xref: /openbmc/linux/drivers/md/md.c (revision 8684014d)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72 
73 static int remove_and_add_spares(struct mddev *mddev,
74 				 struct md_rdev *this);
75 
76 /*
77  * Default number of read corrections we'll attempt on an rdev
78  * before ejecting it from the array. We divide the read error
79  * count by 2 for every hour elapsed between read errors.
80  */
81 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
82 /*
83  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
84  * is 1000 KB/sec, so the extra system load does not show up that much.
85  * Increase it if you want to have more _guaranteed_ speed. Note that
86  * the RAID driver will use the maximum available bandwidth if the IO
87  * subsystem is idle. There is also an 'absolute maximum' reconstruction
88  * speed limit - in case reconstruction slows down your system despite
89  * idle IO detection.
90  *
91  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
92  * or /sys/block/mdX/md/sync_speed_{min,max}
93  */
94 
95 static int sysctl_speed_limit_min = 1000;
96 static int sysctl_speed_limit_max = 200000;
97 static inline int speed_min(struct mddev *mddev)
98 {
99 	return mddev->sync_speed_min ?
100 		mddev->sync_speed_min : sysctl_speed_limit_min;
101 }
102 
103 static inline int speed_max(struct mddev *mddev)
104 {
105 	return mddev->sync_speed_max ?
106 		mddev->sync_speed_max : sysctl_speed_limit_max;
107 }
108 
109 static struct ctl_table_header *raid_table_header;
110 
111 static struct ctl_table raid_table[] = {
112 	{
113 		.procname	= "speed_limit_min",
114 		.data		= &sysctl_speed_limit_min,
115 		.maxlen		= sizeof(int),
116 		.mode		= S_IRUGO|S_IWUSR,
117 		.proc_handler	= proc_dointvec,
118 	},
119 	{
120 		.procname	= "speed_limit_max",
121 		.data		= &sysctl_speed_limit_max,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{ }
127 };
128 
129 static struct ctl_table raid_dir_table[] = {
130 	{
131 		.procname	= "raid",
132 		.maxlen		= 0,
133 		.mode		= S_IRUGO|S_IXUGO,
134 		.child		= raid_table,
135 	},
136 	{ }
137 };
138 
139 static struct ctl_table raid_root_table[] = {
140 	{
141 		.procname	= "dev",
142 		.maxlen		= 0,
143 		.mode		= 0555,
144 		.child		= raid_dir_table,
145 	},
146 	{  }
147 };
148 
149 static const struct block_device_operations md_fops;
150 
151 static int start_readonly;
152 
153 /* bio_clone_mddev
154  * like bio_clone, but with a local bio set
155  */
156 
157 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
158 			    struct mddev *mddev)
159 {
160 	struct bio *b;
161 
162 	if (!mddev || !mddev->bio_set)
163 		return bio_alloc(gfp_mask, nr_iovecs);
164 
165 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
166 	if (!b)
167 		return NULL;
168 	return b;
169 }
170 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
171 
172 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
173 			    struct mddev *mddev)
174 {
175 	if (!mddev || !mddev->bio_set)
176 		return bio_clone(bio, gfp_mask);
177 
178 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
179 }
180 EXPORT_SYMBOL_GPL(bio_clone_mddev);
181 
182 /*
183  * We have a system wide 'event count' that is incremented
184  * on any 'interesting' event, and readers of /proc/mdstat
185  * can use 'poll' or 'select' to find out when the event
186  * count increases.
187  *
188  * Events are:
189  *  start array, stop array, error, add device, remove device,
190  *  start build, activate spare
191  */
192 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
193 static atomic_t md_event_count;
194 void md_new_event(struct mddev *mddev)
195 {
196 	atomic_inc(&md_event_count);
197 	wake_up(&md_event_waiters);
198 }
199 EXPORT_SYMBOL_GPL(md_new_event);
200 
201 /* Alternate version that can be called from interrupts
202  * when calling sysfs_notify isn't needed.
203  */
204 static void md_new_event_inintr(struct mddev *mddev)
205 {
206 	atomic_inc(&md_event_count);
207 	wake_up(&md_event_waiters);
208 }
209 
210 /*
211  * Enables to iterate over all existing md arrays
212  * all_mddevs_lock protects this list.
213  */
214 static LIST_HEAD(all_mddevs);
215 static DEFINE_SPINLOCK(all_mddevs_lock);
216 
217 /*
218  * iterates through all used mddevs in the system.
219  * We take care to grab the all_mddevs_lock whenever navigating
220  * the list, and to always hold a refcount when unlocked.
221  * Any code which breaks out of this loop while own
222  * a reference to the current mddev and must mddev_put it.
223  */
224 #define for_each_mddev(_mddev,_tmp)					\
225 									\
226 	for (({ spin_lock(&all_mddevs_lock);				\
227 		_tmp = all_mddevs.next;					\
228 		_mddev = NULL;});					\
229 	     ({ if (_tmp != &all_mddevs)				\
230 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
231 		spin_unlock(&all_mddevs_lock);				\
232 		if (_mddev) mddev_put(_mddev);				\
233 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
234 		_tmp != &all_mddevs;});					\
235 	     ({ spin_lock(&all_mddevs_lock);				\
236 		_tmp = _tmp->next;})					\
237 		)
238 
239 /* Rather than calling directly into the personality make_request function,
240  * IO requests come here first so that we can check if the device is
241  * being suspended pending a reconfiguration.
242  * We hold a refcount over the call to ->make_request.  By the time that
243  * call has finished, the bio has been linked into some internal structure
244  * and so is visible to ->quiesce(), so we don't need the refcount any more.
245  */
246 static void md_make_request(struct request_queue *q, struct bio *bio)
247 {
248 	const int rw = bio_data_dir(bio);
249 	struct mddev *mddev = q->queuedata;
250 	unsigned int sectors;
251 
252 	if (mddev == NULL || mddev->pers == NULL
253 	    || !mddev->ready) {
254 		bio_io_error(bio);
255 		return;
256 	}
257 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
258 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
259 		return;
260 	}
261 	smp_rmb(); /* Ensure implications of  'active' are visible */
262 	rcu_read_lock();
263 	if (mddev->suspended) {
264 		DEFINE_WAIT(__wait);
265 		for (;;) {
266 			prepare_to_wait(&mddev->sb_wait, &__wait,
267 					TASK_UNINTERRUPTIBLE);
268 			if (!mddev->suspended)
269 				break;
270 			rcu_read_unlock();
271 			schedule();
272 			rcu_read_lock();
273 		}
274 		finish_wait(&mddev->sb_wait, &__wait);
275 	}
276 	atomic_inc(&mddev->active_io);
277 	rcu_read_unlock();
278 
279 	/*
280 	 * save the sectors now since our bio can
281 	 * go away inside make_request
282 	 */
283 	sectors = bio_sectors(bio);
284 	mddev->pers->make_request(mddev, bio);
285 
286 	generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
287 
288 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
289 		wake_up(&mddev->sb_wait);
290 }
291 
292 /* mddev_suspend makes sure no new requests are submitted
293  * to the device, and that any requests that have been submitted
294  * are completely handled.
295  * Once ->stop is called and completes, the module will be completely
296  * unused.
297  */
298 void mddev_suspend(struct mddev *mddev)
299 {
300 	BUG_ON(mddev->suspended);
301 	mddev->suspended = 1;
302 	synchronize_rcu();
303 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
304 	mddev->pers->quiesce(mddev, 1);
305 
306 	del_timer_sync(&mddev->safemode_timer);
307 }
308 EXPORT_SYMBOL_GPL(mddev_suspend);
309 
310 void mddev_resume(struct mddev *mddev)
311 {
312 	mddev->suspended = 0;
313 	wake_up(&mddev->sb_wait);
314 	mddev->pers->quiesce(mddev, 0);
315 
316 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
317 	md_wakeup_thread(mddev->thread);
318 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
319 }
320 EXPORT_SYMBOL_GPL(mddev_resume);
321 
322 int mddev_congested(struct mddev *mddev, int bits)
323 {
324 	return mddev->suspended;
325 }
326 EXPORT_SYMBOL(mddev_congested);
327 
328 /*
329  * Generic flush handling for md
330  */
331 
332 static void md_end_flush(struct bio *bio, int err)
333 {
334 	struct md_rdev *rdev = bio->bi_private;
335 	struct mddev *mddev = rdev->mddev;
336 
337 	rdev_dec_pending(rdev, mddev);
338 
339 	if (atomic_dec_and_test(&mddev->flush_pending)) {
340 		/* The pre-request flush has finished */
341 		queue_work(md_wq, &mddev->flush_work);
342 	}
343 	bio_put(bio);
344 }
345 
346 static void md_submit_flush_data(struct work_struct *ws);
347 
348 static void submit_flushes(struct work_struct *ws)
349 {
350 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
351 	struct md_rdev *rdev;
352 
353 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
354 	atomic_set(&mddev->flush_pending, 1);
355 	rcu_read_lock();
356 	rdev_for_each_rcu(rdev, mddev)
357 		if (rdev->raid_disk >= 0 &&
358 		    !test_bit(Faulty, &rdev->flags)) {
359 			/* Take two references, one is dropped
360 			 * when request finishes, one after
361 			 * we reclaim rcu_read_lock
362 			 */
363 			struct bio *bi;
364 			atomic_inc(&rdev->nr_pending);
365 			atomic_inc(&rdev->nr_pending);
366 			rcu_read_unlock();
367 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
368 			bi->bi_end_io = md_end_flush;
369 			bi->bi_private = rdev;
370 			bi->bi_bdev = rdev->bdev;
371 			atomic_inc(&mddev->flush_pending);
372 			submit_bio(WRITE_FLUSH, bi);
373 			rcu_read_lock();
374 			rdev_dec_pending(rdev, mddev);
375 		}
376 	rcu_read_unlock();
377 	if (atomic_dec_and_test(&mddev->flush_pending))
378 		queue_work(md_wq, &mddev->flush_work);
379 }
380 
381 static void md_submit_flush_data(struct work_struct *ws)
382 {
383 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
384 	struct bio *bio = mddev->flush_bio;
385 
386 	if (bio->bi_iter.bi_size == 0)
387 		/* an empty barrier - all done */
388 		bio_endio(bio, 0);
389 	else {
390 		bio->bi_rw &= ~REQ_FLUSH;
391 		mddev->pers->make_request(mddev, bio);
392 	}
393 
394 	mddev->flush_bio = NULL;
395 	wake_up(&mddev->sb_wait);
396 }
397 
398 void md_flush_request(struct mddev *mddev, struct bio *bio)
399 {
400 	spin_lock_irq(&mddev->write_lock);
401 	wait_event_lock_irq(mddev->sb_wait,
402 			    !mddev->flush_bio,
403 			    mddev->write_lock);
404 	mddev->flush_bio = bio;
405 	spin_unlock_irq(&mddev->write_lock);
406 
407 	INIT_WORK(&mddev->flush_work, submit_flushes);
408 	queue_work(md_wq, &mddev->flush_work);
409 }
410 EXPORT_SYMBOL(md_flush_request);
411 
412 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
413 {
414 	struct mddev *mddev = cb->data;
415 	md_wakeup_thread(mddev->thread);
416 	kfree(cb);
417 }
418 EXPORT_SYMBOL(md_unplug);
419 
420 static inline struct mddev *mddev_get(struct mddev *mddev)
421 {
422 	atomic_inc(&mddev->active);
423 	return mddev;
424 }
425 
426 static void mddev_delayed_delete(struct work_struct *ws);
427 
428 static void mddev_put(struct mddev *mddev)
429 {
430 	struct bio_set *bs = NULL;
431 
432 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
433 		return;
434 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
435 	    mddev->ctime == 0 && !mddev->hold_active) {
436 		/* Array is not configured at all, and not held active,
437 		 * so destroy it */
438 		list_del_init(&mddev->all_mddevs);
439 		bs = mddev->bio_set;
440 		mddev->bio_set = NULL;
441 		if (mddev->gendisk) {
442 			/* We did a probe so need to clean up.  Call
443 			 * queue_work inside the spinlock so that
444 			 * flush_workqueue() after mddev_find will
445 			 * succeed in waiting for the work to be done.
446 			 */
447 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
448 			queue_work(md_misc_wq, &mddev->del_work);
449 		} else
450 			kfree(mddev);
451 	}
452 	spin_unlock(&all_mddevs_lock);
453 	if (bs)
454 		bioset_free(bs);
455 }
456 
457 void mddev_init(struct mddev *mddev)
458 {
459 	mutex_init(&mddev->open_mutex);
460 	mutex_init(&mddev->reconfig_mutex);
461 	mutex_init(&mddev->bitmap_info.mutex);
462 	INIT_LIST_HEAD(&mddev->disks);
463 	INIT_LIST_HEAD(&mddev->all_mddevs);
464 	init_timer(&mddev->safemode_timer);
465 	atomic_set(&mddev->active, 1);
466 	atomic_set(&mddev->openers, 0);
467 	atomic_set(&mddev->active_io, 0);
468 	spin_lock_init(&mddev->write_lock);
469 	atomic_set(&mddev->flush_pending, 0);
470 	init_waitqueue_head(&mddev->sb_wait);
471 	init_waitqueue_head(&mddev->recovery_wait);
472 	mddev->reshape_position = MaxSector;
473 	mddev->reshape_backwards = 0;
474 	mddev->last_sync_action = "none";
475 	mddev->resync_min = 0;
476 	mddev->resync_max = MaxSector;
477 	mddev->level = LEVEL_NONE;
478 }
479 EXPORT_SYMBOL_GPL(mddev_init);
480 
481 static struct mddev *mddev_find(dev_t unit)
482 {
483 	struct mddev *mddev, *new = NULL;
484 
485 	if (unit && MAJOR(unit) != MD_MAJOR)
486 		unit &= ~((1<<MdpMinorShift)-1);
487 
488  retry:
489 	spin_lock(&all_mddevs_lock);
490 
491 	if (unit) {
492 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
493 			if (mddev->unit == unit) {
494 				mddev_get(mddev);
495 				spin_unlock(&all_mddevs_lock);
496 				kfree(new);
497 				return mddev;
498 			}
499 
500 		if (new) {
501 			list_add(&new->all_mddevs, &all_mddevs);
502 			spin_unlock(&all_mddevs_lock);
503 			new->hold_active = UNTIL_IOCTL;
504 			return new;
505 		}
506 	} else if (new) {
507 		/* find an unused unit number */
508 		static int next_minor = 512;
509 		int start = next_minor;
510 		int is_free = 0;
511 		int dev = 0;
512 		while (!is_free) {
513 			dev = MKDEV(MD_MAJOR, next_minor);
514 			next_minor++;
515 			if (next_minor > MINORMASK)
516 				next_minor = 0;
517 			if (next_minor == start) {
518 				/* Oh dear, all in use. */
519 				spin_unlock(&all_mddevs_lock);
520 				kfree(new);
521 				return NULL;
522 			}
523 
524 			is_free = 1;
525 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
526 				if (mddev->unit == dev) {
527 					is_free = 0;
528 					break;
529 				}
530 		}
531 		new->unit = dev;
532 		new->md_minor = MINOR(dev);
533 		new->hold_active = UNTIL_STOP;
534 		list_add(&new->all_mddevs, &all_mddevs);
535 		spin_unlock(&all_mddevs_lock);
536 		return new;
537 	}
538 	spin_unlock(&all_mddevs_lock);
539 
540 	new = kzalloc(sizeof(*new), GFP_KERNEL);
541 	if (!new)
542 		return NULL;
543 
544 	new->unit = unit;
545 	if (MAJOR(unit) == MD_MAJOR)
546 		new->md_minor = MINOR(unit);
547 	else
548 		new->md_minor = MINOR(unit) >> MdpMinorShift;
549 
550 	mddev_init(new);
551 
552 	goto retry;
553 }
554 
555 static inline int __must_check mddev_lock(struct mddev *mddev)
556 {
557 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
558 }
559 
560 /* Sometimes we need to take the lock in a situation where
561  * failure due to interrupts is not acceptable.
562  */
563 static inline void mddev_lock_nointr(struct mddev *mddev)
564 {
565 	mutex_lock(&mddev->reconfig_mutex);
566 }
567 
568 static inline int mddev_is_locked(struct mddev *mddev)
569 {
570 	return mutex_is_locked(&mddev->reconfig_mutex);
571 }
572 
573 static inline int mddev_trylock(struct mddev *mddev)
574 {
575 	return mutex_trylock(&mddev->reconfig_mutex);
576 }
577 
578 static struct attribute_group md_redundancy_group;
579 
580 static void mddev_unlock(struct mddev *mddev)
581 {
582 	if (mddev->to_remove) {
583 		/* These cannot be removed under reconfig_mutex as
584 		 * an access to the files will try to take reconfig_mutex
585 		 * while holding the file unremovable, which leads to
586 		 * a deadlock.
587 		 * So hold set sysfs_active while the remove in happeing,
588 		 * and anything else which might set ->to_remove or my
589 		 * otherwise change the sysfs namespace will fail with
590 		 * -EBUSY if sysfs_active is still set.
591 		 * We set sysfs_active under reconfig_mutex and elsewhere
592 		 * test it under the same mutex to ensure its correct value
593 		 * is seen.
594 		 */
595 		struct attribute_group *to_remove = mddev->to_remove;
596 		mddev->to_remove = NULL;
597 		mddev->sysfs_active = 1;
598 		mutex_unlock(&mddev->reconfig_mutex);
599 
600 		if (mddev->kobj.sd) {
601 			if (to_remove != &md_redundancy_group)
602 				sysfs_remove_group(&mddev->kobj, to_remove);
603 			if (mddev->pers == NULL ||
604 			    mddev->pers->sync_request == NULL) {
605 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
606 				if (mddev->sysfs_action)
607 					sysfs_put(mddev->sysfs_action);
608 				mddev->sysfs_action = NULL;
609 			}
610 		}
611 		mddev->sysfs_active = 0;
612 	} else
613 		mutex_unlock(&mddev->reconfig_mutex);
614 
615 	/* As we've dropped the mutex we need a spinlock to
616 	 * make sure the thread doesn't disappear
617 	 */
618 	spin_lock(&pers_lock);
619 	md_wakeup_thread(mddev->thread);
620 	spin_unlock(&pers_lock);
621 }
622 
623 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
624 {
625 	struct md_rdev *rdev;
626 
627 	rdev_for_each_rcu(rdev, mddev)
628 		if (rdev->desc_nr == nr)
629 			return rdev;
630 
631 	return NULL;
632 }
633 
634 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
635 {
636 	struct md_rdev *rdev;
637 
638 	rdev_for_each(rdev, mddev)
639 		if (rdev->bdev->bd_dev == dev)
640 			return rdev;
641 
642 	return NULL;
643 }
644 
645 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
646 {
647 	struct md_rdev *rdev;
648 
649 	rdev_for_each_rcu(rdev, mddev)
650 		if (rdev->bdev->bd_dev == dev)
651 			return rdev;
652 
653 	return NULL;
654 }
655 
656 static struct md_personality *find_pers(int level, char *clevel)
657 {
658 	struct md_personality *pers;
659 	list_for_each_entry(pers, &pers_list, list) {
660 		if (level != LEVEL_NONE && pers->level == level)
661 			return pers;
662 		if (strcmp(pers->name, clevel)==0)
663 			return pers;
664 	}
665 	return NULL;
666 }
667 
668 /* return the offset of the super block in 512byte sectors */
669 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
670 {
671 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
672 	return MD_NEW_SIZE_SECTORS(num_sectors);
673 }
674 
675 static int alloc_disk_sb(struct md_rdev *rdev)
676 {
677 	rdev->sb_page = alloc_page(GFP_KERNEL);
678 	if (!rdev->sb_page) {
679 		printk(KERN_ALERT "md: out of memory.\n");
680 		return -ENOMEM;
681 	}
682 
683 	return 0;
684 }
685 
686 void md_rdev_clear(struct md_rdev *rdev)
687 {
688 	if (rdev->sb_page) {
689 		put_page(rdev->sb_page);
690 		rdev->sb_loaded = 0;
691 		rdev->sb_page = NULL;
692 		rdev->sb_start = 0;
693 		rdev->sectors = 0;
694 	}
695 	if (rdev->bb_page) {
696 		put_page(rdev->bb_page);
697 		rdev->bb_page = NULL;
698 	}
699 	kfree(rdev->badblocks.page);
700 	rdev->badblocks.page = NULL;
701 }
702 EXPORT_SYMBOL_GPL(md_rdev_clear);
703 
704 static void super_written(struct bio *bio, int error)
705 {
706 	struct md_rdev *rdev = bio->bi_private;
707 	struct mddev *mddev = rdev->mddev;
708 
709 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
710 		printk("md: super_written gets error=%d, uptodate=%d\n",
711 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
712 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
713 		md_error(mddev, rdev);
714 	}
715 
716 	if (atomic_dec_and_test(&mddev->pending_writes))
717 		wake_up(&mddev->sb_wait);
718 	bio_put(bio);
719 }
720 
721 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
722 		   sector_t sector, int size, struct page *page)
723 {
724 	/* write first size bytes of page to sector of rdev
725 	 * Increment mddev->pending_writes before returning
726 	 * and decrement it on completion, waking up sb_wait
727 	 * if zero is reached.
728 	 * If an error occurred, call md_error
729 	 */
730 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
731 
732 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
733 	bio->bi_iter.bi_sector = sector;
734 	bio_add_page(bio, page, size, 0);
735 	bio->bi_private = rdev;
736 	bio->bi_end_io = super_written;
737 
738 	atomic_inc(&mddev->pending_writes);
739 	submit_bio(WRITE_FLUSH_FUA, bio);
740 }
741 
742 void md_super_wait(struct mddev *mddev)
743 {
744 	/* wait for all superblock writes that were scheduled to complete */
745 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
746 }
747 
748 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
749 		 struct page *page, int rw, bool metadata_op)
750 {
751 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
752 	int ret;
753 
754 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
755 		rdev->meta_bdev : rdev->bdev;
756 	if (metadata_op)
757 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
758 	else if (rdev->mddev->reshape_position != MaxSector &&
759 		 (rdev->mddev->reshape_backwards ==
760 		  (sector >= rdev->mddev->reshape_position)))
761 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
762 	else
763 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
764 	bio_add_page(bio, page, size, 0);
765 	submit_bio_wait(rw, bio);
766 
767 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
768 	bio_put(bio);
769 	return ret;
770 }
771 EXPORT_SYMBOL_GPL(sync_page_io);
772 
773 static int read_disk_sb(struct md_rdev *rdev, int size)
774 {
775 	char b[BDEVNAME_SIZE];
776 
777 	if (rdev->sb_loaded)
778 		return 0;
779 
780 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
781 		goto fail;
782 	rdev->sb_loaded = 1;
783 	return 0;
784 
785 fail:
786 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
787 		bdevname(rdev->bdev,b));
788 	return -EINVAL;
789 }
790 
791 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
792 {
793 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
794 		sb1->set_uuid1 == sb2->set_uuid1 &&
795 		sb1->set_uuid2 == sb2->set_uuid2 &&
796 		sb1->set_uuid3 == sb2->set_uuid3;
797 }
798 
799 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
800 {
801 	int ret;
802 	mdp_super_t *tmp1, *tmp2;
803 
804 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
805 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
806 
807 	if (!tmp1 || !tmp2) {
808 		ret = 0;
809 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
810 		goto abort;
811 	}
812 
813 	*tmp1 = *sb1;
814 	*tmp2 = *sb2;
815 
816 	/*
817 	 * nr_disks is not constant
818 	 */
819 	tmp1->nr_disks = 0;
820 	tmp2->nr_disks = 0;
821 
822 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
823 abort:
824 	kfree(tmp1);
825 	kfree(tmp2);
826 	return ret;
827 }
828 
829 static u32 md_csum_fold(u32 csum)
830 {
831 	csum = (csum & 0xffff) + (csum >> 16);
832 	return (csum & 0xffff) + (csum >> 16);
833 }
834 
835 static unsigned int calc_sb_csum(mdp_super_t *sb)
836 {
837 	u64 newcsum = 0;
838 	u32 *sb32 = (u32*)sb;
839 	int i;
840 	unsigned int disk_csum, csum;
841 
842 	disk_csum = sb->sb_csum;
843 	sb->sb_csum = 0;
844 
845 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
846 		newcsum += sb32[i];
847 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
848 
849 #ifdef CONFIG_ALPHA
850 	/* This used to use csum_partial, which was wrong for several
851 	 * reasons including that different results are returned on
852 	 * different architectures.  It isn't critical that we get exactly
853 	 * the same return value as before (we always csum_fold before
854 	 * testing, and that removes any differences).  However as we
855 	 * know that csum_partial always returned a 16bit value on
856 	 * alphas, do a fold to maximise conformity to previous behaviour.
857 	 */
858 	sb->sb_csum = md_csum_fold(disk_csum);
859 #else
860 	sb->sb_csum = disk_csum;
861 #endif
862 	return csum;
863 }
864 
865 /*
866  * Handle superblock details.
867  * We want to be able to handle multiple superblock formats
868  * so we have a common interface to them all, and an array of
869  * different handlers.
870  * We rely on user-space to write the initial superblock, and support
871  * reading and updating of superblocks.
872  * Interface methods are:
873  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
874  *      loads and validates a superblock on dev.
875  *      if refdev != NULL, compare superblocks on both devices
876  *    Return:
877  *      0 - dev has a superblock that is compatible with refdev
878  *      1 - dev has a superblock that is compatible and newer than refdev
879  *          so dev should be used as the refdev in future
880  *     -EINVAL superblock incompatible or invalid
881  *     -othererror e.g. -EIO
882  *
883  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
884  *      Verify that dev is acceptable into mddev.
885  *       The first time, mddev->raid_disks will be 0, and data from
886  *       dev should be merged in.  Subsequent calls check that dev
887  *       is new enough.  Return 0 or -EINVAL
888  *
889  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
890  *     Update the superblock for rdev with data in mddev
891  *     This does not write to disc.
892  *
893  */
894 
895 struct super_type  {
896 	char		    *name;
897 	struct module	    *owner;
898 	int		    (*load_super)(struct md_rdev *rdev,
899 					  struct md_rdev *refdev,
900 					  int minor_version);
901 	int		    (*validate_super)(struct mddev *mddev,
902 					      struct md_rdev *rdev);
903 	void		    (*sync_super)(struct mddev *mddev,
904 					  struct md_rdev *rdev);
905 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
906 						sector_t num_sectors);
907 	int		    (*allow_new_offset)(struct md_rdev *rdev,
908 						unsigned long long new_offset);
909 };
910 
911 /*
912  * Check that the given mddev has no bitmap.
913  *
914  * This function is called from the run method of all personalities that do not
915  * support bitmaps. It prints an error message and returns non-zero if mddev
916  * has a bitmap. Otherwise, it returns 0.
917  *
918  */
919 int md_check_no_bitmap(struct mddev *mddev)
920 {
921 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
922 		return 0;
923 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
924 		mdname(mddev), mddev->pers->name);
925 	return 1;
926 }
927 EXPORT_SYMBOL(md_check_no_bitmap);
928 
929 /*
930  * load_super for 0.90.0
931  */
932 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
933 {
934 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
935 	mdp_super_t *sb;
936 	int ret;
937 
938 	/*
939 	 * Calculate the position of the superblock (512byte sectors),
940 	 * it's at the end of the disk.
941 	 *
942 	 * It also happens to be a multiple of 4Kb.
943 	 */
944 	rdev->sb_start = calc_dev_sboffset(rdev);
945 
946 	ret = read_disk_sb(rdev, MD_SB_BYTES);
947 	if (ret) return ret;
948 
949 	ret = -EINVAL;
950 
951 	bdevname(rdev->bdev, b);
952 	sb = page_address(rdev->sb_page);
953 
954 	if (sb->md_magic != MD_SB_MAGIC) {
955 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
956 		       b);
957 		goto abort;
958 	}
959 
960 	if (sb->major_version != 0 ||
961 	    sb->minor_version < 90 ||
962 	    sb->minor_version > 91) {
963 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
964 			sb->major_version, sb->minor_version,
965 			b);
966 		goto abort;
967 	}
968 
969 	if (sb->raid_disks <= 0)
970 		goto abort;
971 
972 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
973 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
974 			b);
975 		goto abort;
976 	}
977 
978 	rdev->preferred_minor = sb->md_minor;
979 	rdev->data_offset = 0;
980 	rdev->new_data_offset = 0;
981 	rdev->sb_size = MD_SB_BYTES;
982 	rdev->badblocks.shift = -1;
983 
984 	if (sb->level == LEVEL_MULTIPATH)
985 		rdev->desc_nr = -1;
986 	else
987 		rdev->desc_nr = sb->this_disk.number;
988 
989 	if (!refdev) {
990 		ret = 1;
991 	} else {
992 		__u64 ev1, ev2;
993 		mdp_super_t *refsb = page_address(refdev->sb_page);
994 		if (!uuid_equal(refsb, sb)) {
995 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
996 				b, bdevname(refdev->bdev,b2));
997 			goto abort;
998 		}
999 		if (!sb_equal(refsb, sb)) {
1000 			printk(KERN_WARNING "md: %s has same UUID"
1001 			       " but different superblock to %s\n",
1002 			       b, bdevname(refdev->bdev, b2));
1003 			goto abort;
1004 		}
1005 		ev1 = md_event(sb);
1006 		ev2 = md_event(refsb);
1007 		if (ev1 > ev2)
1008 			ret = 1;
1009 		else
1010 			ret = 0;
1011 	}
1012 	rdev->sectors = rdev->sb_start;
1013 	/* Limit to 4TB as metadata cannot record more than that.
1014 	 * (not needed for Linear and RAID0 as metadata doesn't
1015 	 * record this size)
1016 	 */
1017 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1018 		rdev->sectors = (2ULL << 32) - 2;
1019 
1020 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1021 		/* "this cannot possibly happen" ... */
1022 		ret = -EINVAL;
1023 
1024  abort:
1025 	return ret;
1026 }
1027 
1028 /*
1029  * validate_super for 0.90.0
1030  */
1031 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1032 {
1033 	mdp_disk_t *desc;
1034 	mdp_super_t *sb = page_address(rdev->sb_page);
1035 	__u64 ev1 = md_event(sb);
1036 
1037 	rdev->raid_disk = -1;
1038 	clear_bit(Faulty, &rdev->flags);
1039 	clear_bit(In_sync, &rdev->flags);
1040 	clear_bit(Bitmap_sync, &rdev->flags);
1041 	clear_bit(WriteMostly, &rdev->flags);
1042 
1043 	if (mddev->raid_disks == 0) {
1044 		mddev->major_version = 0;
1045 		mddev->minor_version = sb->minor_version;
1046 		mddev->patch_version = sb->patch_version;
1047 		mddev->external = 0;
1048 		mddev->chunk_sectors = sb->chunk_size >> 9;
1049 		mddev->ctime = sb->ctime;
1050 		mddev->utime = sb->utime;
1051 		mddev->level = sb->level;
1052 		mddev->clevel[0] = 0;
1053 		mddev->layout = sb->layout;
1054 		mddev->raid_disks = sb->raid_disks;
1055 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1056 		mddev->events = ev1;
1057 		mddev->bitmap_info.offset = 0;
1058 		mddev->bitmap_info.space = 0;
1059 		/* bitmap can use 60 K after the 4K superblocks */
1060 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1061 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1062 		mddev->reshape_backwards = 0;
1063 
1064 		if (mddev->minor_version >= 91) {
1065 			mddev->reshape_position = sb->reshape_position;
1066 			mddev->delta_disks = sb->delta_disks;
1067 			mddev->new_level = sb->new_level;
1068 			mddev->new_layout = sb->new_layout;
1069 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1070 			if (mddev->delta_disks < 0)
1071 				mddev->reshape_backwards = 1;
1072 		} else {
1073 			mddev->reshape_position = MaxSector;
1074 			mddev->delta_disks = 0;
1075 			mddev->new_level = mddev->level;
1076 			mddev->new_layout = mddev->layout;
1077 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1078 		}
1079 
1080 		if (sb->state & (1<<MD_SB_CLEAN))
1081 			mddev->recovery_cp = MaxSector;
1082 		else {
1083 			if (sb->events_hi == sb->cp_events_hi &&
1084 				sb->events_lo == sb->cp_events_lo) {
1085 				mddev->recovery_cp = sb->recovery_cp;
1086 			} else
1087 				mddev->recovery_cp = 0;
1088 		}
1089 
1090 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1091 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1092 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1093 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1094 
1095 		mddev->max_disks = MD_SB_DISKS;
1096 
1097 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1098 		    mddev->bitmap_info.file == NULL) {
1099 			mddev->bitmap_info.offset =
1100 				mddev->bitmap_info.default_offset;
1101 			mddev->bitmap_info.space =
1102 				mddev->bitmap_info.default_space;
1103 		}
1104 
1105 	} else if (mddev->pers == NULL) {
1106 		/* Insist on good event counter while assembling, except
1107 		 * for spares (which don't need an event count) */
1108 		++ev1;
1109 		if (sb->disks[rdev->desc_nr].state & (
1110 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1111 			if (ev1 < mddev->events)
1112 				return -EINVAL;
1113 	} else if (mddev->bitmap) {
1114 		/* if adding to array with a bitmap, then we can accept an
1115 		 * older device ... but not too old.
1116 		 */
1117 		if (ev1 < mddev->bitmap->events_cleared)
1118 			return 0;
1119 		if (ev1 < mddev->events)
1120 			set_bit(Bitmap_sync, &rdev->flags);
1121 	} else {
1122 		if (ev1 < mddev->events)
1123 			/* just a hot-add of a new device, leave raid_disk at -1 */
1124 			return 0;
1125 	}
1126 
1127 	if (mddev->level != LEVEL_MULTIPATH) {
1128 		desc = sb->disks + rdev->desc_nr;
1129 
1130 		if (desc->state & (1<<MD_DISK_FAULTY))
1131 			set_bit(Faulty, &rdev->flags);
1132 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1133 			    desc->raid_disk < mddev->raid_disks */) {
1134 			set_bit(In_sync, &rdev->flags);
1135 			rdev->raid_disk = desc->raid_disk;
1136 			rdev->saved_raid_disk = desc->raid_disk;
1137 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1138 			/* active but not in sync implies recovery up to
1139 			 * reshape position.  We don't know exactly where
1140 			 * that is, so set to zero for now */
1141 			if (mddev->minor_version >= 91) {
1142 				rdev->recovery_offset = 0;
1143 				rdev->raid_disk = desc->raid_disk;
1144 			}
1145 		}
1146 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1147 			set_bit(WriteMostly, &rdev->flags);
1148 	} else /* MULTIPATH are always insync */
1149 		set_bit(In_sync, &rdev->flags);
1150 	return 0;
1151 }
1152 
1153 /*
1154  * sync_super for 0.90.0
1155  */
1156 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1157 {
1158 	mdp_super_t *sb;
1159 	struct md_rdev *rdev2;
1160 	int next_spare = mddev->raid_disks;
1161 
1162 	/* make rdev->sb match mddev data..
1163 	 *
1164 	 * 1/ zero out disks
1165 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1166 	 * 3/ any empty disks < next_spare become removed
1167 	 *
1168 	 * disks[0] gets initialised to REMOVED because
1169 	 * we cannot be sure from other fields if it has
1170 	 * been initialised or not.
1171 	 */
1172 	int i;
1173 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1174 
1175 	rdev->sb_size = MD_SB_BYTES;
1176 
1177 	sb = page_address(rdev->sb_page);
1178 
1179 	memset(sb, 0, sizeof(*sb));
1180 
1181 	sb->md_magic = MD_SB_MAGIC;
1182 	sb->major_version = mddev->major_version;
1183 	sb->patch_version = mddev->patch_version;
1184 	sb->gvalid_words  = 0; /* ignored */
1185 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1186 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1187 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1188 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1189 
1190 	sb->ctime = mddev->ctime;
1191 	sb->level = mddev->level;
1192 	sb->size = mddev->dev_sectors / 2;
1193 	sb->raid_disks = mddev->raid_disks;
1194 	sb->md_minor = mddev->md_minor;
1195 	sb->not_persistent = 0;
1196 	sb->utime = mddev->utime;
1197 	sb->state = 0;
1198 	sb->events_hi = (mddev->events>>32);
1199 	sb->events_lo = (u32)mddev->events;
1200 
1201 	if (mddev->reshape_position == MaxSector)
1202 		sb->minor_version = 90;
1203 	else {
1204 		sb->minor_version = 91;
1205 		sb->reshape_position = mddev->reshape_position;
1206 		sb->new_level = mddev->new_level;
1207 		sb->delta_disks = mddev->delta_disks;
1208 		sb->new_layout = mddev->new_layout;
1209 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1210 	}
1211 	mddev->minor_version = sb->minor_version;
1212 	if (mddev->in_sync)
1213 	{
1214 		sb->recovery_cp = mddev->recovery_cp;
1215 		sb->cp_events_hi = (mddev->events>>32);
1216 		sb->cp_events_lo = (u32)mddev->events;
1217 		if (mddev->recovery_cp == MaxSector)
1218 			sb->state = (1<< MD_SB_CLEAN);
1219 	} else
1220 		sb->recovery_cp = 0;
1221 
1222 	sb->layout = mddev->layout;
1223 	sb->chunk_size = mddev->chunk_sectors << 9;
1224 
1225 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1226 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1227 
1228 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1229 	rdev_for_each(rdev2, mddev) {
1230 		mdp_disk_t *d;
1231 		int desc_nr;
1232 		int is_active = test_bit(In_sync, &rdev2->flags);
1233 
1234 		if (rdev2->raid_disk >= 0 &&
1235 		    sb->minor_version >= 91)
1236 			/* we have nowhere to store the recovery_offset,
1237 			 * but if it is not below the reshape_position,
1238 			 * we can piggy-back on that.
1239 			 */
1240 			is_active = 1;
1241 		if (rdev2->raid_disk < 0 ||
1242 		    test_bit(Faulty, &rdev2->flags))
1243 			is_active = 0;
1244 		if (is_active)
1245 			desc_nr = rdev2->raid_disk;
1246 		else
1247 			desc_nr = next_spare++;
1248 		rdev2->desc_nr = desc_nr;
1249 		d = &sb->disks[rdev2->desc_nr];
1250 		nr_disks++;
1251 		d->number = rdev2->desc_nr;
1252 		d->major = MAJOR(rdev2->bdev->bd_dev);
1253 		d->minor = MINOR(rdev2->bdev->bd_dev);
1254 		if (is_active)
1255 			d->raid_disk = rdev2->raid_disk;
1256 		else
1257 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1258 		if (test_bit(Faulty, &rdev2->flags))
1259 			d->state = (1<<MD_DISK_FAULTY);
1260 		else if (is_active) {
1261 			d->state = (1<<MD_DISK_ACTIVE);
1262 			if (test_bit(In_sync, &rdev2->flags))
1263 				d->state |= (1<<MD_DISK_SYNC);
1264 			active++;
1265 			working++;
1266 		} else {
1267 			d->state = 0;
1268 			spare++;
1269 			working++;
1270 		}
1271 		if (test_bit(WriteMostly, &rdev2->flags))
1272 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1273 	}
1274 	/* now set the "removed" and "faulty" bits on any missing devices */
1275 	for (i=0 ; i < mddev->raid_disks ; i++) {
1276 		mdp_disk_t *d = &sb->disks[i];
1277 		if (d->state == 0 && d->number == 0) {
1278 			d->number = i;
1279 			d->raid_disk = i;
1280 			d->state = (1<<MD_DISK_REMOVED);
1281 			d->state |= (1<<MD_DISK_FAULTY);
1282 			failed++;
1283 		}
1284 	}
1285 	sb->nr_disks = nr_disks;
1286 	sb->active_disks = active;
1287 	sb->working_disks = working;
1288 	sb->failed_disks = failed;
1289 	sb->spare_disks = spare;
1290 
1291 	sb->this_disk = sb->disks[rdev->desc_nr];
1292 	sb->sb_csum = calc_sb_csum(sb);
1293 }
1294 
1295 /*
1296  * rdev_size_change for 0.90.0
1297  */
1298 static unsigned long long
1299 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1300 {
1301 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1302 		return 0; /* component must fit device */
1303 	if (rdev->mddev->bitmap_info.offset)
1304 		return 0; /* can't move bitmap */
1305 	rdev->sb_start = calc_dev_sboffset(rdev);
1306 	if (!num_sectors || num_sectors > rdev->sb_start)
1307 		num_sectors = rdev->sb_start;
1308 	/* Limit to 4TB as metadata cannot record more than that.
1309 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1310 	 */
1311 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1312 		num_sectors = (2ULL << 32) - 2;
1313 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1314 		       rdev->sb_page);
1315 	md_super_wait(rdev->mddev);
1316 	return num_sectors;
1317 }
1318 
1319 static int
1320 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1321 {
1322 	/* non-zero offset changes not possible with v0.90 */
1323 	return new_offset == 0;
1324 }
1325 
1326 /*
1327  * version 1 superblock
1328  */
1329 
1330 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1331 {
1332 	__le32 disk_csum;
1333 	u32 csum;
1334 	unsigned long long newcsum;
1335 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1336 	__le32 *isuper = (__le32*)sb;
1337 
1338 	disk_csum = sb->sb_csum;
1339 	sb->sb_csum = 0;
1340 	newcsum = 0;
1341 	for (; size >= 4; size -= 4)
1342 		newcsum += le32_to_cpu(*isuper++);
1343 
1344 	if (size == 2)
1345 		newcsum += le16_to_cpu(*(__le16*) isuper);
1346 
1347 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1348 	sb->sb_csum = disk_csum;
1349 	return cpu_to_le32(csum);
1350 }
1351 
1352 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1353 			    int acknowledged);
1354 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1355 {
1356 	struct mdp_superblock_1 *sb;
1357 	int ret;
1358 	sector_t sb_start;
1359 	sector_t sectors;
1360 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1361 	int bmask;
1362 
1363 	/*
1364 	 * Calculate the position of the superblock in 512byte sectors.
1365 	 * It is always aligned to a 4K boundary and
1366 	 * depeding on minor_version, it can be:
1367 	 * 0: At least 8K, but less than 12K, from end of device
1368 	 * 1: At start of device
1369 	 * 2: 4K from start of device.
1370 	 */
1371 	switch(minor_version) {
1372 	case 0:
1373 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1374 		sb_start -= 8*2;
1375 		sb_start &= ~(sector_t)(4*2-1);
1376 		break;
1377 	case 1:
1378 		sb_start = 0;
1379 		break;
1380 	case 2:
1381 		sb_start = 8;
1382 		break;
1383 	default:
1384 		return -EINVAL;
1385 	}
1386 	rdev->sb_start = sb_start;
1387 
1388 	/* superblock is rarely larger than 1K, but it can be larger,
1389 	 * and it is safe to read 4k, so we do that
1390 	 */
1391 	ret = read_disk_sb(rdev, 4096);
1392 	if (ret) return ret;
1393 
1394 	sb = page_address(rdev->sb_page);
1395 
1396 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1397 	    sb->major_version != cpu_to_le32(1) ||
1398 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1399 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1400 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1401 		return -EINVAL;
1402 
1403 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1404 		printk("md: invalid superblock checksum on %s\n",
1405 			bdevname(rdev->bdev,b));
1406 		return -EINVAL;
1407 	}
1408 	if (le64_to_cpu(sb->data_size) < 10) {
1409 		printk("md: data_size too small on %s\n",
1410 		       bdevname(rdev->bdev,b));
1411 		return -EINVAL;
1412 	}
1413 	if (sb->pad0 ||
1414 	    sb->pad3[0] ||
1415 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1416 		/* Some padding is non-zero, might be a new feature */
1417 		return -EINVAL;
1418 
1419 	rdev->preferred_minor = 0xffff;
1420 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1421 	rdev->new_data_offset = rdev->data_offset;
1422 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1423 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1424 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1425 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1426 
1427 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1428 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1429 	if (rdev->sb_size & bmask)
1430 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1431 
1432 	if (minor_version
1433 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1434 		return -EINVAL;
1435 	if (minor_version
1436 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1437 		return -EINVAL;
1438 
1439 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1440 		rdev->desc_nr = -1;
1441 	else
1442 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1443 
1444 	if (!rdev->bb_page) {
1445 		rdev->bb_page = alloc_page(GFP_KERNEL);
1446 		if (!rdev->bb_page)
1447 			return -ENOMEM;
1448 	}
1449 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1450 	    rdev->badblocks.count == 0) {
1451 		/* need to load the bad block list.
1452 		 * Currently we limit it to one page.
1453 		 */
1454 		s32 offset;
1455 		sector_t bb_sector;
1456 		u64 *bbp;
1457 		int i;
1458 		int sectors = le16_to_cpu(sb->bblog_size);
1459 		if (sectors > (PAGE_SIZE / 512))
1460 			return -EINVAL;
1461 		offset = le32_to_cpu(sb->bblog_offset);
1462 		if (offset == 0)
1463 			return -EINVAL;
1464 		bb_sector = (long long)offset;
1465 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1466 				  rdev->bb_page, READ, true))
1467 			return -EIO;
1468 		bbp = (u64 *)page_address(rdev->bb_page);
1469 		rdev->badblocks.shift = sb->bblog_shift;
1470 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1471 			u64 bb = le64_to_cpu(*bbp);
1472 			int count = bb & (0x3ff);
1473 			u64 sector = bb >> 10;
1474 			sector <<= sb->bblog_shift;
1475 			count <<= sb->bblog_shift;
1476 			if (bb + 1 == 0)
1477 				break;
1478 			if (md_set_badblocks(&rdev->badblocks,
1479 					     sector, count, 1) == 0)
1480 				return -EINVAL;
1481 		}
1482 	} else if (sb->bblog_offset != 0)
1483 		rdev->badblocks.shift = 0;
1484 
1485 	if (!refdev) {
1486 		ret = 1;
1487 	} else {
1488 		__u64 ev1, ev2;
1489 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1490 
1491 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1492 		    sb->level != refsb->level ||
1493 		    sb->layout != refsb->layout ||
1494 		    sb->chunksize != refsb->chunksize) {
1495 			printk(KERN_WARNING "md: %s has strangely different"
1496 				" superblock to %s\n",
1497 				bdevname(rdev->bdev,b),
1498 				bdevname(refdev->bdev,b2));
1499 			return -EINVAL;
1500 		}
1501 		ev1 = le64_to_cpu(sb->events);
1502 		ev2 = le64_to_cpu(refsb->events);
1503 
1504 		if (ev1 > ev2)
1505 			ret = 1;
1506 		else
1507 			ret = 0;
1508 	}
1509 	if (minor_version) {
1510 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1511 		sectors -= rdev->data_offset;
1512 	} else
1513 		sectors = rdev->sb_start;
1514 	if (sectors < le64_to_cpu(sb->data_size))
1515 		return -EINVAL;
1516 	rdev->sectors = le64_to_cpu(sb->data_size);
1517 	return ret;
1518 }
1519 
1520 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1521 {
1522 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1523 	__u64 ev1 = le64_to_cpu(sb->events);
1524 
1525 	rdev->raid_disk = -1;
1526 	clear_bit(Faulty, &rdev->flags);
1527 	clear_bit(In_sync, &rdev->flags);
1528 	clear_bit(Bitmap_sync, &rdev->flags);
1529 	clear_bit(WriteMostly, &rdev->flags);
1530 
1531 	if (mddev->raid_disks == 0) {
1532 		mddev->major_version = 1;
1533 		mddev->patch_version = 0;
1534 		mddev->external = 0;
1535 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1536 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1537 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1538 		mddev->level = le32_to_cpu(sb->level);
1539 		mddev->clevel[0] = 0;
1540 		mddev->layout = le32_to_cpu(sb->layout);
1541 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1542 		mddev->dev_sectors = le64_to_cpu(sb->size);
1543 		mddev->events = ev1;
1544 		mddev->bitmap_info.offset = 0;
1545 		mddev->bitmap_info.space = 0;
1546 		/* Default location for bitmap is 1K after superblock
1547 		 * using 3K - total of 4K
1548 		 */
1549 		mddev->bitmap_info.default_offset = 1024 >> 9;
1550 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1551 		mddev->reshape_backwards = 0;
1552 
1553 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1554 		memcpy(mddev->uuid, sb->set_uuid, 16);
1555 
1556 		mddev->max_disks =  (4096-256)/2;
1557 
1558 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1559 		    mddev->bitmap_info.file == NULL) {
1560 			mddev->bitmap_info.offset =
1561 				(__s32)le32_to_cpu(sb->bitmap_offset);
1562 			/* Metadata doesn't record how much space is available.
1563 			 * For 1.0, we assume we can use up to the superblock
1564 			 * if before, else to 4K beyond superblock.
1565 			 * For others, assume no change is possible.
1566 			 */
1567 			if (mddev->minor_version > 0)
1568 				mddev->bitmap_info.space = 0;
1569 			else if (mddev->bitmap_info.offset > 0)
1570 				mddev->bitmap_info.space =
1571 					8 - mddev->bitmap_info.offset;
1572 			else
1573 				mddev->bitmap_info.space =
1574 					-mddev->bitmap_info.offset;
1575 		}
1576 
1577 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1578 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1579 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1580 			mddev->new_level = le32_to_cpu(sb->new_level);
1581 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1582 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1583 			if (mddev->delta_disks < 0 ||
1584 			    (mddev->delta_disks == 0 &&
1585 			     (le32_to_cpu(sb->feature_map)
1586 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1587 				mddev->reshape_backwards = 1;
1588 		} else {
1589 			mddev->reshape_position = MaxSector;
1590 			mddev->delta_disks = 0;
1591 			mddev->new_level = mddev->level;
1592 			mddev->new_layout = mddev->layout;
1593 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1594 		}
1595 
1596 	} else if (mddev->pers == NULL) {
1597 		/* Insist of good event counter while assembling, except for
1598 		 * spares (which don't need an event count) */
1599 		++ev1;
1600 		if (rdev->desc_nr >= 0 &&
1601 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1602 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1603 			if (ev1 < mddev->events)
1604 				return -EINVAL;
1605 	} else if (mddev->bitmap) {
1606 		/* If adding to array with a bitmap, then we can accept an
1607 		 * older device, but not too old.
1608 		 */
1609 		if (ev1 < mddev->bitmap->events_cleared)
1610 			return 0;
1611 		if (ev1 < mddev->events)
1612 			set_bit(Bitmap_sync, &rdev->flags);
1613 	} else {
1614 		if (ev1 < mddev->events)
1615 			/* just a hot-add of a new device, leave raid_disk at -1 */
1616 			return 0;
1617 	}
1618 	if (mddev->level != LEVEL_MULTIPATH) {
1619 		int role;
1620 		if (rdev->desc_nr < 0 ||
1621 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1622 			role = 0xffff;
1623 			rdev->desc_nr = -1;
1624 		} else
1625 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1626 		switch(role) {
1627 		case 0xffff: /* spare */
1628 			break;
1629 		case 0xfffe: /* faulty */
1630 			set_bit(Faulty, &rdev->flags);
1631 			break;
1632 		default:
1633 			rdev->saved_raid_disk = role;
1634 			if ((le32_to_cpu(sb->feature_map) &
1635 			     MD_FEATURE_RECOVERY_OFFSET)) {
1636 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1637 				if (!(le32_to_cpu(sb->feature_map) &
1638 				      MD_FEATURE_RECOVERY_BITMAP))
1639 					rdev->saved_raid_disk = -1;
1640 			} else
1641 				set_bit(In_sync, &rdev->flags);
1642 			rdev->raid_disk = role;
1643 			break;
1644 		}
1645 		if (sb->devflags & WriteMostly1)
1646 			set_bit(WriteMostly, &rdev->flags);
1647 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1648 			set_bit(Replacement, &rdev->flags);
1649 	} else /* MULTIPATH are always insync */
1650 		set_bit(In_sync, &rdev->flags);
1651 
1652 	return 0;
1653 }
1654 
1655 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1656 {
1657 	struct mdp_superblock_1 *sb;
1658 	struct md_rdev *rdev2;
1659 	int max_dev, i;
1660 	/* make rdev->sb match mddev and rdev data. */
1661 
1662 	sb = page_address(rdev->sb_page);
1663 
1664 	sb->feature_map = 0;
1665 	sb->pad0 = 0;
1666 	sb->recovery_offset = cpu_to_le64(0);
1667 	memset(sb->pad3, 0, sizeof(sb->pad3));
1668 
1669 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1670 	sb->events = cpu_to_le64(mddev->events);
1671 	if (mddev->in_sync)
1672 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1673 	else
1674 		sb->resync_offset = cpu_to_le64(0);
1675 
1676 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1677 
1678 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1679 	sb->size = cpu_to_le64(mddev->dev_sectors);
1680 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1681 	sb->level = cpu_to_le32(mddev->level);
1682 	sb->layout = cpu_to_le32(mddev->layout);
1683 
1684 	if (test_bit(WriteMostly, &rdev->flags))
1685 		sb->devflags |= WriteMostly1;
1686 	else
1687 		sb->devflags &= ~WriteMostly1;
1688 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1689 	sb->data_size = cpu_to_le64(rdev->sectors);
1690 
1691 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1692 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1693 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1694 	}
1695 
1696 	if (rdev->raid_disk >= 0 &&
1697 	    !test_bit(In_sync, &rdev->flags)) {
1698 		sb->feature_map |=
1699 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1700 		sb->recovery_offset =
1701 			cpu_to_le64(rdev->recovery_offset);
1702 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1703 			sb->feature_map |=
1704 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1705 	}
1706 	if (test_bit(Replacement, &rdev->flags))
1707 		sb->feature_map |=
1708 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1709 
1710 	if (mddev->reshape_position != MaxSector) {
1711 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1712 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1713 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1714 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1715 		sb->new_level = cpu_to_le32(mddev->new_level);
1716 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1717 		if (mddev->delta_disks == 0 &&
1718 		    mddev->reshape_backwards)
1719 			sb->feature_map
1720 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1721 		if (rdev->new_data_offset != rdev->data_offset) {
1722 			sb->feature_map
1723 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1724 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1725 							     - rdev->data_offset));
1726 		}
1727 	}
1728 
1729 	if (rdev->badblocks.count == 0)
1730 		/* Nothing to do for bad blocks*/ ;
1731 	else if (sb->bblog_offset == 0)
1732 		/* Cannot record bad blocks on this device */
1733 		md_error(mddev, rdev);
1734 	else {
1735 		struct badblocks *bb = &rdev->badblocks;
1736 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1737 		u64 *p = bb->page;
1738 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1739 		if (bb->changed) {
1740 			unsigned seq;
1741 
1742 retry:
1743 			seq = read_seqbegin(&bb->lock);
1744 
1745 			memset(bbp, 0xff, PAGE_SIZE);
1746 
1747 			for (i = 0 ; i < bb->count ; i++) {
1748 				u64 internal_bb = p[i];
1749 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1750 						| BB_LEN(internal_bb));
1751 				bbp[i] = cpu_to_le64(store_bb);
1752 			}
1753 			bb->changed = 0;
1754 			if (read_seqretry(&bb->lock, seq))
1755 				goto retry;
1756 
1757 			bb->sector = (rdev->sb_start +
1758 				      (int)le32_to_cpu(sb->bblog_offset));
1759 			bb->size = le16_to_cpu(sb->bblog_size);
1760 		}
1761 	}
1762 
1763 	max_dev = 0;
1764 	rdev_for_each(rdev2, mddev)
1765 		if (rdev2->desc_nr+1 > max_dev)
1766 			max_dev = rdev2->desc_nr+1;
1767 
1768 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1769 		int bmask;
1770 		sb->max_dev = cpu_to_le32(max_dev);
1771 		rdev->sb_size = max_dev * 2 + 256;
1772 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1773 		if (rdev->sb_size & bmask)
1774 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1775 	} else
1776 		max_dev = le32_to_cpu(sb->max_dev);
1777 
1778 	for (i=0; i<max_dev;i++)
1779 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1780 
1781 	rdev_for_each(rdev2, mddev) {
1782 		i = rdev2->desc_nr;
1783 		if (test_bit(Faulty, &rdev2->flags))
1784 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1785 		else if (test_bit(In_sync, &rdev2->flags))
1786 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1787 		else if (rdev2->raid_disk >= 0)
1788 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1789 		else
1790 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1791 	}
1792 
1793 	sb->sb_csum = calc_sb_1_csum(sb);
1794 }
1795 
1796 static unsigned long long
1797 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1798 {
1799 	struct mdp_superblock_1 *sb;
1800 	sector_t max_sectors;
1801 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1802 		return 0; /* component must fit device */
1803 	if (rdev->data_offset != rdev->new_data_offset)
1804 		return 0; /* too confusing */
1805 	if (rdev->sb_start < rdev->data_offset) {
1806 		/* minor versions 1 and 2; superblock before data */
1807 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1808 		max_sectors -= rdev->data_offset;
1809 		if (!num_sectors || num_sectors > max_sectors)
1810 			num_sectors = max_sectors;
1811 	} else if (rdev->mddev->bitmap_info.offset) {
1812 		/* minor version 0 with bitmap we can't move */
1813 		return 0;
1814 	} else {
1815 		/* minor version 0; superblock after data */
1816 		sector_t sb_start;
1817 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1818 		sb_start &= ~(sector_t)(4*2 - 1);
1819 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1820 		if (!num_sectors || num_sectors > max_sectors)
1821 			num_sectors = max_sectors;
1822 		rdev->sb_start = sb_start;
1823 	}
1824 	sb = page_address(rdev->sb_page);
1825 	sb->data_size = cpu_to_le64(num_sectors);
1826 	sb->super_offset = rdev->sb_start;
1827 	sb->sb_csum = calc_sb_1_csum(sb);
1828 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1829 		       rdev->sb_page);
1830 	md_super_wait(rdev->mddev);
1831 	return num_sectors;
1832 
1833 }
1834 
1835 static int
1836 super_1_allow_new_offset(struct md_rdev *rdev,
1837 			 unsigned long long new_offset)
1838 {
1839 	/* All necessary checks on new >= old have been done */
1840 	struct bitmap *bitmap;
1841 	if (new_offset >= rdev->data_offset)
1842 		return 1;
1843 
1844 	/* with 1.0 metadata, there is no metadata to tread on
1845 	 * so we can always move back */
1846 	if (rdev->mddev->minor_version == 0)
1847 		return 1;
1848 
1849 	/* otherwise we must be sure not to step on
1850 	 * any metadata, so stay:
1851 	 * 36K beyond start of superblock
1852 	 * beyond end of badblocks
1853 	 * beyond write-intent bitmap
1854 	 */
1855 	if (rdev->sb_start + (32+4)*2 > new_offset)
1856 		return 0;
1857 	bitmap = rdev->mddev->bitmap;
1858 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1859 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1860 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1861 		return 0;
1862 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1863 		return 0;
1864 
1865 	return 1;
1866 }
1867 
1868 static struct super_type super_types[] = {
1869 	[0] = {
1870 		.name	= "0.90.0",
1871 		.owner	= THIS_MODULE,
1872 		.load_super	    = super_90_load,
1873 		.validate_super	    = super_90_validate,
1874 		.sync_super	    = super_90_sync,
1875 		.rdev_size_change   = super_90_rdev_size_change,
1876 		.allow_new_offset   = super_90_allow_new_offset,
1877 	},
1878 	[1] = {
1879 		.name	= "md-1",
1880 		.owner	= THIS_MODULE,
1881 		.load_super	    = super_1_load,
1882 		.validate_super	    = super_1_validate,
1883 		.sync_super	    = super_1_sync,
1884 		.rdev_size_change   = super_1_rdev_size_change,
1885 		.allow_new_offset   = super_1_allow_new_offset,
1886 	},
1887 };
1888 
1889 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1890 {
1891 	if (mddev->sync_super) {
1892 		mddev->sync_super(mddev, rdev);
1893 		return;
1894 	}
1895 
1896 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1897 
1898 	super_types[mddev->major_version].sync_super(mddev, rdev);
1899 }
1900 
1901 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1902 {
1903 	struct md_rdev *rdev, *rdev2;
1904 
1905 	rcu_read_lock();
1906 	rdev_for_each_rcu(rdev, mddev1)
1907 		rdev_for_each_rcu(rdev2, mddev2)
1908 			if (rdev->bdev->bd_contains ==
1909 			    rdev2->bdev->bd_contains) {
1910 				rcu_read_unlock();
1911 				return 1;
1912 			}
1913 	rcu_read_unlock();
1914 	return 0;
1915 }
1916 
1917 static LIST_HEAD(pending_raid_disks);
1918 
1919 /*
1920  * Try to register data integrity profile for an mddev
1921  *
1922  * This is called when an array is started and after a disk has been kicked
1923  * from the array. It only succeeds if all working and active component devices
1924  * are integrity capable with matching profiles.
1925  */
1926 int md_integrity_register(struct mddev *mddev)
1927 {
1928 	struct md_rdev *rdev, *reference = NULL;
1929 
1930 	if (list_empty(&mddev->disks))
1931 		return 0; /* nothing to do */
1932 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1933 		return 0; /* shouldn't register, or already is */
1934 	rdev_for_each(rdev, mddev) {
1935 		/* skip spares and non-functional disks */
1936 		if (test_bit(Faulty, &rdev->flags))
1937 			continue;
1938 		if (rdev->raid_disk < 0)
1939 			continue;
1940 		if (!reference) {
1941 			/* Use the first rdev as the reference */
1942 			reference = rdev;
1943 			continue;
1944 		}
1945 		/* does this rdev's profile match the reference profile? */
1946 		if (blk_integrity_compare(reference->bdev->bd_disk,
1947 				rdev->bdev->bd_disk) < 0)
1948 			return -EINVAL;
1949 	}
1950 	if (!reference || !bdev_get_integrity(reference->bdev))
1951 		return 0;
1952 	/*
1953 	 * All component devices are integrity capable and have matching
1954 	 * profiles, register the common profile for the md device.
1955 	 */
1956 	if (blk_integrity_register(mddev->gendisk,
1957 			bdev_get_integrity(reference->bdev)) != 0) {
1958 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1959 			mdname(mddev));
1960 		return -EINVAL;
1961 	}
1962 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1963 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1964 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1965 		       mdname(mddev));
1966 		return -EINVAL;
1967 	}
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL(md_integrity_register);
1971 
1972 /* Disable data integrity if non-capable/non-matching disk is being added */
1973 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1974 {
1975 	struct blk_integrity *bi_rdev;
1976 	struct blk_integrity *bi_mddev;
1977 
1978 	if (!mddev->gendisk)
1979 		return;
1980 
1981 	bi_rdev = bdev_get_integrity(rdev->bdev);
1982 	bi_mddev = blk_get_integrity(mddev->gendisk);
1983 
1984 	if (!bi_mddev) /* nothing to do */
1985 		return;
1986 	if (rdev->raid_disk < 0) /* skip spares */
1987 		return;
1988 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1989 					     rdev->bdev->bd_disk) >= 0)
1990 		return;
1991 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1992 	blk_integrity_unregister(mddev->gendisk);
1993 }
1994 EXPORT_SYMBOL(md_integrity_add_rdev);
1995 
1996 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
1997 {
1998 	char b[BDEVNAME_SIZE];
1999 	struct kobject *ko;
2000 	char *s;
2001 	int err;
2002 
2003 	/* prevent duplicates */
2004 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2005 		return -EEXIST;
2006 
2007 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2008 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2009 			rdev->sectors < mddev->dev_sectors)) {
2010 		if (mddev->pers) {
2011 			/* Cannot change size, so fail
2012 			 * If mddev->level <= 0, then we don't care
2013 			 * about aligning sizes (e.g. linear)
2014 			 */
2015 			if (mddev->level > 0)
2016 				return -ENOSPC;
2017 		} else
2018 			mddev->dev_sectors = rdev->sectors;
2019 	}
2020 
2021 	/* Verify rdev->desc_nr is unique.
2022 	 * If it is -1, assign a free number, else
2023 	 * check number is not in use
2024 	 */
2025 	rcu_read_lock();
2026 	if (rdev->desc_nr < 0) {
2027 		int choice = 0;
2028 		if (mddev->pers)
2029 			choice = mddev->raid_disks;
2030 		while (find_rdev_nr_rcu(mddev, choice))
2031 			choice++;
2032 		rdev->desc_nr = choice;
2033 	} else {
2034 		if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2035 			rcu_read_unlock();
2036 			return -EBUSY;
2037 		}
2038 	}
2039 	rcu_read_unlock();
2040 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2041 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2042 		       mdname(mddev), mddev->max_disks);
2043 		return -EBUSY;
2044 	}
2045 	bdevname(rdev->bdev,b);
2046 	while ( (s=strchr(b, '/')) != NULL)
2047 		*s = '!';
2048 
2049 	rdev->mddev = mddev;
2050 	printk(KERN_INFO "md: bind<%s>\n", b);
2051 
2052 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2053 		goto fail;
2054 
2055 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2056 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2057 		/* failure here is OK */;
2058 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2059 
2060 	list_add_rcu(&rdev->same_set, &mddev->disks);
2061 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2062 
2063 	/* May as well allow recovery to be retried once */
2064 	mddev->recovery_disabled++;
2065 
2066 	return 0;
2067 
2068  fail:
2069 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2070 	       b, mdname(mddev));
2071 	return err;
2072 }
2073 
2074 static void md_delayed_delete(struct work_struct *ws)
2075 {
2076 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2077 	kobject_del(&rdev->kobj);
2078 	kobject_put(&rdev->kobj);
2079 }
2080 
2081 static void unbind_rdev_from_array(struct md_rdev *rdev)
2082 {
2083 	char b[BDEVNAME_SIZE];
2084 
2085 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2086 	list_del_rcu(&rdev->same_set);
2087 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2088 	rdev->mddev = NULL;
2089 	sysfs_remove_link(&rdev->kobj, "block");
2090 	sysfs_put(rdev->sysfs_state);
2091 	rdev->sysfs_state = NULL;
2092 	rdev->badblocks.count = 0;
2093 	/* We need to delay this, otherwise we can deadlock when
2094 	 * writing to 'remove' to "dev/state".  We also need
2095 	 * to delay it due to rcu usage.
2096 	 */
2097 	synchronize_rcu();
2098 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2099 	kobject_get(&rdev->kobj);
2100 	queue_work(md_misc_wq, &rdev->del_work);
2101 }
2102 
2103 /*
2104  * prevent the device from being mounted, repartitioned or
2105  * otherwise reused by a RAID array (or any other kernel
2106  * subsystem), by bd_claiming the device.
2107  */
2108 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2109 {
2110 	int err = 0;
2111 	struct block_device *bdev;
2112 	char b[BDEVNAME_SIZE];
2113 
2114 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2115 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2116 	if (IS_ERR(bdev)) {
2117 		printk(KERN_ERR "md: could not open %s.\n",
2118 			__bdevname(dev, b));
2119 		return PTR_ERR(bdev);
2120 	}
2121 	rdev->bdev = bdev;
2122 	return err;
2123 }
2124 
2125 static void unlock_rdev(struct md_rdev *rdev)
2126 {
2127 	struct block_device *bdev = rdev->bdev;
2128 	rdev->bdev = NULL;
2129 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2130 }
2131 
2132 void md_autodetect_dev(dev_t dev);
2133 
2134 static void export_rdev(struct md_rdev *rdev)
2135 {
2136 	char b[BDEVNAME_SIZE];
2137 
2138 	printk(KERN_INFO "md: export_rdev(%s)\n",
2139 		bdevname(rdev->bdev,b));
2140 	md_rdev_clear(rdev);
2141 #ifndef MODULE
2142 	if (test_bit(AutoDetected, &rdev->flags))
2143 		md_autodetect_dev(rdev->bdev->bd_dev);
2144 #endif
2145 	unlock_rdev(rdev);
2146 	kobject_put(&rdev->kobj);
2147 }
2148 
2149 static void kick_rdev_from_array(struct md_rdev *rdev)
2150 {
2151 	unbind_rdev_from_array(rdev);
2152 	export_rdev(rdev);
2153 }
2154 
2155 static void export_array(struct mddev *mddev)
2156 {
2157 	struct md_rdev *rdev;
2158 
2159 	while (!list_empty(&mddev->disks)) {
2160 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2161 					same_set);
2162 		kick_rdev_from_array(rdev);
2163 	}
2164 	mddev->raid_disks = 0;
2165 	mddev->major_version = 0;
2166 }
2167 
2168 static void sync_sbs(struct mddev *mddev, int nospares)
2169 {
2170 	/* Update each superblock (in-memory image), but
2171 	 * if we are allowed to, skip spares which already
2172 	 * have the right event counter, or have one earlier
2173 	 * (which would mean they aren't being marked as dirty
2174 	 * with the rest of the array)
2175 	 */
2176 	struct md_rdev *rdev;
2177 	rdev_for_each(rdev, mddev) {
2178 		if (rdev->sb_events == mddev->events ||
2179 		    (nospares &&
2180 		     rdev->raid_disk < 0 &&
2181 		     rdev->sb_events+1 == mddev->events)) {
2182 			/* Don't update this superblock */
2183 			rdev->sb_loaded = 2;
2184 		} else {
2185 			sync_super(mddev, rdev);
2186 			rdev->sb_loaded = 1;
2187 		}
2188 	}
2189 }
2190 
2191 static void md_update_sb(struct mddev *mddev, int force_change)
2192 {
2193 	struct md_rdev *rdev;
2194 	int sync_req;
2195 	int nospares = 0;
2196 	int any_badblocks_changed = 0;
2197 
2198 	if (mddev->ro) {
2199 		if (force_change)
2200 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2201 		return;
2202 	}
2203 repeat:
2204 	/* First make sure individual recovery_offsets are correct */
2205 	rdev_for_each(rdev, mddev) {
2206 		if (rdev->raid_disk >= 0 &&
2207 		    mddev->delta_disks >= 0 &&
2208 		    !test_bit(In_sync, &rdev->flags) &&
2209 		    mddev->curr_resync_completed > rdev->recovery_offset)
2210 				rdev->recovery_offset = mddev->curr_resync_completed;
2211 
2212 	}
2213 	if (!mddev->persistent) {
2214 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2215 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2216 		if (!mddev->external) {
2217 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2218 			rdev_for_each(rdev, mddev) {
2219 				if (rdev->badblocks.changed) {
2220 					rdev->badblocks.changed = 0;
2221 					md_ack_all_badblocks(&rdev->badblocks);
2222 					md_error(mddev, rdev);
2223 				}
2224 				clear_bit(Blocked, &rdev->flags);
2225 				clear_bit(BlockedBadBlocks, &rdev->flags);
2226 				wake_up(&rdev->blocked_wait);
2227 			}
2228 		}
2229 		wake_up(&mddev->sb_wait);
2230 		return;
2231 	}
2232 
2233 	spin_lock_irq(&mddev->write_lock);
2234 
2235 	mddev->utime = get_seconds();
2236 
2237 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2238 		force_change = 1;
2239 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2240 		/* just a clean<-> dirty transition, possibly leave spares alone,
2241 		 * though if events isn't the right even/odd, we will have to do
2242 		 * spares after all
2243 		 */
2244 		nospares = 1;
2245 	if (force_change)
2246 		nospares = 0;
2247 	if (mddev->degraded)
2248 		/* If the array is degraded, then skipping spares is both
2249 		 * dangerous and fairly pointless.
2250 		 * Dangerous because a device that was removed from the array
2251 		 * might have a event_count that still looks up-to-date,
2252 		 * so it can be re-added without a resync.
2253 		 * Pointless because if there are any spares to skip,
2254 		 * then a recovery will happen and soon that array won't
2255 		 * be degraded any more and the spare can go back to sleep then.
2256 		 */
2257 		nospares = 0;
2258 
2259 	sync_req = mddev->in_sync;
2260 
2261 	/* If this is just a dirty<->clean transition, and the array is clean
2262 	 * and 'events' is odd, we can roll back to the previous clean state */
2263 	if (nospares
2264 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2265 	    && mddev->can_decrease_events
2266 	    && mddev->events != 1) {
2267 		mddev->events--;
2268 		mddev->can_decrease_events = 0;
2269 	} else {
2270 		/* otherwise we have to go forward and ... */
2271 		mddev->events ++;
2272 		mddev->can_decrease_events = nospares;
2273 	}
2274 
2275 	/*
2276 	 * This 64-bit counter should never wrap.
2277 	 * Either we are in around ~1 trillion A.C., assuming
2278 	 * 1 reboot per second, or we have a bug...
2279 	 */
2280 	WARN_ON(mddev->events == 0);
2281 
2282 	rdev_for_each(rdev, mddev) {
2283 		if (rdev->badblocks.changed)
2284 			any_badblocks_changed++;
2285 		if (test_bit(Faulty, &rdev->flags))
2286 			set_bit(FaultRecorded, &rdev->flags);
2287 	}
2288 
2289 	sync_sbs(mddev, nospares);
2290 	spin_unlock_irq(&mddev->write_lock);
2291 
2292 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2293 		 mdname(mddev), mddev->in_sync);
2294 
2295 	bitmap_update_sb(mddev->bitmap);
2296 	rdev_for_each(rdev, mddev) {
2297 		char b[BDEVNAME_SIZE];
2298 
2299 		if (rdev->sb_loaded != 1)
2300 			continue; /* no noise on spare devices */
2301 
2302 		if (!test_bit(Faulty, &rdev->flags)) {
2303 			md_super_write(mddev,rdev,
2304 				       rdev->sb_start, rdev->sb_size,
2305 				       rdev->sb_page);
2306 			pr_debug("md: (write) %s's sb offset: %llu\n",
2307 				 bdevname(rdev->bdev, b),
2308 				 (unsigned long long)rdev->sb_start);
2309 			rdev->sb_events = mddev->events;
2310 			if (rdev->badblocks.size) {
2311 				md_super_write(mddev, rdev,
2312 					       rdev->badblocks.sector,
2313 					       rdev->badblocks.size << 9,
2314 					       rdev->bb_page);
2315 				rdev->badblocks.size = 0;
2316 			}
2317 
2318 		} else
2319 			pr_debug("md: %s (skipping faulty)\n",
2320 				 bdevname(rdev->bdev, b));
2321 
2322 		if (mddev->level == LEVEL_MULTIPATH)
2323 			/* only need to write one superblock... */
2324 			break;
2325 	}
2326 	md_super_wait(mddev);
2327 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2328 
2329 	spin_lock_irq(&mddev->write_lock);
2330 	if (mddev->in_sync != sync_req ||
2331 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2332 		/* have to write it out again */
2333 		spin_unlock_irq(&mddev->write_lock);
2334 		goto repeat;
2335 	}
2336 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2337 	spin_unlock_irq(&mddev->write_lock);
2338 	wake_up(&mddev->sb_wait);
2339 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2340 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2341 
2342 	rdev_for_each(rdev, mddev) {
2343 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2344 			clear_bit(Blocked, &rdev->flags);
2345 
2346 		if (any_badblocks_changed)
2347 			md_ack_all_badblocks(&rdev->badblocks);
2348 		clear_bit(BlockedBadBlocks, &rdev->flags);
2349 		wake_up(&rdev->blocked_wait);
2350 	}
2351 }
2352 
2353 /* words written to sysfs files may, or may not, be \n terminated.
2354  * We want to accept with case. For this we use cmd_match.
2355  */
2356 static int cmd_match(const char *cmd, const char *str)
2357 {
2358 	/* See if cmd, written into a sysfs file, matches
2359 	 * str.  They must either be the same, or cmd can
2360 	 * have a trailing newline
2361 	 */
2362 	while (*cmd && *str && *cmd == *str) {
2363 		cmd++;
2364 		str++;
2365 	}
2366 	if (*cmd == '\n')
2367 		cmd++;
2368 	if (*str || *cmd)
2369 		return 0;
2370 	return 1;
2371 }
2372 
2373 struct rdev_sysfs_entry {
2374 	struct attribute attr;
2375 	ssize_t (*show)(struct md_rdev *, char *);
2376 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2377 };
2378 
2379 static ssize_t
2380 state_show(struct md_rdev *rdev, char *page)
2381 {
2382 	char *sep = "";
2383 	size_t len = 0;
2384 
2385 	if (test_bit(Faulty, &rdev->flags) ||
2386 	    rdev->badblocks.unacked_exist) {
2387 		len+= sprintf(page+len, "%sfaulty",sep);
2388 		sep = ",";
2389 	}
2390 	if (test_bit(In_sync, &rdev->flags)) {
2391 		len += sprintf(page+len, "%sin_sync",sep);
2392 		sep = ",";
2393 	}
2394 	if (test_bit(WriteMostly, &rdev->flags)) {
2395 		len += sprintf(page+len, "%swrite_mostly",sep);
2396 		sep = ",";
2397 	}
2398 	if (test_bit(Blocked, &rdev->flags) ||
2399 	    (rdev->badblocks.unacked_exist
2400 	     && !test_bit(Faulty, &rdev->flags))) {
2401 		len += sprintf(page+len, "%sblocked", sep);
2402 		sep = ",";
2403 	}
2404 	if (!test_bit(Faulty, &rdev->flags) &&
2405 	    !test_bit(In_sync, &rdev->flags)) {
2406 		len += sprintf(page+len, "%sspare", sep);
2407 		sep = ",";
2408 	}
2409 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2410 		len += sprintf(page+len, "%swrite_error", sep);
2411 		sep = ",";
2412 	}
2413 	if (test_bit(WantReplacement, &rdev->flags)) {
2414 		len += sprintf(page+len, "%swant_replacement", sep);
2415 		sep = ",";
2416 	}
2417 	if (test_bit(Replacement, &rdev->flags)) {
2418 		len += sprintf(page+len, "%sreplacement", sep);
2419 		sep = ",";
2420 	}
2421 
2422 	return len+sprintf(page+len, "\n");
2423 }
2424 
2425 static ssize_t
2426 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2427 {
2428 	/* can write
2429 	 *  faulty  - simulates an error
2430 	 *  remove  - disconnects the device
2431 	 *  writemostly - sets write_mostly
2432 	 *  -writemostly - clears write_mostly
2433 	 *  blocked - sets the Blocked flags
2434 	 *  -blocked - clears the Blocked and possibly simulates an error
2435 	 *  insync - sets Insync providing device isn't active
2436 	 *  -insync - clear Insync for a device with a slot assigned,
2437 	 *            so that it gets rebuilt based on bitmap
2438 	 *  write_error - sets WriteErrorSeen
2439 	 *  -write_error - clears WriteErrorSeen
2440 	 */
2441 	int err = -EINVAL;
2442 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2443 		md_error(rdev->mddev, rdev);
2444 		if (test_bit(Faulty, &rdev->flags))
2445 			err = 0;
2446 		else
2447 			err = -EBUSY;
2448 	} else if (cmd_match(buf, "remove")) {
2449 		if (rdev->raid_disk >= 0)
2450 			err = -EBUSY;
2451 		else {
2452 			struct mddev *mddev = rdev->mddev;
2453 			kick_rdev_from_array(rdev);
2454 			if (mddev->pers)
2455 				md_update_sb(mddev, 1);
2456 			md_new_event(mddev);
2457 			err = 0;
2458 		}
2459 	} else if (cmd_match(buf, "writemostly")) {
2460 		set_bit(WriteMostly, &rdev->flags);
2461 		err = 0;
2462 	} else if (cmd_match(buf, "-writemostly")) {
2463 		clear_bit(WriteMostly, &rdev->flags);
2464 		err = 0;
2465 	} else if (cmd_match(buf, "blocked")) {
2466 		set_bit(Blocked, &rdev->flags);
2467 		err = 0;
2468 	} else if (cmd_match(buf, "-blocked")) {
2469 		if (!test_bit(Faulty, &rdev->flags) &&
2470 		    rdev->badblocks.unacked_exist) {
2471 			/* metadata handler doesn't understand badblocks,
2472 			 * so we need to fail the device
2473 			 */
2474 			md_error(rdev->mddev, rdev);
2475 		}
2476 		clear_bit(Blocked, &rdev->flags);
2477 		clear_bit(BlockedBadBlocks, &rdev->flags);
2478 		wake_up(&rdev->blocked_wait);
2479 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2480 		md_wakeup_thread(rdev->mddev->thread);
2481 
2482 		err = 0;
2483 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2484 		set_bit(In_sync, &rdev->flags);
2485 		err = 0;
2486 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2487 		if (rdev->mddev->pers == NULL) {
2488 			clear_bit(In_sync, &rdev->flags);
2489 			rdev->saved_raid_disk = rdev->raid_disk;
2490 			rdev->raid_disk = -1;
2491 			err = 0;
2492 		}
2493 	} else if (cmd_match(buf, "write_error")) {
2494 		set_bit(WriteErrorSeen, &rdev->flags);
2495 		err = 0;
2496 	} else if (cmd_match(buf, "-write_error")) {
2497 		clear_bit(WriteErrorSeen, &rdev->flags);
2498 		err = 0;
2499 	} else if (cmd_match(buf, "want_replacement")) {
2500 		/* Any non-spare device that is not a replacement can
2501 		 * become want_replacement at any time, but we then need to
2502 		 * check if recovery is needed.
2503 		 */
2504 		if (rdev->raid_disk >= 0 &&
2505 		    !test_bit(Replacement, &rdev->flags))
2506 			set_bit(WantReplacement, &rdev->flags);
2507 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2508 		md_wakeup_thread(rdev->mddev->thread);
2509 		err = 0;
2510 	} else if (cmd_match(buf, "-want_replacement")) {
2511 		/* Clearing 'want_replacement' is always allowed.
2512 		 * Once replacements starts it is too late though.
2513 		 */
2514 		err = 0;
2515 		clear_bit(WantReplacement, &rdev->flags);
2516 	} else if (cmd_match(buf, "replacement")) {
2517 		/* Can only set a device as a replacement when array has not
2518 		 * yet been started.  Once running, replacement is automatic
2519 		 * from spares, or by assigning 'slot'.
2520 		 */
2521 		if (rdev->mddev->pers)
2522 			err = -EBUSY;
2523 		else {
2524 			set_bit(Replacement, &rdev->flags);
2525 			err = 0;
2526 		}
2527 	} else if (cmd_match(buf, "-replacement")) {
2528 		/* Similarly, can only clear Replacement before start */
2529 		if (rdev->mddev->pers)
2530 			err = -EBUSY;
2531 		else {
2532 			clear_bit(Replacement, &rdev->flags);
2533 			err = 0;
2534 		}
2535 	}
2536 	if (!err)
2537 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2538 	return err ? err : len;
2539 }
2540 static struct rdev_sysfs_entry rdev_state =
2541 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2542 
2543 static ssize_t
2544 errors_show(struct md_rdev *rdev, char *page)
2545 {
2546 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2547 }
2548 
2549 static ssize_t
2550 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2551 {
2552 	char *e;
2553 	unsigned long n = simple_strtoul(buf, &e, 10);
2554 	if (*buf && (*e == 0 || *e == '\n')) {
2555 		atomic_set(&rdev->corrected_errors, n);
2556 		return len;
2557 	}
2558 	return -EINVAL;
2559 }
2560 static struct rdev_sysfs_entry rdev_errors =
2561 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2562 
2563 static ssize_t
2564 slot_show(struct md_rdev *rdev, char *page)
2565 {
2566 	if (rdev->raid_disk < 0)
2567 		return sprintf(page, "none\n");
2568 	else
2569 		return sprintf(page, "%d\n", rdev->raid_disk);
2570 }
2571 
2572 static ssize_t
2573 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2574 {
2575 	char *e;
2576 	int err;
2577 	int slot = simple_strtoul(buf, &e, 10);
2578 	if (strncmp(buf, "none", 4)==0)
2579 		slot = -1;
2580 	else if (e==buf || (*e && *e!= '\n'))
2581 		return -EINVAL;
2582 	if (rdev->mddev->pers && slot == -1) {
2583 		/* Setting 'slot' on an active array requires also
2584 		 * updating the 'rd%d' link, and communicating
2585 		 * with the personality with ->hot_*_disk.
2586 		 * For now we only support removing
2587 		 * failed/spare devices.  This normally happens automatically,
2588 		 * but not when the metadata is externally managed.
2589 		 */
2590 		if (rdev->raid_disk == -1)
2591 			return -EEXIST;
2592 		/* personality does all needed checks */
2593 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2594 			return -EINVAL;
2595 		clear_bit(Blocked, &rdev->flags);
2596 		remove_and_add_spares(rdev->mddev, rdev);
2597 		if (rdev->raid_disk >= 0)
2598 			return -EBUSY;
2599 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2600 		md_wakeup_thread(rdev->mddev->thread);
2601 	} else if (rdev->mddev->pers) {
2602 		/* Activating a spare .. or possibly reactivating
2603 		 * if we ever get bitmaps working here.
2604 		 */
2605 
2606 		if (rdev->raid_disk != -1)
2607 			return -EBUSY;
2608 
2609 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2610 			return -EBUSY;
2611 
2612 		if (rdev->mddev->pers->hot_add_disk == NULL)
2613 			return -EINVAL;
2614 
2615 		if (slot >= rdev->mddev->raid_disks &&
2616 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2617 			return -ENOSPC;
2618 
2619 		rdev->raid_disk = slot;
2620 		if (test_bit(In_sync, &rdev->flags))
2621 			rdev->saved_raid_disk = slot;
2622 		else
2623 			rdev->saved_raid_disk = -1;
2624 		clear_bit(In_sync, &rdev->flags);
2625 		clear_bit(Bitmap_sync, &rdev->flags);
2626 		err = rdev->mddev->pers->
2627 			hot_add_disk(rdev->mddev, rdev);
2628 		if (err) {
2629 			rdev->raid_disk = -1;
2630 			return err;
2631 		} else
2632 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2633 		if (sysfs_link_rdev(rdev->mddev, rdev))
2634 			/* failure here is OK */;
2635 		/* don't wakeup anyone, leave that to userspace. */
2636 	} else {
2637 		if (slot >= rdev->mddev->raid_disks &&
2638 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2639 			return -ENOSPC;
2640 		rdev->raid_disk = slot;
2641 		/* assume it is working */
2642 		clear_bit(Faulty, &rdev->flags);
2643 		clear_bit(WriteMostly, &rdev->flags);
2644 		set_bit(In_sync, &rdev->flags);
2645 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2646 	}
2647 	return len;
2648 }
2649 
2650 static struct rdev_sysfs_entry rdev_slot =
2651 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2652 
2653 static ssize_t
2654 offset_show(struct md_rdev *rdev, char *page)
2655 {
2656 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2657 }
2658 
2659 static ssize_t
2660 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2661 {
2662 	unsigned long long offset;
2663 	if (kstrtoull(buf, 10, &offset) < 0)
2664 		return -EINVAL;
2665 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2666 		return -EBUSY;
2667 	if (rdev->sectors && rdev->mddev->external)
2668 		/* Must set offset before size, so overlap checks
2669 		 * can be sane */
2670 		return -EBUSY;
2671 	rdev->data_offset = offset;
2672 	rdev->new_data_offset = offset;
2673 	return len;
2674 }
2675 
2676 static struct rdev_sysfs_entry rdev_offset =
2677 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2678 
2679 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2680 {
2681 	return sprintf(page, "%llu\n",
2682 		       (unsigned long long)rdev->new_data_offset);
2683 }
2684 
2685 static ssize_t new_offset_store(struct md_rdev *rdev,
2686 				const char *buf, size_t len)
2687 {
2688 	unsigned long long new_offset;
2689 	struct mddev *mddev = rdev->mddev;
2690 
2691 	if (kstrtoull(buf, 10, &new_offset) < 0)
2692 		return -EINVAL;
2693 
2694 	if (mddev->sync_thread ||
2695 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2696 		return -EBUSY;
2697 	if (new_offset == rdev->data_offset)
2698 		/* reset is always permitted */
2699 		;
2700 	else if (new_offset > rdev->data_offset) {
2701 		/* must not push array size beyond rdev_sectors */
2702 		if (new_offset - rdev->data_offset
2703 		    + mddev->dev_sectors > rdev->sectors)
2704 				return -E2BIG;
2705 	}
2706 	/* Metadata worries about other space details. */
2707 
2708 	/* decreasing the offset is inconsistent with a backwards
2709 	 * reshape.
2710 	 */
2711 	if (new_offset < rdev->data_offset &&
2712 	    mddev->reshape_backwards)
2713 		return -EINVAL;
2714 	/* Increasing offset is inconsistent with forwards
2715 	 * reshape.  reshape_direction should be set to
2716 	 * 'backwards' first.
2717 	 */
2718 	if (new_offset > rdev->data_offset &&
2719 	    !mddev->reshape_backwards)
2720 		return -EINVAL;
2721 
2722 	if (mddev->pers && mddev->persistent &&
2723 	    !super_types[mddev->major_version]
2724 	    .allow_new_offset(rdev, new_offset))
2725 		return -E2BIG;
2726 	rdev->new_data_offset = new_offset;
2727 	if (new_offset > rdev->data_offset)
2728 		mddev->reshape_backwards = 1;
2729 	else if (new_offset < rdev->data_offset)
2730 		mddev->reshape_backwards = 0;
2731 
2732 	return len;
2733 }
2734 static struct rdev_sysfs_entry rdev_new_offset =
2735 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2736 
2737 static ssize_t
2738 rdev_size_show(struct md_rdev *rdev, char *page)
2739 {
2740 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2741 }
2742 
2743 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2744 {
2745 	/* check if two start/length pairs overlap */
2746 	if (s1+l1 <= s2)
2747 		return 0;
2748 	if (s2+l2 <= s1)
2749 		return 0;
2750 	return 1;
2751 }
2752 
2753 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2754 {
2755 	unsigned long long blocks;
2756 	sector_t new;
2757 
2758 	if (kstrtoull(buf, 10, &blocks) < 0)
2759 		return -EINVAL;
2760 
2761 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2762 		return -EINVAL; /* sector conversion overflow */
2763 
2764 	new = blocks * 2;
2765 	if (new != blocks * 2)
2766 		return -EINVAL; /* unsigned long long to sector_t overflow */
2767 
2768 	*sectors = new;
2769 	return 0;
2770 }
2771 
2772 static ssize_t
2773 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2774 {
2775 	struct mddev *my_mddev = rdev->mddev;
2776 	sector_t oldsectors = rdev->sectors;
2777 	sector_t sectors;
2778 
2779 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2780 		return -EINVAL;
2781 	if (rdev->data_offset != rdev->new_data_offset)
2782 		return -EINVAL; /* too confusing */
2783 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2784 		if (my_mddev->persistent) {
2785 			sectors = super_types[my_mddev->major_version].
2786 				rdev_size_change(rdev, sectors);
2787 			if (!sectors)
2788 				return -EBUSY;
2789 		} else if (!sectors)
2790 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2791 				rdev->data_offset;
2792 		if (!my_mddev->pers->resize)
2793 			/* Cannot change size for RAID0 or Linear etc */
2794 			return -EINVAL;
2795 	}
2796 	if (sectors < my_mddev->dev_sectors)
2797 		return -EINVAL; /* component must fit device */
2798 
2799 	rdev->sectors = sectors;
2800 	if (sectors > oldsectors && my_mddev->external) {
2801 		/* Need to check that all other rdevs with the same
2802 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2803 		 * the rdev lists safely.
2804 		 * This check does not provide a hard guarantee, it
2805 		 * just helps avoid dangerous mistakes.
2806 		 */
2807 		struct mddev *mddev;
2808 		int overlap = 0;
2809 		struct list_head *tmp;
2810 
2811 		rcu_read_lock();
2812 		for_each_mddev(mddev, tmp) {
2813 			struct md_rdev *rdev2;
2814 
2815 			rdev_for_each(rdev2, mddev)
2816 				if (rdev->bdev == rdev2->bdev &&
2817 				    rdev != rdev2 &&
2818 				    overlaps(rdev->data_offset, rdev->sectors,
2819 					     rdev2->data_offset,
2820 					     rdev2->sectors)) {
2821 					overlap = 1;
2822 					break;
2823 				}
2824 			if (overlap) {
2825 				mddev_put(mddev);
2826 				break;
2827 			}
2828 		}
2829 		rcu_read_unlock();
2830 		if (overlap) {
2831 			/* Someone else could have slipped in a size
2832 			 * change here, but doing so is just silly.
2833 			 * We put oldsectors back because we *know* it is
2834 			 * safe, and trust userspace not to race with
2835 			 * itself
2836 			 */
2837 			rdev->sectors = oldsectors;
2838 			return -EBUSY;
2839 		}
2840 	}
2841 	return len;
2842 }
2843 
2844 static struct rdev_sysfs_entry rdev_size =
2845 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2846 
2847 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2848 {
2849 	unsigned long long recovery_start = rdev->recovery_offset;
2850 
2851 	if (test_bit(In_sync, &rdev->flags) ||
2852 	    recovery_start == MaxSector)
2853 		return sprintf(page, "none\n");
2854 
2855 	return sprintf(page, "%llu\n", recovery_start);
2856 }
2857 
2858 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2859 {
2860 	unsigned long long recovery_start;
2861 
2862 	if (cmd_match(buf, "none"))
2863 		recovery_start = MaxSector;
2864 	else if (kstrtoull(buf, 10, &recovery_start))
2865 		return -EINVAL;
2866 
2867 	if (rdev->mddev->pers &&
2868 	    rdev->raid_disk >= 0)
2869 		return -EBUSY;
2870 
2871 	rdev->recovery_offset = recovery_start;
2872 	if (recovery_start == MaxSector)
2873 		set_bit(In_sync, &rdev->flags);
2874 	else
2875 		clear_bit(In_sync, &rdev->flags);
2876 	return len;
2877 }
2878 
2879 static struct rdev_sysfs_entry rdev_recovery_start =
2880 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2881 
2882 static ssize_t
2883 badblocks_show(struct badblocks *bb, char *page, int unack);
2884 static ssize_t
2885 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2886 
2887 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2888 {
2889 	return badblocks_show(&rdev->badblocks, page, 0);
2890 }
2891 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2892 {
2893 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2894 	/* Maybe that ack was all we needed */
2895 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2896 		wake_up(&rdev->blocked_wait);
2897 	return rv;
2898 }
2899 static struct rdev_sysfs_entry rdev_bad_blocks =
2900 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2901 
2902 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2903 {
2904 	return badblocks_show(&rdev->badblocks, page, 1);
2905 }
2906 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2907 {
2908 	return badblocks_store(&rdev->badblocks, page, len, 1);
2909 }
2910 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2911 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2912 
2913 static struct attribute *rdev_default_attrs[] = {
2914 	&rdev_state.attr,
2915 	&rdev_errors.attr,
2916 	&rdev_slot.attr,
2917 	&rdev_offset.attr,
2918 	&rdev_new_offset.attr,
2919 	&rdev_size.attr,
2920 	&rdev_recovery_start.attr,
2921 	&rdev_bad_blocks.attr,
2922 	&rdev_unack_bad_blocks.attr,
2923 	NULL,
2924 };
2925 static ssize_t
2926 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2927 {
2928 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2929 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2930 	struct mddev *mddev = rdev->mddev;
2931 	ssize_t rv;
2932 
2933 	if (!entry->show)
2934 		return -EIO;
2935 
2936 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2937 	if (!rv) {
2938 		if (rdev->mddev == NULL)
2939 			rv = -EBUSY;
2940 		else
2941 			rv = entry->show(rdev, page);
2942 		mddev_unlock(mddev);
2943 	}
2944 	return rv;
2945 }
2946 
2947 static ssize_t
2948 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2949 	      const char *page, size_t length)
2950 {
2951 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2952 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2953 	ssize_t rv;
2954 	struct mddev *mddev = rdev->mddev;
2955 
2956 	if (!entry->store)
2957 		return -EIO;
2958 	if (!capable(CAP_SYS_ADMIN))
2959 		return -EACCES;
2960 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2961 	if (!rv) {
2962 		if (rdev->mddev == NULL)
2963 			rv = -EBUSY;
2964 		else
2965 			rv = entry->store(rdev, page, length);
2966 		mddev_unlock(mddev);
2967 	}
2968 	return rv;
2969 }
2970 
2971 static void rdev_free(struct kobject *ko)
2972 {
2973 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2974 	kfree(rdev);
2975 }
2976 static const struct sysfs_ops rdev_sysfs_ops = {
2977 	.show		= rdev_attr_show,
2978 	.store		= rdev_attr_store,
2979 };
2980 static struct kobj_type rdev_ktype = {
2981 	.release	= rdev_free,
2982 	.sysfs_ops	= &rdev_sysfs_ops,
2983 	.default_attrs	= rdev_default_attrs,
2984 };
2985 
2986 int md_rdev_init(struct md_rdev *rdev)
2987 {
2988 	rdev->desc_nr = -1;
2989 	rdev->saved_raid_disk = -1;
2990 	rdev->raid_disk = -1;
2991 	rdev->flags = 0;
2992 	rdev->data_offset = 0;
2993 	rdev->new_data_offset = 0;
2994 	rdev->sb_events = 0;
2995 	rdev->last_read_error.tv_sec  = 0;
2996 	rdev->last_read_error.tv_nsec = 0;
2997 	rdev->sb_loaded = 0;
2998 	rdev->bb_page = NULL;
2999 	atomic_set(&rdev->nr_pending, 0);
3000 	atomic_set(&rdev->read_errors, 0);
3001 	atomic_set(&rdev->corrected_errors, 0);
3002 
3003 	INIT_LIST_HEAD(&rdev->same_set);
3004 	init_waitqueue_head(&rdev->blocked_wait);
3005 
3006 	/* Add space to store bad block list.
3007 	 * This reserves the space even on arrays where it cannot
3008 	 * be used - I wonder if that matters
3009 	 */
3010 	rdev->badblocks.count = 0;
3011 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3012 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3013 	seqlock_init(&rdev->badblocks.lock);
3014 	if (rdev->badblocks.page == NULL)
3015 		return -ENOMEM;
3016 
3017 	return 0;
3018 }
3019 EXPORT_SYMBOL_GPL(md_rdev_init);
3020 /*
3021  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3022  *
3023  * mark the device faulty if:
3024  *
3025  *   - the device is nonexistent (zero size)
3026  *   - the device has no valid superblock
3027  *
3028  * a faulty rdev _never_ has rdev->sb set.
3029  */
3030 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3031 {
3032 	char b[BDEVNAME_SIZE];
3033 	int err;
3034 	struct md_rdev *rdev;
3035 	sector_t size;
3036 
3037 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3038 	if (!rdev) {
3039 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3040 		return ERR_PTR(-ENOMEM);
3041 	}
3042 
3043 	err = md_rdev_init(rdev);
3044 	if (err)
3045 		goto abort_free;
3046 	err = alloc_disk_sb(rdev);
3047 	if (err)
3048 		goto abort_free;
3049 
3050 	err = lock_rdev(rdev, newdev, super_format == -2);
3051 	if (err)
3052 		goto abort_free;
3053 
3054 	kobject_init(&rdev->kobj, &rdev_ktype);
3055 
3056 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3057 	if (!size) {
3058 		printk(KERN_WARNING
3059 			"md: %s has zero or unknown size, marking faulty!\n",
3060 			bdevname(rdev->bdev,b));
3061 		err = -EINVAL;
3062 		goto abort_free;
3063 	}
3064 
3065 	if (super_format >= 0) {
3066 		err = super_types[super_format].
3067 			load_super(rdev, NULL, super_minor);
3068 		if (err == -EINVAL) {
3069 			printk(KERN_WARNING
3070 				"md: %s does not have a valid v%d.%d "
3071 			       "superblock, not importing!\n",
3072 				bdevname(rdev->bdev,b),
3073 			       super_format, super_minor);
3074 			goto abort_free;
3075 		}
3076 		if (err < 0) {
3077 			printk(KERN_WARNING
3078 				"md: could not read %s's sb, not importing!\n",
3079 				bdevname(rdev->bdev,b));
3080 			goto abort_free;
3081 		}
3082 	}
3083 
3084 	return rdev;
3085 
3086 abort_free:
3087 	if (rdev->bdev)
3088 		unlock_rdev(rdev);
3089 	md_rdev_clear(rdev);
3090 	kfree(rdev);
3091 	return ERR_PTR(err);
3092 }
3093 
3094 /*
3095  * Check a full RAID array for plausibility
3096  */
3097 
3098 static void analyze_sbs(struct mddev *mddev)
3099 {
3100 	int i;
3101 	struct md_rdev *rdev, *freshest, *tmp;
3102 	char b[BDEVNAME_SIZE];
3103 
3104 	freshest = NULL;
3105 	rdev_for_each_safe(rdev, tmp, mddev)
3106 		switch (super_types[mddev->major_version].
3107 			load_super(rdev, freshest, mddev->minor_version)) {
3108 		case 1:
3109 			freshest = rdev;
3110 			break;
3111 		case 0:
3112 			break;
3113 		default:
3114 			printk( KERN_ERR \
3115 				"md: fatal superblock inconsistency in %s"
3116 				" -- removing from array\n",
3117 				bdevname(rdev->bdev,b));
3118 			kick_rdev_from_array(rdev);
3119 		}
3120 
3121 	super_types[mddev->major_version].
3122 		validate_super(mddev, freshest);
3123 
3124 	i = 0;
3125 	rdev_for_each_safe(rdev, tmp, mddev) {
3126 		if (mddev->max_disks &&
3127 		    (rdev->desc_nr >= mddev->max_disks ||
3128 		     i > mddev->max_disks)) {
3129 			printk(KERN_WARNING
3130 			       "md: %s: %s: only %d devices permitted\n",
3131 			       mdname(mddev), bdevname(rdev->bdev, b),
3132 			       mddev->max_disks);
3133 			kick_rdev_from_array(rdev);
3134 			continue;
3135 		}
3136 		if (rdev != freshest)
3137 			if (super_types[mddev->major_version].
3138 			    validate_super(mddev, rdev)) {
3139 				printk(KERN_WARNING "md: kicking non-fresh %s"
3140 					" from array!\n",
3141 					bdevname(rdev->bdev,b));
3142 				kick_rdev_from_array(rdev);
3143 				continue;
3144 			}
3145 		if (mddev->level == LEVEL_MULTIPATH) {
3146 			rdev->desc_nr = i++;
3147 			rdev->raid_disk = rdev->desc_nr;
3148 			set_bit(In_sync, &rdev->flags);
3149 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3150 			rdev->raid_disk = -1;
3151 			clear_bit(In_sync, &rdev->flags);
3152 		}
3153 	}
3154 }
3155 
3156 /* Read a fixed-point number.
3157  * Numbers in sysfs attributes should be in "standard" units where
3158  * possible, so time should be in seconds.
3159  * However we internally use a a much smaller unit such as
3160  * milliseconds or jiffies.
3161  * This function takes a decimal number with a possible fractional
3162  * component, and produces an integer which is the result of
3163  * multiplying that number by 10^'scale'.
3164  * all without any floating-point arithmetic.
3165  */
3166 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3167 {
3168 	unsigned long result = 0;
3169 	long decimals = -1;
3170 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3171 		if (*cp == '.')
3172 			decimals = 0;
3173 		else if (decimals < scale) {
3174 			unsigned int value;
3175 			value = *cp - '0';
3176 			result = result * 10 + value;
3177 			if (decimals >= 0)
3178 				decimals++;
3179 		}
3180 		cp++;
3181 	}
3182 	if (*cp == '\n')
3183 		cp++;
3184 	if (*cp)
3185 		return -EINVAL;
3186 	if (decimals < 0)
3187 		decimals = 0;
3188 	while (decimals < scale) {
3189 		result *= 10;
3190 		decimals ++;
3191 	}
3192 	*res = result;
3193 	return 0;
3194 }
3195 
3196 static void md_safemode_timeout(unsigned long data);
3197 
3198 static ssize_t
3199 safe_delay_show(struct mddev *mddev, char *page)
3200 {
3201 	int msec = (mddev->safemode_delay*1000)/HZ;
3202 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3203 }
3204 static ssize_t
3205 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3206 {
3207 	unsigned long msec;
3208 
3209 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3210 		return -EINVAL;
3211 	if (msec == 0)
3212 		mddev->safemode_delay = 0;
3213 	else {
3214 		unsigned long old_delay = mddev->safemode_delay;
3215 		mddev->safemode_delay = (msec*HZ)/1000;
3216 		if (mddev->safemode_delay == 0)
3217 			mddev->safemode_delay = 1;
3218 		if (mddev->safemode_delay < old_delay || old_delay == 0)
3219 			md_safemode_timeout((unsigned long)mddev);
3220 	}
3221 	return len;
3222 }
3223 static struct md_sysfs_entry md_safe_delay =
3224 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3225 
3226 static ssize_t
3227 level_show(struct mddev *mddev, char *page)
3228 {
3229 	struct md_personality *p = mddev->pers;
3230 	if (p)
3231 		return sprintf(page, "%s\n", p->name);
3232 	else if (mddev->clevel[0])
3233 		return sprintf(page, "%s\n", mddev->clevel);
3234 	else if (mddev->level != LEVEL_NONE)
3235 		return sprintf(page, "%d\n", mddev->level);
3236 	else
3237 		return 0;
3238 }
3239 
3240 static ssize_t
3241 level_store(struct mddev *mddev, const char *buf, size_t len)
3242 {
3243 	char clevel[16];
3244 	ssize_t rv = len;
3245 	struct md_personality *pers;
3246 	long level;
3247 	void *priv;
3248 	struct md_rdev *rdev;
3249 
3250 	if (mddev->pers == NULL) {
3251 		if (len == 0)
3252 			return 0;
3253 		if (len >= sizeof(mddev->clevel))
3254 			return -ENOSPC;
3255 		strncpy(mddev->clevel, buf, len);
3256 		if (mddev->clevel[len-1] == '\n')
3257 			len--;
3258 		mddev->clevel[len] = 0;
3259 		mddev->level = LEVEL_NONE;
3260 		return rv;
3261 	}
3262 	if (mddev->ro)
3263 		return  -EROFS;
3264 
3265 	/* request to change the personality.  Need to ensure:
3266 	 *  - array is not engaged in resync/recovery/reshape
3267 	 *  - old personality can be suspended
3268 	 *  - new personality will access other array.
3269 	 */
3270 
3271 	if (mddev->sync_thread ||
3272 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3273 	    mddev->reshape_position != MaxSector ||
3274 	    mddev->sysfs_active)
3275 		return -EBUSY;
3276 
3277 	if (!mddev->pers->quiesce) {
3278 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3279 		       mdname(mddev), mddev->pers->name);
3280 		return -EINVAL;
3281 	}
3282 
3283 	/* Now find the new personality */
3284 	if (len == 0 || len >= sizeof(clevel))
3285 		return -EINVAL;
3286 	strncpy(clevel, buf, len);
3287 	if (clevel[len-1] == '\n')
3288 		len--;
3289 	clevel[len] = 0;
3290 	if (kstrtol(clevel, 10, &level))
3291 		level = LEVEL_NONE;
3292 
3293 	if (request_module("md-%s", clevel) != 0)
3294 		request_module("md-level-%s", clevel);
3295 	spin_lock(&pers_lock);
3296 	pers = find_pers(level, clevel);
3297 	if (!pers || !try_module_get(pers->owner)) {
3298 		spin_unlock(&pers_lock);
3299 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3300 		return -EINVAL;
3301 	}
3302 	spin_unlock(&pers_lock);
3303 
3304 	if (pers == mddev->pers) {
3305 		/* Nothing to do! */
3306 		module_put(pers->owner);
3307 		return rv;
3308 	}
3309 	if (!pers->takeover) {
3310 		module_put(pers->owner);
3311 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3312 		       mdname(mddev), clevel);
3313 		return -EINVAL;
3314 	}
3315 
3316 	rdev_for_each(rdev, mddev)
3317 		rdev->new_raid_disk = rdev->raid_disk;
3318 
3319 	/* ->takeover must set new_* and/or delta_disks
3320 	 * if it succeeds, and may set them when it fails.
3321 	 */
3322 	priv = pers->takeover(mddev);
3323 	if (IS_ERR(priv)) {
3324 		mddev->new_level = mddev->level;
3325 		mddev->new_layout = mddev->layout;
3326 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3327 		mddev->raid_disks -= mddev->delta_disks;
3328 		mddev->delta_disks = 0;
3329 		mddev->reshape_backwards = 0;
3330 		module_put(pers->owner);
3331 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3332 		       mdname(mddev), clevel);
3333 		return PTR_ERR(priv);
3334 	}
3335 
3336 	/* Looks like we have a winner */
3337 	mddev_suspend(mddev);
3338 	mddev->pers->stop(mddev);
3339 
3340 	if (mddev->pers->sync_request == NULL &&
3341 	    pers->sync_request != NULL) {
3342 		/* need to add the md_redundancy_group */
3343 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3344 			printk(KERN_WARNING
3345 			       "md: cannot register extra attributes for %s\n",
3346 			       mdname(mddev));
3347 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3348 	}
3349 	if (mddev->pers->sync_request != NULL &&
3350 	    pers->sync_request == NULL) {
3351 		/* need to remove the md_redundancy_group */
3352 		if (mddev->to_remove == NULL)
3353 			mddev->to_remove = &md_redundancy_group;
3354 	}
3355 
3356 	if (mddev->pers->sync_request == NULL &&
3357 	    mddev->external) {
3358 		/* We are converting from a no-redundancy array
3359 		 * to a redundancy array and metadata is managed
3360 		 * externally so we need to be sure that writes
3361 		 * won't block due to a need to transition
3362 		 *      clean->dirty
3363 		 * until external management is started.
3364 		 */
3365 		mddev->in_sync = 0;
3366 		mddev->safemode_delay = 0;
3367 		mddev->safemode = 0;
3368 	}
3369 
3370 	rdev_for_each(rdev, mddev) {
3371 		if (rdev->raid_disk < 0)
3372 			continue;
3373 		if (rdev->new_raid_disk >= mddev->raid_disks)
3374 			rdev->new_raid_disk = -1;
3375 		if (rdev->new_raid_disk == rdev->raid_disk)
3376 			continue;
3377 		sysfs_unlink_rdev(mddev, rdev);
3378 	}
3379 	rdev_for_each(rdev, mddev) {
3380 		if (rdev->raid_disk < 0)
3381 			continue;
3382 		if (rdev->new_raid_disk == rdev->raid_disk)
3383 			continue;
3384 		rdev->raid_disk = rdev->new_raid_disk;
3385 		if (rdev->raid_disk < 0)
3386 			clear_bit(In_sync, &rdev->flags);
3387 		else {
3388 			if (sysfs_link_rdev(mddev, rdev))
3389 				printk(KERN_WARNING "md: cannot register rd%d"
3390 				       " for %s after level change\n",
3391 				       rdev->raid_disk, mdname(mddev));
3392 		}
3393 	}
3394 
3395 	module_put(mddev->pers->owner);
3396 	mddev->pers = pers;
3397 	mddev->private = priv;
3398 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3399 	mddev->level = mddev->new_level;
3400 	mddev->layout = mddev->new_layout;
3401 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3402 	mddev->delta_disks = 0;
3403 	mddev->reshape_backwards = 0;
3404 	mddev->degraded = 0;
3405 	if (mddev->pers->sync_request == NULL) {
3406 		/* this is now an array without redundancy, so
3407 		 * it must always be in_sync
3408 		 */
3409 		mddev->in_sync = 1;
3410 		del_timer_sync(&mddev->safemode_timer);
3411 	}
3412 	blk_set_stacking_limits(&mddev->queue->limits);
3413 	pers->run(mddev);
3414 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3415 	mddev_resume(mddev);
3416 	if (!mddev->thread)
3417 		md_update_sb(mddev, 1);
3418 	sysfs_notify(&mddev->kobj, NULL, "level");
3419 	md_new_event(mddev);
3420 	return rv;
3421 }
3422 
3423 static struct md_sysfs_entry md_level =
3424 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3425 
3426 static ssize_t
3427 layout_show(struct mddev *mddev, char *page)
3428 {
3429 	/* just a number, not meaningful for all levels */
3430 	if (mddev->reshape_position != MaxSector &&
3431 	    mddev->layout != mddev->new_layout)
3432 		return sprintf(page, "%d (%d)\n",
3433 			       mddev->new_layout, mddev->layout);
3434 	return sprintf(page, "%d\n", mddev->layout);
3435 }
3436 
3437 static ssize_t
3438 layout_store(struct mddev *mddev, const char *buf, size_t len)
3439 {
3440 	char *e;
3441 	unsigned long n = simple_strtoul(buf, &e, 10);
3442 
3443 	if (!*buf || (*e && *e != '\n'))
3444 		return -EINVAL;
3445 
3446 	if (mddev->pers) {
3447 		int err;
3448 		if (mddev->pers->check_reshape == NULL)
3449 			return -EBUSY;
3450 		if (mddev->ro)
3451 			return -EROFS;
3452 		mddev->new_layout = n;
3453 		err = mddev->pers->check_reshape(mddev);
3454 		if (err) {
3455 			mddev->new_layout = mddev->layout;
3456 			return err;
3457 		}
3458 	} else {
3459 		mddev->new_layout = n;
3460 		if (mddev->reshape_position == MaxSector)
3461 			mddev->layout = n;
3462 	}
3463 	return len;
3464 }
3465 static struct md_sysfs_entry md_layout =
3466 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3467 
3468 static ssize_t
3469 raid_disks_show(struct mddev *mddev, char *page)
3470 {
3471 	if (mddev->raid_disks == 0)
3472 		return 0;
3473 	if (mddev->reshape_position != MaxSector &&
3474 	    mddev->delta_disks != 0)
3475 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3476 			       mddev->raid_disks - mddev->delta_disks);
3477 	return sprintf(page, "%d\n", mddev->raid_disks);
3478 }
3479 
3480 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3481 
3482 static ssize_t
3483 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3484 {
3485 	char *e;
3486 	int rv = 0;
3487 	unsigned long n = simple_strtoul(buf, &e, 10);
3488 
3489 	if (!*buf || (*e && *e != '\n'))
3490 		return -EINVAL;
3491 
3492 	if (mddev->pers)
3493 		rv = update_raid_disks(mddev, n);
3494 	else if (mddev->reshape_position != MaxSector) {
3495 		struct md_rdev *rdev;
3496 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3497 
3498 		rdev_for_each(rdev, mddev) {
3499 			if (olddisks < n &&
3500 			    rdev->data_offset < rdev->new_data_offset)
3501 				return -EINVAL;
3502 			if (olddisks > n &&
3503 			    rdev->data_offset > rdev->new_data_offset)
3504 				return -EINVAL;
3505 		}
3506 		mddev->delta_disks = n - olddisks;
3507 		mddev->raid_disks = n;
3508 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3509 	} else
3510 		mddev->raid_disks = n;
3511 	return rv ? rv : len;
3512 }
3513 static struct md_sysfs_entry md_raid_disks =
3514 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3515 
3516 static ssize_t
3517 chunk_size_show(struct mddev *mddev, char *page)
3518 {
3519 	if (mddev->reshape_position != MaxSector &&
3520 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3521 		return sprintf(page, "%d (%d)\n",
3522 			       mddev->new_chunk_sectors << 9,
3523 			       mddev->chunk_sectors << 9);
3524 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3525 }
3526 
3527 static ssize_t
3528 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3529 {
3530 	char *e;
3531 	unsigned long n = simple_strtoul(buf, &e, 10);
3532 
3533 	if (!*buf || (*e && *e != '\n'))
3534 		return -EINVAL;
3535 
3536 	if (mddev->pers) {
3537 		int err;
3538 		if (mddev->pers->check_reshape == NULL)
3539 			return -EBUSY;
3540 		if (mddev->ro)
3541 			return -EROFS;
3542 		mddev->new_chunk_sectors = n >> 9;
3543 		err = mddev->pers->check_reshape(mddev);
3544 		if (err) {
3545 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3546 			return err;
3547 		}
3548 	} else {
3549 		mddev->new_chunk_sectors = n >> 9;
3550 		if (mddev->reshape_position == MaxSector)
3551 			mddev->chunk_sectors = n >> 9;
3552 	}
3553 	return len;
3554 }
3555 static struct md_sysfs_entry md_chunk_size =
3556 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3557 
3558 static ssize_t
3559 resync_start_show(struct mddev *mddev, char *page)
3560 {
3561 	if (mddev->recovery_cp == MaxSector)
3562 		return sprintf(page, "none\n");
3563 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3564 }
3565 
3566 static ssize_t
3567 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3568 {
3569 	char *e;
3570 	unsigned long long n = simple_strtoull(buf, &e, 10);
3571 
3572 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3573 		return -EBUSY;
3574 	if (cmd_match(buf, "none"))
3575 		n = MaxSector;
3576 	else if (!*buf || (*e && *e != '\n'))
3577 		return -EINVAL;
3578 
3579 	mddev->recovery_cp = n;
3580 	if (mddev->pers)
3581 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3582 	return len;
3583 }
3584 static struct md_sysfs_entry md_resync_start =
3585 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3586 
3587 /*
3588  * The array state can be:
3589  *
3590  * clear
3591  *     No devices, no size, no level
3592  *     Equivalent to STOP_ARRAY ioctl
3593  * inactive
3594  *     May have some settings, but array is not active
3595  *        all IO results in error
3596  *     When written, doesn't tear down array, but just stops it
3597  * suspended (not supported yet)
3598  *     All IO requests will block. The array can be reconfigured.
3599  *     Writing this, if accepted, will block until array is quiescent
3600  * readonly
3601  *     no resync can happen.  no superblocks get written.
3602  *     write requests fail
3603  * read-auto
3604  *     like readonly, but behaves like 'clean' on a write request.
3605  *
3606  * clean - no pending writes, but otherwise active.
3607  *     When written to inactive array, starts without resync
3608  *     If a write request arrives then
3609  *       if metadata is known, mark 'dirty' and switch to 'active'.
3610  *       if not known, block and switch to write-pending
3611  *     If written to an active array that has pending writes, then fails.
3612  * active
3613  *     fully active: IO and resync can be happening.
3614  *     When written to inactive array, starts with resync
3615  *
3616  * write-pending
3617  *     clean, but writes are blocked waiting for 'active' to be written.
3618  *
3619  * active-idle
3620  *     like active, but no writes have been seen for a while (100msec).
3621  *
3622  */
3623 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3624 		   write_pending, active_idle, bad_word};
3625 static char *array_states[] = {
3626 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3627 	"write-pending", "active-idle", NULL };
3628 
3629 static int match_word(const char *word, char **list)
3630 {
3631 	int n;
3632 	for (n=0; list[n]; n++)
3633 		if (cmd_match(word, list[n]))
3634 			break;
3635 	return n;
3636 }
3637 
3638 static ssize_t
3639 array_state_show(struct mddev *mddev, char *page)
3640 {
3641 	enum array_state st = inactive;
3642 
3643 	if (mddev->pers)
3644 		switch(mddev->ro) {
3645 		case 1:
3646 			st = readonly;
3647 			break;
3648 		case 2:
3649 			st = read_auto;
3650 			break;
3651 		case 0:
3652 			if (mddev->in_sync)
3653 				st = clean;
3654 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3655 				st = write_pending;
3656 			else if (mddev->safemode)
3657 				st = active_idle;
3658 			else
3659 				st = active;
3660 		}
3661 	else {
3662 		if (list_empty(&mddev->disks) &&
3663 		    mddev->raid_disks == 0 &&
3664 		    mddev->dev_sectors == 0)
3665 			st = clear;
3666 		else
3667 			st = inactive;
3668 	}
3669 	return sprintf(page, "%s\n", array_states[st]);
3670 }
3671 
3672 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3673 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3674 static int do_md_run(struct mddev *mddev);
3675 static int restart_array(struct mddev *mddev);
3676 
3677 static ssize_t
3678 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3679 {
3680 	int err = -EINVAL;
3681 	enum array_state st = match_word(buf, array_states);
3682 	switch(st) {
3683 	case bad_word:
3684 		break;
3685 	case clear:
3686 		/* stopping an active array */
3687 		err = do_md_stop(mddev, 0, NULL);
3688 		break;
3689 	case inactive:
3690 		/* stopping an active array */
3691 		if (mddev->pers)
3692 			err = do_md_stop(mddev, 2, NULL);
3693 		else
3694 			err = 0; /* already inactive */
3695 		break;
3696 	case suspended:
3697 		break; /* not supported yet */
3698 	case readonly:
3699 		if (mddev->pers)
3700 			err = md_set_readonly(mddev, NULL);
3701 		else {
3702 			mddev->ro = 1;
3703 			set_disk_ro(mddev->gendisk, 1);
3704 			err = do_md_run(mddev);
3705 		}
3706 		break;
3707 	case read_auto:
3708 		if (mddev->pers) {
3709 			if (mddev->ro == 0)
3710 				err = md_set_readonly(mddev, NULL);
3711 			else if (mddev->ro == 1)
3712 				err = restart_array(mddev);
3713 			if (err == 0) {
3714 				mddev->ro = 2;
3715 				set_disk_ro(mddev->gendisk, 0);
3716 			}
3717 		} else {
3718 			mddev->ro = 2;
3719 			err = do_md_run(mddev);
3720 		}
3721 		break;
3722 	case clean:
3723 		if (mddev->pers) {
3724 			restart_array(mddev);
3725 			spin_lock_irq(&mddev->write_lock);
3726 			if (atomic_read(&mddev->writes_pending) == 0) {
3727 				if (mddev->in_sync == 0) {
3728 					mddev->in_sync = 1;
3729 					if (mddev->safemode == 1)
3730 						mddev->safemode = 0;
3731 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3732 				}
3733 				err = 0;
3734 			} else
3735 				err = -EBUSY;
3736 			spin_unlock_irq(&mddev->write_lock);
3737 		} else
3738 			err = -EINVAL;
3739 		break;
3740 	case active:
3741 		if (mddev->pers) {
3742 			restart_array(mddev);
3743 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3744 			wake_up(&mddev->sb_wait);
3745 			err = 0;
3746 		} else {
3747 			mddev->ro = 0;
3748 			set_disk_ro(mddev->gendisk, 0);
3749 			err = do_md_run(mddev);
3750 		}
3751 		break;
3752 	case write_pending:
3753 	case active_idle:
3754 		/* these cannot be set */
3755 		break;
3756 	}
3757 	if (err)
3758 		return err;
3759 	else {
3760 		if (mddev->hold_active == UNTIL_IOCTL)
3761 			mddev->hold_active = 0;
3762 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3763 		return len;
3764 	}
3765 }
3766 static struct md_sysfs_entry md_array_state =
3767 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3768 
3769 static ssize_t
3770 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3771 	return sprintf(page, "%d\n",
3772 		       atomic_read(&mddev->max_corr_read_errors));
3773 }
3774 
3775 static ssize_t
3776 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3777 {
3778 	char *e;
3779 	unsigned long n = simple_strtoul(buf, &e, 10);
3780 
3781 	if (*buf && (*e == 0 || *e == '\n')) {
3782 		atomic_set(&mddev->max_corr_read_errors, n);
3783 		return len;
3784 	}
3785 	return -EINVAL;
3786 }
3787 
3788 static struct md_sysfs_entry max_corr_read_errors =
3789 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3790 	max_corrected_read_errors_store);
3791 
3792 static ssize_t
3793 null_show(struct mddev *mddev, char *page)
3794 {
3795 	return -EINVAL;
3796 }
3797 
3798 static ssize_t
3799 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3800 {
3801 	/* buf must be %d:%d\n? giving major and minor numbers */
3802 	/* The new device is added to the array.
3803 	 * If the array has a persistent superblock, we read the
3804 	 * superblock to initialise info and check validity.
3805 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3806 	 * which mainly checks size.
3807 	 */
3808 	char *e;
3809 	int major = simple_strtoul(buf, &e, 10);
3810 	int minor;
3811 	dev_t dev;
3812 	struct md_rdev *rdev;
3813 	int err;
3814 
3815 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3816 		return -EINVAL;
3817 	minor = simple_strtoul(e+1, &e, 10);
3818 	if (*e && *e != '\n')
3819 		return -EINVAL;
3820 	dev = MKDEV(major, minor);
3821 	if (major != MAJOR(dev) ||
3822 	    minor != MINOR(dev))
3823 		return -EOVERFLOW;
3824 
3825 	if (mddev->persistent) {
3826 		rdev = md_import_device(dev, mddev->major_version,
3827 					mddev->minor_version);
3828 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3829 			struct md_rdev *rdev0
3830 				= list_entry(mddev->disks.next,
3831 					     struct md_rdev, same_set);
3832 			err = super_types[mddev->major_version]
3833 				.load_super(rdev, rdev0, mddev->minor_version);
3834 			if (err < 0)
3835 				goto out;
3836 		}
3837 	} else if (mddev->external)
3838 		rdev = md_import_device(dev, -2, -1);
3839 	else
3840 		rdev = md_import_device(dev, -1, -1);
3841 
3842 	if (IS_ERR(rdev))
3843 		return PTR_ERR(rdev);
3844 	err = bind_rdev_to_array(rdev, mddev);
3845  out:
3846 	if (err)
3847 		export_rdev(rdev);
3848 	return err ? err : len;
3849 }
3850 
3851 static struct md_sysfs_entry md_new_device =
3852 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3853 
3854 static ssize_t
3855 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3856 {
3857 	char *end;
3858 	unsigned long chunk, end_chunk;
3859 
3860 	if (!mddev->bitmap)
3861 		goto out;
3862 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3863 	while (*buf) {
3864 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3865 		if (buf == end) break;
3866 		if (*end == '-') { /* range */
3867 			buf = end + 1;
3868 			end_chunk = simple_strtoul(buf, &end, 0);
3869 			if (buf == end) break;
3870 		}
3871 		if (*end && !isspace(*end)) break;
3872 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3873 		buf = skip_spaces(end);
3874 	}
3875 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3876 out:
3877 	return len;
3878 }
3879 
3880 static struct md_sysfs_entry md_bitmap =
3881 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3882 
3883 static ssize_t
3884 size_show(struct mddev *mddev, char *page)
3885 {
3886 	return sprintf(page, "%llu\n",
3887 		(unsigned long long)mddev->dev_sectors / 2);
3888 }
3889 
3890 static int update_size(struct mddev *mddev, sector_t num_sectors);
3891 
3892 static ssize_t
3893 size_store(struct mddev *mddev, const char *buf, size_t len)
3894 {
3895 	/* If array is inactive, we can reduce the component size, but
3896 	 * not increase it (except from 0).
3897 	 * If array is active, we can try an on-line resize
3898 	 */
3899 	sector_t sectors;
3900 	int err = strict_blocks_to_sectors(buf, &sectors);
3901 
3902 	if (err < 0)
3903 		return err;
3904 	if (mddev->pers) {
3905 		err = update_size(mddev, sectors);
3906 		md_update_sb(mddev, 1);
3907 	} else {
3908 		if (mddev->dev_sectors == 0 ||
3909 		    mddev->dev_sectors > sectors)
3910 			mddev->dev_sectors = sectors;
3911 		else
3912 			err = -ENOSPC;
3913 	}
3914 	return err ? err : len;
3915 }
3916 
3917 static struct md_sysfs_entry md_size =
3918 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3919 
3920 /* Metadata version.
3921  * This is one of
3922  *   'none' for arrays with no metadata (good luck...)
3923  *   'external' for arrays with externally managed metadata,
3924  * or N.M for internally known formats
3925  */
3926 static ssize_t
3927 metadata_show(struct mddev *mddev, char *page)
3928 {
3929 	if (mddev->persistent)
3930 		return sprintf(page, "%d.%d\n",
3931 			       mddev->major_version, mddev->minor_version);
3932 	else if (mddev->external)
3933 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3934 	else
3935 		return sprintf(page, "none\n");
3936 }
3937 
3938 static ssize_t
3939 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3940 {
3941 	int major, minor;
3942 	char *e;
3943 	/* Changing the details of 'external' metadata is
3944 	 * always permitted.  Otherwise there must be
3945 	 * no devices attached to the array.
3946 	 */
3947 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3948 		;
3949 	else if (!list_empty(&mddev->disks))
3950 		return -EBUSY;
3951 
3952 	if (cmd_match(buf, "none")) {
3953 		mddev->persistent = 0;
3954 		mddev->external = 0;
3955 		mddev->major_version = 0;
3956 		mddev->minor_version = 90;
3957 		return len;
3958 	}
3959 	if (strncmp(buf, "external:", 9) == 0) {
3960 		size_t namelen = len-9;
3961 		if (namelen >= sizeof(mddev->metadata_type))
3962 			namelen = sizeof(mddev->metadata_type)-1;
3963 		strncpy(mddev->metadata_type, buf+9, namelen);
3964 		mddev->metadata_type[namelen] = 0;
3965 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3966 			mddev->metadata_type[--namelen] = 0;
3967 		mddev->persistent = 0;
3968 		mddev->external = 1;
3969 		mddev->major_version = 0;
3970 		mddev->minor_version = 90;
3971 		return len;
3972 	}
3973 	major = simple_strtoul(buf, &e, 10);
3974 	if (e==buf || *e != '.')
3975 		return -EINVAL;
3976 	buf = e+1;
3977 	minor = simple_strtoul(buf, &e, 10);
3978 	if (e==buf || (*e && *e != '\n') )
3979 		return -EINVAL;
3980 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3981 		return -ENOENT;
3982 	mddev->major_version = major;
3983 	mddev->minor_version = minor;
3984 	mddev->persistent = 1;
3985 	mddev->external = 0;
3986 	return len;
3987 }
3988 
3989 static struct md_sysfs_entry md_metadata =
3990 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3991 
3992 static ssize_t
3993 action_show(struct mddev *mddev, char *page)
3994 {
3995 	char *type = "idle";
3996 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3997 		type = "frozen";
3998 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3999 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4000 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4001 			type = "reshape";
4002 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4003 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4004 				type = "resync";
4005 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4006 				type = "check";
4007 			else
4008 				type = "repair";
4009 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4010 			type = "recover";
4011 	}
4012 	return sprintf(page, "%s\n", type);
4013 }
4014 
4015 static ssize_t
4016 action_store(struct mddev *mddev, const char *page, size_t len)
4017 {
4018 	if (!mddev->pers || !mddev->pers->sync_request)
4019 		return -EINVAL;
4020 
4021 	if (cmd_match(page, "frozen"))
4022 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4023 	else
4024 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4025 
4026 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4027 		flush_workqueue(md_misc_wq);
4028 		if (mddev->sync_thread) {
4029 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4030 			md_reap_sync_thread(mddev);
4031 		}
4032 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4033 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4034 		return -EBUSY;
4035 	else if (cmd_match(page, "resync"))
4036 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4037 	else if (cmd_match(page, "recover")) {
4038 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4039 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4040 	} else if (cmd_match(page, "reshape")) {
4041 		int err;
4042 		if (mddev->pers->start_reshape == NULL)
4043 			return -EINVAL;
4044 		err = mddev->pers->start_reshape(mddev);
4045 		if (err)
4046 			return err;
4047 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4048 	} else {
4049 		if (cmd_match(page, "check"))
4050 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4051 		else if (!cmd_match(page, "repair"))
4052 			return -EINVAL;
4053 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4054 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4055 	}
4056 	if (mddev->ro == 2) {
4057 		/* A write to sync_action is enough to justify
4058 		 * canceling read-auto mode
4059 		 */
4060 		mddev->ro = 0;
4061 		md_wakeup_thread(mddev->sync_thread);
4062 	}
4063 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4064 	md_wakeup_thread(mddev->thread);
4065 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4066 	return len;
4067 }
4068 
4069 static struct md_sysfs_entry md_scan_mode =
4070 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4071 
4072 static ssize_t
4073 last_sync_action_show(struct mddev *mddev, char *page)
4074 {
4075 	return sprintf(page, "%s\n", mddev->last_sync_action);
4076 }
4077 
4078 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4079 
4080 static ssize_t
4081 mismatch_cnt_show(struct mddev *mddev, char *page)
4082 {
4083 	return sprintf(page, "%llu\n",
4084 		       (unsigned long long)
4085 		       atomic64_read(&mddev->resync_mismatches));
4086 }
4087 
4088 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4089 
4090 static ssize_t
4091 sync_min_show(struct mddev *mddev, char *page)
4092 {
4093 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4094 		       mddev->sync_speed_min ? "local": "system");
4095 }
4096 
4097 static ssize_t
4098 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4099 {
4100 	int min;
4101 	char *e;
4102 	if (strncmp(buf, "system", 6)==0) {
4103 		mddev->sync_speed_min = 0;
4104 		return len;
4105 	}
4106 	min = simple_strtoul(buf, &e, 10);
4107 	if (buf == e || (*e && *e != '\n') || min <= 0)
4108 		return -EINVAL;
4109 	mddev->sync_speed_min = min;
4110 	return len;
4111 }
4112 
4113 static struct md_sysfs_entry md_sync_min =
4114 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4115 
4116 static ssize_t
4117 sync_max_show(struct mddev *mddev, char *page)
4118 {
4119 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4120 		       mddev->sync_speed_max ? "local": "system");
4121 }
4122 
4123 static ssize_t
4124 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4125 {
4126 	int max;
4127 	char *e;
4128 	if (strncmp(buf, "system", 6)==0) {
4129 		mddev->sync_speed_max = 0;
4130 		return len;
4131 	}
4132 	max = simple_strtoul(buf, &e, 10);
4133 	if (buf == e || (*e && *e != '\n') || max <= 0)
4134 		return -EINVAL;
4135 	mddev->sync_speed_max = max;
4136 	return len;
4137 }
4138 
4139 static struct md_sysfs_entry md_sync_max =
4140 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4141 
4142 static ssize_t
4143 degraded_show(struct mddev *mddev, char *page)
4144 {
4145 	return sprintf(page, "%d\n", mddev->degraded);
4146 }
4147 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4148 
4149 static ssize_t
4150 sync_force_parallel_show(struct mddev *mddev, char *page)
4151 {
4152 	return sprintf(page, "%d\n", mddev->parallel_resync);
4153 }
4154 
4155 static ssize_t
4156 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4157 {
4158 	long n;
4159 
4160 	if (kstrtol(buf, 10, &n))
4161 		return -EINVAL;
4162 
4163 	if (n != 0 && n != 1)
4164 		return -EINVAL;
4165 
4166 	mddev->parallel_resync = n;
4167 
4168 	if (mddev->sync_thread)
4169 		wake_up(&resync_wait);
4170 
4171 	return len;
4172 }
4173 
4174 /* force parallel resync, even with shared block devices */
4175 static struct md_sysfs_entry md_sync_force_parallel =
4176 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4177        sync_force_parallel_show, sync_force_parallel_store);
4178 
4179 static ssize_t
4180 sync_speed_show(struct mddev *mddev, char *page)
4181 {
4182 	unsigned long resync, dt, db;
4183 	if (mddev->curr_resync == 0)
4184 		return sprintf(page, "none\n");
4185 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4186 	dt = (jiffies - mddev->resync_mark) / HZ;
4187 	if (!dt) dt++;
4188 	db = resync - mddev->resync_mark_cnt;
4189 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4190 }
4191 
4192 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4193 
4194 static ssize_t
4195 sync_completed_show(struct mddev *mddev, char *page)
4196 {
4197 	unsigned long long max_sectors, resync;
4198 
4199 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4200 		return sprintf(page, "none\n");
4201 
4202 	if (mddev->curr_resync == 1 ||
4203 	    mddev->curr_resync == 2)
4204 		return sprintf(page, "delayed\n");
4205 
4206 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4207 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4208 		max_sectors = mddev->resync_max_sectors;
4209 	else
4210 		max_sectors = mddev->dev_sectors;
4211 
4212 	resync = mddev->curr_resync_completed;
4213 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4214 }
4215 
4216 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4217 
4218 static ssize_t
4219 min_sync_show(struct mddev *mddev, char *page)
4220 {
4221 	return sprintf(page, "%llu\n",
4222 		       (unsigned long long)mddev->resync_min);
4223 }
4224 static ssize_t
4225 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4226 {
4227 	unsigned long long min;
4228 	if (kstrtoull(buf, 10, &min))
4229 		return -EINVAL;
4230 	if (min > mddev->resync_max)
4231 		return -EINVAL;
4232 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4233 		return -EBUSY;
4234 
4235 	/* Must be a multiple of chunk_size */
4236 	if (mddev->chunk_sectors) {
4237 		sector_t temp = min;
4238 		if (sector_div(temp, mddev->chunk_sectors))
4239 			return -EINVAL;
4240 	}
4241 	mddev->resync_min = min;
4242 
4243 	return len;
4244 }
4245 
4246 static struct md_sysfs_entry md_min_sync =
4247 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4248 
4249 static ssize_t
4250 max_sync_show(struct mddev *mddev, char *page)
4251 {
4252 	if (mddev->resync_max == MaxSector)
4253 		return sprintf(page, "max\n");
4254 	else
4255 		return sprintf(page, "%llu\n",
4256 			       (unsigned long long)mddev->resync_max);
4257 }
4258 static ssize_t
4259 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4260 {
4261 	if (strncmp(buf, "max", 3) == 0)
4262 		mddev->resync_max = MaxSector;
4263 	else {
4264 		unsigned long long max;
4265 		if (kstrtoull(buf, 10, &max))
4266 			return -EINVAL;
4267 		if (max < mddev->resync_min)
4268 			return -EINVAL;
4269 		if (max < mddev->resync_max &&
4270 		    mddev->ro == 0 &&
4271 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4272 			return -EBUSY;
4273 
4274 		/* Must be a multiple of chunk_size */
4275 		if (mddev->chunk_sectors) {
4276 			sector_t temp = max;
4277 			if (sector_div(temp, mddev->chunk_sectors))
4278 				return -EINVAL;
4279 		}
4280 		mddev->resync_max = max;
4281 	}
4282 	wake_up(&mddev->recovery_wait);
4283 	return len;
4284 }
4285 
4286 static struct md_sysfs_entry md_max_sync =
4287 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4288 
4289 static ssize_t
4290 suspend_lo_show(struct mddev *mddev, char *page)
4291 {
4292 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4293 }
4294 
4295 static ssize_t
4296 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4297 {
4298 	char *e;
4299 	unsigned long long new = simple_strtoull(buf, &e, 10);
4300 	unsigned long long old = mddev->suspend_lo;
4301 
4302 	if (mddev->pers == NULL ||
4303 	    mddev->pers->quiesce == NULL)
4304 		return -EINVAL;
4305 	if (buf == e || (*e && *e != '\n'))
4306 		return -EINVAL;
4307 
4308 	mddev->suspend_lo = new;
4309 	if (new >= old)
4310 		/* Shrinking suspended region */
4311 		mddev->pers->quiesce(mddev, 2);
4312 	else {
4313 		/* Expanding suspended region - need to wait */
4314 		mddev->pers->quiesce(mddev, 1);
4315 		mddev->pers->quiesce(mddev, 0);
4316 	}
4317 	return len;
4318 }
4319 static struct md_sysfs_entry md_suspend_lo =
4320 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4321 
4322 static ssize_t
4323 suspend_hi_show(struct mddev *mddev, char *page)
4324 {
4325 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4326 }
4327 
4328 static ssize_t
4329 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4330 {
4331 	char *e;
4332 	unsigned long long new = simple_strtoull(buf, &e, 10);
4333 	unsigned long long old = mddev->suspend_hi;
4334 
4335 	if (mddev->pers == NULL ||
4336 	    mddev->pers->quiesce == NULL)
4337 		return -EINVAL;
4338 	if (buf == e || (*e && *e != '\n'))
4339 		return -EINVAL;
4340 
4341 	mddev->suspend_hi = new;
4342 	if (new <= old)
4343 		/* Shrinking suspended region */
4344 		mddev->pers->quiesce(mddev, 2);
4345 	else {
4346 		/* Expanding suspended region - need to wait */
4347 		mddev->pers->quiesce(mddev, 1);
4348 		mddev->pers->quiesce(mddev, 0);
4349 	}
4350 	return len;
4351 }
4352 static struct md_sysfs_entry md_suspend_hi =
4353 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4354 
4355 static ssize_t
4356 reshape_position_show(struct mddev *mddev, char *page)
4357 {
4358 	if (mddev->reshape_position != MaxSector)
4359 		return sprintf(page, "%llu\n",
4360 			       (unsigned long long)mddev->reshape_position);
4361 	strcpy(page, "none\n");
4362 	return 5;
4363 }
4364 
4365 static ssize_t
4366 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4367 {
4368 	struct md_rdev *rdev;
4369 	char *e;
4370 	unsigned long long new = simple_strtoull(buf, &e, 10);
4371 	if (mddev->pers)
4372 		return -EBUSY;
4373 	if (buf == e || (*e && *e != '\n'))
4374 		return -EINVAL;
4375 	mddev->reshape_position = new;
4376 	mddev->delta_disks = 0;
4377 	mddev->reshape_backwards = 0;
4378 	mddev->new_level = mddev->level;
4379 	mddev->new_layout = mddev->layout;
4380 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4381 	rdev_for_each(rdev, mddev)
4382 		rdev->new_data_offset = rdev->data_offset;
4383 	return len;
4384 }
4385 
4386 static struct md_sysfs_entry md_reshape_position =
4387 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4388        reshape_position_store);
4389 
4390 static ssize_t
4391 reshape_direction_show(struct mddev *mddev, char *page)
4392 {
4393 	return sprintf(page, "%s\n",
4394 		       mddev->reshape_backwards ? "backwards" : "forwards");
4395 }
4396 
4397 static ssize_t
4398 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4399 {
4400 	int backwards = 0;
4401 	if (cmd_match(buf, "forwards"))
4402 		backwards = 0;
4403 	else if (cmd_match(buf, "backwards"))
4404 		backwards = 1;
4405 	else
4406 		return -EINVAL;
4407 	if (mddev->reshape_backwards == backwards)
4408 		return len;
4409 
4410 	/* check if we are allowed to change */
4411 	if (mddev->delta_disks)
4412 		return -EBUSY;
4413 
4414 	if (mddev->persistent &&
4415 	    mddev->major_version == 0)
4416 		return -EINVAL;
4417 
4418 	mddev->reshape_backwards = backwards;
4419 	return len;
4420 }
4421 
4422 static struct md_sysfs_entry md_reshape_direction =
4423 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4424        reshape_direction_store);
4425 
4426 static ssize_t
4427 array_size_show(struct mddev *mddev, char *page)
4428 {
4429 	if (mddev->external_size)
4430 		return sprintf(page, "%llu\n",
4431 			       (unsigned long long)mddev->array_sectors/2);
4432 	else
4433 		return sprintf(page, "default\n");
4434 }
4435 
4436 static ssize_t
4437 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4438 {
4439 	sector_t sectors;
4440 
4441 	if (strncmp(buf, "default", 7) == 0) {
4442 		if (mddev->pers)
4443 			sectors = mddev->pers->size(mddev, 0, 0);
4444 		else
4445 			sectors = mddev->array_sectors;
4446 
4447 		mddev->external_size = 0;
4448 	} else {
4449 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4450 			return -EINVAL;
4451 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4452 			return -E2BIG;
4453 
4454 		mddev->external_size = 1;
4455 	}
4456 
4457 	mddev->array_sectors = sectors;
4458 	if (mddev->pers) {
4459 		set_capacity(mddev->gendisk, mddev->array_sectors);
4460 		revalidate_disk(mddev->gendisk);
4461 	}
4462 	return len;
4463 }
4464 
4465 static struct md_sysfs_entry md_array_size =
4466 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4467        array_size_store);
4468 
4469 static struct attribute *md_default_attrs[] = {
4470 	&md_level.attr,
4471 	&md_layout.attr,
4472 	&md_raid_disks.attr,
4473 	&md_chunk_size.attr,
4474 	&md_size.attr,
4475 	&md_resync_start.attr,
4476 	&md_metadata.attr,
4477 	&md_new_device.attr,
4478 	&md_safe_delay.attr,
4479 	&md_array_state.attr,
4480 	&md_reshape_position.attr,
4481 	&md_reshape_direction.attr,
4482 	&md_array_size.attr,
4483 	&max_corr_read_errors.attr,
4484 	NULL,
4485 };
4486 
4487 static struct attribute *md_redundancy_attrs[] = {
4488 	&md_scan_mode.attr,
4489 	&md_last_scan_mode.attr,
4490 	&md_mismatches.attr,
4491 	&md_sync_min.attr,
4492 	&md_sync_max.attr,
4493 	&md_sync_speed.attr,
4494 	&md_sync_force_parallel.attr,
4495 	&md_sync_completed.attr,
4496 	&md_min_sync.attr,
4497 	&md_max_sync.attr,
4498 	&md_suspend_lo.attr,
4499 	&md_suspend_hi.attr,
4500 	&md_bitmap.attr,
4501 	&md_degraded.attr,
4502 	NULL,
4503 };
4504 static struct attribute_group md_redundancy_group = {
4505 	.name = NULL,
4506 	.attrs = md_redundancy_attrs,
4507 };
4508 
4509 static ssize_t
4510 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4511 {
4512 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4513 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4514 	ssize_t rv;
4515 
4516 	if (!entry->show)
4517 		return -EIO;
4518 	spin_lock(&all_mddevs_lock);
4519 	if (list_empty(&mddev->all_mddevs)) {
4520 		spin_unlock(&all_mddevs_lock);
4521 		return -EBUSY;
4522 	}
4523 	mddev_get(mddev);
4524 	spin_unlock(&all_mddevs_lock);
4525 
4526 	rv = mddev_lock(mddev);
4527 	if (!rv) {
4528 		rv = entry->show(mddev, page);
4529 		mddev_unlock(mddev);
4530 	}
4531 	mddev_put(mddev);
4532 	return rv;
4533 }
4534 
4535 static ssize_t
4536 md_attr_store(struct kobject *kobj, struct attribute *attr,
4537 	      const char *page, size_t length)
4538 {
4539 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4540 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4541 	ssize_t rv;
4542 
4543 	if (!entry->store)
4544 		return -EIO;
4545 	if (!capable(CAP_SYS_ADMIN))
4546 		return -EACCES;
4547 	spin_lock(&all_mddevs_lock);
4548 	if (list_empty(&mddev->all_mddevs)) {
4549 		spin_unlock(&all_mddevs_lock);
4550 		return -EBUSY;
4551 	}
4552 	mddev_get(mddev);
4553 	spin_unlock(&all_mddevs_lock);
4554 	if (entry->store == new_dev_store)
4555 		flush_workqueue(md_misc_wq);
4556 	rv = mddev_lock(mddev);
4557 	if (!rv) {
4558 		rv = entry->store(mddev, page, length);
4559 		mddev_unlock(mddev);
4560 	}
4561 	mddev_put(mddev);
4562 	return rv;
4563 }
4564 
4565 static void md_free(struct kobject *ko)
4566 {
4567 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4568 
4569 	if (mddev->sysfs_state)
4570 		sysfs_put(mddev->sysfs_state);
4571 
4572 	if (mddev->gendisk) {
4573 		del_gendisk(mddev->gendisk);
4574 		put_disk(mddev->gendisk);
4575 	}
4576 	if (mddev->queue)
4577 		blk_cleanup_queue(mddev->queue);
4578 
4579 	kfree(mddev);
4580 }
4581 
4582 static const struct sysfs_ops md_sysfs_ops = {
4583 	.show	= md_attr_show,
4584 	.store	= md_attr_store,
4585 };
4586 static struct kobj_type md_ktype = {
4587 	.release	= md_free,
4588 	.sysfs_ops	= &md_sysfs_ops,
4589 	.default_attrs	= md_default_attrs,
4590 };
4591 
4592 int mdp_major = 0;
4593 
4594 static void mddev_delayed_delete(struct work_struct *ws)
4595 {
4596 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4597 
4598 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4599 	kobject_del(&mddev->kobj);
4600 	kobject_put(&mddev->kobj);
4601 }
4602 
4603 static int md_alloc(dev_t dev, char *name)
4604 {
4605 	static DEFINE_MUTEX(disks_mutex);
4606 	struct mddev *mddev = mddev_find(dev);
4607 	struct gendisk *disk;
4608 	int partitioned;
4609 	int shift;
4610 	int unit;
4611 	int error;
4612 
4613 	if (!mddev)
4614 		return -ENODEV;
4615 
4616 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4617 	shift = partitioned ? MdpMinorShift : 0;
4618 	unit = MINOR(mddev->unit) >> shift;
4619 
4620 	/* wait for any previous instance of this device to be
4621 	 * completely removed (mddev_delayed_delete).
4622 	 */
4623 	flush_workqueue(md_misc_wq);
4624 
4625 	mutex_lock(&disks_mutex);
4626 	error = -EEXIST;
4627 	if (mddev->gendisk)
4628 		goto abort;
4629 
4630 	if (name) {
4631 		/* Need to ensure that 'name' is not a duplicate.
4632 		 */
4633 		struct mddev *mddev2;
4634 		spin_lock(&all_mddevs_lock);
4635 
4636 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4637 			if (mddev2->gendisk &&
4638 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4639 				spin_unlock(&all_mddevs_lock);
4640 				goto abort;
4641 			}
4642 		spin_unlock(&all_mddevs_lock);
4643 	}
4644 
4645 	error = -ENOMEM;
4646 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4647 	if (!mddev->queue)
4648 		goto abort;
4649 	mddev->queue->queuedata = mddev;
4650 
4651 	blk_queue_make_request(mddev->queue, md_make_request);
4652 	blk_set_stacking_limits(&mddev->queue->limits);
4653 
4654 	disk = alloc_disk(1 << shift);
4655 	if (!disk) {
4656 		blk_cleanup_queue(mddev->queue);
4657 		mddev->queue = NULL;
4658 		goto abort;
4659 	}
4660 	disk->major = MAJOR(mddev->unit);
4661 	disk->first_minor = unit << shift;
4662 	if (name)
4663 		strcpy(disk->disk_name, name);
4664 	else if (partitioned)
4665 		sprintf(disk->disk_name, "md_d%d", unit);
4666 	else
4667 		sprintf(disk->disk_name, "md%d", unit);
4668 	disk->fops = &md_fops;
4669 	disk->private_data = mddev;
4670 	disk->queue = mddev->queue;
4671 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4672 	/* Allow extended partitions.  This makes the
4673 	 * 'mdp' device redundant, but we can't really
4674 	 * remove it now.
4675 	 */
4676 	disk->flags |= GENHD_FL_EXT_DEVT;
4677 	mddev->gendisk = disk;
4678 	/* As soon as we call add_disk(), another thread could get
4679 	 * through to md_open, so make sure it doesn't get too far
4680 	 */
4681 	mutex_lock(&mddev->open_mutex);
4682 	add_disk(disk);
4683 
4684 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4685 				     &disk_to_dev(disk)->kobj, "%s", "md");
4686 	if (error) {
4687 		/* This isn't possible, but as kobject_init_and_add is marked
4688 		 * __must_check, we must do something with the result
4689 		 */
4690 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4691 		       disk->disk_name);
4692 		error = 0;
4693 	}
4694 	if (mddev->kobj.sd &&
4695 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4696 		printk(KERN_DEBUG "pointless warning\n");
4697 	mutex_unlock(&mddev->open_mutex);
4698  abort:
4699 	mutex_unlock(&disks_mutex);
4700 	if (!error && mddev->kobj.sd) {
4701 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4702 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4703 	}
4704 	mddev_put(mddev);
4705 	return error;
4706 }
4707 
4708 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4709 {
4710 	md_alloc(dev, NULL);
4711 	return NULL;
4712 }
4713 
4714 static int add_named_array(const char *val, struct kernel_param *kp)
4715 {
4716 	/* val must be "md_*" where * is not all digits.
4717 	 * We allocate an array with a large free minor number, and
4718 	 * set the name to val.  val must not already be an active name.
4719 	 */
4720 	int len = strlen(val);
4721 	char buf[DISK_NAME_LEN];
4722 
4723 	while (len && val[len-1] == '\n')
4724 		len--;
4725 	if (len >= DISK_NAME_LEN)
4726 		return -E2BIG;
4727 	strlcpy(buf, val, len+1);
4728 	if (strncmp(buf, "md_", 3) != 0)
4729 		return -EINVAL;
4730 	return md_alloc(0, buf);
4731 }
4732 
4733 static void md_safemode_timeout(unsigned long data)
4734 {
4735 	struct mddev *mddev = (struct mddev *) data;
4736 
4737 	if (!atomic_read(&mddev->writes_pending)) {
4738 		mddev->safemode = 1;
4739 		if (mddev->external)
4740 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4741 	}
4742 	md_wakeup_thread(mddev->thread);
4743 }
4744 
4745 static int start_dirty_degraded;
4746 
4747 int md_run(struct mddev *mddev)
4748 {
4749 	int err;
4750 	struct md_rdev *rdev;
4751 	struct md_personality *pers;
4752 
4753 	if (list_empty(&mddev->disks))
4754 		/* cannot run an array with no devices.. */
4755 		return -EINVAL;
4756 
4757 	if (mddev->pers)
4758 		return -EBUSY;
4759 	/* Cannot run until previous stop completes properly */
4760 	if (mddev->sysfs_active)
4761 		return -EBUSY;
4762 
4763 	/*
4764 	 * Analyze all RAID superblock(s)
4765 	 */
4766 	if (!mddev->raid_disks) {
4767 		if (!mddev->persistent)
4768 			return -EINVAL;
4769 		analyze_sbs(mddev);
4770 	}
4771 
4772 	if (mddev->level != LEVEL_NONE)
4773 		request_module("md-level-%d", mddev->level);
4774 	else if (mddev->clevel[0])
4775 		request_module("md-%s", mddev->clevel);
4776 
4777 	/*
4778 	 * Drop all container device buffers, from now on
4779 	 * the only valid external interface is through the md
4780 	 * device.
4781 	 */
4782 	rdev_for_each(rdev, mddev) {
4783 		if (test_bit(Faulty, &rdev->flags))
4784 			continue;
4785 		sync_blockdev(rdev->bdev);
4786 		invalidate_bdev(rdev->bdev);
4787 
4788 		/* perform some consistency tests on the device.
4789 		 * We don't want the data to overlap the metadata,
4790 		 * Internal Bitmap issues have been handled elsewhere.
4791 		 */
4792 		if (rdev->meta_bdev) {
4793 			/* Nothing to check */;
4794 		} else if (rdev->data_offset < rdev->sb_start) {
4795 			if (mddev->dev_sectors &&
4796 			    rdev->data_offset + mddev->dev_sectors
4797 			    > rdev->sb_start) {
4798 				printk("md: %s: data overlaps metadata\n",
4799 				       mdname(mddev));
4800 				return -EINVAL;
4801 			}
4802 		} else {
4803 			if (rdev->sb_start + rdev->sb_size/512
4804 			    > rdev->data_offset) {
4805 				printk("md: %s: metadata overlaps data\n",
4806 				       mdname(mddev));
4807 				return -EINVAL;
4808 			}
4809 		}
4810 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4811 	}
4812 
4813 	if (mddev->bio_set == NULL)
4814 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4815 
4816 	spin_lock(&pers_lock);
4817 	pers = find_pers(mddev->level, mddev->clevel);
4818 	if (!pers || !try_module_get(pers->owner)) {
4819 		spin_unlock(&pers_lock);
4820 		if (mddev->level != LEVEL_NONE)
4821 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4822 			       mddev->level);
4823 		else
4824 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4825 			       mddev->clevel);
4826 		return -EINVAL;
4827 	}
4828 	mddev->pers = pers;
4829 	spin_unlock(&pers_lock);
4830 	if (mddev->level != pers->level) {
4831 		mddev->level = pers->level;
4832 		mddev->new_level = pers->level;
4833 	}
4834 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4835 
4836 	if (mddev->reshape_position != MaxSector &&
4837 	    pers->start_reshape == NULL) {
4838 		/* This personality cannot handle reshaping... */
4839 		mddev->pers = NULL;
4840 		module_put(pers->owner);
4841 		return -EINVAL;
4842 	}
4843 
4844 	if (pers->sync_request) {
4845 		/* Warn if this is a potentially silly
4846 		 * configuration.
4847 		 */
4848 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4849 		struct md_rdev *rdev2;
4850 		int warned = 0;
4851 
4852 		rdev_for_each(rdev, mddev)
4853 			rdev_for_each(rdev2, mddev) {
4854 				if (rdev < rdev2 &&
4855 				    rdev->bdev->bd_contains ==
4856 				    rdev2->bdev->bd_contains) {
4857 					printk(KERN_WARNING
4858 					       "%s: WARNING: %s appears to be"
4859 					       " on the same physical disk as"
4860 					       " %s.\n",
4861 					       mdname(mddev),
4862 					       bdevname(rdev->bdev,b),
4863 					       bdevname(rdev2->bdev,b2));
4864 					warned = 1;
4865 				}
4866 			}
4867 
4868 		if (warned)
4869 			printk(KERN_WARNING
4870 			       "True protection against single-disk"
4871 			       " failure might be compromised.\n");
4872 	}
4873 
4874 	mddev->recovery = 0;
4875 	/* may be over-ridden by personality */
4876 	mddev->resync_max_sectors = mddev->dev_sectors;
4877 
4878 	mddev->ok_start_degraded = start_dirty_degraded;
4879 
4880 	if (start_readonly && mddev->ro == 0)
4881 		mddev->ro = 2; /* read-only, but switch on first write */
4882 
4883 	err = mddev->pers->run(mddev);
4884 	if (err)
4885 		printk(KERN_ERR "md: pers->run() failed ...\n");
4886 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4887 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4888 			  " but 'external_size' not in effect?\n", __func__);
4889 		printk(KERN_ERR
4890 		       "md: invalid array_size %llu > default size %llu\n",
4891 		       (unsigned long long)mddev->array_sectors / 2,
4892 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4893 		err = -EINVAL;
4894 		mddev->pers->stop(mddev);
4895 	}
4896 	if (err == 0 && mddev->pers->sync_request &&
4897 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
4898 		err = bitmap_create(mddev);
4899 		if (err) {
4900 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4901 			       mdname(mddev), err);
4902 			mddev->pers->stop(mddev);
4903 		}
4904 	}
4905 	if (err) {
4906 		module_put(mddev->pers->owner);
4907 		mddev->pers = NULL;
4908 		bitmap_destroy(mddev);
4909 		return err;
4910 	}
4911 	if (mddev->pers->sync_request) {
4912 		if (mddev->kobj.sd &&
4913 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4914 			printk(KERN_WARNING
4915 			       "md: cannot register extra attributes for %s\n",
4916 			       mdname(mddev));
4917 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4918 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4919 		mddev->ro = 0;
4920 
4921 	atomic_set(&mddev->writes_pending,0);
4922 	atomic_set(&mddev->max_corr_read_errors,
4923 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4924 	mddev->safemode = 0;
4925 	mddev->safemode_timer.function = md_safemode_timeout;
4926 	mddev->safemode_timer.data = (unsigned long) mddev;
4927 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4928 	mddev->in_sync = 1;
4929 	smp_wmb();
4930 	mddev->ready = 1;
4931 	rdev_for_each(rdev, mddev)
4932 		if (rdev->raid_disk >= 0)
4933 			if (sysfs_link_rdev(mddev, rdev))
4934 				/* failure here is OK */;
4935 
4936 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4937 
4938 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
4939 		md_update_sb(mddev, 0);
4940 
4941 	md_new_event(mddev);
4942 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4943 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4944 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4945 	return 0;
4946 }
4947 EXPORT_SYMBOL_GPL(md_run);
4948 
4949 static int do_md_run(struct mddev *mddev)
4950 {
4951 	int err;
4952 
4953 	err = md_run(mddev);
4954 	if (err)
4955 		goto out;
4956 	err = bitmap_load(mddev);
4957 	if (err) {
4958 		bitmap_destroy(mddev);
4959 		goto out;
4960 	}
4961 
4962 	md_wakeup_thread(mddev->thread);
4963 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4964 
4965 	set_capacity(mddev->gendisk, mddev->array_sectors);
4966 	revalidate_disk(mddev->gendisk);
4967 	mddev->changed = 1;
4968 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4969 out:
4970 	return err;
4971 }
4972 
4973 static int restart_array(struct mddev *mddev)
4974 {
4975 	struct gendisk *disk = mddev->gendisk;
4976 
4977 	/* Complain if it has no devices */
4978 	if (list_empty(&mddev->disks))
4979 		return -ENXIO;
4980 	if (!mddev->pers)
4981 		return -EINVAL;
4982 	if (!mddev->ro)
4983 		return -EBUSY;
4984 	mddev->safemode = 0;
4985 	mddev->ro = 0;
4986 	set_disk_ro(disk, 0);
4987 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4988 		mdname(mddev));
4989 	/* Kick recovery or resync if necessary */
4990 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4991 	md_wakeup_thread(mddev->thread);
4992 	md_wakeup_thread(mddev->sync_thread);
4993 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4994 	return 0;
4995 }
4996 
4997 static void md_clean(struct mddev *mddev)
4998 {
4999 	mddev->array_sectors = 0;
5000 	mddev->external_size = 0;
5001 	mddev->dev_sectors = 0;
5002 	mddev->raid_disks = 0;
5003 	mddev->recovery_cp = 0;
5004 	mddev->resync_min = 0;
5005 	mddev->resync_max = MaxSector;
5006 	mddev->reshape_position = MaxSector;
5007 	mddev->external = 0;
5008 	mddev->persistent = 0;
5009 	mddev->level = LEVEL_NONE;
5010 	mddev->clevel[0] = 0;
5011 	mddev->flags = 0;
5012 	mddev->ro = 0;
5013 	mddev->metadata_type[0] = 0;
5014 	mddev->chunk_sectors = 0;
5015 	mddev->ctime = mddev->utime = 0;
5016 	mddev->layout = 0;
5017 	mddev->max_disks = 0;
5018 	mddev->events = 0;
5019 	mddev->can_decrease_events = 0;
5020 	mddev->delta_disks = 0;
5021 	mddev->reshape_backwards = 0;
5022 	mddev->new_level = LEVEL_NONE;
5023 	mddev->new_layout = 0;
5024 	mddev->new_chunk_sectors = 0;
5025 	mddev->curr_resync = 0;
5026 	atomic64_set(&mddev->resync_mismatches, 0);
5027 	mddev->suspend_lo = mddev->suspend_hi = 0;
5028 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5029 	mddev->recovery = 0;
5030 	mddev->in_sync = 0;
5031 	mddev->changed = 0;
5032 	mddev->degraded = 0;
5033 	mddev->safemode = 0;
5034 	mddev->merge_check_needed = 0;
5035 	mddev->bitmap_info.offset = 0;
5036 	mddev->bitmap_info.default_offset = 0;
5037 	mddev->bitmap_info.default_space = 0;
5038 	mddev->bitmap_info.chunksize = 0;
5039 	mddev->bitmap_info.daemon_sleep = 0;
5040 	mddev->bitmap_info.max_write_behind = 0;
5041 }
5042 
5043 static void __md_stop_writes(struct mddev *mddev)
5044 {
5045 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5046 	flush_workqueue(md_misc_wq);
5047 	if (mddev->sync_thread) {
5048 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5049 		md_reap_sync_thread(mddev);
5050 	}
5051 
5052 	del_timer_sync(&mddev->safemode_timer);
5053 
5054 	bitmap_flush(mddev);
5055 	md_super_wait(mddev);
5056 
5057 	if (mddev->ro == 0 &&
5058 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5059 		/* mark array as shutdown cleanly */
5060 		mddev->in_sync = 1;
5061 		md_update_sb(mddev, 1);
5062 	}
5063 }
5064 
5065 void md_stop_writes(struct mddev *mddev)
5066 {
5067 	mddev_lock_nointr(mddev);
5068 	__md_stop_writes(mddev);
5069 	mddev_unlock(mddev);
5070 }
5071 EXPORT_SYMBOL_GPL(md_stop_writes);
5072 
5073 static void __md_stop(struct mddev *mddev)
5074 {
5075 	mddev->ready = 0;
5076 	mddev->pers->stop(mddev);
5077 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5078 		mddev->to_remove = &md_redundancy_group;
5079 	module_put(mddev->pers->owner);
5080 	mddev->pers = NULL;
5081 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5082 }
5083 
5084 void md_stop(struct mddev *mddev)
5085 {
5086 	/* stop the array and free an attached data structures.
5087 	 * This is called from dm-raid
5088 	 */
5089 	__md_stop(mddev);
5090 	bitmap_destroy(mddev);
5091 	if (mddev->bio_set)
5092 		bioset_free(mddev->bio_set);
5093 }
5094 
5095 EXPORT_SYMBOL_GPL(md_stop);
5096 
5097 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5098 {
5099 	int err = 0;
5100 	int did_freeze = 0;
5101 
5102 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5103 		did_freeze = 1;
5104 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5105 		md_wakeup_thread(mddev->thread);
5106 	}
5107 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5108 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5109 	if (mddev->sync_thread)
5110 		/* Thread might be blocked waiting for metadata update
5111 		 * which will now never happen */
5112 		wake_up_process(mddev->sync_thread->tsk);
5113 
5114 	mddev_unlock(mddev);
5115 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5116 					  &mddev->recovery));
5117 	mddev_lock_nointr(mddev);
5118 
5119 	mutex_lock(&mddev->open_mutex);
5120 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5121 	    mddev->sync_thread ||
5122 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5123 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5124 		printk("md: %s still in use.\n",mdname(mddev));
5125 		if (did_freeze) {
5126 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5127 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5128 			md_wakeup_thread(mddev->thread);
5129 		}
5130 		err = -EBUSY;
5131 		goto out;
5132 	}
5133 	if (mddev->pers) {
5134 		__md_stop_writes(mddev);
5135 
5136 		err  = -ENXIO;
5137 		if (mddev->ro==1)
5138 			goto out;
5139 		mddev->ro = 1;
5140 		set_disk_ro(mddev->gendisk, 1);
5141 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5142 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5143 		md_wakeup_thread(mddev->thread);
5144 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5145 		err = 0;
5146 	}
5147 out:
5148 	mutex_unlock(&mddev->open_mutex);
5149 	return err;
5150 }
5151 
5152 /* mode:
5153  *   0 - completely stop and dis-assemble array
5154  *   2 - stop but do not disassemble array
5155  */
5156 static int do_md_stop(struct mddev *mddev, int mode,
5157 		      struct block_device *bdev)
5158 {
5159 	struct gendisk *disk = mddev->gendisk;
5160 	struct md_rdev *rdev;
5161 	int did_freeze = 0;
5162 
5163 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5164 		did_freeze = 1;
5165 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5166 		md_wakeup_thread(mddev->thread);
5167 	}
5168 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5169 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5170 	if (mddev->sync_thread)
5171 		/* Thread might be blocked waiting for metadata update
5172 		 * which will now never happen */
5173 		wake_up_process(mddev->sync_thread->tsk);
5174 
5175 	mddev_unlock(mddev);
5176 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5177 				 !test_bit(MD_RECOVERY_RUNNING,
5178 					   &mddev->recovery)));
5179 	mddev_lock_nointr(mddev);
5180 
5181 	mutex_lock(&mddev->open_mutex);
5182 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5183 	    mddev->sysfs_active ||
5184 	    mddev->sync_thread ||
5185 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5186 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5187 		printk("md: %s still in use.\n",mdname(mddev));
5188 		mutex_unlock(&mddev->open_mutex);
5189 		if (did_freeze) {
5190 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5191 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5192 			md_wakeup_thread(mddev->thread);
5193 		}
5194 		return -EBUSY;
5195 	}
5196 	if (mddev->pers) {
5197 		if (mddev->ro)
5198 			set_disk_ro(disk, 0);
5199 
5200 		__md_stop_writes(mddev);
5201 		__md_stop(mddev);
5202 		mddev->queue->merge_bvec_fn = NULL;
5203 		mddev->queue->backing_dev_info.congested_fn = NULL;
5204 
5205 		/* tell userspace to handle 'inactive' */
5206 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5207 
5208 		rdev_for_each(rdev, mddev)
5209 			if (rdev->raid_disk >= 0)
5210 				sysfs_unlink_rdev(mddev, rdev);
5211 
5212 		set_capacity(disk, 0);
5213 		mutex_unlock(&mddev->open_mutex);
5214 		mddev->changed = 1;
5215 		revalidate_disk(disk);
5216 
5217 		if (mddev->ro)
5218 			mddev->ro = 0;
5219 	} else
5220 		mutex_unlock(&mddev->open_mutex);
5221 	/*
5222 	 * Free resources if final stop
5223 	 */
5224 	if (mode == 0) {
5225 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5226 
5227 		bitmap_destroy(mddev);
5228 		if (mddev->bitmap_info.file) {
5229 			fput(mddev->bitmap_info.file);
5230 			mddev->bitmap_info.file = NULL;
5231 		}
5232 		mddev->bitmap_info.offset = 0;
5233 
5234 		export_array(mddev);
5235 
5236 		md_clean(mddev);
5237 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5238 		if (mddev->hold_active == UNTIL_STOP)
5239 			mddev->hold_active = 0;
5240 	}
5241 	blk_integrity_unregister(disk);
5242 	md_new_event(mddev);
5243 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5244 	return 0;
5245 }
5246 
5247 #ifndef MODULE
5248 static void autorun_array(struct mddev *mddev)
5249 {
5250 	struct md_rdev *rdev;
5251 	int err;
5252 
5253 	if (list_empty(&mddev->disks))
5254 		return;
5255 
5256 	printk(KERN_INFO "md: running: ");
5257 
5258 	rdev_for_each(rdev, mddev) {
5259 		char b[BDEVNAME_SIZE];
5260 		printk("<%s>", bdevname(rdev->bdev,b));
5261 	}
5262 	printk("\n");
5263 
5264 	err = do_md_run(mddev);
5265 	if (err) {
5266 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5267 		do_md_stop(mddev, 0, NULL);
5268 	}
5269 }
5270 
5271 /*
5272  * lets try to run arrays based on all disks that have arrived
5273  * until now. (those are in pending_raid_disks)
5274  *
5275  * the method: pick the first pending disk, collect all disks with
5276  * the same UUID, remove all from the pending list and put them into
5277  * the 'same_array' list. Then order this list based on superblock
5278  * update time (freshest comes first), kick out 'old' disks and
5279  * compare superblocks. If everything's fine then run it.
5280  *
5281  * If "unit" is allocated, then bump its reference count
5282  */
5283 static void autorun_devices(int part)
5284 {
5285 	struct md_rdev *rdev0, *rdev, *tmp;
5286 	struct mddev *mddev;
5287 	char b[BDEVNAME_SIZE];
5288 
5289 	printk(KERN_INFO "md: autorun ...\n");
5290 	while (!list_empty(&pending_raid_disks)) {
5291 		int unit;
5292 		dev_t dev;
5293 		LIST_HEAD(candidates);
5294 		rdev0 = list_entry(pending_raid_disks.next,
5295 					 struct md_rdev, same_set);
5296 
5297 		printk(KERN_INFO "md: considering %s ...\n",
5298 			bdevname(rdev0->bdev,b));
5299 		INIT_LIST_HEAD(&candidates);
5300 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5301 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5302 				printk(KERN_INFO "md:  adding %s ...\n",
5303 					bdevname(rdev->bdev,b));
5304 				list_move(&rdev->same_set, &candidates);
5305 			}
5306 		/*
5307 		 * now we have a set of devices, with all of them having
5308 		 * mostly sane superblocks. It's time to allocate the
5309 		 * mddev.
5310 		 */
5311 		if (part) {
5312 			dev = MKDEV(mdp_major,
5313 				    rdev0->preferred_minor << MdpMinorShift);
5314 			unit = MINOR(dev) >> MdpMinorShift;
5315 		} else {
5316 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5317 			unit = MINOR(dev);
5318 		}
5319 		if (rdev0->preferred_minor != unit) {
5320 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5321 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5322 			break;
5323 		}
5324 
5325 		md_probe(dev, NULL, NULL);
5326 		mddev = mddev_find(dev);
5327 		if (!mddev || !mddev->gendisk) {
5328 			if (mddev)
5329 				mddev_put(mddev);
5330 			printk(KERN_ERR
5331 				"md: cannot allocate memory for md drive.\n");
5332 			break;
5333 		}
5334 		if (mddev_lock(mddev))
5335 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5336 			       mdname(mddev));
5337 		else if (mddev->raid_disks || mddev->major_version
5338 			 || !list_empty(&mddev->disks)) {
5339 			printk(KERN_WARNING
5340 				"md: %s already running, cannot run %s\n",
5341 				mdname(mddev), bdevname(rdev0->bdev,b));
5342 			mddev_unlock(mddev);
5343 		} else {
5344 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5345 			mddev->persistent = 1;
5346 			rdev_for_each_list(rdev, tmp, &candidates) {
5347 				list_del_init(&rdev->same_set);
5348 				if (bind_rdev_to_array(rdev, mddev))
5349 					export_rdev(rdev);
5350 			}
5351 			autorun_array(mddev);
5352 			mddev_unlock(mddev);
5353 		}
5354 		/* on success, candidates will be empty, on error
5355 		 * it won't...
5356 		 */
5357 		rdev_for_each_list(rdev, tmp, &candidates) {
5358 			list_del_init(&rdev->same_set);
5359 			export_rdev(rdev);
5360 		}
5361 		mddev_put(mddev);
5362 	}
5363 	printk(KERN_INFO "md: ... autorun DONE.\n");
5364 }
5365 #endif /* !MODULE */
5366 
5367 static int get_version(void __user *arg)
5368 {
5369 	mdu_version_t ver;
5370 
5371 	ver.major = MD_MAJOR_VERSION;
5372 	ver.minor = MD_MINOR_VERSION;
5373 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5374 
5375 	if (copy_to_user(arg, &ver, sizeof(ver)))
5376 		return -EFAULT;
5377 
5378 	return 0;
5379 }
5380 
5381 static int get_array_info(struct mddev *mddev, void __user *arg)
5382 {
5383 	mdu_array_info_t info;
5384 	int nr,working,insync,failed,spare;
5385 	struct md_rdev *rdev;
5386 
5387 	nr = working = insync = failed = spare = 0;
5388 	rcu_read_lock();
5389 	rdev_for_each_rcu(rdev, mddev) {
5390 		nr++;
5391 		if (test_bit(Faulty, &rdev->flags))
5392 			failed++;
5393 		else {
5394 			working++;
5395 			if (test_bit(In_sync, &rdev->flags))
5396 				insync++;
5397 			else
5398 				spare++;
5399 		}
5400 	}
5401 	rcu_read_unlock();
5402 
5403 	info.major_version = mddev->major_version;
5404 	info.minor_version = mddev->minor_version;
5405 	info.patch_version = MD_PATCHLEVEL_VERSION;
5406 	info.ctime         = mddev->ctime;
5407 	info.level         = mddev->level;
5408 	info.size          = mddev->dev_sectors / 2;
5409 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5410 		info.size = -1;
5411 	info.nr_disks      = nr;
5412 	info.raid_disks    = mddev->raid_disks;
5413 	info.md_minor      = mddev->md_minor;
5414 	info.not_persistent= !mddev->persistent;
5415 
5416 	info.utime         = mddev->utime;
5417 	info.state         = 0;
5418 	if (mddev->in_sync)
5419 		info.state = (1<<MD_SB_CLEAN);
5420 	if (mddev->bitmap && mddev->bitmap_info.offset)
5421 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5422 	info.active_disks  = insync;
5423 	info.working_disks = working;
5424 	info.failed_disks  = failed;
5425 	info.spare_disks   = spare;
5426 
5427 	info.layout        = mddev->layout;
5428 	info.chunk_size    = mddev->chunk_sectors << 9;
5429 
5430 	if (copy_to_user(arg, &info, sizeof(info)))
5431 		return -EFAULT;
5432 
5433 	return 0;
5434 }
5435 
5436 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5437 {
5438 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5439 	char *ptr, *buf = NULL;
5440 	int err = -ENOMEM;
5441 
5442 	file = kmalloc(sizeof(*file), GFP_NOIO);
5443 
5444 	if (!file)
5445 		goto out;
5446 
5447 	/* bitmap disabled, zero the first byte and copy out */
5448 	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5449 		file->pathname[0] = '\0';
5450 		goto copy_out;
5451 	}
5452 
5453 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5454 	if (!buf)
5455 		goto out;
5456 
5457 	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5458 		     buf, sizeof(file->pathname));
5459 	if (IS_ERR(ptr))
5460 		goto out;
5461 
5462 	strcpy(file->pathname, ptr);
5463 
5464 copy_out:
5465 	err = 0;
5466 	if (copy_to_user(arg, file, sizeof(*file)))
5467 		err = -EFAULT;
5468 out:
5469 	kfree(buf);
5470 	kfree(file);
5471 	return err;
5472 }
5473 
5474 static int get_disk_info(struct mddev *mddev, void __user * arg)
5475 {
5476 	mdu_disk_info_t info;
5477 	struct md_rdev *rdev;
5478 
5479 	if (copy_from_user(&info, arg, sizeof(info)))
5480 		return -EFAULT;
5481 
5482 	rcu_read_lock();
5483 	rdev = find_rdev_nr_rcu(mddev, info.number);
5484 	if (rdev) {
5485 		info.major = MAJOR(rdev->bdev->bd_dev);
5486 		info.minor = MINOR(rdev->bdev->bd_dev);
5487 		info.raid_disk = rdev->raid_disk;
5488 		info.state = 0;
5489 		if (test_bit(Faulty, &rdev->flags))
5490 			info.state |= (1<<MD_DISK_FAULTY);
5491 		else if (test_bit(In_sync, &rdev->flags)) {
5492 			info.state |= (1<<MD_DISK_ACTIVE);
5493 			info.state |= (1<<MD_DISK_SYNC);
5494 		}
5495 		if (test_bit(WriteMostly, &rdev->flags))
5496 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5497 	} else {
5498 		info.major = info.minor = 0;
5499 		info.raid_disk = -1;
5500 		info.state = (1<<MD_DISK_REMOVED);
5501 	}
5502 	rcu_read_unlock();
5503 
5504 	if (copy_to_user(arg, &info, sizeof(info)))
5505 		return -EFAULT;
5506 
5507 	return 0;
5508 }
5509 
5510 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5511 {
5512 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5513 	struct md_rdev *rdev;
5514 	dev_t dev = MKDEV(info->major,info->minor);
5515 
5516 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5517 		return -EOVERFLOW;
5518 
5519 	if (!mddev->raid_disks) {
5520 		int err;
5521 		/* expecting a device which has a superblock */
5522 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5523 		if (IS_ERR(rdev)) {
5524 			printk(KERN_WARNING
5525 				"md: md_import_device returned %ld\n",
5526 				PTR_ERR(rdev));
5527 			return PTR_ERR(rdev);
5528 		}
5529 		if (!list_empty(&mddev->disks)) {
5530 			struct md_rdev *rdev0
5531 				= list_entry(mddev->disks.next,
5532 					     struct md_rdev, same_set);
5533 			err = super_types[mddev->major_version]
5534 				.load_super(rdev, rdev0, mddev->minor_version);
5535 			if (err < 0) {
5536 				printk(KERN_WARNING
5537 					"md: %s has different UUID to %s\n",
5538 					bdevname(rdev->bdev,b),
5539 					bdevname(rdev0->bdev,b2));
5540 				export_rdev(rdev);
5541 				return -EINVAL;
5542 			}
5543 		}
5544 		err = bind_rdev_to_array(rdev, mddev);
5545 		if (err)
5546 			export_rdev(rdev);
5547 		return err;
5548 	}
5549 
5550 	/*
5551 	 * add_new_disk can be used once the array is assembled
5552 	 * to add "hot spares".  They must already have a superblock
5553 	 * written
5554 	 */
5555 	if (mddev->pers) {
5556 		int err;
5557 		if (!mddev->pers->hot_add_disk) {
5558 			printk(KERN_WARNING
5559 				"%s: personality does not support diskops!\n",
5560 			       mdname(mddev));
5561 			return -EINVAL;
5562 		}
5563 		if (mddev->persistent)
5564 			rdev = md_import_device(dev, mddev->major_version,
5565 						mddev->minor_version);
5566 		else
5567 			rdev = md_import_device(dev, -1, -1);
5568 		if (IS_ERR(rdev)) {
5569 			printk(KERN_WARNING
5570 				"md: md_import_device returned %ld\n",
5571 				PTR_ERR(rdev));
5572 			return PTR_ERR(rdev);
5573 		}
5574 		/* set saved_raid_disk if appropriate */
5575 		if (!mddev->persistent) {
5576 			if (info->state & (1<<MD_DISK_SYNC)  &&
5577 			    info->raid_disk < mddev->raid_disks) {
5578 				rdev->raid_disk = info->raid_disk;
5579 				set_bit(In_sync, &rdev->flags);
5580 				clear_bit(Bitmap_sync, &rdev->flags);
5581 			} else
5582 				rdev->raid_disk = -1;
5583 			rdev->saved_raid_disk = rdev->raid_disk;
5584 		} else
5585 			super_types[mddev->major_version].
5586 				validate_super(mddev, rdev);
5587 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5588 		     rdev->raid_disk != info->raid_disk) {
5589 			/* This was a hot-add request, but events doesn't
5590 			 * match, so reject it.
5591 			 */
5592 			export_rdev(rdev);
5593 			return -EINVAL;
5594 		}
5595 
5596 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5597 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5598 			set_bit(WriteMostly, &rdev->flags);
5599 		else
5600 			clear_bit(WriteMostly, &rdev->flags);
5601 
5602 		rdev->raid_disk = -1;
5603 		err = bind_rdev_to_array(rdev, mddev);
5604 		if (!err && !mddev->pers->hot_remove_disk) {
5605 			/* If there is hot_add_disk but no hot_remove_disk
5606 			 * then added disks for geometry changes,
5607 			 * and should be added immediately.
5608 			 */
5609 			super_types[mddev->major_version].
5610 				validate_super(mddev, rdev);
5611 			err = mddev->pers->hot_add_disk(mddev, rdev);
5612 			if (err)
5613 				unbind_rdev_from_array(rdev);
5614 		}
5615 		if (err)
5616 			export_rdev(rdev);
5617 		else
5618 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5619 
5620 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5621 		if (mddev->degraded)
5622 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5623 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5624 		if (!err)
5625 			md_new_event(mddev);
5626 		md_wakeup_thread(mddev->thread);
5627 		return err;
5628 	}
5629 
5630 	/* otherwise, add_new_disk is only allowed
5631 	 * for major_version==0 superblocks
5632 	 */
5633 	if (mddev->major_version != 0) {
5634 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5635 		       mdname(mddev));
5636 		return -EINVAL;
5637 	}
5638 
5639 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5640 		int err;
5641 		rdev = md_import_device(dev, -1, 0);
5642 		if (IS_ERR(rdev)) {
5643 			printk(KERN_WARNING
5644 				"md: error, md_import_device() returned %ld\n",
5645 				PTR_ERR(rdev));
5646 			return PTR_ERR(rdev);
5647 		}
5648 		rdev->desc_nr = info->number;
5649 		if (info->raid_disk < mddev->raid_disks)
5650 			rdev->raid_disk = info->raid_disk;
5651 		else
5652 			rdev->raid_disk = -1;
5653 
5654 		if (rdev->raid_disk < mddev->raid_disks)
5655 			if (info->state & (1<<MD_DISK_SYNC))
5656 				set_bit(In_sync, &rdev->flags);
5657 
5658 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5659 			set_bit(WriteMostly, &rdev->flags);
5660 
5661 		if (!mddev->persistent) {
5662 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5663 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5664 		} else
5665 			rdev->sb_start = calc_dev_sboffset(rdev);
5666 		rdev->sectors = rdev->sb_start;
5667 
5668 		err = bind_rdev_to_array(rdev, mddev);
5669 		if (err) {
5670 			export_rdev(rdev);
5671 			return err;
5672 		}
5673 	}
5674 
5675 	return 0;
5676 }
5677 
5678 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5679 {
5680 	char b[BDEVNAME_SIZE];
5681 	struct md_rdev *rdev;
5682 
5683 	rdev = find_rdev(mddev, dev);
5684 	if (!rdev)
5685 		return -ENXIO;
5686 
5687 	clear_bit(Blocked, &rdev->flags);
5688 	remove_and_add_spares(mddev, rdev);
5689 
5690 	if (rdev->raid_disk >= 0)
5691 		goto busy;
5692 
5693 	kick_rdev_from_array(rdev);
5694 	md_update_sb(mddev, 1);
5695 	md_new_event(mddev);
5696 
5697 	return 0;
5698 busy:
5699 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5700 		bdevname(rdev->bdev,b), mdname(mddev));
5701 	return -EBUSY;
5702 }
5703 
5704 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5705 {
5706 	char b[BDEVNAME_SIZE];
5707 	int err;
5708 	struct md_rdev *rdev;
5709 
5710 	if (!mddev->pers)
5711 		return -ENODEV;
5712 
5713 	if (mddev->major_version != 0) {
5714 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5715 			" version-0 superblocks.\n",
5716 			mdname(mddev));
5717 		return -EINVAL;
5718 	}
5719 	if (!mddev->pers->hot_add_disk) {
5720 		printk(KERN_WARNING
5721 			"%s: personality does not support diskops!\n",
5722 			mdname(mddev));
5723 		return -EINVAL;
5724 	}
5725 
5726 	rdev = md_import_device(dev, -1, 0);
5727 	if (IS_ERR(rdev)) {
5728 		printk(KERN_WARNING
5729 			"md: error, md_import_device() returned %ld\n",
5730 			PTR_ERR(rdev));
5731 		return -EINVAL;
5732 	}
5733 
5734 	if (mddev->persistent)
5735 		rdev->sb_start = calc_dev_sboffset(rdev);
5736 	else
5737 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5738 
5739 	rdev->sectors = rdev->sb_start;
5740 
5741 	if (test_bit(Faulty, &rdev->flags)) {
5742 		printk(KERN_WARNING
5743 			"md: can not hot-add faulty %s disk to %s!\n",
5744 			bdevname(rdev->bdev,b), mdname(mddev));
5745 		err = -EINVAL;
5746 		goto abort_export;
5747 	}
5748 	clear_bit(In_sync, &rdev->flags);
5749 	rdev->desc_nr = -1;
5750 	rdev->saved_raid_disk = -1;
5751 	err = bind_rdev_to_array(rdev, mddev);
5752 	if (err)
5753 		goto abort_export;
5754 
5755 	/*
5756 	 * The rest should better be atomic, we can have disk failures
5757 	 * noticed in interrupt contexts ...
5758 	 */
5759 
5760 	rdev->raid_disk = -1;
5761 
5762 	md_update_sb(mddev, 1);
5763 
5764 	/*
5765 	 * Kick recovery, maybe this spare has to be added to the
5766 	 * array immediately.
5767 	 */
5768 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5769 	md_wakeup_thread(mddev->thread);
5770 	md_new_event(mddev);
5771 	return 0;
5772 
5773 abort_export:
5774 	export_rdev(rdev);
5775 	return err;
5776 }
5777 
5778 static int set_bitmap_file(struct mddev *mddev, int fd)
5779 {
5780 	int err = 0;
5781 
5782 	if (mddev->pers) {
5783 		if (!mddev->pers->quiesce || !mddev->thread)
5784 			return -EBUSY;
5785 		if (mddev->recovery || mddev->sync_thread)
5786 			return -EBUSY;
5787 		/* we should be able to change the bitmap.. */
5788 	}
5789 
5790 	if (fd >= 0) {
5791 		struct inode *inode;
5792 		if (mddev->bitmap)
5793 			return -EEXIST; /* cannot add when bitmap is present */
5794 		mddev->bitmap_info.file = fget(fd);
5795 
5796 		if (mddev->bitmap_info.file == NULL) {
5797 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5798 			       mdname(mddev));
5799 			return -EBADF;
5800 		}
5801 
5802 		inode = mddev->bitmap_info.file->f_mapping->host;
5803 		if (!S_ISREG(inode->i_mode)) {
5804 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5805 			       mdname(mddev));
5806 			err = -EBADF;
5807 		} else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5808 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5809 			       mdname(mddev));
5810 			err = -EBADF;
5811 		} else if (atomic_read(&inode->i_writecount) != 1) {
5812 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5813 			       mdname(mddev));
5814 			err = -EBUSY;
5815 		}
5816 		if (err) {
5817 			fput(mddev->bitmap_info.file);
5818 			mddev->bitmap_info.file = NULL;
5819 			return err;
5820 		}
5821 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5822 	} else if (mddev->bitmap == NULL)
5823 		return -ENOENT; /* cannot remove what isn't there */
5824 	err = 0;
5825 	if (mddev->pers) {
5826 		mddev->pers->quiesce(mddev, 1);
5827 		if (fd >= 0) {
5828 			err = bitmap_create(mddev);
5829 			if (!err)
5830 				err = bitmap_load(mddev);
5831 		}
5832 		if (fd < 0 || err) {
5833 			bitmap_destroy(mddev);
5834 			fd = -1; /* make sure to put the file */
5835 		}
5836 		mddev->pers->quiesce(mddev, 0);
5837 	}
5838 	if (fd < 0) {
5839 		if (mddev->bitmap_info.file)
5840 			fput(mddev->bitmap_info.file);
5841 		mddev->bitmap_info.file = NULL;
5842 	}
5843 
5844 	return err;
5845 }
5846 
5847 /*
5848  * set_array_info is used two different ways
5849  * The original usage is when creating a new array.
5850  * In this usage, raid_disks is > 0 and it together with
5851  *  level, size, not_persistent,layout,chunksize determine the
5852  *  shape of the array.
5853  *  This will always create an array with a type-0.90.0 superblock.
5854  * The newer usage is when assembling an array.
5855  *  In this case raid_disks will be 0, and the major_version field is
5856  *  use to determine which style super-blocks are to be found on the devices.
5857  *  The minor and patch _version numbers are also kept incase the
5858  *  super_block handler wishes to interpret them.
5859  */
5860 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
5861 {
5862 
5863 	if (info->raid_disks == 0) {
5864 		/* just setting version number for superblock loading */
5865 		if (info->major_version < 0 ||
5866 		    info->major_version >= ARRAY_SIZE(super_types) ||
5867 		    super_types[info->major_version].name == NULL) {
5868 			/* maybe try to auto-load a module? */
5869 			printk(KERN_INFO
5870 				"md: superblock version %d not known\n",
5871 				info->major_version);
5872 			return -EINVAL;
5873 		}
5874 		mddev->major_version = info->major_version;
5875 		mddev->minor_version = info->minor_version;
5876 		mddev->patch_version = info->patch_version;
5877 		mddev->persistent = !info->not_persistent;
5878 		/* ensure mddev_put doesn't delete this now that there
5879 		 * is some minimal configuration.
5880 		 */
5881 		mddev->ctime         = get_seconds();
5882 		return 0;
5883 	}
5884 	mddev->major_version = MD_MAJOR_VERSION;
5885 	mddev->minor_version = MD_MINOR_VERSION;
5886 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5887 	mddev->ctime         = get_seconds();
5888 
5889 	mddev->level         = info->level;
5890 	mddev->clevel[0]     = 0;
5891 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5892 	mddev->raid_disks    = info->raid_disks;
5893 	/* don't set md_minor, it is determined by which /dev/md* was
5894 	 * openned
5895 	 */
5896 	if (info->state & (1<<MD_SB_CLEAN))
5897 		mddev->recovery_cp = MaxSector;
5898 	else
5899 		mddev->recovery_cp = 0;
5900 	mddev->persistent    = ! info->not_persistent;
5901 	mddev->external	     = 0;
5902 
5903 	mddev->layout        = info->layout;
5904 	mddev->chunk_sectors = info->chunk_size >> 9;
5905 
5906 	mddev->max_disks     = MD_SB_DISKS;
5907 
5908 	if (mddev->persistent)
5909 		mddev->flags         = 0;
5910 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5911 
5912 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5913 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
5914 	mddev->bitmap_info.offset = 0;
5915 
5916 	mddev->reshape_position = MaxSector;
5917 
5918 	/*
5919 	 * Generate a 128 bit UUID
5920 	 */
5921 	get_random_bytes(mddev->uuid, 16);
5922 
5923 	mddev->new_level = mddev->level;
5924 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5925 	mddev->new_layout = mddev->layout;
5926 	mddev->delta_disks = 0;
5927 	mddev->reshape_backwards = 0;
5928 
5929 	return 0;
5930 }
5931 
5932 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5933 {
5934 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5935 
5936 	if (mddev->external_size)
5937 		return;
5938 
5939 	mddev->array_sectors = array_sectors;
5940 }
5941 EXPORT_SYMBOL(md_set_array_sectors);
5942 
5943 static int update_size(struct mddev *mddev, sector_t num_sectors)
5944 {
5945 	struct md_rdev *rdev;
5946 	int rv;
5947 	int fit = (num_sectors == 0);
5948 
5949 	if (mddev->pers->resize == NULL)
5950 		return -EINVAL;
5951 	/* The "num_sectors" is the number of sectors of each device that
5952 	 * is used.  This can only make sense for arrays with redundancy.
5953 	 * linear and raid0 always use whatever space is available. We can only
5954 	 * consider changing this number if no resync or reconstruction is
5955 	 * happening, and if the new size is acceptable. It must fit before the
5956 	 * sb_start or, if that is <data_offset, it must fit before the size
5957 	 * of each device.  If num_sectors is zero, we find the largest size
5958 	 * that fits.
5959 	 */
5960 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5961 	    mddev->sync_thread)
5962 		return -EBUSY;
5963 	if (mddev->ro)
5964 		return -EROFS;
5965 
5966 	rdev_for_each(rdev, mddev) {
5967 		sector_t avail = rdev->sectors;
5968 
5969 		if (fit && (num_sectors == 0 || num_sectors > avail))
5970 			num_sectors = avail;
5971 		if (avail < num_sectors)
5972 			return -ENOSPC;
5973 	}
5974 	rv = mddev->pers->resize(mddev, num_sectors);
5975 	if (!rv)
5976 		revalidate_disk(mddev->gendisk);
5977 	return rv;
5978 }
5979 
5980 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5981 {
5982 	int rv;
5983 	struct md_rdev *rdev;
5984 	/* change the number of raid disks */
5985 	if (mddev->pers->check_reshape == NULL)
5986 		return -EINVAL;
5987 	if (mddev->ro)
5988 		return -EROFS;
5989 	if (raid_disks <= 0 ||
5990 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5991 		return -EINVAL;
5992 	if (mddev->sync_thread ||
5993 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5994 	    mddev->reshape_position != MaxSector)
5995 		return -EBUSY;
5996 
5997 	rdev_for_each(rdev, mddev) {
5998 		if (mddev->raid_disks < raid_disks &&
5999 		    rdev->data_offset < rdev->new_data_offset)
6000 			return -EINVAL;
6001 		if (mddev->raid_disks > raid_disks &&
6002 		    rdev->data_offset > rdev->new_data_offset)
6003 			return -EINVAL;
6004 	}
6005 
6006 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6007 	if (mddev->delta_disks < 0)
6008 		mddev->reshape_backwards = 1;
6009 	else if (mddev->delta_disks > 0)
6010 		mddev->reshape_backwards = 0;
6011 
6012 	rv = mddev->pers->check_reshape(mddev);
6013 	if (rv < 0) {
6014 		mddev->delta_disks = 0;
6015 		mddev->reshape_backwards = 0;
6016 	}
6017 	return rv;
6018 }
6019 
6020 /*
6021  * update_array_info is used to change the configuration of an
6022  * on-line array.
6023  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6024  * fields in the info are checked against the array.
6025  * Any differences that cannot be handled will cause an error.
6026  * Normally, only one change can be managed at a time.
6027  */
6028 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6029 {
6030 	int rv = 0;
6031 	int cnt = 0;
6032 	int state = 0;
6033 
6034 	/* calculate expected state,ignoring low bits */
6035 	if (mddev->bitmap && mddev->bitmap_info.offset)
6036 		state |= (1 << MD_SB_BITMAP_PRESENT);
6037 
6038 	if (mddev->major_version != info->major_version ||
6039 	    mddev->minor_version != info->minor_version ||
6040 /*	    mddev->patch_version != info->patch_version || */
6041 	    mddev->ctime         != info->ctime         ||
6042 	    mddev->level         != info->level         ||
6043 /*	    mddev->layout        != info->layout        || */
6044 	    !mddev->persistent	 != info->not_persistent||
6045 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6046 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6047 	    ((state^info->state) & 0xfffffe00)
6048 		)
6049 		return -EINVAL;
6050 	/* Check there is only one change */
6051 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6052 		cnt++;
6053 	if (mddev->raid_disks != info->raid_disks)
6054 		cnt++;
6055 	if (mddev->layout != info->layout)
6056 		cnt++;
6057 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6058 		cnt++;
6059 	if (cnt == 0)
6060 		return 0;
6061 	if (cnt > 1)
6062 		return -EINVAL;
6063 
6064 	if (mddev->layout != info->layout) {
6065 		/* Change layout
6066 		 * we don't need to do anything at the md level, the
6067 		 * personality will take care of it all.
6068 		 */
6069 		if (mddev->pers->check_reshape == NULL)
6070 			return -EINVAL;
6071 		else {
6072 			mddev->new_layout = info->layout;
6073 			rv = mddev->pers->check_reshape(mddev);
6074 			if (rv)
6075 				mddev->new_layout = mddev->layout;
6076 			return rv;
6077 		}
6078 	}
6079 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6080 		rv = update_size(mddev, (sector_t)info->size * 2);
6081 
6082 	if (mddev->raid_disks    != info->raid_disks)
6083 		rv = update_raid_disks(mddev, info->raid_disks);
6084 
6085 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6086 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6087 			return -EINVAL;
6088 		if (mddev->recovery || mddev->sync_thread)
6089 			return -EBUSY;
6090 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6091 			/* add the bitmap */
6092 			if (mddev->bitmap)
6093 				return -EEXIST;
6094 			if (mddev->bitmap_info.default_offset == 0)
6095 				return -EINVAL;
6096 			mddev->bitmap_info.offset =
6097 				mddev->bitmap_info.default_offset;
6098 			mddev->bitmap_info.space =
6099 				mddev->bitmap_info.default_space;
6100 			mddev->pers->quiesce(mddev, 1);
6101 			rv = bitmap_create(mddev);
6102 			if (!rv)
6103 				rv = bitmap_load(mddev);
6104 			if (rv)
6105 				bitmap_destroy(mddev);
6106 			mddev->pers->quiesce(mddev, 0);
6107 		} else {
6108 			/* remove the bitmap */
6109 			if (!mddev->bitmap)
6110 				return -ENOENT;
6111 			if (mddev->bitmap->storage.file)
6112 				return -EINVAL;
6113 			mddev->pers->quiesce(mddev, 1);
6114 			bitmap_destroy(mddev);
6115 			mddev->pers->quiesce(mddev, 0);
6116 			mddev->bitmap_info.offset = 0;
6117 		}
6118 	}
6119 	md_update_sb(mddev, 1);
6120 	return rv;
6121 }
6122 
6123 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6124 {
6125 	struct md_rdev *rdev;
6126 	int err = 0;
6127 
6128 	if (mddev->pers == NULL)
6129 		return -ENODEV;
6130 
6131 	rcu_read_lock();
6132 	rdev = find_rdev_rcu(mddev, dev);
6133 	if (!rdev)
6134 		err =  -ENODEV;
6135 	else {
6136 		md_error(mddev, rdev);
6137 		if (!test_bit(Faulty, &rdev->flags))
6138 			err = -EBUSY;
6139 	}
6140 	rcu_read_unlock();
6141 	return err;
6142 }
6143 
6144 /*
6145  * We have a problem here : there is no easy way to give a CHS
6146  * virtual geometry. We currently pretend that we have a 2 heads
6147  * 4 sectors (with a BIG number of cylinders...). This drives
6148  * dosfs just mad... ;-)
6149  */
6150 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6151 {
6152 	struct mddev *mddev = bdev->bd_disk->private_data;
6153 
6154 	geo->heads = 2;
6155 	geo->sectors = 4;
6156 	geo->cylinders = mddev->array_sectors / 8;
6157 	return 0;
6158 }
6159 
6160 static inline bool md_ioctl_valid(unsigned int cmd)
6161 {
6162 	switch (cmd) {
6163 	case ADD_NEW_DISK:
6164 	case BLKROSET:
6165 	case GET_ARRAY_INFO:
6166 	case GET_BITMAP_FILE:
6167 	case GET_DISK_INFO:
6168 	case HOT_ADD_DISK:
6169 	case HOT_REMOVE_DISK:
6170 	case RAID_AUTORUN:
6171 	case RAID_VERSION:
6172 	case RESTART_ARRAY_RW:
6173 	case RUN_ARRAY:
6174 	case SET_ARRAY_INFO:
6175 	case SET_BITMAP_FILE:
6176 	case SET_DISK_FAULTY:
6177 	case STOP_ARRAY:
6178 	case STOP_ARRAY_RO:
6179 		return true;
6180 	default:
6181 		return false;
6182 	}
6183 }
6184 
6185 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6186 			unsigned int cmd, unsigned long arg)
6187 {
6188 	int err = 0;
6189 	void __user *argp = (void __user *)arg;
6190 	struct mddev *mddev = NULL;
6191 	int ro;
6192 
6193 	if (!md_ioctl_valid(cmd))
6194 		return -ENOTTY;
6195 
6196 	switch (cmd) {
6197 	case RAID_VERSION:
6198 	case GET_ARRAY_INFO:
6199 	case GET_DISK_INFO:
6200 		break;
6201 	default:
6202 		if (!capable(CAP_SYS_ADMIN))
6203 			return -EACCES;
6204 	}
6205 
6206 	/*
6207 	 * Commands dealing with the RAID driver but not any
6208 	 * particular array:
6209 	 */
6210 	switch (cmd) {
6211 	case RAID_VERSION:
6212 		err = get_version(argp);
6213 		goto out;
6214 
6215 #ifndef MODULE
6216 	case RAID_AUTORUN:
6217 		err = 0;
6218 		autostart_arrays(arg);
6219 		goto out;
6220 #endif
6221 	default:;
6222 	}
6223 
6224 	/*
6225 	 * Commands creating/starting a new array:
6226 	 */
6227 
6228 	mddev = bdev->bd_disk->private_data;
6229 
6230 	if (!mddev) {
6231 		BUG();
6232 		goto out;
6233 	}
6234 
6235 	/* Some actions do not requires the mutex */
6236 	switch (cmd) {
6237 	case GET_ARRAY_INFO:
6238 		if (!mddev->raid_disks && !mddev->external)
6239 			err = -ENODEV;
6240 		else
6241 			err = get_array_info(mddev, argp);
6242 		goto out;
6243 
6244 	case GET_DISK_INFO:
6245 		if (!mddev->raid_disks && !mddev->external)
6246 			err = -ENODEV;
6247 		else
6248 			err = get_disk_info(mddev, argp);
6249 		goto out;
6250 
6251 	case SET_DISK_FAULTY:
6252 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6253 		goto out;
6254 	}
6255 
6256 	if (cmd == ADD_NEW_DISK)
6257 		/* need to ensure md_delayed_delete() has completed */
6258 		flush_workqueue(md_misc_wq);
6259 
6260 	if (cmd == HOT_REMOVE_DISK)
6261 		/* need to ensure recovery thread has run */
6262 		wait_event_interruptible_timeout(mddev->sb_wait,
6263 						 !test_bit(MD_RECOVERY_NEEDED,
6264 							   &mddev->flags),
6265 						 msecs_to_jiffies(5000));
6266 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6267 		/* Need to flush page cache, and ensure no-one else opens
6268 		 * and writes
6269 		 */
6270 		mutex_lock(&mddev->open_mutex);
6271 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6272 			mutex_unlock(&mddev->open_mutex);
6273 			err = -EBUSY;
6274 			goto out;
6275 		}
6276 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6277 		mutex_unlock(&mddev->open_mutex);
6278 		sync_blockdev(bdev);
6279 	}
6280 	err = mddev_lock(mddev);
6281 	if (err) {
6282 		printk(KERN_INFO
6283 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6284 			err, cmd);
6285 		goto out;
6286 	}
6287 
6288 	if (cmd == SET_ARRAY_INFO) {
6289 		mdu_array_info_t info;
6290 		if (!arg)
6291 			memset(&info, 0, sizeof(info));
6292 		else if (copy_from_user(&info, argp, sizeof(info))) {
6293 			err = -EFAULT;
6294 			goto unlock;
6295 		}
6296 		if (mddev->pers) {
6297 			err = update_array_info(mddev, &info);
6298 			if (err) {
6299 				printk(KERN_WARNING "md: couldn't update"
6300 				       " array info. %d\n", err);
6301 				goto unlock;
6302 			}
6303 			goto unlock;
6304 		}
6305 		if (!list_empty(&mddev->disks)) {
6306 			printk(KERN_WARNING
6307 			       "md: array %s already has disks!\n",
6308 			       mdname(mddev));
6309 			err = -EBUSY;
6310 			goto unlock;
6311 		}
6312 		if (mddev->raid_disks) {
6313 			printk(KERN_WARNING
6314 			       "md: array %s already initialised!\n",
6315 			       mdname(mddev));
6316 			err = -EBUSY;
6317 			goto unlock;
6318 		}
6319 		err = set_array_info(mddev, &info);
6320 		if (err) {
6321 			printk(KERN_WARNING "md: couldn't set"
6322 			       " array info. %d\n", err);
6323 			goto unlock;
6324 		}
6325 		goto unlock;
6326 	}
6327 
6328 	/*
6329 	 * Commands querying/configuring an existing array:
6330 	 */
6331 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6332 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6333 	if ((!mddev->raid_disks && !mddev->external)
6334 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6335 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6336 	    && cmd != GET_BITMAP_FILE) {
6337 		err = -ENODEV;
6338 		goto unlock;
6339 	}
6340 
6341 	/*
6342 	 * Commands even a read-only array can execute:
6343 	 */
6344 	switch (cmd) {
6345 	case GET_BITMAP_FILE:
6346 		err = get_bitmap_file(mddev, argp);
6347 		goto unlock;
6348 
6349 	case RESTART_ARRAY_RW:
6350 		err = restart_array(mddev);
6351 		goto unlock;
6352 
6353 	case STOP_ARRAY:
6354 		err = do_md_stop(mddev, 0, bdev);
6355 		goto unlock;
6356 
6357 	case STOP_ARRAY_RO:
6358 		err = md_set_readonly(mddev, bdev);
6359 		goto unlock;
6360 
6361 	case HOT_REMOVE_DISK:
6362 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6363 		goto unlock;
6364 
6365 	case ADD_NEW_DISK:
6366 		/* We can support ADD_NEW_DISK on read-only arrays
6367 		 * on if we are re-adding a preexisting device.
6368 		 * So require mddev->pers and MD_DISK_SYNC.
6369 		 */
6370 		if (mddev->pers) {
6371 			mdu_disk_info_t info;
6372 			if (copy_from_user(&info, argp, sizeof(info)))
6373 				err = -EFAULT;
6374 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6375 				/* Need to clear read-only for this */
6376 				break;
6377 			else
6378 				err = add_new_disk(mddev, &info);
6379 			goto unlock;
6380 		}
6381 		break;
6382 
6383 	case BLKROSET:
6384 		if (get_user(ro, (int __user *)(arg))) {
6385 			err = -EFAULT;
6386 			goto unlock;
6387 		}
6388 		err = -EINVAL;
6389 
6390 		/* if the bdev is going readonly the value of mddev->ro
6391 		 * does not matter, no writes are coming
6392 		 */
6393 		if (ro)
6394 			goto unlock;
6395 
6396 		/* are we are already prepared for writes? */
6397 		if (mddev->ro != 1)
6398 			goto unlock;
6399 
6400 		/* transitioning to readauto need only happen for
6401 		 * arrays that call md_write_start
6402 		 */
6403 		if (mddev->pers) {
6404 			err = restart_array(mddev);
6405 			if (err == 0) {
6406 				mddev->ro = 2;
6407 				set_disk_ro(mddev->gendisk, 0);
6408 			}
6409 		}
6410 		goto unlock;
6411 	}
6412 
6413 	/*
6414 	 * The remaining ioctls are changing the state of the
6415 	 * superblock, so we do not allow them on read-only arrays.
6416 	 */
6417 	if (mddev->ro && mddev->pers) {
6418 		if (mddev->ro == 2) {
6419 			mddev->ro = 0;
6420 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6421 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6422 			/* mddev_unlock will wake thread */
6423 			/* If a device failed while we were read-only, we
6424 			 * need to make sure the metadata is updated now.
6425 			 */
6426 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6427 				mddev_unlock(mddev);
6428 				wait_event(mddev->sb_wait,
6429 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6430 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6431 				mddev_lock_nointr(mddev);
6432 			}
6433 		} else {
6434 			err = -EROFS;
6435 			goto unlock;
6436 		}
6437 	}
6438 
6439 	switch (cmd) {
6440 	case ADD_NEW_DISK:
6441 	{
6442 		mdu_disk_info_t info;
6443 		if (copy_from_user(&info, argp, sizeof(info)))
6444 			err = -EFAULT;
6445 		else
6446 			err = add_new_disk(mddev, &info);
6447 		goto unlock;
6448 	}
6449 
6450 	case HOT_ADD_DISK:
6451 		err = hot_add_disk(mddev, new_decode_dev(arg));
6452 		goto unlock;
6453 
6454 	case RUN_ARRAY:
6455 		err = do_md_run(mddev);
6456 		goto unlock;
6457 
6458 	case SET_BITMAP_FILE:
6459 		err = set_bitmap_file(mddev, (int)arg);
6460 		goto unlock;
6461 
6462 	default:
6463 		err = -EINVAL;
6464 		goto unlock;
6465 	}
6466 
6467 unlock:
6468 	if (mddev->hold_active == UNTIL_IOCTL &&
6469 	    err != -EINVAL)
6470 		mddev->hold_active = 0;
6471 	mddev_unlock(mddev);
6472 out:
6473 	return err;
6474 }
6475 #ifdef CONFIG_COMPAT
6476 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6477 		    unsigned int cmd, unsigned long arg)
6478 {
6479 	switch (cmd) {
6480 	case HOT_REMOVE_DISK:
6481 	case HOT_ADD_DISK:
6482 	case SET_DISK_FAULTY:
6483 	case SET_BITMAP_FILE:
6484 		/* These take in integer arg, do not convert */
6485 		break;
6486 	default:
6487 		arg = (unsigned long)compat_ptr(arg);
6488 		break;
6489 	}
6490 
6491 	return md_ioctl(bdev, mode, cmd, arg);
6492 }
6493 #endif /* CONFIG_COMPAT */
6494 
6495 static int md_open(struct block_device *bdev, fmode_t mode)
6496 {
6497 	/*
6498 	 * Succeed if we can lock the mddev, which confirms that
6499 	 * it isn't being stopped right now.
6500 	 */
6501 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6502 	int err;
6503 
6504 	if (!mddev)
6505 		return -ENODEV;
6506 
6507 	if (mddev->gendisk != bdev->bd_disk) {
6508 		/* we are racing with mddev_put which is discarding this
6509 		 * bd_disk.
6510 		 */
6511 		mddev_put(mddev);
6512 		/* Wait until bdev->bd_disk is definitely gone */
6513 		flush_workqueue(md_misc_wq);
6514 		/* Then retry the open from the top */
6515 		return -ERESTARTSYS;
6516 	}
6517 	BUG_ON(mddev != bdev->bd_disk->private_data);
6518 
6519 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6520 		goto out;
6521 
6522 	err = 0;
6523 	atomic_inc(&mddev->openers);
6524 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6525 	mutex_unlock(&mddev->open_mutex);
6526 
6527 	check_disk_change(bdev);
6528  out:
6529 	return err;
6530 }
6531 
6532 static void md_release(struct gendisk *disk, fmode_t mode)
6533 {
6534 	struct mddev *mddev = disk->private_data;
6535 
6536 	BUG_ON(!mddev);
6537 	atomic_dec(&mddev->openers);
6538 	mddev_put(mddev);
6539 }
6540 
6541 static int md_media_changed(struct gendisk *disk)
6542 {
6543 	struct mddev *mddev = disk->private_data;
6544 
6545 	return mddev->changed;
6546 }
6547 
6548 static int md_revalidate(struct gendisk *disk)
6549 {
6550 	struct mddev *mddev = disk->private_data;
6551 
6552 	mddev->changed = 0;
6553 	return 0;
6554 }
6555 static const struct block_device_operations md_fops =
6556 {
6557 	.owner		= THIS_MODULE,
6558 	.open		= md_open,
6559 	.release	= md_release,
6560 	.ioctl		= md_ioctl,
6561 #ifdef CONFIG_COMPAT
6562 	.compat_ioctl	= md_compat_ioctl,
6563 #endif
6564 	.getgeo		= md_getgeo,
6565 	.media_changed  = md_media_changed,
6566 	.revalidate_disk= md_revalidate,
6567 };
6568 
6569 static int md_thread(void *arg)
6570 {
6571 	struct md_thread *thread = arg;
6572 
6573 	/*
6574 	 * md_thread is a 'system-thread', it's priority should be very
6575 	 * high. We avoid resource deadlocks individually in each
6576 	 * raid personality. (RAID5 does preallocation) We also use RR and
6577 	 * the very same RT priority as kswapd, thus we will never get
6578 	 * into a priority inversion deadlock.
6579 	 *
6580 	 * we definitely have to have equal or higher priority than
6581 	 * bdflush, otherwise bdflush will deadlock if there are too
6582 	 * many dirty RAID5 blocks.
6583 	 */
6584 
6585 	allow_signal(SIGKILL);
6586 	while (!kthread_should_stop()) {
6587 
6588 		/* We need to wait INTERRUPTIBLE so that
6589 		 * we don't add to the load-average.
6590 		 * That means we need to be sure no signals are
6591 		 * pending
6592 		 */
6593 		if (signal_pending(current))
6594 			flush_signals(current);
6595 
6596 		wait_event_interruptible_timeout
6597 			(thread->wqueue,
6598 			 test_bit(THREAD_WAKEUP, &thread->flags)
6599 			 || kthread_should_stop(),
6600 			 thread->timeout);
6601 
6602 		clear_bit(THREAD_WAKEUP, &thread->flags);
6603 		if (!kthread_should_stop())
6604 			thread->run(thread);
6605 	}
6606 
6607 	return 0;
6608 }
6609 
6610 void md_wakeup_thread(struct md_thread *thread)
6611 {
6612 	if (thread) {
6613 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6614 		set_bit(THREAD_WAKEUP, &thread->flags);
6615 		wake_up(&thread->wqueue);
6616 	}
6617 }
6618 EXPORT_SYMBOL(md_wakeup_thread);
6619 
6620 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6621 		struct mddev *mddev, const char *name)
6622 {
6623 	struct md_thread *thread;
6624 
6625 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6626 	if (!thread)
6627 		return NULL;
6628 
6629 	init_waitqueue_head(&thread->wqueue);
6630 
6631 	thread->run = run;
6632 	thread->mddev = mddev;
6633 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6634 	thread->tsk = kthread_run(md_thread, thread,
6635 				  "%s_%s",
6636 				  mdname(thread->mddev),
6637 				  name);
6638 	if (IS_ERR(thread->tsk)) {
6639 		kfree(thread);
6640 		return NULL;
6641 	}
6642 	return thread;
6643 }
6644 EXPORT_SYMBOL(md_register_thread);
6645 
6646 void md_unregister_thread(struct md_thread **threadp)
6647 {
6648 	struct md_thread *thread = *threadp;
6649 	if (!thread)
6650 		return;
6651 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6652 	/* Locking ensures that mddev_unlock does not wake_up a
6653 	 * non-existent thread
6654 	 */
6655 	spin_lock(&pers_lock);
6656 	*threadp = NULL;
6657 	spin_unlock(&pers_lock);
6658 
6659 	kthread_stop(thread->tsk);
6660 	kfree(thread);
6661 }
6662 EXPORT_SYMBOL(md_unregister_thread);
6663 
6664 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6665 {
6666 	if (!rdev || test_bit(Faulty, &rdev->flags))
6667 		return;
6668 
6669 	if (!mddev->pers || !mddev->pers->error_handler)
6670 		return;
6671 	mddev->pers->error_handler(mddev,rdev);
6672 	if (mddev->degraded)
6673 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6674 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6675 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6676 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6677 	md_wakeup_thread(mddev->thread);
6678 	if (mddev->event_work.func)
6679 		queue_work(md_misc_wq, &mddev->event_work);
6680 	md_new_event_inintr(mddev);
6681 }
6682 EXPORT_SYMBOL(md_error);
6683 
6684 /* seq_file implementation /proc/mdstat */
6685 
6686 static void status_unused(struct seq_file *seq)
6687 {
6688 	int i = 0;
6689 	struct md_rdev *rdev;
6690 
6691 	seq_printf(seq, "unused devices: ");
6692 
6693 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6694 		char b[BDEVNAME_SIZE];
6695 		i++;
6696 		seq_printf(seq, "%s ",
6697 			      bdevname(rdev->bdev,b));
6698 	}
6699 	if (!i)
6700 		seq_printf(seq, "<none>");
6701 
6702 	seq_printf(seq, "\n");
6703 }
6704 
6705 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6706 {
6707 	sector_t max_sectors, resync, res;
6708 	unsigned long dt, db;
6709 	sector_t rt;
6710 	int scale;
6711 	unsigned int per_milli;
6712 
6713 	if (mddev->curr_resync <= 3)
6714 		resync = 0;
6715 	else
6716 		resync = mddev->curr_resync
6717 			- atomic_read(&mddev->recovery_active);
6718 
6719 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6720 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6721 		max_sectors = mddev->resync_max_sectors;
6722 	else
6723 		max_sectors = mddev->dev_sectors;
6724 
6725 	WARN_ON(max_sectors == 0);
6726 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6727 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6728 	 * u32, as those are the requirements for sector_div.
6729 	 * Thus 'scale' must be at least 10
6730 	 */
6731 	scale = 10;
6732 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6733 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6734 			scale++;
6735 	}
6736 	res = (resync>>scale)*1000;
6737 	sector_div(res, (u32)((max_sectors>>scale)+1));
6738 
6739 	per_milli = res;
6740 	{
6741 		int i, x = per_milli/50, y = 20-x;
6742 		seq_printf(seq, "[");
6743 		for (i = 0; i < x; i++)
6744 			seq_printf(seq, "=");
6745 		seq_printf(seq, ">");
6746 		for (i = 0; i < y; i++)
6747 			seq_printf(seq, ".");
6748 		seq_printf(seq, "] ");
6749 	}
6750 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6751 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6752 		    "reshape" :
6753 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6754 		     "check" :
6755 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6756 		      "resync" : "recovery"))),
6757 		   per_milli/10, per_milli % 10,
6758 		   (unsigned long long) resync/2,
6759 		   (unsigned long long) max_sectors/2);
6760 
6761 	/*
6762 	 * dt: time from mark until now
6763 	 * db: blocks written from mark until now
6764 	 * rt: remaining time
6765 	 *
6766 	 * rt is a sector_t, so could be 32bit or 64bit.
6767 	 * So we divide before multiply in case it is 32bit and close
6768 	 * to the limit.
6769 	 * We scale the divisor (db) by 32 to avoid losing precision
6770 	 * near the end of resync when the number of remaining sectors
6771 	 * is close to 'db'.
6772 	 * We then divide rt by 32 after multiplying by db to compensate.
6773 	 * The '+1' avoids division by zero if db is very small.
6774 	 */
6775 	dt = ((jiffies - mddev->resync_mark) / HZ);
6776 	if (!dt) dt++;
6777 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6778 		- mddev->resync_mark_cnt;
6779 
6780 	rt = max_sectors - resync;    /* number of remaining sectors */
6781 	sector_div(rt, db/32+1);
6782 	rt *= dt;
6783 	rt >>= 5;
6784 
6785 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6786 		   ((unsigned long)rt % 60)/6);
6787 
6788 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6789 }
6790 
6791 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6792 {
6793 	struct list_head *tmp;
6794 	loff_t l = *pos;
6795 	struct mddev *mddev;
6796 
6797 	if (l >= 0x10000)
6798 		return NULL;
6799 	if (!l--)
6800 		/* header */
6801 		return (void*)1;
6802 
6803 	spin_lock(&all_mddevs_lock);
6804 	list_for_each(tmp,&all_mddevs)
6805 		if (!l--) {
6806 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6807 			mddev_get(mddev);
6808 			spin_unlock(&all_mddevs_lock);
6809 			return mddev;
6810 		}
6811 	spin_unlock(&all_mddevs_lock);
6812 	if (!l--)
6813 		return (void*)2;/* tail */
6814 	return NULL;
6815 }
6816 
6817 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6818 {
6819 	struct list_head *tmp;
6820 	struct mddev *next_mddev, *mddev = v;
6821 
6822 	++*pos;
6823 	if (v == (void*)2)
6824 		return NULL;
6825 
6826 	spin_lock(&all_mddevs_lock);
6827 	if (v == (void*)1)
6828 		tmp = all_mddevs.next;
6829 	else
6830 		tmp = mddev->all_mddevs.next;
6831 	if (tmp != &all_mddevs)
6832 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6833 	else {
6834 		next_mddev = (void*)2;
6835 		*pos = 0x10000;
6836 	}
6837 	spin_unlock(&all_mddevs_lock);
6838 
6839 	if (v != (void*)1)
6840 		mddev_put(mddev);
6841 	return next_mddev;
6842 
6843 }
6844 
6845 static void md_seq_stop(struct seq_file *seq, void *v)
6846 {
6847 	struct mddev *mddev = v;
6848 
6849 	if (mddev && v != (void*)1 && v != (void*)2)
6850 		mddev_put(mddev);
6851 }
6852 
6853 static int md_seq_show(struct seq_file *seq, void *v)
6854 {
6855 	struct mddev *mddev = v;
6856 	sector_t sectors;
6857 	struct md_rdev *rdev;
6858 
6859 	if (v == (void*)1) {
6860 		struct md_personality *pers;
6861 		seq_printf(seq, "Personalities : ");
6862 		spin_lock(&pers_lock);
6863 		list_for_each_entry(pers, &pers_list, list)
6864 			seq_printf(seq, "[%s] ", pers->name);
6865 
6866 		spin_unlock(&pers_lock);
6867 		seq_printf(seq, "\n");
6868 		seq->poll_event = atomic_read(&md_event_count);
6869 		return 0;
6870 	}
6871 	if (v == (void*)2) {
6872 		status_unused(seq);
6873 		return 0;
6874 	}
6875 
6876 	if (mddev_lock(mddev) < 0)
6877 		return -EINTR;
6878 
6879 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6880 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6881 						mddev->pers ? "" : "in");
6882 		if (mddev->pers) {
6883 			if (mddev->ro==1)
6884 				seq_printf(seq, " (read-only)");
6885 			if (mddev->ro==2)
6886 				seq_printf(seq, " (auto-read-only)");
6887 			seq_printf(seq, " %s", mddev->pers->name);
6888 		}
6889 
6890 		sectors = 0;
6891 		rdev_for_each(rdev, mddev) {
6892 			char b[BDEVNAME_SIZE];
6893 			seq_printf(seq, " %s[%d]",
6894 				bdevname(rdev->bdev,b), rdev->desc_nr);
6895 			if (test_bit(WriteMostly, &rdev->flags))
6896 				seq_printf(seq, "(W)");
6897 			if (test_bit(Faulty, &rdev->flags)) {
6898 				seq_printf(seq, "(F)");
6899 				continue;
6900 			}
6901 			if (rdev->raid_disk < 0)
6902 				seq_printf(seq, "(S)"); /* spare */
6903 			if (test_bit(Replacement, &rdev->flags))
6904 				seq_printf(seq, "(R)");
6905 			sectors += rdev->sectors;
6906 		}
6907 
6908 		if (!list_empty(&mddev->disks)) {
6909 			if (mddev->pers)
6910 				seq_printf(seq, "\n      %llu blocks",
6911 					   (unsigned long long)
6912 					   mddev->array_sectors / 2);
6913 			else
6914 				seq_printf(seq, "\n      %llu blocks",
6915 					   (unsigned long long)sectors / 2);
6916 		}
6917 		if (mddev->persistent) {
6918 			if (mddev->major_version != 0 ||
6919 			    mddev->minor_version != 90) {
6920 				seq_printf(seq," super %d.%d",
6921 					   mddev->major_version,
6922 					   mddev->minor_version);
6923 			}
6924 		} else if (mddev->external)
6925 			seq_printf(seq, " super external:%s",
6926 				   mddev->metadata_type);
6927 		else
6928 			seq_printf(seq, " super non-persistent");
6929 
6930 		if (mddev->pers) {
6931 			mddev->pers->status(seq, mddev);
6932 			seq_printf(seq, "\n      ");
6933 			if (mddev->pers->sync_request) {
6934 				if (mddev->curr_resync > 2) {
6935 					status_resync(seq, mddev);
6936 					seq_printf(seq, "\n      ");
6937 				} else if (mddev->curr_resync >= 1)
6938 					seq_printf(seq, "\tresync=DELAYED\n      ");
6939 				else if (mddev->recovery_cp < MaxSector)
6940 					seq_printf(seq, "\tresync=PENDING\n      ");
6941 			}
6942 		} else
6943 			seq_printf(seq, "\n       ");
6944 
6945 		bitmap_status(seq, mddev->bitmap);
6946 
6947 		seq_printf(seq, "\n");
6948 	}
6949 	mddev_unlock(mddev);
6950 
6951 	return 0;
6952 }
6953 
6954 static const struct seq_operations md_seq_ops = {
6955 	.start  = md_seq_start,
6956 	.next   = md_seq_next,
6957 	.stop   = md_seq_stop,
6958 	.show   = md_seq_show,
6959 };
6960 
6961 static int md_seq_open(struct inode *inode, struct file *file)
6962 {
6963 	struct seq_file *seq;
6964 	int error;
6965 
6966 	error = seq_open(file, &md_seq_ops);
6967 	if (error)
6968 		return error;
6969 
6970 	seq = file->private_data;
6971 	seq->poll_event = atomic_read(&md_event_count);
6972 	return error;
6973 }
6974 
6975 static int md_unloading;
6976 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6977 {
6978 	struct seq_file *seq = filp->private_data;
6979 	int mask;
6980 
6981 	if (md_unloading)
6982 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
6983 	poll_wait(filp, &md_event_waiters, wait);
6984 
6985 	/* always allow read */
6986 	mask = POLLIN | POLLRDNORM;
6987 
6988 	if (seq->poll_event != atomic_read(&md_event_count))
6989 		mask |= POLLERR | POLLPRI;
6990 	return mask;
6991 }
6992 
6993 static const struct file_operations md_seq_fops = {
6994 	.owner		= THIS_MODULE,
6995 	.open           = md_seq_open,
6996 	.read           = seq_read,
6997 	.llseek         = seq_lseek,
6998 	.release	= seq_release_private,
6999 	.poll		= mdstat_poll,
7000 };
7001 
7002 int register_md_personality(struct md_personality *p)
7003 {
7004 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7005 						p->name, p->level);
7006 	spin_lock(&pers_lock);
7007 	list_add_tail(&p->list, &pers_list);
7008 	spin_unlock(&pers_lock);
7009 	return 0;
7010 }
7011 EXPORT_SYMBOL(register_md_personality);
7012 
7013 int unregister_md_personality(struct md_personality *p)
7014 {
7015 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7016 	spin_lock(&pers_lock);
7017 	list_del_init(&p->list);
7018 	spin_unlock(&pers_lock);
7019 	return 0;
7020 }
7021 EXPORT_SYMBOL(unregister_md_personality);
7022 
7023 static int is_mddev_idle(struct mddev *mddev, int init)
7024 {
7025 	struct md_rdev *rdev;
7026 	int idle;
7027 	int curr_events;
7028 
7029 	idle = 1;
7030 	rcu_read_lock();
7031 	rdev_for_each_rcu(rdev, mddev) {
7032 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7033 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7034 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7035 			      atomic_read(&disk->sync_io);
7036 		/* sync IO will cause sync_io to increase before the disk_stats
7037 		 * as sync_io is counted when a request starts, and
7038 		 * disk_stats is counted when it completes.
7039 		 * So resync activity will cause curr_events to be smaller than
7040 		 * when there was no such activity.
7041 		 * non-sync IO will cause disk_stat to increase without
7042 		 * increasing sync_io so curr_events will (eventually)
7043 		 * be larger than it was before.  Once it becomes
7044 		 * substantially larger, the test below will cause
7045 		 * the array to appear non-idle, and resync will slow
7046 		 * down.
7047 		 * If there is a lot of outstanding resync activity when
7048 		 * we set last_event to curr_events, then all that activity
7049 		 * completing might cause the array to appear non-idle
7050 		 * and resync will be slowed down even though there might
7051 		 * not have been non-resync activity.  This will only
7052 		 * happen once though.  'last_events' will soon reflect
7053 		 * the state where there is little or no outstanding
7054 		 * resync requests, and further resync activity will
7055 		 * always make curr_events less than last_events.
7056 		 *
7057 		 */
7058 		if (init || curr_events - rdev->last_events > 64) {
7059 			rdev->last_events = curr_events;
7060 			idle = 0;
7061 		}
7062 	}
7063 	rcu_read_unlock();
7064 	return idle;
7065 }
7066 
7067 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7068 {
7069 	/* another "blocks" (512byte) blocks have been synced */
7070 	atomic_sub(blocks, &mddev->recovery_active);
7071 	wake_up(&mddev->recovery_wait);
7072 	if (!ok) {
7073 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7074 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7075 		md_wakeup_thread(mddev->thread);
7076 		// stop recovery, signal do_sync ....
7077 	}
7078 }
7079 EXPORT_SYMBOL(md_done_sync);
7080 
7081 /* md_write_start(mddev, bi)
7082  * If we need to update some array metadata (e.g. 'active' flag
7083  * in superblock) before writing, schedule a superblock update
7084  * and wait for it to complete.
7085  */
7086 void md_write_start(struct mddev *mddev, struct bio *bi)
7087 {
7088 	int did_change = 0;
7089 	if (bio_data_dir(bi) != WRITE)
7090 		return;
7091 
7092 	BUG_ON(mddev->ro == 1);
7093 	if (mddev->ro == 2) {
7094 		/* need to switch to read/write */
7095 		mddev->ro = 0;
7096 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7097 		md_wakeup_thread(mddev->thread);
7098 		md_wakeup_thread(mddev->sync_thread);
7099 		did_change = 1;
7100 	}
7101 	atomic_inc(&mddev->writes_pending);
7102 	if (mddev->safemode == 1)
7103 		mddev->safemode = 0;
7104 	if (mddev->in_sync) {
7105 		spin_lock_irq(&mddev->write_lock);
7106 		if (mddev->in_sync) {
7107 			mddev->in_sync = 0;
7108 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7109 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7110 			md_wakeup_thread(mddev->thread);
7111 			did_change = 1;
7112 		}
7113 		spin_unlock_irq(&mddev->write_lock);
7114 	}
7115 	if (did_change)
7116 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7117 	wait_event(mddev->sb_wait,
7118 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7119 }
7120 EXPORT_SYMBOL(md_write_start);
7121 
7122 void md_write_end(struct mddev *mddev)
7123 {
7124 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7125 		if (mddev->safemode == 2)
7126 			md_wakeup_thread(mddev->thread);
7127 		else if (mddev->safemode_delay)
7128 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7129 	}
7130 }
7131 EXPORT_SYMBOL(md_write_end);
7132 
7133 /* md_allow_write(mddev)
7134  * Calling this ensures that the array is marked 'active' so that writes
7135  * may proceed without blocking.  It is important to call this before
7136  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7137  * Must be called with mddev_lock held.
7138  *
7139  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7140  * is dropped, so return -EAGAIN after notifying userspace.
7141  */
7142 int md_allow_write(struct mddev *mddev)
7143 {
7144 	if (!mddev->pers)
7145 		return 0;
7146 	if (mddev->ro)
7147 		return 0;
7148 	if (!mddev->pers->sync_request)
7149 		return 0;
7150 
7151 	spin_lock_irq(&mddev->write_lock);
7152 	if (mddev->in_sync) {
7153 		mddev->in_sync = 0;
7154 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7155 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7156 		if (mddev->safemode_delay &&
7157 		    mddev->safemode == 0)
7158 			mddev->safemode = 1;
7159 		spin_unlock_irq(&mddev->write_lock);
7160 		md_update_sb(mddev, 0);
7161 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7162 	} else
7163 		spin_unlock_irq(&mddev->write_lock);
7164 
7165 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7166 		return -EAGAIN;
7167 	else
7168 		return 0;
7169 }
7170 EXPORT_SYMBOL_GPL(md_allow_write);
7171 
7172 #define SYNC_MARKS	10
7173 #define	SYNC_MARK_STEP	(3*HZ)
7174 #define UPDATE_FREQUENCY (5*60*HZ)
7175 void md_do_sync(struct md_thread *thread)
7176 {
7177 	struct mddev *mddev = thread->mddev;
7178 	struct mddev *mddev2;
7179 	unsigned int currspeed = 0,
7180 		 window;
7181 	sector_t max_sectors,j, io_sectors, recovery_done;
7182 	unsigned long mark[SYNC_MARKS];
7183 	unsigned long update_time;
7184 	sector_t mark_cnt[SYNC_MARKS];
7185 	int last_mark,m;
7186 	struct list_head *tmp;
7187 	sector_t last_check;
7188 	int skipped = 0;
7189 	struct md_rdev *rdev;
7190 	char *desc, *action = NULL;
7191 	struct blk_plug plug;
7192 
7193 	/* just incase thread restarts... */
7194 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7195 		return;
7196 	if (mddev->ro) {/* never try to sync a read-only array */
7197 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7198 		return;
7199 	}
7200 
7201 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7202 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7203 			desc = "data-check";
7204 			action = "check";
7205 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7206 			desc = "requested-resync";
7207 			action = "repair";
7208 		} else
7209 			desc = "resync";
7210 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7211 		desc = "reshape";
7212 	else
7213 		desc = "recovery";
7214 
7215 	mddev->last_sync_action = action ?: desc;
7216 
7217 	/* we overload curr_resync somewhat here.
7218 	 * 0 == not engaged in resync at all
7219 	 * 2 == checking that there is no conflict with another sync
7220 	 * 1 == like 2, but have yielded to allow conflicting resync to
7221 	 *		commense
7222 	 * other == active in resync - this many blocks
7223 	 *
7224 	 * Before starting a resync we must have set curr_resync to
7225 	 * 2, and then checked that every "conflicting" array has curr_resync
7226 	 * less than ours.  When we find one that is the same or higher
7227 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7228 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7229 	 * This will mean we have to start checking from the beginning again.
7230 	 *
7231 	 */
7232 
7233 	do {
7234 		mddev->curr_resync = 2;
7235 
7236 	try_again:
7237 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7238 			goto skip;
7239 		for_each_mddev(mddev2, tmp) {
7240 			if (mddev2 == mddev)
7241 				continue;
7242 			if (!mddev->parallel_resync
7243 			&&  mddev2->curr_resync
7244 			&&  match_mddev_units(mddev, mddev2)) {
7245 				DEFINE_WAIT(wq);
7246 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7247 					/* arbitrarily yield */
7248 					mddev->curr_resync = 1;
7249 					wake_up(&resync_wait);
7250 				}
7251 				if (mddev > mddev2 && mddev->curr_resync == 1)
7252 					/* no need to wait here, we can wait the next
7253 					 * time 'round when curr_resync == 2
7254 					 */
7255 					continue;
7256 				/* We need to wait 'interruptible' so as not to
7257 				 * contribute to the load average, and not to
7258 				 * be caught by 'softlockup'
7259 				 */
7260 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7261 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7262 				    mddev2->curr_resync >= mddev->curr_resync) {
7263 					printk(KERN_INFO "md: delaying %s of %s"
7264 					       " until %s has finished (they"
7265 					       " share one or more physical units)\n",
7266 					       desc, mdname(mddev), mdname(mddev2));
7267 					mddev_put(mddev2);
7268 					if (signal_pending(current))
7269 						flush_signals(current);
7270 					schedule();
7271 					finish_wait(&resync_wait, &wq);
7272 					goto try_again;
7273 				}
7274 				finish_wait(&resync_wait, &wq);
7275 			}
7276 		}
7277 	} while (mddev->curr_resync < 2);
7278 
7279 	j = 0;
7280 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7281 		/* resync follows the size requested by the personality,
7282 		 * which defaults to physical size, but can be virtual size
7283 		 */
7284 		max_sectors = mddev->resync_max_sectors;
7285 		atomic64_set(&mddev->resync_mismatches, 0);
7286 		/* we don't use the checkpoint if there's a bitmap */
7287 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7288 			j = mddev->resync_min;
7289 		else if (!mddev->bitmap)
7290 			j = mddev->recovery_cp;
7291 
7292 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7293 		max_sectors = mddev->resync_max_sectors;
7294 	else {
7295 		/* recovery follows the physical size of devices */
7296 		max_sectors = mddev->dev_sectors;
7297 		j = MaxSector;
7298 		rcu_read_lock();
7299 		rdev_for_each_rcu(rdev, mddev)
7300 			if (rdev->raid_disk >= 0 &&
7301 			    !test_bit(Faulty, &rdev->flags) &&
7302 			    !test_bit(In_sync, &rdev->flags) &&
7303 			    rdev->recovery_offset < j)
7304 				j = rdev->recovery_offset;
7305 		rcu_read_unlock();
7306 
7307 		/* If there is a bitmap, we need to make sure all
7308 		 * writes that started before we added a spare
7309 		 * complete before we start doing a recovery.
7310 		 * Otherwise the write might complete and (via
7311 		 * bitmap_endwrite) set a bit in the bitmap after the
7312 		 * recovery has checked that bit and skipped that
7313 		 * region.
7314 		 */
7315 		if (mddev->bitmap) {
7316 			mddev->pers->quiesce(mddev, 1);
7317 			mddev->pers->quiesce(mddev, 0);
7318 		}
7319 	}
7320 
7321 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7322 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7323 		" %d KB/sec/disk.\n", speed_min(mddev));
7324 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7325 	       "(but not more than %d KB/sec) for %s.\n",
7326 	       speed_max(mddev), desc);
7327 
7328 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7329 
7330 	io_sectors = 0;
7331 	for (m = 0; m < SYNC_MARKS; m++) {
7332 		mark[m] = jiffies;
7333 		mark_cnt[m] = io_sectors;
7334 	}
7335 	last_mark = 0;
7336 	mddev->resync_mark = mark[last_mark];
7337 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7338 
7339 	/*
7340 	 * Tune reconstruction:
7341 	 */
7342 	window = 32*(PAGE_SIZE/512);
7343 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7344 		window/2, (unsigned long long)max_sectors/2);
7345 
7346 	atomic_set(&mddev->recovery_active, 0);
7347 	last_check = 0;
7348 
7349 	if (j>2) {
7350 		printk(KERN_INFO
7351 		       "md: resuming %s of %s from checkpoint.\n",
7352 		       desc, mdname(mddev));
7353 		mddev->curr_resync = j;
7354 	} else
7355 		mddev->curr_resync = 3; /* no longer delayed */
7356 	mddev->curr_resync_completed = j;
7357 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7358 	md_new_event(mddev);
7359 	update_time = jiffies;
7360 
7361 	blk_start_plug(&plug);
7362 	while (j < max_sectors) {
7363 		sector_t sectors;
7364 
7365 		skipped = 0;
7366 
7367 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7368 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7369 		      (mddev->curr_resync - mddev->curr_resync_completed)
7370 		      > (max_sectors >> 4)) ||
7371 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7372 		     (j - mddev->curr_resync_completed)*2
7373 		     >= mddev->resync_max - mddev->curr_resync_completed
7374 			    )) {
7375 			/* time to update curr_resync_completed */
7376 			wait_event(mddev->recovery_wait,
7377 				   atomic_read(&mddev->recovery_active) == 0);
7378 			mddev->curr_resync_completed = j;
7379 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7380 			    j > mddev->recovery_cp)
7381 				mddev->recovery_cp = j;
7382 			update_time = jiffies;
7383 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7384 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7385 		}
7386 
7387 		while (j >= mddev->resync_max &&
7388 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7389 			/* As this condition is controlled by user-space,
7390 			 * we can block indefinitely, so use '_interruptible'
7391 			 * to avoid triggering warnings.
7392 			 */
7393 			flush_signals(current); /* just in case */
7394 			wait_event_interruptible(mddev->recovery_wait,
7395 						 mddev->resync_max > j
7396 						 || test_bit(MD_RECOVERY_INTR,
7397 							     &mddev->recovery));
7398 		}
7399 
7400 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7401 			break;
7402 
7403 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7404 						  currspeed < speed_min(mddev));
7405 		if (sectors == 0) {
7406 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7407 			break;
7408 		}
7409 
7410 		if (!skipped) { /* actual IO requested */
7411 			io_sectors += sectors;
7412 			atomic_add(sectors, &mddev->recovery_active);
7413 		}
7414 
7415 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7416 			break;
7417 
7418 		j += sectors;
7419 		if (j > 2)
7420 			mddev->curr_resync = j;
7421 		mddev->curr_mark_cnt = io_sectors;
7422 		if (last_check == 0)
7423 			/* this is the earliest that rebuild will be
7424 			 * visible in /proc/mdstat
7425 			 */
7426 			md_new_event(mddev);
7427 
7428 		if (last_check + window > io_sectors || j == max_sectors)
7429 			continue;
7430 
7431 		last_check = io_sectors;
7432 	repeat:
7433 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7434 			/* step marks */
7435 			int next = (last_mark+1) % SYNC_MARKS;
7436 
7437 			mddev->resync_mark = mark[next];
7438 			mddev->resync_mark_cnt = mark_cnt[next];
7439 			mark[next] = jiffies;
7440 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7441 			last_mark = next;
7442 		}
7443 
7444 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7445 			break;
7446 
7447 		/*
7448 		 * this loop exits only if either when we are slower than
7449 		 * the 'hard' speed limit, or the system was IO-idle for
7450 		 * a jiffy.
7451 		 * the system might be non-idle CPU-wise, but we only care
7452 		 * about not overloading the IO subsystem. (things like an
7453 		 * e2fsck being done on the RAID array should execute fast)
7454 		 */
7455 		cond_resched();
7456 
7457 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7458 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7459 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7460 
7461 		if (currspeed > speed_min(mddev)) {
7462 			if ((currspeed > speed_max(mddev)) ||
7463 					!is_mddev_idle(mddev, 0)) {
7464 				msleep(500);
7465 				goto repeat;
7466 			}
7467 		}
7468 	}
7469 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7470 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7471 	       ? "interrupted" : "done");
7472 	/*
7473 	 * this also signals 'finished resyncing' to md_stop
7474 	 */
7475 	blk_finish_plug(&plug);
7476 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7477 
7478 	/* tell personality that we are finished */
7479 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7480 
7481 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7482 	    mddev->curr_resync > 2) {
7483 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7484 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7485 				if (mddev->curr_resync >= mddev->recovery_cp) {
7486 					printk(KERN_INFO
7487 					       "md: checkpointing %s of %s.\n",
7488 					       desc, mdname(mddev));
7489 					if (test_bit(MD_RECOVERY_ERROR,
7490 						&mddev->recovery))
7491 						mddev->recovery_cp =
7492 							mddev->curr_resync_completed;
7493 					else
7494 						mddev->recovery_cp =
7495 							mddev->curr_resync;
7496 				}
7497 			} else
7498 				mddev->recovery_cp = MaxSector;
7499 		} else {
7500 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7501 				mddev->curr_resync = MaxSector;
7502 			rcu_read_lock();
7503 			rdev_for_each_rcu(rdev, mddev)
7504 				if (rdev->raid_disk >= 0 &&
7505 				    mddev->delta_disks >= 0 &&
7506 				    !test_bit(Faulty, &rdev->flags) &&
7507 				    !test_bit(In_sync, &rdev->flags) &&
7508 				    rdev->recovery_offset < mddev->curr_resync)
7509 					rdev->recovery_offset = mddev->curr_resync;
7510 			rcu_read_unlock();
7511 		}
7512 	}
7513  skip:
7514 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7515 
7516 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7517 		/* We completed so min/max setting can be forgotten if used. */
7518 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7519 			mddev->resync_min = 0;
7520 		mddev->resync_max = MaxSector;
7521 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7522 		mddev->resync_min = mddev->curr_resync_completed;
7523 	mddev->curr_resync = 0;
7524 	wake_up(&resync_wait);
7525 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7526 	md_wakeup_thread(mddev->thread);
7527 	return;
7528 }
7529 EXPORT_SYMBOL_GPL(md_do_sync);
7530 
7531 static int remove_and_add_spares(struct mddev *mddev,
7532 				 struct md_rdev *this)
7533 {
7534 	struct md_rdev *rdev;
7535 	int spares = 0;
7536 	int removed = 0;
7537 
7538 	rdev_for_each(rdev, mddev)
7539 		if ((this == NULL || rdev == this) &&
7540 		    rdev->raid_disk >= 0 &&
7541 		    !test_bit(Blocked, &rdev->flags) &&
7542 		    (test_bit(Faulty, &rdev->flags) ||
7543 		     ! test_bit(In_sync, &rdev->flags)) &&
7544 		    atomic_read(&rdev->nr_pending)==0) {
7545 			if (mddev->pers->hot_remove_disk(
7546 				    mddev, rdev) == 0) {
7547 				sysfs_unlink_rdev(mddev, rdev);
7548 				rdev->raid_disk = -1;
7549 				removed++;
7550 			}
7551 		}
7552 	if (removed && mddev->kobj.sd)
7553 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7554 
7555 	if (this)
7556 		goto no_add;
7557 
7558 	rdev_for_each(rdev, mddev) {
7559 		if (rdev->raid_disk >= 0 &&
7560 		    !test_bit(In_sync, &rdev->flags) &&
7561 		    !test_bit(Faulty, &rdev->flags))
7562 			spares++;
7563 		if (rdev->raid_disk >= 0)
7564 			continue;
7565 		if (test_bit(Faulty, &rdev->flags))
7566 			continue;
7567 		if (mddev->ro &&
7568 		    ! (rdev->saved_raid_disk >= 0 &&
7569 		       !test_bit(Bitmap_sync, &rdev->flags)))
7570 			continue;
7571 
7572 		if (rdev->saved_raid_disk < 0)
7573 			rdev->recovery_offset = 0;
7574 		if (mddev->pers->
7575 		    hot_add_disk(mddev, rdev) == 0) {
7576 			if (sysfs_link_rdev(mddev, rdev))
7577 				/* failure here is OK */;
7578 			spares++;
7579 			md_new_event(mddev);
7580 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7581 		}
7582 	}
7583 no_add:
7584 	if (removed)
7585 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7586 	return spares;
7587 }
7588 
7589 static void md_start_sync(struct work_struct *ws)
7590 {
7591 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
7592 
7593 	mddev->sync_thread = md_register_thread(md_do_sync,
7594 						mddev,
7595 						"resync");
7596 	if (!mddev->sync_thread) {
7597 		printk(KERN_ERR "%s: could not start resync"
7598 		       " thread...\n",
7599 		       mdname(mddev));
7600 		/* leave the spares where they are, it shouldn't hurt */
7601 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7602 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7603 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7604 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7605 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7606 		wake_up(&resync_wait);
7607 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7608 				       &mddev->recovery))
7609 			if (mddev->sysfs_action)
7610 				sysfs_notify_dirent_safe(mddev->sysfs_action);
7611 	} else
7612 		md_wakeup_thread(mddev->sync_thread);
7613 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7614 	md_new_event(mddev);
7615 }
7616 
7617 /*
7618  * This routine is regularly called by all per-raid-array threads to
7619  * deal with generic issues like resync and super-block update.
7620  * Raid personalities that don't have a thread (linear/raid0) do not
7621  * need this as they never do any recovery or update the superblock.
7622  *
7623  * It does not do any resync itself, but rather "forks" off other threads
7624  * to do that as needed.
7625  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7626  * "->recovery" and create a thread at ->sync_thread.
7627  * When the thread finishes it sets MD_RECOVERY_DONE
7628  * and wakeups up this thread which will reap the thread and finish up.
7629  * This thread also removes any faulty devices (with nr_pending == 0).
7630  *
7631  * The overall approach is:
7632  *  1/ if the superblock needs updating, update it.
7633  *  2/ If a recovery thread is running, don't do anything else.
7634  *  3/ If recovery has finished, clean up, possibly marking spares active.
7635  *  4/ If there are any faulty devices, remove them.
7636  *  5/ If array is degraded, try to add spares devices
7637  *  6/ If array has spares or is not in-sync, start a resync thread.
7638  */
7639 void md_check_recovery(struct mddev *mddev)
7640 {
7641 	if (mddev->suspended)
7642 		return;
7643 
7644 	if (mddev->bitmap)
7645 		bitmap_daemon_work(mddev);
7646 
7647 	if (signal_pending(current)) {
7648 		if (mddev->pers->sync_request && !mddev->external) {
7649 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7650 			       mdname(mddev));
7651 			mddev->safemode = 2;
7652 		}
7653 		flush_signals(current);
7654 	}
7655 
7656 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7657 		return;
7658 	if ( ! (
7659 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7660 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7661 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7662 		(mddev->external == 0 && mddev->safemode == 1) ||
7663 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7664 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7665 		))
7666 		return;
7667 
7668 	if (mddev_trylock(mddev)) {
7669 		int spares = 0;
7670 
7671 		if (mddev->ro) {
7672 			/* On a read-only array we can:
7673 			 * - remove failed devices
7674 			 * - add already-in_sync devices if the array itself
7675 			 *   is in-sync.
7676 			 * As we only add devices that are already in-sync,
7677 			 * we can activate the spares immediately.
7678 			 */
7679 			remove_and_add_spares(mddev, NULL);
7680 			/* There is no thread, but we need to call
7681 			 * ->spare_active and clear saved_raid_disk
7682 			 */
7683 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7684 			md_reap_sync_thread(mddev);
7685 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7686 			goto unlock;
7687 		}
7688 
7689 		if (!mddev->external) {
7690 			int did_change = 0;
7691 			spin_lock_irq(&mddev->write_lock);
7692 			if (mddev->safemode &&
7693 			    !atomic_read(&mddev->writes_pending) &&
7694 			    !mddev->in_sync &&
7695 			    mddev->recovery_cp == MaxSector) {
7696 				mddev->in_sync = 1;
7697 				did_change = 1;
7698 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7699 			}
7700 			if (mddev->safemode == 1)
7701 				mddev->safemode = 0;
7702 			spin_unlock_irq(&mddev->write_lock);
7703 			if (did_change)
7704 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7705 		}
7706 
7707 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
7708 			md_update_sb(mddev, 0);
7709 
7710 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7711 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7712 			/* resync/recovery still happening */
7713 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7714 			goto unlock;
7715 		}
7716 		if (mddev->sync_thread) {
7717 			md_reap_sync_thread(mddev);
7718 			goto unlock;
7719 		}
7720 		/* Set RUNNING before clearing NEEDED to avoid
7721 		 * any transients in the value of "sync_action".
7722 		 */
7723 		mddev->curr_resync_completed = 0;
7724 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7725 		/* Clear some bits that don't mean anything, but
7726 		 * might be left set
7727 		 */
7728 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7729 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7730 
7731 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7732 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7733 			goto not_running;
7734 		/* no recovery is running.
7735 		 * remove any failed drives, then
7736 		 * add spares if possible.
7737 		 * Spares are also removed and re-added, to allow
7738 		 * the personality to fail the re-add.
7739 		 */
7740 
7741 		if (mddev->reshape_position != MaxSector) {
7742 			if (mddev->pers->check_reshape == NULL ||
7743 			    mddev->pers->check_reshape(mddev) != 0)
7744 				/* Cannot proceed */
7745 				goto not_running;
7746 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7747 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7748 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
7749 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7750 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7751 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7752 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7753 		} else if (mddev->recovery_cp < MaxSector) {
7754 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7755 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7756 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7757 			/* nothing to be done ... */
7758 			goto not_running;
7759 
7760 		if (mddev->pers->sync_request) {
7761 			if (spares) {
7762 				/* We are adding a device or devices to an array
7763 				 * which has the bitmap stored on all devices.
7764 				 * So make sure all bitmap pages get written
7765 				 */
7766 				bitmap_write_all(mddev->bitmap);
7767 			}
7768 			INIT_WORK(&mddev->del_work, md_start_sync);
7769 			queue_work(md_misc_wq, &mddev->del_work);
7770 			goto unlock;
7771 		}
7772 	not_running:
7773 		if (!mddev->sync_thread) {
7774 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7775 			wake_up(&resync_wait);
7776 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7777 					       &mddev->recovery))
7778 				if (mddev->sysfs_action)
7779 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7780 		}
7781 	unlock:
7782 		wake_up(&mddev->sb_wait);
7783 		mddev_unlock(mddev);
7784 	}
7785 }
7786 EXPORT_SYMBOL(md_check_recovery);
7787 
7788 void md_reap_sync_thread(struct mddev *mddev)
7789 {
7790 	struct md_rdev *rdev;
7791 
7792 	/* resync has finished, collect result */
7793 	md_unregister_thread(&mddev->sync_thread);
7794 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7795 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7796 		/* success...*/
7797 		/* activate any spares */
7798 		if (mddev->pers->spare_active(mddev)) {
7799 			sysfs_notify(&mddev->kobj, NULL,
7800 				     "degraded");
7801 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7802 		}
7803 	}
7804 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7805 	    mddev->pers->finish_reshape)
7806 		mddev->pers->finish_reshape(mddev);
7807 
7808 	/* If array is no-longer degraded, then any saved_raid_disk
7809 	 * information must be scrapped.
7810 	 */
7811 	if (!mddev->degraded)
7812 		rdev_for_each(rdev, mddev)
7813 			rdev->saved_raid_disk = -1;
7814 
7815 	md_update_sb(mddev, 1);
7816 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7817 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7818 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7819 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7820 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7821 	wake_up(&resync_wait);
7822 	/* flag recovery needed just to double check */
7823 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7824 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7825 	md_new_event(mddev);
7826 	if (mddev->event_work.func)
7827 		queue_work(md_misc_wq, &mddev->event_work);
7828 }
7829 EXPORT_SYMBOL(md_reap_sync_thread);
7830 
7831 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7832 {
7833 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7834 	wait_event_timeout(rdev->blocked_wait,
7835 			   !test_bit(Blocked, &rdev->flags) &&
7836 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7837 			   msecs_to_jiffies(5000));
7838 	rdev_dec_pending(rdev, mddev);
7839 }
7840 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7841 
7842 void md_finish_reshape(struct mddev *mddev)
7843 {
7844 	/* called be personality module when reshape completes. */
7845 	struct md_rdev *rdev;
7846 
7847 	rdev_for_each(rdev, mddev) {
7848 		if (rdev->data_offset > rdev->new_data_offset)
7849 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7850 		else
7851 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7852 		rdev->data_offset = rdev->new_data_offset;
7853 	}
7854 }
7855 EXPORT_SYMBOL(md_finish_reshape);
7856 
7857 /* Bad block management.
7858  * We can record which blocks on each device are 'bad' and so just
7859  * fail those blocks, or that stripe, rather than the whole device.
7860  * Entries in the bad-block table are 64bits wide.  This comprises:
7861  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7862  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7863  *  A 'shift' can be set so that larger blocks are tracked and
7864  *  consequently larger devices can be covered.
7865  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7866  *
7867  * Locking of the bad-block table uses a seqlock so md_is_badblock
7868  * might need to retry if it is very unlucky.
7869  * We will sometimes want to check for bad blocks in a bi_end_io function,
7870  * so we use the write_seqlock_irq variant.
7871  *
7872  * When looking for a bad block we specify a range and want to
7873  * know if any block in the range is bad.  So we binary-search
7874  * to the last range that starts at-or-before the given endpoint,
7875  * (or "before the sector after the target range")
7876  * then see if it ends after the given start.
7877  * We return
7878  *  0 if there are no known bad blocks in the range
7879  *  1 if there are known bad block which are all acknowledged
7880  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7881  * plus the start/length of the first bad section we overlap.
7882  */
7883 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7884 		   sector_t *first_bad, int *bad_sectors)
7885 {
7886 	int hi;
7887 	int lo;
7888 	u64 *p = bb->page;
7889 	int rv;
7890 	sector_t target = s + sectors;
7891 	unsigned seq;
7892 
7893 	if (bb->shift > 0) {
7894 		/* round the start down, and the end up */
7895 		s >>= bb->shift;
7896 		target += (1<<bb->shift) - 1;
7897 		target >>= bb->shift;
7898 		sectors = target - s;
7899 	}
7900 	/* 'target' is now the first block after the bad range */
7901 
7902 retry:
7903 	seq = read_seqbegin(&bb->lock);
7904 	lo = 0;
7905 	rv = 0;
7906 	hi = bb->count;
7907 
7908 	/* Binary search between lo and hi for 'target'
7909 	 * i.e. for the last range that starts before 'target'
7910 	 */
7911 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7912 	 * are known not to be the last range before target.
7913 	 * VARIANT: hi-lo is the number of possible
7914 	 * ranges, and decreases until it reaches 1
7915 	 */
7916 	while (hi - lo > 1) {
7917 		int mid = (lo + hi) / 2;
7918 		sector_t a = BB_OFFSET(p[mid]);
7919 		if (a < target)
7920 			/* This could still be the one, earlier ranges
7921 			 * could not. */
7922 			lo = mid;
7923 		else
7924 			/* This and later ranges are definitely out. */
7925 			hi = mid;
7926 	}
7927 	/* 'lo' might be the last that started before target, but 'hi' isn't */
7928 	if (hi > lo) {
7929 		/* need to check all range that end after 's' to see if
7930 		 * any are unacknowledged.
7931 		 */
7932 		while (lo >= 0 &&
7933 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7934 			if (BB_OFFSET(p[lo]) < target) {
7935 				/* starts before the end, and finishes after
7936 				 * the start, so they must overlap
7937 				 */
7938 				if (rv != -1 && BB_ACK(p[lo]))
7939 					rv = 1;
7940 				else
7941 					rv = -1;
7942 				*first_bad = BB_OFFSET(p[lo]);
7943 				*bad_sectors = BB_LEN(p[lo]);
7944 			}
7945 			lo--;
7946 		}
7947 	}
7948 
7949 	if (read_seqretry(&bb->lock, seq))
7950 		goto retry;
7951 
7952 	return rv;
7953 }
7954 EXPORT_SYMBOL_GPL(md_is_badblock);
7955 
7956 /*
7957  * Add a range of bad blocks to the table.
7958  * This might extend the table, or might contract it
7959  * if two adjacent ranges can be merged.
7960  * We binary-search to find the 'insertion' point, then
7961  * decide how best to handle it.
7962  */
7963 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7964 			    int acknowledged)
7965 {
7966 	u64 *p;
7967 	int lo, hi;
7968 	int rv = 1;
7969 	unsigned long flags;
7970 
7971 	if (bb->shift < 0)
7972 		/* badblocks are disabled */
7973 		return 0;
7974 
7975 	if (bb->shift) {
7976 		/* round the start down, and the end up */
7977 		sector_t next = s + sectors;
7978 		s >>= bb->shift;
7979 		next += (1<<bb->shift) - 1;
7980 		next >>= bb->shift;
7981 		sectors = next - s;
7982 	}
7983 
7984 	write_seqlock_irqsave(&bb->lock, flags);
7985 
7986 	p = bb->page;
7987 	lo = 0;
7988 	hi = bb->count;
7989 	/* Find the last range that starts at-or-before 's' */
7990 	while (hi - lo > 1) {
7991 		int mid = (lo + hi) / 2;
7992 		sector_t a = BB_OFFSET(p[mid]);
7993 		if (a <= s)
7994 			lo = mid;
7995 		else
7996 			hi = mid;
7997 	}
7998 	if (hi > lo && BB_OFFSET(p[lo]) > s)
7999 		hi = lo;
8000 
8001 	if (hi > lo) {
8002 		/* we found a range that might merge with the start
8003 		 * of our new range
8004 		 */
8005 		sector_t a = BB_OFFSET(p[lo]);
8006 		sector_t e = a + BB_LEN(p[lo]);
8007 		int ack = BB_ACK(p[lo]);
8008 		if (e >= s) {
8009 			/* Yes, we can merge with a previous range */
8010 			if (s == a && s + sectors >= e)
8011 				/* new range covers old */
8012 				ack = acknowledged;
8013 			else
8014 				ack = ack && acknowledged;
8015 
8016 			if (e < s + sectors)
8017 				e = s + sectors;
8018 			if (e - a <= BB_MAX_LEN) {
8019 				p[lo] = BB_MAKE(a, e-a, ack);
8020 				s = e;
8021 			} else {
8022 				/* does not all fit in one range,
8023 				 * make p[lo] maximal
8024 				 */
8025 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8026 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8027 				s = a + BB_MAX_LEN;
8028 			}
8029 			sectors = e - s;
8030 		}
8031 	}
8032 	if (sectors && hi < bb->count) {
8033 		/* 'hi' points to the first range that starts after 's'.
8034 		 * Maybe we can merge with the start of that range */
8035 		sector_t a = BB_OFFSET(p[hi]);
8036 		sector_t e = a + BB_LEN(p[hi]);
8037 		int ack = BB_ACK(p[hi]);
8038 		if (a <= s + sectors) {
8039 			/* merging is possible */
8040 			if (e <= s + sectors) {
8041 				/* full overlap */
8042 				e = s + sectors;
8043 				ack = acknowledged;
8044 			} else
8045 				ack = ack && acknowledged;
8046 
8047 			a = s;
8048 			if (e - a <= BB_MAX_LEN) {
8049 				p[hi] = BB_MAKE(a, e-a, ack);
8050 				s = e;
8051 			} else {
8052 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8053 				s = a + BB_MAX_LEN;
8054 			}
8055 			sectors = e - s;
8056 			lo = hi;
8057 			hi++;
8058 		}
8059 	}
8060 	if (sectors == 0 && hi < bb->count) {
8061 		/* we might be able to combine lo and hi */
8062 		/* Note: 's' is at the end of 'lo' */
8063 		sector_t a = BB_OFFSET(p[hi]);
8064 		int lolen = BB_LEN(p[lo]);
8065 		int hilen = BB_LEN(p[hi]);
8066 		int newlen = lolen + hilen - (s - a);
8067 		if (s >= a && newlen < BB_MAX_LEN) {
8068 			/* yes, we can combine them */
8069 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8070 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8071 			memmove(p + hi, p + hi + 1,
8072 				(bb->count - hi - 1) * 8);
8073 			bb->count--;
8074 		}
8075 	}
8076 	while (sectors) {
8077 		/* didn't merge (it all).
8078 		 * Need to add a range just before 'hi' */
8079 		if (bb->count >= MD_MAX_BADBLOCKS) {
8080 			/* No room for more */
8081 			rv = 0;
8082 			break;
8083 		} else {
8084 			int this_sectors = sectors;
8085 			memmove(p + hi + 1, p + hi,
8086 				(bb->count - hi) * 8);
8087 			bb->count++;
8088 
8089 			if (this_sectors > BB_MAX_LEN)
8090 				this_sectors = BB_MAX_LEN;
8091 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8092 			sectors -= this_sectors;
8093 			s += this_sectors;
8094 		}
8095 	}
8096 
8097 	bb->changed = 1;
8098 	if (!acknowledged)
8099 		bb->unacked_exist = 1;
8100 	write_sequnlock_irqrestore(&bb->lock, flags);
8101 
8102 	return rv;
8103 }
8104 
8105 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8106 		       int is_new)
8107 {
8108 	int rv;
8109 	if (is_new)
8110 		s += rdev->new_data_offset;
8111 	else
8112 		s += rdev->data_offset;
8113 	rv = md_set_badblocks(&rdev->badblocks,
8114 			      s, sectors, 0);
8115 	if (rv) {
8116 		/* Make sure they get written out promptly */
8117 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8118 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8119 		md_wakeup_thread(rdev->mddev->thread);
8120 	}
8121 	return rv;
8122 }
8123 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8124 
8125 /*
8126  * Remove a range of bad blocks from the table.
8127  * This may involve extending the table if we spilt a region,
8128  * but it must not fail.  So if the table becomes full, we just
8129  * drop the remove request.
8130  */
8131 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8132 {
8133 	u64 *p;
8134 	int lo, hi;
8135 	sector_t target = s + sectors;
8136 	int rv = 0;
8137 
8138 	if (bb->shift > 0) {
8139 		/* When clearing we round the start up and the end down.
8140 		 * This should not matter as the shift should align with
8141 		 * the block size and no rounding should ever be needed.
8142 		 * However it is better the think a block is bad when it
8143 		 * isn't than to think a block is not bad when it is.
8144 		 */
8145 		s += (1<<bb->shift) - 1;
8146 		s >>= bb->shift;
8147 		target >>= bb->shift;
8148 		sectors = target - s;
8149 	}
8150 
8151 	write_seqlock_irq(&bb->lock);
8152 
8153 	p = bb->page;
8154 	lo = 0;
8155 	hi = bb->count;
8156 	/* Find the last range that starts before 'target' */
8157 	while (hi - lo > 1) {
8158 		int mid = (lo + hi) / 2;
8159 		sector_t a = BB_OFFSET(p[mid]);
8160 		if (a < target)
8161 			lo = mid;
8162 		else
8163 			hi = mid;
8164 	}
8165 	if (hi > lo) {
8166 		/* p[lo] is the last range that could overlap the
8167 		 * current range.  Earlier ranges could also overlap,
8168 		 * but only this one can overlap the end of the range.
8169 		 */
8170 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8171 			/* Partial overlap, leave the tail of this range */
8172 			int ack = BB_ACK(p[lo]);
8173 			sector_t a = BB_OFFSET(p[lo]);
8174 			sector_t end = a + BB_LEN(p[lo]);
8175 
8176 			if (a < s) {
8177 				/* we need to split this range */
8178 				if (bb->count >= MD_MAX_BADBLOCKS) {
8179 					rv = -ENOSPC;
8180 					goto out;
8181 				}
8182 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8183 				bb->count++;
8184 				p[lo] = BB_MAKE(a, s-a, ack);
8185 				lo++;
8186 			}
8187 			p[lo] = BB_MAKE(target, end - target, ack);
8188 			/* there is no longer an overlap */
8189 			hi = lo;
8190 			lo--;
8191 		}
8192 		while (lo >= 0 &&
8193 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8194 			/* This range does overlap */
8195 			if (BB_OFFSET(p[lo]) < s) {
8196 				/* Keep the early parts of this range. */
8197 				int ack = BB_ACK(p[lo]);
8198 				sector_t start = BB_OFFSET(p[lo]);
8199 				p[lo] = BB_MAKE(start, s - start, ack);
8200 				/* now low doesn't overlap, so.. */
8201 				break;
8202 			}
8203 			lo--;
8204 		}
8205 		/* 'lo' is strictly before, 'hi' is strictly after,
8206 		 * anything between needs to be discarded
8207 		 */
8208 		if (hi - lo > 1) {
8209 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8210 			bb->count -= (hi - lo - 1);
8211 		}
8212 	}
8213 
8214 	bb->changed = 1;
8215 out:
8216 	write_sequnlock_irq(&bb->lock);
8217 	return rv;
8218 }
8219 
8220 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8221 			 int is_new)
8222 {
8223 	if (is_new)
8224 		s += rdev->new_data_offset;
8225 	else
8226 		s += rdev->data_offset;
8227 	return md_clear_badblocks(&rdev->badblocks,
8228 				  s, sectors);
8229 }
8230 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8231 
8232 /*
8233  * Acknowledge all bad blocks in a list.
8234  * This only succeeds if ->changed is clear.  It is used by
8235  * in-kernel metadata updates
8236  */
8237 void md_ack_all_badblocks(struct badblocks *bb)
8238 {
8239 	if (bb->page == NULL || bb->changed)
8240 		/* no point even trying */
8241 		return;
8242 	write_seqlock_irq(&bb->lock);
8243 
8244 	if (bb->changed == 0 && bb->unacked_exist) {
8245 		u64 *p = bb->page;
8246 		int i;
8247 		for (i = 0; i < bb->count ; i++) {
8248 			if (!BB_ACK(p[i])) {
8249 				sector_t start = BB_OFFSET(p[i]);
8250 				int len = BB_LEN(p[i]);
8251 				p[i] = BB_MAKE(start, len, 1);
8252 			}
8253 		}
8254 		bb->unacked_exist = 0;
8255 	}
8256 	write_sequnlock_irq(&bb->lock);
8257 }
8258 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8259 
8260 /* sysfs access to bad-blocks list.
8261  * We present two files.
8262  * 'bad-blocks' lists sector numbers and lengths of ranges that
8263  *    are recorded as bad.  The list is truncated to fit within
8264  *    the one-page limit of sysfs.
8265  *    Writing "sector length" to this file adds an acknowledged
8266  *    bad block list.
8267  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8268  *    been acknowledged.  Writing to this file adds bad blocks
8269  *    without acknowledging them.  This is largely for testing.
8270  */
8271 
8272 static ssize_t
8273 badblocks_show(struct badblocks *bb, char *page, int unack)
8274 {
8275 	size_t len;
8276 	int i;
8277 	u64 *p = bb->page;
8278 	unsigned seq;
8279 
8280 	if (bb->shift < 0)
8281 		return 0;
8282 
8283 retry:
8284 	seq = read_seqbegin(&bb->lock);
8285 
8286 	len = 0;
8287 	i = 0;
8288 
8289 	while (len < PAGE_SIZE && i < bb->count) {
8290 		sector_t s = BB_OFFSET(p[i]);
8291 		unsigned int length = BB_LEN(p[i]);
8292 		int ack = BB_ACK(p[i]);
8293 		i++;
8294 
8295 		if (unack && ack)
8296 			continue;
8297 
8298 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8299 				(unsigned long long)s << bb->shift,
8300 				length << bb->shift);
8301 	}
8302 	if (unack && len == 0)
8303 		bb->unacked_exist = 0;
8304 
8305 	if (read_seqretry(&bb->lock, seq))
8306 		goto retry;
8307 
8308 	return len;
8309 }
8310 
8311 #define DO_DEBUG 1
8312 
8313 static ssize_t
8314 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8315 {
8316 	unsigned long long sector;
8317 	int length;
8318 	char newline;
8319 #ifdef DO_DEBUG
8320 	/* Allow clearing via sysfs *only* for testing/debugging.
8321 	 * Normally only a successful write may clear a badblock
8322 	 */
8323 	int clear = 0;
8324 	if (page[0] == '-') {
8325 		clear = 1;
8326 		page++;
8327 	}
8328 #endif /* DO_DEBUG */
8329 
8330 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8331 	case 3:
8332 		if (newline != '\n')
8333 			return -EINVAL;
8334 	case 2:
8335 		if (length <= 0)
8336 			return -EINVAL;
8337 		break;
8338 	default:
8339 		return -EINVAL;
8340 	}
8341 
8342 #ifdef DO_DEBUG
8343 	if (clear) {
8344 		md_clear_badblocks(bb, sector, length);
8345 		return len;
8346 	}
8347 #endif /* DO_DEBUG */
8348 	if (md_set_badblocks(bb, sector, length, !unack))
8349 		return len;
8350 	else
8351 		return -ENOSPC;
8352 }
8353 
8354 static int md_notify_reboot(struct notifier_block *this,
8355 			    unsigned long code, void *x)
8356 {
8357 	struct list_head *tmp;
8358 	struct mddev *mddev;
8359 	int need_delay = 0;
8360 
8361 	for_each_mddev(mddev, tmp) {
8362 		if (mddev_trylock(mddev)) {
8363 			if (mddev->pers)
8364 				__md_stop_writes(mddev);
8365 			if (mddev->persistent)
8366 				mddev->safemode = 2;
8367 			mddev_unlock(mddev);
8368 		}
8369 		need_delay = 1;
8370 	}
8371 	/*
8372 	 * certain more exotic SCSI devices are known to be
8373 	 * volatile wrt too early system reboots. While the
8374 	 * right place to handle this issue is the given
8375 	 * driver, we do want to have a safe RAID driver ...
8376 	 */
8377 	if (need_delay)
8378 		mdelay(1000*1);
8379 
8380 	return NOTIFY_DONE;
8381 }
8382 
8383 static struct notifier_block md_notifier = {
8384 	.notifier_call	= md_notify_reboot,
8385 	.next		= NULL,
8386 	.priority	= INT_MAX, /* before any real devices */
8387 };
8388 
8389 static void md_geninit(void)
8390 {
8391 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8392 
8393 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8394 }
8395 
8396 static int __init md_init(void)
8397 {
8398 	int ret = -ENOMEM;
8399 
8400 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8401 	if (!md_wq)
8402 		goto err_wq;
8403 
8404 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8405 	if (!md_misc_wq)
8406 		goto err_misc_wq;
8407 
8408 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8409 		goto err_md;
8410 
8411 	if ((ret = register_blkdev(0, "mdp")) < 0)
8412 		goto err_mdp;
8413 	mdp_major = ret;
8414 
8415 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8416 			    md_probe, NULL, NULL);
8417 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8418 			    md_probe, NULL, NULL);
8419 
8420 	register_reboot_notifier(&md_notifier);
8421 	raid_table_header = register_sysctl_table(raid_root_table);
8422 
8423 	md_geninit();
8424 	return 0;
8425 
8426 err_mdp:
8427 	unregister_blkdev(MD_MAJOR, "md");
8428 err_md:
8429 	destroy_workqueue(md_misc_wq);
8430 err_misc_wq:
8431 	destroy_workqueue(md_wq);
8432 err_wq:
8433 	return ret;
8434 }
8435 
8436 #ifndef MODULE
8437 
8438 /*
8439  * Searches all registered partitions for autorun RAID arrays
8440  * at boot time.
8441  */
8442 
8443 static LIST_HEAD(all_detected_devices);
8444 struct detected_devices_node {
8445 	struct list_head list;
8446 	dev_t dev;
8447 };
8448 
8449 void md_autodetect_dev(dev_t dev)
8450 {
8451 	struct detected_devices_node *node_detected_dev;
8452 
8453 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8454 	if (node_detected_dev) {
8455 		node_detected_dev->dev = dev;
8456 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8457 	} else {
8458 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8459 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8460 	}
8461 }
8462 
8463 static void autostart_arrays(int part)
8464 {
8465 	struct md_rdev *rdev;
8466 	struct detected_devices_node *node_detected_dev;
8467 	dev_t dev;
8468 	int i_scanned, i_passed;
8469 
8470 	i_scanned = 0;
8471 	i_passed = 0;
8472 
8473 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8474 
8475 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8476 		i_scanned++;
8477 		node_detected_dev = list_entry(all_detected_devices.next,
8478 					struct detected_devices_node, list);
8479 		list_del(&node_detected_dev->list);
8480 		dev = node_detected_dev->dev;
8481 		kfree(node_detected_dev);
8482 		rdev = md_import_device(dev,0, 90);
8483 		if (IS_ERR(rdev))
8484 			continue;
8485 
8486 		if (test_bit(Faulty, &rdev->flags))
8487 			continue;
8488 
8489 		set_bit(AutoDetected, &rdev->flags);
8490 		list_add(&rdev->same_set, &pending_raid_disks);
8491 		i_passed++;
8492 	}
8493 
8494 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8495 						i_scanned, i_passed);
8496 
8497 	autorun_devices(part);
8498 }
8499 
8500 #endif /* !MODULE */
8501 
8502 static __exit void md_exit(void)
8503 {
8504 	struct mddev *mddev;
8505 	struct list_head *tmp;
8506 	int delay = 1;
8507 
8508 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8509 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8510 
8511 	unregister_blkdev(MD_MAJOR,"md");
8512 	unregister_blkdev(mdp_major, "mdp");
8513 	unregister_reboot_notifier(&md_notifier);
8514 	unregister_sysctl_table(raid_table_header);
8515 
8516 	/* We cannot unload the modules while some process is
8517 	 * waiting for us in select() or poll() - wake them up
8518 	 */
8519 	md_unloading = 1;
8520 	while (waitqueue_active(&md_event_waiters)) {
8521 		/* not safe to leave yet */
8522 		wake_up(&md_event_waiters);
8523 		msleep(delay);
8524 		delay += delay;
8525 	}
8526 	remove_proc_entry("mdstat", NULL);
8527 
8528 	for_each_mddev(mddev, tmp) {
8529 		export_array(mddev);
8530 		mddev->hold_active = 0;
8531 	}
8532 	destroy_workqueue(md_misc_wq);
8533 	destroy_workqueue(md_wq);
8534 }
8535 
8536 subsys_initcall(md_init);
8537 module_exit(md_exit)
8538 
8539 static int get_ro(char *buffer, struct kernel_param *kp)
8540 {
8541 	return sprintf(buffer, "%d", start_readonly);
8542 }
8543 static int set_ro(const char *val, struct kernel_param *kp)
8544 {
8545 	char *e;
8546 	int num = simple_strtoul(val, &e, 10);
8547 	if (*val && (*e == '\0' || *e == '\n')) {
8548 		start_readonly = num;
8549 		return 0;
8550 	}
8551 	return -EINVAL;
8552 }
8553 
8554 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8555 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8556 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8557 
8558 MODULE_LICENSE("GPL");
8559 MODULE_DESCRIPTION("MD RAID framework");
8560 MODULE_ALIAS("md");
8561 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8562