1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 static struct workqueue_struct *md_rdev_misc_wq; 91 92 static int remove_and_add_spares(struct mddev *mddev, 93 struct md_rdev *this); 94 static void mddev_detach(struct mddev *mddev); 95 96 /* 97 * Default number of read corrections we'll attempt on an rdev 98 * before ejecting it from the array. We divide the read error 99 * count by 2 for every hour elapsed between read errors. 100 */ 101 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 102 /* Default safemode delay: 200 msec */ 103 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 104 /* 105 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 106 * is 1000 KB/sec, so the extra system load does not show up that much. 107 * Increase it if you want to have more _guaranteed_ speed. Note that 108 * the RAID driver will use the maximum available bandwidth if the IO 109 * subsystem is idle. There is also an 'absolute maximum' reconstruction 110 * speed limit - in case reconstruction slows down your system despite 111 * idle IO detection. 112 * 113 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 114 * or /sys/block/mdX/md/sync_speed_{min,max} 115 */ 116 117 static int sysctl_speed_limit_min = 1000; 118 static int sysctl_speed_limit_max = 200000; 119 static inline int speed_min(struct mddev *mddev) 120 { 121 return mddev->sync_speed_min ? 122 mddev->sync_speed_min : sysctl_speed_limit_min; 123 } 124 125 static inline int speed_max(struct mddev *mddev) 126 { 127 return mddev->sync_speed_max ? 128 mddev->sync_speed_max : sysctl_speed_limit_max; 129 } 130 131 static void rdev_uninit_serial(struct md_rdev *rdev) 132 { 133 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 134 return; 135 136 kvfree(rdev->serial); 137 rdev->serial = NULL; 138 } 139 140 static void rdevs_uninit_serial(struct mddev *mddev) 141 { 142 struct md_rdev *rdev; 143 144 rdev_for_each(rdev, mddev) 145 rdev_uninit_serial(rdev); 146 } 147 148 static int rdev_init_serial(struct md_rdev *rdev) 149 { 150 /* serial_nums equals with BARRIER_BUCKETS_NR */ 151 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 152 struct serial_in_rdev *serial = NULL; 153 154 if (test_bit(CollisionCheck, &rdev->flags)) 155 return 0; 156 157 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 158 GFP_KERNEL); 159 if (!serial) 160 return -ENOMEM; 161 162 for (i = 0; i < serial_nums; i++) { 163 struct serial_in_rdev *serial_tmp = &serial[i]; 164 165 spin_lock_init(&serial_tmp->serial_lock); 166 serial_tmp->serial_rb = RB_ROOT_CACHED; 167 init_waitqueue_head(&serial_tmp->serial_io_wait); 168 } 169 170 rdev->serial = serial; 171 set_bit(CollisionCheck, &rdev->flags); 172 173 return 0; 174 } 175 176 static int rdevs_init_serial(struct mddev *mddev) 177 { 178 struct md_rdev *rdev; 179 int ret = 0; 180 181 rdev_for_each(rdev, mddev) { 182 ret = rdev_init_serial(rdev); 183 if (ret) 184 break; 185 } 186 187 /* Free all resources if pool is not existed */ 188 if (ret && !mddev->serial_info_pool) 189 rdevs_uninit_serial(mddev); 190 191 return ret; 192 } 193 194 /* 195 * rdev needs to enable serial stuffs if it meets the conditions: 196 * 1. it is multi-queue device flaged with writemostly. 197 * 2. the write-behind mode is enabled. 198 */ 199 static int rdev_need_serial(struct md_rdev *rdev) 200 { 201 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 202 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 203 test_bit(WriteMostly, &rdev->flags)); 204 } 205 206 /* 207 * Init resource for rdev(s), then create serial_info_pool if: 208 * 1. rdev is the first device which return true from rdev_enable_serial. 209 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 210 */ 211 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 212 bool is_suspend) 213 { 214 int ret = 0; 215 216 if (rdev && !rdev_need_serial(rdev) && 217 !test_bit(CollisionCheck, &rdev->flags)) 218 return; 219 220 if (!is_suspend) 221 mddev_suspend(mddev); 222 223 if (!rdev) 224 ret = rdevs_init_serial(mddev); 225 else 226 ret = rdev_init_serial(rdev); 227 if (ret) 228 goto abort; 229 230 if (mddev->serial_info_pool == NULL) { 231 /* 232 * already in memalloc noio context by 233 * mddev_suspend() 234 */ 235 mddev->serial_info_pool = 236 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 237 sizeof(struct serial_info)); 238 if (!mddev->serial_info_pool) { 239 rdevs_uninit_serial(mddev); 240 pr_err("can't alloc memory pool for serialization\n"); 241 } 242 } 243 244 abort: 245 if (!is_suspend) 246 mddev_resume(mddev); 247 } 248 249 /* 250 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 251 * 1. rdev is the last device flaged with CollisionCheck. 252 * 2. when bitmap is destroyed while policy is not enabled. 253 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 254 */ 255 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 256 bool is_suspend) 257 { 258 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 259 return; 260 261 if (mddev->serial_info_pool) { 262 struct md_rdev *temp; 263 int num = 0; /* used to track if other rdevs need the pool */ 264 265 if (!is_suspend) 266 mddev_suspend(mddev); 267 rdev_for_each(temp, mddev) { 268 if (!rdev) { 269 if (!mddev->serialize_policy || 270 !rdev_need_serial(temp)) 271 rdev_uninit_serial(temp); 272 else 273 num++; 274 } else if (temp != rdev && 275 test_bit(CollisionCheck, &temp->flags)) 276 num++; 277 } 278 279 if (rdev) 280 rdev_uninit_serial(rdev); 281 282 if (num) 283 pr_info("The mempool could be used by other devices\n"); 284 else { 285 mempool_destroy(mddev->serial_info_pool); 286 mddev->serial_info_pool = NULL; 287 } 288 if (!is_suspend) 289 mddev_resume(mddev); 290 } 291 } 292 293 static struct ctl_table_header *raid_table_header; 294 295 static struct ctl_table raid_table[] = { 296 { 297 .procname = "speed_limit_min", 298 .data = &sysctl_speed_limit_min, 299 .maxlen = sizeof(int), 300 .mode = S_IRUGO|S_IWUSR, 301 .proc_handler = proc_dointvec, 302 }, 303 { 304 .procname = "speed_limit_max", 305 .data = &sysctl_speed_limit_max, 306 .maxlen = sizeof(int), 307 .mode = S_IRUGO|S_IWUSR, 308 .proc_handler = proc_dointvec, 309 }, 310 { } 311 }; 312 313 static struct ctl_table raid_dir_table[] = { 314 { 315 .procname = "raid", 316 .maxlen = 0, 317 .mode = S_IRUGO|S_IXUGO, 318 .child = raid_table, 319 }, 320 { } 321 }; 322 323 static struct ctl_table raid_root_table[] = { 324 { 325 .procname = "dev", 326 .maxlen = 0, 327 .mode = 0555, 328 .child = raid_dir_table, 329 }, 330 { } 331 }; 332 333 static int start_readonly; 334 335 /* 336 * The original mechanism for creating an md device is to create 337 * a device node in /dev and to open it. This causes races with device-close. 338 * The preferred method is to write to the "new_array" module parameter. 339 * This can avoid races. 340 * Setting create_on_open to false disables the original mechanism 341 * so all the races disappear. 342 */ 343 static bool create_on_open = true; 344 345 /* 346 * We have a system wide 'event count' that is incremented 347 * on any 'interesting' event, and readers of /proc/mdstat 348 * can use 'poll' or 'select' to find out when the event 349 * count increases. 350 * 351 * Events are: 352 * start array, stop array, error, add device, remove device, 353 * start build, activate spare 354 */ 355 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 356 static atomic_t md_event_count; 357 void md_new_event(void) 358 { 359 atomic_inc(&md_event_count); 360 wake_up(&md_event_waiters); 361 } 362 EXPORT_SYMBOL_GPL(md_new_event); 363 364 /* 365 * Enables to iterate over all existing md arrays 366 * all_mddevs_lock protects this list. 367 */ 368 static LIST_HEAD(all_mddevs); 369 static DEFINE_SPINLOCK(all_mddevs_lock); 370 371 /* 372 * iterates through all used mddevs in the system. 373 * We take care to grab the all_mddevs_lock whenever navigating 374 * the list, and to always hold a refcount when unlocked. 375 * Any code which breaks out of this loop while own 376 * a reference to the current mddev and must mddev_put it. 377 */ 378 #define for_each_mddev(_mddev,_tmp) \ 379 \ 380 for (({ spin_lock(&all_mddevs_lock); \ 381 _tmp = all_mddevs.next; \ 382 _mddev = NULL;}); \ 383 ({ if (_tmp != &all_mddevs) \ 384 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 385 spin_unlock(&all_mddevs_lock); \ 386 if (_mddev) mddev_put(_mddev); \ 387 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 388 _tmp != &all_mddevs;}); \ 389 ({ spin_lock(&all_mddevs_lock); \ 390 _tmp = _tmp->next;}) \ 391 ) 392 393 /* Rather than calling directly into the personality make_request function, 394 * IO requests come here first so that we can check if the device is 395 * being suspended pending a reconfiguration. 396 * We hold a refcount over the call to ->make_request. By the time that 397 * call has finished, the bio has been linked into some internal structure 398 * and so is visible to ->quiesce(), so we don't need the refcount any more. 399 */ 400 static bool is_suspended(struct mddev *mddev, struct bio *bio) 401 { 402 if (mddev->suspended) 403 return true; 404 if (bio_data_dir(bio) != WRITE) 405 return false; 406 if (mddev->suspend_lo >= mddev->suspend_hi) 407 return false; 408 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 409 return false; 410 if (bio_end_sector(bio) < mddev->suspend_lo) 411 return false; 412 return true; 413 } 414 415 void md_handle_request(struct mddev *mddev, struct bio *bio) 416 { 417 check_suspended: 418 rcu_read_lock(); 419 if (is_suspended(mddev, bio)) { 420 DEFINE_WAIT(__wait); 421 /* Bail out if REQ_NOWAIT is set for the bio */ 422 if (bio->bi_opf & REQ_NOWAIT) { 423 rcu_read_unlock(); 424 bio_wouldblock_error(bio); 425 return; 426 } 427 for (;;) { 428 prepare_to_wait(&mddev->sb_wait, &__wait, 429 TASK_UNINTERRUPTIBLE); 430 if (!is_suspended(mddev, bio)) 431 break; 432 rcu_read_unlock(); 433 schedule(); 434 rcu_read_lock(); 435 } 436 finish_wait(&mddev->sb_wait, &__wait); 437 } 438 atomic_inc(&mddev->active_io); 439 rcu_read_unlock(); 440 441 if (!mddev->pers->make_request(mddev, bio)) { 442 atomic_dec(&mddev->active_io); 443 wake_up(&mddev->sb_wait); 444 goto check_suspended; 445 } 446 447 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 448 wake_up(&mddev->sb_wait); 449 } 450 EXPORT_SYMBOL(md_handle_request); 451 452 static void md_submit_bio(struct bio *bio) 453 { 454 const int rw = bio_data_dir(bio); 455 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 456 457 if (mddev == NULL || mddev->pers == NULL) { 458 bio_io_error(bio); 459 return; 460 } 461 462 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 463 bio_io_error(bio); 464 return; 465 } 466 467 blk_queue_split(&bio); 468 469 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 470 if (bio_sectors(bio) != 0) 471 bio->bi_status = BLK_STS_IOERR; 472 bio_endio(bio); 473 return; 474 } 475 476 /* bio could be mergeable after passing to underlayer */ 477 bio->bi_opf &= ~REQ_NOMERGE; 478 479 md_handle_request(mddev, bio); 480 } 481 482 /* mddev_suspend makes sure no new requests are submitted 483 * to the device, and that any requests that have been submitted 484 * are completely handled. 485 * Once mddev_detach() is called and completes, the module will be 486 * completely unused. 487 */ 488 void mddev_suspend(struct mddev *mddev) 489 { 490 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 491 lockdep_assert_held(&mddev->reconfig_mutex); 492 if (mddev->suspended++) 493 return; 494 synchronize_rcu(); 495 wake_up(&mddev->sb_wait); 496 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 497 smp_mb__after_atomic(); 498 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 499 mddev->pers->quiesce(mddev, 1); 500 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 501 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 502 503 del_timer_sync(&mddev->safemode_timer); 504 /* restrict memory reclaim I/O during raid array is suspend */ 505 mddev->noio_flag = memalloc_noio_save(); 506 } 507 EXPORT_SYMBOL_GPL(mddev_suspend); 508 509 void mddev_resume(struct mddev *mddev) 510 { 511 /* entred the memalloc scope from mddev_suspend() */ 512 memalloc_noio_restore(mddev->noio_flag); 513 lockdep_assert_held(&mddev->reconfig_mutex); 514 if (--mddev->suspended) 515 return; 516 wake_up(&mddev->sb_wait); 517 mddev->pers->quiesce(mddev, 0); 518 519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 520 md_wakeup_thread(mddev->thread); 521 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 522 } 523 EXPORT_SYMBOL_GPL(mddev_resume); 524 525 /* 526 * Generic flush handling for md 527 */ 528 529 static void md_end_flush(struct bio *bio) 530 { 531 struct md_rdev *rdev = bio->bi_private; 532 struct mddev *mddev = rdev->mddev; 533 534 rdev_dec_pending(rdev, mddev); 535 536 if (atomic_dec_and_test(&mddev->flush_pending)) { 537 /* The pre-request flush has finished */ 538 queue_work(md_wq, &mddev->flush_work); 539 } 540 bio_put(bio); 541 } 542 543 static void md_submit_flush_data(struct work_struct *ws); 544 545 static void submit_flushes(struct work_struct *ws) 546 { 547 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 548 struct md_rdev *rdev; 549 550 mddev->start_flush = ktime_get_boottime(); 551 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 552 atomic_set(&mddev->flush_pending, 1); 553 rcu_read_lock(); 554 rdev_for_each_rcu(rdev, mddev) 555 if (rdev->raid_disk >= 0 && 556 !test_bit(Faulty, &rdev->flags)) { 557 /* Take two references, one is dropped 558 * when request finishes, one after 559 * we reclaim rcu_read_lock 560 */ 561 struct bio *bi; 562 atomic_inc(&rdev->nr_pending); 563 atomic_inc(&rdev->nr_pending); 564 rcu_read_unlock(); 565 bi = bio_alloc_bioset(rdev->bdev, 0, 566 REQ_OP_WRITE | REQ_PREFLUSH, 567 GFP_NOIO, &mddev->bio_set); 568 bi->bi_end_io = md_end_flush; 569 bi->bi_private = rdev; 570 atomic_inc(&mddev->flush_pending); 571 submit_bio(bi); 572 rcu_read_lock(); 573 rdev_dec_pending(rdev, mddev); 574 } 575 rcu_read_unlock(); 576 if (atomic_dec_and_test(&mddev->flush_pending)) 577 queue_work(md_wq, &mddev->flush_work); 578 } 579 580 static void md_submit_flush_data(struct work_struct *ws) 581 { 582 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 583 struct bio *bio = mddev->flush_bio; 584 585 /* 586 * must reset flush_bio before calling into md_handle_request to avoid a 587 * deadlock, because other bios passed md_handle_request suspend check 588 * could wait for this and below md_handle_request could wait for those 589 * bios because of suspend check 590 */ 591 spin_lock_irq(&mddev->lock); 592 mddev->prev_flush_start = mddev->start_flush; 593 mddev->flush_bio = NULL; 594 spin_unlock_irq(&mddev->lock); 595 wake_up(&mddev->sb_wait); 596 597 if (bio->bi_iter.bi_size == 0) { 598 /* an empty barrier - all done */ 599 bio_endio(bio); 600 } else { 601 bio->bi_opf &= ~REQ_PREFLUSH; 602 md_handle_request(mddev, bio); 603 } 604 } 605 606 /* 607 * Manages consolidation of flushes and submitting any flushes needed for 608 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 609 * being finished in another context. Returns false if the flushing is 610 * complete but still needs the I/O portion of the bio to be processed. 611 */ 612 bool md_flush_request(struct mddev *mddev, struct bio *bio) 613 { 614 ktime_t req_start = ktime_get_boottime(); 615 spin_lock_irq(&mddev->lock); 616 /* flush requests wait until ongoing flush completes, 617 * hence coalescing all the pending requests. 618 */ 619 wait_event_lock_irq(mddev->sb_wait, 620 !mddev->flush_bio || 621 ktime_before(req_start, mddev->prev_flush_start), 622 mddev->lock); 623 /* new request after previous flush is completed */ 624 if (ktime_after(req_start, mddev->prev_flush_start)) { 625 WARN_ON(mddev->flush_bio); 626 mddev->flush_bio = bio; 627 bio = NULL; 628 } 629 spin_unlock_irq(&mddev->lock); 630 631 if (!bio) { 632 INIT_WORK(&mddev->flush_work, submit_flushes); 633 queue_work(md_wq, &mddev->flush_work); 634 } else { 635 /* flush was performed for some other bio while we waited. */ 636 if (bio->bi_iter.bi_size == 0) 637 /* an empty barrier - all done */ 638 bio_endio(bio); 639 else { 640 bio->bi_opf &= ~REQ_PREFLUSH; 641 return false; 642 } 643 } 644 return true; 645 } 646 EXPORT_SYMBOL(md_flush_request); 647 648 static inline struct mddev *mddev_get(struct mddev *mddev) 649 { 650 atomic_inc(&mddev->active); 651 return mddev; 652 } 653 654 static void mddev_delayed_delete(struct work_struct *ws); 655 656 static void mddev_put(struct mddev *mddev) 657 { 658 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 659 return; 660 if (!mddev->raid_disks && list_empty(&mddev->disks) && 661 mddev->ctime == 0 && !mddev->hold_active) { 662 /* Array is not configured at all, and not held active, 663 * so destroy it */ 664 list_del_init(&mddev->all_mddevs); 665 666 /* 667 * Call queue_work inside the spinlock so that 668 * flush_workqueue() after mddev_find will succeed in waiting 669 * for the work to be done. 670 */ 671 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 672 queue_work(md_misc_wq, &mddev->del_work); 673 } 674 spin_unlock(&all_mddevs_lock); 675 } 676 677 static void md_safemode_timeout(struct timer_list *t); 678 679 void mddev_init(struct mddev *mddev) 680 { 681 kobject_init(&mddev->kobj, &md_ktype); 682 mutex_init(&mddev->open_mutex); 683 mutex_init(&mddev->reconfig_mutex); 684 mutex_init(&mddev->bitmap_info.mutex); 685 INIT_LIST_HEAD(&mddev->disks); 686 INIT_LIST_HEAD(&mddev->all_mddevs); 687 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 688 atomic_set(&mddev->active, 1); 689 atomic_set(&mddev->openers, 0); 690 atomic_set(&mddev->active_io, 0); 691 spin_lock_init(&mddev->lock); 692 atomic_set(&mddev->flush_pending, 0); 693 init_waitqueue_head(&mddev->sb_wait); 694 init_waitqueue_head(&mddev->recovery_wait); 695 mddev->reshape_position = MaxSector; 696 mddev->reshape_backwards = 0; 697 mddev->last_sync_action = "none"; 698 mddev->resync_min = 0; 699 mddev->resync_max = MaxSector; 700 mddev->level = LEVEL_NONE; 701 } 702 EXPORT_SYMBOL_GPL(mddev_init); 703 704 static struct mddev *mddev_find_locked(dev_t unit) 705 { 706 struct mddev *mddev; 707 708 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 709 if (mddev->unit == unit) 710 return mddev; 711 712 return NULL; 713 } 714 715 /* find an unused unit number */ 716 static dev_t mddev_alloc_unit(void) 717 { 718 static int next_minor = 512; 719 int start = next_minor; 720 bool is_free = 0; 721 dev_t dev = 0; 722 723 while (!is_free) { 724 dev = MKDEV(MD_MAJOR, next_minor); 725 next_minor++; 726 if (next_minor > MINORMASK) 727 next_minor = 0; 728 if (next_minor == start) 729 return 0; /* Oh dear, all in use. */ 730 is_free = !mddev_find_locked(dev); 731 } 732 733 return dev; 734 } 735 736 static struct mddev *mddev_find(dev_t unit) 737 { 738 struct mddev *mddev; 739 740 if (MAJOR(unit) != MD_MAJOR) 741 unit &= ~((1 << MdpMinorShift) - 1); 742 743 spin_lock(&all_mddevs_lock); 744 mddev = mddev_find_locked(unit); 745 if (mddev) 746 mddev_get(mddev); 747 spin_unlock(&all_mddevs_lock); 748 749 return mddev; 750 } 751 752 static struct mddev *mddev_alloc(dev_t unit) 753 { 754 struct mddev *new; 755 int error; 756 757 if (unit && MAJOR(unit) != MD_MAJOR) 758 unit &= ~((1 << MdpMinorShift) - 1); 759 760 new = kzalloc(sizeof(*new), GFP_KERNEL); 761 if (!new) 762 return ERR_PTR(-ENOMEM); 763 mddev_init(new); 764 765 spin_lock(&all_mddevs_lock); 766 if (unit) { 767 error = -EEXIST; 768 if (mddev_find_locked(unit)) 769 goto out_free_new; 770 new->unit = unit; 771 if (MAJOR(unit) == MD_MAJOR) 772 new->md_minor = MINOR(unit); 773 else 774 new->md_minor = MINOR(unit) >> MdpMinorShift; 775 new->hold_active = UNTIL_IOCTL; 776 } else { 777 error = -ENODEV; 778 new->unit = mddev_alloc_unit(); 779 if (!new->unit) 780 goto out_free_new; 781 new->md_minor = MINOR(new->unit); 782 new->hold_active = UNTIL_STOP; 783 } 784 785 list_add(&new->all_mddevs, &all_mddevs); 786 spin_unlock(&all_mddevs_lock); 787 return new; 788 out_free_new: 789 spin_unlock(&all_mddevs_lock); 790 kfree(new); 791 return ERR_PTR(error); 792 } 793 794 static const struct attribute_group md_redundancy_group; 795 796 void mddev_unlock(struct mddev *mddev) 797 { 798 if (mddev->to_remove) { 799 /* These cannot be removed under reconfig_mutex as 800 * an access to the files will try to take reconfig_mutex 801 * while holding the file unremovable, which leads to 802 * a deadlock. 803 * So hold set sysfs_active while the remove in happeing, 804 * and anything else which might set ->to_remove or my 805 * otherwise change the sysfs namespace will fail with 806 * -EBUSY if sysfs_active is still set. 807 * We set sysfs_active under reconfig_mutex and elsewhere 808 * test it under the same mutex to ensure its correct value 809 * is seen. 810 */ 811 const struct attribute_group *to_remove = mddev->to_remove; 812 mddev->to_remove = NULL; 813 mddev->sysfs_active = 1; 814 mutex_unlock(&mddev->reconfig_mutex); 815 816 if (mddev->kobj.sd) { 817 if (to_remove != &md_redundancy_group) 818 sysfs_remove_group(&mddev->kobj, to_remove); 819 if (mddev->pers == NULL || 820 mddev->pers->sync_request == NULL) { 821 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 822 if (mddev->sysfs_action) 823 sysfs_put(mddev->sysfs_action); 824 if (mddev->sysfs_completed) 825 sysfs_put(mddev->sysfs_completed); 826 if (mddev->sysfs_degraded) 827 sysfs_put(mddev->sysfs_degraded); 828 mddev->sysfs_action = NULL; 829 mddev->sysfs_completed = NULL; 830 mddev->sysfs_degraded = NULL; 831 } 832 } 833 mddev->sysfs_active = 0; 834 } else 835 mutex_unlock(&mddev->reconfig_mutex); 836 837 /* As we've dropped the mutex we need a spinlock to 838 * make sure the thread doesn't disappear 839 */ 840 spin_lock(&pers_lock); 841 md_wakeup_thread(mddev->thread); 842 wake_up(&mddev->sb_wait); 843 spin_unlock(&pers_lock); 844 } 845 EXPORT_SYMBOL_GPL(mddev_unlock); 846 847 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 848 { 849 struct md_rdev *rdev; 850 851 rdev_for_each_rcu(rdev, mddev) 852 if (rdev->desc_nr == nr) 853 return rdev; 854 855 return NULL; 856 } 857 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 858 859 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 860 { 861 struct md_rdev *rdev; 862 863 rdev_for_each(rdev, mddev) 864 if (rdev->bdev->bd_dev == dev) 865 return rdev; 866 867 return NULL; 868 } 869 870 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 871 { 872 struct md_rdev *rdev; 873 874 rdev_for_each_rcu(rdev, mddev) 875 if (rdev->bdev->bd_dev == dev) 876 return rdev; 877 878 return NULL; 879 } 880 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 881 882 static struct md_personality *find_pers(int level, char *clevel) 883 { 884 struct md_personality *pers; 885 list_for_each_entry(pers, &pers_list, list) { 886 if (level != LEVEL_NONE && pers->level == level) 887 return pers; 888 if (strcmp(pers->name, clevel)==0) 889 return pers; 890 } 891 return NULL; 892 } 893 894 /* return the offset of the super block in 512byte sectors */ 895 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 896 { 897 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 898 } 899 900 static int alloc_disk_sb(struct md_rdev *rdev) 901 { 902 rdev->sb_page = alloc_page(GFP_KERNEL); 903 if (!rdev->sb_page) 904 return -ENOMEM; 905 return 0; 906 } 907 908 void md_rdev_clear(struct md_rdev *rdev) 909 { 910 if (rdev->sb_page) { 911 put_page(rdev->sb_page); 912 rdev->sb_loaded = 0; 913 rdev->sb_page = NULL; 914 rdev->sb_start = 0; 915 rdev->sectors = 0; 916 } 917 if (rdev->bb_page) { 918 put_page(rdev->bb_page); 919 rdev->bb_page = NULL; 920 } 921 badblocks_exit(&rdev->badblocks); 922 } 923 EXPORT_SYMBOL_GPL(md_rdev_clear); 924 925 static void super_written(struct bio *bio) 926 { 927 struct md_rdev *rdev = bio->bi_private; 928 struct mddev *mddev = rdev->mddev; 929 930 if (bio->bi_status) { 931 pr_err("md: %s gets error=%d\n", __func__, 932 blk_status_to_errno(bio->bi_status)); 933 md_error(mddev, rdev); 934 if (!test_bit(Faulty, &rdev->flags) 935 && (bio->bi_opf & MD_FAILFAST)) { 936 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 937 set_bit(LastDev, &rdev->flags); 938 } 939 } else 940 clear_bit(LastDev, &rdev->flags); 941 942 if (atomic_dec_and_test(&mddev->pending_writes)) 943 wake_up(&mddev->sb_wait); 944 rdev_dec_pending(rdev, mddev); 945 bio_put(bio); 946 } 947 948 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 949 sector_t sector, int size, struct page *page) 950 { 951 /* write first size bytes of page to sector of rdev 952 * Increment mddev->pending_writes before returning 953 * and decrement it on completion, waking up sb_wait 954 * if zero is reached. 955 * If an error occurred, call md_error 956 */ 957 struct bio *bio; 958 959 if (!page) 960 return; 961 962 if (test_bit(Faulty, &rdev->flags)) 963 return; 964 965 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 966 1, 967 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 968 GFP_NOIO, &mddev->sync_set); 969 970 atomic_inc(&rdev->nr_pending); 971 972 bio->bi_iter.bi_sector = sector; 973 bio_add_page(bio, page, size, 0); 974 bio->bi_private = rdev; 975 bio->bi_end_io = super_written; 976 977 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 978 test_bit(FailFast, &rdev->flags) && 979 !test_bit(LastDev, &rdev->flags)) 980 bio->bi_opf |= MD_FAILFAST; 981 982 atomic_inc(&mddev->pending_writes); 983 submit_bio(bio); 984 } 985 986 int md_super_wait(struct mddev *mddev) 987 { 988 /* wait for all superblock writes that were scheduled to complete */ 989 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 990 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 991 return -EAGAIN; 992 return 0; 993 } 994 995 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 996 struct page *page, int op, int op_flags, bool metadata_op) 997 { 998 struct bio bio; 999 struct bio_vec bvec; 1000 1001 if (metadata_op && rdev->meta_bdev) 1002 bio_init(&bio, rdev->meta_bdev, &bvec, 1, op | op_flags); 1003 else 1004 bio_init(&bio, rdev->bdev, &bvec, 1, op | op_flags); 1005 1006 if (metadata_op) 1007 bio.bi_iter.bi_sector = sector + rdev->sb_start; 1008 else if (rdev->mddev->reshape_position != MaxSector && 1009 (rdev->mddev->reshape_backwards == 1010 (sector >= rdev->mddev->reshape_position))) 1011 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1012 else 1013 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1014 bio_add_page(&bio, page, size, 0); 1015 1016 submit_bio_wait(&bio); 1017 1018 return !bio.bi_status; 1019 } 1020 EXPORT_SYMBOL_GPL(sync_page_io); 1021 1022 static int read_disk_sb(struct md_rdev *rdev, int size) 1023 { 1024 if (rdev->sb_loaded) 1025 return 0; 1026 1027 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1028 goto fail; 1029 rdev->sb_loaded = 1; 1030 return 0; 1031 1032 fail: 1033 pr_err("md: disabled device %pg, could not read superblock.\n", 1034 rdev->bdev); 1035 return -EINVAL; 1036 } 1037 1038 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1039 { 1040 return sb1->set_uuid0 == sb2->set_uuid0 && 1041 sb1->set_uuid1 == sb2->set_uuid1 && 1042 sb1->set_uuid2 == sb2->set_uuid2 && 1043 sb1->set_uuid3 == sb2->set_uuid3; 1044 } 1045 1046 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1047 { 1048 int ret; 1049 mdp_super_t *tmp1, *tmp2; 1050 1051 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1052 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1053 1054 if (!tmp1 || !tmp2) { 1055 ret = 0; 1056 goto abort; 1057 } 1058 1059 *tmp1 = *sb1; 1060 *tmp2 = *sb2; 1061 1062 /* 1063 * nr_disks is not constant 1064 */ 1065 tmp1->nr_disks = 0; 1066 tmp2->nr_disks = 0; 1067 1068 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1069 abort: 1070 kfree(tmp1); 1071 kfree(tmp2); 1072 return ret; 1073 } 1074 1075 static u32 md_csum_fold(u32 csum) 1076 { 1077 csum = (csum & 0xffff) + (csum >> 16); 1078 return (csum & 0xffff) + (csum >> 16); 1079 } 1080 1081 static unsigned int calc_sb_csum(mdp_super_t *sb) 1082 { 1083 u64 newcsum = 0; 1084 u32 *sb32 = (u32*)sb; 1085 int i; 1086 unsigned int disk_csum, csum; 1087 1088 disk_csum = sb->sb_csum; 1089 sb->sb_csum = 0; 1090 1091 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1092 newcsum += sb32[i]; 1093 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1094 1095 #ifdef CONFIG_ALPHA 1096 /* This used to use csum_partial, which was wrong for several 1097 * reasons including that different results are returned on 1098 * different architectures. It isn't critical that we get exactly 1099 * the same return value as before (we always csum_fold before 1100 * testing, and that removes any differences). However as we 1101 * know that csum_partial always returned a 16bit value on 1102 * alphas, do a fold to maximise conformity to previous behaviour. 1103 */ 1104 sb->sb_csum = md_csum_fold(disk_csum); 1105 #else 1106 sb->sb_csum = disk_csum; 1107 #endif 1108 return csum; 1109 } 1110 1111 /* 1112 * Handle superblock details. 1113 * We want to be able to handle multiple superblock formats 1114 * so we have a common interface to them all, and an array of 1115 * different handlers. 1116 * We rely on user-space to write the initial superblock, and support 1117 * reading and updating of superblocks. 1118 * Interface methods are: 1119 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1120 * loads and validates a superblock on dev. 1121 * if refdev != NULL, compare superblocks on both devices 1122 * Return: 1123 * 0 - dev has a superblock that is compatible with refdev 1124 * 1 - dev has a superblock that is compatible and newer than refdev 1125 * so dev should be used as the refdev in future 1126 * -EINVAL superblock incompatible or invalid 1127 * -othererror e.g. -EIO 1128 * 1129 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1130 * Verify that dev is acceptable into mddev. 1131 * The first time, mddev->raid_disks will be 0, and data from 1132 * dev should be merged in. Subsequent calls check that dev 1133 * is new enough. Return 0 or -EINVAL 1134 * 1135 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1136 * Update the superblock for rdev with data in mddev 1137 * This does not write to disc. 1138 * 1139 */ 1140 1141 struct super_type { 1142 char *name; 1143 struct module *owner; 1144 int (*load_super)(struct md_rdev *rdev, 1145 struct md_rdev *refdev, 1146 int minor_version); 1147 int (*validate_super)(struct mddev *mddev, 1148 struct md_rdev *rdev); 1149 void (*sync_super)(struct mddev *mddev, 1150 struct md_rdev *rdev); 1151 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1152 sector_t num_sectors); 1153 int (*allow_new_offset)(struct md_rdev *rdev, 1154 unsigned long long new_offset); 1155 }; 1156 1157 /* 1158 * Check that the given mddev has no bitmap. 1159 * 1160 * This function is called from the run method of all personalities that do not 1161 * support bitmaps. It prints an error message and returns non-zero if mddev 1162 * has a bitmap. Otherwise, it returns 0. 1163 * 1164 */ 1165 int md_check_no_bitmap(struct mddev *mddev) 1166 { 1167 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1168 return 0; 1169 pr_warn("%s: bitmaps are not supported for %s\n", 1170 mdname(mddev), mddev->pers->name); 1171 return 1; 1172 } 1173 EXPORT_SYMBOL(md_check_no_bitmap); 1174 1175 /* 1176 * load_super for 0.90.0 1177 */ 1178 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1179 { 1180 mdp_super_t *sb; 1181 int ret; 1182 bool spare_disk = true; 1183 1184 /* 1185 * Calculate the position of the superblock (512byte sectors), 1186 * it's at the end of the disk. 1187 * 1188 * It also happens to be a multiple of 4Kb. 1189 */ 1190 rdev->sb_start = calc_dev_sboffset(rdev); 1191 1192 ret = read_disk_sb(rdev, MD_SB_BYTES); 1193 if (ret) 1194 return ret; 1195 1196 ret = -EINVAL; 1197 1198 sb = page_address(rdev->sb_page); 1199 1200 if (sb->md_magic != MD_SB_MAGIC) { 1201 pr_warn("md: invalid raid superblock magic on %pg\n", 1202 rdev->bdev); 1203 goto abort; 1204 } 1205 1206 if (sb->major_version != 0 || 1207 sb->minor_version < 90 || 1208 sb->minor_version > 91) { 1209 pr_warn("Bad version number %d.%d on %pg\n", 1210 sb->major_version, sb->minor_version, rdev->bdev); 1211 goto abort; 1212 } 1213 1214 if (sb->raid_disks <= 0) 1215 goto abort; 1216 1217 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1218 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1219 goto abort; 1220 } 1221 1222 rdev->preferred_minor = sb->md_minor; 1223 rdev->data_offset = 0; 1224 rdev->new_data_offset = 0; 1225 rdev->sb_size = MD_SB_BYTES; 1226 rdev->badblocks.shift = -1; 1227 1228 if (sb->level == LEVEL_MULTIPATH) 1229 rdev->desc_nr = -1; 1230 else 1231 rdev->desc_nr = sb->this_disk.number; 1232 1233 /* not spare disk, or LEVEL_MULTIPATH */ 1234 if (sb->level == LEVEL_MULTIPATH || 1235 (rdev->desc_nr >= 0 && 1236 rdev->desc_nr < MD_SB_DISKS && 1237 sb->disks[rdev->desc_nr].state & 1238 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1239 spare_disk = false; 1240 1241 if (!refdev) { 1242 if (!spare_disk) 1243 ret = 1; 1244 else 1245 ret = 0; 1246 } else { 1247 __u64 ev1, ev2; 1248 mdp_super_t *refsb = page_address(refdev->sb_page); 1249 if (!md_uuid_equal(refsb, sb)) { 1250 pr_warn("md: %pg has different UUID to %pg\n", 1251 rdev->bdev, refdev->bdev); 1252 goto abort; 1253 } 1254 if (!md_sb_equal(refsb, sb)) { 1255 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1256 rdev->bdev, refdev->bdev); 1257 goto abort; 1258 } 1259 ev1 = md_event(sb); 1260 ev2 = md_event(refsb); 1261 1262 if (!spare_disk && ev1 > ev2) 1263 ret = 1; 1264 else 1265 ret = 0; 1266 } 1267 rdev->sectors = rdev->sb_start; 1268 /* Limit to 4TB as metadata cannot record more than that. 1269 * (not needed for Linear and RAID0 as metadata doesn't 1270 * record this size) 1271 */ 1272 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1273 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1274 1275 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1276 /* "this cannot possibly happen" ... */ 1277 ret = -EINVAL; 1278 1279 abort: 1280 return ret; 1281 } 1282 1283 /* 1284 * validate_super for 0.90.0 1285 */ 1286 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1287 { 1288 mdp_disk_t *desc; 1289 mdp_super_t *sb = page_address(rdev->sb_page); 1290 __u64 ev1 = md_event(sb); 1291 1292 rdev->raid_disk = -1; 1293 clear_bit(Faulty, &rdev->flags); 1294 clear_bit(In_sync, &rdev->flags); 1295 clear_bit(Bitmap_sync, &rdev->flags); 1296 clear_bit(WriteMostly, &rdev->flags); 1297 1298 if (mddev->raid_disks == 0) { 1299 mddev->major_version = 0; 1300 mddev->minor_version = sb->minor_version; 1301 mddev->patch_version = sb->patch_version; 1302 mddev->external = 0; 1303 mddev->chunk_sectors = sb->chunk_size >> 9; 1304 mddev->ctime = sb->ctime; 1305 mddev->utime = sb->utime; 1306 mddev->level = sb->level; 1307 mddev->clevel[0] = 0; 1308 mddev->layout = sb->layout; 1309 mddev->raid_disks = sb->raid_disks; 1310 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1311 mddev->events = ev1; 1312 mddev->bitmap_info.offset = 0; 1313 mddev->bitmap_info.space = 0; 1314 /* bitmap can use 60 K after the 4K superblocks */ 1315 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1316 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1317 mddev->reshape_backwards = 0; 1318 1319 if (mddev->minor_version >= 91) { 1320 mddev->reshape_position = sb->reshape_position; 1321 mddev->delta_disks = sb->delta_disks; 1322 mddev->new_level = sb->new_level; 1323 mddev->new_layout = sb->new_layout; 1324 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1325 if (mddev->delta_disks < 0) 1326 mddev->reshape_backwards = 1; 1327 } else { 1328 mddev->reshape_position = MaxSector; 1329 mddev->delta_disks = 0; 1330 mddev->new_level = mddev->level; 1331 mddev->new_layout = mddev->layout; 1332 mddev->new_chunk_sectors = mddev->chunk_sectors; 1333 } 1334 if (mddev->level == 0) 1335 mddev->layout = -1; 1336 1337 if (sb->state & (1<<MD_SB_CLEAN)) 1338 mddev->recovery_cp = MaxSector; 1339 else { 1340 if (sb->events_hi == sb->cp_events_hi && 1341 sb->events_lo == sb->cp_events_lo) { 1342 mddev->recovery_cp = sb->recovery_cp; 1343 } else 1344 mddev->recovery_cp = 0; 1345 } 1346 1347 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1348 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1349 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1350 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1351 1352 mddev->max_disks = MD_SB_DISKS; 1353 1354 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1355 mddev->bitmap_info.file == NULL) { 1356 mddev->bitmap_info.offset = 1357 mddev->bitmap_info.default_offset; 1358 mddev->bitmap_info.space = 1359 mddev->bitmap_info.default_space; 1360 } 1361 1362 } else if (mddev->pers == NULL) { 1363 /* Insist on good event counter while assembling, except 1364 * for spares (which don't need an event count) */ 1365 ++ev1; 1366 if (sb->disks[rdev->desc_nr].state & ( 1367 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1368 if (ev1 < mddev->events) 1369 return -EINVAL; 1370 } else if (mddev->bitmap) { 1371 /* if adding to array with a bitmap, then we can accept an 1372 * older device ... but not too old. 1373 */ 1374 if (ev1 < mddev->bitmap->events_cleared) 1375 return 0; 1376 if (ev1 < mddev->events) 1377 set_bit(Bitmap_sync, &rdev->flags); 1378 } else { 1379 if (ev1 < mddev->events) 1380 /* just a hot-add of a new device, leave raid_disk at -1 */ 1381 return 0; 1382 } 1383 1384 if (mddev->level != LEVEL_MULTIPATH) { 1385 desc = sb->disks + rdev->desc_nr; 1386 1387 if (desc->state & (1<<MD_DISK_FAULTY)) 1388 set_bit(Faulty, &rdev->flags); 1389 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1390 desc->raid_disk < mddev->raid_disks */) { 1391 set_bit(In_sync, &rdev->flags); 1392 rdev->raid_disk = desc->raid_disk; 1393 rdev->saved_raid_disk = desc->raid_disk; 1394 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1395 /* active but not in sync implies recovery up to 1396 * reshape position. We don't know exactly where 1397 * that is, so set to zero for now */ 1398 if (mddev->minor_version >= 91) { 1399 rdev->recovery_offset = 0; 1400 rdev->raid_disk = desc->raid_disk; 1401 } 1402 } 1403 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1404 set_bit(WriteMostly, &rdev->flags); 1405 if (desc->state & (1<<MD_DISK_FAILFAST)) 1406 set_bit(FailFast, &rdev->flags); 1407 } else /* MULTIPATH are always insync */ 1408 set_bit(In_sync, &rdev->flags); 1409 return 0; 1410 } 1411 1412 /* 1413 * sync_super for 0.90.0 1414 */ 1415 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1416 { 1417 mdp_super_t *sb; 1418 struct md_rdev *rdev2; 1419 int next_spare = mddev->raid_disks; 1420 1421 /* make rdev->sb match mddev data.. 1422 * 1423 * 1/ zero out disks 1424 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1425 * 3/ any empty disks < next_spare become removed 1426 * 1427 * disks[0] gets initialised to REMOVED because 1428 * we cannot be sure from other fields if it has 1429 * been initialised or not. 1430 */ 1431 int i; 1432 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1433 1434 rdev->sb_size = MD_SB_BYTES; 1435 1436 sb = page_address(rdev->sb_page); 1437 1438 memset(sb, 0, sizeof(*sb)); 1439 1440 sb->md_magic = MD_SB_MAGIC; 1441 sb->major_version = mddev->major_version; 1442 sb->patch_version = mddev->patch_version; 1443 sb->gvalid_words = 0; /* ignored */ 1444 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1445 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1446 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1447 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1448 1449 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1450 sb->level = mddev->level; 1451 sb->size = mddev->dev_sectors / 2; 1452 sb->raid_disks = mddev->raid_disks; 1453 sb->md_minor = mddev->md_minor; 1454 sb->not_persistent = 0; 1455 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1456 sb->state = 0; 1457 sb->events_hi = (mddev->events>>32); 1458 sb->events_lo = (u32)mddev->events; 1459 1460 if (mddev->reshape_position == MaxSector) 1461 sb->minor_version = 90; 1462 else { 1463 sb->minor_version = 91; 1464 sb->reshape_position = mddev->reshape_position; 1465 sb->new_level = mddev->new_level; 1466 sb->delta_disks = mddev->delta_disks; 1467 sb->new_layout = mddev->new_layout; 1468 sb->new_chunk = mddev->new_chunk_sectors << 9; 1469 } 1470 mddev->minor_version = sb->minor_version; 1471 if (mddev->in_sync) 1472 { 1473 sb->recovery_cp = mddev->recovery_cp; 1474 sb->cp_events_hi = (mddev->events>>32); 1475 sb->cp_events_lo = (u32)mddev->events; 1476 if (mddev->recovery_cp == MaxSector) 1477 sb->state = (1<< MD_SB_CLEAN); 1478 } else 1479 sb->recovery_cp = 0; 1480 1481 sb->layout = mddev->layout; 1482 sb->chunk_size = mddev->chunk_sectors << 9; 1483 1484 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1485 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1486 1487 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1488 rdev_for_each(rdev2, mddev) { 1489 mdp_disk_t *d; 1490 int desc_nr; 1491 int is_active = test_bit(In_sync, &rdev2->flags); 1492 1493 if (rdev2->raid_disk >= 0 && 1494 sb->minor_version >= 91) 1495 /* we have nowhere to store the recovery_offset, 1496 * but if it is not below the reshape_position, 1497 * we can piggy-back on that. 1498 */ 1499 is_active = 1; 1500 if (rdev2->raid_disk < 0 || 1501 test_bit(Faulty, &rdev2->flags)) 1502 is_active = 0; 1503 if (is_active) 1504 desc_nr = rdev2->raid_disk; 1505 else 1506 desc_nr = next_spare++; 1507 rdev2->desc_nr = desc_nr; 1508 d = &sb->disks[rdev2->desc_nr]; 1509 nr_disks++; 1510 d->number = rdev2->desc_nr; 1511 d->major = MAJOR(rdev2->bdev->bd_dev); 1512 d->minor = MINOR(rdev2->bdev->bd_dev); 1513 if (is_active) 1514 d->raid_disk = rdev2->raid_disk; 1515 else 1516 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1517 if (test_bit(Faulty, &rdev2->flags)) 1518 d->state = (1<<MD_DISK_FAULTY); 1519 else if (is_active) { 1520 d->state = (1<<MD_DISK_ACTIVE); 1521 if (test_bit(In_sync, &rdev2->flags)) 1522 d->state |= (1<<MD_DISK_SYNC); 1523 active++; 1524 working++; 1525 } else { 1526 d->state = 0; 1527 spare++; 1528 working++; 1529 } 1530 if (test_bit(WriteMostly, &rdev2->flags)) 1531 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1532 if (test_bit(FailFast, &rdev2->flags)) 1533 d->state |= (1<<MD_DISK_FAILFAST); 1534 } 1535 /* now set the "removed" and "faulty" bits on any missing devices */ 1536 for (i=0 ; i < mddev->raid_disks ; i++) { 1537 mdp_disk_t *d = &sb->disks[i]; 1538 if (d->state == 0 && d->number == 0) { 1539 d->number = i; 1540 d->raid_disk = i; 1541 d->state = (1<<MD_DISK_REMOVED); 1542 d->state |= (1<<MD_DISK_FAULTY); 1543 failed++; 1544 } 1545 } 1546 sb->nr_disks = nr_disks; 1547 sb->active_disks = active; 1548 sb->working_disks = working; 1549 sb->failed_disks = failed; 1550 sb->spare_disks = spare; 1551 1552 sb->this_disk = sb->disks[rdev->desc_nr]; 1553 sb->sb_csum = calc_sb_csum(sb); 1554 } 1555 1556 /* 1557 * rdev_size_change for 0.90.0 1558 */ 1559 static unsigned long long 1560 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1561 { 1562 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1563 return 0; /* component must fit device */ 1564 if (rdev->mddev->bitmap_info.offset) 1565 return 0; /* can't move bitmap */ 1566 rdev->sb_start = calc_dev_sboffset(rdev); 1567 if (!num_sectors || num_sectors > rdev->sb_start) 1568 num_sectors = rdev->sb_start; 1569 /* Limit to 4TB as metadata cannot record more than that. 1570 * 4TB == 2^32 KB, or 2*2^32 sectors. 1571 */ 1572 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1573 num_sectors = (sector_t)(2ULL << 32) - 2; 1574 do { 1575 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1576 rdev->sb_page); 1577 } while (md_super_wait(rdev->mddev) < 0); 1578 return num_sectors; 1579 } 1580 1581 static int 1582 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1583 { 1584 /* non-zero offset changes not possible with v0.90 */ 1585 return new_offset == 0; 1586 } 1587 1588 /* 1589 * version 1 superblock 1590 */ 1591 1592 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1593 { 1594 __le32 disk_csum; 1595 u32 csum; 1596 unsigned long long newcsum; 1597 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1598 __le32 *isuper = (__le32*)sb; 1599 1600 disk_csum = sb->sb_csum; 1601 sb->sb_csum = 0; 1602 newcsum = 0; 1603 for (; size >= 4; size -= 4) 1604 newcsum += le32_to_cpu(*isuper++); 1605 1606 if (size == 2) 1607 newcsum += le16_to_cpu(*(__le16*) isuper); 1608 1609 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1610 sb->sb_csum = disk_csum; 1611 return cpu_to_le32(csum); 1612 } 1613 1614 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1615 { 1616 struct mdp_superblock_1 *sb; 1617 int ret; 1618 sector_t sb_start; 1619 sector_t sectors; 1620 int bmask; 1621 bool spare_disk = true; 1622 1623 /* 1624 * Calculate the position of the superblock in 512byte sectors. 1625 * It is always aligned to a 4K boundary and 1626 * depeding on minor_version, it can be: 1627 * 0: At least 8K, but less than 12K, from end of device 1628 * 1: At start of device 1629 * 2: 4K from start of device. 1630 */ 1631 switch(minor_version) { 1632 case 0: 1633 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1634 sb_start &= ~(sector_t)(4*2-1); 1635 break; 1636 case 1: 1637 sb_start = 0; 1638 break; 1639 case 2: 1640 sb_start = 8; 1641 break; 1642 default: 1643 return -EINVAL; 1644 } 1645 rdev->sb_start = sb_start; 1646 1647 /* superblock is rarely larger than 1K, but it can be larger, 1648 * and it is safe to read 4k, so we do that 1649 */ 1650 ret = read_disk_sb(rdev, 4096); 1651 if (ret) return ret; 1652 1653 sb = page_address(rdev->sb_page); 1654 1655 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1656 sb->major_version != cpu_to_le32(1) || 1657 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1658 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1659 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1660 return -EINVAL; 1661 1662 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1663 pr_warn("md: invalid superblock checksum on %pg\n", 1664 rdev->bdev); 1665 return -EINVAL; 1666 } 1667 if (le64_to_cpu(sb->data_size) < 10) { 1668 pr_warn("md: data_size too small on %pg\n", 1669 rdev->bdev); 1670 return -EINVAL; 1671 } 1672 if (sb->pad0 || 1673 sb->pad3[0] || 1674 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1675 /* Some padding is non-zero, might be a new feature */ 1676 return -EINVAL; 1677 1678 rdev->preferred_minor = 0xffff; 1679 rdev->data_offset = le64_to_cpu(sb->data_offset); 1680 rdev->new_data_offset = rdev->data_offset; 1681 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1682 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1683 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1684 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1685 1686 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1687 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1688 if (rdev->sb_size & bmask) 1689 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1690 1691 if (minor_version 1692 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1693 return -EINVAL; 1694 if (minor_version 1695 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1696 return -EINVAL; 1697 1698 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1699 rdev->desc_nr = -1; 1700 else 1701 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1702 1703 if (!rdev->bb_page) { 1704 rdev->bb_page = alloc_page(GFP_KERNEL); 1705 if (!rdev->bb_page) 1706 return -ENOMEM; 1707 } 1708 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1709 rdev->badblocks.count == 0) { 1710 /* need to load the bad block list. 1711 * Currently we limit it to one page. 1712 */ 1713 s32 offset; 1714 sector_t bb_sector; 1715 __le64 *bbp; 1716 int i; 1717 int sectors = le16_to_cpu(sb->bblog_size); 1718 if (sectors > (PAGE_SIZE / 512)) 1719 return -EINVAL; 1720 offset = le32_to_cpu(sb->bblog_offset); 1721 if (offset == 0) 1722 return -EINVAL; 1723 bb_sector = (long long)offset; 1724 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1725 rdev->bb_page, REQ_OP_READ, 0, true)) 1726 return -EIO; 1727 bbp = (__le64 *)page_address(rdev->bb_page); 1728 rdev->badblocks.shift = sb->bblog_shift; 1729 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1730 u64 bb = le64_to_cpu(*bbp); 1731 int count = bb & (0x3ff); 1732 u64 sector = bb >> 10; 1733 sector <<= sb->bblog_shift; 1734 count <<= sb->bblog_shift; 1735 if (bb + 1 == 0) 1736 break; 1737 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1738 return -EINVAL; 1739 } 1740 } else if (sb->bblog_offset != 0) 1741 rdev->badblocks.shift = 0; 1742 1743 if ((le32_to_cpu(sb->feature_map) & 1744 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1745 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1746 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1747 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1748 } 1749 1750 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1751 sb->level != 0) 1752 return -EINVAL; 1753 1754 /* not spare disk, or LEVEL_MULTIPATH */ 1755 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1756 (rdev->desc_nr >= 0 && 1757 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1758 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1759 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1760 spare_disk = false; 1761 1762 if (!refdev) { 1763 if (!spare_disk) 1764 ret = 1; 1765 else 1766 ret = 0; 1767 } else { 1768 __u64 ev1, ev2; 1769 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1770 1771 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1772 sb->level != refsb->level || 1773 sb->layout != refsb->layout || 1774 sb->chunksize != refsb->chunksize) { 1775 pr_warn("md: %pg has strangely different superblock to %pg\n", 1776 rdev->bdev, 1777 refdev->bdev); 1778 return -EINVAL; 1779 } 1780 ev1 = le64_to_cpu(sb->events); 1781 ev2 = le64_to_cpu(refsb->events); 1782 1783 if (!spare_disk && ev1 > ev2) 1784 ret = 1; 1785 else 1786 ret = 0; 1787 } 1788 if (minor_version) 1789 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1790 else 1791 sectors = rdev->sb_start; 1792 if (sectors < le64_to_cpu(sb->data_size)) 1793 return -EINVAL; 1794 rdev->sectors = le64_to_cpu(sb->data_size); 1795 return ret; 1796 } 1797 1798 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1799 { 1800 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1801 __u64 ev1 = le64_to_cpu(sb->events); 1802 1803 rdev->raid_disk = -1; 1804 clear_bit(Faulty, &rdev->flags); 1805 clear_bit(In_sync, &rdev->flags); 1806 clear_bit(Bitmap_sync, &rdev->flags); 1807 clear_bit(WriteMostly, &rdev->flags); 1808 1809 if (mddev->raid_disks == 0) { 1810 mddev->major_version = 1; 1811 mddev->patch_version = 0; 1812 mddev->external = 0; 1813 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1814 mddev->ctime = le64_to_cpu(sb->ctime); 1815 mddev->utime = le64_to_cpu(sb->utime); 1816 mddev->level = le32_to_cpu(sb->level); 1817 mddev->clevel[0] = 0; 1818 mddev->layout = le32_to_cpu(sb->layout); 1819 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1820 mddev->dev_sectors = le64_to_cpu(sb->size); 1821 mddev->events = ev1; 1822 mddev->bitmap_info.offset = 0; 1823 mddev->bitmap_info.space = 0; 1824 /* Default location for bitmap is 1K after superblock 1825 * using 3K - total of 4K 1826 */ 1827 mddev->bitmap_info.default_offset = 1024 >> 9; 1828 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1829 mddev->reshape_backwards = 0; 1830 1831 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1832 memcpy(mddev->uuid, sb->set_uuid, 16); 1833 1834 mddev->max_disks = (4096-256)/2; 1835 1836 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1837 mddev->bitmap_info.file == NULL) { 1838 mddev->bitmap_info.offset = 1839 (__s32)le32_to_cpu(sb->bitmap_offset); 1840 /* Metadata doesn't record how much space is available. 1841 * For 1.0, we assume we can use up to the superblock 1842 * if before, else to 4K beyond superblock. 1843 * For others, assume no change is possible. 1844 */ 1845 if (mddev->minor_version > 0) 1846 mddev->bitmap_info.space = 0; 1847 else if (mddev->bitmap_info.offset > 0) 1848 mddev->bitmap_info.space = 1849 8 - mddev->bitmap_info.offset; 1850 else 1851 mddev->bitmap_info.space = 1852 -mddev->bitmap_info.offset; 1853 } 1854 1855 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1856 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1857 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1858 mddev->new_level = le32_to_cpu(sb->new_level); 1859 mddev->new_layout = le32_to_cpu(sb->new_layout); 1860 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1861 if (mddev->delta_disks < 0 || 1862 (mddev->delta_disks == 0 && 1863 (le32_to_cpu(sb->feature_map) 1864 & MD_FEATURE_RESHAPE_BACKWARDS))) 1865 mddev->reshape_backwards = 1; 1866 } else { 1867 mddev->reshape_position = MaxSector; 1868 mddev->delta_disks = 0; 1869 mddev->new_level = mddev->level; 1870 mddev->new_layout = mddev->layout; 1871 mddev->new_chunk_sectors = mddev->chunk_sectors; 1872 } 1873 1874 if (mddev->level == 0 && 1875 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1876 mddev->layout = -1; 1877 1878 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1879 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1880 1881 if (le32_to_cpu(sb->feature_map) & 1882 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1883 if (le32_to_cpu(sb->feature_map) & 1884 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1885 return -EINVAL; 1886 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1887 (le32_to_cpu(sb->feature_map) & 1888 MD_FEATURE_MULTIPLE_PPLS)) 1889 return -EINVAL; 1890 set_bit(MD_HAS_PPL, &mddev->flags); 1891 } 1892 } else if (mddev->pers == NULL) { 1893 /* Insist of good event counter while assembling, except for 1894 * spares (which don't need an event count) */ 1895 ++ev1; 1896 if (rdev->desc_nr >= 0 && 1897 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1898 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1899 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1900 if (ev1 < mddev->events) 1901 return -EINVAL; 1902 } else if (mddev->bitmap) { 1903 /* If adding to array with a bitmap, then we can accept an 1904 * older device, but not too old. 1905 */ 1906 if (ev1 < mddev->bitmap->events_cleared) 1907 return 0; 1908 if (ev1 < mddev->events) 1909 set_bit(Bitmap_sync, &rdev->flags); 1910 } else { 1911 if (ev1 < mddev->events) 1912 /* just a hot-add of a new device, leave raid_disk at -1 */ 1913 return 0; 1914 } 1915 if (mddev->level != LEVEL_MULTIPATH) { 1916 int role; 1917 if (rdev->desc_nr < 0 || 1918 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1919 role = MD_DISK_ROLE_SPARE; 1920 rdev->desc_nr = -1; 1921 } else 1922 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1923 switch(role) { 1924 case MD_DISK_ROLE_SPARE: /* spare */ 1925 break; 1926 case MD_DISK_ROLE_FAULTY: /* faulty */ 1927 set_bit(Faulty, &rdev->flags); 1928 break; 1929 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1930 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1931 /* journal device without journal feature */ 1932 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1933 return -EINVAL; 1934 } 1935 set_bit(Journal, &rdev->flags); 1936 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1937 rdev->raid_disk = 0; 1938 break; 1939 default: 1940 rdev->saved_raid_disk = role; 1941 if ((le32_to_cpu(sb->feature_map) & 1942 MD_FEATURE_RECOVERY_OFFSET)) { 1943 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1944 if (!(le32_to_cpu(sb->feature_map) & 1945 MD_FEATURE_RECOVERY_BITMAP)) 1946 rdev->saved_raid_disk = -1; 1947 } else { 1948 /* 1949 * If the array is FROZEN, then the device can't 1950 * be in_sync with rest of array. 1951 */ 1952 if (!test_bit(MD_RECOVERY_FROZEN, 1953 &mddev->recovery)) 1954 set_bit(In_sync, &rdev->flags); 1955 } 1956 rdev->raid_disk = role; 1957 break; 1958 } 1959 if (sb->devflags & WriteMostly1) 1960 set_bit(WriteMostly, &rdev->flags); 1961 if (sb->devflags & FailFast1) 1962 set_bit(FailFast, &rdev->flags); 1963 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1964 set_bit(Replacement, &rdev->flags); 1965 } else /* MULTIPATH are always insync */ 1966 set_bit(In_sync, &rdev->flags); 1967 1968 return 0; 1969 } 1970 1971 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1972 { 1973 struct mdp_superblock_1 *sb; 1974 struct md_rdev *rdev2; 1975 int max_dev, i; 1976 /* make rdev->sb match mddev and rdev data. */ 1977 1978 sb = page_address(rdev->sb_page); 1979 1980 sb->feature_map = 0; 1981 sb->pad0 = 0; 1982 sb->recovery_offset = cpu_to_le64(0); 1983 memset(sb->pad3, 0, sizeof(sb->pad3)); 1984 1985 sb->utime = cpu_to_le64((__u64)mddev->utime); 1986 sb->events = cpu_to_le64(mddev->events); 1987 if (mddev->in_sync) 1988 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1989 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1990 sb->resync_offset = cpu_to_le64(MaxSector); 1991 else 1992 sb->resync_offset = cpu_to_le64(0); 1993 1994 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1995 1996 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1997 sb->size = cpu_to_le64(mddev->dev_sectors); 1998 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1999 sb->level = cpu_to_le32(mddev->level); 2000 sb->layout = cpu_to_le32(mddev->layout); 2001 if (test_bit(FailFast, &rdev->flags)) 2002 sb->devflags |= FailFast1; 2003 else 2004 sb->devflags &= ~FailFast1; 2005 2006 if (test_bit(WriteMostly, &rdev->flags)) 2007 sb->devflags |= WriteMostly1; 2008 else 2009 sb->devflags &= ~WriteMostly1; 2010 sb->data_offset = cpu_to_le64(rdev->data_offset); 2011 sb->data_size = cpu_to_le64(rdev->sectors); 2012 2013 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2014 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2015 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2016 } 2017 2018 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2019 !test_bit(In_sync, &rdev->flags)) { 2020 sb->feature_map |= 2021 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2022 sb->recovery_offset = 2023 cpu_to_le64(rdev->recovery_offset); 2024 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2025 sb->feature_map |= 2026 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2027 } 2028 /* Note: recovery_offset and journal_tail share space */ 2029 if (test_bit(Journal, &rdev->flags)) 2030 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2031 if (test_bit(Replacement, &rdev->flags)) 2032 sb->feature_map |= 2033 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2034 2035 if (mddev->reshape_position != MaxSector) { 2036 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2037 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2038 sb->new_layout = cpu_to_le32(mddev->new_layout); 2039 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2040 sb->new_level = cpu_to_le32(mddev->new_level); 2041 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2042 if (mddev->delta_disks == 0 && 2043 mddev->reshape_backwards) 2044 sb->feature_map 2045 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2046 if (rdev->new_data_offset != rdev->data_offset) { 2047 sb->feature_map 2048 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2049 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2050 - rdev->data_offset)); 2051 } 2052 } 2053 2054 if (mddev_is_clustered(mddev)) 2055 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2056 2057 if (rdev->badblocks.count == 0) 2058 /* Nothing to do for bad blocks*/ ; 2059 else if (sb->bblog_offset == 0) 2060 /* Cannot record bad blocks on this device */ 2061 md_error(mddev, rdev); 2062 else { 2063 struct badblocks *bb = &rdev->badblocks; 2064 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2065 u64 *p = bb->page; 2066 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2067 if (bb->changed) { 2068 unsigned seq; 2069 2070 retry: 2071 seq = read_seqbegin(&bb->lock); 2072 2073 memset(bbp, 0xff, PAGE_SIZE); 2074 2075 for (i = 0 ; i < bb->count ; i++) { 2076 u64 internal_bb = p[i]; 2077 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2078 | BB_LEN(internal_bb)); 2079 bbp[i] = cpu_to_le64(store_bb); 2080 } 2081 bb->changed = 0; 2082 if (read_seqretry(&bb->lock, seq)) 2083 goto retry; 2084 2085 bb->sector = (rdev->sb_start + 2086 (int)le32_to_cpu(sb->bblog_offset)); 2087 bb->size = le16_to_cpu(sb->bblog_size); 2088 } 2089 } 2090 2091 max_dev = 0; 2092 rdev_for_each(rdev2, mddev) 2093 if (rdev2->desc_nr+1 > max_dev) 2094 max_dev = rdev2->desc_nr+1; 2095 2096 if (max_dev > le32_to_cpu(sb->max_dev)) { 2097 int bmask; 2098 sb->max_dev = cpu_to_le32(max_dev); 2099 rdev->sb_size = max_dev * 2 + 256; 2100 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2101 if (rdev->sb_size & bmask) 2102 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2103 } else 2104 max_dev = le32_to_cpu(sb->max_dev); 2105 2106 for (i=0; i<max_dev;i++) 2107 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2108 2109 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2110 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2111 2112 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2113 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2114 sb->feature_map |= 2115 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2116 else 2117 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2118 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2119 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2120 } 2121 2122 rdev_for_each(rdev2, mddev) { 2123 i = rdev2->desc_nr; 2124 if (test_bit(Faulty, &rdev2->flags)) 2125 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2126 else if (test_bit(In_sync, &rdev2->flags)) 2127 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2128 else if (test_bit(Journal, &rdev2->flags)) 2129 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2130 else if (rdev2->raid_disk >= 0) 2131 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2132 else 2133 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2134 } 2135 2136 sb->sb_csum = calc_sb_1_csum(sb); 2137 } 2138 2139 static sector_t super_1_choose_bm_space(sector_t dev_size) 2140 { 2141 sector_t bm_space; 2142 2143 /* if the device is bigger than 8Gig, save 64k for bitmap 2144 * usage, if bigger than 200Gig, save 128k 2145 */ 2146 if (dev_size < 64*2) 2147 bm_space = 0; 2148 else if (dev_size - 64*2 >= 200*1024*1024*2) 2149 bm_space = 128*2; 2150 else if (dev_size - 4*2 > 8*1024*1024*2) 2151 bm_space = 64*2; 2152 else 2153 bm_space = 4*2; 2154 return bm_space; 2155 } 2156 2157 static unsigned long long 2158 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2159 { 2160 struct mdp_superblock_1 *sb; 2161 sector_t max_sectors; 2162 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2163 return 0; /* component must fit device */ 2164 if (rdev->data_offset != rdev->new_data_offset) 2165 return 0; /* too confusing */ 2166 if (rdev->sb_start < rdev->data_offset) { 2167 /* minor versions 1 and 2; superblock before data */ 2168 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2169 if (!num_sectors || num_sectors > max_sectors) 2170 num_sectors = max_sectors; 2171 } else if (rdev->mddev->bitmap_info.offset) { 2172 /* minor version 0 with bitmap we can't move */ 2173 return 0; 2174 } else { 2175 /* minor version 0; superblock after data */ 2176 sector_t sb_start, bm_space; 2177 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2178 2179 /* 8K is for superblock */ 2180 sb_start = dev_size - 8*2; 2181 sb_start &= ~(sector_t)(4*2 - 1); 2182 2183 bm_space = super_1_choose_bm_space(dev_size); 2184 2185 /* Space that can be used to store date needs to decrease 2186 * superblock bitmap space and bad block space(4K) 2187 */ 2188 max_sectors = sb_start - bm_space - 4*2; 2189 2190 if (!num_sectors || num_sectors > max_sectors) 2191 num_sectors = max_sectors; 2192 rdev->sb_start = sb_start; 2193 } 2194 sb = page_address(rdev->sb_page); 2195 sb->data_size = cpu_to_le64(num_sectors); 2196 sb->super_offset = cpu_to_le64(rdev->sb_start); 2197 sb->sb_csum = calc_sb_1_csum(sb); 2198 do { 2199 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2200 rdev->sb_page); 2201 } while (md_super_wait(rdev->mddev) < 0); 2202 return num_sectors; 2203 2204 } 2205 2206 static int 2207 super_1_allow_new_offset(struct md_rdev *rdev, 2208 unsigned long long new_offset) 2209 { 2210 /* All necessary checks on new >= old have been done */ 2211 struct bitmap *bitmap; 2212 if (new_offset >= rdev->data_offset) 2213 return 1; 2214 2215 /* with 1.0 metadata, there is no metadata to tread on 2216 * so we can always move back */ 2217 if (rdev->mddev->minor_version == 0) 2218 return 1; 2219 2220 /* otherwise we must be sure not to step on 2221 * any metadata, so stay: 2222 * 36K beyond start of superblock 2223 * beyond end of badblocks 2224 * beyond write-intent bitmap 2225 */ 2226 if (rdev->sb_start + (32+4)*2 > new_offset) 2227 return 0; 2228 bitmap = rdev->mddev->bitmap; 2229 if (bitmap && !rdev->mddev->bitmap_info.file && 2230 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2231 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2232 return 0; 2233 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2234 return 0; 2235 2236 return 1; 2237 } 2238 2239 static struct super_type super_types[] = { 2240 [0] = { 2241 .name = "0.90.0", 2242 .owner = THIS_MODULE, 2243 .load_super = super_90_load, 2244 .validate_super = super_90_validate, 2245 .sync_super = super_90_sync, 2246 .rdev_size_change = super_90_rdev_size_change, 2247 .allow_new_offset = super_90_allow_new_offset, 2248 }, 2249 [1] = { 2250 .name = "md-1", 2251 .owner = THIS_MODULE, 2252 .load_super = super_1_load, 2253 .validate_super = super_1_validate, 2254 .sync_super = super_1_sync, 2255 .rdev_size_change = super_1_rdev_size_change, 2256 .allow_new_offset = super_1_allow_new_offset, 2257 }, 2258 }; 2259 2260 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2261 { 2262 if (mddev->sync_super) { 2263 mddev->sync_super(mddev, rdev); 2264 return; 2265 } 2266 2267 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2268 2269 super_types[mddev->major_version].sync_super(mddev, rdev); 2270 } 2271 2272 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2273 { 2274 struct md_rdev *rdev, *rdev2; 2275 2276 rcu_read_lock(); 2277 rdev_for_each_rcu(rdev, mddev1) { 2278 if (test_bit(Faulty, &rdev->flags) || 2279 test_bit(Journal, &rdev->flags) || 2280 rdev->raid_disk == -1) 2281 continue; 2282 rdev_for_each_rcu(rdev2, mddev2) { 2283 if (test_bit(Faulty, &rdev2->flags) || 2284 test_bit(Journal, &rdev2->flags) || 2285 rdev2->raid_disk == -1) 2286 continue; 2287 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2288 rcu_read_unlock(); 2289 return 1; 2290 } 2291 } 2292 } 2293 rcu_read_unlock(); 2294 return 0; 2295 } 2296 2297 static LIST_HEAD(pending_raid_disks); 2298 2299 /* 2300 * Try to register data integrity profile for an mddev 2301 * 2302 * This is called when an array is started and after a disk has been kicked 2303 * from the array. It only succeeds if all working and active component devices 2304 * are integrity capable with matching profiles. 2305 */ 2306 int md_integrity_register(struct mddev *mddev) 2307 { 2308 struct md_rdev *rdev, *reference = NULL; 2309 2310 if (list_empty(&mddev->disks)) 2311 return 0; /* nothing to do */ 2312 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2313 return 0; /* shouldn't register, or already is */ 2314 rdev_for_each(rdev, mddev) { 2315 /* skip spares and non-functional disks */ 2316 if (test_bit(Faulty, &rdev->flags)) 2317 continue; 2318 if (rdev->raid_disk < 0) 2319 continue; 2320 if (!reference) { 2321 /* Use the first rdev as the reference */ 2322 reference = rdev; 2323 continue; 2324 } 2325 /* does this rdev's profile match the reference profile? */ 2326 if (blk_integrity_compare(reference->bdev->bd_disk, 2327 rdev->bdev->bd_disk) < 0) 2328 return -EINVAL; 2329 } 2330 if (!reference || !bdev_get_integrity(reference->bdev)) 2331 return 0; 2332 /* 2333 * All component devices are integrity capable and have matching 2334 * profiles, register the common profile for the md device. 2335 */ 2336 blk_integrity_register(mddev->gendisk, 2337 bdev_get_integrity(reference->bdev)); 2338 2339 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2340 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2341 (mddev->level != 1 && mddev->level != 10 && 2342 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2343 /* 2344 * No need to handle the failure of bioset_integrity_create, 2345 * because the function is called by md_run() -> pers->run(), 2346 * md_run calls bioset_exit -> bioset_integrity_free in case 2347 * of failure case. 2348 */ 2349 pr_err("md: failed to create integrity pool for %s\n", 2350 mdname(mddev)); 2351 return -EINVAL; 2352 } 2353 return 0; 2354 } 2355 EXPORT_SYMBOL(md_integrity_register); 2356 2357 /* 2358 * Attempt to add an rdev, but only if it is consistent with the current 2359 * integrity profile 2360 */ 2361 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2362 { 2363 struct blk_integrity *bi_mddev; 2364 2365 if (!mddev->gendisk) 2366 return 0; 2367 2368 bi_mddev = blk_get_integrity(mddev->gendisk); 2369 2370 if (!bi_mddev) /* nothing to do */ 2371 return 0; 2372 2373 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2374 pr_err("%s: incompatible integrity profile for %pg\n", 2375 mdname(mddev), rdev->bdev); 2376 return -ENXIO; 2377 } 2378 2379 return 0; 2380 } 2381 EXPORT_SYMBOL(md_integrity_add_rdev); 2382 2383 static bool rdev_read_only(struct md_rdev *rdev) 2384 { 2385 return bdev_read_only(rdev->bdev) || 2386 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2387 } 2388 2389 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2390 { 2391 char b[BDEVNAME_SIZE]; 2392 int err; 2393 2394 /* prevent duplicates */ 2395 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2396 return -EEXIST; 2397 2398 if (rdev_read_only(rdev) && mddev->pers) 2399 return -EROFS; 2400 2401 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2402 if (!test_bit(Journal, &rdev->flags) && 2403 rdev->sectors && 2404 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2405 if (mddev->pers) { 2406 /* Cannot change size, so fail 2407 * If mddev->level <= 0, then we don't care 2408 * about aligning sizes (e.g. linear) 2409 */ 2410 if (mddev->level > 0) 2411 return -ENOSPC; 2412 } else 2413 mddev->dev_sectors = rdev->sectors; 2414 } 2415 2416 /* Verify rdev->desc_nr is unique. 2417 * If it is -1, assign a free number, else 2418 * check number is not in use 2419 */ 2420 rcu_read_lock(); 2421 if (rdev->desc_nr < 0) { 2422 int choice = 0; 2423 if (mddev->pers) 2424 choice = mddev->raid_disks; 2425 while (md_find_rdev_nr_rcu(mddev, choice)) 2426 choice++; 2427 rdev->desc_nr = choice; 2428 } else { 2429 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2430 rcu_read_unlock(); 2431 return -EBUSY; 2432 } 2433 } 2434 rcu_read_unlock(); 2435 if (!test_bit(Journal, &rdev->flags) && 2436 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2437 pr_warn("md: %s: array is limited to %d devices\n", 2438 mdname(mddev), mddev->max_disks); 2439 return -EBUSY; 2440 } 2441 bdevname(rdev->bdev,b); 2442 strreplace(b, '/', '!'); 2443 2444 rdev->mddev = mddev; 2445 pr_debug("md: bind<%s>\n", b); 2446 2447 if (mddev->raid_disks) 2448 mddev_create_serial_pool(mddev, rdev, false); 2449 2450 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2451 goto fail; 2452 2453 /* failure here is OK */ 2454 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2455 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2456 rdev->sysfs_unack_badblocks = 2457 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2458 rdev->sysfs_badblocks = 2459 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2460 2461 list_add_rcu(&rdev->same_set, &mddev->disks); 2462 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2463 2464 /* May as well allow recovery to be retried once */ 2465 mddev->recovery_disabled++; 2466 2467 return 0; 2468 2469 fail: 2470 pr_warn("md: failed to register dev-%s for %s\n", 2471 b, mdname(mddev)); 2472 return err; 2473 } 2474 2475 static void rdev_delayed_delete(struct work_struct *ws) 2476 { 2477 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2478 kobject_del(&rdev->kobj); 2479 kobject_put(&rdev->kobj); 2480 } 2481 2482 static void unbind_rdev_from_array(struct md_rdev *rdev) 2483 { 2484 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2485 list_del_rcu(&rdev->same_set); 2486 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2487 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2488 rdev->mddev = NULL; 2489 sysfs_remove_link(&rdev->kobj, "block"); 2490 sysfs_put(rdev->sysfs_state); 2491 sysfs_put(rdev->sysfs_unack_badblocks); 2492 sysfs_put(rdev->sysfs_badblocks); 2493 rdev->sysfs_state = NULL; 2494 rdev->sysfs_unack_badblocks = NULL; 2495 rdev->sysfs_badblocks = NULL; 2496 rdev->badblocks.count = 0; 2497 /* We need to delay this, otherwise we can deadlock when 2498 * writing to 'remove' to "dev/state". We also need 2499 * to delay it due to rcu usage. 2500 */ 2501 synchronize_rcu(); 2502 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2503 kobject_get(&rdev->kobj); 2504 queue_work(md_rdev_misc_wq, &rdev->del_work); 2505 } 2506 2507 /* 2508 * prevent the device from being mounted, repartitioned or 2509 * otherwise reused by a RAID array (or any other kernel 2510 * subsystem), by bd_claiming the device. 2511 */ 2512 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2513 { 2514 int err = 0; 2515 struct block_device *bdev; 2516 2517 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2518 shared ? (struct md_rdev *)lock_rdev : rdev); 2519 if (IS_ERR(bdev)) { 2520 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2521 MAJOR(dev), MINOR(dev)); 2522 return PTR_ERR(bdev); 2523 } 2524 rdev->bdev = bdev; 2525 return err; 2526 } 2527 2528 static void unlock_rdev(struct md_rdev *rdev) 2529 { 2530 struct block_device *bdev = rdev->bdev; 2531 rdev->bdev = NULL; 2532 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2533 } 2534 2535 void md_autodetect_dev(dev_t dev); 2536 2537 static void export_rdev(struct md_rdev *rdev) 2538 { 2539 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2540 md_rdev_clear(rdev); 2541 #ifndef MODULE 2542 if (test_bit(AutoDetected, &rdev->flags)) 2543 md_autodetect_dev(rdev->bdev->bd_dev); 2544 #endif 2545 unlock_rdev(rdev); 2546 kobject_put(&rdev->kobj); 2547 } 2548 2549 void md_kick_rdev_from_array(struct md_rdev *rdev) 2550 { 2551 unbind_rdev_from_array(rdev); 2552 export_rdev(rdev); 2553 } 2554 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2555 2556 static void export_array(struct mddev *mddev) 2557 { 2558 struct md_rdev *rdev; 2559 2560 while (!list_empty(&mddev->disks)) { 2561 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2562 same_set); 2563 md_kick_rdev_from_array(rdev); 2564 } 2565 mddev->raid_disks = 0; 2566 mddev->major_version = 0; 2567 } 2568 2569 static bool set_in_sync(struct mddev *mddev) 2570 { 2571 lockdep_assert_held(&mddev->lock); 2572 if (!mddev->in_sync) { 2573 mddev->sync_checkers++; 2574 spin_unlock(&mddev->lock); 2575 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2576 spin_lock(&mddev->lock); 2577 if (!mddev->in_sync && 2578 percpu_ref_is_zero(&mddev->writes_pending)) { 2579 mddev->in_sync = 1; 2580 /* 2581 * Ensure ->in_sync is visible before we clear 2582 * ->sync_checkers. 2583 */ 2584 smp_mb(); 2585 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2586 sysfs_notify_dirent_safe(mddev->sysfs_state); 2587 } 2588 if (--mddev->sync_checkers == 0) 2589 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2590 } 2591 if (mddev->safemode == 1) 2592 mddev->safemode = 0; 2593 return mddev->in_sync; 2594 } 2595 2596 static void sync_sbs(struct mddev *mddev, int nospares) 2597 { 2598 /* Update each superblock (in-memory image), but 2599 * if we are allowed to, skip spares which already 2600 * have the right event counter, or have one earlier 2601 * (which would mean they aren't being marked as dirty 2602 * with the rest of the array) 2603 */ 2604 struct md_rdev *rdev; 2605 rdev_for_each(rdev, mddev) { 2606 if (rdev->sb_events == mddev->events || 2607 (nospares && 2608 rdev->raid_disk < 0 && 2609 rdev->sb_events+1 == mddev->events)) { 2610 /* Don't update this superblock */ 2611 rdev->sb_loaded = 2; 2612 } else { 2613 sync_super(mddev, rdev); 2614 rdev->sb_loaded = 1; 2615 } 2616 } 2617 } 2618 2619 static bool does_sb_need_changing(struct mddev *mddev) 2620 { 2621 struct md_rdev *rdev = NULL, *iter; 2622 struct mdp_superblock_1 *sb; 2623 int role; 2624 2625 /* Find a good rdev */ 2626 rdev_for_each(iter, mddev) 2627 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2628 rdev = iter; 2629 break; 2630 } 2631 2632 /* No good device found. */ 2633 if (!rdev) 2634 return false; 2635 2636 sb = page_address(rdev->sb_page); 2637 /* Check if a device has become faulty or a spare become active */ 2638 rdev_for_each(rdev, mddev) { 2639 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2640 /* Device activated? */ 2641 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2642 !test_bit(Faulty, &rdev->flags)) 2643 return true; 2644 /* Device turned faulty? */ 2645 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2646 return true; 2647 } 2648 2649 /* Check if any mddev parameters have changed */ 2650 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2651 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2652 (mddev->layout != le32_to_cpu(sb->layout)) || 2653 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2654 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2655 return true; 2656 2657 return false; 2658 } 2659 2660 void md_update_sb(struct mddev *mddev, int force_change) 2661 { 2662 struct md_rdev *rdev; 2663 int sync_req; 2664 int nospares = 0; 2665 int any_badblocks_changed = 0; 2666 int ret = -1; 2667 2668 if (mddev->ro) { 2669 if (force_change) 2670 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2671 return; 2672 } 2673 2674 repeat: 2675 if (mddev_is_clustered(mddev)) { 2676 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2677 force_change = 1; 2678 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2679 nospares = 1; 2680 ret = md_cluster_ops->metadata_update_start(mddev); 2681 /* Has someone else has updated the sb */ 2682 if (!does_sb_need_changing(mddev)) { 2683 if (ret == 0) 2684 md_cluster_ops->metadata_update_cancel(mddev); 2685 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2686 BIT(MD_SB_CHANGE_DEVS) | 2687 BIT(MD_SB_CHANGE_CLEAN)); 2688 return; 2689 } 2690 } 2691 2692 /* 2693 * First make sure individual recovery_offsets are correct 2694 * curr_resync_completed can only be used during recovery. 2695 * During reshape/resync it might use array-addresses rather 2696 * that device addresses. 2697 */ 2698 rdev_for_each(rdev, mddev) { 2699 if (rdev->raid_disk >= 0 && 2700 mddev->delta_disks >= 0 && 2701 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2702 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2703 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2704 !test_bit(Journal, &rdev->flags) && 2705 !test_bit(In_sync, &rdev->flags) && 2706 mddev->curr_resync_completed > rdev->recovery_offset) 2707 rdev->recovery_offset = mddev->curr_resync_completed; 2708 2709 } 2710 if (!mddev->persistent) { 2711 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2712 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2713 if (!mddev->external) { 2714 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2715 rdev_for_each(rdev, mddev) { 2716 if (rdev->badblocks.changed) { 2717 rdev->badblocks.changed = 0; 2718 ack_all_badblocks(&rdev->badblocks); 2719 md_error(mddev, rdev); 2720 } 2721 clear_bit(Blocked, &rdev->flags); 2722 clear_bit(BlockedBadBlocks, &rdev->flags); 2723 wake_up(&rdev->blocked_wait); 2724 } 2725 } 2726 wake_up(&mddev->sb_wait); 2727 return; 2728 } 2729 2730 spin_lock(&mddev->lock); 2731 2732 mddev->utime = ktime_get_real_seconds(); 2733 2734 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2735 force_change = 1; 2736 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2737 /* just a clean<-> dirty transition, possibly leave spares alone, 2738 * though if events isn't the right even/odd, we will have to do 2739 * spares after all 2740 */ 2741 nospares = 1; 2742 if (force_change) 2743 nospares = 0; 2744 if (mddev->degraded) 2745 /* If the array is degraded, then skipping spares is both 2746 * dangerous and fairly pointless. 2747 * Dangerous because a device that was removed from the array 2748 * might have a event_count that still looks up-to-date, 2749 * so it can be re-added without a resync. 2750 * Pointless because if there are any spares to skip, 2751 * then a recovery will happen and soon that array won't 2752 * be degraded any more and the spare can go back to sleep then. 2753 */ 2754 nospares = 0; 2755 2756 sync_req = mddev->in_sync; 2757 2758 /* If this is just a dirty<->clean transition, and the array is clean 2759 * and 'events' is odd, we can roll back to the previous clean state */ 2760 if (nospares 2761 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2762 && mddev->can_decrease_events 2763 && mddev->events != 1) { 2764 mddev->events--; 2765 mddev->can_decrease_events = 0; 2766 } else { 2767 /* otherwise we have to go forward and ... */ 2768 mddev->events ++; 2769 mddev->can_decrease_events = nospares; 2770 } 2771 2772 /* 2773 * This 64-bit counter should never wrap. 2774 * Either we are in around ~1 trillion A.C., assuming 2775 * 1 reboot per second, or we have a bug... 2776 */ 2777 WARN_ON(mddev->events == 0); 2778 2779 rdev_for_each(rdev, mddev) { 2780 if (rdev->badblocks.changed) 2781 any_badblocks_changed++; 2782 if (test_bit(Faulty, &rdev->flags)) 2783 set_bit(FaultRecorded, &rdev->flags); 2784 } 2785 2786 sync_sbs(mddev, nospares); 2787 spin_unlock(&mddev->lock); 2788 2789 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2790 mdname(mddev), mddev->in_sync); 2791 2792 if (mddev->queue) 2793 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2794 rewrite: 2795 md_bitmap_update_sb(mddev->bitmap); 2796 rdev_for_each(rdev, mddev) { 2797 if (rdev->sb_loaded != 1) 2798 continue; /* no noise on spare devices */ 2799 2800 if (!test_bit(Faulty, &rdev->flags)) { 2801 md_super_write(mddev,rdev, 2802 rdev->sb_start, rdev->sb_size, 2803 rdev->sb_page); 2804 pr_debug("md: (write) %pg's sb offset: %llu\n", 2805 rdev->bdev, 2806 (unsigned long long)rdev->sb_start); 2807 rdev->sb_events = mddev->events; 2808 if (rdev->badblocks.size) { 2809 md_super_write(mddev, rdev, 2810 rdev->badblocks.sector, 2811 rdev->badblocks.size << 9, 2812 rdev->bb_page); 2813 rdev->badblocks.size = 0; 2814 } 2815 2816 } else 2817 pr_debug("md: %pg (skipping faulty)\n", 2818 rdev->bdev); 2819 2820 if (mddev->level == LEVEL_MULTIPATH) 2821 /* only need to write one superblock... */ 2822 break; 2823 } 2824 if (md_super_wait(mddev) < 0) 2825 goto rewrite; 2826 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2827 2828 if (mddev_is_clustered(mddev) && ret == 0) 2829 md_cluster_ops->metadata_update_finish(mddev); 2830 2831 if (mddev->in_sync != sync_req || 2832 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2833 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2834 /* have to write it out again */ 2835 goto repeat; 2836 wake_up(&mddev->sb_wait); 2837 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2838 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2839 2840 rdev_for_each(rdev, mddev) { 2841 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2842 clear_bit(Blocked, &rdev->flags); 2843 2844 if (any_badblocks_changed) 2845 ack_all_badblocks(&rdev->badblocks); 2846 clear_bit(BlockedBadBlocks, &rdev->flags); 2847 wake_up(&rdev->blocked_wait); 2848 } 2849 } 2850 EXPORT_SYMBOL(md_update_sb); 2851 2852 static int add_bound_rdev(struct md_rdev *rdev) 2853 { 2854 struct mddev *mddev = rdev->mddev; 2855 int err = 0; 2856 bool add_journal = test_bit(Journal, &rdev->flags); 2857 2858 if (!mddev->pers->hot_remove_disk || add_journal) { 2859 /* If there is hot_add_disk but no hot_remove_disk 2860 * then added disks for geometry changes, 2861 * and should be added immediately. 2862 */ 2863 super_types[mddev->major_version]. 2864 validate_super(mddev, rdev); 2865 if (add_journal) 2866 mddev_suspend(mddev); 2867 err = mddev->pers->hot_add_disk(mddev, rdev); 2868 if (add_journal) 2869 mddev_resume(mddev); 2870 if (err) { 2871 md_kick_rdev_from_array(rdev); 2872 return err; 2873 } 2874 } 2875 sysfs_notify_dirent_safe(rdev->sysfs_state); 2876 2877 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2878 if (mddev->degraded) 2879 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2880 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2881 md_new_event(); 2882 md_wakeup_thread(mddev->thread); 2883 return 0; 2884 } 2885 2886 /* words written to sysfs files may, or may not, be \n terminated. 2887 * We want to accept with case. For this we use cmd_match. 2888 */ 2889 static int cmd_match(const char *cmd, const char *str) 2890 { 2891 /* See if cmd, written into a sysfs file, matches 2892 * str. They must either be the same, or cmd can 2893 * have a trailing newline 2894 */ 2895 while (*cmd && *str && *cmd == *str) { 2896 cmd++; 2897 str++; 2898 } 2899 if (*cmd == '\n') 2900 cmd++; 2901 if (*str || *cmd) 2902 return 0; 2903 return 1; 2904 } 2905 2906 struct rdev_sysfs_entry { 2907 struct attribute attr; 2908 ssize_t (*show)(struct md_rdev *, char *); 2909 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2910 }; 2911 2912 static ssize_t 2913 state_show(struct md_rdev *rdev, char *page) 2914 { 2915 char *sep = ","; 2916 size_t len = 0; 2917 unsigned long flags = READ_ONCE(rdev->flags); 2918 2919 if (test_bit(Faulty, &flags) || 2920 (!test_bit(ExternalBbl, &flags) && 2921 rdev->badblocks.unacked_exist)) 2922 len += sprintf(page+len, "faulty%s", sep); 2923 if (test_bit(In_sync, &flags)) 2924 len += sprintf(page+len, "in_sync%s", sep); 2925 if (test_bit(Journal, &flags)) 2926 len += sprintf(page+len, "journal%s", sep); 2927 if (test_bit(WriteMostly, &flags)) 2928 len += sprintf(page+len, "write_mostly%s", sep); 2929 if (test_bit(Blocked, &flags) || 2930 (rdev->badblocks.unacked_exist 2931 && !test_bit(Faulty, &flags))) 2932 len += sprintf(page+len, "blocked%s", sep); 2933 if (!test_bit(Faulty, &flags) && 2934 !test_bit(Journal, &flags) && 2935 !test_bit(In_sync, &flags)) 2936 len += sprintf(page+len, "spare%s", sep); 2937 if (test_bit(WriteErrorSeen, &flags)) 2938 len += sprintf(page+len, "write_error%s", sep); 2939 if (test_bit(WantReplacement, &flags)) 2940 len += sprintf(page+len, "want_replacement%s", sep); 2941 if (test_bit(Replacement, &flags)) 2942 len += sprintf(page+len, "replacement%s", sep); 2943 if (test_bit(ExternalBbl, &flags)) 2944 len += sprintf(page+len, "external_bbl%s", sep); 2945 if (test_bit(FailFast, &flags)) 2946 len += sprintf(page+len, "failfast%s", sep); 2947 2948 if (len) 2949 len -= strlen(sep); 2950 2951 return len+sprintf(page+len, "\n"); 2952 } 2953 2954 static ssize_t 2955 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2956 { 2957 /* can write 2958 * faulty - simulates an error 2959 * remove - disconnects the device 2960 * writemostly - sets write_mostly 2961 * -writemostly - clears write_mostly 2962 * blocked - sets the Blocked flags 2963 * -blocked - clears the Blocked and possibly simulates an error 2964 * insync - sets Insync providing device isn't active 2965 * -insync - clear Insync for a device with a slot assigned, 2966 * so that it gets rebuilt based on bitmap 2967 * write_error - sets WriteErrorSeen 2968 * -write_error - clears WriteErrorSeen 2969 * {,-}failfast - set/clear FailFast 2970 */ 2971 2972 struct mddev *mddev = rdev->mddev; 2973 int err = -EINVAL; 2974 bool need_update_sb = false; 2975 2976 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2977 md_error(rdev->mddev, rdev); 2978 2979 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2980 err = -EBUSY; 2981 else 2982 err = 0; 2983 } else if (cmd_match(buf, "remove")) { 2984 if (rdev->mddev->pers) { 2985 clear_bit(Blocked, &rdev->flags); 2986 remove_and_add_spares(rdev->mddev, rdev); 2987 } 2988 if (rdev->raid_disk >= 0) 2989 err = -EBUSY; 2990 else { 2991 err = 0; 2992 if (mddev_is_clustered(mddev)) 2993 err = md_cluster_ops->remove_disk(mddev, rdev); 2994 2995 if (err == 0) { 2996 md_kick_rdev_from_array(rdev); 2997 if (mddev->pers) { 2998 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2999 md_wakeup_thread(mddev->thread); 3000 } 3001 md_new_event(); 3002 } 3003 } 3004 } else if (cmd_match(buf, "writemostly")) { 3005 set_bit(WriteMostly, &rdev->flags); 3006 mddev_create_serial_pool(rdev->mddev, rdev, false); 3007 need_update_sb = true; 3008 err = 0; 3009 } else if (cmd_match(buf, "-writemostly")) { 3010 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3011 clear_bit(WriteMostly, &rdev->flags); 3012 need_update_sb = true; 3013 err = 0; 3014 } else if (cmd_match(buf, "blocked")) { 3015 set_bit(Blocked, &rdev->flags); 3016 err = 0; 3017 } else if (cmd_match(buf, "-blocked")) { 3018 if (!test_bit(Faulty, &rdev->flags) && 3019 !test_bit(ExternalBbl, &rdev->flags) && 3020 rdev->badblocks.unacked_exist) { 3021 /* metadata handler doesn't understand badblocks, 3022 * so we need to fail the device 3023 */ 3024 md_error(rdev->mddev, rdev); 3025 } 3026 clear_bit(Blocked, &rdev->flags); 3027 clear_bit(BlockedBadBlocks, &rdev->flags); 3028 wake_up(&rdev->blocked_wait); 3029 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3030 md_wakeup_thread(rdev->mddev->thread); 3031 3032 err = 0; 3033 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3034 set_bit(In_sync, &rdev->flags); 3035 err = 0; 3036 } else if (cmd_match(buf, "failfast")) { 3037 set_bit(FailFast, &rdev->flags); 3038 need_update_sb = true; 3039 err = 0; 3040 } else if (cmd_match(buf, "-failfast")) { 3041 clear_bit(FailFast, &rdev->flags); 3042 need_update_sb = true; 3043 err = 0; 3044 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3045 !test_bit(Journal, &rdev->flags)) { 3046 if (rdev->mddev->pers == NULL) { 3047 clear_bit(In_sync, &rdev->flags); 3048 rdev->saved_raid_disk = rdev->raid_disk; 3049 rdev->raid_disk = -1; 3050 err = 0; 3051 } 3052 } else if (cmd_match(buf, "write_error")) { 3053 set_bit(WriteErrorSeen, &rdev->flags); 3054 err = 0; 3055 } else if (cmd_match(buf, "-write_error")) { 3056 clear_bit(WriteErrorSeen, &rdev->flags); 3057 err = 0; 3058 } else if (cmd_match(buf, "want_replacement")) { 3059 /* Any non-spare device that is not a replacement can 3060 * become want_replacement at any time, but we then need to 3061 * check if recovery is needed. 3062 */ 3063 if (rdev->raid_disk >= 0 && 3064 !test_bit(Journal, &rdev->flags) && 3065 !test_bit(Replacement, &rdev->flags)) 3066 set_bit(WantReplacement, &rdev->flags); 3067 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3068 md_wakeup_thread(rdev->mddev->thread); 3069 err = 0; 3070 } else if (cmd_match(buf, "-want_replacement")) { 3071 /* Clearing 'want_replacement' is always allowed. 3072 * Once replacements starts it is too late though. 3073 */ 3074 err = 0; 3075 clear_bit(WantReplacement, &rdev->flags); 3076 } else if (cmd_match(buf, "replacement")) { 3077 /* Can only set a device as a replacement when array has not 3078 * yet been started. Once running, replacement is automatic 3079 * from spares, or by assigning 'slot'. 3080 */ 3081 if (rdev->mddev->pers) 3082 err = -EBUSY; 3083 else { 3084 set_bit(Replacement, &rdev->flags); 3085 err = 0; 3086 } 3087 } else if (cmd_match(buf, "-replacement")) { 3088 /* Similarly, can only clear Replacement before start */ 3089 if (rdev->mddev->pers) 3090 err = -EBUSY; 3091 else { 3092 clear_bit(Replacement, &rdev->flags); 3093 err = 0; 3094 } 3095 } else if (cmd_match(buf, "re-add")) { 3096 if (!rdev->mddev->pers) 3097 err = -EINVAL; 3098 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3099 rdev->saved_raid_disk >= 0) { 3100 /* clear_bit is performed _after_ all the devices 3101 * have their local Faulty bit cleared. If any writes 3102 * happen in the meantime in the local node, they 3103 * will land in the local bitmap, which will be synced 3104 * by this node eventually 3105 */ 3106 if (!mddev_is_clustered(rdev->mddev) || 3107 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3108 clear_bit(Faulty, &rdev->flags); 3109 err = add_bound_rdev(rdev); 3110 } 3111 } else 3112 err = -EBUSY; 3113 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3114 set_bit(ExternalBbl, &rdev->flags); 3115 rdev->badblocks.shift = 0; 3116 err = 0; 3117 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3118 clear_bit(ExternalBbl, &rdev->flags); 3119 err = 0; 3120 } 3121 if (need_update_sb) 3122 md_update_sb(mddev, 1); 3123 if (!err) 3124 sysfs_notify_dirent_safe(rdev->sysfs_state); 3125 return err ? err : len; 3126 } 3127 static struct rdev_sysfs_entry rdev_state = 3128 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3129 3130 static ssize_t 3131 errors_show(struct md_rdev *rdev, char *page) 3132 { 3133 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3134 } 3135 3136 static ssize_t 3137 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3138 { 3139 unsigned int n; 3140 int rv; 3141 3142 rv = kstrtouint(buf, 10, &n); 3143 if (rv < 0) 3144 return rv; 3145 atomic_set(&rdev->corrected_errors, n); 3146 return len; 3147 } 3148 static struct rdev_sysfs_entry rdev_errors = 3149 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3150 3151 static ssize_t 3152 slot_show(struct md_rdev *rdev, char *page) 3153 { 3154 if (test_bit(Journal, &rdev->flags)) 3155 return sprintf(page, "journal\n"); 3156 else if (rdev->raid_disk < 0) 3157 return sprintf(page, "none\n"); 3158 else 3159 return sprintf(page, "%d\n", rdev->raid_disk); 3160 } 3161 3162 static ssize_t 3163 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3164 { 3165 int slot; 3166 int err; 3167 3168 if (test_bit(Journal, &rdev->flags)) 3169 return -EBUSY; 3170 if (strncmp(buf, "none", 4)==0) 3171 slot = -1; 3172 else { 3173 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3174 if (err < 0) 3175 return err; 3176 } 3177 if (rdev->mddev->pers && slot == -1) { 3178 /* Setting 'slot' on an active array requires also 3179 * updating the 'rd%d' link, and communicating 3180 * with the personality with ->hot_*_disk. 3181 * For now we only support removing 3182 * failed/spare devices. This normally happens automatically, 3183 * but not when the metadata is externally managed. 3184 */ 3185 if (rdev->raid_disk == -1) 3186 return -EEXIST; 3187 /* personality does all needed checks */ 3188 if (rdev->mddev->pers->hot_remove_disk == NULL) 3189 return -EINVAL; 3190 clear_bit(Blocked, &rdev->flags); 3191 remove_and_add_spares(rdev->mddev, rdev); 3192 if (rdev->raid_disk >= 0) 3193 return -EBUSY; 3194 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3195 md_wakeup_thread(rdev->mddev->thread); 3196 } else if (rdev->mddev->pers) { 3197 /* Activating a spare .. or possibly reactivating 3198 * if we ever get bitmaps working here. 3199 */ 3200 int err; 3201 3202 if (rdev->raid_disk != -1) 3203 return -EBUSY; 3204 3205 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3206 return -EBUSY; 3207 3208 if (rdev->mddev->pers->hot_add_disk == NULL) 3209 return -EINVAL; 3210 3211 if (slot >= rdev->mddev->raid_disks && 3212 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3213 return -ENOSPC; 3214 3215 rdev->raid_disk = slot; 3216 if (test_bit(In_sync, &rdev->flags)) 3217 rdev->saved_raid_disk = slot; 3218 else 3219 rdev->saved_raid_disk = -1; 3220 clear_bit(In_sync, &rdev->flags); 3221 clear_bit(Bitmap_sync, &rdev->flags); 3222 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3223 if (err) { 3224 rdev->raid_disk = -1; 3225 return err; 3226 } else 3227 sysfs_notify_dirent_safe(rdev->sysfs_state); 3228 /* failure here is OK */; 3229 sysfs_link_rdev(rdev->mddev, rdev); 3230 /* don't wakeup anyone, leave that to userspace. */ 3231 } else { 3232 if (slot >= rdev->mddev->raid_disks && 3233 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3234 return -ENOSPC; 3235 rdev->raid_disk = slot; 3236 /* assume it is working */ 3237 clear_bit(Faulty, &rdev->flags); 3238 clear_bit(WriteMostly, &rdev->flags); 3239 set_bit(In_sync, &rdev->flags); 3240 sysfs_notify_dirent_safe(rdev->sysfs_state); 3241 } 3242 return len; 3243 } 3244 3245 static struct rdev_sysfs_entry rdev_slot = 3246 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3247 3248 static ssize_t 3249 offset_show(struct md_rdev *rdev, char *page) 3250 { 3251 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3252 } 3253 3254 static ssize_t 3255 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3256 { 3257 unsigned long long offset; 3258 if (kstrtoull(buf, 10, &offset) < 0) 3259 return -EINVAL; 3260 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3261 return -EBUSY; 3262 if (rdev->sectors && rdev->mddev->external) 3263 /* Must set offset before size, so overlap checks 3264 * can be sane */ 3265 return -EBUSY; 3266 rdev->data_offset = offset; 3267 rdev->new_data_offset = offset; 3268 return len; 3269 } 3270 3271 static struct rdev_sysfs_entry rdev_offset = 3272 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3273 3274 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3275 { 3276 return sprintf(page, "%llu\n", 3277 (unsigned long long)rdev->new_data_offset); 3278 } 3279 3280 static ssize_t new_offset_store(struct md_rdev *rdev, 3281 const char *buf, size_t len) 3282 { 3283 unsigned long long new_offset; 3284 struct mddev *mddev = rdev->mddev; 3285 3286 if (kstrtoull(buf, 10, &new_offset) < 0) 3287 return -EINVAL; 3288 3289 if (mddev->sync_thread || 3290 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3291 return -EBUSY; 3292 if (new_offset == rdev->data_offset) 3293 /* reset is always permitted */ 3294 ; 3295 else if (new_offset > rdev->data_offset) { 3296 /* must not push array size beyond rdev_sectors */ 3297 if (new_offset - rdev->data_offset 3298 + mddev->dev_sectors > rdev->sectors) 3299 return -E2BIG; 3300 } 3301 /* Metadata worries about other space details. */ 3302 3303 /* decreasing the offset is inconsistent with a backwards 3304 * reshape. 3305 */ 3306 if (new_offset < rdev->data_offset && 3307 mddev->reshape_backwards) 3308 return -EINVAL; 3309 /* Increasing offset is inconsistent with forwards 3310 * reshape. reshape_direction should be set to 3311 * 'backwards' first. 3312 */ 3313 if (new_offset > rdev->data_offset && 3314 !mddev->reshape_backwards) 3315 return -EINVAL; 3316 3317 if (mddev->pers && mddev->persistent && 3318 !super_types[mddev->major_version] 3319 .allow_new_offset(rdev, new_offset)) 3320 return -E2BIG; 3321 rdev->new_data_offset = new_offset; 3322 if (new_offset > rdev->data_offset) 3323 mddev->reshape_backwards = 1; 3324 else if (new_offset < rdev->data_offset) 3325 mddev->reshape_backwards = 0; 3326 3327 return len; 3328 } 3329 static struct rdev_sysfs_entry rdev_new_offset = 3330 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3331 3332 static ssize_t 3333 rdev_size_show(struct md_rdev *rdev, char *page) 3334 { 3335 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3336 } 3337 3338 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3339 { 3340 /* check if two start/length pairs overlap */ 3341 if (s1+l1 <= s2) 3342 return 0; 3343 if (s2+l2 <= s1) 3344 return 0; 3345 return 1; 3346 } 3347 3348 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3349 { 3350 unsigned long long blocks; 3351 sector_t new; 3352 3353 if (kstrtoull(buf, 10, &blocks) < 0) 3354 return -EINVAL; 3355 3356 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3357 return -EINVAL; /* sector conversion overflow */ 3358 3359 new = blocks * 2; 3360 if (new != blocks * 2) 3361 return -EINVAL; /* unsigned long long to sector_t overflow */ 3362 3363 *sectors = new; 3364 return 0; 3365 } 3366 3367 static ssize_t 3368 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3369 { 3370 struct mddev *my_mddev = rdev->mddev; 3371 sector_t oldsectors = rdev->sectors; 3372 sector_t sectors; 3373 3374 if (test_bit(Journal, &rdev->flags)) 3375 return -EBUSY; 3376 if (strict_blocks_to_sectors(buf, §ors) < 0) 3377 return -EINVAL; 3378 if (rdev->data_offset != rdev->new_data_offset) 3379 return -EINVAL; /* too confusing */ 3380 if (my_mddev->pers && rdev->raid_disk >= 0) { 3381 if (my_mddev->persistent) { 3382 sectors = super_types[my_mddev->major_version]. 3383 rdev_size_change(rdev, sectors); 3384 if (!sectors) 3385 return -EBUSY; 3386 } else if (!sectors) 3387 sectors = bdev_nr_sectors(rdev->bdev) - 3388 rdev->data_offset; 3389 if (!my_mddev->pers->resize) 3390 /* Cannot change size for RAID0 or Linear etc */ 3391 return -EINVAL; 3392 } 3393 if (sectors < my_mddev->dev_sectors) 3394 return -EINVAL; /* component must fit device */ 3395 3396 rdev->sectors = sectors; 3397 if (sectors > oldsectors && my_mddev->external) { 3398 /* Need to check that all other rdevs with the same 3399 * ->bdev do not overlap. 'rcu' is sufficient to walk 3400 * the rdev lists safely. 3401 * This check does not provide a hard guarantee, it 3402 * just helps avoid dangerous mistakes. 3403 */ 3404 struct mddev *mddev; 3405 int overlap = 0; 3406 struct list_head *tmp; 3407 3408 rcu_read_lock(); 3409 for_each_mddev(mddev, tmp) { 3410 struct md_rdev *rdev2; 3411 3412 rdev_for_each(rdev2, mddev) 3413 if (rdev->bdev == rdev2->bdev && 3414 rdev != rdev2 && 3415 overlaps(rdev->data_offset, rdev->sectors, 3416 rdev2->data_offset, 3417 rdev2->sectors)) { 3418 overlap = 1; 3419 break; 3420 } 3421 if (overlap) { 3422 mddev_put(mddev); 3423 break; 3424 } 3425 } 3426 rcu_read_unlock(); 3427 if (overlap) { 3428 /* Someone else could have slipped in a size 3429 * change here, but doing so is just silly. 3430 * We put oldsectors back because we *know* it is 3431 * safe, and trust userspace not to race with 3432 * itself 3433 */ 3434 rdev->sectors = oldsectors; 3435 return -EBUSY; 3436 } 3437 } 3438 return len; 3439 } 3440 3441 static struct rdev_sysfs_entry rdev_size = 3442 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3443 3444 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3445 { 3446 unsigned long long recovery_start = rdev->recovery_offset; 3447 3448 if (test_bit(In_sync, &rdev->flags) || 3449 recovery_start == MaxSector) 3450 return sprintf(page, "none\n"); 3451 3452 return sprintf(page, "%llu\n", recovery_start); 3453 } 3454 3455 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3456 { 3457 unsigned long long recovery_start; 3458 3459 if (cmd_match(buf, "none")) 3460 recovery_start = MaxSector; 3461 else if (kstrtoull(buf, 10, &recovery_start)) 3462 return -EINVAL; 3463 3464 if (rdev->mddev->pers && 3465 rdev->raid_disk >= 0) 3466 return -EBUSY; 3467 3468 rdev->recovery_offset = recovery_start; 3469 if (recovery_start == MaxSector) 3470 set_bit(In_sync, &rdev->flags); 3471 else 3472 clear_bit(In_sync, &rdev->flags); 3473 return len; 3474 } 3475 3476 static struct rdev_sysfs_entry rdev_recovery_start = 3477 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3478 3479 /* sysfs access to bad-blocks list. 3480 * We present two files. 3481 * 'bad-blocks' lists sector numbers and lengths of ranges that 3482 * are recorded as bad. The list is truncated to fit within 3483 * the one-page limit of sysfs. 3484 * Writing "sector length" to this file adds an acknowledged 3485 * bad block list. 3486 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3487 * been acknowledged. Writing to this file adds bad blocks 3488 * without acknowledging them. This is largely for testing. 3489 */ 3490 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3491 { 3492 return badblocks_show(&rdev->badblocks, page, 0); 3493 } 3494 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3495 { 3496 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3497 /* Maybe that ack was all we needed */ 3498 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3499 wake_up(&rdev->blocked_wait); 3500 return rv; 3501 } 3502 static struct rdev_sysfs_entry rdev_bad_blocks = 3503 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3504 3505 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3506 { 3507 return badblocks_show(&rdev->badblocks, page, 1); 3508 } 3509 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3510 { 3511 return badblocks_store(&rdev->badblocks, page, len, 1); 3512 } 3513 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3514 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3515 3516 static ssize_t 3517 ppl_sector_show(struct md_rdev *rdev, char *page) 3518 { 3519 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3520 } 3521 3522 static ssize_t 3523 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3524 { 3525 unsigned long long sector; 3526 3527 if (kstrtoull(buf, 10, §or) < 0) 3528 return -EINVAL; 3529 if (sector != (sector_t)sector) 3530 return -EINVAL; 3531 3532 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3533 rdev->raid_disk >= 0) 3534 return -EBUSY; 3535 3536 if (rdev->mddev->persistent) { 3537 if (rdev->mddev->major_version == 0) 3538 return -EINVAL; 3539 if ((sector > rdev->sb_start && 3540 sector - rdev->sb_start > S16_MAX) || 3541 (sector < rdev->sb_start && 3542 rdev->sb_start - sector > -S16_MIN)) 3543 return -EINVAL; 3544 rdev->ppl.offset = sector - rdev->sb_start; 3545 } else if (!rdev->mddev->external) { 3546 return -EBUSY; 3547 } 3548 rdev->ppl.sector = sector; 3549 return len; 3550 } 3551 3552 static struct rdev_sysfs_entry rdev_ppl_sector = 3553 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3554 3555 static ssize_t 3556 ppl_size_show(struct md_rdev *rdev, char *page) 3557 { 3558 return sprintf(page, "%u\n", rdev->ppl.size); 3559 } 3560 3561 static ssize_t 3562 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3563 { 3564 unsigned int size; 3565 3566 if (kstrtouint(buf, 10, &size) < 0) 3567 return -EINVAL; 3568 3569 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3570 rdev->raid_disk >= 0) 3571 return -EBUSY; 3572 3573 if (rdev->mddev->persistent) { 3574 if (rdev->mddev->major_version == 0) 3575 return -EINVAL; 3576 if (size > U16_MAX) 3577 return -EINVAL; 3578 } else if (!rdev->mddev->external) { 3579 return -EBUSY; 3580 } 3581 rdev->ppl.size = size; 3582 return len; 3583 } 3584 3585 static struct rdev_sysfs_entry rdev_ppl_size = 3586 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3587 3588 static struct attribute *rdev_default_attrs[] = { 3589 &rdev_state.attr, 3590 &rdev_errors.attr, 3591 &rdev_slot.attr, 3592 &rdev_offset.attr, 3593 &rdev_new_offset.attr, 3594 &rdev_size.attr, 3595 &rdev_recovery_start.attr, 3596 &rdev_bad_blocks.attr, 3597 &rdev_unack_bad_blocks.attr, 3598 &rdev_ppl_sector.attr, 3599 &rdev_ppl_size.attr, 3600 NULL, 3601 }; 3602 ATTRIBUTE_GROUPS(rdev_default); 3603 static ssize_t 3604 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3605 { 3606 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3607 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3608 3609 if (!entry->show) 3610 return -EIO; 3611 if (!rdev->mddev) 3612 return -ENODEV; 3613 return entry->show(rdev, page); 3614 } 3615 3616 static ssize_t 3617 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3618 const char *page, size_t length) 3619 { 3620 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3621 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3622 ssize_t rv; 3623 struct mddev *mddev = rdev->mddev; 3624 3625 if (!entry->store) 3626 return -EIO; 3627 if (!capable(CAP_SYS_ADMIN)) 3628 return -EACCES; 3629 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3630 if (!rv) { 3631 if (rdev->mddev == NULL) 3632 rv = -ENODEV; 3633 else 3634 rv = entry->store(rdev, page, length); 3635 mddev_unlock(mddev); 3636 } 3637 return rv; 3638 } 3639 3640 static void rdev_free(struct kobject *ko) 3641 { 3642 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3643 kfree(rdev); 3644 } 3645 static const struct sysfs_ops rdev_sysfs_ops = { 3646 .show = rdev_attr_show, 3647 .store = rdev_attr_store, 3648 }; 3649 static struct kobj_type rdev_ktype = { 3650 .release = rdev_free, 3651 .sysfs_ops = &rdev_sysfs_ops, 3652 .default_groups = rdev_default_groups, 3653 }; 3654 3655 int md_rdev_init(struct md_rdev *rdev) 3656 { 3657 rdev->desc_nr = -1; 3658 rdev->saved_raid_disk = -1; 3659 rdev->raid_disk = -1; 3660 rdev->flags = 0; 3661 rdev->data_offset = 0; 3662 rdev->new_data_offset = 0; 3663 rdev->sb_events = 0; 3664 rdev->last_read_error = 0; 3665 rdev->sb_loaded = 0; 3666 rdev->bb_page = NULL; 3667 atomic_set(&rdev->nr_pending, 0); 3668 atomic_set(&rdev->read_errors, 0); 3669 atomic_set(&rdev->corrected_errors, 0); 3670 3671 INIT_LIST_HEAD(&rdev->same_set); 3672 init_waitqueue_head(&rdev->blocked_wait); 3673 3674 /* Add space to store bad block list. 3675 * This reserves the space even on arrays where it cannot 3676 * be used - I wonder if that matters 3677 */ 3678 return badblocks_init(&rdev->badblocks, 0); 3679 } 3680 EXPORT_SYMBOL_GPL(md_rdev_init); 3681 /* 3682 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3683 * 3684 * mark the device faulty if: 3685 * 3686 * - the device is nonexistent (zero size) 3687 * - the device has no valid superblock 3688 * 3689 * a faulty rdev _never_ has rdev->sb set. 3690 */ 3691 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3692 { 3693 int err; 3694 struct md_rdev *rdev; 3695 sector_t size; 3696 3697 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3698 if (!rdev) 3699 return ERR_PTR(-ENOMEM); 3700 3701 err = md_rdev_init(rdev); 3702 if (err) 3703 goto abort_free; 3704 err = alloc_disk_sb(rdev); 3705 if (err) 3706 goto abort_free; 3707 3708 err = lock_rdev(rdev, newdev, super_format == -2); 3709 if (err) 3710 goto abort_free; 3711 3712 kobject_init(&rdev->kobj, &rdev_ktype); 3713 3714 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3715 if (!size) { 3716 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3717 rdev->bdev); 3718 err = -EINVAL; 3719 goto abort_free; 3720 } 3721 3722 if (super_format >= 0) { 3723 err = super_types[super_format]. 3724 load_super(rdev, NULL, super_minor); 3725 if (err == -EINVAL) { 3726 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3727 rdev->bdev, 3728 super_format, super_minor); 3729 goto abort_free; 3730 } 3731 if (err < 0) { 3732 pr_warn("md: could not read %pg's sb, not importing!\n", 3733 rdev->bdev); 3734 goto abort_free; 3735 } 3736 } 3737 3738 return rdev; 3739 3740 abort_free: 3741 if (rdev->bdev) 3742 unlock_rdev(rdev); 3743 md_rdev_clear(rdev); 3744 kfree(rdev); 3745 return ERR_PTR(err); 3746 } 3747 3748 /* 3749 * Check a full RAID array for plausibility 3750 */ 3751 3752 static int analyze_sbs(struct mddev *mddev) 3753 { 3754 int i; 3755 struct md_rdev *rdev, *freshest, *tmp; 3756 3757 freshest = NULL; 3758 rdev_for_each_safe(rdev, tmp, mddev) 3759 switch (super_types[mddev->major_version]. 3760 load_super(rdev, freshest, mddev->minor_version)) { 3761 case 1: 3762 freshest = rdev; 3763 break; 3764 case 0: 3765 break; 3766 default: 3767 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3768 rdev->bdev); 3769 md_kick_rdev_from_array(rdev); 3770 } 3771 3772 /* Cannot find a valid fresh disk */ 3773 if (!freshest) { 3774 pr_warn("md: cannot find a valid disk\n"); 3775 return -EINVAL; 3776 } 3777 3778 super_types[mddev->major_version]. 3779 validate_super(mddev, freshest); 3780 3781 i = 0; 3782 rdev_for_each_safe(rdev, tmp, mddev) { 3783 if (mddev->max_disks && 3784 (rdev->desc_nr >= mddev->max_disks || 3785 i > mddev->max_disks)) { 3786 pr_warn("md: %s: %pg: only %d devices permitted\n", 3787 mdname(mddev), rdev->bdev, 3788 mddev->max_disks); 3789 md_kick_rdev_from_array(rdev); 3790 continue; 3791 } 3792 if (rdev != freshest) { 3793 if (super_types[mddev->major_version]. 3794 validate_super(mddev, rdev)) { 3795 pr_warn("md: kicking non-fresh %pg from array!\n", 3796 rdev->bdev); 3797 md_kick_rdev_from_array(rdev); 3798 continue; 3799 } 3800 } 3801 if (mddev->level == LEVEL_MULTIPATH) { 3802 rdev->desc_nr = i++; 3803 rdev->raid_disk = rdev->desc_nr; 3804 set_bit(In_sync, &rdev->flags); 3805 } else if (rdev->raid_disk >= 3806 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3807 !test_bit(Journal, &rdev->flags)) { 3808 rdev->raid_disk = -1; 3809 clear_bit(In_sync, &rdev->flags); 3810 } 3811 } 3812 3813 return 0; 3814 } 3815 3816 /* Read a fixed-point number. 3817 * Numbers in sysfs attributes should be in "standard" units where 3818 * possible, so time should be in seconds. 3819 * However we internally use a a much smaller unit such as 3820 * milliseconds or jiffies. 3821 * This function takes a decimal number with a possible fractional 3822 * component, and produces an integer which is the result of 3823 * multiplying that number by 10^'scale'. 3824 * all without any floating-point arithmetic. 3825 */ 3826 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3827 { 3828 unsigned long result = 0; 3829 long decimals = -1; 3830 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3831 if (*cp == '.') 3832 decimals = 0; 3833 else if (decimals < scale) { 3834 unsigned int value; 3835 value = *cp - '0'; 3836 result = result * 10 + value; 3837 if (decimals >= 0) 3838 decimals++; 3839 } 3840 cp++; 3841 } 3842 if (*cp == '\n') 3843 cp++; 3844 if (*cp) 3845 return -EINVAL; 3846 if (decimals < 0) 3847 decimals = 0; 3848 *res = result * int_pow(10, scale - decimals); 3849 return 0; 3850 } 3851 3852 static ssize_t 3853 safe_delay_show(struct mddev *mddev, char *page) 3854 { 3855 int msec = (mddev->safemode_delay*1000)/HZ; 3856 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3857 } 3858 static ssize_t 3859 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3860 { 3861 unsigned long msec; 3862 3863 if (mddev_is_clustered(mddev)) { 3864 pr_warn("md: Safemode is disabled for clustered mode\n"); 3865 return -EINVAL; 3866 } 3867 3868 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3869 return -EINVAL; 3870 if (msec == 0) 3871 mddev->safemode_delay = 0; 3872 else { 3873 unsigned long old_delay = mddev->safemode_delay; 3874 unsigned long new_delay = (msec*HZ)/1000; 3875 3876 if (new_delay == 0) 3877 new_delay = 1; 3878 mddev->safemode_delay = new_delay; 3879 if (new_delay < old_delay || old_delay == 0) 3880 mod_timer(&mddev->safemode_timer, jiffies+1); 3881 } 3882 return len; 3883 } 3884 static struct md_sysfs_entry md_safe_delay = 3885 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3886 3887 static ssize_t 3888 level_show(struct mddev *mddev, char *page) 3889 { 3890 struct md_personality *p; 3891 int ret; 3892 spin_lock(&mddev->lock); 3893 p = mddev->pers; 3894 if (p) 3895 ret = sprintf(page, "%s\n", p->name); 3896 else if (mddev->clevel[0]) 3897 ret = sprintf(page, "%s\n", mddev->clevel); 3898 else if (mddev->level != LEVEL_NONE) 3899 ret = sprintf(page, "%d\n", mddev->level); 3900 else 3901 ret = 0; 3902 spin_unlock(&mddev->lock); 3903 return ret; 3904 } 3905 3906 static ssize_t 3907 level_store(struct mddev *mddev, const char *buf, size_t len) 3908 { 3909 char clevel[16]; 3910 ssize_t rv; 3911 size_t slen = len; 3912 struct md_personality *pers, *oldpers; 3913 long level; 3914 void *priv, *oldpriv; 3915 struct md_rdev *rdev; 3916 3917 if (slen == 0 || slen >= sizeof(clevel)) 3918 return -EINVAL; 3919 3920 rv = mddev_lock(mddev); 3921 if (rv) 3922 return rv; 3923 3924 if (mddev->pers == NULL) { 3925 strncpy(mddev->clevel, buf, slen); 3926 if (mddev->clevel[slen-1] == '\n') 3927 slen--; 3928 mddev->clevel[slen] = 0; 3929 mddev->level = LEVEL_NONE; 3930 rv = len; 3931 goto out_unlock; 3932 } 3933 rv = -EROFS; 3934 if (mddev->ro) 3935 goto out_unlock; 3936 3937 /* request to change the personality. Need to ensure: 3938 * - array is not engaged in resync/recovery/reshape 3939 * - old personality can be suspended 3940 * - new personality will access other array. 3941 */ 3942 3943 rv = -EBUSY; 3944 if (mddev->sync_thread || 3945 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3946 mddev->reshape_position != MaxSector || 3947 mddev->sysfs_active) 3948 goto out_unlock; 3949 3950 rv = -EINVAL; 3951 if (!mddev->pers->quiesce) { 3952 pr_warn("md: %s: %s does not support online personality change\n", 3953 mdname(mddev), mddev->pers->name); 3954 goto out_unlock; 3955 } 3956 3957 /* Now find the new personality */ 3958 strncpy(clevel, buf, slen); 3959 if (clevel[slen-1] == '\n') 3960 slen--; 3961 clevel[slen] = 0; 3962 if (kstrtol(clevel, 10, &level)) 3963 level = LEVEL_NONE; 3964 3965 if (request_module("md-%s", clevel) != 0) 3966 request_module("md-level-%s", clevel); 3967 spin_lock(&pers_lock); 3968 pers = find_pers(level, clevel); 3969 if (!pers || !try_module_get(pers->owner)) { 3970 spin_unlock(&pers_lock); 3971 pr_warn("md: personality %s not loaded\n", clevel); 3972 rv = -EINVAL; 3973 goto out_unlock; 3974 } 3975 spin_unlock(&pers_lock); 3976 3977 if (pers == mddev->pers) { 3978 /* Nothing to do! */ 3979 module_put(pers->owner); 3980 rv = len; 3981 goto out_unlock; 3982 } 3983 if (!pers->takeover) { 3984 module_put(pers->owner); 3985 pr_warn("md: %s: %s does not support personality takeover\n", 3986 mdname(mddev), clevel); 3987 rv = -EINVAL; 3988 goto out_unlock; 3989 } 3990 3991 rdev_for_each(rdev, mddev) 3992 rdev->new_raid_disk = rdev->raid_disk; 3993 3994 /* ->takeover must set new_* and/or delta_disks 3995 * if it succeeds, and may set them when it fails. 3996 */ 3997 priv = pers->takeover(mddev); 3998 if (IS_ERR(priv)) { 3999 mddev->new_level = mddev->level; 4000 mddev->new_layout = mddev->layout; 4001 mddev->new_chunk_sectors = mddev->chunk_sectors; 4002 mddev->raid_disks -= mddev->delta_disks; 4003 mddev->delta_disks = 0; 4004 mddev->reshape_backwards = 0; 4005 module_put(pers->owner); 4006 pr_warn("md: %s: %s would not accept array\n", 4007 mdname(mddev), clevel); 4008 rv = PTR_ERR(priv); 4009 goto out_unlock; 4010 } 4011 4012 /* Looks like we have a winner */ 4013 mddev_suspend(mddev); 4014 mddev_detach(mddev); 4015 4016 spin_lock(&mddev->lock); 4017 oldpers = mddev->pers; 4018 oldpriv = mddev->private; 4019 mddev->pers = pers; 4020 mddev->private = priv; 4021 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4022 mddev->level = mddev->new_level; 4023 mddev->layout = mddev->new_layout; 4024 mddev->chunk_sectors = mddev->new_chunk_sectors; 4025 mddev->delta_disks = 0; 4026 mddev->reshape_backwards = 0; 4027 mddev->degraded = 0; 4028 spin_unlock(&mddev->lock); 4029 4030 if (oldpers->sync_request == NULL && 4031 mddev->external) { 4032 /* We are converting from a no-redundancy array 4033 * to a redundancy array and metadata is managed 4034 * externally so we need to be sure that writes 4035 * won't block due to a need to transition 4036 * clean->dirty 4037 * until external management is started. 4038 */ 4039 mddev->in_sync = 0; 4040 mddev->safemode_delay = 0; 4041 mddev->safemode = 0; 4042 } 4043 4044 oldpers->free(mddev, oldpriv); 4045 4046 if (oldpers->sync_request == NULL && 4047 pers->sync_request != NULL) { 4048 /* need to add the md_redundancy_group */ 4049 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4050 pr_warn("md: cannot register extra attributes for %s\n", 4051 mdname(mddev)); 4052 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4053 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4054 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4055 } 4056 if (oldpers->sync_request != NULL && 4057 pers->sync_request == NULL) { 4058 /* need to remove the md_redundancy_group */ 4059 if (mddev->to_remove == NULL) 4060 mddev->to_remove = &md_redundancy_group; 4061 } 4062 4063 module_put(oldpers->owner); 4064 4065 rdev_for_each(rdev, mddev) { 4066 if (rdev->raid_disk < 0) 4067 continue; 4068 if (rdev->new_raid_disk >= mddev->raid_disks) 4069 rdev->new_raid_disk = -1; 4070 if (rdev->new_raid_disk == rdev->raid_disk) 4071 continue; 4072 sysfs_unlink_rdev(mddev, rdev); 4073 } 4074 rdev_for_each(rdev, mddev) { 4075 if (rdev->raid_disk < 0) 4076 continue; 4077 if (rdev->new_raid_disk == rdev->raid_disk) 4078 continue; 4079 rdev->raid_disk = rdev->new_raid_disk; 4080 if (rdev->raid_disk < 0) 4081 clear_bit(In_sync, &rdev->flags); 4082 else { 4083 if (sysfs_link_rdev(mddev, rdev)) 4084 pr_warn("md: cannot register rd%d for %s after level change\n", 4085 rdev->raid_disk, mdname(mddev)); 4086 } 4087 } 4088 4089 if (pers->sync_request == NULL) { 4090 /* this is now an array without redundancy, so 4091 * it must always be in_sync 4092 */ 4093 mddev->in_sync = 1; 4094 del_timer_sync(&mddev->safemode_timer); 4095 } 4096 blk_set_stacking_limits(&mddev->queue->limits); 4097 pers->run(mddev); 4098 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4099 mddev_resume(mddev); 4100 if (!mddev->thread) 4101 md_update_sb(mddev, 1); 4102 sysfs_notify_dirent_safe(mddev->sysfs_level); 4103 md_new_event(); 4104 rv = len; 4105 out_unlock: 4106 mddev_unlock(mddev); 4107 return rv; 4108 } 4109 4110 static struct md_sysfs_entry md_level = 4111 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4112 4113 static ssize_t 4114 layout_show(struct mddev *mddev, char *page) 4115 { 4116 /* just a number, not meaningful for all levels */ 4117 if (mddev->reshape_position != MaxSector && 4118 mddev->layout != mddev->new_layout) 4119 return sprintf(page, "%d (%d)\n", 4120 mddev->new_layout, mddev->layout); 4121 return sprintf(page, "%d\n", mddev->layout); 4122 } 4123 4124 static ssize_t 4125 layout_store(struct mddev *mddev, const char *buf, size_t len) 4126 { 4127 unsigned int n; 4128 int err; 4129 4130 err = kstrtouint(buf, 10, &n); 4131 if (err < 0) 4132 return err; 4133 err = mddev_lock(mddev); 4134 if (err) 4135 return err; 4136 4137 if (mddev->pers) { 4138 if (mddev->pers->check_reshape == NULL) 4139 err = -EBUSY; 4140 else if (mddev->ro) 4141 err = -EROFS; 4142 else { 4143 mddev->new_layout = n; 4144 err = mddev->pers->check_reshape(mddev); 4145 if (err) 4146 mddev->new_layout = mddev->layout; 4147 } 4148 } else { 4149 mddev->new_layout = n; 4150 if (mddev->reshape_position == MaxSector) 4151 mddev->layout = n; 4152 } 4153 mddev_unlock(mddev); 4154 return err ?: len; 4155 } 4156 static struct md_sysfs_entry md_layout = 4157 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4158 4159 static ssize_t 4160 raid_disks_show(struct mddev *mddev, char *page) 4161 { 4162 if (mddev->raid_disks == 0) 4163 return 0; 4164 if (mddev->reshape_position != MaxSector && 4165 mddev->delta_disks != 0) 4166 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4167 mddev->raid_disks - mddev->delta_disks); 4168 return sprintf(page, "%d\n", mddev->raid_disks); 4169 } 4170 4171 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4172 4173 static ssize_t 4174 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4175 { 4176 unsigned int n; 4177 int err; 4178 4179 err = kstrtouint(buf, 10, &n); 4180 if (err < 0) 4181 return err; 4182 4183 err = mddev_lock(mddev); 4184 if (err) 4185 return err; 4186 if (mddev->pers) 4187 err = update_raid_disks(mddev, n); 4188 else if (mddev->reshape_position != MaxSector) { 4189 struct md_rdev *rdev; 4190 int olddisks = mddev->raid_disks - mddev->delta_disks; 4191 4192 err = -EINVAL; 4193 rdev_for_each(rdev, mddev) { 4194 if (olddisks < n && 4195 rdev->data_offset < rdev->new_data_offset) 4196 goto out_unlock; 4197 if (olddisks > n && 4198 rdev->data_offset > rdev->new_data_offset) 4199 goto out_unlock; 4200 } 4201 err = 0; 4202 mddev->delta_disks = n - olddisks; 4203 mddev->raid_disks = n; 4204 mddev->reshape_backwards = (mddev->delta_disks < 0); 4205 } else 4206 mddev->raid_disks = n; 4207 out_unlock: 4208 mddev_unlock(mddev); 4209 return err ? err : len; 4210 } 4211 static struct md_sysfs_entry md_raid_disks = 4212 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4213 4214 static ssize_t 4215 uuid_show(struct mddev *mddev, char *page) 4216 { 4217 return sprintf(page, "%pU\n", mddev->uuid); 4218 } 4219 static struct md_sysfs_entry md_uuid = 4220 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4221 4222 static ssize_t 4223 chunk_size_show(struct mddev *mddev, char *page) 4224 { 4225 if (mddev->reshape_position != MaxSector && 4226 mddev->chunk_sectors != mddev->new_chunk_sectors) 4227 return sprintf(page, "%d (%d)\n", 4228 mddev->new_chunk_sectors << 9, 4229 mddev->chunk_sectors << 9); 4230 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4231 } 4232 4233 static ssize_t 4234 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4235 { 4236 unsigned long n; 4237 int err; 4238 4239 err = kstrtoul(buf, 10, &n); 4240 if (err < 0) 4241 return err; 4242 4243 err = mddev_lock(mddev); 4244 if (err) 4245 return err; 4246 if (mddev->pers) { 4247 if (mddev->pers->check_reshape == NULL) 4248 err = -EBUSY; 4249 else if (mddev->ro) 4250 err = -EROFS; 4251 else { 4252 mddev->new_chunk_sectors = n >> 9; 4253 err = mddev->pers->check_reshape(mddev); 4254 if (err) 4255 mddev->new_chunk_sectors = mddev->chunk_sectors; 4256 } 4257 } else { 4258 mddev->new_chunk_sectors = n >> 9; 4259 if (mddev->reshape_position == MaxSector) 4260 mddev->chunk_sectors = n >> 9; 4261 } 4262 mddev_unlock(mddev); 4263 return err ?: len; 4264 } 4265 static struct md_sysfs_entry md_chunk_size = 4266 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4267 4268 static ssize_t 4269 resync_start_show(struct mddev *mddev, char *page) 4270 { 4271 if (mddev->recovery_cp == MaxSector) 4272 return sprintf(page, "none\n"); 4273 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4274 } 4275 4276 static ssize_t 4277 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4278 { 4279 unsigned long long n; 4280 int err; 4281 4282 if (cmd_match(buf, "none")) 4283 n = MaxSector; 4284 else { 4285 err = kstrtoull(buf, 10, &n); 4286 if (err < 0) 4287 return err; 4288 if (n != (sector_t)n) 4289 return -EINVAL; 4290 } 4291 4292 err = mddev_lock(mddev); 4293 if (err) 4294 return err; 4295 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4296 err = -EBUSY; 4297 4298 if (!err) { 4299 mddev->recovery_cp = n; 4300 if (mddev->pers) 4301 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4302 } 4303 mddev_unlock(mddev); 4304 return err ?: len; 4305 } 4306 static struct md_sysfs_entry md_resync_start = 4307 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4308 resync_start_show, resync_start_store); 4309 4310 /* 4311 * The array state can be: 4312 * 4313 * clear 4314 * No devices, no size, no level 4315 * Equivalent to STOP_ARRAY ioctl 4316 * inactive 4317 * May have some settings, but array is not active 4318 * all IO results in error 4319 * When written, doesn't tear down array, but just stops it 4320 * suspended (not supported yet) 4321 * All IO requests will block. The array can be reconfigured. 4322 * Writing this, if accepted, will block until array is quiescent 4323 * readonly 4324 * no resync can happen. no superblocks get written. 4325 * write requests fail 4326 * read-auto 4327 * like readonly, but behaves like 'clean' on a write request. 4328 * 4329 * clean - no pending writes, but otherwise active. 4330 * When written to inactive array, starts without resync 4331 * If a write request arrives then 4332 * if metadata is known, mark 'dirty' and switch to 'active'. 4333 * if not known, block and switch to write-pending 4334 * If written to an active array that has pending writes, then fails. 4335 * active 4336 * fully active: IO and resync can be happening. 4337 * When written to inactive array, starts with resync 4338 * 4339 * write-pending 4340 * clean, but writes are blocked waiting for 'active' to be written. 4341 * 4342 * active-idle 4343 * like active, but no writes have been seen for a while (100msec). 4344 * 4345 * broken 4346 * Array is failed. It's useful because mounted-arrays aren't stopped 4347 * when array is failed, so this state will at least alert the user that 4348 * something is wrong. 4349 */ 4350 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4351 write_pending, active_idle, broken, bad_word}; 4352 static char *array_states[] = { 4353 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4354 "write-pending", "active-idle", "broken", NULL }; 4355 4356 static int match_word(const char *word, char **list) 4357 { 4358 int n; 4359 for (n=0; list[n]; n++) 4360 if (cmd_match(word, list[n])) 4361 break; 4362 return n; 4363 } 4364 4365 static ssize_t 4366 array_state_show(struct mddev *mddev, char *page) 4367 { 4368 enum array_state st = inactive; 4369 4370 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4371 switch(mddev->ro) { 4372 case 1: 4373 st = readonly; 4374 break; 4375 case 2: 4376 st = read_auto; 4377 break; 4378 case 0: 4379 spin_lock(&mddev->lock); 4380 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4381 st = write_pending; 4382 else if (mddev->in_sync) 4383 st = clean; 4384 else if (mddev->safemode) 4385 st = active_idle; 4386 else 4387 st = active; 4388 spin_unlock(&mddev->lock); 4389 } 4390 4391 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4392 st = broken; 4393 } else { 4394 if (list_empty(&mddev->disks) && 4395 mddev->raid_disks == 0 && 4396 mddev->dev_sectors == 0) 4397 st = clear; 4398 else 4399 st = inactive; 4400 } 4401 return sprintf(page, "%s\n", array_states[st]); 4402 } 4403 4404 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4405 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4406 static int restart_array(struct mddev *mddev); 4407 4408 static ssize_t 4409 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4410 { 4411 int err = 0; 4412 enum array_state st = match_word(buf, array_states); 4413 4414 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4415 /* don't take reconfig_mutex when toggling between 4416 * clean and active 4417 */ 4418 spin_lock(&mddev->lock); 4419 if (st == active) { 4420 restart_array(mddev); 4421 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4422 md_wakeup_thread(mddev->thread); 4423 wake_up(&mddev->sb_wait); 4424 } else /* st == clean */ { 4425 restart_array(mddev); 4426 if (!set_in_sync(mddev)) 4427 err = -EBUSY; 4428 } 4429 if (!err) 4430 sysfs_notify_dirent_safe(mddev->sysfs_state); 4431 spin_unlock(&mddev->lock); 4432 return err ?: len; 4433 } 4434 err = mddev_lock(mddev); 4435 if (err) 4436 return err; 4437 err = -EINVAL; 4438 switch(st) { 4439 case bad_word: 4440 break; 4441 case clear: 4442 /* stopping an active array */ 4443 err = do_md_stop(mddev, 0, NULL); 4444 break; 4445 case inactive: 4446 /* stopping an active array */ 4447 if (mddev->pers) 4448 err = do_md_stop(mddev, 2, NULL); 4449 else 4450 err = 0; /* already inactive */ 4451 break; 4452 case suspended: 4453 break; /* not supported yet */ 4454 case readonly: 4455 if (mddev->pers) 4456 err = md_set_readonly(mddev, NULL); 4457 else { 4458 mddev->ro = 1; 4459 set_disk_ro(mddev->gendisk, 1); 4460 err = do_md_run(mddev); 4461 } 4462 break; 4463 case read_auto: 4464 if (mddev->pers) { 4465 if (mddev->ro == 0) 4466 err = md_set_readonly(mddev, NULL); 4467 else if (mddev->ro == 1) 4468 err = restart_array(mddev); 4469 if (err == 0) { 4470 mddev->ro = 2; 4471 set_disk_ro(mddev->gendisk, 0); 4472 } 4473 } else { 4474 mddev->ro = 2; 4475 err = do_md_run(mddev); 4476 } 4477 break; 4478 case clean: 4479 if (mddev->pers) { 4480 err = restart_array(mddev); 4481 if (err) 4482 break; 4483 spin_lock(&mddev->lock); 4484 if (!set_in_sync(mddev)) 4485 err = -EBUSY; 4486 spin_unlock(&mddev->lock); 4487 } else 4488 err = -EINVAL; 4489 break; 4490 case active: 4491 if (mddev->pers) { 4492 err = restart_array(mddev); 4493 if (err) 4494 break; 4495 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4496 wake_up(&mddev->sb_wait); 4497 err = 0; 4498 } else { 4499 mddev->ro = 0; 4500 set_disk_ro(mddev->gendisk, 0); 4501 err = do_md_run(mddev); 4502 } 4503 break; 4504 case write_pending: 4505 case active_idle: 4506 case broken: 4507 /* these cannot be set */ 4508 break; 4509 } 4510 4511 if (!err) { 4512 if (mddev->hold_active == UNTIL_IOCTL) 4513 mddev->hold_active = 0; 4514 sysfs_notify_dirent_safe(mddev->sysfs_state); 4515 } 4516 mddev_unlock(mddev); 4517 return err ?: len; 4518 } 4519 static struct md_sysfs_entry md_array_state = 4520 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4521 4522 static ssize_t 4523 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4524 return sprintf(page, "%d\n", 4525 atomic_read(&mddev->max_corr_read_errors)); 4526 } 4527 4528 static ssize_t 4529 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4530 { 4531 unsigned int n; 4532 int rv; 4533 4534 rv = kstrtouint(buf, 10, &n); 4535 if (rv < 0) 4536 return rv; 4537 atomic_set(&mddev->max_corr_read_errors, n); 4538 return len; 4539 } 4540 4541 static struct md_sysfs_entry max_corr_read_errors = 4542 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4543 max_corrected_read_errors_store); 4544 4545 static ssize_t 4546 null_show(struct mddev *mddev, char *page) 4547 { 4548 return -EINVAL; 4549 } 4550 4551 /* need to ensure rdev_delayed_delete() has completed */ 4552 static void flush_rdev_wq(struct mddev *mddev) 4553 { 4554 struct md_rdev *rdev; 4555 4556 rcu_read_lock(); 4557 rdev_for_each_rcu(rdev, mddev) 4558 if (work_pending(&rdev->del_work)) { 4559 flush_workqueue(md_rdev_misc_wq); 4560 break; 4561 } 4562 rcu_read_unlock(); 4563 } 4564 4565 static ssize_t 4566 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4567 { 4568 /* buf must be %d:%d\n? giving major and minor numbers */ 4569 /* The new device is added to the array. 4570 * If the array has a persistent superblock, we read the 4571 * superblock to initialise info and check validity. 4572 * Otherwise, only checking done is that in bind_rdev_to_array, 4573 * which mainly checks size. 4574 */ 4575 char *e; 4576 int major = simple_strtoul(buf, &e, 10); 4577 int minor; 4578 dev_t dev; 4579 struct md_rdev *rdev; 4580 int err; 4581 4582 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4583 return -EINVAL; 4584 minor = simple_strtoul(e+1, &e, 10); 4585 if (*e && *e != '\n') 4586 return -EINVAL; 4587 dev = MKDEV(major, minor); 4588 if (major != MAJOR(dev) || 4589 minor != MINOR(dev)) 4590 return -EOVERFLOW; 4591 4592 flush_rdev_wq(mddev); 4593 err = mddev_lock(mddev); 4594 if (err) 4595 return err; 4596 if (mddev->persistent) { 4597 rdev = md_import_device(dev, mddev->major_version, 4598 mddev->minor_version); 4599 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4600 struct md_rdev *rdev0 4601 = list_entry(mddev->disks.next, 4602 struct md_rdev, same_set); 4603 err = super_types[mddev->major_version] 4604 .load_super(rdev, rdev0, mddev->minor_version); 4605 if (err < 0) 4606 goto out; 4607 } 4608 } else if (mddev->external) 4609 rdev = md_import_device(dev, -2, -1); 4610 else 4611 rdev = md_import_device(dev, -1, -1); 4612 4613 if (IS_ERR(rdev)) { 4614 mddev_unlock(mddev); 4615 return PTR_ERR(rdev); 4616 } 4617 err = bind_rdev_to_array(rdev, mddev); 4618 out: 4619 if (err) 4620 export_rdev(rdev); 4621 mddev_unlock(mddev); 4622 if (!err) 4623 md_new_event(); 4624 return err ? err : len; 4625 } 4626 4627 static struct md_sysfs_entry md_new_device = 4628 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4629 4630 static ssize_t 4631 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4632 { 4633 char *end; 4634 unsigned long chunk, end_chunk; 4635 int err; 4636 4637 err = mddev_lock(mddev); 4638 if (err) 4639 return err; 4640 if (!mddev->bitmap) 4641 goto out; 4642 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4643 while (*buf) { 4644 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4645 if (buf == end) break; 4646 if (*end == '-') { /* range */ 4647 buf = end + 1; 4648 end_chunk = simple_strtoul(buf, &end, 0); 4649 if (buf == end) break; 4650 } 4651 if (*end && !isspace(*end)) break; 4652 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4653 buf = skip_spaces(end); 4654 } 4655 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4656 out: 4657 mddev_unlock(mddev); 4658 return len; 4659 } 4660 4661 static struct md_sysfs_entry md_bitmap = 4662 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4663 4664 static ssize_t 4665 size_show(struct mddev *mddev, char *page) 4666 { 4667 return sprintf(page, "%llu\n", 4668 (unsigned long long)mddev->dev_sectors / 2); 4669 } 4670 4671 static int update_size(struct mddev *mddev, sector_t num_sectors); 4672 4673 static ssize_t 4674 size_store(struct mddev *mddev, const char *buf, size_t len) 4675 { 4676 /* If array is inactive, we can reduce the component size, but 4677 * not increase it (except from 0). 4678 * If array is active, we can try an on-line resize 4679 */ 4680 sector_t sectors; 4681 int err = strict_blocks_to_sectors(buf, §ors); 4682 4683 if (err < 0) 4684 return err; 4685 err = mddev_lock(mddev); 4686 if (err) 4687 return err; 4688 if (mddev->pers) { 4689 err = update_size(mddev, sectors); 4690 if (err == 0) 4691 md_update_sb(mddev, 1); 4692 } else { 4693 if (mddev->dev_sectors == 0 || 4694 mddev->dev_sectors > sectors) 4695 mddev->dev_sectors = sectors; 4696 else 4697 err = -ENOSPC; 4698 } 4699 mddev_unlock(mddev); 4700 return err ? err : len; 4701 } 4702 4703 static struct md_sysfs_entry md_size = 4704 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4705 4706 /* Metadata version. 4707 * This is one of 4708 * 'none' for arrays with no metadata (good luck...) 4709 * 'external' for arrays with externally managed metadata, 4710 * or N.M for internally known formats 4711 */ 4712 static ssize_t 4713 metadata_show(struct mddev *mddev, char *page) 4714 { 4715 if (mddev->persistent) 4716 return sprintf(page, "%d.%d\n", 4717 mddev->major_version, mddev->minor_version); 4718 else if (mddev->external) 4719 return sprintf(page, "external:%s\n", mddev->metadata_type); 4720 else 4721 return sprintf(page, "none\n"); 4722 } 4723 4724 static ssize_t 4725 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4726 { 4727 int major, minor; 4728 char *e; 4729 int err; 4730 /* Changing the details of 'external' metadata is 4731 * always permitted. Otherwise there must be 4732 * no devices attached to the array. 4733 */ 4734 4735 err = mddev_lock(mddev); 4736 if (err) 4737 return err; 4738 err = -EBUSY; 4739 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4740 ; 4741 else if (!list_empty(&mddev->disks)) 4742 goto out_unlock; 4743 4744 err = 0; 4745 if (cmd_match(buf, "none")) { 4746 mddev->persistent = 0; 4747 mddev->external = 0; 4748 mddev->major_version = 0; 4749 mddev->minor_version = 90; 4750 goto out_unlock; 4751 } 4752 if (strncmp(buf, "external:", 9) == 0) { 4753 size_t namelen = len-9; 4754 if (namelen >= sizeof(mddev->metadata_type)) 4755 namelen = sizeof(mddev->metadata_type)-1; 4756 strncpy(mddev->metadata_type, buf+9, namelen); 4757 mddev->metadata_type[namelen] = 0; 4758 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4759 mddev->metadata_type[--namelen] = 0; 4760 mddev->persistent = 0; 4761 mddev->external = 1; 4762 mddev->major_version = 0; 4763 mddev->minor_version = 90; 4764 goto out_unlock; 4765 } 4766 major = simple_strtoul(buf, &e, 10); 4767 err = -EINVAL; 4768 if (e==buf || *e != '.') 4769 goto out_unlock; 4770 buf = e+1; 4771 minor = simple_strtoul(buf, &e, 10); 4772 if (e==buf || (*e && *e != '\n') ) 4773 goto out_unlock; 4774 err = -ENOENT; 4775 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4776 goto out_unlock; 4777 mddev->major_version = major; 4778 mddev->minor_version = minor; 4779 mddev->persistent = 1; 4780 mddev->external = 0; 4781 err = 0; 4782 out_unlock: 4783 mddev_unlock(mddev); 4784 return err ?: len; 4785 } 4786 4787 static struct md_sysfs_entry md_metadata = 4788 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4789 4790 static ssize_t 4791 action_show(struct mddev *mddev, char *page) 4792 { 4793 char *type = "idle"; 4794 unsigned long recovery = mddev->recovery; 4795 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4796 type = "frozen"; 4797 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4798 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4799 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4800 type = "reshape"; 4801 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4802 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4803 type = "resync"; 4804 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4805 type = "check"; 4806 else 4807 type = "repair"; 4808 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4809 type = "recover"; 4810 else if (mddev->reshape_position != MaxSector) 4811 type = "reshape"; 4812 } 4813 return sprintf(page, "%s\n", type); 4814 } 4815 4816 static ssize_t 4817 action_store(struct mddev *mddev, const char *page, size_t len) 4818 { 4819 if (!mddev->pers || !mddev->pers->sync_request) 4820 return -EINVAL; 4821 4822 4823 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4824 if (cmd_match(page, "frozen")) 4825 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4826 else 4827 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4828 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4829 mddev_lock(mddev) == 0) { 4830 if (work_pending(&mddev->del_work)) 4831 flush_workqueue(md_misc_wq); 4832 if (mddev->sync_thread) { 4833 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4834 md_reap_sync_thread(mddev, true); 4835 } 4836 mddev_unlock(mddev); 4837 } 4838 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4839 return -EBUSY; 4840 else if (cmd_match(page, "resync")) 4841 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4842 else if (cmd_match(page, "recover")) { 4843 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4844 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4845 } else if (cmd_match(page, "reshape")) { 4846 int err; 4847 if (mddev->pers->start_reshape == NULL) 4848 return -EINVAL; 4849 err = mddev_lock(mddev); 4850 if (!err) { 4851 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4852 err = -EBUSY; 4853 else { 4854 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4855 err = mddev->pers->start_reshape(mddev); 4856 } 4857 mddev_unlock(mddev); 4858 } 4859 if (err) 4860 return err; 4861 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4862 } else { 4863 if (cmd_match(page, "check")) 4864 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4865 else if (!cmd_match(page, "repair")) 4866 return -EINVAL; 4867 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4868 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4869 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4870 } 4871 if (mddev->ro == 2) { 4872 /* A write to sync_action is enough to justify 4873 * canceling read-auto mode 4874 */ 4875 mddev->ro = 0; 4876 md_wakeup_thread(mddev->sync_thread); 4877 } 4878 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4879 md_wakeup_thread(mddev->thread); 4880 sysfs_notify_dirent_safe(mddev->sysfs_action); 4881 return len; 4882 } 4883 4884 static struct md_sysfs_entry md_scan_mode = 4885 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4886 4887 static ssize_t 4888 last_sync_action_show(struct mddev *mddev, char *page) 4889 { 4890 return sprintf(page, "%s\n", mddev->last_sync_action); 4891 } 4892 4893 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4894 4895 static ssize_t 4896 mismatch_cnt_show(struct mddev *mddev, char *page) 4897 { 4898 return sprintf(page, "%llu\n", 4899 (unsigned long long) 4900 atomic64_read(&mddev->resync_mismatches)); 4901 } 4902 4903 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4904 4905 static ssize_t 4906 sync_min_show(struct mddev *mddev, char *page) 4907 { 4908 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4909 mddev->sync_speed_min ? "local": "system"); 4910 } 4911 4912 static ssize_t 4913 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4914 { 4915 unsigned int min; 4916 int rv; 4917 4918 if (strncmp(buf, "system", 6)==0) { 4919 min = 0; 4920 } else { 4921 rv = kstrtouint(buf, 10, &min); 4922 if (rv < 0) 4923 return rv; 4924 if (min == 0) 4925 return -EINVAL; 4926 } 4927 mddev->sync_speed_min = min; 4928 return len; 4929 } 4930 4931 static struct md_sysfs_entry md_sync_min = 4932 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4933 4934 static ssize_t 4935 sync_max_show(struct mddev *mddev, char *page) 4936 { 4937 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4938 mddev->sync_speed_max ? "local": "system"); 4939 } 4940 4941 static ssize_t 4942 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4943 { 4944 unsigned int max; 4945 int rv; 4946 4947 if (strncmp(buf, "system", 6)==0) { 4948 max = 0; 4949 } else { 4950 rv = kstrtouint(buf, 10, &max); 4951 if (rv < 0) 4952 return rv; 4953 if (max == 0) 4954 return -EINVAL; 4955 } 4956 mddev->sync_speed_max = max; 4957 return len; 4958 } 4959 4960 static struct md_sysfs_entry md_sync_max = 4961 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4962 4963 static ssize_t 4964 degraded_show(struct mddev *mddev, char *page) 4965 { 4966 return sprintf(page, "%d\n", mddev->degraded); 4967 } 4968 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4969 4970 static ssize_t 4971 sync_force_parallel_show(struct mddev *mddev, char *page) 4972 { 4973 return sprintf(page, "%d\n", mddev->parallel_resync); 4974 } 4975 4976 static ssize_t 4977 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4978 { 4979 long n; 4980 4981 if (kstrtol(buf, 10, &n)) 4982 return -EINVAL; 4983 4984 if (n != 0 && n != 1) 4985 return -EINVAL; 4986 4987 mddev->parallel_resync = n; 4988 4989 if (mddev->sync_thread) 4990 wake_up(&resync_wait); 4991 4992 return len; 4993 } 4994 4995 /* force parallel resync, even with shared block devices */ 4996 static struct md_sysfs_entry md_sync_force_parallel = 4997 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4998 sync_force_parallel_show, sync_force_parallel_store); 4999 5000 static ssize_t 5001 sync_speed_show(struct mddev *mddev, char *page) 5002 { 5003 unsigned long resync, dt, db; 5004 if (mddev->curr_resync == 0) 5005 return sprintf(page, "none\n"); 5006 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5007 dt = (jiffies - mddev->resync_mark) / HZ; 5008 if (!dt) dt++; 5009 db = resync - mddev->resync_mark_cnt; 5010 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5011 } 5012 5013 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5014 5015 static ssize_t 5016 sync_completed_show(struct mddev *mddev, char *page) 5017 { 5018 unsigned long long max_sectors, resync; 5019 5020 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5021 return sprintf(page, "none\n"); 5022 5023 if (mddev->curr_resync == 1 || 5024 mddev->curr_resync == 2) 5025 return sprintf(page, "delayed\n"); 5026 5027 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5028 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5029 max_sectors = mddev->resync_max_sectors; 5030 else 5031 max_sectors = mddev->dev_sectors; 5032 5033 resync = mddev->curr_resync_completed; 5034 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5035 } 5036 5037 static struct md_sysfs_entry md_sync_completed = 5038 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5039 5040 static ssize_t 5041 min_sync_show(struct mddev *mddev, char *page) 5042 { 5043 return sprintf(page, "%llu\n", 5044 (unsigned long long)mddev->resync_min); 5045 } 5046 static ssize_t 5047 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5048 { 5049 unsigned long long min; 5050 int err; 5051 5052 if (kstrtoull(buf, 10, &min)) 5053 return -EINVAL; 5054 5055 spin_lock(&mddev->lock); 5056 err = -EINVAL; 5057 if (min > mddev->resync_max) 5058 goto out_unlock; 5059 5060 err = -EBUSY; 5061 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5062 goto out_unlock; 5063 5064 /* Round down to multiple of 4K for safety */ 5065 mddev->resync_min = round_down(min, 8); 5066 err = 0; 5067 5068 out_unlock: 5069 spin_unlock(&mddev->lock); 5070 return err ?: len; 5071 } 5072 5073 static struct md_sysfs_entry md_min_sync = 5074 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5075 5076 static ssize_t 5077 max_sync_show(struct mddev *mddev, char *page) 5078 { 5079 if (mddev->resync_max == MaxSector) 5080 return sprintf(page, "max\n"); 5081 else 5082 return sprintf(page, "%llu\n", 5083 (unsigned long long)mddev->resync_max); 5084 } 5085 static ssize_t 5086 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5087 { 5088 int err; 5089 spin_lock(&mddev->lock); 5090 if (strncmp(buf, "max", 3) == 0) 5091 mddev->resync_max = MaxSector; 5092 else { 5093 unsigned long long max; 5094 int chunk; 5095 5096 err = -EINVAL; 5097 if (kstrtoull(buf, 10, &max)) 5098 goto out_unlock; 5099 if (max < mddev->resync_min) 5100 goto out_unlock; 5101 5102 err = -EBUSY; 5103 if (max < mddev->resync_max && 5104 mddev->ro == 0 && 5105 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5106 goto out_unlock; 5107 5108 /* Must be a multiple of chunk_size */ 5109 chunk = mddev->chunk_sectors; 5110 if (chunk) { 5111 sector_t temp = max; 5112 5113 err = -EINVAL; 5114 if (sector_div(temp, chunk)) 5115 goto out_unlock; 5116 } 5117 mddev->resync_max = max; 5118 } 5119 wake_up(&mddev->recovery_wait); 5120 err = 0; 5121 out_unlock: 5122 spin_unlock(&mddev->lock); 5123 return err ?: len; 5124 } 5125 5126 static struct md_sysfs_entry md_max_sync = 5127 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5128 5129 static ssize_t 5130 suspend_lo_show(struct mddev *mddev, char *page) 5131 { 5132 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5133 } 5134 5135 static ssize_t 5136 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5137 { 5138 unsigned long long new; 5139 int err; 5140 5141 err = kstrtoull(buf, 10, &new); 5142 if (err < 0) 5143 return err; 5144 if (new != (sector_t)new) 5145 return -EINVAL; 5146 5147 err = mddev_lock(mddev); 5148 if (err) 5149 return err; 5150 err = -EINVAL; 5151 if (mddev->pers == NULL || 5152 mddev->pers->quiesce == NULL) 5153 goto unlock; 5154 mddev_suspend(mddev); 5155 mddev->suspend_lo = new; 5156 mddev_resume(mddev); 5157 5158 err = 0; 5159 unlock: 5160 mddev_unlock(mddev); 5161 return err ?: len; 5162 } 5163 static struct md_sysfs_entry md_suspend_lo = 5164 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5165 5166 static ssize_t 5167 suspend_hi_show(struct mddev *mddev, char *page) 5168 { 5169 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5170 } 5171 5172 static ssize_t 5173 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5174 { 5175 unsigned long long new; 5176 int err; 5177 5178 err = kstrtoull(buf, 10, &new); 5179 if (err < 0) 5180 return err; 5181 if (new != (sector_t)new) 5182 return -EINVAL; 5183 5184 err = mddev_lock(mddev); 5185 if (err) 5186 return err; 5187 err = -EINVAL; 5188 if (mddev->pers == NULL) 5189 goto unlock; 5190 5191 mddev_suspend(mddev); 5192 mddev->suspend_hi = new; 5193 mddev_resume(mddev); 5194 5195 err = 0; 5196 unlock: 5197 mddev_unlock(mddev); 5198 return err ?: len; 5199 } 5200 static struct md_sysfs_entry md_suspend_hi = 5201 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5202 5203 static ssize_t 5204 reshape_position_show(struct mddev *mddev, char *page) 5205 { 5206 if (mddev->reshape_position != MaxSector) 5207 return sprintf(page, "%llu\n", 5208 (unsigned long long)mddev->reshape_position); 5209 strcpy(page, "none\n"); 5210 return 5; 5211 } 5212 5213 static ssize_t 5214 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5215 { 5216 struct md_rdev *rdev; 5217 unsigned long long new; 5218 int err; 5219 5220 err = kstrtoull(buf, 10, &new); 5221 if (err < 0) 5222 return err; 5223 if (new != (sector_t)new) 5224 return -EINVAL; 5225 err = mddev_lock(mddev); 5226 if (err) 5227 return err; 5228 err = -EBUSY; 5229 if (mddev->pers) 5230 goto unlock; 5231 mddev->reshape_position = new; 5232 mddev->delta_disks = 0; 5233 mddev->reshape_backwards = 0; 5234 mddev->new_level = mddev->level; 5235 mddev->new_layout = mddev->layout; 5236 mddev->new_chunk_sectors = mddev->chunk_sectors; 5237 rdev_for_each(rdev, mddev) 5238 rdev->new_data_offset = rdev->data_offset; 5239 err = 0; 5240 unlock: 5241 mddev_unlock(mddev); 5242 return err ?: len; 5243 } 5244 5245 static struct md_sysfs_entry md_reshape_position = 5246 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5247 reshape_position_store); 5248 5249 static ssize_t 5250 reshape_direction_show(struct mddev *mddev, char *page) 5251 { 5252 return sprintf(page, "%s\n", 5253 mddev->reshape_backwards ? "backwards" : "forwards"); 5254 } 5255 5256 static ssize_t 5257 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5258 { 5259 int backwards = 0; 5260 int err; 5261 5262 if (cmd_match(buf, "forwards")) 5263 backwards = 0; 5264 else if (cmd_match(buf, "backwards")) 5265 backwards = 1; 5266 else 5267 return -EINVAL; 5268 if (mddev->reshape_backwards == backwards) 5269 return len; 5270 5271 err = mddev_lock(mddev); 5272 if (err) 5273 return err; 5274 /* check if we are allowed to change */ 5275 if (mddev->delta_disks) 5276 err = -EBUSY; 5277 else if (mddev->persistent && 5278 mddev->major_version == 0) 5279 err = -EINVAL; 5280 else 5281 mddev->reshape_backwards = backwards; 5282 mddev_unlock(mddev); 5283 return err ?: len; 5284 } 5285 5286 static struct md_sysfs_entry md_reshape_direction = 5287 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5288 reshape_direction_store); 5289 5290 static ssize_t 5291 array_size_show(struct mddev *mddev, char *page) 5292 { 5293 if (mddev->external_size) 5294 return sprintf(page, "%llu\n", 5295 (unsigned long long)mddev->array_sectors/2); 5296 else 5297 return sprintf(page, "default\n"); 5298 } 5299 5300 static ssize_t 5301 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5302 { 5303 sector_t sectors; 5304 int err; 5305 5306 err = mddev_lock(mddev); 5307 if (err) 5308 return err; 5309 5310 /* cluster raid doesn't support change array_sectors */ 5311 if (mddev_is_clustered(mddev)) { 5312 mddev_unlock(mddev); 5313 return -EINVAL; 5314 } 5315 5316 if (strncmp(buf, "default", 7) == 0) { 5317 if (mddev->pers) 5318 sectors = mddev->pers->size(mddev, 0, 0); 5319 else 5320 sectors = mddev->array_sectors; 5321 5322 mddev->external_size = 0; 5323 } else { 5324 if (strict_blocks_to_sectors(buf, §ors) < 0) 5325 err = -EINVAL; 5326 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5327 err = -E2BIG; 5328 else 5329 mddev->external_size = 1; 5330 } 5331 5332 if (!err) { 5333 mddev->array_sectors = sectors; 5334 if (mddev->pers) 5335 set_capacity_and_notify(mddev->gendisk, 5336 mddev->array_sectors); 5337 } 5338 mddev_unlock(mddev); 5339 return err ?: len; 5340 } 5341 5342 static struct md_sysfs_entry md_array_size = 5343 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5344 array_size_store); 5345 5346 static ssize_t 5347 consistency_policy_show(struct mddev *mddev, char *page) 5348 { 5349 int ret; 5350 5351 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5352 ret = sprintf(page, "journal\n"); 5353 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5354 ret = sprintf(page, "ppl\n"); 5355 } else if (mddev->bitmap) { 5356 ret = sprintf(page, "bitmap\n"); 5357 } else if (mddev->pers) { 5358 if (mddev->pers->sync_request) 5359 ret = sprintf(page, "resync\n"); 5360 else 5361 ret = sprintf(page, "none\n"); 5362 } else { 5363 ret = sprintf(page, "unknown\n"); 5364 } 5365 5366 return ret; 5367 } 5368 5369 static ssize_t 5370 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5371 { 5372 int err = 0; 5373 5374 if (mddev->pers) { 5375 if (mddev->pers->change_consistency_policy) 5376 err = mddev->pers->change_consistency_policy(mddev, buf); 5377 else 5378 err = -EBUSY; 5379 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5380 set_bit(MD_HAS_PPL, &mddev->flags); 5381 } else { 5382 err = -EINVAL; 5383 } 5384 5385 return err ? err : len; 5386 } 5387 5388 static struct md_sysfs_entry md_consistency_policy = 5389 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5390 consistency_policy_store); 5391 5392 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5393 { 5394 return sprintf(page, "%d\n", mddev->fail_last_dev); 5395 } 5396 5397 /* 5398 * Setting fail_last_dev to true to allow last device to be forcibly removed 5399 * from RAID1/RAID10. 5400 */ 5401 static ssize_t 5402 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5403 { 5404 int ret; 5405 bool value; 5406 5407 ret = kstrtobool(buf, &value); 5408 if (ret) 5409 return ret; 5410 5411 if (value != mddev->fail_last_dev) 5412 mddev->fail_last_dev = value; 5413 5414 return len; 5415 } 5416 static struct md_sysfs_entry md_fail_last_dev = 5417 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5418 fail_last_dev_store); 5419 5420 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5421 { 5422 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5423 return sprintf(page, "n/a\n"); 5424 else 5425 return sprintf(page, "%d\n", mddev->serialize_policy); 5426 } 5427 5428 /* 5429 * Setting serialize_policy to true to enforce write IO is not reordered 5430 * for raid1. 5431 */ 5432 static ssize_t 5433 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5434 { 5435 int err; 5436 bool value; 5437 5438 err = kstrtobool(buf, &value); 5439 if (err) 5440 return err; 5441 5442 if (value == mddev->serialize_policy) 5443 return len; 5444 5445 err = mddev_lock(mddev); 5446 if (err) 5447 return err; 5448 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5449 pr_err("md: serialize_policy is only effective for raid1\n"); 5450 err = -EINVAL; 5451 goto unlock; 5452 } 5453 5454 mddev_suspend(mddev); 5455 if (value) 5456 mddev_create_serial_pool(mddev, NULL, true); 5457 else 5458 mddev_destroy_serial_pool(mddev, NULL, true); 5459 mddev->serialize_policy = value; 5460 mddev_resume(mddev); 5461 unlock: 5462 mddev_unlock(mddev); 5463 return err ?: len; 5464 } 5465 5466 static struct md_sysfs_entry md_serialize_policy = 5467 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5468 serialize_policy_store); 5469 5470 5471 static struct attribute *md_default_attrs[] = { 5472 &md_level.attr, 5473 &md_layout.attr, 5474 &md_raid_disks.attr, 5475 &md_uuid.attr, 5476 &md_chunk_size.attr, 5477 &md_size.attr, 5478 &md_resync_start.attr, 5479 &md_metadata.attr, 5480 &md_new_device.attr, 5481 &md_safe_delay.attr, 5482 &md_array_state.attr, 5483 &md_reshape_position.attr, 5484 &md_reshape_direction.attr, 5485 &md_array_size.attr, 5486 &max_corr_read_errors.attr, 5487 &md_consistency_policy.attr, 5488 &md_fail_last_dev.attr, 5489 &md_serialize_policy.attr, 5490 NULL, 5491 }; 5492 5493 static const struct attribute_group md_default_group = { 5494 .attrs = md_default_attrs, 5495 }; 5496 5497 static struct attribute *md_redundancy_attrs[] = { 5498 &md_scan_mode.attr, 5499 &md_last_scan_mode.attr, 5500 &md_mismatches.attr, 5501 &md_sync_min.attr, 5502 &md_sync_max.attr, 5503 &md_sync_speed.attr, 5504 &md_sync_force_parallel.attr, 5505 &md_sync_completed.attr, 5506 &md_min_sync.attr, 5507 &md_max_sync.attr, 5508 &md_suspend_lo.attr, 5509 &md_suspend_hi.attr, 5510 &md_bitmap.attr, 5511 &md_degraded.attr, 5512 NULL, 5513 }; 5514 static const struct attribute_group md_redundancy_group = { 5515 .name = NULL, 5516 .attrs = md_redundancy_attrs, 5517 }; 5518 5519 static const struct attribute_group *md_attr_groups[] = { 5520 &md_default_group, 5521 &md_bitmap_group, 5522 NULL, 5523 }; 5524 5525 static ssize_t 5526 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5527 { 5528 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5529 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5530 ssize_t rv; 5531 5532 if (!entry->show) 5533 return -EIO; 5534 spin_lock(&all_mddevs_lock); 5535 if (list_empty(&mddev->all_mddevs)) { 5536 spin_unlock(&all_mddevs_lock); 5537 return -EBUSY; 5538 } 5539 mddev_get(mddev); 5540 spin_unlock(&all_mddevs_lock); 5541 5542 rv = entry->show(mddev, page); 5543 mddev_put(mddev); 5544 return rv; 5545 } 5546 5547 static ssize_t 5548 md_attr_store(struct kobject *kobj, struct attribute *attr, 5549 const char *page, size_t length) 5550 { 5551 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5552 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5553 ssize_t rv; 5554 5555 if (!entry->store) 5556 return -EIO; 5557 if (!capable(CAP_SYS_ADMIN)) 5558 return -EACCES; 5559 spin_lock(&all_mddevs_lock); 5560 if (list_empty(&mddev->all_mddevs)) { 5561 spin_unlock(&all_mddevs_lock); 5562 return -EBUSY; 5563 } 5564 mddev_get(mddev); 5565 spin_unlock(&all_mddevs_lock); 5566 rv = entry->store(mddev, page, length); 5567 mddev_put(mddev); 5568 return rv; 5569 } 5570 5571 static void md_free(struct kobject *ko) 5572 { 5573 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5574 5575 if (mddev->sysfs_state) 5576 sysfs_put(mddev->sysfs_state); 5577 if (mddev->sysfs_level) 5578 sysfs_put(mddev->sysfs_level); 5579 5580 if (mddev->gendisk) { 5581 del_gendisk(mddev->gendisk); 5582 blk_cleanup_disk(mddev->gendisk); 5583 } 5584 percpu_ref_exit(&mddev->writes_pending); 5585 5586 bioset_exit(&mddev->bio_set); 5587 bioset_exit(&mddev->sync_set); 5588 kfree(mddev); 5589 } 5590 5591 static const struct sysfs_ops md_sysfs_ops = { 5592 .show = md_attr_show, 5593 .store = md_attr_store, 5594 }; 5595 static struct kobj_type md_ktype = { 5596 .release = md_free, 5597 .sysfs_ops = &md_sysfs_ops, 5598 .default_groups = md_attr_groups, 5599 }; 5600 5601 int mdp_major = 0; 5602 5603 static void mddev_delayed_delete(struct work_struct *ws) 5604 { 5605 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5606 5607 kobject_del(&mddev->kobj); 5608 kobject_put(&mddev->kobj); 5609 } 5610 5611 static void no_op(struct percpu_ref *r) {} 5612 5613 int mddev_init_writes_pending(struct mddev *mddev) 5614 { 5615 if (mddev->writes_pending.percpu_count_ptr) 5616 return 0; 5617 if (percpu_ref_init(&mddev->writes_pending, no_op, 5618 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5619 return -ENOMEM; 5620 /* We want to start with the refcount at zero */ 5621 percpu_ref_put(&mddev->writes_pending); 5622 return 0; 5623 } 5624 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5625 5626 static int md_alloc(dev_t dev, char *name) 5627 { 5628 /* 5629 * If dev is zero, name is the name of a device to allocate with 5630 * an arbitrary minor number. It will be "md_???" 5631 * If dev is non-zero it must be a device number with a MAJOR of 5632 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5633 * the device is being created by opening a node in /dev. 5634 * If "name" is not NULL, the device is being created by 5635 * writing to /sys/module/md_mod/parameters/new_array. 5636 */ 5637 static DEFINE_MUTEX(disks_mutex); 5638 struct mddev *mddev; 5639 struct gendisk *disk; 5640 int partitioned; 5641 int shift; 5642 int unit; 5643 int error ; 5644 5645 /* 5646 * Wait for any previous instance of this device to be completely 5647 * removed (mddev_delayed_delete). 5648 */ 5649 flush_workqueue(md_misc_wq); 5650 5651 mutex_lock(&disks_mutex); 5652 mddev = mddev_alloc(dev); 5653 if (IS_ERR(mddev)) { 5654 mutex_unlock(&disks_mutex); 5655 return PTR_ERR(mddev); 5656 } 5657 5658 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5659 shift = partitioned ? MdpMinorShift : 0; 5660 unit = MINOR(mddev->unit) >> shift; 5661 5662 if (name && !dev) { 5663 /* Need to ensure that 'name' is not a duplicate. 5664 */ 5665 struct mddev *mddev2; 5666 spin_lock(&all_mddevs_lock); 5667 5668 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5669 if (mddev2->gendisk && 5670 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5671 spin_unlock(&all_mddevs_lock); 5672 error = -EEXIST; 5673 goto out_unlock_disks_mutex; 5674 } 5675 spin_unlock(&all_mddevs_lock); 5676 } 5677 if (name && dev) 5678 /* 5679 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5680 */ 5681 mddev->hold_active = UNTIL_STOP; 5682 5683 error = -ENOMEM; 5684 disk = blk_alloc_disk(NUMA_NO_NODE); 5685 if (!disk) 5686 goto out_unlock_disks_mutex; 5687 5688 disk->major = MAJOR(mddev->unit); 5689 disk->first_minor = unit << shift; 5690 disk->minors = 1 << shift; 5691 if (name) 5692 strcpy(disk->disk_name, name); 5693 else if (partitioned) 5694 sprintf(disk->disk_name, "md_d%d", unit); 5695 else 5696 sprintf(disk->disk_name, "md%d", unit); 5697 disk->fops = &md_fops; 5698 disk->private_data = mddev; 5699 5700 mddev->queue = disk->queue; 5701 blk_set_stacking_limits(&mddev->queue->limits); 5702 blk_queue_write_cache(mddev->queue, true, true); 5703 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5704 mddev->gendisk = disk; 5705 error = add_disk(disk); 5706 if (error) 5707 goto out_cleanup_disk; 5708 5709 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5710 if (error) 5711 goto out_del_gendisk; 5712 5713 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5714 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5715 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5716 goto out_unlock_disks_mutex; 5717 5718 out_del_gendisk: 5719 del_gendisk(disk); 5720 out_cleanup_disk: 5721 blk_cleanup_disk(disk); 5722 out_unlock_disks_mutex: 5723 mutex_unlock(&disks_mutex); 5724 mddev_put(mddev); 5725 return error; 5726 } 5727 5728 static void md_probe(dev_t dev) 5729 { 5730 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5731 return; 5732 if (create_on_open) 5733 md_alloc(dev, NULL); 5734 } 5735 5736 static int add_named_array(const char *val, const struct kernel_param *kp) 5737 { 5738 /* 5739 * val must be "md_*" or "mdNNN". 5740 * For "md_*" we allocate an array with a large free minor number, and 5741 * set the name to val. val must not already be an active name. 5742 * For "mdNNN" we allocate an array with the minor number NNN 5743 * which must not already be in use. 5744 */ 5745 int len = strlen(val); 5746 char buf[DISK_NAME_LEN]; 5747 unsigned long devnum; 5748 5749 while (len && val[len-1] == '\n') 5750 len--; 5751 if (len >= DISK_NAME_LEN) 5752 return -E2BIG; 5753 strscpy(buf, val, len+1); 5754 if (strncmp(buf, "md_", 3) == 0) 5755 return md_alloc(0, buf); 5756 if (strncmp(buf, "md", 2) == 0 && 5757 isdigit(buf[2]) && 5758 kstrtoul(buf+2, 10, &devnum) == 0 && 5759 devnum <= MINORMASK) 5760 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5761 5762 return -EINVAL; 5763 } 5764 5765 static void md_safemode_timeout(struct timer_list *t) 5766 { 5767 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5768 5769 mddev->safemode = 1; 5770 if (mddev->external) 5771 sysfs_notify_dirent_safe(mddev->sysfs_state); 5772 5773 md_wakeup_thread(mddev->thread); 5774 } 5775 5776 static int start_dirty_degraded; 5777 5778 int md_run(struct mddev *mddev) 5779 { 5780 int err; 5781 struct md_rdev *rdev; 5782 struct md_personality *pers; 5783 bool nowait = true; 5784 5785 if (list_empty(&mddev->disks)) 5786 /* cannot run an array with no devices.. */ 5787 return -EINVAL; 5788 5789 if (mddev->pers) 5790 return -EBUSY; 5791 /* Cannot run until previous stop completes properly */ 5792 if (mddev->sysfs_active) 5793 return -EBUSY; 5794 5795 /* 5796 * Analyze all RAID superblock(s) 5797 */ 5798 if (!mddev->raid_disks) { 5799 if (!mddev->persistent) 5800 return -EINVAL; 5801 err = analyze_sbs(mddev); 5802 if (err) 5803 return -EINVAL; 5804 } 5805 5806 if (mddev->level != LEVEL_NONE) 5807 request_module("md-level-%d", mddev->level); 5808 else if (mddev->clevel[0]) 5809 request_module("md-%s", mddev->clevel); 5810 5811 /* 5812 * Drop all container device buffers, from now on 5813 * the only valid external interface is through the md 5814 * device. 5815 */ 5816 mddev->has_superblocks = false; 5817 rdev_for_each(rdev, mddev) { 5818 if (test_bit(Faulty, &rdev->flags)) 5819 continue; 5820 sync_blockdev(rdev->bdev); 5821 invalidate_bdev(rdev->bdev); 5822 if (mddev->ro != 1 && rdev_read_only(rdev)) { 5823 mddev->ro = 1; 5824 if (mddev->gendisk) 5825 set_disk_ro(mddev->gendisk, 1); 5826 } 5827 5828 if (rdev->sb_page) 5829 mddev->has_superblocks = true; 5830 5831 /* perform some consistency tests on the device. 5832 * We don't want the data to overlap the metadata, 5833 * Internal Bitmap issues have been handled elsewhere. 5834 */ 5835 if (rdev->meta_bdev) { 5836 /* Nothing to check */; 5837 } else if (rdev->data_offset < rdev->sb_start) { 5838 if (mddev->dev_sectors && 5839 rdev->data_offset + mddev->dev_sectors 5840 > rdev->sb_start) { 5841 pr_warn("md: %s: data overlaps metadata\n", 5842 mdname(mddev)); 5843 return -EINVAL; 5844 } 5845 } else { 5846 if (rdev->sb_start + rdev->sb_size/512 5847 > rdev->data_offset) { 5848 pr_warn("md: %s: metadata overlaps data\n", 5849 mdname(mddev)); 5850 return -EINVAL; 5851 } 5852 } 5853 sysfs_notify_dirent_safe(rdev->sysfs_state); 5854 nowait = nowait && blk_queue_nowait(bdev_get_queue(rdev->bdev)); 5855 } 5856 5857 if (!bioset_initialized(&mddev->bio_set)) { 5858 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5859 if (err) 5860 return err; 5861 } 5862 if (!bioset_initialized(&mddev->sync_set)) { 5863 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5864 if (err) 5865 goto exit_bio_set; 5866 } 5867 5868 spin_lock(&pers_lock); 5869 pers = find_pers(mddev->level, mddev->clevel); 5870 if (!pers || !try_module_get(pers->owner)) { 5871 spin_unlock(&pers_lock); 5872 if (mddev->level != LEVEL_NONE) 5873 pr_warn("md: personality for level %d is not loaded!\n", 5874 mddev->level); 5875 else 5876 pr_warn("md: personality for level %s is not loaded!\n", 5877 mddev->clevel); 5878 err = -EINVAL; 5879 goto abort; 5880 } 5881 spin_unlock(&pers_lock); 5882 if (mddev->level != pers->level) { 5883 mddev->level = pers->level; 5884 mddev->new_level = pers->level; 5885 } 5886 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5887 5888 if (mddev->reshape_position != MaxSector && 5889 pers->start_reshape == NULL) { 5890 /* This personality cannot handle reshaping... */ 5891 module_put(pers->owner); 5892 err = -EINVAL; 5893 goto abort; 5894 } 5895 5896 if (pers->sync_request) { 5897 /* Warn if this is a potentially silly 5898 * configuration. 5899 */ 5900 struct md_rdev *rdev2; 5901 int warned = 0; 5902 5903 rdev_for_each(rdev, mddev) 5904 rdev_for_each(rdev2, mddev) { 5905 if (rdev < rdev2 && 5906 rdev->bdev->bd_disk == 5907 rdev2->bdev->bd_disk) { 5908 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5909 mdname(mddev), 5910 rdev->bdev, 5911 rdev2->bdev); 5912 warned = 1; 5913 } 5914 } 5915 5916 if (warned) 5917 pr_warn("True protection against single-disk failure might be compromised.\n"); 5918 } 5919 5920 mddev->recovery = 0; 5921 /* may be over-ridden by personality */ 5922 mddev->resync_max_sectors = mddev->dev_sectors; 5923 5924 mddev->ok_start_degraded = start_dirty_degraded; 5925 5926 if (start_readonly && mddev->ro == 0) 5927 mddev->ro = 2; /* read-only, but switch on first write */ 5928 5929 err = pers->run(mddev); 5930 if (err) 5931 pr_warn("md: pers->run() failed ...\n"); 5932 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5933 WARN_ONCE(!mddev->external_size, 5934 "%s: default size too small, but 'external_size' not in effect?\n", 5935 __func__); 5936 pr_warn("md: invalid array_size %llu > default size %llu\n", 5937 (unsigned long long)mddev->array_sectors / 2, 5938 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5939 err = -EINVAL; 5940 } 5941 if (err == 0 && pers->sync_request && 5942 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5943 struct bitmap *bitmap; 5944 5945 bitmap = md_bitmap_create(mddev, -1); 5946 if (IS_ERR(bitmap)) { 5947 err = PTR_ERR(bitmap); 5948 pr_warn("%s: failed to create bitmap (%d)\n", 5949 mdname(mddev), err); 5950 } else 5951 mddev->bitmap = bitmap; 5952 5953 } 5954 if (err) 5955 goto bitmap_abort; 5956 5957 if (mddev->bitmap_info.max_write_behind > 0) { 5958 bool create_pool = false; 5959 5960 rdev_for_each(rdev, mddev) { 5961 if (test_bit(WriteMostly, &rdev->flags) && 5962 rdev_init_serial(rdev)) 5963 create_pool = true; 5964 } 5965 if (create_pool && mddev->serial_info_pool == NULL) { 5966 mddev->serial_info_pool = 5967 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5968 sizeof(struct serial_info)); 5969 if (!mddev->serial_info_pool) { 5970 err = -ENOMEM; 5971 goto bitmap_abort; 5972 } 5973 } 5974 } 5975 5976 if (mddev->queue) { 5977 bool nonrot = true; 5978 5979 rdev_for_each(rdev, mddev) { 5980 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 5981 nonrot = false; 5982 break; 5983 } 5984 } 5985 if (mddev->degraded) 5986 nonrot = false; 5987 if (nonrot) 5988 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5989 else 5990 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5991 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 5992 5993 /* Set the NOWAIT flags if all underlying devices support it */ 5994 if (nowait) 5995 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 5996 } 5997 if (pers->sync_request) { 5998 if (mddev->kobj.sd && 5999 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6000 pr_warn("md: cannot register extra attributes for %s\n", 6001 mdname(mddev)); 6002 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6003 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6004 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6005 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6006 mddev->ro = 0; 6007 6008 atomic_set(&mddev->max_corr_read_errors, 6009 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6010 mddev->safemode = 0; 6011 if (mddev_is_clustered(mddev)) 6012 mddev->safemode_delay = 0; 6013 else 6014 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6015 mddev->in_sync = 1; 6016 smp_wmb(); 6017 spin_lock(&mddev->lock); 6018 mddev->pers = pers; 6019 spin_unlock(&mddev->lock); 6020 rdev_for_each(rdev, mddev) 6021 if (rdev->raid_disk >= 0) 6022 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6023 6024 if (mddev->degraded && !mddev->ro) 6025 /* This ensures that recovering status is reported immediately 6026 * via sysfs - until a lack of spares is confirmed. 6027 */ 6028 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6029 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6030 6031 if (mddev->sb_flags) 6032 md_update_sb(mddev, 0); 6033 6034 md_new_event(); 6035 return 0; 6036 6037 bitmap_abort: 6038 mddev_detach(mddev); 6039 if (mddev->private) 6040 pers->free(mddev, mddev->private); 6041 mddev->private = NULL; 6042 module_put(pers->owner); 6043 md_bitmap_destroy(mddev); 6044 abort: 6045 bioset_exit(&mddev->sync_set); 6046 exit_bio_set: 6047 bioset_exit(&mddev->bio_set); 6048 return err; 6049 } 6050 EXPORT_SYMBOL_GPL(md_run); 6051 6052 int do_md_run(struct mddev *mddev) 6053 { 6054 int err; 6055 6056 set_bit(MD_NOT_READY, &mddev->flags); 6057 err = md_run(mddev); 6058 if (err) 6059 goto out; 6060 err = md_bitmap_load(mddev); 6061 if (err) { 6062 md_bitmap_destroy(mddev); 6063 goto out; 6064 } 6065 6066 if (mddev_is_clustered(mddev)) 6067 md_allow_write(mddev); 6068 6069 /* run start up tasks that require md_thread */ 6070 md_start(mddev); 6071 6072 md_wakeup_thread(mddev->thread); 6073 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6074 6075 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6076 clear_bit(MD_NOT_READY, &mddev->flags); 6077 mddev->changed = 1; 6078 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6079 sysfs_notify_dirent_safe(mddev->sysfs_state); 6080 sysfs_notify_dirent_safe(mddev->sysfs_action); 6081 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6082 out: 6083 clear_bit(MD_NOT_READY, &mddev->flags); 6084 return err; 6085 } 6086 6087 int md_start(struct mddev *mddev) 6088 { 6089 int ret = 0; 6090 6091 if (mddev->pers->start) { 6092 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6093 md_wakeup_thread(mddev->thread); 6094 ret = mddev->pers->start(mddev); 6095 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6096 md_wakeup_thread(mddev->sync_thread); 6097 } 6098 return ret; 6099 } 6100 EXPORT_SYMBOL_GPL(md_start); 6101 6102 static int restart_array(struct mddev *mddev) 6103 { 6104 struct gendisk *disk = mddev->gendisk; 6105 struct md_rdev *rdev; 6106 bool has_journal = false; 6107 bool has_readonly = false; 6108 6109 /* Complain if it has no devices */ 6110 if (list_empty(&mddev->disks)) 6111 return -ENXIO; 6112 if (!mddev->pers) 6113 return -EINVAL; 6114 if (!mddev->ro) 6115 return -EBUSY; 6116 6117 rcu_read_lock(); 6118 rdev_for_each_rcu(rdev, mddev) { 6119 if (test_bit(Journal, &rdev->flags) && 6120 !test_bit(Faulty, &rdev->flags)) 6121 has_journal = true; 6122 if (rdev_read_only(rdev)) 6123 has_readonly = true; 6124 } 6125 rcu_read_unlock(); 6126 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6127 /* Don't restart rw with journal missing/faulty */ 6128 return -EINVAL; 6129 if (has_readonly) 6130 return -EROFS; 6131 6132 mddev->safemode = 0; 6133 mddev->ro = 0; 6134 set_disk_ro(disk, 0); 6135 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6136 /* Kick recovery or resync if necessary */ 6137 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6138 md_wakeup_thread(mddev->thread); 6139 md_wakeup_thread(mddev->sync_thread); 6140 sysfs_notify_dirent_safe(mddev->sysfs_state); 6141 return 0; 6142 } 6143 6144 static void md_clean(struct mddev *mddev) 6145 { 6146 mddev->array_sectors = 0; 6147 mddev->external_size = 0; 6148 mddev->dev_sectors = 0; 6149 mddev->raid_disks = 0; 6150 mddev->recovery_cp = 0; 6151 mddev->resync_min = 0; 6152 mddev->resync_max = MaxSector; 6153 mddev->reshape_position = MaxSector; 6154 mddev->external = 0; 6155 mddev->persistent = 0; 6156 mddev->level = LEVEL_NONE; 6157 mddev->clevel[0] = 0; 6158 mddev->flags = 0; 6159 mddev->sb_flags = 0; 6160 mddev->ro = 0; 6161 mddev->metadata_type[0] = 0; 6162 mddev->chunk_sectors = 0; 6163 mddev->ctime = mddev->utime = 0; 6164 mddev->layout = 0; 6165 mddev->max_disks = 0; 6166 mddev->events = 0; 6167 mddev->can_decrease_events = 0; 6168 mddev->delta_disks = 0; 6169 mddev->reshape_backwards = 0; 6170 mddev->new_level = LEVEL_NONE; 6171 mddev->new_layout = 0; 6172 mddev->new_chunk_sectors = 0; 6173 mddev->curr_resync = 0; 6174 atomic64_set(&mddev->resync_mismatches, 0); 6175 mddev->suspend_lo = mddev->suspend_hi = 0; 6176 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6177 mddev->recovery = 0; 6178 mddev->in_sync = 0; 6179 mddev->changed = 0; 6180 mddev->degraded = 0; 6181 mddev->safemode = 0; 6182 mddev->private = NULL; 6183 mddev->cluster_info = NULL; 6184 mddev->bitmap_info.offset = 0; 6185 mddev->bitmap_info.default_offset = 0; 6186 mddev->bitmap_info.default_space = 0; 6187 mddev->bitmap_info.chunksize = 0; 6188 mddev->bitmap_info.daemon_sleep = 0; 6189 mddev->bitmap_info.max_write_behind = 0; 6190 mddev->bitmap_info.nodes = 0; 6191 } 6192 6193 static void __md_stop_writes(struct mddev *mddev) 6194 { 6195 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6196 if (work_pending(&mddev->del_work)) 6197 flush_workqueue(md_misc_wq); 6198 if (mddev->sync_thread) { 6199 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6200 md_reap_sync_thread(mddev, true); 6201 } 6202 6203 del_timer_sync(&mddev->safemode_timer); 6204 6205 if (mddev->pers && mddev->pers->quiesce) { 6206 mddev->pers->quiesce(mddev, 1); 6207 mddev->pers->quiesce(mddev, 0); 6208 } 6209 md_bitmap_flush(mddev); 6210 6211 if (mddev->ro == 0 && 6212 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6213 mddev->sb_flags)) { 6214 /* mark array as shutdown cleanly */ 6215 if (!mddev_is_clustered(mddev)) 6216 mddev->in_sync = 1; 6217 md_update_sb(mddev, 1); 6218 } 6219 /* disable policy to guarantee rdevs free resources for serialization */ 6220 mddev->serialize_policy = 0; 6221 mddev_destroy_serial_pool(mddev, NULL, true); 6222 } 6223 6224 void md_stop_writes(struct mddev *mddev) 6225 { 6226 mddev_lock_nointr(mddev); 6227 __md_stop_writes(mddev); 6228 mddev_unlock(mddev); 6229 } 6230 EXPORT_SYMBOL_GPL(md_stop_writes); 6231 6232 static void mddev_detach(struct mddev *mddev) 6233 { 6234 md_bitmap_wait_behind_writes(mddev); 6235 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6236 mddev->pers->quiesce(mddev, 1); 6237 mddev->pers->quiesce(mddev, 0); 6238 } 6239 md_unregister_thread(&mddev->thread); 6240 if (mddev->queue) 6241 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6242 } 6243 6244 static void __md_stop(struct mddev *mddev) 6245 { 6246 struct md_personality *pers = mddev->pers; 6247 md_bitmap_destroy(mddev); 6248 mddev_detach(mddev); 6249 /* Ensure ->event_work is done */ 6250 if (mddev->event_work.func) 6251 flush_workqueue(md_misc_wq); 6252 spin_lock(&mddev->lock); 6253 mddev->pers = NULL; 6254 spin_unlock(&mddev->lock); 6255 if (mddev->private) 6256 pers->free(mddev, mddev->private); 6257 mddev->private = NULL; 6258 if (pers->sync_request && mddev->to_remove == NULL) 6259 mddev->to_remove = &md_redundancy_group; 6260 module_put(pers->owner); 6261 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6262 } 6263 6264 void md_stop(struct mddev *mddev) 6265 { 6266 /* stop the array and free an attached data structures. 6267 * This is called from dm-raid 6268 */ 6269 __md_stop(mddev); 6270 bioset_exit(&mddev->bio_set); 6271 bioset_exit(&mddev->sync_set); 6272 } 6273 6274 EXPORT_SYMBOL_GPL(md_stop); 6275 6276 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6277 { 6278 int err = 0; 6279 int did_freeze = 0; 6280 6281 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6282 did_freeze = 1; 6283 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6284 md_wakeup_thread(mddev->thread); 6285 } 6286 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6287 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6288 if (mddev->sync_thread) 6289 /* Thread might be blocked waiting for metadata update 6290 * which will now never happen */ 6291 wake_up_process(mddev->sync_thread->tsk); 6292 6293 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6294 return -EBUSY; 6295 mddev_unlock(mddev); 6296 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6297 &mddev->recovery)); 6298 wait_event(mddev->sb_wait, 6299 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6300 mddev_lock_nointr(mddev); 6301 6302 mutex_lock(&mddev->open_mutex); 6303 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6304 mddev->sync_thread || 6305 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6306 pr_warn("md: %s still in use.\n",mdname(mddev)); 6307 if (did_freeze) { 6308 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6309 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6310 md_wakeup_thread(mddev->thread); 6311 } 6312 err = -EBUSY; 6313 goto out; 6314 } 6315 if (mddev->pers) { 6316 __md_stop_writes(mddev); 6317 6318 err = -ENXIO; 6319 if (mddev->ro==1) 6320 goto out; 6321 mddev->ro = 1; 6322 set_disk_ro(mddev->gendisk, 1); 6323 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6324 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6325 md_wakeup_thread(mddev->thread); 6326 sysfs_notify_dirent_safe(mddev->sysfs_state); 6327 err = 0; 6328 } 6329 out: 6330 mutex_unlock(&mddev->open_mutex); 6331 return err; 6332 } 6333 6334 /* mode: 6335 * 0 - completely stop and dis-assemble array 6336 * 2 - stop but do not disassemble array 6337 */ 6338 static int do_md_stop(struct mddev *mddev, int mode, 6339 struct block_device *bdev) 6340 { 6341 struct gendisk *disk = mddev->gendisk; 6342 struct md_rdev *rdev; 6343 int did_freeze = 0; 6344 6345 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6346 did_freeze = 1; 6347 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6348 md_wakeup_thread(mddev->thread); 6349 } 6350 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6351 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6352 if (mddev->sync_thread) 6353 /* Thread might be blocked waiting for metadata update 6354 * which will now never happen */ 6355 wake_up_process(mddev->sync_thread->tsk); 6356 6357 mddev_unlock(mddev); 6358 wait_event(resync_wait, (mddev->sync_thread == NULL && 6359 !test_bit(MD_RECOVERY_RUNNING, 6360 &mddev->recovery))); 6361 mddev_lock_nointr(mddev); 6362 6363 mutex_lock(&mddev->open_mutex); 6364 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6365 mddev->sysfs_active || 6366 mddev->sync_thread || 6367 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6368 pr_warn("md: %s still in use.\n",mdname(mddev)); 6369 mutex_unlock(&mddev->open_mutex); 6370 if (did_freeze) { 6371 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6372 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6373 md_wakeup_thread(mddev->thread); 6374 } 6375 return -EBUSY; 6376 } 6377 if (mddev->pers) { 6378 if (mddev->ro) 6379 set_disk_ro(disk, 0); 6380 6381 __md_stop_writes(mddev); 6382 __md_stop(mddev); 6383 6384 /* tell userspace to handle 'inactive' */ 6385 sysfs_notify_dirent_safe(mddev->sysfs_state); 6386 6387 rdev_for_each(rdev, mddev) 6388 if (rdev->raid_disk >= 0) 6389 sysfs_unlink_rdev(mddev, rdev); 6390 6391 set_capacity_and_notify(disk, 0); 6392 mutex_unlock(&mddev->open_mutex); 6393 mddev->changed = 1; 6394 6395 if (mddev->ro) 6396 mddev->ro = 0; 6397 } else 6398 mutex_unlock(&mddev->open_mutex); 6399 /* 6400 * Free resources if final stop 6401 */ 6402 if (mode == 0) { 6403 pr_info("md: %s stopped.\n", mdname(mddev)); 6404 6405 if (mddev->bitmap_info.file) { 6406 struct file *f = mddev->bitmap_info.file; 6407 spin_lock(&mddev->lock); 6408 mddev->bitmap_info.file = NULL; 6409 spin_unlock(&mddev->lock); 6410 fput(f); 6411 } 6412 mddev->bitmap_info.offset = 0; 6413 6414 export_array(mddev); 6415 6416 md_clean(mddev); 6417 if (mddev->hold_active == UNTIL_STOP) 6418 mddev->hold_active = 0; 6419 } 6420 md_new_event(); 6421 sysfs_notify_dirent_safe(mddev->sysfs_state); 6422 return 0; 6423 } 6424 6425 #ifndef MODULE 6426 static void autorun_array(struct mddev *mddev) 6427 { 6428 struct md_rdev *rdev; 6429 int err; 6430 6431 if (list_empty(&mddev->disks)) 6432 return; 6433 6434 pr_info("md: running: "); 6435 6436 rdev_for_each(rdev, mddev) { 6437 pr_cont("<%pg>", rdev->bdev); 6438 } 6439 pr_cont("\n"); 6440 6441 err = do_md_run(mddev); 6442 if (err) { 6443 pr_warn("md: do_md_run() returned %d\n", err); 6444 do_md_stop(mddev, 0, NULL); 6445 } 6446 } 6447 6448 /* 6449 * lets try to run arrays based on all disks that have arrived 6450 * until now. (those are in pending_raid_disks) 6451 * 6452 * the method: pick the first pending disk, collect all disks with 6453 * the same UUID, remove all from the pending list and put them into 6454 * the 'same_array' list. Then order this list based on superblock 6455 * update time (freshest comes first), kick out 'old' disks and 6456 * compare superblocks. If everything's fine then run it. 6457 * 6458 * If "unit" is allocated, then bump its reference count 6459 */ 6460 static void autorun_devices(int part) 6461 { 6462 struct md_rdev *rdev0, *rdev, *tmp; 6463 struct mddev *mddev; 6464 6465 pr_info("md: autorun ...\n"); 6466 while (!list_empty(&pending_raid_disks)) { 6467 int unit; 6468 dev_t dev; 6469 LIST_HEAD(candidates); 6470 rdev0 = list_entry(pending_raid_disks.next, 6471 struct md_rdev, same_set); 6472 6473 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6474 INIT_LIST_HEAD(&candidates); 6475 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6476 if (super_90_load(rdev, rdev0, 0) >= 0) { 6477 pr_debug("md: adding %pg ...\n", 6478 rdev->bdev); 6479 list_move(&rdev->same_set, &candidates); 6480 } 6481 /* 6482 * now we have a set of devices, with all of them having 6483 * mostly sane superblocks. It's time to allocate the 6484 * mddev. 6485 */ 6486 if (part) { 6487 dev = MKDEV(mdp_major, 6488 rdev0->preferred_minor << MdpMinorShift); 6489 unit = MINOR(dev) >> MdpMinorShift; 6490 } else { 6491 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6492 unit = MINOR(dev); 6493 } 6494 if (rdev0->preferred_minor != unit) { 6495 pr_warn("md: unit number in %pg is bad: %d\n", 6496 rdev0->bdev, rdev0->preferred_minor); 6497 break; 6498 } 6499 6500 md_probe(dev); 6501 mddev = mddev_find(dev); 6502 if (!mddev) 6503 break; 6504 6505 if (mddev_lock(mddev)) 6506 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6507 else if (mddev->raid_disks || mddev->major_version 6508 || !list_empty(&mddev->disks)) { 6509 pr_warn("md: %s already running, cannot run %pg\n", 6510 mdname(mddev), rdev0->bdev); 6511 mddev_unlock(mddev); 6512 } else { 6513 pr_debug("md: created %s\n", mdname(mddev)); 6514 mddev->persistent = 1; 6515 rdev_for_each_list(rdev, tmp, &candidates) { 6516 list_del_init(&rdev->same_set); 6517 if (bind_rdev_to_array(rdev, mddev)) 6518 export_rdev(rdev); 6519 } 6520 autorun_array(mddev); 6521 mddev_unlock(mddev); 6522 } 6523 /* on success, candidates will be empty, on error 6524 * it won't... 6525 */ 6526 rdev_for_each_list(rdev, tmp, &candidates) { 6527 list_del_init(&rdev->same_set); 6528 export_rdev(rdev); 6529 } 6530 mddev_put(mddev); 6531 } 6532 pr_info("md: ... autorun DONE.\n"); 6533 } 6534 #endif /* !MODULE */ 6535 6536 static int get_version(void __user *arg) 6537 { 6538 mdu_version_t ver; 6539 6540 ver.major = MD_MAJOR_VERSION; 6541 ver.minor = MD_MINOR_VERSION; 6542 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6543 6544 if (copy_to_user(arg, &ver, sizeof(ver))) 6545 return -EFAULT; 6546 6547 return 0; 6548 } 6549 6550 static int get_array_info(struct mddev *mddev, void __user *arg) 6551 { 6552 mdu_array_info_t info; 6553 int nr,working,insync,failed,spare; 6554 struct md_rdev *rdev; 6555 6556 nr = working = insync = failed = spare = 0; 6557 rcu_read_lock(); 6558 rdev_for_each_rcu(rdev, mddev) { 6559 nr++; 6560 if (test_bit(Faulty, &rdev->flags)) 6561 failed++; 6562 else { 6563 working++; 6564 if (test_bit(In_sync, &rdev->flags)) 6565 insync++; 6566 else if (test_bit(Journal, &rdev->flags)) 6567 /* TODO: add journal count to md_u.h */ 6568 ; 6569 else 6570 spare++; 6571 } 6572 } 6573 rcu_read_unlock(); 6574 6575 info.major_version = mddev->major_version; 6576 info.minor_version = mddev->minor_version; 6577 info.patch_version = MD_PATCHLEVEL_VERSION; 6578 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6579 info.level = mddev->level; 6580 info.size = mddev->dev_sectors / 2; 6581 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6582 info.size = -1; 6583 info.nr_disks = nr; 6584 info.raid_disks = mddev->raid_disks; 6585 info.md_minor = mddev->md_minor; 6586 info.not_persistent= !mddev->persistent; 6587 6588 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6589 info.state = 0; 6590 if (mddev->in_sync) 6591 info.state = (1<<MD_SB_CLEAN); 6592 if (mddev->bitmap && mddev->bitmap_info.offset) 6593 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6594 if (mddev_is_clustered(mddev)) 6595 info.state |= (1<<MD_SB_CLUSTERED); 6596 info.active_disks = insync; 6597 info.working_disks = working; 6598 info.failed_disks = failed; 6599 info.spare_disks = spare; 6600 6601 info.layout = mddev->layout; 6602 info.chunk_size = mddev->chunk_sectors << 9; 6603 6604 if (copy_to_user(arg, &info, sizeof(info))) 6605 return -EFAULT; 6606 6607 return 0; 6608 } 6609 6610 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6611 { 6612 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6613 char *ptr; 6614 int err; 6615 6616 file = kzalloc(sizeof(*file), GFP_NOIO); 6617 if (!file) 6618 return -ENOMEM; 6619 6620 err = 0; 6621 spin_lock(&mddev->lock); 6622 /* bitmap enabled */ 6623 if (mddev->bitmap_info.file) { 6624 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6625 sizeof(file->pathname)); 6626 if (IS_ERR(ptr)) 6627 err = PTR_ERR(ptr); 6628 else 6629 memmove(file->pathname, ptr, 6630 sizeof(file->pathname)-(ptr-file->pathname)); 6631 } 6632 spin_unlock(&mddev->lock); 6633 6634 if (err == 0 && 6635 copy_to_user(arg, file, sizeof(*file))) 6636 err = -EFAULT; 6637 6638 kfree(file); 6639 return err; 6640 } 6641 6642 static int get_disk_info(struct mddev *mddev, void __user * arg) 6643 { 6644 mdu_disk_info_t info; 6645 struct md_rdev *rdev; 6646 6647 if (copy_from_user(&info, arg, sizeof(info))) 6648 return -EFAULT; 6649 6650 rcu_read_lock(); 6651 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6652 if (rdev) { 6653 info.major = MAJOR(rdev->bdev->bd_dev); 6654 info.minor = MINOR(rdev->bdev->bd_dev); 6655 info.raid_disk = rdev->raid_disk; 6656 info.state = 0; 6657 if (test_bit(Faulty, &rdev->flags)) 6658 info.state |= (1<<MD_DISK_FAULTY); 6659 else if (test_bit(In_sync, &rdev->flags)) { 6660 info.state |= (1<<MD_DISK_ACTIVE); 6661 info.state |= (1<<MD_DISK_SYNC); 6662 } 6663 if (test_bit(Journal, &rdev->flags)) 6664 info.state |= (1<<MD_DISK_JOURNAL); 6665 if (test_bit(WriteMostly, &rdev->flags)) 6666 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6667 if (test_bit(FailFast, &rdev->flags)) 6668 info.state |= (1<<MD_DISK_FAILFAST); 6669 } else { 6670 info.major = info.minor = 0; 6671 info.raid_disk = -1; 6672 info.state = (1<<MD_DISK_REMOVED); 6673 } 6674 rcu_read_unlock(); 6675 6676 if (copy_to_user(arg, &info, sizeof(info))) 6677 return -EFAULT; 6678 6679 return 0; 6680 } 6681 6682 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6683 { 6684 struct md_rdev *rdev; 6685 dev_t dev = MKDEV(info->major,info->minor); 6686 6687 if (mddev_is_clustered(mddev) && 6688 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6689 pr_warn("%s: Cannot add to clustered mddev.\n", 6690 mdname(mddev)); 6691 return -EINVAL; 6692 } 6693 6694 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6695 return -EOVERFLOW; 6696 6697 if (!mddev->raid_disks) { 6698 int err; 6699 /* expecting a device which has a superblock */ 6700 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6701 if (IS_ERR(rdev)) { 6702 pr_warn("md: md_import_device returned %ld\n", 6703 PTR_ERR(rdev)); 6704 return PTR_ERR(rdev); 6705 } 6706 if (!list_empty(&mddev->disks)) { 6707 struct md_rdev *rdev0 6708 = list_entry(mddev->disks.next, 6709 struct md_rdev, same_set); 6710 err = super_types[mddev->major_version] 6711 .load_super(rdev, rdev0, mddev->minor_version); 6712 if (err < 0) { 6713 pr_warn("md: %pg has different UUID to %pg\n", 6714 rdev->bdev, 6715 rdev0->bdev); 6716 export_rdev(rdev); 6717 return -EINVAL; 6718 } 6719 } 6720 err = bind_rdev_to_array(rdev, mddev); 6721 if (err) 6722 export_rdev(rdev); 6723 return err; 6724 } 6725 6726 /* 6727 * md_add_new_disk can be used once the array is assembled 6728 * to add "hot spares". They must already have a superblock 6729 * written 6730 */ 6731 if (mddev->pers) { 6732 int err; 6733 if (!mddev->pers->hot_add_disk) { 6734 pr_warn("%s: personality does not support diskops!\n", 6735 mdname(mddev)); 6736 return -EINVAL; 6737 } 6738 if (mddev->persistent) 6739 rdev = md_import_device(dev, mddev->major_version, 6740 mddev->minor_version); 6741 else 6742 rdev = md_import_device(dev, -1, -1); 6743 if (IS_ERR(rdev)) { 6744 pr_warn("md: md_import_device returned %ld\n", 6745 PTR_ERR(rdev)); 6746 return PTR_ERR(rdev); 6747 } 6748 /* set saved_raid_disk if appropriate */ 6749 if (!mddev->persistent) { 6750 if (info->state & (1<<MD_DISK_SYNC) && 6751 info->raid_disk < mddev->raid_disks) { 6752 rdev->raid_disk = info->raid_disk; 6753 set_bit(In_sync, &rdev->flags); 6754 clear_bit(Bitmap_sync, &rdev->flags); 6755 } else 6756 rdev->raid_disk = -1; 6757 rdev->saved_raid_disk = rdev->raid_disk; 6758 } else 6759 super_types[mddev->major_version]. 6760 validate_super(mddev, rdev); 6761 if ((info->state & (1<<MD_DISK_SYNC)) && 6762 rdev->raid_disk != info->raid_disk) { 6763 /* This was a hot-add request, but events doesn't 6764 * match, so reject it. 6765 */ 6766 export_rdev(rdev); 6767 return -EINVAL; 6768 } 6769 6770 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6771 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6772 set_bit(WriteMostly, &rdev->flags); 6773 else 6774 clear_bit(WriteMostly, &rdev->flags); 6775 if (info->state & (1<<MD_DISK_FAILFAST)) 6776 set_bit(FailFast, &rdev->flags); 6777 else 6778 clear_bit(FailFast, &rdev->flags); 6779 6780 if (info->state & (1<<MD_DISK_JOURNAL)) { 6781 struct md_rdev *rdev2; 6782 bool has_journal = false; 6783 6784 /* make sure no existing journal disk */ 6785 rdev_for_each(rdev2, mddev) { 6786 if (test_bit(Journal, &rdev2->flags)) { 6787 has_journal = true; 6788 break; 6789 } 6790 } 6791 if (has_journal || mddev->bitmap) { 6792 export_rdev(rdev); 6793 return -EBUSY; 6794 } 6795 set_bit(Journal, &rdev->flags); 6796 } 6797 /* 6798 * check whether the device shows up in other nodes 6799 */ 6800 if (mddev_is_clustered(mddev)) { 6801 if (info->state & (1 << MD_DISK_CANDIDATE)) 6802 set_bit(Candidate, &rdev->flags); 6803 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6804 /* --add initiated by this node */ 6805 err = md_cluster_ops->add_new_disk(mddev, rdev); 6806 if (err) { 6807 export_rdev(rdev); 6808 return err; 6809 } 6810 } 6811 } 6812 6813 rdev->raid_disk = -1; 6814 err = bind_rdev_to_array(rdev, mddev); 6815 6816 if (err) 6817 export_rdev(rdev); 6818 6819 if (mddev_is_clustered(mddev)) { 6820 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6821 if (!err) { 6822 err = md_cluster_ops->new_disk_ack(mddev, 6823 err == 0); 6824 if (err) 6825 md_kick_rdev_from_array(rdev); 6826 } 6827 } else { 6828 if (err) 6829 md_cluster_ops->add_new_disk_cancel(mddev); 6830 else 6831 err = add_bound_rdev(rdev); 6832 } 6833 6834 } else if (!err) 6835 err = add_bound_rdev(rdev); 6836 6837 return err; 6838 } 6839 6840 /* otherwise, md_add_new_disk is only allowed 6841 * for major_version==0 superblocks 6842 */ 6843 if (mddev->major_version != 0) { 6844 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6845 return -EINVAL; 6846 } 6847 6848 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6849 int err; 6850 rdev = md_import_device(dev, -1, 0); 6851 if (IS_ERR(rdev)) { 6852 pr_warn("md: error, md_import_device() returned %ld\n", 6853 PTR_ERR(rdev)); 6854 return PTR_ERR(rdev); 6855 } 6856 rdev->desc_nr = info->number; 6857 if (info->raid_disk < mddev->raid_disks) 6858 rdev->raid_disk = info->raid_disk; 6859 else 6860 rdev->raid_disk = -1; 6861 6862 if (rdev->raid_disk < mddev->raid_disks) 6863 if (info->state & (1<<MD_DISK_SYNC)) 6864 set_bit(In_sync, &rdev->flags); 6865 6866 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6867 set_bit(WriteMostly, &rdev->flags); 6868 if (info->state & (1<<MD_DISK_FAILFAST)) 6869 set_bit(FailFast, &rdev->flags); 6870 6871 if (!mddev->persistent) { 6872 pr_debug("md: nonpersistent superblock ...\n"); 6873 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6874 } else 6875 rdev->sb_start = calc_dev_sboffset(rdev); 6876 rdev->sectors = rdev->sb_start; 6877 6878 err = bind_rdev_to_array(rdev, mddev); 6879 if (err) { 6880 export_rdev(rdev); 6881 return err; 6882 } 6883 } 6884 6885 return 0; 6886 } 6887 6888 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6889 { 6890 struct md_rdev *rdev; 6891 6892 if (!mddev->pers) 6893 return -ENODEV; 6894 6895 rdev = find_rdev(mddev, dev); 6896 if (!rdev) 6897 return -ENXIO; 6898 6899 if (rdev->raid_disk < 0) 6900 goto kick_rdev; 6901 6902 clear_bit(Blocked, &rdev->flags); 6903 remove_and_add_spares(mddev, rdev); 6904 6905 if (rdev->raid_disk >= 0) 6906 goto busy; 6907 6908 kick_rdev: 6909 if (mddev_is_clustered(mddev)) { 6910 if (md_cluster_ops->remove_disk(mddev, rdev)) 6911 goto busy; 6912 } 6913 6914 md_kick_rdev_from_array(rdev); 6915 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6916 if (mddev->thread) 6917 md_wakeup_thread(mddev->thread); 6918 else 6919 md_update_sb(mddev, 1); 6920 md_new_event(); 6921 6922 return 0; 6923 busy: 6924 pr_debug("md: cannot remove active disk %pg from %s ...\n", 6925 rdev->bdev, mdname(mddev)); 6926 return -EBUSY; 6927 } 6928 6929 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6930 { 6931 int err; 6932 struct md_rdev *rdev; 6933 6934 if (!mddev->pers) 6935 return -ENODEV; 6936 6937 if (mddev->major_version != 0) { 6938 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6939 mdname(mddev)); 6940 return -EINVAL; 6941 } 6942 if (!mddev->pers->hot_add_disk) { 6943 pr_warn("%s: personality does not support diskops!\n", 6944 mdname(mddev)); 6945 return -EINVAL; 6946 } 6947 6948 rdev = md_import_device(dev, -1, 0); 6949 if (IS_ERR(rdev)) { 6950 pr_warn("md: error, md_import_device() returned %ld\n", 6951 PTR_ERR(rdev)); 6952 return -EINVAL; 6953 } 6954 6955 if (mddev->persistent) 6956 rdev->sb_start = calc_dev_sboffset(rdev); 6957 else 6958 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6959 6960 rdev->sectors = rdev->sb_start; 6961 6962 if (test_bit(Faulty, &rdev->flags)) { 6963 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 6964 rdev->bdev, mdname(mddev)); 6965 err = -EINVAL; 6966 goto abort_export; 6967 } 6968 6969 clear_bit(In_sync, &rdev->flags); 6970 rdev->desc_nr = -1; 6971 rdev->saved_raid_disk = -1; 6972 err = bind_rdev_to_array(rdev, mddev); 6973 if (err) 6974 goto abort_export; 6975 6976 /* 6977 * The rest should better be atomic, we can have disk failures 6978 * noticed in interrupt contexts ... 6979 */ 6980 6981 rdev->raid_disk = -1; 6982 6983 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6984 if (!mddev->thread) 6985 md_update_sb(mddev, 1); 6986 /* 6987 * If the new disk does not support REQ_NOWAIT, 6988 * disable on the whole MD. 6989 */ 6990 if (!blk_queue_nowait(bdev_get_queue(rdev->bdev))) { 6991 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 6992 mdname(mddev), rdev->bdev); 6993 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 6994 } 6995 /* 6996 * Kick recovery, maybe this spare has to be added to the 6997 * array immediately. 6998 */ 6999 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7000 md_wakeup_thread(mddev->thread); 7001 md_new_event(); 7002 return 0; 7003 7004 abort_export: 7005 export_rdev(rdev); 7006 return err; 7007 } 7008 7009 static int set_bitmap_file(struct mddev *mddev, int fd) 7010 { 7011 int err = 0; 7012 7013 if (mddev->pers) { 7014 if (!mddev->pers->quiesce || !mddev->thread) 7015 return -EBUSY; 7016 if (mddev->recovery || mddev->sync_thread) 7017 return -EBUSY; 7018 /* we should be able to change the bitmap.. */ 7019 } 7020 7021 if (fd >= 0) { 7022 struct inode *inode; 7023 struct file *f; 7024 7025 if (mddev->bitmap || mddev->bitmap_info.file) 7026 return -EEXIST; /* cannot add when bitmap is present */ 7027 f = fget(fd); 7028 7029 if (f == NULL) { 7030 pr_warn("%s: error: failed to get bitmap file\n", 7031 mdname(mddev)); 7032 return -EBADF; 7033 } 7034 7035 inode = f->f_mapping->host; 7036 if (!S_ISREG(inode->i_mode)) { 7037 pr_warn("%s: error: bitmap file must be a regular file\n", 7038 mdname(mddev)); 7039 err = -EBADF; 7040 } else if (!(f->f_mode & FMODE_WRITE)) { 7041 pr_warn("%s: error: bitmap file must open for write\n", 7042 mdname(mddev)); 7043 err = -EBADF; 7044 } else if (atomic_read(&inode->i_writecount) != 1) { 7045 pr_warn("%s: error: bitmap file is already in use\n", 7046 mdname(mddev)); 7047 err = -EBUSY; 7048 } 7049 if (err) { 7050 fput(f); 7051 return err; 7052 } 7053 mddev->bitmap_info.file = f; 7054 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7055 } else if (mddev->bitmap == NULL) 7056 return -ENOENT; /* cannot remove what isn't there */ 7057 err = 0; 7058 if (mddev->pers) { 7059 if (fd >= 0) { 7060 struct bitmap *bitmap; 7061 7062 bitmap = md_bitmap_create(mddev, -1); 7063 mddev_suspend(mddev); 7064 if (!IS_ERR(bitmap)) { 7065 mddev->bitmap = bitmap; 7066 err = md_bitmap_load(mddev); 7067 } else 7068 err = PTR_ERR(bitmap); 7069 if (err) { 7070 md_bitmap_destroy(mddev); 7071 fd = -1; 7072 } 7073 mddev_resume(mddev); 7074 } else if (fd < 0) { 7075 mddev_suspend(mddev); 7076 md_bitmap_destroy(mddev); 7077 mddev_resume(mddev); 7078 } 7079 } 7080 if (fd < 0) { 7081 struct file *f = mddev->bitmap_info.file; 7082 if (f) { 7083 spin_lock(&mddev->lock); 7084 mddev->bitmap_info.file = NULL; 7085 spin_unlock(&mddev->lock); 7086 fput(f); 7087 } 7088 } 7089 7090 return err; 7091 } 7092 7093 /* 7094 * md_set_array_info is used two different ways 7095 * The original usage is when creating a new array. 7096 * In this usage, raid_disks is > 0 and it together with 7097 * level, size, not_persistent,layout,chunksize determine the 7098 * shape of the array. 7099 * This will always create an array with a type-0.90.0 superblock. 7100 * The newer usage is when assembling an array. 7101 * In this case raid_disks will be 0, and the major_version field is 7102 * use to determine which style super-blocks are to be found on the devices. 7103 * The minor and patch _version numbers are also kept incase the 7104 * super_block handler wishes to interpret them. 7105 */ 7106 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7107 { 7108 if (info->raid_disks == 0) { 7109 /* just setting version number for superblock loading */ 7110 if (info->major_version < 0 || 7111 info->major_version >= ARRAY_SIZE(super_types) || 7112 super_types[info->major_version].name == NULL) { 7113 /* maybe try to auto-load a module? */ 7114 pr_warn("md: superblock version %d not known\n", 7115 info->major_version); 7116 return -EINVAL; 7117 } 7118 mddev->major_version = info->major_version; 7119 mddev->minor_version = info->minor_version; 7120 mddev->patch_version = info->patch_version; 7121 mddev->persistent = !info->not_persistent; 7122 /* ensure mddev_put doesn't delete this now that there 7123 * is some minimal configuration. 7124 */ 7125 mddev->ctime = ktime_get_real_seconds(); 7126 return 0; 7127 } 7128 mddev->major_version = MD_MAJOR_VERSION; 7129 mddev->minor_version = MD_MINOR_VERSION; 7130 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7131 mddev->ctime = ktime_get_real_seconds(); 7132 7133 mddev->level = info->level; 7134 mddev->clevel[0] = 0; 7135 mddev->dev_sectors = 2 * (sector_t)info->size; 7136 mddev->raid_disks = info->raid_disks; 7137 /* don't set md_minor, it is determined by which /dev/md* was 7138 * openned 7139 */ 7140 if (info->state & (1<<MD_SB_CLEAN)) 7141 mddev->recovery_cp = MaxSector; 7142 else 7143 mddev->recovery_cp = 0; 7144 mddev->persistent = ! info->not_persistent; 7145 mddev->external = 0; 7146 7147 mddev->layout = info->layout; 7148 if (mddev->level == 0) 7149 /* Cannot trust RAID0 layout info here */ 7150 mddev->layout = -1; 7151 mddev->chunk_sectors = info->chunk_size >> 9; 7152 7153 if (mddev->persistent) { 7154 mddev->max_disks = MD_SB_DISKS; 7155 mddev->flags = 0; 7156 mddev->sb_flags = 0; 7157 } 7158 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7159 7160 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7161 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7162 mddev->bitmap_info.offset = 0; 7163 7164 mddev->reshape_position = MaxSector; 7165 7166 /* 7167 * Generate a 128 bit UUID 7168 */ 7169 get_random_bytes(mddev->uuid, 16); 7170 7171 mddev->new_level = mddev->level; 7172 mddev->new_chunk_sectors = mddev->chunk_sectors; 7173 mddev->new_layout = mddev->layout; 7174 mddev->delta_disks = 0; 7175 mddev->reshape_backwards = 0; 7176 7177 return 0; 7178 } 7179 7180 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7181 { 7182 lockdep_assert_held(&mddev->reconfig_mutex); 7183 7184 if (mddev->external_size) 7185 return; 7186 7187 mddev->array_sectors = array_sectors; 7188 } 7189 EXPORT_SYMBOL(md_set_array_sectors); 7190 7191 static int update_size(struct mddev *mddev, sector_t num_sectors) 7192 { 7193 struct md_rdev *rdev; 7194 int rv; 7195 int fit = (num_sectors == 0); 7196 sector_t old_dev_sectors = mddev->dev_sectors; 7197 7198 if (mddev->pers->resize == NULL) 7199 return -EINVAL; 7200 /* The "num_sectors" is the number of sectors of each device that 7201 * is used. This can only make sense for arrays with redundancy. 7202 * linear and raid0 always use whatever space is available. We can only 7203 * consider changing this number if no resync or reconstruction is 7204 * happening, and if the new size is acceptable. It must fit before the 7205 * sb_start or, if that is <data_offset, it must fit before the size 7206 * of each device. If num_sectors is zero, we find the largest size 7207 * that fits. 7208 */ 7209 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7210 mddev->sync_thread) 7211 return -EBUSY; 7212 if (mddev->ro) 7213 return -EROFS; 7214 7215 rdev_for_each(rdev, mddev) { 7216 sector_t avail = rdev->sectors; 7217 7218 if (fit && (num_sectors == 0 || num_sectors > avail)) 7219 num_sectors = avail; 7220 if (avail < num_sectors) 7221 return -ENOSPC; 7222 } 7223 rv = mddev->pers->resize(mddev, num_sectors); 7224 if (!rv) { 7225 if (mddev_is_clustered(mddev)) 7226 md_cluster_ops->update_size(mddev, old_dev_sectors); 7227 else if (mddev->queue) { 7228 set_capacity_and_notify(mddev->gendisk, 7229 mddev->array_sectors); 7230 } 7231 } 7232 return rv; 7233 } 7234 7235 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7236 { 7237 int rv; 7238 struct md_rdev *rdev; 7239 /* change the number of raid disks */ 7240 if (mddev->pers->check_reshape == NULL) 7241 return -EINVAL; 7242 if (mddev->ro) 7243 return -EROFS; 7244 if (raid_disks <= 0 || 7245 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7246 return -EINVAL; 7247 if (mddev->sync_thread || 7248 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7249 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7250 mddev->reshape_position != MaxSector) 7251 return -EBUSY; 7252 7253 rdev_for_each(rdev, mddev) { 7254 if (mddev->raid_disks < raid_disks && 7255 rdev->data_offset < rdev->new_data_offset) 7256 return -EINVAL; 7257 if (mddev->raid_disks > raid_disks && 7258 rdev->data_offset > rdev->new_data_offset) 7259 return -EINVAL; 7260 } 7261 7262 mddev->delta_disks = raid_disks - mddev->raid_disks; 7263 if (mddev->delta_disks < 0) 7264 mddev->reshape_backwards = 1; 7265 else if (mddev->delta_disks > 0) 7266 mddev->reshape_backwards = 0; 7267 7268 rv = mddev->pers->check_reshape(mddev); 7269 if (rv < 0) { 7270 mddev->delta_disks = 0; 7271 mddev->reshape_backwards = 0; 7272 } 7273 return rv; 7274 } 7275 7276 /* 7277 * update_array_info is used to change the configuration of an 7278 * on-line array. 7279 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7280 * fields in the info are checked against the array. 7281 * Any differences that cannot be handled will cause an error. 7282 * Normally, only one change can be managed at a time. 7283 */ 7284 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7285 { 7286 int rv = 0; 7287 int cnt = 0; 7288 int state = 0; 7289 7290 /* calculate expected state,ignoring low bits */ 7291 if (mddev->bitmap && mddev->bitmap_info.offset) 7292 state |= (1 << MD_SB_BITMAP_PRESENT); 7293 7294 if (mddev->major_version != info->major_version || 7295 mddev->minor_version != info->minor_version || 7296 /* mddev->patch_version != info->patch_version || */ 7297 mddev->ctime != info->ctime || 7298 mddev->level != info->level || 7299 /* mddev->layout != info->layout || */ 7300 mddev->persistent != !info->not_persistent || 7301 mddev->chunk_sectors != info->chunk_size >> 9 || 7302 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7303 ((state^info->state) & 0xfffffe00) 7304 ) 7305 return -EINVAL; 7306 /* Check there is only one change */ 7307 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7308 cnt++; 7309 if (mddev->raid_disks != info->raid_disks) 7310 cnt++; 7311 if (mddev->layout != info->layout) 7312 cnt++; 7313 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7314 cnt++; 7315 if (cnt == 0) 7316 return 0; 7317 if (cnt > 1) 7318 return -EINVAL; 7319 7320 if (mddev->layout != info->layout) { 7321 /* Change layout 7322 * we don't need to do anything at the md level, the 7323 * personality will take care of it all. 7324 */ 7325 if (mddev->pers->check_reshape == NULL) 7326 return -EINVAL; 7327 else { 7328 mddev->new_layout = info->layout; 7329 rv = mddev->pers->check_reshape(mddev); 7330 if (rv) 7331 mddev->new_layout = mddev->layout; 7332 return rv; 7333 } 7334 } 7335 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7336 rv = update_size(mddev, (sector_t)info->size * 2); 7337 7338 if (mddev->raid_disks != info->raid_disks) 7339 rv = update_raid_disks(mddev, info->raid_disks); 7340 7341 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7342 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7343 rv = -EINVAL; 7344 goto err; 7345 } 7346 if (mddev->recovery || mddev->sync_thread) { 7347 rv = -EBUSY; 7348 goto err; 7349 } 7350 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7351 struct bitmap *bitmap; 7352 /* add the bitmap */ 7353 if (mddev->bitmap) { 7354 rv = -EEXIST; 7355 goto err; 7356 } 7357 if (mddev->bitmap_info.default_offset == 0) { 7358 rv = -EINVAL; 7359 goto err; 7360 } 7361 mddev->bitmap_info.offset = 7362 mddev->bitmap_info.default_offset; 7363 mddev->bitmap_info.space = 7364 mddev->bitmap_info.default_space; 7365 bitmap = md_bitmap_create(mddev, -1); 7366 mddev_suspend(mddev); 7367 if (!IS_ERR(bitmap)) { 7368 mddev->bitmap = bitmap; 7369 rv = md_bitmap_load(mddev); 7370 } else 7371 rv = PTR_ERR(bitmap); 7372 if (rv) 7373 md_bitmap_destroy(mddev); 7374 mddev_resume(mddev); 7375 } else { 7376 /* remove the bitmap */ 7377 if (!mddev->bitmap) { 7378 rv = -ENOENT; 7379 goto err; 7380 } 7381 if (mddev->bitmap->storage.file) { 7382 rv = -EINVAL; 7383 goto err; 7384 } 7385 if (mddev->bitmap_info.nodes) { 7386 /* hold PW on all the bitmap lock */ 7387 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7388 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7389 rv = -EPERM; 7390 md_cluster_ops->unlock_all_bitmaps(mddev); 7391 goto err; 7392 } 7393 7394 mddev->bitmap_info.nodes = 0; 7395 md_cluster_ops->leave(mddev); 7396 module_put(md_cluster_mod); 7397 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7398 } 7399 mddev_suspend(mddev); 7400 md_bitmap_destroy(mddev); 7401 mddev_resume(mddev); 7402 mddev->bitmap_info.offset = 0; 7403 } 7404 } 7405 md_update_sb(mddev, 1); 7406 return rv; 7407 err: 7408 return rv; 7409 } 7410 7411 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7412 { 7413 struct md_rdev *rdev; 7414 int err = 0; 7415 7416 if (mddev->pers == NULL) 7417 return -ENODEV; 7418 7419 rcu_read_lock(); 7420 rdev = md_find_rdev_rcu(mddev, dev); 7421 if (!rdev) 7422 err = -ENODEV; 7423 else { 7424 md_error(mddev, rdev); 7425 if (test_bit(MD_BROKEN, &mddev->flags)) 7426 err = -EBUSY; 7427 } 7428 rcu_read_unlock(); 7429 return err; 7430 } 7431 7432 /* 7433 * We have a problem here : there is no easy way to give a CHS 7434 * virtual geometry. We currently pretend that we have a 2 heads 7435 * 4 sectors (with a BIG number of cylinders...). This drives 7436 * dosfs just mad... ;-) 7437 */ 7438 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7439 { 7440 struct mddev *mddev = bdev->bd_disk->private_data; 7441 7442 geo->heads = 2; 7443 geo->sectors = 4; 7444 geo->cylinders = mddev->array_sectors / 8; 7445 return 0; 7446 } 7447 7448 static inline bool md_ioctl_valid(unsigned int cmd) 7449 { 7450 switch (cmd) { 7451 case ADD_NEW_DISK: 7452 case GET_ARRAY_INFO: 7453 case GET_BITMAP_FILE: 7454 case GET_DISK_INFO: 7455 case HOT_ADD_DISK: 7456 case HOT_REMOVE_DISK: 7457 case RAID_VERSION: 7458 case RESTART_ARRAY_RW: 7459 case RUN_ARRAY: 7460 case SET_ARRAY_INFO: 7461 case SET_BITMAP_FILE: 7462 case SET_DISK_FAULTY: 7463 case STOP_ARRAY: 7464 case STOP_ARRAY_RO: 7465 case CLUSTERED_DISK_NACK: 7466 return true; 7467 default: 7468 return false; 7469 } 7470 } 7471 7472 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7473 unsigned int cmd, unsigned long arg) 7474 { 7475 int err = 0; 7476 void __user *argp = (void __user *)arg; 7477 struct mddev *mddev = NULL; 7478 bool did_set_md_closing = false; 7479 7480 if (!md_ioctl_valid(cmd)) 7481 return -ENOTTY; 7482 7483 switch (cmd) { 7484 case RAID_VERSION: 7485 case GET_ARRAY_INFO: 7486 case GET_DISK_INFO: 7487 break; 7488 default: 7489 if (!capable(CAP_SYS_ADMIN)) 7490 return -EACCES; 7491 } 7492 7493 /* 7494 * Commands dealing with the RAID driver but not any 7495 * particular array: 7496 */ 7497 switch (cmd) { 7498 case RAID_VERSION: 7499 err = get_version(argp); 7500 goto out; 7501 default:; 7502 } 7503 7504 /* 7505 * Commands creating/starting a new array: 7506 */ 7507 7508 mddev = bdev->bd_disk->private_data; 7509 7510 if (!mddev) { 7511 BUG(); 7512 goto out; 7513 } 7514 7515 /* Some actions do not requires the mutex */ 7516 switch (cmd) { 7517 case GET_ARRAY_INFO: 7518 if (!mddev->raid_disks && !mddev->external) 7519 err = -ENODEV; 7520 else 7521 err = get_array_info(mddev, argp); 7522 goto out; 7523 7524 case GET_DISK_INFO: 7525 if (!mddev->raid_disks && !mddev->external) 7526 err = -ENODEV; 7527 else 7528 err = get_disk_info(mddev, argp); 7529 goto out; 7530 7531 case SET_DISK_FAULTY: 7532 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7533 goto out; 7534 7535 case GET_BITMAP_FILE: 7536 err = get_bitmap_file(mddev, argp); 7537 goto out; 7538 7539 } 7540 7541 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7542 flush_rdev_wq(mddev); 7543 7544 if (cmd == HOT_REMOVE_DISK) 7545 /* need to ensure recovery thread has run */ 7546 wait_event_interruptible_timeout(mddev->sb_wait, 7547 !test_bit(MD_RECOVERY_NEEDED, 7548 &mddev->recovery), 7549 msecs_to_jiffies(5000)); 7550 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7551 /* Need to flush page cache, and ensure no-one else opens 7552 * and writes 7553 */ 7554 mutex_lock(&mddev->open_mutex); 7555 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7556 mutex_unlock(&mddev->open_mutex); 7557 err = -EBUSY; 7558 goto out; 7559 } 7560 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7561 mutex_unlock(&mddev->open_mutex); 7562 err = -EBUSY; 7563 goto out; 7564 } 7565 did_set_md_closing = true; 7566 mutex_unlock(&mddev->open_mutex); 7567 sync_blockdev(bdev); 7568 } 7569 err = mddev_lock(mddev); 7570 if (err) { 7571 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7572 err, cmd); 7573 goto out; 7574 } 7575 7576 if (cmd == SET_ARRAY_INFO) { 7577 mdu_array_info_t info; 7578 if (!arg) 7579 memset(&info, 0, sizeof(info)); 7580 else if (copy_from_user(&info, argp, sizeof(info))) { 7581 err = -EFAULT; 7582 goto unlock; 7583 } 7584 if (mddev->pers) { 7585 err = update_array_info(mddev, &info); 7586 if (err) { 7587 pr_warn("md: couldn't update array info. %d\n", err); 7588 goto unlock; 7589 } 7590 goto unlock; 7591 } 7592 if (!list_empty(&mddev->disks)) { 7593 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7594 err = -EBUSY; 7595 goto unlock; 7596 } 7597 if (mddev->raid_disks) { 7598 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7599 err = -EBUSY; 7600 goto unlock; 7601 } 7602 err = md_set_array_info(mddev, &info); 7603 if (err) { 7604 pr_warn("md: couldn't set array info. %d\n", err); 7605 goto unlock; 7606 } 7607 goto unlock; 7608 } 7609 7610 /* 7611 * Commands querying/configuring an existing array: 7612 */ 7613 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7614 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7615 if ((!mddev->raid_disks && !mddev->external) 7616 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7617 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7618 && cmd != GET_BITMAP_FILE) { 7619 err = -ENODEV; 7620 goto unlock; 7621 } 7622 7623 /* 7624 * Commands even a read-only array can execute: 7625 */ 7626 switch (cmd) { 7627 case RESTART_ARRAY_RW: 7628 err = restart_array(mddev); 7629 goto unlock; 7630 7631 case STOP_ARRAY: 7632 err = do_md_stop(mddev, 0, bdev); 7633 goto unlock; 7634 7635 case STOP_ARRAY_RO: 7636 err = md_set_readonly(mddev, bdev); 7637 goto unlock; 7638 7639 case HOT_REMOVE_DISK: 7640 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7641 goto unlock; 7642 7643 case ADD_NEW_DISK: 7644 /* We can support ADD_NEW_DISK on read-only arrays 7645 * only if we are re-adding a preexisting device. 7646 * So require mddev->pers and MD_DISK_SYNC. 7647 */ 7648 if (mddev->pers) { 7649 mdu_disk_info_t info; 7650 if (copy_from_user(&info, argp, sizeof(info))) 7651 err = -EFAULT; 7652 else if (!(info.state & (1<<MD_DISK_SYNC))) 7653 /* Need to clear read-only for this */ 7654 break; 7655 else 7656 err = md_add_new_disk(mddev, &info); 7657 goto unlock; 7658 } 7659 break; 7660 } 7661 7662 /* 7663 * The remaining ioctls are changing the state of the 7664 * superblock, so we do not allow them on read-only arrays. 7665 */ 7666 if (mddev->ro && mddev->pers) { 7667 if (mddev->ro == 2) { 7668 mddev->ro = 0; 7669 sysfs_notify_dirent_safe(mddev->sysfs_state); 7670 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7671 /* mddev_unlock will wake thread */ 7672 /* If a device failed while we were read-only, we 7673 * need to make sure the metadata is updated now. 7674 */ 7675 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7676 mddev_unlock(mddev); 7677 wait_event(mddev->sb_wait, 7678 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7679 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7680 mddev_lock_nointr(mddev); 7681 } 7682 } else { 7683 err = -EROFS; 7684 goto unlock; 7685 } 7686 } 7687 7688 switch (cmd) { 7689 case ADD_NEW_DISK: 7690 { 7691 mdu_disk_info_t info; 7692 if (copy_from_user(&info, argp, sizeof(info))) 7693 err = -EFAULT; 7694 else 7695 err = md_add_new_disk(mddev, &info); 7696 goto unlock; 7697 } 7698 7699 case CLUSTERED_DISK_NACK: 7700 if (mddev_is_clustered(mddev)) 7701 md_cluster_ops->new_disk_ack(mddev, false); 7702 else 7703 err = -EINVAL; 7704 goto unlock; 7705 7706 case HOT_ADD_DISK: 7707 err = hot_add_disk(mddev, new_decode_dev(arg)); 7708 goto unlock; 7709 7710 case RUN_ARRAY: 7711 err = do_md_run(mddev); 7712 goto unlock; 7713 7714 case SET_BITMAP_FILE: 7715 err = set_bitmap_file(mddev, (int)arg); 7716 goto unlock; 7717 7718 default: 7719 err = -EINVAL; 7720 goto unlock; 7721 } 7722 7723 unlock: 7724 if (mddev->hold_active == UNTIL_IOCTL && 7725 err != -EINVAL) 7726 mddev->hold_active = 0; 7727 mddev_unlock(mddev); 7728 out: 7729 if(did_set_md_closing) 7730 clear_bit(MD_CLOSING, &mddev->flags); 7731 return err; 7732 } 7733 #ifdef CONFIG_COMPAT 7734 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7735 unsigned int cmd, unsigned long arg) 7736 { 7737 switch (cmd) { 7738 case HOT_REMOVE_DISK: 7739 case HOT_ADD_DISK: 7740 case SET_DISK_FAULTY: 7741 case SET_BITMAP_FILE: 7742 /* These take in integer arg, do not convert */ 7743 break; 7744 default: 7745 arg = (unsigned long)compat_ptr(arg); 7746 break; 7747 } 7748 7749 return md_ioctl(bdev, mode, cmd, arg); 7750 } 7751 #endif /* CONFIG_COMPAT */ 7752 7753 static int md_set_read_only(struct block_device *bdev, bool ro) 7754 { 7755 struct mddev *mddev = bdev->bd_disk->private_data; 7756 int err; 7757 7758 err = mddev_lock(mddev); 7759 if (err) 7760 return err; 7761 7762 if (!mddev->raid_disks && !mddev->external) { 7763 err = -ENODEV; 7764 goto out_unlock; 7765 } 7766 7767 /* 7768 * Transitioning to read-auto need only happen for arrays that call 7769 * md_write_start and which are not ready for writes yet. 7770 */ 7771 if (!ro && mddev->ro == 1 && mddev->pers) { 7772 err = restart_array(mddev); 7773 if (err) 7774 goto out_unlock; 7775 mddev->ro = 2; 7776 } 7777 7778 out_unlock: 7779 mddev_unlock(mddev); 7780 return err; 7781 } 7782 7783 static int md_open(struct block_device *bdev, fmode_t mode) 7784 { 7785 /* 7786 * Succeed if we can lock the mddev, which confirms that 7787 * it isn't being stopped right now. 7788 */ 7789 struct mddev *mddev = mddev_find(bdev->bd_dev); 7790 int err; 7791 7792 if (!mddev) 7793 return -ENODEV; 7794 7795 if (mddev->gendisk != bdev->bd_disk) { 7796 /* we are racing with mddev_put which is discarding this 7797 * bd_disk. 7798 */ 7799 mddev_put(mddev); 7800 /* Wait until bdev->bd_disk is definitely gone */ 7801 if (work_pending(&mddev->del_work)) 7802 flush_workqueue(md_misc_wq); 7803 return -EBUSY; 7804 } 7805 BUG_ON(mddev != bdev->bd_disk->private_data); 7806 7807 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7808 goto out; 7809 7810 if (test_bit(MD_CLOSING, &mddev->flags)) { 7811 mutex_unlock(&mddev->open_mutex); 7812 err = -ENODEV; 7813 goto out; 7814 } 7815 7816 err = 0; 7817 atomic_inc(&mddev->openers); 7818 mutex_unlock(&mddev->open_mutex); 7819 7820 bdev_check_media_change(bdev); 7821 out: 7822 if (err) 7823 mddev_put(mddev); 7824 return err; 7825 } 7826 7827 static void md_release(struct gendisk *disk, fmode_t mode) 7828 { 7829 struct mddev *mddev = disk->private_data; 7830 7831 BUG_ON(!mddev); 7832 atomic_dec(&mddev->openers); 7833 mddev_put(mddev); 7834 } 7835 7836 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7837 { 7838 struct mddev *mddev = disk->private_data; 7839 unsigned int ret = 0; 7840 7841 if (mddev->changed) 7842 ret = DISK_EVENT_MEDIA_CHANGE; 7843 mddev->changed = 0; 7844 return ret; 7845 } 7846 7847 const struct block_device_operations md_fops = 7848 { 7849 .owner = THIS_MODULE, 7850 .submit_bio = md_submit_bio, 7851 .open = md_open, 7852 .release = md_release, 7853 .ioctl = md_ioctl, 7854 #ifdef CONFIG_COMPAT 7855 .compat_ioctl = md_compat_ioctl, 7856 #endif 7857 .getgeo = md_getgeo, 7858 .check_events = md_check_events, 7859 .set_read_only = md_set_read_only, 7860 }; 7861 7862 static int md_thread(void *arg) 7863 { 7864 struct md_thread *thread = arg; 7865 7866 /* 7867 * md_thread is a 'system-thread', it's priority should be very 7868 * high. We avoid resource deadlocks individually in each 7869 * raid personality. (RAID5 does preallocation) We also use RR and 7870 * the very same RT priority as kswapd, thus we will never get 7871 * into a priority inversion deadlock. 7872 * 7873 * we definitely have to have equal or higher priority than 7874 * bdflush, otherwise bdflush will deadlock if there are too 7875 * many dirty RAID5 blocks. 7876 */ 7877 7878 allow_signal(SIGKILL); 7879 while (!kthread_should_stop()) { 7880 7881 /* We need to wait INTERRUPTIBLE so that 7882 * we don't add to the load-average. 7883 * That means we need to be sure no signals are 7884 * pending 7885 */ 7886 if (signal_pending(current)) 7887 flush_signals(current); 7888 7889 wait_event_interruptible_timeout 7890 (thread->wqueue, 7891 test_bit(THREAD_WAKEUP, &thread->flags) 7892 || kthread_should_stop() || kthread_should_park(), 7893 thread->timeout); 7894 7895 clear_bit(THREAD_WAKEUP, &thread->flags); 7896 if (kthread_should_park()) 7897 kthread_parkme(); 7898 if (!kthread_should_stop()) 7899 thread->run(thread); 7900 } 7901 7902 return 0; 7903 } 7904 7905 void md_wakeup_thread(struct md_thread *thread) 7906 { 7907 if (thread) { 7908 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7909 set_bit(THREAD_WAKEUP, &thread->flags); 7910 wake_up(&thread->wqueue); 7911 } 7912 } 7913 EXPORT_SYMBOL(md_wakeup_thread); 7914 7915 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7916 struct mddev *mddev, const char *name) 7917 { 7918 struct md_thread *thread; 7919 7920 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7921 if (!thread) 7922 return NULL; 7923 7924 init_waitqueue_head(&thread->wqueue); 7925 7926 thread->run = run; 7927 thread->mddev = mddev; 7928 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7929 thread->tsk = kthread_run(md_thread, thread, 7930 "%s_%s", 7931 mdname(thread->mddev), 7932 name); 7933 if (IS_ERR(thread->tsk)) { 7934 kfree(thread); 7935 return NULL; 7936 } 7937 return thread; 7938 } 7939 EXPORT_SYMBOL(md_register_thread); 7940 7941 void md_unregister_thread(struct md_thread **threadp) 7942 { 7943 struct md_thread *thread; 7944 7945 /* 7946 * Locking ensures that mddev_unlock does not wake_up a 7947 * non-existent thread 7948 */ 7949 spin_lock(&pers_lock); 7950 thread = *threadp; 7951 if (!thread) { 7952 spin_unlock(&pers_lock); 7953 return; 7954 } 7955 *threadp = NULL; 7956 spin_unlock(&pers_lock); 7957 7958 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7959 kthread_stop(thread->tsk); 7960 kfree(thread); 7961 } 7962 EXPORT_SYMBOL(md_unregister_thread); 7963 7964 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7965 { 7966 if (!rdev || test_bit(Faulty, &rdev->flags)) 7967 return; 7968 7969 if (!mddev->pers || !mddev->pers->error_handler) 7970 return; 7971 mddev->pers->error_handler(mddev, rdev); 7972 7973 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 7974 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7975 sysfs_notify_dirent_safe(rdev->sysfs_state); 7976 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7977 if (!test_bit(MD_BROKEN, &mddev->flags)) { 7978 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7979 md_wakeup_thread(mddev->thread); 7980 } 7981 if (mddev->event_work.func) 7982 queue_work(md_misc_wq, &mddev->event_work); 7983 md_new_event(); 7984 } 7985 EXPORT_SYMBOL(md_error); 7986 7987 /* seq_file implementation /proc/mdstat */ 7988 7989 static void status_unused(struct seq_file *seq) 7990 { 7991 int i = 0; 7992 struct md_rdev *rdev; 7993 7994 seq_printf(seq, "unused devices: "); 7995 7996 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7997 i++; 7998 seq_printf(seq, "%pg ", rdev->bdev); 7999 } 8000 if (!i) 8001 seq_printf(seq, "<none>"); 8002 8003 seq_printf(seq, "\n"); 8004 } 8005 8006 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8007 { 8008 sector_t max_sectors, resync, res; 8009 unsigned long dt, db = 0; 8010 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8011 int scale, recovery_active; 8012 unsigned int per_milli; 8013 8014 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8015 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8016 max_sectors = mddev->resync_max_sectors; 8017 else 8018 max_sectors = mddev->dev_sectors; 8019 8020 resync = mddev->curr_resync; 8021 if (resync <= 3) { 8022 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8023 /* Still cleaning up */ 8024 resync = max_sectors; 8025 } else if (resync > max_sectors) 8026 resync = max_sectors; 8027 else 8028 resync -= atomic_read(&mddev->recovery_active); 8029 8030 if (resync == 0) { 8031 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8032 struct md_rdev *rdev; 8033 8034 rdev_for_each(rdev, mddev) 8035 if (rdev->raid_disk >= 0 && 8036 !test_bit(Faulty, &rdev->flags) && 8037 rdev->recovery_offset != MaxSector && 8038 rdev->recovery_offset) { 8039 seq_printf(seq, "\trecover=REMOTE"); 8040 return 1; 8041 } 8042 if (mddev->reshape_position != MaxSector) 8043 seq_printf(seq, "\treshape=REMOTE"); 8044 else 8045 seq_printf(seq, "\tresync=REMOTE"); 8046 return 1; 8047 } 8048 if (mddev->recovery_cp < MaxSector) { 8049 seq_printf(seq, "\tresync=PENDING"); 8050 return 1; 8051 } 8052 return 0; 8053 } 8054 if (resync < 3) { 8055 seq_printf(seq, "\tresync=DELAYED"); 8056 return 1; 8057 } 8058 8059 WARN_ON(max_sectors == 0); 8060 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8061 * in a sector_t, and (max_sectors>>scale) will fit in a 8062 * u32, as those are the requirements for sector_div. 8063 * Thus 'scale' must be at least 10 8064 */ 8065 scale = 10; 8066 if (sizeof(sector_t) > sizeof(unsigned long)) { 8067 while ( max_sectors/2 > (1ULL<<(scale+32))) 8068 scale++; 8069 } 8070 res = (resync>>scale)*1000; 8071 sector_div(res, (u32)((max_sectors>>scale)+1)); 8072 8073 per_milli = res; 8074 { 8075 int i, x = per_milli/50, y = 20-x; 8076 seq_printf(seq, "["); 8077 for (i = 0; i < x; i++) 8078 seq_printf(seq, "="); 8079 seq_printf(seq, ">"); 8080 for (i = 0; i < y; i++) 8081 seq_printf(seq, "."); 8082 seq_printf(seq, "] "); 8083 } 8084 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8085 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8086 "reshape" : 8087 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8088 "check" : 8089 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8090 "resync" : "recovery"))), 8091 per_milli/10, per_milli % 10, 8092 (unsigned long long) resync/2, 8093 (unsigned long long) max_sectors/2); 8094 8095 /* 8096 * dt: time from mark until now 8097 * db: blocks written from mark until now 8098 * rt: remaining time 8099 * 8100 * rt is a sector_t, which is always 64bit now. We are keeping 8101 * the original algorithm, but it is not really necessary. 8102 * 8103 * Original algorithm: 8104 * So we divide before multiply in case it is 32bit and close 8105 * to the limit. 8106 * We scale the divisor (db) by 32 to avoid losing precision 8107 * near the end of resync when the number of remaining sectors 8108 * is close to 'db'. 8109 * We then divide rt by 32 after multiplying by db to compensate. 8110 * The '+1' avoids division by zero if db is very small. 8111 */ 8112 dt = ((jiffies - mddev->resync_mark) / HZ); 8113 if (!dt) dt++; 8114 8115 curr_mark_cnt = mddev->curr_mark_cnt; 8116 recovery_active = atomic_read(&mddev->recovery_active); 8117 resync_mark_cnt = mddev->resync_mark_cnt; 8118 8119 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8120 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8121 8122 rt = max_sectors - resync; /* number of remaining sectors */ 8123 rt = div64_u64(rt, db/32+1); 8124 rt *= dt; 8125 rt >>= 5; 8126 8127 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8128 ((unsigned long)rt % 60)/6); 8129 8130 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8131 return 1; 8132 } 8133 8134 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8135 { 8136 struct list_head *tmp; 8137 loff_t l = *pos; 8138 struct mddev *mddev; 8139 8140 if (l == 0x10000) { 8141 ++*pos; 8142 return (void *)2; 8143 } 8144 if (l > 0x10000) 8145 return NULL; 8146 if (!l--) 8147 /* header */ 8148 return (void*)1; 8149 8150 spin_lock(&all_mddevs_lock); 8151 list_for_each(tmp,&all_mddevs) 8152 if (!l--) { 8153 mddev = list_entry(tmp, struct mddev, all_mddevs); 8154 mddev_get(mddev); 8155 spin_unlock(&all_mddevs_lock); 8156 return mddev; 8157 } 8158 spin_unlock(&all_mddevs_lock); 8159 if (!l--) 8160 return (void*)2;/* tail */ 8161 return NULL; 8162 } 8163 8164 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8165 { 8166 struct list_head *tmp; 8167 struct mddev *next_mddev, *mddev = v; 8168 8169 ++*pos; 8170 if (v == (void*)2) 8171 return NULL; 8172 8173 spin_lock(&all_mddevs_lock); 8174 if (v == (void*)1) 8175 tmp = all_mddevs.next; 8176 else 8177 tmp = mddev->all_mddevs.next; 8178 if (tmp != &all_mddevs) 8179 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8180 else { 8181 next_mddev = (void*)2; 8182 *pos = 0x10000; 8183 } 8184 spin_unlock(&all_mddevs_lock); 8185 8186 if (v != (void*)1) 8187 mddev_put(mddev); 8188 return next_mddev; 8189 8190 } 8191 8192 static void md_seq_stop(struct seq_file *seq, void *v) 8193 { 8194 struct mddev *mddev = v; 8195 8196 if (mddev && v != (void*)1 && v != (void*)2) 8197 mddev_put(mddev); 8198 } 8199 8200 static int md_seq_show(struct seq_file *seq, void *v) 8201 { 8202 struct mddev *mddev = v; 8203 sector_t sectors; 8204 struct md_rdev *rdev; 8205 8206 if (v == (void*)1) { 8207 struct md_personality *pers; 8208 seq_printf(seq, "Personalities : "); 8209 spin_lock(&pers_lock); 8210 list_for_each_entry(pers, &pers_list, list) 8211 seq_printf(seq, "[%s] ", pers->name); 8212 8213 spin_unlock(&pers_lock); 8214 seq_printf(seq, "\n"); 8215 seq->poll_event = atomic_read(&md_event_count); 8216 return 0; 8217 } 8218 if (v == (void*)2) { 8219 status_unused(seq); 8220 return 0; 8221 } 8222 8223 spin_lock(&mddev->lock); 8224 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8225 seq_printf(seq, "%s : %sactive", mdname(mddev), 8226 mddev->pers ? "" : "in"); 8227 if (mddev->pers) { 8228 if (mddev->ro==1) 8229 seq_printf(seq, " (read-only)"); 8230 if (mddev->ro==2) 8231 seq_printf(seq, " (auto-read-only)"); 8232 seq_printf(seq, " %s", mddev->pers->name); 8233 } 8234 8235 sectors = 0; 8236 rcu_read_lock(); 8237 rdev_for_each_rcu(rdev, mddev) { 8238 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8239 8240 if (test_bit(WriteMostly, &rdev->flags)) 8241 seq_printf(seq, "(W)"); 8242 if (test_bit(Journal, &rdev->flags)) 8243 seq_printf(seq, "(J)"); 8244 if (test_bit(Faulty, &rdev->flags)) { 8245 seq_printf(seq, "(F)"); 8246 continue; 8247 } 8248 if (rdev->raid_disk < 0) 8249 seq_printf(seq, "(S)"); /* spare */ 8250 if (test_bit(Replacement, &rdev->flags)) 8251 seq_printf(seq, "(R)"); 8252 sectors += rdev->sectors; 8253 } 8254 rcu_read_unlock(); 8255 8256 if (!list_empty(&mddev->disks)) { 8257 if (mddev->pers) 8258 seq_printf(seq, "\n %llu blocks", 8259 (unsigned long long) 8260 mddev->array_sectors / 2); 8261 else 8262 seq_printf(seq, "\n %llu blocks", 8263 (unsigned long long)sectors / 2); 8264 } 8265 if (mddev->persistent) { 8266 if (mddev->major_version != 0 || 8267 mddev->minor_version != 90) { 8268 seq_printf(seq," super %d.%d", 8269 mddev->major_version, 8270 mddev->minor_version); 8271 } 8272 } else if (mddev->external) 8273 seq_printf(seq, " super external:%s", 8274 mddev->metadata_type); 8275 else 8276 seq_printf(seq, " super non-persistent"); 8277 8278 if (mddev->pers) { 8279 mddev->pers->status(seq, mddev); 8280 seq_printf(seq, "\n "); 8281 if (mddev->pers->sync_request) { 8282 if (status_resync(seq, mddev)) 8283 seq_printf(seq, "\n "); 8284 } 8285 } else 8286 seq_printf(seq, "\n "); 8287 8288 md_bitmap_status(seq, mddev->bitmap); 8289 8290 seq_printf(seq, "\n"); 8291 } 8292 spin_unlock(&mddev->lock); 8293 8294 return 0; 8295 } 8296 8297 static const struct seq_operations md_seq_ops = { 8298 .start = md_seq_start, 8299 .next = md_seq_next, 8300 .stop = md_seq_stop, 8301 .show = md_seq_show, 8302 }; 8303 8304 static int md_seq_open(struct inode *inode, struct file *file) 8305 { 8306 struct seq_file *seq; 8307 int error; 8308 8309 error = seq_open(file, &md_seq_ops); 8310 if (error) 8311 return error; 8312 8313 seq = file->private_data; 8314 seq->poll_event = atomic_read(&md_event_count); 8315 return error; 8316 } 8317 8318 static int md_unloading; 8319 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8320 { 8321 struct seq_file *seq = filp->private_data; 8322 __poll_t mask; 8323 8324 if (md_unloading) 8325 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8326 poll_wait(filp, &md_event_waiters, wait); 8327 8328 /* always allow read */ 8329 mask = EPOLLIN | EPOLLRDNORM; 8330 8331 if (seq->poll_event != atomic_read(&md_event_count)) 8332 mask |= EPOLLERR | EPOLLPRI; 8333 return mask; 8334 } 8335 8336 static const struct proc_ops mdstat_proc_ops = { 8337 .proc_open = md_seq_open, 8338 .proc_read = seq_read, 8339 .proc_lseek = seq_lseek, 8340 .proc_release = seq_release, 8341 .proc_poll = mdstat_poll, 8342 }; 8343 8344 int register_md_personality(struct md_personality *p) 8345 { 8346 pr_debug("md: %s personality registered for level %d\n", 8347 p->name, p->level); 8348 spin_lock(&pers_lock); 8349 list_add_tail(&p->list, &pers_list); 8350 spin_unlock(&pers_lock); 8351 return 0; 8352 } 8353 EXPORT_SYMBOL(register_md_personality); 8354 8355 int unregister_md_personality(struct md_personality *p) 8356 { 8357 pr_debug("md: %s personality unregistered\n", p->name); 8358 spin_lock(&pers_lock); 8359 list_del_init(&p->list); 8360 spin_unlock(&pers_lock); 8361 return 0; 8362 } 8363 EXPORT_SYMBOL(unregister_md_personality); 8364 8365 int register_md_cluster_operations(struct md_cluster_operations *ops, 8366 struct module *module) 8367 { 8368 int ret = 0; 8369 spin_lock(&pers_lock); 8370 if (md_cluster_ops != NULL) 8371 ret = -EALREADY; 8372 else { 8373 md_cluster_ops = ops; 8374 md_cluster_mod = module; 8375 } 8376 spin_unlock(&pers_lock); 8377 return ret; 8378 } 8379 EXPORT_SYMBOL(register_md_cluster_operations); 8380 8381 int unregister_md_cluster_operations(void) 8382 { 8383 spin_lock(&pers_lock); 8384 md_cluster_ops = NULL; 8385 spin_unlock(&pers_lock); 8386 return 0; 8387 } 8388 EXPORT_SYMBOL(unregister_md_cluster_operations); 8389 8390 int md_setup_cluster(struct mddev *mddev, int nodes) 8391 { 8392 int ret; 8393 if (!md_cluster_ops) 8394 request_module("md-cluster"); 8395 spin_lock(&pers_lock); 8396 /* ensure module won't be unloaded */ 8397 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8398 pr_warn("can't find md-cluster module or get its reference.\n"); 8399 spin_unlock(&pers_lock); 8400 return -ENOENT; 8401 } 8402 spin_unlock(&pers_lock); 8403 8404 ret = md_cluster_ops->join(mddev, nodes); 8405 if (!ret) 8406 mddev->safemode_delay = 0; 8407 return ret; 8408 } 8409 8410 void md_cluster_stop(struct mddev *mddev) 8411 { 8412 if (!md_cluster_ops) 8413 return; 8414 md_cluster_ops->leave(mddev); 8415 module_put(md_cluster_mod); 8416 } 8417 8418 static int is_mddev_idle(struct mddev *mddev, int init) 8419 { 8420 struct md_rdev *rdev; 8421 int idle; 8422 int curr_events; 8423 8424 idle = 1; 8425 rcu_read_lock(); 8426 rdev_for_each_rcu(rdev, mddev) { 8427 struct gendisk *disk = rdev->bdev->bd_disk; 8428 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8429 atomic_read(&disk->sync_io); 8430 /* sync IO will cause sync_io to increase before the disk_stats 8431 * as sync_io is counted when a request starts, and 8432 * disk_stats is counted when it completes. 8433 * So resync activity will cause curr_events to be smaller than 8434 * when there was no such activity. 8435 * non-sync IO will cause disk_stat to increase without 8436 * increasing sync_io so curr_events will (eventually) 8437 * be larger than it was before. Once it becomes 8438 * substantially larger, the test below will cause 8439 * the array to appear non-idle, and resync will slow 8440 * down. 8441 * If there is a lot of outstanding resync activity when 8442 * we set last_event to curr_events, then all that activity 8443 * completing might cause the array to appear non-idle 8444 * and resync will be slowed down even though there might 8445 * not have been non-resync activity. This will only 8446 * happen once though. 'last_events' will soon reflect 8447 * the state where there is little or no outstanding 8448 * resync requests, and further resync activity will 8449 * always make curr_events less than last_events. 8450 * 8451 */ 8452 if (init || curr_events - rdev->last_events > 64) { 8453 rdev->last_events = curr_events; 8454 idle = 0; 8455 } 8456 } 8457 rcu_read_unlock(); 8458 return idle; 8459 } 8460 8461 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8462 { 8463 /* another "blocks" (512byte) blocks have been synced */ 8464 atomic_sub(blocks, &mddev->recovery_active); 8465 wake_up(&mddev->recovery_wait); 8466 if (!ok) { 8467 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8468 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8469 md_wakeup_thread(mddev->thread); 8470 // stop recovery, signal do_sync .... 8471 } 8472 } 8473 EXPORT_SYMBOL(md_done_sync); 8474 8475 /* md_write_start(mddev, bi) 8476 * If we need to update some array metadata (e.g. 'active' flag 8477 * in superblock) before writing, schedule a superblock update 8478 * and wait for it to complete. 8479 * A return value of 'false' means that the write wasn't recorded 8480 * and cannot proceed as the array is being suspend. 8481 */ 8482 bool md_write_start(struct mddev *mddev, struct bio *bi) 8483 { 8484 int did_change = 0; 8485 8486 if (bio_data_dir(bi) != WRITE) 8487 return true; 8488 8489 BUG_ON(mddev->ro == 1); 8490 if (mddev->ro == 2) { 8491 /* need to switch to read/write */ 8492 mddev->ro = 0; 8493 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8494 md_wakeup_thread(mddev->thread); 8495 md_wakeup_thread(mddev->sync_thread); 8496 did_change = 1; 8497 } 8498 rcu_read_lock(); 8499 percpu_ref_get(&mddev->writes_pending); 8500 smp_mb(); /* Match smp_mb in set_in_sync() */ 8501 if (mddev->safemode == 1) 8502 mddev->safemode = 0; 8503 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8504 if (mddev->in_sync || mddev->sync_checkers) { 8505 spin_lock(&mddev->lock); 8506 if (mddev->in_sync) { 8507 mddev->in_sync = 0; 8508 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8509 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8510 md_wakeup_thread(mddev->thread); 8511 did_change = 1; 8512 } 8513 spin_unlock(&mddev->lock); 8514 } 8515 rcu_read_unlock(); 8516 if (did_change) 8517 sysfs_notify_dirent_safe(mddev->sysfs_state); 8518 if (!mddev->has_superblocks) 8519 return true; 8520 wait_event(mddev->sb_wait, 8521 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8522 mddev->suspended); 8523 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8524 percpu_ref_put(&mddev->writes_pending); 8525 return false; 8526 } 8527 return true; 8528 } 8529 EXPORT_SYMBOL(md_write_start); 8530 8531 /* md_write_inc can only be called when md_write_start() has 8532 * already been called at least once of the current request. 8533 * It increments the counter and is useful when a single request 8534 * is split into several parts. Each part causes an increment and 8535 * so needs a matching md_write_end(). 8536 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8537 * a spinlocked region. 8538 */ 8539 void md_write_inc(struct mddev *mddev, struct bio *bi) 8540 { 8541 if (bio_data_dir(bi) != WRITE) 8542 return; 8543 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8544 percpu_ref_get(&mddev->writes_pending); 8545 } 8546 EXPORT_SYMBOL(md_write_inc); 8547 8548 void md_write_end(struct mddev *mddev) 8549 { 8550 percpu_ref_put(&mddev->writes_pending); 8551 8552 if (mddev->safemode == 2) 8553 md_wakeup_thread(mddev->thread); 8554 else if (mddev->safemode_delay) 8555 /* The roundup() ensures this only performs locking once 8556 * every ->safemode_delay jiffies 8557 */ 8558 mod_timer(&mddev->safemode_timer, 8559 roundup(jiffies, mddev->safemode_delay) + 8560 mddev->safemode_delay); 8561 } 8562 8563 EXPORT_SYMBOL(md_write_end); 8564 8565 /* This is used by raid0 and raid10 */ 8566 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8567 struct bio *bio, sector_t start, sector_t size) 8568 { 8569 struct bio *discard_bio = NULL; 8570 8571 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8572 &discard_bio) || !discard_bio) 8573 return; 8574 8575 bio_chain(discard_bio, bio); 8576 bio_clone_blkg_association(discard_bio, bio); 8577 if (mddev->gendisk) 8578 trace_block_bio_remap(discard_bio, 8579 disk_devt(mddev->gendisk), 8580 bio->bi_iter.bi_sector); 8581 submit_bio_noacct(discard_bio); 8582 } 8583 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8584 8585 int acct_bioset_init(struct mddev *mddev) 8586 { 8587 int err = 0; 8588 8589 if (!bioset_initialized(&mddev->io_acct_set)) 8590 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 8591 offsetof(struct md_io_acct, bio_clone), 0); 8592 return err; 8593 } 8594 EXPORT_SYMBOL_GPL(acct_bioset_init); 8595 8596 void acct_bioset_exit(struct mddev *mddev) 8597 { 8598 bioset_exit(&mddev->io_acct_set); 8599 } 8600 EXPORT_SYMBOL_GPL(acct_bioset_exit); 8601 8602 static void md_end_io_acct(struct bio *bio) 8603 { 8604 struct md_io_acct *md_io_acct = bio->bi_private; 8605 struct bio *orig_bio = md_io_acct->orig_bio; 8606 8607 orig_bio->bi_status = bio->bi_status; 8608 8609 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8610 bio_put(bio); 8611 bio_endio(orig_bio); 8612 } 8613 8614 /* 8615 * Used by personalities that don't already clone the bio and thus can't 8616 * easily add the timestamp to their extended bio structure. 8617 */ 8618 void md_account_bio(struct mddev *mddev, struct bio **bio) 8619 { 8620 struct block_device *bdev = (*bio)->bi_bdev; 8621 struct md_io_acct *md_io_acct; 8622 struct bio *clone; 8623 8624 if (!blk_queue_io_stat(bdev->bd_disk->queue)) 8625 return; 8626 8627 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set); 8628 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8629 md_io_acct->orig_bio = *bio; 8630 md_io_acct->start_time = bio_start_io_acct(*bio); 8631 8632 clone->bi_end_io = md_end_io_acct; 8633 clone->bi_private = md_io_acct; 8634 *bio = clone; 8635 } 8636 EXPORT_SYMBOL_GPL(md_account_bio); 8637 8638 /* md_allow_write(mddev) 8639 * Calling this ensures that the array is marked 'active' so that writes 8640 * may proceed without blocking. It is important to call this before 8641 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8642 * Must be called with mddev_lock held. 8643 */ 8644 void md_allow_write(struct mddev *mddev) 8645 { 8646 if (!mddev->pers) 8647 return; 8648 if (mddev->ro) 8649 return; 8650 if (!mddev->pers->sync_request) 8651 return; 8652 8653 spin_lock(&mddev->lock); 8654 if (mddev->in_sync) { 8655 mddev->in_sync = 0; 8656 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8657 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8658 if (mddev->safemode_delay && 8659 mddev->safemode == 0) 8660 mddev->safemode = 1; 8661 spin_unlock(&mddev->lock); 8662 md_update_sb(mddev, 0); 8663 sysfs_notify_dirent_safe(mddev->sysfs_state); 8664 /* wait for the dirty state to be recorded in the metadata */ 8665 wait_event(mddev->sb_wait, 8666 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8667 } else 8668 spin_unlock(&mddev->lock); 8669 } 8670 EXPORT_SYMBOL_GPL(md_allow_write); 8671 8672 #define SYNC_MARKS 10 8673 #define SYNC_MARK_STEP (3*HZ) 8674 #define UPDATE_FREQUENCY (5*60*HZ) 8675 void md_do_sync(struct md_thread *thread) 8676 { 8677 struct mddev *mddev = thread->mddev; 8678 struct mddev *mddev2; 8679 unsigned int currspeed = 0, window; 8680 sector_t max_sectors,j, io_sectors, recovery_done; 8681 unsigned long mark[SYNC_MARKS]; 8682 unsigned long update_time; 8683 sector_t mark_cnt[SYNC_MARKS]; 8684 int last_mark,m; 8685 struct list_head *tmp; 8686 sector_t last_check; 8687 int skipped = 0; 8688 struct md_rdev *rdev; 8689 char *desc, *action = NULL; 8690 struct blk_plug plug; 8691 int ret; 8692 8693 /* just incase thread restarts... */ 8694 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8695 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8696 return; 8697 if (mddev->ro) {/* never try to sync a read-only array */ 8698 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8699 return; 8700 } 8701 8702 if (mddev_is_clustered(mddev)) { 8703 ret = md_cluster_ops->resync_start(mddev); 8704 if (ret) 8705 goto skip; 8706 8707 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8708 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8709 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8710 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8711 && ((unsigned long long)mddev->curr_resync_completed 8712 < (unsigned long long)mddev->resync_max_sectors)) 8713 goto skip; 8714 } 8715 8716 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8717 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8718 desc = "data-check"; 8719 action = "check"; 8720 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8721 desc = "requested-resync"; 8722 action = "repair"; 8723 } else 8724 desc = "resync"; 8725 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8726 desc = "reshape"; 8727 else 8728 desc = "recovery"; 8729 8730 mddev->last_sync_action = action ?: desc; 8731 8732 /* we overload curr_resync somewhat here. 8733 * 0 == not engaged in resync at all 8734 * 2 == checking that there is no conflict with another sync 8735 * 1 == like 2, but have yielded to allow conflicting resync to 8736 * commence 8737 * other == active in resync - this many blocks 8738 * 8739 * Before starting a resync we must have set curr_resync to 8740 * 2, and then checked that every "conflicting" array has curr_resync 8741 * less than ours. When we find one that is the same or higher 8742 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8743 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8744 * This will mean we have to start checking from the beginning again. 8745 * 8746 */ 8747 8748 do { 8749 int mddev2_minor = -1; 8750 mddev->curr_resync = 2; 8751 8752 try_again: 8753 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8754 goto skip; 8755 for_each_mddev(mddev2, tmp) { 8756 if (mddev2 == mddev) 8757 continue; 8758 if (!mddev->parallel_resync 8759 && mddev2->curr_resync 8760 && match_mddev_units(mddev, mddev2)) { 8761 DEFINE_WAIT(wq); 8762 if (mddev < mddev2 && mddev->curr_resync == 2) { 8763 /* arbitrarily yield */ 8764 mddev->curr_resync = 1; 8765 wake_up(&resync_wait); 8766 } 8767 if (mddev > mddev2 && mddev->curr_resync == 1) 8768 /* no need to wait here, we can wait the next 8769 * time 'round when curr_resync == 2 8770 */ 8771 continue; 8772 /* We need to wait 'interruptible' so as not to 8773 * contribute to the load average, and not to 8774 * be caught by 'softlockup' 8775 */ 8776 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8777 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8778 mddev2->curr_resync >= mddev->curr_resync) { 8779 if (mddev2_minor != mddev2->md_minor) { 8780 mddev2_minor = mddev2->md_minor; 8781 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8782 desc, mdname(mddev), 8783 mdname(mddev2)); 8784 } 8785 mddev_put(mddev2); 8786 if (signal_pending(current)) 8787 flush_signals(current); 8788 schedule(); 8789 finish_wait(&resync_wait, &wq); 8790 goto try_again; 8791 } 8792 finish_wait(&resync_wait, &wq); 8793 } 8794 } 8795 } while (mddev->curr_resync < 2); 8796 8797 j = 0; 8798 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8799 /* resync follows the size requested by the personality, 8800 * which defaults to physical size, but can be virtual size 8801 */ 8802 max_sectors = mddev->resync_max_sectors; 8803 atomic64_set(&mddev->resync_mismatches, 0); 8804 /* we don't use the checkpoint if there's a bitmap */ 8805 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8806 j = mddev->resync_min; 8807 else if (!mddev->bitmap) 8808 j = mddev->recovery_cp; 8809 8810 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8811 max_sectors = mddev->resync_max_sectors; 8812 /* 8813 * If the original node aborts reshaping then we continue the 8814 * reshaping, so set j again to avoid restart reshape from the 8815 * first beginning 8816 */ 8817 if (mddev_is_clustered(mddev) && 8818 mddev->reshape_position != MaxSector) 8819 j = mddev->reshape_position; 8820 } else { 8821 /* recovery follows the physical size of devices */ 8822 max_sectors = mddev->dev_sectors; 8823 j = MaxSector; 8824 rcu_read_lock(); 8825 rdev_for_each_rcu(rdev, mddev) 8826 if (rdev->raid_disk >= 0 && 8827 !test_bit(Journal, &rdev->flags) && 8828 !test_bit(Faulty, &rdev->flags) && 8829 !test_bit(In_sync, &rdev->flags) && 8830 rdev->recovery_offset < j) 8831 j = rdev->recovery_offset; 8832 rcu_read_unlock(); 8833 8834 /* If there is a bitmap, we need to make sure all 8835 * writes that started before we added a spare 8836 * complete before we start doing a recovery. 8837 * Otherwise the write might complete and (via 8838 * bitmap_endwrite) set a bit in the bitmap after the 8839 * recovery has checked that bit and skipped that 8840 * region. 8841 */ 8842 if (mddev->bitmap) { 8843 mddev->pers->quiesce(mddev, 1); 8844 mddev->pers->quiesce(mddev, 0); 8845 } 8846 } 8847 8848 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8849 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8850 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8851 speed_max(mddev), desc); 8852 8853 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8854 8855 io_sectors = 0; 8856 for (m = 0; m < SYNC_MARKS; m++) { 8857 mark[m] = jiffies; 8858 mark_cnt[m] = io_sectors; 8859 } 8860 last_mark = 0; 8861 mddev->resync_mark = mark[last_mark]; 8862 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8863 8864 /* 8865 * Tune reconstruction: 8866 */ 8867 window = 32 * (PAGE_SIZE / 512); 8868 pr_debug("md: using %dk window, over a total of %lluk.\n", 8869 window/2, (unsigned long long)max_sectors/2); 8870 8871 atomic_set(&mddev->recovery_active, 0); 8872 last_check = 0; 8873 8874 if (j>2) { 8875 pr_debug("md: resuming %s of %s from checkpoint.\n", 8876 desc, mdname(mddev)); 8877 mddev->curr_resync = j; 8878 } else 8879 mddev->curr_resync = 3; /* no longer delayed */ 8880 mddev->curr_resync_completed = j; 8881 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8882 md_new_event(); 8883 update_time = jiffies; 8884 8885 blk_start_plug(&plug); 8886 while (j < max_sectors) { 8887 sector_t sectors; 8888 8889 skipped = 0; 8890 8891 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8892 ((mddev->curr_resync > mddev->curr_resync_completed && 8893 (mddev->curr_resync - mddev->curr_resync_completed) 8894 > (max_sectors >> 4)) || 8895 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8896 (j - mddev->curr_resync_completed)*2 8897 >= mddev->resync_max - mddev->curr_resync_completed || 8898 mddev->curr_resync_completed > mddev->resync_max 8899 )) { 8900 /* time to update curr_resync_completed */ 8901 wait_event(mddev->recovery_wait, 8902 atomic_read(&mddev->recovery_active) == 0); 8903 mddev->curr_resync_completed = j; 8904 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8905 j > mddev->recovery_cp) 8906 mddev->recovery_cp = j; 8907 update_time = jiffies; 8908 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8909 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8910 } 8911 8912 while (j >= mddev->resync_max && 8913 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8914 /* As this condition is controlled by user-space, 8915 * we can block indefinitely, so use '_interruptible' 8916 * to avoid triggering warnings. 8917 */ 8918 flush_signals(current); /* just in case */ 8919 wait_event_interruptible(mddev->recovery_wait, 8920 mddev->resync_max > j 8921 || test_bit(MD_RECOVERY_INTR, 8922 &mddev->recovery)); 8923 } 8924 8925 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8926 break; 8927 8928 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8929 if (sectors == 0) { 8930 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8931 break; 8932 } 8933 8934 if (!skipped) { /* actual IO requested */ 8935 io_sectors += sectors; 8936 atomic_add(sectors, &mddev->recovery_active); 8937 } 8938 8939 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8940 break; 8941 8942 j += sectors; 8943 if (j > max_sectors) 8944 /* when skipping, extra large numbers can be returned. */ 8945 j = max_sectors; 8946 if (j > 2) 8947 mddev->curr_resync = j; 8948 mddev->curr_mark_cnt = io_sectors; 8949 if (last_check == 0) 8950 /* this is the earliest that rebuild will be 8951 * visible in /proc/mdstat 8952 */ 8953 md_new_event(); 8954 8955 if (last_check + window > io_sectors || j == max_sectors) 8956 continue; 8957 8958 last_check = io_sectors; 8959 repeat: 8960 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8961 /* step marks */ 8962 int next = (last_mark+1) % SYNC_MARKS; 8963 8964 mddev->resync_mark = mark[next]; 8965 mddev->resync_mark_cnt = mark_cnt[next]; 8966 mark[next] = jiffies; 8967 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8968 last_mark = next; 8969 } 8970 8971 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8972 break; 8973 8974 /* 8975 * this loop exits only if either when we are slower than 8976 * the 'hard' speed limit, or the system was IO-idle for 8977 * a jiffy. 8978 * the system might be non-idle CPU-wise, but we only care 8979 * about not overloading the IO subsystem. (things like an 8980 * e2fsck being done on the RAID array should execute fast) 8981 */ 8982 cond_resched(); 8983 8984 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8985 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8986 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8987 8988 if (currspeed > speed_min(mddev)) { 8989 if (currspeed > speed_max(mddev)) { 8990 msleep(500); 8991 goto repeat; 8992 } 8993 if (!is_mddev_idle(mddev, 0)) { 8994 /* 8995 * Give other IO more of a chance. 8996 * The faster the devices, the less we wait. 8997 */ 8998 wait_event(mddev->recovery_wait, 8999 !atomic_read(&mddev->recovery_active)); 9000 } 9001 } 9002 } 9003 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9004 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9005 ? "interrupted" : "done"); 9006 /* 9007 * this also signals 'finished resyncing' to md_stop 9008 */ 9009 blk_finish_plug(&plug); 9010 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9011 9012 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9013 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9014 mddev->curr_resync > 3) { 9015 mddev->curr_resync_completed = mddev->curr_resync; 9016 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9017 } 9018 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9019 9020 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9021 mddev->curr_resync > 3) { 9022 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9023 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9024 if (mddev->curr_resync >= mddev->recovery_cp) { 9025 pr_debug("md: checkpointing %s of %s.\n", 9026 desc, mdname(mddev)); 9027 if (test_bit(MD_RECOVERY_ERROR, 9028 &mddev->recovery)) 9029 mddev->recovery_cp = 9030 mddev->curr_resync_completed; 9031 else 9032 mddev->recovery_cp = 9033 mddev->curr_resync; 9034 } 9035 } else 9036 mddev->recovery_cp = MaxSector; 9037 } else { 9038 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9039 mddev->curr_resync = MaxSector; 9040 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9041 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9042 rcu_read_lock(); 9043 rdev_for_each_rcu(rdev, mddev) 9044 if (rdev->raid_disk >= 0 && 9045 mddev->delta_disks >= 0 && 9046 !test_bit(Journal, &rdev->flags) && 9047 !test_bit(Faulty, &rdev->flags) && 9048 !test_bit(In_sync, &rdev->flags) && 9049 rdev->recovery_offset < mddev->curr_resync) 9050 rdev->recovery_offset = mddev->curr_resync; 9051 rcu_read_unlock(); 9052 } 9053 } 9054 } 9055 skip: 9056 /* set CHANGE_PENDING here since maybe another update is needed, 9057 * so other nodes are informed. It should be harmless for normal 9058 * raid */ 9059 set_mask_bits(&mddev->sb_flags, 0, 9060 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9061 9062 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9063 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9064 mddev->delta_disks > 0 && 9065 mddev->pers->finish_reshape && 9066 mddev->pers->size && 9067 mddev->queue) { 9068 mddev_lock_nointr(mddev); 9069 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9070 mddev_unlock(mddev); 9071 if (!mddev_is_clustered(mddev)) 9072 set_capacity_and_notify(mddev->gendisk, 9073 mddev->array_sectors); 9074 } 9075 9076 spin_lock(&mddev->lock); 9077 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9078 /* We completed so min/max setting can be forgotten if used. */ 9079 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9080 mddev->resync_min = 0; 9081 mddev->resync_max = MaxSector; 9082 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9083 mddev->resync_min = mddev->curr_resync_completed; 9084 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9085 mddev->curr_resync = 0; 9086 spin_unlock(&mddev->lock); 9087 9088 wake_up(&resync_wait); 9089 md_wakeup_thread(mddev->thread); 9090 return; 9091 } 9092 EXPORT_SYMBOL_GPL(md_do_sync); 9093 9094 static int remove_and_add_spares(struct mddev *mddev, 9095 struct md_rdev *this) 9096 { 9097 struct md_rdev *rdev; 9098 int spares = 0; 9099 int removed = 0; 9100 bool remove_some = false; 9101 9102 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9103 /* Mustn't remove devices when resync thread is running */ 9104 return 0; 9105 9106 rdev_for_each(rdev, mddev) { 9107 if ((this == NULL || rdev == this) && 9108 rdev->raid_disk >= 0 && 9109 !test_bit(Blocked, &rdev->flags) && 9110 test_bit(Faulty, &rdev->flags) && 9111 atomic_read(&rdev->nr_pending)==0) { 9112 /* Faulty non-Blocked devices with nr_pending == 0 9113 * never get nr_pending incremented, 9114 * never get Faulty cleared, and never get Blocked set. 9115 * So we can synchronize_rcu now rather than once per device 9116 */ 9117 remove_some = true; 9118 set_bit(RemoveSynchronized, &rdev->flags); 9119 } 9120 } 9121 9122 if (remove_some) 9123 synchronize_rcu(); 9124 rdev_for_each(rdev, mddev) { 9125 if ((this == NULL || rdev == this) && 9126 rdev->raid_disk >= 0 && 9127 !test_bit(Blocked, &rdev->flags) && 9128 ((test_bit(RemoveSynchronized, &rdev->flags) || 9129 (!test_bit(In_sync, &rdev->flags) && 9130 !test_bit(Journal, &rdev->flags))) && 9131 atomic_read(&rdev->nr_pending)==0)) { 9132 if (mddev->pers->hot_remove_disk( 9133 mddev, rdev) == 0) { 9134 sysfs_unlink_rdev(mddev, rdev); 9135 rdev->saved_raid_disk = rdev->raid_disk; 9136 rdev->raid_disk = -1; 9137 removed++; 9138 } 9139 } 9140 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9141 clear_bit(RemoveSynchronized, &rdev->flags); 9142 } 9143 9144 if (removed && mddev->kobj.sd) 9145 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9146 9147 if (this && removed) 9148 goto no_add; 9149 9150 rdev_for_each(rdev, mddev) { 9151 if (this && this != rdev) 9152 continue; 9153 if (test_bit(Candidate, &rdev->flags)) 9154 continue; 9155 if (rdev->raid_disk >= 0 && 9156 !test_bit(In_sync, &rdev->flags) && 9157 !test_bit(Journal, &rdev->flags) && 9158 !test_bit(Faulty, &rdev->flags)) 9159 spares++; 9160 if (rdev->raid_disk >= 0) 9161 continue; 9162 if (test_bit(Faulty, &rdev->flags)) 9163 continue; 9164 if (!test_bit(Journal, &rdev->flags)) { 9165 if (mddev->ro && 9166 ! (rdev->saved_raid_disk >= 0 && 9167 !test_bit(Bitmap_sync, &rdev->flags))) 9168 continue; 9169 9170 rdev->recovery_offset = 0; 9171 } 9172 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9173 /* failure here is OK */ 9174 sysfs_link_rdev(mddev, rdev); 9175 if (!test_bit(Journal, &rdev->flags)) 9176 spares++; 9177 md_new_event(); 9178 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9179 } 9180 } 9181 no_add: 9182 if (removed) 9183 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9184 return spares; 9185 } 9186 9187 static void md_start_sync(struct work_struct *ws) 9188 { 9189 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9190 9191 mddev->sync_thread = md_register_thread(md_do_sync, 9192 mddev, 9193 "resync"); 9194 if (!mddev->sync_thread) { 9195 pr_warn("%s: could not start resync thread...\n", 9196 mdname(mddev)); 9197 /* leave the spares where they are, it shouldn't hurt */ 9198 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9199 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9200 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9201 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9202 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9203 wake_up(&resync_wait); 9204 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9205 &mddev->recovery)) 9206 if (mddev->sysfs_action) 9207 sysfs_notify_dirent_safe(mddev->sysfs_action); 9208 } else 9209 md_wakeup_thread(mddev->sync_thread); 9210 sysfs_notify_dirent_safe(mddev->sysfs_action); 9211 md_new_event(); 9212 } 9213 9214 /* 9215 * This routine is regularly called by all per-raid-array threads to 9216 * deal with generic issues like resync and super-block update. 9217 * Raid personalities that don't have a thread (linear/raid0) do not 9218 * need this as they never do any recovery or update the superblock. 9219 * 9220 * It does not do any resync itself, but rather "forks" off other threads 9221 * to do that as needed. 9222 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9223 * "->recovery" and create a thread at ->sync_thread. 9224 * When the thread finishes it sets MD_RECOVERY_DONE 9225 * and wakeups up this thread which will reap the thread and finish up. 9226 * This thread also removes any faulty devices (with nr_pending == 0). 9227 * 9228 * The overall approach is: 9229 * 1/ if the superblock needs updating, update it. 9230 * 2/ If a recovery thread is running, don't do anything else. 9231 * 3/ If recovery has finished, clean up, possibly marking spares active. 9232 * 4/ If there are any faulty devices, remove them. 9233 * 5/ If array is degraded, try to add spares devices 9234 * 6/ If array has spares or is not in-sync, start a resync thread. 9235 */ 9236 void md_check_recovery(struct mddev *mddev) 9237 { 9238 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9239 /* Write superblock - thread that called mddev_suspend() 9240 * holds reconfig_mutex for us. 9241 */ 9242 set_bit(MD_UPDATING_SB, &mddev->flags); 9243 smp_mb__after_atomic(); 9244 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9245 md_update_sb(mddev, 0); 9246 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9247 wake_up(&mddev->sb_wait); 9248 } 9249 9250 if (mddev->suspended) 9251 return; 9252 9253 if (mddev->bitmap) 9254 md_bitmap_daemon_work(mddev); 9255 9256 if (signal_pending(current)) { 9257 if (mddev->pers->sync_request && !mddev->external) { 9258 pr_debug("md: %s in immediate safe mode\n", 9259 mdname(mddev)); 9260 mddev->safemode = 2; 9261 } 9262 flush_signals(current); 9263 } 9264 9265 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9266 return; 9267 if ( ! ( 9268 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9269 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9270 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9271 (mddev->external == 0 && mddev->safemode == 1) || 9272 (mddev->safemode == 2 9273 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9274 )) 9275 return; 9276 9277 if (mddev_trylock(mddev)) { 9278 int spares = 0; 9279 bool try_set_sync = mddev->safemode != 0; 9280 9281 if (!mddev->external && mddev->safemode == 1) 9282 mddev->safemode = 0; 9283 9284 if (mddev->ro) { 9285 struct md_rdev *rdev; 9286 if (!mddev->external && mddev->in_sync) 9287 /* 'Blocked' flag not needed as failed devices 9288 * will be recorded if array switched to read/write. 9289 * Leaving it set will prevent the device 9290 * from being removed. 9291 */ 9292 rdev_for_each(rdev, mddev) 9293 clear_bit(Blocked, &rdev->flags); 9294 /* On a read-only array we can: 9295 * - remove failed devices 9296 * - add already-in_sync devices if the array itself 9297 * is in-sync. 9298 * As we only add devices that are already in-sync, 9299 * we can activate the spares immediately. 9300 */ 9301 remove_and_add_spares(mddev, NULL); 9302 /* There is no thread, but we need to call 9303 * ->spare_active and clear saved_raid_disk 9304 */ 9305 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9306 md_reap_sync_thread(mddev, true); 9307 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9308 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9309 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9310 goto unlock; 9311 } 9312 9313 if (mddev_is_clustered(mddev)) { 9314 struct md_rdev *rdev, *tmp; 9315 /* kick the device if another node issued a 9316 * remove disk. 9317 */ 9318 rdev_for_each_safe(rdev, tmp, mddev) { 9319 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9320 rdev->raid_disk < 0) 9321 md_kick_rdev_from_array(rdev); 9322 } 9323 } 9324 9325 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9326 spin_lock(&mddev->lock); 9327 set_in_sync(mddev); 9328 spin_unlock(&mddev->lock); 9329 } 9330 9331 if (mddev->sb_flags) 9332 md_update_sb(mddev, 0); 9333 9334 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9335 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9336 /* resync/recovery still happening */ 9337 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9338 goto unlock; 9339 } 9340 if (mddev->sync_thread) { 9341 md_reap_sync_thread(mddev, true); 9342 goto unlock; 9343 } 9344 /* Set RUNNING before clearing NEEDED to avoid 9345 * any transients in the value of "sync_action". 9346 */ 9347 mddev->curr_resync_completed = 0; 9348 spin_lock(&mddev->lock); 9349 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9350 spin_unlock(&mddev->lock); 9351 /* Clear some bits that don't mean anything, but 9352 * might be left set 9353 */ 9354 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9355 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9356 9357 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9358 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9359 goto not_running; 9360 /* no recovery is running. 9361 * remove any failed drives, then 9362 * add spares if possible. 9363 * Spares are also removed and re-added, to allow 9364 * the personality to fail the re-add. 9365 */ 9366 9367 if (mddev->reshape_position != MaxSector) { 9368 if (mddev->pers->check_reshape == NULL || 9369 mddev->pers->check_reshape(mddev) != 0) 9370 /* Cannot proceed */ 9371 goto not_running; 9372 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9373 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9374 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9375 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9376 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9377 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9378 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9379 } else if (mddev->recovery_cp < MaxSector) { 9380 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9381 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9382 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9383 /* nothing to be done ... */ 9384 goto not_running; 9385 9386 if (mddev->pers->sync_request) { 9387 if (spares) { 9388 /* We are adding a device or devices to an array 9389 * which has the bitmap stored on all devices. 9390 * So make sure all bitmap pages get written 9391 */ 9392 md_bitmap_write_all(mddev->bitmap); 9393 } 9394 INIT_WORK(&mddev->del_work, md_start_sync); 9395 queue_work(md_misc_wq, &mddev->del_work); 9396 goto unlock; 9397 } 9398 not_running: 9399 if (!mddev->sync_thread) { 9400 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9401 wake_up(&resync_wait); 9402 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9403 &mddev->recovery)) 9404 if (mddev->sysfs_action) 9405 sysfs_notify_dirent_safe(mddev->sysfs_action); 9406 } 9407 unlock: 9408 wake_up(&mddev->sb_wait); 9409 mddev_unlock(mddev); 9410 } 9411 } 9412 EXPORT_SYMBOL(md_check_recovery); 9413 9414 void md_reap_sync_thread(struct mddev *mddev, bool reconfig_mutex_held) 9415 { 9416 struct md_rdev *rdev; 9417 sector_t old_dev_sectors = mddev->dev_sectors; 9418 bool is_reshaped = false; 9419 9420 if (reconfig_mutex_held) 9421 mddev_unlock(mddev); 9422 /* resync has finished, collect result */ 9423 md_unregister_thread(&mddev->sync_thread); 9424 if (reconfig_mutex_held) 9425 mddev_lock_nointr(mddev); 9426 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9427 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9428 mddev->degraded != mddev->raid_disks) { 9429 /* success...*/ 9430 /* activate any spares */ 9431 if (mddev->pers->spare_active(mddev)) { 9432 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9433 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9434 } 9435 } 9436 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9437 mddev->pers->finish_reshape) { 9438 mddev->pers->finish_reshape(mddev); 9439 if (mddev_is_clustered(mddev)) 9440 is_reshaped = true; 9441 } 9442 9443 /* If array is no-longer degraded, then any saved_raid_disk 9444 * information must be scrapped. 9445 */ 9446 if (!mddev->degraded) 9447 rdev_for_each(rdev, mddev) 9448 rdev->saved_raid_disk = -1; 9449 9450 md_update_sb(mddev, 1); 9451 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9452 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9453 * clustered raid */ 9454 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9455 md_cluster_ops->resync_finish(mddev); 9456 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9457 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9458 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9459 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9460 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9461 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9462 /* 9463 * We call md_cluster_ops->update_size here because sync_size could 9464 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9465 * so it is time to update size across cluster. 9466 */ 9467 if (mddev_is_clustered(mddev) && is_reshaped 9468 && !test_bit(MD_CLOSING, &mddev->flags)) 9469 md_cluster_ops->update_size(mddev, old_dev_sectors); 9470 wake_up(&resync_wait); 9471 /* flag recovery needed just to double check */ 9472 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9473 sysfs_notify_dirent_safe(mddev->sysfs_action); 9474 md_new_event(); 9475 if (mddev->event_work.func) 9476 queue_work(md_misc_wq, &mddev->event_work); 9477 } 9478 EXPORT_SYMBOL(md_reap_sync_thread); 9479 9480 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9481 { 9482 sysfs_notify_dirent_safe(rdev->sysfs_state); 9483 wait_event_timeout(rdev->blocked_wait, 9484 !test_bit(Blocked, &rdev->flags) && 9485 !test_bit(BlockedBadBlocks, &rdev->flags), 9486 msecs_to_jiffies(5000)); 9487 rdev_dec_pending(rdev, mddev); 9488 } 9489 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9490 9491 void md_finish_reshape(struct mddev *mddev) 9492 { 9493 /* called be personality module when reshape completes. */ 9494 struct md_rdev *rdev; 9495 9496 rdev_for_each(rdev, mddev) { 9497 if (rdev->data_offset > rdev->new_data_offset) 9498 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9499 else 9500 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9501 rdev->data_offset = rdev->new_data_offset; 9502 } 9503 } 9504 EXPORT_SYMBOL(md_finish_reshape); 9505 9506 /* Bad block management */ 9507 9508 /* Returns 1 on success, 0 on failure */ 9509 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9510 int is_new) 9511 { 9512 struct mddev *mddev = rdev->mddev; 9513 int rv; 9514 if (is_new) 9515 s += rdev->new_data_offset; 9516 else 9517 s += rdev->data_offset; 9518 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9519 if (rv == 0) { 9520 /* Make sure they get written out promptly */ 9521 if (test_bit(ExternalBbl, &rdev->flags)) 9522 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9523 sysfs_notify_dirent_safe(rdev->sysfs_state); 9524 set_mask_bits(&mddev->sb_flags, 0, 9525 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9526 md_wakeup_thread(rdev->mddev->thread); 9527 return 1; 9528 } else 9529 return 0; 9530 } 9531 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9532 9533 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9534 int is_new) 9535 { 9536 int rv; 9537 if (is_new) 9538 s += rdev->new_data_offset; 9539 else 9540 s += rdev->data_offset; 9541 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9542 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9543 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9544 return rv; 9545 } 9546 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9547 9548 static int md_notify_reboot(struct notifier_block *this, 9549 unsigned long code, void *x) 9550 { 9551 struct list_head *tmp; 9552 struct mddev *mddev; 9553 int need_delay = 0; 9554 9555 for_each_mddev(mddev, tmp) { 9556 if (mddev_trylock(mddev)) { 9557 if (mddev->pers) 9558 __md_stop_writes(mddev); 9559 if (mddev->persistent) 9560 mddev->safemode = 2; 9561 mddev_unlock(mddev); 9562 } 9563 need_delay = 1; 9564 } 9565 /* 9566 * certain more exotic SCSI devices are known to be 9567 * volatile wrt too early system reboots. While the 9568 * right place to handle this issue is the given 9569 * driver, we do want to have a safe RAID driver ... 9570 */ 9571 if (need_delay) 9572 msleep(1000); 9573 9574 return NOTIFY_DONE; 9575 } 9576 9577 static struct notifier_block md_notifier = { 9578 .notifier_call = md_notify_reboot, 9579 .next = NULL, 9580 .priority = INT_MAX, /* before any real devices */ 9581 }; 9582 9583 static void md_geninit(void) 9584 { 9585 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9586 9587 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9588 } 9589 9590 static int __init md_init(void) 9591 { 9592 int ret = -ENOMEM; 9593 9594 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9595 if (!md_wq) 9596 goto err_wq; 9597 9598 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9599 if (!md_misc_wq) 9600 goto err_misc_wq; 9601 9602 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9603 if (!md_rdev_misc_wq) 9604 goto err_rdev_misc_wq; 9605 9606 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9607 if (ret < 0) 9608 goto err_md; 9609 9610 ret = __register_blkdev(0, "mdp", md_probe); 9611 if (ret < 0) 9612 goto err_mdp; 9613 mdp_major = ret; 9614 9615 register_reboot_notifier(&md_notifier); 9616 raid_table_header = register_sysctl_table(raid_root_table); 9617 9618 md_geninit(); 9619 return 0; 9620 9621 err_mdp: 9622 unregister_blkdev(MD_MAJOR, "md"); 9623 err_md: 9624 destroy_workqueue(md_rdev_misc_wq); 9625 err_rdev_misc_wq: 9626 destroy_workqueue(md_misc_wq); 9627 err_misc_wq: 9628 destroy_workqueue(md_wq); 9629 err_wq: 9630 return ret; 9631 } 9632 9633 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9634 { 9635 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9636 struct md_rdev *rdev2, *tmp; 9637 int role, ret; 9638 9639 /* 9640 * If size is changed in another node then we need to 9641 * do resize as well. 9642 */ 9643 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9644 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9645 if (ret) 9646 pr_info("md-cluster: resize failed\n"); 9647 else 9648 md_bitmap_update_sb(mddev->bitmap); 9649 } 9650 9651 /* Check for change of roles in the active devices */ 9652 rdev_for_each_safe(rdev2, tmp, mddev) { 9653 if (test_bit(Faulty, &rdev2->flags)) 9654 continue; 9655 9656 /* Check if the roles changed */ 9657 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9658 9659 if (test_bit(Candidate, &rdev2->flags)) { 9660 if (role == MD_DISK_ROLE_FAULTY) { 9661 pr_info("md: Removing Candidate device %pg because add failed\n", 9662 rdev2->bdev); 9663 md_kick_rdev_from_array(rdev2); 9664 continue; 9665 } 9666 else 9667 clear_bit(Candidate, &rdev2->flags); 9668 } 9669 9670 if (role != rdev2->raid_disk) { 9671 /* 9672 * got activated except reshape is happening. 9673 */ 9674 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9675 !(le32_to_cpu(sb->feature_map) & 9676 MD_FEATURE_RESHAPE_ACTIVE)) { 9677 rdev2->saved_raid_disk = role; 9678 ret = remove_and_add_spares(mddev, rdev2); 9679 pr_info("Activated spare: %pg\n", 9680 rdev2->bdev); 9681 /* wakeup mddev->thread here, so array could 9682 * perform resync with the new activated disk */ 9683 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9684 md_wakeup_thread(mddev->thread); 9685 } 9686 /* device faulty 9687 * We just want to do the minimum to mark the disk 9688 * as faulty. The recovery is performed by the 9689 * one who initiated the error. 9690 */ 9691 if (role == MD_DISK_ROLE_FAULTY || 9692 role == MD_DISK_ROLE_JOURNAL) { 9693 md_error(mddev, rdev2); 9694 clear_bit(Blocked, &rdev2->flags); 9695 } 9696 } 9697 } 9698 9699 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9700 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9701 if (ret) 9702 pr_warn("md: updating array disks failed. %d\n", ret); 9703 } 9704 9705 /* 9706 * Since mddev->delta_disks has already updated in update_raid_disks, 9707 * so it is time to check reshape. 9708 */ 9709 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9710 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9711 /* 9712 * reshape is happening in the remote node, we need to 9713 * update reshape_position and call start_reshape. 9714 */ 9715 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9716 if (mddev->pers->update_reshape_pos) 9717 mddev->pers->update_reshape_pos(mddev); 9718 if (mddev->pers->start_reshape) 9719 mddev->pers->start_reshape(mddev); 9720 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9721 mddev->reshape_position != MaxSector && 9722 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9723 /* reshape is just done in another node. */ 9724 mddev->reshape_position = MaxSector; 9725 if (mddev->pers->update_reshape_pos) 9726 mddev->pers->update_reshape_pos(mddev); 9727 } 9728 9729 /* Finally set the event to be up to date */ 9730 mddev->events = le64_to_cpu(sb->events); 9731 } 9732 9733 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9734 { 9735 int err; 9736 struct page *swapout = rdev->sb_page; 9737 struct mdp_superblock_1 *sb; 9738 9739 /* Store the sb page of the rdev in the swapout temporary 9740 * variable in case we err in the future 9741 */ 9742 rdev->sb_page = NULL; 9743 err = alloc_disk_sb(rdev); 9744 if (err == 0) { 9745 ClearPageUptodate(rdev->sb_page); 9746 rdev->sb_loaded = 0; 9747 err = super_types[mddev->major_version]. 9748 load_super(rdev, NULL, mddev->minor_version); 9749 } 9750 if (err < 0) { 9751 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9752 __func__, __LINE__, rdev->desc_nr, err); 9753 if (rdev->sb_page) 9754 put_page(rdev->sb_page); 9755 rdev->sb_page = swapout; 9756 rdev->sb_loaded = 1; 9757 return err; 9758 } 9759 9760 sb = page_address(rdev->sb_page); 9761 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9762 * is not set 9763 */ 9764 9765 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9766 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9767 9768 /* The other node finished recovery, call spare_active to set 9769 * device In_sync and mddev->degraded 9770 */ 9771 if (rdev->recovery_offset == MaxSector && 9772 !test_bit(In_sync, &rdev->flags) && 9773 mddev->pers->spare_active(mddev)) 9774 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9775 9776 put_page(swapout); 9777 return 0; 9778 } 9779 9780 void md_reload_sb(struct mddev *mddev, int nr) 9781 { 9782 struct md_rdev *rdev = NULL, *iter; 9783 int err; 9784 9785 /* Find the rdev */ 9786 rdev_for_each_rcu(iter, mddev) { 9787 if (iter->desc_nr == nr) { 9788 rdev = iter; 9789 break; 9790 } 9791 } 9792 9793 if (!rdev) { 9794 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9795 return; 9796 } 9797 9798 err = read_rdev(mddev, rdev); 9799 if (err < 0) 9800 return; 9801 9802 check_sb_changes(mddev, rdev); 9803 9804 /* Read all rdev's to update recovery_offset */ 9805 rdev_for_each_rcu(rdev, mddev) { 9806 if (!test_bit(Faulty, &rdev->flags)) 9807 read_rdev(mddev, rdev); 9808 } 9809 } 9810 EXPORT_SYMBOL(md_reload_sb); 9811 9812 #ifndef MODULE 9813 9814 /* 9815 * Searches all registered partitions for autorun RAID arrays 9816 * at boot time. 9817 */ 9818 9819 static DEFINE_MUTEX(detected_devices_mutex); 9820 static LIST_HEAD(all_detected_devices); 9821 struct detected_devices_node { 9822 struct list_head list; 9823 dev_t dev; 9824 }; 9825 9826 void md_autodetect_dev(dev_t dev) 9827 { 9828 struct detected_devices_node *node_detected_dev; 9829 9830 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9831 if (node_detected_dev) { 9832 node_detected_dev->dev = dev; 9833 mutex_lock(&detected_devices_mutex); 9834 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9835 mutex_unlock(&detected_devices_mutex); 9836 } 9837 } 9838 9839 void md_autostart_arrays(int part) 9840 { 9841 struct md_rdev *rdev; 9842 struct detected_devices_node *node_detected_dev; 9843 dev_t dev; 9844 int i_scanned, i_passed; 9845 9846 i_scanned = 0; 9847 i_passed = 0; 9848 9849 pr_info("md: Autodetecting RAID arrays.\n"); 9850 9851 mutex_lock(&detected_devices_mutex); 9852 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9853 i_scanned++; 9854 node_detected_dev = list_entry(all_detected_devices.next, 9855 struct detected_devices_node, list); 9856 list_del(&node_detected_dev->list); 9857 dev = node_detected_dev->dev; 9858 kfree(node_detected_dev); 9859 mutex_unlock(&detected_devices_mutex); 9860 rdev = md_import_device(dev,0, 90); 9861 mutex_lock(&detected_devices_mutex); 9862 if (IS_ERR(rdev)) 9863 continue; 9864 9865 if (test_bit(Faulty, &rdev->flags)) 9866 continue; 9867 9868 set_bit(AutoDetected, &rdev->flags); 9869 list_add(&rdev->same_set, &pending_raid_disks); 9870 i_passed++; 9871 } 9872 mutex_unlock(&detected_devices_mutex); 9873 9874 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9875 9876 autorun_devices(part); 9877 } 9878 9879 #endif /* !MODULE */ 9880 9881 static __exit void md_exit(void) 9882 { 9883 struct mddev *mddev; 9884 struct list_head *tmp; 9885 int delay = 1; 9886 9887 unregister_blkdev(MD_MAJOR,"md"); 9888 unregister_blkdev(mdp_major, "mdp"); 9889 unregister_reboot_notifier(&md_notifier); 9890 unregister_sysctl_table(raid_table_header); 9891 9892 /* We cannot unload the modules while some process is 9893 * waiting for us in select() or poll() - wake them up 9894 */ 9895 md_unloading = 1; 9896 while (waitqueue_active(&md_event_waiters)) { 9897 /* not safe to leave yet */ 9898 wake_up(&md_event_waiters); 9899 msleep(delay); 9900 delay += delay; 9901 } 9902 remove_proc_entry("mdstat", NULL); 9903 9904 for_each_mddev(mddev, tmp) { 9905 export_array(mddev); 9906 mddev->ctime = 0; 9907 mddev->hold_active = 0; 9908 /* 9909 * for_each_mddev() will call mddev_put() at the end of each 9910 * iteration. As the mddev is now fully clear, this will 9911 * schedule the mddev for destruction by a workqueue, and the 9912 * destroy_workqueue() below will wait for that to complete. 9913 */ 9914 } 9915 destroy_workqueue(md_rdev_misc_wq); 9916 destroy_workqueue(md_misc_wq); 9917 destroy_workqueue(md_wq); 9918 } 9919 9920 subsys_initcall(md_init); 9921 module_exit(md_exit) 9922 9923 static int get_ro(char *buffer, const struct kernel_param *kp) 9924 { 9925 return sprintf(buffer, "%d\n", start_readonly); 9926 } 9927 static int set_ro(const char *val, const struct kernel_param *kp) 9928 { 9929 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9930 } 9931 9932 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9933 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9934 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9935 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9936 9937 MODULE_LICENSE("GPL"); 9938 MODULE_DESCRIPTION("MD RAID framework"); 9939 MODULE_ALIAS("md"); 9940 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9941