xref: /openbmc/linux/drivers/md/md.c (revision 79f08d9e)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 static int remove_and_add_spares(struct mddev *mddev,
76 				 struct md_rdev *this);
77 
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98 
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 	return mddev->sync_speed_min ?
104 		mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106 
107 static inline int speed_max(struct mddev *mddev)
108 {
109 	return mddev->sync_speed_max ?
110 		mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112 
113 static struct ctl_table_header *raid_table_header;
114 
115 static struct ctl_table raid_table[] = {
116 	{
117 		.procname	= "speed_limit_min",
118 		.data		= &sysctl_speed_limit_min,
119 		.maxlen		= sizeof(int),
120 		.mode		= S_IRUGO|S_IWUSR,
121 		.proc_handler	= proc_dointvec,
122 	},
123 	{
124 		.procname	= "speed_limit_max",
125 		.data		= &sysctl_speed_limit_max,
126 		.maxlen		= sizeof(int),
127 		.mode		= S_IRUGO|S_IWUSR,
128 		.proc_handler	= proc_dointvec,
129 	},
130 	{ }
131 };
132 
133 static struct ctl_table raid_dir_table[] = {
134 	{
135 		.procname	= "raid",
136 		.maxlen		= 0,
137 		.mode		= S_IRUGO|S_IXUGO,
138 		.child		= raid_table,
139 	},
140 	{ }
141 };
142 
143 static struct ctl_table raid_root_table[] = {
144 	{
145 		.procname	= "dev",
146 		.maxlen		= 0,
147 		.mode		= 0555,
148 		.child		= raid_dir_table,
149 	},
150 	{  }
151 };
152 
153 static const struct block_device_operations md_fops;
154 
155 static int start_readonly;
156 
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160 
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 			    struct mddev *mddev)
163 {
164 	struct bio *b;
165 
166 	if (!mddev || !mddev->bio_set)
167 		return bio_alloc(gfp_mask, nr_iovecs);
168 
169 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 	if (!b)
171 		return NULL;
172 	return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175 
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 			    struct mddev *mddev)
178 {
179 	if (!mddev || !mddev->bio_set)
180 		return bio_clone(bio, gfp_mask);
181 
182 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185 
186 /*
187  * We have a system wide 'event count' that is incremented
188  * on any 'interesting' event, and readers of /proc/mdstat
189  * can use 'poll' or 'select' to find out when the event
190  * count increases.
191  *
192  * Events are:
193  *  start array, stop array, error, add device, remove device,
194  *  start build, activate spare
195  */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200 	atomic_inc(&md_event_count);
201 	wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204 
205 /* Alternate version that can be called from interrupts
206  * when calling sysfs_notify isn't needed.
207  */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210 	atomic_inc(&md_event_count);
211 	wake_up(&md_event_waiters);
212 }
213 
214 /*
215  * Enables to iterate over all existing md arrays
216  * all_mddevs_lock protects this list.
217  */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220 
221 
222 /*
223  * iterates through all used mddevs in the system.
224  * We take care to grab the all_mddevs_lock whenever navigating
225  * the list, and to always hold a refcount when unlocked.
226  * Any code which breaks out of this loop while own
227  * a reference to the current mddev and must mddev_put it.
228  */
229 #define for_each_mddev(_mddev,_tmp)					\
230 									\
231 	for (({ spin_lock(&all_mddevs_lock); 				\
232 		_tmp = all_mddevs.next;					\
233 		_mddev = NULL;});					\
234 	     ({ if (_tmp != &all_mddevs)				\
235 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
236 		spin_unlock(&all_mddevs_lock);				\
237 		if (_mddev) mddev_put(_mddev);				\
238 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
239 		_tmp != &all_mddevs;});					\
240 	     ({ spin_lock(&all_mddevs_lock);				\
241 		_tmp = _tmp->next;})					\
242 		)
243 
244 
245 /* Rather than calling directly into the personality make_request function,
246  * IO requests come here first so that we can check if the device is
247  * being suspended pending a reconfiguration.
248  * We hold a refcount over the call to ->make_request.  By the time that
249  * call has finished, the bio has been linked into some internal structure
250  * and so is visible to ->quiesce(), so we don't need the refcount any more.
251  */
252 static void md_make_request(struct request_queue *q, struct bio *bio)
253 {
254 	const int rw = bio_data_dir(bio);
255 	struct mddev *mddev = q->queuedata;
256 	int cpu;
257 	unsigned int sectors;
258 
259 	if (mddev == NULL || mddev->pers == NULL
260 	    || !mddev->ready) {
261 		bio_io_error(bio);
262 		return;
263 	}
264 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266 		return;
267 	}
268 	smp_rmb(); /* Ensure implications of  'active' are visible */
269 	rcu_read_lock();
270 	if (mddev->suspended) {
271 		DEFINE_WAIT(__wait);
272 		for (;;) {
273 			prepare_to_wait(&mddev->sb_wait, &__wait,
274 					TASK_UNINTERRUPTIBLE);
275 			if (!mddev->suspended)
276 				break;
277 			rcu_read_unlock();
278 			schedule();
279 			rcu_read_lock();
280 		}
281 		finish_wait(&mddev->sb_wait, &__wait);
282 	}
283 	atomic_inc(&mddev->active_io);
284 	rcu_read_unlock();
285 
286 	/*
287 	 * save the sectors now since our bio can
288 	 * go away inside make_request
289 	 */
290 	sectors = bio_sectors(bio);
291 	mddev->pers->make_request(mddev, bio);
292 
293 	cpu = part_stat_lock();
294 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
295 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
296 	part_stat_unlock();
297 
298 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
299 		wake_up(&mddev->sb_wait);
300 }
301 
302 /* mddev_suspend makes sure no new requests are submitted
303  * to the device, and that any requests that have been submitted
304  * are completely handled.
305  * Once ->stop is called and completes, the module will be completely
306  * unused.
307  */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 	BUG_ON(mddev->suspended);
311 	mddev->suspended = 1;
312 	synchronize_rcu();
313 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
314 	mddev->pers->quiesce(mddev, 1);
315 
316 	del_timer_sync(&mddev->safemode_timer);
317 }
318 EXPORT_SYMBOL_GPL(mddev_suspend);
319 
320 void mddev_resume(struct mddev *mddev)
321 {
322 	mddev->suspended = 0;
323 	wake_up(&mddev->sb_wait);
324 	mddev->pers->quiesce(mddev, 0);
325 
326 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327 	md_wakeup_thread(mddev->thread);
328 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331 
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334 	return mddev->suspended;
335 }
336 EXPORT_SYMBOL(mddev_congested);
337 
338 /*
339  * Generic flush handling for md
340  */
341 
342 static void md_end_flush(struct bio *bio, int err)
343 {
344 	struct md_rdev *rdev = bio->bi_private;
345 	struct mddev *mddev = rdev->mddev;
346 
347 	rdev_dec_pending(rdev, mddev);
348 
349 	if (atomic_dec_and_test(&mddev->flush_pending)) {
350 		/* The pre-request flush has finished */
351 		queue_work(md_wq, &mddev->flush_work);
352 	}
353 	bio_put(bio);
354 }
355 
356 static void md_submit_flush_data(struct work_struct *ws);
357 
358 static void submit_flushes(struct work_struct *ws)
359 {
360 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
361 	struct md_rdev *rdev;
362 
363 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
364 	atomic_set(&mddev->flush_pending, 1);
365 	rcu_read_lock();
366 	rdev_for_each_rcu(rdev, mddev)
367 		if (rdev->raid_disk >= 0 &&
368 		    !test_bit(Faulty, &rdev->flags)) {
369 			/* Take two references, one is dropped
370 			 * when request finishes, one after
371 			 * we reclaim rcu_read_lock
372 			 */
373 			struct bio *bi;
374 			atomic_inc(&rdev->nr_pending);
375 			atomic_inc(&rdev->nr_pending);
376 			rcu_read_unlock();
377 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
378 			bi->bi_end_io = md_end_flush;
379 			bi->bi_private = rdev;
380 			bi->bi_bdev = rdev->bdev;
381 			atomic_inc(&mddev->flush_pending);
382 			submit_bio(WRITE_FLUSH, bi);
383 			rcu_read_lock();
384 			rdev_dec_pending(rdev, mddev);
385 		}
386 	rcu_read_unlock();
387 	if (atomic_dec_and_test(&mddev->flush_pending))
388 		queue_work(md_wq, &mddev->flush_work);
389 }
390 
391 static void md_submit_flush_data(struct work_struct *ws)
392 {
393 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394 	struct bio *bio = mddev->flush_bio;
395 
396 	if (bio->bi_size == 0)
397 		/* an empty barrier - all done */
398 		bio_endio(bio, 0);
399 	else {
400 		bio->bi_rw &= ~REQ_FLUSH;
401 		mddev->pers->make_request(mddev, bio);
402 	}
403 
404 	mddev->flush_bio = NULL;
405 	wake_up(&mddev->sb_wait);
406 }
407 
408 void md_flush_request(struct mddev *mddev, struct bio *bio)
409 {
410 	spin_lock_irq(&mddev->write_lock);
411 	wait_event_lock_irq(mddev->sb_wait,
412 			    !mddev->flush_bio,
413 			    mddev->write_lock);
414 	mddev->flush_bio = bio;
415 	spin_unlock_irq(&mddev->write_lock);
416 
417 	INIT_WORK(&mddev->flush_work, submit_flushes);
418 	queue_work(md_wq, &mddev->flush_work);
419 }
420 EXPORT_SYMBOL(md_flush_request);
421 
422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
423 {
424 	struct mddev *mddev = cb->data;
425 	md_wakeup_thread(mddev->thread);
426 	kfree(cb);
427 }
428 EXPORT_SYMBOL(md_unplug);
429 
430 static inline struct mddev *mddev_get(struct mddev *mddev)
431 {
432 	atomic_inc(&mddev->active);
433 	return mddev;
434 }
435 
436 static void mddev_delayed_delete(struct work_struct *ws);
437 
438 static void mddev_put(struct mddev *mddev)
439 {
440 	struct bio_set *bs = NULL;
441 
442 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
443 		return;
444 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
445 	    mddev->ctime == 0 && !mddev->hold_active) {
446 		/* Array is not configured at all, and not held active,
447 		 * so destroy it */
448 		list_del_init(&mddev->all_mddevs);
449 		bs = mddev->bio_set;
450 		mddev->bio_set = NULL;
451 		if (mddev->gendisk) {
452 			/* We did a probe so need to clean up.  Call
453 			 * queue_work inside the spinlock so that
454 			 * flush_workqueue() after mddev_find will
455 			 * succeed in waiting for the work to be done.
456 			 */
457 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
458 			queue_work(md_misc_wq, &mddev->del_work);
459 		} else
460 			kfree(mddev);
461 	}
462 	spin_unlock(&all_mddevs_lock);
463 	if (bs)
464 		bioset_free(bs);
465 }
466 
467 void mddev_init(struct mddev *mddev)
468 {
469 	mutex_init(&mddev->open_mutex);
470 	mutex_init(&mddev->reconfig_mutex);
471 	mutex_init(&mddev->bitmap_info.mutex);
472 	INIT_LIST_HEAD(&mddev->disks);
473 	INIT_LIST_HEAD(&mddev->all_mddevs);
474 	init_timer(&mddev->safemode_timer);
475 	atomic_set(&mddev->active, 1);
476 	atomic_set(&mddev->openers, 0);
477 	atomic_set(&mddev->active_io, 0);
478 	spin_lock_init(&mddev->write_lock);
479 	atomic_set(&mddev->flush_pending, 0);
480 	init_waitqueue_head(&mddev->sb_wait);
481 	init_waitqueue_head(&mddev->recovery_wait);
482 	mddev->reshape_position = MaxSector;
483 	mddev->reshape_backwards = 0;
484 	mddev->last_sync_action = "none";
485 	mddev->resync_min = 0;
486 	mddev->resync_max = MaxSector;
487 	mddev->level = LEVEL_NONE;
488 }
489 EXPORT_SYMBOL_GPL(mddev_init);
490 
491 static struct mddev * mddev_find(dev_t unit)
492 {
493 	struct mddev *mddev, *new = NULL;
494 
495 	if (unit && MAJOR(unit) != MD_MAJOR)
496 		unit &= ~((1<<MdpMinorShift)-1);
497 
498  retry:
499 	spin_lock(&all_mddevs_lock);
500 
501 	if (unit) {
502 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
503 			if (mddev->unit == unit) {
504 				mddev_get(mddev);
505 				spin_unlock(&all_mddevs_lock);
506 				kfree(new);
507 				return mddev;
508 			}
509 
510 		if (new) {
511 			list_add(&new->all_mddevs, &all_mddevs);
512 			spin_unlock(&all_mddevs_lock);
513 			new->hold_active = UNTIL_IOCTL;
514 			return new;
515 		}
516 	} else if (new) {
517 		/* find an unused unit number */
518 		static int next_minor = 512;
519 		int start = next_minor;
520 		int is_free = 0;
521 		int dev = 0;
522 		while (!is_free) {
523 			dev = MKDEV(MD_MAJOR, next_minor);
524 			next_minor++;
525 			if (next_minor > MINORMASK)
526 				next_minor = 0;
527 			if (next_minor == start) {
528 				/* Oh dear, all in use. */
529 				spin_unlock(&all_mddevs_lock);
530 				kfree(new);
531 				return NULL;
532 			}
533 
534 			is_free = 1;
535 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536 				if (mddev->unit == dev) {
537 					is_free = 0;
538 					break;
539 				}
540 		}
541 		new->unit = dev;
542 		new->md_minor = MINOR(dev);
543 		new->hold_active = UNTIL_STOP;
544 		list_add(&new->all_mddevs, &all_mddevs);
545 		spin_unlock(&all_mddevs_lock);
546 		return new;
547 	}
548 	spin_unlock(&all_mddevs_lock);
549 
550 	new = kzalloc(sizeof(*new), GFP_KERNEL);
551 	if (!new)
552 		return NULL;
553 
554 	new->unit = unit;
555 	if (MAJOR(unit) == MD_MAJOR)
556 		new->md_minor = MINOR(unit);
557 	else
558 		new->md_minor = MINOR(unit) >> MdpMinorShift;
559 
560 	mddev_init(new);
561 
562 	goto retry;
563 }
564 
565 static inline int __must_check mddev_lock(struct mddev * mddev)
566 {
567 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
568 }
569 
570 /* Sometimes we need to take the lock in a situation where
571  * failure due to interrupts is not acceptable.
572  */
573 static inline void mddev_lock_nointr(struct mddev * mddev)
574 {
575 	mutex_lock(&mddev->reconfig_mutex);
576 }
577 
578 static inline int mddev_is_locked(struct mddev *mddev)
579 {
580 	return mutex_is_locked(&mddev->reconfig_mutex);
581 }
582 
583 static inline int mddev_trylock(struct mddev * mddev)
584 {
585 	return mutex_trylock(&mddev->reconfig_mutex);
586 }
587 
588 static struct attribute_group md_redundancy_group;
589 
590 static void mddev_unlock(struct mddev * mddev)
591 {
592 	if (mddev->to_remove) {
593 		/* These cannot be removed under reconfig_mutex as
594 		 * an access to the files will try to take reconfig_mutex
595 		 * while holding the file unremovable, which leads to
596 		 * a deadlock.
597 		 * So hold set sysfs_active while the remove in happeing,
598 		 * and anything else which might set ->to_remove or my
599 		 * otherwise change the sysfs namespace will fail with
600 		 * -EBUSY if sysfs_active is still set.
601 		 * We set sysfs_active under reconfig_mutex and elsewhere
602 		 * test it under the same mutex to ensure its correct value
603 		 * is seen.
604 		 */
605 		struct attribute_group *to_remove = mddev->to_remove;
606 		mddev->to_remove = NULL;
607 		mddev->sysfs_active = 1;
608 		mutex_unlock(&mddev->reconfig_mutex);
609 
610 		if (mddev->kobj.sd) {
611 			if (to_remove != &md_redundancy_group)
612 				sysfs_remove_group(&mddev->kobj, to_remove);
613 			if (mddev->pers == NULL ||
614 			    mddev->pers->sync_request == NULL) {
615 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
616 				if (mddev->sysfs_action)
617 					sysfs_put(mddev->sysfs_action);
618 				mddev->sysfs_action = NULL;
619 			}
620 		}
621 		mddev->sysfs_active = 0;
622 	} else
623 		mutex_unlock(&mddev->reconfig_mutex);
624 
625 	/* As we've dropped the mutex we need a spinlock to
626 	 * make sure the thread doesn't disappear
627 	 */
628 	spin_lock(&pers_lock);
629 	md_wakeup_thread(mddev->thread);
630 	spin_unlock(&pers_lock);
631 }
632 
633 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
634 {
635 	struct md_rdev *rdev;
636 
637 	rdev_for_each(rdev, mddev)
638 		if (rdev->desc_nr == nr)
639 			return rdev;
640 
641 	return NULL;
642 }
643 
644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 {
646 	struct md_rdev *rdev;
647 
648 	rdev_for_each_rcu(rdev, mddev)
649 		if (rdev->desc_nr == nr)
650 			return rdev;
651 
652 	return NULL;
653 }
654 
655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
656 {
657 	struct md_rdev *rdev;
658 
659 	rdev_for_each(rdev, mddev)
660 		if (rdev->bdev->bd_dev == dev)
661 			return rdev;
662 
663 	return NULL;
664 }
665 
666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
667 {
668 	struct md_rdev *rdev;
669 
670 	rdev_for_each_rcu(rdev, mddev)
671 		if (rdev->bdev->bd_dev == dev)
672 			return rdev;
673 
674 	return NULL;
675 }
676 
677 static struct md_personality *find_pers(int level, char *clevel)
678 {
679 	struct md_personality *pers;
680 	list_for_each_entry(pers, &pers_list, list) {
681 		if (level != LEVEL_NONE && pers->level == level)
682 			return pers;
683 		if (strcmp(pers->name, clevel)==0)
684 			return pers;
685 	}
686 	return NULL;
687 }
688 
689 /* return the offset of the super block in 512byte sectors */
690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
691 {
692 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
693 	return MD_NEW_SIZE_SECTORS(num_sectors);
694 }
695 
696 static int alloc_disk_sb(struct md_rdev * rdev)
697 {
698 	if (rdev->sb_page)
699 		MD_BUG();
700 
701 	rdev->sb_page = alloc_page(GFP_KERNEL);
702 	if (!rdev->sb_page) {
703 		printk(KERN_ALERT "md: out of memory.\n");
704 		return -ENOMEM;
705 	}
706 
707 	return 0;
708 }
709 
710 void md_rdev_clear(struct md_rdev *rdev)
711 {
712 	if (rdev->sb_page) {
713 		put_page(rdev->sb_page);
714 		rdev->sb_loaded = 0;
715 		rdev->sb_page = NULL;
716 		rdev->sb_start = 0;
717 		rdev->sectors = 0;
718 	}
719 	if (rdev->bb_page) {
720 		put_page(rdev->bb_page);
721 		rdev->bb_page = NULL;
722 	}
723 	kfree(rdev->badblocks.page);
724 	rdev->badblocks.page = NULL;
725 }
726 EXPORT_SYMBOL_GPL(md_rdev_clear);
727 
728 static void super_written(struct bio *bio, int error)
729 {
730 	struct md_rdev *rdev = bio->bi_private;
731 	struct mddev *mddev = rdev->mddev;
732 
733 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
734 		printk("md: super_written gets error=%d, uptodate=%d\n",
735 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
736 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
737 		md_error(mddev, rdev);
738 	}
739 
740 	if (atomic_dec_and_test(&mddev->pending_writes))
741 		wake_up(&mddev->sb_wait);
742 	bio_put(bio);
743 }
744 
745 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
746 		   sector_t sector, int size, struct page *page)
747 {
748 	/* write first size bytes of page to sector of rdev
749 	 * Increment mddev->pending_writes before returning
750 	 * and decrement it on completion, waking up sb_wait
751 	 * if zero is reached.
752 	 * If an error occurred, call md_error
753 	 */
754 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
755 
756 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
757 	bio->bi_sector = sector;
758 	bio_add_page(bio, page, size, 0);
759 	bio->bi_private = rdev;
760 	bio->bi_end_io = super_written;
761 
762 	atomic_inc(&mddev->pending_writes);
763 	submit_bio(WRITE_FLUSH_FUA, bio);
764 }
765 
766 void md_super_wait(struct mddev *mddev)
767 {
768 	/* wait for all superblock writes that were scheduled to complete */
769 	DEFINE_WAIT(wq);
770 	for(;;) {
771 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
772 		if (atomic_read(&mddev->pending_writes)==0)
773 			break;
774 		schedule();
775 	}
776 	finish_wait(&mddev->sb_wait, &wq);
777 }
778 
779 static void bi_complete(struct bio *bio, int error)
780 {
781 	complete((struct completion*)bio->bi_private);
782 }
783 
784 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
785 		 struct page *page, int rw, bool metadata_op)
786 {
787 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
788 	struct completion event;
789 	int ret;
790 
791 	rw |= REQ_SYNC;
792 
793 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
794 		rdev->meta_bdev : rdev->bdev;
795 	if (metadata_op)
796 		bio->bi_sector = sector + rdev->sb_start;
797 	else if (rdev->mddev->reshape_position != MaxSector &&
798 		 (rdev->mddev->reshape_backwards ==
799 		  (sector >= rdev->mddev->reshape_position)))
800 		bio->bi_sector = sector + rdev->new_data_offset;
801 	else
802 		bio->bi_sector = sector + rdev->data_offset;
803 	bio_add_page(bio, page, size, 0);
804 	init_completion(&event);
805 	bio->bi_private = &event;
806 	bio->bi_end_io = bi_complete;
807 	submit_bio(rw, bio);
808 	wait_for_completion(&event);
809 
810 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
811 	bio_put(bio);
812 	return ret;
813 }
814 EXPORT_SYMBOL_GPL(sync_page_io);
815 
816 static int read_disk_sb(struct md_rdev * rdev, int size)
817 {
818 	char b[BDEVNAME_SIZE];
819 	if (!rdev->sb_page) {
820 		MD_BUG();
821 		return -EINVAL;
822 	}
823 	if (rdev->sb_loaded)
824 		return 0;
825 
826 
827 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
828 		goto fail;
829 	rdev->sb_loaded = 1;
830 	return 0;
831 
832 fail:
833 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
834 		bdevname(rdev->bdev,b));
835 	return -EINVAL;
836 }
837 
838 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
839 {
840 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
841 		sb1->set_uuid1 == sb2->set_uuid1 &&
842 		sb1->set_uuid2 == sb2->set_uuid2 &&
843 		sb1->set_uuid3 == sb2->set_uuid3;
844 }
845 
846 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
847 {
848 	int ret;
849 	mdp_super_t *tmp1, *tmp2;
850 
851 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
852 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
853 
854 	if (!tmp1 || !tmp2) {
855 		ret = 0;
856 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
857 		goto abort;
858 	}
859 
860 	*tmp1 = *sb1;
861 	*tmp2 = *sb2;
862 
863 	/*
864 	 * nr_disks is not constant
865 	 */
866 	tmp1->nr_disks = 0;
867 	tmp2->nr_disks = 0;
868 
869 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
870 abort:
871 	kfree(tmp1);
872 	kfree(tmp2);
873 	return ret;
874 }
875 
876 
877 static u32 md_csum_fold(u32 csum)
878 {
879 	csum = (csum & 0xffff) + (csum >> 16);
880 	return (csum & 0xffff) + (csum >> 16);
881 }
882 
883 static unsigned int calc_sb_csum(mdp_super_t * sb)
884 {
885 	u64 newcsum = 0;
886 	u32 *sb32 = (u32*)sb;
887 	int i;
888 	unsigned int disk_csum, csum;
889 
890 	disk_csum = sb->sb_csum;
891 	sb->sb_csum = 0;
892 
893 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
894 		newcsum += sb32[i];
895 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
896 
897 
898 #ifdef CONFIG_ALPHA
899 	/* This used to use csum_partial, which was wrong for several
900 	 * reasons including that different results are returned on
901 	 * different architectures.  It isn't critical that we get exactly
902 	 * the same return value as before (we always csum_fold before
903 	 * testing, and that removes any differences).  However as we
904 	 * know that csum_partial always returned a 16bit value on
905 	 * alphas, do a fold to maximise conformity to previous behaviour.
906 	 */
907 	sb->sb_csum = md_csum_fold(disk_csum);
908 #else
909 	sb->sb_csum = disk_csum;
910 #endif
911 	return csum;
912 }
913 
914 
915 /*
916  * Handle superblock details.
917  * We want to be able to handle multiple superblock formats
918  * so we have a common interface to them all, and an array of
919  * different handlers.
920  * We rely on user-space to write the initial superblock, and support
921  * reading and updating of superblocks.
922  * Interface methods are:
923  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
924  *      loads and validates a superblock on dev.
925  *      if refdev != NULL, compare superblocks on both devices
926  *    Return:
927  *      0 - dev has a superblock that is compatible with refdev
928  *      1 - dev has a superblock that is compatible and newer than refdev
929  *          so dev should be used as the refdev in future
930  *     -EINVAL superblock incompatible or invalid
931  *     -othererror e.g. -EIO
932  *
933  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
934  *      Verify that dev is acceptable into mddev.
935  *       The first time, mddev->raid_disks will be 0, and data from
936  *       dev should be merged in.  Subsequent calls check that dev
937  *       is new enough.  Return 0 or -EINVAL
938  *
939  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
940  *     Update the superblock for rdev with data in mddev
941  *     This does not write to disc.
942  *
943  */
944 
945 struct super_type  {
946 	char		    *name;
947 	struct module	    *owner;
948 	int		    (*load_super)(struct md_rdev *rdev,
949 					  struct md_rdev *refdev,
950 					  int minor_version);
951 	int		    (*validate_super)(struct mddev *mddev,
952 					      struct md_rdev *rdev);
953 	void		    (*sync_super)(struct mddev *mddev,
954 					  struct md_rdev *rdev);
955 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
956 						sector_t num_sectors);
957 	int		    (*allow_new_offset)(struct md_rdev *rdev,
958 						unsigned long long new_offset);
959 };
960 
961 /*
962  * Check that the given mddev has no bitmap.
963  *
964  * This function is called from the run method of all personalities that do not
965  * support bitmaps. It prints an error message and returns non-zero if mddev
966  * has a bitmap. Otherwise, it returns 0.
967  *
968  */
969 int md_check_no_bitmap(struct mddev *mddev)
970 {
971 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
972 		return 0;
973 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
974 		mdname(mddev), mddev->pers->name);
975 	return 1;
976 }
977 EXPORT_SYMBOL(md_check_no_bitmap);
978 
979 /*
980  * load_super for 0.90.0
981  */
982 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
983 {
984 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
985 	mdp_super_t *sb;
986 	int ret;
987 
988 	/*
989 	 * Calculate the position of the superblock (512byte sectors),
990 	 * it's at the end of the disk.
991 	 *
992 	 * It also happens to be a multiple of 4Kb.
993 	 */
994 	rdev->sb_start = calc_dev_sboffset(rdev);
995 
996 	ret = read_disk_sb(rdev, MD_SB_BYTES);
997 	if (ret) return ret;
998 
999 	ret = -EINVAL;
1000 
1001 	bdevname(rdev->bdev, b);
1002 	sb = page_address(rdev->sb_page);
1003 
1004 	if (sb->md_magic != MD_SB_MAGIC) {
1005 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1006 		       b);
1007 		goto abort;
1008 	}
1009 
1010 	if (sb->major_version != 0 ||
1011 	    sb->minor_version < 90 ||
1012 	    sb->minor_version > 91) {
1013 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1014 			sb->major_version, sb->minor_version,
1015 			b);
1016 		goto abort;
1017 	}
1018 
1019 	if (sb->raid_disks <= 0)
1020 		goto abort;
1021 
1022 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1023 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1024 			b);
1025 		goto abort;
1026 	}
1027 
1028 	rdev->preferred_minor = sb->md_minor;
1029 	rdev->data_offset = 0;
1030 	rdev->new_data_offset = 0;
1031 	rdev->sb_size = MD_SB_BYTES;
1032 	rdev->badblocks.shift = -1;
1033 
1034 	if (sb->level == LEVEL_MULTIPATH)
1035 		rdev->desc_nr = -1;
1036 	else
1037 		rdev->desc_nr = sb->this_disk.number;
1038 
1039 	if (!refdev) {
1040 		ret = 1;
1041 	} else {
1042 		__u64 ev1, ev2;
1043 		mdp_super_t *refsb = page_address(refdev->sb_page);
1044 		if (!uuid_equal(refsb, sb)) {
1045 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1046 				b, bdevname(refdev->bdev,b2));
1047 			goto abort;
1048 		}
1049 		if (!sb_equal(refsb, sb)) {
1050 			printk(KERN_WARNING "md: %s has same UUID"
1051 			       " but different superblock to %s\n",
1052 			       b, bdevname(refdev->bdev, b2));
1053 			goto abort;
1054 		}
1055 		ev1 = md_event(sb);
1056 		ev2 = md_event(refsb);
1057 		if (ev1 > ev2)
1058 			ret = 1;
1059 		else
1060 			ret = 0;
1061 	}
1062 	rdev->sectors = rdev->sb_start;
1063 	/* Limit to 4TB as metadata cannot record more than that.
1064 	 * (not needed for Linear and RAID0 as metadata doesn't
1065 	 * record this size)
1066 	 */
1067 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1068 		rdev->sectors = (2ULL << 32) - 2;
1069 
1070 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1071 		/* "this cannot possibly happen" ... */
1072 		ret = -EINVAL;
1073 
1074  abort:
1075 	return ret;
1076 }
1077 
1078 /*
1079  * validate_super for 0.90.0
1080  */
1081 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1082 {
1083 	mdp_disk_t *desc;
1084 	mdp_super_t *sb = page_address(rdev->sb_page);
1085 	__u64 ev1 = md_event(sb);
1086 
1087 	rdev->raid_disk = -1;
1088 	clear_bit(Faulty, &rdev->flags);
1089 	clear_bit(In_sync, &rdev->flags);
1090 	clear_bit(WriteMostly, &rdev->flags);
1091 
1092 	if (mddev->raid_disks == 0) {
1093 		mddev->major_version = 0;
1094 		mddev->minor_version = sb->minor_version;
1095 		mddev->patch_version = sb->patch_version;
1096 		mddev->external = 0;
1097 		mddev->chunk_sectors = sb->chunk_size >> 9;
1098 		mddev->ctime = sb->ctime;
1099 		mddev->utime = sb->utime;
1100 		mddev->level = sb->level;
1101 		mddev->clevel[0] = 0;
1102 		mddev->layout = sb->layout;
1103 		mddev->raid_disks = sb->raid_disks;
1104 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1105 		mddev->events = ev1;
1106 		mddev->bitmap_info.offset = 0;
1107 		mddev->bitmap_info.space = 0;
1108 		/* bitmap can use 60 K after the 4K superblocks */
1109 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1110 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1111 		mddev->reshape_backwards = 0;
1112 
1113 		if (mddev->minor_version >= 91) {
1114 			mddev->reshape_position = sb->reshape_position;
1115 			mddev->delta_disks = sb->delta_disks;
1116 			mddev->new_level = sb->new_level;
1117 			mddev->new_layout = sb->new_layout;
1118 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1119 			if (mddev->delta_disks < 0)
1120 				mddev->reshape_backwards = 1;
1121 		} else {
1122 			mddev->reshape_position = MaxSector;
1123 			mddev->delta_disks = 0;
1124 			mddev->new_level = mddev->level;
1125 			mddev->new_layout = mddev->layout;
1126 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1127 		}
1128 
1129 		if (sb->state & (1<<MD_SB_CLEAN))
1130 			mddev->recovery_cp = MaxSector;
1131 		else {
1132 			if (sb->events_hi == sb->cp_events_hi &&
1133 				sb->events_lo == sb->cp_events_lo) {
1134 				mddev->recovery_cp = sb->recovery_cp;
1135 			} else
1136 				mddev->recovery_cp = 0;
1137 		}
1138 
1139 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1140 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1141 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1142 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1143 
1144 		mddev->max_disks = MD_SB_DISKS;
1145 
1146 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1147 		    mddev->bitmap_info.file == NULL) {
1148 			mddev->bitmap_info.offset =
1149 				mddev->bitmap_info.default_offset;
1150 			mddev->bitmap_info.space =
1151 				mddev->bitmap_info.default_space;
1152 		}
1153 
1154 	} else if (mddev->pers == NULL) {
1155 		/* Insist on good event counter while assembling, except
1156 		 * for spares (which don't need an event count) */
1157 		++ev1;
1158 		if (sb->disks[rdev->desc_nr].state & (
1159 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1160 			if (ev1 < mddev->events)
1161 				return -EINVAL;
1162 	} else if (mddev->bitmap) {
1163 		/* if adding to array with a bitmap, then we can accept an
1164 		 * older device ... but not too old.
1165 		 */
1166 		if (ev1 < mddev->bitmap->events_cleared)
1167 			return 0;
1168 	} else {
1169 		if (ev1 < mddev->events)
1170 			/* just a hot-add of a new device, leave raid_disk at -1 */
1171 			return 0;
1172 	}
1173 
1174 	if (mddev->level != LEVEL_MULTIPATH) {
1175 		desc = sb->disks + rdev->desc_nr;
1176 
1177 		if (desc->state & (1<<MD_DISK_FAULTY))
1178 			set_bit(Faulty, &rdev->flags);
1179 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1180 			    desc->raid_disk < mddev->raid_disks */) {
1181 			set_bit(In_sync, &rdev->flags);
1182 			rdev->raid_disk = desc->raid_disk;
1183 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1184 			/* active but not in sync implies recovery up to
1185 			 * reshape position.  We don't know exactly where
1186 			 * that is, so set to zero for now */
1187 			if (mddev->minor_version >= 91) {
1188 				rdev->recovery_offset = 0;
1189 				rdev->raid_disk = desc->raid_disk;
1190 			}
1191 		}
1192 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1193 			set_bit(WriteMostly, &rdev->flags);
1194 	} else /* MULTIPATH are always insync */
1195 		set_bit(In_sync, &rdev->flags);
1196 	return 0;
1197 }
1198 
1199 /*
1200  * sync_super for 0.90.0
1201  */
1202 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1203 {
1204 	mdp_super_t *sb;
1205 	struct md_rdev *rdev2;
1206 	int next_spare = mddev->raid_disks;
1207 
1208 
1209 	/* make rdev->sb match mddev data..
1210 	 *
1211 	 * 1/ zero out disks
1212 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1213 	 * 3/ any empty disks < next_spare become removed
1214 	 *
1215 	 * disks[0] gets initialised to REMOVED because
1216 	 * we cannot be sure from other fields if it has
1217 	 * been initialised or not.
1218 	 */
1219 	int i;
1220 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1221 
1222 	rdev->sb_size = MD_SB_BYTES;
1223 
1224 	sb = page_address(rdev->sb_page);
1225 
1226 	memset(sb, 0, sizeof(*sb));
1227 
1228 	sb->md_magic = MD_SB_MAGIC;
1229 	sb->major_version = mddev->major_version;
1230 	sb->patch_version = mddev->patch_version;
1231 	sb->gvalid_words  = 0; /* ignored */
1232 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1233 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1234 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1235 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1236 
1237 	sb->ctime = mddev->ctime;
1238 	sb->level = mddev->level;
1239 	sb->size = mddev->dev_sectors / 2;
1240 	sb->raid_disks = mddev->raid_disks;
1241 	sb->md_minor = mddev->md_minor;
1242 	sb->not_persistent = 0;
1243 	sb->utime = mddev->utime;
1244 	sb->state = 0;
1245 	sb->events_hi = (mddev->events>>32);
1246 	sb->events_lo = (u32)mddev->events;
1247 
1248 	if (mddev->reshape_position == MaxSector)
1249 		sb->minor_version = 90;
1250 	else {
1251 		sb->minor_version = 91;
1252 		sb->reshape_position = mddev->reshape_position;
1253 		sb->new_level = mddev->new_level;
1254 		sb->delta_disks = mddev->delta_disks;
1255 		sb->new_layout = mddev->new_layout;
1256 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1257 	}
1258 	mddev->minor_version = sb->minor_version;
1259 	if (mddev->in_sync)
1260 	{
1261 		sb->recovery_cp = mddev->recovery_cp;
1262 		sb->cp_events_hi = (mddev->events>>32);
1263 		sb->cp_events_lo = (u32)mddev->events;
1264 		if (mddev->recovery_cp == MaxSector)
1265 			sb->state = (1<< MD_SB_CLEAN);
1266 	} else
1267 		sb->recovery_cp = 0;
1268 
1269 	sb->layout = mddev->layout;
1270 	sb->chunk_size = mddev->chunk_sectors << 9;
1271 
1272 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1273 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1274 
1275 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1276 	rdev_for_each(rdev2, mddev) {
1277 		mdp_disk_t *d;
1278 		int desc_nr;
1279 		int is_active = test_bit(In_sync, &rdev2->flags);
1280 
1281 		if (rdev2->raid_disk >= 0 &&
1282 		    sb->minor_version >= 91)
1283 			/* we have nowhere to store the recovery_offset,
1284 			 * but if it is not below the reshape_position,
1285 			 * we can piggy-back on that.
1286 			 */
1287 			is_active = 1;
1288 		if (rdev2->raid_disk < 0 ||
1289 		    test_bit(Faulty, &rdev2->flags))
1290 			is_active = 0;
1291 		if (is_active)
1292 			desc_nr = rdev2->raid_disk;
1293 		else
1294 			desc_nr = next_spare++;
1295 		rdev2->desc_nr = desc_nr;
1296 		d = &sb->disks[rdev2->desc_nr];
1297 		nr_disks++;
1298 		d->number = rdev2->desc_nr;
1299 		d->major = MAJOR(rdev2->bdev->bd_dev);
1300 		d->minor = MINOR(rdev2->bdev->bd_dev);
1301 		if (is_active)
1302 			d->raid_disk = rdev2->raid_disk;
1303 		else
1304 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1305 		if (test_bit(Faulty, &rdev2->flags))
1306 			d->state = (1<<MD_DISK_FAULTY);
1307 		else if (is_active) {
1308 			d->state = (1<<MD_DISK_ACTIVE);
1309 			if (test_bit(In_sync, &rdev2->flags))
1310 				d->state |= (1<<MD_DISK_SYNC);
1311 			active++;
1312 			working++;
1313 		} else {
1314 			d->state = 0;
1315 			spare++;
1316 			working++;
1317 		}
1318 		if (test_bit(WriteMostly, &rdev2->flags))
1319 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1320 	}
1321 	/* now set the "removed" and "faulty" bits on any missing devices */
1322 	for (i=0 ; i < mddev->raid_disks ; i++) {
1323 		mdp_disk_t *d = &sb->disks[i];
1324 		if (d->state == 0 && d->number == 0) {
1325 			d->number = i;
1326 			d->raid_disk = i;
1327 			d->state = (1<<MD_DISK_REMOVED);
1328 			d->state |= (1<<MD_DISK_FAULTY);
1329 			failed++;
1330 		}
1331 	}
1332 	sb->nr_disks = nr_disks;
1333 	sb->active_disks = active;
1334 	sb->working_disks = working;
1335 	sb->failed_disks = failed;
1336 	sb->spare_disks = spare;
1337 
1338 	sb->this_disk = sb->disks[rdev->desc_nr];
1339 	sb->sb_csum = calc_sb_csum(sb);
1340 }
1341 
1342 /*
1343  * rdev_size_change for 0.90.0
1344  */
1345 static unsigned long long
1346 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1347 {
1348 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1349 		return 0; /* component must fit device */
1350 	if (rdev->mddev->bitmap_info.offset)
1351 		return 0; /* can't move bitmap */
1352 	rdev->sb_start = calc_dev_sboffset(rdev);
1353 	if (!num_sectors || num_sectors > rdev->sb_start)
1354 		num_sectors = rdev->sb_start;
1355 	/* Limit to 4TB as metadata cannot record more than that.
1356 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1357 	 */
1358 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1359 		num_sectors = (2ULL << 32) - 2;
1360 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1361 		       rdev->sb_page);
1362 	md_super_wait(rdev->mddev);
1363 	return num_sectors;
1364 }
1365 
1366 static int
1367 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1368 {
1369 	/* non-zero offset changes not possible with v0.90 */
1370 	return new_offset == 0;
1371 }
1372 
1373 /*
1374  * version 1 superblock
1375  */
1376 
1377 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1378 {
1379 	__le32 disk_csum;
1380 	u32 csum;
1381 	unsigned long long newcsum;
1382 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1383 	__le32 *isuper = (__le32*)sb;
1384 
1385 	disk_csum = sb->sb_csum;
1386 	sb->sb_csum = 0;
1387 	newcsum = 0;
1388 	for (; size >= 4; size -= 4)
1389 		newcsum += le32_to_cpu(*isuper++);
1390 
1391 	if (size == 2)
1392 		newcsum += le16_to_cpu(*(__le16*) isuper);
1393 
1394 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1395 	sb->sb_csum = disk_csum;
1396 	return cpu_to_le32(csum);
1397 }
1398 
1399 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1400 			    int acknowledged);
1401 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1402 {
1403 	struct mdp_superblock_1 *sb;
1404 	int ret;
1405 	sector_t sb_start;
1406 	sector_t sectors;
1407 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1408 	int bmask;
1409 
1410 	/*
1411 	 * Calculate the position of the superblock in 512byte sectors.
1412 	 * It is always aligned to a 4K boundary and
1413 	 * depeding on minor_version, it can be:
1414 	 * 0: At least 8K, but less than 12K, from end of device
1415 	 * 1: At start of device
1416 	 * 2: 4K from start of device.
1417 	 */
1418 	switch(minor_version) {
1419 	case 0:
1420 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1421 		sb_start -= 8*2;
1422 		sb_start &= ~(sector_t)(4*2-1);
1423 		break;
1424 	case 1:
1425 		sb_start = 0;
1426 		break;
1427 	case 2:
1428 		sb_start = 8;
1429 		break;
1430 	default:
1431 		return -EINVAL;
1432 	}
1433 	rdev->sb_start = sb_start;
1434 
1435 	/* superblock is rarely larger than 1K, but it can be larger,
1436 	 * and it is safe to read 4k, so we do that
1437 	 */
1438 	ret = read_disk_sb(rdev, 4096);
1439 	if (ret) return ret;
1440 
1441 
1442 	sb = page_address(rdev->sb_page);
1443 
1444 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1445 	    sb->major_version != cpu_to_le32(1) ||
1446 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1447 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1448 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1449 		return -EINVAL;
1450 
1451 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1452 		printk("md: invalid superblock checksum on %s\n",
1453 			bdevname(rdev->bdev,b));
1454 		return -EINVAL;
1455 	}
1456 	if (le64_to_cpu(sb->data_size) < 10) {
1457 		printk("md: data_size too small on %s\n",
1458 		       bdevname(rdev->bdev,b));
1459 		return -EINVAL;
1460 	}
1461 	if (sb->pad0 ||
1462 	    sb->pad3[0] ||
1463 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1464 		/* Some padding is non-zero, might be a new feature */
1465 		return -EINVAL;
1466 
1467 	rdev->preferred_minor = 0xffff;
1468 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1469 	rdev->new_data_offset = rdev->data_offset;
1470 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1471 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1472 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1473 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1474 
1475 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1476 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1477 	if (rdev->sb_size & bmask)
1478 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1479 
1480 	if (minor_version
1481 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1482 		return -EINVAL;
1483 	if (minor_version
1484 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1485 		return -EINVAL;
1486 
1487 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1488 		rdev->desc_nr = -1;
1489 	else
1490 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1491 
1492 	if (!rdev->bb_page) {
1493 		rdev->bb_page = alloc_page(GFP_KERNEL);
1494 		if (!rdev->bb_page)
1495 			return -ENOMEM;
1496 	}
1497 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1498 	    rdev->badblocks.count == 0) {
1499 		/* need to load the bad block list.
1500 		 * Currently we limit it to one page.
1501 		 */
1502 		s32 offset;
1503 		sector_t bb_sector;
1504 		u64 *bbp;
1505 		int i;
1506 		int sectors = le16_to_cpu(sb->bblog_size);
1507 		if (sectors > (PAGE_SIZE / 512))
1508 			return -EINVAL;
1509 		offset = le32_to_cpu(sb->bblog_offset);
1510 		if (offset == 0)
1511 			return -EINVAL;
1512 		bb_sector = (long long)offset;
1513 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1514 				  rdev->bb_page, READ, true))
1515 			return -EIO;
1516 		bbp = (u64 *)page_address(rdev->bb_page);
1517 		rdev->badblocks.shift = sb->bblog_shift;
1518 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1519 			u64 bb = le64_to_cpu(*bbp);
1520 			int count = bb & (0x3ff);
1521 			u64 sector = bb >> 10;
1522 			sector <<= sb->bblog_shift;
1523 			count <<= sb->bblog_shift;
1524 			if (bb + 1 == 0)
1525 				break;
1526 			if (md_set_badblocks(&rdev->badblocks,
1527 					     sector, count, 1) == 0)
1528 				return -EINVAL;
1529 		}
1530 	} else if (sb->bblog_offset != 0)
1531 		rdev->badblocks.shift = 0;
1532 
1533 	if (!refdev) {
1534 		ret = 1;
1535 	} else {
1536 		__u64 ev1, ev2;
1537 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1538 
1539 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1540 		    sb->level != refsb->level ||
1541 		    sb->layout != refsb->layout ||
1542 		    sb->chunksize != refsb->chunksize) {
1543 			printk(KERN_WARNING "md: %s has strangely different"
1544 				" superblock to %s\n",
1545 				bdevname(rdev->bdev,b),
1546 				bdevname(refdev->bdev,b2));
1547 			return -EINVAL;
1548 		}
1549 		ev1 = le64_to_cpu(sb->events);
1550 		ev2 = le64_to_cpu(refsb->events);
1551 
1552 		if (ev1 > ev2)
1553 			ret = 1;
1554 		else
1555 			ret = 0;
1556 	}
1557 	if (minor_version) {
1558 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1559 		sectors -= rdev->data_offset;
1560 	} else
1561 		sectors = rdev->sb_start;
1562 	if (sectors < le64_to_cpu(sb->data_size))
1563 		return -EINVAL;
1564 	rdev->sectors = le64_to_cpu(sb->data_size);
1565 	return ret;
1566 }
1567 
1568 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1569 {
1570 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1571 	__u64 ev1 = le64_to_cpu(sb->events);
1572 
1573 	rdev->raid_disk = -1;
1574 	clear_bit(Faulty, &rdev->flags);
1575 	clear_bit(In_sync, &rdev->flags);
1576 	clear_bit(WriteMostly, &rdev->flags);
1577 
1578 	if (mddev->raid_disks == 0) {
1579 		mddev->major_version = 1;
1580 		mddev->patch_version = 0;
1581 		mddev->external = 0;
1582 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1583 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1584 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1585 		mddev->level = le32_to_cpu(sb->level);
1586 		mddev->clevel[0] = 0;
1587 		mddev->layout = le32_to_cpu(sb->layout);
1588 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1589 		mddev->dev_sectors = le64_to_cpu(sb->size);
1590 		mddev->events = ev1;
1591 		mddev->bitmap_info.offset = 0;
1592 		mddev->bitmap_info.space = 0;
1593 		/* Default location for bitmap is 1K after superblock
1594 		 * using 3K - total of 4K
1595 		 */
1596 		mddev->bitmap_info.default_offset = 1024 >> 9;
1597 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1598 		mddev->reshape_backwards = 0;
1599 
1600 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1601 		memcpy(mddev->uuid, sb->set_uuid, 16);
1602 
1603 		mddev->max_disks =  (4096-256)/2;
1604 
1605 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1606 		    mddev->bitmap_info.file == NULL) {
1607 			mddev->bitmap_info.offset =
1608 				(__s32)le32_to_cpu(sb->bitmap_offset);
1609 			/* Metadata doesn't record how much space is available.
1610 			 * For 1.0, we assume we can use up to the superblock
1611 			 * if before, else to 4K beyond superblock.
1612 			 * For others, assume no change is possible.
1613 			 */
1614 			if (mddev->minor_version > 0)
1615 				mddev->bitmap_info.space = 0;
1616 			else if (mddev->bitmap_info.offset > 0)
1617 				mddev->bitmap_info.space =
1618 					8 - mddev->bitmap_info.offset;
1619 			else
1620 				mddev->bitmap_info.space =
1621 					-mddev->bitmap_info.offset;
1622 		}
1623 
1624 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1625 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1626 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1627 			mddev->new_level = le32_to_cpu(sb->new_level);
1628 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1629 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1630 			if (mddev->delta_disks < 0 ||
1631 			    (mddev->delta_disks == 0 &&
1632 			     (le32_to_cpu(sb->feature_map)
1633 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1634 				mddev->reshape_backwards = 1;
1635 		} else {
1636 			mddev->reshape_position = MaxSector;
1637 			mddev->delta_disks = 0;
1638 			mddev->new_level = mddev->level;
1639 			mddev->new_layout = mddev->layout;
1640 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1641 		}
1642 
1643 	} else if (mddev->pers == NULL) {
1644 		/* Insist of good event counter while assembling, except for
1645 		 * spares (which don't need an event count) */
1646 		++ev1;
1647 		if (rdev->desc_nr >= 0 &&
1648 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1649 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1650 			if (ev1 < mddev->events)
1651 				return -EINVAL;
1652 	} else if (mddev->bitmap) {
1653 		/* If adding to array with a bitmap, then we can accept an
1654 		 * older device, but not too old.
1655 		 */
1656 		if (ev1 < mddev->bitmap->events_cleared)
1657 			return 0;
1658 	} else {
1659 		if (ev1 < mddev->events)
1660 			/* just a hot-add of a new device, leave raid_disk at -1 */
1661 			return 0;
1662 	}
1663 	if (mddev->level != LEVEL_MULTIPATH) {
1664 		int role;
1665 		if (rdev->desc_nr < 0 ||
1666 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1667 			role = 0xffff;
1668 			rdev->desc_nr = -1;
1669 		} else
1670 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1671 		switch(role) {
1672 		case 0xffff: /* spare */
1673 			break;
1674 		case 0xfffe: /* faulty */
1675 			set_bit(Faulty, &rdev->flags);
1676 			break;
1677 		default:
1678 			if ((le32_to_cpu(sb->feature_map) &
1679 			     MD_FEATURE_RECOVERY_OFFSET))
1680 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1681 			else
1682 				set_bit(In_sync, &rdev->flags);
1683 			rdev->raid_disk = role;
1684 			break;
1685 		}
1686 		if (sb->devflags & WriteMostly1)
1687 			set_bit(WriteMostly, &rdev->flags);
1688 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1689 			set_bit(Replacement, &rdev->flags);
1690 	} else /* MULTIPATH are always insync */
1691 		set_bit(In_sync, &rdev->flags);
1692 
1693 	return 0;
1694 }
1695 
1696 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1697 {
1698 	struct mdp_superblock_1 *sb;
1699 	struct md_rdev *rdev2;
1700 	int max_dev, i;
1701 	/* make rdev->sb match mddev and rdev data. */
1702 
1703 	sb = page_address(rdev->sb_page);
1704 
1705 	sb->feature_map = 0;
1706 	sb->pad0 = 0;
1707 	sb->recovery_offset = cpu_to_le64(0);
1708 	memset(sb->pad3, 0, sizeof(sb->pad3));
1709 
1710 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1711 	sb->events = cpu_to_le64(mddev->events);
1712 	if (mddev->in_sync)
1713 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1714 	else
1715 		sb->resync_offset = cpu_to_le64(0);
1716 
1717 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1718 
1719 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1720 	sb->size = cpu_to_le64(mddev->dev_sectors);
1721 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1722 	sb->level = cpu_to_le32(mddev->level);
1723 	sb->layout = cpu_to_le32(mddev->layout);
1724 
1725 	if (test_bit(WriteMostly, &rdev->flags))
1726 		sb->devflags |= WriteMostly1;
1727 	else
1728 		sb->devflags &= ~WriteMostly1;
1729 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1730 	sb->data_size = cpu_to_le64(rdev->sectors);
1731 
1732 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1733 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1734 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1735 	}
1736 
1737 	if (rdev->raid_disk >= 0 &&
1738 	    !test_bit(In_sync, &rdev->flags)) {
1739 		sb->feature_map |=
1740 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1741 		sb->recovery_offset =
1742 			cpu_to_le64(rdev->recovery_offset);
1743 	}
1744 	if (test_bit(Replacement, &rdev->flags))
1745 		sb->feature_map |=
1746 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1747 
1748 	if (mddev->reshape_position != MaxSector) {
1749 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1750 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1751 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1752 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1753 		sb->new_level = cpu_to_le32(mddev->new_level);
1754 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1755 		if (mddev->delta_disks == 0 &&
1756 		    mddev->reshape_backwards)
1757 			sb->feature_map
1758 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1759 		if (rdev->new_data_offset != rdev->data_offset) {
1760 			sb->feature_map
1761 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1762 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1763 							     - rdev->data_offset));
1764 		}
1765 	}
1766 
1767 	if (rdev->badblocks.count == 0)
1768 		/* Nothing to do for bad blocks*/ ;
1769 	else if (sb->bblog_offset == 0)
1770 		/* Cannot record bad blocks on this device */
1771 		md_error(mddev, rdev);
1772 	else {
1773 		struct badblocks *bb = &rdev->badblocks;
1774 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1775 		u64 *p = bb->page;
1776 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1777 		if (bb->changed) {
1778 			unsigned seq;
1779 
1780 retry:
1781 			seq = read_seqbegin(&bb->lock);
1782 
1783 			memset(bbp, 0xff, PAGE_SIZE);
1784 
1785 			for (i = 0 ; i < bb->count ; i++) {
1786 				u64 internal_bb = p[i];
1787 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1788 						| BB_LEN(internal_bb));
1789 				bbp[i] = cpu_to_le64(store_bb);
1790 			}
1791 			bb->changed = 0;
1792 			if (read_seqretry(&bb->lock, seq))
1793 				goto retry;
1794 
1795 			bb->sector = (rdev->sb_start +
1796 				      (int)le32_to_cpu(sb->bblog_offset));
1797 			bb->size = le16_to_cpu(sb->bblog_size);
1798 		}
1799 	}
1800 
1801 	max_dev = 0;
1802 	rdev_for_each(rdev2, mddev)
1803 		if (rdev2->desc_nr+1 > max_dev)
1804 			max_dev = rdev2->desc_nr+1;
1805 
1806 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1807 		int bmask;
1808 		sb->max_dev = cpu_to_le32(max_dev);
1809 		rdev->sb_size = max_dev * 2 + 256;
1810 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1811 		if (rdev->sb_size & bmask)
1812 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1813 	} else
1814 		max_dev = le32_to_cpu(sb->max_dev);
1815 
1816 	for (i=0; i<max_dev;i++)
1817 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1818 
1819 	rdev_for_each(rdev2, mddev) {
1820 		i = rdev2->desc_nr;
1821 		if (test_bit(Faulty, &rdev2->flags))
1822 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1823 		else if (test_bit(In_sync, &rdev2->flags))
1824 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1825 		else if (rdev2->raid_disk >= 0)
1826 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1827 		else
1828 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1829 	}
1830 
1831 	sb->sb_csum = calc_sb_1_csum(sb);
1832 }
1833 
1834 static unsigned long long
1835 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1836 {
1837 	struct mdp_superblock_1 *sb;
1838 	sector_t max_sectors;
1839 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1840 		return 0; /* component must fit device */
1841 	if (rdev->data_offset != rdev->new_data_offset)
1842 		return 0; /* too confusing */
1843 	if (rdev->sb_start < rdev->data_offset) {
1844 		/* minor versions 1 and 2; superblock before data */
1845 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1846 		max_sectors -= rdev->data_offset;
1847 		if (!num_sectors || num_sectors > max_sectors)
1848 			num_sectors = max_sectors;
1849 	} else if (rdev->mddev->bitmap_info.offset) {
1850 		/* minor version 0 with bitmap we can't move */
1851 		return 0;
1852 	} else {
1853 		/* minor version 0; superblock after data */
1854 		sector_t sb_start;
1855 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1856 		sb_start &= ~(sector_t)(4*2 - 1);
1857 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1858 		if (!num_sectors || num_sectors > max_sectors)
1859 			num_sectors = max_sectors;
1860 		rdev->sb_start = sb_start;
1861 	}
1862 	sb = page_address(rdev->sb_page);
1863 	sb->data_size = cpu_to_le64(num_sectors);
1864 	sb->super_offset = rdev->sb_start;
1865 	sb->sb_csum = calc_sb_1_csum(sb);
1866 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1867 		       rdev->sb_page);
1868 	md_super_wait(rdev->mddev);
1869 	return num_sectors;
1870 
1871 }
1872 
1873 static int
1874 super_1_allow_new_offset(struct md_rdev *rdev,
1875 			 unsigned long long new_offset)
1876 {
1877 	/* All necessary checks on new >= old have been done */
1878 	struct bitmap *bitmap;
1879 	if (new_offset >= rdev->data_offset)
1880 		return 1;
1881 
1882 	/* with 1.0 metadata, there is no metadata to tread on
1883 	 * so we can always move back */
1884 	if (rdev->mddev->minor_version == 0)
1885 		return 1;
1886 
1887 	/* otherwise we must be sure not to step on
1888 	 * any metadata, so stay:
1889 	 * 36K beyond start of superblock
1890 	 * beyond end of badblocks
1891 	 * beyond write-intent bitmap
1892 	 */
1893 	if (rdev->sb_start + (32+4)*2 > new_offset)
1894 		return 0;
1895 	bitmap = rdev->mddev->bitmap;
1896 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1897 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1898 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1899 		return 0;
1900 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1901 		return 0;
1902 
1903 	return 1;
1904 }
1905 
1906 static struct super_type super_types[] = {
1907 	[0] = {
1908 		.name	= "0.90.0",
1909 		.owner	= THIS_MODULE,
1910 		.load_super	    = super_90_load,
1911 		.validate_super	    = super_90_validate,
1912 		.sync_super	    = super_90_sync,
1913 		.rdev_size_change   = super_90_rdev_size_change,
1914 		.allow_new_offset   = super_90_allow_new_offset,
1915 	},
1916 	[1] = {
1917 		.name	= "md-1",
1918 		.owner	= THIS_MODULE,
1919 		.load_super	    = super_1_load,
1920 		.validate_super	    = super_1_validate,
1921 		.sync_super	    = super_1_sync,
1922 		.rdev_size_change   = super_1_rdev_size_change,
1923 		.allow_new_offset   = super_1_allow_new_offset,
1924 	},
1925 };
1926 
1927 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1928 {
1929 	if (mddev->sync_super) {
1930 		mddev->sync_super(mddev, rdev);
1931 		return;
1932 	}
1933 
1934 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1935 
1936 	super_types[mddev->major_version].sync_super(mddev, rdev);
1937 }
1938 
1939 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1940 {
1941 	struct md_rdev *rdev, *rdev2;
1942 
1943 	rcu_read_lock();
1944 	rdev_for_each_rcu(rdev, mddev1)
1945 		rdev_for_each_rcu(rdev2, mddev2)
1946 			if (rdev->bdev->bd_contains ==
1947 			    rdev2->bdev->bd_contains) {
1948 				rcu_read_unlock();
1949 				return 1;
1950 			}
1951 	rcu_read_unlock();
1952 	return 0;
1953 }
1954 
1955 static LIST_HEAD(pending_raid_disks);
1956 
1957 /*
1958  * Try to register data integrity profile for an mddev
1959  *
1960  * This is called when an array is started and after a disk has been kicked
1961  * from the array. It only succeeds if all working and active component devices
1962  * are integrity capable with matching profiles.
1963  */
1964 int md_integrity_register(struct mddev *mddev)
1965 {
1966 	struct md_rdev *rdev, *reference = NULL;
1967 
1968 	if (list_empty(&mddev->disks))
1969 		return 0; /* nothing to do */
1970 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1971 		return 0; /* shouldn't register, or already is */
1972 	rdev_for_each(rdev, mddev) {
1973 		/* skip spares and non-functional disks */
1974 		if (test_bit(Faulty, &rdev->flags))
1975 			continue;
1976 		if (rdev->raid_disk < 0)
1977 			continue;
1978 		if (!reference) {
1979 			/* Use the first rdev as the reference */
1980 			reference = rdev;
1981 			continue;
1982 		}
1983 		/* does this rdev's profile match the reference profile? */
1984 		if (blk_integrity_compare(reference->bdev->bd_disk,
1985 				rdev->bdev->bd_disk) < 0)
1986 			return -EINVAL;
1987 	}
1988 	if (!reference || !bdev_get_integrity(reference->bdev))
1989 		return 0;
1990 	/*
1991 	 * All component devices are integrity capable and have matching
1992 	 * profiles, register the common profile for the md device.
1993 	 */
1994 	if (blk_integrity_register(mddev->gendisk,
1995 			bdev_get_integrity(reference->bdev)) != 0) {
1996 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1997 			mdname(mddev));
1998 		return -EINVAL;
1999 	}
2000 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2001 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2002 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2003 		       mdname(mddev));
2004 		return -EINVAL;
2005 	}
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL(md_integrity_register);
2009 
2010 /* Disable data integrity if non-capable/non-matching disk is being added */
2011 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2012 {
2013 	struct blk_integrity *bi_rdev;
2014 	struct blk_integrity *bi_mddev;
2015 
2016 	if (!mddev->gendisk)
2017 		return;
2018 
2019 	bi_rdev = bdev_get_integrity(rdev->bdev);
2020 	bi_mddev = blk_get_integrity(mddev->gendisk);
2021 
2022 	if (!bi_mddev) /* nothing to do */
2023 		return;
2024 	if (rdev->raid_disk < 0) /* skip spares */
2025 		return;
2026 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2027 					     rdev->bdev->bd_disk) >= 0)
2028 		return;
2029 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2030 	blk_integrity_unregister(mddev->gendisk);
2031 }
2032 EXPORT_SYMBOL(md_integrity_add_rdev);
2033 
2034 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2035 {
2036 	char b[BDEVNAME_SIZE];
2037 	struct kobject *ko;
2038 	char *s;
2039 	int err;
2040 
2041 	if (rdev->mddev) {
2042 		MD_BUG();
2043 		return -EINVAL;
2044 	}
2045 
2046 	/* prevent duplicates */
2047 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2048 		return -EEXIST;
2049 
2050 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2051 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2052 			rdev->sectors < mddev->dev_sectors)) {
2053 		if (mddev->pers) {
2054 			/* Cannot change size, so fail
2055 			 * If mddev->level <= 0, then we don't care
2056 			 * about aligning sizes (e.g. linear)
2057 			 */
2058 			if (mddev->level > 0)
2059 				return -ENOSPC;
2060 		} else
2061 			mddev->dev_sectors = rdev->sectors;
2062 	}
2063 
2064 	/* Verify rdev->desc_nr is unique.
2065 	 * If it is -1, assign a free number, else
2066 	 * check number is not in use
2067 	 */
2068 	if (rdev->desc_nr < 0) {
2069 		int choice = 0;
2070 		if (mddev->pers) choice = mddev->raid_disks;
2071 		while (find_rdev_nr(mddev, choice))
2072 			choice++;
2073 		rdev->desc_nr = choice;
2074 	} else {
2075 		if (find_rdev_nr(mddev, rdev->desc_nr))
2076 			return -EBUSY;
2077 	}
2078 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2079 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2080 		       mdname(mddev), mddev->max_disks);
2081 		return -EBUSY;
2082 	}
2083 	bdevname(rdev->bdev,b);
2084 	while ( (s=strchr(b, '/')) != NULL)
2085 		*s = '!';
2086 
2087 	rdev->mddev = mddev;
2088 	printk(KERN_INFO "md: bind<%s>\n", b);
2089 
2090 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2091 		goto fail;
2092 
2093 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2094 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2095 		/* failure here is OK */;
2096 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2097 
2098 	list_add_rcu(&rdev->same_set, &mddev->disks);
2099 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2100 
2101 	/* May as well allow recovery to be retried once */
2102 	mddev->recovery_disabled++;
2103 
2104 	return 0;
2105 
2106  fail:
2107 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2108 	       b, mdname(mddev));
2109 	return err;
2110 }
2111 
2112 static void md_delayed_delete(struct work_struct *ws)
2113 {
2114 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2115 	kobject_del(&rdev->kobj);
2116 	kobject_put(&rdev->kobj);
2117 }
2118 
2119 static void unbind_rdev_from_array(struct md_rdev * rdev)
2120 {
2121 	char b[BDEVNAME_SIZE];
2122 	if (!rdev->mddev) {
2123 		MD_BUG();
2124 		return;
2125 	}
2126 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2127 	list_del_rcu(&rdev->same_set);
2128 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2129 	rdev->mddev = NULL;
2130 	sysfs_remove_link(&rdev->kobj, "block");
2131 	sysfs_put(rdev->sysfs_state);
2132 	rdev->sysfs_state = NULL;
2133 	rdev->badblocks.count = 0;
2134 	/* We need to delay this, otherwise we can deadlock when
2135 	 * writing to 'remove' to "dev/state".  We also need
2136 	 * to delay it due to rcu usage.
2137 	 */
2138 	synchronize_rcu();
2139 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2140 	kobject_get(&rdev->kobj);
2141 	queue_work(md_misc_wq, &rdev->del_work);
2142 }
2143 
2144 /*
2145  * prevent the device from being mounted, repartitioned or
2146  * otherwise reused by a RAID array (or any other kernel
2147  * subsystem), by bd_claiming the device.
2148  */
2149 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2150 {
2151 	int err = 0;
2152 	struct block_device *bdev;
2153 	char b[BDEVNAME_SIZE];
2154 
2155 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2156 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2157 	if (IS_ERR(bdev)) {
2158 		printk(KERN_ERR "md: could not open %s.\n",
2159 			__bdevname(dev, b));
2160 		return PTR_ERR(bdev);
2161 	}
2162 	rdev->bdev = bdev;
2163 	return err;
2164 }
2165 
2166 static void unlock_rdev(struct md_rdev *rdev)
2167 {
2168 	struct block_device *bdev = rdev->bdev;
2169 	rdev->bdev = NULL;
2170 	if (!bdev)
2171 		MD_BUG();
2172 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2173 }
2174 
2175 void md_autodetect_dev(dev_t dev);
2176 
2177 static void export_rdev(struct md_rdev * rdev)
2178 {
2179 	char b[BDEVNAME_SIZE];
2180 	printk(KERN_INFO "md: export_rdev(%s)\n",
2181 		bdevname(rdev->bdev,b));
2182 	if (rdev->mddev)
2183 		MD_BUG();
2184 	md_rdev_clear(rdev);
2185 #ifndef MODULE
2186 	if (test_bit(AutoDetected, &rdev->flags))
2187 		md_autodetect_dev(rdev->bdev->bd_dev);
2188 #endif
2189 	unlock_rdev(rdev);
2190 	kobject_put(&rdev->kobj);
2191 }
2192 
2193 static void kick_rdev_from_array(struct md_rdev * rdev)
2194 {
2195 	unbind_rdev_from_array(rdev);
2196 	export_rdev(rdev);
2197 }
2198 
2199 static void export_array(struct mddev *mddev)
2200 {
2201 	struct md_rdev *rdev, *tmp;
2202 
2203 	rdev_for_each_safe(rdev, tmp, mddev) {
2204 		if (!rdev->mddev) {
2205 			MD_BUG();
2206 			continue;
2207 		}
2208 		kick_rdev_from_array(rdev);
2209 	}
2210 	if (!list_empty(&mddev->disks))
2211 		MD_BUG();
2212 	mddev->raid_disks = 0;
2213 	mddev->major_version = 0;
2214 }
2215 
2216 static void print_desc(mdp_disk_t *desc)
2217 {
2218 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2219 		desc->major,desc->minor,desc->raid_disk,desc->state);
2220 }
2221 
2222 static void print_sb_90(mdp_super_t *sb)
2223 {
2224 	int i;
2225 
2226 	printk(KERN_INFO
2227 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2228 		sb->major_version, sb->minor_version, sb->patch_version,
2229 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2230 		sb->ctime);
2231 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2232 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2233 		sb->md_minor, sb->layout, sb->chunk_size);
2234 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2235 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2236 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2237 		sb->failed_disks, sb->spare_disks,
2238 		sb->sb_csum, (unsigned long)sb->events_lo);
2239 
2240 	printk(KERN_INFO);
2241 	for (i = 0; i < MD_SB_DISKS; i++) {
2242 		mdp_disk_t *desc;
2243 
2244 		desc = sb->disks + i;
2245 		if (desc->number || desc->major || desc->minor ||
2246 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2247 			printk("     D %2d: ", i);
2248 			print_desc(desc);
2249 		}
2250 	}
2251 	printk(KERN_INFO "md:     THIS: ");
2252 	print_desc(&sb->this_disk);
2253 }
2254 
2255 static void print_sb_1(struct mdp_superblock_1 *sb)
2256 {
2257 	__u8 *uuid;
2258 
2259 	uuid = sb->set_uuid;
2260 	printk(KERN_INFO
2261 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2262 	       "md:    Name: \"%s\" CT:%llu\n",
2263 		le32_to_cpu(sb->major_version),
2264 		le32_to_cpu(sb->feature_map),
2265 		uuid,
2266 		sb->set_name,
2267 		(unsigned long long)le64_to_cpu(sb->ctime)
2268 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2269 
2270 	uuid = sb->device_uuid;
2271 	printk(KERN_INFO
2272 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2273 			" RO:%llu\n"
2274 	       "md:     Dev:%08x UUID: %pU\n"
2275 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2276 	       "md:         (MaxDev:%u) \n",
2277 		le32_to_cpu(sb->level),
2278 		(unsigned long long)le64_to_cpu(sb->size),
2279 		le32_to_cpu(sb->raid_disks),
2280 		le32_to_cpu(sb->layout),
2281 		le32_to_cpu(sb->chunksize),
2282 		(unsigned long long)le64_to_cpu(sb->data_offset),
2283 		(unsigned long long)le64_to_cpu(sb->data_size),
2284 		(unsigned long long)le64_to_cpu(sb->super_offset),
2285 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2286 		le32_to_cpu(sb->dev_number),
2287 		uuid,
2288 		sb->devflags,
2289 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2290 		(unsigned long long)le64_to_cpu(sb->events),
2291 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2292 		le32_to_cpu(sb->sb_csum),
2293 		le32_to_cpu(sb->max_dev)
2294 		);
2295 }
2296 
2297 static void print_rdev(struct md_rdev *rdev, int major_version)
2298 {
2299 	char b[BDEVNAME_SIZE];
2300 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2301 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2302 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2303 	        rdev->desc_nr);
2304 	if (rdev->sb_loaded) {
2305 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2306 		switch (major_version) {
2307 		case 0:
2308 			print_sb_90(page_address(rdev->sb_page));
2309 			break;
2310 		case 1:
2311 			print_sb_1(page_address(rdev->sb_page));
2312 			break;
2313 		}
2314 	} else
2315 		printk(KERN_INFO "md: no rdev superblock!\n");
2316 }
2317 
2318 static void md_print_devices(void)
2319 {
2320 	struct list_head *tmp;
2321 	struct md_rdev *rdev;
2322 	struct mddev *mddev;
2323 	char b[BDEVNAME_SIZE];
2324 
2325 	printk("\n");
2326 	printk("md:	**********************************\n");
2327 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2328 	printk("md:	**********************************\n");
2329 	for_each_mddev(mddev, tmp) {
2330 
2331 		if (mddev->bitmap)
2332 			bitmap_print_sb(mddev->bitmap);
2333 		else
2334 			printk("%s: ", mdname(mddev));
2335 		rdev_for_each(rdev, mddev)
2336 			printk("<%s>", bdevname(rdev->bdev,b));
2337 		printk("\n");
2338 
2339 		rdev_for_each(rdev, mddev)
2340 			print_rdev(rdev, mddev->major_version);
2341 	}
2342 	printk("md:	**********************************\n");
2343 	printk("\n");
2344 }
2345 
2346 
2347 static void sync_sbs(struct mddev * mddev, int nospares)
2348 {
2349 	/* Update each superblock (in-memory image), but
2350 	 * if we are allowed to, skip spares which already
2351 	 * have the right event counter, or have one earlier
2352 	 * (which would mean they aren't being marked as dirty
2353 	 * with the rest of the array)
2354 	 */
2355 	struct md_rdev *rdev;
2356 	rdev_for_each(rdev, mddev) {
2357 		if (rdev->sb_events == mddev->events ||
2358 		    (nospares &&
2359 		     rdev->raid_disk < 0 &&
2360 		     rdev->sb_events+1 == mddev->events)) {
2361 			/* Don't update this superblock */
2362 			rdev->sb_loaded = 2;
2363 		} else {
2364 			sync_super(mddev, rdev);
2365 			rdev->sb_loaded = 1;
2366 		}
2367 	}
2368 }
2369 
2370 static void md_update_sb(struct mddev * mddev, int force_change)
2371 {
2372 	struct md_rdev *rdev;
2373 	int sync_req;
2374 	int nospares = 0;
2375 	int any_badblocks_changed = 0;
2376 
2377 	if (mddev->ro) {
2378 		if (force_change)
2379 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2380 		return;
2381 	}
2382 repeat:
2383 	/* First make sure individual recovery_offsets are correct */
2384 	rdev_for_each(rdev, mddev) {
2385 		if (rdev->raid_disk >= 0 &&
2386 		    mddev->delta_disks >= 0 &&
2387 		    !test_bit(In_sync, &rdev->flags) &&
2388 		    mddev->curr_resync_completed > rdev->recovery_offset)
2389 				rdev->recovery_offset = mddev->curr_resync_completed;
2390 
2391 	}
2392 	if (!mddev->persistent) {
2393 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2394 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2395 		if (!mddev->external) {
2396 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2397 			rdev_for_each(rdev, mddev) {
2398 				if (rdev->badblocks.changed) {
2399 					rdev->badblocks.changed = 0;
2400 					md_ack_all_badblocks(&rdev->badblocks);
2401 					md_error(mddev, rdev);
2402 				}
2403 				clear_bit(Blocked, &rdev->flags);
2404 				clear_bit(BlockedBadBlocks, &rdev->flags);
2405 				wake_up(&rdev->blocked_wait);
2406 			}
2407 		}
2408 		wake_up(&mddev->sb_wait);
2409 		return;
2410 	}
2411 
2412 	spin_lock_irq(&mddev->write_lock);
2413 
2414 	mddev->utime = get_seconds();
2415 
2416 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2417 		force_change = 1;
2418 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2419 		/* just a clean<-> dirty transition, possibly leave spares alone,
2420 		 * though if events isn't the right even/odd, we will have to do
2421 		 * spares after all
2422 		 */
2423 		nospares = 1;
2424 	if (force_change)
2425 		nospares = 0;
2426 	if (mddev->degraded)
2427 		/* If the array is degraded, then skipping spares is both
2428 		 * dangerous and fairly pointless.
2429 		 * Dangerous because a device that was removed from the array
2430 		 * might have a event_count that still looks up-to-date,
2431 		 * so it can be re-added without a resync.
2432 		 * Pointless because if there are any spares to skip,
2433 		 * then a recovery will happen and soon that array won't
2434 		 * be degraded any more and the spare can go back to sleep then.
2435 		 */
2436 		nospares = 0;
2437 
2438 	sync_req = mddev->in_sync;
2439 
2440 	/* If this is just a dirty<->clean transition, and the array is clean
2441 	 * and 'events' is odd, we can roll back to the previous clean state */
2442 	if (nospares
2443 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2444 	    && mddev->can_decrease_events
2445 	    && mddev->events != 1) {
2446 		mddev->events--;
2447 		mddev->can_decrease_events = 0;
2448 	} else {
2449 		/* otherwise we have to go forward and ... */
2450 		mddev->events ++;
2451 		mddev->can_decrease_events = nospares;
2452 	}
2453 
2454 	if (!mddev->events) {
2455 		/*
2456 		 * oops, this 64-bit counter should never wrap.
2457 		 * Either we are in around ~1 trillion A.C., assuming
2458 		 * 1 reboot per second, or we have a bug:
2459 		 */
2460 		MD_BUG();
2461 		mddev->events --;
2462 	}
2463 
2464 	rdev_for_each(rdev, mddev) {
2465 		if (rdev->badblocks.changed)
2466 			any_badblocks_changed++;
2467 		if (test_bit(Faulty, &rdev->flags))
2468 			set_bit(FaultRecorded, &rdev->flags);
2469 	}
2470 
2471 	sync_sbs(mddev, nospares);
2472 	spin_unlock_irq(&mddev->write_lock);
2473 
2474 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2475 		 mdname(mddev), mddev->in_sync);
2476 
2477 	bitmap_update_sb(mddev->bitmap);
2478 	rdev_for_each(rdev, mddev) {
2479 		char b[BDEVNAME_SIZE];
2480 
2481 		if (rdev->sb_loaded != 1)
2482 			continue; /* no noise on spare devices */
2483 
2484 		if (!test_bit(Faulty, &rdev->flags) &&
2485 		    rdev->saved_raid_disk == -1) {
2486 			md_super_write(mddev,rdev,
2487 				       rdev->sb_start, rdev->sb_size,
2488 				       rdev->sb_page);
2489 			pr_debug("md: (write) %s's sb offset: %llu\n",
2490 				 bdevname(rdev->bdev, b),
2491 				 (unsigned long long)rdev->sb_start);
2492 			rdev->sb_events = mddev->events;
2493 			if (rdev->badblocks.size) {
2494 				md_super_write(mddev, rdev,
2495 					       rdev->badblocks.sector,
2496 					       rdev->badblocks.size << 9,
2497 					       rdev->bb_page);
2498 				rdev->badblocks.size = 0;
2499 			}
2500 
2501 		} else if (test_bit(Faulty, &rdev->flags))
2502 			pr_debug("md: %s (skipping faulty)\n",
2503 				 bdevname(rdev->bdev, b));
2504 		else
2505 			pr_debug("(skipping incremental s/r ");
2506 
2507 		if (mddev->level == LEVEL_MULTIPATH)
2508 			/* only need to write one superblock... */
2509 			break;
2510 	}
2511 	md_super_wait(mddev);
2512 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2513 
2514 	spin_lock_irq(&mddev->write_lock);
2515 	if (mddev->in_sync != sync_req ||
2516 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2517 		/* have to write it out again */
2518 		spin_unlock_irq(&mddev->write_lock);
2519 		goto repeat;
2520 	}
2521 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2522 	spin_unlock_irq(&mddev->write_lock);
2523 	wake_up(&mddev->sb_wait);
2524 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2525 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2526 
2527 	rdev_for_each(rdev, mddev) {
2528 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2529 			clear_bit(Blocked, &rdev->flags);
2530 
2531 		if (any_badblocks_changed)
2532 			md_ack_all_badblocks(&rdev->badblocks);
2533 		clear_bit(BlockedBadBlocks, &rdev->flags);
2534 		wake_up(&rdev->blocked_wait);
2535 	}
2536 }
2537 
2538 /* words written to sysfs files may, or may not, be \n terminated.
2539  * We want to accept with case. For this we use cmd_match.
2540  */
2541 static int cmd_match(const char *cmd, const char *str)
2542 {
2543 	/* See if cmd, written into a sysfs file, matches
2544 	 * str.  They must either be the same, or cmd can
2545 	 * have a trailing newline
2546 	 */
2547 	while (*cmd && *str && *cmd == *str) {
2548 		cmd++;
2549 		str++;
2550 	}
2551 	if (*cmd == '\n')
2552 		cmd++;
2553 	if (*str || *cmd)
2554 		return 0;
2555 	return 1;
2556 }
2557 
2558 struct rdev_sysfs_entry {
2559 	struct attribute attr;
2560 	ssize_t (*show)(struct md_rdev *, char *);
2561 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2562 };
2563 
2564 static ssize_t
2565 state_show(struct md_rdev *rdev, char *page)
2566 {
2567 	char *sep = "";
2568 	size_t len = 0;
2569 
2570 	if (test_bit(Faulty, &rdev->flags) ||
2571 	    rdev->badblocks.unacked_exist) {
2572 		len+= sprintf(page+len, "%sfaulty",sep);
2573 		sep = ",";
2574 	}
2575 	if (test_bit(In_sync, &rdev->flags)) {
2576 		len += sprintf(page+len, "%sin_sync",sep);
2577 		sep = ",";
2578 	}
2579 	if (test_bit(WriteMostly, &rdev->flags)) {
2580 		len += sprintf(page+len, "%swrite_mostly",sep);
2581 		sep = ",";
2582 	}
2583 	if (test_bit(Blocked, &rdev->flags) ||
2584 	    (rdev->badblocks.unacked_exist
2585 	     && !test_bit(Faulty, &rdev->flags))) {
2586 		len += sprintf(page+len, "%sblocked", sep);
2587 		sep = ",";
2588 	}
2589 	if (!test_bit(Faulty, &rdev->flags) &&
2590 	    !test_bit(In_sync, &rdev->flags)) {
2591 		len += sprintf(page+len, "%sspare", sep);
2592 		sep = ",";
2593 	}
2594 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2595 		len += sprintf(page+len, "%swrite_error", sep);
2596 		sep = ",";
2597 	}
2598 	if (test_bit(WantReplacement, &rdev->flags)) {
2599 		len += sprintf(page+len, "%swant_replacement", sep);
2600 		sep = ",";
2601 	}
2602 	if (test_bit(Replacement, &rdev->flags)) {
2603 		len += sprintf(page+len, "%sreplacement", sep);
2604 		sep = ",";
2605 	}
2606 
2607 	return len+sprintf(page+len, "\n");
2608 }
2609 
2610 static ssize_t
2611 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2612 {
2613 	/* can write
2614 	 *  faulty  - simulates an error
2615 	 *  remove  - disconnects the device
2616 	 *  writemostly - sets write_mostly
2617 	 *  -writemostly - clears write_mostly
2618 	 *  blocked - sets the Blocked flags
2619 	 *  -blocked - clears the Blocked and possibly simulates an error
2620 	 *  insync - sets Insync providing device isn't active
2621 	 *  write_error - sets WriteErrorSeen
2622 	 *  -write_error - clears WriteErrorSeen
2623 	 */
2624 	int err = -EINVAL;
2625 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2626 		md_error(rdev->mddev, rdev);
2627 		if (test_bit(Faulty, &rdev->flags))
2628 			err = 0;
2629 		else
2630 			err = -EBUSY;
2631 	} else if (cmd_match(buf, "remove")) {
2632 		if (rdev->raid_disk >= 0)
2633 			err = -EBUSY;
2634 		else {
2635 			struct mddev *mddev = rdev->mddev;
2636 			kick_rdev_from_array(rdev);
2637 			if (mddev->pers)
2638 				md_update_sb(mddev, 1);
2639 			md_new_event(mddev);
2640 			err = 0;
2641 		}
2642 	} else if (cmd_match(buf, "writemostly")) {
2643 		set_bit(WriteMostly, &rdev->flags);
2644 		err = 0;
2645 	} else if (cmd_match(buf, "-writemostly")) {
2646 		clear_bit(WriteMostly, &rdev->flags);
2647 		err = 0;
2648 	} else if (cmd_match(buf, "blocked")) {
2649 		set_bit(Blocked, &rdev->flags);
2650 		err = 0;
2651 	} else if (cmd_match(buf, "-blocked")) {
2652 		if (!test_bit(Faulty, &rdev->flags) &&
2653 		    rdev->badblocks.unacked_exist) {
2654 			/* metadata handler doesn't understand badblocks,
2655 			 * so we need to fail the device
2656 			 */
2657 			md_error(rdev->mddev, rdev);
2658 		}
2659 		clear_bit(Blocked, &rdev->flags);
2660 		clear_bit(BlockedBadBlocks, &rdev->flags);
2661 		wake_up(&rdev->blocked_wait);
2662 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2663 		md_wakeup_thread(rdev->mddev->thread);
2664 
2665 		err = 0;
2666 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2667 		set_bit(In_sync, &rdev->flags);
2668 		err = 0;
2669 	} else if (cmd_match(buf, "write_error")) {
2670 		set_bit(WriteErrorSeen, &rdev->flags);
2671 		err = 0;
2672 	} else if (cmd_match(buf, "-write_error")) {
2673 		clear_bit(WriteErrorSeen, &rdev->flags);
2674 		err = 0;
2675 	} else if (cmd_match(buf, "want_replacement")) {
2676 		/* Any non-spare device that is not a replacement can
2677 		 * become want_replacement at any time, but we then need to
2678 		 * check if recovery is needed.
2679 		 */
2680 		if (rdev->raid_disk >= 0 &&
2681 		    !test_bit(Replacement, &rdev->flags))
2682 			set_bit(WantReplacement, &rdev->flags);
2683 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2684 		md_wakeup_thread(rdev->mddev->thread);
2685 		err = 0;
2686 	} else if (cmd_match(buf, "-want_replacement")) {
2687 		/* Clearing 'want_replacement' is always allowed.
2688 		 * Once replacements starts it is too late though.
2689 		 */
2690 		err = 0;
2691 		clear_bit(WantReplacement, &rdev->flags);
2692 	} else if (cmd_match(buf, "replacement")) {
2693 		/* Can only set a device as a replacement when array has not
2694 		 * yet been started.  Once running, replacement is automatic
2695 		 * from spares, or by assigning 'slot'.
2696 		 */
2697 		if (rdev->mddev->pers)
2698 			err = -EBUSY;
2699 		else {
2700 			set_bit(Replacement, &rdev->flags);
2701 			err = 0;
2702 		}
2703 	} else if (cmd_match(buf, "-replacement")) {
2704 		/* Similarly, can only clear Replacement before start */
2705 		if (rdev->mddev->pers)
2706 			err = -EBUSY;
2707 		else {
2708 			clear_bit(Replacement, &rdev->flags);
2709 			err = 0;
2710 		}
2711 	}
2712 	if (!err)
2713 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2714 	return err ? err : len;
2715 }
2716 static struct rdev_sysfs_entry rdev_state =
2717 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2718 
2719 static ssize_t
2720 errors_show(struct md_rdev *rdev, char *page)
2721 {
2722 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2723 }
2724 
2725 static ssize_t
2726 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2727 {
2728 	char *e;
2729 	unsigned long n = simple_strtoul(buf, &e, 10);
2730 	if (*buf && (*e == 0 || *e == '\n')) {
2731 		atomic_set(&rdev->corrected_errors, n);
2732 		return len;
2733 	}
2734 	return -EINVAL;
2735 }
2736 static struct rdev_sysfs_entry rdev_errors =
2737 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2738 
2739 static ssize_t
2740 slot_show(struct md_rdev *rdev, char *page)
2741 {
2742 	if (rdev->raid_disk < 0)
2743 		return sprintf(page, "none\n");
2744 	else
2745 		return sprintf(page, "%d\n", rdev->raid_disk);
2746 }
2747 
2748 static ssize_t
2749 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2750 {
2751 	char *e;
2752 	int err;
2753 	int slot = simple_strtoul(buf, &e, 10);
2754 	if (strncmp(buf, "none", 4)==0)
2755 		slot = -1;
2756 	else if (e==buf || (*e && *e!= '\n'))
2757 		return -EINVAL;
2758 	if (rdev->mddev->pers && slot == -1) {
2759 		/* Setting 'slot' on an active array requires also
2760 		 * updating the 'rd%d' link, and communicating
2761 		 * with the personality with ->hot_*_disk.
2762 		 * For now we only support removing
2763 		 * failed/spare devices.  This normally happens automatically,
2764 		 * but not when the metadata is externally managed.
2765 		 */
2766 		if (rdev->raid_disk == -1)
2767 			return -EEXIST;
2768 		/* personality does all needed checks */
2769 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2770 			return -EINVAL;
2771 		clear_bit(Blocked, &rdev->flags);
2772 		remove_and_add_spares(rdev->mddev, rdev);
2773 		if (rdev->raid_disk >= 0)
2774 			return -EBUSY;
2775 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2776 		md_wakeup_thread(rdev->mddev->thread);
2777 	} else if (rdev->mddev->pers) {
2778 		/* Activating a spare .. or possibly reactivating
2779 		 * if we ever get bitmaps working here.
2780 		 */
2781 
2782 		if (rdev->raid_disk != -1)
2783 			return -EBUSY;
2784 
2785 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2786 			return -EBUSY;
2787 
2788 		if (rdev->mddev->pers->hot_add_disk == NULL)
2789 			return -EINVAL;
2790 
2791 		if (slot >= rdev->mddev->raid_disks &&
2792 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2793 			return -ENOSPC;
2794 
2795 		rdev->raid_disk = slot;
2796 		if (test_bit(In_sync, &rdev->flags))
2797 			rdev->saved_raid_disk = slot;
2798 		else
2799 			rdev->saved_raid_disk = -1;
2800 		clear_bit(In_sync, &rdev->flags);
2801 		err = rdev->mddev->pers->
2802 			hot_add_disk(rdev->mddev, rdev);
2803 		if (err) {
2804 			rdev->raid_disk = -1;
2805 			return err;
2806 		} else
2807 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2808 		if (sysfs_link_rdev(rdev->mddev, rdev))
2809 			/* failure here is OK */;
2810 		/* don't wakeup anyone, leave that to userspace. */
2811 	} else {
2812 		if (slot >= rdev->mddev->raid_disks &&
2813 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2814 			return -ENOSPC;
2815 		rdev->raid_disk = slot;
2816 		/* assume it is working */
2817 		clear_bit(Faulty, &rdev->flags);
2818 		clear_bit(WriteMostly, &rdev->flags);
2819 		set_bit(In_sync, &rdev->flags);
2820 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2821 	}
2822 	return len;
2823 }
2824 
2825 
2826 static struct rdev_sysfs_entry rdev_slot =
2827 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2828 
2829 static ssize_t
2830 offset_show(struct md_rdev *rdev, char *page)
2831 {
2832 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2833 }
2834 
2835 static ssize_t
2836 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2837 {
2838 	unsigned long long offset;
2839 	if (kstrtoull(buf, 10, &offset) < 0)
2840 		return -EINVAL;
2841 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2842 		return -EBUSY;
2843 	if (rdev->sectors && rdev->mddev->external)
2844 		/* Must set offset before size, so overlap checks
2845 		 * can be sane */
2846 		return -EBUSY;
2847 	rdev->data_offset = offset;
2848 	rdev->new_data_offset = offset;
2849 	return len;
2850 }
2851 
2852 static struct rdev_sysfs_entry rdev_offset =
2853 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2854 
2855 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2856 {
2857 	return sprintf(page, "%llu\n",
2858 		       (unsigned long long)rdev->new_data_offset);
2859 }
2860 
2861 static ssize_t new_offset_store(struct md_rdev *rdev,
2862 				const char *buf, size_t len)
2863 {
2864 	unsigned long long new_offset;
2865 	struct mddev *mddev = rdev->mddev;
2866 
2867 	if (kstrtoull(buf, 10, &new_offset) < 0)
2868 		return -EINVAL;
2869 
2870 	if (mddev->sync_thread)
2871 		return -EBUSY;
2872 	if (new_offset == rdev->data_offset)
2873 		/* reset is always permitted */
2874 		;
2875 	else if (new_offset > rdev->data_offset) {
2876 		/* must not push array size beyond rdev_sectors */
2877 		if (new_offset - rdev->data_offset
2878 		    + mddev->dev_sectors > rdev->sectors)
2879 				return -E2BIG;
2880 	}
2881 	/* Metadata worries about other space details. */
2882 
2883 	/* decreasing the offset is inconsistent with a backwards
2884 	 * reshape.
2885 	 */
2886 	if (new_offset < rdev->data_offset &&
2887 	    mddev->reshape_backwards)
2888 		return -EINVAL;
2889 	/* Increasing offset is inconsistent with forwards
2890 	 * reshape.  reshape_direction should be set to
2891 	 * 'backwards' first.
2892 	 */
2893 	if (new_offset > rdev->data_offset &&
2894 	    !mddev->reshape_backwards)
2895 		return -EINVAL;
2896 
2897 	if (mddev->pers && mddev->persistent &&
2898 	    !super_types[mddev->major_version]
2899 	    .allow_new_offset(rdev, new_offset))
2900 		return -E2BIG;
2901 	rdev->new_data_offset = new_offset;
2902 	if (new_offset > rdev->data_offset)
2903 		mddev->reshape_backwards = 1;
2904 	else if (new_offset < rdev->data_offset)
2905 		mddev->reshape_backwards = 0;
2906 
2907 	return len;
2908 }
2909 static struct rdev_sysfs_entry rdev_new_offset =
2910 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2911 
2912 static ssize_t
2913 rdev_size_show(struct md_rdev *rdev, char *page)
2914 {
2915 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2916 }
2917 
2918 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2919 {
2920 	/* check if two start/length pairs overlap */
2921 	if (s1+l1 <= s2)
2922 		return 0;
2923 	if (s2+l2 <= s1)
2924 		return 0;
2925 	return 1;
2926 }
2927 
2928 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2929 {
2930 	unsigned long long blocks;
2931 	sector_t new;
2932 
2933 	if (kstrtoull(buf, 10, &blocks) < 0)
2934 		return -EINVAL;
2935 
2936 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2937 		return -EINVAL; /* sector conversion overflow */
2938 
2939 	new = blocks * 2;
2940 	if (new != blocks * 2)
2941 		return -EINVAL; /* unsigned long long to sector_t overflow */
2942 
2943 	*sectors = new;
2944 	return 0;
2945 }
2946 
2947 static ssize_t
2948 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2949 {
2950 	struct mddev *my_mddev = rdev->mddev;
2951 	sector_t oldsectors = rdev->sectors;
2952 	sector_t sectors;
2953 
2954 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2955 		return -EINVAL;
2956 	if (rdev->data_offset != rdev->new_data_offset)
2957 		return -EINVAL; /* too confusing */
2958 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2959 		if (my_mddev->persistent) {
2960 			sectors = super_types[my_mddev->major_version].
2961 				rdev_size_change(rdev, sectors);
2962 			if (!sectors)
2963 				return -EBUSY;
2964 		} else if (!sectors)
2965 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2966 				rdev->data_offset;
2967 		if (!my_mddev->pers->resize)
2968 			/* Cannot change size for RAID0 or Linear etc */
2969 			return -EINVAL;
2970 	}
2971 	if (sectors < my_mddev->dev_sectors)
2972 		return -EINVAL; /* component must fit device */
2973 
2974 	rdev->sectors = sectors;
2975 	if (sectors > oldsectors && my_mddev->external) {
2976 		/* need to check that all other rdevs with the same ->bdev
2977 		 * do not overlap.  We need to unlock the mddev to avoid
2978 		 * a deadlock.  We have already changed rdev->sectors, and if
2979 		 * we have to change it back, we will have the lock again.
2980 		 */
2981 		struct mddev *mddev;
2982 		int overlap = 0;
2983 		struct list_head *tmp;
2984 
2985 		mddev_unlock(my_mddev);
2986 		for_each_mddev(mddev, tmp) {
2987 			struct md_rdev *rdev2;
2988 
2989 			mddev_lock_nointr(mddev);
2990 			rdev_for_each(rdev2, mddev)
2991 				if (rdev->bdev == rdev2->bdev &&
2992 				    rdev != rdev2 &&
2993 				    overlaps(rdev->data_offset, rdev->sectors,
2994 					     rdev2->data_offset,
2995 					     rdev2->sectors)) {
2996 					overlap = 1;
2997 					break;
2998 				}
2999 			mddev_unlock(mddev);
3000 			if (overlap) {
3001 				mddev_put(mddev);
3002 				break;
3003 			}
3004 		}
3005 		mddev_lock_nointr(my_mddev);
3006 		if (overlap) {
3007 			/* Someone else could have slipped in a size
3008 			 * change here, but doing so is just silly.
3009 			 * We put oldsectors back because we *know* it is
3010 			 * safe, and trust userspace not to race with
3011 			 * itself
3012 			 */
3013 			rdev->sectors = oldsectors;
3014 			return -EBUSY;
3015 		}
3016 	}
3017 	return len;
3018 }
3019 
3020 static struct rdev_sysfs_entry rdev_size =
3021 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3022 
3023 
3024 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3025 {
3026 	unsigned long long recovery_start = rdev->recovery_offset;
3027 
3028 	if (test_bit(In_sync, &rdev->flags) ||
3029 	    recovery_start == MaxSector)
3030 		return sprintf(page, "none\n");
3031 
3032 	return sprintf(page, "%llu\n", recovery_start);
3033 }
3034 
3035 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3036 {
3037 	unsigned long long recovery_start;
3038 
3039 	if (cmd_match(buf, "none"))
3040 		recovery_start = MaxSector;
3041 	else if (kstrtoull(buf, 10, &recovery_start))
3042 		return -EINVAL;
3043 
3044 	if (rdev->mddev->pers &&
3045 	    rdev->raid_disk >= 0)
3046 		return -EBUSY;
3047 
3048 	rdev->recovery_offset = recovery_start;
3049 	if (recovery_start == MaxSector)
3050 		set_bit(In_sync, &rdev->flags);
3051 	else
3052 		clear_bit(In_sync, &rdev->flags);
3053 	return len;
3054 }
3055 
3056 static struct rdev_sysfs_entry rdev_recovery_start =
3057 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3058 
3059 
3060 static ssize_t
3061 badblocks_show(struct badblocks *bb, char *page, int unack);
3062 static ssize_t
3063 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3064 
3065 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3066 {
3067 	return badblocks_show(&rdev->badblocks, page, 0);
3068 }
3069 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3070 {
3071 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3072 	/* Maybe that ack was all we needed */
3073 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3074 		wake_up(&rdev->blocked_wait);
3075 	return rv;
3076 }
3077 static struct rdev_sysfs_entry rdev_bad_blocks =
3078 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3079 
3080 
3081 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3082 {
3083 	return badblocks_show(&rdev->badblocks, page, 1);
3084 }
3085 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3086 {
3087 	return badblocks_store(&rdev->badblocks, page, len, 1);
3088 }
3089 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3090 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3091 
3092 static struct attribute *rdev_default_attrs[] = {
3093 	&rdev_state.attr,
3094 	&rdev_errors.attr,
3095 	&rdev_slot.attr,
3096 	&rdev_offset.attr,
3097 	&rdev_new_offset.attr,
3098 	&rdev_size.attr,
3099 	&rdev_recovery_start.attr,
3100 	&rdev_bad_blocks.attr,
3101 	&rdev_unack_bad_blocks.attr,
3102 	NULL,
3103 };
3104 static ssize_t
3105 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3106 {
3107 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3108 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3109 	struct mddev *mddev = rdev->mddev;
3110 	ssize_t rv;
3111 
3112 	if (!entry->show)
3113 		return -EIO;
3114 
3115 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3116 	if (!rv) {
3117 		if (rdev->mddev == NULL)
3118 			rv = -EBUSY;
3119 		else
3120 			rv = entry->show(rdev, page);
3121 		mddev_unlock(mddev);
3122 	}
3123 	return rv;
3124 }
3125 
3126 static ssize_t
3127 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3128 	      const char *page, size_t length)
3129 {
3130 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3131 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3132 	ssize_t rv;
3133 	struct mddev *mddev = rdev->mddev;
3134 
3135 	if (!entry->store)
3136 		return -EIO;
3137 	if (!capable(CAP_SYS_ADMIN))
3138 		return -EACCES;
3139 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3140 	if (!rv) {
3141 		if (rdev->mddev == NULL)
3142 			rv = -EBUSY;
3143 		else
3144 			rv = entry->store(rdev, page, length);
3145 		mddev_unlock(mddev);
3146 	}
3147 	return rv;
3148 }
3149 
3150 static void rdev_free(struct kobject *ko)
3151 {
3152 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3153 	kfree(rdev);
3154 }
3155 static const struct sysfs_ops rdev_sysfs_ops = {
3156 	.show		= rdev_attr_show,
3157 	.store		= rdev_attr_store,
3158 };
3159 static struct kobj_type rdev_ktype = {
3160 	.release	= rdev_free,
3161 	.sysfs_ops	= &rdev_sysfs_ops,
3162 	.default_attrs	= rdev_default_attrs,
3163 };
3164 
3165 int md_rdev_init(struct md_rdev *rdev)
3166 {
3167 	rdev->desc_nr = -1;
3168 	rdev->saved_raid_disk = -1;
3169 	rdev->raid_disk = -1;
3170 	rdev->flags = 0;
3171 	rdev->data_offset = 0;
3172 	rdev->new_data_offset = 0;
3173 	rdev->sb_events = 0;
3174 	rdev->last_read_error.tv_sec  = 0;
3175 	rdev->last_read_error.tv_nsec = 0;
3176 	rdev->sb_loaded = 0;
3177 	rdev->bb_page = NULL;
3178 	atomic_set(&rdev->nr_pending, 0);
3179 	atomic_set(&rdev->read_errors, 0);
3180 	atomic_set(&rdev->corrected_errors, 0);
3181 
3182 	INIT_LIST_HEAD(&rdev->same_set);
3183 	init_waitqueue_head(&rdev->blocked_wait);
3184 
3185 	/* Add space to store bad block list.
3186 	 * This reserves the space even on arrays where it cannot
3187 	 * be used - I wonder if that matters
3188 	 */
3189 	rdev->badblocks.count = 0;
3190 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3191 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3192 	seqlock_init(&rdev->badblocks.lock);
3193 	if (rdev->badblocks.page == NULL)
3194 		return -ENOMEM;
3195 
3196 	return 0;
3197 }
3198 EXPORT_SYMBOL_GPL(md_rdev_init);
3199 /*
3200  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3201  *
3202  * mark the device faulty if:
3203  *
3204  *   - the device is nonexistent (zero size)
3205  *   - the device has no valid superblock
3206  *
3207  * a faulty rdev _never_ has rdev->sb set.
3208  */
3209 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3210 {
3211 	char b[BDEVNAME_SIZE];
3212 	int err;
3213 	struct md_rdev *rdev;
3214 	sector_t size;
3215 
3216 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3217 	if (!rdev) {
3218 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3219 		return ERR_PTR(-ENOMEM);
3220 	}
3221 
3222 	err = md_rdev_init(rdev);
3223 	if (err)
3224 		goto abort_free;
3225 	err = alloc_disk_sb(rdev);
3226 	if (err)
3227 		goto abort_free;
3228 
3229 	err = lock_rdev(rdev, newdev, super_format == -2);
3230 	if (err)
3231 		goto abort_free;
3232 
3233 	kobject_init(&rdev->kobj, &rdev_ktype);
3234 
3235 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3236 	if (!size) {
3237 		printk(KERN_WARNING
3238 			"md: %s has zero or unknown size, marking faulty!\n",
3239 			bdevname(rdev->bdev,b));
3240 		err = -EINVAL;
3241 		goto abort_free;
3242 	}
3243 
3244 	if (super_format >= 0) {
3245 		err = super_types[super_format].
3246 			load_super(rdev, NULL, super_minor);
3247 		if (err == -EINVAL) {
3248 			printk(KERN_WARNING
3249 				"md: %s does not have a valid v%d.%d "
3250 			       "superblock, not importing!\n",
3251 				bdevname(rdev->bdev,b),
3252 			       super_format, super_minor);
3253 			goto abort_free;
3254 		}
3255 		if (err < 0) {
3256 			printk(KERN_WARNING
3257 				"md: could not read %s's sb, not importing!\n",
3258 				bdevname(rdev->bdev,b));
3259 			goto abort_free;
3260 		}
3261 	}
3262 
3263 	return rdev;
3264 
3265 abort_free:
3266 	if (rdev->bdev)
3267 		unlock_rdev(rdev);
3268 	md_rdev_clear(rdev);
3269 	kfree(rdev);
3270 	return ERR_PTR(err);
3271 }
3272 
3273 /*
3274  * Check a full RAID array for plausibility
3275  */
3276 
3277 
3278 static void analyze_sbs(struct mddev * mddev)
3279 {
3280 	int i;
3281 	struct md_rdev *rdev, *freshest, *tmp;
3282 	char b[BDEVNAME_SIZE];
3283 
3284 	freshest = NULL;
3285 	rdev_for_each_safe(rdev, tmp, mddev)
3286 		switch (super_types[mddev->major_version].
3287 			load_super(rdev, freshest, mddev->minor_version)) {
3288 		case 1:
3289 			freshest = rdev;
3290 			break;
3291 		case 0:
3292 			break;
3293 		default:
3294 			printk( KERN_ERR \
3295 				"md: fatal superblock inconsistency in %s"
3296 				" -- removing from array\n",
3297 				bdevname(rdev->bdev,b));
3298 			kick_rdev_from_array(rdev);
3299 		}
3300 
3301 
3302 	super_types[mddev->major_version].
3303 		validate_super(mddev, freshest);
3304 
3305 	i = 0;
3306 	rdev_for_each_safe(rdev, tmp, mddev) {
3307 		if (mddev->max_disks &&
3308 		    (rdev->desc_nr >= mddev->max_disks ||
3309 		     i > mddev->max_disks)) {
3310 			printk(KERN_WARNING
3311 			       "md: %s: %s: only %d devices permitted\n",
3312 			       mdname(mddev), bdevname(rdev->bdev, b),
3313 			       mddev->max_disks);
3314 			kick_rdev_from_array(rdev);
3315 			continue;
3316 		}
3317 		if (rdev != freshest)
3318 			if (super_types[mddev->major_version].
3319 			    validate_super(mddev, rdev)) {
3320 				printk(KERN_WARNING "md: kicking non-fresh %s"
3321 					" from array!\n",
3322 					bdevname(rdev->bdev,b));
3323 				kick_rdev_from_array(rdev);
3324 				continue;
3325 			}
3326 		if (mddev->level == LEVEL_MULTIPATH) {
3327 			rdev->desc_nr = i++;
3328 			rdev->raid_disk = rdev->desc_nr;
3329 			set_bit(In_sync, &rdev->flags);
3330 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3331 			rdev->raid_disk = -1;
3332 			clear_bit(In_sync, &rdev->flags);
3333 		}
3334 	}
3335 }
3336 
3337 /* Read a fixed-point number.
3338  * Numbers in sysfs attributes should be in "standard" units where
3339  * possible, so time should be in seconds.
3340  * However we internally use a a much smaller unit such as
3341  * milliseconds or jiffies.
3342  * This function takes a decimal number with a possible fractional
3343  * component, and produces an integer which is the result of
3344  * multiplying that number by 10^'scale'.
3345  * all without any floating-point arithmetic.
3346  */
3347 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3348 {
3349 	unsigned long result = 0;
3350 	long decimals = -1;
3351 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3352 		if (*cp == '.')
3353 			decimals = 0;
3354 		else if (decimals < scale) {
3355 			unsigned int value;
3356 			value = *cp - '0';
3357 			result = result * 10 + value;
3358 			if (decimals >= 0)
3359 				decimals++;
3360 		}
3361 		cp++;
3362 	}
3363 	if (*cp == '\n')
3364 		cp++;
3365 	if (*cp)
3366 		return -EINVAL;
3367 	if (decimals < 0)
3368 		decimals = 0;
3369 	while (decimals < scale) {
3370 		result *= 10;
3371 		decimals ++;
3372 	}
3373 	*res = result;
3374 	return 0;
3375 }
3376 
3377 
3378 static void md_safemode_timeout(unsigned long data);
3379 
3380 static ssize_t
3381 safe_delay_show(struct mddev *mddev, char *page)
3382 {
3383 	int msec = (mddev->safemode_delay*1000)/HZ;
3384 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3385 }
3386 static ssize_t
3387 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3388 {
3389 	unsigned long msec;
3390 
3391 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3392 		return -EINVAL;
3393 	if (msec == 0)
3394 		mddev->safemode_delay = 0;
3395 	else {
3396 		unsigned long old_delay = mddev->safemode_delay;
3397 		mddev->safemode_delay = (msec*HZ)/1000;
3398 		if (mddev->safemode_delay == 0)
3399 			mddev->safemode_delay = 1;
3400 		if (mddev->safemode_delay < old_delay || old_delay == 0)
3401 			md_safemode_timeout((unsigned long)mddev);
3402 	}
3403 	return len;
3404 }
3405 static struct md_sysfs_entry md_safe_delay =
3406 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3407 
3408 static ssize_t
3409 level_show(struct mddev *mddev, char *page)
3410 {
3411 	struct md_personality *p = mddev->pers;
3412 	if (p)
3413 		return sprintf(page, "%s\n", p->name);
3414 	else if (mddev->clevel[0])
3415 		return sprintf(page, "%s\n", mddev->clevel);
3416 	else if (mddev->level != LEVEL_NONE)
3417 		return sprintf(page, "%d\n", mddev->level);
3418 	else
3419 		return 0;
3420 }
3421 
3422 static ssize_t
3423 level_store(struct mddev *mddev, const char *buf, size_t len)
3424 {
3425 	char clevel[16];
3426 	ssize_t rv = len;
3427 	struct md_personality *pers;
3428 	long level;
3429 	void *priv;
3430 	struct md_rdev *rdev;
3431 
3432 	if (mddev->pers == NULL) {
3433 		if (len == 0)
3434 			return 0;
3435 		if (len >= sizeof(mddev->clevel))
3436 			return -ENOSPC;
3437 		strncpy(mddev->clevel, buf, len);
3438 		if (mddev->clevel[len-1] == '\n')
3439 			len--;
3440 		mddev->clevel[len] = 0;
3441 		mddev->level = LEVEL_NONE;
3442 		return rv;
3443 	}
3444 
3445 	/* request to change the personality.  Need to ensure:
3446 	 *  - array is not engaged in resync/recovery/reshape
3447 	 *  - old personality can be suspended
3448 	 *  - new personality will access other array.
3449 	 */
3450 
3451 	if (mddev->sync_thread ||
3452 	    mddev->reshape_position != MaxSector ||
3453 	    mddev->sysfs_active)
3454 		return -EBUSY;
3455 
3456 	if (!mddev->pers->quiesce) {
3457 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3458 		       mdname(mddev), mddev->pers->name);
3459 		return -EINVAL;
3460 	}
3461 
3462 	/* Now find the new personality */
3463 	if (len == 0 || len >= sizeof(clevel))
3464 		return -EINVAL;
3465 	strncpy(clevel, buf, len);
3466 	if (clevel[len-1] == '\n')
3467 		len--;
3468 	clevel[len] = 0;
3469 	if (kstrtol(clevel, 10, &level))
3470 		level = LEVEL_NONE;
3471 
3472 	if (request_module("md-%s", clevel) != 0)
3473 		request_module("md-level-%s", clevel);
3474 	spin_lock(&pers_lock);
3475 	pers = find_pers(level, clevel);
3476 	if (!pers || !try_module_get(pers->owner)) {
3477 		spin_unlock(&pers_lock);
3478 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3479 		return -EINVAL;
3480 	}
3481 	spin_unlock(&pers_lock);
3482 
3483 	if (pers == mddev->pers) {
3484 		/* Nothing to do! */
3485 		module_put(pers->owner);
3486 		return rv;
3487 	}
3488 	if (!pers->takeover) {
3489 		module_put(pers->owner);
3490 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3491 		       mdname(mddev), clevel);
3492 		return -EINVAL;
3493 	}
3494 
3495 	rdev_for_each(rdev, mddev)
3496 		rdev->new_raid_disk = rdev->raid_disk;
3497 
3498 	/* ->takeover must set new_* and/or delta_disks
3499 	 * if it succeeds, and may set them when it fails.
3500 	 */
3501 	priv = pers->takeover(mddev);
3502 	if (IS_ERR(priv)) {
3503 		mddev->new_level = mddev->level;
3504 		mddev->new_layout = mddev->layout;
3505 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3506 		mddev->raid_disks -= mddev->delta_disks;
3507 		mddev->delta_disks = 0;
3508 		mddev->reshape_backwards = 0;
3509 		module_put(pers->owner);
3510 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3511 		       mdname(mddev), clevel);
3512 		return PTR_ERR(priv);
3513 	}
3514 
3515 	/* Looks like we have a winner */
3516 	mddev_suspend(mddev);
3517 	mddev->pers->stop(mddev);
3518 
3519 	if (mddev->pers->sync_request == NULL &&
3520 	    pers->sync_request != NULL) {
3521 		/* need to add the md_redundancy_group */
3522 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3523 			printk(KERN_WARNING
3524 			       "md: cannot register extra attributes for %s\n",
3525 			       mdname(mddev));
3526 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3527 	}
3528 	if (mddev->pers->sync_request != NULL &&
3529 	    pers->sync_request == NULL) {
3530 		/* need to remove the md_redundancy_group */
3531 		if (mddev->to_remove == NULL)
3532 			mddev->to_remove = &md_redundancy_group;
3533 	}
3534 
3535 	if (mddev->pers->sync_request == NULL &&
3536 	    mddev->external) {
3537 		/* We are converting from a no-redundancy array
3538 		 * to a redundancy array and metadata is managed
3539 		 * externally so we need to be sure that writes
3540 		 * won't block due to a need to transition
3541 		 *      clean->dirty
3542 		 * until external management is started.
3543 		 */
3544 		mddev->in_sync = 0;
3545 		mddev->safemode_delay = 0;
3546 		mddev->safemode = 0;
3547 	}
3548 
3549 	rdev_for_each(rdev, mddev) {
3550 		if (rdev->raid_disk < 0)
3551 			continue;
3552 		if (rdev->new_raid_disk >= mddev->raid_disks)
3553 			rdev->new_raid_disk = -1;
3554 		if (rdev->new_raid_disk == rdev->raid_disk)
3555 			continue;
3556 		sysfs_unlink_rdev(mddev, rdev);
3557 	}
3558 	rdev_for_each(rdev, mddev) {
3559 		if (rdev->raid_disk < 0)
3560 			continue;
3561 		if (rdev->new_raid_disk == rdev->raid_disk)
3562 			continue;
3563 		rdev->raid_disk = rdev->new_raid_disk;
3564 		if (rdev->raid_disk < 0)
3565 			clear_bit(In_sync, &rdev->flags);
3566 		else {
3567 			if (sysfs_link_rdev(mddev, rdev))
3568 				printk(KERN_WARNING "md: cannot register rd%d"
3569 				       " for %s after level change\n",
3570 				       rdev->raid_disk, mdname(mddev));
3571 		}
3572 	}
3573 
3574 	module_put(mddev->pers->owner);
3575 	mddev->pers = pers;
3576 	mddev->private = priv;
3577 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3578 	mddev->level = mddev->new_level;
3579 	mddev->layout = mddev->new_layout;
3580 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3581 	mddev->delta_disks = 0;
3582 	mddev->reshape_backwards = 0;
3583 	mddev->degraded = 0;
3584 	if (mddev->pers->sync_request == NULL) {
3585 		/* this is now an array without redundancy, so
3586 		 * it must always be in_sync
3587 		 */
3588 		mddev->in_sync = 1;
3589 		del_timer_sync(&mddev->safemode_timer);
3590 	}
3591 	blk_set_stacking_limits(&mddev->queue->limits);
3592 	pers->run(mddev);
3593 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3594 	mddev_resume(mddev);
3595 	sysfs_notify(&mddev->kobj, NULL, "level");
3596 	md_new_event(mddev);
3597 	return rv;
3598 }
3599 
3600 static struct md_sysfs_entry md_level =
3601 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3602 
3603 
3604 static ssize_t
3605 layout_show(struct mddev *mddev, char *page)
3606 {
3607 	/* just a number, not meaningful for all levels */
3608 	if (mddev->reshape_position != MaxSector &&
3609 	    mddev->layout != mddev->new_layout)
3610 		return sprintf(page, "%d (%d)\n",
3611 			       mddev->new_layout, mddev->layout);
3612 	return sprintf(page, "%d\n", mddev->layout);
3613 }
3614 
3615 static ssize_t
3616 layout_store(struct mddev *mddev, const char *buf, size_t len)
3617 {
3618 	char *e;
3619 	unsigned long n = simple_strtoul(buf, &e, 10);
3620 
3621 	if (!*buf || (*e && *e != '\n'))
3622 		return -EINVAL;
3623 
3624 	if (mddev->pers) {
3625 		int err;
3626 		if (mddev->pers->check_reshape == NULL)
3627 			return -EBUSY;
3628 		mddev->new_layout = n;
3629 		err = mddev->pers->check_reshape(mddev);
3630 		if (err) {
3631 			mddev->new_layout = mddev->layout;
3632 			return err;
3633 		}
3634 	} else {
3635 		mddev->new_layout = n;
3636 		if (mddev->reshape_position == MaxSector)
3637 			mddev->layout = n;
3638 	}
3639 	return len;
3640 }
3641 static struct md_sysfs_entry md_layout =
3642 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3643 
3644 
3645 static ssize_t
3646 raid_disks_show(struct mddev *mddev, char *page)
3647 {
3648 	if (mddev->raid_disks == 0)
3649 		return 0;
3650 	if (mddev->reshape_position != MaxSector &&
3651 	    mddev->delta_disks != 0)
3652 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3653 			       mddev->raid_disks - mddev->delta_disks);
3654 	return sprintf(page, "%d\n", mddev->raid_disks);
3655 }
3656 
3657 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3658 
3659 static ssize_t
3660 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3661 {
3662 	char *e;
3663 	int rv = 0;
3664 	unsigned long n = simple_strtoul(buf, &e, 10);
3665 
3666 	if (!*buf || (*e && *e != '\n'))
3667 		return -EINVAL;
3668 
3669 	if (mddev->pers)
3670 		rv = update_raid_disks(mddev, n);
3671 	else if (mddev->reshape_position != MaxSector) {
3672 		struct md_rdev *rdev;
3673 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3674 
3675 		rdev_for_each(rdev, mddev) {
3676 			if (olddisks < n &&
3677 			    rdev->data_offset < rdev->new_data_offset)
3678 				return -EINVAL;
3679 			if (olddisks > n &&
3680 			    rdev->data_offset > rdev->new_data_offset)
3681 				return -EINVAL;
3682 		}
3683 		mddev->delta_disks = n - olddisks;
3684 		mddev->raid_disks = n;
3685 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3686 	} else
3687 		mddev->raid_disks = n;
3688 	return rv ? rv : len;
3689 }
3690 static struct md_sysfs_entry md_raid_disks =
3691 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3692 
3693 static ssize_t
3694 chunk_size_show(struct mddev *mddev, char *page)
3695 {
3696 	if (mddev->reshape_position != MaxSector &&
3697 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3698 		return sprintf(page, "%d (%d)\n",
3699 			       mddev->new_chunk_sectors << 9,
3700 			       mddev->chunk_sectors << 9);
3701 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3702 }
3703 
3704 static ssize_t
3705 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3706 {
3707 	char *e;
3708 	unsigned long n = simple_strtoul(buf, &e, 10);
3709 
3710 	if (!*buf || (*e && *e != '\n'))
3711 		return -EINVAL;
3712 
3713 	if (mddev->pers) {
3714 		int err;
3715 		if (mddev->pers->check_reshape == NULL)
3716 			return -EBUSY;
3717 		mddev->new_chunk_sectors = n >> 9;
3718 		err = mddev->pers->check_reshape(mddev);
3719 		if (err) {
3720 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3721 			return err;
3722 		}
3723 	} else {
3724 		mddev->new_chunk_sectors = n >> 9;
3725 		if (mddev->reshape_position == MaxSector)
3726 			mddev->chunk_sectors = n >> 9;
3727 	}
3728 	return len;
3729 }
3730 static struct md_sysfs_entry md_chunk_size =
3731 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3732 
3733 static ssize_t
3734 resync_start_show(struct mddev *mddev, char *page)
3735 {
3736 	if (mddev->recovery_cp == MaxSector)
3737 		return sprintf(page, "none\n");
3738 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3739 }
3740 
3741 static ssize_t
3742 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3743 {
3744 	char *e;
3745 	unsigned long long n = simple_strtoull(buf, &e, 10);
3746 
3747 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3748 		return -EBUSY;
3749 	if (cmd_match(buf, "none"))
3750 		n = MaxSector;
3751 	else if (!*buf || (*e && *e != '\n'))
3752 		return -EINVAL;
3753 
3754 	mddev->recovery_cp = n;
3755 	if (mddev->pers)
3756 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3757 	return len;
3758 }
3759 static struct md_sysfs_entry md_resync_start =
3760 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3761 
3762 /*
3763  * The array state can be:
3764  *
3765  * clear
3766  *     No devices, no size, no level
3767  *     Equivalent to STOP_ARRAY ioctl
3768  * inactive
3769  *     May have some settings, but array is not active
3770  *        all IO results in error
3771  *     When written, doesn't tear down array, but just stops it
3772  * suspended (not supported yet)
3773  *     All IO requests will block. The array can be reconfigured.
3774  *     Writing this, if accepted, will block until array is quiescent
3775  * readonly
3776  *     no resync can happen.  no superblocks get written.
3777  *     write requests fail
3778  * read-auto
3779  *     like readonly, but behaves like 'clean' on a write request.
3780  *
3781  * clean - no pending writes, but otherwise active.
3782  *     When written to inactive array, starts without resync
3783  *     If a write request arrives then
3784  *       if metadata is known, mark 'dirty' and switch to 'active'.
3785  *       if not known, block and switch to write-pending
3786  *     If written to an active array that has pending writes, then fails.
3787  * active
3788  *     fully active: IO and resync can be happening.
3789  *     When written to inactive array, starts with resync
3790  *
3791  * write-pending
3792  *     clean, but writes are blocked waiting for 'active' to be written.
3793  *
3794  * active-idle
3795  *     like active, but no writes have been seen for a while (100msec).
3796  *
3797  */
3798 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3799 		   write_pending, active_idle, bad_word};
3800 static char *array_states[] = {
3801 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3802 	"write-pending", "active-idle", NULL };
3803 
3804 static int match_word(const char *word, char **list)
3805 {
3806 	int n;
3807 	for (n=0; list[n]; n++)
3808 		if (cmd_match(word, list[n]))
3809 			break;
3810 	return n;
3811 }
3812 
3813 static ssize_t
3814 array_state_show(struct mddev *mddev, char *page)
3815 {
3816 	enum array_state st = inactive;
3817 
3818 	if (mddev->pers)
3819 		switch(mddev->ro) {
3820 		case 1:
3821 			st = readonly;
3822 			break;
3823 		case 2:
3824 			st = read_auto;
3825 			break;
3826 		case 0:
3827 			if (mddev->in_sync)
3828 				st = clean;
3829 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3830 				st = write_pending;
3831 			else if (mddev->safemode)
3832 				st = active_idle;
3833 			else
3834 				st = active;
3835 		}
3836 	else {
3837 		if (list_empty(&mddev->disks) &&
3838 		    mddev->raid_disks == 0 &&
3839 		    mddev->dev_sectors == 0)
3840 			st = clear;
3841 		else
3842 			st = inactive;
3843 	}
3844 	return sprintf(page, "%s\n", array_states[st]);
3845 }
3846 
3847 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3848 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3849 static int do_md_run(struct mddev * mddev);
3850 static int restart_array(struct mddev *mddev);
3851 
3852 static ssize_t
3853 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3854 {
3855 	int err = -EINVAL;
3856 	enum array_state st = match_word(buf, array_states);
3857 	switch(st) {
3858 	case bad_word:
3859 		break;
3860 	case clear:
3861 		/* stopping an active array */
3862 		err = do_md_stop(mddev, 0, NULL);
3863 		break;
3864 	case inactive:
3865 		/* stopping an active array */
3866 		if (mddev->pers)
3867 			err = do_md_stop(mddev, 2, NULL);
3868 		else
3869 			err = 0; /* already inactive */
3870 		break;
3871 	case suspended:
3872 		break; /* not supported yet */
3873 	case readonly:
3874 		if (mddev->pers)
3875 			err = md_set_readonly(mddev, NULL);
3876 		else {
3877 			mddev->ro = 1;
3878 			set_disk_ro(mddev->gendisk, 1);
3879 			err = do_md_run(mddev);
3880 		}
3881 		break;
3882 	case read_auto:
3883 		if (mddev->pers) {
3884 			if (mddev->ro == 0)
3885 				err = md_set_readonly(mddev, NULL);
3886 			else if (mddev->ro == 1)
3887 				err = restart_array(mddev);
3888 			if (err == 0) {
3889 				mddev->ro = 2;
3890 				set_disk_ro(mddev->gendisk, 0);
3891 			}
3892 		} else {
3893 			mddev->ro = 2;
3894 			err = do_md_run(mddev);
3895 		}
3896 		break;
3897 	case clean:
3898 		if (mddev->pers) {
3899 			restart_array(mddev);
3900 			spin_lock_irq(&mddev->write_lock);
3901 			if (atomic_read(&mddev->writes_pending) == 0) {
3902 				if (mddev->in_sync == 0) {
3903 					mddev->in_sync = 1;
3904 					if (mddev->safemode == 1)
3905 						mddev->safemode = 0;
3906 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3907 				}
3908 				err = 0;
3909 			} else
3910 				err = -EBUSY;
3911 			spin_unlock_irq(&mddev->write_lock);
3912 		} else
3913 			err = -EINVAL;
3914 		break;
3915 	case active:
3916 		if (mddev->pers) {
3917 			restart_array(mddev);
3918 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3919 			wake_up(&mddev->sb_wait);
3920 			err = 0;
3921 		} else {
3922 			mddev->ro = 0;
3923 			set_disk_ro(mddev->gendisk, 0);
3924 			err = do_md_run(mddev);
3925 		}
3926 		break;
3927 	case write_pending:
3928 	case active_idle:
3929 		/* these cannot be set */
3930 		break;
3931 	}
3932 	if (err)
3933 		return err;
3934 	else {
3935 		if (mddev->hold_active == UNTIL_IOCTL)
3936 			mddev->hold_active = 0;
3937 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3938 		return len;
3939 	}
3940 }
3941 static struct md_sysfs_entry md_array_state =
3942 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3943 
3944 static ssize_t
3945 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3946 	return sprintf(page, "%d\n",
3947 		       atomic_read(&mddev->max_corr_read_errors));
3948 }
3949 
3950 static ssize_t
3951 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3952 {
3953 	char *e;
3954 	unsigned long n = simple_strtoul(buf, &e, 10);
3955 
3956 	if (*buf && (*e == 0 || *e == '\n')) {
3957 		atomic_set(&mddev->max_corr_read_errors, n);
3958 		return len;
3959 	}
3960 	return -EINVAL;
3961 }
3962 
3963 static struct md_sysfs_entry max_corr_read_errors =
3964 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3965 	max_corrected_read_errors_store);
3966 
3967 static ssize_t
3968 null_show(struct mddev *mddev, char *page)
3969 {
3970 	return -EINVAL;
3971 }
3972 
3973 static ssize_t
3974 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3975 {
3976 	/* buf must be %d:%d\n? giving major and minor numbers */
3977 	/* The new device is added to the array.
3978 	 * If the array has a persistent superblock, we read the
3979 	 * superblock to initialise info and check validity.
3980 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3981 	 * which mainly checks size.
3982 	 */
3983 	char *e;
3984 	int major = simple_strtoul(buf, &e, 10);
3985 	int minor;
3986 	dev_t dev;
3987 	struct md_rdev *rdev;
3988 	int err;
3989 
3990 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3991 		return -EINVAL;
3992 	minor = simple_strtoul(e+1, &e, 10);
3993 	if (*e && *e != '\n')
3994 		return -EINVAL;
3995 	dev = MKDEV(major, minor);
3996 	if (major != MAJOR(dev) ||
3997 	    minor != MINOR(dev))
3998 		return -EOVERFLOW;
3999 
4000 
4001 	if (mddev->persistent) {
4002 		rdev = md_import_device(dev, mddev->major_version,
4003 					mddev->minor_version);
4004 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4005 			struct md_rdev *rdev0
4006 				= list_entry(mddev->disks.next,
4007 					     struct md_rdev, same_set);
4008 			err = super_types[mddev->major_version]
4009 				.load_super(rdev, rdev0, mddev->minor_version);
4010 			if (err < 0)
4011 				goto out;
4012 		}
4013 	} else if (mddev->external)
4014 		rdev = md_import_device(dev, -2, -1);
4015 	else
4016 		rdev = md_import_device(dev, -1, -1);
4017 
4018 	if (IS_ERR(rdev))
4019 		return PTR_ERR(rdev);
4020 	err = bind_rdev_to_array(rdev, mddev);
4021  out:
4022 	if (err)
4023 		export_rdev(rdev);
4024 	return err ? err : len;
4025 }
4026 
4027 static struct md_sysfs_entry md_new_device =
4028 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4029 
4030 static ssize_t
4031 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4032 {
4033 	char *end;
4034 	unsigned long chunk, end_chunk;
4035 
4036 	if (!mddev->bitmap)
4037 		goto out;
4038 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4039 	while (*buf) {
4040 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4041 		if (buf == end) break;
4042 		if (*end == '-') { /* range */
4043 			buf = end + 1;
4044 			end_chunk = simple_strtoul(buf, &end, 0);
4045 			if (buf == end) break;
4046 		}
4047 		if (*end && !isspace(*end)) break;
4048 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4049 		buf = skip_spaces(end);
4050 	}
4051 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4052 out:
4053 	return len;
4054 }
4055 
4056 static struct md_sysfs_entry md_bitmap =
4057 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4058 
4059 static ssize_t
4060 size_show(struct mddev *mddev, char *page)
4061 {
4062 	return sprintf(page, "%llu\n",
4063 		(unsigned long long)mddev->dev_sectors / 2);
4064 }
4065 
4066 static int update_size(struct mddev *mddev, sector_t num_sectors);
4067 
4068 static ssize_t
4069 size_store(struct mddev *mddev, const char *buf, size_t len)
4070 {
4071 	/* If array is inactive, we can reduce the component size, but
4072 	 * not increase it (except from 0).
4073 	 * If array is active, we can try an on-line resize
4074 	 */
4075 	sector_t sectors;
4076 	int err = strict_blocks_to_sectors(buf, &sectors);
4077 
4078 	if (err < 0)
4079 		return err;
4080 	if (mddev->pers) {
4081 		err = update_size(mddev, sectors);
4082 		md_update_sb(mddev, 1);
4083 	} else {
4084 		if (mddev->dev_sectors == 0 ||
4085 		    mddev->dev_sectors > sectors)
4086 			mddev->dev_sectors = sectors;
4087 		else
4088 			err = -ENOSPC;
4089 	}
4090 	return err ? err : len;
4091 }
4092 
4093 static struct md_sysfs_entry md_size =
4094 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4095 
4096 
4097 /* Metadata version.
4098  * This is one of
4099  *   'none' for arrays with no metadata (good luck...)
4100  *   'external' for arrays with externally managed metadata,
4101  * or N.M for internally known formats
4102  */
4103 static ssize_t
4104 metadata_show(struct mddev *mddev, char *page)
4105 {
4106 	if (mddev->persistent)
4107 		return sprintf(page, "%d.%d\n",
4108 			       mddev->major_version, mddev->minor_version);
4109 	else if (mddev->external)
4110 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4111 	else
4112 		return sprintf(page, "none\n");
4113 }
4114 
4115 static ssize_t
4116 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4117 {
4118 	int major, minor;
4119 	char *e;
4120 	/* Changing the details of 'external' metadata is
4121 	 * always permitted.  Otherwise there must be
4122 	 * no devices attached to the array.
4123 	 */
4124 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4125 		;
4126 	else if (!list_empty(&mddev->disks))
4127 		return -EBUSY;
4128 
4129 	if (cmd_match(buf, "none")) {
4130 		mddev->persistent = 0;
4131 		mddev->external = 0;
4132 		mddev->major_version = 0;
4133 		mddev->minor_version = 90;
4134 		return len;
4135 	}
4136 	if (strncmp(buf, "external:", 9) == 0) {
4137 		size_t namelen = len-9;
4138 		if (namelen >= sizeof(mddev->metadata_type))
4139 			namelen = sizeof(mddev->metadata_type)-1;
4140 		strncpy(mddev->metadata_type, buf+9, namelen);
4141 		mddev->metadata_type[namelen] = 0;
4142 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4143 			mddev->metadata_type[--namelen] = 0;
4144 		mddev->persistent = 0;
4145 		mddev->external = 1;
4146 		mddev->major_version = 0;
4147 		mddev->minor_version = 90;
4148 		return len;
4149 	}
4150 	major = simple_strtoul(buf, &e, 10);
4151 	if (e==buf || *e != '.')
4152 		return -EINVAL;
4153 	buf = e+1;
4154 	minor = simple_strtoul(buf, &e, 10);
4155 	if (e==buf || (*e && *e != '\n') )
4156 		return -EINVAL;
4157 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4158 		return -ENOENT;
4159 	mddev->major_version = major;
4160 	mddev->minor_version = minor;
4161 	mddev->persistent = 1;
4162 	mddev->external = 0;
4163 	return len;
4164 }
4165 
4166 static struct md_sysfs_entry md_metadata =
4167 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4168 
4169 static ssize_t
4170 action_show(struct mddev *mddev, char *page)
4171 {
4172 	char *type = "idle";
4173 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4174 		type = "frozen";
4175 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4176 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4177 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4178 			type = "reshape";
4179 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4180 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4181 				type = "resync";
4182 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4183 				type = "check";
4184 			else
4185 				type = "repair";
4186 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4187 			type = "recover";
4188 	}
4189 	return sprintf(page, "%s\n", type);
4190 }
4191 
4192 static ssize_t
4193 action_store(struct mddev *mddev, const char *page, size_t len)
4194 {
4195 	if (!mddev->pers || !mddev->pers->sync_request)
4196 		return -EINVAL;
4197 
4198 	if (cmd_match(page, "frozen"))
4199 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4200 	else
4201 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4202 
4203 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4204 		if (mddev->sync_thread) {
4205 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4206 			md_reap_sync_thread(mddev);
4207 		}
4208 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4209 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4210 		return -EBUSY;
4211 	else if (cmd_match(page, "resync"))
4212 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4213 	else if (cmd_match(page, "recover")) {
4214 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4215 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4216 	} else if (cmd_match(page, "reshape")) {
4217 		int err;
4218 		if (mddev->pers->start_reshape == NULL)
4219 			return -EINVAL;
4220 		err = mddev->pers->start_reshape(mddev);
4221 		if (err)
4222 			return err;
4223 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4224 	} else {
4225 		if (cmd_match(page, "check"))
4226 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4227 		else if (!cmd_match(page, "repair"))
4228 			return -EINVAL;
4229 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4230 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4231 	}
4232 	if (mddev->ro == 2) {
4233 		/* A write to sync_action is enough to justify
4234 		 * canceling read-auto mode
4235 		 */
4236 		mddev->ro = 0;
4237 		md_wakeup_thread(mddev->sync_thread);
4238 	}
4239 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4240 	md_wakeup_thread(mddev->thread);
4241 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4242 	return len;
4243 }
4244 
4245 static struct md_sysfs_entry md_scan_mode =
4246 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4247 
4248 static ssize_t
4249 last_sync_action_show(struct mddev *mddev, char *page)
4250 {
4251 	return sprintf(page, "%s\n", mddev->last_sync_action);
4252 }
4253 
4254 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4255 
4256 static ssize_t
4257 mismatch_cnt_show(struct mddev *mddev, char *page)
4258 {
4259 	return sprintf(page, "%llu\n",
4260 		       (unsigned long long)
4261 		       atomic64_read(&mddev->resync_mismatches));
4262 }
4263 
4264 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4265 
4266 static ssize_t
4267 sync_min_show(struct mddev *mddev, char *page)
4268 {
4269 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4270 		       mddev->sync_speed_min ? "local": "system");
4271 }
4272 
4273 static ssize_t
4274 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4275 {
4276 	int min;
4277 	char *e;
4278 	if (strncmp(buf, "system", 6)==0) {
4279 		mddev->sync_speed_min = 0;
4280 		return len;
4281 	}
4282 	min = simple_strtoul(buf, &e, 10);
4283 	if (buf == e || (*e && *e != '\n') || min <= 0)
4284 		return -EINVAL;
4285 	mddev->sync_speed_min = min;
4286 	return len;
4287 }
4288 
4289 static struct md_sysfs_entry md_sync_min =
4290 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4291 
4292 static ssize_t
4293 sync_max_show(struct mddev *mddev, char *page)
4294 {
4295 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4296 		       mddev->sync_speed_max ? "local": "system");
4297 }
4298 
4299 static ssize_t
4300 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4301 {
4302 	int max;
4303 	char *e;
4304 	if (strncmp(buf, "system", 6)==0) {
4305 		mddev->sync_speed_max = 0;
4306 		return len;
4307 	}
4308 	max = simple_strtoul(buf, &e, 10);
4309 	if (buf == e || (*e && *e != '\n') || max <= 0)
4310 		return -EINVAL;
4311 	mddev->sync_speed_max = max;
4312 	return len;
4313 }
4314 
4315 static struct md_sysfs_entry md_sync_max =
4316 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4317 
4318 static ssize_t
4319 degraded_show(struct mddev *mddev, char *page)
4320 {
4321 	return sprintf(page, "%d\n", mddev->degraded);
4322 }
4323 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4324 
4325 static ssize_t
4326 sync_force_parallel_show(struct mddev *mddev, char *page)
4327 {
4328 	return sprintf(page, "%d\n", mddev->parallel_resync);
4329 }
4330 
4331 static ssize_t
4332 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4333 {
4334 	long n;
4335 
4336 	if (kstrtol(buf, 10, &n))
4337 		return -EINVAL;
4338 
4339 	if (n != 0 && n != 1)
4340 		return -EINVAL;
4341 
4342 	mddev->parallel_resync = n;
4343 
4344 	if (mddev->sync_thread)
4345 		wake_up(&resync_wait);
4346 
4347 	return len;
4348 }
4349 
4350 /* force parallel resync, even with shared block devices */
4351 static struct md_sysfs_entry md_sync_force_parallel =
4352 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4353        sync_force_parallel_show, sync_force_parallel_store);
4354 
4355 static ssize_t
4356 sync_speed_show(struct mddev *mddev, char *page)
4357 {
4358 	unsigned long resync, dt, db;
4359 	if (mddev->curr_resync == 0)
4360 		return sprintf(page, "none\n");
4361 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4362 	dt = (jiffies - mddev->resync_mark) / HZ;
4363 	if (!dt) dt++;
4364 	db = resync - mddev->resync_mark_cnt;
4365 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4366 }
4367 
4368 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4369 
4370 static ssize_t
4371 sync_completed_show(struct mddev *mddev, char *page)
4372 {
4373 	unsigned long long max_sectors, resync;
4374 
4375 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4376 		return sprintf(page, "none\n");
4377 
4378 	if (mddev->curr_resync == 1 ||
4379 	    mddev->curr_resync == 2)
4380 		return sprintf(page, "delayed\n");
4381 
4382 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4383 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4384 		max_sectors = mddev->resync_max_sectors;
4385 	else
4386 		max_sectors = mddev->dev_sectors;
4387 
4388 	resync = mddev->curr_resync_completed;
4389 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4390 }
4391 
4392 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4393 
4394 static ssize_t
4395 min_sync_show(struct mddev *mddev, char *page)
4396 {
4397 	return sprintf(page, "%llu\n",
4398 		       (unsigned long long)mddev->resync_min);
4399 }
4400 static ssize_t
4401 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4402 {
4403 	unsigned long long min;
4404 	if (kstrtoull(buf, 10, &min))
4405 		return -EINVAL;
4406 	if (min > mddev->resync_max)
4407 		return -EINVAL;
4408 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4409 		return -EBUSY;
4410 
4411 	/* Must be a multiple of chunk_size */
4412 	if (mddev->chunk_sectors) {
4413 		sector_t temp = min;
4414 		if (sector_div(temp, mddev->chunk_sectors))
4415 			return -EINVAL;
4416 	}
4417 	mddev->resync_min = min;
4418 
4419 	return len;
4420 }
4421 
4422 static struct md_sysfs_entry md_min_sync =
4423 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4424 
4425 static ssize_t
4426 max_sync_show(struct mddev *mddev, char *page)
4427 {
4428 	if (mddev->resync_max == MaxSector)
4429 		return sprintf(page, "max\n");
4430 	else
4431 		return sprintf(page, "%llu\n",
4432 			       (unsigned long long)mddev->resync_max);
4433 }
4434 static ssize_t
4435 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4436 {
4437 	if (strncmp(buf, "max", 3) == 0)
4438 		mddev->resync_max = MaxSector;
4439 	else {
4440 		unsigned long long max;
4441 		if (kstrtoull(buf, 10, &max))
4442 			return -EINVAL;
4443 		if (max < mddev->resync_min)
4444 			return -EINVAL;
4445 		if (max < mddev->resync_max &&
4446 		    mddev->ro == 0 &&
4447 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4448 			return -EBUSY;
4449 
4450 		/* Must be a multiple of chunk_size */
4451 		if (mddev->chunk_sectors) {
4452 			sector_t temp = max;
4453 			if (sector_div(temp, mddev->chunk_sectors))
4454 				return -EINVAL;
4455 		}
4456 		mddev->resync_max = max;
4457 	}
4458 	wake_up(&mddev->recovery_wait);
4459 	return len;
4460 }
4461 
4462 static struct md_sysfs_entry md_max_sync =
4463 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4464 
4465 static ssize_t
4466 suspend_lo_show(struct mddev *mddev, char *page)
4467 {
4468 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4469 }
4470 
4471 static ssize_t
4472 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4473 {
4474 	char *e;
4475 	unsigned long long new = simple_strtoull(buf, &e, 10);
4476 	unsigned long long old = mddev->suspend_lo;
4477 
4478 	if (mddev->pers == NULL ||
4479 	    mddev->pers->quiesce == NULL)
4480 		return -EINVAL;
4481 	if (buf == e || (*e && *e != '\n'))
4482 		return -EINVAL;
4483 
4484 	mddev->suspend_lo = new;
4485 	if (new >= old)
4486 		/* Shrinking suspended region */
4487 		mddev->pers->quiesce(mddev, 2);
4488 	else {
4489 		/* Expanding suspended region - need to wait */
4490 		mddev->pers->quiesce(mddev, 1);
4491 		mddev->pers->quiesce(mddev, 0);
4492 	}
4493 	return len;
4494 }
4495 static struct md_sysfs_entry md_suspend_lo =
4496 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4497 
4498 
4499 static ssize_t
4500 suspend_hi_show(struct mddev *mddev, char *page)
4501 {
4502 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4503 }
4504 
4505 static ssize_t
4506 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4507 {
4508 	char *e;
4509 	unsigned long long new = simple_strtoull(buf, &e, 10);
4510 	unsigned long long old = mddev->suspend_hi;
4511 
4512 	if (mddev->pers == NULL ||
4513 	    mddev->pers->quiesce == NULL)
4514 		return -EINVAL;
4515 	if (buf == e || (*e && *e != '\n'))
4516 		return -EINVAL;
4517 
4518 	mddev->suspend_hi = new;
4519 	if (new <= old)
4520 		/* Shrinking suspended region */
4521 		mddev->pers->quiesce(mddev, 2);
4522 	else {
4523 		/* Expanding suspended region - need to wait */
4524 		mddev->pers->quiesce(mddev, 1);
4525 		mddev->pers->quiesce(mddev, 0);
4526 	}
4527 	return len;
4528 }
4529 static struct md_sysfs_entry md_suspend_hi =
4530 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4531 
4532 static ssize_t
4533 reshape_position_show(struct mddev *mddev, char *page)
4534 {
4535 	if (mddev->reshape_position != MaxSector)
4536 		return sprintf(page, "%llu\n",
4537 			       (unsigned long long)mddev->reshape_position);
4538 	strcpy(page, "none\n");
4539 	return 5;
4540 }
4541 
4542 static ssize_t
4543 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4544 {
4545 	struct md_rdev *rdev;
4546 	char *e;
4547 	unsigned long long new = simple_strtoull(buf, &e, 10);
4548 	if (mddev->pers)
4549 		return -EBUSY;
4550 	if (buf == e || (*e && *e != '\n'))
4551 		return -EINVAL;
4552 	mddev->reshape_position = new;
4553 	mddev->delta_disks = 0;
4554 	mddev->reshape_backwards = 0;
4555 	mddev->new_level = mddev->level;
4556 	mddev->new_layout = mddev->layout;
4557 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4558 	rdev_for_each(rdev, mddev)
4559 		rdev->new_data_offset = rdev->data_offset;
4560 	return len;
4561 }
4562 
4563 static struct md_sysfs_entry md_reshape_position =
4564 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4565        reshape_position_store);
4566 
4567 static ssize_t
4568 reshape_direction_show(struct mddev *mddev, char *page)
4569 {
4570 	return sprintf(page, "%s\n",
4571 		       mddev->reshape_backwards ? "backwards" : "forwards");
4572 }
4573 
4574 static ssize_t
4575 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4576 {
4577 	int backwards = 0;
4578 	if (cmd_match(buf, "forwards"))
4579 		backwards = 0;
4580 	else if (cmd_match(buf, "backwards"))
4581 		backwards = 1;
4582 	else
4583 		return -EINVAL;
4584 	if (mddev->reshape_backwards == backwards)
4585 		return len;
4586 
4587 	/* check if we are allowed to change */
4588 	if (mddev->delta_disks)
4589 		return -EBUSY;
4590 
4591 	if (mddev->persistent &&
4592 	    mddev->major_version == 0)
4593 		return -EINVAL;
4594 
4595 	mddev->reshape_backwards = backwards;
4596 	return len;
4597 }
4598 
4599 static struct md_sysfs_entry md_reshape_direction =
4600 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4601        reshape_direction_store);
4602 
4603 static ssize_t
4604 array_size_show(struct mddev *mddev, char *page)
4605 {
4606 	if (mddev->external_size)
4607 		return sprintf(page, "%llu\n",
4608 			       (unsigned long long)mddev->array_sectors/2);
4609 	else
4610 		return sprintf(page, "default\n");
4611 }
4612 
4613 static ssize_t
4614 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4615 {
4616 	sector_t sectors;
4617 
4618 	if (strncmp(buf, "default", 7) == 0) {
4619 		if (mddev->pers)
4620 			sectors = mddev->pers->size(mddev, 0, 0);
4621 		else
4622 			sectors = mddev->array_sectors;
4623 
4624 		mddev->external_size = 0;
4625 	} else {
4626 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4627 			return -EINVAL;
4628 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4629 			return -E2BIG;
4630 
4631 		mddev->external_size = 1;
4632 	}
4633 
4634 	mddev->array_sectors = sectors;
4635 	if (mddev->pers) {
4636 		set_capacity(mddev->gendisk, mddev->array_sectors);
4637 		revalidate_disk(mddev->gendisk);
4638 	}
4639 	return len;
4640 }
4641 
4642 static struct md_sysfs_entry md_array_size =
4643 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4644        array_size_store);
4645 
4646 static struct attribute *md_default_attrs[] = {
4647 	&md_level.attr,
4648 	&md_layout.attr,
4649 	&md_raid_disks.attr,
4650 	&md_chunk_size.attr,
4651 	&md_size.attr,
4652 	&md_resync_start.attr,
4653 	&md_metadata.attr,
4654 	&md_new_device.attr,
4655 	&md_safe_delay.attr,
4656 	&md_array_state.attr,
4657 	&md_reshape_position.attr,
4658 	&md_reshape_direction.attr,
4659 	&md_array_size.attr,
4660 	&max_corr_read_errors.attr,
4661 	NULL,
4662 };
4663 
4664 static struct attribute *md_redundancy_attrs[] = {
4665 	&md_scan_mode.attr,
4666 	&md_last_scan_mode.attr,
4667 	&md_mismatches.attr,
4668 	&md_sync_min.attr,
4669 	&md_sync_max.attr,
4670 	&md_sync_speed.attr,
4671 	&md_sync_force_parallel.attr,
4672 	&md_sync_completed.attr,
4673 	&md_min_sync.attr,
4674 	&md_max_sync.attr,
4675 	&md_suspend_lo.attr,
4676 	&md_suspend_hi.attr,
4677 	&md_bitmap.attr,
4678 	&md_degraded.attr,
4679 	NULL,
4680 };
4681 static struct attribute_group md_redundancy_group = {
4682 	.name = NULL,
4683 	.attrs = md_redundancy_attrs,
4684 };
4685 
4686 
4687 static ssize_t
4688 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4689 {
4690 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4691 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4692 	ssize_t rv;
4693 
4694 	if (!entry->show)
4695 		return -EIO;
4696 	spin_lock(&all_mddevs_lock);
4697 	if (list_empty(&mddev->all_mddevs)) {
4698 		spin_unlock(&all_mddevs_lock);
4699 		return -EBUSY;
4700 	}
4701 	mddev_get(mddev);
4702 	spin_unlock(&all_mddevs_lock);
4703 
4704 	rv = mddev_lock(mddev);
4705 	if (!rv) {
4706 		rv = entry->show(mddev, page);
4707 		mddev_unlock(mddev);
4708 	}
4709 	mddev_put(mddev);
4710 	return rv;
4711 }
4712 
4713 static ssize_t
4714 md_attr_store(struct kobject *kobj, struct attribute *attr,
4715 	      const char *page, size_t length)
4716 {
4717 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4718 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4719 	ssize_t rv;
4720 
4721 	if (!entry->store)
4722 		return -EIO;
4723 	if (!capable(CAP_SYS_ADMIN))
4724 		return -EACCES;
4725 	spin_lock(&all_mddevs_lock);
4726 	if (list_empty(&mddev->all_mddevs)) {
4727 		spin_unlock(&all_mddevs_lock);
4728 		return -EBUSY;
4729 	}
4730 	mddev_get(mddev);
4731 	spin_unlock(&all_mddevs_lock);
4732 	if (entry->store == new_dev_store)
4733 		flush_workqueue(md_misc_wq);
4734 	rv = mddev_lock(mddev);
4735 	if (!rv) {
4736 		rv = entry->store(mddev, page, length);
4737 		mddev_unlock(mddev);
4738 	}
4739 	mddev_put(mddev);
4740 	return rv;
4741 }
4742 
4743 static void md_free(struct kobject *ko)
4744 {
4745 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4746 
4747 	if (mddev->sysfs_state)
4748 		sysfs_put(mddev->sysfs_state);
4749 
4750 	if (mddev->gendisk) {
4751 		del_gendisk(mddev->gendisk);
4752 		put_disk(mddev->gendisk);
4753 	}
4754 	if (mddev->queue)
4755 		blk_cleanup_queue(mddev->queue);
4756 
4757 	kfree(mddev);
4758 }
4759 
4760 static const struct sysfs_ops md_sysfs_ops = {
4761 	.show	= md_attr_show,
4762 	.store	= md_attr_store,
4763 };
4764 static struct kobj_type md_ktype = {
4765 	.release	= md_free,
4766 	.sysfs_ops	= &md_sysfs_ops,
4767 	.default_attrs	= md_default_attrs,
4768 };
4769 
4770 int mdp_major = 0;
4771 
4772 static void mddev_delayed_delete(struct work_struct *ws)
4773 {
4774 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4775 
4776 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4777 	kobject_del(&mddev->kobj);
4778 	kobject_put(&mddev->kobj);
4779 }
4780 
4781 static int md_alloc(dev_t dev, char *name)
4782 {
4783 	static DEFINE_MUTEX(disks_mutex);
4784 	struct mddev *mddev = mddev_find(dev);
4785 	struct gendisk *disk;
4786 	int partitioned;
4787 	int shift;
4788 	int unit;
4789 	int error;
4790 
4791 	if (!mddev)
4792 		return -ENODEV;
4793 
4794 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4795 	shift = partitioned ? MdpMinorShift : 0;
4796 	unit = MINOR(mddev->unit) >> shift;
4797 
4798 	/* wait for any previous instance of this device to be
4799 	 * completely removed (mddev_delayed_delete).
4800 	 */
4801 	flush_workqueue(md_misc_wq);
4802 
4803 	mutex_lock(&disks_mutex);
4804 	error = -EEXIST;
4805 	if (mddev->gendisk)
4806 		goto abort;
4807 
4808 	if (name) {
4809 		/* Need to ensure that 'name' is not a duplicate.
4810 		 */
4811 		struct mddev *mddev2;
4812 		spin_lock(&all_mddevs_lock);
4813 
4814 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4815 			if (mddev2->gendisk &&
4816 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4817 				spin_unlock(&all_mddevs_lock);
4818 				goto abort;
4819 			}
4820 		spin_unlock(&all_mddevs_lock);
4821 	}
4822 
4823 	error = -ENOMEM;
4824 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4825 	if (!mddev->queue)
4826 		goto abort;
4827 	mddev->queue->queuedata = mddev;
4828 
4829 	blk_queue_make_request(mddev->queue, md_make_request);
4830 	blk_set_stacking_limits(&mddev->queue->limits);
4831 
4832 	disk = alloc_disk(1 << shift);
4833 	if (!disk) {
4834 		blk_cleanup_queue(mddev->queue);
4835 		mddev->queue = NULL;
4836 		goto abort;
4837 	}
4838 	disk->major = MAJOR(mddev->unit);
4839 	disk->first_minor = unit << shift;
4840 	if (name)
4841 		strcpy(disk->disk_name, name);
4842 	else if (partitioned)
4843 		sprintf(disk->disk_name, "md_d%d", unit);
4844 	else
4845 		sprintf(disk->disk_name, "md%d", unit);
4846 	disk->fops = &md_fops;
4847 	disk->private_data = mddev;
4848 	disk->queue = mddev->queue;
4849 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4850 	/* Allow extended partitions.  This makes the
4851 	 * 'mdp' device redundant, but we can't really
4852 	 * remove it now.
4853 	 */
4854 	disk->flags |= GENHD_FL_EXT_DEVT;
4855 	mddev->gendisk = disk;
4856 	/* As soon as we call add_disk(), another thread could get
4857 	 * through to md_open, so make sure it doesn't get too far
4858 	 */
4859 	mutex_lock(&mddev->open_mutex);
4860 	add_disk(disk);
4861 
4862 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4863 				     &disk_to_dev(disk)->kobj, "%s", "md");
4864 	if (error) {
4865 		/* This isn't possible, but as kobject_init_and_add is marked
4866 		 * __must_check, we must do something with the result
4867 		 */
4868 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4869 		       disk->disk_name);
4870 		error = 0;
4871 	}
4872 	if (mddev->kobj.sd &&
4873 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4874 		printk(KERN_DEBUG "pointless warning\n");
4875 	mutex_unlock(&mddev->open_mutex);
4876  abort:
4877 	mutex_unlock(&disks_mutex);
4878 	if (!error && mddev->kobj.sd) {
4879 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4880 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4881 	}
4882 	mddev_put(mddev);
4883 	return error;
4884 }
4885 
4886 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4887 {
4888 	md_alloc(dev, NULL);
4889 	return NULL;
4890 }
4891 
4892 static int add_named_array(const char *val, struct kernel_param *kp)
4893 {
4894 	/* val must be "md_*" where * is not all digits.
4895 	 * We allocate an array with a large free minor number, and
4896 	 * set the name to val.  val must not already be an active name.
4897 	 */
4898 	int len = strlen(val);
4899 	char buf[DISK_NAME_LEN];
4900 
4901 	while (len && val[len-1] == '\n')
4902 		len--;
4903 	if (len >= DISK_NAME_LEN)
4904 		return -E2BIG;
4905 	strlcpy(buf, val, len+1);
4906 	if (strncmp(buf, "md_", 3) != 0)
4907 		return -EINVAL;
4908 	return md_alloc(0, buf);
4909 }
4910 
4911 static void md_safemode_timeout(unsigned long data)
4912 {
4913 	struct mddev *mddev = (struct mddev *) data;
4914 
4915 	if (!atomic_read(&mddev->writes_pending)) {
4916 		mddev->safemode = 1;
4917 		if (mddev->external)
4918 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4919 	}
4920 	md_wakeup_thread(mddev->thread);
4921 }
4922 
4923 static int start_dirty_degraded;
4924 
4925 int md_run(struct mddev *mddev)
4926 {
4927 	int err;
4928 	struct md_rdev *rdev;
4929 	struct md_personality *pers;
4930 
4931 	if (list_empty(&mddev->disks))
4932 		/* cannot run an array with no devices.. */
4933 		return -EINVAL;
4934 
4935 	if (mddev->pers)
4936 		return -EBUSY;
4937 	/* Cannot run until previous stop completes properly */
4938 	if (mddev->sysfs_active)
4939 		return -EBUSY;
4940 
4941 	/*
4942 	 * Analyze all RAID superblock(s)
4943 	 */
4944 	if (!mddev->raid_disks) {
4945 		if (!mddev->persistent)
4946 			return -EINVAL;
4947 		analyze_sbs(mddev);
4948 	}
4949 
4950 	if (mddev->level != LEVEL_NONE)
4951 		request_module("md-level-%d", mddev->level);
4952 	else if (mddev->clevel[0])
4953 		request_module("md-%s", mddev->clevel);
4954 
4955 	/*
4956 	 * Drop all container device buffers, from now on
4957 	 * the only valid external interface is through the md
4958 	 * device.
4959 	 */
4960 	rdev_for_each(rdev, mddev) {
4961 		if (test_bit(Faulty, &rdev->flags))
4962 			continue;
4963 		sync_blockdev(rdev->bdev);
4964 		invalidate_bdev(rdev->bdev);
4965 
4966 		/* perform some consistency tests on the device.
4967 		 * We don't want the data to overlap the metadata,
4968 		 * Internal Bitmap issues have been handled elsewhere.
4969 		 */
4970 		if (rdev->meta_bdev) {
4971 			/* Nothing to check */;
4972 		} else if (rdev->data_offset < rdev->sb_start) {
4973 			if (mddev->dev_sectors &&
4974 			    rdev->data_offset + mddev->dev_sectors
4975 			    > rdev->sb_start) {
4976 				printk("md: %s: data overlaps metadata\n",
4977 				       mdname(mddev));
4978 				return -EINVAL;
4979 			}
4980 		} else {
4981 			if (rdev->sb_start + rdev->sb_size/512
4982 			    > rdev->data_offset) {
4983 				printk("md: %s: metadata overlaps data\n",
4984 				       mdname(mddev));
4985 				return -EINVAL;
4986 			}
4987 		}
4988 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4989 	}
4990 
4991 	if (mddev->bio_set == NULL)
4992 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4993 
4994 	spin_lock(&pers_lock);
4995 	pers = find_pers(mddev->level, mddev->clevel);
4996 	if (!pers || !try_module_get(pers->owner)) {
4997 		spin_unlock(&pers_lock);
4998 		if (mddev->level != LEVEL_NONE)
4999 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5000 			       mddev->level);
5001 		else
5002 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5003 			       mddev->clevel);
5004 		return -EINVAL;
5005 	}
5006 	mddev->pers = pers;
5007 	spin_unlock(&pers_lock);
5008 	if (mddev->level != pers->level) {
5009 		mddev->level = pers->level;
5010 		mddev->new_level = pers->level;
5011 	}
5012 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5013 
5014 	if (mddev->reshape_position != MaxSector &&
5015 	    pers->start_reshape == NULL) {
5016 		/* This personality cannot handle reshaping... */
5017 		mddev->pers = NULL;
5018 		module_put(pers->owner);
5019 		return -EINVAL;
5020 	}
5021 
5022 	if (pers->sync_request) {
5023 		/* Warn if this is a potentially silly
5024 		 * configuration.
5025 		 */
5026 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5027 		struct md_rdev *rdev2;
5028 		int warned = 0;
5029 
5030 		rdev_for_each(rdev, mddev)
5031 			rdev_for_each(rdev2, mddev) {
5032 				if (rdev < rdev2 &&
5033 				    rdev->bdev->bd_contains ==
5034 				    rdev2->bdev->bd_contains) {
5035 					printk(KERN_WARNING
5036 					       "%s: WARNING: %s appears to be"
5037 					       " on the same physical disk as"
5038 					       " %s.\n",
5039 					       mdname(mddev),
5040 					       bdevname(rdev->bdev,b),
5041 					       bdevname(rdev2->bdev,b2));
5042 					warned = 1;
5043 				}
5044 			}
5045 
5046 		if (warned)
5047 			printk(KERN_WARNING
5048 			       "True protection against single-disk"
5049 			       " failure might be compromised.\n");
5050 	}
5051 
5052 	mddev->recovery = 0;
5053 	/* may be over-ridden by personality */
5054 	mddev->resync_max_sectors = mddev->dev_sectors;
5055 
5056 	mddev->ok_start_degraded = start_dirty_degraded;
5057 
5058 	if (start_readonly && mddev->ro == 0)
5059 		mddev->ro = 2; /* read-only, but switch on first write */
5060 
5061 	err = mddev->pers->run(mddev);
5062 	if (err)
5063 		printk(KERN_ERR "md: pers->run() failed ...\n");
5064 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5065 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5066 			  " but 'external_size' not in effect?\n", __func__);
5067 		printk(KERN_ERR
5068 		       "md: invalid array_size %llu > default size %llu\n",
5069 		       (unsigned long long)mddev->array_sectors / 2,
5070 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5071 		err = -EINVAL;
5072 		mddev->pers->stop(mddev);
5073 	}
5074 	if (err == 0 && mddev->pers->sync_request &&
5075 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5076 		err = bitmap_create(mddev);
5077 		if (err) {
5078 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5079 			       mdname(mddev), err);
5080 			mddev->pers->stop(mddev);
5081 		}
5082 	}
5083 	if (err) {
5084 		module_put(mddev->pers->owner);
5085 		mddev->pers = NULL;
5086 		bitmap_destroy(mddev);
5087 		return err;
5088 	}
5089 	if (mddev->pers->sync_request) {
5090 		if (mddev->kobj.sd &&
5091 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5092 			printk(KERN_WARNING
5093 			       "md: cannot register extra attributes for %s\n",
5094 			       mdname(mddev));
5095 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5096 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5097 		mddev->ro = 0;
5098 
5099  	atomic_set(&mddev->writes_pending,0);
5100 	atomic_set(&mddev->max_corr_read_errors,
5101 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5102 	mddev->safemode = 0;
5103 	mddev->safemode_timer.function = md_safemode_timeout;
5104 	mddev->safemode_timer.data = (unsigned long) mddev;
5105 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5106 	mddev->in_sync = 1;
5107 	smp_wmb();
5108 	mddev->ready = 1;
5109 	rdev_for_each(rdev, mddev)
5110 		if (rdev->raid_disk >= 0)
5111 			if (sysfs_link_rdev(mddev, rdev))
5112 				/* failure here is OK */;
5113 
5114 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5115 
5116 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5117 		md_update_sb(mddev, 0);
5118 
5119 	md_new_event(mddev);
5120 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5121 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5122 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5123 	return 0;
5124 }
5125 EXPORT_SYMBOL_GPL(md_run);
5126 
5127 static int do_md_run(struct mddev *mddev)
5128 {
5129 	int err;
5130 
5131 	err = md_run(mddev);
5132 	if (err)
5133 		goto out;
5134 	err = bitmap_load(mddev);
5135 	if (err) {
5136 		bitmap_destroy(mddev);
5137 		goto out;
5138 	}
5139 
5140 	md_wakeup_thread(mddev->thread);
5141 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5142 
5143 	set_capacity(mddev->gendisk, mddev->array_sectors);
5144 	revalidate_disk(mddev->gendisk);
5145 	mddev->changed = 1;
5146 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5147 out:
5148 	return err;
5149 }
5150 
5151 static int restart_array(struct mddev *mddev)
5152 {
5153 	struct gendisk *disk = mddev->gendisk;
5154 
5155 	/* Complain if it has no devices */
5156 	if (list_empty(&mddev->disks))
5157 		return -ENXIO;
5158 	if (!mddev->pers)
5159 		return -EINVAL;
5160 	if (!mddev->ro)
5161 		return -EBUSY;
5162 	mddev->safemode = 0;
5163 	mddev->ro = 0;
5164 	set_disk_ro(disk, 0);
5165 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5166 		mdname(mddev));
5167 	/* Kick recovery or resync if necessary */
5168 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5169 	md_wakeup_thread(mddev->thread);
5170 	md_wakeup_thread(mddev->sync_thread);
5171 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5172 	return 0;
5173 }
5174 
5175 /* similar to deny_write_access, but accounts for our holding a reference
5176  * to the file ourselves */
5177 static int deny_bitmap_write_access(struct file * file)
5178 {
5179 	struct inode *inode = file->f_mapping->host;
5180 
5181 	spin_lock(&inode->i_lock);
5182 	if (atomic_read(&inode->i_writecount) > 1) {
5183 		spin_unlock(&inode->i_lock);
5184 		return -ETXTBSY;
5185 	}
5186 	atomic_set(&inode->i_writecount, -1);
5187 	spin_unlock(&inode->i_lock);
5188 
5189 	return 0;
5190 }
5191 
5192 void restore_bitmap_write_access(struct file *file)
5193 {
5194 	struct inode *inode = file->f_mapping->host;
5195 
5196 	spin_lock(&inode->i_lock);
5197 	atomic_set(&inode->i_writecount, 1);
5198 	spin_unlock(&inode->i_lock);
5199 }
5200 
5201 static void md_clean(struct mddev *mddev)
5202 {
5203 	mddev->array_sectors = 0;
5204 	mddev->external_size = 0;
5205 	mddev->dev_sectors = 0;
5206 	mddev->raid_disks = 0;
5207 	mddev->recovery_cp = 0;
5208 	mddev->resync_min = 0;
5209 	mddev->resync_max = MaxSector;
5210 	mddev->reshape_position = MaxSector;
5211 	mddev->external = 0;
5212 	mddev->persistent = 0;
5213 	mddev->level = LEVEL_NONE;
5214 	mddev->clevel[0] = 0;
5215 	mddev->flags = 0;
5216 	mddev->ro = 0;
5217 	mddev->metadata_type[0] = 0;
5218 	mddev->chunk_sectors = 0;
5219 	mddev->ctime = mddev->utime = 0;
5220 	mddev->layout = 0;
5221 	mddev->max_disks = 0;
5222 	mddev->events = 0;
5223 	mddev->can_decrease_events = 0;
5224 	mddev->delta_disks = 0;
5225 	mddev->reshape_backwards = 0;
5226 	mddev->new_level = LEVEL_NONE;
5227 	mddev->new_layout = 0;
5228 	mddev->new_chunk_sectors = 0;
5229 	mddev->curr_resync = 0;
5230 	atomic64_set(&mddev->resync_mismatches, 0);
5231 	mddev->suspend_lo = mddev->suspend_hi = 0;
5232 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5233 	mddev->recovery = 0;
5234 	mddev->in_sync = 0;
5235 	mddev->changed = 0;
5236 	mddev->degraded = 0;
5237 	mddev->safemode = 0;
5238 	mddev->merge_check_needed = 0;
5239 	mddev->bitmap_info.offset = 0;
5240 	mddev->bitmap_info.default_offset = 0;
5241 	mddev->bitmap_info.default_space = 0;
5242 	mddev->bitmap_info.chunksize = 0;
5243 	mddev->bitmap_info.daemon_sleep = 0;
5244 	mddev->bitmap_info.max_write_behind = 0;
5245 }
5246 
5247 static void __md_stop_writes(struct mddev *mddev)
5248 {
5249 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5250 	if (mddev->sync_thread) {
5251 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5252 		md_reap_sync_thread(mddev);
5253 	}
5254 
5255 	del_timer_sync(&mddev->safemode_timer);
5256 
5257 	bitmap_flush(mddev);
5258 	md_super_wait(mddev);
5259 
5260 	if (mddev->ro == 0 &&
5261 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5262 		/* mark array as shutdown cleanly */
5263 		mddev->in_sync = 1;
5264 		md_update_sb(mddev, 1);
5265 	}
5266 }
5267 
5268 void md_stop_writes(struct mddev *mddev)
5269 {
5270 	mddev_lock_nointr(mddev);
5271 	__md_stop_writes(mddev);
5272 	mddev_unlock(mddev);
5273 }
5274 EXPORT_SYMBOL_GPL(md_stop_writes);
5275 
5276 static void __md_stop(struct mddev *mddev)
5277 {
5278 	mddev->ready = 0;
5279 	mddev->pers->stop(mddev);
5280 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5281 		mddev->to_remove = &md_redundancy_group;
5282 	module_put(mddev->pers->owner);
5283 	mddev->pers = NULL;
5284 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5285 }
5286 
5287 void md_stop(struct mddev *mddev)
5288 {
5289 	/* stop the array and free an attached data structures.
5290 	 * This is called from dm-raid
5291 	 */
5292 	__md_stop(mddev);
5293 	bitmap_destroy(mddev);
5294 	if (mddev->bio_set)
5295 		bioset_free(mddev->bio_set);
5296 }
5297 
5298 EXPORT_SYMBOL_GPL(md_stop);
5299 
5300 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5301 {
5302 	int err = 0;
5303 	int did_freeze = 0;
5304 
5305 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5306 		did_freeze = 1;
5307 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5308 		md_wakeup_thread(mddev->thread);
5309 	}
5310 	if (mddev->sync_thread) {
5311 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5312 		/* Thread might be blocked waiting for metadata update
5313 		 * which will now never happen */
5314 		wake_up_process(mddev->sync_thread->tsk);
5315 	}
5316 	mddev_unlock(mddev);
5317 	wait_event(resync_wait, mddev->sync_thread == NULL);
5318 	mddev_lock_nointr(mddev);
5319 
5320 	mutex_lock(&mddev->open_mutex);
5321 	if (atomic_read(&mddev->openers) > !!bdev ||
5322 	    mddev->sync_thread ||
5323 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5324 		printk("md: %s still in use.\n",mdname(mddev));
5325 		if (did_freeze) {
5326 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5327 			md_wakeup_thread(mddev->thread);
5328 		}
5329 		err = -EBUSY;
5330 		goto out;
5331 	}
5332 	if (mddev->pers) {
5333 		__md_stop_writes(mddev);
5334 
5335 		err  = -ENXIO;
5336 		if (mddev->ro==1)
5337 			goto out;
5338 		mddev->ro = 1;
5339 		set_disk_ro(mddev->gendisk, 1);
5340 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5341 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5342 		err = 0;
5343 	}
5344 out:
5345 	mutex_unlock(&mddev->open_mutex);
5346 	return err;
5347 }
5348 
5349 /* mode:
5350  *   0 - completely stop and dis-assemble array
5351  *   2 - stop but do not disassemble array
5352  */
5353 static int do_md_stop(struct mddev * mddev, int mode,
5354 		      struct block_device *bdev)
5355 {
5356 	struct gendisk *disk = mddev->gendisk;
5357 	struct md_rdev *rdev;
5358 	int did_freeze = 0;
5359 
5360 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5361 		did_freeze = 1;
5362 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5363 		md_wakeup_thread(mddev->thread);
5364 	}
5365 	if (mddev->sync_thread) {
5366 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5367 		/* Thread might be blocked waiting for metadata update
5368 		 * which will now never happen */
5369 		wake_up_process(mddev->sync_thread->tsk);
5370 	}
5371 	mddev_unlock(mddev);
5372 	wait_event(resync_wait, mddev->sync_thread == NULL);
5373 	mddev_lock_nointr(mddev);
5374 
5375 	mutex_lock(&mddev->open_mutex);
5376 	if (atomic_read(&mddev->openers) > !!bdev ||
5377 	    mddev->sysfs_active ||
5378 	    mddev->sync_thread ||
5379 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5380 		printk("md: %s still in use.\n",mdname(mddev));
5381 		mutex_unlock(&mddev->open_mutex);
5382 		if (did_freeze) {
5383 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5384 			md_wakeup_thread(mddev->thread);
5385 		}
5386 		return -EBUSY;
5387 	}
5388 	if (mddev->pers) {
5389 		if (mddev->ro)
5390 			set_disk_ro(disk, 0);
5391 
5392 		__md_stop_writes(mddev);
5393 		__md_stop(mddev);
5394 		mddev->queue->merge_bvec_fn = NULL;
5395 		mddev->queue->backing_dev_info.congested_fn = NULL;
5396 
5397 		/* tell userspace to handle 'inactive' */
5398 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5399 
5400 		rdev_for_each(rdev, mddev)
5401 			if (rdev->raid_disk >= 0)
5402 				sysfs_unlink_rdev(mddev, rdev);
5403 
5404 		set_capacity(disk, 0);
5405 		mutex_unlock(&mddev->open_mutex);
5406 		mddev->changed = 1;
5407 		revalidate_disk(disk);
5408 
5409 		if (mddev->ro)
5410 			mddev->ro = 0;
5411 	} else
5412 		mutex_unlock(&mddev->open_mutex);
5413 	/*
5414 	 * Free resources if final stop
5415 	 */
5416 	if (mode == 0) {
5417 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5418 
5419 		bitmap_destroy(mddev);
5420 		if (mddev->bitmap_info.file) {
5421 			restore_bitmap_write_access(mddev->bitmap_info.file);
5422 			fput(mddev->bitmap_info.file);
5423 			mddev->bitmap_info.file = NULL;
5424 		}
5425 		mddev->bitmap_info.offset = 0;
5426 
5427 		export_array(mddev);
5428 
5429 		md_clean(mddev);
5430 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5431 		if (mddev->hold_active == UNTIL_STOP)
5432 			mddev->hold_active = 0;
5433 	}
5434 	blk_integrity_unregister(disk);
5435 	md_new_event(mddev);
5436 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5437 	return 0;
5438 }
5439 
5440 #ifndef MODULE
5441 static void autorun_array(struct mddev *mddev)
5442 {
5443 	struct md_rdev *rdev;
5444 	int err;
5445 
5446 	if (list_empty(&mddev->disks))
5447 		return;
5448 
5449 	printk(KERN_INFO "md: running: ");
5450 
5451 	rdev_for_each(rdev, mddev) {
5452 		char b[BDEVNAME_SIZE];
5453 		printk("<%s>", bdevname(rdev->bdev,b));
5454 	}
5455 	printk("\n");
5456 
5457 	err = do_md_run(mddev);
5458 	if (err) {
5459 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5460 		do_md_stop(mddev, 0, NULL);
5461 	}
5462 }
5463 
5464 /*
5465  * lets try to run arrays based on all disks that have arrived
5466  * until now. (those are in pending_raid_disks)
5467  *
5468  * the method: pick the first pending disk, collect all disks with
5469  * the same UUID, remove all from the pending list and put them into
5470  * the 'same_array' list. Then order this list based on superblock
5471  * update time (freshest comes first), kick out 'old' disks and
5472  * compare superblocks. If everything's fine then run it.
5473  *
5474  * If "unit" is allocated, then bump its reference count
5475  */
5476 static void autorun_devices(int part)
5477 {
5478 	struct md_rdev *rdev0, *rdev, *tmp;
5479 	struct mddev *mddev;
5480 	char b[BDEVNAME_SIZE];
5481 
5482 	printk(KERN_INFO "md: autorun ...\n");
5483 	while (!list_empty(&pending_raid_disks)) {
5484 		int unit;
5485 		dev_t dev;
5486 		LIST_HEAD(candidates);
5487 		rdev0 = list_entry(pending_raid_disks.next,
5488 					 struct md_rdev, same_set);
5489 
5490 		printk(KERN_INFO "md: considering %s ...\n",
5491 			bdevname(rdev0->bdev,b));
5492 		INIT_LIST_HEAD(&candidates);
5493 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5494 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5495 				printk(KERN_INFO "md:  adding %s ...\n",
5496 					bdevname(rdev->bdev,b));
5497 				list_move(&rdev->same_set, &candidates);
5498 			}
5499 		/*
5500 		 * now we have a set of devices, with all of them having
5501 		 * mostly sane superblocks. It's time to allocate the
5502 		 * mddev.
5503 		 */
5504 		if (part) {
5505 			dev = MKDEV(mdp_major,
5506 				    rdev0->preferred_minor << MdpMinorShift);
5507 			unit = MINOR(dev) >> MdpMinorShift;
5508 		} else {
5509 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5510 			unit = MINOR(dev);
5511 		}
5512 		if (rdev0->preferred_minor != unit) {
5513 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5514 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5515 			break;
5516 		}
5517 
5518 		md_probe(dev, NULL, NULL);
5519 		mddev = mddev_find(dev);
5520 		if (!mddev || !mddev->gendisk) {
5521 			if (mddev)
5522 				mddev_put(mddev);
5523 			printk(KERN_ERR
5524 				"md: cannot allocate memory for md drive.\n");
5525 			break;
5526 		}
5527 		if (mddev_lock(mddev))
5528 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5529 			       mdname(mddev));
5530 		else if (mddev->raid_disks || mddev->major_version
5531 			 || !list_empty(&mddev->disks)) {
5532 			printk(KERN_WARNING
5533 				"md: %s already running, cannot run %s\n",
5534 				mdname(mddev), bdevname(rdev0->bdev,b));
5535 			mddev_unlock(mddev);
5536 		} else {
5537 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5538 			mddev->persistent = 1;
5539 			rdev_for_each_list(rdev, tmp, &candidates) {
5540 				list_del_init(&rdev->same_set);
5541 				if (bind_rdev_to_array(rdev, mddev))
5542 					export_rdev(rdev);
5543 			}
5544 			autorun_array(mddev);
5545 			mddev_unlock(mddev);
5546 		}
5547 		/* on success, candidates will be empty, on error
5548 		 * it won't...
5549 		 */
5550 		rdev_for_each_list(rdev, tmp, &candidates) {
5551 			list_del_init(&rdev->same_set);
5552 			export_rdev(rdev);
5553 		}
5554 		mddev_put(mddev);
5555 	}
5556 	printk(KERN_INFO "md: ... autorun DONE.\n");
5557 }
5558 #endif /* !MODULE */
5559 
5560 static int get_version(void __user * arg)
5561 {
5562 	mdu_version_t ver;
5563 
5564 	ver.major = MD_MAJOR_VERSION;
5565 	ver.minor = MD_MINOR_VERSION;
5566 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5567 
5568 	if (copy_to_user(arg, &ver, sizeof(ver)))
5569 		return -EFAULT;
5570 
5571 	return 0;
5572 }
5573 
5574 static int get_array_info(struct mddev * mddev, void __user * arg)
5575 {
5576 	mdu_array_info_t info;
5577 	int nr,working,insync,failed,spare;
5578 	struct md_rdev *rdev;
5579 
5580 	nr = working = insync = failed = spare = 0;
5581 	rcu_read_lock();
5582 	rdev_for_each_rcu(rdev, mddev) {
5583 		nr++;
5584 		if (test_bit(Faulty, &rdev->flags))
5585 			failed++;
5586 		else {
5587 			working++;
5588 			if (test_bit(In_sync, &rdev->flags))
5589 				insync++;
5590 			else
5591 				spare++;
5592 		}
5593 	}
5594 	rcu_read_unlock();
5595 
5596 	info.major_version = mddev->major_version;
5597 	info.minor_version = mddev->minor_version;
5598 	info.patch_version = MD_PATCHLEVEL_VERSION;
5599 	info.ctime         = mddev->ctime;
5600 	info.level         = mddev->level;
5601 	info.size          = mddev->dev_sectors / 2;
5602 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5603 		info.size = -1;
5604 	info.nr_disks      = nr;
5605 	info.raid_disks    = mddev->raid_disks;
5606 	info.md_minor      = mddev->md_minor;
5607 	info.not_persistent= !mddev->persistent;
5608 
5609 	info.utime         = mddev->utime;
5610 	info.state         = 0;
5611 	if (mddev->in_sync)
5612 		info.state = (1<<MD_SB_CLEAN);
5613 	if (mddev->bitmap && mddev->bitmap_info.offset)
5614 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5615 	info.active_disks  = insync;
5616 	info.working_disks = working;
5617 	info.failed_disks  = failed;
5618 	info.spare_disks   = spare;
5619 
5620 	info.layout        = mddev->layout;
5621 	info.chunk_size    = mddev->chunk_sectors << 9;
5622 
5623 	if (copy_to_user(arg, &info, sizeof(info)))
5624 		return -EFAULT;
5625 
5626 	return 0;
5627 }
5628 
5629 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5630 {
5631 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5632 	char *ptr, *buf = NULL;
5633 	int err = -ENOMEM;
5634 
5635 	file = kmalloc(sizeof(*file), GFP_NOIO);
5636 
5637 	if (!file)
5638 		goto out;
5639 
5640 	/* bitmap disabled, zero the first byte and copy out */
5641 	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5642 		file->pathname[0] = '\0';
5643 		goto copy_out;
5644 	}
5645 
5646 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5647 	if (!buf)
5648 		goto out;
5649 
5650 	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5651 		     buf, sizeof(file->pathname));
5652 	if (IS_ERR(ptr))
5653 		goto out;
5654 
5655 	strcpy(file->pathname, ptr);
5656 
5657 copy_out:
5658 	err = 0;
5659 	if (copy_to_user(arg, file, sizeof(*file)))
5660 		err = -EFAULT;
5661 out:
5662 	kfree(buf);
5663 	kfree(file);
5664 	return err;
5665 }
5666 
5667 static int get_disk_info(struct mddev * mddev, void __user * arg)
5668 {
5669 	mdu_disk_info_t info;
5670 	struct md_rdev *rdev;
5671 
5672 	if (copy_from_user(&info, arg, sizeof(info)))
5673 		return -EFAULT;
5674 
5675 	rcu_read_lock();
5676 	rdev = find_rdev_nr_rcu(mddev, info.number);
5677 	if (rdev) {
5678 		info.major = MAJOR(rdev->bdev->bd_dev);
5679 		info.minor = MINOR(rdev->bdev->bd_dev);
5680 		info.raid_disk = rdev->raid_disk;
5681 		info.state = 0;
5682 		if (test_bit(Faulty, &rdev->flags))
5683 			info.state |= (1<<MD_DISK_FAULTY);
5684 		else if (test_bit(In_sync, &rdev->flags)) {
5685 			info.state |= (1<<MD_DISK_ACTIVE);
5686 			info.state |= (1<<MD_DISK_SYNC);
5687 		}
5688 		if (test_bit(WriteMostly, &rdev->flags))
5689 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5690 	} else {
5691 		info.major = info.minor = 0;
5692 		info.raid_disk = -1;
5693 		info.state = (1<<MD_DISK_REMOVED);
5694 	}
5695 	rcu_read_unlock();
5696 
5697 	if (copy_to_user(arg, &info, sizeof(info)))
5698 		return -EFAULT;
5699 
5700 	return 0;
5701 }
5702 
5703 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5704 {
5705 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5706 	struct md_rdev *rdev;
5707 	dev_t dev = MKDEV(info->major,info->minor);
5708 
5709 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5710 		return -EOVERFLOW;
5711 
5712 	if (!mddev->raid_disks) {
5713 		int err;
5714 		/* expecting a device which has a superblock */
5715 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5716 		if (IS_ERR(rdev)) {
5717 			printk(KERN_WARNING
5718 				"md: md_import_device returned %ld\n",
5719 				PTR_ERR(rdev));
5720 			return PTR_ERR(rdev);
5721 		}
5722 		if (!list_empty(&mddev->disks)) {
5723 			struct md_rdev *rdev0
5724 				= list_entry(mddev->disks.next,
5725 					     struct md_rdev, same_set);
5726 			err = super_types[mddev->major_version]
5727 				.load_super(rdev, rdev0, mddev->minor_version);
5728 			if (err < 0) {
5729 				printk(KERN_WARNING
5730 					"md: %s has different UUID to %s\n",
5731 					bdevname(rdev->bdev,b),
5732 					bdevname(rdev0->bdev,b2));
5733 				export_rdev(rdev);
5734 				return -EINVAL;
5735 			}
5736 		}
5737 		err = bind_rdev_to_array(rdev, mddev);
5738 		if (err)
5739 			export_rdev(rdev);
5740 		return err;
5741 	}
5742 
5743 	/*
5744 	 * add_new_disk can be used once the array is assembled
5745 	 * to add "hot spares".  They must already have a superblock
5746 	 * written
5747 	 */
5748 	if (mddev->pers) {
5749 		int err;
5750 		if (!mddev->pers->hot_add_disk) {
5751 			printk(KERN_WARNING
5752 				"%s: personality does not support diskops!\n",
5753 			       mdname(mddev));
5754 			return -EINVAL;
5755 		}
5756 		if (mddev->persistent)
5757 			rdev = md_import_device(dev, mddev->major_version,
5758 						mddev->minor_version);
5759 		else
5760 			rdev = md_import_device(dev, -1, -1);
5761 		if (IS_ERR(rdev)) {
5762 			printk(KERN_WARNING
5763 				"md: md_import_device returned %ld\n",
5764 				PTR_ERR(rdev));
5765 			return PTR_ERR(rdev);
5766 		}
5767 		/* set saved_raid_disk if appropriate */
5768 		if (!mddev->persistent) {
5769 			if (info->state & (1<<MD_DISK_SYNC)  &&
5770 			    info->raid_disk < mddev->raid_disks) {
5771 				rdev->raid_disk = info->raid_disk;
5772 				set_bit(In_sync, &rdev->flags);
5773 			} else
5774 				rdev->raid_disk = -1;
5775 		} else
5776 			super_types[mddev->major_version].
5777 				validate_super(mddev, rdev);
5778 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5779 		     rdev->raid_disk != info->raid_disk) {
5780 			/* This was a hot-add request, but events doesn't
5781 			 * match, so reject it.
5782 			 */
5783 			export_rdev(rdev);
5784 			return -EINVAL;
5785 		}
5786 
5787 		if (test_bit(In_sync, &rdev->flags))
5788 			rdev->saved_raid_disk = rdev->raid_disk;
5789 		else
5790 			rdev->saved_raid_disk = -1;
5791 
5792 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5793 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5794 			set_bit(WriteMostly, &rdev->flags);
5795 		else
5796 			clear_bit(WriteMostly, &rdev->flags);
5797 
5798 		rdev->raid_disk = -1;
5799 		err = bind_rdev_to_array(rdev, mddev);
5800 		if (!err && !mddev->pers->hot_remove_disk) {
5801 			/* If there is hot_add_disk but no hot_remove_disk
5802 			 * then added disks for geometry changes,
5803 			 * and should be added immediately.
5804 			 */
5805 			super_types[mddev->major_version].
5806 				validate_super(mddev, rdev);
5807 			err = mddev->pers->hot_add_disk(mddev, rdev);
5808 			if (err)
5809 				unbind_rdev_from_array(rdev);
5810 		}
5811 		if (err)
5812 			export_rdev(rdev);
5813 		else
5814 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5815 
5816 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5817 		if (mddev->degraded)
5818 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5819 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5820 		if (!err)
5821 			md_new_event(mddev);
5822 		md_wakeup_thread(mddev->thread);
5823 		return err;
5824 	}
5825 
5826 	/* otherwise, add_new_disk is only allowed
5827 	 * for major_version==0 superblocks
5828 	 */
5829 	if (mddev->major_version != 0) {
5830 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5831 		       mdname(mddev));
5832 		return -EINVAL;
5833 	}
5834 
5835 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5836 		int err;
5837 		rdev = md_import_device(dev, -1, 0);
5838 		if (IS_ERR(rdev)) {
5839 			printk(KERN_WARNING
5840 				"md: error, md_import_device() returned %ld\n",
5841 				PTR_ERR(rdev));
5842 			return PTR_ERR(rdev);
5843 		}
5844 		rdev->desc_nr = info->number;
5845 		if (info->raid_disk < mddev->raid_disks)
5846 			rdev->raid_disk = info->raid_disk;
5847 		else
5848 			rdev->raid_disk = -1;
5849 
5850 		if (rdev->raid_disk < mddev->raid_disks)
5851 			if (info->state & (1<<MD_DISK_SYNC))
5852 				set_bit(In_sync, &rdev->flags);
5853 
5854 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5855 			set_bit(WriteMostly, &rdev->flags);
5856 
5857 		if (!mddev->persistent) {
5858 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5859 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5860 		} else
5861 			rdev->sb_start = calc_dev_sboffset(rdev);
5862 		rdev->sectors = rdev->sb_start;
5863 
5864 		err = bind_rdev_to_array(rdev, mddev);
5865 		if (err) {
5866 			export_rdev(rdev);
5867 			return err;
5868 		}
5869 	}
5870 
5871 	return 0;
5872 }
5873 
5874 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5875 {
5876 	char b[BDEVNAME_SIZE];
5877 	struct md_rdev *rdev;
5878 
5879 	rdev = find_rdev(mddev, dev);
5880 	if (!rdev)
5881 		return -ENXIO;
5882 
5883 	clear_bit(Blocked, &rdev->flags);
5884 	remove_and_add_spares(mddev, rdev);
5885 
5886 	if (rdev->raid_disk >= 0)
5887 		goto busy;
5888 
5889 	kick_rdev_from_array(rdev);
5890 	md_update_sb(mddev, 1);
5891 	md_new_event(mddev);
5892 
5893 	return 0;
5894 busy:
5895 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5896 		bdevname(rdev->bdev,b), mdname(mddev));
5897 	return -EBUSY;
5898 }
5899 
5900 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5901 {
5902 	char b[BDEVNAME_SIZE];
5903 	int err;
5904 	struct md_rdev *rdev;
5905 
5906 	if (!mddev->pers)
5907 		return -ENODEV;
5908 
5909 	if (mddev->major_version != 0) {
5910 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5911 			" version-0 superblocks.\n",
5912 			mdname(mddev));
5913 		return -EINVAL;
5914 	}
5915 	if (!mddev->pers->hot_add_disk) {
5916 		printk(KERN_WARNING
5917 			"%s: personality does not support diskops!\n",
5918 			mdname(mddev));
5919 		return -EINVAL;
5920 	}
5921 
5922 	rdev = md_import_device(dev, -1, 0);
5923 	if (IS_ERR(rdev)) {
5924 		printk(KERN_WARNING
5925 			"md: error, md_import_device() returned %ld\n",
5926 			PTR_ERR(rdev));
5927 		return -EINVAL;
5928 	}
5929 
5930 	if (mddev->persistent)
5931 		rdev->sb_start = calc_dev_sboffset(rdev);
5932 	else
5933 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5934 
5935 	rdev->sectors = rdev->sb_start;
5936 
5937 	if (test_bit(Faulty, &rdev->flags)) {
5938 		printk(KERN_WARNING
5939 			"md: can not hot-add faulty %s disk to %s!\n",
5940 			bdevname(rdev->bdev,b), mdname(mddev));
5941 		err = -EINVAL;
5942 		goto abort_export;
5943 	}
5944 	clear_bit(In_sync, &rdev->flags);
5945 	rdev->desc_nr = -1;
5946 	rdev->saved_raid_disk = -1;
5947 	err = bind_rdev_to_array(rdev, mddev);
5948 	if (err)
5949 		goto abort_export;
5950 
5951 	/*
5952 	 * The rest should better be atomic, we can have disk failures
5953 	 * noticed in interrupt contexts ...
5954 	 */
5955 
5956 	rdev->raid_disk = -1;
5957 
5958 	md_update_sb(mddev, 1);
5959 
5960 	/*
5961 	 * Kick recovery, maybe this spare has to be added to the
5962 	 * array immediately.
5963 	 */
5964 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5965 	md_wakeup_thread(mddev->thread);
5966 	md_new_event(mddev);
5967 	return 0;
5968 
5969 abort_export:
5970 	export_rdev(rdev);
5971 	return err;
5972 }
5973 
5974 static int set_bitmap_file(struct mddev *mddev, int fd)
5975 {
5976 	int err;
5977 
5978 	if (mddev->pers) {
5979 		if (!mddev->pers->quiesce)
5980 			return -EBUSY;
5981 		if (mddev->recovery || mddev->sync_thread)
5982 			return -EBUSY;
5983 		/* we should be able to change the bitmap.. */
5984 	}
5985 
5986 
5987 	if (fd >= 0) {
5988 		if (mddev->bitmap)
5989 			return -EEXIST; /* cannot add when bitmap is present */
5990 		mddev->bitmap_info.file = fget(fd);
5991 
5992 		if (mddev->bitmap_info.file == NULL) {
5993 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5994 			       mdname(mddev));
5995 			return -EBADF;
5996 		}
5997 
5998 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5999 		if (err) {
6000 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6001 			       mdname(mddev));
6002 			fput(mddev->bitmap_info.file);
6003 			mddev->bitmap_info.file = NULL;
6004 			return err;
6005 		}
6006 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6007 	} else if (mddev->bitmap == NULL)
6008 		return -ENOENT; /* cannot remove what isn't there */
6009 	err = 0;
6010 	if (mddev->pers) {
6011 		mddev->pers->quiesce(mddev, 1);
6012 		if (fd >= 0) {
6013 			err = bitmap_create(mddev);
6014 			if (!err)
6015 				err = bitmap_load(mddev);
6016 		}
6017 		if (fd < 0 || err) {
6018 			bitmap_destroy(mddev);
6019 			fd = -1; /* make sure to put the file */
6020 		}
6021 		mddev->pers->quiesce(mddev, 0);
6022 	}
6023 	if (fd < 0) {
6024 		if (mddev->bitmap_info.file) {
6025 			restore_bitmap_write_access(mddev->bitmap_info.file);
6026 			fput(mddev->bitmap_info.file);
6027 		}
6028 		mddev->bitmap_info.file = NULL;
6029 	}
6030 
6031 	return err;
6032 }
6033 
6034 /*
6035  * set_array_info is used two different ways
6036  * The original usage is when creating a new array.
6037  * In this usage, raid_disks is > 0 and it together with
6038  *  level, size, not_persistent,layout,chunksize determine the
6039  *  shape of the array.
6040  *  This will always create an array with a type-0.90.0 superblock.
6041  * The newer usage is when assembling an array.
6042  *  In this case raid_disks will be 0, and the major_version field is
6043  *  use to determine which style super-blocks are to be found on the devices.
6044  *  The minor and patch _version numbers are also kept incase the
6045  *  super_block handler wishes to interpret them.
6046  */
6047 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6048 {
6049 
6050 	if (info->raid_disks == 0) {
6051 		/* just setting version number for superblock loading */
6052 		if (info->major_version < 0 ||
6053 		    info->major_version >= ARRAY_SIZE(super_types) ||
6054 		    super_types[info->major_version].name == NULL) {
6055 			/* maybe try to auto-load a module? */
6056 			printk(KERN_INFO
6057 				"md: superblock version %d not known\n",
6058 				info->major_version);
6059 			return -EINVAL;
6060 		}
6061 		mddev->major_version = info->major_version;
6062 		mddev->minor_version = info->minor_version;
6063 		mddev->patch_version = info->patch_version;
6064 		mddev->persistent = !info->not_persistent;
6065 		/* ensure mddev_put doesn't delete this now that there
6066 		 * is some minimal configuration.
6067 		 */
6068 		mddev->ctime         = get_seconds();
6069 		return 0;
6070 	}
6071 	mddev->major_version = MD_MAJOR_VERSION;
6072 	mddev->minor_version = MD_MINOR_VERSION;
6073 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6074 	mddev->ctime         = get_seconds();
6075 
6076 	mddev->level         = info->level;
6077 	mddev->clevel[0]     = 0;
6078 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6079 	mddev->raid_disks    = info->raid_disks;
6080 	/* don't set md_minor, it is determined by which /dev/md* was
6081 	 * openned
6082 	 */
6083 	if (info->state & (1<<MD_SB_CLEAN))
6084 		mddev->recovery_cp = MaxSector;
6085 	else
6086 		mddev->recovery_cp = 0;
6087 	mddev->persistent    = ! info->not_persistent;
6088 	mddev->external	     = 0;
6089 
6090 	mddev->layout        = info->layout;
6091 	mddev->chunk_sectors = info->chunk_size >> 9;
6092 
6093 	mddev->max_disks     = MD_SB_DISKS;
6094 
6095 	if (mddev->persistent)
6096 		mddev->flags         = 0;
6097 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6098 
6099 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6100 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6101 	mddev->bitmap_info.offset = 0;
6102 
6103 	mddev->reshape_position = MaxSector;
6104 
6105 	/*
6106 	 * Generate a 128 bit UUID
6107 	 */
6108 	get_random_bytes(mddev->uuid, 16);
6109 
6110 	mddev->new_level = mddev->level;
6111 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6112 	mddev->new_layout = mddev->layout;
6113 	mddev->delta_disks = 0;
6114 	mddev->reshape_backwards = 0;
6115 
6116 	return 0;
6117 }
6118 
6119 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6120 {
6121 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6122 
6123 	if (mddev->external_size)
6124 		return;
6125 
6126 	mddev->array_sectors = array_sectors;
6127 }
6128 EXPORT_SYMBOL(md_set_array_sectors);
6129 
6130 static int update_size(struct mddev *mddev, sector_t num_sectors)
6131 {
6132 	struct md_rdev *rdev;
6133 	int rv;
6134 	int fit = (num_sectors == 0);
6135 
6136 	if (mddev->pers->resize == NULL)
6137 		return -EINVAL;
6138 	/* The "num_sectors" is the number of sectors of each device that
6139 	 * is used.  This can only make sense for arrays with redundancy.
6140 	 * linear and raid0 always use whatever space is available. We can only
6141 	 * consider changing this number if no resync or reconstruction is
6142 	 * happening, and if the new size is acceptable. It must fit before the
6143 	 * sb_start or, if that is <data_offset, it must fit before the size
6144 	 * of each device.  If num_sectors is zero, we find the largest size
6145 	 * that fits.
6146 	 */
6147 	if (mddev->sync_thread)
6148 		return -EBUSY;
6149 
6150 	rdev_for_each(rdev, mddev) {
6151 		sector_t avail = rdev->sectors;
6152 
6153 		if (fit && (num_sectors == 0 || num_sectors > avail))
6154 			num_sectors = avail;
6155 		if (avail < num_sectors)
6156 			return -ENOSPC;
6157 	}
6158 	rv = mddev->pers->resize(mddev, num_sectors);
6159 	if (!rv)
6160 		revalidate_disk(mddev->gendisk);
6161 	return rv;
6162 }
6163 
6164 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6165 {
6166 	int rv;
6167 	struct md_rdev *rdev;
6168 	/* change the number of raid disks */
6169 	if (mddev->pers->check_reshape == NULL)
6170 		return -EINVAL;
6171 	if (raid_disks <= 0 ||
6172 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6173 		return -EINVAL;
6174 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6175 		return -EBUSY;
6176 
6177 	rdev_for_each(rdev, mddev) {
6178 		if (mddev->raid_disks < raid_disks &&
6179 		    rdev->data_offset < rdev->new_data_offset)
6180 			return -EINVAL;
6181 		if (mddev->raid_disks > raid_disks &&
6182 		    rdev->data_offset > rdev->new_data_offset)
6183 			return -EINVAL;
6184 	}
6185 
6186 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6187 	if (mddev->delta_disks < 0)
6188 		mddev->reshape_backwards = 1;
6189 	else if (mddev->delta_disks > 0)
6190 		mddev->reshape_backwards = 0;
6191 
6192 	rv = mddev->pers->check_reshape(mddev);
6193 	if (rv < 0) {
6194 		mddev->delta_disks = 0;
6195 		mddev->reshape_backwards = 0;
6196 	}
6197 	return rv;
6198 }
6199 
6200 
6201 /*
6202  * update_array_info is used to change the configuration of an
6203  * on-line array.
6204  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6205  * fields in the info are checked against the array.
6206  * Any differences that cannot be handled will cause an error.
6207  * Normally, only one change can be managed at a time.
6208  */
6209 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6210 {
6211 	int rv = 0;
6212 	int cnt = 0;
6213 	int state = 0;
6214 
6215 	/* calculate expected state,ignoring low bits */
6216 	if (mddev->bitmap && mddev->bitmap_info.offset)
6217 		state |= (1 << MD_SB_BITMAP_PRESENT);
6218 
6219 	if (mddev->major_version != info->major_version ||
6220 	    mddev->minor_version != info->minor_version ||
6221 /*	    mddev->patch_version != info->patch_version || */
6222 	    mddev->ctime         != info->ctime         ||
6223 	    mddev->level         != info->level         ||
6224 /*	    mddev->layout        != info->layout        || */
6225 	    !mddev->persistent	 != info->not_persistent||
6226 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6227 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6228 	    ((state^info->state) & 0xfffffe00)
6229 		)
6230 		return -EINVAL;
6231 	/* Check there is only one change */
6232 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6233 		cnt++;
6234 	if (mddev->raid_disks != info->raid_disks)
6235 		cnt++;
6236 	if (mddev->layout != info->layout)
6237 		cnt++;
6238 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6239 		cnt++;
6240 	if (cnt == 0)
6241 		return 0;
6242 	if (cnt > 1)
6243 		return -EINVAL;
6244 
6245 	if (mddev->layout != info->layout) {
6246 		/* Change layout
6247 		 * we don't need to do anything at the md level, the
6248 		 * personality will take care of it all.
6249 		 */
6250 		if (mddev->pers->check_reshape == NULL)
6251 			return -EINVAL;
6252 		else {
6253 			mddev->new_layout = info->layout;
6254 			rv = mddev->pers->check_reshape(mddev);
6255 			if (rv)
6256 				mddev->new_layout = mddev->layout;
6257 			return rv;
6258 		}
6259 	}
6260 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6261 		rv = update_size(mddev, (sector_t)info->size * 2);
6262 
6263 	if (mddev->raid_disks    != info->raid_disks)
6264 		rv = update_raid_disks(mddev, info->raid_disks);
6265 
6266 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6267 		if (mddev->pers->quiesce == NULL)
6268 			return -EINVAL;
6269 		if (mddev->recovery || mddev->sync_thread)
6270 			return -EBUSY;
6271 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6272 			/* add the bitmap */
6273 			if (mddev->bitmap)
6274 				return -EEXIST;
6275 			if (mddev->bitmap_info.default_offset == 0)
6276 				return -EINVAL;
6277 			mddev->bitmap_info.offset =
6278 				mddev->bitmap_info.default_offset;
6279 			mddev->bitmap_info.space =
6280 				mddev->bitmap_info.default_space;
6281 			mddev->pers->quiesce(mddev, 1);
6282 			rv = bitmap_create(mddev);
6283 			if (!rv)
6284 				rv = bitmap_load(mddev);
6285 			if (rv)
6286 				bitmap_destroy(mddev);
6287 			mddev->pers->quiesce(mddev, 0);
6288 		} else {
6289 			/* remove the bitmap */
6290 			if (!mddev->bitmap)
6291 				return -ENOENT;
6292 			if (mddev->bitmap->storage.file)
6293 				return -EINVAL;
6294 			mddev->pers->quiesce(mddev, 1);
6295 			bitmap_destroy(mddev);
6296 			mddev->pers->quiesce(mddev, 0);
6297 			mddev->bitmap_info.offset = 0;
6298 		}
6299 	}
6300 	md_update_sb(mddev, 1);
6301 	return rv;
6302 }
6303 
6304 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6305 {
6306 	struct md_rdev *rdev;
6307 	int err = 0;
6308 
6309 	if (mddev->pers == NULL)
6310 		return -ENODEV;
6311 
6312 	rcu_read_lock();
6313 	rdev = find_rdev_rcu(mddev, dev);
6314 	if (!rdev)
6315 		err =  -ENODEV;
6316 	else {
6317 		md_error(mddev, rdev);
6318 		if (!test_bit(Faulty, &rdev->flags))
6319 			err = -EBUSY;
6320 	}
6321 	rcu_read_unlock();
6322 	return err;
6323 }
6324 
6325 /*
6326  * We have a problem here : there is no easy way to give a CHS
6327  * virtual geometry. We currently pretend that we have a 2 heads
6328  * 4 sectors (with a BIG number of cylinders...). This drives
6329  * dosfs just mad... ;-)
6330  */
6331 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6332 {
6333 	struct mddev *mddev = bdev->bd_disk->private_data;
6334 
6335 	geo->heads = 2;
6336 	geo->sectors = 4;
6337 	geo->cylinders = mddev->array_sectors / 8;
6338 	return 0;
6339 }
6340 
6341 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6342 			unsigned int cmd, unsigned long arg)
6343 {
6344 	int err = 0;
6345 	void __user *argp = (void __user *)arg;
6346 	struct mddev *mddev = NULL;
6347 	int ro;
6348 
6349 	switch (cmd) {
6350 	case RAID_VERSION:
6351 	case GET_ARRAY_INFO:
6352 	case GET_DISK_INFO:
6353 		break;
6354 	default:
6355 		if (!capable(CAP_SYS_ADMIN))
6356 			return -EACCES;
6357 	}
6358 
6359 	/*
6360 	 * Commands dealing with the RAID driver but not any
6361 	 * particular array:
6362 	 */
6363 	switch (cmd) {
6364 	case RAID_VERSION:
6365 		err = get_version(argp);
6366 		goto done;
6367 
6368 	case PRINT_RAID_DEBUG:
6369 		err = 0;
6370 		md_print_devices();
6371 		goto done;
6372 
6373 #ifndef MODULE
6374 	case RAID_AUTORUN:
6375 		err = 0;
6376 		autostart_arrays(arg);
6377 		goto done;
6378 #endif
6379 	default:;
6380 	}
6381 
6382 	/*
6383 	 * Commands creating/starting a new array:
6384 	 */
6385 
6386 	mddev = bdev->bd_disk->private_data;
6387 
6388 	if (!mddev) {
6389 		BUG();
6390 		goto abort;
6391 	}
6392 
6393 	/* Some actions do not requires the mutex */
6394 	switch (cmd) {
6395 	case GET_ARRAY_INFO:
6396 		if (!mddev->raid_disks && !mddev->external)
6397 			err = -ENODEV;
6398 		else
6399 			err = get_array_info(mddev, argp);
6400 		goto abort;
6401 
6402 	case GET_DISK_INFO:
6403 		if (!mddev->raid_disks && !mddev->external)
6404 			err = -ENODEV;
6405 		else
6406 			err = get_disk_info(mddev, argp);
6407 		goto abort;
6408 
6409 	case SET_DISK_FAULTY:
6410 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6411 		goto abort;
6412 	}
6413 
6414 	if (cmd == ADD_NEW_DISK)
6415 		/* need to ensure md_delayed_delete() has completed */
6416 		flush_workqueue(md_misc_wq);
6417 
6418 	if (cmd == HOT_REMOVE_DISK)
6419 		/* need to ensure recovery thread has run */
6420 		wait_event_interruptible_timeout(mddev->sb_wait,
6421 						 !test_bit(MD_RECOVERY_NEEDED,
6422 							   &mddev->flags),
6423 						 msecs_to_jiffies(5000));
6424 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6425 		/* Need to flush page cache, and ensure no-one else opens
6426 		 * and writes
6427 		 */
6428 		mutex_lock(&mddev->open_mutex);
6429 		if (atomic_read(&mddev->openers) > 1) {
6430 			mutex_unlock(&mddev->open_mutex);
6431 			err = -EBUSY;
6432 			goto abort;
6433 		}
6434 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6435 		mutex_unlock(&mddev->open_mutex);
6436 		sync_blockdev(bdev);
6437 	}
6438 	err = mddev_lock(mddev);
6439 	if (err) {
6440 		printk(KERN_INFO
6441 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6442 			err, cmd);
6443 		goto abort;
6444 	}
6445 
6446 	if (cmd == SET_ARRAY_INFO) {
6447 		mdu_array_info_t info;
6448 		if (!arg)
6449 			memset(&info, 0, sizeof(info));
6450 		else if (copy_from_user(&info, argp, sizeof(info))) {
6451 			err = -EFAULT;
6452 			goto abort_unlock;
6453 		}
6454 		if (mddev->pers) {
6455 			err = update_array_info(mddev, &info);
6456 			if (err) {
6457 				printk(KERN_WARNING "md: couldn't update"
6458 				       " array info. %d\n", err);
6459 				goto abort_unlock;
6460 			}
6461 			goto done_unlock;
6462 		}
6463 		if (!list_empty(&mddev->disks)) {
6464 			printk(KERN_WARNING
6465 			       "md: array %s already has disks!\n",
6466 			       mdname(mddev));
6467 			err = -EBUSY;
6468 			goto abort_unlock;
6469 		}
6470 		if (mddev->raid_disks) {
6471 			printk(KERN_WARNING
6472 			       "md: array %s already initialised!\n",
6473 			       mdname(mddev));
6474 			err = -EBUSY;
6475 			goto abort_unlock;
6476 		}
6477 		err = set_array_info(mddev, &info);
6478 		if (err) {
6479 			printk(KERN_WARNING "md: couldn't set"
6480 			       " array info. %d\n", err);
6481 			goto abort_unlock;
6482 		}
6483 		goto done_unlock;
6484 	}
6485 
6486 	/*
6487 	 * Commands querying/configuring an existing array:
6488 	 */
6489 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6490 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6491 	if ((!mddev->raid_disks && !mddev->external)
6492 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6493 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6494 	    && cmd != GET_BITMAP_FILE) {
6495 		err = -ENODEV;
6496 		goto abort_unlock;
6497 	}
6498 
6499 	/*
6500 	 * Commands even a read-only array can execute:
6501 	 */
6502 	switch (cmd) {
6503 	case GET_BITMAP_FILE:
6504 		err = get_bitmap_file(mddev, argp);
6505 		goto done_unlock;
6506 
6507 	case RESTART_ARRAY_RW:
6508 		err = restart_array(mddev);
6509 		goto done_unlock;
6510 
6511 	case STOP_ARRAY:
6512 		err = do_md_stop(mddev, 0, bdev);
6513 		goto done_unlock;
6514 
6515 	case STOP_ARRAY_RO:
6516 		err = md_set_readonly(mddev, bdev);
6517 		goto done_unlock;
6518 
6519 	case HOT_REMOVE_DISK:
6520 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6521 		goto done_unlock;
6522 
6523 	case ADD_NEW_DISK:
6524 		/* We can support ADD_NEW_DISK on read-only arrays
6525 		 * on if we are re-adding a preexisting device.
6526 		 * So require mddev->pers and MD_DISK_SYNC.
6527 		 */
6528 		if (mddev->pers) {
6529 			mdu_disk_info_t info;
6530 			if (copy_from_user(&info, argp, sizeof(info)))
6531 				err = -EFAULT;
6532 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6533 				/* Need to clear read-only for this */
6534 				break;
6535 			else
6536 				err = add_new_disk(mddev, &info);
6537 			goto done_unlock;
6538 		}
6539 		break;
6540 
6541 	case BLKROSET:
6542 		if (get_user(ro, (int __user *)(arg))) {
6543 			err = -EFAULT;
6544 			goto done_unlock;
6545 		}
6546 		err = -EINVAL;
6547 
6548 		/* if the bdev is going readonly the value of mddev->ro
6549 		 * does not matter, no writes are coming
6550 		 */
6551 		if (ro)
6552 			goto done_unlock;
6553 
6554 		/* are we are already prepared for writes? */
6555 		if (mddev->ro != 1)
6556 			goto done_unlock;
6557 
6558 		/* transitioning to readauto need only happen for
6559 		 * arrays that call md_write_start
6560 		 */
6561 		if (mddev->pers) {
6562 			err = restart_array(mddev);
6563 			if (err == 0) {
6564 				mddev->ro = 2;
6565 				set_disk_ro(mddev->gendisk, 0);
6566 			}
6567 		}
6568 		goto done_unlock;
6569 	}
6570 
6571 	/*
6572 	 * The remaining ioctls are changing the state of the
6573 	 * superblock, so we do not allow them on read-only arrays.
6574 	 * However non-MD ioctls (e.g. get-size) will still come through
6575 	 * here and hit the 'default' below, so only disallow
6576 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6577 	 */
6578 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6579 		if (mddev->ro == 2) {
6580 			mddev->ro = 0;
6581 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6582 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6583 			/* mddev_unlock will wake thread */
6584 			/* If a device failed while we were read-only, we
6585 			 * need to make sure the metadata is updated now.
6586 			 */
6587 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6588 				mddev_unlock(mddev);
6589 				wait_event(mddev->sb_wait,
6590 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6591 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6592 				mddev_lock_nointr(mddev);
6593 			}
6594 		} else {
6595 			err = -EROFS;
6596 			goto abort_unlock;
6597 		}
6598 	}
6599 
6600 	switch (cmd) {
6601 	case ADD_NEW_DISK:
6602 	{
6603 		mdu_disk_info_t info;
6604 		if (copy_from_user(&info, argp, sizeof(info)))
6605 			err = -EFAULT;
6606 		else
6607 			err = add_new_disk(mddev, &info);
6608 		goto done_unlock;
6609 	}
6610 
6611 	case HOT_ADD_DISK:
6612 		err = hot_add_disk(mddev, new_decode_dev(arg));
6613 		goto done_unlock;
6614 
6615 	case RUN_ARRAY:
6616 		err = do_md_run(mddev);
6617 		goto done_unlock;
6618 
6619 	case SET_BITMAP_FILE:
6620 		err = set_bitmap_file(mddev, (int)arg);
6621 		goto done_unlock;
6622 
6623 	default:
6624 		err = -EINVAL;
6625 		goto abort_unlock;
6626 	}
6627 
6628 done_unlock:
6629 abort_unlock:
6630 	if (mddev->hold_active == UNTIL_IOCTL &&
6631 	    err != -EINVAL)
6632 		mddev->hold_active = 0;
6633 	mddev_unlock(mddev);
6634 
6635 	return err;
6636 done:
6637 	if (err)
6638 		MD_BUG();
6639 abort:
6640 	return err;
6641 }
6642 #ifdef CONFIG_COMPAT
6643 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6644 		    unsigned int cmd, unsigned long arg)
6645 {
6646 	switch (cmd) {
6647 	case HOT_REMOVE_DISK:
6648 	case HOT_ADD_DISK:
6649 	case SET_DISK_FAULTY:
6650 	case SET_BITMAP_FILE:
6651 		/* These take in integer arg, do not convert */
6652 		break;
6653 	default:
6654 		arg = (unsigned long)compat_ptr(arg);
6655 		break;
6656 	}
6657 
6658 	return md_ioctl(bdev, mode, cmd, arg);
6659 }
6660 #endif /* CONFIG_COMPAT */
6661 
6662 static int md_open(struct block_device *bdev, fmode_t mode)
6663 {
6664 	/*
6665 	 * Succeed if we can lock the mddev, which confirms that
6666 	 * it isn't being stopped right now.
6667 	 */
6668 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6669 	int err;
6670 
6671 	if (!mddev)
6672 		return -ENODEV;
6673 
6674 	if (mddev->gendisk != bdev->bd_disk) {
6675 		/* we are racing with mddev_put which is discarding this
6676 		 * bd_disk.
6677 		 */
6678 		mddev_put(mddev);
6679 		/* Wait until bdev->bd_disk is definitely gone */
6680 		flush_workqueue(md_misc_wq);
6681 		/* Then retry the open from the top */
6682 		return -ERESTARTSYS;
6683 	}
6684 	BUG_ON(mddev != bdev->bd_disk->private_data);
6685 
6686 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6687 		goto out;
6688 
6689 	err = 0;
6690 	atomic_inc(&mddev->openers);
6691 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6692 	mutex_unlock(&mddev->open_mutex);
6693 
6694 	check_disk_change(bdev);
6695  out:
6696 	return err;
6697 }
6698 
6699 static void md_release(struct gendisk *disk, fmode_t mode)
6700 {
6701  	struct mddev *mddev = disk->private_data;
6702 
6703 	BUG_ON(!mddev);
6704 	atomic_dec(&mddev->openers);
6705 	mddev_put(mddev);
6706 }
6707 
6708 static int md_media_changed(struct gendisk *disk)
6709 {
6710 	struct mddev *mddev = disk->private_data;
6711 
6712 	return mddev->changed;
6713 }
6714 
6715 static int md_revalidate(struct gendisk *disk)
6716 {
6717 	struct mddev *mddev = disk->private_data;
6718 
6719 	mddev->changed = 0;
6720 	return 0;
6721 }
6722 static const struct block_device_operations md_fops =
6723 {
6724 	.owner		= THIS_MODULE,
6725 	.open		= md_open,
6726 	.release	= md_release,
6727 	.ioctl		= md_ioctl,
6728 #ifdef CONFIG_COMPAT
6729 	.compat_ioctl	= md_compat_ioctl,
6730 #endif
6731 	.getgeo		= md_getgeo,
6732 	.media_changed  = md_media_changed,
6733 	.revalidate_disk= md_revalidate,
6734 };
6735 
6736 static int md_thread(void * arg)
6737 {
6738 	struct md_thread *thread = arg;
6739 
6740 	/*
6741 	 * md_thread is a 'system-thread', it's priority should be very
6742 	 * high. We avoid resource deadlocks individually in each
6743 	 * raid personality. (RAID5 does preallocation) We also use RR and
6744 	 * the very same RT priority as kswapd, thus we will never get
6745 	 * into a priority inversion deadlock.
6746 	 *
6747 	 * we definitely have to have equal or higher priority than
6748 	 * bdflush, otherwise bdflush will deadlock if there are too
6749 	 * many dirty RAID5 blocks.
6750 	 */
6751 
6752 	allow_signal(SIGKILL);
6753 	while (!kthread_should_stop()) {
6754 
6755 		/* We need to wait INTERRUPTIBLE so that
6756 		 * we don't add to the load-average.
6757 		 * That means we need to be sure no signals are
6758 		 * pending
6759 		 */
6760 		if (signal_pending(current))
6761 			flush_signals(current);
6762 
6763 		wait_event_interruptible_timeout
6764 			(thread->wqueue,
6765 			 test_bit(THREAD_WAKEUP, &thread->flags)
6766 			 || kthread_should_stop(),
6767 			 thread->timeout);
6768 
6769 		clear_bit(THREAD_WAKEUP, &thread->flags);
6770 		if (!kthread_should_stop())
6771 			thread->run(thread);
6772 	}
6773 
6774 	return 0;
6775 }
6776 
6777 void md_wakeup_thread(struct md_thread *thread)
6778 {
6779 	if (thread) {
6780 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6781 		set_bit(THREAD_WAKEUP, &thread->flags);
6782 		wake_up(&thread->wqueue);
6783 	}
6784 }
6785 
6786 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6787 		struct mddev *mddev, const char *name)
6788 {
6789 	struct md_thread *thread;
6790 
6791 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6792 	if (!thread)
6793 		return NULL;
6794 
6795 	init_waitqueue_head(&thread->wqueue);
6796 
6797 	thread->run = run;
6798 	thread->mddev = mddev;
6799 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6800 	thread->tsk = kthread_run(md_thread, thread,
6801 				  "%s_%s",
6802 				  mdname(thread->mddev),
6803 				  name);
6804 	if (IS_ERR(thread->tsk)) {
6805 		kfree(thread);
6806 		return NULL;
6807 	}
6808 	return thread;
6809 }
6810 
6811 void md_unregister_thread(struct md_thread **threadp)
6812 {
6813 	struct md_thread *thread = *threadp;
6814 	if (!thread)
6815 		return;
6816 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6817 	/* Locking ensures that mddev_unlock does not wake_up a
6818 	 * non-existent thread
6819 	 */
6820 	spin_lock(&pers_lock);
6821 	*threadp = NULL;
6822 	spin_unlock(&pers_lock);
6823 
6824 	kthread_stop(thread->tsk);
6825 	kfree(thread);
6826 }
6827 
6828 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6829 {
6830 	if (!mddev) {
6831 		MD_BUG();
6832 		return;
6833 	}
6834 
6835 	if (!rdev || test_bit(Faulty, &rdev->flags))
6836 		return;
6837 
6838 	if (!mddev->pers || !mddev->pers->error_handler)
6839 		return;
6840 	mddev->pers->error_handler(mddev,rdev);
6841 	if (mddev->degraded)
6842 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6843 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6844 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6845 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6846 	md_wakeup_thread(mddev->thread);
6847 	if (mddev->event_work.func)
6848 		queue_work(md_misc_wq, &mddev->event_work);
6849 	md_new_event_inintr(mddev);
6850 }
6851 
6852 /* seq_file implementation /proc/mdstat */
6853 
6854 static void status_unused(struct seq_file *seq)
6855 {
6856 	int i = 0;
6857 	struct md_rdev *rdev;
6858 
6859 	seq_printf(seq, "unused devices: ");
6860 
6861 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6862 		char b[BDEVNAME_SIZE];
6863 		i++;
6864 		seq_printf(seq, "%s ",
6865 			      bdevname(rdev->bdev,b));
6866 	}
6867 	if (!i)
6868 		seq_printf(seq, "<none>");
6869 
6870 	seq_printf(seq, "\n");
6871 }
6872 
6873 
6874 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6875 {
6876 	sector_t max_sectors, resync, res;
6877 	unsigned long dt, db;
6878 	sector_t rt;
6879 	int scale;
6880 	unsigned int per_milli;
6881 
6882 	if (mddev->curr_resync <= 3)
6883 		resync = 0;
6884 	else
6885 		resync = mddev->curr_resync
6886 			- atomic_read(&mddev->recovery_active);
6887 
6888 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6889 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6890 		max_sectors = mddev->resync_max_sectors;
6891 	else
6892 		max_sectors = mddev->dev_sectors;
6893 
6894 	/*
6895 	 * Should not happen.
6896 	 */
6897 	if (!max_sectors) {
6898 		MD_BUG();
6899 		return;
6900 	}
6901 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6902 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6903 	 * u32, as those are the requirements for sector_div.
6904 	 * Thus 'scale' must be at least 10
6905 	 */
6906 	scale = 10;
6907 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6908 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6909 			scale++;
6910 	}
6911 	res = (resync>>scale)*1000;
6912 	sector_div(res, (u32)((max_sectors>>scale)+1));
6913 
6914 	per_milli = res;
6915 	{
6916 		int i, x = per_milli/50, y = 20-x;
6917 		seq_printf(seq, "[");
6918 		for (i = 0; i < x; i++)
6919 			seq_printf(seq, "=");
6920 		seq_printf(seq, ">");
6921 		for (i = 0; i < y; i++)
6922 			seq_printf(seq, ".");
6923 		seq_printf(seq, "] ");
6924 	}
6925 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6926 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6927 		    "reshape" :
6928 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6929 		     "check" :
6930 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6931 		      "resync" : "recovery"))),
6932 		   per_milli/10, per_milli % 10,
6933 		   (unsigned long long) resync/2,
6934 		   (unsigned long long) max_sectors/2);
6935 
6936 	/*
6937 	 * dt: time from mark until now
6938 	 * db: blocks written from mark until now
6939 	 * rt: remaining time
6940 	 *
6941 	 * rt is a sector_t, so could be 32bit or 64bit.
6942 	 * So we divide before multiply in case it is 32bit and close
6943 	 * to the limit.
6944 	 * We scale the divisor (db) by 32 to avoid losing precision
6945 	 * near the end of resync when the number of remaining sectors
6946 	 * is close to 'db'.
6947 	 * We then divide rt by 32 after multiplying by db to compensate.
6948 	 * The '+1' avoids division by zero if db is very small.
6949 	 */
6950 	dt = ((jiffies - mddev->resync_mark) / HZ);
6951 	if (!dt) dt++;
6952 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6953 		- mddev->resync_mark_cnt;
6954 
6955 	rt = max_sectors - resync;    /* number of remaining sectors */
6956 	sector_div(rt, db/32+1);
6957 	rt *= dt;
6958 	rt >>= 5;
6959 
6960 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6961 		   ((unsigned long)rt % 60)/6);
6962 
6963 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6964 }
6965 
6966 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6967 {
6968 	struct list_head *tmp;
6969 	loff_t l = *pos;
6970 	struct mddev *mddev;
6971 
6972 	if (l >= 0x10000)
6973 		return NULL;
6974 	if (!l--)
6975 		/* header */
6976 		return (void*)1;
6977 
6978 	spin_lock(&all_mddevs_lock);
6979 	list_for_each(tmp,&all_mddevs)
6980 		if (!l--) {
6981 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6982 			mddev_get(mddev);
6983 			spin_unlock(&all_mddevs_lock);
6984 			return mddev;
6985 		}
6986 	spin_unlock(&all_mddevs_lock);
6987 	if (!l--)
6988 		return (void*)2;/* tail */
6989 	return NULL;
6990 }
6991 
6992 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6993 {
6994 	struct list_head *tmp;
6995 	struct mddev *next_mddev, *mddev = v;
6996 
6997 	++*pos;
6998 	if (v == (void*)2)
6999 		return NULL;
7000 
7001 	spin_lock(&all_mddevs_lock);
7002 	if (v == (void*)1)
7003 		tmp = all_mddevs.next;
7004 	else
7005 		tmp = mddev->all_mddevs.next;
7006 	if (tmp != &all_mddevs)
7007 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7008 	else {
7009 		next_mddev = (void*)2;
7010 		*pos = 0x10000;
7011 	}
7012 	spin_unlock(&all_mddevs_lock);
7013 
7014 	if (v != (void*)1)
7015 		mddev_put(mddev);
7016 	return next_mddev;
7017 
7018 }
7019 
7020 static void md_seq_stop(struct seq_file *seq, void *v)
7021 {
7022 	struct mddev *mddev = v;
7023 
7024 	if (mddev && v != (void*)1 && v != (void*)2)
7025 		mddev_put(mddev);
7026 }
7027 
7028 static int md_seq_show(struct seq_file *seq, void *v)
7029 {
7030 	struct mddev *mddev = v;
7031 	sector_t sectors;
7032 	struct md_rdev *rdev;
7033 
7034 	if (v == (void*)1) {
7035 		struct md_personality *pers;
7036 		seq_printf(seq, "Personalities : ");
7037 		spin_lock(&pers_lock);
7038 		list_for_each_entry(pers, &pers_list, list)
7039 			seq_printf(seq, "[%s] ", pers->name);
7040 
7041 		spin_unlock(&pers_lock);
7042 		seq_printf(seq, "\n");
7043 		seq->poll_event = atomic_read(&md_event_count);
7044 		return 0;
7045 	}
7046 	if (v == (void*)2) {
7047 		status_unused(seq);
7048 		return 0;
7049 	}
7050 
7051 	if (mddev_lock(mddev) < 0)
7052 		return -EINTR;
7053 
7054 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7055 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7056 						mddev->pers ? "" : "in");
7057 		if (mddev->pers) {
7058 			if (mddev->ro==1)
7059 				seq_printf(seq, " (read-only)");
7060 			if (mddev->ro==2)
7061 				seq_printf(seq, " (auto-read-only)");
7062 			seq_printf(seq, " %s", mddev->pers->name);
7063 		}
7064 
7065 		sectors = 0;
7066 		rdev_for_each(rdev, mddev) {
7067 			char b[BDEVNAME_SIZE];
7068 			seq_printf(seq, " %s[%d]",
7069 				bdevname(rdev->bdev,b), rdev->desc_nr);
7070 			if (test_bit(WriteMostly, &rdev->flags))
7071 				seq_printf(seq, "(W)");
7072 			if (test_bit(Faulty, &rdev->flags)) {
7073 				seq_printf(seq, "(F)");
7074 				continue;
7075 			}
7076 			if (rdev->raid_disk < 0)
7077 				seq_printf(seq, "(S)"); /* spare */
7078 			if (test_bit(Replacement, &rdev->flags))
7079 				seq_printf(seq, "(R)");
7080 			sectors += rdev->sectors;
7081 		}
7082 
7083 		if (!list_empty(&mddev->disks)) {
7084 			if (mddev->pers)
7085 				seq_printf(seq, "\n      %llu blocks",
7086 					   (unsigned long long)
7087 					   mddev->array_sectors / 2);
7088 			else
7089 				seq_printf(seq, "\n      %llu blocks",
7090 					   (unsigned long long)sectors / 2);
7091 		}
7092 		if (mddev->persistent) {
7093 			if (mddev->major_version != 0 ||
7094 			    mddev->minor_version != 90) {
7095 				seq_printf(seq," super %d.%d",
7096 					   mddev->major_version,
7097 					   mddev->minor_version);
7098 			}
7099 		} else if (mddev->external)
7100 			seq_printf(seq, " super external:%s",
7101 				   mddev->metadata_type);
7102 		else
7103 			seq_printf(seq, " super non-persistent");
7104 
7105 		if (mddev->pers) {
7106 			mddev->pers->status(seq, mddev);
7107 	 		seq_printf(seq, "\n      ");
7108 			if (mddev->pers->sync_request) {
7109 				if (mddev->curr_resync > 2) {
7110 					status_resync(seq, mddev);
7111 					seq_printf(seq, "\n      ");
7112 				} else if (mddev->curr_resync >= 1)
7113 					seq_printf(seq, "\tresync=DELAYED\n      ");
7114 				else if (mddev->recovery_cp < MaxSector)
7115 					seq_printf(seq, "\tresync=PENDING\n      ");
7116 			}
7117 		} else
7118 			seq_printf(seq, "\n       ");
7119 
7120 		bitmap_status(seq, mddev->bitmap);
7121 
7122 		seq_printf(seq, "\n");
7123 	}
7124 	mddev_unlock(mddev);
7125 
7126 	return 0;
7127 }
7128 
7129 static const struct seq_operations md_seq_ops = {
7130 	.start  = md_seq_start,
7131 	.next   = md_seq_next,
7132 	.stop   = md_seq_stop,
7133 	.show   = md_seq_show,
7134 };
7135 
7136 static int md_seq_open(struct inode *inode, struct file *file)
7137 {
7138 	struct seq_file *seq;
7139 	int error;
7140 
7141 	error = seq_open(file, &md_seq_ops);
7142 	if (error)
7143 		return error;
7144 
7145 	seq = file->private_data;
7146 	seq->poll_event = atomic_read(&md_event_count);
7147 	return error;
7148 }
7149 
7150 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7151 {
7152 	struct seq_file *seq = filp->private_data;
7153 	int mask;
7154 
7155 	poll_wait(filp, &md_event_waiters, wait);
7156 
7157 	/* always allow read */
7158 	mask = POLLIN | POLLRDNORM;
7159 
7160 	if (seq->poll_event != atomic_read(&md_event_count))
7161 		mask |= POLLERR | POLLPRI;
7162 	return mask;
7163 }
7164 
7165 static const struct file_operations md_seq_fops = {
7166 	.owner		= THIS_MODULE,
7167 	.open           = md_seq_open,
7168 	.read           = seq_read,
7169 	.llseek         = seq_lseek,
7170 	.release	= seq_release_private,
7171 	.poll		= mdstat_poll,
7172 };
7173 
7174 int register_md_personality(struct md_personality *p)
7175 {
7176 	spin_lock(&pers_lock);
7177 	list_add_tail(&p->list, &pers_list);
7178 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7179 	spin_unlock(&pers_lock);
7180 	return 0;
7181 }
7182 
7183 int unregister_md_personality(struct md_personality *p)
7184 {
7185 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7186 	spin_lock(&pers_lock);
7187 	list_del_init(&p->list);
7188 	spin_unlock(&pers_lock);
7189 	return 0;
7190 }
7191 
7192 static int is_mddev_idle(struct mddev *mddev, int init)
7193 {
7194 	struct md_rdev * rdev;
7195 	int idle;
7196 	int curr_events;
7197 
7198 	idle = 1;
7199 	rcu_read_lock();
7200 	rdev_for_each_rcu(rdev, mddev) {
7201 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7202 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7203 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7204 			      atomic_read(&disk->sync_io);
7205 		/* sync IO will cause sync_io to increase before the disk_stats
7206 		 * as sync_io is counted when a request starts, and
7207 		 * disk_stats is counted when it completes.
7208 		 * So resync activity will cause curr_events to be smaller than
7209 		 * when there was no such activity.
7210 		 * non-sync IO will cause disk_stat to increase without
7211 		 * increasing sync_io so curr_events will (eventually)
7212 		 * be larger than it was before.  Once it becomes
7213 		 * substantially larger, the test below will cause
7214 		 * the array to appear non-idle, and resync will slow
7215 		 * down.
7216 		 * If there is a lot of outstanding resync activity when
7217 		 * we set last_event to curr_events, then all that activity
7218 		 * completing might cause the array to appear non-idle
7219 		 * and resync will be slowed down even though there might
7220 		 * not have been non-resync activity.  This will only
7221 		 * happen once though.  'last_events' will soon reflect
7222 		 * the state where there is little or no outstanding
7223 		 * resync requests, and further resync activity will
7224 		 * always make curr_events less than last_events.
7225 		 *
7226 		 */
7227 		if (init || curr_events - rdev->last_events > 64) {
7228 			rdev->last_events = curr_events;
7229 			idle = 0;
7230 		}
7231 	}
7232 	rcu_read_unlock();
7233 	return idle;
7234 }
7235 
7236 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7237 {
7238 	/* another "blocks" (512byte) blocks have been synced */
7239 	atomic_sub(blocks, &mddev->recovery_active);
7240 	wake_up(&mddev->recovery_wait);
7241 	if (!ok) {
7242 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7243 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7244 		md_wakeup_thread(mddev->thread);
7245 		// stop recovery, signal do_sync ....
7246 	}
7247 }
7248 
7249 
7250 /* md_write_start(mddev, bi)
7251  * If we need to update some array metadata (e.g. 'active' flag
7252  * in superblock) before writing, schedule a superblock update
7253  * and wait for it to complete.
7254  */
7255 void md_write_start(struct mddev *mddev, struct bio *bi)
7256 {
7257 	int did_change = 0;
7258 	if (bio_data_dir(bi) != WRITE)
7259 		return;
7260 
7261 	BUG_ON(mddev->ro == 1);
7262 	if (mddev->ro == 2) {
7263 		/* need to switch to read/write */
7264 		mddev->ro = 0;
7265 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7266 		md_wakeup_thread(mddev->thread);
7267 		md_wakeup_thread(mddev->sync_thread);
7268 		did_change = 1;
7269 	}
7270 	atomic_inc(&mddev->writes_pending);
7271 	if (mddev->safemode == 1)
7272 		mddev->safemode = 0;
7273 	if (mddev->in_sync) {
7274 		spin_lock_irq(&mddev->write_lock);
7275 		if (mddev->in_sync) {
7276 			mddev->in_sync = 0;
7277 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7278 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7279 			md_wakeup_thread(mddev->thread);
7280 			did_change = 1;
7281 		}
7282 		spin_unlock_irq(&mddev->write_lock);
7283 	}
7284 	if (did_change)
7285 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7286 	wait_event(mddev->sb_wait,
7287 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7288 }
7289 
7290 void md_write_end(struct mddev *mddev)
7291 {
7292 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7293 		if (mddev->safemode == 2)
7294 			md_wakeup_thread(mddev->thread);
7295 		else if (mddev->safemode_delay)
7296 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7297 	}
7298 }
7299 
7300 /* md_allow_write(mddev)
7301  * Calling this ensures that the array is marked 'active' so that writes
7302  * may proceed without blocking.  It is important to call this before
7303  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7304  * Must be called with mddev_lock held.
7305  *
7306  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7307  * is dropped, so return -EAGAIN after notifying userspace.
7308  */
7309 int md_allow_write(struct mddev *mddev)
7310 {
7311 	if (!mddev->pers)
7312 		return 0;
7313 	if (mddev->ro)
7314 		return 0;
7315 	if (!mddev->pers->sync_request)
7316 		return 0;
7317 
7318 	spin_lock_irq(&mddev->write_lock);
7319 	if (mddev->in_sync) {
7320 		mddev->in_sync = 0;
7321 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7322 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7323 		if (mddev->safemode_delay &&
7324 		    mddev->safemode == 0)
7325 			mddev->safemode = 1;
7326 		spin_unlock_irq(&mddev->write_lock);
7327 		md_update_sb(mddev, 0);
7328 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7329 	} else
7330 		spin_unlock_irq(&mddev->write_lock);
7331 
7332 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7333 		return -EAGAIN;
7334 	else
7335 		return 0;
7336 }
7337 EXPORT_SYMBOL_GPL(md_allow_write);
7338 
7339 #define SYNC_MARKS	10
7340 #define	SYNC_MARK_STEP	(3*HZ)
7341 #define UPDATE_FREQUENCY (5*60*HZ)
7342 void md_do_sync(struct md_thread *thread)
7343 {
7344 	struct mddev *mddev = thread->mddev;
7345 	struct mddev *mddev2;
7346 	unsigned int currspeed = 0,
7347 		 window;
7348 	sector_t max_sectors,j, io_sectors;
7349 	unsigned long mark[SYNC_MARKS];
7350 	unsigned long update_time;
7351 	sector_t mark_cnt[SYNC_MARKS];
7352 	int last_mark,m;
7353 	struct list_head *tmp;
7354 	sector_t last_check;
7355 	int skipped = 0;
7356 	struct md_rdev *rdev;
7357 	char *desc, *action = NULL;
7358 	struct blk_plug plug;
7359 
7360 	/* just incase thread restarts... */
7361 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7362 		return;
7363 	if (mddev->ro) /* never try to sync a read-only array */
7364 		return;
7365 
7366 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7367 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7368 			desc = "data-check";
7369 			action = "check";
7370 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7371 			desc = "requested-resync";
7372 			action = "repair";
7373 		} else
7374 			desc = "resync";
7375 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7376 		desc = "reshape";
7377 	else
7378 		desc = "recovery";
7379 
7380 	mddev->last_sync_action = action ?: desc;
7381 
7382 	/* we overload curr_resync somewhat here.
7383 	 * 0 == not engaged in resync at all
7384 	 * 2 == checking that there is no conflict with another sync
7385 	 * 1 == like 2, but have yielded to allow conflicting resync to
7386 	 *		commense
7387 	 * other == active in resync - this many blocks
7388 	 *
7389 	 * Before starting a resync we must have set curr_resync to
7390 	 * 2, and then checked that every "conflicting" array has curr_resync
7391 	 * less than ours.  When we find one that is the same or higher
7392 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7393 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7394 	 * This will mean we have to start checking from the beginning again.
7395 	 *
7396 	 */
7397 
7398 	do {
7399 		mddev->curr_resync = 2;
7400 
7401 	try_again:
7402 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7403 			goto skip;
7404 		for_each_mddev(mddev2, tmp) {
7405 			if (mddev2 == mddev)
7406 				continue;
7407 			if (!mddev->parallel_resync
7408 			&&  mddev2->curr_resync
7409 			&&  match_mddev_units(mddev, mddev2)) {
7410 				DEFINE_WAIT(wq);
7411 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7412 					/* arbitrarily yield */
7413 					mddev->curr_resync = 1;
7414 					wake_up(&resync_wait);
7415 				}
7416 				if (mddev > mddev2 && mddev->curr_resync == 1)
7417 					/* no need to wait here, we can wait the next
7418 					 * time 'round when curr_resync == 2
7419 					 */
7420 					continue;
7421 				/* We need to wait 'interruptible' so as not to
7422 				 * contribute to the load average, and not to
7423 				 * be caught by 'softlockup'
7424 				 */
7425 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7426 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7427 				    mddev2->curr_resync >= mddev->curr_resync) {
7428 					printk(KERN_INFO "md: delaying %s of %s"
7429 					       " until %s has finished (they"
7430 					       " share one or more physical units)\n",
7431 					       desc, mdname(mddev), mdname(mddev2));
7432 					mddev_put(mddev2);
7433 					if (signal_pending(current))
7434 						flush_signals(current);
7435 					schedule();
7436 					finish_wait(&resync_wait, &wq);
7437 					goto try_again;
7438 				}
7439 				finish_wait(&resync_wait, &wq);
7440 			}
7441 		}
7442 	} while (mddev->curr_resync < 2);
7443 
7444 	j = 0;
7445 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7446 		/* resync follows the size requested by the personality,
7447 		 * which defaults to physical size, but can be virtual size
7448 		 */
7449 		max_sectors = mddev->resync_max_sectors;
7450 		atomic64_set(&mddev->resync_mismatches, 0);
7451 		/* we don't use the checkpoint if there's a bitmap */
7452 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7453 			j = mddev->resync_min;
7454 		else if (!mddev->bitmap)
7455 			j = mddev->recovery_cp;
7456 
7457 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7458 		max_sectors = mddev->resync_max_sectors;
7459 	else {
7460 		/* recovery follows the physical size of devices */
7461 		max_sectors = mddev->dev_sectors;
7462 		j = MaxSector;
7463 		rcu_read_lock();
7464 		rdev_for_each_rcu(rdev, mddev)
7465 			if (rdev->raid_disk >= 0 &&
7466 			    !test_bit(Faulty, &rdev->flags) &&
7467 			    !test_bit(In_sync, &rdev->flags) &&
7468 			    rdev->recovery_offset < j)
7469 				j = rdev->recovery_offset;
7470 		rcu_read_unlock();
7471 	}
7472 
7473 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7474 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7475 		" %d KB/sec/disk.\n", speed_min(mddev));
7476 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7477 	       "(but not more than %d KB/sec) for %s.\n",
7478 	       speed_max(mddev), desc);
7479 
7480 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7481 
7482 	io_sectors = 0;
7483 	for (m = 0; m < SYNC_MARKS; m++) {
7484 		mark[m] = jiffies;
7485 		mark_cnt[m] = io_sectors;
7486 	}
7487 	last_mark = 0;
7488 	mddev->resync_mark = mark[last_mark];
7489 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7490 
7491 	/*
7492 	 * Tune reconstruction:
7493 	 */
7494 	window = 32*(PAGE_SIZE/512);
7495 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7496 		window/2, (unsigned long long)max_sectors/2);
7497 
7498 	atomic_set(&mddev->recovery_active, 0);
7499 	last_check = 0;
7500 
7501 	if (j>2) {
7502 		printk(KERN_INFO
7503 		       "md: resuming %s of %s from checkpoint.\n",
7504 		       desc, mdname(mddev));
7505 		mddev->curr_resync = j;
7506 	} else
7507 		mddev->curr_resync = 3; /* no longer delayed */
7508 	mddev->curr_resync_completed = j;
7509 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7510 	md_new_event(mddev);
7511 	update_time = jiffies;
7512 
7513 	blk_start_plug(&plug);
7514 	while (j < max_sectors) {
7515 		sector_t sectors;
7516 
7517 		skipped = 0;
7518 
7519 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7520 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7521 		      (mddev->curr_resync - mddev->curr_resync_completed)
7522 		      > (max_sectors >> 4)) ||
7523 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7524 		     (j - mddev->curr_resync_completed)*2
7525 		     >= mddev->resync_max - mddev->curr_resync_completed
7526 			    )) {
7527 			/* time to update curr_resync_completed */
7528 			wait_event(mddev->recovery_wait,
7529 				   atomic_read(&mddev->recovery_active) == 0);
7530 			mddev->curr_resync_completed = j;
7531 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7532 			    j > mddev->recovery_cp)
7533 				mddev->recovery_cp = j;
7534 			update_time = jiffies;
7535 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7536 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7537 		}
7538 
7539 		while (j >= mddev->resync_max &&
7540 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7541 			/* As this condition is controlled by user-space,
7542 			 * we can block indefinitely, so use '_interruptible'
7543 			 * to avoid triggering warnings.
7544 			 */
7545 			flush_signals(current); /* just in case */
7546 			wait_event_interruptible(mddev->recovery_wait,
7547 						 mddev->resync_max > j
7548 						 || test_bit(MD_RECOVERY_INTR,
7549 							     &mddev->recovery));
7550 		}
7551 
7552 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7553 			break;
7554 
7555 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7556 						  currspeed < speed_min(mddev));
7557 		if (sectors == 0) {
7558 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7559 			break;
7560 		}
7561 
7562 		if (!skipped) { /* actual IO requested */
7563 			io_sectors += sectors;
7564 			atomic_add(sectors, &mddev->recovery_active);
7565 		}
7566 
7567 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7568 			break;
7569 
7570 		j += sectors;
7571 		if (j > 2)
7572 			mddev->curr_resync = j;
7573 		mddev->curr_mark_cnt = io_sectors;
7574 		if (last_check == 0)
7575 			/* this is the earliest that rebuild will be
7576 			 * visible in /proc/mdstat
7577 			 */
7578 			md_new_event(mddev);
7579 
7580 		if (last_check + window > io_sectors || j == max_sectors)
7581 			continue;
7582 
7583 		last_check = io_sectors;
7584 	repeat:
7585 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7586 			/* step marks */
7587 			int next = (last_mark+1) % SYNC_MARKS;
7588 
7589 			mddev->resync_mark = mark[next];
7590 			mddev->resync_mark_cnt = mark_cnt[next];
7591 			mark[next] = jiffies;
7592 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7593 			last_mark = next;
7594 		}
7595 
7596 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7597 			break;
7598 
7599 		/*
7600 		 * this loop exits only if either when we are slower than
7601 		 * the 'hard' speed limit, or the system was IO-idle for
7602 		 * a jiffy.
7603 		 * the system might be non-idle CPU-wise, but we only care
7604 		 * about not overloading the IO subsystem. (things like an
7605 		 * e2fsck being done on the RAID array should execute fast)
7606 		 */
7607 		cond_resched();
7608 
7609 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7610 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7611 
7612 		if (currspeed > speed_min(mddev)) {
7613 			if ((currspeed > speed_max(mddev)) ||
7614 					!is_mddev_idle(mddev, 0)) {
7615 				msleep(500);
7616 				goto repeat;
7617 			}
7618 		}
7619 	}
7620 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7621 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7622 	       ? "interrupted" : "done");
7623 	/*
7624 	 * this also signals 'finished resyncing' to md_stop
7625 	 */
7626 	blk_finish_plug(&plug);
7627 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7628 
7629 	/* tell personality that we are finished */
7630 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7631 
7632 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7633 	    mddev->curr_resync > 2) {
7634 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7635 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7636 				if (mddev->curr_resync >= mddev->recovery_cp) {
7637 					printk(KERN_INFO
7638 					       "md: checkpointing %s of %s.\n",
7639 					       desc, mdname(mddev));
7640 					if (test_bit(MD_RECOVERY_ERROR,
7641 						&mddev->recovery))
7642 						mddev->recovery_cp =
7643 							mddev->curr_resync_completed;
7644 					else
7645 						mddev->recovery_cp =
7646 							mddev->curr_resync;
7647 				}
7648 			} else
7649 				mddev->recovery_cp = MaxSector;
7650 		} else {
7651 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7652 				mddev->curr_resync = MaxSector;
7653 			rcu_read_lock();
7654 			rdev_for_each_rcu(rdev, mddev)
7655 				if (rdev->raid_disk >= 0 &&
7656 				    mddev->delta_disks >= 0 &&
7657 				    !test_bit(Faulty, &rdev->flags) &&
7658 				    !test_bit(In_sync, &rdev->flags) &&
7659 				    rdev->recovery_offset < mddev->curr_resync)
7660 					rdev->recovery_offset = mddev->curr_resync;
7661 			rcu_read_unlock();
7662 		}
7663 	}
7664  skip:
7665 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7666 
7667 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7668 		/* We completed so min/max setting can be forgotten if used. */
7669 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7670 			mddev->resync_min = 0;
7671 		mddev->resync_max = MaxSector;
7672 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7673 		mddev->resync_min = mddev->curr_resync_completed;
7674 	mddev->curr_resync = 0;
7675 	wake_up(&resync_wait);
7676 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7677 	md_wakeup_thread(mddev->thread);
7678 	return;
7679 }
7680 EXPORT_SYMBOL_GPL(md_do_sync);
7681 
7682 static int remove_and_add_spares(struct mddev *mddev,
7683 				 struct md_rdev *this)
7684 {
7685 	struct md_rdev *rdev;
7686 	int spares = 0;
7687 	int removed = 0;
7688 
7689 	rdev_for_each(rdev, mddev)
7690 		if ((this == NULL || rdev == this) &&
7691 		    rdev->raid_disk >= 0 &&
7692 		    !test_bit(Blocked, &rdev->flags) &&
7693 		    (test_bit(Faulty, &rdev->flags) ||
7694 		     ! test_bit(In_sync, &rdev->flags)) &&
7695 		    atomic_read(&rdev->nr_pending)==0) {
7696 			if (mddev->pers->hot_remove_disk(
7697 				    mddev, rdev) == 0) {
7698 				sysfs_unlink_rdev(mddev, rdev);
7699 				rdev->raid_disk = -1;
7700 				removed++;
7701 			}
7702 		}
7703 	if (removed && mddev->kobj.sd)
7704 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7705 
7706 	if (this)
7707 		goto no_add;
7708 
7709 	rdev_for_each(rdev, mddev) {
7710 		if (rdev->raid_disk >= 0 &&
7711 		    !test_bit(In_sync, &rdev->flags) &&
7712 		    !test_bit(Faulty, &rdev->flags))
7713 			spares++;
7714 		if (rdev->raid_disk >= 0)
7715 			continue;
7716 		if (test_bit(Faulty, &rdev->flags))
7717 			continue;
7718 		if (mddev->ro &&
7719 		    rdev->saved_raid_disk < 0)
7720 			continue;
7721 
7722 		rdev->recovery_offset = 0;
7723 		if (mddev->pers->
7724 		    hot_add_disk(mddev, rdev) == 0) {
7725 			if (sysfs_link_rdev(mddev, rdev))
7726 				/* failure here is OK */;
7727 			spares++;
7728 			md_new_event(mddev);
7729 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7730 		}
7731 	}
7732 no_add:
7733 	if (removed)
7734 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7735 	return spares;
7736 }
7737 
7738 /*
7739  * This routine is regularly called by all per-raid-array threads to
7740  * deal with generic issues like resync and super-block update.
7741  * Raid personalities that don't have a thread (linear/raid0) do not
7742  * need this as they never do any recovery or update the superblock.
7743  *
7744  * It does not do any resync itself, but rather "forks" off other threads
7745  * to do that as needed.
7746  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7747  * "->recovery" and create a thread at ->sync_thread.
7748  * When the thread finishes it sets MD_RECOVERY_DONE
7749  * and wakeups up this thread which will reap the thread and finish up.
7750  * This thread also removes any faulty devices (with nr_pending == 0).
7751  *
7752  * The overall approach is:
7753  *  1/ if the superblock needs updating, update it.
7754  *  2/ If a recovery thread is running, don't do anything else.
7755  *  3/ If recovery has finished, clean up, possibly marking spares active.
7756  *  4/ If there are any faulty devices, remove them.
7757  *  5/ If array is degraded, try to add spares devices
7758  *  6/ If array has spares or is not in-sync, start a resync thread.
7759  */
7760 void md_check_recovery(struct mddev *mddev)
7761 {
7762 	if (mddev->suspended)
7763 		return;
7764 
7765 	if (mddev->bitmap)
7766 		bitmap_daemon_work(mddev);
7767 
7768 	if (signal_pending(current)) {
7769 		if (mddev->pers->sync_request && !mddev->external) {
7770 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7771 			       mdname(mddev));
7772 			mddev->safemode = 2;
7773 		}
7774 		flush_signals(current);
7775 	}
7776 
7777 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7778 		return;
7779 	if ( ! (
7780 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7781 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7782 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7783 		(mddev->external == 0 && mddev->safemode == 1) ||
7784 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7785 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7786 		))
7787 		return;
7788 
7789 	if (mddev_trylock(mddev)) {
7790 		int spares = 0;
7791 
7792 		if (mddev->ro) {
7793 			/* On a read-only array we can:
7794 			 * - remove failed devices
7795 			 * - add already-in_sync devices if the array itself
7796 			 *   is in-sync.
7797 			 * As we only add devices that are already in-sync,
7798 			 * we can activate the spares immediately.
7799 			 */
7800 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7801 			remove_and_add_spares(mddev, NULL);
7802 			mddev->pers->spare_active(mddev);
7803 			goto unlock;
7804 		}
7805 
7806 		if (!mddev->external) {
7807 			int did_change = 0;
7808 			spin_lock_irq(&mddev->write_lock);
7809 			if (mddev->safemode &&
7810 			    !atomic_read(&mddev->writes_pending) &&
7811 			    !mddev->in_sync &&
7812 			    mddev->recovery_cp == MaxSector) {
7813 				mddev->in_sync = 1;
7814 				did_change = 1;
7815 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7816 			}
7817 			if (mddev->safemode == 1)
7818 				mddev->safemode = 0;
7819 			spin_unlock_irq(&mddev->write_lock);
7820 			if (did_change)
7821 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7822 		}
7823 
7824 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
7825 			md_update_sb(mddev, 0);
7826 
7827 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7828 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7829 			/* resync/recovery still happening */
7830 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7831 			goto unlock;
7832 		}
7833 		if (mddev->sync_thread) {
7834 			md_reap_sync_thread(mddev);
7835 			goto unlock;
7836 		}
7837 		/* Set RUNNING before clearing NEEDED to avoid
7838 		 * any transients in the value of "sync_action".
7839 		 */
7840 		mddev->curr_resync_completed = 0;
7841 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7842 		/* Clear some bits that don't mean anything, but
7843 		 * might be left set
7844 		 */
7845 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7846 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7847 
7848 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7849 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7850 			goto unlock;
7851 		/* no recovery is running.
7852 		 * remove any failed drives, then
7853 		 * add spares if possible.
7854 		 * Spares are also removed and re-added, to allow
7855 		 * the personality to fail the re-add.
7856 		 */
7857 
7858 		if (mddev->reshape_position != MaxSector) {
7859 			if (mddev->pers->check_reshape == NULL ||
7860 			    mddev->pers->check_reshape(mddev) != 0)
7861 				/* Cannot proceed */
7862 				goto unlock;
7863 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7864 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7865 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
7866 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7867 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7868 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7869 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7870 		} else if (mddev->recovery_cp < MaxSector) {
7871 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7872 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7873 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7874 			/* nothing to be done ... */
7875 			goto unlock;
7876 
7877 		if (mddev->pers->sync_request) {
7878 			if (spares) {
7879 				/* We are adding a device or devices to an array
7880 				 * which has the bitmap stored on all devices.
7881 				 * So make sure all bitmap pages get written
7882 				 */
7883 				bitmap_write_all(mddev->bitmap);
7884 			}
7885 			mddev->sync_thread = md_register_thread(md_do_sync,
7886 								mddev,
7887 								"resync");
7888 			if (!mddev->sync_thread) {
7889 				printk(KERN_ERR "%s: could not start resync"
7890 					" thread...\n",
7891 					mdname(mddev));
7892 				/* leave the spares where they are, it shouldn't hurt */
7893 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7894 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7895 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7896 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7897 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7898 			} else
7899 				md_wakeup_thread(mddev->sync_thread);
7900 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7901 			md_new_event(mddev);
7902 		}
7903 	unlock:
7904 		wake_up(&mddev->sb_wait);
7905 
7906 		if (!mddev->sync_thread) {
7907 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7908 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7909 					       &mddev->recovery))
7910 				if (mddev->sysfs_action)
7911 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7912 		}
7913 		mddev_unlock(mddev);
7914 	}
7915 }
7916 
7917 void md_reap_sync_thread(struct mddev *mddev)
7918 {
7919 	struct md_rdev *rdev;
7920 
7921 	/* resync has finished, collect result */
7922 	md_unregister_thread(&mddev->sync_thread);
7923 	wake_up(&resync_wait);
7924 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7925 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7926 		/* success...*/
7927 		/* activate any spares */
7928 		if (mddev->pers->spare_active(mddev)) {
7929 			sysfs_notify(&mddev->kobj, NULL,
7930 				     "degraded");
7931 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7932 		}
7933 	}
7934 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7935 	    mddev->pers->finish_reshape)
7936 		mddev->pers->finish_reshape(mddev);
7937 
7938 	/* If array is no-longer degraded, then any saved_raid_disk
7939 	 * information must be scrapped.  Also if any device is now
7940 	 * In_sync we must scrape the saved_raid_disk for that device
7941 	 * do the superblock for an incrementally recovered device
7942 	 * written out.
7943 	 */
7944 	rdev_for_each(rdev, mddev)
7945 		if (!mddev->degraded ||
7946 		    test_bit(In_sync, &rdev->flags))
7947 			rdev->saved_raid_disk = -1;
7948 
7949 	md_update_sb(mddev, 1);
7950 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7951 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7952 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7953 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7954 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7955 	/* flag recovery needed just to double check */
7956 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7957 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7958 	md_new_event(mddev);
7959 	if (mddev->event_work.func)
7960 		queue_work(md_misc_wq, &mddev->event_work);
7961 }
7962 
7963 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7964 {
7965 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7966 	wait_event_timeout(rdev->blocked_wait,
7967 			   !test_bit(Blocked, &rdev->flags) &&
7968 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7969 			   msecs_to_jiffies(5000));
7970 	rdev_dec_pending(rdev, mddev);
7971 }
7972 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7973 
7974 void md_finish_reshape(struct mddev *mddev)
7975 {
7976 	/* called be personality module when reshape completes. */
7977 	struct md_rdev *rdev;
7978 
7979 	rdev_for_each(rdev, mddev) {
7980 		if (rdev->data_offset > rdev->new_data_offset)
7981 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7982 		else
7983 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7984 		rdev->data_offset = rdev->new_data_offset;
7985 	}
7986 }
7987 EXPORT_SYMBOL(md_finish_reshape);
7988 
7989 /* Bad block management.
7990  * We can record which blocks on each device are 'bad' and so just
7991  * fail those blocks, or that stripe, rather than the whole device.
7992  * Entries in the bad-block table are 64bits wide.  This comprises:
7993  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7994  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7995  *  A 'shift' can be set so that larger blocks are tracked and
7996  *  consequently larger devices can be covered.
7997  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7998  *
7999  * Locking of the bad-block table uses a seqlock so md_is_badblock
8000  * might need to retry if it is very unlucky.
8001  * We will sometimes want to check for bad blocks in a bi_end_io function,
8002  * so we use the write_seqlock_irq variant.
8003  *
8004  * When looking for a bad block we specify a range and want to
8005  * know if any block in the range is bad.  So we binary-search
8006  * to the last range that starts at-or-before the given endpoint,
8007  * (or "before the sector after the target range")
8008  * then see if it ends after the given start.
8009  * We return
8010  *  0 if there are no known bad blocks in the range
8011  *  1 if there are known bad block which are all acknowledged
8012  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8013  * plus the start/length of the first bad section we overlap.
8014  */
8015 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8016 		   sector_t *first_bad, int *bad_sectors)
8017 {
8018 	int hi;
8019 	int lo;
8020 	u64 *p = bb->page;
8021 	int rv;
8022 	sector_t target = s + sectors;
8023 	unsigned seq;
8024 
8025 	if (bb->shift > 0) {
8026 		/* round the start down, and the end up */
8027 		s >>= bb->shift;
8028 		target += (1<<bb->shift) - 1;
8029 		target >>= bb->shift;
8030 		sectors = target - s;
8031 	}
8032 	/* 'target' is now the first block after the bad range */
8033 
8034 retry:
8035 	seq = read_seqbegin(&bb->lock);
8036 	lo = 0;
8037 	rv = 0;
8038 	hi = bb->count;
8039 
8040 	/* Binary search between lo and hi for 'target'
8041 	 * i.e. for the last range that starts before 'target'
8042 	 */
8043 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8044 	 * are known not to be the last range before target.
8045 	 * VARIANT: hi-lo is the number of possible
8046 	 * ranges, and decreases until it reaches 1
8047 	 */
8048 	while (hi - lo > 1) {
8049 		int mid = (lo + hi) / 2;
8050 		sector_t a = BB_OFFSET(p[mid]);
8051 		if (a < target)
8052 			/* This could still be the one, earlier ranges
8053 			 * could not. */
8054 			lo = mid;
8055 		else
8056 			/* This and later ranges are definitely out. */
8057 			hi = mid;
8058 	}
8059 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8060 	if (hi > lo) {
8061 		/* need to check all range that end after 's' to see if
8062 		 * any are unacknowledged.
8063 		 */
8064 		while (lo >= 0 &&
8065 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8066 			if (BB_OFFSET(p[lo]) < target) {
8067 				/* starts before the end, and finishes after
8068 				 * the start, so they must overlap
8069 				 */
8070 				if (rv != -1 && BB_ACK(p[lo]))
8071 					rv = 1;
8072 				else
8073 					rv = -1;
8074 				*first_bad = BB_OFFSET(p[lo]);
8075 				*bad_sectors = BB_LEN(p[lo]);
8076 			}
8077 			lo--;
8078 		}
8079 	}
8080 
8081 	if (read_seqretry(&bb->lock, seq))
8082 		goto retry;
8083 
8084 	return rv;
8085 }
8086 EXPORT_SYMBOL_GPL(md_is_badblock);
8087 
8088 /*
8089  * Add a range of bad blocks to the table.
8090  * This might extend the table, or might contract it
8091  * if two adjacent ranges can be merged.
8092  * We binary-search to find the 'insertion' point, then
8093  * decide how best to handle it.
8094  */
8095 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8096 			    int acknowledged)
8097 {
8098 	u64 *p;
8099 	int lo, hi;
8100 	int rv = 1;
8101 	unsigned long flags;
8102 
8103 	if (bb->shift < 0)
8104 		/* badblocks are disabled */
8105 		return 0;
8106 
8107 	if (bb->shift) {
8108 		/* round the start down, and the end up */
8109 		sector_t next = s + sectors;
8110 		s >>= bb->shift;
8111 		next += (1<<bb->shift) - 1;
8112 		next >>= bb->shift;
8113 		sectors = next - s;
8114 	}
8115 
8116 	write_seqlock_irqsave(&bb->lock, flags);
8117 
8118 	p = bb->page;
8119 	lo = 0;
8120 	hi = bb->count;
8121 	/* Find the last range that starts at-or-before 's' */
8122 	while (hi - lo > 1) {
8123 		int mid = (lo + hi) / 2;
8124 		sector_t a = BB_OFFSET(p[mid]);
8125 		if (a <= s)
8126 			lo = mid;
8127 		else
8128 			hi = mid;
8129 	}
8130 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8131 		hi = lo;
8132 
8133 	if (hi > lo) {
8134 		/* we found a range that might merge with the start
8135 		 * of our new range
8136 		 */
8137 		sector_t a = BB_OFFSET(p[lo]);
8138 		sector_t e = a + BB_LEN(p[lo]);
8139 		int ack = BB_ACK(p[lo]);
8140 		if (e >= s) {
8141 			/* Yes, we can merge with a previous range */
8142 			if (s == a && s + sectors >= e)
8143 				/* new range covers old */
8144 				ack = acknowledged;
8145 			else
8146 				ack = ack && acknowledged;
8147 
8148 			if (e < s + sectors)
8149 				e = s + sectors;
8150 			if (e - a <= BB_MAX_LEN) {
8151 				p[lo] = BB_MAKE(a, e-a, ack);
8152 				s = e;
8153 			} else {
8154 				/* does not all fit in one range,
8155 				 * make p[lo] maximal
8156 				 */
8157 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8158 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8159 				s = a + BB_MAX_LEN;
8160 			}
8161 			sectors = e - s;
8162 		}
8163 	}
8164 	if (sectors && hi < bb->count) {
8165 		/* 'hi' points to the first range that starts after 's'.
8166 		 * Maybe we can merge with the start of that range */
8167 		sector_t a = BB_OFFSET(p[hi]);
8168 		sector_t e = a + BB_LEN(p[hi]);
8169 		int ack = BB_ACK(p[hi]);
8170 		if (a <= s + sectors) {
8171 			/* merging is possible */
8172 			if (e <= s + sectors) {
8173 				/* full overlap */
8174 				e = s + sectors;
8175 				ack = acknowledged;
8176 			} else
8177 				ack = ack && acknowledged;
8178 
8179 			a = s;
8180 			if (e - a <= BB_MAX_LEN) {
8181 				p[hi] = BB_MAKE(a, e-a, ack);
8182 				s = e;
8183 			} else {
8184 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8185 				s = a + BB_MAX_LEN;
8186 			}
8187 			sectors = e - s;
8188 			lo = hi;
8189 			hi++;
8190 		}
8191 	}
8192 	if (sectors == 0 && hi < bb->count) {
8193 		/* we might be able to combine lo and hi */
8194 		/* Note: 's' is at the end of 'lo' */
8195 		sector_t a = BB_OFFSET(p[hi]);
8196 		int lolen = BB_LEN(p[lo]);
8197 		int hilen = BB_LEN(p[hi]);
8198 		int newlen = lolen + hilen - (s - a);
8199 		if (s >= a && newlen < BB_MAX_LEN) {
8200 			/* yes, we can combine them */
8201 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8202 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8203 			memmove(p + hi, p + hi + 1,
8204 				(bb->count - hi - 1) * 8);
8205 			bb->count--;
8206 		}
8207 	}
8208 	while (sectors) {
8209 		/* didn't merge (it all).
8210 		 * Need to add a range just before 'hi' */
8211 		if (bb->count >= MD_MAX_BADBLOCKS) {
8212 			/* No room for more */
8213 			rv = 0;
8214 			break;
8215 		} else {
8216 			int this_sectors = sectors;
8217 			memmove(p + hi + 1, p + hi,
8218 				(bb->count - hi) * 8);
8219 			bb->count++;
8220 
8221 			if (this_sectors > BB_MAX_LEN)
8222 				this_sectors = BB_MAX_LEN;
8223 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8224 			sectors -= this_sectors;
8225 			s += this_sectors;
8226 		}
8227 	}
8228 
8229 	bb->changed = 1;
8230 	if (!acknowledged)
8231 		bb->unacked_exist = 1;
8232 	write_sequnlock_irqrestore(&bb->lock, flags);
8233 
8234 	return rv;
8235 }
8236 
8237 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8238 		       int is_new)
8239 {
8240 	int rv;
8241 	if (is_new)
8242 		s += rdev->new_data_offset;
8243 	else
8244 		s += rdev->data_offset;
8245 	rv = md_set_badblocks(&rdev->badblocks,
8246 			      s, sectors, 0);
8247 	if (rv) {
8248 		/* Make sure they get written out promptly */
8249 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8250 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8251 		md_wakeup_thread(rdev->mddev->thread);
8252 	}
8253 	return rv;
8254 }
8255 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8256 
8257 /*
8258  * Remove a range of bad blocks from the table.
8259  * This may involve extending the table if we spilt a region,
8260  * but it must not fail.  So if the table becomes full, we just
8261  * drop the remove request.
8262  */
8263 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8264 {
8265 	u64 *p;
8266 	int lo, hi;
8267 	sector_t target = s + sectors;
8268 	int rv = 0;
8269 
8270 	if (bb->shift > 0) {
8271 		/* When clearing we round the start up and the end down.
8272 		 * This should not matter as the shift should align with
8273 		 * the block size and no rounding should ever be needed.
8274 		 * However it is better the think a block is bad when it
8275 		 * isn't than to think a block is not bad when it is.
8276 		 */
8277 		s += (1<<bb->shift) - 1;
8278 		s >>= bb->shift;
8279 		target >>= bb->shift;
8280 		sectors = target - s;
8281 	}
8282 
8283 	write_seqlock_irq(&bb->lock);
8284 
8285 	p = bb->page;
8286 	lo = 0;
8287 	hi = bb->count;
8288 	/* Find the last range that starts before 'target' */
8289 	while (hi - lo > 1) {
8290 		int mid = (lo + hi) / 2;
8291 		sector_t a = BB_OFFSET(p[mid]);
8292 		if (a < target)
8293 			lo = mid;
8294 		else
8295 			hi = mid;
8296 	}
8297 	if (hi > lo) {
8298 		/* p[lo] is the last range that could overlap the
8299 		 * current range.  Earlier ranges could also overlap,
8300 		 * but only this one can overlap the end of the range.
8301 		 */
8302 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8303 			/* Partial overlap, leave the tail of this range */
8304 			int ack = BB_ACK(p[lo]);
8305 			sector_t a = BB_OFFSET(p[lo]);
8306 			sector_t end = a + BB_LEN(p[lo]);
8307 
8308 			if (a < s) {
8309 				/* we need to split this range */
8310 				if (bb->count >= MD_MAX_BADBLOCKS) {
8311 					rv = 0;
8312 					goto out;
8313 				}
8314 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8315 				bb->count++;
8316 				p[lo] = BB_MAKE(a, s-a, ack);
8317 				lo++;
8318 			}
8319 			p[lo] = BB_MAKE(target, end - target, ack);
8320 			/* there is no longer an overlap */
8321 			hi = lo;
8322 			lo--;
8323 		}
8324 		while (lo >= 0 &&
8325 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8326 			/* This range does overlap */
8327 			if (BB_OFFSET(p[lo]) < s) {
8328 				/* Keep the early parts of this range. */
8329 				int ack = BB_ACK(p[lo]);
8330 				sector_t start = BB_OFFSET(p[lo]);
8331 				p[lo] = BB_MAKE(start, s - start, ack);
8332 				/* now low doesn't overlap, so.. */
8333 				break;
8334 			}
8335 			lo--;
8336 		}
8337 		/* 'lo' is strictly before, 'hi' is strictly after,
8338 		 * anything between needs to be discarded
8339 		 */
8340 		if (hi - lo > 1) {
8341 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8342 			bb->count -= (hi - lo - 1);
8343 		}
8344 	}
8345 
8346 	bb->changed = 1;
8347 out:
8348 	write_sequnlock_irq(&bb->lock);
8349 	return rv;
8350 }
8351 
8352 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8353 			 int is_new)
8354 {
8355 	if (is_new)
8356 		s += rdev->new_data_offset;
8357 	else
8358 		s += rdev->data_offset;
8359 	return md_clear_badblocks(&rdev->badblocks,
8360 				  s, sectors);
8361 }
8362 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8363 
8364 /*
8365  * Acknowledge all bad blocks in a list.
8366  * This only succeeds if ->changed is clear.  It is used by
8367  * in-kernel metadata updates
8368  */
8369 void md_ack_all_badblocks(struct badblocks *bb)
8370 {
8371 	if (bb->page == NULL || bb->changed)
8372 		/* no point even trying */
8373 		return;
8374 	write_seqlock_irq(&bb->lock);
8375 
8376 	if (bb->changed == 0 && bb->unacked_exist) {
8377 		u64 *p = bb->page;
8378 		int i;
8379 		for (i = 0; i < bb->count ; i++) {
8380 			if (!BB_ACK(p[i])) {
8381 				sector_t start = BB_OFFSET(p[i]);
8382 				int len = BB_LEN(p[i]);
8383 				p[i] = BB_MAKE(start, len, 1);
8384 			}
8385 		}
8386 		bb->unacked_exist = 0;
8387 	}
8388 	write_sequnlock_irq(&bb->lock);
8389 }
8390 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8391 
8392 /* sysfs access to bad-blocks list.
8393  * We present two files.
8394  * 'bad-blocks' lists sector numbers and lengths of ranges that
8395  *    are recorded as bad.  The list is truncated to fit within
8396  *    the one-page limit of sysfs.
8397  *    Writing "sector length" to this file adds an acknowledged
8398  *    bad block list.
8399  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8400  *    been acknowledged.  Writing to this file adds bad blocks
8401  *    without acknowledging them.  This is largely for testing.
8402  */
8403 
8404 static ssize_t
8405 badblocks_show(struct badblocks *bb, char *page, int unack)
8406 {
8407 	size_t len;
8408 	int i;
8409 	u64 *p = bb->page;
8410 	unsigned seq;
8411 
8412 	if (bb->shift < 0)
8413 		return 0;
8414 
8415 retry:
8416 	seq = read_seqbegin(&bb->lock);
8417 
8418 	len = 0;
8419 	i = 0;
8420 
8421 	while (len < PAGE_SIZE && i < bb->count) {
8422 		sector_t s = BB_OFFSET(p[i]);
8423 		unsigned int length = BB_LEN(p[i]);
8424 		int ack = BB_ACK(p[i]);
8425 		i++;
8426 
8427 		if (unack && ack)
8428 			continue;
8429 
8430 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8431 				(unsigned long long)s << bb->shift,
8432 				length << bb->shift);
8433 	}
8434 	if (unack && len == 0)
8435 		bb->unacked_exist = 0;
8436 
8437 	if (read_seqretry(&bb->lock, seq))
8438 		goto retry;
8439 
8440 	return len;
8441 }
8442 
8443 #define DO_DEBUG 1
8444 
8445 static ssize_t
8446 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8447 {
8448 	unsigned long long sector;
8449 	int length;
8450 	char newline;
8451 #ifdef DO_DEBUG
8452 	/* Allow clearing via sysfs *only* for testing/debugging.
8453 	 * Normally only a successful write may clear a badblock
8454 	 */
8455 	int clear = 0;
8456 	if (page[0] == '-') {
8457 		clear = 1;
8458 		page++;
8459 	}
8460 #endif /* DO_DEBUG */
8461 
8462 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8463 	case 3:
8464 		if (newline != '\n')
8465 			return -EINVAL;
8466 	case 2:
8467 		if (length <= 0)
8468 			return -EINVAL;
8469 		break;
8470 	default:
8471 		return -EINVAL;
8472 	}
8473 
8474 #ifdef DO_DEBUG
8475 	if (clear) {
8476 		md_clear_badblocks(bb, sector, length);
8477 		return len;
8478 	}
8479 #endif /* DO_DEBUG */
8480 	if (md_set_badblocks(bb, sector, length, !unack))
8481 		return len;
8482 	else
8483 		return -ENOSPC;
8484 }
8485 
8486 static int md_notify_reboot(struct notifier_block *this,
8487 			    unsigned long code, void *x)
8488 {
8489 	struct list_head *tmp;
8490 	struct mddev *mddev;
8491 	int need_delay = 0;
8492 
8493 	for_each_mddev(mddev, tmp) {
8494 		if (mddev_trylock(mddev)) {
8495 			if (mddev->pers)
8496 				__md_stop_writes(mddev);
8497 			mddev->safemode = 2;
8498 			mddev_unlock(mddev);
8499 		}
8500 		need_delay = 1;
8501 	}
8502 	/*
8503 	 * certain more exotic SCSI devices are known to be
8504 	 * volatile wrt too early system reboots. While the
8505 	 * right place to handle this issue is the given
8506 	 * driver, we do want to have a safe RAID driver ...
8507 	 */
8508 	if (need_delay)
8509 		mdelay(1000*1);
8510 
8511 	return NOTIFY_DONE;
8512 }
8513 
8514 static struct notifier_block md_notifier = {
8515 	.notifier_call	= md_notify_reboot,
8516 	.next		= NULL,
8517 	.priority	= INT_MAX, /* before any real devices */
8518 };
8519 
8520 static void md_geninit(void)
8521 {
8522 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8523 
8524 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8525 }
8526 
8527 static int __init md_init(void)
8528 {
8529 	int ret = -ENOMEM;
8530 
8531 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8532 	if (!md_wq)
8533 		goto err_wq;
8534 
8535 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8536 	if (!md_misc_wq)
8537 		goto err_misc_wq;
8538 
8539 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8540 		goto err_md;
8541 
8542 	if ((ret = register_blkdev(0, "mdp")) < 0)
8543 		goto err_mdp;
8544 	mdp_major = ret;
8545 
8546 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8547 			    md_probe, NULL, NULL);
8548 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8549 			    md_probe, NULL, NULL);
8550 
8551 	register_reboot_notifier(&md_notifier);
8552 	raid_table_header = register_sysctl_table(raid_root_table);
8553 
8554 	md_geninit();
8555 	return 0;
8556 
8557 err_mdp:
8558 	unregister_blkdev(MD_MAJOR, "md");
8559 err_md:
8560 	destroy_workqueue(md_misc_wq);
8561 err_misc_wq:
8562 	destroy_workqueue(md_wq);
8563 err_wq:
8564 	return ret;
8565 }
8566 
8567 #ifndef MODULE
8568 
8569 /*
8570  * Searches all registered partitions for autorun RAID arrays
8571  * at boot time.
8572  */
8573 
8574 static LIST_HEAD(all_detected_devices);
8575 struct detected_devices_node {
8576 	struct list_head list;
8577 	dev_t dev;
8578 };
8579 
8580 void md_autodetect_dev(dev_t dev)
8581 {
8582 	struct detected_devices_node *node_detected_dev;
8583 
8584 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8585 	if (node_detected_dev) {
8586 		node_detected_dev->dev = dev;
8587 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8588 	} else {
8589 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8590 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8591 	}
8592 }
8593 
8594 
8595 static void autostart_arrays(int part)
8596 {
8597 	struct md_rdev *rdev;
8598 	struct detected_devices_node *node_detected_dev;
8599 	dev_t dev;
8600 	int i_scanned, i_passed;
8601 
8602 	i_scanned = 0;
8603 	i_passed = 0;
8604 
8605 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8606 
8607 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8608 		i_scanned++;
8609 		node_detected_dev = list_entry(all_detected_devices.next,
8610 					struct detected_devices_node, list);
8611 		list_del(&node_detected_dev->list);
8612 		dev = node_detected_dev->dev;
8613 		kfree(node_detected_dev);
8614 		rdev = md_import_device(dev,0, 90);
8615 		if (IS_ERR(rdev))
8616 			continue;
8617 
8618 		if (test_bit(Faulty, &rdev->flags)) {
8619 			MD_BUG();
8620 			continue;
8621 		}
8622 		set_bit(AutoDetected, &rdev->flags);
8623 		list_add(&rdev->same_set, &pending_raid_disks);
8624 		i_passed++;
8625 	}
8626 
8627 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8628 						i_scanned, i_passed);
8629 
8630 	autorun_devices(part);
8631 }
8632 
8633 #endif /* !MODULE */
8634 
8635 static __exit void md_exit(void)
8636 {
8637 	struct mddev *mddev;
8638 	struct list_head *tmp;
8639 
8640 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8641 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8642 
8643 	unregister_blkdev(MD_MAJOR,"md");
8644 	unregister_blkdev(mdp_major, "mdp");
8645 	unregister_reboot_notifier(&md_notifier);
8646 	unregister_sysctl_table(raid_table_header);
8647 	remove_proc_entry("mdstat", NULL);
8648 	for_each_mddev(mddev, tmp) {
8649 		export_array(mddev);
8650 		mddev->hold_active = 0;
8651 	}
8652 	destroy_workqueue(md_misc_wq);
8653 	destroy_workqueue(md_wq);
8654 }
8655 
8656 subsys_initcall(md_init);
8657 module_exit(md_exit)
8658 
8659 static int get_ro(char *buffer, struct kernel_param *kp)
8660 {
8661 	return sprintf(buffer, "%d", start_readonly);
8662 }
8663 static int set_ro(const char *val, struct kernel_param *kp)
8664 {
8665 	char *e;
8666 	int num = simple_strtoul(val, &e, 10);
8667 	if (*val && (*e == '\0' || *e == '\n')) {
8668 		start_readonly = num;
8669 		return 0;
8670 	}
8671 	return -EINVAL;
8672 }
8673 
8674 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8675 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8676 
8677 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8678 
8679 EXPORT_SYMBOL(register_md_personality);
8680 EXPORT_SYMBOL(unregister_md_personality);
8681 EXPORT_SYMBOL(md_error);
8682 EXPORT_SYMBOL(md_done_sync);
8683 EXPORT_SYMBOL(md_write_start);
8684 EXPORT_SYMBOL(md_write_end);
8685 EXPORT_SYMBOL(md_register_thread);
8686 EXPORT_SYMBOL(md_unregister_thread);
8687 EXPORT_SYMBOL(md_wakeup_thread);
8688 EXPORT_SYMBOL(md_check_recovery);
8689 EXPORT_SYMBOL(md_reap_sync_thread);
8690 MODULE_LICENSE("GPL");
8691 MODULE_DESCRIPTION("MD RAID framework");
8692 MODULE_ALIAS("md");
8693 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8694