1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/slab.h> 62 #include <linux/percpu-refcount.h> 63 64 #include <trace/events/block.h> 65 #include "md.h" 66 #include "md-bitmap.h" 67 #include "md-cluster.h" 68 69 #ifndef MODULE 70 static void autostart_arrays(int part); 71 #endif 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 91 static int remove_and_add_spares(struct mddev *mddev, 92 struct md_rdev *this); 93 static void mddev_detach(struct mddev *mddev); 94 95 /* 96 * Default number of read corrections we'll attempt on an rdev 97 * before ejecting it from the array. We divide the read error 98 * count by 2 for every hour elapsed between read errors. 99 */ 100 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 101 /* 102 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 103 * is 1000 KB/sec, so the extra system load does not show up that much. 104 * Increase it if you want to have more _guaranteed_ speed. Note that 105 * the RAID driver will use the maximum available bandwidth if the IO 106 * subsystem is idle. There is also an 'absolute maximum' reconstruction 107 * speed limit - in case reconstruction slows down your system despite 108 * idle IO detection. 109 * 110 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 111 * or /sys/block/mdX/md/sync_speed_{min,max} 112 */ 113 114 static int sysctl_speed_limit_min = 1000; 115 static int sysctl_speed_limit_max = 200000; 116 static inline int speed_min(struct mddev *mddev) 117 { 118 return mddev->sync_speed_min ? 119 mddev->sync_speed_min : sysctl_speed_limit_min; 120 } 121 122 static inline int speed_max(struct mddev *mddev) 123 { 124 return mddev->sync_speed_max ? 125 mddev->sync_speed_max : sysctl_speed_limit_max; 126 } 127 128 static int rdev_init_wb(struct md_rdev *rdev) 129 { 130 if (rdev->bdev->bd_queue->nr_hw_queues == 1) 131 return 0; 132 133 spin_lock_init(&rdev->wb_list_lock); 134 INIT_LIST_HEAD(&rdev->wb_list); 135 init_waitqueue_head(&rdev->wb_io_wait); 136 set_bit(WBCollisionCheck, &rdev->flags); 137 138 return 1; 139 } 140 141 /* 142 * Create wb_info_pool if rdev is the first multi-queue device flaged 143 * with writemostly, also write-behind mode is enabled. 144 */ 145 void mddev_create_wb_pool(struct mddev *mddev, struct md_rdev *rdev, 146 bool is_suspend) 147 { 148 if (mddev->bitmap_info.max_write_behind == 0) 149 return; 150 151 if (!test_bit(WriteMostly, &rdev->flags) || !rdev_init_wb(rdev)) 152 return; 153 154 if (mddev->wb_info_pool == NULL) { 155 unsigned int noio_flag; 156 157 if (!is_suspend) 158 mddev_suspend(mddev); 159 noio_flag = memalloc_noio_save(); 160 mddev->wb_info_pool = mempool_create_kmalloc_pool(NR_WB_INFOS, 161 sizeof(struct wb_info)); 162 memalloc_noio_restore(noio_flag); 163 if (!mddev->wb_info_pool) 164 pr_err("can't alloc memory pool for writemostly\n"); 165 if (!is_suspend) 166 mddev_resume(mddev); 167 } 168 } 169 EXPORT_SYMBOL_GPL(mddev_create_wb_pool); 170 171 /* 172 * destroy wb_info_pool if rdev is the last device flaged with WBCollisionCheck. 173 */ 174 static void mddev_destroy_wb_pool(struct mddev *mddev, struct md_rdev *rdev) 175 { 176 if (!test_and_clear_bit(WBCollisionCheck, &rdev->flags)) 177 return; 178 179 if (mddev->wb_info_pool) { 180 struct md_rdev *temp; 181 int num = 0; 182 183 /* 184 * Check if other rdevs need wb_info_pool. 185 */ 186 rdev_for_each(temp, mddev) 187 if (temp != rdev && 188 test_bit(WBCollisionCheck, &temp->flags)) 189 num++; 190 if (!num) { 191 mddev_suspend(rdev->mddev); 192 mempool_destroy(mddev->wb_info_pool); 193 mddev->wb_info_pool = NULL; 194 mddev_resume(rdev->mddev); 195 } 196 } 197 } 198 199 static struct ctl_table_header *raid_table_header; 200 201 static struct ctl_table raid_table[] = { 202 { 203 .procname = "speed_limit_min", 204 .data = &sysctl_speed_limit_min, 205 .maxlen = sizeof(int), 206 .mode = S_IRUGO|S_IWUSR, 207 .proc_handler = proc_dointvec, 208 }, 209 { 210 .procname = "speed_limit_max", 211 .data = &sysctl_speed_limit_max, 212 .maxlen = sizeof(int), 213 .mode = S_IRUGO|S_IWUSR, 214 .proc_handler = proc_dointvec, 215 }, 216 { } 217 }; 218 219 static struct ctl_table raid_dir_table[] = { 220 { 221 .procname = "raid", 222 .maxlen = 0, 223 .mode = S_IRUGO|S_IXUGO, 224 .child = raid_table, 225 }, 226 { } 227 }; 228 229 static struct ctl_table raid_root_table[] = { 230 { 231 .procname = "dev", 232 .maxlen = 0, 233 .mode = 0555, 234 .child = raid_dir_table, 235 }, 236 { } 237 }; 238 239 static const struct block_device_operations md_fops; 240 241 static int start_readonly; 242 243 /* 244 * The original mechanism for creating an md device is to create 245 * a device node in /dev and to open it. This causes races with device-close. 246 * The preferred method is to write to the "new_array" module parameter. 247 * This can avoid races. 248 * Setting create_on_open to false disables the original mechanism 249 * so all the races disappear. 250 */ 251 static bool create_on_open = true; 252 253 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 254 struct mddev *mddev) 255 { 256 if (!mddev || !bioset_initialized(&mddev->bio_set)) 257 return bio_alloc(gfp_mask, nr_iovecs); 258 259 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 260 } 261 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 262 263 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 264 { 265 if (!mddev || !bioset_initialized(&mddev->sync_set)) 266 return bio_alloc(GFP_NOIO, 1); 267 268 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 269 } 270 271 /* 272 * We have a system wide 'event count' that is incremented 273 * on any 'interesting' event, and readers of /proc/mdstat 274 * can use 'poll' or 'select' to find out when the event 275 * count increases. 276 * 277 * Events are: 278 * start array, stop array, error, add device, remove device, 279 * start build, activate spare 280 */ 281 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 282 static atomic_t md_event_count; 283 void md_new_event(struct mddev *mddev) 284 { 285 atomic_inc(&md_event_count); 286 wake_up(&md_event_waiters); 287 } 288 EXPORT_SYMBOL_GPL(md_new_event); 289 290 /* 291 * Enables to iterate over all existing md arrays 292 * all_mddevs_lock protects this list. 293 */ 294 static LIST_HEAD(all_mddevs); 295 static DEFINE_SPINLOCK(all_mddevs_lock); 296 297 /* 298 * iterates through all used mddevs in the system. 299 * We take care to grab the all_mddevs_lock whenever navigating 300 * the list, and to always hold a refcount when unlocked. 301 * Any code which breaks out of this loop while own 302 * a reference to the current mddev and must mddev_put it. 303 */ 304 #define for_each_mddev(_mddev,_tmp) \ 305 \ 306 for (({ spin_lock(&all_mddevs_lock); \ 307 _tmp = all_mddevs.next; \ 308 _mddev = NULL;}); \ 309 ({ if (_tmp != &all_mddevs) \ 310 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 311 spin_unlock(&all_mddevs_lock); \ 312 if (_mddev) mddev_put(_mddev); \ 313 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 314 _tmp != &all_mddevs;}); \ 315 ({ spin_lock(&all_mddevs_lock); \ 316 _tmp = _tmp->next;}) \ 317 ) 318 319 /* Rather than calling directly into the personality make_request function, 320 * IO requests come here first so that we can check if the device is 321 * being suspended pending a reconfiguration. 322 * We hold a refcount over the call to ->make_request. By the time that 323 * call has finished, the bio has been linked into some internal structure 324 * and so is visible to ->quiesce(), so we don't need the refcount any more. 325 */ 326 static bool is_suspended(struct mddev *mddev, struct bio *bio) 327 { 328 if (mddev->suspended) 329 return true; 330 if (bio_data_dir(bio) != WRITE) 331 return false; 332 if (mddev->suspend_lo >= mddev->suspend_hi) 333 return false; 334 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 335 return false; 336 if (bio_end_sector(bio) < mddev->suspend_lo) 337 return false; 338 return true; 339 } 340 341 void md_handle_request(struct mddev *mddev, struct bio *bio) 342 { 343 check_suspended: 344 rcu_read_lock(); 345 if (is_suspended(mddev, bio)) { 346 DEFINE_WAIT(__wait); 347 for (;;) { 348 prepare_to_wait(&mddev->sb_wait, &__wait, 349 TASK_UNINTERRUPTIBLE); 350 if (!is_suspended(mddev, bio)) 351 break; 352 rcu_read_unlock(); 353 schedule(); 354 rcu_read_lock(); 355 } 356 finish_wait(&mddev->sb_wait, &__wait); 357 } 358 atomic_inc(&mddev->active_io); 359 rcu_read_unlock(); 360 361 if (!mddev->pers->make_request(mddev, bio)) { 362 atomic_dec(&mddev->active_io); 363 wake_up(&mddev->sb_wait); 364 goto check_suspended; 365 } 366 367 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 368 wake_up(&mddev->sb_wait); 369 } 370 EXPORT_SYMBOL(md_handle_request); 371 372 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 373 { 374 const int rw = bio_data_dir(bio); 375 const int sgrp = op_stat_group(bio_op(bio)); 376 struct mddev *mddev = q->queuedata; 377 unsigned int sectors; 378 379 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 380 bio_io_error(bio); 381 return BLK_QC_T_NONE; 382 } 383 384 blk_queue_split(q, &bio); 385 386 if (mddev == NULL || mddev->pers == NULL) { 387 bio_io_error(bio); 388 return BLK_QC_T_NONE; 389 } 390 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 391 if (bio_sectors(bio) != 0) 392 bio->bi_status = BLK_STS_IOERR; 393 bio_endio(bio); 394 return BLK_QC_T_NONE; 395 } 396 397 /* 398 * save the sectors now since our bio can 399 * go away inside make_request 400 */ 401 sectors = bio_sectors(bio); 402 /* bio could be mergeable after passing to underlayer */ 403 bio->bi_opf &= ~REQ_NOMERGE; 404 405 md_handle_request(mddev, bio); 406 407 part_stat_lock(); 408 part_stat_inc(&mddev->gendisk->part0, ios[sgrp]); 409 part_stat_add(&mddev->gendisk->part0, sectors[sgrp], sectors); 410 part_stat_unlock(); 411 412 return BLK_QC_T_NONE; 413 } 414 415 /* mddev_suspend makes sure no new requests are submitted 416 * to the device, and that any requests that have been submitted 417 * are completely handled. 418 * Once mddev_detach() is called and completes, the module will be 419 * completely unused. 420 */ 421 void mddev_suspend(struct mddev *mddev) 422 { 423 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 424 lockdep_assert_held(&mddev->reconfig_mutex); 425 if (mddev->suspended++) 426 return; 427 synchronize_rcu(); 428 wake_up(&mddev->sb_wait); 429 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 430 smp_mb__after_atomic(); 431 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 432 mddev->pers->quiesce(mddev, 1); 433 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 434 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 435 436 del_timer_sync(&mddev->safemode_timer); 437 } 438 EXPORT_SYMBOL_GPL(mddev_suspend); 439 440 void mddev_resume(struct mddev *mddev) 441 { 442 lockdep_assert_held(&mddev->reconfig_mutex); 443 if (--mddev->suspended) 444 return; 445 wake_up(&mddev->sb_wait); 446 mddev->pers->quiesce(mddev, 0); 447 448 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 449 md_wakeup_thread(mddev->thread); 450 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 451 } 452 EXPORT_SYMBOL_GPL(mddev_resume); 453 454 int mddev_congested(struct mddev *mddev, int bits) 455 { 456 struct md_personality *pers = mddev->pers; 457 int ret = 0; 458 459 rcu_read_lock(); 460 if (mddev->suspended) 461 ret = 1; 462 else if (pers && pers->congested) 463 ret = pers->congested(mddev, bits); 464 rcu_read_unlock(); 465 return ret; 466 } 467 EXPORT_SYMBOL_GPL(mddev_congested); 468 static int md_congested(void *data, int bits) 469 { 470 struct mddev *mddev = data; 471 return mddev_congested(mddev, bits); 472 } 473 474 /* 475 * Generic flush handling for md 476 */ 477 478 static void md_end_flush(struct bio *bio) 479 { 480 struct md_rdev *rdev = bio->bi_private; 481 struct mddev *mddev = rdev->mddev; 482 483 rdev_dec_pending(rdev, mddev); 484 485 if (atomic_dec_and_test(&mddev->flush_pending)) { 486 /* The pre-request flush has finished */ 487 queue_work(md_wq, &mddev->flush_work); 488 } 489 bio_put(bio); 490 } 491 492 static void md_submit_flush_data(struct work_struct *ws); 493 494 static void submit_flushes(struct work_struct *ws) 495 { 496 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 497 struct md_rdev *rdev; 498 499 mddev->start_flush = ktime_get_boottime(); 500 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 501 atomic_set(&mddev->flush_pending, 1); 502 rcu_read_lock(); 503 rdev_for_each_rcu(rdev, mddev) 504 if (rdev->raid_disk >= 0 && 505 !test_bit(Faulty, &rdev->flags)) { 506 /* Take two references, one is dropped 507 * when request finishes, one after 508 * we reclaim rcu_read_lock 509 */ 510 struct bio *bi; 511 atomic_inc(&rdev->nr_pending); 512 atomic_inc(&rdev->nr_pending); 513 rcu_read_unlock(); 514 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 515 bi->bi_end_io = md_end_flush; 516 bi->bi_private = rdev; 517 bio_set_dev(bi, rdev->bdev); 518 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 519 atomic_inc(&mddev->flush_pending); 520 submit_bio(bi); 521 rcu_read_lock(); 522 rdev_dec_pending(rdev, mddev); 523 } 524 rcu_read_unlock(); 525 if (atomic_dec_and_test(&mddev->flush_pending)) 526 queue_work(md_wq, &mddev->flush_work); 527 } 528 529 static void md_submit_flush_data(struct work_struct *ws) 530 { 531 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 532 struct bio *bio = mddev->flush_bio; 533 534 /* 535 * must reset flush_bio before calling into md_handle_request to avoid a 536 * deadlock, because other bios passed md_handle_request suspend check 537 * could wait for this and below md_handle_request could wait for those 538 * bios because of suspend check 539 */ 540 mddev->last_flush = mddev->start_flush; 541 mddev->flush_bio = NULL; 542 wake_up(&mddev->sb_wait); 543 544 if (bio->bi_iter.bi_size == 0) { 545 /* an empty barrier - all done */ 546 bio_endio(bio); 547 } else { 548 bio->bi_opf &= ~REQ_PREFLUSH; 549 md_handle_request(mddev, bio); 550 } 551 } 552 553 void md_flush_request(struct mddev *mddev, struct bio *bio) 554 { 555 ktime_t start = ktime_get_boottime(); 556 spin_lock_irq(&mddev->lock); 557 wait_event_lock_irq(mddev->sb_wait, 558 !mddev->flush_bio || 559 ktime_after(mddev->last_flush, start), 560 mddev->lock); 561 if (!ktime_after(mddev->last_flush, start)) { 562 WARN_ON(mddev->flush_bio); 563 mddev->flush_bio = bio; 564 bio = NULL; 565 } 566 spin_unlock_irq(&mddev->lock); 567 568 if (!bio) { 569 INIT_WORK(&mddev->flush_work, submit_flushes); 570 queue_work(md_wq, &mddev->flush_work); 571 } else { 572 /* flush was performed for some other bio while we waited. */ 573 if (bio->bi_iter.bi_size == 0) 574 /* an empty barrier - all done */ 575 bio_endio(bio); 576 else { 577 bio->bi_opf &= ~REQ_PREFLUSH; 578 mddev->pers->make_request(mddev, bio); 579 } 580 } 581 } 582 EXPORT_SYMBOL(md_flush_request); 583 584 static inline struct mddev *mddev_get(struct mddev *mddev) 585 { 586 atomic_inc(&mddev->active); 587 return mddev; 588 } 589 590 static void mddev_delayed_delete(struct work_struct *ws); 591 592 static void mddev_put(struct mddev *mddev) 593 { 594 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 595 return; 596 if (!mddev->raid_disks && list_empty(&mddev->disks) && 597 mddev->ctime == 0 && !mddev->hold_active) { 598 /* Array is not configured at all, and not held active, 599 * so destroy it */ 600 list_del_init(&mddev->all_mddevs); 601 602 /* 603 * Call queue_work inside the spinlock so that 604 * flush_workqueue() after mddev_find will succeed in waiting 605 * for the work to be done. 606 */ 607 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 608 queue_work(md_misc_wq, &mddev->del_work); 609 } 610 spin_unlock(&all_mddevs_lock); 611 } 612 613 static void md_safemode_timeout(struct timer_list *t); 614 615 void mddev_init(struct mddev *mddev) 616 { 617 kobject_init(&mddev->kobj, &md_ktype); 618 mutex_init(&mddev->open_mutex); 619 mutex_init(&mddev->reconfig_mutex); 620 mutex_init(&mddev->bitmap_info.mutex); 621 INIT_LIST_HEAD(&mddev->disks); 622 INIT_LIST_HEAD(&mddev->all_mddevs); 623 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 624 atomic_set(&mddev->active, 1); 625 atomic_set(&mddev->openers, 0); 626 atomic_set(&mddev->active_io, 0); 627 spin_lock_init(&mddev->lock); 628 atomic_set(&mddev->flush_pending, 0); 629 init_waitqueue_head(&mddev->sb_wait); 630 init_waitqueue_head(&mddev->recovery_wait); 631 mddev->reshape_position = MaxSector; 632 mddev->reshape_backwards = 0; 633 mddev->last_sync_action = "none"; 634 mddev->resync_min = 0; 635 mddev->resync_max = MaxSector; 636 mddev->level = LEVEL_NONE; 637 } 638 EXPORT_SYMBOL_GPL(mddev_init); 639 640 static struct mddev *mddev_find(dev_t unit) 641 { 642 struct mddev *mddev, *new = NULL; 643 644 if (unit && MAJOR(unit) != MD_MAJOR) 645 unit &= ~((1<<MdpMinorShift)-1); 646 647 retry: 648 spin_lock(&all_mddevs_lock); 649 650 if (unit) { 651 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 652 if (mddev->unit == unit) { 653 mddev_get(mddev); 654 spin_unlock(&all_mddevs_lock); 655 kfree(new); 656 return mddev; 657 } 658 659 if (new) { 660 list_add(&new->all_mddevs, &all_mddevs); 661 spin_unlock(&all_mddevs_lock); 662 new->hold_active = UNTIL_IOCTL; 663 return new; 664 } 665 } else if (new) { 666 /* find an unused unit number */ 667 static int next_minor = 512; 668 int start = next_minor; 669 int is_free = 0; 670 int dev = 0; 671 while (!is_free) { 672 dev = MKDEV(MD_MAJOR, next_minor); 673 next_minor++; 674 if (next_minor > MINORMASK) 675 next_minor = 0; 676 if (next_minor == start) { 677 /* Oh dear, all in use. */ 678 spin_unlock(&all_mddevs_lock); 679 kfree(new); 680 return NULL; 681 } 682 683 is_free = 1; 684 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 685 if (mddev->unit == dev) { 686 is_free = 0; 687 break; 688 } 689 } 690 new->unit = dev; 691 new->md_minor = MINOR(dev); 692 new->hold_active = UNTIL_STOP; 693 list_add(&new->all_mddevs, &all_mddevs); 694 spin_unlock(&all_mddevs_lock); 695 return new; 696 } 697 spin_unlock(&all_mddevs_lock); 698 699 new = kzalloc(sizeof(*new), GFP_KERNEL); 700 if (!new) 701 return NULL; 702 703 new->unit = unit; 704 if (MAJOR(unit) == MD_MAJOR) 705 new->md_minor = MINOR(unit); 706 else 707 new->md_minor = MINOR(unit) >> MdpMinorShift; 708 709 mddev_init(new); 710 711 goto retry; 712 } 713 714 static struct attribute_group md_redundancy_group; 715 716 void mddev_unlock(struct mddev *mddev) 717 { 718 if (mddev->to_remove) { 719 /* These cannot be removed under reconfig_mutex as 720 * an access to the files will try to take reconfig_mutex 721 * while holding the file unremovable, which leads to 722 * a deadlock. 723 * So hold set sysfs_active while the remove in happeing, 724 * and anything else which might set ->to_remove or my 725 * otherwise change the sysfs namespace will fail with 726 * -EBUSY if sysfs_active is still set. 727 * We set sysfs_active under reconfig_mutex and elsewhere 728 * test it under the same mutex to ensure its correct value 729 * is seen. 730 */ 731 struct attribute_group *to_remove = mddev->to_remove; 732 mddev->to_remove = NULL; 733 mddev->sysfs_active = 1; 734 mutex_unlock(&mddev->reconfig_mutex); 735 736 if (mddev->kobj.sd) { 737 if (to_remove != &md_redundancy_group) 738 sysfs_remove_group(&mddev->kobj, to_remove); 739 if (mddev->pers == NULL || 740 mddev->pers->sync_request == NULL) { 741 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 742 if (mddev->sysfs_action) 743 sysfs_put(mddev->sysfs_action); 744 mddev->sysfs_action = NULL; 745 } 746 } 747 mddev->sysfs_active = 0; 748 } else 749 mutex_unlock(&mddev->reconfig_mutex); 750 751 /* As we've dropped the mutex we need a spinlock to 752 * make sure the thread doesn't disappear 753 */ 754 spin_lock(&pers_lock); 755 md_wakeup_thread(mddev->thread); 756 wake_up(&mddev->sb_wait); 757 spin_unlock(&pers_lock); 758 } 759 EXPORT_SYMBOL_GPL(mddev_unlock); 760 761 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 762 { 763 struct md_rdev *rdev; 764 765 rdev_for_each_rcu(rdev, mddev) 766 if (rdev->desc_nr == nr) 767 return rdev; 768 769 return NULL; 770 } 771 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 772 773 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 774 { 775 struct md_rdev *rdev; 776 777 rdev_for_each(rdev, mddev) 778 if (rdev->bdev->bd_dev == dev) 779 return rdev; 780 781 return NULL; 782 } 783 784 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 785 { 786 struct md_rdev *rdev; 787 788 rdev_for_each_rcu(rdev, mddev) 789 if (rdev->bdev->bd_dev == dev) 790 return rdev; 791 792 return NULL; 793 } 794 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 795 796 static struct md_personality *find_pers(int level, char *clevel) 797 { 798 struct md_personality *pers; 799 list_for_each_entry(pers, &pers_list, list) { 800 if (level != LEVEL_NONE && pers->level == level) 801 return pers; 802 if (strcmp(pers->name, clevel)==0) 803 return pers; 804 } 805 return NULL; 806 } 807 808 /* return the offset of the super block in 512byte sectors */ 809 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 810 { 811 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 812 return MD_NEW_SIZE_SECTORS(num_sectors); 813 } 814 815 static int alloc_disk_sb(struct md_rdev *rdev) 816 { 817 rdev->sb_page = alloc_page(GFP_KERNEL); 818 if (!rdev->sb_page) 819 return -ENOMEM; 820 return 0; 821 } 822 823 void md_rdev_clear(struct md_rdev *rdev) 824 { 825 if (rdev->sb_page) { 826 put_page(rdev->sb_page); 827 rdev->sb_loaded = 0; 828 rdev->sb_page = NULL; 829 rdev->sb_start = 0; 830 rdev->sectors = 0; 831 } 832 if (rdev->bb_page) { 833 put_page(rdev->bb_page); 834 rdev->bb_page = NULL; 835 } 836 badblocks_exit(&rdev->badblocks); 837 } 838 EXPORT_SYMBOL_GPL(md_rdev_clear); 839 840 static void super_written(struct bio *bio) 841 { 842 struct md_rdev *rdev = bio->bi_private; 843 struct mddev *mddev = rdev->mddev; 844 845 if (bio->bi_status) { 846 pr_err("md: super_written gets error=%d\n", bio->bi_status); 847 md_error(mddev, rdev); 848 if (!test_bit(Faulty, &rdev->flags) 849 && (bio->bi_opf & MD_FAILFAST)) { 850 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 851 set_bit(LastDev, &rdev->flags); 852 } 853 } else 854 clear_bit(LastDev, &rdev->flags); 855 856 if (atomic_dec_and_test(&mddev->pending_writes)) 857 wake_up(&mddev->sb_wait); 858 rdev_dec_pending(rdev, mddev); 859 bio_put(bio); 860 } 861 862 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 863 sector_t sector, int size, struct page *page) 864 { 865 /* write first size bytes of page to sector of rdev 866 * Increment mddev->pending_writes before returning 867 * and decrement it on completion, waking up sb_wait 868 * if zero is reached. 869 * If an error occurred, call md_error 870 */ 871 struct bio *bio; 872 int ff = 0; 873 874 if (!page) 875 return; 876 877 if (test_bit(Faulty, &rdev->flags)) 878 return; 879 880 bio = md_bio_alloc_sync(mddev); 881 882 atomic_inc(&rdev->nr_pending); 883 884 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 885 bio->bi_iter.bi_sector = sector; 886 bio_add_page(bio, page, size, 0); 887 bio->bi_private = rdev; 888 bio->bi_end_io = super_written; 889 890 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 891 test_bit(FailFast, &rdev->flags) && 892 !test_bit(LastDev, &rdev->flags)) 893 ff = MD_FAILFAST; 894 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 895 896 atomic_inc(&mddev->pending_writes); 897 submit_bio(bio); 898 } 899 900 int md_super_wait(struct mddev *mddev) 901 { 902 /* wait for all superblock writes that were scheduled to complete */ 903 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 904 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 905 return -EAGAIN; 906 return 0; 907 } 908 909 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 910 struct page *page, int op, int op_flags, bool metadata_op) 911 { 912 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 913 int ret; 914 915 if (metadata_op && rdev->meta_bdev) 916 bio_set_dev(bio, rdev->meta_bdev); 917 else 918 bio_set_dev(bio, rdev->bdev); 919 bio_set_op_attrs(bio, op, op_flags); 920 if (metadata_op) 921 bio->bi_iter.bi_sector = sector + rdev->sb_start; 922 else if (rdev->mddev->reshape_position != MaxSector && 923 (rdev->mddev->reshape_backwards == 924 (sector >= rdev->mddev->reshape_position))) 925 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 926 else 927 bio->bi_iter.bi_sector = sector + rdev->data_offset; 928 bio_add_page(bio, page, size, 0); 929 930 submit_bio_wait(bio); 931 932 ret = !bio->bi_status; 933 bio_put(bio); 934 return ret; 935 } 936 EXPORT_SYMBOL_GPL(sync_page_io); 937 938 static int read_disk_sb(struct md_rdev *rdev, int size) 939 { 940 char b[BDEVNAME_SIZE]; 941 942 if (rdev->sb_loaded) 943 return 0; 944 945 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 946 goto fail; 947 rdev->sb_loaded = 1; 948 return 0; 949 950 fail: 951 pr_err("md: disabled device %s, could not read superblock.\n", 952 bdevname(rdev->bdev,b)); 953 return -EINVAL; 954 } 955 956 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 957 { 958 return sb1->set_uuid0 == sb2->set_uuid0 && 959 sb1->set_uuid1 == sb2->set_uuid1 && 960 sb1->set_uuid2 == sb2->set_uuid2 && 961 sb1->set_uuid3 == sb2->set_uuid3; 962 } 963 964 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 965 { 966 int ret; 967 mdp_super_t *tmp1, *tmp2; 968 969 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 970 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 971 972 if (!tmp1 || !tmp2) { 973 ret = 0; 974 goto abort; 975 } 976 977 *tmp1 = *sb1; 978 *tmp2 = *sb2; 979 980 /* 981 * nr_disks is not constant 982 */ 983 tmp1->nr_disks = 0; 984 tmp2->nr_disks = 0; 985 986 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 987 abort: 988 kfree(tmp1); 989 kfree(tmp2); 990 return ret; 991 } 992 993 static u32 md_csum_fold(u32 csum) 994 { 995 csum = (csum & 0xffff) + (csum >> 16); 996 return (csum & 0xffff) + (csum >> 16); 997 } 998 999 static unsigned int calc_sb_csum(mdp_super_t *sb) 1000 { 1001 u64 newcsum = 0; 1002 u32 *sb32 = (u32*)sb; 1003 int i; 1004 unsigned int disk_csum, csum; 1005 1006 disk_csum = sb->sb_csum; 1007 sb->sb_csum = 0; 1008 1009 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1010 newcsum += sb32[i]; 1011 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1012 1013 #ifdef CONFIG_ALPHA 1014 /* This used to use csum_partial, which was wrong for several 1015 * reasons including that different results are returned on 1016 * different architectures. It isn't critical that we get exactly 1017 * the same return value as before (we always csum_fold before 1018 * testing, and that removes any differences). However as we 1019 * know that csum_partial always returned a 16bit value on 1020 * alphas, do a fold to maximise conformity to previous behaviour. 1021 */ 1022 sb->sb_csum = md_csum_fold(disk_csum); 1023 #else 1024 sb->sb_csum = disk_csum; 1025 #endif 1026 return csum; 1027 } 1028 1029 /* 1030 * Handle superblock details. 1031 * We want to be able to handle multiple superblock formats 1032 * so we have a common interface to them all, and an array of 1033 * different handlers. 1034 * We rely on user-space to write the initial superblock, and support 1035 * reading and updating of superblocks. 1036 * Interface methods are: 1037 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1038 * loads and validates a superblock on dev. 1039 * if refdev != NULL, compare superblocks on both devices 1040 * Return: 1041 * 0 - dev has a superblock that is compatible with refdev 1042 * 1 - dev has a superblock that is compatible and newer than refdev 1043 * so dev should be used as the refdev in future 1044 * -EINVAL superblock incompatible or invalid 1045 * -othererror e.g. -EIO 1046 * 1047 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1048 * Verify that dev is acceptable into mddev. 1049 * The first time, mddev->raid_disks will be 0, and data from 1050 * dev should be merged in. Subsequent calls check that dev 1051 * is new enough. Return 0 or -EINVAL 1052 * 1053 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1054 * Update the superblock for rdev with data in mddev 1055 * This does not write to disc. 1056 * 1057 */ 1058 1059 struct super_type { 1060 char *name; 1061 struct module *owner; 1062 int (*load_super)(struct md_rdev *rdev, 1063 struct md_rdev *refdev, 1064 int minor_version); 1065 int (*validate_super)(struct mddev *mddev, 1066 struct md_rdev *rdev); 1067 void (*sync_super)(struct mddev *mddev, 1068 struct md_rdev *rdev); 1069 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1070 sector_t num_sectors); 1071 int (*allow_new_offset)(struct md_rdev *rdev, 1072 unsigned long long new_offset); 1073 }; 1074 1075 /* 1076 * Check that the given mddev has no bitmap. 1077 * 1078 * This function is called from the run method of all personalities that do not 1079 * support bitmaps. It prints an error message and returns non-zero if mddev 1080 * has a bitmap. Otherwise, it returns 0. 1081 * 1082 */ 1083 int md_check_no_bitmap(struct mddev *mddev) 1084 { 1085 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1086 return 0; 1087 pr_warn("%s: bitmaps are not supported for %s\n", 1088 mdname(mddev), mddev->pers->name); 1089 return 1; 1090 } 1091 EXPORT_SYMBOL(md_check_no_bitmap); 1092 1093 /* 1094 * load_super for 0.90.0 1095 */ 1096 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1097 { 1098 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1099 mdp_super_t *sb; 1100 int ret; 1101 1102 /* 1103 * Calculate the position of the superblock (512byte sectors), 1104 * it's at the end of the disk. 1105 * 1106 * It also happens to be a multiple of 4Kb. 1107 */ 1108 rdev->sb_start = calc_dev_sboffset(rdev); 1109 1110 ret = read_disk_sb(rdev, MD_SB_BYTES); 1111 if (ret) 1112 return ret; 1113 1114 ret = -EINVAL; 1115 1116 bdevname(rdev->bdev, b); 1117 sb = page_address(rdev->sb_page); 1118 1119 if (sb->md_magic != MD_SB_MAGIC) { 1120 pr_warn("md: invalid raid superblock magic on %s\n", b); 1121 goto abort; 1122 } 1123 1124 if (sb->major_version != 0 || 1125 sb->minor_version < 90 || 1126 sb->minor_version > 91) { 1127 pr_warn("Bad version number %d.%d on %s\n", 1128 sb->major_version, sb->minor_version, b); 1129 goto abort; 1130 } 1131 1132 if (sb->raid_disks <= 0) 1133 goto abort; 1134 1135 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1136 pr_warn("md: invalid superblock checksum on %s\n", b); 1137 goto abort; 1138 } 1139 1140 rdev->preferred_minor = sb->md_minor; 1141 rdev->data_offset = 0; 1142 rdev->new_data_offset = 0; 1143 rdev->sb_size = MD_SB_BYTES; 1144 rdev->badblocks.shift = -1; 1145 1146 if (sb->level == LEVEL_MULTIPATH) 1147 rdev->desc_nr = -1; 1148 else 1149 rdev->desc_nr = sb->this_disk.number; 1150 1151 if (!refdev) { 1152 ret = 1; 1153 } else { 1154 __u64 ev1, ev2; 1155 mdp_super_t *refsb = page_address(refdev->sb_page); 1156 if (!md_uuid_equal(refsb, sb)) { 1157 pr_warn("md: %s has different UUID to %s\n", 1158 b, bdevname(refdev->bdev,b2)); 1159 goto abort; 1160 } 1161 if (!md_sb_equal(refsb, sb)) { 1162 pr_warn("md: %s has same UUID but different superblock to %s\n", 1163 b, bdevname(refdev->bdev, b2)); 1164 goto abort; 1165 } 1166 ev1 = md_event(sb); 1167 ev2 = md_event(refsb); 1168 if (ev1 > ev2) 1169 ret = 1; 1170 else 1171 ret = 0; 1172 } 1173 rdev->sectors = rdev->sb_start; 1174 /* Limit to 4TB as metadata cannot record more than that. 1175 * (not needed for Linear and RAID0 as metadata doesn't 1176 * record this size) 1177 */ 1178 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1179 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1180 1181 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1182 /* "this cannot possibly happen" ... */ 1183 ret = -EINVAL; 1184 1185 abort: 1186 return ret; 1187 } 1188 1189 /* 1190 * validate_super for 0.90.0 1191 */ 1192 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1193 { 1194 mdp_disk_t *desc; 1195 mdp_super_t *sb = page_address(rdev->sb_page); 1196 __u64 ev1 = md_event(sb); 1197 1198 rdev->raid_disk = -1; 1199 clear_bit(Faulty, &rdev->flags); 1200 clear_bit(In_sync, &rdev->flags); 1201 clear_bit(Bitmap_sync, &rdev->flags); 1202 clear_bit(WriteMostly, &rdev->flags); 1203 1204 if (mddev->raid_disks == 0) { 1205 mddev->major_version = 0; 1206 mddev->minor_version = sb->minor_version; 1207 mddev->patch_version = sb->patch_version; 1208 mddev->external = 0; 1209 mddev->chunk_sectors = sb->chunk_size >> 9; 1210 mddev->ctime = sb->ctime; 1211 mddev->utime = sb->utime; 1212 mddev->level = sb->level; 1213 mddev->clevel[0] = 0; 1214 mddev->layout = sb->layout; 1215 mddev->raid_disks = sb->raid_disks; 1216 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1217 mddev->events = ev1; 1218 mddev->bitmap_info.offset = 0; 1219 mddev->bitmap_info.space = 0; 1220 /* bitmap can use 60 K after the 4K superblocks */ 1221 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1222 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1223 mddev->reshape_backwards = 0; 1224 1225 if (mddev->minor_version >= 91) { 1226 mddev->reshape_position = sb->reshape_position; 1227 mddev->delta_disks = sb->delta_disks; 1228 mddev->new_level = sb->new_level; 1229 mddev->new_layout = sb->new_layout; 1230 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1231 if (mddev->delta_disks < 0) 1232 mddev->reshape_backwards = 1; 1233 } else { 1234 mddev->reshape_position = MaxSector; 1235 mddev->delta_disks = 0; 1236 mddev->new_level = mddev->level; 1237 mddev->new_layout = mddev->layout; 1238 mddev->new_chunk_sectors = mddev->chunk_sectors; 1239 } 1240 if (mddev->level == 0) 1241 mddev->layout = -1; 1242 1243 if (sb->state & (1<<MD_SB_CLEAN)) 1244 mddev->recovery_cp = MaxSector; 1245 else { 1246 if (sb->events_hi == sb->cp_events_hi && 1247 sb->events_lo == sb->cp_events_lo) { 1248 mddev->recovery_cp = sb->recovery_cp; 1249 } else 1250 mddev->recovery_cp = 0; 1251 } 1252 1253 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1254 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1255 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1256 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1257 1258 mddev->max_disks = MD_SB_DISKS; 1259 1260 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1261 mddev->bitmap_info.file == NULL) { 1262 mddev->bitmap_info.offset = 1263 mddev->bitmap_info.default_offset; 1264 mddev->bitmap_info.space = 1265 mddev->bitmap_info.default_space; 1266 } 1267 1268 } else if (mddev->pers == NULL) { 1269 /* Insist on good event counter while assembling, except 1270 * for spares (which don't need an event count) */ 1271 ++ev1; 1272 if (sb->disks[rdev->desc_nr].state & ( 1273 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1274 if (ev1 < mddev->events) 1275 return -EINVAL; 1276 } else if (mddev->bitmap) { 1277 /* if adding to array with a bitmap, then we can accept an 1278 * older device ... but not too old. 1279 */ 1280 if (ev1 < mddev->bitmap->events_cleared) 1281 return 0; 1282 if (ev1 < mddev->events) 1283 set_bit(Bitmap_sync, &rdev->flags); 1284 } else { 1285 if (ev1 < mddev->events) 1286 /* just a hot-add of a new device, leave raid_disk at -1 */ 1287 return 0; 1288 } 1289 1290 if (mddev->level != LEVEL_MULTIPATH) { 1291 desc = sb->disks + rdev->desc_nr; 1292 1293 if (desc->state & (1<<MD_DISK_FAULTY)) 1294 set_bit(Faulty, &rdev->flags); 1295 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1296 desc->raid_disk < mddev->raid_disks */) { 1297 set_bit(In_sync, &rdev->flags); 1298 rdev->raid_disk = desc->raid_disk; 1299 rdev->saved_raid_disk = desc->raid_disk; 1300 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1301 /* active but not in sync implies recovery up to 1302 * reshape position. We don't know exactly where 1303 * that is, so set to zero for now */ 1304 if (mddev->minor_version >= 91) { 1305 rdev->recovery_offset = 0; 1306 rdev->raid_disk = desc->raid_disk; 1307 } 1308 } 1309 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1310 set_bit(WriteMostly, &rdev->flags); 1311 if (desc->state & (1<<MD_DISK_FAILFAST)) 1312 set_bit(FailFast, &rdev->flags); 1313 } else /* MULTIPATH are always insync */ 1314 set_bit(In_sync, &rdev->flags); 1315 return 0; 1316 } 1317 1318 /* 1319 * sync_super for 0.90.0 1320 */ 1321 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1322 { 1323 mdp_super_t *sb; 1324 struct md_rdev *rdev2; 1325 int next_spare = mddev->raid_disks; 1326 1327 /* make rdev->sb match mddev data.. 1328 * 1329 * 1/ zero out disks 1330 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1331 * 3/ any empty disks < next_spare become removed 1332 * 1333 * disks[0] gets initialised to REMOVED because 1334 * we cannot be sure from other fields if it has 1335 * been initialised or not. 1336 */ 1337 int i; 1338 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1339 1340 rdev->sb_size = MD_SB_BYTES; 1341 1342 sb = page_address(rdev->sb_page); 1343 1344 memset(sb, 0, sizeof(*sb)); 1345 1346 sb->md_magic = MD_SB_MAGIC; 1347 sb->major_version = mddev->major_version; 1348 sb->patch_version = mddev->patch_version; 1349 sb->gvalid_words = 0; /* ignored */ 1350 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1351 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1352 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1353 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1354 1355 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1356 sb->level = mddev->level; 1357 sb->size = mddev->dev_sectors / 2; 1358 sb->raid_disks = mddev->raid_disks; 1359 sb->md_minor = mddev->md_minor; 1360 sb->not_persistent = 0; 1361 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1362 sb->state = 0; 1363 sb->events_hi = (mddev->events>>32); 1364 sb->events_lo = (u32)mddev->events; 1365 1366 if (mddev->reshape_position == MaxSector) 1367 sb->minor_version = 90; 1368 else { 1369 sb->minor_version = 91; 1370 sb->reshape_position = mddev->reshape_position; 1371 sb->new_level = mddev->new_level; 1372 sb->delta_disks = mddev->delta_disks; 1373 sb->new_layout = mddev->new_layout; 1374 sb->new_chunk = mddev->new_chunk_sectors << 9; 1375 } 1376 mddev->minor_version = sb->minor_version; 1377 if (mddev->in_sync) 1378 { 1379 sb->recovery_cp = mddev->recovery_cp; 1380 sb->cp_events_hi = (mddev->events>>32); 1381 sb->cp_events_lo = (u32)mddev->events; 1382 if (mddev->recovery_cp == MaxSector) 1383 sb->state = (1<< MD_SB_CLEAN); 1384 } else 1385 sb->recovery_cp = 0; 1386 1387 sb->layout = mddev->layout; 1388 sb->chunk_size = mddev->chunk_sectors << 9; 1389 1390 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1391 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1392 1393 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1394 rdev_for_each(rdev2, mddev) { 1395 mdp_disk_t *d; 1396 int desc_nr; 1397 int is_active = test_bit(In_sync, &rdev2->flags); 1398 1399 if (rdev2->raid_disk >= 0 && 1400 sb->minor_version >= 91) 1401 /* we have nowhere to store the recovery_offset, 1402 * but if it is not below the reshape_position, 1403 * we can piggy-back on that. 1404 */ 1405 is_active = 1; 1406 if (rdev2->raid_disk < 0 || 1407 test_bit(Faulty, &rdev2->flags)) 1408 is_active = 0; 1409 if (is_active) 1410 desc_nr = rdev2->raid_disk; 1411 else 1412 desc_nr = next_spare++; 1413 rdev2->desc_nr = desc_nr; 1414 d = &sb->disks[rdev2->desc_nr]; 1415 nr_disks++; 1416 d->number = rdev2->desc_nr; 1417 d->major = MAJOR(rdev2->bdev->bd_dev); 1418 d->minor = MINOR(rdev2->bdev->bd_dev); 1419 if (is_active) 1420 d->raid_disk = rdev2->raid_disk; 1421 else 1422 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1423 if (test_bit(Faulty, &rdev2->flags)) 1424 d->state = (1<<MD_DISK_FAULTY); 1425 else if (is_active) { 1426 d->state = (1<<MD_DISK_ACTIVE); 1427 if (test_bit(In_sync, &rdev2->flags)) 1428 d->state |= (1<<MD_DISK_SYNC); 1429 active++; 1430 working++; 1431 } else { 1432 d->state = 0; 1433 spare++; 1434 working++; 1435 } 1436 if (test_bit(WriteMostly, &rdev2->flags)) 1437 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1438 if (test_bit(FailFast, &rdev2->flags)) 1439 d->state |= (1<<MD_DISK_FAILFAST); 1440 } 1441 /* now set the "removed" and "faulty" bits on any missing devices */ 1442 for (i=0 ; i < mddev->raid_disks ; i++) { 1443 mdp_disk_t *d = &sb->disks[i]; 1444 if (d->state == 0 && d->number == 0) { 1445 d->number = i; 1446 d->raid_disk = i; 1447 d->state = (1<<MD_DISK_REMOVED); 1448 d->state |= (1<<MD_DISK_FAULTY); 1449 failed++; 1450 } 1451 } 1452 sb->nr_disks = nr_disks; 1453 sb->active_disks = active; 1454 sb->working_disks = working; 1455 sb->failed_disks = failed; 1456 sb->spare_disks = spare; 1457 1458 sb->this_disk = sb->disks[rdev->desc_nr]; 1459 sb->sb_csum = calc_sb_csum(sb); 1460 } 1461 1462 /* 1463 * rdev_size_change for 0.90.0 1464 */ 1465 static unsigned long long 1466 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1467 { 1468 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1469 return 0; /* component must fit device */ 1470 if (rdev->mddev->bitmap_info.offset) 1471 return 0; /* can't move bitmap */ 1472 rdev->sb_start = calc_dev_sboffset(rdev); 1473 if (!num_sectors || num_sectors > rdev->sb_start) 1474 num_sectors = rdev->sb_start; 1475 /* Limit to 4TB as metadata cannot record more than that. 1476 * 4TB == 2^32 KB, or 2*2^32 sectors. 1477 */ 1478 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1479 num_sectors = (sector_t)(2ULL << 32) - 2; 1480 do { 1481 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1482 rdev->sb_page); 1483 } while (md_super_wait(rdev->mddev) < 0); 1484 return num_sectors; 1485 } 1486 1487 static int 1488 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1489 { 1490 /* non-zero offset changes not possible with v0.90 */ 1491 return new_offset == 0; 1492 } 1493 1494 /* 1495 * version 1 superblock 1496 */ 1497 1498 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1499 { 1500 __le32 disk_csum; 1501 u32 csum; 1502 unsigned long long newcsum; 1503 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1504 __le32 *isuper = (__le32*)sb; 1505 1506 disk_csum = sb->sb_csum; 1507 sb->sb_csum = 0; 1508 newcsum = 0; 1509 for (; size >= 4; size -= 4) 1510 newcsum += le32_to_cpu(*isuper++); 1511 1512 if (size == 2) 1513 newcsum += le16_to_cpu(*(__le16*) isuper); 1514 1515 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1516 sb->sb_csum = disk_csum; 1517 return cpu_to_le32(csum); 1518 } 1519 1520 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1521 { 1522 struct mdp_superblock_1 *sb; 1523 int ret; 1524 sector_t sb_start; 1525 sector_t sectors; 1526 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1527 int bmask; 1528 1529 /* 1530 * Calculate the position of the superblock in 512byte sectors. 1531 * It is always aligned to a 4K boundary and 1532 * depeding on minor_version, it can be: 1533 * 0: At least 8K, but less than 12K, from end of device 1534 * 1: At start of device 1535 * 2: 4K from start of device. 1536 */ 1537 switch(minor_version) { 1538 case 0: 1539 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1540 sb_start -= 8*2; 1541 sb_start &= ~(sector_t)(4*2-1); 1542 break; 1543 case 1: 1544 sb_start = 0; 1545 break; 1546 case 2: 1547 sb_start = 8; 1548 break; 1549 default: 1550 return -EINVAL; 1551 } 1552 rdev->sb_start = sb_start; 1553 1554 /* superblock is rarely larger than 1K, but it can be larger, 1555 * and it is safe to read 4k, so we do that 1556 */ 1557 ret = read_disk_sb(rdev, 4096); 1558 if (ret) return ret; 1559 1560 sb = page_address(rdev->sb_page); 1561 1562 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1563 sb->major_version != cpu_to_le32(1) || 1564 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1565 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1566 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1567 return -EINVAL; 1568 1569 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1570 pr_warn("md: invalid superblock checksum on %s\n", 1571 bdevname(rdev->bdev,b)); 1572 return -EINVAL; 1573 } 1574 if (le64_to_cpu(sb->data_size) < 10) { 1575 pr_warn("md: data_size too small on %s\n", 1576 bdevname(rdev->bdev,b)); 1577 return -EINVAL; 1578 } 1579 if (sb->pad0 || 1580 sb->pad3[0] || 1581 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1582 /* Some padding is non-zero, might be a new feature */ 1583 return -EINVAL; 1584 1585 rdev->preferred_minor = 0xffff; 1586 rdev->data_offset = le64_to_cpu(sb->data_offset); 1587 rdev->new_data_offset = rdev->data_offset; 1588 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1589 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1590 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1591 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1592 1593 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1594 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1595 if (rdev->sb_size & bmask) 1596 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1597 1598 if (minor_version 1599 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1600 return -EINVAL; 1601 if (minor_version 1602 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1603 return -EINVAL; 1604 1605 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1606 rdev->desc_nr = -1; 1607 else 1608 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1609 1610 if (!rdev->bb_page) { 1611 rdev->bb_page = alloc_page(GFP_KERNEL); 1612 if (!rdev->bb_page) 1613 return -ENOMEM; 1614 } 1615 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1616 rdev->badblocks.count == 0) { 1617 /* need to load the bad block list. 1618 * Currently we limit it to one page. 1619 */ 1620 s32 offset; 1621 sector_t bb_sector; 1622 __le64 *bbp; 1623 int i; 1624 int sectors = le16_to_cpu(sb->bblog_size); 1625 if (sectors > (PAGE_SIZE / 512)) 1626 return -EINVAL; 1627 offset = le32_to_cpu(sb->bblog_offset); 1628 if (offset == 0) 1629 return -EINVAL; 1630 bb_sector = (long long)offset; 1631 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1632 rdev->bb_page, REQ_OP_READ, 0, true)) 1633 return -EIO; 1634 bbp = (__le64 *)page_address(rdev->bb_page); 1635 rdev->badblocks.shift = sb->bblog_shift; 1636 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1637 u64 bb = le64_to_cpu(*bbp); 1638 int count = bb & (0x3ff); 1639 u64 sector = bb >> 10; 1640 sector <<= sb->bblog_shift; 1641 count <<= sb->bblog_shift; 1642 if (bb + 1 == 0) 1643 break; 1644 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1645 return -EINVAL; 1646 } 1647 } else if (sb->bblog_offset != 0) 1648 rdev->badblocks.shift = 0; 1649 1650 if ((le32_to_cpu(sb->feature_map) & 1651 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1652 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1653 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1654 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1655 } 1656 1657 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1658 sb->level != 0) 1659 return -EINVAL; 1660 1661 if (!refdev) { 1662 ret = 1; 1663 } else { 1664 __u64 ev1, ev2; 1665 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1666 1667 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1668 sb->level != refsb->level || 1669 sb->layout != refsb->layout || 1670 sb->chunksize != refsb->chunksize) { 1671 pr_warn("md: %s has strangely different superblock to %s\n", 1672 bdevname(rdev->bdev,b), 1673 bdevname(refdev->bdev,b2)); 1674 return -EINVAL; 1675 } 1676 ev1 = le64_to_cpu(sb->events); 1677 ev2 = le64_to_cpu(refsb->events); 1678 1679 if (ev1 > ev2) 1680 ret = 1; 1681 else 1682 ret = 0; 1683 } 1684 if (minor_version) { 1685 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1686 sectors -= rdev->data_offset; 1687 } else 1688 sectors = rdev->sb_start; 1689 if (sectors < le64_to_cpu(sb->data_size)) 1690 return -EINVAL; 1691 rdev->sectors = le64_to_cpu(sb->data_size); 1692 return ret; 1693 } 1694 1695 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1696 { 1697 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1698 __u64 ev1 = le64_to_cpu(sb->events); 1699 1700 rdev->raid_disk = -1; 1701 clear_bit(Faulty, &rdev->flags); 1702 clear_bit(In_sync, &rdev->flags); 1703 clear_bit(Bitmap_sync, &rdev->flags); 1704 clear_bit(WriteMostly, &rdev->flags); 1705 1706 if (mddev->raid_disks == 0) { 1707 mddev->major_version = 1; 1708 mddev->patch_version = 0; 1709 mddev->external = 0; 1710 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1711 mddev->ctime = le64_to_cpu(sb->ctime); 1712 mddev->utime = le64_to_cpu(sb->utime); 1713 mddev->level = le32_to_cpu(sb->level); 1714 mddev->clevel[0] = 0; 1715 mddev->layout = le32_to_cpu(sb->layout); 1716 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1717 mddev->dev_sectors = le64_to_cpu(sb->size); 1718 mddev->events = ev1; 1719 mddev->bitmap_info.offset = 0; 1720 mddev->bitmap_info.space = 0; 1721 /* Default location for bitmap is 1K after superblock 1722 * using 3K - total of 4K 1723 */ 1724 mddev->bitmap_info.default_offset = 1024 >> 9; 1725 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1726 mddev->reshape_backwards = 0; 1727 1728 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1729 memcpy(mddev->uuid, sb->set_uuid, 16); 1730 1731 mddev->max_disks = (4096-256)/2; 1732 1733 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1734 mddev->bitmap_info.file == NULL) { 1735 mddev->bitmap_info.offset = 1736 (__s32)le32_to_cpu(sb->bitmap_offset); 1737 /* Metadata doesn't record how much space is available. 1738 * For 1.0, we assume we can use up to the superblock 1739 * if before, else to 4K beyond superblock. 1740 * For others, assume no change is possible. 1741 */ 1742 if (mddev->minor_version > 0) 1743 mddev->bitmap_info.space = 0; 1744 else if (mddev->bitmap_info.offset > 0) 1745 mddev->bitmap_info.space = 1746 8 - mddev->bitmap_info.offset; 1747 else 1748 mddev->bitmap_info.space = 1749 -mddev->bitmap_info.offset; 1750 } 1751 1752 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1753 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1754 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1755 mddev->new_level = le32_to_cpu(sb->new_level); 1756 mddev->new_layout = le32_to_cpu(sb->new_layout); 1757 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1758 if (mddev->delta_disks < 0 || 1759 (mddev->delta_disks == 0 && 1760 (le32_to_cpu(sb->feature_map) 1761 & MD_FEATURE_RESHAPE_BACKWARDS))) 1762 mddev->reshape_backwards = 1; 1763 } else { 1764 mddev->reshape_position = MaxSector; 1765 mddev->delta_disks = 0; 1766 mddev->new_level = mddev->level; 1767 mddev->new_layout = mddev->layout; 1768 mddev->new_chunk_sectors = mddev->chunk_sectors; 1769 } 1770 1771 if (mddev->level == 0 && 1772 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1773 mddev->layout = -1; 1774 1775 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1776 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1777 1778 if (le32_to_cpu(sb->feature_map) & 1779 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1780 if (le32_to_cpu(sb->feature_map) & 1781 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1782 return -EINVAL; 1783 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1784 (le32_to_cpu(sb->feature_map) & 1785 MD_FEATURE_MULTIPLE_PPLS)) 1786 return -EINVAL; 1787 set_bit(MD_HAS_PPL, &mddev->flags); 1788 } 1789 } else if (mddev->pers == NULL) { 1790 /* Insist of good event counter while assembling, except for 1791 * spares (which don't need an event count) */ 1792 ++ev1; 1793 if (rdev->desc_nr >= 0 && 1794 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1795 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1796 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1797 if (ev1 < mddev->events) 1798 return -EINVAL; 1799 } else if (mddev->bitmap) { 1800 /* If adding to array with a bitmap, then we can accept an 1801 * older device, but not too old. 1802 */ 1803 if (ev1 < mddev->bitmap->events_cleared) 1804 return 0; 1805 if (ev1 < mddev->events) 1806 set_bit(Bitmap_sync, &rdev->flags); 1807 } else { 1808 if (ev1 < mddev->events) 1809 /* just a hot-add of a new device, leave raid_disk at -1 */ 1810 return 0; 1811 } 1812 if (mddev->level != LEVEL_MULTIPATH) { 1813 int role; 1814 if (rdev->desc_nr < 0 || 1815 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1816 role = MD_DISK_ROLE_SPARE; 1817 rdev->desc_nr = -1; 1818 } else 1819 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1820 switch(role) { 1821 case MD_DISK_ROLE_SPARE: /* spare */ 1822 break; 1823 case MD_DISK_ROLE_FAULTY: /* faulty */ 1824 set_bit(Faulty, &rdev->flags); 1825 break; 1826 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1827 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1828 /* journal device without journal feature */ 1829 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1830 return -EINVAL; 1831 } 1832 set_bit(Journal, &rdev->flags); 1833 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1834 rdev->raid_disk = 0; 1835 break; 1836 default: 1837 rdev->saved_raid_disk = role; 1838 if ((le32_to_cpu(sb->feature_map) & 1839 MD_FEATURE_RECOVERY_OFFSET)) { 1840 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1841 if (!(le32_to_cpu(sb->feature_map) & 1842 MD_FEATURE_RECOVERY_BITMAP)) 1843 rdev->saved_raid_disk = -1; 1844 } else { 1845 /* 1846 * If the array is FROZEN, then the device can't 1847 * be in_sync with rest of array. 1848 */ 1849 if (!test_bit(MD_RECOVERY_FROZEN, 1850 &mddev->recovery)) 1851 set_bit(In_sync, &rdev->flags); 1852 } 1853 rdev->raid_disk = role; 1854 break; 1855 } 1856 if (sb->devflags & WriteMostly1) 1857 set_bit(WriteMostly, &rdev->flags); 1858 if (sb->devflags & FailFast1) 1859 set_bit(FailFast, &rdev->flags); 1860 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1861 set_bit(Replacement, &rdev->flags); 1862 } else /* MULTIPATH are always insync */ 1863 set_bit(In_sync, &rdev->flags); 1864 1865 return 0; 1866 } 1867 1868 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1869 { 1870 struct mdp_superblock_1 *sb; 1871 struct md_rdev *rdev2; 1872 int max_dev, i; 1873 /* make rdev->sb match mddev and rdev data. */ 1874 1875 sb = page_address(rdev->sb_page); 1876 1877 sb->feature_map = 0; 1878 sb->pad0 = 0; 1879 sb->recovery_offset = cpu_to_le64(0); 1880 memset(sb->pad3, 0, sizeof(sb->pad3)); 1881 1882 sb->utime = cpu_to_le64((__u64)mddev->utime); 1883 sb->events = cpu_to_le64(mddev->events); 1884 if (mddev->in_sync) 1885 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1886 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1887 sb->resync_offset = cpu_to_le64(MaxSector); 1888 else 1889 sb->resync_offset = cpu_to_le64(0); 1890 1891 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1892 1893 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1894 sb->size = cpu_to_le64(mddev->dev_sectors); 1895 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1896 sb->level = cpu_to_le32(mddev->level); 1897 sb->layout = cpu_to_le32(mddev->layout); 1898 if (test_bit(FailFast, &rdev->flags)) 1899 sb->devflags |= FailFast1; 1900 else 1901 sb->devflags &= ~FailFast1; 1902 1903 if (test_bit(WriteMostly, &rdev->flags)) 1904 sb->devflags |= WriteMostly1; 1905 else 1906 sb->devflags &= ~WriteMostly1; 1907 sb->data_offset = cpu_to_le64(rdev->data_offset); 1908 sb->data_size = cpu_to_le64(rdev->sectors); 1909 1910 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1911 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1912 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1913 } 1914 1915 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1916 !test_bit(In_sync, &rdev->flags)) { 1917 sb->feature_map |= 1918 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1919 sb->recovery_offset = 1920 cpu_to_le64(rdev->recovery_offset); 1921 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1922 sb->feature_map |= 1923 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1924 } 1925 /* Note: recovery_offset and journal_tail share space */ 1926 if (test_bit(Journal, &rdev->flags)) 1927 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1928 if (test_bit(Replacement, &rdev->flags)) 1929 sb->feature_map |= 1930 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1931 1932 if (mddev->reshape_position != MaxSector) { 1933 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1934 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1935 sb->new_layout = cpu_to_le32(mddev->new_layout); 1936 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1937 sb->new_level = cpu_to_le32(mddev->new_level); 1938 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1939 if (mddev->delta_disks == 0 && 1940 mddev->reshape_backwards) 1941 sb->feature_map 1942 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1943 if (rdev->new_data_offset != rdev->data_offset) { 1944 sb->feature_map 1945 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1946 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1947 - rdev->data_offset)); 1948 } 1949 } 1950 1951 if (mddev_is_clustered(mddev)) 1952 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1953 1954 if (rdev->badblocks.count == 0) 1955 /* Nothing to do for bad blocks*/ ; 1956 else if (sb->bblog_offset == 0) 1957 /* Cannot record bad blocks on this device */ 1958 md_error(mddev, rdev); 1959 else { 1960 struct badblocks *bb = &rdev->badblocks; 1961 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 1962 u64 *p = bb->page; 1963 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1964 if (bb->changed) { 1965 unsigned seq; 1966 1967 retry: 1968 seq = read_seqbegin(&bb->lock); 1969 1970 memset(bbp, 0xff, PAGE_SIZE); 1971 1972 for (i = 0 ; i < bb->count ; i++) { 1973 u64 internal_bb = p[i]; 1974 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1975 | BB_LEN(internal_bb)); 1976 bbp[i] = cpu_to_le64(store_bb); 1977 } 1978 bb->changed = 0; 1979 if (read_seqretry(&bb->lock, seq)) 1980 goto retry; 1981 1982 bb->sector = (rdev->sb_start + 1983 (int)le32_to_cpu(sb->bblog_offset)); 1984 bb->size = le16_to_cpu(sb->bblog_size); 1985 } 1986 } 1987 1988 max_dev = 0; 1989 rdev_for_each(rdev2, mddev) 1990 if (rdev2->desc_nr+1 > max_dev) 1991 max_dev = rdev2->desc_nr+1; 1992 1993 if (max_dev > le32_to_cpu(sb->max_dev)) { 1994 int bmask; 1995 sb->max_dev = cpu_to_le32(max_dev); 1996 rdev->sb_size = max_dev * 2 + 256; 1997 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1998 if (rdev->sb_size & bmask) 1999 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2000 } else 2001 max_dev = le32_to_cpu(sb->max_dev); 2002 2003 for (i=0; i<max_dev;i++) 2004 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2005 2006 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2007 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2008 2009 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2010 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2011 sb->feature_map |= 2012 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2013 else 2014 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2015 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2016 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2017 } 2018 2019 rdev_for_each(rdev2, mddev) { 2020 i = rdev2->desc_nr; 2021 if (test_bit(Faulty, &rdev2->flags)) 2022 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2023 else if (test_bit(In_sync, &rdev2->flags)) 2024 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2025 else if (test_bit(Journal, &rdev2->flags)) 2026 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2027 else if (rdev2->raid_disk >= 0) 2028 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2029 else 2030 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2031 } 2032 2033 sb->sb_csum = calc_sb_1_csum(sb); 2034 } 2035 2036 static unsigned long long 2037 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2038 { 2039 struct mdp_superblock_1 *sb; 2040 sector_t max_sectors; 2041 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2042 return 0; /* component must fit device */ 2043 if (rdev->data_offset != rdev->new_data_offset) 2044 return 0; /* too confusing */ 2045 if (rdev->sb_start < rdev->data_offset) { 2046 /* minor versions 1 and 2; superblock before data */ 2047 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2048 max_sectors -= rdev->data_offset; 2049 if (!num_sectors || num_sectors > max_sectors) 2050 num_sectors = max_sectors; 2051 } else if (rdev->mddev->bitmap_info.offset) { 2052 /* minor version 0 with bitmap we can't move */ 2053 return 0; 2054 } else { 2055 /* minor version 0; superblock after data */ 2056 sector_t sb_start; 2057 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 2058 sb_start &= ~(sector_t)(4*2 - 1); 2059 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 2060 if (!num_sectors || num_sectors > max_sectors) 2061 num_sectors = max_sectors; 2062 rdev->sb_start = sb_start; 2063 } 2064 sb = page_address(rdev->sb_page); 2065 sb->data_size = cpu_to_le64(num_sectors); 2066 sb->super_offset = cpu_to_le64(rdev->sb_start); 2067 sb->sb_csum = calc_sb_1_csum(sb); 2068 do { 2069 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2070 rdev->sb_page); 2071 } while (md_super_wait(rdev->mddev) < 0); 2072 return num_sectors; 2073 2074 } 2075 2076 static int 2077 super_1_allow_new_offset(struct md_rdev *rdev, 2078 unsigned long long new_offset) 2079 { 2080 /* All necessary checks on new >= old have been done */ 2081 struct bitmap *bitmap; 2082 if (new_offset >= rdev->data_offset) 2083 return 1; 2084 2085 /* with 1.0 metadata, there is no metadata to tread on 2086 * so we can always move back */ 2087 if (rdev->mddev->minor_version == 0) 2088 return 1; 2089 2090 /* otherwise we must be sure not to step on 2091 * any metadata, so stay: 2092 * 36K beyond start of superblock 2093 * beyond end of badblocks 2094 * beyond write-intent bitmap 2095 */ 2096 if (rdev->sb_start + (32+4)*2 > new_offset) 2097 return 0; 2098 bitmap = rdev->mddev->bitmap; 2099 if (bitmap && !rdev->mddev->bitmap_info.file && 2100 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2101 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2102 return 0; 2103 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2104 return 0; 2105 2106 return 1; 2107 } 2108 2109 static struct super_type super_types[] = { 2110 [0] = { 2111 .name = "0.90.0", 2112 .owner = THIS_MODULE, 2113 .load_super = super_90_load, 2114 .validate_super = super_90_validate, 2115 .sync_super = super_90_sync, 2116 .rdev_size_change = super_90_rdev_size_change, 2117 .allow_new_offset = super_90_allow_new_offset, 2118 }, 2119 [1] = { 2120 .name = "md-1", 2121 .owner = THIS_MODULE, 2122 .load_super = super_1_load, 2123 .validate_super = super_1_validate, 2124 .sync_super = super_1_sync, 2125 .rdev_size_change = super_1_rdev_size_change, 2126 .allow_new_offset = super_1_allow_new_offset, 2127 }, 2128 }; 2129 2130 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2131 { 2132 if (mddev->sync_super) { 2133 mddev->sync_super(mddev, rdev); 2134 return; 2135 } 2136 2137 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2138 2139 super_types[mddev->major_version].sync_super(mddev, rdev); 2140 } 2141 2142 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2143 { 2144 struct md_rdev *rdev, *rdev2; 2145 2146 rcu_read_lock(); 2147 rdev_for_each_rcu(rdev, mddev1) { 2148 if (test_bit(Faulty, &rdev->flags) || 2149 test_bit(Journal, &rdev->flags) || 2150 rdev->raid_disk == -1) 2151 continue; 2152 rdev_for_each_rcu(rdev2, mddev2) { 2153 if (test_bit(Faulty, &rdev2->flags) || 2154 test_bit(Journal, &rdev2->flags) || 2155 rdev2->raid_disk == -1) 2156 continue; 2157 if (rdev->bdev->bd_contains == 2158 rdev2->bdev->bd_contains) { 2159 rcu_read_unlock(); 2160 return 1; 2161 } 2162 } 2163 } 2164 rcu_read_unlock(); 2165 return 0; 2166 } 2167 2168 static LIST_HEAD(pending_raid_disks); 2169 2170 /* 2171 * Try to register data integrity profile for an mddev 2172 * 2173 * This is called when an array is started and after a disk has been kicked 2174 * from the array. It only succeeds if all working and active component devices 2175 * are integrity capable with matching profiles. 2176 */ 2177 int md_integrity_register(struct mddev *mddev) 2178 { 2179 struct md_rdev *rdev, *reference = NULL; 2180 2181 if (list_empty(&mddev->disks)) 2182 return 0; /* nothing to do */ 2183 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2184 return 0; /* shouldn't register, or already is */ 2185 rdev_for_each(rdev, mddev) { 2186 /* skip spares and non-functional disks */ 2187 if (test_bit(Faulty, &rdev->flags)) 2188 continue; 2189 if (rdev->raid_disk < 0) 2190 continue; 2191 if (!reference) { 2192 /* Use the first rdev as the reference */ 2193 reference = rdev; 2194 continue; 2195 } 2196 /* does this rdev's profile match the reference profile? */ 2197 if (blk_integrity_compare(reference->bdev->bd_disk, 2198 rdev->bdev->bd_disk) < 0) 2199 return -EINVAL; 2200 } 2201 if (!reference || !bdev_get_integrity(reference->bdev)) 2202 return 0; 2203 /* 2204 * All component devices are integrity capable and have matching 2205 * profiles, register the common profile for the md device. 2206 */ 2207 blk_integrity_register(mddev->gendisk, 2208 bdev_get_integrity(reference->bdev)); 2209 2210 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2211 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2212 pr_err("md: failed to create integrity pool for %s\n", 2213 mdname(mddev)); 2214 return -EINVAL; 2215 } 2216 return 0; 2217 } 2218 EXPORT_SYMBOL(md_integrity_register); 2219 2220 /* 2221 * Attempt to add an rdev, but only if it is consistent with the current 2222 * integrity profile 2223 */ 2224 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2225 { 2226 struct blk_integrity *bi_mddev; 2227 char name[BDEVNAME_SIZE]; 2228 2229 if (!mddev->gendisk) 2230 return 0; 2231 2232 bi_mddev = blk_get_integrity(mddev->gendisk); 2233 2234 if (!bi_mddev) /* nothing to do */ 2235 return 0; 2236 2237 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2238 pr_err("%s: incompatible integrity profile for %s\n", 2239 mdname(mddev), bdevname(rdev->bdev, name)); 2240 return -ENXIO; 2241 } 2242 2243 return 0; 2244 } 2245 EXPORT_SYMBOL(md_integrity_add_rdev); 2246 2247 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2248 { 2249 char b[BDEVNAME_SIZE]; 2250 struct kobject *ko; 2251 int err; 2252 2253 /* prevent duplicates */ 2254 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2255 return -EEXIST; 2256 2257 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2258 mddev->pers) 2259 return -EROFS; 2260 2261 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2262 if (!test_bit(Journal, &rdev->flags) && 2263 rdev->sectors && 2264 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2265 if (mddev->pers) { 2266 /* Cannot change size, so fail 2267 * If mddev->level <= 0, then we don't care 2268 * about aligning sizes (e.g. linear) 2269 */ 2270 if (mddev->level > 0) 2271 return -ENOSPC; 2272 } else 2273 mddev->dev_sectors = rdev->sectors; 2274 } 2275 2276 /* Verify rdev->desc_nr is unique. 2277 * If it is -1, assign a free number, else 2278 * check number is not in use 2279 */ 2280 rcu_read_lock(); 2281 if (rdev->desc_nr < 0) { 2282 int choice = 0; 2283 if (mddev->pers) 2284 choice = mddev->raid_disks; 2285 while (md_find_rdev_nr_rcu(mddev, choice)) 2286 choice++; 2287 rdev->desc_nr = choice; 2288 } else { 2289 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2290 rcu_read_unlock(); 2291 return -EBUSY; 2292 } 2293 } 2294 rcu_read_unlock(); 2295 if (!test_bit(Journal, &rdev->flags) && 2296 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2297 pr_warn("md: %s: array is limited to %d devices\n", 2298 mdname(mddev), mddev->max_disks); 2299 return -EBUSY; 2300 } 2301 bdevname(rdev->bdev,b); 2302 strreplace(b, '/', '!'); 2303 2304 rdev->mddev = mddev; 2305 pr_debug("md: bind<%s>\n", b); 2306 2307 if (mddev->raid_disks) 2308 mddev_create_wb_pool(mddev, rdev, false); 2309 2310 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2311 goto fail; 2312 2313 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2314 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2315 /* failure here is OK */; 2316 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2317 2318 list_add_rcu(&rdev->same_set, &mddev->disks); 2319 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2320 2321 /* May as well allow recovery to be retried once */ 2322 mddev->recovery_disabled++; 2323 2324 return 0; 2325 2326 fail: 2327 pr_warn("md: failed to register dev-%s for %s\n", 2328 b, mdname(mddev)); 2329 return err; 2330 } 2331 2332 static void md_delayed_delete(struct work_struct *ws) 2333 { 2334 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2335 kobject_del(&rdev->kobj); 2336 kobject_put(&rdev->kobj); 2337 } 2338 2339 static void unbind_rdev_from_array(struct md_rdev *rdev) 2340 { 2341 char b[BDEVNAME_SIZE]; 2342 2343 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2344 list_del_rcu(&rdev->same_set); 2345 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2346 mddev_destroy_wb_pool(rdev->mddev, rdev); 2347 rdev->mddev = NULL; 2348 sysfs_remove_link(&rdev->kobj, "block"); 2349 sysfs_put(rdev->sysfs_state); 2350 rdev->sysfs_state = NULL; 2351 rdev->badblocks.count = 0; 2352 /* We need to delay this, otherwise we can deadlock when 2353 * writing to 'remove' to "dev/state". We also need 2354 * to delay it due to rcu usage. 2355 */ 2356 synchronize_rcu(); 2357 INIT_WORK(&rdev->del_work, md_delayed_delete); 2358 kobject_get(&rdev->kobj); 2359 queue_work(md_misc_wq, &rdev->del_work); 2360 } 2361 2362 /* 2363 * prevent the device from being mounted, repartitioned or 2364 * otherwise reused by a RAID array (or any other kernel 2365 * subsystem), by bd_claiming the device. 2366 */ 2367 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2368 { 2369 int err = 0; 2370 struct block_device *bdev; 2371 char b[BDEVNAME_SIZE]; 2372 2373 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2374 shared ? (struct md_rdev *)lock_rdev : rdev); 2375 if (IS_ERR(bdev)) { 2376 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2377 return PTR_ERR(bdev); 2378 } 2379 rdev->bdev = bdev; 2380 return err; 2381 } 2382 2383 static void unlock_rdev(struct md_rdev *rdev) 2384 { 2385 struct block_device *bdev = rdev->bdev; 2386 rdev->bdev = NULL; 2387 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2388 } 2389 2390 void md_autodetect_dev(dev_t dev); 2391 2392 static void export_rdev(struct md_rdev *rdev) 2393 { 2394 char b[BDEVNAME_SIZE]; 2395 2396 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2397 md_rdev_clear(rdev); 2398 #ifndef MODULE 2399 if (test_bit(AutoDetected, &rdev->flags)) 2400 md_autodetect_dev(rdev->bdev->bd_dev); 2401 #endif 2402 unlock_rdev(rdev); 2403 kobject_put(&rdev->kobj); 2404 } 2405 2406 void md_kick_rdev_from_array(struct md_rdev *rdev) 2407 { 2408 unbind_rdev_from_array(rdev); 2409 export_rdev(rdev); 2410 } 2411 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2412 2413 static void export_array(struct mddev *mddev) 2414 { 2415 struct md_rdev *rdev; 2416 2417 while (!list_empty(&mddev->disks)) { 2418 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2419 same_set); 2420 md_kick_rdev_from_array(rdev); 2421 } 2422 mddev->raid_disks = 0; 2423 mddev->major_version = 0; 2424 } 2425 2426 static bool set_in_sync(struct mddev *mddev) 2427 { 2428 lockdep_assert_held(&mddev->lock); 2429 if (!mddev->in_sync) { 2430 mddev->sync_checkers++; 2431 spin_unlock(&mddev->lock); 2432 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2433 spin_lock(&mddev->lock); 2434 if (!mddev->in_sync && 2435 percpu_ref_is_zero(&mddev->writes_pending)) { 2436 mddev->in_sync = 1; 2437 /* 2438 * Ensure ->in_sync is visible before we clear 2439 * ->sync_checkers. 2440 */ 2441 smp_mb(); 2442 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2443 sysfs_notify_dirent_safe(mddev->sysfs_state); 2444 } 2445 if (--mddev->sync_checkers == 0) 2446 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2447 } 2448 if (mddev->safemode == 1) 2449 mddev->safemode = 0; 2450 return mddev->in_sync; 2451 } 2452 2453 static void sync_sbs(struct mddev *mddev, int nospares) 2454 { 2455 /* Update each superblock (in-memory image), but 2456 * if we are allowed to, skip spares which already 2457 * have the right event counter, or have one earlier 2458 * (which would mean they aren't being marked as dirty 2459 * with the rest of the array) 2460 */ 2461 struct md_rdev *rdev; 2462 rdev_for_each(rdev, mddev) { 2463 if (rdev->sb_events == mddev->events || 2464 (nospares && 2465 rdev->raid_disk < 0 && 2466 rdev->sb_events+1 == mddev->events)) { 2467 /* Don't update this superblock */ 2468 rdev->sb_loaded = 2; 2469 } else { 2470 sync_super(mddev, rdev); 2471 rdev->sb_loaded = 1; 2472 } 2473 } 2474 } 2475 2476 static bool does_sb_need_changing(struct mddev *mddev) 2477 { 2478 struct md_rdev *rdev; 2479 struct mdp_superblock_1 *sb; 2480 int role; 2481 2482 /* Find a good rdev */ 2483 rdev_for_each(rdev, mddev) 2484 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2485 break; 2486 2487 /* No good device found. */ 2488 if (!rdev) 2489 return false; 2490 2491 sb = page_address(rdev->sb_page); 2492 /* Check if a device has become faulty or a spare become active */ 2493 rdev_for_each(rdev, mddev) { 2494 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2495 /* Device activated? */ 2496 if (role == 0xffff && rdev->raid_disk >=0 && 2497 !test_bit(Faulty, &rdev->flags)) 2498 return true; 2499 /* Device turned faulty? */ 2500 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2501 return true; 2502 } 2503 2504 /* Check if any mddev parameters have changed */ 2505 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2506 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2507 (mddev->layout != le32_to_cpu(sb->layout)) || 2508 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2509 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2510 return true; 2511 2512 return false; 2513 } 2514 2515 void md_update_sb(struct mddev *mddev, int force_change) 2516 { 2517 struct md_rdev *rdev; 2518 int sync_req; 2519 int nospares = 0; 2520 int any_badblocks_changed = 0; 2521 int ret = -1; 2522 2523 if (mddev->ro) { 2524 if (force_change) 2525 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2526 return; 2527 } 2528 2529 repeat: 2530 if (mddev_is_clustered(mddev)) { 2531 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2532 force_change = 1; 2533 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2534 nospares = 1; 2535 ret = md_cluster_ops->metadata_update_start(mddev); 2536 /* Has someone else has updated the sb */ 2537 if (!does_sb_need_changing(mddev)) { 2538 if (ret == 0) 2539 md_cluster_ops->metadata_update_cancel(mddev); 2540 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2541 BIT(MD_SB_CHANGE_DEVS) | 2542 BIT(MD_SB_CHANGE_CLEAN)); 2543 return; 2544 } 2545 } 2546 2547 /* 2548 * First make sure individual recovery_offsets are correct 2549 * curr_resync_completed can only be used during recovery. 2550 * During reshape/resync it might use array-addresses rather 2551 * that device addresses. 2552 */ 2553 rdev_for_each(rdev, mddev) { 2554 if (rdev->raid_disk >= 0 && 2555 mddev->delta_disks >= 0 && 2556 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2557 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2558 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2559 !test_bit(Journal, &rdev->flags) && 2560 !test_bit(In_sync, &rdev->flags) && 2561 mddev->curr_resync_completed > rdev->recovery_offset) 2562 rdev->recovery_offset = mddev->curr_resync_completed; 2563 2564 } 2565 if (!mddev->persistent) { 2566 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2567 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2568 if (!mddev->external) { 2569 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2570 rdev_for_each(rdev, mddev) { 2571 if (rdev->badblocks.changed) { 2572 rdev->badblocks.changed = 0; 2573 ack_all_badblocks(&rdev->badblocks); 2574 md_error(mddev, rdev); 2575 } 2576 clear_bit(Blocked, &rdev->flags); 2577 clear_bit(BlockedBadBlocks, &rdev->flags); 2578 wake_up(&rdev->blocked_wait); 2579 } 2580 } 2581 wake_up(&mddev->sb_wait); 2582 return; 2583 } 2584 2585 spin_lock(&mddev->lock); 2586 2587 mddev->utime = ktime_get_real_seconds(); 2588 2589 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2590 force_change = 1; 2591 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2592 /* just a clean<-> dirty transition, possibly leave spares alone, 2593 * though if events isn't the right even/odd, we will have to do 2594 * spares after all 2595 */ 2596 nospares = 1; 2597 if (force_change) 2598 nospares = 0; 2599 if (mddev->degraded) 2600 /* If the array is degraded, then skipping spares is both 2601 * dangerous and fairly pointless. 2602 * Dangerous because a device that was removed from the array 2603 * might have a event_count that still looks up-to-date, 2604 * so it can be re-added without a resync. 2605 * Pointless because if there are any spares to skip, 2606 * then a recovery will happen and soon that array won't 2607 * be degraded any more and the spare can go back to sleep then. 2608 */ 2609 nospares = 0; 2610 2611 sync_req = mddev->in_sync; 2612 2613 /* If this is just a dirty<->clean transition, and the array is clean 2614 * and 'events' is odd, we can roll back to the previous clean state */ 2615 if (nospares 2616 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2617 && mddev->can_decrease_events 2618 && mddev->events != 1) { 2619 mddev->events--; 2620 mddev->can_decrease_events = 0; 2621 } else { 2622 /* otherwise we have to go forward and ... */ 2623 mddev->events ++; 2624 mddev->can_decrease_events = nospares; 2625 } 2626 2627 /* 2628 * This 64-bit counter should never wrap. 2629 * Either we are in around ~1 trillion A.C., assuming 2630 * 1 reboot per second, or we have a bug... 2631 */ 2632 WARN_ON(mddev->events == 0); 2633 2634 rdev_for_each(rdev, mddev) { 2635 if (rdev->badblocks.changed) 2636 any_badblocks_changed++; 2637 if (test_bit(Faulty, &rdev->flags)) 2638 set_bit(FaultRecorded, &rdev->flags); 2639 } 2640 2641 sync_sbs(mddev, nospares); 2642 spin_unlock(&mddev->lock); 2643 2644 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2645 mdname(mddev), mddev->in_sync); 2646 2647 if (mddev->queue) 2648 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2649 rewrite: 2650 md_bitmap_update_sb(mddev->bitmap); 2651 rdev_for_each(rdev, mddev) { 2652 char b[BDEVNAME_SIZE]; 2653 2654 if (rdev->sb_loaded != 1) 2655 continue; /* no noise on spare devices */ 2656 2657 if (!test_bit(Faulty, &rdev->flags)) { 2658 md_super_write(mddev,rdev, 2659 rdev->sb_start, rdev->sb_size, 2660 rdev->sb_page); 2661 pr_debug("md: (write) %s's sb offset: %llu\n", 2662 bdevname(rdev->bdev, b), 2663 (unsigned long long)rdev->sb_start); 2664 rdev->sb_events = mddev->events; 2665 if (rdev->badblocks.size) { 2666 md_super_write(mddev, rdev, 2667 rdev->badblocks.sector, 2668 rdev->badblocks.size << 9, 2669 rdev->bb_page); 2670 rdev->badblocks.size = 0; 2671 } 2672 2673 } else 2674 pr_debug("md: %s (skipping faulty)\n", 2675 bdevname(rdev->bdev, b)); 2676 2677 if (mddev->level == LEVEL_MULTIPATH) 2678 /* only need to write one superblock... */ 2679 break; 2680 } 2681 if (md_super_wait(mddev) < 0) 2682 goto rewrite; 2683 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2684 2685 if (mddev_is_clustered(mddev) && ret == 0) 2686 md_cluster_ops->metadata_update_finish(mddev); 2687 2688 if (mddev->in_sync != sync_req || 2689 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2690 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2691 /* have to write it out again */ 2692 goto repeat; 2693 wake_up(&mddev->sb_wait); 2694 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2695 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2696 2697 rdev_for_each(rdev, mddev) { 2698 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2699 clear_bit(Blocked, &rdev->flags); 2700 2701 if (any_badblocks_changed) 2702 ack_all_badblocks(&rdev->badblocks); 2703 clear_bit(BlockedBadBlocks, &rdev->flags); 2704 wake_up(&rdev->blocked_wait); 2705 } 2706 } 2707 EXPORT_SYMBOL(md_update_sb); 2708 2709 static int add_bound_rdev(struct md_rdev *rdev) 2710 { 2711 struct mddev *mddev = rdev->mddev; 2712 int err = 0; 2713 bool add_journal = test_bit(Journal, &rdev->flags); 2714 2715 if (!mddev->pers->hot_remove_disk || add_journal) { 2716 /* If there is hot_add_disk but no hot_remove_disk 2717 * then added disks for geometry changes, 2718 * and should be added immediately. 2719 */ 2720 super_types[mddev->major_version]. 2721 validate_super(mddev, rdev); 2722 if (add_journal) 2723 mddev_suspend(mddev); 2724 err = mddev->pers->hot_add_disk(mddev, rdev); 2725 if (add_journal) 2726 mddev_resume(mddev); 2727 if (err) { 2728 md_kick_rdev_from_array(rdev); 2729 return err; 2730 } 2731 } 2732 sysfs_notify_dirent_safe(rdev->sysfs_state); 2733 2734 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2735 if (mddev->degraded) 2736 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2737 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2738 md_new_event(mddev); 2739 md_wakeup_thread(mddev->thread); 2740 return 0; 2741 } 2742 2743 /* words written to sysfs files may, or may not, be \n terminated. 2744 * We want to accept with case. For this we use cmd_match. 2745 */ 2746 static int cmd_match(const char *cmd, const char *str) 2747 { 2748 /* See if cmd, written into a sysfs file, matches 2749 * str. They must either be the same, or cmd can 2750 * have a trailing newline 2751 */ 2752 while (*cmd && *str && *cmd == *str) { 2753 cmd++; 2754 str++; 2755 } 2756 if (*cmd == '\n') 2757 cmd++; 2758 if (*str || *cmd) 2759 return 0; 2760 return 1; 2761 } 2762 2763 struct rdev_sysfs_entry { 2764 struct attribute attr; 2765 ssize_t (*show)(struct md_rdev *, char *); 2766 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2767 }; 2768 2769 static ssize_t 2770 state_show(struct md_rdev *rdev, char *page) 2771 { 2772 char *sep = ","; 2773 size_t len = 0; 2774 unsigned long flags = READ_ONCE(rdev->flags); 2775 2776 if (test_bit(Faulty, &flags) || 2777 (!test_bit(ExternalBbl, &flags) && 2778 rdev->badblocks.unacked_exist)) 2779 len += sprintf(page+len, "faulty%s", sep); 2780 if (test_bit(In_sync, &flags)) 2781 len += sprintf(page+len, "in_sync%s", sep); 2782 if (test_bit(Journal, &flags)) 2783 len += sprintf(page+len, "journal%s", sep); 2784 if (test_bit(WriteMostly, &flags)) 2785 len += sprintf(page+len, "write_mostly%s", sep); 2786 if (test_bit(Blocked, &flags) || 2787 (rdev->badblocks.unacked_exist 2788 && !test_bit(Faulty, &flags))) 2789 len += sprintf(page+len, "blocked%s", sep); 2790 if (!test_bit(Faulty, &flags) && 2791 !test_bit(Journal, &flags) && 2792 !test_bit(In_sync, &flags)) 2793 len += sprintf(page+len, "spare%s", sep); 2794 if (test_bit(WriteErrorSeen, &flags)) 2795 len += sprintf(page+len, "write_error%s", sep); 2796 if (test_bit(WantReplacement, &flags)) 2797 len += sprintf(page+len, "want_replacement%s", sep); 2798 if (test_bit(Replacement, &flags)) 2799 len += sprintf(page+len, "replacement%s", sep); 2800 if (test_bit(ExternalBbl, &flags)) 2801 len += sprintf(page+len, "external_bbl%s", sep); 2802 if (test_bit(FailFast, &flags)) 2803 len += sprintf(page+len, "failfast%s", sep); 2804 2805 if (len) 2806 len -= strlen(sep); 2807 2808 return len+sprintf(page+len, "\n"); 2809 } 2810 2811 static ssize_t 2812 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2813 { 2814 /* can write 2815 * faulty - simulates an error 2816 * remove - disconnects the device 2817 * writemostly - sets write_mostly 2818 * -writemostly - clears write_mostly 2819 * blocked - sets the Blocked flags 2820 * -blocked - clears the Blocked and possibly simulates an error 2821 * insync - sets Insync providing device isn't active 2822 * -insync - clear Insync for a device with a slot assigned, 2823 * so that it gets rebuilt based on bitmap 2824 * write_error - sets WriteErrorSeen 2825 * -write_error - clears WriteErrorSeen 2826 * {,-}failfast - set/clear FailFast 2827 */ 2828 int err = -EINVAL; 2829 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2830 md_error(rdev->mddev, rdev); 2831 if (test_bit(Faulty, &rdev->flags)) 2832 err = 0; 2833 else 2834 err = -EBUSY; 2835 } else if (cmd_match(buf, "remove")) { 2836 if (rdev->mddev->pers) { 2837 clear_bit(Blocked, &rdev->flags); 2838 remove_and_add_spares(rdev->mddev, rdev); 2839 } 2840 if (rdev->raid_disk >= 0) 2841 err = -EBUSY; 2842 else { 2843 struct mddev *mddev = rdev->mddev; 2844 err = 0; 2845 if (mddev_is_clustered(mddev)) 2846 err = md_cluster_ops->remove_disk(mddev, rdev); 2847 2848 if (err == 0) { 2849 md_kick_rdev_from_array(rdev); 2850 if (mddev->pers) { 2851 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2852 md_wakeup_thread(mddev->thread); 2853 } 2854 md_new_event(mddev); 2855 } 2856 } 2857 } else if (cmd_match(buf, "writemostly")) { 2858 set_bit(WriteMostly, &rdev->flags); 2859 mddev_create_wb_pool(rdev->mddev, rdev, false); 2860 err = 0; 2861 } else if (cmd_match(buf, "-writemostly")) { 2862 mddev_destroy_wb_pool(rdev->mddev, rdev); 2863 clear_bit(WriteMostly, &rdev->flags); 2864 err = 0; 2865 } else if (cmd_match(buf, "blocked")) { 2866 set_bit(Blocked, &rdev->flags); 2867 err = 0; 2868 } else if (cmd_match(buf, "-blocked")) { 2869 if (!test_bit(Faulty, &rdev->flags) && 2870 !test_bit(ExternalBbl, &rdev->flags) && 2871 rdev->badblocks.unacked_exist) { 2872 /* metadata handler doesn't understand badblocks, 2873 * so we need to fail the device 2874 */ 2875 md_error(rdev->mddev, rdev); 2876 } 2877 clear_bit(Blocked, &rdev->flags); 2878 clear_bit(BlockedBadBlocks, &rdev->flags); 2879 wake_up(&rdev->blocked_wait); 2880 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2881 md_wakeup_thread(rdev->mddev->thread); 2882 2883 err = 0; 2884 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2885 set_bit(In_sync, &rdev->flags); 2886 err = 0; 2887 } else if (cmd_match(buf, "failfast")) { 2888 set_bit(FailFast, &rdev->flags); 2889 err = 0; 2890 } else if (cmd_match(buf, "-failfast")) { 2891 clear_bit(FailFast, &rdev->flags); 2892 err = 0; 2893 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2894 !test_bit(Journal, &rdev->flags)) { 2895 if (rdev->mddev->pers == NULL) { 2896 clear_bit(In_sync, &rdev->flags); 2897 rdev->saved_raid_disk = rdev->raid_disk; 2898 rdev->raid_disk = -1; 2899 err = 0; 2900 } 2901 } else if (cmd_match(buf, "write_error")) { 2902 set_bit(WriteErrorSeen, &rdev->flags); 2903 err = 0; 2904 } else if (cmd_match(buf, "-write_error")) { 2905 clear_bit(WriteErrorSeen, &rdev->flags); 2906 err = 0; 2907 } else if (cmd_match(buf, "want_replacement")) { 2908 /* Any non-spare device that is not a replacement can 2909 * become want_replacement at any time, but we then need to 2910 * check if recovery is needed. 2911 */ 2912 if (rdev->raid_disk >= 0 && 2913 !test_bit(Journal, &rdev->flags) && 2914 !test_bit(Replacement, &rdev->flags)) 2915 set_bit(WantReplacement, &rdev->flags); 2916 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2917 md_wakeup_thread(rdev->mddev->thread); 2918 err = 0; 2919 } else if (cmd_match(buf, "-want_replacement")) { 2920 /* Clearing 'want_replacement' is always allowed. 2921 * Once replacements starts it is too late though. 2922 */ 2923 err = 0; 2924 clear_bit(WantReplacement, &rdev->flags); 2925 } else if (cmd_match(buf, "replacement")) { 2926 /* Can only set a device as a replacement when array has not 2927 * yet been started. Once running, replacement is automatic 2928 * from spares, or by assigning 'slot'. 2929 */ 2930 if (rdev->mddev->pers) 2931 err = -EBUSY; 2932 else { 2933 set_bit(Replacement, &rdev->flags); 2934 err = 0; 2935 } 2936 } else if (cmd_match(buf, "-replacement")) { 2937 /* Similarly, can only clear Replacement before start */ 2938 if (rdev->mddev->pers) 2939 err = -EBUSY; 2940 else { 2941 clear_bit(Replacement, &rdev->flags); 2942 err = 0; 2943 } 2944 } else if (cmd_match(buf, "re-add")) { 2945 if (!rdev->mddev->pers) 2946 err = -EINVAL; 2947 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 2948 rdev->saved_raid_disk >= 0) { 2949 /* clear_bit is performed _after_ all the devices 2950 * have their local Faulty bit cleared. If any writes 2951 * happen in the meantime in the local node, they 2952 * will land in the local bitmap, which will be synced 2953 * by this node eventually 2954 */ 2955 if (!mddev_is_clustered(rdev->mddev) || 2956 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2957 clear_bit(Faulty, &rdev->flags); 2958 err = add_bound_rdev(rdev); 2959 } 2960 } else 2961 err = -EBUSY; 2962 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2963 set_bit(ExternalBbl, &rdev->flags); 2964 rdev->badblocks.shift = 0; 2965 err = 0; 2966 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2967 clear_bit(ExternalBbl, &rdev->flags); 2968 err = 0; 2969 } 2970 if (!err) 2971 sysfs_notify_dirent_safe(rdev->sysfs_state); 2972 return err ? err : len; 2973 } 2974 static struct rdev_sysfs_entry rdev_state = 2975 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2976 2977 static ssize_t 2978 errors_show(struct md_rdev *rdev, char *page) 2979 { 2980 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2981 } 2982 2983 static ssize_t 2984 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2985 { 2986 unsigned int n; 2987 int rv; 2988 2989 rv = kstrtouint(buf, 10, &n); 2990 if (rv < 0) 2991 return rv; 2992 atomic_set(&rdev->corrected_errors, n); 2993 return len; 2994 } 2995 static struct rdev_sysfs_entry rdev_errors = 2996 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2997 2998 static ssize_t 2999 slot_show(struct md_rdev *rdev, char *page) 3000 { 3001 if (test_bit(Journal, &rdev->flags)) 3002 return sprintf(page, "journal\n"); 3003 else if (rdev->raid_disk < 0) 3004 return sprintf(page, "none\n"); 3005 else 3006 return sprintf(page, "%d\n", rdev->raid_disk); 3007 } 3008 3009 static ssize_t 3010 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3011 { 3012 int slot; 3013 int err; 3014 3015 if (test_bit(Journal, &rdev->flags)) 3016 return -EBUSY; 3017 if (strncmp(buf, "none", 4)==0) 3018 slot = -1; 3019 else { 3020 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3021 if (err < 0) 3022 return err; 3023 } 3024 if (rdev->mddev->pers && slot == -1) { 3025 /* Setting 'slot' on an active array requires also 3026 * updating the 'rd%d' link, and communicating 3027 * with the personality with ->hot_*_disk. 3028 * For now we only support removing 3029 * failed/spare devices. This normally happens automatically, 3030 * but not when the metadata is externally managed. 3031 */ 3032 if (rdev->raid_disk == -1) 3033 return -EEXIST; 3034 /* personality does all needed checks */ 3035 if (rdev->mddev->pers->hot_remove_disk == NULL) 3036 return -EINVAL; 3037 clear_bit(Blocked, &rdev->flags); 3038 remove_and_add_spares(rdev->mddev, rdev); 3039 if (rdev->raid_disk >= 0) 3040 return -EBUSY; 3041 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3042 md_wakeup_thread(rdev->mddev->thread); 3043 } else if (rdev->mddev->pers) { 3044 /* Activating a spare .. or possibly reactivating 3045 * if we ever get bitmaps working here. 3046 */ 3047 int err; 3048 3049 if (rdev->raid_disk != -1) 3050 return -EBUSY; 3051 3052 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3053 return -EBUSY; 3054 3055 if (rdev->mddev->pers->hot_add_disk == NULL) 3056 return -EINVAL; 3057 3058 if (slot >= rdev->mddev->raid_disks && 3059 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3060 return -ENOSPC; 3061 3062 rdev->raid_disk = slot; 3063 if (test_bit(In_sync, &rdev->flags)) 3064 rdev->saved_raid_disk = slot; 3065 else 3066 rdev->saved_raid_disk = -1; 3067 clear_bit(In_sync, &rdev->flags); 3068 clear_bit(Bitmap_sync, &rdev->flags); 3069 err = rdev->mddev->pers-> 3070 hot_add_disk(rdev->mddev, rdev); 3071 if (err) { 3072 rdev->raid_disk = -1; 3073 return err; 3074 } else 3075 sysfs_notify_dirent_safe(rdev->sysfs_state); 3076 if (sysfs_link_rdev(rdev->mddev, rdev)) 3077 /* failure here is OK */; 3078 /* don't wakeup anyone, leave that to userspace. */ 3079 } else { 3080 if (slot >= rdev->mddev->raid_disks && 3081 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3082 return -ENOSPC; 3083 rdev->raid_disk = slot; 3084 /* assume it is working */ 3085 clear_bit(Faulty, &rdev->flags); 3086 clear_bit(WriteMostly, &rdev->flags); 3087 set_bit(In_sync, &rdev->flags); 3088 sysfs_notify_dirent_safe(rdev->sysfs_state); 3089 } 3090 return len; 3091 } 3092 3093 static struct rdev_sysfs_entry rdev_slot = 3094 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3095 3096 static ssize_t 3097 offset_show(struct md_rdev *rdev, char *page) 3098 { 3099 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3100 } 3101 3102 static ssize_t 3103 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3104 { 3105 unsigned long long offset; 3106 if (kstrtoull(buf, 10, &offset) < 0) 3107 return -EINVAL; 3108 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3109 return -EBUSY; 3110 if (rdev->sectors && rdev->mddev->external) 3111 /* Must set offset before size, so overlap checks 3112 * can be sane */ 3113 return -EBUSY; 3114 rdev->data_offset = offset; 3115 rdev->new_data_offset = offset; 3116 return len; 3117 } 3118 3119 static struct rdev_sysfs_entry rdev_offset = 3120 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3121 3122 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3123 { 3124 return sprintf(page, "%llu\n", 3125 (unsigned long long)rdev->new_data_offset); 3126 } 3127 3128 static ssize_t new_offset_store(struct md_rdev *rdev, 3129 const char *buf, size_t len) 3130 { 3131 unsigned long long new_offset; 3132 struct mddev *mddev = rdev->mddev; 3133 3134 if (kstrtoull(buf, 10, &new_offset) < 0) 3135 return -EINVAL; 3136 3137 if (mddev->sync_thread || 3138 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3139 return -EBUSY; 3140 if (new_offset == rdev->data_offset) 3141 /* reset is always permitted */ 3142 ; 3143 else if (new_offset > rdev->data_offset) { 3144 /* must not push array size beyond rdev_sectors */ 3145 if (new_offset - rdev->data_offset 3146 + mddev->dev_sectors > rdev->sectors) 3147 return -E2BIG; 3148 } 3149 /* Metadata worries about other space details. */ 3150 3151 /* decreasing the offset is inconsistent with a backwards 3152 * reshape. 3153 */ 3154 if (new_offset < rdev->data_offset && 3155 mddev->reshape_backwards) 3156 return -EINVAL; 3157 /* Increasing offset is inconsistent with forwards 3158 * reshape. reshape_direction should be set to 3159 * 'backwards' first. 3160 */ 3161 if (new_offset > rdev->data_offset && 3162 !mddev->reshape_backwards) 3163 return -EINVAL; 3164 3165 if (mddev->pers && mddev->persistent && 3166 !super_types[mddev->major_version] 3167 .allow_new_offset(rdev, new_offset)) 3168 return -E2BIG; 3169 rdev->new_data_offset = new_offset; 3170 if (new_offset > rdev->data_offset) 3171 mddev->reshape_backwards = 1; 3172 else if (new_offset < rdev->data_offset) 3173 mddev->reshape_backwards = 0; 3174 3175 return len; 3176 } 3177 static struct rdev_sysfs_entry rdev_new_offset = 3178 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3179 3180 static ssize_t 3181 rdev_size_show(struct md_rdev *rdev, char *page) 3182 { 3183 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3184 } 3185 3186 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3187 { 3188 /* check if two start/length pairs overlap */ 3189 if (s1+l1 <= s2) 3190 return 0; 3191 if (s2+l2 <= s1) 3192 return 0; 3193 return 1; 3194 } 3195 3196 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3197 { 3198 unsigned long long blocks; 3199 sector_t new; 3200 3201 if (kstrtoull(buf, 10, &blocks) < 0) 3202 return -EINVAL; 3203 3204 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3205 return -EINVAL; /* sector conversion overflow */ 3206 3207 new = blocks * 2; 3208 if (new != blocks * 2) 3209 return -EINVAL; /* unsigned long long to sector_t overflow */ 3210 3211 *sectors = new; 3212 return 0; 3213 } 3214 3215 static ssize_t 3216 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3217 { 3218 struct mddev *my_mddev = rdev->mddev; 3219 sector_t oldsectors = rdev->sectors; 3220 sector_t sectors; 3221 3222 if (test_bit(Journal, &rdev->flags)) 3223 return -EBUSY; 3224 if (strict_blocks_to_sectors(buf, §ors) < 0) 3225 return -EINVAL; 3226 if (rdev->data_offset != rdev->new_data_offset) 3227 return -EINVAL; /* too confusing */ 3228 if (my_mddev->pers && rdev->raid_disk >= 0) { 3229 if (my_mddev->persistent) { 3230 sectors = super_types[my_mddev->major_version]. 3231 rdev_size_change(rdev, sectors); 3232 if (!sectors) 3233 return -EBUSY; 3234 } else if (!sectors) 3235 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3236 rdev->data_offset; 3237 if (!my_mddev->pers->resize) 3238 /* Cannot change size for RAID0 or Linear etc */ 3239 return -EINVAL; 3240 } 3241 if (sectors < my_mddev->dev_sectors) 3242 return -EINVAL; /* component must fit device */ 3243 3244 rdev->sectors = sectors; 3245 if (sectors > oldsectors && my_mddev->external) { 3246 /* Need to check that all other rdevs with the same 3247 * ->bdev do not overlap. 'rcu' is sufficient to walk 3248 * the rdev lists safely. 3249 * This check does not provide a hard guarantee, it 3250 * just helps avoid dangerous mistakes. 3251 */ 3252 struct mddev *mddev; 3253 int overlap = 0; 3254 struct list_head *tmp; 3255 3256 rcu_read_lock(); 3257 for_each_mddev(mddev, tmp) { 3258 struct md_rdev *rdev2; 3259 3260 rdev_for_each(rdev2, mddev) 3261 if (rdev->bdev == rdev2->bdev && 3262 rdev != rdev2 && 3263 overlaps(rdev->data_offset, rdev->sectors, 3264 rdev2->data_offset, 3265 rdev2->sectors)) { 3266 overlap = 1; 3267 break; 3268 } 3269 if (overlap) { 3270 mddev_put(mddev); 3271 break; 3272 } 3273 } 3274 rcu_read_unlock(); 3275 if (overlap) { 3276 /* Someone else could have slipped in a size 3277 * change here, but doing so is just silly. 3278 * We put oldsectors back because we *know* it is 3279 * safe, and trust userspace not to race with 3280 * itself 3281 */ 3282 rdev->sectors = oldsectors; 3283 return -EBUSY; 3284 } 3285 } 3286 return len; 3287 } 3288 3289 static struct rdev_sysfs_entry rdev_size = 3290 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3291 3292 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3293 { 3294 unsigned long long recovery_start = rdev->recovery_offset; 3295 3296 if (test_bit(In_sync, &rdev->flags) || 3297 recovery_start == MaxSector) 3298 return sprintf(page, "none\n"); 3299 3300 return sprintf(page, "%llu\n", recovery_start); 3301 } 3302 3303 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3304 { 3305 unsigned long long recovery_start; 3306 3307 if (cmd_match(buf, "none")) 3308 recovery_start = MaxSector; 3309 else if (kstrtoull(buf, 10, &recovery_start)) 3310 return -EINVAL; 3311 3312 if (rdev->mddev->pers && 3313 rdev->raid_disk >= 0) 3314 return -EBUSY; 3315 3316 rdev->recovery_offset = recovery_start; 3317 if (recovery_start == MaxSector) 3318 set_bit(In_sync, &rdev->flags); 3319 else 3320 clear_bit(In_sync, &rdev->flags); 3321 return len; 3322 } 3323 3324 static struct rdev_sysfs_entry rdev_recovery_start = 3325 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3326 3327 /* sysfs access to bad-blocks list. 3328 * We present two files. 3329 * 'bad-blocks' lists sector numbers and lengths of ranges that 3330 * are recorded as bad. The list is truncated to fit within 3331 * the one-page limit of sysfs. 3332 * Writing "sector length" to this file adds an acknowledged 3333 * bad block list. 3334 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3335 * been acknowledged. Writing to this file adds bad blocks 3336 * without acknowledging them. This is largely for testing. 3337 */ 3338 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3339 { 3340 return badblocks_show(&rdev->badblocks, page, 0); 3341 } 3342 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3343 { 3344 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3345 /* Maybe that ack was all we needed */ 3346 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3347 wake_up(&rdev->blocked_wait); 3348 return rv; 3349 } 3350 static struct rdev_sysfs_entry rdev_bad_blocks = 3351 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3352 3353 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3354 { 3355 return badblocks_show(&rdev->badblocks, page, 1); 3356 } 3357 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3358 { 3359 return badblocks_store(&rdev->badblocks, page, len, 1); 3360 } 3361 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3362 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3363 3364 static ssize_t 3365 ppl_sector_show(struct md_rdev *rdev, char *page) 3366 { 3367 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3368 } 3369 3370 static ssize_t 3371 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3372 { 3373 unsigned long long sector; 3374 3375 if (kstrtoull(buf, 10, §or) < 0) 3376 return -EINVAL; 3377 if (sector != (sector_t)sector) 3378 return -EINVAL; 3379 3380 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3381 rdev->raid_disk >= 0) 3382 return -EBUSY; 3383 3384 if (rdev->mddev->persistent) { 3385 if (rdev->mddev->major_version == 0) 3386 return -EINVAL; 3387 if ((sector > rdev->sb_start && 3388 sector - rdev->sb_start > S16_MAX) || 3389 (sector < rdev->sb_start && 3390 rdev->sb_start - sector > -S16_MIN)) 3391 return -EINVAL; 3392 rdev->ppl.offset = sector - rdev->sb_start; 3393 } else if (!rdev->mddev->external) { 3394 return -EBUSY; 3395 } 3396 rdev->ppl.sector = sector; 3397 return len; 3398 } 3399 3400 static struct rdev_sysfs_entry rdev_ppl_sector = 3401 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3402 3403 static ssize_t 3404 ppl_size_show(struct md_rdev *rdev, char *page) 3405 { 3406 return sprintf(page, "%u\n", rdev->ppl.size); 3407 } 3408 3409 static ssize_t 3410 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3411 { 3412 unsigned int size; 3413 3414 if (kstrtouint(buf, 10, &size) < 0) 3415 return -EINVAL; 3416 3417 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3418 rdev->raid_disk >= 0) 3419 return -EBUSY; 3420 3421 if (rdev->mddev->persistent) { 3422 if (rdev->mddev->major_version == 0) 3423 return -EINVAL; 3424 if (size > U16_MAX) 3425 return -EINVAL; 3426 } else if (!rdev->mddev->external) { 3427 return -EBUSY; 3428 } 3429 rdev->ppl.size = size; 3430 return len; 3431 } 3432 3433 static struct rdev_sysfs_entry rdev_ppl_size = 3434 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3435 3436 static struct attribute *rdev_default_attrs[] = { 3437 &rdev_state.attr, 3438 &rdev_errors.attr, 3439 &rdev_slot.attr, 3440 &rdev_offset.attr, 3441 &rdev_new_offset.attr, 3442 &rdev_size.attr, 3443 &rdev_recovery_start.attr, 3444 &rdev_bad_blocks.attr, 3445 &rdev_unack_bad_blocks.attr, 3446 &rdev_ppl_sector.attr, 3447 &rdev_ppl_size.attr, 3448 NULL, 3449 }; 3450 static ssize_t 3451 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3452 { 3453 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3454 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3455 3456 if (!entry->show) 3457 return -EIO; 3458 if (!rdev->mddev) 3459 return -ENODEV; 3460 return entry->show(rdev, page); 3461 } 3462 3463 static ssize_t 3464 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3465 const char *page, size_t length) 3466 { 3467 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3468 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3469 ssize_t rv; 3470 struct mddev *mddev = rdev->mddev; 3471 3472 if (!entry->store) 3473 return -EIO; 3474 if (!capable(CAP_SYS_ADMIN)) 3475 return -EACCES; 3476 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3477 if (!rv) { 3478 if (rdev->mddev == NULL) 3479 rv = -ENODEV; 3480 else 3481 rv = entry->store(rdev, page, length); 3482 mddev_unlock(mddev); 3483 } 3484 return rv; 3485 } 3486 3487 static void rdev_free(struct kobject *ko) 3488 { 3489 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3490 kfree(rdev); 3491 } 3492 static const struct sysfs_ops rdev_sysfs_ops = { 3493 .show = rdev_attr_show, 3494 .store = rdev_attr_store, 3495 }; 3496 static struct kobj_type rdev_ktype = { 3497 .release = rdev_free, 3498 .sysfs_ops = &rdev_sysfs_ops, 3499 .default_attrs = rdev_default_attrs, 3500 }; 3501 3502 int md_rdev_init(struct md_rdev *rdev) 3503 { 3504 rdev->desc_nr = -1; 3505 rdev->saved_raid_disk = -1; 3506 rdev->raid_disk = -1; 3507 rdev->flags = 0; 3508 rdev->data_offset = 0; 3509 rdev->new_data_offset = 0; 3510 rdev->sb_events = 0; 3511 rdev->last_read_error = 0; 3512 rdev->sb_loaded = 0; 3513 rdev->bb_page = NULL; 3514 atomic_set(&rdev->nr_pending, 0); 3515 atomic_set(&rdev->read_errors, 0); 3516 atomic_set(&rdev->corrected_errors, 0); 3517 3518 INIT_LIST_HEAD(&rdev->same_set); 3519 init_waitqueue_head(&rdev->blocked_wait); 3520 3521 /* Add space to store bad block list. 3522 * This reserves the space even on arrays where it cannot 3523 * be used - I wonder if that matters 3524 */ 3525 return badblocks_init(&rdev->badblocks, 0); 3526 } 3527 EXPORT_SYMBOL_GPL(md_rdev_init); 3528 /* 3529 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3530 * 3531 * mark the device faulty if: 3532 * 3533 * - the device is nonexistent (zero size) 3534 * - the device has no valid superblock 3535 * 3536 * a faulty rdev _never_ has rdev->sb set. 3537 */ 3538 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3539 { 3540 char b[BDEVNAME_SIZE]; 3541 int err; 3542 struct md_rdev *rdev; 3543 sector_t size; 3544 3545 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3546 if (!rdev) 3547 return ERR_PTR(-ENOMEM); 3548 3549 err = md_rdev_init(rdev); 3550 if (err) 3551 goto abort_free; 3552 err = alloc_disk_sb(rdev); 3553 if (err) 3554 goto abort_free; 3555 3556 err = lock_rdev(rdev, newdev, super_format == -2); 3557 if (err) 3558 goto abort_free; 3559 3560 kobject_init(&rdev->kobj, &rdev_ktype); 3561 3562 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3563 if (!size) { 3564 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3565 bdevname(rdev->bdev,b)); 3566 err = -EINVAL; 3567 goto abort_free; 3568 } 3569 3570 if (super_format >= 0) { 3571 err = super_types[super_format]. 3572 load_super(rdev, NULL, super_minor); 3573 if (err == -EINVAL) { 3574 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3575 bdevname(rdev->bdev,b), 3576 super_format, super_minor); 3577 goto abort_free; 3578 } 3579 if (err < 0) { 3580 pr_warn("md: could not read %s's sb, not importing!\n", 3581 bdevname(rdev->bdev,b)); 3582 goto abort_free; 3583 } 3584 } 3585 3586 return rdev; 3587 3588 abort_free: 3589 if (rdev->bdev) 3590 unlock_rdev(rdev); 3591 md_rdev_clear(rdev); 3592 kfree(rdev); 3593 return ERR_PTR(err); 3594 } 3595 3596 /* 3597 * Check a full RAID array for plausibility 3598 */ 3599 3600 static void analyze_sbs(struct mddev *mddev) 3601 { 3602 int i; 3603 struct md_rdev *rdev, *freshest, *tmp; 3604 char b[BDEVNAME_SIZE]; 3605 3606 freshest = NULL; 3607 rdev_for_each_safe(rdev, tmp, mddev) 3608 switch (super_types[mddev->major_version]. 3609 load_super(rdev, freshest, mddev->minor_version)) { 3610 case 1: 3611 freshest = rdev; 3612 break; 3613 case 0: 3614 break; 3615 default: 3616 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3617 bdevname(rdev->bdev,b)); 3618 md_kick_rdev_from_array(rdev); 3619 } 3620 3621 super_types[mddev->major_version]. 3622 validate_super(mddev, freshest); 3623 3624 i = 0; 3625 rdev_for_each_safe(rdev, tmp, mddev) { 3626 if (mddev->max_disks && 3627 (rdev->desc_nr >= mddev->max_disks || 3628 i > mddev->max_disks)) { 3629 pr_warn("md: %s: %s: only %d devices permitted\n", 3630 mdname(mddev), bdevname(rdev->bdev, b), 3631 mddev->max_disks); 3632 md_kick_rdev_from_array(rdev); 3633 continue; 3634 } 3635 if (rdev != freshest) { 3636 if (super_types[mddev->major_version]. 3637 validate_super(mddev, rdev)) { 3638 pr_warn("md: kicking non-fresh %s from array!\n", 3639 bdevname(rdev->bdev,b)); 3640 md_kick_rdev_from_array(rdev); 3641 continue; 3642 } 3643 } 3644 if (mddev->level == LEVEL_MULTIPATH) { 3645 rdev->desc_nr = i++; 3646 rdev->raid_disk = rdev->desc_nr; 3647 set_bit(In_sync, &rdev->flags); 3648 } else if (rdev->raid_disk >= 3649 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3650 !test_bit(Journal, &rdev->flags)) { 3651 rdev->raid_disk = -1; 3652 clear_bit(In_sync, &rdev->flags); 3653 } 3654 } 3655 } 3656 3657 /* Read a fixed-point number. 3658 * Numbers in sysfs attributes should be in "standard" units where 3659 * possible, so time should be in seconds. 3660 * However we internally use a a much smaller unit such as 3661 * milliseconds or jiffies. 3662 * This function takes a decimal number with a possible fractional 3663 * component, and produces an integer which is the result of 3664 * multiplying that number by 10^'scale'. 3665 * all without any floating-point arithmetic. 3666 */ 3667 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3668 { 3669 unsigned long result = 0; 3670 long decimals = -1; 3671 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3672 if (*cp == '.') 3673 decimals = 0; 3674 else if (decimals < scale) { 3675 unsigned int value; 3676 value = *cp - '0'; 3677 result = result * 10 + value; 3678 if (decimals >= 0) 3679 decimals++; 3680 } 3681 cp++; 3682 } 3683 if (*cp == '\n') 3684 cp++; 3685 if (*cp) 3686 return -EINVAL; 3687 if (decimals < 0) 3688 decimals = 0; 3689 *res = result * int_pow(10, scale - decimals); 3690 return 0; 3691 } 3692 3693 static ssize_t 3694 safe_delay_show(struct mddev *mddev, char *page) 3695 { 3696 int msec = (mddev->safemode_delay*1000)/HZ; 3697 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3698 } 3699 static ssize_t 3700 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3701 { 3702 unsigned long msec; 3703 3704 if (mddev_is_clustered(mddev)) { 3705 pr_warn("md: Safemode is disabled for clustered mode\n"); 3706 return -EINVAL; 3707 } 3708 3709 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3710 return -EINVAL; 3711 if (msec == 0) 3712 mddev->safemode_delay = 0; 3713 else { 3714 unsigned long old_delay = mddev->safemode_delay; 3715 unsigned long new_delay = (msec*HZ)/1000; 3716 3717 if (new_delay == 0) 3718 new_delay = 1; 3719 mddev->safemode_delay = new_delay; 3720 if (new_delay < old_delay || old_delay == 0) 3721 mod_timer(&mddev->safemode_timer, jiffies+1); 3722 } 3723 return len; 3724 } 3725 static struct md_sysfs_entry md_safe_delay = 3726 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3727 3728 static ssize_t 3729 level_show(struct mddev *mddev, char *page) 3730 { 3731 struct md_personality *p; 3732 int ret; 3733 spin_lock(&mddev->lock); 3734 p = mddev->pers; 3735 if (p) 3736 ret = sprintf(page, "%s\n", p->name); 3737 else if (mddev->clevel[0]) 3738 ret = sprintf(page, "%s\n", mddev->clevel); 3739 else if (mddev->level != LEVEL_NONE) 3740 ret = sprintf(page, "%d\n", mddev->level); 3741 else 3742 ret = 0; 3743 spin_unlock(&mddev->lock); 3744 return ret; 3745 } 3746 3747 static ssize_t 3748 level_store(struct mddev *mddev, const char *buf, size_t len) 3749 { 3750 char clevel[16]; 3751 ssize_t rv; 3752 size_t slen = len; 3753 struct md_personality *pers, *oldpers; 3754 long level; 3755 void *priv, *oldpriv; 3756 struct md_rdev *rdev; 3757 3758 if (slen == 0 || slen >= sizeof(clevel)) 3759 return -EINVAL; 3760 3761 rv = mddev_lock(mddev); 3762 if (rv) 3763 return rv; 3764 3765 if (mddev->pers == NULL) { 3766 strncpy(mddev->clevel, buf, slen); 3767 if (mddev->clevel[slen-1] == '\n') 3768 slen--; 3769 mddev->clevel[slen] = 0; 3770 mddev->level = LEVEL_NONE; 3771 rv = len; 3772 goto out_unlock; 3773 } 3774 rv = -EROFS; 3775 if (mddev->ro) 3776 goto out_unlock; 3777 3778 /* request to change the personality. Need to ensure: 3779 * - array is not engaged in resync/recovery/reshape 3780 * - old personality can be suspended 3781 * - new personality will access other array. 3782 */ 3783 3784 rv = -EBUSY; 3785 if (mddev->sync_thread || 3786 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3787 mddev->reshape_position != MaxSector || 3788 mddev->sysfs_active) 3789 goto out_unlock; 3790 3791 rv = -EINVAL; 3792 if (!mddev->pers->quiesce) { 3793 pr_warn("md: %s: %s does not support online personality change\n", 3794 mdname(mddev), mddev->pers->name); 3795 goto out_unlock; 3796 } 3797 3798 /* Now find the new personality */ 3799 strncpy(clevel, buf, slen); 3800 if (clevel[slen-1] == '\n') 3801 slen--; 3802 clevel[slen] = 0; 3803 if (kstrtol(clevel, 10, &level)) 3804 level = LEVEL_NONE; 3805 3806 if (request_module("md-%s", clevel) != 0) 3807 request_module("md-level-%s", clevel); 3808 spin_lock(&pers_lock); 3809 pers = find_pers(level, clevel); 3810 if (!pers || !try_module_get(pers->owner)) { 3811 spin_unlock(&pers_lock); 3812 pr_warn("md: personality %s not loaded\n", clevel); 3813 rv = -EINVAL; 3814 goto out_unlock; 3815 } 3816 spin_unlock(&pers_lock); 3817 3818 if (pers == mddev->pers) { 3819 /* Nothing to do! */ 3820 module_put(pers->owner); 3821 rv = len; 3822 goto out_unlock; 3823 } 3824 if (!pers->takeover) { 3825 module_put(pers->owner); 3826 pr_warn("md: %s: %s does not support personality takeover\n", 3827 mdname(mddev), clevel); 3828 rv = -EINVAL; 3829 goto out_unlock; 3830 } 3831 3832 rdev_for_each(rdev, mddev) 3833 rdev->new_raid_disk = rdev->raid_disk; 3834 3835 /* ->takeover must set new_* and/or delta_disks 3836 * if it succeeds, and may set them when it fails. 3837 */ 3838 priv = pers->takeover(mddev); 3839 if (IS_ERR(priv)) { 3840 mddev->new_level = mddev->level; 3841 mddev->new_layout = mddev->layout; 3842 mddev->new_chunk_sectors = mddev->chunk_sectors; 3843 mddev->raid_disks -= mddev->delta_disks; 3844 mddev->delta_disks = 0; 3845 mddev->reshape_backwards = 0; 3846 module_put(pers->owner); 3847 pr_warn("md: %s: %s would not accept array\n", 3848 mdname(mddev), clevel); 3849 rv = PTR_ERR(priv); 3850 goto out_unlock; 3851 } 3852 3853 /* Looks like we have a winner */ 3854 mddev_suspend(mddev); 3855 mddev_detach(mddev); 3856 3857 spin_lock(&mddev->lock); 3858 oldpers = mddev->pers; 3859 oldpriv = mddev->private; 3860 mddev->pers = pers; 3861 mddev->private = priv; 3862 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3863 mddev->level = mddev->new_level; 3864 mddev->layout = mddev->new_layout; 3865 mddev->chunk_sectors = mddev->new_chunk_sectors; 3866 mddev->delta_disks = 0; 3867 mddev->reshape_backwards = 0; 3868 mddev->degraded = 0; 3869 spin_unlock(&mddev->lock); 3870 3871 if (oldpers->sync_request == NULL && 3872 mddev->external) { 3873 /* We are converting from a no-redundancy array 3874 * to a redundancy array and metadata is managed 3875 * externally so we need to be sure that writes 3876 * won't block due to a need to transition 3877 * clean->dirty 3878 * until external management is started. 3879 */ 3880 mddev->in_sync = 0; 3881 mddev->safemode_delay = 0; 3882 mddev->safemode = 0; 3883 } 3884 3885 oldpers->free(mddev, oldpriv); 3886 3887 if (oldpers->sync_request == NULL && 3888 pers->sync_request != NULL) { 3889 /* need to add the md_redundancy_group */ 3890 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3891 pr_warn("md: cannot register extra attributes for %s\n", 3892 mdname(mddev)); 3893 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3894 } 3895 if (oldpers->sync_request != NULL && 3896 pers->sync_request == NULL) { 3897 /* need to remove the md_redundancy_group */ 3898 if (mddev->to_remove == NULL) 3899 mddev->to_remove = &md_redundancy_group; 3900 } 3901 3902 module_put(oldpers->owner); 3903 3904 rdev_for_each(rdev, mddev) { 3905 if (rdev->raid_disk < 0) 3906 continue; 3907 if (rdev->new_raid_disk >= mddev->raid_disks) 3908 rdev->new_raid_disk = -1; 3909 if (rdev->new_raid_disk == rdev->raid_disk) 3910 continue; 3911 sysfs_unlink_rdev(mddev, rdev); 3912 } 3913 rdev_for_each(rdev, mddev) { 3914 if (rdev->raid_disk < 0) 3915 continue; 3916 if (rdev->new_raid_disk == rdev->raid_disk) 3917 continue; 3918 rdev->raid_disk = rdev->new_raid_disk; 3919 if (rdev->raid_disk < 0) 3920 clear_bit(In_sync, &rdev->flags); 3921 else { 3922 if (sysfs_link_rdev(mddev, rdev)) 3923 pr_warn("md: cannot register rd%d for %s after level change\n", 3924 rdev->raid_disk, mdname(mddev)); 3925 } 3926 } 3927 3928 if (pers->sync_request == NULL) { 3929 /* this is now an array without redundancy, so 3930 * it must always be in_sync 3931 */ 3932 mddev->in_sync = 1; 3933 del_timer_sync(&mddev->safemode_timer); 3934 } 3935 blk_set_stacking_limits(&mddev->queue->limits); 3936 pers->run(mddev); 3937 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3938 mddev_resume(mddev); 3939 if (!mddev->thread) 3940 md_update_sb(mddev, 1); 3941 sysfs_notify(&mddev->kobj, NULL, "level"); 3942 md_new_event(mddev); 3943 rv = len; 3944 out_unlock: 3945 mddev_unlock(mddev); 3946 return rv; 3947 } 3948 3949 static struct md_sysfs_entry md_level = 3950 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3951 3952 static ssize_t 3953 layout_show(struct mddev *mddev, char *page) 3954 { 3955 /* just a number, not meaningful for all levels */ 3956 if (mddev->reshape_position != MaxSector && 3957 mddev->layout != mddev->new_layout) 3958 return sprintf(page, "%d (%d)\n", 3959 mddev->new_layout, mddev->layout); 3960 return sprintf(page, "%d\n", mddev->layout); 3961 } 3962 3963 static ssize_t 3964 layout_store(struct mddev *mddev, const char *buf, size_t len) 3965 { 3966 unsigned int n; 3967 int err; 3968 3969 err = kstrtouint(buf, 10, &n); 3970 if (err < 0) 3971 return err; 3972 err = mddev_lock(mddev); 3973 if (err) 3974 return err; 3975 3976 if (mddev->pers) { 3977 if (mddev->pers->check_reshape == NULL) 3978 err = -EBUSY; 3979 else if (mddev->ro) 3980 err = -EROFS; 3981 else { 3982 mddev->new_layout = n; 3983 err = mddev->pers->check_reshape(mddev); 3984 if (err) 3985 mddev->new_layout = mddev->layout; 3986 } 3987 } else { 3988 mddev->new_layout = n; 3989 if (mddev->reshape_position == MaxSector) 3990 mddev->layout = n; 3991 } 3992 mddev_unlock(mddev); 3993 return err ?: len; 3994 } 3995 static struct md_sysfs_entry md_layout = 3996 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3997 3998 static ssize_t 3999 raid_disks_show(struct mddev *mddev, char *page) 4000 { 4001 if (mddev->raid_disks == 0) 4002 return 0; 4003 if (mddev->reshape_position != MaxSector && 4004 mddev->delta_disks != 0) 4005 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4006 mddev->raid_disks - mddev->delta_disks); 4007 return sprintf(page, "%d\n", mddev->raid_disks); 4008 } 4009 4010 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4011 4012 static ssize_t 4013 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4014 { 4015 unsigned int n; 4016 int err; 4017 4018 err = kstrtouint(buf, 10, &n); 4019 if (err < 0) 4020 return err; 4021 4022 err = mddev_lock(mddev); 4023 if (err) 4024 return err; 4025 if (mddev->pers) 4026 err = update_raid_disks(mddev, n); 4027 else if (mddev->reshape_position != MaxSector) { 4028 struct md_rdev *rdev; 4029 int olddisks = mddev->raid_disks - mddev->delta_disks; 4030 4031 err = -EINVAL; 4032 rdev_for_each(rdev, mddev) { 4033 if (olddisks < n && 4034 rdev->data_offset < rdev->new_data_offset) 4035 goto out_unlock; 4036 if (olddisks > n && 4037 rdev->data_offset > rdev->new_data_offset) 4038 goto out_unlock; 4039 } 4040 err = 0; 4041 mddev->delta_disks = n - olddisks; 4042 mddev->raid_disks = n; 4043 mddev->reshape_backwards = (mddev->delta_disks < 0); 4044 } else 4045 mddev->raid_disks = n; 4046 out_unlock: 4047 mddev_unlock(mddev); 4048 return err ? err : len; 4049 } 4050 static struct md_sysfs_entry md_raid_disks = 4051 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4052 4053 static ssize_t 4054 chunk_size_show(struct mddev *mddev, char *page) 4055 { 4056 if (mddev->reshape_position != MaxSector && 4057 mddev->chunk_sectors != mddev->new_chunk_sectors) 4058 return sprintf(page, "%d (%d)\n", 4059 mddev->new_chunk_sectors << 9, 4060 mddev->chunk_sectors << 9); 4061 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4062 } 4063 4064 static ssize_t 4065 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4066 { 4067 unsigned long n; 4068 int err; 4069 4070 err = kstrtoul(buf, 10, &n); 4071 if (err < 0) 4072 return err; 4073 4074 err = mddev_lock(mddev); 4075 if (err) 4076 return err; 4077 if (mddev->pers) { 4078 if (mddev->pers->check_reshape == NULL) 4079 err = -EBUSY; 4080 else if (mddev->ro) 4081 err = -EROFS; 4082 else { 4083 mddev->new_chunk_sectors = n >> 9; 4084 err = mddev->pers->check_reshape(mddev); 4085 if (err) 4086 mddev->new_chunk_sectors = mddev->chunk_sectors; 4087 } 4088 } else { 4089 mddev->new_chunk_sectors = n >> 9; 4090 if (mddev->reshape_position == MaxSector) 4091 mddev->chunk_sectors = n >> 9; 4092 } 4093 mddev_unlock(mddev); 4094 return err ?: len; 4095 } 4096 static struct md_sysfs_entry md_chunk_size = 4097 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4098 4099 static ssize_t 4100 resync_start_show(struct mddev *mddev, char *page) 4101 { 4102 if (mddev->recovery_cp == MaxSector) 4103 return sprintf(page, "none\n"); 4104 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4105 } 4106 4107 static ssize_t 4108 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4109 { 4110 unsigned long long n; 4111 int err; 4112 4113 if (cmd_match(buf, "none")) 4114 n = MaxSector; 4115 else { 4116 err = kstrtoull(buf, 10, &n); 4117 if (err < 0) 4118 return err; 4119 if (n != (sector_t)n) 4120 return -EINVAL; 4121 } 4122 4123 err = mddev_lock(mddev); 4124 if (err) 4125 return err; 4126 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4127 err = -EBUSY; 4128 4129 if (!err) { 4130 mddev->recovery_cp = n; 4131 if (mddev->pers) 4132 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4133 } 4134 mddev_unlock(mddev); 4135 return err ?: len; 4136 } 4137 static struct md_sysfs_entry md_resync_start = 4138 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4139 resync_start_show, resync_start_store); 4140 4141 /* 4142 * The array state can be: 4143 * 4144 * clear 4145 * No devices, no size, no level 4146 * Equivalent to STOP_ARRAY ioctl 4147 * inactive 4148 * May have some settings, but array is not active 4149 * all IO results in error 4150 * When written, doesn't tear down array, but just stops it 4151 * suspended (not supported yet) 4152 * All IO requests will block. The array can be reconfigured. 4153 * Writing this, if accepted, will block until array is quiescent 4154 * readonly 4155 * no resync can happen. no superblocks get written. 4156 * write requests fail 4157 * read-auto 4158 * like readonly, but behaves like 'clean' on a write request. 4159 * 4160 * clean - no pending writes, but otherwise active. 4161 * When written to inactive array, starts without resync 4162 * If a write request arrives then 4163 * if metadata is known, mark 'dirty' and switch to 'active'. 4164 * if not known, block and switch to write-pending 4165 * If written to an active array that has pending writes, then fails. 4166 * active 4167 * fully active: IO and resync can be happening. 4168 * When written to inactive array, starts with resync 4169 * 4170 * write-pending 4171 * clean, but writes are blocked waiting for 'active' to be written. 4172 * 4173 * active-idle 4174 * like active, but no writes have been seen for a while (100msec). 4175 * 4176 * broken 4177 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4178 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4179 * when a member is gone, so this state will at least alert the 4180 * user that something is wrong. 4181 */ 4182 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4183 write_pending, active_idle, broken, bad_word}; 4184 static char *array_states[] = { 4185 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4186 "write-pending", "active-idle", "broken", NULL }; 4187 4188 static int match_word(const char *word, char **list) 4189 { 4190 int n; 4191 for (n=0; list[n]; n++) 4192 if (cmd_match(word, list[n])) 4193 break; 4194 return n; 4195 } 4196 4197 static ssize_t 4198 array_state_show(struct mddev *mddev, char *page) 4199 { 4200 enum array_state st = inactive; 4201 4202 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4203 switch(mddev->ro) { 4204 case 1: 4205 st = readonly; 4206 break; 4207 case 2: 4208 st = read_auto; 4209 break; 4210 case 0: 4211 spin_lock(&mddev->lock); 4212 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4213 st = write_pending; 4214 else if (mddev->in_sync) 4215 st = clean; 4216 else if (mddev->safemode) 4217 st = active_idle; 4218 else 4219 st = active; 4220 spin_unlock(&mddev->lock); 4221 } 4222 4223 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4224 st = broken; 4225 } else { 4226 if (list_empty(&mddev->disks) && 4227 mddev->raid_disks == 0 && 4228 mddev->dev_sectors == 0) 4229 st = clear; 4230 else 4231 st = inactive; 4232 } 4233 return sprintf(page, "%s\n", array_states[st]); 4234 } 4235 4236 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4237 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4238 static int do_md_run(struct mddev *mddev); 4239 static int restart_array(struct mddev *mddev); 4240 4241 static ssize_t 4242 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4243 { 4244 int err = 0; 4245 enum array_state st = match_word(buf, array_states); 4246 4247 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4248 /* don't take reconfig_mutex when toggling between 4249 * clean and active 4250 */ 4251 spin_lock(&mddev->lock); 4252 if (st == active) { 4253 restart_array(mddev); 4254 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4255 md_wakeup_thread(mddev->thread); 4256 wake_up(&mddev->sb_wait); 4257 } else /* st == clean */ { 4258 restart_array(mddev); 4259 if (!set_in_sync(mddev)) 4260 err = -EBUSY; 4261 } 4262 if (!err) 4263 sysfs_notify_dirent_safe(mddev->sysfs_state); 4264 spin_unlock(&mddev->lock); 4265 return err ?: len; 4266 } 4267 err = mddev_lock(mddev); 4268 if (err) 4269 return err; 4270 err = -EINVAL; 4271 switch(st) { 4272 case bad_word: 4273 break; 4274 case clear: 4275 /* stopping an active array */ 4276 err = do_md_stop(mddev, 0, NULL); 4277 break; 4278 case inactive: 4279 /* stopping an active array */ 4280 if (mddev->pers) 4281 err = do_md_stop(mddev, 2, NULL); 4282 else 4283 err = 0; /* already inactive */ 4284 break; 4285 case suspended: 4286 break; /* not supported yet */ 4287 case readonly: 4288 if (mddev->pers) 4289 err = md_set_readonly(mddev, NULL); 4290 else { 4291 mddev->ro = 1; 4292 set_disk_ro(mddev->gendisk, 1); 4293 err = do_md_run(mddev); 4294 } 4295 break; 4296 case read_auto: 4297 if (mddev->pers) { 4298 if (mddev->ro == 0) 4299 err = md_set_readonly(mddev, NULL); 4300 else if (mddev->ro == 1) 4301 err = restart_array(mddev); 4302 if (err == 0) { 4303 mddev->ro = 2; 4304 set_disk_ro(mddev->gendisk, 0); 4305 } 4306 } else { 4307 mddev->ro = 2; 4308 err = do_md_run(mddev); 4309 } 4310 break; 4311 case clean: 4312 if (mddev->pers) { 4313 err = restart_array(mddev); 4314 if (err) 4315 break; 4316 spin_lock(&mddev->lock); 4317 if (!set_in_sync(mddev)) 4318 err = -EBUSY; 4319 spin_unlock(&mddev->lock); 4320 } else 4321 err = -EINVAL; 4322 break; 4323 case active: 4324 if (mddev->pers) { 4325 err = restart_array(mddev); 4326 if (err) 4327 break; 4328 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4329 wake_up(&mddev->sb_wait); 4330 err = 0; 4331 } else { 4332 mddev->ro = 0; 4333 set_disk_ro(mddev->gendisk, 0); 4334 err = do_md_run(mddev); 4335 } 4336 break; 4337 case write_pending: 4338 case active_idle: 4339 case broken: 4340 /* these cannot be set */ 4341 break; 4342 } 4343 4344 if (!err) { 4345 if (mddev->hold_active == UNTIL_IOCTL) 4346 mddev->hold_active = 0; 4347 sysfs_notify_dirent_safe(mddev->sysfs_state); 4348 } 4349 mddev_unlock(mddev); 4350 return err ?: len; 4351 } 4352 static struct md_sysfs_entry md_array_state = 4353 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4354 4355 static ssize_t 4356 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4357 return sprintf(page, "%d\n", 4358 atomic_read(&mddev->max_corr_read_errors)); 4359 } 4360 4361 static ssize_t 4362 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4363 { 4364 unsigned int n; 4365 int rv; 4366 4367 rv = kstrtouint(buf, 10, &n); 4368 if (rv < 0) 4369 return rv; 4370 atomic_set(&mddev->max_corr_read_errors, n); 4371 return len; 4372 } 4373 4374 static struct md_sysfs_entry max_corr_read_errors = 4375 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4376 max_corrected_read_errors_store); 4377 4378 static ssize_t 4379 null_show(struct mddev *mddev, char *page) 4380 { 4381 return -EINVAL; 4382 } 4383 4384 static ssize_t 4385 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4386 { 4387 /* buf must be %d:%d\n? giving major and minor numbers */ 4388 /* The new device is added to the array. 4389 * If the array has a persistent superblock, we read the 4390 * superblock to initialise info and check validity. 4391 * Otherwise, only checking done is that in bind_rdev_to_array, 4392 * which mainly checks size. 4393 */ 4394 char *e; 4395 int major = simple_strtoul(buf, &e, 10); 4396 int minor; 4397 dev_t dev; 4398 struct md_rdev *rdev; 4399 int err; 4400 4401 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4402 return -EINVAL; 4403 minor = simple_strtoul(e+1, &e, 10); 4404 if (*e && *e != '\n') 4405 return -EINVAL; 4406 dev = MKDEV(major, minor); 4407 if (major != MAJOR(dev) || 4408 minor != MINOR(dev)) 4409 return -EOVERFLOW; 4410 4411 flush_workqueue(md_misc_wq); 4412 4413 err = mddev_lock(mddev); 4414 if (err) 4415 return err; 4416 if (mddev->persistent) { 4417 rdev = md_import_device(dev, mddev->major_version, 4418 mddev->minor_version); 4419 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4420 struct md_rdev *rdev0 4421 = list_entry(mddev->disks.next, 4422 struct md_rdev, same_set); 4423 err = super_types[mddev->major_version] 4424 .load_super(rdev, rdev0, mddev->minor_version); 4425 if (err < 0) 4426 goto out; 4427 } 4428 } else if (mddev->external) 4429 rdev = md_import_device(dev, -2, -1); 4430 else 4431 rdev = md_import_device(dev, -1, -1); 4432 4433 if (IS_ERR(rdev)) { 4434 mddev_unlock(mddev); 4435 return PTR_ERR(rdev); 4436 } 4437 err = bind_rdev_to_array(rdev, mddev); 4438 out: 4439 if (err) 4440 export_rdev(rdev); 4441 mddev_unlock(mddev); 4442 if (!err) 4443 md_new_event(mddev); 4444 return err ? err : len; 4445 } 4446 4447 static struct md_sysfs_entry md_new_device = 4448 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4449 4450 static ssize_t 4451 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4452 { 4453 char *end; 4454 unsigned long chunk, end_chunk; 4455 int err; 4456 4457 err = mddev_lock(mddev); 4458 if (err) 4459 return err; 4460 if (!mddev->bitmap) 4461 goto out; 4462 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4463 while (*buf) { 4464 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4465 if (buf == end) break; 4466 if (*end == '-') { /* range */ 4467 buf = end + 1; 4468 end_chunk = simple_strtoul(buf, &end, 0); 4469 if (buf == end) break; 4470 } 4471 if (*end && !isspace(*end)) break; 4472 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4473 buf = skip_spaces(end); 4474 } 4475 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4476 out: 4477 mddev_unlock(mddev); 4478 return len; 4479 } 4480 4481 static struct md_sysfs_entry md_bitmap = 4482 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4483 4484 static ssize_t 4485 size_show(struct mddev *mddev, char *page) 4486 { 4487 return sprintf(page, "%llu\n", 4488 (unsigned long long)mddev->dev_sectors / 2); 4489 } 4490 4491 static int update_size(struct mddev *mddev, sector_t num_sectors); 4492 4493 static ssize_t 4494 size_store(struct mddev *mddev, const char *buf, size_t len) 4495 { 4496 /* If array is inactive, we can reduce the component size, but 4497 * not increase it (except from 0). 4498 * If array is active, we can try an on-line resize 4499 */ 4500 sector_t sectors; 4501 int err = strict_blocks_to_sectors(buf, §ors); 4502 4503 if (err < 0) 4504 return err; 4505 err = mddev_lock(mddev); 4506 if (err) 4507 return err; 4508 if (mddev->pers) { 4509 err = update_size(mddev, sectors); 4510 if (err == 0) 4511 md_update_sb(mddev, 1); 4512 } else { 4513 if (mddev->dev_sectors == 0 || 4514 mddev->dev_sectors > sectors) 4515 mddev->dev_sectors = sectors; 4516 else 4517 err = -ENOSPC; 4518 } 4519 mddev_unlock(mddev); 4520 return err ? err : len; 4521 } 4522 4523 static struct md_sysfs_entry md_size = 4524 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4525 4526 /* Metadata version. 4527 * This is one of 4528 * 'none' for arrays with no metadata (good luck...) 4529 * 'external' for arrays with externally managed metadata, 4530 * or N.M for internally known formats 4531 */ 4532 static ssize_t 4533 metadata_show(struct mddev *mddev, char *page) 4534 { 4535 if (mddev->persistent) 4536 return sprintf(page, "%d.%d\n", 4537 mddev->major_version, mddev->minor_version); 4538 else if (mddev->external) 4539 return sprintf(page, "external:%s\n", mddev->metadata_type); 4540 else 4541 return sprintf(page, "none\n"); 4542 } 4543 4544 static ssize_t 4545 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4546 { 4547 int major, minor; 4548 char *e; 4549 int err; 4550 /* Changing the details of 'external' metadata is 4551 * always permitted. Otherwise there must be 4552 * no devices attached to the array. 4553 */ 4554 4555 err = mddev_lock(mddev); 4556 if (err) 4557 return err; 4558 err = -EBUSY; 4559 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4560 ; 4561 else if (!list_empty(&mddev->disks)) 4562 goto out_unlock; 4563 4564 err = 0; 4565 if (cmd_match(buf, "none")) { 4566 mddev->persistent = 0; 4567 mddev->external = 0; 4568 mddev->major_version = 0; 4569 mddev->minor_version = 90; 4570 goto out_unlock; 4571 } 4572 if (strncmp(buf, "external:", 9) == 0) { 4573 size_t namelen = len-9; 4574 if (namelen >= sizeof(mddev->metadata_type)) 4575 namelen = sizeof(mddev->metadata_type)-1; 4576 strncpy(mddev->metadata_type, buf+9, namelen); 4577 mddev->metadata_type[namelen] = 0; 4578 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4579 mddev->metadata_type[--namelen] = 0; 4580 mddev->persistent = 0; 4581 mddev->external = 1; 4582 mddev->major_version = 0; 4583 mddev->minor_version = 90; 4584 goto out_unlock; 4585 } 4586 major = simple_strtoul(buf, &e, 10); 4587 err = -EINVAL; 4588 if (e==buf || *e != '.') 4589 goto out_unlock; 4590 buf = e+1; 4591 minor = simple_strtoul(buf, &e, 10); 4592 if (e==buf || (*e && *e != '\n') ) 4593 goto out_unlock; 4594 err = -ENOENT; 4595 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4596 goto out_unlock; 4597 mddev->major_version = major; 4598 mddev->minor_version = minor; 4599 mddev->persistent = 1; 4600 mddev->external = 0; 4601 err = 0; 4602 out_unlock: 4603 mddev_unlock(mddev); 4604 return err ?: len; 4605 } 4606 4607 static struct md_sysfs_entry md_metadata = 4608 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4609 4610 static ssize_t 4611 action_show(struct mddev *mddev, char *page) 4612 { 4613 char *type = "idle"; 4614 unsigned long recovery = mddev->recovery; 4615 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4616 type = "frozen"; 4617 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4618 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4619 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4620 type = "reshape"; 4621 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4622 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4623 type = "resync"; 4624 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4625 type = "check"; 4626 else 4627 type = "repair"; 4628 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4629 type = "recover"; 4630 else if (mddev->reshape_position != MaxSector) 4631 type = "reshape"; 4632 } 4633 return sprintf(page, "%s\n", type); 4634 } 4635 4636 static ssize_t 4637 action_store(struct mddev *mddev, const char *page, size_t len) 4638 { 4639 if (!mddev->pers || !mddev->pers->sync_request) 4640 return -EINVAL; 4641 4642 4643 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4644 if (cmd_match(page, "frozen")) 4645 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4646 else 4647 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4648 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4649 mddev_lock(mddev) == 0) { 4650 flush_workqueue(md_misc_wq); 4651 if (mddev->sync_thread) { 4652 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4653 md_reap_sync_thread(mddev); 4654 } 4655 mddev_unlock(mddev); 4656 } 4657 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4658 return -EBUSY; 4659 else if (cmd_match(page, "resync")) 4660 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4661 else if (cmd_match(page, "recover")) { 4662 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4663 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4664 } else if (cmd_match(page, "reshape")) { 4665 int err; 4666 if (mddev->pers->start_reshape == NULL) 4667 return -EINVAL; 4668 err = mddev_lock(mddev); 4669 if (!err) { 4670 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4671 err = -EBUSY; 4672 else { 4673 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4674 err = mddev->pers->start_reshape(mddev); 4675 } 4676 mddev_unlock(mddev); 4677 } 4678 if (err) 4679 return err; 4680 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4681 } else { 4682 if (cmd_match(page, "check")) 4683 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4684 else if (!cmd_match(page, "repair")) 4685 return -EINVAL; 4686 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4687 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4688 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4689 } 4690 if (mddev->ro == 2) { 4691 /* A write to sync_action is enough to justify 4692 * canceling read-auto mode 4693 */ 4694 mddev->ro = 0; 4695 md_wakeup_thread(mddev->sync_thread); 4696 } 4697 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4698 md_wakeup_thread(mddev->thread); 4699 sysfs_notify_dirent_safe(mddev->sysfs_action); 4700 return len; 4701 } 4702 4703 static struct md_sysfs_entry md_scan_mode = 4704 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4705 4706 static ssize_t 4707 last_sync_action_show(struct mddev *mddev, char *page) 4708 { 4709 return sprintf(page, "%s\n", mddev->last_sync_action); 4710 } 4711 4712 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4713 4714 static ssize_t 4715 mismatch_cnt_show(struct mddev *mddev, char *page) 4716 { 4717 return sprintf(page, "%llu\n", 4718 (unsigned long long) 4719 atomic64_read(&mddev->resync_mismatches)); 4720 } 4721 4722 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4723 4724 static ssize_t 4725 sync_min_show(struct mddev *mddev, char *page) 4726 { 4727 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4728 mddev->sync_speed_min ? "local": "system"); 4729 } 4730 4731 static ssize_t 4732 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4733 { 4734 unsigned int min; 4735 int rv; 4736 4737 if (strncmp(buf, "system", 6)==0) { 4738 min = 0; 4739 } else { 4740 rv = kstrtouint(buf, 10, &min); 4741 if (rv < 0) 4742 return rv; 4743 if (min == 0) 4744 return -EINVAL; 4745 } 4746 mddev->sync_speed_min = min; 4747 return len; 4748 } 4749 4750 static struct md_sysfs_entry md_sync_min = 4751 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4752 4753 static ssize_t 4754 sync_max_show(struct mddev *mddev, char *page) 4755 { 4756 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4757 mddev->sync_speed_max ? "local": "system"); 4758 } 4759 4760 static ssize_t 4761 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4762 { 4763 unsigned int max; 4764 int rv; 4765 4766 if (strncmp(buf, "system", 6)==0) { 4767 max = 0; 4768 } else { 4769 rv = kstrtouint(buf, 10, &max); 4770 if (rv < 0) 4771 return rv; 4772 if (max == 0) 4773 return -EINVAL; 4774 } 4775 mddev->sync_speed_max = max; 4776 return len; 4777 } 4778 4779 static struct md_sysfs_entry md_sync_max = 4780 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4781 4782 static ssize_t 4783 degraded_show(struct mddev *mddev, char *page) 4784 { 4785 return sprintf(page, "%d\n", mddev->degraded); 4786 } 4787 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4788 4789 static ssize_t 4790 sync_force_parallel_show(struct mddev *mddev, char *page) 4791 { 4792 return sprintf(page, "%d\n", mddev->parallel_resync); 4793 } 4794 4795 static ssize_t 4796 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4797 { 4798 long n; 4799 4800 if (kstrtol(buf, 10, &n)) 4801 return -EINVAL; 4802 4803 if (n != 0 && n != 1) 4804 return -EINVAL; 4805 4806 mddev->parallel_resync = n; 4807 4808 if (mddev->sync_thread) 4809 wake_up(&resync_wait); 4810 4811 return len; 4812 } 4813 4814 /* force parallel resync, even with shared block devices */ 4815 static struct md_sysfs_entry md_sync_force_parallel = 4816 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4817 sync_force_parallel_show, sync_force_parallel_store); 4818 4819 static ssize_t 4820 sync_speed_show(struct mddev *mddev, char *page) 4821 { 4822 unsigned long resync, dt, db; 4823 if (mddev->curr_resync == 0) 4824 return sprintf(page, "none\n"); 4825 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4826 dt = (jiffies - mddev->resync_mark) / HZ; 4827 if (!dt) dt++; 4828 db = resync - mddev->resync_mark_cnt; 4829 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4830 } 4831 4832 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4833 4834 static ssize_t 4835 sync_completed_show(struct mddev *mddev, char *page) 4836 { 4837 unsigned long long max_sectors, resync; 4838 4839 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4840 return sprintf(page, "none\n"); 4841 4842 if (mddev->curr_resync == 1 || 4843 mddev->curr_resync == 2) 4844 return sprintf(page, "delayed\n"); 4845 4846 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4847 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4848 max_sectors = mddev->resync_max_sectors; 4849 else 4850 max_sectors = mddev->dev_sectors; 4851 4852 resync = mddev->curr_resync_completed; 4853 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4854 } 4855 4856 static struct md_sysfs_entry md_sync_completed = 4857 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4858 4859 static ssize_t 4860 min_sync_show(struct mddev *mddev, char *page) 4861 { 4862 return sprintf(page, "%llu\n", 4863 (unsigned long long)mddev->resync_min); 4864 } 4865 static ssize_t 4866 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4867 { 4868 unsigned long long min; 4869 int err; 4870 4871 if (kstrtoull(buf, 10, &min)) 4872 return -EINVAL; 4873 4874 spin_lock(&mddev->lock); 4875 err = -EINVAL; 4876 if (min > mddev->resync_max) 4877 goto out_unlock; 4878 4879 err = -EBUSY; 4880 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4881 goto out_unlock; 4882 4883 /* Round down to multiple of 4K for safety */ 4884 mddev->resync_min = round_down(min, 8); 4885 err = 0; 4886 4887 out_unlock: 4888 spin_unlock(&mddev->lock); 4889 return err ?: len; 4890 } 4891 4892 static struct md_sysfs_entry md_min_sync = 4893 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4894 4895 static ssize_t 4896 max_sync_show(struct mddev *mddev, char *page) 4897 { 4898 if (mddev->resync_max == MaxSector) 4899 return sprintf(page, "max\n"); 4900 else 4901 return sprintf(page, "%llu\n", 4902 (unsigned long long)mddev->resync_max); 4903 } 4904 static ssize_t 4905 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4906 { 4907 int err; 4908 spin_lock(&mddev->lock); 4909 if (strncmp(buf, "max", 3) == 0) 4910 mddev->resync_max = MaxSector; 4911 else { 4912 unsigned long long max; 4913 int chunk; 4914 4915 err = -EINVAL; 4916 if (kstrtoull(buf, 10, &max)) 4917 goto out_unlock; 4918 if (max < mddev->resync_min) 4919 goto out_unlock; 4920 4921 err = -EBUSY; 4922 if (max < mddev->resync_max && 4923 mddev->ro == 0 && 4924 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4925 goto out_unlock; 4926 4927 /* Must be a multiple of chunk_size */ 4928 chunk = mddev->chunk_sectors; 4929 if (chunk) { 4930 sector_t temp = max; 4931 4932 err = -EINVAL; 4933 if (sector_div(temp, chunk)) 4934 goto out_unlock; 4935 } 4936 mddev->resync_max = max; 4937 } 4938 wake_up(&mddev->recovery_wait); 4939 err = 0; 4940 out_unlock: 4941 spin_unlock(&mddev->lock); 4942 return err ?: len; 4943 } 4944 4945 static struct md_sysfs_entry md_max_sync = 4946 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4947 4948 static ssize_t 4949 suspend_lo_show(struct mddev *mddev, char *page) 4950 { 4951 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4952 } 4953 4954 static ssize_t 4955 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4956 { 4957 unsigned long long new; 4958 int err; 4959 4960 err = kstrtoull(buf, 10, &new); 4961 if (err < 0) 4962 return err; 4963 if (new != (sector_t)new) 4964 return -EINVAL; 4965 4966 err = mddev_lock(mddev); 4967 if (err) 4968 return err; 4969 err = -EINVAL; 4970 if (mddev->pers == NULL || 4971 mddev->pers->quiesce == NULL) 4972 goto unlock; 4973 mddev_suspend(mddev); 4974 mddev->suspend_lo = new; 4975 mddev_resume(mddev); 4976 4977 err = 0; 4978 unlock: 4979 mddev_unlock(mddev); 4980 return err ?: len; 4981 } 4982 static struct md_sysfs_entry md_suspend_lo = 4983 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4984 4985 static ssize_t 4986 suspend_hi_show(struct mddev *mddev, char *page) 4987 { 4988 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4989 } 4990 4991 static ssize_t 4992 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4993 { 4994 unsigned long long new; 4995 int err; 4996 4997 err = kstrtoull(buf, 10, &new); 4998 if (err < 0) 4999 return err; 5000 if (new != (sector_t)new) 5001 return -EINVAL; 5002 5003 err = mddev_lock(mddev); 5004 if (err) 5005 return err; 5006 err = -EINVAL; 5007 if (mddev->pers == NULL) 5008 goto unlock; 5009 5010 mddev_suspend(mddev); 5011 mddev->suspend_hi = new; 5012 mddev_resume(mddev); 5013 5014 err = 0; 5015 unlock: 5016 mddev_unlock(mddev); 5017 return err ?: len; 5018 } 5019 static struct md_sysfs_entry md_suspend_hi = 5020 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5021 5022 static ssize_t 5023 reshape_position_show(struct mddev *mddev, char *page) 5024 { 5025 if (mddev->reshape_position != MaxSector) 5026 return sprintf(page, "%llu\n", 5027 (unsigned long long)mddev->reshape_position); 5028 strcpy(page, "none\n"); 5029 return 5; 5030 } 5031 5032 static ssize_t 5033 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5034 { 5035 struct md_rdev *rdev; 5036 unsigned long long new; 5037 int err; 5038 5039 err = kstrtoull(buf, 10, &new); 5040 if (err < 0) 5041 return err; 5042 if (new != (sector_t)new) 5043 return -EINVAL; 5044 err = mddev_lock(mddev); 5045 if (err) 5046 return err; 5047 err = -EBUSY; 5048 if (mddev->pers) 5049 goto unlock; 5050 mddev->reshape_position = new; 5051 mddev->delta_disks = 0; 5052 mddev->reshape_backwards = 0; 5053 mddev->new_level = mddev->level; 5054 mddev->new_layout = mddev->layout; 5055 mddev->new_chunk_sectors = mddev->chunk_sectors; 5056 rdev_for_each(rdev, mddev) 5057 rdev->new_data_offset = rdev->data_offset; 5058 err = 0; 5059 unlock: 5060 mddev_unlock(mddev); 5061 return err ?: len; 5062 } 5063 5064 static struct md_sysfs_entry md_reshape_position = 5065 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5066 reshape_position_store); 5067 5068 static ssize_t 5069 reshape_direction_show(struct mddev *mddev, char *page) 5070 { 5071 return sprintf(page, "%s\n", 5072 mddev->reshape_backwards ? "backwards" : "forwards"); 5073 } 5074 5075 static ssize_t 5076 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5077 { 5078 int backwards = 0; 5079 int err; 5080 5081 if (cmd_match(buf, "forwards")) 5082 backwards = 0; 5083 else if (cmd_match(buf, "backwards")) 5084 backwards = 1; 5085 else 5086 return -EINVAL; 5087 if (mddev->reshape_backwards == backwards) 5088 return len; 5089 5090 err = mddev_lock(mddev); 5091 if (err) 5092 return err; 5093 /* check if we are allowed to change */ 5094 if (mddev->delta_disks) 5095 err = -EBUSY; 5096 else if (mddev->persistent && 5097 mddev->major_version == 0) 5098 err = -EINVAL; 5099 else 5100 mddev->reshape_backwards = backwards; 5101 mddev_unlock(mddev); 5102 return err ?: len; 5103 } 5104 5105 static struct md_sysfs_entry md_reshape_direction = 5106 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5107 reshape_direction_store); 5108 5109 static ssize_t 5110 array_size_show(struct mddev *mddev, char *page) 5111 { 5112 if (mddev->external_size) 5113 return sprintf(page, "%llu\n", 5114 (unsigned long long)mddev->array_sectors/2); 5115 else 5116 return sprintf(page, "default\n"); 5117 } 5118 5119 static ssize_t 5120 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5121 { 5122 sector_t sectors; 5123 int err; 5124 5125 err = mddev_lock(mddev); 5126 if (err) 5127 return err; 5128 5129 /* cluster raid doesn't support change array_sectors */ 5130 if (mddev_is_clustered(mddev)) { 5131 mddev_unlock(mddev); 5132 return -EINVAL; 5133 } 5134 5135 if (strncmp(buf, "default", 7) == 0) { 5136 if (mddev->pers) 5137 sectors = mddev->pers->size(mddev, 0, 0); 5138 else 5139 sectors = mddev->array_sectors; 5140 5141 mddev->external_size = 0; 5142 } else { 5143 if (strict_blocks_to_sectors(buf, §ors) < 0) 5144 err = -EINVAL; 5145 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5146 err = -E2BIG; 5147 else 5148 mddev->external_size = 1; 5149 } 5150 5151 if (!err) { 5152 mddev->array_sectors = sectors; 5153 if (mddev->pers) { 5154 set_capacity(mddev->gendisk, mddev->array_sectors); 5155 revalidate_disk(mddev->gendisk); 5156 } 5157 } 5158 mddev_unlock(mddev); 5159 return err ?: len; 5160 } 5161 5162 static struct md_sysfs_entry md_array_size = 5163 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5164 array_size_store); 5165 5166 static ssize_t 5167 consistency_policy_show(struct mddev *mddev, char *page) 5168 { 5169 int ret; 5170 5171 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5172 ret = sprintf(page, "journal\n"); 5173 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5174 ret = sprintf(page, "ppl\n"); 5175 } else if (mddev->bitmap) { 5176 ret = sprintf(page, "bitmap\n"); 5177 } else if (mddev->pers) { 5178 if (mddev->pers->sync_request) 5179 ret = sprintf(page, "resync\n"); 5180 else 5181 ret = sprintf(page, "none\n"); 5182 } else { 5183 ret = sprintf(page, "unknown\n"); 5184 } 5185 5186 return ret; 5187 } 5188 5189 static ssize_t 5190 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5191 { 5192 int err = 0; 5193 5194 if (mddev->pers) { 5195 if (mddev->pers->change_consistency_policy) 5196 err = mddev->pers->change_consistency_policy(mddev, buf); 5197 else 5198 err = -EBUSY; 5199 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5200 set_bit(MD_HAS_PPL, &mddev->flags); 5201 } else { 5202 err = -EINVAL; 5203 } 5204 5205 return err ? err : len; 5206 } 5207 5208 static struct md_sysfs_entry md_consistency_policy = 5209 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5210 consistency_policy_store); 5211 5212 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5213 { 5214 return sprintf(page, "%d\n", mddev->fail_last_dev); 5215 } 5216 5217 /* 5218 * Setting fail_last_dev to true to allow last device to be forcibly removed 5219 * from RAID1/RAID10. 5220 */ 5221 static ssize_t 5222 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5223 { 5224 int ret; 5225 bool value; 5226 5227 ret = kstrtobool(buf, &value); 5228 if (ret) 5229 return ret; 5230 5231 if (value != mddev->fail_last_dev) 5232 mddev->fail_last_dev = value; 5233 5234 return len; 5235 } 5236 static struct md_sysfs_entry md_fail_last_dev = 5237 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5238 fail_last_dev_store); 5239 5240 static struct attribute *md_default_attrs[] = { 5241 &md_level.attr, 5242 &md_layout.attr, 5243 &md_raid_disks.attr, 5244 &md_chunk_size.attr, 5245 &md_size.attr, 5246 &md_resync_start.attr, 5247 &md_metadata.attr, 5248 &md_new_device.attr, 5249 &md_safe_delay.attr, 5250 &md_array_state.attr, 5251 &md_reshape_position.attr, 5252 &md_reshape_direction.attr, 5253 &md_array_size.attr, 5254 &max_corr_read_errors.attr, 5255 &md_consistency_policy.attr, 5256 &md_fail_last_dev.attr, 5257 NULL, 5258 }; 5259 5260 static struct attribute *md_redundancy_attrs[] = { 5261 &md_scan_mode.attr, 5262 &md_last_scan_mode.attr, 5263 &md_mismatches.attr, 5264 &md_sync_min.attr, 5265 &md_sync_max.attr, 5266 &md_sync_speed.attr, 5267 &md_sync_force_parallel.attr, 5268 &md_sync_completed.attr, 5269 &md_min_sync.attr, 5270 &md_max_sync.attr, 5271 &md_suspend_lo.attr, 5272 &md_suspend_hi.attr, 5273 &md_bitmap.attr, 5274 &md_degraded.attr, 5275 NULL, 5276 }; 5277 static struct attribute_group md_redundancy_group = { 5278 .name = NULL, 5279 .attrs = md_redundancy_attrs, 5280 }; 5281 5282 static ssize_t 5283 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5284 { 5285 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5286 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5287 ssize_t rv; 5288 5289 if (!entry->show) 5290 return -EIO; 5291 spin_lock(&all_mddevs_lock); 5292 if (list_empty(&mddev->all_mddevs)) { 5293 spin_unlock(&all_mddevs_lock); 5294 return -EBUSY; 5295 } 5296 mddev_get(mddev); 5297 spin_unlock(&all_mddevs_lock); 5298 5299 rv = entry->show(mddev, page); 5300 mddev_put(mddev); 5301 return rv; 5302 } 5303 5304 static ssize_t 5305 md_attr_store(struct kobject *kobj, struct attribute *attr, 5306 const char *page, size_t length) 5307 { 5308 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5309 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5310 ssize_t rv; 5311 5312 if (!entry->store) 5313 return -EIO; 5314 if (!capable(CAP_SYS_ADMIN)) 5315 return -EACCES; 5316 spin_lock(&all_mddevs_lock); 5317 if (list_empty(&mddev->all_mddevs)) { 5318 spin_unlock(&all_mddevs_lock); 5319 return -EBUSY; 5320 } 5321 mddev_get(mddev); 5322 spin_unlock(&all_mddevs_lock); 5323 rv = entry->store(mddev, page, length); 5324 mddev_put(mddev); 5325 return rv; 5326 } 5327 5328 static void md_free(struct kobject *ko) 5329 { 5330 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5331 5332 if (mddev->sysfs_state) 5333 sysfs_put(mddev->sysfs_state); 5334 5335 if (mddev->gendisk) 5336 del_gendisk(mddev->gendisk); 5337 if (mddev->queue) 5338 blk_cleanup_queue(mddev->queue); 5339 if (mddev->gendisk) 5340 put_disk(mddev->gendisk); 5341 percpu_ref_exit(&mddev->writes_pending); 5342 5343 bioset_exit(&mddev->bio_set); 5344 bioset_exit(&mddev->sync_set); 5345 kfree(mddev); 5346 } 5347 5348 static const struct sysfs_ops md_sysfs_ops = { 5349 .show = md_attr_show, 5350 .store = md_attr_store, 5351 }; 5352 static struct kobj_type md_ktype = { 5353 .release = md_free, 5354 .sysfs_ops = &md_sysfs_ops, 5355 .default_attrs = md_default_attrs, 5356 }; 5357 5358 int mdp_major = 0; 5359 5360 static void mddev_delayed_delete(struct work_struct *ws) 5361 { 5362 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5363 5364 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5365 kobject_del(&mddev->kobj); 5366 kobject_put(&mddev->kobj); 5367 } 5368 5369 static void no_op(struct percpu_ref *r) {} 5370 5371 int mddev_init_writes_pending(struct mddev *mddev) 5372 { 5373 if (mddev->writes_pending.percpu_count_ptr) 5374 return 0; 5375 if (percpu_ref_init(&mddev->writes_pending, no_op, 5376 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5377 return -ENOMEM; 5378 /* We want to start with the refcount at zero */ 5379 percpu_ref_put(&mddev->writes_pending); 5380 return 0; 5381 } 5382 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5383 5384 static int md_alloc(dev_t dev, char *name) 5385 { 5386 /* 5387 * If dev is zero, name is the name of a device to allocate with 5388 * an arbitrary minor number. It will be "md_???" 5389 * If dev is non-zero it must be a device number with a MAJOR of 5390 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5391 * the device is being created by opening a node in /dev. 5392 * If "name" is not NULL, the device is being created by 5393 * writing to /sys/module/md_mod/parameters/new_array. 5394 */ 5395 static DEFINE_MUTEX(disks_mutex); 5396 struct mddev *mddev = mddev_find(dev); 5397 struct gendisk *disk; 5398 int partitioned; 5399 int shift; 5400 int unit; 5401 int error; 5402 5403 if (!mddev) 5404 return -ENODEV; 5405 5406 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5407 shift = partitioned ? MdpMinorShift : 0; 5408 unit = MINOR(mddev->unit) >> shift; 5409 5410 /* wait for any previous instance of this device to be 5411 * completely removed (mddev_delayed_delete). 5412 */ 5413 flush_workqueue(md_misc_wq); 5414 5415 mutex_lock(&disks_mutex); 5416 error = -EEXIST; 5417 if (mddev->gendisk) 5418 goto abort; 5419 5420 if (name && !dev) { 5421 /* Need to ensure that 'name' is not a duplicate. 5422 */ 5423 struct mddev *mddev2; 5424 spin_lock(&all_mddevs_lock); 5425 5426 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5427 if (mddev2->gendisk && 5428 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5429 spin_unlock(&all_mddevs_lock); 5430 goto abort; 5431 } 5432 spin_unlock(&all_mddevs_lock); 5433 } 5434 if (name && dev) 5435 /* 5436 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5437 */ 5438 mddev->hold_active = UNTIL_STOP; 5439 5440 error = -ENOMEM; 5441 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5442 if (!mddev->queue) 5443 goto abort; 5444 mddev->queue->queuedata = mddev; 5445 5446 blk_queue_make_request(mddev->queue, md_make_request); 5447 blk_set_stacking_limits(&mddev->queue->limits); 5448 5449 disk = alloc_disk(1 << shift); 5450 if (!disk) { 5451 blk_cleanup_queue(mddev->queue); 5452 mddev->queue = NULL; 5453 goto abort; 5454 } 5455 disk->major = MAJOR(mddev->unit); 5456 disk->first_minor = unit << shift; 5457 if (name) 5458 strcpy(disk->disk_name, name); 5459 else if (partitioned) 5460 sprintf(disk->disk_name, "md_d%d", unit); 5461 else 5462 sprintf(disk->disk_name, "md%d", unit); 5463 disk->fops = &md_fops; 5464 disk->private_data = mddev; 5465 disk->queue = mddev->queue; 5466 blk_queue_write_cache(mddev->queue, true, true); 5467 /* Allow extended partitions. This makes the 5468 * 'mdp' device redundant, but we can't really 5469 * remove it now. 5470 */ 5471 disk->flags |= GENHD_FL_EXT_DEVT; 5472 mddev->gendisk = disk; 5473 /* As soon as we call add_disk(), another thread could get 5474 * through to md_open, so make sure it doesn't get too far 5475 */ 5476 mutex_lock(&mddev->open_mutex); 5477 add_disk(disk); 5478 5479 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5480 if (error) { 5481 /* This isn't possible, but as kobject_init_and_add is marked 5482 * __must_check, we must do something with the result 5483 */ 5484 pr_debug("md: cannot register %s/md - name in use\n", 5485 disk->disk_name); 5486 error = 0; 5487 } 5488 if (mddev->kobj.sd && 5489 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5490 pr_debug("pointless warning\n"); 5491 mutex_unlock(&mddev->open_mutex); 5492 abort: 5493 mutex_unlock(&disks_mutex); 5494 if (!error && mddev->kobj.sd) { 5495 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5496 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5497 } 5498 mddev_put(mddev); 5499 return error; 5500 } 5501 5502 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5503 { 5504 if (create_on_open) 5505 md_alloc(dev, NULL); 5506 return NULL; 5507 } 5508 5509 static int add_named_array(const char *val, const struct kernel_param *kp) 5510 { 5511 /* 5512 * val must be "md_*" or "mdNNN". 5513 * For "md_*" we allocate an array with a large free minor number, and 5514 * set the name to val. val must not already be an active name. 5515 * For "mdNNN" we allocate an array with the minor number NNN 5516 * which must not already be in use. 5517 */ 5518 int len = strlen(val); 5519 char buf[DISK_NAME_LEN]; 5520 unsigned long devnum; 5521 5522 while (len && val[len-1] == '\n') 5523 len--; 5524 if (len >= DISK_NAME_LEN) 5525 return -E2BIG; 5526 strlcpy(buf, val, len+1); 5527 if (strncmp(buf, "md_", 3) == 0) 5528 return md_alloc(0, buf); 5529 if (strncmp(buf, "md", 2) == 0 && 5530 isdigit(buf[2]) && 5531 kstrtoul(buf+2, 10, &devnum) == 0 && 5532 devnum <= MINORMASK) 5533 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5534 5535 return -EINVAL; 5536 } 5537 5538 static void md_safemode_timeout(struct timer_list *t) 5539 { 5540 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5541 5542 mddev->safemode = 1; 5543 if (mddev->external) 5544 sysfs_notify_dirent_safe(mddev->sysfs_state); 5545 5546 md_wakeup_thread(mddev->thread); 5547 } 5548 5549 static int start_dirty_degraded; 5550 5551 int md_run(struct mddev *mddev) 5552 { 5553 int err; 5554 struct md_rdev *rdev; 5555 struct md_personality *pers; 5556 5557 if (list_empty(&mddev->disks)) 5558 /* cannot run an array with no devices.. */ 5559 return -EINVAL; 5560 5561 if (mddev->pers) 5562 return -EBUSY; 5563 /* Cannot run until previous stop completes properly */ 5564 if (mddev->sysfs_active) 5565 return -EBUSY; 5566 5567 /* 5568 * Analyze all RAID superblock(s) 5569 */ 5570 if (!mddev->raid_disks) { 5571 if (!mddev->persistent) 5572 return -EINVAL; 5573 analyze_sbs(mddev); 5574 } 5575 5576 if (mddev->level != LEVEL_NONE) 5577 request_module("md-level-%d", mddev->level); 5578 else if (mddev->clevel[0]) 5579 request_module("md-%s", mddev->clevel); 5580 5581 /* 5582 * Drop all container device buffers, from now on 5583 * the only valid external interface is through the md 5584 * device. 5585 */ 5586 mddev->has_superblocks = false; 5587 rdev_for_each(rdev, mddev) { 5588 if (test_bit(Faulty, &rdev->flags)) 5589 continue; 5590 sync_blockdev(rdev->bdev); 5591 invalidate_bdev(rdev->bdev); 5592 if (mddev->ro != 1 && 5593 (bdev_read_only(rdev->bdev) || 5594 bdev_read_only(rdev->meta_bdev))) { 5595 mddev->ro = 1; 5596 if (mddev->gendisk) 5597 set_disk_ro(mddev->gendisk, 1); 5598 } 5599 5600 if (rdev->sb_page) 5601 mddev->has_superblocks = true; 5602 5603 /* perform some consistency tests on the device. 5604 * We don't want the data to overlap the metadata, 5605 * Internal Bitmap issues have been handled elsewhere. 5606 */ 5607 if (rdev->meta_bdev) { 5608 /* Nothing to check */; 5609 } else if (rdev->data_offset < rdev->sb_start) { 5610 if (mddev->dev_sectors && 5611 rdev->data_offset + mddev->dev_sectors 5612 > rdev->sb_start) { 5613 pr_warn("md: %s: data overlaps metadata\n", 5614 mdname(mddev)); 5615 return -EINVAL; 5616 } 5617 } else { 5618 if (rdev->sb_start + rdev->sb_size/512 5619 > rdev->data_offset) { 5620 pr_warn("md: %s: metadata overlaps data\n", 5621 mdname(mddev)); 5622 return -EINVAL; 5623 } 5624 } 5625 sysfs_notify_dirent_safe(rdev->sysfs_state); 5626 } 5627 5628 if (!bioset_initialized(&mddev->bio_set)) { 5629 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5630 if (err) 5631 return err; 5632 } 5633 if (!bioset_initialized(&mddev->sync_set)) { 5634 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5635 if (err) 5636 return err; 5637 } 5638 5639 spin_lock(&pers_lock); 5640 pers = find_pers(mddev->level, mddev->clevel); 5641 if (!pers || !try_module_get(pers->owner)) { 5642 spin_unlock(&pers_lock); 5643 if (mddev->level != LEVEL_NONE) 5644 pr_warn("md: personality for level %d is not loaded!\n", 5645 mddev->level); 5646 else 5647 pr_warn("md: personality for level %s is not loaded!\n", 5648 mddev->clevel); 5649 err = -EINVAL; 5650 goto abort; 5651 } 5652 spin_unlock(&pers_lock); 5653 if (mddev->level != pers->level) { 5654 mddev->level = pers->level; 5655 mddev->new_level = pers->level; 5656 } 5657 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5658 5659 if (mddev->reshape_position != MaxSector && 5660 pers->start_reshape == NULL) { 5661 /* This personality cannot handle reshaping... */ 5662 module_put(pers->owner); 5663 err = -EINVAL; 5664 goto abort; 5665 } 5666 5667 if (pers->sync_request) { 5668 /* Warn if this is a potentially silly 5669 * configuration. 5670 */ 5671 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5672 struct md_rdev *rdev2; 5673 int warned = 0; 5674 5675 rdev_for_each(rdev, mddev) 5676 rdev_for_each(rdev2, mddev) { 5677 if (rdev < rdev2 && 5678 rdev->bdev->bd_contains == 5679 rdev2->bdev->bd_contains) { 5680 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5681 mdname(mddev), 5682 bdevname(rdev->bdev,b), 5683 bdevname(rdev2->bdev,b2)); 5684 warned = 1; 5685 } 5686 } 5687 5688 if (warned) 5689 pr_warn("True protection against single-disk failure might be compromised.\n"); 5690 } 5691 5692 mddev->recovery = 0; 5693 /* may be over-ridden by personality */ 5694 mddev->resync_max_sectors = mddev->dev_sectors; 5695 5696 mddev->ok_start_degraded = start_dirty_degraded; 5697 5698 if (start_readonly && mddev->ro == 0) 5699 mddev->ro = 2; /* read-only, but switch on first write */ 5700 5701 err = pers->run(mddev); 5702 if (err) 5703 pr_warn("md: pers->run() failed ...\n"); 5704 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5705 WARN_ONCE(!mddev->external_size, 5706 "%s: default size too small, but 'external_size' not in effect?\n", 5707 __func__); 5708 pr_warn("md: invalid array_size %llu > default size %llu\n", 5709 (unsigned long long)mddev->array_sectors / 2, 5710 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5711 err = -EINVAL; 5712 } 5713 if (err == 0 && pers->sync_request && 5714 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5715 struct bitmap *bitmap; 5716 5717 bitmap = md_bitmap_create(mddev, -1); 5718 if (IS_ERR(bitmap)) { 5719 err = PTR_ERR(bitmap); 5720 pr_warn("%s: failed to create bitmap (%d)\n", 5721 mdname(mddev), err); 5722 } else 5723 mddev->bitmap = bitmap; 5724 5725 } 5726 if (err) 5727 goto bitmap_abort; 5728 5729 if (mddev->bitmap_info.max_write_behind > 0) { 5730 bool creat_pool = false; 5731 5732 rdev_for_each(rdev, mddev) { 5733 if (test_bit(WriteMostly, &rdev->flags) && 5734 rdev_init_wb(rdev)) 5735 creat_pool = true; 5736 } 5737 if (creat_pool && mddev->wb_info_pool == NULL) { 5738 mddev->wb_info_pool = 5739 mempool_create_kmalloc_pool(NR_WB_INFOS, 5740 sizeof(struct wb_info)); 5741 if (!mddev->wb_info_pool) { 5742 err = -ENOMEM; 5743 goto bitmap_abort; 5744 } 5745 } 5746 } 5747 5748 if (mddev->queue) { 5749 bool nonrot = true; 5750 5751 rdev_for_each(rdev, mddev) { 5752 if (rdev->raid_disk >= 0 && 5753 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5754 nonrot = false; 5755 break; 5756 } 5757 } 5758 if (mddev->degraded) 5759 nonrot = false; 5760 if (nonrot) 5761 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5762 else 5763 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5764 mddev->queue->backing_dev_info->congested_data = mddev; 5765 mddev->queue->backing_dev_info->congested_fn = md_congested; 5766 } 5767 if (pers->sync_request) { 5768 if (mddev->kobj.sd && 5769 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5770 pr_warn("md: cannot register extra attributes for %s\n", 5771 mdname(mddev)); 5772 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5773 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5774 mddev->ro = 0; 5775 5776 atomic_set(&mddev->max_corr_read_errors, 5777 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5778 mddev->safemode = 0; 5779 if (mddev_is_clustered(mddev)) 5780 mddev->safemode_delay = 0; 5781 else 5782 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5783 mddev->in_sync = 1; 5784 smp_wmb(); 5785 spin_lock(&mddev->lock); 5786 mddev->pers = pers; 5787 spin_unlock(&mddev->lock); 5788 rdev_for_each(rdev, mddev) 5789 if (rdev->raid_disk >= 0) 5790 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 5791 5792 if (mddev->degraded && !mddev->ro) 5793 /* This ensures that recovering status is reported immediately 5794 * via sysfs - until a lack of spares is confirmed. 5795 */ 5796 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5797 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5798 5799 if (mddev->sb_flags) 5800 md_update_sb(mddev, 0); 5801 5802 md_new_event(mddev); 5803 return 0; 5804 5805 bitmap_abort: 5806 mddev_detach(mddev); 5807 if (mddev->private) 5808 pers->free(mddev, mddev->private); 5809 mddev->private = NULL; 5810 module_put(pers->owner); 5811 md_bitmap_destroy(mddev); 5812 abort: 5813 bioset_exit(&mddev->bio_set); 5814 bioset_exit(&mddev->sync_set); 5815 return err; 5816 } 5817 EXPORT_SYMBOL_GPL(md_run); 5818 5819 static int do_md_run(struct mddev *mddev) 5820 { 5821 int err; 5822 5823 set_bit(MD_NOT_READY, &mddev->flags); 5824 err = md_run(mddev); 5825 if (err) 5826 goto out; 5827 err = md_bitmap_load(mddev); 5828 if (err) { 5829 md_bitmap_destroy(mddev); 5830 goto out; 5831 } 5832 5833 if (mddev_is_clustered(mddev)) 5834 md_allow_write(mddev); 5835 5836 /* run start up tasks that require md_thread */ 5837 md_start(mddev); 5838 5839 md_wakeup_thread(mddev->thread); 5840 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5841 5842 set_capacity(mddev->gendisk, mddev->array_sectors); 5843 revalidate_disk(mddev->gendisk); 5844 clear_bit(MD_NOT_READY, &mddev->flags); 5845 mddev->changed = 1; 5846 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5847 sysfs_notify_dirent_safe(mddev->sysfs_state); 5848 sysfs_notify_dirent_safe(mddev->sysfs_action); 5849 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5850 out: 5851 clear_bit(MD_NOT_READY, &mddev->flags); 5852 return err; 5853 } 5854 5855 int md_start(struct mddev *mddev) 5856 { 5857 int ret = 0; 5858 5859 if (mddev->pers->start) { 5860 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5861 md_wakeup_thread(mddev->thread); 5862 ret = mddev->pers->start(mddev); 5863 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5864 md_wakeup_thread(mddev->sync_thread); 5865 } 5866 return ret; 5867 } 5868 EXPORT_SYMBOL_GPL(md_start); 5869 5870 static int restart_array(struct mddev *mddev) 5871 { 5872 struct gendisk *disk = mddev->gendisk; 5873 struct md_rdev *rdev; 5874 bool has_journal = false; 5875 bool has_readonly = false; 5876 5877 /* Complain if it has no devices */ 5878 if (list_empty(&mddev->disks)) 5879 return -ENXIO; 5880 if (!mddev->pers) 5881 return -EINVAL; 5882 if (!mddev->ro) 5883 return -EBUSY; 5884 5885 rcu_read_lock(); 5886 rdev_for_each_rcu(rdev, mddev) { 5887 if (test_bit(Journal, &rdev->flags) && 5888 !test_bit(Faulty, &rdev->flags)) 5889 has_journal = true; 5890 if (bdev_read_only(rdev->bdev)) 5891 has_readonly = true; 5892 } 5893 rcu_read_unlock(); 5894 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5895 /* Don't restart rw with journal missing/faulty */ 5896 return -EINVAL; 5897 if (has_readonly) 5898 return -EROFS; 5899 5900 mddev->safemode = 0; 5901 mddev->ro = 0; 5902 set_disk_ro(disk, 0); 5903 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5904 /* Kick recovery or resync if necessary */ 5905 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5906 md_wakeup_thread(mddev->thread); 5907 md_wakeup_thread(mddev->sync_thread); 5908 sysfs_notify_dirent_safe(mddev->sysfs_state); 5909 return 0; 5910 } 5911 5912 static void md_clean(struct mddev *mddev) 5913 { 5914 mddev->array_sectors = 0; 5915 mddev->external_size = 0; 5916 mddev->dev_sectors = 0; 5917 mddev->raid_disks = 0; 5918 mddev->recovery_cp = 0; 5919 mddev->resync_min = 0; 5920 mddev->resync_max = MaxSector; 5921 mddev->reshape_position = MaxSector; 5922 mddev->external = 0; 5923 mddev->persistent = 0; 5924 mddev->level = LEVEL_NONE; 5925 mddev->clevel[0] = 0; 5926 mddev->flags = 0; 5927 mddev->sb_flags = 0; 5928 mddev->ro = 0; 5929 mddev->metadata_type[0] = 0; 5930 mddev->chunk_sectors = 0; 5931 mddev->ctime = mddev->utime = 0; 5932 mddev->layout = 0; 5933 mddev->max_disks = 0; 5934 mddev->events = 0; 5935 mddev->can_decrease_events = 0; 5936 mddev->delta_disks = 0; 5937 mddev->reshape_backwards = 0; 5938 mddev->new_level = LEVEL_NONE; 5939 mddev->new_layout = 0; 5940 mddev->new_chunk_sectors = 0; 5941 mddev->curr_resync = 0; 5942 atomic64_set(&mddev->resync_mismatches, 0); 5943 mddev->suspend_lo = mddev->suspend_hi = 0; 5944 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5945 mddev->recovery = 0; 5946 mddev->in_sync = 0; 5947 mddev->changed = 0; 5948 mddev->degraded = 0; 5949 mddev->safemode = 0; 5950 mddev->private = NULL; 5951 mddev->cluster_info = NULL; 5952 mddev->bitmap_info.offset = 0; 5953 mddev->bitmap_info.default_offset = 0; 5954 mddev->bitmap_info.default_space = 0; 5955 mddev->bitmap_info.chunksize = 0; 5956 mddev->bitmap_info.daemon_sleep = 0; 5957 mddev->bitmap_info.max_write_behind = 0; 5958 mddev->bitmap_info.nodes = 0; 5959 } 5960 5961 static void __md_stop_writes(struct mddev *mddev) 5962 { 5963 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5964 flush_workqueue(md_misc_wq); 5965 if (mddev->sync_thread) { 5966 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5967 md_reap_sync_thread(mddev); 5968 } 5969 5970 del_timer_sync(&mddev->safemode_timer); 5971 5972 if (mddev->pers && mddev->pers->quiesce) { 5973 mddev->pers->quiesce(mddev, 1); 5974 mddev->pers->quiesce(mddev, 0); 5975 } 5976 md_bitmap_flush(mddev); 5977 5978 if (mddev->ro == 0 && 5979 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5980 mddev->sb_flags)) { 5981 /* mark array as shutdown cleanly */ 5982 if (!mddev_is_clustered(mddev)) 5983 mddev->in_sync = 1; 5984 md_update_sb(mddev, 1); 5985 } 5986 mempool_destroy(mddev->wb_info_pool); 5987 mddev->wb_info_pool = NULL; 5988 } 5989 5990 void md_stop_writes(struct mddev *mddev) 5991 { 5992 mddev_lock_nointr(mddev); 5993 __md_stop_writes(mddev); 5994 mddev_unlock(mddev); 5995 } 5996 EXPORT_SYMBOL_GPL(md_stop_writes); 5997 5998 static void mddev_detach(struct mddev *mddev) 5999 { 6000 md_bitmap_wait_behind_writes(mddev); 6001 if (mddev->pers && mddev->pers->quiesce) { 6002 mddev->pers->quiesce(mddev, 1); 6003 mddev->pers->quiesce(mddev, 0); 6004 } 6005 md_unregister_thread(&mddev->thread); 6006 if (mddev->queue) 6007 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6008 } 6009 6010 static void __md_stop(struct mddev *mddev) 6011 { 6012 struct md_personality *pers = mddev->pers; 6013 md_bitmap_destroy(mddev); 6014 mddev_detach(mddev); 6015 /* Ensure ->event_work is done */ 6016 flush_workqueue(md_misc_wq); 6017 spin_lock(&mddev->lock); 6018 mddev->pers = NULL; 6019 spin_unlock(&mddev->lock); 6020 pers->free(mddev, mddev->private); 6021 mddev->private = NULL; 6022 if (pers->sync_request && mddev->to_remove == NULL) 6023 mddev->to_remove = &md_redundancy_group; 6024 module_put(pers->owner); 6025 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6026 } 6027 6028 void md_stop(struct mddev *mddev) 6029 { 6030 /* stop the array and free an attached data structures. 6031 * This is called from dm-raid 6032 */ 6033 __md_stop(mddev); 6034 bioset_exit(&mddev->bio_set); 6035 bioset_exit(&mddev->sync_set); 6036 } 6037 6038 EXPORT_SYMBOL_GPL(md_stop); 6039 6040 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6041 { 6042 int err = 0; 6043 int did_freeze = 0; 6044 6045 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6046 did_freeze = 1; 6047 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6048 md_wakeup_thread(mddev->thread); 6049 } 6050 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6051 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6052 if (mddev->sync_thread) 6053 /* Thread might be blocked waiting for metadata update 6054 * which will now never happen */ 6055 wake_up_process(mddev->sync_thread->tsk); 6056 6057 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6058 return -EBUSY; 6059 mddev_unlock(mddev); 6060 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6061 &mddev->recovery)); 6062 wait_event(mddev->sb_wait, 6063 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6064 mddev_lock_nointr(mddev); 6065 6066 mutex_lock(&mddev->open_mutex); 6067 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6068 mddev->sync_thread || 6069 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6070 pr_warn("md: %s still in use.\n",mdname(mddev)); 6071 if (did_freeze) { 6072 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6073 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6074 md_wakeup_thread(mddev->thread); 6075 } 6076 err = -EBUSY; 6077 goto out; 6078 } 6079 if (mddev->pers) { 6080 __md_stop_writes(mddev); 6081 6082 err = -ENXIO; 6083 if (mddev->ro==1) 6084 goto out; 6085 mddev->ro = 1; 6086 set_disk_ro(mddev->gendisk, 1); 6087 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6088 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6089 md_wakeup_thread(mddev->thread); 6090 sysfs_notify_dirent_safe(mddev->sysfs_state); 6091 err = 0; 6092 } 6093 out: 6094 mutex_unlock(&mddev->open_mutex); 6095 return err; 6096 } 6097 6098 /* mode: 6099 * 0 - completely stop and dis-assemble array 6100 * 2 - stop but do not disassemble array 6101 */ 6102 static int do_md_stop(struct mddev *mddev, int mode, 6103 struct block_device *bdev) 6104 { 6105 struct gendisk *disk = mddev->gendisk; 6106 struct md_rdev *rdev; 6107 int did_freeze = 0; 6108 6109 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6110 did_freeze = 1; 6111 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6112 md_wakeup_thread(mddev->thread); 6113 } 6114 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6115 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6116 if (mddev->sync_thread) 6117 /* Thread might be blocked waiting for metadata update 6118 * which will now never happen */ 6119 wake_up_process(mddev->sync_thread->tsk); 6120 6121 mddev_unlock(mddev); 6122 wait_event(resync_wait, (mddev->sync_thread == NULL && 6123 !test_bit(MD_RECOVERY_RUNNING, 6124 &mddev->recovery))); 6125 mddev_lock_nointr(mddev); 6126 6127 mutex_lock(&mddev->open_mutex); 6128 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6129 mddev->sysfs_active || 6130 mddev->sync_thread || 6131 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6132 pr_warn("md: %s still in use.\n",mdname(mddev)); 6133 mutex_unlock(&mddev->open_mutex); 6134 if (did_freeze) { 6135 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6136 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6137 md_wakeup_thread(mddev->thread); 6138 } 6139 return -EBUSY; 6140 } 6141 if (mddev->pers) { 6142 if (mddev->ro) 6143 set_disk_ro(disk, 0); 6144 6145 __md_stop_writes(mddev); 6146 __md_stop(mddev); 6147 mddev->queue->backing_dev_info->congested_fn = NULL; 6148 6149 /* tell userspace to handle 'inactive' */ 6150 sysfs_notify_dirent_safe(mddev->sysfs_state); 6151 6152 rdev_for_each(rdev, mddev) 6153 if (rdev->raid_disk >= 0) 6154 sysfs_unlink_rdev(mddev, rdev); 6155 6156 set_capacity(disk, 0); 6157 mutex_unlock(&mddev->open_mutex); 6158 mddev->changed = 1; 6159 revalidate_disk(disk); 6160 6161 if (mddev->ro) 6162 mddev->ro = 0; 6163 } else 6164 mutex_unlock(&mddev->open_mutex); 6165 /* 6166 * Free resources if final stop 6167 */ 6168 if (mode == 0) { 6169 pr_info("md: %s stopped.\n", mdname(mddev)); 6170 6171 if (mddev->bitmap_info.file) { 6172 struct file *f = mddev->bitmap_info.file; 6173 spin_lock(&mddev->lock); 6174 mddev->bitmap_info.file = NULL; 6175 spin_unlock(&mddev->lock); 6176 fput(f); 6177 } 6178 mddev->bitmap_info.offset = 0; 6179 6180 export_array(mddev); 6181 6182 md_clean(mddev); 6183 if (mddev->hold_active == UNTIL_STOP) 6184 mddev->hold_active = 0; 6185 } 6186 md_new_event(mddev); 6187 sysfs_notify_dirent_safe(mddev->sysfs_state); 6188 return 0; 6189 } 6190 6191 #ifndef MODULE 6192 static void autorun_array(struct mddev *mddev) 6193 { 6194 struct md_rdev *rdev; 6195 int err; 6196 6197 if (list_empty(&mddev->disks)) 6198 return; 6199 6200 pr_info("md: running: "); 6201 6202 rdev_for_each(rdev, mddev) { 6203 char b[BDEVNAME_SIZE]; 6204 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6205 } 6206 pr_cont("\n"); 6207 6208 err = do_md_run(mddev); 6209 if (err) { 6210 pr_warn("md: do_md_run() returned %d\n", err); 6211 do_md_stop(mddev, 0, NULL); 6212 } 6213 } 6214 6215 /* 6216 * lets try to run arrays based on all disks that have arrived 6217 * until now. (those are in pending_raid_disks) 6218 * 6219 * the method: pick the first pending disk, collect all disks with 6220 * the same UUID, remove all from the pending list and put them into 6221 * the 'same_array' list. Then order this list based on superblock 6222 * update time (freshest comes first), kick out 'old' disks and 6223 * compare superblocks. If everything's fine then run it. 6224 * 6225 * If "unit" is allocated, then bump its reference count 6226 */ 6227 static void autorun_devices(int part) 6228 { 6229 struct md_rdev *rdev0, *rdev, *tmp; 6230 struct mddev *mddev; 6231 char b[BDEVNAME_SIZE]; 6232 6233 pr_info("md: autorun ...\n"); 6234 while (!list_empty(&pending_raid_disks)) { 6235 int unit; 6236 dev_t dev; 6237 LIST_HEAD(candidates); 6238 rdev0 = list_entry(pending_raid_disks.next, 6239 struct md_rdev, same_set); 6240 6241 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6242 INIT_LIST_HEAD(&candidates); 6243 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6244 if (super_90_load(rdev, rdev0, 0) >= 0) { 6245 pr_debug("md: adding %s ...\n", 6246 bdevname(rdev->bdev,b)); 6247 list_move(&rdev->same_set, &candidates); 6248 } 6249 /* 6250 * now we have a set of devices, with all of them having 6251 * mostly sane superblocks. It's time to allocate the 6252 * mddev. 6253 */ 6254 if (part) { 6255 dev = MKDEV(mdp_major, 6256 rdev0->preferred_minor << MdpMinorShift); 6257 unit = MINOR(dev) >> MdpMinorShift; 6258 } else { 6259 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6260 unit = MINOR(dev); 6261 } 6262 if (rdev0->preferred_minor != unit) { 6263 pr_warn("md: unit number in %s is bad: %d\n", 6264 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6265 break; 6266 } 6267 6268 md_probe(dev, NULL, NULL); 6269 mddev = mddev_find(dev); 6270 if (!mddev || !mddev->gendisk) { 6271 if (mddev) 6272 mddev_put(mddev); 6273 break; 6274 } 6275 if (mddev_lock(mddev)) 6276 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6277 else if (mddev->raid_disks || mddev->major_version 6278 || !list_empty(&mddev->disks)) { 6279 pr_warn("md: %s already running, cannot run %s\n", 6280 mdname(mddev), bdevname(rdev0->bdev,b)); 6281 mddev_unlock(mddev); 6282 } else { 6283 pr_debug("md: created %s\n", mdname(mddev)); 6284 mddev->persistent = 1; 6285 rdev_for_each_list(rdev, tmp, &candidates) { 6286 list_del_init(&rdev->same_set); 6287 if (bind_rdev_to_array(rdev, mddev)) 6288 export_rdev(rdev); 6289 } 6290 autorun_array(mddev); 6291 mddev_unlock(mddev); 6292 } 6293 /* on success, candidates will be empty, on error 6294 * it won't... 6295 */ 6296 rdev_for_each_list(rdev, tmp, &candidates) { 6297 list_del_init(&rdev->same_set); 6298 export_rdev(rdev); 6299 } 6300 mddev_put(mddev); 6301 } 6302 pr_info("md: ... autorun DONE.\n"); 6303 } 6304 #endif /* !MODULE */ 6305 6306 static int get_version(void __user *arg) 6307 { 6308 mdu_version_t ver; 6309 6310 ver.major = MD_MAJOR_VERSION; 6311 ver.minor = MD_MINOR_VERSION; 6312 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6313 6314 if (copy_to_user(arg, &ver, sizeof(ver))) 6315 return -EFAULT; 6316 6317 return 0; 6318 } 6319 6320 static int get_array_info(struct mddev *mddev, void __user *arg) 6321 { 6322 mdu_array_info_t info; 6323 int nr,working,insync,failed,spare; 6324 struct md_rdev *rdev; 6325 6326 nr = working = insync = failed = spare = 0; 6327 rcu_read_lock(); 6328 rdev_for_each_rcu(rdev, mddev) { 6329 nr++; 6330 if (test_bit(Faulty, &rdev->flags)) 6331 failed++; 6332 else { 6333 working++; 6334 if (test_bit(In_sync, &rdev->flags)) 6335 insync++; 6336 else if (test_bit(Journal, &rdev->flags)) 6337 /* TODO: add journal count to md_u.h */ 6338 ; 6339 else 6340 spare++; 6341 } 6342 } 6343 rcu_read_unlock(); 6344 6345 info.major_version = mddev->major_version; 6346 info.minor_version = mddev->minor_version; 6347 info.patch_version = MD_PATCHLEVEL_VERSION; 6348 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6349 info.level = mddev->level; 6350 info.size = mddev->dev_sectors / 2; 6351 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6352 info.size = -1; 6353 info.nr_disks = nr; 6354 info.raid_disks = mddev->raid_disks; 6355 info.md_minor = mddev->md_minor; 6356 info.not_persistent= !mddev->persistent; 6357 6358 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6359 info.state = 0; 6360 if (mddev->in_sync) 6361 info.state = (1<<MD_SB_CLEAN); 6362 if (mddev->bitmap && mddev->bitmap_info.offset) 6363 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6364 if (mddev_is_clustered(mddev)) 6365 info.state |= (1<<MD_SB_CLUSTERED); 6366 info.active_disks = insync; 6367 info.working_disks = working; 6368 info.failed_disks = failed; 6369 info.spare_disks = spare; 6370 6371 info.layout = mddev->layout; 6372 info.chunk_size = mddev->chunk_sectors << 9; 6373 6374 if (copy_to_user(arg, &info, sizeof(info))) 6375 return -EFAULT; 6376 6377 return 0; 6378 } 6379 6380 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6381 { 6382 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6383 char *ptr; 6384 int err; 6385 6386 file = kzalloc(sizeof(*file), GFP_NOIO); 6387 if (!file) 6388 return -ENOMEM; 6389 6390 err = 0; 6391 spin_lock(&mddev->lock); 6392 /* bitmap enabled */ 6393 if (mddev->bitmap_info.file) { 6394 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6395 sizeof(file->pathname)); 6396 if (IS_ERR(ptr)) 6397 err = PTR_ERR(ptr); 6398 else 6399 memmove(file->pathname, ptr, 6400 sizeof(file->pathname)-(ptr-file->pathname)); 6401 } 6402 spin_unlock(&mddev->lock); 6403 6404 if (err == 0 && 6405 copy_to_user(arg, file, sizeof(*file))) 6406 err = -EFAULT; 6407 6408 kfree(file); 6409 return err; 6410 } 6411 6412 static int get_disk_info(struct mddev *mddev, void __user * arg) 6413 { 6414 mdu_disk_info_t info; 6415 struct md_rdev *rdev; 6416 6417 if (copy_from_user(&info, arg, sizeof(info))) 6418 return -EFAULT; 6419 6420 rcu_read_lock(); 6421 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6422 if (rdev) { 6423 info.major = MAJOR(rdev->bdev->bd_dev); 6424 info.minor = MINOR(rdev->bdev->bd_dev); 6425 info.raid_disk = rdev->raid_disk; 6426 info.state = 0; 6427 if (test_bit(Faulty, &rdev->flags)) 6428 info.state |= (1<<MD_DISK_FAULTY); 6429 else if (test_bit(In_sync, &rdev->flags)) { 6430 info.state |= (1<<MD_DISK_ACTIVE); 6431 info.state |= (1<<MD_DISK_SYNC); 6432 } 6433 if (test_bit(Journal, &rdev->flags)) 6434 info.state |= (1<<MD_DISK_JOURNAL); 6435 if (test_bit(WriteMostly, &rdev->flags)) 6436 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6437 if (test_bit(FailFast, &rdev->flags)) 6438 info.state |= (1<<MD_DISK_FAILFAST); 6439 } else { 6440 info.major = info.minor = 0; 6441 info.raid_disk = -1; 6442 info.state = (1<<MD_DISK_REMOVED); 6443 } 6444 rcu_read_unlock(); 6445 6446 if (copy_to_user(arg, &info, sizeof(info))) 6447 return -EFAULT; 6448 6449 return 0; 6450 } 6451 6452 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6453 { 6454 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6455 struct md_rdev *rdev; 6456 dev_t dev = MKDEV(info->major,info->minor); 6457 6458 if (mddev_is_clustered(mddev) && 6459 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6460 pr_warn("%s: Cannot add to clustered mddev.\n", 6461 mdname(mddev)); 6462 return -EINVAL; 6463 } 6464 6465 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6466 return -EOVERFLOW; 6467 6468 if (!mddev->raid_disks) { 6469 int err; 6470 /* expecting a device which has a superblock */ 6471 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6472 if (IS_ERR(rdev)) { 6473 pr_warn("md: md_import_device returned %ld\n", 6474 PTR_ERR(rdev)); 6475 return PTR_ERR(rdev); 6476 } 6477 if (!list_empty(&mddev->disks)) { 6478 struct md_rdev *rdev0 6479 = list_entry(mddev->disks.next, 6480 struct md_rdev, same_set); 6481 err = super_types[mddev->major_version] 6482 .load_super(rdev, rdev0, mddev->minor_version); 6483 if (err < 0) { 6484 pr_warn("md: %s has different UUID to %s\n", 6485 bdevname(rdev->bdev,b), 6486 bdevname(rdev0->bdev,b2)); 6487 export_rdev(rdev); 6488 return -EINVAL; 6489 } 6490 } 6491 err = bind_rdev_to_array(rdev, mddev); 6492 if (err) 6493 export_rdev(rdev); 6494 return err; 6495 } 6496 6497 /* 6498 * add_new_disk can be used once the array is assembled 6499 * to add "hot spares". They must already have a superblock 6500 * written 6501 */ 6502 if (mddev->pers) { 6503 int err; 6504 if (!mddev->pers->hot_add_disk) { 6505 pr_warn("%s: personality does not support diskops!\n", 6506 mdname(mddev)); 6507 return -EINVAL; 6508 } 6509 if (mddev->persistent) 6510 rdev = md_import_device(dev, mddev->major_version, 6511 mddev->minor_version); 6512 else 6513 rdev = md_import_device(dev, -1, -1); 6514 if (IS_ERR(rdev)) { 6515 pr_warn("md: md_import_device returned %ld\n", 6516 PTR_ERR(rdev)); 6517 return PTR_ERR(rdev); 6518 } 6519 /* set saved_raid_disk if appropriate */ 6520 if (!mddev->persistent) { 6521 if (info->state & (1<<MD_DISK_SYNC) && 6522 info->raid_disk < mddev->raid_disks) { 6523 rdev->raid_disk = info->raid_disk; 6524 set_bit(In_sync, &rdev->flags); 6525 clear_bit(Bitmap_sync, &rdev->flags); 6526 } else 6527 rdev->raid_disk = -1; 6528 rdev->saved_raid_disk = rdev->raid_disk; 6529 } else 6530 super_types[mddev->major_version]. 6531 validate_super(mddev, rdev); 6532 if ((info->state & (1<<MD_DISK_SYNC)) && 6533 rdev->raid_disk != info->raid_disk) { 6534 /* This was a hot-add request, but events doesn't 6535 * match, so reject it. 6536 */ 6537 export_rdev(rdev); 6538 return -EINVAL; 6539 } 6540 6541 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6542 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6543 set_bit(WriteMostly, &rdev->flags); 6544 else 6545 clear_bit(WriteMostly, &rdev->flags); 6546 if (info->state & (1<<MD_DISK_FAILFAST)) 6547 set_bit(FailFast, &rdev->flags); 6548 else 6549 clear_bit(FailFast, &rdev->flags); 6550 6551 if (info->state & (1<<MD_DISK_JOURNAL)) { 6552 struct md_rdev *rdev2; 6553 bool has_journal = false; 6554 6555 /* make sure no existing journal disk */ 6556 rdev_for_each(rdev2, mddev) { 6557 if (test_bit(Journal, &rdev2->flags)) { 6558 has_journal = true; 6559 break; 6560 } 6561 } 6562 if (has_journal || mddev->bitmap) { 6563 export_rdev(rdev); 6564 return -EBUSY; 6565 } 6566 set_bit(Journal, &rdev->flags); 6567 } 6568 /* 6569 * check whether the device shows up in other nodes 6570 */ 6571 if (mddev_is_clustered(mddev)) { 6572 if (info->state & (1 << MD_DISK_CANDIDATE)) 6573 set_bit(Candidate, &rdev->flags); 6574 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6575 /* --add initiated by this node */ 6576 err = md_cluster_ops->add_new_disk(mddev, rdev); 6577 if (err) { 6578 export_rdev(rdev); 6579 return err; 6580 } 6581 } 6582 } 6583 6584 rdev->raid_disk = -1; 6585 err = bind_rdev_to_array(rdev, mddev); 6586 6587 if (err) 6588 export_rdev(rdev); 6589 6590 if (mddev_is_clustered(mddev)) { 6591 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6592 if (!err) { 6593 err = md_cluster_ops->new_disk_ack(mddev, 6594 err == 0); 6595 if (err) 6596 md_kick_rdev_from_array(rdev); 6597 } 6598 } else { 6599 if (err) 6600 md_cluster_ops->add_new_disk_cancel(mddev); 6601 else 6602 err = add_bound_rdev(rdev); 6603 } 6604 6605 } else if (!err) 6606 err = add_bound_rdev(rdev); 6607 6608 return err; 6609 } 6610 6611 /* otherwise, add_new_disk is only allowed 6612 * for major_version==0 superblocks 6613 */ 6614 if (mddev->major_version != 0) { 6615 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6616 return -EINVAL; 6617 } 6618 6619 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6620 int err; 6621 rdev = md_import_device(dev, -1, 0); 6622 if (IS_ERR(rdev)) { 6623 pr_warn("md: error, md_import_device() returned %ld\n", 6624 PTR_ERR(rdev)); 6625 return PTR_ERR(rdev); 6626 } 6627 rdev->desc_nr = info->number; 6628 if (info->raid_disk < mddev->raid_disks) 6629 rdev->raid_disk = info->raid_disk; 6630 else 6631 rdev->raid_disk = -1; 6632 6633 if (rdev->raid_disk < mddev->raid_disks) 6634 if (info->state & (1<<MD_DISK_SYNC)) 6635 set_bit(In_sync, &rdev->flags); 6636 6637 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6638 set_bit(WriteMostly, &rdev->flags); 6639 if (info->state & (1<<MD_DISK_FAILFAST)) 6640 set_bit(FailFast, &rdev->flags); 6641 6642 if (!mddev->persistent) { 6643 pr_debug("md: nonpersistent superblock ...\n"); 6644 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6645 } else 6646 rdev->sb_start = calc_dev_sboffset(rdev); 6647 rdev->sectors = rdev->sb_start; 6648 6649 err = bind_rdev_to_array(rdev, mddev); 6650 if (err) { 6651 export_rdev(rdev); 6652 return err; 6653 } 6654 } 6655 6656 return 0; 6657 } 6658 6659 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6660 { 6661 char b[BDEVNAME_SIZE]; 6662 struct md_rdev *rdev; 6663 6664 if (!mddev->pers) 6665 return -ENODEV; 6666 6667 rdev = find_rdev(mddev, dev); 6668 if (!rdev) 6669 return -ENXIO; 6670 6671 if (rdev->raid_disk < 0) 6672 goto kick_rdev; 6673 6674 clear_bit(Blocked, &rdev->flags); 6675 remove_and_add_spares(mddev, rdev); 6676 6677 if (rdev->raid_disk >= 0) 6678 goto busy; 6679 6680 kick_rdev: 6681 if (mddev_is_clustered(mddev)) 6682 md_cluster_ops->remove_disk(mddev, rdev); 6683 6684 md_kick_rdev_from_array(rdev); 6685 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6686 if (mddev->thread) 6687 md_wakeup_thread(mddev->thread); 6688 else 6689 md_update_sb(mddev, 1); 6690 md_new_event(mddev); 6691 6692 return 0; 6693 busy: 6694 pr_debug("md: cannot remove active disk %s from %s ...\n", 6695 bdevname(rdev->bdev,b), mdname(mddev)); 6696 return -EBUSY; 6697 } 6698 6699 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6700 { 6701 char b[BDEVNAME_SIZE]; 6702 int err; 6703 struct md_rdev *rdev; 6704 6705 if (!mddev->pers) 6706 return -ENODEV; 6707 6708 if (mddev->major_version != 0) { 6709 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6710 mdname(mddev)); 6711 return -EINVAL; 6712 } 6713 if (!mddev->pers->hot_add_disk) { 6714 pr_warn("%s: personality does not support diskops!\n", 6715 mdname(mddev)); 6716 return -EINVAL; 6717 } 6718 6719 rdev = md_import_device(dev, -1, 0); 6720 if (IS_ERR(rdev)) { 6721 pr_warn("md: error, md_import_device() returned %ld\n", 6722 PTR_ERR(rdev)); 6723 return -EINVAL; 6724 } 6725 6726 if (mddev->persistent) 6727 rdev->sb_start = calc_dev_sboffset(rdev); 6728 else 6729 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6730 6731 rdev->sectors = rdev->sb_start; 6732 6733 if (test_bit(Faulty, &rdev->flags)) { 6734 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6735 bdevname(rdev->bdev,b), mdname(mddev)); 6736 err = -EINVAL; 6737 goto abort_export; 6738 } 6739 6740 clear_bit(In_sync, &rdev->flags); 6741 rdev->desc_nr = -1; 6742 rdev->saved_raid_disk = -1; 6743 err = bind_rdev_to_array(rdev, mddev); 6744 if (err) 6745 goto abort_export; 6746 6747 /* 6748 * The rest should better be atomic, we can have disk failures 6749 * noticed in interrupt contexts ... 6750 */ 6751 6752 rdev->raid_disk = -1; 6753 6754 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6755 if (!mddev->thread) 6756 md_update_sb(mddev, 1); 6757 /* 6758 * Kick recovery, maybe this spare has to be added to the 6759 * array immediately. 6760 */ 6761 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6762 md_wakeup_thread(mddev->thread); 6763 md_new_event(mddev); 6764 return 0; 6765 6766 abort_export: 6767 export_rdev(rdev); 6768 return err; 6769 } 6770 6771 static int set_bitmap_file(struct mddev *mddev, int fd) 6772 { 6773 int err = 0; 6774 6775 if (mddev->pers) { 6776 if (!mddev->pers->quiesce || !mddev->thread) 6777 return -EBUSY; 6778 if (mddev->recovery || mddev->sync_thread) 6779 return -EBUSY; 6780 /* we should be able to change the bitmap.. */ 6781 } 6782 6783 if (fd >= 0) { 6784 struct inode *inode; 6785 struct file *f; 6786 6787 if (mddev->bitmap || mddev->bitmap_info.file) 6788 return -EEXIST; /* cannot add when bitmap is present */ 6789 f = fget(fd); 6790 6791 if (f == NULL) { 6792 pr_warn("%s: error: failed to get bitmap file\n", 6793 mdname(mddev)); 6794 return -EBADF; 6795 } 6796 6797 inode = f->f_mapping->host; 6798 if (!S_ISREG(inode->i_mode)) { 6799 pr_warn("%s: error: bitmap file must be a regular file\n", 6800 mdname(mddev)); 6801 err = -EBADF; 6802 } else if (!(f->f_mode & FMODE_WRITE)) { 6803 pr_warn("%s: error: bitmap file must open for write\n", 6804 mdname(mddev)); 6805 err = -EBADF; 6806 } else if (atomic_read(&inode->i_writecount) != 1) { 6807 pr_warn("%s: error: bitmap file is already in use\n", 6808 mdname(mddev)); 6809 err = -EBUSY; 6810 } 6811 if (err) { 6812 fput(f); 6813 return err; 6814 } 6815 mddev->bitmap_info.file = f; 6816 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6817 } else if (mddev->bitmap == NULL) 6818 return -ENOENT; /* cannot remove what isn't there */ 6819 err = 0; 6820 if (mddev->pers) { 6821 if (fd >= 0) { 6822 struct bitmap *bitmap; 6823 6824 bitmap = md_bitmap_create(mddev, -1); 6825 mddev_suspend(mddev); 6826 if (!IS_ERR(bitmap)) { 6827 mddev->bitmap = bitmap; 6828 err = md_bitmap_load(mddev); 6829 } else 6830 err = PTR_ERR(bitmap); 6831 if (err) { 6832 md_bitmap_destroy(mddev); 6833 fd = -1; 6834 } 6835 mddev_resume(mddev); 6836 } else if (fd < 0) { 6837 mddev_suspend(mddev); 6838 md_bitmap_destroy(mddev); 6839 mddev_resume(mddev); 6840 } 6841 } 6842 if (fd < 0) { 6843 struct file *f = mddev->bitmap_info.file; 6844 if (f) { 6845 spin_lock(&mddev->lock); 6846 mddev->bitmap_info.file = NULL; 6847 spin_unlock(&mddev->lock); 6848 fput(f); 6849 } 6850 } 6851 6852 return err; 6853 } 6854 6855 /* 6856 * set_array_info is used two different ways 6857 * The original usage is when creating a new array. 6858 * In this usage, raid_disks is > 0 and it together with 6859 * level, size, not_persistent,layout,chunksize determine the 6860 * shape of the array. 6861 * This will always create an array with a type-0.90.0 superblock. 6862 * The newer usage is when assembling an array. 6863 * In this case raid_disks will be 0, and the major_version field is 6864 * use to determine which style super-blocks are to be found on the devices. 6865 * The minor and patch _version numbers are also kept incase the 6866 * super_block handler wishes to interpret them. 6867 */ 6868 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6869 { 6870 6871 if (info->raid_disks == 0) { 6872 /* just setting version number for superblock loading */ 6873 if (info->major_version < 0 || 6874 info->major_version >= ARRAY_SIZE(super_types) || 6875 super_types[info->major_version].name == NULL) { 6876 /* maybe try to auto-load a module? */ 6877 pr_warn("md: superblock version %d not known\n", 6878 info->major_version); 6879 return -EINVAL; 6880 } 6881 mddev->major_version = info->major_version; 6882 mddev->minor_version = info->minor_version; 6883 mddev->patch_version = info->patch_version; 6884 mddev->persistent = !info->not_persistent; 6885 /* ensure mddev_put doesn't delete this now that there 6886 * is some minimal configuration. 6887 */ 6888 mddev->ctime = ktime_get_real_seconds(); 6889 return 0; 6890 } 6891 mddev->major_version = MD_MAJOR_VERSION; 6892 mddev->minor_version = MD_MINOR_VERSION; 6893 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6894 mddev->ctime = ktime_get_real_seconds(); 6895 6896 mddev->level = info->level; 6897 mddev->clevel[0] = 0; 6898 mddev->dev_sectors = 2 * (sector_t)info->size; 6899 mddev->raid_disks = info->raid_disks; 6900 /* don't set md_minor, it is determined by which /dev/md* was 6901 * openned 6902 */ 6903 if (info->state & (1<<MD_SB_CLEAN)) 6904 mddev->recovery_cp = MaxSector; 6905 else 6906 mddev->recovery_cp = 0; 6907 mddev->persistent = ! info->not_persistent; 6908 mddev->external = 0; 6909 6910 mddev->layout = info->layout; 6911 if (mddev->level == 0) 6912 /* Cannot trust RAID0 layout info here */ 6913 mddev->layout = -1; 6914 mddev->chunk_sectors = info->chunk_size >> 9; 6915 6916 if (mddev->persistent) { 6917 mddev->max_disks = MD_SB_DISKS; 6918 mddev->flags = 0; 6919 mddev->sb_flags = 0; 6920 } 6921 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6922 6923 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6924 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6925 mddev->bitmap_info.offset = 0; 6926 6927 mddev->reshape_position = MaxSector; 6928 6929 /* 6930 * Generate a 128 bit UUID 6931 */ 6932 get_random_bytes(mddev->uuid, 16); 6933 6934 mddev->new_level = mddev->level; 6935 mddev->new_chunk_sectors = mddev->chunk_sectors; 6936 mddev->new_layout = mddev->layout; 6937 mddev->delta_disks = 0; 6938 mddev->reshape_backwards = 0; 6939 6940 return 0; 6941 } 6942 6943 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6944 { 6945 lockdep_assert_held(&mddev->reconfig_mutex); 6946 6947 if (mddev->external_size) 6948 return; 6949 6950 mddev->array_sectors = array_sectors; 6951 } 6952 EXPORT_SYMBOL(md_set_array_sectors); 6953 6954 static int update_size(struct mddev *mddev, sector_t num_sectors) 6955 { 6956 struct md_rdev *rdev; 6957 int rv; 6958 int fit = (num_sectors == 0); 6959 sector_t old_dev_sectors = mddev->dev_sectors; 6960 6961 if (mddev->pers->resize == NULL) 6962 return -EINVAL; 6963 /* The "num_sectors" is the number of sectors of each device that 6964 * is used. This can only make sense for arrays with redundancy. 6965 * linear and raid0 always use whatever space is available. We can only 6966 * consider changing this number if no resync or reconstruction is 6967 * happening, and if the new size is acceptable. It must fit before the 6968 * sb_start or, if that is <data_offset, it must fit before the size 6969 * of each device. If num_sectors is zero, we find the largest size 6970 * that fits. 6971 */ 6972 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6973 mddev->sync_thread) 6974 return -EBUSY; 6975 if (mddev->ro) 6976 return -EROFS; 6977 6978 rdev_for_each(rdev, mddev) { 6979 sector_t avail = rdev->sectors; 6980 6981 if (fit && (num_sectors == 0 || num_sectors > avail)) 6982 num_sectors = avail; 6983 if (avail < num_sectors) 6984 return -ENOSPC; 6985 } 6986 rv = mddev->pers->resize(mddev, num_sectors); 6987 if (!rv) { 6988 if (mddev_is_clustered(mddev)) 6989 md_cluster_ops->update_size(mddev, old_dev_sectors); 6990 else if (mddev->queue) { 6991 set_capacity(mddev->gendisk, mddev->array_sectors); 6992 revalidate_disk(mddev->gendisk); 6993 } 6994 } 6995 return rv; 6996 } 6997 6998 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6999 { 7000 int rv; 7001 struct md_rdev *rdev; 7002 /* change the number of raid disks */ 7003 if (mddev->pers->check_reshape == NULL) 7004 return -EINVAL; 7005 if (mddev->ro) 7006 return -EROFS; 7007 if (raid_disks <= 0 || 7008 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7009 return -EINVAL; 7010 if (mddev->sync_thread || 7011 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7012 mddev->reshape_position != MaxSector) 7013 return -EBUSY; 7014 7015 rdev_for_each(rdev, mddev) { 7016 if (mddev->raid_disks < raid_disks && 7017 rdev->data_offset < rdev->new_data_offset) 7018 return -EINVAL; 7019 if (mddev->raid_disks > raid_disks && 7020 rdev->data_offset > rdev->new_data_offset) 7021 return -EINVAL; 7022 } 7023 7024 mddev->delta_disks = raid_disks - mddev->raid_disks; 7025 if (mddev->delta_disks < 0) 7026 mddev->reshape_backwards = 1; 7027 else if (mddev->delta_disks > 0) 7028 mddev->reshape_backwards = 0; 7029 7030 rv = mddev->pers->check_reshape(mddev); 7031 if (rv < 0) { 7032 mddev->delta_disks = 0; 7033 mddev->reshape_backwards = 0; 7034 } 7035 return rv; 7036 } 7037 7038 /* 7039 * update_array_info is used to change the configuration of an 7040 * on-line array. 7041 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7042 * fields in the info are checked against the array. 7043 * Any differences that cannot be handled will cause an error. 7044 * Normally, only one change can be managed at a time. 7045 */ 7046 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7047 { 7048 int rv = 0; 7049 int cnt = 0; 7050 int state = 0; 7051 7052 /* calculate expected state,ignoring low bits */ 7053 if (mddev->bitmap && mddev->bitmap_info.offset) 7054 state |= (1 << MD_SB_BITMAP_PRESENT); 7055 7056 if (mddev->major_version != info->major_version || 7057 mddev->minor_version != info->minor_version || 7058 /* mddev->patch_version != info->patch_version || */ 7059 mddev->ctime != info->ctime || 7060 mddev->level != info->level || 7061 /* mddev->layout != info->layout || */ 7062 mddev->persistent != !info->not_persistent || 7063 mddev->chunk_sectors != info->chunk_size >> 9 || 7064 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7065 ((state^info->state) & 0xfffffe00) 7066 ) 7067 return -EINVAL; 7068 /* Check there is only one change */ 7069 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7070 cnt++; 7071 if (mddev->raid_disks != info->raid_disks) 7072 cnt++; 7073 if (mddev->layout != info->layout) 7074 cnt++; 7075 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7076 cnt++; 7077 if (cnt == 0) 7078 return 0; 7079 if (cnt > 1) 7080 return -EINVAL; 7081 7082 if (mddev->layout != info->layout) { 7083 /* Change layout 7084 * we don't need to do anything at the md level, the 7085 * personality will take care of it all. 7086 */ 7087 if (mddev->pers->check_reshape == NULL) 7088 return -EINVAL; 7089 else { 7090 mddev->new_layout = info->layout; 7091 rv = mddev->pers->check_reshape(mddev); 7092 if (rv) 7093 mddev->new_layout = mddev->layout; 7094 return rv; 7095 } 7096 } 7097 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7098 rv = update_size(mddev, (sector_t)info->size * 2); 7099 7100 if (mddev->raid_disks != info->raid_disks) 7101 rv = update_raid_disks(mddev, info->raid_disks); 7102 7103 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7104 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7105 rv = -EINVAL; 7106 goto err; 7107 } 7108 if (mddev->recovery || mddev->sync_thread) { 7109 rv = -EBUSY; 7110 goto err; 7111 } 7112 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7113 struct bitmap *bitmap; 7114 /* add the bitmap */ 7115 if (mddev->bitmap) { 7116 rv = -EEXIST; 7117 goto err; 7118 } 7119 if (mddev->bitmap_info.default_offset == 0) { 7120 rv = -EINVAL; 7121 goto err; 7122 } 7123 mddev->bitmap_info.offset = 7124 mddev->bitmap_info.default_offset; 7125 mddev->bitmap_info.space = 7126 mddev->bitmap_info.default_space; 7127 bitmap = md_bitmap_create(mddev, -1); 7128 mddev_suspend(mddev); 7129 if (!IS_ERR(bitmap)) { 7130 mddev->bitmap = bitmap; 7131 rv = md_bitmap_load(mddev); 7132 } else 7133 rv = PTR_ERR(bitmap); 7134 if (rv) 7135 md_bitmap_destroy(mddev); 7136 mddev_resume(mddev); 7137 } else { 7138 /* remove the bitmap */ 7139 if (!mddev->bitmap) { 7140 rv = -ENOENT; 7141 goto err; 7142 } 7143 if (mddev->bitmap->storage.file) { 7144 rv = -EINVAL; 7145 goto err; 7146 } 7147 if (mddev->bitmap_info.nodes) { 7148 /* hold PW on all the bitmap lock */ 7149 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7150 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7151 rv = -EPERM; 7152 md_cluster_ops->unlock_all_bitmaps(mddev); 7153 goto err; 7154 } 7155 7156 mddev->bitmap_info.nodes = 0; 7157 md_cluster_ops->leave(mddev); 7158 } 7159 mddev_suspend(mddev); 7160 md_bitmap_destroy(mddev); 7161 mddev_resume(mddev); 7162 mddev->bitmap_info.offset = 0; 7163 } 7164 } 7165 md_update_sb(mddev, 1); 7166 return rv; 7167 err: 7168 return rv; 7169 } 7170 7171 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7172 { 7173 struct md_rdev *rdev; 7174 int err = 0; 7175 7176 if (mddev->pers == NULL) 7177 return -ENODEV; 7178 7179 rcu_read_lock(); 7180 rdev = md_find_rdev_rcu(mddev, dev); 7181 if (!rdev) 7182 err = -ENODEV; 7183 else { 7184 md_error(mddev, rdev); 7185 if (!test_bit(Faulty, &rdev->flags)) 7186 err = -EBUSY; 7187 } 7188 rcu_read_unlock(); 7189 return err; 7190 } 7191 7192 /* 7193 * We have a problem here : there is no easy way to give a CHS 7194 * virtual geometry. We currently pretend that we have a 2 heads 7195 * 4 sectors (with a BIG number of cylinders...). This drives 7196 * dosfs just mad... ;-) 7197 */ 7198 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7199 { 7200 struct mddev *mddev = bdev->bd_disk->private_data; 7201 7202 geo->heads = 2; 7203 geo->sectors = 4; 7204 geo->cylinders = mddev->array_sectors / 8; 7205 return 0; 7206 } 7207 7208 static inline bool md_ioctl_valid(unsigned int cmd) 7209 { 7210 switch (cmd) { 7211 case ADD_NEW_DISK: 7212 case BLKROSET: 7213 case GET_ARRAY_INFO: 7214 case GET_BITMAP_FILE: 7215 case GET_DISK_INFO: 7216 case HOT_ADD_DISK: 7217 case HOT_REMOVE_DISK: 7218 case RAID_AUTORUN: 7219 case RAID_VERSION: 7220 case RESTART_ARRAY_RW: 7221 case RUN_ARRAY: 7222 case SET_ARRAY_INFO: 7223 case SET_BITMAP_FILE: 7224 case SET_DISK_FAULTY: 7225 case STOP_ARRAY: 7226 case STOP_ARRAY_RO: 7227 case CLUSTERED_DISK_NACK: 7228 return true; 7229 default: 7230 return false; 7231 } 7232 } 7233 7234 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7235 unsigned int cmd, unsigned long arg) 7236 { 7237 int err = 0; 7238 void __user *argp = (void __user *)arg; 7239 struct mddev *mddev = NULL; 7240 int ro; 7241 bool did_set_md_closing = false; 7242 7243 if (!md_ioctl_valid(cmd)) 7244 return -ENOTTY; 7245 7246 switch (cmd) { 7247 case RAID_VERSION: 7248 case GET_ARRAY_INFO: 7249 case GET_DISK_INFO: 7250 break; 7251 default: 7252 if (!capable(CAP_SYS_ADMIN)) 7253 return -EACCES; 7254 } 7255 7256 /* 7257 * Commands dealing with the RAID driver but not any 7258 * particular array: 7259 */ 7260 switch (cmd) { 7261 case RAID_VERSION: 7262 err = get_version(argp); 7263 goto out; 7264 7265 #ifndef MODULE 7266 case RAID_AUTORUN: 7267 err = 0; 7268 autostart_arrays(arg); 7269 goto out; 7270 #endif 7271 default:; 7272 } 7273 7274 /* 7275 * Commands creating/starting a new array: 7276 */ 7277 7278 mddev = bdev->bd_disk->private_data; 7279 7280 if (!mddev) { 7281 BUG(); 7282 goto out; 7283 } 7284 7285 /* Some actions do not requires the mutex */ 7286 switch (cmd) { 7287 case GET_ARRAY_INFO: 7288 if (!mddev->raid_disks && !mddev->external) 7289 err = -ENODEV; 7290 else 7291 err = get_array_info(mddev, argp); 7292 goto out; 7293 7294 case GET_DISK_INFO: 7295 if (!mddev->raid_disks && !mddev->external) 7296 err = -ENODEV; 7297 else 7298 err = get_disk_info(mddev, argp); 7299 goto out; 7300 7301 case SET_DISK_FAULTY: 7302 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7303 goto out; 7304 7305 case GET_BITMAP_FILE: 7306 err = get_bitmap_file(mddev, argp); 7307 goto out; 7308 7309 } 7310 7311 if (cmd == ADD_NEW_DISK) 7312 /* need to ensure md_delayed_delete() has completed */ 7313 flush_workqueue(md_misc_wq); 7314 7315 if (cmd == HOT_REMOVE_DISK) 7316 /* need to ensure recovery thread has run */ 7317 wait_event_interruptible_timeout(mddev->sb_wait, 7318 !test_bit(MD_RECOVERY_NEEDED, 7319 &mddev->recovery), 7320 msecs_to_jiffies(5000)); 7321 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7322 /* Need to flush page cache, and ensure no-one else opens 7323 * and writes 7324 */ 7325 mutex_lock(&mddev->open_mutex); 7326 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7327 mutex_unlock(&mddev->open_mutex); 7328 err = -EBUSY; 7329 goto out; 7330 } 7331 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7332 set_bit(MD_CLOSING, &mddev->flags); 7333 did_set_md_closing = true; 7334 mutex_unlock(&mddev->open_mutex); 7335 sync_blockdev(bdev); 7336 } 7337 err = mddev_lock(mddev); 7338 if (err) { 7339 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7340 err, cmd); 7341 goto out; 7342 } 7343 7344 if (cmd == SET_ARRAY_INFO) { 7345 mdu_array_info_t info; 7346 if (!arg) 7347 memset(&info, 0, sizeof(info)); 7348 else if (copy_from_user(&info, argp, sizeof(info))) { 7349 err = -EFAULT; 7350 goto unlock; 7351 } 7352 if (mddev->pers) { 7353 err = update_array_info(mddev, &info); 7354 if (err) { 7355 pr_warn("md: couldn't update array info. %d\n", err); 7356 goto unlock; 7357 } 7358 goto unlock; 7359 } 7360 if (!list_empty(&mddev->disks)) { 7361 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7362 err = -EBUSY; 7363 goto unlock; 7364 } 7365 if (mddev->raid_disks) { 7366 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7367 err = -EBUSY; 7368 goto unlock; 7369 } 7370 err = set_array_info(mddev, &info); 7371 if (err) { 7372 pr_warn("md: couldn't set array info. %d\n", err); 7373 goto unlock; 7374 } 7375 goto unlock; 7376 } 7377 7378 /* 7379 * Commands querying/configuring an existing array: 7380 */ 7381 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7382 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7383 if ((!mddev->raid_disks && !mddev->external) 7384 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7385 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7386 && cmd != GET_BITMAP_FILE) { 7387 err = -ENODEV; 7388 goto unlock; 7389 } 7390 7391 /* 7392 * Commands even a read-only array can execute: 7393 */ 7394 switch (cmd) { 7395 case RESTART_ARRAY_RW: 7396 err = restart_array(mddev); 7397 goto unlock; 7398 7399 case STOP_ARRAY: 7400 err = do_md_stop(mddev, 0, bdev); 7401 goto unlock; 7402 7403 case STOP_ARRAY_RO: 7404 err = md_set_readonly(mddev, bdev); 7405 goto unlock; 7406 7407 case HOT_REMOVE_DISK: 7408 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7409 goto unlock; 7410 7411 case ADD_NEW_DISK: 7412 /* We can support ADD_NEW_DISK on read-only arrays 7413 * only if we are re-adding a preexisting device. 7414 * So require mddev->pers and MD_DISK_SYNC. 7415 */ 7416 if (mddev->pers) { 7417 mdu_disk_info_t info; 7418 if (copy_from_user(&info, argp, sizeof(info))) 7419 err = -EFAULT; 7420 else if (!(info.state & (1<<MD_DISK_SYNC))) 7421 /* Need to clear read-only for this */ 7422 break; 7423 else 7424 err = add_new_disk(mddev, &info); 7425 goto unlock; 7426 } 7427 break; 7428 7429 case BLKROSET: 7430 if (get_user(ro, (int __user *)(arg))) { 7431 err = -EFAULT; 7432 goto unlock; 7433 } 7434 err = -EINVAL; 7435 7436 /* if the bdev is going readonly the value of mddev->ro 7437 * does not matter, no writes are coming 7438 */ 7439 if (ro) 7440 goto unlock; 7441 7442 /* are we are already prepared for writes? */ 7443 if (mddev->ro != 1) 7444 goto unlock; 7445 7446 /* transitioning to readauto need only happen for 7447 * arrays that call md_write_start 7448 */ 7449 if (mddev->pers) { 7450 err = restart_array(mddev); 7451 if (err == 0) { 7452 mddev->ro = 2; 7453 set_disk_ro(mddev->gendisk, 0); 7454 } 7455 } 7456 goto unlock; 7457 } 7458 7459 /* 7460 * The remaining ioctls are changing the state of the 7461 * superblock, so we do not allow them on read-only arrays. 7462 */ 7463 if (mddev->ro && mddev->pers) { 7464 if (mddev->ro == 2) { 7465 mddev->ro = 0; 7466 sysfs_notify_dirent_safe(mddev->sysfs_state); 7467 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7468 /* mddev_unlock will wake thread */ 7469 /* If a device failed while we were read-only, we 7470 * need to make sure the metadata is updated now. 7471 */ 7472 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7473 mddev_unlock(mddev); 7474 wait_event(mddev->sb_wait, 7475 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7476 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7477 mddev_lock_nointr(mddev); 7478 } 7479 } else { 7480 err = -EROFS; 7481 goto unlock; 7482 } 7483 } 7484 7485 switch (cmd) { 7486 case ADD_NEW_DISK: 7487 { 7488 mdu_disk_info_t info; 7489 if (copy_from_user(&info, argp, sizeof(info))) 7490 err = -EFAULT; 7491 else 7492 err = add_new_disk(mddev, &info); 7493 goto unlock; 7494 } 7495 7496 case CLUSTERED_DISK_NACK: 7497 if (mddev_is_clustered(mddev)) 7498 md_cluster_ops->new_disk_ack(mddev, false); 7499 else 7500 err = -EINVAL; 7501 goto unlock; 7502 7503 case HOT_ADD_DISK: 7504 err = hot_add_disk(mddev, new_decode_dev(arg)); 7505 goto unlock; 7506 7507 case RUN_ARRAY: 7508 err = do_md_run(mddev); 7509 goto unlock; 7510 7511 case SET_BITMAP_FILE: 7512 err = set_bitmap_file(mddev, (int)arg); 7513 goto unlock; 7514 7515 default: 7516 err = -EINVAL; 7517 goto unlock; 7518 } 7519 7520 unlock: 7521 if (mddev->hold_active == UNTIL_IOCTL && 7522 err != -EINVAL) 7523 mddev->hold_active = 0; 7524 mddev_unlock(mddev); 7525 out: 7526 if(did_set_md_closing) 7527 clear_bit(MD_CLOSING, &mddev->flags); 7528 return err; 7529 } 7530 #ifdef CONFIG_COMPAT 7531 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7532 unsigned int cmd, unsigned long arg) 7533 { 7534 switch (cmd) { 7535 case HOT_REMOVE_DISK: 7536 case HOT_ADD_DISK: 7537 case SET_DISK_FAULTY: 7538 case SET_BITMAP_FILE: 7539 /* These take in integer arg, do not convert */ 7540 break; 7541 default: 7542 arg = (unsigned long)compat_ptr(arg); 7543 break; 7544 } 7545 7546 return md_ioctl(bdev, mode, cmd, arg); 7547 } 7548 #endif /* CONFIG_COMPAT */ 7549 7550 static int md_open(struct block_device *bdev, fmode_t mode) 7551 { 7552 /* 7553 * Succeed if we can lock the mddev, which confirms that 7554 * it isn't being stopped right now. 7555 */ 7556 struct mddev *mddev = mddev_find(bdev->bd_dev); 7557 int err; 7558 7559 if (!mddev) 7560 return -ENODEV; 7561 7562 if (mddev->gendisk != bdev->bd_disk) { 7563 /* we are racing with mddev_put which is discarding this 7564 * bd_disk. 7565 */ 7566 mddev_put(mddev); 7567 /* Wait until bdev->bd_disk is definitely gone */ 7568 flush_workqueue(md_misc_wq); 7569 /* Then retry the open from the top */ 7570 return -ERESTARTSYS; 7571 } 7572 BUG_ON(mddev != bdev->bd_disk->private_data); 7573 7574 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7575 goto out; 7576 7577 if (test_bit(MD_CLOSING, &mddev->flags)) { 7578 mutex_unlock(&mddev->open_mutex); 7579 err = -ENODEV; 7580 goto out; 7581 } 7582 7583 err = 0; 7584 atomic_inc(&mddev->openers); 7585 mutex_unlock(&mddev->open_mutex); 7586 7587 check_disk_change(bdev); 7588 out: 7589 if (err) 7590 mddev_put(mddev); 7591 return err; 7592 } 7593 7594 static void md_release(struct gendisk *disk, fmode_t mode) 7595 { 7596 struct mddev *mddev = disk->private_data; 7597 7598 BUG_ON(!mddev); 7599 atomic_dec(&mddev->openers); 7600 mddev_put(mddev); 7601 } 7602 7603 static int md_media_changed(struct gendisk *disk) 7604 { 7605 struct mddev *mddev = disk->private_data; 7606 7607 return mddev->changed; 7608 } 7609 7610 static int md_revalidate(struct gendisk *disk) 7611 { 7612 struct mddev *mddev = disk->private_data; 7613 7614 mddev->changed = 0; 7615 return 0; 7616 } 7617 static const struct block_device_operations md_fops = 7618 { 7619 .owner = THIS_MODULE, 7620 .open = md_open, 7621 .release = md_release, 7622 .ioctl = md_ioctl, 7623 #ifdef CONFIG_COMPAT 7624 .compat_ioctl = md_compat_ioctl, 7625 #endif 7626 .getgeo = md_getgeo, 7627 .media_changed = md_media_changed, 7628 .revalidate_disk= md_revalidate, 7629 }; 7630 7631 static int md_thread(void *arg) 7632 { 7633 struct md_thread *thread = arg; 7634 7635 /* 7636 * md_thread is a 'system-thread', it's priority should be very 7637 * high. We avoid resource deadlocks individually in each 7638 * raid personality. (RAID5 does preallocation) We also use RR and 7639 * the very same RT priority as kswapd, thus we will never get 7640 * into a priority inversion deadlock. 7641 * 7642 * we definitely have to have equal or higher priority than 7643 * bdflush, otherwise bdflush will deadlock if there are too 7644 * many dirty RAID5 blocks. 7645 */ 7646 7647 allow_signal(SIGKILL); 7648 while (!kthread_should_stop()) { 7649 7650 /* We need to wait INTERRUPTIBLE so that 7651 * we don't add to the load-average. 7652 * That means we need to be sure no signals are 7653 * pending 7654 */ 7655 if (signal_pending(current)) 7656 flush_signals(current); 7657 7658 wait_event_interruptible_timeout 7659 (thread->wqueue, 7660 test_bit(THREAD_WAKEUP, &thread->flags) 7661 || kthread_should_stop() || kthread_should_park(), 7662 thread->timeout); 7663 7664 clear_bit(THREAD_WAKEUP, &thread->flags); 7665 if (kthread_should_park()) 7666 kthread_parkme(); 7667 if (!kthread_should_stop()) 7668 thread->run(thread); 7669 } 7670 7671 return 0; 7672 } 7673 7674 void md_wakeup_thread(struct md_thread *thread) 7675 { 7676 if (thread) { 7677 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7678 set_bit(THREAD_WAKEUP, &thread->flags); 7679 wake_up(&thread->wqueue); 7680 } 7681 } 7682 EXPORT_SYMBOL(md_wakeup_thread); 7683 7684 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7685 struct mddev *mddev, const char *name) 7686 { 7687 struct md_thread *thread; 7688 7689 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7690 if (!thread) 7691 return NULL; 7692 7693 init_waitqueue_head(&thread->wqueue); 7694 7695 thread->run = run; 7696 thread->mddev = mddev; 7697 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7698 thread->tsk = kthread_run(md_thread, thread, 7699 "%s_%s", 7700 mdname(thread->mddev), 7701 name); 7702 if (IS_ERR(thread->tsk)) { 7703 kfree(thread); 7704 return NULL; 7705 } 7706 return thread; 7707 } 7708 EXPORT_SYMBOL(md_register_thread); 7709 7710 void md_unregister_thread(struct md_thread **threadp) 7711 { 7712 struct md_thread *thread = *threadp; 7713 if (!thread) 7714 return; 7715 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7716 /* Locking ensures that mddev_unlock does not wake_up a 7717 * non-existent thread 7718 */ 7719 spin_lock(&pers_lock); 7720 *threadp = NULL; 7721 spin_unlock(&pers_lock); 7722 7723 kthread_stop(thread->tsk); 7724 kfree(thread); 7725 } 7726 EXPORT_SYMBOL(md_unregister_thread); 7727 7728 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7729 { 7730 if (!rdev || test_bit(Faulty, &rdev->flags)) 7731 return; 7732 7733 if (!mddev->pers || !mddev->pers->error_handler) 7734 return; 7735 mddev->pers->error_handler(mddev,rdev); 7736 if (mddev->degraded) 7737 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7738 sysfs_notify_dirent_safe(rdev->sysfs_state); 7739 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7740 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7741 md_wakeup_thread(mddev->thread); 7742 if (mddev->event_work.func) 7743 queue_work(md_misc_wq, &mddev->event_work); 7744 md_new_event(mddev); 7745 } 7746 EXPORT_SYMBOL(md_error); 7747 7748 /* seq_file implementation /proc/mdstat */ 7749 7750 static void status_unused(struct seq_file *seq) 7751 { 7752 int i = 0; 7753 struct md_rdev *rdev; 7754 7755 seq_printf(seq, "unused devices: "); 7756 7757 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7758 char b[BDEVNAME_SIZE]; 7759 i++; 7760 seq_printf(seq, "%s ", 7761 bdevname(rdev->bdev,b)); 7762 } 7763 if (!i) 7764 seq_printf(seq, "<none>"); 7765 7766 seq_printf(seq, "\n"); 7767 } 7768 7769 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7770 { 7771 sector_t max_sectors, resync, res; 7772 unsigned long dt, db = 0; 7773 sector_t rt, curr_mark_cnt, resync_mark_cnt; 7774 int scale, recovery_active; 7775 unsigned int per_milli; 7776 7777 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7778 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7779 max_sectors = mddev->resync_max_sectors; 7780 else 7781 max_sectors = mddev->dev_sectors; 7782 7783 resync = mddev->curr_resync; 7784 if (resync <= 3) { 7785 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7786 /* Still cleaning up */ 7787 resync = max_sectors; 7788 } else if (resync > max_sectors) 7789 resync = max_sectors; 7790 else 7791 resync -= atomic_read(&mddev->recovery_active); 7792 7793 if (resync == 0) { 7794 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 7795 struct md_rdev *rdev; 7796 7797 rdev_for_each(rdev, mddev) 7798 if (rdev->raid_disk >= 0 && 7799 !test_bit(Faulty, &rdev->flags) && 7800 rdev->recovery_offset != MaxSector && 7801 rdev->recovery_offset) { 7802 seq_printf(seq, "\trecover=REMOTE"); 7803 return 1; 7804 } 7805 if (mddev->reshape_position != MaxSector) 7806 seq_printf(seq, "\treshape=REMOTE"); 7807 else 7808 seq_printf(seq, "\tresync=REMOTE"); 7809 return 1; 7810 } 7811 if (mddev->recovery_cp < MaxSector) { 7812 seq_printf(seq, "\tresync=PENDING"); 7813 return 1; 7814 } 7815 return 0; 7816 } 7817 if (resync < 3) { 7818 seq_printf(seq, "\tresync=DELAYED"); 7819 return 1; 7820 } 7821 7822 WARN_ON(max_sectors == 0); 7823 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7824 * in a sector_t, and (max_sectors>>scale) will fit in a 7825 * u32, as those are the requirements for sector_div. 7826 * Thus 'scale' must be at least 10 7827 */ 7828 scale = 10; 7829 if (sizeof(sector_t) > sizeof(unsigned long)) { 7830 while ( max_sectors/2 > (1ULL<<(scale+32))) 7831 scale++; 7832 } 7833 res = (resync>>scale)*1000; 7834 sector_div(res, (u32)((max_sectors>>scale)+1)); 7835 7836 per_milli = res; 7837 { 7838 int i, x = per_milli/50, y = 20-x; 7839 seq_printf(seq, "["); 7840 for (i = 0; i < x; i++) 7841 seq_printf(seq, "="); 7842 seq_printf(seq, ">"); 7843 for (i = 0; i < y; i++) 7844 seq_printf(seq, "."); 7845 seq_printf(seq, "] "); 7846 } 7847 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7848 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7849 "reshape" : 7850 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7851 "check" : 7852 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7853 "resync" : "recovery"))), 7854 per_milli/10, per_milli % 10, 7855 (unsigned long long) resync/2, 7856 (unsigned long long) max_sectors/2); 7857 7858 /* 7859 * dt: time from mark until now 7860 * db: blocks written from mark until now 7861 * rt: remaining time 7862 * 7863 * rt is a sector_t, which is always 64bit now. We are keeping 7864 * the original algorithm, but it is not really necessary. 7865 * 7866 * Original algorithm: 7867 * So we divide before multiply in case it is 32bit and close 7868 * to the limit. 7869 * We scale the divisor (db) by 32 to avoid losing precision 7870 * near the end of resync when the number of remaining sectors 7871 * is close to 'db'. 7872 * We then divide rt by 32 after multiplying by db to compensate. 7873 * The '+1' avoids division by zero if db is very small. 7874 */ 7875 dt = ((jiffies - mddev->resync_mark) / HZ); 7876 if (!dt) dt++; 7877 7878 curr_mark_cnt = mddev->curr_mark_cnt; 7879 recovery_active = atomic_read(&mddev->recovery_active); 7880 resync_mark_cnt = mddev->resync_mark_cnt; 7881 7882 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 7883 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 7884 7885 rt = max_sectors - resync; /* number of remaining sectors */ 7886 rt = div64_u64(rt, db/32+1); 7887 rt *= dt; 7888 rt >>= 5; 7889 7890 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7891 ((unsigned long)rt % 60)/6); 7892 7893 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7894 return 1; 7895 } 7896 7897 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7898 { 7899 struct list_head *tmp; 7900 loff_t l = *pos; 7901 struct mddev *mddev; 7902 7903 if (l >= 0x10000) 7904 return NULL; 7905 if (!l--) 7906 /* header */ 7907 return (void*)1; 7908 7909 spin_lock(&all_mddevs_lock); 7910 list_for_each(tmp,&all_mddevs) 7911 if (!l--) { 7912 mddev = list_entry(tmp, struct mddev, all_mddevs); 7913 mddev_get(mddev); 7914 spin_unlock(&all_mddevs_lock); 7915 return mddev; 7916 } 7917 spin_unlock(&all_mddevs_lock); 7918 if (!l--) 7919 return (void*)2;/* tail */ 7920 return NULL; 7921 } 7922 7923 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7924 { 7925 struct list_head *tmp; 7926 struct mddev *next_mddev, *mddev = v; 7927 7928 ++*pos; 7929 if (v == (void*)2) 7930 return NULL; 7931 7932 spin_lock(&all_mddevs_lock); 7933 if (v == (void*)1) 7934 tmp = all_mddevs.next; 7935 else 7936 tmp = mddev->all_mddevs.next; 7937 if (tmp != &all_mddevs) 7938 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7939 else { 7940 next_mddev = (void*)2; 7941 *pos = 0x10000; 7942 } 7943 spin_unlock(&all_mddevs_lock); 7944 7945 if (v != (void*)1) 7946 mddev_put(mddev); 7947 return next_mddev; 7948 7949 } 7950 7951 static void md_seq_stop(struct seq_file *seq, void *v) 7952 { 7953 struct mddev *mddev = v; 7954 7955 if (mddev && v != (void*)1 && v != (void*)2) 7956 mddev_put(mddev); 7957 } 7958 7959 static int md_seq_show(struct seq_file *seq, void *v) 7960 { 7961 struct mddev *mddev = v; 7962 sector_t sectors; 7963 struct md_rdev *rdev; 7964 7965 if (v == (void*)1) { 7966 struct md_personality *pers; 7967 seq_printf(seq, "Personalities : "); 7968 spin_lock(&pers_lock); 7969 list_for_each_entry(pers, &pers_list, list) 7970 seq_printf(seq, "[%s] ", pers->name); 7971 7972 spin_unlock(&pers_lock); 7973 seq_printf(seq, "\n"); 7974 seq->poll_event = atomic_read(&md_event_count); 7975 return 0; 7976 } 7977 if (v == (void*)2) { 7978 status_unused(seq); 7979 return 0; 7980 } 7981 7982 spin_lock(&mddev->lock); 7983 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7984 seq_printf(seq, "%s : %sactive", mdname(mddev), 7985 mddev->pers ? "" : "in"); 7986 if (mddev->pers) { 7987 if (mddev->ro==1) 7988 seq_printf(seq, " (read-only)"); 7989 if (mddev->ro==2) 7990 seq_printf(seq, " (auto-read-only)"); 7991 seq_printf(seq, " %s", mddev->pers->name); 7992 } 7993 7994 sectors = 0; 7995 rcu_read_lock(); 7996 rdev_for_each_rcu(rdev, mddev) { 7997 char b[BDEVNAME_SIZE]; 7998 seq_printf(seq, " %s[%d]", 7999 bdevname(rdev->bdev,b), rdev->desc_nr); 8000 if (test_bit(WriteMostly, &rdev->flags)) 8001 seq_printf(seq, "(W)"); 8002 if (test_bit(Journal, &rdev->flags)) 8003 seq_printf(seq, "(J)"); 8004 if (test_bit(Faulty, &rdev->flags)) { 8005 seq_printf(seq, "(F)"); 8006 continue; 8007 } 8008 if (rdev->raid_disk < 0) 8009 seq_printf(seq, "(S)"); /* spare */ 8010 if (test_bit(Replacement, &rdev->flags)) 8011 seq_printf(seq, "(R)"); 8012 sectors += rdev->sectors; 8013 } 8014 rcu_read_unlock(); 8015 8016 if (!list_empty(&mddev->disks)) { 8017 if (mddev->pers) 8018 seq_printf(seq, "\n %llu blocks", 8019 (unsigned long long) 8020 mddev->array_sectors / 2); 8021 else 8022 seq_printf(seq, "\n %llu blocks", 8023 (unsigned long long)sectors / 2); 8024 } 8025 if (mddev->persistent) { 8026 if (mddev->major_version != 0 || 8027 mddev->minor_version != 90) { 8028 seq_printf(seq," super %d.%d", 8029 mddev->major_version, 8030 mddev->minor_version); 8031 } 8032 } else if (mddev->external) 8033 seq_printf(seq, " super external:%s", 8034 mddev->metadata_type); 8035 else 8036 seq_printf(seq, " super non-persistent"); 8037 8038 if (mddev->pers) { 8039 mddev->pers->status(seq, mddev); 8040 seq_printf(seq, "\n "); 8041 if (mddev->pers->sync_request) { 8042 if (status_resync(seq, mddev)) 8043 seq_printf(seq, "\n "); 8044 } 8045 } else 8046 seq_printf(seq, "\n "); 8047 8048 md_bitmap_status(seq, mddev->bitmap); 8049 8050 seq_printf(seq, "\n"); 8051 } 8052 spin_unlock(&mddev->lock); 8053 8054 return 0; 8055 } 8056 8057 static const struct seq_operations md_seq_ops = { 8058 .start = md_seq_start, 8059 .next = md_seq_next, 8060 .stop = md_seq_stop, 8061 .show = md_seq_show, 8062 }; 8063 8064 static int md_seq_open(struct inode *inode, struct file *file) 8065 { 8066 struct seq_file *seq; 8067 int error; 8068 8069 error = seq_open(file, &md_seq_ops); 8070 if (error) 8071 return error; 8072 8073 seq = file->private_data; 8074 seq->poll_event = atomic_read(&md_event_count); 8075 return error; 8076 } 8077 8078 static int md_unloading; 8079 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8080 { 8081 struct seq_file *seq = filp->private_data; 8082 __poll_t mask; 8083 8084 if (md_unloading) 8085 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8086 poll_wait(filp, &md_event_waiters, wait); 8087 8088 /* always allow read */ 8089 mask = EPOLLIN | EPOLLRDNORM; 8090 8091 if (seq->poll_event != atomic_read(&md_event_count)) 8092 mask |= EPOLLERR | EPOLLPRI; 8093 return mask; 8094 } 8095 8096 static const struct file_operations md_seq_fops = { 8097 .owner = THIS_MODULE, 8098 .open = md_seq_open, 8099 .read = seq_read, 8100 .llseek = seq_lseek, 8101 .release = seq_release, 8102 .poll = mdstat_poll, 8103 }; 8104 8105 int register_md_personality(struct md_personality *p) 8106 { 8107 pr_debug("md: %s personality registered for level %d\n", 8108 p->name, p->level); 8109 spin_lock(&pers_lock); 8110 list_add_tail(&p->list, &pers_list); 8111 spin_unlock(&pers_lock); 8112 return 0; 8113 } 8114 EXPORT_SYMBOL(register_md_personality); 8115 8116 int unregister_md_personality(struct md_personality *p) 8117 { 8118 pr_debug("md: %s personality unregistered\n", p->name); 8119 spin_lock(&pers_lock); 8120 list_del_init(&p->list); 8121 spin_unlock(&pers_lock); 8122 return 0; 8123 } 8124 EXPORT_SYMBOL(unregister_md_personality); 8125 8126 int register_md_cluster_operations(struct md_cluster_operations *ops, 8127 struct module *module) 8128 { 8129 int ret = 0; 8130 spin_lock(&pers_lock); 8131 if (md_cluster_ops != NULL) 8132 ret = -EALREADY; 8133 else { 8134 md_cluster_ops = ops; 8135 md_cluster_mod = module; 8136 } 8137 spin_unlock(&pers_lock); 8138 return ret; 8139 } 8140 EXPORT_SYMBOL(register_md_cluster_operations); 8141 8142 int unregister_md_cluster_operations(void) 8143 { 8144 spin_lock(&pers_lock); 8145 md_cluster_ops = NULL; 8146 spin_unlock(&pers_lock); 8147 return 0; 8148 } 8149 EXPORT_SYMBOL(unregister_md_cluster_operations); 8150 8151 int md_setup_cluster(struct mddev *mddev, int nodes) 8152 { 8153 if (!md_cluster_ops) 8154 request_module("md-cluster"); 8155 spin_lock(&pers_lock); 8156 /* ensure module won't be unloaded */ 8157 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8158 pr_warn("can't find md-cluster module or get it's reference.\n"); 8159 spin_unlock(&pers_lock); 8160 return -ENOENT; 8161 } 8162 spin_unlock(&pers_lock); 8163 8164 return md_cluster_ops->join(mddev, nodes); 8165 } 8166 8167 void md_cluster_stop(struct mddev *mddev) 8168 { 8169 if (!md_cluster_ops) 8170 return; 8171 md_cluster_ops->leave(mddev); 8172 module_put(md_cluster_mod); 8173 } 8174 8175 static int is_mddev_idle(struct mddev *mddev, int init) 8176 { 8177 struct md_rdev *rdev; 8178 int idle; 8179 int curr_events; 8180 8181 idle = 1; 8182 rcu_read_lock(); 8183 rdev_for_each_rcu(rdev, mddev) { 8184 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8185 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 8186 atomic_read(&disk->sync_io); 8187 /* sync IO will cause sync_io to increase before the disk_stats 8188 * as sync_io is counted when a request starts, and 8189 * disk_stats is counted when it completes. 8190 * So resync activity will cause curr_events to be smaller than 8191 * when there was no such activity. 8192 * non-sync IO will cause disk_stat to increase without 8193 * increasing sync_io so curr_events will (eventually) 8194 * be larger than it was before. Once it becomes 8195 * substantially larger, the test below will cause 8196 * the array to appear non-idle, and resync will slow 8197 * down. 8198 * If there is a lot of outstanding resync activity when 8199 * we set last_event to curr_events, then all that activity 8200 * completing might cause the array to appear non-idle 8201 * and resync will be slowed down even though there might 8202 * not have been non-resync activity. This will only 8203 * happen once though. 'last_events' will soon reflect 8204 * the state where there is little or no outstanding 8205 * resync requests, and further resync activity will 8206 * always make curr_events less than last_events. 8207 * 8208 */ 8209 if (init || curr_events - rdev->last_events > 64) { 8210 rdev->last_events = curr_events; 8211 idle = 0; 8212 } 8213 } 8214 rcu_read_unlock(); 8215 return idle; 8216 } 8217 8218 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8219 { 8220 /* another "blocks" (512byte) blocks have been synced */ 8221 atomic_sub(blocks, &mddev->recovery_active); 8222 wake_up(&mddev->recovery_wait); 8223 if (!ok) { 8224 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8225 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8226 md_wakeup_thread(mddev->thread); 8227 // stop recovery, signal do_sync .... 8228 } 8229 } 8230 EXPORT_SYMBOL(md_done_sync); 8231 8232 /* md_write_start(mddev, bi) 8233 * If we need to update some array metadata (e.g. 'active' flag 8234 * in superblock) before writing, schedule a superblock update 8235 * and wait for it to complete. 8236 * A return value of 'false' means that the write wasn't recorded 8237 * and cannot proceed as the array is being suspend. 8238 */ 8239 bool md_write_start(struct mddev *mddev, struct bio *bi) 8240 { 8241 int did_change = 0; 8242 8243 if (bio_data_dir(bi) != WRITE) 8244 return true; 8245 8246 BUG_ON(mddev->ro == 1); 8247 if (mddev->ro == 2) { 8248 /* need to switch to read/write */ 8249 mddev->ro = 0; 8250 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8251 md_wakeup_thread(mddev->thread); 8252 md_wakeup_thread(mddev->sync_thread); 8253 did_change = 1; 8254 } 8255 rcu_read_lock(); 8256 percpu_ref_get(&mddev->writes_pending); 8257 smp_mb(); /* Match smp_mb in set_in_sync() */ 8258 if (mddev->safemode == 1) 8259 mddev->safemode = 0; 8260 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8261 if (mddev->in_sync || mddev->sync_checkers) { 8262 spin_lock(&mddev->lock); 8263 if (mddev->in_sync) { 8264 mddev->in_sync = 0; 8265 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8266 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8267 md_wakeup_thread(mddev->thread); 8268 did_change = 1; 8269 } 8270 spin_unlock(&mddev->lock); 8271 } 8272 rcu_read_unlock(); 8273 if (did_change) 8274 sysfs_notify_dirent_safe(mddev->sysfs_state); 8275 if (!mddev->has_superblocks) 8276 return true; 8277 wait_event(mddev->sb_wait, 8278 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8279 mddev->suspended); 8280 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8281 percpu_ref_put(&mddev->writes_pending); 8282 return false; 8283 } 8284 return true; 8285 } 8286 EXPORT_SYMBOL(md_write_start); 8287 8288 /* md_write_inc can only be called when md_write_start() has 8289 * already been called at least once of the current request. 8290 * It increments the counter and is useful when a single request 8291 * is split into several parts. Each part causes an increment and 8292 * so needs a matching md_write_end(). 8293 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8294 * a spinlocked region. 8295 */ 8296 void md_write_inc(struct mddev *mddev, struct bio *bi) 8297 { 8298 if (bio_data_dir(bi) != WRITE) 8299 return; 8300 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8301 percpu_ref_get(&mddev->writes_pending); 8302 } 8303 EXPORT_SYMBOL(md_write_inc); 8304 8305 void md_write_end(struct mddev *mddev) 8306 { 8307 percpu_ref_put(&mddev->writes_pending); 8308 8309 if (mddev->safemode == 2) 8310 md_wakeup_thread(mddev->thread); 8311 else if (mddev->safemode_delay) 8312 /* The roundup() ensures this only performs locking once 8313 * every ->safemode_delay jiffies 8314 */ 8315 mod_timer(&mddev->safemode_timer, 8316 roundup(jiffies, mddev->safemode_delay) + 8317 mddev->safemode_delay); 8318 } 8319 8320 EXPORT_SYMBOL(md_write_end); 8321 8322 /* md_allow_write(mddev) 8323 * Calling this ensures that the array is marked 'active' so that writes 8324 * may proceed without blocking. It is important to call this before 8325 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8326 * Must be called with mddev_lock held. 8327 */ 8328 void md_allow_write(struct mddev *mddev) 8329 { 8330 if (!mddev->pers) 8331 return; 8332 if (mddev->ro) 8333 return; 8334 if (!mddev->pers->sync_request) 8335 return; 8336 8337 spin_lock(&mddev->lock); 8338 if (mddev->in_sync) { 8339 mddev->in_sync = 0; 8340 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8341 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8342 if (mddev->safemode_delay && 8343 mddev->safemode == 0) 8344 mddev->safemode = 1; 8345 spin_unlock(&mddev->lock); 8346 md_update_sb(mddev, 0); 8347 sysfs_notify_dirent_safe(mddev->sysfs_state); 8348 /* wait for the dirty state to be recorded in the metadata */ 8349 wait_event(mddev->sb_wait, 8350 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8351 } else 8352 spin_unlock(&mddev->lock); 8353 } 8354 EXPORT_SYMBOL_GPL(md_allow_write); 8355 8356 #define SYNC_MARKS 10 8357 #define SYNC_MARK_STEP (3*HZ) 8358 #define UPDATE_FREQUENCY (5*60*HZ) 8359 void md_do_sync(struct md_thread *thread) 8360 { 8361 struct mddev *mddev = thread->mddev; 8362 struct mddev *mddev2; 8363 unsigned int currspeed = 0, window; 8364 sector_t max_sectors,j, io_sectors, recovery_done; 8365 unsigned long mark[SYNC_MARKS]; 8366 unsigned long update_time; 8367 sector_t mark_cnt[SYNC_MARKS]; 8368 int last_mark,m; 8369 struct list_head *tmp; 8370 sector_t last_check; 8371 int skipped = 0; 8372 struct md_rdev *rdev; 8373 char *desc, *action = NULL; 8374 struct blk_plug plug; 8375 int ret; 8376 8377 /* just incase thread restarts... */ 8378 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8379 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8380 return; 8381 if (mddev->ro) {/* never try to sync a read-only array */ 8382 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8383 return; 8384 } 8385 8386 if (mddev_is_clustered(mddev)) { 8387 ret = md_cluster_ops->resync_start(mddev); 8388 if (ret) 8389 goto skip; 8390 8391 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8392 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8393 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8394 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8395 && ((unsigned long long)mddev->curr_resync_completed 8396 < (unsigned long long)mddev->resync_max_sectors)) 8397 goto skip; 8398 } 8399 8400 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8401 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8402 desc = "data-check"; 8403 action = "check"; 8404 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8405 desc = "requested-resync"; 8406 action = "repair"; 8407 } else 8408 desc = "resync"; 8409 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8410 desc = "reshape"; 8411 else 8412 desc = "recovery"; 8413 8414 mddev->last_sync_action = action ?: desc; 8415 8416 /* we overload curr_resync somewhat here. 8417 * 0 == not engaged in resync at all 8418 * 2 == checking that there is no conflict with another sync 8419 * 1 == like 2, but have yielded to allow conflicting resync to 8420 * commence 8421 * other == active in resync - this many blocks 8422 * 8423 * Before starting a resync we must have set curr_resync to 8424 * 2, and then checked that every "conflicting" array has curr_resync 8425 * less than ours. When we find one that is the same or higher 8426 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8427 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8428 * This will mean we have to start checking from the beginning again. 8429 * 8430 */ 8431 8432 do { 8433 int mddev2_minor = -1; 8434 mddev->curr_resync = 2; 8435 8436 try_again: 8437 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8438 goto skip; 8439 for_each_mddev(mddev2, tmp) { 8440 if (mddev2 == mddev) 8441 continue; 8442 if (!mddev->parallel_resync 8443 && mddev2->curr_resync 8444 && match_mddev_units(mddev, mddev2)) { 8445 DEFINE_WAIT(wq); 8446 if (mddev < mddev2 && mddev->curr_resync == 2) { 8447 /* arbitrarily yield */ 8448 mddev->curr_resync = 1; 8449 wake_up(&resync_wait); 8450 } 8451 if (mddev > mddev2 && mddev->curr_resync == 1) 8452 /* no need to wait here, we can wait the next 8453 * time 'round when curr_resync == 2 8454 */ 8455 continue; 8456 /* We need to wait 'interruptible' so as not to 8457 * contribute to the load average, and not to 8458 * be caught by 'softlockup' 8459 */ 8460 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8461 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8462 mddev2->curr_resync >= mddev->curr_resync) { 8463 if (mddev2_minor != mddev2->md_minor) { 8464 mddev2_minor = mddev2->md_minor; 8465 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8466 desc, mdname(mddev), 8467 mdname(mddev2)); 8468 } 8469 mddev_put(mddev2); 8470 if (signal_pending(current)) 8471 flush_signals(current); 8472 schedule(); 8473 finish_wait(&resync_wait, &wq); 8474 goto try_again; 8475 } 8476 finish_wait(&resync_wait, &wq); 8477 } 8478 } 8479 } while (mddev->curr_resync < 2); 8480 8481 j = 0; 8482 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8483 /* resync follows the size requested by the personality, 8484 * which defaults to physical size, but can be virtual size 8485 */ 8486 max_sectors = mddev->resync_max_sectors; 8487 atomic64_set(&mddev->resync_mismatches, 0); 8488 /* we don't use the checkpoint if there's a bitmap */ 8489 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8490 j = mddev->resync_min; 8491 else if (!mddev->bitmap) 8492 j = mddev->recovery_cp; 8493 8494 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8495 max_sectors = mddev->resync_max_sectors; 8496 /* 8497 * If the original node aborts reshaping then we continue the 8498 * reshaping, so set j again to avoid restart reshape from the 8499 * first beginning 8500 */ 8501 if (mddev_is_clustered(mddev) && 8502 mddev->reshape_position != MaxSector) 8503 j = mddev->reshape_position; 8504 } else { 8505 /* recovery follows the physical size of devices */ 8506 max_sectors = mddev->dev_sectors; 8507 j = MaxSector; 8508 rcu_read_lock(); 8509 rdev_for_each_rcu(rdev, mddev) 8510 if (rdev->raid_disk >= 0 && 8511 !test_bit(Journal, &rdev->flags) && 8512 !test_bit(Faulty, &rdev->flags) && 8513 !test_bit(In_sync, &rdev->flags) && 8514 rdev->recovery_offset < j) 8515 j = rdev->recovery_offset; 8516 rcu_read_unlock(); 8517 8518 /* If there is a bitmap, we need to make sure all 8519 * writes that started before we added a spare 8520 * complete before we start doing a recovery. 8521 * Otherwise the write might complete and (via 8522 * bitmap_endwrite) set a bit in the bitmap after the 8523 * recovery has checked that bit and skipped that 8524 * region. 8525 */ 8526 if (mddev->bitmap) { 8527 mddev->pers->quiesce(mddev, 1); 8528 mddev->pers->quiesce(mddev, 0); 8529 } 8530 } 8531 8532 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8533 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8534 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8535 speed_max(mddev), desc); 8536 8537 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8538 8539 io_sectors = 0; 8540 for (m = 0; m < SYNC_MARKS; m++) { 8541 mark[m] = jiffies; 8542 mark_cnt[m] = io_sectors; 8543 } 8544 last_mark = 0; 8545 mddev->resync_mark = mark[last_mark]; 8546 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8547 8548 /* 8549 * Tune reconstruction: 8550 */ 8551 window = 32 * (PAGE_SIZE / 512); 8552 pr_debug("md: using %dk window, over a total of %lluk.\n", 8553 window/2, (unsigned long long)max_sectors/2); 8554 8555 atomic_set(&mddev->recovery_active, 0); 8556 last_check = 0; 8557 8558 if (j>2) { 8559 pr_debug("md: resuming %s of %s from checkpoint.\n", 8560 desc, mdname(mddev)); 8561 mddev->curr_resync = j; 8562 } else 8563 mddev->curr_resync = 3; /* no longer delayed */ 8564 mddev->curr_resync_completed = j; 8565 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8566 md_new_event(mddev); 8567 update_time = jiffies; 8568 8569 blk_start_plug(&plug); 8570 while (j < max_sectors) { 8571 sector_t sectors; 8572 8573 skipped = 0; 8574 8575 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8576 ((mddev->curr_resync > mddev->curr_resync_completed && 8577 (mddev->curr_resync - mddev->curr_resync_completed) 8578 > (max_sectors >> 4)) || 8579 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8580 (j - mddev->curr_resync_completed)*2 8581 >= mddev->resync_max - mddev->curr_resync_completed || 8582 mddev->curr_resync_completed > mddev->resync_max 8583 )) { 8584 /* time to update curr_resync_completed */ 8585 wait_event(mddev->recovery_wait, 8586 atomic_read(&mddev->recovery_active) == 0); 8587 mddev->curr_resync_completed = j; 8588 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8589 j > mddev->recovery_cp) 8590 mddev->recovery_cp = j; 8591 update_time = jiffies; 8592 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8593 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8594 } 8595 8596 while (j >= mddev->resync_max && 8597 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8598 /* As this condition is controlled by user-space, 8599 * we can block indefinitely, so use '_interruptible' 8600 * to avoid triggering warnings. 8601 */ 8602 flush_signals(current); /* just in case */ 8603 wait_event_interruptible(mddev->recovery_wait, 8604 mddev->resync_max > j 8605 || test_bit(MD_RECOVERY_INTR, 8606 &mddev->recovery)); 8607 } 8608 8609 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8610 break; 8611 8612 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8613 if (sectors == 0) { 8614 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8615 break; 8616 } 8617 8618 if (!skipped) { /* actual IO requested */ 8619 io_sectors += sectors; 8620 atomic_add(sectors, &mddev->recovery_active); 8621 } 8622 8623 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8624 break; 8625 8626 j += sectors; 8627 if (j > max_sectors) 8628 /* when skipping, extra large numbers can be returned. */ 8629 j = max_sectors; 8630 if (j > 2) 8631 mddev->curr_resync = j; 8632 mddev->curr_mark_cnt = io_sectors; 8633 if (last_check == 0) 8634 /* this is the earliest that rebuild will be 8635 * visible in /proc/mdstat 8636 */ 8637 md_new_event(mddev); 8638 8639 if (last_check + window > io_sectors || j == max_sectors) 8640 continue; 8641 8642 last_check = io_sectors; 8643 repeat: 8644 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8645 /* step marks */ 8646 int next = (last_mark+1) % SYNC_MARKS; 8647 8648 mddev->resync_mark = mark[next]; 8649 mddev->resync_mark_cnt = mark_cnt[next]; 8650 mark[next] = jiffies; 8651 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8652 last_mark = next; 8653 } 8654 8655 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8656 break; 8657 8658 /* 8659 * this loop exits only if either when we are slower than 8660 * the 'hard' speed limit, or the system was IO-idle for 8661 * a jiffy. 8662 * the system might be non-idle CPU-wise, but we only care 8663 * about not overloading the IO subsystem. (things like an 8664 * e2fsck being done on the RAID array should execute fast) 8665 */ 8666 cond_resched(); 8667 8668 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8669 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8670 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8671 8672 if (currspeed > speed_min(mddev)) { 8673 if (currspeed > speed_max(mddev)) { 8674 msleep(500); 8675 goto repeat; 8676 } 8677 if (!is_mddev_idle(mddev, 0)) { 8678 /* 8679 * Give other IO more of a chance. 8680 * The faster the devices, the less we wait. 8681 */ 8682 wait_event(mddev->recovery_wait, 8683 !atomic_read(&mddev->recovery_active)); 8684 } 8685 } 8686 } 8687 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8688 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8689 ? "interrupted" : "done"); 8690 /* 8691 * this also signals 'finished resyncing' to md_stop 8692 */ 8693 blk_finish_plug(&plug); 8694 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8695 8696 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8697 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8698 mddev->curr_resync > 3) { 8699 mddev->curr_resync_completed = mddev->curr_resync; 8700 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8701 } 8702 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8703 8704 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8705 mddev->curr_resync > 3) { 8706 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8707 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8708 if (mddev->curr_resync >= mddev->recovery_cp) { 8709 pr_debug("md: checkpointing %s of %s.\n", 8710 desc, mdname(mddev)); 8711 if (test_bit(MD_RECOVERY_ERROR, 8712 &mddev->recovery)) 8713 mddev->recovery_cp = 8714 mddev->curr_resync_completed; 8715 else 8716 mddev->recovery_cp = 8717 mddev->curr_resync; 8718 } 8719 } else 8720 mddev->recovery_cp = MaxSector; 8721 } else { 8722 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8723 mddev->curr_resync = MaxSector; 8724 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8725 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8726 rcu_read_lock(); 8727 rdev_for_each_rcu(rdev, mddev) 8728 if (rdev->raid_disk >= 0 && 8729 mddev->delta_disks >= 0 && 8730 !test_bit(Journal, &rdev->flags) && 8731 !test_bit(Faulty, &rdev->flags) && 8732 !test_bit(In_sync, &rdev->flags) && 8733 rdev->recovery_offset < mddev->curr_resync) 8734 rdev->recovery_offset = mddev->curr_resync; 8735 rcu_read_unlock(); 8736 } 8737 } 8738 } 8739 skip: 8740 /* set CHANGE_PENDING here since maybe another update is needed, 8741 * so other nodes are informed. It should be harmless for normal 8742 * raid */ 8743 set_mask_bits(&mddev->sb_flags, 0, 8744 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8745 8746 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8747 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8748 mddev->delta_disks > 0 && 8749 mddev->pers->finish_reshape && 8750 mddev->pers->size && 8751 mddev->queue) { 8752 mddev_lock_nointr(mddev); 8753 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 8754 mddev_unlock(mddev); 8755 if (!mddev_is_clustered(mddev)) { 8756 set_capacity(mddev->gendisk, mddev->array_sectors); 8757 revalidate_disk(mddev->gendisk); 8758 } 8759 } 8760 8761 spin_lock(&mddev->lock); 8762 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8763 /* We completed so min/max setting can be forgotten if used. */ 8764 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8765 mddev->resync_min = 0; 8766 mddev->resync_max = MaxSector; 8767 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8768 mddev->resync_min = mddev->curr_resync_completed; 8769 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8770 mddev->curr_resync = 0; 8771 spin_unlock(&mddev->lock); 8772 8773 wake_up(&resync_wait); 8774 md_wakeup_thread(mddev->thread); 8775 return; 8776 } 8777 EXPORT_SYMBOL_GPL(md_do_sync); 8778 8779 static int remove_and_add_spares(struct mddev *mddev, 8780 struct md_rdev *this) 8781 { 8782 struct md_rdev *rdev; 8783 int spares = 0; 8784 int removed = 0; 8785 bool remove_some = false; 8786 8787 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8788 /* Mustn't remove devices when resync thread is running */ 8789 return 0; 8790 8791 rdev_for_each(rdev, mddev) { 8792 if ((this == NULL || rdev == this) && 8793 rdev->raid_disk >= 0 && 8794 !test_bit(Blocked, &rdev->flags) && 8795 test_bit(Faulty, &rdev->flags) && 8796 atomic_read(&rdev->nr_pending)==0) { 8797 /* Faulty non-Blocked devices with nr_pending == 0 8798 * never get nr_pending incremented, 8799 * never get Faulty cleared, and never get Blocked set. 8800 * So we can synchronize_rcu now rather than once per device 8801 */ 8802 remove_some = true; 8803 set_bit(RemoveSynchronized, &rdev->flags); 8804 } 8805 } 8806 8807 if (remove_some) 8808 synchronize_rcu(); 8809 rdev_for_each(rdev, mddev) { 8810 if ((this == NULL || rdev == this) && 8811 rdev->raid_disk >= 0 && 8812 !test_bit(Blocked, &rdev->flags) && 8813 ((test_bit(RemoveSynchronized, &rdev->flags) || 8814 (!test_bit(In_sync, &rdev->flags) && 8815 !test_bit(Journal, &rdev->flags))) && 8816 atomic_read(&rdev->nr_pending)==0)) { 8817 if (mddev->pers->hot_remove_disk( 8818 mddev, rdev) == 0) { 8819 sysfs_unlink_rdev(mddev, rdev); 8820 rdev->saved_raid_disk = rdev->raid_disk; 8821 rdev->raid_disk = -1; 8822 removed++; 8823 } 8824 } 8825 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8826 clear_bit(RemoveSynchronized, &rdev->flags); 8827 } 8828 8829 if (removed && mddev->kobj.sd) 8830 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8831 8832 if (this && removed) 8833 goto no_add; 8834 8835 rdev_for_each(rdev, mddev) { 8836 if (this && this != rdev) 8837 continue; 8838 if (test_bit(Candidate, &rdev->flags)) 8839 continue; 8840 if (rdev->raid_disk >= 0 && 8841 !test_bit(In_sync, &rdev->flags) && 8842 !test_bit(Journal, &rdev->flags) && 8843 !test_bit(Faulty, &rdev->flags)) 8844 spares++; 8845 if (rdev->raid_disk >= 0) 8846 continue; 8847 if (test_bit(Faulty, &rdev->flags)) 8848 continue; 8849 if (!test_bit(Journal, &rdev->flags)) { 8850 if (mddev->ro && 8851 ! (rdev->saved_raid_disk >= 0 && 8852 !test_bit(Bitmap_sync, &rdev->flags))) 8853 continue; 8854 8855 rdev->recovery_offset = 0; 8856 } 8857 if (mddev->pers-> 8858 hot_add_disk(mddev, rdev) == 0) { 8859 if (sysfs_link_rdev(mddev, rdev)) 8860 /* failure here is OK */; 8861 if (!test_bit(Journal, &rdev->flags)) 8862 spares++; 8863 md_new_event(mddev); 8864 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8865 } 8866 } 8867 no_add: 8868 if (removed) 8869 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8870 return spares; 8871 } 8872 8873 static void md_start_sync(struct work_struct *ws) 8874 { 8875 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8876 8877 mddev->sync_thread = md_register_thread(md_do_sync, 8878 mddev, 8879 "resync"); 8880 if (!mddev->sync_thread) { 8881 pr_warn("%s: could not start resync thread...\n", 8882 mdname(mddev)); 8883 /* leave the spares where they are, it shouldn't hurt */ 8884 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8885 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8886 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8887 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8888 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8889 wake_up(&resync_wait); 8890 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8891 &mddev->recovery)) 8892 if (mddev->sysfs_action) 8893 sysfs_notify_dirent_safe(mddev->sysfs_action); 8894 } else 8895 md_wakeup_thread(mddev->sync_thread); 8896 sysfs_notify_dirent_safe(mddev->sysfs_action); 8897 md_new_event(mddev); 8898 } 8899 8900 /* 8901 * This routine is regularly called by all per-raid-array threads to 8902 * deal with generic issues like resync and super-block update. 8903 * Raid personalities that don't have a thread (linear/raid0) do not 8904 * need this as they never do any recovery or update the superblock. 8905 * 8906 * It does not do any resync itself, but rather "forks" off other threads 8907 * to do that as needed. 8908 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8909 * "->recovery" and create a thread at ->sync_thread. 8910 * When the thread finishes it sets MD_RECOVERY_DONE 8911 * and wakeups up this thread which will reap the thread and finish up. 8912 * This thread also removes any faulty devices (with nr_pending == 0). 8913 * 8914 * The overall approach is: 8915 * 1/ if the superblock needs updating, update it. 8916 * 2/ If a recovery thread is running, don't do anything else. 8917 * 3/ If recovery has finished, clean up, possibly marking spares active. 8918 * 4/ If there are any faulty devices, remove them. 8919 * 5/ If array is degraded, try to add spares devices 8920 * 6/ If array has spares or is not in-sync, start a resync thread. 8921 */ 8922 void md_check_recovery(struct mddev *mddev) 8923 { 8924 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 8925 /* Write superblock - thread that called mddev_suspend() 8926 * holds reconfig_mutex for us. 8927 */ 8928 set_bit(MD_UPDATING_SB, &mddev->flags); 8929 smp_mb__after_atomic(); 8930 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 8931 md_update_sb(mddev, 0); 8932 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 8933 wake_up(&mddev->sb_wait); 8934 } 8935 8936 if (mddev->suspended) 8937 return; 8938 8939 if (mddev->bitmap) 8940 md_bitmap_daemon_work(mddev); 8941 8942 if (signal_pending(current)) { 8943 if (mddev->pers->sync_request && !mddev->external) { 8944 pr_debug("md: %s in immediate safe mode\n", 8945 mdname(mddev)); 8946 mddev->safemode = 2; 8947 } 8948 flush_signals(current); 8949 } 8950 8951 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8952 return; 8953 if ( ! ( 8954 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8955 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8956 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8957 (mddev->external == 0 && mddev->safemode == 1) || 8958 (mddev->safemode == 2 8959 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8960 )) 8961 return; 8962 8963 if (mddev_trylock(mddev)) { 8964 int spares = 0; 8965 bool try_set_sync = mddev->safemode != 0; 8966 8967 if (!mddev->external && mddev->safemode == 1) 8968 mddev->safemode = 0; 8969 8970 if (mddev->ro) { 8971 struct md_rdev *rdev; 8972 if (!mddev->external && mddev->in_sync) 8973 /* 'Blocked' flag not needed as failed devices 8974 * will be recorded if array switched to read/write. 8975 * Leaving it set will prevent the device 8976 * from being removed. 8977 */ 8978 rdev_for_each(rdev, mddev) 8979 clear_bit(Blocked, &rdev->flags); 8980 /* On a read-only array we can: 8981 * - remove failed devices 8982 * - add already-in_sync devices if the array itself 8983 * is in-sync. 8984 * As we only add devices that are already in-sync, 8985 * we can activate the spares immediately. 8986 */ 8987 remove_and_add_spares(mddev, NULL); 8988 /* There is no thread, but we need to call 8989 * ->spare_active and clear saved_raid_disk 8990 */ 8991 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8992 md_reap_sync_thread(mddev); 8993 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8994 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8995 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8996 goto unlock; 8997 } 8998 8999 if (mddev_is_clustered(mddev)) { 9000 struct md_rdev *rdev; 9001 /* kick the device if another node issued a 9002 * remove disk. 9003 */ 9004 rdev_for_each(rdev, mddev) { 9005 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9006 rdev->raid_disk < 0) 9007 md_kick_rdev_from_array(rdev); 9008 } 9009 } 9010 9011 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9012 spin_lock(&mddev->lock); 9013 set_in_sync(mddev); 9014 spin_unlock(&mddev->lock); 9015 } 9016 9017 if (mddev->sb_flags) 9018 md_update_sb(mddev, 0); 9019 9020 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9021 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9022 /* resync/recovery still happening */ 9023 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9024 goto unlock; 9025 } 9026 if (mddev->sync_thread) { 9027 md_reap_sync_thread(mddev); 9028 goto unlock; 9029 } 9030 /* Set RUNNING before clearing NEEDED to avoid 9031 * any transients in the value of "sync_action". 9032 */ 9033 mddev->curr_resync_completed = 0; 9034 spin_lock(&mddev->lock); 9035 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9036 spin_unlock(&mddev->lock); 9037 /* Clear some bits that don't mean anything, but 9038 * might be left set 9039 */ 9040 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9041 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9042 9043 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9044 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9045 goto not_running; 9046 /* no recovery is running. 9047 * remove any failed drives, then 9048 * add spares if possible. 9049 * Spares are also removed and re-added, to allow 9050 * the personality to fail the re-add. 9051 */ 9052 9053 if (mddev->reshape_position != MaxSector) { 9054 if (mddev->pers->check_reshape == NULL || 9055 mddev->pers->check_reshape(mddev) != 0) 9056 /* Cannot proceed */ 9057 goto not_running; 9058 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9059 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9060 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9061 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9062 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9063 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9064 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9065 } else if (mddev->recovery_cp < MaxSector) { 9066 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9067 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9068 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9069 /* nothing to be done ... */ 9070 goto not_running; 9071 9072 if (mddev->pers->sync_request) { 9073 if (spares) { 9074 /* We are adding a device or devices to an array 9075 * which has the bitmap stored on all devices. 9076 * So make sure all bitmap pages get written 9077 */ 9078 md_bitmap_write_all(mddev->bitmap); 9079 } 9080 INIT_WORK(&mddev->del_work, md_start_sync); 9081 queue_work(md_misc_wq, &mddev->del_work); 9082 goto unlock; 9083 } 9084 not_running: 9085 if (!mddev->sync_thread) { 9086 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9087 wake_up(&resync_wait); 9088 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9089 &mddev->recovery)) 9090 if (mddev->sysfs_action) 9091 sysfs_notify_dirent_safe(mddev->sysfs_action); 9092 } 9093 unlock: 9094 wake_up(&mddev->sb_wait); 9095 mddev_unlock(mddev); 9096 } 9097 } 9098 EXPORT_SYMBOL(md_check_recovery); 9099 9100 void md_reap_sync_thread(struct mddev *mddev) 9101 { 9102 struct md_rdev *rdev; 9103 sector_t old_dev_sectors = mddev->dev_sectors; 9104 bool is_reshaped = false; 9105 9106 /* resync has finished, collect result */ 9107 md_unregister_thread(&mddev->sync_thread); 9108 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9109 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9110 mddev->degraded != mddev->raid_disks) { 9111 /* success...*/ 9112 /* activate any spares */ 9113 if (mddev->pers->spare_active(mddev)) { 9114 sysfs_notify(&mddev->kobj, NULL, 9115 "degraded"); 9116 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9117 } 9118 } 9119 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9120 mddev->pers->finish_reshape) { 9121 mddev->pers->finish_reshape(mddev); 9122 if (mddev_is_clustered(mddev)) 9123 is_reshaped = true; 9124 } 9125 9126 /* If array is no-longer degraded, then any saved_raid_disk 9127 * information must be scrapped. 9128 */ 9129 if (!mddev->degraded) 9130 rdev_for_each(rdev, mddev) 9131 rdev->saved_raid_disk = -1; 9132 9133 md_update_sb(mddev, 1); 9134 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9135 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9136 * clustered raid */ 9137 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9138 md_cluster_ops->resync_finish(mddev); 9139 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9140 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9141 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9142 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9143 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9144 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9145 /* 9146 * We call md_cluster_ops->update_size here because sync_size could 9147 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9148 * so it is time to update size across cluster. 9149 */ 9150 if (mddev_is_clustered(mddev) && is_reshaped 9151 && !test_bit(MD_CLOSING, &mddev->flags)) 9152 md_cluster_ops->update_size(mddev, old_dev_sectors); 9153 wake_up(&resync_wait); 9154 /* flag recovery needed just to double check */ 9155 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9156 sysfs_notify_dirent_safe(mddev->sysfs_action); 9157 md_new_event(mddev); 9158 if (mddev->event_work.func) 9159 queue_work(md_misc_wq, &mddev->event_work); 9160 } 9161 EXPORT_SYMBOL(md_reap_sync_thread); 9162 9163 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9164 { 9165 sysfs_notify_dirent_safe(rdev->sysfs_state); 9166 wait_event_timeout(rdev->blocked_wait, 9167 !test_bit(Blocked, &rdev->flags) && 9168 !test_bit(BlockedBadBlocks, &rdev->flags), 9169 msecs_to_jiffies(5000)); 9170 rdev_dec_pending(rdev, mddev); 9171 } 9172 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9173 9174 void md_finish_reshape(struct mddev *mddev) 9175 { 9176 /* called be personality module when reshape completes. */ 9177 struct md_rdev *rdev; 9178 9179 rdev_for_each(rdev, mddev) { 9180 if (rdev->data_offset > rdev->new_data_offset) 9181 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9182 else 9183 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9184 rdev->data_offset = rdev->new_data_offset; 9185 } 9186 } 9187 EXPORT_SYMBOL(md_finish_reshape); 9188 9189 /* Bad block management */ 9190 9191 /* Returns 1 on success, 0 on failure */ 9192 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9193 int is_new) 9194 { 9195 struct mddev *mddev = rdev->mddev; 9196 int rv; 9197 if (is_new) 9198 s += rdev->new_data_offset; 9199 else 9200 s += rdev->data_offset; 9201 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9202 if (rv == 0) { 9203 /* Make sure they get written out promptly */ 9204 if (test_bit(ExternalBbl, &rdev->flags)) 9205 sysfs_notify(&rdev->kobj, NULL, 9206 "unacknowledged_bad_blocks"); 9207 sysfs_notify_dirent_safe(rdev->sysfs_state); 9208 set_mask_bits(&mddev->sb_flags, 0, 9209 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9210 md_wakeup_thread(rdev->mddev->thread); 9211 return 1; 9212 } else 9213 return 0; 9214 } 9215 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9216 9217 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9218 int is_new) 9219 { 9220 int rv; 9221 if (is_new) 9222 s += rdev->new_data_offset; 9223 else 9224 s += rdev->data_offset; 9225 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9226 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9227 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 9228 return rv; 9229 } 9230 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9231 9232 static int md_notify_reboot(struct notifier_block *this, 9233 unsigned long code, void *x) 9234 { 9235 struct list_head *tmp; 9236 struct mddev *mddev; 9237 int need_delay = 0; 9238 9239 for_each_mddev(mddev, tmp) { 9240 if (mddev_trylock(mddev)) { 9241 if (mddev->pers) 9242 __md_stop_writes(mddev); 9243 if (mddev->persistent) 9244 mddev->safemode = 2; 9245 mddev_unlock(mddev); 9246 } 9247 need_delay = 1; 9248 } 9249 /* 9250 * certain more exotic SCSI devices are known to be 9251 * volatile wrt too early system reboots. While the 9252 * right place to handle this issue is the given 9253 * driver, we do want to have a safe RAID driver ... 9254 */ 9255 if (need_delay) 9256 mdelay(1000*1); 9257 9258 return NOTIFY_DONE; 9259 } 9260 9261 static struct notifier_block md_notifier = { 9262 .notifier_call = md_notify_reboot, 9263 .next = NULL, 9264 .priority = INT_MAX, /* before any real devices */ 9265 }; 9266 9267 static void md_geninit(void) 9268 { 9269 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9270 9271 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9272 } 9273 9274 static int __init md_init(void) 9275 { 9276 int ret = -ENOMEM; 9277 9278 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9279 if (!md_wq) 9280 goto err_wq; 9281 9282 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9283 if (!md_misc_wq) 9284 goto err_misc_wq; 9285 9286 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9287 goto err_md; 9288 9289 if ((ret = register_blkdev(0, "mdp")) < 0) 9290 goto err_mdp; 9291 mdp_major = ret; 9292 9293 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9294 md_probe, NULL, NULL); 9295 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9296 md_probe, NULL, NULL); 9297 9298 register_reboot_notifier(&md_notifier); 9299 raid_table_header = register_sysctl_table(raid_root_table); 9300 9301 md_geninit(); 9302 return 0; 9303 9304 err_mdp: 9305 unregister_blkdev(MD_MAJOR, "md"); 9306 err_md: 9307 destroy_workqueue(md_misc_wq); 9308 err_misc_wq: 9309 destroy_workqueue(md_wq); 9310 err_wq: 9311 return ret; 9312 } 9313 9314 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9315 { 9316 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9317 struct md_rdev *rdev2; 9318 int role, ret; 9319 char b[BDEVNAME_SIZE]; 9320 9321 /* 9322 * If size is changed in another node then we need to 9323 * do resize as well. 9324 */ 9325 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9326 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9327 if (ret) 9328 pr_info("md-cluster: resize failed\n"); 9329 else 9330 md_bitmap_update_sb(mddev->bitmap); 9331 } 9332 9333 /* Check for change of roles in the active devices */ 9334 rdev_for_each(rdev2, mddev) { 9335 if (test_bit(Faulty, &rdev2->flags)) 9336 continue; 9337 9338 /* Check if the roles changed */ 9339 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9340 9341 if (test_bit(Candidate, &rdev2->flags)) { 9342 if (role == 0xfffe) { 9343 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9344 md_kick_rdev_from_array(rdev2); 9345 continue; 9346 } 9347 else 9348 clear_bit(Candidate, &rdev2->flags); 9349 } 9350 9351 if (role != rdev2->raid_disk) { 9352 /* 9353 * got activated except reshape is happening. 9354 */ 9355 if (rdev2->raid_disk == -1 && role != 0xffff && 9356 !(le32_to_cpu(sb->feature_map) & 9357 MD_FEATURE_RESHAPE_ACTIVE)) { 9358 rdev2->saved_raid_disk = role; 9359 ret = remove_and_add_spares(mddev, rdev2); 9360 pr_info("Activated spare: %s\n", 9361 bdevname(rdev2->bdev,b)); 9362 /* wakeup mddev->thread here, so array could 9363 * perform resync with the new activated disk */ 9364 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9365 md_wakeup_thread(mddev->thread); 9366 } 9367 /* device faulty 9368 * We just want to do the minimum to mark the disk 9369 * as faulty. The recovery is performed by the 9370 * one who initiated the error. 9371 */ 9372 if ((role == 0xfffe) || (role == 0xfffd)) { 9373 md_error(mddev, rdev2); 9374 clear_bit(Blocked, &rdev2->flags); 9375 } 9376 } 9377 } 9378 9379 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9380 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9381 9382 /* 9383 * Since mddev->delta_disks has already updated in update_raid_disks, 9384 * so it is time to check reshape. 9385 */ 9386 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9387 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9388 /* 9389 * reshape is happening in the remote node, we need to 9390 * update reshape_position and call start_reshape. 9391 */ 9392 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9393 if (mddev->pers->update_reshape_pos) 9394 mddev->pers->update_reshape_pos(mddev); 9395 if (mddev->pers->start_reshape) 9396 mddev->pers->start_reshape(mddev); 9397 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9398 mddev->reshape_position != MaxSector && 9399 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9400 /* reshape is just done in another node. */ 9401 mddev->reshape_position = MaxSector; 9402 if (mddev->pers->update_reshape_pos) 9403 mddev->pers->update_reshape_pos(mddev); 9404 } 9405 9406 /* Finally set the event to be up to date */ 9407 mddev->events = le64_to_cpu(sb->events); 9408 } 9409 9410 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9411 { 9412 int err; 9413 struct page *swapout = rdev->sb_page; 9414 struct mdp_superblock_1 *sb; 9415 9416 /* Store the sb page of the rdev in the swapout temporary 9417 * variable in case we err in the future 9418 */ 9419 rdev->sb_page = NULL; 9420 err = alloc_disk_sb(rdev); 9421 if (err == 0) { 9422 ClearPageUptodate(rdev->sb_page); 9423 rdev->sb_loaded = 0; 9424 err = super_types[mddev->major_version]. 9425 load_super(rdev, NULL, mddev->minor_version); 9426 } 9427 if (err < 0) { 9428 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9429 __func__, __LINE__, rdev->desc_nr, err); 9430 if (rdev->sb_page) 9431 put_page(rdev->sb_page); 9432 rdev->sb_page = swapout; 9433 rdev->sb_loaded = 1; 9434 return err; 9435 } 9436 9437 sb = page_address(rdev->sb_page); 9438 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9439 * is not set 9440 */ 9441 9442 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9443 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9444 9445 /* The other node finished recovery, call spare_active to set 9446 * device In_sync and mddev->degraded 9447 */ 9448 if (rdev->recovery_offset == MaxSector && 9449 !test_bit(In_sync, &rdev->flags) && 9450 mddev->pers->spare_active(mddev)) 9451 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9452 9453 put_page(swapout); 9454 return 0; 9455 } 9456 9457 void md_reload_sb(struct mddev *mddev, int nr) 9458 { 9459 struct md_rdev *rdev; 9460 int err; 9461 9462 /* Find the rdev */ 9463 rdev_for_each_rcu(rdev, mddev) { 9464 if (rdev->desc_nr == nr) 9465 break; 9466 } 9467 9468 if (!rdev || rdev->desc_nr != nr) { 9469 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9470 return; 9471 } 9472 9473 err = read_rdev(mddev, rdev); 9474 if (err < 0) 9475 return; 9476 9477 check_sb_changes(mddev, rdev); 9478 9479 /* Read all rdev's to update recovery_offset */ 9480 rdev_for_each_rcu(rdev, mddev) { 9481 if (!test_bit(Faulty, &rdev->flags)) 9482 read_rdev(mddev, rdev); 9483 } 9484 } 9485 EXPORT_SYMBOL(md_reload_sb); 9486 9487 #ifndef MODULE 9488 9489 /* 9490 * Searches all registered partitions for autorun RAID arrays 9491 * at boot time. 9492 */ 9493 9494 static DEFINE_MUTEX(detected_devices_mutex); 9495 static LIST_HEAD(all_detected_devices); 9496 struct detected_devices_node { 9497 struct list_head list; 9498 dev_t dev; 9499 }; 9500 9501 void md_autodetect_dev(dev_t dev) 9502 { 9503 struct detected_devices_node *node_detected_dev; 9504 9505 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9506 if (node_detected_dev) { 9507 node_detected_dev->dev = dev; 9508 mutex_lock(&detected_devices_mutex); 9509 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9510 mutex_unlock(&detected_devices_mutex); 9511 } 9512 } 9513 9514 static void autostart_arrays(int part) 9515 { 9516 struct md_rdev *rdev; 9517 struct detected_devices_node *node_detected_dev; 9518 dev_t dev; 9519 int i_scanned, i_passed; 9520 9521 i_scanned = 0; 9522 i_passed = 0; 9523 9524 pr_info("md: Autodetecting RAID arrays.\n"); 9525 9526 mutex_lock(&detected_devices_mutex); 9527 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9528 i_scanned++; 9529 node_detected_dev = list_entry(all_detected_devices.next, 9530 struct detected_devices_node, list); 9531 list_del(&node_detected_dev->list); 9532 dev = node_detected_dev->dev; 9533 kfree(node_detected_dev); 9534 mutex_unlock(&detected_devices_mutex); 9535 rdev = md_import_device(dev,0, 90); 9536 mutex_lock(&detected_devices_mutex); 9537 if (IS_ERR(rdev)) 9538 continue; 9539 9540 if (test_bit(Faulty, &rdev->flags)) 9541 continue; 9542 9543 set_bit(AutoDetected, &rdev->flags); 9544 list_add(&rdev->same_set, &pending_raid_disks); 9545 i_passed++; 9546 } 9547 mutex_unlock(&detected_devices_mutex); 9548 9549 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9550 9551 autorun_devices(part); 9552 } 9553 9554 #endif /* !MODULE */ 9555 9556 static __exit void md_exit(void) 9557 { 9558 struct mddev *mddev; 9559 struct list_head *tmp; 9560 int delay = 1; 9561 9562 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9563 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9564 9565 unregister_blkdev(MD_MAJOR,"md"); 9566 unregister_blkdev(mdp_major, "mdp"); 9567 unregister_reboot_notifier(&md_notifier); 9568 unregister_sysctl_table(raid_table_header); 9569 9570 /* We cannot unload the modules while some process is 9571 * waiting for us in select() or poll() - wake them up 9572 */ 9573 md_unloading = 1; 9574 while (waitqueue_active(&md_event_waiters)) { 9575 /* not safe to leave yet */ 9576 wake_up(&md_event_waiters); 9577 msleep(delay); 9578 delay += delay; 9579 } 9580 remove_proc_entry("mdstat", NULL); 9581 9582 for_each_mddev(mddev, tmp) { 9583 export_array(mddev); 9584 mddev->ctime = 0; 9585 mddev->hold_active = 0; 9586 /* 9587 * for_each_mddev() will call mddev_put() at the end of each 9588 * iteration. As the mddev is now fully clear, this will 9589 * schedule the mddev for destruction by a workqueue, and the 9590 * destroy_workqueue() below will wait for that to complete. 9591 */ 9592 } 9593 destroy_workqueue(md_misc_wq); 9594 destroy_workqueue(md_wq); 9595 } 9596 9597 subsys_initcall(md_init); 9598 module_exit(md_exit) 9599 9600 static int get_ro(char *buffer, const struct kernel_param *kp) 9601 { 9602 return sprintf(buffer, "%d", start_readonly); 9603 } 9604 static int set_ro(const char *val, const struct kernel_param *kp) 9605 { 9606 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9607 } 9608 9609 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9610 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9611 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9612 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9613 9614 MODULE_LICENSE("GPL"); 9615 MODULE_DESCRIPTION("MD RAID framework"); 9616 MODULE_ALIAS("md"); 9617 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9618