1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 static struct workqueue_struct *md_rdev_misc_wq; 91 92 static int remove_and_add_spares(struct mddev *mddev, 93 struct md_rdev *this); 94 static void mddev_detach(struct mddev *mddev); 95 96 /* 97 * Default number of read corrections we'll attempt on an rdev 98 * before ejecting it from the array. We divide the read error 99 * count by 2 for every hour elapsed between read errors. 100 */ 101 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 102 /* Default safemode delay: 200 msec */ 103 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 104 /* 105 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 106 * is 1000 KB/sec, so the extra system load does not show up that much. 107 * Increase it if you want to have more _guaranteed_ speed. Note that 108 * the RAID driver will use the maximum available bandwidth if the IO 109 * subsystem is idle. There is also an 'absolute maximum' reconstruction 110 * speed limit - in case reconstruction slows down your system despite 111 * idle IO detection. 112 * 113 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 114 * or /sys/block/mdX/md/sync_speed_{min,max} 115 */ 116 117 static int sysctl_speed_limit_min = 1000; 118 static int sysctl_speed_limit_max = 200000; 119 static inline int speed_min(struct mddev *mddev) 120 { 121 return mddev->sync_speed_min ? 122 mddev->sync_speed_min : sysctl_speed_limit_min; 123 } 124 125 static inline int speed_max(struct mddev *mddev) 126 { 127 return mddev->sync_speed_max ? 128 mddev->sync_speed_max : sysctl_speed_limit_max; 129 } 130 131 static void rdev_uninit_serial(struct md_rdev *rdev) 132 { 133 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 134 return; 135 136 kvfree(rdev->serial); 137 rdev->serial = NULL; 138 } 139 140 static void rdevs_uninit_serial(struct mddev *mddev) 141 { 142 struct md_rdev *rdev; 143 144 rdev_for_each(rdev, mddev) 145 rdev_uninit_serial(rdev); 146 } 147 148 static int rdev_init_serial(struct md_rdev *rdev) 149 { 150 /* serial_nums equals with BARRIER_BUCKETS_NR */ 151 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 152 struct serial_in_rdev *serial = NULL; 153 154 if (test_bit(CollisionCheck, &rdev->flags)) 155 return 0; 156 157 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 158 GFP_KERNEL); 159 if (!serial) 160 return -ENOMEM; 161 162 for (i = 0; i < serial_nums; i++) { 163 struct serial_in_rdev *serial_tmp = &serial[i]; 164 165 spin_lock_init(&serial_tmp->serial_lock); 166 serial_tmp->serial_rb = RB_ROOT_CACHED; 167 init_waitqueue_head(&serial_tmp->serial_io_wait); 168 } 169 170 rdev->serial = serial; 171 set_bit(CollisionCheck, &rdev->flags); 172 173 return 0; 174 } 175 176 static int rdevs_init_serial(struct mddev *mddev) 177 { 178 struct md_rdev *rdev; 179 int ret = 0; 180 181 rdev_for_each(rdev, mddev) { 182 ret = rdev_init_serial(rdev); 183 if (ret) 184 break; 185 } 186 187 /* Free all resources if pool is not existed */ 188 if (ret && !mddev->serial_info_pool) 189 rdevs_uninit_serial(mddev); 190 191 return ret; 192 } 193 194 /* 195 * rdev needs to enable serial stuffs if it meets the conditions: 196 * 1. it is multi-queue device flaged with writemostly. 197 * 2. the write-behind mode is enabled. 198 */ 199 static int rdev_need_serial(struct md_rdev *rdev) 200 { 201 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 202 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 203 test_bit(WriteMostly, &rdev->flags)); 204 } 205 206 /* 207 * Init resource for rdev(s), then create serial_info_pool if: 208 * 1. rdev is the first device which return true from rdev_enable_serial. 209 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 210 */ 211 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 212 bool is_suspend) 213 { 214 int ret = 0; 215 216 if (rdev && !rdev_need_serial(rdev) && 217 !test_bit(CollisionCheck, &rdev->flags)) 218 return; 219 220 if (!is_suspend) 221 mddev_suspend(mddev); 222 223 if (!rdev) 224 ret = rdevs_init_serial(mddev); 225 else 226 ret = rdev_init_serial(rdev); 227 if (ret) 228 goto abort; 229 230 if (mddev->serial_info_pool == NULL) { 231 /* 232 * already in memalloc noio context by 233 * mddev_suspend() 234 */ 235 mddev->serial_info_pool = 236 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 237 sizeof(struct serial_info)); 238 if (!mddev->serial_info_pool) { 239 rdevs_uninit_serial(mddev); 240 pr_err("can't alloc memory pool for serialization\n"); 241 } 242 } 243 244 abort: 245 if (!is_suspend) 246 mddev_resume(mddev); 247 } 248 249 /* 250 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 251 * 1. rdev is the last device flaged with CollisionCheck. 252 * 2. when bitmap is destroyed while policy is not enabled. 253 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 254 */ 255 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 256 bool is_suspend) 257 { 258 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 259 return; 260 261 if (mddev->serial_info_pool) { 262 struct md_rdev *temp; 263 int num = 0; /* used to track if other rdevs need the pool */ 264 265 if (!is_suspend) 266 mddev_suspend(mddev); 267 rdev_for_each(temp, mddev) { 268 if (!rdev) { 269 if (!mddev->serialize_policy || 270 !rdev_need_serial(temp)) 271 rdev_uninit_serial(temp); 272 else 273 num++; 274 } else if (temp != rdev && 275 test_bit(CollisionCheck, &temp->flags)) 276 num++; 277 } 278 279 if (rdev) 280 rdev_uninit_serial(rdev); 281 282 if (num) 283 pr_info("The mempool could be used by other devices\n"); 284 else { 285 mempool_destroy(mddev->serial_info_pool); 286 mddev->serial_info_pool = NULL; 287 } 288 if (!is_suspend) 289 mddev_resume(mddev); 290 } 291 } 292 293 static struct ctl_table_header *raid_table_header; 294 295 static struct ctl_table raid_table[] = { 296 { 297 .procname = "speed_limit_min", 298 .data = &sysctl_speed_limit_min, 299 .maxlen = sizeof(int), 300 .mode = S_IRUGO|S_IWUSR, 301 .proc_handler = proc_dointvec, 302 }, 303 { 304 .procname = "speed_limit_max", 305 .data = &sysctl_speed_limit_max, 306 .maxlen = sizeof(int), 307 .mode = S_IRUGO|S_IWUSR, 308 .proc_handler = proc_dointvec, 309 }, 310 { } 311 }; 312 313 static struct ctl_table raid_dir_table[] = { 314 { 315 .procname = "raid", 316 .maxlen = 0, 317 .mode = S_IRUGO|S_IXUGO, 318 .child = raid_table, 319 }, 320 { } 321 }; 322 323 static struct ctl_table raid_root_table[] = { 324 { 325 .procname = "dev", 326 .maxlen = 0, 327 .mode = 0555, 328 .child = raid_dir_table, 329 }, 330 { } 331 }; 332 333 static int start_readonly; 334 335 /* 336 * The original mechanism for creating an md device is to create 337 * a device node in /dev and to open it. This causes races with device-close. 338 * The preferred method is to write to the "new_array" module parameter. 339 * This can avoid races. 340 * Setting create_on_open to false disables the original mechanism 341 * so all the races disappear. 342 */ 343 static bool create_on_open = true; 344 345 /* 346 * We have a system wide 'event count' that is incremented 347 * on any 'interesting' event, and readers of /proc/mdstat 348 * can use 'poll' or 'select' to find out when the event 349 * count increases. 350 * 351 * Events are: 352 * start array, stop array, error, add device, remove device, 353 * start build, activate spare 354 */ 355 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 356 static atomic_t md_event_count; 357 void md_new_event(void) 358 { 359 atomic_inc(&md_event_count); 360 wake_up(&md_event_waiters); 361 } 362 EXPORT_SYMBOL_GPL(md_new_event); 363 364 /* 365 * Enables to iterate over all existing md arrays 366 * all_mddevs_lock protects this list. 367 */ 368 static LIST_HEAD(all_mddevs); 369 static DEFINE_SPINLOCK(all_mddevs_lock); 370 371 /* 372 * iterates through all used mddevs in the system. 373 * We take care to grab the all_mddevs_lock whenever navigating 374 * the list, and to always hold a refcount when unlocked. 375 * Any code which breaks out of this loop while own 376 * a reference to the current mddev and must mddev_put it. 377 */ 378 #define for_each_mddev(_mddev,_tmp) \ 379 \ 380 for (({ spin_lock(&all_mddevs_lock); \ 381 _tmp = all_mddevs.next; \ 382 _mddev = NULL;}); \ 383 ({ if (_tmp != &all_mddevs) \ 384 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 385 spin_unlock(&all_mddevs_lock); \ 386 if (_mddev) mddev_put(_mddev); \ 387 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 388 _tmp != &all_mddevs;}); \ 389 ({ spin_lock(&all_mddevs_lock); \ 390 _tmp = _tmp->next;}) \ 391 ) 392 393 /* Rather than calling directly into the personality make_request function, 394 * IO requests come here first so that we can check if the device is 395 * being suspended pending a reconfiguration. 396 * We hold a refcount over the call to ->make_request. By the time that 397 * call has finished, the bio has been linked into some internal structure 398 * and so is visible to ->quiesce(), so we don't need the refcount any more. 399 */ 400 static bool is_suspended(struct mddev *mddev, struct bio *bio) 401 { 402 if (mddev->suspended) 403 return true; 404 if (bio_data_dir(bio) != WRITE) 405 return false; 406 if (mddev->suspend_lo >= mddev->suspend_hi) 407 return false; 408 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 409 return false; 410 if (bio_end_sector(bio) < mddev->suspend_lo) 411 return false; 412 return true; 413 } 414 415 void md_handle_request(struct mddev *mddev, struct bio *bio) 416 { 417 check_suspended: 418 rcu_read_lock(); 419 if (is_suspended(mddev, bio)) { 420 DEFINE_WAIT(__wait); 421 /* Bail out if REQ_NOWAIT is set for the bio */ 422 if (bio->bi_opf & REQ_NOWAIT) { 423 rcu_read_unlock(); 424 bio_wouldblock_error(bio); 425 return; 426 } 427 for (;;) { 428 prepare_to_wait(&mddev->sb_wait, &__wait, 429 TASK_UNINTERRUPTIBLE); 430 if (!is_suspended(mddev, bio)) 431 break; 432 rcu_read_unlock(); 433 schedule(); 434 rcu_read_lock(); 435 } 436 finish_wait(&mddev->sb_wait, &__wait); 437 } 438 atomic_inc(&mddev->active_io); 439 rcu_read_unlock(); 440 441 if (!mddev->pers->make_request(mddev, bio)) { 442 atomic_dec(&mddev->active_io); 443 wake_up(&mddev->sb_wait); 444 goto check_suspended; 445 } 446 447 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 448 wake_up(&mddev->sb_wait); 449 } 450 EXPORT_SYMBOL(md_handle_request); 451 452 static void md_submit_bio(struct bio *bio) 453 { 454 const int rw = bio_data_dir(bio); 455 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 456 457 if (mddev == NULL || mddev->pers == NULL) { 458 bio_io_error(bio); 459 return; 460 } 461 462 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 463 bio_io_error(bio); 464 return; 465 } 466 467 blk_queue_split(&bio); 468 469 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 470 if (bio_sectors(bio) != 0) 471 bio->bi_status = BLK_STS_IOERR; 472 bio_endio(bio); 473 return; 474 } 475 476 /* bio could be mergeable after passing to underlayer */ 477 bio->bi_opf &= ~REQ_NOMERGE; 478 479 md_handle_request(mddev, bio); 480 } 481 482 /* mddev_suspend makes sure no new requests are submitted 483 * to the device, and that any requests that have been submitted 484 * are completely handled. 485 * Once mddev_detach() is called and completes, the module will be 486 * completely unused. 487 */ 488 void mddev_suspend(struct mddev *mddev) 489 { 490 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 491 lockdep_assert_held(&mddev->reconfig_mutex); 492 if (mddev->suspended++) 493 return; 494 synchronize_rcu(); 495 wake_up(&mddev->sb_wait); 496 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 497 smp_mb__after_atomic(); 498 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 499 mddev->pers->quiesce(mddev, 1); 500 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 501 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 502 503 del_timer_sync(&mddev->safemode_timer); 504 /* restrict memory reclaim I/O during raid array is suspend */ 505 mddev->noio_flag = memalloc_noio_save(); 506 } 507 EXPORT_SYMBOL_GPL(mddev_suspend); 508 509 void mddev_resume(struct mddev *mddev) 510 { 511 /* entred the memalloc scope from mddev_suspend() */ 512 memalloc_noio_restore(mddev->noio_flag); 513 lockdep_assert_held(&mddev->reconfig_mutex); 514 if (--mddev->suspended) 515 return; 516 wake_up(&mddev->sb_wait); 517 mddev->pers->quiesce(mddev, 0); 518 519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 520 md_wakeup_thread(mddev->thread); 521 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 522 } 523 EXPORT_SYMBOL_GPL(mddev_resume); 524 525 /* 526 * Generic flush handling for md 527 */ 528 529 static void md_end_flush(struct bio *bio) 530 { 531 struct md_rdev *rdev = bio->bi_private; 532 struct mddev *mddev = rdev->mddev; 533 534 rdev_dec_pending(rdev, mddev); 535 536 if (atomic_dec_and_test(&mddev->flush_pending)) { 537 /* The pre-request flush has finished */ 538 queue_work(md_wq, &mddev->flush_work); 539 } 540 bio_put(bio); 541 } 542 543 static void md_submit_flush_data(struct work_struct *ws); 544 545 static void submit_flushes(struct work_struct *ws) 546 { 547 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 548 struct md_rdev *rdev; 549 550 mddev->start_flush = ktime_get_boottime(); 551 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 552 atomic_set(&mddev->flush_pending, 1); 553 rcu_read_lock(); 554 rdev_for_each_rcu(rdev, mddev) 555 if (rdev->raid_disk >= 0 && 556 !test_bit(Faulty, &rdev->flags)) { 557 /* Take two references, one is dropped 558 * when request finishes, one after 559 * we reclaim rcu_read_lock 560 */ 561 struct bio *bi; 562 atomic_inc(&rdev->nr_pending); 563 atomic_inc(&rdev->nr_pending); 564 rcu_read_unlock(); 565 bi = bio_alloc_bioset(rdev->bdev, 0, 566 REQ_OP_WRITE | REQ_PREFLUSH, 567 GFP_NOIO, &mddev->bio_set); 568 bi->bi_end_io = md_end_flush; 569 bi->bi_private = rdev; 570 atomic_inc(&mddev->flush_pending); 571 submit_bio(bi); 572 rcu_read_lock(); 573 rdev_dec_pending(rdev, mddev); 574 } 575 rcu_read_unlock(); 576 if (atomic_dec_and_test(&mddev->flush_pending)) 577 queue_work(md_wq, &mddev->flush_work); 578 } 579 580 static void md_submit_flush_data(struct work_struct *ws) 581 { 582 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 583 struct bio *bio = mddev->flush_bio; 584 585 /* 586 * must reset flush_bio before calling into md_handle_request to avoid a 587 * deadlock, because other bios passed md_handle_request suspend check 588 * could wait for this and below md_handle_request could wait for those 589 * bios because of suspend check 590 */ 591 spin_lock_irq(&mddev->lock); 592 mddev->prev_flush_start = mddev->start_flush; 593 mddev->flush_bio = NULL; 594 spin_unlock_irq(&mddev->lock); 595 wake_up(&mddev->sb_wait); 596 597 if (bio->bi_iter.bi_size == 0) { 598 /* an empty barrier - all done */ 599 bio_endio(bio); 600 } else { 601 bio->bi_opf &= ~REQ_PREFLUSH; 602 md_handle_request(mddev, bio); 603 } 604 } 605 606 /* 607 * Manages consolidation of flushes and submitting any flushes needed for 608 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 609 * being finished in another context. Returns false if the flushing is 610 * complete but still needs the I/O portion of the bio to be processed. 611 */ 612 bool md_flush_request(struct mddev *mddev, struct bio *bio) 613 { 614 ktime_t req_start = ktime_get_boottime(); 615 spin_lock_irq(&mddev->lock); 616 /* flush requests wait until ongoing flush completes, 617 * hence coalescing all the pending requests. 618 */ 619 wait_event_lock_irq(mddev->sb_wait, 620 !mddev->flush_bio || 621 ktime_before(req_start, mddev->prev_flush_start), 622 mddev->lock); 623 /* new request after previous flush is completed */ 624 if (ktime_after(req_start, mddev->prev_flush_start)) { 625 WARN_ON(mddev->flush_bio); 626 mddev->flush_bio = bio; 627 bio = NULL; 628 } 629 spin_unlock_irq(&mddev->lock); 630 631 if (!bio) { 632 INIT_WORK(&mddev->flush_work, submit_flushes); 633 queue_work(md_wq, &mddev->flush_work); 634 } else { 635 /* flush was performed for some other bio while we waited. */ 636 if (bio->bi_iter.bi_size == 0) 637 /* an empty barrier - all done */ 638 bio_endio(bio); 639 else { 640 bio->bi_opf &= ~REQ_PREFLUSH; 641 return false; 642 } 643 } 644 return true; 645 } 646 EXPORT_SYMBOL(md_flush_request); 647 648 static inline struct mddev *mddev_get(struct mddev *mddev) 649 { 650 atomic_inc(&mddev->active); 651 return mddev; 652 } 653 654 static void mddev_delayed_delete(struct work_struct *ws); 655 656 static void mddev_put(struct mddev *mddev) 657 { 658 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 659 return; 660 if (!mddev->raid_disks && list_empty(&mddev->disks) && 661 mddev->ctime == 0 && !mddev->hold_active) { 662 /* Array is not configured at all, and not held active, 663 * so destroy it */ 664 list_del_init(&mddev->all_mddevs); 665 666 /* 667 * Call queue_work inside the spinlock so that 668 * flush_workqueue() after mddev_find will succeed in waiting 669 * for the work to be done. 670 */ 671 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 672 queue_work(md_misc_wq, &mddev->del_work); 673 } 674 spin_unlock(&all_mddevs_lock); 675 } 676 677 static void md_safemode_timeout(struct timer_list *t); 678 679 void mddev_init(struct mddev *mddev) 680 { 681 kobject_init(&mddev->kobj, &md_ktype); 682 mutex_init(&mddev->open_mutex); 683 mutex_init(&mddev->reconfig_mutex); 684 mutex_init(&mddev->bitmap_info.mutex); 685 INIT_LIST_HEAD(&mddev->disks); 686 INIT_LIST_HEAD(&mddev->all_mddevs); 687 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 688 atomic_set(&mddev->active, 1); 689 atomic_set(&mddev->openers, 0); 690 atomic_set(&mddev->active_io, 0); 691 spin_lock_init(&mddev->lock); 692 atomic_set(&mddev->flush_pending, 0); 693 init_waitqueue_head(&mddev->sb_wait); 694 init_waitqueue_head(&mddev->recovery_wait); 695 mddev->reshape_position = MaxSector; 696 mddev->reshape_backwards = 0; 697 mddev->last_sync_action = "none"; 698 mddev->resync_min = 0; 699 mddev->resync_max = MaxSector; 700 mddev->level = LEVEL_NONE; 701 } 702 EXPORT_SYMBOL_GPL(mddev_init); 703 704 static struct mddev *mddev_find_locked(dev_t unit) 705 { 706 struct mddev *mddev; 707 708 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 709 if (mddev->unit == unit) 710 return mddev; 711 712 return NULL; 713 } 714 715 /* find an unused unit number */ 716 static dev_t mddev_alloc_unit(void) 717 { 718 static int next_minor = 512; 719 int start = next_minor; 720 bool is_free = 0; 721 dev_t dev = 0; 722 723 while (!is_free) { 724 dev = MKDEV(MD_MAJOR, next_minor); 725 next_minor++; 726 if (next_minor > MINORMASK) 727 next_minor = 0; 728 if (next_minor == start) 729 return 0; /* Oh dear, all in use. */ 730 is_free = !mddev_find_locked(dev); 731 } 732 733 return dev; 734 } 735 736 static struct mddev *mddev_find(dev_t unit) 737 { 738 struct mddev *mddev; 739 740 if (MAJOR(unit) != MD_MAJOR) 741 unit &= ~((1 << MdpMinorShift) - 1); 742 743 spin_lock(&all_mddevs_lock); 744 mddev = mddev_find_locked(unit); 745 if (mddev) 746 mddev_get(mddev); 747 spin_unlock(&all_mddevs_lock); 748 749 return mddev; 750 } 751 752 static struct mddev *mddev_alloc(dev_t unit) 753 { 754 struct mddev *new; 755 int error; 756 757 if (unit && MAJOR(unit) != MD_MAJOR) 758 unit &= ~((1 << MdpMinorShift) - 1); 759 760 new = kzalloc(sizeof(*new), GFP_KERNEL); 761 if (!new) 762 return ERR_PTR(-ENOMEM); 763 mddev_init(new); 764 765 spin_lock(&all_mddevs_lock); 766 if (unit) { 767 error = -EEXIST; 768 if (mddev_find_locked(unit)) 769 goto out_free_new; 770 new->unit = unit; 771 if (MAJOR(unit) == MD_MAJOR) 772 new->md_minor = MINOR(unit); 773 else 774 new->md_minor = MINOR(unit) >> MdpMinorShift; 775 new->hold_active = UNTIL_IOCTL; 776 } else { 777 error = -ENODEV; 778 new->unit = mddev_alloc_unit(); 779 if (!new->unit) 780 goto out_free_new; 781 new->md_minor = MINOR(new->unit); 782 new->hold_active = UNTIL_STOP; 783 } 784 785 list_add(&new->all_mddevs, &all_mddevs); 786 spin_unlock(&all_mddevs_lock); 787 return new; 788 out_free_new: 789 spin_unlock(&all_mddevs_lock); 790 kfree(new); 791 return ERR_PTR(error); 792 } 793 794 static const struct attribute_group md_redundancy_group; 795 796 void mddev_unlock(struct mddev *mddev) 797 { 798 if (mddev->to_remove) { 799 /* These cannot be removed under reconfig_mutex as 800 * an access to the files will try to take reconfig_mutex 801 * while holding the file unremovable, which leads to 802 * a deadlock. 803 * So hold set sysfs_active while the remove in happeing, 804 * and anything else which might set ->to_remove or my 805 * otherwise change the sysfs namespace will fail with 806 * -EBUSY if sysfs_active is still set. 807 * We set sysfs_active under reconfig_mutex and elsewhere 808 * test it under the same mutex to ensure its correct value 809 * is seen. 810 */ 811 const struct attribute_group *to_remove = mddev->to_remove; 812 mddev->to_remove = NULL; 813 mddev->sysfs_active = 1; 814 mutex_unlock(&mddev->reconfig_mutex); 815 816 if (mddev->kobj.sd) { 817 if (to_remove != &md_redundancy_group) 818 sysfs_remove_group(&mddev->kobj, to_remove); 819 if (mddev->pers == NULL || 820 mddev->pers->sync_request == NULL) { 821 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 822 if (mddev->sysfs_action) 823 sysfs_put(mddev->sysfs_action); 824 if (mddev->sysfs_completed) 825 sysfs_put(mddev->sysfs_completed); 826 if (mddev->sysfs_degraded) 827 sysfs_put(mddev->sysfs_degraded); 828 mddev->sysfs_action = NULL; 829 mddev->sysfs_completed = NULL; 830 mddev->sysfs_degraded = NULL; 831 } 832 } 833 mddev->sysfs_active = 0; 834 } else 835 mutex_unlock(&mddev->reconfig_mutex); 836 837 /* As we've dropped the mutex we need a spinlock to 838 * make sure the thread doesn't disappear 839 */ 840 spin_lock(&pers_lock); 841 md_wakeup_thread(mddev->thread); 842 wake_up(&mddev->sb_wait); 843 spin_unlock(&pers_lock); 844 } 845 EXPORT_SYMBOL_GPL(mddev_unlock); 846 847 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 848 { 849 struct md_rdev *rdev; 850 851 rdev_for_each_rcu(rdev, mddev) 852 if (rdev->desc_nr == nr) 853 return rdev; 854 855 return NULL; 856 } 857 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 858 859 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 860 { 861 struct md_rdev *rdev; 862 863 rdev_for_each(rdev, mddev) 864 if (rdev->bdev->bd_dev == dev) 865 return rdev; 866 867 return NULL; 868 } 869 870 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 871 { 872 struct md_rdev *rdev; 873 874 rdev_for_each_rcu(rdev, mddev) 875 if (rdev->bdev->bd_dev == dev) 876 return rdev; 877 878 return NULL; 879 } 880 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 881 882 static struct md_personality *find_pers(int level, char *clevel) 883 { 884 struct md_personality *pers; 885 list_for_each_entry(pers, &pers_list, list) { 886 if (level != LEVEL_NONE && pers->level == level) 887 return pers; 888 if (strcmp(pers->name, clevel)==0) 889 return pers; 890 } 891 return NULL; 892 } 893 894 /* return the offset of the super block in 512byte sectors */ 895 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 896 { 897 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 898 } 899 900 static int alloc_disk_sb(struct md_rdev *rdev) 901 { 902 rdev->sb_page = alloc_page(GFP_KERNEL); 903 if (!rdev->sb_page) 904 return -ENOMEM; 905 return 0; 906 } 907 908 void md_rdev_clear(struct md_rdev *rdev) 909 { 910 if (rdev->sb_page) { 911 put_page(rdev->sb_page); 912 rdev->sb_loaded = 0; 913 rdev->sb_page = NULL; 914 rdev->sb_start = 0; 915 rdev->sectors = 0; 916 } 917 if (rdev->bb_page) { 918 put_page(rdev->bb_page); 919 rdev->bb_page = NULL; 920 } 921 badblocks_exit(&rdev->badblocks); 922 } 923 EXPORT_SYMBOL_GPL(md_rdev_clear); 924 925 static void super_written(struct bio *bio) 926 { 927 struct md_rdev *rdev = bio->bi_private; 928 struct mddev *mddev = rdev->mddev; 929 930 if (bio->bi_status) { 931 pr_err("md: %s gets error=%d\n", __func__, 932 blk_status_to_errno(bio->bi_status)); 933 md_error(mddev, rdev); 934 if (!test_bit(Faulty, &rdev->flags) 935 && (bio->bi_opf & MD_FAILFAST)) { 936 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 937 set_bit(LastDev, &rdev->flags); 938 } 939 } else 940 clear_bit(LastDev, &rdev->flags); 941 942 if (atomic_dec_and_test(&mddev->pending_writes)) 943 wake_up(&mddev->sb_wait); 944 rdev_dec_pending(rdev, mddev); 945 bio_put(bio); 946 } 947 948 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 949 sector_t sector, int size, struct page *page) 950 { 951 /* write first size bytes of page to sector of rdev 952 * Increment mddev->pending_writes before returning 953 * and decrement it on completion, waking up sb_wait 954 * if zero is reached. 955 * If an error occurred, call md_error 956 */ 957 struct bio *bio; 958 959 if (!page) 960 return; 961 962 if (test_bit(Faulty, &rdev->flags)) 963 return; 964 965 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 966 1, 967 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 968 GFP_NOIO, &mddev->sync_set); 969 970 atomic_inc(&rdev->nr_pending); 971 972 bio->bi_iter.bi_sector = sector; 973 bio_add_page(bio, page, size, 0); 974 bio->bi_private = rdev; 975 bio->bi_end_io = super_written; 976 977 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 978 test_bit(FailFast, &rdev->flags) && 979 !test_bit(LastDev, &rdev->flags)) 980 bio->bi_opf |= MD_FAILFAST; 981 982 atomic_inc(&mddev->pending_writes); 983 submit_bio(bio); 984 } 985 986 int md_super_wait(struct mddev *mddev) 987 { 988 /* wait for all superblock writes that were scheduled to complete */ 989 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 990 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 991 return -EAGAIN; 992 return 0; 993 } 994 995 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 996 struct page *page, int op, int op_flags, bool metadata_op) 997 { 998 struct bio bio; 999 struct bio_vec bvec; 1000 1001 if (metadata_op && rdev->meta_bdev) 1002 bio_init(&bio, rdev->meta_bdev, &bvec, 1, op | op_flags); 1003 else 1004 bio_init(&bio, rdev->bdev, &bvec, 1, op | op_flags); 1005 1006 if (metadata_op) 1007 bio.bi_iter.bi_sector = sector + rdev->sb_start; 1008 else if (rdev->mddev->reshape_position != MaxSector && 1009 (rdev->mddev->reshape_backwards == 1010 (sector >= rdev->mddev->reshape_position))) 1011 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1012 else 1013 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1014 bio_add_page(&bio, page, size, 0); 1015 1016 submit_bio_wait(&bio); 1017 1018 return !bio.bi_status; 1019 } 1020 EXPORT_SYMBOL_GPL(sync_page_io); 1021 1022 static int read_disk_sb(struct md_rdev *rdev, int size) 1023 { 1024 char b[BDEVNAME_SIZE]; 1025 1026 if (rdev->sb_loaded) 1027 return 0; 1028 1029 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1030 goto fail; 1031 rdev->sb_loaded = 1; 1032 return 0; 1033 1034 fail: 1035 pr_err("md: disabled device %s, could not read superblock.\n", 1036 bdevname(rdev->bdev,b)); 1037 return -EINVAL; 1038 } 1039 1040 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1041 { 1042 return sb1->set_uuid0 == sb2->set_uuid0 && 1043 sb1->set_uuid1 == sb2->set_uuid1 && 1044 sb1->set_uuid2 == sb2->set_uuid2 && 1045 sb1->set_uuid3 == sb2->set_uuid3; 1046 } 1047 1048 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1049 { 1050 int ret; 1051 mdp_super_t *tmp1, *tmp2; 1052 1053 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1054 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1055 1056 if (!tmp1 || !tmp2) { 1057 ret = 0; 1058 goto abort; 1059 } 1060 1061 *tmp1 = *sb1; 1062 *tmp2 = *sb2; 1063 1064 /* 1065 * nr_disks is not constant 1066 */ 1067 tmp1->nr_disks = 0; 1068 tmp2->nr_disks = 0; 1069 1070 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1071 abort: 1072 kfree(tmp1); 1073 kfree(tmp2); 1074 return ret; 1075 } 1076 1077 static u32 md_csum_fold(u32 csum) 1078 { 1079 csum = (csum & 0xffff) + (csum >> 16); 1080 return (csum & 0xffff) + (csum >> 16); 1081 } 1082 1083 static unsigned int calc_sb_csum(mdp_super_t *sb) 1084 { 1085 u64 newcsum = 0; 1086 u32 *sb32 = (u32*)sb; 1087 int i; 1088 unsigned int disk_csum, csum; 1089 1090 disk_csum = sb->sb_csum; 1091 sb->sb_csum = 0; 1092 1093 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1094 newcsum += sb32[i]; 1095 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1096 1097 #ifdef CONFIG_ALPHA 1098 /* This used to use csum_partial, which was wrong for several 1099 * reasons including that different results are returned on 1100 * different architectures. It isn't critical that we get exactly 1101 * the same return value as before (we always csum_fold before 1102 * testing, and that removes any differences). However as we 1103 * know that csum_partial always returned a 16bit value on 1104 * alphas, do a fold to maximise conformity to previous behaviour. 1105 */ 1106 sb->sb_csum = md_csum_fold(disk_csum); 1107 #else 1108 sb->sb_csum = disk_csum; 1109 #endif 1110 return csum; 1111 } 1112 1113 /* 1114 * Handle superblock details. 1115 * We want to be able to handle multiple superblock formats 1116 * so we have a common interface to them all, and an array of 1117 * different handlers. 1118 * We rely on user-space to write the initial superblock, and support 1119 * reading and updating of superblocks. 1120 * Interface methods are: 1121 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1122 * loads and validates a superblock on dev. 1123 * if refdev != NULL, compare superblocks on both devices 1124 * Return: 1125 * 0 - dev has a superblock that is compatible with refdev 1126 * 1 - dev has a superblock that is compatible and newer than refdev 1127 * so dev should be used as the refdev in future 1128 * -EINVAL superblock incompatible or invalid 1129 * -othererror e.g. -EIO 1130 * 1131 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1132 * Verify that dev is acceptable into mddev. 1133 * The first time, mddev->raid_disks will be 0, and data from 1134 * dev should be merged in. Subsequent calls check that dev 1135 * is new enough. Return 0 or -EINVAL 1136 * 1137 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1138 * Update the superblock for rdev with data in mddev 1139 * This does not write to disc. 1140 * 1141 */ 1142 1143 struct super_type { 1144 char *name; 1145 struct module *owner; 1146 int (*load_super)(struct md_rdev *rdev, 1147 struct md_rdev *refdev, 1148 int minor_version); 1149 int (*validate_super)(struct mddev *mddev, 1150 struct md_rdev *rdev); 1151 void (*sync_super)(struct mddev *mddev, 1152 struct md_rdev *rdev); 1153 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1154 sector_t num_sectors); 1155 int (*allow_new_offset)(struct md_rdev *rdev, 1156 unsigned long long new_offset); 1157 }; 1158 1159 /* 1160 * Check that the given mddev has no bitmap. 1161 * 1162 * This function is called from the run method of all personalities that do not 1163 * support bitmaps. It prints an error message and returns non-zero if mddev 1164 * has a bitmap. Otherwise, it returns 0. 1165 * 1166 */ 1167 int md_check_no_bitmap(struct mddev *mddev) 1168 { 1169 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1170 return 0; 1171 pr_warn("%s: bitmaps are not supported for %s\n", 1172 mdname(mddev), mddev->pers->name); 1173 return 1; 1174 } 1175 EXPORT_SYMBOL(md_check_no_bitmap); 1176 1177 /* 1178 * load_super for 0.90.0 1179 */ 1180 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1181 { 1182 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1183 mdp_super_t *sb; 1184 int ret; 1185 bool spare_disk = true; 1186 1187 /* 1188 * Calculate the position of the superblock (512byte sectors), 1189 * it's at the end of the disk. 1190 * 1191 * It also happens to be a multiple of 4Kb. 1192 */ 1193 rdev->sb_start = calc_dev_sboffset(rdev); 1194 1195 ret = read_disk_sb(rdev, MD_SB_BYTES); 1196 if (ret) 1197 return ret; 1198 1199 ret = -EINVAL; 1200 1201 bdevname(rdev->bdev, b); 1202 sb = page_address(rdev->sb_page); 1203 1204 if (sb->md_magic != MD_SB_MAGIC) { 1205 pr_warn("md: invalid raid superblock magic on %s\n", b); 1206 goto abort; 1207 } 1208 1209 if (sb->major_version != 0 || 1210 sb->minor_version < 90 || 1211 sb->minor_version > 91) { 1212 pr_warn("Bad version number %d.%d on %s\n", 1213 sb->major_version, sb->minor_version, b); 1214 goto abort; 1215 } 1216 1217 if (sb->raid_disks <= 0) 1218 goto abort; 1219 1220 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1221 pr_warn("md: invalid superblock checksum on %s\n", b); 1222 goto abort; 1223 } 1224 1225 rdev->preferred_minor = sb->md_minor; 1226 rdev->data_offset = 0; 1227 rdev->new_data_offset = 0; 1228 rdev->sb_size = MD_SB_BYTES; 1229 rdev->badblocks.shift = -1; 1230 1231 if (sb->level == LEVEL_MULTIPATH) 1232 rdev->desc_nr = -1; 1233 else 1234 rdev->desc_nr = sb->this_disk.number; 1235 1236 /* not spare disk, or LEVEL_MULTIPATH */ 1237 if (sb->level == LEVEL_MULTIPATH || 1238 (rdev->desc_nr >= 0 && 1239 rdev->desc_nr < MD_SB_DISKS && 1240 sb->disks[rdev->desc_nr].state & 1241 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1242 spare_disk = false; 1243 1244 if (!refdev) { 1245 if (!spare_disk) 1246 ret = 1; 1247 else 1248 ret = 0; 1249 } else { 1250 __u64 ev1, ev2; 1251 mdp_super_t *refsb = page_address(refdev->sb_page); 1252 if (!md_uuid_equal(refsb, sb)) { 1253 pr_warn("md: %s has different UUID to %s\n", 1254 b, bdevname(refdev->bdev,b2)); 1255 goto abort; 1256 } 1257 if (!md_sb_equal(refsb, sb)) { 1258 pr_warn("md: %s has same UUID but different superblock to %s\n", 1259 b, bdevname(refdev->bdev, b2)); 1260 goto abort; 1261 } 1262 ev1 = md_event(sb); 1263 ev2 = md_event(refsb); 1264 1265 if (!spare_disk && ev1 > ev2) 1266 ret = 1; 1267 else 1268 ret = 0; 1269 } 1270 rdev->sectors = rdev->sb_start; 1271 /* Limit to 4TB as metadata cannot record more than that. 1272 * (not needed for Linear and RAID0 as metadata doesn't 1273 * record this size) 1274 */ 1275 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1276 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1277 1278 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1279 /* "this cannot possibly happen" ... */ 1280 ret = -EINVAL; 1281 1282 abort: 1283 return ret; 1284 } 1285 1286 /* 1287 * validate_super for 0.90.0 1288 */ 1289 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1290 { 1291 mdp_disk_t *desc; 1292 mdp_super_t *sb = page_address(rdev->sb_page); 1293 __u64 ev1 = md_event(sb); 1294 1295 rdev->raid_disk = -1; 1296 clear_bit(Faulty, &rdev->flags); 1297 clear_bit(In_sync, &rdev->flags); 1298 clear_bit(Bitmap_sync, &rdev->flags); 1299 clear_bit(WriteMostly, &rdev->flags); 1300 1301 if (mddev->raid_disks == 0) { 1302 mddev->major_version = 0; 1303 mddev->minor_version = sb->minor_version; 1304 mddev->patch_version = sb->patch_version; 1305 mddev->external = 0; 1306 mddev->chunk_sectors = sb->chunk_size >> 9; 1307 mddev->ctime = sb->ctime; 1308 mddev->utime = sb->utime; 1309 mddev->level = sb->level; 1310 mddev->clevel[0] = 0; 1311 mddev->layout = sb->layout; 1312 mddev->raid_disks = sb->raid_disks; 1313 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1314 mddev->events = ev1; 1315 mddev->bitmap_info.offset = 0; 1316 mddev->bitmap_info.space = 0; 1317 /* bitmap can use 60 K after the 4K superblocks */ 1318 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1319 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1320 mddev->reshape_backwards = 0; 1321 1322 if (mddev->minor_version >= 91) { 1323 mddev->reshape_position = sb->reshape_position; 1324 mddev->delta_disks = sb->delta_disks; 1325 mddev->new_level = sb->new_level; 1326 mddev->new_layout = sb->new_layout; 1327 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1328 if (mddev->delta_disks < 0) 1329 mddev->reshape_backwards = 1; 1330 } else { 1331 mddev->reshape_position = MaxSector; 1332 mddev->delta_disks = 0; 1333 mddev->new_level = mddev->level; 1334 mddev->new_layout = mddev->layout; 1335 mddev->new_chunk_sectors = mddev->chunk_sectors; 1336 } 1337 if (mddev->level == 0) 1338 mddev->layout = -1; 1339 1340 if (sb->state & (1<<MD_SB_CLEAN)) 1341 mddev->recovery_cp = MaxSector; 1342 else { 1343 if (sb->events_hi == sb->cp_events_hi && 1344 sb->events_lo == sb->cp_events_lo) { 1345 mddev->recovery_cp = sb->recovery_cp; 1346 } else 1347 mddev->recovery_cp = 0; 1348 } 1349 1350 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1351 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1352 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1353 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1354 1355 mddev->max_disks = MD_SB_DISKS; 1356 1357 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1358 mddev->bitmap_info.file == NULL) { 1359 mddev->bitmap_info.offset = 1360 mddev->bitmap_info.default_offset; 1361 mddev->bitmap_info.space = 1362 mddev->bitmap_info.default_space; 1363 } 1364 1365 } else if (mddev->pers == NULL) { 1366 /* Insist on good event counter while assembling, except 1367 * for spares (which don't need an event count) */ 1368 ++ev1; 1369 if (sb->disks[rdev->desc_nr].state & ( 1370 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1371 if (ev1 < mddev->events) 1372 return -EINVAL; 1373 } else if (mddev->bitmap) { 1374 /* if adding to array with a bitmap, then we can accept an 1375 * older device ... but not too old. 1376 */ 1377 if (ev1 < mddev->bitmap->events_cleared) 1378 return 0; 1379 if (ev1 < mddev->events) 1380 set_bit(Bitmap_sync, &rdev->flags); 1381 } else { 1382 if (ev1 < mddev->events) 1383 /* just a hot-add of a new device, leave raid_disk at -1 */ 1384 return 0; 1385 } 1386 1387 if (mddev->level != LEVEL_MULTIPATH) { 1388 desc = sb->disks + rdev->desc_nr; 1389 1390 if (desc->state & (1<<MD_DISK_FAULTY)) 1391 set_bit(Faulty, &rdev->flags); 1392 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1393 desc->raid_disk < mddev->raid_disks */) { 1394 set_bit(In_sync, &rdev->flags); 1395 rdev->raid_disk = desc->raid_disk; 1396 rdev->saved_raid_disk = desc->raid_disk; 1397 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1398 /* active but not in sync implies recovery up to 1399 * reshape position. We don't know exactly where 1400 * that is, so set to zero for now */ 1401 if (mddev->minor_version >= 91) { 1402 rdev->recovery_offset = 0; 1403 rdev->raid_disk = desc->raid_disk; 1404 } 1405 } 1406 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1407 set_bit(WriteMostly, &rdev->flags); 1408 if (desc->state & (1<<MD_DISK_FAILFAST)) 1409 set_bit(FailFast, &rdev->flags); 1410 } else /* MULTIPATH are always insync */ 1411 set_bit(In_sync, &rdev->flags); 1412 return 0; 1413 } 1414 1415 /* 1416 * sync_super for 0.90.0 1417 */ 1418 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1419 { 1420 mdp_super_t *sb; 1421 struct md_rdev *rdev2; 1422 int next_spare = mddev->raid_disks; 1423 1424 /* make rdev->sb match mddev data.. 1425 * 1426 * 1/ zero out disks 1427 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1428 * 3/ any empty disks < next_spare become removed 1429 * 1430 * disks[0] gets initialised to REMOVED because 1431 * we cannot be sure from other fields if it has 1432 * been initialised or not. 1433 */ 1434 int i; 1435 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1436 1437 rdev->sb_size = MD_SB_BYTES; 1438 1439 sb = page_address(rdev->sb_page); 1440 1441 memset(sb, 0, sizeof(*sb)); 1442 1443 sb->md_magic = MD_SB_MAGIC; 1444 sb->major_version = mddev->major_version; 1445 sb->patch_version = mddev->patch_version; 1446 sb->gvalid_words = 0; /* ignored */ 1447 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1448 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1449 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1450 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1451 1452 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1453 sb->level = mddev->level; 1454 sb->size = mddev->dev_sectors / 2; 1455 sb->raid_disks = mddev->raid_disks; 1456 sb->md_minor = mddev->md_minor; 1457 sb->not_persistent = 0; 1458 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1459 sb->state = 0; 1460 sb->events_hi = (mddev->events>>32); 1461 sb->events_lo = (u32)mddev->events; 1462 1463 if (mddev->reshape_position == MaxSector) 1464 sb->minor_version = 90; 1465 else { 1466 sb->minor_version = 91; 1467 sb->reshape_position = mddev->reshape_position; 1468 sb->new_level = mddev->new_level; 1469 sb->delta_disks = mddev->delta_disks; 1470 sb->new_layout = mddev->new_layout; 1471 sb->new_chunk = mddev->new_chunk_sectors << 9; 1472 } 1473 mddev->minor_version = sb->minor_version; 1474 if (mddev->in_sync) 1475 { 1476 sb->recovery_cp = mddev->recovery_cp; 1477 sb->cp_events_hi = (mddev->events>>32); 1478 sb->cp_events_lo = (u32)mddev->events; 1479 if (mddev->recovery_cp == MaxSector) 1480 sb->state = (1<< MD_SB_CLEAN); 1481 } else 1482 sb->recovery_cp = 0; 1483 1484 sb->layout = mddev->layout; 1485 sb->chunk_size = mddev->chunk_sectors << 9; 1486 1487 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1488 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1489 1490 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1491 rdev_for_each(rdev2, mddev) { 1492 mdp_disk_t *d; 1493 int desc_nr; 1494 int is_active = test_bit(In_sync, &rdev2->flags); 1495 1496 if (rdev2->raid_disk >= 0 && 1497 sb->minor_version >= 91) 1498 /* we have nowhere to store the recovery_offset, 1499 * but if it is not below the reshape_position, 1500 * we can piggy-back on that. 1501 */ 1502 is_active = 1; 1503 if (rdev2->raid_disk < 0 || 1504 test_bit(Faulty, &rdev2->flags)) 1505 is_active = 0; 1506 if (is_active) 1507 desc_nr = rdev2->raid_disk; 1508 else 1509 desc_nr = next_spare++; 1510 rdev2->desc_nr = desc_nr; 1511 d = &sb->disks[rdev2->desc_nr]; 1512 nr_disks++; 1513 d->number = rdev2->desc_nr; 1514 d->major = MAJOR(rdev2->bdev->bd_dev); 1515 d->minor = MINOR(rdev2->bdev->bd_dev); 1516 if (is_active) 1517 d->raid_disk = rdev2->raid_disk; 1518 else 1519 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1520 if (test_bit(Faulty, &rdev2->flags)) 1521 d->state = (1<<MD_DISK_FAULTY); 1522 else if (is_active) { 1523 d->state = (1<<MD_DISK_ACTIVE); 1524 if (test_bit(In_sync, &rdev2->flags)) 1525 d->state |= (1<<MD_DISK_SYNC); 1526 active++; 1527 working++; 1528 } else { 1529 d->state = 0; 1530 spare++; 1531 working++; 1532 } 1533 if (test_bit(WriteMostly, &rdev2->flags)) 1534 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1535 if (test_bit(FailFast, &rdev2->flags)) 1536 d->state |= (1<<MD_DISK_FAILFAST); 1537 } 1538 /* now set the "removed" and "faulty" bits on any missing devices */ 1539 for (i=0 ; i < mddev->raid_disks ; i++) { 1540 mdp_disk_t *d = &sb->disks[i]; 1541 if (d->state == 0 && d->number == 0) { 1542 d->number = i; 1543 d->raid_disk = i; 1544 d->state = (1<<MD_DISK_REMOVED); 1545 d->state |= (1<<MD_DISK_FAULTY); 1546 failed++; 1547 } 1548 } 1549 sb->nr_disks = nr_disks; 1550 sb->active_disks = active; 1551 sb->working_disks = working; 1552 sb->failed_disks = failed; 1553 sb->spare_disks = spare; 1554 1555 sb->this_disk = sb->disks[rdev->desc_nr]; 1556 sb->sb_csum = calc_sb_csum(sb); 1557 } 1558 1559 /* 1560 * rdev_size_change for 0.90.0 1561 */ 1562 static unsigned long long 1563 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1564 { 1565 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1566 return 0; /* component must fit device */ 1567 if (rdev->mddev->bitmap_info.offset) 1568 return 0; /* can't move bitmap */ 1569 rdev->sb_start = calc_dev_sboffset(rdev); 1570 if (!num_sectors || num_sectors > rdev->sb_start) 1571 num_sectors = rdev->sb_start; 1572 /* Limit to 4TB as metadata cannot record more than that. 1573 * 4TB == 2^32 KB, or 2*2^32 sectors. 1574 */ 1575 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1576 num_sectors = (sector_t)(2ULL << 32) - 2; 1577 do { 1578 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1579 rdev->sb_page); 1580 } while (md_super_wait(rdev->mddev) < 0); 1581 return num_sectors; 1582 } 1583 1584 static int 1585 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1586 { 1587 /* non-zero offset changes not possible with v0.90 */ 1588 return new_offset == 0; 1589 } 1590 1591 /* 1592 * version 1 superblock 1593 */ 1594 1595 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1596 { 1597 __le32 disk_csum; 1598 u32 csum; 1599 unsigned long long newcsum; 1600 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1601 __le32 *isuper = (__le32*)sb; 1602 1603 disk_csum = sb->sb_csum; 1604 sb->sb_csum = 0; 1605 newcsum = 0; 1606 for (; size >= 4; size -= 4) 1607 newcsum += le32_to_cpu(*isuper++); 1608 1609 if (size == 2) 1610 newcsum += le16_to_cpu(*(__le16*) isuper); 1611 1612 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1613 sb->sb_csum = disk_csum; 1614 return cpu_to_le32(csum); 1615 } 1616 1617 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1618 { 1619 struct mdp_superblock_1 *sb; 1620 int ret; 1621 sector_t sb_start; 1622 sector_t sectors; 1623 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1624 int bmask; 1625 bool spare_disk = true; 1626 1627 /* 1628 * Calculate the position of the superblock in 512byte sectors. 1629 * It is always aligned to a 4K boundary and 1630 * depeding on minor_version, it can be: 1631 * 0: At least 8K, but less than 12K, from end of device 1632 * 1: At start of device 1633 * 2: 4K from start of device. 1634 */ 1635 switch(minor_version) { 1636 case 0: 1637 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1638 sb_start &= ~(sector_t)(4*2-1); 1639 break; 1640 case 1: 1641 sb_start = 0; 1642 break; 1643 case 2: 1644 sb_start = 8; 1645 break; 1646 default: 1647 return -EINVAL; 1648 } 1649 rdev->sb_start = sb_start; 1650 1651 /* superblock is rarely larger than 1K, but it can be larger, 1652 * and it is safe to read 4k, so we do that 1653 */ 1654 ret = read_disk_sb(rdev, 4096); 1655 if (ret) return ret; 1656 1657 sb = page_address(rdev->sb_page); 1658 1659 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1660 sb->major_version != cpu_to_le32(1) || 1661 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1662 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1663 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1664 return -EINVAL; 1665 1666 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1667 pr_warn("md: invalid superblock checksum on %s\n", 1668 bdevname(rdev->bdev,b)); 1669 return -EINVAL; 1670 } 1671 if (le64_to_cpu(sb->data_size) < 10) { 1672 pr_warn("md: data_size too small on %s\n", 1673 bdevname(rdev->bdev,b)); 1674 return -EINVAL; 1675 } 1676 if (sb->pad0 || 1677 sb->pad3[0] || 1678 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1679 /* Some padding is non-zero, might be a new feature */ 1680 return -EINVAL; 1681 1682 rdev->preferred_minor = 0xffff; 1683 rdev->data_offset = le64_to_cpu(sb->data_offset); 1684 rdev->new_data_offset = rdev->data_offset; 1685 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1686 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1687 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1688 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1689 1690 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1691 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1692 if (rdev->sb_size & bmask) 1693 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1694 1695 if (minor_version 1696 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1697 return -EINVAL; 1698 if (minor_version 1699 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1700 return -EINVAL; 1701 1702 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1703 rdev->desc_nr = -1; 1704 else 1705 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1706 1707 if (!rdev->bb_page) { 1708 rdev->bb_page = alloc_page(GFP_KERNEL); 1709 if (!rdev->bb_page) 1710 return -ENOMEM; 1711 } 1712 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1713 rdev->badblocks.count == 0) { 1714 /* need to load the bad block list. 1715 * Currently we limit it to one page. 1716 */ 1717 s32 offset; 1718 sector_t bb_sector; 1719 __le64 *bbp; 1720 int i; 1721 int sectors = le16_to_cpu(sb->bblog_size); 1722 if (sectors > (PAGE_SIZE / 512)) 1723 return -EINVAL; 1724 offset = le32_to_cpu(sb->bblog_offset); 1725 if (offset == 0) 1726 return -EINVAL; 1727 bb_sector = (long long)offset; 1728 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1729 rdev->bb_page, REQ_OP_READ, 0, true)) 1730 return -EIO; 1731 bbp = (__le64 *)page_address(rdev->bb_page); 1732 rdev->badblocks.shift = sb->bblog_shift; 1733 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1734 u64 bb = le64_to_cpu(*bbp); 1735 int count = bb & (0x3ff); 1736 u64 sector = bb >> 10; 1737 sector <<= sb->bblog_shift; 1738 count <<= sb->bblog_shift; 1739 if (bb + 1 == 0) 1740 break; 1741 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1742 return -EINVAL; 1743 } 1744 } else if (sb->bblog_offset != 0) 1745 rdev->badblocks.shift = 0; 1746 1747 if ((le32_to_cpu(sb->feature_map) & 1748 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1749 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1750 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1751 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1752 } 1753 1754 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1755 sb->level != 0) 1756 return -EINVAL; 1757 1758 /* not spare disk, or LEVEL_MULTIPATH */ 1759 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1760 (rdev->desc_nr >= 0 && 1761 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1762 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1763 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1764 spare_disk = false; 1765 1766 if (!refdev) { 1767 if (!spare_disk) 1768 ret = 1; 1769 else 1770 ret = 0; 1771 } else { 1772 __u64 ev1, ev2; 1773 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1774 1775 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1776 sb->level != refsb->level || 1777 sb->layout != refsb->layout || 1778 sb->chunksize != refsb->chunksize) { 1779 pr_warn("md: %s has strangely different superblock to %s\n", 1780 bdevname(rdev->bdev,b), 1781 bdevname(refdev->bdev,b2)); 1782 return -EINVAL; 1783 } 1784 ev1 = le64_to_cpu(sb->events); 1785 ev2 = le64_to_cpu(refsb->events); 1786 1787 if (!spare_disk && ev1 > ev2) 1788 ret = 1; 1789 else 1790 ret = 0; 1791 } 1792 if (minor_version) 1793 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1794 else 1795 sectors = rdev->sb_start; 1796 if (sectors < le64_to_cpu(sb->data_size)) 1797 return -EINVAL; 1798 rdev->sectors = le64_to_cpu(sb->data_size); 1799 return ret; 1800 } 1801 1802 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1803 { 1804 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1805 __u64 ev1 = le64_to_cpu(sb->events); 1806 1807 rdev->raid_disk = -1; 1808 clear_bit(Faulty, &rdev->flags); 1809 clear_bit(In_sync, &rdev->flags); 1810 clear_bit(Bitmap_sync, &rdev->flags); 1811 clear_bit(WriteMostly, &rdev->flags); 1812 1813 if (mddev->raid_disks == 0) { 1814 mddev->major_version = 1; 1815 mddev->patch_version = 0; 1816 mddev->external = 0; 1817 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1818 mddev->ctime = le64_to_cpu(sb->ctime); 1819 mddev->utime = le64_to_cpu(sb->utime); 1820 mddev->level = le32_to_cpu(sb->level); 1821 mddev->clevel[0] = 0; 1822 mddev->layout = le32_to_cpu(sb->layout); 1823 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1824 mddev->dev_sectors = le64_to_cpu(sb->size); 1825 mddev->events = ev1; 1826 mddev->bitmap_info.offset = 0; 1827 mddev->bitmap_info.space = 0; 1828 /* Default location for bitmap is 1K after superblock 1829 * using 3K - total of 4K 1830 */ 1831 mddev->bitmap_info.default_offset = 1024 >> 9; 1832 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1833 mddev->reshape_backwards = 0; 1834 1835 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1836 memcpy(mddev->uuid, sb->set_uuid, 16); 1837 1838 mddev->max_disks = (4096-256)/2; 1839 1840 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1841 mddev->bitmap_info.file == NULL) { 1842 mddev->bitmap_info.offset = 1843 (__s32)le32_to_cpu(sb->bitmap_offset); 1844 /* Metadata doesn't record how much space is available. 1845 * For 1.0, we assume we can use up to the superblock 1846 * if before, else to 4K beyond superblock. 1847 * For others, assume no change is possible. 1848 */ 1849 if (mddev->minor_version > 0) 1850 mddev->bitmap_info.space = 0; 1851 else if (mddev->bitmap_info.offset > 0) 1852 mddev->bitmap_info.space = 1853 8 - mddev->bitmap_info.offset; 1854 else 1855 mddev->bitmap_info.space = 1856 -mddev->bitmap_info.offset; 1857 } 1858 1859 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1860 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1861 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1862 mddev->new_level = le32_to_cpu(sb->new_level); 1863 mddev->new_layout = le32_to_cpu(sb->new_layout); 1864 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1865 if (mddev->delta_disks < 0 || 1866 (mddev->delta_disks == 0 && 1867 (le32_to_cpu(sb->feature_map) 1868 & MD_FEATURE_RESHAPE_BACKWARDS))) 1869 mddev->reshape_backwards = 1; 1870 } else { 1871 mddev->reshape_position = MaxSector; 1872 mddev->delta_disks = 0; 1873 mddev->new_level = mddev->level; 1874 mddev->new_layout = mddev->layout; 1875 mddev->new_chunk_sectors = mddev->chunk_sectors; 1876 } 1877 1878 if (mddev->level == 0 && 1879 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1880 mddev->layout = -1; 1881 1882 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1883 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1884 1885 if (le32_to_cpu(sb->feature_map) & 1886 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1887 if (le32_to_cpu(sb->feature_map) & 1888 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1889 return -EINVAL; 1890 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1891 (le32_to_cpu(sb->feature_map) & 1892 MD_FEATURE_MULTIPLE_PPLS)) 1893 return -EINVAL; 1894 set_bit(MD_HAS_PPL, &mddev->flags); 1895 } 1896 } else if (mddev->pers == NULL) { 1897 /* Insist of good event counter while assembling, except for 1898 * spares (which don't need an event count) */ 1899 ++ev1; 1900 if (rdev->desc_nr >= 0 && 1901 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1902 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1903 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1904 if (ev1 < mddev->events) 1905 return -EINVAL; 1906 } else if (mddev->bitmap) { 1907 /* If adding to array with a bitmap, then we can accept an 1908 * older device, but not too old. 1909 */ 1910 if (ev1 < mddev->bitmap->events_cleared) 1911 return 0; 1912 if (ev1 < mddev->events) 1913 set_bit(Bitmap_sync, &rdev->flags); 1914 } else { 1915 if (ev1 < mddev->events) 1916 /* just a hot-add of a new device, leave raid_disk at -1 */ 1917 return 0; 1918 } 1919 if (mddev->level != LEVEL_MULTIPATH) { 1920 int role; 1921 if (rdev->desc_nr < 0 || 1922 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1923 role = MD_DISK_ROLE_SPARE; 1924 rdev->desc_nr = -1; 1925 } else 1926 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1927 switch(role) { 1928 case MD_DISK_ROLE_SPARE: /* spare */ 1929 break; 1930 case MD_DISK_ROLE_FAULTY: /* faulty */ 1931 set_bit(Faulty, &rdev->flags); 1932 break; 1933 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1934 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1935 /* journal device without journal feature */ 1936 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1937 return -EINVAL; 1938 } 1939 set_bit(Journal, &rdev->flags); 1940 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1941 rdev->raid_disk = 0; 1942 break; 1943 default: 1944 rdev->saved_raid_disk = role; 1945 if ((le32_to_cpu(sb->feature_map) & 1946 MD_FEATURE_RECOVERY_OFFSET)) { 1947 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1948 if (!(le32_to_cpu(sb->feature_map) & 1949 MD_FEATURE_RECOVERY_BITMAP)) 1950 rdev->saved_raid_disk = -1; 1951 } else { 1952 /* 1953 * If the array is FROZEN, then the device can't 1954 * be in_sync with rest of array. 1955 */ 1956 if (!test_bit(MD_RECOVERY_FROZEN, 1957 &mddev->recovery)) 1958 set_bit(In_sync, &rdev->flags); 1959 } 1960 rdev->raid_disk = role; 1961 break; 1962 } 1963 if (sb->devflags & WriteMostly1) 1964 set_bit(WriteMostly, &rdev->flags); 1965 if (sb->devflags & FailFast1) 1966 set_bit(FailFast, &rdev->flags); 1967 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1968 set_bit(Replacement, &rdev->flags); 1969 } else /* MULTIPATH are always insync */ 1970 set_bit(In_sync, &rdev->flags); 1971 1972 return 0; 1973 } 1974 1975 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1976 { 1977 struct mdp_superblock_1 *sb; 1978 struct md_rdev *rdev2; 1979 int max_dev, i; 1980 /* make rdev->sb match mddev and rdev data. */ 1981 1982 sb = page_address(rdev->sb_page); 1983 1984 sb->feature_map = 0; 1985 sb->pad0 = 0; 1986 sb->recovery_offset = cpu_to_le64(0); 1987 memset(sb->pad3, 0, sizeof(sb->pad3)); 1988 1989 sb->utime = cpu_to_le64((__u64)mddev->utime); 1990 sb->events = cpu_to_le64(mddev->events); 1991 if (mddev->in_sync) 1992 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1993 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1994 sb->resync_offset = cpu_to_le64(MaxSector); 1995 else 1996 sb->resync_offset = cpu_to_le64(0); 1997 1998 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1999 2000 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2001 sb->size = cpu_to_le64(mddev->dev_sectors); 2002 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2003 sb->level = cpu_to_le32(mddev->level); 2004 sb->layout = cpu_to_le32(mddev->layout); 2005 if (test_bit(FailFast, &rdev->flags)) 2006 sb->devflags |= FailFast1; 2007 else 2008 sb->devflags &= ~FailFast1; 2009 2010 if (test_bit(WriteMostly, &rdev->flags)) 2011 sb->devflags |= WriteMostly1; 2012 else 2013 sb->devflags &= ~WriteMostly1; 2014 sb->data_offset = cpu_to_le64(rdev->data_offset); 2015 sb->data_size = cpu_to_le64(rdev->sectors); 2016 2017 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2018 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2019 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2020 } 2021 2022 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2023 !test_bit(In_sync, &rdev->flags)) { 2024 sb->feature_map |= 2025 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2026 sb->recovery_offset = 2027 cpu_to_le64(rdev->recovery_offset); 2028 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2029 sb->feature_map |= 2030 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2031 } 2032 /* Note: recovery_offset and journal_tail share space */ 2033 if (test_bit(Journal, &rdev->flags)) 2034 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2035 if (test_bit(Replacement, &rdev->flags)) 2036 sb->feature_map |= 2037 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2038 2039 if (mddev->reshape_position != MaxSector) { 2040 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2041 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2042 sb->new_layout = cpu_to_le32(mddev->new_layout); 2043 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2044 sb->new_level = cpu_to_le32(mddev->new_level); 2045 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2046 if (mddev->delta_disks == 0 && 2047 mddev->reshape_backwards) 2048 sb->feature_map 2049 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2050 if (rdev->new_data_offset != rdev->data_offset) { 2051 sb->feature_map 2052 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2053 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2054 - rdev->data_offset)); 2055 } 2056 } 2057 2058 if (mddev_is_clustered(mddev)) 2059 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2060 2061 if (rdev->badblocks.count == 0) 2062 /* Nothing to do for bad blocks*/ ; 2063 else if (sb->bblog_offset == 0) 2064 /* Cannot record bad blocks on this device */ 2065 md_error(mddev, rdev); 2066 else { 2067 struct badblocks *bb = &rdev->badblocks; 2068 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2069 u64 *p = bb->page; 2070 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2071 if (bb->changed) { 2072 unsigned seq; 2073 2074 retry: 2075 seq = read_seqbegin(&bb->lock); 2076 2077 memset(bbp, 0xff, PAGE_SIZE); 2078 2079 for (i = 0 ; i < bb->count ; i++) { 2080 u64 internal_bb = p[i]; 2081 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2082 | BB_LEN(internal_bb)); 2083 bbp[i] = cpu_to_le64(store_bb); 2084 } 2085 bb->changed = 0; 2086 if (read_seqretry(&bb->lock, seq)) 2087 goto retry; 2088 2089 bb->sector = (rdev->sb_start + 2090 (int)le32_to_cpu(sb->bblog_offset)); 2091 bb->size = le16_to_cpu(sb->bblog_size); 2092 } 2093 } 2094 2095 max_dev = 0; 2096 rdev_for_each(rdev2, mddev) 2097 if (rdev2->desc_nr+1 > max_dev) 2098 max_dev = rdev2->desc_nr+1; 2099 2100 if (max_dev > le32_to_cpu(sb->max_dev)) { 2101 int bmask; 2102 sb->max_dev = cpu_to_le32(max_dev); 2103 rdev->sb_size = max_dev * 2 + 256; 2104 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2105 if (rdev->sb_size & bmask) 2106 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2107 } else 2108 max_dev = le32_to_cpu(sb->max_dev); 2109 2110 for (i=0; i<max_dev;i++) 2111 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2112 2113 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2114 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2115 2116 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2117 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2118 sb->feature_map |= 2119 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2120 else 2121 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2122 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2123 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2124 } 2125 2126 rdev_for_each(rdev2, mddev) { 2127 i = rdev2->desc_nr; 2128 if (test_bit(Faulty, &rdev2->flags)) 2129 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2130 else if (test_bit(In_sync, &rdev2->flags)) 2131 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2132 else if (test_bit(Journal, &rdev2->flags)) 2133 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2134 else if (rdev2->raid_disk >= 0) 2135 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2136 else 2137 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2138 } 2139 2140 sb->sb_csum = calc_sb_1_csum(sb); 2141 } 2142 2143 static sector_t super_1_choose_bm_space(sector_t dev_size) 2144 { 2145 sector_t bm_space; 2146 2147 /* if the device is bigger than 8Gig, save 64k for bitmap 2148 * usage, if bigger than 200Gig, save 128k 2149 */ 2150 if (dev_size < 64*2) 2151 bm_space = 0; 2152 else if (dev_size - 64*2 >= 200*1024*1024*2) 2153 bm_space = 128*2; 2154 else if (dev_size - 4*2 > 8*1024*1024*2) 2155 bm_space = 64*2; 2156 else 2157 bm_space = 4*2; 2158 return bm_space; 2159 } 2160 2161 static unsigned long long 2162 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2163 { 2164 struct mdp_superblock_1 *sb; 2165 sector_t max_sectors; 2166 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2167 return 0; /* component must fit device */ 2168 if (rdev->data_offset != rdev->new_data_offset) 2169 return 0; /* too confusing */ 2170 if (rdev->sb_start < rdev->data_offset) { 2171 /* minor versions 1 and 2; superblock before data */ 2172 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2173 if (!num_sectors || num_sectors > max_sectors) 2174 num_sectors = max_sectors; 2175 } else if (rdev->mddev->bitmap_info.offset) { 2176 /* minor version 0 with bitmap we can't move */ 2177 return 0; 2178 } else { 2179 /* minor version 0; superblock after data */ 2180 sector_t sb_start, bm_space; 2181 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2182 2183 /* 8K is for superblock */ 2184 sb_start = dev_size - 8*2; 2185 sb_start &= ~(sector_t)(4*2 - 1); 2186 2187 bm_space = super_1_choose_bm_space(dev_size); 2188 2189 /* Space that can be used to store date needs to decrease 2190 * superblock bitmap space and bad block space(4K) 2191 */ 2192 max_sectors = sb_start - bm_space - 4*2; 2193 2194 if (!num_sectors || num_sectors > max_sectors) 2195 num_sectors = max_sectors; 2196 rdev->sb_start = sb_start; 2197 } 2198 sb = page_address(rdev->sb_page); 2199 sb->data_size = cpu_to_le64(num_sectors); 2200 sb->super_offset = cpu_to_le64(rdev->sb_start); 2201 sb->sb_csum = calc_sb_1_csum(sb); 2202 do { 2203 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2204 rdev->sb_page); 2205 } while (md_super_wait(rdev->mddev) < 0); 2206 return num_sectors; 2207 2208 } 2209 2210 static int 2211 super_1_allow_new_offset(struct md_rdev *rdev, 2212 unsigned long long new_offset) 2213 { 2214 /* All necessary checks on new >= old have been done */ 2215 struct bitmap *bitmap; 2216 if (new_offset >= rdev->data_offset) 2217 return 1; 2218 2219 /* with 1.0 metadata, there is no metadata to tread on 2220 * so we can always move back */ 2221 if (rdev->mddev->minor_version == 0) 2222 return 1; 2223 2224 /* otherwise we must be sure not to step on 2225 * any metadata, so stay: 2226 * 36K beyond start of superblock 2227 * beyond end of badblocks 2228 * beyond write-intent bitmap 2229 */ 2230 if (rdev->sb_start + (32+4)*2 > new_offset) 2231 return 0; 2232 bitmap = rdev->mddev->bitmap; 2233 if (bitmap && !rdev->mddev->bitmap_info.file && 2234 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2235 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2236 return 0; 2237 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2238 return 0; 2239 2240 return 1; 2241 } 2242 2243 static struct super_type super_types[] = { 2244 [0] = { 2245 .name = "0.90.0", 2246 .owner = THIS_MODULE, 2247 .load_super = super_90_load, 2248 .validate_super = super_90_validate, 2249 .sync_super = super_90_sync, 2250 .rdev_size_change = super_90_rdev_size_change, 2251 .allow_new_offset = super_90_allow_new_offset, 2252 }, 2253 [1] = { 2254 .name = "md-1", 2255 .owner = THIS_MODULE, 2256 .load_super = super_1_load, 2257 .validate_super = super_1_validate, 2258 .sync_super = super_1_sync, 2259 .rdev_size_change = super_1_rdev_size_change, 2260 .allow_new_offset = super_1_allow_new_offset, 2261 }, 2262 }; 2263 2264 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2265 { 2266 if (mddev->sync_super) { 2267 mddev->sync_super(mddev, rdev); 2268 return; 2269 } 2270 2271 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2272 2273 super_types[mddev->major_version].sync_super(mddev, rdev); 2274 } 2275 2276 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2277 { 2278 struct md_rdev *rdev, *rdev2; 2279 2280 rcu_read_lock(); 2281 rdev_for_each_rcu(rdev, mddev1) { 2282 if (test_bit(Faulty, &rdev->flags) || 2283 test_bit(Journal, &rdev->flags) || 2284 rdev->raid_disk == -1) 2285 continue; 2286 rdev_for_each_rcu(rdev2, mddev2) { 2287 if (test_bit(Faulty, &rdev2->flags) || 2288 test_bit(Journal, &rdev2->flags) || 2289 rdev2->raid_disk == -1) 2290 continue; 2291 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2292 rcu_read_unlock(); 2293 return 1; 2294 } 2295 } 2296 } 2297 rcu_read_unlock(); 2298 return 0; 2299 } 2300 2301 static LIST_HEAD(pending_raid_disks); 2302 2303 /* 2304 * Try to register data integrity profile for an mddev 2305 * 2306 * This is called when an array is started and after a disk has been kicked 2307 * from the array. It only succeeds if all working and active component devices 2308 * are integrity capable with matching profiles. 2309 */ 2310 int md_integrity_register(struct mddev *mddev) 2311 { 2312 struct md_rdev *rdev, *reference = NULL; 2313 2314 if (list_empty(&mddev->disks)) 2315 return 0; /* nothing to do */ 2316 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2317 return 0; /* shouldn't register, or already is */ 2318 rdev_for_each(rdev, mddev) { 2319 /* skip spares and non-functional disks */ 2320 if (test_bit(Faulty, &rdev->flags)) 2321 continue; 2322 if (rdev->raid_disk < 0) 2323 continue; 2324 if (!reference) { 2325 /* Use the first rdev as the reference */ 2326 reference = rdev; 2327 continue; 2328 } 2329 /* does this rdev's profile match the reference profile? */ 2330 if (blk_integrity_compare(reference->bdev->bd_disk, 2331 rdev->bdev->bd_disk) < 0) 2332 return -EINVAL; 2333 } 2334 if (!reference || !bdev_get_integrity(reference->bdev)) 2335 return 0; 2336 /* 2337 * All component devices are integrity capable and have matching 2338 * profiles, register the common profile for the md device. 2339 */ 2340 blk_integrity_register(mddev->gendisk, 2341 bdev_get_integrity(reference->bdev)); 2342 2343 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2344 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2345 (mddev->level != 1 && mddev->level != 10 && 2346 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2347 /* 2348 * No need to handle the failure of bioset_integrity_create, 2349 * because the function is called by md_run() -> pers->run(), 2350 * md_run calls bioset_exit -> bioset_integrity_free in case 2351 * of failure case. 2352 */ 2353 pr_err("md: failed to create integrity pool for %s\n", 2354 mdname(mddev)); 2355 return -EINVAL; 2356 } 2357 return 0; 2358 } 2359 EXPORT_SYMBOL(md_integrity_register); 2360 2361 /* 2362 * Attempt to add an rdev, but only if it is consistent with the current 2363 * integrity profile 2364 */ 2365 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2366 { 2367 struct blk_integrity *bi_mddev; 2368 char name[BDEVNAME_SIZE]; 2369 2370 if (!mddev->gendisk) 2371 return 0; 2372 2373 bi_mddev = blk_get_integrity(mddev->gendisk); 2374 2375 if (!bi_mddev) /* nothing to do */ 2376 return 0; 2377 2378 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2379 pr_err("%s: incompatible integrity profile for %s\n", 2380 mdname(mddev), bdevname(rdev->bdev, name)); 2381 return -ENXIO; 2382 } 2383 2384 return 0; 2385 } 2386 EXPORT_SYMBOL(md_integrity_add_rdev); 2387 2388 static bool rdev_read_only(struct md_rdev *rdev) 2389 { 2390 return bdev_read_only(rdev->bdev) || 2391 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2392 } 2393 2394 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2395 { 2396 char b[BDEVNAME_SIZE]; 2397 int err; 2398 2399 /* prevent duplicates */ 2400 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2401 return -EEXIST; 2402 2403 if (rdev_read_only(rdev) && mddev->pers) 2404 return -EROFS; 2405 2406 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2407 if (!test_bit(Journal, &rdev->flags) && 2408 rdev->sectors && 2409 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2410 if (mddev->pers) { 2411 /* Cannot change size, so fail 2412 * If mddev->level <= 0, then we don't care 2413 * about aligning sizes (e.g. linear) 2414 */ 2415 if (mddev->level > 0) 2416 return -ENOSPC; 2417 } else 2418 mddev->dev_sectors = rdev->sectors; 2419 } 2420 2421 /* Verify rdev->desc_nr is unique. 2422 * If it is -1, assign a free number, else 2423 * check number is not in use 2424 */ 2425 rcu_read_lock(); 2426 if (rdev->desc_nr < 0) { 2427 int choice = 0; 2428 if (mddev->pers) 2429 choice = mddev->raid_disks; 2430 while (md_find_rdev_nr_rcu(mddev, choice)) 2431 choice++; 2432 rdev->desc_nr = choice; 2433 } else { 2434 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2435 rcu_read_unlock(); 2436 return -EBUSY; 2437 } 2438 } 2439 rcu_read_unlock(); 2440 if (!test_bit(Journal, &rdev->flags) && 2441 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2442 pr_warn("md: %s: array is limited to %d devices\n", 2443 mdname(mddev), mddev->max_disks); 2444 return -EBUSY; 2445 } 2446 bdevname(rdev->bdev,b); 2447 strreplace(b, '/', '!'); 2448 2449 rdev->mddev = mddev; 2450 pr_debug("md: bind<%s>\n", b); 2451 2452 if (mddev->raid_disks) 2453 mddev_create_serial_pool(mddev, rdev, false); 2454 2455 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2456 goto fail; 2457 2458 /* failure here is OK */ 2459 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2460 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2461 rdev->sysfs_unack_badblocks = 2462 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2463 rdev->sysfs_badblocks = 2464 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2465 2466 list_add_rcu(&rdev->same_set, &mddev->disks); 2467 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2468 2469 /* May as well allow recovery to be retried once */ 2470 mddev->recovery_disabled++; 2471 2472 return 0; 2473 2474 fail: 2475 pr_warn("md: failed to register dev-%s for %s\n", 2476 b, mdname(mddev)); 2477 return err; 2478 } 2479 2480 static void rdev_delayed_delete(struct work_struct *ws) 2481 { 2482 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2483 kobject_del(&rdev->kobj); 2484 kobject_put(&rdev->kobj); 2485 } 2486 2487 static void unbind_rdev_from_array(struct md_rdev *rdev) 2488 { 2489 char b[BDEVNAME_SIZE]; 2490 2491 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2492 list_del_rcu(&rdev->same_set); 2493 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2494 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2495 rdev->mddev = NULL; 2496 sysfs_remove_link(&rdev->kobj, "block"); 2497 sysfs_put(rdev->sysfs_state); 2498 sysfs_put(rdev->sysfs_unack_badblocks); 2499 sysfs_put(rdev->sysfs_badblocks); 2500 rdev->sysfs_state = NULL; 2501 rdev->sysfs_unack_badblocks = NULL; 2502 rdev->sysfs_badblocks = NULL; 2503 rdev->badblocks.count = 0; 2504 /* We need to delay this, otherwise we can deadlock when 2505 * writing to 'remove' to "dev/state". We also need 2506 * to delay it due to rcu usage. 2507 */ 2508 synchronize_rcu(); 2509 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2510 kobject_get(&rdev->kobj); 2511 queue_work(md_rdev_misc_wq, &rdev->del_work); 2512 } 2513 2514 /* 2515 * prevent the device from being mounted, repartitioned or 2516 * otherwise reused by a RAID array (or any other kernel 2517 * subsystem), by bd_claiming the device. 2518 */ 2519 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2520 { 2521 int err = 0; 2522 struct block_device *bdev; 2523 2524 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2525 shared ? (struct md_rdev *)lock_rdev : rdev); 2526 if (IS_ERR(bdev)) { 2527 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2528 MAJOR(dev), MINOR(dev)); 2529 return PTR_ERR(bdev); 2530 } 2531 rdev->bdev = bdev; 2532 return err; 2533 } 2534 2535 static void unlock_rdev(struct md_rdev *rdev) 2536 { 2537 struct block_device *bdev = rdev->bdev; 2538 rdev->bdev = NULL; 2539 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2540 } 2541 2542 void md_autodetect_dev(dev_t dev); 2543 2544 static void export_rdev(struct md_rdev *rdev) 2545 { 2546 char b[BDEVNAME_SIZE]; 2547 2548 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2549 md_rdev_clear(rdev); 2550 #ifndef MODULE 2551 if (test_bit(AutoDetected, &rdev->flags)) 2552 md_autodetect_dev(rdev->bdev->bd_dev); 2553 #endif 2554 unlock_rdev(rdev); 2555 kobject_put(&rdev->kobj); 2556 } 2557 2558 void md_kick_rdev_from_array(struct md_rdev *rdev) 2559 { 2560 unbind_rdev_from_array(rdev); 2561 export_rdev(rdev); 2562 } 2563 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2564 2565 static void export_array(struct mddev *mddev) 2566 { 2567 struct md_rdev *rdev; 2568 2569 while (!list_empty(&mddev->disks)) { 2570 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2571 same_set); 2572 md_kick_rdev_from_array(rdev); 2573 } 2574 mddev->raid_disks = 0; 2575 mddev->major_version = 0; 2576 } 2577 2578 static bool set_in_sync(struct mddev *mddev) 2579 { 2580 lockdep_assert_held(&mddev->lock); 2581 if (!mddev->in_sync) { 2582 mddev->sync_checkers++; 2583 spin_unlock(&mddev->lock); 2584 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2585 spin_lock(&mddev->lock); 2586 if (!mddev->in_sync && 2587 percpu_ref_is_zero(&mddev->writes_pending)) { 2588 mddev->in_sync = 1; 2589 /* 2590 * Ensure ->in_sync is visible before we clear 2591 * ->sync_checkers. 2592 */ 2593 smp_mb(); 2594 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2595 sysfs_notify_dirent_safe(mddev->sysfs_state); 2596 } 2597 if (--mddev->sync_checkers == 0) 2598 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2599 } 2600 if (mddev->safemode == 1) 2601 mddev->safemode = 0; 2602 return mddev->in_sync; 2603 } 2604 2605 static void sync_sbs(struct mddev *mddev, int nospares) 2606 { 2607 /* Update each superblock (in-memory image), but 2608 * if we are allowed to, skip spares which already 2609 * have the right event counter, or have one earlier 2610 * (which would mean they aren't being marked as dirty 2611 * with the rest of the array) 2612 */ 2613 struct md_rdev *rdev; 2614 rdev_for_each(rdev, mddev) { 2615 if (rdev->sb_events == mddev->events || 2616 (nospares && 2617 rdev->raid_disk < 0 && 2618 rdev->sb_events+1 == mddev->events)) { 2619 /* Don't update this superblock */ 2620 rdev->sb_loaded = 2; 2621 } else { 2622 sync_super(mddev, rdev); 2623 rdev->sb_loaded = 1; 2624 } 2625 } 2626 } 2627 2628 static bool does_sb_need_changing(struct mddev *mddev) 2629 { 2630 struct md_rdev *rdev = NULL, *iter; 2631 struct mdp_superblock_1 *sb; 2632 int role; 2633 2634 /* Find a good rdev */ 2635 rdev_for_each(iter, mddev) 2636 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2637 rdev = iter; 2638 break; 2639 } 2640 2641 /* No good device found. */ 2642 if (!rdev) 2643 return false; 2644 2645 sb = page_address(rdev->sb_page); 2646 /* Check if a device has become faulty or a spare become active */ 2647 rdev_for_each(rdev, mddev) { 2648 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2649 /* Device activated? */ 2650 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2651 !test_bit(Faulty, &rdev->flags)) 2652 return true; 2653 /* Device turned faulty? */ 2654 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2655 return true; 2656 } 2657 2658 /* Check if any mddev parameters have changed */ 2659 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2660 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2661 (mddev->layout != le32_to_cpu(sb->layout)) || 2662 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2663 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2664 return true; 2665 2666 return false; 2667 } 2668 2669 void md_update_sb(struct mddev *mddev, int force_change) 2670 { 2671 struct md_rdev *rdev; 2672 int sync_req; 2673 int nospares = 0; 2674 int any_badblocks_changed = 0; 2675 int ret = -1; 2676 2677 if (mddev->ro) { 2678 if (force_change) 2679 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2680 return; 2681 } 2682 2683 repeat: 2684 if (mddev_is_clustered(mddev)) { 2685 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2686 force_change = 1; 2687 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2688 nospares = 1; 2689 ret = md_cluster_ops->metadata_update_start(mddev); 2690 /* Has someone else has updated the sb */ 2691 if (!does_sb_need_changing(mddev)) { 2692 if (ret == 0) 2693 md_cluster_ops->metadata_update_cancel(mddev); 2694 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2695 BIT(MD_SB_CHANGE_DEVS) | 2696 BIT(MD_SB_CHANGE_CLEAN)); 2697 return; 2698 } 2699 } 2700 2701 /* 2702 * First make sure individual recovery_offsets are correct 2703 * curr_resync_completed can only be used during recovery. 2704 * During reshape/resync it might use array-addresses rather 2705 * that device addresses. 2706 */ 2707 rdev_for_each(rdev, mddev) { 2708 if (rdev->raid_disk >= 0 && 2709 mddev->delta_disks >= 0 && 2710 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2711 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2712 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2713 !test_bit(Journal, &rdev->flags) && 2714 !test_bit(In_sync, &rdev->flags) && 2715 mddev->curr_resync_completed > rdev->recovery_offset) 2716 rdev->recovery_offset = mddev->curr_resync_completed; 2717 2718 } 2719 if (!mddev->persistent) { 2720 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2721 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2722 if (!mddev->external) { 2723 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2724 rdev_for_each(rdev, mddev) { 2725 if (rdev->badblocks.changed) { 2726 rdev->badblocks.changed = 0; 2727 ack_all_badblocks(&rdev->badblocks); 2728 md_error(mddev, rdev); 2729 } 2730 clear_bit(Blocked, &rdev->flags); 2731 clear_bit(BlockedBadBlocks, &rdev->flags); 2732 wake_up(&rdev->blocked_wait); 2733 } 2734 } 2735 wake_up(&mddev->sb_wait); 2736 return; 2737 } 2738 2739 spin_lock(&mddev->lock); 2740 2741 mddev->utime = ktime_get_real_seconds(); 2742 2743 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2744 force_change = 1; 2745 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2746 /* just a clean<-> dirty transition, possibly leave spares alone, 2747 * though if events isn't the right even/odd, we will have to do 2748 * spares after all 2749 */ 2750 nospares = 1; 2751 if (force_change) 2752 nospares = 0; 2753 if (mddev->degraded) 2754 /* If the array is degraded, then skipping spares is both 2755 * dangerous and fairly pointless. 2756 * Dangerous because a device that was removed from the array 2757 * might have a event_count that still looks up-to-date, 2758 * so it can be re-added without a resync. 2759 * Pointless because if there are any spares to skip, 2760 * then a recovery will happen and soon that array won't 2761 * be degraded any more and the spare can go back to sleep then. 2762 */ 2763 nospares = 0; 2764 2765 sync_req = mddev->in_sync; 2766 2767 /* If this is just a dirty<->clean transition, and the array is clean 2768 * and 'events' is odd, we can roll back to the previous clean state */ 2769 if (nospares 2770 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2771 && mddev->can_decrease_events 2772 && mddev->events != 1) { 2773 mddev->events--; 2774 mddev->can_decrease_events = 0; 2775 } else { 2776 /* otherwise we have to go forward and ... */ 2777 mddev->events ++; 2778 mddev->can_decrease_events = nospares; 2779 } 2780 2781 /* 2782 * This 64-bit counter should never wrap. 2783 * Either we are in around ~1 trillion A.C., assuming 2784 * 1 reboot per second, or we have a bug... 2785 */ 2786 WARN_ON(mddev->events == 0); 2787 2788 rdev_for_each(rdev, mddev) { 2789 if (rdev->badblocks.changed) 2790 any_badblocks_changed++; 2791 if (test_bit(Faulty, &rdev->flags)) 2792 set_bit(FaultRecorded, &rdev->flags); 2793 } 2794 2795 sync_sbs(mddev, nospares); 2796 spin_unlock(&mddev->lock); 2797 2798 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2799 mdname(mddev), mddev->in_sync); 2800 2801 if (mddev->queue) 2802 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2803 rewrite: 2804 md_bitmap_update_sb(mddev->bitmap); 2805 rdev_for_each(rdev, mddev) { 2806 char b[BDEVNAME_SIZE]; 2807 2808 if (rdev->sb_loaded != 1) 2809 continue; /* no noise on spare devices */ 2810 2811 if (!test_bit(Faulty, &rdev->flags)) { 2812 md_super_write(mddev,rdev, 2813 rdev->sb_start, rdev->sb_size, 2814 rdev->sb_page); 2815 pr_debug("md: (write) %s's sb offset: %llu\n", 2816 bdevname(rdev->bdev, b), 2817 (unsigned long long)rdev->sb_start); 2818 rdev->sb_events = mddev->events; 2819 if (rdev->badblocks.size) { 2820 md_super_write(mddev, rdev, 2821 rdev->badblocks.sector, 2822 rdev->badblocks.size << 9, 2823 rdev->bb_page); 2824 rdev->badblocks.size = 0; 2825 } 2826 2827 } else 2828 pr_debug("md: %s (skipping faulty)\n", 2829 bdevname(rdev->bdev, b)); 2830 2831 if (mddev->level == LEVEL_MULTIPATH) 2832 /* only need to write one superblock... */ 2833 break; 2834 } 2835 if (md_super_wait(mddev) < 0) 2836 goto rewrite; 2837 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2838 2839 if (mddev_is_clustered(mddev) && ret == 0) 2840 md_cluster_ops->metadata_update_finish(mddev); 2841 2842 if (mddev->in_sync != sync_req || 2843 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2844 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2845 /* have to write it out again */ 2846 goto repeat; 2847 wake_up(&mddev->sb_wait); 2848 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2849 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2850 2851 rdev_for_each(rdev, mddev) { 2852 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2853 clear_bit(Blocked, &rdev->flags); 2854 2855 if (any_badblocks_changed) 2856 ack_all_badblocks(&rdev->badblocks); 2857 clear_bit(BlockedBadBlocks, &rdev->flags); 2858 wake_up(&rdev->blocked_wait); 2859 } 2860 } 2861 EXPORT_SYMBOL(md_update_sb); 2862 2863 static int add_bound_rdev(struct md_rdev *rdev) 2864 { 2865 struct mddev *mddev = rdev->mddev; 2866 int err = 0; 2867 bool add_journal = test_bit(Journal, &rdev->flags); 2868 2869 if (!mddev->pers->hot_remove_disk || add_journal) { 2870 /* If there is hot_add_disk but no hot_remove_disk 2871 * then added disks for geometry changes, 2872 * and should be added immediately. 2873 */ 2874 super_types[mddev->major_version]. 2875 validate_super(mddev, rdev); 2876 if (add_journal) 2877 mddev_suspend(mddev); 2878 err = mddev->pers->hot_add_disk(mddev, rdev); 2879 if (add_journal) 2880 mddev_resume(mddev); 2881 if (err) { 2882 md_kick_rdev_from_array(rdev); 2883 return err; 2884 } 2885 } 2886 sysfs_notify_dirent_safe(rdev->sysfs_state); 2887 2888 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2889 if (mddev->degraded) 2890 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2891 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2892 md_new_event(); 2893 md_wakeup_thread(mddev->thread); 2894 return 0; 2895 } 2896 2897 /* words written to sysfs files may, or may not, be \n terminated. 2898 * We want to accept with case. For this we use cmd_match. 2899 */ 2900 static int cmd_match(const char *cmd, const char *str) 2901 { 2902 /* See if cmd, written into a sysfs file, matches 2903 * str. They must either be the same, or cmd can 2904 * have a trailing newline 2905 */ 2906 while (*cmd && *str && *cmd == *str) { 2907 cmd++; 2908 str++; 2909 } 2910 if (*cmd == '\n') 2911 cmd++; 2912 if (*str || *cmd) 2913 return 0; 2914 return 1; 2915 } 2916 2917 struct rdev_sysfs_entry { 2918 struct attribute attr; 2919 ssize_t (*show)(struct md_rdev *, char *); 2920 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2921 }; 2922 2923 static ssize_t 2924 state_show(struct md_rdev *rdev, char *page) 2925 { 2926 char *sep = ","; 2927 size_t len = 0; 2928 unsigned long flags = READ_ONCE(rdev->flags); 2929 2930 if (test_bit(Faulty, &flags) || 2931 (!test_bit(ExternalBbl, &flags) && 2932 rdev->badblocks.unacked_exist)) 2933 len += sprintf(page+len, "faulty%s", sep); 2934 if (test_bit(In_sync, &flags)) 2935 len += sprintf(page+len, "in_sync%s", sep); 2936 if (test_bit(Journal, &flags)) 2937 len += sprintf(page+len, "journal%s", sep); 2938 if (test_bit(WriteMostly, &flags)) 2939 len += sprintf(page+len, "write_mostly%s", sep); 2940 if (test_bit(Blocked, &flags) || 2941 (rdev->badblocks.unacked_exist 2942 && !test_bit(Faulty, &flags))) 2943 len += sprintf(page+len, "blocked%s", sep); 2944 if (!test_bit(Faulty, &flags) && 2945 !test_bit(Journal, &flags) && 2946 !test_bit(In_sync, &flags)) 2947 len += sprintf(page+len, "spare%s", sep); 2948 if (test_bit(WriteErrorSeen, &flags)) 2949 len += sprintf(page+len, "write_error%s", sep); 2950 if (test_bit(WantReplacement, &flags)) 2951 len += sprintf(page+len, "want_replacement%s", sep); 2952 if (test_bit(Replacement, &flags)) 2953 len += sprintf(page+len, "replacement%s", sep); 2954 if (test_bit(ExternalBbl, &flags)) 2955 len += sprintf(page+len, "external_bbl%s", sep); 2956 if (test_bit(FailFast, &flags)) 2957 len += sprintf(page+len, "failfast%s", sep); 2958 2959 if (len) 2960 len -= strlen(sep); 2961 2962 return len+sprintf(page+len, "\n"); 2963 } 2964 2965 static ssize_t 2966 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2967 { 2968 /* can write 2969 * faulty - simulates an error 2970 * remove - disconnects the device 2971 * writemostly - sets write_mostly 2972 * -writemostly - clears write_mostly 2973 * blocked - sets the Blocked flags 2974 * -blocked - clears the Blocked and possibly simulates an error 2975 * insync - sets Insync providing device isn't active 2976 * -insync - clear Insync for a device with a slot assigned, 2977 * so that it gets rebuilt based on bitmap 2978 * write_error - sets WriteErrorSeen 2979 * -write_error - clears WriteErrorSeen 2980 * {,-}failfast - set/clear FailFast 2981 */ 2982 2983 struct mddev *mddev = rdev->mddev; 2984 int err = -EINVAL; 2985 bool need_update_sb = false; 2986 2987 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2988 md_error(rdev->mddev, rdev); 2989 2990 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2991 err = -EBUSY; 2992 else 2993 err = 0; 2994 } else if (cmd_match(buf, "remove")) { 2995 if (rdev->mddev->pers) { 2996 clear_bit(Blocked, &rdev->flags); 2997 remove_and_add_spares(rdev->mddev, rdev); 2998 } 2999 if (rdev->raid_disk >= 0) 3000 err = -EBUSY; 3001 else { 3002 err = 0; 3003 if (mddev_is_clustered(mddev)) 3004 err = md_cluster_ops->remove_disk(mddev, rdev); 3005 3006 if (err == 0) { 3007 md_kick_rdev_from_array(rdev); 3008 if (mddev->pers) { 3009 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3010 md_wakeup_thread(mddev->thread); 3011 } 3012 md_new_event(); 3013 } 3014 } 3015 } else if (cmd_match(buf, "writemostly")) { 3016 set_bit(WriteMostly, &rdev->flags); 3017 mddev_create_serial_pool(rdev->mddev, rdev, false); 3018 need_update_sb = true; 3019 err = 0; 3020 } else if (cmd_match(buf, "-writemostly")) { 3021 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3022 clear_bit(WriteMostly, &rdev->flags); 3023 need_update_sb = true; 3024 err = 0; 3025 } else if (cmd_match(buf, "blocked")) { 3026 set_bit(Blocked, &rdev->flags); 3027 err = 0; 3028 } else if (cmd_match(buf, "-blocked")) { 3029 if (!test_bit(Faulty, &rdev->flags) && 3030 !test_bit(ExternalBbl, &rdev->flags) && 3031 rdev->badblocks.unacked_exist) { 3032 /* metadata handler doesn't understand badblocks, 3033 * so we need to fail the device 3034 */ 3035 md_error(rdev->mddev, rdev); 3036 } 3037 clear_bit(Blocked, &rdev->flags); 3038 clear_bit(BlockedBadBlocks, &rdev->flags); 3039 wake_up(&rdev->blocked_wait); 3040 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3041 md_wakeup_thread(rdev->mddev->thread); 3042 3043 err = 0; 3044 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3045 set_bit(In_sync, &rdev->flags); 3046 err = 0; 3047 } else if (cmd_match(buf, "failfast")) { 3048 set_bit(FailFast, &rdev->flags); 3049 need_update_sb = true; 3050 err = 0; 3051 } else if (cmd_match(buf, "-failfast")) { 3052 clear_bit(FailFast, &rdev->flags); 3053 need_update_sb = true; 3054 err = 0; 3055 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3056 !test_bit(Journal, &rdev->flags)) { 3057 if (rdev->mddev->pers == NULL) { 3058 clear_bit(In_sync, &rdev->flags); 3059 rdev->saved_raid_disk = rdev->raid_disk; 3060 rdev->raid_disk = -1; 3061 err = 0; 3062 } 3063 } else if (cmd_match(buf, "write_error")) { 3064 set_bit(WriteErrorSeen, &rdev->flags); 3065 err = 0; 3066 } else if (cmd_match(buf, "-write_error")) { 3067 clear_bit(WriteErrorSeen, &rdev->flags); 3068 err = 0; 3069 } else if (cmd_match(buf, "want_replacement")) { 3070 /* Any non-spare device that is not a replacement can 3071 * become want_replacement at any time, but we then need to 3072 * check if recovery is needed. 3073 */ 3074 if (rdev->raid_disk >= 0 && 3075 !test_bit(Journal, &rdev->flags) && 3076 !test_bit(Replacement, &rdev->flags)) 3077 set_bit(WantReplacement, &rdev->flags); 3078 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3079 md_wakeup_thread(rdev->mddev->thread); 3080 err = 0; 3081 } else if (cmd_match(buf, "-want_replacement")) { 3082 /* Clearing 'want_replacement' is always allowed. 3083 * Once replacements starts it is too late though. 3084 */ 3085 err = 0; 3086 clear_bit(WantReplacement, &rdev->flags); 3087 } else if (cmd_match(buf, "replacement")) { 3088 /* Can only set a device as a replacement when array has not 3089 * yet been started. Once running, replacement is automatic 3090 * from spares, or by assigning 'slot'. 3091 */ 3092 if (rdev->mddev->pers) 3093 err = -EBUSY; 3094 else { 3095 set_bit(Replacement, &rdev->flags); 3096 err = 0; 3097 } 3098 } else if (cmd_match(buf, "-replacement")) { 3099 /* Similarly, can only clear Replacement before start */ 3100 if (rdev->mddev->pers) 3101 err = -EBUSY; 3102 else { 3103 clear_bit(Replacement, &rdev->flags); 3104 err = 0; 3105 } 3106 } else if (cmd_match(buf, "re-add")) { 3107 if (!rdev->mddev->pers) 3108 err = -EINVAL; 3109 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3110 rdev->saved_raid_disk >= 0) { 3111 /* clear_bit is performed _after_ all the devices 3112 * have their local Faulty bit cleared. If any writes 3113 * happen in the meantime in the local node, they 3114 * will land in the local bitmap, which will be synced 3115 * by this node eventually 3116 */ 3117 if (!mddev_is_clustered(rdev->mddev) || 3118 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3119 clear_bit(Faulty, &rdev->flags); 3120 err = add_bound_rdev(rdev); 3121 } 3122 } else 3123 err = -EBUSY; 3124 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3125 set_bit(ExternalBbl, &rdev->flags); 3126 rdev->badblocks.shift = 0; 3127 err = 0; 3128 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3129 clear_bit(ExternalBbl, &rdev->flags); 3130 err = 0; 3131 } 3132 if (need_update_sb) 3133 md_update_sb(mddev, 1); 3134 if (!err) 3135 sysfs_notify_dirent_safe(rdev->sysfs_state); 3136 return err ? err : len; 3137 } 3138 static struct rdev_sysfs_entry rdev_state = 3139 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3140 3141 static ssize_t 3142 errors_show(struct md_rdev *rdev, char *page) 3143 { 3144 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3145 } 3146 3147 static ssize_t 3148 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3149 { 3150 unsigned int n; 3151 int rv; 3152 3153 rv = kstrtouint(buf, 10, &n); 3154 if (rv < 0) 3155 return rv; 3156 atomic_set(&rdev->corrected_errors, n); 3157 return len; 3158 } 3159 static struct rdev_sysfs_entry rdev_errors = 3160 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3161 3162 static ssize_t 3163 slot_show(struct md_rdev *rdev, char *page) 3164 { 3165 if (test_bit(Journal, &rdev->flags)) 3166 return sprintf(page, "journal\n"); 3167 else if (rdev->raid_disk < 0) 3168 return sprintf(page, "none\n"); 3169 else 3170 return sprintf(page, "%d\n", rdev->raid_disk); 3171 } 3172 3173 static ssize_t 3174 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3175 { 3176 int slot; 3177 int err; 3178 3179 if (test_bit(Journal, &rdev->flags)) 3180 return -EBUSY; 3181 if (strncmp(buf, "none", 4)==0) 3182 slot = -1; 3183 else { 3184 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3185 if (err < 0) 3186 return err; 3187 } 3188 if (rdev->mddev->pers && slot == -1) { 3189 /* Setting 'slot' on an active array requires also 3190 * updating the 'rd%d' link, and communicating 3191 * with the personality with ->hot_*_disk. 3192 * For now we only support removing 3193 * failed/spare devices. This normally happens automatically, 3194 * but not when the metadata is externally managed. 3195 */ 3196 if (rdev->raid_disk == -1) 3197 return -EEXIST; 3198 /* personality does all needed checks */ 3199 if (rdev->mddev->pers->hot_remove_disk == NULL) 3200 return -EINVAL; 3201 clear_bit(Blocked, &rdev->flags); 3202 remove_and_add_spares(rdev->mddev, rdev); 3203 if (rdev->raid_disk >= 0) 3204 return -EBUSY; 3205 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3206 md_wakeup_thread(rdev->mddev->thread); 3207 } else if (rdev->mddev->pers) { 3208 /* Activating a spare .. or possibly reactivating 3209 * if we ever get bitmaps working here. 3210 */ 3211 int err; 3212 3213 if (rdev->raid_disk != -1) 3214 return -EBUSY; 3215 3216 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3217 return -EBUSY; 3218 3219 if (rdev->mddev->pers->hot_add_disk == NULL) 3220 return -EINVAL; 3221 3222 if (slot >= rdev->mddev->raid_disks && 3223 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3224 return -ENOSPC; 3225 3226 rdev->raid_disk = slot; 3227 if (test_bit(In_sync, &rdev->flags)) 3228 rdev->saved_raid_disk = slot; 3229 else 3230 rdev->saved_raid_disk = -1; 3231 clear_bit(In_sync, &rdev->flags); 3232 clear_bit(Bitmap_sync, &rdev->flags); 3233 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3234 if (err) { 3235 rdev->raid_disk = -1; 3236 return err; 3237 } else 3238 sysfs_notify_dirent_safe(rdev->sysfs_state); 3239 /* failure here is OK */; 3240 sysfs_link_rdev(rdev->mddev, rdev); 3241 /* don't wakeup anyone, leave that to userspace. */ 3242 } else { 3243 if (slot >= rdev->mddev->raid_disks && 3244 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3245 return -ENOSPC; 3246 rdev->raid_disk = slot; 3247 /* assume it is working */ 3248 clear_bit(Faulty, &rdev->flags); 3249 clear_bit(WriteMostly, &rdev->flags); 3250 set_bit(In_sync, &rdev->flags); 3251 sysfs_notify_dirent_safe(rdev->sysfs_state); 3252 } 3253 return len; 3254 } 3255 3256 static struct rdev_sysfs_entry rdev_slot = 3257 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3258 3259 static ssize_t 3260 offset_show(struct md_rdev *rdev, char *page) 3261 { 3262 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3263 } 3264 3265 static ssize_t 3266 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3267 { 3268 unsigned long long offset; 3269 if (kstrtoull(buf, 10, &offset) < 0) 3270 return -EINVAL; 3271 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3272 return -EBUSY; 3273 if (rdev->sectors && rdev->mddev->external) 3274 /* Must set offset before size, so overlap checks 3275 * can be sane */ 3276 return -EBUSY; 3277 rdev->data_offset = offset; 3278 rdev->new_data_offset = offset; 3279 return len; 3280 } 3281 3282 static struct rdev_sysfs_entry rdev_offset = 3283 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3284 3285 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3286 { 3287 return sprintf(page, "%llu\n", 3288 (unsigned long long)rdev->new_data_offset); 3289 } 3290 3291 static ssize_t new_offset_store(struct md_rdev *rdev, 3292 const char *buf, size_t len) 3293 { 3294 unsigned long long new_offset; 3295 struct mddev *mddev = rdev->mddev; 3296 3297 if (kstrtoull(buf, 10, &new_offset) < 0) 3298 return -EINVAL; 3299 3300 if (mddev->sync_thread || 3301 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3302 return -EBUSY; 3303 if (new_offset == rdev->data_offset) 3304 /* reset is always permitted */ 3305 ; 3306 else if (new_offset > rdev->data_offset) { 3307 /* must not push array size beyond rdev_sectors */ 3308 if (new_offset - rdev->data_offset 3309 + mddev->dev_sectors > rdev->sectors) 3310 return -E2BIG; 3311 } 3312 /* Metadata worries about other space details. */ 3313 3314 /* decreasing the offset is inconsistent with a backwards 3315 * reshape. 3316 */ 3317 if (new_offset < rdev->data_offset && 3318 mddev->reshape_backwards) 3319 return -EINVAL; 3320 /* Increasing offset is inconsistent with forwards 3321 * reshape. reshape_direction should be set to 3322 * 'backwards' first. 3323 */ 3324 if (new_offset > rdev->data_offset && 3325 !mddev->reshape_backwards) 3326 return -EINVAL; 3327 3328 if (mddev->pers && mddev->persistent && 3329 !super_types[mddev->major_version] 3330 .allow_new_offset(rdev, new_offset)) 3331 return -E2BIG; 3332 rdev->new_data_offset = new_offset; 3333 if (new_offset > rdev->data_offset) 3334 mddev->reshape_backwards = 1; 3335 else if (new_offset < rdev->data_offset) 3336 mddev->reshape_backwards = 0; 3337 3338 return len; 3339 } 3340 static struct rdev_sysfs_entry rdev_new_offset = 3341 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3342 3343 static ssize_t 3344 rdev_size_show(struct md_rdev *rdev, char *page) 3345 { 3346 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3347 } 3348 3349 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3350 { 3351 /* check if two start/length pairs overlap */ 3352 if (s1+l1 <= s2) 3353 return 0; 3354 if (s2+l2 <= s1) 3355 return 0; 3356 return 1; 3357 } 3358 3359 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3360 { 3361 unsigned long long blocks; 3362 sector_t new; 3363 3364 if (kstrtoull(buf, 10, &blocks) < 0) 3365 return -EINVAL; 3366 3367 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3368 return -EINVAL; /* sector conversion overflow */ 3369 3370 new = blocks * 2; 3371 if (new != blocks * 2) 3372 return -EINVAL; /* unsigned long long to sector_t overflow */ 3373 3374 *sectors = new; 3375 return 0; 3376 } 3377 3378 static ssize_t 3379 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3380 { 3381 struct mddev *my_mddev = rdev->mddev; 3382 sector_t oldsectors = rdev->sectors; 3383 sector_t sectors; 3384 3385 if (test_bit(Journal, &rdev->flags)) 3386 return -EBUSY; 3387 if (strict_blocks_to_sectors(buf, §ors) < 0) 3388 return -EINVAL; 3389 if (rdev->data_offset != rdev->new_data_offset) 3390 return -EINVAL; /* too confusing */ 3391 if (my_mddev->pers && rdev->raid_disk >= 0) { 3392 if (my_mddev->persistent) { 3393 sectors = super_types[my_mddev->major_version]. 3394 rdev_size_change(rdev, sectors); 3395 if (!sectors) 3396 return -EBUSY; 3397 } else if (!sectors) 3398 sectors = bdev_nr_sectors(rdev->bdev) - 3399 rdev->data_offset; 3400 if (!my_mddev->pers->resize) 3401 /* Cannot change size for RAID0 or Linear etc */ 3402 return -EINVAL; 3403 } 3404 if (sectors < my_mddev->dev_sectors) 3405 return -EINVAL; /* component must fit device */ 3406 3407 rdev->sectors = sectors; 3408 if (sectors > oldsectors && my_mddev->external) { 3409 /* Need to check that all other rdevs with the same 3410 * ->bdev do not overlap. 'rcu' is sufficient to walk 3411 * the rdev lists safely. 3412 * This check does not provide a hard guarantee, it 3413 * just helps avoid dangerous mistakes. 3414 */ 3415 struct mddev *mddev; 3416 int overlap = 0; 3417 struct list_head *tmp; 3418 3419 rcu_read_lock(); 3420 for_each_mddev(mddev, tmp) { 3421 struct md_rdev *rdev2; 3422 3423 rdev_for_each(rdev2, mddev) 3424 if (rdev->bdev == rdev2->bdev && 3425 rdev != rdev2 && 3426 overlaps(rdev->data_offset, rdev->sectors, 3427 rdev2->data_offset, 3428 rdev2->sectors)) { 3429 overlap = 1; 3430 break; 3431 } 3432 if (overlap) { 3433 mddev_put(mddev); 3434 break; 3435 } 3436 } 3437 rcu_read_unlock(); 3438 if (overlap) { 3439 /* Someone else could have slipped in a size 3440 * change here, but doing so is just silly. 3441 * We put oldsectors back because we *know* it is 3442 * safe, and trust userspace not to race with 3443 * itself 3444 */ 3445 rdev->sectors = oldsectors; 3446 return -EBUSY; 3447 } 3448 } 3449 return len; 3450 } 3451 3452 static struct rdev_sysfs_entry rdev_size = 3453 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3454 3455 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3456 { 3457 unsigned long long recovery_start = rdev->recovery_offset; 3458 3459 if (test_bit(In_sync, &rdev->flags) || 3460 recovery_start == MaxSector) 3461 return sprintf(page, "none\n"); 3462 3463 return sprintf(page, "%llu\n", recovery_start); 3464 } 3465 3466 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3467 { 3468 unsigned long long recovery_start; 3469 3470 if (cmd_match(buf, "none")) 3471 recovery_start = MaxSector; 3472 else if (kstrtoull(buf, 10, &recovery_start)) 3473 return -EINVAL; 3474 3475 if (rdev->mddev->pers && 3476 rdev->raid_disk >= 0) 3477 return -EBUSY; 3478 3479 rdev->recovery_offset = recovery_start; 3480 if (recovery_start == MaxSector) 3481 set_bit(In_sync, &rdev->flags); 3482 else 3483 clear_bit(In_sync, &rdev->flags); 3484 return len; 3485 } 3486 3487 static struct rdev_sysfs_entry rdev_recovery_start = 3488 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3489 3490 /* sysfs access to bad-blocks list. 3491 * We present two files. 3492 * 'bad-blocks' lists sector numbers and lengths of ranges that 3493 * are recorded as bad. The list is truncated to fit within 3494 * the one-page limit of sysfs. 3495 * Writing "sector length" to this file adds an acknowledged 3496 * bad block list. 3497 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3498 * been acknowledged. Writing to this file adds bad blocks 3499 * without acknowledging them. This is largely for testing. 3500 */ 3501 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3502 { 3503 return badblocks_show(&rdev->badblocks, page, 0); 3504 } 3505 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3506 { 3507 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3508 /* Maybe that ack was all we needed */ 3509 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3510 wake_up(&rdev->blocked_wait); 3511 return rv; 3512 } 3513 static struct rdev_sysfs_entry rdev_bad_blocks = 3514 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3515 3516 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3517 { 3518 return badblocks_show(&rdev->badblocks, page, 1); 3519 } 3520 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3521 { 3522 return badblocks_store(&rdev->badblocks, page, len, 1); 3523 } 3524 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3525 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3526 3527 static ssize_t 3528 ppl_sector_show(struct md_rdev *rdev, char *page) 3529 { 3530 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3531 } 3532 3533 static ssize_t 3534 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3535 { 3536 unsigned long long sector; 3537 3538 if (kstrtoull(buf, 10, §or) < 0) 3539 return -EINVAL; 3540 if (sector != (sector_t)sector) 3541 return -EINVAL; 3542 3543 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3544 rdev->raid_disk >= 0) 3545 return -EBUSY; 3546 3547 if (rdev->mddev->persistent) { 3548 if (rdev->mddev->major_version == 0) 3549 return -EINVAL; 3550 if ((sector > rdev->sb_start && 3551 sector - rdev->sb_start > S16_MAX) || 3552 (sector < rdev->sb_start && 3553 rdev->sb_start - sector > -S16_MIN)) 3554 return -EINVAL; 3555 rdev->ppl.offset = sector - rdev->sb_start; 3556 } else if (!rdev->mddev->external) { 3557 return -EBUSY; 3558 } 3559 rdev->ppl.sector = sector; 3560 return len; 3561 } 3562 3563 static struct rdev_sysfs_entry rdev_ppl_sector = 3564 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3565 3566 static ssize_t 3567 ppl_size_show(struct md_rdev *rdev, char *page) 3568 { 3569 return sprintf(page, "%u\n", rdev->ppl.size); 3570 } 3571 3572 static ssize_t 3573 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3574 { 3575 unsigned int size; 3576 3577 if (kstrtouint(buf, 10, &size) < 0) 3578 return -EINVAL; 3579 3580 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3581 rdev->raid_disk >= 0) 3582 return -EBUSY; 3583 3584 if (rdev->mddev->persistent) { 3585 if (rdev->mddev->major_version == 0) 3586 return -EINVAL; 3587 if (size > U16_MAX) 3588 return -EINVAL; 3589 } else if (!rdev->mddev->external) { 3590 return -EBUSY; 3591 } 3592 rdev->ppl.size = size; 3593 return len; 3594 } 3595 3596 static struct rdev_sysfs_entry rdev_ppl_size = 3597 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3598 3599 static struct attribute *rdev_default_attrs[] = { 3600 &rdev_state.attr, 3601 &rdev_errors.attr, 3602 &rdev_slot.attr, 3603 &rdev_offset.attr, 3604 &rdev_new_offset.attr, 3605 &rdev_size.attr, 3606 &rdev_recovery_start.attr, 3607 &rdev_bad_blocks.attr, 3608 &rdev_unack_bad_blocks.attr, 3609 &rdev_ppl_sector.attr, 3610 &rdev_ppl_size.attr, 3611 NULL, 3612 }; 3613 ATTRIBUTE_GROUPS(rdev_default); 3614 static ssize_t 3615 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3616 { 3617 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3618 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3619 3620 if (!entry->show) 3621 return -EIO; 3622 if (!rdev->mddev) 3623 return -ENODEV; 3624 return entry->show(rdev, page); 3625 } 3626 3627 static ssize_t 3628 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3629 const char *page, size_t length) 3630 { 3631 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3632 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3633 ssize_t rv; 3634 struct mddev *mddev = rdev->mddev; 3635 3636 if (!entry->store) 3637 return -EIO; 3638 if (!capable(CAP_SYS_ADMIN)) 3639 return -EACCES; 3640 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3641 if (!rv) { 3642 if (rdev->mddev == NULL) 3643 rv = -ENODEV; 3644 else 3645 rv = entry->store(rdev, page, length); 3646 mddev_unlock(mddev); 3647 } 3648 return rv; 3649 } 3650 3651 static void rdev_free(struct kobject *ko) 3652 { 3653 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3654 kfree(rdev); 3655 } 3656 static const struct sysfs_ops rdev_sysfs_ops = { 3657 .show = rdev_attr_show, 3658 .store = rdev_attr_store, 3659 }; 3660 static struct kobj_type rdev_ktype = { 3661 .release = rdev_free, 3662 .sysfs_ops = &rdev_sysfs_ops, 3663 .default_groups = rdev_default_groups, 3664 }; 3665 3666 int md_rdev_init(struct md_rdev *rdev) 3667 { 3668 rdev->desc_nr = -1; 3669 rdev->saved_raid_disk = -1; 3670 rdev->raid_disk = -1; 3671 rdev->flags = 0; 3672 rdev->data_offset = 0; 3673 rdev->new_data_offset = 0; 3674 rdev->sb_events = 0; 3675 rdev->last_read_error = 0; 3676 rdev->sb_loaded = 0; 3677 rdev->bb_page = NULL; 3678 atomic_set(&rdev->nr_pending, 0); 3679 atomic_set(&rdev->read_errors, 0); 3680 atomic_set(&rdev->corrected_errors, 0); 3681 3682 INIT_LIST_HEAD(&rdev->same_set); 3683 init_waitqueue_head(&rdev->blocked_wait); 3684 3685 /* Add space to store bad block list. 3686 * This reserves the space even on arrays where it cannot 3687 * be used - I wonder if that matters 3688 */ 3689 return badblocks_init(&rdev->badblocks, 0); 3690 } 3691 EXPORT_SYMBOL_GPL(md_rdev_init); 3692 /* 3693 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3694 * 3695 * mark the device faulty if: 3696 * 3697 * - the device is nonexistent (zero size) 3698 * - the device has no valid superblock 3699 * 3700 * a faulty rdev _never_ has rdev->sb set. 3701 */ 3702 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3703 { 3704 char b[BDEVNAME_SIZE]; 3705 int err; 3706 struct md_rdev *rdev; 3707 sector_t size; 3708 3709 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3710 if (!rdev) 3711 return ERR_PTR(-ENOMEM); 3712 3713 err = md_rdev_init(rdev); 3714 if (err) 3715 goto abort_free; 3716 err = alloc_disk_sb(rdev); 3717 if (err) 3718 goto abort_free; 3719 3720 err = lock_rdev(rdev, newdev, super_format == -2); 3721 if (err) 3722 goto abort_free; 3723 3724 kobject_init(&rdev->kobj, &rdev_ktype); 3725 3726 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3727 if (!size) { 3728 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3729 bdevname(rdev->bdev,b)); 3730 err = -EINVAL; 3731 goto abort_free; 3732 } 3733 3734 if (super_format >= 0) { 3735 err = super_types[super_format]. 3736 load_super(rdev, NULL, super_minor); 3737 if (err == -EINVAL) { 3738 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3739 bdevname(rdev->bdev,b), 3740 super_format, super_minor); 3741 goto abort_free; 3742 } 3743 if (err < 0) { 3744 pr_warn("md: could not read %s's sb, not importing!\n", 3745 bdevname(rdev->bdev,b)); 3746 goto abort_free; 3747 } 3748 } 3749 3750 return rdev; 3751 3752 abort_free: 3753 if (rdev->bdev) 3754 unlock_rdev(rdev); 3755 md_rdev_clear(rdev); 3756 kfree(rdev); 3757 return ERR_PTR(err); 3758 } 3759 3760 /* 3761 * Check a full RAID array for plausibility 3762 */ 3763 3764 static int analyze_sbs(struct mddev *mddev) 3765 { 3766 int i; 3767 struct md_rdev *rdev, *freshest, *tmp; 3768 char b[BDEVNAME_SIZE]; 3769 3770 freshest = NULL; 3771 rdev_for_each_safe(rdev, tmp, mddev) 3772 switch (super_types[mddev->major_version]. 3773 load_super(rdev, freshest, mddev->minor_version)) { 3774 case 1: 3775 freshest = rdev; 3776 break; 3777 case 0: 3778 break; 3779 default: 3780 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3781 bdevname(rdev->bdev,b)); 3782 md_kick_rdev_from_array(rdev); 3783 } 3784 3785 /* Cannot find a valid fresh disk */ 3786 if (!freshest) { 3787 pr_warn("md: cannot find a valid disk\n"); 3788 return -EINVAL; 3789 } 3790 3791 super_types[mddev->major_version]. 3792 validate_super(mddev, freshest); 3793 3794 i = 0; 3795 rdev_for_each_safe(rdev, tmp, mddev) { 3796 if (mddev->max_disks && 3797 (rdev->desc_nr >= mddev->max_disks || 3798 i > mddev->max_disks)) { 3799 pr_warn("md: %s: %s: only %d devices permitted\n", 3800 mdname(mddev), bdevname(rdev->bdev, b), 3801 mddev->max_disks); 3802 md_kick_rdev_from_array(rdev); 3803 continue; 3804 } 3805 if (rdev != freshest) { 3806 if (super_types[mddev->major_version]. 3807 validate_super(mddev, rdev)) { 3808 pr_warn("md: kicking non-fresh %s from array!\n", 3809 bdevname(rdev->bdev,b)); 3810 md_kick_rdev_from_array(rdev); 3811 continue; 3812 } 3813 } 3814 if (mddev->level == LEVEL_MULTIPATH) { 3815 rdev->desc_nr = i++; 3816 rdev->raid_disk = rdev->desc_nr; 3817 set_bit(In_sync, &rdev->flags); 3818 } else if (rdev->raid_disk >= 3819 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3820 !test_bit(Journal, &rdev->flags)) { 3821 rdev->raid_disk = -1; 3822 clear_bit(In_sync, &rdev->flags); 3823 } 3824 } 3825 3826 return 0; 3827 } 3828 3829 /* Read a fixed-point number. 3830 * Numbers in sysfs attributes should be in "standard" units where 3831 * possible, so time should be in seconds. 3832 * However we internally use a a much smaller unit such as 3833 * milliseconds or jiffies. 3834 * This function takes a decimal number with a possible fractional 3835 * component, and produces an integer which is the result of 3836 * multiplying that number by 10^'scale'. 3837 * all without any floating-point arithmetic. 3838 */ 3839 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3840 { 3841 unsigned long result = 0; 3842 long decimals = -1; 3843 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3844 if (*cp == '.') 3845 decimals = 0; 3846 else if (decimals < scale) { 3847 unsigned int value; 3848 value = *cp - '0'; 3849 result = result * 10 + value; 3850 if (decimals >= 0) 3851 decimals++; 3852 } 3853 cp++; 3854 } 3855 if (*cp == '\n') 3856 cp++; 3857 if (*cp) 3858 return -EINVAL; 3859 if (decimals < 0) 3860 decimals = 0; 3861 *res = result * int_pow(10, scale - decimals); 3862 return 0; 3863 } 3864 3865 static ssize_t 3866 safe_delay_show(struct mddev *mddev, char *page) 3867 { 3868 int msec = (mddev->safemode_delay*1000)/HZ; 3869 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3870 } 3871 static ssize_t 3872 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3873 { 3874 unsigned long msec; 3875 3876 if (mddev_is_clustered(mddev)) { 3877 pr_warn("md: Safemode is disabled for clustered mode\n"); 3878 return -EINVAL; 3879 } 3880 3881 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3882 return -EINVAL; 3883 if (msec == 0) 3884 mddev->safemode_delay = 0; 3885 else { 3886 unsigned long old_delay = mddev->safemode_delay; 3887 unsigned long new_delay = (msec*HZ)/1000; 3888 3889 if (new_delay == 0) 3890 new_delay = 1; 3891 mddev->safemode_delay = new_delay; 3892 if (new_delay < old_delay || old_delay == 0) 3893 mod_timer(&mddev->safemode_timer, jiffies+1); 3894 } 3895 return len; 3896 } 3897 static struct md_sysfs_entry md_safe_delay = 3898 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3899 3900 static ssize_t 3901 level_show(struct mddev *mddev, char *page) 3902 { 3903 struct md_personality *p; 3904 int ret; 3905 spin_lock(&mddev->lock); 3906 p = mddev->pers; 3907 if (p) 3908 ret = sprintf(page, "%s\n", p->name); 3909 else if (mddev->clevel[0]) 3910 ret = sprintf(page, "%s\n", mddev->clevel); 3911 else if (mddev->level != LEVEL_NONE) 3912 ret = sprintf(page, "%d\n", mddev->level); 3913 else 3914 ret = 0; 3915 spin_unlock(&mddev->lock); 3916 return ret; 3917 } 3918 3919 static ssize_t 3920 level_store(struct mddev *mddev, const char *buf, size_t len) 3921 { 3922 char clevel[16]; 3923 ssize_t rv; 3924 size_t slen = len; 3925 struct md_personality *pers, *oldpers; 3926 long level; 3927 void *priv, *oldpriv; 3928 struct md_rdev *rdev; 3929 3930 if (slen == 0 || slen >= sizeof(clevel)) 3931 return -EINVAL; 3932 3933 rv = mddev_lock(mddev); 3934 if (rv) 3935 return rv; 3936 3937 if (mddev->pers == NULL) { 3938 strncpy(mddev->clevel, buf, slen); 3939 if (mddev->clevel[slen-1] == '\n') 3940 slen--; 3941 mddev->clevel[slen] = 0; 3942 mddev->level = LEVEL_NONE; 3943 rv = len; 3944 goto out_unlock; 3945 } 3946 rv = -EROFS; 3947 if (mddev->ro) 3948 goto out_unlock; 3949 3950 /* request to change the personality. Need to ensure: 3951 * - array is not engaged in resync/recovery/reshape 3952 * - old personality can be suspended 3953 * - new personality will access other array. 3954 */ 3955 3956 rv = -EBUSY; 3957 if (mddev->sync_thread || 3958 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3959 mddev->reshape_position != MaxSector || 3960 mddev->sysfs_active) 3961 goto out_unlock; 3962 3963 rv = -EINVAL; 3964 if (!mddev->pers->quiesce) { 3965 pr_warn("md: %s: %s does not support online personality change\n", 3966 mdname(mddev), mddev->pers->name); 3967 goto out_unlock; 3968 } 3969 3970 /* Now find the new personality */ 3971 strncpy(clevel, buf, slen); 3972 if (clevel[slen-1] == '\n') 3973 slen--; 3974 clevel[slen] = 0; 3975 if (kstrtol(clevel, 10, &level)) 3976 level = LEVEL_NONE; 3977 3978 if (request_module("md-%s", clevel) != 0) 3979 request_module("md-level-%s", clevel); 3980 spin_lock(&pers_lock); 3981 pers = find_pers(level, clevel); 3982 if (!pers || !try_module_get(pers->owner)) { 3983 spin_unlock(&pers_lock); 3984 pr_warn("md: personality %s not loaded\n", clevel); 3985 rv = -EINVAL; 3986 goto out_unlock; 3987 } 3988 spin_unlock(&pers_lock); 3989 3990 if (pers == mddev->pers) { 3991 /* Nothing to do! */ 3992 module_put(pers->owner); 3993 rv = len; 3994 goto out_unlock; 3995 } 3996 if (!pers->takeover) { 3997 module_put(pers->owner); 3998 pr_warn("md: %s: %s does not support personality takeover\n", 3999 mdname(mddev), clevel); 4000 rv = -EINVAL; 4001 goto out_unlock; 4002 } 4003 4004 rdev_for_each(rdev, mddev) 4005 rdev->new_raid_disk = rdev->raid_disk; 4006 4007 /* ->takeover must set new_* and/or delta_disks 4008 * if it succeeds, and may set them when it fails. 4009 */ 4010 priv = pers->takeover(mddev); 4011 if (IS_ERR(priv)) { 4012 mddev->new_level = mddev->level; 4013 mddev->new_layout = mddev->layout; 4014 mddev->new_chunk_sectors = mddev->chunk_sectors; 4015 mddev->raid_disks -= mddev->delta_disks; 4016 mddev->delta_disks = 0; 4017 mddev->reshape_backwards = 0; 4018 module_put(pers->owner); 4019 pr_warn("md: %s: %s would not accept array\n", 4020 mdname(mddev), clevel); 4021 rv = PTR_ERR(priv); 4022 goto out_unlock; 4023 } 4024 4025 /* Looks like we have a winner */ 4026 mddev_suspend(mddev); 4027 mddev_detach(mddev); 4028 4029 spin_lock(&mddev->lock); 4030 oldpers = mddev->pers; 4031 oldpriv = mddev->private; 4032 mddev->pers = pers; 4033 mddev->private = priv; 4034 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4035 mddev->level = mddev->new_level; 4036 mddev->layout = mddev->new_layout; 4037 mddev->chunk_sectors = mddev->new_chunk_sectors; 4038 mddev->delta_disks = 0; 4039 mddev->reshape_backwards = 0; 4040 mddev->degraded = 0; 4041 spin_unlock(&mddev->lock); 4042 4043 if (oldpers->sync_request == NULL && 4044 mddev->external) { 4045 /* We are converting from a no-redundancy array 4046 * to a redundancy array and metadata is managed 4047 * externally so we need to be sure that writes 4048 * won't block due to a need to transition 4049 * clean->dirty 4050 * until external management is started. 4051 */ 4052 mddev->in_sync = 0; 4053 mddev->safemode_delay = 0; 4054 mddev->safemode = 0; 4055 } 4056 4057 oldpers->free(mddev, oldpriv); 4058 4059 if (oldpers->sync_request == NULL && 4060 pers->sync_request != NULL) { 4061 /* need to add the md_redundancy_group */ 4062 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4063 pr_warn("md: cannot register extra attributes for %s\n", 4064 mdname(mddev)); 4065 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4066 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4067 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4068 } 4069 if (oldpers->sync_request != NULL && 4070 pers->sync_request == NULL) { 4071 /* need to remove the md_redundancy_group */ 4072 if (mddev->to_remove == NULL) 4073 mddev->to_remove = &md_redundancy_group; 4074 } 4075 4076 module_put(oldpers->owner); 4077 4078 rdev_for_each(rdev, mddev) { 4079 if (rdev->raid_disk < 0) 4080 continue; 4081 if (rdev->new_raid_disk >= mddev->raid_disks) 4082 rdev->new_raid_disk = -1; 4083 if (rdev->new_raid_disk == rdev->raid_disk) 4084 continue; 4085 sysfs_unlink_rdev(mddev, rdev); 4086 } 4087 rdev_for_each(rdev, mddev) { 4088 if (rdev->raid_disk < 0) 4089 continue; 4090 if (rdev->new_raid_disk == rdev->raid_disk) 4091 continue; 4092 rdev->raid_disk = rdev->new_raid_disk; 4093 if (rdev->raid_disk < 0) 4094 clear_bit(In_sync, &rdev->flags); 4095 else { 4096 if (sysfs_link_rdev(mddev, rdev)) 4097 pr_warn("md: cannot register rd%d for %s after level change\n", 4098 rdev->raid_disk, mdname(mddev)); 4099 } 4100 } 4101 4102 if (pers->sync_request == NULL) { 4103 /* this is now an array without redundancy, so 4104 * it must always be in_sync 4105 */ 4106 mddev->in_sync = 1; 4107 del_timer_sync(&mddev->safemode_timer); 4108 } 4109 blk_set_stacking_limits(&mddev->queue->limits); 4110 pers->run(mddev); 4111 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4112 mddev_resume(mddev); 4113 if (!mddev->thread) 4114 md_update_sb(mddev, 1); 4115 sysfs_notify_dirent_safe(mddev->sysfs_level); 4116 md_new_event(); 4117 rv = len; 4118 out_unlock: 4119 mddev_unlock(mddev); 4120 return rv; 4121 } 4122 4123 static struct md_sysfs_entry md_level = 4124 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4125 4126 static ssize_t 4127 layout_show(struct mddev *mddev, char *page) 4128 { 4129 /* just a number, not meaningful for all levels */ 4130 if (mddev->reshape_position != MaxSector && 4131 mddev->layout != mddev->new_layout) 4132 return sprintf(page, "%d (%d)\n", 4133 mddev->new_layout, mddev->layout); 4134 return sprintf(page, "%d\n", mddev->layout); 4135 } 4136 4137 static ssize_t 4138 layout_store(struct mddev *mddev, const char *buf, size_t len) 4139 { 4140 unsigned int n; 4141 int err; 4142 4143 err = kstrtouint(buf, 10, &n); 4144 if (err < 0) 4145 return err; 4146 err = mddev_lock(mddev); 4147 if (err) 4148 return err; 4149 4150 if (mddev->pers) { 4151 if (mddev->pers->check_reshape == NULL) 4152 err = -EBUSY; 4153 else if (mddev->ro) 4154 err = -EROFS; 4155 else { 4156 mddev->new_layout = n; 4157 err = mddev->pers->check_reshape(mddev); 4158 if (err) 4159 mddev->new_layout = mddev->layout; 4160 } 4161 } else { 4162 mddev->new_layout = n; 4163 if (mddev->reshape_position == MaxSector) 4164 mddev->layout = n; 4165 } 4166 mddev_unlock(mddev); 4167 return err ?: len; 4168 } 4169 static struct md_sysfs_entry md_layout = 4170 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4171 4172 static ssize_t 4173 raid_disks_show(struct mddev *mddev, char *page) 4174 { 4175 if (mddev->raid_disks == 0) 4176 return 0; 4177 if (mddev->reshape_position != MaxSector && 4178 mddev->delta_disks != 0) 4179 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4180 mddev->raid_disks - mddev->delta_disks); 4181 return sprintf(page, "%d\n", mddev->raid_disks); 4182 } 4183 4184 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4185 4186 static ssize_t 4187 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4188 { 4189 unsigned int n; 4190 int err; 4191 4192 err = kstrtouint(buf, 10, &n); 4193 if (err < 0) 4194 return err; 4195 4196 err = mddev_lock(mddev); 4197 if (err) 4198 return err; 4199 if (mddev->pers) 4200 err = update_raid_disks(mddev, n); 4201 else if (mddev->reshape_position != MaxSector) { 4202 struct md_rdev *rdev; 4203 int olddisks = mddev->raid_disks - mddev->delta_disks; 4204 4205 err = -EINVAL; 4206 rdev_for_each(rdev, mddev) { 4207 if (olddisks < n && 4208 rdev->data_offset < rdev->new_data_offset) 4209 goto out_unlock; 4210 if (olddisks > n && 4211 rdev->data_offset > rdev->new_data_offset) 4212 goto out_unlock; 4213 } 4214 err = 0; 4215 mddev->delta_disks = n - olddisks; 4216 mddev->raid_disks = n; 4217 mddev->reshape_backwards = (mddev->delta_disks < 0); 4218 } else 4219 mddev->raid_disks = n; 4220 out_unlock: 4221 mddev_unlock(mddev); 4222 return err ? err : len; 4223 } 4224 static struct md_sysfs_entry md_raid_disks = 4225 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4226 4227 static ssize_t 4228 uuid_show(struct mddev *mddev, char *page) 4229 { 4230 return sprintf(page, "%pU\n", mddev->uuid); 4231 } 4232 static struct md_sysfs_entry md_uuid = 4233 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4234 4235 static ssize_t 4236 chunk_size_show(struct mddev *mddev, char *page) 4237 { 4238 if (mddev->reshape_position != MaxSector && 4239 mddev->chunk_sectors != mddev->new_chunk_sectors) 4240 return sprintf(page, "%d (%d)\n", 4241 mddev->new_chunk_sectors << 9, 4242 mddev->chunk_sectors << 9); 4243 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4244 } 4245 4246 static ssize_t 4247 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4248 { 4249 unsigned long n; 4250 int err; 4251 4252 err = kstrtoul(buf, 10, &n); 4253 if (err < 0) 4254 return err; 4255 4256 err = mddev_lock(mddev); 4257 if (err) 4258 return err; 4259 if (mddev->pers) { 4260 if (mddev->pers->check_reshape == NULL) 4261 err = -EBUSY; 4262 else if (mddev->ro) 4263 err = -EROFS; 4264 else { 4265 mddev->new_chunk_sectors = n >> 9; 4266 err = mddev->pers->check_reshape(mddev); 4267 if (err) 4268 mddev->new_chunk_sectors = mddev->chunk_sectors; 4269 } 4270 } else { 4271 mddev->new_chunk_sectors = n >> 9; 4272 if (mddev->reshape_position == MaxSector) 4273 mddev->chunk_sectors = n >> 9; 4274 } 4275 mddev_unlock(mddev); 4276 return err ?: len; 4277 } 4278 static struct md_sysfs_entry md_chunk_size = 4279 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4280 4281 static ssize_t 4282 resync_start_show(struct mddev *mddev, char *page) 4283 { 4284 if (mddev->recovery_cp == MaxSector) 4285 return sprintf(page, "none\n"); 4286 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4287 } 4288 4289 static ssize_t 4290 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4291 { 4292 unsigned long long n; 4293 int err; 4294 4295 if (cmd_match(buf, "none")) 4296 n = MaxSector; 4297 else { 4298 err = kstrtoull(buf, 10, &n); 4299 if (err < 0) 4300 return err; 4301 if (n != (sector_t)n) 4302 return -EINVAL; 4303 } 4304 4305 err = mddev_lock(mddev); 4306 if (err) 4307 return err; 4308 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4309 err = -EBUSY; 4310 4311 if (!err) { 4312 mddev->recovery_cp = n; 4313 if (mddev->pers) 4314 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4315 } 4316 mddev_unlock(mddev); 4317 return err ?: len; 4318 } 4319 static struct md_sysfs_entry md_resync_start = 4320 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4321 resync_start_show, resync_start_store); 4322 4323 /* 4324 * The array state can be: 4325 * 4326 * clear 4327 * No devices, no size, no level 4328 * Equivalent to STOP_ARRAY ioctl 4329 * inactive 4330 * May have some settings, but array is not active 4331 * all IO results in error 4332 * When written, doesn't tear down array, but just stops it 4333 * suspended (not supported yet) 4334 * All IO requests will block. The array can be reconfigured. 4335 * Writing this, if accepted, will block until array is quiescent 4336 * readonly 4337 * no resync can happen. no superblocks get written. 4338 * write requests fail 4339 * read-auto 4340 * like readonly, but behaves like 'clean' on a write request. 4341 * 4342 * clean - no pending writes, but otherwise active. 4343 * When written to inactive array, starts without resync 4344 * If a write request arrives then 4345 * if metadata is known, mark 'dirty' and switch to 'active'. 4346 * if not known, block and switch to write-pending 4347 * If written to an active array that has pending writes, then fails. 4348 * active 4349 * fully active: IO and resync can be happening. 4350 * When written to inactive array, starts with resync 4351 * 4352 * write-pending 4353 * clean, but writes are blocked waiting for 'active' to be written. 4354 * 4355 * active-idle 4356 * like active, but no writes have been seen for a while (100msec). 4357 * 4358 * broken 4359 * Array is failed. It's useful because mounted-arrays aren't stopped 4360 * when array is failed, so this state will at least alert the user that 4361 * something is wrong. 4362 */ 4363 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4364 write_pending, active_idle, broken, bad_word}; 4365 static char *array_states[] = { 4366 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4367 "write-pending", "active-idle", "broken", NULL }; 4368 4369 static int match_word(const char *word, char **list) 4370 { 4371 int n; 4372 for (n=0; list[n]; n++) 4373 if (cmd_match(word, list[n])) 4374 break; 4375 return n; 4376 } 4377 4378 static ssize_t 4379 array_state_show(struct mddev *mddev, char *page) 4380 { 4381 enum array_state st = inactive; 4382 4383 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4384 switch(mddev->ro) { 4385 case 1: 4386 st = readonly; 4387 break; 4388 case 2: 4389 st = read_auto; 4390 break; 4391 case 0: 4392 spin_lock(&mddev->lock); 4393 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4394 st = write_pending; 4395 else if (mddev->in_sync) 4396 st = clean; 4397 else if (mddev->safemode) 4398 st = active_idle; 4399 else 4400 st = active; 4401 spin_unlock(&mddev->lock); 4402 } 4403 4404 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4405 st = broken; 4406 } else { 4407 if (list_empty(&mddev->disks) && 4408 mddev->raid_disks == 0 && 4409 mddev->dev_sectors == 0) 4410 st = clear; 4411 else 4412 st = inactive; 4413 } 4414 return sprintf(page, "%s\n", array_states[st]); 4415 } 4416 4417 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4418 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4419 static int restart_array(struct mddev *mddev); 4420 4421 static ssize_t 4422 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4423 { 4424 int err = 0; 4425 enum array_state st = match_word(buf, array_states); 4426 4427 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4428 /* don't take reconfig_mutex when toggling between 4429 * clean and active 4430 */ 4431 spin_lock(&mddev->lock); 4432 if (st == active) { 4433 restart_array(mddev); 4434 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4435 md_wakeup_thread(mddev->thread); 4436 wake_up(&mddev->sb_wait); 4437 } else /* st == clean */ { 4438 restart_array(mddev); 4439 if (!set_in_sync(mddev)) 4440 err = -EBUSY; 4441 } 4442 if (!err) 4443 sysfs_notify_dirent_safe(mddev->sysfs_state); 4444 spin_unlock(&mddev->lock); 4445 return err ?: len; 4446 } 4447 err = mddev_lock(mddev); 4448 if (err) 4449 return err; 4450 err = -EINVAL; 4451 switch(st) { 4452 case bad_word: 4453 break; 4454 case clear: 4455 /* stopping an active array */ 4456 err = do_md_stop(mddev, 0, NULL); 4457 break; 4458 case inactive: 4459 /* stopping an active array */ 4460 if (mddev->pers) 4461 err = do_md_stop(mddev, 2, NULL); 4462 else 4463 err = 0; /* already inactive */ 4464 break; 4465 case suspended: 4466 break; /* not supported yet */ 4467 case readonly: 4468 if (mddev->pers) 4469 err = md_set_readonly(mddev, NULL); 4470 else { 4471 mddev->ro = 1; 4472 set_disk_ro(mddev->gendisk, 1); 4473 err = do_md_run(mddev); 4474 } 4475 break; 4476 case read_auto: 4477 if (mddev->pers) { 4478 if (mddev->ro == 0) 4479 err = md_set_readonly(mddev, NULL); 4480 else if (mddev->ro == 1) 4481 err = restart_array(mddev); 4482 if (err == 0) { 4483 mddev->ro = 2; 4484 set_disk_ro(mddev->gendisk, 0); 4485 } 4486 } else { 4487 mddev->ro = 2; 4488 err = do_md_run(mddev); 4489 } 4490 break; 4491 case clean: 4492 if (mddev->pers) { 4493 err = restart_array(mddev); 4494 if (err) 4495 break; 4496 spin_lock(&mddev->lock); 4497 if (!set_in_sync(mddev)) 4498 err = -EBUSY; 4499 spin_unlock(&mddev->lock); 4500 } else 4501 err = -EINVAL; 4502 break; 4503 case active: 4504 if (mddev->pers) { 4505 err = restart_array(mddev); 4506 if (err) 4507 break; 4508 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4509 wake_up(&mddev->sb_wait); 4510 err = 0; 4511 } else { 4512 mddev->ro = 0; 4513 set_disk_ro(mddev->gendisk, 0); 4514 err = do_md_run(mddev); 4515 } 4516 break; 4517 case write_pending: 4518 case active_idle: 4519 case broken: 4520 /* these cannot be set */ 4521 break; 4522 } 4523 4524 if (!err) { 4525 if (mddev->hold_active == UNTIL_IOCTL) 4526 mddev->hold_active = 0; 4527 sysfs_notify_dirent_safe(mddev->sysfs_state); 4528 } 4529 mddev_unlock(mddev); 4530 return err ?: len; 4531 } 4532 static struct md_sysfs_entry md_array_state = 4533 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4534 4535 static ssize_t 4536 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4537 return sprintf(page, "%d\n", 4538 atomic_read(&mddev->max_corr_read_errors)); 4539 } 4540 4541 static ssize_t 4542 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4543 { 4544 unsigned int n; 4545 int rv; 4546 4547 rv = kstrtouint(buf, 10, &n); 4548 if (rv < 0) 4549 return rv; 4550 atomic_set(&mddev->max_corr_read_errors, n); 4551 return len; 4552 } 4553 4554 static struct md_sysfs_entry max_corr_read_errors = 4555 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4556 max_corrected_read_errors_store); 4557 4558 static ssize_t 4559 null_show(struct mddev *mddev, char *page) 4560 { 4561 return -EINVAL; 4562 } 4563 4564 /* need to ensure rdev_delayed_delete() has completed */ 4565 static void flush_rdev_wq(struct mddev *mddev) 4566 { 4567 struct md_rdev *rdev; 4568 4569 rcu_read_lock(); 4570 rdev_for_each_rcu(rdev, mddev) 4571 if (work_pending(&rdev->del_work)) { 4572 flush_workqueue(md_rdev_misc_wq); 4573 break; 4574 } 4575 rcu_read_unlock(); 4576 } 4577 4578 static ssize_t 4579 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4580 { 4581 /* buf must be %d:%d\n? giving major and minor numbers */ 4582 /* The new device is added to the array. 4583 * If the array has a persistent superblock, we read the 4584 * superblock to initialise info and check validity. 4585 * Otherwise, only checking done is that in bind_rdev_to_array, 4586 * which mainly checks size. 4587 */ 4588 char *e; 4589 int major = simple_strtoul(buf, &e, 10); 4590 int minor; 4591 dev_t dev; 4592 struct md_rdev *rdev; 4593 int err; 4594 4595 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4596 return -EINVAL; 4597 minor = simple_strtoul(e+1, &e, 10); 4598 if (*e && *e != '\n') 4599 return -EINVAL; 4600 dev = MKDEV(major, minor); 4601 if (major != MAJOR(dev) || 4602 minor != MINOR(dev)) 4603 return -EOVERFLOW; 4604 4605 flush_rdev_wq(mddev); 4606 err = mddev_lock(mddev); 4607 if (err) 4608 return err; 4609 if (mddev->persistent) { 4610 rdev = md_import_device(dev, mddev->major_version, 4611 mddev->minor_version); 4612 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4613 struct md_rdev *rdev0 4614 = list_entry(mddev->disks.next, 4615 struct md_rdev, same_set); 4616 err = super_types[mddev->major_version] 4617 .load_super(rdev, rdev0, mddev->minor_version); 4618 if (err < 0) 4619 goto out; 4620 } 4621 } else if (mddev->external) 4622 rdev = md_import_device(dev, -2, -1); 4623 else 4624 rdev = md_import_device(dev, -1, -1); 4625 4626 if (IS_ERR(rdev)) { 4627 mddev_unlock(mddev); 4628 return PTR_ERR(rdev); 4629 } 4630 err = bind_rdev_to_array(rdev, mddev); 4631 out: 4632 if (err) 4633 export_rdev(rdev); 4634 mddev_unlock(mddev); 4635 if (!err) 4636 md_new_event(); 4637 return err ? err : len; 4638 } 4639 4640 static struct md_sysfs_entry md_new_device = 4641 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4642 4643 static ssize_t 4644 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4645 { 4646 char *end; 4647 unsigned long chunk, end_chunk; 4648 int err; 4649 4650 err = mddev_lock(mddev); 4651 if (err) 4652 return err; 4653 if (!mddev->bitmap) 4654 goto out; 4655 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4656 while (*buf) { 4657 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4658 if (buf == end) break; 4659 if (*end == '-') { /* range */ 4660 buf = end + 1; 4661 end_chunk = simple_strtoul(buf, &end, 0); 4662 if (buf == end) break; 4663 } 4664 if (*end && !isspace(*end)) break; 4665 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4666 buf = skip_spaces(end); 4667 } 4668 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4669 out: 4670 mddev_unlock(mddev); 4671 return len; 4672 } 4673 4674 static struct md_sysfs_entry md_bitmap = 4675 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4676 4677 static ssize_t 4678 size_show(struct mddev *mddev, char *page) 4679 { 4680 return sprintf(page, "%llu\n", 4681 (unsigned long long)mddev->dev_sectors / 2); 4682 } 4683 4684 static int update_size(struct mddev *mddev, sector_t num_sectors); 4685 4686 static ssize_t 4687 size_store(struct mddev *mddev, const char *buf, size_t len) 4688 { 4689 /* If array is inactive, we can reduce the component size, but 4690 * not increase it (except from 0). 4691 * If array is active, we can try an on-line resize 4692 */ 4693 sector_t sectors; 4694 int err = strict_blocks_to_sectors(buf, §ors); 4695 4696 if (err < 0) 4697 return err; 4698 err = mddev_lock(mddev); 4699 if (err) 4700 return err; 4701 if (mddev->pers) { 4702 err = update_size(mddev, sectors); 4703 if (err == 0) 4704 md_update_sb(mddev, 1); 4705 } else { 4706 if (mddev->dev_sectors == 0 || 4707 mddev->dev_sectors > sectors) 4708 mddev->dev_sectors = sectors; 4709 else 4710 err = -ENOSPC; 4711 } 4712 mddev_unlock(mddev); 4713 return err ? err : len; 4714 } 4715 4716 static struct md_sysfs_entry md_size = 4717 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4718 4719 /* Metadata version. 4720 * This is one of 4721 * 'none' for arrays with no metadata (good luck...) 4722 * 'external' for arrays with externally managed metadata, 4723 * or N.M for internally known formats 4724 */ 4725 static ssize_t 4726 metadata_show(struct mddev *mddev, char *page) 4727 { 4728 if (mddev->persistent) 4729 return sprintf(page, "%d.%d\n", 4730 mddev->major_version, mddev->minor_version); 4731 else if (mddev->external) 4732 return sprintf(page, "external:%s\n", mddev->metadata_type); 4733 else 4734 return sprintf(page, "none\n"); 4735 } 4736 4737 static ssize_t 4738 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4739 { 4740 int major, minor; 4741 char *e; 4742 int err; 4743 /* Changing the details of 'external' metadata is 4744 * always permitted. Otherwise there must be 4745 * no devices attached to the array. 4746 */ 4747 4748 err = mddev_lock(mddev); 4749 if (err) 4750 return err; 4751 err = -EBUSY; 4752 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4753 ; 4754 else if (!list_empty(&mddev->disks)) 4755 goto out_unlock; 4756 4757 err = 0; 4758 if (cmd_match(buf, "none")) { 4759 mddev->persistent = 0; 4760 mddev->external = 0; 4761 mddev->major_version = 0; 4762 mddev->minor_version = 90; 4763 goto out_unlock; 4764 } 4765 if (strncmp(buf, "external:", 9) == 0) { 4766 size_t namelen = len-9; 4767 if (namelen >= sizeof(mddev->metadata_type)) 4768 namelen = sizeof(mddev->metadata_type)-1; 4769 strncpy(mddev->metadata_type, buf+9, namelen); 4770 mddev->metadata_type[namelen] = 0; 4771 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4772 mddev->metadata_type[--namelen] = 0; 4773 mddev->persistent = 0; 4774 mddev->external = 1; 4775 mddev->major_version = 0; 4776 mddev->minor_version = 90; 4777 goto out_unlock; 4778 } 4779 major = simple_strtoul(buf, &e, 10); 4780 err = -EINVAL; 4781 if (e==buf || *e != '.') 4782 goto out_unlock; 4783 buf = e+1; 4784 minor = simple_strtoul(buf, &e, 10); 4785 if (e==buf || (*e && *e != '\n') ) 4786 goto out_unlock; 4787 err = -ENOENT; 4788 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4789 goto out_unlock; 4790 mddev->major_version = major; 4791 mddev->minor_version = minor; 4792 mddev->persistent = 1; 4793 mddev->external = 0; 4794 err = 0; 4795 out_unlock: 4796 mddev_unlock(mddev); 4797 return err ?: len; 4798 } 4799 4800 static struct md_sysfs_entry md_metadata = 4801 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4802 4803 static ssize_t 4804 action_show(struct mddev *mddev, char *page) 4805 { 4806 char *type = "idle"; 4807 unsigned long recovery = mddev->recovery; 4808 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4809 type = "frozen"; 4810 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4811 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4812 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4813 type = "reshape"; 4814 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4815 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4816 type = "resync"; 4817 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4818 type = "check"; 4819 else 4820 type = "repair"; 4821 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4822 type = "recover"; 4823 else if (mddev->reshape_position != MaxSector) 4824 type = "reshape"; 4825 } 4826 return sprintf(page, "%s\n", type); 4827 } 4828 4829 static ssize_t 4830 action_store(struct mddev *mddev, const char *page, size_t len) 4831 { 4832 if (!mddev->pers || !mddev->pers->sync_request) 4833 return -EINVAL; 4834 4835 4836 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4837 if (cmd_match(page, "frozen")) 4838 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4839 else 4840 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4841 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4842 mddev_lock(mddev) == 0) { 4843 if (work_pending(&mddev->del_work)) 4844 flush_workqueue(md_misc_wq); 4845 if (mddev->sync_thread) { 4846 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4847 md_reap_sync_thread(mddev); 4848 } 4849 mddev_unlock(mddev); 4850 } 4851 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4852 return -EBUSY; 4853 else if (cmd_match(page, "resync")) 4854 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4855 else if (cmd_match(page, "recover")) { 4856 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4857 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4858 } else if (cmd_match(page, "reshape")) { 4859 int err; 4860 if (mddev->pers->start_reshape == NULL) 4861 return -EINVAL; 4862 err = mddev_lock(mddev); 4863 if (!err) { 4864 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4865 err = -EBUSY; 4866 else { 4867 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4868 err = mddev->pers->start_reshape(mddev); 4869 } 4870 mddev_unlock(mddev); 4871 } 4872 if (err) 4873 return err; 4874 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4875 } else { 4876 if (cmd_match(page, "check")) 4877 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4878 else if (!cmd_match(page, "repair")) 4879 return -EINVAL; 4880 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4881 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4882 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4883 } 4884 if (mddev->ro == 2) { 4885 /* A write to sync_action is enough to justify 4886 * canceling read-auto mode 4887 */ 4888 mddev->ro = 0; 4889 md_wakeup_thread(mddev->sync_thread); 4890 } 4891 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4892 md_wakeup_thread(mddev->thread); 4893 sysfs_notify_dirent_safe(mddev->sysfs_action); 4894 return len; 4895 } 4896 4897 static struct md_sysfs_entry md_scan_mode = 4898 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4899 4900 static ssize_t 4901 last_sync_action_show(struct mddev *mddev, char *page) 4902 { 4903 return sprintf(page, "%s\n", mddev->last_sync_action); 4904 } 4905 4906 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4907 4908 static ssize_t 4909 mismatch_cnt_show(struct mddev *mddev, char *page) 4910 { 4911 return sprintf(page, "%llu\n", 4912 (unsigned long long) 4913 atomic64_read(&mddev->resync_mismatches)); 4914 } 4915 4916 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4917 4918 static ssize_t 4919 sync_min_show(struct mddev *mddev, char *page) 4920 { 4921 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4922 mddev->sync_speed_min ? "local": "system"); 4923 } 4924 4925 static ssize_t 4926 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4927 { 4928 unsigned int min; 4929 int rv; 4930 4931 if (strncmp(buf, "system", 6)==0) { 4932 min = 0; 4933 } else { 4934 rv = kstrtouint(buf, 10, &min); 4935 if (rv < 0) 4936 return rv; 4937 if (min == 0) 4938 return -EINVAL; 4939 } 4940 mddev->sync_speed_min = min; 4941 return len; 4942 } 4943 4944 static struct md_sysfs_entry md_sync_min = 4945 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4946 4947 static ssize_t 4948 sync_max_show(struct mddev *mddev, char *page) 4949 { 4950 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4951 mddev->sync_speed_max ? "local": "system"); 4952 } 4953 4954 static ssize_t 4955 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4956 { 4957 unsigned int max; 4958 int rv; 4959 4960 if (strncmp(buf, "system", 6)==0) { 4961 max = 0; 4962 } else { 4963 rv = kstrtouint(buf, 10, &max); 4964 if (rv < 0) 4965 return rv; 4966 if (max == 0) 4967 return -EINVAL; 4968 } 4969 mddev->sync_speed_max = max; 4970 return len; 4971 } 4972 4973 static struct md_sysfs_entry md_sync_max = 4974 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4975 4976 static ssize_t 4977 degraded_show(struct mddev *mddev, char *page) 4978 { 4979 return sprintf(page, "%d\n", mddev->degraded); 4980 } 4981 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4982 4983 static ssize_t 4984 sync_force_parallel_show(struct mddev *mddev, char *page) 4985 { 4986 return sprintf(page, "%d\n", mddev->parallel_resync); 4987 } 4988 4989 static ssize_t 4990 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4991 { 4992 long n; 4993 4994 if (kstrtol(buf, 10, &n)) 4995 return -EINVAL; 4996 4997 if (n != 0 && n != 1) 4998 return -EINVAL; 4999 5000 mddev->parallel_resync = n; 5001 5002 if (mddev->sync_thread) 5003 wake_up(&resync_wait); 5004 5005 return len; 5006 } 5007 5008 /* force parallel resync, even with shared block devices */ 5009 static struct md_sysfs_entry md_sync_force_parallel = 5010 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5011 sync_force_parallel_show, sync_force_parallel_store); 5012 5013 static ssize_t 5014 sync_speed_show(struct mddev *mddev, char *page) 5015 { 5016 unsigned long resync, dt, db; 5017 if (mddev->curr_resync == 0) 5018 return sprintf(page, "none\n"); 5019 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5020 dt = (jiffies - mddev->resync_mark) / HZ; 5021 if (!dt) dt++; 5022 db = resync - mddev->resync_mark_cnt; 5023 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5024 } 5025 5026 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5027 5028 static ssize_t 5029 sync_completed_show(struct mddev *mddev, char *page) 5030 { 5031 unsigned long long max_sectors, resync; 5032 5033 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5034 return sprintf(page, "none\n"); 5035 5036 if (mddev->curr_resync == 1 || 5037 mddev->curr_resync == 2) 5038 return sprintf(page, "delayed\n"); 5039 5040 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5041 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5042 max_sectors = mddev->resync_max_sectors; 5043 else 5044 max_sectors = mddev->dev_sectors; 5045 5046 resync = mddev->curr_resync_completed; 5047 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5048 } 5049 5050 static struct md_sysfs_entry md_sync_completed = 5051 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5052 5053 static ssize_t 5054 min_sync_show(struct mddev *mddev, char *page) 5055 { 5056 return sprintf(page, "%llu\n", 5057 (unsigned long long)mddev->resync_min); 5058 } 5059 static ssize_t 5060 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5061 { 5062 unsigned long long min; 5063 int err; 5064 5065 if (kstrtoull(buf, 10, &min)) 5066 return -EINVAL; 5067 5068 spin_lock(&mddev->lock); 5069 err = -EINVAL; 5070 if (min > mddev->resync_max) 5071 goto out_unlock; 5072 5073 err = -EBUSY; 5074 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5075 goto out_unlock; 5076 5077 /* Round down to multiple of 4K for safety */ 5078 mddev->resync_min = round_down(min, 8); 5079 err = 0; 5080 5081 out_unlock: 5082 spin_unlock(&mddev->lock); 5083 return err ?: len; 5084 } 5085 5086 static struct md_sysfs_entry md_min_sync = 5087 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5088 5089 static ssize_t 5090 max_sync_show(struct mddev *mddev, char *page) 5091 { 5092 if (mddev->resync_max == MaxSector) 5093 return sprintf(page, "max\n"); 5094 else 5095 return sprintf(page, "%llu\n", 5096 (unsigned long long)mddev->resync_max); 5097 } 5098 static ssize_t 5099 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5100 { 5101 int err; 5102 spin_lock(&mddev->lock); 5103 if (strncmp(buf, "max", 3) == 0) 5104 mddev->resync_max = MaxSector; 5105 else { 5106 unsigned long long max; 5107 int chunk; 5108 5109 err = -EINVAL; 5110 if (kstrtoull(buf, 10, &max)) 5111 goto out_unlock; 5112 if (max < mddev->resync_min) 5113 goto out_unlock; 5114 5115 err = -EBUSY; 5116 if (max < mddev->resync_max && 5117 mddev->ro == 0 && 5118 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5119 goto out_unlock; 5120 5121 /* Must be a multiple of chunk_size */ 5122 chunk = mddev->chunk_sectors; 5123 if (chunk) { 5124 sector_t temp = max; 5125 5126 err = -EINVAL; 5127 if (sector_div(temp, chunk)) 5128 goto out_unlock; 5129 } 5130 mddev->resync_max = max; 5131 } 5132 wake_up(&mddev->recovery_wait); 5133 err = 0; 5134 out_unlock: 5135 spin_unlock(&mddev->lock); 5136 return err ?: len; 5137 } 5138 5139 static struct md_sysfs_entry md_max_sync = 5140 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5141 5142 static ssize_t 5143 suspend_lo_show(struct mddev *mddev, char *page) 5144 { 5145 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5146 } 5147 5148 static ssize_t 5149 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5150 { 5151 unsigned long long new; 5152 int err; 5153 5154 err = kstrtoull(buf, 10, &new); 5155 if (err < 0) 5156 return err; 5157 if (new != (sector_t)new) 5158 return -EINVAL; 5159 5160 err = mddev_lock(mddev); 5161 if (err) 5162 return err; 5163 err = -EINVAL; 5164 if (mddev->pers == NULL || 5165 mddev->pers->quiesce == NULL) 5166 goto unlock; 5167 mddev_suspend(mddev); 5168 mddev->suspend_lo = new; 5169 mddev_resume(mddev); 5170 5171 err = 0; 5172 unlock: 5173 mddev_unlock(mddev); 5174 return err ?: len; 5175 } 5176 static struct md_sysfs_entry md_suspend_lo = 5177 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5178 5179 static ssize_t 5180 suspend_hi_show(struct mddev *mddev, char *page) 5181 { 5182 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5183 } 5184 5185 static ssize_t 5186 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5187 { 5188 unsigned long long new; 5189 int err; 5190 5191 err = kstrtoull(buf, 10, &new); 5192 if (err < 0) 5193 return err; 5194 if (new != (sector_t)new) 5195 return -EINVAL; 5196 5197 err = mddev_lock(mddev); 5198 if (err) 5199 return err; 5200 err = -EINVAL; 5201 if (mddev->pers == NULL) 5202 goto unlock; 5203 5204 mddev_suspend(mddev); 5205 mddev->suspend_hi = new; 5206 mddev_resume(mddev); 5207 5208 err = 0; 5209 unlock: 5210 mddev_unlock(mddev); 5211 return err ?: len; 5212 } 5213 static struct md_sysfs_entry md_suspend_hi = 5214 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5215 5216 static ssize_t 5217 reshape_position_show(struct mddev *mddev, char *page) 5218 { 5219 if (mddev->reshape_position != MaxSector) 5220 return sprintf(page, "%llu\n", 5221 (unsigned long long)mddev->reshape_position); 5222 strcpy(page, "none\n"); 5223 return 5; 5224 } 5225 5226 static ssize_t 5227 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5228 { 5229 struct md_rdev *rdev; 5230 unsigned long long new; 5231 int err; 5232 5233 err = kstrtoull(buf, 10, &new); 5234 if (err < 0) 5235 return err; 5236 if (new != (sector_t)new) 5237 return -EINVAL; 5238 err = mddev_lock(mddev); 5239 if (err) 5240 return err; 5241 err = -EBUSY; 5242 if (mddev->pers) 5243 goto unlock; 5244 mddev->reshape_position = new; 5245 mddev->delta_disks = 0; 5246 mddev->reshape_backwards = 0; 5247 mddev->new_level = mddev->level; 5248 mddev->new_layout = mddev->layout; 5249 mddev->new_chunk_sectors = mddev->chunk_sectors; 5250 rdev_for_each(rdev, mddev) 5251 rdev->new_data_offset = rdev->data_offset; 5252 err = 0; 5253 unlock: 5254 mddev_unlock(mddev); 5255 return err ?: len; 5256 } 5257 5258 static struct md_sysfs_entry md_reshape_position = 5259 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5260 reshape_position_store); 5261 5262 static ssize_t 5263 reshape_direction_show(struct mddev *mddev, char *page) 5264 { 5265 return sprintf(page, "%s\n", 5266 mddev->reshape_backwards ? "backwards" : "forwards"); 5267 } 5268 5269 static ssize_t 5270 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5271 { 5272 int backwards = 0; 5273 int err; 5274 5275 if (cmd_match(buf, "forwards")) 5276 backwards = 0; 5277 else if (cmd_match(buf, "backwards")) 5278 backwards = 1; 5279 else 5280 return -EINVAL; 5281 if (mddev->reshape_backwards == backwards) 5282 return len; 5283 5284 err = mddev_lock(mddev); 5285 if (err) 5286 return err; 5287 /* check if we are allowed to change */ 5288 if (mddev->delta_disks) 5289 err = -EBUSY; 5290 else if (mddev->persistent && 5291 mddev->major_version == 0) 5292 err = -EINVAL; 5293 else 5294 mddev->reshape_backwards = backwards; 5295 mddev_unlock(mddev); 5296 return err ?: len; 5297 } 5298 5299 static struct md_sysfs_entry md_reshape_direction = 5300 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5301 reshape_direction_store); 5302 5303 static ssize_t 5304 array_size_show(struct mddev *mddev, char *page) 5305 { 5306 if (mddev->external_size) 5307 return sprintf(page, "%llu\n", 5308 (unsigned long long)mddev->array_sectors/2); 5309 else 5310 return sprintf(page, "default\n"); 5311 } 5312 5313 static ssize_t 5314 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5315 { 5316 sector_t sectors; 5317 int err; 5318 5319 err = mddev_lock(mddev); 5320 if (err) 5321 return err; 5322 5323 /* cluster raid doesn't support change array_sectors */ 5324 if (mddev_is_clustered(mddev)) { 5325 mddev_unlock(mddev); 5326 return -EINVAL; 5327 } 5328 5329 if (strncmp(buf, "default", 7) == 0) { 5330 if (mddev->pers) 5331 sectors = mddev->pers->size(mddev, 0, 0); 5332 else 5333 sectors = mddev->array_sectors; 5334 5335 mddev->external_size = 0; 5336 } else { 5337 if (strict_blocks_to_sectors(buf, §ors) < 0) 5338 err = -EINVAL; 5339 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5340 err = -E2BIG; 5341 else 5342 mddev->external_size = 1; 5343 } 5344 5345 if (!err) { 5346 mddev->array_sectors = sectors; 5347 if (mddev->pers) 5348 set_capacity_and_notify(mddev->gendisk, 5349 mddev->array_sectors); 5350 } 5351 mddev_unlock(mddev); 5352 return err ?: len; 5353 } 5354 5355 static struct md_sysfs_entry md_array_size = 5356 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5357 array_size_store); 5358 5359 static ssize_t 5360 consistency_policy_show(struct mddev *mddev, char *page) 5361 { 5362 int ret; 5363 5364 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5365 ret = sprintf(page, "journal\n"); 5366 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5367 ret = sprintf(page, "ppl\n"); 5368 } else if (mddev->bitmap) { 5369 ret = sprintf(page, "bitmap\n"); 5370 } else if (mddev->pers) { 5371 if (mddev->pers->sync_request) 5372 ret = sprintf(page, "resync\n"); 5373 else 5374 ret = sprintf(page, "none\n"); 5375 } else { 5376 ret = sprintf(page, "unknown\n"); 5377 } 5378 5379 return ret; 5380 } 5381 5382 static ssize_t 5383 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5384 { 5385 int err = 0; 5386 5387 if (mddev->pers) { 5388 if (mddev->pers->change_consistency_policy) 5389 err = mddev->pers->change_consistency_policy(mddev, buf); 5390 else 5391 err = -EBUSY; 5392 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5393 set_bit(MD_HAS_PPL, &mddev->flags); 5394 } else { 5395 err = -EINVAL; 5396 } 5397 5398 return err ? err : len; 5399 } 5400 5401 static struct md_sysfs_entry md_consistency_policy = 5402 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5403 consistency_policy_store); 5404 5405 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5406 { 5407 return sprintf(page, "%d\n", mddev->fail_last_dev); 5408 } 5409 5410 /* 5411 * Setting fail_last_dev to true to allow last device to be forcibly removed 5412 * from RAID1/RAID10. 5413 */ 5414 static ssize_t 5415 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5416 { 5417 int ret; 5418 bool value; 5419 5420 ret = kstrtobool(buf, &value); 5421 if (ret) 5422 return ret; 5423 5424 if (value != mddev->fail_last_dev) 5425 mddev->fail_last_dev = value; 5426 5427 return len; 5428 } 5429 static struct md_sysfs_entry md_fail_last_dev = 5430 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5431 fail_last_dev_store); 5432 5433 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5434 { 5435 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5436 return sprintf(page, "n/a\n"); 5437 else 5438 return sprintf(page, "%d\n", mddev->serialize_policy); 5439 } 5440 5441 /* 5442 * Setting serialize_policy to true to enforce write IO is not reordered 5443 * for raid1. 5444 */ 5445 static ssize_t 5446 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5447 { 5448 int err; 5449 bool value; 5450 5451 err = kstrtobool(buf, &value); 5452 if (err) 5453 return err; 5454 5455 if (value == mddev->serialize_policy) 5456 return len; 5457 5458 err = mddev_lock(mddev); 5459 if (err) 5460 return err; 5461 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5462 pr_err("md: serialize_policy is only effective for raid1\n"); 5463 err = -EINVAL; 5464 goto unlock; 5465 } 5466 5467 mddev_suspend(mddev); 5468 if (value) 5469 mddev_create_serial_pool(mddev, NULL, true); 5470 else 5471 mddev_destroy_serial_pool(mddev, NULL, true); 5472 mddev->serialize_policy = value; 5473 mddev_resume(mddev); 5474 unlock: 5475 mddev_unlock(mddev); 5476 return err ?: len; 5477 } 5478 5479 static struct md_sysfs_entry md_serialize_policy = 5480 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5481 serialize_policy_store); 5482 5483 5484 static struct attribute *md_default_attrs[] = { 5485 &md_level.attr, 5486 &md_layout.attr, 5487 &md_raid_disks.attr, 5488 &md_uuid.attr, 5489 &md_chunk_size.attr, 5490 &md_size.attr, 5491 &md_resync_start.attr, 5492 &md_metadata.attr, 5493 &md_new_device.attr, 5494 &md_safe_delay.attr, 5495 &md_array_state.attr, 5496 &md_reshape_position.attr, 5497 &md_reshape_direction.attr, 5498 &md_array_size.attr, 5499 &max_corr_read_errors.attr, 5500 &md_consistency_policy.attr, 5501 &md_fail_last_dev.attr, 5502 &md_serialize_policy.attr, 5503 NULL, 5504 }; 5505 5506 static const struct attribute_group md_default_group = { 5507 .attrs = md_default_attrs, 5508 }; 5509 5510 static struct attribute *md_redundancy_attrs[] = { 5511 &md_scan_mode.attr, 5512 &md_last_scan_mode.attr, 5513 &md_mismatches.attr, 5514 &md_sync_min.attr, 5515 &md_sync_max.attr, 5516 &md_sync_speed.attr, 5517 &md_sync_force_parallel.attr, 5518 &md_sync_completed.attr, 5519 &md_min_sync.attr, 5520 &md_max_sync.attr, 5521 &md_suspend_lo.attr, 5522 &md_suspend_hi.attr, 5523 &md_bitmap.attr, 5524 &md_degraded.attr, 5525 NULL, 5526 }; 5527 static const struct attribute_group md_redundancy_group = { 5528 .name = NULL, 5529 .attrs = md_redundancy_attrs, 5530 }; 5531 5532 static const struct attribute_group *md_attr_groups[] = { 5533 &md_default_group, 5534 &md_bitmap_group, 5535 NULL, 5536 }; 5537 5538 static ssize_t 5539 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5540 { 5541 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5542 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5543 ssize_t rv; 5544 5545 if (!entry->show) 5546 return -EIO; 5547 spin_lock(&all_mddevs_lock); 5548 if (list_empty(&mddev->all_mddevs)) { 5549 spin_unlock(&all_mddevs_lock); 5550 return -EBUSY; 5551 } 5552 mddev_get(mddev); 5553 spin_unlock(&all_mddevs_lock); 5554 5555 rv = entry->show(mddev, page); 5556 mddev_put(mddev); 5557 return rv; 5558 } 5559 5560 static ssize_t 5561 md_attr_store(struct kobject *kobj, struct attribute *attr, 5562 const char *page, size_t length) 5563 { 5564 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5565 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5566 ssize_t rv; 5567 5568 if (!entry->store) 5569 return -EIO; 5570 if (!capable(CAP_SYS_ADMIN)) 5571 return -EACCES; 5572 spin_lock(&all_mddevs_lock); 5573 if (list_empty(&mddev->all_mddevs)) { 5574 spin_unlock(&all_mddevs_lock); 5575 return -EBUSY; 5576 } 5577 mddev_get(mddev); 5578 spin_unlock(&all_mddevs_lock); 5579 rv = entry->store(mddev, page, length); 5580 mddev_put(mddev); 5581 return rv; 5582 } 5583 5584 static void md_free(struct kobject *ko) 5585 { 5586 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5587 5588 if (mddev->sysfs_state) 5589 sysfs_put(mddev->sysfs_state); 5590 if (mddev->sysfs_level) 5591 sysfs_put(mddev->sysfs_level); 5592 5593 if (mddev->gendisk) { 5594 del_gendisk(mddev->gendisk); 5595 blk_cleanup_disk(mddev->gendisk); 5596 } 5597 percpu_ref_exit(&mddev->writes_pending); 5598 5599 bioset_exit(&mddev->bio_set); 5600 bioset_exit(&mddev->sync_set); 5601 if (mddev->level != 1 && mddev->level != 10) 5602 bioset_exit(&mddev->io_acct_set); 5603 kfree(mddev); 5604 } 5605 5606 static const struct sysfs_ops md_sysfs_ops = { 5607 .show = md_attr_show, 5608 .store = md_attr_store, 5609 }; 5610 static struct kobj_type md_ktype = { 5611 .release = md_free, 5612 .sysfs_ops = &md_sysfs_ops, 5613 .default_groups = md_attr_groups, 5614 }; 5615 5616 int mdp_major = 0; 5617 5618 static void mddev_delayed_delete(struct work_struct *ws) 5619 { 5620 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5621 5622 kobject_del(&mddev->kobj); 5623 kobject_put(&mddev->kobj); 5624 } 5625 5626 static void no_op(struct percpu_ref *r) {} 5627 5628 int mddev_init_writes_pending(struct mddev *mddev) 5629 { 5630 if (mddev->writes_pending.percpu_count_ptr) 5631 return 0; 5632 if (percpu_ref_init(&mddev->writes_pending, no_op, 5633 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5634 return -ENOMEM; 5635 /* We want to start with the refcount at zero */ 5636 percpu_ref_put(&mddev->writes_pending); 5637 return 0; 5638 } 5639 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5640 5641 static int md_alloc(dev_t dev, char *name) 5642 { 5643 /* 5644 * If dev is zero, name is the name of a device to allocate with 5645 * an arbitrary minor number. It will be "md_???" 5646 * If dev is non-zero it must be a device number with a MAJOR of 5647 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5648 * the device is being created by opening a node in /dev. 5649 * If "name" is not NULL, the device is being created by 5650 * writing to /sys/module/md_mod/parameters/new_array. 5651 */ 5652 static DEFINE_MUTEX(disks_mutex); 5653 struct mddev *mddev; 5654 struct gendisk *disk; 5655 int partitioned; 5656 int shift; 5657 int unit; 5658 int error ; 5659 5660 /* 5661 * Wait for any previous instance of this device to be completely 5662 * removed (mddev_delayed_delete). 5663 */ 5664 flush_workqueue(md_misc_wq); 5665 5666 mutex_lock(&disks_mutex); 5667 mddev = mddev_alloc(dev); 5668 if (IS_ERR(mddev)) { 5669 mutex_unlock(&disks_mutex); 5670 return PTR_ERR(mddev); 5671 } 5672 5673 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5674 shift = partitioned ? MdpMinorShift : 0; 5675 unit = MINOR(mddev->unit) >> shift; 5676 5677 if (name && !dev) { 5678 /* Need to ensure that 'name' is not a duplicate. 5679 */ 5680 struct mddev *mddev2; 5681 spin_lock(&all_mddevs_lock); 5682 5683 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5684 if (mddev2->gendisk && 5685 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5686 spin_unlock(&all_mddevs_lock); 5687 error = -EEXIST; 5688 goto out_unlock_disks_mutex; 5689 } 5690 spin_unlock(&all_mddevs_lock); 5691 } 5692 if (name && dev) 5693 /* 5694 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5695 */ 5696 mddev->hold_active = UNTIL_STOP; 5697 5698 error = -ENOMEM; 5699 disk = blk_alloc_disk(NUMA_NO_NODE); 5700 if (!disk) 5701 goto out_unlock_disks_mutex; 5702 5703 disk->major = MAJOR(mddev->unit); 5704 disk->first_minor = unit << shift; 5705 disk->minors = 1 << shift; 5706 if (name) 5707 strcpy(disk->disk_name, name); 5708 else if (partitioned) 5709 sprintf(disk->disk_name, "md_d%d", unit); 5710 else 5711 sprintf(disk->disk_name, "md%d", unit); 5712 disk->fops = &md_fops; 5713 disk->private_data = mddev; 5714 5715 mddev->queue = disk->queue; 5716 blk_set_stacking_limits(&mddev->queue->limits); 5717 blk_queue_write_cache(mddev->queue, true, true); 5718 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5719 mddev->gendisk = disk; 5720 error = add_disk(disk); 5721 if (error) 5722 goto out_cleanup_disk; 5723 5724 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5725 if (error) 5726 goto out_del_gendisk; 5727 5728 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5729 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5730 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5731 goto out_unlock_disks_mutex; 5732 5733 out_del_gendisk: 5734 del_gendisk(disk); 5735 out_cleanup_disk: 5736 blk_cleanup_disk(disk); 5737 out_unlock_disks_mutex: 5738 mutex_unlock(&disks_mutex); 5739 mddev_put(mddev); 5740 return error; 5741 } 5742 5743 static void md_probe(dev_t dev) 5744 { 5745 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5746 return; 5747 if (create_on_open) 5748 md_alloc(dev, NULL); 5749 } 5750 5751 static int add_named_array(const char *val, const struct kernel_param *kp) 5752 { 5753 /* 5754 * val must be "md_*" or "mdNNN". 5755 * For "md_*" we allocate an array with a large free minor number, and 5756 * set the name to val. val must not already be an active name. 5757 * For "mdNNN" we allocate an array with the minor number NNN 5758 * which must not already be in use. 5759 */ 5760 int len = strlen(val); 5761 char buf[DISK_NAME_LEN]; 5762 unsigned long devnum; 5763 5764 while (len && val[len-1] == '\n') 5765 len--; 5766 if (len >= DISK_NAME_LEN) 5767 return -E2BIG; 5768 strscpy(buf, val, len+1); 5769 if (strncmp(buf, "md_", 3) == 0) 5770 return md_alloc(0, buf); 5771 if (strncmp(buf, "md", 2) == 0 && 5772 isdigit(buf[2]) && 5773 kstrtoul(buf+2, 10, &devnum) == 0 && 5774 devnum <= MINORMASK) 5775 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5776 5777 return -EINVAL; 5778 } 5779 5780 static void md_safemode_timeout(struct timer_list *t) 5781 { 5782 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5783 5784 mddev->safemode = 1; 5785 if (mddev->external) 5786 sysfs_notify_dirent_safe(mddev->sysfs_state); 5787 5788 md_wakeup_thread(mddev->thread); 5789 } 5790 5791 static int start_dirty_degraded; 5792 5793 int md_run(struct mddev *mddev) 5794 { 5795 int err; 5796 struct md_rdev *rdev; 5797 struct md_personality *pers; 5798 bool nowait = true; 5799 5800 if (list_empty(&mddev->disks)) 5801 /* cannot run an array with no devices.. */ 5802 return -EINVAL; 5803 5804 if (mddev->pers) 5805 return -EBUSY; 5806 /* Cannot run until previous stop completes properly */ 5807 if (mddev->sysfs_active) 5808 return -EBUSY; 5809 5810 /* 5811 * Analyze all RAID superblock(s) 5812 */ 5813 if (!mddev->raid_disks) { 5814 if (!mddev->persistent) 5815 return -EINVAL; 5816 err = analyze_sbs(mddev); 5817 if (err) 5818 return -EINVAL; 5819 } 5820 5821 if (mddev->level != LEVEL_NONE) 5822 request_module("md-level-%d", mddev->level); 5823 else if (mddev->clevel[0]) 5824 request_module("md-%s", mddev->clevel); 5825 5826 /* 5827 * Drop all container device buffers, from now on 5828 * the only valid external interface is through the md 5829 * device. 5830 */ 5831 mddev->has_superblocks = false; 5832 rdev_for_each(rdev, mddev) { 5833 if (test_bit(Faulty, &rdev->flags)) 5834 continue; 5835 sync_blockdev(rdev->bdev); 5836 invalidate_bdev(rdev->bdev); 5837 if (mddev->ro != 1 && rdev_read_only(rdev)) { 5838 mddev->ro = 1; 5839 if (mddev->gendisk) 5840 set_disk_ro(mddev->gendisk, 1); 5841 } 5842 5843 if (rdev->sb_page) 5844 mddev->has_superblocks = true; 5845 5846 /* perform some consistency tests on the device. 5847 * We don't want the data to overlap the metadata, 5848 * Internal Bitmap issues have been handled elsewhere. 5849 */ 5850 if (rdev->meta_bdev) { 5851 /* Nothing to check */; 5852 } else if (rdev->data_offset < rdev->sb_start) { 5853 if (mddev->dev_sectors && 5854 rdev->data_offset + mddev->dev_sectors 5855 > rdev->sb_start) { 5856 pr_warn("md: %s: data overlaps metadata\n", 5857 mdname(mddev)); 5858 return -EINVAL; 5859 } 5860 } else { 5861 if (rdev->sb_start + rdev->sb_size/512 5862 > rdev->data_offset) { 5863 pr_warn("md: %s: metadata overlaps data\n", 5864 mdname(mddev)); 5865 return -EINVAL; 5866 } 5867 } 5868 sysfs_notify_dirent_safe(rdev->sysfs_state); 5869 nowait = nowait && blk_queue_nowait(bdev_get_queue(rdev->bdev)); 5870 } 5871 5872 if (!bioset_initialized(&mddev->bio_set)) { 5873 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5874 if (err) 5875 return err; 5876 } 5877 if (!bioset_initialized(&mddev->sync_set)) { 5878 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5879 if (err) 5880 goto exit_bio_set; 5881 } 5882 5883 spin_lock(&pers_lock); 5884 pers = find_pers(mddev->level, mddev->clevel); 5885 if (!pers || !try_module_get(pers->owner)) { 5886 spin_unlock(&pers_lock); 5887 if (mddev->level != LEVEL_NONE) 5888 pr_warn("md: personality for level %d is not loaded!\n", 5889 mddev->level); 5890 else 5891 pr_warn("md: personality for level %s is not loaded!\n", 5892 mddev->clevel); 5893 err = -EINVAL; 5894 goto abort; 5895 } 5896 spin_unlock(&pers_lock); 5897 if (mddev->level != pers->level) { 5898 mddev->level = pers->level; 5899 mddev->new_level = pers->level; 5900 } 5901 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5902 5903 if (mddev->reshape_position != MaxSector && 5904 pers->start_reshape == NULL) { 5905 /* This personality cannot handle reshaping... */ 5906 module_put(pers->owner); 5907 err = -EINVAL; 5908 goto abort; 5909 } 5910 5911 if (pers->sync_request) { 5912 /* Warn if this is a potentially silly 5913 * configuration. 5914 */ 5915 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5916 struct md_rdev *rdev2; 5917 int warned = 0; 5918 5919 rdev_for_each(rdev, mddev) 5920 rdev_for_each(rdev2, mddev) { 5921 if (rdev < rdev2 && 5922 rdev->bdev->bd_disk == 5923 rdev2->bdev->bd_disk) { 5924 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5925 mdname(mddev), 5926 bdevname(rdev->bdev,b), 5927 bdevname(rdev2->bdev,b2)); 5928 warned = 1; 5929 } 5930 } 5931 5932 if (warned) 5933 pr_warn("True protection against single-disk failure might be compromised.\n"); 5934 } 5935 5936 mddev->recovery = 0; 5937 /* may be over-ridden by personality */ 5938 mddev->resync_max_sectors = mddev->dev_sectors; 5939 5940 mddev->ok_start_degraded = start_dirty_degraded; 5941 5942 if (start_readonly && mddev->ro == 0) 5943 mddev->ro = 2; /* read-only, but switch on first write */ 5944 5945 err = pers->run(mddev); 5946 if (err) 5947 pr_warn("md: pers->run() failed ...\n"); 5948 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5949 WARN_ONCE(!mddev->external_size, 5950 "%s: default size too small, but 'external_size' not in effect?\n", 5951 __func__); 5952 pr_warn("md: invalid array_size %llu > default size %llu\n", 5953 (unsigned long long)mddev->array_sectors / 2, 5954 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5955 err = -EINVAL; 5956 } 5957 if (err == 0 && pers->sync_request && 5958 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5959 struct bitmap *bitmap; 5960 5961 bitmap = md_bitmap_create(mddev, -1); 5962 if (IS_ERR(bitmap)) { 5963 err = PTR_ERR(bitmap); 5964 pr_warn("%s: failed to create bitmap (%d)\n", 5965 mdname(mddev), err); 5966 } else 5967 mddev->bitmap = bitmap; 5968 5969 } 5970 if (err) 5971 goto bitmap_abort; 5972 5973 if (mddev->bitmap_info.max_write_behind > 0) { 5974 bool create_pool = false; 5975 5976 rdev_for_each(rdev, mddev) { 5977 if (test_bit(WriteMostly, &rdev->flags) && 5978 rdev_init_serial(rdev)) 5979 create_pool = true; 5980 } 5981 if (create_pool && mddev->serial_info_pool == NULL) { 5982 mddev->serial_info_pool = 5983 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5984 sizeof(struct serial_info)); 5985 if (!mddev->serial_info_pool) { 5986 err = -ENOMEM; 5987 goto bitmap_abort; 5988 } 5989 } 5990 } 5991 5992 if (mddev->queue) { 5993 bool nonrot = true; 5994 5995 rdev_for_each(rdev, mddev) { 5996 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 5997 nonrot = false; 5998 break; 5999 } 6000 } 6001 if (mddev->degraded) 6002 nonrot = false; 6003 if (nonrot) 6004 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6005 else 6006 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6007 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 6008 6009 /* Set the NOWAIT flags if all underlying devices support it */ 6010 if (nowait) 6011 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 6012 } 6013 if (pers->sync_request) { 6014 if (mddev->kobj.sd && 6015 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6016 pr_warn("md: cannot register extra attributes for %s\n", 6017 mdname(mddev)); 6018 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6019 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6020 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6021 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6022 mddev->ro = 0; 6023 6024 atomic_set(&mddev->max_corr_read_errors, 6025 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6026 mddev->safemode = 0; 6027 if (mddev_is_clustered(mddev)) 6028 mddev->safemode_delay = 0; 6029 else 6030 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6031 mddev->in_sync = 1; 6032 smp_wmb(); 6033 spin_lock(&mddev->lock); 6034 mddev->pers = pers; 6035 spin_unlock(&mddev->lock); 6036 rdev_for_each(rdev, mddev) 6037 if (rdev->raid_disk >= 0) 6038 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6039 6040 if (mddev->degraded && !mddev->ro) 6041 /* This ensures that recovering status is reported immediately 6042 * via sysfs - until a lack of spares is confirmed. 6043 */ 6044 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6045 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6046 6047 if (mddev->sb_flags) 6048 md_update_sb(mddev, 0); 6049 6050 md_new_event(); 6051 return 0; 6052 6053 bitmap_abort: 6054 mddev_detach(mddev); 6055 if (mddev->private) 6056 pers->free(mddev, mddev->private); 6057 mddev->private = NULL; 6058 module_put(pers->owner); 6059 md_bitmap_destroy(mddev); 6060 abort: 6061 bioset_exit(&mddev->sync_set); 6062 exit_bio_set: 6063 bioset_exit(&mddev->bio_set); 6064 return err; 6065 } 6066 EXPORT_SYMBOL_GPL(md_run); 6067 6068 int do_md_run(struct mddev *mddev) 6069 { 6070 int err; 6071 6072 set_bit(MD_NOT_READY, &mddev->flags); 6073 err = md_run(mddev); 6074 if (err) 6075 goto out; 6076 err = md_bitmap_load(mddev); 6077 if (err) { 6078 md_bitmap_destroy(mddev); 6079 goto out; 6080 } 6081 6082 if (mddev_is_clustered(mddev)) 6083 md_allow_write(mddev); 6084 6085 /* run start up tasks that require md_thread */ 6086 md_start(mddev); 6087 6088 md_wakeup_thread(mddev->thread); 6089 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6090 6091 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6092 clear_bit(MD_NOT_READY, &mddev->flags); 6093 mddev->changed = 1; 6094 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6095 sysfs_notify_dirent_safe(mddev->sysfs_state); 6096 sysfs_notify_dirent_safe(mddev->sysfs_action); 6097 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6098 out: 6099 clear_bit(MD_NOT_READY, &mddev->flags); 6100 return err; 6101 } 6102 6103 int md_start(struct mddev *mddev) 6104 { 6105 int ret = 0; 6106 6107 if (mddev->pers->start) { 6108 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6109 md_wakeup_thread(mddev->thread); 6110 ret = mddev->pers->start(mddev); 6111 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6112 md_wakeup_thread(mddev->sync_thread); 6113 } 6114 return ret; 6115 } 6116 EXPORT_SYMBOL_GPL(md_start); 6117 6118 static int restart_array(struct mddev *mddev) 6119 { 6120 struct gendisk *disk = mddev->gendisk; 6121 struct md_rdev *rdev; 6122 bool has_journal = false; 6123 bool has_readonly = false; 6124 6125 /* Complain if it has no devices */ 6126 if (list_empty(&mddev->disks)) 6127 return -ENXIO; 6128 if (!mddev->pers) 6129 return -EINVAL; 6130 if (!mddev->ro) 6131 return -EBUSY; 6132 6133 rcu_read_lock(); 6134 rdev_for_each_rcu(rdev, mddev) { 6135 if (test_bit(Journal, &rdev->flags) && 6136 !test_bit(Faulty, &rdev->flags)) 6137 has_journal = true; 6138 if (rdev_read_only(rdev)) 6139 has_readonly = true; 6140 } 6141 rcu_read_unlock(); 6142 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6143 /* Don't restart rw with journal missing/faulty */ 6144 return -EINVAL; 6145 if (has_readonly) 6146 return -EROFS; 6147 6148 mddev->safemode = 0; 6149 mddev->ro = 0; 6150 set_disk_ro(disk, 0); 6151 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6152 /* Kick recovery or resync if necessary */ 6153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6154 md_wakeup_thread(mddev->thread); 6155 md_wakeup_thread(mddev->sync_thread); 6156 sysfs_notify_dirent_safe(mddev->sysfs_state); 6157 return 0; 6158 } 6159 6160 static void md_clean(struct mddev *mddev) 6161 { 6162 mddev->array_sectors = 0; 6163 mddev->external_size = 0; 6164 mddev->dev_sectors = 0; 6165 mddev->raid_disks = 0; 6166 mddev->recovery_cp = 0; 6167 mddev->resync_min = 0; 6168 mddev->resync_max = MaxSector; 6169 mddev->reshape_position = MaxSector; 6170 mddev->external = 0; 6171 mddev->persistent = 0; 6172 mddev->level = LEVEL_NONE; 6173 mddev->clevel[0] = 0; 6174 mddev->flags = 0; 6175 mddev->sb_flags = 0; 6176 mddev->ro = 0; 6177 mddev->metadata_type[0] = 0; 6178 mddev->chunk_sectors = 0; 6179 mddev->ctime = mddev->utime = 0; 6180 mddev->layout = 0; 6181 mddev->max_disks = 0; 6182 mddev->events = 0; 6183 mddev->can_decrease_events = 0; 6184 mddev->delta_disks = 0; 6185 mddev->reshape_backwards = 0; 6186 mddev->new_level = LEVEL_NONE; 6187 mddev->new_layout = 0; 6188 mddev->new_chunk_sectors = 0; 6189 mddev->curr_resync = 0; 6190 atomic64_set(&mddev->resync_mismatches, 0); 6191 mddev->suspend_lo = mddev->suspend_hi = 0; 6192 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6193 mddev->recovery = 0; 6194 mddev->in_sync = 0; 6195 mddev->changed = 0; 6196 mddev->degraded = 0; 6197 mddev->safemode = 0; 6198 mddev->private = NULL; 6199 mddev->cluster_info = NULL; 6200 mddev->bitmap_info.offset = 0; 6201 mddev->bitmap_info.default_offset = 0; 6202 mddev->bitmap_info.default_space = 0; 6203 mddev->bitmap_info.chunksize = 0; 6204 mddev->bitmap_info.daemon_sleep = 0; 6205 mddev->bitmap_info.max_write_behind = 0; 6206 mddev->bitmap_info.nodes = 0; 6207 } 6208 6209 static void __md_stop_writes(struct mddev *mddev) 6210 { 6211 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6212 if (work_pending(&mddev->del_work)) 6213 flush_workqueue(md_misc_wq); 6214 if (mddev->sync_thread) { 6215 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6216 md_reap_sync_thread(mddev); 6217 } 6218 6219 del_timer_sync(&mddev->safemode_timer); 6220 6221 if (mddev->pers && mddev->pers->quiesce) { 6222 mddev->pers->quiesce(mddev, 1); 6223 mddev->pers->quiesce(mddev, 0); 6224 } 6225 md_bitmap_flush(mddev); 6226 6227 if (mddev->ro == 0 && 6228 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6229 mddev->sb_flags)) { 6230 /* mark array as shutdown cleanly */ 6231 if (!mddev_is_clustered(mddev)) 6232 mddev->in_sync = 1; 6233 md_update_sb(mddev, 1); 6234 } 6235 /* disable policy to guarantee rdevs free resources for serialization */ 6236 mddev->serialize_policy = 0; 6237 mddev_destroy_serial_pool(mddev, NULL, true); 6238 } 6239 6240 void md_stop_writes(struct mddev *mddev) 6241 { 6242 mddev_lock_nointr(mddev); 6243 __md_stop_writes(mddev); 6244 mddev_unlock(mddev); 6245 } 6246 EXPORT_SYMBOL_GPL(md_stop_writes); 6247 6248 static void mddev_detach(struct mddev *mddev) 6249 { 6250 md_bitmap_wait_behind_writes(mddev); 6251 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6252 mddev->pers->quiesce(mddev, 1); 6253 mddev->pers->quiesce(mddev, 0); 6254 } 6255 md_unregister_thread(&mddev->thread); 6256 if (mddev->queue) 6257 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6258 } 6259 6260 static void __md_stop(struct mddev *mddev) 6261 { 6262 struct md_personality *pers = mddev->pers; 6263 md_bitmap_destroy(mddev); 6264 mddev_detach(mddev); 6265 /* Ensure ->event_work is done */ 6266 if (mddev->event_work.func) 6267 flush_workqueue(md_misc_wq); 6268 spin_lock(&mddev->lock); 6269 mddev->pers = NULL; 6270 spin_unlock(&mddev->lock); 6271 if (mddev->private) 6272 pers->free(mddev, mddev->private); 6273 mddev->private = NULL; 6274 if (pers->sync_request && mddev->to_remove == NULL) 6275 mddev->to_remove = &md_redundancy_group; 6276 module_put(pers->owner); 6277 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6278 } 6279 6280 void md_stop(struct mddev *mddev) 6281 { 6282 /* stop the array and free an attached data structures. 6283 * This is called from dm-raid 6284 */ 6285 __md_stop(mddev); 6286 bioset_exit(&mddev->bio_set); 6287 bioset_exit(&mddev->sync_set); 6288 if (mddev->level != 1 && mddev->level != 10) 6289 bioset_exit(&mddev->io_acct_set); 6290 } 6291 6292 EXPORT_SYMBOL_GPL(md_stop); 6293 6294 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6295 { 6296 int err = 0; 6297 int did_freeze = 0; 6298 6299 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6300 did_freeze = 1; 6301 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6302 md_wakeup_thread(mddev->thread); 6303 } 6304 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6305 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6306 if (mddev->sync_thread) 6307 /* Thread might be blocked waiting for metadata update 6308 * which will now never happen */ 6309 wake_up_process(mddev->sync_thread->tsk); 6310 6311 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6312 return -EBUSY; 6313 mddev_unlock(mddev); 6314 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6315 &mddev->recovery)); 6316 wait_event(mddev->sb_wait, 6317 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6318 mddev_lock_nointr(mddev); 6319 6320 mutex_lock(&mddev->open_mutex); 6321 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6322 mddev->sync_thread || 6323 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6324 pr_warn("md: %s still in use.\n",mdname(mddev)); 6325 if (did_freeze) { 6326 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6327 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6328 md_wakeup_thread(mddev->thread); 6329 } 6330 err = -EBUSY; 6331 goto out; 6332 } 6333 if (mddev->pers) { 6334 __md_stop_writes(mddev); 6335 6336 err = -ENXIO; 6337 if (mddev->ro==1) 6338 goto out; 6339 mddev->ro = 1; 6340 set_disk_ro(mddev->gendisk, 1); 6341 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6342 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6343 md_wakeup_thread(mddev->thread); 6344 sysfs_notify_dirent_safe(mddev->sysfs_state); 6345 err = 0; 6346 } 6347 out: 6348 mutex_unlock(&mddev->open_mutex); 6349 return err; 6350 } 6351 6352 /* mode: 6353 * 0 - completely stop and dis-assemble array 6354 * 2 - stop but do not disassemble array 6355 */ 6356 static int do_md_stop(struct mddev *mddev, int mode, 6357 struct block_device *bdev) 6358 { 6359 struct gendisk *disk = mddev->gendisk; 6360 struct md_rdev *rdev; 6361 int did_freeze = 0; 6362 6363 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6364 did_freeze = 1; 6365 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6366 md_wakeup_thread(mddev->thread); 6367 } 6368 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6369 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6370 if (mddev->sync_thread) 6371 /* Thread might be blocked waiting for metadata update 6372 * which will now never happen */ 6373 wake_up_process(mddev->sync_thread->tsk); 6374 6375 mddev_unlock(mddev); 6376 wait_event(resync_wait, (mddev->sync_thread == NULL && 6377 !test_bit(MD_RECOVERY_RUNNING, 6378 &mddev->recovery))); 6379 mddev_lock_nointr(mddev); 6380 6381 mutex_lock(&mddev->open_mutex); 6382 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6383 mddev->sysfs_active || 6384 mddev->sync_thread || 6385 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6386 pr_warn("md: %s still in use.\n",mdname(mddev)); 6387 mutex_unlock(&mddev->open_mutex); 6388 if (did_freeze) { 6389 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6390 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6391 md_wakeup_thread(mddev->thread); 6392 } 6393 return -EBUSY; 6394 } 6395 if (mddev->pers) { 6396 if (mddev->ro) 6397 set_disk_ro(disk, 0); 6398 6399 __md_stop_writes(mddev); 6400 __md_stop(mddev); 6401 6402 /* tell userspace to handle 'inactive' */ 6403 sysfs_notify_dirent_safe(mddev->sysfs_state); 6404 6405 rdev_for_each(rdev, mddev) 6406 if (rdev->raid_disk >= 0) 6407 sysfs_unlink_rdev(mddev, rdev); 6408 6409 set_capacity_and_notify(disk, 0); 6410 mutex_unlock(&mddev->open_mutex); 6411 mddev->changed = 1; 6412 6413 if (mddev->ro) 6414 mddev->ro = 0; 6415 } else 6416 mutex_unlock(&mddev->open_mutex); 6417 /* 6418 * Free resources if final stop 6419 */ 6420 if (mode == 0) { 6421 pr_info("md: %s stopped.\n", mdname(mddev)); 6422 6423 if (mddev->bitmap_info.file) { 6424 struct file *f = mddev->bitmap_info.file; 6425 spin_lock(&mddev->lock); 6426 mddev->bitmap_info.file = NULL; 6427 spin_unlock(&mddev->lock); 6428 fput(f); 6429 } 6430 mddev->bitmap_info.offset = 0; 6431 6432 export_array(mddev); 6433 6434 md_clean(mddev); 6435 if (mddev->hold_active == UNTIL_STOP) 6436 mddev->hold_active = 0; 6437 } 6438 md_new_event(); 6439 sysfs_notify_dirent_safe(mddev->sysfs_state); 6440 return 0; 6441 } 6442 6443 #ifndef MODULE 6444 static void autorun_array(struct mddev *mddev) 6445 { 6446 struct md_rdev *rdev; 6447 int err; 6448 6449 if (list_empty(&mddev->disks)) 6450 return; 6451 6452 pr_info("md: running: "); 6453 6454 rdev_for_each(rdev, mddev) { 6455 char b[BDEVNAME_SIZE]; 6456 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6457 } 6458 pr_cont("\n"); 6459 6460 err = do_md_run(mddev); 6461 if (err) { 6462 pr_warn("md: do_md_run() returned %d\n", err); 6463 do_md_stop(mddev, 0, NULL); 6464 } 6465 } 6466 6467 /* 6468 * lets try to run arrays based on all disks that have arrived 6469 * until now. (those are in pending_raid_disks) 6470 * 6471 * the method: pick the first pending disk, collect all disks with 6472 * the same UUID, remove all from the pending list and put them into 6473 * the 'same_array' list. Then order this list based on superblock 6474 * update time (freshest comes first), kick out 'old' disks and 6475 * compare superblocks. If everything's fine then run it. 6476 * 6477 * If "unit" is allocated, then bump its reference count 6478 */ 6479 static void autorun_devices(int part) 6480 { 6481 struct md_rdev *rdev0, *rdev, *tmp; 6482 struct mddev *mddev; 6483 char b[BDEVNAME_SIZE]; 6484 6485 pr_info("md: autorun ...\n"); 6486 while (!list_empty(&pending_raid_disks)) { 6487 int unit; 6488 dev_t dev; 6489 LIST_HEAD(candidates); 6490 rdev0 = list_entry(pending_raid_disks.next, 6491 struct md_rdev, same_set); 6492 6493 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6494 INIT_LIST_HEAD(&candidates); 6495 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6496 if (super_90_load(rdev, rdev0, 0) >= 0) { 6497 pr_debug("md: adding %s ...\n", 6498 bdevname(rdev->bdev,b)); 6499 list_move(&rdev->same_set, &candidates); 6500 } 6501 /* 6502 * now we have a set of devices, with all of them having 6503 * mostly sane superblocks. It's time to allocate the 6504 * mddev. 6505 */ 6506 if (part) { 6507 dev = MKDEV(mdp_major, 6508 rdev0->preferred_minor << MdpMinorShift); 6509 unit = MINOR(dev) >> MdpMinorShift; 6510 } else { 6511 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6512 unit = MINOR(dev); 6513 } 6514 if (rdev0->preferred_minor != unit) { 6515 pr_warn("md: unit number in %s is bad: %d\n", 6516 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6517 break; 6518 } 6519 6520 md_probe(dev); 6521 mddev = mddev_find(dev); 6522 if (!mddev) 6523 break; 6524 6525 if (mddev_lock(mddev)) 6526 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6527 else if (mddev->raid_disks || mddev->major_version 6528 || !list_empty(&mddev->disks)) { 6529 pr_warn("md: %s already running, cannot run %s\n", 6530 mdname(mddev), bdevname(rdev0->bdev,b)); 6531 mddev_unlock(mddev); 6532 } else { 6533 pr_debug("md: created %s\n", mdname(mddev)); 6534 mddev->persistent = 1; 6535 rdev_for_each_list(rdev, tmp, &candidates) { 6536 list_del_init(&rdev->same_set); 6537 if (bind_rdev_to_array(rdev, mddev)) 6538 export_rdev(rdev); 6539 } 6540 autorun_array(mddev); 6541 mddev_unlock(mddev); 6542 } 6543 /* on success, candidates will be empty, on error 6544 * it won't... 6545 */ 6546 rdev_for_each_list(rdev, tmp, &candidates) { 6547 list_del_init(&rdev->same_set); 6548 export_rdev(rdev); 6549 } 6550 mddev_put(mddev); 6551 } 6552 pr_info("md: ... autorun DONE.\n"); 6553 } 6554 #endif /* !MODULE */ 6555 6556 static int get_version(void __user *arg) 6557 { 6558 mdu_version_t ver; 6559 6560 ver.major = MD_MAJOR_VERSION; 6561 ver.minor = MD_MINOR_VERSION; 6562 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6563 6564 if (copy_to_user(arg, &ver, sizeof(ver))) 6565 return -EFAULT; 6566 6567 return 0; 6568 } 6569 6570 static int get_array_info(struct mddev *mddev, void __user *arg) 6571 { 6572 mdu_array_info_t info; 6573 int nr,working,insync,failed,spare; 6574 struct md_rdev *rdev; 6575 6576 nr = working = insync = failed = spare = 0; 6577 rcu_read_lock(); 6578 rdev_for_each_rcu(rdev, mddev) { 6579 nr++; 6580 if (test_bit(Faulty, &rdev->flags)) 6581 failed++; 6582 else { 6583 working++; 6584 if (test_bit(In_sync, &rdev->flags)) 6585 insync++; 6586 else if (test_bit(Journal, &rdev->flags)) 6587 /* TODO: add journal count to md_u.h */ 6588 ; 6589 else 6590 spare++; 6591 } 6592 } 6593 rcu_read_unlock(); 6594 6595 info.major_version = mddev->major_version; 6596 info.minor_version = mddev->minor_version; 6597 info.patch_version = MD_PATCHLEVEL_VERSION; 6598 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6599 info.level = mddev->level; 6600 info.size = mddev->dev_sectors / 2; 6601 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6602 info.size = -1; 6603 info.nr_disks = nr; 6604 info.raid_disks = mddev->raid_disks; 6605 info.md_minor = mddev->md_minor; 6606 info.not_persistent= !mddev->persistent; 6607 6608 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6609 info.state = 0; 6610 if (mddev->in_sync) 6611 info.state = (1<<MD_SB_CLEAN); 6612 if (mddev->bitmap && mddev->bitmap_info.offset) 6613 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6614 if (mddev_is_clustered(mddev)) 6615 info.state |= (1<<MD_SB_CLUSTERED); 6616 info.active_disks = insync; 6617 info.working_disks = working; 6618 info.failed_disks = failed; 6619 info.spare_disks = spare; 6620 6621 info.layout = mddev->layout; 6622 info.chunk_size = mddev->chunk_sectors << 9; 6623 6624 if (copy_to_user(arg, &info, sizeof(info))) 6625 return -EFAULT; 6626 6627 return 0; 6628 } 6629 6630 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6631 { 6632 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6633 char *ptr; 6634 int err; 6635 6636 file = kzalloc(sizeof(*file), GFP_NOIO); 6637 if (!file) 6638 return -ENOMEM; 6639 6640 err = 0; 6641 spin_lock(&mddev->lock); 6642 /* bitmap enabled */ 6643 if (mddev->bitmap_info.file) { 6644 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6645 sizeof(file->pathname)); 6646 if (IS_ERR(ptr)) 6647 err = PTR_ERR(ptr); 6648 else 6649 memmove(file->pathname, ptr, 6650 sizeof(file->pathname)-(ptr-file->pathname)); 6651 } 6652 spin_unlock(&mddev->lock); 6653 6654 if (err == 0 && 6655 copy_to_user(arg, file, sizeof(*file))) 6656 err = -EFAULT; 6657 6658 kfree(file); 6659 return err; 6660 } 6661 6662 static int get_disk_info(struct mddev *mddev, void __user * arg) 6663 { 6664 mdu_disk_info_t info; 6665 struct md_rdev *rdev; 6666 6667 if (copy_from_user(&info, arg, sizeof(info))) 6668 return -EFAULT; 6669 6670 rcu_read_lock(); 6671 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6672 if (rdev) { 6673 info.major = MAJOR(rdev->bdev->bd_dev); 6674 info.minor = MINOR(rdev->bdev->bd_dev); 6675 info.raid_disk = rdev->raid_disk; 6676 info.state = 0; 6677 if (test_bit(Faulty, &rdev->flags)) 6678 info.state |= (1<<MD_DISK_FAULTY); 6679 else if (test_bit(In_sync, &rdev->flags)) { 6680 info.state |= (1<<MD_DISK_ACTIVE); 6681 info.state |= (1<<MD_DISK_SYNC); 6682 } 6683 if (test_bit(Journal, &rdev->flags)) 6684 info.state |= (1<<MD_DISK_JOURNAL); 6685 if (test_bit(WriteMostly, &rdev->flags)) 6686 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6687 if (test_bit(FailFast, &rdev->flags)) 6688 info.state |= (1<<MD_DISK_FAILFAST); 6689 } else { 6690 info.major = info.minor = 0; 6691 info.raid_disk = -1; 6692 info.state = (1<<MD_DISK_REMOVED); 6693 } 6694 rcu_read_unlock(); 6695 6696 if (copy_to_user(arg, &info, sizeof(info))) 6697 return -EFAULT; 6698 6699 return 0; 6700 } 6701 6702 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6703 { 6704 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6705 struct md_rdev *rdev; 6706 dev_t dev = MKDEV(info->major,info->minor); 6707 6708 if (mddev_is_clustered(mddev) && 6709 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6710 pr_warn("%s: Cannot add to clustered mddev.\n", 6711 mdname(mddev)); 6712 return -EINVAL; 6713 } 6714 6715 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6716 return -EOVERFLOW; 6717 6718 if (!mddev->raid_disks) { 6719 int err; 6720 /* expecting a device which has a superblock */ 6721 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6722 if (IS_ERR(rdev)) { 6723 pr_warn("md: md_import_device returned %ld\n", 6724 PTR_ERR(rdev)); 6725 return PTR_ERR(rdev); 6726 } 6727 if (!list_empty(&mddev->disks)) { 6728 struct md_rdev *rdev0 6729 = list_entry(mddev->disks.next, 6730 struct md_rdev, same_set); 6731 err = super_types[mddev->major_version] 6732 .load_super(rdev, rdev0, mddev->minor_version); 6733 if (err < 0) { 6734 pr_warn("md: %s has different UUID to %s\n", 6735 bdevname(rdev->bdev,b), 6736 bdevname(rdev0->bdev,b2)); 6737 export_rdev(rdev); 6738 return -EINVAL; 6739 } 6740 } 6741 err = bind_rdev_to_array(rdev, mddev); 6742 if (err) 6743 export_rdev(rdev); 6744 return err; 6745 } 6746 6747 /* 6748 * md_add_new_disk can be used once the array is assembled 6749 * to add "hot spares". They must already have a superblock 6750 * written 6751 */ 6752 if (mddev->pers) { 6753 int err; 6754 if (!mddev->pers->hot_add_disk) { 6755 pr_warn("%s: personality does not support diskops!\n", 6756 mdname(mddev)); 6757 return -EINVAL; 6758 } 6759 if (mddev->persistent) 6760 rdev = md_import_device(dev, mddev->major_version, 6761 mddev->minor_version); 6762 else 6763 rdev = md_import_device(dev, -1, -1); 6764 if (IS_ERR(rdev)) { 6765 pr_warn("md: md_import_device returned %ld\n", 6766 PTR_ERR(rdev)); 6767 return PTR_ERR(rdev); 6768 } 6769 /* set saved_raid_disk if appropriate */ 6770 if (!mddev->persistent) { 6771 if (info->state & (1<<MD_DISK_SYNC) && 6772 info->raid_disk < mddev->raid_disks) { 6773 rdev->raid_disk = info->raid_disk; 6774 set_bit(In_sync, &rdev->flags); 6775 clear_bit(Bitmap_sync, &rdev->flags); 6776 } else 6777 rdev->raid_disk = -1; 6778 rdev->saved_raid_disk = rdev->raid_disk; 6779 } else 6780 super_types[mddev->major_version]. 6781 validate_super(mddev, rdev); 6782 if ((info->state & (1<<MD_DISK_SYNC)) && 6783 rdev->raid_disk != info->raid_disk) { 6784 /* This was a hot-add request, but events doesn't 6785 * match, so reject it. 6786 */ 6787 export_rdev(rdev); 6788 return -EINVAL; 6789 } 6790 6791 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6792 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6793 set_bit(WriteMostly, &rdev->flags); 6794 else 6795 clear_bit(WriteMostly, &rdev->flags); 6796 if (info->state & (1<<MD_DISK_FAILFAST)) 6797 set_bit(FailFast, &rdev->flags); 6798 else 6799 clear_bit(FailFast, &rdev->flags); 6800 6801 if (info->state & (1<<MD_DISK_JOURNAL)) { 6802 struct md_rdev *rdev2; 6803 bool has_journal = false; 6804 6805 /* make sure no existing journal disk */ 6806 rdev_for_each(rdev2, mddev) { 6807 if (test_bit(Journal, &rdev2->flags)) { 6808 has_journal = true; 6809 break; 6810 } 6811 } 6812 if (has_journal || mddev->bitmap) { 6813 export_rdev(rdev); 6814 return -EBUSY; 6815 } 6816 set_bit(Journal, &rdev->flags); 6817 } 6818 /* 6819 * check whether the device shows up in other nodes 6820 */ 6821 if (mddev_is_clustered(mddev)) { 6822 if (info->state & (1 << MD_DISK_CANDIDATE)) 6823 set_bit(Candidate, &rdev->flags); 6824 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6825 /* --add initiated by this node */ 6826 err = md_cluster_ops->add_new_disk(mddev, rdev); 6827 if (err) { 6828 export_rdev(rdev); 6829 return err; 6830 } 6831 } 6832 } 6833 6834 rdev->raid_disk = -1; 6835 err = bind_rdev_to_array(rdev, mddev); 6836 6837 if (err) 6838 export_rdev(rdev); 6839 6840 if (mddev_is_clustered(mddev)) { 6841 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6842 if (!err) { 6843 err = md_cluster_ops->new_disk_ack(mddev, 6844 err == 0); 6845 if (err) 6846 md_kick_rdev_from_array(rdev); 6847 } 6848 } else { 6849 if (err) 6850 md_cluster_ops->add_new_disk_cancel(mddev); 6851 else 6852 err = add_bound_rdev(rdev); 6853 } 6854 6855 } else if (!err) 6856 err = add_bound_rdev(rdev); 6857 6858 return err; 6859 } 6860 6861 /* otherwise, md_add_new_disk is only allowed 6862 * for major_version==0 superblocks 6863 */ 6864 if (mddev->major_version != 0) { 6865 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6866 return -EINVAL; 6867 } 6868 6869 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6870 int err; 6871 rdev = md_import_device(dev, -1, 0); 6872 if (IS_ERR(rdev)) { 6873 pr_warn("md: error, md_import_device() returned %ld\n", 6874 PTR_ERR(rdev)); 6875 return PTR_ERR(rdev); 6876 } 6877 rdev->desc_nr = info->number; 6878 if (info->raid_disk < mddev->raid_disks) 6879 rdev->raid_disk = info->raid_disk; 6880 else 6881 rdev->raid_disk = -1; 6882 6883 if (rdev->raid_disk < mddev->raid_disks) 6884 if (info->state & (1<<MD_DISK_SYNC)) 6885 set_bit(In_sync, &rdev->flags); 6886 6887 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6888 set_bit(WriteMostly, &rdev->flags); 6889 if (info->state & (1<<MD_DISK_FAILFAST)) 6890 set_bit(FailFast, &rdev->flags); 6891 6892 if (!mddev->persistent) { 6893 pr_debug("md: nonpersistent superblock ...\n"); 6894 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6895 } else 6896 rdev->sb_start = calc_dev_sboffset(rdev); 6897 rdev->sectors = rdev->sb_start; 6898 6899 err = bind_rdev_to_array(rdev, mddev); 6900 if (err) { 6901 export_rdev(rdev); 6902 return err; 6903 } 6904 } 6905 6906 return 0; 6907 } 6908 6909 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6910 { 6911 char b[BDEVNAME_SIZE]; 6912 struct md_rdev *rdev; 6913 6914 if (!mddev->pers) 6915 return -ENODEV; 6916 6917 rdev = find_rdev(mddev, dev); 6918 if (!rdev) 6919 return -ENXIO; 6920 6921 if (rdev->raid_disk < 0) 6922 goto kick_rdev; 6923 6924 clear_bit(Blocked, &rdev->flags); 6925 remove_and_add_spares(mddev, rdev); 6926 6927 if (rdev->raid_disk >= 0) 6928 goto busy; 6929 6930 kick_rdev: 6931 if (mddev_is_clustered(mddev)) { 6932 if (md_cluster_ops->remove_disk(mddev, rdev)) 6933 goto busy; 6934 } 6935 6936 md_kick_rdev_from_array(rdev); 6937 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6938 if (mddev->thread) 6939 md_wakeup_thread(mddev->thread); 6940 else 6941 md_update_sb(mddev, 1); 6942 md_new_event(); 6943 6944 return 0; 6945 busy: 6946 pr_debug("md: cannot remove active disk %s from %s ...\n", 6947 bdevname(rdev->bdev,b), mdname(mddev)); 6948 return -EBUSY; 6949 } 6950 6951 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6952 { 6953 char b[BDEVNAME_SIZE]; 6954 int err; 6955 struct md_rdev *rdev; 6956 6957 if (!mddev->pers) 6958 return -ENODEV; 6959 6960 if (mddev->major_version != 0) { 6961 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6962 mdname(mddev)); 6963 return -EINVAL; 6964 } 6965 if (!mddev->pers->hot_add_disk) { 6966 pr_warn("%s: personality does not support diskops!\n", 6967 mdname(mddev)); 6968 return -EINVAL; 6969 } 6970 6971 rdev = md_import_device(dev, -1, 0); 6972 if (IS_ERR(rdev)) { 6973 pr_warn("md: error, md_import_device() returned %ld\n", 6974 PTR_ERR(rdev)); 6975 return -EINVAL; 6976 } 6977 6978 if (mddev->persistent) 6979 rdev->sb_start = calc_dev_sboffset(rdev); 6980 else 6981 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6982 6983 rdev->sectors = rdev->sb_start; 6984 6985 if (test_bit(Faulty, &rdev->flags)) { 6986 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6987 bdevname(rdev->bdev,b), mdname(mddev)); 6988 err = -EINVAL; 6989 goto abort_export; 6990 } 6991 6992 clear_bit(In_sync, &rdev->flags); 6993 rdev->desc_nr = -1; 6994 rdev->saved_raid_disk = -1; 6995 err = bind_rdev_to_array(rdev, mddev); 6996 if (err) 6997 goto abort_export; 6998 6999 /* 7000 * The rest should better be atomic, we can have disk failures 7001 * noticed in interrupt contexts ... 7002 */ 7003 7004 rdev->raid_disk = -1; 7005 7006 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7007 if (!mddev->thread) 7008 md_update_sb(mddev, 1); 7009 /* 7010 * If the new disk does not support REQ_NOWAIT, 7011 * disable on the whole MD. 7012 */ 7013 if (!blk_queue_nowait(bdev_get_queue(rdev->bdev))) { 7014 pr_info("%s: Disabling nowait because %s does not support nowait\n", 7015 mdname(mddev), bdevname(rdev->bdev, b)); 7016 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 7017 } 7018 /* 7019 * Kick recovery, maybe this spare has to be added to the 7020 * array immediately. 7021 */ 7022 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7023 md_wakeup_thread(mddev->thread); 7024 md_new_event(); 7025 return 0; 7026 7027 abort_export: 7028 export_rdev(rdev); 7029 return err; 7030 } 7031 7032 static int set_bitmap_file(struct mddev *mddev, int fd) 7033 { 7034 int err = 0; 7035 7036 if (mddev->pers) { 7037 if (!mddev->pers->quiesce || !mddev->thread) 7038 return -EBUSY; 7039 if (mddev->recovery || mddev->sync_thread) 7040 return -EBUSY; 7041 /* we should be able to change the bitmap.. */ 7042 } 7043 7044 if (fd >= 0) { 7045 struct inode *inode; 7046 struct file *f; 7047 7048 if (mddev->bitmap || mddev->bitmap_info.file) 7049 return -EEXIST; /* cannot add when bitmap is present */ 7050 f = fget(fd); 7051 7052 if (f == NULL) { 7053 pr_warn("%s: error: failed to get bitmap file\n", 7054 mdname(mddev)); 7055 return -EBADF; 7056 } 7057 7058 inode = f->f_mapping->host; 7059 if (!S_ISREG(inode->i_mode)) { 7060 pr_warn("%s: error: bitmap file must be a regular file\n", 7061 mdname(mddev)); 7062 err = -EBADF; 7063 } else if (!(f->f_mode & FMODE_WRITE)) { 7064 pr_warn("%s: error: bitmap file must open for write\n", 7065 mdname(mddev)); 7066 err = -EBADF; 7067 } else if (atomic_read(&inode->i_writecount) != 1) { 7068 pr_warn("%s: error: bitmap file is already in use\n", 7069 mdname(mddev)); 7070 err = -EBUSY; 7071 } 7072 if (err) { 7073 fput(f); 7074 return err; 7075 } 7076 mddev->bitmap_info.file = f; 7077 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7078 } else if (mddev->bitmap == NULL) 7079 return -ENOENT; /* cannot remove what isn't there */ 7080 err = 0; 7081 if (mddev->pers) { 7082 if (fd >= 0) { 7083 struct bitmap *bitmap; 7084 7085 bitmap = md_bitmap_create(mddev, -1); 7086 mddev_suspend(mddev); 7087 if (!IS_ERR(bitmap)) { 7088 mddev->bitmap = bitmap; 7089 err = md_bitmap_load(mddev); 7090 } else 7091 err = PTR_ERR(bitmap); 7092 if (err) { 7093 md_bitmap_destroy(mddev); 7094 fd = -1; 7095 } 7096 mddev_resume(mddev); 7097 } else if (fd < 0) { 7098 mddev_suspend(mddev); 7099 md_bitmap_destroy(mddev); 7100 mddev_resume(mddev); 7101 } 7102 } 7103 if (fd < 0) { 7104 struct file *f = mddev->bitmap_info.file; 7105 if (f) { 7106 spin_lock(&mddev->lock); 7107 mddev->bitmap_info.file = NULL; 7108 spin_unlock(&mddev->lock); 7109 fput(f); 7110 } 7111 } 7112 7113 return err; 7114 } 7115 7116 /* 7117 * md_set_array_info is used two different ways 7118 * The original usage is when creating a new array. 7119 * In this usage, raid_disks is > 0 and it together with 7120 * level, size, not_persistent,layout,chunksize determine the 7121 * shape of the array. 7122 * This will always create an array with a type-0.90.0 superblock. 7123 * The newer usage is when assembling an array. 7124 * In this case raid_disks will be 0, and the major_version field is 7125 * use to determine which style super-blocks are to be found on the devices. 7126 * The minor and patch _version numbers are also kept incase the 7127 * super_block handler wishes to interpret them. 7128 */ 7129 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7130 { 7131 if (info->raid_disks == 0) { 7132 /* just setting version number for superblock loading */ 7133 if (info->major_version < 0 || 7134 info->major_version >= ARRAY_SIZE(super_types) || 7135 super_types[info->major_version].name == NULL) { 7136 /* maybe try to auto-load a module? */ 7137 pr_warn("md: superblock version %d not known\n", 7138 info->major_version); 7139 return -EINVAL; 7140 } 7141 mddev->major_version = info->major_version; 7142 mddev->minor_version = info->minor_version; 7143 mddev->patch_version = info->patch_version; 7144 mddev->persistent = !info->not_persistent; 7145 /* ensure mddev_put doesn't delete this now that there 7146 * is some minimal configuration. 7147 */ 7148 mddev->ctime = ktime_get_real_seconds(); 7149 return 0; 7150 } 7151 mddev->major_version = MD_MAJOR_VERSION; 7152 mddev->minor_version = MD_MINOR_VERSION; 7153 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7154 mddev->ctime = ktime_get_real_seconds(); 7155 7156 mddev->level = info->level; 7157 mddev->clevel[0] = 0; 7158 mddev->dev_sectors = 2 * (sector_t)info->size; 7159 mddev->raid_disks = info->raid_disks; 7160 /* don't set md_minor, it is determined by which /dev/md* was 7161 * openned 7162 */ 7163 if (info->state & (1<<MD_SB_CLEAN)) 7164 mddev->recovery_cp = MaxSector; 7165 else 7166 mddev->recovery_cp = 0; 7167 mddev->persistent = ! info->not_persistent; 7168 mddev->external = 0; 7169 7170 mddev->layout = info->layout; 7171 if (mddev->level == 0) 7172 /* Cannot trust RAID0 layout info here */ 7173 mddev->layout = -1; 7174 mddev->chunk_sectors = info->chunk_size >> 9; 7175 7176 if (mddev->persistent) { 7177 mddev->max_disks = MD_SB_DISKS; 7178 mddev->flags = 0; 7179 mddev->sb_flags = 0; 7180 } 7181 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7182 7183 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7184 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7185 mddev->bitmap_info.offset = 0; 7186 7187 mddev->reshape_position = MaxSector; 7188 7189 /* 7190 * Generate a 128 bit UUID 7191 */ 7192 get_random_bytes(mddev->uuid, 16); 7193 7194 mddev->new_level = mddev->level; 7195 mddev->new_chunk_sectors = mddev->chunk_sectors; 7196 mddev->new_layout = mddev->layout; 7197 mddev->delta_disks = 0; 7198 mddev->reshape_backwards = 0; 7199 7200 return 0; 7201 } 7202 7203 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7204 { 7205 lockdep_assert_held(&mddev->reconfig_mutex); 7206 7207 if (mddev->external_size) 7208 return; 7209 7210 mddev->array_sectors = array_sectors; 7211 } 7212 EXPORT_SYMBOL(md_set_array_sectors); 7213 7214 static int update_size(struct mddev *mddev, sector_t num_sectors) 7215 { 7216 struct md_rdev *rdev; 7217 int rv; 7218 int fit = (num_sectors == 0); 7219 sector_t old_dev_sectors = mddev->dev_sectors; 7220 7221 if (mddev->pers->resize == NULL) 7222 return -EINVAL; 7223 /* The "num_sectors" is the number of sectors of each device that 7224 * is used. This can only make sense for arrays with redundancy. 7225 * linear and raid0 always use whatever space is available. We can only 7226 * consider changing this number if no resync or reconstruction is 7227 * happening, and if the new size is acceptable. It must fit before the 7228 * sb_start or, if that is <data_offset, it must fit before the size 7229 * of each device. If num_sectors is zero, we find the largest size 7230 * that fits. 7231 */ 7232 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7233 mddev->sync_thread) 7234 return -EBUSY; 7235 if (mddev->ro) 7236 return -EROFS; 7237 7238 rdev_for_each(rdev, mddev) { 7239 sector_t avail = rdev->sectors; 7240 7241 if (fit && (num_sectors == 0 || num_sectors > avail)) 7242 num_sectors = avail; 7243 if (avail < num_sectors) 7244 return -ENOSPC; 7245 } 7246 rv = mddev->pers->resize(mddev, num_sectors); 7247 if (!rv) { 7248 if (mddev_is_clustered(mddev)) 7249 md_cluster_ops->update_size(mddev, old_dev_sectors); 7250 else if (mddev->queue) { 7251 set_capacity_and_notify(mddev->gendisk, 7252 mddev->array_sectors); 7253 } 7254 } 7255 return rv; 7256 } 7257 7258 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7259 { 7260 int rv; 7261 struct md_rdev *rdev; 7262 /* change the number of raid disks */ 7263 if (mddev->pers->check_reshape == NULL) 7264 return -EINVAL; 7265 if (mddev->ro) 7266 return -EROFS; 7267 if (raid_disks <= 0 || 7268 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7269 return -EINVAL; 7270 if (mddev->sync_thread || 7271 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7272 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7273 mddev->reshape_position != MaxSector) 7274 return -EBUSY; 7275 7276 rdev_for_each(rdev, mddev) { 7277 if (mddev->raid_disks < raid_disks && 7278 rdev->data_offset < rdev->new_data_offset) 7279 return -EINVAL; 7280 if (mddev->raid_disks > raid_disks && 7281 rdev->data_offset > rdev->new_data_offset) 7282 return -EINVAL; 7283 } 7284 7285 mddev->delta_disks = raid_disks - mddev->raid_disks; 7286 if (mddev->delta_disks < 0) 7287 mddev->reshape_backwards = 1; 7288 else if (mddev->delta_disks > 0) 7289 mddev->reshape_backwards = 0; 7290 7291 rv = mddev->pers->check_reshape(mddev); 7292 if (rv < 0) { 7293 mddev->delta_disks = 0; 7294 mddev->reshape_backwards = 0; 7295 } 7296 return rv; 7297 } 7298 7299 /* 7300 * update_array_info is used to change the configuration of an 7301 * on-line array. 7302 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7303 * fields in the info are checked against the array. 7304 * Any differences that cannot be handled will cause an error. 7305 * Normally, only one change can be managed at a time. 7306 */ 7307 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7308 { 7309 int rv = 0; 7310 int cnt = 0; 7311 int state = 0; 7312 7313 /* calculate expected state,ignoring low bits */ 7314 if (mddev->bitmap && mddev->bitmap_info.offset) 7315 state |= (1 << MD_SB_BITMAP_PRESENT); 7316 7317 if (mddev->major_version != info->major_version || 7318 mddev->minor_version != info->minor_version || 7319 /* mddev->patch_version != info->patch_version || */ 7320 mddev->ctime != info->ctime || 7321 mddev->level != info->level || 7322 /* mddev->layout != info->layout || */ 7323 mddev->persistent != !info->not_persistent || 7324 mddev->chunk_sectors != info->chunk_size >> 9 || 7325 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7326 ((state^info->state) & 0xfffffe00) 7327 ) 7328 return -EINVAL; 7329 /* Check there is only one change */ 7330 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7331 cnt++; 7332 if (mddev->raid_disks != info->raid_disks) 7333 cnt++; 7334 if (mddev->layout != info->layout) 7335 cnt++; 7336 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7337 cnt++; 7338 if (cnt == 0) 7339 return 0; 7340 if (cnt > 1) 7341 return -EINVAL; 7342 7343 if (mddev->layout != info->layout) { 7344 /* Change layout 7345 * we don't need to do anything at the md level, the 7346 * personality will take care of it all. 7347 */ 7348 if (mddev->pers->check_reshape == NULL) 7349 return -EINVAL; 7350 else { 7351 mddev->new_layout = info->layout; 7352 rv = mddev->pers->check_reshape(mddev); 7353 if (rv) 7354 mddev->new_layout = mddev->layout; 7355 return rv; 7356 } 7357 } 7358 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7359 rv = update_size(mddev, (sector_t)info->size * 2); 7360 7361 if (mddev->raid_disks != info->raid_disks) 7362 rv = update_raid_disks(mddev, info->raid_disks); 7363 7364 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7365 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7366 rv = -EINVAL; 7367 goto err; 7368 } 7369 if (mddev->recovery || mddev->sync_thread) { 7370 rv = -EBUSY; 7371 goto err; 7372 } 7373 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7374 struct bitmap *bitmap; 7375 /* add the bitmap */ 7376 if (mddev->bitmap) { 7377 rv = -EEXIST; 7378 goto err; 7379 } 7380 if (mddev->bitmap_info.default_offset == 0) { 7381 rv = -EINVAL; 7382 goto err; 7383 } 7384 mddev->bitmap_info.offset = 7385 mddev->bitmap_info.default_offset; 7386 mddev->bitmap_info.space = 7387 mddev->bitmap_info.default_space; 7388 bitmap = md_bitmap_create(mddev, -1); 7389 mddev_suspend(mddev); 7390 if (!IS_ERR(bitmap)) { 7391 mddev->bitmap = bitmap; 7392 rv = md_bitmap_load(mddev); 7393 } else 7394 rv = PTR_ERR(bitmap); 7395 if (rv) 7396 md_bitmap_destroy(mddev); 7397 mddev_resume(mddev); 7398 } else { 7399 /* remove the bitmap */ 7400 if (!mddev->bitmap) { 7401 rv = -ENOENT; 7402 goto err; 7403 } 7404 if (mddev->bitmap->storage.file) { 7405 rv = -EINVAL; 7406 goto err; 7407 } 7408 if (mddev->bitmap_info.nodes) { 7409 /* hold PW on all the bitmap lock */ 7410 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7411 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7412 rv = -EPERM; 7413 md_cluster_ops->unlock_all_bitmaps(mddev); 7414 goto err; 7415 } 7416 7417 mddev->bitmap_info.nodes = 0; 7418 md_cluster_ops->leave(mddev); 7419 module_put(md_cluster_mod); 7420 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7421 } 7422 mddev_suspend(mddev); 7423 md_bitmap_destroy(mddev); 7424 mddev_resume(mddev); 7425 mddev->bitmap_info.offset = 0; 7426 } 7427 } 7428 md_update_sb(mddev, 1); 7429 return rv; 7430 err: 7431 return rv; 7432 } 7433 7434 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7435 { 7436 struct md_rdev *rdev; 7437 int err = 0; 7438 7439 if (mddev->pers == NULL) 7440 return -ENODEV; 7441 7442 rcu_read_lock(); 7443 rdev = md_find_rdev_rcu(mddev, dev); 7444 if (!rdev) 7445 err = -ENODEV; 7446 else { 7447 md_error(mddev, rdev); 7448 if (test_bit(MD_BROKEN, &mddev->flags)) 7449 err = -EBUSY; 7450 } 7451 rcu_read_unlock(); 7452 return err; 7453 } 7454 7455 /* 7456 * We have a problem here : there is no easy way to give a CHS 7457 * virtual geometry. We currently pretend that we have a 2 heads 7458 * 4 sectors (with a BIG number of cylinders...). This drives 7459 * dosfs just mad... ;-) 7460 */ 7461 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7462 { 7463 struct mddev *mddev = bdev->bd_disk->private_data; 7464 7465 geo->heads = 2; 7466 geo->sectors = 4; 7467 geo->cylinders = mddev->array_sectors / 8; 7468 return 0; 7469 } 7470 7471 static inline bool md_ioctl_valid(unsigned int cmd) 7472 { 7473 switch (cmd) { 7474 case ADD_NEW_DISK: 7475 case GET_ARRAY_INFO: 7476 case GET_BITMAP_FILE: 7477 case GET_DISK_INFO: 7478 case HOT_ADD_DISK: 7479 case HOT_REMOVE_DISK: 7480 case RAID_VERSION: 7481 case RESTART_ARRAY_RW: 7482 case RUN_ARRAY: 7483 case SET_ARRAY_INFO: 7484 case SET_BITMAP_FILE: 7485 case SET_DISK_FAULTY: 7486 case STOP_ARRAY: 7487 case STOP_ARRAY_RO: 7488 case CLUSTERED_DISK_NACK: 7489 return true; 7490 default: 7491 return false; 7492 } 7493 } 7494 7495 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7496 unsigned int cmd, unsigned long arg) 7497 { 7498 int err = 0; 7499 void __user *argp = (void __user *)arg; 7500 struct mddev *mddev = NULL; 7501 bool did_set_md_closing = false; 7502 7503 if (!md_ioctl_valid(cmd)) 7504 return -ENOTTY; 7505 7506 switch (cmd) { 7507 case RAID_VERSION: 7508 case GET_ARRAY_INFO: 7509 case GET_DISK_INFO: 7510 break; 7511 default: 7512 if (!capable(CAP_SYS_ADMIN)) 7513 return -EACCES; 7514 } 7515 7516 /* 7517 * Commands dealing with the RAID driver but not any 7518 * particular array: 7519 */ 7520 switch (cmd) { 7521 case RAID_VERSION: 7522 err = get_version(argp); 7523 goto out; 7524 default:; 7525 } 7526 7527 /* 7528 * Commands creating/starting a new array: 7529 */ 7530 7531 mddev = bdev->bd_disk->private_data; 7532 7533 if (!mddev) { 7534 BUG(); 7535 goto out; 7536 } 7537 7538 /* Some actions do not requires the mutex */ 7539 switch (cmd) { 7540 case GET_ARRAY_INFO: 7541 if (!mddev->raid_disks && !mddev->external) 7542 err = -ENODEV; 7543 else 7544 err = get_array_info(mddev, argp); 7545 goto out; 7546 7547 case GET_DISK_INFO: 7548 if (!mddev->raid_disks && !mddev->external) 7549 err = -ENODEV; 7550 else 7551 err = get_disk_info(mddev, argp); 7552 goto out; 7553 7554 case SET_DISK_FAULTY: 7555 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7556 goto out; 7557 7558 case GET_BITMAP_FILE: 7559 err = get_bitmap_file(mddev, argp); 7560 goto out; 7561 7562 } 7563 7564 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7565 flush_rdev_wq(mddev); 7566 7567 if (cmd == HOT_REMOVE_DISK) 7568 /* need to ensure recovery thread has run */ 7569 wait_event_interruptible_timeout(mddev->sb_wait, 7570 !test_bit(MD_RECOVERY_NEEDED, 7571 &mddev->recovery), 7572 msecs_to_jiffies(5000)); 7573 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7574 /* Need to flush page cache, and ensure no-one else opens 7575 * and writes 7576 */ 7577 mutex_lock(&mddev->open_mutex); 7578 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7579 mutex_unlock(&mddev->open_mutex); 7580 err = -EBUSY; 7581 goto out; 7582 } 7583 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7584 mutex_unlock(&mddev->open_mutex); 7585 err = -EBUSY; 7586 goto out; 7587 } 7588 did_set_md_closing = true; 7589 mutex_unlock(&mddev->open_mutex); 7590 sync_blockdev(bdev); 7591 } 7592 err = mddev_lock(mddev); 7593 if (err) { 7594 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7595 err, cmd); 7596 goto out; 7597 } 7598 7599 if (cmd == SET_ARRAY_INFO) { 7600 mdu_array_info_t info; 7601 if (!arg) 7602 memset(&info, 0, sizeof(info)); 7603 else if (copy_from_user(&info, argp, sizeof(info))) { 7604 err = -EFAULT; 7605 goto unlock; 7606 } 7607 if (mddev->pers) { 7608 err = update_array_info(mddev, &info); 7609 if (err) { 7610 pr_warn("md: couldn't update array info. %d\n", err); 7611 goto unlock; 7612 } 7613 goto unlock; 7614 } 7615 if (!list_empty(&mddev->disks)) { 7616 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7617 err = -EBUSY; 7618 goto unlock; 7619 } 7620 if (mddev->raid_disks) { 7621 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7622 err = -EBUSY; 7623 goto unlock; 7624 } 7625 err = md_set_array_info(mddev, &info); 7626 if (err) { 7627 pr_warn("md: couldn't set array info. %d\n", err); 7628 goto unlock; 7629 } 7630 goto unlock; 7631 } 7632 7633 /* 7634 * Commands querying/configuring an existing array: 7635 */ 7636 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7637 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7638 if ((!mddev->raid_disks && !mddev->external) 7639 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7640 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7641 && cmd != GET_BITMAP_FILE) { 7642 err = -ENODEV; 7643 goto unlock; 7644 } 7645 7646 /* 7647 * Commands even a read-only array can execute: 7648 */ 7649 switch (cmd) { 7650 case RESTART_ARRAY_RW: 7651 err = restart_array(mddev); 7652 goto unlock; 7653 7654 case STOP_ARRAY: 7655 err = do_md_stop(mddev, 0, bdev); 7656 goto unlock; 7657 7658 case STOP_ARRAY_RO: 7659 err = md_set_readonly(mddev, bdev); 7660 goto unlock; 7661 7662 case HOT_REMOVE_DISK: 7663 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7664 goto unlock; 7665 7666 case ADD_NEW_DISK: 7667 /* We can support ADD_NEW_DISK on read-only arrays 7668 * only if we are re-adding a preexisting device. 7669 * So require mddev->pers and MD_DISK_SYNC. 7670 */ 7671 if (mddev->pers) { 7672 mdu_disk_info_t info; 7673 if (copy_from_user(&info, argp, sizeof(info))) 7674 err = -EFAULT; 7675 else if (!(info.state & (1<<MD_DISK_SYNC))) 7676 /* Need to clear read-only for this */ 7677 break; 7678 else 7679 err = md_add_new_disk(mddev, &info); 7680 goto unlock; 7681 } 7682 break; 7683 } 7684 7685 /* 7686 * The remaining ioctls are changing the state of the 7687 * superblock, so we do not allow them on read-only arrays. 7688 */ 7689 if (mddev->ro && mddev->pers) { 7690 if (mddev->ro == 2) { 7691 mddev->ro = 0; 7692 sysfs_notify_dirent_safe(mddev->sysfs_state); 7693 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7694 /* mddev_unlock will wake thread */ 7695 /* If a device failed while we were read-only, we 7696 * need to make sure the metadata is updated now. 7697 */ 7698 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7699 mddev_unlock(mddev); 7700 wait_event(mddev->sb_wait, 7701 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7702 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7703 mddev_lock_nointr(mddev); 7704 } 7705 } else { 7706 err = -EROFS; 7707 goto unlock; 7708 } 7709 } 7710 7711 switch (cmd) { 7712 case ADD_NEW_DISK: 7713 { 7714 mdu_disk_info_t info; 7715 if (copy_from_user(&info, argp, sizeof(info))) 7716 err = -EFAULT; 7717 else 7718 err = md_add_new_disk(mddev, &info); 7719 goto unlock; 7720 } 7721 7722 case CLUSTERED_DISK_NACK: 7723 if (mddev_is_clustered(mddev)) 7724 md_cluster_ops->new_disk_ack(mddev, false); 7725 else 7726 err = -EINVAL; 7727 goto unlock; 7728 7729 case HOT_ADD_DISK: 7730 err = hot_add_disk(mddev, new_decode_dev(arg)); 7731 goto unlock; 7732 7733 case RUN_ARRAY: 7734 err = do_md_run(mddev); 7735 goto unlock; 7736 7737 case SET_BITMAP_FILE: 7738 err = set_bitmap_file(mddev, (int)arg); 7739 goto unlock; 7740 7741 default: 7742 err = -EINVAL; 7743 goto unlock; 7744 } 7745 7746 unlock: 7747 if (mddev->hold_active == UNTIL_IOCTL && 7748 err != -EINVAL) 7749 mddev->hold_active = 0; 7750 mddev_unlock(mddev); 7751 out: 7752 if(did_set_md_closing) 7753 clear_bit(MD_CLOSING, &mddev->flags); 7754 return err; 7755 } 7756 #ifdef CONFIG_COMPAT 7757 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7758 unsigned int cmd, unsigned long arg) 7759 { 7760 switch (cmd) { 7761 case HOT_REMOVE_DISK: 7762 case HOT_ADD_DISK: 7763 case SET_DISK_FAULTY: 7764 case SET_BITMAP_FILE: 7765 /* These take in integer arg, do not convert */ 7766 break; 7767 default: 7768 arg = (unsigned long)compat_ptr(arg); 7769 break; 7770 } 7771 7772 return md_ioctl(bdev, mode, cmd, arg); 7773 } 7774 #endif /* CONFIG_COMPAT */ 7775 7776 static int md_set_read_only(struct block_device *bdev, bool ro) 7777 { 7778 struct mddev *mddev = bdev->bd_disk->private_data; 7779 int err; 7780 7781 err = mddev_lock(mddev); 7782 if (err) 7783 return err; 7784 7785 if (!mddev->raid_disks && !mddev->external) { 7786 err = -ENODEV; 7787 goto out_unlock; 7788 } 7789 7790 /* 7791 * Transitioning to read-auto need only happen for arrays that call 7792 * md_write_start and which are not ready for writes yet. 7793 */ 7794 if (!ro && mddev->ro == 1 && mddev->pers) { 7795 err = restart_array(mddev); 7796 if (err) 7797 goto out_unlock; 7798 mddev->ro = 2; 7799 } 7800 7801 out_unlock: 7802 mddev_unlock(mddev); 7803 return err; 7804 } 7805 7806 static int md_open(struct block_device *bdev, fmode_t mode) 7807 { 7808 /* 7809 * Succeed if we can lock the mddev, which confirms that 7810 * it isn't being stopped right now. 7811 */ 7812 struct mddev *mddev = mddev_find(bdev->bd_dev); 7813 int err; 7814 7815 if (!mddev) 7816 return -ENODEV; 7817 7818 if (mddev->gendisk != bdev->bd_disk) { 7819 /* we are racing with mddev_put which is discarding this 7820 * bd_disk. 7821 */ 7822 mddev_put(mddev); 7823 /* Wait until bdev->bd_disk is definitely gone */ 7824 if (work_pending(&mddev->del_work)) 7825 flush_workqueue(md_misc_wq); 7826 return -EBUSY; 7827 } 7828 BUG_ON(mddev != bdev->bd_disk->private_data); 7829 7830 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7831 goto out; 7832 7833 if (test_bit(MD_CLOSING, &mddev->flags)) { 7834 mutex_unlock(&mddev->open_mutex); 7835 err = -ENODEV; 7836 goto out; 7837 } 7838 7839 err = 0; 7840 atomic_inc(&mddev->openers); 7841 mutex_unlock(&mddev->open_mutex); 7842 7843 bdev_check_media_change(bdev); 7844 out: 7845 if (err) 7846 mddev_put(mddev); 7847 return err; 7848 } 7849 7850 static void md_release(struct gendisk *disk, fmode_t mode) 7851 { 7852 struct mddev *mddev = disk->private_data; 7853 7854 BUG_ON(!mddev); 7855 atomic_dec(&mddev->openers); 7856 mddev_put(mddev); 7857 } 7858 7859 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7860 { 7861 struct mddev *mddev = disk->private_data; 7862 unsigned int ret = 0; 7863 7864 if (mddev->changed) 7865 ret = DISK_EVENT_MEDIA_CHANGE; 7866 mddev->changed = 0; 7867 return ret; 7868 } 7869 7870 const struct block_device_operations md_fops = 7871 { 7872 .owner = THIS_MODULE, 7873 .submit_bio = md_submit_bio, 7874 .open = md_open, 7875 .release = md_release, 7876 .ioctl = md_ioctl, 7877 #ifdef CONFIG_COMPAT 7878 .compat_ioctl = md_compat_ioctl, 7879 #endif 7880 .getgeo = md_getgeo, 7881 .check_events = md_check_events, 7882 .set_read_only = md_set_read_only, 7883 }; 7884 7885 static int md_thread(void *arg) 7886 { 7887 struct md_thread *thread = arg; 7888 7889 /* 7890 * md_thread is a 'system-thread', it's priority should be very 7891 * high. We avoid resource deadlocks individually in each 7892 * raid personality. (RAID5 does preallocation) We also use RR and 7893 * the very same RT priority as kswapd, thus we will never get 7894 * into a priority inversion deadlock. 7895 * 7896 * we definitely have to have equal or higher priority than 7897 * bdflush, otherwise bdflush will deadlock if there are too 7898 * many dirty RAID5 blocks. 7899 */ 7900 7901 allow_signal(SIGKILL); 7902 while (!kthread_should_stop()) { 7903 7904 /* We need to wait INTERRUPTIBLE so that 7905 * we don't add to the load-average. 7906 * That means we need to be sure no signals are 7907 * pending 7908 */ 7909 if (signal_pending(current)) 7910 flush_signals(current); 7911 7912 wait_event_interruptible_timeout 7913 (thread->wqueue, 7914 test_bit(THREAD_WAKEUP, &thread->flags) 7915 || kthread_should_stop() || kthread_should_park(), 7916 thread->timeout); 7917 7918 clear_bit(THREAD_WAKEUP, &thread->flags); 7919 if (kthread_should_park()) 7920 kthread_parkme(); 7921 if (!kthread_should_stop()) 7922 thread->run(thread); 7923 } 7924 7925 return 0; 7926 } 7927 7928 void md_wakeup_thread(struct md_thread *thread) 7929 { 7930 if (thread) { 7931 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7932 set_bit(THREAD_WAKEUP, &thread->flags); 7933 wake_up(&thread->wqueue); 7934 } 7935 } 7936 EXPORT_SYMBOL(md_wakeup_thread); 7937 7938 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7939 struct mddev *mddev, const char *name) 7940 { 7941 struct md_thread *thread; 7942 7943 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7944 if (!thread) 7945 return NULL; 7946 7947 init_waitqueue_head(&thread->wqueue); 7948 7949 thread->run = run; 7950 thread->mddev = mddev; 7951 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7952 thread->tsk = kthread_run(md_thread, thread, 7953 "%s_%s", 7954 mdname(thread->mddev), 7955 name); 7956 if (IS_ERR(thread->tsk)) { 7957 kfree(thread); 7958 return NULL; 7959 } 7960 return thread; 7961 } 7962 EXPORT_SYMBOL(md_register_thread); 7963 7964 void md_unregister_thread(struct md_thread **threadp) 7965 { 7966 struct md_thread *thread = *threadp; 7967 if (!thread) 7968 return; 7969 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7970 /* Locking ensures that mddev_unlock does not wake_up a 7971 * non-existent thread 7972 */ 7973 spin_lock(&pers_lock); 7974 *threadp = NULL; 7975 spin_unlock(&pers_lock); 7976 7977 kthread_stop(thread->tsk); 7978 kfree(thread); 7979 } 7980 EXPORT_SYMBOL(md_unregister_thread); 7981 7982 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7983 { 7984 if (!rdev || test_bit(Faulty, &rdev->flags)) 7985 return; 7986 7987 if (!mddev->pers || !mddev->pers->error_handler) 7988 return; 7989 mddev->pers->error_handler(mddev, rdev); 7990 7991 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 7992 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7993 sysfs_notify_dirent_safe(rdev->sysfs_state); 7994 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7995 if (!test_bit(MD_BROKEN, &mddev->flags)) { 7996 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7997 md_wakeup_thread(mddev->thread); 7998 } 7999 if (mddev->event_work.func) 8000 queue_work(md_misc_wq, &mddev->event_work); 8001 md_new_event(); 8002 } 8003 EXPORT_SYMBOL(md_error); 8004 8005 /* seq_file implementation /proc/mdstat */ 8006 8007 static void status_unused(struct seq_file *seq) 8008 { 8009 int i = 0; 8010 struct md_rdev *rdev; 8011 8012 seq_printf(seq, "unused devices: "); 8013 8014 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8015 char b[BDEVNAME_SIZE]; 8016 i++; 8017 seq_printf(seq, "%s ", 8018 bdevname(rdev->bdev,b)); 8019 } 8020 if (!i) 8021 seq_printf(seq, "<none>"); 8022 8023 seq_printf(seq, "\n"); 8024 } 8025 8026 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8027 { 8028 sector_t max_sectors, resync, res; 8029 unsigned long dt, db = 0; 8030 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8031 int scale, recovery_active; 8032 unsigned int per_milli; 8033 8034 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8035 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8036 max_sectors = mddev->resync_max_sectors; 8037 else 8038 max_sectors = mddev->dev_sectors; 8039 8040 resync = mddev->curr_resync; 8041 if (resync <= 3) { 8042 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8043 /* Still cleaning up */ 8044 resync = max_sectors; 8045 } else if (resync > max_sectors) 8046 resync = max_sectors; 8047 else 8048 resync -= atomic_read(&mddev->recovery_active); 8049 8050 if (resync == 0) { 8051 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8052 struct md_rdev *rdev; 8053 8054 rdev_for_each(rdev, mddev) 8055 if (rdev->raid_disk >= 0 && 8056 !test_bit(Faulty, &rdev->flags) && 8057 rdev->recovery_offset != MaxSector && 8058 rdev->recovery_offset) { 8059 seq_printf(seq, "\trecover=REMOTE"); 8060 return 1; 8061 } 8062 if (mddev->reshape_position != MaxSector) 8063 seq_printf(seq, "\treshape=REMOTE"); 8064 else 8065 seq_printf(seq, "\tresync=REMOTE"); 8066 return 1; 8067 } 8068 if (mddev->recovery_cp < MaxSector) { 8069 seq_printf(seq, "\tresync=PENDING"); 8070 return 1; 8071 } 8072 return 0; 8073 } 8074 if (resync < 3) { 8075 seq_printf(seq, "\tresync=DELAYED"); 8076 return 1; 8077 } 8078 8079 WARN_ON(max_sectors == 0); 8080 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8081 * in a sector_t, and (max_sectors>>scale) will fit in a 8082 * u32, as those are the requirements for sector_div. 8083 * Thus 'scale' must be at least 10 8084 */ 8085 scale = 10; 8086 if (sizeof(sector_t) > sizeof(unsigned long)) { 8087 while ( max_sectors/2 > (1ULL<<(scale+32))) 8088 scale++; 8089 } 8090 res = (resync>>scale)*1000; 8091 sector_div(res, (u32)((max_sectors>>scale)+1)); 8092 8093 per_milli = res; 8094 { 8095 int i, x = per_milli/50, y = 20-x; 8096 seq_printf(seq, "["); 8097 for (i = 0; i < x; i++) 8098 seq_printf(seq, "="); 8099 seq_printf(seq, ">"); 8100 for (i = 0; i < y; i++) 8101 seq_printf(seq, "."); 8102 seq_printf(seq, "] "); 8103 } 8104 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8105 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8106 "reshape" : 8107 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8108 "check" : 8109 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8110 "resync" : "recovery"))), 8111 per_milli/10, per_milli % 10, 8112 (unsigned long long) resync/2, 8113 (unsigned long long) max_sectors/2); 8114 8115 /* 8116 * dt: time from mark until now 8117 * db: blocks written from mark until now 8118 * rt: remaining time 8119 * 8120 * rt is a sector_t, which is always 64bit now. We are keeping 8121 * the original algorithm, but it is not really necessary. 8122 * 8123 * Original algorithm: 8124 * So we divide before multiply in case it is 32bit and close 8125 * to the limit. 8126 * We scale the divisor (db) by 32 to avoid losing precision 8127 * near the end of resync when the number of remaining sectors 8128 * is close to 'db'. 8129 * We then divide rt by 32 after multiplying by db to compensate. 8130 * The '+1' avoids division by zero if db is very small. 8131 */ 8132 dt = ((jiffies - mddev->resync_mark) / HZ); 8133 if (!dt) dt++; 8134 8135 curr_mark_cnt = mddev->curr_mark_cnt; 8136 recovery_active = atomic_read(&mddev->recovery_active); 8137 resync_mark_cnt = mddev->resync_mark_cnt; 8138 8139 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8140 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8141 8142 rt = max_sectors - resync; /* number of remaining sectors */ 8143 rt = div64_u64(rt, db/32+1); 8144 rt *= dt; 8145 rt >>= 5; 8146 8147 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8148 ((unsigned long)rt % 60)/6); 8149 8150 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8151 return 1; 8152 } 8153 8154 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8155 { 8156 struct list_head *tmp; 8157 loff_t l = *pos; 8158 struct mddev *mddev; 8159 8160 if (l == 0x10000) { 8161 ++*pos; 8162 return (void *)2; 8163 } 8164 if (l > 0x10000) 8165 return NULL; 8166 if (!l--) 8167 /* header */ 8168 return (void*)1; 8169 8170 spin_lock(&all_mddevs_lock); 8171 list_for_each(tmp,&all_mddevs) 8172 if (!l--) { 8173 mddev = list_entry(tmp, struct mddev, all_mddevs); 8174 mddev_get(mddev); 8175 spin_unlock(&all_mddevs_lock); 8176 return mddev; 8177 } 8178 spin_unlock(&all_mddevs_lock); 8179 if (!l--) 8180 return (void*)2;/* tail */ 8181 return NULL; 8182 } 8183 8184 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8185 { 8186 struct list_head *tmp; 8187 struct mddev *next_mddev, *mddev = v; 8188 8189 ++*pos; 8190 if (v == (void*)2) 8191 return NULL; 8192 8193 spin_lock(&all_mddevs_lock); 8194 if (v == (void*)1) 8195 tmp = all_mddevs.next; 8196 else 8197 tmp = mddev->all_mddevs.next; 8198 if (tmp != &all_mddevs) 8199 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8200 else { 8201 next_mddev = (void*)2; 8202 *pos = 0x10000; 8203 } 8204 spin_unlock(&all_mddevs_lock); 8205 8206 if (v != (void*)1) 8207 mddev_put(mddev); 8208 return next_mddev; 8209 8210 } 8211 8212 static void md_seq_stop(struct seq_file *seq, void *v) 8213 { 8214 struct mddev *mddev = v; 8215 8216 if (mddev && v != (void*)1 && v != (void*)2) 8217 mddev_put(mddev); 8218 } 8219 8220 static int md_seq_show(struct seq_file *seq, void *v) 8221 { 8222 struct mddev *mddev = v; 8223 sector_t sectors; 8224 struct md_rdev *rdev; 8225 8226 if (v == (void*)1) { 8227 struct md_personality *pers; 8228 seq_printf(seq, "Personalities : "); 8229 spin_lock(&pers_lock); 8230 list_for_each_entry(pers, &pers_list, list) 8231 seq_printf(seq, "[%s] ", pers->name); 8232 8233 spin_unlock(&pers_lock); 8234 seq_printf(seq, "\n"); 8235 seq->poll_event = atomic_read(&md_event_count); 8236 return 0; 8237 } 8238 if (v == (void*)2) { 8239 status_unused(seq); 8240 return 0; 8241 } 8242 8243 spin_lock(&mddev->lock); 8244 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8245 seq_printf(seq, "%s : %sactive", mdname(mddev), 8246 mddev->pers ? "" : "in"); 8247 if (mddev->pers) { 8248 if (mddev->ro==1) 8249 seq_printf(seq, " (read-only)"); 8250 if (mddev->ro==2) 8251 seq_printf(seq, " (auto-read-only)"); 8252 seq_printf(seq, " %s", mddev->pers->name); 8253 } 8254 8255 sectors = 0; 8256 rcu_read_lock(); 8257 rdev_for_each_rcu(rdev, mddev) { 8258 char b[BDEVNAME_SIZE]; 8259 seq_printf(seq, " %s[%d]", 8260 bdevname(rdev->bdev,b), rdev->desc_nr); 8261 if (test_bit(WriteMostly, &rdev->flags)) 8262 seq_printf(seq, "(W)"); 8263 if (test_bit(Journal, &rdev->flags)) 8264 seq_printf(seq, "(J)"); 8265 if (test_bit(Faulty, &rdev->flags)) { 8266 seq_printf(seq, "(F)"); 8267 continue; 8268 } 8269 if (rdev->raid_disk < 0) 8270 seq_printf(seq, "(S)"); /* spare */ 8271 if (test_bit(Replacement, &rdev->flags)) 8272 seq_printf(seq, "(R)"); 8273 sectors += rdev->sectors; 8274 } 8275 rcu_read_unlock(); 8276 8277 if (!list_empty(&mddev->disks)) { 8278 if (mddev->pers) 8279 seq_printf(seq, "\n %llu blocks", 8280 (unsigned long long) 8281 mddev->array_sectors / 2); 8282 else 8283 seq_printf(seq, "\n %llu blocks", 8284 (unsigned long long)sectors / 2); 8285 } 8286 if (mddev->persistent) { 8287 if (mddev->major_version != 0 || 8288 mddev->minor_version != 90) { 8289 seq_printf(seq," super %d.%d", 8290 mddev->major_version, 8291 mddev->minor_version); 8292 } 8293 } else if (mddev->external) 8294 seq_printf(seq, " super external:%s", 8295 mddev->metadata_type); 8296 else 8297 seq_printf(seq, " super non-persistent"); 8298 8299 if (mddev->pers) { 8300 mddev->pers->status(seq, mddev); 8301 seq_printf(seq, "\n "); 8302 if (mddev->pers->sync_request) { 8303 if (status_resync(seq, mddev)) 8304 seq_printf(seq, "\n "); 8305 } 8306 } else 8307 seq_printf(seq, "\n "); 8308 8309 md_bitmap_status(seq, mddev->bitmap); 8310 8311 seq_printf(seq, "\n"); 8312 } 8313 spin_unlock(&mddev->lock); 8314 8315 return 0; 8316 } 8317 8318 static const struct seq_operations md_seq_ops = { 8319 .start = md_seq_start, 8320 .next = md_seq_next, 8321 .stop = md_seq_stop, 8322 .show = md_seq_show, 8323 }; 8324 8325 static int md_seq_open(struct inode *inode, struct file *file) 8326 { 8327 struct seq_file *seq; 8328 int error; 8329 8330 error = seq_open(file, &md_seq_ops); 8331 if (error) 8332 return error; 8333 8334 seq = file->private_data; 8335 seq->poll_event = atomic_read(&md_event_count); 8336 return error; 8337 } 8338 8339 static int md_unloading; 8340 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8341 { 8342 struct seq_file *seq = filp->private_data; 8343 __poll_t mask; 8344 8345 if (md_unloading) 8346 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8347 poll_wait(filp, &md_event_waiters, wait); 8348 8349 /* always allow read */ 8350 mask = EPOLLIN | EPOLLRDNORM; 8351 8352 if (seq->poll_event != atomic_read(&md_event_count)) 8353 mask |= EPOLLERR | EPOLLPRI; 8354 return mask; 8355 } 8356 8357 static const struct proc_ops mdstat_proc_ops = { 8358 .proc_open = md_seq_open, 8359 .proc_read = seq_read, 8360 .proc_lseek = seq_lseek, 8361 .proc_release = seq_release, 8362 .proc_poll = mdstat_poll, 8363 }; 8364 8365 int register_md_personality(struct md_personality *p) 8366 { 8367 pr_debug("md: %s personality registered for level %d\n", 8368 p->name, p->level); 8369 spin_lock(&pers_lock); 8370 list_add_tail(&p->list, &pers_list); 8371 spin_unlock(&pers_lock); 8372 return 0; 8373 } 8374 EXPORT_SYMBOL(register_md_personality); 8375 8376 int unregister_md_personality(struct md_personality *p) 8377 { 8378 pr_debug("md: %s personality unregistered\n", p->name); 8379 spin_lock(&pers_lock); 8380 list_del_init(&p->list); 8381 spin_unlock(&pers_lock); 8382 return 0; 8383 } 8384 EXPORT_SYMBOL(unregister_md_personality); 8385 8386 int register_md_cluster_operations(struct md_cluster_operations *ops, 8387 struct module *module) 8388 { 8389 int ret = 0; 8390 spin_lock(&pers_lock); 8391 if (md_cluster_ops != NULL) 8392 ret = -EALREADY; 8393 else { 8394 md_cluster_ops = ops; 8395 md_cluster_mod = module; 8396 } 8397 spin_unlock(&pers_lock); 8398 return ret; 8399 } 8400 EXPORT_SYMBOL(register_md_cluster_operations); 8401 8402 int unregister_md_cluster_operations(void) 8403 { 8404 spin_lock(&pers_lock); 8405 md_cluster_ops = NULL; 8406 spin_unlock(&pers_lock); 8407 return 0; 8408 } 8409 EXPORT_SYMBOL(unregister_md_cluster_operations); 8410 8411 int md_setup_cluster(struct mddev *mddev, int nodes) 8412 { 8413 int ret; 8414 if (!md_cluster_ops) 8415 request_module("md-cluster"); 8416 spin_lock(&pers_lock); 8417 /* ensure module won't be unloaded */ 8418 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8419 pr_warn("can't find md-cluster module or get its reference.\n"); 8420 spin_unlock(&pers_lock); 8421 return -ENOENT; 8422 } 8423 spin_unlock(&pers_lock); 8424 8425 ret = md_cluster_ops->join(mddev, nodes); 8426 if (!ret) 8427 mddev->safemode_delay = 0; 8428 return ret; 8429 } 8430 8431 void md_cluster_stop(struct mddev *mddev) 8432 { 8433 if (!md_cluster_ops) 8434 return; 8435 md_cluster_ops->leave(mddev); 8436 module_put(md_cluster_mod); 8437 } 8438 8439 static int is_mddev_idle(struct mddev *mddev, int init) 8440 { 8441 struct md_rdev *rdev; 8442 int idle; 8443 int curr_events; 8444 8445 idle = 1; 8446 rcu_read_lock(); 8447 rdev_for_each_rcu(rdev, mddev) { 8448 struct gendisk *disk = rdev->bdev->bd_disk; 8449 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8450 atomic_read(&disk->sync_io); 8451 /* sync IO will cause sync_io to increase before the disk_stats 8452 * as sync_io is counted when a request starts, and 8453 * disk_stats is counted when it completes. 8454 * So resync activity will cause curr_events to be smaller than 8455 * when there was no such activity. 8456 * non-sync IO will cause disk_stat to increase without 8457 * increasing sync_io so curr_events will (eventually) 8458 * be larger than it was before. Once it becomes 8459 * substantially larger, the test below will cause 8460 * the array to appear non-idle, and resync will slow 8461 * down. 8462 * If there is a lot of outstanding resync activity when 8463 * we set last_event to curr_events, then all that activity 8464 * completing might cause the array to appear non-idle 8465 * and resync will be slowed down even though there might 8466 * not have been non-resync activity. This will only 8467 * happen once though. 'last_events' will soon reflect 8468 * the state where there is little or no outstanding 8469 * resync requests, and further resync activity will 8470 * always make curr_events less than last_events. 8471 * 8472 */ 8473 if (init || curr_events - rdev->last_events > 64) { 8474 rdev->last_events = curr_events; 8475 idle = 0; 8476 } 8477 } 8478 rcu_read_unlock(); 8479 return idle; 8480 } 8481 8482 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8483 { 8484 /* another "blocks" (512byte) blocks have been synced */ 8485 atomic_sub(blocks, &mddev->recovery_active); 8486 wake_up(&mddev->recovery_wait); 8487 if (!ok) { 8488 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8489 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8490 md_wakeup_thread(mddev->thread); 8491 // stop recovery, signal do_sync .... 8492 } 8493 } 8494 EXPORT_SYMBOL(md_done_sync); 8495 8496 /* md_write_start(mddev, bi) 8497 * If we need to update some array metadata (e.g. 'active' flag 8498 * in superblock) before writing, schedule a superblock update 8499 * and wait for it to complete. 8500 * A return value of 'false' means that the write wasn't recorded 8501 * and cannot proceed as the array is being suspend. 8502 */ 8503 bool md_write_start(struct mddev *mddev, struct bio *bi) 8504 { 8505 int did_change = 0; 8506 8507 if (bio_data_dir(bi) != WRITE) 8508 return true; 8509 8510 BUG_ON(mddev->ro == 1); 8511 if (mddev->ro == 2) { 8512 /* need to switch to read/write */ 8513 mddev->ro = 0; 8514 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8515 md_wakeup_thread(mddev->thread); 8516 md_wakeup_thread(mddev->sync_thread); 8517 did_change = 1; 8518 } 8519 rcu_read_lock(); 8520 percpu_ref_get(&mddev->writes_pending); 8521 smp_mb(); /* Match smp_mb in set_in_sync() */ 8522 if (mddev->safemode == 1) 8523 mddev->safemode = 0; 8524 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8525 if (mddev->in_sync || mddev->sync_checkers) { 8526 spin_lock(&mddev->lock); 8527 if (mddev->in_sync) { 8528 mddev->in_sync = 0; 8529 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8530 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8531 md_wakeup_thread(mddev->thread); 8532 did_change = 1; 8533 } 8534 spin_unlock(&mddev->lock); 8535 } 8536 rcu_read_unlock(); 8537 if (did_change) 8538 sysfs_notify_dirent_safe(mddev->sysfs_state); 8539 if (!mddev->has_superblocks) 8540 return true; 8541 wait_event(mddev->sb_wait, 8542 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8543 mddev->suspended); 8544 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8545 percpu_ref_put(&mddev->writes_pending); 8546 return false; 8547 } 8548 return true; 8549 } 8550 EXPORT_SYMBOL(md_write_start); 8551 8552 /* md_write_inc can only be called when md_write_start() has 8553 * already been called at least once of the current request. 8554 * It increments the counter and is useful when a single request 8555 * is split into several parts. Each part causes an increment and 8556 * so needs a matching md_write_end(). 8557 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8558 * a spinlocked region. 8559 */ 8560 void md_write_inc(struct mddev *mddev, struct bio *bi) 8561 { 8562 if (bio_data_dir(bi) != WRITE) 8563 return; 8564 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8565 percpu_ref_get(&mddev->writes_pending); 8566 } 8567 EXPORT_SYMBOL(md_write_inc); 8568 8569 void md_write_end(struct mddev *mddev) 8570 { 8571 percpu_ref_put(&mddev->writes_pending); 8572 8573 if (mddev->safemode == 2) 8574 md_wakeup_thread(mddev->thread); 8575 else if (mddev->safemode_delay) 8576 /* The roundup() ensures this only performs locking once 8577 * every ->safemode_delay jiffies 8578 */ 8579 mod_timer(&mddev->safemode_timer, 8580 roundup(jiffies, mddev->safemode_delay) + 8581 mddev->safemode_delay); 8582 } 8583 8584 EXPORT_SYMBOL(md_write_end); 8585 8586 /* This is used by raid0 and raid10 */ 8587 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8588 struct bio *bio, sector_t start, sector_t size) 8589 { 8590 struct bio *discard_bio = NULL; 8591 8592 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8593 &discard_bio) || !discard_bio) 8594 return; 8595 8596 bio_chain(discard_bio, bio); 8597 bio_clone_blkg_association(discard_bio, bio); 8598 if (mddev->gendisk) 8599 trace_block_bio_remap(discard_bio, 8600 disk_devt(mddev->gendisk), 8601 bio->bi_iter.bi_sector); 8602 submit_bio_noacct(discard_bio); 8603 } 8604 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8605 8606 int acct_bioset_init(struct mddev *mddev) 8607 { 8608 int err = 0; 8609 8610 if (!bioset_initialized(&mddev->io_acct_set)) 8611 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 8612 offsetof(struct md_io_acct, bio_clone), 0); 8613 return err; 8614 } 8615 EXPORT_SYMBOL_GPL(acct_bioset_init); 8616 8617 void acct_bioset_exit(struct mddev *mddev) 8618 { 8619 bioset_exit(&mddev->io_acct_set); 8620 } 8621 EXPORT_SYMBOL_GPL(acct_bioset_exit); 8622 8623 static void md_end_io_acct(struct bio *bio) 8624 { 8625 struct md_io_acct *md_io_acct = bio->bi_private; 8626 struct bio *orig_bio = md_io_acct->orig_bio; 8627 8628 orig_bio->bi_status = bio->bi_status; 8629 8630 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8631 bio_put(bio); 8632 bio_endio(orig_bio); 8633 } 8634 8635 /* 8636 * Used by personalities that don't already clone the bio and thus can't 8637 * easily add the timestamp to their extended bio structure. 8638 */ 8639 void md_account_bio(struct mddev *mddev, struct bio **bio) 8640 { 8641 struct block_device *bdev = (*bio)->bi_bdev; 8642 struct md_io_acct *md_io_acct; 8643 struct bio *clone; 8644 8645 if (!blk_queue_io_stat(bdev->bd_disk->queue)) 8646 return; 8647 8648 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set); 8649 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8650 md_io_acct->orig_bio = *bio; 8651 md_io_acct->start_time = bio_start_io_acct(*bio); 8652 8653 clone->bi_end_io = md_end_io_acct; 8654 clone->bi_private = md_io_acct; 8655 *bio = clone; 8656 } 8657 EXPORT_SYMBOL_GPL(md_account_bio); 8658 8659 /* md_allow_write(mddev) 8660 * Calling this ensures that the array is marked 'active' so that writes 8661 * may proceed without blocking. It is important to call this before 8662 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8663 * Must be called with mddev_lock held. 8664 */ 8665 void md_allow_write(struct mddev *mddev) 8666 { 8667 if (!mddev->pers) 8668 return; 8669 if (mddev->ro) 8670 return; 8671 if (!mddev->pers->sync_request) 8672 return; 8673 8674 spin_lock(&mddev->lock); 8675 if (mddev->in_sync) { 8676 mddev->in_sync = 0; 8677 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8678 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8679 if (mddev->safemode_delay && 8680 mddev->safemode == 0) 8681 mddev->safemode = 1; 8682 spin_unlock(&mddev->lock); 8683 md_update_sb(mddev, 0); 8684 sysfs_notify_dirent_safe(mddev->sysfs_state); 8685 /* wait for the dirty state to be recorded in the metadata */ 8686 wait_event(mddev->sb_wait, 8687 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8688 } else 8689 spin_unlock(&mddev->lock); 8690 } 8691 EXPORT_SYMBOL_GPL(md_allow_write); 8692 8693 #define SYNC_MARKS 10 8694 #define SYNC_MARK_STEP (3*HZ) 8695 #define UPDATE_FREQUENCY (5*60*HZ) 8696 void md_do_sync(struct md_thread *thread) 8697 { 8698 struct mddev *mddev = thread->mddev; 8699 struct mddev *mddev2; 8700 unsigned int currspeed = 0, window; 8701 sector_t max_sectors,j, io_sectors, recovery_done; 8702 unsigned long mark[SYNC_MARKS]; 8703 unsigned long update_time; 8704 sector_t mark_cnt[SYNC_MARKS]; 8705 int last_mark,m; 8706 struct list_head *tmp; 8707 sector_t last_check; 8708 int skipped = 0; 8709 struct md_rdev *rdev; 8710 char *desc, *action = NULL; 8711 struct blk_plug plug; 8712 int ret; 8713 8714 /* just incase thread restarts... */ 8715 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8716 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8717 return; 8718 if (mddev->ro) {/* never try to sync a read-only array */ 8719 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8720 return; 8721 } 8722 8723 if (mddev_is_clustered(mddev)) { 8724 ret = md_cluster_ops->resync_start(mddev); 8725 if (ret) 8726 goto skip; 8727 8728 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8729 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8730 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8731 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8732 && ((unsigned long long)mddev->curr_resync_completed 8733 < (unsigned long long)mddev->resync_max_sectors)) 8734 goto skip; 8735 } 8736 8737 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8738 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8739 desc = "data-check"; 8740 action = "check"; 8741 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8742 desc = "requested-resync"; 8743 action = "repair"; 8744 } else 8745 desc = "resync"; 8746 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8747 desc = "reshape"; 8748 else 8749 desc = "recovery"; 8750 8751 mddev->last_sync_action = action ?: desc; 8752 8753 /* we overload curr_resync somewhat here. 8754 * 0 == not engaged in resync at all 8755 * 2 == checking that there is no conflict with another sync 8756 * 1 == like 2, but have yielded to allow conflicting resync to 8757 * commence 8758 * other == active in resync - this many blocks 8759 * 8760 * Before starting a resync we must have set curr_resync to 8761 * 2, and then checked that every "conflicting" array has curr_resync 8762 * less than ours. When we find one that is the same or higher 8763 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8764 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8765 * This will mean we have to start checking from the beginning again. 8766 * 8767 */ 8768 8769 do { 8770 int mddev2_minor = -1; 8771 mddev->curr_resync = 2; 8772 8773 try_again: 8774 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8775 goto skip; 8776 for_each_mddev(mddev2, tmp) { 8777 if (mddev2 == mddev) 8778 continue; 8779 if (!mddev->parallel_resync 8780 && mddev2->curr_resync 8781 && match_mddev_units(mddev, mddev2)) { 8782 DEFINE_WAIT(wq); 8783 if (mddev < mddev2 && mddev->curr_resync == 2) { 8784 /* arbitrarily yield */ 8785 mddev->curr_resync = 1; 8786 wake_up(&resync_wait); 8787 } 8788 if (mddev > mddev2 && mddev->curr_resync == 1) 8789 /* no need to wait here, we can wait the next 8790 * time 'round when curr_resync == 2 8791 */ 8792 continue; 8793 /* We need to wait 'interruptible' so as not to 8794 * contribute to the load average, and not to 8795 * be caught by 'softlockup' 8796 */ 8797 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8798 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8799 mddev2->curr_resync >= mddev->curr_resync) { 8800 if (mddev2_minor != mddev2->md_minor) { 8801 mddev2_minor = mddev2->md_minor; 8802 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8803 desc, mdname(mddev), 8804 mdname(mddev2)); 8805 } 8806 mddev_put(mddev2); 8807 if (signal_pending(current)) 8808 flush_signals(current); 8809 schedule(); 8810 finish_wait(&resync_wait, &wq); 8811 goto try_again; 8812 } 8813 finish_wait(&resync_wait, &wq); 8814 } 8815 } 8816 } while (mddev->curr_resync < 2); 8817 8818 j = 0; 8819 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8820 /* resync follows the size requested by the personality, 8821 * which defaults to physical size, but can be virtual size 8822 */ 8823 max_sectors = mddev->resync_max_sectors; 8824 atomic64_set(&mddev->resync_mismatches, 0); 8825 /* we don't use the checkpoint if there's a bitmap */ 8826 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8827 j = mddev->resync_min; 8828 else if (!mddev->bitmap) 8829 j = mddev->recovery_cp; 8830 8831 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8832 max_sectors = mddev->resync_max_sectors; 8833 /* 8834 * If the original node aborts reshaping then we continue the 8835 * reshaping, so set j again to avoid restart reshape from the 8836 * first beginning 8837 */ 8838 if (mddev_is_clustered(mddev) && 8839 mddev->reshape_position != MaxSector) 8840 j = mddev->reshape_position; 8841 } else { 8842 /* recovery follows the physical size of devices */ 8843 max_sectors = mddev->dev_sectors; 8844 j = MaxSector; 8845 rcu_read_lock(); 8846 rdev_for_each_rcu(rdev, mddev) 8847 if (rdev->raid_disk >= 0 && 8848 !test_bit(Journal, &rdev->flags) && 8849 !test_bit(Faulty, &rdev->flags) && 8850 !test_bit(In_sync, &rdev->flags) && 8851 rdev->recovery_offset < j) 8852 j = rdev->recovery_offset; 8853 rcu_read_unlock(); 8854 8855 /* If there is a bitmap, we need to make sure all 8856 * writes that started before we added a spare 8857 * complete before we start doing a recovery. 8858 * Otherwise the write might complete and (via 8859 * bitmap_endwrite) set a bit in the bitmap after the 8860 * recovery has checked that bit and skipped that 8861 * region. 8862 */ 8863 if (mddev->bitmap) { 8864 mddev->pers->quiesce(mddev, 1); 8865 mddev->pers->quiesce(mddev, 0); 8866 } 8867 } 8868 8869 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8870 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8871 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8872 speed_max(mddev), desc); 8873 8874 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8875 8876 io_sectors = 0; 8877 for (m = 0; m < SYNC_MARKS; m++) { 8878 mark[m] = jiffies; 8879 mark_cnt[m] = io_sectors; 8880 } 8881 last_mark = 0; 8882 mddev->resync_mark = mark[last_mark]; 8883 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8884 8885 /* 8886 * Tune reconstruction: 8887 */ 8888 window = 32 * (PAGE_SIZE / 512); 8889 pr_debug("md: using %dk window, over a total of %lluk.\n", 8890 window/2, (unsigned long long)max_sectors/2); 8891 8892 atomic_set(&mddev->recovery_active, 0); 8893 last_check = 0; 8894 8895 if (j>2) { 8896 pr_debug("md: resuming %s of %s from checkpoint.\n", 8897 desc, mdname(mddev)); 8898 mddev->curr_resync = j; 8899 } else 8900 mddev->curr_resync = 3; /* no longer delayed */ 8901 mddev->curr_resync_completed = j; 8902 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8903 md_new_event(); 8904 update_time = jiffies; 8905 8906 blk_start_plug(&plug); 8907 while (j < max_sectors) { 8908 sector_t sectors; 8909 8910 skipped = 0; 8911 8912 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8913 ((mddev->curr_resync > mddev->curr_resync_completed && 8914 (mddev->curr_resync - mddev->curr_resync_completed) 8915 > (max_sectors >> 4)) || 8916 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8917 (j - mddev->curr_resync_completed)*2 8918 >= mddev->resync_max - mddev->curr_resync_completed || 8919 mddev->curr_resync_completed > mddev->resync_max 8920 )) { 8921 /* time to update curr_resync_completed */ 8922 wait_event(mddev->recovery_wait, 8923 atomic_read(&mddev->recovery_active) == 0); 8924 mddev->curr_resync_completed = j; 8925 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8926 j > mddev->recovery_cp) 8927 mddev->recovery_cp = j; 8928 update_time = jiffies; 8929 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8930 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8931 } 8932 8933 while (j >= mddev->resync_max && 8934 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8935 /* As this condition is controlled by user-space, 8936 * we can block indefinitely, so use '_interruptible' 8937 * to avoid triggering warnings. 8938 */ 8939 flush_signals(current); /* just in case */ 8940 wait_event_interruptible(mddev->recovery_wait, 8941 mddev->resync_max > j 8942 || test_bit(MD_RECOVERY_INTR, 8943 &mddev->recovery)); 8944 } 8945 8946 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8947 break; 8948 8949 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8950 if (sectors == 0) { 8951 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8952 break; 8953 } 8954 8955 if (!skipped) { /* actual IO requested */ 8956 io_sectors += sectors; 8957 atomic_add(sectors, &mddev->recovery_active); 8958 } 8959 8960 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8961 break; 8962 8963 j += sectors; 8964 if (j > max_sectors) 8965 /* when skipping, extra large numbers can be returned. */ 8966 j = max_sectors; 8967 if (j > 2) 8968 mddev->curr_resync = j; 8969 mddev->curr_mark_cnt = io_sectors; 8970 if (last_check == 0) 8971 /* this is the earliest that rebuild will be 8972 * visible in /proc/mdstat 8973 */ 8974 md_new_event(); 8975 8976 if (last_check + window > io_sectors || j == max_sectors) 8977 continue; 8978 8979 last_check = io_sectors; 8980 repeat: 8981 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8982 /* step marks */ 8983 int next = (last_mark+1) % SYNC_MARKS; 8984 8985 mddev->resync_mark = mark[next]; 8986 mddev->resync_mark_cnt = mark_cnt[next]; 8987 mark[next] = jiffies; 8988 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8989 last_mark = next; 8990 } 8991 8992 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8993 break; 8994 8995 /* 8996 * this loop exits only if either when we are slower than 8997 * the 'hard' speed limit, or the system was IO-idle for 8998 * a jiffy. 8999 * the system might be non-idle CPU-wise, but we only care 9000 * about not overloading the IO subsystem. (things like an 9001 * e2fsck being done on the RAID array should execute fast) 9002 */ 9003 cond_resched(); 9004 9005 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9006 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9007 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9008 9009 if (currspeed > speed_min(mddev)) { 9010 if (currspeed > speed_max(mddev)) { 9011 msleep(500); 9012 goto repeat; 9013 } 9014 if (!is_mddev_idle(mddev, 0)) { 9015 /* 9016 * Give other IO more of a chance. 9017 * The faster the devices, the less we wait. 9018 */ 9019 wait_event(mddev->recovery_wait, 9020 !atomic_read(&mddev->recovery_active)); 9021 } 9022 } 9023 } 9024 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9025 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9026 ? "interrupted" : "done"); 9027 /* 9028 * this also signals 'finished resyncing' to md_stop 9029 */ 9030 blk_finish_plug(&plug); 9031 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9032 9033 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9034 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9035 mddev->curr_resync > 3) { 9036 mddev->curr_resync_completed = mddev->curr_resync; 9037 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9038 } 9039 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9040 9041 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9042 mddev->curr_resync > 3) { 9043 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9044 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9045 if (mddev->curr_resync >= mddev->recovery_cp) { 9046 pr_debug("md: checkpointing %s of %s.\n", 9047 desc, mdname(mddev)); 9048 if (test_bit(MD_RECOVERY_ERROR, 9049 &mddev->recovery)) 9050 mddev->recovery_cp = 9051 mddev->curr_resync_completed; 9052 else 9053 mddev->recovery_cp = 9054 mddev->curr_resync; 9055 } 9056 } else 9057 mddev->recovery_cp = MaxSector; 9058 } else { 9059 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9060 mddev->curr_resync = MaxSector; 9061 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9062 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9063 rcu_read_lock(); 9064 rdev_for_each_rcu(rdev, mddev) 9065 if (rdev->raid_disk >= 0 && 9066 mddev->delta_disks >= 0 && 9067 !test_bit(Journal, &rdev->flags) && 9068 !test_bit(Faulty, &rdev->flags) && 9069 !test_bit(In_sync, &rdev->flags) && 9070 rdev->recovery_offset < mddev->curr_resync) 9071 rdev->recovery_offset = mddev->curr_resync; 9072 rcu_read_unlock(); 9073 } 9074 } 9075 } 9076 skip: 9077 /* set CHANGE_PENDING here since maybe another update is needed, 9078 * so other nodes are informed. It should be harmless for normal 9079 * raid */ 9080 set_mask_bits(&mddev->sb_flags, 0, 9081 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9082 9083 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9084 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9085 mddev->delta_disks > 0 && 9086 mddev->pers->finish_reshape && 9087 mddev->pers->size && 9088 mddev->queue) { 9089 mddev_lock_nointr(mddev); 9090 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9091 mddev_unlock(mddev); 9092 if (!mddev_is_clustered(mddev)) 9093 set_capacity_and_notify(mddev->gendisk, 9094 mddev->array_sectors); 9095 } 9096 9097 spin_lock(&mddev->lock); 9098 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9099 /* We completed so min/max setting can be forgotten if used. */ 9100 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9101 mddev->resync_min = 0; 9102 mddev->resync_max = MaxSector; 9103 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9104 mddev->resync_min = mddev->curr_resync_completed; 9105 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9106 mddev->curr_resync = 0; 9107 spin_unlock(&mddev->lock); 9108 9109 wake_up(&resync_wait); 9110 md_wakeup_thread(mddev->thread); 9111 return; 9112 } 9113 EXPORT_SYMBOL_GPL(md_do_sync); 9114 9115 static int remove_and_add_spares(struct mddev *mddev, 9116 struct md_rdev *this) 9117 { 9118 struct md_rdev *rdev; 9119 int spares = 0; 9120 int removed = 0; 9121 bool remove_some = false; 9122 9123 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9124 /* Mustn't remove devices when resync thread is running */ 9125 return 0; 9126 9127 rdev_for_each(rdev, mddev) { 9128 if ((this == NULL || rdev == this) && 9129 rdev->raid_disk >= 0 && 9130 !test_bit(Blocked, &rdev->flags) && 9131 test_bit(Faulty, &rdev->flags) && 9132 atomic_read(&rdev->nr_pending)==0) { 9133 /* Faulty non-Blocked devices with nr_pending == 0 9134 * never get nr_pending incremented, 9135 * never get Faulty cleared, and never get Blocked set. 9136 * So we can synchronize_rcu now rather than once per device 9137 */ 9138 remove_some = true; 9139 set_bit(RemoveSynchronized, &rdev->flags); 9140 } 9141 } 9142 9143 if (remove_some) 9144 synchronize_rcu(); 9145 rdev_for_each(rdev, mddev) { 9146 if ((this == NULL || rdev == this) && 9147 rdev->raid_disk >= 0 && 9148 !test_bit(Blocked, &rdev->flags) && 9149 ((test_bit(RemoveSynchronized, &rdev->flags) || 9150 (!test_bit(In_sync, &rdev->flags) && 9151 !test_bit(Journal, &rdev->flags))) && 9152 atomic_read(&rdev->nr_pending)==0)) { 9153 if (mddev->pers->hot_remove_disk( 9154 mddev, rdev) == 0) { 9155 sysfs_unlink_rdev(mddev, rdev); 9156 rdev->saved_raid_disk = rdev->raid_disk; 9157 rdev->raid_disk = -1; 9158 removed++; 9159 } 9160 } 9161 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9162 clear_bit(RemoveSynchronized, &rdev->flags); 9163 } 9164 9165 if (removed && mddev->kobj.sd) 9166 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9167 9168 if (this && removed) 9169 goto no_add; 9170 9171 rdev_for_each(rdev, mddev) { 9172 if (this && this != rdev) 9173 continue; 9174 if (test_bit(Candidate, &rdev->flags)) 9175 continue; 9176 if (rdev->raid_disk >= 0 && 9177 !test_bit(In_sync, &rdev->flags) && 9178 !test_bit(Journal, &rdev->flags) && 9179 !test_bit(Faulty, &rdev->flags)) 9180 spares++; 9181 if (rdev->raid_disk >= 0) 9182 continue; 9183 if (test_bit(Faulty, &rdev->flags)) 9184 continue; 9185 if (!test_bit(Journal, &rdev->flags)) { 9186 if (mddev->ro && 9187 ! (rdev->saved_raid_disk >= 0 && 9188 !test_bit(Bitmap_sync, &rdev->flags))) 9189 continue; 9190 9191 rdev->recovery_offset = 0; 9192 } 9193 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9194 /* failure here is OK */ 9195 sysfs_link_rdev(mddev, rdev); 9196 if (!test_bit(Journal, &rdev->flags)) 9197 spares++; 9198 md_new_event(); 9199 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9200 } 9201 } 9202 no_add: 9203 if (removed) 9204 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9205 return spares; 9206 } 9207 9208 static void md_start_sync(struct work_struct *ws) 9209 { 9210 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9211 9212 mddev->sync_thread = md_register_thread(md_do_sync, 9213 mddev, 9214 "resync"); 9215 if (!mddev->sync_thread) { 9216 pr_warn("%s: could not start resync thread...\n", 9217 mdname(mddev)); 9218 /* leave the spares where they are, it shouldn't hurt */ 9219 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9220 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9221 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9222 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9223 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9224 wake_up(&resync_wait); 9225 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9226 &mddev->recovery)) 9227 if (mddev->sysfs_action) 9228 sysfs_notify_dirent_safe(mddev->sysfs_action); 9229 } else 9230 md_wakeup_thread(mddev->sync_thread); 9231 sysfs_notify_dirent_safe(mddev->sysfs_action); 9232 md_new_event(); 9233 } 9234 9235 /* 9236 * This routine is regularly called by all per-raid-array threads to 9237 * deal with generic issues like resync and super-block update. 9238 * Raid personalities that don't have a thread (linear/raid0) do not 9239 * need this as they never do any recovery or update the superblock. 9240 * 9241 * It does not do any resync itself, but rather "forks" off other threads 9242 * to do that as needed. 9243 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9244 * "->recovery" and create a thread at ->sync_thread. 9245 * When the thread finishes it sets MD_RECOVERY_DONE 9246 * and wakeups up this thread which will reap the thread and finish up. 9247 * This thread also removes any faulty devices (with nr_pending == 0). 9248 * 9249 * The overall approach is: 9250 * 1/ if the superblock needs updating, update it. 9251 * 2/ If a recovery thread is running, don't do anything else. 9252 * 3/ If recovery has finished, clean up, possibly marking spares active. 9253 * 4/ If there are any faulty devices, remove them. 9254 * 5/ If array is degraded, try to add spares devices 9255 * 6/ If array has spares or is not in-sync, start a resync thread. 9256 */ 9257 void md_check_recovery(struct mddev *mddev) 9258 { 9259 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9260 /* Write superblock - thread that called mddev_suspend() 9261 * holds reconfig_mutex for us. 9262 */ 9263 set_bit(MD_UPDATING_SB, &mddev->flags); 9264 smp_mb__after_atomic(); 9265 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9266 md_update_sb(mddev, 0); 9267 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9268 wake_up(&mddev->sb_wait); 9269 } 9270 9271 if (mddev->suspended) 9272 return; 9273 9274 if (mddev->bitmap) 9275 md_bitmap_daemon_work(mddev); 9276 9277 if (signal_pending(current)) { 9278 if (mddev->pers->sync_request && !mddev->external) { 9279 pr_debug("md: %s in immediate safe mode\n", 9280 mdname(mddev)); 9281 mddev->safemode = 2; 9282 } 9283 flush_signals(current); 9284 } 9285 9286 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9287 return; 9288 if ( ! ( 9289 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9290 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9291 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9292 (mddev->external == 0 && mddev->safemode == 1) || 9293 (mddev->safemode == 2 9294 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9295 )) 9296 return; 9297 9298 if (mddev_trylock(mddev)) { 9299 int spares = 0; 9300 bool try_set_sync = mddev->safemode != 0; 9301 9302 if (!mddev->external && mddev->safemode == 1) 9303 mddev->safemode = 0; 9304 9305 if (mddev->ro) { 9306 struct md_rdev *rdev; 9307 if (!mddev->external && mddev->in_sync) 9308 /* 'Blocked' flag not needed as failed devices 9309 * will be recorded if array switched to read/write. 9310 * Leaving it set will prevent the device 9311 * from being removed. 9312 */ 9313 rdev_for_each(rdev, mddev) 9314 clear_bit(Blocked, &rdev->flags); 9315 /* On a read-only array we can: 9316 * - remove failed devices 9317 * - add already-in_sync devices if the array itself 9318 * is in-sync. 9319 * As we only add devices that are already in-sync, 9320 * we can activate the spares immediately. 9321 */ 9322 remove_and_add_spares(mddev, NULL); 9323 /* There is no thread, but we need to call 9324 * ->spare_active and clear saved_raid_disk 9325 */ 9326 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9327 md_reap_sync_thread(mddev); 9328 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9329 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9330 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9331 goto unlock; 9332 } 9333 9334 if (mddev_is_clustered(mddev)) { 9335 struct md_rdev *rdev, *tmp; 9336 /* kick the device if another node issued a 9337 * remove disk. 9338 */ 9339 rdev_for_each_safe(rdev, tmp, mddev) { 9340 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9341 rdev->raid_disk < 0) 9342 md_kick_rdev_from_array(rdev); 9343 } 9344 } 9345 9346 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9347 spin_lock(&mddev->lock); 9348 set_in_sync(mddev); 9349 spin_unlock(&mddev->lock); 9350 } 9351 9352 if (mddev->sb_flags) 9353 md_update_sb(mddev, 0); 9354 9355 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9356 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9357 /* resync/recovery still happening */ 9358 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9359 goto unlock; 9360 } 9361 if (mddev->sync_thread) { 9362 md_reap_sync_thread(mddev); 9363 goto unlock; 9364 } 9365 /* Set RUNNING before clearing NEEDED to avoid 9366 * any transients in the value of "sync_action". 9367 */ 9368 mddev->curr_resync_completed = 0; 9369 spin_lock(&mddev->lock); 9370 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9371 spin_unlock(&mddev->lock); 9372 /* Clear some bits that don't mean anything, but 9373 * might be left set 9374 */ 9375 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9376 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9377 9378 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9379 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9380 goto not_running; 9381 /* no recovery is running. 9382 * remove any failed drives, then 9383 * add spares if possible. 9384 * Spares are also removed and re-added, to allow 9385 * the personality to fail the re-add. 9386 */ 9387 9388 if (mddev->reshape_position != MaxSector) { 9389 if (mddev->pers->check_reshape == NULL || 9390 mddev->pers->check_reshape(mddev) != 0) 9391 /* Cannot proceed */ 9392 goto not_running; 9393 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9394 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9395 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9396 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9397 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9398 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9399 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9400 } else if (mddev->recovery_cp < MaxSector) { 9401 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9402 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9403 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9404 /* nothing to be done ... */ 9405 goto not_running; 9406 9407 if (mddev->pers->sync_request) { 9408 if (spares) { 9409 /* We are adding a device or devices to an array 9410 * which has the bitmap stored on all devices. 9411 * So make sure all bitmap pages get written 9412 */ 9413 md_bitmap_write_all(mddev->bitmap); 9414 } 9415 INIT_WORK(&mddev->del_work, md_start_sync); 9416 queue_work(md_misc_wq, &mddev->del_work); 9417 goto unlock; 9418 } 9419 not_running: 9420 if (!mddev->sync_thread) { 9421 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9422 wake_up(&resync_wait); 9423 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9424 &mddev->recovery)) 9425 if (mddev->sysfs_action) 9426 sysfs_notify_dirent_safe(mddev->sysfs_action); 9427 } 9428 unlock: 9429 wake_up(&mddev->sb_wait); 9430 mddev_unlock(mddev); 9431 } 9432 } 9433 EXPORT_SYMBOL(md_check_recovery); 9434 9435 void md_reap_sync_thread(struct mddev *mddev) 9436 { 9437 struct md_rdev *rdev; 9438 sector_t old_dev_sectors = mddev->dev_sectors; 9439 bool is_reshaped = false; 9440 9441 /* resync has finished, collect result */ 9442 md_unregister_thread(&mddev->sync_thread); 9443 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9444 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9445 mddev->degraded != mddev->raid_disks) { 9446 /* success...*/ 9447 /* activate any spares */ 9448 if (mddev->pers->spare_active(mddev)) { 9449 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9450 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9451 } 9452 } 9453 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9454 mddev->pers->finish_reshape) { 9455 mddev->pers->finish_reshape(mddev); 9456 if (mddev_is_clustered(mddev)) 9457 is_reshaped = true; 9458 } 9459 9460 /* If array is no-longer degraded, then any saved_raid_disk 9461 * information must be scrapped. 9462 */ 9463 if (!mddev->degraded) 9464 rdev_for_each(rdev, mddev) 9465 rdev->saved_raid_disk = -1; 9466 9467 md_update_sb(mddev, 1); 9468 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9469 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9470 * clustered raid */ 9471 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9472 md_cluster_ops->resync_finish(mddev); 9473 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9474 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9475 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9476 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9477 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9478 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9479 /* 9480 * We call md_cluster_ops->update_size here because sync_size could 9481 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9482 * so it is time to update size across cluster. 9483 */ 9484 if (mddev_is_clustered(mddev) && is_reshaped 9485 && !test_bit(MD_CLOSING, &mddev->flags)) 9486 md_cluster_ops->update_size(mddev, old_dev_sectors); 9487 wake_up(&resync_wait); 9488 /* flag recovery needed just to double check */ 9489 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9490 sysfs_notify_dirent_safe(mddev->sysfs_action); 9491 md_new_event(); 9492 if (mddev->event_work.func) 9493 queue_work(md_misc_wq, &mddev->event_work); 9494 } 9495 EXPORT_SYMBOL(md_reap_sync_thread); 9496 9497 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9498 { 9499 sysfs_notify_dirent_safe(rdev->sysfs_state); 9500 wait_event_timeout(rdev->blocked_wait, 9501 !test_bit(Blocked, &rdev->flags) && 9502 !test_bit(BlockedBadBlocks, &rdev->flags), 9503 msecs_to_jiffies(5000)); 9504 rdev_dec_pending(rdev, mddev); 9505 } 9506 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9507 9508 void md_finish_reshape(struct mddev *mddev) 9509 { 9510 /* called be personality module when reshape completes. */ 9511 struct md_rdev *rdev; 9512 9513 rdev_for_each(rdev, mddev) { 9514 if (rdev->data_offset > rdev->new_data_offset) 9515 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9516 else 9517 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9518 rdev->data_offset = rdev->new_data_offset; 9519 } 9520 } 9521 EXPORT_SYMBOL(md_finish_reshape); 9522 9523 /* Bad block management */ 9524 9525 /* Returns 1 on success, 0 on failure */ 9526 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9527 int is_new) 9528 { 9529 struct mddev *mddev = rdev->mddev; 9530 int rv; 9531 if (is_new) 9532 s += rdev->new_data_offset; 9533 else 9534 s += rdev->data_offset; 9535 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9536 if (rv == 0) { 9537 /* Make sure they get written out promptly */ 9538 if (test_bit(ExternalBbl, &rdev->flags)) 9539 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9540 sysfs_notify_dirent_safe(rdev->sysfs_state); 9541 set_mask_bits(&mddev->sb_flags, 0, 9542 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9543 md_wakeup_thread(rdev->mddev->thread); 9544 return 1; 9545 } else 9546 return 0; 9547 } 9548 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9549 9550 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9551 int is_new) 9552 { 9553 int rv; 9554 if (is_new) 9555 s += rdev->new_data_offset; 9556 else 9557 s += rdev->data_offset; 9558 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9559 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9560 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9561 return rv; 9562 } 9563 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9564 9565 static int md_notify_reboot(struct notifier_block *this, 9566 unsigned long code, void *x) 9567 { 9568 struct list_head *tmp; 9569 struct mddev *mddev; 9570 int need_delay = 0; 9571 9572 for_each_mddev(mddev, tmp) { 9573 if (mddev_trylock(mddev)) { 9574 if (mddev->pers) 9575 __md_stop_writes(mddev); 9576 if (mddev->persistent) 9577 mddev->safemode = 2; 9578 mddev_unlock(mddev); 9579 } 9580 need_delay = 1; 9581 } 9582 /* 9583 * certain more exotic SCSI devices are known to be 9584 * volatile wrt too early system reboots. While the 9585 * right place to handle this issue is the given 9586 * driver, we do want to have a safe RAID driver ... 9587 */ 9588 if (need_delay) 9589 msleep(1000); 9590 9591 return NOTIFY_DONE; 9592 } 9593 9594 static struct notifier_block md_notifier = { 9595 .notifier_call = md_notify_reboot, 9596 .next = NULL, 9597 .priority = INT_MAX, /* before any real devices */ 9598 }; 9599 9600 static void md_geninit(void) 9601 { 9602 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9603 9604 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9605 } 9606 9607 static int __init md_init(void) 9608 { 9609 int ret = -ENOMEM; 9610 9611 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9612 if (!md_wq) 9613 goto err_wq; 9614 9615 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9616 if (!md_misc_wq) 9617 goto err_misc_wq; 9618 9619 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9620 if (!md_rdev_misc_wq) 9621 goto err_rdev_misc_wq; 9622 9623 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9624 if (ret < 0) 9625 goto err_md; 9626 9627 ret = __register_blkdev(0, "mdp", md_probe); 9628 if (ret < 0) 9629 goto err_mdp; 9630 mdp_major = ret; 9631 9632 register_reboot_notifier(&md_notifier); 9633 raid_table_header = register_sysctl_table(raid_root_table); 9634 9635 md_geninit(); 9636 return 0; 9637 9638 err_mdp: 9639 unregister_blkdev(MD_MAJOR, "md"); 9640 err_md: 9641 destroy_workqueue(md_rdev_misc_wq); 9642 err_rdev_misc_wq: 9643 destroy_workqueue(md_misc_wq); 9644 err_misc_wq: 9645 destroy_workqueue(md_wq); 9646 err_wq: 9647 return ret; 9648 } 9649 9650 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9651 { 9652 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9653 struct md_rdev *rdev2, *tmp; 9654 int role, ret; 9655 char b[BDEVNAME_SIZE]; 9656 9657 /* 9658 * If size is changed in another node then we need to 9659 * do resize as well. 9660 */ 9661 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9662 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9663 if (ret) 9664 pr_info("md-cluster: resize failed\n"); 9665 else 9666 md_bitmap_update_sb(mddev->bitmap); 9667 } 9668 9669 /* Check for change of roles in the active devices */ 9670 rdev_for_each_safe(rdev2, tmp, mddev) { 9671 if (test_bit(Faulty, &rdev2->flags)) 9672 continue; 9673 9674 /* Check if the roles changed */ 9675 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9676 9677 if (test_bit(Candidate, &rdev2->flags)) { 9678 if (role == MD_DISK_ROLE_FAULTY) { 9679 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9680 md_kick_rdev_from_array(rdev2); 9681 continue; 9682 } 9683 else 9684 clear_bit(Candidate, &rdev2->flags); 9685 } 9686 9687 if (role != rdev2->raid_disk) { 9688 /* 9689 * got activated except reshape is happening. 9690 */ 9691 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9692 !(le32_to_cpu(sb->feature_map) & 9693 MD_FEATURE_RESHAPE_ACTIVE)) { 9694 rdev2->saved_raid_disk = role; 9695 ret = remove_and_add_spares(mddev, rdev2); 9696 pr_info("Activated spare: %s\n", 9697 bdevname(rdev2->bdev,b)); 9698 /* wakeup mddev->thread here, so array could 9699 * perform resync with the new activated disk */ 9700 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9701 md_wakeup_thread(mddev->thread); 9702 } 9703 /* device faulty 9704 * We just want to do the minimum to mark the disk 9705 * as faulty. The recovery is performed by the 9706 * one who initiated the error. 9707 */ 9708 if (role == MD_DISK_ROLE_FAULTY || 9709 role == MD_DISK_ROLE_JOURNAL) { 9710 md_error(mddev, rdev2); 9711 clear_bit(Blocked, &rdev2->flags); 9712 } 9713 } 9714 } 9715 9716 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9717 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9718 if (ret) 9719 pr_warn("md: updating array disks failed. %d\n", ret); 9720 } 9721 9722 /* 9723 * Since mddev->delta_disks has already updated in update_raid_disks, 9724 * so it is time to check reshape. 9725 */ 9726 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9727 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9728 /* 9729 * reshape is happening in the remote node, we need to 9730 * update reshape_position and call start_reshape. 9731 */ 9732 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9733 if (mddev->pers->update_reshape_pos) 9734 mddev->pers->update_reshape_pos(mddev); 9735 if (mddev->pers->start_reshape) 9736 mddev->pers->start_reshape(mddev); 9737 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9738 mddev->reshape_position != MaxSector && 9739 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9740 /* reshape is just done in another node. */ 9741 mddev->reshape_position = MaxSector; 9742 if (mddev->pers->update_reshape_pos) 9743 mddev->pers->update_reshape_pos(mddev); 9744 } 9745 9746 /* Finally set the event to be up to date */ 9747 mddev->events = le64_to_cpu(sb->events); 9748 } 9749 9750 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9751 { 9752 int err; 9753 struct page *swapout = rdev->sb_page; 9754 struct mdp_superblock_1 *sb; 9755 9756 /* Store the sb page of the rdev in the swapout temporary 9757 * variable in case we err in the future 9758 */ 9759 rdev->sb_page = NULL; 9760 err = alloc_disk_sb(rdev); 9761 if (err == 0) { 9762 ClearPageUptodate(rdev->sb_page); 9763 rdev->sb_loaded = 0; 9764 err = super_types[mddev->major_version]. 9765 load_super(rdev, NULL, mddev->minor_version); 9766 } 9767 if (err < 0) { 9768 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9769 __func__, __LINE__, rdev->desc_nr, err); 9770 if (rdev->sb_page) 9771 put_page(rdev->sb_page); 9772 rdev->sb_page = swapout; 9773 rdev->sb_loaded = 1; 9774 return err; 9775 } 9776 9777 sb = page_address(rdev->sb_page); 9778 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9779 * is not set 9780 */ 9781 9782 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9783 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9784 9785 /* The other node finished recovery, call spare_active to set 9786 * device In_sync and mddev->degraded 9787 */ 9788 if (rdev->recovery_offset == MaxSector && 9789 !test_bit(In_sync, &rdev->flags) && 9790 mddev->pers->spare_active(mddev)) 9791 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9792 9793 put_page(swapout); 9794 return 0; 9795 } 9796 9797 void md_reload_sb(struct mddev *mddev, int nr) 9798 { 9799 struct md_rdev *rdev = NULL, *iter; 9800 int err; 9801 9802 /* Find the rdev */ 9803 rdev_for_each_rcu(iter, mddev) { 9804 if (iter->desc_nr == nr) { 9805 rdev = iter; 9806 break; 9807 } 9808 } 9809 9810 if (!rdev) { 9811 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9812 return; 9813 } 9814 9815 err = read_rdev(mddev, rdev); 9816 if (err < 0) 9817 return; 9818 9819 check_sb_changes(mddev, rdev); 9820 9821 /* Read all rdev's to update recovery_offset */ 9822 rdev_for_each_rcu(rdev, mddev) { 9823 if (!test_bit(Faulty, &rdev->flags)) 9824 read_rdev(mddev, rdev); 9825 } 9826 } 9827 EXPORT_SYMBOL(md_reload_sb); 9828 9829 #ifndef MODULE 9830 9831 /* 9832 * Searches all registered partitions for autorun RAID arrays 9833 * at boot time. 9834 */ 9835 9836 static DEFINE_MUTEX(detected_devices_mutex); 9837 static LIST_HEAD(all_detected_devices); 9838 struct detected_devices_node { 9839 struct list_head list; 9840 dev_t dev; 9841 }; 9842 9843 void md_autodetect_dev(dev_t dev) 9844 { 9845 struct detected_devices_node *node_detected_dev; 9846 9847 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9848 if (node_detected_dev) { 9849 node_detected_dev->dev = dev; 9850 mutex_lock(&detected_devices_mutex); 9851 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9852 mutex_unlock(&detected_devices_mutex); 9853 } 9854 } 9855 9856 void md_autostart_arrays(int part) 9857 { 9858 struct md_rdev *rdev; 9859 struct detected_devices_node *node_detected_dev; 9860 dev_t dev; 9861 int i_scanned, i_passed; 9862 9863 i_scanned = 0; 9864 i_passed = 0; 9865 9866 pr_info("md: Autodetecting RAID arrays.\n"); 9867 9868 mutex_lock(&detected_devices_mutex); 9869 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9870 i_scanned++; 9871 node_detected_dev = list_entry(all_detected_devices.next, 9872 struct detected_devices_node, list); 9873 list_del(&node_detected_dev->list); 9874 dev = node_detected_dev->dev; 9875 kfree(node_detected_dev); 9876 mutex_unlock(&detected_devices_mutex); 9877 rdev = md_import_device(dev,0, 90); 9878 mutex_lock(&detected_devices_mutex); 9879 if (IS_ERR(rdev)) 9880 continue; 9881 9882 if (test_bit(Faulty, &rdev->flags)) 9883 continue; 9884 9885 set_bit(AutoDetected, &rdev->flags); 9886 list_add(&rdev->same_set, &pending_raid_disks); 9887 i_passed++; 9888 } 9889 mutex_unlock(&detected_devices_mutex); 9890 9891 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9892 9893 autorun_devices(part); 9894 } 9895 9896 #endif /* !MODULE */ 9897 9898 static __exit void md_exit(void) 9899 { 9900 struct mddev *mddev; 9901 struct list_head *tmp; 9902 int delay = 1; 9903 9904 unregister_blkdev(MD_MAJOR,"md"); 9905 unregister_blkdev(mdp_major, "mdp"); 9906 unregister_reboot_notifier(&md_notifier); 9907 unregister_sysctl_table(raid_table_header); 9908 9909 /* We cannot unload the modules while some process is 9910 * waiting for us in select() or poll() - wake them up 9911 */ 9912 md_unloading = 1; 9913 while (waitqueue_active(&md_event_waiters)) { 9914 /* not safe to leave yet */ 9915 wake_up(&md_event_waiters); 9916 msleep(delay); 9917 delay += delay; 9918 } 9919 remove_proc_entry("mdstat", NULL); 9920 9921 for_each_mddev(mddev, tmp) { 9922 export_array(mddev); 9923 mddev->ctime = 0; 9924 mddev->hold_active = 0; 9925 /* 9926 * for_each_mddev() will call mddev_put() at the end of each 9927 * iteration. As the mddev is now fully clear, this will 9928 * schedule the mddev for destruction by a workqueue, and the 9929 * destroy_workqueue() below will wait for that to complete. 9930 */ 9931 } 9932 destroy_workqueue(md_rdev_misc_wq); 9933 destroy_workqueue(md_misc_wq); 9934 destroy_workqueue(md_wq); 9935 } 9936 9937 subsys_initcall(md_init); 9938 module_exit(md_exit) 9939 9940 static int get_ro(char *buffer, const struct kernel_param *kp) 9941 { 9942 return sprintf(buffer, "%d\n", start_readonly); 9943 } 9944 static int set_ro(const char *val, const struct kernel_param *kp) 9945 { 9946 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9947 } 9948 9949 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9950 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9951 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9952 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9953 9954 MODULE_LICENSE("GPL"); 9955 MODULE_DESCRIPTION("MD RAID framework"); 9956 MODULE_ALIAS("md"); 9957 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9958