xref: /openbmc/linux/drivers/md/md.c (revision 8bb93aac)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46 
47 #include <linux/init.h>
48 
49 #include <linux/file.h>
50 
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54 
55 #include <asm/unaligned.h>
56 
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59 
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62 
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65 
66 
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70 
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73 
74 /*
75  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
76  * is 1000 KB/sec, so the extra system load does not show up that much.
77  * Increase it if you want to have more _guaranteed_ speed. Note that
78  * the RAID driver will use the maximum available bandwidth if the IO
79  * subsystem is idle. There is also an 'absolute maximum' reconstruction
80  * speed limit - in case reconstruction slows down your system despite
81  * idle IO detection.
82  *
83  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84  */
85 
86 static int sysctl_speed_limit_min = 1000;
87 static int sysctl_speed_limit_max = 200000;
88 
89 static struct ctl_table_header *raid_table_header;
90 
91 static ctl_table raid_table[] = {
92 	{
93 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
94 		.procname	= "speed_limit_min",
95 		.data		= &sysctl_speed_limit_min,
96 		.maxlen		= sizeof(int),
97 		.mode		= 0644,
98 		.proc_handler	= &proc_dointvec,
99 	},
100 	{
101 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
102 		.procname	= "speed_limit_max",
103 		.data		= &sysctl_speed_limit_max,
104 		.maxlen		= sizeof(int),
105 		.mode		= 0644,
106 		.proc_handler	= &proc_dointvec,
107 	},
108 	{ .ctl_name = 0 }
109 };
110 
111 static ctl_table raid_dir_table[] = {
112 	{
113 		.ctl_name	= DEV_RAID,
114 		.procname	= "raid",
115 		.maxlen		= 0,
116 		.mode		= 0555,
117 		.child		= raid_table,
118 	},
119 	{ .ctl_name = 0 }
120 };
121 
122 static ctl_table raid_root_table[] = {
123 	{
124 		.ctl_name	= CTL_DEV,
125 		.procname	= "dev",
126 		.maxlen		= 0,
127 		.mode		= 0555,
128 		.child		= raid_dir_table,
129 	},
130 	{ .ctl_name = 0 }
131 };
132 
133 static struct block_device_operations md_fops;
134 
135 static int start_readonly;
136 
137 /*
138  * We have a system wide 'event count' that is incremented
139  * on any 'interesting' event, and readers of /proc/mdstat
140  * can use 'poll' or 'select' to find out when the event
141  * count increases.
142  *
143  * Events are:
144  *  start array, stop array, error, add device, remove device,
145  *  start build, activate spare
146  */
147 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
148 static atomic_t md_event_count;
149 static void md_new_event(mddev_t *mddev)
150 {
151 	atomic_inc(&md_event_count);
152 	wake_up(&md_event_waiters);
153 }
154 
155 /*
156  * Enables to iterate over all existing md arrays
157  * all_mddevs_lock protects this list.
158  */
159 static LIST_HEAD(all_mddevs);
160 static DEFINE_SPINLOCK(all_mddevs_lock);
161 
162 
163 /*
164  * iterates through all used mddevs in the system.
165  * We take care to grab the all_mddevs_lock whenever navigating
166  * the list, and to always hold a refcount when unlocked.
167  * Any code which breaks out of this loop while own
168  * a reference to the current mddev and must mddev_put it.
169  */
170 #define ITERATE_MDDEV(mddev,tmp)					\
171 									\
172 	for (({ spin_lock(&all_mddevs_lock); 				\
173 		tmp = all_mddevs.next;					\
174 		mddev = NULL;});					\
175 	     ({ if (tmp != &all_mddevs)					\
176 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
177 		spin_unlock(&all_mddevs_lock);				\
178 		if (mddev) mddev_put(mddev);				\
179 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
180 		tmp != &all_mddevs;});					\
181 	     ({ spin_lock(&all_mddevs_lock);				\
182 		tmp = tmp->next;})					\
183 		)
184 
185 
186 static int md_fail_request (request_queue_t *q, struct bio *bio)
187 {
188 	bio_io_error(bio, bio->bi_size);
189 	return 0;
190 }
191 
192 static inline mddev_t *mddev_get(mddev_t *mddev)
193 {
194 	atomic_inc(&mddev->active);
195 	return mddev;
196 }
197 
198 static void mddev_put(mddev_t *mddev)
199 {
200 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
201 		return;
202 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
203 		list_del(&mddev->all_mddevs);
204 		blk_put_queue(mddev->queue);
205 		kobject_unregister(&mddev->kobj);
206 	}
207 	spin_unlock(&all_mddevs_lock);
208 }
209 
210 static mddev_t * mddev_find(dev_t unit)
211 {
212 	mddev_t *mddev, *new = NULL;
213 
214  retry:
215 	spin_lock(&all_mddevs_lock);
216 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
217 		if (mddev->unit == unit) {
218 			mddev_get(mddev);
219 			spin_unlock(&all_mddevs_lock);
220 			kfree(new);
221 			return mddev;
222 		}
223 
224 	if (new) {
225 		list_add(&new->all_mddevs, &all_mddevs);
226 		spin_unlock(&all_mddevs_lock);
227 		return new;
228 	}
229 	spin_unlock(&all_mddevs_lock);
230 
231 	new = kzalloc(sizeof(*new), GFP_KERNEL);
232 	if (!new)
233 		return NULL;
234 
235 	new->unit = unit;
236 	if (MAJOR(unit) == MD_MAJOR)
237 		new->md_minor = MINOR(unit);
238 	else
239 		new->md_minor = MINOR(unit) >> MdpMinorShift;
240 
241 	init_MUTEX(&new->reconfig_sem);
242 	INIT_LIST_HEAD(&new->disks);
243 	INIT_LIST_HEAD(&new->all_mddevs);
244 	init_timer(&new->safemode_timer);
245 	atomic_set(&new->active, 1);
246 	spin_lock_init(&new->write_lock);
247 	init_waitqueue_head(&new->sb_wait);
248 
249 	new->queue = blk_alloc_queue(GFP_KERNEL);
250 	if (!new->queue) {
251 		kfree(new);
252 		return NULL;
253 	}
254 
255 	blk_queue_make_request(new->queue, md_fail_request);
256 
257 	goto retry;
258 }
259 
260 static inline int mddev_lock(mddev_t * mddev)
261 {
262 	return down_interruptible(&mddev->reconfig_sem);
263 }
264 
265 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
266 {
267 	down(&mddev->reconfig_sem);
268 }
269 
270 static inline int mddev_trylock(mddev_t * mddev)
271 {
272 	return down_trylock(&mddev->reconfig_sem);
273 }
274 
275 static inline void mddev_unlock(mddev_t * mddev)
276 {
277 	up(&mddev->reconfig_sem);
278 
279 	md_wakeup_thread(mddev->thread);
280 }
281 
282 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
283 {
284 	mdk_rdev_t * rdev;
285 	struct list_head *tmp;
286 
287 	ITERATE_RDEV(mddev,rdev,tmp) {
288 		if (rdev->desc_nr == nr)
289 			return rdev;
290 	}
291 	return NULL;
292 }
293 
294 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
295 {
296 	struct list_head *tmp;
297 	mdk_rdev_t *rdev;
298 
299 	ITERATE_RDEV(mddev,rdev,tmp) {
300 		if (rdev->bdev->bd_dev == dev)
301 			return rdev;
302 	}
303 	return NULL;
304 }
305 
306 static struct mdk_personality *find_pers(int level)
307 {
308 	struct mdk_personality *pers;
309 	list_for_each_entry(pers, &pers_list, list)
310 		if (pers->level == level)
311 			return pers;
312 	return NULL;
313 }
314 
315 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
316 {
317 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
318 	return MD_NEW_SIZE_BLOCKS(size);
319 }
320 
321 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
322 {
323 	sector_t size;
324 
325 	size = rdev->sb_offset;
326 
327 	if (chunk_size)
328 		size &= ~((sector_t)chunk_size/1024 - 1);
329 	return size;
330 }
331 
332 static int alloc_disk_sb(mdk_rdev_t * rdev)
333 {
334 	if (rdev->sb_page)
335 		MD_BUG();
336 
337 	rdev->sb_page = alloc_page(GFP_KERNEL);
338 	if (!rdev->sb_page) {
339 		printk(KERN_ALERT "md: out of memory.\n");
340 		return -EINVAL;
341 	}
342 
343 	return 0;
344 }
345 
346 static void free_disk_sb(mdk_rdev_t * rdev)
347 {
348 	if (rdev->sb_page) {
349 		put_page(rdev->sb_page);
350 		rdev->sb_loaded = 0;
351 		rdev->sb_page = NULL;
352 		rdev->sb_offset = 0;
353 		rdev->size = 0;
354 	}
355 }
356 
357 
358 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
359 {
360 	mdk_rdev_t *rdev = bio->bi_private;
361 	mddev_t *mddev = rdev->mddev;
362 	if (bio->bi_size)
363 		return 1;
364 
365 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
366 		md_error(mddev, rdev);
367 
368 	if (atomic_dec_and_test(&mddev->pending_writes))
369 		wake_up(&mddev->sb_wait);
370 	bio_put(bio);
371 	return 0;
372 }
373 
374 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
375 {
376 	struct bio *bio2 = bio->bi_private;
377 	mdk_rdev_t *rdev = bio2->bi_private;
378 	mddev_t *mddev = rdev->mddev;
379 	if (bio->bi_size)
380 		return 1;
381 
382 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
383 	    error == -EOPNOTSUPP) {
384 		unsigned long flags;
385 		/* barriers don't appear to be supported :-( */
386 		set_bit(BarriersNotsupp, &rdev->flags);
387 		mddev->barriers_work = 0;
388 		spin_lock_irqsave(&mddev->write_lock, flags);
389 		bio2->bi_next = mddev->biolist;
390 		mddev->biolist = bio2;
391 		spin_unlock_irqrestore(&mddev->write_lock, flags);
392 		wake_up(&mddev->sb_wait);
393 		bio_put(bio);
394 		return 0;
395 	}
396 	bio_put(bio2);
397 	bio->bi_private = rdev;
398 	return super_written(bio, bytes_done, error);
399 }
400 
401 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
402 		   sector_t sector, int size, struct page *page)
403 {
404 	/* write first size bytes of page to sector of rdev
405 	 * Increment mddev->pending_writes before returning
406 	 * and decrement it on completion, waking up sb_wait
407 	 * if zero is reached.
408 	 * If an error occurred, call md_error
409 	 *
410 	 * As we might need to resubmit the request if BIO_RW_BARRIER
411 	 * causes ENOTSUPP, we allocate a spare bio...
412 	 */
413 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
414 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
415 
416 	bio->bi_bdev = rdev->bdev;
417 	bio->bi_sector = sector;
418 	bio_add_page(bio, page, size, 0);
419 	bio->bi_private = rdev;
420 	bio->bi_end_io = super_written;
421 	bio->bi_rw = rw;
422 
423 	atomic_inc(&mddev->pending_writes);
424 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
425 		struct bio *rbio;
426 		rw |= (1<<BIO_RW_BARRIER);
427 		rbio = bio_clone(bio, GFP_NOIO);
428 		rbio->bi_private = bio;
429 		rbio->bi_end_io = super_written_barrier;
430 		submit_bio(rw, rbio);
431 	} else
432 		submit_bio(rw, bio);
433 }
434 
435 void md_super_wait(mddev_t *mddev)
436 {
437 	/* wait for all superblock writes that were scheduled to complete.
438 	 * if any had to be retried (due to BARRIER problems), retry them
439 	 */
440 	DEFINE_WAIT(wq);
441 	for(;;) {
442 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
443 		if (atomic_read(&mddev->pending_writes)==0)
444 			break;
445 		while (mddev->biolist) {
446 			struct bio *bio;
447 			spin_lock_irq(&mddev->write_lock);
448 			bio = mddev->biolist;
449 			mddev->biolist = bio->bi_next ;
450 			bio->bi_next = NULL;
451 			spin_unlock_irq(&mddev->write_lock);
452 			submit_bio(bio->bi_rw, bio);
453 		}
454 		schedule();
455 	}
456 	finish_wait(&mddev->sb_wait, &wq);
457 }
458 
459 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
460 {
461 	if (bio->bi_size)
462 		return 1;
463 
464 	complete((struct completion*)bio->bi_private);
465 	return 0;
466 }
467 
468 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
469 		   struct page *page, int rw)
470 {
471 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
472 	struct completion event;
473 	int ret;
474 
475 	rw |= (1 << BIO_RW_SYNC);
476 
477 	bio->bi_bdev = bdev;
478 	bio->bi_sector = sector;
479 	bio_add_page(bio, page, size, 0);
480 	init_completion(&event);
481 	bio->bi_private = &event;
482 	bio->bi_end_io = bi_complete;
483 	submit_bio(rw, bio);
484 	wait_for_completion(&event);
485 
486 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
487 	bio_put(bio);
488 	return ret;
489 }
490 EXPORT_SYMBOL_GPL(sync_page_io);
491 
492 static int read_disk_sb(mdk_rdev_t * rdev, int size)
493 {
494 	char b[BDEVNAME_SIZE];
495 	if (!rdev->sb_page) {
496 		MD_BUG();
497 		return -EINVAL;
498 	}
499 	if (rdev->sb_loaded)
500 		return 0;
501 
502 
503 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
504 		goto fail;
505 	rdev->sb_loaded = 1;
506 	return 0;
507 
508 fail:
509 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
510 		bdevname(rdev->bdev,b));
511 	return -EINVAL;
512 }
513 
514 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
515 {
516 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
517 		(sb1->set_uuid1 == sb2->set_uuid1) &&
518 		(sb1->set_uuid2 == sb2->set_uuid2) &&
519 		(sb1->set_uuid3 == sb2->set_uuid3))
520 
521 		return 1;
522 
523 	return 0;
524 }
525 
526 
527 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
528 {
529 	int ret;
530 	mdp_super_t *tmp1, *tmp2;
531 
532 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
533 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
534 
535 	if (!tmp1 || !tmp2) {
536 		ret = 0;
537 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
538 		goto abort;
539 	}
540 
541 	*tmp1 = *sb1;
542 	*tmp2 = *sb2;
543 
544 	/*
545 	 * nr_disks is not constant
546 	 */
547 	tmp1->nr_disks = 0;
548 	tmp2->nr_disks = 0;
549 
550 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
551 		ret = 0;
552 	else
553 		ret = 1;
554 
555 abort:
556 	kfree(tmp1);
557 	kfree(tmp2);
558 	return ret;
559 }
560 
561 static unsigned int calc_sb_csum(mdp_super_t * sb)
562 {
563 	unsigned int disk_csum, csum;
564 
565 	disk_csum = sb->sb_csum;
566 	sb->sb_csum = 0;
567 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
568 	sb->sb_csum = disk_csum;
569 	return csum;
570 }
571 
572 
573 /*
574  * Handle superblock details.
575  * We want to be able to handle multiple superblock formats
576  * so we have a common interface to them all, and an array of
577  * different handlers.
578  * We rely on user-space to write the initial superblock, and support
579  * reading and updating of superblocks.
580  * Interface methods are:
581  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
582  *      loads and validates a superblock on dev.
583  *      if refdev != NULL, compare superblocks on both devices
584  *    Return:
585  *      0 - dev has a superblock that is compatible with refdev
586  *      1 - dev has a superblock that is compatible and newer than refdev
587  *          so dev should be used as the refdev in future
588  *     -EINVAL superblock incompatible or invalid
589  *     -othererror e.g. -EIO
590  *
591  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
592  *      Verify that dev is acceptable into mddev.
593  *       The first time, mddev->raid_disks will be 0, and data from
594  *       dev should be merged in.  Subsequent calls check that dev
595  *       is new enough.  Return 0 or -EINVAL
596  *
597  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
598  *     Update the superblock for rdev with data in mddev
599  *     This does not write to disc.
600  *
601  */
602 
603 struct super_type  {
604 	char 		*name;
605 	struct module	*owner;
606 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
607 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
608 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
609 };
610 
611 /*
612  * load_super for 0.90.0
613  */
614 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
615 {
616 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
617 	mdp_super_t *sb;
618 	int ret;
619 	sector_t sb_offset;
620 
621 	/*
622 	 * Calculate the position of the superblock,
623 	 * it's at the end of the disk.
624 	 *
625 	 * It also happens to be a multiple of 4Kb.
626 	 */
627 	sb_offset = calc_dev_sboffset(rdev->bdev);
628 	rdev->sb_offset = sb_offset;
629 
630 	ret = read_disk_sb(rdev, MD_SB_BYTES);
631 	if (ret) return ret;
632 
633 	ret = -EINVAL;
634 
635 	bdevname(rdev->bdev, b);
636 	sb = (mdp_super_t*)page_address(rdev->sb_page);
637 
638 	if (sb->md_magic != MD_SB_MAGIC) {
639 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
640 		       b);
641 		goto abort;
642 	}
643 
644 	if (sb->major_version != 0 ||
645 	    sb->minor_version != 90) {
646 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
647 			sb->major_version, sb->minor_version,
648 			b);
649 		goto abort;
650 	}
651 
652 	if (sb->raid_disks <= 0)
653 		goto abort;
654 
655 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
656 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
657 			b);
658 		goto abort;
659 	}
660 
661 	rdev->preferred_minor = sb->md_minor;
662 	rdev->data_offset = 0;
663 	rdev->sb_size = MD_SB_BYTES;
664 
665 	if (sb->level == LEVEL_MULTIPATH)
666 		rdev->desc_nr = -1;
667 	else
668 		rdev->desc_nr = sb->this_disk.number;
669 
670 	if (refdev == 0)
671 		ret = 1;
672 	else {
673 		__u64 ev1, ev2;
674 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
675 		if (!uuid_equal(refsb, sb)) {
676 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
677 				b, bdevname(refdev->bdev,b2));
678 			goto abort;
679 		}
680 		if (!sb_equal(refsb, sb)) {
681 			printk(KERN_WARNING "md: %s has same UUID"
682 			       " but different superblock to %s\n",
683 			       b, bdevname(refdev->bdev, b2));
684 			goto abort;
685 		}
686 		ev1 = md_event(sb);
687 		ev2 = md_event(refsb);
688 		if (ev1 > ev2)
689 			ret = 1;
690 		else
691 			ret = 0;
692 	}
693 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
694 
695  abort:
696 	return ret;
697 }
698 
699 /*
700  * validate_super for 0.90.0
701  */
702 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
703 {
704 	mdp_disk_t *desc;
705 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
706 
707 	rdev->raid_disk = -1;
708 	rdev->flags = 0;
709 	if (mddev->raid_disks == 0) {
710 		mddev->major_version = 0;
711 		mddev->minor_version = sb->minor_version;
712 		mddev->patch_version = sb->patch_version;
713 		mddev->persistent = ! sb->not_persistent;
714 		mddev->chunk_size = sb->chunk_size;
715 		mddev->ctime = sb->ctime;
716 		mddev->utime = sb->utime;
717 		mddev->level = sb->level;
718 		mddev->layout = sb->layout;
719 		mddev->raid_disks = sb->raid_disks;
720 		mddev->size = sb->size;
721 		mddev->events = md_event(sb);
722 		mddev->bitmap_offset = 0;
723 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
724 
725 		if (sb->state & (1<<MD_SB_CLEAN))
726 			mddev->recovery_cp = MaxSector;
727 		else {
728 			if (sb->events_hi == sb->cp_events_hi &&
729 				sb->events_lo == sb->cp_events_lo) {
730 				mddev->recovery_cp = sb->recovery_cp;
731 			} else
732 				mddev->recovery_cp = 0;
733 		}
734 
735 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
736 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
737 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
738 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
739 
740 		mddev->max_disks = MD_SB_DISKS;
741 
742 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
743 		    mddev->bitmap_file == NULL) {
744 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
745 			    && mddev->level != 10) {
746 				/* FIXME use a better test */
747 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
748 				return -EINVAL;
749 			}
750 			mddev->bitmap_offset = mddev->default_bitmap_offset;
751 		}
752 
753 	} else if (mddev->pers == NULL) {
754 		/* Insist on good event counter while assembling */
755 		__u64 ev1 = md_event(sb);
756 		++ev1;
757 		if (ev1 < mddev->events)
758 			return -EINVAL;
759 	} else if (mddev->bitmap) {
760 		/* if adding to array with a bitmap, then we can accept an
761 		 * older device ... but not too old.
762 		 */
763 		__u64 ev1 = md_event(sb);
764 		if (ev1 < mddev->bitmap->events_cleared)
765 			return 0;
766 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
767 		return 0;
768 
769 	if (mddev->level != LEVEL_MULTIPATH) {
770 		desc = sb->disks + rdev->desc_nr;
771 
772 		if (desc->state & (1<<MD_DISK_FAULTY))
773 			set_bit(Faulty, &rdev->flags);
774 		else if (desc->state & (1<<MD_DISK_SYNC) &&
775 			 desc->raid_disk < mddev->raid_disks) {
776 			set_bit(In_sync, &rdev->flags);
777 			rdev->raid_disk = desc->raid_disk;
778 		}
779 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
780 			set_bit(WriteMostly, &rdev->flags);
781 	} else /* MULTIPATH are always insync */
782 		set_bit(In_sync, &rdev->flags);
783 	return 0;
784 }
785 
786 /*
787  * sync_super for 0.90.0
788  */
789 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
790 {
791 	mdp_super_t *sb;
792 	struct list_head *tmp;
793 	mdk_rdev_t *rdev2;
794 	int next_spare = mddev->raid_disks;
795 
796 
797 	/* make rdev->sb match mddev data..
798 	 *
799 	 * 1/ zero out disks
800 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
801 	 * 3/ any empty disks < next_spare become removed
802 	 *
803 	 * disks[0] gets initialised to REMOVED because
804 	 * we cannot be sure from other fields if it has
805 	 * been initialised or not.
806 	 */
807 	int i;
808 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
809 
810 	rdev->sb_size = MD_SB_BYTES;
811 
812 	sb = (mdp_super_t*)page_address(rdev->sb_page);
813 
814 	memset(sb, 0, sizeof(*sb));
815 
816 	sb->md_magic = MD_SB_MAGIC;
817 	sb->major_version = mddev->major_version;
818 	sb->minor_version = mddev->minor_version;
819 	sb->patch_version = mddev->patch_version;
820 	sb->gvalid_words  = 0; /* ignored */
821 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
822 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
823 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
824 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
825 
826 	sb->ctime = mddev->ctime;
827 	sb->level = mddev->level;
828 	sb->size  = mddev->size;
829 	sb->raid_disks = mddev->raid_disks;
830 	sb->md_minor = mddev->md_minor;
831 	sb->not_persistent = !mddev->persistent;
832 	sb->utime = mddev->utime;
833 	sb->state = 0;
834 	sb->events_hi = (mddev->events>>32);
835 	sb->events_lo = (u32)mddev->events;
836 
837 	if (mddev->in_sync)
838 	{
839 		sb->recovery_cp = mddev->recovery_cp;
840 		sb->cp_events_hi = (mddev->events>>32);
841 		sb->cp_events_lo = (u32)mddev->events;
842 		if (mddev->recovery_cp == MaxSector)
843 			sb->state = (1<< MD_SB_CLEAN);
844 	} else
845 		sb->recovery_cp = 0;
846 
847 	sb->layout = mddev->layout;
848 	sb->chunk_size = mddev->chunk_size;
849 
850 	if (mddev->bitmap && mddev->bitmap_file == NULL)
851 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
852 
853 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
854 	ITERATE_RDEV(mddev,rdev2,tmp) {
855 		mdp_disk_t *d;
856 		int desc_nr;
857 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
858 		    && !test_bit(Faulty, &rdev2->flags))
859 			desc_nr = rdev2->raid_disk;
860 		else
861 			desc_nr = next_spare++;
862 		rdev2->desc_nr = desc_nr;
863 		d = &sb->disks[rdev2->desc_nr];
864 		nr_disks++;
865 		d->number = rdev2->desc_nr;
866 		d->major = MAJOR(rdev2->bdev->bd_dev);
867 		d->minor = MINOR(rdev2->bdev->bd_dev);
868 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
869 		    && !test_bit(Faulty, &rdev2->flags))
870 			d->raid_disk = rdev2->raid_disk;
871 		else
872 			d->raid_disk = rdev2->desc_nr; /* compatibility */
873 		if (test_bit(Faulty, &rdev2->flags)) {
874 			d->state = (1<<MD_DISK_FAULTY);
875 			failed++;
876 		} else if (test_bit(In_sync, &rdev2->flags)) {
877 			d->state = (1<<MD_DISK_ACTIVE);
878 			d->state |= (1<<MD_DISK_SYNC);
879 			active++;
880 			working++;
881 		} else {
882 			d->state = 0;
883 			spare++;
884 			working++;
885 		}
886 		if (test_bit(WriteMostly, &rdev2->flags))
887 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
888 	}
889 	/* now set the "removed" and "faulty" bits on any missing devices */
890 	for (i=0 ; i < mddev->raid_disks ; i++) {
891 		mdp_disk_t *d = &sb->disks[i];
892 		if (d->state == 0 && d->number == 0) {
893 			d->number = i;
894 			d->raid_disk = i;
895 			d->state = (1<<MD_DISK_REMOVED);
896 			d->state |= (1<<MD_DISK_FAULTY);
897 			failed++;
898 		}
899 	}
900 	sb->nr_disks = nr_disks;
901 	sb->active_disks = active;
902 	sb->working_disks = working;
903 	sb->failed_disks = failed;
904 	sb->spare_disks = spare;
905 
906 	sb->this_disk = sb->disks[rdev->desc_nr];
907 	sb->sb_csum = calc_sb_csum(sb);
908 }
909 
910 /*
911  * version 1 superblock
912  */
913 
914 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
915 {
916 	unsigned int disk_csum, csum;
917 	unsigned long long newcsum;
918 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
919 	unsigned int *isuper = (unsigned int*)sb;
920 	int i;
921 
922 	disk_csum = sb->sb_csum;
923 	sb->sb_csum = 0;
924 	newcsum = 0;
925 	for (i=0; size>=4; size -= 4 )
926 		newcsum += le32_to_cpu(*isuper++);
927 
928 	if (size == 2)
929 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
930 
931 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
932 	sb->sb_csum = disk_csum;
933 	return cpu_to_le32(csum);
934 }
935 
936 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
937 {
938 	struct mdp_superblock_1 *sb;
939 	int ret;
940 	sector_t sb_offset;
941 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
942 	int bmask;
943 
944 	/*
945 	 * Calculate the position of the superblock.
946 	 * It is always aligned to a 4K boundary and
947 	 * depeding on minor_version, it can be:
948 	 * 0: At least 8K, but less than 12K, from end of device
949 	 * 1: At start of device
950 	 * 2: 4K from start of device.
951 	 */
952 	switch(minor_version) {
953 	case 0:
954 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
955 		sb_offset -= 8*2;
956 		sb_offset &= ~(sector_t)(4*2-1);
957 		/* convert from sectors to K */
958 		sb_offset /= 2;
959 		break;
960 	case 1:
961 		sb_offset = 0;
962 		break;
963 	case 2:
964 		sb_offset = 4;
965 		break;
966 	default:
967 		return -EINVAL;
968 	}
969 	rdev->sb_offset = sb_offset;
970 
971 	/* superblock is rarely larger than 1K, but it can be larger,
972 	 * and it is safe to read 4k, so we do that
973 	 */
974 	ret = read_disk_sb(rdev, 4096);
975 	if (ret) return ret;
976 
977 
978 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
979 
980 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
981 	    sb->major_version != cpu_to_le32(1) ||
982 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
983 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
984 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
985 		return -EINVAL;
986 
987 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
988 		printk("md: invalid superblock checksum on %s\n",
989 			bdevname(rdev->bdev,b));
990 		return -EINVAL;
991 	}
992 	if (le64_to_cpu(sb->data_size) < 10) {
993 		printk("md: data_size too small on %s\n",
994 		       bdevname(rdev->bdev,b));
995 		return -EINVAL;
996 	}
997 	rdev->preferred_minor = 0xffff;
998 	rdev->data_offset = le64_to_cpu(sb->data_offset);
999 
1000 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1001 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1002 	if (rdev->sb_size & bmask)
1003 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1004 
1005 	if (refdev == 0)
1006 		return 1;
1007 	else {
1008 		__u64 ev1, ev2;
1009 		struct mdp_superblock_1 *refsb =
1010 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1011 
1012 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1013 		    sb->level != refsb->level ||
1014 		    sb->layout != refsb->layout ||
1015 		    sb->chunksize != refsb->chunksize) {
1016 			printk(KERN_WARNING "md: %s has strangely different"
1017 				" superblock to %s\n",
1018 				bdevname(rdev->bdev,b),
1019 				bdevname(refdev->bdev,b2));
1020 			return -EINVAL;
1021 		}
1022 		ev1 = le64_to_cpu(sb->events);
1023 		ev2 = le64_to_cpu(refsb->events);
1024 
1025 		if (ev1 > ev2)
1026 			return 1;
1027 	}
1028 	if (minor_version)
1029 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1030 	else
1031 		rdev->size = rdev->sb_offset;
1032 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1033 		return -EINVAL;
1034 	rdev->size = le64_to_cpu(sb->data_size)/2;
1035 	if (le32_to_cpu(sb->chunksize))
1036 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1037 	return 0;
1038 }
1039 
1040 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1041 {
1042 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1043 
1044 	rdev->raid_disk = -1;
1045 	rdev->flags = 0;
1046 	if (mddev->raid_disks == 0) {
1047 		mddev->major_version = 1;
1048 		mddev->patch_version = 0;
1049 		mddev->persistent = 1;
1050 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1051 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1052 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1053 		mddev->level = le32_to_cpu(sb->level);
1054 		mddev->layout = le32_to_cpu(sb->layout);
1055 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1056 		mddev->size = le64_to_cpu(sb->size)/2;
1057 		mddev->events = le64_to_cpu(sb->events);
1058 		mddev->bitmap_offset = 0;
1059 		mddev->default_bitmap_offset = 1024;
1060 
1061 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1062 		memcpy(mddev->uuid, sb->set_uuid, 16);
1063 
1064 		mddev->max_disks =  (4096-256)/2;
1065 
1066 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1067 		    mddev->bitmap_file == NULL ) {
1068 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1069 			    && mddev->level != 10) {
1070 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1071 				return -EINVAL;
1072 			}
1073 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1074 		}
1075 	} else if (mddev->pers == NULL) {
1076 		/* Insist of good event counter while assembling */
1077 		__u64 ev1 = le64_to_cpu(sb->events);
1078 		++ev1;
1079 		if (ev1 < mddev->events)
1080 			return -EINVAL;
1081 	} else if (mddev->bitmap) {
1082 		/* If adding to array with a bitmap, then we can accept an
1083 		 * older device, but not too old.
1084 		 */
1085 		__u64 ev1 = le64_to_cpu(sb->events);
1086 		if (ev1 < mddev->bitmap->events_cleared)
1087 			return 0;
1088 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1089 		return 0;
1090 
1091 	if (mddev->level != LEVEL_MULTIPATH) {
1092 		int role;
1093 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1094 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1095 		switch(role) {
1096 		case 0xffff: /* spare */
1097 			break;
1098 		case 0xfffe: /* faulty */
1099 			set_bit(Faulty, &rdev->flags);
1100 			break;
1101 		default:
1102 			set_bit(In_sync, &rdev->flags);
1103 			rdev->raid_disk = role;
1104 			break;
1105 		}
1106 		if (sb->devflags & WriteMostly1)
1107 			set_bit(WriteMostly, &rdev->flags);
1108 	} else /* MULTIPATH are always insync */
1109 		set_bit(In_sync, &rdev->flags);
1110 
1111 	return 0;
1112 }
1113 
1114 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1115 {
1116 	struct mdp_superblock_1 *sb;
1117 	struct list_head *tmp;
1118 	mdk_rdev_t *rdev2;
1119 	int max_dev, i;
1120 	/* make rdev->sb match mddev and rdev data. */
1121 
1122 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1123 
1124 	sb->feature_map = 0;
1125 	sb->pad0 = 0;
1126 	memset(sb->pad1, 0, sizeof(sb->pad1));
1127 	memset(sb->pad2, 0, sizeof(sb->pad2));
1128 	memset(sb->pad3, 0, sizeof(sb->pad3));
1129 
1130 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1131 	sb->events = cpu_to_le64(mddev->events);
1132 	if (mddev->in_sync)
1133 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1134 	else
1135 		sb->resync_offset = cpu_to_le64(0);
1136 
1137 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1138 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1139 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1140 	}
1141 
1142 	max_dev = 0;
1143 	ITERATE_RDEV(mddev,rdev2,tmp)
1144 		if (rdev2->desc_nr+1 > max_dev)
1145 			max_dev = rdev2->desc_nr+1;
1146 
1147 	sb->max_dev = cpu_to_le32(max_dev);
1148 	for (i=0; i<max_dev;i++)
1149 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1150 
1151 	ITERATE_RDEV(mddev,rdev2,tmp) {
1152 		i = rdev2->desc_nr;
1153 		if (test_bit(Faulty, &rdev2->flags))
1154 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1155 		else if (test_bit(In_sync, &rdev2->flags))
1156 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1157 		else
1158 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1159 	}
1160 
1161 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1162 	sb->sb_csum = calc_sb_1_csum(sb);
1163 }
1164 
1165 
1166 static struct super_type super_types[] = {
1167 	[0] = {
1168 		.name	= "0.90.0",
1169 		.owner	= THIS_MODULE,
1170 		.load_super	= super_90_load,
1171 		.validate_super	= super_90_validate,
1172 		.sync_super	= super_90_sync,
1173 	},
1174 	[1] = {
1175 		.name	= "md-1",
1176 		.owner	= THIS_MODULE,
1177 		.load_super	= super_1_load,
1178 		.validate_super	= super_1_validate,
1179 		.sync_super	= super_1_sync,
1180 	},
1181 };
1182 
1183 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1184 {
1185 	struct list_head *tmp;
1186 	mdk_rdev_t *rdev;
1187 
1188 	ITERATE_RDEV(mddev,rdev,tmp)
1189 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1190 			return rdev;
1191 
1192 	return NULL;
1193 }
1194 
1195 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1196 {
1197 	struct list_head *tmp;
1198 	mdk_rdev_t *rdev;
1199 
1200 	ITERATE_RDEV(mddev1,rdev,tmp)
1201 		if (match_dev_unit(mddev2, rdev))
1202 			return 1;
1203 
1204 	return 0;
1205 }
1206 
1207 static LIST_HEAD(pending_raid_disks);
1208 
1209 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1210 {
1211 	mdk_rdev_t *same_pdev;
1212 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1213 	struct kobject *ko;
1214 
1215 	if (rdev->mddev) {
1216 		MD_BUG();
1217 		return -EINVAL;
1218 	}
1219 	same_pdev = match_dev_unit(mddev, rdev);
1220 	if (same_pdev)
1221 		printk(KERN_WARNING
1222 			"%s: WARNING: %s appears to be on the same physical"
1223 	 		" disk as %s. True\n     protection against single-disk"
1224 			" failure might be compromised.\n",
1225 			mdname(mddev), bdevname(rdev->bdev,b),
1226 			bdevname(same_pdev->bdev,b2));
1227 
1228 	/* Verify rdev->desc_nr is unique.
1229 	 * If it is -1, assign a free number, else
1230 	 * check number is not in use
1231 	 */
1232 	if (rdev->desc_nr < 0) {
1233 		int choice = 0;
1234 		if (mddev->pers) choice = mddev->raid_disks;
1235 		while (find_rdev_nr(mddev, choice))
1236 			choice++;
1237 		rdev->desc_nr = choice;
1238 	} else {
1239 		if (find_rdev_nr(mddev, rdev->desc_nr))
1240 			return -EBUSY;
1241 	}
1242 	bdevname(rdev->bdev,b);
1243 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1244 		return -ENOMEM;
1245 
1246 	list_add(&rdev->same_set, &mddev->disks);
1247 	rdev->mddev = mddev;
1248 	printk(KERN_INFO "md: bind<%s>\n", b);
1249 
1250 	rdev->kobj.parent = &mddev->kobj;
1251 	kobject_add(&rdev->kobj);
1252 
1253 	if (rdev->bdev->bd_part)
1254 		ko = &rdev->bdev->bd_part->kobj;
1255 	else
1256 		ko = &rdev->bdev->bd_disk->kobj;
1257 	sysfs_create_link(&rdev->kobj, ko, "block");
1258 	return 0;
1259 }
1260 
1261 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1262 {
1263 	char b[BDEVNAME_SIZE];
1264 	if (!rdev->mddev) {
1265 		MD_BUG();
1266 		return;
1267 	}
1268 	list_del_init(&rdev->same_set);
1269 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1270 	rdev->mddev = NULL;
1271 	sysfs_remove_link(&rdev->kobj, "block");
1272 	kobject_del(&rdev->kobj);
1273 }
1274 
1275 /*
1276  * prevent the device from being mounted, repartitioned or
1277  * otherwise reused by a RAID array (or any other kernel
1278  * subsystem), by bd_claiming the device.
1279  */
1280 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1281 {
1282 	int err = 0;
1283 	struct block_device *bdev;
1284 	char b[BDEVNAME_SIZE];
1285 
1286 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1287 	if (IS_ERR(bdev)) {
1288 		printk(KERN_ERR "md: could not open %s.\n",
1289 			__bdevname(dev, b));
1290 		return PTR_ERR(bdev);
1291 	}
1292 	err = bd_claim(bdev, rdev);
1293 	if (err) {
1294 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1295 			bdevname(bdev, b));
1296 		blkdev_put(bdev);
1297 		return err;
1298 	}
1299 	rdev->bdev = bdev;
1300 	return err;
1301 }
1302 
1303 static void unlock_rdev(mdk_rdev_t *rdev)
1304 {
1305 	struct block_device *bdev = rdev->bdev;
1306 	rdev->bdev = NULL;
1307 	if (!bdev)
1308 		MD_BUG();
1309 	bd_release(bdev);
1310 	blkdev_put(bdev);
1311 }
1312 
1313 void md_autodetect_dev(dev_t dev);
1314 
1315 static void export_rdev(mdk_rdev_t * rdev)
1316 {
1317 	char b[BDEVNAME_SIZE];
1318 	printk(KERN_INFO "md: export_rdev(%s)\n",
1319 		bdevname(rdev->bdev,b));
1320 	if (rdev->mddev)
1321 		MD_BUG();
1322 	free_disk_sb(rdev);
1323 	list_del_init(&rdev->same_set);
1324 #ifndef MODULE
1325 	md_autodetect_dev(rdev->bdev->bd_dev);
1326 #endif
1327 	unlock_rdev(rdev);
1328 	kobject_put(&rdev->kobj);
1329 }
1330 
1331 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1332 {
1333 	unbind_rdev_from_array(rdev);
1334 	export_rdev(rdev);
1335 }
1336 
1337 static void export_array(mddev_t *mddev)
1338 {
1339 	struct list_head *tmp;
1340 	mdk_rdev_t *rdev;
1341 
1342 	ITERATE_RDEV(mddev,rdev,tmp) {
1343 		if (!rdev->mddev) {
1344 			MD_BUG();
1345 			continue;
1346 		}
1347 		kick_rdev_from_array(rdev);
1348 	}
1349 	if (!list_empty(&mddev->disks))
1350 		MD_BUG();
1351 	mddev->raid_disks = 0;
1352 	mddev->major_version = 0;
1353 }
1354 
1355 static void print_desc(mdp_disk_t *desc)
1356 {
1357 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1358 		desc->major,desc->minor,desc->raid_disk,desc->state);
1359 }
1360 
1361 static void print_sb(mdp_super_t *sb)
1362 {
1363 	int i;
1364 
1365 	printk(KERN_INFO
1366 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1367 		sb->major_version, sb->minor_version, sb->patch_version,
1368 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1369 		sb->ctime);
1370 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1371 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1372 		sb->md_minor, sb->layout, sb->chunk_size);
1373 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1374 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1375 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1376 		sb->failed_disks, sb->spare_disks,
1377 		sb->sb_csum, (unsigned long)sb->events_lo);
1378 
1379 	printk(KERN_INFO);
1380 	for (i = 0; i < MD_SB_DISKS; i++) {
1381 		mdp_disk_t *desc;
1382 
1383 		desc = sb->disks + i;
1384 		if (desc->number || desc->major || desc->minor ||
1385 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1386 			printk("     D %2d: ", i);
1387 			print_desc(desc);
1388 		}
1389 	}
1390 	printk(KERN_INFO "md:     THIS: ");
1391 	print_desc(&sb->this_disk);
1392 
1393 }
1394 
1395 static void print_rdev(mdk_rdev_t *rdev)
1396 {
1397 	char b[BDEVNAME_SIZE];
1398 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1399 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1400 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1401 	        rdev->desc_nr);
1402 	if (rdev->sb_loaded) {
1403 		printk(KERN_INFO "md: rdev superblock:\n");
1404 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1405 	} else
1406 		printk(KERN_INFO "md: no rdev superblock!\n");
1407 }
1408 
1409 void md_print_devices(void)
1410 {
1411 	struct list_head *tmp, *tmp2;
1412 	mdk_rdev_t *rdev;
1413 	mddev_t *mddev;
1414 	char b[BDEVNAME_SIZE];
1415 
1416 	printk("\n");
1417 	printk("md:	**********************************\n");
1418 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1419 	printk("md:	**********************************\n");
1420 	ITERATE_MDDEV(mddev,tmp) {
1421 
1422 		if (mddev->bitmap)
1423 			bitmap_print_sb(mddev->bitmap);
1424 		else
1425 			printk("%s: ", mdname(mddev));
1426 		ITERATE_RDEV(mddev,rdev,tmp2)
1427 			printk("<%s>", bdevname(rdev->bdev,b));
1428 		printk("\n");
1429 
1430 		ITERATE_RDEV(mddev,rdev,tmp2)
1431 			print_rdev(rdev);
1432 	}
1433 	printk("md:	**********************************\n");
1434 	printk("\n");
1435 }
1436 
1437 
1438 static void sync_sbs(mddev_t * mddev)
1439 {
1440 	mdk_rdev_t *rdev;
1441 	struct list_head *tmp;
1442 
1443 	ITERATE_RDEV(mddev,rdev,tmp) {
1444 		super_types[mddev->major_version].
1445 			sync_super(mddev, rdev);
1446 		rdev->sb_loaded = 1;
1447 	}
1448 }
1449 
1450 static void md_update_sb(mddev_t * mddev)
1451 {
1452 	int err;
1453 	struct list_head *tmp;
1454 	mdk_rdev_t *rdev;
1455 	int sync_req;
1456 
1457 repeat:
1458 	spin_lock_irq(&mddev->write_lock);
1459 	sync_req = mddev->in_sync;
1460 	mddev->utime = get_seconds();
1461 	mddev->events ++;
1462 
1463 	if (!mddev->events) {
1464 		/*
1465 		 * oops, this 64-bit counter should never wrap.
1466 		 * Either we are in around ~1 trillion A.C., assuming
1467 		 * 1 reboot per second, or we have a bug:
1468 		 */
1469 		MD_BUG();
1470 		mddev->events --;
1471 	}
1472 	mddev->sb_dirty = 2;
1473 	sync_sbs(mddev);
1474 
1475 	/*
1476 	 * do not write anything to disk if using
1477 	 * nonpersistent superblocks
1478 	 */
1479 	if (!mddev->persistent) {
1480 		mddev->sb_dirty = 0;
1481 		spin_unlock_irq(&mddev->write_lock);
1482 		wake_up(&mddev->sb_wait);
1483 		return;
1484 	}
1485 	spin_unlock_irq(&mddev->write_lock);
1486 
1487 	dprintk(KERN_INFO
1488 		"md: updating %s RAID superblock on device (in sync %d)\n",
1489 		mdname(mddev),mddev->in_sync);
1490 
1491 	err = bitmap_update_sb(mddev->bitmap);
1492 	ITERATE_RDEV(mddev,rdev,tmp) {
1493 		char b[BDEVNAME_SIZE];
1494 		dprintk(KERN_INFO "md: ");
1495 		if (test_bit(Faulty, &rdev->flags))
1496 			dprintk("(skipping faulty ");
1497 
1498 		dprintk("%s ", bdevname(rdev->bdev,b));
1499 		if (!test_bit(Faulty, &rdev->flags)) {
1500 			md_super_write(mddev,rdev,
1501 				       rdev->sb_offset<<1, rdev->sb_size,
1502 				       rdev->sb_page);
1503 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1504 				bdevname(rdev->bdev,b),
1505 				(unsigned long long)rdev->sb_offset);
1506 
1507 		} else
1508 			dprintk(")\n");
1509 		if (mddev->level == LEVEL_MULTIPATH)
1510 			/* only need to write one superblock... */
1511 			break;
1512 	}
1513 	md_super_wait(mddev);
1514 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1515 
1516 	spin_lock_irq(&mddev->write_lock);
1517 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1518 		/* have to write it out again */
1519 		spin_unlock_irq(&mddev->write_lock);
1520 		goto repeat;
1521 	}
1522 	mddev->sb_dirty = 0;
1523 	spin_unlock_irq(&mddev->write_lock);
1524 	wake_up(&mddev->sb_wait);
1525 
1526 }
1527 
1528 /* words written to sysfs files may, or my not, be \n terminated.
1529  * We want to accept with case. For this we use cmd_match.
1530  */
1531 static int cmd_match(const char *cmd, const char *str)
1532 {
1533 	/* See if cmd, written into a sysfs file, matches
1534 	 * str.  They must either be the same, or cmd can
1535 	 * have a trailing newline
1536 	 */
1537 	while (*cmd && *str && *cmd == *str) {
1538 		cmd++;
1539 		str++;
1540 	}
1541 	if (*cmd == '\n')
1542 		cmd++;
1543 	if (*str || *cmd)
1544 		return 0;
1545 	return 1;
1546 }
1547 
1548 struct rdev_sysfs_entry {
1549 	struct attribute attr;
1550 	ssize_t (*show)(mdk_rdev_t *, char *);
1551 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1552 };
1553 
1554 static ssize_t
1555 state_show(mdk_rdev_t *rdev, char *page)
1556 {
1557 	char *sep = "";
1558 	int len=0;
1559 
1560 	if (test_bit(Faulty, &rdev->flags)) {
1561 		len+= sprintf(page+len, "%sfaulty",sep);
1562 		sep = ",";
1563 	}
1564 	if (test_bit(In_sync, &rdev->flags)) {
1565 		len += sprintf(page+len, "%sin_sync",sep);
1566 		sep = ",";
1567 	}
1568 	if (!test_bit(Faulty, &rdev->flags) &&
1569 	    !test_bit(In_sync, &rdev->flags)) {
1570 		len += sprintf(page+len, "%sspare", sep);
1571 		sep = ",";
1572 	}
1573 	return len+sprintf(page+len, "\n");
1574 }
1575 
1576 static struct rdev_sysfs_entry
1577 rdev_state = __ATTR_RO(state);
1578 
1579 static ssize_t
1580 super_show(mdk_rdev_t *rdev, char *page)
1581 {
1582 	if (rdev->sb_loaded && rdev->sb_size) {
1583 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1584 		return rdev->sb_size;
1585 	} else
1586 		return 0;
1587 }
1588 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1589 
1590 static struct attribute *rdev_default_attrs[] = {
1591 	&rdev_state.attr,
1592 	&rdev_super.attr,
1593 	NULL,
1594 };
1595 static ssize_t
1596 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1597 {
1598 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1599 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1600 
1601 	if (!entry->show)
1602 		return -EIO;
1603 	return entry->show(rdev, page);
1604 }
1605 
1606 static ssize_t
1607 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1608 	      const char *page, size_t length)
1609 {
1610 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1611 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1612 
1613 	if (!entry->store)
1614 		return -EIO;
1615 	return entry->store(rdev, page, length);
1616 }
1617 
1618 static void rdev_free(struct kobject *ko)
1619 {
1620 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1621 	kfree(rdev);
1622 }
1623 static struct sysfs_ops rdev_sysfs_ops = {
1624 	.show		= rdev_attr_show,
1625 	.store		= rdev_attr_store,
1626 };
1627 static struct kobj_type rdev_ktype = {
1628 	.release	= rdev_free,
1629 	.sysfs_ops	= &rdev_sysfs_ops,
1630 	.default_attrs	= rdev_default_attrs,
1631 };
1632 
1633 /*
1634  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1635  *
1636  * mark the device faulty if:
1637  *
1638  *   - the device is nonexistent (zero size)
1639  *   - the device has no valid superblock
1640  *
1641  * a faulty rdev _never_ has rdev->sb set.
1642  */
1643 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1644 {
1645 	char b[BDEVNAME_SIZE];
1646 	int err;
1647 	mdk_rdev_t *rdev;
1648 	sector_t size;
1649 
1650 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1651 	if (!rdev) {
1652 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1653 		return ERR_PTR(-ENOMEM);
1654 	}
1655 
1656 	if ((err = alloc_disk_sb(rdev)))
1657 		goto abort_free;
1658 
1659 	err = lock_rdev(rdev, newdev);
1660 	if (err)
1661 		goto abort_free;
1662 
1663 	rdev->kobj.parent = NULL;
1664 	rdev->kobj.ktype = &rdev_ktype;
1665 	kobject_init(&rdev->kobj);
1666 
1667 	rdev->desc_nr = -1;
1668 	rdev->flags = 0;
1669 	rdev->data_offset = 0;
1670 	atomic_set(&rdev->nr_pending, 0);
1671 	atomic_set(&rdev->read_errors, 0);
1672 
1673 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1674 	if (!size) {
1675 		printk(KERN_WARNING
1676 			"md: %s has zero or unknown size, marking faulty!\n",
1677 			bdevname(rdev->bdev,b));
1678 		err = -EINVAL;
1679 		goto abort_free;
1680 	}
1681 
1682 	if (super_format >= 0) {
1683 		err = super_types[super_format].
1684 			load_super(rdev, NULL, super_minor);
1685 		if (err == -EINVAL) {
1686 			printk(KERN_WARNING
1687 				"md: %s has invalid sb, not importing!\n",
1688 				bdevname(rdev->bdev,b));
1689 			goto abort_free;
1690 		}
1691 		if (err < 0) {
1692 			printk(KERN_WARNING
1693 				"md: could not read %s's sb, not importing!\n",
1694 				bdevname(rdev->bdev,b));
1695 			goto abort_free;
1696 		}
1697 	}
1698 	INIT_LIST_HEAD(&rdev->same_set);
1699 
1700 	return rdev;
1701 
1702 abort_free:
1703 	if (rdev->sb_page) {
1704 		if (rdev->bdev)
1705 			unlock_rdev(rdev);
1706 		free_disk_sb(rdev);
1707 	}
1708 	kfree(rdev);
1709 	return ERR_PTR(err);
1710 }
1711 
1712 /*
1713  * Check a full RAID array for plausibility
1714  */
1715 
1716 
1717 static void analyze_sbs(mddev_t * mddev)
1718 {
1719 	int i;
1720 	struct list_head *tmp;
1721 	mdk_rdev_t *rdev, *freshest;
1722 	char b[BDEVNAME_SIZE];
1723 
1724 	freshest = NULL;
1725 	ITERATE_RDEV(mddev,rdev,tmp)
1726 		switch (super_types[mddev->major_version].
1727 			load_super(rdev, freshest, mddev->minor_version)) {
1728 		case 1:
1729 			freshest = rdev;
1730 			break;
1731 		case 0:
1732 			break;
1733 		default:
1734 			printk( KERN_ERR \
1735 				"md: fatal superblock inconsistency in %s"
1736 				" -- removing from array\n",
1737 				bdevname(rdev->bdev,b));
1738 			kick_rdev_from_array(rdev);
1739 		}
1740 
1741 
1742 	super_types[mddev->major_version].
1743 		validate_super(mddev, freshest);
1744 
1745 	i = 0;
1746 	ITERATE_RDEV(mddev,rdev,tmp) {
1747 		if (rdev != freshest)
1748 			if (super_types[mddev->major_version].
1749 			    validate_super(mddev, rdev)) {
1750 				printk(KERN_WARNING "md: kicking non-fresh %s"
1751 					" from array!\n",
1752 					bdevname(rdev->bdev,b));
1753 				kick_rdev_from_array(rdev);
1754 				continue;
1755 			}
1756 		if (mddev->level == LEVEL_MULTIPATH) {
1757 			rdev->desc_nr = i++;
1758 			rdev->raid_disk = rdev->desc_nr;
1759 			set_bit(In_sync, &rdev->flags);
1760 		}
1761 	}
1762 
1763 
1764 
1765 	if (mddev->recovery_cp != MaxSector &&
1766 	    mddev->level >= 1)
1767 		printk(KERN_ERR "md: %s: raid array is not clean"
1768 		       " -- starting background reconstruction\n",
1769 		       mdname(mddev));
1770 
1771 }
1772 
1773 static ssize_t
1774 level_show(mddev_t *mddev, char *page)
1775 {
1776 	struct mdk_personality *p = mddev->pers;
1777 	if (p == NULL && mddev->raid_disks == 0)
1778 		return 0;
1779 	if (mddev->level >= 0)
1780 		return sprintf(page, "raid%d\n", mddev->level);
1781 	else
1782 		return sprintf(page, "%s\n", p->name);
1783 }
1784 
1785 static struct md_sysfs_entry md_level = __ATTR_RO(level);
1786 
1787 static ssize_t
1788 raid_disks_show(mddev_t *mddev, char *page)
1789 {
1790 	if (mddev->raid_disks == 0)
1791 		return 0;
1792 	return sprintf(page, "%d\n", mddev->raid_disks);
1793 }
1794 
1795 static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
1796 
1797 static ssize_t
1798 chunk_size_show(mddev_t *mddev, char *page)
1799 {
1800 	return sprintf(page, "%d\n", mddev->chunk_size);
1801 }
1802 
1803 static ssize_t
1804 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
1805 {
1806 	/* can only set chunk_size if array is not yet active */
1807 	char *e;
1808 	unsigned long n = simple_strtoul(buf, &e, 10);
1809 
1810 	if (mddev->pers)
1811 		return -EBUSY;
1812 	if (!*buf || (*e && *e != '\n'))
1813 		return -EINVAL;
1814 
1815 	mddev->chunk_size = n;
1816 	return len;
1817 }
1818 static struct md_sysfs_entry md_chunk_size =
1819 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
1820 
1821 
1822 static ssize_t
1823 size_show(mddev_t *mddev, char *page)
1824 {
1825 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
1826 }
1827 
1828 static int update_size(mddev_t *mddev, unsigned long size);
1829 
1830 static ssize_t
1831 size_store(mddev_t *mddev, const char *buf, size_t len)
1832 {
1833 	/* If array is inactive, we can reduce the component size, but
1834 	 * not increase it (except from 0).
1835 	 * If array is active, we can try an on-line resize
1836 	 */
1837 	char *e;
1838 	int err = 0;
1839 	unsigned long long size = simple_strtoull(buf, &e, 10);
1840 	if (!*buf || *buf == '\n' ||
1841 	    (*e && *e != '\n'))
1842 		return -EINVAL;
1843 
1844 	if (mddev->pers) {
1845 		err = update_size(mddev, size);
1846 		md_update_sb(mddev);
1847 	} else {
1848 		if (mddev->size == 0 ||
1849 		    mddev->size > size)
1850 			mddev->size = size;
1851 		else
1852 			err = -ENOSPC;
1853 	}
1854 	return err ? err : len;
1855 }
1856 
1857 static struct md_sysfs_entry md_size =
1858 __ATTR(component_size, 0644, size_show, size_store);
1859 
1860 
1861 /* Metdata version.
1862  * This is either 'none' for arrays with externally managed metadata,
1863  * or N.M for internally known formats
1864  */
1865 static ssize_t
1866 metadata_show(mddev_t *mddev, char *page)
1867 {
1868 	if (mddev->persistent)
1869 		return sprintf(page, "%d.%d\n",
1870 			       mddev->major_version, mddev->minor_version);
1871 	else
1872 		return sprintf(page, "none\n");
1873 }
1874 
1875 static ssize_t
1876 metadata_store(mddev_t *mddev, const char *buf, size_t len)
1877 {
1878 	int major, minor;
1879 	char *e;
1880 	if (!list_empty(&mddev->disks))
1881 		return -EBUSY;
1882 
1883 	if (cmd_match(buf, "none")) {
1884 		mddev->persistent = 0;
1885 		mddev->major_version = 0;
1886 		mddev->minor_version = 90;
1887 		return len;
1888 	}
1889 	major = simple_strtoul(buf, &e, 10);
1890 	if (e==buf || *e != '.')
1891 		return -EINVAL;
1892 	buf = e+1;
1893 	minor = simple_strtoul(buf, &e, 10);
1894 	if (e==buf || *e != '\n')
1895 		return -EINVAL;
1896 	if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
1897 	    super_types[major].name == NULL)
1898 		return -ENOENT;
1899 	mddev->major_version = major;
1900 	mddev->minor_version = minor;
1901 	mddev->persistent = 1;
1902 	return len;
1903 }
1904 
1905 static struct md_sysfs_entry md_metadata =
1906 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
1907 
1908 static ssize_t
1909 action_show(mddev_t *mddev, char *page)
1910 {
1911 	char *type = "idle";
1912 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1913 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1914 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1915 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1916 				type = "resync";
1917 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1918 				type = "check";
1919 			else
1920 				type = "repair";
1921 		} else
1922 			type = "recover";
1923 	}
1924 	return sprintf(page, "%s\n", type);
1925 }
1926 
1927 static ssize_t
1928 action_store(mddev_t *mddev, const char *page, size_t len)
1929 {
1930 	if (!mddev->pers || !mddev->pers->sync_request)
1931 		return -EINVAL;
1932 
1933 	if (cmd_match(page, "idle")) {
1934 		if (mddev->sync_thread) {
1935 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1936 			md_unregister_thread(mddev->sync_thread);
1937 			mddev->sync_thread = NULL;
1938 			mddev->recovery = 0;
1939 		}
1940 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1941 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1942 		return -EBUSY;
1943 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
1944 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1945 	else {
1946 		if (cmd_match(page, "check"))
1947 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1948 		else if (cmd_match(page, "repair"))
1949 			return -EINVAL;
1950 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1951 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1952 	}
1953 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1954 	md_wakeup_thread(mddev->thread);
1955 	return len;
1956 }
1957 
1958 static ssize_t
1959 mismatch_cnt_show(mddev_t *mddev, char *page)
1960 {
1961 	return sprintf(page, "%llu\n",
1962 		       (unsigned long long) mddev->resync_mismatches);
1963 }
1964 
1965 static struct md_sysfs_entry
1966 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
1967 
1968 
1969 static struct md_sysfs_entry
1970 md_mismatches = __ATTR_RO(mismatch_cnt);
1971 
1972 static struct attribute *md_default_attrs[] = {
1973 	&md_level.attr,
1974 	&md_raid_disks.attr,
1975 	&md_chunk_size.attr,
1976 	&md_size.attr,
1977 	&md_metadata.attr,
1978 	NULL,
1979 };
1980 
1981 static struct attribute *md_redundancy_attrs[] = {
1982 	&md_scan_mode.attr,
1983 	&md_mismatches.attr,
1984 	NULL,
1985 };
1986 static struct attribute_group md_redundancy_group = {
1987 	.name = NULL,
1988 	.attrs = md_redundancy_attrs,
1989 };
1990 
1991 
1992 static ssize_t
1993 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1994 {
1995 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1996 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1997 	ssize_t rv;
1998 
1999 	if (!entry->show)
2000 		return -EIO;
2001 	mddev_lock(mddev);
2002 	rv = entry->show(mddev, page);
2003 	mddev_unlock(mddev);
2004 	return rv;
2005 }
2006 
2007 static ssize_t
2008 md_attr_store(struct kobject *kobj, struct attribute *attr,
2009 	      const char *page, size_t length)
2010 {
2011 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2012 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2013 	ssize_t rv;
2014 
2015 	if (!entry->store)
2016 		return -EIO;
2017 	mddev_lock(mddev);
2018 	rv = entry->store(mddev, page, length);
2019 	mddev_unlock(mddev);
2020 	return rv;
2021 }
2022 
2023 static void md_free(struct kobject *ko)
2024 {
2025 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
2026 	kfree(mddev);
2027 }
2028 
2029 static struct sysfs_ops md_sysfs_ops = {
2030 	.show	= md_attr_show,
2031 	.store	= md_attr_store,
2032 };
2033 static struct kobj_type md_ktype = {
2034 	.release	= md_free,
2035 	.sysfs_ops	= &md_sysfs_ops,
2036 	.default_attrs	= md_default_attrs,
2037 };
2038 
2039 int mdp_major = 0;
2040 
2041 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2042 {
2043 	static DECLARE_MUTEX(disks_sem);
2044 	mddev_t *mddev = mddev_find(dev);
2045 	struct gendisk *disk;
2046 	int partitioned = (MAJOR(dev) != MD_MAJOR);
2047 	int shift = partitioned ? MdpMinorShift : 0;
2048 	int unit = MINOR(dev) >> shift;
2049 
2050 	if (!mddev)
2051 		return NULL;
2052 
2053 	down(&disks_sem);
2054 	if (mddev->gendisk) {
2055 		up(&disks_sem);
2056 		mddev_put(mddev);
2057 		return NULL;
2058 	}
2059 	disk = alloc_disk(1 << shift);
2060 	if (!disk) {
2061 		up(&disks_sem);
2062 		mddev_put(mddev);
2063 		return NULL;
2064 	}
2065 	disk->major = MAJOR(dev);
2066 	disk->first_minor = unit << shift;
2067 	if (partitioned) {
2068 		sprintf(disk->disk_name, "md_d%d", unit);
2069 		sprintf(disk->devfs_name, "md/d%d", unit);
2070 	} else {
2071 		sprintf(disk->disk_name, "md%d", unit);
2072 		sprintf(disk->devfs_name, "md/%d", unit);
2073 	}
2074 	disk->fops = &md_fops;
2075 	disk->private_data = mddev;
2076 	disk->queue = mddev->queue;
2077 	add_disk(disk);
2078 	mddev->gendisk = disk;
2079 	up(&disks_sem);
2080 	mddev->kobj.parent = &disk->kobj;
2081 	mddev->kobj.k_name = NULL;
2082 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2083 	mddev->kobj.ktype = &md_ktype;
2084 	kobject_register(&mddev->kobj);
2085 	return NULL;
2086 }
2087 
2088 void md_wakeup_thread(mdk_thread_t *thread);
2089 
2090 static void md_safemode_timeout(unsigned long data)
2091 {
2092 	mddev_t *mddev = (mddev_t *) data;
2093 
2094 	mddev->safemode = 1;
2095 	md_wakeup_thread(mddev->thread);
2096 }
2097 
2098 static int start_dirty_degraded;
2099 
2100 static int do_md_run(mddev_t * mddev)
2101 {
2102 	int err;
2103 	int chunk_size;
2104 	struct list_head *tmp;
2105 	mdk_rdev_t *rdev;
2106 	struct gendisk *disk;
2107 	struct mdk_personality *pers;
2108 	char b[BDEVNAME_SIZE];
2109 
2110 	if (list_empty(&mddev->disks))
2111 		/* cannot run an array with no devices.. */
2112 		return -EINVAL;
2113 
2114 	if (mddev->pers)
2115 		return -EBUSY;
2116 
2117 	/*
2118 	 * Analyze all RAID superblock(s)
2119 	 */
2120 	if (!mddev->raid_disks)
2121 		analyze_sbs(mddev);
2122 
2123 	chunk_size = mddev->chunk_size;
2124 
2125 	if (chunk_size) {
2126 		if (chunk_size > MAX_CHUNK_SIZE) {
2127 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
2128 				chunk_size, MAX_CHUNK_SIZE);
2129 			return -EINVAL;
2130 		}
2131 		/*
2132 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2133 		 */
2134 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
2135 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2136 			return -EINVAL;
2137 		}
2138 		if (chunk_size < PAGE_SIZE) {
2139 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2140 				chunk_size, PAGE_SIZE);
2141 			return -EINVAL;
2142 		}
2143 
2144 		/* devices must have minimum size of one chunk */
2145 		ITERATE_RDEV(mddev,rdev,tmp) {
2146 			if (test_bit(Faulty, &rdev->flags))
2147 				continue;
2148 			if (rdev->size < chunk_size / 1024) {
2149 				printk(KERN_WARNING
2150 					"md: Dev %s smaller than chunk_size:"
2151 					" %lluk < %dk\n",
2152 					bdevname(rdev->bdev,b),
2153 					(unsigned long long)rdev->size,
2154 					chunk_size / 1024);
2155 				return -EINVAL;
2156 			}
2157 		}
2158 	}
2159 
2160 #ifdef CONFIG_KMOD
2161 	request_module("md-level-%d", mddev->level);
2162 #endif
2163 
2164 	/*
2165 	 * Drop all container device buffers, from now on
2166 	 * the only valid external interface is through the md
2167 	 * device.
2168 	 * Also find largest hardsector size
2169 	 */
2170 	ITERATE_RDEV(mddev,rdev,tmp) {
2171 		if (test_bit(Faulty, &rdev->flags))
2172 			continue;
2173 		sync_blockdev(rdev->bdev);
2174 		invalidate_bdev(rdev->bdev, 0);
2175 	}
2176 
2177 	md_probe(mddev->unit, NULL, NULL);
2178 	disk = mddev->gendisk;
2179 	if (!disk)
2180 		return -ENOMEM;
2181 
2182 	spin_lock(&pers_lock);
2183 	pers = find_pers(mddev->level);
2184 	if (!pers || !try_module_get(pers->owner)) {
2185 		spin_unlock(&pers_lock);
2186 		printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2187 		       mddev->level);
2188 		return -EINVAL;
2189 	}
2190 	mddev->pers = pers;
2191 	spin_unlock(&pers_lock);
2192 
2193 	mddev->recovery = 0;
2194 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2195 	mddev->barriers_work = 1;
2196 	mddev->ok_start_degraded = start_dirty_degraded;
2197 
2198 	if (start_readonly)
2199 		mddev->ro = 2; /* read-only, but switch on first write */
2200 
2201 	err = mddev->pers->run(mddev);
2202 	if (!err && mddev->pers->sync_request) {
2203 		err = bitmap_create(mddev);
2204 		if (err) {
2205 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2206 			       mdname(mddev), err);
2207 			mddev->pers->stop(mddev);
2208 		}
2209 	}
2210 	if (err) {
2211 		printk(KERN_ERR "md: pers->run() failed ...\n");
2212 		module_put(mddev->pers->owner);
2213 		mddev->pers = NULL;
2214 		bitmap_destroy(mddev);
2215 		return err;
2216 	}
2217 	if (mddev->pers->sync_request)
2218 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2219 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
2220 		mddev->ro = 0;
2221 
2222  	atomic_set(&mddev->writes_pending,0);
2223 	mddev->safemode = 0;
2224 	mddev->safemode_timer.function = md_safemode_timeout;
2225 	mddev->safemode_timer.data = (unsigned long) mddev;
2226 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2227 	mddev->in_sync = 1;
2228 
2229 	ITERATE_RDEV(mddev,rdev,tmp)
2230 		if (rdev->raid_disk >= 0) {
2231 			char nm[20];
2232 			sprintf(nm, "rd%d", rdev->raid_disk);
2233 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2234 		}
2235 
2236 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2237 	md_wakeup_thread(mddev->thread);
2238 
2239 	if (mddev->sb_dirty)
2240 		md_update_sb(mddev);
2241 
2242 	set_capacity(disk, mddev->array_size<<1);
2243 
2244 	/* If we call blk_queue_make_request here, it will
2245 	 * re-initialise max_sectors etc which may have been
2246 	 * refined inside -> run.  So just set the bits we need to set.
2247 	 * Most initialisation happended when we called
2248 	 * blk_queue_make_request(..., md_fail_request)
2249 	 * earlier.
2250 	 */
2251 	mddev->queue->queuedata = mddev;
2252 	mddev->queue->make_request_fn = mddev->pers->make_request;
2253 
2254 	mddev->changed = 1;
2255 	md_new_event(mddev);
2256 	return 0;
2257 }
2258 
2259 static int restart_array(mddev_t *mddev)
2260 {
2261 	struct gendisk *disk = mddev->gendisk;
2262 	int err;
2263 
2264 	/*
2265 	 * Complain if it has no devices
2266 	 */
2267 	err = -ENXIO;
2268 	if (list_empty(&mddev->disks))
2269 		goto out;
2270 
2271 	if (mddev->pers) {
2272 		err = -EBUSY;
2273 		if (!mddev->ro)
2274 			goto out;
2275 
2276 		mddev->safemode = 0;
2277 		mddev->ro = 0;
2278 		set_disk_ro(disk, 0);
2279 
2280 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2281 			mdname(mddev));
2282 		/*
2283 		 * Kick recovery or resync if necessary
2284 		 */
2285 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2286 		md_wakeup_thread(mddev->thread);
2287 		err = 0;
2288 	} else {
2289 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2290 			mdname(mddev));
2291 		err = -EINVAL;
2292 	}
2293 
2294 out:
2295 	return err;
2296 }
2297 
2298 static int do_md_stop(mddev_t * mddev, int ro)
2299 {
2300 	int err = 0;
2301 	struct gendisk *disk = mddev->gendisk;
2302 
2303 	if (mddev->pers) {
2304 		if (atomic_read(&mddev->active)>2) {
2305 			printk("md: %s still in use.\n",mdname(mddev));
2306 			return -EBUSY;
2307 		}
2308 
2309 		if (mddev->sync_thread) {
2310 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2311 			md_unregister_thread(mddev->sync_thread);
2312 			mddev->sync_thread = NULL;
2313 		}
2314 
2315 		del_timer_sync(&mddev->safemode_timer);
2316 
2317 		invalidate_partition(disk, 0);
2318 
2319 		if (ro) {
2320 			err  = -ENXIO;
2321 			if (mddev->ro==1)
2322 				goto out;
2323 			mddev->ro = 1;
2324 		} else {
2325 			bitmap_flush(mddev);
2326 			md_super_wait(mddev);
2327 			if (mddev->ro)
2328 				set_disk_ro(disk, 0);
2329 			blk_queue_make_request(mddev->queue, md_fail_request);
2330 			mddev->pers->stop(mddev);
2331 			if (mddev->pers->sync_request)
2332 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2333 
2334 			module_put(mddev->pers->owner);
2335 			mddev->pers = NULL;
2336 			if (mddev->ro)
2337 				mddev->ro = 0;
2338 		}
2339 		if (!mddev->in_sync) {
2340 			/* mark array as shutdown cleanly */
2341 			mddev->in_sync = 1;
2342 			md_update_sb(mddev);
2343 		}
2344 		if (ro)
2345 			set_disk_ro(disk, 1);
2346 	}
2347 
2348 	bitmap_destroy(mddev);
2349 	if (mddev->bitmap_file) {
2350 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2351 		fput(mddev->bitmap_file);
2352 		mddev->bitmap_file = NULL;
2353 	}
2354 	mddev->bitmap_offset = 0;
2355 
2356 	/*
2357 	 * Free resources if final stop
2358 	 */
2359 	if (!ro) {
2360 		mdk_rdev_t *rdev;
2361 		struct list_head *tmp;
2362 		struct gendisk *disk;
2363 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2364 
2365 		ITERATE_RDEV(mddev,rdev,tmp)
2366 			if (rdev->raid_disk >= 0) {
2367 				char nm[20];
2368 				sprintf(nm, "rd%d", rdev->raid_disk);
2369 				sysfs_remove_link(&mddev->kobj, nm);
2370 			}
2371 
2372 		export_array(mddev);
2373 
2374 		mddev->array_size = 0;
2375 		disk = mddev->gendisk;
2376 		if (disk)
2377 			set_capacity(disk, 0);
2378 		mddev->changed = 1;
2379 	} else
2380 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2381 			mdname(mddev));
2382 	err = 0;
2383 	md_new_event(mddev);
2384 out:
2385 	return err;
2386 }
2387 
2388 static void autorun_array(mddev_t *mddev)
2389 {
2390 	mdk_rdev_t *rdev;
2391 	struct list_head *tmp;
2392 	int err;
2393 
2394 	if (list_empty(&mddev->disks))
2395 		return;
2396 
2397 	printk(KERN_INFO "md: running: ");
2398 
2399 	ITERATE_RDEV(mddev,rdev,tmp) {
2400 		char b[BDEVNAME_SIZE];
2401 		printk("<%s>", bdevname(rdev->bdev,b));
2402 	}
2403 	printk("\n");
2404 
2405 	err = do_md_run (mddev);
2406 	if (err) {
2407 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2408 		do_md_stop (mddev, 0);
2409 	}
2410 }
2411 
2412 /*
2413  * lets try to run arrays based on all disks that have arrived
2414  * until now. (those are in pending_raid_disks)
2415  *
2416  * the method: pick the first pending disk, collect all disks with
2417  * the same UUID, remove all from the pending list and put them into
2418  * the 'same_array' list. Then order this list based on superblock
2419  * update time (freshest comes first), kick out 'old' disks and
2420  * compare superblocks. If everything's fine then run it.
2421  *
2422  * If "unit" is allocated, then bump its reference count
2423  */
2424 static void autorun_devices(int part)
2425 {
2426 	struct list_head candidates;
2427 	struct list_head *tmp;
2428 	mdk_rdev_t *rdev0, *rdev;
2429 	mddev_t *mddev;
2430 	char b[BDEVNAME_SIZE];
2431 
2432 	printk(KERN_INFO "md: autorun ...\n");
2433 	while (!list_empty(&pending_raid_disks)) {
2434 		dev_t dev;
2435 		rdev0 = list_entry(pending_raid_disks.next,
2436 					 mdk_rdev_t, same_set);
2437 
2438 		printk(KERN_INFO "md: considering %s ...\n",
2439 			bdevname(rdev0->bdev,b));
2440 		INIT_LIST_HEAD(&candidates);
2441 		ITERATE_RDEV_PENDING(rdev,tmp)
2442 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2443 				printk(KERN_INFO "md:  adding %s ...\n",
2444 					bdevname(rdev->bdev,b));
2445 				list_move(&rdev->same_set, &candidates);
2446 			}
2447 		/*
2448 		 * now we have a set of devices, with all of them having
2449 		 * mostly sane superblocks. It's time to allocate the
2450 		 * mddev.
2451 		 */
2452 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2453 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2454 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2455 			break;
2456 		}
2457 		if (part)
2458 			dev = MKDEV(mdp_major,
2459 				    rdev0->preferred_minor << MdpMinorShift);
2460 		else
2461 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2462 
2463 		md_probe(dev, NULL, NULL);
2464 		mddev = mddev_find(dev);
2465 		if (!mddev) {
2466 			printk(KERN_ERR
2467 				"md: cannot allocate memory for md drive.\n");
2468 			break;
2469 		}
2470 		if (mddev_lock(mddev))
2471 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2472 			       mdname(mddev));
2473 		else if (mddev->raid_disks || mddev->major_version
2474 			 || !list_empty(&mddev->disks)) {
2475 			printk(KERN_WARNING
2476 				"md: %s already running, cannot run %s\n",
2477 				mdname(mddev), bdevname(rdev0->bdev,b));
2478 			mddev_unlock(mddev);
2479 		} else {
2480 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2481 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2482 				list_del_init(&rdev->same_set);
2483 				if (bind_rdev_to_array(rdev, mddev))
2484 					export_rdev(rdev);
2485 			}
2486 			autorun_array(mddev);
2487 			mddev_unlock(mddev);
2488 		}
2489 		/* on success, candidates will be empty, on error
2490 		 * it won't...
2491 		 */
2492 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2493 			export_rdev(rdev);
2494 		mddev_put(mddev);
2495 	}
2496 	printk(KERN_INFO "md: ... autorun DONE.\n");
2497 }
2498 
2499 /*
2500  * import RAID devices based on one partition
2501  * if possible, the array gets run as well.
2502  */
2503 
2504 static int autostart_array(dev_t startdev)
2505 {
2506 	char b[BDEVNAME_SIZE];
2507 	int err = -EINVAL, i;
2508 	mdp_super_t *sb = NULL;
2509 	mdk_rdev_t *start_rdev = NULL, *rdev;
2510 
2511 	start_rdev = md_import_device(startdev, 0, 0);
2512 	if (IS_ERR(start_rdev))
2513 		return err;
2514 
2515 
2516 	/* NOTE: this can only work for 0.90.0 superblocks */
2517 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2518 	if (sb->major_version != 0 ||
2519 	    sb->minor_version != 90 ) {
2520 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2521 		export_rdev(start_rdev);
2522 		return err;
2523 	}
2524 
2525 	if (test_bit(Faulty, &start_rdev->flags)) {
2526 		printk(KERN_WARNING
2527 			"md: can not autostart based on faulty %s!\n",
2528 			bdevname(start_rdev->bdev,b));
2529 		export_rdev(start_rdev);
2530 		return err;
2531 	}
2532 	list_add(&start_rdev->same_set, &pending_raid_disks);
2533 
2534 	for (i = 0; i < MD_SB_DISKS; i++) {
2535 		mdp_disk_t *desc = sb->disks + i;
2536 		dev_t dev = MKDEV(desc->major, desc->minor);
2537 
2538 		if (!dev)
2539 			continue;
2540 		if (dev == startdev)
2541 			continue;
2542 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2543 			continue;
2544 		rdev = md_import_device(dev, 0, 0);
2545 		if (IS_ERR(rdev))
2546 			continue;
2547 
2548 		list_add(&rdev->same_set, &pending_raid_disks);
2549 	}
2550 
2551 	/*
2552 	 * possibly return codes
2553 	 */
2554 	autorun_devices(0);
2555 	return 0;
2556 
2557 }
2558 
2559 
2560 static int get_version(void __user * arg)
2561 {
2562 	mdu_version_t ver;
2563 
2564 	ver.major = MD_MAJOR_VERSION;
2565 	ver.minor = MD_MINOR_VERSION;
2566 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2567 
2568 	if (copy_to_user(arg, &ver, sizeof(ver)))
2569 		return -EFAULT;
2570 
2571 	return 0;
2572 }
2573 
2574 static int get_array_info(mddev_t * mddev, void __user * arg)
2575 {
2576 	mdu_array_info_t info;
2577 	int nr,working,active,failed,spare;
2578 	mdk_rdev_t *rdev;
2579 	struct list_head *tmp;
2580 
2581 	nr=working=active=failed=spare=0;
2582 	ITERATE_RDEV(mddev,rdev,tmp) {
2583 		nr++;
2584 		if (test_bit(Faulty, &rdev->flags))
2585 			failed++;
2586 		else {
2587 			working++;
2588 			if (test_bit(In_sync, &rdev->flags))
2589 				active++;
2590 			else
2591 				spare++;
2592 		}
2593 	}
2594 
2595 	info.major_version = mddev->major_version;
2596 	info.minor_version = mddev->minor_version;
2597 	info.patch_version = MD_PATCHLEVEL_VERSION;
2598 	info.ctime         = mddev->ctime;
2599 	info.level         = mddev->level;
2600 	info.size          = mddev->size;
2601 	info.nr_disks      = nr;
2602 	info.raid_disks    = mddev->raid_disks;
2603 	info.md_minor      = mddev->md_minor;
2604 	info.not_persistent= !mddev->persistent;
2605 
2606 	info.utime         = mddev->utime;
2607 	info.state         = 0;
2608 	if (mddev->in_sync)
2609 		info.state = (1<<MD_SB_CLEAN);
2610 	if (mddev->bitmap && mddev->bitmap_offset)
2611 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2612 	info.active_disks  = active;
2613 	info.working_disks = working;
2614 	info.failed_disks  = failed;
2615 	info.spare_disks   = spare;
2616 
2617 	info.layout        = mddev->layout;
2618 	info.chunk_size    = mddev->chunk_size;
2619 
2620 	if (copy_to_user(arg, &info, sizeof(info)))
2621 		return -EFAULT;
2622 
2623 	return 0;
2624 }
2625 
2626 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2627 {
2628 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2629 	char *ptr, *buf = NULL;
2630 	int err = -ENOMEM;
2631 
2632 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2633 	if (!file)
2634 		goto out;
2635 
2636 	/* bitmap disabled, zero the first byte and copy out */
2637 	if (!mddev->bitmap || !mddev->bitmap->file) {
2638 		file->pathname[0] = '\0';
2639 		goto copy_out;
2640 	}
2641 
2642 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2643 	if (!buf)
2644 		goto out;
2645 
2646 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2647 	if (!ptr)
2648 		goto out;
2649 
2650 	strcpy(file->pathname, ptr);
2651 
2652 copy_out:
2653 	err = 0;
2654 	if (copy_to_user(arg, file, sizeof(*file)))
2655 		err = -EFAULT;
2656 out:
2657 	kfree(buf);
2658 	kfree(file);
2659 	return err;
2660 }
2661 
2662 static int get_disk_info(mddev_t * mddev, void __user * arg)
2663 {
2664 	mdu_disk_info_t info;
2665 	unsigned int nr;
2666 	mdk_rdev_t *rdev;
2667 
2668 	if (copy_from_user(&info, arg, sizeof(info)))
2669 		return -EFAULT;
2670 
2671 	nr = info.number;
2672 
2673 	rdev = find_rdev_nr(mddev, nr);
2674 	if (rdev) {
2675 		info.major = MAJOR(rdev->bdev->bd_dev);
2676 		info.minor = MINOR(rdev->bdev->bd_dev);
2677 		info.raid_disk = rdev->raid_disk;
2678 		info.state = 0;
2679 		if (test_bit(Faulty, &rdev->flags))
2680 			info.state |= (1<<MD_DISK_FAULTY);
2681 		else if (test_bit(In_sync, &rdev->flags)) {
2682 			info.state |= (1<<MD_DISK_ACTIVE);
2683 			info.state |= (1<<MD_DISK_SYNC);
2684 		}
2685 		if (test_bit(WriteMostly, &rdev->flags))
2686 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2687 	} else {
2688 		info.major = info.minor = 0;
2689 		info.raid_disk = -1;
2690 		info.state = (1<<MD_DISK_REMOVED);
2691 	}
2692 
2693 	if (copy_to_user(arg, &info, sizeof(info)))
2694 		return -EFAULT;
2695 
2696 	return 0;
2697 }
2698 
2699 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2700 {
2701 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2702 	mdk_rdev_t *rdev;
2703 	dev_t dev = MKDEV(info->major,info->minor);
2704 
2705 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2706 		return -EOVERFLOW;
2707 
2708 	if (!mddev->raid_disks) {
2709 		int err;
2710 		/* expecting a device which has a superblock */
2711 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2712 		if (IS_ERR(rdev)) {
2713 			printk(KERN_WARNING
2714 				"md: md_import_device returned %ld\n",
2715 				PTR_ERR(rdev));
2716 			return PTR_ERR(rdev);
2717 		}
2718 		if (!list_empty(&mddev->disks)) {
2719 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2720 							mdk_rdev_t, same_set);
2721 			int err = super_types[mddev->major_version]
2722 				.load_super(rdev, rdev0, mddev->minor_version);
2723 			if (err < 0) {
2724 				printk(KERN_WARNING
2725 					"md: %s has different UUID to %s\n",
2726 					bdevname(rdev->bdev,b),
2727 					bdevname(rdev0->bdev,b2));
2728 				export_rdev(rdev);
2729 				return -EINVAL;
2730 			}
2731 		}
2732 		err = bind_rdev_to_array(rdev, mddev);
2733 		if (err)
2734 			export_rdev(rdev);
2735 		return err;
2736 	}
2737 
2738 	/*
2739 	 * add_new_disk can be used once the array is assembled
2740 	 * to add "hot spares".  They must already have a superblock
2741 	 * written
2742 	 */
2743 	if (mddev->pers) {
2744 		int err;
2745 		if (!mddev->pers->hot_add_disk) {
2746 			printk(KERN_WARNING
2747 				"%s: personality does not support diskops!\n",
2748 			       mdname(mddev));
2749 			return -EINVAL;
2750 		}
2751 		if (mddev->persistent)
2752 			rdev = md_import_device(dev, mddev->major_version,
2753 						mddev->minor_version);
2754 		else
2755 			rdev = md_import_device(dev, -1, -1);
2756 		if (IS_ERR(rdev)) {
2757 			printk(KERN_WARNING
2758 				"md: md_import_device returned %ld\n",
2759 				PTR_ERR(rdev));
2760 			return PTR_ERR(rdev);
2761 		}
2762 		/* set save_raid_disk if appropriate */
2763 		if (!mddev->persistent) {
2764 			if (info->state & (1<<MD_DISK_SYNC)  &&
2765 			    info->raid_disk < mddev->raid_disks)
2766 				rdev->raid_disk = info->raid_disk;
2767 			else
2768 				rdev->raid_disk = -1;
2769 		} else
2770 			super_types[mddev->major_version].
2771 				validate_super(mddev, rdev);
2772 		rdev->saved_raid_disk = rdev->raid_disk;
2773 
2774 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
2775 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2776 			set_bit(WriteMostly, &rdev->flags);
2777 
2778 		rdev->raid_disk = -1;
2779 		err = bind_rdev_to_array(rdev, mddev);
2780 		if (err)
2781 			export_rdev(rdev);
2782 
2783 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2784 		md_wakeup_thread(mddev->thread);
2785 		return err;
2786 	}
2787 
2788 	/* otherwise, add_new_disk is only allowed
2789 	 * for major_version==0 superblocks
2790 	 */
2791 	if (mddev->major_version != 0) {
2792 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2793 		       mdname(mddev));
2794 		return -EINVAL;
2795 	}
2796 
2797 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2798 		int err;
2799 		rdev = md_import_device (dev, -1, 0);
2800 		if (IS_ERR(rdev)) {
2801 			printk(KERN_WARNING
2802 				"md: error, md_import_device() returned %ld\n",
2803 				PTR_ERR(rdev));
2804 			return PTR_ERR(rdev);
2805 		}
2806 		rdev->desc_nr = info->number;
2807 		if (info->raid_disk < mddev->raid_disks)
2808 			rdev->raid_disk = info->raid_disk;
2809 		else
2810 			rdev->raid_disk = -1;
2811 
2812 		rdev->flags = 0;
2813 
2814 		if (rdev->raid_disk < mddev->raid_disks)
2815 			if (info->state & (1<<MD_DISK_SYNC))
2816 				set_bit(In_sync, &rdev->flags);
2817 
2818 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2819 			set_bit(WriteMostly, &rdev->flags);
2820 
2821 		err = bind_rdev_to_array(rdev, mddev);
2822 		if (err) {
2823 			export_rdev(rdev);
2824 			return err;
2825 		}
2826 
2827 		if (!mddev->persistent) {
2828 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2829 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2830 		} else
2831 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2832 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2833 
2834 		if (!mddev->size || (mddev->size > rdev->size))
2835 			mddev->size = rdev->size;
2836 	}
2837 
2838 	return 0;
2839 }
2840 
2841 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2842 {
2843 	char b[BDEVNAME_SIZE];
2844 	mdk_rdev_t *rdev;
2845 
2846 	if (!mddev->pers)
2847 		return -ENODEV;
2848 
2849 	rdev = find_rdev(mddev, dev);
2850 	if (!rdev)
2851 		return -ENXIO;
2852 
2853 	if (rdev->raid_disk >= 0)
2854 		goto busy;
2855 
2856 	kick_rdev_from_array(rdev);
2857 	md_update_sb(mddev);
2858 	md_new_event(mddev);
2859 
2860 	return 0;
2861 busy:
2862 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2863 		bdevname(rdev->bdev,b), mdname(mddev));
2864 	return -EBUSY;
2865 }
2866 
2867 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2868 {
2869 	char b[BDEVNAME_SIZE];
2870 	int err;
2871 	unsigned int size;
2872 	mdk_rdev_t *rdev;
2873 
2874 	if (!mddev->pers)
2875 		return -ENODEV;
2876 
2877 	if (mddev->major_version != 0) {
2878 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2879 			" version-0 superblocks.\n",
2880 			mdname(mddev));
2881 		return -EINVAL;
2882 	}
2883 	if (!mddev->pers->hot_add_disk) {
2884 		printk(KERN_WARNING
2885 			"%s: personality does not support diskops!\n",
2886 			mdname(mddev));
2887 		return -EINVAL;
2888 	}
2889 
2890 	rdev = md_import_device (dev, -1, 0);
2891 	if (IS_ERR(rdev)) {
2892 		printk(KERN_WARNING
2893 			"md: error, md_import_device() returned %ld\n",
2894 			PTR_ERR(rdev));
2895 		return -EINVAL;
2896 	}
2897 
2898 	if (mddev->persistent)
2899 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2900 	else
2901 		rdev->sb_offset =
2902 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2903 
2904 	size = calc_dev_size(rdev, mddev->chunk_size);
2905 	rdev->size = size;
2906 
2907 	if (size < mddev->size) {
2908 		printk(KERN_WARNING
2909 			"%s: disk size %llu blocks < array size %llu\n",
2910 			mdname(mddev), (unsigned long long)size,
2911 			(unsigned long long)mddev->size);
2912 		err = -ENOSPC;
2913 		goto abort_export;
2914 	}
2915 
2916 	if (test_bit(Faulty, &rdev->flags)) {
2917 		printk(KERN_WARNING
2918 			"md: can not hot-add faulty %s disk to %s!\n",
2919 			bdevname(rdev->bdev,b), mdname(mddev));
2920 		err = -EINVAL;
2921 		goto abort_export;
2922 	}
2923 	clear_bit(In_sync, &rdev->flags);
2924 	rdev->desc_nr = -1;
2925 	bind_rdev_to_array(rdev, mddev);
2926 
2927 	/*
2928 	 * The rest should better be atomic, we can have disk failures
2929 	 * noticed in interrupt contexts ...
2930 	 */
2931 
2932 	if (rdev->desc_nr == mddev->max_disks) {
2933 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2934 			mdname(mddev));
2935 		err = -EBUSY;
2936 		goto abort_unbind_export;
2937 	}
2938 
2939 	rdev->raid_disk = -1;
2940 
2941 	md_update_sb(mddev);
2942 
2943 	/*
2944 	 * Kick recovery, maybe this spare has to be added to the
2945 	 * array immediately.
2946 	 */
2947 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2948 	md_wakeup_thread(mddev->thread);
2949 	md_new_event(mddev);
2950 	return 0;
2951 
2952 abort_unbind_export:
2953 	unbind_rdev_from_array(rdev);
2954 
2955 abort_export:
2956 	export_rdev(rdev);
2957 	return err;
2958 }
2959 
2960 /* similar to deny_write_access, but accounts for our holding a reference
2961  * to the file ourselves */
2962 static int deny_bitmap_write_access(struct file * file)
2963 {
2964 	struct inode *inode = file->f_mapping->host;
2965 
2966 	spin_lock(&inode->i_lock);
2967 	if (atomic_read(&inode->i_writecount) > 1) {
2968 		spin_unlock(&inode->i_lock);
2969 		return -ETXTBSY;
2970 	}
2971 	atomic_set(&inode->i_writecount, -1);
2972 	spin_unlock(&inode->i_lock);
2973 
2974 	return 0;
2975 }
2976 
2977 static int set_bitmap_file(mddev_t *mddev, int fd)
2978 {
2979 	int err;
2980 
2981 	if (mddev->pers) {
2982 		if (!mddev->pers->quiesce)
2983 			return -EBUSY;
2984 		if (mddev->recovery || mddev->sync_thread)
2985 			return -EBUSY;
2986 		/* we should be able to change the bitmap.. */
2987 	}
2988 
2989 
2990 	if (fd >= 0) {
2991 		if (mddev->bitmap)
2992 			return -EEXIST; /* cannot add when bitmap is present */
2993 		mddev->bitmap_file = fget(fd);
2994 
2995 		if (mddev->bitmap_file == NULL) {
2996 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2997 			       mdname(mddev));
2998 			return -EBADF;
2999 		}
3000 
3001 		err = deny_bitmap_write_access(mddev->bitmap_file);
3002 		if (err) {
3003 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3004 			       mdname(mddev));
3005 			fput(mddev->bitmap_file);
3006 			mddev->bitmap_file = NULL;
3007 			return err;
3008 		}
3009 		mddev->bitmap_offset = 0; /* file overrides offset */
3010 	} else if (mddev->bitmap == NULL)
3011 		return -ENOENT; /* cannot remove what isn't there */
3012 	err = 0;
3013 	if (mddev->pers) {
3014 		mddev->pers->quiesce(mddev, 1);
3015 		if (fd >= 0)
3016 			err = bitmap_create(mddev);
3017 		if (fd < 0 || err)
3018 			bitmap_destroy(mddev);
3019 		mddev->pers->quiesce(mddev, 0);
3020 	} else if (fd < 0) {
3021 		if (mddev->bitmap_file)
3022 			fput(mddev->bitmap_file);
3023 		mddev->bitmap_file = NULL;
3024 	}
3025 
3026 	return err;
3027 }
3028 
3029 /*
3030  * set_array_info is used two different ways
3031  * The original usage is when creating a new array.
3032  * In this usage, raid_disks is > 0 and it together with
3033  *  level, size, not_persistent,layout,chunksize determine the
3034  *  shape of the array.
3035  *  This will always create an array with a type-0.90.0 superblock.
3036  * The newer usage is when assembling an array.
3037  *  In this case raid_disks will be 0, and the major_version field is
3038  *  use to determine which style super-blocks are to be found on the devices.
3039  *  The minor and patch _version numbers are also kept incase the
3040  *  super_block handler wishes to interpret them.
3041  */
3042 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3043 {
3044 
3045 	if (info->raid_disks == 0) {
3046 		/* just setting version number for superblock loading */
3047 		if (info->major_version < 0 ||
3048 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3049 		    super_types[info->major_version].name == NULL) {
3050 			/* maybe try to auto-load a module? */
3051 			printk(KERN_INFO
3052 				"md: superblock version %d not known\n",
3053 				info->major_version);
3054 			return -EINVAL;
3055 		}
3056 		mddev->major_version = info->major_version;
3057 		mddev->minor_version = info->minor_version;
3058 		mddev->patch_version = info->patch_version;
3059 		return 0;
3060 	}
3061 	mddev->major_version = MD_MAJOR_VERSION;
3062 	mddev->minor_version = MD_MINOR_VERSION;
3063 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
3064 	mddev->ctime         = get_seconds();
3065 
3066 	mddev->level         = info->level;
3067 	mddev->size          = info->size;
3068 	mddev->raid_disks    = info->raid_disks;
3069 	/* don't set md_minor, it is determined by which /dev/md* was
3070 	 * openned
3071 	 */
3072 	if (info->state & (1<<MD_SB_CLEAN))
3073 		mddev->recovery_cp = MaxSector;
3074 	else
3075 		mddev->recovery_cp = 0;
3076 	mddev->persistent    = ! info->not_persistent;
3077 
3078 	mddev->layout        = info->layout;
3079 	mddev->chunk_size    = info->chunk_size;
3080 
3081 	mddev->max_disks     = MD_SB_DISKS;
3082 
3083 	mddev->sb_dirty      = 1;
3084 
3085 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
3086 	mddev->bitmap_offset = 0;
3087 
3088 	/*
3089 	 * Generate a 128 bit UUID
3090 	 */
3091 	get_random_bytes(mddev->uuid, 16);
3092 
3093 	return 0;
3094 }
3095 
3096 static int update_size(mddev_t *mddev, unsigned long size)
3097 {
3098 	mdk_rdev_t * rdev;
3099 	int rv;
3100 	struct list_head *tmp;
3101 
3102 	if (mddev->pers->resize == NULL)
3103 		return -EINVAL;
3104 	/* The "size" is the amount of each device that is used.
3105 	 * This can only make sense for arrays with redundancy.
3106 	 * linear and raid0 always use whatever space is available
3107 	 * We can only consider changing the size if no resync
3108 	 * or reconstruction is happening, and if the new size
3109 	 * is acceptable. It must fit before the sb_offset or,
3110 	 * if that is <data_offset, it must fit before the
3111 	 * size of each device.
3112 	 * If size is zero, we find the largest size that fits.
3113 	 */
3114 	if (mddev->sync_thread)
3115 		return -EBUSY;
3116 	ITERATE_RDEV(mddev,rdev,tmp) {
3117 		sector_t avail;
3118 		int fit = (size == 0);
3119 		if (rdev->sb_offset > rdev->data_offset)
3120 			avail = (rdev->sb_offset*2) - rdev->data_offset;
3121 		else
3122 			avail = get_capacity(rdev->bdev->bd_disk)
3123 				- rdev->data_offset;
3124 		if (fit && (size == 0 || size > avail/2))
3125 			size = avail/2;
3126 		if (avail < ((sector_t)size << 1))
3127 			return -ENOSPC;
3128 	}
3129 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
3130 	if (!rv) {
3131 		struct block_device *bdev;
3132 
3133 		bdev = bdget_disk(mddev->gendisk, 0);
3134 		if (bdev) {
3135 			down(&bdev->bd_inode->i_sem);
3136 			i_size_write(bdev->bd_inode, mddev->array_size << 10);
3137 			up(&bdev->bd_inode->i_sem);
3138 			bdput(bdev);
3139 		}
3140 	}
3141 	return rv;
3142 }
3143 
3144 /*
3145  * update_array_info is used to change the configuration of an
3146  * on-line array.
3147  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
3148  * fields in the info are checked against the array.
3149  * Any differences that cannot be handled will cause an error.
3150  * Normally, only one change can be managed at a time.
3151  */
3152 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
3153 {
3154 	int rv = 0;
3155 	int cnt = 0;
3156 	int state = 0;
3157 
3158 	/* calculate expected state,ignoring low bits */
3159 	if (mddev->bitmap && mddev->bitmap_offset)
3160 		state |= (1 << MD_SB_BITMAP_PRESENT);
3161 
3162 	if (mddev->major_version != info->major_version ||
3163 	    mddev->minor_version != info->minor_version ||
3164 /*	    mddev->patch_version != info->patch_version || */
3165 	    mddev->ctime         != info->ctime         ||
3166 	    mddev->level         != info->level         ||
3167 /*	    mddev->layout        != info->layout        || */
3168 	    !mddev->persistent	 != info->not_persistent||
3169 	    mddev->chunk_size    != info->chunk_size    ||
3170 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3171 	    ((state^info->state) & 0xfffffe00)
3172 		)
3173 		return -EINVAL;
3174 	/* Check there is only one change */
3175 	if (mddev->size != info->size) cnt++;
3176 	if (mddev->raid_disks != info->raid_disks) cnt++;
3177 	if (mddev->layout != info->layout) cnt++;
3178 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3179 	if (cnt == 0) return 0;
3180 	if (cnt > 1) return -EINVAL;
3181 
3182 	if (mddev->layout != info->layout) {
3183 		/* Change layout
3184 		 * we don't need to do anything at the md level, the
3185 		 * personality will take care of it all.
3186 		 */
3187 		if (mddev->pers->reconfig == NULL)
3188 			return -EINVAL;
3189 		else
3190 			return mddev->pers->reconfig(mddev, info->layout, -1);
3191 	}
3192 	if (mddev->size != info->size)
3193 		rv = update_size(mddev, info->size);
3194 
3195 	if (mddev->raid_disks    != info->raid_disks) {
3196 		/* change the number of raid disks */
3197 		if (mddev->pers->reshape == NULL)
3198 			return -EINVAL;
3199 		if (info->raid_disks <= 0 ||
3200 		    info->raid_disks >= mddev->max_disks)
3201 			return -EINVAL;
3202 		if (mddev->sync_thread)
3203 			return -EBUSY;
3204 		rv = mddev->pers->reshape(mddev, info->raid_disks);
3205 		if (!rv) {
3206 			struct block_device *bdev;
3207 
3208 			bdev = bdget_disk(mddev->gendisk, 0);
3209 			if (bdev) {
3210 				down(&bdev->bd_inode->i_sem);
3211 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3212 				up(&bdev->bd_inode->i_sem);
3213 				bdput(bdev);
3214 			}
3215 		}
3216 	}
3217 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3218 		if (mddev->pers->quiesce == NULL)
3219 			return -EINVAL;
3220 		if (mddev->recovery || mddev->sync_thread)
3221 			return -EBUSY;
3222 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3223 			/* add the bitmap */
3224 			if (mddev->bitmap)
3225 				return -EEXIST;
3226 			if (mddev->default_bitmap_offset == 0)
3227 				return -EINVAL;
3228 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3229 			mddev->pers->quiesce(mddev, 1);
3230 			rv = bitmap_create(mddev);
3231 			if (rv)
3232 				bitmap_destroy(mddev);
3233 			mddev->pers->quiesce(mddev, 0);
3234 		} else {
3235 			/* remove the bitmap */
3236 			if (!mddev->bitmap)
3237 				return -ENOENT;
3238 			if (mddev->bitmap->file)
3239 				return -EINVAL;
3240 			mddev->pers->quiesce(mddev, 1);
3241 			bitmap_destroy(mddev);
3242 			mddev->pers->quiesce(mddev, 0);
3243 			mddev->bitmap_offset = 0;
3244 		}
3245 	}
3246 	md_update_sb(mddev);
3247 	return rv;
3248 }
3249 
3250 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3251 {
3252 	mdk_rdev_t *rdev;
3253 
3254 	if (mddev->pers == NULL)
3255 		return -ENODEV;
3256 
3257 	rdev = find_rdev(mddev, dev);
3258 	if (!rdev)
3259 		return -ENODEV;
3260 
3261 	md_error(mddev, rdev);
3262 	return 0;
3263 }
3264 
3265 static int md_ioctl(struct inode *inode, struct file *file,
3266 			unsigned int cmd, unsigned long arg)
3267 {
3268 	int err = 0;
3269 	void __user *argp = (void __user *)arg;
3270 	struct hd_geometry __user *loc = argp;
3271 	mddev_t *mddev = NULL;
3272 
3273 	if (!capable(CAP_SYS_ADMIN))
3274 		return -EACCES;
3275 
3276 	/*
3277 	 * Commands dealing with the RAID driver but not any
3278 	 * particular array:
3279 	 */
3280 	switch (cmd)
3281 	{
3282 		case RAID_VERSION:
3283 			err = get_version(argp);
3284 			goto done;
3285 
3286 		case PRINT_RAID_DEBUG:
3287 			err = 0;
3288 			md_print_devices();
3289 			goto done;
3290 
3291 #ifndef MODULE
3292 		case RAID_AUTORUN:
3293 			err = 0;
3294 			autostart_arrays(arg);
3295 			goto done;
3296 #endif
3297 		default:;
3298 	}
3299 
3300 	/*
3301 	 * Commands creating/starting a new array:
3302 	 */
3303 
3304 	mddev = inode->i_bdev->bd_disk->private_data;
3305 
3306 	if (!mddev) {
3307 		BUG();
3308 		goto abort;
3309 	}
3310 
3311 
3312 	if (cmd == START_ARRAY) {
3313 		/* START_ARRAY doesn't need to lock the array as autostart_array
3314 		 * does the locking, and it could even be a different array
3315 		 */
3316 		static int cnt = 3;
3317 		if (cnt > 0 ) {
3318 			printk(KERN_WARNING
3319 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3320 			       "This will not be supported beyond July 2006\n",
3321 			       current->comm, current->pid);
3322 			cnt--;
3323 		}
3324 		err = autostart_array(new_decode_dev(arg));
3325 		if (err) {
3326 			printk(KERN_WARNING "md: autostart failed!\n");
3327 			goto abort;
3328 		}
3329 		goto done;
3330 	}
3331 
3332 	err = mddev_lock(mddev);
3333 	if (err) {
3334 		printk(KERN_INFO
3335 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3336 			err, cmd);
3337 		goto abort;
3338 	}
3339 
3340 	switch (cmd)
3341 	{
3342 		case SET_ARRAY_INFO:
3343 			{
3344 				mdu_array_info_t info;
3345 				if (!arg)
3346 					memset(&info, 0, sizeof(info));
3347 				else if (copy_from_user(&info, argp, sizeof(info))) {
3348 					err = -EFAULT;
3349 					goto abort_unlock;
3350 				}
3351 				if (mddev->pers) {
3352 					err = update_array_info(mddev, &info);
3353 					if (err) {
3354 						printk(KERN_WARNING "md: couldn't update"
3355 						       " array info. %d\n", err);
3356 						goto abort_unlock;
3357 					}
3358 					goto done_unlock;
3359 				}
3360 				if (!list_empty(&mddev->disks)) {
3361 					printk(KERN_WARNING
3362 					       "md: array %s already has disks!\n",
3363 					       mdname(mddev));
3364 					err = -EBUSY;
3365 					goto abort_unlock;
3366 				}
3367 				if (mddev->raid_disks) {
3368 					printk(KERN_WARNING
3369 					       "md: array %s already initialised!\n",
3370 					       mdname(mddev));
3371 					err = -EBUSY;
3372 					goto abort_unlock;
3373 				}
3374 				err = set_array_info(mddev, &info);
3375 				if (err) {
3376 					printk(KERN_WARNING "md: couldn't set"
3377 					       " array info. %d\n", err);
3378 					goto abort_unlock;
3379 				}
3380 			}
3381 			goto done_unlock;
3382 
3383 		default:;
3384 	}
3385 
3386 	/*
3387 	 * Commands querying/configuring an existing array:
3388 	 */
3389 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3390 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3391 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3392 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3393 		err = -ENODEV;
3394 		goto abort_unlock;
3395 	}
3396 
3397 	/*
3398 	 * Commands even a read-only array can execute:
3399 	 */
3400 	switch (cmd)
3401 	{
3402 		case GET_ARRAY_INFO:
3403 			err = get_array_info(mddev, argp);
3404 			goto done_unlock;
3405 
3406 		case GET_BITMAP_FILE:
3407 			err = get_bitmap_file(mddev, argp);
3408 			goto done_unlock;
3409 
3410 		case GET_DISK_INFO:
3411 			err = get_disk_info(mddev, argp);
3412 			goto done_unlock;
3413 
3414 		case RESTART_ARRAY_RW:
3415 			err = restart_array(mddev);
3416 			goto done_unlock;
3417 
3418 		case STOP_ARRAY:
3419 			err = do_md_stop (mddev, 0);
3420 			goto done_unlock;
3421 
3422 		case STOP_ARRAY_RO:
3423 			err = do_md_stop (mddev, 1);
3424 			goto done_unlock;
3425 
3426 	/*
3427 	 * We have a problem here : there is no easy way to give a CHS
3428 	 * virtual geometry. We currently pretend that we have a 2 heads
3429 	 * 4 sectors (with a BIG number of cylinders...). This drives
3430 	 * dosfs just mad... ;-)
3431 	 */
3432 		case HDIO_GETGEO:
3433 			if (!loc) {
3434 				err = -EINVAL;
3435 				goto abort_unlock;
3436 			}
3437 			err = put_user (2, (char __user *) &loc->heads);
3438 			if (err)
3439 				goto abort_unlock;
3440 			err = put_user (4, (char __user *) &loc->sectors);
3441 			if (err)
3442 				goto abort_unlock;
3443 			err = put_user(get_capacity(mddev->gendisk)/8,
3444 					(short __user *) &loc->cylinders);
3445 			if (err)
3446 				goto abort_unlock;
3447 			err = put_user (get_start_sect(inode->i_bdev),
3448 						(long __user *) &loc->start);
3449 			goto done_unlock;
3450 	}
3451 
3452 	/*
3453 	 * The remaining ioctls are changing the state of the
3454 	 * superblock, so we do not allow them on read-only arrays.
3455 	 * However non-MD ioctls (e.g. get-size) will still come through
3456 	 * here and hit the 'default' below, so only disallow
3457 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3458 	 */
3459 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3460 	    mddev->ro && mddev->pers) {
3461 		if (mddev->ro == 2) {
3462 			mddev->ro = 0;
3463 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3464 		md_wakeup_thread(mddev->thread);
3465 
3466 		} else {
3467 			err = -EROFS;
3468 			goto abort_unlock;
3469 		}
3470 	}
3471 
3472 	switch (cmd)
3473 	{
3474 		case ADD_NEW_DISK:
3475 		{
3476 			mdu_disk_info_t info;
3477 			if (copy_from_user(&info, argp, sizeof(info)))
3478 				err = -EFAULT;
3479 			else
3480 				err = add_new_disk(mddev, &info);
3481 			goto done_unlock;
3482 		}
3483 
3484 		case HOT_REMOVE_DISK:
3485 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3486 			goto done_unlock;
3487 
3488 		case HOT_ADD_DISK:
3489 			err = hot_add_disk(mddev, new_decode_dev(arg));
3490 			goto done_unlock;
3491 
3492 		case SET_DISK_FAULTY:
3493 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3494 			goto done_unlock;
3495 
3496 		case RUN_ARRAY:
3497 			err = do_md_run (mddev);
3498 			goto done_unlock;
3499 
3500 		case SET_BITMAP_FILE:
3501 			err = set_bitmap_file(mddev, (int)arg);
3502 			goto done_unlock;
3503 
3504 		default:
3505 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3506 				printk(KERN_WARNING "md: %s(pid %d) used"
3507 					" obsolete MD ioctl, upgrade your"
3508 					" software to use new ictls.\n",
3509 					current->comm, current->pid);
3510 			err = -EINVAL;
3511 			goto abort_unlock;
3512 	}
3513 
3514 done_unlock:
3515 abort_unlock:
3516 	mddev_unlock(mddev);
3517 
3518 	return err;
3519 done:
3520 	if (err)
3521 		MD_BUG();
3522 abort:
3523 	return err;
3524 }
3525 
3526 static int md_open(struct inode *inode, struct file *file)
3527 {
3528 	/*
3529 	 * Succeed if we can lock the mddev, which confirms that
3530 	 * it isn't being stopped right now.
3531 	 */
3532 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3533 	int err;
3534 
3535 	if ((err = mddev_lock(mddev)))
3536 		goto out;
3537 
3538 	err = 0;
3539 	mddev_get(mddev);
3540 	mddev_unlock(mddev);
3541 
3542 	check_disk_change(inode->i_bdev);
3543  out:
3544 	return err;
3545 }
3546 
3547 static int md_release(struct inode *inode, struct file * file)
3548 {
3549  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3550 
3551 	if (!mddev)
3552 		BUG();
3553 	mddev_put(mddev);
3554 
3555 	return 0;
3556 }
3557 
3558 static int md_media_changed(struct gendisk *disk)
3559 {
3560 	mddev_t *mddev = disk->private_data;
3561 
3562 	return mddev->changed;
3563 }
3564 
3565 static int md_revalidate(struct gendisk *disk)
3566 {
3567 	mddev_t *mddev = disk->private_data;
3568 
3569 	mddev->changed = 0;
3570 	return 0;
3571 }
3572 static struct block_device_operations md_fops =
3573 {
3574 	.owner		= THIS_MODULE,
3575 	.open		= md_open,
3576 	.release	= md_release,
3577 	.ioctl		= md_ioctl,
3578 	.media_changed	= md_media_changed,
3579 	.revalidate_disk= md_revalidate,
3580 };
3581 
3582 static int md_thread(void * arg)
3583 {
3584 	mdk_thread_t *thread = arg;
3585 
3586 	/*
3587 	 * md_thread is a 'system-thread', it's priority should be very
3588 	 * high. We avoid resource deadlocks individually in each
3589 	 * raid personality. (RAID5 does preallocation) We also use RR and
3590 	 * the very same RT priority as kswapd, thus we will never get
3591 	 * into a priority inversion deadlock.
3592 	 *
3593 	 * we definitely have to have equal or higher priority than
3594 	 * bdflush, otherwise bdflush will deadlock if there are too
3595 	 * many dirty RAID5 blocks.
3596 	 */
3597 
3598 	allow_signal(SIGKILL);
3599 	while (!kthread_should_stop()) {
3600 
3601 		/* We need to wait INTERRUPTIBLE so that
3602 		 * we don't add to the load-average.
3603 		 * That means we need to be sure no signals are
3604 		 * pending
3605 		 */
3606 		if (signal_pending(current))
3607 			flush_signals(current);
3608 
3609 		wait_event_interruptible_timeout
3610 			(thread->wqueue,
3611 			 test_bit(THREAD_WAKEUP, &thread->flags)
3612 			 || kthread_should_stop(),
3613 			 thread->timeout);
3614 		try_to_freeze();
3615 
3616 		clear_bit(THREAD_WAKEUP, &thread->flags);
3617 
3618 		thread->run(thread->mddev);
3619 	}
3620 
3621 	return 0;
3622 }
3623 
3624 void md_wakeup_thread(mdk_thread_t *thread)
3625 {
3626 	if (thread) {
3627 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3628 		set_bit(THREAD_WAKEUP, &thread->flags);
3629 		wake_up(&thread->wqueue);
3630 	}
3631 }
3632 
3633 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3634 				 const char *name)
3635 {
3636 	mdk_thread_t *thread;
3637 
3638 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3639 	if (!thread)
3640 		return NULL;
3641 
3642 	init_waitqueue_head(&thread->wqueue);
3643 
3644 	thread->run = run;
3645 	thread->mddev = mddev;
3646 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3647 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3648 	if (IS_ERR(thread->tsk)) {
3649 		kfree(thread);
3650 		return NULL;
3651 	}
3652 	return thread;
3653 }
3654 
3655 void md_unregister_thread(mdk_thread_t *thread)
3656 {
3657 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3658 
3659 	kthread_stop(thread->tsk);
3660 	kfree(thread);
3661 }
3662 
3663 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3664 {
3665 	if (!mddev) {
3666 		MD_BUG();
3667 		return;
3668 	}
3669 
3670 	if (!rdev || test_bit(Faulty, &rdev->flags))
3671 		return;
3672 /*
3673 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3674 		mdname(mddev),
3675 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3676 		__builtin_return_address(0),__builtin_return_address(1),
3677 		__builtin_return_address(2),__builtin_return_address(3));
3678 */
3679 	if (!mddev->pers->error_handler)
3680 		return;
3681 	mddev->pers->error_handler(mddev,rdev);
3682 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3683 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3684 	md_wakeup_thread(mddev->thread);
3685 	md_new_event(mddev);
3686 }
3687 
3688 /* seq_file implementation /proc/mdstat */
3689 
3690 static void status_unused(struct seq_file *seq)
3691 {
3692 	int i = 0;
3693 	mdk_rdev_t *rdev;
3694 	struct list_head *tmp;
3695 
3696 	seq_printf(seq, "unused devices: ");
3697 
3698 	ITERATE_RDEV_PENDING(rdev,tmp) {
3699 		char b[BDEVNAME_SIZE];
3700 		i++;
3701 		seq_printf(seq, "%s ",
3702 			      bdevname(rdev->bdev,b));
3703 	}
3704 	if (!i)
3705 		seq_printf(seq, "<none>");
3706 
3707 	seq_printf(seq, "\n");
3708 }
3709 
3710 
3711 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3712 {
3713 	unsigned long max_blocks, resync, res, dt, db, rt;
3714 
3715 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3716 
3717 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3718 		max_blocks = mddev->resync_max_sectors >> 1;
3719 	else
3720 		max_blocks = mddev->size;
3721 
3722 	/*
3723 	 * Should not happen.
3724 	 */
3725 	if (!max_blocks) {
3726 		MD_BUG();
3727 		return;
3728 	}
3729 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3730 	{
3731 		int i, x = res/50, y = 20-x;
3732 		seq_printf(seq, "[");
3733 		for (i = 0; i < x; i++)
3734 			seq_printf(seq, "=");
3735 		seq_printf(seq, ">");
3736 		for (i = 0; i < y; i++)
3737 			seq_printf(seq, ".");
3738 		seq_printf(seq, "] ");
3739 	}
3740 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3741 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3742 		       "resync" : "recovery"),
3743 		      res/10, res % 10, resync, max_blocks);
3744 
3745 	/*
3746 	 * We do not want to overflow, so the order of operands and
3747 	 * the * 100 / 100 trick are important. We do a +1 to be
3748 	 * safe against division by zero. We only estimate anyway.
3749 	 *
3750 	 * dt: time from mark until now
3751 	 * db: blocks written from mark until now
3752 	 * rt: remaining time
3753 	 */
3754 	dt = ((jiffies - mddev->resync_mark) / HZ);
3755 	if (!dt) dt++;
3756 	db = resync - (mddev->resync_mark_cnt/2);
3757 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3758 
3759 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3760 
3761 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3762 }
3763 
3764 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3765 {
3766 	struct list_head *tmp;
3767 	loff_t l = *pos;
3768 	mddev_t *mddev;
3769 
3770 	if (l >= 0x10000)
3771 		return NULL;
3772 	if (!l--)
3773 		/* header */
3774 		return (void*)1;
3775 
3776 	spin_lock(&all_mddevs_lock);
3777 	list_for_each(tmp,&all_mddevs)
3778 		if (!l--) {
3779 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3780 			mddev_get(mddev);
3781 			spin_unlock(&all_mddevs_lock);
3782 			return mddev;
3783 		}
3784 	spin_unlock(&all_mddevs_lock);
3785 	if (!l--)
3786 		return (void*)2;/* tail */
3787 	return NULL;
3788 }
3789 
3790 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3791 {
3792 	struct list_head *tmp;
3793 	mddev_t *next_mddev, *mddev = v;
3794 
3795 	++*pos;
3796 	if (v == (void*)2)
3797 		return NULL;
3798 
3799 	spin_lock(&all_mddevs_lock);
3800 	if (v == (void*)1)
3801 		tmp = all_mddevs.next;
3802 	else
3803 		tmp = mddev->all_mddevs.next;
3804 	if (tmp != &all_mddevs)
3805 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3806 	else {
3807 		next_mddev = (void*)2;
3808 		*pos = 0x10000;
3809 	}
3810 	spin_unlock(&all_mddevs_lock);
3811 
3812 	if (v != (void*)1)
3813 		mddev_put(mddev);
3814 	return next_mddev;
3815 
3816 }
3817 
3818 static void md_seq_stop(struct seq_file *seq, void *v)
3819 {
3820 	mddev_t *mddev = v;
3821 
3822 	if (mddev && v != (void*)1 && v != (void*)2)
3823 		mddev_put(mddev);
3824 }
3825 
3826 struct mdstat_info {
3827 	int event;
3828 };
3829 
3830 static int md_seq_show(struct seq_file *seq, void *v)
3831 {
3832 	mddev_t *mddev = v;
3833 	sector_t size;
3834 	struct list_head *tmp2;
3835 	mdk_rdev_t *rdev;
3836 	struct mdstat_info *mi = seq->private;
3837 	struct bitmap *bitmap;
3838 
3839 	if (v == (void*)1) {
3840 		struct mdk_personality *pers;
3841 		seq_printf(seq, "Personalities : ");
3842 		spin_lock(&pers_lock);
3843 		list_for_each_entry(pers, &pers_list, list)
3844 			seq_printf(seq, "[%s] ", pers->name);
3845 
3846 		spin_unlock(&pers_lock);
3847 		seq_printf(seq, "\n");
3848 		mi->event = atomic_read(&md_event_count);
3849 		return 0;
3850 	}
3851 	if (v == (void*)2) {
3852 		status_unused(seq);
3853 		return 0;
3854 	}
3855 
3856 	if (mddev_lock(mddev)!=0)
3857 		return -EINTR;
3858 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3859 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3860 						mddev->pers ? "" : "in");
3861 		if (mddev->pers) {
3862 			if (mddev->ro==1)
3863 				seq_printf(seq, " (read-only)");
3864 			if (mddev->ro==2)
3865 				seq_printf(seq, "(auto-read-only)");
3866 			seq_printf(seq, " %s", mddev->pers->name);
3867 		}
3868 
3869 		size = 0;
3870 		ITERATE_RDEV(mddev,rdev,tmp2) {
3871 			char b[BDEVNAME_SIZE];
3872 			seq_printf(seq, " %s[%d]",
3873 				bdevname(rdev->bdev,b), rdev->desc_nr);
3874 			if (test_bit(WriteMostly, &rdev->flags))
3875 				seq_printf(seq, "(W)");
3876 			if (test_bit(Faulty, &rdev->flags)) {
3877 				seq_printf(seq, "(F)");
3878 				continue;
3879 			} else if (rdev->raid_disk < 0)
3880 				seq_printf(seq, "(S)"); /* spare */
3881 			size += rdev->size;
3882 		}
3883 
3884 		if (!list_empty(&mddev->disks)) {
3885 			if (mddev->pers)
3886 				seq_printf(seq, "\n      %llu blocks",
3887 					(unsigned long long)mddev->array_size);
3888 			else
3889 				seq_printf(seq, "\n      %llu blocks",
3890 					(unsigned long long)size);
3891 		}
3892 		if (mddev->persistent) {
3893 			if (mddev->major_version != 0 ||
3894 			    mddev->minor_version != 90) {
3895 				seq_printf(seq," super %d.%d",
3896 					   mddev->major_version,
3897 					   mddev->minor_version);
3898 			}
3899 		} else
3900 			seq_printf(seq, " super non-persistent");
3901 
3902 		if (mddev->pers) {
3903 			mddev->pers->status (seq, mddev);
3904 	 		seq_printf(seq, "\n      ");
3905 			if (mddev->pers->sync_request) {
3906 				if (mddev->curr_resync > 2) {
3907 					status_resync (seq, mddev);
3908 					seq_printf(seq, "\n      ");
3909 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3910 					seq_printf(seq, "\tresync=DELAYED\n      ");
3911 				else if (mddev->recovery_cp < MaxSector)
3912 					seq_printf(seq, "\tresync=PENDING\n      ");
3913 			}
3914 		} else
3915 			seq_printf(seq, "\n       ");
3916 
3917 		if ((bitmap = mddev->bitmap)) {
3918 			unsigned long chunk_kb;
3919 			unsigned long flags;
3920 			spin_lock_irqsave(&bitmap->lock, flags);
3921 			chunk_kb = bitmap->chunksize >> 10;
3922 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3923 				"%lu%s chunk",
3924 				bitmap->pages - bitmap->missing_pages,
3925 				bitmap->pages,
3926 				(bitmap->pages - bitmap->missing_pages)
3927 					<< (PAGE_SHIFT - 10),
3928 				chunk_kb ? chunk_kb : bitmap->chunksize,
3929 				chunk_kb ? "KB" : "B");
3930 			if (bitmap->file) {
3931 				seq_printf(seq, ", file: ");
3932 				seq_path(seq, bitmap->file->f_vfsmnt,
3933 					 bitmap->file->f_dentry," \t\n");
3934 			}
3935 
3936 			seq_printf(seq, "\n");
3937 			spin_unlock_irqrestore(&bitmap->lock, flags);
3938 		}
3939 
3940 		seq_printf(seq, "\n");
3941 	}
3942 	mddev_unlock(mddev);
3943 
3944 	return 0;
3945 }
3946 
3947 static struct seq_operations md_seq_ops = {
3948 	.start  = md_seq_start,
3949 	.next   = md_seq_next,
3950 	.stop   = md_seq_stop,
3951 	.show   = md_seq_show,
3952 };
3953 
3954 static int md_seq_open(struct inode *inode, struct file *file)
3955 {
3956 	int error;
3957 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
3958 	if (mi == NULL)
3959 		return -ENOMEM;
3960 
3961 	error = seq_open(file, &md_seq_ops);
3962 	if (error)
3963 		kfree(mi);
3964 	else {
3965 		struct seq_file *p = file->private_data;
3966 		p->private = mi;
3967 		mi->event = atomic_read(&md_event_count);
3968 	}
3969 	return error;
3970 }
3971 
3972 static int md_seq_release(struct inode *inode, struct file *file)
3973 {
3974 	struct seq_file *m = file->private_data;
3975 	struct mdstat_info *mi = m->private;
3976 	m->private = NULL;
3977 	kfree(mi);
3978 	return seq_release(inode, file);
3979 }
3980 
3981 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
3982 {
3983 	struct seq_file *m = filp->private_data;
3984 	struct mdstat_info *mi = m->private;
3985 	int mask;
3986 
3987 	poll_wait(filp, &md_event_waiters, wait);
3988 
3989 	/* always allow read */
3990 	mask = POLLIN | POLLRDNORM;
3991 
3992 	if (mi->event != atomic_read(&md_event_count))
3993 		mask |= POLLERR | POLLPRI;
3994 	return mask;
3995 }
3996 
3997 static struct file_operations md_seq_fops = {
3998 	.open           = md_seq_open,
3999 	.read           = seq_read,
4000 	.llseek         = seq_lseek,
4001 	.release	= md_seq_release,
4002 	.poll		= mdstat_poll,
4003 };
4004 
4005 int register_md_personality(struct mdk_personality *p)
4006 {
4007 	spin_lock(&pers_lock);
4008 	list_add_tail(&p->list, &pers_list);
4009 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4010 	spin_unlock(&pers_lock);
4011 	return 0;
4012 }
4013 
4014 int unregister_md_personality(struct mdk_personality *p)
4015 {
4016 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4017 	spin_lock(&pers_lock);
4018 	list_del_init(&p->list);
4019 	spin_unlock(&pers_lock);
4020 	return 0;
4021 }
4022 
4023 static int is_mddev_idle(mddev_t *mddev)
4024 {
4025 	mdk_rdev_t * rdev;
4026 	struct list_head *tmp;
4027 	int idle;
4028 	unsigned long curr_events;
4029 
4030 	idle = 1;
4031 	ITERATE_RDEV(mddev,rdev,tmp) {
4032 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4033 		curr_events = disk_stat_read(disk, sectors[0]) +
4034 				disk_stat_read(disk, sectors[1]) -
4035 				atomic_read(&disk->sync_io);
4036 		/* The difference between curr_events and last_events
4037 		 * will be affected by any new non-sync IO (making
4038 		 * curr_events bigger) and any difference in the amount of
4039 		 * in-flight syncio (making current_events bigger or smaller)
4040 		 * The amount in-flight is currently limited to
4041 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4042 		 * which is at most 4096 sectors.
4043 		 * These numbers are fairly fragile and should be made
4044 		 * more robust, probably by enforcing the
4045 		 * 'window size' that md_do_sync sort-of uses.
4046 		 *
4047 		 * Note: the following is an unsigned comparison.
4048 		 */
4049 		if ((curr_events - rdev->last_events + 4096) > 8192) {
4050 			rdev->last_events = curr_events;
4051 			idle = 0;
4052 		}
4053 	}
4054 	return idle;
4055 }
4056 
4057 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4058 {
4059 	/* another "blocks" (512byte) blocks have been synced */
4060 	atomic_sub(blocks, &mddev->recovery_active);
4061 	wake_up(&mddev->recovery_wait);
4062 	if (!ok) {
4063 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4064 		md_wakeup_thread(mddev->thread);
4065 		// stop recovery, signal do_sync ....
4066 	}
4067 }
4068 
4069 
4070 /* md_write_start(mddev, bi)
4071  * If we need to update some array metadata (e.g. 'active' flag
4072  * in superblock) before writing, schedule a superblock update
4073  * and wait for it to complete.
4074  */
4075 void md_write_start(mddev_t *mddev, struct bio *bi)
4076 {
4077 	if (bio_data_dir(bi) != WRITE)
4078 		return;
4079 
4080 	BUG_ON(mddev->ro == 1);
4081 	if (mddev->ro == 2) {
4082 		/* need to switch to read/write */
4083 		mddev->ro = 0;
4084 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4085 		md_wakeup_thread(mddev->thread);
4086 	}
4087 	atomic_inc(&mddev->writes_pending);
4088 	if (mddev->in_sync) {
4089 		spin_lock_irq(&mddev->write_lock);
4090 		if (mddev->in_sync) {
4091 			mddev->in_sync = 0;
4092 			mddev->sb_dirty = 1;
4093 			md_wakeup_thread(mddev->thread);
4094 		}
4095 		spin_unlock_irq(&mddev->write_lock);
4096 	}
4097 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
4098 }
4099 
4100 void md_write_end(mddev_t *mddev)
4101 {
4102 	if (atomic_dec_and_test(&mddev->writes_pending)) {
4103 		if (mddev->safemode == 2)
4104 			md_wakeup_thread(mddev->thread);
4105 		else
4106 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
4107 	}
4108 }
4109 
4110 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
4111 
4112 #define SYNC_MARKS	10
4113 #define	SYNC_MARK_STEP	(3*HZ)
4114 static void md_do_sync(mddev_t *mddev)
4115 {
4116 	mddev_t *mddev2;
4117 	unsigned int currspeed = 0,
4118 		 window;
4119 	sector_t max_sectors,j, io_sectors;
4120 	unsigned long mark[SYNC_MARKS];
4121 	sector_t mark_cnt[SYNC_MARKS];
4122 	int last_mark,m;
4123 	struct list_head *tmp;
4124 	sector_t last_check;
4125 	int skipped = 0;
4126 
4127 	/* just incase thread restarts... */
4128 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4129 		return;
4130 
4131 	/* we overload curr_resync somewhat here.
4132 	 * 0 == not engaged in resync at all
4133 	 * 2 == checking that there is no conflict with another sync
4134 	 * 1 == like 2, but have yielded to allow conflicting resync to
4135 	 *		commense
4136 	 * other == active in resync - this many blocks
4137 	 *
4138 	 * Before starting a resync we must have set curr_resync to
4139 	 * 2, and then checked that every "conflicting" array has curr_resync
4140 	 * less than ours.  When we find one that is the same or higher
4141 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
4142 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4143 	 * This will mean we have to start checking from the beginning again.
4144 	 *
4145 	 */
4146 
4147 	do {
4148 		mddev->curr_resync = 2;
4149 
4150 	try_again:
4151 		if (kthread_should_stop()) {
4152 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4153 			goto skip;
4154 		}
4155 		ITERATE_MDDEV(mddev2,tmp) {
4156 			if (mddev2 == mddev)
4157 				continue;
4158 			if (mddev2->curr_resync &&
4159 			    match_mddev_units(mddev,mddev2)) {
4160 				DEFINE_WAIT(wq);
4161 				if (mddev < mddev2 && mddev->curr_resync == 2) {
4162 					/* arbitrarily yield */
4163 					mddev->curr_resync = 1;
4164 					wake_up(&resync_wait);
4165 				}
4166 				if (mddev > mddev2 && mddev->curr_resync == 1)
4167 					/* no need to wait here, we can wait the next
4168 					 * time 'round when curr_resync == 2
4169 					 */
4170 					continue;
4171 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4172 				if (!kthread_should_stop() &&
4173 				    mddev2->curr_resync >= mddev->curr_resync) {
4174 					printk(KERN_INFO "md: delaying resync of %s"
4175 					       " until %s has finished resync (they"
4176 					       " share one or more physical units)\n",
4177 					       mdname(mddev), mdname(mddev2));
4178 					mddev_put(mddev2);
4179 					schedule();
4180 					finish_wait(&resync_wait, &wq);
4181 					goto try_again;
4182 				}
4183 				finish_wait(&resync_wait, &wq);
4184 			}
4185 		}
4186 	} while (mddev->curr_resync < 2);
4187 
4188 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4189 		/* resync follows the size requested by the personality,
4190 		 * which defaults to physical size, but can be virtual size
4191 		 */
4192 		max_sectors = mddev->resync_max_sectors;
4193 		mddev->resync_mismatches = 0;
4194 	} else
4195 		/* recovery follows the physical size of devices */
4196 		max_sectors = mddev->size << 1;
4197 
4198 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4199 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4200 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
4201 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4202 	       "(but not more than %d KB/sec) for reconstruction.\n",
4203 	       sysctl_speed_limit_max);
4204 
4205 	is_mddev_idle(mddev); /* this also initializes IO event counters */
4206 	/* we don't use the checkpoint if there's a bitmap */
4207 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4208 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4209 		j = mddev->recovery_cp;
4210 	else
4211 		j = 0;
4212 	io_sectors = 0;
4213 	for (m = 0; m < SYNC_MARKS; m++) {
4214 		mark[m] = jiffies;
4215 		mark_cnt[m] = io_sectors;
4216 	}
4217 	last_mark = 0;
4218 	mddev->resync_mark = mark[last_mark];
4219 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4220 
4221 	/*
4222 	 * Tune reconstruction:
4223 	 */
4224 	window = 32*(PAGE_SIZE/512);
4225 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4226 		window/2,(unsigned long long) max_sectors/2);
4227 
4228 	atomic_set(&mddev->recovery_active, 0);
4229 	init_waitqueue_head(&mddev->recovery_wait);
4230 	last_check = 0;
4231 
4232 	if (j>2) {
4233 		printk(KERN_INFO
4234 			"md: resuming recovery of %s from checkpoint.\n",
4235 			mdname(mddev));
4236 		mddev->curr_resync = j;
4237 	}
4238 
4239 	while (j < max_sectors) {
4240 		sector_t sectors;
4241 
4242 		skipped = 0;
4243 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4244 					    currspeed < sysctl_speed_limit_min);
4245 		if (sectors == 0) {
4246 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4247 			goto out;
4248 		}
4249 
4250 		if (!skipped) { /* actual IO requested */
4251 			io_sectors += sectors;
4252 			atomic_add(sectors, &mddev->recovery_active);
4253 		}
4254 
4255 		j += sectors;
4256 		if (j>1) mddev->curr_resync = j;
4257 		if (last_check == 0)
4258 			/* this is the earliers that rebuilt will be
4259 			 * visible in /proc/mdstat
4260 			 */
4261 			md_new_event(mddev);
4262 
4263 		if (last_check + window > io_sectors || j == max_sectors)
4264 			continue;
4265 
4266 		last_check = io_sectors;
4267 
4268 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4269 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4270 			break;
4271 
4272 	repeat:
4273 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4274 			/* step marks */
4275 			int next = (last_mark+1) % SYNC_MARKS;
4276 
4277 			mddev->resync_mark = mark[next];
4278 			mddev->resync_mark_cnt = mark_cnt[next];
4279 			mark[next] = jiffies;
4280 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4281 			last_mark = next;
4282 		}
4283 
4284 
4285 		if (kthread_should_stop()) {
4286 			/*
4287 			 * got a signal, exit.
4288 			 */
4289 			printk(KERN_INFO
4290 				"md: md_do_sync() got signal ... exiting\n");
4291 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4292 			goto out;
4293 		}
4294 
4295 		/*
4296 		 * this loop exits only if either when we are slower than
4297 		 * the 'hard' speed limit, or the system was IO-idle for
4298 		 * a jiffy.
4299 		 * the system might be non-idle CPU-wise, but we only care
4300 		 * about not overloading the IO subsystem. (things like an
4301 		 * e2fsck being done on the RAID array should execute fast)
4302 		 */
4303 		mddev->queue->unplug_fn(mddev->queue);
4304 		cond_resched();
4305 
4306 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4307 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4308 
4309 		if (currspeed > sysctl_speed_limit_min) {
4310 			if ((currspeed > sysctl_speed_limit_max) ||
4311 					!is_mddev_idle(mddev)) {
4312 				msleep(500);
4313 				goto repeat;
4314 			}
4315 		}
4316 	}
4317 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4318 	/*
4319 	 * this also signals 'finished resyncing' to md_stop
4320 	 */
4321  out:
4322 	mddev->queue->unplug_fn(mddev->queue);
4323 
4324 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4325 
4326 	/* tell personality that we are finished */
4327 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4328 
4329 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4330 	    mddev->curr_resync > 2 &&
4331 	    mddev->curr_resync >= mddev->recovery_cp) {
4332 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4333 			printk(KERN_INFO
4334 				"md: checkpointing recovery of %s.\n",
4335 				mdname(mddev));
4336 			mddev->recovery_cp = mddev->curr_resync;
4337 		} else
4338 			mddev->recovery_cp = MaxSector;
4339 	}
4340 
4341  skip:
4342 	mddev->curr_resync = 0;
4343 	wake_up(&resync_wait);
4344 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4345 	md_wakeup_thread(mddev->thread);
4346 }
4347 
4348 
4349 /*
4350  * This routine is regularly called by all per-raid-array threads to
4351  * deal with generic issues like resync and super-block update.
4352  * Raid personalities that don't have a thread (linear/raid0) do not
4353  * need this as they never do any recovery or update the superblock.
4354  *
4355  * It does not do any resync itself, but rather "forks" off other threads
4356  * to do that as needed.
4357  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4358  * "->recovery" and create a thread at ->sync_thread.
4359  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4360  * and wakeups up this thread which will reap the thread and finish up.
4361  * This thread also removes any faulty devices (with nr_pending == 0).
4362  *
4363  * The overall approach is:
4364  *  1/ if the superblock needs updating, update it.
4365  *  2/ If a recovery thread is running, don't do anything else.
4366  *  3/ If recovery has finished, clean up, possibly marking spares active.
4367  *  4/ If there are any faulty devices, remove them.
4368  *  5/ If array is degraded, try to add spares devices
4369  *  6/ If array has spares or is not in-sync, start a resync thread.
4370  */
4371 void md_check_recovery(mddev_t *mddev)
4372 {
4373 	mdk_rdev_t *rdev;
4374 	struct list_head *rtmp;
4375 
4376 
4377 	if (mddev->bitmap)
4378 		bitmap_daemon_work(mddev->bitmap);
4379 
4380 	if (mddev->ro)
4381 		return;
4382 
4383 	if (signal_pending(current)) {
4384 		if (mddev->pers->sync_request) {
4385 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4386 			       mdname(mddev));
4387 			mddev->safemode = 2;
4388 		}
4389 		flush_signals(current);
4390 	}
4391 
4392 	if ( ! (
4393 		mddev->sb_dirty ||
4394 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4395 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4396 		(mddev->safemode == 1) ||
4397 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4398 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4399 		))
4400 		return;
4401 
4402 	if (mddev_trylock(mddev)==0) {
4403 		int spares =0;
4404 
4405 		spin_lock_irq(&mddev->write_lock);
4406 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4407 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4408 			mddev->in_sync = 1;
4409 			mddev->sb_dirty = 1;
4410 		}
4411 		if (mddev->safemode == 1)
4412 			mddev->safemode = 0;
4413 		spin_unlock_irq(&mddev->write_lock);
4414 
4415 		if (mddev->sb_dirty)
4416 			md_update_sb(mddev);
4417 
4418 
4419 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4420 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4421 			/* resync/recovery still happening */
4422 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4423 			goto unlock;
4424 		}
4425 		if (mddev->sync_thread) {
4426 			/* resync has finished, collect result */
4427 			md_unregister_thread(mddev->sync_thread);
4428 			mddev->sync_thread = NULL;
4429 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4430 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4431 				/* success...*/
4432 				/* activate any spares */
4433 				mddev->pers->spare_active(mddev);
4434 			}
4435 			md_update_sb(mddev);
4436 
4437 			/* if array is no-longer degraded, then any saved_raid_disk
4438 			 * information must be scrapped
4439 			 */
4440 			if (!mddev->degraded)
4441 				ITERATE_RDEV(mddev,rdev,rtmp)
4442 					rdev->saved_raid_disk = -1;
4443 
4444 			mddev->recovery = 0;
4445 			/* flag recovery needed just to double check */
4446 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4447 			md_new_event(mddev);
4448 			goto unlock;
4449 		}
4450 		/* Clear some bits that don't mean anything, but
4451 		 * might be left set
4452 		 */
4453 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4454 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4455 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4456 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4457 
4458 		/* no recovery is running.
4459 		 * remove any failed drives, then
4460 		 * add spares if possible.
4461 		 * Spare are also removed and re-added, to allow
4462 		 * the personality to fail the re-add.
4463 		 */
4464 		ITERATE_RDEV(mddev,rdev,rtmp)
4465 			if (rdev->raid_disk >= 0 &&
4466 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4467 			    atomic_read(&rdev->nr_pending)==0) {
4468 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4469 					char nm[20];
4470 					sprintf(nm,"rd%d", rdev->raid_disk);
4471 					sysfs_remove_link(&mddev->kobj, nm);
4472 					rdev->raid_disk = -1;
4473 				}
4474 			}
4475 
4476 		if (mddev->degraded) {
4477 			ITERATE_RDEV(mddev,rdev,rtmp)
4478 				if (rdev->raid_disk < 0
4479 				    && !test_bit(Faulty, &rdev->flags)) {
4480 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4481 						char nm[20];
4482 						sprintf(nm, "rd%d", rdev->raid_disk);
4483 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4484 						spares++;
4485 						md_new_event(mddev);
4486 					} else
4487 						break;
4488 				}
4489 		}
4490 
4491 		if (spares) {
4492 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4493 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4494 		} else if (mddev->recovery_cp < MaxSector) {
4495 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4496 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4497 			/* nothing to be done ... */
4498 			goto unlock;
4499 
4500 		if (mddev->pers->sync_request) {
4501 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4502 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4503 				/* We are adding a device or devices to an array
4504 				 * which has the bitmap stored on all devices.
4505 				 * So make sure all bitmap pages get written
4506 				 */
4507 				bitmap_write_all(mddev->bitmap);
4508 			}
4509 			mddev->sync_thread = md_register_thread(md_do_sync,
4510 								mddev,
4511 								"%s_resync");
4512 			if (!mddev->sync_thread) {
4513 				printk(KERN_ERR "%s: could not start resync"
4514 					" thread...\n",
4515 					mdname(mddev));
4516 				/* leave the spares where they are, it shouldn't hurt */
4517 				mddev->recovery = 0;
4518 			} else
4519 				md_wakeup_thread(mddev->sync_thread);
4520 			md_new_event(mddev);
4521 		}
4522 	unlock:
4523 		mddev_unlock(mddev);
4524 	}
4525 }
4526 
4527 static int md_notify_reboot(struct notifier_block *this,
4528 			    unsigned long code, void *x)
4529 {
4530 	struct list_head *tmp;
4531 	mddev_t *mddev;
4532 
4533 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4534 
4535 		printk(KERN_INFO "md: stopping all md devices.\n");
4536 
4537 		ITERATE_MDDEV(mddev,tmp)
4538 			if (mddev_trylock(mddev)==0)
4539 				do_md_stop (mddev, 1);
4540 		/*
4541 		 * certain more exotic SCSI devices are known to be
4542 		 * volatile wrt too early system reboots. While the
4543 		 * right place to handle this issue is the given
4544 		 * driver, we do want to have a safe RAID driver ...
4545 		 */
4546 		mdelay(1000*1);
4547 	}
4548 	return NOTIFY_DONE;
4549 }
4550 
4551 static struct notifier_block md_notifier = {
4552 	.notifier_call	= md_notify_reboot,
4553 	.next		= NULL,
4554 	.priority	= INT_MAX, /* before any real devices */
4555 };
4556 
4557 static void md_geninit(void)
4558 {
4559 	struct proc_dir_entry *p;
4560 
4561 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4562 
4563 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4564 	if (p)
4565 		p->proc_fops = &md_seq_fops;
4566 }
4567 
4568 static int __init md_init(void)
4569 {
4570 	int minor;
4571 
4572 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4573 			" MD_SB_DISKS=%d\n",
4574 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4575 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4576 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4577 			BITMAP_MINOR);
4578 
4579 	if (register_blkdev(MAJOR_NR, "md"))
4580 		return -1;
4581 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4582 		unregister_blkdev(MAJOR_NR, "md");
4583 		return -1;
4584 	}
4585 	devfs_mk_dir("md");
4586 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4587 				md_probe, NULL, NULL);
4588 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4589 			    md_probe, NULL, NULL);
4590 
4591 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4592 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4593 				S_IFBLK|S_IRUSR|S_IWUSR,
4594 				"md/%d", minor);
4595 
4596 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4597 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4598 			      S_IFBLK|S_IRUSR|S_IWUSR,
4599 			      "md/mdp%d", minor);
4600 
4601 
4602 	register_reboot_notifier(&md_notifier);
4603 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4604 
4605 	md_geninit();
4606 	return (0);
4607 }
4608 
4609 
4610 #ifndef MODULE
4611 
4612 /*
4613  * Searches all registered partitions for autorun RAID arrays
4614  * at boot time.
4615  */
4616 static dev_t detected_devices[128];
4617 static int dev_cnt;
4618 
4619 void md_autodetect_dev(dev_t dev)
4620 {
4621 	if (dev_cnt >= 0 && dev_cnt < 127)
4622 		detected_devices[dev_cnt++] = dev;
4623 }
4624 
4625 
4626 static void autostart_arrays(int part)
4627 {
4628 	mdk_rdev_t *rdev;
4629 	int i;
4630 
4631 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4632 
4633 	for (i = 0; i < dev_cnt; i++) {
4634 		dev_t dev = detected_devices[i];
4635 
4636 		rdev = md_import_device(dev,0, 0);
4637 		if (IS_ERR(rdev))
4638 			continue;
4639 
4640 		if (test_bit(Faulty, &rdev->flags)) {
4641 			MD_BUG();
4642 			continue;
4643 		}
4644 		list_add(&rdev->same_set, &pending_raid_disks);
4645 	}
4646 	dev_cnt = 0;
4647 
4648 	autorun_devices(part);
4649 }
4650 
4651 #endif
4652 
4653 static __exit void md_exit(void)
4654 {
4655 	mddev_t *mddev;
4656 	struct list_head *tmp;
4657 	int i;
4658 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4659 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4660 	for (i=0; i < MAX_MD_DEVS; i++)
4661 		devfs_remove("md/%d", i);
4662 	for (i=0; i < MAX_MD_DEVS; i++)
4663 		devfs_remove("md/d%d", i);
4664 
4665 	devfs_remove("md");
4666 
4667 	unregister_blkdev(MAJOR_NR,"md");
4668 	unregister_blkdev(mdp_major, "mdp");
4669 	unregister_reboot_notifier(&md_notifier);
4670 	unregister_sysctl_table(raid_table_header);
4671 	remove_proc_entry("mdstat", NULL);
4672 	ITERATE_MDDEV(mddev,tmp) {
4673 		struct gendisk *disk = mddev->gendisk;
4674 		if (!disk)
4675 			continue;
4676 		export_array(mddev);
4677 		del_gendisk(disk);
4678 		put_disk(disk);
4679 		mddev->gendisk = NULL;
4680 		mddev_put(mddev);
4681 	}
4682 }
4683 
4684 module_init(md_init)
4685 module_exit(md_exit)
4686 
4687 static int get_ro(char *buffer, struct kernel_param *kp)
4688 {
4689 	return sprintf(buffer, "%d", start_readonly);
4690 }
4691 static int set_ro(const char *val, struct kernel_param *kp)
4692 {
4693 	char *e;
4694 	int num = simple_strtoul(val, &e, 10);
4695 	if (*val && (*e == '\0' || *e == '\n')) {
4696 		start_readonly = num;
4697 		return 0;;
4698 	}
4699 	return -EINVAL;
4700 }
4701 
4702 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4703 module_param(start_dirty_degraded, int, 0644);
4704 
4705 
4706 EXPORT_SYMBOL(register_md_personality);
4707 EXPORT_SYMBOL(unregister_md_personality);
4708 EXPORT_SYMBOL(md_error);
4709 EXPORT_SYMBOL(md_done_sync);
4710 EXPORT_SYMBOL(md_write_start);
4711 EXPORT_SYMBOL(md_write_end);
4712 EXPORT_SYMBOL(md_register_thread);
4713 EXPORT_SYMBOL(md_unregister_thread);
4714 EXPORT_SYMBOL(md_wakeup_thread);
4715 EXPORT_SYMBOL(md_print_devices);
4716 EXPORT_SYMBOL(md_check_recovery);
4717 MODULE_LICENSE("GPL");
4718 MODULE_ALIAS("md");
4719 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4720