xref: /openbmc/linux/drivers/md/md.c (revision 8bdc2a19)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    md.c : Multiple Devices driver for Linux
4      Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 
6      completely rewritten, based on the MD driver code from Marc Zyngier
7 
8    Changes:
9 
10    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14    - kmod support by: Cyrus Durgin
15    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 
18    - lots of fixes and improvements to the RAID1/RAID5 and generic
19      RAID code (such as request based resynchronization):
20 
21      Neil Brown <neilb@cse.unsw.edu.au>.
22 
23    - persistent bitmap code
24      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 
26 
27    Errors, Warnings, etc.
28    Please use:
29      pr_crit() for error conditions that risk data loss
30      pr_err() for error conditions that are unexpected, like an IO error
31          or internal inconsistency
32      pr_warn() for error conditions that could have been predicated, like
33          adding a device to an array when it has incompatible metadata
34      pr_info() for every interesting, very rare events, like an array starting
35          or stopping, or resync starting or stopping
36      pr_debug() for everything else.
37 
38 */
39 
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/blk-integrity.h>
45 #include <linux/badblocks.h>
46 #include <linux/sysctl.h>
47 #include <linux/seq_file.h>
48 #include <linux/fs.h>
49 #include <linux/poll.h>
50 #include <linux/ctype.h>
51 #include <linux/string.h>
52 #include <linux/hdreg.h>
53 #include <linux/proc_fs.h>
54 #include <linux/random.h>
55 #include <linux/major.h>
56 #include <linux/module.h>
57 #include <linux/reboot.h>
58 #include <linux/file.h>
59 #include <linux/compat.h>
60 #include <linux/delay.h>
61 #include <linux/raid/md_p.h>
62 #include <linux/raid/md_u.h>
63 #include <linux/raid/detect.h>
64 #include <linux/slab.h>
65 #include <linux/percpu-refcount.h>
66 #include <linux/part_stat.h>
67 
68 #include <trace/events/block.h>
69 #include "md.h"
70 #include "md-bitmap.h"
71 #include "md-cluster.h"
72 
73 /* pers_list is a list of registered personalities protected
74  * by pers_lock.
75  * pers_lock does extra service to protect accesses to
76  * mddev->thread when the mutex cannot be held.
77  */
78 static LIST_HEAD(pers_list);
79 static DEFINE_SPINLOCK(pers_lock);
80 
81 static struct kobj_type md_ktype;
82 
83 struct md_cluster_operations *md_cluster_ops;
84 EXPORT_SYMBOL(md_cluster_ops);
85 static struct module *md_cluster_mod;
86 
87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
88 static struct workqueue_struct *md_wq;
89 static struct workqueue_struct *md_misc_wq;
90 static struct workqueue_struct *md_rdev_misc_wq;
91 
92 static int remove_and_add_spares(struct mddev *mddev,
93 				 struct md_rdev *this);
94 static void mddev_detach(struct mddev *mddev);
95 
96 /*
97  * Default number of read corrections we'll attempt on an rdev
98  * before ejecting it from the array. We divide the read error
99  * count by 2 for every hour elapsed between read errors.
100  */
101 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
102 /* Default safemode delay: 200 msec */
103 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
104 /*
105  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
106  * is 1000 KB/sec, so the extra system load does not show up that much.
107  * Increase it if you want to have more _guaranteed_ speed. Note that
108  * the RAID driver will use the maximum available bandwidth if the IO
109  * subsystem is idle. There is also an 'absolute maximum' reconstruction
110  * speed limit - in case reconstruction slows down your system despite
111  * idle IO detection.
112  *
113  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
114  * or /sys/block/mdX/md/sync_speed_{min,max}
115  */
116 
117 static int sysctl_speed_limit_min = 1000;
118 static int sysctl_speed_limit_max = 200000;
119 static inline int speed_min(struct mddev *mddev)
120 {
121 	return mddev->sync_speed_min ?
122 		mddev->sync_speed_min : sysctl_speed_limit_min;
123 }
124 
125 static inline int speed_max(struct mddev *mddev)
126 {
127 	return mddev->sync_speed_max ?
128 		mddev->sync_speed_max : sysctl_speed_limit_max;
129 }
130 
131 static void rdev_uninit_serial(struct md_rdev *rdev)
132 {
133 	if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
134 		return;
135 
136 	kvfree(rdev->serial);
137 	rdev->serial = NULL;
138 }
139 
140 static void rdevs_uninit_serial(struct mddev *mddev)
141 {
142 	struct md_rdev *rdev;
143 
144 	rdev_for_each(rdev, mddev)
145 		rdev_uninit_serial(rdev);
146 }
147 
148 static int rdev_init_serial(struct md_rdev *rdev)
149 {
150 	/* serial_nums equals with BARRIER_BUCKETS_NR */
151 	int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
152 	struct serial_in_rdev *serial = NULL;
153 
154 	if (test_bit(CollisionCheck, &rdev->flags))
155 		return 0;
156 
157 	serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
158 			  GFP_KERNEL);
159 	if (!serial)
160 		return -ENOMEM;
161 
162 	for (i = 0; i < serial_nums; i++) {
163 		struct serial_in_rdev *serial_tmp = &serial[i];
164 
165 		spin_lock_init(&serial_tmp->serial_lock);
166 		serial_tmp->serial_rb = RB_ROOT_CACHED;
167 		init_waitqueue_head(&serial_tmp->serial_io_wait);
168 	}
169 
170 	rdev->serial = serial;
171 	set_bit(CollisionCheck, &rdev->flags);
172 
173 	return 0;
174 }
175 
176 static int rdevs_init_serial(struct mddev *mddev)
177 {
178 	struct md_rdev *rdev;
179 	int ret = 0;
180 
181 	rdev_for_each(rdev, mddev) {
182 		ret = rdev_init_serial(rdev);
183 		if (ret)
184 			break;
185 	}
186 
187 	/* Free all resources if pool is not existed */
188 	if (ret && !mddev->serial_info_pool)
189 		rdevs_uninit_serial(mddev);
190 
191 	return ret;
192 }
193 
194 /*
195  * rdev needs to enable serial stuffs if it meets the conditions:
196  * 1. it is multi-queue device flaged with writemostly.
197  * 2. the write-behind mode is enabled.
198  */
199 static int rdev_need_serial(struct md_rdev *rdev)
200 {
201 	return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
202 		rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
203 		test_bit(WriteMostly, &rdev->flags));
204 }
205 
206 /*
207  * Init resource for rdev(s), then create serial_info_pool if:
208  * 1. rdev is the first device which return true from rdev_enable_serial.
209  * 2. rdev is NULL, means we want to enable serialization for all rdevs.
210  */
211 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
212 			      bool is_suspend)
213 {
214 	int ret = 0;
215 
216 	if (rdev && !rdev_need_serial(rdev) &&
217 	    !test_bit(CollisionCheck, &rdev->flags))
218 		return;
219 
220 	if (!is_suspend)
221 		mddev_suspend(mddev);
222 
223 	if (!rdev)
224 		ret = rdevs_init_serial(mddev);
225 	else
226 		ret = rdev_init_serial(rdev);
227 	if (ret)
228 		goto abort;
229 
230 	if (mddev->serial_info_pool == NULL) {
231 		/*
232 		 * already in memalloc noio context by
233 		 * mddev_suspend()
234 		 */
235 		mddev->serial_info_pool =
236 			mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
237 						sizeof(struct serial_info));
238 		if (!mddev->serial_info_pool) {
239 			rdevs_uninit_serial(mddev);
240 			pr_err("can't alloc memory pool for serialization\n");
241 		}
242 	}
243 
244 abort:
245 	if (!is_suspend)
246 		mddev_resume(mddev);
247 }
248 
249 /*
250  * Free resource from rdev(s), and destroy serial_info_pool under conditions:
251  * 1. rdev is the last device flaged with CollisionCheck.
252  * 2. when bitmap is destroyed while policy is not enabled.
253  * 3. for disable policy, the pool is destroyed only when no rdev needs it.
254  */
255 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
256 			       bool is_suspend)
257 {
258 	if (rdev && !test_bit(CollisionCheck, &rdev->flags))
259 		return;
260 
261 	if (mddev->serial_info_pool) {
262 		struct md_rdev *temp;
263 		int num = 0; /* used to track if other rdevs need the pool */
264 
265 		if (!is_suspend)
266 			mddev_suspend(mddev);
267 		rdev_for_each(temp, mddev) {
268 			if (!rdev) {
269 				if (!mddev->serialize_policy ||
270 				    !rdev_need_serial(temp))
271 					rdev_uninit_serial(temp);
272 				else
273 					num++;
274 			} else if (temp != rdev &&
275 				   test_bit(CollisionCheck, &temp->flags))
276 				num++;
277 		}
278 
279 		if (rdev)
280 			rdev_uninit_serial(rdev);
281 
282 		if (num)
283 			pr_info("The mempool could be used by other devices\n");
284 		else {
285 			mempool_destroy(mddev->serial_info_pool);
286 			mddev->serial_info_pool = NULL;
287 		}
288 		if (!is_suspend)
289 			mddev_resume(mddev);
290 	}
291 }
292 
293 static struct ctl_table_header *raid_table_header;
294 
295 static struct ctl_table raid_table[] = {
296 	{
297 		.procname	= "speed_limit_min",
298 		.data		= &sysctl_speed_limit_min,
299 		.maxlen		= sizeof(int),
300 		.mode		= S_IRUGO|S_IWUSR,
301 		.proc_handler	= proc_dointvec,
302 	},
303 	{
304 		.procname	= "speed_limit_max",
305 		.data		= &sysctl_speed_limit_max,
306 		.maxlen		= sizeof(int),
307 		.mode		= S_IRUGO|S_IWUSR,
308 		.proc_handler	= proc_dointvec,
309 	},
310 	{ }
311 };
312 
313 static struct ctl_table raid_dir_table[] = {
314 	{
315 		.procname	= "raid",
316 		.maxlen		= 0,
317 		.mode		= S_IRUGO|S_IXUGO,
318 		.child		= raid_table,
319 	},
320 	{ }
321 };
322 
323 static struct ctl_table raid_root_table[] = {
324 	{
325 		.procname	= "dev",
326 		.maxlen		= 0,
327 		.mode		= 0555,
328 		.child		= raid_dir_table,
329 	},
330 	{  }
331 };
332 
333 static int start_readonly;
334 
335 /*
336  * The original mechanism for creating an md device is to create
337  * a device node in /dev and to open it.  This causes races with device-close.
338  * The preferred method is to write to the "new_array" module parameter.
339  * This can avoid races.
340  * Setting create_on_open to false disables the original mechanism
341  * so all the races disappear.
342  */
343 static bool create_on_open = true;
344 
345 /*
346  * We have a system wide 'event count' that is incremented
347  * on any 'interesting' event, and readers of /proc/mdstat
348  * can use 'poll' or 'select' to find out when the event
349  * count increases.
350  *
351  * Events are:
352  *  start array, stop array, error, add device, remove device,
353  *  start build, activate spare
354  */
355 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
356 static atomic_t md_event_count;
357 void md_new_event(void)
358 {
359 	atomic_inc(&md_event_count);
360 	wake_up(&md_event_waiters);
361 }
362 EXPORT_SYMBOL_GPL(md_new_event);
363 
364 /*
365  * Enables to iterate over all existing md arrays
366  * all_mddevs_lock protects this list.
367  */
368 static LIST_HEAD(all_mddevs);
369 static DEFINE_SPINLOCK(all_mddevs_lock);
370 
371 /*
372  * iterates through all used mddevs in the system.
373  * We take care to grab the all_mddevs_lock whenever navigating
374  * the list, and to always hold a refcount when unlocked.
375  * Any code which breaks out of this loop while own
376  * a reference to the current mddev and must mddev_put it.
377  */
378 #define for_each_mddev(_mddev,_tmp)					\
379 									\
380 	for (({ spin_lock(&all_mddevs_lock);				\
381 		_tmp = all_mddevs.next;					\
382 		_mddev = NULL;});					\
383 	     ({ if (_tmp != &all_mddevs)				\
384 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
385 		spin_unlock(&all_mddevs_lock);				\
386 		if (_mddev) mddev_put(_mddev);				\
387 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
388 		_tmp != &all_mddevs;});					\
389 	     ({ spin_lock(&all_mddevs_lock);				\
390 		_tmp = _tmp->next;})					\
391 		)
392 
393 /* Rather than calling directly into the personality make_request function,
394  * IO requests come here first so that we can check if the device is
395  * being suspended pending a reconfiguration.
396  * We hold a refcount over the call to ->make_request.  By the time that
397  * call has finished, the bio has been linked into some internal structure
398  * and so is visible to ->quiesce(), so we don't need the refcount any more.
399  */
400 static bool is_suspended(struct mddev *mddev, struct bio *bio)
401 {
402 	if (mddev->suspended)
403 		return true;
404 	if (bio_data_dir(bio) != WRITE)
405 		return false;
406 	if (mddev->suspend_lo >= mddev->suspend_hi)
407 		return false;
408 	if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
409 		return false;
410 	if (bio_end_sector(bio) < mddev->suspend_lo)
411 		return false;
412 	return true;
413 }
414 
415 void md_handle_request(struct mddev *mddev, struct bio *bio)
416 {
417 check_suspended:
418 	rcu_read_lock();
419 	if (is_suspended(mddev, bio)) {
420 		DEFINE_WAIT(__wait);
421 		/* Bail out if REQ_NOWAIT is set for the bio */
422 		if (bio->bi_opf & REQ_NOWAIT) {
423 			rcu_read_unlock();
424 			bio_wouldblock_error(bio);
425 			return;
426 		}
427 		for (;;) {
428 			prepare_to_wait(&mddev->sb_wait, &__wait,
429 					TASK_UNINTERRUPTIBLE);
430 			if (!is_suspended(mddev, bio))
431 				break;
432 			rcu_read_unlock();
433 			schedule();
434 			rcu_read_lock();
435 		}
436 		finish_wait(&mddev->sb_wait, &__wait);
437 	}
438 	atomic_inc(&mddev->active_io);
439 	rcu_read_unlock();
440 
441 	if (!mddev->pers->make_request(mddev, bio)) {
442 		atomic_dec(&mddev->active_io);
443 		wake_up(&mddev->sb_wait);
444 		goto check_suspended;
445 	}
446 
447 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
448 		wake_up(&mddev->sb_wait);
449 }
450 EXPORT_SYMBOL(md_handle_request);
451 
452 static void md_submit_bio(struct bio *bio)
453 {
454 	const int rw = bio_data_dir(bio);
455 	struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
456 
457 	if (mddev == NULL || mddev->pers == NULL) {
458 		bio_io_error(bio);
459 		return;
460 	}
461 
462 	if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
463 		bio_io_error(bio);
464 		return;
465 	}
466 
467 	blk_queue_split(&bio);
468 
469 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
470 		if (bio_sectors(bio) != 0)
471 			bio->bi_status = BLK_STS_IOERR;
472 		bio_endio(bio);
473 		return;
474 	}
475 
476 	/* bio could be mergeable after passing to underlayer */
477 	bio->bi_opf &= ~REQ_NOMERGE;
478 
479 	md_handle_request(mddev, bio);
480 }
481 
482 /* mddev_suspend makes sure no new requests are submitted
483  * to the device, and that any requests that have been submitted
484  * are completely handled.
485  * Once mddev_detach() is called and completes, the module will be
486  * completely unused.
487  */
488 void mddev_suspend(struct mddev *mddev)
489 {
490 	WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
491 	lockdep_assert_held(&mddev->reconfig_mutex);
492 	if (mddev->suspended++)
493 		return;
494 	synchronize_rcu();
495 	wake_up(&mddev->sb_wait);
496 	set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
497 	smp_mb__after_atomic();
498 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
499 	mddev->pers->quiesce(mddev, 1);
500 	clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
501 	wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
502 
503 	del_timer_sync(&mddev->safemode_timer);
504 	/* restrict memory reclaim I/O during raid array is suspend */
505 	mddev->noio_flag = memalloc_noio_save();
506 }
507 EXPORT_SYMBOL_GPL(mddev_suspend);
508 
509 void mddev_resume(struct mddev *mddev)
510 {
511 	/* entred the memalloc scope from mddev_suspend() */
512 	memalloc_noio_restore(mddev->noio_flag);
513 	lockdep_assert_held(&mddev->reconfig_mutex);
514 	if (--mddev->suspended)
515 		return;
516 	wake_up(&mddev->sb_wait);
517 	mddev->pers->quiesce(mddev, 0);
518 
519 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
520 	md_wakeup_thread(mddev->thread);
521 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
522 }
523 EXPORT_SYMBOL_GPL(mddev_resume);
524 
525 /*
526  * Generic flush handling for md
527  */
528 
529 static void md_end_flush(struct bio *bio)
530 {
531 	struct md_rdev *rdev = bio->bi_private;
532 	struct mddev *mddev = rdev->mddev;
533 
534 	rdev_dec_pending(rdev, mddev);
535 
536 	if (atomic_dec_and_test(&mddev->flush_pending)) {
537 		/* The pre-request flush has finished */
538 		queue_work(md_wq, &mddev->flush_work);
539 	}
540 	bio_put(bio);
541 }
542 
543 static void md_submit_flush_data(struct work_struct *ws);
544 
545 static void submit_flushes(struct work_struct *ws)
546 {
547 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
548 	struct md_rdev *rdev;
549 
550 	mddev->start_flush = ktime_get_boottime();
551 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
552 	atomic_set(&mddev->flush_pending, 1);
553 	rcu_read_lock();
554 	rdev_for_each_rcu(rdev, mddev)
555 		if (rdev->raid_disk >= 0 &&
556 		    !test_bit(Faulty, &rdev->flags)) {
557 			/* Take two references, one is dropped
558 			 * when request finishes, one after
559 			 * we reclaim rcu_read_lock
560 			 */
561 			struct bio *bi;
562 			atomic_inc(&rdev->nr_pending);
563 			atomic_inc(&rdev->nr_pending);
564 			rcu_read_unlock();
565 			bi = bio_alloc_bioset(rdev->bdev, 0,
566 					      REQ_OP_WRITE | REQ_PREFLUSH,
567 					      GFP_NOIO, &mddev->bio_set);
568 			bi->bi_end_io = md_end_flush;
569 			bi->bi_private = rdev;
570 			atomic_inc(&mddev->flush_pending);
571 			submit_bio(bi);
572 			rcu_read_lock();
573 			rdev_dec_pending(rdev, mddev);
574 		}
575 	rcu_read_unlock();
576 	if (atomic_dec_and_test(&mddev->flush_pending))
577 		queue_work(md_wq, &mddev->flush_work);
578 }
579 
580 static void md_submit_flush_data(struct work_struct *ws)
581 {
582 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
583 	struct bio *bio = mddev->flush_bio;
584 
585 	/*
586 	 * must reset flush_bio before calling into md_handle_request to avoid a
587 	 * deadlock, because other bios passed md_handle_request suspend check
588 	 * could wait for this and below md_handle_request could wait for those
589 	 * bios because of suspend check
590 	 */
591 	spin_lock_irq(&mddev->lock);
592 	mddev->prev_flush_start = mddev->start_flush;
593 	mddev->flush_bio = NULL;
594 	spin_unlock_irq(&mddev->lock);
595 	wake_up(&mddev->sb_wait);
596 
597 	if (bio->bi_iter.bi_size == 0) {
598 		/* an empty barrier - all done */
599 		bio_endio(bio);
600 	} else {
601 		bio->bi_opf &= ~REQ_PREFLUSH;
602 		md_handle_request(mddev, bio);
603 	}
604 }
605 
606 /*
607  * Manages consolidation of flushes and submitting any flushes needed for
608  * a bio with REQ_PREFLUSH.  Returns true if the bio is finished or is
609  * being finished in another context.  Returns false if the flushing is
610  * complete but still needs the I/O portion of the bio to be processed.
611  */
612 bool md_flush_request(struct mddev *mddev, struct bio *bio)
613 {
614 	ktime_t req_start = ktime_get_boottime();
615 	spin_lock_irq(&mddev->lock);
616 	/* flush requests wait until ongoing flush completes,
617 	 * hence coalescing all the pending requests.
618 	 */
619 	wait_event_lock_irq(mddev->sb_wait,
620 			    !mddev->flush_bio ||
621 			    ktime_before(req_start, mddev->prev_flush_start),
622 			    mddev->lock);
623 	/* new request after previous flush is completed */
624 	if (ktime_after(req_start, mddev->prev_flush_start)) {
625 		WARN_ON(mddev->flush_bio);
626 		mddev->flush_bio = bio;
627 		bio = NULL;
628 	}
629 	spin_unlock_irq(&mddev->lock);
630 
631 	if (!bio) {
632 		INIT_WORK(&mddev->flush_work, submit_flushes);
633 		queue_work(md_wq, &mddev->flush_work);
634 	} else {
635 		/* flush was performed for some other bio while we waited. */
636 		if (bio->bi_iter.bi_size == 0)
637 			/* an empty barrier - all done */
638 			bio_endio(bio);
639 		else {
640 			bio->bi_opf &= ~REQ_PREFLUSH;
641 			return false;
642 		}
643 	}
644 	return true;
645 }
646 EXPORT_SYMBOL(md_flush_request);
647 
648 static inline struct mddev *mddev_get(struct mddev *mddev)
649 {
650 	atomic_inc(&mddev->active);
651 	return mddev;
652 }
653 
654 static void mddev_delayed_delete(struct work_struct *ws);
655 
656 static void mddev_put(struct mddev *mddev)
657 {
658 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
659 		return;
660 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
661 	    mddev->ctime == 0 && !mddev->hold_active) {
662 		/* Array is not configured at all, and not held active,
663 		 * so destroy it */
664 		list_del_init(&mddev->all_mddevs);
665 
666 		/*
667 		 * Call queue_work inside the spinlock so that
668 		 * flush_workqueue() after mddev_find will succeed in waiting
669 		 * for the work to be done.
670 		 */
671 		INIT_WORK(&mddev->del_work, mddev_delayed_delete);
672 		queue_work(md_misc_wq, &mddev->del_work);
673 	}
674 	spin_unlock(&all_mddevs_lock);
675 }
676 
677 static void md_safemode_timeout(struct timer_list *t);
678 
679 void mddev_init(struct mddev *mddev)
680 {
681 	kobject_init(&mddev->kobj, &md_ktype);
682 	mutex_init(&mddev->open_mutex);
683 	mutex_init(&mddev->reconfig_mutex);
684 	mutex_init(&mddev->bitmap_info.mutex);
685 	INIT_LIST_HEAD(&mddev->disks);
686 	INIT_LIST_HEAD(&mddev->all_mddevs);
687 	timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
688 	atomic_set(&mddev->active, 1);
689 	atomic_set(&mddev->openers, 0);
690 	atomic_set(&mddev->active_io, 0);
691 	spin_lock_init(&mddev->lock);
692 	atomic_set(&mddev->flush_pending, 0);
693 	init_waitqueue_head(&mddev->sb_wait);
694 	init_waitqueue_head(&mddev->recovery_wait);
695 	mddev->reshape_position = MaxSector;
696 	mddev->reshape_backwards = 0;
697 	mddev->last_sync_action = "none";
698 	mddev->resync_min = 0;
699 	mddev->resync_max = MaxSector;
700 	mddev->level = LEVEL_NONE;
701 }
702 EXPORT_SYMBOL_GPL(mddev_init);
703 
704 static struct mddev *mddev_find_locked(dev_t unit)
705 {
706 	struct mddev *mddev;
707 
708 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
709 		if (mddev->unit == unit)
710 			return mddev;
711 
712 	return NULL;
713 }
714 
715 /* find an unused unit number */
716 static dev_t mddev_alloc_unit(void)
717 {
718 	static int next_minor = 512;
719 	int start = next_minor;
720 	bool is_free = 0;
721 	dev_t dev = 0;
722 
723 	while (!is_free) {
724 		dev = MKDEV(MD_MAJOR, next_minor);
725 		next_minor++;
726 		if (next_minor > MINORMASK)
727 			next_minor = 0;
728 		if (next_minor == start)
729 			return 0;		/* Oh dear, all in use. */
730 		is_free = !mddev_find_locked(dev);
731 	}
732 
733 	return dev;
734 }
735 
736 static struct mddev *mddev_find(dev_t unit)
737 {
738 	struct mddev *mddev;
739 
740 	if (MAJOR(unit) != MD_MAJOR)
741 		unit &= ~((1 << MdpMinorShift) - 1);
742 
743 	spin_lock(&all_mddevs_lock);
744 	mddev = mddev_find_locked(unit);
745 	if (mddev)
746 		mddev_get(mddev);
747 	spin_unlock(&all_mddevs_lock);
748 
749 	return mddev;
750 }
751 
752 static struct mddev *mddev_alloc(dev_t unit)
753 {
754 	struct mddev *new;
755 	int error;
756 
757 	if (unit && MAJOR(unit) != MD_MAJOR)
758 		unit &= ~((1 << MdpMinorShift) - 1);
759 
760 	new = kzalloc(sizeof(*new), GFP_KERNEL);
761 	if (!new)
762 		return ERR_PTR(-ENOMEM);
763 	mddev_init(new);
764 
765 	spin_lock(&all_mddevs_lock);
766 	if (unit) {
767 		error = -EEXIST;
768 		if (mddev_find_locked(unit))
769 			goto out_free_new;
770 		new->unit = unit;
771 		if (MAJOR(unit) == MD_MAJOR)
772 			new->md_minor = MINOR(unit);
773 		else
774 			new->md_minor = MINOR(unit) >> MdpMinorShift;
775 		new->hold_active = UNTIL_IOCTL;
776 	} else {
777 		error = -ENODEV;
778 		new->unit = mddev_alloc_unit();
779 		if (!new->unit)
780 			goto out_free_new;
781 		new->md_minor = MINOR(new->unit);
782 		new->hold_active = UNTIL_STOP;
783 	}
784 
785 	list_add(&new->all_mddevs, &all_mddevs);
786 	spin_unlock(&all_mddevs_lock);
787 	return new;
788 out_free_new:
789 	spin_unlock(&all_mddevs_lock);
790 	kfree(new);
791 	return ERR_PTR(error);
792 }
793 
794 static const struct attribute_group md_redundancy_group;
795 
796 void mddev_unlock(struct mddev *mddev)
797 {
798 	if (mddev->to_remove) {
799 		/* These cannot be removed under reconfig_mutex as
800 		 * an access to the files will try to take reconfig_mutex
801 		 * while holding the file unremovable, which leads to
802 		 * a deadlock.
803 		 * So hold set sysfs_active while the remove in happeing,
804 		 * and anything else which might set ->to_remove or my
805 		 * otherwise change the sysfs namespace will fail with
806 		 * -EBUSY if sysfs_active is still set.
807 		 * We set sysfs_active under reconfig_mutex and elsewhere
808 		 * test it under the same mutex to ensure its correct value
809 		 * is seen.
810 		 */
811 		const struct attribute_group *to_remove = mddev->to_remove;
812 		mddev->to_remove = NULL;
813 		mddev->sysfs_active = 1;
814 		mutex_unlock(&mddev->reconfig_mutex);
815 
816 		if (mddev->kobj.sd) {
817 			if (to_remove != &md_redundancy_group)
818 				sysfs_remove_group(&mddev->kobj, to_remove);
819 			if (mddev->pers == NULL ||
820 			    mddev->pers->sync_request == NULL) {
821 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
822 				if (mddev->sysfs_action)
823 					sysfs_put(mddev->sysfs_action);
824 				if (mddev->sysfs_completed)
825 					sysfs_put(mddev->sysfs_completed);
826 				if (mddev->sysfs_degraded)
827 					sysfs_put(mddev->sysfs_degraded);
828 				mddev->sysfs_action = NULL;
829 				mddev->sysfs_completed = NULL;
830 				mddev->sysfs_degraded = NULL;
831 			}
832 		}
833 		mddev->sysfs_active = 0;
834 	} else
835 		mutex_unlock(&mddev->reconfig_mutex);
836 
837 	/* As we've dropped the mutex we need a spinlock to
838 	 * make sure the thread doesn't disappear
839 	 */
840 	spin_lock(&pers_lock);
841 	md_wakeup_thread(mddev->thread);
842 	wake_up(&mddev->sb_wait);
843 	spin_unlock(&pers_lock);
844 }
845 EXPORT_SYMBOL_GPL(mddev_unlock);
846 
847 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
848 {
849 	struct md_rdev *rdev;
850 
851 	rdev_for_each_rcu(rdev, mddev)
852 		if (rdev->desc_nr == nr)
853 			return rdev;
854 
855 	return NULL;
856 }
857 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
858 
859 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
860 {
861 	struct md_rdev *rdev;
862 
863 	rdev_for_each(rdev, mddev)
864 		if (rdev->bdev->bd_dev == dev)
865 			return rdev;
866 
867 	return NULL;
868 }
869 
870 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
871 {
872 	struct md_rdev *rdev;
873 
874 	rdev_for_each_rcu(rdev, mddev)
875 		if (rdev->bdev->bd_dev == dev)
876 			return rdev;
877 
878 	return NULL;
879 }
880 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
881 
882 static struct md_personality *find_pers(int level, char *clevel)
883 {
884 	struct md_personality *pers;
885 	list_for_each_entry(pers, &pers_list, list) {
886 		if (level != LEVEL_NONE && pers->level == level)
887 			return pers;
888 		if (strcmp(pers->name, clevel)==0)
889 			return pers;
890 	}
891 	return NULL;
892 }
893 
894 /* return the offset of the super block in 512byte sectors */
895 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
896 {
897 	return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
898 }
899 
900 static int alloc_disk_sb(struct md_rdev *rdev)
901 {
902 	rdev->sb_page = alloc_page(GFP_KERNEL);
903 	if (!rdev->sb_page)
904 		return -ENOMEM;
905 	return 0;
906 }
907 
908 void md_rdev_clear(struct md_rdev *rdev)
909 {
910 	if (rdev->sb_page) {
911 		put_page(rdev->sb_page);
912 		rdev->sb_loaded = 0;
913 		rdev->sb_page = NULL;
914 		rdev->sb_start = 0;
915 		rdev->sectors = 0;
916 	}
917 	if (rdev->bb_page) {
918 		put_page(rdev->bb_page);
919 		rdev->bb_page = NULL;
920 	}
921 	badblocks_exit(&rdev->badblocks);
922 }
923 EXPORT_SYMBOL_GPL(md_rdev_clear);
924 
925 static void super_written(struct bio *bio)
926 {
927 	struct md_rdev *rdev = bio->bi_private;
928 	struct mddev *mddev = rdev->mddev;
929 
930 	if (bio->bi_status) {
931 		pr_err("md: %s gets error=%d\n", __func__,
932 		       blk_status_to_errno(bio->bi_status));
933 		md_error(mddev, rdev);
934 		if (!test_bit(Faulty, &rdev->flags)
935 		    && (bio->bi_opf & MD_FAILFAST)) {
936 			set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
937 			set_bit(LastDev, &rdev->flags);
938 		}
939 	} else
940 		clear_bit(LastDev, &rdev->flags);
941 
942 	if (atomic_dec_and_test(&mddev->pending_writes))
943 		wake_up(&mddev->sb_wait);
944 	rdev_dec_pending(rdev, mddev);
945 	bio_put(bio);
946 }
947 
948 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
949 		   sector_t sector, int size, struct page *page)
950 {
951 	/* write first size bytes of page to sector of rdev
952 	 * Increment mddev->pending_writes before returning
953 	 * and decrement it on completion, waking up sb_wait
954 	 * if zero is reached.
955 	 * If an error occurred, call md_error
956 	 */
957 	struct bio *bio;
958 
959 	if (!page)
960 		return;
961 
962 	if (test_bit(Faulty, &rdev->flags))
963 		return;
964 
965 	bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev,
966 			       1,
967 			       REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA,
968 			       GFP_NOIO, &mddev->sync_set);
969 
970 	atomic_inc(&rdev->nr_pending);
971 
972 	bio->bi_iter.bi_sector = sector;
973 	bio_add_page(bio, page, size, 0);
974 	bio->bi_private = rdev;
975 	bio->bi_end_io = super_written;
976 
977 	if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
978 	    test_bit(FailFast, &rdev->flags) &&
979 	    !test_bit(LastDev, &rdev->flags))
980 		bio->bi_opf |= MD_FAILFAST;
981 
982 	atomic_inc(&mddev->pending_writes);
983 	submit_bio(bio);
984 }
985 
986 int md_super_wait(struct mddev *mddev)
987 {
988 	/* wait for all superblock writes that were scheduled to complete */
989 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
990 	if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
991 		return -EAGAIN;
992 	return 0;
993 }
994 
995 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
996 		 struct page *page, int op, int op_flags, bool metadata_op)
997 {
998 	struct bio bio;
999 	struct bio_vec bvec;
1000 
1001 	if (metadata_op && rdev->meta_bdev)
1002 		bio_init(&bio, rdev->meta_bdev, &bvec, 1, op | op_flags);
1003 	else
1004 		bio_init(&bio, rdev->bdev, &bvec, 1, op | op_flags);
1005 
1006 	if (metadata_op)
1007 		bio.bi_iter.bi_sector = sector + rdev->sb_start;
1008 	else if (rdev->mddev->reshape_position != MaxSector &&
1009 		 (rdev->mddev->reshape_backwards ==
1010 		  (sector >= rdev->mddev->reshape_position)))
1011 		bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1012 	else
1013 		bio.bi_iter.bi_sector = sector + rdev->data_offset;
1014 	bio_add_page(&bio, page, size, 0);
1015 
1016 	submit_bio_wait(&bio);
1017 
1018 	return !bio.bi_status;
1019 }
1020 EXPORT_SYMBOL_GPL(sync_page_io);
1021 
1022 static int read_disk_sb(struct md_rdev *rdev, int size)
1023 {
1024 	char b[BDEVNAME_SIZE];
1025 
1026 	if (rdev->sb_loaded)
1027 		return 0;
1028 
1029 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1030 		goto fail;
1031 	rdev->sb_loaded = 1;
1032 	return 0;
1033 
1034 fail:
1035 	pr_err("md: disabled device %s, could not read superblock.\n",
1036 	       bdevname(rdev->bdev,b));
1037 	return -EINVAL;
1038 }
1039 
1040 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1041 {
1042 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
1043 		sb1->set_uuid1 == sb2->set_uuid1 &&
1044 		sb1->set_uuid2 == sb2->set_uuid2 &&
1045 		sb1->set_uuid3 == sb2->set_uuid3;
1046 }
1047 
1048 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1049 {
1050 	int ret;
1051 	mdp_super_t *tmp1, *tmp2;
1052 
1053 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1054 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1055 
1056 	if (!tmp1 || !tmp2) {
1057 		ret = 0;
1058 		goto abort;
1059 	}
1060 
1061 	*tmp1 = *sb1;
1062 	*tmp2 = *sb2;
1063 
1064 	/*
1065 	 * nr_disks is not constant
1066 	 */
1067 	tmp1->nr_disks = 0;
1068 	tmp2->nr_disks = 0;
1069 
1070 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1071 abort:
1072 	kfree(tmp1);
1073 	kfree(tmp2);
1074 	return ret;
1075 }
1076 
1077 static u32 md_csum_fold(u32 csum)
1078 {
1079 	csum = (csum & 0xffff) + (csum >> 16);
1080 	return (csum & 0xffff) + (csum >> 16);
1081 }
1082 
1083 static unsigned int calc_sb_csum(mdp_super_t *sb)
1084 {
1085 	u64 newcsum = 0;
1086 	u32 *sb32 = (u32*)sb;
1087 	int i;
1088 	unsigned int disk_csum, csum;
1089 
1090 	disk_csum = sb->sb_csum;
1091 	sb->sb_csum = 0;
1092 
1093 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
1094 		newcsum += sb32[i];
1095 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
1096 
1097 #ifdef CONFIG_ALPHA
1098 	/* This used to use csum_partial, which was wrong for several
1099 	 * reasons including that different results are returned on
1100 	 * different architectures.  It isn't critical that we get exactly
1101 	 * the same return value as before (we always csum_fold before
1102 	 * testing, and that removes any differences).  However as we
1103 	 * know that csum_partial always returned a 16bit value on
1104 	 * alphas, do a fold to maximise conformity to previous behaviour.
1105 	 */
1106 	sb->sb_csum = md_csum_fold(disk_csum);
1107 #else
1108 	sb->sb_csum = disk_csum;
1109 #endif
1110 	return csum;
1111 }
1112 
1113 /*
1114  * Handle superblock details.
1115  * We want to be able to handle multiple superblock formats
1116  * so we have a common interface to them all, and an array of
1117  * different handlers.
1118  * We rely on user-space to write the initial superblock, and support
1119  * reading and updating of superblocks.
1120  * Interface methods are:
1121  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1122  *      loads and validates a superblock on dev.
1123  *      if refdev != NULL, compare superblocks on both devices
1124  *    Return:
1125  *      0 - dev has a superblock that is compatible with refdev
1126  *      1 - dev has a superblock that is compatible and newer than refdev
1127  *          so dev should be used as the refdev in future
1128  *     -EINVAL superblock incompatible or invalid
1129  *     -othererror e.g. -EIO
1130  *
1131  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1132  *      Verify that dev is acceptable into mddev.
1133  *       The first time, mddev->raid_disks will be 0, and data from
1134  *       dev should be merged in.  Subsequent calls check that dev
1135  *       is new enough.  Return 0 or -EINVAL
1136  *
1137  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1138  *     Update the superblock for rdev with data in mddev
1139  *     This does not write to disc.
1140  *
1141  */
1142 
1143 struct super_type  {
1144 	char		    *name;
1145 	struct module	    *owner;
1146 	int		    (*load_super)(struct md_rdev *rdev,
1147 					  struct md_rdev *refdev,
1148 					  int minor_version);
1149 	int		    (*validate_super)(struct mddev *mddev,
1150 					      struct md_rdev *rdev);
1151 	void		    (*sync_super)(struct mddev *mddev,
1152 					  struct md_rdev *rdev);
1153 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1154 						sector_t num_sectors);
1155 	int		    (*allow_new_offset)(struct md_rdev *rdev,
1156 						unsigned long long new_offset);
1157 };
1158 
1159 /*
1160  * Check that the given mddev has no bitmap.
1161  *
1162  * This function is called from the run method of all personalities that do not
1163  * support bitmaps. It prints an error message and returns non-zero if mddev
1164  * has a bitmap. Otherwise, it returns 0.
1165  *
1166  */
1167 int md_check_no_bitmap(struct mddev *mddev)
1168 {
1169 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1170 		return 0;
1171 	pr_warn("%s: bitmaps are not supported for %s\n",
1172 		mdname(mddev), mddev->pers->name);
1173 	return 1;
1174 }
1175 EXPORT_SYMBOL(md_check_no_bitmap);
1176 
1177 /*
1178  * load_super for 0.90.0
1179  */
1180 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1181 {
1182 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1183 	mdp_super_t *sb;
1184 	int ret;
1185 	bool spare_disk = true;
1186 
1187 	/*
1188 	 * Calculate the position of the superblock (512byte sectors),
1189 	 * it's at the end of the disk.
1190 	 *
1191 	 * It also happens to be a multiple of 4Kb.
1192 	 */
1193 	rdev->sb_start = calc_dev_sboffset(rdev);
1194 
1195 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1196 	if (ret)
1197 		return ret;
1198 
1199 	ret = -EINVAL;
1200 
1201 	bdevname(rdev->bdev, b);
1202 	sb = page_address(rdev->sb_page);
1203 
1204 	if (sb->md_magic != MD_SB_MAGIC) {
1205 		pr_warn("md: invalid raid superblock magic on %s\n", b);
1206 		goto abort;
1207 	}
1208 
1209 	if (sb->major_version != 0 ||
1210 	    sb->minor_version < 90 ||
1211 	    sb->minor_version > 91) {
1212 		pr_warn("Bad version number %d.%d on %s\n",
1213 			sb->major_version, sb->minor_version, b);
1214 		goto abort;
1215 	}
1216 
1217 	if (sb->raid_disks <= 0)
1218 		goto abort;
1219 
1220 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1221 		pr_warn("md: invalid superblock checksum on %s\n", b);
1222 		goto abort;
1223 	}
1224 
1225 	rdev->preferred_minor = sb->md_minor;
1226 	rdev->data_offset = 0;
1227 	rdev->new_data_offset = 0;
1228 	rdev->sb_size = MD_SB_BYTES;
1229 	rdev->badblocks.shift = -1;
1230 
1231 	if (sb->level == LEVEL_MULTIPATH)
1232 		rdev->desc_nr = -1;
1233 	else
1234 		rdev->desc_nr = sb->this_disk.number;
1235 
1236 	/* not spare disk, or LEVEL_MULTIPATH */
1237 	if (sb->level == LEVEL_MULTIPATH ||
1238 		(rdev->desc_nr >= 0 &&
1239 		 rdev->desc_nr < MD_SB_DISKS &&
1240 		 sb->disks[rdev->desc_nr].state &
1241 		 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1242 		spare_disk = false;
1243 
1244 	if (!refdev) {
1245 		if (!spare_disk)
1246 			ret = 1;
1247 		else
1248 			ret = 0;
1249 	} else {
1250 		__u64 ev1, ev2;
1251 		mdp_super_t *refsb = page_address(refdev->sb_page);
1252 		if (!md_uuid_equal(refsb, sb)) {
1253 			pr_warn("md: %s has different UUID to %s\n",
1254 				b, bdevname(refdev->bdev,b2));
1255 			goto abort;
1256 		}
1257 		if (!md_sb_equal(refsb, sb)) {
1258 			pr_warn("md: %s has same UUID but different superblock to %s\n",
1259 				b, bdevname(refdev->bdev, b2));
1260 			goto abort;
1261 		}
1262 		ev1 = md_event(sb);
1263 		ev2 = md_event(refsb);
1264 
1265 		if (!spare_disk && ev1 > ev2)
1266 			ret = 1;
1267 		else
1268 			ret = 0;
1269 	}
1270 	rdev->sectors = rdev->sb_start;
1271 	/* Limit to 4TB as metadata cannot record more than that.
1272 	 * (not needed for Linear and RAID0 as metadata doesn't
1273 	 * record this size)
1274 	 */
1275 	if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1276 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1277 
1278 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1279 		/* "this cannot possibly happen" ... */
1280 		ret = -EINVAL;
1281 
1282  abort:
1283 	return ret;
1284 }
1285 
1286 /*
1287  * validate_super for 0.90.0
1288  */
1289 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1290 {
1291 	mdp_disk_t *desc;
1292 	mdp_super_t *sb = page_address(rdev->sb_page);
1293 	__u64 ev1 = md_event(sb);
1294 
1295 	rdev->raid_disk = -1;
1296 	clear_bit(Faulty, &rdev->flags);
1297 	clear_bit(In_sync, &rdev->flags);
1298 	clear_bit(Bitmap_sync, &rdev->flags);
1299 	clear_bit(WriteMostly, &rdev->flags);
1300 
1301 	if (mddev->raid_disks == 0) {
1302 		mddev->major_version = 0;
1303 		mddev->minor_version = sb->minor_version;
1304 		mddev->patch_version = sb->patch_version;
1305 		mddev->external = 0;
1306 		mddev->chunk_sectors = sb->chunk_size >> 9;
1307 		mddev->ctime = sb->ctime;
1308 		mddev->utime = sb->utime;
1309 		mddev->level = sb->level;
1310 		mddev->clevel[0] = 0;
1311 		mddev->layout = sb->layout;
1312 		mddev->raid_disks = sb->raid_disks;
1313 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1314 		mddev->events = ev1;
1315 		mddev->bitmap_info.offset = 0;
1316 		mddev->bitmap_info.space = 0;
1317 		/* bitmap can use 60 K after the 4K superblocks */
1318 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1319 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1320 		mddev->reshape_backwards = 0;
1321 
1322 		if (mddev->minor_version >= 91) {
1323 			mddev->reshape_position = sb->reshape_position;
1324 			mddev->delta_disks = sb->delta_disks;
1325 			mddev->new_level = sb->new_level;
1326 			mddev->new_layout = sb->new_layout;
1327 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1328 			if (mddev->delta_disks < 0)
1329 				mddev->reshape_backwards = 1;
1330 		} else {
1331 			mddev->reshape_position = MaxSector;
1332 			mddev->delta_disks = 0;
1333 			mddev->new_level = mddev->level;
1334 			mddev->new_layout = mddev->layout;
1335 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1336 		}
1337 		if (mddev->level == 0)
1338 			mddev->layout = -1;
1339 
1340 		if (sb->state & (1<<MD_SB_CLEAN))
1341 			mddev->recovery_cp = MaxSector;
1342 		else {
1343 			if (sb->events_hi == sb->cp_events_hi &&
1344 				sb->events_lo == sb->cp_events_lo) {
1345 				mddev->recovery_cp = sb->recovery_cp;
1346 			} else
1347 				mddev->recovery_cp = 0;
1348 		}
1349 
1350 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1351 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1352 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1353 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1354 
1355 		mddev->max_disks = MD_SB_DISKS;
1356 
1357 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1358 		    mddev->bitmap_info.file == NULL) {
1359 			mddev->bitmap_info.offset =
1360 				mddev->bitmap_info.default_offset;
1361 			mddev->bitmap_info.space =
1362 				mddev->bitmap_info.default_space;
1363 		}
1364 
1365 	} else if (mddev->pers == NULL) {
1366 		/* Insist on good event counter while assembling, except
1367 		 * for spares (which don't need an event count) */
1368 		++ev1;
1369 		if (sb->disks[rdev->desc_nr].state & (
1370 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1371 			if (ev1 < mddev->events)
1372 				return -EINVAL;
1373 	} else if (mddev->bitmap) {
1374 		/* if adding to array with a bitmap, then we can accept an
1375 		 * older device ... but not too old.
1376 		 */
1377 		if (ev1 < mddev->bitmap->events_cleared)
1378 			return 0;
1379 		if (ev1 < mddev->events)
1380 			set_bit(Bitmap_sync, &rdev->flags);
1381 	} else {
1382 		if (ev1 < mddev->events)
1383 			/* just a hot-add of a new device, leave raid_disk at -1 */
1384 			return 0;
1385 	}
1386 
1387 	if (mddev->level != LEVEL_MULTIPATH) {
1388 		desc = sb->disks + rdev->desc_nr;
1389 
1390 		if (desc->state & (1<<MD_DISK_FAULTY))
1391 			set_bit(Faulty, &rdev->flags);
1392 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1393 			    desc->raid_disk < mddev->raid_disks */) {
1394 			set_bit(In_sync, &rdev->flags);
1395 			rdev->raid_disk = desc->raid_disk;
1396 			rdev->saved_raid_disk = desc->raid_disk;
1397 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1398 			/* active but not in sync implies recovery up to
1399 			 * reshape position.  We don't know exactly where
1400 			 * that is, so set to zero for now */
1401 			if (mddev->minor_version >= 91) {
1402 				rdev->recovery_offset = 0;
1403 				rdev->raid_disk = desc->raid_disk;
1404 			}
1405 		}
1406 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1407 			set_bit(WriteMostly, &rdev->flags);
1408 		if (desc->state & (1<<MD_DISK_FAILFAST))
1409 			set_bit(FailFast, &rdev->flags);
1410 	} else /* MULTIPATH are always insync */
1411 		set_bit(In_sync, &rdev->flags);
1412 	return 0;
1413 }
1414 
1415 /*
1416  * sync_super for 0.90.0
1417  */
1418 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1419 {
1420 	mdp_super_t *sb;
1421 	struct md_rdev *rdev2;
1422 	int next_spare = mddev->raid_disks;
1423 
1424 	/* make rdev->sb match mddev data..
1425 	 *
1426 	 * 1/ zero out disks
1427 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1428 	 * 3/ any empty disks < next_spare become removed
1429 	 *
1430 	 * disks[0] gets initialised to REMOVED because
1431 	 * we cannot be sure from other fields if it has
1432 	 * been initialised or not.
1433 	 */
1434 	int i;
1435 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1436 
1437 	rdev->sb_size = MD_SB_BYTES;
1438 
1439 	sb = page_address(rdev->sb_page);
1440 
1441 	memset(sb, 0, sizeof(*sb));
1442 
1443 	sb->md_magic = MD_SB_MAGIC;
1444 	sb->major_version = mddev->major_version;
1445 	sb->patch_version = mddev->patch_version;
1446 	sb->gvalid_words  = 0; /* ignored */
1447 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1448 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1449 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1450 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1451 
1452 	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1453 	sb->level = mddev->level;
1454 	sb->size = mddev->dev_sectors / 2;
1455 	sb->raid_disks = mddev->raid_disks;
1456 	sb->md_minor = mddev->md_minor;
1457 	sb->not_persistent = 0;
1458 	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1459 	sb->state = 0;
1460 	sb->events_hi = (mddev->events>>32);
1461 	sb->events_lo = (u32)mddev->events;
1462 
1463 	if (mddev->reshape_position == MaxSector)
1464 		sb->minor_version = 90;
1465 	else {
1466 		sb->minor_version = 91;
1467 		sb->reshape_position = mddev->reshape_position;
1468 		sb->new_level = mddev->new_level;
1469 		sb->delta_disks = mddev->delta_disks;
1470 		sb->new_layout = mddev->new_layout;
1471 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1472 	}
1473 	mddev->minor_version = sb->minor_version;
1474 	if (mddev->in_sync)
1475 	{
1476 		sb->recovery_cp = mddev->recovery_cp;
1477 		sb->cp_events_hi = (mddev->events>>32);
1478 		sb->cp_events_lo = (u32)mddev->events;
1479 		if (mddev->recovery_cp == MaxSector)
1480 			sb->state = (1<< MD_SB_CLEAN);
1481 	} else
1482 		sb->recovery_cp = 0;
1483 
1484 	sb->layout = mddev->layout;
1485 	sb->chunk_size = mddev->chunk_sectors << 9;
1486 
1487 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1488 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1489 
1490 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1491 	rdev_for_each(rdev2, mddev) {
1492 		mdp_disk_t *d;
1493 		int desc_nr;
1494 		int is_active = test_bit(In_sync, &rdev2->flags);
1495 
1496 		if (rdev2->raid_disk >= 0 &&
1497 		    sb->minor_version >= 91)
1498 			/* we have nowhere to store the recovery_offset,
1499 			 * but if it is not below the reshape_position,
1500 			 * we can piggy-back on that.
1501 			 */
1502 			is_active = 1;
1503 		if (rdev2->raid_disk < 0 ||
1504 		    test_bit(Faulty, &rdev2->flags))
1505 			is_active = 0;
1506 		if (is_active)
1507 			desc_nr = rdev2->raid_disk;
1508 		else
1509 			desc_nr = next_spare++;
1510 		rdev2->desc_nr = desc_nr;
1511 		d = &sb->disks[rdev2->desc_nr];
1512 		nr_disks++;
1513 		d->number = rdev2->desc_nr;
1514 		d->major = MAJOR(rdev2->bdev->bd_dev);
1515 		d->minor = MINOR(rdev2->bdev->bd_dev);
1516 		if (is_active)
1517 			d->raid_disk = rdev2->raid_disk;
1518 		else
1519 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1520 		if (test_bit(Faulty, &rdev2->flags))
1521 			d->state = (1<<MD_DISK_FAULTY);
1522 		else if (is_active) {
1523 			d->state = (1<<MD_DISK_ACTIVE);
1524 			if (test_bit(In_sync, &rdev2->flags))
1525 				d->state |= (1<<MD_DISK_SYNC);
1526 			active++;
1527 			working++;
1528 		} else {
1529 			d->state = 0;
1530 			spare++;
1531 			working++;
1532 		}
1533 		if (test_bit(WriteMostly, &rdev2->flags))
1534 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1535 		if (test_bit(FailFast, &rdev2->flags))
1536 			d->state |= (1<<MD_DISK_FAILFAST);
1537 	}
1538 	/* now set the "removed" and "faulty" bits on any missing devices */
1539 	for (i=0 ; i < mddev->raid_disks ; i++) {
1540 		mdp_disk_t *d = &sb->disks[i];
1541 		if (d->state == 0 && d->number == 0) {
1542 			d->number = i;
1543 			d->raid_disk = i;
1544 			d->state = (1<<MD_DISK_REMOVED);
1545 			d->state |= (1<<MD_DISK_FAULTY);
1546 			failed++;
1547 		}
1548 	}
1549 	sb->nr_disks = nr_disks;
1550 	sb->active_disks = active;
1551 	sb->working_disks = working;
1552 	sb->failed_disks = failed;
1553 	sb->spare_disks = spare;
1554 
1555 	sb->this_disk = sb->disks[rdev->desc_nr];
1556 	sb->sb_csum = calc_sb_csum(sb);
1557 }
1558 
1559 /*
1560  * rdev_size_change for 0.90.0
1561  */
1562 static unsigned long long
1563 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1564 {
1565 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1566 		return 0; /* component must fit device */
1567 	if (rdev->mddev->bitmap_info.offset)
1568 		return 0; /* can't move bitmap */
1569 	rdev->sb_start = calc_dev_sboffset(rdev);
1570 	if (!num_sectors || num_sectors > rdev->sb_start)
1571 		num_sectors = rdev->sb_start;
1572 	/* Limit to 4TB as metadata cannot record more than that.
1573 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1574 	 */
1575 	if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1576 		num_sectors = (sector_t)(2ULL << 32) - 2;
1577 	do {
1578 		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1579 		       rdev->sb_page);
1580 	} while (md_super_wait(rdev->mddev) < 0);
1581 	return num_sectors;
1582 }
1583 
1584 static int
1585 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1586 {
1587 	/* non-zero offset changes not possible with v0.90 */
1588 	return new_offset == 0;
1589 }
1590 
1591 /*
1592  * version 1 superblock
1593  */
1594 
1595 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1596 {
1597 	__le32 disk_csum;
1598 	u32 csum;
1599 	unsigned long long newcsum;
1600 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1601 	__le32 *isuper = (__le32*)sb;
1602 
1603 	disk_csum = sb->sb_csum;
1604 	sb->sb_csum = 0;
1605 	newcsum = 0;
1606 	for (; size >= 4; size -= 4)
1607 		newcsum += le32_to_cpu(*isuper++);
1608 
1609 	if (size == 2)
1610 		newcsum += le16_to_cpu(*(__le16*) isuper);
1611 
1612 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1613 	sb->sb_csum = disk_csum;
1614 	return cpu_to_le32(csum);
1615 }
1616 
1617 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1618 {
1619 	struct mdp_superblock_1 *sb;
1620 	int ret;
1621 	sector_t sb_start;
1622 	sector_t sectors;
1623 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1624 	int bmask;
1625 	bool spare_disk = true;
1626 
1627 	/*
1628 	 * Calculate the position of the superblock in 512byte sectors.
1629 	 * It is always aligned to a 4K boundary and
1630 	 * depeding on minor_version, it can be:
1631 	 * 0: At least 8K, but less than 12K, from end of device
1632 	 * 1: At start of device
1633 	 * 2: 4K from start of device.
1634 	 */
1635 	switch(minor_version) {
1636 	case 0:
1637 		sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
1638 		sb_start &= ~(sector_t)(4*2-1);
1639 		break;
1640 	case 1:
1641 		sb_start = 0;
1642 		break;
1643 	case 2:
1644 		sb_start = 8;
1645 		break;
1646 	default:
1647 		return -EINVAL;
1648 	}
1649 	rdev->sb_start = sb_start;
1650 
1651 	/* superblock is rarely larger than 1K, but it can be larger,
1652 	 * and it is safe to read 4k, so we do that
1653 	 */
1654 	ret = read_disk_sb(rdev, 4096);
1655 	if (ret) return ret;
1656 
1657 	sb = page_address(rdev->sb_page);
1658 
1659 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1660 	    sb->major_version != cpu_to_le32(1) ||
1661 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1662 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1663 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1664 		return -EINVAL;
1665 
1666 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1667 		pr_warn("md: invalid superblock checksum on %s\n",
1668 			bdevname(rdev->bdev,b));
1669 		return -EINVAL;
1670 	}
1671 	if (le64_to_cpu(sb->data_size) < 10) {
1672 		pr_warn("md: data_size too small on %s\n",
1673 			bdevname(rdev->bdev,b));
1674 		return -EINVAL;
1675 	}
1676 	if (sb->pad0 ||
1677 	    sb->pad3[0] ||
1678 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1679 		/* Some padding is non-zero, might be a new feature */
1680 		return -EINVAL;
1681 
1682 	rdev->preferred_minor = 0xffff;
1683 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1684 	rdev->new_data_offset = rdev->data_offset;
1685 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1686 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1687 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1688 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1689 
1690 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1691 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1692 	if (rdev->sb_size & bmask)
1693 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1694 
1695 	if (minor_version
1696 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1697 		return -EINVAL;
1698 	if (minor_version
1699 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1700 		return -EINVAL;
1701 
1702 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1703 		rdev->desc_nr = -1;
1704 	else
1705 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1706 
1707 	if (!rdev->bb_page) {
1708 		rdev->bb_page = alloc_page(GFP_KERNEL);
1709 		if (!rdev->bb_page)
1710 			return -ENOMEM;
1711 	}
1712 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1713 	    rdev->badblocks.count == 0) {
1714 		/* need to load the bad block list.
1715 		 * Currently we limit it to one page.
1716 		 */
1717 		s32 offset;
1718 		sector_t bb_sector;
1719 		__le64 *bbp;
1720 		int i;
1721 		int sectors = le16_to_cpu(sb->bblog_size);
1722 		if (sectors > (PAGE_SIZE / 512))
1723 			return -EINVAL;
1724 		offset = le32_to_cpu(sb->bblog_offset);
1725 		if (offset == 0)
1726 			return -EINVAL;
1727 		bb_sector = (long long)offset;
1728 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1729 				  rdev->bb_page, REQ_OP_READ, 0, true))
1730 			return -EIO;
1731 		bbp = (__le64 *)page_address(rdev->bb_page);
1732 		rdev->badblocks.shift = sb->bblog_shift;
1733 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1734 			u64 bb = le64_to_cpu(*bbp);
1735 			int count = bb & (0x3ff);
1736 			u64 sector = bb >> 10;
1737 			sector <<= sb->bblog_shift;
1738 			count <<= sb->bblog_shift;
1739 			if (bb + 1 == 0)
1740 				break;
1741 			if (badblocks_set(&rdev->badblocks, sector, count, 1))
1742 				return -EINVAL;
1743 		}
1744 	} else if (sb->bblog_offset != 0)
1745 		rdev->badblocks.shift = 0;
1746 
1747 	if ((le32_to_cpu(sb->feature_map) &
1748 	    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1749 		rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1750 		rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1751 		rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1752 	}
1753 
1754 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1755 	    sb->level != 0)
1756 		return -EINVAL;
1757 
1758 	/* not spare disk, or LEVEL_MULTIPATH */
1759 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1760 		(rdev->desc_nr >= 0 &&
1761 		rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1762 		(le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1763 		 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1764 		spare_disk = false;
1765 
1766 	if (!refdev) {
1767 		if (!spare_disk)
1768 			ret = 1;
1769 		else
1770 			ret = 0;
1771 	} else {
1772 		__u64 ev1, ev2;
1773 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1774 
1775 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1776 		    sb->level != refsb->level ||
1777 		    sb->layout != refsb->layout ||
1778 		    sb->chunksize != refsb->chunksize) {
1779 			pr_warn("md: %s has strangely different superblock to %s\n",
1780 				bdevname(rdev->bdev,b),
1781 				bdevname(refdev->bdev,b2));
1782 			return -EINVAL;
1783 		}
1784 		ev1 = le64_to_cpu(sb->events);
1785 		ev2 = le64_to_cpu(refsb->events);
1786 
1787 		if (!spare_disk && ev1 > ev2)
1788 			ret = 1;
1789 		else
1790 			ret = 0;
1791 	}
1792 	if (minor_version)
1793 		sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
1794 	else
1795 		sectors = rdev->sb_start;
1796 	if (sectors < le64_to_cpu(sb->data_size))
1797 		return -EINVAL;
1798 	rdev->sectors = le64_to_cpu(sb->data_size);
1799 	return ret;
1800 }
1801 
1802 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1803 {
1804 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1805 	__u64 ev1 = le64_to_cpu(sb->events);
1806 
1807 	rdev->raid_disk = -1;
1808 	clear_bit(Faulty, &rdev->flags);
1809 	clear_bit(In_sync, &rdev->flags);
1810 	clear_bit(Bitmap_sync, &rdev->flags);
1811 	clear_bit(WriteMostly, &rdev->flags);
1812 
1813 	if (mddev->raid_disks == 0) {
1814 		mddev->major_version = 1;
1815 		mddev->patch_version = 0;
1816 		mddev->external = 0;
1817 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1818 		mddev->ctime = le64_to_cpu(sb->ctime);
1819 		mddev->utime = le64_to_cpu(sb->utime);
1820 		mddev->level = le32_to_cpu(sb->level);
1821 		mddev->clevel[0] = 0;
1822 		mddev->layout = le32_to_cpu(sb->layout);
1823 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1824 		mddev->dev_sectors = le64_to_cpu(sb->size);
1825 		mddev->events = ev1;
1826 		mddev->bitmap_info.offset = 0;
1827 		mddev->bitmap_info.space = 0;
1828 		/* Default location for bitmap is 1K after superblock
1829 		 * using 3K - total of 4K
1830 		 */
1831 		mddev->bitmap_info.default_offset = 1024 >> 9;
1832 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1833 		mddev->reshape_backwards = 0;
1834 
1835 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1836 		memcpy(mddev->uuid, sb->set_uuid, 16);
1837 
1838 		mddev->max_disks =  (4096-256)/2;
1839 
1840 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1841 		    mddev->bitmap_info.file == NULL) {
1842 			mddev->bitmap_info.offset =
1843 				(__s32)le32_to_cpu(sb->bitmap_offset);
1844 			/* Metadata doesn't record how much space is available.
1845 			 * For 1.0, we assume we can use up to the superblock
1846 			 * if before, else to 4K beyond superblock.
1847 			 * For others, assume no change is possible.
1848 			 */
1849 			if (mddev->minor_version > 0)
1850 				mddev->bitmap_info.space = 0;
1851 			else if (mddev->bitmap_info.offset > 0)
1852 				mddev->bitmap_info.space =
1853 					8 - mddev->bitmap_info.offset;
1854 			else
1855 				mddev->bitmap_info.space =
1856 					-mddev->bitmap_info.offset;
1857 		}
1858 
1859 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1860 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1861 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1862 			mddev->new_level = le32_to_cpu(sb->new_level);
1863 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1864 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1865 			if (mddev->delta_disks < 0 ||
1866 			    (mddev->delta_disks == 0 &&
1867 			     (le32_to_cpu(sb->feature_map)
1868 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1869 				mddev->reshape_backwards = 1;
1870 		} else {
1871 			mddev->reshape_position = MaxSector;
1872 			mddev->delta_disks = 0;
1873 			mddev->new_level = mddev->level;
1874 			mddev->new_layout = mddev->layout;
1875 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1876 		}
1877 
1878 		if (mddev->level == 0 &&
1879 		    !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1880 			mddev->layout = -1;
1881 
1882 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1883 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1884 
1885 		if (le32_to_cpu(sb->feature_map) &
1886 		    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1887 			if (le32_to_cpu(sb->feature_map) &
1888 			    (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1889 				return -EINVAL;
1890 			if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1891 			    (le32_to_cpu(sb->feature_map) &
1892 					    MD_FEATURE_MULTIPLE_PPLS))
1893 				return -EINVAL;
1894 			set_bit(MD_HAS_PPL, &mddev->flags);
1895 		}
1896 	} else if (mddev->pers == NULL) {
1897 		/* Insist of good event counter while assembling, except for
1898 		 * spares (which don't need an event count) */
1899 		++ev1;
1900 		if (rdev->desc_nr >= 0 &&
1901 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1902 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1903 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1904 			if (ev1 < mddev->events)
1905 				return -EINVAL;
1906 	} else if (mddev->bitmap) {
1907 		/* If adding to array with a bitmap, then we can accept an
1908 		 * older device, but not too old.
1909 		 */
1910 		if (ev1 < mddev->bitmap->events_cleared)
1911 			return 0;
1912 		if (ev1 < mddev->events)
1913 			set_bit(Bitmap_sync, &rdev->flags);
1914 	} else {
1915 		if (ev1 < mddev->events)
1916 			/* just a hot-add of a new device, leave raid_disk at -1 */
1917 			return 0;
1918 	}
1919 	if (mddev->level != LEVEL_MULTIPATH) {
1920 		int role;
1921 		if (rdev->desc_nr < 0 ||
1922 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1923 			role = MD_DISK_ROLE_SPARE;
1924 			rdev->desc_nr = -1;
1925 		} else
1926 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1927 		switch(role) {
1928 		case MD_DISK_ROLE_SPARE: /* spare */
1929 			break;
1930 		case MD_DISK_ROLE_FAULTY: /* faulty */
1931 			set_bit(Faulty, &rdev->flags);
1932 			break;
1933 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1934 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1935 				/* journal device without journal feature */
1936 				pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1937 				return -EINVAL;
1938 			}
1939 			set_bit(Journal, &rdev->flags);
1940 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1941 			rdev->raid_disk = 0;
1942 			break;
1943 		default:
1944 			rdev->saved_raid_disk = role;
1945 			if ((le32_to_cpu(sb->feature_map) &
1946 			     MD_FEATURE_RECOVERY_OFFSET)) {
1947 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1948 				if (!(le32_to_cpu(sb->feature_map) &
1949 				      MD_FEATURE_RECOVERY_BITMAP))
1950 					rdev->saved_raid_disk = -1;
1951 			} else {
1952 				/*
1953 				 * If the array is FROZEN, then the device can't
1954 				 * be in_sync with rest of array.
1955 				 */
1956 				if (!test_bit(MD_RECOVERY_FROZEN,
1957 					      &mddev->recovery))
1958 					set_bit(In_sync, &rdev->flags);
1959 			}
1960 			rdev->raid_disk = role;
1961 			break;
1962 		}
1963 		if (sb->devflags & WriteMostly1)
1964 			set_bit(WriteMostly, &rdev->flags);
1965 		if (sb->devflags & FailFast1)
1966 			set_bit(FailFast, &rdev->flags);
1967 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1968 			set_bit(Replacement, &rdev->flags);
1969 	} else /* MULTIPATH are always insync */
1970 		set_bit(In_sync, &rdev->flags);
1971 
1972 	return 0;
1973 }
1974 
1975 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1976 {
1977 	struct mdp_superblock_1 *sb;
1978 	struct md_rdev *rdev2;
1979 	int max_dev, i;
1980 	/* make rdev->sb match mddev and rdev data. */
1981 
1982 	sb = page_address(rdev->sb_page);
1983 
1984 	sb->feature_map = 0;
1985 	sb->pad0 = 0;
1986 	sb->recovery_offset = cpu_to_le64(0);
1987 	memset(sb->pad3, 0, sizeof(sb->pad3));
1988 
1989 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1990 	sb->events = cpu_to_le64(mddev->events);
1991 	if (mddev->in_sync)
1992 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1993 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1994 		sb->resync_offset = cpu_to_le64(MaxSector);
1995 	else
1996 		sb->resync_offset = cpu_to_le64(0);
1997 
1998 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1999 
2000 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2001 	sb->size = cpu_to_le64(mddev->dev_sectors);
2002 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2003 	sb->level = cpu_to_le32(mddev->level);
2004 	sb->layout = cpu_to_le32(mddev->layout);
2005 	if (test_bit(FailFast, &rdev->flags))
2006 		sb->devflags |= FailFast1;
2007 	else
2008 		sb->devflags &= ~FailFast1;
2009 
2010 	if (test_bit(WriteMostly, &rdev->flags))
2011 		sb->devflags |= WriteMostly1;
2012 	else
2013 		sb->devflags &= ~WriteMostly1;
2014 	sb->data_offset = cpu_to_le64(rdev->data_offset);
2015 	sb->data_size = cpu_to_le64(rdev->sectors);
2016 
2017 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2018 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2019 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2020 	}
2021 
2022 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2023 	    !test_bit(In_sync, &rdev->flags)) {
2024 		sb->feature_map |=
2025 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2026 		sb->recovery_offset =
2027 			cpu_to_le64(rdev->recovery_offset);
2028 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2029 			sb->feature_map |=
2030 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2031 	}
2032 	/* Note: recovery_offset and journal_tail share space  */
2033 	if (test_bit(Journal, &rdev->flags))
2034 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2035 	if (test_bit(Replacement, &rdev->flags))
2036 		sb->feature_map |=
2037 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
2038 
2039 	if (mddev->reshape_position != MaxSector) {
2040 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2041 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2042 		sb->new_layout = cpu_to_le32(mddev->new_layout);
2043 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2044 		sb->new_level = cpu_to_le32(mddev->new_level);
2045 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2046 		if (mddev->delta_disks == 0 &&
2047 		    mddev->reshape_backwards)
2048 			sb->feature_map
2049 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2050 		if (rdev->new_data_offset != rdev->data_offset) {
2051 			sb->feature_map
2052 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2053 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2054 							     - rdev->data_offset));
2055 		}
2056 	}
2057 
2058 	if (mddev_is_clustered(mddev))
2059 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2060 
2061 	if (rdev->badblocks.count == 0)
2062 		/* Nothing to do for bad blocks*/ ;
2063 	else if (sb->bblog_offset == 0)
2064 		/* Cannot record bad blocks on this device */
2065 		md_error(mddev, rdev);
2066 	else {
2067 		struct badblocks *bb = &rdev->badblocks;
2068 		__le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2069 		u64 *p = bb->page;
2070 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2071 		if (bb->changed) {
2072 			unsigned seq;
2073 
2074 retry:
2075 			seq = read_seqbegin(&bb->lock);
2076 
2077 			memset(bbp, 0xff, PAGE_SIZE);
2078 
2079 			for (i = 0 ; i < bb->count ; i++) {
2080 				u64 internal_bb = p[i];
2081 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2082 						| BB_LEN(internal_bb));
2083 				bbp[i] = cpu_to_le64(store_bb);
2084 			}
2085 			bb->changed = 0;
2086 			if (read_seqretry(&bb->lock, seq))
2087 				goto retry;
2088 
2089 			bb->sector = (rdev->sb_start +
2090 				      (int)le32_to_cpu(sb->bblog_offset));
2091 			bb->size = le16_to_cpu(sb->bblog_size);
2092 		}
2093 	}
2094 
2095 	max_dev = 0;
2096 	rdev_for_each(rdev2, mddev)
2097 		if (rdev2->desc_nr+1 > max_dev)
2098 			max_dev = rdev2->desc_nr+1;
2099 
2100 	if (max_dev > le32_to_cpu(sb->max_dev)) {
2101 		int bmask;
2102 		sb->max_dev = cpu_to_le32(max_dev);
2103 		rdev->sb_size = max_dev * 2 + 256;
2104 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2105 		if (rdev->sb_size & bmask)
2106 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
2107 	} else
2108 		max_dev = le32_to_cpu(sb->max_dev);
2109 
2110 	for (i=0; i<max_dev;i++)
2111 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2112 
2113 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2114 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2115 
2116 	if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2117 		if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2118 			sb->feature_map |=
2119 			    cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2120 		else
2121 			sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2122 		sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2123 		sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2124 	}
2125 
2126 	rdev_for_each(rdev2, mddev) {
2127 		i = rdev2->desc_nr;
2128 		if (test_bit(Faulty, &rdev2->flags))
2129 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2130 		else if (test_bit(In_sync, &rdev2->flags))
2131 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2132 		else if (test_bit(Journal, &rdev2->flags))
2133 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2134 		else if (rdev2->raid_disk >= 0)
2135 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2136 		else
2137 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2138 	}
2139 
2140 	sb->sb_csum = calc_sb_1_csum(sb);
2141 }
2142 
2143 static sector_t super_1_choose_bm_space(sector_t dev_size)
2144 {
2145 	sector_t bm_space;
2146 
2147 	/* if the device is bigger than 8Gig, save 64k for bitmap
2148 	 * usage, if bigger than 200Gig, save 128k
2149 	 */
2150 	if (dev_size < 64*2)
2151 		bm_space = 0;
2152 	else if (dev_size - 64*2 >= 200*1024*1024*2)
2153 		bm_space = 128*2;
2154 	else if (dev_size - 4*2 > 8*1024*1024*2)
2155 		bm_space = 64*2;
2156 	else
2157 		bm_space = 4*2;
2158 	return bm_space;
2159 }
2160 
2161 static unsigned long long
2162 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2163 {
2164 	struct mdp_superblock_1 *sb;
2165 	sector_t max_sectors;
2166 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2167 		return 0; /* component must fit device */
2168 	if (rdev->data_offset != rdev->new_data_offset)
2169 		return 0; /* too confusing */
2170 	if (rdev->sb_start < rdev->data_offset) {
2171 		/* minor versions 1 and 2; superblock before data */
2172 		max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
2173 		if (!num_sectors || num_sectors > max_sectors)
2174 			num_sectors = max_sectors;
2175 	} else if (rdev->mddev->bitmap_info.offset) {
2176 		/* minor version 0 with bitmap we can't move */
2177 		return 0;
2178 	} else {
2179 		/* minor version 0; superblock after data */
2180 		sector_t sb_start, bm_space;
2181 		sector_t dev_size = bdev_nr_sectors(rdev->bdev);
2182 
2183 		/* 8K is for superblock */
2184 		sb_start = dev_size - 8*2;
2185 		sb_start &= ~(sector_t)(4*2 - 1);
2186 
2187 		bm_space = super_1_choose_bm_space(dev_size);
2188 
2189 		/* Space that can be used to store date needs to decrease
2190 		 * superblock bitmap space and bad block space(4K)
2191 		 */
2192 		max_sectors = sb_start - bm_space - 4*2;
2193 
2194 		if (!num_sectors || num_sectors > max_sectors)
2195 			num_sectors = max_sectors;
2196 		rdev->sb_start = sb_start;
2197 	}
2198 	sb = page_address(rdev->sb_page);
2199 	sb->data_size = cpu_to_le64(num_sectors);
2200 	sb->super_offset = cpu_to_le64(rdev->sb_start);
2201 	sb->sb_csum = calc_sb_1_csum(sb);
2202 	do {
2203 		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2204 			       rdev->sb_page);
2205 	} while (md_super_wait(rdev->mddev) < 0);
2206 	return num_sectors;
2207 
2208 }
2209 
2210 static int
2211 super_1_allow_new_offset(struct md_rdev *rdev,
2212 			 unsigned long long new_offset)
2213 {
2214 	/* All necessary checks on new >= old have been done */
2215 	struct bitmap *bitmap;
2216 	if (new_offset >= rdev->data_offset)
2217 		return 1;
2218 
2219 	/* with 1.0 metadata, there is no metadata to tread on
2220 	 * so we can always move back */
2221 	if (rdev->mddev->minor_version == 0)
2222 		return 1;
2223 
2224 	/* otherwise we must be sure not to step on
2225 	 * any metadata, so stay:
2226 	 * 36K beyond start of superblock
2227 	 * beyond end of badblocks
2228 	 * beyond write-intent bitmap
2229 	 */
2230 	if (rdev->sb_start + (32+4)*2 > new_offset)
2231 		return 0;
2232 	bitmap = rdev->mddev->bitmap;
2233 	if (bitmap && !rdev->mddev->bitmap_info.file &&
2234 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
2235 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2236 		return 0;
2237 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2238 		return 0;
2239 
2240 	return 1;
2241 }
2242 
2243 static struct super_type super_types[] = {
2244 	[0] = {
2245 		.name	= "0.90.0",
2246 		.owner	= THIS_MODULE,
2247 		.load_super	    = super_90_load,
2248 		.validate_super	    = super_90_validate,
2249 		.sync_super	    = super_90_sync,
2250 		.rdev_size_change   = super_90_rdev_size_change,
2251 		.allow_new_offset   = super_90_allow_new_offset,
2252 	},
2253 	[1] = {
2254 		.name	= "md-1",
2255 		.owner	= THIS_MODULE,
2256 		.load_super	    = super_1_load,
2257 		.validate_super	    = super_1_validate,
2258 		.sync_super	    = super_1_sync,
2259 		.rdev_size_change   = super_1_rdev_size_change,
2260 		.allow_new_offset   = super_1_allow_new_offset,
2261 	},
2262 };
2263 
2264 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2265 {
2266 	if (mddev->sync_super) {
2267 		mddev->sync_super(mddev, rdev);
2268 		return;
2269 	}
2270 
2271 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2272 
2273 	super_types[mddev->major_version].sync_super(mddev, rdev);
2274 }
2275 
2276 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2277 {
2278 	struct md_rdev *rdev, *rdev2;
2279 
2280 	rcu_read_lock();
2281 	rdev_for_each_rcu(rdev, mddev1) {
2282 		if (test_bit(Faulty, &rdev->flags) ||
2283 		    test_bit(Journal, &rdev->flags) ||
2284 		    rdev->raid_disk == -1)
2285 			continue;
2286 		rdev_for_each_rcu(rdev2, mddev2) {
2287 			if (test_bit(Faulty, &rdev2->flags) ||
2288 			    test_bit(Journal, &rdev2->flags) ||
2289 			    rdev2->raid_disk == -1)
2290 				continue;
2291 			if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2292 				rcu_read_unlock();
2293 				return 1;
2294 			}
2295 		}
2296 	}
2297 	rcu_read_unlock();
2298 	return 0;
2299 }
2300 
2301 static LIST_HEAD(pending_raid_disks);
2302 
2303 /*
2304  * Try to register data integrity profile for an mddev
2305  *
2306  * This is called when an array is started and after a disk has been kicked
2307  * from the array. It only succeeds if all working and active component devices
2308  * are integrity capable with matching profiles.
2309  */
2310 int md_integrity_register(struct mddev *mddev)
2311 {
2312 	struct md_rdev *rdev, *reference = NULL;
2313 
2314 	if (list_empty(&mddev->disks))
2315 		return 0; /* nothing to do */
2316 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2317 		return 0; /* shouldn't register, or already is */
2318 	rdev_for_each(rdev, mddev) {
2319 		/* skip spares and non-functional disks */
2320 		if (test_bit(Faulty, &rdev->flags))
2321 			continue;
2322 		if (rdev->raid_disk < 0)
2323 			continue;
2324 		if (!reference) {
2325 			/* Use the first rdev as the reference */
2326 			reference = rdev;
2327 			continue;
2328 		}
2329 		/* does this rdev's profile match the reference profile? */
2330 		if (blk_integrity_compare(reference->bdev->bd_disk,
2331 				rdev->bdev->bd_disk) < 0)
2332 			return -EINVAL;
2333 	}
2334 	if (!reference || !bdev_get_integrity(reference->bdev))
2335 		return 0;
2336 	/*
2337 	 * All component devices are integrity capable and have matching
2338 	 * profiles, register the common profile for the md device.
2339 	 */
2340 	blk_integrity_register(mddev->gendisk,
2341 			       bdev_get_integrity(reference->bdev));
2342 
2343 	pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2344 	if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2345 	    (mddev->level != 1 && mddev->level != 10 &&
2346 	     bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
2347 		/*
2348 		 * No need to handle the failure of bioset_integrity_create,
2349 		 * because the function is called by md_run() -> pers->run(),
2350 		 * md_run calls bioset_exit -> bioset_integrity_free in case
2351 		 * of failure case.
2352 		 */
2353 		pr_err("md: failed to create integrity pool for %s\n",
2354 		       mdname(mddev));
2355 		return -EINVAL;
2356 	}
2357 	return 0;
2358 }
2359 EXPORT_SYMBOL(md_integrity_register);
2360 
2361 /*
2362  * Attempt to add an rdev, but only if it is consistent with the current
2363  * integrity profile
2364  */
2365 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2366 {
2367 	struct blk_integrity *bi_mddev;
2368 	char name[BDEVNAME_SIZE];
2369 
2370 	if (!mddev->gendisk)
2371 		return 0;
2372 
2373 	bi_mddev = blk_get_integrity(mddev->gendisk);
2374 
2375 	if (!bi_mddev) /* nothing to do */
2376 		return 0;
2377 
2378 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2379 		pr_err("%s: incompatible integrity profile for %s\n",
2380 		       mdname(mddev), bdevname(rdev->bdev, name));
2381 		return -ENXIO;
2382 	}
2383 
2384 	return 0;
2385 }
2386 EXPORT_SYMBOL(md_integrity_add_rdev);
2387 
2388 static bool rdev_read_only(struct md_rdev *rdev)
2389 {
2390 	return bdev_read_only(rdev->bdev) ||
2391 		(rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2392 }
2393 
2394 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2395 {
2396 	char b[BDEVNAME_SIZE];
2397 	int err;
2398 
2399 	/* prevent duplicates */
2400 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2401 		return -EEXIST;
2402 
2403 	if (rdev_read_only(rdev) && mddev->pers)
2404 		return -EROFS;
2405 
2406 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2407 	if (!test_bit(Journal, &rdev->flags) &&
2408 	    rdev->sectors &&
2409 	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2410 		if (mddev->pers) {
2411 			/* Cannot change size, so fail
2412 			 * If mddev->level <= 0, then we don't care
2413 			 * about aligning sizes (e.g. linear)
2414 			 */
2415 			if (mddev->level > 0)
2416 				return -ENOSPC;
2417 		} else
2418 			mddev->dev_sectors = rdev->sectors;
2419 	}
2420 
2421 	/* Verify rdev->desc_nr is unique.
2422 	 * If it is -1, assign a free number, else
2423 	 * check number is not in use
2424 	 */
2425 	rcu_read_lock();
2426 	if (rdev->desc_nr < 0) {
2427 		int choice = 0;
2428 		if (mddev->pers)
2429 			choice = mddev->raid_disks;
2430 		while (md_find_rdev_nr_rcu(mddev, choice))
2431 			choice++;
2432 		rdev->desc_nr = choice;
2433 	} else {
2434 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2435 			rcu_read_unlock();
2436 			return -EBUSY;
2437 		}
2438 	}
2439 	rcu_read_unlock();
2440 	if (!test_bit(Journal, &rdev->flags) &&
2441 	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2442 		pr_warn("md: %s: array is limited to %d devices\n",
2443 			mdname(mddev), mddev->max_disks);
2444 		return -EBUSY;
2445 	}
2446 	bdevname(rdev->bdev,b);
2447 	strreplace(b, '/', '!');
2448 
2449 	rdev->mddev = mddev;
2450 	pr_debug("md: bind<%s>\n", b);
2451 
2452 	if (mddev->raid_disks)
2453 		mddev_create_serial_pool(mddev, rdev, false);
2454 
2455 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2456 		goto fail;
2457 
2458 	/* failure here is OK */
2459 	err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2460 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2461 	rdev->sysfs_unack_badblocks =
2462 		sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2463 	rdev->sysfs_badblocks =
2464 		sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2465 
2466 	list_add_rcu(&rdev->same_set, &mddev->disks);
2467 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2468 
2469 	/* May as well allow recovery to be retried once */
2470 	mddev->recovery_disabled++;
2471 
2472 	return 0;
2473 
2474  fail:
2475 	pr_warn("md: failed to register dev-%s for %s\n",
2476 		b, mdname(mddev));
2477 	return err;
2478 }
2479 
2480 static void rdev_delayed_delete(struct work_struct *ws)
2481 {
2482 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2483 	kobject_del(&rdev->kobj);
2484 	kobject_put(&rdev->kobj);
2485 }
2486 
2487 static void unbind_rdev_from_array(struct md_rdev *rdev)
2488 {
2489 	char b[BDEVNAME_SIZE];
2490 
2491 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2492 	list_del_rcu(&rdev->same_set);
2493 	pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2494 	mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2495 	rdev->mddev = NULL;
2496 	sysfs_remove_link(&rdev->kobj, "block");
2497 	sysfs_put(rdev->sysfs_state);
2498 	sysfs_put(rdev->sysfs_unack_badblocks);
2499 	sysfs_put(rdev->sysfs_badblocks);
2500 	rdev->sysfs_state = NULL;
2501 	rdev->sysfs_unack_badblocks = NULL;
2502 	rdev->sysfs_badblocks = NULL;
2503 	rdev->badblocks.count = 0;
2504 	/* We need to delay this, otherwise we can deadlock when
2505 	 * writing to 'remove' to "dev/state".  We also need
2506 	 * to delay it due to rcu usage.
2507 	 */
2508 	synchronize_rcu();
2509 	INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2510 	kobject_get(&rdev->kobj);
2511 	queue_work(md_rdev_misc_wq, &rdev->del_work);
2512 }
2513 
2514 /*
2515  * prevent the device from being mounted, repartitioned or
2516  * otherwise reused by a RAID array (or any other kernel
2517  * subsystem), by bd_claiming the device.
2518  */
2519 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2520 {
2521 	int err = 0;
2522 	struct block_device *bdev;
2523 
2524 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2525 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2526 	if (IS_ERR(bdev)) {
2527 		pr_warn("md: could not open device unknown-block(%u,%u).\n",
2528 			MAJOR(dev), MINOR(dev));
2529 		return PTR_ERR(bdev);
2530 	}
2531 	rdev->bdev = bdev;
2532 	return err;
2533 }
2534 
2535 static void unlock_rdev(struct md_rdev *rdev)
2536 {
2537 	struct block_device *bdev = rdev->bdev;
2538 	rdev->bdev = NULL;
2539 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2540 }
2541 
2542 void md_autodetect_dev(dev_t dev);
2543 
2544 static void export_rdev(struct md_rdev *rdev)
2545 {
2546 	char b[BDEVNAME_SIZE];
2547 
2548 	pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2549 	md_rdev_clear(rdev);
2550 #ifndef MODULE
2551 	if (test_bit(AutoDetected, &rdev->flags))
2552 		md_autodetect_dev(rdev->bdev->bd_dev);
2553 #endif
2554 	unlock_rdev(rdev);
2555 	kobject_put(&rdev->kobj);
2556 }
2557 
2558 void md_kick_rdev_from_array(struct md_rdev *rdev)
2559 {
2560 	unbind_rdev_from_array(rdev);
2561 	export_rdev(rdev);
2562 }
2563 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2564 
2565 static void export_array(struct mddev *mddev)
2566 {
2567 	struct md_rdev *rdev;
2568 
2569 	while (!list_empty(&mddev->disks)) {
2570 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2571 					same_set);
2572 		md_kick_rdev_from_array(rdev);
2573 	}
2574 	mddev->raid_disks = 0;
2575 	mddev->major_version = 0;
2576 }
2577 
2578 static bool set_in_sync(struct mddev *mddev)
2579 {
2580 	lockdep_assert_held(&mddev->lock);
2581 	if (!mddev->in_sync) {
2582 		mddev->sync_checkers++;
2583 		spin_unlock(&mddev->lock);
2584 		percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2585 		spin_lock(&mddev->lock);
2586 		if (!mddev->in_sync &&
2587 		    percpu_ref_is_zero(&mddev->writes_pending)) {
2588 			mddev->in_sync = 1;
2589 			/*
2590 			 * Ensure ->in_sync is visible before we clear
2591 			 * ->sync_checkers.
2592 			 */
2593 			smp_mb();
2594 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2595 			sysfs_notify_dirent_safe(mddev->sysfs_state);
2596 		}
2597 		if (--mddev->sync_checkers == 0)
2598 			percpu_ref_switch_to_percpu(&mddev->writes_pending);
2599 	}
2600 	if (mddev->safemode == 1)
2601 		mddev->safemode = 0;
2602 	return mddev->in_sync;
2603 }
2604 
2605 static void sync_sbs(struct mddev *mddev, int nospares)
2606 {
2607 	/* Update each superblock (in-memory image), but
2608 	 * if we are allowed to, skip spares which already
2609 	 * have the right event counter, or have one earlier
2610 	 * (which would mean they aren't being marked as dirty
2611 	 * with the rest of the array)
2612 	 */
2613 	struct md_rdev *rdev;
2614 	rdev_for_each(rdev, mddev) {
2615 		if (rdev->sb_events == mddev->events ||
2616 		    (nospares &&
2617 		     rdev->raid_disk < 0 &&
2618 		     rdev->sb_events+1 == mddev->events)) {
2619 			/* Don't update this superblock */
2620 			rdev->sb_loaded = 2;
2621 		} else {
2622 			sync_super(mddev, rdev);
2623 			rdev->sb_loaded = 1;
2624 		}
2625 	}
2626 }
2627 
2628 static bool does_sb_need_changing(struct mddev *mddev)
2629 {
2630 	struct md_rdev *rdev = NULL, *iter;
2631 	struct mdp_superblock_1 *sb;
2632 	int role;
2633 
2634 	/* Find a good rdev */
2635 	rdev_for_each(iter, mddev)
2636 		if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2637 			rdev = iter;
2638 			break;
2639 		}
2640 
2641 	/* No good device found. */
2642 	if (!rdev)
2643 		return false;
2644 
2645 	sb = page_address(rdev->sb_page);
2646 	/* Check if a device has become faulty or a spare become active */
2647 	rdev_for_each(rdev, mddev) {
2648 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2649 		/* Device activated? */
2650 		if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 &&
2651 		    !test_bit(Faulty, &rdev->flags))
2652 			return true;
2653 		/* Device turned faulty? */
2654 		if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX))
2655 			return true;
2656 	}
2657 
2658 	/* Check if any mddev parameters have changed */
2659 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2660 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2661 	    (mddev->layout != le32_to_cpu(sb->layout)) ||
2662 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2663 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2664 		return true;
2665 
2666 	return false;
2667 }
2668 
2669 void md_update_sb(struct mddev *mddev, int force_change)
2670 {
2671 	struct md_rdev *rdev;
2672 	int sync_req;
2673 	int nospares = 0;
2674 	int any_badblocks_changed = 0;
2675 	int ret = -1;
2676 
2677 	if (mddev->ro) {
2678 		if (force_change)
2679 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2680 		return;
2681 	}
2682 
2683 repeat:
2684 	if (mddev_is_clustered(mddev)) {
2685 		if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2686 			force_change = 1;
2687 		if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2688 			nospares = 1;
2689 		ret = md_cluster_ops->metadata_update_start(mddev);
2690 		/* Has someone else has updated the sb */
2691 		if (!does_sb_need_changing(mddev)) {
2692 			if (ret == 0)
2693 				md_cluster_ops->metadata_update_cancel(mddev);
2694 			bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2695 							 BIT(MD_SB_CHANGE_DEVS) |
2696 							 BIT(MD_SB_CHANGE_CLEAN));
2697 			return;
2698 		}
2699 	}
2700 
2701 	/*
2702 	 * First make sure individual recovery_offsets are correct
2703 	 * curr_resync_completed can only be used during recovery.
2704 	 * During reshape/resync it might use array-addresses rather
2705 	 * that device addresses.
2706 	 */
2707 	rdev_for_each(rdev, mddev) {
2708 		if (rdev->raid_disk >= 0 &&
2709 		    mddev->delta_disks >= 0 &&
2710 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2711 		    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2712 		    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2713 		    !test_bit(Journal, &rdev->flags) &&
2714 		    !test_bit(In_sync, &rdev->flags) &&
2715 		    mddev->curr_resync_completed > rdev->recovery_offset)
2716 				rdev->recovery_offset = mddev->curr_resync_completed;
2717 
2718 	}
2719 	if (!mddev->persistent) {
2720 		clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2721 		clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2722 		if (!mddev->external) {
2723 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2724 			rdev_for_each(rdev, mddev) {
2725 				if (rdev->badblocks.changed) {
2726 					rdev->badblocks.changed = 0;
2727 					ack_all_badblocks(&rdev->badblocks);
2728 					md_error(mddev, rdev);
2729 				}
2730 				clear_bit(Blocked, &rdev->flags);
2731 				clear_bit(BlockedBadBlocks, &rdev->flags);
2732 				wake_up(&rdev->blocked_wait);
2733 			}
2734 		}
2735 		wake_up(&mddev->sb_wait);
2736 		return;
2737 	}
2738 
2739 	spin_lock(&mddev->lock);
2740 
2741 	mddev->utime = ktime_get_real_seconds();
2742 
2743 	if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2744 		force_change = 1;
2745 	if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2746 		/* just a clean<-> dirty transition, possibly leave spares alone,
2747 		 * though if events isn't the right even/odd, we will have to do
2748 		 * spares after all
2749 		 */
2750 		nospares = 1;
2751 	if (force_change)
2752 		nospares = 0;
2753 	if (mddev->degraded)
2754 		/* If the array is degraded, then skipping spares is both
2755 		 * dangerous and fairly pointless.
2756 		 * Dangerous because a device that was removed from the array
2757 		 * might have a event_count that still looks up-to-date,
2758 		 * so it can be re-added without a resync.
2759 		 * Pointless because if there are any spares to skip,
2760 		 * then a recovery will happen and soon that array won't
2761 		 * be degraded any more and the spare can go back to sleep then.
2762 		 */
2763 		nospares = 0;
2764 
2765 	sync_req = mddev->in_sync;
2766 
2767 	/* If this is just a dirty<->clean transition, and the array is clean
2768 	 * and 'events' is odd, we can roll back to the previous clean state */
2769 	if (nospares
2770 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2771 	    && mddev->can_decrease_events
2772 	    && mddev->events != 1) {
2773 		mddev->events--;
2774 		mddev->can_decrease_events = 0;
2775 	} else {
2776 		/* otherwise we have to go forward and ... */
2777 		mddev->events ++;
2778 		mddev->can_decrease_events = nospares;
2779 	}
2780 
2781 	/*
2782 	 * This 64-bit counter should never wrap.
2783 	 * Either we are in around ~1 trillion A.C., assuming
2784 	 * 1 reboot per second, or we have a bug...
2785 	 */
2786 	WARN_ON(mddev->events == 0);
2787 
2788 	rdev_for_each(rdev, mddev) {
2789 		if (rdev->badblocks.changed)
2790 			any_badblocks_changed++;
2791 		if (test_bit(Faulty, &rdev->flags))
2792 			set_bit(FaultRecorded, &rdev->flags);
2793 	}
2794 
2795 	sync_sbs(mddev, nospares);
2796 	spin_unlock(&mddev->lock);
2797 
2798 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2799 		 mdname(mddev), mddev->in_sync);
2800 
2801 	if (mddev->queue)
2802 		blk_add_trace_msg(mddev->queue, "md md_update_sb");
2803 rewrite:
2804 	md_bitmap_update_sb(mddev->bitmap);
2805 	rdev_for_each(rdev, mddev) {
2806 		char b[BDEVNAME_SIZE];
2807 
2808 		if (rdev->sb_loaded != 1)
2809 			continue; /* no noise on spare devices */
2810 
2811 		if (!test_bit(Faulty, &rdev->flags)) {
2812 			md_super_write(mddev,rdev,
2813 				       rdev->sb_start, rdev->sb_size,
2814 				       rdev->sb_page);
2815 			pr_debug("md: (write) %s's sb offset: %llu\n",
2816 				 bdevname(rdev->bdev, b),
2817 				 (unsigned long long)rdev->sb_start);
2818 			rdev->sb_events = mddev->events;
2819 			if (rdev->badblocks.size) {
2820 				md_super_write(mddev, rdev,
2821 					       rdev->badblocks.sector,
2822 					       rdev->badblocks.size << 9,
2823 					       rdev->bb_page);
2824 				rdev->badblocks.size = 0;
2825 			}
2826 
2827 		} else
2828 			pr_debug("md: %s (skipping faulty)\n",
2829 				 bdevname(rdev->bdev, b));
2830 
2831 		if (mddev->level == LEVEL_MULTIPATH)
2832 			/* only need to write one superblock... */
2833 			break;
2834 	}
2835 	if (md_super_wait(mddev) < 0)
2836 		goto rewrite;
2837 	/* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2838 
2839 	if (mddev_is_clustered(mddev) && ret == 0)
2840 		md_cluster_ops->metadata_update_finish(mddev);
2841 
2842 	if (mddev->in_sync != sync_req ||
2843 	    !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2844 			       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2845 		/* have to write it out again */
2846 		goto repeat;
2847 	wake_up(&mddev->sb_wait);
2848 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2849 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
2850 
2851 	rdev_for_each(rdev, mddev) {
2852 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2853 			clear_bit(Blocked, &rdev->flags);
2854 
2855 		if (any_badblocks_changed)
2856 			ack_all_badblocks(&rdev->badblocks);
2857 		clear_bit(BlockedBadBlocks, &rdev->flags);
2858 		wake_up(&rdev->blocked_wait);
2859 	}
2860 }
2861 EXPORT_SYMBOL(md_update_sb);
2862 
2863 static int add_bound_rdev(struct md_rdev *rdev)
2864 {
2865 	struct mddev *mddev = rdev->mddev;
2866 	int err = 0;
2867 	bool add_journal = test_bit(Journal, &rdev->flags);
2868 
2869 	if (!mddev->pers->hot_remove_disk || add_journal) {
2870 		/* If there is hot_add_disk but no hot_remove_disk
2871 		 * then added disks for geometry changes,
2872 		 * and should be added immediately.
2873 		 */
2874 		super_types[mddev->major_version].
2875 			validate_super(mddev, rdev);
2876 		if (add_journal)
2877 			mddev_suspend(mddev);
2878 		err = mddev->pers->hot_add_disk(mddev, rdev);
2879 		if (add_journal)
2880 			mddev_resume(mddev);
2881 		if (err) {
2882 			md_kick_rdev_from_array(rdev);
2883 			return err;
2884 		}
2885 	}
2886 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2887 
2888 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2889 	if (mddev->degraded)
2890 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2891 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2892 	md_new_event();
2893 	md_wakeup_thread(mddev->thread);
2894 	return 0;
2895 }
2896 
2897 /* words written to sysfs files may, or may not, be \n terminated.
2898  * We want to accept with case. For this we use cmd_match.
2899  */
2900 static int cmd_match(const char *cmd, const char *str)
2901 {
2902 	/* See if cmd, written into a sysfs file, matches
2903 	 * str.  They must either be the same, or cmd can
2904 	 * have a trailing newline
2905 	 */
2906 	while (*cmd && *str && *cmd == *str) {
2907 		cmd++;
2908 		str++;
2909 	}
2910 	if (*cmd == '\n')
2911 		cmd++;
2912 	if (*str || *cmd)
2913 		return 0;
2914 	return 1;
2915 }
2916 
2917 struct rdev_sysfs_entry {
2918 	struct attribute attr;
2919 	ssize_t (*show)(struct md_rdev *, char *);
2920 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2921 };
2922 
2923 static ssize_t
2924 state_show(struct md_rdev *rdev, char *page)
2925 {
2926 	char *sep = ",";
2927 	size_t len = 0;
2928 	unsigned long flags = READ_ONCE(rdev->flags);
2929 
2930 	if (test_bit(Faulty, &flags) ||
2931 	    (!test_bit(ExternalBbl, &flags) &&
2932 	    rdev->badblocks.unacked_exist))
2933 		len += sprintf(page+len, "faulty%s", sep);
2934 	if (test_bit(In_sync, &flags))
2935 		len += sprintf(page+len, "in_sync%s", sep);
2936 	if (test_bit(Journal, &flags))
2937 		len += sprintf(page+len, "journal%s", sep);
2938 	if (test_bit(WriteMostly, &flags))
2939 		len += sprintf(page+len, "write_mostly%s", sep);
2940 	if (test_bit(Blocked, &flags) ||
2941 	    (rdev->badblocks.unacked_exist
2942 	     && !test_bit(Faulty, &flags)))
2943 		len += sprintf(page+len, "blocked%s", sep);
2944 	if (!test_bit(Faulty, &flags) &&
2945 	    !test_bit(Journal, &flags) &&
2946 	    !test_bit(In_sync, &flags))
2947 		len += sprintf(page+len, "spare%s", sep);
2948 	if (test_bit(WriteErrorSeen, &flags))
2949 		len += sprintf(page+len, "write_error%s", sep);
2950 	if (test_bit(WantReplacement, &flags))
2951 		len += sprintf(page+len, "want_replacement%s", sep);
2952 	if (test_bit(Replacement, &flags))
2953 		len += sprintf(page+len, "replacement%s", sep);
2954 	if (test_bit(ExternalBbl, &flags))
2955 		len += sprintf(page+len, "external_bbl%s", sep);
2956 	if (test_bit(FailFast, &flags))
2957 		len += sprintf(page+len, "failfast%s", sep);
2958 
2959 	if (len)
2960 		len -= strlen(sep);
2961 
2962 	return len+sprintf(page+len, "\n");
2963 }
2964 
2965 static ssize_t
2966 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2967 {
2968 	/* can write
2969 	 *  faulty  - simulates an error
2970 	 *  remove  - disconnects the device
2971 	 *  writemostly - sets write_mostly
2972 	 *  -writemostly - clears write_mostly
2973 	 *  blocked - sets the Blocked flags
2974 	 *  -blocked - clears the Blocked and possibly simulates an error
2975 	 *  insync - sets Insync providing device isn't active
2976 	 *  -insync - clear Insync for a device with a slot assigned,
2977 	 *            so that it gets rebuilt based on bitmap
2978 	 *  write_error - sets WriteErrorSeen
2979 	 *  -write_error - clears WriteErrorSeen
2980 	 *  {,-}failfast - set/clear FailFast
2981 	 */
2982 
2983 	struct mddev *mddev = rdev->mddev;
2984 	int err = -EINVAL;
2985 	bool need_update_sb = false;
2986 
2987 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2988 		md_error(rdev->mddev, rdev);
2989 
2990 		if (test_bit(MD_BROKEN, &rdev->mddev->flags))
2991 			err = -EBUSY;
2992 		else
2993 			err = 0;
2994 	} else if (cmd_match(buf, "remove")) {
2995 		if (rdev->mddev->pers) {
2996 			clear_bit(Blocked, &rdev->flags);
2997 			remove_and_add_spares(rdev->mddev, rdev);
2998 		}
2999 		if (rdev->raid_disk >= 0)
3000 			err = -EBUSY;
3001 		else {
3002 			err = 0;
3003 			if (mddev_is_clustered(mddev))
3004 				err = md_cluster_ops->remove_disk(mddev, rdev);
3005 
3006 			if (err == 0) {
3007 				md_kick_rdev_from_array(rdev);
3008 				if (mddev->pers) {
3009 					set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3010 					md_wakeup_thread(mddev->thread);
3011 				}
3012 				md_new_event();
3013 			}
3014 		}
3015 	} else if (cmd_match(buf, "writemostly")) {
3016 		set_bit(WriteMostly, &rdev->flags);
3017 		mddev_create_serial_pool(rdev->mddev, rdev, false);
3018 		need_update_sb = true;
3019 		err = 0;
3020 	} else if (cmd_match(buf, "-writemostly")) {
3021 		mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3022 		clear_bit(WriteMostly, &rdev->flags);
3023 		need_update_sb = true;
3024 		err = 0;
3025 	} else if (cmd_match(buf, "blocked")) {
3026 		set_bit(Blocked, &rdev->flags);
3027 		err = 0;
3028 	} else if (cmd_match(buf, "-blocked")) {
3029 		if (!test_bit(Faulty, &rdev->flags) &&
3030 		    !test_bit(ExternalBbl, &rdev->flags) &&
3031 		    rdev->badblocks.unacked_exist) {
3032 			/* metadata handler doesn't understand badblocks,
3033 			 * so we need to fail the device
3034 			 */
3035 			md_error(rdev->mddev, rdev);
3036 		}
3037 		clear_bit(Blocked, &rdev->flags);
3038 		clear_bit(BlockedBadBlocks, &rdev->flags);
3039 		wake_up(&rdev->blocked_wait);
3040 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3041 		md_wakeup_thread(rdev->mddev->thread);
3042 
3043 		err = 0;
3044 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3045 		set_bit(In_sync, &rdev->flags);
3046 		err = 0;
3047 	} else if (cmd_match(buf, "failfast")) {
3048 		set_bit(FailFast, &rdev->flags);
3049 		need_update_sb = true;
3050 		err = 0;
3051 	} else if (cmd_match(buf, "-failfast")) {
3052 		clear_bit(FailFast, &rdev->flags);
3053 		need_update_sb = true;
3054 		err = 0;
3055 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3056 		   !test_bit(Journal, &rdev->flags)) {
3057 		if (rdev->mddev->pers == NULL) {
3058 			clear_bit(In_sync, &rdev->flags);
3059 			rdev->saved_raid_disk = rdev->raid_disk;
3060 			rdev->raid_disk = -1;
3061 			err = 0;
3062 		}
3063 	} else if (cmd_match(buf, "write_error")) {
3064 		set_bit(WriteErrorSeen, &rdev->flags);
3065 		err = 0;
3066 	} else if (cmd_match(buf, "-write_error")) {
3067 		clear_bit(WriteErrorSeen, &rdev->flags);
3068 		err = 0;
3069 	} else if (cmd_match(buf, "want_replacement")) {
3070 		/* Any non-spare device that is not a replacement can
3071 		 * become want_replacement at any time, but we then need to
3072 		 * check if recovery is needed.
3073 		 */
3074 		if (rdev->raid_disk >= 0 &&
3075 		    !test_bit(Journal, &rdev->flags) &&
3076 		    !test_bit(Replacement, &rdev->flags))
3077 			set_bit(WantReplacement, &rdev->flags);
3078 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3079 		md_wakeup_thread(rdev->mddev->thread);
3080 		err = 0;
3081 	} else if (cmd_match(buf, "-want_replacement")) {
3082 		/* Clearing 'want_replacement' is always allowed.
3083 		 * Once replacements starts it is too late though.
3084 		 */
3085 		err = 0;
3086 		clear_bit(WantReplacement, &rdev->flags);
3087 	} else if (cmd_match(buf, "replacement")) {
3088 		/* Can only set a device as a replacement when array has not
3089 		 * yet been started.  Once running, replacement is automatic
3090 		 * from spares, or by assigning 'slot'.
3091 		 */
3092 		if (rdev->mddev->pers)
3093 			err = -EBUSY;
3094 		else {
3095 			set_bit(Replacement, &rdev->flags);
3096 			err = 0;
3097 		}
3098 	} else if (cmd_match(buf, "-replacement")) {
3099 		/* Similarly, can only clear Replacement before start */
3100 		if (rdev->mddev->pers)
3101 			err = -EBUSY;
3102 		else {
3103 			clear_bit(Replacement, &rdev->flags);
3104 			err = 0;
3105 		}
3106 	} else if (cmd_match(buf, "re-add")) {
3107 		if (!rdev->mddev->pers)
3108 			err = -EINVAL;
3109 		else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3110 				rdev->saved_raid_disk >= 0) {
3111 			/* clear_bit is performed _after_ all the devices
3112 			 * have their local Faulty bit cleared. If any writes
3113 			 * happen in the meantime in the local node, they
3114 			 * will land in the local bitmap, which will be synced
3115 			 * by this node eventually
3116 			 */
3117 			if (!mddev_is_clustered(rdev->mddev) ||
3118 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3119 				clear_bit(Faulty, &rdev->flags);
3120 				err = add_bound_rdev(rdev);
3121 			}
3122 		} else
3123 			err = -EBUSY;
3124 	} else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3125 		set_bit(ExternalBbl, &rdev->flags);
3126 		rdev->badblocks.shift = 0;
3127 		err = 0;
3128 	} else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3129 		clear_bit(ExternalBbl, &rdev->flags);
3130 		err = 0;
3131 	}
3132 	if (need_update_sb)
3133 		md_update_sb(mddev, 1);
3134 	if (!err)
3135 		sysfs_notify_dirent_safe(rdev->sysfs_state);
3136 	return err ? err : len;
3137 }
3138 static struct rdev_sysfs_entry rdev_state =
3139 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3140 
3141 static ssize_t
3142 errors_show(struct md_rdev *rdev, char *page)
3143 {
3144 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3145 }
3146 
3147 static ssize_t
3148 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3149 {
3150 	unsigned int n;
3151 	int rv;
3152 
3153 	rv = kstrtouint(buf, 10, &n);
3154 	if (rv < 0)
3155 		return rv;
3156 	atomic_set(&rdev->corrected_errors, n);
3157 	return len;
3158 }
3159 static struct rdev_sysfs_entry rdev_errors =
3160 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3161 
3162 static ssize_t
3163 slot_show(struct md_rdev *rdev, char *page)
3164 {
3165 	if (test_bit(Journal, &rdev->flags))
3166 		return sprintf(page, "journal\n");
3167 	else if (rdev->raid_disk < 0)
3168 		return sprintf(page, "none\n");
3169 	else
3170 		return sprintf(page, "%d\n", rdev->raid_disk);
3171 }
3172 
3173 static ssize_t
3174 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3175 {
3176 	int slot;
3177 	int err;
3178 
3179 	if (test_bit(Journal, &rdev->flags))
3180 		return -EBUSY;
3181 	if (strncmp(buf, "none", 4)==0)
3182 		slot = -1;
3183 	else {
3184 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
3185 		if (err < 0)
3186 			return err;
3187 	}
3188 	if (rdev->mddev->pers && slot == -1) {
3189 		/* Setting 'slot' on an active array requires also
3190 		 * updating the 'rd%d' link, and communicating
3191 		 * with the personality with ->hot_*_disk.
3192 		 * For now we only support removing
3193 		 * failed/spare devices.  This normally happens automatically,
3194 		 * but not when the metadata is externally managed.
3195 		 */
3196 		if (rdev->raid_disk == -1)
3197 			return -EEXIST;
3198 		/* personality does all needed checks */
3199 		if (rdev->mddev->pers->hot_remove_disk == NULL)
3200 			return -EINVAL;
3201 		clear_bit(Blocked, &rdev->flags);
3202 		remove_and_add_spares(rdev->mddev, rdev);
3203 		if (rdev->raid_disk >= 0)
3204 			return -EBUSY;
3205 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3206 		md_wakeup_thread(rdev->mddev->thread);
3207 	} else if (rdev->mddev->pers) {
3208 		/* Activating a spare .. or possibly reactivating
3209 		 * if we ever get bitmaps working here.
3210 		 */
3211 		int err;
3212 
3213 		if (rdev->raid_disk != -1)
3214 			return -EBUSY;
3215 
3216 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3217 			return -EBUSY;
3218 
3219 		if (rdev->mddev->pers->hot_add_disk == NULL)
3220 			return -EINVAL;
3221 
3222 		if (slot >= rdev->mddev->raid_disks &&
3223 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3224 			return -ENOSPC;
3225 
3226 		rdev->raid_disk = slot;
3227 		if (test_bit(In_sync, &rdev->flags))
3228 			rdev->saved_raid_disk = slot;
3229 		else
3230 			rdev->saved_raid_disk = -1;
3231 		clear_bit(In_sync, &rdev->flags);
3232 		clear_bit(Bitmap_sync, &rdev->flags);
3233 		err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3234 		if (err) {
3235 			rdev->raid_disk = -1;
3236 			return err;
3237 		} else
3238 			sysfs_notify_dirent_safe(rdev->sysfs_state);
3239 		/* failure here is OK */;
3240 		sysfs_link_rdev(rdev->mddev, rdev);
3241 		/* don't wakeup anyone, leave that to userspace. */
3242 	} else {
3243 		if (slot >= rdev->mddev->raid_disks &&
3244 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3245 			return -ENOSPC;
3246 		rdev->raid_disk = slot;
3247 		/* assume it is working */
3248 		clear_bit(Faulty, &rdev->flags);
3249 		clear_bit(WriteMostly, &rdev->flags);
3250 		set_bit(In_sync, &rdev->flags);
3251 		sysfs_notify_dirent_safe(rdev->sysfs_state);
3252 	}
3253 	return len;
3254 }
3255 
3256 static struct rdev_sysfs_entry rdev_slot =
3257 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3258 
3259 static ssize_t
3260 offset_show(struct md_rdev *rdev, char *page)
3261 {
3262 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3263 }
3264 
3265 static ssize_t
3266 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3267 {
3268 	unsigned long long offset;
3269 	if (kstrtoull(buf, 10, &offset) < 0)
3270 		return -EINVAL;
3271 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
3272 		return -EBUSY;
3273 	if (rdev->sectors && rdev->mddev->external)
3274 		/* Must set offset before size, so overlap checks
3275 		 * can be sane */
3276 		return -EBUSY;
3277 	rdev->data_offset = offset;
3278 	rdev->new_data_offset = offset;
3279 	return len;
3280 }
3281 
3282 static struct rdev_sysfs_entry rdev_offset =
3283 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3284 
3285 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3286 {
3287 	return sprintf(page, "%llu\n",
3288 		       (unsigned long long)rdev->new_data_offset);
3289 }
3290 
3291 static ssize_t new_offset_store(struct md_rdev *rdev,
3292 				const char *buf, size_t len)
3293 {
3294 	unsigned long long new_offset;
3295 	struct mddev *mddev = rdev->mddev;
3296 
3297 	if (kstrtoull(buf, 10, &new_offset) < 0)
3298 		return -EINVAL;
3299 
3300 	if (mddev->sync_thread ||
3301 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3302 		return -EBUSY;
3303 	if (new_offset == rdev->data_offset)
3304 		/* reset is always permitted */
3305 		;
3306 	else if (new_offset > rdev->data_offset) {
3307 		/* must not push array size beyond rdev_sectors */
3308 		if (new_offset - rdev->data_offset
3309 		    + mddev->dev_sectors > rdev->sectors)
3310 				return -E2BIG;
3311 	}
3312 	/* Metadata worries about other space details. */
3313 
3314 	/* decreasing the offset is inconsistent with a backwards
3315 	 * reshape.
3316 	 */
3317 	if (new_offset < rdev->data_offset &&
3318 	    mddev->reshape_backwards)
3319 		return -EINVAL;
3320 	/* Increasing offset is inconsistent with forwards
3321 	 * reshape.  reshape_direction should be set to
3322 	 * 'backwards' first.
3323 	 */
3324 	if (new_offset > rdev->data_offset &&
3325 	    !mddev->reshape_backwards)
3326 		return -EINVAL;
3327 
3328 	if (mddev->pers && mddev->persistent &&
3329 	    !super_types[mddev->major_version]
3330 	    .allow_new_offset(rdev, new_offset))
3331 		return -E2BIG;
3332 	rdev->new_data_offset = new_offset;
3333 	if (new_offset > rdev->data_offset)
3334 		mddev->reshape_backwards = 1;
3335 	else if (new_offset < rdev->data_offset)
3336 		mddev->reshape_backwards = 0;
3337 
3338 	return len;
3339 }
3340 static struct rdev_sysfs_entry rdev_new_offset =
3341 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3342 
3343 static ssize_t
3344 rdev_size_show(struct md_rdev *rdev, char *page)
3345 {
3346 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3347 }
3348 
3349 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3350 {
3351 	/* check if two start/length pairs overlap */
3352 	if (s1+l1 <= s2)
3353 		return 0;
3354 	if (s2+l2 <= s1)
3355 		return 0;
3356 	return 1;
3357 }
3358 
3359 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3360 {
3361 	unsigned long long blocks;
3362 	sector_t new;
3363 
3364 	if (kstrtoull(buf, 10, &blocks) < 0)
3365 		return -EINVAL;
3366 
3367 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3368 		return -EINVAL; /* sector conversion overflow */
3369 
3370 	new = blocks * 2;
3371 	if (new != blocks * 2)
3372 		return -EINVAL; /* unsigned long long to sector_t overflow */
3373 
3374 	*sectors = new;
3375 	return 0;
3376 }
3377 
3378 static ssize_t
3379 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3380 {
3381 	struct mddev *my_mddev = rdev->mddev;
3382 	sector_t oldsectors = rdev->sectors;
3383 	sector_t sectors;
3384 
3385 	if (test_bit(Journal, &rdev->flags))
3386 		return -EBUSY;
3387 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
3388 		return -EINVAL;
3389 	if (rdev->data_offset != rdev->new_data_offset)
3390 		return -EINVAL; /* too confusing */
3391 	if (my_mddev->pers && rdev->raid_disk >= 0) {
3392 		if (my_mddev->persistent) {
3393 			sectors = super_types[my_mddev->major_version].
3394 				rdev_size_change(rdev, sectors);
3395 			if (!sectors)
3396 				return -EBUSY;
3397 		} else if (!sectors)
3398 			sectors = bdev_nr_sectors(rdev->bdev) -
3399 				rdev->data_offset;
3400 		if (!my_mddev->pers->resize)
3401 			/* Cannot change size for RAID0 or Linear etc */
3402 			return -EINVAL;
3403 	}
3404 	if (sectors < my_mddev->dev_sectors)
3405 		return -EINVAL; /* component must fit device */
3406 
3407 	rdev->sectors = sectors;
3408 	if (sectors > oldsectors && my_mddev->external) {
3409 		/* Need to check that all other rdevs with the same
3410 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
3411 		 * the rdev lists safely.
3412 		 * This check does not provide a hard guarantee, it
3413 		 * just helps avoid dangerous mistakes.
3414 		 */
3415 		struct mddev *mddev;
3416 		int overlap = 0;
3417 		struct list_head *tmp;
3418 
3419 		rcu_read_lock();
3420 		for_each_mddev(mddev, tmp) {
3421 			struct md_rdev *rdev2;
3422 
3423 			rdev_for_each(rdev2, mddev)
3424 				if (rdev->bdev == rdev2->bdev &&
3425 				    rdev != rdev2 &&
3426 				    overlaps(rdev->data_offset, rdev->sectors,
3427 					     rdev2->data_offset,
3428 					     rdev2->sectors)) {
3429 					overlap = 1;
3430 					break;
3431 				}
3432 			if (overlap) {
3433 				mddev_put(mddev);
3434 				break;
3435 			}
3436 		}
3437 		rcu_read_unlock();
3438 		if (overlap) {
3439 			/* Someone else could have slipped in a size
3440 			 * change here, but doing so is just silly.
3441 			 * We put oldsectors back because we *know* it is
3442 			 * safe, and trust userspace not to race with
3443 			 * itself
3444 			 */
3445 			rdev->sectors = oldsectors;
3446 			return -EBUSY;
3447 		}
3448 	}
3449 	return len;
3450 }
3451 
3452 static struct rdev_sysfs_entry rdev_size =
3453 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3454 
3455 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3456 {
3457 	unsigned long long recovery_start = rdev->recovery_offset;
3458 
3459 	if (test_bit(In_sync, &rdev->flags) ||
3460 	    recovery_start == MaxSector)
3461 		return sprintf(page, "none\n");
3462 
3463 	return sprintf(page, "%llu\n", recovery_start);
3464 }
3465 
3466 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3467 {
3468 	unsigned long long recovery_start;
3469 
3470 	if (cmd_match(buf, "none"))
3471 		recovery_start = MaxSector;
3472 	else if (kstrtoull(buf, 10, &recovery_start))
3473 		return -EINVAL;
3474 
3475 	if (rdev->mddev->pers &&
3476 	    rdev->raid_disk >= 0)
3477 		return -EBUSY;
3478 
3479 	rdev->recovery_offset = recovery_start;
3480 	if (recovery_start == MaxSector)
3481 		set_bit(In_sync, &rdev->flags);
3482 	else
3483 		clear_bit(In_sync, &rdev->flags);
3484 	return len;
3485 }
3486 
3487 static struct rdev_sysfs_entry rdev_recovery_start =
3488 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3489 
3490 /* sysfs access to bad-blocks list.
3491  * We present two files.
3492  * 'bad-blocks' lists sector numbers and lengths of ranges that
3493  *    are recorded as bad.  The list is truncated to fit within
3494  *    the one-page limit of sysfs.
3495  *    Writing "sector length" to this file adds an acknowledged
3496  *    bad block list.
3497  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3498  *    been acknowledged.  Writing to this file adds bad blocks
3499  *    without acknowledging them.  This is largely for testing.
3500  */
3501 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3502 {
3503 	return badblocks_show(&rdev->badblocks, page, 0);
3504 }
3505 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3506 {
3507 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3508 	/* Maybe that ack was all we needed */
3509 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3510 		wake_up(&rdev->blocked_wait);
3511 	return rv;
3512 }
3513 static struct rdev_sysfs_entry rdev_bad_blocks =
3514 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3515 
3516 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3517 {
3518 	return badblocks_show(&rdev->badblocks, page, 1);
3519 }
3520 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3521 {
3522 	return badblocks_store(&rdev->badblocks, page, len, 1);
3523 }
3524 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3525 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3526 
3527 static ssize_t
3528 ppl_sector_show(struct md_rdev *rdev, char *page)
3529 {
3530 	return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3531 }
3532 
3533 static ssize_t
3534 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3535 {
3536 	unsigned long long sector;
3537 
3538 	if (kstrtoull(buf, 10, &sector) < 0)
3539 		return -EINVAL;
3540 	if (sector != (sector_t)sector)
3541 		return -EINVAL;
3542 
3543 	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3544 	    rdev->raid_disk >= 0)
3545 		return -EBUSY;
3546 
3547 	if (rdev->mddev->persistent) {
3548 		if (rdev->mddev->major_version == 0)
3549 			return -EINVAL;
3550 		if ((sector > rdev->sb_start &&
3551 		     sector - rdev->sb_start > S16_MAX) ||
3552 		    (sector < rdev->sb_start &&
3553 		     rdev->sb_start - sector > -S16_MIN))
3554 			return -EINVAL;
3555 		rdev->ppl.offset = sector - rdev->sb_start;
3556 	} else if (!rdev->mddev->external) {
3557 		return -EBUSY;
3558 	}
3559 	rdev->ppl.sector = sector;
3560 	return len;
3561 }
3562 
3563 static struct rdev_sysfs_entry rdev_ppl_sector =
3564 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3565 
3566 static ssize_t
3567 ppl_size_show(struct md_rdev *rdev, char *page)
3568 {
3569 	return sprintf(page, "%u\n", rdev->ppl.size);
3570 }
3571 
3572 static ssize_t
3573 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3574 {
3575 	unsigned int size;
3576 
3577 	if (kstrtouint(buf, 10, &size) < 0)
3578 		return -EINVAL;
3579 
3580 	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3581 	    rdev->raid_disk >= 0)
3582 		return -EBUSY;
3583 
3584 	if (rdev->mddev->persistent) {
3585 		if (rdev->mddev->major_version == 0)
3586 			return -EINVAL;
3587 		if (size > U16_MAX)
3588 			return -EINVAL;
3589 	} else if (!rdev->mddev->external) {
3590 		return -EBUSY;
3591 	}
3592 	rdev->ppl.size = size;
3593 	return len;
3594 }
3595 
3596 static struct rdev_sysfs_entry rdev_ppl_size =
3597 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3598 
3599 static struct attribute *rdev_default_attrs[] = {
3600 	&rdev_state.attr,
3601 	&rdev_errors.attr,
3602 	&rdev_slot.attr,
3603 	&rdev_offset.attr,
3604 	&rdev_new_offset.attr,
3605 	&rdev_size.attr,
3606 	&rdev_recovery_start.attr,
3607 	&rdev_bad_blocks.attr,
3608 	&rdev_unack_bad_blocks.attr,
3609 	&rdev_ppl_sector.attr,
3610 	&rdev_ppl_size.attr,
3611 	NULL,
3612 };
3613 ATTRIBUTE_GROUPS(rdev_default);
3614 static ssize_t
3615 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3616 {
3617 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3618 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3619 
3620 	if (!entry->show)
3621 		return -EIO;
3622 	if (!rdev->mddev)
3623 		return -ENODEV;
3624 	return entry->show(rdev, page);
3625 }
3626 
3627 static ssize_t
3628 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3629 	      const char *page, size_t length)
3630 {
3631 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3632 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3633 	ssize_t rv;
3634 	struct mddev *mddev = rdev->mddev;
3635 
3636 	if (!entry->store)
3637 		return -EIO;
3638 	if (!capable(CAP_SYS_ADMIN))
3639 		return -EACCES;
3640 	rv = mddev ? mddev_lock(mddev) : -ENODEV;
3641 	if (!rv) {
3642 		if (rdev->mddev == NULL)
3643 			rv = -ENODEV;
3644 		else
3645 			rv = entry->store(rdev, page, length);
3646 		mddev_unlock(mddev);
3647 	}
3648 	return rv;
3649 }
3650 
3651 static void rdev_free(struct kobject *ko)
3652 {
3653 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3654 	kfree(rdev);
3655 }
3656 static const struct sysfs_ops rdev_sysfs_ops = {
3657 	.show		= rdev_attr_show,
3658 	.store		= rdev_attr_store,
3659 };
3660 static struct kobj_type rdev_ktype = {
3661 	.release	= rdev_free,
3662 	.sysfs_ops	= &rdev_sysfs_ops,
3663 	.default_groups	= rdev_default_groups,
3664 };
3665 
3666 int md_rdev_init(struct md_rdev *rdev)
3667 {
3668 	rdev->desc_nr = -1;
3669 	rdev->saved_raid_disk = -1;
3670 	rdev->raid_disk = -1;
3671 	rdev->flags = 0;
3672 	rdev->data_offset = 0;
3673 	rdev->new_data_offset = 0;
3674 	rdev->sb_events = 0;
3675 	rdev->last_read_error = 0;
3676 	rdev->sb_loaded = 0;
3677 	rdev->bb_page = NULL;
3678 	atomic_set(&rdev->nr_pending, 0);
3679 	atomic_set(&rdev->read_errors, 0);
3680 	atomic_set(&rdev->corrected_errors, 0);
3681 
3682 	INIT_LIST_HEAD(&rdev->same_set);
3683 	init_waitqueue_head(&rdev->blocked_wait);
3684 
3685 	/* Add space to store bad block list.
3686 	 * This reserves the space even on arrays where it cannot
3687 	 * be used - I wonder if that matters
3688 	 */
3689 	return badblocks_init(&rdev->badblocks, 0);
3690 }
3691 EXPORT_SYMBOL_GPL(md_rdev_init);
3692 /*
3693  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3694  *
3695  * mark the device faulty if:
3696  *
3697  *   - the device is nonexistent (zero size)
3698  *   - the device has no valid superblock
3699  *
3700  * a faulty rdev _never_ has rdev->sb set.
3701  */
3702 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3703 {
3704 	char b[BDEVNAME_SIZE];
3705 	int err;
3706 	struct md_rdev *rdev;
3707 	sector_t size;
3708 
3709 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3710 	if (!rdev)
3711 		return ERR_PTR(-ENOMEM);
3712 
3713 	err = md_rdev_init(rdev);
3714 	if (err)
3715 		goto abort_free;
3716 	err = alloc_disk_sb(rdev);
3717 	if (err)
3718 		goto abort_free;
3719 
3720 	err = lock_rdev(rdev, newdev, super_format == -2);
3721 	if (err)
3722 		goto abort_free;
3723 
3724 	kobject_init(&rdev->kobj, &rdev_ktype);
3725 
3726 	size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
3727 	if (!size) {
3728 		pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3729 			bdevname(rdev->bdev,b));
3730 		err = -EINVAL;
3731 		goto abort_free;
3732 	}
3733 
3734 	if (super_format >= 0) {
3735 		err = super_types[super_format].
3736 			load_super(rdev, NULL, super_minor);
3737 		if (err == -EINVAL) {
3738 			pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3739 				bdevname(rdev->bdev,b),
3740 				super_format, super_minor);
3741 			goto abort_free;
3742 		}
3743 		if (err < 0) {
3744 			pr_warn("md: could not read %s's sb, not importing!\n",
3745 				bdevname(rdev->bdev,b));
3746 			goto abort_free;
3747 		}
3748 	}
3749 
3750 	return rdev;
3751 
3752 abort_free:
3753 	if (rdev->bdev)
3754 		unlock_rdev(rdev);
3755 	md_rdev_clear(rdev);
3756 	kfree(rdev);
3757 	return ERR_PTR(err);
3758 }
3759 
3760 /*
3761  * Check a full RAID array for plausibility
3762  */
3763 
3764 static int analyze_sbs(struct mddev *mddev)
3765 {
3766 	int i;
3767 	struct md_rdev *rdev, *freshest, *tmp;
3768 	char b[BDEVNAME_SIZE];
3769 
3770 	freshest = NULL;
3771 	rdev_for_each_safe(rdev, tmp, mddev)
3772 		switch (super_types[mddev->major_version].
3773 			load_super(rdev, freshest, mddev->minor_version)) {
3774 		case 1:
3775 			freshest = rdev;
3776 			break;
3777 		case 0:
3778 			break;
3779 		default:
3780 			pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3781 				bdevname(rdev->bdev,b));
3782 			md_kick_rdev_from_array(rdev);
3783 		}
3784 
3785 	/* Cannot find a valid fresh disk */
3786 	if (!freshest) {
3787 		pr_warn("md: cannot find a valid disk\n");
3788 		return -EINVAL;
3789 	}
3790 
3791 	super_types[mddev->major_version].
3792 		validate_super(mddev, freshest);
3793 
3794 	i = 0;
3795 	rdev_for_each_safe(rdev, tmp, mddev) {
3796 		if (mddev->max_disks &&
3797 		    (rdev->desc_nr >= mddev->max_disks ||
3798 		     i > mddev->max_disks)) {
3799 			pr_warn("md: %s: %s: only %d devices permitted\n",
3800 				mdname(mddev), bdevname(rdev->bdev, b),
3801 				mddev->max_disks);
3802 			md_kick_rdev_from_array(rdev);
3803 			continue;
3804 		}
3805 		if (rdev != freshest) {
3806 			if (super_types[mddev->major_version].
3807 			    validate_super(mddev, rdev)) {
3808 				pr_warn("md: kicking non-fresh %s from array!\n",
3809 					bdevname(rdev->bdev,b));
3810 				md_kick_rdev_from_array(rdev);
3811 				continue;
3812 			}
3813 		}
3814 		if (mddev->level == LEVEL_MULTIPATH) {
3815 			rdev->desc_nr = i++;
3816 			rdev->raid_disk = rdev->desc_nr;
3817 			set_bit(In_sync, &rdev->flags);
3818 		} else if (rdev->raid_disk >=
3819 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3820 			   !test_bit(Journal, &rdev->flags)) {
3821 			rdev->raid_disk = -1;
3822 			clear_bit(In_sync, &rdev->flags);
3823 		}
3824 	}
3825 
3826 	return 0;
3827 }
3828 
3829 /* Read a fixed-point number.
3830  * Numbers in sysfs attributes should be in "standard" units where
3831  * possible, so time should be in seconds.
3832  * However we internally use a a much smaller unit such as
3833  * milliseconds or jiffies.
3834  * This function takes a decimal number with a possible fractional
3835  * component, and produces an integer which is the result of
3836  * multiplying that number by 10^'scale'.
3837  * all without any floating-point arithmetic.
3838  */
3839 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3840 {
3841 	unsigned long result = 0;
3842 	long decimals = -1;
3843 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3844 		if (*cp == '.')
3845 			decimals = 0;
3846 		else if (decimals < scale) {
3847 			unsigned int value;
3848 			value = *cp - '0';
3849 			result = result * 10 + value;
3850 			if (decimals >= 0)
3851 				decimals++;
3852 		}
3853 		cp++;
3854 	}
3855 	if (*cp == '\n')
3856 		cp++;
3857 	if (*cp)
3858 		return -EINVAL;
3859 	if (decimals < 0)
3860 		decimals = 0;
3861 	*res = result * int_pow(10, scale - decimals);
3862 	return 0;
3863 }
3864 
3865 static ssize_t
3866 safe_delay_show(struct mddev *mddev, char *page)
3867 {
3868 	int msec = (mddev->safemode_delay*1000)/HZ;
3869 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3870 }
3871 static ssize_t
3872 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3873 {
3874 	unsigned long msec;
3875 
3876 	if (mddev_is_clustered(mddev)) {
3877 		pr_warn("md: Safemode is disabled for clustered mode\n");
3878 		return -EINVAL;
3879 	}
3880 
3881 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3882 		return -EINVAL;
3883 	if (msec == 0)
3884 		mddev->safemode_delay = 0;
3885 	else {
3886 		unsigned long old_delay = mddev->safemode_delay;
3887 		unsigned long new_delay = (msec*HZ)/1000;
3888 
3889 		if (new_delay == 0)
3890 			new_delay = 1;
3891 		mddev->safemode_delay = new_delay;
3892 		if (new_delay < old_delay || old_delay == 0)
3893 			mod_timer(&mddev->safemode_timer, jiffies+1);
3894 	}
3895 	return len;
3896 }
3897 static struct md_sysfs_entry md_safe_delay =
3898 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3899 
3900 static ssize_t
3901 level_show(struct mddev *mddev, char *page)
3902 {
3903 	struct md_personality *p;
3904 	int ret;
3905 	spin_lock(&mddev->lock);
3906 	p = mddev->pers;
3907 	if (p)
3908 		ret = sprintf(page, "%s\n", p->name);
3909 	else if (mddev->clevel[0])
3910 		ret = sprintf(page, "%s\n", mddev->clevel);
3911 	else if (mddev->level != LEVEL_NONE)
3912 		ret = sprintf(page, "%d\n", mddev->level);
3913 	else
3914 		ret = 0;
3915 	spin_unlock(&mddev->lock);
3916 	return ret;
3917 }
3918 
3919 static ssize_t
3920 level_store(struct mddev *mddev, const char *buf, size_t len)
3921 {
3922 	char clevel[16];
3923 	ssize_t rv;
3924 	size_t slen = len;
3925 	struct md_personality *pers, *oldpers;
3926 	long level;
3927 	void *priv, *oldpriv;
3928 	struct md_rdev *rdev;
3929 
3930 	if (slen == 0 || slen >= sizeof(clevel))
3931 		return -EINVAL;
3932 
3933 	rv = mddev_lock(mddev);
3934 	if (rv)
3935 		return rv;
3936 
3937 	if (mddev->pers == NULL) {
3938 		strncpy(mddev->clevel, buf, slen);
3939 		if (mddev->clevel[slen-1] == '\n')
3940 			slen--;
3941 		mddev->clevel[slen] = 0;
3942 		mddev->level = LEVEL_NONE;
3943 		rv = len;
3944 		goto out_unlock;
3945 	}
3946 	rv = -EROFS;
3947 	if (mddev->ro)
3948 		goto out_unlock;
3949 
3950 	/* request to change the personality.  Need to ensure:
3951 	 *  - array is not engaged in resync/recovery/reshape
3952 	 *  - old personality can be suspended
3953 	 *  - new personality will access other array.
3954 	 */
3955 
3956 	rv = -EBUSY;
3957 	if (mddev->sync_thread ||
3958 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3959 	    mddev->reshape_position != MaxSector ||
3960 	    mddev->sysfs_active)
3961 		goto out_unlock;
3962 
3963 	rv = -EINVAL;
3964 	if (!mddev->pers->quiesce) {
3965 		pr_warn("md: %s: %s does not support online personality change\n",
3966 			mdname(mddev), mddev->pers->name);
3967 		goto out_unlock;
3968 	}
3969 
3970 	/* Now find the new personality */
3971 	strncpy(clevel, buf, slen);
3972 	if (clevel[slen-1] == '\n')
3973 		slen--;
3974 	clevel[slen] = 0;
3975 	if (kstrtol(clevel, 10, &level))
3976 		level = LEVEL_NONE;
3977 
3978 	if (request_module("md-%s", clevel) != 0)
3979 		request_module("md-level-%s", clevel);
3980 	spin_lock(&pers_lock);
3981 	pers = find_pers(level, clevel);
3982 	if (!pers || !try_module_get(pers->owner)) {
3983 		spin_unlock(&pers_lock);
3984 		pr_warn("md: personality %s not loaded\n", clevel);
3985 		rv = -EINVAL;
3986 		goto out_unlock;
3987 	}
3988 	spin_unlock(&pers_lock);
3989 
3990 	if (pers == mddev->pers) {
3991 		/* Nothing to do! */
3992 		module_put(pers->owner);
3993 		rv = len;
3994 		goto out_unlock;
3995 	}
3996 	if (!pers->takeover) {
3997 		module_put(pers->owner);
3998 		pr_warn("md: %s: %s does not support personality takeover\n",
3999 			mdname(mddev), clevel);
4000 		rv = -EINVAL;
4001 		goto out_unlock;
4002 	}
4003 
4004 	rdev_for_each(rdev, mddev)
4005 		rdev->new_raid_disk = rdev->raid_disk;
4006 
4007 	/* ->takeover must set new_* and/or delta_disks
4008 	 * if it succeeds, and may set them when it fails.
4009 	 */
4010 	priv = pers->takeover(mddev);
4011 	if (IS_ERR(priv)) {
4012 		mddev->new_level = mddev->level;
4013 		mddev->new_layout = mddev->layout;
4014 		mddev->new_chunk_sectors = mddev->chunk_sectors;
4015 		mddev->raid_disks -= mddev->delta_disks;
4016 		mddev->delta_disks = 0;
4017 		mddev->reshape_backwards = 0;
4018 		module_put(pers->owner);
4019 		pr_warn("md: %s: %s would not accept array\n",
4020 			mdname(mddev), clevel);
4021 		rv = PTR_ERR(priv);
4022 		goto out_unlock;
4023 	}
4024 
4025 	/* Looks like we have a winner */
4026 	mddev_suspend(mddev);
4027 	mddev_detach(mddev);
4028 
4029 	spin_lock(&mddev->lock);
4030 	oldpers = mddev->pers;
4031 	oldpriv = mddev->private;
4032 	mddev->pers = pers;
4033 	mddev->private = priv;
4034 	strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4035 	mddev->level = mddev->new_level;
4036 	mddev->layout = mddev->new_layout;
4037 	mddev->chunk_sectors = mddev->new_chunk_sectors;
4038 	mddev->delta_disks = 0;
4039 	mddev->reshape_backwards = 0;
4040 	mddev->degraded = 0;
4041 	spin_unlock(&mddev->lock);
4042 
4043 	if (oldpers->sync_request == NULL &&
4044 	    mddev->external) {
4045 		/* We are converting from a no-redundancy array
4046 		 * to a redundancy array and metadata is managed
4047 		 * externally so we need to be sure that writes
4048 		 * won't block due to a need to transition
4049 		 *      clean->dirty
4050 		 * until external management is started.
4051 		 */
4052 		mddev->in_sync = 0;
4053 		mddev->safemode_delay = 0;
4054 		mddev->safemode = 0;
4055 	}
4056 
4057 	oldpers->free(mddev, oldpriv);
4058 
4059 	if (oldpers->sync_request == NULL &&
4060 	    pers->sync_request != NULL) {
4061 		/* need to add the md_redundancy_group */
4062 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4063 			pr_warn("md: cannot register extra attributes for %s\n",
4064 				mdname(mddev));
4065 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4066 		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4067 		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4068 	}
4069 	if (oldpers->sync_request != NULL &&
4070 	    pers->sync_request == NULL) {
4071 		/* need to remove the md_redundancy_group */
4072 		if (mddev->to_remove == NULL)
4073 			mddev->to_remove = &md_redundancy_group;
4074 	}
4075 
4076 	module_put(oldpers->owner);
4077 
4078 	rdev_for_each(rdev, mddev) {
4079 		if (rdev->raid_disk < 0)
4080 			continue;
4081 		if (rdev->new_raid_disk >= mddev->raid_disks)
4082 			rdev->new_raid_disk = -1;
4083 		if (rdev->new_raid_disk == rdev->raid_disk)
4084 			continue;
4085 		sysfs_unlink_rdev(mddev, rdev);
4086 	}
4087 	rdev_for_each(rdev, mddev) {
4088 		if (rdev->raid_disk < 0)
4089 			continue;
4090 		if (rdev->new_raid_disk == rdev->raid_disk)
4091 			continue;
4092 		rdev->raid_disk = rdev->new_raid_disk;
4093 		if (rdev->raid_disk < 0)
4094 			clear_bit(In_sync, &rdev->flags);
4095 		else {
4096 			if (sysfs_link_rdev(mddev, rdev))
4097 				pr_warn("md: cannot register rd%d for %s after level change\n",
4098 					rdev->raid_disk, mdname(mddev));
4099 		}
4100 	}
4101 
4102 	if (pers->sync_request == NULL) {
4103 		/* this is now an array without redundancy, so
4104 		 * it must always be in_sync
4105 		 */
4106 		mddev->in_sync = 1;
4107 		del_timer_sync(&mddev->safemode_timer);
4108 	}
4109 	blk_set_stacking_limits(&mddev->queue->limits);
4110 	pers->run(mddev);
4111 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4112 	mddev_resume(mddev);
4113 	if (!mddev->thread)
4114 		md_update_sb(mddev, 1);
4115 	sysfs_notify_dirent_safe(mddev->sysfs_level);
4116 	md_new_event();
4117 	rv = len;
4118 out_unlock:
4119 	mddev_unlock(mddev);
4120 	return rv;
4121 }
4122 
4123 static struct md_sysfs_entry md_level =
4124 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4125 
4126 static ssize_t
4127 layout_show(struct mddev *mddev, char *page)
4128 {
4129 	/* just a number, not meaningful for all levels */
4130 	if (mddev->reshape_position != MaxSector &&
4131 	    mddev->layout != mddev->new_layout)
4132 		return sprintf(page, "%d (%d)\n",
4133 			       mddev->new_layout, mddev->layout);
4134 	return sprintf(page, "%d\n", mddev->layout);
4135 }
4136 
4137 static ssize_t
4138 layout_store(struct mddev *mddev, const char *buf, size_t len)
4139 {
4140 	unsigned int n;
4141 	int err;
4142 
4143 	err = kstrtouint(buf, 10, &n);
4144 	if (err < 0)
4145 		return err;
4146 	err = mddev_lock(mddev);
4147 	if (err)
4148 		return err;
4149 
4150 	if (mddev->pers) {
4151 		if (mddev->pers->check_reshape == NULL)
4152 			err = -EBUSY;
4153 		else if (mddev->ro)
4154 			err = -EROFS;
4155 		else {
4156 			mddev->new_layout = n;
4157 			err = mddev->pers->check_reshape(mddev);
4158 			if (err)
4159 				mddev->new_layout = mddev->layout;
4160 		}
4161 	} else {
4162 		mddev->new_layout = n;
4163 		if (mddev->reshape_position == MaxSector)
4164 			mddev->layout = n;
4165 	}
4166 	mddev_unlock(mddev);
4167 	return err ?: len;
4168 }
4169 static struct md_sysfs_entry md_layout =
4170 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4171 
4172 static ssize_t
4173 raid_disks_show(struct mddev *mddev, char *page)
4174 {
4175 	if (mddev->raid_disks == 0)
4176 		return 0;
4177 	if (mddev->reshape_position != MaxSector &&
4178 	    mddev->delta_disks != 0)
4179 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4180 			       mddev->raid_disks - mddev->delta_disks);
4181 	return sprintf(page, "%d\n", mddev->raid_disks);
4182 }
4183 
4184 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4185 
4186 static ssize_t
4187 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4188 {
4189 	unsigned int n;
4190 	int err;
4191 
4192 	err = kstrtouint(buf, 10, &n);
4193 	if (err < 0)
4194 		return err;
4195 
4196 	err = mddev_lock(mddev);
4197 	if (err)
4198 		return err;
4199 	if (mddev->pers)
4200 		err = update_raid_disks(mddev, n);
4201 	else if (mddev->reshape_position != MaxSector) {
4202 		struct md_rdev *rdev;
4203 		int olddisks = mddev->raid_disks - mddev->delta_disks;
4204 
4205 		err = -EINVAL;
4206 		rdev_for_each(rdev, mddev) {
4207 			if (olddisks < n &&
4208 			    rdev->data_offset < rdev->new_data_offset)
4209 				goto out_unlock;
4210 			if (olddisks > n &&
4211 			    rdev->data_offset > rdev->new_data_offset)
4212 				goto out_unlock;
4213 		}
4214 		err = 0;
4215 		mddev->delta_disks = n - olddisks;
4216 		mddev->raid_disks = n;
4217 		mddev->reshape_backwards = (mddev->delta_disks < 0);
4218 	} else
4219 		mddev->raid_disks = n;
4220 out_unlock:
4221 	mddev_unlock(mddev);
4222 	return err ? err : len;
4223 }
4224 static struct md_sysfs_entry md_raid_disks =
4225 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4226 
4227 static ssize_t
4228 uuid_show(struct mddev *mddev, char *page)
4229 {
4230 	return sprintf(page, "%pU\n", mddev->uuid);
4231 }
4232 static struct md_sysfs_entry md_uuid =
4233 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4234 
4235 static ssize_t
4236 chunk_size_show(struct mddev *mddev, char *page)
4237 {
4238 	if (mddev->reshape_position != MaxSector &&
4239 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
4240 		return sprintf(page, "%d (%d)\n",
4241 			       mddev->new_chunk_sectors << 9,
4242 			       mddev->chunk_sectors << 9);
4243 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4244 }
4245 
4246 static ssize_t
4247 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4248 {
4249 	unsigned long n;
4250 	int err;
4251 
4252 	err = kstrtoul(buf, 10, &n);
4253 	if (err < 0)
4254 		return err;
4255 
4256 	err = mddev_lock(mddev);
4257 	if (err)
4258 		return err;
4259 	if (mddev->pers) {
4260 		if (mddev->pers->check_reshape == NULL)
4261 			err = -EBUSY;
4262 		else if (mddev->ro)
4263 			err = -EROFS;
4264 		else {
4265 			mddev->new_chunk_sectors = n >> 9;
4266 			err = mddev->pers->check_reshape(mddev);
4267 			if (err)
4268 				mddev->new_chunk_sectors = mddev->chunk_sectors;
4269 		}
4270 	} else {
4271 		mddev->new_chunk_sectors = n >> 9;
4272 		if (mddev->reshape_position == MaxSector)
4273 			mddev->chunk_sectors = n >> 9;
4274 	}
4275 	mddev_unlock(mddev);
4276 	return err ?: len;
4277 }
4278 static struct md_sysfs_entry md_chunk_size =
4279 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4280 
4281 static ssize_t
4282 resync_start_show(struct mddev *mddev, char *page)
4283 {
4284 	if (mddev->recovery_cp == MaxSector)
4285 		return sprintf(page, "none\n");
4286 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4287 }
4288 
4289 static ssize_t
4290 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4291 {
4292 	unsigned long long n;
4293 	int err;
4294 
4295 	if (cmd_match(buf, "none"))
4296 		n = MaxSector;
4297 	else {
4298 		err = kstrtoull(buf, 10, &n);
4299 		if (err < 0)
4300 			return err;
4301 		if (n != (sector_t)n)
4302 			return -EINVAL;
4303 	}
4304 
4305 	err = mddev_lock(mddev);
4306 	if (err)
4307 		return err;
4308 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4309 		err = -EBUSY;
4310 
4311 	if (!err) {
4312 		mddev->recovery_cp = n;
4313 		if (mddev->pers)
4314 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4315 	}
4316 	mddev_unlock(mddev);
4317 	return err ?: len;
4318 }
4319 static struct md_sysfs_entry md_resync_start =
4320 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4321 		resync_start_show, resync_start_store);
4322 
4323 /*
4324  * The array state can be:
4325  *
4326  * clear
4327  *     No devices, no size, no level
4328  *     Equivalent to STOP_ARRAY ioctl
4329  * inactive
4330  *     May have some settings, but array is not active
4331  *        all IO results in error
4332  *     When written, doesn't tear down array, but just stops it
4333  * suspended (not supported yet)
4334  *     All IO requests will block. The array can be reconfigured.
4335  *     Writing this, if accepted, will block until array is quiescent
4336  * readonly
4337  *     no resync can happen.  no superblocks get written.
4338  *     write requests fail
4339  * read-auto
4340  *     like readonly, but behaves like 'clean' on a write request.
4341  *
4342  * clean - no pending writes, but otherwise active.
4343  *     When written to inactive array, starts without resync
4344  *     If a write request arrives then
4345  *       if metadata is known, mark 'dirty' and switch to 'active'.
4346  *       if not known, block and switch to write-pending
4347  *     If written to an active array that has pending writes, then fails.
4348  * active
4349  *     fully active: IO and resync can be happening.
4350  *     When written to inactive array, starts with resync
4351  *
4352  * write-pending
4353  *     clean, but writes are blocked waiting for 'active' to be written.
4354  *
4355  * active-idle
4356  *     like active, but no writes have been seen for a while (100msec).
4357  *
4358  * broken
4359 *     Array is failed. It's useful because mounted-arrays aren't stopped
4360 *     when array is failed, so this state will at least alert the user that
4361 *     something is wrong.
4362  */
4363 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4364 		   write_pending, active_idle, broken, bad_word};
4365 static char *array_states[] = {
4366 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4367 	"write-pending", "active-idle", "broken", NULL };
4368 
4369 static int match_word(const char *word, char **list)
4370 {
4371 	int n;
4372 	for (n=0; list[n]; n++)
4373 		if (cmd_match(word, list[n]))
4374 			break;
4375 	return n;
4376 }
4377 
4378 static ssize_t
4379 array_state_show(struct mddev *mddev, char *page)
4380 {
4381 	enum array_state st = inactive;
4382 
4383 	if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4384 		switch(mddev->ro) {
4385 		case 1:
4386 			st = readonly;
4387 			break;
4388 		case 2:
4389 			st = read_auto;
4390 			break;
4391 		case 0:
4392 			spin_lock(&mddev->lock);
4393 			if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4394 				st = write_pending;
4395 			else if (mddev->in_sync)
4396 				st = clean;
4397 			else if (mddev->safemode)
4398 				st = active_idle;
4399 			else
4400 				st = active;
4401 			spin_unlock(&mddev->lock);
4402 		}
4403 
4404 		if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4405 			st = broken;
4406 	} else {
4407 		if (list_empty(&mddev->disks) &&
4408 		    mddev->raid_disks == 0 &&
4409 		    mddev->dev_sectors == 0)
4410 			st = clear;
4411 		else
4412 			st = inactive;
4413 	}
4414 	return sprintf(page, "%s\n", array_states[st]);
4415 }
4416 
4417 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4418 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4419 static int restart_array(struct mddev *mddev);
4420 
4421 static ssize_t
4422 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4423 {
4424 	int err = 0;
4425 	enum array_state st = match_word(buf, array_states);
4426 
4427 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4428 		/* don't take reconfig_mutex when toggling between
4429 		 * clean and active
4430 		 */
4431 		spin_lock(&mddev->lock);
4432 		if (st == active) {
4433 			restart_array(mddev);
4434 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4435 			md_wakeup_thread(mddev->thread);
4436 			wake_up(&mddev->sb_wait);
4437 		} else /* st == clean */ {
4438 			restart_array(mddev);
4439 			if (!set_in_sync(mddev))
4440 				err = -EBUSY;
4441 		}
4442 		if (!err)
4443 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4444 		spin_unlock(&mddev->lock);
4445 		return err ?: len;
4446 	}
4447 	err = mddev_lock(mddev);
4448 	if (err)
4449 		return err;
4450 	err = -EINVAL;
4451 	switch(st) {
4452 	case bad_word:
4453 		break;
4454 	case clear:
4455 		/* stopping an active array */
4456 		err = do_md_stop(mddev, 0, NULL);
4457 		break;
4458 	case inactive:
4459 		/* stopping an active array */
4460 		if (mddev->pers)
4461 			err = do_md_stop(mddev, 2, NULL);
4462 		else
4463 			err = 0; /* already inactive */
4464 		break;
4465 	case suspended:
4466 		break; /* not supported yet */
4467 	case readonly:
4468 		if (mddev->pers)
4469 			err = md_set_readonly(mddev, NULL);
4470 		else {
4471 			mddev->ro = 1;
4472 			set_disk_ro(mddev->gendisk, 1);
4473 			err = do_md_run(mddev);
4474 		}
4475 		break;
4476 	case read_auto:
4477 		if (mddev->pers) {
4478 			if (mddev->ro == 0)
4479 				err = md_set_readonly(mddev, NULL);
4480 			else if (mddev->ro == 1)
4481 				err = restart_array(mddev);
4482 			if (err == 0) {
4483 				mddev->ro = 2;
4484 				set_disk_ro(mddev->gendisk, 0);
4485 			}
4486 		} else {
4487 			mddev->ro = 2;
4488 			err = do_md_run(mddev);
4489 		}
4490 		break;
4491 	case clean:
4492 		if (mddev->pers) {
4493 			err = restart_array(mddev);
4494 			if (err)
4495 				break;
4496 			spin_lock(&mddev->lock);
4497 			if (!set_in_sync(mddev))
4498 				err = -EBUSY;
4499 			spin_unlock(&mddev->lock);
4500 		} else
4501 			err = -EINVAL;
4502 		break;
4503 	case active:
4504 		if (mddev->pers) {
4505 			err = restart_array(mddev);
4506 			if (err)
4507 				break;
4508 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4509 			wake_up(&mddev->sb_wait);
4510 			err = 0;
4511 		} else {
4512 			mddev->ro = 0;
4513 			set_disk_ro(mddev->gendisk, 0);
4514 			err = do_md_run(mddev);
4515 		}
4516 		break;
4517 	case write_pending:
4518 	case active_idle:
4519 	case broken:
4520 		/* these cannot be set */
4521 		break;
4522 	}
4523 
4524 	if (!err) {
4525 		if (mddev->hold_active == UNTIL_IOCTL)
4526 			mddev->hold_active = 0;
4527 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4528 	}
4529 	mddev_unlock(mddev);
4530 	return err ?: len;
4531 }
4532 static struct md_sysfs_entry md_array_state =
4533 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4534 
4535 static ssize_t
4536 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4537 	return sprintf(page, "%d\n",
4538 		       atomic_read(&mddev->max_corr_read_errors));
4539 }
4540 
4541 static ssize_t
4542 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4543 {
4544 	unsigned int n;
4545 	int rv;
4546 
4547 	rv = kstrtouint(buf, 10, &n);
4548 	if (rv < 0)
4549 		return rv;
4550 	atomic_set(&mddev->max_corr_read_errors, n);
4551 	return len;
4552 }
4553 
4554 static struct md_sysfs_entry max_corr_read_errors =
4555 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4556 	max_corrected_read_errors_store);
4557 
4558 static ssize_t
4559 null_show(struct mddev *mddev, char *page)
4560 {
4561 	return -EINVAL;
4562 }
4563 
4564 /* need to ensure rdev_delayed_delete() has completed */
4565 static void flush_rdev_wq(struct mddev *mddev)
4566 {
4567 	struct md_rdev *rdev;
4568 
4569 	rcu_read_lock();
4570 	rdev_for_each_rcu(rdev, mddev)
4571 		if (work_pending(&rdev->del_work)) {
4572 			flush_workqueue(md_rdev_misc_wq);
4573 			break;
4574 		}
4575 	rcu_read_unlock();
4576 }
4577 
4578 static ssize_t
4579 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4580 {
4581 	/* buf must be %d:%d\n? giving major and minor numbers */
4582 	/* The new device is added to the array.
4583 	 * If the array has a persistent superblock, we read the
4584 	 * superblock to initialise info and check validity.
4585 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4586 	 * which mainly checks size.
4587 	 */
4588 	char *e;
4589 	int major = simple_strtoul(buf, &e, 10);
4590 	int minor;
4591 	dev_t dev;
4592 	struct md_rdev *rdev;
4593 	int err;
4594 
4595 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4596 		return -EINVAL;
4597 	minor = simple_strtoul(e+1, &e, 10);
4598 	if (*e && *e != '\n')
4599 		return -EINVAL;
4600 	dev = MKDEV(major, minor);
4601 	if (major != MAJOR(dev) ||
4602 	    minor != MINOR(dev))
4603 		return -EOVERFLOW;
4604 
4605 	flush_rdev_wq(mddev);
4606 	err = mddev_lock(mddev);
4607 	if (err)
4608 		return err;
4609 	if (mddev->persistent) {
4610 		rdev = md_import_device(dev, mddev->major_version,
4611 					mddev->minor_version);
4612 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4613 			struct md_rdev *rdev0
4614 				= list_entry(mddev->disks.next,
4615 					     struct md_rdev, same_set);
4616 			err = super_types[mddev->major_version]
4617 				.load_super(rdev, rdev0, mddev->minor_version);
4618 			if (err < 0)
4619 				goto out;
4620 		}
4621 	} else if (mddev->external)
4622 		rdev = md_import_device(dev, -2, -1);
4623 	else
4624 		rdev = md_import_device(dev, -1, -1);
4625 
4626 	if (IS_ERR(rdev)) {
4627 		mddev_unlock(mddev);
4628 		return PTR_ERR(rdev);
4629 	}
4630 	err = bind_rdev_to_array(rdev, mddev);
4631  out:
4632 	if (err)
4633 		export_rdev(rdev);
4634 	mddev_unlock(mddev);
4635 	if (!err)
4636 		md_new_event();
4637 	return err ? err : len;
4638 }
4639 
4640 static struct md_sysfs_entry md_new_device =
4641 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4642 
4643 static ssize_t
4644 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4645 {
4646 	char *end;
4647 	unsigned long chunk, end_chunk;
4648 	int err;
4649 
4650 	err = mddev_lock(mddev);
4651 	if (err)
4652 		return err;
4653 	if (!mddev->bitmap)
4654 		goto out;
4655 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4656 	while (*buf) {
4657 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4658 		if (buf == end) break;
4659 		if (*end == '-') { /* range */
4660 			buf = end + 1;
4661 			end_chunk = simple_strtoul(buf, &end, 0);
4662 			if (buf == end) break;
4663 		}
4664 		if (*end && !isspace(*end)) break;
4665 		md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4666 		buf = skip_spaces(end);
4667 	}
4668 	md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4669 out:
4670 	mddev_unlock(mddev);
4671 	return len;
4672 }
4673 
4674 static struct md_sysfs_entry md_bitmap =
4675 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4676 
4677 static ssize_t
4678 size_show(struct mddev *mddev, char *page)
4679 {
4680 	return sprintf(page, "%llu\n",
4681 		(unsigned long long)mddev->dev_sectors / 2);
4682 }
4683 
4684 static int update_size(struct mddev *mddev, sector_t num_sectors);
4685 
4686 static ssize_t
4687 size_store(struct mddev *mddev, const char *buf, size_t len)
4688 {
4689 	/* If array is inactive, we can reduce the component size, but
4690 	 * not increase it (except from 0).
4691 	 * If array is active, we can try an on-line resize
4692 	 */
4693 	sector_t sectors;
4694 	int err = strict_blocks_to_sectors(buf, &sectors);
4695 
4696 	if (err < 0)
4697 		return err;
4698 	err = mddev_lock(mddev);
4699 	if (err)
4700 		return err;
4701 	if (mddev->pers) {
4702 		err = update_size(mddev, sectors);
4703 		if (err == 0)
4704 			md_update_sb(mddev, 1);
4705 	} else {
4706 		if (mddev->dev_sectors == 0 ||
4707 		    mddev->dev_sectors > sectors)
4708 			mddev->dev_sectors = sectors;
4709 		else
4710 			err = -ENOSPC;
4711 	}
4712 	mddev_unlock(mddev);
4713 	return err ? err : len;
4714 }
4715 
4716 static struct md_sysfs_entry md_size =
4717 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4718 
4719 /* Metadata version.
4720  * This is one of
4721  *   'none' for arrays with no metadata (good luck...)
4722  *   'external' for arrays with externally managed metadata,
4723  * or N.M for internally known formats
4724  */
4725 static ssize_t
4726 metadata_show(struct mddev *mddev, char *page)
4727 {
4728 	if (mddev->persistent)
4729 		return sprintf(page, "%d.%d\n",
4730 			       mddev->major_version, mddev->minor_version);
4731 	else if (mddev->external)
4732 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4733 	else
4734 		return sprintf(page, "none\n");
4735 }
4736 
4737 static ssize_t
4738 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4739 {
4740 	int major, minor;
4741 	char *e;
4742 	int err;
4743 	/* Changing the details of 'external' metadata is
4744 	 * always permitted.  Otherwise there must be
4745 	 * no devices attached to the array.
4746 	 */
4747 
4748 	err = mddev_lock(mddev);
4749 	if (err)
4750 		return err;
4751 	err = -EBUSY;
4752 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4753 		;
4754 	else if (!list_empty(&mddev->disks))
4755 		goto out_unlock;
4756 
4757 	err = 0;
4758 	if (cmd_match(buf, "none")) {
4759 		mddev->persistent = 0;
4760 		mddev->external = 0;
4761 		mddev->major_version = 0;
4762 		mddev->minor_version = 90;
4763 		goto out_unlock;
4764 	}
4765 	if (strncmp(buf, "external:", 9) == 0) {
4766 		size_t namelen = len-9;
4767 		if (namelen >= sizeof(mddev->metadata_type))
4768 			namelen = sizeof(mddev->metadata_type)-1;
4769 		strncpy(mddev->metadata_type, buf+9, namelen);
4770 		mddev->metadata_type[namelen] = 0;
4771 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4772 			mddev->metadata_type[--namelen] = 0;
4773 		mddev->persistent = 0;
4774 		mddev->external = 1;
4775 		mddev->major_version = 0;
4776 		mddev->minor_version = 90;
4777 		goto out_unlock;
4778 	}
4779 	major = simple_strtoul(buf, &e, 10);
4780 	err = -EINVAL;
4781 	if (e==buf || *e != '.')
4782 		goto out_unlock;
4783 	buf = e+1;
4784 	minor = simple_strtoul(buf, &e, 10);
4785 	if (e==buf || (*e && *e != '\n') )
4786 		goto out_unlock;
4787 	err = -ENOENT;
4788 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4789 		goto out_unlock;
4790 	mddev->major_version = major;
4791 	mddev->minor_version = minor;
4792 	mddev->persistent = 1;
4793 	mddev->external = 0;
4794 	err = 0;
4795 out_unlock:
4796 	mddev_unlock(mddev);
4797 	return err ?: len;
4798 }
4799 
4800 static struct md_sysfs_entry md_metadata =
4801 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4802 
4803 static ssize_t
4804 action_show(struct mddev *mddev, char *page)
4805 {
4806 	char *type = "idle";
4807 	unsigned long recovery = mddev->recovery;
4808 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4809 		type = "frozen";
4810 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4811 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4812 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4813 			type = "reshape";
4814 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4815 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4816 				type = "resync";
4817 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4818 				type = "check";
4819 			else
4820 				type = "repair";
4821 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4822 			type = "recover";
4823 		else if (mddev->reshape_position != MaxSector)
4824 			type = "reshape";
4825 	}
4826 	return sprintf(page, "%s\n", type);
4827 }
4828 
4829 static ssize_t
4830 action_store(struct mddev *mddev, const char *page, size_t len)
4831 {
4832 	if (!mddev->pers || !mddev->pers->sync_request)
4833 		return -EINVAL;
4834 
4835 
4836 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4837 		if (cmd_match(page, "frozen"))
4838 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4839 		else
4840 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4841 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4842 		    mddev_lock(mddev) == 0) {
4843 			if (work_pending(&mddev->del_work))
4844 				flush_workqueue(md_misc_wq);
4845 			if (mddev->sync_thread) {
4846 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4847 				md_reap_sync_thread(mddev);
4848 			}
4849 			mddev_unlock(mddev);
4850 		}
4851 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4852 		return -EBUSY;
4853 	else if (cmd_match(page, "resync"))
4854 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4855 	else if (cmd_match(page, "recover")) {
4856 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4857 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4858 	} else if (cmd_match(page, "reshape")) {
4859 		int err;
4860 		if (mddev->pers->start_reshape == NULL)
4861 			return -EINVAL;
4862 		err = mddev_lock(mddev);
4863 		if (!err) {
4864 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4865 				err =  -EBUSY;
4866 			else {
4867 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4868 				err = mddev->pers->start_reshape(mddev);
4869 			}
4870 			mddev_unlock(mddev);
4871 		}
4872 		if (err)
4873 			return err;
4874 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4875 	} else {
4876 		if (cmd_match(page, "check"))
4877 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4878 		else if (!cmd_match(page, "repair"))
4879 			return -EINVAL;
4880 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4881 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4882 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4883 	}
4884 	if (mddev->ro == 2) {
4885 		/* A write to sync_action is enough to justify
4886 		 * canceling read-auto mode
4887 		 */
4888 		mddev->ro = 0;
4889 		md_wakeup_thread(mddev->sync_thread);
4890 	}
4891 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4892 	md_wakeup_thread(mddev->thread);
4893 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4894 	return len;
4895 }
4896 
4897 static struct md_sysfs_entry md_scan_mode =
4898 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4899 
4900 static ssize_t
4901 last_sync_action_show(struct mddev *mddev, char *page)
4902 {
4903 	return sprintf(page, "%s\n", mddev->last_sync_action);
4904 }
4905 
4906 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4907 
4908 static ssize_t
4909 mismatch_cnt_show(struct mddev *mddev, char *page)
4910 {
4911 	return sprintf(page, "%llu\n",
4912 		       (unsigned long long)
4913 		       atomic64_read(&mddev->resync_mismatches));
4914 }
4915 
4916 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4917 
4918 static ssize_t
4919 sync_min_show(struct mddev *mddev, char *page)
4920 {
4921 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4922 		       mddev->sync_speed_min ? "local": "system");
4923 }
4924 
4925 static ssize_t
4926 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4927 {
4928 	unsigned int min;
4929 	int rv;
4930 
4931 	if (strncmp(buf, "system", 6)==0) {
4932 		min = 0;
4933 	} else {
4934 		rv = kstrtouint(buf, 10, &min);
4935 		if (rv < 0)
4936 			return rv;
4937 		if (min == 0)
4938 			return -EINVAL;
4939 	}
4940 	mddev->sync_speed_min = min;
4941 	return len;
4942 }
4943 
4944 static struct md_sysfs_entry md_sync_min =
4945 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4946 
4947 static ssize_t
4948 sync_max_show(struct mddev *mddev, char *page)
4949 {
4950 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4951 		       mddev->sync_speed_max ? "local": "system");
4952 }
4953 
4954 static ssize_t
4955 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4956 {
4957 	unsigned int max;
4958 	int rv;
4959 
4960 	if (strncmp(buf, "system", 6)==0) {
4961 		max = 0;
4962 	} else {
4963 		rv = kstrtouint(buf, 10, &max);
4964 		if (rv < 0)
4965 			return rv;
4966 		if (max == 0)
4967 			return -EINVAL;
4968 	}
4969 	mddev->sync_speed_max = max;
4970 	return len;
4971 }
4972 
4973 static struct md_sysfs_entry md_sync_max =
4974 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4975 
4976 static ssize_t
4977 degraded_show(struct mddev *mddev, char *page)
4978 {
4979 	return sprintf(page, "%d\n", mddev->degraded);
4980 }
4981 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4982 
4983 static ssize_t
4984 sync_force_parallel_show(struct mddev *mddev, char *page)
4985 {
4986 	return sprintf(page, "%d\n", mddev->parallel_resync);
4987 }
4988 
4989 static ssize_t
4990 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4991 {
4992 	long n;
4993 
4994 	if (kstrtol(buf, 10, &n))
4995 		return -EINVAL;
4996 
4997 	if (n != 0 && n != 1)
4998 		return -EINVAL;
4999 
5000 	mddev->parallel_resync = n;
5001 
5002 	if (mddev->sync_thread)
5003 		wake_up(&resync_wait);
5004 
5005 	return len;
5006 }
5007 
5008 /* force parallel resync, even with shared block devices */
5009 static struct md_sysfs_entry md_sync_force_parallel =
5010 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5011        sync_force_parallel_show, sync_force_parallel_store);
5012 
5013 static ssize_t
5014 sync_speed_show(struct mddev *mddev, char *page)
5015 {
5016 	unsigned long resync, dt, db;
5017 	if (mddev->curr_resync == 0)
5018 		return sprintf(page, "none\n");
5019 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5020 	dt = (jiffies - mddev->resync_mark) / HZ;
5021 	if (!dt) dt++;
5022 	db = resync - mddev->resync_mark_cnt;
5023 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5024 }
5025 
5026 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5027 
5028 static ssize_t
5029 sync_completed_show(struct mddev *mddev, char *page)
5030 {
5031 	unsigned long long max_sectors, resync;
5032 
5033 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5034 		return sprintf(page, "none\n");
5035 
5036 	if (mddev->curr_resync == 1 ||
5037 	    mddev->curr_resync == 2)
5038 		return sprintf(page, "delayed\n");
5039 
5040 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5041 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5042 		max_sectors = mddev->resync_max_sectors;
5043 	else
5044 		max_sectors = mddev->dev_sectors;
5045 
5046 	resync = mddev->curr_resync_completed;
5047 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5048 }
5049 
5050 static struct md_sysfs_entry md_sync_completed =
5051 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5052 
5053 static ssize_t
5054 min_sync_show(struct mddev *mddev, char *page)
5055 {
5056 	return sprintf(page, "%llu\n",
5057 		       (unsigned long long)mddev->resync_min);
5058 }
5059 static ssize_t
5060 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5061 {
5062 	unsigned long long min;
5063 	int err;
5064 
5065 	if (kstrtoull(buf, 10, &min))
5066 		return -EINVAL;
5067 
5068 	spin_lock(&mddev->lock);
5069 	err = -EINVAL;
5070 	if (min > mddev->resync_max)
5071 		goto out_unlock;
5072 
5073 	err = -EBUSY;
5074 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5075 		goto out_unlock;
5076 
5077 	/* Round down to multiple of 4K for safety */
5078 	mddev->resync_min = round_down(min, 8);
5079 	err = 0;
5080 
5081 out_unlock:
5082 	spin_unlock(&mddev->lock);
5083 	return err ?: len;
5084 }
5085 
5086 static struct md_sysfs_entry md_min_sync =
5087 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5088 
5089 static ssize_t
5090 max_sync_show(struct mddev *mddev, char *page)
5091 {
5092 	if (mddev->resync_max == MaxSector)
5093 		return sprintf(page, "max\n");
5094 	else
5095 		return sprintf(page, "%llu\n",
5096 			       (unsigned long long)mddev->resync_max);
5097 }
5098 static ssize_t
5099 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5100 {
5101 	int err;
5102 	spin_lock(&mddev->lock);
5103 	if (strncmp(buf, "max", 3) == 0)
5104 		mddev->resync_max = MaxSector;
5105 	else {
5106 		unsigned long long max;
5107 		int chunk;
5108 
5109 		err = -EINVAL;
5110 		if (kstrtoull(buf, 10, &max))
5111 			goto out_unlock;
5112 		if (max < mddev->resync_min)
5113 			goto out_unlock;
5114 
5115 		err = -EBUSY;
5116 		if (max < mddev->resync_max &&
5117 		    mddev->ro == 0 &&
5118 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5119 			goto out_unlock;
5120 
5121 		/* Must be a multiple of chunk_size */
5122 		chunk = mddev->chunk_sectors;
5123 		if (chunk) {
5124 			sector_t temp = max;
5125 
5126 			err = -EINVAL;
5127 			if (sector_div(temp, chunk))
5128 				goto out_unlock;
5129 		}
5130 		mddev->resync_max = max;
5131 	}
5132 	wake_up(&mddev->recovery_wait);
5133 	err = 0;
5134 out_unlock:
5135 	spin_unlock(&mddev->lock);
5136 	return err ?: len;
5137 }
5138 
5139 static struct md_sysfs_entry md_max_sync =
5140 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5141 
5142 static ssize_t
5143 suspend_lo_show(struct mddev *mddev, char *page)
5144 {
5145 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5146 }
5147 
5148 static ssize_t
5149 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5150 {
5151 	unsigned long long new;
5152 	int err;
5153 
5154 	err = kstrtoull(buf, 10, &new);
5155 	if (err < 0)
5156 		return err;
5157 	if (new != (sector_t)new)
5158 		return -EINVAL;
5159 
5160 	err = mddev_lock(mddev);
5161 	if (err)
5162 		return err;
5163 	err = -EINVAL;
5164 	if (mddev->pers == NULL ||
5165 	    mddev->pers->quiesce == NULL)
5166 		goto unlock;
5167 	mddev_suspend(mddev);
5168 	mddev->suspend_lo = new;
5169 	mddev_resume(mddev);
5170 
5171 	err = 0;
5172 unlock:
5173 	mddev_unlock(mddev);
5174 	return err ?: len;
5175 }
5176 static struct md_sysfs_entry md_suspend_lo =
5177 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5178 
5179 static ssize_t
5180 suspend_hi_show(struct mddev *mddev, char *page)
5181 {
5182 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5183 }
5184 
5185 static ssize_t
5186 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5187 {
5188 	unsigned long long new;
5189 	int err;
5190 
5191 	err = kstrtoull(buf, 10, &new);
5192 	if (err < 0)
5193 		return err;
5194 	if (new != (sector_t)new)
5195 		return -EINVAL;
5196 
5197 	err = mddev_lock(mddev);
5198 	if (err)
5199 		return err;
5200 	err = -EINVAL;
5201 	if (mddev->pers == NULL)
5202 		goto unlock;
5203 
5204 	mddev_suspend(mddev);
5205 	mddev->suspend_hi = new;
5206 	mddev_resume(mddev);
5207 
5208 	err = 0;
5209 unlock:
5210 	mddev_unlock(mddev);
5211 	return err ?: len;
5212 }
5213 static struct md_sysfs_entry md_suspend_hi =
5214 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5215 
5216 static ssize_t
5217 reshape_position_show(struct mddev *mddev, char *page)
5218 {
5219 	if (mddev->reshape_position != MaxSector)
5220 		return sprintf(page, "%llu\n",
5221 			       (unsigned long long)mddev->reshape_position);
5222 	strcpy(page, "none\n");
5223 	return 5;
5224 }
5225 
5226 static ssize_t
5227 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5228 {
5229 	struct md_rdev *rdev;
5230 	unsigned long long new;
5231 	int err;
5232 
5233 	err = kstrtoull(buf, 10, &new);
5234 	if (err < 0)
5235 		return err;
5236 	if (new != (sector_t)new)
5237 		return -EINVAL;
5238 	err = mddev_lock(mddev);
5239 	if (err)
5240 		return err;
5241 	err = -EBUSY;
5242 	if (mddev->pers)
5243 		goto unlock;
5244 	mddev->reshape_position = new;
5245 	mddev->delta_disks = 0;
5246 	mddev->reshape_backwards = 0;
5247 	mddev->new_level = mddev->level;
5248 	mddev->new_layout = mddev->layout;
5249 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5250 	rdev_for_each(rdev, mddev)
5251 		rdev->new_data_offset = rdev->data_offset;
5252 	err = 0;
5253 unlock:
5254 	mddev_unlock(mddev);
5255 	return err ?: len;
5256 }
5257 
5258 static struct md_sysfs_entry md_reshape_position =
5259 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5260        reshape_position_store);
5261 
5262 static ssize_t
5263 reshape_direction_show(struct mddev *mddev, char *page)
5264 {
5265 	return sprintf(page, "%s\n",
5266 		       mddev->reshape_backwards ? "backwards" : "forwards");
5267 }
5268 
5269 static ssize_t
5270 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5271 {
5272 	int backwards = 0;
5273 	int err;
5274 
5275 	if (cmd_match(buf, "forwards"))
5276 		backwards = 0;
5277 	else if (cmd_match(buf, "backwards"))
5278 		backwards = 1;
5279 	else
5280 		return -EINVAL;
5281 	if (mddev->reshape_backwards == backwards)
5282 		return len;
5283 
5284 	err = mddev_lock(mddev);
5285 	if (err)
5286 		return err;
5287 	/* check if we are allowed to change */
5288 	if (mddev->delta_disks)
5289 		err = -EBUSY;
5290 	else if (mddev->persistent &&
5291 	    mddev->major_version == 0)
5292 		err =  -EINVAL;
5293 	else
5294 		mddev->reshape_backwards = backwards;
5295 	mddev_unlock(mddev);
5296 	return err ?: len;
5297 }
5298 
5299 static struct md_sysfs_entry md_reshape_direction =
5300 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5301        reshape_direction_store);
5302 
5303 static ssize_t
5304 array_size_show(struct mddev *mddev, char *page)
5305 {
5306 	if (mddev->external_size)
5307 		return sprintf(page, "%llu\n",
5308 			       (unsigned long long)mddev->array_sectors/2);
5309 	else
5310 		return sprintf(page, "default\n");
5311 }
5312 
5313 static ssize_t
5314 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5315 {
5316 	sector_t sectors;
5317 	int err;
5318 
5319 	err = mddev_lock(mddev);
5320 	if (err)
5321 		return err;
5322 
5323 	/* cluster raid doesn't support change array_sectors */
5324 	if (mddev_is_clustered(mddev)) {
5325 		mddev_unlock(mddev);
5326 		return -EINVAL;
5327 	}
5328 
5329 	if (strncmp(buf, "default", 7) == 0) {
5330 		if (mddev->pers)
5331 			sectors = mddev->pers->size(mddev, 0, 0);
5332 		else
5333 			sectors = mddev->array_sectors;
5334 
5335 		mddev->external_size = 0;
5336 	} else {
5337 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
5338 			err = -EINVAL;
5339 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5340 			err = -E2BIG;
5341 		else
5342 			mddev->external_size = 1;
5343 	}
5344 
5345 	if (!err) {
5346 		mddev->array_sectors = sectors;
5347 		if (mddev->pers)
5348 			set_capacity_and_notify(mddev->gendisk,
5349 						mddev->array_sectors);
5350 	}
5351 	mddev_unlock(mddev);
5352 	return err ?: len;
5353 }
5354 
5355 static struct md_sysfs_entry md_array_size =
5356 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5357        array_size_store);
5358 
5359 static ssize_t
5360 consistency_policy_show(struct mddev *mddev, char *page)
5361 {
5362 	int ret;
5363 
5364 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5365 		ret = sprintf(page, "journal\n");
5366 	} else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5367 		ret = sprintf(page, "ppl\n");
5368 	} else if (mddev->bitmap) {
5369 		ret = sprintf(page, "bitmap\n");
5370 	} else if (mddev->pers) {
5371 		if (mddev->pers->sync_request)
5372 			ret = sprintf(page, "resync\n");
5373 		else
5374 			ret = sprintf(page, "none\n");
5375 	} else {
5376 		ret = sprintf(page, "unknown\n");
5377 	}
5378 
5379 	return ret;
5380 }
5381 
5382 static ssize_t
5383 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5384 {
5385 	int err = 0;
5386 
5387 	if (mddev->pers) {
5388 		if (mddev->pers->change_consistency_policy)
5389 			err = mddev->pers->change_consistency_policy(mddev, buf);
5390 		else
5391 			err = -EBUSY;
5392 	} else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5393 		set_bit(MD_HAS_PPL, &mddev->flags);
5394 	} else {
5395 		err = -EINVAL;
5396 	}
5397 
5398 	return err ? err : len;
5399 }
5400 
5401 static struct md_sysfs_entry md_consistency_policy =
5402 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5403        consistency_policy_store);
5404 
5405 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5406 {
5407 	return sprintf(page, "%d\n", mddev->fail_last_dev);
5408 }
5409 
5410 /*
5411  * Setting fail_last_dev to true to allow last device to be forcibly removed
5412  * from RAID1/RAID10.
5413  */
5414 static ssize_t
5415 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5416 {
5417 	int ret;
5418 	bool value;
5419 
5420 	ret = kstrtobool(buf, &value);
5421 	if (ret)
5422 		return ret;
5423 
5424 	if (value != mddev->fail_last_dev)
5425 		mddev->fail_last_dev = value;
5426 
5427 	return len;
5428 }
5429 static struct md_sysfs_entry md_fail_last_dev =
5430 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5431        fail_last_dev_store);
5432 
5433 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5434 {
5435 	if (mddev->pers == NULL || (mddev->pers->level != 1))
5436 		return sprintf(page, "n/a\n");
5437 	else
5438 		return sprintf(page, "%d\n", mddev->serialize_policy);
5439 }
5440 
5441 /*
5442  * Setting serialize_policy to true to enforce write IO is not reordered
5443  * for raid1.
5444  */
5445 static ssize_t
5446 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5447 {
5448 	int err;
5449 	bool value;
5450 
5451 	err = kstrtobool(buf, &value);
5452 	if (err)
5453 		return err;
5454 
5455 	if (value == mddev->serialize_policy)
5456 		return len;
5457 
5458 	err = mddev_lock(mddev);
5459 	if (err)
5460 		return err;
5461 	if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5462 		pr_err("md: serialize_policy is only effective for raid1\n");
5463 		err = -EINVAL;
5464 		goto unlock;
5465 	}
5466 
5467 	mddev_suspend(mddev);
5468 	if (value)
5469 		mddev_create_serial_pool(mddev, NULL, true);
5470 	else
5471 		mddev_destroy_serial_pool(mddev, NULL, true);
5472 	mddev->serialize_policy = value;
5473 	mddev_resume(mddev);
5474 unlock:
5475 	mddev_unlock(mddev);
5476 	return err ?: len;
5477 }
5478 
5479 static struct md_sysfs_entry md_serialize_policy =
5480 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5481        serialize_policy_store);
5482 
5483 
5484 static struct attribute *md_default_attrs[] = {
5485 	&md_level.attr,
5486 	&md_layout.attr,
5487 	&md_raid_disks.attr,
5488 	&md_uuid.attr,
5489 	&md_chunk_size.attr,
5490 	&md_size.attr,
5491 	&md_resync_start.attr,
5492 	&md_metadata.attr,
5493 	&md_new_device.attr,
5494 	&md_safe_delay.attr,
5495 	&md_array_state.attr,
5496 	&md_reshape_position.attr,
5497 	&md_reshape_direction.attr,
5498 	&md_array_size.attr,
5499 	&max_corr_read_errors.attr,
5500 	&md_consistency_policy.attr,
5501 	&md_fail_last_dev.attr,
5502 	&md_serialize_policy.attr,
5503 	NULL,
5504 };
5505 
5506 static const struct attribute_group md_default_group = {
5507 	.attrs = md_default_attrs,
5508 };
5509 
5510 static struct attribute *md_redundancy_attrs[] = {
5511 	&md_scan_mode.attr,
5512 	&md_last_scan_mode.attr,
5513 	&md_mismatches.attr,
5514 	&md_sync_min.attr,
5515 	&md_sync_max.attr,
5516 	&md_sync_speed.attr,
5517 	&md_sync_force_parallel.attr,
5518 	&md_sync_completed.attr,
5519 	&md_min_sync.attr,
5520 	&md_max_sync.attr,
5521 	&md_suspend_lo.attr,
5522 	&md_suspend_hi.attr,
5523 	&md_bitmap.attr,
5524 	&md_degraded.attr,
5525 	NULL,
5526 };
5527 static const struct attribute_group md_redundancy_group = {
5528 	.name = NULL,
5529 	.attrs = md_redundancy_attrs,
5530 };
5531 
5532 static const struct attribute_group *md_attr_groups[] = {
5533 	&md_default_group,
5534 	&md_bitmap_group,
5535 	NULL,
5536 };
5537 
5538 static ssize_t
5539 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5540 {
5541 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5542 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5543 	ssize_t rv;
5544 
5545 	if (!entry->show)
5546 		return -EIO;
5547 	spin_lock(&all_mddevs_lock);
5548 	if (list_empty(&mddev->all_mddevs)) {
5549 		spin_unlock(&all_mddevs_lock);
5550 		return -EBUSY;
5551 	}
5552 	mddev_get(mddev);
5553 	spin_unlock(&all_mddevs_lock);
5554 
5555 	rv = entry->show(mddev, page);
5556 	mddev_put(mddev);
5557 	return rv;
5558 }
5559 
5560 static ssize_t
5561 md_attr_store(struct kobject *kobj, struct attribute *attr,
5562 	      const char *page, size_t length)
5563 {
5564 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5565 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5566 	ssize_t rv;
5567 
5568 	if (!entry->store)
5569 		return -EIO;
5570 	if (!capable(CAP_SYS_ADMIN))
5571 		return -EACCES;
5572 	spin_lock(&all_mddevs_lock);
5573 	if (list_empty(&mddev->all_mddevs)) {
5574 		spin_unlock(&all_mddevs_lock);
5575 		return -EBUSY;
5576 	}
5577 	mddev_get(mddev);
5578 	spin_unlock(&all_mddevs_lock);
5579 	rv = entry->store(mddev, page, length);
5580 	mddev_put(mddev);
5581 	return rv;
5582 }
5583 
5584 static void md_free(struct kobject *ko)
5585 {
5586 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
5587 
5588 	if (mddev->sysfs_state)
5589 		sysfs_put(mddev->sysfs_state);
5590 	if (mddev->sysfs_level)
5591 		sysfs_put(mddev->sysfs_level);
5592 
5593 	if (mddev->gendisk) {
5594 		del_gendisk(mddev->gendisk);
5595 		blk_cleanup_disk(mddev->gendisk);
5596 	}
5597 	percpu_ref_exit(&mddev->writes_pending);
5598 
5599 	bioset_exit(&mddev->bio_set);
5600 	bioset_exit(&mddev->sync_set);
5601 	if (mddev->level != 1 && mddev->level != 10)
5602 		bioset_exit(&mddev->io_acct_set);
5603 	kfree(mddev);
5604 }
5605 
5606 static const struct sysfs_ops md_sysfs_ops = {
5607 	.show	= md_attr_show,
5608 	.store	= md_attr_store,
5609 };
5610 static struct kobj_type md_ktype = {
5611 	.release	= md_free,
5612 	.sysfs_ops	= &md_sysfs_ops,
5613 	.default_groups	= md_attr_groups,
5614 };
5615 
5616 int mdp_major = 0;
5617 
5618 static void mddev_delayed_delete(struct work_struct *ws)
5619 {
5620 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
5621 
5622 	kobject_del(&mddev->kobj);
5623 	kobject_put(&mddev->kobj);
5624 }
5625 
5626 static void no_op(struct percpu_ref *r) {}
5627 
5628 int mddev_init_writes_pending(struct mddev *mddev)
5629 {
5630 	if (mddev->writes_pending.percpu_count_ptr)
5631 		return 0;
5632 	if (percpu_ref_init(&mddev->writes_pending, no_op,
5633 			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5634 		return -ENOMEM;
5635 	/* We want to start with the refcount at zero */
5636 	percpu_ref_put(&mddev->writes_pending);
5637 	return 0;
5638 }
5639 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5640 
5641 static int md_alloc(dev_t dev, char *name)
5642 {
5643 	/*
5644 	 * If dev is zero, name is the name of a device to allocate with
5645 	 * an arbitrary minor number.  It will be "md_???"
5646 	 * If dev is non-zero it must be a device number with a MAJOR of
5647 	 * MD_MAJOR or mdp_major.  In this case, if "name" is NULL, then
5648 	 * the device is being created by opening a node in /dev.
5649 	 * If "name" is not NULL, the device is being created by
5650 	 * writing to /sys/module/md_mod/parameters/new_array.
5651 	 */
5652 	static DEFINE_MUTEX(disks_mutex);
5653 	struct mddev *mddev;
5654 	struct gendisk *disk;
5655 	int partitioned;
5656 	int shift;
5657 	int unit;
5658 	int error ;
5659 
5660 	/*
5661 	 * Wait for any previous instance of this device to be completely
5662 	 * removed (mddev_delayed_delete).
5663 	 */
5664 	flush_workqueue(md_misc_wq);
5665 
5666 	mutex_lock(&disks_mutex);
5667 	mddev = mddev_alloc(dev);
5668 	if (IS_ERR(mddev)) {
5669 		mutex_unlock(&disks_mutex);
5670 		return PTR_ERR(mddev);
5671 	}
5672 
5673 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5674 	shift = partitioned ? MdpMinorShift : 0;
5675 	unit = MINOR(mddev->unit) >> shift;
5676 
5677 	if (name && !dev) {
5678 		/* Need to ensure that 'name' is not a duplicate.
5679 		 */
5680 		struct mddev *mddev2;
5681 		spin_lock(&all_mddevs_lock);
5682 
5683 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5684 			if (mddev2->gendisk &&
5685 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5686 				spin_unlock(&all_mddevs_lock);
5687 				error = -EEXIST;
5688 				goto out_unlock_disks_mutex;
5689 			}
5690 		spin_unlock(&all_mddevs_lock);
5691 	}
5692 	if (name && dev)
5693 		/*
5694 		 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5695 		 */
5696 		mddev->hold_active = UNTIL_STOP;
5697 
5698 	error = -ENOMEM;
5699 	disk = blk_alloc_disk(NUMA_NO_NODE);
5700 	if (!disk)
5701 		goto out_unlock_disks_mutex;
5702 
5703 	disk->major = MAJOR(mddev->unit);
5704 	disk->first_minor = unit << shift;
5705 	disk->minors = 1 << shift;
5706 	if (name)
5707 		strcpy(disk->disk_name, name);
5708 	else if (partitioned)
5709 		sprintf(disk->disk_name, "md_d%d", unit);
5710 	else
5711 		sprintf(disk->disk_name, "md%d", unit);
5712 	disk->fops = &md_fops;
5713 	disk->private_data = mddev;
5714 
5715 	mddev->queue = disk->queue;
5716 	blk_set_stacking_limits(&mddev->queue->limits);
5717 	blk_queue_write_cache(mddev->queue, true, true);
5718 	disk->events |= DISK_EVENT_MEDIA_CHANGE;
5719 	mddev->gendisk = disk;
5720 	error = add_disk(disk);
5721 	if (error)
5722 		goto out_cleanup_disk;
5723 
5724 	error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5725 	if (error)
5726 		goto out_del_gendisk;
5727 
5728 	kobject_uevent(&mddev->kobj, KOBJ_ADD);
5729 	mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5730 	mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5731 	goto out_unlock_disks_mutex;
5732 
5733 out_del_gendisk:
5734 	del_gendisk(disk);
5735 out_cleanup_disk:
5736 	blk_cleanup_disk(disk);
5737 out_unlock_disks_mutex:
5738 	mutex_unlock(&disks_mutex);
5739 	mddev_put(mddev);
5740 	return error;
5741 }
5742 
5743 static void md_probe(dev_t dev)
5744 {
5745 	if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5746 		return;
5747 	if (create_on_open)
5748 		md_alloc(dev, NULL);
5749 }
5750 
5751 static int add_named_array(const char *val, const struct kernel_param *kp)
5752 {
5753 	/*
5754 	 * val must be "md_*" or "mdNNN".
5755 	 * For "md_*" we allocate an array with a large free minor number, and
5756 	 * set the name to val.  val must not already be an active name.
5757 	 * For "mdNNN" we allocate an array with the minor number NNN
5758 	 * which must not already be in use.
5759 	 */
5760 	int len = strlen(val);
5761 	char buf[DISK_NAME_LEN];
5762 	unsigned long devnum;
5763 
5764 	while (len && val[len-1] == '\n')
5765 		len--;
5766 	if (len >= DISK_NAME_LEN)
5767 		return -E2BIG;
5768 	strscpy(buf, val, len+1);
5769 	if (strncmp(buf, "md_", 3) == 0)
5770 		return md_alloc(0, buf);
5771 	if (strncmp(buf, "md", 2) == 0 &&
5772 	    isdigit(buf[2]) &&
5773 	    kstrtoul(buf+2, 10, &devnum) == 0 &&
5774 	    devnum <= MINORMASK)
5775 		return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5776 
5777 	return -EINVAL;
5778 }
5779 
5780 static void md_safemode_timeout(struct timer_list *t)
5781 {
5782 	struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5783 
5784 	mddev->safemode = 1;
5785 	if (mddev->external)
5786 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5787 
5788 	md_wakeup_thread(mddev->thread);
5789 }
5790 
5791 static int start_dirty_degraded;
5792 
5793 int md_run(struct mddev *mddev)
5794 {
5795 	int err;
5796 	struct md_rdev *rdev;
5797 	struct md_personality *pers;
5798 	bool nowait = true;
5799 
5800 	if (list_empty(&mddev->disks))
5801 		/* cannot run an array with no devices.. */
5802 		return -EINVAL;
5803 
5804 	if (mddev->pers)
5805 		return -EBUSY;
5806 	/* Cannot run until previous stop completes properly */
5807 	if (mddev->sysfs_active)
5808 		return -EBUSY;
5809 
5810 	/*
5811 	 * Analyze all RAID superblock(s)
5812 	 */
5813 	if (!mddev->raid_disks) {
5814 		if (!mddev->persistent)
5815 			return -EINVAL;
5816 		err = analyze_sbs(mddev);
5817 		if (err)
5818 			return -EINVAL;
5819 	}
5820 
5821 	if (mddev->level != LEVEL_NONE)
5822 		request_module("md-level-%d", mddev->level);
5823 	else if (mddev->clevel[0])
5824 		request_module("md-%s", mddev->clevel);
5825 
5826 	/*
5827 	 * Drop all container device buffers, from now on
5828 	 * the only valid external interface is through the md
5829 	 * device.
5830 	 */
5831 	mddev->has_superblocks = false;
5832 	rdev_for_each(rdev, mddev) {
5833 		if (test_bit(Faulty, &rdev->flags))
5834 			continue;
5835 		sync_blockdev(rdev->bdev);
5836 		invalidate_bdev(rdev->bdev);
5837 		if (mddev->ro != 1 && rdev_read_only(rdev)) {
5838 			mddev->ro = 1;
5839 			if (mddev->gendisk)
5840 				set_disk_ro(mddev->gendisk, 1);
5841 		}
5842 
5843 		if (rdev->sb_page)
5844 			mddev->has_superblocks = true;
5845 
5846 		/* perform some consistency tests on the device.
5847 		 * We don't want the data to overlap the metadata,
5848 		 * Internal Bitmap issues have been handled elsewhere.
5849 		 */
5850 		if (rdev->meta_bdev) {
5851 			/* Nothing to check */;
5852 		} else if (rdev->data_offset < rdev->sb_start) {
5853 			if (mddev->dev_sectors &&
5854 			    rdev->data_offset + mddev->dev_sectors
5855 			    > rdev->sb_start) {
5856 				pr_warn("md: %s: data overlaps metadata\n",
5857 					mdname(mddev));
5858 				return -EINVAL;
5859 			}
5860 		} else {
5861 			if (rdev->sb_start + rdev->sb_size/512
5862 			    > rdev->data_offset) {
5863 				pr_warn("md: %s: metadata overlaps data\n",
5864 					mdname(mddev));
5865 				return -EINVAL;
5866 			}
5867 		}
5868 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5869 		nowait = nowait && blk_queue_nowait(bdev_get_queue(rdev->bdev));
5870 	}
5871 
5872 	if (!bioset_initialized(&mddev->bio_set)) {
5873 		err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5874 		if (err)
5875 			return err;
5876 	}
5877 	if (!bioset_initialized(&mddev->sync_set)) {
5878 		err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5879 		if (err)
5880 			goto exit_bio_set;
5881 	}
5882 
5883 	spin_lock(&pers_lock);
5884 	pers = find_pers(mddev->level, mddev->clevel);
5885 	if (!pers || !try_module_get(pers->owner)) {
5886 		spin_unlock(&pers_lock);
5887 		if (mddev->level != LEVEL_NONE)
5888 			pr_warn("md: personality for level %d is not loaded!\n",
5889 				mddev->level);
5890 		else
5891 			pr_warn("md: personality for level %s is not loaded!\n",
5892 				mddev->clevel);
5893 		err = -EINVAL;
5894 		goto abort;
5895 	}
5896 	spin_unlock(&pers_lock);
5897 	if (mddev->level != pers->level) {
5898 		mddev->level = pers->level;
5899 		mddev->new_level = pers->level;
5900 	}
5901 	strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5902 
5903 	if (mddev->reshape_position != MaxSector &&
5904 	    pers->start_reshape == NULL) {
5905 		/* This personality cannot handle reshaping... */
5906 		module_put(pers->owner);
5907 		err = -EINVAL;
5908 		goto abort;
5909 	}
5910 
5911 	if (pers->sync_request) {
5912 		/* Warn if this is a potentially silly
5913 		 * configuration.
5914 		 */
5915 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5916 		struct md_rdev *rdev2;
5917 		int warned = 0;
5918 
5919 		rdev_for_each(rdev, mddev)
5920 			rdev_for_each(rdev2, mddev) {
5921 				if (rdev < rdev2 &&
5922 				    rdev->bdev->bd_disk ==
5923 				    rdev2->bdev->bd_disk) {
5924 					pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5925 						mdname(mddev),
5926 						bdevname(rdev->bdev,b),
5927 						bdevname(rdev2->bdev,b2));
5928 					warned = 1;
5929 				}
5930 			}
5931 
5932 		if (warned)
5933 			pr_warn("True protection against single-disk failure might be compromised.\n");
5934 	}
5935 
5936 	mddev->recovery = 0;
5937 	/* may be over-ridden by personality */
5938 	mddev->resync_max_sectors = mddev->dev_sectors;
5939 
5940 	mddev->ok_start_degraded = start_dirty_degraded;
5941 
5942 	if (start_readonly && mddev->ro == 0)
5943 		mddev->ro = 2; /* read-only, but switch on first write */
5944 
5945 	err = pers->run(mddev);
5946 	if (err)
5947 		pr_warn("md: pers->run() failed ...\n");
5948 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5949 		WARN_ONCE(!mddev->external_size,
5950 			  "%s: default size too small, but 'external_size' not in effect?\n",
5951 			  __func__);
5952 		pr_warn("md: invalid array_size %llu > default size %llu\n",
5953 			(unsigned long long)mddev->array_sectors / 2,
5954 			(unsigned long long)pers->size(mddev, 0, 0) / 2);
5955 		err = -EINVAL;
5956 	}
5957 	if (err == 0 && pers->sync_request &&
5958 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5959 		struct bitmap *bitmap;
5960 
5961 		bitmap = md_bitmap_create(mddev, -1);
5962 		if (IS_ERR(bitmap)) {
5963 			err = PTR_ERR(bitmap);
5964 			pr_warn("%s: failed to create bitmap (%d)\n",
5965 				mdname(mddev), err);
5966 		} else
5967 			mddev->bitmap = bitmap;
5968 
5969 	}
5970 	if (err)
5971 		goto bitmap_abort;
5972 
5973 	if (mddev->bitmap_info.max_write_behind > 0) {
5974 		bool create_pool = false;
5975 
5976 		rdev_for_each(rdev, mddev) {
5977 			if (test_bit(WriteMostly, &rdev->flags) &&
5978 			    rdev_init_serial(rdev))
5979 				create_pool = true;
5980 		}
5981 		if (create_pool && mddev->serial_info_pool == NULL) {
5982 			mddev->serial_info_pool =
5983 				mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
5984 						    sizeof(struct serial_info));
5985 			if (!mddev->serial_info_pool) {
5986 				err = -ENOMEM;
5987 				goto bitmap_abort;
5988 			}
5989 		}
5990 	}
5991 
5992 	if (mddev->queue) {
5993 		bool nonrot = true;
5994 
5995 		rdev_for_each(rdev, mddev) {
5996 			if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) {
5997 				nonrot = false;
5998 				break;
5999 			}
6000 		}
6001 		if (mddev->degraded)
6002 			nonrot = false;
6003 		if (nonrot)
6004 			blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6005 		else
6006 			blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6007 		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6008 
6009 		/* Set the NOWAIT flags if all underlying devices support it */
6010 		if (nowait)
6011 			blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
6012 	}
6013 	if (pers->sync_request) {
6014 		if (mddev->kobj.sd &&
6015 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6016 			pr_warn("md: cannot register extra attributes for %s\n",
6017 				mdname(mddev));
6018 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6019 		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6020 		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6021 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
6022 		mddev->ro = 0;
6023 
6024 	atomic_set(&mddev->max_corr_read_errors,
6025 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6026 	mddev->safemode = 0;
6027 	if (mddev_is_clustered(mddev))
6028 		mddev->safemode_delay = 0;
6029 	else
6030 		mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6031 	mddev->in_sync = 1;
6032 	smp_wmb();
6033 	spin_lock(&mddev->lock);
6034 	mddev->pers = pers;
6035 	spin_unlock(&mddev->lock);
6036 	rdev_for_each(rdev, mddev)
6037 		if (rdev->raid_disk >= 0)
6038 			sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6039 
6040 	if (mddev->degraded && !mddev->ro)
6041 		/* This ensures that recovering status is reported immediately
6042 		 * via sysfs - until a lack of spares is confirmed.
6043 		 */
6044 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6045 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6046 
6047 	if (mddev->sb_flags)
6048 		md_update_sb(mddev, 0);
6049 
6050 	md_new_event();
6051 	return 0;
6052 
6053 bitmap_abort:
6054 	mddev_detach(mddev);
6055 	if (mddev->private)
6056 		pers->free(mddev, mddev->private);
6057 	mddev->private = NULL;
6058 	module_put(pers->owner);
6059 	md_bitmap_destroy(mddev);
6060 abort:
6061 	bioset_exit(&mddev->sync_set);
6062 exit_bio_set:
6063 	bioset_exit(&mddev->bio_set);
6064 	return err;
6065 }
6066 EXPORT_SYMBOL_GPL(md_run);
6067 
6068 int do_md_run(struct mddev *mddev)
6069 {
6070 	int err;
6071 
6072 	set_bit(MD_NOT_READY, &mddev->flags);
6073 	err = md_run(mddev);
6074 	if (err)
6075 		goto out;
6076 	err = md_bitmap_load(mddev);
6077 	if (err) {
6078 		md_bitmap_destroy(mddev);
6079 		goto out;
6080 	}
6081 
6082 	if (mddev_is_clustered(mddev))
6083 		md_allow_write(mddev);
6084 
6085 	/* run start up tasks that require md_thread */
6086 	md_start(mddev);
6087 
6088 	md_wakeup_thread(mddev->thread);
6089 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6090 
6091 	set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6092 	clear_bit(MD_NOT_READY, &mddev->flags);
6093 	mddev->changed = 1;
6094 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6095 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6096 	sysfs_notify_dirent_safe(mddev->sysfs_action);
6097 	sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6098 out:
6099 	clear_bit(MD_NOT_READY, &mddev->flags);
6100 	return err;
6101 }
6102 
6103 int md_start(struct mddev *mddev)
6104 {
6105 	int ret = 0;
6106 
6107 	if (mddev->pers->start) {
6108 		set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6109 		md_wakeup_thread(mddev->thread);
6110 		ret = mddev->pers->start(mddev);
6111 		clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6112 		md_wakeup_thread(mddev->sync_thread);
6113 	}
6114 	return ret;
6115 }
6116 EXPORT_SYMBOL_GPL(md_start);
6117 
6118 static int restart_array(struct mddev *mddev)
6119 {
6120 	struct gendisk *disk = mddev->gendisk;
6121 	struct md_rdev *rdev;
6122 	bool has_journal = false;
6123 	bool has_readonly = false;
6124 
6125 	/* Complain if it has no devices */
6126 	if (list_empty(&mddev->disks))
6127 		return -ENXIO;
6128 	if (!mddev->pers)
6129 		return -EINVAL;
6130 	if (!mddev->ro)
6131 		return -EBUSY;
6132 
6133 	rcu_read_lock();
6134 	rdev_for_each_rcu(rdev, mddev) {
6135 		if (test_bit(Journal, &rdev->flags) &&
6136 		    !test_bit(Faulty, &rdev->flags))
6137 			has_journal = true;
6138 		if (rdev_read_only(rdev))
6139 			has_readonly = true;
6140 	}
6141 	rcu_read_unlock();
6142 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6143 		/* Don't restart rw with journal missing/faulty */
6144 			return -EINVAL;
6145 	if (has_readonly)
6146 		return -EROFS;
6147 
6148 	mddev->safemode = 0;
6149 	mddev->ro = 0;
6150 	set_disk_ro(disk, 0);
6151 	pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6152 	/* Kick recovery or resync if necessary */
6153 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6154 	md_wakeup_thread(mddev->thread);
6155 	md_wakeup_thread(mddev->sync_thread);
6156 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6157 	return 0;
6158 }
6159 
6160 static void md_clean(struct mddev *mddev)
6161 {
6162 	mddev->array_sectors = 0;
6163 	mddev->external_size = 0;
6164 	mddev->dev_sectors = 0;
6165 	mddev->raid_disks = 0;
6166 	mddev->recovery_cp = 0;
6167 	mddev->resync_min = 0;
6168 	mddev->resync_max = MaxSector;
6169 	mddev->reshape_position = MaxSector;
6170 	mddev->external = 0;
6171 	mddev->persistent = 0;
6172 	mddev->level = LEVEL_NONE;
6173 	mddev->clevel[0] = 0;
6174 	mddev->flags = 0;
6175 	mddev->sb_flags = 0;
6176 	mddev->ro = 0;
6177 	mddev->metadata_type[0] = 0;
6178 	mddev->chunk_sectors = 0;
6179 	mddev->ctime = mddev->utime = 0;
6180 	mddev->layout = 0;
6181 	mddev->max_disks = 0;
6182 	mddev->events = 0;
6183 	mddev->can_decrease_events = 0;
6184 	mddev->delta_disks = 0;
6185 	mddev->reshape_backwards = 0;
6186 	mddev->new_level = LEVEL_NONE;
6187 	mddev->new_layout = 0;
6188 	mddev->new_chunk_sectors = 0;
6189 	mddev->curr_resync = 0;
6190 	atomic64_set(&mddev->resync_mismatches, 0);
6191 	mddev->suspend_lo = mddev->suspend_hi = 0;
6192 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
6193 	mddev->recovery = 0;
6194 	mddev->in_sync = 0;
6195 	mddev->changed = 0;
6196 	mddev->degraded = 0;
6197 	mddev->safemode = 0;
6198 	mddev->private = NULL;
6199 	mddev->cluster_info = NULL;
6200 	mddev->bitmap_info.offset = 0;
6201 	mddev->bitmap_info.default_offset = 0;
6202 	mddev->bitmap_info.default_space = 0;
6203 	mddev->bitmap_info.chunksize = 0;
6204 	mddev->bitmap_info.daemon_sleep = 0;
6205 	mddev->bitmap_info.max_write_behind = 0;
6206 	mddev->bitmap_info.nodes = 0;
6207 }
6208 
6209 static void __md_stop_writes(struct mddev *mddev)
6210 {
6211 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6212 	if (work_pending(&mddev->del_work))
6213 		flush_workqueue(md_misc_wq);
6214 	if (mddev->sync_thread) {
6215 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6216 		md_reap_sync_thread(mddev);
6217 	}
6218 
6219 	del_timer_sync(&mddev->safemode_timer);
6220 
6221 	if (mddev->pers && mddev->pers->quiesce) {
6222 		mddev->pers->quiesce(mddev, 1);
6223 		mddev->pers->quiesce(mddev, 0);
6224 	}
6225 	md_bitmap_flush(mddev);
6226 
6227 	if (mddev->ro == 0 &&
6228 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6229 	     mddev->sb_flags)) {
6230 		/* mark array as shutdown cleanly */
6231 		if (!mddev_is_clustered(mddev))
6232 			mddev->in_sync = 1;
6233 		md_update_sb(mddev, 1);
6234 	}
6235 	/* disable policy to guarantee rdevs free resources for serialization */
6236 	mddev->serialize_policy = 0;
6237 	mddev_destroy_serial_pool(mddev, NULL, true);
6238 }
6239 
6240 void md_stop_writes(struct mddev *mddev)
6241 {
6242 	mddev_lock_nointr(mddev);
6243 	__md_stop_writes(mddev);
6244 	mddev_unlock(mddev);
6245 }
6246 EXPORT_SYMBOL_GPL(md_stop_writes);
6247 
6248 static void mddev_detach(struct mddev *mddev)
6249 {
6250 	md_bitmap_wait_behind_writes(mddev);
6251 	if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6252 		mddev->pers->quiesce(mddev, 1);
6253 		mddev->pers->quiesce(mddev, 0);
6254 	}
6255 	md_unregister_thread(&mddev->thread);
6256 	if (mddev->queue)
6257 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6258 }
6259 
6260 static void __md_stop(struct mddev *mddev)
6261 {
6262 	struct md_personality *pers = mddev->pers;
6263 	md_bitmap_destroy(mddev);
6264 	mddev_detach(mddev);
6265 	/* Ensure ->event_work is done */
6266 	if (mddev->event_work.func)
6267 		flush_workqueue(md_misc_wq);
6268 	spin_lock(&mddev->lock);
6269 	mddev->pers = NULL;
6270 	spin_unlock(&mddev->lock);
6271 	if (mddev->private)
6272 		pers->free(mddev, mddev->private);
6273 	mddev->private = NULL;
6274 	if (pers->sync_request && mddev->to_remove == NULL)
6275 		mddev->to_remove = &md_redundancy_group;
6276 	module_put(pers->owner);
6277 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6278 }
6279 
6280 void md_stop(struct mddev *mddev)
6281 {
6282 	/* stop the array and free an attached data structures.
6283 	 * This is called from dm-raid
6284 	 */
6285 	__md_stop(mddev);
6286 	bioset_exit(&mddev->bio_set);
6287 	bioset_exit(&mddev->sync_set);
6288 	if (mddev->level != 1 && mddev->level != 10)
6289 		bioset_exit(&mddev->io_acct_set);
6290 }
6291 
6292 EXPORT_SYMBOL_GPL(md_stop);
6293 
6294 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6295 {
6296 	int err = 0;
6297 	int did_freeze = 0;
6298 
6299 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6300 		did_freeze = 1;
6301 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6302 		md_wakeup_thread(mddev->thread);
6303 	}
6304 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6305 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6306 	if (mddev->sync_thread)
6307 		/* Thread might be blocked waiting for metadata update
6308 		 * which will now never happen */
6309 		wake_up_process(mddev->sync_thread->tsk);
6310 
6311 	if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6312 		return -EBUSY;
6313 	mddev_unlock(mddev);
6314 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6315 					  &mddev->recovery));
6316 	wait_event(mddev->sb_wait,
6317 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6318 	mddev_lock_nointr(mddev);
6319 
6320 	mutex_lock(&mddev->open_mutex);
6321 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6322 	    mddev->sync_thread ||
6323 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6324 		pr_warn("md: %s still in use.\n",mdname(mddev));
6325 		if (did_freeze) {
6326 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6327 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6328 			md_wakeup_thread(mddev->thread);
6329 		}
6330 		err = -EBUSY;
6331 		goto out;
6332 	}
6333 	if (mddev->pers) {
6334 		__md_stop_writes(mddev);
6335 
6336 		err  = -ENXIO;
6337 		if (mddev->ro==1)
6338 			goto out;
6339 		mddev->ro = 1;
6340 		set_disk_ro(mddev->gendisk, 1);
6341 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6342 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6343 		md_wakeup_thread(mddev->thread);
6344 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6345 		err = 0;
6346 	}
6347 out:
6348 	mutex_unlock(&mddev->open_mutex);
6349 	return err;
6350 }
6351 
6352 /* mode:
6353  *   0 - completely stop and dis-assemble array
6354  *   2 - stop but do not disassemble array
6355  */
6356 static int do_md_stop(struct mddev *mddev, int mode,
6357 		      struct block_device *bdev)
6358 {
6359 	struct gendisk *disk = mddev->gendisk;
6360 	struct md_rdev *rdev;
6361 	int did_freeze = 0;
6362 
6363 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6364 		did_freeze = 1;
6365 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6366 		md_wakeup_thread(mddev->thread);
6367 	}
6368 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6369 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6370 	if (mddev->sync_thread)
6371 		/* Thread might be blocked waiting for metadata update
6372 		 * which will now never happen */
6373 		wake_up_process(mddev->sync_thread->tsk);
6374 
6375 	mddev_unlock(mddev);
6376 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
6377 				 !test_bit(MD_RECOVERY_RUNNING,
6378 					   &mddev->recovery)));
6379 	mddev_lock_nointr(mddev);
6380 
6381 	mutex_lock(&mddev->open_mutex);
6382 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6383 	    mddev->sysfs_active ||
6384 	    mddev->sync_thread ||
6385 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6386 		pr_warn("md: %s still in use.\n",mdname(mddev));
6387 		mutex_unlock(&mddev->open_mutex);
6388 		if (did_freeze) {
6389 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6390 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6391 			md_wakeup_thread(mddev->thread);
6392 		}
6393 		return -EBUSY;
6394 	}
6395 	if (mddev->pers) {
6396 		if (mddev->ro)
6397 			set_disk_ro(disk, 0);
6398 
6399 		__md_stop_writes(mddev);
6400 		__md_stop(mddev);
6401 
6402 		/* tell userspace to handle 'inactive' */
6403 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6404 
6405 		rdev_for_each(rdev, mddev)
6406 			if (rdev->raid_disk >= 0)
6407 				sysfs_unlink_rdev(mddev, rdev);
6408 
6409 		set_capacity_and_notify(disk, 0);
6410 		mutex_unlock(&mddev->open_mutex);
6411 		mddev->changed = 1;
6412 
6413 		if (mddev->ro)
6414 			mddev->ro = 0;
6415 	} else
6416 		mutex_unlock(&mddev->open_mutex);
6417 	/*
6418 	 * Free resources if final stop
6419 	 */
6420 	if (mode == 0) {
6421 		pr_info("md: %s stopped.\n", mdname(mddev));
6422 
6423 		if (mddev->bitmap_info.file) {
6424 			struct file *f = mddev->bitmap_info.file;
6425 			spin_lock(&mddev->lock);
6426 			mddev->bitmap_info.file = NULL;
6427 			spin_unlock(&mddev->lock);
6428 			fput(f);
6429 		}
6430 		mddev->bitmap_info.offset = 0;
6431 
6432 		export_array(mddev);
6433 
6434 		md_clean(mddev);
6435 		if (mddev->hold_active == UNTIL_STOP)
6436 			mddev->hold_active = 0;
6437 	}
6438 	md_new_event();
6439 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6440 	return 0;
6441 }
6442 
6443 #ifndef MODULE
6444 static void autorun_array(struct mddev *mddev)
6445 {
6446 	struct md_rdev *rdev;
6447 	int err;
6448 
6449 	if (list_empty(&mddev->disks))
6450 		return;
6451 
6452 	pr_info("md: running: ");
6453 
6454 	rdev_for_each(rdev, mddev) {
6455 		char b[BDEVNAME_SIZE];
6456 		pr_cont("<%s>", bdevname(rdev->bdev,b));
6457 	}
6458 	pr_cont("\n");
6459 
6460 	err = do_md_run(mddev);
6461 	if (err) {
6462 		pr_warn("md: do_md_run() returned %d\n", err);
6463 		do_md_stop(mddev, 0, NULL);
6464 	}
6465 }
6466 
6467 /*
6468  * lets try to run arrays based on all disks that have arrived
6469  * until now. (those are in pending_raid_disks)
6470  *
6471  * the method: pick the first pending disk, collect all disks with
6472  * the same UUID, remove all from the pending list and put them into
6473  * the 'same_array' list. Then order this list based on superblock
6474  * update time (freshest comes first), kick out 'old' disks and
6475  * compare superblocks. If everything's fine then run it.
6476  *
6477  * If "unit" is allocated, then bump its reference count
6478  */
6479 static void autorun_devices(int part)
6480 {
6481 	struct md_rdev *rdev0, *rdev, *tmp;
6482 	struct mddev *mddev;
6483 	char b[BDEVNAME_SIZE];
6484 
6485 	pr_info("md: autorun ...\n");
6486 	while (!list_empty(&pending_raid_disks)) {
6487 		int unit;
6488 		dev_t dev;
6489 		LIST_HEAD(candidates);
6490 		rdev0 = list_entry(pending_raid_disks.next,
6491 					 struct md_rdev, same_set);
6492 
6493 		pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6494 		INIT_LIST_HEAD(&candidates);
6495 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6496 			if (super_90_load(rdev, rdev0, 0) >= 0) {
6497 				pr_debug("md:  adding %s ...\n",
6498 					 bdevname(rdev->bdev,b));
6499 				list_move(&rdev->same_set, &candidates);
6500 			}
6501 		/*
6502 		 * now we have a set of devices, with all of them having
6503 		 * mostly sane superblocks. It's time to allocate the
6504 		 * mddev.
6505 		 */
6506 		if (part) {
6507 			dev = MKDEV(mdp_major,
6508 				    rdev0->preferred_minor << MdpMinorShift);
6509 			unit = MINOR(dev) >> MdpMinorShift;
6510 		} else {
6511 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6512 			unit = MINOR(dev);
6513 		}
6514 		if (rdev0->preferred_minor != unit) {
6515 			pr_warn("md: unit number in %s is bad: %d\n",
6516 				bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6517 			break;
6518 		}
6519 
6520 		md_probe(dev);
6521 		mddev = mddev_find(dev);
6522 		if (!mddev)
6523 			break;
6524 
6525 		if (mddev_lock(mddev))
6526 			pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6527 		else if (mddev->raid_disks || mddev->major_version
6528 			 || !list_empty(&mddev->disks)) {
6529 			pr_warn("md: %s already running, cannot run %s\n",
6530 				mdname(mddev), bdevname(rdev0->bdev,b));
6531 			mddev_unlock(mddev);
6532 		} else {
6533 			pr_debug("md: created %s\n", mdname(mddev));
6534 			mddev->persistent = 1;
6535 			rdev_for_each_list(rdev, tmp, &candidates) {
6536 				list_del_init(&rdev->same_set);
6537 				if (bind_rdev_to_array(rdev, mddev))
6538 					export_rdev(rdev);
6539 			}
6540 			autorun_array(mddev);
6541 			mddev_unlock(mddev);
6542 		}
6543 		/* on success, candidates will be empty, on error
6544 		 * it won't...
6545 		 */
6546 		rdev_for_each_list(rdev, tmp, &candidates) {
6547 			list_del_init(&rdev->same_set);
6548 			export_rdev(rdev);
6549 		}
6550 		mddev_put(mddev);
6551 	}
6552 	pr_info("md: ... autorun DONE.\n");
6553 }
6554 #endif /* !MODULE */
6555 
6556 static int get_version(void __user *arg)
6557 {
6558 	mdu_version_t ver;
6559 
6560 	ver.major = MD_MAJOR_VERSION;
6561 	ver.minor = MD_MINOR_VERSION;
6562 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
6563 
6564 	if (copy_to_user(arg, &ver, sizeof(ver)))
6565 		return -EFAULT;
6566 
6567 	return 0;
6568 }
6569 
6570 static int get_array_info(struct mddev *mddev, void __user *arg)
6571 {
6572 	mdu_array_info_t info;
6573 	int nr,working,insync,failed,spare;
6574 	struct md_rdev *rdev;
6575 
6576 	nr = working = insync = failed = spare = 0;
6577 	rcu_read_lock();
6578 	rdev_for_each_rcu(rdev, mddev) {
6579 		nr++;
6580 		if (test_bit(Faulty, &rdev->flags))
6581 			failed++;
6582 		else {
6583 			working++;
6584 			if (test_bit(In_sync, &rdev->flags))
6585 				insync++;
6586 			else if (test_bit(Journal, &rdev->flags))
6587 				/* TODO: add journal count to md_u.h */
6588 				;
6589 			else
6590 				spare++;
6591 		}
6592 	}
6593 	rcu_read_unlock();
6594 
6595 	info.major_version = mddev->major_version;
6596 	info.minor_version = mddev->minor_version;
6597 	info.patch_version = MD_PATCHLEVEL_VERSION;
6598 	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6599 	info.level         = mddev->level;
6600 	info.size          = mddev->dev_sectors / 2;
6601 	if (info.size != mddev->dev_sectors / 2) /* overflow */
6602 		info.size = -1;
6603 	info.nr_disks      = nr;
6604 	info.raid_disks    = mddev->raid_disks;
6605 	info.md_minor      = mddev->md_minor;
6606 	info.not_persistent= !mddev->persistent;
6607 
6608 	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6609 	info.state         = 0;
6610 	if (mddev->in_sync)
6611 		info.state = (1<<MD_SB_CLEAN);
6612 	if (mddev->bitmap && mddev->bitmap_info.offset)
6613 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
6614 	if (mddev_is_clustered(mddev))
6615 		info.state |= (1<<MD_SB_CLUSTERED);
6616 	info.active_disks  = insync;
6617 	info.working_disks = working;
6618 	info.failed_disks  = failed;
6619 	info.spare_disks   = spare;
6620 
6621 	info.layout        = mddev->layout;
6622 	info.chunk_size    = mddev->chunk_sectors << 9;
6623 
6624 	if (copy_to_user(arg, &info, sizeof(info)))
6625 		return -EFAULT;
6626 
6627 	return 0;
6628 }
6629 
6630 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6631 {
6632 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6633 	char *ptr;
6634 	int err;
6635 
6636 	file = kzalloc(sizeof(*file), GFP_NOIO);
6637 	if (!file)
6638 		return -ENOMEM;
6639 
6640 	err = 0;
6641 	spin_lock(&mddev->lock);
6642 	/* bitmap enabled */
6643 	if (mddev->bitmap_info.file) {
6644 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
6645 				sizeof(file->pathname));
6646 		if (IS_ERR(ptr))
6647 			err = PTR_ERR(ptr);
6648 		else
6649 			memmove(file->pathname, ptr,
6650 				sizeof(file->pathname)-(ptr-file->pathname));
6651 	}
6652 	spin_unlock(&mddev->lock);
6653 
6654 	if (err == 0 &&
6655 	    copy_to_user(arg, file, sizeof(*file)))
6656 		err = -EFAULT;
6657 
6658 	kfree(file);
6659 	return err;
6660 }
6661 
6662 static int get_disk_info(struct mddev *mddev, void __user * arg)
6663 {
6664 	mdu_disk_info_t info;
6665 	struct md_rdev *rdev;
6666 
6667 	if (copy_from_user(&info, arg, sizeof(info)))
6668 		return -EFAULT;
6669 
6670 	rcu_read_lock();
6671 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
6672 	if (rdev) {
6673 		info.major = MAJOR(rdev->bdev->bd_dev);
6674 		info.minor = MINOR(rdev->bdev->bd_dev);
6675 		info.raid_disk = rdev->raid_disk;
6676 		info.state = 0;
6677 		if (test_bit(Faulty, &rdev->flags))
6678 			info.state |= (1<<MD_DISK_FAULTY);
6679 		else if (test_bit(In_sync, &rdev->flags)) {
6680 			info.state |= (1<<MD_DISK_ACTIVE);
6681 			info.state |= (1<<MD_DISK_SYNC);
6682 		}
6683 		if (test_bit(Journal, &rdev->flags))
6684 			info.state |= (1<<MD_DISK_JOURNAL);
6685 		if (test_bit(WriteMostly, &rdev->flags))
6686 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
6687 		if (test_bit(FailFast, &rdev->flags))
6688 			info.state |= (1<<MD_DISK_FAILFAST);
6689 	} else {
6690 		info.major = info.minor = 0;
6691 		info.raid_disk = -1;
6692 		info.state = (1<<MD_DISK_REMOVED);
6693 	}
6694 	rcu_read_unlock();
6695 
6696 	if (copy_to_user(arg, &info, sizeof(info)))
6697 		return -EFAULT;
6698 
6699 	return 0;
6700 }
6701 
6702 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6703 {
6704 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6705 	struct md_rdev *rdev;
6706 	dev_t dev = MKDEV(info->major,info->minor);
6707 
6708 	if (mddev_is_clustered(mddev) &&
6709 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6710 		pr_warn("%s: Cannot add to clustered mddev.\n",
6711 			mdname(mddev));
6712 		return -EINVAL;
6713 	}
6714 
6715 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6716 		return -EOVERFLOW;
6717 
6718 	if (!mddev->raid_disks) {
6719 		int err;
6720 		/* expecting a device which has a superblock */
6721 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6722 		if (IS_ERR(rdev)) {
6723 			pr_warn("md: md_import_device returned %ld\n",
6724 				PTR_ERR(rdev));
6725 			return PTR_ERR(rdev);
6726 		}
6727 		if (!list_empty(&mddev->disks)) {
6728 			struct md_rdev *rdev0
6729 				= list_entry(mddev->disks.next,
6730 					     struct md_rdev, same_set);
6731 			err = super_types[mddev->major_version]
6732 				.load_super(rdev, rdev0, mddev->minor_version);
6733 			if (err < 0) {
6734 				pr_warn("md: %s has different UUID to %s\n",
6735 					bdevname(rdev->bdev,b),
6736 					bdevname(rdev0->bdev,b2));
6737 				export_rdev(rdev);
6738 				return -EINVAL;
6739 			}
6740 		}
6741 		err = bind_rdev_to_array(rdev, mddev);
6742 		if (err)
6743 			export_rdev(rdev);
6744 		return err;
6745 	}
6746 
6747 	/*
6748 	 * md_add_new_disk can be used once the array is assembled
6749 	 * to add "hot spares".  They must already have a superblock
6750 	 * written
6751 	 */
6752 	if (mddev->pers) {
6753 		int err;
6754 		if (!mddev->pers->hot_add_disk) {
6755 			pr_warn("%s: personality does not support diskops!\n",
6756 				mdname(mddev));
6757 			return -EINVAL;
6758 		}
6759 		if (mddev->persistent)
6760 			rdev = md_import_device(dev, mddev->major_version,
6761 						mddev->minor_version);
6762 		else
6763 			rdev = md_import_device(dev, -1, -1);
6764 		if (IS_ERR(rdev)) {
6765 			pr_warn("md: md_import_device returned %ld\n",
6766 				PTR_ERR(rdev));
6767 			return PTR_ERR(rdev);
6768 		}
6769 		/* set saved_raid_disk if appropriate */
6770 		if (!mddev->persistent) {
6771 			if (info->state & (1<<MD_DISK_SYNC)  &&
6772 			    info->raid_disk < mddev->raid_disks) {
6773 				rdev->raid_disk = info->raid_disk;
6774 				set_bit(In_sync, &rdev->flags);
6775 				clear_bit(Bitmap_sync, &rdev->flags);
6776 			} else
6777 				rdev->raid_disk = -1;
6778 			rdev->saved_raid_disk = rdev->raid_disk;
6779 		} else
6780 			super_types[mddev->major_version].
6781 				validate_super(mddev, rdev);
6782 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6783 		     rdev->raid_disk != info->raid_disk) {
6784 			/* This was a hot-add request, but events doesn't
6785 			 * match, so reject it.
6786 			 */
6787 			export_rdev(rdev);
6788 			return -EINVAL;
6789 		}
6790 
6791 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6792 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6793 			set_bit(WriteMostly, &rdev->flags);
6794 		else
6795 			clear_bit(WriteMostly, &rdev->flags);
6796 		if (info->state & (1<<MD_DISK_FAILFAST))
6797 			set_bit(FailFast, &rdev->flags);
6798 		else
6799 			clear_bit(FailFast, &rdev->flags);
6800 
6801 		if (info->state & (1<<MD_DISK_JOURNAL)) {
6802 			struct md_rdev *rdev2;
6803 			bool has_journal = false;
6804 
6805 			/* make sure no existing journal disk */
6806 			rdev_for_each(rdev2, mddev) {
6807 				if (test_bit(Journal, &rdev2->flags)) {
6808 					has_journal = true;
6809 					break;
6810 				}
6811 			}
6812 			if (has_journal || mddev->bitmap) {
6813 				export_rdev(rdev);
6814 				return -EBUSY;
6815 			}
6816 			set_bit(Journal, &rdev->flags);
6817 		}
6818 		/*
6819 		 * check whether the device shows up in other nodes
6820 		 */
6821 		if (mddev_is_clustered(mddev)) {
6822 			if (info->state & (1 << MD_DISK_CANDIDATE))
6823 				set_bit(Candidate, &rdev->flags);
6824 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6825 				/* --add initiated by this node */
6826 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6827 				if (err) {
6828 					export_rdev(rdev);
6829 					return err;
6830 				}
6831 			}
6832 		}
6833 
6834 		rdev->raid_disk = -1;
6835 		err = bind_rdev_to_array(rdev, mddev);
6836 
6837 		if (err)
6838 			export_rdev(rdev);
6839 
6840 		if (mddev_is_clustered(mddev)) {
6841 			if (info->state & (1 << MD_DISK_CANDIDATE)) {
6842 				if (!err) {
6843 					err = md_cluster_ops->new_disk_ack(mddev,
6844 						err == 0);
6845 					if (err)
6846 						md_kick_rdev_from_array(rdev);
6847 				}
6848 			} else {
6849 				if (err)
6850 					md_cluster_ops->add_new_disk_cancel(mddev);
6851 				else
6852 					err = add_bound_rdev(rdev);
6853 			}
6854 
6855 		} else if (!err)
6856 			err = add_bound_rdev(rdev);
6857 
6858 		return err;
6859 	}
6860 
6861 	/* otherwise, md_add_new_disk is only allowed
6862 	 * for major_version==0 superblocks
6863 	 */
6864 	if (mddev->major_version != 0) {
6865 		pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6866 		return -EINVAL;
6867 	}
6868 
6869 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6870 		int err;
6871 		rdev = md_import_device(dev, -1, 0);
6872 		if (IS_ERR(rdev)) {
6873 			pr_warn("md: error, md_import_device() returned %ld\n",
6874 				PTR_ERR(rdev));
6875 			return PTR_ERR(rdev);
6876 		}
6877 		rdev->desc_nr = info->number;
6878 		if (info->raid_disk < mddev->raid_disks)
6879 			rdev->raid_disk = info->raid_disk;
6880 		else
6881 			rdev->raid_disk = -1;
6882 
6883 		if (rdev->raid_disk < mddev->raid_disks)
6884 			if (info->state & (1<<MD_DISK_SYNC))
6885 				set_bit(In_sync, &rdev->flags);
6886 
6887 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6888 			set_bit(WriteMostly, &rdev->flags);
6889 		if (info->state & (1<<MD_DISK_FAILFAST))
6890 			set_bit(FailFast, &rdev->flags);
6891 
6892 		if (!mddev->persistent) {
6893 			pr_debug("md: nonpersistent superblock ...\n");
6894 			rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6895 		} else
6896 			rdev->sb_start = calc_dev_sboffset(rdev);
6897 		rdev->sectors = rdev->sb_start;
6898 
6899 		err = bind_rdev_to_array(rdev, mddev);
6900 		if (err) {
6901 			export_rdev(rdev);
6902 			return err;
6903 		}
6904 	}
6905 
6906 	return 0;
6907 }
6908 
6909 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6910 {
6911 	char b[BDEVNAME_SIZE];
6912 	struct md_rdev *rdev;
6913 
6914 	if (!mddev->pers)
6915 		return -ENODEV;
6916 
6917 	rdev = find_rdev(mddev, dev);
6918 	if (!rdev)
6919 		return -ENXIO;
6920 
6921 	if (rdev->raid_disk < 0)
6922 		goto kick_rdev;
6923 
6924 	clear_bit(Blocked, &rdev->flags);
6925 	remove_and_add_spares(mddev, rdev);
6926 
6927 	if (rdev->raid_disk >= 0)
6928 		goto busy;
6929 
6930 kick_rdev:
6931 	if (mddev_is_clustered(mddev)) {
6932 		if (md_cluster_ops->remove_disk(mddev, rdev))
6933 			goto busy;
6934 	}
6935 
6936 	md_kick_rdev_from_array(rdev);
6937 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6938 	if (mddev->thread)
6939 		md_wakeup_thread(mddev->thread);
6940 	else
6941 		md_update_sb(mddev, 1);
6942 	md_new_event();
6943 
6944 	return 0;
6945 busy:
6946 	pr_debug("md: cannot remove active disk %s from %s ...\n",
6947 		 bdevname(rdev->bdev,b), mdname(mddev));
6948 	return -EBUSY;
6949 }
6950 
6951 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6952 {
6953 	char b[BDEVNAME_SIZE];
6954 	int err;
6955 	struct md_rdev *rdev;
6956 
6957 	if (!mddev->pers)
6958 		return -ENODEV;
6959 
6960 	if (mddev->major_version != 0) {
6961 		pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6962 			mdname(mddev));
6963 		return -EINVAL;
6964 	}
6965 	if (!mddev->pers->hot_add_disk) {
6966 		pr_warn("%s: personality does not support diskops!\n",
6967 			mdname(mddev));
6968 		return -EINVAL;
6969 	}
6970 
6971 	rdev = md_import_device(dev, -1, 0);
6972 	if (IS_ERR(rdev)) {
6973 		pr_warn("md: error, md_import_device() returned %ld\n",
6974 			PTR_ERR(rdev));
6975 		return -EINVAL;
6976 	}
6977 
6978 	if (mddev->persistent)
6979 		rdev->sb_start = calc_dev_sboffset(rdev);
6980 	else
6981 		rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6982 
6983 	rdev->sectors = rdev->sb_start;
6984 
6985 	if (test_bit(Faulty, &rdev->flags)) {
6986 		pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6987 			bdevname(rdev->bdev,b), mdname(mddev));
6988 		err = -EINVAL;
6989 		goto abort_export;
6990 	}
6991 
6992 	clear_bit(In_sync, &rdev->flags);
6993 	rdev->desc_nr = -1;
6994 	rdev->saved_raid_disk = -1;
6995 	err = bind_rdev_to_array(rdev, mddev);
6996 	if (err)
6997 		goto abort_export;
6998 
6999 	/*
7000 	 * The rest should better be atomic, we can have disk failures
7001 	 * noticed in interrupt contexts ...
7002 	 */
7003 
7004 	rdev->raid_disk = -1;
7005 
7006 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7007 	if (!mddev->thread)
7008 		md_update_sb(mddev, 1);
7009 	/*
7010 	 * If the new disk does not support REQ_NOWAIT,
7011 	 * disable on the whole MD.
7012 	 */
7013 	if (!blk_queue_nowait(bdev_get_queue(rdev->bdev))) {
7014 		pr_info("%s: Disabling nowait because %s does not support nowait\n",
7015 			mdname(mddev), bdevname(rdev->bdev, b));
7016 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
7017 	}
7018 	/*
7019 	 * Kick recovery, maybe this spare has to be added to the
7020 	 * array immediately.
7021 	 */
7022 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7023 	md_wakeup_thread(mddev->thread);
7024 	md_new_event();
7025 	return 0;
7026 
7027 abort_export:
7028 	export_rdev(rdev);
7029 	return err;
7030 }
7031 
7032 static int set_bitmap_file(struct mddev *mddev, int fd)
7033 {
7034 	int err = 0;
7035 
7036 	if (mddev->pers) {
7037 		if (!mddev->pers->quiesce || !mddev->thread)
7038 			return -EBUSY;
7039 		if (mddev->recovery || mddev->sync_thread)
7040 			return -EBUSY;
7041 		/* we should be able to change the bitmap.. */
7042 	}
7043 
7044 	if (fd >= 0) {
7045 		struct inode *inode;
7046 		struct file *f;
7047 
7048 		if (mddev->bitmap || mddev->bitmap_info.file)
7049 			return -EEXIST; /* cannot add when bitmap is present */
7050 		f = fget(fd);
7051 
7052 		if (f == NULL) {
7053 			pr_warn("%s: error: failed to get bitmap file\n",
7054 				mdname(mddev));
7055 			return -EBADF;
7056 		}
7057 
7058 		inode = f->f_mapping->host;
7059 		if (!S_ISREG(inode->i_mode)) {
7060 			pr_warn("%s: error: bitmap file must be a regular file\n",
7061 				mdname(mddev));
7062 			err = -EBADF;
7063 		} else if (!(f->f_mode & FMODE_WRITE)) {
7064 			pr_warn("%s: error: bitmap file must open for write\n",
7065 				mdname(mddev));
7066 			err = -EBADF;
7067 		} else if (atomic_read(&inode->i_writecount) != 1) {
7068 			pr_warn("%s: error: bitmap file is already in use\n",
7069 				mdname(mddev));
7070 			err = -EBUSY;
7071 		}
7072 		if (err) {
7073 			fput(f);
7074 			return err;
7075 		}
7076 		mddev->bitmap_info.file = f;
7077 		mddev->bitmap_info.offset = 0; /* file overrides offset */
7078 	} else if (mddev->bitmap == NULL)
7079 		return -ENOENT; /* cannot remove what isn't there */
7080 	err = 0;
7081 	if (mddev->pers) {
7082 		if (fd >= 0) {
7083 			struct bitmap *bitmap;
7084 
7085 			bitmap = md_bitmap_create(mddev, -1);
7086 			mddev_suspend(mddev);
7087 			if (!IS_ERR(bitmap)) {
7088 				mddev->bitmap = bitmap;
7089 				err = md_bitmap_load(mddev);
7090 			} else
7091 				err = PTR_ERR(bitmap);
7092 			if (err) {
7093 				md_bitmap_destroy(mddev);
7094 				fd = -1;
7095 			}
7096 			mddev_resume(mddev);
7097 		} else if (fd < 0) {
7098 			mddev_suspend(mddev);
7099 			md_bitmap_destroy(mddev);
7100 			mddev_resume(mddev);
7101 		}
7102 	}
7103 	if (fd < 0) {
7104 		struct file *f = mddev->bitmap_info.file;
7105 		if (f) {
7106 			spin_lock(&mddev->lock);
7107 			mddev->bitmap_info.file = NULL;
7108 			spin_unlock(&mddev->lock);
7109 			fput(f);
7110 		}
7111 	}
7112 
7113 	return err;
7114 }
7115 
7116 /*
7117  * md_set_array_info is used two different ways
7118  * The original usage is when creating a new array.
7119  * In this usage, raid_disks is > 0 and it together with
7120  *  level, size, not_persistent,layout,chunksize determine the
7121  *  shape of the array.
7122  *  This will always create an array with a type-0.90.0 superblock.
7123  * The newer usage is when assembling an array.
7124  *  In this case raid_disks will be 0, and the major_version field is
7125  *  use to determine which style super-blocks are to be found on the devices.
7126  *  The minor and patch _version numbers are also kept incase the
7127  *  super_block handler wishes to interpret them.
7128  */
7129 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7130 {
7131 	if (info->raid_disks == 0) {
7132 		/* just setting version number for superblock loading */
7133 		if (info->major_version < 0 ||
7134 		    info->major_version >= ARRAY_SIZE(super_types) ||
7135 		    super_types[info->major_version].name == NULL) {
7136 			/* maybe try to auto-load a module? */
7137 			pr_warn("md: superblock version %d not known\n",
7138 				info->major_version);
7139 			return -EINVAL;
7140 		}
7141 		mddev->major_version = info->major_version;
7142 		mddev->minor_version = info->minor_version;
7143 		mddev->patch_version = info->patch_version;
7144 		mddev->persistent = !info->not_persistent;
7145 		/* ensure mddev_put doesn't delete this now that there
7146 		 * is some minimal configuration.
7147 		 */
7148 		mddev->ctime         = ktime_get_real_seconds();
7149 		return 0;
7150 	}
7151 	mddev->major_version = MD_MAJOR_VERSION;
7152 	mddev->minor_version = MD_MINOR_VERSION;
7153 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
7154 	mddev->ctime         = ktime_get_real_seconds();
7155 
7156 	mddev->level         = info->level;
7157 	mddev->clevel[0]     = 0;
7158 	mddev->dev_sectors   = 2 * (sector_t)info->size;
7159 	mddev->raid_disks    = info->raid_disks;
7160 	/* don't set md_minor, it is determined by which /dev/md* was
7161 	 * openned
7162 	 */
7163 	if (info->state & (1<<MD_SB_CLEAN))
7164 		mddev->recovery_cp = MaxSector;
7165 	else
7166 		mddev->recovery_cp = 0;
7167 	mddev->persistent    = ! info->not_persistent;
7168 	mddev->external	     = 0;
7169 
7170 	mddev->layout        = info->layout;
7171 	if (mddev->level == 0)
7172 		/* Cannot trust RAID0 layout info here */
7173 		mddev->layout = -1;
7174 	mddev->chunk_sectors = info->chunk_size >> 9;
7175 
7176 	if (mddev->persistent) {
7177 		mddev->max_disks = MD_SB_DISKS;
7178 		mddev->flags = 0;
7179 		mddev->sb_flags = 0;
7180 	}
7181 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7182 
7183 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7184 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7185 	mddev->bitmap_info.offset = 0;
7186 
7187 	mddev->reshape_position = MaxSector;
7188 
7189 	/*
7190 	 * Generate a 128 bit UUID
7191 	 */
7192 	get_random_bytes(mddev->uuid, 16);
7193 
7194 	mddev->new_level = mddev->level;
7195 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7196 	mddev->new_layout = mddev->layout;
7197 	mddev->delta_disks = 0;
7198 	mddev->reshape_backwards = 0;
7199 
7200 	return 0;
7201 }
7202 
7203 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7204 {
7205 	lockdep_assert_held(&mddev->reconfig_mutex);
7206 
7207 	if (mddev->external_size)
7208 		return;
7209 
7210 	mddev->array_sectors = array_sectors;
7211 }
7212 EXPORT_SYMBOL(md_set_array_sectors);
7213 
7214 static int update_size(struct mddev *mddev, sector_t num_sectors)
7215 {
7216 	struct md_rdev *rdev;
7217 	int rv;
7218 	int fit = (num_sectors == 0);
7219 	sector_t old_dev_sectors = mddev->dev_sectors;
7220 
7221 	if (mddev->pers->resize == NULL)
7222 		return -EINVAL;
7223 	/* The "num_sectors" is the number of sectors of each device that
7224 	 * is used.  This can only make sense for arrays with redundancy.
7225 	 * linear and raid0 always use whatever space is available. We can only
7226 	 * consider changing this number if no resync or reconstruction is
7227 	 * happening, and if the new size is acceptable. It must fit before the
7228 	 * sb_start or, if that is <data_offset, it must fit before the size
7229 	 * of each device.  If num_sectors is zero, we find the largest size
7230 	 * that fits.
7231 	 */
7232 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7233 	    mddev->sync_thread)
7234 		return -EBUSY;
7235 	if (mddev->ro)
7236 		return -EROFS;
7237 
7238 	rdev_for_each(rdev, mddev) {
7239 		sector_t avail = rdev->sectors;
7240 
7241 		if (fit && (num_sectors == 0 || num_sectors > avail))
7242 			num_sectors = avail;
7243 		if (avail < num_sectors)
7244 			return -ENOSPC;
7245 	}
7246 	rv = mddev->pers->resize(mddev, num_sectors);
7247 	if (!rv) {
7248 		if (mddev_is_clustered(mddev))
7249 			md_cluster_ops->update_size(mddev, old_dev_sectors);
7250 		else if (mddev->queue) {
7251 			set_capacity_and_notify(mddev->gendisk,
7252 						mddev->array_sectors);
7253 		}
7254 	}
7255 	return rv;
7256 }
7257 
7258 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7259 {
7260 	int rv;
7261 	struct md_rdev *rdev;
7262 	/* change the number of raid disks */
7263 	if (mddev->pers->check_reshape == NULL)
7264 		return -EINVAL;
7265 	if (mddev->ro)
7266 		return -EROFS;
7267 	if (raid_disks <= 0 ||
7268 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
7269 		return -EINVAL;
7270 	if (mddev->sync_thread ||
7271 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7272 	    test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7273 	    mddev->reshape_position != MaxSector)
7274 		return -EBUSY;
7275 
7276 	rdev_for_each(rdev, mddev) {
7277 		if (mddev->raid_disks < raid_disks &&
7278 		    rdev->data_offset < rdev->new_data_offset)
7279 			return -EINVAL;
7280 		if (mddev->raid_disks > raid_disks &&
7281 		    rdev->data_offset > rdev->new_data_offset)
7282 			return -EINVAL;
7283 	}
7284 
7285 	mddev->delta_disks = raid_disks - mddev->raid_disks;
7286 	if (mddev->delta_disks < 0)
7287 		mddev->reshape_backwards = 1;
7288 	else if (mddev->delta_disks > 0)
7289 		mddev->reshape_backwards = 0;
7290 
7291 	rv = mddev->pers->check_reshape(mddev);
7292 	if (rv < 0) {
7293 		mddev->delta_disks = 0;
7294 		mddev->reshape_backwards = 0;
7295 	}
7296 	return rv;
7297 }
7298 
7299 /*
7300  * update_array_info is used to change the configuration of an
7301  * on-line array.
7302  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7303  * fields in the info are checked against the array.
7304  * Any differences that cannot be handled will cause an error.
7305  * Normally, only one change can be managed at a time.
7306  */
7307 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7308 {
7309 	int rv = 0;
7310 	int cnt = 0;
7311 	int state = 0;
7312 
7313 	/* calculate expected state,ignoring low bits */
7314 	if (mddev->bitmap && mddev->bitmap_info.offset)
7315 		state |= (1 << MD_SB_BITMAP_PRESENT);
7316 
7317 	if (mddev->major_version != info->major_version ||
7318 	    mddev->minor_version != info->minor_version ||
7319 /*	    mddev->patch_version != info->patch_version || */
7320 	    mddev->ctime         != info->ctime         ||
7321 	    mddev->level         != info->level         ||
7322 /*	    mddev->layout        != info->layout        || */
7323 	    mddev->persistent	 != !info->not_persistent ||
7324 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
7325 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7326 	    ((state^info->state) & 0xfffffe00)
7327 		)
7328 		return -EINVAL;
7329 	/* Check there is only one change */
7330 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7331 		cnt++;
7332 	if (mddev->raid_disks != info->raid_disks)
7333 		cnt++;
7334 	if (mddev->layout != info->layout)
7335 		cnt++;
7336 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7337 		cnt++;
7338 	if (cnt == 0)
7339 		return 0;
7340 	if (cnt > 1)
7341 		return -EINVAL;
7342 
7343 	if (mddev->layout != info->layout) {
7344 		/* Change layout
7345 		 * we don't need to do anything at the md level, the
7346 		 * personality will take care of it all.
7347 		 */
7348 		if (mddev->pers->check_reshape == NULL)
7349 			return -EINVAL;
7350 		else {
7351 			mddev->new_layout = info->layout;
7352 			rv = mddev->pers->check_reshape(mddev);
7353 			if (rv)
7354 				mddev->new_layout = mddev->layout;
7355 			return rv;
7356 		}
7357 	}
7358 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7359 		rv = update_size(mddev, (sector_t)info->size * 2);
7360 
7361 	if (mddev->raid_disks    != info->raid_disks)
7362 		rv = update_raid_disks(mddev, info->raid_disks);
7363 
7364 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7365 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7366 			rv = -EINVAL;
7367 			goto err;
7368 		}
7369 		if (mddev->recovery || mddev->sync_thread) {
7370 			rv = -EBUSY;
7371 			goto err;
7372 		}
7373 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7374 			struct bitmap *bitmap;
7375 			/* add the bitmap */
7376 			if (mddev->bitmap) {
7377 				rv = -EEXIST;
7378 				goto err;
7379 			}
7380 			if (mddev->bitmap_info.default_offset == 0) {
7381 				rv = -EINVAL;
7382 				goto err;
7383 			}
7384 			mddev->bitmap_info.offset =
7385 				mddev->bitmap_info.default_offset;
7386 			mddev->bitmap_info.space =
7387 				mddev->bitmap_info.default_space;
7388 			bitmap = md_bitmap_create(mddev, -1);
7389 			mddev_suspend(mddev);
7390 			if (!IS_ERR(bitmap)) {
7391 				mddev->bitmap = bitmap;
7392 				rv = md_bitmap_load(mddev);
7393 			} else
7394 				rv = PTR_ERR(bitmap);
7395 			if (rv)
7396 				md_bitmap_destroy(mddev);
7397 			mddev_resume(mddev);
7398 		} else {
7399 			/* remove the bitmap */
7400 			if (!mddev->bitmap) {
7401 				rv = -ENOENT;
7402 				goto err;
7403 			}
7404 			if (mddev->bitmap->storage.file) {
7405 				rv = -EINVAL;
7406 				goto err;
7407 			}
7408 			if (mddev->bitmap_info.nodes) {
7409 				/* hold PW on all the bitmap lock */
7410 				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7411 					pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7412 					rv = -EPERM;
7413 					md_cluster_ops->unlock_all_bitmaps(mddev);
7414 					goto err;
7415 				}
7416 
7417 				mddev->bitmap_info.nodes = 0;
7418 				md_cluster_ops->leave(mddev);
7419 				module_put(md_cluster_mod);
7420 				mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7421 			}
7422 			mddev_suspend(mddev);
7423 			md_bitmap_destroy(mddev);
7424 			mddev_resume(mddev);
7425 			mddev->bitmap_info.offset = 0;
7426 		}
7427 	}
7428 	md_update_sb(mddev, 1);
7429 	return rv;
7430 err:
7431 	return rv;
7432 }
7433 
7434 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7435 {
7436 	struct md_rdev *rdev;
7437 	int err = 0;
7438 
7439 	if (mddev->pers == NULL)
7440 		return -ENODEV;
7441 
7442 	rcu_read_lock();
7443 	rdev = md_find_rdev_rcu(mddev, dev);
7444 	if (!rdev)
7445 		err =  -ENODEV;
7446 	else {
7447 		md_error(mddev, rdev);
7448 		if (test_bit(MD_BROKEN, &mddev->flags))
7449 			err = -EBUSY;
7450 	}
7451 	rcu_read_unlock();
7452 	return err;
7453 }
7454 
7455 /*
7456  * We have a problem here : there is no easy way to give a CHS
7457  * virtual geometry. We currently pretend that we have a 2 heads
7458  * 4 sectors (with a BIG number of cylinders...). This drives
7459  * dosfs just mad... ;-)
7460  */
7461 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7462 {
7463 	struct mddev *mddev = bdev->bd_disk->private_data;
7464 
7465 	geo->heads = 2;
7466 	geo->sectors = 4;
7467 	geo->cylinders = mddev->array_sectors / 8;
7468 	return 0;
7469 }
7470 
7471 static inline bool md_ioctl_valid(unsigned int cmd)
7472 {
7473 	switch (cmd) {
7474 	case ADD_NEW_DISK:
7475 	case GET_ARRAY_INFO:
7476 	case GET_BITMAP_FILE:
7477 	case GET_DISK_INFO:
7478 	case HOT_ADD_DISK:
7479 	case HOT_REMOVE_DISK:
7480 	case RAID_VERSION:
7481 	case RESTART_ARRAY_RW:
7482 	case RUN_ARRAY:
7483 	case SET_ARRAY_INFO:
7484 	case SET_BITMAP_FILE:
7485 	case SET_DISK_FAULTY:
7486 	case STOP_ARRAY:
7487 	case STOP_ARRAY_RO:
7488 	case CLUSTERED_DISK_NACK:
7489 		return true;
7490 	default:
7491 		return false;
7492 	}
7493 }
7494 
7495 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7496 			unsigned int cmd, unsigned long arg)
7497 {
7498 	int err = 0;
7499 	void __user *argp = (void __user *)arg;
7500 	struct mddev *mddev = NULL;
7501 	bool did_set_md_closing = false;
7502 
7503 	if (!md_ioctl_valid(cmd))
7504 		return -ENOTTY;
7505 
7506 	switch (cmd) {
7507 	case RAID_VERSION:
7508 	case GET_ARRAY_INFO:
7509 	case GET_DISK_INFO:
7510 		break;
7511 	default:
7512 		if (!capable(CAP_SYS_ADMIN))
7513 			return -EACCES;
7514 	}
7515 
7516 	/*
7517 	 * Commands dealing with the RAID driver but not any
7518 	 * particular array:
7519 	 */
7520 	switch (cmd) {
7521 	case RAID_VERSION:
7522 		err = get_version(argp);
7523 		goto out;
7524 	default:;
7525 	}
7526 
7527 	/*
7528 	 * Commands creating/starting a new array:
7529 	 */
7530 
7531 	mddev = bdev->bd_disk->private_data;
7532 
7533 	if (!mddev) {
7534 		BUG();
7535 		goto out;
7536 	}
7537 
7538 	/* Some actions do not requires the mutex */
7539 	switch (cmd) {
7540 	case GET_ARRAY_INFO:
7541 		if (!mddev->raid_disks && !mddev->external)
7542 			err = -ENODEV;
7543 		else
7544 			err = get_array_info(mddev, argp);
7545 		goto out;
7546 
7547 	case GET_DISK_INFO:
7548 		if (!mddev->raid_disks && !mddev->external)
7549 			err = -ENODEV;
7550 		else
7551 			err = get_disk_info(mddev, argp);
7552 		goto out;
7553 
7554 	case SET_DISK_FAULTY:
7555 		err = set_disk_faulty(mddev, new_decode_dev(arg));
7556 		goto out;
7557 
7558 	case GET_BITMAP_FILE:
7559 		err = get_bitmap_file(mddev, argp);
7560 		goto out;
7561 
7562 	}
7563 
7564 	if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7565 		flush_rdev_wq(mddev);
7566 
7567 	if (cmd == HOT_REMOVE_DISK)
7568 		/* need to ensure recovery thread has run */
7569 		wait_event_interruptible_timeout(mddev->sb_wait,
7570 						 !test_bit(MD_RECOVERY_NEEDED,
7571 							   &mddev->recovery),
7572 						 msecs_to_jiffies(5000));
7573 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7574 		/* Need to flush page cache, and ensure no-one else opens
7575 		 * and writes
7576 		 */
7577 		mutex_lock(&mddev->open_mutex);
7578 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7579 			mutex_unlock(&mddev->open_mutex);
7580 			err = -EBUSY;
7581 			goto out;
7582 		}
7583 		if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7584 			mutex_unlock(&mddev->open_mutex);
7585 			err = -EBUSY;
7586 			goto out;
7587 		}
7588 		did_set_md_closing = true;
7589 		mutex_unlock(&mddev->open_mutex);
7590 		sync_blockdev(bdev);
7591 	}
7592 	err = mddev_lock(mddev);
7593 	if (err) {
7594 		pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7595 			 err, cmd);
7596 		goto out;
7597 	}
7598 
7599 	if (cmd == SET_ARRAY_INFO) {
7600 		mdu_array_info_t info;
7601 		if (!arg)
7602 			memset(&info, 0, sizeof(info));
7603 		else if (copy_from_user(&info, argp, sizeof(info))) {
7604 			err = -EFAULT;
7605 			goto unlock;
7606 		}
7607 		if (mddev->pers) {
7608 			err = update_array_info(mddev, &info);
7609 			if (err) {
7610 				pr_warn("md: couldn't update array info. %d\n", err);
7611 				goto unlock;
7612 			}
7613 			goto unlock;
7614 		}
7615 		if (!list_empty(&mddev->disks)) {
7616 			pr_warn("md: array %s already has disks!\n", mdname(mddev));
7617 			err = -EBUSY;
7618 			goto unlock;
7619 		}
7620 		if (mddev->raid_disks) {
7621 			pr_warn("md: array %s already initialised!\n", mdname(mddev));
7622 			err = -EBUSY;
7623 			goto unlock;
7624 		}
7625 		err = md_set_array_info(mddev, &info);
7626 		if (err) {
7627 			pr_warn("md: couldn't set array info. %d\n", err);
7628 			goto unlock;
7629 		}
7630 		goto unlock;
7631 	}
7632 
7633 	/*
7634 	 * Commands querying/configuring an existing array:
7635 	 */
7636 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7637 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7638 	if ((!mddev->raid_disks && !mddev->external)
7639 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7640 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7641 	    && cmd != GET_BITMAP_FILE) {
7642 		err = -ENODEV;
7643 		goto unlock;
7644 	}
7645 
7646 	/*
7647 	 * Commands even a read-only array can execute:
7648 	 */
7649 	switch (cmd) {
7650 	case RESTART_ARRAY_RW:
7651 		err = restart_array(mddev);
7652 		goto unlock;
7653 
7654 	case STOP_ARRAY:
7655 		err = do_md_stop(mddev, 0, bdev);
7656 		goto unlock;
7657 
7658 	case STOP_ARRAY_RO:
7659 		err = md_set_readonly(mddev, bdev);
7660 		goto unlock;
7661 
7662 	case HOT_REMOVE_DISK:
7663 		err = hot_remove_disk(mddev, new_decode_dev(arg));
7664 		goto unlock;
7665 
7666 	case ADD_NEW_DISK:
7667 		/* We can support ADD_NEW_DISK on read-only arrays
7668 		 * only if we are re-adding a preexisting device.
7669 		 * So require mddev->pers and MD_DISK_SYNC.
7670 		 */
7671 		if (mddev->pers) {
7672 			mdu_disk_info_t info;
7673 			if (copy_from_user(&info, argp, sizeof(info)))
7674 				err = -EFAULT;
7675 			else if (!(info.state & (1<<MD_DISK_SYNC)))
7676 				/* Need to clear read-only for this */
7677 				break;
7678 			else
7679 				err = md_add_new_disk(mddev, &info);
7680 			goto unlock;
7681 		}
7682 		break;
7683 	}
7684 
7685 	/*
7686 	 * The remaining ioctls are changing the state of the
7687 	 * superblock, so we do not allow them on read-only arrays.
7688 	 */
7689 	if (mddev->ro && mddev->pers) {
7690 		if (mddev->ro == 2) {
7691 			mddev->ro = 0;
7692 			sysfs_notify_dirent_safe(mddev->sysfs_state);
7693 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7694 			/* mddev_unlock will wake thread */
7695 			/* If a device failed while we were read-only, we
7696 			 * need to make sure the metadata is updated now.
7697 			 */
7698 			if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7699 				mddev_unlock(mddev);
7700 				wait_event(mddev->sb_wait,
7701 					   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7702 					   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7703 				mddev_lock_nointr(mddev);
7704 			}
7705 		} else {
7706 			err = -EROFS;
7707 			goto unlock;
7708 		}
7709 	}
7710 
7711 	switch (cmd) {
7712 	case ADD_NEW_DISK:
7713 	{
7714 		mdu_disk_info_t info;
7715 		if (copy_from_user(&info, argp, sizeof(info)))
7716 			err = -EFAULT;
7717 		else
7718 			err = md_add_new_disk(mddev, &info);
7719 		goto unlock;
7720 	}
7721 
7722 	case CLUSTERED_DISK_NACK:
7723 		if (mddev_is_clustered(mddev))
7724 			md_cluster_ops->new_disk_ack(mddev, false);
7725 		else
7726 			err = -EINVAL;
7727 		goto unlock;
7728 
7729 	case HOT_ADD_DISK:
7730 		err = hot_add_disk(mddev, new_decode_dev(arg));
7731 		goto unlock;
7732 
7733 	case RUN_ARRAY:
7734 		err = do_md_run(mddev);
7735 		goto unlock;
7736 
7737 	case SET_BITMAP_FILE:
7738 		err = set_bitmap_file(mddev, (int)arg);
7739 		goto unlock;
7740 
7741 	default:
7742 		err = -EINVAL;
7743 		goto unlock;
7744 	}
7745 
7746 unlock:
7747 	if (mddev->hold_active == UNTIL_IOCTL &&
7748 	    err != -EINVAL)
7749 		mddev->hold_active = 0;
7750 	mddev_unlock(mddev);
7751 out:
7752 	if(did_set_md_closing)
7753 		clear_bit(MD_CLOSING, &mddev->flags);
7754 	return err;
7755 }
7756 #ifdef CONFIG_COMPAT
7757 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7758 		    unsigned int cmd, unsigned long arg)
7759 {
7760 	switch (cmd) {
7761 	case HOT_REMOVE_DISK:
7762 	case HOT_ADD_DISK:
7763 	case SET_DISK_FAULTY:
7764 	case SET_BITMAP_FILE:
7765 		/* These take in integer arg, do not convert */
7766 		break;
7767 	default:
7768 		arg = (unsigned long)compat_ptr(arg);
7769 		break;
7770 	}
7771 
7772 	return md_ioctl(bdev, mode, cmd, arg);
7773 }
7774 #endif /* CONFIG_COMPAT */
7775 
7776 static int md_set_read_only(struct block_device *bdev, bool ro)
7777 {
7778 	struct mddev *mddev = bdev->bd_disk->private_data;
7779 	int err;
7780 
7781 	err = mddev_lock(mddev);
7782 	if (err)
7783 		return err;
7784 
7785 	if (!mddev->raid_disks && !mddev->external) {
7786 		err = -ENODEV;
7787 		goto out_unlock;
7788 	}
7789 
7790 	/*
7791 	 * Transitioning to read-auto need only happen for arrays that call
7792 	 * md_write_start and which are not ready for writes yet.
7793 	 */
7794 	if (!ro && mddev->ro == 1 && mddev->pers) {
7795 		err = restart_array(mddev);
7796 		if (err)
7797 			goto out_unlock;
7798 		mddev->ro = 2;
7799 	}
7800 
7801 out_unlock:
7802 	mddev_unlock(mddev);
7803 	return err;
7804 }
7805 
7806 static int md_open(struct block_device *bdev, fmode_t mode)
7807 {
7808 	/*
7809 	 * Succeed if we can lock the mddev, which confirms that
7810 	 * it isn't being stopped right now.
7811 	 */
7812 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7813 	int err;
7814 
7815 	if (!mddev)
7816 		return -ENODEV;
7817 
7818 	if (mddev->gendisk != bdev->bd_disk) {
7819 		/* we are racing with mddev_put which is discarding this
7820 		 * bd_disk.
7821 		 */
7822 		mddev_put(mddev);
7823 		/* Wait until bdev->bd_disk is definitely gone */
7824 		if (work_pending(&mddev->del_work))
7825 			flush_workqueue(md_misc_wq);
7826 		return -EBUSY;
7827 	}
7828 	BUG_ON(mddev != bdev->bd_disk->private_data);
7829 
7830 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7831 		goto out;
7832 
7833 	if (test_bit(MD_CLOSING, &mddev->flags)) {
7834 		mutex_unlock(&mddev->open_mutex);
7835 		err = -ENODEV;
7836 		goto out;
7837 	}
7838 
7839 	err = 0;
7840 	atomic_inc(&mddev->openers);
7841 	mutex_unlock(&mddev->open_mutex);
7842 
7843 	bdev_check_media_change(bdev);
7844  out:
7845 	if (err)
7846 		mddev_put(mddev);
7847 	return err;
7848 }
7849 
7850 static void md_release(struct gendisk *disk, fmode_t mode)
7851 {
7852 	struct mddev *mddev = disk->private_data;
7853 
7854 	BUG_ON(!mddev);
7855 	atomic_dec(&mddev->openers);
7856 	mddev_put(mddev);
7857 }
7858 
7859 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7860 {
7861 	struct mddev *mddev = disk->private_data;
7862 	unsigned int ret = 0;
7863 
7864 	if (mddev->changed)
7865 		ret = DISK_EVENT_MEDIA_CHANGE;
7866 	mddev->changed = 0;
7867 	return ret;
7868 }
7869 
7870 const struct block_device_operations md_fops =
7871 {
7872 	.owner		= THIS_MODULE,
7873 	.submit_bio	= md_submit_bio,
7874 	.open		= md_open,
7875 	.release	= md_release,
7876 	.ioctl		= md_ioctl,
7877 #ifdef CONFIG_COMPAT
7878 	.compat_ioctl	= md_compat_ioctl,
7879 #endif
7880 	.getgeo		= md_getgeo,
7881 	.check_events	= md_check_events,
7882 	.set_read_only	= md_set_read_only,
7883 };
7884 
7885 static int md_thread(void *arg)
7886 {
7887 	struct md_thread *thread = arg;
7888 
7889 	/*
7890 	 * md_thread is a 'system-thread', it's priority should be very
7891 	 * high. We avoid resource deadlocks individually in each
7892 	 * raid personality. (RAID5 does preallocation) We also use RR and
7893 	 * the very same RT priority as kswapd, thus we will never get
7894 	 * into a priority inversion deadlock.
7895 	 *
7896 	 * we definitely have to have equal or higher priority than
7897 	 * bdflush, otherwise bdflush will deadlock if there are too
7898 	 * many dirty RAID5 blocks.
7899 	 */
7900 
7901 	allow_signal(SIGKILL);
7902 	while (!kthread_should_stop()) {
7903 
7904 		/* We need to wait INTERRUPTIBLE so that
7905 		 * we don't add to the load-average.
7906 		 * That means we need to be sure no signals are
7907 		 * pending
7908 		 */
7909 		if (signal_pending(current))
7910 			flush_signals(current);
7911 
7912 		wait_event_interruptible_timeout
7913 			(thread->wqueue,
7914 			 test_bit(THREAD_WAKEUP, &thread->flags)
7915 			 || kthread_should_stop() || kthread_should_park(),
7916 			 thread->timeout);
7917 
7918 		clear_bit(THREAD_WAKEUP, &thread->flags);
7919 		if (kthread_should_park())
7920 			kthread_parkme();
7921 		if (!kthread_should_stop())
7922 			thread->run(thread);
7923 	}
7924 
7925 	return 0;
7926 }
7927 
7928 void md_wakeup_thread(struct md_thread *thread)
7929 {
7930 	if (thread) {
7931 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7932 		set_bit(THREAD_WAKEUP, &thread->flags);
7933 		wake_up(&thread->wqueue);
7934 	}
7935 }
7936 EXPORT_SYMBOL(md_wakeup_thread);
7937 
7938 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7939 		struct mddev *mddev, const char *name)
7940 {
7941 	struct md_thread *thread;
7942 
7943 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7944 	if (!thread)
7945 		return NULL;
7946 
7947 	init_waitqueue_head(&thread->wqueue);
7948 
7949 	thread->run = run;
7950 	thread->mddev = mddev;
7951 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7952 	thread->tsk = kthread_run(md_thread, thread,
7953 				  "%s_%s",
7954 				  mdname(thread->mddev),
7955 				  name);
7956 	if (IS_ERR(thread->tsk)) {
7957 		kfree(thread);
7958 		return NULL;
7959 	}
7960 	return thread;
7961 }
7962 EXPORT_SYMBOL(md_register_thread);
7963 
7964 void md_unregister_thread(struct md_thread **threadp)
7965 {
7966 	struct md_thread *thread = *threadp;
7967 	if (!thread)
7968 		return;
7969 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7970 	/* Locking ensures that mddev_unlock does not wake_up a
7971 	 * non-existent thread
7972 	 */
7973 	spin_lock(&pers_lock);
7974 	*threadp = NULL;
7975 	spin_unlock(&pers_lock);
7976 
7977 	kthread_stop(thread->tsk);
7978 	kfree(thread);
7979 }
7980 EXPORT_SYMBOL(md_unregister_thread);
7981 
7982 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7983 {
7984 	if (!rdev || test_bit(Faulty, &rdev->flags))
7985 		return;
7986 
7987 	if (!mddev->pers || !mddev->pers->error_handler)
7988 		return;
7989 	mddev->pers->error_handler(mddev, rdev);
7990 
7991 	if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
7992 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7993 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7994 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7995 	if (!test_bit(MD_BROKEN, &mddev->flags)) {
7996 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7997 		md_wakeup_thread(mddev->thread);
7998 	}
7999 	if (mddev->event_work.func)
8000 		queue_work(md_misc_wq, &mddev->event_work);
8001 	md_new_event();
8002 }
8003 EXPORT_SYMBOL(md_error);
8004 
8005 /* seq_file implementation /proc/mdstat */
8006 
8007 static void status_unused(struct seq_file *seq)
8008 {
8009 	int i = 0;
8010 	struct md_rdev *rdev;
8011 
8012 	seq_printf(seq, "unused devices: ");
8013 
8014 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8015 		char b[BDEVNAME_SIZE];
8016 		i++;
8017 		seq_printf(seq, "%s ",
8018 			      bdevname(rdev->bdev,b));
8019 	}
8020 	if (!i)
8021 		seq_printf(seq, "<none>");
8022 
8023 	seq_printf(seq, "\n");
8024 }
8025 
8026 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8027 {
8028 	sector_t max_sectors, resync, res;
8029 	unsigned long dt, db = 0;
8030 	sector_t rt, curr_mark_cnt, resync_mark_cnt;
8031 	int scale, recovery_active;
8032 	unsigned int per_milli;
8033 
8034 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8035 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8036 		max_sectors = mddev->resync_max_sectors;
8037 	else
8038 		max_sectors = mddev->dev_sectors;
8039 
8040 	resync = mddev->curr_resync;
8041 	if (resync <= 3) {
8042 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8043 			/* Still cleaning up */
8044 			resync = max_sectors;
8045 	} else if (resync > max_sectors)
8046 		resync = max_sectors;
8047 	else
8048 		resync -= atomic_read(&mddev->recovery_active);
8049 
8050 	if (resync == 0) {
8051 		if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8052 			struct md_rdev *rdev;
8053 
8054 			rdev_for_each(rdev, mddev)
8055 				if (rdev->raid_disk >= 0 &&
8056 				    !test_bit(Faulty, &rdev->flags) &&
8057 				    rdev->recovery_offset != MaxSector &&
8058 				    rdev->recovery_offset) {
8059 					seq_printf(seq, "\trecover=REMOTE");
8060 					return 1;
8061 				}
8062 			if (mddev->reshape_position != MaxSector)
8063 				seq_printf(seq, "\treshape=REMOTE");
8064 			else
8065 				seq_printf(seq, "\tresync=REMOTE");
8066 			return 1;
8067 		}
8068 		if (mddev->recovery_cp < MaxSector) {
8069 			seq_printf(seq, "\tresync=PENDING");
8070 			return 1;
8071 		}
8072 		return 0;
8073 	}
8074 	if (resync < 3) {
8075 		seq_printf(seq, "\tresync=DELAYED");
8076 		return 1;
8077 	}
8078 
8079 	WARN_ON(max_sectors == 0);
8080 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
8081 	 * in a sector_t, and (max_sectors>>scale) will fit in a
8082 	 * u32, as those are the requirements for sector_div.
8083 	 * Thus 'scale' must be at least 10
8084 	 */
8085 	scale = 10;
8086 	if (sizeof(sector_t) > sizeof(unsigned long)) {
8087 		while ( max_sectors/2 > (1ULL<<(scale+32)))
8088 			scale++;
8089 	}
8090 	res = (resync>>scale)*1000;
8091 	sector_div(res, (u32)((max_sectors>>scale)+1));
8092 
8093 	per_milli = res;
8094 	{
8095 		int i, x = per_milli/50, y = 20-x;
8096 		seq_printf(seq, "[");
8097 		for (i = 0; i < x; i++)
8098 			seq_printf(seq, "=");
8099 		seq_printf(seq, ">");
8100 		for (i = 0; i < y; i++)
8101 			seq_printf(seq, ".");
8102 		seq_printf(seq, "] ");
8103 	}
8104 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8105 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8106 		    "reshape" :
8107 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8108 		     "check" :
8109 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8110 		      "resync" : "recovery"))),
8111 		   per_milli/10, per_milli % 10,
8112 		   (unsigned long long) resync/2,
8113 		   (unsigned long long) max_sectors/2);
8114 
8115 	/*
8116 	 * dt: time from mark until now
8117 	 * db: blocks written from mark until now
8118 	 * rt: remaining time
8119 	 *
8120 	 * rt is a sector_t, which is always 64bit now. We are keeping
8121 	 * the original algorithm, but it is not really necessary.
8122 	 *
8123 	 * Original algorithm:
8124 	 *   So we divide before multiply in case it is 32bit and close
8125 	 *   to the limit.
8126 	 *   We scale the divisor (db) by 32 to avoid losing precision
8127 	 *   near the end of resync when the number of remaining sectors
8128 	 *   is close to 'db'.
8129 	 *   We then divide rt by 32 after multiplying by db to compensate.
8130 	 *   The '+1' avoids division by zero if db is very small.
8131 	 */
8132 	dt = ((jiffies - mddev->resync_mark) / HZ);
8133 	if (!dt) dt++;
8134 
8135 	curr_mark_cnt = mddev->curr_mark_cnt;
8136 	recovery_active = atomic_read(&mddev->recovery_active);
8137 	resync_mark_cnt = mddev->resync_mark_cnt;
8138 
8139 	if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8140 		db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8141 
8142 	rt = max_sectors - resync;    /* number of remaining sectors */
8143 	rt = div64_u64(rt, db/32+1);
8144 	rt *= dt;
8145 	rt >>= 5;
8146 
8147 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8148 		   ((unsigned long)rt % 60)/6);
8149 
8150 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8151 	return 1;
8152 }
8153 
8154 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8155 {
8156 	struct list_head *tmp;
8157 	loff_t l = *pos;
8158 	struct mddev *mddev;
8159 
8160 	if (l == 0x10000) {
8161 		++*pos;
8162 		return (void *)2;
8163 	}
8164 	if (l > 0x10000)
8165 		return NULL;
8166 	if (!l--)
8167 		/* header */
8168 		return (void*)1;
8169 
8170 	spin_lock(&all_mddevs_lock);
8171 	list_for_each(tmp,&all_mddevs)
8172 		if (!l--) {
8173 			mddev = list_entry(tmp, struct mddev, all_mddevs);
8174 			mddev_get(mddev);
8175 			spin_unlock(&all_mddevs_lock);
8176 			return mddev;
8177 		}
8178 	spin_unlock(&all_mddevs_lock);
8179 	if (!l--)
8180 		return (void*)2;/* tail */
8181 	return NULL;
8182 }
8183 
8184 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8185 {
8186 	struct list_head *tmp;
8187 	struct mddev *next_mddev, *mddev = v;
8188 
8189 	++*pos;
8190 	if (v == (void*)2)
8191 		return NULL;
8192 
8193 	spin_lock(&all_mddevs_lock);
8194 	if (v == (void*)1)
8195 		tmp = all_mddevs.next;
8196 	else
8197 		tmp = mddev->all_mddevs.next;
8198 	if (tmp != &all_mddevs)
8199 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8200 	else {
8201 		next_mddev = (void*)2;
8202 		*pos = 0x10000;
8203 	}
8204 	spin_unlock(&all_mddevs_lock);
8205 
8206 	if (v != (void*)1)
8207 		mddev_put(mddev);
8208 	return next_mddev;
8209 
8210 }
8211 
8212 static void md_seq_stop(struct seq_file *seq, void *v)
8213 {
8214 	struct mddev *mddev = v;
8215 
8216 	if (mddev && v != (void*)1 && v != (void*)2)
8217 		mddev_put(mddev);
8218 }
8219 
8220 static int md_seq_show(struct seq_file *seq, void *v)
8221 {
8222 	struct mddev *mddev = v;
8223 	sector_t sectors;
8224 	struct md_rdev *rdev;
8225 
8226 	if (v == (void*)1) {
8227 		struct md_personality *pers;
8228 		seq_printf(seq, "Personalities : ");
8229 		spin_lock(&pers_lock);
8230 		list_for_each_entry(pers, &pers_list, list)
8231 			seq_printf(seq, "[%s] ", pers->name);
8232 
8233 		spin_unlock(&pers_lock);
8234 		seq_printf(seq, "\n");
8235 		seq->poll_event = atomic_read(&md_event_count);
8236 		return 0;
8237 	}
8238 	if (v == (void*)2) {
8239 		status_unused(seq);
8240 		return 0;
8241 	}
8242 
8243 	spin_lock(&mddev->lock);
8244 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8245 		seq_printf(seq, "%s : %sactive", mdname(mddev),
8246 						mddev->pers ? "" : "in");
8247 		if (mddev->pers) {
8248 			if (mddev->ro==1)
8249 				seq_printf(seq, " (read-only)");
8250 			if (mddev->ro==2)
8251 				seq_printf(seq, " (auto-read-only)");
8252 			seq_printf(seq, " %s", mddev->pers->name);
8253 		}
8254 
8255 		sectors = 0;
8256 		rcu_read_lock();
8257 		rdev_for_each_rcu(rdev, mddev) {
8258 			char b[BDEVNAME_SIZE];
8259 			seq_printf(seq, " %s[%d]",
8260 				bdevname(rdev->bdev,b), rdev->desc_nr);
8261 			if (test_bit(WriteMostly, &rdev->flags))
8262 				seq_printf(seq, "(W)");
8263 			if (test_bit(Journal, &rdev->flags))
8264 				seq_printf(seq, "(J)");
8265 			if (test_bit(Faulty, &rdev->flags)) {
8266 				seq_printf(seq, "(F)");
8267 				continue;
8268 			}
8269 			if (rdev->raid_disk < 0)
8270 				seq_printf(seq, "(S)"); /* spare */
8271 			if (test_bit(Replacement, &rdev->flags))
8272 				seq_printf(seq, "(R)");
8273 			sectors += rdev->sectors;
8274 		}
8275 		rcu_read_unlock();
8276 
8277 		if (!list_empty(&mddev->disks)) {
8278 			if (mddev->pers)
8279 				seq_printf(seq, "\n      %llu blocks",
8280 					   (unsigned long long)
8281 					   mddev->array_sectors / 2);
8282 			else
8283 				seq_printf(seq, "\n      %llu blocks",
8284 					   (unsigned long long)sectors / 2);
8285 		}
8286 		if (mddev->persistent) {
8287 			if (mddev->major_version != 0 ||
8288 			    mddev->minor_version != 90) {
8289 				seq_printf(seq," super %d.%d",
8290 					   mddev->major_version,
8291 					   mddev->minor_version);
8292 			}
8293 		} else if (mddev->external)
8294 			seq_printf(seq, " super external:%s",
8295 				   mddev->metadata_type);
8296 		else
8297 			seq_printf(seq, " super non-persistent");
8298 
8299 		if (mddev->pers) {
8300 			mddev->pers->status(seq, mddev);
8301 			seq_printf(seq, "\n      ");
8302 			if (mddev->pers->sync_request) {
8303 				if (status_resync(seq, mddev))
8304 					seq_printf(seq, "\n      ");
8305 			}
8306 		} else
8307 			seq_printf(seq, "\n       ");
8308 
8309 		md_bitmap_status(seq, mddev->bitmap);
8310 
8311 		seq_printf(seq, "\n");
8312 	}
8313 	spin_unlock(&mddev->lock);
8314 
8315 	return 0;
8316 }
8317 
8318 static const struct seq_operations md_seq_ops = {
8319 	.start  = md_seq_start,
8320 	.next   = md_seq_next,
8321 	.stop   = md_seq_stop,
8322 	.show   = md_seq_show,
8323 };
8324 
8325 static int md_seq_open(struct inode *inode, struct file *file)
8326 {
8327 	struct seq_file *seq;
8328 	int error;
8329 
8330 	error = seq_open(file, &md_seq_ops);
8331 	if (error)
8332 		return error;
8333 
8334 	seq = file->private_data;
8335 	seq->poll_event = atomic_read(&md_event_count);
8336 	return error;
8337 }
8338 
8339 static int md_unloading;
8340 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8341 {
8342 	struct seq_file *seq = filp->private_data;
8343 	__poll_t mask;
8344 
8345 	if (md_unloading)
8346 		return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8347 	poll_wait(filp, &md_event_waiters, wait);
8348 
8349 	/* always allow read */
8350 	mask = EPOLLIN | EPOLLRDNORM;
8351 
8352 	if (seq->poll_event != atomic_read(&md_event_count))
8353 		mask |= EPOLLERR | EPOLLPRI;
8354 	return mask;
8355 }
8356 
8357 static const struct proc_ops mdstat_proc_ops = {
8358 	.proc_open	= md_seq_open,
8359 	.proc_read	= seq_read,
8360 	.proc_lseek	= seq_lseek,
8361 	.proc_release	= seq_release,
8362 	.proc_poll	= mdstat_poll,
8363 };
8364 
8365 int register_md_personality(struct md_personality *p)
8366 {
8367 	pr_debug("md: %s personality registered for level %d\n",
8368 		 p->name, p->level);
8369 	spin_lock(&pers_lock);
8370 	list_add_tail(&p->list, &pers_list);
8371 	spin_unlock(&pers_lock);
8372 	return 0;
8373 }
8374 EXPORT_SYMBOL(register_md_personality);
8375 
8376 int unregister_md_personality(struct md_personality *p)
8377 {
8378 	pr_debug("md: %s personality unregistered\n", p->name);
8379 	spin_lock(&pers_lock);
8380 	list_del_init(&p->list);
8381 	spin_unlock(&pers_lock);
8382 	return 0;
8383 }
8384 EXPORT_SYMBOL(unregister_md_personality);
8385 
8386 int register_md_cluster_operations(struct md_cluster_operations *ops,
8387 				   struct module *module)
8388 {
8389 	int ret = 0;
8390 	spin_lock(&pers_lock);
8391 	if (md_cluster_ops != NULL)
8392 		ret = -EALREADY;
8393 	else {
8394 		md_cluster_ops = ops;
8395 		md_cluster_mod = module;
8396 	}
8397 	spin_unlock(&pers_lock);
8398 	return ret;
8399 }
8400 EXPORT_SYMBOL(register_md_cluster_operations);
8401 
8402 int unregister_md_cluster_operations(void)
8403 {
8404 	spin_lock(&pers_lock);
8405 	md_cluster_ops = NULL;
8406 	spin_unlock(&pers_lock);
8407 	return 0;
8408 }
8409 EXPORT_SYMBOL(unregister_md_cluster_operations);
8410 
8411 int md_setup_cluster(struct mddev *mddev, int nodes)
8412 {
8413 	int ret;
8414 	if (!md_cluster_ops)
8415 		request_module("md-cluster");
8416 	spin_lock(&pers_lock);
8417 	/* ensure module won't be unloaded */
8418 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8419 		pr_warn("can't find md-cluster module or get its reference.\n");
8420 		spin_unlock(&pers_lock);
8421 		return -ENOENT;
8422 	}
8423 	spin_unlock(&pers_lock);
8424 
8425 	ret = md_cluster_ops->join(mddev, nodes);
8426 	if (!ret)
8427 		mddev->safemode_delay = 0;
8428 	return ret;
8429 }
8430 
8431 void md_cluster_stop(struct mddev *mddev)
8432 {
8433 	if (!md_cluster_ops)
8434 		return;
8435 	md_cluster_ops->leave(mddev);
8436 	module_put(md_cluster_mod);
8437 }
8438 
8439 static int is_mddev_idle(struct mddev *mddev, int init)
8440 {
8441 	struct md_rdev *rdev;
8442 	int idle;
8443 	int curr_events;
8444 
8445 	idle = 1;
8446 	rcu_read_lock();
8447 	rdev_for_each_rcu(rdev, mddev) {
8448 		struct gendisk *disk = rdev->bdev->bd_disk;
8449 		curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8450 			      atomic_read(&disk->sync_io);
8451 		/* sync IO will cause sync_io to increase before the disk_stats
8452 		 * as sync_io is counted when a request starts, and
8453 		 * disk_stats is counted when it completes.
8454 		 * So resync activity will cause curr_events to be smaller than
8455 		 * when there was no such activity.
8456 		 * non-sync IO will cause disk_stat to increase without
8457 		 * increasing sync_io so curr_events will (eventually)
8458 		 * be larger than it was before.  Once it becomes
8459 		 * substantially larger, the test below will cause
8460 		 * the array to appear non-idle, and resync will slow
8461 		 * down.
8462 		 * If there is a lot of outstanding resync activity when
8463 		 * we set last_event to curr_events, then all that activity
8464 		 * completing might cause the array to appear non-idle
8465 		 * and resync will be slowed down even though there might
8466 		 * not have been non-resync activity.  This will only
8467 		 * happen once though.  'last_events' will soon reflect
8468 		 * the state where there is little or no outstanding
8469 		 * resync requests, and further resync activity will
8470 		 * always make curr_events less than last_events.
8471 		 *
8472 		 */
8473 		if (init || curr_events - rdev->last_events > 64) {
8474 			rdev->last_events = curr_events;
8475 			idle = 0;
8476 		}
8477 	}
8478 	rcu_read_unlock();
8479 	return idle;
8480 }
8481 
8482 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8483 {
8484 	/* another "blocks" (512byte) blocks have been synced */
8485 	atomic_sub(blocks, &mddev->recovery_active);
8486 	wake_up(&mddev->recovery_wait);
8487 	if (!ok) {
8488 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8489 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8490 		md_wakeup_thread(mddev->thread);
8491 		// stop recovery, signal do_sync ....
8492 	}
8493 }
8494 EXPORT_SYMBOL(md_done_sync);
8495 
8496 /* md_write_start(mddev, bi)
8497  * If we need to update some array metadata (e.g. 'active' flag
8498  * in superblock) before writing, schedule a superblock update
8499  * and wait for it to complete.
8500  * A return value of 'false' means that the write wasn't recorded
8501  * and cannot proceed as the array is being suspend.
8502  */
8503 bool md_write_start(struct mddev *mddev, struct bio *bi)
8504 {
8505 	int did_change = 0;
8506 
8507 	if (bio_data_dir(bi) != WRITE)
8508 		return true;
8509 
8510 	BUG_ON(mddev->ro == 1);
8511 	if (mddev->ro == 2) {
8512 		/* need to switch to read/write */
8513 		mddev->ro = 0;
8514 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8515 		md_wakeup_thread(mddev->thread);
8516 		md_wakeup_thread(mddev->sync_thread);
8517 		did_change = 1;
8518 	}
8519 	rcu_read_lock();
8520 	percpu_ref_get(&mddev->writes_pending);
8521 	smp_mb(); /* Match smp_mb in set_in_sync() */
8522 	if (mddev->safemode == 1)
8523 		mddev->safemode = 0;
8524 	/* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8525 	if (mddev->in_sync || mddev->sync_checkers) {
8526 		spin_lock(&mddev->lock);
8527 		if (mddev->in_sync) {
8528 			mddev->in_sync = 0;
8529 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8530 			set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8531 			md_wakeup_thread(mddev->thread);
8532 			did_change = 1;
8533 		}
8534 		spin_unlock(&mddev->lock);
8535 	}
8536 	rcu_read_unlock();
8537 	if (did_change)
8538 		sysfs_notify_dirent_safe(mddev->sysfs_state);
8539 	if (!mddev->has_superblocks)
8540 		return true;
8541 	wait_event(mddev->sb_wait,
8542 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8543 		   mddev->suspended);
8544 	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8545 		percpu_ref_put(&mddev->writes_pending);
8546 		return false;
8547 	}
8548 	return true;
8549 }
8550 EXPORT_SYMBOL(md_write_start);
8551 
8552 /* md_write_inc can only be called when md_write_start() has
8553  * already been called at least once of the current request.
8554  * It increments the counter and is useful when a single request
8555  * is split into several parts.  Each part causes an increment and
8556  * so needs a matching md_write_end().
8557  * Unlike md_write_start(), it is safe to call md_write_inc() inside
8558  * a spinlocked region.
8559  */
8560 void md_write_inc(struct mddev *mddev, struct bio *bi)
8561 {
8562 	if (bio_data_dir(bi) != WRITE)
8563 		return;
8564 	WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8565 	percpu_ref_get(&mddev->writes_pending);
8566 }
8567 EXPORT_SYMBOL(md_write_inc);
8568 
8569 void md_write_end(struct mddev *mddev)
8570 {
8571 	percpu_ref_put(&mddev->writes_pending);
8572 
8573 	if (mddev->safemode == 2)
8574 		md_wakeup_thread(mddev->thread);
8575 	else if (mddev->safemode_delay)
8576 		/* The roundup() ensures this only performs locking once
8577 		 * every ->safemode_delay jiffies
8578 		 */
8579 		mod_timer(&mddev->safemode_timer,
8580 			  roundup(jiffies, mddev->safemode_delay) +
8581 			  mddev->safemode_delay);
8582 }
8583 
8584 EXPORT_SYMBOL(md_write_end);
8585 
8586 /* This is used by raid0 and raid10 */
8587 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8588 			struct bio *bio, sector_t start, sector_t size)
8589 {
8590 	struct bio *discard_bio = NULL;
8591 
8592 	if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO,
8593 			&discard_bio) || !discard_bio)
8594 		return;
8595 
8596 	bio_chain(discard_bio, bio);
8597 	bio_clone_blkg_association(discard_bio, bio);
8598 	if (mddev->gendisk)
8599 		trace_block_bio_remap(discard_bio,
8600 				disk_devt(mddev->gendisk),
8601 				bio->bi_iter.bi_sector);
8602 	submit_bio_noacct(discard_bio);
8603 }
8604 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8605 
8606 int acct_bioset_init(struct mddev *mddev)
8607 {
8608 	int err = 0;
8609 
8610 	if (!bioset_initialized(&mddev->io_acct_set))
8611 		err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
8612 			offsetof(struct md_io_acct, bio_clone), 0);
8613 	return err;
8614 }
8615 EXPORT_SYMBOL_GPL(acct_bioset_init);
8616 
8617 void acct_bioset_exit(struct mddev *mddev)
8618 {
8619 	bioset_exit(&mddev->io_acct_set);
8620 }
8621 EXPORT_SYMBOL_GPL(acct_bioset_exit);
8622 
8623 static void md_end_io_acct(struct bio *bio)
8624 {
8625 	struct md_io_acct *md_io_acct = bio->bi_private;
8626 	struct bio *orig_bio = md_io_acct->orig_bio;
8627 
8628 	orig_bio->bi_status = bio->bi_status;
8629 
8630 	bio_end_io_acct(orig_bio, md_io_acct->start_time);
8631 	bio_put(bio);
8632 	bio_endio(orig_bio);
8633 }
8634 
8635 /*
8636  * Used by personalities that don't already clone the bio and thus can't
8637  * easily add the timestamp to their extended bio structure.
8638  */
8639 void md_account_bio(struct mddev *mddev, struct bio **bio)
8640 {
8641 	struct block_device *bdev = (*bio)->bi_bdev;
8642 	struct md_io_acct *md_io_acct;
8643 	struct bio *clone;
8644 
8645 	if (!blk_queue_io_stat(bdev->bd_disk->queue))
8646 		return;
8647 
8648 	clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set);
8649 	md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
8650 	md_io_acct->orig_bio = *bio;
8651 	md_io_acct->start_time = bio_start_io_acct(*bio);
8652 
8653 	clone->bi_end_io = md_end_io_acct;
8654 	clone->bi_private = md_io_acct;
8655 	*bio = clone;
8656 }
8657 EXPORT_SYMBOL_GPL(md_account_bio);
8658 
8659 /* md_allow_write(mddev)
8660  * Calling this ensures that the array is marked 'active' so that writes
8661  * may proceed without blocking.  It is important to call this before
8662  * attempting a GFP_KERNEL allocation while holding the mddev lock.
8663  * Must be called with mddev_lock held.
8664  */
8665 void md_allow_write(struct mddev *mddev)
8666 {
8667 	if (!mddev->pers)
8668 		return;
8669 	if (mddev->ro)
8670 		return;
8671 	if (!mddev->pers->sync_request)
8672 		return;
8673 
8674 	spin_lock(&mddev->lock);
8675 	if (mddev->in_sync) {
8676 		mddev->in_sync = 0;
8677 		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8678 		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8679 		if (mddev->safemode_delay &&
8680 		    mddev->safemode == 0)
8681 			mddev->safemode = 1;
8682 		spin_unlock(&mddev->lock);
8683 		md_update_sb(mddev, 0);
8684 		sysfs_notify_dirent_safe(mddev->sysfs_state);
8685 		/* wait for the dirty state to be recorded in the metadata */
8686 		wait_event(mddev->sb_wait,
8687 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8688 	} else
8689 		spin_unlock(&mddev->lock);
8690 }
8691 EXPORT_SYMBOL_GPL(md_allow_write);
8692 
8693 #define SYNC_MARKS	10
8694 #define	SYNC_MARK_STEP	(3*HZ)
8695 #define UPDATE_FREQUENCY (5*60*HZ)
8696 void md_do_sync(struct md_thread *thread)
8697 {
8698 	struct mddev *mddev = thread->mddev;
8699 	struct mddev *mddev2;
8700 	unsigned int currspeed = 0, window;
8701 	sector_t max_sectors,j, io_sectors, recovery_done;
8702 	unsigned long mark[SYNC_MARKS];
8703 	unsigned long update_time;
8704 	sector_t mark_cnt[SYNC_MARKS];
8705 	int last_mark,m;
8706 	struct list_head *tmp;
8707 	sector_t last_check;
8708 	int skipped = 0;
8709 	struct md_rdev *rdev;
8710 	char *desc, *action = NULL;
8711 	struct blk_plug plug;
8712 	int ret;
8713 
8714 	/* just incase thread restarts... */
8715 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8716 	    test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8717 		return;
8718 	if (mddev->ro) {/* never try to sync a read-only array */
8719 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8720 		return;
8721 	}
8722 
8723 	if (mddev_is_clustered(mddev)) {
8724 		ret = md_cluster_ops->resync_start(mddev);
8725 		if (ret)
8726 			goto skip;
8727 
8728 		set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8729 		if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8730 			test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8731 			test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8732 		     && ((unsigned long long)mddev->curr_resync_completed
8733 			 < (unsigned long long)mddev->resync_max_sectors))
8734 			goto skip;
8735 	}
8736 
8737 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8738 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8739 			desc = "data-check";
8740 			action = "check";
8741 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8742 			desc = "requested-resync";
8743 			action = "repair";
8744 		} else
8745 			desc = "resync";
8746 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8747 		desc = "reshape";
8748 	else
8749 		desc = "recovery";
8750 
8751 	mddev->last_sync_action = action ?: desc;
8752 
8753 	/* we overload curr_resync somewhat here.
8754 	 * 0 == not engaged in resync at all
8755 	 * 2 == checking that there is no conflict with another sync
8756 	 * 1 == like 2, but have yielded to allow conflicting resync to
8757 	 *		commence
8758 	 * other == active in resync - this many blocks
8759 	 *
8760 	 * Before starting a resync we must have set curr_resync to
8761 	 * 2, and then checked that every "conflicting" array has curr_resync
8762 	 * less than ours.  When we find one that is the same or higher
8763 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
8764 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8765 	 * This will mean we have to start checking from the beginning again.
8766 	 *
8767 	 */
8768 
8769 	do {
8770 		int mddev2_minor = -1;
8771 		mddev->curr_resync = 2;
8772 
8773 	try_again:
8774 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8775 			goto skip;
8776 		for_each_mddev(mddev2, tmp) {
8777 			if (mddev2 == mddev)
8778 				continue;
8779 			if (!mddev->parallel_resync
8780 			&&  mddev2->curr_resync
8781 			&&  match_mddev_units(mddev, mddev2)) {
8782 				DEFINE_WAIT(wq);
8783 				if (mddev < mddev2 && mddev->curr_resync == 2) {
8784 					/* arbitrarily yield */
8785 					mddev->curr_resync = 1;
8786 					wake_up(&resync_wait);
8787 				}
8788 				if (mddev > mddev2 && mddev->curr_resync == 1)
8789 					/* no need to wait here, we can wait the next
8790 					 * time 'round when curr_resync == 2
8791 					 */
8792 					continue;
8793 				/* We need to wait 'interruptible' so as not to
8794 				 * contribute to the load average, and not to
8795 				 * be caught by 'softlockup'
8796 				 */
8797 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8798 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8799 				    mddev2->curr_resync >= mddev->curr_resync) {
8800 					if (mddev2_minor != mddev2->md_minor) {
8801 						mddev2_minor = mddev2->md_minor;
8802 						pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8803 							desc, mdname(mddev),
8804 							mdname(mddev2));
8805 					}
8806 					mddev_put(mddev2);
8807 					if (signal_pending(current))
8808 						flush_signals(current);
8809 					schedule();
8810 					finish_wait(&resync_wait, &wq);
8811 					goto try_again;
8812 				}
8813 				finish_wait(&resync_wait, &wq);
8814 			}
8815 		}
8816 	} while (mddev->curr_resync < 2);
8817 
8818 	j = 0;
8819 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8820 		/* resync follows the size requested by the personality,
8821 		 * which defaults to physical size, but can be virtual size
8822 		 */
8823 		max_sectors = mddev->resync_max_sectors;
8824 		atomic64_set(&mddev->resync_mismatches, 0);
8825 		/* we don't use the checkpoint if there's a bitmap */
8826 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8827 			j = mddev->resync_min;
8828 		else if (!mddev->bitmap)
8829 			j = mddev->recovery_cp;
8830 
8831 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8832 		max_sectors = mddev->resync_max_sectors;
8833 		/*
8834 		 * If the original node aborts reshaping then we continue the
8835 		 * reshaping, so set j again to avoid restart reshape from the
8836 		 * first beginning
8837 		 */
8838 		if (mddev_is_clustered(mddev) &&
8839 		    mddev->reshape_position != MaxSector)
8840 			j = mddev->reshape_position;
8841 	} else {
8842 		/* recovery follows the physical size of devices */
8843 		max_sectors = mddev->dev_sectors;
8844 		j = MaxSector;
8845 		rcu_read_lock();
8846 		rdev_for_each_rcu(rdev, mddev)
8847 			if (rdev->raid_disk >= 0 &&
8848 			    !test_bit(Journal, &rdev->flags) &&
8849 			    !test_bit(Faulty, &rdev->flags) &&
8850 			    !test_bit(In_sync, &rdev->flags) &&
8851 			    rdev->recovery_offset < j)
8852 				j = rdev->recovery_offset;
8853 		rcu_read_unlock();
8854 
8855 		/* If there is a bitmap, we need to make sure all
8856 		 * writes that started before we added a spare
8857 		 * complete before we start doing a recovery.
8858 		 * Otherwise the write might complete and (via
8859 		 * bitmap_endwrite) set a bit in the bitmap after the
8860 		 * recovery has checked that bit and skipped that
8861 		 * region.
8862 		 */
8863 		if (mddev->bitmap) {
8864 			mddev->pers->quiesce(mddev, 1);
8865 			mddev->pers->quiesce(mddev, 0);
8866 		}
8867 	}
8868 
8869 	pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8870 	pr_debug("md: minimum _guaranteed_  speed: %d KB/sec/disk.\n", speed_min(mddev));
8871 	pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8872 		 speed_max(mddev), desc);
8873 
8874 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8875 
8876 	io_sectors = 0;
8877 	for (m = 0; m < SYNC_MARKS; m++) {
8878 		mark[m] = jiffies;
8879 		mark_cnt[m] = io_sectors;
8880 	}
8881 	last_mark = 0;
8882 	mddev->resync_mark = mark[last_mark];
8883 	mddev->resync_mark_cnt = mark_cnt[last_mark];
8884 
8885 	/*
8886 	 * Tune reconstruction:
8887 	 */
8888 	window = 32 * (PAGE_SIZE / 512);
8889 	pr_debug("md: using %dk window, over a total of %lluk.\n",
8890 		 window/2, (unsigned long long)max_sectors/2);
8891 
8892 	atomic_set(&mddev->recovery_active, 0);
8893 	last_check = 0;
8894 
8895 	if (j>2) {
8896 		pr_debug("md: resuming %s of %s from checkpoint.\n",
8897 			 desc, mdname(mddev));
8898 		mddev->curr_resync = j;
8899 	} else
8900 		mddev->curr_resync = 3; /* no longer delayed */
8901 	mddev->curr_resync_completed = j;
8902 	sysfs_notify_dirent_safe(mddev->sysfs_completed);
8903 	md_new_event();
8904 	update_time = jiffies;
8905 
8906 	blk_start_plug(&plug);
8907 	while (j < max_sectors) {
8908 		sector_t sectors;
8909 
8910 		skipped = 0;
8911 
8912 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8913 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
8914 		      (mddev->curr_resync - mddev->curr_resync_completed)
8915 		      > (max_sectors >> 4)) ||
8916 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8917 		     (j - mddev->curr_resync_completed)*2
8918 		     >= mddev->resync_max - mddev->curr_resync_completed ||
8919 		     mddev->curr_resync_completed > mddev->resync_max
8920 			    )) {
8921 			/* time to update curr_resync_completed */
8922 			wait_event(mddev->recovery_wait,
8923 				   atomic_read(&mddev->recovery_active) == 0);
8924 			mddev->curr_resync_completed = j;
8925 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8926 			    j > mddev->recovery_cp)
8927 				mddev->recovery_cp = j;
8928 			update_time = jiffies;
8929 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8930 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
8931 		}
8932 
8933 		while (j >= mddev->resync_max &&
8934 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8935 			/* As this condition is controlled by user-space,
8936 			 * we can block indefinitely, so use '_interruptible'
8937 			 * to avoid triggering warnings.
8938 			 */
8939 			flush_signals(current); /* just in case */
8940 			wait_event_interruptible(mddev->recovery_wait,
8941 						 mddev->resync_max > j
8942 						 || test_bit(MD_RECOVERY_INTR,
8943 							     &mddev->recovery));
8944 		}
8945 
8946 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8947 			break;
8948 
8949 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
8950 		if (sectors == 0) {
8951 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8952 			break;
8953 		}
8954 
8955 		if (!skipped) { /* actual IO requested */
8956 			io_sectors += sectors;
8957 			atomic_add(sectors, &mddev->recovery_active);
8958 		}
8959 
8960 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8961 			break;
8962 
8963 		j += sectors;
8964 		if (j > max_sectors)
8965 			/* when skipping, extra large numbers can be returned. */
8966 			j = max_sectors;
8967 		if (j > 2)
8968 			mddev->curr_resync = j;
8969 		mddev->curr_mark_cnt = io_sectors;
8970 		if (last_check == 0)
8971 			/* this is the earliest that rebuild will be
8972 			 * visible in /proc/mdstat
8973 			 */
8974 			md_new_event();
8975 
8976 		if (last_check + window > io_sectors || j == max_sectors)
8977 			continue;
8978 
8979 		last_check = io_sectors;
8980 	repeat:
8981 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8982 			/* step marks */
8983 			int next = (last_mark+1) % SYNC_MARKS;
8984 
8985 			mddev->resync_mark = mark[next];
8986 			mddev->resync_mark_cnt = mark_cnt[next];
8987 			mark[next] = jiffies;
8988 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8989 			last_mark = next;
8990 		}
8991 
8992 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8993 			break;
8994 
8995 		/*
8996 		 * this loop exits only if either when we are slower than
8997 		 * the 'hard' speed limit, or the system was IO-idle for
8998 		 * a jiffy.
8999 		 * the system might be non-idle CPU-wise, but we only care
9000 		 * about not overloading the IO subsystem. (things like an
9001 		 * e2fsck being done on the RAID array should execute fast)
9002 		 */
9003 		cond_resched();
9004 
9005 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
9006 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
9007 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
9008 
9009 		if (currspeed > speed_min(mddev)) {
9010 			if (currspeed > speed_max(mddev)) {
9011 				msleep(500);
9012 				goto repeat;
9013 			}
9014 			if (!is_mddev_idle(mddev, 0)) {
9015 				/*
9016 				 * Give other IO more of a chance.
9017 				 * The faster the devices, the less we wait.
9018 				 */
9019 				wait_event(mddev->recovery_wait,
9020 					   !atomic_read(&mddev->recovery_active));
9021 			}
9022 		}
9023 	}
9024 	pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9025 		test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9026 		? "interrupted" : "done");
9027 	/*
9028 	 * this also signals 'finished resyncing' to md_stop
9029 	 */
9030 	blk_finish_plug(&plug);
9031 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9032 
9033 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9034 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9035 	    mddev->curr_resync > 3) {
9036 		mddev->curr_resync_completed = mddev->curr_resync;
9037 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
9038 	}
9039 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
9040 
9041 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9042 	    mddev->curr_resync > 3) {
9043 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9044 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9045 				if (mddev->curr_resync >= mddev->recovery_cp) {
9046 					pr_debug("md: checkpointing %s of %s.\n",
9047 						 desc, mdname(mddev));
9048 					if (test_bit(MD_RECOVERY_ERROR,
9049 						&mddev->recovery))
9050 						mddev->recovery_cp =
9051 							mddev->curr_resync_completed;
9052 					else
9053 						mddev->recovery_cp =
9054 							mddev->curr_resync;
9055 				}
9056 			} else
9057 				mddev->recovery_cp = MaxSector;
9058 		} else {
9059 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9060 				mddev->curr_resync = MaxSector;
9061 			if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9062 			    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9063 				rcu_read_lock();
9064 				rdev_for_each_rcu(rdev, mddev)
9065 					if (rdev->raid_disk >= 0 &&
9066 					    mddev->delta_disks >= 0 &&
9067 					    !test_bit(Journal, &rdev->flags) &&
9068 					    !test_bit(Faulty, &rdev->flags) &&
9069 					    !test_bit(In_sync, &rdev->flags) &&
9070 					    rdev->recovery_offset < mddev->curr_resync)
9071 						rdev->recovery_offset = mddev->curr_resync;
9072 				rcu_read_unlock();
9073 			}
9074 		}
9075 	}
9076  skip:
9077 	/* set CHANGE_PENDING here since maybe another update is needed,
9078 	 * so other nodes are informed. It should be harmless for normal
9079 	 * raid */
9080 	set_mask_bits(&mddev->sb_flags, 0,
9081 		      BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9082 
9083 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9084 			!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9085 			mddev->delta_disks > 0 &&
9086 			mddev->pers->finish_reshape &&
9087 			mddev->pers->size &&
9088 			mddev->queue) {
9089 		mddev_lock_nointr(mddev);
9090 		md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9091 		mddev_unlock(mddev);
9092 		if (!mddev_is_clustered(mddev))
9093 			set_capacity_and_notify(mddev->gendisk,
9094 						mddev->array_sectors);
9095 	}
9096 
9097 	spin_lock(&mddev->lock);
9098 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9099 		/* We completed so min/max setting can be forgotten if used. */
9100 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9101 			mddev->resync_min = 0;
9102 		mddev->resync_max = MaxSector;
9103 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9104 		mddev->resync_min = mddev->curr_resync_completed;
9105 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9106 	mddev->curr_resync = 0;
9107 	spin_unlock(&mddev->lock);
9108 
9109 	wake_up(&resync_wait);
9110 	md_wakeup_thread(mddev->thread);
9111 	return;
9112 }
9113 EXPORT_SYMBOL_GPL(md_do_sync);
9114 
9115 static int remove_and_add_spares(struct mddev *mddev,
9116 				 struct md_rdev *this)
9117 {
9118 	struct md_rdev *rdev;
9119 	int spares = 0;
9120 	int removed = 0;
9121 	bool remove_some = false;
9122 
9123 	if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9124 		/* Mustn't remove devices when resync thread is running */
9125 		return 0;
9126 
9127 	rdev_for_each(rdev, mddev) {
9128 		if ((this == NULL || rdev == this) &&
9129 		    rdev->raid_disk >= 0 &&
9130 		    !test_bit(Blocked, &rdev->flags) &&
9131 		    test_bit(Faulty, &rdev->flags) &&
9132 		    atomic_read(&rdev->nr_pending)==0) {
9133 			/* Faulty non-Blocked devices with nr_pending == 0
9134 			 * never get nr_pending incremented,
9135 			 * never get Faulty cleared, and never get Blocked set.
9136 			 * So we can synchronize_rcu now rather than once per device
9137 			 */
9138 			remove_some = true;
9139 			set_bit(RemoveSynchronized, &rdev->flags);
9140 		}
9141 	}
9142 
9143 	if (remove_some)
9144 		synchronize_rcu();
9145 	rdev_for_each(rdev, mddev) {
9146 		if ((this == NULL || rdev == this) &&
9147 		    rdev->raid_disk >= 0 &&
9148 		    !test_bit(Blocked, &rdev->flags) &&
9149 		    ((test_bit(RemoveSynchronized, &rdev->flags) ||
9150 		     (!test_bit(In_sync, &rdev->flags) &&
9151 		      !test_bit(Journal, &rdev->flags))) &&
9152 		    atomic_read(&rdev->nr_pending)==0)) {
9153 			if (mddev->pers->hot_remove_disk(
9154 				    mddev, rdev) == 0) {
9155 				sysfs_unlink_rdev(mddev, rdev);
9156 				rdev->saved_raid_disk = rdev->raid_disk;
9157 				rdev->raid_disk = -1;
9158 				removed++;
9159 			}
9160 		}
9161 		if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9162 			clear_bit(RemoveSynchronized, &rdev->flags);
9163 	}
9164 
9165 	if (removed && mddev->kobj.sd)
9166 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9167 
9168 	if (this && removed)
9169 		goto no_add;
9170 
9171 	rdev_for_each(rdev, mddev) {
9172 		if (this && this != rdev)
9173 			continue;
9174 		if (test_bit(Candidate, &rdev->flags))
9175 			continue;
9176 		if (rdev->raid_disk >= 0 &&
9177 		    !test_bit(In_sync, &rdev->flags) &&
9178 		    !test_bit(Journal, &rdev->flags) &&
9179 		    !test_bit(Faulty, &rdev->flags))
9180 			spares++;
9181 		if (rdev->raid_disk >= 0)
9182 			continue;
9183 		if (test_bit(Faulty, &rdev->flags))
9184 			continue;
9185 		if (!test_bit(Journal, &rdev->flags)) {
9186 			if (mddev->ro &&
9187 			    ! (rdev->saved_raid_disk >= 0 &&
9188 			       !test_bit(Bitmap_sync, &rdev->flags)))
9189 				continue;
9190 
9191 			rdev->recovery_offset = 0;
9192 		}
9193 		if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9194 			/* failure here is OK */
9195 			sysfs_link_rdev(mddev, rdev);
9196 			if (!test_bit(Journal, &rdev->flags))
9197 				spares++;
9198 			md_new_event();
9199 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9200 		}
9201 	}
9202 no_add:
9203 	if (removed)
9204 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9205 	return spares;
9206 }
9207 
9208 static void md_start_sync(struct work_struct *ws)
9209 {
9210 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
9211 
9212 	mddev->sync_thread = md_register_thread(md_do_sync,
9213 						mddev,
9214 						"resync");
9215 	if (!mddev->sync_thread) {
9216 		pr_warn("%s: could not start resync thread...\n",
9217 			mdname(mddev));
9218 		/* leave the spares where they are, it shouldn't hurt */
9219 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9220 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9221 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9222 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9223 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9224 		wake_up(&resync_wait);
9225 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9226 				       &mddev->recovery))
9227 			if (mddev->sysfs_action)
9228 				sysfs_notify_dirent_safe(mddev->sysfs_action);
9229 	} else
9230 		md_wakeup_thread(mddev->sync_thread);
9231 	sysfs_notify_dirent_safe(mddev->sysfs_action);
9232 	md_new_event();
9233 }
9234 
9235 /*
9236  * This routine is regularly called by all per-raid-array threads to
9237  * deal with generic issues like resync and super-block update.
9238  * Raid personalities that don't have a thread (linear/raid0) do not
9239  * need this as they never do any recovery or update the superblock.
9240  *
9241  * It does not do any resync itself, but rather "forks" off other threads
9242  * to do that as needed.
9243  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9244  * "->recovery" and create a thread at ->sync_thread.
9245  * When the thread finishes it sets MD_RECOVERY_DONE
9246  * and wakeups up this thread which will reap the thread and finish up.
9247  * This thread also removes any faulty devices (with nr_pending == 0).
9248  *
9249  * The overall approach is:
9250  *  1/ if the superblock needs updating, update it.
9251  *  2/ If a recovery thread is running, don't do anything else.
9252  *  3/ If recovery has finished, clean up, possibly marking spares active.
9253  *  4/ If there are any faulty devices, remove them.
9254  *  5/ If array is degraded, try to add spares devices
9255  *  6/ If array has spares or is not in-sync, start a resync thread.
9256  */
9257 void md_check_recovery(struct mddev *mddev)
9258 {
9259 	if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9260 		/* Write superblock - thread that called mddev_suspend()
9261 		 * holds reconfig_mutex for us.
9262 		 */
9263 		set_bit(MD_UPDATING_SB, &mddev->flags);
9264 		smp_mb__after_atomic();
9265 		if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9266 			md_update_sb(mddev, 0);
9267 		clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9268 		wake_up(&mddev->sb_wait);
9269 	}
9270 
9271 	if (mddev->suspended)
9272 		return;
9273 
9274 	if (mddev->bitmap)
9275 		md_bitmap_daemon_work(mddev);
9276 
9277 	if (signal_pending(current)) {
9278 		if (mddev->pers->sync_request && !mddev->external) {
9279 			pr_debug("md: %s in immediate safe mode\n",
9280 				 mdname(mddev));
9281 			mddev->safemode = 2;
9282 		}
9283 		flush_signals(current);
9284 	}
9285 
9286 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9287 		return;
9288 	if ( ! (
9289 		(mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9290 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9291 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9292 		(mddev->external == 0 && mddev->safemode == 1) ||
9293 		(mddev->safemode == 2
9294 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9295 		))
9296 		return;
9297 
9298 	if (mddev_trylock(mddev)) {
9299 		int spares = 0;
9300 		bool try_set_sync = mddev->safemode != 0;
9301 
9302 		if (!mddev->external && mddev->safemode == 1)
9303 			mddev->safemode = 0;
9304 
9305 		if (mddev->ro) {
9306 			struct md_rdev *rdev;
9307 			if (!mddev->external && mddev->in_sync)
9308 				/* 'Blocked' flag not needed as failed devices
9309 				 * will be recorded if array switched to read/write.
9310 				 * Leaving it set will prevent the device
9311 				 * from being removed.
9312 				 */
9313 				rdev_for_each(rdev, mddev)
9314 					clear_bit(Blocked, &rdev->flags);
9315 			/* On a read-only array we can:
9316 			 * - remove failed devices
9317 			 * - add already-in_sync devices if the array itself
9318 			 *   is in-sync.
9319 			 * As we only add devices that are already in-sync,
9320 			 * we can activate the spares immediately.
9321 			 */
9322 			remove_and_add_spares(mddev, NULL);
9323 			/* There is no thread, but we need to call
9324 			 * ->spare_active and clear saved_raid_disk
9325 			 */
9326 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9327 			md_reap_sync_thread(mddev);
9328 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9329 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9330 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9331 			goto unlock;
9332 		}
9333 
9334 		if (mddev_is_clustered(mddev)) {
9335 			struct md_rdev *rdev, *tmp;
9336 			/* kick the device if another node issued a
9337 			 * remove disk.
9338 			 */
9339 			rdev_for_each_safe(rdev, tmp, mddev) {
9340 				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9341 						rdev->raid_disk < 0)
9342 					md_kick_rdev_from_array(rdev);
9343 			}
9344 		}
9345 
9346 		if (try_set_sync && !mddev->external && !mddev->in_sync) {
9347 			spin_lock(&mddev->lock);
9348 			set_in_sync(mddev);
9349 			spin_unlock(&mddev->lock);
9350 		}
9351 
9352 		if (mddev->sb_flags)
9353 			md_update_sb(mddev, 0);
9354 
9355 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9356 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9357 			/* resync/recovery still happening */
9358 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9359 			goto unlock;
9360 		}
9361 		if (mddev->sync_thread) {
9362 			md_reap_sync_thread(mddev);
9363 			goto unlock;
9364 		}
9365 		/* Set RUNNING before clearing NEEDED to avoid
9366 		 * any transients in the value of "sync_action".
9367 		 */
9368 		mddev->curr_resync_completed = 0;
9369 		spin_lock(&mddev->lock);
9370 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9371 		spin_unlock(&mddev->lock);
9372 		/* Clear some bits that don't mean anything, but
9373 		 * might be left set
9374 		 */
9375 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9376 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9377 
9378 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9379 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9380 			goto not_running;
9381 		/* no recovery is running.
9382 		 * remove any failed drives, then
9383 		 * add spares if possible.
9384 		 * Spares are also removed and re-added, to allow
9385 		 * the personality to fail the re-add.
9386 		 */
9387 
9388 		if (mddev->reshape_position != MaxSector) {
9389 			if (mddev->pers->check_reshape == NULL ||
9390 			    mddev->pers->check_reshape(mddev) != 0)
9391 				/* Cannot proceed */
9392 				goto not_running;
9393 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9394 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9395 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
9396 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9397 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9398 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9399 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9400 		} else if (mddev->recovery_cp < MaxSector) {
9401 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9402 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9403 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9404 			/* nothing to be done ... */
9405 			goto not_running;
9406 
9407 		if (mddev->pers->sync_request) {
9408 			if (spares) {
9409 				/* We are adding a device or devices to an array
9410 				 * which has the bitmap stored on all devices.
9411 				 * So make sure all bitmap pages get written
9412 				 */
9413 				md_bitmap_write_all(mddev->bitmap);
9414 			}
9415 			INIT_WORK(&mddev->del_work, md_start_sync);
9416 			queue_work(md_misc_wq, &mddev->del_work);
9417 			goto unlock;
9418 		}
9419 	not_running:
9420 		if (!mddev->sync_thread) {
9421 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9422 			wake_up(&resync_wait);
9423 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9424 					       &mddev->recovery))
9425 				if (mddev->sysfs_action)
9426 					sysfs_notify_dirent_safe(mddev->sysfs_action);
9427 		}
9428 	unlock:
9429 		wake_up(&mddev->sb_wait);
9430 		mddev_unlock(mddev);
9431 	}
9432 }
9433 EXPORT_SYMBOL(md_check_recovery);
9434 
9435 void md_reap_sync_thread(struct mddev *mddev)
9436 {
9437 	struct md_rdev *rdev;
9438 	sector_t old_dev_sectors = mddev->dev_sectors;
9439 	bool is_reshaped = false;
9440 
9441 	/* resync has finished, collect result */
9442 	md_unregister_thread(&mddev->sync_thread);
9443 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9444 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9445 	    mddev->degraded != mddev->raid_disks) {
9446 		/* success...*/
9447 		/* activate any spares */
9448 		if (mddev->pers->spare_active(mddev)) {
9449 			sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9450 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9451 		}
9452 	}
9453 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9454 	    mddev->pers->finish_reshape) {
9455 		mddev->pers->finish_reshape(mddev);
9456 		if (mddev_is_clustered(mddev))
9457 			is_reshaped = true;
9458 	}
9459 
9460 	/* If array is no-longer degraded, then any saved_raid_disk
9461 	 * information must be scrapped.
9462 	 */
9463 	if (!mddev->degraded)
9464 		rdev_for_each(rdev, mddev)
9465 			rdev->saved_raid_disk = -1;
9466 
9467 	md_update_sb(mddev, 1);
9468 	/* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9469 	 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9470 	 * clustered raid */
9471 	if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9472 		md_cluster_ops->resync_finish(mddev);
9473 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9474 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9475 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9476 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9477 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9478 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9479 	/*
9480 	 * We call md_cluster_ops->update_size here because sync_size could
9481 	 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9482 	 * so it is time to update size across cluster.
9483 	 */
9484 	if (mddev_is_clustered(mddev) && is_reshaped
9485 				      && !test_bit(MD_CLOSING, &mddev->flags))
9486 		md_cluster_ops->update_size(mddev, old_dev_sectors);
9487 	wake_up(&resync_wait);
9488 	/* flag recovery needed just to double check */
9489 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9490 	sysfs_notify_dirent_safe(mddev->sysfs_action);
9491 	md_new_event();
9492 	if (mddev->event_work.func)
9493 		queue_work(md_misc_wq, &mddev->event_work);
9494 }
9495 EXPORT_SYMBOL(md_reap_sync_thread);
9496 
9497 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9498 {
9499 	sysfs_notify_dirent_safe(rdev->sysfs_state);
9500 	wait_event_timeout(rdev->blocked_wait,
9501 			   !test_bit(Blocked, &rdev->flags) &&
9502 			   !test_bit(BlockedBadBlocks, &rdev->flags),
9503 			   msecs_to_jiffies(5000));
9504 	rdev_dec_pending(rdev, mddev);
9505 }
9506 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9507 
9508 void md_finish_reshape(struct mddev *mddev)
9509 {
9510 	/* called be personality module when reshape completes. */
9511 	struct md_rdev *rdev;
9512 
9513 	rdev_for_each(rdev, mddev) {
9514 		if (rdev->data_offset > rdev->new_data_offset)
9515 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9516 		else
9517 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9518 		rdev->data_offset = rdev->new_data_offset;
9519 	}
9520 }
9521 EXPORT_SYMBOL(md_finish_reshape);
9522 
9523 /* Bad block management */
9524 
9525 /* Returns 1 on success, 0 on failure */
9526 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9527 		       int is_new)
9528 {
9529 	struct mddev *mddev = rdev->mddev;
9530 	int rv;
9531 	if (is_new)
9532 		s += rdev->new_data_offset;
9533 	else
9534 		s += rdev->data_offset;
9535 	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9536 	if (rv == 0) {
9537 		/* Make sure they get written out promptly */
9538 		if (test_bit(ExternalBbl, &rdev->flags))
9539 			sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9540 		sysfs_notify_dirent_safe(rdev->sysfs_state);
9541 		set_mask_bits(&mddev->sb_flags, 0,
9542 			      BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9543 		md_wakeup_thread(rdev->mddev->thread);
9544 		return 1;
9545 	} else
9546 		return 0;
9547 }
9548 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9549 
9550 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9551 			 int is_new)
9552 {
9553 	int rv;
9554 	if (is_new)
9555 		s += rdev->new_data_offset;
9556 	else
9557 		s += rdev->data_offset;
9558 	rv = badblocks_clear(&rdev->badblocks, s, sectors);
9559 	if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9560 		sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9561 	return rv;
9562 }
9563 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9564 
9565 static int md_notify_reboot(struct notifier_block *this,
9566 			    unsigned long code, void *x)
9567 {
9568 	struct list_head *tmp;
9569 	struct mddev *mddev;
9570 	int need_delay = 0;
9571 
9572 	for_each_mddev(mddev, tmp) {
9573 		if (mddev_trylock(mddev)) {
9574 			if (mddev->pers)
9575 				__md_stop_writes(mddev);
9576 			if (mddev->persistent)
9577 				mddev->safemode = 2;
9578 			mddev_unlock(mddev);
9579 		}
9580 		need_delay = 1;
9581 	}
9582 	/*
9583 	 * certain more exotic SCSI devices are known to be
9584 	 * volatile wrt too early system reboots. While the
9585 	 * right place to handle this issue is the given
9586 	 * driver, we do want to have a safe RAID driver ...
9587 	 */
9588 	if (need_delay)
9589 		msleep(1000);
9590 
9591 	return NOTIFY_DONE;
9592 }
9593 
9594 static struct notifier_block md_notifier = {
9595 	.notifier_call	= md_notify_reboot,
9596 	.next		= NULL,
9597 	.priority	= INT_MAX, /* before any real devices */
9598 };
9599 
9600 static void md_geninit(void)
9601 {
9602 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9603 
9604 	proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9605 }
9606 
9607 static int __init md_init(void)
9608 {
9609 	int ret = -ENOMEM;
9610 
9611 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9612 	if (!md_wq)
9613 		goto err_wq;
9614 
9615 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9616 	if (!md_misc_wq)
9617 		goto err_misc_wq;
9618 
9619 	md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9620 	if (!md_rdev_misc_wq)
9621 		goto err_rdev_misc_wq;
9622 
9623 	ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9624 	if (ret < 0)
9625 		goto err_md;
9626 
9627 	ret = __register_blkdev(0, "mdp", md_probe);
9628 	if (ret < 0)
9629 		goto err_mdp;
9630 	mdp_major = ret;
9631 
9632 	register_reboot_notifier(&md_notifier);
9633 	raid_table_header = register_sysctl_table(raid_root_table);
9634 
9635 	md_geninit();
9636 	return 0;
9637 
9638 err_mdp:
9639 	unregister_blkdev(MD_MAJOR, "md");
9640 err_md:
9641 	destroy_workqueue(md_rdev_misc_wq);
9642 err_rdev_misc_wq:
9643 	destroy_workqueue(md_misc_wq);
9644 err_misc_wq:
9645 	destroy_workqueue(md_wq);
9646 err_wq:
9647 	return ret;
9648 }
9649 
9650 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9651 {
9652 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9653 	struct md_rdev *rdev2, *tmp;
9654 	int role, ret;
9655 	char b[BDEVNAME_SIZE];
9656 
9657 	/*
9658 	 * If size is changed in another node then we need to
9659 	 * do resize as well.
9660 	 */
9661 	if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9662 		ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9663 		if (ret)
9664 			pr_info("md-cluster: resize failed\n");
9665 		else
9666 			md_bitmap_update_sb(mddev->bitmap);
9667 	}
9668 
9669 	/* Check for change of roles in the active devices */
9670 	rdev_for_each_safe(rdev2, tmp, mddev) {
9671 		if (test_bit(Faulty, &rdev2->flags))
9672 			continue;
9673 
9674 		/* Check if the roles changed */
9675 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9676 
9677 		if (test_bit(Candidate, &rdev2->flags)) {
9678 			if (role == MD_DISK_ROLE_FAULTY) {
9679 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9680 				md_kick_rdev_from_array(rdev2);
9681 				continue;
9682 			}
9683 			else
9684 				clear_bit(Candidate, &rdev2->flags);
9685 		}
9686 
9687 		if (role != rdev2->raid_disk) {
9688 			/*
9689 			 * got activated except reshape is happening.
9690 			 */
9691 			if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE &&
9692 			    !(le32_to_cpu(sb->feature_map) &
9693 			      MD_FEATURE_RESHAPE_ACTIVE)) {
9694 				rdev2->saved_raid_disk = role;
9695 				ret = remove_and_add_spares(mddev, rdev2);
9696 				pr_info("Activated spare: %s\n",
9697 					bdevname(rdev2->bdev,b));
9698 				/* wakeup mddev->thread here, so array could
9699 				 * perform resync with the new activated disk */
9700 				set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9701 				md_wakeup_thread(mddev->thread);
9702 			}
9703 			/* device faulty
9704 			 * We just want to do the minimum to mark the disk
9705 			 * as faulty. The recovery is performed by the
9706 			 * one who initiated the error.
9707 			 */
9708 			if (role == MD_DISK_ROLE_FAULTY ||
9709 			    role == MD_DISK_ROLE_JOURNAL) {
9710 				md_error(mddev, rdev2);
9711 				clear_bit(Blocked, &rdev2->flags);
9712 			}
9713 		}
9714 	}
9715 
9716 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9717 		ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9718 		if (ret)
9719 			pr_warn("md: updating array disks failed. %d\n", ret);
9720 	}
9721 
9722 	/*
9723 	 * Since mddev->delta_disks has already updated in update_raid_disks,
9724 	 * so it is time to check reshape.
9725 	 */
9726 	if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9727 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9728 		/*
9729 		 * reshape is happening in the remote node, we need to
9730 		 * update reshape_position and call start_reshape.
9731 		 */
9732 		mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9733 		if (mddev->pers->update_reshape_pos)
9734 			mddev->pers->update_reshape_pos(mddev);
9735 		if (mddev->pers->start_reshape)
9736 			mddev->pers->start_reshape(mddev);
9737 	} else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9738 		   mddev->reshape_position != MaxSector &&
9739 		   !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9740 		/* reshape is just done in another node. */
9741 		mddev->reshape_position = MaxSector;
9742 		if (mddev->pers->update_reshape_pos)
9743 			mddev->pers->update_reshape_pos(mddev);
9744 	}
9745 
9746 	/* Finally set the event to be up to date */
9747 	mddev->events = le64_to_cpu(sb->events);
9748 }
9749 
9750 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9751 {
9752 	int err;
9753 	struct page *swapout = rdev->sb_page;
9754 	struct mdp_superblock_1 *sb;
9755 
9756 	/* Store the sb page of the rdev in the swapout temporary
9757 	 * variable in case we err in the future
9758 	 */
9759 	rdev->sb_page = NULL;
9760 	err = alloc_disk_sb(rdev);
9761 	if (err == 0) {
9762 		ClearPageUptodate(rdev->sb_page);
9763 		rdev->sb_loaded = 0;
9764 		err = super_types[mddev->major_version].
9765 			load_super(rdev, NULL, mddev->minor_version);
9766 	}
9767 	if (err < 0) {
9768 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9769 				__func__, __LINE__, rdev->desc_nr, err);
9770 		if (rdev->sb_page)
9771 			put_page(rdev->sb_page);
9772 		rdev->sb_page = swapout;
9773 		rdev->sb_loaded = 1;
9774 		return err;
9775 	}
9776 
9777 	sb = page_address(rdev->sb_page);
9778 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9779 	 * is not set
9780 	 */
9781 
9782 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9783 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9784 
9785 	/* The other node finished recovery, call spare_active to set
9786 	 * device In_sync and mddev->degraded
9787 	 */
9788 	if (rdev->recovery_offset == MaxSector &&
9789 	    !test_bit(In_sync, &rdev->flags) &&
9790 	    mddev->pers->spare_active(mddev))
9791 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9792 
9793 	put_page(swapout);
9794 	return 0;
9795 }
9796 
9797 void md_reload_sb(struct mddev *mddev, int nr)
9798 {
9799 	struct md_rdev *rdev = NULL, *iter;
9800 	int err;
9801 
9802 	/* Find the rdev */
9803 	rdev_for_each_rcu(iter, mddev) {
9804 		if (iter->desc_nr == nr) {
9805 			rdev = iter;
9806 			break;
9807 		}
9808 	}
9809 
9810 	if (!rdev) {
9811 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9812 		return;
9813 	}
9814 
9815 	err = read_rdev(mddev, rdev);
9816 	if (err < 0)
9817 		return;
9818 
9819 	check_sb_changes(mddev, rdev);
9820 
9821 	/* Read all rdev's to update recovery_offset */
9822 	rdev_for_each_rcu(rdev, mddev) {
9823 		if (!test_bit(Faulty, &rdev->flags))
9824 			read_rdev(mddev, rdev);
9825 	}
9826 }
9827 EXPORT_SYMBOL(md_reload_sb);
9828 
9829 #ifndef MODULE
9830 
9831 /*
9832  * Searches all registered partitions for autorun RAID arrays
9833  * at boot time.
9834  */
9835 
9836 static DEFINE_MUTEX(detected_devices_mutex);
9837 static LIST_HEAD(all_detected_devices);
9838 struct detected_devices_node {
9839 	struct list_head list;
9840 	dev_t dev;
9841 };
9842 
9843 void md_autodetect_dev(dev_t dev)
9844 {
9845 	struct detected_devices_node *node_detected_dev;
9846 
9847 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9848 	if (node_detected_dev) {
9849 		node_detected_dev->dev = dev;
9850 		mutex_lock(&detected_devices_mutex);
9851 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9852 		mutex_unlock(&detected_devices_mutex);
9853 	}
9854 }
9855 
9856 void md_autostart_arrays(int part)
9857 {
9858 	struct md_rdev *rdev;
9859 	struct detected_devices_node *node_detected_dev;
9860 	dev_t dev;
9861 	int i_scanned, i_passed;
9862 
9863 	i_scanned = 0;
9864 	i_passed = 0;
9865 
9866 	pr_info("md: Autodetecting RAID arrays.\n");
9867 
9868 	mutex_lock(&detected_devices_mutex);
9869 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9870 		i_scanned++;
9871 		node_detected_dev = list_entry(all_detected_devices.next,
9872 					struct detected_devices_node, list);
9873 		list_del(&node_detected_dev->list);
9874 		dev = node_detected_dev->dev;
9875 		kfree(node_detected_dev);
9876 		mutex_unlock(&detected_devices_mutex);
9877 		rdev = md_import_device(dev,0, 90);
9878 		mutex_lock(&detected_devices_mutex);
9879 		if (IS_ERR(rdev))
9880 			continue;
9881 
9882 		if (test_bit(Faulty, &rdev->flags))
9883 			continue;
9884 
9885 		set_bit(AutoDetected, &rdev->flags);
9886 		list_add(&rdev->same_set, &pending_raid_disks);
9887 		i_passed++;
9888 	}
9889 	mutex_unlock(&detected_devices_mutex);
9890 
9891 	pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9892 
9893 	autorun_devices(part);
9894 }
9895 
9896 #endif /* !MODULE */
9897 
9898 static __exit void md_exit(void)
9899 {
9900 	struct mddev *mddev;
9901 	struct list_head *tmp;
9902 	int delay = 1;
9903 
9904 	unregister_blkdev(MD_MAJOR,"md");
9905 	unregister_blkdev(mdp_major, "mdp");
9906 	unregister_reboot_notifier(&md_notifier);
9907 	unregister_sysctl_table(raid_table_header);
9908 
9909 	/* We cannot unload the modules while some process is
9910 	 * waiting for us in select() or poll() - wake them up
9911 	 */
9912 	md_unloading = 1;
9913 	while (waitqueue_active(&md_event_waiters)) {
9914 		/* not safe to leave yet */
9915 		wake_up(&md_event_waiters);
9916 		msleep(delay);
9917 		delay += delay;
9918 	}
9919 	remove_proc_entry("mdstat", NULL);
9920 
9921 	for_each_mddev(mddev, tmp) {
9922 		export_array(mddev);
9923 		mddev->ctime = 0;
9924 		mddev->hold_active = 0;
9925 		/*
9926 		 * for_each_mddev() will call mddev_put() at the end of each
9927 		 * iteration.  As the mddev is now fully clear, this will
9928 		 * schedule the mddev for destruction by a workqueue, and the
9929 		 * destroy_workqueue() below will wait for that to complete.
9930 		 */
9931 	}
9932 	destroy_workqueue(md_rdev_misc_wq);
9933 	destroy_workqueue(md_misc_wq);
9934 	destroy_workqueue(md_wq);
9935 }
9936 
9937 subsys_initcall(md_init);
9938 module_exit(md_exit)
9939 
9940 static int get_ro(char *buffer, const struct kernel_param *kp)
9941 {
9942 	return sprintf(buffer, "%d\n", start_readonly);
9943 }
9944 static int set_ro(const char *val, const struct kernel_param *kp)
9945 {
9946 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9947 }
9948 
9949 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9950 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9951 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9952 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9953 
9954 MODULE_LICENSE("GPL");
9955 MODULE_DESCRIPTION("MD RAID framework");
9956 MODULE_ALIAS("md");
9957 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9958