xref: /openbmc/linux/drivers/md/md.c (revision 8571e645)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/badblocks.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57 #include "md-cluster.h"
58 
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62 
63 /* pers_list is a list of registered personalities protected
64  * by pers_lock.
65  * pers_lock does extra service to protect accesses to
66  * mddev->thread when the mutex cannot be held.
67  */
68 static LIST_HEAD(pers_list);
69 static DEFINE_SPINLOCK(pers_lock);
70 
71 struct md_cluster_operations *md_cluster_ops;
72 EXPORT_SYMBOL(md_cluster_ops);
73 struct module *md_cluster_mod;
74 EXPORT_SYMBOL(md_cluster_mod);
75 
76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
77 static struct workqueue_struct *md_wq;
78 static struct workqueue_struct *md_misc_wq;
79 
80 static int remove_and_add_spares(struct mddev *mddev,
81 				 struct md_rdev *this);
82 static void mddev_detach(struct mddev *mddev);
83 
84 /*
85  * Default number of read corrections we'll attempt on an rdev
86  * before ejecting it from the array. We divide the read error
87  * count by 2 for every hour elapsed between read errors.
88  */
89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
90 /*
91  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
92  * is 1000 KB/sec, so the extra system load does not show up that much.
93  * Increase it if you want to have more _guaranteed_ speed. Note that
94  * the RAID driver will use the maximum available bandwidth if the IO
95  * subsystem is idle. There is also an 'absolute maximum' reconstruction
96  * speed limit - in case reconstruction slows down your system despite
97  * idle IO detection.
98  *
99  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
100  * or /sys/block/mdX/md/sync_speed_{min,max}
101  */
102 
103 static int sysctl_speed_limit_min = 1000;
104 static int sysctl_speed_limit_max = 200000;
105 static inline int speed_min(struct mddev *mddev)
106 {
107 	return mddev->sync_speed_min ?
108 		mddev->sync_speed_min : sysctl_speed_limit_min;
109 }
110 
111 static inline int speed_max(struct mddev *mddev)
112 {
113 	return mddev->sync_speed_max ?
114 		mddev->sync_speed_max : sysctl_speed_limit_max;
115 }
116 
117 static struct ctl_table_header *raid_table_header;
118 
119 static struct ctl_table raid_table[] = {
120 	{
121 		.procname	= "speed_limit_min",
122 		.data		= &sysctl_speed_limit_min,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{
128 		.procname	= "speed_limit_max",
129 		.data		= &sysctl_speed_limit_max,
130 		.maxlen		= sizeof(int),
131 		.mode		= S_IRUGO|S_IWUSR,
132 		.proc_handler	= proc_dointvec,
133 	},
134 	{ }
135 };
136 
137 static struct ctl_table raid_dir_table[] = {
138 	{
139 		.procname	= "raid",
140 		.maxlen		= 0,
141 		.mode		= S_IRUGO|S_IXUGO,
142 		.child		= raid_table,
143 	},
144 	{ }
145 };
146 
147 static struct ctl_table raid_root_table[] = {
148 	{
149 		.procname	= "dev",
150 		.maxlen		= 0,
151 		.mode		= 0555,
152 		.child		= raid_dir_table,
153 	},
154 	{  }
155 };
156 
157 static const struct block_device_operations md_fops;
158 
159 static int start_readonly;
160 
161 /* bio_clone_mddev
162  * like bio_clone, but with a local bio set
163  */
164 
165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 			    struct mddev *mddev)
167 {
168 	struct bio *b;
169 
170 	if (!mddev || !mddev->bio_set)
171 		return bio_alloc(gfp_mask, nr_iovecs);
172 
173 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 	if (!b)
175 		return NULL;
176 	return b;
177 }
178 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
179 
180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
181 			    struct mddev *mddev)
182 {
183 	if (!mddev || !mddev->bio_set)
184 		return bio_clone(bio, gfp_mask);
185 
186 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
187 }
188 EXPORT_SYMBOL_GPL(bio_clone_mddev);
189 
190 /*
191  * We have a system wide 'event count' that is incremented
192  * on any 'interesting' event, and readers of /proc/mdstat
193  * can use 'poll' or 'select' to find out when the event
194  * count increases.
195  *
196  * Events are:
197  *  start array, stop array, error, add device, remove device,
198  *  start build, activate spare
199  */
200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
201 static atomic_t md_event_count;
202 void md_new_event(struct mddev *mddev)
203 {
204 	atomic_inc(&md_event_count);
205 	wake_up(&md_event_waiters);
206 }
207 EXPORT_SYMBOL_GPL(md_new_event);
208 
209 /*
210  * Enables to iterate over all existing md arrays
211  * all_mddevs_lock protects this list.
212  */
213 static LIST_HEAD(all_mddevs);
214 static DEFINE_SPINLOCK(all_mddevs_lock);
215 
216 /*
217  * iterates through all used mddevs in the system.
218  * We take care to grab the all_mddevs_lock whenever navigating
219  * the list, and to always hold a refcount when unlocked.
220  * Any code which breaks out of this loop while own
221  * a reference to the current mddev and must mddev_put it.
222  */
223 #define for_each_mddev(_mddev,_tmp)					\
224 									\
225 	for (({ spin_lock(&all_mddevs_lock);				\
226 		_tmp = all_mddevs.next;					\
227 		_mddev = NULL;});					\
228 	     ({ if (_tmp != &all_mddevs)				\
229 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
230 		spin_unlock(&all_mddevs_lock);				\
231 		if (_mddev) mddev_put(_mddev);				\
232 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
233 		_tmp != &all_mddevs;});					\
234 	     ({ spin_lock(&all_mddevs_lock);				\
235 		_tmp = _tmp->next;})					\
236 		)
237 
238 /* Rather than calling directly into the personality make_request function,
239  * IO requests come here first so that we can check if the device is
240  * being suspended pending a reconfiguration.
241  * We hold a refcount over the call to ->make_request.  By the time that
242  * call has finished, the bio has been linked into some internal structure
243  * and so is visible to ->quiesce(), so we don't need the refcount any more.
244  */
245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
246 {
247 	const int rw = bio_data_dir(bio);
248 	struct mddev *mddev = q->queuedata;
249 	unsigned int sectors;
250 	int cpu;
251 
252 	blk_queue_split(q, &bio, q->bio_split);
253 
254 	if (mddev == NULL || mddev->pers == NULL) {
255 		bio_io_error(bio);
256 		return BLK_QC_T_NONE;
257 	}
258 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 		if (bio_sectors(bio) != 0)
260 			bio->bi_error = -EROFS;
261 		bio_endio(bio);
262 		return BLK_QC_T_NONE;
263 	}
264 	smp_rmb(); /* Ensure implications of  'active' are visible */
265 	rcu_read_lock();
266 	if (mddev->suspended) {
267 		DEFINE_WAIT(__wait);
268 		for (;;) {
269 			prepare_to_wait(&mddev->sb_wait, &__wait,
270 					TASK_UNINTERRUPTIBLE);
271 			if (!mddev->suspended)
272 				break;
273 			rcu_read_unlock();
274 			schedule();
275 			rcu_read_lock();
276 		}
277 		finish_wait(&mddev->sb_wait, &__wait);
278 	}
279 	atomic_inc(&mddev->active_io);
280 	rcu_read_unlock();
281 
282 	/*
283 	 * save the sectors now since our bio can
284 	 * go away inside make_request
285 	 */
286 	sectors = bio_sectors(bio);
287 	/* bio could be mergeable after passing to underlayer */
288 	bio->bi_rw &= ~REQ_NOMERGE;
289 	mddev->pers->make_request(mddev, bio);
290 
291 	cpu = part_stat_lock();
292 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
293 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
294 	part_stat_unlock();
295 
296 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
297 		wake_up(&mddev->sb_wait);
298 
299 	return BLK_QC_T_NONE;
300 }
301 
302 /* mddev_suspend makes sure no new requests are submitted
303  * to the device, and that any requests that have been submitted
304  * are completely handled.
305  * Once mddev_detach() is called and completes, the module will be
306  * completely unused.
307  */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 	WARN_ON_ONCE(current == mddev->thread->tsk);
311 	if (mddev->suspended++)
312 		return;
313 	synchronize_rcu();
314 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315 	mddev->pers->quiesce(mddev, 1);
316 
317 	del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320 
321 void mddev_resume(struct mddev *mddev)
322 {
323 	if (--mddev->suspended)
324 		return;
325 	wake_up(&mddev->sb_wait);
326 	mddev->pers->quiesce(mddev, 0);
327 
328 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
329 	md_wakeup_thread(mddev->thread);
330 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
331 }
332 EXPORT_SYMBOL_GPL(mddev_resume);
333 
334 int mddev_congested(struct mddev *mddev, int bits)
335 {
336 	struct md_personality *pers = mddev->pers;
337 	int ret = 0;
338 
339 	rcu_read_lock();
340 	if (mddev->suspended)
341 		ret = 1;
342 	else if (pers && pers->congested)
343 		ret = pers->congested(mddev, bits);
344 	rcu_read_unlock();
345 	return ret;
346 }
347 EXPORT_SYMBOL_GPL(mddev_congested);
348 static int md_congested(void *data, int bits)
349 {
350 	struct mddev *mddev = data;
351 	return mddev_congested(mddev, bits);
352 }
353 
354 /*
355  * Generic flush handling for md
356  */
357 
358 static void md_end_flush(struct bio *bio)
359 {
360 	struct md_rdev *rdev = bio->bi_private;
361 	struct mddev *mddev = rdev->mddev;
362 
363 	rdev_dec_pending(rdev, mddev);
364 
365 	if (atomic_dec_and_test(&mddev->flush_pending)) {
366 		/* The pre-request flush has finished */
367 		queue_work(md_wq, &mddev->flush_work);
368 	}
369 	bio_put(bio);
370 }
371 
372 static void md_submit_flush_data(struct work_struct *ws);
373 
374 static void submit_flushes(struct work_struct *ws)
375 {
376 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
377 	struct md_rdev *rdev;
378 
379 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
380 	atomic_set(&mddev->flush_pending, 1);
381 	rcu_read_lock();
382 	rdev_for_each_rcu(rdev, mddev)
383 		if (rdev->raid_disk >= 0 &&
384 		    !test_bit(Faulty, &rdev->flags)) {
385 			/* Take two references, one is dropped
386 			 * when request finishes, one after
387 			 * we reclaim rcu_read_lock
388 			 */
389 			struct bio *bi;
390 			atomic_inc(&rdev->nr_pending);
391 			atomic_inc(&rdev->nr_pending);
392 			rcu_read_unlock();
393 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
394 			bi->bi_end_io = md_end_flush;
395 			bi->bi_private = rdev;
396 			bi->bi_bdev = rdev->bdev;
397 			atomic_inc(&mddev->flush_pending);
398 			submit_bio(WRITE_FLUSH, bi);
399 			rcu_read_lock();
400 			rdev_dec_pending(rdev, mddev);
401 		}
402 	rcu_read_unlock();
403 	if (atomic_dec_and_test(&mddev->flush_pending))
404 		queue_work(md_wq, &mddev->flush_work);
405 }
406 
407 static void md_submit_flush_data(struct work_struct *ws)
408 {
409 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
410 	struct bio *bio = mddev->flush_bio;
411 
412 	if (bio->bi_iter.bi_size == 0)
413 		/* an empty barrier - all done */
414 		bio_endio(bio);
415 	else {
416 		bio->bi_rw &= ~REQ_FLUSH;
417 		mddev->pers->make_request(mddev, bio);
418 	}
419 
420 	mddev->flush_bio = NULL;
421 	wake_up(&mddev->sb_wait);
422 }
423 
424 void md_flush_request(struct mddev *mddev, struct bio *bio)
425 {
426 	spin_lock_irq(&mddev->lock);
427 	wait_event_lock_irq(mddev->sb_wait,
428 			    !mddev->flush_bio,
429 			    mddev->lock);
430 	mddev->flush_bio = bio;
431 	spin_unlock_irq(&mddev->lock);
432 
433 	INIT_WORK(&mddev->flush_work, submit_flushes);
434 	queue_work(md_wq, &mddev->flush_work);
435 }
436 EXPORT_SYMBOL(md_flush_request);
437 
438 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
439 {
440 	struct mddev *mddev = cb->data;
441 	md_wakeup_thread(mddev->thread);
442 	kfree(cb);
443 }
444 EXPORT_SYMBOL(md_unplug);
445 
446 static inline struct mddev *mddev_get(struct mddev *mddev)
447 {
448 	atomic_inc(&mddev->active);
449 	return mddev;
450 }
451 
452 static void mddev_delayed_delete(struct work_struct *ws);
453 
454 static void mddev_put(struct mddev *mddev)
455 {
456 	struct bio_set *bs = NULL;
457 
458 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
459 		return;
460 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
461 	    mddev->ctime == 0 && !mddev->hold_active) {
462 		/* Array is not configured at all, and not held active,
463 		 * so destroy it */
464 		list_del_init(&mddev->all_mddevs);
465 		bs = mddev->bio_set;
466 		mddev->bio_set = NULL;
467 		if (mddev->gendisk) {
468 			/* We did a probe so need to clean up.  Call
469 			 * queue_work inside the spinlock so that
470 			 * flush_workqueue() after mddev_find will
471 			 * succeed in waiting for the work to be done.
472 			 */
473 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
474 			queue_work(md_misc_wq, &mddev->del_work);
475 		} else
476 			kfree(mddev);
477 	}
478 	spin_unlock(&all_mddevs_lock);
479 	if (bs)
480 		bioset_free(bs);
481 }
482 
483 static void md_safemode_timeout(unsigned long data);
484 
485 void mddev_init(struct mddev *mddev)
486 {
487 	mutex_init(&mddev->open_mutex);
488 	mutex_init(&mddev->reconfig_mutex);
489 	mutex_init(&mddev->bitmap_info.mutex);
490 	INIT_LIST_HEAD(&mddev->disks);
491 	INIT_LIST_HEAD(&mddev->all_mddevs);
492 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
493 		    (unsigned long) mddev);
494 	atomic_set(&mddev->active, 1);
495 	atomic_set(&mddev->openers, 0);
496 	atomic_set(&mddev->active_io, 0);
497 	spin_lock_init(&mddev->lock);
498 	atomic_set(&mddev->flush_pending, 0);
499 	init_waitqueue_head(&mddev->sb_wait);
500 	init_waitqueue_head(&mddev->recovery_wait);
501 	mddev->reshape_position = MaxSector;
502 	mddev->reshape_backwards = 0;
503 	mddev->last_sync_action = "none";
504 	mddev->resync_min = 0;
505 	mddev->resync_max = MaxSector;
506 	mddev->level = LEVEL_NONE;
507 }
508 EXPORT_SYMBOL_GPL(mddev_init);
509 
510 static struct mddev *mddev_find(dev_t unit)
511 {
512 	struct mddev *mddev, *new = NULL;
513 
514 	if (unit && MAJOR(unit) != MD_MAJOR)
515 		unit &= ~((1<<MdpMinorShift)-1);
516 
517  retry:
518 	spin_lock(&all_mddevs_lock);
519 
520 	if (unit) {
521 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
522 			if (mddev->unit == unit) {
523 				mddev_get(mddev);
524 				spin_unlock(&all_mddevs_lock);
525 				kfree(new);
526 				return mddev;
527 			}
528 
529 		if (new) {
530 			list_add(&new->all_mddevs, &all_mddevs);
531 			spin_unlock(&all_mddevs_lock);
532 			new->hold_active = UNTIL_IOCTL;
533 			return new;
534 		}
535 	} else if (new) {
536 		/* find an unused unit number */
537 		static int next_minor = 512;
538 		int start = next_minor;
539 		int is_free = 0;
540 		int dev = 0;
541 		while (!is_free) {
542 			dev = MKDEV(MD_MAJOR, next_minor);
543 			next_minor++;
544 			if (next_minor > MINORMASK)
545 				next_minor = 0;
546 			if (next_minor == start) {
547 				/* Oh dear, all in use. */
548 				spin_unlock(&all_mddevs_lock);
549 				kfree(new);
550 				return NULL;
551 			}
552 
553 			is_free = 1;
554 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
555 				if (mddev->unit == dev) {
556 					is_free = 0;
557 					break;
558 				}
559 		}
560 		new->unit = dev;
561 		new->md_minor = MINOR(dev);
562 		new->hold_active = UNTIL_STOP;
563 		list_add(&new->all_mddevs, &all_mddevs);
564 		spin_unlock(&all_mddevs_lock);
565 		return new;
566 	}
567 	spin_unlock(&all_mddevs_lock);
568 
569 	new = kzalloc(sizeof(*new), GFP_KERNEL);
570 	if (!new)
571 		return NULL;
572 
573 	new->unit = unit;
574 	if (MAJOR(unit) == MD_MAJOR)
575 		new->md_minor = MINOR(unit);
576 	else
577 		new->md_minor = MINOR(unit) >> MdpMinorShift;
578 
579 	mddev_init(new);
580 
581 	goto retry;
582 }
583 
584 static struct attribute_group md_redundancy_group;
585 
586 void mddev_unlock(struct mddev *mddev)
587 {
588 	if (mddev->to_remove) {
589 		/* These cannot be removed under reconfig_mutex as
590 		 * an access to the files will try to take reconfig_mutex
591 		 * while holding the file unremovable, which leads to
592 		 * a deadlock.
593 		 * So hold set sysfs_active while the remove in happeing,
594 		 * and anything else which might set ->to_remove or my
595 		 * otherwise change the sysfs namespace will fail with
596 		 * -EBUSY if sysfs_active is still set.
597 		 * We set sysfs_active under reconfig_mutex and elsewhere
598 		 * test it under the same mutex to ensure its correct value
599 		 * is seen.
600 		 */
601 		struct attribute_group *to_remove = mddev->to_remove;
602 		mddev->to_remove = NULL;
603 		mddev->sysfs_active = 1;
604 		mutex_unlock(&mddev->reconfig_mutex);
605 
606 		if (mddev->kobj.sd) {
607 			if (to_remove != &md_redundancy_group)
608 				sysfs_remove_group(&mddev->kobj, to_remove);
609 			if (mddev->pers == NULL ||
610 			    mddev->pers->sync_request == NULL) {
611 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
612 				if (mddev->sysfs_action)
613 					sysfs_put(mddev->sysfs_action);
614 				mddev->sysfs_action = NULL;
615 			}
616 		}
617 		mddev->sysfs_active = 0;
618 	} else
619 		mutex_unlock(&mddev->reconfig_mutex);
620 
621 	/* As we've dropped the mutex we need a spinlock to
622 	 * make sure the thread doesn't disappear
623 	 */
624 	spin_lock(&pers_lock);
625 	md_wakeup_thread(mddev->thread);
626 	spin_unlock(&pers_lock);
627 }
628 EXPORT_SYMBOL_GPL(mddev_unlock);
629 
630 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
631 {
632 	struct md_rdev *rdev;
633 
634 	rdev_for_each_rcu(rdev, mddev)
635 		if (rdev->desc_nr == nr)
636 			return rdev;
637 
638 	return NULL;
639 }
640 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
641 
642 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
643 {
644 	struct md_rdev *rdev;
645 
646 	rdev_for_each(rdev, mddev)
647 		if (rdev->bdev->bd_dev == dev)
648 			return rdev;
649 
650 	return NULL;
651 }
652 
653 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
654 {
655 	struct md_rdev *rdev;
656 
657 	rdev_for_each_rcu(rdev, mddev)
658 		if (rdev->bdev->bd_dev == dev)
659 			return rdev;
660 
661 	return NULL;
662 }
663 
664 static struct md_personality *find_pers(int level, char *clevel)
665 {
666 	struct md_personality *pers;
667 	list_for_each_entry(pers, &pers_list, list) {
668 		if (level != LEVEL_NONE && pers->level == level)
669 			return pers;
670 		if (strcmp(pers->name, clevel)==0)
671 			return pers;
672 	}
673 	return NULL;
674 }
675 
676 /* return the offset of the super block in 512byte sectors */
677 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
678 {
679 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
680 	return MD_NEW_SIZE_SECTORS(num_sectors);
681 }
682 
683 static int alloc_disk_sb(struct md_rdev *rdev)
684 {
685 	rdev->sb_page = alloc_page(GFP_KERNEL);
686 	if (!rdev->sb_page) {
687 		printk(KERN_ALERT "md: out of memory.\n");
688 		return -ENOMEM;
689 	}
690 
691 	return 0;
692 }
693 
694 void md_rdev_clear(struct md_rdev *rdev)
695 {
696 	if (rdev->sb_page) {
697 		put_page(rdev->sb_page);
698 		rdev->sb_loaded = 0;
699 		rdev->sb_page = NULL;
700 		rdev->sb_start = 0;
701 		rdev->sectors = 0;
702 	}
703 	if (rdev->bb_page) {
704 		put_page(rdev->bb_page);
705 		rdev->bb_page = NULL;
706 	}
707 	badblocks_exit(&rdev->badblocks);
708 }
709 EXPORT_SYMBOL_GPL(md_rdev_clear);
710 
711 static void super_written(struct bio *bio)
712 {
713 	struct md_rdev *rdev = bio->bi_private;
714 	struct mddev *mddev = rdev->mddev;
715 
716 	if (bio->bi_error) {
717 		printk("md: super_written gets error=%d\n", bio->bi_error);
718 		md_error(mddev, rdev);
719 	}
720 
721 	if (atomic_dec_and_test(&mddev->pending_writes))
722 		wake_up(&mddev->sb_wait);
723 	rdev_dec_pending(rdev, mddev);
724 	bio_put(bio);
725 }
726 
727 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
728 		   sector_t sector, int size, struct page *page)
729 {
730 	/* write first size bytes of page to sector of rdev
731 	 * Increment mddev->pending_writes before returning
732 	 * and decrement it on completion, waking up sb_wait
733 	 * if zero is reached.
734 	 * If an error occurred, call md_error
735 	 */
736 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
737 
738 	atomic_inc(&rdev->nr_pending);
739 
740 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
741 	bio->bi_iter.bi_sector = sector;
742 	bio_add_page(bio, page, size, 0);
743 	bio->bi_private = rdev;
744 	bio->bi_end_io = super_written;
745 
746 	atomic_inc(&mddev->pending_writes);
747 	submit_bio(WRITE_FLUSH_FUA, bio);
748 }
749 
750 void md_super_wait(struct mddev *mddev)
751 {
752 	/* wait for all superblock writes that were scheduled to complete */
753 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
754 }
755 
756 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
757 		 struct page *page, int rw, bool metadata_op)
758 {
759 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
760 	int ret;
761 
762 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
763 		rdev->meta_bdev : rdev->bdev;
764 	if (metadata_op)
765 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
766 	else if (rdev->mddev->reshape_position != MaxSector &&
767 		 (rdev->mddev->reshape_backwards ==
768 		  (sector >= rdev->mddev->reshape_position)))
769 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
770 	else
771 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
772 	bio_add_page(bio, page, size, 0);
773 	submit_bio_wait(rw, bio);
774 
775 	ret = !bio->bi_error;
776 	bio_put(bio);
777 	return ret;
778 }
779 EXPORT_SYMBOL_GPL(sync_page_io);
780 
781 static int read_disk_sb(struct md_rdev *rdev, int size)
782 {
783 	char b[BDEVNAME_SIZE];
784 
785 	if (rdev->sb_loaded)
786 		return 0;
787 
788 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
789 		goto fail;
790 	rdev->sb_loaded = 1;
791 	return 0;
792 
793 fail:
794 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
795 		bdevname(rdev->bdev,b));
796 	return -EINVAL;
797 }
798 
799 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
800 {
801 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
802 		sb1->set_uuid1 == sb2->set_uuid1 &&
803 		sb1->set_uuid2 == sb2->set_uuid2 &&
804 		sb1->set_uuid3 == sb2->set_uuid3;
805 }
806 
807 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
808 {
809 	int ret;
810 	mdp_super_t *tmp1, *tmp2;
811 
812 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
813 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
814 
815 	if (!tmp1 || !tmp2) {
816 		ret = 0;
817 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
818 		goto abort;
819 	}
820 
821 	*tmp1 = *sb1;
822 	*tmp2 = *sb2;
823 
824 	/*
825 	 * nr_disks is not constant
826 	 */
827 	tmp1->nr_disks = 0;
828 	tmp2->nr_disks = 0;
829 
830 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
831 abort:
832 	kfree(tmp1);
833 	kfree(tmp2);
834 	return ret;
835 }
836 
837 static u32 md_csum_fold(u32 csum)
838 {
839 	csum = (csum & 0xffff) + (csum >> 16);
840 	return (csum & 0xffff) + (csum >> 16);
841 }
842 
843 static unsigned int calc_sb_csum(mdp_super_t *sb)
844 {
845 	u64 newcsum = 0;
846 	u32 *sb32 = (u32*)sb;
847 	int i;
848 	unsigned int disk_csum, csum;
849 
850 	disk_csum = sb->sb_csum;
851 	sb->sb_csum = 0;
852 
853 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
854 		newcsum += sb32[i];
855 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
856 
857 #ifdef CONFIG_ALPHA
858 	/* This used to use csum_partial, which was wrong for several
859 	 * reasons including that different results are returned on
860 	 * different architectures.  It isn't critical that we get exactly
861 	 * the same return value as before (we always csum_fold before
862 	 * testing, and that removes any differences).  However as we
863 	 * know that csum_partial always returned a 16bit value on
864 	 * alphas, do a fold to maximise conformity to previous behaviour.
865 	 */
866 	sb->sb_csum = md_csum_fold(disk_csum);
867 #else
868 	sb->sb_csum = disk_csum;
869 #endif
870 	return csum;
871 }
872 
873 /*
874  * Handle superblock details.
875  * We want to be able to handle multiple superblock formats
876  * so we have a common interface to them all, and an array of
877  * different handlers.
878  * We rely on user-space to write the initial superblock, and support
879  * reading and updating of superblocks.
880  * Interface methods are:
881  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
882  *      loads and validates a superblock on dev.
883  *      if refdev != NULL, compare superblocks on both devices
884  *    Return:
885  *      0 - dev has a superblock that is compatible with refdev
886  *      1 - dev has a superblock that is compatible and newer than refdev
887  *          so dev should be used as the refdev in future
888  *     -EINVAL superblock incompatible or invalid
889  *     -othererror e.g. -EIO
890  *
891  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
892  *      Verify that dev is acceptable into mddev.
893  *       The first time, mddev->raid_disks will be 0, and data from
894  *       dev should be merged in.  Subsequent calls check that dev
895  *       is new enough.  Return 0 or -EINVAL
896  *
897  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
898  *     Update the superblock for rdev with data in mddev
899  *     This does not write to disc.
900  *
901  */
902 
903 struct super_type  {
904 	char		    *name;
905 	struct module	    *owner;
906 	int		    (*load_super)(struct md_rdev *rdev,
907 					  struct md_rdev *refdev,
908 					  int minor_version);
909 	int		    (*validate_super)(struct mddev *mddev,
910 					      struct md_rdev *rdev);
911 	void		    (*sync_super)(struct mddev *mddev,
912 					  struct md_rdev *rdev);
913 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
914 						sector_t num_sectors);
915 	int		    (*allow_new_offset)(struct md_rdev *rdev,
916 						unsigned long long new_offset);
917 };
918 
919 /*
920  * Check that the given mddev has no bitmap.
921  *
922  * This function is called from the run method of all personalities that do not
923  * support bitmaps. It prints an error message and returns non-zero if mddev
924  * has a bitmap. Otherwise, it returns 0.
925  *
926  */
927 int md_check_no_bitmap(struct mddev *mddev)
928 {
929 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
930 		return 0;
931 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
932 		mdname(mddev), mddev->pers->name);
933 	return 1;
934 }
935 EXPORT_SYMBOL(md_check_no_bitmap);
936 
937 /*
938  * load_super for 0.90.0
939  */
940 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
941 {
942 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
943 	mdp_super_t *sb;
944 	int ret;
945 
946 	/*
947 	 * Calculate the position of the superblock (512byte sectors),
948 	 * it's at the end of the disk.
949 	 *
950 	 * It also happens to be a multiple of 4Kb.
951 	 */
952 	rdev->sb_start = calc_dev_sboffset(rdev);
953 
954 	ret = read_disk_sb(rdev, MD_SB_BYTES);
955 	if (ret) return ret;
956 
957 	ret = -EINVAL;
958 
959 	bdevname(rdev->bdev, b);
960 	sb = page_address(rdev->sb_page);
961 
962 	if (sb->md_magic != MD_SB_MAGIC) {
963 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
964 		       b);
965 		goto abort;
966 	}
967 
968 	if (sb->major_version != 0 ||
969 	    sb->minor_version < 90 ||
970 	    sb->minor_version > 91) {
971 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
972 			sb->major_version, sb->minor_version,
973 			b);
974 		goto abort;
975 	}
976 
977 	if (sb->raid_disks <= 0)
978 		goto abort;
979 
980 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
981 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
982 			b);
983 		goto abort;
984 	}
985 
986 	rdev->preferred_minor = sb->md_minor;
987 	rdev->data_offset = 0;
988 	rdev->new_data_offset = 0;
989 	rdev->sb_size = MD_SB_BYTES;
990 	rdev->badblocks.shift = -1;
991 
992 	if (sb->level == LEVEL_MULTIPATH)
993 		rdev->desc_nr = -1;
994 	else
995 		rdev->desc_nr = sb->this_disk.number;
996 
997 	if (!refdev) {
998 		ret = 1;
999 	} else {
1000 		__u64 ev1, ev2;
1001 		mdp_super_t *refsb = page_address(refdev->sb_page);
1002 		if (!uuid_equal(refsb, sb)) {
1003 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1004 				b, bdevname(refdev->bdev,b2));
1005 			goto abort;
1006 		}
1007 		if (!sb_equal(refsb, sb)) {
1008 			printk(KERN_WARNING "md: %s has same UUID"
1009 			       " but different superblock to %s\n",
1010 			       b, bdevname(refdev->bdev, b2));
1011 			goto abort;
1012 		}
1013 		ev1 = md_event(sb);
1014 		ev2 = md_event(refsb);
1015 		if (ev1 > ev2)
1016 			ret = 1;
1017 		else
1018 			ret = 0;
1019 	}
1020 	rdev->sectors = rdev->sb_start;
1021 	/* Limit to 4TB as metadata cannot record more than that.
1022 	 * (not needed for Linear and RAID0 as metadata doesn't
1023 	 * record this size)
1024 	 */
1025 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1026 	    sb->level >= 1)
1027 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1028 
1029 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1030 		/* "this cannot possibly happen" ... */
1031 		ret = -EINVAL;
1032 
1033  abort:
1034 	return ret;
1035 }
1036 
1037 /*
1038  * validate_super for 0.90.0
1039  */
1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1041 {
1042 	mdp_disk_t *desc;
1043 	mdp_super_t *sb = page_address(rdev->sb_page);
1044 	__u64 ev1 = md_event(sb);
1045 
1046 	rdev->raid_disk = -1;
1047 	clear_bit(Faulty, &rdev->flags);
1048 	clear_bit(In_sync, &rdev->flags);
1049 	clear_bit(Bitmap_sync, &rdev->flags);
1050 	clear_bit(WriteMostly, &rdev->flags);
1051 
1052 	if (mddev->raid_disks == 0) {
1053 		mddev->major_version = 0;
1054 		mddev->minor_version = sb->minor_version;
1055 		mddev->patch_version = sb->patch_version;
1056 		mddev->external = 0;
1057 		mddev->chunk_sectors = sb->chunk_size >> 9;
1058 		mddev->ctime = sb->ctime;
1059 		mddev->utime = sb->utime;
1060 		mddev->level = sb->level;
1061 		mddev->clevel[0] = 0;
1062 		mddev->layout = sb->layout;
1063 		mddev->raid_disks = sb->raid_disks;
1064 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1065 		mddev->events = ev1;
1066 		mddev->bitmap_info.offset = 0;
1067 		mddev->bitmap_info.space = 0;
1068 		/* bitmap can use 60 K after the 4K superblocks */
1069 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1070 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1071 		mddev->reshape_backwards = 0;
1072 
1073 		if (mddev->minor_version >= 91) {
1074 			mddev->reshape_position = sb->reshape_position;
1075 			mddev->delta_disks = sb->delta_disks;
1076 			mddev->new_level = sb->new_level;
1077 			mddev->new_layout = sb->new_layout;
1078 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1079 			if (mddev->delta_disks < 0)
1080 				mddev->reshape_backwards = 1;
1081 		} else {
1082 			mddev->reshape_position = MaxSector;
1083 			mddev->delta_disks = 0;
1084 			mddev->new_level = mddev->level;
1085 			mddev->new_layout = mddev->layout;
1086 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1087 		}
1088 
1089 		if (sb->state & (1<<MD_SB_CLEAN))
1090 			mddev->recovery_cp = MaxSector;
1091 		else {
1092 			if (sb->events_hi == sb->cp_events_hi &&
1093 				sb->events_lo == sb->cp_events_lo) {
1094 				mddev->recovery_cp = sb->recovery_cp;
1095 			} else
1096 				mddev->recovery_cp = 0;
1097 		}
1098 
1099 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1100 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1101 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1102 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1103 
1104 		mddev->max_disks = MD_SB_DISKS;
1105 
1106 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1107 		    mddev->bitmap_info.file == NULL) {
1108 			mddev->bitmap_info.offset =
1109 				mddev->bitmap_info.default_offset;
1110 			mddev->bitmap_info.space =
1111 				mddev->bitmap_info.default_space;
1112 		}
1113 
1114 	} else if (mddev->pers == NULL) {
1115 		/* Insist on good event counter while assembling, except
1116 		 * for spares (which don't need an event count) */
1117 		++ev1;
1118 		if (sb->disks[rdev->desc_nr].state & (
1119 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1120 			if (ev1 < mddev->events)
1121 				return -EINVAL;
1122 	} else if (mddev->bitmap) {
1123 		/* if adding to array with a bitmap, then we can accept an
1124 		 * older device ... but not too old.
1125 		 */
1126 		if (ev1 < mddev->bitmap->events_cleared)
1127 			return 0;
1128 		if (ev1 < mddev->events)
1129 			set_bit(Bitmap_sync, &rdev->flags);
1130 	} else {
1131 		if (ev1 < mddev->events)
1132 			/* just a hot-add of a new device, leave raid_disk at -1 */
1133 			return 0;
1134 	}
1135 
1136 	if (mddev->level != LEVEL_MULTIPATH) {
1137 		desc = sb->disks + rdev->desc_nr;
1138 
1139 		if (desc->state & (1<<MD_DISK_FAULTY))
1140 			set_bit(Faulty, &rdev->flags);
1141 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1142 			    desc->raid_disk < mddev->raid_disks */) {
1143 			set_bit(In_sync, &rdev->flags);
1144 			rdev->raid_disk = desc->raid_disk;
1145 			rdev->saved_raid_disk = desc->raid_disk;
1146 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1147 			/* active but not in sync implies recovery up to
1148 			 * reshape position.  We don't know exactly where
1149 			 * that is, so set to zero for now */
1150 			if (mddev->minor_version >= 91) {
1151 				rdev->recovery_offset = 0;
1152 				rdev->raid_disk = desc->raid_disk;
1153 			}
1154 		}
1155 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1156 			set_bit(WriteMostly, &rdev->flags);
1157 	} else /* MULTIPATH are always insync */
1158 		set_bit(In_sync, &rdev->flags);
1159 	return 0;
1160 }
1161 
1162 /*
1163  * sync_super for 0.90.0
1164  */
1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1166 {
1167 	mdp_super_t *sb;
1168 	struct md_rdev *rdev2;
1169 	int next_spare = mddev->raid_disks;
1170 
1171 	/* make rdev->sb match mddev data..
1172 	 *
1173 	 * 1/ zero out disks
1174 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1175 	 * 3/ any empty disks < next_spare become removed
1176 	 *
1177 	 * disks[0] gets initialised to REMOVED because
1178 	 * we cannot be sure from other fields if it has
1179 	 * been initialised or not.
1180 	 */
1181 	int i;
1182 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1183 
1184 	rdev->sb_size = MD_SB_BYTES;
1185 
1186 	sb = page_address(rdev->sb_page);
1187 
1188 	memset(sb, 0, sizeof(*sb));
1189 
1190 	sb->md_magic = MD_SB_MAGIC;
1191 	sb->major_version = mddev->major_version;
1192 	sb->patch_version = mddev->patch_version;
1193 	sb->gvalid_words  = 0; /* ignored */
1194 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1195 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1196 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1197 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1198 
1199 	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1200 	sb->level = mddev->level;
1201 	sb->size = mddev->dev_sectors / 2;
1202 	sb->raid_disks = mddev->raid_disks;
1203 	sb->md_minor = mddev->md_minor;
1204 	sb->not_persistent = 0;
1205 	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1206 	sb->state = 0;
1207 	sb->events_hi = (mddev->events>>32);
1208 	sb->events_lo = (u32)mddev->events;
1209 
1210 	if (mddev->reshape_position == MaxSector)
1211 		sb->minor_version = 90;
1212 	else {
1213 		sb->minor_version = 91;
1214 		sb->reshape_position = mddev->reshape_position;
1215 		sb->new_level = mddev->new_level;
1216 		sb->delta_disks = mddev->delta_disks;
1217 		sb->new_layout = mddev->new_layout;
1218 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1219 	}
1220 	mddev->minor_version = sb->minor_version;
1221 	if (mddev->in_sync)
1222 	{
1223 		sb->recovery_cp = mddev->recovery_cp;
1224 		sb->cp_events_hi = (mddev->events>>32);
1225 		sb->cp_events_lo = (u32)mddev->events;
1226 		if (mddev->recovery_cp == MaxSector)
1227 			sb->state = (1<< MD_SB_CLEAN);
1228 	} else
1229 		sb->recovery_cp = 0;
1230 
1231 	sb->layout = mddev->layout;
1232 	sb->chunk_size = mddev->chunk_sectors << 9;
1233 
1234 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1235 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1236 
1237 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1238 	rdev_for_each(rdev2, mddev) {
1239 		mdp_disk_t *d;
1240 		int desc_nr;
1241 		int is_active = test_bit(In_sync, &rdev2->flags);
1242 
1243 		if (rdev2->raid_disk >= 0 &&
1244 		    sb->minor_version >= 91)
1245 			/* we have nowhere to store the recovery_offset,
1246 			 * but if it is not below the reshape_position,
1247 			 * we can piggy-back on that.
1248 			 */
1249 			is_active = 1;
1250 		if (rdev2->raid_disk < 0 ||
1251 		    test_bit(Faulty, &rdev2->flags))
1252 			is_active = 0;
1253 		if (is_active)
1254 			desc_nr = rdev2->raid_disk;
1255 		else
1256 			desc_nr = next_spare++;
1257 		rdev2->desc_nr = desc_nr;
1258 		d = &sb->disks[rdev2->desc_nr];
1259 		nr_disks++;
1260 		d->number = rdev2->desc_nr;
1261 		d->major = MAJOR(rdev2->bdev->bd_dev);
1262 		d->minor = MINOR(rdev2->bdev->bd_dev);
1263 		if (is_active)
1264 			d->raid_disk = rdev2->raid_disk;
1265 		else
1266 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1267 		if (test_bit(Faulty, &rdev2->flags))
1268 			d->state = (1<<MD_DISK_FAULTY);
1269 		else if (is_active) {
1270 			d->state = (1<<MD_DISK_ACTIVE);
1271 			if (test_bit(In_sync, &rdev2->flags))
1272 				d->state |= (1<<MD_DISK_SYNC);
1273 			active++;
1274 			working++;
1275 		} else {
1276 			d->state = 0;
1277 			spare++;
1278 			working++;
1279 		}
1280 		if (test_bit(WriteMostly, &rdev2->flags))
1281 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1282 	}
1283 	/* now set the "removed" and "faulty" bits on any missing devices */
1284 	for (i=0 ; i < mddev->raid_disks ; i++) {
1285 		mdp_disk_t *d = &sb->disks[i];
1286 		if (d->state == 0 && d->number == 0) {
1287 			d->number = i;
1288 			d->raid_disk = i;
1289 			d->state = (1<<MD_DISK_REMOVED);
1290 			d->state |= (1<<MD_DISK_FAULTY);
1291 			failed++;
1292 		}
1293 	}
1294 	sb->nr_disks = nr_disks;
1295 	sb->active_disks = active;
1296 	sb->working_disks = working;
1297 	sb->failed_disks = failed;
1298 	sb->spare_disks = spare;
1299 
1300 	sb->this_disk = sb->disks[rdev->desc_nr];
1301 	sb->sb_csum = calc_sb_csum(sb);
1302 }
1303 
1304 /*
1305  * rdev_size_change for 0.90.0
1306  */
1307 static unsigned long long
1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1309 {
1310 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1311 		return 0; /* component must fit device */
1312 	if (rdev->mddev->bitmap_info.offset)
1313 		return 0; /* can't move bitmap */
1314 	rdev->sb_start = calc_dev_sboffset(rdev);
1315 	if (!num_sectors || num_sectors > rdev->sb_start)
1316 		num_sectors = rdev->sb_start;
1317 	/* Limit to 4TB as metadata cannot record more than that.
1318 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1319 	 */
1320 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1321 	    rdev->mddev->level >= 1)
1322 		num_sectors = (sector_t)(2ULL << 32) - 2;
1323 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1324 		       rdev->sb_page);
1325 	md_super_wait(rdev->mddev);
1326 	return num_sectors;
1327 }
1328 
1329 static int
1330 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1331 {
1332 	/* non-zero offset changes not possible with v0.90 */
1333 	return new_offset == 0;
1334 }
1335 
1336 /*
1337  * version 1 superblock
1338  */
1339 
1340 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1341 {
1342 	__le32 disk_csum;
1343 	u32 csum;
1344 	unsigned long long newcsum;
1345 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1346 	__le32 *isuper = (__le32*)sb;
1347 
1348 	disk_csum = sb->sb_csum;
1349 	sb->sb_csum = 0;
1350 	newcsum = 0;
1351 	for (; size >= 4; size -= 4)
1352 		newcsum += le32_to_cpu(*isuper++);
1353 
1354 	if (size == 2)
1355 		newcsum += le16_to_cpu(*(__le16*) isuper);
1356 
1357 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1358 	sb->sb_csum = disk_csum;
1359 	return cpu_to_le32(csum);
1360 }
1361 
1362 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1363 {
1364 	struct mdp_superblock_1 *sb;
1365 	int ret;
1366 	sector_t sb_start;
1367 	sector_t sectors;
1368 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1369 	int bmask;
1370 
1371 	/*
1372 	 * Calculate the position of the superblock in 512byte sectors.
1373 	 * It is always aligned to a 4K boundary and
1374 	 * depeding on minor_version, it can be:
1375 	 * 0: At least 8K, but less than 12K, from end of device
1376 	 * 1: At start of device
1377 	 * 2: 4K from start of device.
1378 	 */
1379 	switch(minor_version) {
1380 	case 0:
1381 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1382 		sb_start -= 8*2;
1383 		sb_start &= ~(sector_t)(4*2-1);
1384 		break;
1385 	case 1:
1386 		sb_start = 0;
1387 		break;
1388 	case 2:
1389 		sb_start = 8;
1390 		break;
1391 	default:
1392 		return -EINVAL;
1393 	}
1394 	rdev->sb_start = sb_start;
1395 
1396 	/* superblock is rarely larger than 1K, but it can be larger,
1397 	 * and it is safe to read 4k, so we do that
1398 	 */
1399 	ret = read_disk_sb(rdev, 4096);
1400 	if (ret) return ret;
1401 
1402 	sb = page_address(rdev->sb_page);
1403 
1404 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1405 	    sb->major_version != cpu_to_le32(1) ||
1406 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1407 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1408 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1409 		return -EINVAL;
1410 
1411 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1412 		printk("md: invalid superblock checksum on %s\n",
1413 			bdevname(rdev->bdev,b));
1414 		return -EINVAL;
1415 	}
1416 	if (le64_to_cpu(sb->data_size) < 10) {
1417 		printk("md: data_size too small on %s\n",
1418 		       bdevname(rdev->bdev,b));
1419 		return -EINVAL;
1420 	}
1421 	if (sb->pad0 ||
1422 	    sb->pad3[0] ||
1423 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1424 		/* Some padding is non-zero, might be a new feature */
1425 		return -EINVAL;
1426 
1427 	rdev->preferred_minor = 0xffff;
1428 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1429 	rdev->new_data_offset = rdev->data_offset;
1430 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1431 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1432 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1433 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1434 
1435 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1436 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1437 	if (rdev->sb_size & bmask)
1438 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1439 
1440 	if (minor_version
1441 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1442 		return -EINVAL;
1443 	if (minor_version
1444 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1445 		return -EINVAL;
1446 
1447 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1448 		rdev->desc_nr = -1;
1449 	else
1450 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1451 
1452 	if (!rdev->bb_page) {
1453 		rdev->bb_page = alloc_page(GFP_KERNEL);
1454 		if (!rdev->bb_page)
1455 			return -ENOMEM;
1456 	}
1457 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1458 	    rdev->badblocks.count == 0) {
1459 		/* need to load the bad block list.
1460 		 * Currently we limit it to one page.
1461 		 */
1462 		s32 offset;
1463 		sector_t bb_sector;
1464 		u64 *bbp;
1465 		int i;
1466 		int sectors = le16_to_cpu(sb->bblog_size);
1467 		if (sectors > (PAGE_SIZE / 512))
1468 			return -EINVAL;
1469 		offset = le32_to_cpu(sb->bblog_offset);
1470 		if (offset == 0)
1471 			return -EINVAL;
1472 		bb_sector = (long long)offset;
1473 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1474 				  rdev->bb_page, READ, true))
1475 			return -EIO;
1476 		bbp = (u64 *)page_address(rdev->bb_page);
1477 		rdev->badblocks.shift = sb->bblog_shift;
1478 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1479 			u64 bb = le64_to_cpu(*bbp);
1480 			int count = bb & (0x3ff);
1481 			u64 sector = bb >> 10;
1482 			sector <<= sb->bblog_shift;
1483 			count <<= sb->bblog_shift;
1484 			if (bb + 1 == 0)
1485 				break;
1486 			if (badblocks_set(&rdev->badblocks, sector, count, 1))
1487 				return -EINVAL;
1488 		}
1489 	} else if (sb->bblog_offset != 0)
1490 		rdev->badblocks.shift = 0;
1491 
1492 	if (!refdev) {
1493 		ret = 1;
1494 	} else {
1495 		__u64 ev1, ev2;
1496 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1497 
1498 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1499 		    sb->level != refsb->level ||
1500 		    sb->layout != refsb->layout ||
1501 		    sb->chunksize != refsb->chunksize) {
1502 			printk(KERN_WARNING "md: %s has strangely different"
1503 				" superblock to %s\n",
1504 				bdevname(rdev->bdev,b),
1505 				bdevname(refdev->bdev,b2));
1506 			return -EINVAL;
1507 		}
1508 		ev1 = le64_to_cpu(sb->events);
1509 		ev2 = le64_to_cpu(refsb->events);
1510 
1511 		if (ev1 > ev2)
1512 			ret = 1;
1513 		else
1514 			ret = 0;
1515 	}
1516 	if (minor_version) {
1517 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1518 		sectors -= rdev->data_offset;
1519 	} else
1520 		sectors = rdev->sb_start;
1521 	if (sectors < le64_to_cpu(sb->data_size))
1522 		return -EINVAL;
1523 	rdev->sectors = le64_to_cpu(sb->data_size);
1524 	return ret;
1525 }
1526 
1527 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1528 {
1529 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1530 	__u64 ev1 = le64_to_cpu(sb->events);
1531 
1532 	rdev->raid_disk = -1;
1533 	clear_bit(Faulty, &rdev->flags);
1534 	clear_bit(In_sync, &rdev->flags);
1535 	clear_bit(Bitmap_sync, &rdev->flags);
1536 	clear_bit(WriteMostly, &rdev->flags);
1537 
1538 	if (mddev->raid_disks == 0) {
1539 		mddev->major_version = 1;
1540 		mddev->patch_version = 0;
1541 		mddev->external = 0;
1542 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1543 		mddev->ctime = le64_to_cpu(sb->ctime);
1544 		mddev->utime = le64_to_cpu(sb->utime);
1545 		mddev->level = le32_to_cpu(sb->level);
1546 		mddev->clevel[0] = 0;
1547 		mddev->layout = le32_to_cpu(sb->layout);
1548 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1549 		mddev->dev_sectors = le64_to_cpu(sb->size);
1550 		mddev->events = ev1;
1551 		mddev->bitmap_info.offset = 0;
1552 		mddev->bitmap_info.space = 0;
1553 		/* Default location for bitmap is 1K after superblock
1554 		 * using 3K - total of 4K
1555 		 */
1556 		mddev->bitmap_info.default_offset = 1024 >> 9;
1557 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1558 		mddev->reshape_backwards = 0;
1559 
1560 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1561 		memcpy(mddev->uuid, sb->set_uuid, 16);
1562 
1563 		mddev->max_disks =  (4096-256)/2;
1564 
1565 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1566 		    mddev->bitmap_info.file == NULL) {
1567 			mddev->bitmap_info.offset =
1568 				(__s32)le32_to_cpu(sb->bitmap_offset);
1569 			/* Metadata doesn't record how much space is available.
1570 			 * For 1.0, we assume we can use up to the superblock
1571 			 * if before, else to 4K beyond superblock.
1572 			 * For others, assume no change is possible.
1573 			 */
1574 			if (mddev->minor_version > 0)
1575 				mddev->bitmap_info.space = 0;
1576 			else if (mddev->bitmap_info.offset > 0)
1577 				mddev->bitmap_info.space =
1578 					8 - mddev->bitmap_info.offset;
1579 			else
1580 				mddev->bitmap_info.space =
1581 					-mddev->bitmap_info.offset;
1582 		}
1583 
1584 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1585 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1586 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1587 			mddev->new_level = le32_to_cpu(sb->new_level);
1588 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1589 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1590 			if (mddev->delta_disks < 0 ||
1591 			    (mddev->delta_disks == 0 &&
1592 			     (le32_to_cpu(sb->feature_map)
1593 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1594 				mddev->reshape_backwards = 1;
1595 		} else {
1596 			mddev->reshape_position = MaxSector;
1597 			mddev->delta_disks = 0;
1598 			mddev->new_level = mddev->level;
1599 			mddev->new_layout = mddev->layout;
1600 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1601 		}
1602 
1603 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
1604 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1605 			if (mddev->recovery_cp == MaxSector)
1606 				set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1607 		}
1608 	} else if (mddev->pers == NULL) {
1609 		/* Insist of good event counter while assembling, except for
1610 		 * spares (which don't need an event count) */
1611 		++ev1;
1612 		if (rdev->desc_nr >= 0 &&
1613 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1614 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1615 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1616 			if (ev1 < mddev->events)
1617 				return -EINVAL;
1618 	} else if (mddev->bitmap) {
1619 		/* If adding to array with a bitmap, then we can accept an
1620 		 * older device, but not too old.
1621 		 */
1622 		if (ev1 < mddev->bitmap->events_cleared)
1623 			return 0;
1624 		if (ev1 < mddev->events)
1625 			set_bit(Bitmap_sync, &rdev->flags);
1626 	} else {
1627 		if (ev1 < mddev->events)
1628 			/* just a hot-add of a new device, leave raid_disk at -1 */
1629 			return 0;
1630 	}
1631 	if (mddev->level != LEVEL_MULTIPATH) {
1632 		int role;
1633 		if (rdev->desc_nr < 0 ||
1634 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1635 			role = MD_DISK_ROLE_SPARE;
1636 			rdev->desc_nr = -1;
1637 		} else
1638 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1639 		switch(role) {
1640 		case MD_DISK_ROLE_SPARE: /* spare */
1641 			break;
1642 		case MD_DISK_ROLE_FAULTY: /* faulty */
1643 			set_bit(Faulty, &rdev->flags);
1644 			break;
1645 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1646 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1647 				/* journal device without journal feature */
1648 				printk(KERN_WARNING
1649 				  "md: journal device provided without journal feature, ignoring the device\n");
1650 				return -EINVAL;
1651 			}
1652 			set_bit(Journal, &rdev->flags);
1653 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1654 			rdev->raid_disk = 0;
1655 			break;
1656 		default:
1657 			rdev->saved_raid_disk = role;
1658 			if ((le32_to_cpu(sb->feature_map) &
1659 			     MD_FEATURE_RECOVERY_OFFSET)) {
1660 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1661 				if (!(le32_to_cpu(sb->feature_map) &
1662 				      MD_FEATURE_RECOVERY_BITMAP))
1663 					rdev->saved_raid_disk = -1;
1664 			} else
1665 				set_bit(In_sync, &rdev->flags);
1666 			rdev->raid_disk = role;
1667 			break;
1668 		}
1669 		if (sb->devflags & WriteMostly1)
1670 			set_bit(WriteMostly, &rdev->flags);
1671 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1672 			set_bit(Replacement, &rdev->flags);
1673 	} else /* MULTIPATH are always insync */
1674 		set_bit(In_sync, &rdev->flags);
1675 
1676 	return 0;
1677 }
1678 
1679 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1680 {
1681 	struct mdp_superblock_1 *sb;
1682 	struct md_rdev *rdev2;
1683 	int max_dev, i;
1684 	/* make rdev->sb match mddev and rdev data. */
1685 
1686 	sb = page_address(rdev->sb_page);
1687 
1688 	sb->feature_map = 0;
1689 	sb->pad0 = 0;
1690 	sb->recovery_offset = cpu_to_le64(0);
1691 	memset(sb->pad3, 0, sizeof(sb->pad3));
1692 
1693 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1694 	sb->events = cpu_to_le64(mddev->events);
1695 	if (mddev->in_sync)
1696 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1697 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1698 		sb->resync_offset = cpu_to_le64(MaxSector);
1699 	else
1700 		sb->resync_offset = cpu_to_le64(0);
1701 
1702 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1703 
1704 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1705 	sb->size = cpu_to_le64(mddev->dev_sectors);
1706 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1707 	sb->level = cpu_to_le32(mddev->level);
1708 	sb->layout = cpu_to_le32(mddev->layout);
1709 
1710 	if (test_bit(WriteMostly, &rdev->flags))
1711 		sb->devflags |= WriteMostly1;
1712 	else
1713 		sb->devflags &= ~WriteMostly1;
1714 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1715 	sb->data_size = cpu_to_le64(rdev->sectors);
1716 
1717 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1718 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1719 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1720 	}
1721 
1722 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1723 	    !test_bit(In_sync, &rdev->flags)) {
1724 		sb->feature_map |=
1725 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1726 		sb->recovery_offset =
1727 			cpu_to_le64(rdev->recovery_offset);
1728 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1729 			sb->feature_map |=
1730 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1731 	}
1732 	/* Note: recovery_offset and journal_tail share space  */
1733 	if (test_bit(Journal, &rdev->flags))
1734 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1735 	if (test_bit(Replacement, &rdev->flags))
1736 		sb->feature_map |=
1737 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1738 
1739 	if (mddev->reshape_position != MaxSector) {
1740 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1741 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1742 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1743 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1744 		sb->new_level = cpu_to_le32(mddev->new_level);
1745 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1746 		if (mddev->delta_disks == 0 &&
1747 		    mddev->reshape_backwards)
1748 			sb->feature_map
1749 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1750 		if (rdev->new_data_offset != rdev->data_offset) {
1751 			sb->feature_map
1752 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1753 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1754 							     - rdev->data_offset));
1755 		}
1756 	}
1757 
1758 	if (mddev_is_clustered(mddev))
1759 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1760 
1761 	if (rdev->badblocks.count == 0)
1762 		/* Nothing to do for bad blocks*/ ;
1763 	else if (sb->bblog_offset == 0)
1764 		/* Cannot record bad blocks on this device */
1765 		md_error(mddev, rdev);
1766 	else {
1767 		struct badblocks *bb = &rdev->badblocks;
1768 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1769 		u64 *p = bb->page;
1770 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1771 		if (bb->changed) {
1772 			unsigned seq;
1773 
1774 retry:
1775 			seq = read_seqbegin(&bb->lock);
1776 
1777 			memset(bbp, 0xff, PAGE_SIZE);
1778 
1779 			for (i = 0 ; i < bb->count ; i++) {
1780 				u64 internal_bb = p[i];
1781 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1782 						| BB_LEN(internal_bb));
1783 				bbp[i] = cpu_to_le64(store_bb);
1784 			}
1785 			bb->changed = 0;
1786 			if (read_seqretry(&bb->lock, seq))
1787 				goto retry;
1788 
1789 			bb->sector = (rdev->sb_start +
1790 				      (int)le32_to_cpu(sb->bblog_offset));
1791 			bb->size = le16_to_cpu(sb->bblog_size);
1792 		}
1793 	}
1794 
1795 	max_dev = 0;
1796 	rdev_for_each(rdev2, mddev)
1797 		if (rdev2->desc_nr+1 > max_dev)
1798 			max_dev = rdev2->desc_nr+1;
1799 
1800 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1801 		int bmask;
1802 		sb->max_dev = cpu_to_le32(max_dev);
1803 		rdev->sb_size = max_dev * 2 + 256;
1804 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1805 		if (rdev->sb_size & bmask)
1806 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1807 	} else
1808 		max_dev = le32_to_cpu(sb->max_dev);
1809 
1810 	for (i=0; i<max_dev;i++)
1811 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1812 
1813 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1814 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1815 
1816 	rdev_for_each(rdev2, mddev) {
1817 		i = rdev2->desc_nr;
1818 		if (test_bit(Faulty, &rdev2->flags))
1819 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1820 		else if (test_bit(In_sync, &rdev2->flags))
1821 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1822 		else if (test_bit(Journal, &rdev2->flags))
1823 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1824 		else if (rdev2->raid_disk >= 0)
1825 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1826 		else
1827 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1828 	}
1829 
1830 	sb->sb_csum = calc_sb_1_csum(sb);
1831 }
1832 
1833 static unsigned long long
1834 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1835 {
1836 	struct mdp_superblock_1 *sb;
1837 	sector_t max_sectors;
1838 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1839 		return 0; /* component must fit device */
1840 	if (rdev->data_offset != rdev->new_data_offset)
1841 		return 0; /* too confusing */
1842 	if (rdev->sb_start < rdev->data_offset) {
1843 		/* minor versions 1 and 2; superblock before data */
1844 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1845 		max_sectors -= rdev->data_offset;
1846 		if (!num_sectors || num_sectors > max_sectors)
1847 			num_sectors = max_sectors;
1848 	} else if (rdev->mddev->bitmap_info.offset) {
1849 		/* minor version 0 with bitmap we can't move */
1850 		return 0;
1851 	} else {
1852 		/* minor version 0; superblock after data */
1853 		sector_t sb_start;
1854 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1855 		sb_start &= ~(sector_t)(4*2 - 1);
1856 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1857 		if (!num_sectors || num_sectors > max_sectors)
1858 			num_sectors = max_sectors;
1859 		rdev->sb_start = sb_start;
1860 	}
1861 	sb = page_address(rdev->sb_page);
1862 	sb->data_size = cpu_to_le64(num_sectors);
1863 	sb->super_offset = rdev->sb_start;
1864 	sb->sb_csum = calc_sb_1_csum(sb);
1865 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1866 		       rdev->sb_page);
1867 	md_super_wait(rdev->mddev);
1868 	return num_sectors;
1869 
1870 }
1871 
1872 static int
1873 super_1_allow_new_offset(struct md_rdev *rdev,
1874 			 unsigned long long new_offset)
1875 {
1876 	/* All necessary checks on new >= old have been done */
1877 	struct bitmap *bitmap;
1878 	if (new_offset >= rdev->data_offset)
1879 		return 1;
1880 
1881 	/* with 1.0 metadata, there is no metadata to tread on
1882 	 * so we can always move back */
1883 	if (rdev->mddev->minor_version == 0)
1884 		return 1;
1885 
1886 	/* otherwise we must be sure not to step on
1887 	 * any metadata, so stay:
1888 	 * 36K beyond start of superblock
1889 	 * beyond end of badblocks
1890 	 * beyond write-intent bitmap
1891 	 */
1892 	if (rdev->sb_start + (32+4)*2 > new_offset)
1893 		return 0;
1894 	bitmap = rdev->mddev->bitmap;
1895 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1896 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1897 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1898 		return 0;
1899 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1900 		return 0;
1901 
1902 	return 1;
1903 }
1904 
1905 static struct super_type super_types[] = {
1906 	[0] = {
1907 		.name	= "0.90.0",
1908 		.owner	= THIS_MODULE,
1909 		.load_super	    = super_90_load,
1910 		.validate_super	    = super_90_validate,
1911 		.sync_super	    = super_90_sync,
1912 		.rdev_size_change   = super_90_rdev_size_change,
1913 		.allow_new_offset   = super_90_allow_new_offset,
1914 	},
1915 	[1] = {
1916 		.name	= "md-1",
1917 		.owner	= THIS_MODULE,
1918 		.load_super	    = super_1_load,
1919 		.validate_super	    = super_1_validate,
1920 		.sync_super	    = super_1_sync,
1921 		.rdev_size_change   = super_1_rdev_size_change,
1922 		.allow_new_offset   = super_1_allow_new_offset,
1923 	},
1924 };
1925 
1926 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1927 {
1928 	if (mddev->sync_super) {
1929 		mddev->sync_super(mddev, rdev);
1930 		return;
1931 	}
1932 
1933 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1934 
1935 	super_types[mddev->major_version].sync_super(mddev, rdev);
1936 }
1937 
1938 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1939 {
1940 	struct md_rdev *rdev, *rdev2;
1941 
1942 	rcu_read_lock();
1943 	rdev_for_each_rcu(rdev, mddev1) {
1944 		if (test_bit(Faulty, &rdev->flags) ||
1945 		    test_bit(Journal, &rdev->flags) ||
1946 		    rdev->raid_disk == -1)
1947 			continue;
1948 		rdev_for_each_rcu(rdev2, mddev2) {
1949 			if (test_bit(Faulty, &rdev2->flags) ||
1950 			    test_bit(Journal, &rdev2->flags) ||
1951 			    rdev2->raid_disk == -1)
1952 				continue;
1953 			if (rdev->bdev->bd_contains ==
1954 			    rdev2->bdev->bd_contains) {
1955 				rcu_read_unlock();
1956 				return 1;
1957 			}
1958 		}
1959 	}
1960 	rcu_read_unlock();
1961 	return 0;
1962 }
1963 
1964 static LIST_HEAD(pending_raid_disks);
1965 
1966 /*
1967  * Try to register data integrity profile for an mddev
1968  *
1969  * This is called when an array is started and after a disk has been kicked
1970  * from the array. It only succeeds if all working and active component devices
1971  * are integrity capable with matching profiles.
1972  */
1973 int md_integrity_register(struct mddev *mddev)
1974 {
1975 	struct md_rdev *rdev, *reference = NULL;
1976 
1977 	if (list_empty(&mddev->disks))
1978 		return 0; /* nothing to do */
1979 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1980 		return 0; /* shouldn't register, or already is */
1981 	rdev_for_each(rdev, mddev) {
1982 		/* skip spares and non-functional disks */
1983 		if (test_bit(Faulty, &rdev->flags))
1984 			continue;
1985 		if (rdev->raid_disk < 0)
1986 			continue;
1987 		if (!reference) {
1988 			/* Use the first rdev as the reference */
1989 			reference = rdev;
1990 			continue;
1991 		}
1992 		/* does this rdev's profile match the reference profile? */
1993 		if (blk_integrity_compare(reference->bdev->bd_disk,
1994 				rdev->bdev->bd_disk) < 0)
1995 			return -EINVAL;
1996 	}
1997 	if (!reference || !bdev_get_integrity(reference->bdev))
1998 		return 0;
1999 	/*
2000 	 * All component devices are integrity capable and have matching
2001 	 * profiles, register the common profile for the md device.
2002 	 */
2003 	blk_integrity_register(mddev->gendisk,
2004 			       bdev_get_integrity(reference->bdev));
2005 
2006 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2007 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2008 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2009 		       mdname(mddev));
2010 		return -EINVAL;
2011 	}
2012 	return 0;
2013 }
2014 EXPORT_SYMBOL(md_integrity_register);
2015 
2016 /*
2017  * Attempt to add an rdev, but only if it is consistent with the current
2018  * integrity profile
2019  */
2020 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2021 {
2022 	struct blk_integrity *bi_rdev;
2023 	struct blk_integrity *bi_mddev;
2024 	char name[BDEVNAME_SIZE];
2025 
2026 	if (!mddev->gendisk)
2027 		return 0;
2028 
2029 	bi_rdev = bdev_get_integrity(rdev->bdev);
2030 	bi_mddev = blk_get_integrity(mddev->gendisk);
2031 
2032 	if (!bi_mddev) /* nothing to do */
2033 		return 0;
2034 
2035 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2036 		printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2037 				mdname(mddev), bdevname(rdev->bdev, name));
2038 		return -ENXIO;
2039 	}
2040 
2041 	return 0;
2042 }
2043 EXPORT_SYMBOL(md_integrity_add_rdev);
2044 
2045 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2046 {
2047 	char b[BDEVNAME_SIZE];
2048 	struct kobject *ko;
2049 	int err;
2050 
2051 	/* prevent duplicates */
2052 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2053 		return -EEXIST;
2054 
2055 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2056 	if (!test_bit(Journal, &rdev->flags) &&
2057 	    rdev->sectors &&
2058 	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2059 		if (mddev->pers) {
2060 			/* Cannot change size, so fail
2061 			 * If mddev->level <= 0, then we don't care
2062 			 * about aligning sizes (e.g. linear)
2063 			 */
2064 			if (mddev->level > 0)
2065 				return -ENOSPC;
2066 		} else
2067 			mddev->dev_sectors = rdev->sectors;
2068 	}
2069 
2070 	/* Verify rdev->desc_nr is unique.
2071 	 * If it is -1, assign a free number, else
2072 	 * check number is not in use
2073 	 */
2074 	rcu_read_lock();
2075 	if (rdev->desc_nr < 0) {
2076 		int choice = 0;
2077 		if (mddev->pers)
2078 			choice = mddev->raid_disks;
2079 		while (md_find_rdev_nr_rcu(mddev, choice))
2080 			choice++;
2081 		rdev->desc_nr = choice;
2082 	} else {
2083 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2084 			rcu_read_unlock();
2085 			return -EBUSY;
2086 		}
2087 	}
2088 	rcu_read_unlock();
2089 	if (!test_bit(Journal, &rdev->flags) &&
2090 	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2091 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2092 		       mdname(mddev), mddev->max_disks);
2093 		return -EBUSY;
2094 	}
2095 	bdevname(rdev->bdev,b);
2096 	strreplace(b, '/', '!');
2097 
2098 	rdev->mddev = mddev;
2099 	printk(KERN_INFO "md: bind<%s>\n", b);
2100 
2101 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2102 		goto fail;
2103 
2104 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2105 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2106 		/* failure here is OK */;
2107 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2108 
2109 	list_add_rcu(&rdev->same_set, &mddev->disks);
2110 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2111 
2112 	/* May as well allow recovery to be retried once */
2113 	mddev->recovery_disabled++;
2114 
2115 	return 0;
2116 
2117  fail:
2118 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2119 	       b, mdname(mddev));
2120 	return err;
2121 }
2122 
2123 static void md_delayed_delete(struct work_struct *ws)
2124 {
2125 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2126 	kobject_del(&rdev->kobj);
2127 	kobject_put(&rdev->kobj);
2128 }
2129 
2130 static void unbind_rdev_from_array(struct md_rdev *rdev)
2131 {
2132 	char b[BDEVNAME_SIZE];
2133 
2134 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2135 	list_del_rcu(&rdev->same_set);
2136 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2137 	rdev->mddev = NULL;
2138 	sysfs_remove_link(&rdev->kobj, "block");
2139 	sysfs_put(rdev->sysfs_state);
2140 	rdev->sysfs_state = NULL;
2141 	rdev->badblocks.count = 0;
2142 	/* We need to delay this, otherwise we can deadlock when
2143 	 * writing to 'remove' to "dev/state".  We also need
2144 	 * to delay it due to rcu usage.
2145 	 */
2146 	synchronize_rcu();
2147 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2148 	kobject_get(&rdev->kobj);
2149 	queue_work(md_misc_wq, &rdev->del_work);
2150 }
2151 
2152 /*
2153  * prevent the device from being mounted, repartitioned or
2154  * otherwise reused by a RAID array (or any other kernel
2155  * subsystem), by bd_claiming the device.
2156  */
2157 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2158 {
2159 	int err = 0;
2160 	struct block_device *bdev;
2161 	char b[BDEVNAME_SIZE];
2162 
2163 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2164 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2165 	if (IS_ERR(bdev)) {
2166 		printk(KERN_ERR "md: could not open %s.\n",
2167 			__bdevname(dev, b));
2168 		return PTR_ERR(bdev);
2169 	}
2170 	rdev->bdev = bdev;
2171 	return err;
2172 }
2173 
2174 static void unlock_rdev(struct md_rdev *rdev)
2175 {
2176 	struct block_device *bdev = rdev->bdev;
2177 	rdev->bdev = NULL;
2178 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2179 }
2180 
2181 void md_autodetect_dev(dev_t dev);
2182 
2183 static void export_rdev(struct md_rdev *rdev)
2184 {
2185 	char b[BDEVNAME_SIZE];
2186 
2187 	printk(KERN_INFO "md: export_rdev(%s)\n",
2188 		bdevname(rdev->bdev,b));
2189 	md_rdev_clear(rdev);
2190 #ifndef MODULE
2191 	if (test_bit(AutoDetected, &rdev->flags))
2192 		md_autodetect_dev(rdev->bdev->bd_dev);
2193 #endif
2194 	unlock_rdev(rdev);
2195 	kobject_put(&rdev->kobj);
2196 }
2197 
2198 void md_kick_rdev_from_array(struct md_rdev *rdev)
2199 {
2200 	unbind_rdev_from_array(rdev);
2201 	export_rdev(rdev);
2202 }
2203 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2204 
2205 static void export_array(struct mddev *mddev)
2206 {
2207 	struct md_rdev *rdev;
2208 
2209 	while (!list_empty(&mddev->disks)) {
2210 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2211 					same_set);
2212 		md_kick_rdev_from_array(rdev);
2213 	}
2214 	mddev->raid_disks = 0;
2215 	mddev->major_version = 0;
2216 }
2217 
2218 static void sync_sbs(struct mddev *mddev, int nospares)
2219 {
2220 	/* Update each superblock (in-memory image), but
2221 	 * if we are allowed to, skip spares which already
2222 	 * have the right event counter, or have one earlier
2223 	 * (which would mean they aren't being marked as dirty
2224 	 * with the rest of the array)
2225 	 */
2226 	struct md_rdev *rdev;
2227 	rdev_for_each(rdev, mddev) {
2228 		if (rdev->sb_events == mddev->events ||
2229 		    (nospares &&
2230 		     rdev->raid_disk < 0 &&
2231 		     rdev->sb_events+1 == mddev->events)) {
2232 			/* Don't update this superblock */
2233 			rdev->sb_loaded = 2;
2234 		} else {
2235 			sync_super(mddev, rdev);
2236 			rdev->sb_loaded = 1;
2237 		}
2238 	}
2239 }
2240 
2241 static bool does_sb_need_changing(struct mddev *mddev)
2242 {
2243 	struct md_rdev *rdev;
2244 	struct mdp_superblock_1 *sb;
2245 	int role;
2246 
2247 	/* Find a good rdev */
2248 	rdev_for_each(rdev, mddev)
2249 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2250 			break;
2251 
2252 	/* No good device found. */
2253 	if (!rdev)
2254 		return false;
2255 
2256 	sb = page_address(rdev->sb_page);
2257 	/* Check if a device has become faulty or a spare become active */
2258 	rdev_for_each(rdev, mddev) {
2259 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2260 		/* Device activated? */
2261 		if (role == 0xffff && rdev->raid_disk >=0 &&
2262 		    !test_bit(Faulty, &rdev->flags))
2263 			return true;
2264 		/* Device turned faulty? */
2265 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2266 			return true;
2267 	}
2268 
2269 	/* Check if any mddev parameters have changed */
2270 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2271 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2272 	    (mddev->layout != le64_to_cpu(sb->layout)) ||
2273 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2274 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2275 		return true;
2276 
2277 	return false;
2278 }
2279 
2280 void md_update_sb(struct mddev *mddev, int force_change)
2281 {
2282 	struct md_rdev *rdev;
2283 	int sync_req;
2284 	int nospares = 0;
2285 	int any_badblocks_changed = 0;
2286 	int ret = -1;
2287 
2288 	if (mddev->ro) {
2289 		if (force_change)
2290 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2291 		return;
2292 	}
2293 
2294 	if (mddev_is_clustered(mddev)) {
2295 		if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2296 			force_change = 1;
2297 		ret = md_cluster_ops->metadata_update_start(mddev);
2298 		/* Has someone else has updated the sb */
2299 		if (!does_sb_need_changing(mddev)) {
2300 			if (ret == 0)
2301 				md_cluster_ops->metadata_update_cancel(mddev);
2302 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2303 			return;
2304 		}
2305 	}
2306 repeat:
2307 	/* First make sure individual recovery_offsets are correct */
2308 	rdev_for_each(rdev, mddev) {
2309 		if (rdev->raid_disk >= 0 &&
2310 		    mddev->delta_disks >= 0 &&
2311 		    !test_bit(Journal, &rdev->flags) &&
2312 		    !test_bit(In_sync, &rdev->flags) &&
2313 		    mddev->curr_resync_completed > rdev->recovery_offset)
2314 				rdev->recovery_offset = mddev->curr_resync_completed;
2315 
2316 	}
2317 	if (!mddev->persistent) {
2318 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2319 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2320 		if (!mddev->external) {
2321 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2322 			rdev_for_each(rdev, mddev) {
2323 				if (rdev->badblocks.changed) {
2324 					rdev->badblocks.changed = 0;
2325 					ack_all_badblocks(&rdev->badblocks);
2326 					md_error(mddev, rdev);
2327 				}
2328 				clear_bit(Blocked, &rdev->flags);
2329 				clear_bit(BlockedBadBlocks, &rdev->flags);
2330 				wake_up(&rdev->blocked_wait);
2331 			}
2332 		}
2333 		wake_up(&mddev->sb_wait);
2334 		return;
2335 	}
2336 
2337 	spin_lock(&mddev->lock);
2338 
2339 	mddev->utime = ktime_get_real_seconds();
2340 
2341 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2342 		force_change = 1;
2343 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2344 		/* just a clean<-> dirty transition, possibly leave spares alone,
2345 		 * though if events isn't the right even/odd, we will have to do
2346 		 * spares after all
2347 		 */
2348 		nospares = 1;
2349 	if (force_change)
2350 		nospares = 0;
2351 	if (mddev->degraded)
2352 		/* If the array is degraded, then skipping spares is both
2353 		 * dangerous and fairly pointless.
2354 		 * Dangerous because a device that was removed from the array
2355 		 * might have a event_count that still looks up-to-date,
2356 		 * so it can be re-added without a resync.
2357 		 * Pointless because if there are any spares to skip,
2358 		 * then a recovery will happen and soon that array won't
2359 		 * be degraded any more and the spare can go back to sleep then.
2360 		 */
2361 		nospares = 0;
2362 
2363 	sync_req = mddev->in_sync;
2364 
2365 	/* If this is just a dirty<->clean transition, and the array is clean
2366 	 * and 'events' is odd, we can roll back to the previous clean state */
2367 	if (nospares
2368 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2369 	    && mddev->can_decrease_events
2370 	    && mddev->events != 1) {
2371 		mddev->events--;
2372 		mddev->can_decrease_events = 0;
2373 	} else {
2374 		/* otherwise we have to go forward and ... */
2375 		mddev->events ++;
2376 		mddev->can_decrease_events = nospares;
2377 	}
2378 
2379 	/*
2380 	 * This 64-bit counter should never wrap.
2381 	 * Either we are in around ~1 trillion A.C., assuming
2382 	 * 1 reboot per second, or we have a bug...
2383 	 */
2384 	WARN_ON(mddev->events == 0);
2385 
2386 	rdev_for_each(rdev, mddev) {
2387 		if (rdev->badblocks.changed)
2388 			any_badblocks_changed++;
2389 		if (test_bit(Faulty, &rdev->flags))
2390 			set_bit(FaultRecorded, &rdev->flags);
2391 	}
2392 
2393 	sync_sbs(mddev, nospares);
2394 	spin_unlock(&mddev->lock);
2395 
2396 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2397 		 mdname(mddev), mddev->in_sync);
2398 
2399 	bitmap_update_sb(mddev->bitmap);
2400 	rdev_for_each(rdev, mddev) {
2401 		char b[BDEVNAME_SIZE];
2402 
2403 		if (rdev->sb_loaded != 1)
2404 			continue; /* no noise on spare devices */
2405 
2406 		if (!test_bit(Faulty, &rdev->flags)) {
2407 			md_super_write(mddev,rdev,
2408 				       rdev->sb_start, rdev->sb_size,
2409 				       rdev->sb_page);
2410 			pr_debug("md: (write) %s's sb offset: %llu\n",
2411 				 bdevname(rdev->bdev, b),
2412 				 (unsigned long long)rdev->sb_start);
2413 			rdev->sb_events = mddev->events;
2414 			if (rdev->badblocks.size) {
2415 				md_super_write(mddev, rdev,
2416 					       rdev->badblocks.sector,
2417 					       rdev->badblocks.size << 9,
2418 					       rdev->bb_page);
2419 				rdev->badblocks.size = 0;
2420 			}
2421 
2422 		} else
2423 			pr_debug("md: %s (skipping faulty)\n",
2424 				 bdevname(rdev->bdev, b));
2425 
2426 		if (mddev->level == LEVEL_MULTIPATH)
2427 			/* only need to write one superblock... */
2428 			break;
2429 	}
2430 	md_super_wait(mddev);
2431 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2432 
2433 	spin_lock(&mddev->lock);
2434 	if (mddev->in_sync != sync_req ||
2435 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2436 		/* have to write it out again */
2437 		spin_unlock(&mddev->lock);
2438 		goto repeat;
2439 	}
2440 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2441 	spin_unlock(&mddev->lock);
2442 	wake_up(&mddev->sb_wait);
2443 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2444 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2445 
2446 	rdev_for_each(rdev, mddev) {
2447 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2448 			clear_bit(Blocked, &rdev->flags);
2449 
2450 		if (any_badblocks_changed)
2451 			ack_all_badblocks(&rdev->badblocks);
2452 		clear_bit(BlockedBadBlocks, &rdev->flags);
2453 		wake_up(&rdev->blocked_wait);
2454 	}
2455 
2456 	if (mddev_is_clustered(mddev) && ret == 0)
2457 		md_cluster_ops->metadata_update_finish(mddev);
2458 }
2459 EXPORT_SYMBOL(md_update_sb);
2460 
2461 static int add_bound_rdev(struct md_rdev *rdev)
2462 {
2463 	struct mddev *mddev = rdev->mddev;
2464 	int err = 0;
2465 	bool add_journal = test_bit(Journal, &rdev->flags);
2466 
2467 	if (!mddev->pers->hot_remove_disk || add_journal) {
2468 		/* If there is hot_add_disk but no hot_remove_disk
2469 		 * then added disks for geometry changes,
2470 		 * and should be added immediately.
2471 		 */
2472 		super_types[mddev->major_version].
2473 			validate_super(mddev, rdev);
2474 		if (add_journal)
2475 			mddev_suspend(mddev);
2476 		err = mddev->pers->hot_add_disk(mddev, rdev);
2477 		if (add_journal)
2478 			mddev_resume(mddev);
2479 		if (err) {
2480 			unbind_rdev_from_array(rdev);
2481 			export_rdev(rdev);
2482 			return err;
2483 		}
2484 	}
2485 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2486 
2487 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2488 	if (mddev->degraded)
2489 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2490 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2491 	md_new_event(mddev);
2492 	md_wakeup_thread(mddev->thread);
2493 	return 0;
2494 }
2495 
2496 /* words written to sysfs files may, or may not, be \n terminated.
2497  * We want to accept with case. For this we use cmd_match.
2498  */
2499 static int cmd_match(const char *cmd, const char *str)
2500 {
2501 	/* See if cmd, written into a sysfs file, matches
2502 	 * str.  They must either be the same, or cmd can
2503 	 * have a trailing newline
2504 	 */
2505 	while (*cmd && *str && *cmd == *str) {
2506 		cmd++;
2507 		str++;
2508 	}
2509 	if (*cmd == '\n')
2510 		cmd++;
2511 	if (*str || *cmd)
2512 		return 0;
2513 	return 1;
2514 }
2515 
2516 struct rdev_sysfs_entry {
2517 	struct attribute attr;
2518 	ssize_t (*show)(struct md_rdev *, char *);
2519 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2520 };
2521 
2522 static ssize_t
2523 state_show(struct md_rdev *rdev, char *page)
2524 {
2525 	char *sep = "";
2526 	size_t len = 0;
2527 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2528 
2529 	if (test_bit(Faulty, &flags) ||
2530 	    rdev->badblocks.unacked_exist) {
2531 		len+= sprintf(page+len, "%sfaulty",sep);
2532 		sep = ",";
2533 	}
2534 	if (test_bit(In_sync, &flags)) {
2535 		len += sprintf(page+len, "%sin_sync",sep);
2536 		sep = ",";
2537 	}
2538 	if (test_bit(Journal, &flags)) {
2539 		len += sprintf(page+len, "%sjournal",sep);
2540 		sep = ",";
2541 	}
2542 	if (test_bit(WriteMostly, &flags)) {
2543 		len += sprintf(page+len, "%swrite_mostly",sep);
2544 		sep = ",";
2545 	}
2546 	if (test_bit(Blocked, &flags) ||
2547 	    (rdev->badblocks.unacked_exist
2548 	     && !test_bit(Faulty, &flags))) {
2549 		len += sprintf(page+len, "%sblocked", sep);
2550 		sep = ",";
2551 	}
2552 	if (!test_bit(Faulty, &flags) &&
2553 	    !test_bit(Journal, &flags) &&
2554 	    !test_bit(In_sync, &flags)) {
2555 		len += sprintf(page+len, "%sspare", sep);
2556 		sep = ",";
2557 	}
2558 	if (test_bit(WriteErrorSeen, &flags)) {
2559 		len += sprintf(page+len, "%swrite_error", sep);
2560 		sep = ",";
2561 	}
2562 	if (test_bit(WantReplacement, &flags)) {
2563 		len += sprintf(page+len, "%swant_replacement", sep);
2564 		sep = ",";
2565 	}
2566 	if (test_bit(Replacement, &flags)) {
2567 		len += sprintf(page+len, "%sreplacement", sep);
2568 		sep = ",";
2569 	}
2570 
2571 	return len+sprintf(page+len, "\n");
2572 }
2573 
2574 static ssize_t
2575 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2576 {
2577 	/* can write
2578 	 *  faulty  - simulates an error
2579 	 *  remove  - disconnects the device
2580 	 *  writemostly - sets write_mostly
2581 	 *  -writemostly - clears write_mostly
2582 	 *  blocked - sets the Blocked flags
2583 	 *  -blocked - clears the Blocked and possibly simulates an error
2584 	 *  insync - sets Insync providing device isn't active
2585 	 *  -insync - clear Insync for a device with a slot assigned,
2586 	 *            so that it gets rebuilt based on bitmap
2587 	 *  write_error - sets WriteErrorSeen
2588 	 *  -write_error - clears WriteErrorSeen
2589 	 */
2590 	int err = -EINVAL;
2591 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2592 		md_error(rdev->mddev, rdev);
2593 		if (test_bit(Faulty, &rdev->flags))
2594 			err = 0;
2595 		else
2596 			err = -EBUSY;
2597 	} else if (cmd_match(buf, "remove")) {
2598 		if (rdev->raid_disk >= 0)
2599 			err = -EBUSY;
2600 		else {
2601 			struct mddev *mddev = rdev->mddev;
2602 			err = 0;
2603 			if (mddev_is_clustered(mddev))
2604 				err = md_cluster_ops->remove_disk(mddev, rdev);
2605 
2606 			if (err == 0) {
2607 				md_kick_rdev_from_array(rdev);
2608 				if (mddev->pers)
2609 					md_update_sb(mddev, 1);
2610 				md_new_event(mddev);
2611 			}
2612 		}
2613 	} else if (cmd_match(buf, "writemostly")) {
2614 		set_bit(WriteMostly, &rdev->flags);
2615 		err = 0;
2616 	} else if (cmd_match(buf, "-writemostly")) {
2617 		clear_bit(WriteMostly, &rdev->flags);
2618 		err = 0;
2619 	} else if (cmd_match(buf, "blocked")) {
2620 		set_bit(Blocked, &rdev->flags);
2621 		err = 0;
2622 	} else if (cmd_match(buf, "-blocked")) {
2623 		if (!test_bit(Faulty, &rdev->flags) &&
2624 		    rdev->badblocks.unacked_exist) {
2625 			/* metadata handler doesn't understand badblocks,
2626 			 * so we need to fail the device
2627 			 */
2628 			md_error(rdev->mddev, rdev);
2629 		}
2630 		clear_bit(Blocked, &rdev->flags);
2631 		clear_bit(BlockedBadBlocks, &rdev->flags);
2632 		wake_up(&rdev->blocked_wait);
2633 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2634 		md_wakeup_thread(rdev->mddev->thread);
2635 
2636 		err = 0;
2637 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2638 		set_bit(In_sync, &rdev->flags);
2639 		err = 0;
2640 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2641 		   !test_bit(Journal, &rdev->flags)) {
2642 		if (rdev->mddev->pers == NULL) {
2643 			clear_bit(In_sync, &rdev->flags);
2644 			rdev->saved_raid_disk = rdev->raid_disk;
2645 			rdev->raid_disk = -1;
2646 			err = 0;
2647 		}
2648 	} else if (cmd_match(buf, "write_error")) {
2649 		set_bit(WriteErrorSeen, &rdev->flags);
2650 		err = 0;
2651 	} else if (cmd_match(buf, "-write_error")) {
2652 		clear_bit(WriteErrorSeen, &rdev->flags);
2653 		err = 0;
2654 	} else if (cmd_match(buf, "want_replacement")) {
2655 		/* Any non-spare device that is not a replacement can
2656 		 * become want_replacement at any time, but we then need to
2657 		 * check if recovery is needed.
2658 		 */
2659 		if (rdev->raid_disk >= 0 &&
2660 		    !test_bit(Journal, &rdev->flags) &&
2661 		    !test_bit(Replacement, &rdev->flags))
2662 			set_bit(WantReplacement, &rdev->flags);
2663 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2664 		md_wakeup_thread(rdev->mddev->thread);
2665 		err = 0;
2666 	} else if (cmd_match(buf, "-want_replacement")) {
2667 		/* Clearing 'want_replacement' is always allowed.
2668 		 * Once replacements starts it is too late though.
2669 		 */
2670 		err = 0;
2671 		clear_bit(WantReplacement, &rdev->flags);
2672 	} else if (cmd_match(buf, "replacement")) {
2673 		/* Can only set a device as a replacement when array has not
2674 		 * yet been started.  Once running, replacement is automatic
2675 		 * from spares, or by assigning 'slot'.
2676 		 */
2677 		if (rdev->mddev->pers)
2678 			err = -EBUSY;
2679 		else {
2680 			set_bit(Replacement, &rdev->flags);
2681 			err = 0;
2682 		}
2683 	} else if (cmd_match(buf, "-replacement")) {
2684 		/* Similarly, can only clear Replacement before start */
2685 		if (rdev->mddev->pers)
2686 			err = -EBUSY;
2687 		else {
2688 			clear_bit(Replacement, &rdev->flags);
2689 			err = 0;
2690 		}
2691 	} else if (cmd_match(buf, "re-add")) {
2692 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2693 			/* clear_bit is performed _after_ all the devices
2694 			 * have their local Faulty bit cleared. If any writes
2695 			 * happen in the meantime in the local node, they
2696 			 * will land in the local bitmap, which will be synced
2697 			 * by this node eventually
2698 			 */
2699 			if (!mddev_is_clustered(rdev->mddev) ||
2700 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2701 				clear_bit(Faulty, &rdev->flags);
2702 				err = add_bound_rdev(rdev);
2703 			}
2704 		} else
2705 			err = -EBUSY;
2706 	}
2707 	if (!err)
2708 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2709 	return err ? err : len;
2710 }
2711 static struct rdev_sysfs_entry rdev_state =
2712 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2713 
2714 static ssize_t
2715 errors_show(struct md_rdev *rdev, char *page)
2716 {
2717 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2718 }
2719 
2720 static ssize_t
2721 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2722 {
2723 	unsigned int n;
2724 	int rv;
2725 
2726 	rv = kstrtouint(buf, 10, &n);
2727 	if (rv < 0)
2728 		return rv;
2729 	atomic_set(&rdev->corrected_errors, n);
2730 	return len;
2731 }
2732 static struct rdev_sysfs_entry rdev_errors =
2733 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2734 
2735 static ssize_t
2736 slot_show(struct md_rdev *rdev, char *page)
2737 {
2738 	if (test_bit(Journal, &rdev->flags))
2739 		return sprintf(page, "journal\n");
2740 	else if (rdev->raid_disk < 0)
2741 		return sprintf(page, "none\n");
2742 	else
2743 		return sprintf(page, "%d\n", rdev->raid_disk);
2744 }
2745 
2746 static ssize_t
2747 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2748 {
2749 	int slot;
2750 	int err;
2751 
2752 	if (test_bit(Journal, &rdev->flags))
2753 		return -EBUSY;
2754 	if (strncmp(buf, "none", 4)==0)
2755 		slot = -1;
2756 	else {
2757 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2758 		if (err < 0)
2759 			return err;
2760 	}
2761 	if (rdev->mddev->pers && slot == -1) {
2762 		/* Setting 'slot' on an active array requires also
2763 		 * updating the 'rd%d' link, and communicating
2764 		 * with the personality with ->hot_*_disk.
2765 		 * For now we only support removing
2766 		 * failed/spare devices.  This normally happens automatically,
2767 		 * but not when the metadata is externally managed.
2768 		 */
2769 		if (rdev->raid_disk == -1)
2770 			return -EEXIST;
2771 		/* personality does all needed checks */
2772 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2773 			return -EINVAL;
2774 		clear_bit(Blocked, &rdev->flags);
2775 		remove_and_add_spares(rdev->mddev, rdev);
2776 		if (rdev->raid_disk >= 0)
2777 			return -EBUSY;
2778 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2779 		md_wakeup_thread(rdev->mddev->thread);
2780 	} else if (rdev->mddev->pers) {
2781 		/* Activating a spare .. or possibly reactivating
2782 		 * if we ever get bitmaps working here.
2783 		 */
2784 		int err;
2785 
2786 		if (rdev->raid_disk != -1)
2787 			return -EBUSY;
2788 
2789 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2790 			return -EBUSY;
2791 
2792 		if (rdev->mddev->pers->hot_add_disk == NULL)
2793 			return -EINVAL;
2794 
2795 		if (slot >= rdev->mddev->raid_disks &&
2796 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2797 			return -ENOSPC;
2798 
2799 		rdev->raid_disk = slot;
2800 		if (test_bit(In_sync, &rdev->flags))
2801 			rdev->saved_raid_disk = slot;
2802 		else
2803 			rdev->saved_raid_disk = -1;
2804 		clear_bit(In_sync, &rdev->flags);
2805 		clear_bit(Bitmap_sync, &rdev->flags);
2806 		err = rdev->mddev->pers->
2807 			hot_add_disk(rdev->mddev, rdev);
2808 		if (err) {
2809 			rdev->raid_disk = -1;
2810 			return err;
2811 		} else
2812 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2813 		if (sysfs_link_rdev(rdev->mddev, rdev))
2814 			/* failure here is OK */;
2815 		/* don't wakeup anyone, leave that to userspace. */
2816 	} else {
2817 		if (slot >= rdev->mddev->raid_disks &&
2818 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2819 			return -ENOSPC;
2820 		rdev->raid_disk = slot;
2821 		/* assume it is working */
2822 		clear_bit(Faulty, &rdev->flags);
2823 		clear_bit(WriteMostly, &rdev->flags);
2824 		set_bit(In_sync, &rdev->flags);
2825 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2826 	}
2827 	return len;
2828 }
2829 
2830 static struct rdev_sysfs_entry rdev_slot =
2831 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2832 
2833 static ssize_t
2834 offset_show(struct md_rdev *rdev, char *page)
2835 {
2836 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2837 }
2838 
2839 static ssize_t
2840 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2841 {
2842 	unsigned long long offset;
2843 	if (kstrtoull(buf, 10, &offset) < 0)
2844 		return -EINVAL;
2845 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2846 		return -EBUSY;
2847 	if (rdev->sectors && rdev->mddev->external)
2848 		/* Must set offset before size, so overlap checks
2849 		 * can be sane */
2850 		return -EBUSY;
2851 	rdev->data_offset = offset;
2852 	rdev->new_data_offset = offset;
2853 	return len;
2854 }
2855 
2856 static struct rdev_sysfs_entry rdev_offset =
2857 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2858 
2859 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2860 {
2861 	return sprintf(page, "%llu\n",
2862 		       (unsigned long long)rdev->new_data_offset);
2863 }
2864 
2865 static ssize_t new_offset_store(struct md_rdev *rdev,
2866 				const char *buf, size_t len)
2867 {
2868 	unsigned long long new_offset;
2869 	struct mddev *mddev = rdev->mddev;
2870 
2871 	if (kstrtoull(buf, 10, &new_offset) < 0)
2872 		return -EINVAL;
2873 
2874 	if (mddev->sync_thread ||
2875 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2876 		return -EBUSY;
2877 	if (new_offset == rdev->data_offset)
2878 		/* reset is always permitted */
2879 		;
2880 	else if (new_offset > rdev->data_offset) {
2881 		/* must not push array size beyond rdev_sectors */
2882 		if (new_offset - rdev->data_offset
2883 		    + mddev->dev_sectors > rdev->sectors)
2884 				return -E2BIG;
2885 	}
2886 	/* Metadata worries about other space details. */
2887 
2888 	/* decreasing the offset is inconsistent with a backwards
2889 	 * reshape.
2890 	 */
2891 	if (new_offset < rdev->data_offset &&
2892 	    mddev->reshape_backwards)
2893 		return -EINVAL;
2894 	/* Increasing offset is inconsistent with forwards
2895 	 * reshape.  reshape_direction should be set to
2896 	 * 'backwards' first.
2897 	 */
2898 	if (new_offset > rdev->data_offset &&
2899 	    !mddev->reshape_backwards)
2900 		return -EINVAL;
2901 
2902 	if (mddev->pers && mddev->persistent &&
2903 	    !super_types[mddev->major_version]
2904 	    .allow_new_offset(rdev, new_offset))
2905 		return -E2BIG;
2906 	rdev->new_data_offset = new_offset;
2907 	if (new_offset > rdev->data_offset)
2908 		mddev->reshape_backwards = 1;
2909 	else if (new_offset < rdev->data_offset)
2910 		mddev->reshape_backwards = 0;
2911 
2912 	return len;
2913 }
2914 static struct rdev_sysfs_entry rdev_new_offset =
2915 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2916 
2917 static ssize_t
2918 rdev_size_show(struct md_rdev *rdev, char *page)
2919 {
2920 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2921 }
2922 
2923 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2924 {
2925 	/* check if two start/length pairs overlap */
2926 	if (s1+l1 <= s2)
2927 		return 0;
2928 	if (s2+l2 <= s1)
2929 		return 0;
2930 	return 1;
2931 }
2932 
2933 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2934 {
2935 	unsigned long long blocks;
2936 	sector_t new;
2937 
2938 	if (kstrtoull(buf, 10, &blocks) < 0)
2939 		return -EINVAL;
2940 
2941 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2942 		return -EINVAL; /* sector conversion overflow */
2943 
2944 	new = blocks * 2;
2945 	if (new != blocks * 2)
2946 		return -EINVAL; /* unsigned long long to sector_t overflow */
2947 
2948 	*sectors = new;
2949 	return 0;
2950 }
2951 
2952 static ssize_t
2953 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2954 {
2955 	struct mddev *my_mddev = rdev->mddev;
2956 	sector_t oldsectors = rdev->sectors;
2957 	sector_t sectors;
2958 
2959 	if (test_bit(Journal, &rdev->flags))
2960 		return -EBUSY;
2961 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2962 		return -EINVAL;
2963 	if (rdev->data_offset != rdev->new_data_offset)
2964 		return -EINVAL; /* too confusing */
2965 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2966 		if (my_mddev->persistent) {
2967 			sectors = super_types[my_mddev->major_version].
2968 				rdev_size_change(rdev, sectors);
2969 			if (!sectors)
2970 				return -EBUSY;
2971 		} else if (!sectors)
2972 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2973 				rdev->data_offset;
2974 		if (!my_mddev->pers->resize)
2975 			/* Cannot change size for RAID0 or Linear etc */
2976 			return -EINVAL;
2977 	}
2978 	if (sectors < my_mddev->dev_sectors)
2979 		return -EINVAL; /* component must fit device */
2980 
2981 	rdev->sectors = sectors;
2982 	if (sectors > oldsectors && my_mddev->external) {
2983 		/* Need to check that all other rdevs with the same
2984 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2985 		 * the rdev lists safely.
2986 		 * This check does not provide a hard guarantee, it
2987 		 * just helps avoid dangerous mistakes.
2988 		 */
2989 		struct mddev *mddev;
2990 		int overlap = 0;
2991 		struct list_head *tmp;
2992 
2993 		rcu_read_lock();
2994 		for_each_mddev(mddev, tmp) {
2995 			struct md_rdev *rdev2;
2996 
2997 			rdev_for_each(rdev2, mddev)
2998 				if (rdev->bdev == rdev2->bdev &&
2999 				    rdev != rdev2 &&
3000 				    overlaps(rdev->data_offset, rdev->sectors,
3001 					     rdev2->data_offset,
3002 					     rdev2->sectors)) {
3003 					overlap = 1;
3004 					break;
3005 				}
3006 			if (overlap) {
3007 				mddev_put(mddev);
3008 				break;
3009 			}
3010 		}
3011 		rcu_read_unlock();
3012 		if (overlap) {
3013 			/* Someone else could have slipped in a size
3014 			 * change here, but doing so is just silly.
3015 			 * We put oldsectors back because we *know* it is
3016 			 * safe, and trust userspace not to race with
3017 			 * itself
3018 			 */
3019 			rdev->sectors = oldsectors;
3020 			return -EBUSY;
3021 		}
3022 	}
3023 	return len;
3024 }
3025 
3026 static struct rdev_sysfs_entry rdev_size =
3027 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3028 
3029 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3030 {
3031 	unsigned long long recovery_start = rdev->recovery_offset;
3032 
3033 	if (test_bit(In_sync, &rdev->flags) ||
3034 	    recovery_start == MaxSector)
3035 		return sprintf(page, "none\n");
3036 
3037 	return sprintf(page, "%llu\n", recovery_start);
3038 }
3039 
3040 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3041 {
3042 	unsigned long long recovery_start;
3043 
3044 	if (cmd_match(buf, "none"))
3045 		recovery_start = MaxSector;
3046 	else if (kstrtoull(buf, 10, &recovery_start))
3047 		return -EINVAL;
3048 
3049 	if (rdev->mddev->pers &&
3050 	    rdev->raid_disk >= 0)
3051 		return -EBUSY;
3052 
3053 	rdev->recovery_offset = recovery_start;
3054 	if (recovery_start == MaxSector)
3055 		set_bit(In_sync, &rdev->flags);
3056 	else
3057 		clear_bit(In_sync, &rdev->flags);
3058 	return len;
3059 }
3060 
3061 static struct rdev_sysfs_entry rdev_recovery_start =
3062 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3063 
3064 /* sysfs access to bad-blocks list.
3065  * We present two files.
3066  * 'bad-blocks' lists sector numbers and lengths of ranges that
3067  *    are recorded as bad.  The list is truncated to fit within
3068  *    the one-page limit of sysfs.
3069  *    Writing "sector length" to this file adds an acknowledged
3070  *    bad block list.
3071  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3072  *    been acknowledged.  Writing to this file adds bad blocks
3073  *    without acknowledging them.  This is largely for testing.
3074  */
3075 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3076 {
3077 	return badblocks_show(&rdev->badblocks, page, 0);
3078 }
3079 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3080 {
3081 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3082 	/* Maybe that ack was all we needed */
3083 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3084 		wake_up(&rdev->blocked_wait);
3085 	return rv;
3086 }
3087 static struct rdev_sysfs_entry rdev_bad_blocks =
3088 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3089 
3090 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3091 {
3092 	return badblocks_show(&rdev->badblocks, page, 1);
3093 }
3094 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3095 {
3096 	return badblocks_store(&rdev->badblocks, page, len, 1);
3097 }
3098 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3099 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3100 
3101 static struct attribute *rdev_default_attrs[] = {
3102 	&rdev_state.attr,
3103 	&rdev_errors.attr,
3104 	&rdev_slot.attr,
3105 	&rdev_offset.attr,
3106 	&rdev_new_offset.attr,
3107 	&rdev_size.attr,
3108 	&rdev_recovery_start.attr,
3109 	&rdev_bad_blocks.attr,
3110 	&rdev_unack_bad_blocks.attr,
3111 	NULL,
3112 };
3113 static ssize_t
3114 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3115 {
3116 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3117 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3118 
3119 	if (!entry->show)
3120 		return -EIO;
3121 	if (!rdev->mddev)
3122 		return -EBUSY;
3123 	return entry->show(rdev, page);
3124 }
3125 
3126 static ssize_t
3127 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3128 	      const char *page, size_t length)
3129 {
3130 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3131 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3132 	ssize_t rv;
3133 	struct mddev *mddev = rdev->mddev;
3134 
3135 	if (!entry->store)
3136 		return -EIO;
3137 	if (!capable(CAP_SYS_ADMIN))
3138 		return -EACCES;
3139 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3140 	if (!rv) {
3141 		if (rdev->mddev == NULL)
3142 			rv = -EBUSY;
3143 		else
3144 			rv = entry->store(rdev, page, length);
3145 		mddev_unlock(mddev);
3146 	}
3147 	return rv;
3148 }
3149 
3150 static void rdev_free(struct kobject *ko)
3151 {
3152 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3153 	kfree(rdev);
3154 }
3155 static const struct sysfs_ops rdev_sysfs_ops = {
3156 	.show		= rdev_attr_show,
3157 	.store		= rdev_attr_store,
3158 };
3159 static struct kobj_type rdev_ktype = {
3160 	.release	= rdev_free,
3161 	.sysfs_ops	= &rdev_sysfs_ops,
3162 	.default_attrs	= rdev_default_attrs,
3163 };
3164 
3165 int md_rdev_init(struct md_rdev *rdev)
3166 {
3167 	rdev->desc_nr = -1;
3168 	rdev->saved_raid_disk = -1;
3169 	rdev->raid_disk = -1;
3170 	rdev->flags = 0;
3171 	rdev->data_offset = 0;
3172 	rdev->new_data_offset = 0;
3173 	rdev->sb_events = 0;
3174 	rdev->last_read_error.tv_sec  = 0;
3175 	rdev->last_read_error.tv_nsec = 0;
3176 	rdev->sb_loaded = 0;
3177 	rdev->bb_page = NULL;
3178 	atomic_set(&rdev->nr_pending, 0);
3179 	atomic_set(&rdev->read_errors, 0);
3180 	atomic_set(&rdev->corrected_errors, 0);
3181 
3182 	INIT_LIST_HEAD(&rdev->same_set);
3183 	init_waitqueue_head(&rdev->blocked_wait);
3184 
3185 	/* Add space to store bad block list.
3186 	 * This reserves the space even on arrays where it cannot
3187 	 * be used - I wonder if that matters
3188 	 */
3189 	return badblocks_init(&rdev->badblocks, 0);
3190 }
3191 EXPORT_SYMBOL_GPL(md_rdev_init);
3192 /*
3193  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3194  *
3195  * mark the device faulty if:
3196  *
3197  *   - the device is nonexistent (zero size)
3198  *   - the device has no valid superblock
3199  *
3200  * a faulty rdev _never_ has rdev->sb set.
3201  */
3202 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3203 {
3204 	char b[BDEVNAME_SIZE];
3205 	int err;
3206 	struct md_rdev *rdev;
3207 	sector_t size;
3208 
3209 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3210 	if (!rdev) {
3211 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3212 		return ERR_PTR(-ENOMEM);
3213 	}
3214 
3215 	err = md_rdev_init(rdev);
3216 	if (err)
3217 		goto abort_free;
3218 	err = alloc_disk_sb(rdev);
3219 	if (err)
3220 		goto abort_free;
3221 
3222 	err = lock_rdev(rdev, newdev, super_format == -2);
3223 	if (err)
3224 		goto abort_free;
3225 
3226 	kobject_init(&rdev->kobj, &rdev_ktype);
3227 
3228 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3229 	if (!size) {
3230 		printk(KERN_WARNING
3231 			"md: %s has zero or unknown size, marking faulty!\n",
3232 			bdevname(rdev->bdev,b));
3233 		err = -EINVAL;
3234 		goto abort_free;
3235 	}
3236 
3237 	if (super_format >= 0) {
3238 		err = super_types[super_format].
3239 			load_super(rdev, NULL, super_minor);
3240 		if (err == -EINVAL) {
3241 			printk(KERN_WARNING
3242 				"md: %s does not have a valid v%d.%d "
3243 			       "superblock, not importing!\n",
3244 				bdevname(rdev->bdev,b),
3245 			       super_format, super_minor);
3246 			goto abort_free;
3247 		}
3248 		if (err < 0) {
3249 			printk(KERN_WARNING
3250 				"md: could not read %s's sb, not importing!\n",
3251 				bdevname(rdev->bdev,b));
3252 			goto abort_free;
3253 		}
3254 	}
3255 
3256 	return rdev;
3257 
3258 abort_free:
3259 	if (rdev->bdev)
3260 		unlock_rdev(rdev);
3261 	md_rdev_clear(rdev);
3262 	kfree(rdev);
3263 	return ERR_PTR(err);
3264 }
3265 
3266 /*
3267  * Check a full RAID array for plausibility
3268  */
3269 
3270 static void analyze_sbs(struct mddev *mddev)
3271 {
3272 	int i;
3273 	struct md_rdev *rdev, *freshest, *tmp;
3274 	char b[BDEVNAME_SIZE];
3275 
3276 	freshest = NULL;
3277 	rdev_for_each_safe(rdev, tmp, mddev)
3278 		switch (super_types[mddev->major_version].
3279 			load_super(rdev, freshest, mddev->minor_version)) {
3280 		case 1:
3281 			freshest = rdev;
3282 			break;
3283 		case 0:
3284 			break;
3285 		default:
3286 			printk( KERN_ERR \
3287 				"md: fatal superblock inconsistency in %s"
3288 				" -- removing from array\n",
3289 				bdevname(rdev->bdev,b));
3290 			md_kick_rdev_from_array(rdev);
3291 		}
3292 
3293 	super_types[mddev->major_version].
3294 		validate_super(mddev, freshest);
3295 
3296 	i = 0;
3297 	rdev_for_each_safe(rdev, tmp, mddev) {
3298 		if (mddev->max_disks &&
3299 		    (rdev->desc_nr >= mddev->max_disks ||
3300 		     i > mddev->max_disks)) {
3301 			printk(KERN_WARNING
3302 			       "md: %s: %s: only %d devices permitted\n",
3303 			       mdname(mddev), bdevname(rdev->bdev, b),
3304 			       mddev->max_disks);
3305 			md_kick_rdev_from_array(rdev);
3306 			continue;
3307 		}
3308 		if (rdev != freshest) {
3309 			if (super_types[mddev->major_version].
3310 			    validate_super(mddev, rdev)) {
3311 				printk(KERN_WARNING "md: kicking non-fresh %s"
3312 					" from array!\n",
3313 					bdevname(rdev->bdev,b));
3314 				md_kick_rdev_from_array(rdev);
3315 				continue;
3316 			}
3317 		}
3318 		if (mddev->level == LEVEL_MULTIPATH) {
3319 			rdev->desc_nr = i++;
3320 			rdev->raid_disk = rdev->desc_nr;
3321 			set_bit(In_sync, &rdev->flags);
3322 		} else if (rdev->raid_disk >=
3323 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3324 			   !test_bit(Journal, &rdev->flags)) {
3325 			rdev->raid_disk = -1;
3326 			clear_bit(In_sync, &rdev->flags);
3327 		}
3328 	}
3329 }
3330 
3331 /* Read a fixed-point number.
3332  * Numbers in sysfs attributes should be in "standard" units where
3333  * possible, so time should be in seconds.
3334  * However we internally use a a much smaller unit such as
3335  * milliseconds or jiffies.
3336  * This function takes a decimal number with a possible fractional
3337  * component, and produces an integer which is the result of
3338  * multiplying that number by 10^'scale'.
3339  * all without any floating-point arithmetic.
3340  */
3341 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3342 {
3343 	unsigned long result = 0;
3344 	long decimals = -1;
3345 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3346 		if (*cp == '.')
3347 			decimals = 0;
3348 		else if (decimals < scale) {
3349 			unsigned int value;
3350 			value = *cp - '0';
3351 			result = result * 10 + value;
3352 			if (decimals >= 0)
3353 				decimals++;
3354 		}
3355 		cp++;
3356 	}
3357 	if (*cp == '\n')
3358 		cp++;
3359 	if (*cp)
3360 		return -EINVAL;
3361 	if (decimals < 0)
3362 		decimals = 0;
3363 	while (decimals < scale) {
3364 		result *= 10;
3365 		decimals ++;
3366 	}
3367 	*res = result;
3368 	return 0;
3369 }
3370 
3371 static ssize_t
3372 safe_delay_show(struct mddev *mddev, char *page)
3373 {
3374 	int msec = (mddev->safemode_delay*1000)/HZ;
3375 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3376 }
3377 static ssize_t
3378 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3379 {
3380 	unsigned long msec;
3381 
3382 	if (mddev_is_clustered(mddev)) {
3383 		pr_info("md: Safemode is disabled for clustered mode\n");
3384 		return -EINVAL;
3385 	}
3386 
3387 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3388 		return -EINVAL;
3389 	if (msec == 0)
3390 		mddev->safemode_delay = 0;
3391 	else {
3392 		unsigned long old_delay = mddev->safemode_delay;
3393 		unsigned long new_delay = (msec*HZ)/1000;
3394 
3395 		if (new_delay == 0)
3396 			new_delay = 1;
3397 		mddev->safemode_delay = new_delay;
3398 		if (new_delay < old_delay || old_delay == 0)
3399 			mod_timer(&mddev->safemode_timer, jiffies+1);
3400 	}
3401 	return len;
3402 }
3403 static struct md_sysfs_entry md_safe_delay =
3404 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3405 
3406 static ssize_t
3407 level_show(struct mddev *mddev, char *page)
3408 {
3409 	struct md_personality *p;
3410 	int ret;
3411 	spin_lock(&mddev->lock);
3412 	p = mddev->pers;
3413 	if (p)
3414 		ret = sprintf(page, "%s\n", p->name);
3415 	else if (mddev->clevel[0])
3416 		ret = sprintf(page, "%s\n", mddev->clevel);
3417 	else if (mddev->level != LEVEL_NONE)
3418 		ret = sprintf(page, "%d\n", mddev->level);
3419 	else
3420 		ret = 0;
3421 	spin_unlock(&mddev->lock);
3422 	return ret;
3423 }
3424 
3425 static ssize_t
3426 level_store(struct mddev *mddev, const char *buf, size_t len)
3427 {
3428 	char clevel[16];
3429 	ssize_t rv;
3430 	size_t slen = len;
3431 	struct md_personality *pers, *oldpers;
3432 	long level;
3433 	void *priv, *oldpriv;
3434 	struct md_rdev *rdev;
3435 
3436 	if (slen == 0 || slen >= sizeof(clevel))
3437 		return -EINVAL;
3438 
3439 	rv = mddev_lock(mddev);
3440 	if (rv)
3441 		return rv;
3442 
3443 	if (mddev->pers == NULL) {
3444 		strncpy(mddev->clevel, buf, slen);
3445 		if (mddev->clevel[slen-1] == '\n')
3446 			slen--;
3447 		mddev->clevel[slen] = 0;
3448 		mddev->level = LEVEL_NONE;
3449 		rv = len;
3450 		goto out_unlock;
3451 	}
3452 	rv = -EROFS;
3453 	if (mddev->ro)
3454 		goto out_unlock;
3455 
3456 	/* request to change the personality.  Need to ensure:
3457 	 *  - array is not engaged in resync/recovery/reshape
3458 	 *  - old personality can be suspended
3459 	 *  - new personality will access other array.
3460 	 */
3461 
3462 	rv = -EBUSY;
3463 	if (mddev->sync_thread ||
3464 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3465 	    mddev->reshape_position != MaxSector ||
3466 	    mddev->sysfs_active)
3467 		goto out_unlock;
3468 
3469 	rv = -EINVAL;
3470 	if (!mddev->pers->quiesce) {
3471 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3472 		       mdname(mddev), mddev->pers->name);
3473 		goto out_unlock;
3474 	}
3475 
3476 	/* Now find the new personality */
3477 	strncpy(clevel, buf, slen);
3478 	if (clevel[slen-1] == '\n')
3479 		slen--;
3480 	clevel[slen] = 0;
3481 	if (kstrtol(clevel, 10, &level))
3482 		level = LEVEL_NONE;
3483 
3484 	if (request_module("md-%s", clevel) != 0)
3485 		request_module("md-level-%s", clevel);
3486 	spin_lock(&pers_lock);
3487 	pers = find_pers(level, clevel);
3488 	if (!pers || !try_module_get(pers->owner)) {
3489 		spin_unlock(&pers_lock);
3490 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3491 		rv = -EINVAL;
3492 		goto out_unlock;
3493 	}
3494 	spin_unlock(&pers_lock);
3495 
3496 	if (pers == mddev->pers) {
3497 		/* Nothing to do! */
3498 		module_put(pers->owner);
3499 		rv = len;
3500 		goto out_unlock;
3501 	}
3502 	if (!pers->takeover) {
3503 		module_put(pers->owner);
3504 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3505 		       mdname(mddev), clevel);
3506 		rv = -EINVAL;
3507 		goto out_unlock;
3508 	}
3509 
3510 	rdev_for_each(rdev, mddev)
3511 		rdev->new_raid_disk = rdev->raid_disk;
3512 
3513 	/* ->takeover must set new_* and/or delta_disks
3514 	 * if it succeeds, and may set them when it fails.
3515 	 */
3516 	priv = pers->takeover(mddev);
3517 	if (IS_ERR(priv)) {
3518 		mddev->new_level = mddev->level;
3519 		mddev->new_layout = mddev->layout;
3520 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3521 		mddev->raid_disks -= mddev->delta_disks;
3522 		mddev->delta_disks = 0;
3523 		mddev->reshape_backwards = 0;
3524 		module_put(pers->owner);
3525 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3526 		       mdname(mddev), clevel);
3527 		rv = PTR_ERR(priv);
3528 		goto out_unlock;
3529 	}
3530 
3531 	/* Looks like we have a winner */
3532 	mddev_suspend(mddev);
3533 	mddev_detach(mddev);
3534 
3535 	spin_lock(&mddev->lock);
3536 	oldpers = mddev->pers;
3537 	oldpriv = mddev->private;
3538 	mddev->pers = pers;
3539 	mddev->private = priv;
3540 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3541 	mddev->level = mddev->new_level;
3542 	mddev->layout = mddev->new_layout;
3543 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3544 	mddev->delta_disks = 0;
3545 	mddev->reshape_backwards = 0;
3546 	mddev->degraded = 0;
3547 	spin_unlock(&mddev->lock);
3548 
3549 	if (oldpers->sync_request == NULL &&
3550 	    mddev->external) {
3551 		/* We are converting from a no-redundancy array
3552 		 * to a redundancy array and metadata is managed
3553 		 * externally so we need to be sure that writes
3554 		 * won't block due to a need to transition
3555 		 *      clean->dirty
3556 		 * until external management is started.
3557 		 */
3558 		mddev->in_sync = 0;
3559 		mddev->safemode_delay = 0;
3560 		mddev->safemode = 0;
3561 	}
3562 
3563 	oldpers->free(mddev, oldpriv);
3564 
3565 	if (oldpers->sync_request == NULL &&
3566 	    pers->sync_request != NULL) {
3567 		/* need to add the md_redundancy_group */
3568 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3569 			printk(KERN_WARNING
3570 			       "md: cannot register extra attributes for %s\n",
3571 			       mdname(mddev));
3572 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3573 	}
3574 	if (oldpers->sync_request != NULL &&
3575 	    pers->sync_request == NULL) {
3576 		/* need to remove the md_redundancy_group */
3577 		if (mddev->to_remove == NULL)
3578 			mddev->to_remove = &md_redundancy_group;
3579 	}
3580 
3581 	rdev_for_each(rdev, mddev) {
3582 		if (rdev->raid_disk < 0)
3583 			continue;
3584 		if (rdev->new_raid_disk >= mddev->raid_disks)
3585 			rdev->new_raid_disk = -1;
3586 		if (rdev->new_raid_disk == rdev->raid_disk)
3587 			continue;
3588 		sysfs_unlink_rdev(mddev, rdev);
3589 	}
3590 	rdev_for_each(rdev, mddev) {
3591 		if (rdev->raid_disk < 0)
3592 			continue;
3593 		if (rdev->new_raid_disk == rdev->raid_disk)
3594 			continue;
3595 		rdev->raid_disk = rdev->new_raid_disk;
3596 		if (rdev->raid_disk < 0)
3597 			clear_bit(In_sync, &rdev->flags);
3598 		else {
3599 			if (sysfs_link_rdev(mddev, rdev))
3600 				printk(KERN_WARNING "md: cannot register rd%d"
3601 				       " for %s after level change\n",
3602 				       rdev->raid_disk, mdname(mddev));
3603 		}
3604 	}
3605 
3606 	if (pers->sync_request == NULL) {
3607 		/* this is now an array without redundancy, so
3608 		 * it must always be in_sync
3609 		 */
3610 		mddev->in_sync = 1;
3611 		del_timer_sync(&mddev->safemode_timer);
3612 	}
3613 	blk_set_stacking_limits(&mddev->queue->limits);
3614 	pers->run(mddev);
3615 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3616 	mddev_resume(mddev);
3617 	if (!mddev->thread)
3618 		md_update_sb(mddev, 1);
3619 	sysfs_notify(&mddev->kobj, NULL, "level");
3620 	md_new_event(mddev);
3621 	rv = len;
3622 out_unlock:
3623 	mddev_unlock(mddev);
3624 	return rv;
3625 }
3626 
3627 static struct md_sysfs_entry md_level =
3628 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3629 
3630 static ssize_t
3631 layout_show(struct mddev *mddev, char *page)
3632 {
3633 	/* just a number, not meaningful for all levels */
3634 	if (mddev->reshape_position != MaxSector &&
3635 	    mddev->layout != mddev->new_layout)
3636 		return sprintf(page, "%d (%d)\n",
3637 			       mddev->new_layout, mddev->layout);
3638 	return sprintf(page, "%d\n", mddev->layout);
3639 }
3640 
3641 static ssize_t
3642 layout_store(struct mddev *mddev, const char *buf, size_t len)
3643 {
3644 	unsigned int n;
3645 	int err;
3646 
3647 	err = kstrtouint(buf, 10, &n);
3648 	if (err < 0)
3649 		return err;
3650 	err = mddev_lock(mddev);
3651 	if (err)
3652 		return err;
3653 
3654 	if (mddev->pers) {
3655 		if (mddev->pers->check_reshape == NULL)
3656 			err = -EBUSY;
3657 		else if (mddev->ro)
3658 			err = -EROFS;
3659 		else {
3660 			mddev->new_layout = n;
3661 			err = mddev->pers->check_reshape(mddev);
3662 			if (err)
3663 				mddev->new_layout = mddev->layout;
3664 		}
3665 	} else {
3666 		mddev->new_layout = n;
3667 		if (mddev->reshape_position == MaxSector)
3668 			mddev->layout = n;
3669 	}
3670 	mddev_unlock(mddev);
3671 	return err ?: len;
3672 }
3673 static struct md_sysfs_entry md_layout =
3674 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3675 
3676 static ssize_t
3677 raid_disks_show(struct mddev *mddev, char *page)
3678 {
3679 	if (mddev->raid_disks == 0)
3680 		return 0;
3681 	if (mddev->reshape_position != MaxSector &&
3682 	    mddev->delta_disks != 0)
3683 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3684 			       mddev->raid_disks - mddev->delta_disks);
3685 	return sprintf(page, "%d\n", mddev->raid_disks);
3686 }
3687 
3688 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3689 
3690 static ssize_t
3691 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3692 {
3693 	unsigned int n;
3694 	int err;
3695 
3696 	err = kstrtouint(buf, 10, &n);
3697 	if (err < 0)
3698 		return err;
3699 
3700 	err = mddev_lock(mddev);
3701 	if (err)
3702 		return err;
3703 	if (mddev->pers)
3704 		err = update_raid_disks(mddev, n);
3705 	else if (mddev->reshape_position != MaxSector) {
3706 		struct md_rdev *rdev;
3707 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3708 
3709 		err = -EINVAL;
3710 		rdev_for_each(rdev, mddev) {
3711 			if (olddisks < n &&
3712 			    rdev->data_offset < rdev->new_data_offset)
3713 				goto out_unlock;
3714 			if (olddisks > n &&
3715 			    rdev->data_offset > rdev->new_data_offset)
3716 				goto out_unlock;
3717 		}
3718 		err = 0;
3719 		mddev->delta_disks = n - olddisks;
3720 		mddev->raid_disks = n;
3721 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3722 	} else
3723 		mddev->raid_disks = n;
3724 out_unlock:
3725 	mddev_unlock(mddev);
3726 	return err ? err : len;
3727 }
3728 static struct md_sysfs_entry md_raid_disks =
3729 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3730 
3731 static ssize_t
3732 chunk_size_show(struct mddev *mddev, char *page)
3733 {
3734 	if (mddev->reshape_position != MaxSector &&
3735 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3736 		return sprintf(page, "%d (%d)\n",
3737 			       mddev->new_chunk_sectors << 9,
3738 			       mddev->chunk_sectors << 9);
3739 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3740 }
3741 
3742 static ssize_t
3743 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3744 {
3745 	unsigned long n;
3746 	int err;
3747 
3748 	err = kstrtoul(buf, 10, &n);
3749 	if (err < 0)
3750 		return err;
3751 
3752 	err = mddev_lock(mddev);
3753 	if (err)
3754 		return err;
3755 	if (mddev->pers) {
3756 		if (mddev->pers->check_reshape == NULL)
3757 			err = -EBUSY;
3758 		else if (mddev->ro)
3759 			err = -EROFS;
3760 		else {
3761 			mddev->new_chunk_sectors = n >> 9;
3762 			err = mddev->pers->check_reshape(mddev);
3763 			if (err)
3764 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3765 		}
3766 	} else {
3767 		mddev->new_chunk_sectors = n >> 9;
3768 		if (mddev->reshape_position == MaxSector)
3769 			mddev->chunk_sectors = n >> 9;
3770 	}
3771 	mddev_unlock(mddev);
3772 	return err ?: len;
3773 }
3774 static struct md_sysfs_entry md_chunk_size =
3775 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3776 
3777 static ssize_t
3778 resync_start_show(struct mddev *mddev, char *page)
3779 {
3780 	if (mddev->recovery_cp == MaxSector)
3781 		return sprintf(page, "none\n");
3782 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3783 }
3784 
3785 static ssize_t
3786 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3787 {
3788 	unsigned long long n;
3789 	int err;
3790 
3791 	if (cmd_match(buf, "none"))
3792 		n = MaxSector;
3793 	else {
3794 		err = kstrtoull(buf, 10, &n);
3795 		if (err < 0)
3796 			return err;
3797 		if (n != (sector_t)n)
3798 			return -EINVAL;
3799 	}
3800 
3801 	err = mddev_lock(mddev);
3802 	if (err)
3803 		return err;
3804 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3805 		err = -EBUSY;
3806 
3807 	if (!err) {
3808 		mddev->recovery_cp = n;
3809 		if (mddev->pers)
3810 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3811 	}
3812 	mddev_unlock(mddev);
3813 	return err ?: len;
3814 }
3815 static struct md_sysfs_entry md_resync_start =
3816 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3817 		resync_start_show, resync_start_store);
3818 
3819 /*
3820  * The array state can be:
3821  *
3822  * clear
3823  *     No devices, no size, no level
3824  *     Equivalent to STOP_ARRAY ioctl
3825  * inactive
3826  *     May have some settings, but array is not active
3827  *        all IO results in error
3828  *     When written, doesn't tear down array, but just stops it
3829  * suspended (not supported yet)
3830  *     All IO requests will block. The array can be reconfigured.
3831  *     Writing this, if accepted, will block until array is quiescent
3832  * readonly
3833  *     no resync can happen.  no superblocks get written.
3834  *     write requests fail
3835  * read-auto
3836  *     like readonly, but behaves like 'clean' on a write request.
3837  *
3838  * clean - no pending writes, but otherwise active.
3839  *     When written to inactive array, starts without resync
3840  *     If a write request arrives then
3841  *       if metadata is known, mark 'dirty' and switch to 'active'.
3842  *       if not known, block and switch to write-pending
3843  *     If written to an active array that has pending writes, then fails.
3844  * active
3845  *     fully active: IO and resync can be happening.
3846  *     When written to inactive array, starts with resync
3847  *
3848  * write-pending
3849  *     clean, but writes are blocked waiting for 'active' to be written.
3850  *
3851  * active-idle
3852  *     like active, but no writes have been seen for a while (100msec).
3853  *
3854  */
3855 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3856 		   write_pending, active_idle, bad_word};
3857 static char *array_states[] = {
3858 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3859 	"write-pending", "active-idle", NULL };
3860 
3861 static int match_word(const char *word, char **list)
3862 {
3863 	int n;
3864 	for (n=0; list[n]; n++)
3865 		if (cmd_match(word, list[n]))
3866 			break;
3867 	return n;
3868 }
3869 
3870 static ssize_t
3871 array_state_show(struct mddev *mddev, char *page)
3872 {
3873 	enum array_state st = inactive;
3874 
3875 	if (mddev->pers)
3876 		switch(mddev->ro) {
3877 		case 1:
3878 			st = readonly;
3879 			break;
3880 		case 2:
3881 			st = read_auto;
3882 			break;
3883 		case 0:
3884 			if (mddev->in_sync)
3885 				st = clean;
3886 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3887 				st = write_pending;
3888 			else if (mddev->safemode)
3889 				st = active_idle;
3890 			else
3891 				st = active;
3892 		}
3893 	else {
3894 		if (list_empty(&mddev->disks) &&
3895 		    mddev->raid_disks == 0 &&
3896 		    mddev->dev_sectors == 0)
3897 			st = clear;
3898 		else
3899 			st = inactive;
3900 	}
3901 	return sprintf(page, "%s\n", array_states[st]);
3902 }
3903 
3904 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3905 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3906 static int do_md_run(struct mddev *mddev);
3907 static int restart_array(struct mddev *mddev);
3908 
3909 static ssize_t
3910 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3911 {
3912 	int err;
3913 	enum array_state st = match_word(buf, array_states);
3914 
3915 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3916 		/* don't take reconfig_mutex when toggling between
3917 		 * clean and active
3918 		 */
3919 		spin_lock(&mddev->lock);
3920 		if (st == active) {
3921 			restart_array(mddev);
3922 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3923 			wake_up(&mddev->sb_wait);
3924 			err = 0;
3925 		} else /* st == clean */ {
3926 			restart_array(mddev);
3927 			if (atomic_read(&mddev->writes_pending) == 0) {
3928 				if (mddev->in_sync == 0) {
3929 					mddev->in_sync = 1;
3930 					if (mddev->safemode == 1)
3931 						mddev->safemode = 0;
3932 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3933 				}
3934 				err = 0;
3935 			} else
3936 				err = -EBUSY;
3937 		}
3938 		spin_unlock(&mddev->lock);
3939 		return err ?: len;
3940 	}
3941 	err = mddev_lock(mddev);
3942 	if (err)
3943 		return err;
3944 	err = -EINVAL;
3945 	switch(st) {
3946 	case bad_word:
3947 		break;
3948 	case clear:
3949 		/* stopping an active array */
3950 		err = do_md_stop(mddev, 0, NULL);
3951 		break;
3952 	case inactive:
3953 		/* stopping an active array */
3954 		if (mddev->pers)
3955 			err = do_md_stop(mddev, 2, NULL);
3956 		else
3957 			err = 0; /* already inactive */
3958 		break;
3959 	case suspended:
3960 		break; /* not supported yet */
3961 	case readonly:
3962 		if (mddev->pers)
3963 			err = md_set_readonly(mddev, NULL);
3964 		else {
3965 			mddev->ro = 1;
3966 			set_disk_ro(mddev->gendisk, 1);
3967 			err = do_md_run(mddev);
3968 		}
3969 		break;
3970 	case read_auto:
3971 		if (mddev->pers) {
3972 			if (mddev->ro == 0)
3973 				err = md_set_readonly(mddev, NULL);
3974 			else if (mddev->ro == 1)
3975 				err = restart_array(mddev);
3976 			if (err == 0) {
3977 				mddev->ro = 2;
3978 				set_disk_ro(mddev->gendisk, 0);
3979 			}
3980 		} else {
3981 			mddev->ro = 2;
3982 			err = do_md_run(mddev);
3983 		}
3984 		break;
3985 	case clean:
3986 		if (mddev->pers) {
3987 			err = restart_array(mddev);
3988 			if (err)
3989 				break;
3990 			spin_lock(&mddev->lock);
3991 			if (atomic_read(&mddev->writes_pending) == 0) {
3992 				if (mddev->in_sync == 0) {
3993 					mddev->in_sync = 1;
3994 					if (mddev->safemode == 1)
3995 						mddev->safemode = 0;
3996 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3997 				}
3998 				err = 0;
3999 			} else
4000 				err = -EBUSY;
4001 			spin_unlock(&mddev->lock);
4002 		} else
4003 			err = -EINVAL;
4004 		break;
4005 	case active:
4006 		if (mddev->pers) {
4007 			err = restart_array(mddev);
4008 			if (err)
4009 				break;
4010 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4011 			wake_up(&mddev->sb_wait);
4012 			err = 0;
4013 		} else {
4014 			mddev->ro = 0;
4015 			set_disk_ro(mddev->gendisk, 0);
4016 			err = do_md_run(mddev);
4017 		}
4018 		break;
4019 	case write_pending:
4020 	case active_idle:
4021 		/* these cannot be set */
4022 		break;
4023 	}
4024 
4025 	if (!err) {
4026 		if (mddev->hold_active == UNTIL_IOCTL)
4027 			mddev->hold_active = 0;
4028 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4029 	}
4030 	mddev_unlock(mddev);
4031 	return err ?: len;
4032 }
4033 static struct md_sysfs_entry md_array_state =
4034 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4035 
4036 static ssize_t
4037 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4038 	return sprintf(page, "%d\n",
4039 		       atomic_read(&mddev->max_corr_read_errors));
4040 }
4041 
4042 static ssize_t
4043 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4044 {
4045 	unsigned int n;
4046 	int rv;
4047 
4048 	rv = kstrtouint(buf, 10, &n);
4049 	if (rv < 0)
4050 		return rv;
4051 	atomic_set(&mddev->max_corr_read_errors, n);
4052 	return len;
4053 }
4054 
4055 static struct md_sysfs_entry max_corr_read_errors =
4056 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4057 	max_corrected_read_errors_store);
4058 
4059 static ssize_t
4060 null_show(struct mddev *mddev, char *page)
4061 {
4062 	return -EINVAL;
4063 }
4064 
4065 static ssize_t
4066 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4067 {
4068 	/* buf must be %d:%d\n? giving major and minor numbers */
4069 	/* The new device is added to the array.
4070 	 * If the array has a persistent superblock, we read the
4071 	 * superblock to initialise info and check validity.
4072 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4073 	 * which mainly checks size.
4074 	 */
4075 	char *e;
4076 	int major = simple_strtoul(buf, &e, 10);
4077 	int minor;
4078 	dev_t dev;
4079 	struct md_rdev *rdev;
4080 	int err;
4081 
4082 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4083 		return -EINVAL;
4084 	minor = simple_strtoul(e+1, &e, 10);
4085 	if (*e && *e != '\n')
4086 		return -EINVAL;
4087 	dev = MKDEV(major, minor);
4088 	if (major != MAJOR(dev) ||
4089 	    minor != MINOR(dev))
4090 		return -EOVERFLOW;
4091 
4092 	flush_workqueue(md_misc_wq);
4093 
4094 	err = mddev_lock(mddev);
4095 	if (err)
4096 		return err;
4097 	if (mddev->persistent) {
4098 		rdev = md_import_device(dev, mddev->major_version,
4099 					mddev->minor_version);
4100 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4101 			struct md_rdev *rdev0
4102 				= list_entry(mddev->disks.next,
4103 					     struct md_rdev, same_set);
4104 			err = super_types[mddev->major_version]
4105 				.load_super(rdev, rdev0, mddev->minor_version);
4106 			if (err < 0)
4107 				goto out;
4108 		}
4109 	} else if (mddev->external)
4110 		rdev = md_import_device(dev, -2, -1);
4111 	else
4112 		rdev = md_import_device(dev, -1, -1);
4113 
4114 	if (IS_ERR(rdev)) {
4115 		mddev_unlock(mddev);
4116 		return PTR_ERR(rdev);
4117 	}
4118 	err = bind_rdev_to_array(rdev, mddev);
4119  out:
4120 	if (err)
4121 		export_rdev(rdev);
4122 	mddev_unlock(mddev);
4123 	return err ? err : len;
4124 }
4125 
4126 static struct md_sysfs_entry md_new_device =
4127 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4128 
4129 static ssize_t
4130 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4131 {
4132 	char *end;
4133 	unsigned long chunk, end_chunk;
4134 	int err;
4135 
4136 	err = mddev_lock(mddev);
4137 	if (err)
4138 		return err;
4139 	if (!mddev->bitmap)
4140 		goto out;
4141 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4142 	while (*buf) {
4143 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4144 		if (buf == end) break;
4145 		if (*end == '-') { /* range */
4146 			buf = end + 1;
4147 			end_chunk = simple_strtoul(buf, &end, 0);
4148 			if (buf == end) break;
4149 		}
4150 		if (*end && !isspace(*end)) break;
4151 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4152 		buf = skip_spaces(end);
4153 	}
4154 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4155 out:
4156 	mddev_unlock(mddev);
4157 	return len;
4158 }
4159 
4160 static struct md_sysfs_entry md_bitmap =
4161 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4162 
4163 static ssize_t
4164 size_show(struct mddev *mddev, char *page)
4165 {
4166 	return sprintf(page, "%llu\n",
4167 		(unsigned long long)mddev->dev_sectors / 2);
4168 }
4169 
4170 static int update_size(struct mddev *mddev, sector_t num_sectors);
4171 
4172 static ssize_t
4173 size_store(struct mddev *mddev, const char *buf, size_t len)
4174 {
4175 	/* If array is inactive, we can reduce the component size, but
4176 	 * not increase it (except from 0).
4177 	 * If array is active, we can try an on-line resize
4178 	 */
4179 	sector_t sectors;
4180 	int err = strict_blocks_to_sectors(buf, &sectors);
4181 
4182 	if (err < 0)
4183 		return err;
4184 	err = mddev_lock(mddev);
4185 	if (err)
4186 		return err;
4187 	if (mddev->pers) {
4188 		err = update_size(mddev, sectors);
4189 		md_update_sb(mddev, 1);
4190 	} else {
4191 		if (mddev->dev_sectors == 0 ||
4192 		    mddev->dev_sectors > sectors)
4193 			mddev->dev_sectors = sectors;
4194 		else
4195 			err = -ENOSPC;
4196 	}
4197 	mddev_unlock(mddev);
4198 	return err ? err : len;
4199 }
4200 
4201 static struct md_sysfs_entry md_size =
4202 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4203 
4204 /* Metadata version.
4205  * This is one of
4206  *   'none' for arrays with no metadata (good luck...)
4207  *   'external' for arrays with externally managed metadata,
4208  * or N.M for internally known formats
4209  */
4210 static ssize_t
4211 metadata_show(struct mddev *mddev, char *page)
4212 {
4213 	if (mddev->persistent)
4214 		return sprintf(page, "%d.%d\n",
4215 			       mddev->major_version, mddev->minor_version);
4216 	else if (mddev->external)
4217 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4218 	else
4219 		return sprintf(page, "none\n");
4220 }
4221 
4222 static ssize_t
4223 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4224 {
4225 	int major, minor;
4226 	char *e;
4227 	int err;
4228 	/* Changing the details of 'external' metadata is
4229 	 * always permitted.  Otherwise there must be
4230 	 * no devices attached to the array.
4231 	 */
4232 
4233 	err = mddev_lock(mddev);
4234 	if (err)
4235 		return err;
4236 	err = -EBUSY;
4237 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4238 		;
4239 	else if (!list_empty(&mddev->disks))
4240 		goto out_unlock;
4241 
4242 	err = 0;
4243 	if (cmd_match(buf, "none")) {
4244 		mddev->persistent = 0;
4245 		mddev->external = 0;
4246 		mddev->major_version = 0;
4247 		mddev->minor_version = 90;
4248 		goto out_unlock;
4249 	}
4250 	if (strncmp(buf, "external:", 9) == 0) {
4251 		size_t namelen = len-9;
4252 		if (namelen >= sizeof(mddev->metadata_type))
4253 			namelen = sizeof(mddev->metadata_type)-1;
4254 		strncpy(mddev->metadata_type, buf+9, namelen);
4255 		mddev->metadata_type[namelen] = 0;
4256 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4257 			mddev->metadata_type[--namelen] = 0;
4258 		mddev->persistent = 0;
4259 		mddev->external = 1;
4260 		mddev->major_version = 0;
4261 		mddev->minor_version = 90;
4262 		goto out_unlock;
4263 	}
4264 	major = simple_strtoul(buf, &e, 10);
4265 	err = -EINVAL;
4266 	if (e==buf || *e != '.')
4267 		goto out_unlock;
4268 	buf = e+1;
4269 	minor = simple_strtoul(buf, &e, 10);
4270 	if (e==buf || (*e && *e != '\n') )
4271 		goto out_unlock;
4272 	err = -ENOENT;
4273 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4274 		goto out_unlock;
4275 	mddev->major_version = major;
4276 	mddev->minor_version = minor;
4277 	mddev->persistent = 1;
4278 	mddev->external = 0;
4279 	err = 0;
4280 out_unlock:
4281 	mddev_unlock(mddev);
4282 	return err ?: len;
4283 }
4284 
4285 static struct md_sysfs_entry md_metadata =
4286 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4287 
4288 static ssize_t
4289 action_show(struct mddev *mddev, char *page)
4290 {
4291 	char *type = "idle";
4292 	unsigned long recovery = mddev->recovery;
4293 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4294 		type = "frozen";
4295 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4296 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4297 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4298 			type = "reshape";
4299 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4300 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4301 				type = "resync";
4302 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4303 				type = "check";
4304 			else
4305 				type = "repair";
4306 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4307 			type = "recover";
4308 		else if (mddev->reshape_position != MaxSector)
4309 			type = "reshape";
4310 	}
4311 	return sprintf(page, "%s\n", type);
4312 }
4313 
4314 static ssize_t
4315 action_store(struct mddev *mddev, const char *page, size_t len)
4316 {
4317 	if (!mddev->pers || !mddev->pers->sync_request)
4318 		return -EINVAL;
4319 
4320 
4321 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4322 		if (cmd_match(page, "frozen"))
4323 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4324 		else
4325 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4326 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4327 		    mddev_lock(mddev) == 0) {
4328 			flush_workqueue(md_misc_wq);
4329 			if (mddev->sync_thread) {
4330 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4331 				md_reap_sync_thread(mddev);
4332 			}
4333 			mddev_unlock(mddev);
4334 		}
4335 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4336 		return -EBUSY;
4337 	else if (cmd_match(page, "resync"))
4338 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4339 	else if (cmd_match(page, "recover")) {
4340 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4341 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4342 	} else if (cmd_match(page, "reshape")) {
4343 		int err;
4344 		if (mddev->pers->start_reshape == NULL)
4345 			return -EINVAL;
4346 		err = mddev_lock(mddev);
4347 		if (!err) {
4348 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4349 				err =  -EBUSY;
4350 			else {
4351 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4352 				err = mddev->pers->start_reshape(mddev);
4353 			}
4354 			mddev_unlock(mddev);
4355 		}
4356 		if (err)
4357 			return err;
4358 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4359 	} else {
4360 		if (cmd_match(page, "check"))
4361 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4362 		else if (!cmd_match(page, "repair"))
4363 			return -EINVAL;
4364 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4365 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4366 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4367 	}
4368 	if (mddev->ro == 2) {
4369 		/* A write to sync_action is enough to justify
4370 		 * canceling read-auto mode
4371 		 */
4372 		mddev->ro = 0;
4373 		md_wakeup_thread(mddev->sync_thread);
4374 	}
4375 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4376 	md_wakeup_thread(mddev->thread);
4377 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4378 	return len;
4379 }
4380 
4381 static struct md_sysfs_entry md_scan_mode =
4382 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4383 
4384 static ssize_t
4385 last_sync_action_show(struct mddev *mddev, char *page)
4386 {
4387 	return sprintf(page, "%s\n", mddev->last_sync_action);
4388 }
4389 
4390 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4391 
4392 static ssize_t
4393 mismatch_cnt_show(struct mddev *mddev, char *page)
4394 {
4395 	return sprintf(page, "%llu\n",
4396 		       (unsigned long long)
4397 		       atomic64_read(&mddev->resync_mismatches));
4398 }
4399 
4400 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4401 
4402 static ssize_t
4403 sync_min_show(struct mddev *mddev, char *page)
4404 {
4405 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4406 		       mddev->sync_speed_min ? "local": "system");
4407 }
4408 
4409 static ssize_t
4410 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4411 {
4412 	unsigned int min;
4413 	int rv;
4414 
4415 	if (strncmp(buf, "system", 6)==0) {
4416 		min = 0;
4417 	} else {
4418 		rv = kstrtouint(buf, 10, &min);
4419 		if (rv < 0)
4420 			return rv;
4421 		if (min == 0)
4422 			return -EINVAL;
4423 	}
4424 	mddev->sync_speed_min = min;
4425 	return len;
4426 }
4427 
4428 static struct md_sysfs_entry md_sync_min =
4429 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4430 
4431 static ssize_t
4432 sync_max_show(struct mddev *mddev, char *page)
4433 {
4434 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4435 		       mddev->sync_speed_max ? "local": "system");
4436 }
4437 
4438 static ssize_t
4439 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4440 {
4441 	unsigned int max;
4442 	int rv;
4443 
4444 	if (strncmp(buf, "system", 6)==0) {
4445 		max = 0;
4446 	} else {
4447 		rv = kstrtouint(buf, 10, &max);
4448 		if (rv < 0)
4449 			return rv;
4450 		if (max == 0)
4451 			return -EINVAL;
4452 	}
4453 	mddev->sync_speed_max = max;
4454 	return len;
4455 }
4456 
4457 static struct md_sysfs_entry md_sync_max =
4458 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4459 
4460 static ssize_t
4461 degraded_show(struct mddev *mddev, char *page)
4462 {
4463 	return sprintf(page, "%d\n", mddev->degraded);
4464 }
4465 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4466 
4467 static ssize_t
4468 sync_force_parallel_show(struct mddev *mddev, char *page)
4469 {
4470 	return sprintf(page, "%d\n", mddev->parallel_resync);
4471 }
4472 
4473 static ssize_t
4474 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4475 {
4476 	long n;
4477 
4478 	if (kstrtol(buf, 10, &n))
4479 		return -EINVAL;
4480 
4481 	if (n != 0 && n != 1)
4482 		return -EINVAL;
4483 
4484 	mddev->parallel_resync = n;
4485 
4486 	if (mddev->sync_thread)
4487 		wake_up(&resync_wait);
4488 
4489 	return len;
4490 }
4491 
4492 /* force parallel resync, even with shared block devices */
4493 static struct md_sysfs_entry md_sync_force_parallel =
4494 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4495        sync_force_parallel_show, sync_force_parallel_store);
4496 
4497 static ssize_t
4498 sync_speed_show(struct mddev *mddev, char *page)
4499 {
4500 	unsigned long resync, dt, db;
4501 	if (mddev->curr_resync == 0)
4502 		return sprintf(page, "none\n");
4503 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4504 	dt = (jiffies - mddev->resync_mark) / HZ;
4505 	if (!dt) dt++;
4506 	db = resync - mddev->resync_mark_cnt;
4507 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4508 }
4509 
4510 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4511 
4512 static ssize_t
4513 sync_completed_show(struct mddev *mddev, char *page)
4514 {
4515 	unsigned long long max_sectors, resync;
4516 
4517 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4518 		return sprintf(page, "none\n");
4519 
4520 	if (mddev->curr_resync == 1 ||
4521 	    mddev->curr_resync == 2)
4522 		return sprintf(page, "delayed\n");
4523 
4524 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4525 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4526 		max_sectors = mddev->resync_max_sectors;
4527 	else
4528 		max_sectors = mddev->dev_sectors;
4529 
4530 	resync = mddev->curr_resync_completed;
4531 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4532 }
4533 
4534 static struct md_sysfs_entry md_sync_completed =
4535 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4536 
4537 static ssize_t
4538 min_sync_show(struct mddev *mddev, char *page)
4539 {
4540 	return sprintf(page, "%llu\n",
4541 		       (unsigned long long)mddev->resync_min);
4542 }
4543 static ssize_t
4544 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4545 {
4546 	unsigned long long min;
4547 	int err;
4548 
4549 	if (kstrtoull(buf, 10, &min))
4550 		return -EINVAL;
4551 
4552 	spin_lock(&mddev->lock);
4553 	err = -EINVAL;
4554 	if (min > mddev->resync_max)
4555 		goto out_unlock;
4556 
4557 	err = -EBUSY;
4558 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4559 		goto out_unlock;
4560 
4561 	/* Round down to multiple of 4K for safety */
4562 	mddev->resync_min = round_down(min, 8);
4563 	err = 0;
4564 
4565 out_unlock:
4566 	spin_unlock(&mddev->lock);
4567 	return err ?: len;
4568 }
4569 
4570 static struct md_sysfs_entry md_min_sync =
4571 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4572 
4573 static ssize_t
4574 max_sync_show(struct mddev *mddev, char *page)
4575 {
4576 	if (mddev->resync_max == MaxSector)
4577 		return sprintf(page, "max\n");
4578 	else
4579 		return sprintf(page, "%llu\n",
4580 			       (unsigned long long)mddev->resync_max);
4581 }
4582 static ssize_t
4583 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4584 {
4585 	int err;
4586 	spin_lock(&mddev->lock);
4587 	if (strncmp(buf, "max", 3) == 0)
4588 		mddev->resync_max = MaxSector;
4589 	else {
4590 		unsigned long long max;
4591 		int chunk;
4592 
4593 		err = -EINVAL;
4594 		if (kstrtoull(buf, 10, &max))
4595 			goto out_unlock;
4596 		if (max < mddev->resync_min)
4597 			goto out_unlock;
4598 
4599 		err = -EBUSY;
4600 		if (max < mddev->resync_max &&
4601 		    mddev->ro == 0 &&
4602 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4603 			goto out_unlock;
4604 
4605 		/* Must be a multiple of chunk_size */
4606 		chunk = mddev->chunk_sectors;
4607 		if (chunk) {
4608 			sector_t temp = max;
4609 
4610 			err = -EINVAL;
4611 			if (sector_div(temp, chunk))
4612 				goto out_unlock;
4613 		}
4614 		mddev->resync_max = max;
4615 	}
4616 	wake_up(&mddev->recovery_wait);
4617 	err = 0;
4618 out_unlock:
4619 	spin_unlock(&mddev->lock);
4620 	return err ?: len;
4621 }
4622 
4623 static struct md_sysfs_entry md_max_sync =
4624 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4625 
4626 static ssize_t
4627 suspend_lo_show(struct mddev *mddev, char *page)
4628 {
4629 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4630 }
4631 
4632 static ssize_t
4633 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4634 {
4635 	unsigned long long old, new;
4636 	int err;
4637 
4638 	err = kstrtoull(buf, 10, &new);
4639 	if (err < 0)
4640 		return err;
4641 	if (new != (sector_t)new)
4642 		return -EINVAL;
4643 
4644 	err = mddev_lock(mddev);
4645 	if (err)
4646 		return err;
4647 	err = -EINVAL;
4648 	if (mddev->pers == NULL ||
4649 	    mddev->pers->quiesce == NULL)
4650 		goto unlock;
4651 	old = mddev->suspend_lo;
4652 	mddev->suspend_lo = new;
4653 	if (new >= old)
4654 		/* Shrinking suspended region */
4655 		mddev->pers->quiesce(mddev, 2);
4656 	else {
4657 		/* Expanding suspended region - need to wait */
4658 		mddev->pers->quiesce(mddev, 1);
4659 		mddev->pers->quiesce(mddev, 0);
4660 	}
4661 	err = 0;
4662 unlock:
4663 	mddev_unlock(mddev);
4664 	return err ?: len;
4665 }
4666 static struct md_sysfs_entry md_suspend_lo =
4667 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4668 
4669 static ssize_t
4670 suspend_hi_show(struct mddev *mddev, char *page)
4671 {
4672 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4673 }
4674 
4675 static ssize_t
4676 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4677 {
4678 	unsigned long long old, new;
4679 	int err;
4680 
4681 	err = kstrtoull(buf, 10, &new);
4682 	if (err < 0)
4683 		return err;
4684 	if (new != (sector_t)new)
4685 		return -EINVAL;
4686 
4687 	err = mddev_lock(mddev);
4688 	if (err)
4689 		return err;
4690 	err = -EINVAL;
4691 	if (mddev->pers == NULL ||
4692 	    mddev->pers->quiesce == NULL)
4693 		goto unlock;
4694 	old = mddev->suspend_hi;
4695 	mddev->suspend_hi = new;
4696 	if (new <= old)
4697 		/* Shrinking suspended region */
4698 		mddev->pers->quiesce(mddev, 2);
4699 	else {
4700 		/* Expanding suspended region - need to wait */
4701 		mddev->pers->quiesce(mddev, 1);
4702 		mddev->pers->quiesce(mddev, 0);
4703 	}
4704 	err = 0;
4705 unlock:
4706 	mddev_unlock(mddev);
4707 	return err ?: len;
4708 }
4709 static struct md_sysfs_entry md_suspend_hi =
4710 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4711 
4712 static ssize_t
4713 reshape_position_show(struct mddev *mddev, char *page)
4714 {
4715 	if (mddev->reshape_position != MaxSector)
4716 		return sprintf(page, "%llu\n",
4717 			       (unsigned long long)mddev->reshape_position);
4718 	strcpy(page, "none\n");
4719 	return 5;
4720 }
4721 
4722 static ssize_t
4723 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4724 {
4725 	struct md_rdev *rdev;
4726 	unsigned long long new;
4727 	int err;
4728 
4729 	err = kstrtoull(buf, 10, &new);
4730 	if (err < 0)
4731 		return err;
4732 	if (new != (sector_t)new)
4733 		return -EINVAL;
4734 	err = mddev_lock(mddev);
4735 	if (err)
4736 		return err;
4737 	err = -EBUSY;
4738 	if (mddev->pers)
4739 		goto unlock;
4740 	mddev->reshape_position = new;
4741 	mddev->delta_disks = 0;
4742 	mddev->reshape_backwards = 0;
4743 	mddev->new_level = mddev->level;
4744 	mddev->new_layout = mddev->layout;
4745 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4746 	rdev_for_each(rdev, mddev)
4747 		rdev->new_data_offset = rdev->data_offset;
4748 	err = 0;
4749 unlock:
4750 	mddev_unlock(mddev);
4751 	return err ?: len;
4752 }
4753 
4754 static struct md_sysfs_entry md_reshape_position =
4755 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4756        reshape_position_store);
4757 
4758 static ssize_t
4759 reshape_direction_show(struct mddev *mddev, char *page)
4760 {
4761 	return sprintf(page, "%s\n",
4762 		       mddev->reshape_backwards ? "backwards" : "forwards");
4763 }
4764 
4765 static ssize_t
4766 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4767 {
4768 	int backwards = 0;
4769 	int err;
4770 
4771 	if (cmd_match(buf, "forwards"))
4772 		backwards = 0;
4773 	else if (cmd_match(buf, "backwards"))
4774 		backwards = 1;
4775 	else
4776 		return -EINVAL;
4777 	if (mddev->reshape_backwards == backwards)
4778 		return len;
4779 
4780 	err = mddev_lock(mddev);
4781 	if (err)
4782 		return err;
4783 	/* check if we are allowed to change */
4784 	if (mddev->delta_disks)
4785 		err = -EBUSY;
4786 	else if (mddev->persistent &&
4787 	    mddev->major_version == 0)
4788 		err =  -EINVAL;
4789 	else
4790 		mddev->reshape_backwards = backwards;
4791 	mddev_unlock(mddev);
4792 	return err ?: len;
4793 }
4794 
4795 static struct md_sysfs_entry md_reshape_direction =
4796 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4797        reshape_direction_store);
4798 
4799 static ssize_t
4800 array_size_show(struct mddev *mddev, char *page)
4801 {
4802 	if (mddev->external_size)
4803 		return sprintf(page, "%llu\n",
4804 			       (unsigned long long)mddev->array_sectors/2);
4805 	else
4806 		return sprintf(page, "default\n");
4807 }
4808 
4809 static ssize_t
4810 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4811 {
4812 	sector_t sectors;
4813 	int err;
4814 
4815 	err = mddev_lock(mddev);
4816 	if (err)
4817 		return err;
4818 
4819 	if (strncmp(buf, "default", 7) == 0) {
4820 		if (mddev->pers)
4821 			sectors = mddev->pers->size(mddev, 0, 0);
4822 		else
4823 			sectors = mddev->array_sectors;
4824 
4825 		mddev->external_size = 0;
4826 	} else {
4827 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4828 			err = -EINVAL;
4829 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4830 			err = -E2BIG;
4831 		else
4832 			mddev->external_size = 1;
4833 	}
4834 
4835 	if (!err) {
4836 		mddev->array_sectors = sectors;
4837 		if (mddev->pers) {
4838 			set_capacity(mddev->gendisk, mddev->array_sectors);
4839 			revalidate_disk(mddev->gendisk);
4840 		}
4841 	}
4842 	mddev_unlock(mddev);
4843 	return err ?: len;
4844 }
4845 
4846 static struct md_sysfs_entry md_array_size =
4847 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4848        array_size_store);
4849 
4850 static struct attribute *md_default_attrs[] = {
4851 	&md_level.attr,
4852 	&md_layout.attr,
4853 	&md_raid_disks.attr,
4854 	&md_chunk_size.attr,
4855 	&md_size.attr,
4856 	&md_resync_start.attr,
4857 	&md_metadata.attr,
4858 	&md_new_device.attr,
4859 	&md_safe_delay.attr,
4860 	&md_array_state.attr,
4861 	&md_reshape_position.attr,
4862 	&md_reshape_direction.attr,
4863 	&md_array_size.attr,
4864 	&max_corr_read_errors.attr,
4865 	NULL,
4866 };
4867 
4868 static struct attribute *md_redundancy_attrs[] = {
4869 	&md_scan_mode.attr,
4870 	&md_last_scan_mode.attr,
4871 	&md_mismatches.attr,
4872 	&md_sync_min.attr,
4873 	&md_sync_max.attr,
4874 	&md_sync_speed.attr,
4875 	&md_sync_force_parallel.attr,
4876 	&md_sync_completed.attr,
4877 	&md_min_sync.attr,
4878 	&md_max_sync.attr,
4879 	&md_suspend_lo.attr,
4880 	&md_suspend_hi.attr,
4881 	&md_bitmap.attr,
4882 	&md_degraded.attr,
4883 	NULL,
4884 };
4885 static struct attribute_group md_redundancy_group = {
4886 	.name = NULL,
4887 	.attrs = md_redundancy_attrs,
4888 };
4889 
4890 static ssize_t
4891 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4892 {
4893 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4894 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4895 	ssize_t rv;
4896 
4897 	if (!entry->show)
4898 		return -EIO;
4899 	spin_lock(&all_mddevs_lock);
4900 	if (list_empty(&mddev->all_mddevs)) {
4901 		spin_unlock(&all_mddevs_lock);
4902 		return -EBUSY;
4903 	}
4904 	mddev_get(mddev);
4905 	spin_unlock(&all_mddevs_lock);
4906 
4907 	rv = entry->show(mddev, page);
4908 	mddev_put(mddev);
4909 	return rv;
4910 }
4911 
4912 static ssize_t
4913 md_attr_store(struct kobject *kobj, struct attribute *attr,
4914 	      const char *page, size_t length)
4915 {
4916 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4917 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4918 	ssize_t rv;
4919 
4920 	if (!entry->store)
4921 		return -EIO;
4922 	if (!capable(CAP_SYS_ADMIN))
4923 		return -EACCES;
4924 	spin_lock(&all_mddevs_lock);
4925 	if (list_empty(&mddev->all_mddevs)) {
4926 		spin_unlock(&all_mddevs_lock);
4927 		return -EBUSY;
4928 	}
4929 	mddev_get(mddev);
4930 	spin_unlock(&all_mddevs_lock);
4931 	rv = entry->store(mddev, page, length);
4932 	mddev_put(mddev);
4933 	return rv;
4934 }
4935 
4936 static void md_free(struct kobject *ko)
4937 {
4938 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4939 
4940 	if (mddev->sysfs_state)
4941 		sysfs_put(mddev->sysfs_state);
4942 
4943 	if (mddev->queue)
4944 		blk_cleanup_queue(mddev->queue);
4945 	if (mddev->gendisk) {
4946 		del_gendisk(mddev->gendisk);
4947 		put_disk(mddev->gendisk);
4948 	}
4949 
4950 	kfree(mddev);
4951 }
4952 
4953 static const struct sysfs_ops md_sysfs_ops = {
4954 	.show	= md_attr_show,
4955 	.store	= md_attr_store,
4956 };
4957 static struct kobj_type md_ktype = {
4958 	.release	= md_free,
4959 	.sysfs_ops	= &md_sysfs_ops,
4960 	.default_attrs	= md_default_attrs,
4961 };
4962 
4963 int mdp_major = 0;
4964 
4965 static void mddev_delayed_delete(struct work_struct *ws)
4966 {
4967 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4968 
4969 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4970 	kobject_del(&mddev->kobj);
4971 	kobject_put(&mddev->kobj);
4972 }
4973 
4974 static int md_alloc(dev_t dev, char *name)
4975 {
4976 	static DEFINE_MUTEX(disks_mutex);
4977 	struct mddev *mddev = mddev_find(dev);
4978 	struct gendisk *disk;
4979 	int partitioned;
4980 	int shift;
4981 	int unit;
4982 	int error;
4983 
4984 	if (!mddev)
4985 		return -ENODEV;
4986 
4987 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4988 	shift = partitioned ? MdpMinorShift : 0;
4989 	unit = MINOR(mddev->unit) >> shift;
4990 
4991 	/* wait for any previous instance of this device to be
4992 	 * completely removed (mddev_delayed_delete).
4993 	 */
4994 	flush_workqueue(md_misc_wq);
4995 
4996 	mutex_lock(&disks_mutex);
4997 	error = -EEXIST;
4998 	if (mddev->gendisk)
4999 		goto abort;
5000 
5001 	if (name) {
5002 		/* Need to ensure that 'name' is not a duplicate.
5003 		 */
5004 		struct mddev *mddev2;
5005 		spin_lock(&all_mddevs_lock);
5006 
5007 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5008 			if (mddev2->gendisk &&
5009 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5010 				spin_unlock(&all_mddevs_lock);
5011 				goto abort;
5012 			}
5013 		spin_unlock(&all_mddevs_lock);
5014 	}
5015 
5016 	error = -ENOMEM;
5017 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
5018 	if (!mddev->queue)
5019 		goto abort;
5020 	mddev->queue->queuedata = mddev;
5021 
5022 	blk_queue_make_request(mddev->queue, md_make_request);
5023 	blk_set_stacking_limits(&mddev->queue->limits);
5024 
5025 	disk = alloc_disk(1 << shift);
5026 	if (!disk) {
5027 		blk_cleanup_queue(mddev->queue);
5028 		mddev->queue = NULL;
5029 		goto abort;
5030 	}
5031 	disk->major = MAJOR(mddev->unit);
5032 	disk->first_minor = unit << shift;
5033 	if (name)
5034 		strcpy(disk->disk_name, name);
5035 	else if (partitioned)
5036 		sprintf(disk->disk_name, "md_d%d", unit);
5037 	else
5038 		sprintf(disk->disk_name, "md%d", unit);
5039 	disk->fops = &md_fops;
5040 	disk->private_data = mddev;
5041 	disk->queue = mddev->queue;
5042 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5043 	/* Allow extended partitions.  This makes the
5044 	 * 'mdp' device redundant, but we can't really
5045 	 * remove it now.
5046 	 */
5047 	disk->flags |= GENHD_FL_EXT_DEVT;
5048 	mddev->gendisk = disk;
5049 	/* As soon as we call add_disk(), another thread could get
5050 	 * through to md_open, so make sure it doesn't get too far
5051 	 */
5052 	mutex_lock(&mddev->open_mutex);
5053 	add_disk(disk);
5054 
5055 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5056 				     &disk_to_dev(disk)->kobj, "%s", "md");
5057 	if (error) {
5058 		/* This isn't possible, but as kobject_init_and_add is marked
5059 		 * __must_check, we must do something with the result
5060 		 */
5061 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5062 		       disk->disk_name);
5063 		error = 0;
5064 	}
5065 	if (mddev->kobj.sd &&
5066 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5067 		printk(KERN_DEBUG "pointless warning\n");
5068 	mutex_unlock(&mddev->open_mutex);
5069  abort:
5070 	mutex_unlock(&disks_mutex);
5071 	if (!error && mddev->kobj.sd) {
5072 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5073 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5074 	}
5075 	mddev_put(mddev);
5076 	return error;
5077 }
5078 
5079 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5080 {
5081 	md_alloc(dev, NULL);
5082 	return NULL;
5083 }
5084 
5085 static int add_named_array(const char *val, struct kernel_param *kp)
5086 {
5087 	/* val must be "md_*" where * is not all digits.
5088 	 * We allocate an array with a large free minor number, and
5089 	 * set the name to val.  val must not already be an active name.
5090 	 */
5091 	int len = strlen(val);
5092 	char buf[DISK_NAME_LEN];
5093 
5094 	while (len && val[len-1] == '\n')
5095 		len--;
5096 	if (len >= DISK_NAME_LEN)
5097 		return -E2BIG;
5098 	strlcpy(buf, val, len+1);
5099 	if (strncmp(buf, "md_", 3) != 0)
5100 		return -EINVAL;
5101 	return md_alloc(0, buf);
5102 }
5103 
5104 static void md_safemode_timeout(unsigned long data)
5105 {
5106 	struct mddev *mddev = (struct mddev *) data;
5107 
5108 	if (!atomic_read(&mddev->writes_pending)) {
5109 		mddev->safemode = 1;
5110 		if (mddev->external)
5111 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5112 	}
5113 	md_wakeup_thread(mddev->thread);
5114 }
5115 
5116 static int start_dirty_degraded;
5117 
5118 int md_run(struct mddev *mddev)
5119 {
5120 	int err;
5121 	struct md_rdev *rdev;
5122 	struct md_personality *pers;
5123 
5124 	if (list_empty(&mddev->disks))
5125 		/* cannot run an array with no devices.. */
5126 		return -EINVAL;
5127 
5128 	if (mddev->pers)
5129 		return -EBUSY;
5130 	/* Cannot run until previous stop completes properly */
5131 	if (mddev->sysfs_active)
5132 		return -EBUSY;
5133 
5134 	/*
5135 	 * Analyze all RAID superblock(s)
5136 	 */
5137 	if (!mddev->raid_disks) {
5138 		if (!mddev->persistent)
5139 			return -EINVAL;
5140 		analyze_sbs(mddev);
5141 	}
5142 
5143 	if (mddev->level != LEVEL_NONE)
5144 		request_module("md-level-%d", mddev->level);
5145 	else if (mddev->clevel[0])
5146 		request_module("md-%s", mddev->clevel);
5147 
5148 	/*
5149 	 * Drop all container device buffers, from now on
5150 	 * the only valid external interface is through the md
5151 	 * device.
5152 	 */
5153 	rdev_for_each(rdev, mddev) {
5154 		if (test_bit(Faulty, &rdev->flags))
5155 			continue;
5156 		sync_blockdev(rdev->bdev);
5157 		invalidate_bdev(rdev->bdev);
5158 
5159 		/* perform some consistency tests on the device.
5160 		 * We don't want the data to overlap the metadata,
5161 		 * Internal Bitmap issues have been handled elsewhere.
5162 		 */
5163 		if (rdev->meta_bdev) {
5164 			/* Nothing to check */;
5165 		} else if (rdev->data_offset < rdev->sb_start) {
5166 			if (mddev->dev_sectors &&
5167 			    rdev->data_offset + mddev->dev_sectors
5168 			    > rdev->sb_start) {
5169 				printk("md: %s: data overlaps metadata\n",
5170 				       mdname(mddev));
5171 				return -EINVAL;
5172 			}
5173 		} else {
5174 			if (rdev->sb_start + rdev->sb_size/512
5175 			    > rdev->data_offset) {
5176 				printk("md: %s: metadata overlaps data\n",
5177 				       mdname(mddev));
5178 				return -EINVAL;
5179 			}
5180 		}
5181 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5182 	}
5183 
5184 	if (mddev->bio_set == NULL)
5185 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5186 
5187 	spin_lock(&pers_lock);
5188 	pers = find_pers(mddev->level, mddev->clevel);
5189 	if (!pers || !try_module_get(pers->owner)) {
5190 		spin_unlock(&pers_lock);
5191 		if (mddev->level != LEVEL_NONE)
5192 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5193 			       mddev->level);
5194 		else
5195 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5196 			       mddev->clevel);
5197 		return -EINVAL;
5198 	}
5199 	spin_unlock(&pers_lock);
5200 	if (mddev->level != pers->level) {
5201 		mddev->level = pers->level;
5202 		mddev->new_level = pers->level;
5203 	}
5204 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5205 
5206 	if (mddev->reshape_position != MaxSector &&
5207 	    pers->start_reshape == NULL) {
5208 		/* This personality cannot handle reshaping... */
5209 		module_put(pers->owner);
5210 		return -EINVAL;
5211 	}
5212 
5213 	if (pers->sync_request) {
5214 		/* Warn if this is a potentially silly
5215 		 * configuration.
5216 		 */
5217 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5218 		struct md_rdev *rdev2;
5219 		int warned = 0;
5220 
5221 		rdev_for_each(rdev, mddev)
5222 			rdev_for_each(rdev2, mddev) {
5223 				if (rdev < rdev2 &&
5224 				    rdev->bdev->bd_contains ==
5225 				    rdev2->bdev->bd_contains) {
5226 					printk(KERN_WARNING
5227 					       "%s: WARNING: %s appears to be"
5228 					       " on the same physical disk as"
5229 					       " %s.\n",
5230 					       mdname(mddev),
5231 					       bdevname(rdev->bdev,b),
5232 					       bdevname(rdev2->bdev,b2));
5233 					warned = 1;
5234 				}
5235 			}
5236 
5237 		if (warned)
5238 			printk(KERN_WARNING
5239 			       "True protection against single-disk"
5240 			       " failure might be compromised.\n");
5241 	}
5242 
5243 	mddev->recovery = 0;
5244 	/* may be over-ridden by personality */
5245 	mddev->resync_max_sectors = mddev->dev_sectors;
5246 
5247 	mddev->ok_start_degraded = start_dirty_degraded;
5248 
5249 	if (start_readonly && mddev->ro == 0)
5250 		mddev->ro = 2; /* read-only, but switch on first write */
5251 
5252 	err = pers->run(mddev);
5253 	if (err)
5254 		printk(KERN_ERR "md: pers->run() failed ...\n");
5255 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5256 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5257 			  " but 'external_size' not in effect?\n", __func__);
5258 		printk(KERN_ERR
5259 		       "md: invalid array_size %llu > default size %llu\n",
5260 		       (unsigned long long)mddev->array_sectors / 2,
5261 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5262 		err = -EINVAL;
5263 	}
5264 	if (err == 0 && pers->sync_request &&
5265 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5266 		struct bitmap *bitmap;
5267 
5268 		bitmap = bitmap_create(mddev, -1);
5269 		if (IS_ERR(bitmap)) {
5270 			err = PTR_ERR(bitmap);
5271 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5272 			       mdname(mddev), err);
5273 		} else
5274 			mddev->bitmap = bitmap;
5275 
5276 	}
5277 	if (err) {
5278 		mddev_detach(mddev);
5279 		if (mddev->private)
5280 			pers->free(mddev, mddev->private);
5281 		mddev->private = NULL;
5282 		module_put(pers->owner);
5283 		bitmap_destroy(mddev);
5284 		return err;
5285 	}
5286 	if (mddev->queue) {
5287 		mddev->queue->backing_dev_info.congested_data = mddev;
5288 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5289 	}
5290 	if (pers->sync_request) {
5291 		if (mddev->kobj.sd &&
5292 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5293 			printk(KERN_WARNING
5294 			       "md: cannot register extra attributes for %s\n",
5295 			       mdname(mddev));
5296 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5297 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5298 		mddev->ro = 0;
5299 
5300 	atomic_set(&mddev->writes_pending,0);
5301 	atomic_set(&mddev->max_corr_read_errors,
5302 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5303 	mddev->safemode = 0;
5304 	if (mddev_is_clustered(mddev))
5305 		mddev->safemode_delay = 0;
5306 	else
5307 		mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5308 	mddev->in_sync = 1;
5309 	smp_wmb();
5310 	spin_lock(&mddev->lock);
5311 	mddev->pers = pers;
5312 	spin_unlock(&mddev->lock);
5313 	rdev_for_each(rdev, mddev)
5314 		if (rdev->raid_disk >= 0)
5315 			if (sysfs_link_rdev(mddev, rdev))
5316 				/* failure here is OK */;
5317 
5318 	if (mddev->degraded && !mddev->ro)
5319 		/* This ensures that recovering status is reported immediately
5320 		 * via sysfs - until a lack of spares is confirmed.
5321 		 */
5322 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5323 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5324 
5325 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5326 		md_update_sb(mddev, 0);
5327 
5328 	md_new_event(mddev);
5329 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5330 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5331 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5332 	return 0;
5333 }
5334 EXPORT_SYMBOL_GPL(md_run);
5335 
5336 static int do_md_run(struct mddev *mddev)
5337 {
5338 	int err;
5339 
5340 	err = md_run(mddev);
5341 	if (err)
5342 		goto out;
5343 	err = bitmap_load(mddev);
5344 	if (err) {
5345 		bitmap_destroy(mddev);
5346 		goto out;
5347 	}
5348 
5349 	if (mddev_is_clustered(mddev))
5350 		md_allow_write(mddev);
5351 
5352 	md_wakeup_thread(mddev->thread);
5353 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5354 
5355 	set_capacity(mddev->gendisk, mddev->array_sectors);
5356 	revalidate_disk(mddev->gendisk);
5357 	mddev->changed = 1;
5358 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5359 out:
5360 	return err;
5361 }
5362 
5363 static int restart_array(struct mddev *mddev)
5364 {
5365 	struct gendisk *disk = mddev->gendisk;
5366 
5367 	/* Complain if it has no devices */
5368 	if (list_empty(&mddev->disks))
5369 		return -ENXIO;
5370 	if (!mddev->pers)
5371 		return -EINVAL;
5372 	if (!mddev->ro)
5373 		return -EBUSY;
5374 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5375 		struct md_rdev *rdev;
5376 		bool has_journal = false;
5377 
5378 		rcu_read_lock();
5379 		rdev_for_each_rcu(rdev, mddev) {
5380 			if (test_bit(Journal, &rdev->flags) &&
5381 			    !test_bit(Faulty, &rdev->flags)) {
5382 				has_journal = true;
5383 				break;
5384 			}
5385 		}
5386 		rcu_read_unlock();
5387 
5388 		/* Don't restart rw with journal missing/faulty */
5389 		if (!has_journal)
5390 			return -EINVAL;
5391 	}
5392 
5393 	mddev->safemode = 0;
5394 	mddev->ro = 0;
5395 	set_disk_ro(disk, 0);
5396 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5397 		mdname(mddev));
5398 	/* Kick recovery or resync if necessary */
5399 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5400 	md_wakeup_thread(mddev->thread);
5401 	md_wakeup_thread(mddev->sync_thread);
5402 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5403 	return 0;
5404 }
5405 
5406 static void md_clean(struct mddev *mddev)
5407 {
5408 	mddev->array_sectors = 0;
5409 	mddev->external_size = 0;
5410 	mddev->dev_sectors = 0;
5411 	mddev->raid_disks = 0;
5412 	mddev->recovery_cp = 0;
5413 	mddev->resync_min = 0;
5414 	mddev->resync_max = MaxSector;
5415 	mddev->reshape_position = MaxSector;
5416 	mddev->external = 0;
5417 	mddev->persistent = 0;
5418 	mddev->level = LEVEL_NONE;
5419 	mddev->clevel[0] = 0;
5420 	mddev->flags = 0;
5421 	mddev->ro = 0;
5422 	mddev->metadata_type[0] = 0;
5423 	mddev->chunk_sectors = 0;
5424 	mddev->ctime = mddev->utime = 0;
5425 	mddev->layout = 0;
5426 	mddev->max_disks = 0;
5427 	mddev->events = 0;
5428 	mddev->can_decrease_events = 0;
5429 	mddev->delta_disks = 0;
5430 	mddev->reshape_backwards = 0;
5431 	mddev->new_level = LEVEL_NONE;
5432 	mddev->new_layout = 0;
5433 	mddev->new_chunk_sectors = 0;
5434 	mddev->curr_resync = 0;
5435 	atomic64_set(&mddev->resync_mismatches, 0);
5436 	mddev->suspend_lo = mddev->suspend_hi = 0;
5437 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5438 	mddev->recovery = 0;
5439 	mddev->in_sync = 0;
5440 	mddev->changed = 0;
5441 	mddev->degraded = 0;
5442 	mddev->safemode = 0;
5443 	mddev->private = NULL;
5444 	mddev->bitmap_info.offset = 0;
5445 	mddev->bitmap_info.default_offset = 0;
5446 	mddev->bitmap_info.default_space = 0;
5447 	mddev->bitmap_info.chunksize = 0;
5448 	mddev->bitmap_info.daemon_sleep = 0;
5449 	mddev->bitmap_info.max_write_behind = 0;
5450 }
5451 
5452 static void __md_stop_writes(struct mddev *mddev)
5453 {
5454 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5455 	flush_workqueue(md_misc_wq);
5456 	if (mddev->sync_thread) {
5457 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5458 		md_reap_sync_thread(mddev);
5459 	}
5460 
5461 	del_timer_sync(&mddev->safemode_timer);
5462 
5463 	bitmap_flush(mddev);
5464 	md_super_wait(mddev);
5465 
5466 	if (mddev->ro == 0 &&
5467 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5468 	     (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5469 		/* mark array as shutdown cleanly */
5470 		if (!mddev_is_clustered(mddev))
5471 			mddev->in_sync = 1;
5472 		md_update_sb(mddev, 1);
5473 	}
5474 }
5475 
5476 void md_stop_writes(struct mddev *mddev)
5477 {
5478 	mddev_lock_nointr(mddev);
5479 	__md_stop_writes(mddev);
5480 	mddev_unlock(mddev);
5481 }
5482 EXPORT_SYMBOL_GPL(md_stop_writes);
5483 
5484 static void mddev_detach(struct mddev *mddev)
5485 {
5486 	struct bitmap *bitmap = mddev->bitmap;
5487 	/* wait for behind writes to complete */
5488 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5489 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5490 		       mdname(mddev));
5491 		/* need to kick something here to make sure I/O goes? */
5492 		wait_event(bitmap->behind_wait,
5493 			   atomic_read(&bitmap->behind_writes) == 0);
5494 	}
5495 	if (mddev->pers && mddev->pers->quiesce) {
5496 		mddev->pers->quiesce(mddev, 1);
5497 		mddev->pers->quiesce(mddev, 0);
5498 	}
5499 	md_unregister_thread(&mddev->thread);
5500 	if (mddev->queue)
5501 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5502 }
5503 
5504 static void __md_stop(struct mddev *mddev)
5505 {
5506 	struct md_personality *pers = mddev->pers;
5507 	mddev_detach(mddev);
5508 	/* Ensure ->event_work is done */
5509 	flush_workqueue(md_misc_wq);
5510 	spin_lock(&mddev->lock);
5511 	mddev->pers = NULL;
5512 	spin_unlock(&mddev->lock);
5513 	pers->free(mddev, mddev->private);
5514 	mddev->private = NULL;
5515 	if (pers->sync_request && mddev->to_remove == NULL)
5516 		mddev->to_remove = &md_redundancy_group;
5517 	module_put(pers->owner);
5518 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5519 }
5520 
5521 void md_stop(struct mddev *mddev)
5522 {
5523 	/* stop the array and free an attached data structures.
5524 	 * This is called from dm-raid
5525 	 */
5526 	__md_stop(mddev);
5527 	bitmap_destroy(mddev);
5528 	if (mddev->bio_set)
5529 		bioset_free(mddev->bio_set);
5530 }
5531 
5532 EXPORT_SYMBOL_GPL(md_stop);
5533 
5534 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5535 {
5536 	int err = 0;
5537 	int did_freeze = 0;
5538 
5539 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5540 		did_freeze = 1;
5541 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5542 		md_wakeup_thread(mddev->thread);
5543 	}
5544 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5545 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5546 	if (mddev->sync_thread)
5547 		/* Thread might be blocked waiting for metadata update
5548 		 * which will now never happen */
5549 		wake_up_process(mddev->sync_thread->tsk);
5550 
5551 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5552 		return -EBUSY;
5553 	mddev_unlock(mddev);
5554 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5555 					  &mddev->recovery));
5556 	wait_event(mddev->sb_wait,
5557 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5558 	mddev_lock_nointr(mddev);
5559 
5560 	mutex_lock(&mddev->open_mutex);
5561 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5562 	    mddev->sync_thread ||
5563 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5564 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5565 		printk("md: %s still in use.\n",mdname(mddev));
5566 		if (did_freeze) {
5567 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5568 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5569 			md_wakeup_thread(mddev->thread);
5570 		}
5571 		err = -EBUSY;
5572 		goto out;
5573 	}
5574 	if (mddev->pers) {
5575 		__md_stop_writes(mddev);
5576 
5577 		err  = -ENXIO;
5578 		if (mddev->ro==1)
5579 			goto out;
5580 		mddev->ro = 1;
5581 		set_disk_ro(mddev->gendisk, 1);
5582 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5583 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5584 		md_wakeup_thread(mddev->thread);
5585 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5586 		err = 0;
5587 	}
5588 out:
5589 	mutex_unlock(&mddev->open_mutex);
5590 	return err;
5591 }
5592 
5593 /* mode:
5594  *   0 - completely stop and dis-assemble array
5595  *   2 - stop but do not disassemble array
5596  */
5597 static int do_md_stop(struct mddev *mddev, int mode,
5598 		      struct block_device *bdev)
5599 {
5600 	struct gendisk *disk = mddev->gendisk;
5601 	struct md_rdev *rdev;
5602 	int did_freeze = 0;
5603 
5604 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5605 		did_freeze = 1;
5606 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5607 		md_wakeup_thread(mddev->thread);
5608 	}
5609 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5610 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5611 	if (mddev->sync_thread)
5612 		/* Thread might be blocked waiting for metadata update
5613 		 * which will now never happen */
5614 		wake_up_process(mddev->sync_thread->tsk);
5615 
5616 	mddev_unlock(mddev);
5617 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5618 				 !test_bit(MD_RECOVERY_RUNNING,
5619 					   &mddev->recovery)));
5620 	mddev_lock_nointr(mddev);
5621 
5622 	mutex_lock(&mddev->open_mutex);
5623 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5624 	    mddev->sysfs_active ||
5625 	    mddev->sync_thread ||
5626 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5627 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5628 		printk("md: %s still in use.\n",mdname(mddev));
5629 		mutex_unlock(&mddev->open_mutex);
5630 		if (did_freeze) {
5631 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5632 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5633 			md_wakeup_thread(mddev->thread);
5634 		}
5635 		return -EBUSY;
5636 	}
5637 	if (mddev->pers) {
5638 		if (mddev->ro)
5639 			set_disk_ro(disk, 0);
5640 
5641 		__md_stop_writes(mddev);
5642 		__md_stop(mddev);
5643 		mddev->queue->backing_dev_info.congested_fn = NULL;
5644 
5645 		/* tell userspace to handle 'inactive' */
5646 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5647 
5648 		rdev_for_each(rdev, mddev)
5649 			if (rdev->raid_disk >= 0)
5650 				sysfs_unlink_rdev(mddev, rdev);
5651 
5652 		set_capacity(disk, 0);
5653 		mutex_unlock(&mddev->open_mutex);
5654 		mddev->changed = 1;
5655 		revalidate_disk(disk);
5656 
5657 		if (mddev->ro)
5658 			mddev->ro = 0;
5659 	} else
5660 		mutex_unlock(&mddev->open_mutex);
5661 	/*
5662 	 * Free resources if final stop
5663 	 */
5664 	if (mode == 0) {
5665 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5666 
5667 		bitmap_destroy(mddev);
5668 		if (mddev->bitmap_info.file) {
5669 			struct file *f = mddev->bitmap_info.file;
5670 			spin_lock(&mddev->lock);
5671 			mddev->bitmap_info.file = NULL;
5672 			spin_unlock(&mddev->lock);
5673 			fput(f);
5674 		}
5675 		mddev->bitmap_info.offset = 0;
5676 
5677 		export_array(mddev);
5678 
5679 		md_clean(mddev);
5680 		if (mddev->hold_active == UNTIL_STOP)
5681 			mddev->hold_active = 0;
5682 	}
5683 	md_new_event(mddev);
5684 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5685 	return 0;
5686 }
5687 
5688 #ifndef MODULE
5689 static void autorun_array(struct mddev *mddev)
5690 {
5691 	struct md_rdev *rdev;
5692 	int err;
5693 
5694 	if (list_empty(&mddev->disks))
5695 		return;
5696 
5697 	printk(KERN_INFO "md: running: ");
5698 
5699 	rdev_for_each(rdev, mddev) {
5700 		char b[BDEVNAME_SIZE];
5701 		printk("<%s>", bdevname(rdev->bdev,b));
5702 	}
5703 	printk("\n");
5704 
5705 	err = do_md_run(mddev);
5706 	if (err) {
5707 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5708 		do_md_stop(mddev, 0, NULL);
5709 	}
5710 }
5711 
5712 /*
5713  * lets try to run arrays based on all disks that have arrived
5714  * until now. (those are in pending_raid_disks)
5715  *
5716  * the method: pick the first pending disk, collect all disks with
5717  * the same UUID, remove all from the pending list and put them into
5718  * the 'same_array' list. Then order this list based on superblock
5719  * update time (freshest comes first), kick out 'old' disks and
5720  * compare superblocks. If everything's fine then run it.
5721  *
5722  * If "unit" is allocated, then bump its reference count
5723  */
5724 static void autorun_devices(int part)
5725 {
5726 	struct md_rdev *rdev0, *rdev, *tmp;
5727 	struct mddev *mddev;
5728 	char b[BDEVNAME_SIZE];
5729 
5730 	printk(KERN_INFO "md: autorun ...\n");
5731 	while (!list_empty(&pending_raid_disks)) {
5732 		int unit;
5733 		dev_t dev;
5734 		LIST_HEAD(candidates);
5735 		rdev0 = list_entry(pending_raid_disks.next,
5736 					 struct md_rdev, same_set);
5737 
5738 		printk(KERN_INFO "md: considering %s ...\n",
5739 			bdevname(rdev0->bdev,b));
5740 		INIT_LIST_HEAD(&candidates);
5741 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5742 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5743 				printk(KERN_INFO "md:  adding %s ...\n",
5744 					bdevname(rdev->bdev,b));
5745 				list_move(&rdev->same_set, &candidates);
5746 			}
5747 		/*
5748 		 * now we have a set of devices, with all of them having
5749 		 * mostly sane superblocks. It's time to allocate the
5750 		 * mddev.
5751 		 */
5752 		if (part) {
5753 			dev = MKDEV(mdp_major,
5754 				    rdev0->preferred_minor << MdpMinorShift);
5755 			unit = MINOR(dev) >> MdpMinorShift;
5756 		} else {
5757 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5758 			unit = MINOR(dev);
5759 		}
5760 		if (rdev0->preferred_minor != unit) {
5761 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5762 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5763 			break;
5764 		}
5765 
5766 		md_probe(dev, NULL, NULL);
5767 		mddev = mddev_find(dev);
5768 		if (!mddev || !mddev->gendisk) {
5769 			if (mddev)
5770 				mddev_put(mddev);
5771 			printk(KERN_ERR
5772 				"md: cannot allocate memory for md drive.\n");
5773 			break;
5774 		}
5775 		if (mddev_lock(mddev))
5776 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5777 			       mdname(mddev));
5778 		else if (mddev->raid_disks || mddev->major_version
5779 			 || !list_empty(&mddev->disks)) {
5780 			printk(KERN_WARNING
5781 				"md: %s already running, cannot run %s\n",
5782 				mdname(mddev), bdevname(rdev0->bdev,b));
5783 			mddev_unlock(mddev);
5784 		} else {
5785 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5786 			mddev->persistent = 1;
5787 			rdev_for_each_list(rdev, tmp, &candidates) {
5788 				list_del_init(&rdev->same_set);
5789 				if (bind_rdev_to_array(rdev, mddev))
5790 					export_rdev(rdev);
5791 			}
5792 			autorun_array(mddev);
5793 			mddev_unlock(mddev);
5794 		}
5795 		/* on success, candidates will be empty, on error
5796 		 * it won't...
5797 		 */
5798 		rdev_for_each_list(rdev, tmp, &candidates) {
5799 			list_del_init(&rdev->same_set);
5800 			export_rdev(rdev);
5801 		}
5802 		mddev_put(mddev);
5803 	}
5804 	printk(KERN_INFO "md: ... autorun DONE.\n");
5805 }
5806 #endif /* !MODULE */
5807 
5808 static int get_version(void __user *arg)
5809 {
5810 	mdu_version_t ver;
5811 
5812 	ver.major = MD_MAJOR_VERSION;
5813 	ver.minor = MD_MINOR_VERSION;
5814 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5815 
5816 	if (copy_to_user(arg, &ver, sizeof(ver)))
5817 		return -EFAULT;
5818 
5819 	return 0;
5820 }
5821 
5822 static int get_array_info(struct mddev *mddev, void __user *arg)
5823 {
5824 	mdu_array_info_t info;
5825 	int nr,working,insync,failed,spare;
5826 	struct md_rdev *rdev;
5827 
5828 	nr = working = insync = failed = spare = 0;
5829 	rcu_read_lock();
5830 	rdev_for_each_rcu(rdev, mddev) {
5831 		nr++;
5832 		if (test_bit(Faulty, &rdev->flags))
5833 			failed++;
5834 		else {
5835 			working++;
5836 			if (test_bit(In_sync, &rdev->flags))
5837 				insync++;
5838 			else
5839 				spare++;
5840 		}
5841 	}
5842 	rcu_read_unlock();
5843 
5844 	info.major_version = mddev->major_version;
5845 	info.minor_version = mddev->minor_version;
5846 	info.patch_version = MD_PATCHLEVEL_VERSION;
5847 	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
5848 	info.level         = mddev->level;
5849 	info.size          = mddev->dev_sectors / 2;
5850 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5851 		info.size = -1;
5852 	info.nr_disks      = nr;
5853 	info.raid_disks    = mddev->raid_disks;
5854 	info.md_minor      = mddev->md_minor;
5855 	info.not_persistent= !mddev->persistent;
5856 
5857 	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
5858 	info.state         = 0;
5859 	if (mddev->in_sync)
5860 		info.state = (1<<MD_SB_CLEAN);
5861 	if (mddev->bitmap && mddev->bitmap_info.offset)
5862 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5863 	if (mddev_is_clustered(mddev))
5864 		info.state |= (1<<MD_SB_CLUSTERED);
5865 	info.active_disks  = insync;
5866 	info.working_disks = working;
5867 	info.failed_disks  = failed;
5868 	info.spare_disks   = spare;
5869 
5870 	info.layout        = mddev->layout;
5871 	info.chunk_size    = mddev->chunk_sectors << 9;
5872 
5873 	if (copy_to_user(arg, &info, sizeof(info)))
5874 		return -EFAULT;
5875 
5876 	return 0;
5877 }
5878 
5879 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5880 {
5881 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5882 	char *ptr;
5883 	int err;
5884 
5885 	file = kzalloc(sizeof(*file), GFP_NOIO);
5886 	if (!file)
5887 		return -ENOMEM;
5888 
5889 	err = 0;
5890 	spin_lock(&mddev->lock);
5891 	/* bitmap enabled */
5892 	if (mddev->bitmap_info.file) {
5893 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5894 				sizeof(file->pathname));
5895 		if (IS_ERR(ptr))
5896 			err = PTR_ERR(ptr);
5897 		else
5898 			memmove(file->pathname, ptr,
5899 				sizeof(file->pathname)-(ptr-file->pathname));
5900 	}
5901 	spin_unlock(&mddev->lock);
5902 
5903 	if (err == 0 &&
5904 	    copy_to_user(arg, file, sizeof(*file)))
5905 		err = -EFAULT;
5906 
5907 	kfree(file);
5908 	return err;
5909 }
5910 
5911 static int get_disk_info(struct mddev *mddev, void __user * arg)
5912 {
5913 	mdu_disk_info_t info;
5914 	struct md_rdev *rdev;
5915 
5916 	if (copy_from_user(&info, arg, sizeof(info)))
5917 		return -EFAULT;
5918 
5919 	rcu_read_lock();
5920 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5921 	if (rdev) {
5922 		info.major = MAJOR(rdev->bdev->bd_dev);
5923 		info.minor = MINOR(rdev->bdev->bd_dev);
5924 		info.raid_disk = rdev->raid_disk;
5925 		info.state = 0;
5926 		if (test_bit(Faulty, &rdev->flags))
5927 			info.state |= (1<<MD_DISK_FAULTY);
5928 		else if (test_bit(In_sync, &rdev->flags)) {
5929 			info.state |= (1<<MD_DISK_ACTIVE);
5930 			info.state |= (1<<MD_DISK_SYNC);
5931 		}
5932 		if (test_bit(Journal, &rdev->flags))
5933 			info.state |= (1<<MD_DISK_JOURNAL);
5934 		if (test_bit(WriteMostly, &rdev->flags))
5935 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5936 	} else {
5937 		info.major = info.minor = 0;
5938 		info.raid_disk = -1;
5939 		info.state = (1<<MD_DISK_REMOVED);
5940 	}
5941 	rcu_read_unlock();
5942 
5943 	if (copy_to_user(arg, &info, sizeof(info)))
5944 		return -EFAULT;
5945 
5946 	return 0;
5947 }
5948 
5949 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5950 {
5951 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5952 	struct md_rdev *rdev;
5953 	dev_t dev = MKDEV(info->major,info->minor);
5954 
5955 	if (mddev_is_clustered(mddev) &&
5956 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5957 		pr_err("%s: Cannot add to clustered mddev.\n",
5958 			       mdname(mddev));
5959 		return -EINVAL;
5960 	}
5961 
5962 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5963 		return -EOVERFLOW;
5964 
5965 	if (!mddev->raid_disks) {
5966 		int err;
5967 		/* expecting a device which has a superblock */
5968 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5969 		if (IS_ERR(rdev)) {
5970 			printk(KERN_WARNING
5971 				"md: md_import_device returned %ld\n",
5972 				PTR_ERR(rdev));
5973 			return PTR_ERR(rdev);
5974 		}
5975 		if (!list_empty(&mddev->disks)) {
5976 			struct md_rdev *rdev0
5977 				= list_entry(mddev->disks.next,
5978 					     struct md_rdev, same_set);
5979 			err = super_types[mddev->major_version]
5980 				.load_super(rdev, rdev0, mddev->minor_version);
5981 			if (err < 0) {
5982 				printk(KERN_WARNING
5983 					"md: %s has different UUID to %s\n",
5984 					bdevname(rdev->bdev,b),
5985 					bdevname(rdev0->bdev,b2));
5986 				export_rdev(rdev);
5987 				return -EINVAL;
5988 			}
5989 		}
5990 		err = bind_rdev_to_array(rdev, mddev);
5991 		if (err)
5992 			export_rdev(rdev);
5993 		return err;
5994 	}
5995 
5996 	/*
5997 	 * add_new_disk can be used once the array is assembled
5998 	 * to add "hot spares".  They must already have a superblock
5999 	 * written
6000 	 */
6001 	if (mddev->pers) {
6002 		int err;
6003 		if (!mddev->pers->hot_add_disk) {
6004 			printk(KERN_WARNING
6005 				"%s: personality does not support diskops!\n",
6006 			       mdname(mddev));
6007 			return -EINVAL;
6008 		}
6009 		if (mddev->persistent)
6010 			rdev = md_import_device(dev, mddev->major_version,
6011 						mddev->minor_version);
6012 		else
6013 			rdev = md_import_device(dev, -1, -1);
6014 		if (IS_ERR(rdev)) {
6015 			printk(KERN_WARNING
6016 				"md: md_import_device returned %ld\n",
6017 				PTR_ERR(rdev));
6018 			return PTR_ERR(rdev);
6019 		}
6020 		/* set saved_raid_disk if appropriate */
6021 		if (!mddev->persistent) {
6022 			if (info->state & (1<<MD_DISK_SYNC)  &&
6023 			    info->raid_disk < mddev->raid_disks) {
6024 				rdev->raid_disk = info->raid_disk;
6025 				set_bit(In_sync, &rdev->flags);
6026 				clear_bit(Bitmap_sync, &rdev->flags);
6027 			} else
6028 				rdev->raid_disk = -1;
6029 			rdev->saved_raid_disk = rdev->raid_disk;
6030 		} else
6031 			super_types[mddev->major_version].
6032 				validate_super(mddev, rdev);
6033 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6034 		     rdev->raid_disk != info->raid_disk) {
6035 			/* This was a hot-add request, but events doesn't
6036 			 * match, so reject it.
6037 			 */
6038 			export_rdev(rdev);
6039 			return -EINVAL;
6040 		}
6041 
6042 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6043 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6044 			set_bit(WriteMostly, &rdev->flags);
6045 		else
6046 			clear_bit(WriteMostly, &rdev->flags);
6047 
6048 		if (info->state & (1<<MD_DISK_JOURNAL)) {
6049 			struct md_rdev *rdev2;
6050 			bool has_journal = false;
6051 
6052 			/* make sure no existing journal disk */
6053 			rdev_for_each(rdev2, mddev) {
6054 				if (test_bit(Journal, &rdev2->flags)) {
6055 					has_journal = true;
6056 					break;
6057 				}
6058 			}
6059 			if (has_journal) {
6060 				export_rdev(rdev);
6061 				return -EBUSY;
6062 			}
6063 			set_bit(Journal, &rdev->flags);
6064 		}
6065 		/*
6066 		 * check whether the device shows up in other nodes
6067 		 */
6068 		if (mddev_is_clustered(mddev)) {
6069 			if (info->state & (1 << MD_DISK_CANDIDATE))
6070 				set_bit(Candidate, &rdev->flags);
6071 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6072 				/* --add initiated by this node */
6073 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6074 				if (err) {
6075 					export_rdev(rdev);
6076 					return err;
6077 				}
6078 			}
6079 		}
6080 
6081 		rdev->raid_disk = -1;
6082 		err = bind_rdev_to_array(rdev, mddev);
6083 
6084 		if (err)
6085 			export_rdev(rdev);
6086 
6087 		if (mddev_is_clustered(mddev)) {
6088 			if (info->state & (1 << MD_DISK_CANDIDATE))
6089 				md_cluster_ops->new_disk_ack(mddev, (err == 0));
6090 			else {
6091 				if (err)
6092 					md_cluster_ops->add_new_disk_cancel(mddev);
6093 				else
6094 					err = add_bound_rdev(rdev);
6095 			}
6096 
6097 		} else if (!err)
6098 			err = add_bound_rdev(rdev);
6099 
6100 		return err;
6101 	}
6102 
6103 	/* otherwise, add_new_disk is only allowed
6104 	 * for major_version==0 superblocks
6105 	 */
6106 	if (mddev->major_version != 0) {
6107 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6108 		       mdname(mddev));
6109 		return -EINVAL;
6110 	}
6111 
6112 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6113 		int err;
6114 		rdev = md_import_device(dev, -1, 0);
6115 		if (IS_ERR(rdev)) {
6116 			printk(KERN_WARNING
6117 				"md: error, md_import_device() returned %ld\n",
6118 				PTR_ERR(rdev));
6119 			return PTR_ERR(rdev);
6120 		}
6121 		rdev->desc_nr = info->number;
6122 		if (info->raid_disk < mddev->raid_disks)
6123 			rdev->raid_disk = info->raid_disk;
6124 		else
6125 			rdev->raid_disk = -1;
6126 
6127 		if (rdev->raid_disk < mddev->raid_disks)
6128 			if (info->state & (1<<MD_DISK_SYNC))
6129 				set_bit(In_sync, &rdev->flags);
6130 
6131 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6132 			set_bit(WriteMostly, &rdev->flags);
6133 
6134 		if (!mddev->persistent) {
6135 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
6136 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6137 		} else
6138 			rdev->sb_start = calc_dev_sboffset(rdev);
6139 		rdev->sectors = rdev->sb_start;
6140 
6141 		err = bind_rdev_to_array(rdev, mddev);
6142 		if (err) {
6143 			export_rdev(rdev);
6144 			return err;
6145 		}
6146 	}
6147 
6148 	return 0;
6149 }
6150 
6151 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6152 {
6153 	char b[BDEVNAME_SIZE];
6154 	struct md_rdev *rdev;
6155 
6156 	rdev = find_rdev(mddev, dev);
6157 	if (!rdev)
6158 		return -ENXIO;
6159 
6160 	if (rdev->raid_disk < 0)
6161 		goto kick_rdev;
6162 
6163 	clear_bit(Blocked, &rdev->flags);
6164 	remove_and_add_spares(mddev, rdev);
6165 
6166 	if (rdev->raid_disk >= 0)
6167 		goto busy;
6168 
6169 kick_rdev:
6170 	if (mddev_is_clustered(mddev))
6171 		md_cluster_ops->remove_disk(mddev, rdev);
6172 
6173 	md_kick_rdev_from_array(rdev);
6174 	md_update_sb(mddev, 1);
6175 	md_new_event(mddev);
6176 
6177 	return 0;
6178 busy:
6179 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6180 		bdevname(rdev->bdev,b), mdname(mddev));
6181 	return -EBUSY;
6182 }
6183 
6184 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6185 {
6186 	char b[BDEVNAME_SIZE];
6187 	int err;
6188 	struct md_rdev *rdev;
6189 
6190 	if (!mddev->pers)
6191 		return -ENODEV;
6192 
6193 	if (mddev->major_version != 0) {
6194 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6195 			" version-0 superblocks.\n",
6196 			mdname(mddev));
6197 		return -EINVAL;
6198 	}
6199 	if (!mddev->pers->hot_add_disk) {
6200 		printk(KERN_WARNING
6201 			"%s: personality does not support diskops!\n",
6202 			mdname(mddev));
6203 		return -EINVAL;
6204 	}
6205 
6206 	rdev = md_import_device(dev, -1, 0);
6207 	if (IS_ERR(rdev)) {
6208 		printk(KERN_WARNING
6209 			"md: error, md_import_device() returned %ld\n",
6210 			PTR_ERR(rdev));
6211 		return -EINVAL;
6212 	}
6213 
6214 	if (mddev->persistent)
6215 		rdev->sb_start = calc_dev_sboffset(rdev);
6216 	else
6217 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6218 
6219 	rdev->sectors = rdev->sb_start;
6220 
6221 	if (test_bit(Faulty, &rdev->flags)) {
6222 		printk(KERN_WARNING
6223 			"md: can not hot-add faulty %s disk to %s!\n",
6224 			bdevname(rdev->bdev,b), mdname(mddev));
6225 		err = -EINVAL;
6226 		goto abort_export;
6227 	}
6228 
6229 	clear_bit(In_sync, &rdev->flags);
6230 	rdev->desc_nr = -1;
6231 	rdev->saved_raid_disk = -1;
6232 	err = bind_rdev_to_array(rdev, mddev);
6233 	if (err)
6234 		goto abort_export;
6235 
6236 	/*
6237 	 * The rest should better be atomic, we can have disk failures
6238 	 * noticed in interrupt contexts ...
6239 	 */
6240 
6241 	rdev->raid_disk = -1;
6242 
6243 	md_update_sb(mddev, 1);
6244 	/*
6245 	 * Kick recovery, maybe this spare has to be added to the
6246 	 * array immediately.
6247 	 */
6248 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6249 	md_wakeup_thread(mddev->thread);
6250 	md_new_event(mddev);
6251 	return 0;
6252 
6253 abort_export:
6254 	export_rdev(rdev);
6255 	return err;
6256 }
6257 
6258 static int set_bitmap_file(struct mddev *mddev, int fd)
6259 {
6260 	int err = 0;
6261 
6262 	if (mddev->pers) {
6263 		if (!mddev->pers->quiesce || !mddev->thread)
6264 			return -EBUSY;
6265 		if (mddev->recovery || mddev->sync_thread)
6266 			return -EBUSY;
6267 		/* we should be able to change the bitmap.. */
6268 	}
6269 
6270 	if (fd >= 0) {
6271 		struct inode *inode;
6272 		struct file *f;
6273 
6274 		if (mddev->bitmap || mddev->bitmap_info.file)
6275 			return -EEXIST; /* cannot add when bitmap is present */
6276 		f = fget(fd);
6277 
6278 		if (f == NULL) {
6279 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6280 			       mdname(mddev));
6281 			return -EBADF;
6282 		}
6283 
6284 		inode = f->f_mapping->host;
6285 		if (!S_ISREG(inode->i_mode)) {
6286 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6287 			       mdname(mddev));
6288 			err = -EBADF;
6289 		} else if (!(f->f_mode & FMODE_WRITE)) {
6290 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6291 			       mdname(mddev));
6292 			err = -EBADF;
6293 		} else if (atomic_read(&inode->i_writecount) != 1) {
6294 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6295 			       mdname(mddev));
6296 			err = -EBUSY;
6297 		}
6298 		if (err) {
6299 			fput(f);
6300 			return err;
6301 		}
6302 		mddev->bitmap_info.file = f;
6303 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6304 	} else if (mddev->bitmap == NULL)
6305 		return -ENOENT; /* cannot remove what isn't there */
6306 	err = 0;
6307 	if (mddev->pers) {
6308 		mddev->pers->quiesce(mddev, 1);
6309 		if (fd >= 0) {
6310 			struct bitmap *bitmap;
6311 
6312 			bitmap = bitmap_create(mddev, -1);
6313 			if (!IS_ERR(bitmap)) {
6314 				mddev->bitmap = bitmap;
6315 				err = bitmap_load(mddev);
6316 			} else
6317 				err = PTR_ERR(bitmap);
6318 		}
6319 		if (fd < 0 || err) {
6320 			bitmap_destroy(mddev);
6321 			fd = -1; /* make sure to put the file */
6322 		}
6323 		mddev->pers->quiesce(mddev, 0);
6324 	}
6325 	if (fd < 0) {
6326 		struct file *f = mddev->bitmap_info.file;
6327 		if (f) {
6328 			spin_lock(&mddev->lock);
6329 			mddev->bitmap_info.file = NULL;
6330 			spin_unlock(&mddev->lock);
6331 			fput(f);
6332 		}
6333 	}
6334 
6335 	return err;
6336 }
6337 
6338 /*
6339  * set_array_info is used two different ways
6340  * The original usage is when creating a new array.
6341  * In this usage, raid_disks is > 0 and it together with
6342  *  level, size, not_persistent,layout,chunksize determine the
6343  *  shape of the array.
6344  *  This will always create an array with a type-0.90.0 superblock.
6345  * The newer usage is when assembling an array.
6346  *  In this case raid_disks will be 0, and the major_version field is
6347  *  use to determine which style super-blocks are to be found on the devices.
6348  *  The minor and patch _version numbers are also kept incase the
6349  *  super_block handler wishes to interpret them.
6350  */
6351 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6352 {
6353 
6354 	if (info->raid_disks == 0) {
6355 		/* just setting version number for superblock loading */
6356 		if (info->major_version < 0 ||
6357 		    info->major_version >= ARRAY_SIZE(super_types) ||
6358 		    super_types[info->major_version].name == NULL) {
6359 			/* maybe try to auto-load a module? */
6360 			printk(KERN_INFO
6361 				"md: superblock version %d not known\n",
6362 				info->major_version);
6363 			return -EINVAL;
6364 		}
6365 		mddev->major_version = info->major_version;
6366 		mddev->minor_version = info->minor_version;
6367 		mddev->patch_version = info->patch_version;
6368 		mddev->persistent = !info->not_persistent;
6369 		/* ensure mddev_put doesn't delete this now that there
6370 		 * is some minimal configuration.
6371 		 */
6372 		mddev->ctime         = ktime_get_real_seconds();
6373 		return 0;
6374 	}
6375 	mddev->major_version = MD_MAJOR_VERSION;
6376 	mddev->minor_version = MD_MINOR_VERSION;
6377 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6378 	mddev->ctime         = ktime_get_real_seconds();
6379 
6380 	mddev->level         = info->level;
6381 	mddev->clevel[0]     = 0;
6382 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6383 	mddev->raid_disks    = info->raid_disks;
6384 	/* don't set md_minor, it is determined by which /dev/md* was
6385 	 * openned
6386 	 */
6387 	if (info->state & (1<<MD_SB_CLEAN))
6388 		mddev->recovery_cp = MaxSector;
6389 	else
6390 		mddev->recovery_cp = 0;
6391 	mddev->persistent    = ! info->not_persistent;
6392 	mddev->external	     = 0;
6393 
6394 	mddev->layout        = info->layout;
6395 	mddev->chunk_sectors = info->chunk_size >> 9;
6396 
6397 	mddev->max_disks     = MD_SB_DISKS;
6398 
6399 	if (mddev->persistent)
6400 		mddev->flags         = 0;
6401 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6402 
6403 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6404 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6405 	mddev->bitmap_info.offset = 0;
6406 
6407 	mddev->reshape_position = MaxSector;
6408 
6409 	/*
6410 	 * Generate a 128 bit UUID
6411 	 */
6412 	get_random_bytes(mddev->uuid, 16);
6413 
6414 	mddev->new_level = mddev->level;
6415 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6416 	mddev->new_layout = mddev->layout;
6417 	mddev->delta_disks = 0;
6418 	mddev->reshape_backwards = 0;
6419 
6420 	return 0;
6421 }
6422 
6423 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6424 {
6425 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6426 
6427 	if (mddev->external_size)
6428 		return;
6429 
6430 	mddev->array_sectors = array_sectors;
6431 }
6432 EXPORT_SYMBOL(md_set_array_sectors);
6433 
6434 static int update_size(struct mddev *mddev, sector_t num_sectors)
6435 {
6436 	struct md_rdev *rdev;
6437 	int rv;
6438 	int fit = (num_sectors == 0);
6439 
6440 	if (mddev->pers->resize == NULL)
6441 		return -EINVAL;
6442 	/* The "num_sectors" is the number of sectors of each device that
6443 	 * is used.  This can only make sense for arrays with redundancy.
6444 	 * linear and raid0 always use whatever space is available. We can only
6445 	 * consider changing this number if no resync or reconstruction is
6446 	 * happening, and if the new size is acceptable. It must fit before the
6447 	 * sb_start or, if that is <data_offset, it must fit before the size
6448 	 * of each device.  If num_sectors is zero, we find the largest size
6449 	 * that fits.
6450 	 */
6451 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6452 	    mddev->sync_thread)
6453 		return -EBUSY;
6454 	if (mddev->ro)
6455 		return -EROFS;
6456 
6457 	rdev_for_each(rdev, mddev) {
6458 		sector_t avail = rdev->sectors;
6459 
6460 		if (fit && (num_sectors == 0 || num_sectors > avail))
6461 			num_sectors = avail;
6462 		if (avail < num_sectors)
6463 			return -ENOSPC;
6464 	}
6465 	rv = mddev->pers->resize(mddev, num_sectors);
6466 	if (!rv)
6467 		revalidate_disk(mddev->gendisk);
6468 	return rv;
6469 }
6470 
6471 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6472 {
6473 	int rv;
6474 	struct md_rdev *rdev;
6475 	/* change the number of raid disks */
6476 	if (mddev->pers->check_reshape == NULL)
6477 		return -EINVAL;
6478 	if (mddev->ro)
6479 		return -EROFS;
6480 	if (raid_disks <= 0 ||
6481 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6482 		return -EINVAL;
6483 	if (mddev->sync_thread ||
6484 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6485 	    mddev->reshape_position != MaxSector)
6486 		return -EBUSY;
6487 
6488 	rdev_for_each(rdev, mddev) {
6489 		if (mddev->raid_disks < raid_disks &&
6490 		    rdev->data_offset < rdev->new_data_offset)
6491 			return -EINVAL;
6492 		if (mddev->raid_disks > raid_disks &&
6493 		    rdev->data_offset > rdev->new_data_offset)
6494 			return -EINVAL;
6495 	}
6496 
6497 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6498 	if (mddev->delta_disks < 0)
6499 		mddev->reshape_backwards = 1;
6500 	else if (mddev->delta_disks > 0)
6501 		mddev->reshape_backwards = 0;
6502 
6503 	rv = mddev->pers->check_reshape(mddev);
6504 	if (rv < 0) {
6505 		mddev->delta_disks = 0;
6506 		mddev->reshape_backwards = 0;
6507 	}
6508 	return rv;
6509 }
6510 
6511 /*
6512  * update_array_info is used to change the configuration of an
6513  * on-line array.
6514  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6515  * fields in the info are checked against the array.
6516  * Any differences that cannot be handled will cause an error.
6517  * Normally, only one change can be managed at a time.
6518  */
6519 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6520 {
6521 	int rv = 0;
6522 	int cnt = 0;
6523 	int state = 0;
6524 
6525 	/* calculate expected state,ignoring low bits */
6526 	if (mddev->bitmap && mddev->bitmap_info.offset)
6527 		state |= (1 << MD_SB_BITMAP_PRESENT);
6528 
6529 	if (mddev->major_version != info->major_version ||
6530 	    mddev->minor_version != info->minor_version ||
6531 /*	    mddev->patch_version != info->patch_version || */
6532 	    mddev->ctime         != info->ctime         ||
6533 	    mddev->level         != info->level         ||
6534 /*	    mddev->layout        != info->layout        || */
6535 	    mddev->persistent	 != !info->not_persistent ||
6536 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6537 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6538 	    ((state^info->state) & 0xfffffe00)
6539 		)
6540 		return -EINVAL;
6541 	/* Check there is only one change */
6542 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6543 		cnt++;
6544 	if (mddev->raid_disks != info->raid_disks)
6545 		cnt++;
6546 	if (mddev->layout != info->layout)
6547 		cnt++;
6548 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6549 		cnt++;
6550 	if (cnt == 0)
6551 		return 0;
6552 	if (cnt > 1)
6553 		return -EINVAL;
6554 
6555 	if (mddev->layout != info->layout) {
6556 		/* Change layout
6557 		 * we don't need to do anything at the md level, the
6558 		 * personality will take care of it all.
6559 		 */
6560 		if (mddev->pers->check_reshape == NULL)
6561 			return -EINVAL;
6562 		else {
6563 			mddev->new_layout = info->layout;
6564 			rv = mddev->pers->check_reshape(mddev);
6565 			if (rv)
6566 				mddev->new_layout = mddev->layout;
6567 			return rv;
6568 		}
6569 	}
6570 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6571 		rv = update_size(mddev, (sector_t)info->size * 2);
6572 
6573 	if (mddev->raid_disks    != info->raid_disks)
6574 		rv = update_raid_disks(mddev, info->raid_disks);
6575 
6576 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6577 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6578 			rv = -EINVAL;
6579 			goto err;
6580 		}
6581 		if (mddev->recovery || mddev->sync_thread) {
6582 			rv = -EBUSY;
6583 			goto err;
6584 		}
6585 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6586 			struct bitmap *bitmap;
6587 			/* add the bitmap */
6588 			if (mddev->bitmap) {
6589 				rv = -EEXIST;
6590 				goto err;
6591 			}
6592 			if (mddev->bitmap_info.default_offset == 0) {
6593 				rv = -EINVAL;
6594 				goto err;
6595 			}
6596 			mddev->bitmap_info.offset =
6597 				mddev->bitmap_info.default_offset;
6598 			mddev->bitmap_info.space =
6599 				mddev->bitmap_info.default_space;
6600 			mddev->pers->quiesce(mddev, 1);
6601 			bitmap = bitmap_create(mddev, -1);
6602 			if (!IS_ERR(bitmap)) {
6603 				mddev->bitmap = bitmap;
6604 				rv = bitmap_load(mddev);
6605 			} else
6606 				rv = PTR_ERR(bitmap);
6607 			if (rv)
6608 				bitmap_destroy(mddev);
6609 			mddev->pers->quiesce(mddev, 0);
6610 		} else {
6611 			/* remove the bitmap */
6612 			if (!mddev->bitmap) {
6613 				rv = -ENOENT;
6614 				goto err;
6615 			}
6616 			if (mddev->bitmap->storage.file) {
6617 				rv = -EINVAL;
6618 				goto err;
6619 			}
6620 			if (mddev->bitmap_info.nodes) {
6621 				/* hold PW on all the bitmap lock */
6622 				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6623 					printk("md: can't change bitmap to none since the"
6624 					       " array is in use by more than one node\n");
6625 					rv = -EPERM;
6626 					md_cluster_ops->unlock_all_bitmaps(mddev);
6627 					goto err;
6628 				}
6629 
6630 				mddev->bitmap_info.nodes = 0;
6631 				md_cluster_ops->leave(mddev);
6632 			}
6633 			mddev->pers->quiesce(mddev, 1);
6634 			bitmap_destroy(mddev);
6635 			mddev->pers->quiesce(mddev, 0);
6636 			mddev->bitmap_info.offset = 0;
6637 		}
6638 	}
6639 	md_update_sb(mddev, 1);
6640 	return rv;
6641 err:
6642 	return rv;
6643 }
6644 
6645 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6646 {
6647 	struct md_rdev *rdev;
6648 	int err = 0;
6649 
6650 	if (mddev->pers == NULL)
6651 		return -ENODEV;
6652 
6653 	rcu_read_lock();
6654 	rdev = find_rdev_rcu(mddev, dev);
6655 	if (!rdev)
6656 		err =  -ENODEV;
6657 	else {
6658 		md_error(mddev, rdev);
6659 		if (!test_bit(Faulty, &rdev->flags))
6660 			err = -EBUSY;
6661 	}
6662 	rcu_read_unlock();
6663 	return err;
6664 }
6665 
6666 /*
6667  * We have a problem here : there is no easy way to give a CHS
6668  * virtual geometry. We currently pretend that we have a 2 heads
6669  * 4 sectors (with a BIG number of cylinders...). This drives
6670  * dosfs just mad... ;-)
6671  */
6672 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6673 {
6674 	struct mddev *mddev = bdev->bd_disk->private_data;
6675 
6676 	geo->heads = 2;
6677 	geo->sectors = 4;
6678 	geo->cylinders = mddev->array_sectors / 8;
6679 	return 0;
6680 }
6681 
6682 static inline bool md_ioctl_valid(unsigned int cmd)
6683 {
6684 	switch (cmd) {
6685 	case ADD_NEW_DISK:
6686 	case BLKROSET:
6687 	case GET_ARRAY_INFO:
6688 	case GET_BITMAP_FILE:
6689 	case GET_DISK_INFO:
6690 	case HOT_ADD_DISK:
6691 	case HOT_REMOVE_DISK:
6692 	case RAID_AUTORUN:
6693 	case RAID_VERSION:
6694 	case RESTART_ARRAY_RW:
6695 	case RUN_ARRAY:
6696 	case SET_ARRAY_INFO:
6697 	case SET_BITMAP_FILE:
6698 	case SET_DISK_FAULTY:
6699 	case STOP_ARRAY:
6700 	case STOP_ARRAY_RO:
6701 	case CLUSTERED_DISK_NACK:
6702 		return true;
6703 	default:
6704 		return false;
6705 	}
6706 }
6707 
6708 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6709 			unsigned int cmd, unsigned long arg)
6710 {
6711 	int err = 0;
6712 	void __user *argp = (void __user *)arg;
6713 	struct mddev *mddev = NULL;
6714 	int ro;
6715 
6716 	if (!md_ioctl_valid(cmd))
6717 		return -ENOTTY;
6718 
6719 	switch (cmd) {
6720 	case RAID_VERSION:
6721 	case GET_ARRAY_INFO:
6722 	case GET_DISK_INFO:
6723 		break;
6724 	default:
6725 		if (!capable(CAP_SYS_ADMIN))
6726 			return -EACCES;
6727 	}
6728 
6729 	/*
6730 	 * Commands dealing with the RAID driver but not any
6731 	 * particular array:
6732 	 */
6733 	switch (cmd) {
6734 	case RAID_VERSION:
6735 		err = get_version(argp);
6736 		goto out;
6737 
6738 #ifndef MODULE
6739 	case RAID_AUTORUN:
6740 		err = 0;
6741 		autostart_arrays(arg);
6742 		goto out;
6743 #endif
6744 	default:;
6745 	}
6746 
6747 	/*
6748 	 * Commands creating/starting a new array:
6749 	 */
6750 
6751 	mddev = bdev->bd_disk->private_data;
6752 
6753 	if (!mddev) {
6754 		BUG();
6755 		goto out;
6756 	}
6757 
6758 	/* Some actions do not requires the mutex */
6759 	switch (cmd) {
6760 	case GET_ARRAY_INFO:
6761 		if (!mddev->raid_disks && !mddev->external)
6762 			err = -ENODEV;
6763 		else
6764 			err = get_array_info(mddev, argp);
6765 		goto out;
6766 
6767 	case GET_DISK_INFO:
6768 		if (!mddev->raid_disks && !mddev->external)
6769 			err = -ENODEV;
6770 		else
6771 			err = get_disk_info(mddev, argp);
6772 		goto out;
6773 
6774 	case SET_DISK_FAULTY:
6775 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6776 		goto out;
6777 
6778 	case GET_BITMAP_FILE:
6779 		err = get_bitmap_file(mddev, argp);
6780 		goto out;
6781 
6782 	}
6783 
6784 	if (cmd == ADD_NEW_DISK)
6785 		/* need to ensure md_delayed_delete() has completed */
6786 		flush_workqueue(md_misc_wq);
6787 
6788 	if (cmd == HOT_REMOVE_DISK)
6789 		/* need to ensure recovery thread has run */
6790 		wait_event_interruptible_timeout(mddev->sb_wait,
6791 						 !test_bit(MD_RECOVERY_NEEDED,
6792 							   &mddev->flags),
6793 						 msecs_to_jiffies(5000));
6794 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6795 		/* Need to flush page cache, and ensure no-one else opens
6796 		 * and writes
6797 		 */
6798 		mutex_lock(&mddev->open_mutex);
6799 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6800 			mutex_unlock(&mddev->open_mutex);
6801 			err = -EBUSY;
6802 			goto out;
6803 		}
6804 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6805 		mutex_unlock(&mddev->open_mutex);
6806 		sync_blockdev(bdev);
6807 	}
6808 	err = mddev_lock(mddev);
6809 	if (err) {
6810 		printk(KERN_INFO
6811 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6812 			err, cmd);
6813 		goto out;
6814 	}
6815 
6816 	if (cmd == SET_ARRAY_INFO) {
6817 		mdu_array_info_t info;
6818 		if (!arg)
6819 			memset(&info, 0, sizeof(info));
6820 		else if (copy_from_user(&info, argp, sizeof(info))) {
6821 			err = -EFAULT;
6822 			goto unlock;
6823 		}
6824 		if (mddev->pers) {
6825 			err = update_array_info(mddev, &info);
6826 			if (err) {
6827 				printk(KERN_WARNING "md: couldn't update"
6828 				       " array info. %d\n", err);
6829 				goto unlock;
6830 			}
6831 			goto unlock;
6832 		}
6833 		if (!list_empty(&mddev->disks)) {
6834 			printk(KERN_WARNING
6835 			       "md: array %s already has disks!\n",
6836 			       mdname(mddev));
6837 			err = -EBUSY;
6838 			goto unlock;
6839 		}
6840 		if (mddev->raid_disks) {
6841 			printk(KERN_WARNING
6842 			       "md: array %s already initialised!\n",
6843 			       mdname(mddev));
6844 			err = -EBUSY;
6845 			goto unlock;
6846 		}
6847 		err = set_array_info(mddev, &info);
6848 		if (err) {
6849 			printk(KERN_WARNING "md: couldn't set"
6850 			       " array info. %d\n", err);
6851 			goto unlock;
6852 		}
6853 		goto unlock;
6854 	}
6855 
6856 	/*
6857 	 * Commands querying/configuring an existing array:
6858 	 */
6859 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6860 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6861 	if ((!mddev->raid_disks && !mddev->external)
6862 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6863 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6864 	    && cmd != GET_BITMAP_FILE) {
6865 		err = -ENODEV;
6866 		goto unlock;
6867 	}
6868 
6869 	/*
6870 	 * Commands even a read-only array can execute:
6871 	 */
6872 	switch (cmd) {
6873 	case RESTART_ARRAY_RW:
6874 		err = restart_array(mddev);
6875 		goto unlock;
6876 
6877 	case STOP_ARRAY:
6878 		err = do_md_stop(mddev, 0, bdev);
6879 		goto unlock;
6880 
6881 	case STOP_ARRAY_RO:
6882 		err = md_set_readonly(mddev, bdev);
6883 		goto unlock;
6884 
6885 	case HOT_REMOVE_DISK:
6886 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6887 		goto unlock;
6888 
6889 	case ADD_NEW_DISK:
6890 		/* We can support ADD_NEW_DISK on read-only arrays
6891 		 * only if we are re-adding a preexisting device.
6892 		 * So require mddev->pers and MD_DISK_SYNC.
6893 		 */
6894 		if (mddev->pers) {
6895 			mdu_disk_info_t info;
6896 			if (copy_from_user(&info, argp, sizeof(info)))
6897 				err = -EFAULT;
6898 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6899 				/* Need to clear read-only for this */
6900 				break;
6901 			else
6902 				err = add_new_disk(mddev, &info);
6903 			goto unlock;
6904 		}
6905 		break;
6906 
6907 	case BLKROSET:
6908 		if (get_user(ro, (int __user *)(arg))) {
6909 			err = -EFAULT;
6910 			goto unlock;
6911 		}
6912 		err = -EINVAL;
6913 
6914 		/* if the bdev is going readonly the value of mddev->ro
6915 		 * does not matter, no writes are coming
6916 		 */
6917 		if (ro)
6918 			goto unlock;
6919 
6920 		/* are we are already prepared for writes? */
6921 		if (mddev->ro != 1)
6922 			goto unlock;
6923 
6924 		/* transitioning to readauto need only happen for
6925 		 * arrays that call md_write_start
6926 		 */
6927 		if (mddev->pers) {
6928 			err = restart_array(mddev);
6929 			if (err == 0) {
6930 				mddev->ro = 2;
6931 				set_disk_ro(mddev->gendisk, 0);
6932 			}
6933 		}
6934 		goto unlock;
6935 	}
6936 
6937 	/*
6938 	 * The remaining ioctls are changing the state of the
6939 	 * superblock, so we do not allow them on read-only arrays.
6940 	 */
6941 	if (mddev->ro && mddev->pers) {
6942 		if (mddev->ro == 2) {
6943 			mddev->ro = 0;
6944 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6945 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6946 			/* mddev_unlock will wake thread */
6947 			/* If a device failed while we were read-only, we
6948 			 * need to make sure the metadata is updated now.
6949 			 */
6950 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6951 				mddev_unlock(mddev);
6952 				wait_event(mddev->sb_wait,
6953 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6954 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6955 				mddev_lock_nointr(mddev);
6956 			}
6957 		} else {
6958 			err = -EROFS;
6959 			goto unlock;
6960 		}
6961 	}
6962 
6963 	switch (cmd) {
6964 	case ADD_NEW_DISK:
6965 	{
6966 		mdu_disk_info_t info;
6967 		if (copy_from_user(&info, argp, sizeof(info)))
6968 			err = -EFAULT;
6969 		else
6970 			err = add_new_disk(mddev, &info);
6971 		goto unlock;
6972 	}
6973 
6974 	case CLUSTERED_DISK_NACK:
6975 		if (mddev_is_clustered(mddev))
6976 			md_cluster_ops->new_disk_ack(mddev, false);
6977 		else
6978 			err = -EINVAL;
6979 		goto unlock;
6980 
6981 	case HOT_ADD_DISK:
6982 		err = hot_add_disk(mddev, new_decode_dev(arg));
6983 		goto unlock;
6984 
6985 	case RUN_ARRAY:
6986 		err = do_md_run(mddev);
6987 		goto unlock;
6988 
6989 	case SET_BITMAP_FILE:
6990 		err = set_bitmap_file(mddev, (int)arg);
6991 		goto unlock;
6992 
6993 	default:
6994 		err = -EINVAL;
6995 		goto unlock;
6996 	}
6997 
6998 unlock:
6999 	if (mddev->hold_active == UNTIL_IOCTL &&
7000 	    err != -EINVAL)
7001 		mddev->hold_active = 0;
7002 	mddev_unlock(mddev);
7003 out:
7004 	return err;
7005 }
7006 #ifdef CONFIG_COMPAT
7007 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7008 		    unsigned int cmd, unsigned long arg)
7009 {
7010 	switch (cmd) {
7011 	case HOT_REMOVE_DISK:
7012 	case HOT_ADD_DISK:
7013 	case SET_DISK_FAULTY:
7014 	case SET_BITMAP_FILE:
7015 		/* These take in integer arg, do not convert */
7016 		break;
7017 	default:
7018 		arg = (unsigned long)compat_ptr(arg);
7019 		break;
7020 	}
7021 
7022 	return md_ioctl(bdev, mode, cmd, arg);
7023 }
7024 #endif /* CONFIG_COMPAT */
7025 
7026 static int md_open(struct block_device *bdev, fmode_t mode)
7027 {
7028 	/*
7029 	 * Succeed if we can lock the mddev, which confirms that
7030 	 * it isn't being stopped right now.
7031 	 */
7032 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7033 	int err;
7034 
7035 	if (!mddev)
7036 		return -ENODEV;
7037 
7038 	if (mddev->gendisk != bdev->bd_disk) {
7039 		/* we are racing with mddev_put which is discarding this
7040 		 * bd_disk.
7041 		 */
7042 		mddev_put(mddev);
7043 		/* Wait until bdev->bd_disk is definitely gone */
7044 		flush_workqueue(md_misc_wq);
7045 		/* Then retry the open from the top */
7046 		return -ERESTARTSYS;
7047 	}
7048 	BUG_ON(mddev != bdev->bd_disk->private_data);
7049 
7050 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7051 		goto out;
7052 
7053 	err = 0;
7054 	atomic_inc(&mddev->openers);
7055 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
7056 	mutex_unlock(&mddev->open_mutex);
7057 
7058 	check_disk_change(bdev);
7059  out:
7060 	return err;
7061 }
7062 
7063 static void md_release(struct gendisk *disk, fmode_t mode)
7064 {
7065 	struct mddev *mddev = disk->private_data;
7066 
7067 	BUG_ON(!mddev);
7068 	atomic_dec(&mddev->openers);
7069 	mddev_put(mddev);
7070 }
7071 
7072 static int md_media_changed(struct gendisk *disk)
7073 {
7074 	struct mddev *mddev = disk->private_data;
7075 
7076 	return mddev->changed;
7077 }
7078 
7079 static int md_revalidate(struct gendisk *disk)
7080 {
7081 	struct mddev *mddev = disk->private_data;
7082 
7083 	mddev->changed = 0;
7084 	return 0;
7085 }
7086 static const struct block_device_operations md_fops =
7087 {
7088 	.owner		= THIS_MODULE,
7089 	.open		= md_open,
7090 	.release	= md_release,
7091 	.ioctl		= md_ioctl,
7092 #ifdef CONFIG_COMPAT
7093 	.compat_ioctl	= md_compat_ioctl,
7094 #endif
7095 	.getgeo		= md_getgeo,
7096 	.media_changed  = md_media_changed,
7097 	.revalidate_disk= md_revalidate,
7098 };
7099 
7100 static int md_thread(void *arg)
7101 {
7102 	struct md_thread *thread = arg;
7103 
7104 	/*
7105 	 * md_thread is a 'system-thread', it's priority should be very
7106 	 * high. We avoid resource deadlocks individually in each
7107 	 * raid personality. (RAID5 does preallocation) We also use RR and
7108 	 * the very same RT priority as kswapd, thus we will never get
7109 	 * into a priority inversion deadlock.
7110 	 *
7111 	 * we definitely have to have equal or higher priority than
7112 	 * bdflush, otherwise bdflush will deadlock if there are too
7113 	 * many dirty RAID5 blocks.
7114 	 */
7115 
7116 	allow_signal(SIGKILL);
7117 	while (!kthread_should_stop()) {
7118 
7119 		/* We need to wait INTERRUPTIBLE so that
7120 		 * we don't add to the load-average.
7121 		 * That means we need to be sure no signals are
7122 		 * pending
7123 		 */
7124 		if (signal_pending(current))
7125 			flush_signals(current);
7126 
7127 		wait_event_interruptible_timeout
7128 			(thread->wqueue,
7129 			 test_bit(THREAD_WAKEUP, &thread->flags)
7130 			 || kthread_should_stop(),
7131 			 thread->timeout);
7132 
7133 		clear_bit(THREAD_WAKEUP, &thread->flags);
7134 		if (!kthread_should_stop())
7135 			thread->run(thread);
7136 	}
7137 
7138 	return 0;
7139 }
7140 
7141 void md_wakeup_thread(struct md_thread *thread)
7142 {
7143 	if (thread) {
7144 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7145 		set_bit(THREAD_WAKEUP, &thread->flags);
7146 		wake_up(&thread->wqueue);
7147 	}
7148 }
7149 EXPORT_SYMBOL(md_wakeup_thread);
7150 
7151 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7152 		struct mddev *mddev, const char *name)
7153 {
7154 	struct md_thread *thread;
7155 
7156 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7157 	if (!thread)
7158 		return NULL;
7159 
7160 	init_waitqueue_head(&thread->wqueue);
7161 
7162 	thread->run = run;
7163 	thread->mddev = mddev;
7164 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7165 	thread->tsk = kthread_run(md_thread, thread,
7166 				  "%s_%s",
7167 				  mdname(thread->mddev),
7168 				  name);
7169 	if (IS_ERR(thread->tsk)) {
7170 		kfree(thread);
7171 		return NULL;
7172 	}
7173 	return thread;
7174 }
7175 EXPORT_SYMBOL(md_register_thread);
7176 
7177 void md_unregister_thread(struct md_thread **threadp)
7178 {
7179 	struct md_thread *thread = *threadp;
7180 	if (!thread)
7181 		return;
7182 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7183 	/* Locking ensures that mddev_unlock does not wake_up a
7184 	 * non-existent thread
7185 	 */
7186 	spin_lock(&pers_lock);
7187 	*threadp = NULL;
7188 	spin_unlock(&pers_lock);
7189 
7190 	kthread_stop(thread->tsk);
7191 	kfree(thread);
7192 }
7193 EXPORT_SYMBOL(md_unregister_thread);
7194 
7195 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7196 {
7197 	if (!rdev || test_bit(Faulty, &rdev->flags))
7198 		return;
7199 
7200 	if (!mddev->pers || !mddev->pers->error_handler)
7201 		return;
7202 	mddev->pers->error_handler(mddev,rdev);
7203 	if (mddev->degraded)
7204 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7205 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7206 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7207 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7208 	md_wakeup_thread(mddev->thread);
7209 	if (mddev->event_work.func)
7210 		queue_work(md_misc_wq, &mddev->event_work);
7211 	md_new_event(mddev);
7212 }
7213 EXPORT_SYMBOL(md_error);
7214 
7215 /* seq_file implementation /proc/mdstat */
7216 
7217 static void status_unused(struct seq_file *seq)
7218 {
7219 	int i = 0;
7220 	struct md_rdev *rdev;
7221 
7222 	seq_printf(seq, "unused devices: ");
7223 
7224 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7225 		char b[BDEVNAME_SIZE];
7226 		i++;
7227 		seq_printf(seq, "%s ",
7228 			      bdevname(rdev->bdev,b));
7229 	}
7230 	if (!i)
7231 		seq_printf(seq, "<none>");
7232 
7233 	seq_printf(seq, "\n");
7234 }
7235 
7236 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7237 {
7238 	sector_t max_sectors, resync, res;
7239 	unsigned long dt, db;
7240 	sector_t rt;
7241 	int scale;
7242 	unsigned int per_milli;
7243 
7244 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7245 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7246 		max_sectors = mddev->resync_max_sectors;
7247 	else
7248 		max_sectors = mddev->dev_sectors;
7249 
7250 	resync = mddev->curr_resync;
7251 	if (resync <= 3) {
7252 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7253 			/* Still cleaning up */
7254 			resync = max_sectors;
7255 	} else
7256 		resync -= atomic_read(&mddev->recovery_active);
7257 
7258 	if (resync == 0) {
7259 		if (mddev->recovery_cp < MaxSector) {
7260 			seq_printf(seq, "\tresync=PENDING");
7261 			return 1;
7262 		}
7263 		return 0;
7264 	}
7265 	if (resync < 3) {
7266 		seq_printf(seq, "\tresync=DELAYED");
7267 		return 1;
7268 	}
7269 
7270 	WARN_ON(max_sectors == 0);
7271 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7272 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7273 	 * u32, as those are the requirements for sector_div.
7274 	 * Thus 'scale' must be at least 10
7275 	 */
7276 	scale = 10;
7277 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7278 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7279 			scale++;
7280 	}
7281 	res = (resync>>scale)*1000;
7282 	sector_div(res, (u32)((max_sectors>>scale)+1));
7283 
7284 	per_milli = res;
7285 	{
7286 		int i, x = per_milli/50, y = 20-x;
7287 		seq_printf(seq, "[");
7288 		for (i = 0; i < x; i++)
7289 			seq_printf(seq, "=");
7290 		seq_printf(seq, ">");
7291 		for (i = 0; i < y; i++)
7292 			seq_printf(seq, ".");
7293 		seq_printf(seq, "] ");
7294 	}
7295 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7296 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7297 		    "reshape" :
7298 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7299 		     "check" :
7300 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7301 		      "resync" : "recovery"))),
7302 		   per_milli/10, per_milli % 10,
7303 		   (unsigned long long) resync/2,
7304 		   (unsigned long long) max_sectors/2);
7305 
7306 	/*
7307 	 * dt: time from mark until now
7308 	 * db: blocks written from mark until now
7309 	 * rt: remaining time
7310 	 *
7311 	 * rt is a sector_t, so could be 32bit or 64bit.
7312 	 * So we divide before multiply in case it is 32bit and close
7313 	 * to the limit.
7314 	 * We scale the divisor (db) by 32 to avoid losing precision
7315 	 * near the end of resync when the number of remaining sectors
7316 	 * is close to 'db'.
7317 	 * We then divide rt by 32 after multiplying by db to compensate.
7318 	 * The '+1' avoids division by zero if db is very small.
7319 	 */
7320 	dt = ((jiffies - mddev->resync_mark) / HZ);
7321 	if (!dt) dt++;
7322 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7323 		- mddev->resync_mark_cnt;
7324 
7325 	rt = max_sectors - resync;    /* number of remaining sectors */
7326 	sector_div(rt, db/32+1);
7327 	rt *= dt;
7328 	rt >>= 5;
7329 
7330 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7331 		   ((unsigned long)rt % 60)/6);
7332 
7333 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7334 	return 1;
7335 }
7336 
7337 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7338 {
7339 	struct list_head *tmp;
7340 	loff_t l = *pos;
7341 	struct mddev *mddev;
7342 
7343 	if (l >= 0x10000)
7344 		return NULL;
7345 	if (!l--)
7346 		/* header */
7347 		return (void*)1;
7348 
7349 	spin_lock(&all_mddevs_lock);
7350 	list_for_each(tmp,&all_mddevs)
7351 		if (!l--) {
7352 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7353 			mddev_get(mddev);
7354 			spin_unlock(&all_mddevs_lock);
7355 			return mddev;
7356 		}
7357 	spin_unlock(&all_mddevs_lock);
7358 	if (!l--)
7359 		return (void*)2;/* tail */
7360 	return NULL;
7361 }
7362 
7363 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7364 {
7365 	struct list_head *tmp;
7366 	struct mddev *next_mddev, *mddev = v;
7367 
7368 	++*pos;
7369 	if (v == (void*)2)
7370 		return NULL;
7371 
7372 	spin_lock(&all_mddevs_lock);
7373 	if (v == (void*)1)
7374 		tmp = all_mddevs.next;
7375 	else
7376 		tmp = mddev->all_mddevs.next;
7377 	if (tmp != &all_mddevs)
7378 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7379 	else {
7380 		next_mddev = (void*)2;
7381 		*pos = 0x10000;
7382 	}
7383 	spin_unlock(&all_mddevs_lock);
7384 
7385 	if (v != (void*)1)
7386 		mddev_put(mddev);
7387 	return next_mddev;
7388 
7389 }
7390 
7391 static void md_seq_stop(struct seq_file *seq, void *v)
7392 {
7393 	struct mddev *mddev = v;
7394 
7395 	if (mddev && v != (void*)1 && v != (void*)2)
7396 		mddev_put(mddev);
7397 }
7398 
7399 static int md_seq_show(struct seq_file *seq, void *v)
7400 {
7401 	struct mddev *mddev = v;
7402 	sector_t sectors;
7403 	struct md_rdev *rdev;
7404 
7405 	if (v == (void*)1) {
7406 		struct md_personality *pers;
7407 		seq_printf(seq, "Personalities : ");
7408 		spin_lock(&pers_lock);
7409 		list_for_each_entry(pers, &pers_list, list)
7410 			seq_printf(seq, "[%s] ", pers->name);
7411 
7412 		spin_unlock(&pers_lock);
7413 		seq_printf(seq, "\n");
7414 		seq->poll_event = atomic_read(&md_event_count);
7415 		return 0;
7416 	}
7417 	if (v == (void*)2) {
7418 		status_unused(seq);
7419 		return 0;
7420 	}
7421 
7422 	spin_lock(&mddev->lock);
7423 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7424 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7425 						mddev->pers ? "" : "in");
7426 		if (mddev->pers) {
7427 			if (mddev->ro==1)
7428 				seq_printf(seq, " (read-only)");
7429 			if (mddev->ro==2)
7430 				seq_printf(seq, " (auto-read-only)");
7431 			seq_printf(seq, " %s", mddev->pers->name);
7432 		}
7433 
7434 		sectors = 0;
7435 		rcu_read_lock();
7436 		rdev_for_each_rcu(rdev, mddev) {
7437 			char b[BDEVNAME_SIZE];
7438 			seq_printf(seq, " %s[%d]",
7439 				bdevname(rdev->bdev,b), rdev->desc_nr);
7440 			if (test_bit(WriteMostly, &rdev->flags))
7441 				seq_printf(seq, "(W)");
7442 			if (test_bit(Journal, &rdev->flags))
7443 				seq_printf(seq, "(J)");
7444 			if (test_bit(Faulty, &rdev->flags)) {
7445 				seq_printf(seq, "(F)");
7446 				continue;
7447 			}
7448 			if (rdev->raid_disk < 0)
7449 				seq_printf(seq, "(S)"); /* spare */
7450 			if (test_bit(Replacement, &rdev->flags))
7451 				seq_printf(seq, "(R)");
7452 			sectors += rdev->sectors;
7453 		}
7454 		rcu_read_unlock();
7455 
7456 		if (!list_empty(&mddev->disks)) {
7457 			if (mddev->pers)
7458 				seq_printf(seq, "\n      %llu blocks",
7459 					   (unsigned long long)
7460 					   mddev->array_sectors / 2);
7461 			else
7462 				seq_printf(seq, "\n      %llu blocks",
7463 					   (unsigned long long)sectors / 2);
7464 		}
7465 		if (mddev->persistent) {
7466 			if (mddev->major_version != 0 ||
7467 			    mddev->minor_version != 90) {
7468 				seq_printf(seq," super %d.%d",
7469 					   mddev->major_version,
7470 					   mddev->minor_version);
7471 			}
7472 		} else if (mddev->external)
7473 			seq_printf(seq, " super external:%s",
7474 				   mddev->metadata_type);
7475 		else
7476 			seq_printf(seq, " super non-persistent");
7477 
7478 		if (mddev->pers) {
7479 			mddev->pers->status(seq, mddev);
7480 			seq_printf(seq, "\n      ");
7481 			if (mddev->pers->sync_request) {
7482 				if (status_resync(seq, mddev))
7483 					seq_printf(seq, "\n      ");
7484 			}
7485 		} else
7486 			seq_printf(seq, "\n       ");
7487 
7488 		bitmap_status(seq, mddev->bitmap);
7489 
7490 		seq_printf(seq, "\n");
7491 	}
7492 	spin_unlock(&mddev->lock);
7493 
7494 	return 0;
7495 }
7496 
7497 static const struct seq_operations md_seq_ops = {
7498 	.start  = md_seq_start,
7499 	.next   = md_seq_next,
7500 	.stop   = md_seq_stop,
7501 	.show   = md_seq_show,
7502 };
7503 
7504 static int md_seq_open(struct inode *inode, struct file *file)
7505 {
7506 	struct seq_file *seq;
7507 	int error;
7508 
7509 	error = seq_open(file, &md_seq_ops);
7510 	if (error)
7511 		return error;
7512 
7513 	seq = file->private_data;
7514 	seq->poll_event = atomic_read(&md_event_count);
7515 	return error;
7516 }
7517 
7518 static int md_unloading;
7519 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7520 {
7521 	struct seq_file *seq = filp->private_data;
7522 	int mask;
7523 
7524 	if (md_unloading)
7525 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7526 	poll_wait(filp, &md_event_waiters, wait);
7527 
7528 	/* always allow read */
7529 	mask = POLLIN | POLLRDNORM;
7530 
7531 	if (seq->poll_event != atomic_read(&md_event_count))
7532 		mask |= POLLERR | POLLPRI;
7533 	return mask;
7534 }
7535 
7536 static const struct file_operations md_seq_fops = {
7537 	.owner		= THIS_MODULE,
7538 	.open           = md_seq_open,
7539 	.read           = seq_read,
7540 	.llseek         = seq_lseek,
7541 	.release	= seq_release_private,
7542 	.poll		= mdstat_poll,
7543 };
7544 
7545 int register_md_personality(struct md_personality *p)
7546 {
7547 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7548 						p->name, p->level);
7549 	spin_lock(&pers_lock);
7550 	list_add_tail(&p->list, &pers_list);
7551 	spin_unlock(&pers_lock);
7552 	return 0;
7553 }
7554 EXPORT_SYMBOL(register_md_personality);
7555 
7556 int unregister_md_personality(struct md_personality *p)
7557 {
7558 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7559 	spin_lock(&pers_lock);
7560 	list_del_init(&p->list);
7561 	spin_unlock(&pers_lock);
7562 	return 0;
7563 }
7564 EXPORT_SYMBOL(unregister_md_personality);
7565 
7566 int register_md_cluster_operations(struct md_cluster_operations *ops,
7567 				   struct module *module)
7568 {
7569 	int ret = 0;
7570 	spin_lock(&pers_lock);
7571 	if (md_cluster_ops != NULL)
7572 		ret = -EALREADY;
7573 	else {
7574 		md_cluster_ops = ops;
7575 		md_cluster_mod = module;
7576 	}
7577 	spin_unlock(&pers_lock);
7578 	return ret;
7579 }
7580 EXPORT_SYMBOL(register_md_cluster_operations);
7581 
7582 int unregister_md_cluster_operations(void)
7583 {
7584 	spin_lock(&pers_lock);
7585 	md_cluster_ops = NULL;
7586 	spin_unlock(&pers_lock);
7587 	return 0;
7588 }
7589 EXPORT_SYMBOL(unregister_md_cluster_operations);
7590 
7591 int md_setup_cluster(struct mddev *mddev, int nodes)
7592 {
7593 	int err;
7594 
7595 	err = request_module("md-cluster");
7596 	if (err) {
7597 		pr_err("md-cluster module not found.\n");
7598 		return -ENOENT;
7599 	}
7600 
7601 	spin_lock(&pers_lock);
7602 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7603 		spin_unlock(&pers_lock);
7604 		return -ENOENT;
7605 	}
7606 	spin_unlock(&pers_lock);
7607 
7608 	return md_cluster_ops->join(mddev, nodes);
7609 }
7610 
7611 void md_cluster_stop(struct mddev *mddev)
7612 {
7613 	if (!md_cluster_ops)
7614 		return;
7615 	md_cluster_ops->leave(mddev);
7616 	module_put(md_cluster_mod);
7617 }
7618 
7619 static int is_mddev_idle(struct mddev *mddev, int init)
7620 {
7621 	struct md_rdev *rdev;
7622 	int idle;
7623 	int curr_events;
7624 
7625 	idle = 1;
7626 	rcu_read_lock();
7627 	rdev_for_each_rcu(rdev, mddev) {
7628 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7629 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7630 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7631 			      atomic_read(&disk->sync_io);
7632 		/* sync IO will cause sync_io to increase before the disk_stats
7633 		 * as sync_io is counted when a request starts, and
7634 		 * disk_stats is counted when it completes.
7635 		 * So resync activity will cause curr_events to be smaller than
7636 		 * when there was no such activity.
7637 		 * non-sync IO will cause disk_stat to increase without
7638 		 * increasing sync_io so curr_events will (eventually)
7639 		 * be larger than it was before.  Once it becomes
7640 		 * substantially larger, the test below will cause
7641 		 * the array to appear non-idle, and resync will slow
7642 		 * down.
7643 		 * If there is a lot of outstanding resync activity when
7644 		 * we set last_event to curr_events, then all that activity
7645 		 * completing might cause the array to appear non-idle
7646 		 * and resync will be slowed down even though there might
7647 		 * not have been non-resync activity.  This will only
7648 		 * happen once though.  'last_events' will soon reflect
7649 		 * the state where there is little or no outstanding
7650 		 * resync requests, and further resync activity will
7651 		 * always make curr_events less than last_events.
7652 		 *
7653 		 */
7654 		if (init || curr_events - rdev->last_events > 64) {
7655 			rdev->last_events = curr_events;
7656 			idle = 0;
7657 		}
7658 	}
7659 	rcu_read_unlock();
7660 	return idle;
7661 }
7662 
7663 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7664 {
7665 	/* another "blocks" (512byte) blocks have been synced */
7666 	atomic_sub(blocks, &mddev->recovery_active);
7667 	wake_up(&mddev->recovery_wait);
7668 	if (!ok) {
7669 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7670 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7671 		md_wakeup_thread(mddev->thread);
7672 		// stop recovery, signal do_sync ....
7673 	}
7674 }
7675 EXPORT_SYMBOL(md_done_sync);
7676 
7677 /* md_write_start(mddev, bi)
7678  * If we need to update some array metadata (e.g. 'active' flag
7679  * in superblock) before writing, schedule a superblock update
7680  * and wait for it to complete.
7681  */
7682 void md_write_start(struct mddev *mddev, struct bio *bi)
7683 {
7684 	int did_change = 0;
7685 	if (bio_data_dir(bi) != WRITE)
7686 		return;
7687 
7688 	BUG_ON(mddev->ro == 1);
7689 	if (mddev->ro == 2) {
7690 		/* need to switch to read/write */
7691 		mddev->ro = 0;
7692 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7693 		md_wakeup_thread(mddev->thread);
7694 		md_wakeup_thread(mddev->sync_thread);
7695 		did_change = 1;
7696 	}
7697 	atomic_inc(&mddev->writes_pending);
7698 	if (mddev->safemode == 1)
7699 		mddev->safemode = 0;
7700 	if (mddev->in_sync) {
7701 		spin_lock(&mddev->lock);
7702 		if (mddev->in_sync) {
7703 			mddev->in_sync = 0;
7704 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7705 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7706 			md_wakeup_thread(mddev->thread);
7707 			did_change = 1;
7708 		}
7709 		spin_unlock(&mddev->lock);
7710 	}
7711 	if (did_change)
7712 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7713 	wait_event(mddev->sb_wait,
7714 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7715 }
7716 EXPORT_SYMBOL(md_write_start);
7717 
7718 void md_write_end(struct mddev *mddev)
7719 {
7720 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7721 		if (mddev->safemode == 2)
7722 			md_wakeup_thread(mddev->thread);
7723 		else if (mddev->safemode_delay)
7724 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7725 	}
7726 }
7727 EXPORT_SYMBOL(md_write_end);
7728 
7729 /* md_allow_write(mddev)
7730  * Calling this ensures that the array is marked 'active' so that writes
7731  * may proceed without blocking.  It is important to call this before
7732  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7733  * Must be called with mddev_lock held.
7734  *
7735  * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
7736  * is dropped, so return -EAGAIN after notifying userspace.
7737  */
7738 int md_allow_write(struct mddev *mddev)
7739 {
7740 	if (!mddev->pers)
7741 		return 0;
7742 	if (mddev->ro)
7743 		return 0;
7744 	if (!mddev->pers->sync_request)
7745 		return 0;
7746 
7747 	spin_lock(&mddev->lock);
7748 	if (mddev->in_sync) {
7749 		mddev->in_sync = 0;
7750 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7751 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7752 		if (mddev->safemode_delay &&
7753 		    mddev->safemode == 0)
7754 			mddev->safemode = 1;
7755 		spin_unlock(&mddev->lock);
7756 		md_update_sb(mddev, 0);
7757 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7758 	} else
7759 		spin_unlock(&mddev->lock);
7760 
7761 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7762 		return -EAGAIN;
7763 	else
7764 		return 0;
7765 }
7766 EXPORT_SYMBOL_GPL(md_allow_write);
7767 
7768 #define SYNC_MARKS	10
7769 #define	SYNC_MARK_STEP	(3*HZ)
7770 #define UPDATE_FREQUENCY (5*60*HZ)
7771 void md_do_sync(struct md_thread *thread)
7772 {
7773 	struct mddev *mddev = thread->mddev;
7774 	struct mddev *mddev2;
7775 	unsigned int currspeed = 0,
7776 		 window;
7777 	sector_t max_sectors,j, io_sectors, recovery_done;
7778 	unsigned long mark[SYNC_MARKS];
7779 	unsigned long update_time;
7780 	sector_t mark_cnt[SYNC_MARKS];
7781 	int last_mark,m;
7782 	struct list_head *tmp;
7783 	sector_t last_check;
7784 	int skipped = 0;
7785 	struct md_rdev *rdev;
7786 	char *desc, *action = NULL;
7787 	struct blk_plug plug;
7788 	bool cluster_resync_finished = false;
7789 
7790 	/* just incase thread restarts... */
7791 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7792 		return;
7793 	if (mddev->ro) {/* never try to sync a read-only array */
7794 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7795 		return;
7796 	}
7797 
7798 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7799 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7800 			desc = "data-check";
7801 			action = "check";
7802 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7803 			desc = "requested-resync";
7804 			action = "repair";
7805 		} else
7806 			desc = "resync";
7807 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7808 		desc = "reshape";
7809 	else
7810 		desc = "recovery";
7811 
7812 	mddev->last_sync_action = action ?: desc;
7813 
7814 	/* we overload curr_resync somewhat here.
7815 	 * 0 == not engaged in resync at all
7816 	 * 2 == checking that there is no conflict with another sync
7817 	 * 1 == like 2, but have yielded to allow conflicting resync to
7818 	 *		commense
7819 	 * other == active in resync - this many blocks
7820 	 *
7821 	 * Before starting a resync we must have set curr_resync to
7822 	 * 2, and then checked that every "conflicting" array has curr_resync
7823 	 * less than ours.  When we find one that is the same or higher
7824 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7825 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7826 	 * This will mean we have to start checking from the beginning again.
7827 	 *
7828 	 */
7829 
7830 	do {
7831 		mddev->curr_resync = 2;
7832 
7833 	try_again:
7834 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7835 			goto skip;
7836 		for_each_mddev(mddev2, tmp) {
7837 			if (mddev2 == mddev)
7838 				continue;
7839 			if (!mddev->parallel_resync
7840 			&&  mddev2->curr_resync
7841 			&&  match_mddev_units(mddev, mddev2)) {
7842 				DEFINE_WAIT(wq);
7843 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7844 					/* arbitrarily yield */
7845 					mddev->curr_resync = 1;
7846 					wake_up(&resync_wait);
7847 				}
7848 				if (mddev > mddev2 && mddev->curr_resync == 1)
7849 					/* no need to wait here, we can wait the next
7850 					 * time 'round when curr_resync == 2
7851 					 */
7852 					continue;
7853 				/* We need to wait 'interruptible' so as not to
7854 				 * contribute to the load average, and not to
7855 				 * be caught by 'softlockup'
7856 				 */
7857 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7858 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7859 				    mddev2->curr_resync >= mddev->curr_resync) {
7860 					printk(KERN_INFO "md: delaying %s of %s"
7861 					       " until %s has finished (they"
7862 					       " share one or more physical units)\n",
7863 					       desc, mdname(mddev), mdname(mddev2));
7864 					mddev_put(mddev2);
7865 					if (signal_pending(current))
7866 						flush_signals(current);
7867 					schedule();
7868 					finish_wait(&resync_wait, &wq);
7869 					goto try_again;
7870 				}
7871 				finish_wait(&resync_wait, &wq);
7872 			}
7873 		}
7874 	} while (mddev->curr_resync < 2);
7875 
7876 	j = 0;
7877 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7878 		/* resync follows the size requested by the personality,
7879 		 * which defaults to physical size, but can be virtual size
7880 		 */
7881 		max_sectors = mddev->resync_max_sectors;
7882 		atomic64_set(&mddev->resync_mismatches, 0);
7883 		/* we don't use the checkpoint if there's a bitmap */
7884 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7885 			j = mddev->resync_min;
7886 		else if (!mddev->bitmap)
7887 			j = mddev->recovery_cp;
7888 
7889 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7890 		max_sectors = mddev->resync_max_sectors;
7891 	else {
7892 		/* recovery follows the physical size of devices */
7893 		max_sectors = mddev->dev_sectors;
7894 		j = MaxSector;
7895 		rcu_read_lock();
7896 		rdev_for_each_rcu(rdev, mddev)
7897 			if (rdev->raid_disk >= 0 &&
7898 			    !test_bit(Journal, &rdev->flags) &&
7899 			    !test_bit(Faulty, &rdev->flags) &&
7900 			    !test_bit(In_sync, &rdev->flags) &&
7901 			    rdev->recovery_offset < j)
7902 				j = rdev->recovery_offset;
7903 		rcu_read_unlock();
7904 
7905 		/* If there is a bitmap, we need to make sure all
7906 		 * writes that started before we added a spare
7907 		 * complete before we start doing a recovery.
7908 		 * Otherwise the write might complete and (via
7909 		 * bitmap_endwrite) set a bit in the bitmap after the
7910 		 * recovery has checked that bit and skipped that
7911 		 * region.
7912 		 */
7913 		if (mddev->bitmap) {
7914 			mddev->pers->quiesce(mddev, 1);
7915 			mddev->pers->quiesce(mddev, 0);
7916 		}
7917 	}
7918 
7919 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7920 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7921 		" %d KB/sec/disk.\n", speed_min(mddev));
7922 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7923 	       "(but not more than %d KB/sec) for %s.\n",
7924 	       speed_max(mddev), desc);
7925 
7926 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7927 
7928 	io_sectors = 0;
7929 	for (m = 0; m < SYNC_MARKS; m++) {
7930 		mark[m] = jiffies;
7931 		mark_cnt[m] = io_sectors;
7932 	}
7933 	last_mark = 0;
7934 	mddev->resync_mark = mark[last_mark];
7935 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7936 
7937 	/*
7938 	 * Tune reconstruction:
7939 	 */
7940 	window = 32*(PAGE_SIZE/512);
7941 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7942 		window/2, (unsigned long long)max_sectors/2);
7943 
7944 	atomic_set(&mddev->recovery_active, 0);
7945 	last_check = 0;
7946 
7947 	if (j>2) {
7948 		printk(KERN_INFO
7949 		       "md: resuming %s of %s from checkpoint.\n",
7950 		       desc, mdname(mddev));
7951 		mddev->curr_resync = j;
7952 	} else
7953 		mddev->curr_resync = 3; /* no longer delayed */
7954 	mddev->curr_resync_completed = j;
7955 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7956 	md_new_event(mddev);
7957 	update_time = jiffies;
7958 
7959 	blk_start_plug(&plug);
7960 	while (j < max_sectors) {
7961 		sector_t sectors;
7962 
7963 		skipped = 0;
7964 
7965 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7966 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7967 		      (mddev->curr_resync - mddev->curr_resync_completed)
7968 		      > (max_sectors >> 4)) ||
7969 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7970 		     (j - mddev->curr_resync_completed)*2
7971 		     >= mddev->resync_max - mddev->curr_resync_completed ||
7972 		     mddev->curr_resync_completed > mddev->resync_max
7973 			    )) {
7974 			/* time to update curr_resync_completed */
7975 			wait_event(mddev->recovery_wait,
7976 				   atomic_read(&mddev->recovery_active) == 0);
7977 			mddev->curr_resync_completed = j;
7978 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7979 			    j > mddev->recovery_cp)
7980 				mddev->recovery_cp = j;
7981 			update_time = jiffies;
7982 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7983 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7984 		}
7985 
7986 		while (j >= mddev->resync_max &&
7987 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7988 			/* As this condition is controlled by user-space,
7989 			 * we can block indefinitely, so use '_interruptible'
7990 			 * to avoid triggering warnings.
7991 			 */
7992 			flush_signals(current); /* just in case */
7993 			wait_event_interruptible(mddev->recovery_wait,
7994 						 mddev->resync_max > j
7995 						 || test_bit(MD_RECOVERY_INTR,
7996 							     &mddev->recovery));
7997 		}
7998 
7999 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8000 			break;
8001 
8002 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
8003 		if (sectors == 0) {
8004 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8005 			break;
8006 		}
8007 
8008 		if (!skipped) { /* actual IO requested */
8009 			io_sectors += sectors;
8010 			atomic_add(sectors, &mddev->recovery_active);
8011 		}
8012 
8013 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8014 			break;
8015 
8016 		j += sectors;
8017 		if (j > max_sectors)
8018 			/* when skipping, extra large numbers can be returned. */
8019 			j = max_sectors;
8020 		if (j > 2)
8021 			mddev->curr_resync = j;
8022 		mddev->curr_mark_cnt = io_sectors;
8023 		if (last_check == 0)
8024 			/* this is the earliest that rebuild will be
8025 			 * visible in /proc/mdstat
8026 			 */
8027 			md_new_event(mddev);
8028 
8029 		if (last_check + window > io_sectors || j == max_sectors)
8030 			continue;
8031 
8032 		last_check = io_sectors;
8033 	repeat:
8034 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8035 			/* step marks */
8036 			int next = (last_mark+1) % SYNC_MARKS;
8037 
8038 			mddev->resync_mark = mark[next];
8039 			mddev->resync_mark_cnt = mark_cnt[next];
8040 			mark[next] = jiffies;
8041 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8042 			last_mark = next;
8043 		}
8044 
8045 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8046 			break;
8047 
8048 		/*
8049 		 * this loop exits only if either when we are slower than
8050 		 * the 'hard' speed limit, or the system was IO-idle for
8051 		 * a jiffy.
8052 		 * the system might be non-idle CPU-wise, but we only care
8053 		 * about not overloading the IO subsystem. (things like an
8054 		 * e2fsck being done on the RAID array should execute fast)
8055 		 */
8056 		cond_resched();
8057 
8058 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8059 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8060 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8061 
8062 		if (currspeed > speed_min(mddev)) {
8063 			if (currspeed > speed_max(mddev)) {
8064 				msleep(500);
8065 				goto repeat;
8066 			}
8067 			if (!is_mddev_idle(mddev, 0)) {
8068 				/*
8069 				 * Give other IO more of a chance.
8070 				 * The faster the devices, the less we wait.
8071 				 */
8072 				wait_event(mddev->recovery_wait,
8073 					   !atomic_read(&mddev->recovery_active));
8074 			}
8075 		}
8076 	}
8077 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8078 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8079 	       ? "interrupted" : "done");
8080 	/*
8081 	 * this also signals 'finished resyncing' to md_stop
8082 	 */
8083 	blk_finish_plug(&plug);
8084 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8085 
8086 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8087 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8088 	    mddev->curr_resync > 2) {
8089 		mddev->curr_resync_completed = mddev->curr_resync;
8090 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8091 	}
8092 	/* tell personality and other nodes that we are finished */
8093 	if (mddev_is_clustered(mddev)) {
8094 		md_cluster_ops->resync_finish(mddev);
8095 		cluster_resync_finished = true;
8096 	}
8097 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8098 
8099 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8100 	    mddev->curr_resync > 2) {
8101 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8102 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8103 				if (mddev->curr_resync >= mddev->recovery_cp) {
8104 					printk(KERN_INFO
8105 					       "md: checkpointing %s of %s.\n",
8106 					       desc, mdname(mddev));
8107 					if (test_bit(MD_RECOVERY_ERROR,
8108 						&mddev->recovery))
8109 						mddev->recovery_cp =
8110 							mddev->curr_resync_completed;
8111 					else
8112 						mddev->recovery_cp =
8113 							mddev->curr_resync;
8114 				}
8115 			} else
8116 				mddev->recovery_cp = MaxSector;
8117 		} else {
8118 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8119 				mddev->curr_resync = MaxSector;
8120 			rcu_read_lock();
8121 			rdev_for_each_rcu(rdev, mddev)
8122 				if (rdev->raid_disk >= 0 &&
8123 				    mddev->delta_disks >= 0 &&
8124 				    !test_bit(Journal, &rdev->flags) &&
8125 				    !test_bit(Faulty, &rdev->flags) &&
8126 				    !test_bit(In_sync, &rdev->flags) &&
8127 				    rdev->recovery_offset < mddev->curr_resync)
8128 					rdev->recovery_offset = mddev->curr_resync;
8129 			rcu_read_unlock();
8130 		}
8131 	}
8132  skip:
8133 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
8134 
8135 	if (mddev_is_clustered(mddev) &&
8136 	    test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8137 	    !cluster_resync_finished)
8138 		md_cluster_ops->resync_finish(mddev);
8139 
8140 	spin_lock(&mddev->lock);
8141 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8142 		/* We completed so min/max setting can be forgotten if used. */
8143 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8144 			mddev->resync_min = 0;
8145 		mddev->resync_max = MaxSector;
8146 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8147 		mddev->resync_min = mddev->curr_resync_completed;
8148 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8149 	mddev->curr_resync = 0;
8150 	spin_unlock(&mddev->lock);
8151 
8152 	wake_up(&resync_wait);
8153 	md_wakeup_thread(mddev->thread);
8154 	return;
8155 }
8156 EXPORT_SYMBOL_GPL(md_do_sync);
8157 
8158 static int remove_and_add_spares(struct mddev *mddev,
8159 				 struct md_rdev *this)
8160 {
8161 	struct md_rdev *rdev;
8162 	int spares = 0;
8163 	int removed = 0;
8164 
8165 	rdev_for_each(rdev, mddev)
8166 		if ((this == NULL || rdev == this) &&
8167 		    rdev->raid_disk >= 0 &&
8168 		    !test_bit(Blocked, &rdev->flags) &&
8169 		    (test_bit(Faulty, &rdev->flags) ||
8170 		     (!test_bit(In_sync, &rdev->flags) &&
8171 		      !test_bit(Journal, &rdev->flags))) &&
8172 		    atomic_read(&rdev->nr_pending)==0) {
8173 			if (mddev->pers->hot_remove_disk(
8174 				    mddev, rdev) == 0) {
8175 				sysfs_unlink_rdev(mddev, rdev);
8176 				rdev->raid_disk = -1;
8177 				removed++;
8178 			}
8179 		}
8180 	if (removed && mddev->kobj.sd)
8181 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8182 
8183 	if (this && removed)
8184 		goto no_add;
8185 
8186 	rdev_for_each(rdev, mddev) {
8187 		if (this && this != rdev)
8188 			continue;
8189 		if (test_bit(Candidate, &rdev->flags))
8190 			continue;
8191 		if (rdev->raid_disk >= 0 &&
8192 		    !test_bit(In_sync, &rdev->flags) &&
8193 		    !test_bit(Journal, &rdev->flags) &&
8194 		    !test_bit(Faulty, &rdev->flags))
8195 			spares++;
8196 		if (rdev->raid_disk >= 0)
8197 			continue;
8198 		if (test_bit(Faulty, &rdev->flags))
8199 			continue;
8200 		if (!test_bit(Journal, &rdev->flags)) {
8201 			if (mddev->ro &&
8202 			    ! (rdev->saved_raid_disk >= 0 &&
8203 			       !test_bit(Bitmap_sync, &rdev->flags)))
8204 				continue;
8205 
8206 			rdev->recovery_offset = 0;
8207 		}
8208 		if (mddev->pers->
8209 		    hot_add_disk(mddev, rdev) == 0) {
8210 			if (sysfs_link_rdev(mddev, rdev))
8211 				/* failure here is OK */;
8212 			if (!test_bit(Journal, &rdev->flags))
8213 				spares++;
8214 			md_new_event(mddev);
8215 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8216 		}
8217 	}
8218 no_add:
8219 	if (removed)
8220 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8221 	return spares;
8222 }
8223 
8224 static void md_start_sync(struct work_struct *ws)
8225 {
8226 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8227 	int ret = 0;
8228 
8229 	if (mddev_is_clustered(mddev)) {
8230 		ret = md_cluster_ops->resync_start(mddev);
8231 		if (ret) {
8232 			mddev->sync_thread = NULL;
8233 			goto out;
8234 		}
8235 	}
8236 
8237 	mddev->sync_thread = md_register_thread(md_do_sync,
8238 						mddev,
8239 						"resync");
8240 out:
8241 	if (!mddev->sync_thread) {
8242 		if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8243 			printk(KERN_ERR "%s: could not start resync"
8244 			       " thread...\n",
8245 			       mdname(mddev));
8246 		/* leave the spares where they are, it shouldn't hurt */
8247 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8248 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8249 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8250 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8251 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8252 		wake_up(&resync_wait);
8253 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8254 				       &mddev->recovery))
8255 			if (mddev->sysfs_action)
8256 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8257 	} else
8258 		md_wakeup_thread(mddev->sync_thread);
8259 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8260 	md_new_event(mddev);
8261 }
8262 
8263 /*
8264  * This routine is regularly called by all per-raid-array threads to
8265  * deal with generic issues like resync and super-block update.
8266  * Raid personalities that don't have a thread (linear/raid0) do not
8267  * need this as they never do any recovery or update the superblock.
8268  *
8269  * It does not do any resync itself, but rather "forks" off other threads
8270  * to do that as needed.
8271  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8272  * "->recovery" and create a thread at ->sync_thread.
8273  * When the thread finishes it sets MD_RECOVERY_DONE
8274  * and wakeups up this thread which will reap the thread and finish up.
8275  * This thread also removes any faulty devices (with nr_pending == 0).
8276  *
8277  * The overall approach is:
8278  *  1/ if the superblock needs updating, update it.
8279  *  2/ If a recovery thread is running, don't do anything else.
8280  *  3/ If recovery has finished, clean up, possibly marking spares active.
8281  *  4/ If there are any faulty devices, remove them.
8282  *  5/ If array is degraded, try to add spares devices
8283  *  6/ If array has spares or is not in-sync, start a resync thread.
8284  */
8285 void md_check_recovery(struct mddev *mddev)
8286 {
8287 	if (mddev->suspended)
8288 		return;
8289 
8290 	if (mddev->bitmap)
8291 		bitmap_daemon_work(mddev);
8292 
8293 	if (signal_pending(current)) {
8294 		if (mddev->pers->sync_request && !mddev->external) {
8295 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8296 			       mdname(mddev));
8297 			mddev->safemode = 2;
8298 		}
8299 		flush_signals(current);
8300 	}
8301 
8302 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8303 		return;
8304 	if ( ! (
8305 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8306 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8307 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8308 		test_bit(MD_RELOAD_SB, &mddev->flags) ||
8309 		(mddev->external == 0 && mddev->safemode == 1) ||
8310 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8311 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8312 		))
8313 		return;
8314 
8315 	if (mddev_trylock(mddev)) {
8316 		int spares = 0;
8317 
8318 		if (mddev->ro) {
8319 			struct md_rdev *rdev;
8320 			if (!mddev->external && mddev->in_sync)
8321 				/* 'Blocked' flag not needed as failed devices
8322 				 * will be recorded if array switched to read/write.
8323 				 * Leaving it set will prevent the device
8324 				 * from being removed.
8325 				 */
8326 				rdev_for_each(rdev, mddev)
8327 					clear_bit(Blocked, &rdev->flags);
8328 			/* On a read-only array we can:
8329 			 * - remove failed devices
8330 			 * - add already-in_sync devices if the array itself
8331 			 *   is in-sync.
8332 			 * As we only add devices that are already in-sync,
8333 			 * we can activate the spares immediately.
8334 			 */
8335 			remove_and_add_spares(mddev, NULL);
8336 			/* There is no thread, but we need to call
8337 			 * ->spare_active and clear saved_raid_disk
8338 			 */
8339 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8340 			md_reap_sync_thread(mddev);
8341 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8342 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8343 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8344 			goto unlock;
8345 		}
8346 
8347 		if (mddev_is_clustered(mddev)) {
8348 			struct md_rdev *rdev;
8349 			/* kick the device if another node issued a
8350 			 * remove disk.
8351 			 */
8352 			rdev_for_each(rdev, mddev) {
8353 				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8354 						rdev->raid_disk < 0)
8355 					md_kick_rdev_from_array(rdev);
8356 			}
8357 
8358 			if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
8359 				md_reload_sb(mddev, mddev->good_device_nr);
8360 		}
8361 
8362 		if (!mddev->external) {
8363 			int did_change = 0;
8364 			spin_lock(&mddev->lock);
8365 			if (mddev->safemode &&
8366 			    !atomic_read(&mddev->writes_pending) &&
8367 			    !mddev->in_sync &&
8368 			    mddev->recovery_cp == MaxSector) {
8369 				mddev->in_sync = 1;
8370 				did_change = 1;
8371 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8372 			}
8373 			if (mddev->safemode == 1)
8374 				mddev->safemode = 0;
8375 			spin_unlock(&mddev->lock);
8376 			if (did_change)
8377 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8378 		}
8379 
8380 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
8381 			md_update_sb(mddev, 0);
8382 
8383 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8384 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8385 			/* resync/recovery still happening */
8386 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8387 			goto unlock;
8388 		}
8389 		if (mddev->sync_thread) {
8390 			md_reap_sync_thread(mddev);
8391 			goto unlock;
8392 		}
8393 		/* Set RUNNING before clearing NEEDED to avoid
8394 		 * any transients in the value of "sync_action".
8395 		 */
8396 		mddev->curr_resync_completed = 0;
8397 		spin_lock(&mddev->lock);
8398 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8399 		spin_unlock(&mddev->lock);
8400 		/* Clear some bits that don't mean anything, but
8401 		 * might be left set
8402 		 */
8403 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8404 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8405 
8406 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8407 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8408 			goto not_running;
8409 		/* no recovery is running.
8410 		 * remove any failed drives, then
8411 		 * add spares if possible.
8412 		 * Spares are also removed and re-added, to allow
8413 		 * the personality to fail the re-add.
8414 		 */
8415 
8416 		if (mddev->reshape_position != MaxSector) {
8417 			if (mddev->pers->check_reshape == NULL ||
8418 			    mddev->pers->check_reshape(mddev) != 0)
8419 				/* Cannot proceed */
8420 				goto not_running;
8421 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8422 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8423 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8424 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8425 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8426 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8427 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8428 		} else if (mddev->recovery_cp < MaxSector) {
8429 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8430 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8431 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8432 			/* nothing to be done ... */
8433 			goto not_running;
8434 
8435 		if (mddev->pers->sync_request) {
8436 			if (spares) {
8437 				/* We are adding a device or devices to an array
8438 				 * which has the bitmap stored on all devices.
8439 				 * So make sure all bitmap pages get written
8440 				 */
8441 				bitmap_write_all(mddev->bitmap);
8442 			}
8443 			INIT_WORK(&mddev->del_work, md_start_sync);
8444 			queue_work(md_misc_wq, &mddev->del_work);
8445 			goto unlock;
8446 		}
8447 	not_running:
8448 		if (!mddev->sync_thread) {
8449 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8450 			wake_up(&resync_wait);
8451 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8452 					       &mddev->recovery))
8453 				if (mddev->sysfs_action)
8454 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8455 		}
8456 	unlock:
8457 		wake_up(&mddev->sb_wait);
8458 		mddev_unlock(mddev);
8459 	}
8460 }
8461 EXPORT_SYMBOL(md_check_recovery);
8462 
8463 void md_reap_sync_thread(struct mddev *mddev)
8464 {
8465 	struct md_rdev *rdev;
8466 
8467 	/* resync has finished, collect result */
8468 	md_unregister_thread(&mddev->sync_thread);
8469 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8470 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8471 		/* success...*/
8472 		/* activate any spares */
8473 		if (mddev->pers->spare_active(mddev)) {
8474 			sysfs_notify(&mddev->kobj, NULL,
8475 				     "degraded");
8476 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8477 		}
8478 	}
8479 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8480 	    mddev->pers->finish_reshape)
8481 		mddev->pers->finish_reshape(mddev);
8482 
8483 	/* If array is no-longer degraded, then any saved_raid_disk
8484 	 * information must be scrapped.
8485 	 */
8486 	if (!mddev->degraded)
8487 		rdev_for_each(rdev, mddev)
8488 			rdev->saved_raid_disk = -1;
8489 
8490 	md_update_sb(mddev, 1);
8491 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8492 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8493 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8494 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8495 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8496 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8497 	wake_up(&resync_wait);
8498 	/* flag recovery needed just to double check */
8499 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8500 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8501 	md_new_event(mddev);
8502 	if (mddev->event_work.func)
8503 		queue_work(md_misc_wq, &mddev->event_work);
8504 }
8505 EXPORT_SYMBOL(md_reap_sync_thread);
8506 
8507 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8508 {
8509 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8510 	wait_event_timeout(rdev->blocked_wait,
8511 			   !test_bit(Blocked, &rdev->flags) &&
8512 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8513 			   msecs_to_jiffies(5000));
8514 	rdev_dec_pending(rdev, mddev);
8515 }
8516 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8517 
8518 void md_finish_reshape(struct mddev *mddev)
8519 {
8520 	/* called be personality module when reshape completes. */
8521 	struct md_rdev *rdev;
8522 
8523 	rdev_for_each(rdev, mddev) {
8524 		if (rdev->data_offset > rdev->new_data_offset)
8525 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8526 		else
8527 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8528 		rdev->data_offset = rdev->new_data_offset;
8529 	}
8530 }
8531 EXPORT_SYMBOL(md_finish_reshape);
8532 
8533 /* Bad block management */
8534 
8535 /* Returns 1 on success, 0 on failure */
8536 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8537 		       int is_new)
8538 {
8539 	int rv;
8540 	if (is_new)
8541 		s += rdev->new_data_offset;
8542 	else
8543 		s += rdev->data_offset;
8544 	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8545 	if (rv == 0) {
8546 		/* Make sure they get written out promptly */
8547 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8548 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8549 		set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8550 		md_wakeup_thread(rdev->mddev->thread);
8551 		return 1;
8552 	} else
8553 		return 0;
8554 }
8555 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8556 
8557 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8558 			 int is_new)
8559 {
8560 	if (is_new)
8561 		s += rdev->new_data_offset;
8562 	else
8563 		s += rdev->data_offset;
8564 	return badblocks_clear(&rdev->badblocks,
8565 				  s, sectors);
8566 }
8567 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8568 
8569 static int md_notify_reboot(struct notifier_block *this,
8570 			    unsigned long code, void *x)
8571 {
8572 	struct list_head *tmp;
8573 	struct mddev *mddev;
8574 	int need_delay = 0;
8575 
8576 	for_each_mddev(mddev, tmp) {
8577 		if (mddev_trylock(mddev)) {
8578 			if (mddev->pers)
8579 				__md_stop_writes(mddev);
8580 			if (mddev->persistent)
8581 				mddev->safemode = 2;
8582 			mddev_unlock(mddev);
8583 		}
8584 		need_delay = 1;
8585 	}
8586 	/*
8587 	 * certain more exotic SCSI devices are known to be
8588 	 * volatile wrt too early system reboots. While the
8589 	 * right place to handle this issue is the given
8590 	 * driver, we do want to have a safe RAID driver ...
8591 	 */
8592 	if (need_delay)
8593 		mdelay(1000*1);
8594 
8595 	return NOTIFY_DONE;
8596 }
8597 
8598 static struct notifier_block md_notifier = {
8599 	.notifier_call	= md_notify_reboot,
8600 	.next		= NULL,
8601 	.priority	= INT_MAX, /* before any real devices */
8602 };
8603 
8604 static void md_geninit(void)
8605 {
8606 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8607 
8608 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8609 }
8610 
8611 static int __init md_init(void)
8612 {
8613 	int ret = -ENOMEM;
8614 
8615 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8616 	if (!md_wq)
8617 		goto err_wq;
8618 
8619 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8620 	if (!md_misc_wq)
8621 		goto err_misc_wq;
8622 
8623 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8624 		goto err_md;
8625 
8626 	if ((ret = register_blkdev(0, "mdp")) < 0)
8627 		goto err_mdp;
8628 	mdp_major = ret;
8629 
8630 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8631 			    md_probe, NULL, NULL);
8632 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8633 			    md_probe, NULL, NULL);
8634 
8635 	register_reboot_notifier(&md_notifier);
8636 	raid_table_header = register_sysctl_table(raid_root_table);
8637 
8638 	md_geninit();
8639 	return 0;
8640 
8641 err_mdp:
8642 	unregister_blkdev(MD_MAJOR, "md");
8643 err_md:
8644 	destroy_workqueue(md_misc_wq);
8645 err_misc_wq:
8646 	destroy_workqueue(md_wq);
8647 err_wq:
8648 	return ret;
8649 }
8650 
8651 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8652 {
8653 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8654 	struct md_rdev *rdev2;
8655 	int role, ret;
8656 	char b[BDEVNAME_SIZE];
8657 
8658 	/* Check for change of roles in the active devices */
8659 	rdev_for_each(rdev2, mddev) {
8660 		if (test_bit(Faulty, &rdev2->flags))
8661 			continue;
8662 
8663 		/* Check if the roles changed */
8664 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8665 
8666 		if (test_bit(Candidate, &rdev2->flags)) {
8667 			if (role == 0xfffe) {
8668 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
8669 				md_kick_rdev_from_array(rdev2);
8670 				continue;
8671 			}
8672 			else
8673 				clear_bit(Candidate, &rdev2->flags);
8674 		}
8675 
8676 		if (role != rdev2->raid_disk) {
8677 			/* got activated */
8678 			if (rdev2->raid_disk == -1 && role != 0xffff) {
8679 				rdev2->saved_raid_disk = role;
8680 				ret = remove_and_add_spares(mddev, rdev2);
8681 				pr_info("Activated spare: %s\n",
8682 						bdevname(rdev2->bdev,b));
8683 			}
8684 			/* device faulty
8685 			 * We just want to do the minimum to mark the disk
8686 			 * as faulty. The recovery is performed by the
8687 			 * one who initiated the error.
8688 			 */
8689 			if ((role == 0xfffe) || (role == 0xfffd)) {
8690 				md_error(mddev, rdev2);
8691 				clear_bit(Blocked, &rdev2->flags);
8692 			}
8693 		}
8694 	}
8695 
8696 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
8697 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
8698 
8699 	/* Finally set the event to be up to date */
8700 	mddev->events = le64_to_cpu(sb->events);
8701 }
8702 
8703 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8704 {
8705 	int err;
8706 	struct page *swapout = rdev->sb_page;
8707 	struct mdp_superblock_1 *sb;
8708 
8709 	/* Store the sb page of the rdev in the swapout temporary
8710 	 * variable in case we err in the future
8711 	 */
8712 	rdev->sb_page = NULL;
8713 	alloc_disk_sb(rdev);
8714 	ClearPageUptodate(rdev->sb_page);
8715 	rdev->sb_loaded = 0;
8716 	err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
8717 
8718 	if (err < 0) {
8719 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8720 				__func__, __LINE__, rdev->desc_nr, err);
8721 		put_page(rdev->sb_page);
8722 		rdev->sb_page = swapout;
8723 		rdev->sb_loaded = 1;
8724 		return err;
8725 	}
8726 
8727 	sb = page_address(rdev->sb_page);
8728 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8729 	 * is not set
8730 	 */
8731 
8732 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
8733 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
8734 
8735 	/* The other node finished recovery, call spare_active to set
8736 	 * device In_sync and mddev->degraded
8737 	 */
8738 	if (rdev->recovery_offset == MaxSector &&
8739 	    !test_bit(In_sync, &rdev->flags) &&
8740 	    mddev->pers->spare_active(mddev))
8741 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8742 
8743 	put_page(swapout);
8744 	return 0;
8745 }
8746 
8747 void md_reload_sb(struct mddev *mddev, int nr)
8748 {
8749 	struct md_rdev *rdev;
8750 	int err;
8751 
8752 	/* Find the rdev */
8753 	rdev_for_each_rcu(rdev, mddev) {
8754 		if (rdev->desc_nr == nr)
8755 			break;
8756 	}
8757 
8758 	if (!rdev || rdev->desc_nr != nr) {
8759 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
8760 		return;
8761 	}
8762 
8763 	err = read_rdev(mddev, rdev);
8764 	if (err < 0)
8765 		return;
8766 
8767 	check_sb_changes(mddev, rdev);
8768 
8769 	/* Read all rdev's to update recovery_offset */
8770 	rdev_for_each_rcu(rdev, mddev)
8771 		read_rdev(mddev, rdev);
8772 }
8773 EXPORT_SYMBOL(md_reload_sb);
8774 
8775 #ifndef MODULE
8776 
8777 /*
8778  * Searches all registered partitions for autorun RAID arrays
8779  * at boot time.
8780  */
8781 
8782 static LIST_HEAD(all_detected_devices);
8783 struct detected_devices_node {
8784 	struct list_head list;
8785 	dev_t dev;
8786 };
8787 
8788 void md_autodetect_dev(dev_t dev)
8789 {
8790 	struct detected_devices_node *node_detected_dev;
8791 
8792 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8793 	if (node_detected_dev) {
8794 		node_detected_dev->dev = dev;
8795 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8796 	} else {
8797 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8798 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8799 	}
8800 }
8801 
8802 static void autostart_arrays(int part)
8803 {
8804 	struct md_rdev *rdev;
8805 	struct detected_devices_node *node_detected_dev;
8806 	dev_t dev;
8807 	int i_scanned, i_passed;
8808 
8809 	i_scanned = 0;
8810 	i_passed = 0;
8811 
8812 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8813 
8814 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8815 		i_scanned++;
8816 		node_detected_dev = list_entry(all_detected_devices.next,
8817 					struct detected_devices_node, list);
8818 		list_del(&node_detected_dev->list);
8819 		dev = node_detected_dev->dev;
8820 		kfree(node_detected_dev);
8821 		rdev = md_import_device(dev,0, 90);
8822 		if (IS_ERR(rdev))
8823 			continue;
8824 
8825 		if (test_bit(Faulty, &rdev->flags))
8826 			continue;
8827 
8828 		set_bit(AutoDetected, &rdev->flags);
8829 		list_add(&rdev->same_set, &pending_raid_disks);
8830 		i_passed++;
8831 	}
8832 
8833 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8834 						i_scanned, i_passed);
8835 
8836 	autorun_devices(part);
8837 }
8838 
8839 #endif /* !MODULE */
8840 
8841 static __exit void md_exit(void)
8842 {
8843 	struct mddev *mddev;
8844 	struct list_head *tmp;
8845 	int delay = 1;
8846 
8847 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8848 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8849 
8850 	unregister_blkdev(MD_MAJOR,"md");
8851 	unregister_blkdev(mdp_major, "mdp");
8852 	unregister_reboot_notifier(&md_notifier);
8853 	unregister_sysctl_table(raid_table_header);
8854 
8855 	/* We cannot unload the modules while some process is
8856 	 * waiting for us in select() or poll() - wake them up
8857 	 */
8858 	md_unloading = 1;
8859 	while (waitqueue_active(&md_event_waiters)) {
8860 		/* not safe to leave yet */
8861 		wake_up(&md_event_waiters);
8862 		msleep(delay);
8863 		delay += delay;
8864 	}
8865 	remove_proc_entry("mdstat", NULL);
8866 
8867 	for_each_mddev(mddev, tmp) {
8868 		export_array(mddev);
8869 		mddev->hold_active = 0;
8870 	}
8871 	destroy_workqueue(md_misc_wq);
8872 	destroy_workqueue(md_wq);
8873 }
8874 
8875 subsys_initcall(md_init);
8876 module_exit(md_exit)
8877 
8878 static int get_ro(char *buffer, struct kernel_param *kp)
8879 {
8880 	return sprintf(buffer, "%d", start_readonly);
8881 }
8882 static int set_ro(const char *val, struct kernel_param *kp)
8883 {
8884 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
8885 }
8886 
8887 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8888 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8889 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8890 
8891 MODULE_LICENSE("GPL");
8892 MODULE_DESCRIPTION("MD RAID framework");
8893 MODULE_ALIAS("md");
8894 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8895