1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 static struct workqueue_struct *md_rdev_misc_wq; 91 92 static int remove_and_add_spares(struct mddev *mddev, 93 struct md_rdev *this); 94 static void mddev_detach(struct mddev *mddev); 95 96 enum md_ro_state { 97 MD_RDWR, 98 MD_RDONLY, 99 MD_AUTO_READ, 100 MD_MAX_STATE 101 }; 102 103 static bool md_is_rdwr(struct mddev *mddev) 104 { 105 return (mddev->ro == MD_RDWR); 106 } 107 108 /* 109 * Default number of read corrections we'll attempt on an rdev 110 * before ejecting it from the array. We divide the read error 111 * count by 2 for every hour elapsed between read errors. 112 */ 113 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 114 /* Default safemode delay: 200 msec */ 115 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 116 /* 117 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 118 * is 1000 KB/sec, so the extra system load does not show up that much. 119 * Increase it if you want to have more _guaranteed_ speed. Note that 120 * the RAID driver will use the maximum available bandwidth if the IO 121 * subsystem is idle. There is also an 'absolute maximum' reconstruction 122 * speed limit - in case reconstruction slows down your system despite 123 * idle IO detection. 124 * 125 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 126 * or /sys/block/mdX/md/sync_speed_{min,max} 127 */ 128 129 static int sysctl_speed_limit_min = 1000; 130 static int sysctl_speed_limit_max = 200000; 131 static inline int speed_min(struct mddev *mddev) 132 { 133 return mddev->sync_speed_min ? 134 mddev->sync_speed_min : sysctl_speed_limit_min; 135 } 136 137 static inline int speed_max(struct mddev *mddev) 138 { 139 return mddev->sync_speed_max ? 140 mddev->sync_speed_max : sysctl_speed_limit_max; 141 } 142 143 static void rdev_uninit_serial(struct md_rdev *rdev) 144 { 145 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 146 return; 147 148 kvfree(rdev->serial); 149 rdev->serial = NULL; 150 } 151 152 static void rdevs_uninit_serial(struct mddev *mddev) 153 { 154 struct md_rdev *rdev; 155 156 rdev_for_each(rdev, mddev) 157 rdev_uninit_serial(rdev); 158 } 159 160 static int rdev_init_serial(struct md_rdev *rdev) 161 { 162 /* serial_nums equals with BARRIER_BUCKETS_NR */ 163 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 164 struct serial_in_rdev *serial = NULL; 165 166 if (test_bit(CollisionCheck, &rdev->flags)) 167 return 0; 168 169 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 170 GFP_KERNEL); 171 if (!serial) 172 return -ENOMEM; 173 174 for (i = 0; i < serial_nums; i++) { 175 struct serial_in_rdev *serial_tmp = &serial[i]; 176 177 spin_lock_init(&serial_tmp->serial_lock); 178 serial_tmp->serial_rb = RB_ROOT_CACHED; 179 init_waitqueue_head(&serial_tmp->serial_io_wait); 180 } 181 182 rdev->serial = serial; 183 set_bit(CollisionCheck, &rdev->flags); 184 185 return 0; 186 } 187 188 static int rdevs_init_serial(struct mddev *mddev) 189 { 190 struct md_rdev *rdev; 191 int ret = 0; 192 193 rdev_for_each(rdev, mddev) { 194 ret = rdev_init_serial(rdev); 195 if (ret) 196 break; 197 } 198 199 /* Free all resources if pool is not existed */ 200 if (ret && !mddev->serial_info_pool) 201 rdevs_uninit_serial(mddev); 202 203 return ret; 204 } 205 206 /* 207 * rdev needs to enable serial stuffs if it meets the conditions: 208 * 1. it is multi-queue device flaged with writemostly. 209 * 2. the write-behind mode is enabled. 210 */ 211 static int rdev_need_serial(struct md_rdev *rdev) 212 { 213 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 214 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 215 test_bit(WriteMostly, &rdev->flags)); 216 } 217 218 /* 219 * Init resource for rdev(s), then create serial_info_pool if: 220 * 1. rdev is the first device which return true from rdev_enable_serial. 221 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 222 */ 223 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 224 bool is_suspend) 225 { 226 int ret = 0; 227 228 if (rdev && !rdev_need_serial(rdev) && 229 !test_bit(CollisionCheck, &rdev->flags)) 230 return; 231 232 if (!is_suspend) 233 mddev_suspend(mddev); 234 235 if (!rdev) 236 ret = rdevs_init_serial(mddev); 237 else 238 ret = rdev_init_serial(rdev); 239 if (ret) 240 goto abort; 241 242 if (mddev->serial_info_pool == NULL) { 243 /* 244 * already in memalloc noio context by 245 * mddev_suspend() 246 */ 247 mddev->serial_info_pool = 248 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 249 sizeof(struct serial_info)); 250 if (!mddev->serial_info_pool) { 251 rdevs_uninit_serial(mddev); 252 pr_err("can't alloc memory pool for serialization\n"); 253 } 254 } 255 256 abort: 257 if (!is_suspend) 258 mddev_resume(mddev); 259 } 260 261 /* 262 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 263 * 1. rdev is the last device flaged with CollisionCheck. 264 * 2. when bitmap is destroyed while policy is not enabled. 265 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 266 */ 267 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 268 bool is_suspend) 269 { 270 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 271 return; 272 273 if (mddev->serial_info_pool) { 274 struct md_rdev *temp; 275 int num = 0; /* used to track if other rdevs need the pool */ 276 277 if (!is_suspend) 278 mddev_suspend(mddev); 279 rdev_for_each(temp, mddev) { 280 if (!rdev) { 281 if (!mddev->serialize_policy || 282 !rdev_need_serial(temp)) 283 rdev_uninit_serial(temp); 284 else 285 num++; 286 } else if (temp != rdev && 287 test_bit(CollisionCheck, &temp->flags)) 288 num++; 289 } 290 291 if (rdev) 292 rdev_uninit_serial(rdev); 293 294 if (num) 295 pr_info("The mempool could be used by other devices\n"); 296 else { 297 mempool_destroy(mddev->serial_info_pool); 298 mddev->serial_info_pool = NULL; 299 } 300 if (!is_suspend) 301 mddev_resume(mddev); 302 } 303 } 304 305 static struct ctl_table_header *raid_table_header; 306 307 static struct ctl_table raid_table[] = { 308 { 309 .procname = "speed_limit_min", 310 .data = &sysctl_speed_limit_min, 311 .maxlen = sizeof(int), 312 .mode = S_IRUGO|S_IWUSR, 313 .proc_handler = proc_dointvec, 314 }, 315 { 316 .procname = "speed_limit_max", 317 .data = &sysctl_speed_limit_max, 318 .maxlen = sizeof(int), 319 .mode = S_IRUGO|S_IWUSR, 320 .proc_handler = proc_dointvec, 321 }, 322 { } 323 }; 324 325 static struct ctl_table raid_dir_table[] = { 326 { 327 .procname = "raid", 328 .maxlen = 0, 329 .mode = S_IRUGO|S_IXUGO, 330 .child = raid_table, 331 }, 332 { } 333 }; 334 335 static struct ctl_table raid_root_table[] = { 336 { 337 .procname = "dev", 338 .maxlen = 0, 339 .mode = 0555, 340 .child = raid_dir_table, 341 }, 342 { } 343 }; 344 345 static int start_readonly; 346 347 /* 348 * The original mechanism for creating an md device is to create 349 * a device node in /dev and to open it. This causes races with device-close. 350 * The preferred method is to write to the "new_array" module parameter. 351 * This can avoid races. 352 * Setting create_on_open to false disables the original mechanism 353 * so all the races disappear. 354 */ 355 static bool create_on_open = true; 356 357 /* 358 * We have a system wide 'event count' that is incremented 359 * on any 'interesting' event, and readers of /proc/mdstat 360 * can use 'poll' or 'select' to find out when the event 361 * count increases. 362 * 363 * Events are: 364 * start array, stop array, error, add device, remove device, 365 * start build, activate spare 366 */ 367 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 368 static atomic_t md_event_count; 369 void md_new_event(void) 370 { 371 atomic_inc(&md_event_count); 372 wake_up(&md_event_waiters); 373 } 374 EXPORT_SYMBOL_GPL(md_new_event); 375 376 /* 377 * Enables to iterate over all existing md arrays 378 * all_mddevs_lock protects this list. 379 */ 380 static LIST_HEAD(all_mddevs); 381 static DEFINE_SPINLOCK(all_mddevs_lock); 382 383 static bool is_md_suspended(struct mddev *mddev) 384 { 385 return percpu_ref_is_dying(&mddev->active_io); 386 } 387 /* Rather than calling directly into the personality make_request function, 388 * IO requests come here first so that we can check if the device is 389 * being suspended pending a reconfiguration. 390 * We hold a refcount over the call to ->make_request. By the time that 391 * call has finished, the bio has been linked into some internal structure 392 * and so is visible to ->quiesce(), so we don't need the refcount any more. 393 */ 394 static bool is_suspended(struct mddev *mddev, struct bio *bio) 395 { 396 if (is_md_suspended(mddev)) 397 return true; 398 if (bio_data_dir(bio) != WRITE) 399 return false; 400 if (mddev->suspend_lo >= mddev->suspend_hi) 401 return false; 402 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 403 return false; 404 if (bio_end_sector(bio) < mddev->suspend_lo) 405 return false; 406 return true; 407 } 408 409 void md_handle_request(struct mddev *mddev, struct bio *bio) 410 { 411 check_suspended: 412 if (is_suspended(mddev, bio)) { 413 DEFINE_WAIT(__wait); 414 /* Bail out if REQ_NOWAIT is set for the bio */ 415 if (bio->bi_opf & REQ_NOWAIT) { 416 bio_wouldblock_error(bio); 417 return; 418 } 419 for (;;) { 420 prepare_to_wait(&mddev->sb_wait, &__wait, 421 TASK_UNINTERRUPTIBLE); 422 if (!is_suspended(mddev, bio)) 423 break; 424 schedule(); 425 } 426 finish_wait(&mddev->sb_wait, &__wait); 427 } 428 if (!percpu_ref_tryget_live(&mddev->active_io)) 429 goto check_suspended; 430 431 if (!mddev->pers->make_request(mddev, bio)) { 432 percpu_ref_put(&mddev->active_io); 433 goto check_suspended; 434 } 435 436 percpu_ref_put(&mddev->active_io); 437 } 438 EXPORT_SYMBOL(md_handle_request); 439 440 static void md_submit_bio(struct bio *bio) 441 { 442 const int rw = bio_data_dir(bio); 443 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 444 445 if (mddev == NULL || mddev->pers == NULL) { 446 bio_io_error(bio); 447 return; 448 } 449 450 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 451 bio_io_error(bio); 452 return; 453 } 454 455 bio = bio_split_to_limits(bio); 456 if (!bio) 457 return; 458 459 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 460 if (bio_sectors(bio) != 0) 461 bio->bi_status = BLK_STS_IOERR; 462 bio_endio(bio); 463 return; 464 } 465 466 /* bio could be mergeable after passing to underlayer */ 467 bio->bi_opf &= ~REQ_NOMERGE; 468 469 md_handle_request(mddev, bio); 470 } 471 472 /* mddev_suspend makes sure no new requests are submitted 473 * to the device, and that any requests that have been submitted 474 * are completely handled. 475 * Once mddev_detach() is called and completes, the module will be 476 * completely unused. 477 */ 478 void mddev_suspend(struct mddev *mddev) 479 { 480 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 481 lockdep_assert_held(&mddev->reconfig_mutex); 482 if (mddev->suspended++) 483 return; 484 wake_up(&mddev->sb_wait); 485 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 486 percpu_ref_kill(&mddev->active_io); 487 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io)); 488 mddev->pers->quiesce(mddev, 1); 489 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 490 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 491 492 del_timer_sync(&mddev->safemode_timer); 493 /* restrict memory reclaim I/O during raid array is suspend */ 494 mddev->noio_flag = memalloc_noio_save(); 495 } 496 EXPORT_SYMBOL_GPL(mddev_suspend); 497 498 void mddev_resume(struct mddev *mddev) 499 { 500 /* entred the memalloc scope from mddev_suspend() */ 501 memalloc_noio_restore(mddev->noio_flag); 502 lockdep_assert_held(&mddev->reconfig_mutex); 503 if (--mddev->suspended) 504 return; 505 percpu_ref_resurrect(&mddev->active_io); 506 wake_up(&mddev->sb_wait); 507 mddev->pers->quiesce(mddev, 0); 508 509 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 510 md_wakeup_thread(mddev->thread); 511 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 512 } 513 EXPORT_SYMBOL_GPL(mddev_resume); 514 515 /* 516 * Generic flush handling for md 517 */ 518 519 static void md_end_flush(struct bio *bio) 520 { 521 struct md_rdev *rdev = bio->bi_private; 522 struct mddev *mddev = rdev->mddev; 523 524 bio_put(bio); 525 526 rdev_dec_pending(rdev, mddev); 527 528 if (atomic_dec_and_test(&mddev->flush_pending)) { 529 /* The pre-request flush has finished */ 530 queue_work(md_wq, &mddev->flush_work); 531 } 532 } 533 534 static void md_submit_flush_data(struct work_struct *ws); 535 536 static void submit_flushes(struct work_struct *ws) 537 { 538 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 539 struct md_rdev *rdev; 540 541 mddev->start_flush = ktime_get_boottime(); 542 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 543 atomic_set(&mddev->flush_pending, 1); 544 rcu_read_lock(); 545 rdev_for_each_rcu(rdev, mddev) 546 if (rdev->raid_disk >= 0 && 547 !test_bit(Faulty, &rdev->flags)) { 548 /* Take two references, one is dropped 549 * when request finishes, one after 550 * we reclaim rcu_read_lock 551 */ 552 struct bio *bi; 553 atomic_inc(&rdev->nr_pending); 554 atomic_inc(&rdev->nr_pending); 555 rcu_read_unlock(); 556 bi = bio_alloc_bioset(rdev->bdev, 0, 557 REQ_OP_WRITE | REQ_PREFLUSH, 558 GFP_NOIO, &mddev->bio_set); 559 bi->bi_end_io = md_end_flush; 560 bi->bi_private = rdev; 561 atomic_inc(&mddev->flush_pending); 562 submit_bio(bi); 563 rcu_read_lock(); 564 rdev_dec_pending(rdev, mddev); 565 } 566 rcu_read_unlock(); 567 if (atomic_dec_and_test(&mddev->flush_pending)) 568 queue_work(md_wq, &mddev->flush_work); 569 } 570 571 static void md_submit_flush_data(struct work_struct *ws) 572 { 573 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 574 struct bio *bio = mddev->flush_bio; 575 576 /* 577 * must reset flush_bio before calling into md_handle_request to avoid a 578 * deadlock, because other bios passed md_handle_request suspend check 579 * could wait for this and below md_handle_request could wait for those 580 * bios because of suspend check 581 */ 582 spin_lock_irq(&mddev->lock); 583 mddev->prev_flush_start = mddev->start_flush; 584 mddev->flush_bio = NULL; 585 spin_unlock_irq(&mddev->lock); 586 wake_up(&mddev->sb_wait); 587 588 if (bio->bi_iter.bi_size == 0) { 589 /* an empty barrier - all done */ 590 bio_endio(bio); 591 } else { 592 bio->bi_opf &= ~REQ_PREFLUSH; 593 md_handle_request(mddev, bio); 594 } 595 } 596 597 /* 598 * Manages consolidation of flushes and submitting any flushes needed for 599 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 600 * being finished in another context. Returns false if the flushing is 601 * complete but still needs the I/O portion of the bio to be processed. 602 */ 603 bool md_flush_request(struct mddev *mddev, struct bio *bio) 604 { 605 ktime_t req_start = ktime_get_boottime(); 606 spin_lock_irq(&mddev->lock); 607 /* flush requests wait until ongoing flush completes, 608 * hence coalescing all the pending requests. 609 */ 610 wait_event_lock_irq(mddev->sb_wait, 611 !mddev->flush_bio || 612 ktime_before(req_start, mddev->prev_flush_start), 613 mddev->lock); 614 /* new request after previous flush is completed */ 615 if (ktime_after(req_start, mddev->prev_flush_start)) { 616 WARN_ON(mddev->flush_bio); 617 mddev->flush_bio = bio; 618 bio = NULL; 619 } 620 spin_unlock_irq(&mddev->lock); 621 622 if (!bio) { 623 INIT_WORK(&mddev->flush_work, submit_flushes); 624 queue_work(md_wq, &mddev->flush_work); 625 } else { 626 /* flush was performed for some other bio while we waited. */ 627 if (bio->bi_iter.bi_size == 0) 628 /* an empty barrier - all done */ 629 bio_endio(bio); 630 else { 631 bio->bi_opf &= ~REQ_PREFLUSH; 632 return false; 633 } 634 } 635 return true; 636 } 637 EXPORT_SYMBOL(md_flush_request); 638 639 static inline struct mddev *mddev_get(struct mddev *mddev) 640 { 641 lockdep_assert_held(&all_mddevs_lock); 642 643 if (test_bit(MD_DELETED, &mddev->flags)) 644 return NULL; 645 atomic_inc(&mddev->active); 646 return mddev; 647 } 648 649 static void mddev_delayed_delete(struct work_struct *ws); 650 651 void mddev_put(struct mddev *mddev) 652 { 653 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 654 return; 655 if (!mddev->raid_disks && list_empty(&mddev->disks) && 656 mddev->ctime == 0 && !mddev->hold_active) { 657 /* Array is not configured at all, and not held active, 658 * so destroy it */ 659 set_bit(MD_DELETED, &mddev->flags); 660 661 /* 662 * Call queue_work inside the spinlock so that 663 * flush_workqueue() after mddev_find will succeed in waiting 664 * for the work to be done. 665 */ 666 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 667 queue_work(md_misc_wq, &mddev->del_work); 668 } 669 spin_unlock(&all_mddevs_lock); 670 } 671 672 static void md_safemode_timeout(struct timer_list *t); 673 674 void mddev_init(struct mddev *mddev) 675 { 676 mutex_init(&mddev->open_mutex); 677 mutex_init(&mddev->reconfig_mutex); 678 mutex_init(&mddev->bitmap_info.mutex); 679 INIT_LIST_HEAD(&mddev->disks); 680 INIT_LIST_HEAD(&mddev->all_mddevs); 681 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 682 atomic_set(&mddev->active, 1); 683 atomic_set(&mddev->openers, 0); 684 spin_lock_init(&mddev->lock); 685 atomic_set(&mddev->flush_pending, 0); 686 init_waitqueue_head(&mddev->sb_wait); 687 init_waitqueue_head(&mddev->recovery_wait); 688 mddev->reshape_position = MaxSector; 689 mddev->reshape_backwards = 0; 690 mddev->last_sync_action = "none"; 691 mddev->resync_min = 0; 692 mddev->resync_max = MaxSector; 693 mddev->level = LEVEL_NONE; 694 } 695 EXPORT_SYMBOL_GPL(mddev_init); 696 697 static struct mddev *mddev_find_locked(dev_t unit) 698 { 699 struct mddev *mddev; 700 701 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 702 if (mddev->unit == unit) 703 return mddev; 704 705 return NULL; 706 } 707 708 /* find an unused unit number */ 709 static dev_t mddev_alloc_unit(void) 710 { 711 static int next_minor = 512; 712 int start = next_minor; 713 bool is_free = 0; 714 dev_t dev = 0; 715 716 while (!is_free) { 717 dev = MKDEV(MD_MAJOR, next_minor); 718 next_minor++; 719 if (next_minor > MINORMASK) 720 next_minor = 0; 721 if (next_minor == start) 722 return 0; /* Oh dear, all in use. */ 723 is_free = !mddev_find_locked(dev); 724 } 725 726 return dev; 727 } 728 729 static struct mddev *mddev_alloc(dev_t unit) 730 { 731 struct mddev *new; 732 int error; 733 734 if (unit && MAJOR(unit) != MD_MAJOR) 735 unit &= ~((1 << MdpMinorShift) - 1); 736 737 new = kzalloc(sizeof(*new), GFP_KERNEL); 738 if (!new) 739 return ERR_PTR(-ENOMEM); 740 mddev_init(new); 741 742 spin_lock(&all_mddevs_lock); 743 if (unit) { 744 error = -EEXIST; 745 if (mddev_find_locked(unit)) 746 goto out_free_new; 747 new->unit = unit; 748 if (MAJOR(unit) == MD_MAJOR) 749 new->md_minor = MINOR(unit); 750 else 751 new->md_minor = MINOR(unit) >> MdpMinorShift; 752 new->hold_active = UNTIL_IOCTL; 753 } else { 754 error = -ENODEV; 755 new->unit = mddev_alloc_unit(); 756 if (!new->unit) 757 goto out_free_new; 758 new->md_minor = MINOR(new->unit); 759 new->hold_active = UNTIL_STOP; 760 } 761 762 list_add(&new->all_mddevs, &all_mddevs); 763 spin_unlock(&all_mddevs_lock); 764 return new; 765 out_free_new: 766 spin_unlock(&all_mddevs_lock); 767 kfree(new); 768 return ERR_PTR(error); 769 } 770 771 static void mddev_free(struct mddev *mddev) 772 { 773 spin_lock(&all_mddevs_lock); 774 list_del(&mddev->all_mddevs); 775 spin_unlock(&all_mddevs_lock); 776 777 kfree(mddev); 778 } 779 780 static const struct attribute_group md_redundancy_group; 781 782 void mddev_unlock(struct mddev *mddev) 783 { 784 if (mddev->to_remove) { 785 /* These cannot be removed under reconfig_mutex as 786 * an access to the files will try to take reconfig_mutex 787 * while holding the file unremovable, which leads to 788 * a deadlock. 789 * So hold set sysfs_active while the remove in happeing, 790 * and anything else which might set ->to_remove or my 791 * otherwise change the sysfs namespace will fail with 792 * -EBUSY if sysfs_active is still set. 793 * We set sysfs_active under reconfig_mutex and elsewhere 794 * test it under the same mutex to ensure its correct value 795 * is seen. 796 */ 797 const struct attribute_group *to_remove = mddev->to_remove; 798 mddev->to_remove = NULL; 799 mddev->sysfs_active = 1; 800 mutex_unlock(&mddev->reconfig_mutex); 801 802 if (mddev->kobj.sd) { 803 if (to_remove != &md_redundancy_group) 804 sysfs_remove_group(&mddev->kobj, to_remove); 805 if (mddev->pers == NULL || 806 mddev->pers->sync_request == NULL) { 807 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 808 if (mddev->sysfs_action) 809 sysfs_put(mddev->sysfs_action); 810 if (mddev->sysfs_completed) 811 sysfs_put(mddev->sysfs_completed); 812 if (mddev->sysfs_degraded) 813 sysfs_put(mddev->sysfs_degraded); 814 mddev->sysfs_action = NULL; 815 mddev->sysfs_completed = NULL; 816 mddev->sysfs_degraded = NULL; 817 } 818 } 819 mddev->sysfs_active = 0; 820 } else 821 mutex_unlock(&mddev->reconfig_mutex); 822 823 /* As we've dropped the mutex we need a spinlock to 824 * make sure the thread doesn't disappear 825 */ 826 spin_lock(&pers_lock); 827 md_wakeup_thread(mddev->thread); 828 wake_up(&mddev->sb_wait); 829 spin_unlock(&pers_lock); 830 } 831 EXPORT_SYMBOL_GPL(mddev_unlock); 832 833 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 834 { 835 struct md_rdev *rdev; 836 837 rdev_for_each_rcu(rdev, mddev) 838 if (rdev->desc_nr == nr) 839 return rdev; 840 841 return NULL; 842 } 843 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 844 845 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 846 { 847 struct md_rdev *rdev; 848 849 rdev_for_each(rdev, mddev) 850 if (rdev->bdev->bd_dev == dev) 851 return rdev; 852 853 return NULL; 854 } 855 856 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 857 { 858 struct md_rdev *rdev; 859 860 rdev_for_each_rcu(rdev, mddev) 861 if (rdev->bdev->bd_dev == dev) 862 return rdev; 863 864 return NULL; 865 } 866 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 867 868 static struct md_personality *find_pers(int level, char *clevel) 869 { 870 struct md_personality *pers; 871 list_for_each_entry(pers, &pers_list, list) { 872 if (level != LEVEL_NONE && pers->level == level) 873 return pers; 874 if (strcmp(pers->name, clevel)==0) 875 return pers; 876 } 877 return NULL; 878 } 879 880 /* return the offset of the super block in 512byte sectors */ 881 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 882 { 883 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 884 } 885 886 static int alloc_disk_sb(struct md_rdev *rdev) 887 { 888 rdev->sb_page = alloc_page(GFP_KERNEL); 889 if (!rdev->sb_page) 890 return -ENOMEM; 891 return 0; 892 } 893 894 void md_rdev_clear(struct md_rdev *rdev) 895 { 896 if (rdev->sb_page) { 897 put_page(rdev->sb_page); 898 rdev->sb_loaded = 0; 899 rdev->sb_page = NULL; 900 rdev->sb_start = 0; 901 rdev->sectors = 0; 902 } 903 if (rdev->bb_page) { 904 put_page(rdev->bb_page); 905 rdev->bb_page = NULL; 906 } 907 badblocks_exit(&rdev->badblocks); 908 } 909 EXPORT_SYMBOL_GPL(md_rdev_clear); 910 911 static void super_written(struct bio *bio) 912 { 913 struct md_rdev *rdev = bio->bi_private; 914 struct mddev *mddev = rdev->mddev; 915 916 if (bio->bi_status) { 917 pr_err("md: %s gets error=%d\n", __func__, 918 blk_status_to_errno(bio->bi_status)); 919 md_error(mddev, rdev); 920 if (!test_bit(Faulty, &rdev->flags) 921 && (bio->bi_opf & MD_FAILFAST)) { 922 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 923 set_bit(LastDev, &rdev->flags); 924 } 925 } else 926 clear_bit(LastDev, &rdev->flags); 927 928 bio_put(bio); 929 930 rdev_dec_pending(rdev, mddev); 931 932 if (atomic_dec_and_test(&mddev->pending_writes)) 933 wake_up(&mddev->sb_wait); 934 } 935 936 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 937 sector_t sector, int size, struct page *page) 938 { 939 /* write first size bytes of page to sector of rdev 940 * Increment mddev->pending_writes before returning 941 * and decrement it on completion, waking up sb_wait 942 * if zero is reached. 943 * If an error occurred, call md_error 944 */ 945 struct bio *bio; 946 947 if (!page) 948 return; 949 950 if (test_bit(Faulty, &rdev->flags)) 951 return; 952 953 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 954 1, 955 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 956 GFP_NOIO, &mddev->sync_set); 957 958 atomic_inc(&rdev->nr_pending); 959 960 bio->bi_iter.bi_sector = sector; 961 bio_add_page(bio, page, size, 0); 962 bio->bi_private = rdev; 963 bio->bi_end_io = super_written; 964 965 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 966 test_bit(FailFast, &rdev->flags) && 967 !test_bit(LastDev, &rdev->flags)) 968 bio->bi_opf |= MD_FAILFAST; 969 970 atomic_inc(&mddev->pending_writes); 971 submit_bio(bio); 972 } 973 974 int md_super_wait(struct mddev *mddev) 975 { 976 /* wait for all superblock writes that were scheduled to complete */ 977 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 978 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 979 return -EAGAIN; 980 return 0; 981 } 982 983 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 984 struct page *page, blk_opf_t opf, bool metadata_op) 985 { 986 struct bio bio; 987 struct bio_vec bvec; 988 989 if (metadata_op && rdev->meta_bdev) 990 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 991 else 992 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 993 994 if (metadata_op) 995 bio.bi_iter.bi_sector = sector + rdev->sb_start; 996 else if (rdev->mddev->reshape_position != MaxSector && 997 (rdev->mddev->reshape_backwards == 998 (sector >= rdev->mddev->reshape_position))) 999 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1000 else 1001 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1002 bio_add_page(&bio, page, size, 0); 1003 1004 submit_bio_wait(&bio); 1005 1006 return !bio.bi_status; 1007 } 1008 EXPORT_SYMBOL_GPL(sync_page_io); 1009 1010 static int read_disk_sb(struct md_rdev *rdev, int size) 1011 { 1012 if (rdev->sb_loaded) 1013 return 0; 1014 1015 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1016 goto fail; 1017 rdev->sb_loaded = 1; 1018 return 0; 1019 1020 fail: 1021 pr_err("md: disabled device %pg, could not read superblock.\n", 1022 rdev->bdev); 1023 return -EINVAL; 1024 } 1025 1026 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1027 { 1028 return sb1->set_uuid0 == sb2->set_uuid0 && 1029 sb1->set_uuid1 == sb2->set_uuid1 && 1030 sb1->set_uuid2 == sb2->set_uuid2 && 1031 sb1->set_uuid3 == sb2->set_uuid3; 1032 } 1033 1034 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1035 { 1036 int ret; 1037 mdp_super_t *tmp1, *tmp2; 1038 1039 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1040 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1041 1042 if (!tmp1 || !tmp2) { 1043 ret = 0; 1044 goto abort; 1045 } 1046 1047 *tmp1 = *sb1; 1048 *tmp2 = *sb2; 1049 1050 /* 1051 * nr_disks is not constant 1052 */ 1053 tmp1->nr_disks = 0; 1054 tmp2->nr_disks = 0; 1055 1056 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1057 abort: 1058 kfree(tmp1); 1059 kfree(tmp2); 1060 return ret; 1061 } 1062 1063 static u32 md_csum_fold(u32 csum) 1064 { 1065 csum = (csum & 0xffff) + (csum >> 16); 1066 return (csum & 0xffff) + (csum >> 16); 1067 } 1068 1069 static unsigned int calc_sb_csum(mdp_super_t *sb) 1070 { 1071 u64 newcsum = 0; 1072 u32 *sb32 = (u32*)sb; 1073 int i; 1074 unsigned int disk_csum, csum; 1075 1076 disk_csum = sb->sb_csum; 1077 sb->sb_csum = 0; 1078 1079 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1080 newcsum += sb32[i]; 1081 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1082 1083 #ifdef CONFIG_ALPHA 1084 /* This used to use csum_partial, which was wrong for several 1085 * reasons including that different results are returned on 1086 * different architectures. It isn't critical that we get exactly 1087 * the same return value as before (we always csum_fold before 1088 * testing, and that removes any differences). However as we 1089 * know that csum_partial always returned a 16bit value on 1090 * alphas, do a fold to maximise conformity to previous behaviour. 1091 */ 1092 sb->sb_csum = md_csum_fold(disk_csum); 1093 #else 1094 sb->sb_csum = disk_csum; 1095 #endif 1096 return csum; 1097 } 1098 1099 /* 1100 * Handle superblock details. 1101 * We want to be able to handle multiple superblock formats 1102 * so we have a common interface to them all, and an array of 1103 * different handlers. 1104 * We rely on user-space to write the initial superblock, and support 1105 * reading and updating of superblocks. 1106 * Interface methods are: 1107 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1108 * loads and validates a superblock on dev. 1109 * if refdev != NULL, compare superblocks on both devices 1110 * Return: 1111 * 0 - dev has a superblock that is compatible with refdev 1112 * 1 - dev has a superblock that is compatible and newer than refdev 1113 * so dev should be used as the refdev in future 1114 * -EINVAL superblock incompatible or invalid 1115 * -othererror e.g. -EIO 1116 * 1117 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1118 * Verify that dev is acceptable into mddev. 1119 * The first time, mddev->raid_disks will be 0, and data from 1120 * dev should be merged in. Subsequent calls check that dev 1121 * is new enough. Return 0 or -EINVAL 1122 * 1123 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1124 * Update the superblock for rdev with data in mddev 1125 * This does not write to disc. 1126 * 1127 */ 1128 1129 struct super_type { 1130 char *name; 1131 struct module *owner; 1132 int (*load_super)(struct md_rdev *rdev, 1133 struct md_rdev *refdev, 1134 int minor_version); 1135 int (*validate_super)(struct mddev *mddev, 1136 struct md_rdev *rdev); 1137 void (*sync_super)(struct mddev *mddev, 1138 struct md_rdev *rdev); 1139 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1140 sector_t num_sectors); 1141 int (*allow_new_offset)(struct md_rdev *rdev, 1142 unsigned long long new_offset); 1143 }; 1144 1145 /* 1146 * Check that the given mddev has no bitmap. 1147 * 1148 * This function is called from the run method of all personalities that do not 1149 * support bitmaps. It prints an error message and returns non-zero if mddev 1150 * has a bitmap. Otherwise, it returns 0. 1151 * 1152 */ 1153 int md_check_no_bitmap(struct mddev *mddev) 1154 { 1155 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1156 return 0; 1157 pr_warn("%s: bitmaps are not supported for %s\n", 1158 mdname(mddev), mddev->pers->name); 1159 return 1; 1160 } 1161 EXPORT_SYMBOL(md_check_no_bitmap); 1162 1163 /* 1164 * load_super for 0.90.0 1165 */ 1166 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1167 { 1168 mdp_super_t *sb; 1169 int ret; 1170 bool spare_disk = true; 1171 1172 /* 1173 * Calculate the position of the superblock (512byte sectors), 1174 * it's at the end of the disk. 1175 * 1176 * It also happens to be a multiple of 4Kb. 1177 */ 1178 rdev->sb_start = calc_dev_sboffset(rdev); 1179 1180 ret = read_disk_sb(rdev, MD_SB_BYTES); 1181 if (ret) 1182 return ret; 1183 1184 ret = -EINVAL; 1185 1186 sb = page_address(rdev->sb_page); 1187 1188 if (sb->md_magic != MD_SB_MAGIC) { 1189 pr_warn("md: invalid raid superblock magic on %pg\n", 1190 rdev->bdev); 1191 goto abort; 1192 } 1193 1194 if (sb->major_version != 0 || 1195 sb->minor_version < 90 || 1196 sb->minor_version > 91) { 1197 pr_warn("Bad version number %d.%d on %pg\n", 1198 sb->major_version, sb->minor_version, rdev->bdev); 1199 goto abort; 1200 } 1201 1202 if (sb->raid_disks <= 0) 1203 goto abort; 1204 1205 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1206 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1207 goto abort; 1208 } 1209 1210 rdev->preferred_minor = sb->md_minor; 1211 rdev->data_offset = 0; 1212 rdev->new_data_offset = 0; 1213 rdev->sb_size = MD_SB_BYTES; 1214 rdev->badblocks.shift = -1; 1215 1216 if (sb->level == LEVEL_MULTIPATH) 1217 rdev->desc_nr = -1; 1218 else 1219 rdev->desc_nr = sb->this_disk.number; 1220 1221 /* not spare disk, or LEVEL_MULTIPATH */ 1222 if (sb->level == LEVEL_MULTIPATH || 1223 (rdev->desc_nr >= 0 && 1224 rdev->desc_nr < MD_SB_DISKS && 1225 sb->disks[rdev->desc_nr].state & 1226 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1227 spare_disk = false; 1228 1229 if (!refdev) { 1230 if (!spare_disk) 1231 ret = 1; 1232 else 1233 ret = 0; 1234 } else { 1235 __u64 ev1, ev2; 1236 mdp_super_t *refsb = page_address(refdev->sb_page); 1237 if (!md_uuid_equal(refsb, sb)) { 1238 pr_warn("md: %pg has different UUID to %pg\n", 1239 rdev->bdev, refdev->bdev); 1240 goto abort; 1241 } 1242 if (!md_sb_equal(refsb, sb)) { 1243 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1244 rdev->bdev, refdev->bdev); 1245 goto abort; 1246 } 1247 ev1 = md_event(sb); 1248 ev2 = md_event(refsb); 1249 1250 if (!spare_disk && ev1 > ev2) 1251 ret = 1; 1252 else 1253 ret = 0; 1254 } 1255 rdev->sectors = rdev->sb_start; 1256 /* Limit to 4TB as metadata cannot record more than that. 1257 * (not needed for Linear and RAID0 as metadata doesn't 1258 * record this size) 1259 */ 1260 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1261 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1262 1263 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1264 /* "this cannot possibly happen" ... */ 1265 ret = -EINVAL; 1266 1267 abort: 1268 return ret; 1269 } 1270 1271 /* 1272 * validate_super for 0.90.0 1273 */ 1274 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1275 { 1276 mdp_disk_t *desc; 1277 mdp_super_t *sb = page_address(rdev->sb_page); 1278 __u64 ev1 = md_event(sb); 1279 1280 rdev->raid_disk = -1; 1281 clear_bit(Faulty, &rdev->flags); 1282 clear_bit(In_sync, &rdev->flags); 1283 clear_bit(Bitmap_sync, &rdev->flags); 1284 clear_bit(WriteMostly, &rdev->flags); 1285 1286 if (mddev->raid_disks == 0) { 1287 mddev->major_version = 0; 1288 mddev->minor_version = sb->minor_version; 1289 mddev->patch_version = sb->patch_version; 1290 mddev->external = 0; 1291 mddev->chunk_sectors = sb->chunk_size >> 9; 1292 mddev->ctime = sb->ctime; 1293 mddev->utime = sb->utime; 1294 mddev->level = sb->level; 1295 mddev->clevel[0] = 0; 1296 mddev->layout = sb->layout; 1297 mddev->raid_disks = sb->raid_disks; 1298 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1299 mddev->events = ev1; 1300 mddev->bitmap_info.offset = 0; 1301 mddev->bitmap_info.space = 0; 1302 /* bitmap can use 60 K after the 4K superblocks */ 1303 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1304 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1305 mddev->reshape_backwards = 0; 1306 1307 if (mddev->minor_version >= 91) { 1308 mddev->reshape_position = sb->reshape_position; 1309 mddev->delta_disks = sb->delta_disks; 1310 mddev->new_level = sb->new_level; 1311 mddev->new_layout = sb->new_layout; 1312 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1313 if (mddev->delta_disks < 0) 1314 mddev->reshape_backwards = 1; 1315 } else { 1316 mddev->reshape_position = MaxSector; 1317 mddev->delta_disks = 0; 1318 mddev->new_level = mddev->level; 1319 mddev->new_layout = mddev->layout; 1320 mddev->new_chunk_sectors = mddev->chunk_sectors; 1321 } 1322 if (mddev->level == 0) 1323 mddev->layout = -1; 1324 1325 if (sb->state & (1<<MD_SB_CLEAN)) 1326 mddev->recovery_cp = MaxSector; 1327 else { 1328 if (sb->events_hi == sb->cp_events_hi && 1329 sb->events_lo == sb->cp_events_lo) { 1330 mddev->recovery_cp = sb->recovery_cp; 1331 } else 1332 mddev->recovery_cp = 0; 1333 } 1334 1335 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1336 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1337 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1338 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1339 1340 mddev->max_disks = MD_SB_DISKS; 1341 1342 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1343 mddev->bitmap_info.file == NULL) { 1344 mddev->bitmap_info.offset = 1345 mddev->bitmap_info.default_offset; 1346 mddev->bitmap_info.space = 1347 mddev->bitmap_info.default_space; 1348 } 1349 1350 } else if (mddev->pers == NULL) { 1351 /* Insist on good event counter while assembling, except 1352 * for spares (which don't need an event count) */ 1353 ++ev1; 1354 if (sb->disks[rdev->desc_nr].state & ( 1355 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1356 if (ev1 < mddev->events) 1357 return -EINVAL; 1358 } else if (mddev->bitmap) { 1359 /* if adding to array with a bitmap, then we can accept an 1360 * older device ... but not too old. 1361 */ 1362 if (ev1 < mddev->bitmap->events_cleared) 1363 return 0; 1364 if (ev1 < mddev->events) 1365 set_bit(Bitmap_sync, &rdev->flags); 1366 } else { 1367 if (ev1 < mddev->events) 1368 /* just a hot-add of a new device, leave raid_disk at -1 */ 1369 return 0; 1370 } 1371 1372 if (mddev->level != LEVEL_MULTIPATH) { 1373 desc = sb->disks + rdev->desc_nr; 1374 1375 if (desc->state & (1<<MD_DISK_FAULTY)) 1376 set_bit(Faulty, &rdev->flags); 1377 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1378 desc->raid_disk < mddev->raid_disks */) { 1379 set_bit(In_sync, &rdev->flags); 1380 rdev->raid_disk = desc->raid_disk; 1381 rdev->saved_raid_disk = desc->raid_disk; 1382 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1383 /* active but not in sync implies recovery up to 1384 * reshape position. We don't know exactly where 1385 * that is, so set to zero for now */ 1386 if (mddev->minor_version >= 91) { 1387 rdev->recovery_offset = 0; 1388 rdev->raid_disk = desc->raid_disk; 1389 } 1390 } 1391 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1392 set_bit(WriteMostly, &rdev->flags); 1393 if (desc->state & (1<<MD_DISK_FAILFAST)) 1394 set_bit(FailFast, &rdev->flags); 1395 } else /* MULTIPATH are always insync */ 1396 set_bit(In_sync, &rdev->flags); 1397 return 0; 1398 } 1399 1400 /* 1401 * sync_super for 0.90.0 1402 */ 1403 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1404 { 1405 mdp_super_t *sb; 1406 struct md_rdev *rdev2; 1407 int next_spare = mddev->raid_disks; 1408 1409 /* make rdev->sb match mddev data.. 1410 * 1411 * 1/ zero out disks 1412 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1413 * 3/ any empty disks < next_spare become removed 1414 * 1415 * disks[0] gets initialised to REMOVED because 1416 * we cannot be sure from other fields if it has 1417 * been initialised or not. 1418 */ 1419 int i; 1420 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1421 1422 rdev->sb_size = MD_SB_BYTES; 1423 1424 sb = page_address(rdev->sb_page); 1425 1426 memset(sb, 0, sizeof(*sb)); 1427 1428 sb->md_magic = MD_SB_MAGIC; 1429 sb->major_version = mddev->major_version; 1430 sb->patch_version = mddev->patch_version; 1431 sb->gvalid_words = 0; /* ignored */ 1432 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1433 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1434 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1435 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1436 1437 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1438 sb->level = mddev->level; 1439 sb->size = mddev->dev_sectors / 2; 1440 sb->raid_disks = mddev->raid_disks; 1441 sb->md_minor = mddev->md_minor; 1442 sb->not_persistent = 0; 1443 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1444 sb->state = 0; 1445 sb->events_hi = (mddev->events>>32); 1446 sb->events_lo = (u32)mddev->events; 1447 1448 if (mddev->reshape_position == MaxSector) 1449 sb->minor_version = 90; 1450 else { 1451 sb->minor_version = 91; 1452 sb->reshape_position = mddev->reshape_position; 1453 sb->new_level = mddev->new_level; 1454 sb->delta_disks = mddev->delta_disks; 1455 sb->new_layout = mddev->new_layout; 1456 sb->new_chunk = mddev->new_chunk_sectors << 9; 1457 } 1458 mddev->minor_version = sb->minor_version; 1459 if (mddev->in_sync) 1460 { 1461 sb->recovery_cp = mddev->recovery_cp; 1462 sb->cp_events_hi = (mddev->events>>32); 1463 sb->cp_events_lo = (u32)mddev->events; 1464 if (mddev->recovery_cp == MaxSector) 1465 sb->state = (1<< MD_SB_CLEAN); 1466 } else 1467 sb->recovery_cp = 0; 1468 1469 sb->layout = mddev->layout; 1470 sb->chunk_size = mddev->chunk_sectors << 9; 1471 1472 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1473 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1474 1475 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1476 rdev_for_each(rdev2, mddev) { 1477 mdp_disk_t *d; 1478 int desc_nr; 1479 int is_active = test_bit(In_sync, &rdev2->flags); 1480 1481 if (rdev2->raid_disk >= 0 && 1482 sb->minor_version >= 91) 1483 /* we have nowhere to store the recovery_offset, 1484 * but if it is not below the reshape_position, 1485 * we can piggy-back on that. 1486 */ 1487 is_active = 1; 1488 if (rdev2->raid_disk < 0 || 1489 test_bit(Faulty, &rdev2->flags)) 1490 is_active = 0; 1491 if (is_active) 1492 desc_nr = rdev2->raid_disk; 1493 else 1494 desc_nr = next_spare++; 1495 rdev2->desc_nr = desc_nr; 1496 d = &sb->disks[rdev2->desc_nr]; 1497 nr_disks++; 1498 d->number = rdev2->desc_nr; 1499 d->major = MAJOR(rdev2->bdev->bd_dev); 1500 d->minor = MINOR(rdev2->bdev->bd_dev); 1501 if (is_active) 1502 d->raid_disk = rdev2->raid_disk; 1503 else 1504 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1505 if (test_bit(Faulty, &rdev2->flags)) 1506 d->state = (1<<MD_DISK_FAULTY); 1507 else if (is_active) { 1508 d->state = (1<<MD_DISK_ACTIVE); 1509 if (test_bit(In_sync, &rdev2->flags)) 1510 d->state |= (1<<MD_DISK_SYNC); 1511 active++; 1512 working++; 1513 } else { 1514 d->state = 0; 1515 spare++; 1516 working++; 1517 } 1518 if (test_bit(WriteMostly, &rdev2->flags)) 1519 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1520 if (test_bit(FailFast, &rdev2->flags)) 1521 d->state |= (1<<MD_DISK_FAILFAST); 1522 } 1523 /* now set the "removed" and "faulty" bits on any missing devices */ 1524 for (i=0 ; i < mddev->raid_disks ; i++) { 1525 mdp_disk_t *d = &sb->disks[i]; 1526 if (d->state == 0 && d->number == 0) { 1527 d->number = i; 1528 d->raid_disk = i; 1529 d->state = (1<<MD_DISK_REMOVED); 1530 d->state |= (1<<MD_DISK_FAULTY); 1531 failed++; 1532 } 1533 } 1534 sb->nr_disks = nr_disks; 1535 sb->active_disks = active; 1536 sb->working_disks = working; 1537 sb->failed_disks = failed; 1538 sb->spare_disks = spare; 1539 1540 sb->this_disk = sb->disks[rdev->desc_nr]; 1541 sb->sb_csum = calc_sb_csum(sb); 1542 } 1543 1544 /* 1545 * rdev_size_change for 0.90.0 1546 */ 1547 static unsigned long long 1548 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1549 { 1550 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1551 return 0; /* component must fit device */ 1552 if (rdev->mddev->bitmap_info.offset) 1553 return 0; /* can't move bitmap */ 1554 rdev->sb_start = calc_dev_sboffset(rdev); 1555 if (!num_sectors || num_sectors > rdev->sb_start) 1556 num_sectors = rdev->sb_start; 1557 /* Limit to 4TB as metadata cannot record more than that. 1558 * 4TB == 2^32 KB, or 2*2^32 sectors. 1559 */ 1560 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1561 num_sectors = (sector_t)(2ULL << 32) - 2; 1562 do { 1563 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1564 rdev->sb_page); 1565 } while (md_super_wait(rdev->mddev) < 0); 1566 return num_sectors; 1567 } 1568 1569 static int 1570 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1571 { 1572 /* non-zero offset changes not possible with v0.90 */ 1573 return new_offset == 0; 1574 } 1575 1576 /* 1577 * version 1 superblock 1578 */ 1579 1580 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1581 { 1582 __le32 disk_csum; 1583 u32 csum; 1584 unsigned long long newcsum; 1585 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1586 __le32 *isuper = (__le32*)sb; 1587 1588 disk_csum = sb->sb_csum; 1589 sb->sb_csum = 0; 1590 newcsum = 0; 1591 for (; size >= 4; size -= 4) 1592 newcsum += le32_to_cpu(*isuper++); 1593 1594 if (size == 2) 1595 newcsum += le16_to_cpu(*(__le16*) isuper); 1596 1597 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1598 sb->sb_csum = disk_csum; 1599 return cpu_to_le32(csum); 1600 } 1601 1602 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1603 { 1604 struct mdp_superblock_1 *sb; 1605 int ret; 1606 sector_t sb_start; 1607 sector_t sectors; 1608 int bmask; 1609 bool spare_disk = true; 1610 1611 /* 1612 * Calculate the position of the superblock in 512byte sectors. 1613 * It is always aligned to a 4K boundary and 1614 * depeding on minor_version, it can be: 1615 * 0: At least 8K, but less than 12K, from end of device 1616 * 1: At start of device 1617 * 2: 4K from start of device. 1618 */ 1619 switch(minor_version) { 1620 case 0: 1621 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1622 sb_start &= ~(sector_t)(4*2-1); 1623 break; 1624 case 1: 1625 sb_start = 0; 1626 break; 1627 case 2: 1628 sb_start = 8; 1629 break; 1630 default: 1631 return -EINVAL; 1632 } 1633 rdev->sb_start = sb_start; 1634 1635 /* superblock is rarely larger than 1K, but it can be larger, 1636 * and it is safe to read 4k, so we do that 1637 */ 1638 ret = read_disk_sb(rdev, 4096); 1639 if (ret) return ret; 1640 1641 sb = page_address(rdev->sb_page); 1642 1643 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1644 sb->major_version != cpu_to_le32(1) || 1645 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1646 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1647 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1648 return -EINVAL; 1649 1650 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1651 pr_warn("md: invalid superblock checksum on %pg\n", 1652 rdev->bdev); 1653 return -EINVAL; 1654 } 1655 if (le64_to_cpu(sb->data_size) < 10) { 1656 pr_warn("md: data_size too small on %pg\n", 1657 rdev->bdev); 1658 return -EINVAL; 1659 } 1660 if (sb->pad0 || 1661 sb->pad3[0] || 1662 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1663 /* Some padding is non-zero, might be a new feature */ 1664 return -EINVAL; 1665 1666 rdev->preferred_minor = 0xffff; 1667 rdev->data_offset = le64_to_cpu(sb->data_offset); 1668 rdev->new_data_offset = rdev->data_offset; 1669 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1670 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1671 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1672 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1673 1674 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1675 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1676 if (rdev->sb_size & bmask) 1677 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1678 1679 if (minor_version 1680 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1681 return -EINVAL; 1682 if (minor_version 1683 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1684 return -EINVAL; 1685 1686 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1687 rdev->desc_nr = -1; 1688 else 1689 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1690 1691 if (!rdev->bb_page) { 1692 rdev->bb_page = alloc_page(GFP_KERNEL); 1693 if (!rdev->bb_page) 1694 return -ENOMEM; 1695 } 1696 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1697 rdev->badblocks.count == 0) { 1698 /* need to load the bad block list. 1699 * Currently we limit it to one page. 1700 */ 1701 s32 offset; 1702 sector_t bb_sector; 1703 __le64 *bbp; 1704 int i; 1705 int sectors = le16_to_cpu(sb->bblog_size); 1706 if (sectors > (PAGE_SIZE / 512)) 1707 return -EINVAL; 1708 offset = le32_to_cpu(sb->bblog_offset); 1709 if (offset == 0) 1710 return -EINVAL; 1711 bb_sector = (long long)offset; 1712 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1713 rdev->bb_page, REQ_OP_READ, true)) 1714 return -EIO; 1715 bbp = (__le64 *)page_address(rdev->bb_page); 1716 rdev->badblocks.shift = sb->bblog_shift; 1717 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1718 u64 bb = le64_to_cpu(*bbp); 1719 int count = bb & (0x3ff); 1720 u64 sector = bb >> 10; 1721 sector <<= sb->bblog_shift; 1722 count <<= sb->bblog_shift; 1723 if (bb + 1 == 0) 1724 break; 1725 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1726 return -EINVAL; 1727 } 1728 } else if (sb->bblog_offset != 0) 1729 rdev->badblocks.shift = 0; 1730 1731 if ((le32_to_cpu(sb->feature_map) & 1732 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1733 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1734 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1735 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1736 } 1737 1738 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1739 sb->level != 0) 1740 return -EINVAL; 1741 1742 /* not spare disk, or LEVEL_MULTIPATH */ 1743 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1744 (rdev->desc_nr >= 0 && 1745 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1746 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1747 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1748 spare_disk = false; 1749 1750 if (!refdev) { 1751 if (!spare_disk) 1752 ret = 1; 1753 else 1754 ret = 0; 1755 } else { 1756 __u64 ev1, ev2; 1757 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1758 1759 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1760 sb->level != refsb->level || 1761 sb->layout != refsb->layout || 1762 sb->chunksize != refsb->chunksize) { 1763 pr_warn("md: %pg has strangely different superblock to %pg\n", 1764 rdev->bdev, 1765 refdev->bdev); 1766 return -EINVAL; 1767 } 1768 ev1 = le64_to_cpu(sb->events); 1769 ev2 = le64_to_cpu(refsb->events); 1770 1771 if (!spare_disk && ev1 > ev2) 1772 ret = 1; 1773 else 1774 ret = 0; 1775 } 1776 if (minor_version) 1777 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1778 else 1779 sectors = rdev->sb_start; 1780 if (sectors < le64_to_cpu(sb->data_size)) 1781 return -EINVAL; 1782 rdev->sectors = le64_to_cpu(sb->data_size); 1783 return ret; 1784 } 1785 1786 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1787 { 1788 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1789 __u64 ev1 = le64_to_cpu(sb->events); 1790 1791 rdev->raid_disk = -1; 1792 clear_bit(Faulty, &rdev->flags); 1793 clear_bit(In_sync, &rdev->flags); 1794 clear_bit(Bitmap_sync, &rdev->flags); 1795 clear_bit(WriteMostly, &rdev->flags); 1796 1797 if (mddev->raid_disks == 0) { 1798 mddev->major_version = 1; 1799 mddev->patch_version = 0; 1800 mddev->external = 0; 1801 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1802 mddev->ctime = le64_to_cpu(sb->ctime); 1803 mddev->utime = le64_to_cpu(sb->utime); 1804 mddev->level = le32_to_cpu(sb->level); 1805 mddev->clevel[0] = 0; 1806 mddev->layout = le32_to_cpu(sb->layout); 1807 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1808 mddev->dev_sectors = le64_to_cpu(sb->size); 1809 mddev->events = ev1; 1810 mddev->bitmap_info.offset = 0; 1811 mddev->bitmap_info.space = 0; 1812 /* Default location for bitmap is 1K after superblock 1813 * using 3K - total of 4K 1814 */ 1815 mddev->bitmap_info.default_offset = 1024 >> 9; 1816 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1817 mddev->reshape_backwards = 0; 1818 1819 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1820 memcpy(mddev->uuid, sb->set_uuid, 16); 1821 1822 mddev->max_disks = (4096-256)/2; 1823 1824 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1825 mddev->bitmap_info.file == NULL) { 1826 mddev->bitmap_info.offset = 1827 (__s32)le32_to_cpu(sb->bitmap_offset); 1828 /* Metadata doesn't record how much space is available. 1829 * For 1.0, we assume we can use up to the superblock 1830 * if before, else to 4K beyond superblock. 1831 * For others, assume no change is possible. 1832 */ 1833 if (mddev->minor_version > 0) 1834 mddev->bitmap_info.space = 0; 1835 else if (mddev->bitmap_info.offset > 0) 1836 mddev->bitmap_info.space = 1837 8 - mddev->bitmap_info.offset; 1838 else 1839 mddev->bitmap_info.space = 1840 -mddev->bitmap_info.offset; 1841 } 1842 1843 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1844 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1845 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1846 mddev->new_level = le32_to_cpu(sb->new_level); 1847 mddev->new_layout = le32_to_cpu(sb->new_layout); 1848 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1849 if (mddev->delta_disks < 0 || 1850 (mddev->delta_disks == 0 && 1851 (le32_to_cpu(sb->feature_map) 1852 & MD_FEATURE_RESHAPE_BACKWARDS))) 1853 mddev->reshape_backwards = 1; 1854 } else { 1855 mddev->reshape_position = MaxSector; 1856 mddev->delta_disks = 0; 1857 mddev->new_level = mddev->level; 1858 mddev->new_layout = mddev->layout; 1859 mddev->new_chunk_sectors = mddev->chunk_sectors; 1860 } 1861 1862 if (mddev->level == 0 && 1863 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1864 mddev->layout = -1; 1865 1866 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1867 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1868 1869 if (le32_to_cpu(sb->feature_map) & 1870 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1871 if (le32_to_cpu(sb->feature_map) & 1872 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1873 return -EINVAL; 1874 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1875 (le32_to_cpu(sb->feature_map) & 1876 MD_FEATURE_MULTIPLE_PPLS)) 1877 return -EINVAL; 1878 set_bit(MD_HAS_PPL, &mddev->flags); 1879 } 1880 } else if (mddev->pers == NULL) { 1881 /* Insist of good event counter while assembling, except for 1882 * spares (which don't need an event count) */ 1883 ++ev1; 1884 if (rdev->desc_nr >= 0 && 1885 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1886 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1887 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1888 if (ev1 < mddev->events) 1889 return -EINVAL; 1890 } else if (mddev->bitmap) { 1891 /* If adding to array with a bitmap, then we can accept an 1892 * older device, but not too old. 1893 */ 1894 if (ev1 < mddev->bitmap->events_cleared) 1895 return 0; 1896 if (ev1 < mddev->events) 1897 set_bit(Bitmap_sync, &rdev->flags); 1898 } else { 1899 if (ev1 < mddev->events) 1900 /* just a hot-add of a new device, leave raid_disk at -1 */ 1901 return 0; 1902 } 1903 if (mddev->level != LEVEL_MULTIPATH) { 1904 int role; 1905 if (rdev->desc_nr < 0 || 1906 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1907 role = MD_DISK_ROLE_SPARE; 1908 rdev->desc_nr = -1; 1909 } else 1910 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1911 switch(role) { 1912 case MD_DISK_ROLE_SPARE: /* spare */ 1913 break; 1914 case MD_DISK_ROLE_FAULTY: /* faulty */ 1915 set_bit(Faulty, &rdev->flags); 1916 break; 1917 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1918 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1919 /* journal device without journal feature */ 1920 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1921 return -EINVAL; 1922 } 1923 set_bit(Journal, &rdev->flags); 1924 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1925 rdev->raid_disk = 0; 1926 break; 1927 default: 1928 rdev->saved_raid_disk = role; 1929 if ((le32_to_cpu(sb->feature_map) & 1930 MD_FEATURE_RECOVERY_OFFSET)) { 1931 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1932 if (!(le32_to_cpu(sb->feature_map) & 1933 MD_FEATURE_RECOVERY_BITMAP)) 1934 rdev->saved_raid_disk = -1; 1935 } else { 1936 /* 1937 * If the array is FROZEN, then the device can't 1938 * be in_sync with rest of array. 1939 */ 1940 if (!test_bit(MD_RECOVERY_FROZEN, 1941 &mddev->recovery)) 1942 set_bit(In_sync, &rdev->flags); 1943 } 1944 rdev->raid_disk = role; 1945 break; 1946 } 1947 if (sb->devflags & WriteMostly1) 1948 set_bit(WriteMostly, &rdev->flags); 1949 if (sb->devflags & FailFast1) 1950 set_bit(FailFast, &rdev->flags); 1951 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1952 set_bit(Replacement, &rdev->flags); 1953 } else /* MULTIPATH are always insync */ 1954 set_bit(In_sync, &rdev->flags); 1955 1956 return 0; 1957 } 1958 1959 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1960 { 1961 struct mdp_superblock_1 *sb; 1962 struct md_rdev *rdev2; 1963 int max_dev, i; 1964 /* make rdev->sb match mddev and rdev data. */ 1965 1966 sb = page_address(rdev->sb_page); 1967 1968 sb->feature_map = 0; 1969 sb->pad0 = 0; 1970 sb->recovery_offset = cpu_to_le64(0); 1971 memset(sb->pad3, 0, sizeof(sb->pad3)); 1972 1973 sb->utime = cpu_to_le64((__u64)mddev->utime); 1974 sb->events = cpu_to_le64(mddev->events); 1975 if (mddev->in_sync) 1976 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1977 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1978 sb->resync_offset = cpu_to_le64(MaxSector); 1979 else 1980 sb->resync_offset = cpu_to_le64(0); 1981 1982 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1983 1984 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1985 sb->size = cpu_to_le64(mddev->dev_sectors); 1986 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1987 sb->level = cpu_to_le32(mddev->level); 1988 sb->layout = cpu_to_le32(mddev->layout); 1989 if (test_bit(FailFast, &rdev->flags)) 1990 sb->devflags |= FailFast1; 1991 else 1992 sb->devflags &= ~FailFast1; 1993 1994 if (test_bit(WriteMostly, &rdev->flags)) 1995 sb->devflags |= WriteMostly1; 1996 else 1997 sb->devflags &= ~WriteMostly1; 1998 sb->data_offset = cpu_to_le64(rdev->data_offset); 1999 sb->data_size = cpu_to_le64(rdev->sectors); 2000 2001 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2002 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2003 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2004 } 2005 2006 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2007 !test_bit(In_sync, &rdev->flags)) { 2008 sb->feature_map |= 2009 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2010 sb->recovery_offset = 2011 cpu_to_le64(rdev->recovery_offset); 2012 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2013 sb->feature_map |= 2014 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2015 } 2016 /* Note: recovery_offset and journal_tail share space */ 2017 if (test_bit(Journal, &rdev->flags)) 2018 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2019 if (test_bit(Replacement, &rdev->flags)) 2020 sb->feature_map |= 2021 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2022 2023 if (mddev->reshape_position != MaxSector) { 2024 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2025 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2026 sb->new_layout = cpu_to_le32(mddev->new_layout); 2027 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2028 sb->new_level = cpu_to_le32(mddev->new_level); 2029 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2030 if (mddev->delta_disks == 0 && 2031 mddev->reshape_backwards) 2032 sb->feature_map 2033 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2034 if (rdev->new_data_offset != rdev->data_offset) { 2035 sb->feature_map 2036 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2037 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2038 - rdev->data_offset)); 2039 } 2040 } 2041 2042 if (mddev_is_clustered(mddev)) 2043 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2044 2045 if (rdev->badblocks.count == 0) 2046 /* Nothing to do for bad blocks*/ ; 2047 else if (sb->bblog_offset == 0) 2048 /* Cannot record bad blocks on this device */ 2049 md_error(mddev, rdev); 2050 else { 2051 struct badblocks *bb = &rdev->badblocks; 2052 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2053 u64 *p = bb->page; 2054 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2055 if (bb->changed) { 2056 unsigned seq; 2057 2058 retry: 2059 seq = read_seqbegin(&bb->lock); 2060 2061 memset(bbp, 0xff, PAGE_SIZE); 2062 2063 for (i = 0 ; i < bb->count ; i++) { 2064 u64 internal_bb = p[i]; 2065 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2066 | BB_LEN(internal_bb)); 2067 bbp[i] = cpu_to_le64(store_bb); 2068 } 2069 bb->changed = 0; 2070 if (read_seqretry(&bb->lock, seq)) 2071 goto retry; 2072 2073 bb->sector = (rdev->sb_start + 2074 (int)le32_to_cpu(sb->bblog_offset)); 2075 bb->size = le16_to_cpu(sb->bblog_size); 2076 } 2077 } 2078 2079 max_dev = 0; 2080 rdev_for_each(rdev2, mddev) 2081 if (rdev2->desc_nr+1 > max_dev) 2082 max_dev = rdev2->desc_nr+1; 2083 2084 if (max_dev > le32_to_cpu(sb->max_dev)) { 2085 int bmask; 2086 sb->max_dev = cpu_to_le32(max_dev); 2087 rdev->sb_size = max_dev * 2 + 256; 2088 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2089 if (rdev->sb_size & bmask) 2090 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2091 } else 2092 max_dev = le32_to_cpu(sb->max_dev); 2093 2094 for (i=0; i<max_dev;i++) 2095 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2096 2097 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2098 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2099 2100 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2101 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2102 sb->feature_map |= 2103 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2104 else 2105 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2106 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2107 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2108 } 2109 2110 rdev_for_each(rdev2, mddev) { 2111 i = rdev2->desc_nr; 2112 if (test_bit(Faulty, &rdev2->flags)) 2113 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2114 else if (test_bit(In_sync, &rdev2->flags)) 2115 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2116 else if (test_bit(Journal, &rdev2->flags)) 2117 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2118 else if (rdev2->raid_disk >= 0) 2119 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2120 else 2121 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2122 } 2123 2124 sb->sb_csum = calc_sb_1_csum(sb); 2125 } 2126 2127 static sector_t super_1_choose_bm_space(sector_t dev_size) 2128 { 2129 sector_t bm_space; 2130 2131 /* if the device is bigger than 8Gig, save 64k for bitmap 2132 * usage, if bigger than 200Gig, save 128k 2133 */ 2134 if (dev_size < 64*2) 2135 bm_space = 0; 2136 else if (dev_size - 64*2 >= 200*1024*1024*2) 2137 bm_space = 128*2; 2138 else if (dev_size - 4*2 > 8*1024*1024*2) 2139 bm_space = 64*2; 2140 else 2141 bm_space = 4*2; 2142 return bm_space; 2143 } 2144 2145 static unsigned long long 2146 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2147 { 2148 struct mdp_superblock_1 *sb; 2149 sector_t max_sectors; 2150 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2151 return 0; /* component must fit device */ 2152 if (rdev->data_offset != rdev->new_data_offset) 2153 return 0; /* too confusing */ 2154 if (rdev->sb_start < rdev->data_offset) { 2155 /* minor versions 1 and 2; superblock before data */ 2156 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2157 if (!num_sectors || num_sectors > max_sectors) 2158 num_sectors = max_sectors; 2159 } else if (rdev->mddev->bitmap_info.offset) { 2160 /* minor version 0 with bitmap we can't move */ 2161 return 0; 2162 } else { 2163 /* minor version 0; superblock after data */ 2164 sector_t sb_start, bm_space; 2165 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2166 2167 /* 8K is for superblock */ 2168 sb_start = dev_size - 8*2; 2169 sb_start &= ~(sector_t)(4*2 - 1); 2170 2171 bm_space = super_1_choose_bm_space(dev_size); 2172 2173 /* Space that can be used to store date needs to decrease 2174 * superblock bitmap space and bad block space(4K) 2175 */ 2176 max_sectors = sb_start - bm_space - 4*2; 2177 2178 if (!num_sectors || num_sectors > max_sectors) 2179 num_sectors = max_sectors; 2180 rdev->sb_start = sb_start; 2181 } 2182 sb = page_address(rdev->sb_page); 2183 sb->data_size = cpu_to_le64(num_sectors); 2184 sb->super_offset = cpu_to_le64(rdev->sb_start); 2185 sb->sb_csum = calc_sb_1_csum(sb); 2186 do { 2187 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2188 rdev->sb_page); 2189 } while (md_super_wait(rdev->mddev) < 0); 2190 return num_sectors; 2191 2192 } 2193 2194 static int 2195 super_1_allow_new_offset(struct md_rdev *rdev, 2196 unsigned long long new_offset) 2197 { 2198 /* All necessary checks on new >= old have been done */ 2199 struct bitmap *bitmap; 2200 if (new_offset >= rdev->data_offset) 2201 return 1; 2202 2203 /* with 1.0 metadata, there is no metadata to tread on 2204 * so we can always move back */ 2205 if (rdev->mddev->minor_version == 0) 2206 return 1; 2207 2208 /* otherwise we must be sure not to step on 2209 * any metadata, so stay: 2210 * 36K beyond start of superblock 2211 * beyond end of badblocks 2212 * beyond write-intent bitmap 2213 */ 2214 if (rdev->sb_start + (32+4)*2 > new_offset) 2215 return 0; 2216 bitmap = rdev->mddev->bitmap; 2217 if (bitmap && !rdev->mddev->bitmap_info.file && 2218 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2219 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2220 return 0; 2221 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2222 return 0; 2223 2224 return 1; 2225 } 2226 2227 static struct super_type super_types[] = { 2228 [0] = { 2229 .name = "0.90.0", 2230 .owner = THIS_MODULE, 2231 .load_super = super_90_load, 2232 .validate_super = super_90_validate, 2233 .sync_super = super_90_sync, 2234 .rdev_size_change = super_90_rdev_size_change, 2235 .allow_new_offset = super_90_allow_new_offset, 2236 }, 2237 [1] = { 2238 .name = "md-1", 2239 .owner = THIS_MODULE, 2240 .load_super = super_1_load, 2241 .validate_super = super_1_validate, 2242 .sync_super = super_1_sync, 2243 .rdev_size_change = super_1_rdev_size_change, 2244 .allow_new_offset = super_1_allow_new_offset, 2245 }, 2246 }; 2247 2248 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2249 { 2250 if (mddev->sync_super) { 2251 mddev->sync_super(mddev, rdev); 2252 return; 2253 } 2254 2255 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2256 2257 super_types[mddev->major_version].sync_super(mddev, rdev); 2258 } 2259 2260 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2261 { 2262 struct md_rdev *rdev, *rdev2; 2263 2264 rcu_read_lock(); 2265 rdev_for_each_rcu(rdev, mddev1) { 2266 if (test_bit(Faulty, &rdev->flags) || 2267 test_bit(Journal, &rdev->flags) || 2268 rdev->raid_disk == -1) 2269 continue; 2270 rdev_for_each_rcu(rdev2, mddev2) { 2271 if (test_bit(Faulty, &rdev2->flags) || 2272 test_bit(Journal, &rdev2->flags) || 2273 rdev2->raid_disk == -1) 2274 continue; 2275 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2276 rcu_read_unlock(); 2277 return 1; 2278 } 2279 } 2280 } 2281 rcu_read_unlock(); 2282 return 0; 2283 } 2284 2285 static LIST_HEAD(pending_raid_disks); 2286 2287 /* 2288 * Try to register data integrity profile for an mddev 2289 * 2290 * This is called when an array is started and after a disk has been kicked 2291 * from the array. It only succeeds if all working and active component devices 2292 * are integrity capable with matching profiles. 2293 */ 2294 int md_integrity_register(struct mddev *mddev) 2295 { 2296 struct md_rdev *rdev, *reference = NULL; 2297 2298 if (list_empty(&mddev->disks)) 2299 return 0; /* nothing to do */ 2300 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2301 return 0; /* shouldn't register, or already is */ 2302 rdev_for_each(rdev, mddev) { 2303 /* skip spares and non-functional disks */ 2304 if (test_bit(Faulty, &rdev->flags)) 2305 continue; 2306 if (rdev->raid_disk < 0) 2307 continue; 2308 if (!reference) { 2309 /* Use the first rdev as the reference */ 2310 reference = rdev; 2311 continue; 2312 } 2313 /* does this rdev's profile match the reference profile? */ 2314 if (blk_integrity_compare(reference->bdev->bd_disk, 2315 rdev->bdev->bd_disk) < 0) 2316 return -EINVAL; 2317 } 2318 if (!reference || !bdev_get_integrity(reference->bdev)) 2319 return 0; 2320 /* 2321 * All component devices are integrity capable and have matching 2322 * profiles, register the common profile for the md device. 2323 */ 2324 blk_integrity_register(mddev->gendisk, 2325 bdev_get_integrity(reference->bdev)); 2326 2327 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2328 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2329 (mddev->level != 1 && mddev->level != 10 && 2330 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2331 /* 2332 * No need to handle the failure of bioset_integrity_create, 2333 * because the function is called by md_run() -> pers->run(), 2334 * md_run calls bioset_exit -> bioset_integrity_free in case 2335 * of failure case. 2336 */ 2337 pr_err("md: failed to create integrity pool for %s\n", 2338 mdname(mddev)); 2339 return -EINVAL; 2340 } 2341 return 0; 2342 } 2343 EXPORT_SYMBOL(md_integrity_register); 2344 2345 /* 2346 * Attempt to add an rdev, but only if it is consistent with the current 2347 * integrity profile 2348 */ 2349 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2350 { 2351 struct blk_integrity *bi_mddev; 2352 2353 if (!mddev->gendisk) 2354 return 0; 2355 2356 bi_mddev = blk_get_integrity(mddev->gendisk); 2357 2358 if (!bi_mddev) /* nothing to do */ 2359 return 0; 2360 2361 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2362 pr_err("%s: incompatible integrity profile for %pg\n", 2363 mdname(mddev), rdev->bdev); 2364 return -ENXIO; 2365 } 2366 2367 return 0; 2368 } 2369 EXPORT_SYMBOL(md_integrity_add_rdev); 2370 2371 static bool rdev_read_only(struct md_rdev *rdev) 2372 { 2373 return bdev_read_only(rdev->bdev) || 2374 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2375 } 2376 2377 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2378 { 2379 char b[BDEVNAME_SIZE]; 2380 int err; 2381 2382 /* prevent duplicates */ 2383 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2384 return -EEXIST; 2385 2386 if (rdev_read_only(rdev) && mddev->pers) 2387 return -EROFS; 2388 2389 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2390 if (!test_bit(Journal, &rdev->flags) && 2391 rdev->sectors && 2392 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2393 if (mddev->pers) { 2394 /* Cannot change size, so fail 2395 * If mddev->level <= 0, then we don't care 2396 * about aligning sizes (e.g. linear) 2397 */ 2398 if (mddev->level > 0) 2399 return -ENOSPC; 2400 } else 2401 mddev->dev_sectors = rdev->sectors; 2402 } 2403 2404 /* Verify rdev->desc_nr is unique. 2405 * If it is -1, assign a free number, else 2406 * check number is not in use 2407 */ 2408 rcu_read_lock(); 2409 if (rdev->desc_nr < 0) { 2410 int choice = 0; 2411 if (mddev->pers) 2412 choice = mddev->raid_disks; 2413 while (md_find_rdev_nr_rcu(mddev, choice)) 2414 choice++; 2415 rdev->desc_nr = choice; 2416 } else { 2417 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2418 rcu_read_unlock(); 2419 return -EBUSY; 2420 } 2421 } 2422 rcu_read_unlock(); 2423 if (!test_bit(Journal, &rdev->flags) && 2424 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2425 pr_warn("md: %s: array is limited to %d devices\n", 2426 mdname(mddev), mddev->max_disks); 2427 return -EBUSY; 2428 } 2429 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2430 strreplace(b, '/', '!'); 2431 2432 rdev->mddev = mddev; 2433 pr_debug("md: bind<%s>\n", b); 2434 2435 if (mddev->raid_disks) 2436 mddev_create_serial_pool(mddev, rdev, false); 2437 2438 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2439 goto fail; 2440 2441 /* failure here is OK */ 2442 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2443 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2444 rdev->sysfs_unack_badblocks = 2445 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2446 rdev->sysfs_badblocks = 2447 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2448 2449 list_add_rcu(&rdev->same_set, &mddev->disks); 2450 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2451 2452 /* May as well allow recovery to be retried once */ 2453 mddev->recovery_disabled++; 2454 2455 return 0; 2456 2457 fail: 2458 pr_warn("md: failed to register dev-%s for %s\n", 2459 b, mdname(mddev)); 2460 return err; 2461 } 2462 2463 static void rdev_delayed_delete(struct work_struct *ws) 2464 { 2465 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2466 kobject_del(&rdev->kobj); 2467 kobject_put(&rdev->kobj); 2468 } 2469 2470 void md_autodetect_dev(dev_t dev); 2471 2472 static void export_rdev(struct md_rdev *rdev) 2473 { 2474 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2475 md_rdev_clear(rdev); 2476 #ifndef MODULE 2477 if (test_bit(AutoDetected, &rdev->flags)) 2478 md_autodetect_dev(rdev->bdev->bd_dev); 2479 #endif 2480 blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2481 rdev->bdev = NULL; 2482 kobject_put(&rdev->kobj); 2483 } 2484 2485 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2486 { 2487 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2488 list_del_rcu(&rdev->same_set); 2489 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2490 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2491 rdev->mddev = NULL; 2492 sysfs_remove_link(&rdev->kobj, "block"); 2493 sysfs_put(rdev->sysfs_state); 2494 sysfs_put(rdev->sysfs_unack_badblocks); 2495 sysfs_put(rdev->sysfs_badblocks); 2496 rdev->sysfs_state = NULL; 2497 rdev->sysfs_unack_badblocks = NULL; 2498 rdev->sysfs_badblocks = NULL; 2499 rdev->badblocks.count = 0; 2500 /* We need to delay this, otherwise we can deadlock when 2501 * writing to 'remove' to "dev/state". We also need 2502 * to delay it due to rcu usage. 2503 */ 2504 synchronize_rcu(); 2505 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2506 kobject_get(&rdev->kobj); 2507 queue_work(md_rdev_misc_wq, &rdev->del_work); 2508 export_rdev(rdev); 2509 } 2510 2511 static void export_array(struct mddev *mddev) 2512 { 2513 struct md_rdev *rdev; 2514 2515 while (!list_empty(&mddev->disks)) { 2516 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2517 same_set); 2518 md_kick_rdev_from_array(rdev); 2519 } 2520 mddev->raid_disks = 0; 2521 mddev->major_version = 0; 2522 } 2523 2524 static bool set_in_sync(struct mddev *mddev) 2525 { 2526 lockdep_assert_held(&mddev->lock); 2527 if (!mddev->in_sync) { 2528 mddev->sync_checkers++; 2529 spin_unlock(&mddev->lock); 2530 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2531 spin_lock(&mddev->lock); 2532 if (!mddev->in_sync && 2533 percpu_ref_is_zero(&mddev->writes_pending)) { 2534 mddev->in_sync = 1; 2535 /* 2536 * Ensure ->in_sync is visible before we clear 2537 * ->sync_checkers. 2538 */ 2539 smp_mb(); 2540 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2541 sysfs_notify_dirent_safe(mddev->sysfs_state); 2542 } 2543 if (--mddev->sync_checkers == 0) 2544 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2545 } 2546 if (mddev->safemode == 1) 2547 mddev->safemode = 0; 2548 return mddev->in_sync; 2549 } 2550 2551 static void sync_sbs(struct mddev *mddev, int nospares) 2552 { 2553 /* Update each superblock (in-memory image), but 2554 * if we are allowed to, skip spares which already 2555 * have the right event counter, or have one earlier 2556 * (which would mean they aren't being marked as dirty 2557 * with the rest of the array) 2558 */ 2559 struct md_rdev *rdev; 2560 rdev_for_each(rdev, mddev) { 2561 if (rdev->sb_events == mddev->events || 2562 (nospares && 2563 rdev->raid_disk < 0 && 2564 rdev->sb_events+1 == mddev->events)) { 2565 /* Don't update this superblock */ 2566 rdev->sb_loaded = 2; 2567 } else { 2568 sync_super(mddev, rdev); 2569 rdev->sb_loaded = 1; 2570 } 2571 } 2572 } 2573 2574 static bool does_sb_need_changing(struct mddev *mddev) 2575 { 2576 struct md_rdev *rdev = NULL, *iter; 2577 struct mdp_superblock_1 *sb; 2578 int role; 2579 2580 /* Find a good rdev */ 2581 rdev_for_each(iter, mddev) 2582 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2583 rdev = iter; 2584 break; 2585 } 2586 2587 /* No good device found. */ 2588 if (!rdev) 2589 return false; 2590 2591 sb = page_address(rdev->sb_page); 2592 /* Check if a device has become faulty or a spare become active */ 2593 rdev_for_each(rdev, mddev) { 2594 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2595 /* Device activated? */ 2596 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2597 !test_bit(Faulty, &rdev->flags)) 2598 return true; 2599 /* Device turned faulty? */ 2600 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2601 return true; 2602 } 2603 2604 /* Check if any mddev parameters have changed */ 2605 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2606 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2607 (mddev->layout != le32_to_cpu(sb->layout)) || 2608 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2609 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2610 return true; 2611 2612 return false; 2613 } 2614 2615 void md_update_sb(struct mddev *mddev, int force_change) 2616 { 2617 struct md_rdev *rdev; 2618 int sync_req; 2619 int nospares = 0; 2620 int any_badblocks_changed = 0; 2621 int ret = -1; 2622 2623 if (!md_is_rdwr(mddev)) { 2624 if (force_change) 2625 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2626 return; 2627 } 2628 2629 repeat: 2630 if (mddev_is_clustered(mddev)) { 2631 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2632 force_change = 1; 2633 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2634 nospares = 1; 2635 ret = md_cluster_ops->metadata_update_start(mddev); 2636 /* Has someone else has updated the sb */ 2637 if (!does_sb_need_changing(mddev)) { 2638 if (ret == 0) 2639 md_cluster_ops->metadata_update_cancel(mddev); 2640 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2641 BIT(MD_SB_CHANGE_DEVS) | 2642 BIT(MD_SB_CHANGE_CLEAN)); 2643 return; 2644 } 2645 } 2646 2647 /* 2648 * First make sure individual recovery_offsets are correct 2649 * curr_resync_completed can only be used during recovery. 2650 * During reshape/resync it might use array-addresses rather 2651 * that device addresses. 2652 */ 2653 rdev_for_each(rdev, mddev) { 2654 if (rdev->raid_disk >= 0 && 2655 mddev->delta_disks >= 0 && 2656 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2657 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2658 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2659 !test_bit(Journal, &rdev->flags) && 2660 !test_bit(In_sync, &rdev->flags) && 2661 mddev->curr_resync_completed > rdev->recovery_offset) 2662 rdev->recovery_offset = mddev->curr_resync_completed; 2663 2664 } 2665 if (!mddev->persistent) { 2666 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2667 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2668 if (!mddev->external) { 2669 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2670 rdev_for_each(rdev, mddev) { 2671 if (rdev->badblocks.changed) { 2672 rdev->badblocks.changed = 0; 2673 ack_all_badblocks(&rdev->badblocks); 2674 md_error(mddev, rdev); 2675 } 2676 clear_bit(Blocked, &rdev->flags); 2677 clear_bit(BlockedBadBlocks, &rdev->flags); 2678 wake_up(&rdev->blocked_wait); 2679 } 2680 } 2681 wake_up(&mddev->sb_wait); 2682 return; 2683 } 2684 2685 spin_lock(&mddev->lock); 2686 2687 mddev->utime = ktime_get_real_seconds(); 2688 2689 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2690 force_change = 1; 2691 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2692 /* just a clean<-> dirty transition, possibly leave spares alone, 2693 * though if events isn't the right even/odd, we will have to do 2694 * spares after all 2695 */ 2696 nospares = 1; 2697 if (force_change) 2698 nospares = 0; 2699 if (mddev->degraded) 2700 /* If the array is degraded, then skipping spares is both 2701 * dangerous and fairly pointless. 2702 * Dangerous because a device that was removed from the array 2703 * might have a event_count that still looks up-to-date, 2704 * so it can be re-added without a resync. 2705 * Pointless because if there are any spares to skip, 2706 * then a recovery will happen and soon that array won't 2707 * be degraded any more and the spare can go back to sleep then. 2708 */ 2709 nospares = 0; 2710 2711 sync_req = mddev->in_sync; 2712 2713 /* If this is just a dirty<->clean transition, and the array is clean 2714 * and 'events' is odd, we can roll back to the previous clean state */ 2715 if (nospares 2716 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2717 && mddev->can_decrease_events 2718 && mddev->events != 1) { 2719 mddev->events--; 2720 mddev->can_decrease_events = 0; 2721 } else { 2722 /* otherwise we have to go forward and ... */ 2723 mddev->events ++; 2724 mddev->can_decrease_events = nospares; 2725 } 2726 2727 /* 2728 * This 64-bit counter should never wrap. 2729 * Either we are in around ~1 trillion A.C., assuming 2730 * 1 reboot per second, or we have a bug... 2731 */ 2732 WARN_ON(mddev->events == 0); 2733 2734 rdev_for_each(rdev, mddev) { 2735 if (rdev->badblocks.changed) 2736 any_badblocks_changed++; 2737 if (test_bit(Faulty, &rdev->flags)) 2738 set_bit(FaultRecorded, &rdev->flags); 2739 } 2740 2741 sync_sbs(mddev, nospares); 2742 spin_unlock(&mddev->lock); 2743 2744 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2745 mdname(mddev), mddev->in_sync); 2746 2747 if (mddev->queue) 2748 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2749 rewrite: 2750 md_bitmap_update_sb(mddev->bitmap); 2751 rdev_for_each(rdev, mddev) { 2752 if (rdev->sb_loaded != 1) 2753 continue; /* no noise on spare devices */ 2754 2755 if (!test_bit(Faulty, &rdev->flags)) { 2756 md_super_write(mddev,rdev, 2757 rdev->sb_start, rdev->sb_size, 2758 rdev->sb_page); 2759 pr_debug("md: (write) %pg's sb offset: %llu\n", 2760 rdev->bdev, 2761 (unsigned long long)rdev->sb_start); 2762 rdev->sb_events = mddev->events; 2763 if (rdev->badblocks.size) { 2764 md_super_write(mddev, rdev, 2765 rdev->badblocks.sector, 2766 rdev->badblocks.size << 9, 2767 rdev->bb_page); 2768 rdev->badblocks.size = 0; 2769 } 2770 2771 } else 2772 pr_debug("md: %pg (skipping faulty)\n", 2773 rdev->bdev); 2774 2775 if (mddev->level == LEVEL_MULTIPATH) 2776 /* only need to write one superblock... */ 2777 break; 2778 } 2779 if (md_super_wait(mddev) < 0) 2780 goto rewrite; 2781 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2782 2783 if (mddev_is_clustered(mddev) && ret == 0) 2784 md_cluster_ops->metadata_update_finish(mddev); 2785 2786 if (mddev->in_sync != sync_req || 2787 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2788 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2789 /* have to write it out again */ 2790 goto repeat; 2791 wake_up(&mddev->sb_wait); 2792 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2793 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2794 2795 rdev_for_each(rdev, mddev) { 2796 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2797 clear_bit(Blocked, &rdev->flags); 2798 2799 if (any_badblocks_changed) 2800 ack_all_badblocks(&rdev->badblocks); 2801 clear_bit(BlockedBadBlocks, &rdev->flags); 2802 wake_up(&rdev->blocked_wait); 2803 } 2804 } 2805 EXPORT_SYMBOL(md_update_sb); 2806 2807 static int add_bound_rdev(struct md_rdev *rdev) 2808 { 2809 struct mddev *mddev = rdev->mddev; 2810 int err = 0; 2811 bool add_journal = test_bit(Journal, &rdev->flags); 2812 2813 if (!mddev->pers->hot_remove_disk || add_journal) { 2814 /* If there is hot_add_disk but no hot_remove_disk 2815 * then added disks for geometry changes, 2816 * and should be added immediately. 2817 */ 2818 super_types[mddev->major_version]. 2819 validate_super(mddev, rdev); 2820 if (add_journal) 2821 mddev_suspend(mddev); 2822 err = mddev->pers->hot_add_disk(mddev, rdev); 2823 if (add_journal) 2824 mddev_resume(mddev); 2825 if (err) { 2826 md_kick_rdev_from_array(rdev); 2827 return err; 2828 } 2829 } 2830 sysfs_notify_dirent_safe(rdev->sysfs_state); 2831 2832 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2833 if (mddev->degraded) 2834 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2835 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2836 md_new_event(); 2837 md_wakeup_thread(mddev->thread); 2838 return 0; 2839 } 2840 2841 /* words written to sysfs files may, or may not, be \n terminated. 2842 * We want to accept with case. For this we use cmd_match. 2843 */ 2844 static int cmd_match(const char *cmd, const char *str) 2845 { 2846 /* See if cmd, written into a sysfs file, matches 2847 * str. They must either be the same, or cmd can 2848 * have a trailing newline 2849 */ 2850 while (*cmd && *str && *cmd == *str) { 2851 cmd++; 2852 str++; 2853 } 2854 if (*cmd == '\n') 2855 cmd++; 2856 if (*str || *cmd) 2857 return 0; 2858 return 1; 2859 } 2860 2861 struct rdev_sysfs_entry { 2862 struct attribute attr; 2863 ssize_t (*show)(struct md_rdev *, char *); 2864 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2865 }; 2866 2867 static ssize_t 2868 state_show(struct md_rdev *rdev, char *page) 2869 { 2870 char *sep = ","; 2871 size_t len = 0; 2872 unsigned long flags = READ_ONCE(rdev->flags); 2873 2874 if (test_bit(Faulty, &flags) || 2875 (!test_bit(ExternalBbl, &flags) && 2876 rdev->badblocks.unacked_exist)) 2877 len += sprintf(page+len, "faulty%s", sep); 2878 if (test_bit(In_sync, &flags)) 2879 len += sprintf(page+len, "in_sync%s", sep); 2880 if (test_bit(Journal, &flags)) 2881 len += sprintf(page+len, "journal%s", sep); 2882 if (test_bit(WriteMostly, &flags)) 2883 len += sprintf(page+len, "write_mostly%s", sep); 2884 if (test_bit(Blocked, &flags) || 2885 (rdev->badblocks.unacked_exist 2886 && !test_bit(Faulty, &flags))) 2887 len += sprintf(page+len, "blocked%s", sep); 2888 if (!test_bit(Faulty, &flags) && 2889 !test_bit(Journal, &flags) && 2890 !test_bit(In_sync, &flags)) 2891 len += sprintf(page+len, "spare%s", sep); 2892 if (test_bit(WriteErrorSeen, &flags)) 2893 len += sprintf(page+len, "write_error%s", sep); 2894 if (test_bit(WantReplacement, &flags)) 2895 len += sprintf(page+len, "want_replacement%s", sep); 2896 if (test_bit(Replacement, &flags)) 2897 len += sprintf(page+len, "replacement%s", sep); 2898 if (test_bit(ExternalBbl, &flags)) 2899 len += sprintf(page+len, "external_bbl%s", sep); 2900 if (test_bit(FailFast, &flags)) 2901 len += sprintf(page+len, "failfast%s", sep); 2902 2903 if (len) 2904 len -= strlen(sep); 2905 2906 return len+sprintf(page+len, "\n"); 2907 } 2908 2909 static ssize_t 2910 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2911 { 2912 /* can write 2913 * faulty - simulates an error 2914 * remove - disconnects the device 2915 * writemostly - sets write_mostly 2916 * -writemostly - clears write_mostly 2917 * blocked - sets the Blocked flags 2918 * -blocked - clears the Blocked and possibly simulates an error 2919 * insync - sets Insync providing device isn't active 2920 * -insync - clear Insync for a device with a slot assigned, 2921 * so that it gets rebuilt based on bitmap 2922 * write_error - sets WriteErrorSeen 2923 * -write_error - clears WriteErrorSeen 2924 * {,-}failfast - set/clear FailFast 2925 */ 2926 2927 struct mddev *mddev = rdev->mddev; 2928 int err = -EINVAL; 2929 bool need_update_sb = false; 2930 2931 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2932 md_error(rdev->mddev, rdev); 2933 2934 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2935 err = -EBUSY; 2936 else 2937 err = 0; 2938 } else if (cmd_match(buf, "remove")) { 2939 if (rdev->mddev->pers) { 2940 clear_bit(Blocked, &rdev->flags); 2941 remove_and_add_spares(rdev->mddev, rdev); 2942 } 2943 if (rdev->raid_disk >= 0) 2944 err = -EBUSY; 2945 else { 2946 err = 0; 2947 if (mddev_is_clustered(mddev)) 2948 err = md_cluster_ops->remove_disk(mddev, rdev); 2949 2950 if (err == 0) { 2951 md_kick_rdev_from_array(rdev); 2952 if (mddev->pers) { 2953 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2954 md_wakeup_thread(mddev->thread); 2955 } 2956 md_new_event(); 2957 } 2958 } 2959 } else if (cmd_match(buf, "writemostly")) { 2960 set_bit(WriteMostly, &rdev->flags); 2961 mddev_create_serial_pool(rdev->mddev, rdev, false); 2962 need_update_sb = true; 2963 err = 0; 2964 } else if (cmd_match(buf, "-writemostly")) { 2965 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2966 clear_bit(WriteMostly, &rdev->flags); 2967 need_update_sb = true; 2968 err = 0; 2969 } else if (cmd_match(buf, "blocked")) { 2970 set_bit(Blocked, &rdev->flags); 2971 err = 0; 2972 } else if (cmd_match(buf, "-blocked")) { 2973 if (!test_bit(Faulty, &rdev->flags) && 2974 !test_bit(ExternalBbl, &rdev->flags) && 2975 rdev->badblocks.unacked_exist) { 2976 /* metadata handler doesn't understand badblocks, 2977 * so we need to fail the device 2978 */ 2979 md_error(rdev->mddev, rdev); 2980 } 2981 clear_bit(Blocked, &rdev->flags); 2982 clear_bit(BlockedBadBlocks, &rdev->flags); 2983 wake_up(&rdev->blocked_wait); 2984 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2985 md_wakeup_thread(rdev->mddev->thread); 2986 2987 err = 0; 2988 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2989 set_bit(In_sync, &rdev->flags); 2990 err = 0; 2991 } else if (cmd_match(buf, "failfast")) { 2992 set_bit(FailFast, &rdev->flags); 2993 need_update_sb = true; 2994 err = 0; 2995 } else if (cmd_match(buf, "-failfast")) { 2996 clear_bit(FailFast, &rdev->flags); 2997 need_update_sb = true; 2998 err = 0; 2999 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3000 !test_bit(Journal, &rdev->flags)) { 3001 if (rdev->mddev->pers == NULL) { 3002 clear_bit(In_sync, &rdev->flags); 3003 rdev->saved_raid_disk = rdev->raid_disk; 3004 rdev->raid_disk = -1; 3005 err = 0; 3006 } 3007 } else if (cmd_match(buf, "write_error")) { 3008 set_bit(WriteErrorSeen, &rdev->flags); 3009 err = 0; 3010 } else if (cmd_match(buf, "-write_error")) { 3011 clear_bit(WriteErrorSeen, &rdev->flags); 3012 err = 0; 3013 } else if (cmd_match(buf, "want_replacement")) { 3014 /* Any non-spare device that is not a replacement can 3015 * become want_replacement at any time, but we then need to 3016 * check if recovery is needed. 3017 */ 3018 if (rdev->raid_disk >= 0 && 3019 !test_bit(Journal, &rdev->flags) && 3020 !test_bit(Replacement, &rdev->flags)) 3021 set_bit(WantReplacement, &rdev->flags); 3022 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3023 md_wakeup_thread(rdev->mddev->thread); 3024 err = 0; 3025 } else if (cmd_match(buf, "-want_replacement")) { 3026 /* Clearing 'want_replacement' is always allowed. 3027 * Once replacements starts it is too late though. 3028 */ 3029 err = 0; 3030 clear_bit(WantReplacement, &rdev->flags); 3031 } else if (cmd_match(buf, "replacement")) { 3032 /* Can only set a device as a replacement when array has not 3033 * yet been started. Once running, replacement is automatic 3034 * from spares, or by assigning 'slot'. 3035 */ 3036 if (rdev->mddev->pers) 3037 err = -EBUSY; 3038 else { 3039 set_bit(Replacement, &rdev->flags); 3040 err = 0; 3041 } 3042 } else if (cmd_match(buf, "-replacement")) { 3043 /* Similarly, can only clear Replacement before start */ 3044 if (rdev->mddev->pers) 3045 err = -EBUSY; 3046 else { 3047 clear_bit(Replacement, &rdev->flags); 3048 err = 0; 3049 } 3050 } else if (cmd_match(buf, "re-add")) { 3051 if (!rdev->mddev->pers) 3052 err = -EINVAL; 3053 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3054 rdev->saved_raid_disk >= 0) { 3055 /* clear_bit is performed _after_ all the devices 3056 * have their local Faulty bit cleared. If any writes 3057 * happen in the meantime in the local node, they 3058 * will land in the local bitmap, which will be synced 3059 * by this node eventually 3060 */ 3061 if (!mddev_is_clustered(rdev->mddev) || 3062 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3063 clear_bit(Faulty, &rdev->flags); 3064 err = add_bound_rdev(rdev); 3065 } 3066 } else 3067 err = -EBUSY; 3068 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3069 set_bit(ExternalBbl, &rdev->flags); 3070 rdev->badblocks.shift = 0; 3071 err = 0; 3072 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3073 clear_bit(ExternalBbl, &rdev->flags); 3074 err = 0; 3075 } 3076 if (need_update_sb) 3077 md_update_sb(mddev, 1); 3078 if (!err) 3079 sysfs_notify_dirent_safe(rdev->sysfs_state); 3080 return err ? err : len; 3081 } 3082 static struct rdev_sysfs_entry rdev_state = 3083 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3084 3085 static ssize_t 3086 errors_show(struct md_rdev *rdev, char *page) 3087 { 3088 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3089 } 3090 3091 static ssize_t 3092 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3093 { 3094 unsigned int n; 3095 int rv; 3096 3097 rv = kstrtouint(buf, 10, &n); 3098 if (rv < 0) 3099 return rv; 3100 atomic_set(&rdev->corrected_errors, n); 3101 return len; 3102 } 3103 static struct rdev_sysfs_entry rdev_errors = 3104 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3105 3106 static ssize_t 3107 slot_show(struct md_rdev *rdev, char *page) 3108 { 3109 if (test_bit(Journal, &rdev->flags)) 3110 return sprintf(page, "journal\n"); 3111 else if (rdev->raid_disk < 0) 3112 return sprintf(page, "none\n"); 3113 else 3114 return sprintf(page, "%d\n", rdev->raid_disk); 3115 } 3116 3117 static ssize_t 3118 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3119 { 3120 int slot; 3121 int err; 3122 3123 if (test_bit(Journal, &rdev->flags)) 3124 return -EBUSY; 3125 if (strncmp(buf, "none", 4)==0) 3126 slot = -1; 3127 else { 3128 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3129 if (err < 0) 3130 return err; 3131 if (slot < 0) 3132 /* overflow */ 3133 return -ENOSPC; 3134 } 3135 if (rdev->mddev->pers && slot == -1) { 3136 /* Setting 'slot' on an active array requires also 3137 * updating the 'rd%d' link, and communicating 3138 * with the personality with ->hot_*_disk. 3139 * For now we only support removing 3140 * failed/spare devices. This normally happens automatically, 3141 * but not when the metadata is externally managed. 3142 */ 3143 if (rdev->raid_disk == -1) 3144 return -EEXIST; 3145 /* personality does all needed checks */ 3146 if (rdev->mddev->pers->hot_remove_disk == NULL) 3147 return -EINVAL; 3148 clear_bit(Blocked, &rdev->flags); 3149 remove_and_add_spares(rdev->mddev, rdev); 3150 if (rdev->raid_disk >= 0) 3151 return -EBUSY; 3152 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3153 md_wakeup_thread(rdev->mddev->thread); 3154 } else if (rdev->mddev->pers) { 3155 /* Activating a spare .. or possibly reactivating 3156 * if we ever get bitmaps working here. 3157 */ 3158 int err; 3159 3160 if (rdev->raid_disk != -1) 3161 return -EBUSY; 3162 3163 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3164 return -EBUSY; 3165 3166 if (rdev->mddev->pers->hot_add_disk == NULL) 3167 return -EINVAL; 3168 3169 if (slot >= rdev->mddev->raid_disks && 3170 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3171 return -ENOSPC; 3172 3173 rdev->raid_disk = slot; 3174 if (test_bit(In_sync, &rdev->flags)) 3175 rdev->saved_raid_disk = slot; 3176 else 3177 rdev->saved_raid_disk = -1; 3178 clear_bit(In_sync, &rdev->flags); 3179 clear_bit(Bitmap_sync, &rdev->flags); 3180 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3181 if (err) { 3182 rdev->raid_disk = -1; 3183 return err; 3184 } else 3185 sysfs_notify_dirent_safe(rdev->sysfs_state); 3186 /* failure here is OK */; 3187 sysfs_link_rdev(rdev->mddev, rdev); 3188 /* don't wakeup anyone, leave that to userspace. */ 3189 } else { 3190 if (slot >= rdev->mddev->raid_disks && 3191 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3192 return -ENOSPC; 3193 rdev->raid_disk = slot; 3194 /* assume it is working */ 3195 clear_bit(Faulty, &rdev->flags); 3196 clear_bit(WriteMostly, &rdev->flags); 3197 set_bit(In_sync, &rdev->flags); 3198 sysfs_notify_dirent_safe(rdev->sysfs_state); 3199 } 3200 return len; 3201 } 3202 3203 static struct rdev_sysfs_entry rdev_slot = 3204 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3205 3206 static ssize_t 3207 offset_show(struct md_rdev *rdev, char *page) 3208 { 3209 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3210 } 3211 3212 static ssize_t 3213 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3214 { 3215 unsigned long long offset; 3216 if (kstrtoull(buf, 10, &offset) < 0) 3217 return -EINVAL; 3218 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3219 return -EBUSY; 3220 if (rdev->sectors && rdev->mddev->external) 3221 /* Must set offset before size, so overlap checks 3222 * can be sane */ 3223 return -EBUSY; 3224 rdev->data_offset = offset; 3225 rdev->new_data_offset = offset; 3226 return len; 3227 } 3228 3229 static struct rdev_sysfs_entry rdev_offset = 3230 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3231 3232 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3233 { 3234 return sprintf(page, "%llu\n", 3235 (unsigned long long)rdev->new_data_offset); 3236 } 3237 3238 static ssize_t new_offset_store(struct md_rdev *rdev, 3239 const char *buf, size_t len) 3240 { 3241 unsigned long long new_offset; 3242 struct mddev *mddev = rdev->mddev; 3243 3244 if (kstrtoull(buf, 10, &new_offset) < 0) 3245 return -EINVAL; 3246 3247 if (mddev->sync_thread || 3248 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3249 return -EBUSY; 3250 if (new_offset == rdev->data_offset) 3251 /* reset is always permitted */ 3252 ; 3253 else if (new_offset > rdev->data_offset) { 3254 /* must not push array size beyond rdev_sectors */ 3255 if (new_offset - rdev->data_offset 3256 + mddev->dev_sectors > rdev->sectors) 3257 return -E2BIG; 3258 } 3259 /* Metadata worries about other space details. */ 3260 3261 /* decreasing the offset is inconsistent with a backwards 3262 * reshape. 3263 */ 3264 if (new_offset < rdev->data_offset && 3265 mddev->reshape_backwards) 3266 return -EINVAL; 3267 /* Increasing offset is inconsistent with forwards 3268 * reshape. reshape_direction should be set to 3269 * 'backwards' first. 3270 */ 3271 if (new_offset > rdev->data_offset && 3272 !mddev->reshape_backwards) 3273 return -EINVAL; 3274 3275 if (mddev->pers && mddev->persistent && 3276 !super_types[mddev->major_version] 3277 .allow_new_offset(rdev, new_offset)) 3278 return -E2BIG; 3279 rdev->new_data_offset = new_offset; 3280 if (new_offset > rdev->data_offset) 3281 mddev->reshape_backwards = 1; 3282 else if (new_offset < rdev->data_offset) 3283 mddev->reshape_backwards = 0; 3284 3285 return len; 3286 } 3287 static struct rdev_sysfs_entry rdev_new_offset = 3288 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3289 3290 static ssize_t 3291 rdev_size_show(struct md_rdev *rdev, char *page) 3292 { 3293 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3294 } 3295 3296 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3297 { 3298 /* check if two start/length pairs overlap */ 3299 if (a->data_offset + a->sectors <= b->data_offset) 3300 return false; 3301 if (b->data_offset + b->sectors <= a->data_offset) 3302 return false; 3303 return true; 3304 } 3305 3306 static bool md_rdev_overlaps(struct md_rdev *rdev) 3307 { 3308 struct mddev *mddev; 3309 struct md_rdev *rdev2; 3310 3311 spin_lock(&all_mddevs_lock); 3312 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3313 if (test_bit(MD_DELETED, &mddev->flags)) 3314 continue; 3315 rdev_for_each(rdev2, mddev) { 3316 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3317 md_rdevs_overlap(rdev, rdev2)) { 3318 spin_unlock(&all_mddevs_lock); 3319 return true; 3320 } 3321 } 3322 } 3323 spin_unlock(&all_mddevs_lock); 3324 return false; 3325 } 3326 3327 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3328 { 3329 unsigned long long blocks; 3330 sector_t new; 3331 3332 if (kstrtoull(buf, 10, &blocks) < 0) 3333 return -EINVAL; 3334 3335 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3336 return -EINVAL; /* sector conversion overflow */ 3337 3338 new = blocks * 2; 3339 if (new != blocks * 2) 3340 return -EINVAL; /* unsigned long long to sector_t overflow */ 3341 3342 *sectors = new; 3343 return 0; 3344 } 3345 3346 static ssize_t 3347 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3348 { 3349 struct mddev *my_mddev = rdev->mddev; 3350 sector_t oldsectors = rdev->sectors; 3351 sector_t sectors; 3352 3353 if (test_bit(Journal, &rdev->flags)) 3354 return -EBUSY; 3355 if (strict_blocks_to_sectors(buf, §ors) < 0) 3356 return -EINVAL; 3357 if (rdev->data_offset != rdev->new_data_offset) 3358 return -EINVAL; /* too confusing */ 3359 if (my_mddev->pers && rdev->raid_disk >= 0) { 3360 if (my_mddev->persistent) { 3361 sectors = super_types[my_mddev->major_version]. 3362 rdev_size_change(rdev, sectors); 3363 if (!sectors) 3364 return -EBUSY; 3365 } else if (!sectors) 3366 sectors = bdev_nr_sectors(rdev->bdev) - 3367 rdev->data_offset; 3368 if (!my_mddev->pers->resize) 3369 /* Cannot change size for RAID0 or Linear etc */ 3370 return -EINVAL; 3371 } 3372 if (sectors < my_mddev->dev_sectors) 3373 return -EINVAL; /* component must fit device */ 3374 3375 rdev->sectors = sectors; 3376 3377 /* 3378 * Check that all other rdevs with the same bdev do not overlap. This 3379 * check does not provide a hard guarantee, it just helps avoid 3380 * dangerous mistakes. 3381 */ 3382 if (sectors > oldsectors && my_mddev->external && 3383 md_rdev_overlaps(rdev)) { 3384 /* 3385 * Someone else could have slipped in a size change here, but 3386 * doing so is just silly. We put oldsectors back because we 3387 * know it is safe, and trust userspace not to race with itself. 3388 */ 3389 rdev->sectors = oldsectors; 3390 return -EBUSY; 3391 } 3392 return len; 3393 } 3394 3395 static struct rdev_sysfs_entry rdev_size = 3396 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3397 3398 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3399 { 3400 unsigned long long recovery_start = rdev->recovery_offset; 3401 3402 if (test_bit(In_sync, &rdev->flags) || 3403 recovery_start == MaxSector) 3404 return sprintf(page, "none\n"); 3405 3406 return sprintf(page, "%llu\n", recovery_start); 3407 } 3408 3409 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3410 { 3411 unsigned long long recovery_start; 3412 3413 if (cmd_match(buf, "none")) 3414 recovery_start = MaxSector; 3415 else if (kstrtoull(buf, 10, &recovery_start)) 3416 return -EINVAL; 3417 3418 if (rdev->mddev->pers && 3419 rdev->raid_disk >= 0) 3420 return -EBUSY; 3421 3422 rdev->recovery_offset = recovery_start; 3423 if (recovery_start == MaxSector) 3424 set_bit(In_sync, &rdev->flags); 3425 else 3426 clear_bit(In_sync, &rdev->flags); 3427 return len; 3428 } 3429 3430 static struct rdev_sysfs_entry rdev_recovery_start = 3431 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3432 3433 /* sysfs access to bad-blocks list. 3434 * We present two files. 3435 * 'bad-blocks' lists sector numbers and lengths of ranges that 3436 * are recorded as bad. The list is truncated to fit within 3437 * the one-page limit of sysfs. 3438 * Writing "sector length" to this file adds an acknowledged 3439 * bad block list. 3440 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3441 * been acknowledged. Writing to this file adds bad blocks 3442 * without acknowledging them. This is largely for testing. 3443 */ 3444 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3445 { 3446 return badblocks_show(&rdev->badblocks, page, 0); 3447 } 3448 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3449 { 3450 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3451 /* Maybe that ack was all we needed */ 3452 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3453 wake_up(&rdev->blocked_wait); 3454 return rv; 3455 } 3456 static struct rdev_sysfs_entry rdev_bad_blocks = 3457 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3458 3459 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3460 { 3461 return badblocks_show(&rdev->badblocks, page, 1); 3462 } 3463 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3464 { 3465 return badblocks_store(&rdev->badblocks, page, len, 1); 3466 } 3467 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3468 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3469 3470 static ssize_t 3471 ppl_sector_show(struct md_rdev *rdev, char *page) 3472 { 3473 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3474 } 3475 3476 static ssize_t 3477 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3478 { 3479 unsigned long long sector; 3480 3481 if (kstrtoull(buf, 10, §or) < 0) 3482 return -EINVAL; 3483 if (sector != (sector_t)sector) 3484 return -EINVAL; 3485 3486 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3487 rdev->raid_disk >= 0) 3488 return -EBUSY; 3489 3490 if (rdev->mddev->persistent) { 3491 if (rdev->mddev->major_version == 0) 3492 return -EINVAL; 3493 if ((sector > rdev->sb_start && 3494 sector - rdev->sb_start > S16_MAX) || 3495 (sector < rdev->sb_start && 3496 rdev->sb_start - sector > -S16_MIN)) 3497 return -EINVAL; 3498 rdev->ppl.offset = sector - rdev->sb_start; 3499 } else if (!rdev->mddev->external) { 3500 return -EBUSY; 3501 } 3502 rdev->ppl.sector = sector; 3503 return len; 3504 } 3505 3506 static struct rdev_sysfs_entry rdev_ppl_sector = 3507 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3508 3509 static ssize_t 3510 ppl_size_show(struct md_rdev *rdev, char *page) 3511 { 3512 return sprintf(page, "%u\n", rdev->ppl.size); 3513 } 3514 3515 static ssize_t 3516 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3517 { 3518 unsigned int size; 3519 3520 if (kstrtouint(buf, 10, &size) < 0) 3521 return -EINVAL; 3522 3523 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3524 rdev->raid_disk >= 0) 3525 return -EBUSY; 3526 3527 if (rdev->mddev->persistent) { 3528 if (rdev->mddev->major_version == 0) 3529 return -EINVAL; 3530 if (size > U16_MAX) 3531 return -EINVAL; 3532 } else if (!rdev->mddev->external) { 3533 return -EBUSY; 3534 } 3535 rdev->ppl.size = size; 3536 return len; 3537 } 3538 3539 static struct rdev_sysfs_entry rdev_ppl_size = 3540 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3541 3542 static struct attribute *rdev_default_attrs[] = { 3543 &rdev_state.attr, 3544 &rdev_errors.attr, 3545 &rdev_slot.attr, 3546 &rdev_offset.attr, 3547 &rdev_new_offset.attr, 3548 &rdev_size.attr, 3549 &rdev_recovery_start.attr, 3550 &rdev_bad_blocks.attr, 3551 &rdev_unack_bad_blocks.attr, 3552 &rdev_ppl_sector.attr, 3553 &rdev_ppl_size.attr, 3554 NULL, 3555 }; 3556 ATTRIBUTE_GROUPS(rdev_default); 3557 static ssize_t 3558 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3559 { 3560 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3561 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3562 3563 if (!entry->show) 3564 return -EIO; 3565 if (!rdev->mddev) 3566 return -ENODEV; 3567 return entry->show(rdev, page); 3568 } 3569 3570 static ssize_t 3571 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3572 const char *page, size_t length) 3573 { 3574 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3575 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3576 ssize_t rv; 3577 struct mddev *mddev = rdev->mddev; 3578 3579 if (!entry->store) 3580 return -EIO; 3581 if (!capable(CAP_SYS_ADMIN)) 3582 return -EACCES; 3583 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3584 if (!rv) { 3585 if (rdev->mddev == NULL) 3586 rv = -ENODEV; 3587 else 3588 rv = entry->store(rdev, page, length); 3589 mddev_unlock(mddev); 3590 } 3591 return rv; 3592 } 3593 3594 static void rdev_free(struct kobject *ko) 3595 { 3596 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3597 kfree(rdev); 3598 } 3599 static const struct sysfs_ops rdev_sysfs_ops = { 3600 .show = rdev_attr_show, 3601 .store = rdev_attr_store, 3602 }; 3603 static struct kobj_type rdev_ktype = { 3604 .release = rdev_free, 3605 .sysfs_ops = &rdev_sysfs_ops, 3606 .default_groups = rdev_default_groups, 3607 }; 3608 3609 int md_rdev_init(struct md_rdev *rdev) 3610 { 3611 rdev->desc_nr = -1; 3612 rdev->saved_raid_disk = -1; 3613 rdev->raid_disk = -1; 3614 rdev->flags = 0; 3615 rdev->data_offset = 0; 3616 rdev->new_data_offset = 0; 3617 rdev->sb_events = 0; 3618 rdev->last_read_error = 0; 3619 rdev->sb_loaded = 0; 3620 rdev->bb_page = NULL; 3621 atomic_set(&rdev->nr_pending, 0); 3622 atomic_set(&rdev->read_errors, 0); 3623 atomic_set(&rdev->corrected_errors, 0); 3624 3625 INIT_LIST_HEAD(&rdev->same_set); 3626 init_waitqueue_head(&rdev->blocked_wait); 3627 3628 /* Add space to store bad block list. 3629 * This reserves the space even on arrays where it cannot 3630 * be used - I wonder if that matters 3631 */ 3632 return badblocks_init(&rdev->badblocks, 0); 3633 } 3634 EXPORT_SYMBOL_GPL(md_rdev_init); 3635 /* 3636 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3637 * 3638 * mark the device faulty if: 3639 * 3640 * - the device is nonexistent (zero size) 3641 * - the device has no valid superblock 3642 * 3643 * a faulty rdev _never_ has rdev->sb set. 3644 */ 3645 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3646 { 3647 static struct md_rdev claim_rdev; /* just for claiming the bdev */ 3648 struct md_rdev *rdev; 3649 sector_t size; 3650 int err; 3651 3652 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3653 if (!rdev) 3654 return ERR_PTR(-ENOMEM); 3655 3656 err = md_rdev_init(rdev); 3657 if (err) 3658 goto out_free_rdev; 3659 err = alloc_disk_sb(rdev); 3660 if (err) 3661 goto out_clear_rdev; 3662 3663 rdev->bdev = blkdev_get_by_dev(newdev, 3664 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 3665 super_format == -2 ? &claim_rdev : rdev); 3666 if (IS_ERR(rdev->bdev)) { 3667 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3668 MAJOR(newdev), MINOR(newdev)); 3669 err = PTR_ERR(rdev->bdev); 3670 goto out_clear_rdev; 3671 } 3672 3673 kobject_init(&rdev->kobj, &rdev_ktype); 3674 3675 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3676 if (!size) { 3677 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3678 rdev->bdev); 3679 err = -EINVAL; 3680 goto out_blkdev_put; 3681 } 3682 3683 if (super_format >= 0) { 3684 err = super_types[super_format]. 3685 load_super(rdev, NULL, super_minor); 3686 if (err == -EINVAL) { 3687 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3688 rdev->bdev, 3689 super_format, super_minor); 3690 goto out_blkdev_put; 3691 } 3692 if (err < 0) { 3693 pr_warn("md: could not read %pg's sb, not importing!\n", 3694 rdev->bdev); 3695 goto out_blkdev_put; 3696 } 3697 } 3698 3699 return rdev; 3700 3701 out_blkdev_put: 3702 blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3703 out_clear_rdev: 3704 md_rdev_clear(rdev); 3705 out_free_rdev: 3706 kfree(rdev); 3707 return ERR_PTR(err); 3708 } 3709 3710 /* 3711 * Check a full RAID array for plausibility 3712 */ 3713 3714 static int analyze_sbs(struct mddev *mddev) 3715 { 3716 int i; 3717 struct md_rdev *rdev, *freshest, *tmp; 3718 3719 freshest = NULL; 3720 rdev_for_each_safe(rdev, tmp, mddev) 3721 switch (super_types[mddev->major_version]. 3722 load_super(rdev, freshest, mddev->minor_version)) { 3723 case 1: 3724 freshest = rdev; 3725 break; 3726 case 0: 3727 break; 3728 default: 3729 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3730 rdev->bdev); 3731 md_kick_rdev_from_array(rdev); 3732 } 3733 3734 /* Cannot find a valid fresh disk */ 3735 if (!freshest) { 3736 pr_warn("md: cannot find a valid disk\n"); 3737 return -EINVAL; 3738 } 3739 3740 super_types[mddev->major_version]. 3741 validate_super(mddev, freshest); 3742 3743 i = 0; 3744 rdev_for_each_safe(rdev, tmp, mddev) { 3745 if (mddev->max_disks && 3746 (rdev->desc_nr >= mddev->max_disks || 3747 i > mddev->max_disks)) { 3748 pr_warn("md: %s: %pg: only %d devices permitted\n", 3749 mdname(mddev), rdev->bdev, 3750 mddev->max_disks); 3751 md_kick_rdev_from_array(rdev); 3752 continue; 3753 } 3754 if (rdev != freshest) { 3755 if (super_types[mddev->major_version]. 3756 validate_super(mddev, rdev)) { 3757 pr_warn("md: kicking non-fresh %pg from array!\n", 3758 rdev->bdev); 3759 md_kick_rdev_from_array(rdev); 3760 continue; 3761 } 3762 } 3763 if (mddev->level == LEVEL_MULTIPATH) { 3764 rdev->desc_nr = i++; 3765 rdev->raid_disk = rdev->desc_nr; 3766 set_bit(In_sync, &rdev->flags); 3767 } else if (rdev->raid_disk >= 3768 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3769 !test_bit(Journal, &rdev->flags)) { 3770 rdev->raid_disk = -1; 3771 clear_bit(In_sync, &rdev->flags); 3772 } 3773 } 3774 3775 return 0; 3776 } 3777 3778 /* Read a fixed-point number. 3779 * Numbers in sysfs attributes should be in "standard" units where 3780 * possible, so time should be in seconds. 3781 * However we internally use a a much smaller unit such as 3782 * milliseconds or jiffies. 3783 * This function takes a decimal number with a possible fractional 3784 * component, and produces an integer which is the result of 3785 * multiplying that number by 10^'scale'. 3786 * all without any floating-point arithmetic. 3787 */ 3788 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3789 { 3790 unsigned long result = 0; 3791 long decimals = -1; 3792 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3793 if (*cp == '.') 3794 decimals = 0; 3795 else if (decimals < scale) { 3796 unsigned int value; 3797 value = *cp - '0'; 3798 result = result * 10 + value; 3799 if (decimals >= 0) 3800 decimals++; 3801 } 3802 cp++; 3803 } 3804 if (*cp == '\n') 3805 cp++; 3806 if (*cp) 3807 return -EINVAL; 3808 if (decimals < 0) 3809 decimals = 0; 3810 *res = result * int_pow(10, scale - decimals); 3811 return 0; 3812 } 3813 3814 static ssize_t 3815 safe_delay_show(struct mddev *mddev, char *page) 3816 { 3817 int msec = (mddev->safemode_delay*1000)/HZ; 3818 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3819 } 3820 static ssize_t 3821 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3822 { 3823 unsigned long msec; 3824 3825 if (mddev_is_clustered(mddev)) { 3826 pr_warn("md: Safemode is disabled for clustered mode\n"); 3827 return -EINVAL; 3828 } 3829 3830 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3831 return -EINVAL; 3832 if (msec == 0) 3833 mddev->safemode_delay = 0; 3834 else { 3835 unsigned long old_delay = mddev->safemode_delay; 3836 unsigned long new_delay = (msec*HZ)/1000; 3837 3838 if (new_delay == 0) 3839 new_delay = 1; 3840 mddev->safemode_delay = new_delay; 3841 if (new_delay < old_delay || old_delay == 0) 3842 mod_timer(&mddev->safemode_timer, jiffies+1); 3843 } 3844 return len; 3845 } 3846 static struct md_sysfs_entry md_safe_delay = 3847 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3848 3849 static ssize_t 3850 level_show(struct mddev *mddev, char *page) 3851 { 3852 struct md_personality *p; 3853 int ret; 3854 spin_lock(&mddev->lock); 3855 p = mddev->pers; 3856 if (p) 3857 ret = sprintf(page, "%s\n", p->name); 3858 else if (mddev->clevel[0]) 3859 ret = sprintf(page, "%s\n", mddev->clevel); 3860 else if (mddev->level != LEVEL_NONE) 3861 ret = sprintf(page, "%d\n", mddev->level); 3862 else 3863 ret = 0; 3864 spin_unlock(&mddev->lock); 3865 return ret; 3866 } 3867 3868 static ssize_t 3869 level_store(struct mddev *mddev, const char *buf, size_t len) 3870 { 3871 char clevel[16]; 3872 ssize_t rv; 3873 size_t slen = len; 3874 struct md_personality *pers, *oldpers; 3875 long level; 3876 void *priv, *oldpriv; 3877 struct md_rdev *rdev; 3878 3879 if (slen == 0 || slen >= sizeof(clevel)) 3880 return -EINVAL; 3881 3882 rv = mddev_lock(mddev); 3883 if (rv) 3884 return rv; 3885 3886 if (mddev->pers == NULL) { 3887 strncpy(mddev->clevel, buf, slen); 3888 if (mddev->clevel[slen-1] == '\n') 3889 slen--; 3890 mddev->clevel[slen] = 0; 3891 mddev->level = LEVEL_NONE; 3892 rv = len; 3893 goto out_unlock; 3894 } 3895 rv = -EROFS; 3896 if (!md_is_rdwr(mddev)) 3897 goto out_unlock; 3898 3899 /* request to change the personality. Need to ensure: 3900 * - array is not engaged in resync/recovery/reshape 3901 * - old personality can be suspended 3902 * - new personality will access other array. 3903 */ 3904 3905 rv = -EBUSY; 3906 if (mddev->sync_thread || 3907 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3908 mddev->reshape_position != MaxSector || 3909 mddev->sysfs_active) 3910 goto out_unlock; 3911 3912 rv = -EINVAL; 3913 if (!mddev->pers->quiesce) { 3914 pr_warn("md: %s: %s does not support online personality change\n", 3915 mdname(mddev), mddev->pers->name); 3916 goto out_unlock; 3917 } 3918 3919 /* Now find the new personality */ 3920 strncpy(clevel, buf, slen); 3921 if (clevel[slen-1] == '\n') 3922 slen--; 3923 clevel[slen] = 0; 3924 if (kstrtol(clevel, 10, &level)) 3925 level = LEVEL_NONE; 3926 3927 if (request_module("md-%s", clevel) != 0) 3928 request_module("md-level-%s", clevel); 3929 spin_lock(&pers_lock); 3930 pers = find_pers(level, clevel); 3931 if (!pers || !try_module_get(pers->owner)) { 3932 spin_unlock(&pers_lock); 3933 pr_warn("md: personality %s not loaded\n", clevel); 3934 rv = -EINVAL; 3935 goto out_unlock; 3936 } 3937 spin_unlock(&pers_lock); 3938 3939 if (pers == mddev->pers) { 3940 /* Nothing to do! */ 3941 module_put(pers->owner); 3942 rv = len; 3943 goto out_unlock; 3944 } 3945 if (!pers->takeover) { 3946 module_put(pers->owner); 3947 pr_warn("md: %s: %s does not support personality takeover\n", 3948 mdname(mddev), clevel); 3949 rv = -EINVAL; 3950 goto out_unlock; 3951 } 3952 3953 rdev_for_each(rdev, mddev) 3954 rdev->new_raid_disk = rdev->raid_disk; 3955 3956 /* ->takeover must set new_* and/or delta_disks 3957 * if it succeeds, and may set them when it fails. 3958 */ 3959 priv = pers->takeover(mddev); 3960 if (IS_ERR(priv)) { 3961 mddev->new_level = mddev->level; 3962 mddev->new_layout = mddev->layout; 3963 mddev->new_chunk_sectors = mddev->chunk_sectors; 3964 mddev->raid_disks -= mddev->delta_disks; 3965 mddev->delta_disks = 0; 3966 mddev->reshape_backwards = 0; 3967 module_put(pers->owner); 3968 pr_warn("md: %s: %s would not accept array\n", 3969 mdname(mddev), clevel); 3970 rv = PTR_ERR(priv); 3971 goto out_unlock; 3972 } 3973 3974 /* Looks like we have a winner */ 3975 mddev_suspend(mddev); 3976 mddev_detach(mddev); 3977 3978 spin_lock(&mddev->lock); 3979 oldpers = mddev->pers; 3980 oldpriv = mddev->private; 3981 mddev->pers = pers; 3982 mddev->private = priv; 3983 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3984 mddev->level = mddev->new_level; 3985 mddev->layout = mddev->new_layout; 3986 mddev->chunk_sectors = mddev->new_chunk_sectors; 3987 mddev->delta_disks = 0; 3988 mddev->reshape_backwards = 0; 3989 mddev->degraded = 0; 3990 spin_unlock(&mddev->lock); 3991 3992 if (oldpers->sync_request == NULL && 3993 mddev->external) { 3994 /* We are converting from a no-redundancy array 3995 * to a redundancy array and metadata is managed 3996 * externally so we need to be sure that writes 3997 * won't block due to a need to transition 3998 * clean->dirty 3999 * until external management is started. 4000 */ 4001 mddev->in_sync = 0; 4002 mddev->safemode_delay = 0; 4003 mddev->safemode = 0; 4004 } 4005 4006 oldpers->free(mddev, oldpriv); 4007 4008 if (oldpers->sync_request == NULL && 4009 pers->sync_request != NULL) { 4010 /* need to add the md_redundancy_group */ 4011 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4012 pr_warn("md: cannot register extra attributes for %s\n", 4013 mdname(mddev)); 4014 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4015 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4016 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4017 } 4018 if (oldpers->sync_request != NULL && 4019 pers->sync_request == NULL) { 4020 /* need to remove the md_redundancy_group */ 4021 if (mddev->to_remove == NULL) 4022 mddev->to_remove = &md_redundancy_group; 4023 } 4024 4025 module_put(oldpers->owner); 4026 4027 rdev_for_each(rdev, mddev) { 4028 if (rdev->raid_disk < 0) 4029 continue; 4030 if (rdev->new_raid_disk >= mddev->raid_disks) 4031 rdev->new_raid_disk = -1; 4032 if (rdev->new_raid_disk == rdev->raid_disk) 4033 continue; 4034 sysfs_unlink_rdev(mddev, rdev); 4035 } 4036 rdev_for_each(rdev, mddev) { 4037 if (rdev->raid_disk < 0) 4038 continue; 4039 if (rdev->new_raid_disk == rdev->raid_disk) 4040 continue; 4041 rdev->raid_disk = rdev->new_raid_disk; 4042 if (rdev->raid_disk < 0) 4043 clear_bit(In_sync, &rdev->flags); 4044 else { 4045 if (sysfs_link_rdev(mddev, rdev)) 4046 pr_warn("md: cannot register rd%d for %s after level change\n", 4047 rdev->raid_disk, mdname(mddev)); 4048 } 4049 } 4050 4051 if (pers->sync_request == NULL) { 4052 /* this is now an array without redundancy, so 4053 * it must always be in_sync 4054 */ 4055 mddev->in_sync = 1; 4056 del_timer_sync(&mddev->safemode_timer); 4057 } 4058 blk_set_stacking_limits(&mddev->queue->limits); 4059 pers->run(mddev); 4060 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4061 mddev_resume(mddev); 4062 if (!mddev->thread) 4063 md_update_sb(mddev, 1); 4064 sysfs_notify_dirent_safe(mddev->sysfs_level); 4065 md_new_event(); 4066 rv = len; 4067 out_unlock: 4068 mddev_unlock(mddev); 4069 return rv; 4070 } 4071 4072 static struct md_sysfs_entry md_level = 4073 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4074 4075 static ssize_t 4076 layout_show(struct mddev *mddev, char *page) 4077 { 4078 /* just a number, not meaningful for all levels */ 4079 if (mddev->reshape_position != MaxSector && 4080 mddev->layout != mddev->new_layout) 4081 return sprintf(page, "%d (%d)\n", 4082 mddev->new_layout, mddev->layout); 4083 return sprintf(page, "%d\n", mddev->layout); 4084 } 4085 4086 static ssize_t 4087 layout_store(struct mddev *mddev, const char *buf, size_t len) 4088 { 4089 unsigned int n; 4090 int err; 4091 4092 err = kstrtouint(buf, 10, &n); 4093 if (err < 0) 4094 return err; 4095 err = mddev_lock(mddev); 4096 if (err) 4097 return err; 4098 4099 if (mddev->pers) { 4100 if (mddev->pers->check_reshape == NULL) 4101 err = -EBUSY; 4102 else if (!md_is_rdwr(mddev)) 4103 err = -EROFS; 4104 else { 4105 mddev->new_layout = n; 4106 err = mddev->pers->check_reshape(mddev); 4107 if (err) 4108 mddev->new_layout = mddev->layout; 4109 } 4110 } else { 4111 mddev->new_layout = n; 4112 if (mddev->reshape_position == MaxSector) 4113 mddev->layout = n; 4114 } 4115 mddev_unlock(mddev); 4116 return err ?: len; 4117 } 4118 static struct md_sysfs_entry md_layout = 4119 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4120 4121 static ssize_t 4122 raid_disks_show(struct mddev *mddev, char *page) 4123 { 4124 if (mddev->raid_disks == 0) 4125 return 0; 4126 if (mddev->reshape_position != MaxSector && 4127 mddev->delta_disks != 0) 4128 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4129 mddev->raid_disks - mddev->delta_disks); 4130 return sprintf(page, "%d\n", mddev->raid_disks); 4131 } 4132 4133 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4134 4135 static ssize_t 4136 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4137 { 4138 unsigned int n; 4139 int err; 4140 4141 err = kstrtouint(buf, 10, &n); 4142 if (err < 0) 4143 return err; 4144 4145 err = mddev_lock(mddev); 4146 if (err) 4147 return err; 4148 if (mddev->pers) 4149 err = update_raid_disks(mddev, n); 4150 else if (mddev->reshape_position != MaxSector) { 4151 struct md_rdev *rdev; 4152 int olddisks = mddev->raid_disks - mddev->delta_disks; 4153 4154 err = -EINVAL; 4155 rdev_for_each(rdev, mddev) { 4156 if (olddisks < n && 4157 rdev->data_offset < rdev->new_data_offset) 4158 goto out_unlock; 4159 if (olddisks > n && 4160 rdev->data_offset > rdev->new_data_offset) 4161 goto out_unlock; 4162 } 4163 err = 0; 4164 mddev->delta_disks = n - olddisks; 4165 mddev->raid_disks = n; 4166 mddev->reshape_backwards = (mddev->delta_disks < 0); 4167 } else 4168 mddev->raid_disks = n; 4169 out_unlock: 4170 mddev_unlock(mddev); 4171 return err ? err : len; 4172 } 4173 static struct md_sysfs_entry md_raid_disks = 4174 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4175 4176 static ssize_t 4177 uuid_show(struct mddev *mddev, char *page) 4178 { 4179 return sprintf(page, "%pU\n", mddev->uuid); 4180 } 4181 static struct md_sysfs_entry md_uuid = 4182 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4183 4184 static ssize_t 4185 chunk_size_show(struct mddev *mddev, char *page) 4186 { 4187 if (mddev->reshape_position != MaxSector && 4188 mddev->chunk_sectors != mddev->new_chunk_sectors) 4189 return sprintf(page, "%d (%d)\n", 4190 mddev->new_chunk_sectors << 9, 4191 mddev->chunk_sectors << 9); 4192 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4193 } 4194 4195 static ssize_t 4196 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4197 { 4198 unsigned long n; 4199 int err; 4200 4201 err = kstrtoul(buf, 10, &n); 4202 if (err < 0) 4203 return err; 4204 4205 err = mddev_lock(mddev); 4206 if (err) 4207 return err; 4208 if (mddev->pers) { 4209 if (mddev->pers->check_reshape == NULL) 4210 err = -EBUSY; 4211 else if (!md_is_rdwr(mddev)) 4212 err = -EROFS; 4213 else { 4214 mddev->new_chunk_sectors = n >> 9; 4215 err = mddev->pers->check_reshape(mddev); 4216 if (err) 4217 mddev->new_chunk_sectors = mddev->chunk_sectors; 4218 } 4219 } else { 4220 mddev->new_chunk_sectors = n >> 9; 4221 if (mddev->reshape_position == MaxSector) 4222 mddev->chunk_sectors = n >> 9; 4223 } 4224 mddev_unlock(mddev); 4225 return err ?: len; 4226 } 4227 static struct md_sysfs_entry md_chunk_size = 4228 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4229 4230 static ssize_t 4231 resync_start_show(struct mddev *mddev, char *page) 4232 { 4233 if (mddev->recovery_cp == MaxSector) 4234 return sprintf(page, "none\n"); 4235 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4236 } 4237 4238 static ssize_t 4239 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4240 { 4241 unsigned long long n; 4242 int err; 4243 4244 if (cmd_match(buf, "none")) 4245 n = MaxSector; 4246 else { 4247 err = kstrtoull(buf, 10, &n); 4248 if (err < 0) 4249 return err; 4250 if (n != (sector_t)n) 4251 return -EINVAL; 4252 } 4253 4254 err = mddev_lock(mddev); 4255 if (err) 4256 return err; 4257 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4258 err = -EBUSY; 4259 4260 if (!err) { 4261 mddev->recovery_cp = n; 4262 if (mddev->pers) 4263 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4264 } 4265 mddev_unlock(mddev); 4266 return err ?: len; 4267 } 4268 static struct md_sysfs_entry md_resync_start = 4269 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4270 resync_start_show, resync_start_store); 4271 4272 /* 4273 * The array state can be: 4274 * 4275 * clear 4276 * No devices, no size, no level 4277 * Equivalent to STOP_ARRAY ioctl 4278 * inactive 4279 * May have some settings, but array is not active 4280 * all IO results in error 4281 * When written, doesn't tear down array, but just stops it 4282 * suspended (not supported yet) 4283 * All IO requests will block. The array can be reconfigured. 4284 * Writing this, if accepted, will block until array is quiescent 4285 * readonly 4286 * no resync can happen. no superblocks get written. 4287 * write requests fail 4288 * read-auto 4289 * like readonly, but behaves like 'clean' on a write request. 4290 * 4291 * clean - no pending writes, but otherwise active. 4292 * When written to inactive array, starts without resync 4293 * If a write request arrives then 4294 * if metadata is known, mark 'dirty' and switch to 'active'. 4295 * if not known, block and switch to write-pending 4296 * If written to an active array that has pending writes, then fails. 4297 * active 4298 * fully active: IO and resync can be happening. 4299 * When written to inactive array, starts with resync 4300 * 4301 * write-pending 4302 * clean, but writes are blocked waiting for 'active' to be written. 4303 * 4304 * active-idle 4305 * like active, but no writes have been seen for a while (100msec). 4306 * 4307 * broken 4308 * Array is failed. It's useful because mounted-arrays aren't stopped 4309 * when array is failed, so this state will at least alert the user that 4310 * something is wrong. 4311 */ 4312 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4313 write_pending, active_idle, broken, bad_word}; 4314 static char *array_states[] = { 4315 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4316 "write-pending", "active-idle", "broken", NULL }; 4317 4318 static int match_word(const char *word, char **list) 4319 { 4320 int n; 4321 for (n=0; list[n]; n++) 4322 if (cmd_match(word, list[n])) 4323 break; 4324 return n; 4325 } 4326 4327 static ssize_t 4328 array_state_show(struct mddev *mddev, char *page) 4329 { 4330 enum array_state st = inactive; 4331 4332 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4333 switch(mddev->ro) { 4334 case MD_RDONLY: 4335 st = readonly; 4336 break; 4337 case MD_AUTO_READ: 4338 st = read_auto; 4339 break; 4340 case MD_RDWR: 4341 spin_lock(&mddev->lock); 4342 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4343 st = write_pending; 4344 else if (mddev->in_sync) 4345 st = clean; 4346 else if (mddev->safemode) 4347 st = active_idle; 4348 else 4349 st = active; 4350 spin_unlock(&mddev->lock); 4351 } 4352 4353 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4354 st = broken; 4355 } else { 4356 if (list_empty(&mddev->disks) && 4357 mddev->raid_disks == 0 && 4358 mddev->dev_sectors == 0) 4359 st = clear; 4360 else 4361 st = inactive; 4362 } 4363 return sprintf(page, "%s\n", array_states[st]); 4364 } 4365 4366 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4367 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4368 static int restart_array(struct mddev *mddev); 4369 4370 static ssize_t 4371 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4372 { 4373 int err = 0; 4374 enum array_state st = match_word(buf, array_states); 4375 4376 if (mddev->pers && (st == active || st == clean) && 4377 mddev->ro != MD_RDONLY) { 4378 /* don't take reconfig_mutex when toggling between 4379 * clean and active 4380 */ 4381 spin_lock(&mddev->lock); 4382 if (st == active) { 4383 restart_array(mddev); 4384 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4385 md_wakeup_thread(mddev->thread); 4386 wake_up(&mddev->sb_wait); 4387 } else /* st == clean */ { 4388 restart_array(mddev); 4389 if (!set_in_sync(mddev)) 4390 err = -EBUSY; 4391 } 4392 if (!err) 4393 sysfs_notify_dirent_safe(mddev->sysfs_state); 4394 spin_unlock(&mddev->lock); 4395 return err ?: len; 4396 } 4397 err = mddev_lock(mddev); 4398 if (err) 4399 return err; 4400 err = -EINVAL; 4401 switch(st) { 4402 case bad_word: 4403 break; 4404 case clear: 4405 /* stopping an active array */ 4406 err = do_md_stop(mddev, 0, NULL); 4407 break; 4408 case inactive: 4409 /* stopping an active array */ 4410 if (mddev->pers) 4411 err = do_md_stop(mddev, 2, NULL); 4412 else 4413 err = 0; /* already inactive */ 4414 break; 4415 case suspended: 4416 break; /* not supported yet */ 4417 case readonly: 4418 if (mddev->pers) 4419 err = md_set_readonly(mddev, NULL); 4420 else { 4421 mddev->ro = MD_RDONLY; 4422 set_disk_ro(mddev->gendisk, 1); 4423 err = do_md_run(mddev); 4424 } 4425 break; 4426 case read_auto: 4427 if (mddev->pers) { 4428 if (md_is_rdwr(mddev)) 4429 err = md_set_readonly(mddev, NULL); 4430 else if (mddev->ro == MD_RDONLY) 4431 err = restart_array(mddev); 4432 if (err == 0) { 4433 mddev->ro = MD_AUTO_READ; 4434 set_disk_ro(mddev->gendisk, 0); 4435 } 4436 } else { 4437 mddev->ro = MD_AUTO_READ; 4438 err = do_md_run(mddev); 4439 } 4440 break; 4441 case clean: 4442 if (mddev->pers) { 4443 err = restart_array(mddev); 4444 if (err) 4445 break; 4446 spin_lock(&mddev->lock); 4447 if (!set_in_sync(mddev)) 4448 err = -EBUSY; 4449 spin_unlock(&mddev->lock); 4450 } else 4451 err = -EINVAL; 4452 break; 4453 case active: 4454 if (mddev->pers) { 4455 err = restart_array(mddev); 4456 if (err) 4457 break; 4458 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4459 wake_up(&mddev->sb_wait); 4460 err = 0; 4461 } else { 4462 mddev->ro = MD_RDWR; 4463 set_disk_ro(mddev->gendisk, 0); 4464 err = do_md_run(mddev); 4465 } 4466 break; 4467 case write_pending: 4468 case active_idle: 4469 case broken: 4470 /* these cannot be set */ 4471 break; 4472 } 4473 4474 if (!err) { 4475 if (mddev->hold_active == UNTIL_IOCTL) 4476 mddev->hold_active = 0; 4477 sysfs_notify_dirent_safe(mddev->sysfs_state); 4478 } 4479 mddev_unlock(mddev); 4480 return err ?: len; 4481 } 4482 static struct md_sysfs_entry md_array_state = 4483 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4484 4485 static ssize_t 4486 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4487 return sprintf(page, "%d\n", 4488 atomic_read(&mddev->max_corr_read_errors)); 4489 } 4490 4491 static ssize_t 4492 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4493 { 4494 unsigned int n; 4495 int rv; 4496 4497 rv = kstrtouint(buf, 10, &n); 4498 if (rv < 0) 4499 return rv; 4500 atomic_set(&mddev->max_corr_read_errors, n); 4501 return len; 4502 } 4503 4504 static struct md_sysfs_entry max_corr_read_errors = 4505 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4506 max_corrected_read_errors_store); 4507 4508 static ssize_t 4509 null_show(struct mddev *mddev, char *page) 4510 { 4511 return -EINVAL; 4512 } 4513 4514 /* need to ensure rdev_delayed_delete() has completed */ 4515 static void flush_rdev_wq(struct mddev *mddev) 4516 { 4517 struct md_rdev *rdev; 4518 4519 rcu_read_lock(); 4520 rdev_for_each_rcu(rdev, mddev) 4521 if (work_pending(&rdev->del_work)) { 4522 flush_workqueue(md_rdev_misc_wq); 4523 break; 4524 } 4525 rcu_read_unlock(); 4526 } 4527 4528 static ssize_t 4529 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4530 { 4531 /* buf must be %d:%d\n? giving major and minor numbers */ 4532 /* The new device is added to the array. 4533 * If the array has a persistent superblock, we read the 4534 * superblock to initialise info and check validity. 4535 * Otherwise, only checking done is that in bind_rdev_to_array, 4536 * which mainly checks size. 4537 */ 4538 char *e; 4539 int major = simple_strtoul(buf, &e, 10); 4540 int minor; 4541 dev_t dev; 4542 struct md_rdev *rdev; 4543 int err; 4544 4545 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4546 return -EINVAL; 4547 minor = simple_strtoul(e+1, &e, 10); 4548 if (*e && *e != '\n') 4549 return -EINVAL; 4550 dev = MKDEV(major, minor); 4551 if (major != MAJOR(dev) || 4552 minor != MINOR(dev)) 4553 return -EOVERFLOW; 4554 4555 flush_rdev_wq(mddev); 4556 err = mddev_lock(mddev); 4557 if (err) 4558 return err; 4559 if (mddev->persistent) { 4560 rdev = md_import_device(dev, mddev->major_version, 4561 mddev->minor_version); 4562 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4563 struct md_rdev *rdev0 4564 = list_entry(mddev->disks.next, 4565 struct md_rdev, same_set); 4566 err = super_types[mddev->major_version] 4567 .load_super(rdev, rdev0, mddev->minor_version); 4568 if (err < 0) 4569 goto out; 4570 } 4571 } else if (mddev->external) 4572 rdev = md_import_device(dev, -2, -1); 4573 else 4574 rdev = md_import_device(dev, -1, -1); 4575 4576 if (IS_ERR(rdev)) { 4577 mddev_unlock(mddev); 4578 return PTR_ERR(rdev); 4579 } 4580 err = bind_rdev_to_array(rdev, mddev); 4581 out: 4582 if (err) 4583 export_rdev(rdev); 4584 mddev_unlock(mddev); 4585 if (!err) 4586 md_new_event(); 4587 return err ? err : len; 4588 } 4589 4590 static struct md_sysfs_entry md_new_device = 4591 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4592 4593 static ssize_t 4594 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4595 { 4596 char *end; 4597 unsigned long chunk, end_chunk; 4598 int err; 4599 4600 err = mddev_lock(mddev); 4601 if (err) 4602 return err; 4603 if (!mddev->bitmap) 4604 goto out; 4605 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4606 while (*buf) { 4607 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4608 if (buf == end) break; 4609 if (*end == '-') { /* range */ 4610 buf = end + 1; 4611 end_chunk = simple_strtoul(buf, &end, 0); 4612 if (buf == end) break; 4613 } 4614 if (*end && !isspace(*end)) break; 4615 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4616 buf = skip_spaces(end); 4617 } 4618 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4619 out: 4620 mddev_unlock(mddev); 4621 return len; 4622 } 4623 4624 static struct md_sysfs_entry md_bitmap = 4625 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4626 4627 static ssize_t 4628 size_show(struct mddev *mddev, char *page) 4629 { 4630 return sprintf(page, "%llu\n", 4631 (unsigned long long)mddev->dev_sectors / 2); 4632 } 4633 4634 static int update_size(struct mddev *mddev, sector_t num_sectors); 4635 4636 static ssize_t 4637 size_store(struct mddev *mddev, const char *buf, size_t len) 4638 { 4639 /* If array is inactive, we can reduce the component size, but 4640 * not increase it (except from 0). 4641 * If array is active, we can try an on-line resize 4642 */ 4643 sector_t sectors; 4644 int err = strict_blocks_to_sectors(buf, §ors); 4645 4646 if (err < 0) 4647 return err; 4648 err = mddev_lock(mddev); 4649 if (err) 4650 return err; 4651 if (mddev->pers) { 4652 err = update_size(mddev, sectors); 4653 if (err == 0) 4654 md_update_sb(mddev, 1); 4655 } else { 4656 if (mddev->dev_sectors == 0 || 4657 mddev->dev_sectors > sectors) 4658 mddev->dev_sectors = sectors; 4659 else 4660 err = -ENOSPC; 4661 } 4662 mddev_unlock(mddev); 4663 return err ? err : len; 4664 } 4665 4666 static struct md_sysfs_entry md_size = 4667 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4668 4669 /* Metadata version. 4670 * This is one of 4671 * 'none' for arrays with no metadata (good luck...) 4672 * 'external' for arrays with externally managed metadata, 4673 * or N.M for internally known formats 4674 */ 4675 static ssize_t 4676 metadata_show(struct mddev *mddev, char *page) 4677 { 4678 if (mddev->persistent) 4679 return sprintf(page, "%d.%d\n", 4680 mddev->major_version, mddev->minor_version); 4681 else if (mddev->external) 4682 return sprintf(page, "external:%s\n", mddev->metadata_type); 4683 else 4684 return sprintf(page, "none\n"); 4685 } 4686 4687 static ssize_t 4688 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4689 { 4690 int major, minor; 4691 char *e; 4692 int err; 4693 /* Changing the details of 'external' metadata is 4694 * always permitted. Otherwise there must be 4695 * no devices attached to the array. 4696 */ 4697 4698 err = mddev_lock(mddev); 4699 if (err) 4700 return err; 4701 err = -EBUSY; 4702 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4703 ; 4704 else if (!list_empty(&mddev->disks)) 4705 goto out_unlock; 4706 4707 err = 0; 4708 if (cmd_match(buf, "none")) { 4709 mddev->persistent = 0; 4710 mddev->external = 0; 4711 mddev->major_version = 0; 4712 mddev->minor_version = 90; 4713 goto out_unlock; 4714 } 4715 if (strncmp(buf, "external:", 9) == 0) { 4716 size_t namelen = len-9; 4717 if (namelen >= sizeof(mddev->metadata_type)) 4718 namelen = sizeof(mddev->metadata_type)-1; 4719 strncpy(mddev->metadata_type, buf+9, namelen); 4720 mddev->metadata_type[namelen] = 0; 4721 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4722 mddev->metadata_type[--namelen] = 0; 4723 mddev->persistent = 0; 4724 mddev->external = 1; 4725 mddev->major_version = 0; 4726 mddev->minor_version = 90; 4727 goto out_unlock; 4728 } 4729 major = simple_strtoul(buf, &e, 10); 4730 err = -EINVAL; 4731 if (e==buf || *e != '.') 4732 goto out_unlock; 4733 buf = e+1; 4734 minor = simple_strtoul(buf, &e, 10); 4735 if (e==buf || (*e && *e != '\n') ) 4736 goto out_unlock; 4737 err = -ENOENT; 4738 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4739 goto out_unlock; 4740 mddev->major_version = major; 4741 mddev->minor_version = minor; 4742 mddev->persistent = 1; 4743 mddev->external = 0; 4744 err = 0; 4745 out_unlock: 4746 mddev_unlock(mddev); 4747 return err ?: len; 4748 } 4749 4750 static struct md_sysfs_entry md_metadata = 4751 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4752 4753 static ssize_t 4754 action_show(struct mddev *mddev, char *page) 4755 { 4756 char *type = "idle"; 4757 unsigned long recovery = mddev->recovery; 4758 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4759 type = "frozen"; 4760 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4761 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4762 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4763 type = "reshape"; 4764 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4765 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4766 type = "resync"; 4767 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4768 type = "check"; 4769 else 4770 type = "repair"; 4771 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4772 type = "recover"; 4773 else if (mddev->reshape_position != MaxSector) 4774 type = "reshape"; 4775 } 4776 return sprintf(page, "%s\n", type); 4777 } 4778 4779 static ssize_t 4780 action_store(struct mddev *mddev, const char *page, size_t len) 4781 { 4782 if (!mddev->pers || !mddev->pers->sync_request) 4783 return -EINVAL; 4784 4785 4786 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4787 if (cmd_match(page, "frozen")) 4788 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4789 else 4790 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4791 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4792 mddev_lock(mddev) == 0) { 4793 if (work_pending(&mddev->del_work)) 4794 flush_workqueue(md_misc_wq); 4795 if (mddev->sync_thread) { 4796 sector_t save_rp = mddev->reshape_position; 4797 4798 mddev_unlock(mddev); 4799 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4800 md_unregister_thread(&mddev->sync_thread); 4801 mddev_lock_nointr(mddev); 4802 /* 4803 * set RECOVERY_INTR again and restore reshape 4804 * position in case others changed them after 4805 * got lock, eg, reshape_position_store and 4806 * md_check_recovery. 4807 */ 4808 mddev->reshape_position = save_rp; 4809 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4810 md_reap_sync_thread(mddev); 4811 } 4812 mddev_unlock(mddev); 4813 } 4814 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4815 return -EBUSY; 4816 else if (cmd_match(page, "resync")) 4817 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4818 else if (cmd_match(page, "recover")) { 4819 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4820 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4821 } else if (cmd_match(page, "reshape")) { 4822 int err; 4823 if (mddev->pers->start_reshape == NULL) 4824 return -EINVAL; 4825 err = mddev_lock(mddev); 4826 if (!err) { 4827 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4828 err = -EBUSY; 4829 else { 4830 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4831 err = mddev->pers->start_reshape(mddev); 4832 } 4833 mddev_unlock(mddev); 4834 } 4835 if (err) 4836 return err; 4837 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4838 } else { 4839 if (cmd_match(page, "check")) 4840 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4841 else if (!cmd_match(page, "repair")) 4842 return -EINVAL; 4843 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4844 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4845 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4846 } 4847 if (mddev->ro == MD_AUTO_READ) { 4848 /* A write to sync_action is enough to justify 4849 * canceling read-auto mode 4850 */ 4851 mddev->ro = MD_RDWR; 4852 md_wakeup_thread(mddev->sync_thread); 4853 } 4854 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4855 md_wakeup_thread(mddev->thread); 4856 sysfs_notify_dirent_safe(mddev->sysfs_action); 4857 return len; 4858 } 4859 4860 static struct md_sysfs_entry md_scan_mode = 4861 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4862 4863 static ssize_t 4864 last_sync_action_show(struct mddev *mddev, char *page) 4865 { 4866 return sprintf(page, "%s\n", mddev->last_sync_action); 4867 } 4868 4869 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4870 4871 static ssize_t 4872 mismatch_cnt_show(struct mddev *mddev, char *page) 4873 { 4874 return sprintf(page, "%llu\n", 4875 (unsigned long long) 4876 atomic64_read(&mddev->resync_mismatches)); 4877 } 4878 4879 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4880 4881 static ssize_t 4882 sync_min_show(struct mddev *mddev, char *page) 4883 { 4884 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4885 mddev->sync_speed_min ? "local": "system"); 4886 } 4887 4888 static ssize_t 4889 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4890 { 4891 unsigned int min; 4892 int rv; 4893 4894 if (strncmp(buf, "system", 6)==0) { 4895 min = 0; 4896 } else { 4897 rv = kstrtouint(buf, 10, &min); 4898 if (rv < 0) 4899 return rv; 4900 if (min == 0) 4901 return -EINVAL; 4902 } 4903 mddev->sync_speed_min = min; 4904 return len; 4905 } 4906 4907 static struct md_sysfs_entry md_sync_min = 4908 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4909 4910 static ssize_t 4911 sync_max_show(struct mddev *mddev, char *page) 4912 { 4913 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4914 mddev->sync_speed_max ? "local": "system"); 4915 } 4916 4917 static ssize_t 4918 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4919 { 4920 unsigned int max; 4921 int rv; 4922 4923 if (strncmp(buf, "system", 6)==0) { 4924 max = 0; 4925 } else { 4926 rv = kstrtouint(buf, 10, &max); 4927 if (rv < 0) 4928 return rv; 4929 if (max == 0) 4930 return -EINVAL; 4931 } 4932 mddev->sync_speed_max = max; 4933 return len; 4934 } 4935 4936 static struct md_sysfs_entry md_sync_max = 4937 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4938 4939 static ssize_t 4940 degraded_show(struct mddev *mddev, char *page) 4941 { 4942 return sprintf(page, "%d\n", mddev->degraded); 4943 } 4944 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4945 4946 static ssize_t 4947 sync_force_parallel_show(struct mddev *mddev, char *page) 4948 { 4949 return sprintf(page, "%d\n", mddev->parallel_resync); 4950 } 4951 4952 static ssize_t 4953 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4954 { 4955 long n; 4956 4957 if (kstrtol(buf, 10, &n)) 4958 return -EINVAL; 4959 4960 if (n != 0 && n != 1) 4961 return -EINVAL; 4962 4963 mddev->parallel_resync = n; 4964 4965 if (mddev->sync_thread) 4966 wake_up(&resync_wait); 4967 4968 return len; 4969 } 4970 4971 /* force parallel resync, even with shared block devices */ 4972 static struct md_sysfs_entry md_sync_force_parallel = 4973 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4974 sync_force_parallel_show, sync_force_parallel_store); 4975 4976 static ssize_t 4977 sync_speed_show(struct mddev *mddev, char *page) 4978 { 4979 unsigned long resync, dt, db; 4980 if (mddev->curr_resync == MD_RESYNC_NONE) 4981 return sprintf(page, "none\n"); 4982 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4983 dt = (jiffies - mddev->resync_mark) / HZ; 4984 if (!dt) dt++; 4985 db = resync - mddev->resync_mark_cnt; 4986 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4987 } 4988 4989 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4990 4991 static ssize_t 4992 sync_completed_show(struct mddev *mddev, char *page) 4993 { 4994 unsigned long long max_sectors, resync; 4995 4996 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4997 return sprintf(page, "none\n"); 4998 4999 if (mddev->curr_resync == MD_RESYNC_YIELDED || 5000 mddev->curr_resync == MD_RESYNC_DELAYED) 5001 return sprintf(page, "delayed\n"); 5002 5003 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5004 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5005 max_sectors = mddev->resync_max_sectors; 5006 else 5007 max_sectors = mddev->dev_sectors; 5008 5009 resync = mddev->curr_resync_completed; 5010 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5011 } 5012 5013 static struct md_sysfs_entry md_sync_completed = 5014 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5015 5016 static ssize_t 5017 min_sync_show(struct mddev *mddev, char *page) 5018 { 5019 return sprintf(page, "%llu\n", 5020 (unsigned long long)mddev->resync_min); 5021 } 5022 static ssize_t 5023 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5024 { 5025 unsigned long long min; 5026 int err; 5027 5028 if (kstrtoull(buf, 10, &min)) 5029 return -EINVAL; 5030 5031 spin_lock(&mddev->lock); 5032 err = -EINVAL; 5033 if (min > mddev->resync_max) 5034 goto out_unlock; 5035 5036 err = -EBUSY; 5037 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5038 goto out_unlock; 5039 5040 /* Round down to multiple of 4K for safety */ 5041 mddev->resync_min = round_down(min, 8); 5042 err = 0; 5043 5044 out_unlock: 5045 spin_unlock(&mddev->lock); 5046 return err ?: len; 5047 } 5048 5049 static struct md_sysfs_entry md_min_sync = 5050 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5051 5052 static ssize_t 5053 max_sync_show(struct mddev *mddev, char *page) 5054 { 5055 if (mddev->resync_max == MaxSector) 5056 return sprintf(page, "max\n"); 5057 else 5058 return sprintf(page, "%llu\n", 5059 (unsigned long long)mddev->resync_max); 5060 } 5061 static ssize_t 5062 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5063 { 5064 int err; 5065 spin_lock(&mddev->lock); 5066 if (strncmp(buf, "max", 3) == 0) 5067 mddev->resync_max = MaxSector; 5068 else { 5069 unsigned long long max; 5070 int chunk; 5071 5072 err = -EINVAL; 5073 if (kstrtoull(buf, 10, &max)) 5074 goto out_unlock; 5075 if (max < mddev->resync_min) 5076 goto out_unlock; 5077 5078 err = -EBUSY; 5079 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5080 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5081 goto out_unlock; 5082 5083 /* Must be a multiple of chunk_size */ 5084 chunk = mddev->chunk_sectors; 5085 if (chunk) { 5086 sector_t temp = max; 5087 5088 err = -EINVAL; 5089 if (sector_div(temp, chunk)) 5090 goto out_unlock; 5091 } 5092 mddev->resync_max = max; 5093 } 5094 wake_up(&mddev->recovery_wait); 5095 err = 0; 5096 out_unlock: 5097 spin_unlock(&mddev->lock); 5098 return err ?: len; 5099 } 5100 5101 static struct md_sysfs_entry md_max_sync = 5102 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5103 5104 static ssize_t 5105 suspend_lo_show(struct mddev *mddev, char *page) 5106 { 5107 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5108 } 5109 5110 static ssize_t 5111 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5112 { 5113 unsigned long long new; 5114 int err; 5115 5116 err = kstrtoull(buf, 10, &new); 5117 if (err < 0) 5118 return err; 5119 if (new != (sector_t)new) 5120 return -EINVAL; 5121 5122 err = mddev_lock(mddev); 5123 if (err) 5124 return err; 5125 err = -EINVAL; 5126 if (mddev->pers == NULL || 5127 mddev->pers->quiesce == NULL) 5128 goto unlock; 5129 mddev_suspend(mddev); 5130 mddev->suspend_lo = new; 5131 mddev_resume(mddev); 5132 5133 err = 0; 5134 unlock: 5135 mddev_unlock(mddev); 5136 return err ?: len; 5137 } 5138 static struct md_sysfs_entry md_suspend_lo = 5139 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5140 5141 static ssize_t 5142 suspend_hi_show(struct mddev *mddev, char *page) 5143 { 5144 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5145 } 5146 5147 static ssize_t 5148 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5149 { 5150 unsigned long long new; 5151 int err; 5152 5153 err = kstrtoull(buf, 10, &new); 5154 if (err < 0) 5155 return err; 5156 if (new != (sector_t)new) 5157 return -EINVAL; 5158 5159 err = mddev_lock(mddev); 5160 if (err) 5161 return err; 5162 err = -EINVAL; 5163 if (mddev->pers == NULL) 5164 goto unlock; 5165 5166 mddev_suspend(mddev); 5167 mddev->suspend_hi = new; 5168 mddev_resume(mddev); 5169 5170 err = 0; 5171 unlock: 5172 mddev_unlock(mddev); 5173 return err ?: len; 5174 } 5175 static struct md_sysfs_entry md_suspend_hi = 5176 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5177 5178 static ssize_t 5179 reshape_position_show(struct mddev *mddev, char *page) 5180 { 5181 if (mddev->reshape_position != MaxSector) 5182 return sprintf(page, "%llu\n", 5183 (unsigned long long)mddev->reshape_position); 5184 strcpy(page, "none\n"); 5185 return 5; 5186 } 5187 5188 static ssize_t 5189 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5190 { 5191 struct md_rdev *rdev; 5192 unsigned long long new; 5193 int err; 5194 5195 err = kstrtoull(buf, 10, &new); 5196 if (err < 0) 5197 return err; 5198 if (new != (sector_t)new) 5199 return -EINVAL; 5200 err = mddev_lock(mddev); 5201 if (err) 5202 return err; 5203 err = -EBUSY; 5204 if (mddev->pers) 5205 goto unlock; 5206 mddev->reshape_position = new; 5207 mddev->delta_disks = 0; 5208 mddev->reshape_backwards = 0; 5209 mddev->new_level = mddev->level; 5210 mddev->new_layout = mddev->layout; 5211 mddev->new_chunk_sectors = mddev->chunk_sectors; 5212 rdev_for_each(rdev, mddev) 5213 rdev->new_data_offset = rdev->data_offset; 5214 err = 0; 5215 unlock: 5216 mddev_unlock(mddev); 5217 return err ?: len; 5218 } 5219 5220 static struct md_sysfs_entry md_reshape_position = 5221 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5222 reshape_position_store); 5223 5224 static ssize_t 5225 reshape_direction_show(struct mddev *mddev, char *page) 5226 { 5227 return sprintf(page, "%s\n", 5228 mddev->reshape_backwards ? "backwards" : "forwards"); 5229 } 5230 5231 static ssize_t 5232 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5233 { 5234 int backwards = 0; 5235 int err; 5236 5237 if (cmd_match(buf, "forwards")) 5238 backwards = 0; 5239 else if (cmd_match(buf, "backwards")) 5240 backwards = 1; 5241 else 5242 return -EINVAL; 5243 if (mddev->reshape_backwards == backwards) 5244 return len; 5245 5246 err = mddev_lock(mddev); 5247 if (err) 5248 return err; 5249 /* check if we are allowed to change */ 5250 if (mddev->delta_disks) 5251 err = -EBUSY; 5252 else if (mddev->persistent && 5253 mddev->major_version == 0) 5254 err = -EINVAL; 5255 else 5256 mddev->reshape_backwards = backwards; 5257 mddev_unlock(mddev); 5258 return err ?: len; 5259 } 5260 5261 static struct md_sysfs_entry md_reshape_direction = 5262 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5263 reshape_direction_store); 5264 5265 static ssize_t 5266 array_size_show(struct mddev *mddev, char *page) 5267 { 5268 if (mddev->external_size) 5269 return sprintf(page, "%llu\n", 5270 (unsigned long long)mddev->array_sectors/2); 5271 else 5272 return sprintf(page, "default\n"); 5273 } 5274 5275 static ssize_t 5276 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5277 { 5278 sector_t sectors; 5279 int err; 5280 5281 err = mddev_lock(mddev); 5282 if (err) 5283 return err; 5284 5285 /* cluster raid doesn't support change array_sectors */ 5286 if (mddev_is_clustered(mddev)) { 5287 mddev_unlock(mddev); 5288 return -EINVAL; 5289 } 5290 5291 if (strncmp(buf, "default", 7) == 0) { 5292 if (mddev->pers) 5293 sectors = mddev->pers->size(mddev, 0, 0); 5294 else 5295 sectors = mddev->array_sectors; 5296 5297 mddev->external_size = 0; 5298 } else { 5299 if (strict_blocks_to_sectors(buf, §ors) < 0) 5300 err = -EINVAL; 5301 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5302 err = -E2BIG; 5303 else 5304 mddev->external_size = 1; 5305 } 5306 5307 if (!err) { 5308 mddev->array_sectors = sectors; 5309 if (mddev->pers) 5310 set_capacity_and_notify(mddev->gendisk, 5311 mddev->array_sectors); 5312 } 5313 mddev_unlock(mddev); 5314 return err ?: len; 5315 } 5316 5317 static struct md_sysfs_entry md_array_size = 5318 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5319 array_size_store); 5320 5321 static ssize_t 5322 consistency_policy_show(struct mddev *mddev, char *page) 5323 { 5324 int ret; 5325 5326 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5327 ret = sprintf(page, "journal\n"); 5328 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5329 ret = sprintf(page, "ppl\n"); 5330 } else if (mddev->bitmap) { 5331 ret = sprintf(page, "bitmap\n"); 5332 } else if (mddev->pers) { 5333 if (mddev->pers->sync_request) 5334 ret = sprintf(page, "resync\n"); 5335 else 5336 ret = sprintf(page, "none\n"); 5337 } else { 5338 ret = sprintf(page, "unknown\n"); 5339 } 5340 5341 return ret; 5342 } 5343 5344 static ssize_t 5345 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5346 { 5347 int err = 0; 5348 5349 if (mddev->pers) { 5350 if (mddev->pers->change_consistency_policy) 5351 err = mddev->pers->change_consistency_policy(mddev, buf); 5352 else 5353 err = -EBUSY; 5354 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5355 set_bit(MD_HAS_PPL, &mddev->flags); 5356 } else { 5357 err = -EINVAL; 5358 } 5359 5360 return err ? err : len; 5361 } 5362 5363 static struct md_sysfs_entry md_consistency_policy = 5364 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5365 consistency_policy_store); 5366 5367 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5368 { 5369 return sprintf(page, "%d\n", mddev->fail_last_dev); 5370 } 5371 5372 /* 5373 * Setting fail_last_dev to true to allow last device to be forcibly removed 5374 * from RAID1/RAID10. 5375 */ 5376 static ssize_t 5377 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5378 { 5379 int ret; 5380 bool value; 5381 5382 ret = kstrtobool(buf, &value); 5383 if (ret) 5384 return ret; 5385 5386 if (value != mddev->fail_last_dev) 5387 mddev->fail_last_dev = value; 5388 5389 return len; 5390 } 5391 static struct md_sysfs_entry md_fail_last_dev = 5392 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5393 fail_last_dev_store); 5394 5395 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5396 { 5397 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5398 return sprintf(page, "n/a\n"); 5399 else 5400 return sprintf(page, "%d\n", mddev->serialize_policy); 5401 } 5402 5403 /* 5404 * Setting serialize_policy to true to enforce write IO is not reordered 5405 * for raid1. 5406 */ 5407 static ssize_t 5408 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5409 { 5410 int err; 5411 bool value; 5412 5413 err = kstrtobool(buf, &value); 5414 if (err) 5415 return err; 5416 5417 if (value == mddev->serialize_policy) 5418 return len; 5419 5420 err = mddev_lock(mddev); 5421 if (err) 5422 return err; 5423 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5424 pr_err("md: serialize_policy is only effective for raid1\n"); 5425 err = -EINVAL; 5426 goto unlock; 5427 } 5428 5429 mddev_suspend(mddev); 5430 if (value) 5431 mddev_create_serial_pool(mddev, NULL, true); 5432 else 5433 mddev_destroy_serial_pool(mddev, NULL, true); 5434 mddev->serialize_policy = value; 5435 mddev_resume(mddev); 5436 unlock: 5437 mddev_unlock(mddev); 5438 return err ?: len; 5439 } 5440 5441 static struct md_sysfs_entry md_serialize_policy = 5442 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5443 serialize_policy_store); 5444 5445 5446 static struct attribute *md_default_attrs[] = { 5447 &md_level.attr, 5448 &md_layout.attr, 5449 &md_raid_disks.attr, 5450 &md_uuid.attr, 5451 &md_chunk_size.attr, 5452 &md_size.attr, 5453 &md_resync_start.attr, 5454 &md_metadata.attr, 5455 &md_new_device.attr, 5456 &md_safe_delay.attr, 5457 &md_array_state.attr, 5458 &md_reshape_position.attr, 5459 &md_reshape_direction.attr, 5460 &md_array_size.attr, 5461 &max_corr_read_errors.attr, 5462 &md_consistency_policy.attr, 5463 &md_fail_last_dev.attr, 5464 &md_serialize_policy.attr, 5465 NULL, 5466 }; 5467 5468 static const struct attribute_group md_default_group = { 5469 .attrs = md_default_attrs, 5470 }; 5471 5472 static struct attribute *md_redundancy_attrs[] = { 5473 &md_scan_mode.attr, 5474 &md_last_scan_mode.attr, 5475 &md_mismatches.attr, 5476 &md_sync_min.attr, 5477 &md_sync_max.attr, 5478 &md_sync_speed.attr, 5479 &md_sync_force_parallel.attr, 5480 &md_sync_completed.attr, 5481 &md_min_sync.attr, 5482 &md_max_sync.attr, 5483 &md_suspend_lo.attr, 5484 &md_suspend_hi.attr, 5485 &md_bitmap.attr, 5486 &md_degraded.attr, 5487 NULL, 5488 }; 5489 static const struct attribute_group md_redundancy_group = { 5490 .name = NULL, 5491 .attrs = md_redundancy_attrs, 5492 }; 5493 5494 static const struct attribute_group *md_attr_groups[] = { 5495 &md_default_group, 5496 &md_bitmap_group, 5497 NULL, 5498 }; 5499 5500 static ssize_t 5501 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5502 { 5503 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5504 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5505 ssize_t rv; 5506 5507 if (!entry->show) 5508 return -EIO; 5509 spin_lock(&all_mddevs_lock); 5510 if (!mddev_get(mddev)) { 5511 spin_unlock(&all_mddevs_lock); 5512 return -EBUSY; 5513 } 5514 spin_unlock(&all_mddevs_lock); 5515 5516 rv = entry->show(mddev, page); 5517 mddev_put(mddev); 5518 return rv; 5519 } 5520 5521 static ssize_t 5522 md_attr_store(struct kobject *kobj, struct attribute *attr, 5523 const char *page, size_t length) 5524 { 5525 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5526 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5527 ssize_t rv; 5528 5529 if (!entry->store) 5530 return -EIO; 5531 if (!capable(CAP_SYS_ADMIN)) 5532 return -EACCES; 5533 spin_lock(&all_mddevs_lock); 5534 if (!mddev_get(mddev)) { 5535 spin_unlock(&all_mddevs_lock); 5536 return -EBUSY; 5537 } 5538 spin_unlock(&all_mddevs_lock); 5539 rv = entry->store(mddev, page, length); 5540 mddev_put(mddev); 5541 return rv; 5542 } 5543 5544 static void md_kobj_release(struct kobject *ko) 5545 { 5546 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5547 5548 if (mddev->sysfs_state) 5549 sysfs_put(mddev->sysfs_state); 5550 if (mddev->sysfs_level) 5551 sysfs_put(mddev->sysfs_level); 5552 5553 del_gendisk(mddev->gendisk); 5554 put_disk(mddev->gendisk); 5555 } 5556 5557 static const struct sysfs_ops md_sysfs_ops = { 5558 .show = md_attr_show, 5559 .store = md_attr_store, 5560 }; 5561 static struct kobj_type md_ktype = { 5562 .release = md_kobj_release, 5563 .sysfs_ops = &md_sysfs_ops, 5564 .default_groups = md_attr_groups, 5565 }; 5566 5567 int mdp_major = 0; 5568 5569 static void mddev_delayed_delete(struct work_struct *ws) 5570 { 5571 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5572 5573 kobject_put(&mddev->kobj); 5574 } 5575 5576 static void no_op(struct percpu_ref *r) {} 5577 5578 int mddev_init_writes_pending(struct mddev *mddev) 5579 { 5580 if (mddev->writes_pending.percpu_count_ptr) 5581 return 0; 5582 if (percpu_ref_init(&mddev->writes_pending, no_op, 5583 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5584 return -ENOMEM; 5585 /* We want to start with the refcount at zero */ 5586 percpu_ref_put(&mddev->writes_pending); 5587 return 0; 5588 } 5589 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5590 5591 struct mddev *md_alloc(dev_t dev, char *name) 5592 { 5593 /* 5594 * If dev is zero, name is the name of a device to allocate with 5595 * an arbitrary minor number. It will be "md_???" 5596 * If dev is non-zero it must be a device number with a MAJOR of 5597 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5598 * the device is being created by opening a node in /dev. 5599 * If "name" is not NULL, the device is being created by 5600 * writing to /sys/module/md_mod/parameters/new_array. 5601 */ 5602 static DEFINE_MUTEX(disks_mutex); 5603 struct mddev *mddev; 5604 struct gendisk *disk; 5605 int partitioned; 5606 int shift; 5607 int unit; 5608 int error ; 5609 5610 /* 5611 * Wait for any previous instance of this device to be completely 5612 * removed (mddev_delayed_delete). 5613 */ 5614 flush_workqueue(md_misc_wq); 5615 flush_workqueue(md_rdev_misc_wq); 5616 5617 mutex_lock(&disks_mutex); 5618 mddev = mddev_alloc(dev); 5619 if (IS_ERR(mddev)) { 5620 error = PTR_ERR(mddev); 5621 goto out_unlock; 5622 } 5623 5624 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5625 shift = partitioned ? MdpMinorShift : 0; 5626 unit = MINOR(mddev->unit) >> shift; 5627 5628 if (name && !dev) { 5629 /* Need to ensure that 'name' is not a duplicate. 5630 */ 5631 struct mddev *mddev2; 5632 spin_lock(&all_mddevs_lock); 5633 5634 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5635 if (mddev2->gendisk && 5636 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5637 spin_unlock(&all_mddevs_lock); 5638 error = -EEXIST; 5639 goto out_free_mddev; 5640 } 5641 spin_unlock(&all_mddevs_lock); 5642 } 5643 if (name && dev) 5644 /* 5645 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5646 */ 5647 mddev->hold_active = UNTIL_STOP; 5648 5649 error = -ENOMEM; 5650 disk = blk_alloc_disk(NUMA_NO_NODE); 5651 if (!disk) 5652 goto out_free_mddev; 5653 5654 disk->major = MAJOR(mddev->unit); 5655 disk->first_minor = unit << shift; 5656 disk->minors = 1 << shift; 5657 if (name) 5658 strcpy(disk->disk_name, name); 5659 else if (partitioned) 5660 sprintf(disk->disk_name, "md_d%d", unit); 5661 else 5662 sprintf(disk->disk_name, "md%d", unit); 5663 disk->fops = &md_fops; 5664 disk->private_data = mddev; 5665 5666 mddev->queue = disk->queue; 5667 blk_set_stacking_limits(&mddev->queue->limits); 5668 blk_queue_write_cache(mddev->queue, true, true); 5669 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5670 mddev->gendisk = disk; 5671 error = add_disk(disk); 5672 if (error) 5673 goto out_put_disk; 5674 5675 kobject_init(&mddev->kobj, &md_ktype); 5676 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5677 if (error) { 5678 /* 5679 * The disk is already live at this point. Clear the hold flag 5680 * and let mddev_put take care of the deletion, as it isn't any 5681 * different from a normal close on last release now. 5682 */ 5683 mddev->hold_active = 0; 5684 mutex_unlock(&disks_mutex); 5685 mddev_put(mddev); 5686 return ERR_PTR(error); 5687 } 5688 5689 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5690 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5691 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5692 mutex_unlock(&disks_mutex); 5693 return mddev; 5694 5695 out_put_disk: 5696 put_disk(disk); 5697 out_free_mddev: 5698 mddev_free(mddev); 5699 out_unlock: 5700 mutex_unlock(&disks_mutex); 5701 return ERR_PTR(error); 5702 } 5703 5704 static int md_alloc_and_put(dev_t dev, char *name) 5705 { 5706 struct mddev *mddev = md_alloc(dev, name); 5707 5708 if (IS_ERR(mddev)) 5709 return PTR_ERR(mddev); 5710 mddev_put(mddev); 5711 return 0; 5712 } 5713 5714 static void md_probe(dev_t dev) 5715 { 5716 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5717 return; 5718 if (create_on_open) 5719 md_alloc_and_put(dev, NULL); 5720 } 5721 5722 static int add_named_array(const char *val, const struct kernel_param *kp) 5723 { 5724 /* 5725 * val must be "md_*" or "mdNNN". 5726 * For "md_*" we allocate an array with a large free minor number, and 5727 * set the name to val. val must not already be an active name. 5728 * For "mdNNN" we allocate an array with the minor number NNN 5729 * which must not already be in use. 5730 */ 5731 int len = strlen(val); 5732 char buf[DISK_NAME_LEN]; 5733 unsigned long devnum; 5734 5735 while (len && val[len-1] == '\n') 5736 len--; 5737 if (len >= DISK_NAME_LEN) 5738 return -E2BIG; 5739 strscpy(buf, val, len+1); 5740 if (strncmp(buf, "md_", 3) == 0) 5741 return md_alloc_and_put(0, buf); 5742 if (strncmp(buf, "md", 2) == 0 && 5743 isdigit(buf[2]) && 5744 kstrtoul(buf+2, 10, &devnum) == 0 && 5745 devnum <= MINORMASK) 5746 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5747 5748 return -EINVAL; 5749 } 5750 5751 static void md_safemode_timeout(struct timer_list *t) 5752 { 5753 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5754 5755 mddev->safemode = 1; 5756 if (mddev->external) 5757 sysfs_notify_dirent_safe(mddev->sysfs_state); 5758 5759 md_wakeup_thread(mddev->thread); 5760 } 5761 5762 static int start_dirty_degraded; 5763 static void active_io_release(struct percpu_ref *ref) 5764 { 5765 struct mddev *mddev = container_of(ref, struct mddev, active_io); 5766 5767 wake_up(&mddev->sb_wait); 5768 } 5769 5770 int md_run(struct mddev *mddev) 5771 { 5772 int err; 5773 struct md_rdev *rdev; 5774 struct md_personality *pers; 5775 bool nowait = true; 5776 5777 if (list_empty(&mddev->disks)) 5778 /* cannot run an array with no devices.. */ 5779 return -EINVAL; 5780 5781 if (mddev->pers) 5782 return -EBUSY; 5783 /* Cannot run until previous stop completes properly */ 5784 if (mddev->sysfs_active) 5785 return -EBUSY; 5786 5787 /* 5788 * Analyze all RAID superblock(s) 5789 */ 5790 if (!mddev->raid_disks) { 5791 if (!mddev->persistent) 5792 return -EINVAL; 5793 err = analyze_sbs(mddev); 5794 if (err) 5795 return -EINVAL; 5796 } 5797 5798 if (mddev->level != LEVEL_NONE) 5799 request_module("md-level-%d", mddev->level); 5800 else if (mddev->clevel[0]) 5801 request_module("md-%s", mddev->clevel); 5802 5803 /* 5804 * Drop all container device buffers, from now on 5805 * the only valid external interface is through the md 5806 * device. 5807 */ 5808 mddev->has_superblocks = false; 5809 rdev_for_each(rdev, mddev) { 5810 if (test_bit(Faulty, &rdev->flags)) 5811 continue; 5812 sync_blockdev(rdev->bdev); 5813 invalidate_bdev(rdev->bdev); 5814 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5815 mddev->ro = MD_RDONLY; 5816 if (mddev->gendisk) 5817 set_disk_ro(mddev->gendisk, 1); 5818 } 5819 5820 if (rdev->sb_page) 5821 mddev->has_superblocks = true; 5822 5823 /* perform some consistency tests on the device. 5824 * We don't want the data to overlap the metadata, 5825 * Internal Bitmap issues have been handled elsewhere. 5826 */ 5827 if (rdev->meta_bdev) { 5828 /* Nothing to check */; 5829 } else if (rdev->data_offset < rdev->sb_start) { 5830 if (mddev->dev_sectors && 5831 rdev->data_offset + mddev->dev_sectors 5832 > rdev->sb_start) { 5833 pr_warn("md: %s: data overlaps metadata\n", 5834 mdname(mddev)); 5835 return -EINVAL; 5836 } 5837 } else { 5838 if (rdev->sb_start + rdev->sb_size/512 5839 > rdev->data_offset) { 5840 pr_warn("md: %s: metadata overlaps data\n", 5841 mdname(mddev)); 5842 return -EINVAL; 5843 } 5844 } 5845 sysfs_notify_dirent_safe(rdev->sysfs_state); 5846 nowait = nowait && bdev_nowait(rdev->bdev); 5847 } 5848 5849 err = percpu_ref_init(&mddev->active_io, active_io_release, 5850 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 5851 if (err) 5852 return err; 5853 5854 if (!bioset_initialized(&mddev->bio_set)) { 5855 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5856 if (err) 5857 goto exit_active_io; 5858 } 5859 if (!bioset_initialized(&mddev->sync_set)) { 5860 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5861 if (err) 5862 goto exit_bio_set; 5863 } 5864 5865 spin_lock(&pers_lock); 5866 pers = find_pers(mddev->level, mddev->clevel); 5867 if (!pers || !try_module_get(pers->owner)) { 5868 spin_unlock(&pers_lock); 5869 if (mddev->level != LEVEL_NONE) 5870 pr_warn("md: personality for level %d is not loaded!\n", 5871 mddev->level); 5872 else 5873 pr_warn("md: personality for level %s is not loaded!\n", 5874 mddev->clevel); 5875 err = -EINVAL; 5876 goto abort; 5877 } 5878 spin_unlock(&pers_lock); 5879 if (mddev->level != pers->level) { 5880 mddev->level = pers->level; 5881 mddev->new_level = pers->level; 5882 } 5883 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5884 5885 if (mddev->reshape_position != MaxSector && 5886 pers->start_reshape == NULL) { 5887 /* This personality cannot handle reshaping... */ 5888 module_put(pers->owner); 5889 err = -EINVAL; 5890 goto abort; 5891 } 5892 5893 if (pers->sync_request) { 5894 /* Warn if this is a potentially silly 5895 * configuration. 5896 */ 5897 struct md_rdev *rdev2; 5898 int warned = 0; 5899 5900 rdev_for_each(rdev, mddev) 5901 rdev_for_each(rdev2, mddev) { 5902 if (rdev < rdev2 && 5903 rdev->bdev->bd_disk == 5904 rdev2->bdev->bd_disk) { 5905 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5906 mdname(mddev), 5907 rdev->bdev, 5908 rdev2->bdev); 5909 warned = 1; 5910 } 5911 } 5912 5913 if (warned) 5914 pr_warn("True protection against single-disk failure might be compromised.\n"); 5915 } 5916 5917 mddev->recovery = 0; 5918 /* may be over-ridden by personality */ 5919 mddev->resync_max_sectors = mddev->dev_sectors; 5920 5921 mddev->ok_start_degraded = start_dirty_degraded; 5922 5923 if (start_readonly && md_is_rdwr(mddev)) 5924 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 5925 5926 err = pers->run(mddev); 5927 if (err) 5928 pr_warn("md: pers->run() failed ...\n"); 5929 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5930 WARN_ONCE(!mddev->external_size, 5931 "%s: default size too small, but 'external_size' not in effect?\n", 5932 __func__); 5933 pr_warn("md: invalid array_size %llu > default size %llu\n", 5934 (unsigned long long)mddev->array_sectors / 2, 5935 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5936 err = -EINVAL; 5937 } 5938 if (err == 0 && pers->sync_request && 5939 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5940 struct bitmap *bitmap; 5941 5942 bitmap = md_bitmap_create(mddev, -1); 5943 if (IS_ERR(bitmap)) { 5944 err = PTR_ERR(bitmap); 5945 pr_warn("%s: failed to create bitmap (%d)\n", 5946 mdname(mddev), err); 5947 } else 5948 mddev->bitmap = bitmap; 5949 5950 } 5951 if (err) 5952 goto bitmap_abort; 5953 5954 if (mddev->bitmap_info.max_write_behind > 0) { 5955 bool create_pool = false; 5956 5957 rdev_for_each(rdev, mddev) { 5958 if (test_bit(WriteMostly, &rdev->flags) && 5959 rdev_init_serial(rdev)) 5960 create_pool = true; 5961 } 5962 if (create_pool && mddev->serial_info_pool == NULL) { 5963 mddev->serial_info_pool = 5964 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5965 sizeof(struct serial_info)); 5966 if (!mddev->serial_info_pool) { 5967 err = -ENOMEM; 5968 goto bitmap_abort; 5969 } 5970 } 5971 } 5972 5973 if (mddev->queue) { 5974 bool nonrot = true; 5975 5976 rdev_for_each(rdev, mddev) { 5977 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 5978 nonrot = false; 5979 break; 5980 } 5981 } 5982 if (mddev->degraded) 5983 nonrot = false; 5984 if (nonrot) 5985 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5986 else 5987 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5988 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 5989 5990 /* Set the NOWAIT flags if all underlying devices support it */ 5991 if (nowait) 5992 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 5993 } 5994 if (pers->sync_request) { 5995 if (mddev->kobj.sd && 5996 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5997 pr_warn("md: cannot register extra attributes for %s\n", 5998 mdname(mddev)); 5999 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6000 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6001 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6002 } else if (mddev->ro == MD_AUTO_READ) 6003 mddev->ro = MD_RDWR; 6004 6005 atomic_set(&mddev->max_corr_read_errors, 6006 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6007 mddev->safemode = 0; 6008 if (mddev_is_clustered(mddev)) 6009 mddev->safemode_delay = 0; 6010 else 6011 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6012 mddev->in_sync = 1; 6013 smp_wmb(); 6014 spin_lock(&mddev->lock); 6015 mddev->pers = pers; 6016 spin_unlock(&mddev->lock); 6017 rdev_for_each(rdev, mddev) 6018 if (rdev->raid_disk >= 0) 6019 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6020 6021 if (mddev->degraded && md_is_rdwr(mddev)) 6022 /* This ensures that recovering status is reported immediately 6023 * via sysfs - until a lack of spares is confirmed. 6024 */ 6025 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6026 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6027 6028 if (mddev->sb_flags) 6029 md_update_sb(mddev, 0); 6030 6031 md_new_event(); 6032 return 0; 6033 6034 bitmap_abort: 6035 mddev_detach(mddev); 6036 if (mddev->private) 6037 pers->free(mddev, mddev->private); 6038 mddev->private = NULL; 6039 module_put(pers->owner); 6040 md_bitmap_destroy(mddev); 6041 abort: 6042 bioset_exit(&mddev->sync_set); 6043 exit_bio_set: 6044 bioset_exit(&mddev->bio_set); 6045 exit_active_io: 6046 percpu_ref_exit(&mddev->active_io); 6047 return err; 6048 } 6049 EXPORT_SYMBOL_GPL(md_run); 6050 6051 int do_md_run(struct mddev *mddev) 6052 { 6053 int err; 6054 6055 set_bit(MD_NOT_READY, &mddev->flags); 6056 err = md_run(mddev); 6057 if (err) 6058 goto out; 6059 err = md_bitmap_load(mddev); 6060 if (err) { 6061 md_bitmap_destroy(mddev); 6062 goto out; 6063 } 6064 6065 if (mddev_is_clustered(mddev)) 6066 md_allow_write(mddev); 6067 6068 /* run start up tasks that require md_thread */ 6069 md_start(mddev); 6070 6071 md_wakeup_thread(mddev->thread); 6072 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6073 6074 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6075 clear_bit(MD_NOT_READY, &mddev->flags); 6076 mddev->changed = 1; 6077 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6078 sysfs_notify_dirent_safe(mddev->sysfs_state); 6079 sysfs_notify_dirent_safe(mddev->sysfs_action); 6080 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6081 out: 6082 clear_bit(MD_NOT_READY, &mddev->flags); 6083 return err; 6084 } 6085 6086 int md_start(struct mddev *mddev) 6087 { 6088 int ret = 0; 6089 6090 if (mddev->pers->start) { 6091 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6092 md_wakeup_thread(mddev->thread); 6093 ret = mddev->pers->start(mddev); 6094 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6095 md_wakeup_thread(mddev->sync_thread); 6096 } 6097 return ret; 6098 } 6099 EXPORT_SYMBOL_GPL(md_start); 6100 6101 static int restart_array(struct mddev *mddev) 6102 { 6103 struct gendisk *disk = mddev->gendisk; 6104 struct md_rdev *rdev; 6105 bool has_journal = false; 6106 bool has_readonly = false; 6107 6108 /* Complain if it has no devices */ 6109 if (list_empty(&mddev->disks)) 6110 return -ENXIO; 6111 if (!mddev->pers) 6112 return -EINVAL; 6113 if (md_is_rdwr(mddev)) 6114 return -EBUSY; 6115 6116 rcu_read_lock(); 6117 rdev_for_each_rcu(rdev, mddev) { 6118 if (test_bit(Journal, &rdev->flags) && 6119 !test_bit(Faulty, &rdev->flags)) 6120 has_journal = true; 6121 if (rdev_read_only(rdev)) 6122 has_readonly = true; 6123 } 6124 rcu_read_unlock(); 6125 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6126 /* Don't restart rw with journal missing/faulty */ 6127 return -EINVAL; 6128 if (has_readonly) 6129 return -EROFS; 6130 6131 mddev->safemode = 0; 6132 mddev->ro = MD_RDWR; 6133 set_disk_ro(disk, 0); 6134 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6135 /* Kick recovery or resync if necessary */ 6136 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6137 md_wakeup_thread(mddev->thread); 6138 md_wakeup_thread(mddev->sync_thread); 6139 sysfs_notify_dirent_safe(mddev->sysfs_state); 6140 return 0; 6141 } 6142 6143 static void md_clean(struct mddev *mddev) 6144 { 6145 mddev->array_sectors = 0; 6146 mddev->external_size = 0; 6147 mddev->dev_sectors = 0; 6148 mddev->raid_disks = 0; 6149 mddev->recovery_cp = 0; 6150 mddev->resync_min = 0; 6151 mddev->resync_max = MaxSector; 6152 mddev->reshape_position = MaxSector; 6153 mddev->external = 0; 6154 mddev->persistent = 0; 6155 mddev->level = LEVEL_NONE; 6156 mddev->clevel[0] = 0; 6157 mddev->flags = 0; 6158 mddev->sb_flags = 0; 6159 mddev->ro = MD_RDWR; 6160 mddev->metadata_type[0] = 0; 6161 mddev->chunk_sectors = 0; 6162 mddev->ctime = mddev->utime = 0; 6163 mddev->layout = 0; 6164 mddev->max_disks = 0; 6165 mddev->events = 0; 6166 mddev->can_decrease_events = 0; 6167 mddev->delta_disks = 0; 6168 mddev->reshape_backwards = 0; 6169 mddev->new_level = LEVEL_NONE; 6170 mddev->new_layout = 0; 6171 mddev->new_chunk_sectors = 0; 6172 mddev->curr_resync = MD_RESYNC_NONE; 6173 atomic64_set(&mddev->resync_mismatches, 0); 6174 mddev->suspend_lo = mddev->suspend_hi = 0; 6175 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6176 mddev->recovery = 0; 6177 mddev->in_sync = 0; 6178 mddev->changed = 0; 6179 mddev->degraded = 0; 6180 mddev->safemode = 0; 6181 mddev->private = NULL; 6182 mddev->cluster_info = NULL; 6183 mddev->bitmap_info.offset = 0; 6184 mddev->bitmap_info.default_offset = 0; 6185 mddev->bitmap_info.default_space = 0; 6186 mddev->bitmap_info.chunksize = 0; 6187 mddev->bitmap_info.daemon_sleep = 0; 6188 mddev->bitmap_info.max_write_behind = 0; 6189 mddev->bitmap_info.nodes = 0; 6190 } 6191 6192 static void __md_stop_writes(struct mddev *mddev) 6193 { 6194 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6195 if (work_pending(&mddev->del_work)) 6196 flush_workqueue(md_misc_wq); 6197 if (mddev->sync_thread) { 6198 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6199 md_unregister_thread(&mddev->sync_thread); 6200 md_reap_sync_thread(mddev); 6201 } 6202 6203 del_timer_sync(&mddev->safemode_timer); 6204 6205 if (mddev->pers && mddev->pers->quiesce) { 6206 mddev->pers->quiesce(mddev, 1); 6207 mddev->pers->quiesce(mddev, 0); 6208 } 6209 md_bitmap_flush(mddev); 6210 6211 if (md_is_rdwr(mddev) && 6212 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6213 mddev->sb_flags)) { 6214 /* mark array as shutdown cleanly */ 6215 if (!mddev_is_clustered(mddev)) 6216 mddev->in_sync = 1; 6217 md_update_sb(mddev, 1); 6218 } 6219 /* disable policy to guarantee rdevs free resources for serialization */ 6220 mddev->serialize_policy = 0; 6221 mddev_destroy_serial_pool(mddev, NULL, true); 6222 } 6223 6224 void md_stop_writes(struct mddev *mddev) 6225 { 6226 mddev_lock_nointr(mddev); 6227 __md_stop_writes(mddev); 6228 mddev_unlock(mddev); 6229 } 6230 EXPORT_SYMBOL_GPL(md_stop_writes); 6231 6232 static void mddev_detach(struct mddev *mddev) 6233 { 6234 md_bitmap_wait_behind_writes(mddev); 6235 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6236 mddev->pers->quiesce(mddev, 1); 6237 mddev->pers->quiesce(mddev, 0); 6238 } 6239 md_unregister_thread(&mddev->thread); 6240 if (mddev->queue) 6241 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6242 } 6243 6244 static void __md_stop(struct mddev *mddev) 6245 { 6246 struct md_personality *pers = mddev->pers; 6247 md_bitmap_destroy(mddev); 6248 mddev_detach(mddev); 6249 /* Ensure ->event_work is done */ 6250 if (mddev->event_work.func) 6251 flush_workqueue(md_misc_wq); 6252 spin_lock(&mddev->lock); 6253 mddev->pers = NULL; 6254 spin_unlock(&mddev->lock); 6255 if (mddev->private) 6256 pers->free(mddev, mddev->private); 6257 mddev->private = NULL; 6258 if (pers->sync_request && mddev->to_remove == NULL) 6259 mddev->to_remove = &md_redundancy_group; 6260 module_put(pers->owner); 6261 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6262 6263 percpu_ref_exit(&mddev->writes_pending); 6264 percpu_ref_exit(&mddev->active_io); 6265 bioset_exit(&mddev->bio_set); 6266 bioset_exit(&mddev->sync_set); 6267 } 6268 6269 void md_stop(struct mddev *mddev) 6270 { 6271 /* stop the array and free an attached data structures. 6272 * This is called from dm-raid 6273 */ 6274 __md_stop_writes(mddev); 6275 __md_stop(mddev); 6276 } 6277 6278 EXPORT_SYMBOL_GPL(md_stop); 6279 6280 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6281 { 6282 int err = 0; 6283 int did_freeze = 0; 6284 6285 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6286 did_freeze = 1; 6287 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6288 md_wakeup_thread(mddev->thread); 6289 } 6290 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6291 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6292 if (mddev->sync_thread) 6293 /* Thread might be blocked waiting for metadata update 6294 * which will now never happen */ 6295 wake_up_process(mddev->sync_thread->tsk); 6296 6297 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6298 return -EBUSY; 6299 mddev_unlock(mddev); 6300 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6301 &mddev->recovery)); 6302 wait_event(mddev->sb_wait, 6303 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6304 mddev_lock_nointr(mddev); 6305 6306 mutex_lock(&mddev->open_mutex); 6307 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6308 mddev->sync_thread || 6309 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6310 pr_warn("md: %s still in use.\n",mdname(mddev)); 6311 if (did_freeze) { 6312 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6313 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6314 md_wakeup_thread(mddev->thread); 6315 } 6316 err = -EBUSY; 6317 goto out; 6318 } 6319 if (mddev->pers) { 6320 __md_stop_writes(mddev); 6321 6322 err = -ENXIO; 6323 if (mddev->ro == MD_RDONLY) 6324 goto out; 6325 mddev->ro = MD_RDONLY; 6326 set_disk_ro(mddev->gendisk, 1); 6327 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6328 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6329 md_wakeup_thread(mddev->thread); 6330 sysfs_notify_dirent_safe(mddev->sysfs_state); 6331 err = 0; 6332 } 6333 out: 6334 mutex_unlock(&mddev->open_mutex); 6335 return err; 6336 } 6337 6338 /* mode: 6339 * 0 - completely stop and dis-assemble array 6340 * 2 - stop but do not disassemble array 6341 */ 6342 static int do_md_stop(struct mddev *mddev, int mode, 6343 struct block_device *bdev) 6344 { 6345 struct gendisk *disk = mddev->gendisk; 6346 struct md_rdev *rdev; 6347 int did_freeze = 0; 6348 6349 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6350 did_freeze = 1; 6351 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6352 md_wakeup_thread(mddev->thread); 6353 } 6354 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6355 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6356 if (mddev->sync_thread) 6357 /* Thread might be blocked waiting for metadata update 6358 * which will now never happen */ 6359 wake_up_process(mddev->sync_thread->tsk); 6360 6361 mddev_unlock(mddev); 6362 wait_event(resync_wait, (mddev->sync_thread == NULL && 6363 !test_bit(MD_RECOVERY_RUNNING, 6364 &mddev->recovery))); 6365 mddev_lock_nointr(mddev); 6366 6367 mutex_lock(&mddev->open_mutex); 6368 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6369 mddev->sysfs_active || 6370 mddev->sync_thread || 6371 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6372 pr_warn("md: %s still in use.\n",mdname(mddev)); 6373 mutex_unlock(&mddev->open_mutex); 6374 if (did_freeze) { 6375 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6376 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6377 md_wakeup_thread(mddev->thread); 6378 } 6379 return -EBUSY; 6380 } 6381 if (mddev->pers) { 6382 if (!md_is_rdwr(mddev)) 6383 set_disk_ro(disk, 0); 6384 6385 __md_stop_writes(mddev); 6386 __md_stop(mddev); 6387 6388 /* tell userspace to handle 'inactive' */ 6389 sysfs_notify_dirent_safe(mddev->sysfs_state); 6390 6391 rdev_for_each(rdev, mddev) 6392 if (rdev->raid_disk >= 0) 6393 sysfs_unlink_rdev(mddev, rdev); 6394 6395 set_capacity_and_notify(disk, 0); 6396 mutex_unlock(&mddev->open_mutex); 6397 mddev->changed = 1; 6398 6399 if (!md_is_rdwr(mddev)) 6400 mddev->ro = MD_RDWR; 6401 } else 6402 mutex_unlock(&mddev->open_mutex); 6403 /* 6404 * Free resources if final stop 6405 */ 6406 if (mode == 0) { 6407 pr_info("md: %s stopped.\n", mdname(mddev)); 6408 6409 if (mddev->bitmap_info.file) { 6410 struct file *f = mddev->bitmap_info.file; 6411 spin_lock(&mddev->lock); 6412 mddev->bitmap_info.file = NULL; 6413 spin_unlock(&mddev->lock); 6414 fput(f); 6415 } 6416 mddev->bitmap_info.offset = 0; 6417 6418 export_array(mddev); 6419 6420 md_clean(mddev); 6421 if (mddev->hold_active == UNTIL_STOP) 6422 mddev->hold_active = 0; 6423 } 6424 md_new_event(); 6425 sysfs_notify_dirent_safe(mddev->sysfs_state); 6426 return 0; 6427 } 6428 6429 #ifndef MODULE 6430 static void autorun_array(struct mddev *mddev) 6431 { 6432 struct md_rdev *rdev; 6433 int err; 6434 6435 if (list_empty(&mddev->disks)) 6436 return; 6437 6438 pr_info("md: running: "); 6439 6440 rdev_for_each(rdev, mddev) { 6441 pr_cont("<%pg>", rdev->bdev); 6442 } 6443 pr_cont("\n"); 6444 6445 err = do_md_run(mddev); 6446 if (err) { 6447 pr_warn("md: do_md_run() returned %d\n", err); 6448 do_md_stop(mddev, 0, NULL); 6449 } 6450 } 6451 6452 /* 6453 * lets try to run arrays based on all disks that have arrived 6454 * until now. (those are in pending_raid_disks) 6455 * 6456 * the method: pick the first pending disk, collect all disks with 6457 * the same UUID, remove all from the pending list and put them into 6458 * the 'same_array' list. Then order this list based on superblock 6459 * update time (freshest comes first), kick out 'old' disks and 6460 * compare superblocks. If everything's fine then run it. 6461 * 6462 * If "unit" is allocated, then bump its reference count 6463 */ 6464 static void autorun_devices(int part) 6465 { 6466 struct md_rdev *rdev0, *rdev, *tmp; 6467 struct mddev *mddev; 6468 6469 pr_info("md: autorun ...\n"); 6470 while (!list_empty(&pending_raid_disks)) { 6471 int unit; 6472 dev_t dev; 6473 LIST_HEAD(candidates); 6474 rdev0 = list_entry(pending_raid_disks.next, 6475 struct md_rdev, same_set); 6476 6477 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6478 INIT_LIST_HEAD(&candidates); 6479 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6480 if (super_90_load(rdev, rdev0, 0) >= 0) { 6481 pr_debug("md: adding %pg ...\n", 6482 rdev->bdev); 6483 list_move(&rdev->same_set, &candidates); 6484 } 6485 /* 6486 * now we have a set of devices, with all of them having 6487 * mostly sane superblocks. It's time to allocate the 6488 * mddev. 6489 */ 6490 if (part) { 6491 dev = MKDEV(mdp_major, 6492 rdev0->preferred_minor << MdpMinorShift); 6493 unit = MINOR(dev) >> MdpMinorShift; 6494 } else { 6495 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6496 unit = MINOR(dev); 6497 } 6498 if (rdev0->preferred_minor != unit) { 6499 pr_warn("md: unit number in %pg is bad: %d\n", 6500 rdev0->bdev, rdev0->preferred_minor); 6501 break; 6502 } 6503 6504 mddev = md_alloc(dev, NULL); 6505 if (IS_ERR(mddev)) 6506 break; 6507 6508 if (mddev_lock(mddev)) 6509 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6510 else if (mddev->raid_disks || mddev->major_version 6511 || !list_empty(&mddev->disks)) { 6512 pr_warn("md: %s already running, cannot run %pg\n", 6513 mdname(mddev), rdev0->bdev); 6514 mddev_unlock(mddev); 6515 } else { 6516 pr_debug("md: created %s\n", mdname(mddev)); 6517 mddev->persistent = 1; 6518 rdev_for_each_list(rdev, tmp, &candidates) { 6519 list_del_init(&rdev->same_set); 6520 if (bind_rdev_to_array(rdev, mddev)) 6521 export_rdev(rdev); 6522 } 6523 autorun_array(mddev); 6524 mddev_unlock(mddev); 6525 } 6526 /* on success, candidates will be empty, on error 6527 * it won't... 6528 */ 6529 rdev_for_each_list(rdev, tmp, &candidates) { 6530 list_del_init(&rdev->same_set); 6531 export_rdev(rdev); 6532 } 6533 mddev_put(mddev); 6534 } 6535 pr_info("md: ... autorun DONE.\n"); 6536 } 6537 #endif /* !MODULE */ 6538 6539 static int get_version(void __user *arg) 6540 { 6541 mdu_version_t ver; 6542 6543 ver.major = MD_MAJOR_VERSION; 6544 ver.minor = MD_MINOR_VERSION; 6545 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6546 6547 if (copy_to_user(arg, &ver, sizeof(ver))) 6548 return -EFAULT; 6549 6550 return 0; 6551 } 6552 6553 static int get_array_info(struct mddev *mddev, void __user *arg) 6554 { 6555 mdu_array_info_t info; 6556 int nr,working,insync,failed,spare; 6557 struct md_rdev *rdev; 6558 6559 nr = working = insync = failed = spare = 0; 6560 rcu_read_lock(); 6561 rdev_for_each_rcu(rdev, mddev) { 6562 nr++; 6563 if (test_bit(Faulty, &rdev->flags)) 6564 failed++; 6565 else { 6566 working++; 6567 if (test_bit(In_sync, &rdev->flags)) 6568 insync++; 6569 else if (test_bit(Journal, &rdev->flags)) 6570 /* TODO: add journal count to md_u.h */ 6571 ; 6572 else 6573 spare++; 6574 } 6575 } 6576 rcu_read_unlock(); 6577 6578 info.major_version = mddev->major_version; 6579 info.minor_version = mddev->minor_version; 6580 info.patch_version = MD_PATCHLEVEL_VERSION; 6581 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6582 info.level = mddev->level; 6583 info.size = mddev->dev_sectors / 2; 6584 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6585 info.size = -1; 6586 info.nr_disks = nr; 6587 info.raid_disks = mddev->raid_disks; 6588 info.md_minor = mddev->md_minor; 6589 info.not_persistent= !mddev->persistent; 6590 6591 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6592 info.state = 0; 6593 if (mddev->in_sync) 6594 info.state = (1<<MD_SB_CLEAN); 6595 if (mddev->bitmap && mddev->bitmap_info.offset) 6596 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6597 if (mddev_is_clustered(mddev)) 6598 info.state |= (1<<MD_SB_CLUSTERED); 6599 info.active_disks = insync; 6600 info.working_disks = working; 6601 info.failed_disks = failed; 6602 info.spare_disks = spare; 6603 6604 info.layout = mddev->layout; 6605 info.chunk_size = mddev->chunk_sectors << 9; 6606 6607 if (copy_to_user(arg, &info, sizeof(info))) 6608 return -EFAULT; 6609 6610 return 0; 6611 } 6612 6613 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6614 { 6615 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6616 char *ptr; 6617 int err; 6618 6619 file = kzalloc(sizeof(*file), GFP_NOIO); 6620 if (!file) 6621 return -ENOMEM; 6622 6623 err = 0; 6624 spin_lock(&mddev->lock); 6625 /* bitmap enabled */ 6626 if (mddev->bitmap_info.file) { 6627 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6628 sizeof(file->pathname)); 6629 if (IS_ERR(ptr)) 6630 err = PTR_ERR(ptr); 6631 else 6632 memmove(file->pathname, ptr, 6633 sizeof(file->pathname)-(ptr-file->pathname)); 6634 } 6635 spin_unlock(&mddev->lock); 6636 6637 if (err == 0 && 6638 copy_to_user(arg, file, sizeof(*file))) 6639 err = -EFAULT; 6640 6641 kfree(file); 6642 return err; 6643 } 6644 6645 static int get_disk_info(struct mddev *mddev, void __user * arg) 6646 { 6647 mdu_disk_info_t info; 6648 struct md_rdev *rdev; 6649 6650 if (copy_from_user(&info, arg, sizeof(info))) 6651 return -EFAULT; 6652 6653 rcu_read_lock(); 6654 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6655 if (rdev) { 6656 info.major = MAJOR(rdev->bdev->bd_dev); 6657 info.minor = MINOR(rdev->bdev->bd_dev); 6658 info.raid_disk = rdev->raid_disk; 6659 info.state = 0; 6660 if (test_bit(Faulty, &rdev->flags)) 6661 info.state |= (1<<MD_DISK_FAULTY); 6662 else if (test_bit(In_sync, &rdev->flags)) { 6663 info.state |= (1<<MD_DISK_ACTIVE); 6664 info.state |= (1<<MD_DISK_SYNC); 6665 } 6666 if (test_bit(Journal, &rdev->flags)) 6667 info.state |= (1<<MD_DISK_JOURNAL); 6668 if (test_bit(WriteMostly, &rdev->flags)) 6669 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6670 if (test_bit(FailFast, &rdev->flags)) 6671 info.state |= (1<<MD_DISK_FAILFAST); 6672 } else { 6673 info.major = info.minor = 0; 6674 info.raid_disk = -1; 6675 info.state = (1<<MD_DISK_REMOVED); 6676 } 6677 rcu_read_unlock(); 6678 6679 if (copy_to_user(arg, &info, sizeof(info))) 6680 return -EFAULT; 6681 6682 return 0; 6683 } 6684 6685 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6686 { 6687 struct md_rdev *rdev; 6688 dev_t dev = MKDEV(info->major,info->minor); 6689 6690 if (mddev_is_clustered(mddev) && 6691 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6692 pr_warn("%s: Cannot add to clustered mddev.\n", 6693 mdname(mddev)); 6694 return -EINVAL; 6695 } 6696 6697 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6698 return -EOVERFLOW; 6699 6700 if (!mddev->raid_disks) { 6701 int err; 6702 /* expecting a device which has a superblock */ 6703 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6704 if (IS_ERR(rdev)) { 6705 pr_warn("md: md_import_device returned %ld\n", 6706 PTR_ERR(rdev)); 6707 return PTR_ERR(rdev); 6708 } 6709 if (!list_empty(&mddev->disks)) { 6710 struct md_rdev *rdev0 6711 = list_entry(mddev->disks.next, 6712 struct md_rdev, same_set); 6713 err = super_types[mddev->major_version] 6714 .load_super(rdev, rdev0, mddev->minor_version); 6715 if (err < 0) { 6716 pr_warn("md: %pg has different UUID to %pg\n", 6717 rdev->bdev, 6718 rdev0->bdev); 6719 export_rdev(rdev); 6720 return -EINVAL; 6721 } 6722 } 6723 err = bind_rdev_to_array(rdev, mddev); 6724 if (err) 6725 export_rdev(rdev); 6726 return err; 6727 } 6728 6729 /* 6730 * md_add_new_disk can be used once the array is assembled 6731 * to add "hot spares". They must already have a superblock 6732 * written 6733 */ 6734 if (mddev->pers) { 6735 int err; 6736 if (!mddev->pers->hot_add_disk) { 6737 pr_warn("%s: personality does not support diskops!\n", 6738 mdname(mddev)); 6739 return -EINVAL; 6740 } 6741 if (mddev->persistent) 6742 rdev = md_import_device(dev, mddev->major_version, 6743 mddev->minor_version); 6744 else 6745 rdev = md_import_device(dev, -1, -1); 6746 if (IS_ERR(rdev)) { 6747 pr_warn("md: md_import_device returned %ld\n", 6748 PTR_ERR(rdev)); 6749 return PTR_ERR(rdev); 6750 } 6751 /* set saved_raid_disk if appropriate */ 6752 if (!mddev->persistent) { 6753 if (info->state & (1<<MD_DISK_SYNC) && 6754 info->raid_disk < mddev->raid_disks) { 6755 rdev->raid_disk = info->raid_disk; 6756 set_bit(In_sync, &rdev->flags); 6757 clear_bit(Bitmap_sync, &rdev->flags); 6758 } else 6759 rdev->raid_disk = -1; 6760 rdev->saved_raid_disk = rdev->raid_disk; 6761 } else 6762 super_types[mddev->major_version]. 6763 validate_super(mddev, rdev); 6764 if ((info->state & (1<<MD_DISK_SYNC)) && 6765 rdev->raid_disk != info->raid_disk) { 6766 /* This was a hot-add request, but events doesn't 6767 * match, so reject it. 6768 */ 6769 export_rdev(rdev); 6770 return -EINVAL; 6771 } 6772 6773 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6774 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6775 set_bit(WriteMostly, &rdev->flags); 6776 else 6777 clear_bit(WriteMostly, &rdev->flags); 6778 if (info->state & (1<<MD_DISK_FAILFAST)) 6779 set_bit(FailFast, &rdev->flags); 6780 else 6781 clear_bit(FailFast, &rdev->flags); 6782 6783 if (info->state & (1<<MD_DISK_JOURNAL)) { 6784 struct md_rdev *rdev2; 6785 bool has_journal = false; 6786 6787 /* make sure no existing journal disk */ 6788 rdev_for_each(rdev2, mddev) { 6789 if (test_bit(Journal, &rdev2->flags)) { 6790 has_journal = true; 6791 break; 6792 } 6793 } 6794 if (has_journal || mddev->bitmap) { 6795 export_rdev(rdev); 6796 return -EBUSY; 6797 } 6798 set_bit(Journal, &rdev->flags); 6799 } 6800 /* 6801 * check whether the device shows up in other nodes 6802 */ 6803 if (mddev_is_clustered(mddev)) { 6804 if (info->state & (1 << MD_DISK_CANDIDATE)) 6805 set_bit(Candidate, &rdev->flags); 6806 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6807 /* --add initiated by this node */ 6808 err = md_cluster_ops->add_new_disk(mddev, rdev); 6809 if (err) { 6810 export_rdev(rdev); 6811 return err; 6812 } 6813 } 6814 } 6815 6816 rdev->raid_disk = -1; 6817 err = bind_rdev_to_array(rdev, mddev); 6818 6819 if (err) 6820 export_rdev(rdev); 6821 6822 if (mddev_is_clustered(mddev)) { 6823 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6824 if (!err) { 6825 err = md_cluster_ops->new_disk_ack(mddev, 6826 err == 0); 6827 if (err) 6828 md_kick_rdev_from_array(rdev); 6829 } 6830 } else { 6831 if (err) 6832 md_cluster_ops->add_new_disk_cancel(mddev); 6833 else 6834 err = add_bound_rdev(rdev); 6835 } 6836 6837 } else if (!err) 6838 err = add_bound_rdev(rdev); 6839 6840 return err; 6841 } 6842 6843 /* otherwise, md_add_new_disk is only allowed 6844 * for major_version==0 superblocks 6845 */ 6846 if (mddev->major_version != 0) { 6847 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6848 return -EINVAL; 6849 } 6850 6851 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6852 int err; 6853 rdev = md_import_device(dev, -1, 0); 6854 if (IS_ERR(rdev)) { 6855 pr_warn("md: error, md_import_device() returned %ld\n", 6856 PTR_ERR(rdev)); 6857 return PTR_ERR(rdev); 6858 } 6859 rdev->desc_nr = info->number; 6860 if (info->raid_disk < mddev->raid_disks) 6861 rdev->raid_disk = info->raid_disk; 6862 else 6863 rdev->raid_disk = -1; 6864 6865 if (rdev->raid_disk < mddev->raid_disks) 6866 if (info->state & (1<<MD_DISK_SYNC)) 6867 set_bit(In_sync, &rdev->flags); 6868 6869 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6870 set_bit(WriteMostly, &rdev->flags); 6871 if (info->state & (1<<MD_DISK_FAILFAST)) 6872 set_bit(FailFast, &rdev->flags); 6873 6874 if (!mddev->persistent) { 6875 pr_debug("md: nonpersistent superblock ...\n"); 6876 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6877 } else 6878 rdev->sb_start = calc_dev_sboffset(rdev); 6879 rdev->sectors = rdev->sb_start; 6880 6881 err = bind_rdev_to_array(rdev, mddev); 6882 if (err) { 6883 export_rdev(rdev); 6884 return err; 6885 } 6886 } 6887 6888 return 0; 6889 } 6890 6891 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6892 { 6893 struct md_rdev *rdev; 6894 6895 if (!mddev->pers) 6896 return -ENODEV; 6897 6898 rdev = find_rdev(mddev, dev); 6899 if (!rdev) 6900 return -ENXIO; 6901 6902 if (rdev->raid_disk < 0) 6903 goto kick_rdev; 6904 6905 clear_bit(Blocked, &rdev->flags); 6906 remove_and_add_spares(mddev, rdev); 6907 6908 if (rdev->raid_disk >= 0) 6909 goto busy; 6910 6911 kick_rdev: 6912 if (mddev_is_clustered(mddev)) { 6913 if (md_cluster_ops->remove_disk(mddev, rdev)) 6914 goto busy; 6915 } 6916 6917 md_kick_rdev_from_array(rdev); 6918 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6919 if (mddev->thread) 6920 md_wakeup_thread(mddev->thread); 6921 else 6922 md_update_sb(mddev, 1); 6923 md_new_event(); 6924 6925 return 0; 6926 busy: 6927 pr_debug("md: cannot remove active disk %pg from %s ...\n", 6928 rdev->bdev, mdname(mddev)); 6929 return -EBUSY; 6930 } 6931 6932 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6933 { 6934 int err; 6935 struct md_rdev *rdev; 6936 6937 if (!mddev->pers) 6938 return -ENODEV; 6939 6940 if (mddev->major_version != 0) { 6941 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6942 mdname(mddev)); 6943 return -EINVAL; 6944 } 6945 if (!mddev->pers->hot_add_disk) { 6946 pr_warn("%s: personality does not support diskops!\n", 6947 mdname(mddev)); 6948 return -EINVAL; 6949 } 6950 6951 rdev = md_import_device(dev, -1, 0); 6952 if (IS_ERR(rdev)) { 6953 pr_warn("md: error, md_import_device() returned %ld\n", 6954 PTR_ERR(rdev)); 6955 return -EINVAL; 6956 } 6957 6958 if (mddev->persistent) 6959 rdev->sb_start = calc_dev_sboffset(rdev); 6960 else 6961 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6962 6963 rdev->sectors = rdev->sb_start; 6964 6965 if (test_bit(Faulty, &rdev->flags)) { 6966 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 6967 rdev->bdev, mdname(mddev)); 6968 err = -EINVAL; 6969 goto abort_export; 6970 } 6971 6972 clear_bit(In_sync, &rdev->flags); 6973 rdev->desc_nr = -1; 6974 rdev->saved_raid_disk = -1; 6975 err = bind_rdev_to_array(rdev, mddev); 6976 if (err) 6977 goto abort_export; 6978 6979 /* 6980 * The rest should better be atomic, we can have disk failures 6981 * noticed in interrupt contexts ... 6982 */ 6983 6984 rdev->raid_disk = -1; 6985 6986 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6987 if (!mddev->thread) 6988 md_update_sb(mddev, 1); 6989 /* 6990 * If the new disk does not support REQ_NOWAIT, 6991 * disable on the whole MD. 6992 */ 6993 if (!bdev_nowait(rdev->bdev)) { 6994 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 6995 mdname(mddev), rdev->bdev); 6996 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 6997 } 6998 /* 6999 * Kick recovery, maybe this spare has to be added to the 7000 * array immediately. 7001 */ 7002 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7003 md_wakeup_thread(mddev->thread); 7004 md_new_event(); 7005 return 0; 7006 7007 abort_export: 7008 export_rdev(rdev); 7009 return err; 7010 } 7011 7012 static int set_bitmap_file(struct mddev *mddev, int fd) 7013 { 7014 int err = 0; 7015 7016 if (mddev->pers) { 7017 if (!mddev->pers->quiesce || !mddev->thread) 7018 return -EBUSY; 7019 if (mddev->recovery || mddev->sync_thread) 7020 return -EBUSY; 7021 /* we should be able to change the bitmap.. */ 7022 } 7023 7024 if (fd >= 0) { 7025 struct inode *inode; 7026 struct file *f; 7027 7028 if (mddev->bitmap || mddev->bitmap_info.file) 7029 return -EEXIST; /* cannot add when bitmap is present */ 7030 f = fget(fd); 7031 7032 if (f == NULL) { 7033 pr_warn("%s: error: failed to get bitmap file\n", 7034 mdname(mddev)); 7035 return -EBADF; 7036 } 7037 7038 inode = f->f_mapping->host; 7039 if (!S_ISREG(inode->i_mode)) { 7040 pr_warn("%s: error: bitmap file must be a regular file\n", 7041 mdname(mddev)); 7042 err = -EBADF; 7043 } else if (!(f->f_mode & FMODE_WRITE)) { 7044 pr_warn("%s: error: bitmap file must open for write\n", 7045 mdname(mddev)); 7046 err = -EBADF; 7047 } else if (atomic_read(&inode->i_writecount) != 1) { 7048 pr_warn("%s: error: bitmap file is already in use\n", 7049 mdname(mddev)); 7050 err = -EBUSY; 7051 } 7052 if (err) { 7053 fput(f); 7054 return err; 7055 } 7056 mddev->bitmap_info.file = f; 7057 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7058 } else if (mddev->bitmap == NULL) 7059 return -ENOENT; /* cannot remove what isn't there */ 7060 err = 0; 7061 if (mddev->pers) { 7062 if (fd >= 0) { 7063 struct bitmap *bitmap; 7064 7065 bitmap = md_bitmap_create(mddev, -1); 7066 mddev_suspend(mddev); 7067 if (!IS_ERR(bitmap)) { 7068 mddev->bitmap = bitmap; 7069 err = md_bitmap_load(mddev); 7070 } else 7071 err = PTR_ERR(bitmap); 7072 if (err) { 7073 md_bitmap_destroy(mddev); 7074 fd = -1; 7075 } 7076 mddev_resume(mddev); 7077 } else if (fd < 0) { 7078 mddev_suspend(mddev); 7079 md_bitmap_destroy(mddev); 7080 mddev_resume(mddev); 7081 } 7082 } 7083 if (fd < 0) { 7084 struct file *f = mddev->bitmap_info.file; 7085 if (f) { 7086 spin_lock(&mddev->lock); 7087 mddev->bitmap_info.file = NULL; 7088 spin_unlock(&mddev->lock); 7089 fput(f); 7090 } 7091 } 7092 7093 return err; 7094 } 7095 7096 /* 7097 * md_set_array_info is used two different ways 7098 * The original usage is when creating a new array. 7099 * In this usage, raid_disks is > 0 and it together with 7100 * level, size, not_persistent,layout,chunksize determine the 7101 * shape of the array. 7102 * This will always create an array with a type-0.90.0 superblock. 7103 * The newer usage is when assembling an array. 7104 * In this case raid_disks will be 0, and the major_version field is 7105 * use to determine which style super-blocks are to be found on the devices. 7106 * The minor and patch _version numbers are also kept incase the 7107 * super_block handler wishes to interpret them. 7108 */ 7109 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7110 { 7111 if (info->raid_disks == 0) { 7112 /* just setting version number for superblock loading */ 7113 if (info->major_version < 0 || 7114 info->major_version >= ARRAY_SIZE(super_types) || 7115 super_types[info->major_version].name == NULL) { 7116 /* maybe try to auto-load a module? */ 7117 pr_warn("md: superblock version %d not known\n", 7118 info->major_version); 7119 return -EINVAL; 7120 } 7121 mddev->major_version = info->major_version; 7122 mddev->minor_version = info->minor_version; 7123 mddev->patch_version = info->patch_version; 7124 mddev->persistent = !info->not_persistent; 7125 /* ensure mddev_put doesn't delete this now that there 7126 * is some minimal configuration. 7127 */ 7128 mddev->ctime = ktime_get_real_seconds(); 7129 return 0; 7130 } 7131 mddev->major_version = MD_MAJOR_VERSION; 7132 mddev->minor_version = MD_MINOR_VERSION; 7133 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7134 mddev->ctime = ktime_get_real_seconds(); 7135 7136 mddev->level = info->level; 7137 mddev->clevel[0] = 0; 7138 mddev->dev_sectors = 2 * (sector_t)info->size; 7139 mddev->raid_disks = info->raid_disks; 7140 /* don't set md_minor, it is determined by which /dev/md* was 7141 * openned 7142 */ 7143 if (info->state & (1<<MD_SB_CLEAN)) 7144 mddev->recovery_cp = MaxSector; 7145 else 7146 mddev->recovery_cp = 0; 7147 mddev->persistent = ! info->not_persistent; 7148 mddev->external = 0; 7149 7150 mddev->layout = info->layout; 7151 if (mddev->level == 0) 7152 /* Cannot trust RAID0 layout info here */ 7153 mddev->layout = -1; 7154 mddev->chunk_sectors = info->chunk_size >> 9; 7155 7156 if (mddev->persistent) { 7157 mddev->max_disks = MD_SB_DISKS; 7158 mddev->flags = 0; 7159 mddev->sb_flags = 0; 7160 } 7161 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7162 7163 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7164 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7165 mddev->bitmap_info.offset = 0; 7166 7167 mddev->reshape_position = MaxSector; 7168 7169 /* 7170 * Generate a 128 bit UUID 7171 */ 7172 get_random_bytes(mddev->uuid, 16); 7173 7174 mddev->new_level = mddev->level; 7175 mddev->new_chunk_sectors = mddev->chunk_sectors; 7176 mddev->new_layout = mddev->layout; 7177 mddev->delta_disks = 0; 7178 mddev->reshape_backwards = 0; 7179 7180 return 0; 7181 } 7182 7183 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7184 { 7185 lockdep_assert_held(&mddev->reconfig_mutex); 7186 7187 if (mddev->external_size) 7188 return; 7189 7190 mddev->array_sectors = array_sectors; 7191 } 7192 EXPORT_SYMBOL(md_set_array_sectors); 7193 7194 static int update_size(struct mddev *mddev, sector_t num_sectors) 7195 { 7196 struct md_rdev *rdev; 7197 int rv; 7198 int fit = (num_sectors == 0); 7199 sector_t old_dev_sectors = mddev->dev_sectors; 7200 7201 if (mddev->pers->resize == NULL) 7202 return -EINVAL; 7203 /* The "num_sectors" is the number of sectors of each device that 7204 * is used. This can only make sense for arrays with redundancy. 7205 * linear and raid0 always use whatever space is available. We can only 7206 * consider changing this number if no resync or reconstruction is 7207 * happening, and if the new size is acceptable. It must fit before the 7208 * sb_start or, if that is <data_offset, it must fit before the size 7209 * of each device. If num_sectors is zero, we find the largest size 7210 * that fits. 7211 */ 7212 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7213 mddev->sync_thread) 7214 return -EBUSY; 7215 if (!md_is_rdwr(mddev)) 7216 return -EROFS; 7217 7218 rdev_for_each(rdev, mddev) { 7219 sector_t avail = rdev->sectors; 7220 7221 if (fit && (num_sectors == 0 || num_sectors > avail)) 7222 num_sectors = avail; 7223 if (avail < num_sectors) 7224 return -ENOSPC; 7225 } 7226 rv = mddev->pers->resize(mddev, num_sectors); 7227 if (!rv) { 7228 if (mddev_is_clustered(mddev)) 7229 md_cluster_ops->update_size(mddev, old_dev_sectors); 7230 else if (mddev->queue) { 7231 set_capacity_and_notify(mddev->gendisk, 7232 mddev->array_sectors); 7233 } 7234 } 7235 return rv; 7236 } 7237 7238 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7239 { 7240 int rv; 7241 struct md_rdev *rdev; 7242 /* change the number of raid disks */ 7243 if (mddev->pers->check_reshape == NULL) 7244 return -EINVAL; 7245 if (!md_is_rdwr(mddev)) 7246 return -EROFS; 7247 if (raid_disks <= 0 || 7248 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7249 return -EINVAL; 7250 if (mddev->sync_thread || 7251 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7252 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7253 mddev->reshape_position != MaxSector) 7254 return -EBUSY; 7255 7256 rdev_for_each(rdev, mddev) { 7257 if (mddev->raid_disks < raid_disks && 7258 rdev->data_offset < rdev->new_data_offset) 7259 return -EINVAL; 7260 if (mddev->raid_disks > raid_disks && 7261 rdev->data_offset > rdev->new_data_offset) 7262 return -EINVAL; 7263 } 7264 7265 mddev->delta_disks = raid_disks - mddev->raid_disks; 7266 if (mddev->delta_disks < 0) 7267 mddev->reshape_backwards = 1; 7268 else if (mddev->delta_disks > 0) 7269 mddev->reshape_backwards = 0; 7270 7271 rv = mddev->pers->check_reshape(mddev); 7272 if (rv < 0) { 7273 mddev->delta_disks = 0; 7274 mddev->reshape_backwards = 0; 7275 } 7276 return rv; 7277 } 7278 7279 /* 7280 * update_array_info is used to change the configuration of an 7281 * on-line array. 7282 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7283 * fields in the info are checked against the array. 7284 * Any differences that cannot be handled will cause an error. 7285 * Normally, only one change can be managed at a time. 7286 */ 7287 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7288 { 7289 int rv = 0; 7290 int cnt = 0; 7291 int state = 0; 7292 7293 /* calculate expected state,ignoring low bits */ 7294 if (mddev->bitmap && mddev->bitmap_info.offset) 7295 state |= (1 << MD_SB_BITMAP_PRESENT); 7296 7297 if (mddev->major_version != info->major_version || 7298 mddev->minor_version != info->minor_version || 7299 /* mddev->patch_version != info->patch_version || */ 7300 mddev->ctime != info->ctime || 7301 mddev->level != info->level || 7302 /* mddev->layout != info->layout || */ 7303 mddev->persistent != !info->not_persistent || 7304 mddev->chunk_sectors != info->chunk_size >> 9 || 7305 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7306 ((state^info->state) & 0xfffffe00) 7307 ) 7308 return -EINVAL; 7309 /* Check there is only one change */ 7310 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7311 cnt++; 7312 if (mddev->raid_disks != info->raid_disks) 7313 cnt++; 7314 if (mddev->layout != info->layout) 7315 cnt++; 7316 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7317 cnt++; 7318 if (cnt == 0) 7319 return 0; 7320 if (cnt > 1) 7321 return -EINVAL; 7322 7323 if (mddev->layout != info->layout) { 7324 /* Change layout 7325 * we don't need to do anything at the md level, the 7326 * personality will take care of it all. 7327 */ 7328 if (mddev->pers->check_reshape == NULL) 7329 return -EINVAL; 7330 else { 7331 mddev->new_layout = info->layout; 7332 rv = mddev->pers->check_reshape(mddev); 7333 if (rv) 7334 mddev->new_layout = mddev->layout; 7335 return rv; 7336 } 7337 } 7338 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7339 rv = update_size(mddev, (sector_t)info->size * 2); 7340 7341 if (mddev->raid_disks != info->raid_disks) 7342 rv = update_raid_disks(mddev, info->raid_disks); 7343 7344 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7345 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7346 rv = -EINVAL; 7347 goto err; 7348 } 7349 if (mddev->recovery || mddev->sync_thread) { 7350 rv = -EBUSY; 7351 goto err; 7352 } 7353 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7354 struct bitmap *bitmap; 7355 /* add the bitmap */ 7356 if (mddev->bitmap) { 7357 rv = -EEXIST; 7358 goto err; 7359 } 7360 if (mddev->bitmap_info.default_offset == 0) { 7361 rv = -EINVAL; 7362 goto err; 7363 } 7364 mddev->bitmap_info.offset = 7365 mddev->bitmap_info.default_offset; 7366 mddev->bitmap_info.space = 7367 mddev->bitmap_info.default_space; 7368 bitmap = md_bitmap_create(mddev, -1); 7369 mddev_suspend(mddev); 7370 if (!IS_ERR(bitmap)) { 7371 mddev->bitmap = bitmap; 7372 rv = md_bitmap_load(mddev); 7373 } else 7374 rv = PTR_ERR(bitmap); 7375 if (rv) 7376 md_bitmap_destroy(mddev); 7377 mddev_resume(mddev); 7378 } else { 7379 /* remove the bitmap */ 7380 if (!mddev->bitmap) { 7381 rv = -ENOENT; 7382 goto err; 7383 } 7384 if (mddev->bitmap->storage.file) { 7385 rv = -EINVAL; 7386 goto err; 7387 } 7388 if (mddev->bitmap_info.nodes) { 7389 /* hold PW on all the bitmap lock */ 7390 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7391 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7392 rv = -EPERM; 7393 md_cluster_ops->unlock_all_bitmaps(mddev); 7394 goto err; 7395 } 7396 7397 mddev->bitmap_info.nodes = 0; 7398 md_cluster_ops->leave(mddev); 7399 module_put(md_cluster_mod); 7400 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7401 } 7402 mddev_suspend(mddev); 7403 md_bitmap_destroy(mddev); 7404 mddev_resume(mddev); 7405 mddev->bitmap_info.offset = 0; 7406 } 7407 } 7408 md_update_sb(mddev, 1); 7409 return rv; 7410 err: 7411 return rv; 7412 } 7413 7414 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7415 { 7416 struct md_rdev *rdev; 7417 int err = 0; 7418 7419 if (mddev->pers == NULL) 7420 return -ENODEV; 7421 7422 rcu_read_lock(); 7423 rdev = md_find_rdev_rcu(mddev, dev); 7424 if (!rdev) 7425 err = -ENODEV; 7426 else { 7427 md_error(mddev, rdev); 7428 if (test_bit(MD_BROKEN, &mddev->flags)) 7429 err = -EBUSY; 7430 } 7431 rcu_read_unlock(); 7432 return err; 7433 } 7434 7435 /* 7436 * We have a problem here : there is no easy way to give a CHS 7437 * virtual geometry. We currently pretend that we have a 2 heads 7438 * 4 sectors (with a BIG number of cylinders...). This drives 7439 * dosfs just mad... ;-) 7440 */ 7441 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7442 { 7443 struct mddev *mddev = bdev->bd_disk->private_data; 7444 7445 geo->heads = 2; 7446 geo->sectors = 4; 7447 geo->cylinders = mddev->array_sectors / 8; 7448 return 0; 7449 } 7450 7451 static inline bool md_ioctl_valid(unsigned int cmd) 7452 { 7453 switch (cmd) { 7454 case ADD_NEW_DISK: 7455 case GET_ARRAY_INFO: 7456 case GET_BITMAP_FILE: 7457 case GET_DISK_INFO: 7458 case HOT_ADD_DISK: 7459 case HOT_REMOVE_DISK: 7460 case RAID_VERSION: 7461 case RESTART_ARRAY_RW: 7462 case RUN_ARRAY: 7463 case SET_ARRAY_INFO: 7464 case SET_BITMAP_FILE: 7465 case SET_DISK_FAULTY: 7466 case STOP_ARRAY: 7467 case STOP_ARRAY_RO: 7468 case CLUSTERED_DISK_NACK: 7469 return true; 7470 default: 7471 return false; 7472 } 7473 } 7474 7475 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7476 { 7477 mdu_array_info_t info; 7478 int err; 7479 7480 if (!argp) 7481 memset(&info, 0, sizeof(info)); 7482 else if (copy_from_user(&info, argp, sizeof(info))) 7483 return -EFAULT; 7484 7485 if (mddev->pers) { 7486 err = update_array_info(mddev, &info); 7487 if (err) 7488 pr_warn("md: couldn't update array info. %d\n", err); 7489 return err; 7490 } 7491 7492 if (!list_empty(&mddev->disks)) { 7493 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7494 return -EBUSY; 7495 } 7496 7497 if (mddev->raid_disks) { 7498 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7499 return -EBUSY; 7500 } 7501 7502 err = md_set_array_info(mddev, &info); 7503 if (err) 7504 pr_warn("md: couldn't set array info. %d\n", err); 7505 7506 return err; 7507 } 7508 7509 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7510 unsigned int cmd, unsigned long arg) 7511 { 7512 int err = 0; 7513 void __user *argp = (void __user *)arg; 7514 struct mddev *mddev = NULL; 7515 bool did_set_md_closing = false; 7516 7517 if (!md_ioctl_valid(cmd)) 7518 return -ENOTTY; 7519 7520 switch (cmd) { 7521 case RAID_VERSION: 7522 case GET_ARRAY_INFO: 7523 case GET_DISK_INFO: 7524 break; 7525 default: 7526 if (!capable(CAP_SYS_ADMIN)) 7527 return -EACCES; 7528 } 7529 7530 /* 7531 * Commands dealing with the RAID driver but not any 7532 * particular array: 7533 */ 7534 switch (cmd) { 7535 case RAID_VERSION: 7536 err = get_version(argp); 7537 goto out; 7538 default:; 7539 } 7540 7541 /* 7542 * Commands creating/starting a new array: 7543 */ 7544 7545 mddev = bdev->bd_disk->private_data; 7546 7547 if (!mddev) { 7548 BUG(); 7549 goto out; 7550 } 7551 7552 /* Some actions do not requires the mutex */ 7553 switch (cmd) { 7554 case GET_ARRAY_INFO: 7555 if (!mddev->raid_disks && !mddev->external) 7556 err = -ENODEV; 7557 else 7558 err = get_array_info(mddev, argp); 7559 goto out; 7560 7561 case GET_DISK_INFO: 7562 if (!mddev->raid_disks && !mddev->external) 7563 err = -ENODEV; 7564 else 7565 err = get_disk_info(mddev, argp); 7566 goto out; 7567 7568 case SET_DISK_FAULTY: 7569 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7570 goto out; 7571 7572 case GET_BITMAP_FILE: 7573 err = get_bitmap_file(mddev, argp); 7574 goto out; 7575 7576 } 7577 7578 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7579 flush_rdev_wq(mddev); 7580 7581 if (cmd == HOT_REMOVE_DISK) 7582 /* need to ensure recovery thread has run */ 7583 wait_event_interruptible_timeout(mddev->sb_wait, 7584 !test_bit(MD_RECOVERY_NEEDED, 7585 &mddev->recovery), 7586 msecs_to_jiffies(5000)); 7587 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7588 /* Need to flush page cache, and ensure no-one else opens 7589 * and writes 7590 */ 7591 mutex_lock(&mddev->open_mutex); 7592 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7593 mutex_unlock(&mddev->open_mutex); 7594 err = -EBUSY; 7595 goto out; 7596 } 7597 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7598 mutex_unlock(&mddev->open_mutex); 7599 err = -EBUSY; 7600 goto out; 7601 } 7602 did_set_md_closing = true; 7603 mutex_unlock(&mddev->open_mutex); 7604 sync_blockdev(bdev); 7605 } 7606 err = mddev_lock(mddev); 7607 if (err) { 7608 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7609 err, cmd); 7610 goto out; 7611 } 7612 7613 if (cmd == SET_ARRAY_INFO) { 7614 err = __md_set_array_info(mddev, argp); 7615 goto unlock; 7616 } 7617 7618 /* 7619 * Commands querying/configuring an existing array: 7620 */ 7621 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7622 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7623 if ((!mddev->raid_disks && !mddev->external) 7624 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7625 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7626 && cmd != GET_BITMAP_FILE) { 7627 err = -ENODEV; 7628 goto unlock; 7629 } 7630 7631 /* 7632 * Commands even a read-only array can execute: 7633 */ 7634 switch (cmd) { 7635 case RESTART_ARRAY_RW: 7636 err = restart_array(mddev); 7637 goto unlock; 7638 7639 case STOP_ARRAY: 7640 err = do_md_stop(mddev, 0, bdev); 7641 goto unlock; 7642 7643 case STOP_ARRAY_RO: 7644 err = md_set_readonly(mddev, bdev); 7645 goto unlock; 7646 7647 case HOT_REMOVE_DISK: 7648 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7649 goto unlock; 7650 7651 case ADD_NEW_DISK: 7652 /* We can support ADD_NEW_DISK on read-only arrays 7653 * only if we are re-adding a preexisting device. 7654 * So require mddev->pers and MD_DISK_SYNC. 7655 */ 7656 if (mddev->pers) { 7657 mdu_disk_info_t info; 7658 if (copy_from_user(&info, argp, sizeof(info))) 7659 err = -EFAULT; 7660 else if (!(info.state & (1<<MD_DISK_SYNC))) 7661 /* Need to clear read-only for this */ 7662 break; 7663 else 7664 err = md_add_new_disk(mddev, &info); 7665 goto unlock; 7666 } 7667 break; 7668 } 7669 7670 /* 7671 * The remaining ioctls are changing the state of the 7672 * superblock, so we do not allow them on read-only arrays. 7673 */ 7674 if (!md_is_rdwr(mddev) && mddev->pers) { 7675 if (mddev->ro != MD_AUTO_READ) { 7676 err = -EROFS; 7677 goto unlock; 7678 } 7679 mddev->ro = MD_RDWR; 7680 sysfs_notify_dirent_safe(mddev->sysfs_state); 7681 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7682 /* mddev_unlock will wake thread */ 7683 /* If a device failed while we were read-only, we 7684 * need to make sure the metadata is updated now. 7685 */ 7686 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7687 mddev_unlock(mddev); 7688 wait_event(mddev->sb_wait, 7689 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7690 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7691 mddev_lock_nointr(mddev); 7692 } 7693 } 7694 7695 switch (cmd) { 7696 case ADD_NEW_DISK: 7697 { 7698 mdu_disk_info_t info; 7699 if (copy_from_user(&info, argp, sizeof(info))) 7700 err = -EFAULT; 7701 else 7702 err = md_add_new_disk(mddev, &info); 7703 goto unlock; 7704 } 7705 7706 case CLUSTERED_DISK_NACK: 7707 if (mddev_is_clustered(mddev)) 7708 md_cluster_ops->new_disk_ack(mddev, false); 7709 else 7710 err = -EINVAL; 7711 goto unlock; 7712 7713 case HOT_ADD_DISK: 7714 err = hot_add_disk(mddev, new_decode_dev(arg)); 7715 goto unlock; 7716 7717 case RUN_ARRAY: 7718 err = do_md_run(mddev); 7719 goto unlock; 7720 7721 case SET_BITMAP_FILE: 7722 err = set_bitmap_file(mddev, (int)arg); 7723 goto unlock; 7724 7725 default: 7726 err = -EINVAL; 7727 goto unlock; 7728 } 7729 7730 unlock: 7731 if (mddev->hold_active == UNTIL_IOCTL && 7732 err != -EINVAL) 7733 mddev->hold_active = 0; 7734 mddev_unlock(mddev); 7735 out: 7736 if(did_set_md_closing) 7737 clear_bit(MD_CLOSING, &mddev->flags); 7738 return err; 7739 } 7740 #ifdef CONFIG_COMPAT 7741 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7742 unsigned int cmd, unsigned long arg) 7743 { 7744 switch (cmd) { 7745 case HOT_REMOVE_DISK: 7746 case HOT_ADD_DISK: 7747 case SET_DISK_FAULTY: 7748 case SET_BITMAP_FILE: 7749 /* These take in integer arg, do not convert */ 7750 break; 7751 default: 7752 arg = (unsigned long)compat_ptr(arg); 7753 break; 7754 } 7755 7756 return md_ioctl(bdev, mode, cmd, arg); 7757 } 7758 #endif /* CONFIG_COMPAT */ 7759 7760 static int md_set_read_only(struct block_device *bdev, bool ro) 7761 { 7762 struct mddev *mddev = bdev->bd_disk->private_data; 7763 int err; 7764 7765 err = mddev_lock(mddev); 7766 if (err) 7767 return err; 7768 7769 if (!mddev->raid_disks && !mddev->external) { 7770 err = -ENODEV; 7771 goto out_unlock; 7772 } 7773 7774 /* 7775 * Transitioning to read-auto need only happen for arrays that call 7776 * md_write_start and which are not ready for writes yet. 7777 */ 7778 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7779 err = restart_array(mddev); 7780 if (err) 7781 goto out_unlock; 7782 mddev->ro = MD_AUTO_READ; 7783 } 7784 7785 out_unlock: 7786 mddev_unlock(mddev); 7787 return err; 7788 } 7789 7790 static int md_open(struct block_device *bdev, fmode_t mode) 7791 { 7792 struct mddev *mddev; 7793 int err; 7794 7795 spin_lock(&all_mddevs_lock); 7796 mddev = mddev_get(bdev->bd_disk->private_data); 7797 spin_unlock(&all_mddevs_lock); 7798 if (!mddev) 7799 return -ENODEV; 7800 7801 err = mutex_lock_interruptible(&mddev->open_mutex); 7802 if (err) 7803 goto out; 7804 7805 err = -ENODEV; 7806 if (test_bit(MD_CLOSING, &mddev->flags)) 7807 goto out_unlock; 7808 7809 atomic_inc(&mddev->openers); 7810 mutex_unlock(&mddev->open_mutex); 7811 7812 bdev_check_media_change(bdev); 7813 return 0; 7814 7815 out_unlock: 7816 mutex_unlock(&mddev->open_mutex); 7817 out: 7818 mddev_put(mddev); 7819 return err; 7820 } 7821 7822 static void md_release(struct gendisk *disk, fmode_t mode) 7823 { 7824 struct mddev *mddev = disk->private_data; 7825 7826 BUG_ON(!mddev); 7827 atomic_dec(&mddev->openers); 7828 mddev_put(mddev); 7829 } 7830 7831 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7832 { 7833 struct mddev *mddev = disk->private_data; 7834 unsigned int ret = 0; 7835 7836 if (mddev->changed) 7837 ret = DISK_EVENT_MEDIA_CHANGE; 7838 mddev->changed = 0; 7839 return ret; 7840 } 7841 7842 static void md_free_disk(struct gendisk *disk) 7843 { 7844 struct mddev *mddev = disk->private_data; 7845 7846 mddev_free(mddev); 7847 } 7848 7849 const struct block_device_operations md_fops = 7850 { 7851 .owner = THIS_MODULE, 7852 .submit_bio = md_submit_bio, 7853 .open = md_open, 7854 .release = md_release, 7855 .ioctl = md_ioctl, 7856 #ifdef CONFIG_COMPAT 7857 .compat_ioctl = md_compat_ioctl, 7858 #endif 7859 .getgeo = md_getgeo, 7860 .check_events = md_check_events, 7861 .set_read_only = md_set_read_only, 7862 .free_disk = md_free_disk, 7863 }; 7864 7865 static int md_thread(void *arg) 7866 { 7867 struct md_thread *thread = arg; 7868 7869 /* 7870 * md_thread is a 'system-thread', it's priority should be very 7871 * high. We avoid resource deadlocks individually in each 7872 * raid personality. (RAID5 does preallocation) We also use RR and 7873 * the very same RT priority as kswapd, thus we will never get 7874 * into a priority inversion deadlock. 7875 * 7876 * we definitely have to have equal or higher priority than 7877 * bdflush, otherwise bdflush will deadlock if there are too 7878 * many dirty RAID5 blocks. 7879 */ 7880 7881 allow_signal(SIGKILL); 7882 while (!kthread_should_stop()) { 7883 7884 /* We need to wait INTERRUPTIBLE so that 7885 * we don't add to the load-average. 7886 * That means we need to be sure no signals are 7887 * pending 7888 */ 7889 if (signal_pending(current)) 7890 flush_signals(current); 7891 7892 wait_event_interruptible_timeout 7893 (thread->wqueue, 7894 test_bit(THREAD_WAKEUP, &thread->flags) 7895 || kthread_should_stop() || kthread_should_park(), 7896 thread->timeout); 7897 7898 clear_bit(THREAD_WAKEUP, &thread->flags); 7899 if (kthread_should_park()) 7900 kthread_parkme(); 7901 if (!kthread_should_stop()) 7902 thread->run(thread); 7903 } 7904 7905 return 0; 7906 } 7907 7908 void md_wakeup_thread(struct md_thread *thread) 7909 { 7910 if (thread) { 7911 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7912 set_bit(THREAD_WAKEUP, &thread->flags); 7913 wake_up(&thread->wqueue); 7914 } 7915 } 7916 EXPORT_SYMBOL(md_wakeup_thread); 7917 7918 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7919 struct mddev *mddev, const char *name) 7920 { 7921 struct md_thread *thread; 7922 7923 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7924 if (!thread) 7925 return NULL; 7926 7927 init_waitqueue_head(&thread->wqueue); 7928 7929 thread->run = run; 7930 thread->mddev = mddev; 7931 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7932 thread->tsk = kthread_run(md_thread, thread, 7933 "%s_%s", 7934 mdname(thread->mddev), 7935 name); 7936 if (IS_ERR(thread->tsk)) { 7937 kfree(thread); 7938 return NULL; 7939 } 7940 return thread; 7941 } 7942 EXPORT_SYMBOL(md_register_thread); 7943 7944 void md_unregister_thread(struct md_thread **threadp) 7945 { 7946 struct md_thread *thread; 7947 7948 /* 7949 * Locking ensures that mddev_unlock does not wake_up a 7950 * non-existent thread 7951 */ 7952 spin_lock(&pers_lock); 7953 thread = *threadp; 7954 if (!thread) { 7955 spin_unlock(&pers_lock); 7956 return; 7957 } 7958 *threadp = NULL; 7959 spin_unlock(&pers_lock); 7960 7961 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7962 kthread_stop(thread->tsk); 7963 kfree(thread); 7964 } 7965 EXPORT_SYMBOL(md_unregister_thread); 7966 7967 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7968 { 7969 if (!rdev || test_bit(Faulty, &rdev->flags)) 7970 return; 7971 7972 if (!mddev->pers || !mddev->pers->error_handler) 7973 return; 7974 mddev->pers->error_handler(mddev, rdev); 7975 7976 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 7977 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7978 sysfs_notify_dirent_safe(rdev->sysfs_state); 7979 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7980 if (!test_bit(MD_BROKEN, &mddev->flags)) { 7981 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7982 md_wakeup_thread(mddev->thread); 7983 } 7984 if (mddev->event_work.func) 7985 queue_work(md_misc_wq, &mddev->event_work); 7986 md_new_event(); 7987 } 7988 EXPORT_SYMBOL(md_error); 7989 7990 /* seq_file implementation /proc/mdstat */ 7991 7992 static void status_unused(struct seq_file *seq) 7993 { 7994 int i = 0; 7995 struct md_rdev *rdev; 7996 7997 seq_printf(seq, "unused devices: "); 7998 7999 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8000 i++; 8001 seq_printf(seq, "%pg ", rdev->bdev); 8002 } 8003 if (!i) 8004 seq_printf(seq, "<none>"); 8005 8006 seq_printf(seq, "\n"); 8007 } 8008 8009 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8010 { 8011 sector_t max_sectors, resync, res; 8012 unsigned long dt, db = 0; 8013 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8014 int scale, recovery_active; 8015 unsigned int per_milli; 8016 8017 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8018 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8019 max_sectors = mddev->resync_max_sectors; 8020 else 8021 max_sectors = mddev->dev_sectors; 8022 8023 resync = mddev->curr_resync; 8024 if (resync < MD_RESYNC_ACTIVE) { 8025 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8026 /* Still cleaning up */ 8027 resync = max_sectors; 8028 } else if (resync > max_sectors) { 8029 resync = max_sectors; 8030 } else { 8031 resync -= atomic_read(&mddev->recovery_active); 8032 if (resync < MD_RESYNC_ACTIVE) { 8033 /* 8034 * Resync has started, but the subtraction has 8035 * yielded one of the special values. Force it 8036 * to active to ensure the status reports an 8037 * active resync. 8038 */ 8039 resync = MD_RESYNC_ACTIVE; 8040 } 8041 } 8042 8043 if (resync == MD_RESYNC_NONE) { 8044 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8045 struct md_rdev *rdev; 8046 8047 rdev_for_each(rdev, mddev) 8048 if (rdev->raid_disk >= 0 && 8049 !test_bit(Faulty, &rdev->flags) && 8050 rdev->recovery_offset != MaxSector && 8051 rdev->recovery_offset) { 8052 seq_printf(seq, "\trecover=REMOTE"); 8053 return 1; 8054 } 8055 if (mddev->reshape_position != MaxSector) 8056 seq_printf(seq, "\treshape=REMOTE"); 8057 else 8058 seq_printf(seq, "\tresync=REMOTE"); 8059 return 1; 8060 } 8061 if (mddev->recovery_cp < MaxSector) { 8062 seq_printf(seq, "\tresync=PENDING"); 8063 return 1; 8064 } 8065 return 0; 8066 } 8067 if (resync < MD_RESYNC_ACTIVE) { 8068 seq_printf(seq, "\tresync=DELAYED"); 8069 return 1; 8070 } 8071 8072 WARN_ON(max_sectors == 0); 8073 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8074 * in a sector_t, and (max_sectors>>scale) will fit in a 8075 * u32, as those are the requirements for sector_div. 8076 * Thus 'scale' must be at least 10 8077 */ 8078 scale = 10; 8079 if (sizeof(sector_t) > sizeof(unsigned long)) { 8080 while ( max_sectors/2 > (1ULL<<(scale+32))) 8081 scale++; 8082 } 8083 res = (resync>>scale)*1000; 8084 sector_div(res, (u32)((max_sectors>>scale)+1)); 8085 8086 per_milli = res; 8087 { 8088 int i, x = per_milli/50, y = 20-x; 8089 seq_printf(seq, "["); 8090 for (i = 0; i < x; i++) 8091 seq_printf(seq, "="); 8092 seq_printf(seq, ">"); 8093 for (i = 0; i < y; i++) 8094 seq_printf(seq, "."); 8095 seq_printf(seq, "] "); 8096 } 8097 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8098 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8099 "reshape" : 8100 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8101 "check" : 8102 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8103 "resync" : "recovery"))), 8104 per_milli/10, per_milli % 10, 8105 (unsigned long long) resync/2, 8106 (unsigned long long) max_sectors/2); 8107 8108 /* 8109 * dt: time from mark until now 8110 * db: blocks written from mark until now 8111 * rt: remaining time 8112 * 8113 * rt is a sector_t, which is always 64bit now. We are keeping 8114 * the original algorithm, but it is not really necessary. 8115 * 8116 * Original algorithm: 8117 * So we divide before multiply in case it is 32bit and close 8118 * to the limit. 8119 * We scale the divisor (db) by 32 to avoid losing precision 8120 * near the end of resync when the number of remaining sectors 8121 * is close to 'db'. 8122 * We then divide rt by 32 after multiplying by db to compensate. 8123 * The '+1' avoids division by zero if db is very small. 8124 */ 8125 dt = ((jiffies - mddev->resync_mark) / HZ); 8126 if (!dt) dt++; 8127 8128 curr_mark_cnt = mddev->curr_mark_cnt; 8129 recovery_active = atomic_read(&mddev->recovery_active); 8130 resync_mark_cnt = mddev->resync_mark_cnt; 8131 8132 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8133 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8134 8135 rt = max_sectors - resync; /* number of remaining sectors */ 8136 rt = div64_u64(rt, db/32+1); 8137 rt *= dt; 8138 rt >>= 5; 8139 8140 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8141 ((unsigned long)rt % 60)/6); 8142 8143 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8144 return 1; 8145 } 8146 8147 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8148 { 8149 struct list_head *tmp; 8150 loff_t l = *pos; 8151 struct mddev *mddev; 8152 8153 if (l == 0x10000) { 8154 ++*pos; 8155 return (void *)2; 8156 } 8157 if (l > 0x10000) 8158 return NULL; 8159 if (!l--) 8160 /* header */ 8161 return (void*)1; 8162 8163 spin_lock(&all_mddevs_lock); 8164 list_for_each(tmp,&all_mddevs) 8165 if (!l--) { 8166 mddev = list_entry(tmp, struct mddev, all_mddevs); 8167 if (!mddev_get(mddev)) 8168 continue; 8169 spin_unlock(&all_mddevs_lock); 8170 return mddev; 8171 } 8172 spin_unlock(&all_mddevs_lock); 8173 if (!l--) 8174 return (void*)2;/* tail */ 8175 return NULL; 8176 } 8177 8178 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8179 { 8180 struct list_head *tmp; 8181 struct mddev *next_mddev, *mddev = v; 8182 struct mddev *to_put = NULL; 8183 8184 ++*pos; 8185 if (v == (void*)2) 8186 return NULL; 8187 8188 spin_lock(&all_mddevs_lock); 8189 if (v == (void*)1) { 8190 tmp = all_mddevs.next; 8191 } else { 8192 to_put = mddev; 8193 tmp = mddev->all_mddevs.next; 8194 } 8195 8196 for (;;) { 8197 if (tmp == &all_mddevs) { 8198 next_mddev = (void*)2; 8199 *pos = 0x10000; 8200 break; 8201 } 8202 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8203 if (mddev_get(next_mddev)) 8204 break; 8205 mddev = next_mddev; 8206 tmp = mddev->all_mddevs.next; 8207 } 8208 spin_unlock(&all_mddevs_lock); 8209 8210 if (to_put) 8211 mddev_put(mddev); 8212 return next_mddev; 8213 8214 } 8215 8216 static void md_seq_stop(struct seq_file *seq, void *v) 8217 { 8218 struct mddev *mddev = v; 8219 8220 if (mddev && v != (void*)1 && v != (void*)2) 8221 mddev_put(mddev); 8222 } 8223 8224 static int md_seq_show(struct seq_file *seq, void *v) 8225 { 8226 struct mddev *mddev = v; 8227 sector_t sectors; 8228 struct md_rdev *rdev; 8229 8230 if (v == (void*)1) { 8231 struct md_personality *pers; 8232 seq_printf(seq, "Personalities : "); 8233 spin_lock(&pers_lock); 8234 list_for_each_entry(pers, &pers_list, list) 8235 seq_printf(seq, "[%s] ", pers->name); 8236 8237 spin_unlock(&pers_lock); 8238 seq_printf(seq, "\n"); 8239 seq->poll_event = atomic_read(&md_event_count); 8240 return 0; 8241 } 8242 if (v == (void*)2) { 8243 status_unused(seq); 8244 return 0; 8245 } 8246 8247 spin_lock(&mddev->lock); 8248 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8249 seq_printf(seq, "%s : %sactive", mdname(mddev), 8250 mddev->pers ? "" : "in"); 8251 if (mddev->pers) { 8252 if (mddev->ro == MD_RDONLY) 8253 seq_printf(seq, " (read-only)"); 8254 if (mddev->ro == MD_AUTO_READ) 8255 seq_printf(seq, " (auto-read-only)"); 8256 seq_printf(seq, " %s", mddev->pers->name); 8257 } 8258 8259 sectors = 0; 8260 rcu_read_lock(); 8261 rdev_for_each_rcu(rdev, mddev) { 8262 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8263 8264 if (test_bit(WriteMostly, &rdev->flags)) 8265 seq_printf(seq, "(W)"); 8266 if (test_bit(Journal, &rdev->flags)) 8267 seq_printf(seq, "(J)"); 8268 if (test_bit(Faulty, &rdev->flags)) { 8269 seq_printf(seq, "(F)"); 8270 continue; 8271 } 8272 if (rdev->raid_disk < 0) 8273 seq_printf(seq, "(S)"); /* spare */ 8274 if (test_bit(Replacement, &rdev->flags)) 8275 seq_printf(seq, "(R)"); 8276 sectors += rdev->sectors; 8277 } 8278 rcu_read_unlock(); 8279 8280 if (!list_empty(&mddev->disks)) { 8281 if (mddev->pers) 8282 seq_printf(seq, "\n %llu blocks", 8283 (unsigned long long) 8284 mddev->array_sectors / 2); 8285 else 8286 seq_printf(seq, "\n %llu blocks", 8287 (unsigned long long)sectors / 2); 8288 } 8289 if (mddev->persistent) { 8290 if (mddev->major_version != 0 || 8291 mddev->minor_version != 90) { 8292 seq_printf(seq," super %d.%d", 8293 mddev->major_version, 8294 mddev->minor_version); 8295 } 8296 } else if (mddev->external) 8297 seq_printf(seq, " super external:%s", 8298 mddev->metadata_type); 8299 else 8300 seq_printf(seq, " super non-persistent"); 8301 8302 if (mddev->pers) { 8303 mddev->pers->status(seq, mddev); 8304 seq_printf(seq, "\n "); 8305 if (mddev->pers->sync_request) { 8306 if (status_resync(seq, mddev)) 8307 seq_printf(seq, "\n "); 8308 } 8309 } else 8310 seq_printf(seq, "\n "); 8311 8312 md_bitmap_status(seq, mddev->bitmap); 8313 8314 seq_printf(seq, "\n"); 8315 } 8316 spin_unlock(&mddev->lock); 8317 8318 return 0; 8319 } 8320 8321 static const struct seq_operations md_seq_ops = { 8322 .start = md_seq_start, 8323 .next = md_seq_next, 8324 .stop = md_seq_stop, 8325 .show = md_seq_show, 8326 }; 8327 8328 static int md_seq_open(struct inode *inode, struct file *file) 8329 { 8330 struct seq_file *seq; 8331 int error; 8332 8333 error = seq_open(file, &md_seq_ops); 8334 if (error) 8335 return error; 8336 8337 seq = file->private_data; 8338 seq->poll_event = atomic_read(&md_event_count); 8339 return error; 8340 } 8341 8342 static int md_unloading; 8343 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8344 { 8345 struct seq_file *seq = filp->private_data; 8346 __poll_t mask; 8347 8348 if (md_unloading) 8349 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8350 poll_wait(filp, &md_event_waiters, wait); 8351 8352 /* always allow read */ 8353 mask = EPOLLIN | EPOLLRDNORM; 8354 8355 if (seq->poll_event != atomic_read(&md_event_count)) 8356 mask |= EPOLLERR | EPOLLPRI; 8357 return mask; 8358 } 8359 8360 static const struct proc_ops mdstat_proc_ops = { 8361 .proc_open = md_seq_open, 8362 .proc_read = seq_read, 8363 .proc_lseek = seq_lseek, 8364 .proc_release = seq_release, 8365 .proc_poll = mdstat_poll, 8366 }; 8367 8368 int register_md_personality(struct md_personality *p) 8369 { 8370 pr_debug("md: %s personality registered for level %d\n", 8371 p->name, p->level); 8372 spin_lock(&pers_lock); 8373 list_add_tail(&p->list, &pers_list); 8374 spin_unlock(&pers_lock); 8375 return 0; 8376 } 8377 EXPORT_SYMBOL(register_md_personality); 8378 8379 int unregister_md_personality(struct md_personality *p) 8380 { 8381 pr_debug("md: %s personality unregistered\n", p->name); 8382 spin_lock(&pers_lock); 8383 list_del_init(&p->list); 8384 spin_unlock(&pers_lock); 8385 return 0; 8386 } 8387 EXPORT_SYMBOL(unregister_md_personality); 8388 8389 int register_md_cluster_operations(struct md_cluster_operations *ops, 8390 struct module *module) 8391 { 8392 int ret = 0; 8393 spin_lock(&pers_lock); 8394 if (md_cluster_ops != NULL) 8395 ret = -EALREADY; 8396 else { 8397 md_cluster_ops = ops; 8398 md_cluster_mod = module; 8399 } 8400 spin_unlock(&pers_lock); 8401 return ret; 8402 } 8403 EXPORT_SYMBOL(register_md_cluster_operations); 8404 8405 int unregister_md_cluster_operations(void) 8406 { 8407 spin_lock(&pers_lock); 8408 md_cluster_ops = NULL; 8409 spin_unlock(&pers_lock); 8410 return 0; 8411 } 8412 EXPORT_SYMBOL(unregister_md_cluster_operations); 8413 8414 int md_setup_cluster(struct mddev *mddev, int nodes) 8415 { 8416 int ret; 8417 if (!md_cluster_ops) 8418 request_module("md-cluster"); 8419 spin_lock(&pers_lock); 8420 /* ensure module won't be unloaded */ 8421 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8422 pr_warn("can't find md-cluster module or get its reference.\n"); 8423 spin_unlock(&pers_lock); 8424 return -ENOENT; 8425 } 8426 spin_unlock(&pers_lock); 8427 8428 ret = md_cluster_ops->join(mddev, nodes); 8429 if (!ret) 8430 mddev->safemode_delay = 0; 8431 return ret; 8432 } 8433 8434 void md_cluster_stop(struct mddev *mddev) 8435 { 8436 if (!md_cluster_ops) 8437 return; 8438 md_cluster_ops->leave(mddev); 8439 module_put(md_cluster_mod); 8440 } 8441 8442 static int is_mddev_idle(struct mddev *mddev, int init) 8443 { 8444 struct md_rdev *rdev; 8445 int idle; 8446 int curr_events; 8447 8448 idle = 1; 8449 rcu_read_lock(); 8450 rdev_for_each_rcu(rdev, mddev) { 8451 struct gendisk *disk = rdev->bdev->bd_disk; 8452 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8453 atomic_read(&disk->sync_io); 8454 /* sync IO will cause sync_io to increase before the disk_stats 8455 * as sync_io is counted when a request starts, and 8456 * disk_stats is counted when it completes. 8457 * So resync activity will cause curr_events to be smaller than 8458 * when there was no such activity. 8459 * non-sync IO will cause disk_stat to increase without 8460 * increasing sync_io so curr_events will (eventually) 8461 * be larger than it was before. Once it becomes 8462 * substantially larger, the test below will cause 8463 * the array to appear non-idle, and resync will slow 8464 * down. 8465 * If there is a lot of outstanding resync activity when 8466 * we set last_event to curr_events, then all that activity 8467 * completing might cause the array to appear non-idle 8468 * and resync will be slowed down even though there might 8469 * not have been non-resync activity. This will only 8470 * happen once though. 'last_events' will soon reflect 8471 * the state where there is little or no outstanding 8472 * resync requests, and further resync activity will 8473 * always make curr_events less than last_events. 8474 * 8475 */ 8476 if (init || curr_events - rdev->last_events > 64) { 8477 rdev->last_events = curr_events; 8478 idle = 0; 8479 } 8480 } 8481 rcu_read_unlock(); 8482 return idle; 8483 } 8484 8485 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8486 { 8487 /* another "blocks" (512byte) blocks have been synced */ 8488 atomic_sub(blocks, &mddev->recovery_active); 8489 wake_up(&mddev->recovery_wait); 8490 if (!ok) { 8491 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8492 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8493 md_wakeup_thread(mddev->thread); 8494 // stop recovery, signal do_sync .... 8495 } 8496 } 8497 EXPORT_SYMBOL(md_done_sync); 8498 8499 /* md_write_start(mddev, bi) 8500 * If we need to update some array metadata (e.g. 'active' flag 8501 * in superblock) before writing, schedule a superblock update 8502 * and wait for it to complete. 8503 * A return value of 'false' means that the write wasn't recorded 8504 * and cannot proceed as the array is being suspend. 8505 */ 8506 bool md_write_start(struct mddev *mddev, struct bio *bi) 8507 { 8508 int did_change = 0; 8509 8510 if (bio_data_dir(bi) != WRITE) 8511 return true; 8512 8513 BUG_ON(mddev->ro == MD_RDONLY); 8514 if (mddev->ro == MD_AUTO_READ) { 8515 /* need to switch to read/write */ 8516 mddev->ro = MD_RDWR; 8517 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8518 md_wakeup_thread(mddev->thread); 8519 md_wakeup_thread(mddev->sync_thread); 8520 did_change = 1; 8521 } 8522 rcu_read_lock(); 8523 percpu_ref_get(&mddev->writes_pending); 8524 smp_mb(); /* Match smp_mb in set_in_sync() */ 8525 if (mddev->safemode == 1) 8526 mddev->safemode = 0; 8527 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8528 if (mddev->in_sync || mddev->sync_checkers) { 8529 spin_lock(&mddev->lock); 8530 if (mddev->in_sync) { 8531 mddev->in_sync = 0; 8532 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8533 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8534 md_wakeup_thread(mddev->thread); 8535 did_change = 1; 8536 } 8537 spin_unlock(&mddev->lock); 8538 } 8539 rcu_read_unlock(); 8540 if (did_change) 8541 sysfs_notify_dirent_safe(mddev->sysfs_state); 8542 if (!mddev->has_superblocks) 8543 return true; 8544 wait_event(mddev->sb_wait, 8545 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8546 is_md_suspended(mddev)); 8547 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8548 percpu_ref_put(&mddev->writes_pending); 8549 return false; 8550 } 8551 return true; 8552 } 8553 EXPORT_SYMBOL(md_write_start); 8554 8555 /* md_write_inc can only be called when md_write_start() has 8556 * already been called at least once of the current request. 8557 * It increments the counter and is useful when a single request 8558 * is split into several parts. Each part causes an increment and 8559 * so needs a matching md_write_end(). 8560 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8561 * a spinlocked region. 8562 */ 8563 void md_write_inc(struct mddev *mddev, struct bio *bi) 8564 { 8565 if (bio_data_dir(bi) != WRITE) 8566 return; 8567 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8568 percpu_ref_get(&mddev->writes_pending); 8569 } 8570 EXPORT_SYMBOL(md_write_inc); 8571 8572 void md_write_end(struct mddev *mddev) 8573 { 8574 percpu_ref_put(&mddev->writes_pending); 8575 8576 if (mddev->safemode == 2) 8577 md_wakeup_thread(mddev->thread); 8578 else if (mddev->safemode_delay) 8579 /* The roundup() ensures this only performs locking once 8580 * every ->safemode_delay jiffies 8581 */ 8582 mod_timer(&mddev->safemode_timer, 8583 roundup(jiffies, mddev->safemode_delay) + 8584 mddev->safemode_delay); 8585 } 8586 8587 EXPORT_SYMBOL(md_write_end); 8588 8589 /* This is used by raid0 and raid10 */ 8590 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8591 struct bio *bio, sector_t start, sector_t size) 8592 { 8593 struct bio *discard_bio = NULL; 8594 8595 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8596 &discard_bio) || !discard_bio) 8597 return; 8598 8599 bio_chain(discard_bio, bio); 8600 bio_clone_blkg_association(discard_bio, bio); 8601 if (mddev->gendisk) 8602 trace_block_bio_remap(discard_bio, 8603 disk_devt(mddev->gendisk), 8604 bio->bi_iter.bi_sector); 8605 submit_bio_noacct(discard_bio); 8606 } 8607 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8608 8609 int acct_bioset_init(struct mddev *mddev) 8610 { 8611 int err = 0; 8612 8613 if (!bioset_initialized(&mddev->io_acct_set)) 8614 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 8615 offsetof(struct md_io_acct, bio_clone), 0); 8616 return err; 8617 } 8618 EXPORT_SYMBOL_GPL(acct_bioset_init); 8619 8620 void acct_bioset_exit(struct mddev *mddev) 8621 { 8622 bioset_exit(&mddev->io_acct_set); 8623 } 8624 EXPORT_SYMBOL_GPL(acct_bioset_exit); 8625 8626 static void md_end_io_acct(struct bio *bio) 8627 { 8628 struct md_io_acct *md_io_acct = bio->bi_private; 8629 struct bio *orig_bio = md_io_acct->orig_bio; 8630 struct mddev *mddev = md_io_acct->mddev; 8631 8632 orig_bio->bi_status = bio->bi_status; 8633 8634 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8635 bio_put(bio); 8636 bio_endio(orig_bio); 8637 8638 percpu_ref_put(&mddev->active_io); 8639 } 8640 8641 /* 8642 * Used by personalities that don't already clone the bio and thus can't 8643 * easily add the timestamp to their extended bio structure. 8644 */ 8645 void md_account_bio(struct mddev *mddev, struct bio **bio) 8646 { 8647 struct block_device *bdev = (*bio)->bi_bdev; 8648 struct md_io_acct *md_io_acct; 8649 struct bio *clone; 8650 8651 if (!blk_queue_io_stat(bdev->bd_disk->queue)) 8652 return; 8653 8654 percpu_ref_get(&mddev->active_io); 8655 8656 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set); 8657 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8658 md_io_acct->orig_bio = *bio; 8659 md_io_acct->start_time = bio_start_io_acct(*bio); 8660 md_io_acct->mddev = mddev; 8661 8662 clone->bi_end_io = md_end_io_acct; 8663 clone->bi_private = md_io_acct; 8664 *bio = clone; 8665 } 8666 EXPORT_SYMBOL_GPL(md_account_bio); 8667 8668 /* md_allow_write(mddev) 8669 * Calling this ensures that the array is marked 'active' so that writes 8670 * may proceed without blocking. It is important to call this before 8671 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8672 * Must be called with mddev_lock held. 8673 */ 8674 void md_allow_write(struct mddev *mddev) 8675 { 8676 if (!mddev->pers) 8677 return; 8678 if (!md_is_rdwr(mddev)) 8679 return; 8680 if (!mddev->pers->sync_request) 8681 return; 8682 8683 spin_lock(&mddev->lock); 8684 if (mddev->in_sync) { 8685 mddev->in_sync = 0; 8686 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8687 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8688 if (mddev->safemode_delay && 8689 mddev->safemode == 0) 8690 mddev->safemode = 1; 8691 spin_unlock(&mddev->lock); 8692 md_update_sb(mddev, 0); 8693 sysfs_notify_dirent_safe(mddev->sysfs_state); 8694 /* wait for the dirty state to be recorded in the metadata */ 8695 wait_event(mddev->sb_wait, 8696 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8697 } else 8698 spin_unlock(&mddev->lock); 8699 } 8700 EXPORT_SYMBOL_GPL(md_allow_write); 8701 8702 #define SYNC_MARKS 10 8703 #define SYNC_MARK_STEP (3*HZ) 8704 #define UPDATE_FREQUENCY (5*60*HZ) 8705 void md_do_sync(struct md_thread *thread) 8706 { 8707 struct mddev *mddev = thread->mddev; 8708 struct mddev *mddev2; 8709 unsigned int currspeed = 0, window; 8710 sector_t max_sectors,j, io_sectors, recovery_done; 8711 unsigned long mark[SYNC_MARKS]; 8712 unsigned long update_time; 8713 sector_t mark_cnt[SYNC_MARKS]; 8714 int last_mark,m; 8715 sector_t last_check; 8716 int skipped = 0; 8717 struct md_rdev *rdev; 8718 char *desc, *action = NULL; 8719 struct blk_plug plug; 8720 int ret; 8721 8722 /* just incase thread restarts... */ 8723 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8724 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8725 return; 8726 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8727 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8728 return; 8729 } 8730 8731 if (mddev_is_clustered(mddev)) { 8732 ret = md_cluster_ops->resync_start(mddev); 8733 if (ret) 8734 goto skip; 8735 8736 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8737 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8738 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8739 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8740 && ((unsigned long long)mddev->curr_resync_completed 8741 < (unsigned long long)mddev->resync_max_sectors)) 8742 goto skip; 8743 } 8744 8745 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8746 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8747 desc = "data-check"; 8748 action = "check"; 8749 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8750 desc = "requested-resync"; 8751 action = "repair"; 8752 } else 8753 desc = "resync"; 8754 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8755 desc = "reshape"; 8756 else 8757 desc = "recovery"; 8758 8759 mddev->last_sync_action = action ?: desc; 8760 8761 /* 8762 * Before starting a resync we must have set curr_resync to 8763 * 2, and then checked that every "conflicting" array has curr_resync 8764 * less than ours. When we find one that is the same or higher 8765 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8766 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8767 * This will mean we have to start checking from the beginning again. 8768 * 8769 */ 8770 8771 do { 8772 int mddev2_minor = -1; 8773 mddev->curr_resync = MD_RESYNC_DELAYED; 8774 8775 try_again: 8776 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8777 goto skip; 8778 spin_lock(&all_mddevs_lock); 8779 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8780 if (test_bit(MD_DELETED, &mddev2->flags)) 8781 continue; 8782 if (mddev2 == mddev) 8783 continue; 8784 if (!mddev->parallel_resync 8785 && mddev2->curr_resync 8786 && match_mddev_units(mddev, mddev2)) { 8787 DEFINE_WAIT(wq); 8788 if (mddev < mddev2 && 8789 mddev->curr_resync == MD_RESYNC_DELAYED) { 8790 /* arbitrarily yield */ 8791 mddev->curr_resync = MD_RESYNC_YIELDED; 8792 wake_up(&resync_wait); 8793 } 8794 if (mddev > mddev2 && 8795 mddev->curr_resync == MD_RESYNC_YIELDED) 8796 /* no need to wait here, we can wait the next 8797 * time 'round when curr_resync == 2 8798 */ 8799 continue; 8800 /* We need to wait 'interruptible' so as not to 8801 * contribute to the load average, and not to 8802 * be caught by 'softlockup' 8803 */ 8804 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8805 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8806 mddev2->curr_resync >= mddev->curr_resync) { 8807 if (mddev2_minor != mddev2->md_minor) { 8808 mddev2_minor = mddev2->md_minor; 8809 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8810 desc, mdname(mddev), 8811 mdname(mddev2)); 8812 } 8813 spin_unlock(&all_mddevs_lock); 8814 8815 if (signal_pending(current)) 8816 flush_signals(current); 8817 schedule(); 8818 finish_wait(&resync_wait, &wq); 8819 goto try_again; 8820 } 8821 finish_wait(&resync_wait, &wq); 8822 } 8823 } 8824 spin_unlock(&all_mddevs_lock); 8825 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8826 8827 j = 0; 8828 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8829 /* resync follows the size requested by the personality, 8830 * which defaults to physical size, but can be virtual size 8831 */ 8832 max_sectors = mddev->resync_max_sectors; 8833 atomic64_set(&mddev->resync_mismatches, 0); 8834 /* we don't use the checkpoint if there's a bitmap */ 8835 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8836 j = mddev->resync_min; 8837 else if (!mddev->bitmap) 8838 j = mddev->recovery_cp; 8839 8840 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8841 max_sectors = mddev->resync_max_sectors; 8842 /* 8843 * If the original node aborts reshaping then we continue the 8844 * reshaping, so set j again to avoid restart reshape from the 8845 * first beginning 8846 */ 8847 if (mddev_is_clustered(mddev) && 8848 mddev->reshape_position != MaxSector) 8849 j = mddev->reshape_position; 8850 } else { 8851 /* recovery follows the physical size of devices */ 8852 max_sectors = mddev->dev_sectors; 8853 j = MaxSector; 8854 rcu_read_lock(); 8855 rdev_for_each_rcu(rdev, mddev) 8856 if (rdev->raid_disk >= 0 && 8857 !test_bit(Journal, &rdev->flags) && 8858 !test_bit(Faulty, &rdev->flags) && 8859 !test_bit(In_sync, &rdev->flags) && 8860 rdev->recovery_offset < j) 8861 j = rdev->recovery_offset; 8862 rcu_read_unlock(); 8863 8864 /* If there is a bitmap, we need to make sure all 8865 * writes that started before we added a spare 8866 * complete before we start doing a recovery. 8867 * Otherwise the write might complete and (via 8868 * bitmap_endwrite) set a bit in the bitmap after the 8869 * recovery has checked that bit and skipped that 8870 * region. 8871 */ 8872 if (mddev->bitmap) { 8873 mddev->pers->quiesce(mddev, 1); 8874 mddev->pers->quiesce(mddev, 0); 8875 } 8876 } 8877 8878 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8879 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8880 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8881 speed_max(mddev), desc); 8882 8883 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8884 8885 io_sectors = 0; 8886 for (m = 0; m < SYNC_MARKS; m++) { 8887 mark[m] = jiffies; 8888 mark_cnt[m] = io_sectors; 8889 } 8890 last_mark = 0; 8891 mddev->resync_mark = mark[last_mark]; 8892 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8893 8894 /* 8895 * Tune reconstruction: 8896 */ 8897 window = 32 * (PAGE_SIZE / 512); 8898 pr_debug("md: using %dk window, over a total of %lluk.\n", 8899 window/2, (unsigned long long)max_sectors/2); 8900 8901 atomic_set(&mddev->recovery_active, 0); 8902 last_check = 0; 8903 8904 if (j >= MD_RESYNC_ACTIVE) { 8905 pr_debug("md: resuming %s of %s from checkpoint.\n", 8906 desc, mdname(mddev)); 8907 mddev->curr_resync = j; 8908 } else 8909 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8910 mddev->curr_resync_completed = j; 8911 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8912 md_new_event(); 8913 update_time = jiffies; 8914 8915 blk_start_plug(&plug); 8916 while (j < max_sectors) { 8917 sector_t sectors; 8918 8919 skipped = 0; 8920 8921 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8922 ((mddev->curr_resync > mddev->curr_resync_completed && 8923 (mddev->curr_resync - mddev->curr_resync_completed) 8924 > (max_sectors >> 4)) || 8925 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8926 (j - mddev->curr_resync_completed)*2 8927 >= mddev->resync_max - mddev->curr_resync_completed || 8928 mddev->curr_resync_completed > mddev->resync_max 8929 )) { 8930 /* time to update curr_resync_completed */ 8931 wait_event(mddev->recovery_wait, 8932 atomic_read(&mddev->recovery_active) == 0); 8933 mddev->curr_resync_completed = j; 8934 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8935 j > mddev->recovery_cp) 8936 mddev->recovery_cp = j; 8937 update_time = jiffies; 8938 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8939 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8940 } 8941 8942 while (j >= mddev->resync_max && 8943 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8944 /* As this condition is controlled by user-space, 8945 * we can block indefinitely, so use '_interruptible' 8946 * to avoid triggering warnings. 8947 */ 8948 flush_signals(current); /* just in case */ 8949 wait_event_interruptible(mddev->recovery_wait, 8950 mddev->resync_max > j 8951 || test_bit(MD_RECOVERY_INTR, 8952 &mddev->recovery)); 8953 } 8954 8955 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8956 break; 8957 8958 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8959 if (sectors == 0) { 8960 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8961 break; 8962 } 8963 8964 if (!skipped) { /* actual IO requested */ 8965 io_sectors += sectors; 8966 atomic_add(sectors, &mddev->recovery_active); 8967 } 8968 8969 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8970 break; 8971 8972 j += sectors; 8973 if (j > max_sectors) 8974 /* when skipping, extra large numbers can be returned. */ 8975 j = max_sectors; 8976 if (j >= MD_RESYNC_ACTIVE) 8977 mddev->curr_resync = j; 8978 mddev->curr_mark_cnt = io_sectors; 8979 if (last_check == 0) 8980 /* this is the earliest that rebuild will be 8981 * visible in /proc/mdstat 8982 */ 8983 md_new_event(); 8984 8985 if (last_check + window > io_sectors || j == max_sectors) 8986 continue; 8987 8988 last_check = io_sectors; 8989 repeat: 8990 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8991 /* step marks */ 8992 int next = (last_mark+1) % SYNC_MARKS; 8993 8994 mddev->resync_mark = mark[next]; 8995 mddev->resync_mark_cnt = mark_cnt[next]; 8996 mark[next] = jiffies; 8997 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8998 last_mark = next; 8999 } 9000 9001 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9002 break; 9003 9004 /* 9005 * this loop exits only if either when we are slower than 9006 * the 'hard' speed limit, or the system was IO-idle for 9007 * a jiffy. 9008 * the system might be non-idle CPU-wise, but we only care 9009 * about not overloading the IO subsystem. (things like an 9010 * e2fsck being done on the RAID array should execute fast) 9011 */ 9012 cond_resched(); 9013 9014 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9015 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9016 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9017 9018 if (currspeed > speed_min(mddev)) { 9019 if (currspeed > speed_max(mddev)) { 9020 msleep(500); 9021 goto repeat; 9022 } 9023 if (!is_mddev_idle(mddev, 0)) { 9024 /* 9025 * Give other IO more of a chance. 9026 * The faster the devices, the less we wait. 9027 */ 9028 wait_event(mddev->recovery_wait, 9029 !atomic_read(&mddev->recovery_active)); 9030 } 9031 } 9032 } 9033 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9034 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9035 ? "interrupted" : "done"); 9036 /* 9037 * this also signals 'finished resyncing' to md_stop 9038 */ 9039 blk_finish_plug(&plug); 9040 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9041 9042 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9043 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9044 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9045 mddev->curr_resync_completed = mddev->curr_resync; 9046 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9047 } 9048 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9049 9050 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9051 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9052 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9053 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9054 if (mddev->curr_resync >= mddev->recovery_cp) { 9055 pr_debug("md: checkpointing %s of %s.\n", 9056 desc, mdname(mddev)); 9057 if (test_bit(MD_RECOVERY_ERROR, 9058 &mddev->recovery)) 9059 mddev->recovery_cp = 9060 mddev->curr_resync_completed; 9061 else 9062 mddev->recovery_cp = 9063 mddev->curr_resync; 9064 } 9065 } else 9066 mddev->recovery_cp = MaxSector; 9067 } else { 9068 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9069 mddev->curr_resync = MaxSector; 9070 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9071 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9072 rcu_read_lock(); 9073 rdev_for_each_rcu(rdev, mddev) 9074 if (rdev->raid_disk >= 0 && 9075 mddev->delta_disks >= 0 && 9076 !test_bit(Journal, &rdev->flags) && 9077 !test_bit(Faulty, &rdev->flags) && 9078 !test_bit(In_sync, &rdev->flags) && 9079 rdev->recovery_offset < mddev->curr_resync) 9080 rdev->recovery_offset = mddev->curr_resync; 9081 rcu_read_unlock(); 9082 } 9083 } 9084 } 9085 skip: 9086 /* set CHANGE_PENDING here since maybe another update is needed, 9087 * so other nodes are informed. It should be harmless for normal 9088 * raid */ 9089 set_mask_bits(&mddev->sb_flags, 0, 9090 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9091 9092 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9093 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9094 mddev->delta_disks > 0 && 9095 mddev->pers->finish_reshape && 9096 mddev->pers->size && 9097 mddev->queue) { 9098 mddev_lock_nointr(mddev); 9099 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9100 mddev_unlock(mddev); 9101 if (!mddev_is_clustered(mddev)) 9102 set_capacity_and_notify(mddev->gendisk, 9103 mddev->array_sectors); 9104 } 9105 9106 spin_lock(&mddev->lock); 9107 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9108 /* We completed so min/max setting can be forgotten if used. */ 9109 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9110 mddev->resync_min = 0; 9111 mddev->resync_max = MaxSector; 9112 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9113 mddev->resync_min = mddev->curr_resync_completed; 9114 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9115 mddev->curr_resync = MD_RESYNC_NONE; 9116 spin_unlock(&mddev->lock); 9117 9118 wake_up(&resync_wait); 9119 md_wakeup_thread(mddev->thread); 9120 return; 9121 } 9122 EXPORT_SYMBOL_GPL(md_do_sync); 9123 9124 static int remove_and_add_spares(struct mddev *mddev, 9125 struct md_rdev *this) 9126 { 9127 struct md_rdev *rdev; 9128 int spares = 0; 9129 int removed = 0; 9130 bool remove_some = false; 9131 9132 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9133 /* Mustn't remove devices when resync thread is running */ 9134 return 0; 9135 9136 rdev_for_each(rdev, mddev) { 9137 if ((this == NULL || rdev == this) && 9138 rdev->raid_disk >= 0 && 9139 !test_bit(Blocked, &rdev->flags) && 9140 test_bit(Faulty, &rdev->flags) && 9141 atomic_read(&rdev->nr_pending)==0) { 9142 /* Faulty non-Blocked devices with nr_pending == 0 9143 * never get nr_pending incremented, 9144 * never get Faulty cleared, and never get Blocked set. 9145 * So we can synchronize_rcu now rather than once per device 9146 */ 9147 remove_some = true; 9148 set_bit(RemoveSynchronized, &rdev->flags); 9149 } 9150 } 9151 9152 if (remove_some) 9153 synchronize_rcu(); 9154 rdev_for_each(rdev, mddev) { 9155 if ((this == NULL || rdev == this) && 9156 rdev->raid_disk >= 0 && 9157 !test_bit(Blocked, &rdev->flags) && 9158 ((test_bit(RemoveSynchronized, &rdev->flags) || 9159 (!test_bit(In_sync, &rdev->flags) && 9160 !test_bit(Journal, &rdev->flags))) && 9161 atomic_read(&rdev->nr_pending)==0)) { 9162 if (mddev->pers->hot_remove_disk( 9163 mddev, rdev) == 0) { 9164 sysfs_unlink_rdev(mddev, rdev); 9165 rdev->saved_raid_disk = rdev->raid_disk; 9166 rdev->raid_disk = -1; 9167 removed++; 9168 } 9169 } 9170 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9171 clear_bit(RemoveSynchronized, &rdev->flags); 9172 } 9173 9174 if (removed && mddev->kobj.sd) 9175 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9176 9177 if (this && removed) 9178 goto no_add; 9179 9180 rdev_for_each(rdev, mddev) { 9181 if (this && this != rdev) 9182 continue; 9183 if (test_bit(Candidate, &rdev->flags)) 9184 continue; 9185 if (rdev->raid_disk >= 0 && 9186 !test_bit(In_sync, &rdev->flags) && 9187 !test_bit(Journal, &rdev->flags) && 9188 !test_bit(Faulty, &rdev->flags)) 9189 spares++; 9190 if (rdev->raid_disk >= 0) 9191 continue; 9192 if (test_bit(Faulty, &rdev->flags)) 9193 continue; 9194 if (!test_bit(Journal, &rdev->flags)) { 9195 if (!md_is_rdwr(mddev) && 9196 !(rdev->saved_raid_disk >= 0 && 9197 !test_bit(Bitmap_sync, &rdev->flags))) 9198 continue; 9199 9200 rdev->recovery_offset = 0; 9201 } 9202 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9203 /* failure here is OK */ 9204 sysfs_link_rdev(mddev, rdev); 9205 if (!test_bit(Journal, &rdev->flags)) 9206 spares++; 9207 md_new_event(); 9208 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9209 } 9210 } 9211 no_add: 9212 if (removed) 9213 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9214 return spares; 9215 } 9216 9217 static void md_start_sync(struct work_struct *ws) 9218 { 9219 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9220 9221 mddev->sync_thread = md_register_thread(md_do_sync, 9222 mddev, 9223 "resync"); 9224 if (!mddev->sync_thread) { 9225 pr_warn("%s: could not start resync thread...\n", 9226 mdname(mddev)); 9227 /* leave the spares where they are, it shouldn't hurt */ 9228 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9229 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9230 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9231 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9232 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9233 wake_up(&resync_wait); 9234 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9235 &mddev->recovery)) 9236 if (mddev->sysfs_action) 9237 sysfs_notify_dirent_safe(mddev->sysfs_action); 9238 } else 9239 md_wakeup_thread(mddev->sync_thread); 9240 sysfs_notify_dirent_safe(mddev->sysfs_action); 9241 md_new_event(); 9242 } 9243 9244 /* 9245 * This routine is regularly called by all per-raid-array threads to 9246 * deal with generic issues like resync and super-block update. 9247 * Raid personalities that don't have a thread (linear/raid0) do not 9248 * need this as they never do any recovery or update the superblock. 9249 * 9250 * It does not do any resync itself, but rather "forks" off other threads 9251 * to do that as needed. 9252 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9253 * "->recovery" and create a thread at ->sync_thread. 9254 * When the thread finishes it sets MD_RECOVERY_DONE 9255 * and wakeups up this thread which will reap the thread and finish up. 9256 * This thread also removes any faulty devices (with nr_pending == 0). 9257 * 9258 * The overall approach is: 9259 * 1/ if the superblock needs updating, update it. 9260 * 2/ If a recovery thread is running, don't do anything else. 9261 * 3/ If recovery has finished, clean up, possibly marking spares active. 9262 * 4/ If there are any faulty devices, remove them. 9263 * 5/ If array is degraded, try to add spares devices 9264 * 6/ If array has spares or is not in-sync, start a resync thread. 9265 */ 9266 void md_check_recovery(struct mddev *mddev) 9267 { 9268 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9269 /* Write superblock - thread that called mddev_suspend() 9270 * holds reconfig_mutex for us. 9271 */ 9272 set_bit(MD_UPDATING_SB, &mddev->flags); 9273 smp_mb__after_atomic(); 9274 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9275 md_update_sb(mddev, 0); 9276 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9277 wake_up(&mddev->sb_wait); 9278 } 9279 9280 if (is_md_suspended(mddev)) 9281 return; 9282 9283 if (mddev->bitmap) 9284 md_bitmap_daemon_work(mddev); 9285 9286 if (signal_pending(current)) { 9287 if (mddev->pers->sync_request && !mddev->external) { 9288 pr_debug("md: %s in immediate safe mode\n", 9289 mdname(mddev)); 9290 mddev->safemode = 2; 9291 } 9292 flush_signals(current); 9293 } 9294 9295 if (!md_is_rdwr(mddev) && 9296 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9297 return; 9298 if ( ! ( 9299 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9300 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9301 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9302 (mddev->external == 0 && mddev->safemode == 1) || 9303 (mddev->safemode == 2 9304 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9305 )) 9306 return; 9307 9308 if (mddev_trylock(mddev)) { 9309 int spares = 0; 9310 bool try_set_sync = mddev->safemode != 0; 9311 9312 if (!mddev->external && mddev->safemode == 1) 9313 mddev->safemode = 0; 9314 9315 if (!md_is_rdwr(mddev)) { 9316 struct md_rdev *rdev; 9317 if (!mddev->external && mddev->in_sync) 9318 /* 'Blocked' flag not needed as failed devices 9319 * will be recorded if array switched to read/write. 9320 * Leaving it set will prevent the device 9321 * from being removed. 9322 */ 9323 rdev_for_each(rdev, mddev) 9324 clear_bit(Blocked, &rdev->flags); 9325 /* On a read-only array we can: 9326 * - remove failed devices 9327 * - add already-in_sync devices if the array itself 9328 * is in-sync. 9329 * As we only add devices that are already in-sync, 9330 * we can activate the spares immediately. 9331 */ 9332 remove_and_add_spares(mddev, NULL); 9333 /* There is no thread, but we need to call 9334 * ->spare_active and clear saved_raid_disk 9335 */ 9336 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9337 md_unregister_thread(&mddev->sync_thread); 9338 md_reap_sync_thread(mddev); 9339 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9340 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9341 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9342 goto unlock; 9343 } 9344 9345 if (mddev_is_clustered(mddev)) { 9346 struct md_rdev *rdev, *tmp; 9347 /* kick the device if another node issued a 9348 * remove disk. 9349 */ 9350 rdev_for_each_safe(rdev, tmp, mddev) { 9351 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9352 rdev->raid_disk < 0) 9353 md_kick_rdev_from_array(rdev); 9354 } 9355 } 9356 9357 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9358 spin_lock(&mddev->lock); 9359 set_in_sync(mddev); 9360 spin_unlock(&mddev->lock); 9361 } 9362 9363 if (mddev->sb_flags) 9364 md_update_sb(mddev, 0); 9365 9366 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9367 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9368 /* resync/recovery still happening */ 9369 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9370 goto unlock; 9371 } 9372 if (mddev->sync_thread) { 9373 md_unregister_thread(&mddev->sync_thread); 9374 md_reap_sync_thread(mddev); 9375 goto unlock; 9376 } 9377 /* Set RUNNING before clearing NEEDED to avoid 9378 * any transients in the value of "sync_action". 9379 */ 9380 mddev->curr_resync_completed = 0; 9381 spin_lock(&mddev->lock); 9382 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9383 spin_unlock(&mddev->lock); 9384 /* Clear some bits that don't mean anything, but 9385 * might be left set 9386 */ 9387 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9388 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9389 9390 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9391 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9392 goto not_running; 9393 /* no recovery is running. 9394 * remove any failed drives, then 9395 * add spares if possible. 9396 * Spares are also removed and re-added, to allow 9397 * the personality to fail the re-add. 9398 */ 9399 9400 if (mddev->reshape_position != MaxSector) { 9401 if (mddev->pers->check_reshape == NULL || 9402 mddev->pers->check_reshape(mddev) != 0) 9403 /* Cannot proceed */ 9404 goto not_running; 9405 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9406 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9407 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9408 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9409 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9410 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9411 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9412 } else if (mddev->recovery_cp < MaxSector) { 9413 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9414 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9415 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9416 /* nothing to be done ... */ 9417 goto not_running; 9418 9419 if (mddev->pers->sync_request) { 9420 if (spares) { 9421 /* We are adding a device or devices to an array 9422 * which has the bitmap stored on all devices. 9423 * So make sure all bitmap pages get written 9424 */ 9425 md_bitmap_write_all(mddev->bitmap); 9426 } 9427 INIT_WORK(&mddev->del_work, md_start_sync); 9428 queue_work(md_misc_wq, &mddev->del_work); 9429 goto unlock; 9430 } 9431 not_running: 9432 if (!mddev->sync_thread) { 9433 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9434 wake_up(&resync_wait); 9435 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9436 &mddev->recovery)) 9437 if (mddev->sysfs_action) 9438 sysfs_notify_dirent_safe(mddev->sysfs_action); 9439 } 9440 unlock: 9441 wake_up(&mddev->sb_wait); 9442 mddev_unlock(mddev); 9443 } 9444 } 9445 EXPORT_SYMBOL(md_check_recovery); 9446 9447 void md_reap_sync_thread(struct mddev *mddev) 9448 { 9449 struct md_rdev *rdev; 9450 sector_t old_dev_sectors = mddev->dev_sectors; 9451 bool is_reshaped = false; 9452 9453 /* sync_thread should be unregistered, collect result */ 9454 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9455 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9456 mddev->degraded != mddev->raid_disks) { 9457 /* success...*/ 9458 /* activate any spares */ 9459 if (mddev->pers->spare_active(mddev)) { 9460 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9461 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9462 } 9463 } 9464 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9465 mddev->pers->finish_reshape) { 9466 mddev->pers->finish_reshape(mddev); 9467 if (mddev_is_clustered(mddev)) 9468 is_reshaped = true; 9469 } 9470 9471 /* If array is no-longer degraded, then any saved_raid_disk 9472 * information must be scrapped. 9473 */ 9474 if (!mddev->degraded) 9475 rdev_for_each(rdev, mddev) 9476 rdev->saved_raid_disk = -1; 9477 9478 md_update_sb(mddev, 1); 9479 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9480 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9481 * clustered raid */ 9482 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9483 md_cluster_ops->resync_finish(mddev); 9484 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9485 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9486 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9487 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9488 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9489 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9490 /* 9491 * We call md_cluster_ops->update_size here because sync_size could 9492 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9493 * so it is time to update size across cluster. 9494 */ 9495 if (mddev_is_clustered(mddev) && is_reshaped 9496 && !test_bit(MD_CLOSING, &mddev->flags)) 9497 md_cluster_ops->update_size(mddev, old_dev_sectors); 9498 wake_up(&resync_wait); 9499 /* flag recovery needed just to double check */ 9500 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9501 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9502 sysfs_notify_dirent_safe(mddev->sysfs_action); 9503 md_new_event(); 9504 if (mddev->event_work.func) 9505 queue_work(md_misc_wq, &mddev->event_work); 9506 } 9507 EXPORT_SYMBOL(md_reap_sync_thread); 9508 9509 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9510 { 9511 sysfs_notify_dirent_safe(rdev->sysfs_state); 9512 wait_event_timeout(rdev->blocked_wait, 9513 !test_bit(Blocked, &rdev->flags) && 9514 !test_bit(BlockedBadBlocks, &rdev->flags), 9515 msecs_to_jiffies(5000)); 9516 rdev_dec_pending(rdev, mddev); 9517 } 9518 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9519 9520 void md_finish_reshape(struct mddev *mddev) 9521 { 9522 /* called be personality module when reshape completes. */ 9523 struct md_rdev *rdev; 9524 9525 rdev_for_each(rdev, mddev) { 9526 if (rdev->data_offset > rdev->new_data_offset) 9527 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9528 else 9529 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9530 rdev->data_offset = rdev->new_data_offset; 9531 } 9532 } 9533 EXPORT_SYMBOL(md_finish_reshape); 9534 9535 /* Bad block management */ 9536 9537 /* Returns 1 on success, 0 on failure */ 9538 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9539 int is_new) 9540 { 9541 struct mddev *mddev = rdev->mddev; 9542 int rv; 9543 if (is_new) 9544 s += rdev->new_data_offset; 9545 else 9546 s += rdev->data_offset; 9547 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9548 if (rv == 0) { 9549 /* Make sure they get written out promptly */ 9550 if (test_bit(ExternalBbl, &rdev->flags)) 9551 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9552 sysfs_notify_dirent_safe(rdev->sysfs_state); 9553 set_mask_bits(&mddev->sb_flags, 0, 9554 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9555 md_wakeup_thread(rdev->mddev->thread); 9556 return 1; 9557 } else 9558 return 0; 9559 } 9560 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9561 9562 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9563 int is_new) 9564 { 9565 int rv; 9566 if (is_new) 9567 s += rdev->new_data_offset; 9568 else 9569 s += rdev->data_offset; 9570 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9571 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9572 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9573 return rv; 9574 } 9575 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9576 9577 static int md_notify_reboot(struct notifier_block *this, 9578 unsigned long code, void *x) 9579 { 9580 struct mddev *mddev, *n; 9581 int need_delay = 0; 9582 9583 spin_lock(&all_mddevs_lock); 9584 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9585 if (!mddev_get(mddev)) 9586 continue; 9587 spin_unlock(&all_mddevs_lock); 9588 if (mddev_trylock(mddev)) { 9589 if (mddev->pers) 9590 __md_stop_writes(mddev); 9591 if (mddev->persistent) 9592 mddev->safemode = 2; 9593 mddev_unlock(mddev); 9594 } 9595 need_delay = 1; 9596 mddev_put(mddev); 9597 spin_lock(&all_mddevs_lock); 9598 } 9599 spin_unlock(&all_mddevs_lock); 9600 9601 /* 9602 * certain more exotic SCSI devices are known to be 9603 * volatile wrt too early system reboots. While the 9604 * right place to handle this issue is the given 9605 * driver, we do want to have a safe RAID driver ... 9606 */ 9607 if (need_delay) 9608 msleep(1000); 9609 9610 return NOTIFY_DONE; 9611 } 9612 9613 static struct notifier_block md_notifier = { 9614 .notifier_call = md_notify_reboot, 9615 .next = NULL, 9616 .priority = INT_MAX, /* before any real devices */ 9617 }; 9618 9619 static void md_geninit(void) 9620 { 9621 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9622 9623 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9624 } 9625 9626 static int __init md_init(void) 9627 { 9628 int ret = -ENOMEM; 9629 9630 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9631 if (!md_wq) 9632 goto err_wq; 9633 9634 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9635 if (!md_misc_wq) 9636 goto err_misc_wq; 9637 9638 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9639 if (!md_rdev_misc_wq) 9640 goto err_rdev_misc_wq; 9641 9642 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9643 if (ret < 0) 9644 goto err_md; 9645 9646 ret = __register_blkdev(0, "mdp", md_probe); 9647 if (ret < 0) 9648 goto err_mdp; 9649 mdp_major = ret; 9650 9651 register_reboot_notifier(&md_notifier); 9652 raid_table_header = register_sysctl_table(raid_root_table); 9653 9654 md_geninit(); 9655 return 0; 9656 9657 err_mdp: 9658 unregister_blkdev(MD_MAJOR, "md"); 9659 err_md: 9660 destroy_workqueue(md_rdev_misc_wq); 9661 err_rdev_misc_wq: 9662 destroy_workqueue(md_misc_wq); 9663 err_misc_wq: 9664 destroy_workqueue(md_wq); 9665 err_wq: 9666 return ret; 9667 } 9668 9669 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9670 { 9671 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9672 struct md_rdev *rdev2, *tmp; 9673 int role, ret; 9674 9675 /* 9676 * If size is changed in another node then we need to 9677 * do resize as well. 9678 */ 9679 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9680 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9681 if (ret) 9682 pr_info("md-cluster: resize failed\n"); 9683 else 9684 md_bitmap_update_sb(mddev->bitmap); 9685 } 9686 9687 /* Check for change of roles in the active devices */ 9688 rdev_for_each_safe(rdev2, tmp, mddev) { 9689 if (test_bit(Faulty, &rdev2->flags)) 9690 continue; 9691 9692 /* Check if the roles changed */ 9693 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9694 9695 if (test_bit(Candidate, &rdev2->flags)) { 9696 if (role == MD_DISK_ROLE_FAULTY) { 9697 pr_info("md: Removing Candidate device %pg because add failed\n", 9698 rdev2->bdev); 9699 md_kick_rdev_from_array(rdev2); 9700 continue; 9701 } 9702 else 9703 clear_bit(Candidate, &rdev2->flags); 9704 } 9705 9706 if (role != rdev2->raid_disk) { 9707 /* 9708 * got activated except reshape is happening. 9709 */ 9710 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9711 !(le32_to_cpu(sb->feature_map) & 9712 MD_FEATURE_RESHAPE_ACTIVE)) { 9713 rdev2->saved_raid_disk = role; 9714 ret = remove_and_add_spares(mddev, rdev2); 9715 pr_info("Activated spare: %pg\n", 9716 rdev2->bdev); 9717 /* wakeup mddev->thread here, so array could 9718 * perform resync with the new activated disk */ 9719 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9720 md_wakeup_thread(mddev->thread); 9721 } 9722 /* device faulty 9723 * We just want to do the minimum to mark the disk 9724 * as faulty. The recovery is performed by the 9725 * one who initiated the error. 9726 */ 9727 if (role == MD_DISK_ROLE_FAULTY || 9728 role == MD_DISK_ROLE_JOURNAL) { 9729 md_error(mddev, rdev2); 9730 clear_bit(Blocked, &rdev2->flags); 9731 } 9732 } 9733 } 9734 9735 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9736 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9737 if (ret) 9738 pr_warn("md: updating array disks failed. %d\n", ret); 9739 } 9740 9741 /* 9742 * Since mddev->delta_disks has already updated in update_raid_disks, 9743 * so it is time to check reshape. 9744 */ 9745 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9746 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9747 /* 9748 * reshape is happening in the remote node, we need to 9749 * update reshape_position and call start_reshape. 9750 */ 9751 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9752 if (mddev->pers->update_reshape_pos) 9753 mddev->pers->update_reshape_pos(mddev); 9754 if (mddev->pers->start_reshape) 9755 mddev->pers->start_reshape(mddev); 9756 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9757 mddev->reshape_position != MaxSector && 9758 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9759 /* reshape is just done in another node. */ 9760 mddev->reshape_position = MaxSector; 9761 if (mddev->pers->update_reshape_pos) 9762 mddev->pers->update_reshape_pos(mddev); 9763 } 9764 9765 /* Finally set the event to be up to date */ 9766 mddev->events = le64_to_cpu(sb->events); 9767 } 9768 9769 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9770 { 9771 int err; 9772 struct page *swapout = rdev->sb_page; 9773 struct mdp_superblock_1 *sb; 9774 9775 /* Store the sb page of the rdev in the swapout temporary 9776 * variable in case we err in the future 9777 */ 9778 rdev->sb_page = NULL; 9779 err = alloc_disk_sb(rdev); 9780 if (err == 0) { 9781 ClearPageUptodate(rdev->sb_page); 9782 rdev->sb_loaded = 0; 9783 err = super_types[mddev->major_version]. 9784 load_super(rdev, NULL, mddev->minor_version); 9785 } 9786 if (err < 0) { 9787 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9788 __func__, __LINE__, rdev->desc_nr, err); 9789 if (rdev->sb_page) 9790 put_page(rdev->sb_page); 9791 rdev->sb_page = swapout; 9792 rdev->sb_loaded = 1; 9793 return err; 9794 } 9795 9796 sb = page_address(rdev->sb_page); 9797 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9798 * is not set 9799 */ 9800 9801 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9802 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9803 9804 /* The other node finished recovery, call spare_active to set 9805 * device In_sync and mddev->degraded 9806 */ 9807 if (rdev->recovery_offset == MaxSector && 9808 !test_bit(In_sync, &rdev->flags) && 9809 mddev->pers->spare_active(mddev)) 9810 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9811 9812 put_page(swapout); 9813 return 0; 9814 } 9815 9816 void md_reload_sb(struct mddev *mddev, int nr) 9817 { 9818 struct md_rdev *rdev = NULL, *iter; 9819 int err; 9820 9821 /* Find the rdev */ 9822 rdev_for_each_rcu(iter, mddev) { 9823 if (iter->desc_nr == nr) { 9824 rdev = iter; 9825 break; 9826 } 9827 } 9828 9829 if (!rdev) { 9830 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9831 return; 9832 } 9833 9834 err = read_rdev(mddev, rdev); 9835 if (err < 0) 9836 return; 9837 9838 check_sb_changes(mddev, rdev); 9839 9840 /* Read all rdev's to update recovery_offset */ 9841 rdev_for_each_rcu(rdev, mddev) { 9842 if (!test_bit(Faulty, &rdev->flags)) 9843 read_rdev(mddev, rdev); 9844 } 9845 } 9846 EXPORT_SYMBOL(md_reload_sb); 9847 9848 #ifndef MODULE 9849 9850 /* 9851 * Searches all registered partitions for autorun RAID arrays 9852 * at boot time. 9853 */ 9854 9855 static DEFINE_MUTEX(detected_devices_mutex); 9856 static LIST_HEAD(all_detected_devices); 9857 struct detected_devices_node { 9858 struct list_head list; 9859 dev_t dev; 9860 }; 9861 9862 void md_autodetect_dev(dev_t dev) 9863 { 9864 struct detected_devices_node *node_detected_dev; 9865 9866 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9867 if (node_detected_dev) { 9868 node_detected_dev->dev = dev; 9869 mutex_lock(&detected_devices_mutex); 9870 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9871 mutex_unlock(&detected_devices_mutex); 9872 } 9873 } 9874 9875 void md_autostart_arrays(int part) 9876 { 9877 struct md_rdev *rdev; 9878 struct detected_devices_node *node_detected_dev; 9879 dev_t dev; 9880 int i_scanned, i_passed; 9881 9882 i_scanned = 0; 9883 i_passed = 0; 9884 9885 pr_info("md: Autodetecting RAID arrays.\n"); 9886 9887 mutex_lock(&detected_devices_mutex); 9888 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9889 i_scanned++; 9890 node_detected_dev = list_entry(all_detected_devices.next, 9891 struct detected_devices_node, list); 9892 list_del(&node_detected_dev->list); 9893 dev = node_detected_dev->dev; 9894 kfree(node_detected_dev); 9895 mutex_unlock(&detected_devices_mutex); 9896 rdev = md_import_device(dev,0, 90); 9897 mutex_lock(&detected_devices_mutex); 9898 if (IS_ERR(rdev)) 9899 continue; 9900 9901 if (test_bit(Faulty, &rdev->flags)) 9902 continue; 9903 9904 set_bit(AutoDetected, &rdev->flags); 9905 list_add(&rdev->same_set, &pending_raid_disks); 9906 i_passed++; 9907 } 9908 mutex_unlock(&detected_devices_mutex); 9909 9910 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9911 9912 autorun_devices(part); 9913 } 9914 9915 #endif /* !MODULE */ 9916 9917 static __exit void md_exit(void) 9918 { 9919 struct mddev *mddev, *n; 9920 int delay = 1; 9921 9922 unregister_blkdev(MD_MAJOR,"md"); 9923 unregister_blkdev(mdp_major, "mdp"); 9924 unregister_reboot_notifier(&md_notifier); 9925 unregister_sysctl_table(raid_table_header); 9926 9927 /* We cannot unload the modules while some process is 9928 * waiting for us in select() or poll() - wake them up 9929 */ 9930 md_unloading = 1; 9931 while (waitqueue_active(&md_event_waiters)) { 9932 /* not safe to leave yet */ 9933 wake_up(&md_event_waiters); 9934 msleep(delay); 9935 delay += delay; 9936 } 9937 remove_proc_entry("mdstat", NULL); 9938 9939 spin_lock(&all_mddevs_lock); 9940 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9941 if (!mddev_get(mddev)) 9942 continue; 9943 spin_unlock(&all_mddevs_lock); 9944 export_array(mddev); 9945 mddev->ctime = 0; 9946 mddev->hold_active = 0; 9947 /* 9948 * As the mddev is now fully clear, mddev_put will schedule 9949 * the mddev for destruction by a workqueue, and the 9950 * destroy_workqueue() below will wait for that to complete. 9951 */ 9952 mddev_put(mddev); 9953 spin_lock(&all_mddevs_lock); 9954 } 9955 spin_unlock(&all_mddevs_lock); 9956 9957 destroy_workqueue(md_rdev_misc_wq); 9958 destroy_workqueue(md_misc_wq); 9959 destroy_workqueue(md_wq); 9960 } 9961 9962 subsys_initcall(md_init); 9963 module_exit(md_exit) 9964 9965 static int get_ro(char *buffer, const struct kernel_param *kp) 9966 { 9967 return sprintf(buffer, "%d\n", start_readonly); 9968 } 9969 static int set_ro(const char *val, const struct kernel_param *kp) 9970 { 9971 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9972 } 9973 9974 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9975 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9976 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9977 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9978 9979 MODULE_LICENSE("GPL"); 9980 MODULE_DESCRIPTION("MD RAID framework"); 9981 MODULE_ALIAS("md"); 9982 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9983