xref: /openbmc/linux/drivers/md/md.c (revision 80483c3a)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/badblocks.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57 #include "md-cluster.h"
58 
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62 
63 /* pers_list is a list of registered personalities protected
64  * by pers_lock.
65  * pers_lock does extra service to protect accesses to
66  * mddev->thread when the mutex cannot be held.
67  */
68 static LIST_HEAD(pers_list);
69 static DEFINE_SPINLOCK(pers_lock);
70 
71 struct md_cluster_operations *md_cluster_ops;
72 EXPORT_SYMBOL(md_cluster_ops);
73 struct module *md_cluster_mod;
74 EXPORT_SYMBOL(md_cluster_mod);
75 
76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
77 static struct workqueue_struct *md_wq;
78 static struct workqueue_struct *md_misc_wq;
79 
80 static int remove_and_add_spares(struct mddev *mddev,
81 				 struct md_rdev *this);
82 static void mddev_detach(struct mddev *mddev);
83 
84 /*
85  * Default number of read corrections we'll attempt on an rdev
86  * before ejecting it from the array. We divide the read error
87  * count by 2 for every hour elapsed between read errors.
88  */
89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
90 /*
91  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
92  * is 1000 KB/sec, so the extra system load does not show up that much.
93  * Increase it if you want to have more _guaranteed_ speed. Note that
94  * the RAID driver will use the maximum available bandwidth if the IO
95  * subsystem is idle. There is also an 'absolute maximum' reconstruction
96  * speed limit - in case reconstruction slows down your system despite
97  * idle IO detection.
98  *
99  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
100  * or /sys/block/mdX/md/sync_speed_{min,max}
101  */
102 
103 static int sysctl_speed_limit_min = 1000;
104 static int sysctl_speed_limit_max = 200000;
105 static inline int speed_min(struct mddev *mddev)
106 {
107 	return mddev->sync_speed_min ?
108 		mddev->sync_speed_min : sysctl_speed_limit_min;
109 }
110 
111 static inline int speed_max(struct mddev *mddev)
112 {
113 	return mddev->sync_speed_max ?
114 		mddev->sync_speed_max : sysctl_speed_limit_max;
115 }
116 
117 static struct ctl_table_header *raid_table_header;
118 
119 static struct ctl_table raid_table[] = {
120 	{
121 		.procname	= "speed_limit_min",
122 		.data		= &sysctl_speed_limit_min,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{
128 		.procname	= "speed_limit_max",
129 		.data		= &sysctl_speed_limit_max,
130 		.maxlen		= sizeof(int),
131 		.mode		= S_IRUGO|S_IWUSR,
132 		.proc_handler	= proc_dointvec,
133 	},
134 	{ }
135 };
136 
137 static struct ctl_table raid_dir_table[] = {
138 	{
139 		.procname	= "raid",
140 		.maxlen		= 0,
141 		.mode		= S_IRUGO|S_IXUGO,
142 		.child		= raid_table,
143 	},
144 	{ }
145 };
146 
147 static struct ctl_table raid_root_table[] = {
148 	{
149 		.procname	= "dev",
150 		.maxlen		= 0,
151 		.mode		= 0555,
152 		.child		= raid_dir_table,
153 	},
154 	{  }
155 };
156 
157 static const struct block_device_operations md_fops;
158 
159 static int start_readonly;
160 
161 /* bio_clone_mddev
162  * like bio_clone, but with a local bio set
163  */
164 
165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 			    struct mddev *mddev)
167 {
168 	struct bio *b;
169 
170 	if (!mddev || !mddev->bio_set)
171 		return bio_alloc(gfp_mask, nr_iovecs);
172 
173 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 	if (!b)
175 		return NULL;
176 	return b;
177 }
178 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
179 
180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
181 			    struct mddev *mddev)
182 {
183 	if (!mddev || !mddev->bio_set)
184 		return bio_clone(bio, gfp_mask);
185 
186 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
187 }
188 EXPORT_SYMBOL_GPL(bio_clone_mddev);
189 
190 /*
191  * We have a system wide 'event count' that is incremented
192  * on any 'interesting' event, and readers of /proc/mdstat
193  * can use 'poll' or 'select' to find out when the event
194  * count increases.
195  *
196  * Events are:
197  *  start array, stop array, error, add device, remove device,
198  *  start build, activate spare
199  */
200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
201 static atomic_t md_event_count;
202 void md_new_event(struct mddev *mddev)
203 {
204 	atomic_inc(&md_event_count);
205 	wake_up(&md_event_waiters);
206 }
207 EXPORT_SYMBOL_GPL(md_new_event);
208 
209 /*
210  * Enables to iterate over all existing md arrays
211  * all_mddevs_lock protects this list.
212  */
213 static LIST_HEAD(all_mddevs);
214 static DEFINE_SPINLOCK(all_mddevs_lock);
215 
216 /*
217  * iterates through all used mddevs in the system.
218  * We take care to grab the all_mddevs_lock whenever navigating
219  * the list, and to always hold a refcount when unlocked.
220  * Any code which breaks out of this loop while own
221  * a reference to the current mddev and must mddev_put it.
222  */
223 #define for_each_mddev(_mddev,_tmp)					\
224 									\
225 	for (({ spin_lock(&all_mddevs_lock);				\
226 		_tmp = all_mddevs.next;					\
227 		_mddev = NULL;});					\
228 	     ({ if (_tmp != &all_mddevs)				\
229 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
230 		spin_unlock(&all_mddevs_lock);				\
231 		if (_mddev) mddev_put(_mddev);				\
232 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
233 		_tmp != &all_mddevs;});					\
234 	     ({ spin_lock(&all_mddevs_lock);				\
235 		_tmp = _tmp->next;})					\
236 		)
237 
238 /* Rather than calling directly into the personality make_request function,
239  * IO requests come here first so that we can check if the device is
240  * being suspended pending a reconfiguration.
241  * We hold a refcount over the call to ->make_request.  By the time that
242  * call has finished, the bio has been linked into some internal structure
243  * and so is visible to ->quiesce(), so we don't need the refcount any more.
244  */
245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
246 {
247 	const int rw = bio_data_dir(bio);
248 	struct mddev *mddev = q->queuedata;
249 	unsigned int sectors;
250 	int cpu;
251 
252 	blk_queue_split(q, &bio, q->bio_split);
253 
254 	if (mddev == NULL || mddev->pers == NULL) {
255 		bio_io_error(bio);
256 		return BLK_QC_T_NONE;
257 	}
258 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 		if (bio_sectors(bio) != 0)
260 			bio->bi_error = -EROFS;
261 		bio_endio(bio);
262 		return BLK_QC_T_NONE;
263 	}
264 	smp_rmb(); /* Ensure implications of  'active' are visible */
265 	rcu_read_lock();
266 	if (mddev->suspended) {
267 		DEFINE_WAIT(__wait);
268 		for (;;) {
269 			prepare_to_wait(&mddev->sb_wait, &__wait,
270 					TASK_UNINTERRUPTIBLE);
271 			if (!mddev->suspended)
272 				break;
273 			rcu_read_unlock();
274 			schedule();
275 			rcu_read_lock();
276 		}
277 		finish_wait(&mddev->sb_wait, &__wait);
278 	}
279 	atomic_inc(&mddev->active_io);
280 	rcu_read_unlock();
281 
282 	/*
283 	 * save the sectors now since our bio can
284 	 * go away inside make_request
285 	 */
286 	sectors = bio_sectors(bio);
287 	/* bio could be mergeable after passing to underlayer */
288 	bio->bi_opf &= ~REQ_NOMERGE;
289 	mddev->pers->make_request(mddev, bio);
290 
291 	cpu = part_stat_lock();
292 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
293 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
294 	part_stat_unlock();
295 
296 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
297 		wake_up(&mddev->sb_wait);
298 
299 	return BLK_QC_T_NONE;
300 }
301 
302 /* mddev_suspend makes sure no new requests are submitted
303  * to the device, and that any requests that have been submitted
304  * are completely handled.
305  * Once mddev_detach() is called and completes, the module will be
306  * completely unused.
307  */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 	WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
311 	if (mddev->suspended++)
312 		return;
313 	synchronize_rcu();
314 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315 	mddev->pers->quiesce(mddev, 1);
316 
317 	del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320 
321 void mddev_resume(struct mddev *mddev)
322 {
323 	if (--mddev->suspended)
324 		return;
325 	wake_up(&mddev->sb_wait);
326 	mddev->pers->quiesce(mddev, 0);
327 
328 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
329 	md_wakeup_thread(mddev->thread);
330 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
331 }
332 EXPORT_SYMBOL_GPL(mddev_resume);
333 
334 int mddev_congested(struct mddev *mddev, int bits)
335 {
336 	struct md_personality *pers = mddev->pers;
337 	int ret = 0;
338 
339 	rcu_read_lock();
340 	if (mddev->suspended)
341 		ret = 1;
342 	else if (pers && pers->congested)
343 		ret = pers->congested(mddev, bits);
344 	rcu_read_unlock();
345 	return ret;
346 }
347 EXPORT_SYMBOL_GPL(mddev_congested);
348 static int md_congested(void *data, int bits)
349 {
350 	struct mddev *mddev = data;
351 	return mddev_congested(mddev, bits);
352 }
353 
354 /*
355  * Generic flush handling for md
356  */
357 
358 static void md_end_flush(struct bio *bio)
359 {
360 	struct md_rdev *rdev = bio->bi_private;
361 	struct mddev *mddev = rdev->mddev;
362 
363 	rdev_dec_pending(rdev, mddev);
364 
365 	if (atomic_dec_and_test(&mddev->flush_pending)) {
366 		/* The pre-request flush has finished */
367 		queue_work(md_wq, &mddev->flush_work);
368 	}
369 	bio_put(bio);
370 }
371 
372 static void md_submit_flush_data(struct work_struct *ws);
373 
374 static void submit_flushes(struct work_struct *ws)
375 {
376 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
377 	struct md_rdev *rdev;
378 
379 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
380 	atomic_set(&mddev->flush_pending, 1);
381 	rcu_read_lock();
382 	rdev_for_each_rcu(rdev, mddev)
383 		if (rdev->raid_disk >= 0 &&
384 		    !test_bit(Faulty, &rdev->flags)) {
385 			/* Take two references, one is dropped
386 			 * when request finishes, one after
387 			 * we reclaim rcu_read_lock
388 			 */
389 			struct bio *bi;
390 			atomic_inc(&rdev->nr_pending);
391 			atomic_inc(&rdev->nr_pending);
392 			rcu_read_unlock();
393 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
394 			bi->bi_end_io = md_end_flush;
395 			bi->bi_private = rdev;
396 			bi->bi_bdev = rdev->bdev;
397 			bio_set_op_attrs(bi, REQ_OP_WRITE, WRITE_FLUSH);
398 			atomic_inc(&mddev->flush_pending);
399 			submit_bio(bi);
400 			rcu_read_lock();
401 			rdev_dec_pending(rdev, mddev);
402 		}
403 	rcu_read_unlock();
404 	if (atomic_dec_and_test(&mddev->flush_pending))
405 		queue_work(md_wq, &mddev->flush_work);
406 }
407 
408 static void md_submit_flush_data(struct work_struct *ws)
409 {
410 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
411 	struct bio *bio = mddev->flush_bio;
412 
413 	if (bio->bi_iter.bi_size == 0)
414 		/* an empty barrier - all done */
415 		bio_endio(bio);
416 	else {
417 		bio->bi_opf &= ~REQ_PREFLUSH;
418 		mddev->pers->make_request(mddev, bio);
419 	}
420 
421 	mddev->flush_bio = NULL;
422 	wake_up(&mddev->sb_wait);
423 }
424 
425 void md_flush_request(struct mddev *mddev, struct bio *bio)
426 {
427 	spin_lock_irq(&mddev->lock);
428 	wait_event_lock_irq(mddev->sb_wait,
429 			    !mddev->flush_bio,
430 			    mddev->lock);
431 	mddev->flush_bio = bio;
432 	spin_unlock_irq(&mddev->lock);
433 
434 	INIT_WORK(&mddev->flush_work, submit_flushes);
435 	queue_work(md_wq, &mddev->flush_work);
436 }
437 EXPORT_SYMBOL(md_flush_request);
438 
439 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
440 {
441 	struct mddev *mddev = cb->data;
442 	md_wakeup_thread(mddev->thread);
443 	kfree(cb);
444 }
445 EXPORT_SYMBOL(md_unplug);
446 
447 static inline struct mddev *mddev_get(struct mddev *mddev)
448 {
449 	atomic_inc(&mddev->active);
450 	return mddev;
451 }
452 
453 static void mddev_delayed_delete(struct work_struct *ws);
454 
455 static void mddev_put(struct mddev *mddev)
456 {
457 	struct bio_set *bs = NULL;
458 
459 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
460 		return;
461 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
462 	    mddev->ctime == 0 && !mddev->hold_active) {
463 		/* Array is not configured at all, and not held active,
464 		 * so destroy it */
465 		list_del_init(&mddev->all_mddevs);
466 		bs = mddev->bio_set;
467 		mddev->bio_set = NULL;
468 		if (mddev->gendisk) {
469 			/* We did a probe so need to clean up.  Call
470 			 * queue_work inside the spinlock so that
471 			 * flush_workqueue() after mddev_find will
472 			 * succeed in waiting for the work to be done.
473 			 */
474 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
475 			queue_work(md_misc_wq, &mddev->del_work);
476 		} else
477 			kfree(mddev);
478 	}
479 	spin_unlock(&all_mddevs_lock);
480 	if (bs)
481 		bioset_free(bs);
482 }
483 
484 static void md_safemode_timeout(unsigned long data);
485 
486 void mddev_init(struct mddev *mddev)
487 {
488 	mutex_init(&mddev->open_mutex);
489 	mutex_init(&mddev->reconfig_mutex);
490 	mutex_init(&mddev->bitmap_info.mutex);
491 	INIT_LIST_HEAD(&mddev->disks);
492 	INIT_LIST_HEAD(&mddev->all_mddevs);
493 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
494 		    (unsigned long) mddev);
495 	atomic_set(&mddev->active, 1);
496 	atomic_set(&mddev->openers, 0);
497 	atomic_set(&mddev->active_io, 0);
498 	spin_lock_init(&mddev->lock);
499 	atomic_set(&mddev->flush_pending, 0);
500 	init_waitqueue_head(&mddev->sb_wait);
501 	init_waitqueue_head(&mddev->recovery_wait);
502 	mddev->reshape_position = MaxSector;
503 	mddev->reshape_backwards = 0;
504 	mddev->last_sync_action = "none";
505 	mddev->resync_min = 0;
506 	mddev->resync_max = MaxSector;
507 	mddev->level = LEVEL_NONE;
508 }
509 EXPORT_SYMBOL_GPL(mddev_init);
510 
511 static struct mddev *mddev_find(dev_t unit)
512 {
513 	struct mddev *mddev, *new = NULL;
514 
515 	if (unit && MAJOR(unit) != MD_MAJOR)
516 		unit &= ~((1<<MdpMinorShift)-1);
517 
518  retry:
519 	spin_lock(&all_mddevs_lock);
520 
521 	if (unit) {
522 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
523 			if (mddev->unit == unit) {
524 				mddev_get(mddev);
525 				spin_unlock(&all_mddevs_lock);
526 				kfree(new);
527 				return mddev;
528 			}
529 
530 		if (new) {
531 			list_add(&new->all_mddevs, &all_mddevs);
532 			spin_unlock(&all_mddevs_lock);
533 			new->hold_active = UNTIL_IOCTL;
534 			return new;
535 		}
536 	} else if (new) {
537 		/* find an unused unit number */
538 		static int next_minor = 512;
539 		int start = next_minor;
540 		int is_free = 0;
541 		int dev = 0;
542 		while (!is_free) {
543 			dev = MKDEV(MD_MAJOR, next_minor);
544 			next_minor++;
545 			if (next_minor > MINORMASK)
546 				next_minor = 0;
547 			if (next_minor == start) {
548 				/* Oh dear, all in use. */
549 				spin_unlock(&all_mddevs_lock);
550 				kfree(new);
551 				return NULL;
552 			}
553 
554 			is_free = 1;
555 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
556 				if (mddev->unit == dev) {
557 					is_free = 0;
558 					break;
559 				}
560 		}
561 		new->unit = dev;
562 		new->md_minor = MINOR(dev);
563 		new->hold_active = UNTIL_STOP;
564 		list_add(&new->all_mddevs, &all_mddevs);
565 		spin_unlock(&all_mddevs_lock);
566 		return new;
567 	}
568 	spin_unlock(&all_mddevs_lock);
569 
570 	new = kzalloc(sizeof(*new), GFP_KERNEL);
571 	if (!new)
572 		return NULL;
573 
574 	new->unit = unit;
575 	if (MAJOR(unit) == MD_MAJOR)
576 		new->md_minor = MINOR(unit);
577 	else
578 		new->md_minor = MINOR(unit) >> MdpMinorShift;
579 
580 	mddev_init(new);
581 
582 	goto retry;
583 }
584 
585 static struct attribute_group md_redundancy_group;
586 
587 void mddev_unlock(struct mddev *mddev)
588 {
589 	if (mddev->to_remove) {
590 		/* These cannot be removed under reconfig_mutex as
591 		 * an access to the files will try to take reconfig_mutex
592 		 * while holding the file unremovable, which leads to
593 		 * a deadlock.
594 		 * So hold set sysfs_active while the remove in happeing,
595 		 * and anything else which might set ->to_remove or my
596 		 * otherwise change the sysfs namespace will fail with
597 		 * -EBUSY if sysfs_active is still set.
598 		 * We set sysfs_active under reconfig_mutex and elsewhere
599 		 * test it under the same mutex to ensure its correct value
600 		 * is seen.
601 		 */
602 		struct attribute_group *to_remove = mddev->to_remove;
603 		mddev->to_remove = NULL;
604 		mddev->sysfs_active = 1;
605 		mutex_unlock(&mddev->reconfig_mutex);
606 
607 		if (mddev->kobj.sd) {
608 			if (to_remove != &md_redundancy_group)
609 				sysfs_remove_group(&mddev->kobj, to_remove);
610 			if (mddev->pers == NULL ||
611 			    mddev->pers->sync_request == NULL) {
612 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
613 				if (mddev->sysfs_action)
614 					sysfs_put(mddev->sysfs_action);
615 				mddev->sysfs_action = NULL;
616 			}
617 		}
618 		mddev->sysfs_active = 0;
619 	} else
620 		mutex_unlock(&mddev->reconfig_mutex);
621 
622 	/* As we've dropped the mutex we need a spinlock to
623 	 * make sure the thread doesn't disappear
624 	 */
625 	spin_lock(&pers_lock);
626 	md_wakeup_thread(mddev->thread);
627 	spin_unlock(&pers_lock);
628 }
629 EXPORT_SYMBOL_GPL(mddev_unlock);
630 
631 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
632 {
633 	struct md_rdev *rdev;
634 
635 	rdev_for_each_rcu(rdev, mddev)
636 		if (rdev->desc_nr == nr)
637 			return rdev;
638 
639 	return NULL;
640 }
641 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
642 
643 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
644 {
645 	struct md_rdev *rdev;
646 
647 	rdev_for_each(rdev, mddev)
648 		if (rdev->bdev->bd_dev == dev)
649 			return rdev;
650 
651 	return NULL;
652 }
653 
654 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
655 {
656 	struct md_rdev *rdev;
657 
658 	rdev_for_each_rcu(rdev, mddev)
659 		if (rdev->bdev->bd_dev == dev)
660 			return rdev;
661 
662 	return NULL;
663 }
664 
665 static struct md_personality *find_pers(int level, char *clevel)
666 {
667 	struct md_personality *pers;
668 	list_for_each_entry(pers, &pers_list, list) {
669 		if (level != LEVEL_NONE && pers->level == level)
670 			return pers;
671 		if (strcmp(pers->name, clevel)==0)
672 			return pers;
673 	}
674 	return NULL;
675 }
676 
677 /* return the offset of the super block in 512byte sectors */
678 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
679 {
680 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
681 	return MD_NEW_SIZE_SECTORS(num_sectors);
682 }
683 
684 static int alloc_disk_sb(struct md_rdev *rdev)
685 {
686 	rdev->sb_page = alloc_page(GFP_KERNEL);
687 	if (!rdev->sb_page) {
688 		printk(KERN_ALERT "md: out of memory.\n");
689 		return -ENOMEM;
690 	}
691 
692 	return 0;
693 }
694 
695 void md_rdev_clear(struct md_rdev *rdev)
696 {
697 	if (rdev->sb_page) {
698 		put_page(rdev->sb_page);
699 		rdev->sb_loaded = 0;
700 		rdev->sb_page = NULL;
701 		rdev->sb_start = 0;
702 		rdev->sectors = 0;
703 	}
704 	if (rdev->bb_page) {
705 		put_page(rdev->bb_page);
706 		rdev->bb_page = NULL;
707 	}
708 	badblocks_exit(&rdev->badblocks);
709 }
710 EXPORT_SYMBOL_GPL(md_rdev_clear);
711 
712 static void super_written(struct bio *bio)
713 {
714 	struct md_rdev *rdev = bio->bi_private;
715 	struct mddev *mddev = rdev->mddev;
716 
717 	if (bio->bi_error) {
718 		printk("md: super_written gets error=%d\n", bio->bi_error);
719 		md_error(mddev, rdev);
720 	}
721 
722 	if (atomic_dec_and_test(&mddev->pending_writes))
723 		wake_up(&mddev->sb_wait);
724 	rdev_dec_pending(rdev, mddev);
725 	bio_put(bio);
726 }
727 
728 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
729 		   sector_t sector, int size, struct page *page)
730 {
731 	/* write first size bytes of page to sector of rdev
732 	 * Increment mddev->pending_writes before returning
733 	 * and decrement it on completion, waking up sb_wait
734 	 * if zero is reached.
735 	 * If an error occurred, call md_error
736 	 */
737 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
738 
739 	atomic_inc(&rdev->nr_pending);
740 
741 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
742 	bio->bi_iter.bi_sector = sector;
743 	bio_add_page(bio, page, size, 0);
744 	bio->bi_private = rdev;
745 	bio->bi_end_io = super_written;
746 	bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH_FUA);
747 
748 	atomic_inc(&mddev->pending_writes);
749 	submit_bio(bio);
750 }
751 
752 void md_super_wait(struct mddev *mddev)
753 {
754 	/* wait for all superblock writes that were scheduled to complete */
755 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
756 }
757 
758 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
759 		 struct page *page, int op, int op_flags, bool metadata_op)
760 {
761 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
762 	int ret;
763 
764 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
765 		rdev->meta_bdev : rdev->bdev;
766 	bio_set_op_attrs(bio, op, op_flags);
767 	if (metadata_op)
768 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
769 	else if (rdev->mddev->reshape_position != MaxSector &&
770 		 (rdev->mddev->reshape_backwards ==
771 		  (sector >= rdev->mddev->reshape_position)))
772 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
773 	else
774 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
775 	bio_add_page(bio, page, size, 0);
776 
777 	submit_bio_wait(bio);
778 
779 	ret = !bio->bi_error;
780 	bio_put(bio);
781 	return ret;
782 }
783 EXPORT_SYMBOL_GPL(sync_page_io);
784 
785 static int read_disk_sb(struct md_rdev *rdev, int size)
786 {
787 	char b[BDEVNAME_SIZE];
788 
789 	if (rdev->sb_loaded)
790 		return 0;
791 
792 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
793 		goto fail;
794 	rdev->sb_loaded = 1;
795 	return 0;
796 
797 fail:
798 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
799 		bdevname(rdev->bdev,b));
800 	return -EINVAL;
801 }
802 
803 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
804 {
805 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
806 		sb1->set_uuid1 == sb2->set_uuid1 &&
807 		sb1->set_uuid2 == sb2->set_uuid2 &&
808 		sb1->set_uuid3 == sb2->set_uuid3;
809 }
810 
811 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
812 {
813 	int ret;
814 	mdp_super_t *tmp1, *tmp2;
815 
816 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
817 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
818 
819 	if (!tmp1 || !tmp2) {
820 		ret = 0;
821 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
822 		goto abort;
823 	}
824 
825 	*tmp1 = *sb1;
826 	*tmp2 = *sb2;
827 
828 	/*
829 	 * nr_disks is not constant
830 	 */
831 	tmp1->nr_disks = 0;
832 	tmp2->nr_disks = 0;
833 
834 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
835 abort:
836 	kfree(tmp1);
837 	kfree(tmp2);
838 	return ret;
839 }
840 
841 static u32 md_csum_fold(u32 csum)
842 {
843 	csum = (csum & 0xffff) + (csum >> 16);
844 	return (csum & 0xffff) + (csum >> 16);
845 }
846 
847 static unsigned int calc_sb_csum(mdp_super_t *sb)
848 {
849 	u64 newcsum = 0;
850 	u32 *sb32 = (u32*)sb;
851 	int i;
852 	unsigned int disk_csum, csum;
853 
854 	disk_csum = sb->sb_csum;
855 	sb->sb_csum = 0;
856 
857 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
858 		newcsum += sb32[i];
859 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
860 
861 #ifdef CONFIG_ALPHA
862 	/* This used to use csum_partial, which was wrong for several
863 	 * reasons including that different results are returned on
864 	 * different architectures.  It isn't critical that we get exactly
865 	 * the same return value as before (we always csum_fold before
866 	 * testing, and that removes any differences).  However as we
867 	 * know that csum_partial always returned a 16bit value on
868 	 * alphas, do a fold to maximise conformity to previous behaviour.
869 	 */
870 	sb->sb_csum = md_csum_fold(disk_csum);
871 #else
872 	sb->sb_csum = disk_csum;
873 #endif
874 	return csum;
875 }
876 
877 /*
878  * Handle superblock details.
879  * We want to be able to handle multiple superblock formats
880  * so we have a common interface to them all, and an array of
881  * different handlers.
882  * We rely on user-space to write the initial superblock, and support
883  * reading and updating of superblocks.
884  * Interface methods are:
885  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
886  *      loads and validates a superblock on dev.
887  *      if refdev != NULL, compare superblocks on both devices
888  *    Return:
889  *      0 - dev has a superblock that is compatible with refdev
890  *      1 - dev has a superblock that is compatible and newer than refdev
891  *          so dev should be used as the refdev in future
892  *     -EINVAL superblock incompatible or invalid
893  *     -othererror e.g. -EIO
894  *
895  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
896  *      Verify that dev is acceptable into mddev.
897  *       The first time, mddev->raid_disks will be 0, and data from
898  *       dev should be merged in.  Subsequent calls check that dev
899  *       is new enough.  Return 0 or -EINVAL
900  *
901  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
902  *     Update the superblock for rdev with data in mddev
903  *     This does not write to disc.
904  *
905  */
906 
907 struct super_type  {
908 	char		    *name;
909 	struct module	    *owner;
910 	int		    (*load_super)(struct md_rdev *rdev,
911 					  struct md_rdev *refdev,
912 					  int minor_version);
913 	int		    (*validate_super)(struct mddev *mddev,
914 					      struct md_rdev *rdev);
915 	void		    (*sync_super)(struct mddev *mddev,
916 					  struct md_rdev *rdev);
917 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
918 						sector_t num_sectors);
919 	int		    (*allow_new_offset)(struct md_rdev *rdev,
920 						unsigned long long new_offset);
921 };
922 
923 /*
924  * Check that the given mddev has no bitmap.
925  *
926  * This function is called from the run method of all personalities that do not
927  * support bitmaps. It prints an error message and returns non-zero if mddev
928  * has a bitmap. Otherwise, it returns 0.
929  *
930  */
931 int md_check_no_bitmap(struct mddev *mddev)
932 {
933 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
934 		return 0;
935 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
936 		mdname(mddev), mddev->pers->name);
937 	return 1;
938 }
939 EXPORT_SYMBOL(md_check_no_bitmap);
940 
941 /*
942  * load_super for 0.90.0
943  */
944 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
945 {
946 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
947 	mdp_super_t *sb;
948 	int ret;
949 
950 	/*
951 	 * Calculate the position of the superblock (512byte sectors),
952 	 * it's at the end of the disk.
953 	 *
954 	 * It also happens to be a multiple of 4Kb.
955 	 */
956 	rdev->sb_start = calc_dev_sboffset(rdev);
957 
958 	ret = read_disk_sb(rdev, MD_SB_BYTES);
959 	if (ret) return ret;
960 
961 	ret = -EINVAL;
962 
963 	bdevname(rdev->bdev, b);
964 	sb = page_address(rdev->sb_page);
965 
966 	if (sb->md_magic != MD_SB_MAGIC) {
967 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
968 		       b);
969 		goto abort;
970 	}
971 
972 	if (sb->major_version != 0 ||
973 	    sb->minor_version < 90 ||
974 	    sb->minor_version > 91) {
975 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
976 			sb->major_version, sb->minor_version,
977 			b);
978 		goto abort;
979 	}
980 
981 	if (sb->raid_disks <= 0)
982 		goto abort;
983 
984 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
985 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
986 			b);
987 		goto abort;
988 	}
989 
990 	rdev->preferred_minor = sb->md_minor;
991 	rdev->data_offset = 0;
992 	rdev->new_data_offset = 0;
993 	rdev->sb_size = MD_SB_BYTES;
994 	rdev->badblocks.shift = -1;
995 
996 	if (sb->level == LEVEL_MULTIPATH)
997 		rdev->desc_nr = -1;
998 	else
999 		rdev->desc_nr = sb->this_disk.number;
1000 
1001 	if (!refdev) {
1002 		ret = 1;
1003 	} else {
1004 		__u64 ev1, ev2;
1005 		mdp_super_t *refsb = page_address(refdev->sb_page);
1006 		if (!uuid_equal(refsb, sb)) {
1007 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1008 				b, bdevname(refdev->bdev,b2));
1009 			goto abort;
1010 		}
1011 		if (!sb_equal(refsb, sb)) {
1012 			printk(KERN_WARNING "md: %s has same UUID"
1013 			       " but different superblock to %s\n",
1014 			       b, bdevname(refdev->bdev, b2));
1015 			goto abort;
1016 		}
1017 		ev1 = md_event(sb);
1018 		ev2 = md_event(refsb);
1019 		if (ev1 > ev2)
1020 			ret = 1;
1021 		else
1022 			ret = 0;
1023 	}
1024 	rdev->sectors = rdev->sb_start;
1025 	/* Limit to 4TB as metadata cannot record more than that.
1026 	 * (not needed for Linear and RAID0 as metadata doesn't
1027 	 * record this size)
1028 	 */
1029 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1030 	    sb->level >= 1)
1031 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1032 
1033 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1034 		/* "this cannot possibly happen" ... */
1035 		ret = -EINVAL;
1036 
1037  abort:
1038 	return ret;
1039 }
1040 
1041 /*
1042  * validate_super for 0.90.0
1043  */
1044 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1045 {
1046 	mdp_disk_t *desc;
1047 	mdp_super_t *sb = page_address(rdev->sb_page);
1048 	__u64 ev1 = md_event(sb);
1049 
1050 	rdev->raid_disk = -1;
1051 	clear_bit(Faulty, &rdev->flags);
1052 	clear_bit(In_sync, &rdev->flags);
1053 	clear_bit(Bitmap_sync, &rdev->flags);
1054 	clear_bit(WriteMostly, &rdev->flags);
1055 
1056 	if (mddev->raid_disks == 0) {
1057 		mddev->major_version = 0;
1058 		mddev->minor_version = sb->minor_version;
1059 		mddev->patch_version = sb->patch_version;
1060 		mddev->external = 0;
1061 		mddev->chunk_sectors = sb->chunk_size >> 9;
1062 		mddev->ctime = sb->ctime;
1063 		mddev->utime = sb->utime;
1064 		mddev->level = sb->level;
1065 		mddev->clevel[0] = 0;
1066 		mddev->layout = sb->layout;
1067 		mddev->raid_disks = sb->raid_disks;
1068 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1069 		mddev->events = ev1;
1070 		mddev->bitmap_info.offset = 0;
1071 		mddev->bitmap_info.space = 0;
1072 		/* bitmap can use 60 K after the 4K superblocks */
1073 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1074 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1075 		mddev->reshape_backwards = 0;
1076 
1077 		if (mddev->minor_version >= 91) {
1078 			mddev->reshape_position = sb->reshape_position;
1079 			mddev->delta_disks = sb->delta_disks;
1080 			mddev->new_level = sb->new_level;
1081 			mddev->new_layout = sb->new_layout;
1082 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1083 			if (mddev->delta_disks < 0)
1084 				mddev->reshape_backwards = 1;
1085 		} else {
1086 			mddev->reshape_position = MaxSector;
1087 			mddev->delta_disks = 0;
1088 			mddev->new_level = mddev->level;
1089 			mddev->new_layout = mddev->layout;
1090 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1091 		}
1092 
1093 		if (sb->state & (1<<MD_SB_CLEAN))
1094 			mddev->recovery_cp = MaxSector;
1095 		else {
1096 			if (sb->events_hi == sb->cp_events_hi &&
1097 				sb->events_lo == sb->cp_events_lo) {
1098 				mddev->recovery_cp = sb->recovery_cp;
1099 			} else
1100 				mddev->recovery_cp = 0;
1101 		}
1102 
1103 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1104 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1105 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1106 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1107 
1108 		mddev->max_disks = MD_SB_DISKS;
1109 
1110 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1111 		    mddev->bitmap_info.file == NULL) {
1112 			mddev->bitmap_info.offset =
1113 				mddev->bitmap_info.default_offset;
1114 			mddev->bitmap_info.space =
1115 				mddev->bitmap_info.default_space;
1116 		}
1117 
1118 	} else if (mddev->pers == NULL) {
1119 		/* Insist on good event counter while assembling, except
1120 		 * for spares (which don't need an event count) */
1121 		++ev1;
1122 		if (sb->disks[rdev->desc_nr].state & (
1123 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1124 			if (ev1 < mddev->events)
1125 				return -EINVAL;
1126 	} else if (mddev->bitmap) {
1127 		/* if adding to array with a bitmap, then we can accept an
1128 		 * older device ... but not too old.
1129 		 */
1130 		if (ev1 < mddev->bitmap->events_cleared)
1131 			return 0;
1132 		if (ev1 < mddev->events)
1133 			set_bit(Bitmap_sync, &rdev->flags);
1134 	} else {
1135 		if (ev1 < mddev->events)
1136 			/* just a hot-add of a new device, leave raid_disk at -1 */
1137 			return 0;
1138 	}
1139 
1140 	if (mddev->level != LEVEL_MULTIPATH) {
1141 		desc = sb->disks + rdev->desc_nr;
1142 
1143 		if (desc->state & (1<<MD_DISK_FAULTY))
1144 			set_bit(Faulty, &rdev->flags);
1145 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1146 			    desc->raid_disk < mddev->raid_disks */) {
1147 			set_bit(In_sync, &rdev->flags);
1148 			rdev->raid_disk = desc->raid_disk;
1149 			rdev->saved_raid_disk = desc->raid_disk;
1150 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1151 			/* active but not in sync implies recovery up to
1152 			 * reshape position.  We don't know exactly where
1153 			 * that is, so set to zero for now */
1154 			if (mddev->minor_version >= 91) {
1155 				rdev->recovery_offset = 0;
1156 				rdev->raid_disk = desc->raid_disk;
1157 			}
1158 		}
1159 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1160 			set_bit(WriteMostly, &rdev->flags);
1161 	} else /* MULTIPATH are always insync */
1162 		set_bit(In_sync, &rdev->flags);
1163 	return 0;
1164 }
1165 
1166 /*
1167  * sync_super for 0.90.0
1168  */
1169 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1170 {
1171 	mdp_super_t *sb;
1172 	struct md_rdev *rdev2;
1173 	int next_spare = mddev->raid_disks;
1174 
1175 	/* make rdev->sb match mddev data..
1176 	 *
1177 	 * 1/ zero out disks
1178 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1179 	 * 3/ any empty disks < next_spare become removed
1180 	 *
1181 	 * disks[0] gets initialised to REMOVED because
1182 	 * we cannot be sure from other fields if it has
1183 	 * been initialised or not.
1184 	 */
1185 	int i;
1186 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1187 
1188 	rdev->sb_size = MD_SB_BYTES;
1189 
1190 	sb = page_address(rdev->sb_page);
1191 
1192 	memset(sb, 0, sizeof(*sb));
1193 
1194 	sb->md_magic = MD_SB_MAGIC;
1195 	sb->major_version = mddev->major_version;
1196 	sb->patch_version = mddev->patch_version;
1197 	sb->gvalid_words  = 0; /* ignored */
1198 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1199 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1200 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1201 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1202 
1203 	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1204 	sb->level = mddev->level;
1205 	sb->size = mddev->dev_sectors / 2;
1206 	sb->raid_disks = mddev->raid_disks;
1207 	sb->md_minor = mddev->md_minor;
1208 	sb->not_persistent = 0;
1209 	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1210 	sb->state = 0;
1211 	sb->events_hi = (mddev->events>>32);
1212 	sb->events_lo = (u32)mddev->events;
1213 
1214 	if (mddev->reshape_position == MaxSector)
1215 		sb->minor_version = 90;
1216 	else {
1217 		sb->minor_version = 91;
1218 		sb->reshape_position = mddev->reshape_position;
1219 		sb->new_level = mddev->new_level;
1220 		sb->delta_disks = mddev->delta_disks;
1221 		sb->new_layout = mddev->new_layout;
1222 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1223 	}
1224 	mddev->minor_version = sb->minor_version;
1225 	if (mddev->in_sync)
1226 	{
1227 		sb->recovery_cp = mddev->recovery_cp;
1228 		sb->cp_events_hi = (mddev->events>>32);
1229 		sb->cp_events_lo = (u32)mddev->events;
1230 		if (mddev->recovery_cp == MaxSector)
1231 			sb->state = (1<< MD_SB_CLEAN);
1232 	} else
1233 		sb->recovery_cp = 0;
1234 
1235 	sb->layout = mddev->layout;
1236 	sb->chunk_size = mddev->chunk_sectors << 9;
1237 
1238 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1239 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1240 
1241 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1242 	rdev_for_each(rdev2, mddev) {
1243 		mdp_disk_t *d;
1244 		int desc_nr;
1245 		int is_active = test_bit(In_sync, &rdev2->flags);
1246 
1247 		if (rdev2->raid_disk >= 0 &&
1248 		    sb->minor_version >= 91)
1249 			/* we have nowhere to store the recovery_offset,
1250 			 * but if it is not below the reshape_position,
1251 			 * we can piggy-back on that.
1252 			 */
1253 			is_active = 1;
1254 		if (rdev2->raid_disk < 0 ||
1255 		    test_bit(Faulty, &rdev2->flags))
1256 			is_active = 0;
1257 		if (is_active)
1258 			desc_nr = rdev2->raid_disk;
1259 		else
1260 			desc_nr = next_spare++;
1261 		rdev2->desc_nr = desc_nr;
1262 		d = &sb->disks[rdev2->desc_nr];
1263 		nr_disks++;
1264 		d->number = rdev2->desc_nr;
1265 		d->major = MAJOR(rdev2->bdev->bd_dev);
1266 		d->minor = MINOR(rdev2->bdev->bd_dev);
1267 		if (is_active)
1268 			d->raid_disk = rdev2->raid_disk;
1269 		else
1270 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1271 		if (test_bit(Faulty, &rdev2->flags))
1272 			d->state = (1<<MD_DISK_FAULTY);
1273 		else if (is_active) {
1274 			d->state = (1<<MD_DISK_ACTIVE);
1275 			if (test_bit(In_sync, &rdev2->flags))
1276 				d->state |= (1<<MD_DISK_SYNC);
1277 			active++;
1278 			working++;
1279 		} else {
1280 			d->state = 0;
1281 			spare++;
1282 			working++;
1283 		}
1284 		if (test_bit(WriteMostly, &rdev2->flags))
1285 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1286 	}
1287 	/* now set the "removed" and "faulty" bits on any missing devices */
1288 	for (i=0 ; i < mddev->raid_disks ; i++) {
1289 		mdp_disk_t *d = &sb->disks[i];
1290 		if (d->state == 0 && d->number == 0) {
1291 			d->number = i;
1292 			d->raid_disk = i;
1293 			d->state = (1<<MD_DISK_REMOVED);
1294 			d->state |= (1<<MD_DISK_FAULTY);
1295 			failed++;
1296 		}
1297 	}
1298 	sb->nr_disks = nr_disks;
1299 	sb->active_disks = active;
1300 	sb->working_disks = working;
1301 	sb->failed_disks = failed;
1302 	sb->spare_disks = spare;
1303 
1304 	sb->this_disk = sb->disks[rdev->desc_nr];
1305 	sb->sb_csum = calc_sb_csum(sb);
1306 }
1307 
1308 /*
1309  * rdev_size_change for 0.90.0
1310  */
1311 static unsigned long long
1312 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1313 {
1314 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1315 		return 0; /* component must fit device */
1316 	if (rdev->mddev->bitmap_info.offset)
1317 		return 0; /* can't move bitmap */
1318 	rdev->sb_start = calc_dev_sboffset(rdev);
1319 	if (!num_sectors || num_sectors > rdev->sb_start)
1320 		num_sectors = rdev->sb_start;
1321 	/* Limit to 4TB as metadata cannot record more than that.
1322 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1323 	 */
1324 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1325 	    rdev->mddev->level >= 1)
1326 		num_sectors = (sector_t)(2ULL << 32) - 2;
1327 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1328 		       rdev->sb_page);
1329 	md_super_wait(rdev->mddev);
1330 	return num_sectors;
1331 }
1332 
1333 static int
1334 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1335 {
1336 	/* non-zero offset changes not possible with v0.90 */
1337 	return new_offset == 0;
1338 }
1339 
1340 /*
1341  * version 1 superblock
1342  */
1343 
1344 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1345 {
1346 	__le32 disk_csum;
1347 	u32 csum;
1348 	unsigned long long newcsum;
1349 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1350 	__le32 *isuper = (__le32*)sb;
1351 
1352 	disk_csum = sb->sb_csum;
1353 	sb->sb_csum = 0;
1354 	newcsum = 0;
1355 	for (; size >= 4; size -= 4)
1356 		newcsum += le32_to_cpu(*isuper++);
1357 
1358 	if (size == 2)
1359 		newcsum += le16_to_cpu(*(__le16*) isuper);
1360 
1361 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1362 	sb->sb_csum = disk_csum;
1363 	return cpu_to_le32(csum);
1364 }
1365 
1366 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1367 {
1368 	struct mdp_superblock_1 *sb;
1369 	int ret;
1370 	sector_t sb_start;
1371 	sector_t sectors;
1372 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1373 	int bmask;
1374 
1375 	/*
1376 	 * Calculate the position of the superblock in 512byte sectors.
1377 	 * It is always aligned to a 4K boundary and
1378 	 * depeding on minor_version, it can be:
1379 	 * 0: At least 8K, but less than 12K, from end of device
1380 	 * 1: At start of device
1381 	 * 2: 4K from start of device.
1382 	 */
1383 	switch(minor_version) {
1384 	case 0:
1385 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1386 		sb_start -= 8*2;
1387 		sb_start &= ~(sector_t)(4*2-1);
1388 		break;
1389 	case 1:
1390 		sb_start = 0;
1391 		break;
1392 	case 2:
1393 		sb_start = 8;
1394 		break;
1395 	default:
1396 		return -EINVAL;
1397 	}
1398 	rdev->sb_start = sb_start;
1399 
1400 	/* superblock is rarely larger than 1K, but it can be larger,
1401 	 * and it is safe to read 4k, so we do that
1402 	 */
1403 	ret = read_disk_sb(rdev, 4096);
1404 	if (ret) return ret;
1405 
1406 	sb = page_address(rdev->sb_page);
1407 
1408 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1409 	    sb->major_version != cpu_to_le32(1) ||
1410 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1411 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1412 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1413 		return -EINVAL;
1414 
1415 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1416 		printk("md: invalid superblock checksum on %s\n",
1417 			bdevname(rdev->bdev,b));
1418 		return -EINVAL;
1419 	}
1420 	if (le64_to_cpu(sb->data_size) < 10) {
1421 		printk("md: data_size too small on %s\n",
1422 		       bdevname(rdev->bdev,b));
1423 		return -EINVAL;
1424 	}
1425 	if (sb->pad0 ||
1426 	    sb->pad3[0] ||
1427 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1428 		/* Some padding is non-zero, might be a new feature */
1429 		return -EINVAL;
1430 
1431 	rdev->preferred_minor = 0xffff;
1432 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1433 	rdev->new_data_offset = rdev->data_offset;
1434 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1435 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1436 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1437 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1438 
1439 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1440 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1441 	if (rdev->sb_size & bmask)
1442 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1443 
1444 	if (minor_version
1445 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1446 		return -EINVAL;
1447 	if (minor_version
1448 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1449 		return -EINVAL;
1450 
1451 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1452 		rdev->desc_nr = -1;
1453 	else
1454 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1455 
1456 	if (!rdev->bb_page) {
1457 		rdev->bb_page = alloc_page(GFP_KERNEL);
1458 		if (!rdev->bb_page)
1459 			return -ENOMEM;
1460 	}
1461 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1462 	    rdev->badblocks.count == 0) {
1463 		/* need to load the bad block list.
1464 		 * Currently we limit it to one page.
1465 		 */
1466 		s32 offset;
1467 		sector_t bb_sector;
1468 		u64 *bbp;
1469 		int i;
1470 		int sectors = le16_to_cpu(sb->bblog_size);
1471 		if (sectors > (PAGE_SIZE / 512))
1472 			return -EINVAL;
1473 		offset = le32_to_cpu(sb->bblog_offset);
1474 		if (offset == 0)
1475 			return -EINVAL;
1476 		bb_sector = (long long)offset;
1477 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1478 				  rdev->bb_page, REQ_OP_READ, 0, true))
1479 			return -EIO;
1480 		bbp = (u64 *)page_address(rdev->bb_page);
1481 		rdev->badblocks.shift = sb->bblog_shift;
1482 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1483 			u64 bb = le64_to_cpu(*bbp);
1484 			int count = bb & (0x3ff);
1485 			u64 sector = bb >> 10;
1486 			sector <<= sb->bblog_shift;
1487 			count <<= sb->bblog_shift;
1488 			if (bb + 1 == 0)
1489 				break;
1490 			if (badblocks_set(&rdev->badblocks, sector, count, 1))
1491 				return -EINVAL;
1492 		}
1493 	} else if (sb->bblog_offset != 0)
1494 		rdev->badblocks.shift = 0;
1495 
1496 	if (!refdev) {
1497 		ret = 1;
1498 	} else {
1499 		__u64 ev1, ev2;
1500 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1501 
1502 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1503 		    sb->level != refsb->level ||
1504 		    sb->layout != refsb->layout ||
1505 		    sb->chunksize != refsb->chunksize) {
1506 			printk(KERN_WARNING "md: %s has strangely different"
1507 				" superblock to %s\n",
1508 				bdevname(rdev->bdev,b),
1509 				bdevname(refdev->bdev,b2));
1510 			return -EINVAL;
1511 		}
1512 		ev1 = le64_to_cpu(sb->events);
1513 		ev2 = le64_to_cpu(refsb->events);
1514 
1515 		if (ev1 > ev2)
1516 			ret = 1;
1517 		else
1518 			ret = 0;
1519 	}
1520 	if (minor_version) {
1521 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1522 		sectors -= rdev->data_offset;
1523 	} else
1524 		sectors = rdev->sb_start;
1525 	if (sectors < le64_to_cpu(sb->data_size))
1526 		return -EINVAL;
1527 	rdev->sectors = le64_to_cpu(sb->data_size);
1528 	return ret;
1529 }
1530 
1531 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1532 {
1533 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1534 	__u64 ev1 = le64_to_cpu(sb->events);
1535 
1536 	rdev->raid_disk = -1;
1537 	clear_bit(Faulty, &rdev->flags);
1538 	clear_bit(In_sync, &rdev->flags);
1539 	clear_bit(Bitmap_sync, &rdev->flags);
1540 	clear_bit(WriteMostly, &rdev->flags);
1541 
1542 	if (mddev->raid_disks == 0) {
1543 		mddev->major_version = 1;
1544 		mddev->patch_version = 0;
1545 		mddev->external = 0;
1546 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1547 		mddev->ctime = le64_to_cpu(sb->ctime);
1548 		mddev->utime = le64_to_cpu(sb->utime);
1549 		mddev->level = le32_to_cpu(sb->level);
1550 		mddev->clevel[0] = 0;
1551 		mddev->layout = le32_to_cpu(sb->layout);
1552 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1553 		mddev->dev_sectors = le64_to_cpu(sb->size);
1554 		mddev->events = ev1;
1555 		mddev->bitmap_info.offset = 0;
1556 		mddev->bitmap_info.space = 0;
1557 		/* Default location for bitmap is 1K after superblock
1558 		 * using 3K - total of 4K
1559 		 */
1560 		mddev->bitmap_info.default_offset = 1024 >> 9;
1561 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1562 		mddev->reshape_backwards = 0;
1563 
1564 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1565 		memcpy(mddev->uuid, sb->set_uuid, 16);
1566 
1567 		mddev->max_disks =  (4096-256)/2;
1568 
1569 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1570 		    mddev->bitmap_info.file == NULL) {
1571 			mddev->bitmap_info.offset =
1572 				(__s32)le32_to_cpu(sb->bitmap_offset);
1573 			/* Metadata doesn't record how much space is available.
1574 			 * For 1.0, we assume we can use up to the superblock
1575 			 * if before, else to 4K beyond superblock.
1576 			 * For others, assume no change is possible.
1577 			 */
1578 			if (mddev->minor_version > 0)
1579 				mddev->bitmap_info.space = 0;
1580 			else if (mddev->bitmap_info.offset > 0)
1581 				mddev->bitmap_info.space =
1582 					8 - mddev->bitmap_info.offset;
1583 			else
1584 				mddev->bitmap_info.space =
1585 					-mddev->bitmap_info.offset;
1586 		}
1587 
1588 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1589 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1590 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1591 			mddev->new_level = le32_to_cpu(sb->new_level);
1592 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1593 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1594 			if (mddev->delta_disks < 0 ||
1595 			    (mddev->delta_disks == 0 &&
1596 			     (le32_to_cpu(sb->feature_map)
1597 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1598 				mddev->reshape_backwards = 1;
1599 		} else {
1600 			mddev->reshape_position = MaxSector;
1601 			mddev->delta_disks = 0;
1602 			mddev->new_level = mddev->level;
1603 			mddev->new_layout = mddev->layout;
1604 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1605 		}
1606 
1607 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
1608 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1609 			if (mddev->recovery_cp == MaxSector)
1610 				set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1611 		}
1612 	} else if (mddev->pers == NULL) {
1613 		/* Insist of good event counter while assembling, except for
1614 		 * spares (which don't need an event count) */
1615 		++ev1;
1616 		if (rdev->desc_nr >= 0 &&
1617 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1618 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1619 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1620 			if (ev1 < mddev->events)
1621 				return -EINVAL;
1622 	} else if (mddev->bitmap) {
1623 		/* If adding to array with a bitmap, then we can accept an
1624 		 * older device, but not too old.
1625 		 */
1626 		if (ev1 < mddev->bitmap->events_cleared)
1627 			return 0;
1628 		if (ev1 < mddev->events)
1629 			set_bit(Bitmap_sync, &rdev->flags);
1630 	} else {
1631 		if (ev1 < mddev->events)
1632 			/* just a hot-add of a new device, leave raid_disk at -1 */
1633 			return 0;
1634 	}
1635 	if (mddev->level != LEVEL_MULTIPATH) {
1636 		int role;
1637 		if (rdev->desc_nr < 0 ||
1638 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1639 			role = MD_DISK_ROLE_SPARE;
1640 			rdev->desc_nr = -1;
1641 		} else
1642 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1643 		switch(role) {
1644 		case MD_DISK_ROLE_SPARE: /* spare */
1645 			break;
1646 		case MD_DISK_ROLE_FAULTY: /* faulty */
1647 			set_bit(Faulty, &rdev->flags);
1648 			break;
1649 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1650 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1651 				/* journal device without journal feature */
1652 				printk(KERN_WARNING
1653 				  "md: journal device provided without journal feature, ignoring the device\n");
1654 				return -EINVAL;
1655 			}
1656 			set_bit(Journal, &rdev->flags);
1657 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1658 			rdev->raid_disk = 0;
1659 			break;
1660 		default:
1661 			rdev->saved_raid_disk = role;
1662 			if ((le32_to_cpu(sb->feature_map) &
1663 			     MD_FEATURE_RECOVERY_OFFSET)) {
1664 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1665 				if (!(le32_to_cpu(sb->feature_map) &
1666 				      MD_FEATURE_RECOVERY_BITMAP))
1667 					rdev->saved_raid_disk = -1;
1668 			} else
1669 				set_bit(In_sync, &rdev->flags);
1670 			rdev->raid_disk = role;
1671 			break;
1672 		}
1673 		if (sb->devflags & WriteMostly1)
1674 			set_bit(WriteMostly, &rdev->flags);
1675 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1676 			set_bit(Replacement, &rdev->flags);
1677 	} else /* MULTIPATH are always insync */
1678 		set_bit(In_sync, &rdev->flags);
1679 
1680 	return 0;
1681 }
1682 
1683 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1684 {
1685 	struct mdp_superblock_1 *sb;
1686 	struct md_rdev *rdev2;
1687 	int max_dev, i;
1688 	/* make rdev->sb match mddev and rdev data. */
1689 
1690 	sb = page_address(rdev->sb_page);
1691 
1692 	sb->feature_map = 0;
1693 	sb->pad0 = 0;
1694 	sb->recovery_offset = cpu_to_le64(0);
1695 	memset(sb->pad3, 0, sizeof(sb->pad3));
1696 
1697 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1698 	sb->events = cpu_to_le64(mddev->events);
1699 	if (mddev->in_sync)
1700 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1701 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1702 		sb->resync_offset = cpu_to_le64(MaxSector);
1703 	else
1704 		sb->resync_offset = cpu_to_le64(0);
1705 
1706 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1707 
1708 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1709 	sb->size = cpu_to_le64(mddev->dev_sectors);
1710 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1711 	sb->level = cpu_to_le32(mddev->level);
1712 	sb->layout = cpu_to_le32(mddev->layout);
1713 
1714 	if (test_bit(WriteMostly, &rdev->flags))
1715 		sb->devflags |= WriteMostly1;
1716 	else
1717 		sb->devflags &= ~WriteMostly1;
1718 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1719 	sb->data_size = cpu_to_le64(rdev->sectors);
1720 
1721 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1722 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1723 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1724 	}
1725 
1726 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1727 	    !test_bit(In_sync, &rdev->flags)) {
1728 		sb->feature_map |=
1729 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1730 		sb->recovery_offset =
1731 			cpu_to_le64(rdev->recovery_offset);
1732 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1733 			sb->feature_map |=
1734 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1735 	}
1736 	/* Note: recovery_offset and journal_tail share space  */
1737 	if (test_bit(Journal, &rdev->flags))
1738 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1739 	if (test_bit(Replacement, &rdev->flags))
1740 		sb->feature_map |=
1741 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1742 
1743 	if (mddev->reshape_position != MaxSector) {
1744 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1745 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1746 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1747 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1748 		sb->new_level = cpu_to_le32(mddev->new_level);
1749 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1750 		if (mddev->delta_disks == 0 &&
1751 		    mddev->reshape_backwards)
1752 			sb->feature_map
1753 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1754 		if (rdev->new_data_offset != rdev->data_offset) {
1755 			sb->feature_map
1756 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1757 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1758 							     - rdev->data_offset));
1759 		}
1760 	}
1761 
1762 	if (mddev_is_clustered(mddev))
1763 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1764 
1765 	if (rdev->badblocks.count == 0)
1766 		/* Nothing to do for bad blocks*/ ;
1767 	else if (sb->bblog_offset == 0)
1768 		/* Cannot record bad blocks on this device */
1769 		md_error(mddev, rdev);
1770 	else {
1771 		struct badblocks *bb = &rdev->badblocks;
1772 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1773 		u64 *p = bb->page;
1774 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1775 		if (bb->changed) {
1776 			unsigned seq;
1777 
1778 retry:
1779 			seq = read_seqbegin(&bb->lock);
1780 
1781 			memset(bbp, 0xff, PAGE_SIZE);
1782 
1783 			for (i = 0 ; i < bb->count ; i++) {
1784 				u64 internal_bb = p[i];
1785 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1786 						| BB_LEN(internal_bb));
1787 				bbp[i] = cpu_to_le64(store_bb);
1788 			}
1789 			bb->changed = 0;
1790 			if (read_seqretry(&bb->lock, seq))
1791 				goto retry;
1792 
1793 			bb->sector = (rdev->sb_start +
1794 				      (int)le32_to_cpu(sb->bblog_offset));
1795 			bb->size = le16_to_cpu(sb->bblog_size);
1796 		}
1797 	}
1798 
1799 	max_dev = 0;
1800 	rdev_for_each(rdev2, mddev)
1801 		if (rdev2->desc_nr+1 > max_dev)
1802 			max_dev = rdev2->desc_nr+1;
1803 
1804 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1805 		int bmask;
1806 		sb->max_dev = cpu_to_le32(max_dev);
1807 		rdev->sb_size = max_dev * 2 + 256;
1808 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1809 		if (rdev->sb_size & bmask)
1810 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1811 	} else
1812 		max_dev = le32_to_cpu(sb->max_dev);
1813 
1814 	for (i=0; i<max_dev;i++)
1815 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1816 
1817 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1818 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1819 
1820 	rdev_for_each(rdev2, mddev) {
1821 		i = rdev2->desc_nr;
1822 		if (test_bit(Faulty, &rdev2->flags))
1823 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1824 		else if (test_bit(In_sync, &rdev2->flags))
1825 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1826 		else if (test_bit(Journal, &rdev2->flags))
1827 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1828 		else if (rdev2->raid_disk >= 0)
1829 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1830 		else
1831 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1832 	}
1833 
1834 	sb->sb_csum = calc_sb_1_csum(sb);
1835 }
1836 
1837 static unsigned long long
1838 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1839 {
1840 	struct mdp_superblock_1 *sb;
1841 	sector_t max_sectors;
1842 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1843 		return 0; /* component must fit device */
1844 	if (rdev->data_offset != rdev->new_data_offset)
1845 		return 0; /* too confusing */
1846 	if (rdev->sb_start < rdev->data_offset) {
1847 		/* minor versions 1 and 2; superblock before data */
1848 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1849 		max_sectors -= rdev->data_offset;
1850 		if (!num_sectors || num_sectors > max_sectors)
1851 			num_sectors = max_sectors;
1852 	} else if (rdev->mddev->bitmap_info.offset) {
1853 		/* minor version 0 with bitmap we can't move */
1854 		return 0;
1855 	} else {
1856 		/* minor version 0; superblock after data */
1857 		sector_t sb_start;
1858 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1859 		sb_start &= ~(sector_t)(4*2 - 1);
1860 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1861 		if (!num_sectors || num_sectors > max_sectors)
1862 			num_sectors = max_sectors;
1863 		rdev->sb_start = sb_start;
1864 	}
1865 	sb = page_address(rdev->sb_page);
1866 	sb->data_size = cpu_to_le64(num_sectors);
1867 	sb->super_offset = rdev->sb_start;
1868 	sb->sb_csum = calc_sb_1_csum(sb);
1869 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1870 		       rdev->sb_page);
1871 	md_super_wait(rdev->mddev);
1872 	return num_sectors;
1873 
1874 }
1875 
1876 static int
1877 super_1_allow_new_offset(struct md_rdev *rdev,
1878 			 unsigned long long new_offset)
1879 {
1880 	/* All necessary checks on new >= old have been done */
1881 	struct bitmap *bitmap;
1882 	if (new_offset >= rdev->data_offset)
1883 		return 1;
1884 
1885 	/* with 1.0 metadata, there is no metadata to tread on
1886 	 * so we can always move back */
1887 	if (rdev->mddev->minor_version == 0)
1888 		return 1;
1889 
1890 	/* otherwise we must be sure not to step on
1891 	 * any metadata, so stay:
1892 	 * 36K beyond start of superblock
1893 	 * beyond end of badblocks
1894 	 * beyond write-intent bitmap
1895 	 */
1896 	if (rdev->sb_start + (32+4)*2 > new_offset)
1897 		return 0;
1898 	bitmap = rdev->mddev->bitmap;
1899 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1900 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1901 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1902 		return 0;
1903 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1904 		return 0;
1905 
1906 	return 1;
1907 }
1908 
1909 static struct super_type super_types[] = {
1910 	[0] = {
1911 		.name	= "0.90.0",
1912 		.owner	= THIS_MODULE,
1913 		.load_super	    = super_90_load,
1914 		.validate_super	    = super_90_validate,
1915 		.sync_super	    = super_90_sync,
1916 		.rdev_size_change   = super_90_rdev_size_change,
1917 		.allow_new_offset   = super_90_allow_new_offset,
1918 	},
1919 	[1] = {
1920 		.name	= "md-1",
1921 		.owner	= THIS_MODULE,
1922 		.load_super	    = super_1_load,
1923 		.validate_super	    = super_1_validate,
1924 		.sync_super	    = super_1_sync,
1925 		.rdev_size_change   = super_1_rdev_size_change,
1926 		.allow_new_offset   = super_1_allow_new_offset,
1927 	},
1928 };
1929 
1930 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1931 {
1932 	if (mddev->sync_super) {
1933 		mddev->sync_super(mddev, rdev);
1934 		return;
1935 	}
1936 
1937 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1938 
1939 	super_types[mddev->major_version].sync_super(mddev, rdev);
1940 }
1941 
1942 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1943 {
1944 	struct md_rdev *rdev, *rdev2;
1945 
1946 	rcu_read_lock();
1947 	rdev_for_each_rcu(rdev, mddev1) {
1948 		if (test_bit(Faulty, &rdev->flags) ||
1949 		    test_bit(Journal, &rdev->flags) ||
1950 		    rdev->raid_disk == -1)
1951 			continue;
1952 		rdev_for_each_rcu(rdev2, mddev2) {
1953 			if (test_bit(Faulty, &rdev2->flags) ||
1954 			    test_bit(Journal, &rdev2->flags) ||
1955 			    rdev2->raid_disk == -1)
1956 				continue;
1957 			if (rdev->bdev->bd_contains ==
1958 			    rdev2->bdev->bd_contains) {
1959 				rcu_read_unlock();
1960 				return 1;
1961 			}
1962 		}
1963 	}
1964 	rcu_read_unlock();
1965 	return 0;
1966 }
1967 
1968 static LIST_HEAD(pending_raid_disks);
1969 
1970 /*
1971  * Try to register data integrity profile for an mddev
1972  *
1973  * This is called when an array is started and after a disk has been kicked
1974  * from the array. It only succeeds if all working and active component devices
1975  * are integrity capable with matching profiles.
1976  */
1977 int md_integrity_register(struct mddev *mddev)
1978 {
1979 	struct md_rdev *rdev, *reference = NULL;
1980 
1981 	if (list_empty(&mddev->disks))
1982 		return 0; /* nothing to do */
1983 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1984 		return 0; /* shouldn't register, or already is */
1985 	rdev_for_each(rdev, mddev) {
1986 		/* skip spares and non-functional disks */
1987 		if (test_bit(Faulty, &rdev->flags))
1988 			continue;
1989 		if (rdev->raid_disk < 0)
1990 			continue;
1991 		if (!reference) {
1992 			/* Use the first rdev as the reference */
1993 			reference = rdev;
1994 			continue;
1995 		}
1996 		/* does this rdev's profile match the reference profile? */
1997 		if (blk_integrity_compare(reference->bdev->bd_disk,
1998 				rdev->bdev->bd_disk) < 0)
1999 			return -EINVAL;
2000 	}
2001 	if (!reference || !bdev_get_integrity(reference->bdev))
2002 		return 0;
2003 	/*
2004 	 * All component devices are integrity capable and have matching
2005 	 * profiles, register the common profile for the md device.
2006 	 */
2007 	blk_integrity_register(mddev->gendisk,
2008 			       bdev_get_integrity(reference->bdev));
2009 
2010 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2011 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2012 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2013 		       mdname(mddev));
2014 		return -EINVAL;
2015 	}
2016 	return 0;
2017 }
2018 EXPORT_SYMBOL(md_integrity_register);
2019 
2020 /*
2021  * Attempt to add an rdev, but only if it is consistent with the current
2022  * integrity profile
2023  */
2024 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2025 {
2026 	struct blk_integrity *bi_rdev;
2027 	struct blk_integrity *bi_mddev;
2028 	char name[BDEVNAME_SIZE];
2029 
2030 	if (!mddev->gendisk)
2031 		return 0;
2032 
2033 	bi_rdev = bdev_get_integrity(rdev->bdev);
2034 	bi_mddev = blk_get_integrity(mddev->gendisk);
2035 
2036 	if (!bi_mddev) /* nothing to do */
2037 		return 0;
2038 
2039 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2040 		printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2041 				mdname(mddev), bdevname(rdev->bdev, name));
2042 		return -ENXIO;
2043 	}
2044 
2045 	return 0;
2046 }
2047 EXPORT_SYMBOL(md_integrity_add_rdev);
2048 
2049 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2050 {
2051 	char b[BDEVNAME_SIZE];
2052 	struct kobject *ko;
2053 	int err;
2054 
2055 	/* prevent duplicates */
2056 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2057 		return -EEXIST;
2058 
2059 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2060 	if (!test_bit(Journal, &rdev->flags) &&
2061 	    rdev->sectors &&
2062 	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2063 		if (mddev->pers) {
2064 			/* Cannot change size, so fail
2065 			 * If mddev->level <= 0, then we don't care
2066 			 * about aligning sizes (e.g. linear)
2067 			 */
2068 			if (mddev->level > 0)
2069 				return -ENOSPC;
2070 		} else
2071 			mddev->dev_sectors = rdev->sectors;
2072 	}
2073 
2074 	/* Verify rdev->desc_nr is unique.
2075 	 * If it is -1, assign a free number, else
2076 	 * check number is not in use
2077 	 */
2078 	rcu_read_lock();
2079 	if (rdev->desc_nr < 0) {
2080 		int choice = 0;
2081 		if (mddev->pers)
2082 			choice = mddev->raid_disks;
2083 		while (md_find_rdev_nr_rcu(mddev, choice))
2084 			choice++;
2085 		rdev->desc_nr = choice;
2086 	} else {
2087 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2088 			rcu_read_unlock();
2089 			return -EBUSY;
2090 		}
2091 	}
2092 	rcu_read_unlock();
2093 	if (!test_bit(Journal, &rdev->flags) &&
2094 	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2095 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2096 		       mdname(mddev), mddev->max_disks);
2097 		return -EBUSY;
2098 	}
2099 	bdevname(rdev->bdev,b);
2100 	strreplace(b, '/', '!');
2101 
2102 	rdev->mddev = mddev;
2103 	printk(KERN_INFO "md: bind<%s>\n", b);
2104 
2105 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2106 		goto fail;
2107 
2108 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2109 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2110 		/* failure here is OK */;
2111 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2112 
2113 	list_add_rcu(&rdev->same_set, &mddev->disks);
2114 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2115 
2116 	/* May as well allow recovery to be retried once */
2117 	mddev->recovery_disabled++;
2118 
2119 	return 0;
2120 
2121  fail:
2122 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2123 	       b, mdname(mddev));
2124 	return err;
2125 }
2126 
2127 static void md_delayed_delete(struct work_struct *ws)
2128 {
2129 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2130 	kobject_del(&rdev->kobj);
2131 	kobject_put(&rdev->kobj);
2132 }
2133 
2134 static void unbind_rdev_from_array(struct md_rdev *rdev)
2135 {
2136 	char b[BDEVNAME_SIZE];
2137 
2138 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2139 	list_del_rcu(&rdev->same_set);
2140 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2141 	rdev->mddev = NULL;
2142 	sysfs_remove_link(&rdev->kobj, "block");
2143 	sysfs_put(rdev->sysfs_state);
2144 	rdev->sysfs_state = NULL;
2145 	rdev->badblocks.count = 0;
2146 	/* We need to delay this, otherwise we can deadlock when
2147 	 * writing to 'remove' to "dev/state".  We also need
2148 	 * to delay it due to rcu usage.
2149 	 */
2150 	synchronize_rcu();
2151 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2152 	kobject_get(&rdev->kobj);
2153 	queue_work(md_misc_wq, &rdev->del_work);
2154 }
2155 
2156 /*
2157  * prevent the device from being mounted, repartitioned or
2158  * otherwise reused by a RAID array (or any other kernel
2159  * subsystem), by bd_claiming the device.
2160  */
2161 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2162 {
2163 	int err = 0;
2164 	struct block_device *bdev;
2165 	char b[BDEVNAME_SIZE];
2166 
2167 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2168 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2169 	if (IS_ERR(bdev)) {
2170 		printk(KERN_ERR "md: could not open %s.\n",
2171 			__bdevname(dev, b));
2172 		return PTR_ERR(bdev);
2173 	}
2174 	rdev->bdev = bdev;
2175 	return err;
2176 }
2177 
2178 static void unlock_rdev(struct md_rdev *rdev)
2179 {
2180 	struct block_device *bdev = rdev->bdev;
2181 	rdev->bdev = NULL;
2182 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2183 }
2184 
2185 void md_autodetect_dev(dev_t dev);
2186 
2187 static void export_rdev(struct md_rdev *rdev)
2188 {
2189 	char b[BDEVNAME_SIZE];
2190 
2191 	printk(KERN_INFO "md: export_rdev(%s)\n",
2192 		bdevname(rdev->bdev,b));
2193 	md_rdev_clear(rdev);
2194 #ifndef MODULE
2195 	if (test_bit(AutoDetected, &rdev->flags))
2196 		md_autodetect_dev(rdev->bdev->bd_dev);
2197 #endif
2198 	unlock_rdev(rdev);
2199 	kobject_put(&rdev->kobj);
2200 }
2201 
2202 void md_kick_rdev_from_array(struct md_rdev *rdev)
2203 {
2204 	unbind_rdev_from_array(rdev);
2205 	export_rdev(rdev);
2206 }
2207 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2208 
2209 static void export_array(struct mddev *mddev)
2210 {
2211 	struct md_rdev *rdev;
2212 
2213 	while (!list_empty(&mddev->disks)) {
2214 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2215 					same_set);
2216 		md_kick_rdev_from_array(rdev);
2217 	}
2218 	mddev->raid_disks = 0;
2219 	mddev->major_version = 0;
2220 }
2221 
2222 static void sync_sbs(struct mddev *mddev, int nospares)
2223 {
2224 	/* Update each superblock (in-memory image), but
2225 	 * if we are allowed to, skip spares which already
2226 	 * have the right event counter, or have one earlier
2227 	 * (which would mean they aren't being marked as dirty
2228 	 * with the rest of the array)
2229 	 */
2230 	struct md_rdev *rdev;
2231 	rdev_for_each(rdev, mddev) {
2232 		if (rdev->sb_events == mddev->events ||
2233 		    (nospares &&
2234 		     rdev->raid_disk < 0 &&
2235 		     rdev->sb_events+1 == mddev->events)) {
2236 			/* Don't update this superblock */
2237 			rdev->sb_loaded = 2;
2238 		} else {
2239 			sync_super(mddev, rdev);
2240 			rdev->sb_loaded = 1;
2241 		}
2242 	}
2243 }
2244 
2245 static bool does_sb_need_changing(struct mddev *mddev)
2246 {
2247 	struct md_rdev *rdev;
2248 	struct mdp_superblock_1 *sb;
2249 	int role;
2250 
2251 	/* Find a good rdev */
2252 	rdev_for_each(rdev, mddev)
2253 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2254 			break;
2255 
2256 	/* No good device found. */
2257 	if (!rdev)
2258 		return false;
2259 
2260 	sb = page_address(rdev->sb_page);
2261 	/* Check if a device has become faulty or a spare become active */
2262 	rdev_for_each(rdev, mddev) {
2263 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2264 		/* Device activated? */
2265 		if (role == 0xffff && rdev->raid_disk >=0 &&
2266 		    !test_bit(Faulty, &rdev->flags))
2267 			return true;
2268 		/* Device turned faulty? */
2269 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2270 			return true;
2271 	}
2272 
2273 	/* Check if any mddev parameters have changed */
2274 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2275 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2276 	    (mddev->layout != le64_to_cpu(sb->layout)) ||
2277 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2278 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2279 		return true;
2280 
2281 	return false;
2282 }
2283 
2284 void md_update_sb(struct mddev *mddev, int force_change)
2285 {
2286 	struct md_rdev *rdev;
2287 	int sync_req;
2288 	int nospares = 0;
2289 	int any_badblocks_changed = 0;
2290 	int ret = -1;
2291 
2292 	if (mddev->ro) {
2293 		if (force_change)
2294 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2295 		return;
2296 	}
2297 
2298 repeat:
2299 	if (mddev_is_clustered(mddev)) {
2300 		if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2301 			force_change = 1;
2302 		if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2303 			nospares = 1;
2304 		ret = md_cluster_ops->metadata_update_start(mddev);
2305 		/* Has someone else has updated the sb */
2306 		if (!does_sb_need_changing(mddev)) {
2307 			if (ret == 0)
2308 				md_cluster_ops->metadata_update_cancel(mddev);
2309 			bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING),
2310 							 BIT(MD_CHANGE_DEVS) |
2311 							 BIT(MD_CHANGE_CLEAN));
2312 			return;
2313 		}
2314 	}
2315 
2316 	/* First make sure individual recovery_offsets are correct */
2317 	rdev_for_each(rdev, mddev) {
2318 		if (rdev->raid_disk >= 0 &&
2319 		    mddev->delta_disks >= 0 &&
2320 		    !test_bit(Journal, &rdev->flags) &&
2321 		    !test_bit(In_sync, &rdev->flags) &&
2322 		    mddev->curr_resync_completed > rdev->recovery_offset)
2323 				rdev->recovery_offset = mddev->curr_resync_completed;
2324 
2325 	}
2326 	if (!mddev->persistent) {
2327 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2328 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2329 		if (!mddev->external) {
2330 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2331 			rdev_for_each(rdev, mddev) {
2332 				if (rdev->badblocks.changed) {
2333 					rdev->badblocks.changed = 0;
2334 					ack_all_badblocks(&rdev->badblocks);
2335 					md_error(mddev, rdev);
2336 				}
2337 				clear_bit(Blocked, &rdev->flags);
2338 				clear_bit(BlockedBadBlocks, &rdev->flags);
2339 				wake_up(&rdev->blocked_wait);
2340 			}
2341 		}
2342 		wake_up(&mddev->sb_wait);
2343 		return;
2344 	}
2345 
2346 	spin_lock(&mddev->lock);
2347 
2348 	mddev->utime = ktime_get_real_seconds();
2349 
2350 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2351 		force_change = 1;
2352 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2353 		/* just a clean<-> dirty transition, possibly leave spares alone,
2354 		 * though if events isn't the right even/odd, we will have to do
2355 		 * spares after all
2356 		 */
2357 		nospares = 1;
2358 	if (force_change)
2359 		nospares = 0;
2360 	if (mddev->degraded)
2361 		/* If the array is degraded, then skipping spares is both
2362 		 * dangerous and fairly pointless.
2363 		 * Dangerous because a device that was removed from the array
2364 		 * might have a event_count that still looks up-to-date,
2365 		 * so it can be re-added without a resync.
2366 		 * Pointless because if there are any spares to skip,
2367 		 * then a recovery will happen and soon that array won't
2368 		 * be degraded any more and the spare can go back to sleep then.
2369 		 */
2370 		nospares = 0;
2371 
2372 	sync_req = mddev->in_sync;
2373 
2374 	/* If this is just a dirty<->clean transition, and the array is clean
2375 	 * and 'events' is odd, we can roll back to the previous clean state */
2376 	if (nospares
2377 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2378 	    && mddev->can_decrease_events
2379 	    && mddev->events != 1) {
2380 		mddev->events--;
2381 		mddev->can_decrease_events = 0;
2382 	} else {
2383 		/* otherwise we have to go forward and ... */
2384 		mddev->events ++;
2385 		mddev->can_decrease_events = nospares;
2386 	}
2387 
2388 	/*
2389 	 * This 64-bit counter should never wrap.
2390 	 * Either we are in around ~1 trillion A.C., assuming
2391 	 * 1 reboot per second, or we have a bug...
2392 	 */
2393 	WARN_ON(mddev->events == 0);
2394 
2395 	rdev_for_each(rdev, mddev) {
2396 		if (rdev->badblocks.changed)
2397 			any_badblocks_changed++;
2398 		if (test_bit(Faulty, &rdev->flags))
2399 			set_bit(FaultRecorded, &rdev->flags);
2400 	}
2401 
2402 	sync_sbs(mddev, nospares);
2403 	spin_unlock(&mddev->lock);
2404 
2405 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2406 		 mdname(mddev), mddev->in_sync);
2407 
2408 	bitmap_update_sb(mddev->bitmap);
2409 	rdev_for_each(rdev, mddev) {
2410 		char b[BDEVNAME_SIZE];
2411 
2412 		if (rdev->sb_loaded != 1)
2413 			continue; /* no noise on spare devices */
2414 
2415 		if (!test_bit(Faulty, &rdev->flags)) {
2416 			md_super_write(mddev,rdev,
2417 				       rdev->sb_start, rdev->sb_size,
2418 				       rdev->sb_page);
2419 			pr_debug("md: (write) %s's sb offset: %llu\n",
2420 				 bdevname(rdev->bdev, b),
2421 				 (unsigned long long)rdev->sb_start);
2422 			rdev->sb_events = mddev->events;
2423 			if (rdev->badblocks.size) {
2424 				md_super_write(mddev, rdev,
2425 					       rdev->badblocks.sector,
2426 					       rdev->badblocks.size << 9,
2427 					       rdev->bb_page);
2428 				rdev->badblocks.size = 0;
2429 			}
2430 
2431 		} else
2432 			pr_debug("md: %s (skipping faulty)\n",
2433 				 bdevname(rdev->bdev, b));
2434 
2435 		if (mddev->level == LEVEL_MULTIPATH)
2436 			/* only need to write one superblock... */
2437 			break;
2438 	}
2439 	md_super_wait(mddev);
2440 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2441 
2442 	if (mddev_is_clustered(mddev) && ret == 0)
2443 		md_cluster_ops->metadata_update_finish(mddev);
2444 
2445 	if (mddev->in_sync != sync_req ||
2446 	    !bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING),
2447 			       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_CLEAN)))
2448 		/* have to write it out again */
2449 		goto repeat;
2450 	wake_up(&mddev->sb_wait);
2451 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2452 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2453 
2454 	rdev_for_each(rdev, mddev) {
2455 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2456 			clear_bit(Blocked, &rdev->flags);
2457 
2458 		if (any_badblocks_changed)
2459 			ack_all_badblocks(&rdev->badblocks);
2460 		clear_bit(BlockedBadBlocks, &rdev->flags);
2461 		wake_up(&rdev->blocked_wait);
2462 	}
2463 }
2464 EXPORT_SYMBOL(md_update_sb);
2465 
2466 static int add_bound_rdev(struct md_rdev *rdev)
2467 {
2468 	struct mddev *mddev = rdev->mddev;
2469 	int err = 0;
2470 	bool add_journal = test_bit(Journal, &rdev->flags);
2471 
2472 	if (!mddev->pers->hot_remove_disk || add_journal) {
2473 		/* If there is hot_add_disk but no hot_remove_disk
2474 		 * then added disks for geometry changes,
2475 		 * and should be added immediately.
2476 		 */
2477 		super_types[mddev->major_version].
2478 			validate_super(mddev, rdev);
2479 		if (add_journal)
2480 			mddev_suspend(mddev);
2481 		err = mddev->pers->hot_add_disk(mddev, rdev);
2482 		if (add_journal)
2483 			mddev_resume(mddev);
2484 		if (err) {
2485 			md_kick_rdev_from_array(rdev);
2486 			return err;
2487 		}
2488 	}
2489 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2490 
2491 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2492 	if (mddev->degraded)
2493 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2494 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2495 	md_new_event(mddev);
2496 	md_wakeup_thread(mddev->thread);
2497 	return 0;
2498 }
2499 
2500 /* words written to sysfs files may, or may not, be \n terminated.
2501  * We want to accept with case. For this we use cmd_match.
2502  */
2503 static int cmd_match(const char *cmd, const char *str)
2504 {
2505 	/* See if cmd, written into a sysfs file, matches
2506 	 * str.  They must either be the same, or cmd can
2507 	 * have a trailing newline
2508 	 */
2509 	while (*cmd && *str && *cmd == *str) {
2510 		cmd++;
2511 		str++;
2512 	}
2513 	if (*cmd == '\n')
2514 		cmd++;
2515 	if (*str || *cmd)
2516 		return 0;
2517 	return 1;
2518 }
2519 
2520 struct rdev_sysfs_entry {
2521 	struct attribute attr;
2522 	ssize_t (*show)(struct md_rdev *, char *);
2523 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2524 };
2525 
2526 static ssize_t
2527 state_show(struct md_rdev *rdev, char *page)
2528 {
2529 	char *sep = "";
2530 	size_t len = 0;
2531 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2532 
2533 	if (test_bit(Faulty, &flags) ||
2534 	    rdev->badblocks.unacked_exist) {
2535 		len+= sprintf(page+len, "%sfaulty",sep);
2536 		sep = ",";
2537 	}
2538 	if (test_bit(In_sync, &flags)) {
2539 		len += sprintf(page+len, "%sin_sync",sep);
2540 		sep = ",";
2541 	}
2542 	if (test_bit(Journal, &flags)) {
2543 		len += sprintf(page+len, "%sjournal",sep);
2544 		sep = ",";
2545 	}
2546 	if (test_bit(WriteMostly, &flags)) {
2547 		len += sprintf(page+len, "%swrite_mostly",sep);
2548 		sep = ",";
2549 	}
2550 	if (test_bit(Blocked, &flags) ||
2551 	    (rdev->badblocks.unacked_exist
2552 	     && !test_bit(Faulty, &flags))) {
2553 		len += sprintf(page+len, "%sblocked", sep);
2554 		sep = ",";
2555 	}
2556 	if (!test_bit(Faulty, &flags) &&
2557 	    !test_bit(Journal, &flags) &&
2558 	    !test_bit(In_sync, &flags)) {
2559 		len += sprintf(page+len, "%sspare", sep);
2560 		sep = ",";
2561 	}
2562 	if (test_bit(WriteErrorSeen, &flags)) {
2563 		len += sprintf(page+len, "%swrite_error", sep);
2564 		sep = ",";
2565 	}
2566 	if (test_bit(WantReplacement, &flags)) {
2567 		len += sprintf(page+len, "%swant_replacement", sep);
2568 		sep = ",";
2569 	}
2570 	if (test_bit(Replacement, &flags)) {
2571 		len += sprintf(page+len, "%sreplacement", sep);
2572 		sep = ",";
2573 	}
2574 
2575 	return len+sprintf(page+len, "\n");
2576 }
2577 
2578 static ssize_t
2579 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2580 {
2581 	/* can write
2582 	 *  faulty  - simulates an error
2583 	 *  remove  - disconnects the device
2584 	 *  writemostly - sets write_mostly
2585 	 *  -writemostly - clears write_mostly
2586 	 *  blocked - sets the Blocked flags
2587 	 *  -blocked - clears the Blocked and possibly simulates an error
2588 	 *  insync - sets Insync providing device isn't active
2589 	 *  -insync - clear Insync for a device with a slot assigned,
2590 	 *            so that it gets rebuilt based on bitmap
2591 	 *  write_error - sets WriteErrorSeen
2592 	 *  -write_error - clears WriteErrorSeen
2593 	 */
2594 	int err = -EINVAL;
2595 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2596 		md_error(rdev->mddev, rdev);
2597 		if (test_bit(Faulty, &rdev->flags))
2598 			err = 0;
2599 		else
2600 			err = -EBUSY;
2601 	} else if (cmd_match(buf, "remove")) {
2602 		if (rdev->mddev->pers) {
2603 			clear_bit(Blocked, &rdev->flags);
2604 			remove_and_add_spares(rdev->mddev, rdev);
2605 		}
2606 		if (rdev->raid_disk >= 0)
2607 			err = -EBUSY;
2608 		else {
2609 			struct mddev *mddev = rdev->mddev;
2610 			err = 0;
2611 			if (mddev_is_clustered(mddev))
2612 				err = md_cluster_ops->remove_disk(mddev, rdev);
2613 
2614 			if (err == 0) {
2615 				md_kick_rdev_from_array(rdev);
2616 				if (mddev->pers)
2617 					md_update_sb(mddev, 1);
2618 				md_new_event(mddev);
2619 			}
2620 		}
2621 	} else if (cmd_match(buf, "writemostly")) {
2622 		set_bit(WriteMostly, &rdev->flags);
2623 		err = 0;
2624 	} else if (cmd_match(buf, "-writemostly")) {
2625 		clear_bit(WriteMostly, &rdev->flags);
2626 		err = 0;
2627 	} else if (cmd_match(buf, "blocked")) {
2628 		set_bit(Blocked, &rdev->flags);
2629 		err = 0;
2630 	} else if (cmd_match(buf, "-blocked")) {
2631 		if (!test_bit(Faulty, &rdev->flags) &&
2632 		    rdev->badblocks.unacked_exist) {
2633 			/* metadata handler doesn't understand badblocks,
2634 			 * so we need to fail the device
2635 			 */
2636 			md_error(rdev->mddev, rdev);
2637 		}
2638 		clear_bit(Blocked, &rdev->flags);
2639 		clear_bit(BlockedBadBlocks, &rdev->flags);
2640 		wake_up(&rdev->blocked_wait);
2641 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2642 		md_wakeup_thread(rdev->mddev->thread);
2643 
2644 		err = 0;
2645 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2646 		set_bit(In_sync, &rdev->flags);
2647 		err = 0;
2648 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2649 		   !test_bit(Journal, &rdev->flags)) {
2650 		if (rdev->mddev->pers == NULL) {
2651 			clear_bit(In_sync, &rdev->flags);
2652 			rdev->saved_raid_disk = rdev->raid_disk;
2653 			rdev->raid_disk = -1;
2654 			err = 0;
2655 		}
2656 	} else if (cmd_match(buf, "write_error")) {
2657 		set_bit(WriteErrorSeen, &rdev->flags);
2658 		err = 0;
2659 	} else if (cmd_match(buf, "-write_error")) {
2660 		clear_bit(WriteErrorSeen, &rdev->flags);
2661 		err = 0;
2662 	} else if (cmd_match(buf, "want_replacement")) {
2663 		/* Any non-spare device that is not a replacement can
2664 		 * become want_replacement at any time, but we then need to
2665 		 * check if recovery is needed.
2666 		 */
2667 		if (rdev->raid_disk >= 0 &&
2668 		    !test_bit(Journal, &rdev->flags) &&
2669 		    !test_bit(Replacement, &rdev->flags))
2670 			set_bit(WantReplacement, &rdev->flags);
2671 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2672 		md_wakeup_thread(rdev->mddev->thread);
2673 		err = 0;
2674 	} else if (cmd_match(buf, "-want_replacement")) {
2675 		/* Clearing 'want_replacement' is always allowed.
2676 		 * Once replacements starts it is too late though.
2677 		 */
2678 		err = 0;
2679 		clear_bit(WantReplacement, &rdev->flags);
2680 	} else if (cmd_match(buf, "replacement")) {
2681 		/* Can only set a device as a replacement when array has not
2682 		 * yet been started.  Once running, replacement is automatic
2683 		 * from spares, or by assigning 'slot'.
2684 		 */
2685 		if (rdev->mddev->pers)
2686 			err = -EBUSY;
2687 		else {
2688 			set_bit(Replacement, &rdev->flags);
2689 			err = 0;
2690 		}
2691 	} else if (cmd_match(buf, "-replacement")) {
2692 		/* Similarly, can only clear Replacement before start */
2693 		if (rdev->mddev->pers)
2694 			err = -EBUSY;
2695 		else {
2696 			clear_bit(Replacement, &rdev->flags);
2697 			err = 0;
2698 		}
2699 	} else if (cmd_match(buf, "re-add")) {
2700 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2701 			/* clear_bit is performed _after_ all the devices
2702 			 * have their local Faulty bit cleared. If any writes
2703 			 * happen in the meantime in the local node, they
2704 			 * will land in the local bitmap, which will be synced
2705 			 * by this node eventually
2706 			 */
2707 			if (!mddev_is_clustered(rdev->mddev) ||
2708 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2709 				clear_bit(Faulty, &rdev->flags);
2710 				err = add_bound_rdev(rdev);
2711 			}
2712 		} else
2713 			err = -EBUSY;
2714 	}
2715 	if (!err)
2716 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2717 	return err ? err : len;
2718 }
2719 static struct rdev_sysfs_entry rdev_state =
2720 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2721 
2722 static ssize_t
2723 errors_show(struct md_rdev *rdev, char *page)
2724 {
2725 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2726 }
2727 
2728 static ssize_t
2729 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2730 {
2731 	unsigned int n;
2732 	int rv;
2733 
2734 	rv = kstrtouint(buf, 10, &n);
2735 	if (rv < 0)
2736 		return rv;
2737 	atomic_set(&rdev->corrected_errors, n);
2738 	return len;
2739 }
2740 static struct rdev_sysfs_entry rdev_errors =
2741 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2742 
2743 static ssize_t
2744 slot_show(struct md_rdev *rdev, char *page)
2745 {
2746 	if (test_bit(Journal, &rdev->flags))
2747 		return sprintf(page, "journal\n");
2748 	else if (rdev->raid_disk < 0)
2749 		return sprintf(page, "none\n");
2750 	else
2751 		return sprintf(page, "%d\n", rdev->raid_disk);
2752 }
2753 
2754 static ssize_t
2755 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2756 {
2757 	int slot;
2758 	int err;
2759 
2760 	if (test_bit(Journal, &rdev->flags))
2761 		return -EBUSY;
2762 	if (strncmp(buf, "none", 4)==0)
2763 		slot = -1;
2764 	else {
2765 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2766 		if (err < 0)
2767 			return err;
2768 	}
2769 	if (rdev->mddev->pers && slot == -1) {
2770 		/* Setting 'slot' on an active array requires also
2771 		 * updating the 'rd%d' link, and communicating
2772 		 * with the personality with ->hot_*_disk.
2773 		 * For now we only support removing
2774 		 * failed/spare devices.  This normally happens automatically,
2775 		 * but not when the metadata is externally managed.
2776 		 */
2777 		if (rdev->raid_disk == -1)
2778 			return -EEXIST;
2779 		/* personality does all needed checks */
2780 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2781 			return -EINVAL;
2782 		clear_bit(Blocked, &rdev->flags);
2783 		remove_and_add_spares(rdev->mddev, rdev);
2784 		if (rdev->raid_disk >= 0)
2785 			return -EBUSY;
2786 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2787 		md_wakeup_thread(rdev->mddev->thread);
2788 	} else if (rdev->mddev->pers) {
2789 		/* Activating a spare .. or possibly reactivating
2790 		 * if we ever get bitmaps working here.
2791 		 */
2792 		int err;
2793 
2794 		if (rdev->raid_disk != -1)
2795 			return -EBUSY;
2796 
2797 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2798 			return -EBUSY;
2799 
2800 		if (rdev->mddev->pers->hot_add_disk == NULL)
2801 			return -EINVAL;
2802 
2803 		if (slot >= rdev->mddev->raid_disks &&
2804 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2805 			return -ENOSPC;
2806 
2807 		rdev->raid_disk = slot;
2808 		if (test_bit(In_sync, &rdev->flags))
2809 			rdev->saved_raid_disk = slot;
2810 		else
2811 			rdev->saved_raid_disk = -1;
2812 		clear_bit(In_sync, &rdev->flags);
2813 		clear_bit(Bitmap_sync, &rdev->flags);
2814 		err = rdev->mddev->pers->
2815 			hot_add_disk(rdev->mddev, rdev);
2816 		if (err) {
2817 			rdev->raid_disk = -1;
2818 			return err;
2819 		} else
2820 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2821 		if (sysfs_link_rdev(rdev->mddev, rdev))
2822 			/* failure here is OK */;
2823 		/* don't wakeup anyone, leave that to userspace. */
2824 	} else {
2825 		if (slot >= rdev->mddev->raid_disks &&
2826 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2827 			return -ENOSPC;
2828 		rdev->raid_disk = slot;
2829 		/* assume it is working */
2830 		clear_bit(Faulty, &rdev->flags);
2831 		clear_bit(WriteMostly, &rdev->flags);
2832 		set_bit(In_sync, &rdev->flags);
2833 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2834 	}
2835 	return len;
2836 }
2837 
2838 static struct rdev_sysfs_entry rdev_slot =
2839 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2840 
2841 static ssize_t
2842 offset_show(struct md_rdev *rdev, char *page)
2843 {
2844 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2845 }
2846 
2847 static ssize_t
2848 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2849 {
2850 	unsigned long long offset;
2851 	if (kstrtoull(buf, 10, &offset) < 0)
2852 		return -EINVAL;
2853 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2854 		return -EBUSY;
2855 	if (rdev->sectors && rdev->mddev->external)
2856 		/* Must set offset before size, so overlap checks
2857 		 * can be sane */
2858 		return -EBUSY;
2859 	rdev->data_offset = offset;
2860 	rdev->new_data_offset = offset;
2861 	return len;
2862 }
2863 
2864 static struct rdev_sysfs_entry rdev_offset =
2865 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2866 
2867 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2868 {
2869 	return sprintf(page, "%llu\n",
2870 		       (unsigned long long)rdev->new_data_offset);
2871 }
2872 
2873 static ssize_t new_offset_store(struct md_rdev *rdev,
2874 				const char *buf, size_t len)
2875 {
2876 	unsigned long long new_offset;
2877 	struct mddev *mddev = rdev->mddev;
2878 
2879 	if (kstrtoull(buf, 10, &new_offset) < 0)
2880 		return -EINVAL;
2881 
2882 	if (mddev->sync_thread ||
2883 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2884 		return -EBUSY;
2885 	if (new_offset == rdev->data_offset)
2886 		/* reset is always permitted */
2887 		;
2888 	else if (new_offset > rdev->data_offset) {
2889 		/* must not push array size beyond rdev_sectors */
2890 		if (new_offset - rdev->data_offset
2891 		    + mddev->dev_sectors > rdev->sectors)
2892 				return -E2BIG;
2893 	}
2894 	/* Metadata worries about other space details. */
2895 
2896 	/* decreasing the offset is inconsistent with a backwards
2897 	 * reshape.
2898 	 */
2899 	if (new_offset < rdev->data_offset &&
2900 	    mddev->reshape_backwards)
2901 		return -EINVAL;
2902 	/* Increasing offset is inconsistent with forwards
2903 	 * reshape.  reshape_direction should be set to
2904 	 * 'backwards' first.
2905 	 */
2906 	if (new_offset > rdev->data_offset &&
2907 	    !mddev->reshape_backwards)
2908 		return -EINVAL;
2909 
2910 	if (mddev->pers && mddev->persistent &&
2911 	    !super_types[mddev->major_version]
2912 	    .allow_new_offset(rdev, new_offset))
2913 		return -E2BIG;
2914 	rdev->new_data_offset = new_offset;
2915 	if (new_offset > rdev->data_offset)
2916 		mddev->reshape_backwards = 1;
2917 	else if (new_offset < rdev->data_offset)
2918 		mddev->reshape_backwards = 0;
2919 
2920 	return len;
2921 }
2922 static struct rdev_sysfs_entry rdev_new_offset =
2923 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2924 
2925 static ssize_t
2926 rdev_size_show(struct md_rdev *rdev, char *page)
2927 {
2928 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2929 }
2930 
2931 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2932 {
2933 	/* check if two start/length pairs overlap */
2934 	if (s1+l1 <= s2)
2935 		return 0;
2936 	if (s2+l2 <= s1)
2937 		return 0;
2938 	return 1;
2939 }
2940 
2941 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2942 {
2943 	unsigned long long blocks;
2944 	sector_t new;
2945 
2946 	if (kstrtoull(buf, 10, &blocks) < 0)
2947 		return -EINVAL;
2948 
2949 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2950 		return -EINVAL; /* sector conversion overflow */
2951 
2952 	new = blocks * 2;
2953 	if (new != blocks * 2)
2954 		return -EINVAL; /* unsigned long long to sector_t overflow */
2955 
2956 	*sectors = new;
2957 	return 0;
2958 }
2959 
2960 static ssize_t
2961 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2962 {
2963 	struct mddev *my_mddev = rdev->mddev;
2964 	sector_t oldsectors = rdev->sectors;
2965 	sector_t sectors;
2966 
2967 	if (test_bit(Journal, &rdev->flags))
2968 		return -EBUSY;
2969 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2970 		return -EINVAL;
2971 	if (rdev->data_offset != rdev->new_data_offset)
2972 		return -EINVAL; /* too confusing */
2973 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2974 		if (my_mddev->persistent) {
2975 			sectors = super_types[my_mddev->major_version].
2976 				rdev_size_change(rdev, sectors);
2977 			if (!sectors)
2978 				return -EBUSY;
2979 		} else if (!sectors)
2980 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2981 				rdev->data_offset;
2982 		if (!my_mddev->pers->resize)
2983 			/* Cannot change size for RAID0 or Linear etc */
2984 			return -EINVAL;
2985 	}
2986 	if (sectors < my_mddev->dev_sectors)
2987 		return -EINVAL; /* component must fit device */
2988 
2989 	rdev->sectors = sectors;
2990 	if (sectors > oldsectors && my_mddev->external) {
2991 		/* Need to check that all other rdevs with the same
2992 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2993 		 * the rdev lists safely.
2994 		 * This check does not provide a hard guarantee, it
2995 		 * just helps avoid dangerous mistakes.
2996 		 */
2997 		struct mddev *mddev;
2998 		int overlap = 0;
2999 		struct list_head *tmp;
3000 
3001 		rcu_read_lock();
3002 		for_each_mddev(mddev, tmp) {
3003 			struct md_rdev *rdev2;
3004 
3005 			rdev_for_each(rdev2, mddev)
3006 				if (rdev->bdev == rdev2->bdev &&
3007 				    rdev != rdev2 &&
3008 				    overlaps(rdev->data_offset, rdev->sectors,
3009 					     rdev2->data_offset,
3010 					     rdev2->sectors)) {
3011 					overlap = 1;
3012 					break;
3013 				}
3014 			if (overlap) {
3015 				mddev_put(mddev);
3016 				break;
3017 			}
3018 		}
3019 		rcu_read_unlock();
3020 		if (overlap) {
3021 			/* Someone else could have slipped in a size
3022 			 * change here, but doing so is just silly.
3023 			 * We put oldsectors back because we *know* it is
3024 			 * safe, and trust userspace not to race with
3025 			 * itself
3026 			 */
3027 			rdev->sectors = oldsectors;
3028 			return -EBUSY;
3029 		}
3030 	}
3031 	return len;
3032 }
3033 
3034 static struct rdev_sysfs_entry rdev_size =
3035 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3036 
3037 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3038 {
3039 	unsigned long long recovery_start = rdev->recovery_offset;
3040 
3041 	if (test_bit(In_sync, &rdev->flags) ||
3042 	    recovery_start == MaxSector)
3043 		return sprintf(page, "none\n");
3044 
3045 	return sprintf(page, "%llu\n", recovery_start);
3046 }
3047 
3048 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3049 {
3050 	unsigned long long recovery_start;
3051 
3052 	if (cmd_match(buf, "none"))
3053 		recovery_start = MaxSector;
3054 	else if (kstrtoull(buf, 10, &recovery_start))
3055 		return -EINVAL;
3056 
3057 	if (rdev->mddev->pers &&
3058 	    rdev->raid_disk >= 0)
3059 		return -EBUSY;
3060 
3061 	rdev->recovery_offset = recovery_start;
3062 	if (recovery_start == MaxSector)
3063 		set_bit(In_sync, &rdev->flags);
3064 	else
3065 		clear_bit(In_sync, &rdev->flags);
3066 	return len;
3067 }
3068 
3069 static struct rdev_sysfs_entry rdev_recovery_start =
3070 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3071 
3072 /* sysfs access to bad-blocks list.
3073  * We present two files.
3074  * 'bad-blocks' lists sector numbers and lengths of ranges that
3075  *    are recorded as bad.  The list is truncated to fit within
3076  *    the one-page limit of sysfs.
3077  *    Writing "sector length" to this file adds an acknowledged
3078  *    bad block list.
3079  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3080  *    been acknowledged.  Writing to this file adds bad blocks
3081  *    without acknowledging them.  This is largely for testing.
3082  */
3083 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3084 {
3085 	return badblocks_show(&rdev->badblocks, page, 0);
3086 }
3087 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3088 {
3089 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3090 	/* Maybe that ack was all we needed */
3091 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3092 		wake_up(&rdev->blocked_wait);
3093 	return rv;
3094 }
3095 static struct rdev_sysfs_entry rdev_bad_blocks =
3096 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3097 
3098 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3099 {
3100 	return badblocks_show(&rdev->badblocks, page, 1);
3101 }
3102 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3103 {
3104 	return badblocks_store(&rdev->badblocks, page, len, 1);
3105 }
3106 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3107 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3108 
3109 static struct attribute *rdev_default_attrs[] = {
3110 	&rdev_state.attr,
3111 	&rdev_errors.attr,
3112 	&rdev_slot.attr,
3113 	&rdev_offset.attr,
3114 	&rdev_new_offset.attr,
3115 	&rdev_size.attr,
3116 	&rdev_recovery_start.attr,
3117 	&rdev_bad_blocks.attr,
3118 	&rdev_unack_bad_blocks.attr,
3119 	NULL,
3120 };
3121 static ssize_t
3122 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3123 {
3124 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3125 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3126 
3127 	if (!entry->show)
3128 		return -EIO;
3129 	if (!rdev->mddev)
3130 		return -EBUSY;
3131 	return entry->show(rdev, page);
3132 }
3133 
3134 static ssize_t
3135 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3136 	      const char *page, size_t length)
3137 {
3138 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3139 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3140 	ssize_t rv;
3141 	struct mddev *mddev = rdev->mddev;
3142 
3143 	if (!entry->store)
3144 		return -EIO;
3145 	if (!capable(CAP_SYS_ADMIN))
3146 		return -EACCES;
3147 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3148 	if (!rv) {
3149 		if (rdev->mddev == NULL)
3150 			rv = -EBUSY;
3151 		else
3152 			rv = entry->store(rdev, page, length);
3153 		mddev_unlock(mddev);
3154 	}
3155 	return rv;
3156 }
3157 
3158 static void rdev_free(struct kobject *ko)
3159 {
3160 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3161 	kfree(rdev);
3162 }
3163 static const struct sysfs_ops rdev_sysfs_ops = {
3164 	.show		= rdev_attr_show,
3165 	.store		= rdev_attr_store,
3166 };
3167 static struct kobj_type rdev_ktype = {
3168 	.release	= rdev_free,
3169 	.sysfs_ops	= &rdev_sysfs_ops,
3170 	.default_attrs	= rdev_default_attrs,
3171 };
3172 
3173 int md_rdev_init(struct md_rdev *rdev)
3174 {
3175 	rdev->desc_nr = -1;
3176 	rdev->saved_raid_disk = -1;
3177 	rdev->raid_disk = -1;
3178 	rdev->flags = 0;
3179 	rdev->data_offset = 0;
3180 	rdev->new_data_offset = 0;
3181 	rdev->sb_events = 0;
3182 	rdev->last_read_error = 0;
3183 	rdev->sb_loaded = 0;
3184 	rdev->bb_page = NULL;
3185 	atomic_set(&rdev->nr_pending, 0);
3186 	atomic_set(&rdev->read_errors, 0);
3187 	atomic_set(&rdev->corrected_errors, 0);
3188 
3189 	INIT_LIST_HEAD(&rdev->same_set);
3190 	init_waitqueue_head(&rdev->blocked_wait);
3191 
3192 	/* Add space to store bad block list.
3193 	 * This reserves the space even on arrays where it cannot
3194 	 * be used - I wonder if that matters
3195 	 */
3196 	return badblocks_init(&rdev->badblocks, 0);
3197 }
3198 EXPORT_SYMBOL_GPL(md_rdev_init);
3199 /*
3200  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3201  *
3202  * mark the device faulty if:
3203  *
3204  *   - the device is nonexistent (zero size)
3205  *   - the device has no valid superblock
3206  *
3207  * a faulty rdev _never_ has rdev->sb set.
3208  */
3209 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3210 {
3211 	char b[BDEVNAME_SIZE];
3212 	int err;
3213 	struct md_rdev *rdev;
3214 	sector_t size;
3215 
3216 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3217 	if (!rdev) {
3218 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3219 		return ERR_PTR(-ENOMEM);
3220 	}
3221 
3222 	err = md_rdev_init(rdev);
3223 	if (err)
3224 		goto abort_free;
3225 	err = alloc_disk_sb(rdev);
3226 	if (err)
3227 		goto abort_free;
3228 
3229 	err = lock_rdev(rdev, newdev, super_format == -2);
3230 	if (err)
3231 		goto abort_free;
3232 
3233 	kobject_init(&rdev->kobj, &rdev_ktype);
3234 
3235 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3236 	if (!size) {
3237 		printk(KERN_WARNING
3238 			"md: %s has zero or unknown size, marking faulty!\n",
3239 			bdevname(rdev->bdev,b));
3240 		err = -EINVAL;
3241 		goto abort_free;
3242 	}
3243 
3244 	if (super_format >= 0) {
3245 		err = super_types[super_format].
3246 			load_super(rdev, NULL, super_minor);
3247 		if (err == -EINVAL) {
3248 			printk(KERN_WARNING
3249 				"md: %s does not have a valid v%d.%d "
3250 			       "superblock, not importing!\n",
3251 				bdevname(rdev->bdev,b),
3252 			       super_format, super_minor);
3253 			goto abort_free;
3254 		}
3255 		if (err < 0) {
3256 			printk(KERN_WARNING
3257 				"md: could not read %s's sb, not importing!\n",
3258 				bdevname(rdev->bdev,b));
3259 			goto abort_free;
3260 		}
3261 	}
3262 
3263 	return rdev;
3264 
3265 abort_free:
3266 	if (rdev->bdev)
3267 		unlock_rdev(rdev);
3268 	md_rdev_clear(rdev);
3269 	kfree(rdev);
3270 	return ERR_PTR(err);
3271 }
3272 
3273 /*
3274  * Check a full RAID array for plausibility
3275  */
3276 
3277 static void analyze_sbs(struct mddev *mddev)
3278 {
3279 	int i;
3280 	struct md_rdev *rdev, *freshest, *tmp;
3281 	char b[BDEVNAME_SIZE];
3282 
3283 	freshest = NULL;
3284 	rdev_for_each_safe(rdev, tmp, mddev)
3285 		switch (super_types[mddev->major_version].
3286 			load_super(rdev, freshest, mddev->minor_version)) {
3287 		case 1:
3288 			freshest = rdev;
3289 			break;
3290 		case 0:
3291 			break;
3292 		default:
3293 			printk( KERN_ERR \
3294 				"md: fatal superblock inconsistency in %s"
3295 				" -- removing from array\n",
3296 				bdevname(rdev->bdev,b));
3297 			md_kick_rdev_from_array(rdev);
3298 		}
3299 
3300 	super_types[mddev->major_version].
3301 		validate_super(mddev, freshest);
3302 
3303 	i = 0;
3304 	rdev_for_each_safe(rdev, tmp, mddev) {
3305 		if (mddev->max_disks &&
3306 		    (rdev->desc_nr >= mddev->max_disks ||
3307 		     i > mddev->max_disks)) {
3308 			printk(KERN_WARNING
3309 			       "md: %s: %s: only %d devices permitted\n",
3310 			       mdname(mddev), bdevname(rdev->bdev, b),
3311 			       mddev->max_disks);
3312 			md_kick_rdev_from_array(rdev);
3313 			continue;
3314 		}
3315 		if (rdev != freshest) {
3316 			if (super_types[mddev->major_version].
3317 			    validate_super(mddev, rdev)) {
3318 				printk(KERN_WARNING "md: kicking non-fresh %s"
3319 					" from array!\n",
3320 					bdevname(rdev->bdev,b));
3321 				md_kick_rdev_from_array(rdev);
3322 				continue;
3323 			}
3324 		}
3325 		if (mddev->level == LEVEL_MULTIPATH) {
3326 			rdev->desc_nr = i++;
3327 			rdev->raid_disk = rdev->desc_nr;
3328 			set_bit(In_sync, &rdev->flags);
3329 		} else if (rdev->raid_disk >=
3330 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3331 			   !test_bit(Journal, &rdev->flags)) {
3332 			rdev->raid_disk = -1;
3333 			clear_bit(In_sync, &rdev->flags);
3334 		}
3335 	}
3336 }
3337 
3338 /* Read a fixed-point number.
3339  * Numbers in sysfs attributes should be in "standard" units where
3340  * possible, so time should be in seconds.
3341  * However we internally use a a much smaller unit such as
3342  * milliseconds or jiffies.
3343  * This function takes a decimal number with a possible fractional
3344  * component, and produces an integer which is the result of
3345  * multiplying that number by 10^'scale'.
3346  * all without any floating-point arithmetic.
3347  */
3348 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3349 {
3350 	unsigned long result = 0;
3351 	long decimals = -1;
3352 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3353 		if (*cp == '.')
3354 			decimals = 0;
3355 		else if (decimals < scale) {
3356 			unsigned int value;
3357 			value = *cp - '0';
3358 			result = result * 10 + value;
3359 			if (decimals >= 0)
3360 				decimals++;
3361 		}
3362 		cp++;
3363 	}
3364 	if (*cp == '\n')
3365 		cp++;
3366 	if (*cp)
3367 		return -EINVAL;
3368 	if (decimals < 0)
3369 		decimals = 0;
3370 	while (decimals < scale) {
3371 		result *= 10;
3372 		decimals ++;
3373 	}
3374 	*res = result;
3375 	return 0;
3376 }
3377 
3378 static ssize_t
3379 safe_delay_show(struct mddev *mddev, char *page)
3380 {
3381 	int msec = (mddev->safemode_delay*1000)/HZ;
3382 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3383 }
3384 static ssize_t
3385 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3386 {
3387 	unsigned long msec;
3388 
3389 	if (mddev_is_clustered(mddev)) {
3390 		pr_info("md: Safemode is disabled for clustered mode\n");
3391 		return -EINVAL;
3392 	}
3393 
3394 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3395 		return -EINVAL;
3396 	if (msec == 0)
3397 		mddev->safemode_delay = 0;
3398 	else {
3399 		unsigned long old_delay = mddev->safemode_delay;
3400 		unsigned long new_delay = (msec*HZ)/1000;
3401 
3402 		if (new_delay == 0)
3403 			new_delay = 1;
3404 		mddev->safemode_delay = new_delay;
3405 		if (new_delay < old_delay || old_delay == 0)
3406 			mod_timer(&mddev->safemode_timer, jiffies+1);
3407 	}
3408 	return len;
3409 }
3410 static struct md_sysfs_entry md_safe_delay =
3411 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3412 
3413 static ssize_t
3414 level_show(struct mddev *mddev, char *page)
3415 {
3416 	struct md_personality *p;
3417 	int ret;
3418 	spin_lock(&mddev->lock);
3419 	p = mddev->pers;
3420 	if (p)
3421 		ret = sprintf(page, "%s\n", p->name);
3422 	else if (mddev->clevel[0])
3423 		ret = sprintf(page, "%s\n", mddev->clevel);
3424 	else if (mddev->level != LEVEL_NONE)
3425 		ret = sprintf(page, "%d\n", mddev->level);
3426 	else
3427 		ret = 0;
3428 	spin_unlock(&mddev->lock);
3429 	return ret;
3430 }
3431 
3432 static ssize_t
3433 level_store(struct mddev *mddev, const char *buf, size_t len)
3434 {
3435 	char clevel[16];
3436 	ssize_t rv;
3437 	size_t slen = len;
3438 	struct md_personality *pers, *oldpers;
3439 	long level;
3440 	void *priv, *oldpriv;
3441 	struct md_rdev *rdev;
3442 
3443 	if (slen == 0 || slen >= sizeof(clevel))
3444 		return -EINVAL;
3445 
3446 	rv = mddev_lock(mddev);
3447 	if (rv)
3448 		return rv;
3449 
3450 	if (mddev->pers == NULL) {
3451 		strncpy(mddev->clevel, buf, slen);
3452 		if (mddev->clevel[slen-1] == '\n')
3453 			slen--;
3454 		mddev->clevel[slen] = 0;
3455 		mddev->level = LEVEL_NONE;
3456 		rv = len;
3457 		goto out_unlock;
3458 	}
3459 	rv = -EROFS;
3460 	if (mddev->ro)
3461 		goto out_unlock;
3462 
3463 	/* request to change the personality.  Need to ensure:
3464 	 *  - array is not engaged in resync/recovery/reshape
3465 	 *  - old personality can be suspended
3466 	 *  - new personality will access other array.
3467 	 */
3468 
3469 	rv = -EBUSY;
3470 	if (mddev->sync_thread ||
3471 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3472 	    mddev->reshape_position != MaxSector ||
3473 	    mddev->sysfs_active)
3474 		goto out_unlock;
3475 
3476 	rv = -EINVAL;
3477 	if (!mddev->pers->quiesce) {
3478 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3479 		       mdname(mddev), mddev->pers->name);
3480 		goto out_unlock;
3481 	}
3482 
3483 	/* Now find the new personality */
3484 	strncpy(clevel, buf, slen);
3485 	if (clevel[slen-1] == '\n')
3486 		slen--;
3487 	clevel[slen] = 0;
3488 	if (kstrtol(clevel, 10, &level))
3489 		level = LEVEL_NONE;
3490 
3491 	if (request_module("md-%s", clevel) != 0)
3492 		request_module("md-level-%s", clevel);
3493 	spin_lock(&pers_lock);
3494 	pers = find_pers(level, clevel);
3495 	if (!pers || !try_module_get(pers->owner)) {
3496 		spin_unlock(&pers_lock);
3497 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3498 		rv = -EINVAL;
3499 		goto out_unlock;
3500 	}
3501 	spin_unlock(&pers_lock);
3502 
3503 	if (pers == mddev->pers) {
3504 		/* Nothing to do! */
3505 		module_put(pers->owner);
3506 		rv = len;
3507 		goto out_unlock;
3508 	}
3509 	if (!pers->takeover) {
3510 		module_put(pers->owner);
3511 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3512 		       mdname(mddev), clevel);
3513 		rv = -EINVAL;
3514 		goto out_unlock;
3515 	}
3516 
3517 	rdev_for_each(rdev, mddev)
3518 		rdev->new_raid_disk = rdev->raid_disk;
3519 
3520 	/* ->takeover must set new_* and/or delta_disks
3521 	 * if it succeeds, and may set them when it fails.
3522 	 */
3523 	priv = pers->takeover(mddev);
3524 	if (IS_ERR(priv)) {
3525 		mddev->new_level = mddev->level;
3526 		mddev->new_layout = mddev->layout;
3527 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3528 		mddev->raid_disks -= mddev->delta_disks;
3529 		mddev->delta_disks = 0;
3530 		mddev->reshape_backwards = 0;
3531 		module_put(pers->owner);
3532 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3533 		       mdname(mddev), clevel);
3534 		rv = PTR_ERR(priv);
3535 		goto out_unlock;
3536 	}
3537 
3538 	/* Looks like we have a winner */
3539 	mddev_suspend(mddev);
3540 	mddev_detach(mddev);
3541 
3542 	spin_lock(&mddev->lock);
3543 	oldpers = mddev->pers;
3544 	oldpriv = mddev->private;
3545 	mddev->pers = pers;
3546 	mddev->private = priv;
3547 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3548 	mddev->level = mddev->new_level;
3549 	mddev->layout = mddev->new_layout;
3550 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3551 	mddev->delta_disks = 0;
3552 	mddev->reshape_backwards = 0;
3553 	mddev->degraded = 0;
3554 	spin_unlock(&mddev->lock);
3555 
3556 	if (oldpers->sync_request == NULL &&
3557 	    mddev->external) {
3558 		/* We are converting from a no-redundancy array
3559 		 * to a redundancy array and metadata is managed
3560 		 * externally so we need to be sure that writes
3561 		 * won't block due to a need to transition
3562 		 *      clean->dirty
3563 		 * until external management is started.
3564 		 */
3565 		mddev->in_sync = 0;
3566 		mddev->safemode_delay = 0;
3567 		mddev->safemode = 0;
3568 	}
3569 
3570 	oldpers->free(mddev, oldpriv);
3571 
3572 	if (oldpers->sync_request == NULL &&
3573 	    pers->sync_request != NULL) {
3574 		/* need to add the md_redundancy_group */
3575 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3576 			printk(KERN_WARNING
3577 			       "md: cannot register extra attributes for %s\n",
3578 			       mdname(mddev));
3579 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3580 	}
3581 	if (oldpers->sync_request != NULL &&
3582 	    pers->sync_request == NULL) {
3583 		/* need to remove the md_redundancy_group */
3584 		if (mddev->to_remove == NULL)
3585 			mddev->to_remove = &md_redundancy_group;
3586 	}
3587 
3588 	module_put(oldpers->owner);
3589 
3590 	rdev_for_each(rdev, mddev) {
3591 		if (rdev->raid_disk < 0)
3592 			continue;
3593 		if (rdev->new_raid_disk >= mddev->raid_disks)
3594 			rdev->new_raid_disk = -1;
3595 		if (rdev->new_raid_disk == rdev->raid_disk)
3596 			continue;
3597 		sysfs_unlink_rdev(mddev, rdev);
3598 	}
3599 	rdev_for_each(rdev, mddev) {
3600 		if (rdev->raid_disk < 0)
3601 			continue;
3602 		if (rdev->new_raid_disk == rdev->raid_disk)
3603 			continue;
3604 		rdev->raid_disk = rdev->new_raid_disk;
3605 		if (rdev->raid_disk < 0)
3606 			clear_bit(In_sync, &rdev->flags);
3607 		else {
3608 			if (sysfs_link_rdev(mddev, rdev))
3609 				printk(KERN_WARNING "md: cannot register rd%d"
3610 				       " for %s after level change\n",
3611 				       rdev->raid_disk, mdname(mddev));
3612 		}
3613 	}
3614 
3615 	if (pers->sync_request == NULL) {
3616 		/* this is now an array without redundancy, so
3617 		 * it must always be in_sync
3618 		 */
3619 		mddev->in_sync = 1;
3620 		del_timer_sync(&mddev->safemode_timer);
3621 	}
3622 	blk_set_stacking_limits(&mddev->queue->limits);
3623 	pers->run(mddev);
3624 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3625 	mddev_resume(mddev);
3626 	if (!mddev->thread)
3627 		md_update_sb(mddev, 1);
3628 	sysfs_notify(&mddev->kobj, NULL, "level");
3629 	md_new_event(mddev);
3630 	rv = len;
3631 out_unlock:
3632 	mddev_unlock(mddev);
3633 	return rv;
3634 }
3635 
3636 static struct md_sysfs_entry md_level =
3637 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3638 
3639 static ssize_t
3640 layout_show(struct mddev *mddev, char *page)
3641 {
3642 	/* just a number, not meaningful for all levels */
3643 	if (mddev->reshape_position != MaxSector &&
3644 	    mddev->layout != mddev->new_layout)
3645 		return sprintf(page, "%d (%d)\n",
3646 			       mddev->new_layout, mddev->layout);
3647 	return sprintf(page, "%d\n", mddev->layout);
3648 }
3649 
3650 static ssize_t
3651 layout_store(struct mddev *mddev, const char *buf, size_t len)
3652 {
3653 	unsigned int n;
3654 	int err;
3655 
3656 	err = kstrtouint(buf, 10, &n);
3657 	if (err < 0)
3658 		return err;
3659 	err = mddev_lock(mddev);
3660 	if (err)
3661 		return err;
3662 
3663 	if (mddev->pers) {
3664 		if (mddev->pers->check_reshape == NULL)
3665 			err = -EBUSY;
3666 		else if (mddev->ro)
3667 			err = -EROFS;
3668 		else {
3669 			mddev->new_layout = n;
3670 			err = mddev->pers->check_reshape(mddev);
3671 			if (err)
3672 				mddev->new_layout = mddev->layout;
3673 		}
3674 	} else {
3675 		mddev->new_layout = n;
3676 		if (mddev->reshape_position == MaxSector)
3677 			mddev->layout = n;
3678 	}
3679 	mddev_unlock(mddev);
3680 	return err ?: len;
3681 }
3682 static struct md_sysfs_entry md_layout =
3683 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3684 
3685 static ssize_t
3686 raid_disks_show(struct mddev *mddev, char *page)
3687 {
3688 	if (mddev->raid_disks == 0)
3689 		return 0;
3690 	if (mddev->reshape_position != MaxSector &&
3691 	    mddev->delta_disks != 0)
3692 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3693 			       mddev->raid_disks - mddev->delta_disks);
3694 	return sprintf(page, "%d\n", mddev->raid_disks);
3695 }
3696 
3697 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3698 
3699 static ssize_t
3700 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3701 {
3702 	unsigned int n;
3703 	int err;
3704 
3705 	err = kstrtouint(buf, 10, &n);
3706 	if (err < 0)
3707 		return err;
3708 
3709 	err = mddev_lock(mddev);
3710 	if (err)
3711 		return err;
3712 	if (mddev->pers)
3713 		err = update_raid_disks(mddev, n);
3714 	else if (mddev->reshape_position != MaxSector) {
3715 		struct md_rdev *rdev;
3716 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3717 
3718 		err = -EINVAL;
3719 		rdev_for_each(rdev, mddev) {
3720 			if (olddisks < n &&
3721 			    rdev->data_offset < rdev->new_data_offset)
3722 				goto out_unlock;
3723 			if (olddisks > n &&
3724 			    rdev->data_offset > rdev->new_data_offset)
3725 				goto out_unlock;
3726 		}
3727 		err = 0;
3728 		mddev->delta_disks = n - olddisks;
3729 		mddev->raid_disks = n;
3730 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3731 	} else
3732 		mddev->raid_disks = n;
3733 out_unlock:
3734 	mddev_unlock(mddev);
3735 	return err ? err : len;
3736 }
3737 static struct md_sysfs_entry md_raid_disks =
3738 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3739 
3740 static ssize_t
3741 chunk_size_show(struct mddev *mddev, char *page)
3742 {
3743 	if (mddev->reshape_position != MaxSector &&
3744 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3745 		return sprintf(page, "%d (%d)\n",
3746 			       mddev->new_chunk_sectors << 9,
3747 			       mddev->chunk_sectors << 9);
3748 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3749 }
3750 
3751 static ssize_t
3752 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3753 {
3754 	unsigned long n;
3755 	int err;
3756 
3757 	err = kstrtoul(buf, 10, &n);
3758 	if (err < 0)
3759 		return err;
3760 
3761 	err = mddev_lock(mddev);
3762 	if (err)
3763 		return err;
3764 	if (mddev->pers) {
3765 		if (mddev->pers->check_reshape == NULL)
3766 			err = -EBUSY;
3767 		else if (mddev->ro)
3768 			err = -EROFS;
3769 		else {
3770 			mddev->new_chunk_sectors = n >> 9;
3771 			err = mddev->pers->check_reshape(mddev);
3772 			if (err)
3773 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3774 		}
3775 	} else {
3776 		mddev->new_chunk_sectors = n >> 9;
3777 		if (mddev->reshape_position == MaxSector)
3778 			mddev->chunk_sectors = n >> 9;
3779 	}
3780 	mddev_unlock(mddev);
3781 	return err ?: len;
3782 }
3783 static struct md_sysfs_entry md_chunk_size =
3784 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3785 
3786 static ssize_t
3787 resync_start_show(struct mddev *mddev, char *page)
3788 {
3789 	if (mddev->recovery_cp == MaxSector)
3790 		return sprintf(page, "none\n");
3791 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3792 }
3793 
3794 static ssize_t
3795 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3796 {
3797 	unsigned long long n;
3798 	int err;
3799 
3800 	if (cmd_match(buf, "none"))
3801 		n = MaxSector;
3802 	else {
3803 		err = kstrtoull(buf, 10, &n);
3804 		if (err < 0)
3805 			return err;
3806 		if (n != (sector_t)n)
3807 			return -EINVAL;
3808 	}
3809 
3810 	err = mddev_lock(mddev);
3811 	if (err)
3812 		return err;
3813 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3814 		err = -EBUSY;
3815 
3816 	if (!err) {
3817 		mddev->recovery_cp = n;
3818 		if (mddev->pers)
3819 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3820 	}
3821 	mddev_unlock(mddev);
3822 	return err ?: len;
3823 }
3824 static struct md_sysfs_entry md_resync_start =
3825 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3826 		resync_start_show, resync_start_store);
3827 
3828 /*
3829  * The array state can be:
3830  *
3831  * clear
3832  *     No devices, no size, no level
3833  *     Equivalent to STOP_ARRAY ioctl
3834  * inactive
3835  *     May have some settings, but array is not active
3836  *        all IO results in error
3837  *     When written, doesn't tear down array, but just stops it
3838  * suspended (not supported yet)
3839  *     All IO requests will block. The array can be reconfigured.
3840  *     Writing this, if accepted, will block until array is quiescent
3841  * readonly
3842  *     no resync can happen.  no superblocks get written.
3843  *     write requests fail
3844  * read-auto
3845  *     like readonly, but behaves like 'clean' on a write request.
3846  *
3847  * clean - no pending writes, but otherwise active.
3848  *     When written to inactive array, starts without resync
3849  *     If a write request arrives then
3850  *       if metadata is known, mark 'dirty' and switch to 'active'.
3851  *       if not known, block and switch to write-pending
3852  *     If written to an active array that has pending writes, then fails.
3853  * active
3854  *     fully active: IO and resync can be happening.
3855  *     When written to inactive array, starts with resync
3856  *
3857  * write-pending
3858  *     clean, but writes are blocked waiting for 'active' to be written.
3859  *
3860  * active-idle
3861  *     like active, but no writes have been seen for a while (100msec).
3862  *
3863  */
3864 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3865 		   write_pending, active_idle, bad_word};
3866 static char *array_states[] = {
3867 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3868 	"write-pending", "active-idle", NULL };
3869 
3870 static int match_word(const char *word, char **list)
3871 {
3872 	int n;
3873 	for (n=0; list[n]; n++)
3874 		if (cmd_match(word, list[n]))
3875 			break;
3876 	return n;
3877 }
3878 
3879 static ssize_t
3880 array_state_show(struct mddev *mddev, char *page)
3881 {
3882 	enum array_state st = inactive;
3883 
3884 	if (mddev->pers)
3885 		switch(mddev->ro) {
3886 		case 1:
3887 			st = readonly;
3888 			break;
3889 		case 2:
3890 			st = read_auto;
3891 			break;
3892 		case 0:
3893 			if (mddev->in_sync)
3894 				st = clean;
3895 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3896 				st = write_pending;
3897 			else if (mddev->safemode)
3898 				st = active_idle;
3899 			else
3900 				st = active;
3901 		}
3902 	else {
3903 		if (list_empty(&mddev->disks) &&
3904 		    mddev->raid_disks == 0 &&
3905 		    mddev->dev_sectors == 0)
3906 			st = clear;
3907 		else
3908 			st = inactive;
3909 	}
3910 	return sprintf(page, "%s\n", array_states[st]);
3911 }
3912 
3913 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3914 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3915 static int do_md_run(struct mddev *mddev);
3916 static int restart_array(struct mddev *mddev);
3917 
3918 static ssize_t
3919 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3920 {
3921 	int err;
3922 	enum array_state st = match_word(buf, array_states);
3923 
3924 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3925 		/* don't take reconfig_mutex when toggling between
3926 		 * clean and active
3927 		 */
3928 		spin_lock(&mddev->lock);
3929 		if (st == active) {
3930 			restart_array(mddev);
3931 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3932 			wake_up(&mddev->sb_wait);
3933 			err = 0;
3934 		} else /* st == clean */ {
3935 			restart_array(mddev);
3936 			if (atomic_read(&mddev->writes_pending) == 0) {
3937 				if (mddev->in_sync == 0) {
3938 					mddev->in_sync = 1;
3939 					if (mddev->safemode == 1)
3940 						mddev->safemode = 0;
3941 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3942 				}
3943 				err = 0;
3944 			} else
3945 				err = -EBUSY;
3946 		}
3947 		if (!err)
3948 			sysfs_notify_dirent_safe(mddev->sysfs_state);
3949 		spin_unlock(&mddev->lock);
3950 		return err ?: len;
3951 	}
3952 	err = mddev_lock(mddev);
3953 	if (err)
3954 		return err;
3955 	err = -EINVAL;
3956 	switch(st) {
3957 	case bad_word:
3958 		break;
3959 	case clear:
3960 		/* stopping an active array */
3961 		err = do_md_stop(mddev, 0, NULL);
3962 		break;
3963 	case inactive:
3964 		/* stopping an active array */
3965 		if (mddev->pers)
3966 			err = do_md_stop(mddev, 2, NULL);
3967 		else
3968 			err = 0; /* already inactive */
3969 		break;
3970 	case suspended:
3971 		break; /* not supported yet */
3972 	case readonly:
3973 		if (mddev->pers)
3974 			err = md_set_readonly(mddev, NULL);
3975 		else {
3976 			mddev->ro = 1;
3977 			set_disk_ro(mddev->gendisk, 1);
3978 			err = do_md_run(mddev);
3979 		}
3980 		break;
3981 	case read_auto:
3982 		if (mddev->pers) {
3983 			if (mddev->ro == 0)
3984 				err = md_set_readonly(mddev, NULL);
3985 			else if (mddev->ro == 1)
3986 				err = restart_array(mddev);
3987 			if (err == 0) {
3988 				mddev->ro = 2;
3989 				set_disk_ro(mddev->gendisk, 0);
3990 			}
3991 		} else {
3992 			mddev->ro = 2;
3993 			err = do_md_run(mddev);
3994 		}
3995 		break;
3996 	case clean:
3997 		if (mddev->pers) {
3998 			err = restart_array(mddev);
3999 			if (err)
4000 				break;
4001 			spin_lock(&mddev->lock);
4002 			if (atomic_read(&mddev->writes_pending) == 0) {
4003 				if (mddev->in_sync == 0) {
4004 					mddev->in_sync = 1;
4005 					if (mddev->safemode == 1)
4006 						mddev->safemode = 0;
4007 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
4008 				}
4009 				err = 0;
4010 			} else
4011 				err = -EBUSY;
4012 			spin_unlock(&mddev->lock);
4013 		} else
4014 			err = -EINVAL;
4015 		break;
4016 	case active:
4017 		if (mddev->pers) {
4018 			err = restart_array(mddev);
4019 			if (err)
4020 				break;
4021 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4022 			wake_up(&mddev->sb_wait);
4023 			err = 0;
4024 		} else {
4025 			mddev->ro = 0;
4026 			set_disk_ro(mddev->gendisk, 0);
4027 			err = do_md_run(mddev);
4028 		}
4029 		break;
4030 	case write_pending:
4031 	case active_idle:
4032 		/* these cannot be set */
4033 		break;
4034 	}
4035 
4036 	if (!err) {
4037 		if (mddev->hold_active == UNTIL_IOCTL)
4038 			mddev->hold_active = 0;
4039 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4040 	}
4041 	mddev_unlock(mddev);
4042 	return err ?: len;
4043 }
4044 static struct md_sysfs_entry md_array_state =
4045 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4046 
4047 static ssize_t
4048 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4049 	return sprintf(page, "%d\n",
4050 		       atomic_read(&mddev->max_corr_read_errors));
4051 }
4052 
4053 static ssize_t
4054 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4055 {
4056 	unsigned int n;
4057 	int rv;
4058 
4059 	rv = kstrtouint(buf, 10, &n);
4060 	if (rv < 0)
4061 		return rv;
4062 	atomic_set(&mddev->max_corr_read_errors, n);
4063 	return len;
4064 }
4065 
4066 static struct md_sysfs_entry max_corr_read_errors =
4067 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4068 	max_corrected_read_errors_store);
4069 
4070 static ssize_t
4071 null_show(struct mddev *mddev, char *page)
4072 {
4073 	return -EINVAL;
4074 }
4075 
4076 static ssize_t
4077 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4078 {
4079 	/* buf must be %d:%d\n? giving major and minor numbers */
4080 	/* The new device is added to the array.
4081 	 * If the array has a persistent superblock, we read the
4082 	 * superblock to initialise info and check validity.
4083 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4084 	 * which mainly checks size.
4085 	 */
4086 	char *e;
4087 	int major = simple_strtoul(buf, &e, 10);
4088 	int minor;
4089 	dev_t dev;
4090 	struct md_rdev *rdev;
4091 	int err;
4092 
4093 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4094 		return -EINVAL;
4095 	minor = simple_strtoul(e+1, &e, 10);
4096 	if (*e && *e != '\n')
4097 		return -EINVAL;
4098 	dev = MKDEV(major, minor);
4099 	if (major != MAJOR(dev) ||
4100 	    minor != MINOR(dev))
4101 		return -EOVERFLOW;
4102 
4103 	flush_workqueue(md_misc_wq);
4104 
4105 	err = mddev_lock(mddev);
4106 	if (err)
4107 		return err;
4108 	if (mddev->persistent) {
4109 		rdev = md_import_device(dev, mddev->major_version,
4110 					mddev->minor_version);
4111 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4112 			struct md_rdev *rdev0
4113 				= list_entry(mddev->disks.next,
4114 					     struct md_rdev, same_set);
4115 			err = super_types[mddev->major_version]
4116 				.load_super(rdev, rdev0, mddev->minor_version);
4117 			if (err < 0)
4118 				goto out;
4119 		}
4120 	} else if (mddev->external)
4121 		rdev = md_import_device(dev, -2, -1);
4122 	else
4123 		rdev = md_import_device(dev, -1, -1);
4124 
4125 	if (IS_ERR(rdev)) {
4126 		mddev_unlock(mddev);
4127 		return PTR_ERR(rdev);
4128 	}
4129 	err = bind_rdev_to_array(rdev, mddev);
4130  out:
4131 	if (err)
4132 		export_rdev(rdev);
4133 	mddev_unlock(mddev);
4134 	return err ? err : len;
4135 }
4136 
4137 static struct md_sysfs_entry md_new_device =
4138 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4139 
4140 static ssize_t
4141 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4142 {
4143 	char *end;
4144 	unsigned long chunk, end_chunk;
4145 	int err;
4146 
4147 	err = mddev_lock(mddev);
4148 	if (err)
4149 		return err;
4150 	if (!mddev->bitmap)
4151 		goto out;
4152 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4153 	while (*buf) {
4154 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4155 		if (buf == end) break;
4156 		if (*end == '-') { /* range */
4157 			buf = end + 1;
4158 			end_chunk = simple_strtoul(buf, &end, 0);
4159 			if (buf == end) break;
4160 		}
4161 		if (*end && !isspace(*end)) break;
4162 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4163 		buf = skip_spaces(end);
4164 	}
4165 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4166 out:
4167 	mddev_unlock(mddev);
4168 	return len;
4169 }
4170 
4171 static struct md_sysfs_entry md_bitmap =
4172 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4173 
4174 static ssize_t
4175 size_show(struct mddev *mddev, char *page)
4176 {
4177 	return sprintf(page, "%llu\n",
4178 		(unsigned long long)mddev->dev_sectors / 2);
4179 }
4180 
4181 static int update_size(struct mddev *mddev, sector_t num_sectors);
4182 
4183 static ssize_t
4184 size_store(struct mddev *mddev, const char *buf, size_t len)
4185 {
4186 	/* If array is inactive, we can reduce the component size, but
4187 	 * not increase it (except from 0).
4188 	 * If array is active, we can try an on-line resize
4189 	 */
4190 	sector_t sectors;
4191 	int err = strict_blocks_to_sectors(buf, &sectors);
4192 
4193 	if (err < 0)
4194 		return err;
4195 	err = mddev_lock(mddev);
4196 	if (err)
4197 		return err;
4198 	if (mddev->pers) {
4199 		err = update_size(mddev, sectors);
4200 		if (err == 0)
4201 			md_update_sb(mddev, 1);
4202 	} else {
4203 		if (mddev->dev_sectors == 0 ||
4204 		    mddev->dev_sectors > sectors)
4205 			mddev->dev_sectors = sectors;
4206 		else
4207 			err = -ENOSPC;
4208 	}
4209 	mddev_unlock(mddev);
4210 	return err ? err : len;
4211 }
4212 
4213 static struct md_sysfs_entry md_size =
4214 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4215 
4216 /* Metadata version.
4217  * This is one of
4218  *   'none' for arrays with no metadata (good luck...)
4219  *   'external' for arrays with externally managed metadata,
4220  * or N.M for internally known formats
4221  */
4222 static ssize_t
4223 metadata_show(struct mddev *mddev, char *page)
4224 {
4225 	if (mddev->persistent)
4226 		return sprintf(page, "%d.%d\n",
4227 			       mddev->major_version, mddev->minor_version);
4228 	else if (mddev->external)
4229 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4230 	else
4231 		return sprintf(page, "none\n");
4232 }
4233 
4234 static ssize_t
4235 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4236 {
4237 	int major, minor;
4238 	char *e;
4239 	int err;
4240 	/* Changing the details of 'external' metadata is
4241 	 * always permitted.  Otherwise there must be
4242 	 * no devices attached to the array.
4243 	 */
4244 
4245 	err = mddev_lock(mddev);
4246 	if (err)
4247 		return err;
4248 	err = -EBUSY;
4249 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4250 		;
4251 	else if (!list_empty(&mddev->disks))
4252 		goto out_unlock;
4253 
4254 	err = 0;
4255 	if (cmd_match(buf, "none")) {
4256 		mddev->persistent = 0;
4257 		mddev->external = 0;
4258 		mddev->major_version = 0;
4259 		mddev->minor_version = 90;
4260 		goto out_unlock;
4261 	}
4262 	if (strncmp(buf, "external:", 9) == 0) {
4263 		size_t namelen = len-9;
4264 		if (namelen >= sizeof(mddev->metadata_type))
4265 			namelen = sizeof(mddev->metadata_type)-1;
4266 		strncpy(mddev->metadata_type, buf+9, namelen);
4267 		mddev->metadata_type[namelen] = 0;
4268 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4269 			mddev->metadata_type[--namelen] = 0;
4270 		mddev->persistent = 0;
4271 		mddev->external = 1;
4272 		mddev->major_version = 0;
4273 		mddev->minor_version = 90;
4274 		goto out_unlock;
4275 	}
4276 	major = simple_strtoul(buf, &e, 10);
4277 	err = -EINVAL;
4278 	if (e==buf || *e != '.')
4279 		goto out_unlock;
4280 	buf = e+1;
4281 	minor = simple_strtoul(buf, &e, 10);
4282 	if (e==buf || (*e && *e != '\n') )
4283 		goto out_unlock;
4284 	err = -ENOENT;
4285 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4286 		goto out_unlock;
4287 	mddev->major_version = major;
4288 	mddev->minor_version = minor;
4289 	mddev->persistent = 1;
4290 	mddev->external = 0;
4291 	err = 0;
4292 out_unlock:
4293 	mddev_unlock(mddev);
4294 	return err ?: len;
4295 }
4296 
4297 static struct md_sysfs_entry md_metadata =
4298 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4299 
4300 static ssize_t
4301 action_show(struct mddev *mddev, char *page)
4302 {
4303 	char *type = "idle";
4304 	unsigned long recovery = mddev->recovery;
4305 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4306 		type = "frozen";
4307 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4308 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4309 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4310 			type = "reshape";
4311 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4312 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4313 				type = "resync";
4314 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4315 				type = "check";
4316 			else
4317 				type = "repair";
4318 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4319 			type = "recover";
4320 		else if (mddev->reshape_position != MaxSector)
4321 			type = "reshape";
4322 	}
4323 	return sprintf(page, "%s\n", type);
4324 }
4325 
4326 static ssize_t
4327 action_store(struct mddev *mddev, const char *page, size_t len)
4328 {
4329 	if (!mddev->pers || !mddev->pers->sync_request)
4330 		return -EINVAL;
4331 
4332 
4333 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4334 		if (cmd_match(page, "frozen"))
4335 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4336 		else
4337 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4338 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4339 		    mddev_lock(mddev) == 0) {
4340 			flush_workqueue(md_misc_wq);
4341 			if (mddev->sync_thread) {
4342 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4343 				md_reap_sync_thread(mddev);
4344 			}
4345 			mddev_unlock(mddev);
4346 		}
4347 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4348 		return -EBUSY;
4349 	else if (cmd_match(page, "resync"))
4350 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4351 	else if (cmd_match(page, "recover")) {
4352 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4353 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4354 	} else if (cmd_match(page, "reshape")) {
4355 		int err;
4356 		if (mddev->pers->start_reshape == NULL)
4357 			return -EINVAL;
4358 		err = mddev_lock(mddev);
4359 		if (!err) {
4360 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4361 				err =  -EBUSY;
4362 			else {
4363 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4364 				err = mddev->pers->start_reshape(mddev);
4365 			}
4366 			mddev_unlock(mddev);
4367 		}
4368 		if (err)
4369 			return err;
4370 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4371 	} else {
4372 		if (cmd_match(page, "check"))
4373 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4374 		else if (!cmd_match(page, "repair"))
4375 			return -EINVAL;
4376 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4377 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4378 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4379 	}
4380 	if (mddev->ro == 2) {
4381 		/* A write to sync_action is enough to justify
4382 		 * canceling read-auto mode
4383 		 */
4384 		mddev->ro = 0;
4385 		md_wakeup_thread(mddev->sync_thread);
4386 	}
4387 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4388 	md_wakeup_thread(mddev->thread);
4389 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4390 	return len;
4391 }
4392 
4393 static struct md_sysfs_entry md_scan_mode =
4394 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4395 
4396 static ssize_t
4397 last_sync_action_show(struct mddev *mddev, char *page)
4398 {
4399 	return sprintf(page, "%s\n", mddev->last_sync_action);
4400 }
4401 
4402 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4403 
4404 static ssize_t
4405 mismatch_cnt_show(struct mddev *mddev, char *page)
4406 {
4407 	return sprintf(page, "%llu\n",
4408 		       (unsigned long long)
4409 		       atomic64_read(&mddev->resync_mismatches));
4410 }
4411 
4412 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4413 
4414 static ssize_t
4415 sync_min_show(struct mddev *mddev, char *page)
4416 {
4417 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4418 		       mddev->sync_speed_min ? "local": "system");
4419 }
4420 
4421 static ssize_t
4422 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4423 {
4424 	unsigned int min;
4425 	int rv;
4426 
4427 	if (strncmp(buf, "system", 6)==0) {
4428 		min = 0;
4429 	} else {
4430 		rv = kstrtouint(buf, 10, &min);
4431 		if (rv < 0)
4432 			return rv;
4433 		if (min == 0)
4434 			return -EINVAL;
4435 	}
4436 	mddev->sync_speed_min = min;
4437 	return len;
4438 }
4439 
4440 static struct md_sysfs_entry md_sync_min =
4441 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4442 
4443 static ssize_t
4444 sync_max_show(struct mddev *mddev, char *page)
4445 {
4446 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4447 		       mddev->sync_speed_max ? "local": "system");
4448 }
4449 
4450 static ssize_t
4451 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4452 {
4453 	unsigned int max;
4454 	int rv;
4455 
4456 	if (strncmp(buf, "system", 6)==0) {
4457 		max = 0;
4458 	} else {
4459 		rv = kstrtouint(buf, 10, &max);
4460 		if (rv < 0)
4461 			return rv;
4462 		if (max == 0)
4463 			return -EINVAL;
4464 	}
4465 	mddev->sync_speed_max = max;
4466 	return len;
4467 }
4468 
4469 static struct md_sysfs_entry md_sync_max =
4470 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4471 
4472 static ssize_t
4473 degraded_show(struct mddev *mddev, char *page)
4474 {
4475 	return sprintf(page, "%d\n", mddev->degraded);
4476 }
4477 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4478 
4479 static ssize_t
4480 sync_force_parallel_show(struct mddev *mddev, char *page)
4481 {
4482 	return sprintf(page, "%d\n", mddev->parallel_resync);
4483 }
4484 
4485 static ssize_t
4486 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4487 {
4488 	long n;
4489 
4490 	if (kstrtol(buf, 10, &n))
4491 		return -EINVAL;
4492 
4493 	if (n != 0 && n != 1)
4494 		return -EINVAL;
4495 
4496 	mddev->parallel_resync = n;
4497 
4498 	if (mddev->sync_thread)
4499 		wake_up(&resync_wait);
4500 
4501 	return len;
4502 }
4503 
4504 /* force parallel resync, even with shared block devices */
4505 static struct md_sysfs_entry md_sync_force_parallel =
4506 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4507        sync_force_parallel_show, sync_force_parallel_store);
4508 
4509 static ssize_t
4510 sync_speed_show(struct mddev *mddev, char *page)
4511 {
4512 	unsigned long resync, dt, db;
4513 	if (mddev->curr_resync == 0)
4514 		return sprintf(page, "none\n");
4515 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4516 	dt = (jiffies - mddev->resync_mark) / HZ;
4517 	if (!dt) dt++;
4518 	db = resync - mddev->resync_mark_cnt;
4519 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4520 }
4521 
4522 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4523 
4524 static ssize_t
4525 sync_completed_show(struct mddev *mddev, char *page)
4526 {
4527 	unsigned long long max_sectors, resync;
4528 
4529 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4530 		return sprintf(page, "none\n");
4531 
4532 	if (mddev->curr_resync == 1 ||
4533 	    mddev->curr_resync == 2)
4534 		return sprintf(page, "delayed\n");
4535 
4536 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4537 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4538 		max_sectors = mddev->resync_max_sectors;
4539 	else
4540 		max_sectors = mddev->dev_sectors;
4541 
4542 	resync = mddev->curr_resync_completed;
4543 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4544 }
4545 
4546 static struct md_sysfs_entry md_sync_completed =
4547 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4548 
4549 static ssize_t
4550 min_sync_show(struct mddev *mddev, char *page)
4551 {
4552 	return sprintf(page, "%llu\n",
4553 		       (unsigned long long)mddev->resync_min);
4554 }
4555 static ssize_t
4556 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4557 {
4558 	unsigned long long min;
4559 	int err;
4560 
4561 	if (kstrtoull(buf, 10, &min))
4562 		return -EINVAL;
4563 
4564 	spin_lock(&mddev->lock);
4565 	err = -EINVAL;
4566 	if (min > mddev->resync_max)
4567 		goto out_unlock;
4568 
4569 	err = -EBUSY;
4570 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4571 		goto out_unlock;
4572 
4573 	/* Round down to multiple of 4K for safety */
4574 	mddev->resync_min = round_down(min, 8);
4575 	err = 0;
4576 
4577 out_unlock:
4578 	spin_unlock(&mddev->lock);
4579 	return err ?: len;
4580 }
4581 
4582 static struct md_sysfs_entry md_min_sync =
4583 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4584 
4585 static ssize_t
4586 max_sync_show(struct mddev *mddev, char *page)
4587 {
4588 	if (mddev->resync_max == MaxSector)
4589 		return sprintf(page, "max\n");
4590 	else
4591 		return sprintf(page, "%llu\n",
4592 			       (unsigned long long)mddev->resync_max);
4593 }
4594 static ssize_t
4595 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4596 {
4597 	int err;
4598 	spin_lock(&mddev->lock);
4599 	if (strncmp(buf, "max", 3) == 0)
4600 		mddev->resync_max = MaxSector;
4601 	else {
4602 		unsigned long long max;
4603 		int chunk;
4604 
4605 		err = -EINVAL;
4606 		if (kstrtoull(buf, 10, &max))
4607 			goto out_unlock;
4608 		if (max < mddev->resync_min)
4609 			goto out_unlock;
4610 
4611 		err = -EBUSY;
4612 		if (max < mddev->resync_max &&
4613 		    mddev->ro == 0 &&
4614 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4615 			goto out_unlock;
4616 
4617 		/* Must be a multiple of chunk_size */
4618 		chunk = mddev->chunk_sectors;
4619 		if (chunk) {
4620 			sector_t temp = max;
4621 
4622 			err = -EINVAL;
4623 			if (sector_div(temp, chunk))
4624 				goto out_unlock;
4625 		}
4626 		mddev->resync_max = max;
4627 	}
4628 	wake_up(&mddev->recovery_wait);
4629 	err = 0;
4630 out_unlock:
4631 	spin_unlock(&mddev->lock);
4632 	return err ?: len;
4633 }
4634 
4635 static struct md_sysfs_entry md_max_sync =
4636 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4637 
4638 static ssize_t
4639 suspend_lo_show(struct mddev *mddev, char *page)
4640 {
4641 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4642 }
4643 
4644 static ssize_t
4645 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4646 {
4647 	unsigned long long old, new;
4648 	int err;
4649 
4650 	err = kstrtoull(buf, 10, &new);
4651 	if (err < 0)
4652 		return err;
4653 	if (new != (sector_t)new)
4654 		return -EINVAL;
4655 
4656 	err = mddev_lock(mddev);
4657 	if (err)
4658 		return err;
4659 	err = -EINVAL;
4660 	if (mddev->pers == NULL ||
4661 	    mddev->pers->quiesce == NULL)
4662 		goto unlock;
4663 	old = mddev->suspend_lo;
4664 	mddev->suspend_lo = new;
4665 	if (new >= old)
4666 		/* Shrinking suspended region */
4667 		mddev->pers->quiesce(mddev, 2);
4668 	else {
4669 		/* Expanding suspended region - need to wait */
4670 		mddev->pers->quiesce(mddev, 1);
4671 		mddev->pers->quiesce(mddev, 0);
4672 	}
4673 	err = 0;
4674 unlock:
4675 	mddev_unlock(mddev);
4676 	return err ?: len;
4677 }
4678 static struct md_sysfs_entry md_suspend_lo =
4679 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4680 
4681 static ssize_t
4682 suspend_hi_show(struct mddev *mddev, char *page)
4683 {
4684 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4685 }
4686 
4687 static ssize_t
4688 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4689 {
4690 	unsigned long long old, new;
4691 	int err;
4692 
4693 	err = kstrtoull(buf, 10, &new);
4694 	if (err < 0)
4695 		return err;
4696 	if (new != (sector_t)new)
4697 		return -EINVAL;
4698 
4699 	err = mddev_lock(mddev);
4700 	if (err)
4701 		return err;
4702 	err = -EINVAL;
4703 	if (mddev->pers == NULL ||
4704 	    mddev->pers->quiesce == NULL)
4705 		goto unlock;
4706 	old = mddev->suspend_hi;
4707 	mddev->suspend_hi = new;
4708 	if (new <= old)
4709 		/* Shrinking suspended region */
4710 		mddev->pers->quiesce(mddev, 2);
4711 	else {
4712 		/* Expanding suspended region - need to wait */
4713 		mddev->pers->quiesce(mddev, 1);
4714 		mddev->pers->quiesce(mddev, 0);
4715 	}
4716 	err = 0;
4717 unlock:
4718 	mddev_unlock(mddev);
4719 	return err ?: len;
4720 }
4721 static struct md_sysfs_entry md_suspend_hi =
4722 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4723 
4724 static ssize_t
4725 reshape_position_show(struct mddev *mddev, char *page)
4726 {
4727 	if (mddev->reshape_position != MaxSector)
4728 		return sprintf(page, "%llu\n",
4729 			       (unsigned long long)mddev->reshape_position);
4730 	strcpy(page, "none\n");
4731 	return 5;
4732 }
4733 
4734 static ssize_t
4735 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4736 {
4737 	struct md_rdev *rdev;
4738 	unsigned long long new;
4739 	int err;
4740 
4741 	err = kstrtoull(buf, 10, &new);
4742 	if (err < 0)
4743 		return err;
4744 	if (new != (sector_t)new)
4745 		return -EINVAL;
4746 	err = mddev_lock(mddev);
4747 	if (err)
4748 		return err;
4749 	err = -EBUSY;
4750 	if (mddev->pers)
4751 		goto unlock;
4752 	mddev->reshape_position = new;
4753 	mddev->delta_disks = 0;
4754 	mddev->reshape_backwards = 0;
4755 	mddev->new_level = mddev->level;
4756 	mddev->new_layout = mddev->layout;
4757 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4758 	rdev_for_each(rdev, mddev)
4759 		rdev->new_data_offset = rdev->data_offset;
4760 	err = 0;
4761 unlock:
4762 	mddev_unlock(mddev);
4763 	return err ?: len;
4764 }
4765 
4766 static struct md_sysfs_entry md_reshape_position =
4767 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4768        reshape_position_store);
4769 
4770 static ssize_t
4771 reshape_direction_show(struct mddev *mddev, char *page)
4772 {
4773 	return sprintf(page, "%s\n",
4774 		       mddev->reshape_backwards ? "backwards" : "forwards");
4775 }
4776 
4777 static ssize_t
4778 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4779 {
4780 	int backwards = 0;
4781 	int err;
4782 
4783 	if (cmd_match(buf, "forwards"))
4784 		backwards = 0;
4785 	else if (cmd_match(buf, "backwards"))
4786 		backwards = 1;
4787 	else
4788 		return -EINVAL;
4789 	if (mddev->reshape_backwards == backwards)
4790 		return len;
4791 
4792 	err = mddev_lock(mddev);
4793 	if (err)
4794 		return err;
4795 	/* check if we are allowed to change */
4796 	if (mddev->delta_disks)
4797 		err = -EBUSY;
4798 	else if (mddev->persistent &&
4799 	    mddev->major_version == 0)
4800 		err =  -EINVAL;
4801 	else
4802 		mddev->reshape_backwards = backwards;
4803 	mddev_unlock(mddev);
4804 	return err ?: len;
4805 }
4806 
4807 static struct md_sysfs_entry md_reshape_direction =
4808 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4809        reshape_direction_store);
4810 
4811 static ssize_t
4812 array_size_show(struct mddev *mddev, char *page)
4813 {
4814 	if (mddev->external_size)
4815 		return sprintf(page, "%llu\n",
4816 			       (unsigned long long)mddev->array_sectors/2);
4817 	else
4818 		return sprintf(page, "default\n");
4819 }
4820 
4821 static ssize_t
4822 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4823 {
4824 	sector_t sectors;
4825 	int err;
4826 
4827 	err = mddev_lock(mddev);
4828 	if (err)
4829 		return err;
4830 
4831 	/* cluster raid doesn't support change array_sectors */
4832 	if (mddev_is_clustered(mddev))
4833 		return -EINVAL;
4834 
4835 	if (strncmp(buf, "default", 7) == 0) {
4836 		if (mddev->pers)
4837 			sectors = mddev->pers->size(mddev, 0, 0);
4838 		else
4839 			sectors = mddev->array_sectors;
4840 
4841 		mddev->external_size = 0;
4842 	} else {
4843 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4844 			err = -EINVAL;
4845 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4846 			err = -E2BIG;
4847 		else
4848 			mddev->external_size = 1;
4849 	}
4850 
4851 	if (!err) {
4852 		mddev->array_sectors = sectors;
4853 		if (mddev->pers) {
4854 			set_capacity(mddev->gendisk, mddev->array_sectors);
4855 			revalidate_disk(mddev->gendisk);
4856 		}
4857 	}
4858 	mddev_unlock(mddev);
4859 	return err ?: len;
4860 }
4861 
4862 static struct md_sysfs_entry md_array_size =
4863 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4864        array_size_store);
4865 
4866 static struct attribute *md_default_attrs[] = {
4867 	&md_level.attr,
4868 	&md_layout.attr,
4869 	&md_raid_disks.attr,
4870 	&md_chunk_size.attr,
4871 	&md_size.attr,
4872 	&md_resync_start.attr,
4873 	&md_metadata.attr,
4874 	&md_new_device.attr,
4875 	&md_safe_delay.attr,
4876 	&md_array_state.attr,
4877 	&md_reshape_position.attr,
4878 	&md_reshape_direction.attr,
4879 	&md_array_size.attr,
4880 	&max_corr_read_errors.attr,
4881 	NULL,
4882 };
4883 
4884 static struct attribute *md_redundancy_attrs[] = {
4885 	&md_scan_mode.attr,
4886 	&md_last_scan_mode.attr,
4887 	&md_mismatches.attr,
4888 	&md_sync_min.attr,
4889 	&md_sync_max.attr,
4890 	&md_sync_speed.attr,
4891 	&md_sync_force_parallel.attr,
4892 	&md_sync_completed.attr,
4893 	&md_min_sync.attr,
4894 	&md_max_sync.attr,
4895 	&md_suspend_lo.attr,
4896 	&md_suspend_hi.attr,
4897 	&md_bitmap.attr,
4898 	&md_degraded.attr,
4899 	NULL,
4900 };
4901 static struct attribute_group md_redundancy_group = {
4902 	.name = NULL,
4903 	.attrs = md_redundancy_attrs,
4904 };
4905 
4906 static ssize_t
4907 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4908 {
4909 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4910 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4911 	ssize_t rv;
4912 
4913 	if (!entry->show)
4914 		return -EIO;
4915 	spin_lock(&all_mddevs_lock);
4916 	if (list_empty(&mddev->all_mddevs)) {
4917 		spin_unlock(&all_mddevs_lock);
4918 		return -EBUSY;
4919 	}
4920 	mddev_get(mddev);
4921 	spin_unlock(&all_mddevs_lock);
4922 
4923 	rv = entry->show(mddev, page);
4924 	mddev_put(mddev);
4925 	return rv;
4926 }
4927 
4928 static ssize_t
4929 md_attr_store(struct kobject *kobj, struct attribute *attr,
4930 	      const char *page, size_t length)
4931 {
4932 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4933 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4934 	ssize_t rv;
4935 
4936 	if (!entry->store)
4937 		return -EIO;
4938 	if (!capable(CAP_SYS_ADMIN))
4939 		return -EACCES;
4940 	spin_lock(&all_mddevs_lock);
4941 	if (list_empty(&mddev->all_mddevs)) {
4942 		spin_unlock(&all_mddevs_lock);
4943 		return -EBUSY;
4944 	}
4945 	mddev_get(mddev);
4946 	spin_unlock(&all_mddevs_lock);
4947 	rv = entry->store(mddev, page, length);
4948 	mddev_put(mddev);
4949 	return rv;
4950 }
4951 
4952 static void md_free(struct kobject *ko)
4953 {
4954 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4955 
4956 	if (mddev->sysfs_state)
4957 		sysfs_put(mddev->sysfs_state);
4958 
4959 	if (mddev->queue)
4960 		blk_cleanup_queue(mddev->queue);
4961 	if (mddev->gendisk) {
4962 		del_gendisk(mddev->gendisk);
4963 		put_disk(mddev->gendisk);
4964 	}
4965 
4966 	kfree(mddev);
4967 }
4968 
4969 static const struct sysfs_ops md_sysfs_ops = {
4970 	.show	= md_attr_show,
4971 	.store	= md_attr_store,
4972 };
4973 static struct kobj_type md_ktype = {
4974 	.release	= md_free,
4975 	.sysfs_ops	= &md_sysfs_ops,
4976 	.default_attrs	= md_default_attrs,
4977 };
4978 
4979 int mdp_major = 0;
4980 
4981 static void mddev_delayed_delete(struct work_struct *ws)
4982 {
4983 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4984 
4985 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4986 	kobject_del(&mddev->kobj);
4987 	kobject_put(&mddev->kobj);
4988 }
4989 
4990 static int md_alloc(dev_t dev, char *name)
4991 {
4992 	static DEFINE_MUTEX(disks_mutex);
4993 	struct mddev *mddev = mddev_find(dev);
4994 	struct gendisk *disk;
4995 	int partitioned;
4996 	int shift;
4997 	int unit;
4998 	int error;
4999 
5000 	if (!mddev)
5001 		return -ENODEV;
5002 
5003 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5004 	shift = partitioned ? MdpMinorShift : 0;
5005 	unit = MINOR(mddev->unit) >> shift;
5006 
5007 	/* wait for any previous instance of this device to be
5008 	 * completely removed (mddev_delayed_delete).
5009 	 */
5010 	flush_workqueue(md_misc_wq);
5011 
5012 	mutex_lock(&disks_mutex);
5013 	error = -EEXIST;
5014 	if (mddev->gendisk)
5015 		goto abort;
5016 
5017 	if (name) {
5018 		/* Need to ensure that 'name' is not a duplicate.
5019 		 */
5020 		struct mddev *mddev2;
5021 		spin_lock(&all_mddevs_lock);
5022 
5023 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5024 			if (mddev2->gendisk &&
5025 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5026 				spin_unlock(&all_mddevs_lock);
5027 				goto abort;
5028 			}
5029 		spin_unlock(&all_mddevs_lock);
5030 	}
5031 
5032 	error = -ENOMEM;
5033 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
5034 	if (!mddev->queue)
5035 		goto abort;
5036 	mddev->queue->queuedata = mddev;
5037 
5038 	blk_queue_make_request(mddev->queue, md_make_request);
5039 	blk_set_stacking_limits(&mddev->queue->limits);
5040 
5041 	disk = alloc_disk(1 << shift);
5042 	if (!disk) {
5043 		blk_cleanup_queue(mddev->queue);
5044 		mddev->queue = NULL;
5045 		goto abort;
5046 	}
5047 	disk->major = MAJOR(mddev->unit);
5048 	disk->first_minor = unit << shift;
5049 	if (name)
5050 		strcpy(disk->disk_name, name);
5051 	else if (partitioned)
5052 		sprintf(disk->disk_name, "md_d%d", unit);
5053 	else
5054 		sprintf(disk->disk_name, "md%d", unit);
5055 	disk->fops = &md_fops;
5056 	disk->private_data = mddev;
5057 	disk->queue = mddev->queue;
5058 	blk_queue_write_cache(mddev->queue, true, true);
5059 	/* Allow extended partitions.  This makes the
5060 	 * 'mdp' device redundant, but we can't really
5061 	 * remove it now.
5062 	 */
5063 	disk->flags |= GENHD_FL_EXT_DEVT;
5064 	mddev->gendisk = disk;
5065 	/* As soon as we call add_disk(), another thread could get
5066 	 * through to md_open, so make sure it doesn't get too far
5067 	 */
5068 	mutex_lock(&mddev->open_mutex);
5069 	add_disk(disk);
5070 
5071 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5072 				     &disk_to_dev(disk)->kobj, "%s", "md");
5073 	if (error) {
5074 		/* This isn't possible, but as kobject_init_and_add is marked
5075 		 * __must_check, we must do something with the result
5076 		 */
5077 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5078 		       disk->disk_name);
5079 		error = 0;
5080 	}
5081 	if (mddev->kobj.sd &&
5082 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5083 		printk(KERN_DEBUG "pointless warning\n");
5084 	mutex_unlock(&mddev->open_mutex);
5085  abort:
5086 	mutex_unlock(&disks_mutex);
5087 	if (!error && mddev->kobj.sd) {
5088 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5089 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5090 	}
5091 	mddev_put(mddev);
5092 	return error;
5093 }
5094 
5095 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5096 {
5097 	md_alloc(dev, NULL);
5098 	return NULL;
5099 }
5100 
5101 static int add_named_array(const char *val, struct kernel_param *kp)
5102 {
5103 	/* val must be "md_*" where * is not all digits.
5104 	 * We allocate an array with a large free minor number, and
5105 	 * set the name to val.  val must not already be an active name.
5106 	 */
5107 	int len = strlen(val);
5108 	char buf[DISK_NAME_LEN];
5109 
5110 	while (len && val[len-1] == '\n')
5111 		len--;
5112 	if (len >= DISK_NAME_LEN)
5113 		return -E2BIG;
5114 	strlcpy(buf, val, len+1);
5115 	if (strncmp(buf, "md_", 3) != 0)
5116 		return -EINVAL;
5117 	return md_alloc(0, buf);
5118 }
5119 
5120 static void md_safemode_timeout(unsigned long data)
5121 {
5122 	struct mddev *mddev = (struct mddev *) data;
5123 
5124 	if (!atomic_read(&mddev->writes_pending)) {
5125 		mddev->safemode = 1;
5126 		if (mddev->external)
5127 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5128 	}
5129 	md_wakeup_thread(mddev->thread);
5130 }
5131 
5132 static int start_dirty_degraded;
5133 
5134 int md_run(struct mddev *mddev)
5135 {
5136 	int err;
5137 	struct md_rdev *rdev;
5138 	struct md_personality *pers;
5139 
5140 	if (list_empty(&mddev->disks))
5141 		/* cannot run an array with no devices.. */
5142 		return -EINVAL;
5143 
5144 	if (mddev->pers)
5145 		return -EBUSY;
5146 	/* Cannot run until previous stop completes properly */
5147 	if (mddev->sysfs_active)
5148 		return -EBUSY;
5149 
5150 	/*
5151 	 * Analyze all RAID superblock(s)
5152 	 */
5153 	if (!mddev->raid_disks) {
5154 		if (!mddev->persistent)
5155 			return -EINVAL;
5156 		analyze_sbs(mddev);
5157 	}
5158 
5159 	if (mddev->level != LEVEL_NONE)
5160 		request_module("md-level-%d", mddev->level);
5161 	else if (mddev->clevel[0])
5162 		request_module("md-%s", mddev->clevel);
5163 
5164 	/*
5165 	 * Drop all container device buffers, from now on
5166 	 * the only valid external interface is through the md
5167 	 * device.
5168 	 */
5169 	rdev_for_each(rdev, mddev) {
5170 		if (test_bit(Faulty, &rdev->flags))
5171 			continue;
5172 		sync_blockdev(rdev->bdev);
5173 		invalidate_bdev(rdev->bdev);
5174 
5175 		/* perform some consistency tests on the device.
5176 		 * We don't want the data to overlap the metadata,
5177 		 * Internal Bitmap issues have been handled elsewhere.
5178 		 */
5179 		if (rdev->meta_bdev) {
5180 			/* Nothing to check */;
5181 		} else if (rdev->data_offset < rdev->sb_start) {
5182 			if (mddev->dev_sectors &&
5183 			    rdev->data_offset + mddev->dev_sectors
5184 			    > rdev->sb_start) {
5185 				printk("md: %s: data overlaps metadata\n",
5186 				       mdname(mddev));
5187 				return -EINVAL;
5188 			}
5189 		} else {
5190 			if (rdev->sb_start + rdev->sb_size/512
5191 			    > rdev->data_offset) {
5192 				printk("md: %s: metadata overlaps data\n",
5193 				       mdname(mddev));
5194 				return -EINVAL;
5195 			}
5196 		}
5197 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5198 	}
5199 
5200 	if (mddev->bio_set == NULL)
5201 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5202 
5203 	spin_lock(&pers_lock);
5204 	pers = find_pers(mddev->level, mddev->clevel);
5205 	if (!pers || !try_module_get(pers->owner)) {
5206 		spin_unlock(&pers_lock);
5207 		if (mddev->level != LEVEL_NONE)
5208 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5209 			       mddev->level);
5210 		else
5211 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5212 			       mddev->clevel);
5213 		return -EINVAL;
5214 	}
5215 	spin_unlock(&pers_lock);
5216 	if (mddev->level != pers->level) {
5217 		mddev->level = pers->level;
5218 		mddev->new_level = pers->level;
5219 	}
5220 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5221 
5222 	if (mddev->reshape_position != MaxSector &&
5223 	    pers->start_reshape == NULL) {
5224 		/* This personality cannot handle reshaping... */
5225 		module_put(pers->owner);
5226 		return -EINVAL;
5227 	}
5228 
5229 	if (pers->sync_request) {
5230 		/* Warn if this is a potentially silly
5231 		 * configuration.
5232 		 */
5233 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5234 		struct md_rdev *rdev2;
5235 		int warned = 0;
5236 
5237 		rdev_for_each(rdev, mddev)
5238 			rdev_for_each(rdev2, mddev) {
5239 				if (rdev < rdev2 &&
5240 				    rdev->bdev->bd_contains ==
5241 				    rdev2->bdev->bd_contains) {
5242 					printk(KERN_WARNING
5243 					       "%s: WARNING: %s appears to be"
5244 					       " on the same physical disk as"
5245 					       " %s.\n",
5246 					       mdname(mddev),
5247 					       bdevname(rdev->bdev,b),
5248 					       bdevname(rdev2->bdev,b2));
5249 					warned = 1;
5250 				}
5251 			}
5252 
5253 		if (warned)
5254 			printk(KERN_WARNING
5255 			       "True protection against single-disk"
5256 			       " failure might be compromised.\n");
5257 	}
5258 
5259 	mddev->recovery = 0;
5260 	/* may be over-ridden by personality */
5261 	mddev->resync_max_sectors = mddev->dev_sectors;
5262 
5263 	mddev->ok_start_degraded = start_dirty_degraded;
5264 
5265 	if (start_readonly && mddev->ro == 0)
5266 		mddev->ro = 2; /* read-only, but switch on first write */
5267 
5268 	err = pers->run(mddev);
5269 	if (err)
5270 		printk(KERN_ERR "md: pers->run() failed ...\n");
5271 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5272 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5273 			  " but 'external_size' not in effect?\n", __func__);
5274 		printk(KERN_ERR
5275 		       "md: invalid array_size %llu > default size %llu\n",
5276 		       (unsigned long long)mddev->array_sectors / 2,
5277 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5278 		err = -EINVAL;
5279 	}
5280 	if (err == 0 && pers->sync_request &&
5281 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5282 		struct bitmap *bitmap;
5283 
5284 		bitmap = bitmap_create(mddev, -1);
5285 		if (IS_ERR(bitmap)) {
5286 			err = PTR_ERR(bitmap);
5287 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5288 			       mdname(mddev), err);
5289 		} else
5290 			mddev->bitmap = bitmap;
5291 
5292 	}
5293 	if (err) {
5294 		mddev_detach(mddev);
5295 		if (mddev->private)
5296 			pers->free(mddev, mddev->private);
5297 		mddev->private = NULL;
5298 		module_put(pers->owner);
5299 		bitmap_destroy(mddev);
5300 		return err;
5301 	}
5302 	if (mddev->queue) {
5303 		mddev->queue->backing_dev_info.congested_data = mddev;
5304 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5305 	}
5306 	if (pers->sync_request) {
5307 		if (mddev->kobj.sd &&
5308 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5309 			printk(KERN_WARNING
5310 			       "md: cannot register extra attributes for %s\n",
5311 			       mdname(mddev));
5312 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5313 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5314 		mddev->ro = 0;
5315 
5316 	atomic_set(&mddev->writes_pending,0);
5317 	atomic_set(&mddev->max_corr_read_errors,
5318 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5319 	mddev->safemode = 0;
5320 	if (mddev_is_clustered(mddev))
5321 		mddev->safemode_delay = 0;
5322 	else
5323 		mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5324 	mddev->in_sync = 1;
5325 	smp_wmb();
5326 	spin_lock(&mddev->lock);
5327 	mddev->pers = pers;
5328 	spin_unlock(&mddev->lock);
5329 	rdev_for_each(rdev, mddev)
5330 		if (rdev->raid_disk >= 0)
5331 			if (sysfs_link_rdev(mddev, rdev))
5332 				/* failure here is OK */;
5333 
5334 	if (mddev->degraded && !mddev->ro)
5335 		/* This ensures that recovering status is reported immediately
5336 		 * via sysfs - until a lack of spares is confirmed.
5337 		 */
5338 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5339 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5340 
5341 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5342 		md_update_sb(mddev, 0);
5343 
5344 	md_new_event(mddev);
5345 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5346 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5347 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5348 	return 0;
5349 }
5350 EXPORT_SYMBOL_GPL(md_run);
5351 
5352 static int do_md_run(struct mddev *mddev)
5353 {
5354 	int err;
5355 
5356 	err = md_run(mddev);
5357 	if (err)
5358 		goto out;
5359 	err = bitmap_load(mddev);
5360 	if (err) {
5361 		bitmap_destroy(mddev);
5362 		goto out;
5363 	}
5364 
5365 	if (mddev_is_clustered(mddev))
5366 		md_allow_write(mddev);
5367 
5368 	md_wakeup_thread(mddev->thread);
5369 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5370 
5371 	set_capacity(mddev->gendisk, mddev->array_sectors);
5372 	revalidate_disk(mddev->gendisk);
5373 	mddev->changed = 1;
5374 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5375 out:
5376 	return err;
5377 }
5378 
5379 static int restart_array(struct mddev *mddev)
5380 {
5381 	struct gendisk *disk = mddev->gendisk;
5382 
5383 	/* Complain if it has no devices */
5384 	if (list_empty(&mddev->disks))
5385 		return -ENXIO;
5386 	if (!mddev->pers)
5387 		return -EINVAL;
5388 	if (!mddev->ro)
5389 		return -EBUSY;
5390 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5391 		struct md_rdev *rdev;
5392 		bool has_journal = false;
5393 
5394 		rcu_read_lock();
5395 		rdev_for_each_rcu(rdev, mddev) {
5396 			if (test_bit(Journal, &rdev->flags) &&
5397 			    !test_bit(Faulty, &rdev->flags)) {
5398 				has_journal = true;
5399 				break;
5400 			}
5401 		}
5402 		rcu_read_unlock();
5403 
5404 		/* Don't restart rw with journal missing/faulty */
5405 		if (!has_journal)
5406 			return -EINVAL;
5407 	}
5408 
5409 	mddev->safemode = 0;
5410 	mddev->ro = 0;
5411 	set_disk_ro(disk, 0);
5412 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5413 		mdname(mddev));
5414 	/* Kick recovery or resync if necessary */
5415 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5416 	md_wakeup_thread(mddev->thread);
5417 	md_wakeup_thread(mddev->sync_thread);
5418 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5419 	return 0;
5420 }
5421 
5422 static void md_clean(struct mddev *mddev)
5423 {
5424 	mddev->array_sectors = 0;
5425 	mddev->external_size = 0;
5426 	mddev->dev_sectors = 0;
5427 	mddev->raid_disks = 0;
5428 	mddev->recovery_cp = 0;
5429 	mddev->resync_min = 0;
5430 	mddev->resync_max = MaxSector;
5431 	mddev->reshape_position = MaxSector;
5432 	mddev->external = 0;
5433 	mddev->persistent = 0;
5434 	mddev->level = LEVEL_NONE;
5435 	mddev->clevel[0] = 0;
5436 	mddev->flags = 0;
5437 	mddev->ro = 0;
5438 	mddev->metadata_type[0] = 0;
5439 	mddev->chunk_sectors = 0;
5440 	mddev->ctime = mddev->utime = 0;
5441 	mddev->layout = 0;
5442 	mddev->max_disks = 0;
5443 	mddev->events = 0;
5444 	mddev->can_decrease_events = 0;
5445 	mddev->delta_disks = 0;
5446 	mddev->reshape_backwards = 0;
5447 	mddev->new_level = LEVEL_NONE;
5448 	mddev->new_layout = 0;
5449 	mddev->new_chunk_sectors = 0;
5450 	mddev->curr_resync = 0;
5451 	atomic64_set(&mddev->resync_mismatches, 0);
5452 	mddev->suspend_lo = mddev->suspend_hi = 0;
5453 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5454 	mddev->recovery = 0;
5455 	mddev->in_sync = 0;
5456 	mddev->changed = 0;
5457 	mddev->degraded = 0;
5458 	mddev->safemode = 0;
5459 	mddev->private = NULL;
5460 	mddev->bitmap_info.offset = 0;
5461 	mddev->bitmap_info.default_offset = 0;
5462 	mddev->bitmap_info.default_space = 0;
5463 	mddev->bitmap_info.chunksize = 0;
5464 	mddev->bitmap_info.daemon_sleep = 0;
5465 	mddev->bitmap_info.max_write_behind = 0;
5466 }
5467 
5468 static void __md_stop_writes(struct mddev *mddev)
5469 {
5470 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5471 	flush_workqueue(md_misc_wq);
5472 	if (mddev->sync_thread) {
5473 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5474 		md_reap_sync_thread(mddev);
5475 	}
5476 
5477 	del_timer_sync(&mddev->safemode_timer);
5478 
5479 	bitmap_flush(mddev);
5480 	md_super_wait(mddev);
5481 
5482 	if (mddev->ro == 0 &&
5483 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5484 	     (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5485 		/* mark array as shutdown cleanly */
5486 		if (!mddev_is_clustered(mddev))
5487 			mddev->in_sync = 1;
5488 		md_update_sb(mddev, 1);
5489 	}
5490 }
5491 
5492 void md_stop_writes(struct mddev *mddev)
5493 {
5494 	mddev_lock_nointr(mddev);
5495 	__md_stop_writes(mddev);
5496 	mddev_unlock(mddev);
5497 }
5498 EXPORT_SYMBOL_GPL(md_stop_writes);
5499 
5500 static void mddev_detach(struct mddev *mddev)
5501 {
5502 	struct bitmap *bitmap = mddev->bitmap;
5503 	/* wait for behind writes to complete */
5504 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5505 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5506 		       mdname(mddev));
5507 		/* need to kick something here to make sure I/O goes? */
5508 		wait_event(bitmap->behind_wait,
5509 			   atomic_read(&bitmap->behind_writes) == 0);
5510 	}
5511 	if (mddev->pers && mddev->pers->quiesce) {
5512 		mddev->pers->quiesce(mddev, 1);
5513 		mddev->pers->quiesce(mddev, 0);
5514 	}
5515 	md_unregister_thread(&mddev->thread);
5516 	if (mddev->queue)
5517 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5518 }
5519 
5520 static void __md_stop(struct mddev *mddev)
5521 {
5522 	struct md_personality *pers = mddev->pers;
5523 	mddev_detach(mddev);
5524 	/* Ensure ->event_work is done */
5525 	flush_workqueue(md_misc_wq);
5526 	spin_lock(&mddev->lock);
5527 	mddev->pers = NULL;
5528 	spin_unlock(&mddev->lock);
5529 	pers->free(mddev, mddev->private);
5530 	mddev->private = NULL;
5531 	if (pers->sync_request && mddev->to_remove == NULL)
5532 		mddev->to_remove = &md_redundancy_group;
5533 	module_put(pers->owner);
5534 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5535 }
5536 
5537 void md_stop(struct mddev *mddev)
5538 {
5539 	/* stop the array and free an attached data structures.
5540 	 * This is called from dm-raid
5541 	 */
5542 	__md_stop(mddev);
5543 	bitmap_destroy(mddev);
5544 	if (mddev->bio_set)
5545 		bioset_free(mddev->bio_set);
5546 }
5547 
5548 EXPORT_SYMBOL_GPL(md_stop);
5549 
5550 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5551 {
5552 	int err = 0;
5553 	int did_freeze = 0;
5554 
5555 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5556 		did_freeze = 1;
5557 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5558 		md_wakeup_thread(mddev->thread);
5559 	}
5560 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5561 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5562 	if (mddev->sync_thread)
5563 		/* Thread might be blocked waiting for metadata update
5564 		 * which will now never happen */
5565 		wake_up_process(mddev->sync_thread->tsk);
5566 
5567 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5568 		return -EBUSY;
5569 	mddev_unlock(mddev);
5570 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5571 					  &mddev->recovery));
5572 	wait_event(mddev->sb_wait,
5573 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5574 	mddev_lock_nointr(mddev);
5575 
5576 	mutex_lock(&mddev->open_mutex);
5577 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5578 	    mddev->sync_thread ||
5579 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5580 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5581 		printk("md: %s still in use.\n",mdname(mddev));
5582 		if (did_freeze) {
5583 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5584 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5585 			md_wakeup_thread(mddev->thread);
5586 		}
5587 		err = -EBUSY;
5588 		goto out;
5589 	}
5590 	if (mddev->pers) {
5591 		__md_stop_writes(mddev);
5592 
5593 		err  = -ENXIO;
5594 		if (mddev->ro==1)
5595 			goto out;
5596 		mddev->ro = 1;
5597 		set_disk_ro(mddev->gendisk, 1);
5598 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5599 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5600 		md_wakeup_thread(mddev->thread);
5601 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5602 		err = 0;
5603 	}
5604 out:
5605 	mutex_unlock(&mddev->open_mutex);
5606 	return err;
5607 }
5608 
5609 /* mode:
5610  *   0 - completely stop and dis-assemble array
5611  *   2 - stop but do not disassemble array
5612  */
5613 static int do_md_stop(struct mddev *mddev, int mode,
5614 		      struct block_device *bdev)
5615 {
5616 	struct gendisk *disk = mddev->gendisk;
5617 	struct md_rdev *rdev;
5618 	int did_freeze = 0;
5619 
5620 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5621 		did_freeze = 1;
5622 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5623 		md_wakeup_thread(mddev->thread);
5624 	}
5625 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5626 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5627 	if (mddev->sync_thread)
5628 		/* Thread might be blocked waiting for metadata update
5629 		 * which will now never happen */
5630 		wake_up_process(mddev->sync_thread->tsk);
5631 
5632 	mddev_unlock(mddev);
5633 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5634 				 !test_bit(MD_RECOVERY_RUNNING,
5635 					   &mddev->recovery)));
5636 	mddev_lock_nointr(mddev);
5637 
5638 	mutex_lock(&mddev->open_mutex);
5639 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5640 	    mddev->sysfs_active ||
5641 	    mddev->sync_thread ||
5642 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5643 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5644 		printk("md: %s still in use.\n",mdname(mddev));
5645 		mutex_unlock(&mddev->open_mutex);
5646 		if (did_freeze) {
5647 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5648 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5649 			md_wakeup_thread(mddev->thread);
5650 		}
5651 		return -EBUSY;
5652 	}
5653 	if (mddev->pers) {
5654 		if (mddev->ro)
5655 			set_disk_ro(disk, 0);
5656 
5657 		__md_stop_writes(mddev);
5658 		__md_stop(mddev);
5659 		mddev->queue->backing_dev_info.congested_fn = NULL;
5660 
5661 		/* tell userspace to handle 'inactive' */
5662 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5663 
5664 		rdev_for_each(rdev, mddev)
5665 			if (rdev->raid_disk >= 0)
5666 				sysfs_unlink_rdev(mddev, rdev);
5667 
5668 		set_capacity(disk, 0);
5669 		mutex_unlock(&mddev->open_mutex);
5670 		mddev->changed = 1;
5671 		revalidate_disk(disk);
5672 
5673 		if (mddev->ro)
5674 			mddev->ro = 0;
5675 	} else
5676 		mutex_unlock(&mddev->open_mutex);
5677 	/*
5678 	 * Free resources if final stop
5679 	 */
5680 	if (mode == 0) {
5681 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5682 
5683 		bitmap_destroy(mddev);
5684 		if (mddev->bitmap_info.file) {
5685 			struct file *f = mddev->bitmap_info.file;
5686 			spin_lock(&mddev->lock);
5687 			mddev->bitmap_info.file = NULL;
5688 			spin_unlock(&mddev->lock);
5689 			fput(f);
5690 		}
5691 		mddev->bitmap_info.offset = 0;
5692 
5693 		export_array(mddev);
5694 
5695 		md_clean(mddev);
5696 		if (mddev->hold_active == UNTIL_STOP)
5697 			mddev->hold_active = 0;
5698 	}
5699 	md_new_event(mddev);
5700 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5701 	return 0;
5702 }
5703 
5704 #ifndef MODULE
5705 static void autorun_array(struct mddev *mddev)
5706 {
5707 	struct md_rdev *rdev;
5708 	int err;
5709 
5710 	if (list_empty(&mddev->disks))
5711 		return;
5712 
5713 	printk(KERN_INFO "md: running: ");
5714 
5715 	rdev_for_each(rdev, mddev) {
5716 		char b[BDEVNAME_SIZE];
5717 		printk("<%s>", bdevname(rdev->bdev,b));
5718 	}
5719 	printk("\n");
5720 
5721 	err = do_md_run(mddev);
5722 	if (err) {
5723 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5724 		do_md_stop(mddev, 0, NULL);
5725 	}
5726 }
5727 
5728 /*
5729  * lets try to run arrays based on all disks that have arrived
5730  * until now. (those are in pending_raid_disks)
5731  *
5732  * the method: pick the first pending disk, collect all disks with
5733  * the same UUID, remove all from the pending list and put them into
5734  * the 'same_array' list. Then order this list based on superblock
5735  * update time (freshest comes first), kick out 'old' disks and
5736  * compare superblocks. If everything's fine then run it.
5737  *
5738  * If "unit" is allocated, then bump its reference count
5739  */
5740 static void autorun_devices(int part)
5741 {
5742 	struct md_rdev *rdev0, *rdev, *tmp;
5743 	struct mddev *mddev;
5744 	char b[BDEVNAME_SIZE];
5745 
5746 	printk(KERN_INFO "md: autorun ...\n");
5747 	while (!list_empty(&pending_raid_disks)) {
5748 		int unit;
5749 		dev_t dev;
5750 		LIST_HEAD(candidates);
5751 		rdev0 = list_entry(pending_raid_disks.next,
5752 					 struct md_rdev, same_set);
5753 
5754 		printk(KERN_INFO "md: considering %s ...\n",
5755 			bdevname(rdev0->bdev,b));
5756 		INIT_LIST_HEAD(&candidates);
5757 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5758 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5759 				printk(KERN_INFO "md:  adding %s ...\n",
5760 					bdevname(rdev->bdev,b));
5761 				list_move(&rdev->same_set, &candidates);
5762 			}
5763 		/*
5764 		 * now we have a set of devices, with all of them having
5765 		 * mostly sane superblocks. It's time to allocate the
5766 		 * mddev.
5767 		 */
5768 		if (part) {
5769 			dev = MKDEV(mdp_major,
5770 				    rdev0->preferred_minor << MdpMinorShift);
5771 			unit = MINOR(dev) >> MdpMinorShift;
5772 		} else {
5773 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5774 			unit = MINOR(dev);
5775 		}
5776 		if (rdev0->preferred_minor != unit) {
5777 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5778 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5779 			break;
5780 		}
5781 
5782 		md_probe(dev, NULL, NULL);
5783 		mddev = mddev_find(dev);
5784 		if (!mddev || !mddev->gendisk) {
5785 			if (mddev)
5786 				mddev_put(mddev);
5787 			printk(KERN_ERR
5788 				"md: cannot allocate memory for md drive.\n");
5789 			break;
5790 		}
5791 		if (mddev_lock(mddev))
5792 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5793 			       mdname(mddev));
5794 		else if (mddev->raid_disks || mddev->major_version
5795 			 || !list_empty(&mddev->disks)) {
5796 			printk(KERN_WARNING
5797 				"md: %s already running, cannot run %s\n",
5798 				mdname(mddev), bdevname(rdev0->bdev,b));
5799 			mddev_unlock(mddev);
5800 		} else {
5801 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5802 			mddev->persistent = 1;
5803 			rdev_for_each_list(rdev, tmp, &candidates) {
5804 				list_del_init(&rdev->same_set);
5805 				if (bind_rdev_to_array(rdev, mddev))
5806 					export_rdev(rdev);
5807 			}
5808 			autorun_array(mddev);
5809 			mddev_unlock(mddev);
5810 		}
5811 		/* on success, candidates will be empty, on error
5812 		 * it won't...
5813 		 */
5814 		rdev_for_each_list(rdev, tmp, &candidates) {
5815 			list_del_init(&rdev->same_set);
5816 			export_rdev(rdev);
5817 		}
5818 		mddev_put(mddev);
5819 	}
5820 	printk(KERN_INFO "md: ... autorun DONE.\n");
5821 }
5822 #endif /* !MODULE */
5823 
5824 static int get_version(void __user *arg)
5825 {
5826 	mdu_version_t ver;
5827 
5828 	ver.major = MD_MAJOR_VERSION;
5829 	ver.minor = MD_MINOR_VERSION;
5830 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5831 
5832 	if (copy_to_user(arg, &ver, sizeof(ver)))
5833 		return -EFAULT;
5834 
5835 	return 0;
5836 }
5837 
5838 static int get_array_info(struct mddev *mddev, void __user *arg)
5839 {
5840 	mdu_array_info_t info;
5841 	int nr,working,insync,failed,spare;
5842 	struct md_rdev *rdev;
5843 
5844 	nr = working = insync = failed = spare = 0;
5845 	rcu_read_lock();
5846 	rdev_for_each_rcu(rdev, mddev) {
5847 		nr++;
5848 		if (test_bit(Faulty, &rdev->flags))
5849 			failed++;
5850 		else {
5851 			working++;
5852 			if (test_bit(In_sync, &rdev->flags))
5853 				insync++;
5854 			else
5855 				spare++;
5856 		}
5857 	}
5858 	rcu_read_unlock();
5859 
5860 	info.major_version = mddev->major_version;
5861 	info.minor_version = mddev->minor_version;
5862 	info.patch_version = MD_PATCHLEVEL_VERSION;
5863 	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
5864 	info.level         = mddev->level;
5865 	info.size          = mddev->dev_sectors / 2;
5866 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5867 		info.size = -1;
5868 	info.nr_disks      = nr;
5869 	info.raid_disks    = mddev->raid_disks;
5870 	info.md_minor      = mddev->md_minor;
5871 	info.not_persistent= !mddev->persistent;
5872 
5873 	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
5874 	info.state         = 0;
5875 	if (mddev->in_sync)
5876 		info.state = (1<<MD_SB_CLEAN);
5877 	if (mddev->bitmap && mddev->bitmap_info.offset)
5878 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5879 	if (mddev_is_clustered(mddev))
5880 		info.state |= (1<<MD_SB_CLUSTERED);
5881 	info.active_disks  = insync;
5882 	info.working_disks = working;
5883 	info.failed_disks  = failed;
5884 	info.spare_disks   = spare;
5885 
5886 	info.layout        = mddev->layout;
5887 	info.chunk_size    = mddev->chunk_sectors << 9;
5888 
5889 	if (copy_to_user(arg, &info, sizeof(info)))
5890 		return -EFAULT;
5891 
5892 	return 0;
5893 }
5894 
5895 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5896 {
5897 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5898 	char *ptr;
5899 	int err;
5900 
5901 	file = kzalloc(sizeof(*file), GFP_NOIO);
5902 	if (!file)
5903 		return -ENOMEM;
5904 
5905 	err = 0;
5906 	spin_lock(&mddev->lock);
5907 	/* bitmap enabled */
5908 	if (mddev->bitmap_info.file) {
5909 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5910 				sizeof(file->pathname));
5911 		if (IS_ERR(ptr))
5912 			err = PTR_ERR(ptr);
5913 		else
5914 			memmove(file->pathname, ptr,
5915 				sizeof(file->pathname)-(ptr-file->pathname));
5916 	}
5917 	spin_unlock(&mddev->lock);
5918 
5919 	if (err == 0 &&
5920 	    copy_to_user(arg, file, sizeof(*file)))
5921 		err = -EFAULT;
5922 
5923 	kfree(file);
5924 	return err;
5925 }
5926 
5927 static int get_disk_info(struct mddev *mddev, void __user * arg)
5928 {
5929 	mdu_disk_info_t info;
5930 	struct md_rdev *rdev;
5931 
5932 	if (copy_from_user(&info, arg, sizeof(info)))
5933 		return -EFAULT;
5934 
5935 	rcu_read_lock();
5936 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5937 	if (rdev) {
5938 		info.major = MAJOR(rdev->bdev->bd_dev);
5939 		info.minor = MINOR(rdev->bdev->bd_dev);
5940 		info.raid_disk = rdev->raid_disk;
5941 		info.state = 0;
5942 		if (test_bit(Faulty, &rdev->flags))
5943 			info.state |= (1<<MD_DISK_FAULTY);
5944 		else if (test_bit(In_sync, &rdev->flags)) {
5945 			info.state |= (1<<MD_DISK_ACTIVE);
5946 			info.state |= (1<<MD_DISK_SYNC);
5947 		}
5948 		if (test_bit(Journal, &rdev->flags))
5949 			info.state |= (1<<MD_DISK_JOURNAL);
5950 		if (test_bit(WriteMostly, &rdev->flags))
5951 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5952 	} else {
5953 		info.major = info.minor = 0;
5954 		info.raid_disk = -1;
5955 		info.state = (1<<MD_DISK_REMOVED);
5956 	}
5957 	rcu_read_unlock();
5958 
5959 	if (copy_to_user(arg, &info, sizeof(info)))
5960 		return -EFAULT;
5961 
5962 	return 0;
5963 }
5964 
5965 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5966 {
5967 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5968 	struct md_rdev *rdev;
5969 	dev_t dev = MKDEV(info->major,info->minor);
5970 
5971 	if (mddev_is_clustered(mddev) &&
5972 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5973 		pr_err("%s: Cannot add to clustered mddev.\n",
5974 			       mdname(mddev));
5975 		return -EINVAL;
5976 	}
5977 
5978 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5979 		return -EOVERFLOW;
5980 
5981 	if (!mddev->raid_disks) {
5982 		int err;
5983 		/* expecting a device which has a superblock */
5984 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5985 		if (IS_ERR(rdev)) {
5986 			printk(KERN_WARNING
5987 				"md: md_import_device returned %ld\n",
5988 				PTR_ERR(rdev));
5989 			return PTR_ERR(rdev);
5990 		}
5991 		if (!list_empty(&mddev->disks)) {
5992 			struct md_rdev *rdev0
5993 				= list_entry(mddev->disks.next,
5994 					     struct md_rdev, same_set);
5995 			err = super_types[mddev->major_version]
5996 				.load_super(rdev, rdev0, mddev->minor_version);
5997 			if (err < 0) {
5998 				printk(KERN_WARNING
5999 					"md: %s has different UUID to %s\n",
6000 					bdevname(rdev->bdev,b),
6001 					bdevname(rdev0->bdev,b2));
6002 				export_rdev(rdev);
6003 				return -EINVAL;
6004 			}
6005 		}
6006 		err = bind_rdev_to_array(rdev, mddev);
6007 		if (err)
6008 			export_rdev(rdev);
6009 		return err;
6010 	}
6011 
6012 	/*
6013 	 * add_new_disk can be used once the array is assembled
6014 	 * to add "hot spares".  They must already have a superblock
6015 	 * written
6016 	 */
6017 	if (mddev->pers) {
6018 		int err;
6019 		if (!mddev->pers->hot_add_disk) {
6020 			printk(KERN_WARNING
6021 				"%s: personality does not support diskops!\n",
6022 			       mdname(mddev));
6023 			return -EINVAL;
6024 		}
6025 		if (mddev->persistent)
6026 			rdev = md_import_device(dev, mddev->major_version,
6027 						mddev->minor_version);
6028 		else
6029 			rdev = md_import_device(dev, -1, -1);
6030 		if (IS_ERR(rdev)) {
6031 			printk(KERN_WARNING
6032 				"md: md_import_device returned %ld\n",
6033 				PTR_ERR(rdev));
6034 			return PTR_ERR(rdev);
6035 		}
6036 		/* set saved_raid_disk if appropriate */
6037 		if (!mddev->persistent) {
6038 			if (info->state & (1<<MD_DISK_SYNC)  &&
6039 			    info->raid_disk < mddev->raid_disks) {
6040 				rdev->raid_disk = info->raid_disk;
6041 				set_bit(In_sync, &rdev->flags);
6042 				clear_bit(Bitmap_sync, &rdev->flags);
6043 			} else
6044 				rdev->raid_disk = -1;
6045 			rdev->saved_raid_disk = rdev->raid_disk;
6046 		} else
6047 			super_types[mddev->major_version].
6048 				validate_super(mddev, rdev);
6049 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6050 		     rdev->raid_disk != info->raid_disk) {
6051 			/* This was a hot-add request, but events doesn't
6052 			 * match, so reject it.
6053 			 */
6054 			export_rdev(rdev);
6055 			return -EINVAL;
6056 		}
6057 
6058 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6059 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6060 			set_bit(WriteMostly, &rdev->flags);
6061 		else
6062 			clear_bit(WriteMostly, &rdev->flags);
6063 
6064 		if (info->state & (1<<MD_DISK_JOURNAL)) {
6065 			struct md_rdev *rdev2;
6066 			bool has_journal = false;
6067 
6068 			/* make sure no existing journal disk */
6069 			rdev_for_each(rdev2, mddev) {
6070 				if (test_bit(Journal, &rdev2->flags)) {
6071 					has_journal = true;
6072 					break;
6073 				}
6074 			}
6075 			if (has_journal) {
6076 				export_rdev(rdev);
6077 				return -EBUSY;
6078 			}
6079 			set_bit(Journal, &rdev->flags);
6080 		}
6081 		/*
6082 		 * check whether the device shows up in other nodes
6083 		 */
6084 		if (mddev_is_clustered(mddev)) {
6085 			if (info->state & (1 << MD_DISK_CANDIDATE))
6086 				set_bit(Candidate, &rdev->flags);
6087 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6088 				/* --add initiated by this node */
6089 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6090 				if (err) {
6091 					export_rdev(rdev);
6092 					return err;
6093 				}
6094 			}
6095 		}
6096 
6097 		rdev->raid_disk = -1;
6098 		err = bind_rdev_to_array(rdev, mddev);
6099 
6100 		if (err)
6101 			export_rdev(rdev);
6102 
6103 		if (mddev_is_clustered(mddev)) {
6104 			if (info->state & (1 << MD_DISK_CANDIDATE))
6105 				md_cluster_ops->new_disk_ack(mddev, (err == 0));
6106 			else {
6107 				if (err)
6108 					md_cluster_ops->add_new_disk_cancel(mddev);
6109 				else
6110 					err = add_bound_rdev(rdev);
6111 			}
6112 
6113 		} else if (!err)
6114 			err = add_bound_rdev(rdev);
6115 
6116 		return err;
6117 	}
6118 
6119 	/* otherwise, add_new_disk is only allowed
6120 	 * for major_version==0 superblocks
6121 	 */
6122 	if (mddev->major_version != 0) {
6123 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6124 		       mdname(mddev));
6125 		return -EINVAL;
6126 	}
6127 
6128 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6129 		int err;
6130 		rdev = md_import_device(dev, -1, 0);
6131 		if (IS_ERR(rdev)) {
6132 			printk(KERN_WARNING
6133 				"md: error, md_import_device() returned %ld\n",
6134 				PTR_ERR(rdev));
6135 			return PTR_ERR(rdev);
6136 		}
6137 		rdev->desc_nr = info->number;
6138 		if (info->raid_disk < mddev->raid_disks)
6139 			rdev->raid_disk = info->raid_disk;
6140 		else
6141 			rdev->raid_disk = -1;
6142 
6143 		if (rdev->raid_disk < mddev->raid_disks)
6144 			if (info->state & (1<<MD_DISK_SYNC))
6145 				set_bit(In_sync, &rdev->flags);
6146 
6147 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6148 			set_bit(WriteMostly, &rdev->flags);
6149 
6150 		if (!mddev->persistent) {
6151 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
6152 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6153 		} else
6154 			rdev->sb_start = calc_dev_sboffset(rdev);
6155 		rdev->sectors = rdev->sb_start;
6156 
6157 		err = bind_rdev_to_array(rdev, mddev);
6158 		if (err) {
6159 			export_rdev(rdev);
6160 			return err;
6161 		}
6162 	}
6163 
6164 	return 0;
6165 }
6166 
6167 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6168 {
6169 	char b[BDEVNAME_SIZE];
6170 	struct md_rdev *rdev;
6171 
6172 	rdev = find_rdev(mddev, dev);
6173 	if (!rdev)
6174 		return -ENXIO;
6175 
6176 	if (rdev->raid_disk < 0)
6177 		goto kick_rdev;
6178 
6179 	clear_bit(Blocked, &rdev->flags);
6180 	remove_and_add_spares(mddev, rdev);
6181 
6182 	if (rdev->raid_disk >= 0)
6183 		goto busy;
6184 
6185 kick_rdev:
6186 	if (mddev_is_clustered(mddev))
6187 		md_cluster_ops->remove_disk(mddev, rdev);
6188 
6189 	md_kick_rdev_from_array(rdev);
6190 	md_update_sb(mddev, 1);
6191 	md_new_event(mddev);
6192 
6193 	return 0;
6194 busy:
6195 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6196 		bdevname(rdev->bdev,b), mdname(mddev));
6197 	return -EBUSY;
6198 }
6199 
6200 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6201 {
6202 	char b[BDEVNAME_SIZE];
6203 	int err;
6204 	struct md_rdev *rdev;
6205 
6206 	if (!mddev->pers)
6207 		return -ENODEV;
6208 
6209 	if (mddev->major_version != 0) {
6210 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6211 			" version-0 superblocks.\n",
6212 			mdname(mddev));
6213 		return -EINVAL;
6214 	}
6215 	if (!mddev->pers->hot_add_disk) {
6216 		printk(KERN_WARNING
6217 			"%s: personality does not support diskops!\n",
6218 			mdname(mddev));
6219 		return -EINVAL;
6220 	}
6221 
6222 	rdev = md_import_device(dev, -1, 0);
6223 	if (IS_ERR(rdev)) {
6224 		printk(KERN_WARNING
6225 			"md: error, md_import_device() returned %ld\n",
6226 			PTR_ERR(rdev));
6227 		return -EINVAL;
6228 	}
6229 
6230 	if (mddev->persistent)
6231 		rdev->sb_start = calc_dev_sboffset(rdev);
6232 	else
6233 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6234 
6235 	rdev->sectors = rdev->sb_start;
6236 
6237 	if (test_bit(Faulty, &rdev->flags)) {
6238 		printk(KERN_WARNING
6239 			"md: can not hot-add faulty %s disk to %s!\n",
6240 			bdevname(rdev->bdev,b), mdname(mddev));
6241 		err = -EINVAL;
6242 		goto abort_export;
6243 	}
6244 
6245 	clear_bit(In_sync, &rdev->flags);
6246 	rdev->desc_nr = -1;
6247 	rdev->saved_raid_disk = -1;
6248 	err = bind_rdev_to_array(rdev, mddev);
6249 	if (err)
6250 		goto abort_export;
6251 
6252 	/*
6253 	 * The rest should better be atomic, we can have disk failures
6254 	 * noticed in interrupt contexts ...
6255 	 */
6256 
6257 	rdev->raid_disk = -1;
6258 
6259 	md_update_sb(mddev, 1);
6260 	/*
6261 	 * Kick recovery, maybe this spare has to be added to the
6262 	 * array immediately.
6263 	 */
6264 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6265 	md_wakeup_thread(mddev->thread);
6266 	md_new_event(mddev);
6267 	return 0;
6268 
6269 abort_export:
6270 	export_rdev(rdev);
6271 	return err;
6272 }
6273 
6274 static int set_bitmap_file(struct mddev *mddev, int fd)
6275 {
6276 	int err = 0;
6277 
6278 	if (mddev->pers) {
6279 		if (!mddev->pers->quiesce || !mddev->thread)
6280 			return -EBUSY;
6281 		if (mddev->recovery || mddev->sync_thread)
6282 			return -EBUSY;
6283 		/* we should be able to change the bitmap.. */
6284 	}
6285 
6286 	if (fd >= 0) {
6287 		struct inode *inode;
6288 		struct file *f;
6289 
6290 		if (mddev->bitmap || mddev->bitmap_info.file)
6291 			return -EEXIST; /* cannot add when bitmap is present */
6292 		f = fget(fd);
6293 
6294 		if (f == NULL) {
6295 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6296 			       mdname(mddev));
6297 			return -EBADF;
6298 		}
6299 
6300 		inode = f->f_mapping->host;
6301 		if (!S_ISREG(inode->i_mode)) {
6302 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6303 			       mdname(mddev));
6304 			err = -EBADF;
6305 		} else if (!(f->f_mode & FMODE_WRITE)) {
6306 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6307 			       mdname(mddev));
6308 			err = -EBADF;
6309 		} else if (atomic_read(&inode->i_writecount) != 1) {
6310 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6311 			       mdname(mddev));
6312 			err = -EBUSY;
6313 		}
6314 		if (err) {
6315 			fput(f);
6316 			return err;
6317 		}
6318 		mddev->bitmap_info.file = f;
6319 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6320 	} else if (mddev->bitmap == NULL)
6321 		return -ENOENT; /* cannot remove what isn't there */
6322 	err = 0;
6323 	if (mddev->pers) {
6324 		mddev->pers->quiesce(mddev, 1);
6325 		if (fd >= 0) {
6326 			struct bitmap *bitmap;
6327 
6328 			bitmap = bitmap_create(mddev, -1);
6329 			if (!IS_ERR(bitmap)) {
6330 				mddev->bitmap = bitmap;
6331 				err = bitmap_load(mddev);
6332 			} else
6333 				err = PTR_ERR(bitmap);
6334 		}
6335 		if (fd < 0 || err) {
6336 			bitmap_destroy(mddev);
6337 			fd = -1; /* make sure to put the file */
6338 		}
6339 		mddev->pers->quiesce(mddev, 0);
6340 	}
6341 	if (fd < 0) {
6342 		struct file *f = mddev->bitmap_info.file;
6343 		if (f) {
6344 			spin_lock(&mddev->lock);
6345 			mddev->bitmap_info.file = NULL;
6346 			spin_unlock(&mddev->lock);
6347 			fput(f);
6348 		}
6349 	}
6350 
6351 	return err;
6352 }
6353 
6354 /*
6355  * set_array_info is used two different ways
6356  * The original usage is when creating a new array.
6357  * In this usage, raid_disks is > 0 and it together with
6358  *  level, size, not_persistent,layout,chunksize determine the
6359  *  shape of the array.
6360  *  This will always create an array with a type-0.90.0 superblock.
6361  * The newer usage is when assembling an array.
6362  *  In this case raid_disks will be 0, and the major_version field is
6363  *  use to determine which style super-blocks are to be found on the devices.
6364  *  The minor and patch _version numbers are also kept incase the
6365  *  super_block handler wishes to interpret them.
6366  */
6367 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6368 {
6369 
6370 	if (info->raid_disks == 0) {
6371 		/* just setting version number for superblock loading */
6372 		if (info->major_version < 0 ||
6373 		    info->major_version >= ARRAY_SIZE(super_types) ||
6374 		    super_types[info->major_version].name == NULL) {
6375 			/* maybe try to auto-load a module? */
6376 			printk(KERN_INFO
6377 				"md: superblock version %d not known\n",
6378 				info->major_version);
6379 			return -EINVAL;
6380 		}
6381 		mddev->major_version = info->major_version;
6382 		mddev->minor_version = info->minor_version;
6383 		mddev->patch_version = info->patch_version;
6384 		mddev->persistent = !info->not_persistent;
6385 		/* ensure mddev_put doesn't delete this now that there
6386 		 * is some minimal configuration.
6387 		 */
6388 		mddev->ctime         = ktime_get_real_seconds();
6389 		return 0;
6390 	}
6391 	mddev->major_version = MD_MAJOR_VERSION;
6392 	mddev->minor_version = MD_MINOR_VERSION;
6393 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6394 	mddev->ctime         = ktime_get_real_seconds();
6395 
6396 	mddev->level         = info->level;
6397 	mddev->clevel[0]     = 0;
6398 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6399 	mddev->raid_disks    = info->raid_disks;
6400 	/* don't set md_minor, it is determined by which /dev/md* was
6401 	 * openned
6402 	 */
6403 	if (info->state & (1<<MD_SB_CLEAN))
6404 		mddev->recovery_cp = MaxSector;
6405 	else
6406 		mddev->recovery_cp = 0;
6407 	mddev->persistent    = ! info->not_persistent;
6408 	mddev->external	     = 0;
6409 
6410 	mddev->layout        = info->layout;
6411 	mddev->chunk_sectors = info->chunk_size >> 9;
6412 
6413 	mddev->max_disks     = MD_SB_DISKS;
6414 
6415 	if (mddev->persistent)
6416 		mddev->flags         = 0;
6417 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6418 
6419 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6420 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6421 	mddev->bitmap_info.offset = 0;
6422 
6423 	mddev->reshape_position = MaxSector;
6424 
6425 	/*
6426 	 * Generate a 128 bit UUID
6427 	 */
6428 	get_random_bytes(mddev->uuid, 16);
6429 
6430 	mddev->new_level = mddev->level;
6431 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6432 	mddev->new_layout = mddev->layout;
6433 	mddev->delta_disks = 0;
6434 	mddev->reshape_backwards = 0;
6435 
6436 	return 0;
6437 }
6438 
6439 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6440 {
6441 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6442 
6443 	if (mddev->external_size)
6444 		return;
6445 
6446 	mddev->array_sectors = array_sectors;
6447 }
6448 EXPORT_SYMBOL(md_set_array_sectors);
6449 
6450 static int update_size(struct mddev *mddev, sector_t num_sectors)
6451 {
6452 	struct md_rdev *rdev;
6453 	int rv;
6454 	int fit = (num_sectors == 0);
6455 
6456 	/* cluster raid doesn't support update size */
6457 	if (mddev_is_clustered(mddev))
6458 		return -EINVAL;
6459 
6460 	if (mddev->pers->resize == NULL)
6461 		return -EINVAL;
6462 	/* The "num_sectors" is the number of sectors of each device that
6463 	 * is used.  This can only make sense for arrays with redundancy.
6464 	 * linear and raid0 always use whatever space is available. We can only
6465 	 * consider changing this number if no resync or reconstruction is
6466 	 * happening, and if the new size is acceptable. It must fit before the
6467 	 * sb_start or, if that is <data_offset, it must fit before the size
6468 	 * of each device.  If num_sectors is zero, we find the largest size
6469 	 * that fits.
6470 	 */
6471 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6472 	    mddev->sync_thread)
6473 		return -EBUSY;
6474 	if (mddev->ro)
6475 		return -EROFS;
6476 
6477 	rdev_for_each(rdev, mddev) {
6478 		sector_t avail = rdev->sectors;
6479 
6480 		if (fit && (num_sectors == 0 || num_sectors > avail))
6481 			num_sectors = avail;
6482 		if (avail < num_sectors)
6483 			return -ENOSPC;
6484 	}
6485 	rv = mddev->pers->resize(mddev, num_sectors);
6486 	if (!rv)
6487 		revalidate_disk(mddev->gendisk);
6488 	return rv;
6489 }
6490 
6491 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6492 {
6493 	int rv;
6494 	struct md_rdev *rdev;
6495 	/* change the number of raid disks */
6496 	if (mddev->pers->check_reshape == NULL)
6497 		return -EINVAL;
6498 	if (mddev->ro)
6499 		return -EROFS;
6500 	if (raid_disks <= 0 ||
6501 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6502 		return -EINVAL;
6503 	if (mddev->sync_thread ||
6504 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6505 	    mddev->reshape_position != MaxSector)
6506 		return -EBUSY;
6507 
6508 	rdev_for_each(rdev, mddev) {
6509 		if (mddev->raid_disks < raid_disks &&
6510 		    rdev->data_offset < rdev->new_data_offset)
6511 			return -EINVAL;
6512 		if (mddev->raid_disks > raid_disks &&
6513 		    rdev->data_offset > rdev->new_data_offset)
6514 			return -EINVAL;
6515 	}
6516 
6517 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6518 	if (mddev->delta_disks < 0)
6519 		mddev->reshape_backwards = 1;
6520 	else if (mddev->delta_disks > 0)
6521 		mddev->reshape_backwards = 0;
6522 
6523 	rv = mddev->pers->check_reshape(mddev);
6524 	if (rv < 0) {
6525 		mddev->delta_disks = 0;
6526 		mddev->reshape_backwards = 0;
6527 	}
6528 	return rv;
6529 }
6530 
6531 /*
6532  * update_array_info is used to change the configuration of an
6533  * on-line array.
6534  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6535  * fields in the info are checked against the array.
6536  * Any differences that cannot be handled will cause an error.
6537  * Normally, only one change can be managed at a time.
6538  */
6539 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6540 {
6541 	int rv = 0;
6542 	int cnt = 0;
6543 	int state = 0;
6544 
6545 	/* calculate expected state,ignoring low bits */
6546 	if (mddev->bitmap && mddev->bitmap_info.offset)
6547 		state |= (1 << MD_SB_BITMAP_PRESENT);
6548 
6549 	if (mddev->major_version != info->major_version ||
6550 	    mddev->minor_version != info->minor_version ||
6551 /*	    mddev->patch_version != info->patch_version || */
6552 	    mddev->ctime         != info->ctime         ||
6553 	    mddev->level         != info->level         ||
6554 /*	    mddev->layout        != info->layout        || */
6555 	    mddev->persistent	 != !info->not_persistent ||
6556 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6557 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6558 	    ((state^info->state) & 0xfffffe00)
6559 		)
6560 		return -EINVAL;
6561 	/* Check there is only one change */
6562 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6563 		cnt++;
6564 	if (mddev->raid_disks != info->raid_disks)
6565 		cnt++;
6566 	if (mddev->layout != info->layout)
6567 		cnt++;
6568 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6569 		cnt++;
6570 	if (cnt == 0)
6571 		return 0;
6572 	if (cnt > 1)
6573 		return -EINVAL;
6574 
6575 	if (mddev->layout != info->layout) {
6576 		/* Change layout
6577 		 * we don't need to do anything at the md level, the
6578 		 * personality will take care of it all.
6579 		 */
6580 		if (mddev->pers->check_reshape == NULL)
6581 			return -EINVAL;
6582 		else {
6583 			mddev->new_layout = info->layout;
6584 			rv = mddev->pers->check_reshape(mddev);
6585 			if (rv)
6586 				mddev->new_layout = mddev->layout;
6587 			return rv;
6588 		}
6589 	}
6590 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6591 		rv = update_size(mddev, (sector_t)info->size * 2);
6592 
6593 	if (mddev->raid_disks    != info->raid_disks)
6594 		rv = update_raid_disks(mddev, info->raid_disks);
6595 
6596 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6597 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6598 			rv = -EINVAL;
6599 			goto err;
6600 		}
6601 		if (mddev->recovery || mddev->sync_thread) {
6602 			rv = -EBUSY;
6603 			goto err;
6604 		}
6605 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6606 			struct bitmap *bitmap;
6607 			/* add the bitmap */
6608 			if (mddev->bitmap) {
6609 				rv = -EEXIST;
6610 				goto err;
6611 			}
6612 			if (mddev->bitmap_info.default_offset == 0) {
6613 				rv = -EINVAL;
6614 				goto err;
6615 			}
6616 			mddev->bitmap_info.offset =
6617 				mddev->bitmap_info.default_offset;
6618 			mddev->bitmap_info.space =
6619 				mddev->bitmap_info.default_space;
6620 			mddev->pers->quiesce(mddev, 1);
6621 			bitmap = bitmap_create(mddev, -1);
6622 			if (!IS_ERR(bitmap)) {
6623 				mddev->bitmap = bitmap;
6624 				rv = bitmap_load(mddev);
6625 			} else
6626 				rv = PTR_ERR(bitmap);
6627 			if (rv)
6628 				bitmap_destroy(mddev);
6629 			mddev->pers->quiesce(mddev, 0);
6630 		} else {
6631 			/* remove the bitmap */
6632 			if (!mddev->bitmap) {
6633 				rv = -ENOENT;
6634 				goto err;
6635 			}
6636 			if (mddev->bitmap->storage.file) {
6637 				rv = -EINVAL;
6638 				goto err;
6639 			}
6640 			if (mddev->bitmap_info.nodes) {
6641 				/* hold PW on all the bitmap lock */
6642 				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6643 					printk("md: can't change bitmap to none since the"
6644 					       " array is in use by more than one node\n");
6645 					rv = -EPERM;
6646 					md_cluster_ops->unlock_all_bitmaps(mddev);
6647 					goto err;
6648 				}
6649 
6650 				mddev->bitmap_info.nodes = 0;
6651 				md_cluster_ops->leave(mddev);
6652 			}
6653 			mddev->pers->quiesce(mddev, 1);
6654 			bitmap_destroy(mddev);
6655 			mddev->pers->quiesce(mddev, 0);
6656 			mddev->bitmap_info.offset = 0;
6657 		}
6658 	}
6659 	md_update_sb(mddev, 1);
6660 	return rv;
6661 err:
6662 	return rv;
6663 }
6664 
6665 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6666 {
6667 	struct md_rdev *rdev;
6668 	int err = 0;
6669 
6670 	if (mddev->pers == NULL)
6671 		return -ENODEV;
6672 
6673 	rcu_read_lock();
6674 	rdev = find_rdev_rcu(mddev, dev);
6675 	if (!rdev)
6676 		err =  -ENODEV;
6677 	else {
6678 		md_error(mddev, rdev);
6679 		if (!test_bit(Faulty, &rdev->flags))
6680 			err = -EBUSY;
6681 	}
6682 	rcu_read_unlock();
6683 	return err;
6684 }
6685 
6686 /*
6687  * We have a problem here : there is no easy way to give a CHS
6688  * virtual geometry. We currently pretend that we have a 2 heads
6689  * 4 sectors (with a BIG number of cylinders...). This drives
6690  * dosfs just mad... ;-)
6691  */
6692 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6693 {
6694 	struct mddev *mddev = bdev->bd_disk->private_data;
6695 
6696 	geo->heads = 2;
6697 	geo->sectors = 4;
6698 	geo->cylinders = mddev->array_sectors / 8;
6699 	return 0;
6700 }
6701 
6702 static inline bool md_ioctl_valid(unsigned int cmd)
6703 {
6704 	switch (cmd) {
6705 	case ADD_NEW_DISK:
6706 	case BLKROSET:
6707 	case GET_ARRAY_INFO:
6708 	case GET_BITMAP_FILE:
6709 	case GET_DISK_INFO:
6710 	case HOT_ADD_DISK:
6711 	case HOT_REMOVE_DISK:
6712 	case RAID_AUTORUN:
6713 	case RAID_VERSION:
6714 	case RESTART_ARRAY_RW:
6715 	case RUN_ARRAY:
6716 	case SET_ARRAY_INFO:
6717 	case SET_BITMAP_FILE:
6718 	case SET_DISK_FAULTY:
6719 	case STOP_ARRAY:
6720 	case STOP_ARRAY_RO:
6721 	case CLUSTERED_DISK_NACK:
6722 		return true;
6723 	default:
6724 		return false;
6725 	}
6726 }
6727 
6728 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6729 			unsigned int cmd, unsigned long arg)
6730 {
6731 	int err = 0;
6732 	void __user *argp = (void __user *)arg;
6733 	struct mddev *mddev = NULL;
6734 	int ro;
6735 
6736 	if (!md_ioctl_valid(cmd))
6737 		return -ENOTTY;
6738 
6739 	switch (cmd) {
6740 	case RAID_VERSION:
6741 	case GET_ARRAY_INFO:
6742 	case GET_DISK_INFO:
6743 		break;
6744 	default:
6745 		if (!capable(CAP_SYS_ADMIN))
6746 			return -EACCES;
6747 	}
6748 
6749 	/*
6750 	 * Commands dealing with the RAID driver but not any
6751 	 * particular array:
6752 	 */
6753 	switch (cmd) {
6754 	case RAID_VERSION:
6755 		err = get_version(argp);
6756 		goto out;
6757 
6758 #ifndef MODULE
6759 	case RAID_AUTORUN:
6760 		err = 0;
6761 		autostart_arrays(arg);
6762 		goto out;
6763 #endif
6764 	default:;
6765 	}
6766 
6767 	/*
6768 	 * Commands creating/starting a new array:
6769 	 */
6770 
6771 	mddev = bdev->bd_disk->private_data;
6772 
6773 	if (!mddev) {
6774 		BUG();
6775 		goto out;
6776 	}
6777 
6778 	/* Some actions do not requires the mutex */
6779 	switch (cmd) {
6780 	case GET_ARRAY_INFO:
6781 		if (!mddev->raid_disks && !mddev->external)
6782 			err = -ENODEV;
6783 		else
6784 			err = get_array_info(mddev, argp);
6785 		goto out;
6786 
6787 	case GET_DISK_INFO:
6788 		if (!mddev->raid_disks && !mddev->external)
6789 			err = -ENODEV;
6790 		else
6791 			err = get_disk_info(mddev, argp);
6792 		goto out;
6793 
6794 	case SET_DISK_FAULTY:
6795 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6796 		goto out;
6797 
6798 	case GET_BITMAP_FILE:
6799 		err = get_bitmap_file(mddev, argp);
6800 		goto out;
6801 
6802 	}
6803 
6804 	if (cmd == ADD_NEW_DISK)
6805 		/* need to ensure md_delayed_delete() has completed */
6806 		flush_workqueue(md_misc_wq);
6807 
6808 	if (cmd == HOT_REMOVE_DISK)
6809 		/* need to ensure recovery thread has run */
6810 		wait_event_interruptible_timeout(mddev->sb_wait,
6811 						 !test_bit(MD_RECOVERY_NEEDED,
6812 							   &mddev->flags),
6813 						 msecs_to_jiffies(5000));
6814 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6815 		/* Need to flush page cache, and ensure no-one else opens
6816 		 * and writes
6817 		 */
6818 		mutex_lock(&mddev->open_mutex);
6819 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6820 			mutex_unlock(&mddev->open_mutex);
6821 			err = -EBUSY;
6822 			goto out;
6823 		}
6824 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6825 		mutex_unlock(&mddev->open_mutex);
6826 		sync_blockdev(bdev);
6827 	}
6828 	err = mddev_lock(mddev);
6829 	if (err) {
6830 		printk(KERN_INFO
6831 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6832 			err, cmd);
6833 		goto out;
6834 	}
6835 
6836 	if (cmd == SET_ARRAY_INFO) {
6837 		mdu_array_info_t info;
6838 		if (!arg)
6839 			memset(&info, 0, sizeof(info));
6840 		else if (copy_from_user(&info, argp, sizeof(info))) {
6841 			err = -EFAULT;
6842 			goto unlock;
6843 		}
6844 		if (mddev->pers) {
6845 			err = update_array_info(mddev, &info);
6846 			if (err) {
6847 				printk(KERN_WARNING "md: couldn't update"
6848 				       " array info. %d\n", err);
6849 				goto unlock;
6850 			}
6851 			goto unlock;
6852 		}
6853 		if (!list_empty(&mddev->disks)) {
6854 			printk(KERN_WARNING
6855 			       "md: array %s already has disks!\n",
6856 			       mdname(mddev));
6857 			err = -EBUSY;
6858 			goto unlock;
6859 		}
6860 		if (mddev->raid_disks) {
6861 			printk(KERN_WARNING
6862 			       "md: array %s already initialised!\n",
6863 			       mdname(mddev));
6864 			err = -EBUSY;
6865 			goto unlock;
6866 		}
6867 		err = set_array_info(mddev, &info);
6868 		if (err) {
6869 			printk(KERN_WARNING "md: couldn't set"
6870 			       " array info. %d\n", err);
6871 			goto unlock;
6872 		}
6873 		goto unlock;
6874 	}
6875 
6876 	/*
6877 	 * Commands querying/configuring an existing array:
6878 	 */
6879 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6880 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6881 	if ((!mddev->raid_disks && !mddev->external)
6882 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6883 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6884 	    && cmd != GET_BITMAP_FILE) {
6885 		err = -ENODEV;
6886 		goto unlock;
6887 	}
6888 
6889 	/*
6890 	 * Commands even a read-only array can execute:
6891 	 */
6892 	switch (cmd) {
6893 	case RESTART_ARRAY_RW:
6894 		err = restart_array(mddev);
6895 		goto unlock;
6896 
6897 	case STOP_ARRAY:
6898 		err = do_md_stop(mddev, 0, bdev);
6899 		goto unlock;
6900 
6901 	case STOP_ARRAY_RO:
6902 		err = md_set_readonly(mddev, bdev);
6903 		goto unlock;
6904 
6905 	case HOT_REMOVE_DISK:
6906 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6907 		goto unlock;
6908 
6909 	case ADD_NEW_DISK:
6910 		/* We can support ADD_NEW_DISK on read-only arrays
6911 		 * only if we are re-adding a preexisting device.
6912 		 * So require mddev->pers and MD_DISK_SYNC.
6913 		 */
6914 		if (mddev->pers) {
6915 			mdu_disk_info_t info;
6916 			if (copy_from_user(&info, argp, sizeof(info)))
6917 				err = -EFAULT;
6918 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6919 				/* Need to clear read-only for this */
6920 				break;
6921 			else
6922 				err = add_new_disk(mddev, &info);
6923 			goto unlock;
6924 		}
6925 		break;
6926 
6927 	case BLKROSET:
6928 		if (get_user(ro, (int __user *)(arg))) {
6929 			err = -EFAULT;
6930 			goto unlock;
6931 		}
6932 		err = -EINVAL;
6933 
6934 		/* if the bdev is going readonly the value of mddev->ro
6935 		 * does not matter, no writes are coming
6936 		 */
6937 		if (ro)
6938 			goto unlock;
6939 
6940 		/* are we are already prepared for writes? */
6941 		if (mddev->ro != 1)
6942 			goto unlock;
6943 
6944 		/* transitioning to readauto need only happen for
6945 		 * arrays that call md_write_start
6946 		 */
6947 		if (mddev->pers) {
6948 			err = restart_array(mddev);
6949 			if (err == 0) {
6950 				mddev->ro = 2;
6951 				set_disk_ro(mddev->gendisk, 0);
6952 			}
6953 		}
6954 		goto unlock;
6955 	}
6956 
6957 	/*
6958 	 * The remaining ioctls are changing the state of the
6959 	 * superblock, so we do not allow them on read-only arrays.
6960 	 */
6961 	if (mddev->ro && mddev->pers) {
6962 		if (mddev->ro == 2) {
6963 			mddev->ro = 0;
6964 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6965 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6966 			/* mddev_unlock will wake thread */
6967 			/* If a device failed while we were read-only, we
6968 			 * need to make sure the metadata is updated now.
6969 			 */
6970 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6971 				mddev_unlock(mddev);
6972 				wait_event(mddev->sb_wait,
6973 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6974 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6975 				mddev_lock_nointr(mddev);
6976 			}
6977 		} else {
6978 			err = -EROFS;
6979 			goto unlock;
6980 		}
6981 	}
6982 
6983 	switch (cmd) {
6984 	case ADD_NEW_DISK:
6985 	{
6986 		mdu_disk_info_t info;
6987 		if (copy_from_user(&info, argp, sizeof(info)))
6988 			err = -EFAULT;
6989 		else
6990 			err = add_new_disk(mddev, &info);
6991 		goto unlock;
6992 	}
6993 
6994 	case CLUSTERED_DISK_NACK:
6995 		if (mddev_is_clustered(mddev))
6996 			md_cluster_ops->new_disk_ack(mddev, false);
6997 		else
6998 			err = -EINVAL;
6999 		goto unlock;
7000 
7001 	case HOT_ADD_DISK:
7002 		err = hot_add_disk(mddev, new_decode_dev(arg));
7003 		goto unlock;
7004 
7005 	case RUN_ARRAY:
7006 		err = do_md_run(mddev);
7007 		goto unlock;
7008 
7009 	case SET_BITMAP_FILE:
7010 		err = set_bitmap_file(mddev, (int)arg);
7011 		goto unlock;
7012 
7013 	default:
7014 		err = -EINVAL;
7015 		goto unlock;
7016 	}
7017 
7018 unlock:
7019 	if (mddev->hold_active == UNTIL_IOCTL &&
7020 	    err != -EINVAL)
7021 		mddev->hold_active = 0;
7022 	mddev_unlock(mddev);
7023 out:
7024 	return err;
7025 }
7026 #ifdef CONFIG_COMPAT
7027 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7028 		    unsigned int cmd, unsigned long arg)
7029 {
7030 	switch (cmd) {
7031 	case HOT_REMOVE_DISK:
7032 	case HOT_ADD_DISK:
7033 	case SET_DISK_FAULTY:
7034 	case SET_BITMAP_FILE:
7035 		/* These take in integer arg, do not convert */
7036 		break;
7037 	default:
7038 		arg = (unsigned long)compat_ptr(arg);
7039 		break;
7040 	}
7041 
7042 	return md_ioctl(bdev, mode, cmd, arg);
7043 }
7044 #endif /* CONFIG_COMPAT */
7045 
7046 static int md_open(struct block_device *bdev, fmode_t mode)
7047 {
7048 	/*
7049 	 * Succeed if we can lock the mddev, which confirms that
7050 	 * it isn't being stopped right now.
7051 	 */
7052 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7053 	int err;
7054 
7055 	if (!mddev)
7056 		return -ENODEV;
7057 
7058 	if (mddev->gendisk != bdev->bd_disk) {
7059 		/* we are racing with mddev_put which is discarding this
7060 		 * bd_disk.
7061 		 */
7062 		mddev_put(mddev);
7063 		/* Wait until bdev->bd_disk is definitely gone */
7064 		flush_workqueue(md_misc_wq);
7065 		/* Then retry the open from the top */
7066 		return -ERESTARTSYS;
7067 	}
7068 	BUG_ON(mddev != bdev->bd_disk->private_data);
7069 
7070 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7071 		goto out;
7072 
7073 	err = 0;
7074 	atomic_inc(&mddev->openers);
7075 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
7076 	mutex_unlock(&mddev->open_mutex);
7077 
7078 	check_disk_change(bdev);
7079  out:
7080 	return err;
7081 }
7082 
7083 static void md_release(struct gendisk *disk, fmode_t mode)
7084 {
7085 	struct mddev *mddev = disk->private_data;
7086 
7087 	BUG_ON(!mddev);
7088 	atomic_dec(&mddev->openers);
7089 	mddev_put(mddev);
7090 }
7091 
7092 static int md_media_changed(struct gendisk *disk)
7093 {
7094 	struct mddev *mddev = disk->private_data;
7095 
7096 	return mddev->changed;
7097 }
7098 
7099 static int md_revalidate(struct gendisk *disk)
7100 {
7101 	struct mddev *mddev = disk->private_data;
7102 
7103 	mddev->changed = 0;
7104 	return 0;
7105 }
7106 static const struct block_device_operations md_fops =
7107 {
7108 	.owner		= THIS_MODULE,
7109 	.open		= md_open,
7110 	.release	= md_release,
7111 	.ioctl		= md_ioctl,
7112 #ifdef CONFIG_COMPAT
7113 	.compat_ioctl	= md_compat_ioctl,
7114 #endif
7115 	.getgeo		= md_getgeo,
7116 	.media_changed  = md_media_changed,
7117 	.revalidate_disk= md_revalidate,
7118 };
7119 
7120 static int md_thread(void *arg)
7121 {
7122 	struct md_thread *thread = arg;
7123 
7124 	/*
7125 	 * md_thread is a 'system-thread', it's priority should be very
7126 	 * high. We avoid resource deadlocks individually in each
7127 	 * raid personality. (RAID5 does preallocation) We also use RR and
7128 	 * the very same RT priority as kswapd, thus we will never get
7129 	 * into a priority inversion deadlock.
7130 	 *
7131 	 * we definitely have to have equal or higher priority than
7132 	 * bdflush, otherwise bdflush will deadlock if there are too
7133 	 * many dirty RAID5 blocks.
7134 	 */
7135 
7136 	allow_signal(SIGKILL);
7137 	while (!kthread_should_stop()) {
7138 
7139 		/* We need to wait INTERRUPTIBLE so that
7140 		 * we don't add to the load-average.
7141 		 * That means we need to be sure no signals are
7142 		 * pending
7143 		 */
7144 		if (signal_pending(current))
7145 			flush_signals(current);
7146 
7147 		wait_event_interruptible_timeout
7148 			(thread->wqueue,
7149 			 test_bit(THREAD_WAKEUP, &thread->flags)
7150 			 || kthread_should_stop(),
7151 			 thread->timeout);
7152 
7153 		clear_bit(THREAD_WAKEUP, &thread->flags);
7154 		if (!kthread_should_stop())
7155 			thread->run(thread);
7156 	}
7157 
7158 	return 0;
7159 }
7160 
7161 void md_wakeup_thread(struct md_thread *thread)
7162 {
7163 	if (thread) {
7164 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7165 		set_bit(THREAD_WAKEUP, &thread->flags);
7166 		wake_up(&thread->wqueue);
7167 	}
7168 }
7169 EXPORT_SYMBOL(md_wakeup_thread);
7170 
7171 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7172 		struct mddev *mddev, const char *name)
7173 {
7174 	struct md_thread *thread;
7175 
7176 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7177 	if (!thread)
7178 		return NULL;
7179 
7180 	init_waitqueue_head(&thread->wqueue);
7181 
7182 	thread->run = run;
7183 	thread->mddev = mddev;
7184 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7185 	thread->tsk = kthread_run(md_thread, thread,
7186 				  "%s_%s",
7187 				  mdname(thread->mddev),
7188 				  name);
7189 	if (IS_ERR(thread->tsk)) {
7190 		kfree(thread);
7191 		return NULL;
7192 	}
7193 	return thread;
7194 }
7195 EXPORT_SYMBOL(md_register_thread);
7196 
7197 void md_unregister_thread(struct md_thread **threadp)
7198 {
7199 	struct md_thread *thread = *threadp;
7200 	if (!thread)
7201 		return;
7202 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7203 	/* Locking ensures that mddev_unlock does not wake_up a
7204 	 * non-existent thread
7205 	 */
7206 	spin_lock(&pers_lock);
7207 	*threadp = NULL;
7208 	spin_unlock(&pers_lock);
7209 
7210 	kthread_stop(thread->tsk);
7211 	kfree(thread);
7212 }
7213 EXPORT_SYMBOL(md_unregister_thread);
7214 
7215 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7216 {
7217 	if (!rdev || test_bit(Faulty, &rdev->flags))
7218 		return;
7219 
7220 	if (!mddev->pers || !mddev->pers->error_handler)
7221 		return;
7222 	mddev->pers->error_handler(mddev,rdev);
7223 	if (mddev->degraded)
7224 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7225 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7226 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7227 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7228 	md_wakeup_thread(mddev->thread);
7229 	if (mddev->event_work.func)
7230 		queue_work(md_misc_wq, &mddev->event_work);
7231 	md_new_event(mddev);
7232 }
7233 EXPORT_SYMBOL(md_error);
7234 
7235 /* seq_file implementation /proc/mdstat */
7236 
7237 static void status_unused(struct seq_file *seq)
7238 {
7239 	int i = 0;
7240 	struct md_rdev *rdev;
7241 
7242 	seq_printf(seq, "unused devices: ");
7243 
7244 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7245 		char b[BDEVNAME_SIZE];
7246 		i++;
7247 		seq_printf(seq, "%s ",
7248 			      bdevname(rdev->bdev,b));
7249 	}
7250 	if (!i)
7251 		seq_printf(seq, "<none>");
7252 
7253 	seq_printf(seq, "\n");
7254 }
7255 
7256 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7257 {
7258 	sector_t max_sectors, resync, res;
7259 	unsigned long dt, db;
7260 	sector_t rt;
7261 	int scale;
7262 	unsigned int per_milli;
7263 
7264 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7265 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7266 		max_sectors = mddev->resync_max_sectors;
7267 	else
7268 		max_sectors = mddev->dev_sectors;
7269 
7270 	resync = mddev->curr_resync;
7271 	if (resync <= 3) {
7272 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7273 			/* Still cleaning up */
7274 			resync = max_sectors;
7275 	} else
7276 		resync -= atomic_read(&mddev->recovery_active);
7277 
7278 	if (resync == 0) {
7279 		if (mddev->recovery_cp < MaxSector) {
7280 			seq_printf(seq, "\tresync=PENDING");
7281 			return 1;
7282 		}
7283 		return 0;
7284 	}
7285 	if (resync < 3) {
7286 		seq_printf(seq, "\tresync=DELAYED");
7287 		return 1;
7288 	}
7289 
7290 	WARN_ON(max_sectors == 0);
7291 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7292 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7293 	 * u32, as those are the requirements for sector_div.
7294 	 * Thus 'scale' must be at least 10
7295 	 */
7296 	scale = 10;
7297 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7298 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7299 			scale++;
7300 	}
7301 	res = (resync>>scale)*1000;
7302 	sector_div(res, (u32)((max_sectors>>scale)+1));
7303 
7304 	per_milli = res;
7305 	{
7306 		int i, x = per_milli/50, y = 20-x;
7307 		seq_printf(seq, "[");
7308 		for (i = 0; i < x; i++)
7309 			seq_printf(seq, "=");
7310 		seq_printf(seq, ">");
7311 		for (i = 0; i < y; i++)
7312 			seq_printf(seq, ".");
7313 		seq_printf(seq, "] ");
7314 	}
7315 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7316 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7317 		    "reshape" :
7318 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7319 		     "check" :
7320 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7321 		      "resync" : "recovery"))),
7322 		   per_milli/10, per_milli % 10,
7323 		   (unsigned long long) resync/2,
7324 		   (unsigned long long) max_sectors/2);
7325 
7326 	/*
7327 	 * dt: time from mark until now
7328 	 * db: blocks written from mark until now
7329 	 * rt: remaining time
7330 	 *
7331 	 * rt is a sector_t, so could be 32bit or 64bit.
7332 	 * So we divide before multiply in case it is 32bit and close
7333 	 * to the limit.
7334 	 * We scale the divisor (db) by 32 to avoid losing precision
7335 	 * near the end of resync when the number of remaining sectors
7336 	 * is close to 'db'.
7337 	 * We then divide rt by 32 after multiplying by db to compensate.
7338 	 * The '+1' avoids division by zero if db is very small.
7339 	 */
7340 	dt = ((jiffies - mddev->resync_mark) / HZ);
7341 	if (!dt) dt++;
7342 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7343 		- mddev->resync_mark_cnt;
7344 
7345 	rt = max_sectors - resync;    /* number of remaining sectors */
7346 	sector_div(rt, db/32+1);
7347 	rt *= dt;
7348 	rt >>= 5;
7349 
7350 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7351 		   ((unsigned long)rt % 60)/6);
7352 
7353 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7354 	return 1;
7355 }
7356 
7357 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7358 {
7359 	struct list_head *tmp;
7360 	loff_t l = *pos;
7361 	struct mddev *mddev;
7362 
7363 	if (l >= 0x10000)
7364 		return NULL;
7365 	if (!l--)
7366 		/* header */
7367 		return (void*)1;
7368 
7369 	spin_lock(&all_mddevs_lock);
7370 	list_for_each(tmp,&all_mddevs)
7371 		if (!l--) {
7372 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7373 			mddev_get(mddev);
7374 			spin_unlock(&all_mddevs_lock);
7375 			return mddev;
7376 		}
7377 	spin_unlock(&all_mddevs_lock);
7378 	if (!l--)
7379 		return (void*)2;/* tail */
7380 	return NULL;
7381 }
7382 
7383 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7384 {
7385 	struct list_head *tmp;
7386 	struct mddev *next_mddev, *mddev = v;
7387 
7388 	++*pos;
7389 	if (v == (void*)2)
7390 		return NULL;
7391 
7392 	spin_lock(&all_mddevs_lock);
7393 	if (v == (void*)1)
7394 		tmp = all_mddevs.next;
7395 	else
7396 		tmp = mddev->all_mddevs.next;
7397 	if (tmp != &all_mddevs)
7398 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7399 	else {
7400 		next_mddev = (void*)2;
7401 		*pos = 0x10000;
7402 	}
7403 	spin_unlock(&all_mddevs_lock);
7404 
7405 	if (v != (void*)1)
7406 		mddev_put(mddev);
7407 	return next_mddev;
7408 
7409 }
7410 
7411 static void md_seq_stop(struct seq_file *seq, void *v)
7412 {
7413 	struct mddev *mddev = v;
7414 
7415 	if (mddev && v != (void*)1 && v != (void*)2)
7416 		mddev_put(mddev);
7417 }
7418 
7419 static int md_seq_show(struct seq_file *seq, void *v)
7420 {
7421 	struct mddev *mddev = v;
7422 	sector_t sectors;
7423 	struct md_rdev *rdev;
7424 
7425 	if (v == (void*)1) {
7426 		struct md_personality *pers;
7427 		seq_printf(seq, "Personalities : ");
7428 		spin_lock(&pers_lock);
7429 		list_for_each_entry(pers, &pers_list, list)
7430 			seq_printf(seq, "[%s] ", pers->name);
7431 
7432 		spin_unlock(&pers_lock);
7433 		seq_printf(seq, "\n");
7434 		seq->poll_event = atomic_read(&md_event_count);
7435 		return 0;
7436 	}
7437 	if (v == (void*)2) {
7438 		status_unused(seq);
7439 		return 0;
7440 	}
7441 
7442 	spin_lock(&mddev->lock);
7443 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7444 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7445 						mddev->pers ? "" : "in");
7446 		if (mddev->pers) {
7447 			if (mddev->ro==1)
7448 				seq_printf(seq, " (read-only)");
7449 			if (mddev->ro==2)
7450 				seq_printf(seq, " (auto-read-only)");
7451 			seq_printf(seq, " %s", mddev->pers->name);
7452 		}
7453 
7454 		sectors = 0;
7455 		rcu_read_lock();
7456 		rdev_for_each_rcu(rdev, mddev) {
7457 			char b[BDEVNAME_SIZE];
7458 			seq_printf(seq, " %s[%d]",
7459 				bdevname(rdev->bdev,b), rdev->desc_nr);
7460 			if (test_bit(WriteMostly, &rdev->flags))
7461 				seq_printf(seq, "(W)");
7462 			if (test_bit(Journal, &rdev->flags))
7463 				seq_printf(seq, "(J)");
7464 			if (test_bit(Faulty, &rdev->flags)) {
7465 				seq_printf(seq, "(F)");
7466 				continue;
7467 			}
7468 			if (rdev->raid_disk < 0)
7469 				seq_printf(seq, "(S)"); /* spare */
7470 			if (test_bit(Replacement, &rdev->flags))
7471 				seq_printf(seq, "(R)");
7472 			sectors += rdev->sectors;
7473 		}
7474 		rcu_read_unlock();
7475 
7476 		if (!list_empty(&mddev->disks)) {
7477 			if (mddev->pers)
7478 				seq_printf(seq, "\n      %llu blocks",
7479 					   (unsigned long long)
7480 					   mddev->array_sectors / 2);
7481 			else
7482 				seq_printf(seq, "\n      %llu blocks",
7483 					   (unsigned long long)sectors / 2);
7484 		}
7485 		if (mddev->persistent) {
7486 			if (mddev->major_version != 0 ||
7487 			    mddev->minor_version != 90) {
7488 				seq_printf(seq," super %d.%d",
7489 					   mddev->major_version,
7490 					   mddev->minor_version);
7491 			}
7492 		} else if (mddev->external)
7493 			seq_printf(seq, " super external:%s",
7494 				   mddev->metadata_type);
7495 		else
7496 			seq_printf(seq, " super non-persistent");
7497 
7498 		if (mddev->pers) {
7499 			mddev->pers->status(seq, mddev);
7500 			seq_printf(seq, "\n      ");
7501 			if (mddev->pers->sync_request) {
7502 				if (status_resync(seq, mddev))
7503 					seq_printf(seq, "\n      ");
7504 			}
7505 		} else
7506 			seq_printf(seq, "\n       ");
7507 
7508 		bitmap_status(seq, mddev->bitmap);
7509 
7510 		seq_printf(seq, "\n");
7511 	}
7512 	spin_unlock(&mddev->lock);
7513 
7514 	return 0;
7515 }
7516 
7517 static const struct seq_operations md_seq_ops = {
7518 	.start  = md_seq_start,
7519 	.next   = md_seq_next,
7520 	.stop   = md_seq_stop,
7521 	.show   = md_seq_show,
7522 };
7523 
7524 static int md_seq_open(struct inode *inode, struct file *file)
7525 {
7526 	struct seq_file *seq;
7527 	int error;
7528 
7529 	error = seq_open(file, &md_seq_ops);
7530 	if (error)
7531 		return error;
7532 
7533 	seq = file->private_data;
7534 	seq->poll_event = atomic_read(&md_event_count);
7535 	return error;
7536 }
7537 
7538 static int md_unloading;
7539 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7540 {
7541 	struct seq_file *seq = filp->private_data;
7542 	int mask;
7543 
7544 	if (md_unloading)
7545 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7546 	poll_wait(filp, &md_event_waiters, wait);
7547 
7548 	/* always allow read */
7549 	mask = POLLIN | POLLRDNORM;
7550 
7551 	if (seq->poll_event != atomic_read(&md_event_count))
7552 		mask |= POLLERR | POLLPRI;
7553 	return mask;
7554 }
7555 
7556 static const struct file_operations md_seq_fops = {
7557 	.owner		= THIS_MODULE,
7558 	.open           = md_seq_open,
7559 	.read           = seq_read,
7560 	.llseek         = seq_lseek,
7561 	.release	= seq_release_private,
7562 	.poll		= mdstat_poll,
7563 };
7564 
7565 int register_md_personality(struct md_personality *p)
7566 {
7567 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7568 						p->name, p->level);
7569 	spin_lock(&pers_lock);
7570 	list_add_tail(&p->list, &pers_list);
7571 	spin_unlock(&pers_lock);
7572 	return 0;
7573 }
7574 EXPORT_SYMBOL(register_md_personality);
7575 
7576 int unregister_md_personality(struct md_personality *p)
7577 {
7578 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7579 	spin_lock(&pers_lock);
7580 	list_del_init(&p->list);
7581 	spin_unlock(&pers_lock);
7582 	return 0;
7583 }
7584 EXPORT_SYMBOL(unregister_md_personality);
7585 
7586 int register_md_cluster_operations(struct md_cluster_operations *ops,
7587 				   struct module *module)
7588 {
7589 	int ret = 0;
7590 	spin_lock(&pers_lock);
7591 	if (md_cluster_ops != NULL)
7592 		ret = -EALREADY;
7593 	else {
7594 		md_cluster_ops = ops;
7595 		md_cluster_mod = module;
7596 	}
7597 	spin_unlock(&pers_lock);
7598 	return ret;
7599 }
7600 EXPORT_SYMBOL(register_md_cluster_operations);
7601 
7602 int unregister_md_cluster_operations(void)
7603 {
7604 	spin_lock(&pers_lock);
7605 	md_cluster_ops = NULL;
7606 	spin_unlock(&pers_lock);
7607 	return 0;
7608 }
7609 EXPORT_SYMBOL(unregister_md_cluster_operations);
7610 
7611 int md_setup_cluster(struct mddev *mddev, int nodes)
7612 {
7613 	int err;
7614 
7615 	err = request_module("md-cluster");
7616 	if (err) {
7617 		pr_err("md-cluster module not found.\n");
7618 		return -ENOENT;
7619 	}
7620 
7621 	spin_lock(&pers_lock);
7622 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7623 		spin_unlock(&pers_lock);
7624 		return -ENOENT;
7625 	}
7626 	spin_unlock(&pers_lock);
7627 
7628 	return md_cluster_ops->join(mddev, nodes);
7629 }
7630 
7631 void md_cluster_stop(struct mddev *mddev)
7632 {
7633 	if (!md_cluster_ops)
7634 		return;
7635 	md_cluster_ops->leave(mddev);
7636 	module_put(md_cluster_mod);
7637 }
7638 
7639 static int is_mddev_idle(struct mddev *mddev, int init)
7640 {
7641 	struct md_rdev *rdev;
7642 	int idle;
7643 	int curr_events;
7644 
7645 	idle = 1;
7646 	rcu_read_lock();
7647 	rdev_for_each_rcu(rdev, mddev) {
7648 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7649 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7650 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7651 			      atomic_read(&disk->sync_io);
7652 		/* sync IO will cause sync_io to increase before the disk_stats
7653 		 * as sync_io is counted when a request starts, and
7654 		 * disk_stats is counted when it completes.
7655 		 * So resync activity will cause curr_events to be smaller than
7656 		 * when there was no such activity.
7657 		 * non-sync IO will cause disk_stat to increase without
7658 		 * increasing sync_io so curr_events will (eventually)
7659 		 * be larger than it was before.  Once it becomes
7660 		 * substantially larger, the test below will cause
7661 		 * the array to appear non-idle, and resync will slow
7662 		 * down.
7663 		 * If there is a lot of outstanding resync activity when
7664 		 * we set last_event to curr_events, then all that activity
7665 		 * completing might cause the array to appear non-idle
7666 		 * and resync will be slowed down even though there might
7667 		 * not have been non-resync activity.  This will only
7668 		 * happen once though.  'last_events' will soon reflect
7669 		 * the state where there is little or no outstanding
7670 		 * resync requests, and further resync activity will
7671 		 * always make curr_events less than last_events.
7672 		 *
7673 		 */
7674 		if (init || curr_events - rdev->last_events > 64) {
7675 			rdev->last_events = curr_events;
7676 			idle = 0;
7677 		}
7678 	}
7679 	rcu_read_unlock();
7680 	return idle;
7681 }
7682 
7683 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7684 {
7685 	/* another "blocks" (512byte) blocks have been synced */
7686 	atomic_sub(blocks, &mddev->recovery_active);
7687 	wake_up(&mddev->recovery_wait);
7688 	if (!ok) {
7689 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7690 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7691 		md_wakeup_thread(mddev->thread);
7692 		// stop recovery, signal do_sync ....
7693 	}
7694 }
7695 EXPORT_SYMBOL(md_done_sync);
7696 
7697 /* md_write_start(mddev, bi)
7698  * If we need to update some array metadata (e.g. 'active' flag
7699  * in superblock) before writing, schedule a superblock update
7700  * and wait for it to complete.
7701  */
7702 void md_write_start(struct mddev *mddev, struct bio *bi)
7703 {
7704 	int did_change = 0;
7705 	if (bio_data_dir(bi) != WRITE)
7706 		return;
7707 
7708 	BUG_ON(mddev->ro == 1);
7709 	if (mddev->ro == 2) {
7710 		/* need to switch to read/write */
7711 		mddev->ro = 0;
7712 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7713 		md_wakeup_thread(mddev->thread);
7714 		md_wakeup_thread(mddev->sync_thread);
7715 		did_change = 1;
7716 	}
7717 	atomic_inc(&mddev->writes_pending);
7718 	if (mddev->safemode == 1)
7719 		mddev->safemode = 0;
7720 	if (mddev->in_sync) {
7721 		spin_lock(&mddev->lock);
7722 		if (mddev->in_sync) {
7723 			mddev->in_sync = 0;
7724 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7725 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7726 			md_wakeup_thread(mddev->thread);
7727 			did_change = 1;
7728 		}
7729 		spin_unlock(&mddev->lock);
7730 	}
7731 	if (did_change)
7732 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7733 	wait_event(mddev->sb_wait,
7734 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7735 }
7736 EXPORT_SYMBOL(md_write_start);
7737 
7738 void md_write_end(struct mddev *mddev)
7739 {
7740 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7741 		if (mddev->safemode == 2)
7742 			md_wakeup_thread(mddev->thread);
7743 		else if (mddev->safemode_delay)
7744 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7745 	}
7746 }
7747 EXPORT_SYMBOL(md_write_end);
7748 
7749 /* md_allow_write(mddev)
7750  * Calling this ensures that the array is marked 'active' so that writes
7751  * may proceed without blocking.  It is important to call this before
7752  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7753  * Must be called with mddev_lock held.
7754  *
7755  * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
7756  * is dropped, so return -EAGAIN after notifying userspace.
7757  */
7758 int md_allow_write(struct mddev *mddev)
7759 {
7760 	if (!mddev->pers)
7761 		return 0;
7762 	if (mddev->ro)
7763 		return 0;
7764 	if (!mddev->pers->sync_request)
7765 		return 0;
7766 
7767 	spin_lock(&mddev->lock);
7768 	if (mddev->in_sync) {
7769 		mddev->in_sync = 0;
7770 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7771 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7772 		if (mddev->safemode_delay &&
7773 		    mddev->safemode == 0)
7774 			mddev->safemode = 1;
7775 		spin_unlock(&mddev->lock);
7776 		md_update_sb(mddev, 0);
7777 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7778 	} else
7779 		spin_unlock(&mddev->lock);
7780 
7781 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7782 		return -EAGAIN;
7783 	else
7784 		return 0;
7785 }
7786 EXPORT_SYMBOL_GPL(md_allow_write);
7787 
7788 #define SYNC_MARKS	10
7789 #define	SYNC_MARK_STEP	(3*HZ)
7790 #define UPDATE_FREQUENCY (5*60*HZ)
7791 void md_do_sync(struct md_thread *thread)
7792 {
7793 	struct mddev *mddev = thread->mddev;
7794 	struct mddev *mddev2;
7795 	unsigned int currspeed = 0,
7796 		 window;
7797 	sector_t max_sectors,j, io_sectors, recovery_done;
7798 	unsigned long mark[SYNC_MARKS];
7799 	unsigned long update_time;
7800 	sector_t mark_cnt[SYNC_MARKS];
7801 	int last_mark,m;
7802 	struct list_head *tmp;
7803 	sector_t last_check;
7804 	int skipped = 0;
7805 	struct md_rdev *rdev;
7806 	char *desc, *action = NULL;
7807 	struct blk_plug plug;
7808 	int ret;
7809 
7810 	/* just incase thread restarts... */
7811 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7812 		return;
7813 	if (mddev->ro) {/* never try to sync a read-only array */
7814 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7815 		return;
7816 	}
7817 
7818 	if (mddev_is_clustered(mddev)) {
7819 		ret = md_cluster_ops->resync_start(mddev);
7820 		if (ret)
7821 			goto skip;
7822 
7823 		set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
7824 		if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7825 			test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
7826 			test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
7827 		     && ((unsigned long long)mddev->curr_resync_completed
7828 			 < (unsigned long long)mddev->resync_max_sectors))
7829 			goto skip;
7830 	}
7831 
7832 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7833 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7834 			desc = "data-check";
7835 			action = "check";
7836 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7837 			desc = "requested-resync";
7838 			action = "repair";
7839 		} else
7840 			desc = "resync";
7841 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7842 		desc = "reshape";
7843 	else
7844 		desc = "recovery";
7845 
7846 	mddev->last_sync_action = action ?: desc;
7847 
7848 	/* we overload curr_resync somewhat here.
7849 	 * 0 == not engaged in resync at all
7850 	 * 2 == checking that there is no conflict with another sync
7851 	 * 1 == like 2, but have yielded to allow conflicting resync to
7852 	 *		commense
7853 	 * other == active in resync - this many blocks
7854 	 *
7855 	 * Before starting a resync we must have set curr_resync to
7856 	 * 2, and then checked that every "conflicting" array has curr_resync
7857 	 * less than ours.  When we find one that is the same or higher
7858 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7859 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7860 	 * This will mean we have to start checking from the beginning again.
7861 	 *
7862 	 */
7863 
7864 	do {
7865 		mddev->curr_resync = 2;
7866 
7867 	try_again:
7868 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7869 			goto skip;
7870 		for_each_mddev(mddev2, tmp) {
7871 			if (mddev2 == mddev)
7872 				continue;
7873 			if (!mddev->parallel_resync
7874 			&&  mddev2->curr_resync
7875 			&&  match_mddev_units(mddev, mddev2)) {
7876 				DEFINE_WAIT(wq);
7877 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7878 					/* arbitrarily yield */
7879 					mddev->curr_resync = 1;
7880 					wake_up(&resync_wait);
7881 				}
7882 				if (mddev > mddev2 && mddev->curr_resync == 1)
7883 					/* no need to wait here, we can wait the next
7884 					 * time 'round when curr_resync == 2
7885 					 */
7886 					continue;
7887 				/* We need to wait 'interruptible' so as not to
7888 				 * contribute to the load average, and not to
7889 				 * be caught by 'softlockup'
7890 				 */
7891 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7892 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7893 				    mddev2->curr_resync >= mddev->curr_resync) {
7894 					printk(KERN_INFO "md: delaying %s of %s"
7895 					       " until %s has finished (they"
7896 					       " share one or more physical units)\n",
7897 					       desc, mdname(mddev), mdname(mddev2));
7898 					mddev_put(mddev2);
7899 					if (signal_pending(current))
7900 						flush_signals(current);
7901 					schedule();
7902 					finish_wait(&resync_wait, &wq);
7903 					goto try_again;
7904 				}
7905 				finish_wait(&resync_wait, &wq);
7906 			}
7907 		}
7908 	} while (mddev->curr_resync < 2);
7909 
7910 	j = 0;
7911 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7912 		/* resync follows the size requested by the personality,
7913 		 * which defaults to physical size, but can be virtual size
7914 		 */
7915 		max_sectors = mddev->resync_max_sectors;
7916 		atomic64_set(&mddev->resync_mismatches, 0);
7917 		/* we don't use the checkpoint if there's a bitmap */
7918 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7919 			j = mddev->resync_min;
7920 		else if (!mddev->bitmap)
7921 			j = mddev->recovery_cp;
7922 
7923 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7924 		max_sectors = mddev->resync_max_sectors;
7925 	else {
7926 		/* recovery follows the physical size of devices */
7927 		max_sectors = mddev->dev_sectors;
7928 		j = MaxSector;
7929 		rcu_read_lock();
7930 		rdev_for_each_rcu(rdev, mddev)
7931 			if (rdev->raid_disk >= 0 &&
7932 			    !test_bit(Journal, &rdev->flags) &&
7933 			    !test_bit(Faulty, &rdev->flags) &&
7934 			    !test_bit(In_sync, &rdev->flags) &&
7935 			    rdev->recovery_offset < j)
7936 				j = rdev->recovery_offset;
7937 		rcu_read_unlock();
7938 
7939 		/* If there is a bitmap, we need to make sure all
7940 		 * writes that started before we added a spare
7941 		 * complete before we start doing a recovery.
7942 		 * Otherwise the write might complete and (via
7943 		 * bitmap_endwrite) set a bit in the bitmap after the
7944 		 * recovery has checked that bit and skipped that
7945 		 * region.
7946 		 */
7947 		if (mddev->bitmap) {
7948 			mddev->pers->quiesce(mddev, 1);
7949 			mddev->pers->quiesce(mddev, 0);
7950 		}
7951 	}
7952 
7953 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7954 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7955 		" %d KB/sec/disk.\n", speed_min(mddev));
7956 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7957 	       "(but not more than %d KB/sec) for %s.\n",
7958 	       speed_max(mddev), desc);
7959 
7960 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7961 
7962 	io_sectors = 0;
7963 	for (m = 0; m < SYNC_MARKS; m++) {
7964 		mark[m] = jiffies;
7965 		mark_cnt[m] = io_sectors;
7966 	}
7967 	last_mark = 0;
7968 	mddev->resync_mark = mark[last_mark];
7969 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7970 
7971 	/*
7972 	 * Tune reconstruction:
7973 	 */
7974 	window = 32*(PAGE_SIZE/512);
7975 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7976 		window/2, (unsigned long long)max_sectors/2);
7977 
7978 	atomic_set(&mddev->recovery_active, 0);
7979 	last_check = 0;
7980 
7981 	if (j>2) {
7982 		printk(KERN_INFO
7983 		       "md: resuming %s of %s from checkpoint.\n",
7984 		       desc, mdname(mddev));
7985 		mddev->curr_resync = j;
7986 	} else
7987 		mddev->curr_resync = 3; /* no longer delayed */
7988 	mddev->curr_resync_completed = j;
7989 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7990 	md_new_event(mddev);
7991 	update_time = jiffies;
7992 
7993 	blk_start_plug(&plug);
7994 	while (j < max_sectors) {
7995 		sector_t sectors;
7996 
7997 		skipped = 0;
7998 
7999 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8000 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
8001 		      (mddev->curr_resync - mddev->curr_resync_completed)
8002 		      > (max_sectors >> 4)) ||
8003 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8004 		     (j - mddev->curr_resync_completed)*2
8005 		     >= mddev->resync_max - mddev->curr_resync_completed ||
8006 		     mddev->curr_resync_completed > mddev->resync_max
8007 			    )) {
8008 			/* time to update curr_resync_completed */
8009 			wait_event(mddev->recovery_wait,
8010 				   atomic_read(&mddev->recovery_active) == 0);
8011 			mddev->curr_resync_completed = j;
8012 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8013 			    j > mddev->recovery_cp)
8014 				mddev->recovery_cp = j;
8015 			update_time = jiffies;
8016 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8017 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8018 		}
8019 
8020 		while (j >= mddev->resync_max &&
8021 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8022 			/* As this condition is controlled by user-space,
8023 			 * we can block indefinitely, so use '_interruptible'
8024 			 * to avoid triggering warnings.
8025 			 */
8026 			flush_signals(current); /* just in case */
8027 			wait_event_interruptible(mddev->recovery_wait,
8028 						 mddev->resync_max > j
8029 						 || test_bit(MD_RECOVERY_INTR,
8030 							     &mddev->recovery));
8031 		}
8032 
8033 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8034 			break;
8035 
8036 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
8037 		if (sectors == 0) {
8038 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8039 			break;
8040 		}
8041 
8042 		if (!skipped) { /* actual IO requested */
8043 			io_sectors += sectors;
8044 			atomic_add(sectors, &mddev->recovery_active);
8045 		}
8046 
8047 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8048 			break;
8049 
8050 		j += sectors;
8051 		if (j > max_sectors)
8052 			/* when skipping, extra large numbers can be returned. */
8053 			j = max_sectors;
8054 		if (j > 2)
8055 			mddev->curr_resync = j;
8056 		mddev->curr_mark_cnt = io_sectors;
8057 		if (last_check == 0)
8058 			/* this is the earliest that rebuild will be
8059 			 * visible in /proc/mdstat
8060 			 */
8061 			md_new_event(mddev);
8062 
8063 		if (last_check + window > io_sectors || j == max_sectors)
8064 			continue;
8065 
8066 		last_check = io_sectors;
8067 	repeat:
8068 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8069 			/* step marks */
8070 			int next = (last_mark+1) % SYNC_MARKS;
8071 
8072 			mddev->resync_mark = mark[next];
8073 			mddev->resync_mark_cnt = mark_cnt[next];
8074 			mark[next] = jiffies;
8075 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8076 			last_mark = next;
8077 		}
8078 
8079 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8080 			break;
8081 
8082 		/*
8083 		 * this loop exits only if either when we are slower than
8084 		 * the 'hard' speed limit, or the system was IO-idle for
8085 		 * a jiffy.
8086 		 * the system might be non-idle CPU-wise, but we only care
8087 		 * about not overloading the IO subsystem. (things like an
8088 		 * e2fsck being done on the RAID array should execute fast)
8089 		 */
8090 		cond_resched();
8091 
8092 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8093 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8094 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8095 
8096 		if (currspeed > speed_min(mddev)) {
8097 			if (currspeed > speed_max(mddev)) {
8098 				msleep(500);
8099 				goto repeat;
8100 			}
8101 			if (!is_mddev_idle(mddev, 0)) {
8102 				/*
8103 				 * Give other IO more of a chance.
8104 				 * The faster the devices, the less we wait.
8105 				 */
8106 				wait_event(mddev->recovery_wait,
8107 					   !atomic_read(&mddev->recovery_active));
8108 			}
8109 		}
8110 	}
8111 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8112 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8113 	       ? "interrupted" : "done");
8114 	/*
8115 	 * this also signals 'finished resyncing' to md_stop
8116 	 */
8117 	blk_finish_plug(&plug);
8118 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8119 
8120 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8121 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8122 	    mddev->curr_resync > 2) {
8123 		mddev->curr_resync_completed = mddev->curr_resync;
8124 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8125 	}
8126 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8127 
8128 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8129 	    mddev->curr_resync > 2) {
8130 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8131 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8132 				if (mddev->curr_resync >= mddev->recovery_cp) {
8133 					printk(KERN_INFO
8134 					       "md: checkpointing %s of %s.\n",
8135 					       desc, mdname(mddev));
8136 					if (test_bit(MD_RECOVERY_ERROR,
8137 						&mddev->recovery))
8138 						mddev->recovery_cp =
8139 							mddev->curr_resync_completed;
8140 					else
8141 						mddev->recovery_cp =
8142 							mddev->curr_resync;
8143 				}
8144 			} else
8145 				mddev->recovery_cp = MaxSector;
8146 		} else {
8147 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8148 				mddev->curr_resync = MaxSector;
8149 			rcu_read_lock();
8150 			rdev_for_each_rcu(rdev, mddev)
8151 				if (rdev->raid_disk >= 0 &&
8152 				    mddev->delta_disks >= 0 &&
8153 				    !test_bit(Journal, &rdev->flags) &&
8154 				    !test_bit(Faulty, &rdev->flags) &&
8155 				    !test_bit(In_sync, &rdev->flags) &&
8156 				    rdev->recovery_offset < mddev->curr_resync)
8157 					rdev->recovery_offset = mddev->curr_resync;
8158 			rcu_read_unlock();
8159 		}
8160 	}
8161  skip:
8162 	/* set CHANGE_PENDING here since maybe another update is needed,
8163 	 * so other nodes are informed. It should be harmless for normal
8164 	 * raid */
8165 	set_mask_bits(&mddev->flags, 0,
8166 		      BIT(MD_CHANGE_PENDING) | BIT(MD_CHANGE_DEVS));
8167 
8168 	spin_lock(&mddev->lock);
8169 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8170 		/* We completed so min/max setting can be forgotten if used. */
8171 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8172 			mddev->resync_min = 0;
8173 		mddev->resync_max = MaxSector;
8174 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8175 		mddev->resync_min = mddev->curr_resync_completed;
8176 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8177 	mddev->curr_resync = 0;
8178 	spin_unlock(&mddev->lock);
8179 
8180 	wake_up(&resync_wait);
8181 	md_wakeup_thread(mddev->thread);
8182 	return;
8183 }
8184 EXPORT_SYMBOL_GPL(md_do_sync);
8185 
8186 static int remove_and_add_spares(struct mddev *mddev,
8187 				 struct md_rdev *this)
8188 {
8189 	struct md_rdev *rdev;
8190 	int spares = 0;
8191 	int removed = 0;
8192 	bool remove_some = false;
8193 
8194 	rdev_for_each(rdev, mddev) {
8195 		if ((this == NULL || rdev == this) &&
8196 		    rdev->raid_disk >= 0 &&
8197 		    !test_bit(Blocked, &rdev->flags) &&
8198 		    test_bit(Faulty, &rdev->flags) &&
8199 		    atomic_read(&rdev->nr_pending)==0) {
8200 			/* Faulty non-Blocked devices with nr_pending == 0
8201 			 * never get nr_pending incremented,
8202 			 * never get Faulty cleared, and never get Blocked set.
8203 			 * So we can synchronize_rcu now rather than once per device
8204 			 */
8205 			remove_some = true;
8206 			set_bit(RemoveSynchronized, &rdev->flags);
8207 		}
8208 	}
8209 
8210 	if (remove_some)
8211 		synchronize_rcu();
8212 	rdev_for_each(rdev, mddev) {
8213 		if ((this == NULL || rdev == this) &&
8214 		    rdev->raid_disk >= 0 &&
8215 		    !test_bit(Blocked, &rdev->flags) &&
8216 		    ((test_bit(RemoveSynchronized, &rdev->flags) ||
8217 		     (!test_bit(In_sync, &rdev->flags) &&
8218 		      !test_bit(Journal, &rdev->flags))) &&
8219 		    atomic_read(&rdev->nr_pending)==0)) {
8220 			if (mddev->pers->hot_remove_disk(
8221 				    mddev, rdev) == 0) {
8222 				sysfs_unlink_rdev(mddev, rdev);
8223 				rdev->raid_disk = -1;
8224 				removed++;
8225 			}
8226 		}
8227 		if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
8228 			clear_bit(RemoveSynchronized, &rdev->flags);
8229 	}
8230 
8231 	if (removed && mddev->kobj.sd)
8232 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8233 
8234 	if (this && removed)
8235 		goto no_add;
8236 
8237 	rdev_for_each(rdev, mddev) {
8238 		if (this && this != rdev)
8239 			continue;
8240 		if (test_bit(Candidate, &rdev->flags))
8241 			continue;
8242 		if (rdev->raid_disk >= 0 &&
8243 		    !test_bit(In_sync, &rdev->flags) &&
8244 		    !test_bit(Journal, &rdev->flags) &&
8245 		    !test_bit(Faulty, &rdev->flags))
8246 			spares++;
8247 		if (rdev->raid_disk >= 0)
8248 			continue;
8249 		if (test_bit(Faulty, &rdev->flags))
8250 			continue;
8251 		if (!test_bit(Journal, &rdev->flags)) {
8252 			if (mddev->ro &&
8253 			    ! (rdev->saved_raid_disk >= 0 &&
8254 			       !test_bit(Bitmap_sync, &rdev->flags)))
8255 				continue;
8256 
8257 			rdev->recovery_offset = 0;
8258 		}
8259 		if (mddev->pers->
8260 		    hot_add_disk(mddev, rdev) == 0) {
8261 			if (sysfs_link_rdev(mddev, rdev))
8262 				/* failure here is OK */;
8263 			if (!test_bit(Journal, &rdev->flags))
8264 				spares++;
8265 			md_new_event(mddev);
8266 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8267 		}
8268 	}
8269 no_add:
8270 	if (removed)
8271 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8272 	return spares;
8273 }
8274 
8275 static void md_start_sync(struct work_struct *ws)
8276 {
8277 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8278 	int ret = 0;
8279 
8280 	mddev->sync_thread = md_register_thread(md_do_sync,
8281 						mddev,
8282 						"resync");
8283 	if (!mddev->sync_thread) {
8284 		if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8285 			printk(KERN_ERR "%s: could not start resync"
8286 			       " thread...\n",
8287 			       mdname(mddev));
8288 		/* leave the spares where they are, it shouldn't hurt */
8289 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8290 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8291 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8292 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8293 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8294 		wake_up(&resync_wait);
8295 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8296 				       &mddev->recovery))
8297 			if (mddev->sysfs_action)
8298 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8299 	} else
8300 		md_wakeup_thread(mddev->sync_thread);
8301 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8302 	md_new_event(mddev);
8303 }
8304 
8305 /*
8306  * This routine is regularly called by all per-raid-array threads to
8307  * deal with generic issues like resync and super-block update.
8308  * Raid personalities that don't have a thread (linear/raid0) do not
8309  * need this as they never do any recovery or update the superblock.
8310  *
8311  * It does not do any resync itself, but rather "forks" off other threads
8312  * to do that as needed.
8313  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8314  * "->recovery" and create a thread at ->sync_thread.
8315  * When the thread finishes it sets MD_RECOVERY_DONE
8316  * and wakeups up this thread which will reap the thread and finish up.
8317  * This thread also removes any faulty devices (with nr_pending == 0).
8318  *
8319  * The overall approach is:
8320  *  1/ if the superblock needs updating, update it.
8321  *  2/ If a recovery thread is running, don't do anything else.
8322  *  3/ If recovery has finished, clean up, possibly marking spares active.
8323  *  4/ If there are any faulty devices, remove them.
8324  *  5/ If array is degraded, try to add spares devices
8325  *  6/ If array has spares or is not in-sync, start a resync thread.
8326  */
8327 void md_check_recovery(struct mddev *mddev)
8328 {
8329 	if (mddev->suspended)
8330 		return;
8331 
8332 	if (mddev->bitmap)
8333 		bitmap_daemon_work(mddev);
8334 
8335 	if (signal_pending(current)) {
8336 		if (mddev->pers->sync_request && !mddev->external) {
8337 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8338 			       mdname(mddev));
8339 			mddev->safemode = 2;
8340 		}
8341 		flush_signals(current);
8342 	}
8343 
8344 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8345 		return;
8346 	if ( ! (
8347 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8348 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8349 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8350 		test_bit(MD_RELOAD_SB, &mddev->flags) ||
8351 		(mddev->external == 0 && mddev->safemode == 1) ||
8352 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8353 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8354 		))
8355 		return;
8356 
8357 	if (mddev_trylock(mddev)) {
8358 		int spares = 0;
8359 
8360 		if (mddev->ro) {
8361 			struct md_rdev *rdev;
8362 			if (!mddev->external && mddev->in_sync)
8363 				/* 'Blocked' flag not needed as failed devices
8364 				 * will be recorded if array switched to read/write.
8365 				 * Leaving it set will prevent the device
8366 				 * from being removed.
8367 				 */
8368 				rdev_for_each(rdev, mddev)
8369 					clear_bit(Blocked, &rdev->flags);
8370 			/* On a read-only array we can:
8371 			 * - remove failed devices
8372 			 * - add already-in_sync devices if the array itself
8373 			 *   is in-sync.
8374 			 * As we only add devices that are already in-sync,
8375 			 * we can activate the spares immediately.
8376 			 */
8377 			remove_and_add_spares(mddev, NULL);
8378 			/* There is no thread, but we need to call
8379 			 * ->spare_active and clear saved_raid_disk
8380 			 */
8381 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8382 			md_reap_sync_thread(mddev);
8383 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8384 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8385 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8386 			goto unlock;
8387 		}
8388 
8389 		if (mddev_is_clustered(mddev)) {
8390 			struct md_rdev *rdev;
8391 			/* kick the device if another node issued a
8392 			 * remove disk.
8393 			 */
8394 			rdev_for_each(rdev, mddev) {
8395 				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8396 						rdev->raid_disk < 0)
8397 					md_kick_rdev_from_array(rdev);
8398 			}
8399 
8400 			if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
8401 				md_reload_sb(mddev, mddev->good_device_nr);
8402 		}
8403 
8404 		if (!mddev->external) {
8405 			int did_change = 0;
8406 			spin_lock(&mddev->lock);
8407 			if (mddev->safemode &&
8408 			    !atomic_read(&mddev->writes_pending) &&
8409 			    !mddev->in_sync &&
8410 			    mddev->recovery_cp == MaxSector) {
8411 				mddev->in_sync = 1;
8412 				did_change = 1;
8413 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8414 			}
8415 			if (mddev->safemode == 1)
8416 				mddev->safemode = 0;
8417 			spin_unlock(&mddev->lock);
8418 			if (did_change)
8419 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8420 		}
8421 
8422 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
8423 			md_update_sb(mddev, 0);
8424 
8425 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8426 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8427 			/* resync/recovery still happening */
8428 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8429 			goto unlock;
8430 		}
8431 		if (mddev->sync_thread) {
8432 			md_reap_sync_thread(mddev);
8433 			goto unlock;
8434 		}
8435 		/* Set RUNNING before clearing NEEDED to avoid
8436 		 * any transients in the value of "sync_action".
8437 		 */
8438 		mddev->curr_resync_completed = 0;
8439 		spin_lock(&mddev->lock);
8440 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8441 		spin_unlock(&mddev->lock);
8442 		/* Clear some bits that don't mean anything, but
8443 		 * might be left set
8444 		 */
8445 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8446 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8447 
8448 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8449 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8450 			goto not_running;
8451 		/* no recovery is running.
8452 		 * remove any failed drives, then
8453 		 * add spares if possible.
8454 		 * Spares are also removed and re-added, to allow
8455 		 * the personality to fail the re-add.
8456 		 */
8457 
8458 		if (mddev->reshape_position != MaxSector) {
8459 			if (mddev->pers->check_reshape == NULL ||
8460 			    mddev->pers->check_reshape(mddev) != 0)
8461 				/* Cannot proceed */
8462 				goto not_running;
8463 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8464 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8465 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8466 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8467 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8468 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8469 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8470 		} else if (mddev->recovery_cp < MaxSector) {
8471 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8472 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8473 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8474 			/* nothing to be done ... */
8475 			goto not_running;
8476 
8477 		if (mddev->pers->sync_request) {
8478 			if (spares) {
8479 				/* We are adding a device or devices to an array
8480 				 * which has the bitmap stored on all devices.
8481 				 * So make sure all bitmap pages get written
8482 				 */
8483 				bitmap_write_all(mddev->bitmap);
8484 			}
8485 			INIT_WORK(&mddev->del_work, md_start_sync);
8486 			queue_work(md_misc_wq, &mddev->del_work);
8487 			goto unlock;
8488 		}
8489 	not_running:
8490 		if (!mddev->sync_thread) {
8491 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8492 			wake_up(&resync_wait);
8493 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8494 					       &mddev->recovery))
8495 				if (mddev->sysfs_action)
8496 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8497 		}
8498 	unlock:
8499 		wake_up(&mddev->sb_wait);
8500 		mddev_unlock(mddev);
8501 	}
8502 }
8503 EXPORT_SYMBOL(md_check_recovery);
8504 
8505 void md_reap_sync_thread(struct mddev *mddev)
8506 {
8507 	struct md_rdev *rdev;
8508 
8509 	/* resync has finished, collect result */
8510 	md_unregister_thread(&mddev->sync_thread);
8511 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8512 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8513 		/* success...*/
8514 		/* activate any spares */
8515 		if (mddev->pers->spare_active(mddev)) {
8516 			sysfs_notify(&mddev->kobj, NULL,
8517 				     "degraded");
8518 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8519 		}
8520 	}
8521 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8522 	    mddev->pers->finish_reshape)
8523 		mddev->pers->finish_reshape(mddev);
8524 
8525 	/* If array is no-longer degraded, then any saved_raid_disk
8526 	 * information must be scrapped.
8527 	 */
8528 	if (!mddev->degraded)
8529 		rdev_for_each(rdev, mddev)
8530 			rdev->saved_raid_disk = -1;
8531 
8532 	md_update_sb(mddev, 1);
8533 	/* MD_CHANGE_PENDING should be cleared by md_update_sb, so we can
8534 	 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
8535 	 * clustered raid */
8536 	if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
8537 		md_cluster_ops->resync_finish(mddev);
8538 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8539 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8540 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8541 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8542 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8543 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8544 	wake_up(&resync_wait);
8545 	/* flag recovery needed just to double check */
8546 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8547 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8548 	md_new_event(mddev);
8549 	if (mddev->event_work.func)
8550 		queue_work(md_misc_wq, &mddev->event_work);
8551 }
8552 EXPORT_SYMBOL(md_reap_sync_thread);
8553 
8554 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8555 {
8556 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8557 	wait_event_timeout(rdev->blocked_wait,
8558 			   !test_bit(Blocked, &rdev->flags) &&
8559 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8560 			   msecs_to_jiffies(5000));
8561 	rdev_dec_pending(rdev, mddev);
8562 }
8563 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8564 
8565 void md_finish_reshape(struct mddev *mddev)
8566 {
8567 	/* called be personality module when reshape completes. */
8568 	struct md_rdev *rdev;
8569 
8570 	rdev_for_each(rdev, mddev) {
8571 		if (rdev->data_offset > rdev->new_data_offset)
8572 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8573 		else
8574 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8575 		rdev->data_offset = rdev->new_data_offset;
8576 	}
8577 }
8578 EXPORT_SYMBOL(md_finish_reshape);
8579 
8580 /* Bad block management */
8581 
8582 /* Returns 1 on success, 0 on failure */
8583 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8584 		       int is_new)
8585 {
8586 	struct mddev *mddev = rdev->mddev;
8587 	int rv;
8588 	if (is_new)
8589 		s += rdev->new_data_offset;
8590 	else
8591 		s += rdev->data_offset;
8592 	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8593 	if (rv == 0) {
8594 		/* Make sure they get written out promptly */
8595 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8596 		set_mask_bits(&mddev->flags, 0,
8597 			      BIT(MD_CHANGE_CLEAN) | BIT(MD_CHANGE_PENDING));
8598 		md_wakeup_thread(rdev->mddev->thread);
8599 		return 1;
8600 	} else
8601 		return 0;
8602 }
8603 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8604 
8605 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8606 			 int is_new)
8607 {
8608 	if (is_new)
8609 		s += rdev->new_data_offset;
8610 	else
8611 		s += rdev->data_offset;
8612 	return badblocks_clear(&rdev->badblocks,
8613 				  s, sectors);
8614 }
8615 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8616 
8617 static int md_notify_reboot(struct notifier_block *this,
8618 			    unsigned long code, void *x)
8619 {
8620 	struct list_head *tmp;
8621 	struct mddev *mddev;
8622 	int need_delay = 0;
8623 
8624 	for_each_mddev(mddev, tmp) {
8625 		if (mddev_trylock(mddev)) {
8626 			if (mddev->pers)
8627 				__md_stop_writes(mddev);
8628 			if (mddev->persistent)
8629 				mddev->safemode = 2;
8630 			mddev_unlock(mddev);
8631 		}
8632 		need_delay = 1;
8633 	}
8634 	/*
8635 	 * certain more exotic SCSI devices are known to be
8636 	 * volatile wrt too early system reboots. While the
8637 	 * right place to handle this issue is the given
8638 	 * driver, we do want to have a safe RAID driver ...
8639 	 */
8640 	if (need_delay)
8641 		mdelay(1000*1);
8642 
8643 	return NOTIFY_DONE;
8644 }
8645 
8646 static struct notifier_block md_notifier = {
8647 	.notifier_call	= md_notify_reboot,
8648 	.next		= NULL,
8649 	.priority	= INT_MAX, /* before any real devices */
8650 };
8651 
8652 static void md_geninit(void)
8653 {
8654 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8655 
8656 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8657 }
8658 
8659 static int __init md_init(void)
8660 {
8661 	int ret = -ENOMEM;
8662 
8663 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8664 	if (!md_wq)
8665 		goto err_wq;
8666 
8667 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8668 	if (!md_misc_wq)
8669 		goto err_misc_wq;
8670 
8671 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8672 		goto err_md;
8673 
8674 	if ((ret = register_blkdev(0, "mdp")) < 0)
8675 		goto err_mdp;
8676 	mdp_major = ret;
8677 
8678 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8679 			    md_probe, NULL, NULL);
8680 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8681 			    md_probe, NULL, NULL);
8682 
8683 	register_reboot_notifier(&md_notifier);
8684 	raid_table_header = register_sysctl_table(raid_root_table);
8685 
8686 	md_geninit();
8687 	return 0;
8688 
8689 err_mdp:
8690 	unregister_blkdev(MD_MAJOR, "md");
8691 err_md:
8692 	destroy_workqueue(md_misc_wq);
8693 err_misc_wq:
8694 	destroy_workqueue(md_wq);
8695 err_wq:
8696 	return ret;
8697 }
8698 
8699 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8700 {
8701 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8702 	struct md_rdev *rdev2;
8703 	int role, ret;
8704 	char b[BDEVNAME_SIZE];
8705 
8706 	/* Check for change of roles in the active devices */
8707 	rdev_for_each(rdev2, mddev) {
8708 		if (test_bit(Faulty, &rdev2->flags))
8709 			continue;
8710 
8711 		/* Check if the roles changed */
8712 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8713 
8714 		if (test_bit(Candidate, &rdev2->flags)) {
8715 			if (role == 0xfffe) {
8716 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
8717 				md_kick_rdev_from_array(rdev2);
8718 				continue;
8719 			}
8720 			else
8721 				clear_bit(Candidate, &rdev2->flags);
8722 		}
8723 
8724 		if (role != rdev2->raid_disk) {
8725 			/* got activated */
8726 			if (rdev2->raid_disk == -1 && role != 0xffff) {
8727 				rdev2->saved_raid_disk = role;
8728 				ret = remove_and_add_spares(mddev, rdev2);
8729 				pr_info("Activated spare: %s\n",
8730 						bdevname(rdev2->bdev,b));
8731 				/* wakeup mddev->thread here, so array could
8732 				 * perform resync with the new activated disk */
8733 				set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8734 				md_wakeup_thread(mddev->thread);
8735 
8736 			}
8737 			/* device faulty
8738 			 * We just want to do the minimum to mark the disk
8739 			 * as faulty. The recovery is performed by the
8740 			 * one who initiated the error.
8741 			 */
8742 			if ((role == 0xfffe) || (role == 0xfffd)) {
8743 				md_error(mddev, rdev2);
8744 				clear_bit(Blocked, &rdev2->flags);
8745 			}
8746 		}
8747 	}
8748 
8749 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
8750 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
8751 
8752 	/* Finally set the event to be up to date */
8753 	mddev->events = le64_to_cpu(sb->events);
8754 }
8755 
8756 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8757 {
8758 	int err;
8759 	struct page *swapout = rdev->sb_page;
8760 	struct mdp_superblock_1 *sb;
8761 
8762 	/* Store the sb page of the rdev in the swapout temporary
8763 	 * variable in case we err in the future
8764 	 */
8765 	rdev->sb_page = NULL;
8766 	alloc_disk_sb(rdev);
8767 	ClearPageUptodate(rdev->sb_page);
8768 	rdev->sb_loaded = 0;
8769 	err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
8770 
8771 	if (err < 0) {
8772 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8773 				__func__, __LINE__, rdev->desc_nr, err);
8774 		put_page(rdev->sb_page);
8775 		rdev->sb_page = swapout;
8776 		rdev->sb_loaded = 1;
8777 		return err;
8778 	}
8779 
8780 	sb = page_address(rdev->sb_page);
8781 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8782 	 * is not set
8783 	 */
8784 
8785 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
8786 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
8787 
8788 	/* The other node finished recovery, call spare_active to set
8789 	 * device In_sync and mddev->degraded
8790 	 */
8791 	if (rdev->recovery_offset == MaxSector &&
8792 	    !test_bit(In_sync, &rdev->flags) &&
8793 	    mddev->pers->spare_active(mddev))
8794 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8795 
8796 	put_page(swapout);
8797 	return 0;
8798 }
8799 
8800 void md_reload_sb(struct mddev *mddev, int nr)
8801 {
8802 	struct md_rdev *rdev;
8803 	int err;
8804 
8805 	/* Find the rdev */
8806 	rdev_for_each_rcu(rdev, mddev) {
8807 		if (rdev->desc_nr == nr)
8808 			break;
8809 	}
8810 
8811 	if (!rdev || rdev->desc_nr != nr) {
8812 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
8813 		return;
8814 	}
8815 
8816 	err = read_rdev(mddev, rdev);
8817 	if (err < 0)
8818 		return;
8819 
8820 	check_sb_changes(mddev, rdev);
8821 
8822 	/* Read all rdev's to update recovery_offset */
8823 	rdev_for_each_rcu(rdev, mddev)
8824 		read_rdev(mddev, rdev);
8825 }
8826 EXPORT_SYMBOL(md_reload_sb);
8827 
8828 #ifndef MODULE
8829 
8830 /*
8831  * Searches all registered partitions for autorun RAID arrays
8832  * at boot time.
8833  */
8834 
8835 static DEFINE_MUTEX(detected_devices_mutex);
8836 static LIST_HEAD(all_detected_devices);
8837 struct detected_devices_node {
8838 	struct list_head list;
8839 	dev_t dev;
8840 };
8841 
8842 void md_autodetect_dev(dev_t dev)
8843 {
8844 	struct detected_devices_node *node_detected_dev;
8845 
8846 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8847 	if (node_detected_dev) {
8848 		node_detected_dev->dev = dev;
8849 		mutex_lock(&detected_devices_mutex);
8850 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8851 		mutex_unlock(&detected_devices_mutex);
8852 	} else {
8853 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8854 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8855 	}
8856 }
8857 
8858 static void autostart_arrays(int part)
8859 {
8860 	struct md_rdev *rdev;
8861 	struct detected_devices_node *node_detected_dev;
8862 	dev_t dev;
8863 	int i_scanned, i_passed;
8864 
8865 	i_scanned = 0;
8866 	i_passed = 0;
8867 
8868 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8869 
8870 	mutex_lock(&detected_devices_mutex);
8871 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8872 		i_scanned++;
8873 		node_detected_dev = list_entry(all_detected_devices.next,
8874 					struct detected_devices_node, list);
8875 		list_del(&node_detected_dev->list);
8876 		dev = node_detected_dev->dev;
8877 		kfree(node_detected_dev);
8878 		rdev = md_import_device(dev,0, 90);
8879 		if (IS_ERR(rdev))
8880 			continue;
8881 
8882 		if (test_bit(Faulty, &rdev->flags))
8883 			continue;
8884 
8885 		set_bit(AutoDetected, &rdev->flags);
8886 		list_add(&rdev->same_set, &pending_raid_disks);
8887 		i_passed++;
8888 	}
8889 	mutex_unlock(&detected_devices_mutex);
8890 
8891 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8892 						i_scanned, i_passed);
8893 
8894 	autorun_devices(part);
8895 }
8896 
8897 #endif /* !MODULE */
8898 
8899 static __exit void md_exit(void)
8900 {
8901 	struct mddev *mddev;
8902 	struct list_head *tmp;
8903 	int delay = 1;
8904 
8905 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8906 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8907 
8908 	unregister_blkdev(MD_MAJOR,"md");
8909 	unregister_blkdev(mdp_major, "mdp");
8910 	unregister_reboot_notifier(&md_notifier);
8911 	unregister_sysctl_table(raid_table_header);
8912 
8913 	/* We cannot unload the modules while some process is
8914 	 * waiting for us in select() or poll() - wake them up
8915 	 */
8916 	md_unloading = 1;
8917 	while (waitqueue_active(&md_event_waiters)) {
8918 		/* not safe to leave yet */
8919 		wake_up(&md_event_waiters);
8920 		msleep(delay);
8921 		delay += delay;
8922 	}
8923 	remove_proc_entry("mdstat", NULL);
8924 
8925 	for_each_mddev(mddev, tmp) {
8926 		export_array(mddev);
8927 		mddev->hold_active = 0;
8928 	}
8929 	destroy_workqueue(md_misc_wq);
8930 	destroy_workqueue(md_wq);
8931 }
8932 
8933 subsys_initcall(md_init);
8934 module_exit(md_exit)
8935 
8936 static int get_ro(char *buffer, struct kernel_param *kp)
8937 {
8938 	return sprintf(buffer, "%d", start_readonly);
8939 }
8940 static int set_ro(const char *val, struct kernel_param *kp)
8941 {
8942 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
8943 }
8944 
8945 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8946 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8947 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8948 
8949 MODULE_LICENSE("GPL");
8950 MODULE_DESCRIPTION("MD RAID framework");
8951 MODULE_ALIAS("md");
8952 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8953