1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/raid/detect.h> 62 #include <linux/slab.h> 63 #include <linux/percpu-refcount.h> 64 #include <linux/part_stat.h> 65 66 #include <trace/events/block.h> 67 #include "md.h" 68 #include "md-bitmap.h" 69 #include "md-cluster.h" 70 71 /* pers_list is a list of registered personalities protected 72 * by pers_lock. 73 * pers_lock does extra service to protect accesses to 74 * mddev->thread when the mutex cannot be held. 75 */ 76 static LIST_HEAD(pers_list); 77 static DEFINE_SPINLOCK(pers_lock); 78 79 static struct kobj_type md_ktype; 80 81 struct md_cluster_operations *md_cluster_ops; 82 EXPORT_SYMBOL(md_cluster_ops); 83 static struct module *md_cluster_mod; 84 85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 86 static struct workqueue_struct *md_wq; 87 static struct workqueue_struct *md_misc_wq; 88 static struct workqueue_struct *md_rdev_misc_wq; 89 90 static int remove_and_add_spares(struct mddev *mddev, 91 struct md_rdev *this); 92 static void mddev_detach(struct mddev *mddev); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static struct ctl_table raid_dir_table[] = { 312 { 313 .procname = "raid", 314 .maxlen = 0, 315 .mode = S_IRUGO|S_IXUGO, 316 .child = raid_table, 317 }, 318 { } 319 }; 320 321 static struct ctl_table raid_root_table[] = { 322 { 323 .procname = "dev", 324 .maxlen = 0, 325 .mode = 0555, 326 .child = raid_dir_table, 327 }, 328 { } 329 }; 330 331 static int start_readonly; 332 333 /* 334 * The original mechanism for creating an md device is to create 335 * a device node in /dev and to open it. This causes races with device-close. 336 * The preferred method is to write to the "new_array" module parameter. 337 * This can avoid races. 338 * Setting create_on_open to false disables the original mechanism 339 * so all the races disappear. 340 */ 341 static bool create_on_open = true; 342 343 /* 344 * We have a system wide 'event count' that is incremented 345 * on any 'interesting' event, and readers of /proc/mdstat 346 * can use 'poll' or 'select' to find out when the event 347 * count increases. 348 * 349 * Events are: 350 * start array, stop array, error, add device, remove device, 351 * start build, activate spare 352 */ 353 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 354 static atomic_t md_event_count; 355 void md_new_event(struct mddev *mddev) 356 { 357 atomic_inc(&md_event_count); 358 wake_up(&md_event_waiters); 359 } 360 EXPORT_SYMBOL_GPL(md_new_event); 361 362 /* 363 * Enables to iterate over all existing md arrays 364 * all_mddevs_lock protects this list. 365 */ 366 static LIST_HEAD(all_mddevs); 367 static DEFINE_SPINLOCK(all_mddevs_lock); 368 369 /* 370 * iterates through all used mddevs in the system. 371 * We take care to grab the all_mddevs_lock whenever navigating 372 * the list, and to always hold a refcount when unlocked. 373 * Any code which breaks out of this loop while own 374 * a reference to the current mddev and must mddev_put it. 375 */ 376 #define for_each_mddev(_mddev,_tmp) \ 377 \ 378 for (({ spin_lock(&all_mddevs_lock); \ 379 _tmp = all_mddevs.next; \ 380 _mddev = NULL;}); \ 381 ({ if (_tmp != &all_mddevs) \ 382 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 383 spin_unlock(&all_mddevs_lock); \ 384 if (_mddev) mddev_put(_mddev); \ 385 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 386 _tmp != &all_mddevs;}); \ 387 ({ spin_lock(&all_mddevs_lock); \ 388 _tmp = _tmp->next;}) \ 389 ) 390 391 /* Rather than calling directly into the personality make_request function, 392 * IO requests come here first so that we can check if the device is 393 * being suspended pending a reconfiguration. 394 * We hold a refcount over the call to ->make_request. By the time that 395 * call has finished, the bio has been linked into some internal structure 396 * and so is visible to ->quiesce(), so we don't need the refcount any more. 397 */ 398 static bool is_suspended(struct mddev *mddev, struct bio *bio) 399 { 400 if (mddev->suspended) 401 return true; 402 if (bio_data_dir(bio) != WRITE) 403 return false; 404 if (mddev->suspend_lo >= mddev->suspend_hi) 405 return false; 406 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 407 return false; 408 if (bio_end_sector(bio) < mddev->suspend_lo) 409 return false; 410 return true; 411 } 412 413 void md_handle_request(struct mddev *mddev, struct bio *bio) 414 { 415 check_suspended: 416 rcu_read_lock(); 417 if (is_suspended(mddev, bio)) { 418 DEFINE_WAIT(__wait); 419 for (;;) { 420 prepare_to_wait(&mddev->sb_wait, &__wait, 421 TASK_UNINTERRUPTIBLE); 422 if (!is_suspended(mddev, bio)) 423 break; 424 rcu_read_unlock(); 425 schedule(); 426 rcu_read_lock(); 427 } 428 finish_wait(&mddev->sb_wait, &__wait); 429 } 430 atomic_inc(&mddev->active_io); 431 rcu_read_unlock(); 432 433 if (!mddev->pers->make_request(mddev, bio)) { 434 atomic_dec(&mddev->active_io); 435 wake_up(&mddev->sb_wait); 436 goto check_suspended; 437 } 438 439 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 440 wake_up(&mddev->sb_wait); 441 } 442 EXPORT_SYMBOL(md_handle_request); 443 444 struct md_io { 445 struct mddev *mddev; 446 bio_end_io_t *orig_bi_end_io; 447 void *orig_bi_private; 448 struct block_device *orig_bi_bdev; 449 unsigned long start_time; 450 }; 451 452 static void md_end_io(struct bio *bio) 453 { 454 struct md_io *md_io = bio->bi_private; 455 struct mddev *mddev = md_io->mddev; 456 457 bio_end_io_acct_remapped(bio, md_io->start_time, md_io->orig_bi_bdev); 458 459 bio->bi_end_io = md_io->orig_bi_end_io; 460 bio->bi_private = md_io->orig_bi_private; 461 462 mempool_free(md_io, &mddev->md_io_pool); 463 464 if (bio->bi_end_io) 465 bio->bi_end_io(bio); 466 } 467 468 static blk_qc_t md_submit_bio(struct bio *bio) 469 { 470 const int rw = bio_data_dir(bio); 471 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 472 473 if (mddev == NULL || mddev->pers == NULL) { 474 bio_io_error(bio); 475 return BLK_QC_T_NONE; 476 } 477 478 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 479 bio_io_error(bio); 480 return BLK_QC_T_NONE; 481 } 482 483 blk_queue_split(&bio); 484 485 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 486 if (bio_sectors(bio) != 0) 487 bio->bi_status = BLK_STS_IOERR; 488 bio_endio(bio); 489 return BLK_QC_T_NONE; 490 } 491 492 if (bio->bi_end_io != md_end_io) { 493 struct md_io *md_io; 494 495 md_io = mempool_alloc(&mddev->md_io_pool, GFP_NOIO); 496 md_io->mddev = mddev; 497 md_io->orig_bi_end_io = bio->bi_end_io; 498 md_io->orig_bi_private = bio->bi_private; 499 md_io->orig_bi_bdev = bio->bi_bdev; 500 501 bio->bi_end_io = md_end_io; 502 bio->bi_private = md_io; 503 504 md_io->start_time = bio_start_io_acct(bio); 505 } 506 507 /* bio could be mergeable after passing to underlayer */ 508 bio->bi_opf &= ~REQ_NOMERGE; 509 510 md_handle_request(mddev, bio); 511 512 return BLK_QC_T_NONE; 513 } 514 515 /* mddev_suspend makes sure no new requests are submitted 516 * to the device, and that any requests that have been submitted 517 * are completely handled. 518 * Once mddev_detach() is called and completes, the module will be 519 * completely unused. 520 */ 521 void mddev_suspend(struct mddev *mddev) 522 { 523 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 524 lockdep_assert_held(&mddev->reconfig_mutex); 525 if (mddev->suspended++) 526 return; 527 synchronize_rcu(); 528 wake_up(&mddev->sb_wait); 529 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 530 smp_mb__after_atomic(); 531 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 532 mddev->pers->quiesce(mddev, 1); 533 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 534 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 535 536 del_timer_sync(&mddev->safemode_timer); 537 /* restrict memory reclaim I/O during raid array is suspend */ 538 mddev->noio_flag = memalloc_noio_save(); 539 } 540 EXPORT_SYMBOL_GPL(mddev_suspend); 541 542 void mddev_resume(struct mddev *mddev) 543 { 544 /* entred the memalloc scope from mddev_suspend() */ 545 memalloc_noio_restore(mddev->noio_flag); 546 lockdep_assert_held(&mddev->reconfig_mutex); 547 if (--mddev->suspended) 548 return; 549 wake_up(&mddev->sb_wait); 550 mddev->pers->quiesce(mddev, 0); 551 552 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 553 md_wakeup_thread(mddev->thread); 554 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 555 } 556 EXPORT_SYMBOL_GPL(mddev_resume); 557 558 /* 559 * Generic flush handling for md 560 */ 561 562 static void md_end_flush(struct bio *bio) 563 { 564 struct md_rdev *rdev = bio->bi_private; 565 struct mddev *mddev = rdev->mddev; 566 567 rdev_dec_pending(rdev, mddev); 568 569 if (atomic_dec_and_test(&mddev->flush_pending)) { 570 /* The pre-request flush has finished */ 571 queue_work(md_wq, &mddev->flush_work); 572 } 573 bio_put(bio); 574 } 575 576 static void md_submit_flush_data(struct work_struct *ws); 577 578 static void submit_flushes(struct work_struct *ws) 579 { 580 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 581 struct md_rdev *rdev; 582 583 mddev->start_flush = ktime_get_boottime(); 584 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 585 atomic_set(&mddev->flush_pending, 1); 586 rcu_read_lock(); 587 rdev_for_each_rcu(rdev, mddev) 588 if (rdev->raid_disk >= 0 && 589 !test_bit(Faulty, &rdev->flags)) { 590 /* Take two references, one is dropped 591 * when request finishes, one after 592 * we reclaim rcu_read_lock 593 */ 594 struct bio *bi; 595 atomic_inc(&rdev->nr_pending); 596 atomic_inc(&rdev->nr_pending); 597 rcu_read_unlock(); 598 bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set); 599 bi->bi_end_io = md_end_flush; 600 bi->bi_private = rdev; 601 bio_set_dev(bi, rdev->bdev); 602 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 603 atomic_inc(&mddev->flush_pending); 604 submit_bio(bi); 605 rcu_read_lock(); 606 rdev_dec_pending(rdev, mddev); 607 } 608 rcu_read_unlock(); 609 if (atomic_dec_and_test(&mddev->flush_pending)) 610 queue_work(md_wq, &mddev->flush_work); 611 } 612 613 static void md_submit_flush_data(struct work_struct *ws) 614 { 615 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 616 struct bio *bio = mddev->flush_bio; 617 618 /* 619 * must reset flush_bio before calling into md_handle_request to avoid a 620 * deadlock, because other bios passed md_handle_request suspend check 621 * could wait for this and below md_handle_request could wait for those 622 * bios because of suspend check 623 */ 624 spin_lock_irq(&mddev->lock); 625 mddev->prev_flush_start = mddev->start_flush; 626 mddev->flush_bio = NULL; 627 spin_unlock_irq(&mddev->lock); 628 wake_up(&mddev->sb_wait); 629 630 if (bio->bi_iter.bi_size == 0) { 631 /* an empty barrier - all done */ 632 bio_endio(bio); 633 } else { 634 bio->bi_opf &= ~REQ_PREFLUSH; 635 md_handle_request(mddev, bio); 636 } 637 } 638 639 /* 640 * Manages consolidation of flushes and submitting any flushes needed for 641 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 642 * being finished in another context. Returns false if the flushing is 643 * complete but still needs the I/O portion of the bio to be processed. 644 */ 645 bool md_flush_request(struct mddev *mddev, struct bio *bio) 646 { 647 ktime_t req_start = ktime_get_boottime(); 648 spin_lock_irq(&mddev->lock); 649 /* flush requests wait until ongoing flush completes, 650 * hence coalescing all the pending requests. 651 */ 652 wait_event_lock_irq(mddev->sb_wait, 653 !mddev->flush_bio || 654 ktime_before(req_start, mddev->prev_flush_start), 655 mddev->lock); 656 /* new request after previous flush is completed */ 657 if (ktime_after(req_start, mddev->prev_flush_start)) { 658 WARN_ON(mddev->flush_bio); 659 mddev->flush_bio = bio; 660 bio = NULL; 661 } 662 spin_unlock_irq(&mddev->lock); 663 664 if (!bio) { 665 INIT_WORK(&mddev->flush_work, submit_flushes); 666 queue_work(md_wq, &mddev->flush_work); 667 } else { 668 /* flush was performed for some other bio while we waited. */ 669 if (bio->bi_iter.bi_size == 0) 670 /* an empty barrier - all done */ 671 bio_endio(bio); 672 else { 673 bio->bi_opf &= ~REQ_PREFLUSH; 674 return false; 675 } 676 } 677 return true; 678 } 679 EXPORT_SYMBOL(md_flush_request); 680 681 static inline struct mddev *mddev_get(struct mddev *mddev) 682 { 683 atomic_inc(&mddev->active); 684 return mddev; 685 } 686 687 static void mddev_delayed_delete(struct work_struct *ws); 688 689 static void mddev_put(struct mddev *mddev) 690 { 691 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 692 return; 693 if (!mddev->raid_disks && list_empty(&mddev->disks) && 694 mddev->ctime == 0 && !mddev->hold_active) { 695 /* Array is not configured at all, and not held active, 696 * so destroy it */ 697 list_del_init(&mddev->all_mddevs); 698 699 /* 700 * Call queue_work inside the spinlock so that 701 * flush_workqueue() after mddev_find will succeed in waiting 702 * for the work to be done. 703 */ 704 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 705 queue_work(md_misc_wq, &mddev->del_work); 706 } 707 spin_unlock(&all_mddevs_lock); 708 } 709 710 static void md_safemode_timeout(struct timer_list *t); 711 712 void mddev_init(struct mddev *mddev) 713 { 714 kobject_init(&mddev->kobj, &md_ktype); 715 mutex_init(&mddev->open_mutex); 716 mutex_init(&mddev->reconfig_mutex); 717 mutex_init(&mddev->bitmap_info.mutex); 718 INIT_LIST_HEAD(&mddev->disks); 719 INIT_LIST_HEAD(&mddev->all_mddevs); 720 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 721 atomic_set(&mddev->active, 1); 722 atomic_set(&mddev->openers, 0); 723 atomic_set(&mddev->active_io, 0); 724 spin_lock_init(&mddev->lock); 725 atomic_set(&mddev->flush_pending, 0); 726 init_waitqueue_head(&mddev->sb_wait); 727 init_waitqueue_head(&mddev->recovery_wait); 728 mddev->reshape_position = MaxSector; 729 mddev->reshape_backwards = 0; 730 mddev->last_sync_action = "none"; 731 mddev->resync_min = 0; 732 mddev->resync_max = MaxSector; 733 mddev->level = LEVEL_NONE; 734 } 735 EXPORT_SYMBOL_GPL(mddev_init); 736 737 static struct mddev *mddev_find(dev_t unit) 738 { 739 struct mddev *mddev, *new = NULL; 740 741 if (unit && MAJOR(unit) != MD_MAJOR) 742 unit &= ~((1<<MdpMinorShift)-1); 743 744 retry: 745 spin_lock(&all_mddevs_lock); 746 747 if (unit) { 748 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 749 if (mddev->unit == unit) { 750 mddev_get(mddev); 751 spin_unlock(&all_mddevs_lock); 752 kfree(new); 753 return mddev; 754 } 755 756 if (new) { 757 list_add(&new->all_mddevs, &all_mddevs); 758 spin_unlock(&all_mddevs_lock); 759 new->hold_active = UNTIL_IOCTL; 760 return new; 761 } 762 } else if (new) { 763 /* find an unused unit number */ 764 static int next_minor = 512; 765 int start = next_minor; 766 int is_free = 0; 767 int dev = 0; 768 while (!is_free) { 769 dev = MKDEV(MD_MAJOR, next_minor); 770 next_minor++; 771 if (next_minor > MINORMASK) 772 next_minor = 0; 773 if (next_minor == start) { 774 /* Oh dear, all in use. */ 775 spin_unlock(&all_mddevs_lock); 776 kfree(new); 777 return NULL; 778 } 779 780 is_free = 1; 781 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 782 if (mddev->unit == dev) { 783 is_free = 0; 784 break; 785 } 786 } 787 new->unit = dev; 788 new->md_minor = MINOR(dev); 789 new->hold_active = UNTIL_STOP; 790 list_add(&new->all_mddevs, &all_mddevs); 791 spin_unlock(&all_mddevs_lock); 792 return new; 793 } 794 spin_unlock(&all_mddevs_lock); 795 796 new = kzalloc(sizeof(*new), GFP_KERNEL); 797 if (!new) 798 return NULL; 799 800 new->unit = unit; 801 if (MAJOR(unit) == MD_MAJOR) 802 new->md_minor = MINOR(unit); 803 else 804 new->md_minor = MINOR(unit) >> MdpMinorShift; 805 806 mddev_init(new); 807 808 goto retry; 809 } 810 811 static struct attribute_group md_redundancy_group; 812 813 void mddev_unlock(struct mddev *mddev) 814 { 815 if (mddev->to_remove) { 816 /* These cannot be removed under reconfig_mutex as 817 * an access to the files will try to take reconfig_mutex 818 * while holding the file unremovable, which leads to 819 * a deadlock. 820 * So hold set sysfs_active while the remove in happeing, 821 * and anything else which might set ->to_remove or my 822 * otherwise change the sysfs namespace will fail with 823 * -EBUSY if sysfs_active is still set. 824 * We set sysfs_active under reconfig_mutex and elsewhere 825 * test it under the same mutex to ensure its correct value 826 * is seen. 827 */ 828 struct attribute_group *to_remove = mddev->to_remove; 829 mddev->to_remove = NULL; 830 mddev->sysfs_active = 1; 831 mutex_unlock(&mddev->reconfig_mutex); 832 833 if (mddev->kobj.sd) { 834 if (to_remove != &md_redundancy_group) 835 sysfs_remove_group(&mddev->kobj, to_remove); 836 if (mddev->pers == NULL || 837 mddev->pers->sync_request == NULL) { 838 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 839 if (mddev->sysfs_action) 840 sysfs_put(mddev->sysfs_action); 841 if (mddev->sysfs_completed) 842 sysfs_put(mddev->sysfs_completed); 843 if (mddev->sysfs_degraded) 844 sysfs_put(mddev->sysfs_degraded); 845 mddev->sysfs_action = NULL; 846 mddev->sysfs_completed = NULL; 847 mddev->sysfs_degraded = NULL; 848 } 849 } 850 mddev->sysfs_active = 0; 851 } else 852 mutex_unlock(&mddev->reconfig_mutex); 853 854 /* As we've dropped the mutex we need a spinlock to 855 * make sure the thread doesn't disappear 856 */ 857 spin_lock(&pers_lock); 858 md_wakeup_thread(mddev->thread); 859 wake_up(&mddev->sb_wait); 860 spin_unlock(&pers_lock); 861 } 862 EXPORT_SYMBOL_GPL(mddev_unlock); 863 864 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 865 { 866 struct md_rdev *rdev; 867 868 rdev_for_each_rcu(rdev, mddev) 869 if (rdev->desc_nr == nr) 870 return rdev; 871 872 return NULL; 873 } 874 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 875 876 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 877 { 878 struct md_rdev *rdev; 879 880 rdev_for_each(rdev, mddev) 881 if (rdev->bdev->bd_dev == dev) 882 return rdev; 883 884 return NULL; 885 } 886 887 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 888 { 889 struct md_rdev *rdev; 890 891 rdev_for_each_rcu(rdev, mddev) 892 if (rdev->bdev->bd_dev == dev) 893 return rdev; 894 895 return NULL; 896 } 897 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 898 899 static struct md_personality *find_pers(int level, char *clevel) 900 { 901 struct md_personality *pers; 902 list_for_each_entry(pers, &pers_list, list) { 903 if (level != LEVEL_NONE && pers->level == level) 904 return pers; 905 if (strcmp(pers->name, clevel)==0) 906 return pers; 907 } 908 return NULL; 909 } 910 911 /* return the offset of the super block in 512byte sectors */ 912 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 913 { 914 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 915 return MD_NEW_SIZE_SECTORS(num_sectors); 916 } 917 918 static int alloc_disk_sb(struct md_rdev *rdev) 919 { 920 rdev->sb_page = alloc_page(GFP_KERNEL); 921 if (!rdev->sb_page) 922 return -ENOMEM; 923 return 0; 924 } 925 926 void md_rdev_clear(struct md_rdev *rdev) 927 { 928 if (rdev->sb_page) { 929 put_page(rdev->sb_page); 930 rdev->sb_loaded = 0; 931 rdev->sb_page = NULL; 932 rdev->sb_start = 0; 933 rdev->sectors = 0; 934 } 935 if (rdev->bb_page) { 936 put_page(rdev->bb_page); 937 rdev->bb_page = NULL; 938 } 939 badblocks_exit(&rdev->badblocks); 940 } 941 EXPORT_SYMBOL_GPL(md_rdev_clear); 942 943 static void super_written(struct bio *bio) 944 { 945 struct md_rdev *rdev = bio->bi_private; 946 struct mddev *mddev = rdev->mddev; 947 948 if (bio->bi_status) { 949 pr_err("md: %s gets error=%d\n", __func__, 950 blk_status_to_errno(bio->bi_status)); 951 md_error(mddev, rdev); 952 if (!test_bit(Faulty, &rdev->flags) 953 && (bio->bi_opf & MD_FAILFAST)) { 954 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 955 set_bit(LastDev, &rdev->flags); 956 } 957 } else 958 clear_bit(LastDev, &rdev->flags); 959 960 if (atomic_dec_and_test(&mddev->pending_writes)) 961 wake_up(&mddev->sb_wait); 962 rdev_dec_pending(rdev, mddev); 963 bio_put(bio); 964 } 965 966 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 967 sector_t sector, int size, struct page *page) 968 { 969 /* write first size bytes of page to sector of rdev 970 * Increment mddev->pending_writes before returning 971 * and decrement it on completion, waking up sb_wait 972 * if zero is reached. 973 * If an error occurred, call md_error 974 */ 975 struct bio *bio; 976 int ff = 0; 977 978 if (!page) 979 return; 980 981 if (test_bit(Faulty, &rdev->flags)) 982 return; 983 984 bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 985 986 atomic_inc(&rdev->nr_pending); 987 988 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 989 bio->bi_iter.bi_sector = sector; 990 bio_add_page(bio, page, size, 0); 991 bio->bi_private = rdev; 992 bio->bi_end_io = super_written; 993 994 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 995 test_bit(FailFast, &rdev->flags) && 996 !test_bit(LastDev, &rdev->flags)) 997 ff = MD_FAILFAST; 998 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 999 1000 atomic_inc(&mddev->pending_writes); 1001 submit_bio(bio); 1002 } 1003 1004 int md_super_wait(struct mddev *mddev) 1005 { 1006 /* wait for all superblock writes that were scheduled to complete */ 1007 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1008 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1009 return -EAGAIN; 1010 return 0; 1011 } 1012 1013 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1014 struct page *page, int op, int op_flags, bool metadata_op) 1015 { 1016 struct bio bio; 1017 struct bio_vec bvec; 1018 1019 bio_init(&bio, &bvec, 1); 1020 1021 if (metadata_op && rdev->meta_bdev) 1022 bio_set_dev(&bio, rdev->meta_bdev); 1023 else 1024 bio_set_dev(&bio, rdev->bdev); 1025 bio.bi_opf = op | op_flags; 1026 if (metadata_op) 1027 bio.bi_iter.bi_sector = sector + rdev->sb_start; 1028 else if (rdev->mddev->reshape_position != MaxSector && 1029 (rdev->mddev->reshape_backwards == 1030 (sector >= rdev->mddev->reshape_position))) 1031 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1032 else 1033 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1034 bio_add_page(&bio, page, size, 0); 1035 1036 submit_bio_wait(&bio); 1037 1038 return !bio.bi_status; 1039 } 1040 EXPORT_SYMBOL_GPL(sync_page_io); 1041 1042 static int read_disk_sb(struct md_rdev *rdev, int size) 1043 { 1044 char b[BDEVNAME_SIZE]; 1045 1046 if (rdev->sb_loaded) 1047 return 0; 1048 1049 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1050 goto fail; 1051 rdev->sb_loaded = 1; 1052 return 0; 1053 1054 fail: 1055 pr_err("md: disabled device %s, could not read superblock.\n", 1056 bdevname(rdev->bdev,b)); 1057 return -EINVAL; 1058 } 1059 1060 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1061 { 1062 return sb1->set_uuid0 == sb2->set_uuid0 && 1063 sb1->set_uuid1 == sb2->set_uuid1 && 1064 sb1->set_uuid2 == sb2->set_uuid2 && 1065 sb1->set_uuid3 == sb2->set_uuid3; 1066 } 1067 1068 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1069 { 1070 int ret; 1071 mdp_super_t *tmp1, *tmp2; 1072 1073 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1074 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1075 1076 if (!tmp1 || !tmp2) { 1077 ret = 0; 1078 goto abort; 1079 } 1080 1081 *tmp1 = *sb1; 1082 *tmp2 = *sb2; 1083 1084 /* 1085 * nr_disks is not constant 1086 */ 1087 tmp1->nr_disks = 0; 1088 tmp2->nr_disks = 0; 1089 1090 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1091 abort: 1092 kfree(tmp1); 1093 kfree(tmp2); 1094 return ret; 1095 } 1096 1097 static u32 md_csum_fold(u32 csum) 1098 { 1099 csum = (csum & 0xffff) + (csum >> 16); 1100 return (csum & 0xffff) + (csum >> 16); 1101 } 1102 1103 static unsigned int calc_sb_csum(mdp_super_t *sb) 1104 { 1105 u64 newcsum = 0; 1106 u32 *sb32 = (u32*)sb; 1107 int i; 1108 unsigned int disk_csum, csum; 1109 1110 disk_csum = sb->sb_csum; 1111 sb->sb_csum = 0; 1112 1113 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1114 newcsum += sb32[i]; 1115 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1116 1117 #ifdef CONFIG_ALPHA 1118 /* This used to use csum_partial, which was wrong for several 1119 * reasons including that different results are returned on 1120 * different architectures. It isn't critical that we get exactly 1121 * the same return value as before (we always csum_fold before 1122 * testing, and that removes any differences). However as we 1123 * know that csum_partial always returned a 16bit value on 1124 * alphas, do a fold to maximise conformity to previous behaviour. 1125 */ 1126 sb->sb_csum = md_csum_fold(disk_csum); 1127 #else 1128 sb->sb_csum = disk_csum; 1129 #endif 1130 return csum; 1131 } 1132 1133 /* 1134 * Handle superblock details. 1135 * We want to be able to handle multiple superblock formats 1136 * so we have a common interface to them all, and an array of 1137 * different handlers. 1138 * We rely on user-space to write the initial superblock, and support 1139 * reading and updating of superblocks. 1140 * Interface methods are: 1141 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1142 * loads and validates a superblock on dev. 1143 * if refdev != NULL, compare superblocks on both devices 1144 * Return: 1145 * 0 - dev has a superblock that is compatible with refdev 1146 * 1 - dev has a superblock that is compatible and newer than refdev 1147 * so dev should be used as the refdev in future 1148 * -EINVAL superblock incompatible or invalid 1149 * -othererror e.g. -EIO 1150 * 1151 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1152 * Verify that dev is acceptable into mddev. 1153 * The first time, mddev->raid_disks will be 0, and data from 1154 * dev should be merged in. Subsequent calls check that dev 1155 * is new enough. Return 0 or -EINVAL 1156 * 1157 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1158 * Update the superblock for rdev with data in mddev 1159 * This does not write to disc. 1160 * 1161 */ 1162 1163 struct super_type { 1164 char *name; 1165 struct module *owner; 1166 int (*load_super)(struct md_rdev *rdev, 1167 struct md_rdev *refdev, 1168 int minor_version); 1169 int (*validate_super)(struct mddev *mddev, 1170 struct md_rdev *rdev); 1171 void (*sync_super)(struct mddev *mddev, 1172 struct md_rdev *rdev); 1173 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1174 sector_t num_sectors); 1175 int (*allow_new_offset)(struct md_rdev *rdev, 1176 unsigned long long new_offset); 1177 }; 1178 1179 /* 1180 * Check that the given mddev has no bitmap. 1181 * 1182 * This function is called from the run method of all personalities that do not 1183 * support bitmaps. It prints an error message and returns non-zero if mddev 1184 * has a bitmap. Otherwise, it returns 0. 1185 * 1186 */ 1187 int md_check_no_bitmap(struct mddev *mddev) 1188 { 1189 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1190 return 0; 1191 pr_warn("%s: bitmaps are not supported for %s\n", 1192 mdname(mddev), mddev->pers->name); 1193 return 1; 1194 } 1195 EXPORT_SYMBOL(md_check_no_bitmap); 1196 1197 /* 1198 * load_super for 0.90.0 1199 */ 1200 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1201 { 1202 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1203 mdp_super_t *sb; 1204 int ret; 1205 bool spare_disk = true; 1206 1207 /* 1208 * Calculate the position of the superblock (512byte sectors), 1209 * it's at the end of the disk. 1210 * 1211 * It also happens to be a multiple of 4Kb. 1212 */ 1213 rdev->sb_start = calc_dev_sboffset(rdev); 1214 1215 ret = read_disk_sb(rdev, MD_SB_BYTES); 1216 if (ret) 1217 return ret; 1218 1219 ret = -EINVAL; 1220 1221 bdevname(rdev->bdev, b); 1222 sb = page_address(rdev->sb_page); 1223 1224 if (sb->md_magic != MD_SB_MAGIC) { 1225 pr_warn("md: invalid raid superblock magic on %s\n", b); 1226 goto abort; 1227 } 1228 1229 if (sb->major_version != 0 || 1230 sb->minor_version < 90 || 1231 sb->minor_version > 91) { 1232 pr_warn("Bad version number %d.%d on %s\n", 1233 sb->major_version, sb->minor_version, b); 1234 goto abort; 1235 } 1236 1237 if (sb->raid_disks <= 0) 1238 goto abort; 1239 1240 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1241 pr_warn("md: invalid superblock checksum on %s\n", b); 1242 goto abort; 1243 } 1244 1245 rdev->preferred_minor = sb->md_minor; 1246 rdev->data_offset = 0; 1247 rdev->new_data_offset = 0; 1248 rdev->sb_size = MD_SB_BYTES; 1249 rdev->badblocks.shift = -1; 1250 1251 if (sb->level == LEVEL_MULTIPATH) 1252 rdev->desc_nr = -1; 1253 else 1254 rdev->desc_nr = sb->this_disk.number; 1255 1256 /* not spare disk, or LEVEL_MULTIPATH */ 1257 if (sb->level == LEVEL_MULTIPATH || 1258 (rdev->desc_nr >= 0 && 1259 rdev->desc_nr < MD_SB_DISKS && 1260 sb->disks[rdev->desc_nr].state & 1261 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1262 spare_disk = false; 1263 1264 if (!refdev) { 1265 if (!spare_disk) 1266 ret = 1; 1267 else 1268 ret = 0; 1269 } else { 1270 __u64 ev1, ev2; 1271 mdp_super_t *refsb = page_address(refdev->sb_page); 1272 if (!md_uuid_equal(refsb, sb)) { 1273 pr_warn("md: %s has different UUID to %s\n", 1274 b, bdevname(refdev->bdev,b2)); 1275 goto abort; 1276 } 1277 if (!md_sb_equal(refsb, sb)) { 1278 pr_warn("md: %s has same UUID but different superblock to %s\n", 1279 b, bdevname(refdev->bdev, b2)); 1280 goto abort; 1281 } 1282 ev1 = md_event(sb); 1283 ev2 = md_event(refsb); 1284 1285 if (!spare_disk && ev1 > ev2) 1286 ret = 1; 1287 else 1288 ret = 0; 1289 } 1290 rdev->sectors = rdev->sb_start; 1291 /* Limit to 4TB as metadata cannot record more than that. 1292 * (not needed for Linear and RAID0 as metadata doesn't 1293 * record this size) 1294 */ 1295 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1296 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1297 1298 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1299 /* "this cannot possibly happen" ... */ 1300 ret = -EINVAL; 1301 1302 abort: 1303 return ret; 1304 } 1305 1306 /* 1307 * validate_super for 0.90.0 1308 */ 1309 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1310 { 1311 mdp_disk_t *desc; 1312 mdp_super_t *sb = page_address(rdev->sb_page); 1313 __u64 ev1 = md_event(sb); 1314 1315 rdev->raid_disk = -1; 1316 clear_bit(Faulty, &rdev->flags); 1317 clear_bit(In_sync, &rdev->flags); 1318 clear_bit(Bitmap_sync, &rdev->flags); 1319 clear_bit(WriteMostly, &rdev->flags); 1320 1321 if (mddev->raid_disks == 0) { 1322 mddev->major_version = 0; 1323 mddev->minor_version = sb->minor_version; 1324 mddev->patch_version = sb->patch_version; 1325 mddev->external = 0; 1326 mddev->chunk_sectors = sb->chunk_size >> 9; 1327 mddev->ctime = sb->ctime; 1328 mddev->utime = sb->utime; 1329 mddev->level = sb->level; 1330 mddev->clevel[0] = 0; 1331 mddev->layout = sb->layout; 1332 mddev->raid_disks = sb->raid_disks; 1333 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1334 mddev->events = ev1; 1335 mddev->bitmap_info.offset = 0; 1336 mddev->bitmap_info.space = 0; 1337 /* bitmap can use 60 K after the 4K superblocks */ 1338 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1339 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1340 mddev->reshape_backwards = 0; 1341 1342 if (mddev->minor_version >= 91) { 1343 mddev->reshape_position = sb->reshape_position; 1344 mddev->delta_disks = sb->delta_disks; 1345 mddev->new_level = sb->new_level; 1346 mddev->new_layout = sb->new_layout; 1347 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1348 if (mddev->delta_disks < 0) 1349 mddev->reshape_backwards = 1; 1350 } else { 1351 mddev->reshape_position = MaxSector; 1352 mddev->delta_disks = 0; 1353 mddev->new_level = mddev->level; 1354 mddev->new_layout = mddev->layout; 1355 mddev->new_chunk_sectors = mddev->chunk_sectors; 1356 } 1357 if (mddev->level == 0) 1358 mddev->layout = -1; 1359 1360 if (sb->state & (1<<MD_SB_CLEAN)) 1361 mddev->recovery_cp = MaxSector; 1362 else { 1363 if (sb->events_hi == sb->cp_events_hi && 1364 sb->events_lo == sb->cp_events_lo) { 1365 mddev->recovery_cp = sb->recovery_cp; 1366 } else 1367 mddev->recovery_cp = 0; 1368 } 1369 1370 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1371 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1372 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1373 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1374 1375 mddev->max_disks = MD_SB_DISKS; 1376 1377 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1378 mddev->bitmap_info.file == NULL) { 1379 mddev->bitmap_info.offset = 1380 mddev->bitmap_info.default_offset; 1381 mddev->bitmap_info.space = 1382 mddev->bitmap_info.default_space; 1383 } 1384 1385 } else if (mddev->pers == NULL) { 1386 /* Insist on good event counter while assembling, except 1387 * for spares (which don't need an event count) */ 1388 ++ev1; 1389 if (sb->disks[rdev->desc_nr].state & ( 1390 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1391 if (ev1 < mddev->events) 1392 return -EINVAL; 1393 } else if (mddev->bitmap) { 1394 /* if adding to array with a bitmap, then we can accept an 1395 * older device ... but not too old. 1396 */ 1397 if (ev1 < mddev->bitmap->events_cleared) 1398 return 0; 1399 if (ev1 < mddev->events) 1400 set_bit(Bitmap_sync, &rdev->flags); 1401 } else { 1402 if (ev1 < mddev->events) 1403 /* just a hot-add of a new device, leave raid_disk at -1 */ 1404 return 0; 1405 } 1406 1407 if (mddev->level != LEVEL_MULTIPATH) { 1408 desc = sb->disks + rdev->desc_nr; 1409 1410 if (desc->state & (1<<MD_DISK_FAULTY)) 1411 set_bit(Faulty, &rdev->flags); 1412 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1413 desc->raid_disk < mddev->raid_disks */) { 1414 set_bit(In_sync, &rdev->flags); 1415 rdev->raid_disk = desc->raid_disk; 1416 rdev->saved_raid_disk = desc->raid_disk; 1417 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1418 /* active but not in sync implies recovery up to 1419 * reshape position. We don't know exactly where 1420 * that is, so set to zero for now */ 1421 if (mddev->minor_version >= 91) { 1422 rdev->recovery_offset = 0; 1423 rdev->raid_disk = desc->raid_disk; 1424 } 1425 } 1426 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1427 set_bit(WriteMostly, &rdev->flags); 1428 if (desc->state & (1<<MD_DISK_FAILFAST)) 1429 set_bit(FailFast, &rdev->flags); 1430 } else /* MULTIPATH are always insync */ 1431 set_bit(In_sync, &rdev->flags); 1432 return 0; 1433 } 1434 1435 /* 1436 * sync_super for 0.90.0 1437 */ 1438 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1439 { 1440 mdp_super_t *sb; 1441 struct md_rdev *rdev2; 1442 int next_spare = mddev->raid_disks; 1443 1444 /* make rdev->sb match mddev data.. 1445 * 1446 * 1/ zero out disks 1447 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1448 * 3/ any empty disks < next_spare become removed 1449 * 1450 * disks[0] gets initialised to REMOVED because 1451 * we cannot be sure from other fields if it has 1452 * been initialised or not. 1453 */ 1454 int i; 1455 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1456 1457 rdev->sb_size = MD_SB_BYTES; 1458 1459 sb = page_address(rdev->sb_page); 1460 1461 memset(sb, 0, sizeof(*sb)); 1462 1463 sb->md_magic = MD_SB_MAGIC; 1464 sb->major_version = mddev->major_version; 1465 sb->patch_version = mddev->patch_version; 1466 sb->gvalid_words = 0; /* ignored */ 1467 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1468 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1469 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1470 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1471 1472 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1473 sb->level = mddev->level; 1474 sb->size = mddev->dev_sectors / 2; 1475 sb->raid_disks = mddev->raid_disks; 1476 sb->md_minor = mddev->md_minor; 1477 sb->not_persistent = 0; 1478 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1479 sb->state = 0; 1480 sb->events_hi = (mddev->events>>32); 1481 sb->events_lo = (u32)mddev->events; 1482 1483 if (mddev->reshape_position == MaxSector) 1484 sb->minor_version = 90; 1485 else { 1486 sb->minor_version = 91; 1487 sb->reshape_position = mddev->reshape_position; 1488 sb->new_level = mddev->new_level; 1489 sb->delta_disks = mddev->delta_disks; 1490 sb->new_layout = mddev->new_layout; 1491 sb->new_chunk = mddev->new_chunk_sectors << 9; 1492 } 1493 mddev->minor_version = sb->minor_version; 1494 if (mddev->in_sync) 1495 { 1496 sb->recovery_cp = mddev->recovery_cp; 1497 sb->cp_events_hi = (mddev->events>>32); 1498 sb->cp_events_lo = (u32)mddev->events; 1499 if (mddev->recovery_cp == MaxSector) 1500 sb->state = (1<< MD_SB_CLEAN); 1501 } else 1502 sb->recovery_cp = 0; 1503 1504 sb->layout = mddev->layout; 1505 sb->chunk_size = mddev->chunk_sectors << 9; 1506 1507 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1508 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1509 1510 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1511 rdev_for_each(rdev2, mddev) { 1512 mdp_disk_t *d; 1513 int desc_nr; 1514 int is_active = test_bit(In_sync, &rdev2->flags); 1515 1516 if (rdev2->raid_disk >= 0 && 1517 sb->minor_version >= 91) 1518 /* we have nowhere to store the recovery_offset, 1519 * but if it is not below the reshape_position, 1520 * we can piggy-back on that. 1521 */ 1522 is_active = 1; 1523 if (rdev2->raid_disk < 0 || 1524 test_bit(Faulty, &rdev2->flags)) 1525 is_active = 0; 1526 if (is_active) 1527 desc_nr = rdev2->raid_disk; 1528 else 1529 desc_nr = next_spare++; 1530 rdev2->desc_nr = desc_nr; 1531 d = &sb->disks[rdev2->desc_nr]; 1532 nr_disks++; 1533 d->number = rdev2->desc_nr; 1534 d->major = MAJOR(rdev2->bdev->bd_dev); 1535 d->minor = MINOR(rdev2->bdev->bd_dev); 1536 if (is_active) 1537 d->raid_disk = rdev2->raid_disk; 1538 else 1539 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1540 if (test_bit(Faulty, &rdev2->flags)) 1541 d->state = (1<<MD_DISK_FAULTY); 1542 else if (is_active) { 1543 d->state = (1<<MD_DISK_ACTIVE); 1544 if (test_bit(In_sync, &rdev2->flags)) 1545 d->state |= (1<<MD_DISK_SYNC); 1546 active++; 1547 working++; 1548 } else { 1549 d->state = 0; 1550 spare++; 1551 working++; 1552 } 1553 if (test_bit(WriteMostly, &rdev2->flags)) 1554 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1555 if (test_bit(FailFast, &rdev2->flags)) 1556 d->state |= (1<<MD_DISK_FAILFAST); 1557 } 1558 /* now set the "removed" and "faulty" bits on any missing devices */ 1559 for (i=0 ; i < mddev->raid_disks ; i++) { 1560 mdp_disk_t *d = &sb->disks[i]; 1561 if (d->state == 0 && d->number == 0) { 1562 d->number = i; 1563 d->raid_disk = i; 1564 d->state = (1<<MD_DISK_REMOVED); 1565 d->state |= (1<<MD_DISK_FAULTY); 1566 failed++; 1567 } 1568 } 1569 sb->nr_disks = nr_disks; 1570 sb->active_disks = active; 1571 sb->working_disks = working; 1572 sb->failed_disks = failed; 1573 sb->spare_disks = spare; 1574 1575 sb->this_disk = sb->disks[rdev->desc_nr]; 1576 sb->sb_csum = calc_sb_csum(sb); 1577 } 1578 1579 /* 1580 * rdev_size_change for 0.90.0 1581 */ 1582 static unsigned long long 1583 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1584 { 1585 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1586 return 0; /* component must fit device */ 1587 if (rdev->mddev->bitmap_info.offset) 1588 return 0; /* can't move bitmap */ 1589 rdev->sb_start = calc_dev_sboffset(rdev); 1590 if (!num_sectors || num_sectors > rdev->sb_start) 1591 num_sectors = rdev->sb_start; 1592 /* Limit to 4TB as metadata cannot record more than that. 1593 * 4TB == 2^32 KB, or 2*2^32 sectors. 1594 */ 1595 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1596 num_sectors = (sector_t)(2ULL << 32) - 2; 1597 do { 1598 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1599 rdev->sb_page); 1600 } while (md_super_wait(rdev->mddev) < 0); 1601 return num_sectors; 1602 } 1603 1604 static int 1605 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1606 { 1607 /* non-zero offset changes not possible with v0.90 */ 1608 return new_offset == 0; 1609 } 1610 1611 /* 1612 * version 1 superblock 1613 */ 1614 1615 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1616 { 1617 __le32 disk_csum; 1618 u32 csum; 1619 unsigned long long newcsum; 1620 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1621 __le32 *isuper = (__le32*)sb; 1622 1623 disk_csum = sb->sb_csum; 1624 sb->sb_csum = 0; 1625 newcsum = 0; 1626 for (; size >= 4; size -= 4) 1627 newcsum += le32_to_cpu(*isuper++); 1628 1629 if (size == 2) 1630 newcsum += le16_to_cpu(*(__le16*) isuper); 1631 1632 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1633 sb->sb_csum = disk_csum; 1634 return cpu_to_le32(csum); 1635 } 1636 1637 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1638 { 1639 struct mdp_superblock_1 *sb; 1640 int ret; 1641 sector_t sb_start; 1642 sector_t sectors; 1643 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1644 int bmask; 1645 bool spare_disk = true; 1646 1647 /* 1648 * Calculate the position of the superblock in 512byte sectors. 1649 * It is always aligned to a 4K boundary and 1650 * depeding on minor_version, it can be: 1651 * 0: At least 8K, but less than 12K, from end of device 1652 * 1: At start of device 1653 * 2: 4K from start of device. 1654 */ 1655 switch(minor_version) { 1656 case 0: 1657 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1658 sb_start -= 8*2; 1659 sb_start &= ~(sector_t)(4*2-1); 1660 break; 1661 case 1: 1662 sb_start = 0; 1663 break; 1664 case 2: 1665 sb_start = 8; 1666 break; 1667 default: 1668 return -EINVAL; 1669 } 1670 rdev->sb_start = sb_start; 1671 1672 /* superblock is rarely larger than 1K, but it can be larger, 1673 * and it is safe to read 4k, so we do that 1674 */ 1675 ret = read_disk_sb(rdev, 4096); 1676 if (ret) return ret; 1677 1678 sb = page_address(rdev->sb_page); 1679 1680 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1681 sb->major_version != cpu_to_le32(1) || 1682 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1683 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1684 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1685 return -EINVAL; 1686 1687 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1688 pr_warn("md: invalid superblock checksum on %s\n", 1689 bdevname(rdev->bdev,b)); 1690 return -EINVAL; 1691 } 1692 if (le64_to_cpu(sb->data_size) < 10) { 1693 pr_warn("md: data_size too small on %s\n", 1694 bdevname(rdev->bdev,b)); 1695 return -EINVAL; 1696 } 1697 if (sb->pad0 || 1698 sb->pad3[0] || 1699 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1700 /* Some padding is non-zero, might be a new feature */ 1701 return -EINVAL; 1702 1703 rdev->preferred_minor = 0xffff; 1704 rdev->data_offset = le64_to_cpu(sb->data_offset); 1705 rdev->new_data_offset = rdev->data_offset; 1706 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1707 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1708 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1709 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1710 1711 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1712 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1713 if (rdev->sb_size & bmask) 1714 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1715 1716 if (minor_version 1717 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1718 return -EINVAL; 1719 if (minor_version 1720 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1721 return -EINVAL; 1722 1723 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1724 rdev->desc_nr = -1; 1725 else 1726 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1727 1728 if (!rdev->bb_page) { 1729 rdev->bb_page = alloc_page(GFP_KERNEL); 1730 if (!rdev->bb_page) 1731 return -ENOMEM; 1732 } 1733 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1734 rdev->badblocks.count == 0) { 1735 /* need to load the bad block list. 1736 * Currently we limit it to one page. 1737 */ 1738 s32 offset; 1739 sector_t bb_sector; 1740 __le64 *bbp; 1741 int i; 1742 int sectors = le16_to_cpu(sb->bblog_size); 1743 if (sectors > (PAGE_SIZE / 512)) 1744 return -EINVAL; 1745 offset = le32_to_cpu(sb->bblog_offset); 1746 if (offset == 0) 1747 return -EINVAL; 1748 bb_sector = (long long)offset; 1749 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1750 rdev->bb_page, REQ_OP_READ, 0, true)) 1751 return -EIO; 1752 bbp = (__le64 *)page_address(rdev->bb_page); 1753 rdev->badblocks.shift = sb->bblog_shift; 1754 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1755 u64 bb = le64_to_cpu(*bbp); 1756 int count = bb & (0x3ff); 1757 u64 sector = bb >> 10; 1758 sector <<= sb->bblog_shift; 1759 count <<= sb->bblog_shift; 1760 if (bb + 1 == 0) 1761 break; 1762 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1763 return -EINVAL; 1764 } 1765 } else if (sb->bblog_offset != 0) 1766 rdev->badblocks.shift = 0; 1767 1768 if ((le32_to_cpu(sb->feature_map) & 1769 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1770 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1771 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1772 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1773 } 1774 1775 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1776 sb->level != 0) 1777 return -EINVAL; 1778 1779 /* not spare disk, or LEVEL_MULTIPATH */ 1780 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1781 (rdev->desc_nr >= 0 && 1782 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1783 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1784 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1785 spare_disk = false; 1786 1787 if (!refdev) { 1788 if (!spare_disk) 1789 ret = 1; 1790 else 1791 ret = 0; 1792 } else { 1793 __u64 ev1, ev2; 1794 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1795 1796 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1797 sb->level != refsb->level || 1798 sb->layout != refsb->layout || 1799 sb->chunksize != refsb->chunksize) { 1800 pr_warn("md: %s has strangely different superblock to %s\n", 1801 bdevname(rdev->bdev,b), 1802 bdevname(refdev->bdev,b2)); 1803 return -EINVAL; 1804 } 1805 ev1 = le64_to_cpu(sb->events); 1806 ev2 = le64_to_cpu(refsb->events); 1807 1808 if (!spare_disk && ev1 > ev2) 1809 ret = 1; 1810 else 1811 ret = 0; 1812 } 1813 if (minor_version) { 1814 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1815 sectors -= rdev->data_offset; 1816 } else 1817 sectors = rdev->sb_start; 1818 if (sectors < le64_to_cpu(sb->data_size)) 1819 return -EINVAL; 1820 rdev->sectors = le64_to_cpu(sb->data_size); 1821 return ret; 1822 } 1823 1824 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1825 { 1826 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1827 __u64 ev1 = le64_to_cpu(sb->events); 1828 1829 rdev->raid_disk = -1; 1830 clear_bit(Faulty, &rdev->flags); 1831 clear_bit(In_sync, &rdev->flags); 1832 clear_bit(Bitmap_sync, &rdev->flags); 1833 clear_bit(WriteMostly, &rdev->flags); 1834 1835 if (mddev->raid_disks == 0) { 1836 mddev->major_version = 1; 1837 mddev->patch_version = 0; 1838 mddev->external = 0; 1839 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1840 mddev->ctime = le64_to_cpu(sb->ctime); 1841 mddev->utime = le64_to_cpu(sb->utime); 1842 mddev->level = le32_to_cpu(sb->level); 1843 mddev->clevel[0] = 0; 1844 mddev->layout = le32_to_cpu(sb->layout); 1845 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1846 mddev->dev_sectors = le64_to_cpu(sb->size); 1847 mddev->events = ev1; 1848 mddev->bitmap_info.offset = 0; 1849 mddev->bitmap_info.space = 0; 1850 /* Default location for bitmap is 1K after superblock 1851 * using 3K - total of 4K 1852 */ 1853 mddev->bitmap_info.default_offset = 1024 >> 9; 1854 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1855 mddev->reshape_backwards = 0; 1856 1857 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1858 memcpy(mddev->uuid, sb->set_uuid, 16); 1859 1860 mddev->max_disks = (4096-256)/2; 1861 1862 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1863 mddev->bitmap_info.file == NULL) { 1864 mddev->bitmap_info.offset = 1865 (__s32)le32_to_cpu(sb->bitmap_offset); 1866 /* Metadata doesn't record how much space is available. 1867 * For 1.0, we assume we can use up to the superblock 1868 * if before, else to 4K beyond superblock. 1869 * For others, assume no change is possible. 1870 */ 1871 if (mddev->minor_version > 0) 1872 mddev->bitmap_info.space = 0; 1873 else if (mddev->bitmap_info.offset > 0) 1874 mddev->bitmap_info.space = 1875 8 - mddev->bitmap_info.offset; 1876 else 1877 mddev->bitmap_info.space = 1878 -mddev->bitmap_info.offset; 1879 } 1880 1881 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1882 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1883 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1884 mddev->new_level = le32_to_cpu(sb->new_level); 1885 mddev->new_layout = le32_to_cpu(sb->new_layout); 1886 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1887 if (mddev->delta_disks < 0 || 1888 (mddev->delta_disks == 0 && 1889 (le32_to_cpu(sb->feature_map) 1890 & MD_FEATURE_RESHAPE_BACKWARDS))) 1891 mddev->reshape_backwards = 1; 1892 } else { 1893 mddev->reshape_position = MaxSector; 1894 mddev->delta_disks = 0; 1895 mddev->new_level = mddev->level; 1896 mddev->new_layout = mddev->layout; 1897 mddev->new_chunk_sectors = mddev->chunk_sectors; 1898 } 1899 1900 if (mddev->level == 0 && 1901 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1902 mddev->layout = -1; 1903 1904 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1905 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1906 1907 if (le32_to_cpu(sb->feature_map) & 1908 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1909 if (le32_to_cpu(sb->feature_map) & 1910 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1911 return -EINVAL; 1912 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1913 (le32_to_cpu(sb->feature_map) & 1914 MD_FEATURE_MULTIPLE_PPLS)) 1915 return -EINVAL; 1916 set_bit(MD_HAS_PPL, &mddev->flags); 1917 } 1918 } else if (mddev->pers == NULL) { 1919 /* Insist of good event counter while assembling, except for 1920 * spares (which don't need an event count) */ 1921 ++ev1; 1922 if (rdev->desc_nr >= 0 && 1923 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1924 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1925 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1926 if (ev1 < mddev->events) 1927 return -EINVAL; 1928 } else if (mddev->bitmap) { 1929 /* If adding to array with a bitmap, then we can accept an 1930 * older device, but not too old. 1931 */ 1932 if (ev1 < mddev->bitmap->events_cleared) 1933 return 0; 1934 if (ev1 < mddev->events) 1935 set_bit(Bitmap_sync, &rdev->flags); 1936 } else { 1937 if (ev1 < mddev->events) 1938 /* just a hot-add of a new device, leave raid_disk at -1 */ 1939 return 0; 1940 } 1941 if (mddev->level != LEVEL_MULTIPATH) { 1942 int role; 1943 if (rdev->desc_nr < 0 || 1944 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1945 role = MD_DISK_ROLE_SPARE; 1946 rdev->desc_nr = -1; 1947 } else 1948 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1949 switch(role) { 1950 case MD_DISK_ROLE_SPARE: /* spare */ 1951 break; 1952 case MD_DISK_ROLE_FAULTY: /* faulty */ 1953 set_bit(Faulty, &rdev->flags); 1954 break; 1955 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1956 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1957 /* journal device without journal feature */ 1958 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1959 return -EINVAL; 1960 } 1961 set_bit(Journal, &rdev->flags); 1962 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1963 rdev->raid_disk = 0; 1964 break; 1965 default: 1966 rdev->saved_raid_disk = role; 1967 if ((le32_to_cpu(sb->feature_map) & 1968 MD_FEATURE_RECOVERY_OFFSET)) { 1969 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1970 if (!(le32_to_cpu(sb->feature_map) & 1971 MD_FEATURE_RECOVERY_BITMAP)) 1972 rdev->saved_raid_disk = -1; 1973 } else { 1974 /* 1975 * If the array is FROZEN, then the device can't 1976 * be in_sync with rest of array. 1977 */ 1978 if (!test_bit(MD_RECOVERY_FROZEN, 1979 &mddev->recovery)) 1980 set_bit(In_sync, &rdev->flags); 1981 } 1982 rdev->raid_disk = role; 1983 break; 1984 } 1985 if (sb->devflags & WriteMostly1) 1986 set_bit(WriteMostly, &rdev->flags); 1987 if (sb->devflags & FailFast1) 1988 set_bit(FailFast, &rdev->flags); 1989 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1990 set_bit(Replacement, &rdev->flags); 1991 } else /* MULTIPATH are always insync */ 1992 set_bit(In_sync, &rdev->flags); 1993 1994 return 0; 1995 } 1996 1997 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1998 { 1999 struct mdp_superblock_1 *sb; 2000 struct md_rdev *rdev2; 2001 int max_dev, i; 2002 /* make rdev->sb match mddev and rdev data. */ 2003 2004 sb = page_address(rdev->sb_page); 2005 2006 sb->feature_map = 0; 2007 sb->pad0 = 0; 2008 sb->recovery_offset = cpu_to_le64(0); 2009 memset(sb->pad3, 0, sizeof(sb->pad3)); 2010 2011 sb->utime = cpu_to_le64((__u64)mddev->utime); 2012 sb->events = cpu_to_le64(mddev->events); 2013 if (mddev->in_sync) 2014 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2015 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2016 sb->resync_offset = cpu_to_le64(MaxSector); 2017 else 2018 sb->resync_offset = cpu_to_le64(0); 2019 2020 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2021 2022 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2023 sb->size = cpu_to_le64(mddev->dev_sectors); 2024 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2025 sb->level = cpu_to_le32(mddev->level); 2026 sb->layout = cpu_to_le32(mddev->layout); 2027 if (test_bit(FailFast, &rdev->flags)) 2028 sb->devflags |= FailFast1; 2029 else 2030 sb->devflags &= ~FailFast1; 2031 2032 if (test_bit(WriteMostly, &rdev->flags)) 2033 sb->devflags |= WriteMostly1; 2034 else 2035 sb->devflags &= ~WriteMostly1; 2036 sb->data_offset = cpu_to_le64(rdev->data_offset); 2037 sb->data_size = cpu_to_le64(rdev->sectors); 2038 2039 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2040 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2041 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2042 } 2043 2044 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2045 !test_bit(In_sync, &rdev->flags)) { 2046 sb->feature_map |= 2047 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2048 sb->recovery_offset = 2049 cpu_to_le64(rdev->recovery_offset); 2050 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2051 sb->feature_map |= 2052 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2053 } 2054 /* Note: recovery_offset and journal_tail share space */ 2055 if (test_bit(Journal, &rdev->flags)) 2056 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2057 if (test_bit(Replacement, &rdev->flags)) 2058 sb->feature_map |= 2059 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2060 2061 if (mddev->reshape_position != MaxSector) { 2062 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2063 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2064 sb->new_layout = cpu_to_le32(mddev->new_layout); 2065 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2066 sb->new_level = cpu_to_le32(mddev->new_level); 2067 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2068 if (mddev->delta_disks == 0 && 2069 mddev->reshape_backwards) 2070 sb->feature_map 2071 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2072 if (rdev->new_data_offset != rdev->data_offset) { 2073 sb->feature_map 2074 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2075 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2076 - rdev->data_offset)); 2077 } 2078 } 2079 2080 if (mddev_is_clustered(mddev)) 2081 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2082 2083 if (rdev->badblocks.count == 0) 2084 /* Nothing to do for bad blocks*/ ; 2085 else if (sb->bblog_offset == 0) 2086 /* Cannot record bad blocks on this device */ 2087 md_error(mddev, rdev); 2088 else { 2089 struct badblocks *bb = &rdev->badblocks; 2090 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2091 u64 *p = bb->page; 2092 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2093 if (bb->changed) { 2094 unsigned seq; 2095 2096 retry: 2097 seq = read_seqbegin(&bb->lock); 2098 2099 memset(bbp, 0xff, PAGE_SIZE); 2100 2101 for (i = 0 ; i < bb->count ; i++) { 2102 u64 internal_bb = p[i]; 2103 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2104 | BB_LEN(internal_bb)); 2105 bbp[i] = cpu_to_le64(store_bb); 2106 } 2107 bb->changed = 0; 2108 if (read_seqretry(&bb->lock, seq)) 2109 goto retry; 2110 2111 bb->sector = (rdev->sb_start + 2112 (int)le32_to_cpu(sb->bblog_offset)); 2113 bb->size = le16_to_cpu(sb->bblog_size); 2114 } 2115 } 2116 2117 max_dev = 0; 2118 rdev_for_each(rdev2, mddev) 2119 if (rdev2->desc_nr+1 > max_dev) 2120 max_dev = rdev2->desc_nr+1; 2121 2122 if (max_dev > le32_to_cpu(sb->max_dev)) { 2123 int bmask; 2124 sb->max_dev = cpu_to_le32(max_dev); 2125 rdev->sb_size = max_dev * 2 + 256; 2126 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2127 if (rdev->sb_size & bmask) 2128 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2129 } else 2130 max_dev = le32_to_cpu(sb->max_dev); 2131 2132 for (i=0; i<max_dev;i++) 2133 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2134 2135 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2136 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2137 2138 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2139 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2140 sb->feature_map |= 2141 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2142 else 2143 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2144 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2145 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2146 } 2147 2148 rdev_for_each(rdev2, mddev) { 2149 i = rdev2->desc_nr; 2150 if (test_bit(Faulty, &rdev2->flags)) 2151 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2152 else if (test_bit(In_sync, &rdev2->flags)) 2153 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2154 else if (test_bit(Journal, &rdev2->flags)) 2155 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2156 else if (rdev2->raid_disk >= 0) 2157 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2158 else 2159 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2160 } 2161 2162 sb->sb_csum = calc_sb_1_csum(sb); 2163 } 2164 2165 static sector_t super_1_choose_bm_space(sector_t dev_size) 2166 { 2167 sector_t bm_space; 2168 2169 /* if the device is bigger than 8Gig, save 64k for bitmap 2170 * usage, if bigger than 200Gig, save 128k 2171 */ 2172 if (dev_size < 64*2) 2173 bm_space = 0; 2174 else if (dev_size - 64*2 >= 200*1024*1024*2) 2175 bm_space = 128*2; 2176 else if (dev_size - 4*2 > 8*1024*1024*2) 2177 bm_space = 64*2; 2178 else 2179 bm_space = 4*2; 2180 return bm_space; 2181 } 2182 2183 static unsigned long long 2184 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2185 { 2186 struct mdp_superblock_1 *sb; 2187 sector_t max_sectors; 2188 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2189 return 0; /* component must fit device */ 2190 if (rdev->data_offset != rdev->new_data_offset) 2191 return 0; /* too confusing */ 2192 if (rdev->sb_start < rdev->data_offset) { 2193 /* minor versions 1 and 2; superblock before data */ 2194 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2195 max_sectors -= rdev->data_offset; 2196 if (!num_sectors || num_sectors > max_sectors) 2197 num_sectors = max_sectors; 2198 } else if (rdev->mddev->bitmap_info.offset) { 2199 /* minor version 0 with bitmap we can't move */ 2200 return 0; 2201 } else { 2202 /* minor version 0; superblock after data */ 2203 sector_t sb_start, bm_space; 2204 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9; 2205 2206 /* 8K is for superblock */ 2207 sb_start = dev_size - 8*2; 2208 sb_start &= ~(sector_t)(4*2 - 1); 2209 2210 bm_space = super_1_choose_bm_space(dev_size); 2211 2212 /* Space that can be used to store date needs to decrease 2213 * superblock bitmap space and bad block space(4K) 2214 */ 2215 max_sectors = sb_start - bm_space - 4*2; 2216 2217 if (!num_sectors || num_sectors > max_sectors) 2218 num_sectors = max_sectors; 2219 } 2220 sb = page_address(rdev->sb_page); 2221 sb->data_size = cpu_to_le64(num_sectors); 2222 sb->super_offset = cpu_to_le64(rdev->sb_start); 2223 sb->sb_csum = calc_sb_1_csum(sb); 2224 do { 2225 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2226 rdev->sb_page); 2227 } while (md_super_wait(rdev->mddev) < 0); 2228 return num_sectors; 2229 2230 } 2231 2232 static int 2233 super_1_allow_new_offset(struct md_rdev *rdev, 2234 unsigned long long new_offset) 2235 { 2236 /* All necessary checks on new >= old have been done */ 2237 struct bitmap *bitmap; 2238 if (new_offset >= rdev->data_offset) 2239 return 1; 2240 2241 /* with 1.0 metadata, there is no metadata to tread on 2242 * so we can always move back */ 2243 if (rdev->mddev->minor_version == 0) 2244 return 1; 2245 2246 /* otherwise we must be sure not to step on 2247 * any metadata, so stay: 2248 * 36K beyond start of superblock 2249 * beyond end of badblocks 2250 * beyond write-intent bitmap 2251 */ 2252 if (rdev->sb_start + (32+4)*2 > new_offset) 2253 return 0; 2254 bitmap = rdev->mddev->bitmap; 2255 if (bitmap && !rdev->mddev->bitmap_info.file && 2256 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2257 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2258 return 0; 2259 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2260 return 0; 2261 2262 return 1; 2263 } 2264 2265 static struct super_type super_types[] = { 2266 [0] = { 2267 .name = "0.90.0", 2268 .owner = THIS_MODULE, 2269 .load_super = super_90_load, 2270 .validate_super = super_90_validate, 2271 .sync_super = super_90_sync, 2272 .rdev_size_change = super_90_rdev_size_change, 2273 .allow_new_offset = super_90_allow_new_offset, 2274 }, 2275 [1] = { 2276 .name = "md-1", 2277 .owner = THIS_MODULE, 2278 .load_super = super_1_load, 2279 .validate_super = super_1_validate, 2280 .sync_super = super_1_sync, 2281 .rdev_size_change = super_1_rdev_size_change, 2282 .allow_new_offset = super_1_allow_new_offset, 2283 }, 2284 }; 2285 2286 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2287 { 2288 if (mddev->sync_super) { 2289 mddev->sync_super(mddev, rdev); 2290 return; 2291 } 2292 2293 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2294 2295 super_types[mddev->major_version].sync_super(mddev, rdev); 2296 } 2297 2298 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2299 { 2300 struct md_rdev *rdev, *rdev2; 2301 2302 rcu_read_lock(); 2303 rdev_for_each_rcu(rdev, mddev1) { 2304 if (test_bit(Faulty, &rdev->flags) || 2305 test_bit(Journal, &rdev->flags) || 2306 rdev->raid_disk == -1) 2307 continue; 2308 rdev_for_each_rcu(rdev2, mddev2) { 2309 if (test_bit(Faulty, &rdev2->flags) || 2310 test_bit(Journal, &rdev2->flags) || 2311 rdev2->raid_disk == -1) 2312 continue; 2313 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2314 rcu_read_unlock(); 2315 return 1; 2316 } 2317 } 2318 } 2319 rcu_read_unlock(); 2320 return 0; 2321 } 2322 2323 static LIST_HEAD(pending_raid_disks); 2324 2325 /* 2326 * Try to register data integrity profile for an mddev 2327 * 2328 * This is called when an array is started and after a disk has been kicked 2329 * from the array. It only succeeds if all working and active component devices 2330 * are integrity capable with matching profiles. 2331 */ 2332 int md_integrity_register(struct mddev *mddev) 2333 { 2334 struct md_rdev *rdev, *reference = NULL; 2335 2336 if (list_empty(&mddev->disks)) 2337 return 0; /* nothing to do */ 2338 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2339 return 0; /* shouldn't register, or already is */ 2340 rdev_for_each(rdev, mddev) { 2341 /* skip spares and non-functional disks */ 2342 if (test_bit(Faulty, &rdev->flags)) 2343 continue; 2344 if (rdev->raid_disk < 0) 2345 continue; 2346 if (!reference) { 2347 /* Use the first rdev as the reference */ 2348 reference = rdev; 2349 continue; 2350 } 2351 /* does this rdev's profile match the reference profile? */ 2352 if (blk_integrity_compare(reference->bdev->bd_disk, 2353 rdev->bdev->bd_disk) < 0) 2354 return -EINVAL; 2355 } 2356 if (!reference || !bdev_get_integrity(reference->bdev)) 2357 return 0; 2358 /* 2359 * All component devices are integrity capable and have matching 2360 * profiles, register the common profile for the md device. 2361 */ 2362 blk_integrity_register(mddev->gendisk, 2363 bdev_get_integrity(reference->bdev)); 2364 2365 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2366 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2367 pr_err("md: failed to create integrity pool for %s\n", 2368 mdname(mddev)); 2369 return -EINVAL; 2370 } 2371 return 0; 2372 } 2373 EXPORT_SYMBOL(md_integrity_register); 2374 2375 /* 2376 * Attempt to add an rdev, but only if it is consistent with the current 2377 * integrity profile 2378 */ 2379 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2380 { 2381 struct blk_integrity *bi_mddev; 2382 char name[BDEVNAME_SIZE]; 2383 2384 if (!mddev->gendisk) 2385 return 0; 2386 2387 bi_mddev = blk_get_integrity(mddev->gendisk); 2388 2389 if (!bi_mddev) /* nothing to do */ 2390 return 0; 2391 2392 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2393 pr_err("%s: incompatible integrity profile for %s\n", 2394 mdname(mddev), bdevname(rdev->bdev, name)); 2395 return -ENXIO; 2396 } 2397 2398 return 0; 2399 } 2400 EXPORT_SYMBOL(md_integrity_add_rdev); 2401 2402 static bool rdev_read_only(struct md_rdev *rdev) 2403 { 2404 return bdev_read_only(rdev->bdev) || 2405 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2406 } 2407 2408 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2409 { 2410 char b[BDEVNAME_SIZE]; 2411 int err; 2412 2413 /* prevent duplicates */ 2414 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2415 return -EEXIST; 2416 2417 if (rdev_read_only(rdev) && mddev->pers) 2418 return -EROFS; 2419 2420 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2421 if (!test_bit(Journal, &rdev->flags) && 2422 rdev->sectors && 2423 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2424 if (mddev->pers) { 2425 /* Cannot change size, so fail 2426 * If mddev->level <= 0, then we don't care 2427 * about aligning sizes (e.g. linear) 2428 */ 2429 if (mddev->level > 0) 2430 return -ENOSPC; 2431 } else 2432 mddev->dev_sectors = rdev->sectors; 2433 } 2434 2435 /* Verify rdev->desc_nr is unique. 2436 * If it is -1, assign a free number, else 2437 * check number is not in use 2438 */ 2439 rcu_read_lock(); 2440 if (rdev->desc_nr < 0) { 2441 int choice = 0; 2442 if (mddev->pers) 2443 choice = mddev->raid_disks; 2444 while (md_find_rdev_nr_rcu(mddev, choice)) 2445 choice++; 2446 rdev->desc_nr = choice; 2447 } else { 2448 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2449 rcu_read_unlock(); 2450 return -EBUSY; 2451 } 2452 } 2453 rcu_read_unlock(); 2454 if (!test_bit(Journal, &rdev->flags) && 2455 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2456 pr_warn("md: %s: array is limited to %d devices\n", 2457 mdname(mddev), mddev->max_disks); 2458 return -EBUSY; 2459 } 2460 bdevname(rdev->bdev,b); 2461 strreplace(b, '/', '!'); 2462 2463 rdev->mddev = mddev; 2464 pr_debug("md: bind<%s>\n", b); 2465 2466 if (mddev->raid_disks) 2467 mddev_create_serial_pool(mddev, rdev, false); 2468 2469 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2470 goto fail; 2471 2472 /* failure here is OK */ 2473 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2474 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2475 rdev->sysfs_unack_badblocks = 2476 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2477 rdev->sysfs_badblocks = 2478 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2479 2480 list_add_rcu(&rdev->same_set, &mddev->disks); 2481 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2482 2483 /* May as well allow recovery to be retried once */ 2484 mddev->recovery_disabled++; 2485 2486 return 0; 2487 2488 fail: 2489 pr_warn("md: failed to register dev-%s for %s\n", 2490 b, mdname(mddev)); 2491 return err; 2492 } 2493 2494 static void rdev_delayed_delete(struct work_struct *ws) 2495 { 2496 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2497 kobject_del(&rdev->kobj); 2498 kobject_put(&rdev->kobj); 2499 } 2500 2501 static void unbind_rdev_from_array(struct md_rdev *rdev) 2502 { 2503 char b[BDEVNAME_SIZE]; 2504 2505 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2506 list_del_rcu(&rdev->same_set); 2507 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2508 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2509 rdev->mddev = NULL; 2510 sysfs_remove_link(&rdev->kobj, "block"); 2511 sysfs_put(rdev->sysfs_state); 2512 sysfs_put(rdev->sysfs_unack_badblocks); 2513 sysfs_put(rdev->sysfs_badblocks); 2514 rdev->sysfs_state = NULL; 2515 rdev->sysfs_unack_badblocks = NULL; 2516 rdev->sysfs_badblocks = NULL; 2517 rdev->badblocks.count = 0; 2518 /* We need to delay this, otherwise we can deadlock when 2519 * writing to 'remove' to "dev/state". We also need 2520 * to delay it due to rcu usage. 2521 */ 2522 synchronize_rcu(); 2523 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2524 kobject_get(&rdev->kobj); 2525 queue_work(md_rdev_misc_wq, &rdev->del_work); 2526 } 2527 2528 /* 2529 * prevent the device from being mounted, repartitioned or 2530 * otherwise reused by a RAID array (or any other kernel 2531 * subsystem), by bd_claiming the device. 2532 */ 2533 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2534 { 2535 int err = 0; 2536 struct block_device *bdev; 2537 2538 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2539 shared ? (struct md_rdev *)lock_rdev : rdev); 2540 if (IS_ERR(bdev)) { 2541 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2542 MAJOR(dev), MINOR(dev)); 2543 return PTR_ERR(bdev); 2544 } 2545 rdev->bdev = bdev; 2546 return err; 2547 } 2548 2549 static void unlock_rdev(struct md_rdev *rdev) 2550 { 2551 struct block_device *bdev = rdev->bdev; 2552 rdev->bdev = NULL; 2553 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2554 } 2555 2556 void md_autodetect_dev(dev_t dev); 2557 2558 static void export_rdev(struct md_rdev *rdev) 2559 { 2560 char b[BDEVNAME_SIZE]; 2561 2562 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2563 md_rdev_clear(rdev); 2564 #ifndef MODULE 2565 if (test_bit(AutoDetected, &rdev->flags)) 2566 md_autodetect_dev(rdev->bdev->bd_dev); 2567 #endif 2568 unlock_rdev(rdev); 2569 kobject_put(&rdev->kobj); 2570 } 2571 2572 void md_kick_rdev_from_array(struct md_rdev *rdev) 2573 { 2574 unbind_rdev_from_array(rdev); 2575 export_rdev(rdev); 2576 } 2577 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2578 2579 static void export_array(struct mddev *mddev) 2580 { 2581 struct md_rdev *rdev; 2582 2583 while (!list_empty(&mddev->disks)) { 2584 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2585 same_set); 2586 md_kick_rdev_from_array(rdev); 2587 } 2588 mddev->raid_disks = 0; 2589 mddev->major_version = 0; 2590 } 2591 2592 static bool set_in_sync(struct mddev *mddev) 2593 { 2594 lockdep_assert_held(&mddev->lock); 2595 if (!mddev->in_sync) { 2596 mddev->sync_checkers++; 2597 spin_unlock(&mddev->lock); 2598 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2599 spin_lock(&mddev->lock); 2600 if (!mddev->in_sync && 2601 percpu_ref_is_zero(&mddev->writes_pending)) { 2602 mddev->in_sync = 1; 2603 /* 2604 * Ensure ->in_sync is visible before we clear 2605 * ->sync_checkers. 2606 */ 2607 smp_mb(); 2608 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2609 sysfs_notify_dirent_safe(mddev->sysfs_state); 2610 } 2611 if (--mddev->sync_checkers == 0) 2612 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2613 } 2614 if (mddev->safemode == 1) 2615 mddev->safemode = 0; 2616 return mddev->in_sync; 2617 } 2618 2619 static void sync_sbs(struct mddev *mddev, int nospares) 2620 { 2621 /* Update each superblock (in-memory image), but 2622 * if we are allowed to, skip spares which already 2623 * have the right event counter, or have one earlier 2624 * (which would mean they aren't being marked as dirty 2625 * with the rest of the array) 2626 */ 2627 struct md_rdev *rdev; 2628 rdev_for_each(rdev, mddev) { 2629 if (rdev->sb_events == mddev->events || 2630 (nospares && 2631 rdev->raid_disk < 0 && 2632 rdev->sb_events+1 == mddev->events)) { 2633 /* Don't update this superblock */ 2634 rdev->sb_loaded = 2; 2635 } else { 2636 sync_super(mddev, rdev); 2637 rdev->sb_loaded = 1; 2638 } 2639 } 2640 } 2641 2642 static bool does_sb_need_changing(struct mddev *mddev) 2643 { 2644 struct md_rdev *rdev; 2645 struct mdp_superblock_1 *sb; 2646 int role; 2647 2648 /* Find a good rdev */ 2649 rdev_for_each(rdev, mddev) 2650 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2651 break; 2652 2653 /* No good device found. */ 2654 if (!rdev) 2655 return false; 2656 2657 sb = page_address(rdev->sb_page); 2658 /* Check if a device has become faulty or a spare become active */ 2659 rdev_for_each(rdev, mddev) { 2660 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2661 /* Device activated? */ 2662 if (role == 0xffff && rdev->raid_disk >=0 && 2663 !test_bit(Faulty, &rdev->flags)) 2664 return true; 2665 /* Device turned faulty? */ 2666 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2667 return true; 2668 } 2669 2670 /* Check if any mddev parameters have changed */ 2671 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2672 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2673 (mddev->layout != le32_to_cpu(sb->layout)) || 2674 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2675 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2676 return true; 2677 2678 return false; 2679 } 2680 2681 void md_update_sb(struct mddev *mddev, int force_change) 2682 { 2683 struct md_rdev *rdev; 2684 int sync_req; 2685 int nospares = 0; 2686 int any_badblocks_changed = 0; 2687 int ret = -1; 2688 2689 if (mddev->ro) { 2690 if (force_change) 2691 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2692 return; 2693 } 2694 2695 repeat: 2696 if (mddev_is_clustered(mddev)) { 2697 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2698 force_change = 1; 2699 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2700 nospares = 1; 2701 ret = md_cluster_ops->metadata_update_start(mddev); 2702 /* Has someone else has updated the sb */ 2703 if (!does_sb_need_changing(mddev)) { 2704 if (ret == 0) 2705 md_cluster_ops->metadata_update_cancel(mddev); 2706 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2707 BIT(MD_SB_CHANGE_DEVS) | 2708 BIT(MD_SB_CHANGE_CLEAN)); 2709 return; 2710 } 2711 } 2712 2713 /* 2714 * First make sure individual recovery_offsets are correct 2715 * curr_resync_completed can only be used during recovery. 2716 * During reshape/resync it might use array-addresses rather 2717 * that device addresses. 2718 */ 2719 rdev_for_each(rdev, mddev) { 2720 if (rdev->raid_disk >= 0 && 2721 mddev->delta_disks >= 0 && 2722 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2723 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2724 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2725 !test_bit(Journal, &rdev->flags) && 2726 !test_bit(In_sync, &rdev->flags) && 2727 mddev->curr_resync_completed > rdev->recovery_offset) 2728 rdev->recovery_offset = mddev->curr_resync_completed; 2729 2730 } 2731 if (!mddev->persistent) { 2732 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2733 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2734 if (!mddev->external) { 2735 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2736 rdev_for_each(rdev, mddev) { 2737 if (rdev->badblocks.changed) { 2738 rdev->badblocks.changed = 0; 2739 ack_all_badblocks(&rdev->badblocks); 2740 md_error(mddev, rdev); 2741 } 2742 clear_bit(Blocked, &rdev->flags); 2743 clear_bit(BlockedBadBlocks, &rdev->flags); 2744 wake_up(&rdev->blocked_wait); 2745 } 2746 } 2747 wake_up(&mddev->sb_wait); 2748 return; 2749 } 2750 2751 spin_lock(&mddev->lock); 2752 2753 mddev->utime = ktime_get_real_seconds(); 2754 2755 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2756 force_change = 1; 2757 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2758 /* just a clean<-> dirty transition, possibly leave spares alone, 2759 * though if events isn't the right even/odd, we will have to do 2760 * spares after all 2761 */ 2762 nospares = 1; 2763 if (force_change) 2764 nospares = 0; 2765 if (mddev->degraded) 2766 /* If the array is degraded, then skipping spares is both 2767 * dangerous and fairly pointless. 2768 * Dangerous because a device that was removed from the array 2769 * might have a event_count that still looks up-to-date, 2770 * so it can be re-added without a resync. 2771 * Pointless because if there are any spares to skip, 2772 * then a recovery will happen and soon that array won't 2773 * be degraded any more and the spare can go back to sleep then. 2774 */ 2775 nospares = 0; 2776 2777 sync_req = mddev->in_sync; 2778 2779 /* If this is just a dirty<->clean transition, and the array is clean 2780 * and 'events' is odd, we can roll back to the previous clean state */ 2781 if (nospares 2782 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2783 && mddev->can_decrease_events 2784 && mddev->events != 1) { 2785 mddev->events--; 2786 mddev->can_decrease_events = 0; 2787 } else { 2788 /* otherwise we have to go forward and ... */ 2789 mddev->events ++; 2790 mddev->can_decrease_events = nospares; 2791 } 2792 2793 /* 2794 * This 64-bit counter should never wrap. 2795 * Either we are in around ~1 trillion A.C., assuming 2796 * 1 reboot per second, or we have a bug... 2797 */ 2798 WARN_ON(mddev->events == 0); 2799 2800 rdev_for_each(rdev, mddev) { 2801 if (rdev->badblocks.changed) 2802 any_badblocks_changed++; 2803 if (test_bit(Faulty, &rdev->flags)) 2804 set_bit(FaultRecorded, &rdev->flags); 2805 } 2806 2807 sync_sbs(mddev, nospares); 2808 spin_unlock(&mddev->lock); 2809 2810 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2811 mdname(mddev), mddev->in_sync); 2812 2813 if (mddev->queue) 2814 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2815 rewrite: 2816 md_bitmap_update_sb(mddev->bitmap); 2817 rdev_for_each(rdev, mddev) { 2818 char b[BDEVNAME_SIZE]; 2819 2820 if (rdev->sb_loaded != 1) 2821 continue; /* no noise on spare devices */ 2822 2823 if (!test_bit(Faulty, &rdev->flags)) { 2824 md_super_write(mddev,rdev, 2825 rdev->sb_start, rdev->sb_size, 2826 rdev->sb_page); 2827 pr_debug("md: (write) %s's sb offset: %llu\n", 2828 bdevname(rdev->bdev, b), 2829 (unsigned long long)rdev->sb_start); 2830 rdev->sb_events = mddev->events; 2831 if (rdev->badblocks.size) { 2832 md_super_write(mddev, rdev, 2833 rdev->badblocks.sector, 2834 rdev->badblocks.size << 9, 2835 rdev->bb_page); 2836 rdev->badblocks.size = 0; 2837 } 2838 2839 } else 2840 pr_debug("md: %s (skipping faulty)\n", 2841 bdevname(rdev->bdev, b)); 2842 2843 if (mddev->level == LEVEL_MULTIPATH) 2844 /* only need to write one superblock... */ 2845 break; 2846 } 2847 if (md_super_wait(mddev) < 0) 2848 goto rewrite; 2849 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2850 2851 if (mddev_is_clustered(mddev) && ret == 0) 2852 md_cluster_ops->metadata_update_finish(mddev); 2853 2854 if (mddev->in_sync != sync_req || 2855 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2856 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2857 /* have to write it out again */ 2858 goto repeat; 2859 wake_up(&mddev->sb_wait); 2860 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2861 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2862 2863 rdev_for_each(rdev, mddev) { 2864 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2865 clear_bit(Blocked, &rdev->flags); 2866 2867 if (any_badblocks_changed) 2868 ack_all_badblocks(&rdev->badblocks); 2869 clear_bit(BlockedBadBlocks, &rdev->flags); 2870 wake_up(&rdev->blocked_wait); 2871 } 2872 } 2873 EXPORT_SYMBOL(md_update_sb); 2874 2875 static int add_bound_rdev(struct md_rdev *rdev) 2876 { 2877 struct mddev *mddev = rdev->mddev; 2878 int err = 0; 2879 bool add_journal = test_bit(Journal, &rdev->flags); 2880 2881 if (!mddev->pers->hot_remove_disk || add_journal) { 2882 /* If there is hot_add_disk but no hot_remove_disk 2883 * then added disks for geometry changes, 2884 * and should be added immediately. 2885 */ 2886 super_types[mddev->major_version]. 2887 validate_super(mddev, rdev); 2888 if (add_journal) 2889 mddev_suspend(mddev); 2890 err = mddev->pers->hot_add_disk(mddev, rdev); 2891 if (add_journal) 2892 mddev_resume(mddev); 2893 if (err) { 2894 md_kick_rdev_from_array(rdev); 2895 return err; 2896 } 2897 } 2898 sysfs_notify_dirent_safe(rdev->sysfs_state); 2899 2900 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2901 if (mddev->degraded) 2902 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2903 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2904 md_new_event(mddev); 2905 md_wakeup_thread(mddev->thread); 2906 return 0; 2907 } 2908 2909 /* words written to sysfs files may, or may not, be \n terminated. 2910 * We want to accept with case. For this we use cmd_match. 2911 */ 2912 static int cmd_match(const char *cmd, const char *str) 2913 { 2914 /* See if cmd, written into a sysfs file, matches 2915 * str. They must either be the same, or cmd can 2916 * have a trailing newline 2917 */ 2918 while (*cmd && *str && *cmd == *str) { 2919 cmd++; 2920 str++; 2921 } 2922 if (*cmd == '\n') 2923 cmd++; 2924 if (*str || *cmd) 2925 return 0; 2926 return 1; 2927 } 2928 2929 struct rdev_sysfs_entry { 2930 struct attribute attr; 2931 ssize_t (*show)(struct md_rdev *, char *); 2932 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2933 }; 2934 2935 static ssize_t 2936 state_show(struct md_rdev *rdev, char *page) 2937 { 2938 char *sep = ","; 2939 size_t len = 0; 2940 unsigned long flags = READ_ONCE(rdev->flags); 2941 2942 if (test_bit(Faulty, &flags) || 2943 (!test_bit(ExternalBbl, &flags) && 2944 rdev->badblocks.unacked_exist)) 2945 len += sprintf(page+len, "faulty%s", sep); 2946 if (test_bit(In_sync, &flags)) 2947 len += sprintf(page+len, "in_sync%s", sep); 2948 if (test_bit(Journal, &flags)) 2949 len += sprintf(page+len, "journal%s", sep); 2950 if (test_bit(WriteMostly, &flags)) 2951 len += sprintf(page+len, "write_mostly%s", sep); 2952 if (test_bit(Blocked, &flags) || 2953 (rdev->badblocks.unacked_exist 2954 && !test_bit(Faulty, &flags))) 2955 len += sprintf(page+len, "blocked%s", sep); 2956 if (!test_bit(Faulty, &flags) && 2957 !test_bit(Journal, &flags) && 2958 !test_bit(In_sync, &flags)) 2959 len += sprintf(page+len, "spare%s", sep); 2960 if (test_bit(WriteErrorSeen, &flags)) 2961 len += sprintf(page+len, "write_error%s", sep); 2962 if (test_bit(WantReplacement, &flags)) 2963 len += sprintf(page+len, "want_replacement%s", sep); 2964 if (test_bit(Replacement, &flags)) 2965 len += sprintf(page+len, "replacement%s", sep); 2966 if (test_bit(ExternalBbl, &flags)) 2967 len += sprintf(page+len, "external_bbl%s", sep); 2968 if (test_bit(FailFast, &flags)) 2969 len += sprintf(page+len, "failfast%s", sep); 2970 2971 if (len) 2972 len -= strlen(sep); 2973 2974 return len+sprintf(page+len, "\n"); 2975 } 2976 2977 static ssize_t 2978 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2979 { 2980 /* can write 2981 * faulty - simulates an error 2982 * remove - disconnects the device 2983 * writemostly - sets write_mostly 2984 * -writemostly - clears write_mostly 2985 * blocked - sets the Blocked flags 2986 * -blocked - clears the Blocked and possibly simulates an error 2987 * insync - sets Insync providing device isn't active 2988 * -insync - clear Insync for a device with a slot assigned, 2989 * so that it gets rebuilt based on bitmap 2990 * write_error - sets WriteErrorSeen 2991 * -write_error - clears WriteErrorSeen 2992 * {,-}failfast - set/clear FailFast 2993 */ 2994 int err = -EINVAL; 2995 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2996 md_error(rdev->mddev, rdev); 2997 if (test_bit(Faulty, &rdev->flags)) 2998 err = 0; 2999 else 3000 err = -EBUSY; 3001 } else if (cmd_match(buf, "remove")) { 3002 if (rdev->mddev->pers) { 3003 clear_bit(Blocked, &rdev->flags); 3004 remove_and_add_spares(rdev->mddev, rdev); 3005 } 3006 if (rdev->raid_disk >= 0) 3007 err = -EBUSY; 3008 else { 3009 struct mddev *mddev = rdev->mddev; 3010 err = 0; 3011 if (mddev_is_clustered(mddev)) 3012 err = md_cluster_ops->remove_disk(mddev, rdev); 3013 3014 if (err == 0) { 3015 md_kick_rdev_from_array(rdev); 3016 if (mddev->pers) { 3017 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3018 md_wakeup_thread(mddev->thread); 3019 } 3020 md_new_event(mddev); 3021 } 3022 } 3023 } else if (cmd_match(buf, "writemostly")) { 3024 set_bit(WriteMostly, &rdev->flags); 3025 mddev_create_serial_pool(rdev->mddev, rdev, false); 3026 err = 0; 3027 } else if (cmd_match(buf, "-writemostly")) { 3028 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3029 clear_bit(WriteMostly, &rdev->flags); 3030 err = 0; 3031 } else if (cmd_match(buf, "blocked")) { 3032 set_bit(Blocked, &rdev->flags); 3033 err = 0; 3034 } else if (cmd_match(buf, "-blocked")) { 3035 if (!test_bit(Faulty, &rdev->flags) && 3036 !test_bit(ExternalBbl, &rdev->flags) && 3037 rdev->badblocks.unacked_exist) { 3038 /* metadata handler doesn't understand badblocks, 3039 * so we need to fail the device 3040 */ 3041 md_error(rdev->mddev, rdev); 3042 } 3043 clear_bit(Blocked, &rdev->flags); 3044 clear_bit(BlockedBadBlocks, &rdev->flags); 3045 wake_up(&rdev->blocked_wait); 3046 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3047 md_wakeup_thread(rdev->mddev->thread); 3048 3049 err = 0; 3050 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3051 set_bit(In_sync, &rdev->flags); 3052 err = 0; 3053 } else if (cmd_match(buf, "failfast")) { 3054 set_bit(FailFast, &rdev->flags); 3055 err = 0; 3056 } else if (cmd_match(buf, "-failfast")) { 3057 clear_bit(FailFast, &rdev->flags); 3058 err = 0; 3059 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3060 !test_bit(Journal, &rdev->flags)) { 3061 if (rdev->mddev->pers == NULL) { 3062 clear_bit(In_sync, &rdev->flags); 3063 rdev->saved_raid_disk = rdev->raid_disk; 3064 rdev->raid_disk = -1; 3065 err = 0; 3066 } 3067 } else if (cmd_match(buf, "write_error")) { 3068 set_bit(WriteErrorSeen, &rdev->flags); 3069 err = 0; 3070 } else if (cmd_match(buf, "-write_error")) { 3071 clear_bit(WriteErrorSeen, &rdev->flags); 3072 err = 0; 3073 } else if (cmd_match(buf, "want_replacement")) { 3074 /* Any non-spare device that is not a replacement can 3075 * become want_replacement at any time, but we then need to 3076 * check if recovery is needed. 3077 */ 3078 if (rdev->raid_disk >= 0 && 3079 !test_bit(Journal, &rdev->flags) && 3080 !test_bit(Replacement, &rdev->flags)) 3081 set_bit(WantReplacement, &rdev->flags); 3082 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3083 md_wakeup_thread(rdev->mddev->thread); 3084 err = 0; 3085 } else if (cmd_match(buf, "-want_replacement")) { 3086 /* Clearing 'want_replacement' is always allowed. 3087 * Once replacements starts it is too late though. 3088 */ 3089 err = 0; 3090 clear_bit(WantReplacement, &rdev->flags); 3091 } else if (cmd_match(buf, "replacement")) { 3092 /* Can only set a device as a replacement when array has not 3093 * yet been started. Once running, replacement is automatic 3094 * from spares, or by assigning 'slot'. 3095 */ 3096 if (rdev->mddev->pers) 3097 err = -EBUSY; 3098 else { 3099 set_bit(Replacement, &rdev->flags); 3100 err = 0; 3101 } 3102 } else if (cmd_match(buf, "-replacement")) { 3103 /* Similarly, can only clear Replacement before start */ 3104 if (rdev->mddev->pers) 3105 err = -EBUSY; 3106 else { 3107 clear_bit(Replacement, &rdev->flags); 3108 err = 0; 3109 } 3110 } else if (cmd_match(buf, "re-add")) { 3111 if (!rdev->mddev->pers) 3112 err = -EINVAL; 3113 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3114 rdev->saved_raid_disk >= 0) { 3115 /* clear_bit is performed _after_ all the devices 3116 * have their local Faulty bit cleared. If any writes 3117 * happen in the meantime in the local node, they 3118 * will land in the local bitmap, which will be synced 3119 * by this node eventually 3120 */ 3121 if (!mddev_is_clustered(rdev->mddev) || 3122 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3123 clear_bit(Faulty, &rdev->flags); 3124 err = add_bound_rdev(rdev); 3125 } 3126 } else 3127 err = -EBUSY; 3128 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3129 set_bit(ExternalBbl, &rdev->flags); 3130 rdev->badblocks.shift = 0; 3131 err = 0; 3132 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3133 clear_bit(ExternalBbl, &rdev->flags); 3134 err = 0; 3135 } 3136 if (!err) 3137 sysfs_notify_dirent_safe(rdev->sysfs_state); 3138 return err ? err : len; 3139 } 3140 static struct rdev_sysfs_entry rdev_state = 3141 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3142 3143 static ssize_t 3144 errors_show(struct md_rdev *rdev, char *page) 3145 { 3146 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3147 } 3148 3149 static ssize_t 3150 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3151 { 3152 unsigned int n; 3153 int rv; 3154 3155 rv = kstrtouint(buf, 10, &n); 3156 if (rv < 0) 3157 return rv; 3158 atomic_set(&rdev->corrected_errors, n); 3159 return len; 3160 } 3161 static struct rdev_sysfs_entry rdev_errors = 3162 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3163 3164 static ssize_t 3165 slot_show(struct md_rdev *rdev, char *page) 3166 { 3167 if (test_bit(Journal, &rdev->flags)) 3168 return sprintf(page, "journal\n"); 3169 else if (rdev->raid_disk < 0) 3170 return sprintf(page, "none\n"); 3171 else 3172 return sprintf(page, "%d\n", rdev->raid_disk); 3173 } 3174 3175 static ssize_t 3176 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3177 { 3178 int slot; 3179 int err; 3180 3181 if (test_bit(Journal, &rdev->flags)) 3182 return -EBUSY; 3183 if (strncmp(buf, "none", 4)==0) 3184 slot = -1; 3185 else { 3186 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3187 if (err < 0) 3188 return err; 3189 } 3190 if (rdev->mddev->pers && slot == -1) { 3191 /* Setting 'slot' on an active array requires also 3192 * updating the 'rd%d' link, and communicating 3193 * with the personality with ->hot_*_disk. 3194 * For now we only support removing 3195 * failed/spare devices. This normally happens automatically, 3196 * but not when the metadata is externally managed. 3197 */ 3198 if (rdev->raid_disk == -1) 3199 return -EEXIST; 3200 /* personality does all needed checks */ 3201 if (rdev->mddev->pers->hot_remove_disk == NULL) 3202 return -EINVAL; 3203 clear_bit(Blocked, &rdev->flags); 3204 remove_and_add_spares(rdev->mddev, rdev); 3205 if (rdev->raid_disk >= 0) 3206 return -EBUSY; 3207 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3208 md_wakeup_thread(rdev->mddev->thread); 3209 } else if (rdev->mddev->pers) { 3210 /* Activating a spare .. or possibly reactivating 3211 * if we ever get bitmaps working here. 3212 */ 3213 int err; 3214 3215 if (rdev->raid_disk != -1) 3216 return -EBUSY; 3217 3218 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3219 return -EBUSY; 3220 3221 if (rdev->mddev->pers->hot_add_disk == NULL) 3222 return -EINVAL; 3223 3224 if (slot >= rdev->mddev->raid_disks && 3225 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3226 return -ENOSPC; 3227 3228 rdev->raid_disk = slot; 3229 if (test_bit(In_sync, &rdev->flags)) 3230 rdev->saved_raid_disk = slot; 3231 else 3232 rdev->saved_raid_disk = -1; 3233 clear_bit(In_sync, &rdev->flags); 3234 clear_bit(Bitmap_sync, &rdev->flags); 3235 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3236 if (err) { 3237 rdev->raid_disk = -1; 3238 return err; 3239 } else 3240 sysfs_notify_dirent_safe(rdev->sysfs_state); 3241 /* failure here is OK */; 3242 sysfs_link_rdev(rdev->mddev, rdev); 3243 /* don't wakeup anyone, leave that to userspace. */ 3244 } else { 3245 if (slot >= rdev->mddev->raid_disks && 3246 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3247 return -ENOSPC; 3248 rdev->raid_disk = slot; 3249 /* assume it is working */ 3250 clear_bit(Faulty, &rdev->flags); 3251 clear_bit(WriteMostly, &rdev->flags); 3252 set_bit(In_sync, &rdev->flags); 3253 sysfs_notify_dirent_safe(rdev->sysfs_state); 3254 } 3255 return len; 3256 } 3257 3258 static struct rdev_sysfs_entry rdev_slot = 3259 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3260 3261 static ssize_t 3262 offset_show(struct md_rdev *rdev, char *page) 3263 { 3264 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3265 } 3266 3267 static ssize_t 3268 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3269 { 3270 unsigned long long offset; 3271 if (kstrtoull(buf, 10, &offset) < 0) 3272 return -EINVAL; 3273 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3274 return -EBUSY; 3275 if (rdev->sectors && rdev->mddev->external) 3276 /* Must set offset before size, so overlap checks 3277 * can be sane */ 3278 return -EBUSY; 3279 rdev->data_offset = offset; 3280 rdev->new_data_offset = offset; 3281 return len; 3282 } 3283 3284 static struct rdev_sysfs_entry rdev_offset = 3285 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3286 3287 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3288 { 3289 return sprintf(page, "%llu\n", 3290 (unsigned long long)rdev->new_data_offset); 3291 } 3292 3293 static ssize_t new_offset_store(struct md_rdev *rdev, 3294 const char *buf, size_t len) 3295 { 3296 unsigned long long new_offset; 3297 struct mddev *mddev = rdev->mddev; 3298 3299 if (kstrtoull(buf, 10, &new_offset) < 0) 3300 return -EINVAL; 3301 3302 if (mddev->sync_thread || 3303 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3304 return -EBUSY; 3305 if (new_offset == rdev->data_offset) 3306 /* reset is always permitted */ 3307 ; 3308 else if (new_offset > rdev->data_offset) { 3309 /* must not push array size beyond rdev_sectors */ 3310 if (new_offset - rdev->data_offset 3311 + mddev->dev_sectors > rdev->sectors) 3312 return -E2BIG; 3313 } 3314 /* Metadata worries about other space details. */ 3315 3316 /* decreasing the offset is inconsistent with a backwards 3317 * reshape. 3318 */ 3319 if (new_offset < rdev->data_offset && 3320 mddev->reshape_backwards) 3321 return -EINVAL; 3322 /* Increasing offset is inconsistent with forwards 3323 * reshape. reshape_direction should be set to 3324 * 'backwards' first. 3325 */ 3326 if (new_offset > rdev->data_offset && 3327 !mddev->reshape_backwards) 3328 return -EINVAL; 3329 3330 if (mddev->pers && mddev->persistent && 3331 !super_types[mddev->major_version] 3332 .allow_new_offset(rdev, new_offset)) 3333 return -E2BIG; 3334 rdev->new_data_offset = new_offset; 3335 if (new_offset > rdev->data_offset) 3336 mddev->reshape_backwards = 1; 3337 else if (new_offset < rdev->data_offset) 3338 mddev->reshape_backwards = 0; 3339 3340 return len; 3341 } 3342 static struct rdev_sysfs_entry rdev_new_offset = 3343 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3344 3345 static ssize_t 3346 rdev_size_show(struct md_rdev *rdev, char *page) 3347 { 3348 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3349 } 3350 3351 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3352 { 3353 /* check if two start/length pairs overlap */ 3354 if (s1+l1 <= s2) 3355 return 0; 3356 if (s2+l2 <= s1) 3357 return 0; 3358 return 1; 3359 } 3360 3361 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3362 { 3363 unsigned long long blocks; 3364 sector_t new; 3365 3366 if (kstrtoull(buf, 10, &blocks) < 0) 3367 return -EINVAL; 3368 3369 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3370 return -EINVAL; /* sector conversion overflow */ 3371 3372 new = blocks * 2; 3373 if (new != blocks * 2) 3374 return -EINVAL; /* unsigned long long to sector_t overflow */ 3375 3376 *sectors = new; 3377 return 0; 3378 } 3379 3380 static ssize_t 3381 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3382 { 3383 struct mddev *my_mddev = rdev->mddev; 3384 sector_t oldsectors = rdev->sectors; 3385 sector_t sectors; 3386 3387 if (test_bit(Journal, &rdev->flags)) 3388 return -EBUSY; 3389 if (strict_blocks_to_sectors(buf, §ors) < 0) 3390 return -EINVAL; 3391 if (rdev->data_offset != rdev->new_data_offset) 3392 return -EINVAL; /* too confusing */ 3393 if (my_mddev->pers && rdev->raid_disk >= 0) { 3394 if (my_mddev->persistent) { 3395 sectors = super_types[my_mddev->major_version]. 3396 rdev_size_change(rdev, sectors); 3397 if (!sectors) 3398 return -EBUSY; 3399 } else if (!sectors) 3400 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3401 rdev->data_offset; 3402 if (!my_mddev->pers->resize) 3403 /* Cannot change size for RAID0 or Linear etc */ 3404 return -EINVAL; 3405 } 3406 if (sectors < my_mddev->dev_sectors) 3407 return -EINVAL; /* component must fit device */ 3408 3409 rdev->sectors = sectors; 3410 if (sectors > oldsectors && my_mddev->external) { 3411 /* Need to check that all other rdevs with the same 3412 * ->bdev do not overlap. 'rcu' is sufficient to walk 3413 * the rdev lists safely. 3414 * This check does not provide a hard guarantee, it 3415 * just helps avoid dangerous mistakes. 3416 */ 3417 struct mddev *mddev; 3418 int overlap = 0; 3419 struct list_head *tmp; 3420 3421 rcu_read_lock(); 3422 for_each_mddev(mddev, tmp) { 3423 struct md_rdev *rdev2; 3424 3425 rdev_for_each(rdev2, mddev) 3426 if (rdev->bdev == rdev2->bdev && 3427 rdev != rdev2 && 3428 overlaps(rdev->data_offset, rdev->sectors, 3429 rdev2->data_offset, 3430 rdev2->sectors)) { 3431 overlap = 1; 3432 break; 3433 } 3434 if (overlap) { 3435 mddev_put(mddev); 3436 break; 3437 } 3438 } 3439 rcu_read_unlock(); 3440 if (overlap) { 3441 /* Someone else could have slipped in a size 3442 * change here, but doing so is just silly. 3443 * We put oldsectors back because we *know* it is 3444 * safe, and trust userspace not to race with 3445 * itself 3446 */ 3447 rdev->sectors = oldsectors; 3448 return -EBUSY; 3449 } 3450 } 3451 return len; 3452 } 3453 3454 static struct rdev_sysfs_entry rdev_size = 3455 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3456 3457 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3458 { 3459 unsigned long long recovery_start = rdev->recovery_offset; 3460 3461 if (test_bit(In_sync, &rdev->flags) || 3462 recovery_start == MaxSector) 3463 return sprintf(page, "none\n"); 3464 3465 return sprintf(page, "%llu\n", recovery_start); 3466 } 3467 3468 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3469 { 3470 unsigned long long recovery_start; 3471 3472 if (cmd_match(buf, "none")) 3473 recovery_start = MaxSector; 3474 else if (kstrtoull(buf, 10, &recovery_start)) 3475 return -EINVAL; 3476 3477 if (rdev->mddev->pers && 3478 rdev->raid_disk >= 0) 3479 return -EBUSY; 3480 3481 rdev->recovery_offset = recovery_start; 3482 if (recovery_start == MaxSector) 3483 set_bit(In_sync, &rdev->flags); 3484 else 3485 clear_bit(In_sync, &rdev->flags); 3486 return len; 3487 } 3488 3489 static struct rdev_sysfs_entry rdev_recovery_start = 3490 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3491 3492 /* sysfs access to bad-blocks list. 3493 * We present two files. 3494 * 'bad-blocks' lists sector numbers and lengths of ranges that 3495 * are recorded as bad. The list is truncated to fit within 3496 * the one-page limit of sysfs. 3497 * Writing "sector length" to this file adds an acknowledged 3498 * bad block list. 3499 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3500 * been acknowledged. Writing to this file adds bad blocks 3501 * without acknowledging them. This is largely for testing. 3502 */ 3503 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3504 { 3505 return badblocks_show(&rdev->badblocks, page, 0); 3506 } 3507 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3508 { 3509 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3510 /* Maybe that ack was all we needed */ 3511 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3512 wake_up(&rdev->blocked_wait); 3513 return rv; 3514 } 3515 static struct rdev_sysfs_entry rdev_bad_blocks = 3516 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3517 3518 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3519 { 3520 return badblocks_show(&rdev->badblocks, page, 1); 3521 } 3522 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3523 { 3524 return badblocks_store(&rdev->badblocks, page, len, 1); 3525 } 3526 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3527 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3528 3529 static ssize_t 3530 ppl_sector_show(struct md_rdev *rdev, char *page) 3531 { 3532 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3533 } 3534 3535 static ssize_t 3536 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3537 { 3538 unsigned long long sector; 3539 3540 if (kstrtoull(buf, 10, §or) < 0) 3541 return -EINVAL; 3542 if (sector != (sector_t)sector) 3543 return -EINVAL; 3544 3545 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3546 rdev->raid_disk >= 0) 3547 return -EBUSY; 3548 3549 if (rdev->mddev->persistent) { 3550 if (rdev->mddev->major_version == 0) 3551 return -EINVAL; 3552 if ((sector > rdev->sb_start && 3553 sector - rdev->sb_start > S16_MAX) || 3554 (sector < rdev->sb_start && 3555 rdev->sb_start - sector > -S16_MIN)) 3556 return -EINVAL; 3557 rdev->ppl.offset = sector - rdev->sb_start; 3558 } else if (!rdev->mddev->external) { 3559 return -EBUSY; 3560 } 3561 rdev->ppl.sector = sector; 3562 return len; 3563 } 3564 3565 static struct rdev_sysfs_entry rdev_ppl_sector = 3566 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3567 3568 static ssize_t 3569 ppl_size_show(struct md_rdev *rdev, char *page) 3570 { 3571 return sprintf(page, "%u\n", rdev->ppl.size); 3572 } 3573 3574 static ssize_t 3575 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3576 { 3577 unsigned int size; 3578 3579 if (kstrtouint(buf, 10, &size) < 0) 3580 return -EINVAL; 3581 3582 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3583 rdev->raid_disk >= 0) 3584 return -EBUSY; 3585 3586 if (rdev->mddev->persistent) { 3587 if (rdev->mddev->major_version == 0) 3588 return -EINVAL; 3589 if (size > U16_MAX) 3590 return -EINVAL; 3591 } else if (!rdev->mddev->external) { 3592 return -EBUSY; 3593 } 3594 rdev->ppl.size = size; 3595 return len; 3596 } 3597 3598 static struct rdev_sysfs_entry rdev_ppl_size = 3599 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3600 3601 static struct attribute *rdev_default_attrs[] = { 3602 &rdev_state.attr, 3603 &rdev_errors.attr, 3604 &rdev_slot.attr, 3605 &rdev_offset.attr, 3606 &rdev_new_offset.attr, 3607 &rdev_size.attr, 3608 &rdev_recovery_start.attr, 3609 &rdev_bad_blocks.attr, 3610 &rdev_unack_bad_blocks.attr, 3611 &rdev_ppl_sector.attr, 3612 &rdev_ppl_size.attr, 3613 NULL, 3614 }; 3615 static ssize_t 3616 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3617 { 3618 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3619 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3620 3621 if (!entry->show) 3622 return -EIO; 3623 if (!rdev->mddev) 3624 return -ENODEV; 3625 return entry->show(rdev, page); 3626 } 3627 3628 static ssize_t 3629 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3630 const char *page, size_t length) 3631 { 3632 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3633 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3634 ssize_t rv; 3635 struct mddev *mddev = rdev->mddev; 3636 3637 if (!entry->store) 3638 return -EIO; 3639 if (!capable(CAP_SYS_ADMIN)) 3640 return -EACCES; 3641 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3642 if (!rv) { 3643 if (rdev->mddev == NULL) 3644 rv = -ENODEV; 3645 else 3646 rv = entry->store(rdev, page, length); 3647 mddev_unlock(mddev); 3648 } 3649 return rv; 3650 } 3651 3652 static void rdev_free(struct kobject *ko) 3653 { 3654 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3655 kfree(rdev); 3656 } 3657 static const struct sysfs_ops rdev_sysfs_ops = { 3658 .show = rdev_attr_show, 3659 .store = rdev_attr_store, 3660 }; 3661 static struct kobj_type rdev_ktype = { 3662 .release = rdev_free, 3663 .sysfs_ops = &rdev_sysfs_ops, 3664 .default_attrs = rdev_default_attrs, 3665 }; 3666 3667 int md_rdev_init(struct md_rdev *rdev) 3668 { 3669 rdev->desc_nr = -1; 3670 rdev->saved_raid_disk = -1; 3671 rdev->raid_disk = -1; 3672 rdev->flags = 0; 3673 rdev->data_offset = 0; 3674 rdev->new_data_offset = 0; 3675 rdev->sb_events = 0; 3676 rdev->last_read_error = 0; 3677 rdev->sb_loaded = 0; 3678 rdev->bb_page = NULL; 3679 atomic_set(&rdev->nr_pending, 0); 3680 atomic_set(&rdev->read_errors, 0); 3681 atomic_set(&rdev->corrected_errors, 0); 3682 3683 INIT_LIST_HEAD(&rdev->same_set); 3684 init_waitqueue_head(&rdev->blocked_wait); 3685 3686 /* Add space to store bad block list. 3687 * This reserves the space even on arrays where it cannot 3688 * be used - I wonder if that matters 3689 */ 3690 return badblocks_init(&rdev->badblocks, 0); 3691 } 3692 EXPORT_SYMBOL_GPL(md_rdev_init); 3693 /* 3694 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3695 * 3696 * mark the device faulty if: 3697 * 3698 * - the device is nonexistent (zero size) 3699 * - the device has no valid superblock 3700 * 3701 * a faulty rdev _never_ has rdev->sb set. 3702 */ 3703 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3704 { 3705 char b[BDEVNAME_SIZE]; 3706 int err; 3707 struct md_rdev *rdev; 3708 sector_t size; 3709 3710 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3711 if (!rdev) 3712 return ERR_PTR(-ENOMEM); 3713 3714 err = md_rdev_init(rdev); 3715 if (err) 3716 goto abort_free; 3717 err = alloc_disk_sb(rdev); 3718 if (err) 3719 goto abort_free; 3720 3721 err = lock_rdev(rdev, newdev, super_format == -2); 3722 if (err) 3723 goto abort_free; 3724 3725 kobject_init(&rdev->kobj, &rdev_ktype); 3726 3727 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3728 if (!size) { 3729 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3730 bdevname(rdev->bdev,b)); 3731 err = -EINVAL; 3732 goto abort_free; 3733 } 3734 3735 if (super_format >= 0) { 3736 err = super_types[super_format]. 3737 load_super(rdev, NULL, super_minor); 3738 if (err == -EINVAL) { 3739 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3740 bdevname(rdev->bdev,b), 3741 super_format, super_minor); 3742 goto abort_free; 3743 } 3744 if (err < 0) { 3745 pr_warn("md: could not read %s's sb, not importing!\n", 3746 bdevname(rdev->bdev,b)); 3747 goto abort_free; 3748 } 3749 } 3750 3751 return rdev; 3752 3753 abort_free: 3754 if (rdev->bdev) 3755 unlock_rdev(rdev); 3756 md_rdev_clear(rdev); 3757 kfree(rdev); 3758 return ERR_PTR(err); 3759 } 3760 3761 /* 3762 * Check a full RAID array for plausibility 3763 */ 3764 3765 static int analyze_sbs(struct mddev *mddev) 3766 { 3767 int i; 3768 struct md_rdev *rdev, *freshest, *tmp; 3769 char b[BDEVNAME_SIZE]; 3770 3771 freshest = NULL; 3772 rdev_for_each_safe(rdev, tmp, mddev) 3773 switch (super_types[mddev->major_version]. 3774 load_super(rdev, freshest, mddev->minor_version)) { 3775 case 1: 3776 freshest = rdev; 3777 break; 3778 case 0: 3779 break; 3780 default: 3781 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3782 bdevname(rdev->bdev,b)); 3783 md_kick_rdev_from_array(rdev); 3784 } 3785 3786 /* Cannot find a valid fresh disk */ 3787 if (!freshest) { 3788 pr_warn("md: cannot find a valid disk\n"); 3789 return -EINVAL; 3790 } 3791 3792 super_types[mddev->major_version]. 3793 validate_super(mddev, freshest); 3794 3795 i = 0; 3796 rdev_for_each_safe(rdev, tmp, mddev) { 3797 if (mddev->max_disks && 3798 (rdev->desc_nr >= mddev->max_disks || 3799 i > mddev->max_disks)) { 3800 pr_warn("md: %s: %s: only %d devices permitted\n", 3801 mdname(mddev), bdevname(rdev->bdev, b), 3802 mddev->max_disks); 3803 md_kick_rdev_from_array(rdev); 3804 continue; 3805 } 3806 if (rdev != freshest) { 3807 if (super_types[mddev->major_version]. 3808 validate_super(mddev, rdev)) { 3809 pr_warn("md: kicking non-fresh %s from array!\n", 3810 bdevname(rdev->bdev,b)); 3811 md_kick_rdev_from_array(rdev); 3812 continue; 3813 } 3814 } 3815 if (mddev->level == LEVEL_MULTIPATH) { 3816 rdev->desc_nr = i++; 3817 rdev->raid_disk = rdev->desc_nr; 3818 set_bit(In_sync, &rdev->flags); 3819 } else if (rdev->raid_disk >= 3820 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3821 !test_bit(Journal, &rdev->flags)) { 3822 rdev->raid_disk = -1; 3823 clear_bit(In_sync, &rdev->flags); 3824 } 3825 } 3826 3827 return 0; 3828 } 3829 3830 /* Read a fixed-point number. 3831 * Numbers in sysfs attributes should be in "standard" units where 3832 * possible, so time should be in seconds. 3833 * However we internally use a a much smaller unit such as 3834 * milliseconds or jiffies. 3835 * This function takes a decimal number with a possible fractional 3836 * component, and produces an integer which is the result of 3837 * multiplying that number by 10^'scale'. 3838 * all without any floating-point arithmetic. 3839 */ 3840 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3841 { 3842 unsigned long result = 0; 3843 long decimals = -1; 3844 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3845 if (*cp == '.') 3846 decimals = 0; 3847 else if (decimals < scale) { 3848 unsigned int value; 3849 value = *cp - '0'; 3850 result = result * 10 + value; 3851 if (decimals >= 0) 3852 decimals++; 3853 } 3854 cp++; 3855 } 3856 if (*cp == '\n') 3857 cp++; 3858 if (*cp) 3859 return -EINVAL; 3860 if (decimals < 0) 3861 decimals = 0; 3862 *res = result * int_pow(10, scale - decimals); 3863 return 0; 3864 } 3865 3866 static ssize_t 3867 safe_delay_show(struct mddev *mddev, char *page) 3868 { 3869 int msec = (mddev->safemode_delay*1000)/HZ; 3870 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3871 } 3872 static ssize_t 3873 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3874 { 3875 unsigned long msec; 3876 3877 if (mddev_is_clustered(mddev)) { 3878 pr_warn("md: Safemode is disabled for clustered mode\n"); 3879 return -EINVAL; 3880 } 3881 3882 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3883 return -EINVAL; 3884 if (msec == 0) 3885 mddev->safemode_delay = 0; 3886 else { 3887 unsigned long old_delay = mddev->safemode_delay; 3888 unsigned long new_delay = (msec*HZ)/1000; 3889 3890 if (new_delay == 0) 3891 new_delay = 1; 3892 mddev->safemode_delay = new_delay; 3893 if (new_delay < old_delay || old_delay == 0) 3894 mod_timer(&mddev->safemode_timer, jiffies+1); 3895 } 3896 return len; 3897 } 3898 static struct md_sysfs_entry md_safe_delay = 3899 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3900 3901 static ssize_t 3902 level_show(struct mddev *mddev, char *page) 3903 { 3904 struct md_personality *p; 3905 int ret; 3906 spin_lock(&mddev->lock); 3907 p = mddev->pers; 3908 if (p) 3909 ret = sprintf(page, "%s\n", p->name); 3910 else if (mddev->clevel[0]) 3911 ret = sprintf(page, "%s\n", mddev->clevel); 3912 else if (mddev->level != LEVEL_NONE) 3913 ret = sprintf(page, "%d\n", mddev->level); 3914 else 3915 ret = 0; 3916 spin_unlock(&mddev->lock); 3917 return ret; 3918 } 3919 3920 static ssize_t 3921 level_store(struct mddev *mddev, const char *buf, size_t len) 3922 { 3923 char clevel[16]; 3924 ssize_t rv; 3925 size_t slen = len; 3926 struct md_personality *pers, *oldpers; 3927 long level; 3928 void *priv, *oldpriv; 3929 struct md_rdev *rdev; 3930 3931 if (slen == 0 || slen >= sizeof(clevel)) 3932 return -EINVAL; 3933 3934 rv = mddev_lock(mddev); 3935 if (rv) 3936 return rv; 3937 3938 if (mddev->pers == NULL) { 3939 strncpy(mddev->clevel, buf, slen); 3940 if (mddev->clevel[slen-1] == '\n') 3941 slen--; 3942 mddev->clevel[slen] = 0; 3943 mddev->level = LEVEL_NONE; 3944 rv = len; 3945 goto out_unlock; 3946 } 3947 rv = -EROFS; 3948 if (mddev->ro) 3949 goto out_unlock; 3950 3951 /* request to change the personality. Need to ensure: 3952 * - array is not engaged in resync/recovery/reshape 3953 * - old personality can be suspended 3954 * - new personality will access other array. 3955 */ 3956 3957 rv = -EBUSY; 3958 if (mddev->sync_thread || 3959 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3960 mddev->reshape_position != MaxSector || 3961 mddev->sysfs_active) 3962 goto out_unlock; 3963 3964 rv = -EINVAL; 3965 if (!mddev->pers->quiesce) { 3966 pr_warn("md: %s: %s does not support online personality change\n", 3967 mdname(mddev), mddev->pers->name); 3968 goto out_unlock; 3969 } 3970 3971 /* Now find the new personality */ 3972 strncpy(clevel, buf, slen); 3973 if (clevel[slen-1] == '\n') 3974 slen--; 3975 clevel[slen] = 0; 3976 if (kstrtol(clevel, 10, &level)) 3977 level = LEVEL_NONE; 3978 3979 if (request_module("md-%s", clevel) != 0) 3980 request_module("md-level-%s", clevel); 3981 spin_lock(&pers_lock); 3982 pers = find_pers(level, clevel); 3983 if (!pers || !try_module_get(pers->owner)) { 3984 spin_unlock(&pers_lock); 3985 pr_warn("md: personality %s not loaded\n", clevel); 3986 rv = -EINVAL; 3987 goto out_unlock; 3988 } 3989 spin_unlock(&pers_lock); 3990 3991 if (pers == mddev->pers) { 3992 /* Nothing to do! */ 3993 module_put(pers->owner); 3994 rv = len; 3995 goto out_unlock; 3996 } 3997 if (!pers->takeover) { 3998 module_put(pers->owner); 3999 pr_warn("md: %s: %s does not support personality takeover\n", 4000 mdname(mddev), clevel); 4001 rv = -EINVAL; 4002 goto out_unlock; 4003 } 4004 4005 rdev_for_each(rdev, mddev) 4006 rdev->new_raid_disk = rdev->raid_disk; 4007 4008 /* ->takeover must set new_* and/or delta_disks 4009 * if it succeeds, and may set them when it fails. 4010 */ 4011 priv = pers->takeover(mddev); 4012 if (IS_ERR(priv)) { 4013 mddev->new_level = mddev->level; 4014 mddev->new_layout = mddev->layout; 4015 mddev->new_chunk_sectors = mddev->chunk_sectors; 4016 mddev->raid_disks -= mddev->delta_disks; 4017 mddev->delta_disks = 0; 4018 mddev->reshape_backwards = 0; 4019 module_put(pers->owner); 4020 pr_warn("md: %s: %s would not accept array\n", 4021 mdname(mddev), clevel); 4022 rv = PTR_ERR(priv); 4023 goto out_unlock; 4024 } 4025 4026 /* Looks like we have a winner */ 4027 mddev_suspend(mddev); 4028 mddev_detach(mddev); 4029 4030 spin_lock(&mddev->lock); 4031 oldpers = mddev->pers; 4032 oldpriv = mddev->private; 4033 mddev->pers = pers; 4034 mddev->private = priv; 4035 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4036 mddev->level = mddev->new_level; 4037 mddev->layout = mddev->new_layout; 4038 mddev->chunk_sectors = mddev->new_chunk_sectors; 4039 mddev->delta_disks = 0; 4040 mddev->reshape_backwards = 0; 4041 mddev->degraded = 0; 4042 spin_unlock(&mddev->lock); 4043 4044 if (oldpers->sync_request == NULL && 4045 mddev->external) { 4046 /* We are converting from a no-redundancy array 4047 * to a redundancy array and metadata is managed 4048 * externally so we need to be sure that writes 4049 * won't block due to a need to transition 4050 * clean->dirty 4051 * until external management is started. 4052 */ 4053 mddev->in_sync = 0; 4054 mddev->safemode_delay = 0; 4055 mddev->safemode = 0; 4056 } 4057 4058 oldpers->free(mddev, oldpriv); 4059 4060 if (oldpers->sync_request == NULL && 4061 pers->sync_request != NULL) { 4062 /* need to add the md_redundancy_group */ 4063 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4064 pr_warn("md: cannot register extra attributes for %s\n", 4065 mdname(mddev)); 4066 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4067 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4068 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4069 } 4070 if (oldpers->sync_request != NULL && 4071 pers->sync_request == NULL) { 4072 /* need to remove the md_redundancy_group */ 4073 if (mddev->to_remove == NULL) 4074 mddev->to_remove = &md_redundancy_group; 4075 } 4076 4077 module_put(oldpers->owner); 4078 4079 rdev_for_each(rdev, mddev) { 4080 if (rdev->raid_disk < 0) 4081 continue; 4082 if (rdev->new_raid_disk >= mddev->raid_disks) 4083 rdev->new_raid_disk = -1; 4084 if (rdev->new_raid_disk == rdev->raid_disk) 4085 continue; 4086 sysfs_unlink_rdev(mddev, rdev); 4087 } 4088 rdev_for_each(rdev, mddev) { 4089 if (rdev->raid_disk < 0) 4090 continue; 4091 if (rdev->new_raid_disk == rdev->raid_disk) 4092 continue; 4093 rdev->raid_disk = rdev->new_raid_disk; 4094 if (rdev->raid_disk < 0) 4095 clear_bit(In_sync, &rdev->flags); 4096 else { 4097 if (sysfs_link_rdev(mddev, rdev)) 4098 pr_warn("md: cannot register rd%d for %s after level change\n", 4099 rdev->raid_disk, mdname(mddev)); 4100 } 4101 } 4102 4103 if (pers->sync_request == NULL) { 4104 /* this is now an array without redundancy, so 4105 * it must always be in_sync 4106 */ 4107 mddev->in_sync = 1; 4108 del_timer_sync(&mddev->safemode_timer); 4109 } 4110 blk_set_stacking_limits(&mddev->queue->limits); 4111 pers->run(mddev); 4112 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4113 mddev_resume(mddev); 4114 if (!mddev->thread) 4115 md_update_sb(mddev, 1); 4116 sysfs_notify_dirent_safe(mddev->sysfs_level); 4117 md_new_event(mddev); 4118 rv = len; 4119 out_unlock: 4120 mddev_unlock(mddev); 4121 return rv; 4122 } 4123 4124 static struct md_sysfs_entry md_level = 4125 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4126 4127 static ssize_t 4128 layout_show(struct mddev *mddev, char *page) 4129 { 4130 /* just a number, not meaningful for all levels */ 4131 if (mddev->reshape_position != MaxSector && 4132 mddev->layout != mddev->new_layout) 4133 return sprintf(page, "%d (%d)\n", 4134 mddev->new_layout, mddev->layout); 4135 return sprintf(page, "%d\n", mddev->layout); 4136 } 4137 4138 static ssize_t 4139 layout_store(struct mddev *mddev, const char *buf, size_t len) 4140 { 4141 unsigned int n; 4142 int err; 4143 4144 err = kstrtouint(buf, 10, &n); 4145 if (err < 0) 4146 return err; 4147 err = mddev_lock(mddev); 4148 if (err) 4149 return err; 4150 4151 if (mddev->pers) { 4152 if (mddev->pers->check_reshape == NULL) 4153 err = -EBUSY; 4154 else if (mddev->ro) 4155 err = -EROFS; 4156 else { 4157 mddev->new_layout = n; 4158 err = mddev->pers->check_reshape(mddev); 4159 if (err) 4160 mddev->new_layout = mddev->layout; 4161 } 4162 } else { 4163 mddev->new_layout = n; 4164 if (mddev->reshape_position == MaxSector) 4165 mddev->layout = n; 4166 } 4167 mddev_unlock(mddev); 4168 return err ?: len; 4169 } 4170 static struct md_sysfs_entry md_layout = 4171 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4172 4173 static ssize_t 4174 raid_disks_show(struct mddev *mddev, char *page) 4175 { 4176 if (mddev->raid_disks == 0) 4177 return 0; 4178 if (mddev->reshape_position != MaxSector && 4179 mddev->delta_disks != 0) 4180 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4181 mddev->raid_disks - mddev->delta_disks); 4182 return sprintf(page, "%d\n", mddev->raid_disks); 4183 } 4184 4185 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4186 4187 static ssize_t 4188 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4189 { 4190 unsigned int n; 4191 int err; 4192 4193 err = kstrtouint(buf, 10, &n); 4194 if (err < 0) 4195 return err; 4196 4197 err = mddev_lock(mddev); 4198 if (err) 4199 return err; 4200 if (mddev->pers) 4201 err = update_raid_disks(mddev, n); 4202 else if (mddev->reshape_position != MaxSector) { 4203 struct md_rdev *rdev; 4204 int olddisks = mddev->raid_disks - mddev->delta_disks; 4205 4206 err = -EINVAL; 4207 rdev_for_each(rdev, mddev) { 4208 if (olddisks < n && 4209 rdev->data_offset < rdev->new_data_offset) 4210 goto out_unlock; 4211 if (olddisks > n && 4212 rdev->data_offset > rdev->new_data_offset) 4213 goto out_unlock; 4214 } 4215 err = 0; 4216 mddev->delta_disks = n - olddisks; 4217 mddev->raid_disks = n; 4218 mddev->reshape_backwards = (mddev->delta_disks < 0); 4219 } else 4220 mddev->raid_disks = n; 4221 out_unlock: 4222 mddev_unlock(mddev); 4223 return err ? err : len; 4224 } 4225 static struct md_sysfs_entry md_raid_disks = 4226 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4227 4228 static ssize_t 4229 uuid_show(struct mddev *mddev, char *page) 4230 { 4231 return sprintf(page, "%pU\n", mddev->uuid); 4232 } 4233 static struct md_sysfs_entry md_uuid = 4234 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4235 4236 static ssize_t 4237 chunk_size_show(struct mddev *mddev, char *page) 4238 { 4239 if (mddev->reshape_position != MaxSector && 4240 mddev->chunk_sectors != mddev->new_chunk_sectors) 4241 return sprintf(page, "%d (%d)\n", 4242 mddev->new_chunk_sectors << 9, 4243 mddev->chunk_sectors << 9); 4244 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4245 } 4246 4247 static ssize_t 4248 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4249 { 4250 unsigned long n; 4251 int err; 4252 4253 err = kstrtoul(buf, 10, &n); 4254 if (err < 0) 4255 return err; 4256 4257 err = mddev_lock(mddev); 4258 if (err) 4259 return err; 4260 if (mddev->pers) { 4261 if (mddev->pers->check_reshape == NULL) 4262 err = -EBUSY; 4263 else if (mddev->ro) 4264 err = -EROFS; 4265 else { 4266 mddev->new_chunk_sectors = n >> 9; 4267 err = mddev->pers->check_reshape(mddev); 4268 if (err) 4269 mddev->new_chunk_sectors = mddev->chunk_sectors; 4270 } 4271 } else { 4272 mddev->new_chunk_sectors = n >> 9; 4273 if (mddev->reshape_position == MaxSector) 4274 mddev->chunk_sectors = n >> 9; 4275 } 4276 mddev_unlock(mddev); 4277 return err ?: len; 4278 } 4279 static struct md_sysfs_entry md_chunk_size = 4280 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4281 4282 static ssize_t 4283 resync_start_show(struct mddev *mddev, char *page) 4284 { 4285 if (mddev->recovery_cp == MaxSector) 4286 return sprintf(page, "none\n"); 4287 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4288 } 4289 4290 static ssize_t 4291 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4292 { 4293 unsigned long long n; 4294 int err; 4295 4296 if (cmd_match(buf, "none")) 4297 n = MaxSector; 4298 else { 4299 err = kstrtoull(buf, 10, &n); 4300 if (err < 0) 4301 return err; 4302 if (n != (sector_t)n) 4303 return -EINVAL; 4304 } 4305 4306 err = mddev_lock(mddev); 4307 if (err) 4308 return err; 4309 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4310 err = -EBUSY; 4311 4312 if (!err) { 4313 mddev->recovery_cp = n; 4314 if (mddev->pers) 4315 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4316 } 4317 mddev_unlock(mddev); 4318 return err ?: len; 4319 } 4320 static struct md_sysfs_entry md_resync_start = 4321 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4322 resync_start_show, resync_start_store); 4323 4324 /* 4325 * The array state can be: 4326 * 4327 * clear 4328 * No devices, no size, no level 4329 * Equivalent to STOP_ARRAY ioctl 4330 * inactive 4331 * May have some settings, but array is not active 4332 * all IO results in error 4333 * When written, doesn't tear down array, but just stops it 4334 * suspended (not supported yet) 4335 * All IO requests will block. The array can be reconfigured. 4336 * Writing this, if accepted, will block until array is quiescent 4337 * readonly 4338 * no resync can happen. no superblocks get written. 4339 * write requests fail 4340 * read-auto 4341 * like readonly, but behaves like 'clean' on a write request. 4342 * 4343 * clean - no pending writes, but otherwise active. 4344 * When written to inactive array, starts without resync 4345 * If a write request arrives then 4346 * if metadata is known, mark 'dirty' and switch to 'active'. 4347 * if not known, block and switch to write-pending 4348 * If written to an active array that has pending writes, then fails. 4349 * active 4350 * fully active: IO and resync can be happening. 4351 * When written to inactive array, starts with resync 4352 * 4353 * write-pending 4354 * clean, but writes are blocked waiting for 'active' to be written. 4355 * 4356 * active-idle 4357 * like active, but no writes have been seen for a while (100msec). 4358 * 4359 * broken 4360 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4361 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4362 * when a member is gone, so this state will at least alert the 4363 * user that something is wrong. 4364 */ 4365 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4366 write_pending, active_idle, broken, bad_word}; 4367 static char *array_states[] = { 4368 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4369 "write-pending", "active-idle", "broken", NULL }; 4370 4371 static int match_word(const char *word, char **list) 4372 { 4373 int n; 4374 for (n=0; list[n]; n++) 4375 if (cmd_match(word, list[n])) 4376 break; 4377 return n; 4378 } 4379 4380 static ssize_t 4381 array_state_show(struct mddev *mddev, char *page) 4382 { 4383 enum array_state st = inactive; 4384 4385 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4386 switch(mddev->ro) { 4387 case 1: 4388 st = readonly; 4389 break; 4390 case 2: 4391 st = read_auto; 4392 break; 4393 case 0: 4394 spin_lock(&mddev->lock); 4395 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4396 st = write_pending; 4397 else if (mddev->in_sync) 4398 st = clean; 4399 else if (mddev->safemode) 4400 st = active_idle; 4401 else 4402 st = active; 4403 spin_unlock(&mddev->lock); 4404 } 4405 4406 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4407 st = broken; 4408 } else { 4409 if (list_empty(&mddev->disks) && 4410 mddev->raid_disks == 0 && 4411 mddev->dev_sectors == 0) 4412 st = clear; 4413 else 4414 st = inactive; 4415 } 4416 return sprintf(page, "%s\n", array_states[st]); 4417 } 4418 4419 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4420 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4421 static int restart_array(struct mddev *mddev); 4422 4423 static ssize_t 4424 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4425 { 4426 int err = 0; 4427 enum array_state st = match_word(buf, array_states); 4428 4429 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4430 /* don't take reconfig_mutex when toggling between 4431 * clean and active 4432 */ 4433 spin_lock(&mddev->lock); 4434 if (st == active) { 4435 restart_array(mddev); 4436 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4437 md_wakeup_thread(mddev->thread); 4438 wake_up(&mddev->sb_wait); 4439 } else /* st == clean */ { 4440 restart_array(mddev); 4441 if (!set_in_sync(mddev)) 4442 err = -EBUSY; 4443 } 4444 if (!err) 4445 sysfs_notify_dirent_safe(mddev->sysfs_state); 4446 spin_unlock(&mddev->lock); 4447 return err ?: len; 4448 } 4449 err = mddev_lock(mddev); 4450 if (err) 4451 return err; 4452 err = -EINVAL; 4453 switch(st) { 4454 case bad_word: 4455 break; 4456 case clear: 4457 /* stopping an active array */ 4458 err = do_md_stop(mddev, 0, NULL); 4459 break; 4460 case inactive: 4461 /* stopping an active array */ 4462 if (mddev->pers) 4463 err = do_md_stop(mddev, 2, NULL); 4464 else 4465 err = 0; /* already inactive */ 4466 break; 4467 case suspended: 4468 break; /* not supported yet */ 4469 case readonly: 4470 if (mddev->pers) 4471 err = md_set_readonly(mddev, NULL); 4472 else { 4473 mddev->ro = 1; 4474 set_disk_ro(mddev->gendisk, 1); 4475 err = do_md_run(mddev); 4476 } 4477 break; 4478 case read_auto: 4479 if (mddev->pers) { 4480 if (mddev->ro == 0) 4481 err = md_set_readonly(mddev, NULL); 4482 else if (mddev->ro == 1) 4483 err = restart_array(mddev); 4484 if (err == 0) { 4485 mddev->ro = 2; 4486 set_disk_ro(mddev->gendisk, 0); 4487 } 4488 } else { 4489 mddev->ro = 2; 4490 err = do_md_run(mddev); 4491 } 4492 break; 4493 case clean: 4494 if (mddev->pers) { 4495 err = restart_array(mddev); 4496 if (err) 4497 break; 4498 spin_lock(&mddev->lock); 4499 if (!set_in_sync(mddev)) 4500 err = -EBUSY; 4501 spin_unlock(&mddev->lock); 4502 } else 4503 err = -EINVAL; 4504 break; 4505 case active: 4506 if (mddev->pers) { 4507 err = restart_array(mddev); 4508 if (err) 4509 break; 4510 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4511 wake_up(&mddev->sb_wait); 4512 err = 0; 4513 } else { 4514 mddev->ro = 0; 4515 set_disk_ro(mddev->gendisk, 0); 4516 err = do_md_run(mddev); 4517 } 4518 break; 4519 case write_pending: 4520 case active_idle: 4521 case broken: 4522 /* these cannot be set */ 4523 break; 4524 } 4525 4526 if (!err) { 4527 if (mddev->hold_active == UNTIL_IOCTL) 4528 mddev->hold_active = 0; 4529 sysfs_notify_dirent_safe(mddev->sysfs_state); 4530 } 4531 mddev_unlock(mddev); 4532 return err ?: len; 4533 } 4534 static struct md_sysfs_entry md_array_state = 4535 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4536 4537 static ssize_t 4538 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4539 return sprintf(page, "%d\n", 4540 atomic_read(&mddev->max_corr_read_errors)); 4541 } 4542 4543 static ssize_t 4544 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4545 { 4546 unsigned int n; 4547 int rv; 4548 4549 rv = kstrtouint(buf, 10, &n); 4550 if (rv < 0) 4551 return rv; 4552 atomic_set(&mddev->max_corr_read_errors, n); 4553 return len; 4554 } 4555 4556 static struct md_sysfs_entry max_corr_read_errors = 4557 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4558 max_corrected_read_errors_store); 4559 4560 static ssize_t 4561 null_show(struct mddev *mddev, char *page) 4562 { 4563 return -EINVAL; 4564 } 4565 4566 /* need to ensure rdev_delayed_delete() has completed */ 4567 static void flush_rdev_wq(struct mddev *mddev) 4568 { 4569 struct md_rdev *rdev; 4570 4571 rcu_read_lock(); 4572 rdev_for_each_rcu(rdev, mddev) 4573 if (work_pending(&rdev->del_work)) { 4574 flush_workqueue(md_rdev_misc_wq); 4575 break; 4576 } 4577 rcu_read_unlock(); 4578 } 4579 4580 static ssize_t 4581 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4582 { 4583 /* buf must be %d:%d\n? giving major and minor numbers */ 4584 /* The new device is added to the array. 4585 * If the array has a persistent superblock, we read the 4586 * superblock to initialise info and check validity. 4587 * Otherwise, only checking done is that in bind_rdev_to_array, 4588 * which mainly checks size. 4589 */ 4590 char *e; 4591 int major = simple_strtoul(buf, &e, 10); 4592 int minor; 4593 dev_t dev; 4594 struct md_rdev *rdev; 4595 int err; 4596 4597 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4598 return -EINVAL; 4599 minor = simple_strtoul(e+1, &e, 10); 4600 if (*e && *e != '\n') 4601 return -EINVAL; 4602 dev = MKDEV(major, minor); 4603 if (major != MAJOR(dev) || 4604 minor != MINOR(dev)) 4605 return -EOVERFLOW; 4606 4607 flush_rdev_wq(mddev); 4608 err = mddev_lock(mddev); 4609 if (err) 4610 return err; 4611 if (mddev->persistent) { 4612 rdev = md_import_device(dev, mddev->major_version, 4613 mddev->minor_version); 4614 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4615 struct md_rdev *rdev0 4616 = list_entry(mddev->disks.next, 4617 struct md_rdev, same_set); 4618 err = super_types[mddev->major_version] 4619 .load_super(rdev, rdev0, mddev->minor_version); 4620 if (err < 0) 4621 goto out; 4622 } 4623 } else if (mddev->external) 4624 rdev = md_import_device(dev, -2, -1); 4625 else 4626 rdev = md_import_device(dev, -1, -1); 4627 4628 if (IS_ERR(rdev)) { 4629 mddev_unlock(mddev); 4630 return PTR_ERR(rdev); 4631 } 4632 err = bind_rdev_to_array(rdev, mddev); 4633 out: 4634 if (err) 4635 export_rdev(rdev); 4636 mddev_unlock(mddev); 4637 if (!err) 4638 md_new_event(mddev); 4639 return err ? err : len; 4640 } 4641 4642 static struct md_sysfs_entry md_new_device = 4643 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4644 4645 static ssize_t 4646 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4647 { 4648 char *end; 4649 unsigned long chunk, end_chunk; 4650 int err; 4651 4652 err = mddev_lock(mddev); 4653 if (err) 4654 return err; 4655 if (!mddev->bitmap) 4656 goto out; 4657 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4658 while (*buf) { 4659 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4660 if (buf == end) break; 4661 if (*end == '-') { /* range */ 4662 buf = end + 1; 4663 end_chunk = simple_strtoul(buf, &end, 0); 4664 if (buf == end) break; 4665 } 4666 if (*end && !isspace(*end)) break; 4667 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4668 buf = skip_spaces(end); 4669 } 4670 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4671 out: 4672 mddev_unlock(mddev); 4673 return len; 4674 } 4675 4676 static struct md_sysfs_entry md_bitmap = 4677 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4678 4679 static ssize_t 4680 size_show(struct mddev *mddev, char *page) 4681 { 4682 return sprintf(page, "%llu\n", 4683 (unsigned long long)mddev->dev_sectors / 2); 4684 } 4685 4686 static int update_size(struct mddev *mddev, sector_t num_sectors); 4687 4688 static ssize_t 4689 size_store(struct mddev *mddev, const char *buf, size_t len) 4690 { 4691 /* If array is inactive, we can reduce the component size, but 4692 * not increase it (except from 0). 4693 * If array is active, we can try an on-line resize 4694 */ 4695 sector_t sectors; 4696 int err = strict_blocks_to_sectors(buf, §ors); 4697 4698 if (err < 0) 4699 return err; 4700 err = mddev_lock(mddev); 4701 if (err) 4702 return err; 4703 if (mddev->pers) { 4704 err = update_size(mddev, sectors); 4705 if (err == 0) 4706 md_update_sb(mddev, 1); 4707 } else { 4708 if (mddev->dev_sectors == 0 || 4709 mddev->dev_sectors > sectors) 4710 mddev->dev_sectors = sectors; 4711 else 4712 err = -ENOSPC; 4713 } 4714 mddev_unlock(mddev); 4715 return err ? err : len; 4716 } 4717 4718 static struct md_sysfs_entry md_size = 4719 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4720 4721 /* Metadata version. 4722 * This is one of 4723 * 'none' for arrays with no metadata (good luck...) 4724 * 'external' for arrays with externally managed metadata, 4725 * or N.M for internally known formats 4726 */ 4727 static ssize_t 4728 metadata_show(struct mddev *mddev, char *page) 4729 { 4730 if (mddev->persistent) 4731 return sprintf(page, "%d.%d\n", 4732 mddev->major_version, mddev->minor_version); 4733 else if (mddev->external) 4734 return sprintf(page, "external:%s\n", mddev->metadata_type); 4735 else 4736 return sprintf(page, "none\n"); 4737 } 4738 4739 static ssize_t 4740 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4741 { 4742 int major, minor; 4743 char *e; 4744 int err; 4745 /* Changing the details of 'external' metadata is 4746 * always permitted. Otherwise there must be 4747 * no devices attached to the array. 4748 */ 4749 4750 err = mddev_lock(mddev); 4751 if (err) 4752 return err; 4753 err = -EBUSY; 4754 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4755 ; 4756 else if (!list_empty(&mddev->disks)) 4757 goto out_unlock; 4758 4759 err = 0; 4760 if (cmd_match(buf, "none")) { 4761 mddev->persistent = 0; 4762 mddev->external = 0; 4763 mddev->major_version = 0; 4764 mddev->minor_version = 90; 4765 goto out_unlock; 4766 } 4767 if (strncmp(buf, "external:", 9) == 0) { 4768 size_t namelen = len-9; 4769 if (namelen >= sizeof(mddev->metadata_type)) 4770 namelen = sizeof(mddev->metadata_type)-1; 4771 strncpy(mddev->metadata_type, buf+9, namelen); 4772 mddev->metadata_type[namelen] = 0; 4773 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4774 mddev->metadata_type[--namelen] = 0; 4775 mddev->persistent = 0; 4776 mddev->external = 1; 4777 mddev->major_version = 0; 4778 mddev->minor_version = 90; 4779 goto out_unlock; 4780 } 4781 major = simple_strtoul(buf, &e, 10); 4782 err = -EINVAL; 4783 if (e==buf || *e != '.') 4784 goto out_unlock; 4785 buf = e+1; 4786 minor = simple_strtoul(buf, &e, 10); 4787 if (e==buf || (*e && *e != '\n') ) 4788 goto out_unlock; 4789 err = -ENOENT; 4790 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4791 goto out_unlock; 4792 mddev->major_version = major; 4793 mddev->minor_version = minor; 4794 mddev->persistent = 1; 4795 mddev->external = 0; 4796 err = 0; 4797 out_unlock: 4798 mddev_unlock(mddev); 4799 return err ?: len; 4800 } 4801 4802 static struct md_sysfs_entry md_metadata = 4803 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4804 4805 static ssize_t 4806 action_show(struct mddev *mddev, char *page) 4807 { 4808 char *type = "idle"; 4809 unsigned long recovery = mddev->recovery; 4810 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4811 type = "frozen"; 4812 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4813 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4814 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4815 type = "reshape"; 4816 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4817 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4818 type = "resync"; 4819 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4820 type = "check"; 4821 else 4822 type = "repair"; 4823 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4824 type = "recover"; 4825 else if (mddev->reshape_position != MaxSector) 4826 type = "reshape"; 4827 } 4828 return sprintf(page, "%s\n", type); 4829 } 4830 4831 static ssize_t 4832 action_store(struct mddev *mddev, const char *page, size_t len) 4833 { 4834 if (!mddev->pers || !mddev->pers->sync_request) 4835 return -EINVAL; 4836 4837 4838 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4839 if (cmd_match(page, "frozen")) 4840 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4841 else 4842 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4843 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4844 mddev_lock(mddev) == 0) { 4845 if (work_pending(&mddev->del_work)) 4846 flush_workqueue(md_misc_wq); 4847 if (mddev->sync_thread) { 4848 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4849 md_reap_sync_thread(mddev); 4850 } 4851 mddev_unlock(mddev); 4852 } 4853 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4854 return -EBUSY; 4855 else if (cmd_match(page, "resync")) 4856 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4857 else if (cmd_match(page, "recover")) { 4858 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4859 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4860 } else if (cmd_match(page, "reshape")) { 4861 int err; 4862 if (mddev->pers->start_reshape == NULL) 4863 return -EINVAL; 4864 err = mddev_lock(mddev); 4865 if (!err) { 4866 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4867 err = -EBUSY; 4868 else { 4869 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4870 err = mddev->pers->start_reshape(mddev); 4871 } 4872 mddev_unlock(mddev); 4873 } 4874 if (err) 4875 return err; 4876 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4877 } else { 4878 if (cmd_match(page, "check")) 4879 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4880 else if (!cmd_match(page, "repair")) 4881 return -EINVAL; 4882 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4883 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4884 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4885 } 4886 if (mddev->ro == 2) { 4887 /* A write to sync_action is enough to justify 4888 * canceling read-auto mode 4889 */ 4890 mddev->ro = 0; 4891 md_wakeup_thread(mddev->sync_thread); 4892 } 4893 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4894 md_wakeup_thread(mddev->thread); 4895 sysfs_notify_dirent_safe(mddev->sysfs_action); 4896 return len; 4897 } 4898 4899 static struct md_sysfs_entry md_scan_mode = 4900 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4901 4902 static ssize_t 4903 last_sync_action_show(struct mddev *mddev, char *page) 4904 { 4905 return sprintf(page, "%s\n", mddev->last_sync_action); 4906 } 4907 4908 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4909 4910 static ssize_t 4911 mismatch_cnt_show(struct mddev *mddev, char *page) 4912 { 4913 return sprintf(page, "%llu\n", 4914 (unsigned long long) 4915 atomic64_read(&mddev->resync_mismatches)); 4916 } 4917 4918 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4919 4920 static ssize_t 4921 sync_min_show(struct mddev *mddev, char *page) 4922 { 4923 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4924 mddev->sync_speed_min ? "local": "system"); 4925 } 4926 4927 static ssize_t 4928 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4929 { 4930 unsigned int min; 4931 int rv; 4932 4933 if (strncmp(buf, "system", 6)==0) { 4934 min = 0; 4935 } else { 4936 rv = kstrtouint(buf, 10, &min); 4937 if (rv < 0) 4938 return rv; 4939 if (min == 0) 4940 return -EINVAL; 4941 } 4942 mddev->sync_speed_min = min; 4943 return len; 4944 } 4945 4946 static struct md_sysfs_entry md_sync_min = 4947 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4948 4949 static ssize_t 4950 sync_max_show(struct mddev *mddev, char *page) 4951 { 4952 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4953 mddev->sync_speed_max ? "local": "system"); 4954 } 4955 4956 static ssize_t 4957 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4958 { 4959 unsigned int max; 4960 int rv; 4961 4962 if (strncmp(buf, "system", 6)==0) { 4963 max = 0; 4964 } else { 4965 rv = kstrtouint(buf, 10, &max); 4966 if (rv < 0) 4967 return rv; 4968 if (max == 0) 4969 return -EINVAL; 4970 } 4971 mddev->sync_speed_max = max; 4972 return len; 4973 } 4974 4975 static struct md_sysfs_entry md_sync_max = 4976 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4977 4978 static ssize_t 4979 degraded_show(struct mddev *mddev, char *page) 4980 { 4981 return sprintf(page, "%d\n", mddev->degraded); 4982 } 4983 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4984 4985 static ssize_t 4986 sync_force_parallel_show(struct mddev *mddev, char *page) 4987 { 4988 return sprintf(page, "%d\n", mddev->parallel_resync); 4989 } 4990 4991 static ssize_t 4992 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4993 { 4994 long n; 4995 4996 if (kstrtol(buf, 10, &n)) 4997 return -EINVAL; 4998 4999 if (n != 0 && n != 1) 5000 return -EINVAL; 5001 5002 mddev->parallel_resync = n; 5003 5004 if (mddev->sync_thread) 5005 wake_up(&resync_wait); 5006 5007 return len; 5008 } 5009 5010 /* force parallel resync, even with shared block devices */ 5011 static struct md_sysfs_entry md_sync_force_parallel = 5012 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5013 sync_force_parallel_show, sync_force_parallel_store); 5014 5015 static ssize_t 5016 sync_speed_show(struct mddev *mddev, char *page) 5017 { 5018 unsigned long resync, dt, db; 5019 if (mddev->curr_resync == 0) 5020 return sprintf(page, "none\n"); 5021 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5022 dt = (jiffies - mddev->resync_mark) / HZ; 5023 if (!dt) dt++; 5024 db = resync - mddev->resync_mark_cnt; 5025 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5026 } 5027 5028 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5029 5030 static ssize_t 5031 sync_completed_show(struct mddev *mddev, char *page) 5032 { 5033 unsigned long long max_sectors, resync; 5034 5035 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5036 return sprintf(page, "none\n"); 5037 5038 if (mddev->curr_resync == 1 || 5039 mddev->curr_resync == 2) 5040 return sprintf(page, "delayed\n"); 5041 5042 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5043 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5044 max_sectors = mddev->resync_max_sectors; 5045 else 5046 max_sectors = mddev->dev_sectors; 5047 5048 resync = mddev->curr_resync_completed; 5049 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5050 } 5051 5052 static struct md_sysfs_entry md_sync_completed = 5053 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5054 5055 static ssize_t 5056 min_sync_show(struct mddev *mddev, char *page) 5057 { 5058 return sprintf(page, "%llu\n", 5059 (unsigned long long)mddev->resync_min); 5060 } 5061 static ssize_t 5062 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5063 { 5064 unsigned long long min; 5065 int err; 5066 5067 if (kstrtoull(buf, 10, &min)) 5068 return -EINVAL; 5069 5070 spin_lock(&mddev->lock); 5071 err = -EINVAL; 5072 if (min > mddev->resync_max) 5073 goto out_unlock; 5074 5075 err = -EBUSY; 5076 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5077 goto out_unlock; 5078 5079 /* Round down to multiple of 4K for safety */ 5080 mddev->resync_min = round_down(min, 8); 5081 err = 0; 5082 5083 out_unlock: 5084 spin_unlock(&mddev->lock); 5085 return err ?: len; 5086 } 5087 5088 static struct md_sysfs_entry md_min_sync = 5089 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5090 5091 static ssize_t 5092 max_sync_show(struct mddev *mddev, char *page) 5093 { 5094 if (mddev->resync_max == MaxSector) 5095 return sprintf(page, "max\n"); 5096 else 5097 return sprintf(page, "%llu\n", 5098 (unsigned long long)mddev->resync_max); 5099 } 5100 static ssize_t 5101 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5102 { 5103 int err; 5104 spin_lock(&mddev->lock); 5105 if (strncmp(buf, "max", 3) == 0) 5106 mddev->resync_max = MaxSector; 5107 else { 5108 unsigned long long max; 5109 int chunk; 5110 5111 err = -EINVAL; 5112 if (kstrtoull(buf, 10, &max)) 5113 goto out_unlock; 5114 if (max < mddev->resync_min) 5115 goto out_unlock; 5116 5117 err = -EBUSY; 5118 if (max < mddev->resync_max && 5119 mddev->ro == 0 && 5120 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5121 goto out_unlock; 5122 5123 /* Must be a multiple of chunk_size */ 5124 chunk = mddev->chunk_sectors; 5125 if (chunk) { 5126 sector_t temp = max; 5127 5128 err = -EINVAL; 5129 if (sector_div(temp, chunk)) 5130 goto out_unlock; 5131 } 5132 mddev->resync_max = max; 5133 } 5134 wake_up(&mddev->recovery_wait); 5135 err = 0; 5136 out_unlock: 5137 spin_unlock(&mddev->lock); 5138 return err ?: len; 5139 } 5140 5141 static struct md_sysfs_entry md_max_sync = 5142 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5143 5144 static ssize_t 5145 suspend_lo_show(struct mddev *mddev, char *page) 5146 { 5147 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5148 } 5149 5150 static ssize_t 5151 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5152 { 5153 unsigned long long new; 5154 int err; 5155 5156 err = kstrtoull(buf, 10, &new); 5157 if (err < 0) 5158 return err; 5159 if (new != (sector_t)new) 5160 return -EINVAL; 5161 5162 err = mddev_lock(mddev); 5163 if (err) 5164 return err; 5165 err = -EINVAL; 5166 if (mddev->pers == NULL || 5167 mddev->pers->quiesce == NULL) 5168 goto unlock; 5169 mddev_suspend(mddev); 5170 mddev->suspend_lo = new; 5171 mddev_resume(mddev); 5172 5173 err = 0; 5174 unlock: 5175 mddev_unlock(mddev); 5176 return err ?: len; 5177 } 5178 static struct md_sysfs_entry md_suspend_lo = 5179 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5180 5181 static ssize_t 5182 suspend_hi_show(struct mddev *mddev, char *page) 5183 { 5184 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5185 } 5186 5187 static ssize_t 5188 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5189 { 5190 unsigned long long new; 5191 int err; 5192 5193 err = kstrtoull(buf, 10, &new); 5194 if (err < 0) 5195 return err; 5196 if (new != (sector_t)new) 5197 return -EINVAL; 5198 5199 err = mddev_lock(mddev); 5200 if (err) 5201 return err; 5202 err = -EINVAL; 5203 if (mddev->pers == NULL) 5204 goto unlock; 5205 5206 mddev_suspend(mddev); 5207 mddev->suspend_hi = new; 5208 mddev_resume(mddev); 5209 5210 err = 0; 5211 unlock: 5212 mddev_unlock(mddev); 5213 return err ?: len; 5214 } 5215 static struct md_sysfs_entry md_suspend_hi = 5216 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5217 5218 static ssize_t 5219 reshape_position_show(struct mddev *mddev, char *page) 5220 { 5221 if (mddev->reshape_position != MaxSector) 5222 return sprintf(page, "%llu\n", 5223 (unsigned long long)mddev->reshape_position); 5224 strcpy(page, "none\n"); 5225 return 5; 5226 } 5227 5228 static ssize_t 5229 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5230 { 5231 struct md_rdev *rdev; 5232 unsigned long long new; 5233 int err; 5234 5235 err = kstrtoull(buf, 10, &new); 5236 if (err < 0) 5237 return err; 5238 if (new != (sector_t)new) 5239 return -EINVAL; 5240 err = mddev_lock(mddev); 5241 if (err) 5242 return err; 5243 err = -EBUSY; 5244 if (mddev->pers) 5245 goto unlock; 5246 mddev->reshape_position = new; 5247 mddev->delta_disks = 0; 5248 mddev->reshape_backwards = 0; 5249 mddev->new_level = mddev->level; 5250 mddev->new_layout = mddev->layout; 5251 mddev->new_chunk_sectors = mddev->chunk_sectors; 5252 rdev_for_each(rdev, mddev) 5253 rdev->new_data_offset = rdev->data_offset; 5254 err = 0; 5255 unlock: 5256 mddev_unlock(mddev); 5257 return err ?: len; 5258 } 5259 5260 static struct md_sysfs_entry md_reshape_position = 5261 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5262 reshape_position_store); 5263 5264 static ssize_t 5265 reshape_direction_show(struct mddev *mddev, char *page) 5266 { 5267 return sprintf(page, "%s\n", 5268 mddev->reshape_backwards ? "backwards" : "forwards"); 5269 } 5270 5271 static ssize_t 5272 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5273 { 5274 int backwards = 0; 5275 int err; 5276 5277 if (cmd_match(buf, "forwards")) 5278 backwards = 0; 5279 else if (cmd_match(buf, "backwards")) 5280 backwards = 1; 5281 else 5282 return -EINVAL; 5283 if (mddev->reshape_backwards == backwards) 5284 return len; 5285 5286 err = mddev_lock(mddev); 5287 if (err) 5288 return err; 5289 /* check if we are allowed to change */ 5290 if (mddev->delta_disks) 5291 err = -EBUSY; 5292 else if (mddev->persistent && 5293 mddev->major_version == 0) 5294 err = -EINVAL; 5295 else 5296 mddev->reshape_backwards = backwards; 5297 mddev_unlock(mddev); 5298 return err ?: len; 5299 } 5300 5301 static struct md_sysfs_entry md_reshape_direction = 5302 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5303 reshape_direction_store); 5304 5305 static ssize_t 5306 array_size_show(struct mddev *mddev, char *page) 5307 { 5308 if (mddev->external_size) 5309 return sprintf(page, "%llu\n", 5310 (unsigned long long)mddev->array_sectors/2); 5311 else 5312 return sprintf(page, "default\n"); 5313 } 5314 5315 static ssize_t 5316 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5317 { 5318 sector_t sectors; 5319 int err; 5320 5321 err = mddev_lock(mddev); 5322 if (err) 5323 return err; 5324 5325 /* cluster raid doesn't support change array_sectors */ 5326 if (mddev_is_clustered(mddev)) { 5327 mddev_unlock(mddev); 5328 return -EINVAL; 5329 } 5330 5331 if (strncmp(buf, "default", 7) == 0) { 5332 if (mddev->pers) 5333 sectors = mddev->pers->size(mddev, 0, 0); 5334 else 5335 sectors = mddev->array_sectors; 5336 5337 mddev->external_size = 0; 5338 } else { 5339 if (strict_blocks_to_sectors(buf, §ors) < 0) 5340 err = -EINVAL; 5341 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5342 err = -E2BIG; 5343 else 5344 mddev->external_size = 1; 5345 } 5346 5347 if (!err) { 5348 mddev->array_sectors = sectors; 5349 if (mddev->pers) 5350 set_capacity_and_notify(mddev->gendisk, 5351 mddev->array_sectors); 5352 } 5353 mddev_unlock(mddev); 5354 return err ?: len; 5355 } 5356 5357 static struct md_sysfs_entry md_array_size = 5358 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5359 array_size_store); 5360 5361 static ssize_t 5362 consistency_policy_show(struct mddev *mddev, char *page) 5363 { 5364 int ret; 5365 5366 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5367 ret = sprintf(page, "journal\n"); 5368 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5369 ret = sprintf(page, "ppl\n"); 5370 } else if (mddev->bitmap) { 5371 ret = sprintf(page, "bitmap\n"); 5372 } else if (mddev->pers) { 5373 if (mddev->pers->sync_request) 5374 ret = sprintf(page, "resync\n"); 5375 else 5376 ret = sprintf(page, "none\n"); 5377 } else { 5378 ret = sprintf(page, "unknown\n"); 5379 } 5380 5381 return ret; 5382 } 5383 5384 static ssize_t 5385 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5386 { 5387 int err = 0; 5388 5389 if (mddev->pers) { 5390 if (mddev->pers->change_consistency_policy) 5391 err = mddev->pers->change_consistency_policy(mddev, buf); 5392 else 5393 err = -EBUSY; 5394 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5395 set_bit(MD_HAS_PPL, &mddev->flags); 5396 } else { 5397 err = -EINVAL; 5398 } 5399 5400 return err ? err : len; 5401 } 5402 5403 static struct md_sysfs_entry md_consistency_policy = 5404 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5405 consistency_policy_store); 5406 5407 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5408 { 5409 return sprintf(page, "%d\n", mddev->fail_last_dev); 5410 } 5411 5412 /* 5413 * Setting fail_last_dev to true to allow last device to be forcibly removed 5414 * from RAID1/RAID10. 5415 */ 5416 static ssize_t 5417 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5418 { 5419 int ret; 5420 bool value; 5421 5422 ret = kstrtobool(buf, &value); 5423 if (ret) 5424 return ret; 5425 5426 if (value != mddev->fail_last_dev) 5427 mddev->fail_last_dev = value; 5428 5429 return len; 5430 } 5431 static struct md_sysfs_entry md_fail_last_dev = 5432 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5433 fail_last_dev_store); 5434 5435 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5436 { 5437 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5438 return sprintf(page, "n/a\n"); 5439 else 5440 return sprintf(page, "%d\n", mddev->serialize_policy); 5441 } 5442 5443 /* 5444 * Setting serialize_policy to true to enforce write IO is not reordered 5445 * for raid1. 5446 */ 5447 static ssize_t 5448 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5449 { 5450 int err; 5451 bool value; 5452 5453 err = kstrtobool(buf, &value); 5454 if (err) 5455 return err; 5456 5457 if (value == mddev->serialize_policy) 5458 return len; 5459 5460 err = mddev_lock(mddev); 5461 if (err) 5462 return err; 5463 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5464 pr_err("md: serialize_policy is only effective for raid1\n"); 5465 err = -EINVAL; 5466 goto unlock; 5467 } 5468 5469 mddev_suspend(mddev); 5470 if (value) 5471 mddev_create_serial_pool(mddev, NULL, true); 5472 else 5473 mddev_destroy_serial_pool(mddev, NULL, true); 5474 mddev->serialize_policy = value; 5475 mddev_resume(mddev); 5476 unlock: 5477 mddev_unlock(mddev); 5478 return err ?: len; 5479 } 5480 5481 static struct md_sysfs_entry md_serialize_policy = 5482 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5483 serialize_policy_store); 5484 5485 5486 static struct attribute *md_default_attrs[] = { 5487 &md_level.attr, 5488 &md_layout.attr, 5489 &md_raid_disks.attr, 5490 &md_uuid.attr, 5491 &md_chunk_size.attr, 5492 &md_size.attr, 5493 &md_resync_start.attr, 5494 &md_metadata.attr, 5495 &md_new_device.attr, 5496 &md_safe_delay.attr, 5497 &md_array_state.attr, 5498 &md_reshape_position.attr, 5499 &md_reshape_direction.attr, 5500 &md_array_size.attr, 5501 &max_corr_read_errors.attr, 5502 &md_consistency_policy.attr, 5503 &md_fail_last_dev.attr, 5504 &md_serialize_policy.attr, 5505 NULL, 5506 }; 5507 5508 static struct attribute *md_redundancy_attrs[] = { 5509 &md_scan_mode.attr, 5510 &md_last_scan_mode.attr, 5511 &md_mismatches.attr, 5512 &md_sync_min.attr, 5513 &md_sync_max.attr, 5514 &md_sync_speed.attr, 5515 &md_sync_force_parallel.attr, 5516 &md_sync_completed.attr, 5517 &md_min_sync.attr, 5518 &md_max_sync.attr, 5519 &md_suspend_lo.attr, 5520 &md_suspend_hi.attr, 5521 &md_bitmap.attr, 5522 &md_degraded.attr, 5523 NULL, 5524 }; 5525 static struct attribute_group md_redundancy_group = { 5526 .name = NULL, 5527 .attrs = md_redundancy_attrs, 5528 }; 5529 5530 static ssize_t 5531 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5532 { 5533 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5534 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5535 ssize_t rv; 5536 5537 if (!entry->show) 5538 return -EIO; 5539 spin_lock(&all_mddevs_lock); 5540 if (list_empty(&mddev->all_mddevs)) { 5541 spin_unlock(&all_mddevs_lock); 5542 return -EBUSY; 5543 } 5544 mddev_get(mddev); 5545 spin_unlock(&all_mddevs_lock); 5546 5547 rv = entry->show(mddev, page); 5548 mddev_put(mddev); 5549 return rv; 5550 } 5551 5552 static ssize_t 5553 md_attr_store(struct kobject *kobj, struct attribute *attr, 5554 const char *page, size_t length) 5555 { 5556 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5557 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5558 ssize_t rv; 5559 5560 if (!entry->store) 5561 return -EIO; 5562 if (!capable(CAP_SYS_ADMIN)) 5563 return -EACCES; 5564 spin_lock(&all_mddevs_lock); 5565 if (list_empty(&mddev->all_mddevs)) { 5566 spin_unlock(&all_mddevs_lock); 5567 return -EBUSY; 5568 } 5569 mddev_get(mddev); 5570 spin_unlock(&all_mddevs_lock); 5571 rv = entry->store(mddev, page, length); 5572 mddev_put(mddev); 5573 return rv; 5574 } 5575 5576 static void md_free(struct kobject *ko) 5577 { 5578 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5579 5580 if (mddev->sysfs_state) 5581 sysfs_put(mddev->sysfs_state); 5582 if (mddev->sysfs_level) 5583 sysfs_put(mddev->sysfs_level); 5584 5585 if (mddev->gendisk) 5586 del_gendisk(mddev->gendisk); 5587 if (mddev->queue) 5588 blk_cleanup_queue(mddev->queue); 5589 if (mddev->gendisk) 5590 put_disk(mddev->gendisk); 5591 percpu_ref_exit(&mddev->writes_pending); 5592 5593 bioset_exit(&mddev->bio_set); 5594 bioset_exit(&mddev->sync_set); 5595 mempool_exit(&mddev->md_io_pool); 5596 kfree(mddev); 5597 } 5598 5599 static const struct sysfs_ops md_sysfs_ops = { 5600 .show = md_attr_show, 5601 .store = md_attr_store, 5602 }; 5603 static struct kobj_type md_ktype = { 5604 .release = md_free, 5605 .sysfs_ops = &md_sysfs_ops, 5606 .default_attrs = md_default_attrs, 5607 }; 5608 5609 int mdp_major = 0; 5610 5611 static void mddev_delayed_delete(struct work_struct *ws) 5612 { 5613 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5614 5615 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5616 kobject_del(&mddev->kobj); 5617 kobject_put(&mddev->kobj); 5618 } 5619 5620 static void no_op(struct percpu_ref *r) {} 5621 5622 int mddev_init_writes_pending(struct mddev *mddev) 5623 { 5624 if (mddev->writes_pending.percpu_count_ptr) 5625 return 0; 5626 if (percpu_ref_init(&mddev->writes_pending, no_op, 5627 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5628 return -ENOMEM; 5629 /* We want to start with the refcount at zero */ 5630 percpu_ref_put(&mddev->writes_pending); 5631 return 0; 5632 } 5633 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5634 5635 static int md_alloc(dev_t dev, char *name) 5636 { 5637 /* 5638 * If dev is zero, name is the name of a device to allocate with 5639 * an arbitrary minor number. It will be "md_???" 5640 * If dev is non-zero it must be a device number with a MAJOR of 5641 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5642 * the device is being created by opening a node in /dev. 5643 * If "name" is not NULL, the device is being created by 5644 * writing to /sys/module/md_mod/parameters/new_array. 5645 */ 5646 static DEFINE_MUTEX(disks_mutex); 5647 struct mddev *mddev = mddev_find(dev); 5648 struct gendisk *disk; 5649 int partitioned; 5650 int shift; 5651 int unit; 5652 int error; 5653 5654 if (!mddev) 5655 return -ENODEV; 5656 5657 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5658 shift = partitioned ? MdpMinorShift : 0; 5659 unit = MINOR(mddev->unit) >> shift; 5660 5661 /* wait for any previous instance of this device to be 5662 * completely removed (mddev_delayed_delete). 5663 */ 5664 flush_workqueue(md_misc_wq); 5665 5666 mutex_lock(&disks_mutex); 5667 error = -EEXIST; 5668 if (mddev->gendisk) 5669 goto abort; 5670 5671 if (name && !dev) { 5672 /* Need to ensure that 'name' is not a duplicate. 5673 */ 5674 struct mddev *mddev2; 5675 spin_lock(&all_mddevs_lock); 5676 5677 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5678 if (mddev2->gendisk && 5679 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5680 spin_unlock(&all_mddevs_lock); 5681 goto abort; 5682 } 5683 spin_unlock(&all_mddevs_lock); 5684 } 5685 if (name && dev) 5686 /* 5687 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5688 */ 5689 mddev->hold_active = UNTIL_STOP; 5690 5691 error = mempool_init_kmalloc_pool(&mddev->md_io_pool, BIO_POOL_SIZE, 5692 sizeof(struct md_io)); 5693 if (error) 5694 goto abort; 5695 5696 error = -ENOMEM; 5697 mddev->queue = blk_alloc_queue(NUMA_NO_NODE); 5698 if (!mddev->queue) 5699 goto abort; 5700 5701 blk_set_stacking_limits(&mddev->queue->limits); 5702 5703 disk = alloc_disk(1 << shift); 5704 if (!disk) { 5705 blk_cleanup_queue(mddev->queue); 5706 mddev->queue = NULL; 5707 goto abort; 5708 } 5709 disk->major = MAJOR(mddev->unit); 5710 disk->first_minor = unit << shift; 5711 if (name) 5712 strcpy(disk->disk_name, name); 5713 else if (partitioned) 5714 sprintf(disk->disk_name, "md_d%d", unit); 5715 else 5716 sprintf(disk->disk_name, "md%d", unit); 5717 disk->fops = &md_fops; 5718 disk->private_data = mddev; 5719 disk->queue = mddev->queue; 5720 blk_queue_write_cache(mddev->queue, true, true); 5721 /* Allow extended partitions. This makes the 5722 * 'mdp' device redundant, but we can't really 5723 * remove it now. 5724 */ 5725 disk->flags |= GENHD_FL_EXT_DEVT; 5726 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5727 mddev->gendisk = disk; 5728 /* As soon as we call add_disk(), another thread could get 5729 * through to md_open, so make sure it doesn't get too far 5730 */ 5731 mutex_lock(&mddev->open_mutex); 5732 add_disk(disk); 5733 5734 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5735 if (error) { 5736 /* This isn't possible, but as kobject_init_and_add is marked 5737 * __must_check, we must do something with the result 5738 */ 5739 pr_debug("md: cannot register %s/md - name in use\n", 5740 disk->disk_name); 5741 error = 0; 5742 } 5743 if (mddev->kobj.sd && 5744 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5745 pr_debug("pointless warning\n"); 5746 mutex_unlock(&mddev->open_mutex); 5747 abort: 5748 mutex_unlock(&disks_mutex); 5749 if (!error && mddev->kobj.sd) { 5750 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5751 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5752 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5753 } 5754 mddev_put(mddev); 5755 return error; 5756 } 5757 5758 static void md_probe(dev_t dev) 5759 { 5760 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5761 return; 5762 if (create_on_open) 5763 md_alloc(dev, NULL); 5764 } 5765 5766 static int add_named_array(const char *val, const struct kernel_param *kp) 5767 { 5768 /* 5769 * val must be "md_*" or "mdNNN". 5770 * For "md_*" we allocate an array with a large free minor number, and 5771 * set the name to val. val must not already be an active name. 5772 * For "mdNNN" we allocate an array with the minor number NNN 5773 * which must not already be in use. 5774 */ 5775 int len = strlen(val); 5776 char buf[DISK_NAME_LEN]; 5777 unsigned long devnum; 5778 5779 while (len && val[len-1] == '\n') 5780 len--; 5781 if (len >= DISK_NAME_LEN) 5782 return -E2BIG; 5783 strlcpy(buf, val, len+1); 5784 if (strncmp(buf, "md_", 3) == 0) 5785 return md_alloc(0, buf); 5786 if (strncmp(buf, "md", 2) == 0 && 5787 isdigit(buf[2]) && 5788 kstrtoul(buf+2, 10, &devnum) == 0 && 5789 devnum <= MINORMASK) 5790 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5791 5792 return -EINVAL; 5793 } 5794 5795 static void md_safemode_timeout(struct timer_list *t) 5796 { 5797 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5798 5799 mddev->safemode = 1; 5800 if (mddev->external) 5801 sysfs_notify_dirent_safe(mddev->sysfs_state); 5802 5803 md_wakeup_thread(mddev->thread); 5804 } 5805 5806 static int start_dirty_degraded; 5807 5808 int md_run(struct mddev *mddev) 5809 { 5810 int err; 5811 struct md_rdev *rdev; 5812 struct md_personality *pers; 5813 5814 if (list_empty(&mddev->disks)) 5815 /* cannot run an array with no devices.. */ 5816 return -EINVAL; 5817 5818 if (mddev->pers) 5819 return -EBUSY; 5820 /* Cannot run until previous stop completes properly */ 5821 if (mddev->sysfs_active) 5822 return -EBUSY; 5823 5824 /* 5825 * Analyze all RAID superblock(s) 5826 */ 5827 if (!mddev->raid_disks) { 5828 if (!mddev->persistent) 5829 return -EINVAL; 5830 err = analyze_sbs(mddev); 5831 if (err) 5832 return -EINVAL; 5833 } 5834 5835 if (mddev->level != LEVEL_NONE) 5836 request_module("md-level-%d", mddev->level); 5837 else if (mddev->clevel[0]) 5838 request_module("md-%s", mddev->clevel); 5839 5840 /* 5841 * Drop all container device buffers, from now on 5842 * the only valid external interface is through the md 5843 * device. 5844 */ 5845 mddev->has_superblocks = false; 5846 rdev_for_each(rdev, mddev) { 5847 if (test_bit(Faulty, &rdev->flags)) 5848 continue; 5849 sync_blockdev(rdev->bdev); 5850 invalidate_bdev(rdev->bdev); 5851 if (mddev->ro != 1 && rdev_read_only(rdev)) { 5852 mddev->ro = 1; 5853 if (mddev->gendisk) 5854 set_disk_ro(mddev->gendisk, 1); 5855 } 5856 5857 if (rdev->sb_page) 5858 mddev->has_superblocks = true; 5859 5860 /* perform some consistency tests on the device. 5861 * We don't want the data to overlap the metadata, 5862 * Internal Bitmap issues have been handled elsewhere. 5863 */ 5864 if (rdev->meta_bdev) { 5865 /* Nothing to check */; 5866 } else if (rdev->data_offset < rdev->sb_start) { 5867 if (mddev->dev_sectors && 5868 rdev->data_offset + mddev->dev_sectors 5869 > rdev->sb_start) { 5870 pr_warn("md: %s: data overlaps metadata\n", 5871 mdname(mddev)); 5872 return -EINVAL; 5873 } 5874 } else { 5875 if (rdev->sb_start + rdev->sb_size/512 5876 > rdev->data_offset) { 5877 pr_warn("md: %s: metadata overlaps data\n", 5878 mdname(mddev)); 5879 return -EINVAL; 5880 } 5881 } 5882 sysfs_notify_dirent_safe(rdev->sysfs_state); 5883 } 5884 5885 if (!bioset_initialized(&mddev->bio_set)) { 5886 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5887 if (err) 5888 return err; 5889 } 5890 if (!bioset_initialized(&mddev->sync_set)) { 5891 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5892 if (err) 5893 return err; 5894 } 5895 5896 spin_lock(&pers_lock); 5897 pers = find_pers(mddev->level, mddev->clevel); 5898 if (!pers || !try_module_get(pers->owner)) { 5899 spin_unlock(&pers_lock); 5900 if (mddev->level != LEVEL_NONE) 5901 pr_warn("md: personality for level %d is not loaded!\n", 5902 mddev->level); 5903 else 5904 pr_warn("md: personality for level %s is not loaded!\n", 5905 mddev->clevel); 5906 err = -EINVAL; 5907 goto abort; 5908 } 5909 spin_unlock(&pers_lock); 5910 if (mddev->level != pers->level) { 5911 mddev->level = pers->level; 5912 mddev->new_level = pers->level; 5913 } 5914 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5915 5916 if (mddev->reshape_position != MaxSector && 5917 pers->start_reshape == NULL) { 5918 /* This personality cannot handle reshaping... */ 5919 module_put(pers->owner); 5920 err = -EINVAL; 5921 goto abort; 5922 } 5923 5924 if (pers->sync_request) { 5925 /* Warn if this is a potentially silly 5926 * configuration. 5927 */ 5928 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5929 struct md_rdev *rdev2; 5930 int warned = 0; 5931 5932 rdev_for_each(rdev, mddev) 5933 rdev_for_each(rdev2, mddev) { 5934 if (rdev < rdev2 && 5935 rdev->bdev->bd_disk == 5936 rdev2->bdev->bd_disk) { 5937 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5938 mdname(mddev), 5939 bdevname(rdev->bdev,b), 5940 bdevname(rdev2->bdev,b2)); 5941 warned = 1; 5942 } 5943 } 5944 5945 if (warned) 5946 pr_warn("True protection against single-disk failure might be compromised.\n"); 5947 } 5948 5949 mddev->recovery = 0; 5950 /* may be over-ridden by personality */ 5951 mddev->resync_max_sectors = mddev->dev_sectors; 5952 5953 mddev->ok_start_degraded = start_dirty_degraded; 5954 5955 if (start_readonly && mddev->ro == 0) 5956 mddev->ro = 2; /* read-only, but switch on first write */ 5957 5958 err = pers->run(mddev); 5959 if (err) 5960 pr_warn("md: pers->run() failed ...\n"); 5961 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5962 WARN_ONCE(!mddev->external_size, 5963 "%s: default size too small, but 'external_size' not in effect?\n", 5964 __func__); 5965 pr_warn("md: invalid array_size %llu > default size %llu\n", 5966 (unsigned long long)mddev->array_sectors / 2, 5967 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5968 err = -EINVAL; 5969 } 5970 if (err == 0 && pers->sync_request && 5971 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5972 struct bitmap *bitmap; 5973 5974 bitmap = md_bitmap_create(mddev, -1); 5975 if (IS_ERR(bitmap)) { 5976 err = PTR_ERR(bitmap); 5977 pr_warn("%s: failed to create bitmap (%d)\n", 5978 mdname(mddev), err); 5979 } else 5980 mddev->bitmap = bitmap; 5981 5982 } 5983 if (err) 5984 goto bitmap_abort; 5985 5986 if (mddev->bitmap_info.max_write_behind > 0) { 5987 bool create_pool = false; 5988 5989 rdev_for_each(rdev, mddev) { 5990 if (test_bit(WriteMostly, &rdev->flags) && 5991 rdev_init_serial(rdev)) 5992 create_pool = true; 5993 } 5994 if (create_pool && mddev->serial_info_pool == NULL) { 5995 mddev->serial_info_pool = 5996 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5997 sizeof(struct serial_info)); 5998 if (!mddev->serial_info_pool) { 5999 err = -ENOMEM; 6000 goto bitmap_abort; 6001 } 6002 } 6003 } 6004 6005 if (mddev->queue) { 6006 bool nonrot = true; 6007 6008 rdev_for_each(rdev, mddev) { 6009 if (rdev->raid_disk >= 0 && 6010 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6011 nonrot = false; 6012 break; 6013 } 6014 } 6015 if (mddev->degraded) 6016 nonrot = false; 6017 if (nonrot) 6018 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6019 else 6020 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6021 } 6022 if (pers->sync_request) { 6023 if (mddev->kobj.sd && 6024 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6025 pr_warn("md: cannot register extra attributes for %s\n", 6026 mdname(mddev)); 6027 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6028 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6029 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6030 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6031 mddev->ro = 0; 6032 6033 atomic_set(&mddev->max_corr_read_errors, 6034 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6035 mddev->safemode = 0; 6036 if (mddev_is_clustered(mddev)) 6037 mddev->safemode_delay = 0; 6038 else 6039 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6040 mddev->in_sync = 1; 6041 smp_wmb(); 6042 spin_lock(&mddev->lock); 6043 mddev->pers = pers; 6044 spin_unlock(&mddev->lock); 6045 rdev_for_each(rdev, mddev) 6046 if (rdev->raid_disk >= 0) 6047 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6048 6049 if (mddev->degraded && !mddev->ro) 6050 /* This ensures that recovering status is reported immediately 6051 * via sysfs - until a lack of spares is confirmed. 6052 */ 6053 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6054 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6055 6056 if (mddev->sb_flags) 6057 md_update_sb(mddev, 0); 6058 6059 md_new_event(mddev); 6060 return 0; 6061 6062 bitmap_abort: 6063 mddev_detach(mddev); 6064 if (mddev->private) 6065 pers->free(mddev, mddev->private); 6066 mddev->private = NULL; 6067 module_put(pers->owner); 6068 md_bitmap_destroy(mddev); 6069 abort: 6070 bioset_exit(&mddev->bio_set); 6071 bioset_exit(&mddev->sync_set); 6072 return err; 6073 } 6074 EXPORT_SYMBOL_GPL(md_run); 6075 6076 int do_md_run(struct mddev *mddev) 6077 { 6078 int err; 6079 6080 set_bit(MD_NOT_READY, &mddev->flags); 6081 err = md_run(mddev); 6082 if (err) 6083 goto out; 6084 err = md_bitmap_load(mddev); 6085 if (err) { 6086 md_bitmap_destroy(mddev); 6087 goto out; 6088 } 6089 6090 if (mddev_is_clustered(mddev)) 6091 md_allow_write(mddev); 6092 6093 /* run start up tasks that require md_thread */ 6094 md_start(mddev); 6095 6096 md_wakeup_thread(mddev->thread); 6097 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6098 6099 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6100 clear_bit(MD_NOT_READY, &mddev->flags); 6101 mddev->changed = 1; 6102 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6103 sysfs_notify_dirent_safe(mddev->sysfs_state); 6104 sysfs_notify_dirent_safe(mddev->sysfs_action); 6105 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6106 out: 6107 clear_bit(MD_NOT_READY, &mddev->flags); 6108 return err; 6109 } 6110 6111 int md_start(struct mddev *mddev) 6112 { 6113 int ret = 0; 6114 6115 if (mddev->pers->start) { 6116 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6117 md_wakeup_thread(mddev->thread); 6118 ret = mddev->pers->start(mddev); 6119 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6120 md_wakeup_thread(mddev->sync_thread); 6121 } 6122 return ret; 6123 } 6124 EXPORT_SYMBOL_GPL(md_start); 6125 6126 static int restart_array(struct mddev *mddev) 6127 { 6128 struct gendisk *disk = mddev->gendisk; 6129 struct md_rdev *rdev; 6130 bool has_journal = false; 6131 bool has_readonly = false; 6132 6133 /* Complain if it has no devices */ 6134 if (list_empty(&mddev->disks)) 6135 return -ENXIO; 6136 if (!mddev->pers) 6137 return -EINVAL; 6138 if (!mddev->ro) 6139 return -EBUSY; 6140 6141 rcu_read_lock(); 6142 rdev_for_each_rcu(rdev, mddev) { 6143 if (test_bit(Journal, &rdev->flags) && 6144 !test_bit(Faulty, &rdev->flags)) 6145 has_journal = true; 6146 if (rdev_read_only(rdev)) 6147 has_readonly = true; 6148 } 6149 rcu_read_unlock(); 6150 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6151 /* Don't restart rw with journal missing/faulty */ 6152 return -EINVAL; 6153 if (has_readonly) 6154 return -EROFS; 6155 6156 mddev->safemode = 0; 6157 mddev->ro = 0; 6158 set_disk_ro(disk, 0); 6159 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6160 /* Kick recovery or resync if necessary */ 6161 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6162 md_wakeup_thread(mddev->thread); 6163 md_wakeup_thread(mddev->sync_thread); 6164 sysfs_notify_dirent_safe(mddev->sysfs_state); 6165 return 0; 6166 } 6167 6168 static void md_clean(struct mddev *mddev) 6169 { 6170 mddev->array_sectors = 0; 6171 mddev->external_size = 0; 6172 mddev->dev_sectors = 0; 6173 mddev->raid_disks = 0; 6174 mddev->recovery_cp = 0; 6175 mddev->resync_min = 0; 6176 mddev->resync_max = MaxSector; 6177 mddev->reshape_position = MaxSector; 6178 mddev->external = 0; 6179 mddev->persistent = 0; 6180 mddev->level = LEVEL_NONE; 6181 mddev->clevel[0] = 0; 6182 mddev->flags = 0; 6183 mddev->sb_flags = 0; 6184 mddev->ro = 0; 6185 mddev->metadata_type[0] = 0; 6186 mddev->chunk_sectors = 0; 6187 mddev->ctime = mddev->utime = 0; 6188 mddev->layout = 0; 6189 mddev->max_disks = 0; 6190 mddev->events = 0; 6191 mddev->can_decrease_events = 0; 6192 mddev->delta_disks = 0; 6193 mddev->reshape_backwards = 0; 6194 mddev->new_level = LEVEL_NONE; 6195 mddev->new_layout = 0; 6196 mddev->new_chunk_sectors = 0; 6197 mddev->curr_resync = 0; 6198 atomic64_set(&mddev->resync_mismatches, 0); 6199 mddev->suspend_lo = mddev->suspend_hi = 0; 6200 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6201 mddev->recovery = 0; 6202 mddev->in_sync = 0; 6203 mddev->changed = 0; 6204 mddev->degraded = 0; 6205 mddev->safemode = 0; 6206 mddev->private = NULL; 6207 mddev->cluster_info = NULL; 6208 mddev->bitmap_info.offset = 0; 6209 mddev->bitmap_info.default_offset = 0; 6210 mddev->bitmap_info.default_space = 0; 6211 mddev->bitmap_info.chunksize = 0; 6212 mddev->bitmap_info.daemon_sleep = 0; 6213 mddev->bitmap_info.max_write_behind = 0; 6214 mddev->bitmap_info.nodes = 0; 6215 } 6216 6217 static void __md_stop_writes(struct mddev *mddev) 6218 { 6219 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6220 if (work_pending(&mddev->del_work)) 6221 flush_workqueue(md_misc_wq); 6222 if (mddev->sync_thread) { 6223 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6224 md_reap_sync_thread(mddev); 6225 } 6226 6227 del_timer_sync(&mddev->safemode_timer); 6228 6229 if (mddev->pers && mddev->pers->quiesce) { 6230 mddev->pers->quiesce(mddev, 1); 6231 mddev->pers->quiesce(mddev, 0); 6232 } 6233 md_bitmap_flush(mddev); 6234 6235 if (mddev->ro == 0 && 6236 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6237 mddev->sb_flags)) { 6238 /* mark array as shutdown cleanly */ 6239 if (!mddev_is_clustered(mddev)) 6240 mddev->in_sync = 1; 6241 md_update_sb(mddev, 1); 6242 } 6243 /* disable policy to guarantee rdevs free resources for serialization */ 6244 mddev->serialize_policy = 0; 6245 mddev_destroy_serial_pool(mddev, NULL, true); 6246 } 6247 6248 void md_stop_writes(struct mddev *mddev) 6249 { 6250 mddev_lock_nointr(mddev); 6251 __md_stop_writes(mddev); 6252 mddev_unlock(mddev); 6253 } 6254 EXPORT_SYMBOL_GPL(md_stop_writes); 6255 6256 static void mddev_detach(struct mddev *mddev) 6257 { 6258 md_bitmap_wait_behind_writes(mddev); 6259 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6260 mddev->pers->quiesce(mddev, 1); 6261 mddev->pers->quiesce(mddev, 0); 6262 } 6263 md_unregister_thread(&mddev->thread); 6264 if (mddev->queue) 6265 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6266 } 6267 6268 static void __md_stop(struct mddev *mddev) 6269 { 6270 struct md_personality *pers = mddev->pers; 6271 md_bitmap_destroy(mddev); 6272 mddev_detach(mddev); 6273 /* Ensure ->event_work is done */ 6274 if (mddev->event_work.func) 6275 flush_workqueue(md_misc_wq); 6276 spin_lock(&mddev->lock); 6277 mddev->pers = NULL; 6278 spin_unlock(&mddev->lock); 6279 pers->free(mddev, mddev->private); 6280 mddev->private = NULL; 6281 if (pers->sync_request && mddev->to_remove == NULL) 6282 mddev->to_remove = &md_redundancy_group; 6283 module_put(pers->owner); 6284 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6285 } 6286 6287 void md_stop(struct mddev *mddev) 6288 { 6289 /* stop the array and free an attached data structures. 6290 * This is called from dm-raid 6291 */ 6292 __md_stop(mddev); 6293 bioset_exit(&mddev->bio_set); 6294 bioset_exit(&mddev->sync_set); 6295 } 6296 6297 EXPORT_SYMBOL_GPL(md_stop); 6298 6299 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6300 { 6301 int err = 0; 6302 int did_freeze = 0; 6303 6304 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6305 did_freeze = 1; 6306 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6307 md_wakeup_thread(mddev->thread); 6308 } 6309 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6310 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6311 if (mddev->sync_thread) 6312 /* Thread might be blocked waiting for metadata update 6313 * which will now never happen */ 6314 wake_up_process(mddev->sync_thread->tsk); 6315 6316 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6317 return -EBUSY; 6318 mddev_unlock(mddev); 6319 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6320 &mddev->recovery)); 6321 wait_event(mddev->sb_wait, 6322 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6323 mddev_lock_nointr(mddev); 6324 6325 mutex_lock(&mddev->open_mutex); 6326 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6327 mddev->sync_thread || 6328 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6329 pr_warn("md: %s still in use.\n",mdname(mddev)); 6330 if (did_freeze) { 6331 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6332 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6333 md_wakeup_thread(mddev->thread); 6334 } 6335 err = -EBUSY; 6336 goto out; 6337 } 6338 if (mddev->pers) { 6339 __md_stop_writes(mddev); 6340 6341 err = -ENXIO; 6342 if (mddev->ro==1) 6343 goto out; 6344 mddev->ro = 1; 6345 set_disk_ro(mddev->gendisk, 1); 6346 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6347 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6348 md_wakeup_thread(mddev->thread); 6349 sysfs_notify_dirent_safe(mddev->sysfs_state); 6350 err = 0; 6351 } 6352 out: 6353 mutex_unlock(&mddev->open_mutex); 6354 return err; 6355 } 6356 6357 /* mode: 6358 * 0 - completely stop and dis-assemble array 6359 * 2 - stop but do not disassemble array 6360 */ 6361 static int do_md_stop(struct mddev *mddev, int mode, 6362 struct block_device *bdev) 6363 { 6364 struct gendisk *disk = mddev->gendisk; 6365 struct md_rdev *rdev; 6366 int did_freeze = 0; 6367 6368 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6369 did_freeze = 1; 6370 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6371 md_wakeup_thread(mddev->thread); 6372 } 6373 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6374 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6375 if (mddev->sync_thread) 6376 /* Thread might be blocked waiting for metadata update 6377 * which will now never happen */ 6378 wake_up_process(mddev->sync_thread->tsk); 6379 6380 mddev_unlock(mddev); 6381 wait_event(resync_wait, (mddev->sync_thread == NULL && 6382 !test_bit(MD_RECOVERY_RUNNING, 6383 &mddev->recovery))); 6384 mddev_lock_nointr(mddev); 6385 6386 mutex_lock(&mddev->open_mutex); 6387 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6388 mddev->sysfs_active || 6389 mddev->sync_thread || 6390 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6391 pr_warn("md: %s still in use.\n",mdname(mddev)); 6392 mutex_unlock(&mddev->open_mutex); 6393 if (did_freeze) { 6394 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6395 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6396 md_wakeup_thread(mddev->thread); 6397 } 6398 return -EBUSY; 6399 } 6400 if (mddev->pers) { 6401 if (mddev->ro) 6402 set_disk_ro(disk, 0); 6403 6404 __md_stop_writes(mddev); 6405 __md_stop(mddev); 6406 6407 /* tell userspace to handle 'inactive' */ 6408 sysfs_notify_dirent_safe(mddev->sysfs_state); 6409 6410 rdev_for_each(rdev, mddev) 6411 if (rdev->raid_disk >= 0) 6412 sysfs_unlink_rdev(mddev, rdev); 6413 6414 set_capacity_and_notify(disk, 0); 6415 mutex_unlock(&mddev->open_mutex); 6416 mddev->changed = 1; 6417 6418 if (mddev->ro) 6419 mddev->ro = 0; 6420 } else 6421 mutex_unlock(&mddev->open_mutex); 6422 /* 6423 * Free resources if final stop 6424 */ 6425 if (mode == 0) { 6426 pr_info("md: %s stopped.\n", mdname(mddev)); 6427 6428 if (mddev->bitmap_info.file) { 6429 struct file *f = mddev->bitmap_info.file; 6430 spin_lock(&mddev->lock); 6431 mddev->bitmap_info.file = NULL; 6432 spin_unlock(&mddev->lock); 6433 fput(f); 6434 } 6435 mddev->bitmap_info.offset = 0; 6436 6437 export_array(mddev); 6438 6439 md_clean(mddev); 6440 if (mddev->hold_active == UNTIL_STOP) 6441 mddev->hold_active = 0; 6442 } 6443 md_new_event(mddev); 6444 sysfs_notify_dirent_safe(mddev->sysfs_state); 6445 return 0; 6446 } 6447 6448 #ifndef MODULE 6449 static void autorun_array(struct mddev *mddev) 6450 { 6451 struct md_rdev *rdev; 6452 int err; 6453 6454 if (list_empty(&mddev->disks)) 6455 return; 6456 6457 pr_info("md: running: "); 6458 6459 rdev_for_each(rdev, mddev) { 6460 char b[BDEVNAME_SIZE]; 6461 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6462 } 6463 pr_cont("\n"); 6464 6465 err = do_md_run(mddev); 6466 if (err) { 6467 pr_warn("md: do_md_run() returned %d\n", err); 6468 do_md_stop(mddev, 0, NULL); 6469 } 6470 } 6471 6472 /* 6473 * lets try to run arrays based on all disks that have arrived 6474 * until now. (those are in pending_raid_disks) 6475 * 6476 * the method: pick the first pending disk, collect all disks with 6477 * the same UUID, remove all from the pending list and put them into 6478 * the 'same_array' list. Then order this list based on superblock 6479 * update time (freshest comes first), kick out 'old' disks and 6480 * compare superblocks. If everything's fine then run it. 6481 * 6482 * If "unit" is allocated, then bump its reference count 6483 */ 6484 static void autorun_devices(int part) 6485 { 6486 struct md_rdev *rdev0, *rdev, *tmp; 6487 struct mddev *mddev; 6488 char b[BDEVNAME_SIZE]; 6489 6490 pr_info("md: autorun ...\n"); 6491 while (!list_empty(&pending_raid_disks)) { 6492 int unit; 6493 dev_t dev; 6494 LIST_HEAD(candidates); 6495 rdev0 = list_entry(pending_raid_disks.next, 6496 struct md_rdev, same_set); 6497 6498 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6499 INIT_LIST_HEAD(&candidates); 6500 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6501 if (super_90_load(rdev, rdev0, 0) >= 0) { 6502 pr_debug("md: adding %s ...\n", 6503 bdevname(rdev->bdev,b)); 6504 list_move(&rdev->same_set, &candidates); 6505 } 6506 /* 6507 * now we have a set of devices, with all of them having 6508 * mostly sane superblocks. It's time to allocate the 6509 * mddev. 6510 */ 6511 if (part) { 6512 dev = MKDEV(mdp_major, 6513 rdev0->preferred_minor << MdpMinorShift); 6514 unit = MINOR(dev) >> MdpMinorShift; 6515 } else { 6516 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6517 unit = MINOR(dev); 6518 } 6519 if (rdev0->preferred_minor != unit) { 6520 pr_warn("md: unit number in %s is bad: %d\n", 6521 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6522 break; 6523 } 6524 6525 md_probe(dev); 6526 mddev = mddev_find(dev); 6527 if (!mddev || !mddev->gendisk) { 6528 if (mddev) 6529 mddev_put(mddev); 6530 break; 6531 } 6532 if (mddev_lock(mddev)) 6533 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6534 else if (mddev->raid_disks || mddev->major_version 6535 || !list_empty(&mddev->disks)) { 6536 pr_warn("md: %s already running, cannot run %s\n", 6537 mdname(mddev), bdevname(rdev0->bdev,b)); 6538 mddev_unlock(mddev); 6539 } else { 6540 pr_debug("md: created %s\n", mdname(mddev)); 6541 mddev->persistent = 1; 6542 rdev_for_each_list(rdev, tmp, &candidates) { 6543 list_del_init(&rdev->same_set); 6544 if (bind_rdev_to_array(rdev, mddev)) 6545 export_rdev(rdev); 6546 } 6547 autorun_array(mddev); 6548 mddev_unlock(mddev); 6549 } 6550 /* on success, candidates will be empty, on error 6551 * it won't... 6552 */ 6553 rdev_for_each_list(rdev, tmp, &candidates) { 6554 list_del_init(&rdev->same_set); 6555 export_rdev(rdev); 6556 } 6557 mddev_put(mddev); 6558 } 6559 pr_info("md: ... autorun DONE.\n"); 6560 } 6561 #endif /* !MODULE */ 6562 6563 static int get_version(void __user *arg) 6564 { 6565 mdu_version_t ver; 6566 6567 ver.major = MD_MAJOR_VERSION; 6568 ver.minor = MD_MINOR_VERSION; 6569 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6570 6571 if (copy_to_user(arg, &ver, sizeof(ver))) 6572 return -EFAULT; 6573 6574 return 0; 6575 } 6576 6577 static int get_array_info(struct mddev *mddev, void __user *arg) 6578 { 6579 mdu_array_info_t info; 6580 int nr,working,insync,failed,spare; 6581 struct md_rdev *rdev; 6582 6583 nr = working = insync = failed = spare = 0; 6584 rcu_read_lock(); 6585 rdev_for_each_rcu(rdev, mddev) { 6586 nr++; 6587 if (test_bit(Faulty, &rdev->flags)) 6588 failed++; 6589 else { 6590 working++; 6591 if (test_bit(In_sync, &rdev->flags)) 6592 insync++; 6593 else if (test_bit(Journal, &rdev->flags)) 6594 /* TODO: add journal count to md_u.h */ 6595 ; 6596 else 6597 spare++; 6598 } 6599 } 6600 rcu_read_unlock(); 6601 6602 info.major_version = mddev->major_version; 6603 info.minor_version = mddev->minor_version; 6604 info.patch_version = MD_PATCHLEVEL_VERSION; 6605 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6606 info.level = mddev->level; 6607 info.size = mddev->dev_sectors / 2; 6608 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6609 info.size = -1; 6610 info.nr_disks = nr; 6611 info.raid_disks = mddev->raid_disks; 6612 info.md_minor = mddev->md_minor; 6613 info.not_persistent= !mddev->persistent; 6614 6615 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6616 info.state = 0; 6617 if (mddev->in_sync) 6618 info.state = (1<<MD_SB_CLEAN); 6619 if (mddev->bitmap && mddev->bitmap_info.offset) 6620 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6621 if (mddev_is_clustered(mddev)) 6622 info.state |= (1<<MD_SB_CLUSTERED); 6623 info.active_disks = insync; 6624 info.working_disks = working; 6625 info.failed_disks = failed; 6626 info.spare_disks = spare; 6627 6628 info.layout = mddev->layout; 6629 info.chunk_size = mddev->chunk_sectors << 9; 6630 6631 if (copy_to_user(arg, &info, sizeof(info))) 6632 return -EFAULT; 6633 6634 return 0; 6635 } 6636 6637 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6638 { 6639 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6640 char *ptr; 6641 int err; 6642 6643 file = kzalloc(sizeof(*file), GFP_NOIO); 6644 if (!file) 6645 return -ENOMEM; 6646 6647 err = 0; 6648 spin_lock(&mddev->lock); 6649 /* bitmap enabled */ 6650 if (mddev->bitmap_info.file) { 6651 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6652 sizeof(file->pathname)); 6653 if (IS_ERR(ptr)) 6654 err = PTR_ERR(ptr); 6655 else 6656 memmove(file->pathname, ptr, 6657 sizeof(file->pathname)-(ptr-file->pathname)); 6658 } 6659 spin_unlock(&mddev->lock); 6660 6661 if (err == 0 && 6662 copy_to_user(arg, file, sizeof(*file))) 6663 err = -EFAULT; 6664 6665 kfree(file); 6666 return err; 6667 } 6668 6669 static int get_disk_info(struct mddev *mddev, void __user * arg) 6670 { 6671 mdu_disk_info_t info; 6672 struct md_rdev *rdev; 6673 6674 if (copy_from_user(&info, arg, sizeof(info))) 6675 return -EFAULT; 6676 6677 rcu_read_lock(); 6678 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6679 if (rdev) { 6680 info.major = MAJOR(rdev->bdev->bd_dev); 6681 info.minor = MINOR(rdev->bdev->bd_dev); 6682 info.raid_disk = rdev->raid_disk; 6683 info.state = 0; 6684 if (test_bit(Faulty, &rdev->flags)) 6685 info.state |= (1<<MD_DISK_FAULTY); 6686 else if (test_bit(In_sync, &rdev->flags)) { 6687 info.state |= (1<<MD_DISK_ACTIVE); 6688 info.state |= (1<<MD_DISK_SYNC); 6689 } 6690 if (test_bit(Journal, &rdev->flags)) 6691 info.state |= (1<<MD_DISK_JOURNAL); 6692 if (test_bit(WriteMostly, &rdev->flags)) 6693 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6694 if (test_bit(FailFast, &rdev->flags)) 6695 info.state |= (1<<MD_DISK_FAILFAST); 6696 } else { 6697 info.major = info.minor = 0; 6698 info.raid_disk = -1; 6699 info.state = (1<<MD_DISK_REMOVED); 6700 } 6701 rcu_read_unlock(); 6702 6703 if (copy_to_user(arg, &info, sizeof(info))) 6704 return -EFAULT; 6705 6706 return 0; 6707 } 6708 6709 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6710 { 6711 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6712 struct md_rdev *rdev; 6713 dev_t dev = MKDEV(info->major,info->minor); 6714 6715 if (mddev_is_clustered(mddev) && 6716 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6717 pr_warn("%s: Cannot add to clustered mddev.\n", 6718 mdname(mddev)); 6719 return -EINVAL; 6720 } 6721 6722 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6723 return -EOVERFLOW; 6724 6725 if (!mddev->raid_disks) { 6726 int err; 6727 /* expecting a device which has a superblock */ 6728 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6729 if (IS_ERR(rdev)) { 6730 pr_warn("md: md_import_device returned %ld\n", 6731 PTR_ERR(rdev)); 6732 return PTR_ERR(rdev); 6733 } 6734 if (!list_empty(&mddev->disks)) { 6735 struct md_rdev *rdev0 6736 = list_entry(mddev->disks.next, 6737 struct md_rdev, same_set); 6738 err = super_types[mddev->major_version] 6739 .load_super(rdev, rdev0, mddev->minor_version); 6740 if (err < 0) { 6741 pr_warn("md: %s has different UUID to %s\n", 6742 bdevname(rdev->bdev,b), 6743 bdevname(rdev0->bdev,b2)); 6744 export_rdev(rdev); 6745 return -EINVAL; 6746 } 6747 } 6748 err = bind_rdev_to_array(rdev, mddev); 6749 if (err) 6750 export_rdev(rdev); 6751 return err; 6752 } 6753 6754 /* 6755 * md_add_new_disk can be used once the array is assembled 6756 * to add "hot spares". They must already have a superblock 6757 * written 6758 */ 6759 if (mddev->pers) { 6760 int err; 6761 if (!mddev->pers->hot_add_disk) { 6762 pr_warn("%s: personality does not support diskops!\n", 6763 mdname(mddev)); 6764 return -EINVAL; 6765 } 6766 if (mddev->persistent) 6767 rdev = md_import_device(dev, mddev->major_version, 6768 mddev->minor_version); 6769 else 6770 rdev = md_import_device(dev, -1, -1); 6771 if (IS_ERR(rdev)) { 6772 pr_warn("md: md_import_device returned %ld\n", 6773 PTR_ERR(rdev)); 6774 return PTR_ERR(rdev); 6775 } 6776 /* set saved_raid_disk if appropriate */ 6777 if (!mddev->persistent) { 6778 if (info->state & (1<<MD_DISK_SYNC) && 6779 info->raid_disk < mddev->raid_disks) { 6780 rdev->raid_disk = info->raid_disk; 6781 set_bit(In_sync, &rdev->flags); 6782 clear_bit(Bitmap_sync, &rdev->flags); 6783 } else 6784 rdev->raid_disk = -1; 6785 rdev->saved_raid_disk = rdev->raid_disk; 6786 } else 6787 super_types[mddev->major_version]. 6788 validate_super(mddev, rdev); 6789 if ((info->state & (1<<MD_DISK_SYNC)) && 6790 rdev->raid_disk != info->raid_disk) { 6791 /* This was a hot-add request, but events doesn't 6792 * match, so reject it. 6793 */ 6794 export_rdev(rdev); 6795 return -EINVAL; 6796 } 6797 6798 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6799 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6800 set_bit(WriteMostly, &rdev->flags); 6801 else 6802 clear_bit(WriteMostly, &rdev->flags); 6803 if (info->state & (1<<MD_DISK_FAILFAST)) 6804 set_bit(FailFast, &rdev->flags); 6805 else 6806 clear_bit(FailFast, &rdev->flags); 6807 6808 if (info->state & (1<<MD_DISK_JOURNAL)) { 6809 struct md_rdev *rdev2; 6810 bool has_journal = false; 6811 6812 /* make sure no existing journal disk */ 6813 rdev_for_each(rdev2, mddev) { 6814 if (test_bit(Journal, &rdev2->flags)) { 6815 has_journal = true; 6816 break; 6817 } 6818 } 6819 if (has_journal || mddev->bitmap) { 6820 export_rdev(rdev); 6821 return -EBUSY; 6822 } 6823 set_bit(Journal, &rdev->flags); 6824 } 6825 /* 6826 * check whether the device shows up in other nodes 6827 */ 6828 if (mddev_is_clustered(mddev)) { 6829 if (info->state & (1 << MD_DISK_CANDIDATE)) 6830 set_bit(Candidate, &rdev->flags); 6831 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6832 /* --add initiated by this node */ 6833 err = md_cluster_ops->add_new_disk(mddev, rdev); 6834 if (err) { 6835 export_rdev(rdev); 6836 return err; 6837 } 6838 } 6839 } 6840 6841 rdev->raid_disk = -1; 6842 err = bind_rdev_to_array(rdev, mddev); 6843 6844 if (err) 6845 export_rdev(rdev); 6846 6847 if (mddev_is_clustered(mddev)) { 6848 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6849 if (!err) { 6850 err = md_cluster_ops->new_disk_ack(mddev, 6851 err == 0); 6852 if (err) 6853 md_kick_rdev_from_array(rdev); 6854 } 6855 } else { 6856 if (err) 6857 md_cluster_ops->add_new_disk_cancel(mddev); 6858 else 6859 err = add_bound_rdev(rdev); 6860 } 6861 6862 } else if (!err) 6863 err = add_bound_rdev(rdev); 6864 6865 return err; 6866 } 6867 6868 /* otherwise, md_add_new_disk is only allowed 6869 * for major_version==0 superblocks 6870 */ 6871 if (mddev->major_version != 0) { 6872 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6873 return -EINVAL; 6874 } 6875 6876 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6877 int err; 6878 rdev = md_import_device(dev, -1, 0); 6879 if (IS_ERR(rdev)) { 6880 pr_warn("md: error, md_import_device() returned %ld\n", 6881 PTR_ERR(rdev)); 6882 return PTR_ERR(rdev); 6883 } 6884 rdev->desc_nr = info->number; 6885 if (info->raid_disk < mddev->raid_disks) 6886 rdev->raid_disk = info->raid_disk; 6887 else 6888 rdev->raid_disk = -1; 6889 6890 if (rdev->raid_disk < mddev->raid_disks) 6891 if (info->state & (1<<MD_DISK_SYNC)) 6892 set_bit(In_sync, &rdev->flags); 6893 6894 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6895 set_bit(WriteMostly, &rdev->flags); 6896 if (info->state & (1<<MD_DISK_FAILFAST)) 6897 set_bit(FailFast, &rdev->flags); 6898 6899 if (!mddev->persistent) { 6900 pr_debug("md: nonpersistent superblock ...\n"); 6901 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6902 } else 6903 rdev->sb_start = calc_dev_sboffset(rdev); 6904 rdev->sectors = rdev->sb_start; 6905 6906 err = bind_rdev_to_array(rdev, mddev); 6907 if (err) { 6908 export_rdev(rdev); 6909 return err; 6910 } 6911 } 6912 6913 return 0; 6914 } 6915 6916 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6917 { 6918 char b[BDEVNAME_SIZE]; 6919 struct md_rdev *rdev; 6920 6921 if (!mddev->pers) 6922 return -ENODEV; 6923 6924 rdev = find_rdev(mddev, dev); 6925 if (!rdev) 6926 return -ENXIO; 6927 6928 if (rdev->raid_disk < 0) 6929 goto kick_rdev; 6930 6931 clear_bit(Blocked, &rdev->flags); 6932 remove_and_add_spares(mddev, rdev); 6933 6934 if (rdev->raid_disk >= 0) 6935 goto busy; 6936 6937 kick_rdev: 6938 if (mddev_is_clustered(mddev)) { 6939 if (md_cluster_ops->remove_disk(mddev, rdev)) 6940 goto busy; 6941 } 6942 6943 md_kick_rdev_from_array(rdev); 6944 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6945 if (mddev->thread) 6946 md_wakeup_thread(mddev->thread); 6947 else 6948 md_update_sb(mddev, 1); 6949 md_new_event(mddev); 6950 6951 return 0; 6952 busy: 6953 pr_debug("md: cannot remove active disk %s from %s ...\n", 6954 bdevname(rdev->bdev,b), mdname(mddev)); 6955 return -EBUSY; 6956 } 6957 6958 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6959 { 6960 char b[BDEVNAME_SIZE]; 6961 int err; 6962 struct md_rdev *rdev; 6963 6964 if (!mddev->pers) 6965 return -ENODEV; 6966 6967 if (mddev->major_version != 0) { 6968 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6969 mdname(mddev)); 6970 return -EINVAL; 6971 } 6972 if (!mddev->pers->hot_add_disk) { 6973 pr_warn("%s: personality does not support diskops!\n", 6974 mdname(mddev)); 6975 return -EINVAL; 6976 } 6977 6978 rdev = md_import_device(dev, -1, 0); 6979 if (IS_ERR(rdev)) { 6980 pr_warn("md: error, md_import_device() returned %ld\n", 6981 PTR_ERR(rdev)); 6982 return -EINVAL; 6983 } 6984 6985 if (mddev->persistent) 6986 rdev->sb_start = calc_dev_sboffset(rdev); 6987 else 6988 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6989 6990 rdev->sectors = rdev->sb_start; 6991 6992 if (test_bit(Faulty, &rdev->flags)) { 6993 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6994 bdevname(rdev->bdev,b), mdname(mddev)); 6995 err = -EINVAL; 6996 goto abort_export; 6997 } 6998 6999 clear_bit(In_sync, &rdev->flags); 7000 rdev->desc_nr = -1; 7001 rdev->saved_raid_disk = -1; 7002 err = bind_rdev_to_array(rdev, mddev); 7003 if (err) 7004 goto abort_export; 7005 7006 /* 7007 * The rest should better be atomic, we can have disk failures 7008 * noticed in interrupt contexts ... 7009 */ 7010 7011 rdev->raid_disk = -1; 7012 7013 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7014 if (!mddev->thread) 7015 md_update_sb(mddev, 1); 7016 /* 7017 * Kick recovery, maybe this spare has to be added to the 7018 * array immediately. 7019 */ 7020 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7021 md_wakeup_thread(mddev->thread); 7022 md_new_event(mddev); 7023 return 0; 7024 7025 abort_export: 7026 export_rdev(rdev); 7027 return err; 7028 } 7029 7030 static int set_bitmap_file(struct mddev *mddev, int fd) 7031 { 7032 int err = 0; 7033 7034 if (mddev->pers) { 7035 if (!mddev->pers->quiesce || !mddev->thread) 7036 return -EBUSY; 7037 if (mddev->recovery || mddev->sync_thread) 7038 return -EBUSY; 7039 /* we should be able to change the bitmap.. */ 7040 } 7041 7042 if (fd >= 0) { 7043 struct inode *inode; 7044 struct file *f; 7045 7046 if (mddev->bitmap || mddev->bitmap_info.file) 7047 return -EEXIST; /* cannot add when bitmap is present */ 7048 f = fget(fd); 7049 7050 if (f == NULL) { 7051 pr_warn("%s: error: failed to get bitmap file\n", 7052 mdname(mddev)); 7053 return -EBADF; 7054 } 7055 7056 inode = f->f_mapping->host; 7057 if (!S_ISREG(inode->i_mode)) { 7058 pr_warn("%s: error: bitmap file must be a regular file\n", 7059 mdname(mddev)); 7060 err = -EBADF; 7061 } else if (!(f->f_mode & FMODE_WRITE)) { 7062 pr_warn("%s: error: bitmap file must open for write\n", 7063 mdname(mddev)); 7064 err = -EBADF; 7065 } else if (atomic_read(&inode->i_writecount) != 1) { 7066 pr_warn("%s: error: bitmap file is already in use\n", 7067 mdname(mddev)); 7068 err = -EBUSY; 7069 } 7070 if (err) { 7071 fput(f); 7072 return err; 7073 } 7074 mddev->bitmap_info.file = f; 7075 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7076 } else if (mddev->bitmap == NULL) 7077 return -ENOENT; /* cannot remove what isn't there */ 7078 err = 0; 7079 if (mddev->pers) { 7080 if (fd >= 0) { 7081 struct bitmap *bitmap; 7082 7083 bitmap = md_bitmap_create(mddev, -1); 7084 mddev_suspend(mddev); 7085 if (!IS_ERR(bitmap)) { 7086 mddev->bitmap = bitmap; 7087 err = md_bitmap_load(mddev); 7088 } else 7089 err = PTR_ERR(bitmap); 7090 if (err) { 7091 md_bitmap_destroy(mddev); 7092 fd = -1; 7093 } 7094 mddev_resume(mddev); 7095 } else if (fd < 0) { 7096 mddev_suspend(mddev); 7097 md_bitmap_destroy(mddev); 7098 mddev_resume(mddev); 7099 } 7100 } 7101 if (fd < 0) { 7102 struct file *f = mddev->bitmap_info.file; 7103 if (f) { 7104 spin_lock(&mddev->lock); 7105 mddev->bitmap_info.file = NULL; 7106 spin_unlock(&mddev->lock); 7107 fput(f); 7108 } 7109 } 7110 7111 return err; 7112 } 7113 7114 /* 7115 * md_set_array_info is used two different ways 7116 * The original usage is when creating a new array. 7117 * In this usage, raid_disks is > 0 and it together with 7118 * level, size, not_persistent,layout,chunksize determine the 7119 * shape of the array. 7120 * This will always create an array with a type-0.90.0 superblock. 7121 * The newer usage is when assembling an array. 7122 * In this case raid_disks will be 0, and the major_version field is 7123 * use to determine which style super-blocks are to be found on the devices. 7124 * The minor and patch _version numbers are also kept incase the 7125 * super_block handler wishes to interpret them. 7126 */ 7127 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7128 { 7129 if (info->raid_disks == 0) { 7130 /* just setting version number for superblock loading */ 7131 if (info->major_version < 0 || 7132 info->major_version >= ARRAY_SIZE(super_types) || 7133 super_types[info->major_version].name == NULL) { 7134 /* maybe try to auto-load a module? */ 7135 pr_warn("md: superblock version %d not known\n", 7136 info->major_version); 7137 return -EINVAL; 7138 } 7139 mddev->major_version = info->major_version; 7140 mddev->minor_version = info->minor_version; 7141 mddev->patch_version = info->patch_version; 7142 mddev->persistent = !info->not_persistent; 7143 /* ensure mddev_put doesn't delete this now that there 7144 * is some minimal configuration. 7145 */ 7146 mddev->ctime = ktime_get_real_seconds(); 7147 return 0; 7148 } 7149 mddev->major_version = MD_MAJOR_VERSION; 7150 mddev->minor_version = MD_MINOR_VERSION; 7151 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7152 mddev->ctime = ktime_get_real_seconds(); 7153 7154 mddev->level = info->level; 7155 mddev->clevel[0] = 0; 7156 mddev->dev_sectors = 2 * (sector_t)info->size; 7157 mddev->raid_disks = info->raid_disks; 7158 /* don't set md_minor, it is determined by which /dev/md* was 7159 * openned 7160 */ 7161 if (info->state & (1<<MD_SB_CLEAN)) 7162 mddev->recovery_cp = MaxSector; 7163 else 7164 mddev->recovery_cp = 0; 7165 mddev->persistent = ! info->not_persistent; 7166 mddev->external = 0; 7167 7168 mddev->layout = info->layout; 7169 if (mddev->level == 0) 7170 /* Cannot trust RAID0 layout info here */ 7171 mddev->layout = -1; 7172 mddev->chunk_sectors = info->chunk_size >> 9; 7173 7174 if (mddev->persistent) { 7175 mddev->max_disks = MD_SB_DISKS; 7176 mddev->flags = 0; 7177 mddev->sb_flags = 0; 7178 } 7179 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7180 7181 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7182 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7183 mddev->bitmap_info.offset = 0; 7184 7185 mddev->reshape_position = MaxSector; 7186 7187 /* 7188 * Generate a 128 bit UUID 7189 */ 7190 get_random_bytes(mddev->uuid, 16); 7191 7192 mddev->new_level = mddev->level; 7193 mddev->new_chunk_sectors = mddev->chunk_sectors; 7194 mddev->new_layout = mddev->layout; 7195 mddev->delta_disks = 0; 7196 mddev->reshape_backwards = 0; 7197 7198 return 0; 7199 } 7200 7201 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7202 { 7203 lockdep_assert_held(&mddev->reconfig_mutex); 7204 7205 if (mddev->external_size) 7206 return; 7207 7208 mddev->array_sectors = array_sectors; 7209 } 7210 EXPORT_SYMBOL(md_set_array_sectors); 7211 7212 static int update_size(struct mddev *mddev, sector_t num_sectors) 7213 { 7214 struct md_rdev *rdev; 7215 int rv; 7216 int fit = (num_sectors == 0); 7217 sector_t old_dev_sectors = mddev->dev_sectors; 7218 7219 if (mddev->pers->resize == NULL) 7220 return -EINVAL; 7221 /* The "num_sectors" is the number of sectors of each device that 7222 * is used. This can only make sense for arrays with redundancy. 7223 * linear and raid0 always use whatever space is available. We can only 7224 * consider changing this number if no resync or reconstruction is 7225 * happening, and if the new size is acceptable. It must fit before the 7226 * sb_start or, if that is <data_offset, it must fit before the size 7227 * of each device. If num_sectors is zero, we find the largest size 7228 * that fits. 7229 */ 7230 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7231 mddev->sync_thread) 7232 return -EBUSY; 7233 if (mddev->ro) 7234 return -EROFS; 7235 7236 rdev_for_each(rdev, mddev) { 7237 sector_t avail = rdev->sectors; 7238 7239 if (fit && (num_sectors == 0 || num_sectors > avail)) 7240 num_sectors = avail; 7241 if (avail < num_sectors) 7242 return -ENOSPC; 7243 } 7244 rv = mddev->pers->resize(mddev, num_sectors); 7245 if (!rv) { 7246 if (mddev_is_clustered(mddev)) 7247 md_cluster_ops->update_size(mddev, old_dev_sectors); 7248 else if (mddev->queue) { 7249 set_capacity_and_notify(mddev->gendisk, 7250 mddev->array_sectors); 7251 } 7252 } 7253 return rv; 7254 } 7255 7256 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7257 { 7258 int rv; 7259 struct md_rdev *rdev; 7260 /* change the number of raid disks */ 7261 if (mddev->pers->check_reshape == NULL) 7262 return -EINVAL; 7263 if (mddev->ro) 7264 return -EROFS; 7265 if (raid_disks <= 0 || 7266 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7267 return -EINVAL; 7268 if (mddev->sync_thread || 7269 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7270 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7271 mddev->reshape_position != MaxSector) 7272 return -EBUSY; 7273 7274 rdev_for_each(rdev, mddev) { 7275 if (mddev->raid_disks < raid_disks && 7276 rdev->data_offset < rdev->new_data_offset) 7277 return -EINVAL; 7278 if (mddev->raid_disks > raid_disks && 7279 rdev->data_offset > rdev->new_data_offset) 7280 return -EINVAL; 7281 } 7282 7283 mddev->delta_disks = raid_disks - mddev->raid_disks; 7284 if (mddev->delta_disks < 0) 7285 mddev->reshape_backwards = 1; 7286 else if (mddev->delta_disks > 0) 7287 mddev->reshape_backwards = 0; 7288 7289 rv = mddev->pers->check_reshape(mddev); 7290 if (rv < 0) { 7291 mddev->delta_disks = 0; 7292 mddev->reshape_backwards = 0; 7293 } 7294 return rv; 7295 } 7296 7297 /* 7298 * update_array_info is used to change the configuration of an 7299 * on-line array. 7300 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7301 * fields in the info are checked against the array. 7302 * Any differences that cannot be handled will cause an error. 7303 * Normally, only one change can be managed at a time. 7304 */ 7305 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7306 { 7307 int rv = 0; 7308 int cnt = 0; 7309 int state = 0; 7310 7311 /* calculate expected state,ignoring low bits */ 7312 if (mddev->bitmap && mddev->bitmap_info.offset) 7313 state |= (1 << MD_SB_BITMAP_PRESENT); 7314 7315 if (mddev->major_version != info->major_version || 7316 mddev->minor_version != info->minor_version || 7317 /* mddev->patch_version != info->patch_version || */ 7318 mddev->ctime != info->ctime || 7319 mddev->level != info->level || 7320 /* mddev->layout != info->layout || */ 7321 mddev->persistent != !info->not_persistent || 7322 mddev->chunk_sectors != info->chunk_size >> 9 || 7323 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7324 ((state^info->state) & 0xfffffe00) 7325 ) 7326 return -EINVAL; 7327 /* Check there is only one change */ 7328 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7329 cnt++; 7330 if (mddev->raid_disks != info->raid_disks) 7331 cnt++; 7332 if (mddev->layout != info->layout) 7333 cnt++; 7334 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7335 cnt++; 7336 if (cnt == 0) 7337 return 0; 7338 if (cnt > 1) 7339 return -EINVAL; 7340 7341 if (mddev->layout != info->layout) { 7342 /* Change layout 7343 * we don't need to do anything at the md level, the 7344 * personality will take care of it all. 7345 */ 7346 if (mddev->pers->check_reshape == NULL) 7347 return -EINVAL; 7348 else { 7349 mddev->new_layout = info->layout; 7350 rv = mddev->pers->check_reshape(mddev); 7351 if (rv) 7352 mddev->new_layout = mddev->layout; 7353 return rv; 7354 } 7355 } 7356 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7357 rv = update_size(mddev, (sector_t)info->size * 2); 7358 7359 if (mddev->raid_disks != info->raid_disks) 7360 rv = update_raid_disks(mddev, info->raid_disks); 7361 7362 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7363 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7364 rv = -EINVAL; 7365 goto err; 7366 } 7367 if (mddev->recovery || mddev->sync_thread) { 7368 rv = -EBUSY; 7369 goto err; 7370 } 7371 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7372 struct bitmap *bitmap; 7373 /* add the bitmap */ 7374 if (mddev->bitmap) { 7375 rv = -EEXIST; 7376 goto err; 7377 } 7378 if (mddev->bitmap_info.default_offset == 0) { 7379 rv = -EINVAL; 7380 goto err; 7381 } 7382 mddev->bitmap_info.offset = 7383 mddev->bitmap_info.default_offset; 7384 mddev->bitmap_info.space = 7385 mddev->bitmap_info.default_space; 7386 bitmap = md_bitmap_create(mddev, -1); 7387 mddev_suspend(mddev); 7388 if (!IS_ERR(bitmap)) { 7389 mddev->bitmap = bitmap; 7390 rv = md_bitmap_load(mddev); 7391 } else 7392 rv = PTR_ERR(bitmap); 7393 if (rv) 7394 md_bitmap_destroy(mddev); 7395 mddev_resume(mddev); 7396 } else { 7397 /* remove the bitmap */ 7398 if (!mddev->bitmap) { 7399 rv = -ENOENT; 7400 goto err; 7401 } 7402 if (mddev->bitmap->storage.file) { 7403 rv = -EINVAL; 7404 goto err; 7405 } 7406 if (mddev->bitmap_info.nodes) { 7407 /* hold PW on all the bitmap lock */ 7408 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7409 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7410 rv = -EPERM; 7411 md_cluster_ops->unlock_all_bitmaps(mddev); 7412 goto err; 7413 } 7414 7415 mddev->bitmap_info.nodes = 0; 7416 md_cluster_ops->leave(mddev); 7417 module_put(md_cluster_mod); 7418 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7419 } 7420 mddev_suspend(mddev); 7421 md_bitmap_destroy(mddev); 7422 mddev_resume(mddev); 7423 mddev->bitmap_info.offset = 0; 7424 } 7425 } 7426 md_update_sb(mddev, 1); 7427 return rv; 7428 err: 7429 return rv; 7430 } 7431 7432 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7433 { 7434 struct md_rdev *rdev; 7435 int err = 0; 7436 7437 if (mddev->pers == NULL) 7438 return -ENODEV; 7439 7440 rcu_read_lock(); 7441 rdev = md_find_rdev_rcu(mddev, dev); 7442 if (!rdev) 7443 err = -ENODEV; 7444 else { 7445 md_error(mddev, rdev); 7446 if (!test_bit(Faulty, &rdev->flags)) 7447 err = -EBUSY; 7448 } 7449 rcu_read_unlock(); 7450 return err; 7451 } 7452 7453 /* 7454 * We have a problem here : there is no easy way to give a CHS 7455 * virtual geometry. We currently pretend that we have a 2 heads 7456 * 4 sectors (with a BIG number of cylinders...). This drives 7457 * dosfs just mad... ;-) 7458 */ 7459 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7460 { 7461 struct mddev *mddev = bdev->bd_disk->private_data; 7462 7463 geo->heads = 2; 7464 geo->sectors = 4; 7465 geo->cylinders = mddev->array_sectors / 8; 7466 return 0; 7467 } 7468 7469 static inline bool md_ioctl_valid(unsigned int cmd) 7470 { 7471 switch (cmd) { 7472 case ADD_NEW_DISK: 7473 case GET_ARRAY_INFO: 7474 case GET_BITMAP_FILE: 7475 case GET_DISK_INFO: 7476 case HOT_ADD_DISK: 7477 case HOT_REMOVE_DISK: 7478 case RAID_VERSION: 7479 case RESTART_ARRAY_RW: 7480 case RUN_ARRAY: 7481 case SET_ARRAY_INFO: 7482 case SET_BITMAP_FILE: 7483 case SET_DISK_FAULTY: 7484 case STOP_ARRAY: 7485 case STOP_ARRAY_RO: 7486 case CLUSTERED_DISK_NACK: 7487 return true; 7488 default: 7489 return false; 7490 } 7491 } 7492 7493 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7494 unsigned int cmd, unsigned long arg) 7495 { 7496 int err = 0; 7497 void __user *argp = (void __user *)arg; 7498 struct mddev *mddev = NULL; 7499 bool did_set_md_closing = false; 7500 7501 if (!md_ioctl_valid(cmd)) 7502 return -ENOTTY; 7503 7504 switch (cmd) { 7505 case RAID_VERSION: 7506 case GET_ARRAY_INFO: 7507 case GET_DISK_INFO: 7508 break; 7509 default: 7510 if (!capable(CAP_SYS_ADMIN)) 7511 return -EACCES; 7512 } 7513 7514 /* 7515 * Commands dealing with the RAID driver but not any 7516 * particular array: 7517 */ 7518 switch (cmd) { 7519 case RAID_VERSION: 7520 err = get_version(argp); 7521 goto out; 7522 default:; 7523 } 7524 7525 /* 7526 * Commands creating/starting a new array: 7527 */ 7528 7529 mddev = bdev->bd_disk->private_data; 7530 7531 if (!mddev) { 7532 BUG(); 7533 goto out; 7534 } 7535 7536 /* Some actions do not requires the mutex */ 7537 switch (cmd) { 7538 case GET_ARRAY_INFO: 7539 if (!mddev->raid_disks && !mddev->external) 7540 err = -ENODEV; 7541 else 7542 err = get_array_info(mddev, argp); 7543 goto out; 7544 7545 case GET_DISK_INFO: 7546 if (!mddev->raid_disks && !mddev->external) 7547 err = -ENODEV; 7548 else 7549 err = get_disk_info(mddev, argp); 7550 goto out; 7551 7552 case SET_DISK_FAULTY: 7553 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7554 goto out; 7555 7556 case GET_BITMAP_FILE: 7557 err = get_bitmap_file(mddev, argp); 7558 goto out; 7559 7560 } 7561 7562 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7563 flush_rdev_wq(mddev); 7564 7565 if (cmd == HOT_REMOVE_DISK) 7566 /* need to ensure recovery thread has run */ 7567 wait_event_interruptible_timeout(mddev->sb_wait, 7568 !test_bit(MD_RECOVERY_NEEDED, 7569 &mddev->recovery), 7570 msecs_to_jiffies(5000)); 7571 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7572 /* Need to flush page cache, and ensure no-one else opens 7573 * and writes 7574 */ 7575 mutex_lock(&mddev->open_mutex); 7576 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7577 mutex_unlock(&mddev->open_mutex); 7578 err = -EBUSY; 7579 goto out; 7580 } 7581 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7582 mutex_unlock(&mddev->open_mutex); 7583 err = -EBUSY; 7584 goto out; 7585 } 7586 did_set_md_closing = true; 7587 mutex_unlock(&mddev->open_mutex); 7588 sync_blockdev(bdev); 7589 } 7590 err = mddev_lock(mddev); 7591 if (err) { 7592 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7593 err, cmd); 7594 goto out; 7595 } 7596 7597 if (cmd == SET_ARRAY_INFO) { 7598 mdu_array_info_t info; 7599 if (!arg) 7600 memset(&info, 0, sizeof(info)); 7601 else if (copy_from_user(&info, argp, sizeof(info))) { 7602 err = -EFAULT; 7603 goto unlock; 7604 } 7605 if (mddev->pers) { 7606 err = update_array_info(mddev, &info); 7607 if (err) { 7608 pr_warn("md: couldn't update array info. %d\n", err); 7609 goto unlock; 7610 } 7611 goto unlock; 7612 } 7613 if (!list_empty(&mddev->disks)) { 7614 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7615 err = -EBUSY; 7616 goto unlock; 7617 } 7618 if (mddev->raid_disks) { 7619 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7620 err = -EBUSY; 7621 goto unlock; 7622 } 7623 err = md_set_array_info(mddev, &info); 7624 if (err) { 7625 pr_warn("md: couldn't set array info. %d\n", err); 7626 goto unlock; 7627 } 7628 goto unlock; 7629 } 7630 7631 /* 7632 * Commands querying/configuring an existing array: 7633 */ 7634 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7635 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7636 if ((!mddev->raid_disks && !mddev->external) 7637 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7638 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7639 && cmd != GET_BITMAP_FILE) { 7640 err = -ENODEV; 7641 goto unlock; 7642 } 7643 7644 /* 7645 * Commands even a read-only array can execute: 7646 */ 7647 switch (cmd) { 7648 case RESTART_ARRAY_RW: 7649 err = restart_array(mddev); 7650 goto unlock; 7651 7652 case STOP_ARRAY: 7653 err = do_md_stop(mddev, 0, bdev); 7654 goto unlock; 7655 7656 case STOP_ARRAY_RO: 7657 err = md_set_readonly(mddev, bdev); 7658 goto unlock; 7659 7660 case HOT_REMOVE_DISK: 7661 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7662 goto unlock; 7663 7664 case ADD_NEW_DISK: 7665 /* We can support ADD_NEW_DISK on read-only arrays 7666 * only if we are re-adding a preexisting device. 7667 * So require mddev->pers and MD_DISK_SYNC. 7668 */ 7669 if (mddev->pers) { 7670 mdu_disk_info_t info; 7671 if (copy_from_user(&info, argp, sizeof(info))) 7672 err = -EFAULT; 7673 else if (!(info.state & (1<<MD_DISK_SYNC))) 7674 /* Need to clear read-only for this */ 7675 break; 7676 else 7677 err = md_add_new_disk(mddev, &info); 7678 goto unlock; 7679 } 7680 break; 7681 } 7682 7683 /* 7684 * The remaining ioctls are changing the state of the 7685 * superblock, so we do not allow them on read-only arrays. 7686 */ 7687 if (mddev->ro && mddev->pers) { 7688 if (mddev->ro == 2) { 7689 mddev->ro = 0; 7690 sysfs_notify_dirent_safe(mddev->sysfs_state); 7691 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7692 /* mddev_unlock will wake thread */ 7693 /* If a device failed while we were read-only, we 7694 * need to make sure the metadata is updated now. 7695 */ 7696 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7697 mddev_unlock(mddev); 7698 wait_event(mddev->sb_wait, 7699 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7700 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7701 mddev_lock_nointr(mddev); 7702 } 7703 } else { 7704 err = -EROFS; 7705 goto unlock; 7706 } 7707 } 7708 7709 switch (cmd) { 7710 case ADD_NEW_DISK: 7711 { 7712 mdu_disk_info_t info; 7713 if (copy_from_user(&info, argp, sizeof(info))) 7714 err = -EFAULT; 7715 else 7716 err = md_add_new_disk(mddev, &info); 7717 goto unlock; 7718 } 7719 7720 case CLUSTERED_DISK_NACK: 7721 if (mddev_is_clustered(mddev)) 7722 md_cluster_ops->new_disk_ack(mddev, false); 7723 else 7724 err = -EINVAL; 7725 goto unlock; 7726 7727 case HOT_ADD_DISK: 7728 err = hot_add_disk(mddev, new_decode_dev(arg)); 7729 goto unlock; 7730 7731 case RUN_ARRAY: 7732 err = do_md_run(mddev); 7733 goto unlock; 7734 7735 case SET_BITMAP_FILE: 7736 err = set_bitmap_file(mddev, (int)arg); 7737 goto unlock; 7738 7739 default: 7740 err = -EINVAL; 7741 goto unlock; 7742 } 7743 7744 unlock: 7745 if (mddev->hold_active == UNTIL_IOCTL && 7746 err != -EINVAL) 7747 mddev->hold_active = 0; 7748 mddev_unlock(mddev); 7749 out: 7750 if(did_set_md_closing) 7751 clear_bit(MD_CLOSING, &mddev->flags); 7752 return err; 7753 } 7754 #ifdef CONFIG_COMPAT 7755 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7756 unsigned int cmd, unsigned long arg) 7757 { 7758 switch (cmd) { 7759 case HOT_REMOVE_DISK: 7760 case HOT_ADD_DISK: 7761 case SET_DISK_FAULTY: 7762 case SET_BITMAP_FILE: 7763 /* These take in integer arg, do not convert */ 7764 break; 7765 default: 7766 arg = (unsigned long)compat_ptr(arg); 7767 break; 7768 } 7769 7770 return md_ioctl(bdev, mode, cmd, arg); 7771 } 7772 #endif /* CONFIG_COMPAT */ 7773 7774 static int md_set_read_only(struct block_device *bdev, bool ro) 7775 { 7776 struct mddev *mddev = bdev->bd_disk->private_data; 7777 int err; 7778 7779 err = mddev_lock(mddev); 7780 if (err) 7781 return err; 7782 7783 if (!mddev->raid_disks && !mddev->external) { 7784 err = -ENODEV; 7785 goto out_unlock; 7786 } 7787 7788 /* 7789 * Transitioning to read-auto need only happen for arrays that call 7790 * md_write_start and which are not ready for writes yet. 7791 */ 7792 if (!ro && mddev->ro == 1 && mddev->pers) { 7793 err = restart_array(mddev); 7794 if (err) 7795 goto out_unlock; 7796 mddev->ro = 2; 7797 } 7798 7799 out_unlock: 7800 mddev_unlock(mddev); 7801 return err; 7802 } 7803 7804 static int md_open(struct block_device *bdev, fmode_t mode) 7805 { 7806 /* 7807 * Succeed if we can lock the mddev, which confirms that 7808 * it isn't being stopped right now. 7809 */ 7810 struct mddev *mddev = mddev_find(bdev->bd_dev); 7811 int err; 7812 7813 if (!mddev) 7814 return -ENODEV; 7815 7816 if (mddev->gendisk != bdev->bd_disk) { 7817 /* we are racing with mddev_put which is discarding this 7818 * bd_disk. 7819 */ 7820 mddev_put(mddev); 7821 /* Wait until bdev->bd_disk is definitely gone */ 7822 if (work_pending(&mddev->del_work)) 7823 flush_workqueue(md_misc_wq); 7824 /* Then retry the open from the top */ 7825 return -ERESTARTSYS; 7826 } 7827 BUG_ON(mddev != bdev->bd_disk->private_data); 7828 7829 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7830 goto out; 7831 7832 if (test_bit(MD_CLOSING, &mddev->flags)) { 7833 mutex_unlock(&mddev->open_mutex); 7834 err = -ENODEV; 7835 goto out; 7836 } 7837 7838 err = 0; 7839 atomic_inc(&mddev->openers); 7840 mutex_unlock(&mddev->open_mutex); 7841 7842 bdev_check_media_change(bdev); 7843 out: 7844 if (err) 7845 mddev_put(mddev); 7846 return err; 7847 } 7848 7849 static void md_release(struct gendisk *disk, fmode_t mode) 7850 { 7851 struct mddev *mddev = disk->private_data; 7852 7853 BUG_ON(!mddev); 7854 atomic_dec(&mddev->openers); 7855 mddev_put(mddev); 7856 } 7857 7858 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7859 { 7860 struct mddev *mddev = disk->private_data; 7861 unsigned int ret = 0; 7862 7863 if (mddev->changed) 7864 ret = DISK_EVENT_MEDIA_CHANGE; 7865 mddev->changed = 0; 7866 return ret; 7867 } 7868 7869 const struct block_device_operations md_fops = 7870 { 7871 .owner = THIS_MODULE, 7872 .submit_bio = md_submit_bio, 7873 .open = md_open, 7874 .release = md_release, 7875 .ioctl = md_ioctl, 7876 #ifdef CONFIG_COMPAT 7877 .compat_ioctl = md_compat_ioctl, 7878 #endif 7879 .getgeo = md_getgeo, 7880 .check_events = md_check_events, 7881 .set_read_only = md_set_read_only, 7882 }; 7883 7884 static int md_thread(void *arg) 7885 { 7886 struct md_thread *thread = arg; 7887 7888 /* 7889 * md_thread is a 'system-thread', it's priority should be very 7890 * high. We avoid resource deadlocks individually in each 7891 * raid personality. (RAID5 does preallocation) We also use RR and 7892 * the very same RT priority as kswapd, thus we will never get 7893 * into a priority inversion deadlock. 7894 * 7895 * we definitely have to have equal or higher priority than 7896 * bdflush, otherwise bdflush will deadlock if there are too 7897 * many dirty RAID5 blocks. 7898 */ 7899 7900 allow_signal(SIGKILL); 7901 while (!kthread_should_stop()) { 7902 7903 /* We need to wait INTERRUPTIBLE so that 7904 * we don't add to the load-average. 7905 * That means we need to be sure no signals are 7906 * pending 7907 */ 7908 if (signal_pending(current)) 7909 flush_signals(current); 7910 7911 wait_event_interruptible_timeout 7912 (thread->wqueue, 7913 test_bit(THREAD_WAKEUP, &thread->flags) 7914 || kthread_should_stop() || kthread_should_park(), 7915 thread->timeout); 7916 7917 clear_bit(THREAD_WAKEUP, &thread->flags); 7918 if (kthread_should_park()) 7919 kthread_parkme(); 7920 if (!kthread_should_stop()) 7921 thread->run(thread); 7922 } 7923 7924 return 0; 7925 } 7926 7927 void md_wakeup_thread(struct md_thread *thread) 7928 { 7929 if (thread) { 7930 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7931 set_bit(THREAD_WAKEUP, &thread->flags); 7932 wake_up(&thread->wqueue); 7933 } 7934 } 7935 EXPORT_SYMBOL(md_wakeup_thread); 7936 7937 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7938 struct mddev *mddev, const char *name) 7939 { 7940 struct md_thread *thread; 7941 7942 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7943 if (!thread) 7944 return NULL; 7945 7946 init_waitqueue_head(&thread->wqueue); 7947 7948 thread->run = run; 7949 thread->mddev = mddev; 7950 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7951 thread->tsk = kthread_run(md_thread, thread, 7952 "%s_%s", 7953 mdname(thread->mddev), 7954 name); 7955 if (IS_ERR(thread->tsk)) { 7956 kfree(thread); 7957 return NULL; 7958 } 7959 return thread; 7960 } 7961 EXPORT_SYMBOL(md_register_thread); 7962 7963 void md_unregister_thread(struct md_thread **threadp) 7964 { 7965 struct md_thread *thread = *threadp; 7966 if (!thread) 7967 return; 7968 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7969 /* Locking ensures that mddev_unlock does not wake_up a 7970 * non-existent thread 7971 */ 7972 spin_lock(&pers_lock); 7973 *threadp = NULL; 7974 spin_unlock(&pers_lock); 7975 7976 kthread_stop(thread->tsk); 7977 kfree(thread); 7978 } 7979 EXPORT_SYMBOL(md_unregister_thread); 7980 7981 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7982 { 7983 if (!rdev || test_bit(Faulty, &rdev->flags)) 7984 return; 7985 7986 if (!mddev->pers || !mddev->pers->error_handler) 7987 return; 7988 mddev->pers->error_handler(mddev,rdev); 7989 if (mddev->degraded) 7990 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7991 sysfs_notify_dirent_safe(rdev->sysfs_state); 7992 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7993 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7994 md_wakeup_thread(mddev->thread); 7995 if (mddev->event_work.func) 7996 queue_work(md_misc_wq, &mddev->event_work); 7997 md_new_event(mddev); 7998 } 7999 EXPORT_SYMBOL(md_error); 8000 8001 /* seq_file implementation /proc/mdstat */ 8002 8003 static void status_unused(struct seq_file *seq) 8004 { 8005 int i = 0; 8006 struct md_rdev *rdev; 8007 8008 seq_printf(seq, "unused devices: "); 8009 8010 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8011 char b[BDEVNAME_SIZE]; 8012 i++; 8013 seq_printf(seq, "%s ", 8014 bdevname(rdev->bdev,b)); 8015 } 8016 if (!i) 8017 seq_printf(seq, "<none>"); 8018 8019 seq_printf(seq, "\n"); 8020 } 8021 8022 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8023 { 8024 sector_t max_sectors, resync, res; 8025 unsigned long dt, db = 0; 8026 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8027 int scale, recovery_active; 8028 unsigned int per_milli; 8029 8030 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8031 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8032 max_sectors = mddev->resync_max_sectors; 8033 else 8034 max_sectors = mddev->dev_sectors; 8035 8036 resync = mddev->curr_resync; 8037 if (resync <= 3) { 8038 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8039 /* Still cleaning up */ 8040 resync = max_sectors; 8041 } else if (resync > max_sectors) 8042 resync = max_sectors; 8043 else 8044 resync -= atomic_read(&mddev->recovery_active); 8045 8046 if (resync == 0) { 8047 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8048 struct md_rdev *rdev; 8049 8050 rdev_for_each(rdev, mddev) 8051 if (rdev->raid_disk >= 0 && 8052 !test_bit(Faulty, &rdev->flags) && 8053 rdev->recovery_offset != MaxSector && 8054 rdev->recovery_offset) { 8055 seq_printf(seq, "\trecover=REMOTE"); 8056 return 1; 8057 } 8058 if (mddev->reshape_position != MaxSector) 8059 seq_printf(seq, "\treshape=REMOTE"); 8060 else 8061 seq_printf(seq, "\tresync=REMOTE"); 8062 return 1; 8063 } 8064 if (mddev->recovery_cp < MaxSector) { 8065 seq_printf(seq, "\tresync=PENDING"); 8066 return 1; 8067 } 8068 return 0; 8069 } 8070 if (resync < 3) { 8071 seq_printf(seq, "\tresync=DELAYED"); 8072 return 1; 8073 } 8074 8075 WARN_ON(max_sectors == 0); 8076 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8077 * in a sector_t, and (max_sectors>>scale) will fit in a 8078 * u32, as those are the requirements for sector_div. 8079 * Thus 'scale' must be at least 10 8080 */ 8081 scale = 10; 8082 if (sizeof(sector_t) > sizeof(unsigned long)) { 8083 while ( max_sectors/2 > (1ULL<<(scale+32))) 8084 scale++; 8085 } 8086 res = (resync>>scale)*1000; 8087 sector_div(res, (u32)((max_sectors>>scale)+1)); 8088 8089 per_milli = res; 8090 { 8091 int i, x = per_milli/50, y = 20-x; 8092 seq_printf(seq, "["); 8093 for (i = 0; i < x; i++) 8094 seq_printf(seq, "="); 8095 seq_printf(seq, ">"); 8096 for (i = 0; i < y; i++) 8097 seq_printf(seq, "."); 8098 seq_printf(seq, "] "); 8099 } 8100 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8101 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8102 "reshape" : 8103 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8104 "check" : 8105 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8106 "resync" : "recovery"))), 8107 per_milli/10, per_milli % 10, 8108 (unsigned long long) resync/2, 8109 (unsigned long long) max_sectors/2); 8110 8111 /* 8112 * dt: time from mark until now 8113 * db: blocks written from mark until now 8114 * rt: remaining time 8115 * 8116 * rt is a sector_t, which is always 64bit now. We are keeping 8117 * the original algorithm, but it is not really necessary. 8118 * 8119 * Original algorithm: 8120 * So we divide before multiply in case it is 32bit and close 8121 * to the limit. 8122 * We scale the divisor (db) by 32 to avoid losing precision 8123 * near the end of resync when the number of remaining sectors 8124 * is close to 'db'. 8125 * We then divide rt by 32 after multiplying by db to compensate. 8126 * The '+1' avoids division by zero if db is very small. 8127 */ 8128 dt = ((jiffies - mddev->resync_mark) / HZ); 8129 if (!dt) dt++; 8130 8131 curr_mark_cnt = mddev->curr_mark_cnt; 8132 recovery_active = atomic_read(&mddev->recovery_active); 8133 resync_mark_cnt = mddev->resync_mark_cnt; 8134 8135 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8136 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8137 8138 rt = max_sectors - resync; /* number of remaining sectors */ 8139 rt = div64_u64(rt, db/32+1); 8140 rt *= dt; 8141 rt >>= 5; 8142 8143 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8144 ((unsigned long)rt % 60)/6); 8145 8146 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8147 return 1; 8148 } 8149 8150 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8151 { 8152 struct list_head *tmp; 8153 loff_t l = *pos; 8154 struct mddev *mddev; 8155 8156 if (l >= 0x10000) 8157 return NULL; 8158 if (!l--) 8159 /* header */ 8160 return (void*)1; 8161 8162 spin_lock(&all_mddevs_lock); 8163 list_for_each(tmp,&all_mddevs) 8164 if (!l--) { 8165 mddev = list_entry(tmp, struct mddev, all_mddevs); 8166 mddev_get(mddev); 8167 spin_unlock(&all_mddevs_lock); 8168 return mddev; 8169 } 8170 spin_unlock(&all_mddevs_lock); 8171 if (!l--) 8172 return (void*)2;/* tail */ 8173 return NULL; 8174 } 8175 8176 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8177 { 8178 struct list_head *tmp; 8179 struct mddev *next_mddev, *mddev = v; 8180 8181 ++*pos; 8182 if (v == (void*)2) 8183 return NULL; 8184 8185 spin_lock(&all_mddevs_lock); 8186 if (v == (void*)1) 8187 tmp = all_mddevs.next; 8188 else 8189 tmp = mddev->all_mddevs.next; 8190 if (tmp != &all_mddevs) 8191 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8192 else { 8193 next_mddev = (void*)2; 8194 *pos = 0x10000; 8195 } 8196 spin_unlock(&all_mddevs_lock); 8197 8198 if (v != (void*)1) 8199 mddev_put(mddev); 8200 return next_mddev; 8201 8202 } 8203 8204 static void md_seq_stop(struct seq_file *seq, void *v) 8205 { 8206 struct mddev *mddev = v; 8207 8208 if (mddev && v != (void*)1 && v != (void*)2) 8209 mddev_put(mddev); 8210 } 8211 8212 static int md_seq_show(struct seq_file *seq, void *v) 8213 { 8214 struct mddev *mddev = v; 8215 sector_t sectors; 8216 struct md_rdev *rdev; 8217 8218 if (v == (void*)1) { 8219 struct md_personality *pers; 8220 seq_printf(seq, "Personalities : "); 8221 spin_lock(&pers_lock); 8222 list_for_each_entry(pers, &pers_list, list) 8223 seq_printf(seq, "[%s] ", pers->name); 8224 8225 spin_unlock(&pers_lock); 8226 seq_printf(seq, "\n"); 8227 seq->poll_event = atomic_read(&md_event_count); 8228 return 0; 8229 } 8230 if (v == (void*)2) { 8231 status_unused(seq); 8232 return 0; 8233 } 8234 8235 spin_lock(&mddev->lock); 8236 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8237 seq_printf(seq, "%s : %sactive", mdname(mddev), 8238 mddev->pers ? "" : "in"); 8239 if (mddev->pers) { 8240 if (mddev->ro==1) 8241 seq_printf(seq, " (read-only)"); 8242 if (mddev->ro==2) 8243 seq_printf(seq, " (auto-read-only)"); 8244 seq_printf(seq, " %s", mddev->pers->name); 8245 } 8246 8247 sectors = 0; 8248 rcu_read_lock(); 8249 rdev_for_each_rcu(rdev, mddev) { 8250 char b[BDEVNAME_SIZE]; 8251 seq_printf(seq, " %s[%d]", 8252 bdevname(rdev->bdev,b), rdev->desc_nr); 8253 if (test_bit(WriteMostly, &rdev->flags)) 8254 seq_printf(seq, "(W)"); 8255 if (test_bit(Journal, &rdev->flags)) 8256 seq_printf(seq, "(J)"); 8257 if (test_bit(Faulty, &rdev->flags)) { 8258 seq_printf(seq, "(F)"); 8259 continue; 8260 } 8261 if (rdev->raid_disk < 0) 8262 seq_printf(seq, "(S)"); /* spare */ 8263 if (test_bit(Replacement, &rdev->flags)) 8264 seq_printf(seq, "(R)"); 8265 sectors += rdev->sectors; 8266 } 8267 rcu_read_unlock(); 8268 8269 if (!list_empty(&mddev->disks)) { 8270 if (mddev->pers) 8271 seq_printf(seq, "\n %llu blocks", 8272 (unsigned long long) 8273 mddev->array_sectors / 2); 8274 else 8275 seq_printf(seq, "\n %llu blocks", 8276 (unsigned long long)sectors / 2); 8277 } 8278 if (mddev->persistent) { 8279 if (mddev->major_version != 0 || 8280 mddev->minor_version != 90) { 8281 seq_printf(seq," super %d.%d", 8282 mddev->major_version, 8283 mddev->minor_version); 8284 } 8285 } else if (mddev->external) 8286 seq_printf(seq, " super external:%s", 8287 mddev->metadata_type); 8288 else 8289 seq_printf(seq, " super non-persistent"); 8290 8291 if (mddev->pers) { 8292 mddev->pers->status(seq, mddev); 8293 seq_printf(seq, "\n "); 8294 if (mddev->pers->sync_request) { 8295 if (status_resync(seq, mddev)) 8296 seq_printf(seq, "\n "); 8297 } 8298 } else 8299 seq_printf(seq, "\n "); 8300 8301 md_bitmap_status(seq, mddev->bitmap); 8302 8303 seq_printf(seq, "\n"); 8304 } 8305 spin_unlock(&mddev->lock); 8306 8307 return 0; 8308 } 8309 8310 static const struct seq_operations md_seq_ops = { 8311 .start = md_seq_start, 8312 .next = md_seq_next, 8313 .stop = md_seq_stop, 8314 .show = md_seq_show, 8315 }; 8316 8317 static int md_seq_open(struct inode *inode, struct file *file) 8318 { 8319 struct seq_file *seq; 8320 int error; 8321 8322 error = seq_open(file, &md_seq_ops); 8323 if (error) 8324 return error; 8325 8326 seq = file->private_data; 8327 seq->poll_event = atomic_read(&md_event_count); 8328 return error; 8329 } 8330 8331 static int md_unloading; 8332 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8333 { 8334 struct seq_file *seq = filp->private_data; 8335 __poll_t mask; 8336 8337 if (md_unloading) 8338 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8339 poll_wait(filp, &md_event_waiters, wait); 8340 8341 /* always allow read */ 8342 mask = EPOLLIN | EPOLLRDNORM; 8343 8344 if (seq->poll_event != atomic_read(&md_event_count)) 8345 mask |= EPOLLERR | EPOLLPRI; 8346 return mask; 8347 } 8348 8349 static const struct proc_ops mdstat_proc_ops = { 8350 .proc_open = md_seq_open, 8351 .proc_read = seq_read, 8352 .proc_lseek = seq_lseek, 8353 .proc_release = seq_release, 8354 .proc_poll = mdstat_poll, 8355 }; 8356 8357 int register_md_personality(struct md_personality *p) 8358 { 8359 pr_debug("md: %s personality registered for level %d\n", 8360 p->name, p->level); 8361 spin_lock(&pers_lock); 8362 list_add_tail(&p->list, &pers_list); 8363 spin_unlock(&pers_lock); 8364 return 0; 8365 } 8366 EXPORT_SYMBOL(register_md_personality); 8367 8368 int unregister_md_personality(struct md_personality *p) 8369 { 8370 pr_debug("md: %s personality unregistered\n", p->name); 8371 spin_lock(&pers_lock); 8372 list_del_init(&p->list); 8373 spin_unlock(&pers_lock); 8374 return 0; 8375 } 8376 EXPORT_SYMBOL(unregister_md_personality); 8377 8378 int register_md_cluster_operations(struct md_cluster_operations *ops, 8379 struct module *module) 8380 { 8381 int ret = 0; 8382 spin_lock(&pers_lock); 8383 if (md_cluster_ops != NULL) 8384 ret = -EALREADY; 8385 else { 8386 md_cluster_ops = ops; 8387 md_cluster_mod = module; 8388 } 8389 spin_unlock(&pers_lock); 8390 return ret; 8391 } 8392 EXPORT_SYMBOL(register_md_cluster_operations); 8393 8394 int unregister_md_cluster_operations(void) 8395 { 8396 spin_lock(&pers_lock); 8397 md_cluster_ops = NULL; 8398 spin_unlock(&pers_lock); 8399 return 0; 8400 } 8401 EXPORT_SYMBOL(unregister_md_cluster_operations); 8402 8403 int md_setup_cluster(struct mddev *mddev, int nodes) 8404 { 8405 int ret; 8406 if (!md_cluster_ops) 8407 request_module("md-cluster"); 8408 spin_lock(&pers_lock); 8409 /* ensure module won't be unloaded */ 8410 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8411 pr_warn("can't find md-cluster module or get it's reference.\n"); 8412 spin_unlock(&pers_lock); 8413 return -ENOENT; 8414 } 8415 spin_unlock(&pers_lock); 8416 8417 ret = md_cluster_ops->join(mddev, nodes); 8418 if (!ret) 8419 mddev->safemode_delay = 0; 8420 return ret; 8421 } 8422 8423 void md_cluster_stop(struct mddev *mddev) 8424 { 8425 if (!md_cluster_ops) 8426 return; 8427 md_cluster_ops->leave(mddev); 8428 module_put(md_cluster_mod); 8429 } 8430 8431 static int is_mddev_idle(struct mddev *mddev, int init) 8432 { 8433 struct md_rdev *rdev; 8434 int idle; 8435 int curr_events; 8436 8437 idle = 1; 8438 rcu_read_lock(); 8439 rdev_for_each_rcu(rdev, mddev) { 8440 struct gendisk *disk = rdev->bdev->bd_disk; 8441 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8442 atomic_read(&disk->sync_io); 8443 /* sync IO will cause sync_io to increase before the disk_stats 8444 * as sync_io is counted when a request starts, and 8445 * disk_stats is counted when it completes. 8446 * So resync activity will cause curr_events to be smaller than 8447 * when there was no such activity. 8448 * non-sync IO will cause disk_stat to increase without 8449 * increasing sync_io so curr_events will (eventually) 8450 * be larger than it was before. Once it becomes 8451 * substantially larger, the test below will cause 8452 * the array to appear non-idle, and resync will slow 8453 * down. 8454 * If there is a lot of outstanding resync activity when 8455 * we set last_event to curr_events, then all that activity 8456 * completing might cause the array to appear non-idle 8457 * and resync will be slowed down even though there might 8458 * not have been non-resync activity. This will only 8459 * happen once though. 'last_events' will soon reflect 8460 * the state where there is little or no outstanding 8461 * resync requests, and further resync activity will 8462 * always make curr_events less than last_events. 8463 * 8464 */ 8465 if (init || curr_events - rdev->last_events > 64) { 8466 rdev->last_events = curr_events; 8467 idle = 0; 8468 } 8469 } 8470 rcu_read_unlock(); 8471 return idle; 8472 } 8473 8474 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8475 { 8476 /* another "blocks" (512byte) blocks have been synced */ 8477 atomic_sub(blocks, &mddev->recovery_active); 8478 wake_up(&mddev->recovery_wait); 8479 if (!ok) { 8480 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8481 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8482 md_wakeup_thread(mddev->thread); 8483 // stop recovery, signal do_sync .... 8484 } 8485 } 8486 EXPORT_SYMBOL(md_done_sync); 8487 8488 /* md_write_start(mddev, bi) 8489 * If we need to update some array metadata (e.g. 'active' flag 8490 * in superblock) before writing, schedule a superblock update 8491 * and wait for it to complete. 8492 * A return value of 'false' means that the write wasn't recorded 8493 * and cannot proceed as the array is being suspend. 8494 */ 8495 bool md_write_start(struct mddev *mddev, struct bio *bi) 8496 { 8497 int did_change = 0; 8498 8499 if (bio_data_dir(bi) != WRITE) 8500 return true; 8501 8502 BUG_ON(mddev->ro == 1); 8503 if (mddev->ro == 2) { 8504 /* need to switch to read/write */ 8505 mddev->ro = 0; 8506 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8507 md_wakeup_thread(mddev->thread); 8508 md_wakeup_thread(mddev->sync_thread); 8509 did_change = 1; 8510 } 8511 rcu_read_lock(); 8512 percpu_ref_get(&mddev->writes_pending); 8513 smp_mb(); /* Match smp_mb in set_in_sync() */ 8514 if (mddev->safemode == 1) 8515 mddev->safemode = 0; 8516 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8517 if (mddev->in_sync || mddev->sync_checkers) { 8518 spin_lock(&mddev->lock); 8519 if (mddev->in_sync) { 8520 mddev->in_sync = 0; 8521 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8522 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8523 md_wakeup_thread(mddev->thread); 8524 did_change = 1; 8525 } 8526 spin_unlock(&mddev->lock); 8527 } 8528 rcu_read_unlock(); 8529 if (did_change) 8530 sysfs_notify_dirent_safe(mddev->sysfs_state); 8531 if (!mddev->has_superblocks) 8532 return true; 8533 wait_event(mddev->sb_wait, 8534 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8535 mddev->suspended); 8536 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8537 percpu_ref_put(&mddev->writes_pending); 8538 return false; 8539 } 8540 return true; 8541 } 8542 EXPORT_SYMBOL(md_write_start); 8543 8544 /* md_write_inc can only be called when md_write_start() has 8545 * already been called at least once of the current request. 8546 * It increments the counter and is useful when a single request 8547 * is split into several parts. Each part causes an increment and 8548 * so needs a matching md_write_end(). 8549 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8550 * a spinlocked region. 8551 */ 8552 void md_write_inc(struct mddev *mddev, struct bio *bi) 8553 { 8554 if (bio_data_dir(bi) != WRITE) 8555 return; 8556 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8557 percpu_ref_get(&mddev->writes_pending); 8558 } 8559 EXPORT_SYMBOL(md_write_inc); 8560 8561 void md_write_end(struct mddev *mddev) 8562 { 8563 percpu_ref_put(&mddev->writes_pending); 8564 8565 if (mddev->safemode == 2) 8566 md_wakeup_thread(mddev->thread); 8567 else if (mddev->safemode_delay) 8568 /* The roundup() ensures this only performs locking once 8569 * every ->safemode_delay jiffies 8570 */ 8571 mod_timer(&mddev->safemode_timer, 8572 roundup(jiffies, mddev->safemode_delay) + 8573 mddev->safemode_delay); 8574 } 8575 8576 EXPORT_SYMBOL(md_write_end); 8577 8578 /* md_allow_write(mddev) 8579 * Calling this ensures that the array is marked 'active' so that writes 8580 * may proceed without blocking. It is important to call this before 8581 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8582 * Must be called with mddev_lock held. 8583 */ 8584 void md_allow_write(struct mddev *mddev) 8585 { 8586 if (!mddev->pers) 8587 return; 8588 if (mddev->ro) 8589 return; 8590 if (!mddev->pers->sync_request) 8591 return; 8592 8593 spin_lock(&mddev->lock); 8594 if (mddev->in_sync) { 8595 mddev->in_sync = 0; 8596 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8597 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8598 if (mddev->safemode_delay && 8599 mddev->safemode == 0) 8600 mddev->safemode = 1; 8601 spin_unlock(&mddev->lock); 8602 md_update_sb(mddev, 0); 8603 sysfs_notify_dirent_safe(mddev->sysfs_state); 8604 /* wait for the dirty state to be recorded in the metadata */ 8605 wait_event(mddev->sb_wait, 8606 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8607 } else 8608 spin_unlock(&mddev->lock); 8609 } 8610 EXPORT_SYMBOL_GPL(md_allow_write); 8611 8612 #define SYNC_MARKS 10 8613 #define SYNC_MARK_STEP (3*HZ) 8614 #define UPDATE_FREQUENCY (5*60*HZ) 8615 void md_do_sync(struct md_thread *thread) 8616 { 8617 struct mddev *mddev = thread->mddev; 8618 struct mddev *mddev2; 8619 unsigned int currspeed = 0, window; 8620 sector_t max_sectors,j, io_sectors, recovery_done; 8621 unsigned long mark[SYNC_MARKS]; 8622 unsigned long update_time; 8623 sector_t mark_cnt[SYNC_MARKS]; 8624 int last_mark,m; 8625 struct list_head *tmp; 8626 sector_t last_check; 8627 int skipped = 0; 8628 struct md_rdev *rdev; 8629 char *desc, *action = NULL; 8630 struct blk_plug plug; 8631 int ret; 8632 8633 /* just incase thread restarts... */ 8634 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8635 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8636 return; 8637 if (mddev->ro) {/* never try to sync a read-only array */ 8638 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8639 return; 8640 } 8641 8642 if (mddev_is_clustered(mddev)) { 8643 ret = md_cluster_ops->resync_start(mddev); 8644 if (ret) 8645 goto skip; 8646 8647 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8648 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8649 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8650 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8651 && ((unsigned long long)mddev->curr_resync_completed 8652 < (unsigned long long)mddev->resync_max_sectors)) 8653 goto skip; 8654 } 8655 8656 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8657 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8658 desc = "data-check"; 8659 action = "check"; 8660 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8661 desc = "requested-resync"; 8662 action = "repair"; 8663 } else 8664 desc = "resync"; 8665 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8666 desc = "reshape"; 8667 else 8668 desc = "recovery"; 8669 8670 mddev->last_sync_action = action ?: desc; 8671 8672 /* we overload curr_resync somewhat here. 8673 * 0 == not engaged in resync at all 8674 * 2 == checking that there is no conflict with another sync 8675 * 1 == like 2, but have yielded to allow conflicting resync to 8676 * commence 8677 * other == active in resync - this many blocks 8678 * 8679 * Before starting a resync we must have set curr_resync to 8680 * 2, and then checked that every "conflicting" array has curr_resync 8681 * less than ours. When we find one that is the same or higher 8682 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8683 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8684 * This will mean we have to start checking from the beginning again. 8685 * 8686 */ 8687 8688 do { 8689 int mddev2_minor = -1; 8690 mddev->curr_resync = 2; 8691 8692 try_again: 8693 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8694 goto skip; 8695 for_each_mddev(mddev2, tmp) { 8696 if (mddev2 == mddev) 8697 continue; 8698 if (!mddev->parallel_resync 8699 && mddev2->curr_resync 8700 && match_mddev_units(mddev, mddev2)) { 8701 DEFINE_WAIT(wq); 8702 if (mddev < mddev2 && mddev->curr_resync == 2) { 8703 /* arbitrarily yield */ 8704 mddev->curr_resync = 1; 8705 wake_up(&resync_wait); 8706 } 8707 if (mddev > mddev2 && mddev->curr_resync == 1) 8708 /* no need to wait here, we can wait the next 8709 * time 'round when curr_resync == 2 8710 */ 8711 continue; 8712 /* We need to wait 'interruptible' so as not to 8713 * contribute to the load average, and not to 8714 * be caught by 'softlockup' 8715 */ 8716 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8717 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8718 mddev2->curr_resync >= mddev->curr_resync) { 8719 if (mddev2_minor != mddev2->md_minor) { 8720 mddev2_minor = mddev2->md_minor; 8721 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8722 desc, mdname(mddev), 8723 mdname(mddev2)); 8724 } 8725 mddev_put(mddev2); 8726 if (signal_pending(current)) 8727 flush_signals(current); 8728 schedule(); 8729 finish_wait(&resync_wait, &wq); 8730 goto try_again; 8731 } 8732 finish_wait(&resync_wait, &wq); 8733 } 8734 } 8735 } while (mddev->curr_resync < 2); 8736 8737 j = 0; 8738 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8739 /* resync follows the size requested by the personality, 8740 * which defaults to physical size, but can be virtual size 8741 */ 8742 max_sectors = mddev->resync_max_sectors; 8743 atomic64_set(&mddev->resync_mismatches, 0); 8744 /* we don't use the checkpoint if there's a bitmap */ 8745 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8746 j = mddev->resync_min; 8747 else if (!mddev->bitmap) 8748 j = mddev->recovery_cp; 8749 8750 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8751 max_sectors = mddev->resync_max_sectors; 8752 /* 8753 * If the original node aborts reshaping then we continue the 8754 * reshaping, so set j again to avoid restart reshape from the 8755 * first beginning 8756 */ 8757 if (mddev_is_clustered(mddev) && 8758 mddev->reshape_position != MaxSector) 8759 j = mddev->reshape_position; 8760 } else { 8761 /* recovery follows the physical size of devices */ 8762 max_sectors = mddev->dev_sectors; 8763 j = MaxSector; 8764 rcu_read_lock(); 8765 rdev_for_each_rcu(rdev, mddev) 8766 if (rdev->raid_disk >= 0 && 8767 !test_bit(Journal, &rdev->flags) && 8768 !test_bit(Faulty, &rdev->flags) && 8769 !test_bit(In_sync, &rdev->flags) && 8770 rdev->recovery_offset < j) 8771 j = rdev->recovery_offset; 8772 rcu_read_unlock(); 8773 8774 /* If there is a bitmap, we need to make sure all 8775 * writes that started before we added a spare 8776 * complete before we start doing a recovery. 8777 * Otherwise the write might complete and (via 8778 * bitmap_endwrite) set a bit in the bitmap after the 8779 * recovery has checked that bit and skipped that 8780 * region. 8781 */ 8782 if (mddev->bitmap) { 8783 mddev->pers->quiesce(mddev, 1); 8784 mddev->pers->quiesce(mddev, 0); 8785 } 8786 } 8787 8788 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8789 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8790 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8791 speed_max(mddev), desc); 8792 8793 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8794 8795 io_sectors = 0; 8796 for (m = 0; m < SYNC_MARKS; m++) { 8797 mark[m] = jiffies; 8798 mark_cnt[m] = io_sectors; 8799 } 8800 last_mark = 0; 8801 mddev->resync_mark = mark[last_mark]; 8802 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8803 8804 /* 8805 * Tune reconstruction: 8806 */ 8807 window = 32 * (PAGE_SIZE / 512); 8808 pr_debug("md: using %dk window, over a total of %lluk.\n", 8809 window/2, (unsigned long long)max_sectors/2); 8810 8811 atomic_set(&mddev->recovery_active, 0); 8812 last_check = 0; 8813 8814 if (j>2) { 8815 pr_debug("md: resuming %s of %s from checkpoint.\n", 8816 desc, mdname(mddev)); 8817 mddev->curr_resync = j; 8818 } else 8819 mddev->curr_resync = 3; /* no longer delayed */ 8820 mddev->curr_resync_completed = j; 8821 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8822 md_new_event(mddev); 8823 update_time = jiffies; 8824 8825 blk_start_plug(&plug); 8826 while (j < max_sectors) { 8827 sector_t sectors; 8828 8829 skipped = 0; 8830 8831 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8832 ((mddev->curr_resync > mddev->curr_resync_completed && 8833 (mddev->curr_resync - mddev->curr_resync_completed) 8834 > (max_sectors >> 4)) || 8835 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8836 (j - mddev->curr_resync_completed)*2 8837 >= mddev->resync_max - mddev->curr_resync_completed || 8838 mddev->curr_resync_completed > mddev->resync_max 8839 )) { 8840 /* time to update curr_resync_completed */ 8841 wait_event(mddev->recovery_wait, 8842 atomic_read(&mddev->recovery_active) == 0); 8843 mddev->curr_resync_completed = j; 8844 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8845 j > mddev->recovery_cp) 8846 mddev->recovery_cp = j; 8847 update_time = jiffies; 8848 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8849 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8850 } 8851 8852 while (j >= mddev->resync_max && 8853 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8854 /* As this condition is controlled by user-space, 8855 * we can block indefinitely, so use '_interruptible' 8856 * to avoid triggering warnings. 8857 */ 8858 flush_signals(current); /* just in case */ 8859 wait_event_interruptible(mddev->recovery_wait, 8860 mddev->resync_max > j 8861 || test_bit(MD_RECOVERY_INTR, 8862 &mddev->recovery)); 8863 } 8864 8865 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8866 break; 8867 8868 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8869 if (sectors == 0) { 8870 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8871 break; 8872 } 8873 8874 if (!skipped) { /* actual IO requested */ 8875 io_sectors += sectors; 8876 atomic_add(sectors, &mddev->recovery_active); 8877 } 8878 8879 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8880 break; 8881 8882 j += sectors; 8883 if (j > max_sectors) 8884 /* when skipping, extra large numbers can be returned. */ 8885 j = max_sectors; 8886 if (j > 2) 8887 mddev->curr_resync = j; 8888 mddev->curr_mark_cnt = io_sectors; 8889 if (last_check == 0) 8890 /* this is the earliest that rebuild will be 8891 * visible in /proc/mdstat 8892 */ 8893 md_new_event(mddev); 8894 8895 if (last_check + window > io_sectors || j == max_sectors) 8896 continue; 8897 8898 last_check = io_sectors; 8899 repeat: 8900 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8901 /* step marks */ 8902 int next = (last_mark+1) % SYNC_MARKS; 8903 8904 mddev->resync_mark = mark[next]; 8905 mddev->resync_mark_cnt = mark_cnt[next]; 8906 mark[next] = jiffies; 8907 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8908 last_mark = next; 8909 } 8910 8911 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8912 break; 8913 8914 /* 8915 * this loop exits only if either when we are slower than 8916 * the 'hard' speed limit, or the system was IO-idle for 8917 * a jiffy. 8918 * the system might be non-idle CPU-wise, but we only care 8919 * about not overloading the IO subsystem. (things like an 8920 * e2fsck being done on the RAID array should execute fast) 8921 */ 8922 cond_resched(); 8923 8924 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8925 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8926 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8927 8928 if (currspeed > speed_min(mddev)) { 8929 if (currspeed > speed_max(mddev)) { 8930 msleep(500); 8931 goto repeat; 8932 } 8933 if (!is_mddev_idle(mddev, 0)) { 8934 /* 8935 * Give other IO more of a chance. 8936 * The faster the devices, the less we wait. 8937 */ 8938 wait_event(mddev->recovery_wait, 8939 !atomic_read(&mddev->recovery_active)); 8940 } 8941 } 8942 } 8943 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8944 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8945 ? "interrupted" : "done"); 8946 /* 8947 * this also signals 'finished resyncing' to md_stop 8948 */ 8949 blk_finish_plug(&plug); 8950 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8951 8952 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8953 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8954 mddev->curr_resync > 3) { 8955 mddev->curr_resync_completed = mddev->curr_resync; 8956 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8957 } 8958 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8959 8960 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8961 mddev->curr_resync > 3) { 8962 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8963 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8964 if (mddev->curr_resync >= mddev->recovery_cp) { 8965 pr_debug("md: checkpointing %s of %s.\n", 8966 desc, mdname(mddev)); 8967 if (test_bit(MD_RECOVERY_ERROR, 8968 &mddev->recovery)) 8969 mddev->recovery_cp = 8970 mddev->curr_resync_completed; 8971 else 8972 mddev->recovery_cp = 8973 mddev->curr_resync; 8974 } 8975 } else 8976 mddev->recovery_cp = MaxSector; 8977 } else { 8978 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8979 mddev->curr_resync = MaxSector; 8980 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8981 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8982 rcu_read_lock(); 8983 rdev_for_each_rcu(rdev, mddev) 8984 if (rdev->raid_disk >= 0 && 8985 mddev->delta_disks >= 0 && 8986 !test_bit(Journal, &rdev->flags) && 8987 !test_bit(Faulty, &rdev->flags) && 8988 !test_bit(In_sync, &rdev->flags) && 8989 rdev->recovery_offset < mddev->curr_resync) 8990 rdev->recovery_offset = mddev->curr_resync; 8991 rcu_read_unlock(); 8992 } 8993 } 8994 } 8995 skip: 8996 /* set CHANGE_PENDING here since maybe another update is needed, 8997 * so other nodes are informed. It should be harmless for normal 8998 * raid */ 8999 set_mask_bits(&mddev->sb_flags, 0, 9000 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9001 9002 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9003 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9004 mddev->delta_disks > 0 && 9005 mddev->pers->finish_reshape && 9006 mddev->pers->size && 9007 mddev->queue) { 9008 mddev_lock_nointr(mddev); 9009 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9010 mddev_unlock(mddev); 9011 if (!mddev_is_clustered(mddev)) 9012 set_capacity_and_notify(mddev->gendisk, 9013 mddev->array_sectors); 9014 } 9015 9016 spin_lock(&mddev->lock); 9017 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9018 /* We completed so min/max setting can be forgotten if used. */ 9019 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9020 mddev->resync_min = 0; 9021 mddev->resync_max = MaxSector; 9022 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9023 mddev->resync_min = mddev->curr_resync_completed; 9024 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9025 mddev->curr_resync = 0; 9026 spin_unlock(&mddev->lock); 9027 9028 wake_up(&resync_wait); 9029 md_wakeup_thread(mddev->thread); 9030 return; 9031 } 9032 EXPORT_SYMBOL_GPL(md_do_sync); 9033 9034 static int remove_and_add_spares(struct mddev *mddev, 9035 struct md_rdev *this) 9036 { 9037 struct md_rdev *rdev; 9038 int spares = 0; 9039 int removed = 0; 9040 bool remove_some = false; 9041 9042 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9043 /* Mustn't remove devices when resync thread is running */ 9044 return 0; 9045 9046 rdev_for_each(rdev, mddev) { 9047 if ((this == NULL || rdev == this) && 9048 rdev->raid_disk >= 0 && 9049 !test_bit(Blocked, &rdev->flags) && 9050 test_bit(Faulty, &rdev->flags) && 9051 atomic_read(&rdev->nr_pending)==0) { 9052 /* Faulty non-Blocked devices with nr_pending == 0 9053 * never get nr_pending incremented, 9054 * never get Faulty cleared, and never get Blocked set. 9055 * So we can synchronize_rcu now rather than once per device 9056 */ 9057 remove_some = true; 9058 set_bit(RemoveSynchronized, &rdev->flags); 9059 } 9060 } 9061 9062 if (remove_some) 9063 synchronize_rcu(); 9064 rdev_for_each(rdev, mddev) { 9065 if ((this == NULL || rdev == this) && 9066 rdev->raid_disk >= 0 && 9067 !test_bit(Blocked, &rdev->flags) && 9068 ((test_bit(RemoveSynchronized, &rdev->flags) || 9069 (!test_bit(In_sync, &rdev->flags) && 9070 !test_bit(Journal, &rdev->flags))) && 9071 atomic_read(&rdev->nr_pending)==0)) { 9072 if (mddev->pers->hot_remove_disk( 9073 mddev, rdev) == 0) { 9074 sysfs_unlink_rdev(mddev, rdev); 9075 rdev->saved_raid_disk = rdev->raid_disk; 9076 rdev->raid_disk = -1; 9077 removed++; 9078 } 9079 } 9080 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9081 clear_bit(RemoveSynchronized, &rdev->flags); 9082 } 9083 9084 if (removed && mddev->kobj.sd) 9085 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9086 9087 if (this && removed) 9088 goto no_add; 9089 9090 rdev_for_each(rdev, mddev) { 9091 if (this && this != rdev) 9092 continue; 9093 if (test_bit(Candidate, &rdev->flags)) 9094 continue; 9095 if (rdev->raid_disk >= 0 && 9096 !test_bit(In_sync, &rdev->flags) && 9097 !test_bit(Journal, &rdev->flags) && 9098 !test_bit(Faulty, &rdev->flags)) 9099 spares++; 9100 if (rdev->raid_disk >= 0) 9101 continue; 9102 if (test_bit(Faulty, &rdev->flags)) 9103 continue; 9104 if (!test_bit(Journal, &rdev->flags)) { 9105 if (mddev->ro && 9106 ! (rdev->saved_raid_disk >= 0 && 9107 !test_bit(Bitmap_sync, &rdev->flags))) 9108 continue; 9109 9110 rdev->recovery_offset = 0; 9111 } 9112 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9113 /* failure here is OK */ 9114 sysfs_link_rdev(mddev, rdev); 9115 if (!test_bit(Journal, &rdev->flags)) 9116 spares++; 9117 md_new_event(mddev); 9118 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9119 } 9120 } 9121 no_add: 9122 if (removed) 9123 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9124 return spares; 9125 } 9126 9127 static void md_start_sync(struct work_struct *ws) 9128 { 9129 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9130 9131 mddev->sync_thread = md_register_thread(md_do_sync, 9132 mddev, 9133 "resync"); 9134 if (!mddev->sync_thread) { 9135 pr_warn("%s: could not start resync thread...\n", 9136 mdname(mddev)); 9137 /* leave the spares where they are, it shouldn't hurt */ 9138 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9139 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9140 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9141 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9142 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9143 wake_up(&resync_wait); 9144 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9145 &mddev->recovery)) 9146 if (mddev->sysfs_action) 9147 sysfs_notify_dirent_safe(mddev->sysfs_action); 9148 } else 9149 md_wakeup_thread(mddev->sync_thread); 9150 sysfs_notify_dirent_safe(mddev->sysfs_action); 9151 md_new_event(mddev); 9152 } 9153 9154 /* 9155 * This routine is regularly called by all per-raid-array threads to 9156 * deal with generic issues like resync and super-block update. 9157 * Raid personalities that don't have a thread (linear/raid0) do not 9158 * need this as they never do any recovery or update the superblock. 9159 * 9160 * It does not do any resync itself, but rather "forks" off other threads 9161 * to do that as needed. 9162 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9163 * "->recovery" and create a thread at ->sync_thread. 9164 * When the thread finishes it sets MD_RECOVERY_DONE 9165 * and wakeups up this thread which will reap the thread and finish up. 9166 * This thread also removes any faulty devices (with nr_pending == 0). 9167 * 9168 * The overall approach is: 9169 * 1/ if the superblock needs updating, update it. 9170 * 2/ If a recovery thread is running, don't do anything else. 9171 * 3/ If recovery has finished, clean up, possibly marking spares active. 9172 * 4/ If there are any faulty devices, remove them. 9173 * 5/ If array is degraded, try to add spares devices 9174 * 6/ If array has spares or is not in-sync, start a resync thread. 9175 */ 9176 void md_check_recovery(struct mddev *mddev) 9177 { 9178 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9179 /* Write superblock - thread that called mddev_suspend() 9180 * holds reconfig_mutex for us. 9181 */ 9182 set_bit(MD_UPDATING_SB, &mddev->flags); 9183 smp_mb__after_atomic(); 9184 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9185 md_update_sb(mddev, 0); 9186 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9187 wake_up(&mddev->sb_wait); 9188 } 9189 9190 if (mddev->suspended) 9191 return; 9192 9193 if (mddev->bitmap) 9194 md_bitmap_daemon_work(mddev); 9195 9196 if (signal_pending(current)) { 9197 if (mddev->pers->sync_request && !mddev->external) { 9198 pr_debug("md: %s in immediate safe mode\n", 9199 mdname(mddev)); 9200 mddev->safemode = 2; 9201 } 9202 flush_signals(current); 9203 } 9204 9205 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9206 return; 9207 if ( ! ( 9208 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9209 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9210 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9211 (mddev->external == 0 && mddev->safemode == 1) || 9212 (mddev->safemode == 2 9213 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9214 )) 9215 return; 9216 9217 if (mddev_trylock(mddev)) { 9218 int spares = 0; 9219 bool try_set_sync = mddev->safemode != 0; 9220 9221 if (!mddev->external && mddev->safemode == 1) 9222 mddev->safemode = 0; 9223 9224 if (mddev->ro) { 9225 struct md_rdev *rdev; 9226 if (!mddev->external && mddev->in_sync) 9227 /* 'Blocked' flag not needed as failed devices 9228 * will be recorded if array switched to read/write. 9229 * Leaving it set will prevent the device 9230 * from being removed. 9231 */ 9232 rdev_for_each(rdev, mddev) 9233 clear_bit(Blocked, &rdev->flags); 9234 /* On a read-only array we can: 9235 * - remove failed devices 9236 * - add already-in_sync devices if the array itself 9237 * is in-sync. 9238 * As we only add devices that are already in-sync, 9239 * we can activate the spares immediately. 9240 */ 9241 remove_and_add_spares(mddev, NULL); 9242 /* There is no thread, but we need to call 9243 * ->spare_active and clear saved_raid_disk 9244 */ 9245 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9246 md_reap_sync_thread(mddev); 9247 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9248 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9249 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9250 goto unlock; 9251 } 9252 9253 if (mddev_is_clustered(mddev)) { 9254 struct md_rdev *rdev; 9255 /* kick the device if another node issued a 9256 * remove disk. 9257 */ 9258 rdev_for_each(rdev, mddev) { 9259 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9260 rdev->raid_disk < 0) 9261 md_kick_rdev_from_array(rdev); 9262 } 9263 } 9264 9265 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9266 spin_lock(&mddev->lock); 9267 set_in_sync(mddev); 9268 spin_unlock(&mddev->lock); 9269 } 9270 9271 if (mddev->sb_flags) 9272 md_update_sb(mddev, 0); 9273 9274 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9275 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9276 /* resync/recovery still happening */ 9277 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9278 goto unlock; 9279 } 9280 if (mddev->sync_thread) { 9281 md_reap_sync_thread(mddev); 9282 goto unlock; 9283 } 9284 /* Set RUNNING before clearing NEEDED to avoid 9285 * any transients in the value of "sync_action". 9286 */ 9287 mddev->curr_resync_completed = 0; 9288 spin_lock(&mddev->lock); 9289 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9290 spin_unlock(&mddev->lock); 9291 /* Clear some bits that don't mean anything, but 9292 * might be left set 9293 */ 9294 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9295 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9296 9297 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9298 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9299 goto not_running; 9300 /* no recovery is running. 9301 * remove any failed drives, then 9302 * add spares if possible. 9303 * Spares are also removed and re-added, to allow 9304 * the personality to fail the re-add. 9305 */ 9306 9307 if (mddev->reshape_position != MaxSector) { 9308 if (mddev->pers->check_reshape == NULL || 9309 mddev->pers->check_reshape(mddev) != 0) 9310 /* Cannot proceed */ 9311 goto not_running; 9312 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9313 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9314 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9315 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9316 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9317 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9318 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9319 } else if (mddev->recovery_cp < MaxSector) { 9320 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9321 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9322 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9323 /* nothing to be done ... */ 9324 goto not_running; 9325 9326 if (mddev->pers->sync_request) { 9327 if (spares) { 9328 /* We are adding a device or devices to an array 9329 * which has the bitmap stored on all devices. 9330 * So make sure all bitmap pages get written 9331 */ 9332 md_bitmap_write_all(mddev->bitmap); 9333 } 9334 INIT_WORK(&mddev->del_work, md_start_sync); 9335 queue_work(md_misc_wq, &mddev->del_work); 9336 goto unlock; 9337 } 9338 not_running: 9339 if (!mddev->sync_thread) { 9340 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9341 wake_up(&resync_wait); 9342 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9343 &mddev->recovery)) 9344 if (mddev->sysfs_action) 9345 sysfs_notify_dirent_safe(mddev->sysfs_action); 9346 } 9347 unlock: 9348 wake_up(&mddev->sb_wait); 9349 mddev_unlock(mddev); 9350 } 9351 } 9352 EXPORT_SYMBOL(md_check_recovery); 9353 9354 void md_reap_sync_thread(struct mddev *mddev) 9355 { 9356 struct md_rdev *rdev; 9357 sector_t old_dev_sectors = mddev->dev_sectors; 9358 bool is_reshaped = false; 9359 9360 /* resync has finished, collect result */ 9361 md_unregister_thread(&mddev->sync_thread); 9362 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9363 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9364 mddev->degraded != mddev->raid_disks) { 9365 /* success...*/ 9366 /* activate any spares */ 9367 if (mddev->pers->spare_active(mddev)) { 9368 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9369 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9370 } 9371 } 9372 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9373 mddev->pers->finish_reshape) { 9374 mddev->pers->finish_reshape(mddev); 9375 if (mddev_is_clustered(mddev)) 9376 is_reshaped = true; 9377 } 9378 9379 /* If array is no-longer degraded, then any saved_raid_disk 9380 * information must be scrapped. 9381 */ 9382 if (!mddev->degraded) 9383 rdev_for_each(rdev, mddev) 9384 rdev->saved_raid_disk = -1; 9385 9386 md_update_sb(mddev, 1); 9387 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9388 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9389 * clustered raid */ 9390 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9391 md_cluster_ops->resync_finish(mddev); 9392 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9393 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9394 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9395 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9396 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9397 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9398 /* 9399 * We call md_cluster_ops->update_size here because sync_size could 9400 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9401 * so it is time to update size across cluster. 9402 */ 9403 if (mddev_is_clustered(mddev) && is_reshaped 9404 && !test_bit(MD_CLOSING, &mddev->flags)) 9405 md_cluster_ops->update_size(mddev, old_dev_sectors); 9406 wake_up(&resync_wait); 9407 /* flag recovery needed just to double check */ 9408 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9409 sysfs_notify_dirent_safe(mddev->sysfs_action); 9410 md_new_event(mddev); 9411 if (mddev->event_work.func) 9412 queue_work(md_misc_wq, &mddev->event_work); 9413 } 9414 EXPORT_SYMBOL(md_reap_sync_thread); 9415 9416 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9417 { 9418 sysfs_notify_dirent_safe(rdev->sysfs_state); 9419 wait_event_timeout(rdev->blocked_wait, 9420 !test_bit(Blocked, &rdev->flags) && 9421 !test_bit(BlockedBadBlocks, &rdev->flags), 9422 msecs_to_jiffies(5000)); 9423 rdev_dec_pending(rdev, mddev); 9424 } 9425 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9426 9427 void md_finish_reshape(struct mddev *mddev) 9428 { 9429 /* called be personality module when reshape completes. */ 9430 struct md_rdev *rdev; 9431 9432 rdev_for_each(rdev, mddev) { 9433 if (rdev->data_offset > rdev->new_data_offset) 9434 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9435 else 9436 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9437 rdev->data_offset = rdev->new_data_offset; 9438 } 9439 } 9440 EXPORT_SYMBOL(md_finish_reshape); 9441 9442 /* Bad block management */ 9443 9444 /* Returns 1 on success, 0 on failure */ 9445 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9446 int is_new) 9447 { 9448 struct mddev *mddev = rdev->mddev; 9449 int rv; 9450 if (is_new) 9451 s += rdev->new_data_offset; 9452 else 9453 s += rdev->data_offset; 9454 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9455 if (rv == 0) { 9456 /* Make sure they get written out promptly */ 9457 if (test_bit(ExternalBbl, &rdev->flags)) 9458 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9459 sysfs_notify_dirent_safe(rdev->sysfs_state); 9460 set_mask_bits(&mddev->sb_flags, 0, 9461 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9462 md_wakeup_thread(rdev->mddev->thread); 9463 return 1; 9464 } else 9465 return 0; 9466 } 9467 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9468 9469 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9470 int is_new) 9471 { 9472 int rv; 9473 if (is_new) 9474 s += rdev->new_data_offset; 9475 else 9476 s += rdev->data_offset; 9477 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9478 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9479 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9480 return rv; 9481 } 9482 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9483 9484 static int md_notify_reboot(struct notifier_block *this, 9485 unsigned long code, void *x) 9486 { 9487 struct list_head *tmp; 9488 struct mddev *mddev; 9489 int need_delay = 0; 9490 9491 for_each_mddev(mddev, tmp) { 9492 if (mddev_trylock(mddev)) { 9493 if (mddev->pers) 9494 __md_stop_writes(mddev); 9495 if (mddev->persistent) 9496 mddev->safemode = 2; 9497 mddev_unlock(mddev); 9498 } 9499 need_delay = 1; 9500 } 9501 /* 9502 * certain more exotic SCSI devices are known to be 9503 * volatile wrt too early system reboots. While the 9504 * right place to handle this issue is the given 9505 * driver, we do want to have a safe RAID driver ... 9506 */ 9507 if (need_delay) 9508 mdelay(1000*1); 9509 9510 return NOTIFY_DONE; 9511 } 9512 9513 static struct notifier_block md_notifier = { 9514 .notifier_call = md_notify_reboot, 9515 .next = NULL, 9516 .priority = INT_MAX, /* before any real devices */ 9517 }; 9518 9519 static void md_geninit(void) 9520 { 9521 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9522 9523 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9524 } 9525 9526 static int __init md_init(void) 9527 { 9528 int ret = -ENOMEM; 9529 9530 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9531 if (!md_wq) 9532 goto err_wq; 9533 9534 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9535 if (!md_misc_wq) 9536 goto err_misc_wq; 9537 9538 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9539 if (!md_rdev_misc_wq) 9540 goto err_rdev_misc_wq; 9541 9542 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9543 if (ret < 0) 9544 goto err_md; 9545 9546 ret = __register_blkdev(0, "mdp", md_probe); 9547 if (ret < 0) 9548 goto err_mdp; 9549 mdp_major = ret; 9550 9551 register_reboot_notifier(&md_notifier); 9552 raid_table_header = register_sysctl_table(raid_root_table); 9553 9554 md_geninit(); 9555 return 0; 9556 9557 err_mdp: 9558 unregister_blkdev(MD_MAJOR, "md"); 9559 err_md: 9560 destroy_workqueue(md_rdev_misc_wq); 9561 err_rdev_misc_wq: 9562 destroy_workqueue(md_misc_wq); 9563 err_misc_wq: 9564 destroy_workqueue(md_wq); 9565 err_wq: 9566 return ret; 9567 } 9568 9569 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9570 { 9571 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9572 struct md_rdev *rdev2; 9573 int role, ret; 9574 char b[BDEVNAME_SIZE]; 9575 9576 /* 9577 * If size is changed in another node then we need to 9578 * do resize as well. 9579 */ 9580 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9581 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9582 if (ret) 9583 pr_info("md-cluster: resize failed\n"); 9584 else 9585 md_bitmap_update_sb(mddev->bitmap); 9586 } 9587 9588 /* Check for change of roles in the active devices */ 9589 rdev_for_each(rdev2, mddev) { 9590 if (test_bit(Faulty, &rdev2->flags)) 9591 continue; 9592 9593 /* Check if the roles changed */ 9594 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9595 9596 if (test_bit(Candidate, &rdev2->flags)) { 9597 if (role == 0xfffe) { 9598 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9599 md_kick_rdev_from_array(rdev2); 9600 continue; 9601 } 9602 else 9603 clear_bit(Candidate, &rdev2->flags); 9604 } 9605 9606 if (role != rdev2->raid_disk) { 9607 /* 9608 * got activated except reshape is happening. 9609 */ 9610 if (rdev2->raid_disk == -1 && role != 0xffff && 9611 !(le32_to_cpu(sb->feature_map) & 9612 MD_FEATURE_RESHAPE_ACTIVE)) { 9613 rdev2->saved_raid_disk = role; 9614 ret = remove_and_add_spares(mddev, rdev2); 9615 pr_info("Activated spare: %s\n", 9616 bdevname(rdev2->bdev,b)); 9617 /* wakeup mddev->thread here, so array could 9618 * perform resync with the new activated disk */ 9619 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9620 md_wakeup_thread(mddev->thread); 9621 } 9622 /* device faulty 9623 * We just want to do the minimum to mark the disk 9624 * as faulty. The recovery is performed by the 9625 * one who initiated the error. 9626 */ 9627 if ((role == 0xfffe) || (role == 0xfffd)) { 9628 md_error(mddev, rdev2); 9629 clear_bit(Blocked, &rdev2->flags); 9630 } 9631 } 9632 } 9633 9634 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9635 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9636 if (ret) 9637 pr_warn("md: updating array disks failed. %d\n", ret); 9638 } 9639 9640 /* 9641 * Since mddev->delta_disks has already updated in update_raid_disks, 9642 * so it is time to check reshape. 9643 */ 9644 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9645 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9646 /* 9647 * reshape is happening in the remote node, we need to 9648 * update reshape_position and call start_reshape. 9649 */ 9650 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9651 if (mddev->pers->update_reshape_pos) 9652 mddev->pers->update_reshape_pos(mddev); 9653 if (mddev->pers->start_reshape) 9654 mddev->pers->start_reshape(mddev); 9655 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9656 mddev->reshape_position != MaxSector && 9657 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9658 /* reshape is just done in another node. */ 9659 mddev->reshape_position = MaxSector; 9660 if (mddev->pers->update_reshape_pos) 9661 mddev->pers->update_reshape_pos(mddev); 9662 } 9663 9664 /* Finally set the event to be up to date */ 9665 mddev->events = le64_to_cpu(sb->events); 9666 } 9667 9668 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9669 { 9670 int err; 9671 struct page *swapout = rdev->sb_page; 9672 struct mdp_superblock_1 *sb; 9673 9674 /* Store the sb page of the rdev in the swapout temporary 9675 * variable in case we err in the future 9676 */ 9677 rdev->sb_page = NULL; 9678 err = alloc_disk_sb(rdev); 9679 if (err == 0) { 9680 ClearPageUptodate(rdev->sb_page); 9681 rdev->sb_loaded = 0; 9682 err = super_types[mddev->major_version]. 9683 load_super(rdev, NULL, mddev->minor_version); 9684 } 9685 if (err < 0) { 9686 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9687 __func__, __LINE__, rdev->desc_nr, err); 9688 if (rdev->sb_page) 9689 put_page(rdev->sb_page); 9690 rdev->sb_page = swapout; 9691 rdev->sb_loaded = 1; 9692 return err; 9693 } 9694 9695 sb = page_address(rdev->sb_page); 9696 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9697 * is not set 9698 */ 9699 9700 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9701 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9702 9703 /* The other node finished recovery, call spare_active to set 9704 * device In_sync and mddev->degraded 9705 */ 9706 if (rdev->recovery_offset == MaxSector && 9707 !test_bit(In_sync, &rdev->flags) && 9708 mddev->pers->spare_active(mddev)) 9709 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9710 9711 put_page(swapout); 9712 return 0; 9713 } 9714 9715 void md_reload_sb(struct mddev *mddev, int nr) 9716 { 9717 struct md_rdev *rdev; 9718 int err; 9719 9720 /* Find the rdev */ 9721 rdev_for_each_rcu(rdev, mddev) { 9722 if (rdev->desc_nr == nr) 9723 break; 9724 } 9725 9726 if (!rdev || rdev->desc_nr != nr) { 9727 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9728 return; 9729 } 9730 9731 err = read_rdev(mddev, rdev); 9732 if (err < 0) 9733 return; 9734 9735 check_sb_changes(mddev, rdev); 9736 9737 /* Read all rdev's to update recovery_offset */ 9738 rdev_for_each_rcu(rdev, mddev) { 9739 if (!test_bit(Faulty, &rdev->flags)) 9740 read_rdev(mddev, rdev); 9741 } 9742 } 9743 EXPORT_SYMBOL(md_reload_sb); 9744 9745 #ifndef MODULE 9746 9747 /* 9748 * Searches all registered partitions for autorun RAID arrays 9749 * at boot time. 9750 */ 9751 9752 static DEFINE_MUTEX(detected_devices_mutex); 9753 static LIST_HEAD(all_detected_devices); 9754 struct detected_devices_node { 9755 struct list_head list; 9756 dev_t dev; 9757 }; 9758 9759 void md_autodetect_dev(dev_t dev) 9760 { 9761 struct detected_devices_node *node_detected_dev; 9762 9763 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9764 if (node_detected_dev) { 9765 node_detected_dev->dev = dev; 9766 mutex_lock(&detected_devices_mutex); 9767 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9768 mutex_unlock(&detected_devices_mutex); 9769 } 9770 } 9771 9772 void md_autostart_arrays(int part) 9773 { 9774 struct md_rdev *rdev; 9775 struct detected_devices_node *node_detected_dev; 9776 dev_t dev; 9777 int i_scanned, i_passed; 9778 9779 i_scanned = 0; 9780 i_passed = 0; 9781 9782 pr_info("md: Autodetecting RAID arrays.\n"); 9783 9784 mutex_lock(&detected_devices_mutex); 9785 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9786 i_scanned++; 9787 node_detected_dev = list_entry(all_detected_devices.next, 9788 struct detected_devices_node, list); 9789 list_del(&node_detected_dev->list); 9790 dev = node_detected_dev->dev; 9791 kfree(node_detected_dev); 9792 mutex_unlock(&detected_devices_mutex); 9793 rdev = md_import_device(dev,0, 90); 9794 mutex_lock(&detected_devices_mutex); 9795 if (IS_ERR(rdev)) 9796 continue; 9797 9798 if (test_bit(Faulty, &rdev->flags)) 9799 continue; 9800 9801 set_bit(AutoDetected, &rdev->flags); 9802 list_add(&rdev->same_set, &pending_raid_disks); 9803 i_passed++; 9804 } 9805 mutex_unlock(&detected_devices_mutex); 9806 9807 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9808 9809 autorun_devices(part); 9810 } 9811 9812 #endif /* !MODULE */ 9813 9814 static __exit void md_exit(void) 9815 { 9816 struct mddev *mddev; 9817 struct list_head *tmp; 9818 int delay = 1; 9819 9820 unregister_blkdev(MD_MAJOR,"md"); 9821 unregister_blkdev(mdp_major, "mdp"); 9822 unregister_reboot_notifier(&md_notifier); 9823 unregister_sysctl_table(raid_table_header); 9824 9825 /* We cannot unload the modules while some process is 9826 * waiting for us in select() or poll() - wake them up 9827 */ 9828 md_unloading = 1; 9829 while (waitqueue_active(&md_event_waiters)) { 9830 /* not safe to leave yet */ 9831 wake_up(&md_event_waiters); 9832 msleep(delay); 9833 delay += delay; 9834 } 9835 remove_proc_entry("mdstat", NULL); 9836 9837 for_each_mddev(mddev, tmp) { 9838 export_array(mddev); 9839 mddev->ctime = 0; 9840 mddev->hold_active = 0; 9841 /* 9842 * for_each_mddev() will call mddev_put() at the end of each 9843 * iteration. As the mddev is now fully clear, this will 9844 * schedule the mddev for destruction by a workqueue, and the 9845 * destroy_workqueue() below will wait for that to complete. 9846 */ 9847 } 9848 destroy_workqueue(md_rdev_misc_wq); 9849 destroy_workqueue(md_misc_wq); 9850 destroy_workqueue(md_wq); 9851 } 9852 9853 subsys_initcall(md_init); 9854 module_exit(md_exit) 9855 9856 static int get_ro(char *buffer, const struct kernel_param *kp) 9857 { 9858 return sprintf(buffer, "%d\n", start_readonly); 9859 } 9860 static int set_ro(const char *val, const struct kernel_param *kp) 9861 { 9862 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9863 } 9864 9865 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9866 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9867 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9868 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9869 9870 MODULE_LICENSE("GPL"); 9871 MODULE_DESCRIPTION("MD RAID framework"); 9872 MODULE_ALIAS("md"); 9873 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9874