xref: /openbmc/linux/drivers/md/md.c (revision 82ced6fd)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48 #include <linux/raid/md_p.h>
49 #include <linux/raid/md_u.h>
50 #include "md.h"
51 #include "bitmap.h"
52 
53 #define DEBUG 0
54 #define dprintk(x...) ((void)(DEBUG && printk(x)))
55 
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 static LIST_HEAD(pers_list);
62 static DEFINE_SPINLOCK(pers_lock);
63 
64 static void md_print_devices(void);
65 
66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
67 
68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
69 
70 /*
71  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
72  * is 1000 KB/sec, so the extra system load does not show up that much.
73  * Increase it if you want to have more _guaranteed_ speed. Note that
74  * the RAID driver will use the maximum available bandwidth if the IO
75  * subsystem is idle. There is also an 'absolute maximum' reconstruction
76  * speed limit - in case reconstruction slows down your system despite
77  * idle IO detection.
78  *
79  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
80  * or /sys/block/mdX/md/sync_speed_{min,max}
81  */
82 
83 static int sysctl_speed_limit_min = 1000;
84 static int sysctl_speed_limit_max = 200000;
85 static inline int speed_min(mddev_t *mddev)
86 {
87 	return mddev->sync_speed_min ?
88 		mddev->sync_speed_min : sysctl_speed_limit_min;
89 }
90 
91 static inline int speed_max(mddev_t *mddev)
92 {
93 	return mddev->sync_speed_max ?
94 		mddev->sync_speed_max : sysctl_speed_limit_max;
95 }
96 
97 static struct ctl_table_header *raid_table_header;
98 
99 static ctl_table raid_table[] = {
100 	{
101 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
102 		.procname	= "speed_limit_min",
103 		.data		= &sysctl_speed_limit_min,
104 		.maxlen		= sizeof(int),
105 		.mode		= S_IRUGO|S_IWUSR,
106 		.proc_handler	= &proc_dointvec,
107 	},
108 	{
109 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
110 		.procname	= "speed_limit_max",
111 		.data		= &sysctl_speed_limit_max,
112 		.maxlen		= sizeof(int),
113 		.mode		= S_IRUGO|S_IWUSR,
114 		.proc_handler	= &proc_dointvec,
115 	},
116 	{ .ctl_name = 0 }
117 };
118 
119 static ctl_table raid_dir_table[] = {
120 	{
121 		.ctl_name	= DEV_RAID,
122 		.procname	= "raid",
123 		.maxlen		= 0,
124 		.mode		= S_IRUGO|S_IXUGO,
125 		.child		= raid_table,
126 	},
127 	{ .ctl_name = 0 }
128 };
129 
130 static ctl_table raid_root_table[] = {
131 	{
132 		.ctl_name	= CTL_DEV,
133 		.procname	= "dev",
134 		.maxlen		= 0,
135 		.mode		= 0555,
136 		.child		= raid_dir_table,
137 	},
138 	{ .ctl_name = 0 }
139 };
140 
141 static struct block_device_operations md_fops;
142 
143 static int start_readonly;
144 
145 /*
146  * We have a system wide 'event count' that is incremented
147  * on any 'interesting' event, and readers of /proc/mdstat
148  * can use 'poll' or 'select' to find out when the event
149  * count increases.
150  *
151  * Events are:
152  *  start array, stop array, error, add device, remove device,
153  *  start build, activate spare
154  */
155 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
156 static atomic_t md_event_count;
157 void md_new_event(mddev_t *mddev)
158 {
159 	atomic_inc(&md_event_count);
160 	wake_up(&md_event_waiters);
161 }
162 EXPORT_SYMBOL_GPL(md_new_event);
163 
164 /* Alternate version that can be called from interrupts
165  * when calling sysfs_notify isn't needed.
166  */
167 static void md_new_event_inintr(mddev_t *mddev)
168 {
169 	atomic_inc(&md_event_count);
170 	wake_up(&md_event_waiters);
171 }
172 
173 /*
174  * Enables to iterate over all existing md arrays
175  * all_mddevs_lock protects this list.
176  */
177 static LIST_HEAD(all_mddevs);
178 static DEFINE_SPINLOCK(all_mddevs_lock);
179 
180 
181 /*
182  * iterates through all used mddevs in the system.
183  * We take care to grab the all_mddevs_lock whenever navigating
184  * the list, and to always hold a refcount when unlocked.
185  * Any code which breaks out of this loop while own
186  * a reference to the current mddev and must mddev_put it.
187  */
188 #define for_each_mddev(mddev,tmp)					\
189 									\
190 	for (({ spin_lock(&all_mddevs_lock); 				\
191 		tmp = all_mddevs.next;					\
192 		mddev = NULL;});					\
193 	     ({ if (tmp != &all_mddevs)					\
194 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
195 		spin_unlock(&all_mddevs_lock);				\
196 		if (mddev) mddev_put(mddev);				\
197 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
198 		tmp != &all_mddevs;});					\
199 	     ({ spin_lock(&all_mddevs_lock);				\
200 		tmp = tmp->next;})					\
201 		)
202 
203 
204 /* Rather than calling directly into the personality make_request function,
205  * IO requests come here first so that we can check if the device is
206  * being suspended pending a reconfiguration.
207  * We hold a refcount over the call to ->make_request.  By the time that
208  * call has finished, the bio has been linked into some internal structure
209  * and so is visible to ->quiesce(), so we don't need the refcount any more.
210  */
211 static int md_make_request(struct request_queue *q, struct bio *bio)
212 {
213 	mddev_t *mddev = q->queuedata;
214 	int rv;
215 	if (mddev == NULL || mddev->pers == NULL) {
216 		bio_io_error(bio);
217 		return 0;
218 	}
219 	rcu_read_lock();
220 	if (mddev->suspended) {
221 		DEFINE_WAIT(__wait);
222 		for (;;) {
223 			prepare_to_wait(&mddev->sb_wait, &__wait,
224 					TASK_UNINTERRUPTIBLE);
225 			if (!mddev->suspended)
226 				break;
227 			rcu_read_unlock();
228 			schedule();
229 			rcu_read_lock();
230 		}
231 		finish_wait(&mddev->sb_wait, &__wait);
232 	}
233 	atomic_inc(&mddev->active_io);
234 	rcu_read_unlock();
235 	rv = mddev->pers->make_request(q, bio);
236 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
237 		wake_up(&mddev->sb_wait);
238 
239 	return rv;
240 }
241 
242 static void mddev_suspend(mddev_t *mddev)
243 {
244 	BUG_ON(mddev->suspended);
245 	mddev->suspended = 1;
246 	synchronize_rcu();
247 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
248 	mddev->pers->quiesce(mddev, 1);
249 	md_unregister_thread(mddev->thread);
250 	mddev->thread = NULL;
251 	/* we now know that no code is executing in the personality module,
252 	 * except possibly the tail end of a ->bi_end_io function, but that
253 	 * is certain to complete before the module has a chance to get
254 	 * unloaded
255 	 */
256 }
257 
258 static void mddev_resume(mddev_t *mddev)
259 {
260 	mddev->suspended = 0;
261 	wake_up(&mddev->sb_wait);
262 	mddev->pers->quiesce(mddev, 0);
263 }
264 
265 
266 static inline mddev_t *mddev_get(mddev_t *mddev)
267 {
268 	atomic_inc(&mddev->active);
269 	return mddev;
270 }
271 
272 static void mddev_delayed_delete(struct work_struct *ws);
273 
274 static void mddev_put(mddev_t *mddev)
275 {
276 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
277 		return;
278 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
279 	    !mddev->hold_active) {
280 		list_del(&mddev->all_mddevs);
281 		if (mddev->gendisk) {
282 			/* we did a probe so need to clean up.
283 			 * Call schedule_work inside the spinlock
284 			 * so that flush_scheduled_work() after
285 			 * mddev_find will succeed in waiting for the
286 			 * work to be done.
287 			 */
288 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
289 			schedule_work(&mddev->del_work);
290 		} else
291 			kfree(mddev);
292 	}
293 	spin_unlock(&all_mddevs_lock);
294 }
295 
296 static mddev_t * mddev_find(dev_t unit)
297 {
298 	mddev_t *mddev, *new = NULL;
299 
300  retry:
301 	spin_lock(&all_mddevs_lock);
302 
303 	if (unit) {
304 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
305 			if (mddev->unit == unit) {
306 				mddev_get(mddev);
307 				spin_unlock(&all_mddevs_lock);
308 				kfree(new);
309 				return mddev;
310 			}
311 
312 		if (new) {
313 			list_add(&new->all_mddevs, &all_mddevs);
314 			spin_unlock(&all_mddevs_lock);
315 			new->hold_active = UNTIL_IOCTL;
316 			return new;
317 		}
318 	} else if (new) {
319 		/* find an unused unit number */
320 		static int next_minor = 512;
321 		int start = next_minor;
322 		int is_free = 0;
323 		int dev = 0;
324 		while (!is_free) {
325 			dev = MKDEV(MD_MAJOR, next_minor);
326 			next_minor++;
327 			if (next_minor > MINORMASK)
328 				next_minor = 0;
329 			if (next_minor == start) {
330 				/* Oh dear, all in use. */
331 				spin_unlock(&all_mddevs_lock);
332 				kfree(new);
333 				return NULL;
334 			}
335 
336 			is_free = 1;
337 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
338 				if (mddev->unit == dev) {
339 					is_free = 0;
340 					break;
341 				}
342 		}
343 		new->unit = dev;
344 		new->md_minor = MINOR(dev);
345 		new->hold_active = UNTIL_STOP;
346 		list_add(&new->all_mddevs, &all_mddevs);
347 		spin_unlock(&all_mddevs_lock);
348 		return new;
349 	}
350 	spin_unlock(&all_mddevs_lock);
351 
352 	new = kzalloc(sizeof(*new), GFP_KERNEL);
353 	if (!new)
354 		return NULL;
355 
356 	new->unit = unit;
357 	if (MAJOR(unit) == MD_MAJOR)
358 		new->md_minor = MINOR(unit);
359 	else
360 		new->md_minor = MINOR(unit) >> MdpMinorShift;
361 
362 	mutex_init(&new->reconfig_mutex);
363 	INIT_LIST_HEAD(&new->disks);
364 	INIT_LIST_HEAD(&new->all_mddevs);
365 	init_timer(&new->safemode_timer);
366 	atomic_set(&new->active, 1);
367 	atomic_set(&new->openers, 0);
368 	atomic_set(&new->active_io, 0);
369 	spin_lock_init(&new->write_lock);
370 	init_waitqueue_head(&new->sb_wait);
371 	init_waitqueue_head(&new->recovery_wait);
372 	new->reshape_position = MaxSector;
373 	new->resync_min = 0;
374 	new->resync_max = MaxSector;
375 	new->level = LEVEL_NONE;
376 
377 	goto retry;
378 }
379 
380 static inline int mddev_lock(mddev_t * mddev)
381 {
382 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
383 }
384 
385 static inline int mddev_is_locked(mddev_t *mddev)
386 {
387 	return mutex_is_locked(&mddev->reconfig_mutex);
388 }
389 
390 static inline int mddev_trylock(mddev_t * mddev)
391 {
392 	return mutex_trylock(&mddev->reconfig_mutex);
393 }
394 
395 static inline void mddev_unlock(mddev_t * mddev)
396 {
397 	mutex_unlock(&mddev->reconfig_mutex);
398 
399 	md_wakeup_thread(mddev->thread);
400 }
401 
402 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
403 {
404 	mdk_rdev_t *rdev;
405 
406 	list_for_each_entry(rdev, &mddev->disks, same_set)
407 		if (rdev->desc_nr == nr)
408 			return rdev;
409 
410 	return NULL;
411 }
412 
413 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
414 {
415 	mdk_rdev_t *rdev;
416 
417 	list_for_each_entry(rdev, &mddev->disks, same_set)
418 		if (rdev->bdev->bd_dev == dev)
419 			return rdev;
420 
421 	return NULL;
422 }
423 
424 static struct mdk_personality *find_pers(int level, char *clevel)
425 {
426 	struct mdk_personality *pers;
427 	list_for_each_entry(pers, &pers_list, list) {
428 		if (level != LEVEL_NONE && pers->level == level)
429 			return pers;
430 		if (strcmp(pers->name, clevel)==0)
431 			return pers;
432 	}
433 	return NULL;
434 }
435 
436 /* return the offset of the super block in 512byte sectors */
437 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
438 {
439 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
440 	return MD_NEW_SIZE_SECTORS(num_sectors);
441 }
442 
443 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
444 {
445 	sector_t num_sectors = rdev->sb_start;
446 
447 	if (chunk_size)
448 		num_sectors &= ~((sector_t)chunk_size/512 - 1);
449 	return num_sectors;
450 }
451 
452 static int alloc_disk_sb(mdk_rdev_t * rdev)
453 {
454 	if (rdev->sb_page)
455 		MD_BUG();
456 
457 	rdev->sb_page = alloc_page(GFP_KERNEL);
458 	if (!rdev->sb_page) {
459 		printk(KERN_ALERT "md: out of memory.\n");
460 		return -ENOMEM;
461 	}
462 
463 	return 0;
464 }
465 
466 static void free_disk_sb(mdk_rdev_t * rdev)
467 {
468 	if (rdev->sb_page) {
469 		put_page(rdev->sb_page);
470 		rdev->sb_loaded = 0;
471 		rdev->sb_page = NULL;
472 		rdev->sb_start = 0;
473 		rdev->sectors = 0;
474 	}
475 }
476 
477 
478 static void super_written(struct bio *bio, int error)
479 {
480 	mdk_rdev_t *rdev = bio->bi_private;
481 	mddev_t *mddev = rdev->mddev;
482 
483 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
484 		printk("md: super_written gets error=%d, uptodate=%d\n",
485 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
486 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
487 		md_error(mddev, rdev);
488 	}
489 
490 	if (atomic_dec_and_test(&mddev->pending_writes))
491 		wake_up(&mddev->sb_wait);
492 	bio_put(bio);
493 }
494 
495 static void super_written_barrier(struct bio *bio, int error)
496 {
497 	struct bio *bio2 = bio->bi_private;
498 	mdk_rdev_t *rdev = bio2->bi_private;
499 	mddev_t *mddev = rdev->mddev;
500 
501 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
502 	    error == -EOPNOTSUPP) {
503 		unsigned long flags;
504 		/* barriers don't appear to be supported :-( */
505 		set_bit(BarriersNotsupp, &rdev->flags);
506 		mddev->barriers_work = 0;
507 		spin_lock_irqsave(&mddev->write_lock, flags);
508 		bio2->bi_next = mddev->biolist;
509 		mddev->biolist = bio2;
510 		spin_unlock_irqrestore(&mddev->write_lock, flags);
511 		wake_up(&mddev->sb_wait);
512 		bio_put(bio);
513 	} else {
514 		bio_put(bio2);
515 		bio->bi_private = rdev;
516 		super_written(bio, error);
517 	}
518 }
519 
520 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
521 		   sector_t sector, int size, struct page *page)
522 {
523 	/* write first size bytes of page to sector of rdev
524 	 * Increment mddev->pending_writes before returning
525 	 * and decrement it on completion, waking up sb_wait
526 	 * if zero is reached.
527 	 * If an error occurred, call md_error
528 	 *
529 	 * As we might need to resubmit the request if BIO_RW_BARRIER
530 	 * causes ENOTSUPP, we allocate a spare bio...
531 	 */
532 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
533 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
534 
535 	bio->bi_bdev = rdev->bdev;
536 	bio->bi_sector = sector;
537 	bio_add_page(bio, page, size, 0);
538 	bio->bi_private = rdev;
539 	bio->bi_end_io = super_written;
540 	bio->bi_rw = rw;
541 
542 	atomic_inc(&mddev->pending_writes);
543 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
544 		struct bio *rbio;
545 		rw |= (1<<BIO_RW_BARRIER);
546 		rbio = bio_clone(bio, GFP_NOIO);
547 		rbio->bi_private = bio;
548 		rbio->bi_end_io = super_written_barrier;
549 		submit_bio(rw, rbio);
550 	} else
551 		submit_bio(rw, bio);
552 }
553 
554 void md_super_wait(mddev_t *mddev)
555 {
556 	/* wait for all superblock writes that were scheduled to complete.
557 	 * if any had to be retried (due to BARRIER problems), retry them
558 	 */
559 	DEFINE_WAIT(wq);
560 	for(;;) {
561 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
562 		if (atomic_read(&mddev->pending_writes)==0)
563 			break;
564 		while (mddev->biolist) {
565 			struct bio *bio;
566 			spin_lock_irq(&mddev->write_lock);
567 			bio = mddev->biolist;
568 			mddev->biolist = bio->bi_next ;
569 			bio->bi_next = NULL;
570 			spin_unlock_irq(&mddev->write_lock);
571 			submit_bio(bio->bi_rw, bio);
572 		}
573 		schedule();
574 	}
575 	finish_wait(&mddev->sb_wait, &wq);
576 }
577 
578 static void bi_complete(struct bio *bio, int error)
579 {
580 	complete((struct completion*)bio->bi_private);
581 }
582 
583 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
584 		   struct page *page, int rw)
585 {
586 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
587 	struct completion event;
588 	int ret;
589 
590 	rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
591 
592 	bio->bi_bdev = bdev;
593 	bio->bi_sector = sector;
594 	bio_add_page(bio, page, size, 0);
595 	init_completion(&event);
596 	bio->bi_private = &event;
597 	bio->bi_end_io = bi_complete;
598 	submit_bio(rw, bio);
599 	wait_for_completion(&event);
600 
601 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
602 	bio_put(bio);
603 	return ret;
604 }
605 EXPORT_SYMBOL_GPL(sync_page_io);
606 
607 static int read_disk_sb(mdk_rdev_t * rdev, int size)
608 {
609 	char b[BDEVNAME_SIZE];
610 	if (!rdev->sb_page) {
611 		MD_BUG();
612 		return -EINVAL;
613 	}
614 	if (rdev->sb_loaded)
615 		return 0;
616 
617 
618 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
619 		goto fail;
620 	rdev->sb_loaded = 1;
621 	return 0;
622 
623 fail:
624 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
625 		bdevname(rdev->bdev,b));
626 	return -EINVAL;
627 }
628 
629 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
630 {
631 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
632 		sb1->set_uuid1 == sb2->set_uuid1 &&
633 		sb1->set_uuid2 == sb2->set_uuid2 &&
634 		sb1->set_uuid3 == sb2->set_uuid3;
635 }
636 
637 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
638 {
639 	int ret;
640 	mdp_super_t *tmp1, *tmp2;
641 
642 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
643 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
644 
645 	if (!tmp1 || !tmp2) {
646 		ret = 0;
647 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
648 		goto abort;
649 	}
650 
651 	*tmp1 = *sb1;
652 	*tmp2 = *sb2;
653 
654 	/*
655 	 * nr_disks is not constant
656 	 */
657 	tmp1->nr_disks = 0;
658 	tmp2->nr_disks = 0;
659 
660 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
661 abort:
662 	kfree(tmp1);
663 	kfree(tmp2);
664 	return ret;
665 }
666 
667 
668 static u32 md_csum_fold(u32 csum)
669 {
670 	csum = (csum & 0xffff) + (csum >> 16);
671 	return (csum & 0xffff) + (csum >> 16);
672 }
673 
674 static unsigned int calc_sb_csum(mdp_super_t * sb)
675 {
676 	u64 newcsum = 0;
677 	u32 *sb32 = (u32*)sb;
678 	int i;
679 	unsigned int disk_csum, csum;
680 
681 	disk_csum = sb->sb_csum;
682 	sb->sb_csum = 0;
683 
684 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
685 		newcsum += sb32[i];
686 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
687 
688 
689 #ifdef CONFIG_ALPHA
690 	/* This used to use csum_partial, which was wrong for several
691 	 * reasons including that different results are returned on
692 	 * different architectures.  It isn't critical that we get exactly
693 	 * the same return value as before (we always csum_fold before
694 	 * testing, and that removes any differences).  However as we
695 	 * know that csum_partial always returned a 16bit value on
696 	 * alphas, do a fold to maximise conformity to previous behaviour.
697 	 */
698 	sb->sb_csum = md_csum_fold(disk_csum);
699 #else
700 	sb->sb_csum = disk_csum;
701 #endif
702 	return csum;
703 }
704 
705 
706 /*
707  * Handle superblock details.
708  * We want to be able to handle multiple superblock formats
709  * so we have a common interface to them all, and an array of
710  * different handlers.
711  * We rely on user-space to write the initial superblock, and support
712  * reading and updating of superblocks.
713  * Interface methods are:
714  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
715  *      loads and validates a superblock on dev.
716  *      if refdev != NULL, compare superblocks on both devices
717  *    Return:
718  *      0 - dev has a superblock that is compatible with refdev
719  *      1 - dev has a superblock that is compatible and newer than refdev
720  *          so dev should be used as the refdev in future
721  *     -EINVAL superblock incompatible or invalid
722  *     -othererror e.g. -EIO
723  *
724  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
725  *      Verify that dev is acceptable into mddev.
726  *       The first time, mddev->raid_disks will be 0, and data from
727  *       dev should be merged in.  Subsequent calls check that dev
728  *       is new enough.  Return 0 or -EINVAL
729  *
730  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
731  *     Update the superblock for rdev with data in mddev
732  *     This does not write to disc.
733  *
734  */
735 
736 struct super_type  {
737 	char		    *name;
738 	struct module	    *owner;
739 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
740 					  int minor_version);
741 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
742 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
743 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
744 						sector_t num_sectors);
745 };
746 
747 /*
748  * load_super for 0.90.0
749  */
750 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
751 {
752 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
753 	mdp_super_t *sb;
754 	int ret;
755 
756 	/*
757 	 * Calculate the position of the superblock (512byte sectors),
758 	 * it's at the end of the disk.
759 	 *
760 	 * It also happens to be a multiple of 4Kb.
761 	 */
762 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
763 
764 	ret = read_disk_sb(rdev, MD_SB_BYTES);
765 	if (ret) return ret;
766 
767 	ret = -EINVAL;
768 
769 	bdevname(rdev->bdev, b);
770 	sb = (mdp_super_t*)page_address(rdev->sb_page);
771 
772 	if (sb->md_magic != MD_SB_MAGIC) {
773 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
774 		       b);
775 		goto abort;
776 	}
777 
778 	if (sb->major_version != 0 ||
779 	    sb->minor_version < 90 ||
780 	    sb->minor_version > 91) {
781 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
782 			sb->major_version, sb->minor_version,
783 			b);
784 		goto abort;
785 	}
786 
787 	if (sb->raid_disks <= 0)
788 		goto abort;
789 
790 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
791 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
792 			b);
793 		goto abort;
794 	}
795 
796 	rdev->preferred_minor = sb->md_minor;
797 	rdev->data_offset = 0;
798 	rdev->sb_size = MD_SB_BYTES;
799 
800 	if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
801 		if (sb->level != 1 && sb->level != 4
802 		    && sb->level != 5 && sb->level != 6
803 		    && sb->level != 10) {
804 			/* FIXME use a better test */
805 			printk(KERN_WARNING
806 			       "md: bitmaps not supported for this level.\n");
807 			goto abort;
808 		}
809 	}
810 
811 	if (sb->level == LEVEL_MULTIPATH)
812 		rdev->desc_nr = -1;
813 	else
814 		rdev->desc_nr = sb->this_disk.number;
815 
816 	if (!refdev) {
817 		ret = 1;
818 	} else {
819 		__u64 ev1, ev2;
820 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
821 		if (!uuid_equal(refsb, sb)) {
822 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
823 				b, bdevname(refdev->bdev,b2));
824 			goto abort;
825 		}
826 		if (!sb_equal(refsb, sb)) {
827 			printk(KERN_WARNING "md: %s has same UUID"
828 			       " but different superblock to %s\n",
829 			       b, bdevname(refdev->bdev, b2));
830 			goto abort;
831 		}
832 		ev1 = md_event(sb);
833 		ev2 = md_event(refsb);
834 		if (ev1 > ev2)
835 			ret = 1;
836 		else
837 			ret = 0;
838 	}
839 	rdev->sectors = calc_num_sectors(rdev, sb->chunk_size);
840 
841 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
842 		/* "this cannot possibly happen" ... */
843 		ret = -EINVAL;
844 
845  abort:
846 	return ret;
847 }
848 
849 /*
850  * validate_super for 0.90.0
851  */
852 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
853 {
854 	mdp_disk_t *desc;
855 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
856 	__u64 ev1 = md_event(sb);
857 
858 	rdev->raid_disk = -1;
859 	clear_bit(Faulty, &rdev->flags);
860 	clear_bit(In_sync, &rdev->flags);
861 	clear_bit(WriteMostly, &rdev->flags);
862 	clear_bit(BarriersNotsupp, &rdev->flags);
863 
864 	if (mddev->raid_disks == 0) {
865 		mddev->major_version = 0;
866 		mddev->minor_version = sb->minor_version;
867 		mddev->patch_version = sb->patch_version;
868 		mddev->external = 0;
869 		mddev->chunk_size = sb->chunk_size;
870 		mddev->ctime = sb->ctime;
871 		mddev->utime = sb->utime;
872 		mddev->level = sb->level;
873 		mddev->clevel[0] = 0;
874 		mddev->layout = sb->layout;
875 		mddev->raid_disks = sb->raid_disks;
876 		mddev->dev_sectors = sb->size * 2;
877 		mddev->events = ev1;
878 		mddev->bitmap_offset = 0;
879 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
880 
881 		if (mddev->minor_version >= 91) {
882 			mddev->reshape_position = sb->reshape_position;
883 			mddev->delta_disks = sb->delta_disks;
884 			mddev->new_level = sb->new_level;
885 			mddev->new_layout = sb->new_layout;
886 			mddev->new_chunk = sb->new_chunk;
887 		} else {
888 			mddev->reshape_position = MaxSector;
889 			mddev->delta_disks = 0;
890 			mddev->new_level = mddev->level;
891 			mddev->new_layout = mddev->layout;
892 			mddev->new_chunk = mddev->chunk_size;
893 		}
894 
895 		if (sb->state & (1<<MD_SB_CLEAN))
896 			mddev->recovery_cp = MaxSector;
897 		else {
898 			if (sb->events_hi == sb->cp_events_hi &&
899 				sb->events_lo == sb->cp_events_lo) {
900 				mddev->recovery_cp = sb->recovery_cp;
901 			} else
902 				mddev->recovery_cp = 0;
903 		}
904 
905 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
906 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
907 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
908 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
909 
910 		mddev->max_disks = MD_SB_DISKS;
911 
912 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
913 		    mddev->bitmap_file == NULL)
914 			mddev->bitmap_offset = mddev->default_bitmap_offset;
915 
916 	} else if (mddev->pers == NULL) {
917 		/* Insist on good event counter while assembling */
918 		++ev1;
919 		if (ev1 < mddev->events)
920 			return -EINVAL;
921 	} else if (mddev->bitmap) {
922 		/* if adding to array with a bitmap, then we can accept an
923 		 * older device ... but not too old.
924 		 */
925 		if (ev1 < mddev->bitmap->events_cleared)
926 			return 0;
927 	} else {
928 		if (ev1 < mddev->events)
929 			/* just a hot-add of a new device, leave raid_disk at -1 */
930 			return 0;
931 	}
932 
933 	if (mddev->level != LEVEL_MULTIPATH) {
934 		desc = sb->disks + rdev->desc_nr;
935 
936 		if (desc->state & (1<<MD_DISK_FAULTY))
937 			set_bit(Faulty, &rdev->flags);
938 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
939 			    desc->raid_disk < mddev->raid_disks */) {
940 			set_bit(In_sync, &rdev->flags);
941 			rdev->raid_disk = desc->raid_disk;
942 		}
943 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
944 			set_bit(WriteMostly, &rdev->flags);
945 	} else /* MULTIPATH are always insync */
946 		set_bit(In_sync, &rdev->flags);
947 	return 0;
948 }
949 
950 /*
951  * sync_super for 0.90.0
952  */
953 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
954 {
955 	mdp_super_t *sb;
956 	mdk_rdev_t *rdev2;
957 	int next_spare = mddev->raid_disks;
958 
959 
960 	/* make rdev->sb match mddev data..
961 	 *
962 	 * 1/ zero out disks
963 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
964 	 * 3/ any empty disks < next_spare become removed
965 	 *
966 	 * disks[0] gets initialised to REMOVED because
967 	 * we cannot be sure from other fields if it has
968 	 * been initialised or not.
969 	 */
970 	int i;
971 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
972 
973 	rdev->sb_size = MD_SB_BYTES;
974 
975 	sb = (mdp_super_t*)page_address(rdev->sb_page);
976 
977 	memset(sb, 0, sizeof(*sb));
978 
979 	sb->md_magic = MD_SB_MAGIC;
980 	sb->major_version = mddev->major_version;
981 	sb->patch_version = mddev->patch_version;
982 	sb->gvalid_words  = 0; /* ignored */
983 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
984 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
985 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
986 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
987 
988 	sb->ctime = mddev->ctime;
989 	sb->level = mddev->level;
990 	sb->size = mddev->dev_sectors / 2;
991 	sb->raid_disks = mddev->raid_disks;
992 	sb->md_minor = mddev->md_minor;
993 	sb->not_persistent = 0;
994 	sb->utime = mddev->utime;
995 	sb->state = 0;
996 	sb->events_hi = (mddev->events>>32);
997 	sb->events_lo = (u32)mddev->events;
998 
999 	if (mddev->reshape_position == MaxSector)
1000 		sb->minor_version = 90;
1001 	else {
1002 		sb->minor_version = 91;
1003 		sb->reshape_position = mddev->reshape_position;
1004 		sb->new_level = mddev->new_level;
1005 		sb->delta_disks = mddev->delta_disks;
1006 		sb->new_layout = mddev->new_layout;
1007 		sb->new_chunk = mddev->new_chunk;
1008 	}
1009 	mddev->minor_version = sb->minor_version;
1010 	if (mddev->in_sync)
1011 	{
1012 		sb->recovery_cp = mddev->recovery_cp;
1013 		sb->cp_events_hi = (mddev->events>>32);
1014 		sb->cp_events_lo = (u32)mddev->events;
1015 		if (mddev->recovery_cp == MaxSector)
1016 			sb->state = (1<< MD_SB_CLEAN);
1017 	} else
1018 		sb->recovery_cp = 0;
1019 
1020 	sb->layout = mddev->layout;
1021 	sb->chunk_size = mddev->chunk_size;
1022 
1023 	if (mddev->bitmap && mddev->bitmap_file == NULL)
1024 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1025 
1026 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1027 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1028 		mdp_disk_t *d;
1029 		int desc_nr;
1030 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1031 		    && !test_bit(Faulty, &rdev2->flags))
1032 			desc_nr = rdev2->raid_disk;
1033 		else
1034 			desc_nr = next_spare++;
1035 		rdev2->desc_nr = desc_nr;
1036 		d = &sb->disks[rdev2->desc_nr];
1037 		nr_disks++;
1038 		d->number = rdev2->desc_nr;
1039 		d->major = MAJOR(rdev2->bdev->bd_dev);
1040 		d->minor = MINOR(rdev2->bdev->bd_dev);
1041 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1042 		    && !test_bit(Faulty, &rdev2->flags))
1043 			d->raid_disk = rdev2->raid_disk;
1044 		else
1045 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1046 		if (test_bit(Faulty, &rdev2->flags))
1047 			d->state = (1<<MD_DISK_FAULTY);
1048 		else if (test_bit(In_sync, &rdev2->flags)) {
1049 			d->state = (1<<MD_DISK_ACTIVE);
1050 			d->state |= (1<<MD_DISK_SYNC);
1051 			active++;
1052 			working++;
1053 		} else {
1054 			d->state = 0;
1055 			spare++;
1056 			working++;
1057 		}
1058 		if (test_bit(WriteMostly, &rdev2->flags))
1059 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1060 	}
1061 	/* now set the "removed" and "faulty" bits on any missing devices */
1062 	for (i=0 ; i < mddev->raid_disks ; i++) {
1063 		mdp_disk_t *d = &sb->disks[i];
1064 		if (d->state == 0 && d->number == 0) {
1065 			d->number = i;
1066 			d->raid_disk = i;
1067 			d->state = (1<<MD_DISK_REMOVED);
1068 			d->state |= (1<<MD_DISK_FAULTY);
1069 			failed++;
1070 		}
1071 	}
1072 	sb->nr_disks = nr_disks;
1073 	sb->active_disks = active;
1074 	sb->working_disks = working;
1075 	sb->failed_disks = failed;
1076 	sb->spare_disks = spare;
1077 
1078 	sb->this_disk = sb->disks[rdev->desc_nr];
1079 	sb->sb_csum = calc_sb_csum(sb);
1080 }
1081 
1082 /*
1083  * rdev_size_change for 0.90.0
1084  */
1085 static unsigned long long
1086 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1087 {
1088 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1089 		return 0; /* component must fit device */
1090 	if (rdev->mddev->bitmap_offset)
1091 		return 0; /* can't move bitmap */
1092 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1093 	if (!num_sectors || num_sectors > rdev->sb_start)
1094 		num_sectors = rdev->sb_start;
1095 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1096 		       rdev->sb_page);
1097 	md_super_wait(rdev->mddev);
1098 	return num_sectors / 2; /* kB for sysfs */
1099 }
1100 
1101 
1102 /*
1103  * version 1 superblock
1104  */
1105 
1106 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1107 {
1108 	__le32 disk_csum;
1109 	u32 csum;
1110 	unsigned long long newcsum;
1111 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1112 	__le32 *isuper = (__le32*)sb;
1113 	int i;
1114 
1115 	disk_csum = sb->sb_csum;
1116 	sb->sb_csum = 0;
1117 	newcsum = 0;
1118 	for (i=0; size>=4; size -= 4 )
1119 		newcsum += le32_to_cpu(*isuper++);
1120 
1121 	if (size == 2)
1122 		newcsum += le16_to_cpu(*(__le16*) isuper);
1123 
1124 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1125 	sb->sb_csum = disk_csum;
1126 	return cpu_to_le32(csum);
1127 }
1128 
1129 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1130 {
1131 	struct mdp_superblock_1 *sb;
1132 	int ret;
1133 	sector_t sb_start;
1134 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1135 	int bmask;
1136 
1137 	/*
1138 	 * Calculate the position of the superblock in 512byte sectors.
1139 	 * It is always aligned to a 4K boundary and
1140 	 * depeding on minor_version, it can be:
1141 	 * 0: At least 8K, but less than 12K, from end of device
1142 	 * 1: At start of device
1143 	 * 2: 4K from start of device.
1144 	 */
1145 	switch(minor_version) {
1146 	case 0:
1147 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1148 		sb_start -= 8*2;
1149 		sb_start &= ~(sector_t)(4*2-1);
1150 		break;
1151 	case 1:
1152 		sb_start = 0;
1153 		break;
1154 	case 2:
1155 		sb_start = 8;
1156 		break;
1157 	default:
1158 		return -EINVAL;
1159 	}
1160 	rdev->sb_start = sb_start;
1161 
1162 	/* superblock is rarely larger than 1K, but it can be larger,
1163 	 * and it is safe to read 4k, so we do that
1164 	 */
1165 	ret = read_disk_sb(rdev, 4096);
1166 	if (ret) return ret;
1167 
1168 
1169 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1170 
1171 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1172 	    sb->major_version != cpu_to_le32(1) ||
1173 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1174 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1175 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1176 		return -EINVAL;
1177 
1178 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1179 		printk("md: invalid superblock checksum on %s\n",
1180 			bdevname(rdev->bdev,b));
1181 		return -EINVAL;
1182 	}
1183 	if (le64_to_cpu(sb->data_size) < 10) {
1184 		printk("md: data_size too small on %s\n",
1185 		       bdevname(rdev->bdev,b));
1186 		return -EINVAL;
1187 	}
1188 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1189 		if (sb->level != cpu_to_le32(1) &&
1190 		    sb->level != cpu_to_le32(4) &&
1191 		    sb->level != cpu_to_le32(5) &&
1192 		    sb->level != cpu_to_le32(6) &&
1193 		    sb->level != cpu_to_le32(10)) {
1194 			printk(KERN_WARNING
1195 			       "md: bitmaps not supported for this level.\n");
1196 			return -EINVAL;
1197 		}
1198 	}
1199 
1200 	rdev->preferred_minor = 0xffff;
1201 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1202 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1203 
1204 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1205 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1206 	if (rdev->sb_size & bmask)
1207 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1208 
1209 	if (minor_version
1210 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1211 		return -EINVAL;
1212 
1213 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1214 		rdev->desc_nr = -1;
1215 	else
1216 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1217 
1218 	if (!refdev) {
1219 		ret = 1;
1220 	} else {
1221 		__u64 ev1, ev2;
1222 		struct mdp_superblock_1 *refsb =
1223 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1224 
1225 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1226 		    sb->level != refsb->level ||
1227 		    sb->layout != refsb->layout ||
1228 		    sb->chunksize != refsb->chunksize) {
1229 			printk(KERN_WARNING "md: %s has strangely different"
1230 				" superblock to %s\n",
1231 				bdevname(rdev->bdev,b),
1232 				bdevname(refdev->bdev,b2));
1233 			return -EINVAL;
1234 		}
1235 		ev1 = le64_to_cpu(sb->events);
1236 		ev2 = le64_to_cpu(refsb->events);
1237 
1238 		if (ev1 > ev2)
1239 			ret = 1;
1240 		else
1241 			ret = 0;
1242 	}
1243 	if (minor_version)
1244 		rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1245 			le64_to_cpu(sb->data_offset);
1246 	else
1247 		rdev->sectors = rdev->sb_start;
1248 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1249 		return -EINVAL;
1250 	rdev->sectors = le64_to_cpu(sb->data_size);
1251 	if (le32_to_cpu(sb->chunksize))
1252 		rdev->sectors &= ~((sector_t)le32_to_cpu(sb->chunksize) - 1);
1253 
1254 	if (le64_to_cpu(sb->size) > rdev->sectors)
1255 		return -EINVAL;
1256 	return ret;
1257 }
1258 
1259 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1260 {
1261 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1262 	__u64 ev1 = le64_to_cpu(sb->events);
1263 
1264 	rdev->raid_disk = -1;
1265 	clear_bit(Faulty, &rdev->flags);
1266 	clear_bit(In_sync, &rdev->flags);
1267 	clear_bit(WriteMostly, &rdev->flags);
1268 	clear_bit(BarriersNotsupp, &rdev->flags);
1269 
1270 	if (mddev->raid_disks == 0) {
1271 		mddev->major_version = 1;
1272 		mddev->patch_version = 0;
1273 		mddev->external = 0;
1274 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1275 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1276 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1277 		mddev->level = le32_to_cpu(sb->level);
1278 		mddev->clevel[0] = 0;
1279 		mddev->layout = le32_to_cpu(sb->layout);
1280 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1281 		mddev->dev_sectors = le64_to_cpu(sb->size);
1282 		mddev->events = ev1;
1283 		mddev->bitmap_offset = 0;
1284 		mddev->default_bitmap_offset = 1024 >> 9;
1285 
1286 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1287 		memcpy(mddev->uuid, sb->set_uuid, 16);
1288 
1289 		mddev->max_disks =  (4096-256)/2;
1290 
1291 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1292 		    mddev->bitmap_file == NULL )
1293 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1294 
1295 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1296 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1297 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1298 			mddev->new_level = le32_to_cpu(sb->new_level);
1299 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1300 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1301 		} else {
1302 			mddev->reshape_position = MaxSector;
1303 			mddev->delta_disks = 0;
1304 			mddev->new_level = mddev->level;
1305 			mddev->new_layout = mddev->layout;
1306 			mddev->new_chunk = mddev->chunk_size;
1307 		}
1308 
1309 	} else if (mddev->pers == NULL) {
1310 		/* Insist of good event counter while assembling */
1311 		++ev1;
1312 		if (ev1 < mddev->events)
1313 			return -EINVAL;
1314 	} else if (mddev->bitmap) {
1315 		/* If adding to array with a bitmap, then we can accept an
1316 		 * older device, but not too old.
1317 		 */
1318 		if (ev1 < mddev->bitmap->events_cleared)
1319 			return 0;
1320 	} else {
1321 		if (ev1 < mddev->events)
1322 			/* just a hot-add of a new device, leave raid_disk at -1 */
1323 			return 0;
1324 	}
1325 	if (mddev->level != LEVEL_MULTIPATH) {
1326 		int role;
1327 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1328 		switch(role) {
1329 		case 0xffff: /* spare */
1330 			break;
1331 		case 0xfffe: /* faulty */
1332 			set_bit(Faulty, &rdev->flags);
1333 			break;
1334 		default:
1335 			if ((le32_to_cpu(sb->feature_map) &
1336 			     MD_FEATURE_RECOVERY_OFFSET))
1337 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1338 			else
1339 				set_bit(In_sync, &rdev->flags);
1340 			rdev->raid_disk = role;
1341 			break;
1342 		}
1343 		if (sb->devflags & WriteMostly1)
1344 			set_bit(WriteMostly, &rdev->flags);
1345 	} else /* MULTIPATH are always insync */
1346 		set_bit(In_sync, &rdev->flags);
1347 
1348 	return 0;
1349 }
1350 
1351 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1352 {
1353 	struct mdp_superblock_1 *sb;
1354 	mdk_rdev_t *rdev2;
1355 	int max_dev, i;
1356 	/* make rdev->sb match mddev and rdev data. */
1357 
1358 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1359 
1360 	sb->feature_map = 0;
1361 	sb->pad0 = 0;
1362 	sb->recovery_offset = cpu_to_le64(0);
1363 	memset(sb->pad1, 0, sizeof(sb->pad1));
1364 	memset(sb->pad2, 0, sizeof(sb->pad2));
1365 	memset(sb->pad3, 0, sizeof(sb->pad3));
1366 
1367 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1368 	sb->events = cpu_to_le64(mddev->events);
1369 	if (mddev->in_sync)
1370 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1371 	else
1372 		sb->resync_offset = cpu_to_le64(0);
1373 
1374 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1375 
1376 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1377 	sb->size = cpu_to_le64(mddev->dev_sectors);
1378 	sb->chunksize = cpu_to_le32(mddev->chunk_size >> 9);
1379 	sb->level = cpu_to_le32(mddev->level);
1380 	sb->layout = cpu_to_le32(mddev->layout);
1381 
1382 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1383 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1384 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1385 	}
1386 
1387 	if (rdev->raid_disk >= 0 &&
1388 	    !test_bit(In_sync, &rdev->flags)) {
1389 		if (mddev->curr_resync_completed > rdev->recovery_offset)
1390 			rdev->recovery_offset = mddev->curr_resync_completed;
1391 		if (rdev->recovery_offset > 0) {
1392 			sb->feature_map |=
1393 				cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1394 			sb->recovery_offset =
1395 				cpu_to_le64(rdev->recovery_offset);
1396 		}
1397 	}
1398 
1399 	if (mddev->reshape_position != MaxSector) {
1400 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1401 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1402 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1403 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1404 		sb->new_level = cpu_to_le32(mddev->new_level);
1405 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1406 	}
1407 
1408 	max_dev = 0;
1409 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1410 		if (rdev2->desc_nr+1 > max_dev)
1411 			max_dev = rdev2->desc_nr+1;
1412 
1413 	if (max_dev > le32_to_cpu(sb->max_dev))
1414 		sb->max_dev = cpu_to_le32(max_dev);
1415 	for (i=0; i<max_dev;i++)
1416 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1417 
1418 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1419 		i = rdev2->desc_nr;
1420 		if (test_bit(Faulty, &rdev2->flags))
1421 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1422 		else if (test_bit(In_sync, &rdev2->flags))
1423 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1424 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1425 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1426 		else
1427 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1428 	}
1429 
1430 	sb->sb_csum = calc_sb_1_csum(sb);
1431 }
1432 
1433 static unsigned long long
1434 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1435 {
1436 	struct mdp_superblock_1 *sb;
1437 	sector_t max_sectors;
1438 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1439 		return 0; /* component must fit device */
1440 	if (rdev->sb_start < rdev->data_offset) {
1441 		/* minor versions 1 and 2; superblock before data */
1442 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1443 		max_sectors -= rdev->data_offset;
1444 		if (!num_sectors || num_sectors > max_sectors)
1445 			num_sectors = max_sectors;
1446 	} else if (rdev->mddev->bitmap_offset) {
1447 		/* minor version 0 with bitmap we can't move */
1448 		return 0;
1449 	} else {
1450 		/* minor version 0; superblock after data */
1451 		sector_t sb_start;
1452 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1453 		sb_start &= ~(sector_t)(4*2 - 1);
1454 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1455 		if (!num_sectors || num_sectors > max_sectors)
1456 			num_sectors = max_sectors;
1457 		rdev->sb_start = sb_start;
1458 	}
1459 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1460 	sb->data_size = cpu_to_le64(num_sectors);
1461 	sb->super_offset = rdev->sb_start;
1462 	sb->sb_csum = calc_sb_1_csum(sb);
1463 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1464 		       rdev->sb_page);
1465 	md_super_wait(rdev->mddev);
1466 	return num_sectors / 2; /* kB for sysfs */
1467 }
1468 
1469 static struct super_type super_types[] = {
1470 	[0] = {
1471 		.name	= "0.90.0",
1472 		.owner	= THIS_MODULE,
1473 		.load_super	    = super_90_load,
1474 		.validate_super	    = super_90_validate,
1475 		.sync_super	    = super_90_sync,
1476 		.rdev_size_change   = super_90_rdev_size_change,
1477 	},
1478 	[1] = {
1479 		.name	= "md-1",
1480 		.owner	= THIS_MODULE,
1481 		.load_super	    = super_1_load,
1482 		.validate_super	    = super_1_validate,
1483 		.sync_super	    = super_1_sync,
1484 		.rdev_size_change   = super_1_rdev_size_change,
1485 	},
1486 };
1487 
1488 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1489 {
1490 	mdk_rdev_t *rdev, *rdev2;
1491 
1492 	rcu_read_lock();
1493 	rdev_for_each_rcu(rdev, mddev1)
1494 		rdev_for_each_rcu(rdev2, mddev2)
1495 			if (rdev->bdev->bd_contains ==
1496 			    rdev2->bdev->bd_contains) {
1497 				rcu_read_unlock();
1498 				return 1;
1499 			}
1500 	rcu_read_unlock();
1501 	return 0;
1502 }
1503 
1504 static LIST_HEAD(pending_raid_disks);
1505 
1506 static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev)
1507 {
1508 	struct mdk_personality *pers = mddev->pers;
1509 	struct gendisk *disk = mddev->gendisk;
1510 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1511 	struct blk_integrity *bi_mddev = blk_get_integrity(disk);
1512 
1513 	/* Data integrity passthrough not supported on RAID 4, 5 and 6 */
1514 	if (pers && pers->level >= 4 && pers->level <= 6)
1515 		return;
1516 
1517 	/* If rdev is integrity capable, register profile for mddev */
1518 	if (!bi_mddev && bi_rdev) {
1519 		if (blk_integrity_register(disk, bi_rdev))
1520 			printk(KERN_ERR "%s: %s Could not register integrity!\n",
1521 			       __func__, disk->disk_name);
1522 		else
1523 			printk(KERN_NOTICE "Enabling data integrity on %s\n",
1524 			       disk->disk_name);
1525 		return;
1526 	}
1527 
1528 	/* Check that mddev and rdev have matching profiles */
1529 	if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) {
1530 		printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__,
1531 		       disk->disk_name, rdev->bdev->bd_disk->disk_name);
1532 		printk(KERN_NOTICE "Disabling data integrity on %s\n",
1533 		       disk->disk_name);
1534 		blk_integrity_unregister(disk);
1535 	}
1536 }
1537 
1538 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1539 {
1540 	char b[BDEVNAME_SIZE];
1541 	struct kobject *ko;
1542 	char *s;
1543 	int err;
1544 
1545 	if (rdev->mddev) {
1546 		MD_BUG();
1547 		return -EINVAL;
1548 	}
1549 
1550 	/* prevent duplicates */
1551 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1552 		return -EEXIST;
1553 
1554 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1555 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1556 			rdev->sectors < mddev->dev_sectors)) {
1557 		if (mddev->pers) {
1558 			/* Cannot change size, so fail
1559 			 * If mddev->level <= 0, then we don't care
1560 			 * about aligning sizes (e.g. linear)
1561 			 */
1562 			if (mddev->level > 0)
1563 				return -ENOSPC;
1564 		} else
1565 			mddev->dev_sectors = rdev->sectors;
1566 	}
1567 
1568 	/* Verify rdev->desc_nr is unique.
1569 	 * If it is -1, assign a free number, else
1570 	 * check number is not in use
1571 	 */
1572 	if (rdev->desc_nr < 0) {
1573 		int choice = 0;
1574 		if (mddev->pers) choice = mddev->raid_disks;
1575 		while (find_rdev_nr(mddev, choice))
1576 			choice++;
1577 		rdev->desc_nr = choice;
1578 	} else {
1579 		if (find_rdev_nr(mddev, rdev->desc_nr))
1580 			return -EBUSY;
1581 	}
1582 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1583 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1584 		       mdname(mddev), mddev->max_disks);
1585 		return -EBUSY;
1586 	}
1587 	bdevname(rdev->bdev,b);
1588 	while ( (s=strchr(b, '/')) != NULL)
1589 		*s = '!';
1590 
1591 	rdev->mddev = mddev;
1592 	printk(KERN_INFO "md: bind<%s>\n", b);
1593 
1594 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1595 		goto fail;
1596 
1597 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1598 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1599 		kobject_del(&rdev->kobj);
1600 		goto fail;
1601 	}
1602 	rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1603 
1604 	list_add_rcu(&rdev->same_set, &mddev->disks);
1605 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1606 
1607 	/* May as well allow recovery to be retried once */
1608 	mddev->recovery_disabled = 0;
1609 
1610 	md_integrity_check(rdev, mddev);
1611 	return 0;
1612 
1613  fail:
1614 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1615 	       b, mdname(mddev));
1616 	return err;
1617 }
1618 
1619 static void md_delayed_delete(struct work_struct *ws)
1620 {
1621 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1622 	kobject_del(&rdev->kobj);
1623 	kobject_put(&rdev->kobj);
1624 }
1625 
1626 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1627 {
1628 	char b[BDEVNAME_SIZE];
1629 	if (!rdev->mddev) {
1630 		MD_BUG();
1631 		return;
1632 	}
1633 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1634 	list_del_rcu(&rdev->same_set);
1635 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1636 	rdev->mddev = NULL;
1637 	sysfs_remove_link(&rdev->kobj, "block");
1638 	sysfs_put(rdev->sysfs_state);
1639 	rdev->sysfs_state = NULL;
1640 	/* We need to delay this, otherwise we can deadlock when
1641 	 * writing to 'remove' to "dev/state".  We also need
1642 	 * to delay it due to rcu usage.
1643 	 */
1644 	synchronize_rcu();
1645 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1646 	kobject_get(&rdev->kobj);
1647 	schedule_work(&rdev->del_work);
1648 }
1649 
1650 /*
1651  * prevent the device from being mounted, repartitioned or
1652  * otherwise reused by a RAID array (or any other kernel
1653  * subsystem), by bd_claiming the device.
1654  */
1655 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1656 {
1657 	int err = 0;
1658 	struct block_device *bdev;
1659 	char b[BDEVNAME_SIZE];
1660 
1661 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1662 	if (IS_ERR(bdev)) {
1663 		printk(KERN_ERR "md: could not open %s.\n",
1664 			__bdevname(dev, b));
1665 		return PTR_ERR(bdev);
1666 	}
1667 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1668 	if (err) {
1669 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1670 			bdevname(bdev, b));
1671 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1672 		return err;
1673 	}
1674 	if (!shared)
1675 		set_bit(AllReserved, &rdev->flags);
1676 	rdev->bdev = bdev;
1677 	return err;
1678 }
1679 
1680 static void unlock_rdev(mdk_rdev_t *rdev)
1681 {
1682 	struct block_device *bdev = rdev->bdev;
1683 	rdev->bdev = NULL;
1684 	if (!bdev)
1685 		MD_BUG();
1686 	bd_release(bdev);
1687 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1688 }
1689 
1690 void md_autodetect_dev(dev_t dev);
1691 
1692 static void export_rdev(mdk_rdev_t * rdev)
1693 {
1694 	char b[BDEVNAME_SIZE];
1695 	printk(KERN_INFO "md: export_rdev(%s)\n",
1696 		bdevname(rdev->bdev,b));
1697 	if (rdev->mddev)
1698 		MD_BUG();
1699 	free_disk_sb(rdev);
1700 #ifndef MODULE
1701 	if (test_bit(AutoDetected, &rdev->flags))
1702 		md_autodetect_dev(rdev->bdev->bd_dev);
1703 #endif
1704 	unlock_rdev(rdev);
1705 	kobject_put(&rdev->kobj);
1706 }
1707 
1708 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1709 {
1710 	unbind_rdev_from_array(rdev);
1711 	export_rdev(rdev);
1712 }
1713 
1714 static void export_array(mddev_t *mddev)
1715 {
1716 	mdk_rdev_t *rdev, *tmp;
1717 
1718 	rdev_for_each(rdev, tmp, mddev) {
1719 		if (!rdev->mddev) {
1720 			MD_BUG();
1721 			continue;
1722 		}
1723 		kick_rdev_from_array(rdev);
1724 	}
1725 	if (!list_empty(&mddev->disks))
1726 		MD_BUG();
1727 	mddev->raid_disks = 0;
1728 	mddev->major_version = 0;
1729 }
1730 
1731 static void print_desc(mdp_disk_t *desc)
1732 {
1733 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1734 		desc->major,desc->minor,desc->raid_disk,desc->state);
1735 }
1736 
1737 static void print_sb_90(mdp_super_t *sb)
1738 {
1739 	int i;
1740 
1741 	printk(KERN_INFO
1742 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1743 		sb->major_version, sb->minor_version, sb->patch_version,
1744 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1745 		sb->ctime);
1746 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1747 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1748 		sb->md_minor, sb->layout, sb->chunk_size);
1749 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1750 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1751 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1752 		sb->failed_disks, sb->spare_disks,
1753 		sb->sb_csum, (unsigned long)sb->events_lo);
1754 
1755 	printk(KERN_INFO);
1756 	for (i = 0; i < MD_SB_DISKS; i++) {
1757 		mdp_disk_t *desc;
1758 
1759 		desc = sb->disks + i;
1760 		if (desc->number || desc->major || desc->minor ||
1761 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1762 			printk("     D %2d: ", i);
1763 			print_desc(desc);
1764 		}
1765 	}
1766 	printk(KERN_INFO "md:     THIS: ");
1767 	print_desc(&sb->this_disk);
1768 }
1769 
1770 static void print_sb_1(struct mdp_superblock_1 *sb)
1771 {
1772 	__u8 *uuid;
1773 
1774 	uuid = sb->set_uuid;
1775 	printk(KERN_INFO "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1776 			":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1777 	       KERN_INFO "md:    Name: \"%s\" CT:%llu\n",
1778 		le32_to_cpu(sb->major_version),
1779 		le32_to_cpu(sb->feature_map),
1780 		uuid[0], uuid[1], uuid[2], uuid[3],
1781 		uuid[4], uuid[5], uuid[6], uuid[7],
1782 		uuid[8], uuid[9], uuid[10], uuid[11],
1783 		uuid[12], uuid[13], uuid[14], uuid[15],
1784 		sb->set_name,
1785 		(unsigned long long)le64_to_cpu(sb->ctime)
1786 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1787 
1788 	uuid = sb->device_uuid;
1789 	printk(KERN_INFO "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1790 			" RO:%llu\n"
1791 	       KERN_INFO "md:     Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1792 			":%02x%02x%02x%02x%02x%02x\n"
1793 	       KERN_INFO "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1794 	       KERN_INFO "md:         (MaxDev:%u) \n",
1795 		le32_to_cpu(sb->level),
1796 		(unsigned long long)le64_to_cpu(sb->size),
1797 		le32_to_cpu(sb->raid_disks),
1798 		le32_to_cpu(sb->layout),
1799 		le32_to_cpu(sb->chunksize),
1800 		(unsigned long long)le64_to_cpu(sb->data_offset),
1801 		(unsigned long long)le64_to_cpu(sb->data_size),
1802 		(unsigned long long)le64_to_cpu(sb->super_offset),
1803 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
1804 		le32_to_cpu(sb->dev_number),
1805 		uuid[0], uuid[1], uuid[2], uuid[3],
1806 		uuid[4], uuid[5], uuid[6], uuid[7],
1807 		uuid[8], uuid[9], uuid[10], uuid[11],
1808 		uuid[12], uuid[13], uuid[14], uuid[15],
1809 		sb->devflags,
1810 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1811 		(unsigned long long)le64_to_cpu(sb->events),
1812 		(unsigned long long)le64_to_cpu(sb->resync_offset),
1813 		le32_to_cpu(sb->sb_csum),
1814 		le32_to_cpu(sb->max_dev)
1815 		);
1816 }
1817 
1818 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1819 {
1820 	char b[BDEVNAME_SIZE];
1821 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1822 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1823 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1824 	        rdev->desc_nr);
1825 	if (rdev->sb_loaded) {
1826 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1827 		switch (major_version) {
1828 		case 0:
1829 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1830 			break;
1831 		case 1:
1832 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1833 			break;
1834 		}
1835 	} else
1836 		printk(KERN_INFO "md: no rdev superblock!\n");
1837 }
1838 
1839 static void md_print_devices(void)
1840 {
1841 	struct list_head *tmp;
1842 	mdk_rdev_t *rdev;
1843 	mddev_t *mddev;
1844 	char b[BDEVNAME_SIZE];
1845 
1846 	printk("\n");
1847 	printk("md:	**********************************\n");
1848 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1849 	printk("md:	**********************************\n");
1850 	for_each_mddev(mddev, tmp) {
1851 
1852 		if (mddev->bitmap)
1853 			bitmap_print_sb(mddev->bitmap);
1854 		else
1855 			printk("%s: ", mdname(mddev));
1856 		list_for_each_entry(rdev, &mddev->disks, same_set)
1857 			printk("<%s>", bdevname(rdev->bdev,b));
1858 		printk("\n");
1859 
1860 		list_for_each_entry(rdev, &mddev->disks, same_set)
1861 			print_rdev(rdev, mddev->major_version);
1862 	}
1863 	printk("md:	**********************************\n");
1864 	printk("\n");
1865 }
1866 
1867 
1868 static void sync_sbs(mddev_t * mddev, int nospares)
1869 {
1870 	/* Update each superblock (in-memory image), but
1871 	 * if we are allowed to, skip spares which already
1872 	 * have the right event counter, or have one earlier
1873 	 * (which would mean they aren't being marked as dirty
1874 	 * with the rest of the array)
1875 	 */
1876 	mdk_rdev_t *rdev;
1877 
1878 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1879 		if (rdev->sb_events == mddev->events ||
1880 		    (nospares &&
1881 		     rdev->raid_disk < 0 &&
1882 		     (rdev->sb_events&1)==0 &&
1883 		     rdev->sb_events+1 == mddev->events)) {
1884 			/* Don't update this superblock */
1885 			rdev->sb_loaded = 2;
1886 		} else {
1887 			super_types[mddev->major_version].
1888 				sync_super(mddev, rdev);
1889 			rdev->sb_loaded = 1;
1890 		}
1891 	}
1892 }
1893 
1894 static void md_update_sb(mddev_t * mddev, int force_change)
1895 {
1896 	mdk_rdev_t *rdev;
1897 	int sync_req;
1898 	int nospares = 0;
1899 
1900 	if (mddev->external)
1901 		return;
1902 repeat:
1903 	spin_lock_irq(&mddev->write_lock);
1904 
1905 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1906 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1907 		force_change = 1;
1908 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1909 		/* just a clean<-> dirty transition, possibly leave spares alone,
1910 		 * though if events isn't the right even/odd, we will have to do
1911 		 * spares after all
1912 		 */
1913 		nospares = 1;
1914 	if (force_change)
1915 		nospares = 0;
1916 	if (mddev->degraded)
1917 		/* If the array is degraded, then skipping spares is both
1918 		 * dangerous and fairly pointless.
1919 		 * Dangerous because a device that was removed from the array
1920 		 * might have a event_count that still looks up-to-date,
1921 		 * so it can be re-added without a resync.
1922 		 * Pointless because if there are any spares to skip,
1923 		 * then a recovery will happen and soon that array won't
1924 		 * be degraded any more and the spare can go back to sleep then.
1925 		 */
1926 		nospares = 0;
1927 
1928 	sync_req = mddev->in_sync;
1929 	mddev->utime = get_seconds();
1930 
1931 	/* If this is just a dirty<->clean transition, and the array is clean
1932 	 * and 'events' is odd, we can roll back to the previous clean state */
1933 	if (nospares
1934 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1935 	    && (mddev->events & 1)
1936 	    && mddev->events != 1)
1937 		mddev->events--;
1938 	else {
1939 		/* otherwise we have to go forward and ... */
1940 		mddev->events ++;
1941 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1942 			/* .. if the array isn't clean, insist on an odd 'events' */
1943 			if ((mddev->events&1)==0) {
1944 				mddev->events++;
1945 				nospares = 0;
1946 			}
1947 		} else {
1948 			/* otherwise insist on an even 'events' (for clean states) */
1949 			if ((mddev->events&1)) {
1950 				mddev->events++;
1951 				nospares = 0;
1952 			}
1953 		}
1954 	}
1955 
1956 	if (!mddev->events) {
1957 		/*
1958 		 * oops, this 64-bit counter should never wrap.
1959 		 * Either we are in around ~1 trillion A.C., assuming
1960 		 * 1 reboot per second, or we have a bug:
1961 		 */
1962 		MD_BUG();
1963 		mddev->events --;
1964 	}
1965 
1966 	/*
1967 	 * do not write anything to disk if using
1968 	 * nonpersistent superblocks
1969 	 */
1970 	if (!mddev->persistent) {
1971 		if (!mddev->external)
1972 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1973 
1974 		spin_unlock_irq(&mddev->write_lock);
1975 		wake_up(&mddev->sb_wait);
1976 		return;
1977 	}
1978 	sync_sbs(mddev, nospares);
1979 	spin_unlock_irq(&mddev->write_lock);
1980 
1981 	dprintk(KERN_INFO
1982 		"md: updating %s RAID superblock on device (in sync %d)\n",
1983 		mdname(mddev),mddev->in_sync);
1984 
1985 	bitmap_update_sb(mddev->bitmap);
1986 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1987 		char b[BDEVNAME_SIZE];
1988 		dprintk(KERN_INFO "md: ");
1989 		if (rdev->sb_loaded != 1)
1990 			continue; /* no noise on spare devices */
1991 		if (test_bit(Faulty, &rdev->flags))
1992 			dprintk("(skipping faulty ");
1993 
1994 		dprintk("%s ", bdevname(rdev->bdev,b));
1995 		if (!test_bit(Faulty, &rdev->flags)) {
1996 			md_super_write(mddev,rdev,
1997 				       rdev->sb_start, rdev->sb_size,
1998 				       rdev->sb_page);
1999 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2000 				bdevname(rdev->bdev,b),
2001 				(unsigned long long)rdev->sb_start);
2002 			rdev->sb_events = mddev->events;
2003 
2004 		} else
2005 			dprintk(")\n");
2006 		if (mddev->level == LEVEL_MULTIPATH)
2007 			/* only need to write one superblock... */
2008 			break;
2009 	}
2010 	md_super_wait(mddev);
2011 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2012 
2013 	spin_lock_irq(&mddev->write_lock);
2014 	if (mddev->in_sync != sync_req ||
2015 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2016 		/* have to write it out again */
2017 		spin_unlock_irq(&mddev->write_lock);
2018 		goto repeat;
2019 	}
2020 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2021 	spin_unlock_irq(&mddev->write_lock);
2022 	wake_up(&mddev->sb_wait);
2023 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2024 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2025 
2026 }
2027 
2028 /* words written to sysfs files may, or may not, be \n terminated.
2029  * We want to accept with case. For this we use cmd_match.
2030  */
2031 static int cmd_match(const char *cmd, const char *str)
2032 {
2033 	/* See if cmd, written into a sysfs file, matches
2034 	 * str.  They must either be the same, or cmd can
2035 	 * have a trailing newline
2036 	 */
2037 	while (*cmd && *str && *cmd == *str) {
2038 		cmd++;
2039 		str++;
2040 	}
2041 	if (*cmd == '\n')
2042 		cmd++;
2043 	if (*str || *cmd)
2044 		return 0;
2045 	return 1;
2046 }
2047 
2048 struct rdev_sysfs_entry {
2049 	struct attribute attr;
2050 	ssize_t (*show)(mdk_rdev_t *, char *);
2051 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2052 };
2053 
2054 static ssize_t
2055 state_show(mdk_rdev_t *rdev, char *page)
2056 {
2057 	char *sep = "";
2058 	size_t len = 0;
2059 
2060 	if (test_bit(Faulty, &rdev->flags)) {
2061 		len+= sprintf(page+len, "%sfaulty",sep);
2062 		sep = ",";
2063 	}
2064 	if (test_bit(In_sync, &rdev->flags)) {
2065 		len += sprintf(page+len, "%sin_sync",sep);
2066 		sep = ",";
2067 	}
2068 	if (test_bit(WriteMostly, &rdev->flags)) {
2069 		len += sprintf(page+len, "%swrite_mostly",sep);
2070 		sep = ",";
2071 	}
2072 	if (test_bit(Blocked, &rdev->flags)) {
2073 		len += sprintf(page+len, "%sblocked", sep);
2074 		sep = ",";
2075 	}
2076 	if (!test_bit(Faulty, &rdev->flags) &&
2077 	    !test_bit(In_sync, &rdev->flags)) {
2078 		len += sprintf(page+len, "%sspare", sep);
2079 		sep = ",";
2080 	}
2081 	return len+sprintf(page+len, "\n");
2082 }
2083 
2084 static ssize_t
2085 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2086 {
2087 	/* can write
2088 	 *  faulty  - simulates and error
2089 	 *  remove  - disconnects the device
2090 	 *  writemostly - sets write_mostly
2091 	 *  -writemostly - clears write_mostly
2092 	 *  blocked - sets the Blocked flag
2093 	 *  -blocked - clears the Blocked flag
2094 	 *  insync - sets Insync providing device isn't active
2095 	 */
2096 	int err = -EINVAL;
2097 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2098 		md_error(rdev->mddev, rdev);
2099 		err = 0;
2100 	} else if (cmd_match(buf, "remove")) {
2101 		if (rdev->raid_disk >= 0)
2102 			err = -EBUSY;
2103 		else {
2104 			mddev_t *mddev = rdev->mddev;
2105 			kick_rdev_from_array(rdev);
2106 			if (mddev->pers)
2107 				md_update_sb(mddev, 1);
2108 			md_new_event(mddev);
2109 			err = 0;
2110 		}
2111 	} else if (cmd_match(buf, "writemostly")) {
2112 		set_bit(WriteMostly, &rdev->flags);
2113 		err = 0;
2114 	} else if (cmd_match(buf, "-writemostly")) {
2115 		clear_bit(WriteMostly, &rdev->flags);
2116 		err = 0;
2117 	} else if (cmd_match(buf, "blocked")) {
2118 		set_bit(Blocked, &rdev->flags);
2119 		err = 0;
2120 	} else if (cmd_match(buf, "-blocked")) {
2121 		clear_bit(Blocked, &rdev->flags);
2122 		wake_up(&rdev->blocked_wait);
2123 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2124 		md_wakeup_thread(rdev->mddev->thread);
2125 
2126 		err = 0;
2127 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2128 		set_bit(In_sync, &rdev->flags);
2129 		err = 0;
2130 	}
2131 	if (!err && rdev->sysfs_state)
2132 		sysfs_notify_dirent(rdev->sysfs_state);
2133 	return err ? err : len;
2134 }
2135 static struct rdev_sysfs_entry rdev_state =
2136 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2137 
2138 static ssize_t
2139 errors_show(mdk_rdev_t *rdev, char *page)
2140 {
2141 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2142 }
2143 
2144 static ssize_t
2145 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2146 {
2147 	char *e;
2148 	unsigned long n = simple_strtoul(buf, &e, 10);
2149 	if (*buf && (*e == 0 || *e == '\n')) {
2150 		atomic_set(&rdev->corrected_errors, n);
2151 		return len;
2152 	}
2153 	return -EINVAL;
2154 }
2155 static struct rdev_sysfs_entry rdev_errors =
2156 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2157 
2158 static ssize_t
2159 slot_show(mdk_rdev_t *rdev, char *page)
2160 {
2161 	if (rdev->raid_disk < 0)
2162 		return sprintf(page, "none\n");
2163 	else
2164 		return sprintf(page, "%d\n", rdev->raid_disk);
2165 }
2166 
2167 static ssize_t
2168 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2169 {
2170 	char *e;
2171 	int err;
2172 	char nm[20];
2173 	int slot = simple_strtoul(buf, &e, 10);
2174 	if (strncmp(buf, "none", 4)==0)
2175 		slot = -1;
2176 	else if (e==buf || (*e && *e!= '\n'))
2177 		return -EINVAL;
2178 	if (rdev->mddev->pers && slot == -1) {
2179 		/* Setting 'slot' on an active array requires also
2180 		 * updating the 'rd%d' link, and communicating
2181 		 * with the personality with ->hot_*_disk.
2182 		 * For now we only support removing
2183 		 * failed/spare devices.  This normally happens automatically,
2184 		 * but not when the metadata is externally managed.
2185 		 */
2186 		if (rdev->raid_disk == -1)
2187 			return -EEXIST;
2188 		/* personality does all needed checks */
2189 		if (rdev->mddev->pers->hot_add_disk == NULL)
2190 			return -EINVAL;
2191 		err = rdev->mddev->pers->
2192 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2193 		if (err)
2194 			return err;
2195 		sprintf(nm, "rd%d", rdev->raid_disk);
2196 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2197 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2198 		md_wakeup_thread(rdev->mddev->thread);
2199 	} else if (rdev->mddev->pers) {
2200 		mdk_rdev_t *rdev2;
2201 		/* Activating a spare .. or possibly reactivating
2202 		 * if we ever get bitmaps working here.
2203 		 */
2204 
2205 		if (rdev->raid_disk != -1)
2206 			return -EBUSY;
2207 
2208 		if (rdev->mddev->pers->hot_add_disk == NULL)
2209 			return -EINVAL;
2210 
2211 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2212 			if (rdev2->raid_disk == slot)
2213 				return -EEXIST;
2214 
2215 		rdev->raid_disk = slot;
2216 		if (test_bit(In_sync, &rdev->flags))
2217 			rdev->saved_raid_disk = slot;
2218 		else
2219 			rdev->saved_raid_disk = -1;
2220 		err = rdev->mddev->pers->
2221 			hot_add_disk(rdev->mddev, rdev);
2222 		if (err) {
2223 			rdev->raid_disk = -1;
2224 			return err;
2225 		} else
2226 			sysfs_notify_dirent(rdev->sysfs_state);
2227 		sprintf(nm, "rd%d", rdev->raid_disk);
2228 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2229 			printk(KERN_WARNING
2230 			       "md: cannot register "
2231 			       "%s for %s\n",
2232 			       nm, mdname(rdev->mddev));
2233 
2234 		/* don't wakeup anyone, leave that to userspace. */
2235 	} else {
2236 		if (slot >= rdev->mddev->raid_disks)
2237 			return -ENOSPC;
2238 		rdev->raid_disk = slot;
2239 		/* assume it is working */
2240 		clear_bit(Faulty, &rdev->flags);
2241 		clear_bit(WriteMostly, &rdev->flags);
2242 		set_bit(In_sync, &rdev->flags);
2243 		sysfs_notify_dirent(rdev->sysfs_state);
2244 	}
2245 	return len;
2246 }
2247 
2248 
2249 static struct rdev_sysfs_entry rdev_slot =
2250 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2251 
2252 static ssize_t
2253 offset_show(mdk_rdev_t *rdev, char *page)
2254 {
2255 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2256 }
2257 
2258 static ssize_t
2259 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2260 {
2261 	char *e;
2262 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2263 	if (e==buf || (*e && *e != '\n'))
2264 		return -EINVAL;
2265 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2266 		return -EBUSY;
2267 	if (rdev->sectors && rdev->mddev->external)
2268 		/* Must set offset before size, so overlap checks
2269 		 * can be sane */
2270 		return -EBUSY;
2271 	rdev->data_offset = offset;
2272 	return len;
2273 }
2274 
2275 static struct rdev_sysfs_entry rdev_offset =
2276 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2277 
2278 static ssize_t
2279 rdev_size_show(mdk_rdev_t *rdev, char *page)
2280 {
2281 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2282 }
2283 
2284 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2285 {
2286 	/* check if two start/length pairs overlap */
2287 	if (s1+l1 <= s2)
2288 		return 0;
2289 	if (s2+l2 <= s1)
2290 		return 0;
2291 	return 1;
2292 }
2293 
2294 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2295 {
2296 	unsigned long long blocks;
2297 	sector_t new;
2298 
2299 	if (strict_strtoull(buf, 10, &blocks) < 0)
2300 		return -EINVAL;
2301 
2302 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2303 		return -EINVAL; /* sector conversion overflow */
2304 
2305 	new = blocks * 2;
2306 	if (new != blocks * 2)
2307 		return -EINVAL; /* unsigned long long to sector_t overflow */
2308 
2309 	*sectors = new;
2310 	return 0;
2311 }
2312 
2313 static ssize_t
2314 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2315 {
2316 	mddev_t *my_mddev = rdev->mddev;
2317 	sector_t oldsectors = rdev->sectors;
2318 	sector_t sectors;
2319 
2320 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2321 		return -EINVAL;
2322 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2323 		if (my_mddev->persistent) {
2324 			sectors = super_types[my_mddev->major_version].
2325 				rdev_size_change(rdev, sectors);
2326 			if (!sectors)
2327 				return -EBUSY;
2328 		} else if (!sectors)
2329 			sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2330 				rdev->data_offset;
2331 	}
2332 	if (sectors < my_mddev->dev_sectors)
2333 		return -EINVAL; /* component must fit device */
2334 
2335 	rdev->sectors = sectors;
2336 	if (sectors > oldsectors && my_mddev->external) {
2337 		/* need to check that all other rdevs with the same ->bdev
2338 		 * do not overlap.  We need to unlock the mddev to avoid
2339 		 * a deadlock.  We have already changed rdev->sectors, and if
2340 		 * we have to change it back, we will have the lock again.
2341 		 */
2342 		mddev_t *mddev;
2343 		int overlap = 0;
2344 		struct list_head *tmp;
2345 
2346 		mddev_unlock(my_mddev);
2347 		for_each_mddev(mddev, tmp) {
2348 			mdk_rdev_t *rdev2;
2349 
2350 			mddev_lock(mddev);
2351 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2352 				if (test_bit(AllReserved, &rdev2->flags) ||
2353 				    (rdev->bdev == rdev2->bdev &&
2354 				     rdev != rdev2 &&
2355 				     overlaps(rdev->data_offset, rdev->sectors,
2356 					      rdev2->data_offset,
2357 					      rdev2->sectors))) {
2358 					overlap = 1;
2359 					break;
2360 				}
2361 			mddev_unlock(mddev);
2362 			if (overlap) {
2363 				mddev_put(mddev);
2364 				break;
2365 			}
2366 		}
2367 		mddev_lock(my_mddev);
2368 		if (overlap) {
2369 			/* Someone else could have slipped in a size
2370 			 * change here, but doing so is just silly.
2371 			 * We put oldsectors back because we *know* it is
2372 			 * safe, and trust userspace not to race with
2373 			 * itself
2374 			 */
2375 			rdev->sectors = oldsectors;
2376 			return -EBUSY;
2377 		}
2378 	}
2379 	return len;
2380 }
2381 
2382 static struct rdev_sysfs_entry rdev_size =
2383 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2384 
2385 static struct attribute *rdev_default_attrs[] = {
2386 	&rdev_state.attr,
2387 	&rdev_errors.attr,
2388 	&rdev_slot.attr,
2389 	&rdev_offset.attr,
2390 	&rdev_size.attr,
2391 	NULL,
2392 };
2393 static ssize_t
2394 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2395 {
2396 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2397 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2398 	mddev_t *mddev = rdev->mddev;
2399 	ssize_t rv;
2400 
2401 	if (!entry->show)
2402 		return -EIO;
2403 
2404 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2405 	if (!rv) {
2406 		if (rdev->mddev == NULL)
2407 			rv = -EBUSY;
2408 		else
2409 			rv = entry->show(rdev, page);
2410 		mddev_unlock(mddev);
2411 	}
2412 	return rv;
2413 }
2414 
2415 static ssize_t
2416 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2417 	      const char *page, size_t length)
2418 {
2419 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2420 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2421 	ssize_t rv;
2422 	mddev_t *mddev = rdev->mddev;
2423 
2424 	if (!entry->store)
2425 		return -EIO;
2426 	if (!capable(CAP_SYS_ADMIN))
2427 		return -EACCES;
2428 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2429 	if (!rv) {
2430 		if (rdev->mddev == NULL)
2431 			rv = -EBUSY;
2432 		else
2433 			rv = entry->store(rdev, page, length);
2434 		mddev_unlock(mddev);
2435 	}
2436 	return rv;
2437 }
2438 
2439 static void rdev_free(struct kobject *ko)
2440 {
2441 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2442 	kfree(rdev);
2443 }
2444 static struct sysfs_ops rdev_sysfs_ops = {
2445 	.show		= rdev_attr_show,
2446 	.store		= rdev_attr_store,
2447 };
2448 static struct kobj_type rdev_ktype = {
2449 	.release	= rdev_free,
2450 	.sysfs_ops	= &rdev_sysfs_ops,
2451 	.default_attrs	= rdev_default_attrs,
2452 };
2453 
2454 /*
2455  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2456  *
2457  * mark the device faulty if:
2458  *
2459  *   - the device is nonexistent (zero size)
2460  *   - the device has no valid superblock
2461  *
2462  * a faulty rdev _never_ has rdev->sb set.
2463  */
2464 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2465 {
2466 	char b[BDEVNAME_SIZE];
2467 	int err;
2468 	mdk_rdev_t *rdev;
2469 	sector_t size;
2470 
2471 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2472 	if (!rdev) {
2473 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2474 		return ERR_PTR(-ENOMEM);
2475 	}
2476 
2477 	if ((err = alloc_disk_sb(rdev)))
2478 		goto abort_free;
2479 
2480 	err = lock_rdev(rdev, newdev, super_format == -2);
2481 	if (err)
2482 		goto abort_free;
2483 
2484 	kobject_init(&rdev->kobj, &rdev_ktype);
2485 
2486 	rdev->desc_nr = -1;
2487 	rdev->saved_raid_disk = -1;
2488 	rdev->raid_disk = -1;
2489 	rdev->flags = 0;
2490 	rdev->data_offset = 0;
2491 	rdev->sb_events = 0;
2492 	atomic_set(&rdev->nr_pending, 0);
2493 	atomic_set(&rdev->read_errors, 0);
2494 	atomic_set(&rdev->corrected_errors, 0);
2495 
2496 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2497 	if (!size) {
2498 		printk(KERN_WARNING
2499 			"md: %s has zero or unknown size, marking faulty!\n",
2500 			bdevname(rdev->bdev,b));
2501 		err = -EINVAL;
2502 		goto abort_free;
2503 	}
2504 
2505 	if (super_format >= 0) {
2506 		err = super_types[super_format].
2507 			load_super(rdev, NULL, super_minor);
2508 		if (err == -EINVAL) {
2509 			printk(KERN_WARNING
2510 				"md: %s does not have a valid v%d.%d "
2511 			       "superblock, not importing!\n",
2512 				bdevname(rdev->bdev,b),
2513 			       super_format, super_minor);
2514 			goto abort_free;
2515 		}
2516 		if (err < 0) {
2517 			printk(KERN_WARNING
2518 				"md: could not read %s's sb, not importing!\n",
2519 				bdevname(rdev->bdev,b));
2520 			goto abort_free;
2521 		}
2522 	}
2523 
2524 	INIT_LIST_HEAD(&rdev->same_set);
2525 	init_waitqueue_head(&rdev->blocked_wait);
2526 
2527 	return rdev;
2528 
2529 abort_free:
2530 	if (rdev->sb_page) {
2531 		if (rdev->bdev)
2532 			unlock_rdev(rdev);
2533 		free_disk_sb(rdev);
2534 	}
2535 	kfree(rdev);
2536 	return ERR_PTR(err);
2537 }
2538 
2539 /*
2540  * Check a full RAID array for plausibility
2541  */
2542 
2543 
2544 static void analyze_sbs(mddev_t * mddev)
2545 {
2546 	int i;
2547 	mdk_rdev_t *rdev, *freshest, *tmp;
2548 	char b[BDEVNAME_SIZE];
2549 
2550 	freshest = NULL;
2551 	rdev_for_each(rdev, tmp, mddev)
2552 		switch (super_types[mddev->major_version].
2553 			load_super(rdev, freshest, mddev->minor_version)) {
2554 		case 1:
2555 			freshest = rdev;
2556 			break;
2557 		case 0:
2558 			break;
2559 		default:
2560 			printk( KERN_ERR \
2561 				"md: fatal superblock inconsistency in %s"
2562 				" -- removing from array\n",
2563 				bdevname(rdev->bdev,b));
2564 			kick_rdev_from_array(rdev);
2565 		}
2566 
2567 
2568 	super_types[mddev->major_version].
2569 		validate_super(mddev, freshest);
2570 
2571 	i = 0;
2572 	rdev_for_each(rdev, tmp, mddev) {
2573 		if (rdev->desc_nr >= mddev->max_disks ||
2574 		    i > mddev->max_disks) {
2575 			printk(KERN_WARNING
2576 			       "md: %s: %s: only %d devices permitted\n",
2577 			       mdname(mddev), bdevname(rdev->bdev, b),
2578 			       mddev->max_disks);
2579 			kick_rdev_from_array(rdev);
2580 			continue;
2581 		}
2582 		if (rdev != freshest)
2583 			if (super_types[mddev->major_version].
2584 			    validate_super(mddev, rdev)) {
2585 				printk(KERN_WARNING "md: kicking non-fresh %s"
2586 					" from array!\n",
2587 					bdevname(rdev->bdev,b));
2588 				kick_rdev_from_array(rdev);
2589 				continue;
2590 			}
2591 		if (mddev->level == LEVEL_MULTIPATH) {
2592 			rdev->desc_nr = i++;
2593 			rdev->raid_disk = rdev->desc_nr;
2594 			set_bit(In_sync, &rdev->flags);
2595 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2596 			rdev->raid_disk = -1;
2597 			clear_bit(In_sync, &rdev->flags);
2598 		}
2599 	}
2600 
2601 
2602 
2603 	if (mddev->recovery_cp != MaxSector &&
2604 	    mddev->level >= 1)
2605 		printk(KERN_ERR "md: %s: raid array is not clean"
2606 		       " -- starting background reconstruction\n",
2607 		       mdname(mddev));
2608 
2609 }
2610 
2611 static void md_safemode_timeout(unsigned long data);
2612 
2613 static ssize_t
2614 safe_delay_show(mddev_t *mddev, char *page)
2615 {
2616 	int msec = (mddev->safemode_delay*1000)/HZ;
2617 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2618 }
2619 static ssize_t
2620 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2621 {
2622 	int scale=1;
2623 	int dot=0;
2624 	int i;
2625 	unsigned long msec;
2626 	char buf[30];
2627 
2628 	/* remove a period, and count digits after it */
2629 	if (len >= sizeof(buf))
2630 		return -EINVAL;
2631 	strlcpy(buf, cbuf, sizeof(buf));
2632 	for (i=0; i<len; i++) {
2633 		if (dot) {
2634 			if (isdigit(buf[i])) {
2635 				buf[i-1] = buf[i];
2636 				scale *= 10;
2637 			}
2638 			buf[i] = 0;
2639 		} else if (buf[i] == '.') {
2640 			dot=1;
2641 			buf[i] = 0;
2642 		}
2643 	}
2644 	if (strict_strtoul(buf, 10, &msec) < 0)
2645 		return -EINVAL;
2646 	msec = (msec * 1000) / scale;
2647 	if (msec == 0)
2648 		mddev->safemode_delay = 0;
2649 	else {
2650 		unsigned long old_delay = mddev->safemode_delay;
2651 		mddev->safemode_delay = (msec*HZ)/1000;
2652 		if (mddev->safemode_delay == 0)
2653 			mddev->safemode_delay = 1;
2654 		if (mddev->safemode_delay < old_delay)
2655 			md_safemode_timeout((unsigned long)mddev);
2656 	}
2657 	return len;
2658 }
2659 static struct md_sysfs_entry md_safe_delay =
2660 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2661 
2662 static ssize_t
2663 level_show(mddev_t *mddev, char *page)
2664 {
2665 	struct mdk_personality *p = mddev->pers;
2666 	if (p)
2667 		return sprintf(page, "%s\n", p->name);
2668 	else if (mddev->clevel[0])
2669 		return sprintf(page, "%s\n", mddev->clevel);
2670 	else if (mddev->level != LEVEL_NONE)
2671 		return sprintf(page, "%d\n", mddev->level);
2672 	else
2673 		return 0;
2674 }
2675 
2676 static ssize_t
2677 level_store(mddev_t *mddev, const char *buf, size_t len)
2678 {
2679 	char level[16];
2680 	ssize_t rv = len;
2681 	struct mdk_personality *pers;
2682 	void *priv;
2683 
2684 	if (mddev->pers == NULL) {
2685 		if (len == 0)
2686 			return 0;
2687 		if (len >= sizeof(mddev->clevel))
2688 			return -ENOSPC;
2689 		strncpy(mddev->clevel, buf, len);
2690 		if (mddev->clevel[len-1] == '\n')
2691 			len--;
2692 		mddev->clevel[len] = 0;
2693 		mddev->level = LEVEL_NONE;
2694 		return rv;
2695 	}
2696 
2697 	/* request to change the personality.  Need to ensure:
2698 	 *  - array is not engaged in resync/recovery/reshape
2699 	 *  - old personality can be suspended
2700 	 *  - new personality will access other array.
2701 	 */
2702 
2703 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2704 		return -EBUSY;
2705 
2706 	if (!mddev->pers->quiesce) {
2707 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2708 		       mdname(mddev), mddev->pers->name);
2709 		return -EINVAL;
2710 	}
2711 
2712 	/* Now find the new personality */
2713 	if (len == 0 || len >= sizeof(level))
2714 		return -EINVAL;
2715 	strncpy(level, buf, len);
2716 	if (level[len-1] == '\n')
2717 		len--;
2718 	level[len] = 0;
2719 
2720 	request_module("md-%s", level);
2721 	spin_lock(&pers_lock);
2722 	pers = find_pers(LEVEL_NONE, level);
2723 	if (!pers || !try_module_get(pers->owner)) {
2724 		spin_unlock(&pers_lock);
2725 		printk(KERN_WARNING "md: personality %s not loaded\n", level);
2726 		return -EINVAL;
2727 	}
2728 	spin_unlock(&pers_lock);
2729 
2730 	if (pers == mddev->pers) {
2731 		/* Nothing to do! */
2732 		module_put(pers->owner);
2733 		return rv;
2734 	}
2735 	if (!pers->takeover) {
2736 		module_put(pers->owner);
2737 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2738 		       mdname(mddev), level);
2739 		return -EINVAL;
2740 	}
2741 
2742 	/* ->takeover must set new_* and/or delta_disks
2743 	 * if it succeeds, and may set them when it fails.
2744 	 */
2745 	priv = pers->takeover(mddev);
2746 	if (IS_ERR(priv)) {
2747 		mddev->new_level = mddev->level;
2748 		mddev->new_layout = mddev->layout;
2749 		mddev->new_chunk = mddev->chunk_size;
2750 		mddev->raid_disks -= mddev->delta_disks;
2751 		mddev->delta_disks = 0;
2752 		module_put(pers->owner);
2753 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
2754 		       mdname(mddev), level);
2755 		return PTR_ERR(priv);
2756 	}
2757 
2758 	/* Looks like we have a winner */
2759 	mddev_suspend(mddev);
2760 	mddev->pers->stop(mddev);
2761 	module_put(mddev->pers->owner);
2762 	mddev->pers = pers;
2763 	mddev->private = priv;
2764 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2765 	mddev->level = mddev->new_level;
2766 	mddev->layout = mddev->new_layout;
2767 	mddev->chunk_size = mddev->new_chunk;
2768 	mddev->delta_disks = 0;
2769 	pers->run(mddev);
2770 	mddev_resume(mddev);
2771 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2772 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2773 	md_wakeup_thread(mddev->thread);
2774 	return rv;
2775 }
2776 
2777 static struct md_sysfs_entry md_level =
2778 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2779 
2780 
2781 static ssize_t
2782 layout_show(mddev_t *mddev, char *page)
2783 {
2784 	/* just a number, not meaningful for all levels */
2785 	if (mddev->reshape_position != MaxSector &&
2786 	    mddev->layout != mddev->new_layout)
2787 		return sprintf(page, "%d (%d)\n",
2788 			       mddev->new_layout, mddev->layout);
2789 	return sprintf(page, "%d\n", mddev->layout);
2790 }
2791 
2792 static ssize_t
2793 layout_store(mddev_t *mddev, const char *buf, size_t len)
2794 {
2795 	char *e;
2796 	unsigned long n = simple_strtoul(buf, &e, 10);
2797 
2798 	if (!*buf || (*e && *e != '\n'))
2799 		return -EINVAL;
2800 
2801 	if (mddev->pers) {
2802 		int err;
2803 		if (mddev->pers->reconfig == NULL)
2804 			return -EBUSY;
2805 		err = mddev->pers->reconfig(mddev, n, -1);
2806 		if (err)
2807 			return err;
2808 	} else {
2809 		mddev->new_layout = n;
2810 		if (mddev->reshape_position == MaxSector)
2811 			mddev->layout = n;
2812 	}
2813 	return len;
2814 }
2815 static struct md_sysfs_entry md_layout =
2816 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2817 
2818 
2819 static ssize_t
2820 raid_disks_show(mddev_t *mddev, char *page)
2821 {
2822 	if (mddev->raid_disks == 0)
2823 		return 0;
2824 	if (mddev->reshape_position != MaxSector &&
2825 	    mddev->delta_disks != 0)
2826 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2827 			       mddev->raid_disks - mddev->delta_disks);
2828 	return sprintf(page, "%d\n", mddev->raid_disks);
2829 }
2830 
2831 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2832 
2833 static ssize_t
2834 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2835 {
2836 	char *e;
2837 	int rv = 0;
2838 	unsigned long n = simple_strtoul(buf, &e, 10);
2839 
2840 	if (!*buf || (*e && *e != '\n'))
2841 		return -EINVAL;
2842 
2843 	if (mddev->pers)
2844 		rv = update_raid_disks(mddev, n);
2845 	else if (mddev->reshape_position != MaxSector) {
2846 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2847 		mddev->delta_disks = n - olddisks;
2848 		mddev->raid_disks = n;
2849 	} else
2850 		mddev->raid_disks = n;
2851 	return rv ? rv : len;
2852 }
2853 static struct md_sysfs_entry md_raid_disks =
2854 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2855 
2856 static ssize_t
2857 chunk_size_show(mddev_t *mddev, char *page)
2858 {
2859 	if (mddev->reshape_position != MaxSector &&
2860 	    mddev->chunk_size != mddev->new_chunk)
2861 		return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2862 			       mddev->chunk_size);
2863 	return sprintf(page, "%d\n", mddev->chunk_size);
2864 }
2865 
2866 static ssize_t
2867 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2868 {
2869 	char *e;
2870 	unsigned long n = simple_strtoul(buf, &e, 10);
2871 
2872 	if (!*buf || (*e && *e != '\n'))
2873 		return -EINVAL;
2874 
2875 	if (mddev->pers) {
2876 		int err;
2877 		if (mddev->pers->reconfig == NULL)
2878 			return -EBUSY;
2879 		err = mddev->pers->reconfig(mddev, -1, n);
2880 		if (err)
2881 			return err;
2882 	} else {
2883 		mddev->new_chunk = n;
2884 		if (mddev->reshape_position == MaxSector)
2885 			mddev->chunk_size = n;
2886 	}
2887 	return len;
2888 }
2889 static struct md_sysfs_entry md_chunk_size =
2890 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2891 
2892 static ssize_t
2893 resync_start_show(mddev_t *mddev, char *page)
2894 {
2895 	if (mddev->recovery_cp == MaxSector)
2896 		return sprintf(page, "none\n");
2897 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2898 }
2899 
2900 static ssize_t
2901 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2902 {
2903 	char *e;
2904 	unsigned long long n = simple_strtoull(buf, &e, 10);
2905 
2906 	if (mddev->pers)
2907 		return -EBUSY;
2908 	if (!*buf || (*e && *e != '\n'))
2909 		return -EINVAL;
2910 
2911 	mddev->recovery_cp = n;
2912 	return len;
2913 }
2914 static struct md_sysfs_entry md_resync_start =
2915 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2916 
2917 /*
2918  * The array state can be:
2919  *
2920  * clear
2921  *     No devices, no size, no level
2922  *     Equivalent to STOP_ARRAY ioctl
2923  * inactive
2924  *     May have some settings, but array is not active
2925  *        all IO results in error
2926  *     When written, doesn't tear down array, but just stops it
2927  * suspended (not supported yet)
2928  *     All IO requests will block. The array can be reconfigured.
2929  *     Writing this, if accepted, will block until array is quiescent
2930  * readonly
2931  *     no resync can happen.  no superblocks get written.
2932  *     write requests fail
2933  * read-auto
2934  *     like readonly, but behaves like 'clean' on a write request.
2935  *
2936  * clean - no pending writes, but otherwise active.
2937  *     When written to inactive array, starts without resync
2938  *     If a write request arrives then
2939  *       if metadata is known, mark 'dirty' and switch to 'active'.
2940  *       if not known, block and switch to write-pending
2941  *     If written to an active array that has pending writes, then fails.
2942  * active
2943  *     fully active: IO and resync can be happening.
2944  *     When written to inactive array, starts with resync
2945  *
2946  * write-pending
2947  *     clean, but writes are blocked waiting for 'active' to be written.
2948  *
2949  * active-idle
2950  *     like active, but no writes have been seen for a while (100msec).
2951  *
2952  */
2953 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2954 		   write_pending, active_idle, bad_word};
2955 static char *array_states[] = {
2956 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2957 	"write-pending", "active-idle", NULL };
2958 
2959 static int match_word(const char *word, char **list)
2960 {
2961 	int n;
2962 	for (n=0; list[n]; n++)
2963 		if (cmd_match(word, list[n]))
2964 			break;
2965 	return n;
2966 }
2967 
2968 static ssize_t
2969 array_state_show(mddev_t *mddev, char *page)
2970 {
2971 	enum array_state st = inactive;
2972 
2973 	if (mddev->pers)
2974 		switch(mddev->ro) {
2975 		case 1:
2976 			st = readonly;
2977 			break;
2978 		case 2:
2979 			st = read_auto;
2980 			break;
2981 		case 0:
2982 			if (mddev->in_sync)
2983 				st = clean;
2984 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2985 				st = write_pending;
2986 			else if (mddev->safemode)
2987 				st = active_idle;
2988 			else
2989 				st = active;
2990 		}
2991 	else {
2992 		if (list_empty(&mddev->disks) &&
2993 		    mddev->raid_disks == 0 &&
2994 		    mddev->dev_sectors == 0)
2995 			st = clear;
2996 		else
2997 			st = inactive;
2998 	}
2999 	return sprintf(page, "%s\n", array_states[st]);
3000 }
3001 
3002 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3003 static int do_md_run(mddev_t * mddev);
3004 static int restart_array(mddev_t *mddev);
3005 
3006 static ssize_t
3007 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3008 {
3009 	int err = -EINVAL;
3010 	enum array_state st = match_word(buf, array_states);
3011 	switch(st) {
3012 	case bad_word:
3013 		break;
3014 	case clear:
3015 		/* stopping an active array */
3016 		if (atomic_read(&mddev->openers) > 0)
3017 			return -EBUSY;
3018 		err = do_md_stop(mddev, 0, 0);
3019 		break;
3020 	case inactive:
3021 		/* stopping an active array */
3022 		if (mddev->pers) {
3023 			if (atomic_read(&mddev->openers) > 0)
3024 				return -EBUSY;
3025 			err = do_md_stop(mddev, 2, 0);
3026 		} else
3027 			err = 0; /* already inactive */
3028 		break;
3029 	case suspended:
3030 		break; /* not supported yet */
3031 	case readonly:
3032 		if (mddev->pers)
3033 			err = do_md_stop(mddev, 1, 0);
3034 		else {
3035 			mddev->ro = 1;
3036 			set_disk_ro(mddev->gendisk, 1);
3037 			err = do_md_run(mddev);
3038 		}
3039 		break;
3040 	case read_auto:
3041 		if (mddev->pers) {
3042 			if (mddev->ro == 0)
3043 				err = do_md_stop(mddev, 1, 0);
3044 			else if (mddev->ro == 1)
3045 				err = restart_array(mddev);
3046 			if (err == 0) {
3047 				mddev->ro = 2;
3048 				set_disk_ro(mddev->gendisk, 0);
3049 			}
3050 		} else {
3051 			mddev->ro = 2;
3052 			err = do_md_run(mddev);
3053 		}
3054 		break;
3055 	case clean:
3056 		if (mddev->pers) {
3057 			restart_array(mddev);
3058 			spin_lock_irq(&mddev->write_lock);
3059 			if (atomic_read(&mddev->writes_pending) == 0) {
3060 				if (mddev->in_sync == 0) {
3061 					mddev->in_sync = 1;
3062 					if (mddev->safemode == 1)
3063 						mddev->safemode = 0;
3064 					if (mddev->persistent)
3065 						set_bit(MD_CHANGE_CLEAN,
3066 							&mddev->flags);
3067 				}
3068 				err = 0;
3069 			} else
3070 				err = -EBUSY;
3071 			spin_unlock_irq(&mddev->write_lock);
3072 		} else
3073 			err = -EINVAL;
3074 		break;
3075 	case active:
3076 		if (mddev->pers) {
3077 			restart_array(mddev);
3078 			if (mddev->external)
3079 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3080 			wake_up(&mddev->sb_wait);
3081 			err = 0;
3082 		} else {
3083 			mddev->ro = 0;
3084 			set_disk_ro(mddev->gendisk, 0);
3085 			err = do_md_run(mddev);
3086 		}
3087 		break;
3088 	case write_pending:
3089 	case active_idle:
3090 		/* these cannot be set */
3091 		break;
3092 	}
3093 	if (err)
3094 		return err;
3095 	else {
3096 		sysfs_notify_dirent(mddev->sysfs_state);
3097 		return len;
3098 	}
3099 }
3100 static struct md_sysfs_entry md_array_state =
3101 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3102 
3103 static ssize_t
3104 null_show(mddev_t *mddev, char *page)
3105 {
3106 	return -EINVAL;
3107 }
3108 
3109 static ssize_t
3110 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3111 {
3112 	/* buf must be %d:%d\n? giving major and minor numbers */
3113 	/* The new device is added to the array.
3114 	 * If the array has a persistent superblock, we read the
3115 	 * superblock to initialise info and check validity.
3116 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3117 	 * which mainly checks size.
3118 	 */
3119 	char *e;
3120 	int major = simple_strtoul(buf, &e, 10);
3121 	int minor;
3122 	dev_t dev;
3123 	mdk_rdev_t *rdev;
3124 	int err;
3125 
3126 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3127 		return -EINVAL;
3128 	minor = simple_strtoul(e+1, &e, 10);
3129 	if (*e && *e != '\n')
3130 		return -EINVAL;
3131 	dev = MKDEV(major, minor);
3132 	if (major != MAJOR(dev) ||
3133 	    minor != MINOR(dev))
3134 		return -EOVERFLOW;
3135 
3136 
3137 	if (mddev->persistent) {
3138 		rdev = md_import_device(dev, mddev->major_version,
3139 					mddev->minor_version);
3140 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3141 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3142 						       mdk_rdev_t, same_set);
3143 			err = super_types[mddev->major_version]
3144 				.load_super(rdev, rdev0, mddev->minor_version);
3145 			if (err < 0)
3146 				goto out;
3147 		}
3148 	} else if (mddev->external)
3149 		rdev = md_import_device(dev, -2, -1);
3150 	else
3151 		rdev = md_import_device(dev, -1, -1);
3152 
3153 	if (IS_ERR(rdev))
3154 		return PTR_ERR(rdev);
3155 	err = bind_rdev_to_array(rdev, mddev);
3156  out:
3157 	if (err)
3158 		export_rdev(rdev);
3159 	return err ? err : len;
3160 }
3161 
3162 static struct md_sysfs_entry md_new_device =
3163 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3164 
3165 static ssize_t
3166 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3167 {
3168 	char *end;
3169 	unsigned long chunk, end_chunk;
3170 
3171 	if (!mddev->bitmap)
3172 		goto out;
3173 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3174 	while (*buf) {
3175 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3176 		if (buf == end) break;
3177 		if (*end == '-') { /* range */
3178 			buf = end + 1;
3179 			end_chunk = simple_strtoul(buf, &end, 0);
3180 			if (buf == end) break;
3181 		}
3182 		if (*end && !isspace(*end)) break;
3183 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3184 		buf = end;
3185 		while (isspace(*buf)) buf++;
3186 	}
3187 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3188 out:
3189 	return len;
3190 }
3191 
3192 static struct md_sysfs_entry md_bitmap =
3193 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3194 
3195 static ssize_t
3196 size_show(mddev_t *mddev, char *page)
3197 {
3198 	return sprintf(page, "%llu\n",
3199 		(unsigned long long)mddev->dev_sectors / 2);
3200 }
3201 
3202 static int update_size(mddev_t *mddev, sector_t num_sectors);
3203 
3204 static ssize_t
3205 size_store(mddev_t *mddev, const char *buf, size_t len)
3206 {
3207 	/* If array is inactive, we can reduce the component size, but
3208 	 * not increase it (except from 0).
3209 	 * If array is active, we can try an on-line resize
3210 	 */
3211 	sector_t sectors;
3212 	int err = strict_blocks_to_sectors(buf, &sectors);
3213 
3214 	if (err < 0)
3215 		return err;
3216 	if (mddev->pers) {
3217 		err = update_size(mddev, sectors);
3218 		md_update_sb(mddev, 1);
3219 	} else {
3220 		if (mddev->dev_sectors == 0 ||
3221 		    mddev->dev_sectors > sectors)
3222 			mddev->dev_sectors = sectors;
3223 		else
3224 			err = -ENOSPC;
3225 	}
3226 	return err ? err : len;
3227 }
3228 
3229 static struct md_sysfs_entry md_size =
3230 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3231 
3232 
3233 /* Metdata version.
3234  * This is one of
3235  *   'none' for arrays with no metadata (good luck...)
3236  *   'external' for arrays with externally managed metadata,
3237  * or N.M for internally known formats
3238  */
3239 static ssize_t
3240 metadata_show(mddev_t *mddev, char *page)
3241 {
3242 	if (mddev->persistent)
3243 		return sprintf(page, "%d.%d\n",
3244 			       mddev->major_version, mddev->minor_version);
3245 	else if (mddev->external)
3246 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3247 	else
3248 		return sprintf(page, "none\n");
3249 }
3250 
3251 static ssize_t
3252 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3253 {
3254 	int major, minor;
3255 	char *e;
3256 	/* Changing the details of 'external' metadata is
3257 	 * always permitted.  Otherwise there must be
3258 	 * no devices attached to the array.
3259 	 */
3260 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3261 		;
3262 	else if (!list_empty(&mddev->disks))
3263 		return -EBUSY;
3264 
3265 	if (cmd_match(buf, "none")) {
3266 		mddev->persistent = 0;
3267 		mddev->external = 0;
3268 		mddev->major_version = 0;
3269 		mddev->minor_version = 90;
3270 		return len;
3271 	}
3272 	if (strncmp(buf, "external:", 9) == 0) {
3273 		size_t namelen = len-9;
3274 		if (namelen >= sizeof(mddev->metadata_type))
3275 			namelen = sizeof(mddev->metadata_type)-1;
3276 		strncpy(mddev->metadata_type, buf+9, namelen);
3277 		mddev->metadata_type[namelen] = 0;
3278 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3279 			mddev->metadata_type[--namelen] = 0;
3280 		mddev->persistent = 0;
3281 		mddev->external = 1;
3282 		mddev->major_version = 0;
3283 		mddev->minor_version = 90;
3284 		return len;
3285 	}
3286 	major = simple_strtoul(buf, &e, 10);
3287 	if (e==buf || *e != '.')
3288 		return -EINVAL;
3289 	buf = e+1;
3290 	minor = simple_strtoul(buf, &e, 10);
3291 	if (e==buf || (*e && *e != '\n') )
3292 		return -EINVAL;
3293 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3294 		return -ENOENT;
3295 	mddev->major_version = major;
3296 	mddev->minor_version = minor;
3297 	mddev->persistent = 1;
3298 	mddev->external = 0;
3299 	return len;
3300 }
3301 
3302 static struct md_sysfs_entry md_metadata =
3303 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3304 
3305 static ssize_t
3306 action_show(mddev_t *mddev, char *page)
3307 {
3308 	char *type = "idle";
3309 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3310 		type = "frozen";
3311 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3312 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3313 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3314 			type = "reshape";
3315 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3316 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3317 				type = "resync";
3318 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3319 				type = "check";
3320 			else
3321 				type = "repair";
3322 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3323 			type = "recover";
3324 	}
3325 	return sprintf(page, "%s\n", type);
3326 }
3327 
3328 static ssize_t
3329 action_store(mddev_t *mddev, const char *page, size_t len)
3330 {
3331 	if (!mddev->pers || !mddev->pers->sync_request)
3332 		return -EINVAL;
3333 
3334 	if (cmd_match(page, "frozen"))
3335 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3336 	else
3337 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3338 
3339 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3340 		if (mddev->sync_thread) {
3341 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3342 			md_unregister_thread(mddev->sync_thread);
3343 			mddev->sync_thread = NULL;
3344 			mddev->recovery = 0;
3345 		}
3346 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3347 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3348 		return -EBUSY;
3349 	else if (cmd_match(page, "resync"))
3350 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3351 	else if (cmd_match(page, "recover")) {
3352 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3353 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3354 	} else if (cmd_match(page, "reshape")) {
3355 		int err;
3356 		if (mddev->pers->start_reshape == NULL)
3357 			return -EINVAL;
3358 		err = mddev->pers->start_reshape(mddev);
3359 		if (err)
3360 			return err;
3361 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3362 	} else {
3363 		if (cmd_match(page, "check"))
3364 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3365 		else if (!cmd_match(page, "repair"))
3366 			return -EINVAL;
3367 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3368 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3369 	}
3370 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3371 	md_wakeup_thread(mddev->thread);
3372 	sysfs_notify_dirent(mddev->sysfs_action);
3373 	return len;
3374 }
3375 
3376 static ssize_t
3377 mismatch_cnt_show(mddev_t *mddev, char *page)
3378 {
3379 	return sprintf(page, "%llu\n",
3380 		       (unsigned long long) mddev->resync_mismatches);
3381 }
3382 
3383 static struct md_sysfs_entry md_scan_mode =
3384 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3385 
3386 
3387 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3388 
3389 static ssize_t
3390 sync_min_show(mddev_t *mddev, char *page)
3391 {
3392 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3393 		       mddev->sync_speed_min ? "local": "system");
3394 }
3395 
3396 static ssize_t
3397 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3398 {
3399 	int min;
3400 	char *e;
3401 	if (strncmp(buf, "system", 6)==0) {
3402 		mddev->sync_speed_min = 0;
3403 		return len;
3404 	}
3405 	min = simple_strtoul(buf, &e, 10);
3406 	if (buf == e || (*e && *e != '\n') || min <= 0)
3407 		return -EINVAL;
3408 	mddev->sync_speed_min = min;
3409 	return len;
3410 }
3411 
3412 static struct md_sysfs_entry md_sync_min =
3413 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3414 
3415 static ssize_t
3416 sync_max_show(mddev_t *mddev, char *page)
3417 {
3418 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3419 		       mddev->sync_speed_max ? "local": "system");
3420 }
3421 
3422 static ssize_t
3423 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3424 {
3425 	int max;
3426 	char *e;
3427 	if (strncmp(buf, "system", 6)==0) {
3428 		mddev->sync_speed_max = 0;
3429 		return len;
3430 	}
3431 	max = simple_strtoul(buf, &e, 10);
3432 	if (buf == e || (*e && *e != '\n') || max <= 0)
3433 		return -EINVAL;
3434 	mddev->sync_speed_max = max;
3435 	return len;
3436 }
3437 
3438 static struct md_sysfs_entry md_sync_max =
3439 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3440 
3441 static ssize_t
3442 degraded_show(mddev_t *mddev, char *page)
3443 {
3444 	return sprintf(page, "%d\n", mddev->degraded);
3445 }
3446 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3447 
3448 static ssize_t
3449 sync_force_parallel_show(mddev_t *mddev, char *page)
3450 {
3451 	return sprintf(page, "%d\n", mddev->parallel_resync);
3452 }
3453 
3454 static ssize_t
3455 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3456 {
3457 	long n;
3458 
3459 	if (strict_strtol(buf, 10, &n))
3460 		return -EINVAL;
3461 
3462 	if (n != 0 && n != 1)
3463 		return -EINVAL;
3464 
3465 	mddev->parallel_resync = n;
3466 
3467 	if (mddev->sync_thread)
3468 		wake_up(&resync_wait);
3469 
3470 	return len;
3471 }
3472 
3473 /* force parallel resync, even with shared block devices */
3474 static struct md_sysfs_entry md_sync_force_parallel =
3475 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3476        sync_force_parallel_show, sync_force_parallel_store);
3477 
3478 static ssize_t
3479 sync_speed_show(mddev_t *mddev, char *page)
3480 {
3481 	unsigned long resync, dt, db;
3482 	if (mddev->curr_resync == 0)
3483 		return sprintf(page, "none\n");
3484 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3485 	dt = (jiffies - mddev->resync_mark) / HZ;
3486 	if (!dt) dt++;
3487 	db = resync - mddev->resync_mark_cnt;
3488 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3489 }
3490 
3491 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3492 
3493 static ssize_t
3494 sync_completed_show(mddev_t *mddev, char *page)
3495 {
3496 	unsigned long max_sectors, resync;
3497 
3498 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3499 		return sprintf(page, "none\n");
3500 
3501 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3502 		max_sectors = mddev->resync_max_sectors;
3503 	else
3504 		max_sectors = mddev->dev_sectors;
3505 
3506 	resync = mddev->curr_resync_completed;
3507 	return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3508 }
3509 
3510 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3511 
3512 static ssize_t
3513 min_sync_show(mddev_t *mddev, char *page)
3514 {
3515 	return sprintf(page, "%llu\n",
3516 		       (unsigned long long)mddev->resync_min);
3517 }
3518 static ssize_t
3519 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3520 {
3521 	unsigned long long min;
3522 	if (strict_strtoull(buf, 10, &min))
3523 		return -EINVAL;
3524 	if (min > mddev->resync_max)
3525 		return -EINVAL;
3526 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3527 		return -EBUSY;
3528 
3529 	/* Must be a multiple of chunk_size */
3530 	if (mddev->chunk_size) {
3531 		if (min & (sector_t)((mddev->chunk_size>>9)-1))
3532 			return -EINVAL;
3533 	}
3534 	mddev->resync_min = min;
3535 
3536 	return len;
3537 }
3538 
3539 static struct md_sysfs_entry md_min_sync =
3540 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3541 
3542 static ssize_t
3543 max_sync_show(mddev_t *mddev, char *page)
3544 {
3545 	if (mddev->resync_max == MaxSector)
3546 		return sprintf(page, "max\n");
3547 	else
3548 		return sprintf(page, "%llu\n",
3549 			       (unsigned long long)mddev->resync_max);
3550 }
3551 static ssize_t
3552 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3553 {
3554 	if (strncmp(buf, "max", 3) == 0)
3555 		mddev->resync_max = MaxSector;
3556 	else {
3557 		unsigned long long max;
3558 		if (strict_strtoull(buf, 10, &max))
3559 			return -EINVAL;
3560 		if (max < mddev->resync_min)
3561 			return -EINVAL;
3562 		if (max < mddev->resync_max &&
3563 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3564 			return -EBUSY;
3565 
3566 		/* Must be a multiple of chunk_size */
3567 		if (mddev->chunk_size) {
3568 			if (max & (sector_t)((mddev->chunk_size>>9)-1))
3569 				return -EINVAL;
3570 		}
3571 		mddev->resync_max = max;
3572 	}
3573 	wake_up(&mddev->recovery_wait);
3574 	return len;
3575 }
3576 
3577 static struct md_sysfs_entry md_max_sync =
3578 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3579 
3580 static ssize_t
3581 suspend_lo_show(mddev_t *mddev, char *page)
3582 {
3583 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3584 }
3585 
3586 static ssize_t
3587 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3588 {
3589 	char *e;
3590 	unsigned long long new = simple_strtoull(buf, &e, 10);
3591 
3592 	if (mddev->pers->quiesce == NULL)
3593 		return -EINVAL;
3594 	if (buf == e || (*e && *e != '\n'))
3595 		return -EINVAL;
3596 	if (new >= mddev->suspend_hi ||
3597 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3598 		mddev->suspend_lo = new;
3599 		mddev->pers->quiesce(mddev, 2);
3600 		return len;
3601 	} else
3602 		return -EINVAL;
3603 }
3604 static struct md_sysfs_entry md_suspend_lo =
3605 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3606 
3607 
3608 static ssize_t
3609 suspend_hi_show(mddev_t *mddev, char *page)
3610 {
3611 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3612 }
3613 
3614 static ssize_t
3615 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3616 {
3617 	char *e;
3618 	unsigned long long new = simple_strtoull(buf, &e, 10);
3619 
3620 	if (mddev->pers->quiesce == NULL)
3621 		return -EINVAL;
3622 	if (buf == e || (*e && *e != '\n'))
3623 		return -EINVAL;
3624 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3625 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3626 		mddev->suspend_hi = new;
3627 		mddev->pers->quiesce(mddev, 1);
3628 		mddev->pers->quiesce(mddev, 0);
3629 		return len;
3630 	} else
3631 		return -EINVAL;
3632 }
3633 static struct md_sysfs_entry md_suspend_hi =
3634 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3635 
3636 static ssize_t
3637 reshape_position_show(mddev_t *mddev, char *page)
3638 {
3639 	if (mddev->reshape_position != MaxSector)
3640 		return sprintf(page, "%llu\n",
3641 			       (unsigned long long)mddev->reshape_position);
3642 	strcpy(page, "none\n");
3643 	return 5;
3644 }
3645 
3646 static ssize_t
3647 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3648 {
3649 	char *e;
3650 	unsigned long long new = simple_strtoull(buf, &e, 10);
3651 	if (mddev->pers)
3652 		return -EBUSY;
3653 	if (buf == e || (*e && *e != '\n'))
3654 		return -EINVAL;
3655 	mddev->reshape_position = new;
3656 	mddev->delta_disks = 0;
3657 	mddev->new_level = mddev->level;
3658 	mddev->new_layout = mddev->layout;
3659 	mddev->new_chunk = mddev->chunk_size;
3660 	return len;
3661 }
3662 
3663 static struct md_sysfs_entry md_reshape_position =
3664 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3665        reshape_position_store);
3666 
3667 static ssize_t
3668 array_size_show(mddev_t *mddev, char *page)
3669 {
3670 	if (mddev->external_size)
3671 		return sprintf(page, "%llu\n",
3672 			       (unsigned long long)mddev->array_sectors/2);
3673 	else
3674 		return sprintf(page, "default\n");
3675 }
3676 
3677 static ssize_t
3678 array_size_store(mddev_t *mddev, const char *buf, size_t len)
3679 {
3680 	sector_t sectors;
3681 
3682 	if (strncmp(buf, "default", 7) == 0) {
3683 		if (mddev->pers)
3684 			sectors = mddev->pers->size(mddev, 0, 0);
3685 		else
3686 			sectors = mddev->array_sectors;
3687 
3688 		mddev->external_size = 0;
3689 	} else {
3690 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
3691 			return -EINVAL;
3692 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
3693 			return -E2BIG;
3694 
3695 		mddev->external_size = 1;
3696 	}
3697 
3698 	mddev->array_sectors = sectors;
3699 	set_capacity(mddev->gendisk, mddev->array_sectors);
3700 	if (mddev->pers) {
3701 		struct block_device *bdev = bdget_disk(mddev->gendisk, 0);
3702 
3703 		if (bdev) {
3704 			mutex_lock(&bdev->bd_inode->i_mutex);
3705 			i_size_write(bdev->bd_inode,
3706 				     (loff_t)mddev->array_sectors << 9);
3707 			mutex_unlock(&bdev->bd_inode->i_mutex);
3708 			bdput(bdev);
3709 		}
3710 	}
3711 
3712 	return len;
3713 }
3714 
3715 static struct md_sysfs_entry md_array_size =
3716 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
3717        array_size_store);
3718 
3719 static struct attribute *md_default_attrs[] = {
3720 	&md_level.attr,
3721 	&md_layout.attr,
3722 	&md_raid_disks.attr,
3723 	&md_chunk_size.attr,
3724 	&md_size.attr,
3725 	&md_resync_start.attr,
3726 	&md_metadata.attr,
3727 	&md_new_device.attr,
3728 	&md_safe_delay.attr,
3729 	&md_array_state.attr,
3730 	&md_reshape_position.attr,
3731 	&md_array_size.attr,
3732 	NULL,
3733 };
3734 
3735 static struct attribute *md_redundancy_attrs[] = {
3736 	&md_scan_mode.attr,
3737 	&md_mismatches.attr,
3738 	&md_sync_min.attr,
3739 	&md_sync_max.attr,
3740 	&md_sync_speed.attr,
3741 	&md_sync_force_parallel.attr,
3742 	&md_sync_completed.attr,
3743 	&md_min_sync.attr,
3744 	&md_max_sync.attr,
3745 	&md_suspend_lo.attr,
3746 	&md_suspend_hi.attr,
3747 	&md_bitmap.attr,
3748 	&md_degraded.attr,
3749 	NULL,
3750 };
3751 static struct attribute_group md_redundancy_group = {
3752 	.name = NULL,
3753 	.attrs = md_redundancy_attrs,
3754 };
3755 
3756 
3757 static ssize_t
3758 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3759 {
3760 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3761 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3762 	ssize_t rv;
3763 
3764 	if (!entry->show)
3765 		return -EIO;
3766 	rv = mddev_lock(mddev);
3767 	if (!rv) {
3768 		rv = entry->show(mddev, page);
3769 		mddev_unlock(mddev);
3770 	}
3771 	return rv;
3772 }
3773 
3774 static ssize_t
3775 md_attr_store(struct kobject *kobj, struct attribute *attr,
3776 	      const char *page, size_t length)
3777 {
3778 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3779 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3780 	ssize_t rv;
3781 
3782 	if (!entry->store)
3783 		return -EIO;
3784 	if (!capable(CAP_SYS_ADMIN))
3785 		return -EACCES;
3786 	rv = mddev_lock(mddev);
3787 	if (mddev->hold_active == UNTIL_IOCTL)
3788 		mddev->hold_active = 0;
3789 	if (!rv) {
3790 		rv = entry->store(mddev, page, length);
3791 		mddev_unlock(mddev);
3792 	}
3793 	return rv;
3794 }
3795 
3796 static void md_free(struct kobject *ko)
3797 {
3798 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3799 
3800 	if (mddev->sysfs_state)
3801 		sysfs_put(mddev->sysfs_state);
3802 
3803 	if (mddev->gendisk) {
3804 		del_gendisk(mddev->gendisk);
3805 		put_disk(mddev->gendisk);
3806 	}
3807 	if (mddev->queue)
3808 		blk_cleanup_queue(mddev->queue);
3809 
3810 	kfree(mddev);
3811 }
3812 
3813 static struct sysfs_ops md_sysfs_ops = {
3814 	.show	= md_attr_show,
3815 	.store	= md_attr_store,
3816 };
3817 static struct kobj_type md_ktype = {
3818 	.release	= md_free,
3819 	.sysfs_ops	= &md_sysfs_ops,
3820 	.default_attrs	= md_default_attrs,
3821 };
3822 
3823 int mdp_major = 0;
3824 
3825 static void mddev_delayed_delete(struct work_struct *ws)
3826 {
3827 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
3828 
3829 	if (mddev->private == &md_redundancy_group) {
3830 		sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3831 		if (mddev->sysfs_action)
3832 			sysfs_put(mddev->sysfs_action);
3833 		mddev->sysfs_action = NULL;
3834 		mddev->private = NULL;
3835 	}
3836 	kobject_del(&mddev->kobj);
3837 	kobject_put(&mddev->kobj);
3838 }
3839 
3840 static int md_alloc(dev_t dev, char *name)
3841 {
3842 	static DEFINE_MUTEX(disks_mutex);
3843 	mddev_t *mddev = mddev_find(dev);
3844 	struct gendisk *disk;
3845 	int partitioned;
3846 	int shift;
3847 	int unit;
3848 	int error;
3849 
3850 	if (!mddev)
3851 		return -ENODEV;
3852 
3853 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3854 	shift = partitioned ? MdpMinorShift : 0;
3855 	unit = MINOR(mddev->unit) >> shift;
3856 
3857 	/* wait for any previous instance if this device
3858 	 * to be completed removed (mddev_delayed_delete).
3859 	 */
3860 	flush_scheduled_work();
3861 
3862 	mutex_lock(&disks_mutex);
3863 	if (mddev->gendisk) {
3864 		mutex_unlock(&disks_mutex);
3865 		mddev_put(mddev);
3866 		return -EEXIST;
3867 	}
3868 
3869 	if (name) {
3870 		/* Need to ensure that 'name' is not a duplicate.
3871 		 */
3872 		mddev_t *mddev2;
3873 		spin_lock(&all_mddevs_lock);
3874 
3875 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3876 			if (mddev2->gendisk &&
3877 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
3878 				spin_unlock(&all_mddevs_lock);
3879 				return -EEXIST;
3880 			}
3881 		spin_unlock(&all_mddevs_lock);
3882 	}
3883 
3884 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
3885 	if (!mddev->queue) {
3886 		mutex_unlock(&disks_mutex);
3887 		mddev_put(mddev);
3888 		return -ENOMEM;
3889 	}
3890 	mddev->queue->queuedata = mddev;
3891 
3892 	/* Can be unlocked because the queue is new: no concurrency */
3893 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3894 
3895 	blk_queue_make_request(mddev->queue, md_make_request);
3896 
3897 	disk = alloc_disk(1 << shift);
3898 	if (!disk) {
3899 		mutex_unlock(&disks_mutex);
3900 		blk_cleanup_queue(mddev->queue);
3901 		mddev->queue = NULL;
3902 		mddev_put(mddev);
3903 		return -ENOMEM;
3904 	}
3905 	disk->major = MAJOR(mddev->unit);
3906 	disk->first_minor = unit << shift;
3907 	if (name)
3908 		strcpy(disk->disk_name, name);
3909 	else if (partitioned)
3910 		sprintf(disk->disk_name, "md_d%d", unit);
3911 	else
3912 		sprintf(disk->disk_name, "md%d", unit);
3913 	disk->fops = &md_fops;
3914 	disk->private_data = mddev;
3915 	disk->queue = mddev->queue;
3916 	/* Allow extended partitions.  This makes the
3917 	 * 'mdp' device redundant, but we can't really
3918 	 * remove it now.
3919 	 */
3920 	disk->flags |= GENHD_FL_EXT_DEVT;
3921 	add_disk(disk);
3922 	mddev->gendisk = disk;
3923 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3924 				     &disk_to_dev(disk)->kobj, "%s", "md");
3925 	mutex_unlock(&disks_mutex);
3926 	if (error)
3927 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3928 		       disk->disk_name);
3929 	else {
3930 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
3931 		mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3932 	}
3933 	mddev_put(mddev);
3934 	return 0;
3935 }
3936 
3937 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3938 {
3939 	md_alloc(dev, NULL);
3940 	return NULL;
3941 }
3942 
3943 static int add_named_array(const char *val, struct kernel_param *kp)
3944 {
3945 	/* val must be "md_*" where * is not all digits.
3946 	 * We allocate an array with a large free minor number, and
3947 	 * set the name to val.  val must not already be an active name.
3948 	 */
3949 	int len = strlen(val);
3950 	char buf[DISK_NAME_LEN];
3951 
3952 	while (len && val[len-1] == '\n')
3953 		len--;
3954 	if (len >= DISK_NAME_LEN)
3955 		return -E2BIG;
3956 	strlcpy(buf, val, len+1);
3957 	if (strncmp(buf, "md_", 3) != 0)
3958 		return -EINVAL;
3959 	return md_alloc(0, buf);
3960 }
3961 
3962 static void md_safemode_timeout(unsigned long data)
3963 {
3964 	mddev_t *mddev = (mddev_t *) data;
3965 
3966 	if (!atomic_read(&mddev->writes_pending)) {
3967 		mddev->safemode = 1;
3968 		if (mddev->external)
3969 			sysfs_notify_dirent(mddev->sysfs_state);
3970 	}
3971 	md_wakeup_thread(mddev->thread);
3972 }
3973 
3974 static int start_dirty_degraded;
3975 
3976 static int do_md_run(mddev_t * mddev)
3977 {
3978 	int err;
3979 	int chunk_size;
3980 	mdk_rdev_t *rdev;
3981 	struct gendisk *disk;
3982 	struct mdk_personality *pers;
3983 	char b[BDEVNAME_SIZE];
3984 
3985 	if (list_empty(&mddev->disks))
3986 		/* cannot run an array with no devices.. */
3987 		return -EINVAL;
3988 
3989 	if (mddev->pers)
3990 		return -EBUSY;
3991 
3992 	/*
3993 	 * Analyze all RAID superblock(s)
3994 	 */
3995 	if (!mddev->raid_disks) {
3996 		if (!mddev->persistent)
3997 			return -EINVAL;
3998 		analyze_sbs(mddev);
3999 	}
4000 
4001 	chunk_size = mddev->chunk_size;
4002 
4003 	if (chunk_size) {
4004 		if (chunk_size > MAX_CHUNK_SIZE) {
4005 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
4006 				chunk_size, MAX_CHUNK_SIZE);
4007 			return -EINVAL;
4008 		}
4009 		/*
4010 		 * chunk-size has to be a power of 2
4011 		 */
4012 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
4013 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
4014 			return -EINVAL;
4015 		}
4016 
4017 		/* devices must have minimum size of one chunk */
4018 		list_for_each_entry(rdev, &mddev->disks, same_set) {
4019 			if (test_bit(Faulty, &rdev->flags))
4020 				continue;
4021 			if (rdev->sectors < chunk_size / 512) {
4022 				printk(KERN_WARNING
4023 					"md: Dev %s smaller than chunk_size:"
4024 					" %llu < %d\n",
4025 					bdevname(rdev->bdev,b),
4026 					(unsigned long long)rdev->sectors,
4027 					chunk_size / 512);
4028 				return -EINVAL;
4029 			}
4030 		}
4031 	}
4032 
4033 	if (mddev->level != LEVEL_NONE)
4034 		request_module("md-level-%d", mddev->level);
4035 	else if (mddev->clevel[0])
4036 		request_module("md-%s", mddev->clevel);
4037 
4038 	/*
4039 	 * Drop all container device buffers, from now on
4040 	 * the only valid external interface is through the md
4041 	 * device.
4042 	 */
4043 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4044 		if (test_bit(Faulty, &rdev->flags))
4045 			continue;
4046 		sync_blockdev(rdev->bdev);
4047 		invalidate_bdev(rdev->bdev);
4048 
4049 		/* perform some consistency tests on the device.
4050 		 * We don't want the data to overlap the metadata,
4051 		 * Internal Bitmap issues have been handled elsewhere.
4052 		 */
4053 		if (rdev->data_offset < rdev->sb_start) {
4054 			if (mddev->dev_sectors &&
4055 			    rdev->data_offset + mddev->dev_sectors
4056 			    > rdev->sb_start) {
4057 				printk("md: %s: data overlaps metadata\n",
4058 				       mdname(mddev));
4059 				return -EINVAL;
4060 			}
4061 		} else {
4062 			if (rdev->sb_start + rdev->sb_size/512
4063 			    > rdev->data_offset) {
4064 				printk("md: %s: metadata overlaps data\n",
4065 				       mdname(mddev));
4066 				return -EINVAL;
4067 			}
4068 		}
4069 		sysfs_notify_dirent(rdev->sysfs_state);
4070 	}
4071 
4072 	md_probe(mddev->unit, NULL, NULL);
4073 	disk = mddev->gendisk;
4074 	if (!disk)
4075 		return -ENOMEM;
4076 
4077 	spin_lock(&pers_lock);
4078 	pers = find_pers(mddev->level, mddev->clevel);
4079 	if (!pers || !try_module_get(pers->owner)) {
4080 		spin_unlock(&pers_lock);
4081 		if (mddev->level != LEVEL_NONE)
4082 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4083 			       mddev->level);
4084 		else
4085 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4086 			       mddev->clevel);
4087 		return -EINVAL;
4088 	}
4089 	mddev->pers = pers;
4090 	spin_unlock(&pers_lock);
4091 	if (mddev->level != pers->level) {
4092 		mddev->level = pers->level;
4093 		mddev->new_level = pers->level;
4094 	}
4095 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4096 
4097 	if (pers->level >= 4 && pers->level <= 6)
4098 		/* Cannot support integrity (yet) */
4099 		blk_integrity_unregister(mddev->gendisk);
4100 
4101 	if (mddev->reshape_position != MaxSector &&
4102 	    pers->start_reshape == NULL) {
4103 		/* This personality cannot handle reshaping... */
4104 		mddev->pers = NULL;
4105 		module_put(pers->owner);
4106 		return -EINVAL;
4107 	}
4108 
4109 	if (pers->sync_request) {
4110 		/* Warn if this is a potentially silly
4111 		 * configuration.
4112 		 */
4113 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4114 		mdk_rdev_t *rdev2;
4115 		int warned = 0;
4116 
4117 		list_for_each_entry(rdev, &mddev->disks, same_set)
4118 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4119 				if (rdev < rdev2 &&
4120 				    rdev->bdev->bd_contains ==
4121 				    rdev2->bdev->bd_contains) {
4122 					printk(KERN_WARNING
4123 					       "%s: WARNING: %s appears to be"
4124 					       " on the same physical disk as"
4125 					       " %s.\n",
4126 					       mdname(mddev),
4127 					       bdevname(rdev->bdev,b),
4128 					       bdevname(rdev2->bdev,b2));
4129 					warned = 1;
4130 				}
4131 			}
4132 
4133 		if (warned)
4134 			printk(KERN_WARNING
4135 			       "True protection against single-disk"
4136 			       " failure might be compromised.\n");
4137 	}
4138 
4139 	mddev->recovery = 0;
4140 	/* may be over-ridden by personality */
4141 	mddev->resync_max_sectors = mddev->dev_sectors;
4142 
4143 	mddev->barriers_work = 1;
4144 	mddev->ok_start_degraded = start_dirty_degraded;
4145 
4146 	if (start_readonly)
4147 		mddev->ro = 2; /* read-only, but switch on first write */
4148 
4149 	err = mddev->pers->run(mddev);
4150 	if (err)
4151 		printk(KERN_ERR "md: pers->run() failed ...\n");
4152 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4153 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4154 			  " but 'external_size' not in effect?\n", __func__);
4155 		printk(KERN_ERR
4156 		       "md: invalid array_size %llu > default size %llu\n",
4157 		       (unsigned long long)mddev->array_sectors / 2,
4158 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4159 		err = -EINVAL;
4160 		mddev->pers->stop(mddev);
4161 	}
4162 	if (err == 0 && mddev->pers->sync_request) {
4163 		err = bitmap_create(mddev);
4164 		if (err) {
4165 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4166 			       mdname(mddev), err);
4167 			mddev->pers->stop(mddev);
4168 		}
4169 	}
4170 	if (err) {
4171 		module_put(mddev->pers->owner);
4172 		mddev->pers = NULL;
4173 		bitmap_destroy(mddev);
4174 		return err;
4175 	}
4176 	if (mddev->pers->sync_request) {
4177 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4178 			printk(KERN_WARNING
4179 			       "md: cannot register extra attributes for %s\n",
4180 			       mdname(mddev));
4181 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4182 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4183 		mddev->ro = 0;
4184 
4185  	atomic_set(&mddev->writes_pending,0);
4186 	mddev->safemode = 0;
4187 	mddev->safemode_timer.function = md_safemode_timeout;
4188 	mddev->safemode_timer.data = (unsigned long) mddev;
4189 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4190 	mddev->in_sync = 1;
4191 
4192 	list_for_each_entry(rdev, &mddev->disks, same_set)
4193 		if (rdev->raid_disk >= 0) {
4194 			char nm[20];
4195 			sprintf(nm, "rd%d", rdev->raid_disk);
4196 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4197 				printk("md: cannot register %s for %s\n",
4198 				       nm, mdname(mddev));
4199 		}
4200 
4201 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4202 
4203 	if (mddev->flags)
4204 		md_update_sb(mddev, 0);
4205 
4206 	set_capacity(disk, mddev->array_sectors);
4207 
4208 	/* If there is a partially-recovered drive we need to
4209 	 * start recovery here.  If we leave it to md_check_recovery,
4210 	 * it will remove the drives and not do the right thing
4211 	 */
4212 	if (mddev->degraded && !mddev->sync_thread) {
4213 		int spares = 0;
4214 		list_for_each_entry(rdev, &mddev->disks, same_set)
4215 			if (rdev->raid_disk >= 0 &&
4216 			    !test_bit(In_sync, &rdev->flags) &&
4217 			    !test_bit(Faulty, &rdev->flags))
4218 				/* complete an interrupted recovery */
4219 				spares++;
4220 		if (spares && mddev->pers->sync_request) {
4221 			mddev->recovery = 0;
4222 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4223 			mddev->sync_thread = md_register_thread(md_do_sync,
4224 								mddev,
4225 								"%s_resync");
4226 			if (!mddev->sync_thread) {
4227 				printk(KERN_ERR "%s: could not start resync"
4228 				       " thread...\n",
4229 				       mdname(mddev));
4230 				/* leave the spares where they are, it shouldn't hurt */
4231 				mddev->recovery = 0;
4232 			}
4233 		}
4234 	}
4235 	md_wakeup_thread(mddev->thread);
4236 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4237 
4238 	mddev->changed = 1;
4239 	md_new_event(mddev);
4240 	sysfs_notify_dirent(mddev->sysfs_state);
4241 	if (mddev->sysfs_action)
4242 		sysfs_notify_dirent(mddev->sysfs_action);
4243 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4244 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4245 	return 0;
4246 }
4247 
4248 static int restart_array(mddev_t *mddev)
4249 {
4250 	struct gendisk *disk = mddev->gendisk;
4251 
4252 	/* Complain if it has no devices */
4253 	if (list_empty(&mddev->disks))
4254 		return -ENXIO;
4255 	if (!mddev->pers)
4256 		return -EINVAL;
4257 	if (!mddev->ro)
4258 		return -EBUSY;
4259 	mddev->safemode = 0;
4260 	mddev->ro = 0;
4261 	set_disk_ro(disk, 0);
4262 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4263 		mdname(mddev));
4264 	/* Kick recovery or resync if necessary */
4265 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4266 	md_wakeup_thread(mddev->thread);
4267 	md_wakeup_thread(mddev->sync_thread);
4268 	sysfs_notify_dirent(mddev->sysfs_state);
4269 	return 0;
4270 }
4271 
4272 /* similar to deny_write_access, but accounts for our holding a reference
4273  * to the file ourselves */
4274 static int deny_bitmap_write_access(struct file * file)
4275 {
4276 	struct inode *inode = file->f_mapping->host;
4277 
4278 	spin_lock(&inode->i_lock);
4279 	if (atomic_read(&inode->i_writecount) > 1) {
4280 		spin_unlock(&inode->i_lock);
4281 		return -ETXTBSY;
4282 	}
4283 	atomic_set(&inode->i_writecount, -1);
4284 	spin_unlock(&inode->i_lock);
4285 
4286 	return 0;
4287 }
4288 
4289 static void restore_bitmap_write_access(struct file *file)
4290 {
4291 	struct inode *inode = file->f_mapping->host;
4292 
4293 	spin_lock(&inode->i_lock);
4294 	atomic_set(&inode->i_writecount, 1);
4295 	spin_unlock(&inode->i_lock);
4296 }
4297 
4298 /* mode:
4299  *   0 - completely stop and dis-assemble array
4300  *   1 - switch to readonly
4301  *   2 - stop but do not disassemble array
4302  */
4303 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4304 {
4305 	int err = 0;
4306 	struct gendisk *disk = mddev->gendisk;
4307 	mdk_rdev_t *rdev;
4308 
4309 	if (atomic_read(&mddev->openers) > is_open) {
4310 		printk("md: %s still in use.\n",mdname(mddev));
4311 		return -EBUSY;
4312 	}
4313 
4314 	if (mddev->pers) {
4315 
4316 		if (mddev->sync_thread) {
4317 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4318 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4319 			md_unregister_thread(mddev->sync_thread);
4320 			mddev->sync_thread = NULL;
4321 		}
4322 
4323 		del_timer_sync(&mddev->safemode_timer);
4324 
4325 		switch(mode) {
4326 		case 1: /* readonly */
4327 			err  = -ENXIO;
4328 			if (mddev->ro==1)
4329 				goto out;
4330 			mddev->ro = 1;
4331 			break;
4332 		case 0: /* disassemble */
4333 		case 2: /* stop */
4334 			bitmap_flush(mddev);
4335 			md_super_wait(mddev);
4336 			if (mddev->ro)
4337 				set_disk_ro(disk, 0);
4338 
4339 			mddev->pers->stop(mddev);
4340 			mddev->queue->merge_bvec_fn = NULL;
4341 			mddev->queue->unplug_fn = NULL;
4342 			mddev->queue->backing_dev_info.congested_fn = NULL;
4343 			module_put(mddev->pers->owner);
4344 			if (mddev->pers->sync_request)
4345 				mddev->private = &md_redundancy_group;
4346 			mddev->pers = NULL;
4347 			/* tell userspace to handle 'inactive' */
4348 			sysfs_notify_dirent(mddev->sysfs_state);
4349 
4350 			list_for_each_entry(rdev, &mddev->disks, same_set)
4351 				if (rdev->raid_disk >= 0) {
4352 					char nm[20];
4353 					sprintf(nm, "rd%d", rdev->raid_disk);
4354 					sysfs_remove_link(&mddev->kobj, nm);
4355 				}
4356 
4357 			set_capacity(disk, 0);
4358 			mddev->changed = 1;
4359 
4360 			if (mddev->ro)
4361 				mddev->ro = 0;
4362 		}
4363 		if (!mddev->in_sync || mddev->flags) {
4364 			/* mark array as shutdown cleanly */
4365 			mddev->in_sync = 1;
4366 			md_update_sb(mddev, 1);
4367 		}
4368 		if (mode == 1)
4369 			set_disk_ro(disk, 1);
4370 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4371 	}
4372 
4373 	/*
4374 	 * Free resources if final stop
4375 	 */
4376 	if (mode == 0) {
4377 
4378 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4379 
4380 		bitmap_destroy(mddev);
4381 		if (mddev->bitmap_file) {
4382 			restore_bitmap_write_access(mddev->bitmap_file);
4383 			fput(mddev->bitmap_file);
4384 			mddev->bitmap_file = NULL;
4385 		}
4386 		mddev->bitmap_offset = 0;
4387 
4388 		/* make sure all md_delayed_delete calls have finished */
4389 		flush_scheduled_work();
4390 
4391 		export_array(mddev);
4392 
4393 		mddev->array_sectors = 0;
4394 		mddev->external_size = 0;
4395 		mddev->dev_sectors = 0;
4396 		mddev->raid_disks = 0;
4397 		mddev->recovery_cp = 0;
4398 		mddev->resync_min = 0;
4399 		mddev->resync_max = MaxSector;
4400 		mddev->reshape_position = MaxSector;
4401 		mddev->external = 0;
4402 		mddev->persistent = 0;
4403 		mddev->level = LEVEL_NONE;
4404 		mddev->clevel[0] = 0;
4405 		mddev->flags = 0;
4406 		mddev->ro = 0;
4407 		mddev->metadata_type[0] = 0;
4408 		mddev->chunk_size = 0;
4409 		mddev->ctime = mddev->utime = 0;
4410 		mddev->layout = 0;
4411 		mddev->max_disks = 0;
4412 		mddev->events = 0;
4413 		mddev->delta_disks = 0;
4414 		mddev->new_level = LEVEL_NONE;
4415 		mddev->new_layout = 0;
4416 		mddev->new_chunk = 0;
4417 		mddev->curr_resync = 0;
4418 		mddev->resync_mismatches = 0;
4419 		mddev->suspend_lo = mddev->suspend_hi = 0;
4420 		mddev->sync_speed_min = mddev->sync_speed_max = 0;
4421 		mddev->recovery = 0;
4422 		mddev->in_sync = 0;
4423 		mddev->changed = 0;
4424 		mddev->degraded = 0;
4425 		mddev->barriers_work = 0;
4426 		mddev->safemode = 0;
4427 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4428 		if (mddev->hold_active == UNTIL_STOP)
4429 			mddev->hold_active = 0;
4430 
4431 	} else if (mddev->pers)
4432 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
4433 			mdname(mddev));
4434 	err = 0;
4435 	blk_integrity_unregister(disk);
4436 	md_new_event(mddev);
4437 	sysfs_notify_dirent(mddev->sysfs_state);
4438 out:
4439 	return err;
4440 }
4441 
4442 #ifndef MODULE
4443 static void autorun_array(mddev_t *mddev)
4444 {
4445 	mdk_rdev_t *rdev;
4446 	int err;
4447 
4448 	if (list_empty(&mddev->disks))
4449 		return;
4450 
4451 	printk(KERN_INFO "md: running: ");
4452 
4453 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4454 		char b[BDEVNAME_SIZE];
4455 		printk("<%s>", bdevname(rdev->bdev,b));
4456 	}
4457 	printk("\n");
4458 
4459 	err = do_md_run(mddev);
4460 	if (err) {
4461 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4462 		do_md_stop(mddev, 0, 0);
4463 	}
4464 }
4465 
4466 /*
4467  * lets try to run arrays based on all disks that have arrived
4468  * until now. (those are in pending_raid_disks)
4469  *
4470  * the method: pick the first pending disk, collect all disks with
4471  * the same UUID, remove all from the pending list and put them into
4472  * the 'same_array' list. Then order this list based on superblock
4473  * update time (freshest comes first), kick out 'old' disks and
4474  * compare superblocks. If everything's fine then run it.
4475  *
4476  * If "unit" is allocated, then bump its reference count
4477  */
4478 static void autorun_devices(int part)
4479 {
4480 	mdk_rdev_t *rdev0, *rdev, *tmp;
4481 	mddev_t *mddev;
4482 	char b[BDEVNAME_SIZE];
4483 
4484 	printk(KERN_INFO "md: autorun ...\n");
4485 	while (!list_empty(&pending_raid_disks)) {
4486 		int unit;
4487 		dev_t dev;
4488 		LIST_HEAD(candidates);
4489 		rdev0 = list_entry(pending_raid_disks.next,
4490 					 mdk_rdev_t, same_set);
4491 
4492 		printk(KERN_INFO "md: considering %s ...\n",
4493 			bdevname(rdev0->bdev,b));
4494 		INIT_LIST_HEAD(&candidates);
4495 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4496 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4497 				printk(KERN_INFO "md:  adding %s ...\n",
4498 					bdevname(rdev->bdev,b));
4499 				list_move(&rdev->same_set, &candidates);
4500 			}
4501 		/*
4502 		 * now we have a set of devices, with all of them having
4503 		 * mostly sane superblocks. It's time to allocate the
4504 		 * mddev.
4505 		 */
4506 		if (part) {
4507 			dev = MKDEV(mdp_major,
4508 				    rdev0->preferred_minor << MdpMinorShift);
4509 			unit = MINOR(dev) >> MdpMinorShift;
4510 		} else {
4511 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4512 			unit = MINOR(dev);
4513 		}
4514 		if (rdev0->preferred_minor != unit) {
4515 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4516 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4517 			break;
4518 		}
4519 
4520 		md_probe(dev, NULL, NULL);
4521 		mddev = mddev_find(dev);
4522 		if (!mddev || !mddev->gendisk) {
4523 			if (mddev)
4524 				mddev_put(mddev);
4525 			printk(KERN_ERR
4526 				"md: cannot allocate memory for md drive.\n");
4527 			break;
4528 		}
4529 		if (mddev_lock(mddev))
4530 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4531 			       mdname(mddev));
4532 		else if (mddev->raid_disks || mddev->major_version
4533 			 || !list_empty(&mddev->disks)) {
4534 			printk(KERN_WARNING
4535 				"md: %s already running, cannot run %s\n",
4536 				mdname(mddev), bdevname(rdev0->bdev,b));
4537 			mddev_unlock(mddev);
4538 		} else {
4539 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4540 			mddev->persistent = 1;
4541 			rdev_for_each_list(rdev, tmp, &candidates) {
4542 				list_del_init(&rdev->same_set);
4543 				if (bind_rdev_to_array(rdev, mddev))
4544 					export_rdev(rdev);
4545 			}
4546 			autorun_array(mddev);
4547 			mddev_unlock(mddev);
4548 		}
4549 		/* on success, candidates will be empty, on error
4550 		 * it won't...
4551 		 */
4552 		rdev_for_each_list(rdev, tmp, &candidates) {
4553 			list_del_init(&rdev->same_set);
4554 			export_rdev(rdev);
4555 		}
4556 		mddev_put(mddev);
4557 	}
4558 	printk(KERN_INFO "md: ... autorun DONE.\n");
4559 }
4560 #endif /* !MODULE */
4561 
4562 static int get_version(void __user * arg)
4563 {
4564 	mdu_version_t ver;
4565 
4566 	ver.major = MD_MAJOR_VERSION;
4567 	ver.minor = MD_MINOR_VERSION;
4568 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4569 
4570 	if (copy_to_user(arg, &ver, sizeof(ver)))
4571 		return -EFAULT;
4572 
4573 	return 0;
4574 }
4575 
4576 static int get_array_info(mddev_t * mddev, void __user * arg)
4577 {
4578 	mdu_array_info_t info;
4579 	int nr,working,active,failed,spare;
4580 	mdk_rdev_t *rdev;
4581 
4582 	nr=working=active=failed=spare=0;
4583 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4584 		nr++;
4585 		if (test_bit(Faulty, &rdev->flags))
4586 			failed++;
4587 		else {
4588 			working++;
4589 			if (test_bit(In_sync, &rdev->flags))
4590 				active++;
4591 			else
4592 				spare++;
4593 		}
4594 	}
4595 
4596 	info.major_version = mddev->major_version;
4597 	info.minor_version = mddev->minor_version;
4598 	info.patch_version = MD_PATCHLEVEL_VERSION;
4599 	info.ctime         = mddev->ctime;
4600 	info.level         = mddev->level;
4601 	info.size          = mddev->dev_sectors / 2;
4602 	if (info.size != mddev->dev_sectors / 2) /* overflow */
4603 		info.size = -1;
4604 	info.nr_disks      = nr;
4605 	info.raid_disks    = mddev->raid_disks;
4606 	info.md_minor      = mddev->md_minor;
4607 	info.not_persistent= !mddev->persistent;
4608 
4609 	info.utime         = mddev->utime;
4610 	info.state         = 0;
4611 	if (mddev->in_sync)
4612 		info.state = (1<<MD_SB_CLEAN);
4613 	if (mddev->bitmap && mddev->bitmap_offset)
4614 		info.state = (1<<MD_SB_BITMAP_PRESENT);
4615 	info.active_disks  = active;
4616 	info.working_disks = working;
4617 	info.failed_disks  = failed;
4618 	info.spare_disks   = spare;
4619 
4620 	info.layout        = mddev->layout;
4621 	info.chunk_size    = mddev->chunk_size;
4622 
4623 	if (copy_to_user(arg, &info, sizeof(info)))
4624 		return -EFAULT;
4625 
4626 	return 0;
4627 }
4628 
4629 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4630 {
4631 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4632 	char *ptr, *buf = NULL;
4633 	int err = -ENOMEM;
4634 
4635 	if (md_allow_write(mddev))
4636 		file = kmalloc(sizeof(*file), GFP_NOIO);
4637 	else
4638 		file = kmalloc(sizeof(*file), GFP_KERNEL);
4639 
4640 	if (!file)
4641 		goto out;
4642 
4643 	/* bitmap disabled, zero the first byte and copy out */
4644 	if (!mddev->bitmap || !mddev->bitmap->file) {
4645 		file->pathname[0] = '\0';
4646 		goto copy_out;
4647 	}
4648 
4649 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4650 	if (!buf)
4651 		goto out;
4652 
4653 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4654 	if (IS_ERR(ptr))
4655 		goto out;
4656 
4657 	strcpy(file->pathname, ptr);
4658 
4659 copy_out:
4660 	err = 0;
4661 	if (copy_to_user(arg, file, sizeof(*file)))
4662 		err = -EFAULT;
4663 out:
4664 	kfree(buf);
4665 	kfree(file);
4666 	return err;
4667 }
4668 
4669 static int get_disk_info(mddev_t * mddev, void __user * arg)
4670 {
4671 	mdu_disk_info_t info;
4672 	mdk_rdev_t *rdev;
4673 
4674 	if (copy_from_user(&info, arg, sizeof(info)))
4675 		return -EFAULT;
4676 
4677 	rdev = find_rdev_nr(mddev, info.number);
4678 	if (rdev) {
4679 		info.major = MAJOR(rdev->bdev->bd_dev);
4680 		info.minor = MINOR(rdev->bdev->bd_dev);
4681 		info.raid_disk = rdev->raid_disk;
4682 		info.state = 0;
4683 		if (test_bit(Faulty, &rdev->flags))
4684 			info.state |= (1<<MD_DISK_FAULTY);
4685 		else if (test_bit(In_sync, &rdev->flags)) {
4686 			info.state |= (1<<MD_DISK_ACTIVE);
4687 			info.state |= (1<<MD_DISK_SYNC);
4688 		}
4689 		if (test_bit(WriteMostly, &rdev->flags))
4690 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
4691 	} else {
4692 		info.major = info.minor = 0;
4693 		info.raid_disk = -1;
4694 		info.state = (1<<MD_DISK_REMOVED);
4695 	}
4696 
4697 	if (copy_to_user(arg, &info, sizeof(info)))
4698 		return -EFAULT;
4699 
4700 	return 0;
4701 }
4702 
4703 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4704 {
4705 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4706 	mdk_rdev_t *rdev;
4707 	dev_t dev = MKDEV(info->major,info->minor);
4708 
4709 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4710 		return -EOVERFLOW;
4711 
4712 	if (!mddev->raid_disks) {
4713 		int err;
4714 		/* expecting a device which has a superblock */
4715 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4716 		if (IS_ERR(rdev)) {
4717 			printk(KERN_WARNING
4718 				"md: md_import_device returned %ld\n",
4719 				PTR_ERR(rdev));
4720 			return PTR_ERR(rdev);
4721 		}
4722 		if (!list_empty(&mddev->disks)) {
4723 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4724 							mdk_rdev_t, same_set);
4725 			int err = super_types[mddev->major_version]
4726 				.load_super(rdev, rdev0, mddev->minor_version);
4727 			if (err < 0) {
4728 				printk(KERN_WARNING
4729 					"md: %s has different UUID to %s\n",
4730 					bdevname(rdev->bdev,b),
4731 					bdevname(rdev0->bdev,b2));
4732 				export_rdev(rdev);
4733 				return -EINVAL;
4734 			}
4735 		}
4736 		err = bind_rdev_to_array(rdev, mddev);
4737 		if (err)
4738 			export_rdev(rdev);
4739 		return err;
4740 	}
4741 
4742 	/*
4743 	 * add_new_disk can be used once the array is assembled
4744 	 * to add "hot spares".  They must already have a superblock
4745 	 * written
4746 	 */
4747 	if (mddev->pers) {
4748 		int err;
4749 		if (!mddev->pers->hot_add_disk) {
4750 			printk(KERN_WARNING
4751 				"%s: personality does not support diskops!\n",
4752 			       mdname(mddev));
4753 			return -EINVAL;
4754 		}
4755 		if (mddev->persistent)
4756 			rdev = md_import_device(dev, mddev->major_version,
4757 						mddev->minor_version);
4758 		else
4759 			rdev = md_import_device(dev, -1, -1);
4760 		if (IS_ERR(rdev)) {
4761 			printk(KERN_WARNING
4762 				"md: md_import_device returned %ld\n",
4763 				PTR_ERR(rdev));
4764 			return PTR_ERR(rdev);
4765 		}
4766 		/* set save_raid_disk if appropriate */
4767 		if (!mddev->persistent) {
4768 			if (info->state & (1<<MD_DISK_SYNC)  &&
4769 			    info->raid_disk < mddev->raid_disks)
4770 				rdev->raid_disk = info->raid_disk;
4771 			else
4772 				rdev->raid_disk = -1;
4773 		} else
4774 			super_types[mddev->major_version].
4775 				validate_super(mddev, rdev);
4776 		rdev->saved_raid_disk = rdev->raid_disk;
4777 
4778 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
4779 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4780 			set_bit(WriteMostly, &rdev->flags);
4781 		else
4782 			clear_bit(WriteMostly, &rdev->flags);
4783 
4784 		rdev->raid_disk = -1;
4785 		err = bind_rdev_to_array(rdev, mddev);
4786 		if (!err && !mddev->pers->hot_remove_disk) {
4787 			/* If there is hot_add_disk but no hot_remove_disk
4788 			 * then added disks for geometry changes,
4789 			 * and should be added immediately.
4790 			 */
4791 			super_types[mddev->major_version].
4792 				validate_super(mddev, rdev);
4793 			err = mddev->pers->hot_add_disk(mddev, rdev);
4794 			if (err)
4795 				unbind_rdev_from_array(rdev);
4796 		}
4797 		if (err)
4798 			export_rdev(rdev);
4799 		else
4800 			sysfs_notify_dirent(rdev->sysfs_state);
4801 
4802 		md_update_sb(mddev, 1);
4803 		if (mddev->degraded)
4804 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4805 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4806 		md_wakeup_thread(mddev->thread);
4807 		return err;
4808 	}
4809 
4810 	/* otherwise, add_new_disk is only allowed
4811 	 * for major_version==0 superblocks
4812 	 */
4813 	if (mddev->major_version != 0) {
4814 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4815 		       mdname(mddev));
4816 		return -EINVAL;
4817 	}
4818 
4819 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
4820 		int err;
4821 		rdev = md_import_device(dev, -1, 0);
4822 		if (IS_ERR(rdev)) {
4823 			printk(KERN_WARNING
4824 				"md: error, md_import_device() returned %ld\n",
4825 				PTR_ERR(rdev));
4826 			return PTR_ERR(rdev);
4827 		}
4828 		rdev->desc_nr = info->number;
4829 		if (info->raid_disk < mddev->raid_disks)
4830 			rdev->raid_disk = info->raid_disk;
4831 		else
4832 			rdev->raid_disk = -1;
4833 
4834 		if (rdev->raid_disk < mddev->raid_disks)
4835 			if (info->state & (1<<MD_DISK_SYNC))
4836 				set_bit(In_sync, &rdev->flags);
4837 
4838 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4839 			set_bit(WriteMostly, &rdev->flags);
4840 
4841 		if (!mddev->persistent) {
4842 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
4843 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4844 		} else
4845 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4846 		rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4847 
4848 		err = bind_rdev_to_array(rdev, mddev);
4849 		if (err) {
4850 			export_rdev(rdev);
4851 			return err;
4852 		}
4853 	}
4854 
4855 	return 0;
4856 }
4857 
4858 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4859 {
4860 	char b[BDEVNAME_SIZE];
4861 	mdk_rdev_t *rdev;
4862 
4863 	rdev = find_rdev(mddev, dev);
4864 	if (!rdev)
4865 		return -ENXIO;
4866 
4867 	if (rdev->raid_disk >= 0)
4868 		goto busy;
4869 
4870 	kick_rdev_from_array(rdev);
4871 	md_update_sb(mddev, 1);
4872 	md_new_event(mddev);
4873 
4874 	return 0;
4875 busy:
4876 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4877 		bdevname(rdev->bdev,b), mdname(mddev));
4878 	return -EBUSY;
4879 }
4880 
4881 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4882 {
4883 	char b[BDEVNAME_SIZE];
4884 	int err;
4885 	mdk_rdev_t *rdev;
4886 
4887 	if (!mddev->pers)
4888 		return -ENODEV;
4889 
4890 	if (mddev->major_version != 0) {
4891 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4892 			" version-0 superblocks.\n",
4893 			mdname(mddev));
4894 		return -EINVAL;
4895 	}
4896 	if (!mddev->pers->hot_add_disk) {
4897 		printk(KERN_WARNING
4898 			"%s: personality does not support diskops!\n",
4899 			mdname(mddev));
4900 		return -EINVAL;
4901 	}
4902 
4903 	rdev = md_import_device(dev, -1, 0);
4904 	if (IS_ERR(rdev)) {
4905 		printk(KERN_WARNING
4906 			"md: error, md_import_device() returned %ld\n",
4907 			PTR_ERR(rdev));
4908 		return -EINVAL;
4909 	}
4910 
4911 	if (mddev->persistent)
4912 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4913 	else
4914 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4915 
4916 	rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4917 
4918 	if (test_bit(Faulty, &rdev->flags)) {
4919 		printk(KERN_WARNING
4920 			"md: can not hot-add faulty %s disk to %s!\n",
4921 			bdevname(rdev->bdev,b), mdname(mddev));
4922 		err = -EINVAL;
4923 		goto abort_export;
4924 	}
4925 	clear_bit(In_sync, &rdev->flags);
4926 	rdev->desc_nr = -1;
4927 	rdev->saved_raid_disk = -1;
4928 	err = bind_rdev_to_array(rdev, mddev);
4929 	if (err)
4930 		goto abort_export;
4931 
4932 	/*
4933 	 * The rest should better be atomic, we can have disk failures
4934 	 * noticed in interrupt contexts ...
4935 	 */
4936 
4937 	rdev->raid_disk = -1;
4938 
4939 	md_update_sb(mddev, 1);
4940 
4941 	/*
4942 	 * Kick recovery, maybe this spare has to be added to the
4943 	 * array immediately.
4944 	 */
4945 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4946 	md_wakeup_thread(mddev->thread);
4947 	md_new_event(mddev);
4948 	return 0;
4949 
4950 abort_export:
4951 	export_rdev(rdev);
4952 	return err;
4953 }
4954 
4955 static int set_bitmap_file(mddev_t *mddev, int fd)
4956 {
4957 	int err;
4958 
4959 	if (mddev->pers) {
4960 		if (!mddev->pers->quiesce)
4961 			return -EBUSY;
4962 		if (mddev->recovery || mddev->sync_thread)
4963 			return -EBUSY;
4964 		/* we should be able to change the bitmap.. */
4965 	}
4966 
4967 
4968 	if (fd >= 0) {
4969 		if (mddev->bitmap)
4970 			return -EEXIST; /* cannot add when bitmap is present */
4971 		mddev->bitmap_file = fget(fd);
4972 
4973 		if (mddev->bitmap_file == NULL) {
4974 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4975 			       mdname(mddev));
4976 			return -EBADF;
4977 		}
4978 
4979 		err = deny_bitmap_write_access(mddev->bitmap_file);
4980 		if (err) {
4981 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4982 			       mdname(mddev));
4983 			fput(mddev->bitmap_file);
4984 			mddev->bitmap_file = NULL;
4985 			return err;
4986 		}
4987 		mddev->bitmap_offset = 0; /* file overrides offset */
4988 	} else if (mddev->bitmap == NULL)
4989 		return -ENOENT; /* cannot remove what isn't there */
4990 	err = 0;
4991 	if (mddev->pers) {
4992 		mddev->pers->quiesce(mddev, 1);
4993 		if (fd >= 0)
4994 			err = bitmap_create(mddev);
4995 		if (fd < 0 || err) {
4996 			bitmap_destroy(mddev);
4997 			fd = -1; /* make sure to put the file */
4998 		}
4999 		mddev->pers->quiesce(mddev, 0);
5000 	}
5001 	if (fd < 0) {
5002 		if (mddev->bitmap_file) {
5003 			restore_bitmap_write_access(mddev->bitmap_file);
5004 			fput(mddev->bitmap_file);
5005 		}
5006 		mddev->bitmap_file = NULL;
5007 	}
5008 
5009 	return err;
5010 }
5011 
5012 /*
5013  * set_array_info is used two different ways
5014  * The original usage is when creating a new array.
5015  * In this usage, raid_disks is > 0 and it together with
5016  *  level, size, not_persistent,layout,chunksize determine the
5017  *  shape of the array.
5018  *  This will always create an array with a type-0.90.0 superblock.
5019  * The newer usage is when assembling an array.
5020  *  In this case raid_disks will be 0, and the major_version field is
5021  *  use to determine which style super-blocks are to be found on the devices.
5022  *  The minor and patch _version numbers are also kept incase the
5023  *  super_block handler wishes to interpret them.
5024  */
5025 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5026 {
5027 
5028 	if (info->raid_disks == 0) {
5029 		/* just setting version number for superblock loading */
5030 		if (info->major_version < 0 ||
5031 		    info->major_version >= ARRAY_SIZE(super_types) ||
5032 		    super_types[info->major_version].name == NULL) {
5033 			/* maybe try to auto-load a module? */
5034 			printk(KERN_INFO
5035 				"md: superblock version %d not known\n",
5036 				info->major_version);
5037 			return -EINVAL;
5038 		}
5039 		mddev->major_version = info->major_version;
5040 		mddev->minor_version = info->minor_version;
5041 		mddev->patch_version = info->patch_version;
5042 		mddev->persistent = !info->not_persistent;
5043 		return 0;
5044 	}
5045 	mddev->major_version = MD_MAJOR_VERSION;
5046 	mddev->minor_version = MD_MINOR_VERSION;
5047 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5048 	mddev->ctime         = get_seconds();
5049 
5050 	mddev->level         = info->level;
5051 	mddev->clevel[0]     = 0;
5052 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5053 	mddev->raid_disks    = info->raid_disks;
5054 	/* don't set md_minor, it is determined by which /dev/md* was
5055 	 * openned
5056 	 */
5057 	if (info->state & (1<<MD_SB_CLEAN))
5058 		mddev->recovery_cp = MaxSector;
5059 	else
5060 		mddev->recovery_cp = 0;
5061 	mddev->persistent    = ! info->not_persistent;
5062 	mddev->external	     = 0;
5063 
5064 	mddev->layout        = info->layout;
5065 	mddev->chunk_size    = info->chunk_size;
5066 
5067 	mddev->max_disks     = MD_SB_DISKS;
5068 
5069 	if (mddev->persistent)
5070 		mddev->flags         = 0;
5071 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5072 
5073 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
5074 	mddev->bitmap_offset = 0;
5075 
5076 	mddev->reshape_position = MaxSector;
5077 
5078 	/*
5079 	 * Generate a 128 bit UUID
5080 	 */
5081 	get_random_bytes(mddev->uuid, 16);
5082 
5083 	mddev->new_level = mddev->level;
5084 	mddev->new_chunk = mddev->chunk_size;
5085 	mddev->new_layout = mddev->layout;
5086 	mddev->delta_disks = 0;
5087 
5088 	return 0;
5089 }
5090 
5091 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5092 {
5093 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5094 
5095 	if (mddev->external_size)
5096 		return;
5097 
5098 	mddev->array_sectors = array_sectors;
5099 }
5100 EXPORT_SYMBOL(md_set_array_sectors);
5101 
5102 static int update_size(mddev_t *mddev, sector_t num_sectors)
5103 {
5104 	mdk_rdev_t *rdev;
5105 	int rv;
5106 	int fit = (num_sectors == 0);
5107 
5108 	if (mddev->pers->resize == NULL)
5109 		return -EINVAL;
5110 	/* The "num_sectors" is the number of sectors of each device that
5111 	 * is used.  This can only make sense for arrays with redundancy.
5112 	 * linear and raid0 always use whatever space is available. We can only
5113 	 * consider changing this number if no resync or reconstruction is
5114 	 * happening, and if the new size is acceptable. It must fit before the
5115 	 * sb_start or, if that is <data_offset, it must fit before the size
5116 	 * of each device.  If num_sectors is zero, we find the largest size
5117 	 * that fits.
5118 
5119 	 */
5120 	if (mddev->sync_thread)
5121 		return -EBUSY;
5122 	if (mddev->bitmap)
5123 		/* Sorry, cannot grow a bitmap yet, just remove it,
5124 		 * grow, and re-add.
5125 		 */
5126 		return -EBUSY;
5127 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5128 		sector_t avail = rdev->sectors;
5129 
5130 		if (fit && (num_sectors == 0 || num_sectors > avail))
5131 			num_sectors = avail;
5132 		if (avail < num_sectors)
5133 			return -ENOSPC;
5134 	}
5135 	rv = mddev->pers->resize(mddev, num_sectors);
5136 	if (!rv) {
5137 		struct block_device *bdev;
5138 
5139 		bdev = bdget_disk(mddev->gendisk, 0);
5140 		if (bdev) {
5141 			mutex_lock(&bdev->bd_inode->i_mutex);
5142 			i_size_write(bdev->bd_inode,
5143 				     (loff_t)mddev->array_sectors << 9);
5144 			mutex_unlock(&bdev->bd_inode->i_mutex);
5145 			bdput(bdev);
5146 		}
5147 	}
5148 	return rv;
5149 }
5150 
5151 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5152 {
5153 	int rv;
5154 	/* change the number of raid disks */
5155 	if (mddev->pers->check_reshape == NULL)
5156 		return -EINVAL;
5157 	if (raid_disks <= 0 ||
5158 	    raid_disks >= mddev->max_disks)
5159 		return -EINVAL;
5160 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5161 		return -EBUSY;
5162 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5163 
5164 	rv = mddev->pers->check_reshape(mddev);
5165 	return rv;
5166 }
5167 
5168 
5169 /*
5170  * update_array_info is used to change the configuration of an
5171  * on-line array.
5172  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5173  * fields in the info are checked against the array.
5174  * Any differences that cannot be handled will cause an error.
5175  * Normally, only one change can be managed at a time.
5176  */
5177 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5178 {
5179 	int rv = 0;
5180 	int cnt = 0;
5181 	int state = 0;
5182 
5183 	/* calculate expected state,ignoring low bits */
5184 	if (mddev->bitmap && mddev->bitmap_offset)
5185 		state |= (1 << MD_SB_BITMAP_PRESENT);
5186 
5187 	if (mddev->major_version != info->major_version ||
5188 	    mddev->minor_version != info->minor_version ||
5189 /*	    mddev->patch_version != info->patch_version || */
5190 	    mddev->ctime         != info->ctime         ||
5191 	    mddev->level         != info->level         ||
5192 /*	    mddev->layout        != info->layout        || */
5193 	    !mddev->persistent	 != info->not_persistent||
5194 	    mddev->chunk_size    != info->chunk_size    ||
5195 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5196 	    ((state^info->state) & 0xfffffe00)
5197 		)
5198 		return -EINVAL;
5199 	/* Check there is only one change */
5200 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5201 		cnt++;
5202 	if (mddev->raid_disks != info->raid_disks)
5203 		cnt++;
5204 	if (mddev->layout != info->layout)
5205 		cnt++;
5206 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5207 		cnt++;
5208 	if (cnt == 0)
5209 		return 0;
5210 	if (cnt > 1)
5211 		return -EINVAL;
5212 
5213 	if (mddev->layout != info->layout) {
5214 		/* Change layout
5215 		 * we don't need to do anything at the md level, the
5216 		 * personality will take care of it all.
5217 		 */
5218 		if (mddev->pers->reconfig == NULL)
5219 			return -EINVAL;
5220 		else
5221 			return mddev->pers->reconfig(mddev, info->layout, -1);
5222 	}
5223 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5224 		rv = update_size(mddev, (sector_t)info->size * 2);
5225 
5226 	if (mddev->raid_disks    != info->raid_disks)
5227 		rv = update_raid_disks(mddev, info->raid_disks);
5228 
5229 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5230 		if (mddev->pers->quiesce == NULL)
5231 			return -EINVAL;
5232 		if (mddev->recovery || mddev->sync_thread)
5233 			return -EBUSY;
5234 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5235 			/* add the bitmap */
5236 			if (mddev->bitmap)
5237 				return -EEXIST;
5238 			if (mddev->default_bitmap_offset == 0)
5239 				return -EINVAL;
5240 			mddev->bitmap_offset = mddev->default_bitmap_offset;
5241 			mddev->pers->quiesce(mddev, 1);
5242 			rv = bitmap_create(mddev);
5243 			if (rv)
5244 				bitmap_destroy(mddev);
5245 			mddev->pers->quiesce(mddev, 0);
5246 		} else {
5247 			/* remove the bitmap */
5248 			if (!mddev->bitmap)
5249 				return -ENOENT;
5250 			if (mddev->bitmap->file)
5251 				return -EINVAL;
5252 			mddev->pers->quiesce(mddev, 1);
5253 			bitmap_destroy(mddev);
5254 			mddev->pers->quiesce(mddev, 0);
5255 			mddev->bitmap_offset = 0;
5256 		}
5257 	}
5258 	md_update_sb(mddev, 1);
5259 	return rv;
5260 }
5261 
5262 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5263 {
5264 	mdk_rdev_t *rdev;
5265 
5266 	if (mddev->pers == NULL)
5267 		return -ENODEV;
5268 
5269 	rdev = find_rdev(mddev, dev);
5270 	if (!rdev)
5271 		return -ENODEV;
5272 
5273 	md_error(mddev, rdev);
5274 	return 0;
5275 }
5276 
5277 /*
5278  * We have a problem here : there is no easy way to give a CHS
5279  * virtual geometry. We currently pretend that we have a 2 heads
5280  * 4 sectors (with a BIG number of cylinders...). This drives
5281  * dosfs just mad... ;-)
5282  */
5283 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5284 {
5285 	mddev_t *mddev = bdev->bd_disk->private_data;
5286 
5287 	geo->heads = 2;
5288 	geo->sectors = 4;
5289 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
5290 	return 0;
5291 }
5292 
5293 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5294 			unsigned int cmd, unsigned long arg)
5295 {
5296 	int err = 0;
5297 	void __user *argp = (void __user *)arg;
5298 	mddev_t *mddev = NULL;
5299 
5300 	if (!capable(CAP_SYS_ADMIN))
5301 		return -EACCES;
5302 
5303 	/*
5304 	 * Commands dealing with the RAID driver but not any
5305 	 * particular array:
5306 	 */
5307 	switch (cmd)
5308 	{
5309 		case RAID_VERSION:
5310 			err = get_version(argp);
5311 			goto done;
5312 
5313 		case PRINT_RAID_DEBUG:
5314 			err = 0;
5315 			md_print_devices();
5316 			goto done;
5317 
5318 #ifndef MODULE
5319 		case RAID_AUTORUN:
5320 			err = 0;
5321 			autostart_arrays(arg);
5322 			goto done;
5323 #endif
5324 		default:;
5325 	}
5326 
5327 	/*
5328 	 * Commands creating/starting a new array:
5329 	 */
5330 
5331 	mddev = bdev->bd_disk->private_data;
5332 
5333 	if (!mddev) {
5334 		BUG();
5335 		goto abort;
5336 	}
5337 
5338 	err = mddev_lock(mddev);
5339 	if (err) {
5340 		printk(KERN_INFO
5341 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5342 			err, cmd);
5343 		goto abort;
5344 	}
5345 
5346 	switch (cmd)
5347 	{
5348 		case SET_ARRAY_INFO:
5349 			{
5350 				mdu_array_info_t info;
5351 				if (!arg)
5352 					memset(&info, 0, sizeof(info));
5353 				else if (copy_from_user(&info, argp, sizeof(info))) {
5354 					err = -EFAULT;
5355 					goto abort_unlock;
5356 				}
5357 				if (mddev->pers) {
5358 					err = update_array_info(mddev, &info);
5359 					if (err) {
5360 						printk(KERN_WARNING "md: couldn't update"
5361 						       " array info. %d\n", err);
5362 						goto abort_unlock;
5363 					}
5364 					goto done_unlock;
5365 				}
5366 				if (!list_empty(&mddev->disks)) {
5367 					printk(KERN_WARNING
5368 					       "md: array %s already has disks!\n",
5369 					       mdname(mddev));
5370 					err = -EBUSY;
5371 					goto abort_unlock;
5372 				}
5373 				if (mddev->raid_disks) {
5374 					printk(KERN_WARNING
5375 					       "md: array %s already initialised!\n",
5376 					       mdname(mddev));
5377 					err = -EBUSY;
5378 					goto abort_unlock;
5379 				}
5380 				err = set_array_info(mddev, &info);
5381 				if (err) {
5382 					printk(KERN_WARNING "md: couldn't set"
5383 					       " array info. %d\n", err);
5384 					goto abort_unlock;
5385 				}
5386 			}
5387 			goto done_unlock;
5388 
5389 		default:;
5390 	}
5391 
5392 	/*
5393 	 * Commands querying/configuring an existing array:
5394 	 */
5395 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5396 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5397 	if ((!mddev->raid_disks && !mddev->external)
5398 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5399 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5400 	    && cmd != GET_BITMAP_FILE) {
5401 		err = -ENODEV;
5402 		goto abort_unlock;
5403 	}
5404 
5405 	/*
5406 	 * Commands even a read-only array can execute:
5407 	 */
5408 	switch (cmd)
5409 	{
5410 		case GET_ARRAY_INFO:
5411 			err = get_array_info(mddev, argp);
5412 			goto done_unlock;
5413 
5414 		case GET_BITMAP_FILE:
5415 			err = get_bitmap_file(mddev, argp);
5416 			goto done_unlock;
5417 
5418 		case GET_DISK_INFO:
5419 			err = get_disk_info(mddev, argp);
5420 			goto done_unlock;
5421 
5422 		case RESTART_ARRAY_RW:
5423 			err = restart_array(mddev);
5424 			goto done_unlock;
5425 
5426 		case STOP_ARRAY:
5427 			err = do_md_stop(mddev, 0, 1);
5428 			goto done_unlock;
5429 
5430 		case STOP_ARRAY_RO:
5431 			err = do_md_stop(mddev, 1, 1);
5432 			goto done_unlock;
5433 
5434 	}
5435 
5436 	/*
5437 	 * The remaining ioctls are changing the state of the
5438 	 * superblock, so we do not allow them on read-only arrays.
5439 	 * However non-MD ioctls (e.g. get-size) will still come through
5440 	 * here and hit the 'default' below, so only disallow
5441 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5442 	 */
5443 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5444 		if (mddev->ro == 2) {
5445 			mddev->ro = 0;
5446 			sysfs_notify_dirent(mddev->sysfs_state);
5447 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5448 			md_wakeup_thread(mddev->thread);
5449 		} else {
5450 			err = -EROFS;
5451 			goto abort_unlock;
5452 		}
5453 	}
5454 
5455 	switch (cmd)
5456 	{
5457 		case ADD_NEW_DISK:
5458 		{
5459 			mdu_disk_info_t info;
5460 			if (copy_from_user(&info, argp, sizeof(info)))
5461 				err = -EFAULT;
5462 			else
5463 				err = add_new_disk(mddev, &info);
5464 			goto done_unlock;
5465 		}
5466 
5467 		case HOT_REMOVE_DISK:
5468 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5469 			goto done_unlock;
5470 
5471 		case HOT_ADD_DISK:
5472 			err = hot_add_disk(mddev, new_decode_dev(arg));
5473 			goto done_unlock;
5474 
5475 		case SET_DISK_FAULTY:
5476 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5477 			goto done_unlock;
5478 
5479 		case RUN_ARRAY:
5480 			err = do_md_run(mddev);
5481 			goto done_unlock;
5482 
5483 		case SET_BITMAP_FILE:
5484 			err = set_bitmap_file(mddev, (int)arg);
5485 			goto done_unlock;
5486 
5487 		default:
5488 			err = -EINVAL;
5489 			goto abort_unlock;
5490 	}
5491 
5492 done_unlock:
5493 abort_unlock:
5494 	if (mddev->hold_active == UNTIL_IOCTL &&
5495 	    err != -EINVAL)
5496 		mddev->hold_active = 0;
5497 	mddev_unlock(mddev);
5498 
5499 	return err;
5500 done:
5501 	if (err)
5502 		MD_BUG();
5503 abort:
5504 	return err;
5505 }
5506 
5507 static int md_open(struct block_device *bdev, fmode_t mode)
5508 {
5509 	/*
5510 	 * Succeed if we can lock the mddev, which confirms that
5511 	 * it isn't being stopped right now.
5512 	 */
5513 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5514 	int err;
5515 
5516 	if (mddev->gendisk != bdev->bd_disk) {
5517 		/* we are racing with mddev_put which is discarding this
5518 		 * bd_disk.
5519 		 */
5520 		mddev_put(mddev);
5521 		/* Wait until bdev->bd_disk is definitely gone */
5522 		flush_scheduled_work();
5523 		/* Then retry the open from the top */
5524 		return -ERESTARTSYS;
5525 	}
5526 	BUG_ON(mddev != bdev->bd_disk->private_data);
5527 
5528 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5529 		goto out;
5530 
5531 	err = 0;
5532 	atomic_inc(&mddev->openers);
5533 	mddev_unlock(mddev);
5534 
5535 	check_disk_change(bdev);
5536  out:
5537 	return err;
5538 }
5539 
5540 static int md_release(struct gendisk *disk, fmode_t mode)
5541 {
5542  	mddev_t *mddev = disk->private_data;
5543 
5544 	BUG_ON(!mddev);
5545 	atomic_dec(&mddev->openers);
5546 	mddev_put(mddev);
5547 
5548 	return 0;
5549 }
5550 
5551 static int md_media_changed(struct gendisk *disk)
5552 {
5553 	mddev_t *mddev = disk->private_data;
5554 
5555 	return mddev->changed;
5556 }
5557 
5558 static int md_revalidate(struct gendisk *disk)
5559 {
5560 	mddev_t *mddev = disk->private_data;
5561 
5562 	mddev->changed = 0;
5563 	return 0;
5564 }
5565 static struct block_device_operations md_fops =
5566 {
5567 	.owner		= THIS_MODULE,
5568 	.open		= md_open,
5569 	.release	= md_release,
5570 	.ioctl		= md_ioctl,
5571 	.getgeo		= md_getgeo,
5572 	.media_changed	= md_media_changed,
5573 	.revalidate_disk= md_revalidate,
5574 };
5575 
5576 static int md_thread(void * arg)
5577 {
5578 	mdk_thread_t *thread = arg;
5579 
5580 	/*
5581 	 * md_thread is a 'system-thread', it's priority should be very
5582 	 * high. We avoid resource deadlocks individually in each
5583 	 * raid personality. (RAID5 does preallocation) We also use RR and
5584 	 * the very same RT priority as kswapd, thus we will never get
5585 	 * into a priority inversion deadlock.
5586 	 *
5587 	 * we definitely have to have equal or higher priority than
5588 	 * bdflush, otherwise bdflush will deadlock if there are too
5589 	 * many dirty RAID5 blocks.
5590 	 */
5591 
5592 	allow_signal(SIGKILL);
5593 	while (!kthread_should_stop()) {
5594 
5595 		/* We need to wait INTERRUPTIBLE so that
5596 		 * we don't add to the load-average.
5597 		 * That means we need to be sure no signals are
5598 		 * pending
5599 		 */
5600 		if (signal_pending(current))
5601 			flush_signals(current);
5602 
5603 		wait_event_interruptible_timeout
5604 			(thread->wqueue,
5605 			 test_bit(THREAD_WAKEUP, &thread->flags)
5606 			 || kthread_should_stop(),
5607 			 thread->timeout);
5608 
5609 		clear_bit(THREAD_WAKEUP, &thread->flags);
5610 
5611 		thread->run(thread->mddev);
5612 	}
5613 
5614 	return 0;
5615 }
5616 
5617 void md_wakeup_thread(mdk_thread_t *thread)
5618 {
5619 	if (thread) {
5620 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5621 		set_bit(THREAD_WAKEUP, &thread->flags);
5622 		wake_up(&thread->wqueue);
5623 	}
5624 }
5625 
5626 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5627 				 const char *name)
5628 {
5629 	mdk_thread_t *thread;
5630 
5631 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5632 	if (!thread)
5633 		return NULL;
5634 
5635 	init_waitqueue_head(&thread->wqueue);
5636 
5637 	thread->run = run;
5638 	thread->mddev = mddev;
5639 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
5640 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5641 	if (IS_ERR(thread->tsk)) {
5642 		kfree(thread);
5643 		return NULL;
5644 	}
5645 	return thread;
5646 }
5647 
5648 void md_unregister_thread(mdk_thread_t *thread)
5649 {
5650 	if (!thread)
5651 		return;
5652 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5653 
5654 	kthread_stop(thread->tsk);
5655 	kfree(thread);
5656 }
5657 
5658 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5659 {
5660 	if (!mddev) {
5661 		MD_BUG();
5662 		return;
5663 	}
5664 
5665 	if (!rdev || test_bit(Faulty, &rdev->flags))
5666 		return;
5667 
5668 	if (mddev->external)
5669 		set_bit(Blocked, &rdev->flags);
5670 /*
5671 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5672 		mdname(mddev),
5673 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5674 		__builtin_return_address(0),__builtin_return_address(1),
5675 		__builtin_return_address(2),__builtin_return_address(3));
5676 */
5677 	if (!mddev->pers)
5678 		return;
5679 	if (!mddev->pers->error_handler)
5680 		return;
5681 	mddev->pers->error_handler(mddev,rdev);
5682 	if (mddev->degraded)
5683 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5684 	set_bit(StateChanged, &rdev->flags);
5685 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5686 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5687 	md_wakeup_thread(mddev->thread);
5688 	md_new_event_inintr(mddev);
5689 }
5690 
5691 /* seq_file implementation /proc/mdstat */
5692 
5693 static void status_unused(struct seq_file *seq)
5694 {
5695 	int i = 0;
5696 	mdk_rdev_t *rdev;
5697 
5698 	seq_printf(seq, "unused devices: ");
5699 
5700 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5701 		char b[BDEVNAME_SIZE];
5702 		i++;
5703 		seq_printf(seq, "%s ",
5704 			      bdevname(rdev->bdev,b));
5705 	}
5706 	if (!i)
5707 		seq_printf(seq, "<none>");
5708 
5709 	seq_printf(seq, "\n");
5710 }
5711 
5712 
5713 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5714 {
5715 	sector_t max_sectors, resync, res;
5716 	unsigned long dt, db;
5717 	sector_t rt;
5718 	int scale;
5719 	unsigned int per_milli;
5720 
5721 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
5722 
5723 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5724 		max_sectors = mddev->resync_max_sectors;
5725 	else
5726 		max_sectors = mddev->dev_sectors;
5727 
5728 	/*
5729 	 * Should not happen.
5730 	 */
5731 	if (!max_sectors) {
5732 		MD_BUG();
5733 		return;
5734 	}
5735 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
5736 	 * in a sector_t, and (max_sectors>>scale) will fit in a
5737 	 * u32, as those are the requirements for sector_div.
5738 	 * Thus 'scale' must be at least 10
5739 	 */
5740 	scale = 10;
5741 	if (sizeof(sector_t) > sizeof(unsigned long)) {
5742 		while ( max_sectors/2 > (1ULL<<(scale+32)))
5743 			scale++;
5744 	}
5745 	res = (resync>>scale)*1000;
5746 	sector_div(res, (u32)((max_sectors>>scale)+1));
5747 
5748 	per_milli = res;
5749 	{
5750 		int i, x = per_milli/50, y = 20-x;
5751 		seq_printf(seq, "[");
5752 		for (i = 0; i < x; i++)
5753 			seq_printf(seq, "=");
5754 		seq_printf(seq, ">");
5755 		for (i = 0; i < y; i++)
5756 			seq_printf(seq, ".");
5757 		seq_printf(seq, "] ");
5758 	}
5759 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5760 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5761 		    "reshape" :
5762 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5763 		     "check" :
5764 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5765 		      "resync" : "recovery"))),
5766 		   per_milli/10, per_milli % 10,
5767 		   (unsigned long long) resync/2,
5768 		   (unsigned long long) max_sectors/2);
5769 
5770 	/*
5771 	 * dt: time from mark until now
5772 	 * db: blocks written from mark until now
5773 	 * rt: remaining time
5774 	 *
5775 	 * rt is a sector_t, so could be 32bit or 64bit.
5776 	 * So we divide before multiply in case it is 32bit and close
5777 	 * to the limit.
5778 	 * We scale the divisor (db) by 32 to avoid loosing precision
5779 	 * near the end of resync when the number of remaining sectors
5780 	 * is close to 'db'.
5781 	 * We then divide rt by 32 after multiplying by db to compensate.
5782 	 * The '+1' avoids division by zero if db is very small.
5783 	 */
5784 	dt = ((jiffies - mddev->resync_mark) / HZ);
5785 	if (!dt) dt++;
5786 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5787 		- mddev->resync_mark_cnt;
5788 
5789 	rt = max_sectors - resync;    /* number of remaining sectors */
5790 	sector_div(rt, db/32+1);
5791 	rt *= dt;
5792 	rt >>= 5;
5793 
5794 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
5795 		   ((unsigned long)rt % 60)/6);
5796 
5797 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5798 }
5799 
5800 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5801 {
5802 	struct list_head *tmp;
5803 	loff_t l = *pos;
5804 	mddev_t *mddev;
5805 
5806 	if (l >= 0x10000)
5807 		return NULL;
5808 	if (!l--)
5809 		/* header */
5810 		return (void*)1;
5811 
5812 	spin_lock(&all_mddevs_lock);
5813 	list_for_each(tmp,&all_mddevs)
5814 		if (!l--) {
5815 			mddev = list_entry(tmp, mddev_t, all_mddevs);
5816 			mddev_get(mddev);
5817 			spin_unlock(&all_mddevs_lock);
5818 			return mddev;
5819 		}
5820 	spin_unlock(&all_mddevs_lock);
5821 	if (!l--)
5822 		return (void*)2;/* tail */
5823 	return NULL;
5824 }
5825 
5826 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5827 {
5828 	struct list_head *tmp;
5829 	mddev_t *next_mddev, *mddev = v;
5830 
5831 	++*pos;
5832 	if (v == (void*)2)
5833 		return NULL;
5834 
5835 	spin_lock(&all_mddevs_lock);
5836 	if (v == (void*)1)
5837 		tmp = all_mddevs.next;
5838 	else
5839 		tmp = mddev->all_mddevs.next;
5840 	if (tmp != &all_mddevs)
5841 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5842 	else {
5843 		next_mddev = (void*)2;
5844 		*pos = 0x10000;
5845 	}
5846 	spin_unlock(&all_mddevs_lock);
5847 
5848 	if (v != (void*)1)
5849 		mddev_put(mddev);
5850 	return next_mddev;
5851 
5852 }
5853 
5854 static void md_seq_stop(struct seq_file *seq, void *v)
5855 {
5856 	mddev_t *mddev = v;
5857 
5858 	if (mddev && v != (void*)1 && v != (void*)2)
5859 		mddev_put(mddev);
5860 }
5861 
5862 struct mdstat_info {
5863 	int event;
5864 };
5865 
5866 static int md_seq_show(struct seq_file *seq, void *v)
5867 {
5868 	mddev_t *mddev = v;
5869 	sector_t sectors;
5870 	mdk_rdev_t *rdev;
5871 	struct mdstat_info *mi = seq->private;
5872 	struct bitmap *bitmap;
5873 
5874 	if (v == (void*)1) {
5875 		struct mdk_personality *pers;
5876 		seq_printf(seq, "Personalities : ");
5877 		spin_lock(&pers_lock);
5878 		list_for_each_entry(pers, &pers_list, list)
5879 			seq_printf(seq, "[%s] ", pers->name);
5880 
5881 		spin_unlock(&pers_lock);
5882 		seq_printf(seq, "\n");
5883 		mi->event = atomic_read(&md_event_count);
5884 		return 0;
5885 	}
5886 	if (v == (void*)2) {
5887 		status_unused(seq);
5888 		return 0;
5889 	}
5890 
5891 	if (mddev_lock(mddev) < 0)
5892 		return -EINTR;
5893 
5894 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5895 		seq_printf(seq, "%s : %sactive", mdname(mddev),
5896 						mddev->pers ? "" : "in");
5897 		if (mddev->pers) {
5898 			if (mddev->ro==1)
5899 				seq_printf(seq, " (read-only)");
5900 			if (mddev->ro==2)
5901 				seq_printf(seq, " (auto-read-only)");
5902 			seq_printf(seq, " %s", mddev->pers->name);
5903 		}
5904 
5905 		sectors = 0;
5906 		list_for_each_entry(rdev, &mddev->disks, same_set) {
5907 			char b[BDEVNAME_SIZE];
5908 			seq_printf(seq, " %s[%d]",
5909 				bdevname(rdev->bdev,b), rdev->desc_nr);
5910 			if (test_bit(WriteMostly, &rdev->flags))
5911 				seq_printf(seq, "(W)");
5912 			if (test_bit(Faulty, &rdev->flags)) {
5913 				seq_printf(seq, "(F)");
5914 				continue;
5915 			} else if (rdev->raid_disk < 0)
5916 				seq_printf(seq, "(S)"); /* spare */
5917 			sectors += rdev->sectors;
5918 		}
5919 
5920 		if (!list_empty(&mddev->disks)) {
5921 			if (mddev->pers)
5922 				seq_printf(seq, "\n      %llu blocks",
5923 					   (unsigned long long)
5924 					   mddev->array_sectors / 2);
5925 			else
5926 				seq_printf(seq, "\n      %llu blocks",
5927 					   (unsigned long long)sectors / 2);
5928 		}
5929 		if (mddev->persistent) {
5930 			if (mddev->major_version != 0 ||
5931 			    mddev->minor_version != 90) {
5932 				seq_printf(seq," super %d.%d",
5933 					   mddev->major_version,
5934 					   mddev->minor_version);
5935 			}
5936 		} else if (mddev->external)
5937 			seq_printf(seq, " super external:%s",
5938 				   mddev->metadata_type);
5939 		else
5940 			seq_printf(seq, " super non-persistent");
5941 
5942 		if (mddev->pers) {
5943 			mddev->pers->status(seq, mddev);
5944 	 		seq_printf(seq, "\n      ");
5945 			if (mddev->pers->sync_request) {
5946 				if (mddev->curr_resync > 2) {
5947 					status_resync(seq, mddev);
5948 					seq_printf(seq, "\n      ");
5949 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5950 					seq_printf(seq, "\tresync=DELAYED\n      ");
5951 				else if (mddev->recovery_cp < MaxSector)
5952 					seq_printf(seq, "\tresync=PENDING\n      ");
5953 			}
5954 		} else
5955 			seq_printf(seq, "\n       ");
5956 
5957 		if ((bitmap = mddev->bitmap)) {
5958 			unsigned long chunk_kb;
5959 			unsigned long flags;
5960 			spin_lock_irqsave(&bitmap->lock, flags);
5961 			chunk_kb = bitmap->chunksize >> 10;
5962 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5963 				"%lu%s chunk",
5964 				bitmap->pages - bitmap->missing_pages,
5965 				bitmap->pages,
5966 				(bitmap->pages - bitmap->missing_pages)
5967 					<< (PAGE_SHIFT - 10),
5968 				chunk_kb ? chunk_kb : bitmap->chunksize,
5969 				chunk_kb ? "KB" : "B");
5970 			if (bitmap->file) {
5971 				seq_printf(seq, ", file: ");
5972 				seq_path(seq, &bitmap->file->f_path, " \t\n");
5973 			}
5974 
5975 			seq_printf(seq, "\n");
5976 			spin_unlock_irqrestore(&bitmap->lock, flags);
5977 		}
5978 
5979 		seq_printf(seq, "\n");
5980 	}
5981 	mddev_unlock(mddev);
5982 
5983 	return 0;
5984 }
5985 
5986 static const struct seq_operations md_seq_ops = {
5987 	.start  = md_seq_start,
5988 	.next   = md_seq_next,
5989 	.stop   = md_seq_stop,
5990 	.show   = md_seq_show,
5991 };
5992 
5993 static int md_seq_open(struct inode *inode, struct file *file)
5994 {
5995 	int error;
5996 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5997 	if (mi == NULL)
5998 		return -ENOMEM;
5999 
6000 	error = seq_open(file, &md_seq_ops);
6001 	if (error)
6002 		kfree(mi);
6003 	else {
6004 		struct seq_file *p = file->private_data;
6005 		p->private = mi;
6006 		mi->event = atomic_read(&md_event_count);
6007 	}
6008 	return error;
6009 }
6010 
6011 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6012 {
6013 	struct seq_file *m = filp->private_data;
6014 	struct mdstat_info *mi = m->private;
6015 	int mask;
6016 
6017 	poll_wait(filp, &md_event_waiters, wait);
6018 
6019 	/* always allow read */
6020 	mask = POLLIN | POLLRDNORM;
6021 
6022 	if (mi->event != atomic_read(&md_event_count))
6023 		mask |= POLLERR | POLLPRI;
6024 	return mask;
6025 }
6026 
6027 static const struct file_operations md_seq_fops = {
6028 	.owner		= THIS_MODULE,
6029 	.open           = md_seq_open,
6030 	.read           = seq_read,
6031 	.llseek         = seq_lseek,
6032 	.release	= seq_release_private,
6033 	.poll		= mdstat_poll,
6034 };
6035 
6036 int register_md_personality(struct mdk_personality *p)
6037 {
6038 	spin_lock(&pers_lock);
6039 	list_add_tail(&p->list, &pers_list);
6040 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6041 	spin_unlock(&pers_lock);
6042 	return 0;
6043 }
6044 
6045 int unregister_md_personality(struct mdk_personality *p)
6046 {
6047 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6048 	spin_lock(&pers_lock);
6049 	list_del_init(&p->list);
6050 	spin_unlock(&pers_lock);
6051 	return 0;
6052 }
6053 
6054 static int is_mddev_idle(mddev_t *mddev, int init)
6055 {
6056 	mdk_rdev_t * rdev;
6057 	int idle;
6058 	int curr_events;
6059 
6060 	idle = 1;
6061 	rcu_read_lock();
6062 	rdev_for_each_rcu(rdev, mddev) {
6063 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6064 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6065 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6066 			      atomic_read(&disk->sync_io);
6067 		/* sync IO will cause sync_io to increase before the disk_stats
6068 		 * as sync_io is counted when a request starts, and
6069 		 * disk_stats is counted when it completes.
6070 		 * So resync activity will cause curr_events to be smaller than
6071 		 * when there was no such activity.
6072 		 * non-sync IO will cause disk_stat to increase without
6073 		 * increasing sync_io so curr_events will (eventually)
6074 		 * be larger than it was before.  Once it becomes
6075 		 * substantially larger, the test below will cause
6076 		 * the array to appear non-idle, and resync will slow
6077 		 * down.
6078 		 * If there is a lot of outstanding resync activity when
6079 		 * we set last_event to curr_events, then all that activity
6080 		 * completing might cause the array to appear non-idle
6081 		 * and resync will be slowed down even though there might
6082 		 * not have been non-resync activity.  This will only
6083 		 * happen once though.  'last_events' will soon reflect
6084 		 * the state where there is little or no outstanding
6085 		 * resync requests, and further resync activity will
6086 		 * always make curr_events less than last_events.
6087 		 *
6088 		 */
6089 		if (init || curr_events - rdev->last_events > 64) {
6090 			rdev->last_events = curr_events;
6091 			idle = 0;
6092 		}
6093 	}
6094 	rcu_read_unlock();
6095 	return idle;
6096 }
6097 
6098 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6099 {
6100 	/* another "blocks" (512byte) blocks have been synced */
6101 	atomic_sub(blocks, &mddev->recovery_active);
6102 	wake_up(&mddev->recovery_wait);
6103 	if (!ok) {
6104 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6105 		md_wakeup_thread(mddev->thread);
6106 		// stop recovery, signal do_sync ....
6107 	}
6108 }
6109 
6110 
6111 /* md_write_start(mddev, bi)
6112  * If we need to update some array metadata (e.g. 'active' flag
6113  * in superblock) before writing, schedule a superblock update
6114  * and wait for it to complete.
6115  */
6116 void md_write_start(mddev_t *mddev, struct bio *bi)
6117 {
6118 	int did_change = 0;
6119 	if (bio_data_dir(bi) != WRITE)
6120 		return;
6121 
6122 	BUG_ON(mddev->ro == 1);
6123 	if (mddev->ro == 2) {
6124 		/* need to switch to read/write */
6125 		mddev->ro = 0;
6126 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6127 		md_wakeup_thread(mddev->thread);
6128 		md_wakeup_thread(mddev->sync_thread);
6129 		did_change = 1;
6130 	}
6131 	atomic_inc(&mddev->writes_pending);
6132 	if (mddev->safemode == 1)
6133 		mddev->safemode = 0;
6134 	if (mddev->in_sync) {
6135 		spin_lock_irq(&mddev->write_lock);
6136 		if (mddev->in_sync) {
6137 			mddev->in_sync = 0;
6138 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6139 			md_wakeup_thread(mddev->thread);
6140 			did_change = 1;
6141 		}
6142 		spin_unlock_irq(&mddev->write_lock);
6143 	}
6144 	if (did_change)
6145 		sysfs_notify_dirent(mddev->sysfs_state);
6146 	wait_event(mddev->sb_wait,
6147 		   !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6148 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6149 }
6150 
6151 void md_write_end(mddev_t *mddev)
6152 {
6153 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6154 		if (mddev->safemode == 2)
6155 			md_wakeup_thread(mddev->thread);
6156 		else if (mddev->safemode_delay)
6157 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6158 	}
6159 }
6160 
6161 /* md_allow_write(mddev)
6162  * Calling this ensures that the array is marked 'active' so that writes
6163  * may proceed without blocking.  It is important to call this before
6164  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6165  * Must be called with mddev_lock held.
6166  *
6167  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6168  * is dropped, so return -EAGAIN after notifying userspace.
6169  */
6170 int md_allow_write(mddev_t *mddev)
6171 {
6172 	if (!mddev->pers)
6173 		return 0;
6174 	if (mddev->ro)
6175 		return 0;
6176 	if (!mddev->pers->sync_request)
6177 		return 0;
6178 
6179 	spin_lock_irq(&mddev->write_lock);
6180 	if (mddev->in_sync) {
6181 		mddev->in_sync = 0;
6182 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6183 		if (mddev->safemode_delay &&
6184 		    mddev->safemode == 0)
6185 			mddev->safemode = 1;
6186 		spin_unlock_irq(&mddev->write_lock);
6187 		md_update_sb(mddev, 0);
6188 		sysfs_notify_dirent(mddev->sysfs_state);
6189 	} else
6190 		spin_unlock_irq(&mddev->write_lock);
6191 
6192 	if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6193 		return -EAGAIN;
6194 	else
6195 		return 0;
6196 }
6197 EXPORT_SYMBOL_GPL(md_allow_write);
6198 
6199 #define SYNC_MARKS	10
6200 #define	SYNC_MARK_STEP	(3*HZ)
6201 void md_do_sync(mddev_t *mddev)
6202 {
6203 	mddev_t *mddev2;
6204 	unsigned int currspeed = 0,
6205 		 window;
6206 	sector_t max_sectors,j, io_sectors;
6207 	unsigned long mark[SYNC_MARKS];
6208 	sector_t mark_cnt[SYNC_MARKS];
6209 	int last_mark,m;
6210 	struct list_head *tmp;
6211 	sector_t last_check;
6212 	int skipped = 0;
6213 	mdk_rdev_t *rdev;
6214 	char *desc;
6215 
6216 	/* just incase thread restarts... */
6217 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6218 		return;
6219 	if (mddev->ro) /* never try to sync a read-only array */
6220 		return;
6221 
6222 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6223 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6224 			desc = "data-check";
6225 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6226 			desc = "requested-resync";
6227 		else
6228 			desc = "resync";
6229 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6230 		desc = "reshape";
6231 	else
6232 		desc = "recovery";
6233 
6234 	/* we overload curr_resync somewhat here.
6235 	 * 0 == not engaged in resync at all
6236 	 * 2 == checking that there is no conflict with another sync
6237 	 * 1 == like 2, but have yielded to allow conflicting resync to
6238 	 *		commense
6239 	 * other == active in resync - this many blocks
6240 	 *
6241 	 * Before starting a resync we must have set curr_resync to
6242 	 * 2, and then checked that every "conflicting" array has curr_resync
6243 	 * less than ours.  When we find one that is the same or higher
6244 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6245 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6246 	 * This will mean we have to start checking from the beginning again.
6247 	 *
6248 	 */
6249 
6250 	do {
6251 		mddev->curr_resync = 2;
6252 
6253 	try_again:
6254 		if (kthread_should_stop()) {
6255 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6256 			goto skip;
6257 		}
6258 		for_each_mddev(mddev2, tmp) {
6259 			if (mddev2 == mddev)
6260 				continue;
6261 			if (!mddev->parallel_resync
6262 			&&  mddev2->curr_resync
6263 			&&  match_mddev_units(mddev, mddev2)) {
6264 				DEFINE_WAIT(wq);
6265 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6266 					/* arbitrarily yield */
6267 					mddev->curr_resync = 1;
6268 					wake_up(&resync_wait);
6269 				}
6270 				if (mddev > mddev2 && mddev->curr_resync == 1)
6271 					/* no need to wait here, we can wait the next
6272 					 * time 'round when curr_resync == 2
6273 					 */
6274 					continue;
6275 				/* We need to wait 'interruptible' so as not to
6276 				 * contribute to the load average, and not to
6277 				 * be caught by 'softlockup'
6278 				 */
6279 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6280 				if (!kthread_should_stop() &&
6281 				    mddev2->curr_resync >= mddev->curr_resync) {
6282 					printk(KERN_INFO "md: delaying %s of %s"
6283 					       " until %s has finished (they"
6284 					       " share one or more physical units)\n",
6285 					       desc, mdname(mddev), mdname(mddev2));
6286 					mddev_put(mddev2);
6287 					if (signal_pending(current))
6288 						flush_signals(current);
6289 					schedule();
6290 					finish_wait(&resync_wait, &wq);
6291 					goto try_again;
6292 				}
6293 				finish_wait(&resync_wait, &wq);
6294 			}
6295 		}
6296 	} while (mddev->curr_resync < 2);
6297 
6298 	j = 0;
6299 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6300 		/* resync follows the size requested by the personality,
6301 		 * which defaults to physical size, but can be virtual size
6302 		 */
6303 		max_sectors = mddev->resync_max_sectors;
6304 		mddev->resync_mismatches = 0;
6305 		/* we don't use the checkpoint if there's a bitmap */
6306 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6307 			j = mddev->resync_min;
6308 		else if (!mddev->bitmap)
6309 			j = mddev->recovery_cp;
6310 
6311 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6312 		max_sectors = mddev->dev_sectors;
6313 	else {
6314 		/* recovery follows the physical size of devices */
6315 		max_sectors = mddev->dev_sectors;
6316 		j = MaxSector;
6317 		list_for_each_entry(rdev, &mddev->disks, same_set)
6318 			if (rdev->raid_disk >= 0 &&
6319 			    !test_bit(Faulty, &rdev->flags) &&
6320 			    !test_bit(In_sync, &rdev->flags) &&
6321 			    rdev->recovery_offset < j)
6322 				j = rdev->recovery_offset;
6323 	}
6324 
6325 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6326 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6327 		" %d KB/sec/disk.\n", speed_min(mddev));
6328 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6329 	       "(but not more than %d KB/sec) for %s.\n",
6330 	       speed_max(mddev), desc);
6331 
6332 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6333 
6334 	io_sectors = 0;
6335 	for (m = 0; m < SYNC_MARKS; m++) {
6336 		mark[m] = jiffies;
6337 		mark_cnt[m] = io_sectors;
6338 	}
6339 	last_mark = 0;
6340 	mddev->resync_mark = mark[last_mark];
6341 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6342 
6343 	/*
6344 	 * Tune reconstruction:
6345 	 */
6346 	window = 32*(PAGE_SIZE/512);
6347 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6348 		window/2,(unsigned long long) max_sectors/2);
6349 
6350 	atomic_set(&mddev->recovery_active, 0);
6351 	last_check = 0;
6352 
6353 	if (j>2) {
6354 		printk(KERN_INFO
6355 		       "md: resuming %s of %s from checkpoint.\n",
6356 		       desc, mdname(mddev));
6357 		mddev->curr_resync = j;
6358 	}
6359 
6360 	while (j < max_sectors) {
6361 		sector_t sectors;
6362 
6363 		skipped = 0;
6364 
6365 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6366 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
6367 		      (mddev->curr_resync - mddev->curr_resync_completed)
6368 		      > (max_sectors >> 4)) ||
6369 		     (j - mddev->curr_resync_completed)*2
6370 		     >= mddev->resync_max - mddev->curr_resync_completed
6371 			    )) {
6372 			/* time to update curr_resync_completed */
6373 			blk_unplug(mddev->queue);
6374 			wait_event(mddev->recovery_wait,
6375 				   atomic_read(&mddev->recovery_active) == 0);
6376 			mddev->curr_resync_completed =
6377 				mddev->curr_resync;
6378 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6379 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6380 		}
6381 
6382 		if (j >= mddev->resync_max)
6383 			wait_event(mddev->recovery_wait,
6384 				   mddev->resync_max > j
6385 				   || kthread_should_stop());
6386 
6387 		if (kthread_should_stop())
6388 			goto interrupted;
6389 
6390 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6391 						  currspeed < speed_min(mddev));
6392 		if (sectors == 0) {
6393 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6394 			goto out;
6395 		}
6396 
6397 		if (!skipped) { /* actual IO requested */
6398 			io_sectors += sectors;
6399 			atomic_add(sectors, &mddev->recovery_active);
6400 		}
6401 
6402 		j += sectors;
6403 		if (j>1) mddev->curr_resync = j;
6404 		mddev->curr_mark_cnt = io_sectors;
6405 		if (last_check == 0)
6406 			/* this is the earliers that rebuilt will be
6407 			 * visible in /proc/mdstat
6408 			 */
6409 			md_new_event(mddev);
6410 
6411 		if (last_check + window > io_sectors || j == max_sectors)
6412 			continue;
6413 
6414 		last_check = io_sectors;
6415 
6416 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6417 			break;
6418 
6419 	repeat:
6420 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6421 			/* step marks */
6422 			int next = (last_mark+1) % SYNC_MARKS;
6423 
6424 			mddev->resync_mark = mark[next];
6425 			mddev->resync_mark_cnt = mark_cnt[next];
6426 			mark[next] = jiffies;
6427 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6428 			last_mark = next;
6429 		}
6430 
6431 
6432 		if (kthread_should_stop())
6433 			goto interrupted;
6434 
6435 
6436 		/*
6437 		 * this loop exits only if either when we are slower than
6438 		 * the 'hard' speed limit, or the system was IO-idle for
6439 		 * a jiffy.
6440 		 * the system might be non-idle CPU-wise, but we only care
6441 		 * about not overloading the IO subsystem. (things like an
6442 		 * e2fsck being done on the RAID array should execute fast)
6443 		 */
6444 		blk_unplug(mddev->queue);
6445 		cond_resched();
6446 
6447 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6448 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6449 
6450 		if (currspeed > speed_min(mddev)) {
6451 			if ((currspeed > speed_max(mddev)) ||
6452 					!is_mddev_idle(mddev, 0)) {
6453 				msleep(500);
6454 				goto repeat;
6455 			}
6456 		}
6457 	}
6458 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6459 	/*
6460 	 * this also signals 'finished resyncing' to md_stop
6461 	 */
6462  out:
6463 	blk_unplug(mddev->queue);
6464 
6465 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6466 
6467 	/* tell personality that we are finished */
6468 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6469 
6470 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6471 	    mddev->curr_resync > 2) {
6472 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6473 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6474 				if (mddev->curr_resync >= mddev->recovery_cp) {
6475 					printk(KERN_INFO
6476 					       "md: checkpointing %s of %s.\n",
6477 					       desc, mdname(mddev));
6478 					mddev->recovery_cp = mddev->curr_resync;
6479 				}
6480 			} else
6481 				mddev->recovery_cp = MaxSector;
6482 		} else {
6483 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6484 				mddev->curr_resync = MaxSector;
6485 			list_for_each_entry(rdev, &mddev->disks, same_set)
6486 				if (rdev->raid_disk >= 0 &&
6487 				    !test_bit(Faulty, &rdev->flags) &&
6488 				    !test_bit(In_sync, &rdev->flags) &&
6489 				    rdev->recovery_offset < mddev->curr_resync)
6490 					rdev->recovery_offset = mddev->curr_resync;
6491 		}
6492 	}
6493 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6494 
6495  skip:
6496 	mddev->curr_resync = 0;
6497 	mddev->curr_resync_completed = 0;
6498 	mddev->resync_min = 0;
6499 	mddev->resync_max = MaxSector;
6500 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6501 	wake_up(&resync_wait);
6502 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6503 	md_wakeup_thread(mddev->thread);
6504 	return;
6505 
6506  interrupted:
6507 	/*
6508 	 * got a signal, exit.
6509 	 */
6510 	printk(KERN_INFO
6511 	       "md: md_do_sync() got signal ... exiting\n");
6512 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6513 	goto out;
6514 
6515 }
6516 EXPORT_SYMBOL_GPL(md_do_sync);
6517 
6518 
6519 static int remove_and_add_spares(mddev_t *mddev)
6520 {
6521 	mdk_rdev_t *rdev;
6522 	int spares = 0;
6523 
6524 	mddev->curr_resync_completed = 0;
6525 
6526 	list_for_each_entry(rdev, &mddev->disks, same_set)
6527 		if (rdev->raid_disk >= 0 &&
6528 		    !test_bit(Blocked, &rdev->flags) &&
6529 		    (test_bit(Faulty, &rdev->flags) ||
6530 		     ! test_bit(In_sync, &rdev->flags)) &&
6531 		    atomic_read(&rdev->nr_pending)==0) {
6532 			if (mddev->pers->hot_remove_disk(
6533 				    mddev, rdev->raid_disk)==0) {
6534 				char nm[20];
6535 				sprintf(nm,"rd%d", rdev->raid_disk);
6536 				sysfs_remove_link(&mddev->kobj, nm);
6537 				rdev->raid_disk = -1;
6538 			}
6539 		}
6540 
6541 	if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6542 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6543 			if (rdev->raid_disk >= 0 &&
6544 			    !test_bit(In_sync, &rdev->flags) &&
6545 			    !test_bit(Blocked, &rdev->flags))
6546 				spares++;
6547 			if (rdev->raid_disk < 0
6548 			    && !test_bit(Faulty, &rdev->flags)) {
6549 				rdev->recovery_offset = 0;
6550 				if (mddev->pers->
6551 				    hot_add_disk(mddev, rdev) == 0) {
6552 					char nm[20];
6553 					sprintf(nm, "rd%d", rdev->raid_disk);
6554 					if (sysfs_create_link(&mddev->kobj,
6555 							      &rdev->kobj, nm))
6556 						printk(KERN_WARNING
6557 						       "md: cannot register "
6558 						       "%s for %s\n",
6559 						       nm, mdname(mddev));
6560 					spares++;
6561 					md_new_event(mddev);
6562 				} else
6563 					break;
6564 			}
6565 		}
6566 	}
6567 	return spares;
6568 }
6569 /*
6570  * This routine is regularly called by all per-raid-array threads to
6571  * deal with generic issues like resync and super-block update.
6572  * Raid personalities that don't have a thread (linear/raid0) do not
6573  * need this as they never do any recovery or update the superblock.
6574  *
6575  * It does not do any resync itself, but rather "forks" off other threads
6576  * to do that as needed.
6577  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6578  * "->recovery" and create a thread at ->sync_thread.
6579  * When the thread finishes it sets MD_RECOVERY_DONE
6580  * and wakeups up this thread which will reap the thread and finish up.
6581  * This thread also removes any faulty devices (with nr_pending == 0).
6582  *
6583  * The overall approach is:
6584  *  1/ if the superblock needs updating, update it.
6585  *  2/ If a recovery thread is running, don't do anything else.
6586  *  3/ If recovery has finished, clean up, possibly marking spares active.
6587  *  4/ If there are any faulty devices, remove them.
6588  *  5/ If array is degraded, try to add spares devices
6589  *  6/ If array has spares or is not in-sync, start a resync thread.
6590  */
6591 void md_check_recovery(mddev_t *mddev)
6592 {
6593 	mdk_rdev_t *rdev;
6594 
6595 
6596 	if (mddev->bitmap)
6597 		bitmap_daemon_work(mddev->bitmap);
6598 
6599 	if (mddev->ro)
6600 		return;
6601 
6602 	if (signal_pending(current)) {
6603 		if (mddev->pers->sync_request && !mddev->external) {
6604 			printk(KERN_INFO "md: %s in immediate safe mode\n",
6605 			       mdname(mddev));
6606 			mddev->safemode = 2;
6607 		}
6608 		flush_signals(current);
6609 	}
6610 
6611 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6612 		return;
6613 	if ( ! (
6614 		(mddev->flags && !mddev->external) ||
6615 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6616 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6617 		(mddev->external == 0 && mddev->safemode == 1) ||
6618 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6619 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6620 		))
6621 		return;
6622 
6623 	if (mddev_trylock(mddev)) {
6624 		int spares = 0;
6625 
6626 		if (mddev->ro) {
6627 			/* Only thing we do on a ro array is remove
6628 			 * failed devices.
6629 			 */
6630 			remove_and_add_spares(mddev);
6631 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6632 			goto unlock;
6633 		}
6634 
6635 		if (!mddev->external) {
6636 			int did_change = 0;
6637 			spin_lock_irq(&mddev->write_lock);
6638 			if (mddev->safemode &&
6639 			    !atomic_read(&mddev->writes_pending) &&
6640 			    !mddev->in_sync &&
6641 			    mddev->recovery_cp == MaxSector) {
6642 				mddev->in_sync = 1;
6643 				did_change = 1;
6644 				if (mddev->persistent)
6645 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6646 			}
6647 			if (mddev->safemode == 1)
6648 				mddev->safemode = 0;
6649 			spin_unlock_irq(&mddev->write_lock);
6650 			if (did_change)
6651 				sysfs_notify_dirent(mddev->sysfs_state);
6652 		}
6653 
6654 		if (mddev->flags)
6655 			md_update_sb(mddev, 0);
6656 
6657 		list_for_each_entry(rdev, &mddev->disks, same_set)
6658 			if (test_and_clear_bit(StateChanged, &rdev->flags))
6659 				sysfs_notify_dirent(rdev->sysfs_state);
6660 
6661 
6662 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6663 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6664 			/* resync/recovery still happening */
6665 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6666 			goto unlock;
6667 		}
6668 		if (mddev->sync_thread) {
6669 			/* resync has finished, collect result */
6670 			md_unregister_thread(mddev->sync_thread);
6671 			mddev->sync_thread = NULL;
6672 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6673 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6674 				/* success...*/
6675 				/* activate any spares */
6676 				if (mddev->pers->spare_active(mddev))
6677 					sysfs_notify(&mddev->kobj, NULL,
6678 						     "degraded");
6679 			}
6680 			if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6681 			    mddev->pers->finish_reshape)
6682 				mddev->pers->finish_reshape(mddev);
6683 			md_update_sb(mddev, 1);
6684 
6685 			/* if array is no-longer degraded, then any saved_raid_disk
6686 			 * information must be scrapped
6687 			 */
6688 			if (!mddev->degraded)
6689 				list_for_each_entry(rdev, &mddev->disks, same_set)
6690 					rdev->saved_raid_disk = -1;
6691 
6692 			mddev->recovery = 0;
6693 			/* flag recovery needed just to double check */
6694 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6695 			sysfs_notify_dirent(mddev->sysfs_action);
6696 			md_new_event(mddev);
6697 			goto unlock;
6698 		}
6699 		/* Set RUNNING before clearing NEEDED to avoid
6700 		 * any transients in the value of "sync_action".
6701 		 */
6702 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6703 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6704 		/* Clear some bits that don't mean anything, but
6705 		 * might be left set
6706 		 */
6707 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6708 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6709 
6710 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6711 			goto unlock;
6712 		/* no recovery is running.
6713 		 * remove any failed drives, then
6714 		 * add spares if possible.
6715 		 * Spare are also removed and re-added, to allow
6716 		 * the personality to fail the re-add.
6717 		 */
6718 
6719 		if (mddev->reshape_position != MaxSector) {
6720 			if (mddev->pers->check_reshape(mddev) != 0)
6721 				/* Cannot proceed */
6722 				goto unlock;
6723 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6724 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6725 		} else if ((spares = remove_and_add_spares(mddev))) {
6726 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6727 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6728 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6729 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6730 		} else if (mddev->recovery_cp < MaxSector) {
6731 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6732 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6733 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6734 			/* nothing to be done ... */
6735 			goto unlock;
6736 
6737 		if (mddev->pers->sync_request) {
6738 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6739 				/* We are adding a device or devices to an array
6740 				 * which has the bitmap stored on all devices.
6741 				 * So make sure all bitmap pages get written
6742 				 */
6743 				bitmap_write_all(mddev->bitmap);
6744 			}
6745 			mddev->sync_thread = md_register_thread(md_do_sync,
6746 								mddev,
6747 								"%s_resync");
6748 			if (!mddev->sync_thread) {
6749 				printk(KERN_ERR "%s: could not start resync"
6750 					" thread...\n",
6751 					mdname(mddev));
6752 				/* leave the spares where they are, it shouldn't hurt */
6753 				mddev->recovery = 0;
6754 			} else
6755 				md_wakeup_thread(mddev->sync_thread);
6756 			sysfs_notify_dirent(mddev->sysfs_action);
6757 			md_new_event(mddev);
6758 		}
6759 	unlock:
6760 		if (!mddev->sync_thread) {
6761 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6762 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6763 					       &mddev->recovery))
6764 				if (mddev->sysfs_action)
6765 					sysfs_notify_dirent(mddev->sysfs_action);
6766 		}
6767 		mddev_unlock(mddev);
6768 	}
6769 }
6770 
6771 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6772 {
6773 	sysfs_notify_dirent(rdev->sysfs_state);
6774 	wait_event_timeout(rdev->blocked_wait,
6775 			   !test_bit(Blocked, &rdev->flags),
6776 			   msecs_to_jiffies(5000));
6777 	rdev_dec_pending(rdev, mddev);
6778 }
6779 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6780 
6781 static int md_notify_reboot(struct notifier_block *this,
6782 			    unsigned long code, void *x)
6783 {
6784 	struct list_head *tmp;
6785 	mddev_t *mddev;
6786 
6787 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6788 
6789 		printk(KERN_INFO "md: stopping all md devices.\n");
6790 
6791 		for_each_mddev(mddev, tmp)
6792 			if (mddev_trylock(mddev)) {
6793 				/* Force a switch to readonly even array
6794 				 * appears to still be in use.  Hence
6795 				 * the '100'.
6796 				 */
6797 				do_md_stop(mddev, 1, 100);
6798 				mddev_unlock(mddev);
6799 			}
6800 		/*
6801 		 * certain more exotic SCSI devices are known to be
6802 		 * volatile wrt too early system reboots. While the
6803 		 * right place to handle this issue is the given
6804 		 * driver, we do want to have a safe RAID driver ...
6805 		 */
6806 		mdelay(1000*1);
6807 	}
6808 	return NOTIFY_DONE;
6809 }
6810 
6811 static struct notifier_block md_notifier = {
6812 	.notifier_call	= md_notify_reboot,
6813 	.next		= NULL,
6814 	.priority	= INT_MAX, /* before any real devices */
6815 };
6816 
6817 static void md_geninit(void)
6818 {
6819 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6820 
6821 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6822 }
6823 
6824 static int __init md_init(void)
6825 {
6826 	if (register_blkdev(MD_MAJOR, "md"))
6827 		return -1;
6828 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6829 		unregister_blkdev(MD_MAJOR, "md");
6830 		return -1;
6831 	}
6832 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
6833 			    md_probe, NULL, NULL);
6834 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6835 			    md_probe, NULL, NULL);
6836 
6837 	register_reboot_notifier(&md_notifier);
6838 	raid_table_header = register_sysctl_table(raid_root_table);
6839 
6840 	md_geninit();
6841 	return 0;
6842 }
6843 
6844 
6845 #ifndef MODULE
6846 
6847 /*
6848  * Searches all registered partitions for autorun RAID arrays
6849  * at boot time.
6850  */
6851 
6852 static LIST_HEAD(all_detected_devices);
6853 struct detected_devices_node {
6854 	struct list_head list;
6855 	dev_t dev;
6856 };
6857 
6858 void md_autodetect_dev(dev_t dev)
6859 {
6860 	struct detected_devices_node *node_detected_dev;
6861 
6862 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6863 	if (node_detected_dev) {
6864 		node_detected_dev->dev = dev;
6865 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
6866 	} else {
6867 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6868 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6869 	}
6870 }
6871 
6872 
6873 static void autostart_arrays(int part)
6874 {
6875 	mdk_rdev_t *rdev;
6876 	struct detected_devices_node *node_detected_dev;
6877 	dev_t dev;
6878 	int i_scanned, i_passed;
6879 
6880 	i_scanned = 0;
6881 	i_passed = 0;
6882 
6883 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6884 
6885 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6886 		i_scanned++;
6887 		node_detected_dev = list_entry(all_detected_devices.next,
6888 					struct detected_devices_node, list);
6889 		list_del(&node_detected_dev->list);
6890 		dev = node_detected_dev->dev;
6891 		kfree(node_detected_dev);
6892 		rdev = md_import_device(dev,0, 90);
6893 		if (IS_ERR(rdev))
6894 			continue;
6895 
6896 		if (test_bit(Faulty, &rdev->flags)) {
6897 			MD_BUG();
6898 			continue;
6899 		}
6900 		set_bit(AutoDetected, &rdev->flags);
6901 		list_add(&rdev->same_set, &pending_raid_disks);
6902 		i_passed++;
6903 	}
6904 
6905 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6906 						i_scanned, i_passed);
6907 
6908 	autorun_devices(part);
6909 }
6910 
6911 #endif /* !MODULE */
6912 
6913 static __exit void md_exit(void)
6914 {
6915 	mddev_t *mddev;
6916 	struct list_head *tmp;
6917 
6918 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
6919 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6920 
6921 	unregister_blkdev(MD_MAJOR,"md");
6922 	unregister_blkdev(mdp_major, "mdp");
6923 	unregister_reboot_notifier(&md_notifier);
6924 	unregister_sysctl_table(raid_table_header);
6925 	remove_proc_entry("mdstat", NULL);
6926 	for_each_mddev(mddev, tmp) {
6927 		export_array(mddev);
6928 		mddev->hold_active = 0;
6929 	}
6930 }
6931 
6932 subsys_initcall(md_init);
6933 module_exit(md_exit)
6934 
6935 static int get_ro(char *buffer, struct kernel_param *kp)
6936 {
6937 	return sprintf(buffer, "%d", start_readonly);
6938 }
6939 static int set_ro(const char *val, struct kernel_param *kp)
6940 {
6941 	char *e;
6942 	int num = simple_strtoul(val, &e, 10);
6943 	if (*val && (*e == '\0' || *e == '\n')) {
6944 		start_readonly = num;
6945 		return 0;
6946 	}
6947 	return -EINVAL;
6948 }
6949 
6950 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6951 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6952 
6953 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6954 
6955 EXPORT_SYMBOL(register_md_personality);
6956 EXPORT_SYMBOL(unregister_md_personality);
6957 EXPORT_SYMBOL(md_error);
6958 EXPORT_SYMBOL(md_done_sync);
6959 EXPORT_SYMBOL(md_write_start);
6960 EXPORT_SYMBOL(md_write_end);
6961 EXPORT_SYMBOL(md_register_thread);
6962 EXPORT_SYMBOL(md_unregister_thread);
6963 EXPORT_SYMBOL(md_wakeup_thread);
6964 EXPORT_SYMBOL(md_check_recovery);
6965 MODULE_LICENSE("GPL");
6966 MODULE_ALIAS("md");
6967 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
6968