done_unlock; 6512 6513 case ADD_NEW_DISK: 6514 /* We can support ADD_NEW_DISK on read-only arrays 6515 * on if we are re-adding a preexisting device. 6516 * So require mddev->pers and MD_DISK_SYNC. 6517 */ 6518 if (mddev->pers) { 6519 mdu_disk_info_t info; 6520 if (copy_from_user(&info, argp, sizeof(info))) 6521 err = -EFAULT; 6522 else if (!(info.state & (1<<MD_DISK_SYNC))) 6523 /* Need to clear read-only for this */ 6524 break; 6525 else 6526 err = add_new_disk(mddev, &info); 6527 goto done_unlock; 6528 } 6529 break; 6530 6531 case BLKROSET: 6532 if (get_user(ro, (int __user *)(arg))) { 6533 err = -EFAULT; 6534 goto done_unlock; 6535 } 6536 err = -EINVAL; 6537 6538 /* if the bdev is going readonly the value of mddev->ro 6539 * does not matter, no writes are coming 6540 */ 6541 if (ro) 6542 goto done_unlock; 6543 6544 /* are we are already prepared for writes? */ 6545 if (mddev->ro != 1) 6546 goto done_unlock; 6547 6548 /* transitioning to readauto need only happen for 6549 * arrays that call md_write_start 6550 */ 6551 if (mddev->pers) { 6552 err = restart_array(mddev); 6553 if (err == 0) { 6554 mddev->ro = 2; 6555 set_disk_ro(mddev->gendisk, 0); 6556 } 6557 } 6558 goto done_unlock; 6559 } 6560 6561 /* 6562 * The remaining ioctls are changing the state of the 6563 * superblock, so we do not allow them on read-only arrays. 6564 * However non-MD ioctls (e.g. get-size) will still come through 6565 * here and hit the 'default' below, so only disallow 6566 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6567 */ 6568 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6569 if (mddev->ro == 2) { 6570 mddev->ro = 0; 6571 sysfs_notify_dirent_safe(mddev->sysfs_state); 6572 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6573 /* mddev_unlock will wake thread */ 6574 /* If a device failed while we were read-only, we 6575 * need to make sure the metadata is updated now. 6576 */ 6577 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6578 mddev_unlock(mddev); 6579 wait_event(mddev->sb_wait, 6580 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6581 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6582 mddev_lock_nointr(mddev); 6583 } 6584 } else { 6585 err = -EROFS; 6586 goto abort_unlock; 6587 } 6588 } 6589 6590 switch (cmd) { 6591 case ADD_NEW_DISK: 6592 { 6593 mdu_disk_info_t info; 6594 if (copy_from_user(&info, argp, sizeof(info))) 6595 err = -EFAULT; 6596 else 6597 err = add_new_disk(mddev, &info); 6598 goto done_unlock; 6599 } 6600 6601 case HOT_ADD_DISK: 6602 err = hot_add_disk(mddev, new_decode_dev(arg)); 6603 goto done_unlock; 6604 6605 case RUN_ARRAY: 6606 err = do_md_run(mddev); 6607 goto done_unlock; 6608 6609 case SET_BITMAP_FILE: 6610 err = set_bitmap_file(mddev, (int)arg); 6611 goto done_unlock; 6612 6613 default: 6614 err = -EINVAL; 6615 goto abort_unlock; 6616 } 6617 6618 done_unlock: 6619 abort_unlock: 6620 if (mddev->hold_active == UNTIL_IOCTL && 6621 err != -EINVAL) 6622 mddev->hold_active = 0; 6623 mddev_unlock(mddev); 6624 6625 return err; 6626 done: 6627 if (err) 6628 MD_BUG(); 6629 abort: 6630 return err; 6631 } 6632 #ifdef CONFIG_COMPAT 6633 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6634 unsigned int cmd, unsigned long arg) 6635 { 6636 switch (cmd) { 6637 case HOT_REMOVE_DISK: 6638 case HOT_ADD_DISK: 6639 case SET_DISK_FAULTY: 6640 case SET_BITMAP_FILE: 6641 /* These take in integer arg, do not convert */ 6642 break; 6643 default: 6644 arg = (unsigned long)compat_ptr(arg); 6645 break; 6646 } 6647 6648 return md_ioctl(bdev, mode, cmd, arg); 6649 } 6650 #endif /* CONFIG_COMPAT */ 6651 6652 static int md_open(struct block_device *bdev, fmode_t mode) 6653 { 6654 /* 6655 * Succeed if we can lock the mddev, which confirms that 6656 * it isn't being stopped right now. 6657 */ 6658 struct mddev *mddev = mddev_find(bdev->bd_dev); 6659 int err; 6660 6661 if (!mddev) 6662 return -ENODEV; 6663 6664 if (mddev->gendisk != bdev->bd_disk) { 6665 /* we are racing with mddev_put which is discarding this 6666 * bd_disk. 6667 */ 6668 mddev_put(mddev); 6669 /* Wait until bdev->bd_disk is definitely gone */ 6670 flush_workqueue(md_misc_wq); 6671 /* Then retry the open from the top */ 6672 return -ERESTARTSYS; 6673 } 6674 BUG_ON(mddev != bdev->bd_disk->private_data); 6675 6676 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6677 goto out; 6678 6679 err = 0; 6680 atomic_inc(&mddev->openers); 6681 clear_bit(MD_STILL_CLOSED, &mddev->flags); 6682 mutex_unlock(&mddev->open_mutex); 6683 6684 check_disk_change(bdev); 6685 out: 6686 return err; 6687 } 6688 6689 static void md_release(struct gendisk *disk, fmode_t mode) 6690 { 6691 struct mddev *mddev = disk->private_data; 6692 6693 BUG_ON(!mddev); 6694 atomic_dec(&mddev->openers); 6695 mddev_put(mddev); 6696 } 6697 6698 static int md_media_changed(struct gendisk *disk) 6699 { 6700 struct mddev *mddev = disk->private_data; 6701 6702 return mddev->changed; 6703 } 6704 6705 static int md_revalidate(struct gendisk *disk) 6706 { 6707 struct mddev *mddev = disk->private_data; 6708 6709 mddev->changed = 0; 6710 return 0; 6711 } 6712 static const struct block_device_operations md_fops = 6713 { 6714 .owner = THIS_MODULE, 6715 .open = md_open, 6716 .release = md_release, 6717 .ioctl = md_ioctl, 6718 #ifdef CONFIG_COMPAT 6719 .compat_ioctl = md_compat_ioctl, 6720 #endif 6721 .getgeo = md_getgeo, 6722 .media_changed = md_media_changed, 6723 .revalidate_disk= md_revalidate, 6724 }; 6725 6726 static int md_thread(void * arg) 6727 { 6728 struct md_thread *thread = arg; 6729 6730 /* 6731 * md_thread is a 'system-thread', it's priority should be very 6732 * high. We avoid resource deadlocks individually in each 6733 * raid personality. (RAID5 does preallocation) We also use RR and 6734 * the very same RT priority as kswapd, thus we will never get 6735 * into a priority inversion deadlock. 6736 * 6737 * we definitely have to have equal or higher priority than 6738 * bdflush, otherwise bdflush will deadlock if there are too 6739 * many dirty RAID5 blocks. 6740 */ 6741 6742 allow_signal(SIGKILL); 6743 while (!kthread_should_stop()) { 6744 6745 /* We need to wait INTERRUPTIBLE so that 6746 * we don't add to the load-average. 6747 * That means we need to be sure no signals are 6748 * pending 6749 */ 6750 if (signal_pending(current)) 6751 flush_signals(current); 6752 6753 wait_event_interruptible_timeout 6754 (thread->wqueue, 6755 test_bit(THREAD_WAKEUP, &thread->flags) 6756 || kthread_should_stop(), 6757 thread->timeout); 6758 6759 clear_bit(THREAD_WAKEUP, &thread->flags); 6760 if (!kthread_should_stop()) 6761 thread->run(thread); 6762 } 6763 6764 return 0; 6765 } 6766 6767 void md_wakeup_thread(struct md_thread *thread) 6768 { 6769 if (thread) { 6770 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6771 set_bit(THREAD_WAKEUP, &thread->flags); 6772 wake_up(&thread->wqueue); 6773 } 6774 } 6775 6776 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 6777 struct mddev *mddev, const char *name) 6778 { 6779 struct md_thread *thread; 6780 6781 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6782 if (!thread) 6783 return NULL; 6784 6785 init_waitqueue_head(&thread->wqueue); 6786 6787 thread->run = run; 6788 thread->mddev = mddev; 6789 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6790 thread->tsk = kthread_run(md_thread, thread, 6791 "%s_%s", 6792 mdname(thread->mddev), 6793 name); 6794 if (IS_ERR(thread->tsk)) { 6795 kfree(thread); 6796 return NULL; 6797 } 6798 return thread; 6799 } 6800 6801 void md_unregister_thread(struct md_thread **threadp) 6802 { 6803 struct md_thread *thread = *threadp; 6804 if (!thread) 6805 return; 6806 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6807 /* Locking ensures that mddev_unlock does not wake_up a 6808 * non-existent thread 6809 */ 6810 spin_lock(&pers_lock); 6811 *threadp = NULL; 6812 spin_unlock(&pers_lock); 6813 6814 kthread_stop(thread->tsk); 6815 kfree(thread); 6816 } 6817 6818 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6819 { 6820 if (!mddev) { 6821 MD_BUG(); 6822 return; 6823 } 6824 6825 if (!rdev || test_bit(Faulty, &rdev->flags)) 6826 return; 6827 6828 if (!mddev->pers || !mddev->pers->error_handler) 6829 return; 6830 mddev->pers->error_handler(mddev,rdev); 6831 if (mddev->degraded) 6832 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6833 sysfs_notify_dirent_safe(rdev->sysfs_state); 6834 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6835 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6836 md_wakeup_thread(mddev->thread); 6837 if (mddev->event_work.func) 6838 queue_work(md_misc_wq, &mddev->event_work); 6839 md_new_event_inintr(mddev); 6840 } 6841 6842 /* seq_file implementation /proc/mdstat */ 6843 6844 static void status_unused(struct seq_file *seq) 6845 { 6846 int i = 0; 6847 struct md_rdev *rdev; 6848 6849 seq_printf(seq, "unused devices: "); 6850 6851 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6852 char b[BDEVNAME_SIZE]; 6853 i++; 6854 seq_printf(seq, "%s ", 6855 bdevname(rdev->bdev,b)); 6856 } 6857 if (!i) 6858 seq_printf(seq, "<none>"); 6859 6860 seq_printf(seq, "\n"); 6861 } 6862 6863 6864 static void status_resync(struct seq_file *seq, struct mddev * mddev) 6865 { 6866 sector_t max_sectors, resync, res; 6867 unsigned long dt, db; 6868 sector_t rt; 6869 int scale; 6870 unsigned int per_milli; 6871 6872 if (mddev->curr_resync <= 3) 6873 resync = 0; 6874 else 6875 resync = mddev->curr_resync 6876 - atomic_read(&mddev->recovery_active); 6877 6878 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6879 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6880 max_sectors = mddev->resync_max_sectors; 6881 else 6882 max_sectors = mddev->dev_sectors; 6883 6884 /* 6885 * Should not happen. 6886 */ 6887 if (!max_sectors) { 6888 MD_BUG(); 6889 return; 6890 } 6891 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6892 * in a sector_t, and (max_sectors>>scale) will fit in a 6893 * u32, as those are the requirements for sector_div. 6894 * Thus 'scale' must be at least 10 6895 */ 6896 scale = 10; 6897 if (sizeof(sector_t) > sizeof(unsigned long)) { 6898 while ( max_sectors/2 > (1ULL<<(scale+32))) 6899 scale++; 6900 } 6901 res = (resync>>scale)*1000; 6902 sector_div(res, (u32)((max_sectors>>scale)+1)); 6903 6904 per_milli = res; 6905 { 6906 int i, x = per_milli/50, y = 20-x; 6907 seq_printf(seq, "["); 6908 for (i = 0; i < x; i++) 6909 seq_printf(seq, "="); 6910 seq_printf(seq, ">"); 6911 for (i = 0; i < y; i++) 6912 seq_printf(seq, "."); 6913 seq_printf(seq, "] "); 6914 } 6915 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6916 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6917 "reshape" : 6918 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6919 "check" : 6920 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6921 "resync" : "recovery"))), 6922 per_milli/10, per_milli % 10, 6923 (unsigned long long) resync/2, 6924 (unsigned long long) max_sectors/2); 6925 6926 /* 6927 * dt: time from mark until now 6928 * db: blocks written from mark until now 6929 * rt: remaining time 6930 * 6931 * rt is a sector_t, so could be 32bit or 64bit. 6932 * So we divide before multiply in case it is 32bit and close 6933 * to the limit. 6934 * We scale the divisor (db) by 32 to avoid losing precision 6935 * near the end of resync when the number of remaining sectors 6936 * is close to 'db'. 6937 * We then divide rt by 32 after multiplying by db to compensate. 6938 * The '+1' avoids division by zero if db is very small. 6939 */ 6940 dt = ((jiffies - mddev->resync_mark) / HZ); 6941 if (!dt) dt++; 6942 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6943 - mddev->resync_mark_cnt; 6944 6945 rt = max_sectors - resync; /* number of remaining sectors */ 6946 sector_div(rt, db/32+1); 6947 rt *= dt; 6948 rt >>= 5; 6949 6950 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6951 ((unsigned long)rt % 60)/6); 6952 6953 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6954 } 6955 6956 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6957 { 6958 struct list_head *tmp; 6959 loff_t l = *pos; 6960 struct mddev *mddev; 6961 6962 if (l >= 0x10000) 6963 return NULL; 6964 if (!l--) 6965 /* header */ 6966 return (void*)1; 6967 6968 spin_lock(&all_mddevs_lock); 6969 list_for_each(tmp,&all_mddevs) 6970 if (!l--) { 6971 mddev = list_entry(tmp, struct mddev, all_mddevs); 6972 mddev_get(mddev); 6973 spin_unlock(&all_mddevs_lock); 6974 return mddev; 6975 } 6976 spin_unlock(&all_mddevs_lock); 6977 if (!l--) 6978 return (void*)2;/* tail */ 6979 return NULL; 6980 } 6981 6982 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6983 { 6984 struct list_head *tmp; 6985 struct mddev *next_mddev, *mddev = v; 6986 6987 ++*pos; 6988 if (v == (void*)2) 6989 return NULL; 6990 6991 spin_lock(&all_mddevs_lock); 6992 if (v == (void*)1) 6993 tmp = all_mddevs.next; 6994 else 6995 tmp = mddev->all_mddevs.next; 6996 if (tmp != &all_mddevs) 6997 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 6998 else { 6999 next_mddev = (void*)2; 7000 *pos = 0x10000; 7001 } 7002 spin_unlock(&all_mddevs_lock); 7003 7004 if (v != (void*)1) 7005 mddev_put(mddev); 7006 return next_mddev; 7007 7008 } 7009 7010 static void md_seq_stop(struct seq_file *seq, void *v) 7011 { 7012 struct mddev *mddev = v; 7013 7014 if (mddev && v != (void*)1 && v != (void*)2) 7015 mddev_put(mddev); 7016 } 7017 7018 static int md_seq_show(struct seq_file *seq, void *v) 7019 { 7020 struct mddev *mddev = v; 7021 sector_t sectors; 7022 struct md_rdev *rdev; 7023 7024 if (v == (void*)1) { 7025 struct md_personality *pers; 7026 seq_printf(seq, "Personalities : "); 7027 spin_lock(&pers_lock); 7028 list_for_each_entry(pers, &pers_list, list) 7029 seq_printf(seq, "[%s] ", pers->name); 7030 7031 spin_unlock(&pers_lock); 7032 seq_printf(seq, "\n"); 7033 seq->poll_event = atomic_read(&md_event_count); 7034 return 0; 7035 } 7036 if (v == (void*)2) { 7037 status_unused(seq); 7038 return 0; 7039 } 7040 7041 if (mddev_lock(mddev) < 0) 7042 return -EINTR; 7043 7044 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7045 seq_printf(seq, "%s : %sactive", mdname(mddev), 7046 mddev->pers ? "" : "in"); 7047 if (mddev->pers) { 7048 if (mddev->ro==1) 7049 seq_printf(seq, " (read-only)"); 7050 if (mddev->ro==2) 7051 seq_printf(seq, " (auto-read-only)"); 7052 seq_printf(seq, " %s", mddev->pers->name); 7053 } 7054 7055 sectors = 0; 7056 rdev_for_each(rdev, mddev) { 7057 char b[BDEVNAME_SIZE]; 7058 seq_printf(seq, " %s[%d]", 7059 bdevname(rdev->bdev,b), rdev->desc_nr); 7060 if (test_bit(WriteMostly, &rdev->flags)) 7061 seq_printf(seq, "(W)"); 7062 if (test_bit(Faulty, &rdev->flags)) { 7063 seq_printf(seq, "(F)"); 7064 continue; 7065 } 7066 if (rdev->raid_disk < 0) 7067 seq_printf(seq, "(S)"); /* spare */ 7068 if (test_bit(Replacement, &rdev->flags)) 7069 seq_printf(seq, "(R)"); 7070 sectors += rdev->sectors; 7071 } 7072 7073 if (!list_empty(&mddev->disks)) { 7074 if (mddev->pers) 7075 seq_printf(seq, "\n %llu blocks", 7076 (unsigned long long) 7077 mddev->array_sectors / 2); 7078 else 7079 seq_printf(seq, "\n %llu blocks", 7080 (unsigned long long)sectors / 2); 7081 } 7082 if (mddev->persistent) { 7083 if (mddev->major_version != 0 || 7084 mddev->minor_version != 90) { 7085 seq_printf(seq," super %d.%d", 7086 mddev->major_version, 7087 mddev->minor_version); 7088 } 7089 } else if (mddev->external) 7090 seq_printf(seq, " super external:%s", 7091 mddev->metadata_type); 7092 else 7093 seq_printf(seq, " super non-persistent"); 7094 7095 if (mddev->pers) { 7096 mddev->pers->status(seq, mddev); 7097 seq_printf(seq, "\n "); 7098 if (mddev->pers->sync_request) { 7099 if (mddev->curr_resync > 2) { 7100 status_resync(seq, mddev); 7101 seq_printf(seq, "\n "); 7102 } else if (mddev->curr_resync >= 1) 7103 seq_printf(seq, "\tresync=DELAYED\n "); 7104 else if (mddev->recovery_cp < MaxSector) 7105 seq_printf(seq, "\tresync=PENDING\n "); 7106 } 7107 } else 7108 seq_printf(seq, "\n "); 7109 7110 bitmap_status(seq, mddev->bitmap); 7111 7112 seq_printf(seq, "\n"); 7113 } 7114 mddev_unlock(mddev); 7115 7116 return 0; 7117 } 7118 7119 static const struct seq_operations md_seq_ops = { 7120 .start = md_seq_start, 7121 .next = md_seq_next, 7122 .stop = md_seq_stop, 7123 .show = md_seq_show, 7124 }; 7125 7126 static int md_seq_open(struct inode *inode, struct file *file) 7127 { 7128 struct seq_file *seq; 7129 int error; 7130 7131 error = seq_open(file, &md_seq_ops); 7132 if (error) 7133 return error; 7134 7135 seq = file->private_data; 7136 seq->poll_event = atomic_read(&md_event_count); 7137 return error; 7138 } 7139 7140 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7141 { 7142 struct seq_file *seq = filp->private_data; 7143 int mask; 7144 7145 poll_wait(filp, &md_event_waiters, wait); 7146 7147 /* always allow read */ 7148 mask = POLLIN | POLLRDNORM; 7149 7150 if (seq->poll_event != atomic_read(&md_event_count)) 7151 mask |= POLLERR | POLLPRI; 7152 return mask; 7153 } 7154 7155 static const struct file_operations md_seq_fops = { 7156 .owner = THIS_MODULE, 7157 .open = md_seq_open, 7158 .read = seq_read, 7159 .llseek = seq_lseek, 7160 .release = seq_release_private, 7161 .poll = mdstat_poll, 7162 }; 7163 7164 int register_md_personality(struct md_personality *p) 7165 { 7166 spin_lock(&pers_lock); 7167 list_add_tail(&p->list, &pers_list); 7168 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7169 spin_unlock(&pers_lock); 7170 return 0; 7171 } 7172 7173 int unregister_md_personality(struct md_personality *p) 7174 { 7175 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7176 spin_lock(&pers_lock); 7177 list_del_init(&p->list); 7178 spin_unlock(&pers_lock); 7179 return 0; 7180 } 7181 7182 static int is_mddev_idle(struct mddev *mddev, int init) 7183 { 7184 struct md_rdev * rdev; 7185 int idle; 7186 int curr_events; 7187 7188 idle = 1; 7189 rcu_read_lock(); 7190 rdev_for_each_rcu(rdev, mddev) { 7191 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7192 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7193 (int)part_stat_read(&disk->part0, sectors[1]) - 7194 atomic_read(&disk->sync_io); 7195 /* sync IO will cause sync_io to increase before the disk_stats 7196 * as sync_io is counted when a request starts, and 7197 * disk_stats is counted when it completes. 7198 * So resync activity will cause curr_events to be smaller than 7199 * when there was no such activity. 7200 * non-sync IO will cause disk_stat to increase without 7201 * increasing sync_io so curr_events will (eventually) 7202 * be larger than it was before. Once it becomes 7203 * substantially larger, the test below will cause 7204 * the array to appear non-idle, and resync will slow 7205 * down. 7206 * If there is a lot of outstanding resync activity when 7207 * we set last_event to curr_events, then all that activity 7208 * completing might cause the array to appear non-idle 7209 * and resync will be slowed down even though there might 7210 * not have been non-resync activity. This will only 7211 * happen once though. 'last_events' will soon reflect 7212 * the state where there is little or no outstanding 7213 * resync requests, and further resync activity will 7214 * always make curr_events less than last_events. 7215 * 7216 */ 7217 if (init || curr_events - rdev->last_events > 64) { 7218 rdev->last_events = curr_events; 7219 idle = 0; 7220 } 7221 } 7222 rcu_read_unlock(); 7223 return idle; 7224 } 7225 7226 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7227 { 7228 /* another "blocks" (512byte) blocks have been synced */ 7229 atomic_sub(blocks, &mddev->recovery_active); 7230 wake_up(&mddev->recovery_wait); 7231 if (!ok) { 7232 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7233 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7234 md_wakeup_thread(mddev->thread); 7235 // stop recovery, signal do_sync .... 7236 } 7237 } 7238 7239 7240 /* md_write_start(mddev, bi) 7241 * If we need to update some array metadata (e.g. 'active' flag 7242 * in superblock) before writing, schedule a superblock update 7243 * and wait for it to complete. 7244 */ 7245 void md_write_start(struct mddev *mddev, struct bio *bi) 7246 { 7247 int did_change = 0; 7248 if (bio_data_dir(bi) != WRITE) 7249 return; 7250 7251 BUG_ON(mddev->ro == 1); 7252 if (mddev->ro == 2) { 7253 /* need to switch to read/write */ 7254 mddev->ro = 0; 7255 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7256 md_wakeup_thread(mddev->thread); 7257 md_wakeup_thread(mddev->sync_thread); 7258 did_change = 1; 7259 } 7260 atomic_inc(&mddev->writes_pending); 7261 if (mddev->safemode == 1) 7262 mddev->safemode = 0; 7263 if (mddev->in_sync) { 7264 spin_lock_irq(&mddev->write_lock); 7265 if (mddev->in_sync) { 7266 mddev->in_sync = 0; 7267 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7268 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7269 md_wakeup_thread(mddev->thread); 7270 did_change = 1; 7271 } 7272 spin_unlock_irq(&mddev->write_lock); 7273 } 7274 if (did_change) 7275 sysfs_notify_dirent_safe(mddev->sysfs_state); 7276 wait_event(mddev->sb_wait, 7277 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7278 } 7279 7280 void md_write_end(struct mddev *mddev) 7281 { 7282 if (atomic_dec_and_test(&mddev->writes_pending)) { 7283 if (mddev->safemode == 2) 7284 md_wakeup_thread(mddev->thread); 7285 else if (mddev->safemode_delay) 7286 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7287 } 7288 } 7289 7290 /* md_allow_write(mddev) 7291 * Calling this ensures that the array is marked 'active' so that writes 7292 * may proceed without blocking. It is important to call this before 7293 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7294 * Must be called with mddev_lock held. 7295 * 7296 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7297 * is dropped, so return -EAGAIN after notifying userspace. 7298 */ 7299 int md_allow_write(struct mddev *mddev) 7300 { 7301 if (!mddev->pers) 7302 return 0; 7303 if (mddev->ro) 7304 return 0; 7305 if (!mddev->pers->sync_request) 7306 return 0; 7307 7308 spin_lock_irq(&mddev->write_lock); 7309 if (mddev->in_sync) { 7310 mddev->in_sync = 0; 7311 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7312 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7313 if (mddev->safemode_delay && 7314 mddev->safemode == 0) 7315 mddev->safemode = 1; 7316 spin_unlock_irq(&mddev->write_lock); 7317 md_update_sb(mddev, 0); 7318 sysfs_notify_dirent_safe(mddev->sysfs_state); 7319 } else 7320 spin_unlock_irq(&mddev->write_lock); 7321 7322 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7323 return -EAGAIN; 7324 else 7325 return 0; 7326 } 7327 EXPORT_SYMBOL_GPL(md_allow_write); 7328 7329 #define SYNC_MARKS 10 7330 #define SYNC_MARK_STEP (3*HZ) 7331 #define UPDATE_FREQUENCY (5*60*HZ) 7332 void md_do_sync(struct md_thread *thread) 7333 { 7334 struct mddev *mddev = thread->mddev; 7335 struct mddev *mddev2; 7336 unsigned int currspeed = 0, 7337 window; 7338 sector_t max_sectors,j, io_sectors; 7339 unsigned long mark[SYNC_MARKS]; 7340 unsigned long update_time; 7341 sector_t mark_cnt[SYNC_MARKS]; 7342 int last_mark,m; 7343 struct list_head *tmp; 7344 sector_t last_check; 7345 int skipped = 0; 7346 struct md_rdev *rdev; 7347 char *desc, *action = NULL; 7348 struct blk_plug plug; 7349 7350 /* just incase thread restarts... */ 7351 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7352 return; 7353 if (mddev->ro) /* never try to sync a read-only array */ 7354 return; 7355 7356 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7357 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7358 desc = "data-check"; 7359 action = "check"; 7360 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7361 desc = "requested-resync"; 7362 action = "repair"; 7363 } else 7364 desc = "resync"; 7365 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7366 desc = "reshape"; 7367 else 7368 desc = "recovery"; 7369 7370 mddev->last_sync_action = action ?: desc; 7371 7372 /* we overload curr_resync somewhat here. 7373 * 0 == not engaged in resync at all 7374 * 2 == checking that there is no conflict with another sync 7375 * 1 == like 2, but have yielded to allow conflicting resync to 7376 * commense 7377 * other == active in resync - this many blocks 7378 * 7379 * Before starting a resync we must have set curr_resync to 7380 * 2, and then checked that every "conflicting" array has curr_resync 7381 * less than ours. When we find one that is the same or higher 7382 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7383 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7384 * This will mean we have to start checking from the beginning again. 7385 * 7386 */ 7387 7388 do { 7389 mddev->curr_resync = 2; 7390 7391 try_again: 7392 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7393 goto skip; 7394 for_each_mddev(mddev2, tmp) { 7395 if (mddev2 == mddev) 7396 continue; 7397 if (!mddev->parallel_resync 7398 && mddev2->curr_resync 7399 && match_mddev_units(mddev, mddev2)) { 7400 DEFINE_WAIT(wq); 7401 if (mddev < mddev2 && mddev->curr_resync == 2) { 7402 /* arbitrarily yield */ 7403 mddev->curr_resync = 1; 7404 wake_up(&resync_wait); 7405 } 7406 if (mddev > mddev2 && mddev->curr_resync == 1) 7407 /* no need to wait here, we can wait the next 7408 * time 'round when curr_resync == 2 7409 */ 7410 continue; 7411 /* We need to wait 'interruptible' so as not to 7412 * contribute to the load average, and not to 7413 * be caught by 'softlockup' 7414 */ 7415 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7416 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7417 mddev2->curr_resync >= mddev->curr_resync) { 7418 printk(KERN_INFO "md: delaying %s of %s" 7419 " until %s has finished (they" 7420 " share one or more physical units)\n", 7421 desc, mdname(mddev), mdname(mddev2)); 7422 mddev_put(mddev2); 7423 if (signal_pending(current)) 7424 flush_signals(current); 7425 schedule(); 7426 finish_wait(&resync_wait, &wq); 7427 goto try_again; 7428 } 7429 finish_wait(&resync_wait, &wq); 7430 } 7431 } 7432 } while (mddev->curr_resync < 2); 7433 7434 j = 0; 7435 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7436 /* resync follows the size requested by the personality, 7437 * which defaults to physical size, but can be virtual size 7438 */ 7439 max_sectors = mddev->resync_max_sectors; 7440 atomic64_set(&mddev->resync_mismatches, 0); 7441 /* we don't use the checkpoint if there's a bitmap */ 7442 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7443 j = mddev->resync_min; 7444 else if (!mddev->bitmap) 7445 j = mddev->recovery_cp; 7446 7447 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7448 max_sectors = mddev->resync_max_sectors; 7449 else { 7450 /* recovery follows the physical size of devices */ 7451 max_sectors = mddev->dev_sectors; 7452 j = MaxSector; 7453 rcu_read_lock(); 7454 rdev_for_each_rcu(rdev, mddev) 7455 if (rdev->raid_disk >= 0 && 7456 !test_bit(Faulty, &rdev->flags) && 7457 !test_bit(In_sync, &rdev->flags) && 7458 rdev->recovery_offset < j) 7459 j = rdev->recovery_offset; 7460 rcu_read_unlock(); 7461 } 7462 7463 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7464 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7465 " %d KB/sec/disk.\n", speed_min(mddev)); 7466 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7467 "(but not more than %d KB/sec) for %s.\n", 7468 speed_max(mddev), desc); 7469 7470 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7471 7472 io_sectors = 0; 7473 for (m = 0; m < SYNC_MARKS; m++) { 7474 mark[m] = jiffies; 7475 mark_cnt[m] = io_sectors; 7476 } 7477 last_mark = 0; 7478 mddev->resync_mark = mark[last_mark]; 7479 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7480 7481 /* 7482 * Tune reconstruction: 7483 */ 7484 window = 32*(PAGE_SIZE/512); 7485 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7486 window/2, (unsigned long long)max_sectors/2); 7487 7488 atomic_set(&mddev->recovery_active, 0); 7489 last_check = 0; 7490 7491 if (j>2) { 7492 printk(KERN_INFO 7493 "md: resuming %s of %s from checkpoint.\n", 7494 desc, mdname(mddev)); 7495 mddev->curr_resync = j; 7496 } else 7497 mddev->curr_resync = 3; /* no longer delayed */ 7498 mddev->curr_resync_completed = j; 7499 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7500 md_new_event(mddev); 7501 update_time = jiffies; 7502 7503 blk_start_plug(&plug); 7504 while (j < max_sectors) { 7505 sector_t sectors; 7506 7507 skipped = 0; 7508 7509 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7510 ((mddev->curr_resync > mddev->curr_resync_completed && 7511 (mddev->curr_resync - mddev->curr_resync_completed) 7512 > (max_sectors >> 4)) || 7513 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7514 (j - mddev->curr_resync_completed)*2 7515 >= mddev->resync_max - mddev->curr_resync_completed 7516 )) { 7517 /* time to update curr_resync_completed */ 7518 wait_event(mddev->recovery_wait, 7519 atomic_read(&mddev->recovery_active) == 0); 7520 mddev->curr_resync_completed = j; 7521 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 7522 j > mddev->recovery_cp) 7523 mddev->recovery_cp = j; 7524 update_time = jiffies; 7525 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7526 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7527 } 7528 7529 while (j >= mddev->resync_max && 7530 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7531 /* As this condition is controlled by user-space, 7532 * we can block indefinitely, so use '_interruptible' 7533 * to avoid triggering warnings. 7534 */ 7535 flush_signals(current); /* just in case */ 7536 wait_event_interruptible(mddev->recovery_wait, 7537 mddev->resync_max > j 7538 || test_bit(MD_RECOVERY_INTR, 7539 &mddev->recovery)); 7540 } 7541 7542 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7543 break; 7544 7545 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7546 currspeed < speed_min(mddev)); 7547 if (sectors == 0) { 7548 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7549 break; 7550 } 7551 7552 if (!skipped) { /* actual IO requested */ 7553 io_sectors += sectors; 7554 atomic_add(sectors, &mddev->recovery_active); 7555 } 7556 7557 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7558 break; 7559 7560 j += sectors; 7561 if (j > 2) 7562 mddev->curr_resync = j; 7563 mddev->curr_mark_cnt = io_sectors; 7564 if (last_check == 0) 7565 /* this is the earliest that rebuild will be 7566 * visible in /proc/mdstat 7567 */ 7568 md_new_event(mddev); 7569 7570 if (last_check + window > io_sectors || j == max_sectors) 7571 continue; 7572 7573 last_check = io_sectors; 7574 repeat: 7575 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7576 /* step marks */ 7577 int next = (last_mark+1) % SYNC_MARKS; 7578 7579 mddev->resync_mark = mark[next]; 7580 mddev->resync_mark_cnt = mark_cnt[next]; 7581 mark[next] = jiffies; 7582 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7583 last_mark = next; 7584 } 7585 7586 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7587 break; 7588 7589 /* 7590 * this loop exits only if either when we are slower than 7591 * the 'hard' speed limit, or the system was IO-idle for 7592 * a jiffy. 7593 * the system might be non-idle CPU-wise, but we only care 7594 * about not overloading the IO subsystem. (things like an 7595 * e2fsck being done on the RAID array should execute fast) 7596 */ 7597 cond_resched(); 7598 7599 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7600 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7601 7602 if (currspeed > speed_min(mddev)) { 7603 if ((currspeed > speed_max(mddev)) || 7604 !is_mddev_idle(mddev, 0)) { 7605 msleep(500); 7606 goto repeat; 7607 } 7608 } 7609 } 7610 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc, 7611 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 7612 ? "interrupted" : "done"); 7613 /* 7614 * this also signals 'finished resyncing' to md_stop 7615 */ 7616 blk_finish_plug(&plug); 7617 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7618 7619 /* tell personality that we are finished */ 7620 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7621 7622 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7623 mddev->curr_resync > 2) { 7624 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7625 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7626 if (mddev->curr_resync >= mddev->recovery_cp) { 7627 printk(KERN_INFO 7628 "md: checkpointing %s of %s.\n", 7629 desc, mdname(mddev)); 7630 if (test_bit(MD_RECOVERY_ERROR, 7631 &mddev->recovery)) 7632 mddev->recovery_cp = 7633 mddev->curr_resync_completed; 7634 else 7635 mddev->recovery_cp = 7636 mddev->curr_resync; 7637 } 7638 } else 7639 mddev->recovery_cp = MaxSector; 7640 } else { 7641 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7642 mddev->curr_resync = MaxSector; 7643 rcu_read_lock(); 7644 rdev_for_each_rcu(rdev, mddev) 7645 if (rdev->raid_disk >= 0 && 7646 mddev->delta_disks >= 0 && 7647 !test_bit(Faulty, &rdev->flags) && 7648 !test_bit(In_sync, &rdev->flags) && 7649 rdev->recovery_offset < mddev->curr_resync) 7650 rdev->recovery_offset = mddev->curr_resync; 7651 rcu_read_unlock(); 7652 } 7653 } 7654 skip: 7655 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7656 7657 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7658 /* We completed so min/max setting can be forgotten if used. */ 7659 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7660 mddev->resync_min = 0; 7661 mddev->resync_max = MaxSector; 7662 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7663 mddev->resync_min = mddev->curr_resync_completed; 7664 mddev->curr_resync = 0; 7665 wake_up(&resync_wait); 7666 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7667 md_wakeup_thread(mddev->thread); 7668 return; 7669 } 7670 EXPORT_SYMBOL_GPL(md_do_sync); 7671 7672 static int remove_and_add_spares(struct mddev *mddev, 7673 struct md_rdev *this) 7674 { 7675 struct md_rdev *rdev; 7676 int spares = 0; 7677 int removed = 0; 7678 7679 rdev_for_each(rdev, mddev) 7680 if ((this == NULL || rdev == this) && 7681 rdev->raid_disk >= 0 && 7682 !test_bit(Blocked, &rdev->flags) && 7683 (test_bit(Faulty, &rdev->flags) || 7684 ! test_bit(In_sync, &rdev->flags)) && 7685 atomic_read(&rdev->nr_pending)==0) { 7686 if (mddev->pers->hot_remove_disk( 7687 mddev, rdev) == 0) { 7688 sysfs_unlink_rdev(mddev, rdev); 7689 rdev->raid_disk = -1; 7690 removed++; 7691 } 7692 } 7693 if (removed && mddev->kobj.sd) 7694 sysfs_notify(&mddev->kobj, NULL, "degraded"); 7695 7696 if (this) 7697 goto no_add; 7698 7699 rdev_for_each(rdev, mddev) { 7700 if (rdev->raid_disk >= 0 && 7701 !test_bit(In_sync, &rdev->flags) && 7702 !test_bit(Faulty, &rdev->flags)) 7703 spares++; 7704 if (rdev->raid_disk >= 0) 7705 continue; 7706 if (test_bit(Faulty, &rdev->flags)) 7707 continue; 7708 if (mddev->ro && 7709 rdev->saved_raid_disk < 0) 7710 continue; 7711 7712 rdev->recovery_offset = 0; 7713 if (mddev->pers-> 7714 hot_add_disk(mddev, rdev) == 0) { 7715 if (sysfs_link_rdev(mddev, rdev)) 7716 /* failure here is OK */; 7717 spares++; 7718 md_new_event(mddev); 7719 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7720 } 7721 } 7722 no_add: 7723 if (removed) 7724 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7725 return spares; 7726 } 7727 7728 /* 7729 * This routine is regularly called by all per-raid-array threads to 7730 * deal with generic issues like resync and super-block update. 7731 * Raid personalities that don't have a thread (linear/raid0) do not 7732 * need this as they never do any recovery or update the superblock. 7733 * 7734 * It does not do any resync itself, but rather "forks" off other threads 7735 * to do that as needed. 7736 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7737 * "->recovery" and create a thread at ->sync_thread. 7738 * When the thread finishes it sets MD_RECOVERY_DONE 7739 * and wakeups up this thread which will reap the thread and finish up. 7740 * This thread also removes any faulty devices (with nr_pending == 0). 7741 * 7742 * The overall approach is: 7743 * 1/ if the superblock needs updating, update it. 7744 * 2/ If a recovery thread is running, don't do anything else. 7745 * 3/ If recovery has finished, clean up, possibly marking spares active. 7746 * 4/ If there are any faulty devices, remove them. 7747 * 5/ If array is degraded, try to add spares devices 7748 * 6/ If array has spares or is not in-sync, start a resync thread. 7749 */ 7750 void md_check_recovery(struct mddev *mddev) 7751 { 7752 if (mddev->suspended) 7753 return; 7754 7755 if (mddev->bitmap) 7756 bitmap_daemon_work(mddev); 7757 7758 if (signal_pending(current)) { 7759 if (mddev->pers->sync_request && !mddev->external) { 7760 printk(KERN_INFO "md: %s in immediate safe mode\n", 7761 mdname(mddev)); 7762 mddev->safemode = 2; 7763 } 7764 flush_signals(current); 7765 } 7766 7767 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7768 return; 7769 if ( ! ( 7770 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) || 7771 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7772 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7773 (mddev->external == 0 && mddev->safemode == 1) || 7774 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7775 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7776 )) 7777 return; 7778 7779 if (mddev_trylock(mddev)) { 7780 int spares = 0; 7781 7782 if (mddev->ro) { 7783 /* On a read-only array we can: 7784 * - remove failed devices 7785 * - add already-in_sync devices if the array itself 7786 * is in-sync. 7787 * As we only add devices that are already in-sync, 7788 * we can activate the spares immediately. 7789 */ 7790 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7791 remove_and_add_spares(mddev, NULL); 7792 mddev->pers->spare_active(mddev); 7793 goto unlock; 7794 } 7795 7796 if (!mddev->external) { 7797 int did_change = 0; 7798 spin_lock_irq(&mddev->write_lock); 7799 if (mddev->safemode && 7800 !atomic_read(&mddev->writes_pending) && 7801 !mddev->in_sync && 7802 mddev->recovery_cp == MaxSector) { 7803 mddev->in_sync = 1; 7804 did_change = 1; 7805 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7806 } 7807 if (mddev->safemode == 1) 7808 mddev->safemode = 0; 7809 spin_unlock_irq(&mddev->write_lock); 7810 if (did_change) 7811 sysfs_notify_dirent_safe(mddev->sysfs_state); 7812 } 7813 7814 if (mddev->flags & MD_UPDATE_SB_FLAGS) 7815 md_update_sb(mddev, 0); 7816 7817 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7818 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7819 /* resync/recovery still happening */ 7820 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7821 goto unlock; 7822 } 7823 if (mddev->sync_thread) { 7824 md_reap_sync_thread(mddev); 7825 goto unlock; 7826 } 7827 /* Set RUNNING before clearing NEEDED to avoid 7828 * any transients in the value of "sync_action". 7829 */ 7830 mddev->curr_resync_completed = 0; 7831 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7832 /* Clear some bits that don't mean anything, but 7833 * might be left set 7834 */ 7835 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7836 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7837 7838 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7839 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7840 goto unlock; 7841 /* no recovery is running. 7842 * remove any failed drives, then 7843 * add spares if possible. 7844 * Spares are also removed and re-added, to allow 7845 * the personality to fail the re-add. 7846 */ 7847 7848 if (mddev->reshape_position != MaxSector) { 7849 if (mddev->pers->check_reshape == NULL || 7850 mddev->pers->check_reshape(mddev) != 0) 7851 /* Cannot proceed */ 7852 goto unlock; 7853 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7854 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7855 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 7856 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7857 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7858 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7859 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7860 } else if (mddev->recovery_cp < MaxSector) { 7861 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7862 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7863 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7864 /* nothing to be done ... */ 7865 goto unlock; 7866 7867 if (mddev->pers->sync_request) { 7868 if (spares) { 7869 /* We are adding a device or devices to an array 7870 * which has the bitmap stored on all devices. 7871 * So make sure all bitmap pages get written 7872 */ 7873 bitmap_write_all(mddev->bitmap); 7874 } 7875 mddev->sync_thread = md_register_thread(md_do_sync, 7876 mddev, 7877 "resync"); 7878 if (!mddev->sync_thread) { 7879 printk(KERN_ERR "%s: could not start resync" 7880 " thread...\n", 7881 mdname(mddev)); 7882 /* leave the spares where they are, it shouldn't hurt */ 7883 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7884 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7885 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7886 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7887 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7888 } else 7889 md_wakeup_thread(mddev->sync_thread); 7890 sysfs_notify_dirent_safe(mddev->sysfs_action); 7891 md_new_event(mddev); 7892 } 7893 unlock: 7894 wake_up(&mddev->sb_wait); 7895 7896 if (!mddev->sync_thread) { 7897 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7898 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7899 &mddev->recovery)) 7900 if (mddev->sysfs_action) 7901 sysfs_notify_dirent_safe(mddev->sysfs_action); 7902 } 7903 mddev_unlock(mddev); 7904 } 7905 } 7906 7907 void md_reap_sync_thread(struct mddev *mddev) 7908 { 7909 struct md_rdev *rdev; 7910 7911 /* resync has finished, collect result */ 7912 md_unregister_thread(&mddev->sync_thread); 7913 wake_up(&resync_wait); 7914 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7915 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7916 /* success...*/ 7917 /* activate any spares */ 7918 if (mddev->pers->spare_active(mddev)) { 7919 sysfs_notify(&mddev->kobj, NULL, 7920 "degraded"); 7921 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7922 } 7923 } 7924 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7925 mddev->pers->finish_reshape) 7926 mddev->pers->finish_reshape(mddev); 7927 7928 /* If array is no-longer degraded, then any saved_raid_disk 7929 * information must be scrapped. Also if any device is now 7930 * In_sync we must scrape the saved_raid_disk for that device 7931 * do the superblock for an incrementally recovered device 7932 * written out. 7933 */ 7934 rdev_for_each(rdev, mddev) 7935 if (!mddev->degraded || 7936 test_bit(In_sync, &rdev->flags)) 7937 rdev->saved_raid_disk = -1; 7938 7939 md_update_sb(mddev, 1); 7940 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7941 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7942 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7943 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7944 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7945 /* flag recovery needed just to double check */ 7946 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7947 sysfs_notify_dirent_safe(mddev->sysfs_action); 7948 md_new_event(mddev); 7949 if (mddev->event_work.func) 7950 queue_work(md_misc_wq, &mddev->event_work); 7951 } 7952 7953 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 7954 { 7955 sysfs_notify_dirent_safe(rdev->sysfs_state); 7956 wait_event_timeout(rdev->blocked_wait, 7957 !test_bit(Blocked, &rdev->flags) && 7958 !test_bit(BlockedBadBlocks, &rdev->flags), 7959 msecs_to_jiffies(5000)); 7960 rdev_dec_pending(rdev, mddev); 7961 } 7962 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7963 7964 void md_finish_reshape(struct mddev *mddev) 7965 { 7966 /* called be personality module when reshape completes. */ 7967 struct md_rdev *rdev; 7968 7969 rdev_for_each(rdev, mddev) { 7970 if (rdev->data_offset > rdev->new_data_offset) 7971 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 7972 else 7973 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 7974 rdev->data_offset = rdev->new_data_offset; 7975 } 7976 } 7977 EXPORT_SYMBOL(md_finish_reshape); 7978 7979 /* Bad block management. 7980 * We can record which blocks on each device are 'bad' and so just 7981 * fail those blocks, or that stripe, rather than the whole device. 7982 * Entries in the bad-block table are 64bits wide. This comprises: 7983 * Length of bad-range, in sectors: 0-511 for lengths 1-512 7984 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 7985 * A 'shift' can be set so that larger blocks are tracked and 7986 * consequently larger devices can be covered. 7987 * 'Acknowledged' flag - 1 bit. - the most significant bit. 7988 * 7989 * Locking of the bad-block table uses a seqlock so md_is_badblock 7990 * might need to retry if it is very unlucky. 7991 * We will sometimes want to check for bad blocks in a bi_end_io function, 7992 * so we use the write_seqlock_irq variant. 7993 * 7994 * When looking for a bad block we specify a range and want to 7995 * know if any block in the range is bad. So we binary-search 7996 * to the last range that starts at-or-before the given endpoint, 7997 * (or "before the sector after the target range") 7998 * then see if it ends after the given start. 7999 * We return 8000 * 0 if there are no known bad blocks in the range 8001 * 1 if there are known bad block which are all acknowledged 8002 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 8003 * plus the start/length of the first bad section we overlap. 8004 */ 8005 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 8006 sector_t *first_bad, int *bad_sectors) 8007 { 8008 int hi; 8009 int lo; 8010 u64 *p = bb->page; 8011 int rv; 8012 sector_t target = s + sectors; 8013 unsigned seq; 8014 8015 if (bb->shift > 0) { 8016 /* round the start down, and the end up */ 8017 s >>= bb->shift; 8018 target += (1<<bb->shift) - 1; 8019 target >>= bb->shift; 8020 sectors = target - s; 8021 } 8022 /* 'target' is now the first block after the bad range */ 8023 8024 retry: 8025 seq = read_seqbegin(&bb->lock); 8026 lo = 0; 8027 rv = 0; 8028 hi = bb->count; 8029 8030 /* Binary search between lo and hi for 'target' 8031 * i.e. for the last range that starts before 'target' 8032 */ 8033 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 8034 * are known not to be the last range before target. 8035 * VARIANT: hi-lo is the number of possible 8036 * ranges, and decreases until it reaches 1 8037 */ 8038 while (hi - lo > 1) { 8039 int mid = (lo + hi) / 2; 8040 sector_t a = BB_OFFSET(p[mid]); 8041 if (a < target) 8042 /* This could still be the one, earlier ranges 8043 * could not. */ 8044 lo = mid; 8045 else 8046 /* This and later ranges are definitely out. */ 8047 hi = mid; 8048 } 8049 /* 'lo' might be the last that started before target, but 'hi' isn't */ 8050 if (hi > lo) { 8051 /* need to check all range that end after 's' to see if 8052 * any are unacknowledged. 8053 */ 8054 while (lo >= 0 && 8055 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8056 if (BB_OFFSET(p[lo]) < target) { 8057 /* starts before the end, and finishes after 8058 * the start, so they must overlap 8059 */ 8060 if (rv != -1 && BB_ACK(p[lo])) 8061 rv = 1; 8062 else 8063 rv = -1; 8064 *first_bad = BB_OFFSET(p[lo]); 8065 *bad_sectors = BB_LEN(p[lo]); 8066 } 8067 lo--; 8068 } 8069 } 8070 8071 if (read_seqretry(&bb->lock, seq)) 8072 goto retry; 8073 8074 return rv; 8075 } 8076 EXPORT_SYMBOL_GPL(md_is_badblock); 8077 8078 /* 8079 * Add a range of bad blocks to the table. 8080 * This might extend the table, or might contract it 8081 * if two adjacent ranges can be merged. 8082 * We binary-search to find the 'insertion' point, then 8083 * decide how best to handle it. 8084 */ 8085 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8086 int acknowledged) 8087 { 8088 u64 *p; 8089 int lo, hi; 8090 int rv = 1; 8091 unsigned long flags; 8092 8093 if (bb->shift < 0) 8094 /* badblocks are disabled */ 8095 return 0; 8096 8097 if (bb->shift) { 8098 /* round the start down, and the end up */ 8099 sector_t next = s + sectors; 8100 s >>= bb->shift; 8101 next += (1<<bb->shift) - 1; 8102 next >>= bb->shift; 8103 sectors = next - s; 8104 } 8105 8106 write_seqlock_irqsave(&bb->lock, flags); 8107 8108 p = bb->page; 8109 lo = 0; 8110 hi = bb->count; 8111 /* Find the last range that starts at-or-before 's' */ 8112 while (hi - lo > 1) { 8113 int mid = (lo + hi) / 2; 8114 sector_t a = BB_OFFSET(p[mid]); 8115 if (a <= s) 8116 lo = mid; 8117 else 8118 hi = mid; 8119 } 8120 if (hi > lo && BB_OFFSET(p[lo]) > s) 8121 hi = lo; 8122 8123 if (hi > lo) { 8124 /* we found a range that might merge with the start 8125 * of our new range 8126 */ 8127 sector_t a = BB_OFFSET(p[lo]); 8128 sector_t e = a + BB_LEN(p[lo]); 8129 int ack = BB_ACK(p[lo]); 8130 if (e >= s) { 8131 /* Yes, we can merge with a previous range */ 8132 if (s == a && s + sectors >= e) 8133 /* new range covers old */ 8134 ack = acknowledged; 8135 else 8136 ack = ack && acknowledged; 8137 8138 if (e < s + sectors) 8139 e = s + sectors; 8140 if (e - a <= BB_MAX_LEN) { 8141 p[lo] = BB_MAKE(a, e-a, ack); 8142 s = e; 8143 } else { 8144 /* does not all fit in one range, 8145 * make p[lo] maximal 8146 */ 8147 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8148 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8149 s = a + BB_MAX_LEN; 8150 } 8151 sectors = e - s; 8152 } 8153 } 8154 if (sectors && hi < bb->count) { 8155 /* 'hi' points to the first range that starts after 's'. 8156 * Maybe we can merge with the start of that range */ 8157 sector_t a = BB_OFFSET(p[hi]); 8158 sector_t e = a + BB_LEN(p[hi]); 8159 int ack = BB_ACK(p[hi]); 8160 if (a <= s + sectors) { 8161 /* merging is possible */ 8162 if (e <= s + sectors) { 8163 /* full overlap */ 8164 e = s + sectors; 8165 ack = acknowledged; 8166 } else 8167 ack = ack && acknowledged; 8168 8169 a = s; 8170 if (e - a <= BB_MAX_LEN) { 8171 p[hi] = BB_MAKE(a, e-a, ack); 8172 s = e; 8173 } else { 8174 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8175 s = a + BB_MAX_LEN; 8176 } 8177 sectors = e - s; 8178 lo = hi; 8179 hi++; 8180 } 8181 } 8182 if (sectors == 0 && hi < bb->count) { 8183 /* we might be able to combine lo and hi */ 8184 /* Note: 's' is at the end of 'lo' */ 8185 sector_t a = BB_OFFSET(p[hi]); 8186 int lolen = BB_LEN(p[lo]); 8187 int hilen = BB_LEN(p[hi]); 8188 int newlen = lolen + hilen - (s - a); 8189 if (s >= a && newlen < BB_MAX_LEN) { 8190 /* yes, we can combine them */ 8191 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8192 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8193 memmove(p + hi, p + hi + 1, 8194 (bb->count - hi - 1) * 8); 8195 bb->count--; 8196 } 8197 } 8198 while (sectors) { 8199 /* didn't merge (it all). 8200 * Need to add a range just before 'hi' */ 8201 if (bb->count >= MD_MAX_BADBLOCKS) { 8202 /* No room for more */ 8203 rv = 0; 8204 break; 8205 } else { 8206 int this_sectors = sectors; 8207 memmove(p + hi + 1, p + hi, 8208 (bb->count - hi) * 8); 8209 bb->count++; 8210 8211 if (this_sectors > BB_MAX_LEN) 8212 this_sectors = BB_MAX_LEN; 8213 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8214 sectors -= this_sectors; 8215 s += this_sectors; 8216 } 8217 } 8218 8219 bb->changed = 1; 8220 if (!acknowledged) 8221 bb->unacked_exist = 1; 8222 write_sequnlock_irqrestore(&bb->lock, flags); 8223 8224 return rv; 8225 } 8226 8227 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8228 int is_new) 8229 { 8230 int rv; 8231 if (is_new) 8232 s += rdev->new_data_offset; 8233 else 8234 s += rdev->data_offset; 8235 rv = md_set_badblocks(&rdev->badblocks, 8236 s, sectors, 0); 8237 if (rv) { 8238 /* Make sure they get written out promptly */ 8239 sysfs_notify_dirent_safe(rdev->sysfs_state); 8240 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8241 md_wakeup_thread(rdev->mddev->thread); 8242 } 8243 return rv; 8244 } 8245 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8246 8247 /* 8248 * Remove a range of bad blocks from the table. 8249 * This may involve extending the table if we spilt a region, 8250 * but it must not fail. So if the table becomes full, we just 8251 * drop the remove request. 8252 */ 8253 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8254 { 8255 u64 *p; 8256 int lo, hi; 8257 sector_t target = s + sectors; 8258 int rv = 0; 8259 8260 if (bb->shift > 0) { 8261 /* When clearing we round the start up and the end down. 8262 * This should not matter as the shift should align with 8263 * the block size and no rounding should ever be needed. 8264 * However it is better the think a block is bad when it 8265 * isn't than to think a block is not bad when it is. 8266 */ 8267 s += (1<<bb->shift) - 1; 8268 s >>= bb->shift; 8269 target >>= bb->shift; 8270 sectors = target - s; 8271 } 8272 8273 write_seqlock_irq(&bb->lock); 8274 8275 p = bb->page; 8276 lo = 0; 8277 hi = bb->count; 8278 /* Find the last range that starts before 'target' */ 8279 while (hi - lo > 1) { 8280 int mid = (lo + hi) / 2; 8281 sector_t a = BB_OFFSET(p[mid]); 8282 if (a < target) 8283 lo = mid; 8284 else 8285 hi = mid; 8286 } 8287 if (hi > lo) { 8288 /* p[lo] is the last range that could overlap the 8289 * current range. Earlier ranges could also overlap, 8290 * but only this one can overlap the end of the range. 8291 */ 8292 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8293 /* Partial overlap, leave the tail of this range */ 8294 int ack = BB_ACK(p[lo]); 8295 sector_t a = BB_OFFSET(p[lo]); 8296 sector_t end = a + BB_LEN(p[lo]); 8297 8298 if (a < s) { 8299 /* we need to split this range */ 8300 if (bb->count >= MD_MAX_BADBLOCKS) { 8301 rv = 0; 8302 goto out; 8303 } 8304 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8305 bb->count++; 8306 p[lo] = BB_MAKE(a, s-a, ack); 8307 lo++; 8308 } 8309 p[lo] = BB_MAKE(target, end - target, ack); 8310 /* there is no longer an overlap */ 8311 hi = lo; 8312 lo--; 8313 } 8314 while (lo >= 0 && 8315 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8316 /* This range does overlap */ 8317 if (BB_OFFSET(p[lo]) < s) { 8318 /* Keep the early parts of this range. */ 8319 int ack = BB_ACK(p[lo]); 8320 sector_t start = BB_OFFSET(p[lo]); 8321 p[lo] = BB_MAKE(start, s - start, ack); 8322 /* now low doesn't overlap, so.. */ 8323 break; 8324 } 8325 lo--; 8326 } 8327 /* 'lo' is strictly before, 'hi' is strictly after, 8328 * anything between needs to be discarded 8329 */ 8330 if (hi - lo > 1) { 8331 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8332 bb->count -= (hi - lo - 1); 8333 } 8334 } 8335 8336 bb->changed = 1; 8337 out: 8338 write_sequnlock_irq(&bb->lock); 8339 return rv; 8340 } 8341 8342 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8343 int is_new) 8344 { 8345 if (is_new) 8346 s += rdev->new_data_offset; 8347 else 8348 s += rdev->data_offset; 8349 return md_clear_badblocks(&rdev->badblocks, 8350 s, sectors); 8351 } 8352 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8353 8354 /* 8355 * Acknowledge all bad blocks in a list. 8356 * This only succeeds if ->changed is clear. It is used by 8357 * in-kernel metadata updates 8358 */ 8359 void md_ack_all_badblocks(struct badblocks *bb) 8360 { 8361 if (bb->page == NULL || bb->changed) 8362 /* no point even trying */ 8363 return; 8364 write_seqlock_irq(&bb->lock); 8365 8366 if (bb->changed == 0 && bb->unacked_exist) { 8367 u64 *p = bb->page; 8368 int i; 8369 for (i = 0; i < bb->count ; i++) { 8370 if (!BB_ACK(p[i])) { 8371 sector_t start = BB_OFFSET(p[i]); 8372 int len = BB_LEN(p[i]); 8373 p[i] = BB_MAKE(start, len, 1); 8374 } 8375 } 8376 bb->unacked_exist = 0; 8377 } 8378 write_sequnlock_irq(&bb->lock); 8379 } 8380 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8381 8382 /* sysfs access to bad-blocks list. 8383 * We present two files. 8384 * 'bad-blocks' lists sector numbers and lengths of ranges that 8385 * are recorded as bad. The list is truncated to fit within 8386 * the one-page limit of sysfs. 8387 * Writing "sector length" to this file adds an acknowledged 8388 * bad block list. 8389 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8390 * been acknowledged. Writing to this file adds bad blocks 8391 * without acknowledging them. This is largely for testing. 8392 */ 8393 8394 static ssize_t 8395 badblocks_show(struct badblocks *bb, char *page, int unack) 8396 { 8397 size_t len; 8398 int i; 8399 u64 *p = bb->page; 8400 unsigned seq; 8401 8402 if (bb->shift < 0) 8403 return 0; 8404 8405 retry: 8406 seq = read_seqbegin(&bb->lock); 8407 8408 len = 0; 8409 i = 0; 8410 8411 while (len < PAGE_SIZE && i < bb->count) { 8412 sector_t s = BB_OFFSET(p[i]); 8413 unsigned int length = BB_LEN(p[i]); 8414 int ack = BB_ACK(p[i]); 8415 i++; 8416 8417 if (unack && ack) 8418 continue; 8419 8420 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8421 (unsigned long long)s << bb->shift, 8422 length << bb->shift); 8423 } 8424 if (unack && len == 0) 8425 bb->unacked_exist = 0; 8426 8427 if (read_seqretry(&bb->lock, seq)) 8428 goto retry; 8429 8430 return len; 8431 } 8432 8433 #define DO_DEBUG 1 8434 8435 static ssize_t 8436 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8437 { 8438 unsigned long long sector; 8439 int length; 8440 char newline; 8441 #ifdef DO_DEBUG 8442 /* Allow clearing via sysfs *only* for testing/debugging. 8443 * Normally only a successful write may clear a badblock 8444 */ 8445 int clear = 0; 8446 if (page[0] == '-') { 8447 clear = 1; 8448 page++; 8449 } 8450 #endif /* DO_DEBUG */ 8451 8452 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8453 case 3: 8454 if (newline != '\n') 8455 return -EINVAL; 8456 case 2: 8457 if (length <= 0) 8458 return -EINVAL; 8459 break; 8460 default: 8461 return -EINVAL; 8462 } 8463 8464 #ifdef DO_DEBUG 8465 if (clear) { 8466 md_clear_badblocks(bb, sector, length); 8467 return len; 8468 } 8469 #endif /* DO_DEBUG */ 8470 if (md_set_badblocks(bb, sector, length, !unack)) 8471 return len; 8472 else 8473 return -ENOSPC; 8474 } 8475 8476 static int md_notify_reboot(struct notifier_block *this, 8477 unsigned long code, void *x) 8478 { 8479 struct list_head *tmp; 8480 struct mddev *mddev; 8481 int need_delay = 0; 8482 8483 for_each_mddev(mddev, tmp) { 8484 if (mddev_trylock(mddev)) { 8485 if (mddev->pers) 8486 __md_stop_writes(mddev); 8487 mddev->safemode = 2; 8488 mddev_unlock(mddev); 8489 } 8490 need_delay = 1; 8491 } 8492 /* 8493 * certain more exotic SCSI devices are known to be 8494 * volatile wrt too early system reboots. While the 8495 * right place to handle this issue is the given 8496 * driver, we do want to have a safe RAID driver ... 8497 */ 8498 if (need_delay) 8499 mdelay(1000*1); 8500 8501 return NOTIFY_DONE; 8502 } 8503 8504 static struct notifier_block md_notifier = { 8505 .notifier_call = md_notify_reboot, 8506 .next = NULL, 8507 .priority = INT_MAX, /* before any real devices */ 8508 }; 8509 8510 static void md_geninit(void) 8511 { 8512 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8513 8514 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8515 } 8516 8517 static int __init md_init(void) 8518 { 8519 int ret = -ENOMEM; 8520 8521 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8522 if (!md_wq) 8523 goto err_wq; 8524 8525 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8526 if (!md_misc_wq) 8527 goto err_misc_wq; 8528 8529 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8530 goto err_md; 8531 8532 if ((ret = register_blkdev(0, "mdp")) < 0) 8533 goto err_mdp; 8534 mdp_major = ret; 8535 8536 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8537 md_probe, NULL, NULL); 8538 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8539 md_probe, NULL, NULL); 8540 8541 register_reboot_notifier(&md_notifier); 8542 raid_table_header = register_sysctl_table(raid_root_table); 8543 8544 md_geninit(); 8545 return 0; 8546 8547 err_mdp: 8548 unregister_blkdev(MD_MAJOR, "md"); 8549 err_md: 8550 destroy_workqueue(md_misc_wq); 8551 err_misc_wq: 8552 destroy_workqueue(md_wq); 8553 err_wq: 8554 return ret; 8555 } 8556 8557 #ifndef MODULE 8558 8559 /* 8560 * Searches all registered partitions for autorun RAID arrays 8561 * at boot time. 8562 */ 8563 8564 static LIST_HEAD(all_detected_devices); 8565 struct detected_devices_node { 8566 struct list_head list; 8567 dev_t dev; 8568 }; 8569 8570 void md_autodetect_dev(dev_t dev) 8571 { 8572 struct detected_devices_node *node_detected_dev; 8573 8574 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8575 if (node_detected_dev) { 8576 node_detected_dev->dev = dev; 8577 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8578 } else { 8579 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8580 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8581 } 8582 } 8583 8584 8585 static void autostart_arrays(int part) 8586 { 8587 struct md_rdev *rdev; 8588 struct detected_devices_node *node_detected_dev; 8589 dev_t dev; 8590 int i_scanned, i_passed; 8591 8592 i_scanned = 0; 8593 i_passed = 0; 8594 8595 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8596 8597 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8598 i_scanned++; 8599 node_detected_dev = list_entry(all_detected_devices.next, 8600 struct detected_devices_node, list); 8601 list_del(&node_detected_dev->list); 8602 dev = node_detected_dev->dev; 8603 kfree(node_detected_dev); 8604 rdev = md_import_device(dev,0, 90); 8605 if (IS_ERR(rdev)) 8606 continue; 8607 8608 if (test_bit(Faulty, &rdev->flags)) { 8609 MD_BUG(); 8610 continue; 8611 } 8612 set_bit(AutoDetected, &rdev->flags); 8613 list_add(&rdev->same_set, &pending_raid_disks); 8614 i_passed++; 8615 } 8616 8617 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8618 i_scanned, i_passed); 8619 8620 autorun_devices(part); 8621 } 8622 8623 #endif /* !MODULE */ 8624 8625 static __exit void md_exit(void) 8626 { 8627 struct mddev *mddev; 8628 struct list_head *tmp; 8629 8630 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8631 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8632 8633 unregister_blkdev(MD_MAJOR,"md"); 8634 unregister_blkdev(mdp_major, "mdp"); 8635 unregister_reboot_notifier(&md_notifier); 8636 unregister_sysctl_table(raid_table_header); 8637 remove_proc_entry("mdstat", NULL); 8638 for_each_mddev(mddev, tmp) { 8639 export_array(mddev); 8640 mddev->hold_active = 0; 8641 } 8642 destroy_workqueue(md_misc_wq); 8643 destroy_workqueue(md_wq); 8644 } 8645 8646 subsys_initcall(md_init); 8647 module_exit(md_exit) 8648 8649 static int get_ro(char *buffer, struct kernel_param *kp) 8650 { 8651 return sprintf(buffer, "%d", start_readonly); 8652 } 8653 static int set_ro(const char *val, struct kernel_param *kp) 8654 { 8655 char *e; 8656 int num = simple_strtoul(val, &e, 10); 8657 if (*val && (*e == '\0' || *e == '\n')) { 8658 start_readonly = num; 8659 return 0; 8660 } 8661 return -EINVAL; 8662 } 8663 8664 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8665 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8666 8667 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8668 8669 EXPORT_SYMBOL(register_md_personality); 8670 EXPORT_SYMBOL(unregister_md_personality); 8671 EXPORT_SYMBOL(md_error); 8672 EXPORT_SYMBOL(md_done_sync); 8673 EXPORT_SYMBOL(md_write_start); 8674 EXPORT_SYMBOL(md_write_end); 8675 EXPORT_SYMBOL(md_register_thread); 8676 EXPORT_SYMBOL(md_unregister_thread); 8677 EXPORT_SYMBOL(md_wakeup_thread); 8678 EXPORT_SYMBOL(md_check_recovery); 8679 EXPORT_SYMBOL(md_reap_sync_thread); 8680 MODULE_LICENSE("GPL"); 8681 MODULE_DESCRIPTION("MD RAID framework"); 8682 MODULE_ALIAS("md"); 8683 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8684