xref: /openbmc/linux/drivers/md/md.c (revision 858259cf)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 
46 #include <linux/init.h>
47 
48 #include <linux/file.h>
49 
50 #ifdef CONFIG_KMOD
51 #include <linux/kmod.h>
52 #endif
53 
54 #include <asm/unaligned.h>
55 
56 #define MAJOR_NR MD_MAJOR
57 #define MD_DRIVER
58 
59 /* 63 partitions with the alternate major number (mdp) */
60 #define MdpMinorShift 6
61 
62 #define DEBUG 0
63 #define dprintk(x...) ((void)(DEBUG && printk(x)))
64 
65 
66 #ifndef MODULE
67 static void autostart_arrays (int part);
68 #endif
69 
70 static mdk_personality_t *pers[MAX_PERSONALITY];
71 static DEFINE_SPINLOCK(pers_lock);
72 
73 /*
74  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75  * is 1000 KB/sec, so the extra system load does not show up that much.
76  * Increase it if you want to have more _guaranteed_ speed. Note that
77  * the RAID driver will use the maximum available bandwidth if the IO
78  * subsystem is idle. There is also an 'absolute maximum' reconstruction
79  * speed limit - in case reconstruction slows down your system despite
80  * idle IO detection.
81  *
82  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
83  */
84 
85 static int sysctl_speed_limit_min = 1000;
86 static int sysctl_speed_limit_max = 200000;
87 
88 static struct ctl_table_header *raid_table_header;
89 
90 static ctl_table raid_table[] = {
91 	{
92 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
93 		.procname	= "speed_limit_min",
94 		.data		= &sysctl_speed_limit_min,
95 		.maxlen		= sizeof(int),
96 		.mode		= 0644,
97 		.proc_handler	= &proc_dointvec,
98 	},
99 	{
100 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
101 		.procname	= "speed_limit_max",
102 		.data		= &sysctl_speed_limit_max,
103 		.maxlen		= sizeof(int),
104 		.mode		= 0644,
105 		.proc_handler	= &proc_dointvec,
106 	},
107 	{ .ctl_name = 0 }
108 };
109 
110 static ctl_table raid_dir_table[] = {
111 	{
112 		.ctl_name	= DEV_RAID,
113 		.procname	= "raid",
114 		.maxlen		= 0,
115 		.mode		= 0555,
116 		.child		= raid_table,
117 	},
118 	{ .ctl_name = 0 }
119 };
120 
121 static ctl_table raid_root_table[] = {
122 	{
123 		.ctl_name	= CTL_DEV,
124 		.procname	= "dev",
125 		.maxlen		= 0,
126 		.mode		= 0555,
127 		.child		= raid_dir_table,
128 	},
129 	{ .ctl_name = 0 }
130 };
131 
132 static struct block_device_operations md_fops;
133 
134 /*
135  * Enables to iterate over all existing md arrays
136  * all_mddevs_lock protects this list.
137  */
138 static LIST_HEAD(all_mddevs);
139 static DEFINE_SPINLOCK(all_mddevs_lock);
140 
141 
142 /*
143  * iterates through all used mddevs in the system.
144  * We take care to grab the all_mddevs_lock whenever navigating
145  * the list, and to always hold a refcount when unlocked.
146  * Any code which breaks out of this loop while own
147  * a reference to the current mddev and must mddev_put it.
148  */
149 #define ITERATE_MDDEV(mddev,tmp)					\
150 									\
151 	for (({ spin_lock(&all_mddevs_lock); 				\
152 		tmp = all_mddevs.next;					\
153 		mddev = NULL;});					\
154 	     ({ if (tmp != &all_mddevs)					\
155 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
156 		spin_unlock(&all_mddevs_lock);				\
157 		if (mddev) mddev_put(mddev);				\
158 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
159 		tmp != &all_mddevs;});					\
160 	     ({ spin_lock(&all_mddevs_lock);				\
161 		tmp = tmp->next;})					\
162 		)
163 
164 
165 static int md_fail_request (request_queue_t *q, struct bio *bio)
166 {
167 	bio_io_error(bio, bio->bi_size);
168 	return 0;
169 }
170 
171 static inline mddev_t *mddev_get(mddev_t *mddev)
172 {
173 	atomic_inc(&mddev->active);
174 	return mddev;
175 }
176 
177 static void mddev_put(mddev_t *mddev)
178 {
179 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
180 		return;
181 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
182 		list_del(&mddev->all_mddevs);
183 		blk_put_queue(mddev->queue);
184 		kfree(mddev);
185 	}
186 	spin_unlock(&all_mddevs_lock);
187 }
188 
189 static mddev_t * mddev_find(dev_t unit)
190 {
191 	mddev_t *mddev, *new = NULL;
192 
193  retry:
194 	spin_lock(&all_mddevs_lock);
195 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
196 		if (mddev->unit == unit) {
197 			mddev_get(mddev);
198 			spin_unlock(&all_mddevs_lock);
199 			kfree(new);
200 			return mddev;
201 		}
202 
203 	if (new) {
204 		list_add(&new->all_mddevs, &all_mddevs);
205 		spin_unlock(&all_mddevs_lock);
206 		return new;
207 	}
208 	spin_unlock(&all_mddevs_lock);
209 
210 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
211 	if (!new)
212 		return NULL;
213 
214 	memset(new, 0, sizeof(*new));
215 
216 	new->unit = unit;
217 	if (MAJOR(unit) == MD_MAJOR)
218 		new->md_minor = MINOR(unit);
219 	else
220 		new->md_minor = MINOR(unit) >> MdpMinorShift;
221 
222 	init_MUTEX(&new->reconfig_sem);
223 	INIT_LIST_HEAD(&new->disks);
224 	INIT_LIST_HEAD(&new->all_mddevs);
225 	init_timer(&new->safemode_timer);
226 	atomic_set(&new->active, 1);
227 	spin_lock_init(&new->write_lock);
228 	init_waitqueue_head(&new->sb_wait);
229 
230 	new->queue = blk_alloc_queue(GFP_KERNEL);
231 	if (!new->queue) {
232 		kfree(new);
233 		return NULL;
234 	}
235 
236 	blk_queue_make_request(new->queue, md_fail_request);
237 
238 	goto retry;
239 }
240 
241 static inline int mddev_lock(mddev_t * mddev)
242 {
243 	return down_interruptible(&mddev->reconfig_sem);
244 }
245 
246 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
247 {
248 	down(&mddev->reconfig_sem);
249 }
250 
251 static inline int mddev_trylock(mddev_t * mddev)
252 {
253 	return down_trylock(&mddev->reconfig_sem);
254 }
255 
256 static inline void mddev_unlock(mddev_t * mddev)
257 {
258 	up(&mddev->reconfig_sem);
259 
260 	md_wakeup_thread(mddev->thread);
261 }
262 
263 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
264 {
265 	mdk_rdev_t * rdev;
266 	struct list_head *tmp;
267 
268 	ITERATE_RDEV(mddev,rdev,tmp) {
269 		if (rdev->desc_nr == nr)
270 			return rdev;
271 	}
272 	return NULL;
273 }
274 
275 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
276 {
277 	struct list_head *tmp;
278 	mdk_rdev_t *rdev;
279 
280 	ITERATE_RDEV(mddev,rdev,tmp) {
281 		if (rdev->bdev->bd_dev == dev)
282 			return rdev;
283 	}
284 	return NULL;
285 }
286 
287 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
288 {
289 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
290 	return MD_NEW_SIZE_BLOCKS(size);
291 }
292 
293 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
294 {
295 	sector_t size;
296 
297 	size = rdev->sb_offset;
298 
299 	if (chunk_size)
300 		size &= ~((sector_t)chunk_size/1024 - 1);
301 	return size;
302 }
303 
304 static int alloc_disk_sb(mdk_rdev_t * rdev)
305 {
306 	if (rdev->sb_page)
307 		MD_BUG();
308 
309 	rdev->sb_page = alloc_page(GFP_KERNEL);
310 	if (!rdev->sb_page) {
311 		printk(KERN_ALERT "md: out of memory.\n");
312 		return -EINVAL;
313 	}
314 
315 	return 0;
316 }
317 
318 static void free_disk_sb(mdk_rdev_t * rdev)
319 {
320 	if (rdev->sb_page) {
321 		page_cache_release(rdev->sb_page);
322 		rdev->sb_loaded = 0;
323 		rdev->sb_page = NULL;
324 		rdev->sb_offset = 0;
325 		rdev->size = 0;
326 	}
327 }
328 
329 
330 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
331 {
332 	mdk_rdev_t *rdev = bio->bi_private;
333 	if (bio->bi_size)
334 		return 1;
335 
336 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
337 		md_error(rdev->mddev, rdev);
338 
339 	if (atomic_dec_and_test(&rdev->mddev->pending_writes))
340 		wake_up(&rdev->mddev->sb_wait);
341 	bio_put(bio);
342 	return 0;
343 }
344 
345 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
346 		   sector_t sector, int size, struct page *page)
347 {
348 	/* write first size bytes of page to sector of rdev
349 	 * Increment mddev->pending_writes before returning
350 	 * and decrement it on completion, waking up sb_wait
351 	 * if zero is reached.
352 	 * If an error occurred, call md_error
353 	 */
354 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
355 
356 	bio->bi_bdev = rdev->bdev;
357 	bio->bi_sector = sector;
358 	bio_add_page(bio, page, size, 0);
359 	bio->bi_private = rdev;
360 	bio->bi_end_io = super_written;
361 	atomic_inc(&mddev->pending_writes);
362 	submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
363 }
364 
365 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
366 {
367 	if (bio->bi_size)
368 		return 1;
369 
370 	complete((struct completion*)bio->bi_private);
371 	return 0;
372 }
373 
374 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
375 		   struct page *page, int rw)
376 {
377 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
378 	struct completion event;
379 	int ret;
380 
381 	rw |= (1 << BIO_RW_SYNC);
382 
383 	bio->bi_bdev = bdev;
384 	bio->bi_sector = sector;
385 	bio_add_page(bio, page, size, 0);
386 	init_completion(&event);
387 	bio->bi_private = &event;
388 	bio->bi_end_io = bi_complete;
389 	submit_bio(rw, bio);
390 	wait_for_completion(&event);
391 
392 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
393 	bio_put(bio);
394 	return ret;
395 }
396 
397 static int read_disk_sb(mdk_rdev_t * rdev, int size)
398 {
399 	char b[BDEVNAME_SIZE];
400 	if (!rdev->sb_page) {
401 		MD_BUG();
402 		return -EINVAL;
403 	}
404 	if (rdev->sb_loaded)
405 		return 0;
406 
407 
408 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
409 		goto fail;
410 	rdev->sb_loaded = 1;
411 	return 0;
412 
413 fail:
414 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
415 		bdevname(rdev->bdev,b));
416 	return -EINVAL;
417 }
418 
419 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
420 {
421 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
422 		(sb1->set_uuid1 == sb2->set_uuid1) &&
423 		(sb1->set_uuid2 == sb2->set_uuid2) &&
424 		(sb1->set_uuid3 == sb2->set_uuid3))
425 
426 		return 1;
427 
428 	return 0;
429 }
430 
431 
432 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
433 {
434 	int ret;
435 	mdp_super_t *tmp1, *tmp2;
436 
437 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
438 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
439 
440 	if (!tmp1 || !tmp2) {
441 		ret = 0;
442 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
443 		goto abort;
444 	}
445 
446 	*tmp1 = *sb1;
447 	*tmp2 = *sb2;
448 
449 	/*
450 	 * nr_disks is not constant
451 	 */
452 	tmp1->nr_disks = 0;
453 	tmp2->nr_disks = 0;
454 
455 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
456 		ret = 0;
457 	else
458 		ret = 1;
459 
460 abort:
461 	kfree(tmp1);
462 	kfree(tmp2);
463 	return ret;
464 }
465 
466 static unsigned int calc_sb_csum(mdp_super_t * sb)
467 {
468 	unsigned int disk_csum, csum;
469 
470 	disk_csum = sb->sb_csum;
471 	sb->sb_csum = 0;
472 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
473 	sb->sb_csum = disk_csum;
474 	return csum;
475 }
476 
477 
478 /*
479  * Handle superblock details.
480  * We want to be able to handle multiple superblock formats
481  * so we have a common interface to them all, and an array of
482  * different handlers.
483  * We rely on user-space to write the initial superblock, and support
484  * reading and updating of superblocks.
485  * Interface methods are:
486  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
487  *      loads and validates a superblock on dev.
488  *      if refdev != NULL, compare superblocks on both devices
489  *    Return:
490  *      0 - dev has a superblock that is compatible with refdev
491  *      1 - dev has a superblock that is compatible and newer than refdev
492  *          so dev should be used as the refdev in future
493  *     -EINVAL superblock incompatible or invalid
494  *     -othererror e.g. -EIO
495  *
496  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
497  *      Verify that dev is acceptable into mddev.
498  *       The first time, mddev->raid_disks will be 0, and data from
499  *       dev should be merged in.  Subsequent calls check that dev
500  *       is new enough.  Return 0 or -EINVAL
501  *
502  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
503  *     Update the superblock for rdev with data in mddev
504  *     This does not write to disc.
505  *
506  */
507 
508 struct super_type  {
509 	char 		*name;
510 	struct module	*owner;
511 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
512 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
513 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
514 };
515 
516 /*
517  * load_super for 0.90.0
518  */
519 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
520 {
521 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
522 	mdp_super_t *sb;
523 	int ret;
524 	sector_t sb_offset;
525 
526 	/*
527 	 * Calculate the position of the superblock,
528 	 * it's at the end of the disk.
529 	 *
530 	 * It also happens to be a multiple of 4Kb.
531 	 */
532 	sb_offset = calc_dev_sboffset(rdev->bdev);
533 	rdev->sb_offset = sb_offset;
534 
535 	ret = read_disk_sb(rdev, MD_SB_BYTES);
536 	if (ret) return ret;
537 
538 	ret = -EINVAL;
539 
540 	bdevname(rdev->bdev, b);
541 	sb = (mdp_super_t*)page_address(rdev->sb_page);
542 
543 	if (sb->md_magic != MD_SB_MAGIC) {
544 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
545 		       b);
546 		goto abort;
547 	}
548 
549 	if (sb->major_version != 0 ||
550 	    sb->minor_version != 90) {
551 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
552 			sb->major_version, sb->minor_version,
553 			b);
554 		goto abort;
555 	}
556 
557 	if (sb->raid_disks <= 0)
558 		goto abort;
559 
560 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
561 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
562 			b);
563 		goto abort;
564 	}
565 
566 	rdev->preferred_minor = sb->md_minor;
567 	rdev->data_offset = 0;
568 	rdev->sb_size = MD_SB_BYTES;
569 
570 	if (sb->level == LEVEL_MULTIPATH)
571 		rdev->desc_nr = -1;
572 	else
573 		rdev->desc_nr = sb->this_disk.number;
574 
575 	if (refdev == 0)
576 		ret = 1;
577 	else {
578 		__u64 ev1, ev2;
579 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
580 		if (!uuid_equal(refsb, sb)) {
581 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
582 				b, bdevname(refdev->bdev,b2));
583 			goto abort;
584 		}
585 		if (!sb_equal(refsb, sb)) {
586 			printk(KERN_WARNING "md: %s has same UUID"
587 			       " but different superblock to %s\n",
588 			       b, bdevname(refdev->bdev, b2));
589 			goto abort;
590 		}
591 		ev1 = md_event(sb);
592 		ev2 = md_event(refsb);
593 		if (ev1 > ev2)
594 			ret = 1;
595 		else
596 			ret = 0;
597 	}
598 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
599 
600  abort:
601 	return ret;
602 }
603 
604 /*
605  * validate_super for 0.90.0
606  */
607 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
608 {
609 	mdp_disk_t *desc;
610 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
611 
612 	rdev->raid_disk = -1;
613 	rdev->in_sync = 0;
614 	if (mddev->raid_disks == 0) {
615 		mddev->major_version = 0;
616 		mddev->minor_version = sb->minor_version;
617 		mddev->patch_version = sb->patch_version;
618 		mddev->persistent = ! sb->not_persistent;
619 		mddev->chunk_size = sb->chunk_size;
620 		mddev->ctime = sb->ctime;
621 		mddev->utime = sb->utime;
622 		mddev->level = sb->level;
623 		mddev->layout = sb->layout;
624 		mddev->raid_disks = sb->raid_disks;
625 		mddev->size = sb->size;
626 		mddev->events = md_event(sb);
627 		mddev->bitmap_offset = 0;
628 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
629 
630 		if (sb->state & (1<<MD_SB_CLEAN))
631 			mddev->recovery_cp = MaxSector;
632 		else {
633 			if (sb->events_hi == sb->cp_events_hi &&
634 				sb->events_lo == sb->cp_events_lo) {
635 				mddev->recovery_cp = sb->recovery_cp;
636 			} else
637 				mddev->recovery_cp = 0;
638 		}
639 
640 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
641 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
642 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
643 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
644 
645 		mddev->max_disks = MD_SB_DISKS;
646 
647 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
648 		    mddev->bitmap_file == NULL) {
649 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
650 				/* FIXME use a better test */
651 				printk(KERN_WARNING "md: bitmaps only support for raid1\n");
652 				return -EINVAL;
653 			}
654 			mddev->bitmap_offset = mddev->default_bitmap_offset;
655 		}
656 
657 	} else if (mddev->pers == NULL) {
658 		/* Insist on good event counter while assembling */
659 		__u64 ev1 = md_event(sb);
660 		++ev1;
661 		if (ev1 < mddev->events)
662 			return -EINVAL;
663 	} else if (mddev->bitmap) {
664 		/* if adding to array with a bitmap, then we can accept an
665 		 * older device ... but not too old.
666 		 */
667 		__u64 ev1 = md_event(sb);
668 		if (ev1 < mddev->bitmap->events_cleared)
669 			return 0;
670 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
671 		return 0;
672 
673 	if (mddev->level != LEVEL_MULTIPATH) {
674 		rdev->faulty = 0;
675 		rdev->flags = 0;
676 		desc = sb->disks + rdev->desc_nr;
677 
678 		if (desc->state & (1<<MD_DISK_FAULTY))
679 			rdev->faulty = 1;
680 		else if (desc->state & (1<<MD_DISK_SYNC) &&
681 			 desc->raid_disk < mddev->raid_disks) {
682 			rdev->in_sync = 1;
683 			rdev->raid_disk = desc->raid_disk;
684 		}
685 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
686 			set_bit(WriteMostly, &rdev->flags);
687 	} else /* MULTIPATH are always insync */
688 		rdev->in_sync = 1;
689 	return 0;
690 }
691 
692 /*
693  * sync_super for 0.90.0
694  */
695 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
696 {
697 	mdp_super_t *sb;
698 	struct list_head *tmp;
699 	mdk_rdev_t *rdev2;
700 	int next_spare = mddev->raid_disks;
701 
702 	/* make rdev->sb match mddev data..
703 	 *
704 	 * 1/ zero out disks
705 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
706 	 * 3/ any empty disks < next_spare become removed
707 	 *
708 	 * disks[0] gets initialised to REMOVED because
709 	 * we cannot be sure from other fields if it has
710 	 * been initialised or not.
711 	 */
712 	int i;
713 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
714 
715 	rdev->sb_size = MD_SB_BYTES;
716 
717 	sb = (mdp_super_t*)page_address(rdev->sb_page);
718 
719 	memset(sb, 0, sizeof(*sb));
720 
721 	sb->md_magic = MD_SB_MAGIC;
722 	sb->major_version = mddev->major_version;
723 	sb->minor_version = mddev->minor_version;
724 	sb->patch_version = mddev->patch_version;
725 	sb->gvalid_words  = 0; /* ignored */
726 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
727 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
728 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
729 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
730 
731 	sb->ctime = mddev->ctime;
732 	sb->level = mddev->level;
733 	sb->size  = mddev->size;
734 	sb->raid_disks = mddev->raid_disks;
735 	sb->md_minor = mddev->md_minor;
736 	sb->not_persistent = !mddev->persistent;
737 	sb->utime = mddev->utime;
738 	sb->state = 0;
739 	sb->events_hi = (mddev->events>>32);
740 	sb->events_lo = (u32)mddev->events;
741 
742 	if (mddev->in_sync)
743 	{
744 		sb->recovery_cp = mddev->recovery_cp;
745 		sb->cp_events_hi = (mddev->events>>32);
746 		sb->cp_events_lo = (u32)mddev->events;
747 		if (mddev->recovery_cp == MaxSector)
748 			sb->state = (1<< MD_SB_CLEAN);
749 	} else
750 		sb->recovery_cp = 0;
751 
752 	sb->layout = mddev->layout;
753 	sb->chunk_size = mddev->chunk_size;
754 
755 	if (mddev->bitmap && mddev->bitmap_file == NULL)
756 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
757 
758 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
759 	ITERATE_RDEV(mddev,rdev2,tmp) {
760 		mdp_disk_t *d;
761 		if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
762 			rdev2->desc_nr = rdev2->raid_disk;
763 		else
764 			rdev2->desc_nr = next_spare++;
765 		d = &sb->disks[rdev2->desc_nr];
766 		nr_disks++;
767 		d->number = rdev2->desc_nr;
768 		d->major = MAJOR(rdev2->bdev->bd_dev);
769 		d->minor = MINOR(rdev2->bdev->bd_dev);
770 		if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
771 			d->raid_disk = rdev2->raid_disk;
772 		else
773 			d->raid_disk = rdev2->desc_nr; /* compatibility */
774 		if (rdev2->faulty) {
775 			d->state = (1<<MD_DISK_FAULTY);
776 			failed++;
777 		} else if (rdev2->in_sync) {
778 			d->state = (1<<MD_DISK_ACTIVE);
779 			d->state |= (1<<MD_DISK_SYNC);
780 			active++;
781 			working++;
782 		} else {
783 			d->state = 0;
784 			spare++;
785 			working++;
786 		}
787 		if (test_bit(WriteMostly, &rdev2->flags))
788 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
789 	}
790 
791 	/* now set the "removed" and "faulty" bits on any missing devices */
792 	for (i=0 ; i < mddev->raid_disks ; i++) {
793 		mdp_disk_t *d = &sb->disks[i];
794 		if (d->state == 0 && d->number == 0) {
795 			d->number = i;
796 			d->raid_disk = i;
797 			d->state = (1<<MD_DISK_REMOVED);
798 			d->state |= (1<<MD_DISK_FAULTY);
799 			failed++;
800 		}
801 	}
802 	sb->nr_disks = nr_disks;
803 	sb->active_disks = active;
804 	sb->working_disks = working;
805 	sb->failed_disks = failed;
806 	sb->spare_disks = spare;
807 
808 	sb->this_disk = sb->disks[rdev->desc_nr];
809 	sb->sb_csum = calc_sb_csum(sb);
810 }
811 
812 /*
813  * version 1 superblock
814  */
815 
816 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
817 {
818 	unsigned int disk_csum, csum;
819 	unsigned long long newcsum;
820 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
821 	unsigned int *isuper = (unsigned int*)sb;
822 	int i;
823 
824 	disk_csum = sb->sb_csum;
825 	sb->sb_csum = 0;
826 	newcsum = 0;
827 	for (i=0; size>=4; size -= 4 )
828 		newcsum += le32_to_cpu(*isuper++);
829 
830 	if (size == 2)
831 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
832 
833 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
834 	sb->sb_csum = disk_csum;
835 	return cpu_to_le32(csum);
836 }
837 
838 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
839 {
840 	struct mdp_superblock_1 *sb;
841 	int ret;
842 	sector_t sb_offset;
843 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
844 	int bmask;
845 
846 	/*
847 	 * Calculate the position of the superblock.
848 	 * It is always aligned to a 4K boundary and
849 	 * depeding on minor_version, it can be:
850 	 * 0: At least 8K, but less than 12K, from end of device
851 	 * 1: At start of device
852 	 * 2: 4K from start of device.
853 	 */
854 	switch(minor_version) {
855 	case 0:
856 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
857 		sb_offset -= 8*2;
858 		sb_offset &= ~(sector_t)(4*2-1);
859 		/* convert from sectors to K */
860 		sb_offset /= 2;
861 		break;
862 	case 1:
863 		sb_offset = 0;
864 		break;
865 	case 2:
866 		sb_offset = 4;
867 		break;
868 	default:
869 		return -EINVAL;
870 	}
871 	rdev->sb_offset = sb_offset;
872 
873 	/* superblock is rarely larger than 1K, but it can be larger,
874 	 * and it is safe to read 4k, so we do that
875 	 */
876 	ret = read_disk_sb(rdev, 4096);
877 	if (ret) return ret;
878 
879 
880 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
881 
882 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
883 	    sb->major_version != cpu_to_le32(1) ||
884 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
885 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
886 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
887 		return -EINVAL;
888 
889 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
890 		printk("md: invalid superblock checksum on %s\n",
891 			bdevname(rdev->bdev,b));
892 		return -EINVAL;
893 	}
894 	if (le64_to_cpu(sb->data_size) < 10) {
895 		printk("md: data_size too small on %s\n",
896 		       bdevname(rdev->bdev,b));
897 		return -EINVAL;
898 	}
899 	rdev->preferred_minor = 0xffff;
900 	rdev->data_offset = le64_to_cpu(sb->data_offset);
901 
902 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
903 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
904 	if (rdev->sb_size & bmask)
905 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
906 
907 	if (refdev == 0)
908 		return 1;
909 	else {
910 		__u64 ev1, ev2;
911 		struct mdp_superblock_1 *refsb =
912 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
913 
914 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
915 		    sb->level != refsb->level ||
916 		    sb->layout != refsb->layout ||
917 		    sb->chunksize != refsb->chunksize) {
918 			printk(KERN_WARNING "md: %s has strangely different"
919 				" superblock to %s\n",
920 				bdevname(rdev->bdev,b),
921 				bdevname(refdev->bdev,b2));
922 			return -EINVAL;
923 		}
924 		ev1 = le64_to_cpu(sb->events);
925 		ev2 = le64_to_cpu(refsb->events);
926 
927 		if (ev1 > ev2)
928 			return 1;
929 	}
930 	if (minor_version)
931 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
932 	else
933 		rdev->size = rdev->sb_offset;
934 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
935 		return -EINVAL;
936 	rdev->size = le64_to_cpu(sb->data_size)/2;
937 	if (le32_to_cpu(sb->chunksize))
938 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
939 	return 0;
940 }
941 
942 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
943 {
944 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
945 
946 	rdev->raid_disk = -1;
947 	rdev->in_sync = 0;
948 	if (mddev->raid_disks == 0) {
949 		mddev->major_version = 1;
950 		mddev->patch_version = 0;
951 		mddev->persistent = 1;
952 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
953 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
954 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
955 		mddev->level = le32_to_cpu(sb->level);
956 		mddev->layout = le32_to_cpu(sb->layout);
957 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
958 		mddev->size = le64_to_cpu(sb->size)/2;
959 		mddev->events = le64_to_cpu(sb->events);
960 		mddev->bitmap_offset = 0;
961 		mddev->default_bitmap_offset = 0;
962 		mddev->default_bitmap_offset = 1024;
963 
964 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
965 		memcpy(mddev->uuid, sb->set_uuid, 16);
966 
967 		mddev->max_disks =  (4096-256)/2;
968 
969 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
970 		    mddev->bitmap_file == NULL ) {
971 			if (mddev->level != 1) {
972 				printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
973 				return -EINVAL;
974 			}
975 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
976 		}
977 	} else if (mddev->pers == NULL) {
978 		/* Insist of good event counter while assembling */
979 		__u64 ev1 = le64_to_cpu(sb->events);
980 		++ev1;
981 		if (ev1 < mddev->events)
982 			return -EINVAL;
983 	} else if (mddev->bitmap) {
984 		/* If adding to array with a bitmap, then we can accept an
985 		 * older device, but not too old.
986 		 */
987 		__u64 ev1 = le64_to_cpu(sb->events);
988 		if (ev1 < mddev->bitmap->events_cleared)
989 			return 0;
990 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
991 		return 0;
992 
993 	if (mddev->level != LEVEL_MULTIPATH) {
994 		int role;
995 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
996 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
997 		switch(role) {
998 		case 0xffff: /* spare */
999 			rdev->faulty = 0;
1000 			break;
1001 		case 0xfffe: /* faulty */
1002 			rdev->faulty = 1;
1003 			break;
1004 		default:
1005 			rdev->in_sync = 1;
1006 			rdev->faulty = 0;
1007 			rdev->raid_disk = role;
1008 			break;
1009 		}
1010 		rdev->flags = 0;
1011 		if (sb->devflags & WriteMostly1)
1012 			set_bit(WriteMostly, &rdev->flags);
1013 	} else /* MULTIPATH are always insync */
1014 		rdev->in_sync = 1;
1015 
1016 	return 0;
1017 }
1018 
1019 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1020 {
1021 	struct mdp_superblock_1 *sb;
1022 	struct list_head *tmp;
1023 	mdk_rdev_t *rdev2;
1024 	int max_dev, i;
1025 	/* make rdev->sb match mddev and rdev data. */
1026 
1027 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1028 
1029 	sb->feature_map = 0;
1030 	sb->pad0 = 0;
1031 	memset(sb->pad1, 0, sizeof(sb->pad1));
1032 	memset(sb->pad2, 0, sizeof(sb->pad2));
1033 	memset(sb->pad3, 0, sizeof(sb->pad3));
1034 
1035 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1036 	sb->events = cpu_to_le64(mddev->events);
1037 	if (mddev->in_sync)
1038 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1039 	else
1040 		sb->resync_offset = cpu_to_le64(0);
1041 
1042 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1043 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1044 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1045 	}
1046 
1047 	max_dev = 0;
1048 	ITERATE_RDEV(mddev,rdev2,tmp)
1049 		if (rdev2->desc_nr+1 > max_dev)
1050 			max_dev = rdev2->desc_nr+1;
1051 
1052 	sb->max_dev = cpu_to_le32(max_dev);
1053 	for (i=0; i<max_dev;i++)
1054 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1055 
1056 	ITERATE_RDEV(mddev,rdev2,tmp) {
1057 		i = rdev2->desc_nr;
1058 		if (rdev2->faulty)
1059 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1060 		else if (rdev2->in_sync)
1061 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1062 		else
1063 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1064 	}
1065 
1066 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1067 	sb->sb_csum = calc_sb_1_csum(sb);
1068 }
1069 
1070 
1071 static struct super_type super_types[] = {
1072 	[0] = {
1073 		.name	= "0.90.0",
1074 		.owner	= THIS_MODULE,
1075 		.load_super	= super_90_load,
1076 		.validate_super	= super_90_validate,
1077 		.sync_super	= super_90_sync,
1078 	},
1079 	[1] = {
1080 		.name	= "md-1",
1081 		.owner	= THIS_MODULE,
1082 		.load_super	= super_1_load,
1083 		.validate_super	= super_1_validate,
1084 		.sync_super	= super_1_sync,
1085 	},
1086 };
1087 
1088 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1089 {
1090 	struct list_head *tmp;
1091 	mdk_rdev_t *rdev;
1092 
1093 	ITERATE_RDEV(mddev,rdev,tmp)
1094 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1095 			return rdev;
1096 
1097 	return NULL;
1098 }
1099 
1100 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1101 {
1102 	struct list_head *tmp;
1103 	mdk_rdev_t *rdev;
1104 
1105 	ITERATE_RDEV(mddev1,rdev,tmp)
1106 		if (match_dev_unit(mddev2, rdev))
1107 			return 1;
1108 
1109 	return 0;
1110 }
1111 
1112 static LIST_HEAD(pending_raid_disks);
1113 
1114 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1115 {
1116 	mdk_rdev_t *same_pdev;
1117 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1118 
1119 	if (rdev->mddev) {
1120 		MD_BUG();
1121 		return -EINVAL;
1122 	}
1123 	same_pdev = match_dev_unit(mddev, rdev);
1124 	if (same_pdev)
1125 		printk(KERN_WARNING
1126 			"%s: WARNING: %s appears to be on the same physical"
1127 	 		" disk as %s. True\n     protection against single-disk"
1128 			" failure might be compromised.\n",
1129 			mdname(mddev), bdevname(rdev->bdev,b),
1130 			bdevname(same_pdev->bdev,b2));
1131 
1132 	/* Verify rdev->desc_nr is unique.
1133 	 * If it is -1, assign a free number, else
1134 	 * check number is not in use
1135 	 */
1136 	if (rdev->desc_nr < 0) {
1137 		int choice = 0;
1138 		if (mddev->pers) choice = mddev->raid_disks;
1139 		while (find_rdev_nr(mddev, choice))
1140 			choice++;
1141 		rdev->desc_nr = choice;
1142 	} else {
1143 		if (find_rdev_nr(mddev, rdev->desc_nr))
1144 			return -EBUSY;
1145 	}
1146 
1147 	list_add(&rdev->same_set, &mddev->disks);
1148 	rdev->mddev = mddev;
1149 	printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1150 	return 0;
1151 }
1152 
1153 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1154 {
1155 	char b[BDEVNAME_SIZE];
1156 	if (!rdev->mddev) {
1157 		MD_BUG();
1158 		return;
1159 	}
1160 	list_del_init(&rdev->same_set);
1161 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1162 	rdev->mddev = NULL;
1163 }
1164 
1165 /*
1166  * prevent the device from being mounted, repartitioned or
1167  * otherwise reused by a RAID array (or any other kernel
1168  * subsystem), by bd_claiming the device.
1169  */
1170 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1171 {
1172 	int err = 0;
1173 	struct block_device *bdev;
1174 	char b[BDEVNAME_SIZE];
1175 
1176 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1177 	if (IS_ERR(bdev)) {
1178 		printk(KERN_ERR "md: could not open %s.\n",
1179 			__bdevname(dev, b));
1180 		return PTR_ERR(bdev);
1181 	}
1182 	err = bd_claim(bdev, rdev);
1183 	if (err) {
1184 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1185 			bdevname(bdev, b));
1186 		blkdev_put(bdev);
1187 		return err;
1188 	}
1189 	rdev->bdev = bdev;
1190 	return err;
1191 }
1192 
1193 static void unlock_rdev(mdk_rdev_t *rdev)
1194 {
1195 	struct block_device *bdev = rdev->bdev;
1196 	rdev->bdev = NULL;
1197 	if (!bdev)
1198 		MD_BUG();
1199 	bd_release(bdev);
1200 	blkdev_put(bdev);
1201 }
1202 
1203 void md_autodetect_dev(dev_t dev);
1204 
1205 static void export_rdev(mdk_rdev_t * rdev)
1206 {
1207 	char b[BDEVNAME_SIZE];
1208 	printk(KERN_INFO "md: export_rdev(%s)\n",
1209 		bdevname(rdev->bdev,b));
1210 	if (rdev->mddev)
1211 		MD_BUG();
1212 	free_disk_sb(rdev);
1213 	list_del_init(&rdev->same_set);
1214 #ifndef MODULE
1215 	md_autodetect_dev(rdev->bdev->bd_dev);
1216 #endif
1217 	unlock_rdev(rdev);
1218 	kfree(rdev);
1219 }
1220 
1221 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1222 {
1223 	unbind_rdev_from_array(rdev);
1224 	export_rdev(rdev);
1225 }
1226 
1227 static void export_array(mddev_t *mddev)
1228 {
1229 	struct list_head *tmp;
1230 	mdk_rdev_t *rdev;
1231 
1232 	ITERATE_RDEV(mddev,rdev,tmp) {
1233 		if (!rdev->mddev) {
1234 			MD_BUG();
1235 			continue;
1236 		}
1237 		kick_rdev_from_array(rdev);
1238 	}
1239 	if (!list_empty(&mddev->disks))
1240 		MD_BUG();
1241 	mddev->raid_disks = 0;
1242 	mddev->major_version = 0;
1243 }
1244 
1245 static void print_desc(mdp_disk_t *desc)
1246 {
1247 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1248 		desc->major,desc->minor,desc->raid_disk,desc->state);
1249 }
1250 
1251 static void print_sb(mdp_super_t *sb)
1252 {
1253 	int i;
1254 
1255 	printk(KERN_INFO
1256 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1257 		sb->major_version, sb->minor_version, sb->patch_version,
1258 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1259 		sb->ctime);
1260 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1261 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1262 		sb->md_minor, sb->layout, sb->chunk_size);
1263 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1264 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1265 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1266 		sb->failed_disks, sb->spare_disks,
1267 		sb->sb_csum, (unsigned long)sb->events_lo);
1268 
1269 	printk(KERN_INFO);
1270 	for (i = 0; i < MD_SB_DISKS; i++) {
1271 		mdp_disk_t *desc;
1272 
1273 		desc = sb->disks + i;
1274 		if (desc->number || desc->major || desc->minor ||
1275 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1276 			printk("     D %2d: ", i);
1277 			print_desc(desc);
1278 		}
1279 	}
1280 	printk(KERN_INFO "md:     THIS: ");
1281 	print_desc(&sb->this_disk);
1282 
1283 }
1284 
1285 static void print_rdev(mdk_rdev_t *rdev)
1286 {
1287 	char b[BDEVNAME_SIZE];
1288 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1289 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1290 	       	rdev->faulty, rdev->in_sync, rdev->desc_nr);
1291 	if (rdev->sb_loaded) {
1292 		printk(KERN_INFO "md: rdev superblock:\n");
1293 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1294 	} else
1295 		printk(KERN_INFO "md: no rdev superblock!\n");
1296 }
1297 
1298 void md_print_devices(void)
1299 {
1300 	struct list_head *tmp, *tmp2;
1301 	mdk_rdev_t *rdev;
1302 	mddev_t *mddev;
1303 	char b[BDEVNAME_SIZE];
1304 
1305 	printk("\n");
1306 	printk("md:	**********************************\n");
1307 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1308 	printk("md:	**********************************\n");
1309 	ITERATE_MDDEV(mddev,tmp) {
1310 
1311 		if (mddev->bitmap)
1312 			bitmap_print_sb(mddev->bitmap);
1313 		else
1314 			printk("%s: ", mdname(mddev));
1315 		ITERATE_RDEV(mddev,rdev,tmp2)
1316 			printk("<%s>", bdevname(rdev->bdev,b));
1317 		printk("\n");
1318 
1319 		ITERATE_RDEV(mddev,rdev,tmp2)
1320 			print_rdev(rdev);
1321 	}
1322 	printk("md:	**********************************\n");
1323 	printk("\n");
1324 }
1325 
1326 
1327 static void sync_sbs(mddev_t * mddev)
1328 {
1329 	mdk_rdev_t *rdev;
1330 	struct list_head *tmp;
1331 
1332 	ITERATE_RDEV(mddev,rdev,tmp) {
1333 		super_types[mddev->major_version].
1334 			sync_super(mddev, rdev);
1335 		rdev->sb_loaded = 1;
1336 	}
1337 }
1338 
1339 static void md_update_sb(mddev_t * mddev)
1340 {
1341 	int err;
1342 	struct list_head *tmp;
1343 	mdk_rdev_t *rdev;
1344 	int sync_req;
1345 
1346 repeat:
1347 	spin_lock(&mddev->write_lock);
1348 	sync_req = mddev->in_sync;
1349 	mddev->utime = get_seconds();
1350 	mddev->events ++;
1351 
1352 	if (!mddev->events) {
1353 		/*
1354 		 * oops, this 64-bit counter should never wrap.
1355 		 * Either we are in around ~1 trillion A.C., assuming
1356 		 * 1 reboot per second, or we have a bug:
1357 		 */
1358 		MD_BUG();
1359 		mddev->events --;
1360 	}
1361 	mddev->sb_dirty = 2;
1362 	sync_sbs(mddev);
1363 
1364 	/*
1365 	 * do not write anything to disk if using
1366 	 * nonpersistent superblocks
1367 	 */
1368 	if (!mddev->persistent) {
1369 		mddev->sb_dirty = 0;
1370 		spin_unlock(&mddev->write_lock);
1371 		wake_up(&mddev->sb_wait);
1372 		return;
1373 	}
1374 	spin_unlock(&mddev->write_lock);
1375 
1376 	dprintk(KERN_INFO
1377 		"md: updating %s RAID superblock on device (in sync %d)\n",
1378 		mdname(mddev),mddev->in_sync);
1379 
1380 	err = bitmap_update_sb(mddev->bitmap);
1381 	ITERATE_RDEV(mddev,rdev,tmp) {
1382 		char b[BDEVNAME_SIZE];
1383 		dprintk(KERN_INFO "md: ");
1384 		if (rdev->faulty)
1385 			dprintk("(skipping faulty ");
1386 
1387 		dprintk("%s ", bdevname(rdev->bdev,b));
1388 		if (!rdev->faulty) {
1389 			md_super_write(mddev,rdev,
1390 				       rdev->sb_offset<<1, rdev->sb_size,
1391 				       rdev->sb_page);
1392 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1393 				bdevname(rdev->bdev,b),
1394 				(unsigned long long)rdev->sb_offset);
1395 
1396 		} else
1397 			dprintk(")\n");
1398 		if (mddev->level == LEVEL_MULTIPATH)
1399 			/* only need to write one superblock... */
1400 			break;
1401 	}
1402 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1403 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1404 
1405 	spin_lock(&mddev->write_lock);
1406 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1407 		/* have to write it out again */
1408 		spin_unlock(&mddev->write_lock);
1409 		goto repeat;
1410 	}
1411 	mddev->sb_dirty = 0;
1412 	spin_unlock(&mddev->write_lock);
1413 	wake_up(&mddev->sb_wait);
1414 
1415 }
1416 
1417 /*
1418  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1419  *
1420  * mark the device faulty if:
1421  *
1422  *   - the device is nonexistent (zero size)
1423  *   - the device has no valid superblock
1424  *
1425  * a faulty rdev _never_ has rdev->sb set.
1426  */
1427 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1428 {
1429 	char b[BDEVNAME_SIZE];
1430 	int err;
1431 	mdk_rdev_t *rdev;
1432 	sector_t size;
1433 
1434 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1435 	if (!rdev) {
1436 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1437 		return ERR_PTR(-ENOMEM);
1438 	}
1439 	memset(rdev, 0, sizeof(*rdev));
1440 
1441 	if ((err = alloc_disk_sb(rdev)))
1442 		goto abort_free;
1443 
1444 	err = lock_rdev(rdev, newdev);
1445 	if (err)
1446 		goto abort_free;
1447 
1448 	rdev->desc_nr = -1;
1449 	rdev->faulty = 0;
1450 	rdev->in_sync = 0;
1451 	rdev->data_offset = 0;
1452 	atomic_set(&rdev->nr_pending, 0);
1453 
1454 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1455 	if (!size) {
1456 		printk(KERN_WARNING
1457 			"md: %s has zero or unknown size, marking faulty!\n",
1458 			bdevname(rdev->bdev,b));
1459 		err = -EINVAL;
1460 		goto abort_free;
1461 	}
1462 
1463 	if (super_format >= 0) {
1464 		err = super_types[super_format].
1465 			load_super(rdev, NULL, super_minor);
1466 		if (err == -EINVAL) {
1467 			printk(KERN_WARNING
1468 				"md: %s has invalid sb, not importing!\n",
1469 				bdevname(rdev->bdev,b));
1470 			goto abort_free;
1471 		}
1472 		if (err < 0) {
1473 			printk(KERN_WARNING
1474 				"md: could not read %s's sb, not importing!\n",
1475 				bdevname(rdev->bdev,b));
1476 			goto abort_free;
1477 		}
1478 	}
1479 	INIT_LIST_HEAD(&rdev->same_set);
1480 
1481 	return rdev;
1482 
1483 abort_free:
1484 	if (rdev->sb_page) {
1485 		if (rdev->bdev)
1486 			unlock_rdev(rdev);
1487 		free_disk_sb(rdev);
1488 	}
1489 	kfree(rdev);
1490 	return ERR_PTR(err);
1491 }
1492 
1493 /*
1494  * Check a full RAID array for plausibility
1495  */
1496 
1497 
1498 static void analyze_sbs(mddev_t * mddev)
1499 {
1500 	int i;
1501 	struct list_head *tmp;
1502 	mdk_rdev_t *rdev, *freshest;
1503 	char b[BDEVNAME_SIZE];
1504 
1505 	freshest = NULL;
1506 	ITERATE_RDEV(mddev,rdev,tmp)
1507 		switch (super_types[mddev->major_version].
1508 			load_super(rdev, freshest, mddev->minor_version)) {
1509 		case 1:
1510 			freshest = rdev;
1511 			break;
1512 		case 0:
1513 			break;
1514 		default:
1515 			printk( KERN_ERR \
1516 				"md: fatal superblock inconsistency in %s"
1517 				" -- removing from array\n",
1518 				bdevname(rdev->bdev,b));
1519 			kick_rdev_from_array(rdev);
1520 		}
1521 
1522 
1523 	super_types[mddev->major_version].
1524 		validate_super(mddev, freshest);
1525 
1526 	i = 0;
1527 	ITERATE_RDEV(mddev,rdev,tmp) {
1528 		if (rdev != freshest)
1529 			if (super_types[mddev->major_version].
1530 			    validate_super(mddev, rdev)) {
1531 				printk(KERN_WARNING "md: kicking non-fresh %s"
1532 					" from array!\n",
1533 					bdevname(rdev->bdev,b));
1534 				kick_rdev_from_array(rdev);
1535 				continue;
1536 			}
1537 		if (mddev->level == LEVEL_MULTIPATH) {
1538 			rdev->desc_nr = i++;
1539 			rdev->raid_disk = rdev->desc_nr;
1540 			rdev->in_sync = 1;
1541 		}
1542 	}
1543 
1544 
1545 
1546 	if (mddev->recovery_cp != MaxSector &&
1547 	    mddev->level >= 1)
1548 		printk(KERN_ERR "md: %s: raid array is not clean"
1549 		       " -- starting background reconstruction\n",
1550 		       mdname(mddev));
1551 
1552 }
1553 
1554 int mdp_major = 0;
1555 
1556 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1557 {
1558 	static DECLARE_MUTEX(disks_sem);
1559 	mddev_t *mddev = mddev_find(dev);
1560 	struct gendisk *disk;
1561 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1562 	int shift = partitioned ? MdpMinorShift : 0;
1563 	int unit = MINOR(dev) >> shift;
1564 
1565 	if (!mddev)
1566 		return NULL;
1567 
1568 	down(&disks_sem);
1569 	if (mddev->gendisk) {
1570 		up(&disks_sem);
1571 		mddev_put(mddev);
1572 		return NULL;
1573 	}
1574 	disk = alloc_disk(1 << shift);
1575 	if (!disk) {
1576 		up(&disks_sem);
1577 		mddev_put(mddev);
1578 		return NULL;
1579 	}
1580 	disk->major = MAJOR(dev);
1581 	disk->first_minor = unit << shift;
1582 	if (partitioned) {
1583 		sprintf(disk->disk_name, "md_d%d", unit);
1584 		sprintf(disk->devfs_name, "md/d%d", unit);
1585 	} else {
1586 		sprintf(disk->disk_name, "md%d", unit);
1587 		sprintf(disk->devfs_name, "md/%d", unit);
1588 	}
1589 	disk->fops = &md_fops;
1590 	disk->private_data = mddev;
1591 	disk->queue = mddev->queue;
1592 	add_disk(disk);
1593 	mddev->gendisk = disk;
1594 	up(&disks_sem);
1595 	return NULL;
1596 }
1597 
1598 void md_wakeup_thread(mdk_thread_t *thread);
1599 
1600 static void md_safemode_timeout(unsigned long data)
1601 {
1602 	mddev_t *mddev = (mddev_t *) data;
1603 
1604 	mddev->safemode = 1;
1605 	md_wakeup_thread(mddev->thread);
1606 }
1607 
1608 
1609 static int do_md_run(mddev_t * mddev)
1610 {
1611 	int pnum, err;
1612 	int chunk_size;
1613 	struct list_head *tmp;
1614 	mdk_rdev_t *rdev;
1615 	struct gendisk *disk;
1616 	char b[BDEVNAME_SIZE];
1617 
1618 	if (list_empty(&mddev->disks))
1619 		/* cannot run an array with no devices.. */
1620 		return -EINVAL;
1621 
1622 	if (mddev->pers)
1623 		return -EBUSY;
1624 
1625 	/*
1626 	 * Analyze all RAID superblock(s)
1627 	 */
1628 	if (!mddev->raid_disks)
1629 		analyze_sbs(mddev);
1630 
1631 	chunk_size = mddev->chunk_size;
1632 	pnum = level_to_pers(mddev->level);
1633 
1634 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1635 		if (!chunk_size) {
1636 			/*
1637 			 * 'default chunksize' in the old md code used to
1638 			 * be PAGE_SIZE, baaad.
1639 			 * we abort here to be on the safe side. We don't
1640 			 * want to continue the bad practice.
1641 			 */
1642 			printk(KERN_ERR
1643 				"no chunksize specified, see 'man raidtab'\n");
1644 			return -EINVAL;
1645 		}
1646 		if (chunk_size > MAX_CHUNK_SIZE) {
1647 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1648 				chunk_size, MAX_CHUNK_SIZE);
1649 			return -EINVAL;
1650 		}
1651 		/*
1652 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1653 		 */
1654 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1655 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1656 			return -EINVAL;
1657 		}
1658 		if (chunk_size < PAGE_SIZE) {
1659 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1660 				chunk_size, PAGE_SIZE);
1661 			return -EINVAL;
1662 		}
1663 
1664 		/* devices must have minimum size of one chunk */
1665 		ITERATE_RDEV(mddev,rdev,tmp) {
1666 			if (rdev->faulty)
1667 				continue;
1668 			if (rdev->size < chunk_size / 1024) {
1669 				printk(KERN_WARNING
1670 					"md: Dev %s smaller than chunk_size:"
1671 					" %lluk < %dk\n",
1672 					bdevname(rdev->bdev,b),
1673 					(unsigned long long)rdev->size,
1674 					chunk_size / 1024);
1675 				return -EINVAL;
1676 			}
1677 		}
1678 	}
1679 
1680 #ifdef CONFIG_KMOD
1681 	if (!pers[pnum])
1682 	{
1683 		request_module("md-personality-%d", pnum);
1684 	}
1685 #endif
1686 
1687 	/*
1688 	 * Drop all container device buffers, from now on
1689 	 * the only valid external interface is through the md
1690 	 * device.
1691 	 * Also find largest hardsector size
1692 	 */
1693 	ITERATE_RDEV(mddev,rdev,tmp) {
1694 		if (rdev->faulty)
1695 			continue;
1696 		sync_blockdev(rdev->bdev);
1697 		invalidate_bdev(rdev->bdev, 0);
1698 	}
1699 
1700 	md_probe(mddev->unit, NULL, NULL);
1701 	disk = mddev->gendisk;
1702 	if (!disk)
1703 		return -ENOMEM;
1704 
1705 	spin_lock(&pers_lock);
1706 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1707 		spin_unlock(&pers_lock);
1708 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
1709 		       pnum);
1710 		return -EINVAL;
1711 	}
1712 
1713 	mddev->pers = pers[pnum];
1714 	spin_unlock(&pers_lock);
1715 
1716 	mddev->recovery = 0;
1717 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1718 
1719 	/* before we start the array running, initialise the bitmap */
1720 	err = bitmap_create(mddev);
1721 	if (err)
1722 		printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1723 			mdname(mddev), err);
1724 	else
1725 		err = mddev->pers->run(mddev);
1726 	if (err) {
1727 		printk(KERN_ERR "md: pers->run() failed ...\n");
1728 		module_put(mddev->pers->owner);
1729 		mddev->pers = NULL;
1730 		bitmap_destroy(mddev);
1731 		return err;
1732 	}
1733  	atomic_set(&mddev->writes_pending,0);
1734 	mddev->safemode = 0;
1735 	mddev->safemode_timer.function = md_safemode_timeout;
1736 	mddev->safemode_timer.data = (unsigned long) mddev;
1737 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1738 	mddev->in_sync = 1;
1739 
1740 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1741 	md_wakeup_thread(mddev->thread);
1742 
1743 	if (mddev->sb_dirty)
1744 		md_update_sb(mddev);
1745 
1746 	set_capacity(disk, mddev->array_size<<1);
1747 
1748 	/* If we call blk_queue_make_request here, it will
1749 	 * re-initialise max_sectors etc which may have been
1750 	 * refined inside -> run.  So just set the bits we need to set.
1751 	 * Most initialisation happended when we called
1752 	 * blk_queue_make_request(..., md_fail_request)
1753 	 * earlier.
1754 	 */
1755 	mddev->queue->queuedata = mddev;
1756 	mddev->queue->make_request_fn = mddev->pers->make_request;
1757 
1758 	mddev->changed = 1;
1759 	return 0;
1760 }
1761 
1762 static int restart_array(mddev_t *mddev)
1763 {
1764 	struct gendisk *disk = mddev->gendisk;
1765 	int err;
1766 
1767 	/*
1768 	 * Complain if it has no devices
1769 	 */
1770 	err = -ENXIO;
1771 	if (list_empty(&mddev->disks))
1772 		goto out;
1773 
1774 	if (mddev->pers) {
1775 		err = -EBUSY;
1776 		if (!mddev->ro)
1777 			goto out;
1778 
1779 		mddev->safemode = 0;
1780 		mddev->ro = 0;
1781 		set_disk_ro(disk, 0);
1782 
1783 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
1784 			mdname(mddev));
1785 		/*
1786 		 * Kick recovery or resync if necessary
1787 		 */
1788 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1789 		md_wakeup_thread(mddev->thread);
1790 		err = 0;
1791 	} else {
1792 		printk(KERN_ERR "md: %s has no personality assigned.\n",
1793 			mdname(mddev));
1794 		err = -EINVAL;
1795 	}
1796 
1797 out:
1798 	return err;
1799 }
1800 
1801 static int do_md_stop(mddev_t * mddev, int ro)
1802 {
1803 	int err = 0;
1804 	struct gendisk *disk = mddev->gendisk;
1805 
1806 	if (mddev->pers) {
1807 		if (atomic_read(&mddev->active)>2) {
1808 			printk("md: %s still in use.\n",mdname(mddev));
1809 			return -EBUSY;
1810 		}
1811 
1812 		if (mddev->sync_thread) {
1813 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1814 			md_unregister_thread(mddev->sync_thread);
1815 			mddev->sync_thread = NULL;
1816 		}
1817 
1818 		del_timer_sync(&mddev->safemode_timer);
1819 
1820 		invalidate_partition(disk, 0);
1821 
1822 		if (ro) {
1823 			err  = -ENXIO;
1824 			if (mddev->ro)
1825 				goto out;
1826 			mddev->ro = 1;
1827 		} else {
1828 			bitmap_flush(mddev);
1829 			wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1830 			if (mddev->ro)
1831 				set_disk_ro(disk, 0);
1832 			blk_queue_make_request(mddev->queue, md_fail_request);
1833 			mddev->pers->stop(mddev);
1834 			module_put(mddev->pers->owner);
1835 			mddev->pers = NULL;
1836 			if (mddev->ro)
1837 				mddev->ro = 0;
1838 		}
1839 		if (!mddev->in_sync) {
1840 			/* mark array as shutdown cleanly */
1841 			mddev->in_sync = 1;
1842 			md_update_sb(mddev);
1843 		}
1844 		if (ro)
1845 			set_disk_ro(disk, 1);
1846 	}
1847 
1848 	bitmap_destroy(mddev);
1849 	if (mddev->bitmap_file) {
1850 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1851 		fput(mddev->bitmap_file);
1852 		mddev->bitmap_file = NULL;
1853 	}
1854 	mddev->bitmap_offset = 0;
1855 
1856 	/*
1857 	 * Free resources if final stop
1858 	 */
1859 	if (!ro) {
1860 		struct gendisk *disk;
1861 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1862 
1863 		export_array(mddev);
1864 
1865 		mddev->array_size = 0;
1866 		disk = mddev->gendisk;
1867 		if (disk)
1868 			set_capacity(disk, 0);
1869 		mddev->changed = 1;
1870 	} else
1871 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
1872 			mdname(mddev));
1873 	err = 0;
1874 out:
1875 	return err;
1876 }
1877 
1878 static void autorun_array(mddev_t *mddev)
1879 {
1880 	mdk_rdev_t *rdev;
1881 	struct list_head *tmp;
1882 	int err;
1883 
1884 	if (list_empty(&mddev->disks))
1885 		return;
1886 
1887 	printk(KERN_INFO "md: running: ");
1888 
1889 	ITERATE_RDEV(mddev,rdev,tmp) {
1890 		char b[BDEVNAME_SIZE];
1891 		printk("<%s>", bdevname(rdev->bdev,b));
1892 	}
1893 	printk("\n");
1894 
1895 	err = do_md_run (mddev);
1896 	if (err) {
1897 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1898 		do_md_stop (mddev, 0);
1899 	}
1900 }
1901 
1902 /*
1903  * lets try to run arrays based on all disks that have arrived
1904  * until now. (those are in pending_raid_disks)
1905  *
1906  * the method: pick the first pending disk, collect all disks with
1907  * the same UUID, remove all from the pending list and put them into
1908  * the 'same_array' list. Then order this list based on superblock
1909  * update time (freshest comes first), kick out 'old' disks and
1910  * compare superblocks. If everything's fine then run it.
1911  *
1912  * If "unit" is allocated, then bump its reference count
1913  */
1914 static void autorun_devices(int part)
1915 {
1916 	struct list_head candidates;
1917 	struct list_head *tmp;
1918 	mdk_rdev_t *rdev0, *rdev;
1919 	mddev_t *mddev;
1920 	char b[BDEVNAME_SIZE];
1921 
1922 	printk(KERN_INFO "md: autorun ...\n");
1923 	while (!list_empty(&pending_raid_disks)) {
1924 		dev_t dev;
1925 		rdev0 = list_entry(pending_raid_disks.next,
1926 					 mdk_rdev_t, same_set);
1927 
1928 		printk(KERN_INFO "md: considering %s ...\n",
1929 			bdevname(rdev0->bdev,b));
1930 		INIT_LIST_HEAD(&candidates);
1931 		ITERATE_RDEV_PENDING(rdev,tmp)
1932 			if (super_90_load(rdev, rdev0, 0) >= 0) {
1933 				printk(KERN_INFO "md:  adding %s ...\n",
1934 					bdevname(rdev->bdev,b));
1935 				list_move(&rdev->same_set, &candidates);
1936 			}
1937 		/*
1938 		 * now we have a set of devices, with all of them having
1939 		 * mostly sane superblocks. It's time to allocate the
1940 		 * mddev.
1941 		 */
1942 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1943 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1944 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1945 			break;
1946 		}
1947 		if (part)
1948 			dev = MKDEV(mdp_major,
1949 				    rdev0->preferred_minor << MdpMinorShift);
1950 		else
1951 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1952 
1953 		md_probe(dev, NULL, NULL);
1954 		mddev = mddev_find(dev);
1955 		if (!mddev) {
1956 			printk(KERN_ERR
1957 				"md: cannot allocate memory for md drive.\n");
1958 			break;
1959 		}
1960 		if (mddev_lock(mddev))
1961 			printk(KERN_WARNING "md: %s locked, cannot run\n",
1962 			       mdname(mddev));
1963 		else if (mddev->raid_disks || mddev->major_version
1964 			 || !list_empty(&mddev->disks)) {
1965 			printk(KERN_WARNING
1966 				"md: %s already running, cannot run %s\n",
1967 				mdname(mddev), bdevname(rdev0->bdev,b));
1968 			mddev_unlock(mddev);
1969 		} else {
1970 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
1971 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1972 				list_del_init(&rdev->same_set);
1973 				if (bind_rdev_to_array(rdev, mddev))
1974 					export_rdev(rdev);
1975 			}
1976 			autorun_array(mddev);
1977 			mddev_unlock(mddev);
1978 		}
1979 		/* on success, candidates will be empty, on error
1980 		 * it won't...
1981 		 */
1982 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1983 			export_rdev(rdev);
1984 		mddev_put(mddev);
1985 	}
1986 	printk(KERN_INFO "md: ... autorun DONE.\n");
1987 }
1988 
1989 /*
1990  * import RAID devices based on one partition
1991  * if possible, the array gets run as well.
1992  */
1993 
1994 static int autostart_array(dev_t startdev)
1995 {
1996 	char b[BDEVNAME_SIZE];
1997 	int err = -EINVAL, i;
1998 	mdp_super_t *sb = NULL;
1999 	mdk_rdev_t *start_rdev = NULL, *rdev;
2000 
2001 	start_rdev = md_import_device(startdev, 0, 0);
2002 	if (IS_ERR(start_rdev))
2003 		return err;
2004 
2005 
2006 	/* NOTE: this can only work for 0.90.0 superblocks */
2007 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2008 	if (sb->major_version != 0 ||
2009 	    sb->minor_version != 90 ) {
2010 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2011 		export_rdev(start_rdev);
2012 		return err;
2013 	}
2014 
2015 	if (start_rdev->faulty) {
2016 		printk(KERN_WARNING
2017 			"md: can not autostart based on faulty %s!\n",
2018 			bdevname(start_rdev->bdev,b));
2019 		export_rdev(start_rdev);
2020 		return err;
2021 	}
2022 	list_add(&start_rdev->same_set, &pending_raid_disks);
2023 
2024 	for (i = 0; i < MD_SB_DISKS; i++) {
2025 		mdp_disk_t *desc = sb->disks + i;
2026 		dev_t dev = MKDEV(desc->major, desc->minor);
2027 
2028 		if (!dev)
2029 			continue;
2030 		if (dev == startdev)
2031 			continue;
2032 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2033 			continue;
2034 		rdev = md_import_device(dev, 0, 0);
2035 		if (IS_ERR(rdev))
2036 			continue;
2037 
2038 		list_add(&rdev->same_set, &pending_raid_disks);
2039 	}
2040 
2041 	/*
2042 	 * possibly return codes
2043 	 */
2044 	autorun_devices(0);
2045 	return 0;
2046 
2047 }
2048 
2049 
2050 static int get_version(void __user * arg)
2051 {
2052 	mdu_version_t ver;
2053 
2054 	ver.major = MD_MAJOR_VERSION;
2055 	ver.minor = MD_MINOR_VERSION;
2056 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2057 
2058 	if (copy_to_user(arg, &ver, sizeof(ver)))
2059 		return -EFAULT;
2060 
2061 	return 0;
2062 }
2063 
2064 static int get_array_info(mddev_t * mddev, void __user * arg)
2065 {
2066 	mdu_array_info_t info;
2067 	int nr,working,active,failed,spare;
2068 	mdk_rdev_t *rdev;
2069 	struct list_head *tmp;
2070 
2071 	nr=working=active=failed=spare=0;
2072 	ITERATE_RDEV(mddev,rdev,tmp) {
2073 		nr++;
2074 		if (rdev->faulty)
2075 			failed++;
2076 		else {
2077 			working++;
2078 			if (rdev->in_sync)
2079 				active++;
2080 			else
2081 				spare++;
2082 		}
2083 	}
2084 
2085 	info.major_version = mddev->major_version;
2086 	info.minor_version = mddev->minor_version;
2087 	info.patch_version = MD_PATCHLEVEL_VERSION;
2088 	info.ctime         = mddev->ctime;
2089 	info.level         = mddev->level;
2090 	info.size          = mddev->size;
2091 	info.nr_disks      = nr;
2092 	info.raid_disks    = mddev->raid_disks;
2093 	info.md_minor      = mddev->md_minor;
2094 	info.not_persistent= !mddev->persistent;
2095 
2096 	info.utime         = mddev->utime;
2097 	info.state         = 0;
2098 	if (mddev->in_sync)
2099 		info.state = (1<<MD_SB_CLEAN);
2100 	if (mddev->bitmap && mddev->bitmap_offset)
2101 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2102 	info.active_disks  = active;
2103 	info.working_disks = working;
2104 	info.failed_disks  = failed;
2105 	info.spare_disks   = spare;
2106 
2107 	info.layout        = mddev->layout;
2108 	info.chunk_size    = mddev->chunk_size;
2109 
2110 	if (copy_to_user(arg, &info, sizeof(info)))
2111 		return -EFAULT;
2112 
2113 	return 0;
2114 }
2115 
2116 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2117 {
2118 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2119 	char *ptr, *buf = NULL;
2120 	int err = -ENOMEM;
2121 
2122 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2123 	if (!file)
2124 		goto out;
2125 
2126 	/* bitmap disabled, zero the first byte and copy out */
2127 	if (!mddev->bitmap || !mddev->bitmap->file) {
2128 		file->pathname[0] = '\0';
2129 		goto copy_out;
2130 	}
2131 
2132 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2133 	if (!buf)
2134 		goto out;
2135 
2136 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2137 	if (!ptr)
2138 		goto out;
2139 
2140 	strcpy(file->pathname, ptr);
2141 
2142 copy_out:
2143 	err = 0;
2144 	if (copy_to_user(arg, file, sizeof(*file)))
2145 		err = -EFAULT;
2146 out:
2147 	kfree(buf);
2148 	kfree(file);
2149 	return err;
2150 }
2151 
2152 static int get_disk_info(mddev_t * mddev, void __user * arg)
2153 {
2154 	mdu_disk_info_t info;
2155 	unsigned int nr;
2156 	mdk_rdev_t *rdev;
2157 
2158 	if (copy_from_user(&info, arg, sizeof(info)))
2159 		return -EFAULT;
2160 
2161 	nr = info.number;
2162 
2163 	rdev = find_rdev_nr(mddev, nr);
2164 	if (rdev) {
2165 		info.major = MAJOR(rdev->bdev->bd_dev);
2166 		info.minor = MINOR(rdev->bdev->bd_dev);
2167 		info.raid_disk = rdev->raid_disk;
2168 		info.state = 0;
2169 		if (rdev->faulty)
2170 			info.state |= (1<<MD_DISK_FAULTY);
2171 		else if (rdev->in_sync) {
2172 			info.state |= (1<<MD_DISK_ACTIVE);
2173 			info.state |= (1<<MD_DISK_SYNC);
2174 		}
2175 		if (test_bit(WriteMostly, &rdev->flags))
2176 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2177 	} else {
2178 		info.major = info.minor = 0;
2179 		info.raid_disk = -1;
2180 		info.state = (1<<MD_DISK_REMOVED);
2181 	}
2182 
2183 	if (copy_to_user(arg, &info, sizeof(info)))
2184 		return -EFAULT;
2185 
2186 	return 0;
2187 }
2188 
2189 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2190 {
2191 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2192 	mdk_rdev_t *rdev;
2193 	dev_t dev = MKDEV(info->major,info->minor);
2194 
2195 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2196 		return -EOVERFLOW;
2197 
2198 	if (!mddev->raid_disks) {
2199 		int err;
2200 		/* expecting a device which has a superblock */
2201 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2202 		if (IS_ERR(rdev)) {
2203 			printk(KERN_WARNING
2204 				"md: md_import_device returned %ld\n",
2205 				PTR_ERR(rdev));
2206 			return PTR_ERR(rdev);
2207 		}
2208 		if (!list_empty(&mddev->disks)) {
2209 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2210 							mdk_rdev_t, same_set);
2211 			int err = super_types[mddev->major_version]
2212 				.load_super(rdev, rdev0, mddev->minor_version);
2213 			if (err < 0) {
2214 				printk(KERN_WARNING
2215 					"md: %s has different UUID to %s\n",
2216 					bdevname(rdev->bdev,b),
2217 					bdevname(rdev0->bdev,b2));
2218 				export_rdev(rdev);
2219 				return -EINVAL;
2220 			}
2221 		}
2222 		err = bind_rdev_to_array(rdev, mddev);
2223 		if (err)
2224 			export_rdev(rdev);
2225 		return err;
2226 	}
2227 
2228 	/*
2229 	 * add_new_disk can be used once the array is assembled
2230 	 * to add "hot spares".  They must already have a superblock
2231 	 * written
2232 	 */
2233 	if (mddev->pers) {
2234 		int err;
2235 		if (!mddev->pers->hot_add_disk) {
2236 			printk(KERN_WARNING
2237 				"%s: personality does not support diskops!\n",
2238 			       mdname(mddev));
2239 			return -EINVAL;
2240 		}
2241 		if (mddev->persistent)
2242 			rdev = md_import_device(dev, mddev->major_version,
2243 						mddev->minor_version);
2244 		else
2245 			rdev = md_import_device(dev, -1, -1);
2246 		if (IS_ERR(rdev)) {
2247 			printk(KERN_WARNING
2248 				"md: md_import_device returned %ld\n",
2249 				PTR_ERR(rdev));
2250 			return PTR_ERR(rdev);
2251 		}
2252 		/* set save_raid_disk if appropriate */
2253 		if (!mddev->persistent) {
2254 			if (info->state & (1<<MD_DISK_SYNC)  &&
2255 			    info->raid_disk < mddev->raid_disks)
2256 				rdev->raid_disk = info->raid_disk;
2257 			else
2258 				rdev->raid_disk = -1;
2259 		} else
2260 			super_types[mddev->major_version].
2261 				validate_super(mddev, rdev);
2262 		rdev->saved_raid_disk = rdev->raid_disk;
2263 
2264 		rdev->in_sync = 0; /* just to be sure */
2265 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2266 			set_bit(WriteMostly, &rdev->flags);
2267 
2268 		rdev->raid_disk = -1;
2269 		err = bind_rdev_to_array(rdev, mddev);
2270 		if (err)
2271 			export_rdev(rdev);
2272 
2273 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2274 		md_wakeup_thread(mddev->thread);
2275 		return err;
2276 	}
2277 
2278 	/* otherwise, add_new_disk is only allowed
2279 	 * for major_version==0 superblocks
2280 	 */
2281 	if (mddev->major_version != 0) {
2282 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2283 		       mdname(mddev));
2284 		return -EINVAL;
2285 	}
2286 
2287 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2288 		int err;
2289 		rdev = md_import_device (dev, -1, 0);
2290 		if (IS_ERR(rdev)) {
2291 			printk(KERN_WARNING
2292 				"md: error, md_import_device() returned %ld\n",
2293 				PTR_ERR(rdev));
2294 			return PTR_ERR(rdev);
2295 		}
2296 		rdev->desc_nr = info->number;
2297 		if (info->raid_disk < mddev->raid_disks)
2298 			rdev->raid_disk = info->raid_disk;
2299 		else
2300 			rdev->raid_disk = -1;
2301 
2302 		rdev->faulty = 0;
2303 		if (rdev->raid_disk < mddev->raid_disks)
2304 			rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2305 		else
2306 			rdev->in_sync = 0;
2307 
2308 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2309 			set_bit(WriteMostly, &rdev->flags);
2310 
2311 		err = bind_rdev_to_array(rdev, mddev);
2312 		if (err) {
2313 			export_rdev(rdev);
2314 			return err;
2315 		}
2316 
2317 		if (!mddev->persistent) {
2318 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2319 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2320 		} else
2321 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2322 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2323 
2324 		if (!mddev->size || (mddev->size > rdev->size))
2325 			mddev->size = rdev->size;
2326 	}
2327 
2328 	return 0;
2329 }
2330 
2331 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2332 {
2333 	char b[BDEVNAME_SIZE];
2334 	mdk_rdev_t *rdev;
2335 
2336 	if (!mddev->pers)
2337 		return -ENODEV;
2338 
2339 	rdev = find_rdev(mddev, dev);
2340 	if (!rdev)
2341 		return -ENXIO;
2342 
2343 	if (rdev->raid_disk >= 0)
2344 		goto busy;
2345 
2346 	kick_rdev_from_array(rdev);
2347 	md_update_sb(mddev);
2348 
2349 	return 0;
2350 busy:
2351 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2352 		bdevname(rdev->bdev,b), mdname(mddev));
2353 	return -EBUSY;
2354 }
2355 
2356 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2357 {
2358 	char b[BDEVNAME_SIZE];
2359 	int err;
2360 	unsigned int size;
2361 	mdk_rdev_t *rdev;
2362 
2363 	if (!mddev->pers)
2364 		return -ENODEV;
2365 
2366 	if (mddev->major_version != 0) {
2367 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2368 			" version-0 superblocks.\n",
2369 			mdname(mddev));
2370 		return -EINVAL;
2371 	}
2372 	if (!mddev->pers->hot_add_disk) {
2373 		printk(KERN_WARNING
2374 			"%s: personality does not support diskops!\n",
2375 			mdname(mddev));
2376 		return -EINVAL;
2377 	}
2378 
2379 	rdev = md_import_device (dev, -1, 0);
2380 	if (IS_ERR(rdev)) {
2381 		printk(KERN_WARNING
2382 			"md: error, md_import_device() returned %ld\n",
2383 			PTR_ERR(rdev));
2384 		return -EINVAL;
2385 	}
2386 
2387 	if (mddev->persistent)
2388 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2389 	else
2390 		rdev->sb_offset =
2391 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2392 
2393 	size = calc_dev_size(rdev, mddev->chunk_size);
2394 	rdev->size = size;
2395 
2396 	if (size < mddev->size) {
2397 		printk(KERN_WARNING
2398 			"%s: disk size %llu blocks < array size %llu\n",
2399 			mdname(mddev), (unsigned long long)size,
2400 			(unsigned long long)mddev->size);
2401 		err = -ENOSPC;
2402 		goto abort_export;
2403 	}
2404 
2405 	if (rdev->faulty) {
2406 		printk(KERN_WARNING
2407 			"md: can not hot-add faulty %s disk to %s!\n",
2408 			bdevname(rdev->bdev,b), mdname(mddev));
2409 		err = -EINVAL;
2410 		goto abort_export;
2411 	}
2412 	rdev->in_sync = 0;
2413 	rdev->desc_nr = -1;
2414 	bind_rdev_to_array(rdev, mddev);
2415 
2416 	/*
2417 	 * The rest should better be atomic, we can have disk failures
2418 	 * noticed in interrupt contexts ...
2419 	 */
2420 
2421 	if (rdev->desc_nr == mddev->max_disks) {
2422 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2423 			mdname(mddev));
2424 		err = -EBUSY;
2425 		goto abort_unbind_export;
2426 	}
2427 
2428 	rdev->raid_disk = -1;
2429 
2430 	md_update_sb(mddev);
2431 
2432 	/*
2433 	 * Kick recovery, maybe this spare has to be added to the
2434 	 * array immediately.
2435 	 */
2436 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2437 	md_wakeup_thread(mddev->thread);
2438 
2439 	return 0;
2440 
2441 abort_unbind_export:
2442 	unbind_rdev_from_array(rdev);
2443 
2444 abort_export:
2445 	export_rdev(rdev);
2446 	return err;
2447 }
2448 
2449 /* similar to deny_write_access, but accounts for our holding a reference
2450  * to the file ourselves */
2451 static int deny_bitmap_write_access(struct file * file)
2452 {
2453 	struct inode *inode = file->f_mapping->host;
2454 
2455 	spin_lock(&inode->i_lock);
2456 	if (atomic_read(&inode->i_writecount) > 1) {
2457 		spin_unlock(&inode->i_lock);
2458 		return -ETXTBSY;
2459 	}
2460 	atomic_set(&inode->i_writecount, -1);
2461 	spin_unlock(&inode->i_lock);
2462 
2463 	return 0;
2464 }
2465 
2466 static int set_bitmap_file(mddev_t *mddev, int fd)
2467 {
2468 	int err;
2469 
2470 	if (mddev->pers) {
2471 		if (!mddev->pers->quiesce)
2472 			return -EBUSY;
2473 		if (mddev->recovery || mddev->sync_thread)
2474 			return -EBUSY;
2475 		/* we should be able to change the bitmap.. */
2476 	}
2477 
2478 
2479 	if (fd >= 0) {
2480 		if (mddev->bitmap)
2481 			return -EEXIST; /* cannot add when bitmap is present */
2482 		mddev->bitmap_file = fget(fd);
2483 
2484 		if (mddev->bitmap_file == NULL) {
2485 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2486 			       mdname(mddev));
2487 			return -EBADF;
2488 		}
2489 
2490 		err = deny_bitmap_write_access(mddev->bitmap_file);
2491 		if (err) {
2492 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2493 			       mdname(mddev));
2494 			fput(mddev->bitmap_file);
2495 			mddev->bitmap_file = NULL;
2496 			return err;
2497 		}
2498 		mddev->bitmap_offset = 0; /* file overrides offset */
2499 	} else if (mddev->bitmap == NULL)
2500 		return -ENOENT; /* cannot remove what isn't there */
2501 	err = 0;
2502 	if (mddev->pers) {
2503 		mddev->pers->quiesce(mddev, 1);
2504 		if (fd >= 0)
2505 			err = bitmap_create(mddev);
2506 		if (fd < 0 || err)
2507 			bitmap_destroy(mddev);
2508 		mddev->pers->quiesce(mddev, 0);
2509 	} else if (fd < 0) {
2510 		if (mddev->bitmap_file)
2511 			fput(mddev->bitmap_file);
2512 		mddev->bitmap_file = NULL;
2513 	}
2514 
2515 	return err;
2516 }
2517 
2518 /*
2519  * set_array_info is used two different ways
2520  * The original usage is when creating a new array.
2521  * In this usage, raid_disks is > 0 and it together with
2522  *  level, size, not_persistent,layout,chunksize determine the
2523  *  shape of the array.
2524  *  This will always create an array with a type-0.90.0 superblock.
2525  * The newer usage is when assembling an array.
2526  *  In this case raid_disks will be 0, and the major_version field is
2527  *  use to determine which style super-blocks are to be found on the devices.
2528  *  The minor and patch _version numbers are also kept incase the
2529  *  super_block handler wishes to interpret them.
2530  */
2531 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2532 {
2533 
2534 	if (info->raid_disks == 0) {
2535 		/* just setting version number for superblock loading */
2536 		if (info->major_version < 0 ||
2537 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2538 		    super_types[info->major_version].name == NULL) {
2539 			/* maybe try to auto-load a module? */
2540 			printk(KERN_INFO
2541 				"md: superblock version %d not known\n",
2542 				info->major_version);
2543 			return -EINVAL;
2544 		}
2545 		mddev->major_version = info->major_version;
2546 		mddev->minor_version = info->minor_version;
2547 		mddev->patch_version = info->patch_version;
2548 		return 0;
2549 	}
2550 	mddev->major_version = MD_MAJOR_VERSION;
2551 	mddev->minor_version = MD_MINOR_VERSION;
2552 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2553 	mddev->ctime         = get_seconds();
2554 
2555 	mddev->level         = info->level;
2556 	mddev->size          = info->size;
2557 	mddev->raid_disks    = info->raid_disks;
2558 	/* don't set md_minor, it is determined by which /dev/md* was
2559 	 * openned
2560 	 */
2561 	if (info->state & (1<<MD_SB_CLEAN))
2562 		mddev->recovery_cp = MaxSector;
2563 	else
2564 		mddev->recovery_cp = 0;
2565 	mddev->persistent    = ! info->not_persistent;
2566 
2567 	mddev->layout        = info->layout;
2568 	mddev->chunk_size    = info->chunk_size;
2569 
2570 	mddev->max_disks     = MD_SB_DISKS;
2571 
2572 	mddev->sb_dirty      = 1;
2573 
2574 	/*
2575 	 * Generate a 128 bit UUID
2576 	 */
2577 	get_random_bytes(mddev->uuid, 16);
2578 
2579 	return 0;
2580 }
2581 
2582 /*
2583  * update_array_info is used to change the configuration of an
2584  * on-line array.
2585  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2586  * fields in the info are checked against the array.
2587  * Any differences that cannot be handled will cause an error.
2588  * Normally, only one change can be managed at a time.
2589  */
2590 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2591 {
2592 	int rv = 0;
2593 	int cnt = 0;
2594 	int state = 0;
2595 
2596 	/* calculate expected state,ignoring low bits */
2597 	if (mddev->bitmap && mddev->bitmap_offset)
2598 		state |= (1 << MD_SB_BITMAP_PRESENT);
2599 
2600 	if (mddev->major_version != info->major_version ||
2601 	    mddev->minor_version != info->minor_version ||
2602 /*	    mddev->patch_version != info->patch_version || */
2603 	    mddev->ctime         != info->ctime         ||
2604 	    mddev->level         != info->level         ||
2605 /*	    mddev->layout        != info->layout        || */
2606 	    !mddev->persistent	 != info->not_persistent||
2607 	    mddev->chunk_size    != info->chunk_size    ||
2608 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2609 	    ((state^info->state) & 0xfffffe00)
2610 		)
2611 		return -EINVAL;
2612 	/* Check there is only one change */
2613 	if (mddev->size != info->size) cnt++;
2614 	if (mddev->raid_disks != info->raid_disks) cnt++;
2615 	if (mddev->layout != info->layout) cnt++;
2616 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
2617 	if (cnt == 0) return 0;
2618 	if (cnt > 1) return -EINVAL;
2619 
2620 	if (mddev->layout != info->layout) {
2621 		/* Change layout
2622 		 * we don't need to do anything at the md level, the
2623 		 * personality will take care of it all.
2624 		 */
2625 		if (mddev->pers->reconfig == NULL)
2626 			return -EINVAL;
2627 		else
2628 			return mddev->pers->reconfig(mddev, info->layout, -1);
2629 	}
2630 	if (mddev->size != info->size) {
2631 		mdk_rdev_t * rdev;
2632 		struct list_head *tmp;
2633 		if (mddev->pers->resize == NULL)
2634 			return -EINVAL;
2635 		/* The "size" is the amount of each device that is used.
2636 		 * This can only make sense for arrays with redundancy.
2637 		 * linear and raid0 always use whatever space is available
2638 		 * We can only consider changing the size if no resync
2639 		 * or reconstruction is happening, and if the new size
2640 		 * is acceptable. It must fit before the sb_offset or,
2641 		 * if that is <data_offset, it must fit before the
2642 		 * size of each device.
2643 		 * If size is zero, we find the largest size that fits.
2644 		 */
2645 		if (mddev->sync_thread)
2646 			return -EBUSY;
2647 		ITERATE_RDEV(mddev,rdev,tmp) {
2648 			sector_t avail;
2649 			int fit = (info->size == 0);
2650 			if (rdev->sb_offset > rdev->data_offset)
2651 				avail = (rdev->sb_offset*2) - rdev->data_offset;
2652 			else
2653 				avail = get_capacity(rdev->bdev->bd_disk)
2654 					- rdev->data_offset;
2655 			if (fit && (info->size == 0 || info->size > avail/2))
2656 				info->size = avail/2;
2657 			if (avail < ((sector_t)info->size << 1))
2658 				return -ENOSPC;
2659 		}
2660 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2661 		if (!rv) {
2662 			struct block_device *bdev;
2663 
2664 			bdev = bdget_disk(mddev->gendisk, 0);
2665 			if (bdev) {
2666 				down(&bdev->bd_inode->i_sem);
2667 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
2668 				up(&bdev->bd_inode->i_sem);
2669 				bdput(bdev);
2670 			}
2671 		}
2672 	}
2673 	if (mddev->raid_disks    != info->raid_disks) {
2674 		/* change the number of raid disks */
2675 		if (mddev->pers->reshape == NULL)
2676 			return -EINVAL;
2677 		if (info->raid_disks <= 0 ||
2678 		    info->raid_disks >= mddev->max_disks)
2679 			return -EINVAL;
2680 		if (mddev->sync_thread)
2681 			return -EBUSY;
2682 		rv = mddev->pers->reshape(mddev, info->raid_disks);
2683 		if (!rv) {
2684 			struct block_device *bdev;
2685 
2686 			bdev = bdget_disk(mddev->gendisk, 0);
2687 			if (bdev) {
2688 				down(&bdev->bd_inode->i_sem);
2689 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
2690 				up(&bdev->bd_inode->i_sem);
2691 				bdput(bdev);
2692 			}
2693 		}
2694 	}
2695 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
2696 		if (mddev->pers->quiesce == NULL)
2697 			return -EINVAL;
2698 		if (mddev->recovery || mddev->sync_thread)
2699 			return -EBUSY;
2700 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
2701 			/* add the bitmap */
2702 			if (mddev->bitmap)
2703 				return -EEXIST;
2704 			if (mddev->default_bitmap_offset == 0)
2705 				return -EINVAL;
2706 			mddev->bitmap_offset = mddev->default_bitmap_offset;
2707 			mddev->pers->quiesce(mddev, 1);
2708 			rv = bitmap_create(mddev);
2709 			if (rv)
2710 				bitmap_destroy(mddev);
2711 			mddev->pers->quiesce(mddev, 0);
2712 		} else {
2713 			/* remove the bitmap */
2714 			if (!mddev->bitmap)
2715 				return -ENOENT;
2716 			if (mddev->bitmap->file)
2717 				return -EINVAL;
2718 			mddev->pers->quiesce(mddev, 1);
2719 			bitmap_destroy(mddev);
2720 			mddev->pers->quiesce(mddev, 0);
2721 			mddev->bitmap_offset = 0;
2722 		}
2723 	}
2724 	md_update_sb(mddev);
2725 	return rv;
2726 }
2727 
2728 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2729 {
2730 	mdk_rdev_t *rdev;
2731 
2732 	if (mddev->pers == NULL)
2733 		return -ENODEV;
2734 
2735 	rdev = find_rdev(mddev, dev);
2736 	if (!rdev)
2737 		return -ENODEV;
2738 
2739 	md_error(mddev, rdev);
2740 	return 0;
2741 }
2742 
2743 static int md_ioctl(struct inode *inode, struct file *file,
2744 			unsigned int cmd, unsigned long arg)
2745 {
2746 	int err = 0;
2747 	void __user *argp = (void __user *)arg;
2748 	struct hd_geometry __user *loc = argp;
2749 	mddev_t *mddev = NULL;
2750 
2751 	if (!capable(CAP_SYS_ADMIN))
2752 		return -EACCES;
2753 
2754 	/*
2755 	 * Commands dealing with the RAID driver but not any
2756 	 * particular array:
2757 	 */
2758 	switch (cmd)
2759 	{
2760 		case RAID_VERSION:
2761 			err = get_version(argp);
2762 			goto done;
2763 
2764 		case PRINT_RAID_DEBUG:
2765 			err = 0;
2766 			md_print_devices();
2767 			goto done;
2768 
2769 #ifndef MODULE
2770 		case RAID_AUTORUN:
2771 			err = 0;
2772 			autostart_arrays(arg);
2773 			goto done;
2774 #endif
2775 		default:;
2776 	}
2777 
2778 	/*
2779 	 * Commands creating/starting a new array:
2780 	 */
2781 
2782 	mddev = inode->i_bdev->bd_disk->private_data;
2783 
2784 	if (!mddev) {
2785 		BUG();
2786 		goto abort;
2787 	}
2788 
2789 
2790 	if (cmd == START_ARRAY) {
2791 		/* START_ARRAY doesn't need to lock the array as autostart_array
2792 		 * does the locking, and it could even be a different array
2793 		 */
2794 		static int cnt = 3;
2795 		if (cnt > 0 ) {
2796 			printk(KERN_WARNING
2797 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2798 			       "This will not be supported beyond 2.6\n",
2799 			       current->comm, current->pid);
2800 			cnt--;
2801 		}
2802 		err = autostart_array(new_decode_dev(arg));
2803 		if (err) {
2804 			printk(KERN_WARNING "md: autostart failed!\n");
2805 			goto abort;
2806 		}
2807 		goto done;
2808 	}
2809 
2810 	err = mddev_lock(mddev);
2811 	if (err) {
2812 		printk(KERN_INFO
2813 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
2814 			err, cmd);
2815 		goto abort;
2816 	}
2817 
2818 	switch (cmd)
2819 	{
2820 		case SET_ARRAY_INFO:
2821 			{
2822 				mdu_array_info_t info;
2823 				if (!arg)
2824 					memset(&info, 0, sizeof(info));
2825 				else if (copy_from_user(&info, argp, sizeof(info))) {
2826 					err = -EFAULT;
2827 					goto abort_unlock;
2828 				}
2829 				if (mddev->pers) {
2830 					err = update_array_info(mddev, &info);
2831 					if (err) {
2832 						printk(KERN_WARNING "md: couldn't update"
2833 						       " array info. %d\n", err);
2834 						goto abort_unlock;
2835 					}
2836 					goto done_unlock;
2837 				}
2838 				if (!list_empty(&mddev->disks)) {
2839 					printk(KERN_WARNING
2840 					       "md: array %s already has disks!\n",
2841 					       mdname(mddev));
2842 					err = -EBUSY;
2843 					goto abort_unlock;
2844 				}
2845 				if (mddev->raid_disks) {
2846 					printk(KERN_WARNING
2847 					       "md: array %s already initialised!\n",
2848 					       mdname(mddev));
2849 					err = -EBUSY;
2850 					goto abort_unlock;
2851 				}
2852 				err = set_array_info(mddev, &info);
2853 				if (err) {
2854 					printk(KERN_WARNING "md: couldn't set"
2855 					       " array info. %d\n", err);
2856 					goto abort_unlock;
2857 				}
2858 			}
2859 			goto done_unlock;
2860 
2861 		default:;
2862 	}
2863 
2864 	/*
2865 	 * Commands querying/configuring an existing array:
2866 	 */
2867 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2868 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2869 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2870 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
2871 		err = -ENODEV;
2872 		goto abort_unlock;
2873 	}
2874 
2875 	/*
2876 	 * Commands even a read-only array can execute:
2877 	 */
2878 	switch (cmd)
2879 	{
2880 		case GET_ARRAY_INFO:
2881 			err = get_array_info(mddev, argp);
2882 			goto done_unlock;
2883 
2884 		case GET_BITMAP_FILE:
2885 			err = get_bitmap_file(mddev, argp);
2886 			goto done_unlock;
2887 
2888 		case GET_DISK_INFO:
2889 			err = get_disk_info(mddev, argp);
2890 			goto done_unlock;
2891 
2892 		case RESTART_ARRAY_RW:
2893 			err = restart_array(mddev);
2894 			goto done_unlock;
2895 
2896 		case STOP_ARRAY:
2897 			err = do_md_stop (mddev, 0);
2898 			goto done_unlock;
2899 
2900 		case STOP_ARRAY_RO:
2901 			err = do_md_stop (mddev, 1);
2902 			goto done_unlock;
2903 
2904 	/*
2905 	 * We have a problem here : there is no easy way to give a CHS
2906 	 * virtual geometry. We currently pretend that we have a 2 heads
2907 	 * 4 sectors (with a BIG number of cylinders...). This drives
2908 	 * dosfs just mad... ;-)
2909 	 */
2910 		case HDIO_GETGEO:
2911 			if (!loc) {
2912 				err = -EINVAL;
2913 				goto abort_unlock;
2914 			}
2915 			err = put_user (2, (char __user *) &loc->heads);
2916 			if (err)
2917 				goto abort_unlock;
2918 			err = put_user (4, (char __user *) &loc->sectors);
2919 			if (err)
2920 				goto abort_unlock;
2921 			err = put_user(get_capacity(mddev->gendisk)/8,
2922 					(short __user *) &loc->cylinders);
2923 			if (err)
2924 				goto abort_unlock;
2925 			err = put_user (get_start_sect(inode->i_bdev),
2926 						(long __user *) &loc->start);
2927 			goto done_unlock;
2928 	}
2929 
2930 	/*
2931 	 * The remaining ioctls are changing the state of the
2932 	 * superblock, so we do not allow read-only arrays
2933 	 * here:
2934 	 */
2935 	if (mddev->ro) {
2936 		err = -EROFS;
2937 		goto abort_unlock;
2938 	}
2939 
2940 	switch (cmd)
2941 	{
2942 		case ADD_NEW_DISK:
2943 		{
2944 			mdu_disk_info_t info;
2945 			if (copy_from_user(&info, argp, sizeof(info)))
2946 				err = -EFAULT;
2947 			else
2948 				err = add_new_disk(mddev, &info);
2949 			goto done_unlock;
2950 		}
2951 
2952 		case HOT_REMOVE_DISK:
2953 			err = hot_remove_disk(mddev, new_decode_dev(arg));
2954 			goto done_unlock;
2955 
2956 		case HOT_ADD_DISK:
2957 			err = hot_add_disk(mddev, new_decode_dev(arg));
2958 			goto done_unlock;
2959 
2960 		case SET_DISK_FAULTY:
2961 			err = set_disk_faulty(mddev, new_decode_dev(arg));
2962 			goto done_unlock;
2963 
2964 		case RUN_ARRAY:
2965 			err = do_md_run (mddev);
2966 			goto done_unlock;
2967 
2968 		case SET_BITMAP_FILE:
2969 			err = set_bitmap_file(mddev, (int)arg);
2970 			goto done_unlock;
2971 
2972 		default:
2973 			if (_IOC_TYPE(cmd) == MD_MAJOR)
2974 				printk(KERN_WARNING "md: %s(pid %d) used"
2975 					" obsolete MD ioctl, upgrade your"
2976 					" software to use new ictls.\n",
2977 					current->comm, current->pid);
2978 			err = -EINVAL;
2979 			goto abort_unlock;
2980 	}
2981 
2982 done_unlock:
2983 abort_unlock:
2984 	mddev_unlock(mddev);
2985 
2986 	return err;
2987 done:
2988 	if (err)
2989 		MD_BUG();
2990 abort:
2991 	return err;
2992 }
2993 
2994 static int md_open(struct inode *inode, struct file *file)
2995 {
2996 	/*
2997 	 * Succeed if we can lock the mddev, which confirms that
2998 	 * it isn't being stopped right now.
2999 	 */
3000 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3001 	int err;
3002 
3003 	if ((err = mddev_lock(mddev)))
3004 		goto out;
3005 
3006 	err = 0;
3007 	mddev_get(mddev);
3008 	mddev_unlock(mddev);
3009 
3010 	check_disk_change(inode->i_bdev);
3011  out:
3012 	return err;
3013 }
3014 
3015 static int md_release(struct inode *inode, struct file * file)
3016 {
3017  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3018 
3019 	if (!mddev)
3020 		BUG();
3021 	mddev_put(mddev);
3022 
3023 	return 0;
3024 }
3025 
3026 static int md_media_changed(struct gendisk *disk)
3027 {
3028 	mddev_t *mddev = disk->private_data;
3029 
3030 	return mddev->changed;
3031 }
3032 
3033 static int md_revalidate(struct gendisk *disk)
3034 {
3035 	mddev_t *mddev = disk->private_data;
3036 
3037 	mddev->changed = 0;
3038 	return 0;
3039 }
3040 static struct block_device_operations md_fops =
3041 {
3042 	.owner		= THIS_MODULE,
3043 	.open		= md_open,
3044 	.release	= md_release,
3045 	.ioctl		= md_ioctl,
3046 	.media_changed	= md_media_changed,
3047 	.revalidate_disk= md_revalidate,
3048 };
3049 
3050 static int md_thread(void * arg)
3051 {
3052 	mdk_thread_t *thread = arg;
3053 
3054 	/*
3055 	 * md_thread is a 'system-thread', it's priority should be very
3056 	 * high. We avoid resource deadlocks individually in each
3057 	 * raid personality. (RAID5 does preallocation) We also use RR and
3058 	 * the very same RT priority as kswapd, thus we will never get
3059 	 * into a priority inversion deadlock.
3060 	 *
3061 	 * we definitely have to have equal or higher priority than
3062 	 * bdflush, otherwise bdflush will deadlock if there are too
3063 	 * many dirty RAID5 blocks.
3064 	 */
3065 
3066 	allow_signal(SIGKILL);
3067 	complete(thread->event);
3068 	while (!kthread_should_stop()) {
3069 		void (*run)(mddev_t *);
3070 
3071 		wait_event_interruptible_timeout(thread->wqueue,
3072 						 test_bit(THREAD_WAKEUP, &thread->flags)
3073 						 || kthread_should_stop(),
3074 						 thread->timeout);
3075 		try_to_freeze();
3076 
3077 		clear_bit(THREAD_WAKEUP, &thread->flags);
3078 
3079 		run = thread->run;
3080 		if (run)
3081 			run(thread->mddev);
3082 	}
3083 
3084 	return 0;
3085 }
3086 
3087 void md_wakeup_thread(mdk_thread_t *thread)
3088 {
3089 	if (thread) {
3090 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3091 		set_bit(THREAD_WAKEUP, &thread->flags);
3092 		wake_up(&thread->wqueue);
3093 	}
3094 }
3095 
3096 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3097 				 const char *name)
3098 {
3099 	mdk_thread_t *thread;
3100 	struct completion event;
3101 
3102 	thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3103 	if (!thread)
3104 		return NULL;
3105 
3106 	memset(thread, 0, sizeof(mdk_thread_t));
3107 	init_waitqueue_head(&thread->wqueue);
3108 
3109 	init_completion(&event);
3110 	thread->event = &event;
3111 	thread->run = run;
3112 	thread->mddev = mddev;
3113 	thread->name = name;
3114 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3115 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3116 	if (IS_ERR(thread->tsk)) {
3117 		kfree(thread);
3118 		return NULL;
3119 	}
3120 	wait_for_completion(&event);
3121 	return thread;
3122 }
3123 
3124 void md_unregister_thread(mdk_thread_t *thread)
3125 {
3126 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3127 
3128 	kthread_stop(thread->tsk);
3129 	kfree(thread);
3130 }
3131 
3132 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3133 {
3134 	if (!mddev) {
3135 		MD_BUG();
3136 		return;
3137 	}
3138 
3139 	if (!rdev || rdev->faulty)
3140 		return;
3141 /*
3142 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3143 		mdname(mddev),
3144 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3145 		__builtin_return_address(0),__builtin_return_address(1),
3146 		__builtin_return_address(2),__builtin_return_address(3));
3147 */
3148 	if (!mddev->pers->error_handler)
3149 		return;
3150 	mddev->pers->error_handler(mddev,rdev);
3151 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3152 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3153 	md_wakeup_thread(mddev->thread);
3154 }
3155 
3156 /* seq_file implementation /proc/mdstat */
3157 
3158 static void status_unused(struct seq_file *seq)
3159 {
3160 	int i = 0;
3161 	mdk_rdev_t *rdev;
3162 	struct list_head *tmp;
3163 
3164 	seq_printf(seq, "unused devices: ");
3165 
3166 	ITERATE_RDEV_PENDING(rdev,tmp) {
3167 		char b[BDEVNAME_SIZE];
3168 		i++;
3169 		seq_printf(seq, "%s ",
3170 			      bdevname(rdev->bdev,b));
3171 	}
3172 	if (!i)
3173 		seq_printf(seq, "<none>");
3174 
3175 	seq_printf(seq, "\n");
3176 }
3177 
3178 
3179 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3180 {
3181 	unsigned long max_blocks, resync, res, dt, db, rt;
3182 
3183 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3184 
3185 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3186 		max_blocks = mddev->resync_max_sectors >> 1;
3187 	else
3188 		max_blocks = mddev->size;
3189 
3190 	/*
3191 	 * Should not happen.
3192 	 */
3193 	if (!max_blocks) {
3194 		MD_BUG();
3195 		return;
3196 	}
3197 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3198 	{
3199 		int i, x = res/50, y = 20-x;
3200 		seq_printf(seq, "[");
3201 		for (i = 0; i < x; i++)
3202 			seq_printf(seq, "=");
3203 		seq_printf(seq, ">");
3204 		for (i = 0; i < y; i++)
3205 			seq_printf(seq, ".");
3206 		seq_printf(seq, "] ");
3207 	}
3208 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3209 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3210 		       "resync" : "recovery"),
3211 		      res/10, res % 10, resync, max_blocks);
3212 
3213 	/*
3214 	 * We do not want to overflow, so the order of operands and
3215 	 * the * 100 / 100 trick are important. We do a +1 to be
3216 	 * safe against division by zero. We only estimate anyway.
3217 	 *
3218 	 * dt: time from mark until now
3219 	 * db: blocks written from mark until now
3220 	 * rt: remaining time
3221 	 */
3222 	dt = ((jiffies - mddev->resync_mark) / HZ);
3223 	if (!dt) dt++;
3224 	db = resync - (mddev->resync_mark_cnt/2);
3225 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3226 
3227 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3228 
3229 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3230 }
3231 
3232 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3233 {
3234 	struct list_head *tmp;
3235 	loff_t l = *pos;
3236 	mddev_t *mddev;
3237 
3238 	if (l >= 0x10000)
3239 		return NULL;
3240 	if (!l--)
3241 		/* header */
3242 		return (void*)1;
3243 
3244 	spin_lock(&all_mddevs_lock);
3245 	list_for_each(tmp,&all_mddevs)
3246 		if (!l--) {
3247 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3248 			mddev_get(mddev);
3249 			spin_unlock(&all_mddevs_lock);
3250 			return mddev;
3251 		}
3252 	spin_unlock(&all_mddevs_lock);
3253 	if (!l--)
3254 		return (void*)2;/* tail */
3255 	return NULL;
3256 }
3257 
3258 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3259 {
3260 	struct list_head *tmp;
3261 	mddev_t *next_mddev, *mddev = v;
3262 
3263 	++*pos;
3264 	if (v == (void*)2)
3265 		return NULL;
3266 
3267 	spin_lock(&all_mddevs_lock);
3268 	if (v == (void*)1)
3269 		tmp = all_mddevs.next;
3270 	else
3271 		tmp = mddev->all_mddevs.next;
3272 	if (tmp != &all_mddevs)
3273 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3274 	else {
3275 		next_mddev = (void*)2;
3276 		*pos = 0x10000;
3277 	}
3278 	spin_unlock(&all_mddevs_lock);
3279 
3280 	if (v != (void*)1)
3281 		mddev_put(mddev);
3282 	return next_mddev;
3283 
3284 }
3285 
3286 static void md_seq_stop(struct seq_file *seq, void *v)
3287 {
3288 	mddev_t *mddev = v;
3289 
3290 	if (mddev && v != (void*)1 && v != (void*)2)
3291 		mddev_put(mddev);
3292 }
3293 
3294 static int md_seq_show(struct seq_file *seq, void *v)
3295 {
3296 	mddev_t *mddev = v;
3297 	sector_t size;
3298 	struct list_head *tmp2;
3299 	mdk_rdev_t *rdev;
3300 	int i;
3301 	struct bitmap *bitmap;
3302 
3303 	if (v == (void*)1) {
3304 		seq_printf(seq, "Personalities : ");
3305 		spin_lock(&pers_lock);
3306 		for (i = 0; i < MAX_PERSONALITY; i++)
3307 			if (pers[i])
3308 				seq_printf(seq, "[%s] ", pers[i]->name);
3309 
3310 		spin_unlock(&pers_lock);
3311 		seq_printf(seq, "\n");
3312 		return 0;
3313 	}
3314 	if (v == (void*)2) {
3315 		status_unused(seq);
3316 		return 0;
3317 	}
3318 
3319 	if (mddev_lock(mddev)!=0)
3320 		return -EINTR;
3321 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3322 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3323 						mddev->pers ? "" : "in");
3324 		if (mddev->pers) {
3325 			if (mddev->ro)
3326 				seq_printf(seq, " (read-only)");
3327 			seq_printf(seq, " %s", mddev->pers->name);
3328 		}
3329 
3330 		size = 0;
3331 		ITERATE_RDEV(mddev,rdev,tmp2) {
3332 			char b[BDEVNAME_SIZE];
3333 			seq_printf(seq, " %s[%d]",
3334 				bdevname(rdev->bdev,b), rdev->desc_nr);
3335 			if (test_bit(WriteMostly, &rdev->flags))
3336 				seq_printf(seq, "(W)");
3337 			if (rdev->faulty) {
3338 				seq_printf(seq, "(F)");
3339 				continue;
3340 			} else if (rdev->raid_disk < 0)
3341 				seq_printf(seq, "(S)"); /* spare */
3342 			size += rdev->size;
3343 		}
3344 
3345 		if (!list_empty(&mddev->disks)) {
3346 			if (mddev->pers)
3347 				seq_printf(seq, "\n      %llu blocks",
3348 					(unsigned long long)mddev->array_size);
3349 			else
3350 				seq_printf(seq, "\n      %llu blocks",
3351 					(unsigned long long)size);
3352 		}
3353 		if (mddev->persistent) {
3354 			if (mddev->major_version != 0 ||
3355 			    mddev->minor_version != 90) {
3356 				seq_printf(seq," super %d.%d",
3357 					   mddev->major_version,
3358 					   mddev->minor_version);
3359 			}
3360 		} else
3361 			seq_printf(seq, " super non-persistent");
3362 
3363 		if (mddev->pers) {
3364 			mddev->pers->status (seq, mddev);
3365 	 		seq_printf(seq, "\n      ");
3366 			if (mddev->curr_resync > 2) {
3367 				status_resync (seq, mddev);
3368 				seq_printf(seq, "\n      ");
3369 			} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3370 				seq_printf(seq, "	resync=DELAYED\n      ");
3371 		} else
3372 			seq_printf(seq, "\n       ");
3373 
3374 		if ((bitmap = mddev->bitmap)) {
3375 			unsigned long chunk_kb;
3376 			unsigned long flags;
3377 			spin_lock_irqsave(&bitmap->lock, flags);
3378 			chunk_kb = bitmap->chunksize >> 10;
3379 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3380 				"%lu%s chunk",
3381 				bitmap->pages - bitmap->missing_pages,
3382 				bitmap->pages,
3383 				(bitmap->pages - bitmap->missing_pages)
3384 					<< (PAGE_SHIFT - 10),
3385 				chunk_kb ? chunk_kb : bitmap->chunksize,
3386 				chunk_kb ? "KB" : "B");
3387 			if (bitmap->file) {
3388 				seq_printf(seq, ", file: ");
3389 				seq_path(seq, bitmap->file->f_vfsmnt,
3390 					 bitmap->file->f_dentry," \t\n");
3391 			}
3392 
3393 			seq_printf(seq, "\n");
3394 			spin_unlock_irqrestore(&bitmap->lock, flags);
3395 		}
3396 
3397 		seq_printf(seq, "\n");
3398 	}
3399 	mddev_unlock(mddev);
3400 
3401 	return 0;
3402 }
3403 
3404 static struct seq_operations md_seq_ops = {
3405 	.start  = md_seq_start,
3406 	.next   = md_seq_next,
3407 	.stop   = md_seq_stop,
3408 	.show   = md_seq_show,
3409 };
3410 
3411 static int md_seq_open(struct inode *inode, struct file *file)
3412 {
3413 	int error;
3414 
3415 	error = seq_open(file, &md_seq_ops);
3416 	return error;
3417 }
3418 
3419 static struct file_operations md_seq_fops = {
3420 	.open           = md_seq_open,
3421 	.read           = seq_read,
3422 	.llseek         = seq_lseek,
3423 	.release	= seq_release,
3424 };
3425 
3426 int register_md_personality(int pnum, mdk_personality_t *p)
3427 {
3428 	if (pnum >= MAX_PERSONALITY) {
3429 		printk(KERN_ERR
3430 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3431 		       p->name, pnum, MAX_PERSONALITY-1);
3432 		return -EINVAL;
3433 	}
3434 
3435 	spin_lock(&pers_lock);
3436 	if (pers[pnum]) {
3437 		spin_unlock(&pers_lock);
3438 		return -EBUSY;
3439 	}
3440 
3441 	pers[pnum] = p;
3442 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3443 	spin_unlock(&pers_lock);
3444 	return 0;
3445 }
3446 
3447 int unregister_md_personality(int pnum)
3448 {
3449 	if (pnum >= MAX_PERSONALITY)
3450 		return -EINVAL;
3451 
3452 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3453 	spin_lock(&pers_lock);
3454 	pers[pnum] = NULL;
3455 	spin_unlock(&pers_lock);
3456 	return 0;
3457 }
3458 
3459 static int is_mddev_idle(mddev_t *mddev)
3460 {
3461 	mdk_rdev_t * rdev;
3462 	struct list_head *tmp;
3463 	int idle;
3464 	unsigned long curr_events;
3465 
3466 	idle = 1;
3467 	ITERATE_RDEV(mddev,rdev,tmp) {
3468 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3469 		curr_events = disk_stat_read(disk, sectors[0]) +
3470 				disk_stat_read(disk, sectors[1]) -
3471 				atomic_read(&disk->sync_io);
3472 		/* Allow some slack between valud of curr_events and last_events,
3473 		 * as there are some uninteresting races.
3474 		 * Note: the following is an unsigned comparison.
3475 		 */
3476 		if ((curr_events - rdev->last_events + 32) > 64) {
3477 			rdev->last_events = curr_events;
3478 			idle = 0;
3479 		}
3480 	}
3481 	return idle;
3482 }
3483 
3484 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3485 {
3486 	/* another "blocks" (512byte) blocks have been synced */
3487 	atomic_sub(blocks, &mddev->recovery_active);
3488 	wake_up(&mddev->recovery_wait);
3489 	if (!ok) {
3490 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3491 		md_wakeup_thread(mddev->thread);
3492 		// stop recovery, signal do_sync ....
3493 	}
3494 }
3495 
3496 
3497 /* md_write_start(mddev, bi)
3498  * If we need to update some array metadata (e.g. 'active' flag
3499  * in superblock) before writing, schedule a superblock update
3500  * and wait for it to complete.
3501  */
3502 void md_write_start(mddev_t *mddev, struct bio *bi)
3503 {
3504 	if (bio_data_dir(bi) != WRITE)
3505 		return;
3506 
3507 	atomic_inc(&mddev->writes_pending);
3508 	if (mddev->in_sync) {
3509 		spin_lock(&mddev->write_lock);
3510 		if (mddev->in_sync) {
3511 			mddev->in_sync = 0;
3512 			mddev->sb_dirty = 1;
3513 			md_wakeup_thread(mddev->thread);
3514 		}
3515 		spin_unlock(&mddev->write_lock);
3516 	}
3517 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3518 }
3519 
3520 void md_write_end(mddev_t *mddev)
3521 {
3522 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3523 		if (mddev->safemode == 2)
3524 			md_wakeup_thread(mddev->thread);
3525 		else
3526 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3527 	}
3528 }
3529 
3530 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3531 
3532 #define SYNC_MARKS	10
3533 #define	SYNC_MARK_STEP	(3*HZ)
3534 static void md_do_sync(mddev_t *mddev)
3535 {
3536 	mddev_t *mddev2;
3537 	unsigned int currspeed = 0,
3538 		 window;
3539 	sector_t max_sectors,j, io_sectors;
3540 	unsigned long mark[SYNC_MARKS];
3541 	sector_t mark_cnt[SYNC_MARKS];
3542 	int last_mark,m;
3543 	struct list_head *tmp;
3544 	sector_t last_check;
3545 	int skipped = 0;
3546 
3547 	/* just incase thread restarts... */
3548 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3549 		return;
3550 
3551 	/* we overload curr_resync somewhat here.
3552 	 * 0 == not engaged in resync at all
3553 	 * 2 == checking that there is no conflict with another sync
3554 	 * 1 == like 2, but have yielded to allow conflicting resync to
3555 	 *		commense
3556 	 * other == active in resync - this many blocks
3557 	 *
3558 	 * Before starting a resync we must have set curr_resync to
3559 	 * 2, and then checked that every "conflicting" array has curr_resync
3560 	 * less than ours.  When we find one that is the same or higher
3561 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3562 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3563 	 * This will mean we have to start checking from the beginning again.
3564 	 *
3565 	 */
3566 
3567 	do {
3568 		mddev->curr_resync = 2;
3569 
3570 	try_again:
3571 		if (signal_pending(current) ||
3572 		    kthread_should_stop()) {
3573 			flush_signals(current);
3574 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3575 			goto skip;
3576 		}
3577 		ITERATE_MDDEV(mddev2,tmp) {
3578 			if (mddev2 == mddev)
3579 				continue;
3580 			if (mddev2->curr_resync &&
3581 			    match_mddev_units(mddev,mddev2)) {
3582 				DEFINE_WAIT(wq);
3583 				if (mddev < mddev2 && mddev->curr_resync == 2) {
3584 					/* arbitrarily yield */
3585 					mddev->curr_resync = 1;
3586 					wake_up(&resync_wait);
3587 				}
3588 				if (mddev > mddev2 && mddev->curr_resync == 1)
3589 					/* no need to wait here, we can wait the next
3590 					 * time 'round when curr_resync == 2
3591 					 */
3592 					continue;
3593 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3594 				if (!signal_pending(current) &&
3595 				    !kthread_should_stop() &&
3596 				    mddev2->curr_resync >= mddev->curr_resync) {
3597 					printk(KERN_INFO "md: delaying resync of %s"
3598 					       " until %s has finished resync (they"
3599 					       " share one or more physical units)\n",
3600 					       mdname(mddev), mdname(mddev2));
3601 					mddev_put(mddev2);
3602 					schedule();
3603 					finish_wait(&resync_wait, &wq);
3604 					goto try_again;
3605 				}
3606 				finish_wait(&resync_wait, &wq);
3607 			}
3608 		}
3609 	} while (mddev->curr_resync < 2);
3610 
3611 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3612 		/* resync follows the size requested by the personality,
3613 		 * which defaults to physical size, but can be virtual size
3614 		 */
3615 		max_sectors = mddev->resync_max_sectors;
3616 	else
3617 		/* recovery follows the physical size of devices */
3618 		max_sectors = mddev->size << 1;
3619 
3620 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3621 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3622 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
3623 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
3624 	       "(but not more than %d KB/sec) for reconstruction.\n",
3625 	       sysctl_speed_limit_max);
3626 
3627 	is_mddev_idle(mddev); /* this also initializes IO event counters */
3628 	/* we don't use the checkpoint if there's a bitmap */
3629 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
3630 		j = mddev->recovery_cp;
3631 	else
3632 		j = 0;
3633 	io_sectors = 0;
3634 	for (m = 0; m < SYNC_MARKS; m++) {
3635 		mark[m] = jiffies;
3636 		mark_cnt[m] = io_sectors;
3637 	}
3638 	last_mark = 0;
3639 	mddev->resync_mark = mark[last_mark];
3640 	mddev->resync_mark_cnt = mark_cnt[last_mark];
3641 
3642 	/*
3643 	 * Tune reconstruction:
3644 	 */
3645 	window = 32*(PAGE_SIZE/512);
3646 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3647 		window/2,(unsigned long long) max_sectors/2);
3648 
3649 	atomic_set(&mddev->recovery_active, 0);
3650 	init_waitqueue_head(&mddev->recovery_wait);
3651 	last_check = 0;
3652 
3653 	if (j>2) {
3654 		printk(KERN_INFO
3655 			"md: resuming recovery of %s from checkpoint.\n",
3656 			mdname(mddev));
3657 		mddev->curr_resync = j;
3658 	}
3659 
3660 	while (j < max_sectors) {
3661 		sector_t sectors;
3662 
3663 		skipped = 0;
3664 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
3665 					    currspeed < sysctl_speed_limit_min);
3666 		if (sectors == 0) {
3667 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3668 			goto out;
3669 		}
3670 
3671 		if (!skipped) { /* actual IO requested */
3672 			io_sectors += sectors;
3673 			atomic_add(sectors, &mddev->recovery_active);
3674 		}
3675 
3676 		j += sectors;
3677 		if (j>1) mddev->curr_resync = j;
3678 
3679 
3680 		if (last_check + window > io_sectors || j == max_sectors)
3681 			continue;
3682 
3683 		last_check = io_sectors;
3684 
3685 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3686 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3687 			break;
3688 
3689 	repeat:
3690 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3691 			/* step marks */
3692 			int next = (last_mark+1) % SYNC_MARKS;
3693 
3694 			mddev->resync_mark = mark[next];
3695 			mddev->resync_mark_cnt = mark_cnt[next];
3696 			mark[next] = jiffies;
3697 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
3698 			last_mark = next;
3699 		}
3700 
3701 
3702 		if (signal_pending(current) || kthread_should_stop()) {
3703 			/*
3704 			 * got a signal, exit.
3705 			 */
3706 			printk(KERN_INFO
3707 				"md: md_do_sync() got signal ... exiting\n");
3708 			flush_signals(current);
3709 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3710 			goto out;
3711 		}
3712 
3713 		/*
3714 		 * this loop exits only if either when we are slower than
3715 		 * the 'hard' speed limit, or the system was IO-idle for
3716 		 * a jiffy.
3717 		 * the system might be non-idle CPU-wise, but we only care
3718 		 * about not overloading the IO subsystem. (things like an
3719 		 * e2fsck being done on the RAID array should execute fast)
3720 		 */
3721 		mddev->queue->unplug_fn(mddev->queue);
3722 		cond_resched();
3723 
3724 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3725 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
3726 
3727 		if (currspeed > sysctl_speed_limit_min) {
3728 			if ((currspeed > sysctl_speed_limit_max) ||
3729 					!is_mddev_idle(mddev)) {
3730 				msleep_interruptible(250);
3731 				goto repeat;
3732 			}
3733 		}
3734 	}
3735 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3736 	/*
3737 	 * this also signals 'finished resyncing' to md_stop
3738 	 */
3739  out:
3740 	mddev->queue->unplug_fn(mddev->queue);
3741 
3742 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3743 
3744 	/* tell personality that we are finished */
3745 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
3746 
3747 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3748 	    mddev->curr_resync > 2 &&
3749 	    mddev->curr_resync >= mddev->recovery_cp) {
3750 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3751 			printk(KERN_INFO
3752 				"md: checkpointing recovery of %s.\n",
3753 				mdname(mddev));
3754 			mddev->recovery_cp = mddev->curr_resync;
3755 		} else
3756 			mddev->recovery_cp = MaxSector;
3757 	}
3758 
3759  skip:
3760 	mddev->curr_resync = 0;
3761 	wake_up(&resync_wait);
3762 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3763 	md_wakeup_thread(mddev->thread);
3764 }
3765 
3766 
3767 /*
3768  * This routine is regularly called by all per-raid-array threads to
3769  * deal with generic issues like resync and super-block update.
3770  * Raid personalities that don't have a thread (linear/raid0) do not
3771  * need this as they never do any recovery or update the superblock.
3772  *
3773  * It does not do any resync itself, but rather "forks" off other threads
3774  * to do that as needed.
3775  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3776  * "->recovery" and create a thread at ->sync_thread.
3777  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3778  * and wakeups up this thread which will reap the thread and finish up.
3779  * This thread also removes any faulty devices (with nr_pending == 0).
3780  *
3781  * The overall approach is:
3782  *  1/ if the superblock needs updating, update it.
3783  *  2/ If a recovery thread is running, don't do anything else.
3784  *  3/ If recovery has finished, clean up, possibly marking spares active.
3785  *  4/ If there are any faulty devices, remove them.
3786  *  5/ If array is degraded, try to add spares devices
3787  *  6/ If array has spares or is not in-sync, start a resync thread.
3788  */
3789 void md_check_recovery(mddev_t *mddev)
3790 {
3791 	mdk_rdev_t *rdev;
3792 	struct list_head *rtmp;
3793 
3794 
3795 	if (mddev->bitmap)
3796 		bitmap_daemon_work(mddev->bitmap);
3797 
3798 	if (mddev->ro)
3799 		return;
3800 
3801 	if (signal_pending(current)) {
3802 		if (mddev->pers->sync_request) {
3803 			printk(KERN_INFO "md: %s in immediate safe mode\n",
3804 			       mdname(mddev));
3805 			mddev->safemode = 2;
3806 		}
3807 		flush_signals(current);
3808 	}
3809 
3810 	if ( ! (
3811 		mddev->sb_dirty ||
3812 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3813 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
3814 		(mddev->safemode == 1) ||
3815 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
3816 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
3817 		))
3818 		return;
3819 
3820 	if (mddev_trylock(mddev)==0) {
3821 		int spares =0;
3822 
3823 		spin_lock(&mddev->write_lock);
3824 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3825 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3826 			mddev->in_sync = 1;
3827 			mddev->sb_dirty = 1;
3828 		}
3829 		if (mddev->safemode == 1)
3830 			mddev->safemode = 0;
3831 		spin_unlock(&mddev->write_lock);
3832 
3833 		if (mddev->sb_dirty)
3834 			md_update_sb(mddev);
3835 
3836 
3837 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3838 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3839 			/* resync/recovery still happening */
3840 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3841 			goto unlock;
3842 		}
3843 		if (mddev->sync_thread) {
3844 			/* resync has finished, collect result */
3845 			md_unregister_thread(mddev->sync_thread);
3846 			mddev->sync_thread = NULL;
3847 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3848 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3849 				/* success...*/
3850 				/* activate any spares */
3851 				mddev->pers->spare_active(mddev);
3852 			}
3853 			md_update_sb(mddev);
3854 
3855 			/* if array is no-longer degraded, then any saved_raid_disk
3856 			 * information must be scrapped
3857 			 */
3858 			if (!mddev->degraded)
3859 				ITERATE_RDEV(mddev,rdev,rtmp)
3860 					rdev->saved_raid_disk = -1;
3861 
3862 			mddev->recovery = 0;
3863 			/* flag recovery needed just to double check */
3864 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3865 			goto unlock;
3866 		}
3867 		if (mddev->recovery)
3868 			/* probably just the RECOVERY_NEEDED flag */
3869 			mddev->recovery = 0;
3870 
3871 		/* no recovery is running.
3872 		 * remove any failed drives, then
3873 		 * add spares if possible.
3874 		 * Spare are also removed and re-added, to allow
3875 		 * the personality to fail the re-add.
3876 		 */
3877 		ITERATE_RDEV(mddev,rdev,rtmp)
3878 			if (rdev->raid_disk >= 0 &&
3879 			    (rdev->faulty || ! rdev->in_sync) &&
3880 			    atomic_read(&rdev->nr_pending)==0) {
3881 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3882 					rdev->raid_disk = -1;
3883 			}
3884 
3885 		if (mddev->degraded) {
3886 			ITERATE_RDEV(mddev,rdev,rtmp)
3887 				if (rdev->raid_disk < 0
3888 				    && !rdev->faulty) {
3889 					if (mddev->pers->hot_add_disk(mddev,rdev))
3890 						spares++;
3891 					else
3892 						break;
3893 				}
3894 		}
3895 
3896 		if (!spares && (mddev->recovery_cp == MaxSector )) {
3897 			/* nothing we can do ... */
3898 			goto unlock;
3899 		}
3900 		if (mddev->pers->sync_request) {
3901 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3902 			if (!spares)
3903 				set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3904 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
3905 				/* We are adding a device or devices to an array
3906 				 * which has the bitmap stored on all devices.
3907 				 * So make sure all bitmap pages get written
3908 				 */
3909 				bitmap_write_all(mddev->bitmap);
3910 			}
3911 			mddev->sync_thread = md_register_thread(md_do_sync,
3912 								mddev,
3913 								"%s_resync");
3914 			if (!mddev->sync_thread) {
3915 				printk(KERN_ERR "%s: could not start resync"
3916 					" thread...\n",
3917 					mdname(mddev));
3918 				/* leave the spares where they are, it shouldn't hurt */
3919 				mddev->recovery = 0;
3920 			} else {
3921 				md_wakeup_thread(mddev->sync_thread);
3922 			}
3923 		}
3924 	unlock:
3925 		mddev_unlock(mddev);
3926 	}
3927 }
3928 
3929 static int md_notify_reboot(struct notifier_block *this,
3930 			    unsigned long code, void *x)
3931 {
3932 	struct list_head *tmp;
3933 	mddev_t *mddev;
3934 
3935 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3936 
3937 		printk(KERN_INFO "md: stopping all md devices.\n");
3938 
3939 		ITERATE_MDDEV(mddev,tmp)
3940 			if (mddev_trylock(mddev)==0)
3941 				do_md_stop (mddev, 1);
3942 		/*
3943 		 * certain more exotic SCSI devices are known to be
3944 		 * volatile wrt too early system reboots. While the
3945 		 * right place to handle this issue is the given
3946 		 * driver, we do want to have a safe RAID driver ...
3947 		 */
3948 		mdelay(1000*1);
3949 	}
3950 	return NOTIFY_DONE;
3951 }
3952 
3953 static struct notifier_block md_notifier = {
3954 	.notifier_call	= md_notify_reboot,
3955 	.next		= NULL,
3956 	.priority	= INT_MAX, /* before any real devices */
3957 };
3958 
3959 static void md_geninit(void)
3960 {
3961 	struct proc_dir_entry *p;
3962 
3963 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3964 
3965 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
3966 	if (p)
3967 		p->proc_fops = &md_seq_fops;
3968 }
3969 
3970 static int __init md_init(void)
3971 {
3972 	int minor;
3973 
3974 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3975 			" MD_SB_DISKS=%d\n",
3976 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
3977 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3978 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
3979 			BITMAP_MINOR);
3980 
3981 	if (register_blkdev(MAJOR_NR, "md"))
3982 		return -1;
3983 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3984 		unregister_blkdev(MAJOR_NR, "md");
3985 		return -1;
3986 	}
3987 	devfs_mk_dir("md");
3988 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3989 				md_probe, NULL, NULL);
3990 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3991 			    md_probe, NULL, NULL);
3992 
3993 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
3994 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3995 				S_IFBLK|S_IRUSR|S_IWUSR,
3996 				"md/%d", minor);
3997 
3998 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
3999 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4000 			      S_IFBLK|S_IRUSR|S_IWUSR,
4001 			      "md/mdp%d", minor);
4002 
4003 
4004 	register_reboot_notifier(&md_notifier);
4005 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4006 
4007 	md_geninit();
4008 	return (0);
4009 }
4010 
4011 
4012 #ifndef MODULE
4013 
4014 /*
4015  * Searches all registered partitions for autorun RAID arrays
4016  * at boot time.
4017  */
4018 static dev_t detected_devices[128];
4019 static int dev_cnt;
4020 
4021 void md_autodetect_dev(dev_t dev)
4022 {
4023 	if (dev_cnt >= 0 && dev_cnt < 127)
4024 		detected_devices[dev_cnt++] = dev;
4025 }
4026 
4027 
4028 static void autostart_arrays(int part)
4029 {
4030 	mdk_rdev_t *rdev;
4031 	int i;
4032 
4033 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4034 
4035 	for (i = 0; i < dev_cnt; i++) {
4036 		dev_t dev = detected_devices[i];
4037 
4038 		rdev = md_import_device(dev,0, 0);
4039 		if (IS_ERR(rdev))
4040 			continue;
4041 
4042 		if (rdev->faulty) {
4043 			MD_BUG();
4044 			continue;
4045 		}
4046 		list_add(&rdev->same_set, &pending_raid_disks);
4047 	}
4048 	dev_cnt = 0;
4049 
4050 	autorun_devices(part);
4051 }
4052 
4053 #endif
4054 
4055 static __exit void md_exit(void)
4056 {
4057 	mddev_t *mddev;
4058 	struct list_head *tmp;
4059 	int i;
4060 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4061 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4062 	for (i=0; i < MAX_MD_DEVS; i++)
4063 		devfs_remove("md/%d", i);
4064 	for (i=0; i < MAX_MD_DEVS; i++)
4065 		devfs_remove("md/d%d", i);
4066 
4067 	devfs_remove("md");
4068 
4069 	unregister_blkdev(MAJOR_NR,"md");
4070 	unregister_blkdev(mdp_major, "mdp");
4071 	unregister_reboot_notifier(&md_notifier);
4072 	unregister_sysctl_table(raid_table_header);
4073 	remove_proc_entry("mdstat", NULL);
4074 	ITERATE_MDDEV(mddev,tmp) {
4075 		struct gendisk *disk = mddev->gendisk;
4076 		if (!disk)
4077 			continue;
4078 		export_array(mddev);
4079 		del_gendisk(disk);
4080 		put_disk(disk);
4081 		mddev->gendisk = NULL;
4082 		mddev_put(mddev);
4083 	}
4084 }
4085 
4086 module_init(md_init)
4087 module_exit(md_exit)
4088 
4089 EXPORT_SYMBOL(register_md_personality);
4090 EXPORT_SYMBOL(unregister_md_personality);
4091 EXPORT_SYMBOL(md_error);
4092 EXPORT_SYMBOL(md_done_sync);
4093 EXPORT_SYMBOL(md_write_start);
4094 EXPORT_SYMBOL(md_write_end);
4095 EXPORT_SYMBOL(md_register_thread);
4096 EXPORT_SYMBOL(md_unregister_thread);
4097 EXPORT_SYMBOL(md_wakeup_thread);
4098 EXPORT_SYMBOL(md_print_devices);
4099 EXPORT_SYMBOL(md_check_recovery);
4100 MODULE_LICENSE("GPL");
4101 MODULE_ALIAS("md");
4102 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4103