1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/badblocks.h> 38 #include <linux/sysctl.h> 39 #include <linux/seq_file.h> 40 #include <linux/fs.h> 41 #include <linux/poll.h> 42 #include <linux/ctype.h> 43 #include <linux/string.h> 44 #include <linux/hdreg.h> 45 #include <linux/proc_fs.h> 46 #include <linux/random.h> 47 #include <linux/module.h> 48 #include <linux/reboot.h> 49 #include <linux/file.h> 50 #include <linux/compat.h> 51 #include <linux/delay.h> 52 #include <linux/raid/md_p.h> 53 #include <linux/raid/md_u.h> 54 #include <linux/slab.h> 55 #include "md.h" 56 #include "bitmap.h" 57 #include "md-cluster.h" 58 59 #ifndef MODULE 60 static void autostart_arrays(int part); 61 #endif 62 63 /* pers_list is a list of registered personalities protected 64 * by pers_lock. 65 * pers_lock does extra service to protect accesses to 66 * mddev->thread when the mutex cannot be held. 67 */ 68 static LIST_HEAD(pers_list); 69 static DEFINE_SPINLOCK(pers_lock); 70 71 struct md_cluster_operations *md_cluster_ops; 72 EXPORT_SYMBOL(md_cluster_ops); 73 struct module *md_cluster_mod; 74 EXPORT_SYMBOL(md_cluster_mod); 75 76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 77 static struct workqueue_struct *md_wq; 78 static struct workqueue_struct *md_misc_wq; 79 80 static int remove_and_add_spares(struct mddev *mddev, 81 struct md_rdev *this); 82 static void mddev_detach(struct mddev *mddev); 83 84 /* 85 * Default number of read corrections we'll attempt on an rdev 86 * before ejecting it from the array. We divide the read error 87 * count by 2 for every hour elapsed between read errors. 88 */ 89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 90 /* 91 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 92 * is 1000 KB/sec, so the extra system load does not show up that much. 93 * Increase it if you want to have more _guaranteed_ speed. Note that 94 * the RAID driver will use the maximum available bandwidth if the IO 95 * subsystem is idle. There is also an 'absolute maximum' reconstruction 96 * speed limit - in case reconstruction slows down your system despite 97 * idle IO detection. 98 * 99 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 100 * or /sys/block/mdX/md/sync_speed_{min,max} 101 */ 102 103 static int sysctl_speed_limit_min = 1000; 104 static int sysctl_speed_limit_max = 200000; 105 static inline int speed_min(struct mddev *mddev) 106 { 107 return mddev->sync_speed_min ? 108 mddev->sync_speed_min : sysctl_speed_limit_min; 109 } 110 111 static inline int speed_max(struct mddev *mddev) 112 { 113 return mddev->sync_speed_max ? 114 mddev->sync_speed_max : sysctl_speed_limit_max; 115 } 116 117 static struct ctl_table_header *raid_table_header; 118 119 static struct ctl_table raid_table[] = { 120 { 121 .procname = "speed_limit_min", 122 .data = &sysctl_speed_limit_min, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = proc_dointvec, 126 }, 127 { 128 .procname = "speed_limit_max", 129 .data = &sysctl_speed_limit_max, 130 .maxlen = sizeof(int), 131 .mode = S_IRUGO|S_IWUSR, 132 .proc_handler = proc_dointvec, 133 }, 134 { } 135 }; 136 137 static struct ctl_table raid_dir_table[] = { 138 { 139 .procname = "raid", 140 .maxlen = 0, 141 .mode = S_IRUGO|S_IXUGO, 142 .child = raid_table, 143 }, 144 { } 145 }; 146 147 static struct ctl_table raid_root_table[] = { 148 { 149 .procname = "dev", 150 .maxlen = 0, 151 .mode = 0555, 152 .child = raid_dir_table, 153 }, 154 { } 155 }; 156 157 static const struct block_device_operations md_fops; 158 159 static int start_readonly; 160 161 /* bio_clone_mddev 162 * like bio_clone, but with a local bio set 163 */ 164 165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 166 struct mddev *mddev) 167 { 168 struct bio *b; 169 170 if (!mddev || !mddev->bio_set) 171 return bio_alloc(gfp_mask, nr_iovecs); 172 173 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 174 if (!b) 175 return NULL; 176 return b; 177 } 178 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 179 180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 181 struct mddev *mddev) 182 { 183 if (!mddev || !mddev->bio_set) 184 return bio_clone(bio, gfp_mask); 185 186 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 187 } 188 EXPORT_SYMBOL_GPL(bio_clone_mddev); 189 190 /* 191 * We have a system wide 'event count' that is incremented 192 * on any 'interesting' event, and readers of /proc/mdstat 193 * can use 'poll' or 'select' to find out when the event 194 * count increases. 195 * 196 * Events are: 197 * start array, stop array, error, add device, remove device, 198 * start build, activate spare 199 */ 200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 201 static atomic_t md_event_count; 202 void md_new_event(struct mddev *mddev) 203 { 204 atomic_inc(&md_event_count); 205 wake_up(&md_event_waiters); 206 } 207 EXPORT_SYMBOL_GPL(md_new_event); 208 209 /* 210 * Enables to iterate over all existing md arrays 211 * all_mddevs_lock protects this list. 212 */ 213 static LIST_HEAD(all_mddevs); 214 static DEFINE_SPINLOCK(all_mddevs_lock); 215 216 /* 217 * iterates through all used mddevs in the system. 218 * We take care to grab the all_mddevs_lock whenever navigating 219 * the list, and to always hold a refcount when unlocked. 220 * Any code which breaks out of this loop while own 221 * a reference to the current mddev and must mddev_put it. 222 */ 223 #define for_each_mddev(_mddev,_tmp) \ 224 \ 225 for (({ spin_lock(&all_mddevs_lock); \ 226 _tmp = all_mddevs.next; \ 227 _mddev = NULL;}); \ 228 ({ if (_tmp != &all_mddevs) \ 229 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 230 spin_unlock(&all_mddevs_lock); \ 231 if (_mddev) mddev_put(_mddev); \ 232 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 233 _tmp != &all_mddevs;}); \ 234 ({ spin_lock(&all_mddevs_lock); \ 235 _tmp = _tmp->next;}) \ 236 ) 237 238 /* Rather than calling directly into the personality make_request function, 239 * IO requests come here first so that we can check if the device is 240 * being suspended pending a reconfiguration. 241 * We hold a refcount over the call to ->make_request. By the time that 242 * call has finished, the bio has been linked into some internal structure 243 * and so is visible to ->quiesce(), so we don't need the refcount any more. 244 */ 245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 246 { 247 const int rw = bio_data_dir(bio); 248 struct mddev *mddev = q->queuedata; 249 unsigned int sectors; 250 int cpu; 251 252 blk_queue_split(q, &bio, q->bio_split); 253 254 if (mddev == NULL || mddev->pers == NULL) { 255 bio_io_error(bio); 256 return BLK_QC_T_NONE; 257 } 258 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 259 if (bio_sectors(bio) != 0) 260 bio->bi_error = -EROFS; 261 bio_endio(bio); 262 return BLK_QC_T_NONE; 263 } 264 smp_rmb(); /* Ensure implications of 'active' are visible */ 265 rcu_read_lock(); 266 if (mddev->suspended) { 267 DEFINE_WAIT(__wait); 268 for (;;) { 269 prepare_to_wait(&mddev->sb_wait, &__wait, 270 TASK_UNINTERRUPTIBLE); 271 if (!mddev->suspended) 272 break; 273 rcu_read_unlock(); 274 schedule(); 275 rcu_read_lock(); 276 } 277 finish_wait(&mddev->sb_wait, &__wait); 278 } 279 atomic_inc(&mddev->active_io); 280 rcu_read_unlock(); 281 282 /* 283 * save the sectors now since our bio can 284 * go away inside make_request 285 */ 286 sectors = bio_sectors(bio); 287 /* bio could be mergeable after passing to underlayer */ 288 bio->bi_rw &= ~REQ_NOMERGE; 289 mddev->pers->make_request(mddev, bio); 290 291 cpu = part_stat_lock(); 292 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 293 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 294 part_stat_unlock(); 295 296 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 297 wake_up(&mddev->sb_wait); 298 299 return BLK_QC_T_NONE; 300 } 301 302 /* mddev_suspend makes sure no new requests are submitted 303 * to the device, and that any requests that have been submitted 304 * are completely handled. 305 * Once mddev_detach() is called and completes, the module will be 306 * completely unused. 307 */ 308 void mddev_suspend(struct mddev *mddev) 309 { 310 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 311 if (mddev->suspended++) 312 return; 313 synchronize_rcu(); 314 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 315 mddev->pers->quiesce(mddev, 1); 316 317 del_timer_sync(&mddev->safemode_timer); 318 } 319 EXPORT_SYMBOL_GPL(mddev_suspend); 320 321 void mddev_resume(struct mddev *mddev) 322 { 323 if (--mddev->suspended) 324 return; 325 wake_up(&mddev->sb_wait); 326 mddev->pers->quiesce(mddev, 0); 327 328 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 329 md_wakeup_thread(mddev->thread); 330 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 331 } 332 EXPORT_SYMBOL_GPL(mddev_resume); 333 334 int mddev_congested(struct mddev *mddev, int bits) 335 { 336 struct md_personality *pers = mddev->pers; 337 int ret = 0; 338 339 rcu_read_lock(); 340 if (mddev->suspended) 341 ret = 1; 342 else if (pers && pers->congested) 343 ret = pers->congested(mddev, bits); 344 rcu_read_unlock(); 345 return ret; 346 } 347 EXPORT_SYMBOL_GPL(mddev_congested); 348 static int md_congested(void *data, int bits) 349 { 350 struct mddev *mddev = data; 351 return mddev_congested(mddev, bits); 352 } 353 354 /* 355 * Generic flush handling for md 356 */ 357 358 static void md_end_flush(struct bio *bio) 359 { 360 struct md_rdev *rdev = bio->bi_private; 361 struct mddev *mddev = rdev->mddev; 362 363 rdev_dec_pending(rdev, mddev); 364 365 if (atomic_dec_and_test(&mddev->flush_pending)) { 366 /* The pre-request flush has finished */ 367 queue_work(md_wq, &mddev->flush_work); 368 } 369 bio_put(bio); 370 } 371 372 static void md_submit_flush_data(struct work_struct *ws); 373 374 static void submit_flushes(struct work_struct *ws) 375 { 376 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 377 struct md_rdev *rdev; 378 379 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 380 atomic_set(&mddev->flush_pending, 1); 381 rcu_read_lock(); 382 rdev_for_each_rcu(rdev, mddev) 383 if (rdev->raid_disk >= 0 && 384 !test_bit(Faulty, &rdev->flags)) { 385 /* Take two references, one is dropped 386 * when request finishes, one after 387 * we reclaim rcu_read_lock 388 */ 389 struct bio *bi; 390 atomic_inc(&rdev->nr_pending); 391 atomic_inc(&rdev->nr_pending); 392 rcu_read_unlock(); 393 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 394 bi->bi_end_io = md_end_flush; 395 bi->bi_private = rdev; 396 bi->bi_bdev = rdev->bdev; 397 atomic_inc(&mddev->flush_pending); 398 submit_bio(WRITE_FLUSH, bi); 399 rcu_read_lock(); 400 rdev_dec_pending(rdev, mddev); 401 } 402 rcu_read_unlock(); 403 if (atomic_dec_and_test(&mddev->flush_pending)) 404 queue_work(md_wq, &mddev->flush_work); 405 } 406 407 static void md_submit_flush_data(struct work_struct *ws) 408 { 409 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 410 struct bio *bio = mddev->flush_bio; 411 412 if (bio->bi_iter.bi_size == 0) 413 /* an empty barrier - all done */ 414 bio_endio(bio); 415 else { 416 bio->bi_rw &= ~REQ_FLUSH; 417 mddev->pers->make_request(mddev, bio); 418 } 419 420 mddev->flush_bio = NULL; 421 wake_up(&mddev->sb_wait); 422 } 423 424 void md_flush_request(struct mddev *mddev, struct bio *bio) 425 { 426 spin_lock_irq(&mddev->lock); 427 wait_event_lock_irq(mddev->sb_wait, 428 !mddev->flush_bio, 429 mddev->lock); 430 mddev->flush_bio = bio; 431 spin_unlock_irq(&mddev->lock); 432 433 INIT_WORK(&mddev->flush_work, submit_flushes); 434 queue_work(md_wq, &mddev->flush_work); 435 } 436 EXPORT_SYMBOL(md_flush_request); 437 438 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 439 { 440 struct mddev *mddev = cb->data; 441 md_wakeup_thread(mddev->thread); 442 kfree(cb); 443 } 444 EXPORT_SYMBOL(md_unplug); 445 446 static inline struct mddev *mddev_get(struct mddev *mddev) 447 { 448 atomic_inc(&mddev->active); 449 return mddev; 450 } 451 452 static void mddev_delayed_delete(struct work_struct *ws); 453 454 static void mddev_put(struct mddev *mddev) 455 { 456 struct bio_set *bs = NULL; 457 458 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 459 return; 460 if (!mddev->raid_disks && list_empty(&mddev->disks) && 461 mddev->ctime == 0 && !mddev->hold_active) { 462 /* Array is not configured at all, and not held active, 463 * so destroy it */ 464 list_del_init(&mddev->all_mddevs); 465 bs = mddev->bio_set; 466 mddev->bio_set = NULL; 467 if (mddev->gendisk) { 468 /* We did a probe so need to clean up. Call 469 * queue_work inside the spinlock so that 470 * flush_workqueue() after mddev_find will 471 * succeed in waiting for the work to be done. 472 */ 473 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 474 queue_work(md_misc_wq, &mddev->del_work); 475 } else 476 kfree(mddev); 477 } 478 spin_unlock(&all_mddevs_lock); 479 if (bs) 480 bioset_free(bs); 481 } 482 483 static void md_safemode_timeout(unsigned long data); 484 485 void mddev_init(struct mddev *mddev) 486 { 487 mutex_init(&mddev->open_mutex); 488 mutex_init(&mddev->reconfig_mutex); 489 mutex_init(&mddev->bitmap_info.mutex); 490 INIT_LIST_HEAD(&mddev->disks); 491 INIT_LIST_HEAD(&mddev->all_mddevs); 492 setup_timer(&mddev->safemode_timer, md_safemode_timeout, 493 (unsigned long) mddev); 494 atomic_set(&mddev->active, 1); 495 atomic_set(&mddev->openers, 0); 496 atomic_set(&mddev->active_io, 0); 497 spin_lock_init(&mddev->lock); 498 atomic_set(&mddev->flush_pending, 0); 499 init_waitqueue_head(&mddev->sb_wait); 500 init_waitqueue_head(&mddev->recovery_wait); 501 mddev->reshape_position = MaxSector; 502 mddev->reshape_backwards = 0; 503 mddev->last_sync_action = "none"; 504 mddev->resync_min = 0; 505 mddev->resync_max = MaxSector; 506 mddev->level = LEVEL_NONE; 507 } 508 EXPORT_SYMBOL_GPL(mddev_init); 509 510 static struct mddev *mddev_find(dev_t unit) 511 { 512 struct mddev *mddev, *new = NULL; 513 514 if (unit && MAJOR(unit) != MD_MAJOR) 515 unit &= ~((1<<MdpMinorShift)-1); 516 517 retry: 518 spin_lock(&all_mddevs_lock); 519 520 if (unit) { 521 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 522 if (mddev->unit == unit) { 523 mddev_get(mddev); 524 spin_unlock(&all_mddevs_lock); 525 kfree(new); 526 return mddev; 527 } 528 529 if (new) { 530 list_add(&new->all_mddevs, &all_mddevs); 531 spin_unlock(&all_mddevs_lock); 532 new->hold_active = UNTIL_IOCTL; 533 return new; 534 } 535 } else if (new) { 536 /* find an unused unit number */ 537 static int next_minor = 512; 538 int start = next_minor; 539 int is_free = 0; 540 int dev = 0; 541 while (!is_free) { 542 dev = MKDEV(MD_MAJOR, next_minor); 543 next_minor++; 544 if (next_minor > MINORMASK) 545 next_minor = 0; 546 if (next_minor == start) { 547 /* Oh dear, all in use. */ 548 spin_unlock(&all_mddevs_lock); 549 kfree(new); 550 return NULL; 551 } 552 553 is_free = 1; 554 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 555 if (mddev->unit == dev) { 556 is_free = 0; 557 break; 558 } 559 } 560 new->unit = dev; 561 new->md_minor = MINOR(dev); 562 new->hold_active = UNTIL_STOP; 563 list_add(&new->all_mddevs, &all_mddevs); 564 spin_unlock(&all_mddevs_lock); 565 return new; 566 } 567 spin_unlock(&all_mddevs_lock); 568 569 new = kzalloc(sizeof(*new), GFP_KERNEL); 570 if (!new) 571 return NULL; 572 573 new->unit = unit; 574 if (MAJOR(unit) == MD_MAJOR) 575 new->md_minor = MINOR(unit); 576 else 577 new->md_minor = MINOR(unit) >> MdpMinorShift; 578 579 mddev_init(new); 580 581 goto retry; 582 } 583 584 static struct attribute_group md_redundancy_group; 585 586 void mddev_unlock(struct mddev *mddev) 587 { 588 if (mddev->to_remove) { 589 /* These cannot be removed under reconfig_mutex as 590 * an access to the files will try to take reconfig_mutex 591 * while holding the file unremovable, which leads to 592 * a deadlock. 593 * So hold set sysfs_active while the remove in happeing, 594 * and anything else which might set ->to_remove or my 595 * otherwise change the sysfs namespace will fail with 596 * -EBUSY if sysfs_active is still set. 597 * We set sysfs_active under reconfig_mutex and elsewhere 598 * test it under the same mutex to ensure its correct value 599 * is seen. 600 */ 601 struct attribute_group *to_remove = mddev->to_remove; 602 mddev->to_remove = NULL; 603 mddev->sysfs_active = 1; 604 mutex_unlock(&mddev->reconfig_mutex); 605 606 if (mddev->kobj.sd) { 607 if (to_remove != &md_redundancy_group) 608 sysfs_remove_group(&mddev->kobj, to_remove); 609 if (mddev->pers == NULL || 610 mddev->pers->sync_request == NULL) { 611 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 612 if (mddev->sysfs_action) 613 sysfs_put(mddev->sysfs_action); 614 mddev->sysfs_action = NULL; 615 } 616 } 617 mddev->sysfs_active = 0; 618 } else 619 mutex_unlock(&mddev->reconfig_mutex); 620 621 /* As we've dropped the mutex we need a spinlock to 622 * make sure the thread doesn't disappear 623 */ 624 spin_lock(&pers_lock); 625 md_wakeup_thread(mddev->thread); 626 spin_unlock(&pers_lock); 627 } 628 EXPORT_SYMBOL_GPL(mddev_unlock); 629 630 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 631 { 632 struct md_rdev *rdev; 633 634 rdev_for_each_rcu(rdev, mddev) 635 if (rdev->desc_nr == nr) 636 return rdev; 637 638 return NULL; 639 } 640 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 641 642 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 643 { 644 struct md_rdev *rdev; 645 646 rdev_for_each(rdev, mddev) 647 if (rdev->bdev->bd_dev == dev) 648 return rdev; 649 650 return NULL; 651 } 652 653 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 654 { 655 struct md_rdev *rdev; 656 657 rdev_for_each_rcu(rdev, mddev) 658 if (rdev->bdev->bd_dev == dev) 659 return rdev; 660 661 return NULL; 662 } 663 664 static struct md_personality *find_pers(int level, char *clevel) 665 { 666 struct md_personality *pers; 667 list_for_each_entry(pers, &pers_list, list) { 668 if (level != LEVEL_NONE && pers->level == level) 669 return pers; 670 if (strcmp(pers->name, clevel)==0) 671 return pers; 672 } 673 return NULL; 674 } 675 676 /* return the offset of the super block in 512byte sectors */ 677 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 678 { 679 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 680 return MD_NEW_SIZE_SECTORS(num_sectors); 681 } 682 683 static int alloc_disk_sb(struct md_rdev *rdev) 684 { 685 rdev->sb_page = alloc_page(GFP_KERNEL); 686 if (!rdev->sb_page) { 687 printk(KERN_ALERT "md: out of memory.\n"); 688 return -ENOMEM; 689 } 690 691 return 0; 692 } 693 694 void md_rdev_clear(struct md_rdev *rdev) 695 { 696 if (rdev->sb_page) { 697 put_page(rdev->sb_page); 698 rdev->sb_loaded = 0; 699 rdev->sb_page = NULL; 700 rdev->sb_start = 0; 701 rdev->sectors = 0; 702 } 703 if (rdev->bb_page) { 704 put_page(rdev->bb_page); 705 rdev->bb_page = NULL; 706 } 707 badblocks_exit(&rdev->badblocks); 708 } 709 EXPORT_SYMBOL_GPL(md_rdev_clear); 710 711 static void super_written(struct bio *bio) 712 { 713 struct md_rdev *rdev = bio->bi_private; 714 struct mddev *mddev = rdev->mddev; 715 716 if (bio->bi_error) { 717 printk("md: super_written gets error=%d\n", bio->bi_error); 718 md_error(mddev, rdev); 719 } 720 721 if (atomic_dec_and_test(&mddev->pending_writes)) 722 wake_up(&mddev->sb_wait); 723 rdev_dec_pending(rdev, mddev); 724 bio_put(bio); 725 } 726 727 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 728 sector_t sector, int size, struct page *page) 729 { 730 /* write first size bytes of page to sector of rdev 731 * Increment mddev->pending_writes before returning 732 * and decrement it on completion, waking up sb_wait 733 * if zero is reached. 734 * If an error occurred, call md_error 735 */ 736 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 737 738 atomic_inc(&rdev->nr_pending); 739 740 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 741 bio->bi_iter.bi_sector = sector; 742 bio_add_page(bio, page, size, 0); 743 bio->bi_private = rdev; 744 bio->bi_end_io = super_written; 745 746 atomic_inc(&mddev->pending_writes); 747 submit_bio(WRITE_FLUSH_FUA, bio); 748 } 749 750 void md_super_wait(struct mddev *mddev) 751 { 752 /* wait for all superblock writes that were scheduled to complete */ 753 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 754 } 755 756 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 757 struct page *page, int rw, bool metadata_op) 758 { 759 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 760 int ret; 761 762 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 763 rdev->meta_bdev : rdev->bdev; 764 if (metadata_op) 765 bio->bi_iter.bi_sector = sector + rdev->sb_start; 766 else if (rdev->mddev->reshape_position != MaxSector && 767 (rdev->mddev->reshape_backwards == 768 (sector >= rdev->mddev->reshape_position))) 769 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 770 else 771 bio->bi_iter.bi_sector = sector + rdev->data_offset; 772 bio_add_page(bio, page, size, 0); 773 submit_bio_wait(rw, bio); 774 775 ret = !bio->bi_error; 776 bio_put(bio); 777 return ret; 778 } 779 EXPORT_SYMBOL_GPL(sync_page_io); 780 781 static int read_disk_sb(struct md_rdev *rdev, int size) 782 { 783 char b[BDEVNAME_SIZE]; 784 785 if (rdev->sb_loaded) 786 return 0; 787 788 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 789 goto fail; 790 rdev->sb_loaded = 1; 791 return 0; 792 793 fail: 794 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 795 bdevname(rdev->bdev,b)); 796 return -EINVAL; 797 } 798 799 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 800 { 801 return sb1->set_uuid0 == sb2->set_uuid0 && 802 sb1->set_uuid1 == sb2->set_uuid1 && 803 sb1->set_uuid2 == sb2->set_uuid2 && 804 sb1->set_uuid3 == sb2->set_uuid3; 805 } 806 807 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 808 { 809 int ret; 810 mdp_super_t *tmp1, *tmp2; 811 812 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 813 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 814 815 if (!tmp1 || !tmp2) { 816 ret = 0; 817 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 818 goto abort; 819 } 820 821 *tmp1 = *sb1; 822 *tmp2 = *sb2; 823 824 /* 825 * nr_disks is not constant 826 */ 827 tmp1->nr_disks = 0; 828 tmp2->nr_disks = 0; 829 830 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 831 abort: 832 kfree(tmp1); 833 kfree(tmp2); 834 return ret; 835 } 836 837 static u32 md_csum_fold(u32 csum) 838 { 839 csum = (csum & 0xffff) + (csum >> 16); 840 return (csum & 0xffff) + (csum >> 16); 841 } 842 843 static unsigned int calc_sb_csum(mdp_super_t *sb) 844 { 845 u64 newcsum = 0; 846 u32 *sb32 = (u32*)sb; 847 int i; 848 unsigned int disk_csum, csum; 849 850 disk_csum = sb->sb_csum; 851 sb->sb_csum = 0; 852 853 for (i = 0; i < MD_SB_BYTES/4 ; i++) 854 newcsum += sb32[i]; 855 csum = (newcsum & 0xffffffff) + (newcsum>>32); 856 857 #ifdef CONFIG_ALPHA 858 /* This used to use csum_partial, which was wrong for several 859 * reasons including that different results are returned on 860 * different architectures. It isn't critical that we get exactly 861 * the same return value as before (we always csum_fold before 862 * testing, and that removes any differences). However as we 863 * know that csum_partial always returned a 16bit value on 864 * alphas, do a fold to maximise conformity to previous behaviour. 865 */ 866 sb->sb_csum = md_csum_fold(disk_csum); 867 #else 868 sb->sb_csum = disk_csum; 869 #endif 870 return csum; 871 } 872 873 /* 874 * Handle superblock details. 875 * We want to be able to handle multiple superblock formats 876 * so we have a common interface to them all, and an array of 877 * different handlers. 878 * We rely on user-space to write the initial superblock, and support 879 * reading and updating of superblocks. 880 * Interface methods are: 881 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 882 * loads and validates a superblock on dev. 883 * if refdev != NULL, compare superblocks on both devices 884 * Return: 885 * 0 - dev has a superblock that is compatible with refdev 886 * 1 - dev has a superblock that is compatible and newer than refdev 887 * so dev should be used as the refdev in future 888 * -EINVAL superblock incompatible or invalid 889 * -othererror e.g. -EIO 890 * 891 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 892 * Verify that dev is acceptable into mddev. 893 * The first time, mddev->raid_disks will be 0, and data from 894 * dev should be merged in. Subsequent calls check that dev 895 * is new enough. Return 0 or -EINVAL 896 * 897 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 898 * Update the superblock for rdev with data in mddev 899 * This does not write to disc. 900 * 901 */ 902 903 struct super_type { 904 char *name; 905 struct module *owner; 906 int (*load_super)(struct md_rdev *rdev, 907 struct md_rdev *refdev, 908 int minor_version); 909 int (*validate_super)(struct mddev *mddev, 910 struct md_rdev *rdev); 911 void (*sync_super)(struct mddev *mddev, 912 struct md_rdev *rdev); 913 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 914 sector_t num_sectors); 915 int (*allow_new_offset)(struct md_rdev *rdev, 916 unsigned long long new_offset); 917 }; 918 919 /* 920 * Check that the given mddev has no bitmap. 921 * 922 * This function is called from the run method of all personalities that do not 923 * support bitmaps. It prints an error message and returns non-zero if mddev 924 * has a bitmap. Otherwise, it returns 0. 925 * 926 */ 927 int md_check_no_bitmap(struct mddev *mddev) 928 { 929 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 930 return 0; 931 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 932 mdname(mddev), mddev->pers->name); 933 return 1; 934 } 935 EXPORT_SYMBOL(md_check_no_bitmap); 936 937 /* 938 * load_super for 0.90.0 939 */ 940 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 941 { 942 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 943 mdp_super_t *sb; 944 int ret; 945 946 /* 947 * Calculate the position of the superblock (512byte sectors), 948 * it's at the end of the disk. 949 * 950 * It also happens to be a multiple of 4Kb. 951 */ 952 rdev->sb_start = calc_dev_sboffset(rdev); 953 954 ret = read_disk_sb(rdev, MD_SB_BYTES); 955 if (ret) return ret; 956 957 ret = -EINVAL; 958 959 bdevname(rdev->bdev, b); 960 sb = page_address(rdev->sb_page); 961 962 if (sb->md_magic != MD_SB_MAGIC) { 963 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 964 b); 965 goto abort; 966 } 967 968 if (sb->major_version != 0 || 969 sb->minor_version < 90 || 970 sb->minor_version > 91) { 971 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 972 sb->major_version, sb->minor_version, 973 b); 974 goto abort; 975 } 976 977 if (sb->raid_disks <= 0) 978 goto abort; 979 980 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 981 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 982 b); 983 goto abort; 984 } 985 986 rdev->preferred_minor = sb->md_minor; 987 rdev->data_offset = 0; 988 rdev->new_data_offset = 0; 989 rdev->sb_size = MD_SB_BYTES; 990 rdev->badblocks.shift = -1; 991 992 if (sb->level == LEVEL_MULTIPATH) 993 rdev->desc_nr = -1; 994 else 995 rdev->desc_nr = sb->this_disk.number; 996 997 if (!refdev) { 998 ret = 1; 999 } else { 1000 __u64 ev1, ev2; 1001 mdp_super_t *refsb = page_address(refdev->sb_page); 1002 if (!uuid_equal(refsb, sb)) { 1003 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1004 b, bdevname(refdev->bdev,b2)); 1005 goto abort; 1006 } 1007 if (!sb_equal(refsb, sb)) { 1008 printk(KERN_WARNING "md: %s has same UUID" 1009 " but different superblock to %s\n", 1010 b, bdevname(refdev->bdev, b2)); 1011 goto abort; 1012 } 1013 ev1 = md_event(sb); 1014 ev2 = md_event(refsb); 1015 if (ev1 > ev2) 1016 ret = 1; 1017 else 1018 ret = 0; 1019 } 1020 rdev->sectors = rdev->sb_start; 1021 /* Limit to 4TB as metadata cannot record more than that. 1022 * (not needed for Linear and RAID0 as metadata doesn't 1023 * record this size) 1024 */ 1025 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1026 sb->level >= 1) 1027 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1028 1029 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1030 /* "this cannot possibly happen" ... */ 1031 ret = -EINVAL; 1032 1033 abort: 1034 return ret; 1035 } 1036 1037 /* 1038 * validate_super for 0.90.0 1039 */ 1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1041 { 1042 mdp_disk_t *desc; 1043 mdp_super_t *sb = page_address(rdev->sb_page); 1044 __u64 ev1 = md_event(sb); 1045 1046 rdev->raid_disk = -1; 1047 clear_bit(Faulty, &rdev->flags); 1048 clear_bit(In_sync, &rdev->flags); 1049 clear_bit(Bitmap_sync, &rdev->flags); 1050 clear_bit(WriteMostly, &rdev->flags); 1051 1052 if (mddev->raid_disks == 0) { 1053 mddev->major_version = 0; 1054 mddev->minor_version = sb->minor_version; 1055 mddev->patch_version = sb->patch_version; 1056 mddev->external = 0; 1057 mddev->chunk_sectors = sb->chunk_size >> 9; 1058 mddev->ctime = sb->ctime; 1059 mddev->utime = sb->utime; 1060 mddev->level = sb->level; 1061 mddev->clevel[0] = 0; 1062 mddev->layout = sb->layout; 1063 mddev->raid_disks = sb->raid_disks; 1064 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1065 mddev->events = ev1; 1066 mddev->bitmap_info.offset = 0; 1067 mddev->bitmap_info.space = 0; 1068 /* bitmap can use 60 K after the 4K superblocks */ 1069 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1070 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1071 mddev->reshape_backwards = 0; 1072 1073 if (mddev->minor_version >= 91) { 1074 mddev->reshape_position = sb->reshape_position; 1075 mddev->delta_disks = sb->delta_disks; 1076 mddev->new_level = sb->new_level; 1077 mddev->new_layout = sb->new_layout; 1078 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1079 if (mddev->delta_disks < 0) 1080 mddev->reshape_backwards = 1; 1081 } else { 1082 mddev->reshape_position = MaxSector; 1083 mddev->delta_disks = 0; 1084 mddev->new_level = mddev->level; 1085 mddev->new_layout = mddev->layout; 1086 mddev->new_chunk_sectors = mddev->chunk_sectors; 1087 } 1088 1089 if (sb->state & (1<<MD_SB_CLEAN)) 1090 mddev->recovery_cp = MaxSector; 1091 else { 1092 if (sb->events_hi == sb->cp_events_hi && 1093 sb->events_lo == sb->cp_events_lo) { 1094 mddev->recovery_cp = sb->recovery_cp; 1095 } else 1096 mddev->recovery_cp = 0; 1097 } 1098 1099 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1100 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1101 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1102 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1103 1104 mddev->max_disks = MD_SB_DISKS; 1105 1106 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1107 mddev->bitmap_info.file == NULL) { 1108 mddev->bitmap_info.offset = 1109 mddev->bitmap_info.default_offset; 1110 mddev->bitmap_info.space = 1111 mddev->bitmap_info.default_space; 1112 } 1113 1114 } else if (mddev->pers == NULL) { 1115 /* Insist on good event counter while assembling, except 1116 * for spares (which don't need an event count) */ 1117 ++ev1; 1118 if (sb->disks[rdev->desc_nr].state & ( 1119 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1120 if (ev1 < mddev->events) 1121 return -EINVAL; 1122 } else if (mddev->bitmap) { 1123 /* if adding to array with a bitmap, then we can accept an 1124 * older device ... but not too old. 1125 */ 1126 if (ev1 < mddev->bitmap->events_cleared) 1127 return 0; 1128 if (ev1 < mddev->events) 1129 set_bit(Bitmap_sync, &rdev->flags); 1130 } else { 1131 if (ev1 < mddev->events) 1132 /* just a hot-add of a new device, leave raid_disk at -1 */ 1133 return 0; 1134 } 1135 1136 if (mddev->level != LEVEL_MULTIPATH) { 1137 desc = sb->disks + rdev->desc_nr; 1138 1139 if (desc->state & (1<<MD_DISK_FAULTY)) 1140 set_bit(Faulty, &rdev->flags); 1141 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1142 desc->raid_disk < mddev->raid_disks */) { 1143 set_bit(In_sync, &rdev->flags); 1144 rdev->raid_disk = desc->raid_disk; 1145 rdev->saved_raid_disk = desc->raid_disk; 1146 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1147 /* active but not in sync implies recovery up to 1148 * reshape position. We don't know exactly where 1149 * that is, so set to zero for now */ 1150 if (mddev->minor_version >= 91) { 1151 rdev->recovery_offset = 0; 1152 rdev->raid_disk = desc->raid_disk; 1153 } 1154 } 1155 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1156 set_bit(WriteMostly, &rdev->flags); 1157 } else /* MULTIPATH are always insync */ 1158 set_bit(In_sync, &rdev->flags); 1159 return 0; 1160 } 1161 1162 /* 1163 * sync_super for 0.90.0 1164 */ 1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1166 { 1167 mdp_super_t *sb; 1168 struct md_rdev *rdev2; 1169 int next_spare = mddev->raid_disks; 1170 1171 /* make rdev->sb match mddev data.. 1172 * 1173 * 1/ zero out disks 1174 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1175 * 3/ any empty disks < next_spare become removed 1176 * 1177 * disks[0] gets initialised to REMOVED because 1178 * we cannot be sure from other fields if it has 1179 * been initialised or not. 1180 */ 1181 int i; 1182 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1183 1184 rdev->sb_size = MD_SB_BYTES; 1185 1186 sb = page_address(rdev->sb_page); 1187 1188 memset(sb, 0, sizeof(*sb)); 1189 1190 sb->md_magic = MD_SB_MAGIC; 1191 sb->major_version = mddev->major_version; 1192 sb->patch_version = mddev->patch_version; 1193 sb->gvalid_words = 0; /* ignored */ 1194 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1195 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1196 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1197 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1198 1199 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1200 sb->level = mddev->level; 1201 sb->size = mddev->dev_sectors / 2; 1202 sb->raid_disks = mddev->raid_disks; 1203 sb->md_minor = mddev->md_minor; 1204 sb->not_persistent = 0; 1205 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1206 sb->state = 0; 1207 sb->events_hi = (mddev->events>>32); 1208 sb->events_lo = (u32)mddev->events; 1209 1210 if (mddev->reshape_position == MaxSector) 1211 sb->minor_version = 90; 1212 else { 1213 sb->minor_version = 91; 1214 sb->reshape_position = mddev->reshape_position; 1215 sb->new_level = mddev->new_level; 1216 sb->delta_disks = mddev->delta_disks; 1217 sb->new_layout = mddev->new_layout; 1218 sb->new_chunk = mddev->new_chunk_sectors << 9; 1219 } 1220 mddev->minor_version = sb->minor_version; 1221 if (mddev->in_sync) 1222 { 1223 sb->recovery_cp = mddev->recovery_cp; 1224 sb->cp_events_hi = (mddev->events>>32); 1225 sb->cp_events_lo = (u32)mddev->events; 1226 if (mddev->recovery_cp == MaxSector) 1227 sb->state = (1<< MD_SB_CLEAN); 1228 } else 1229 sb->recovery_cp = 0; 1230 1231 sb->layout = mddev->layout; 1232 sb->chunk_size = mddev->chunk_sectors << 9; 1233 1234 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1235 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1236 1237 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1238 rdev_for_each(rdev2, mddev) { 1239 mdp_disk_t *d; 1240 int desc_nr; 1241 int is_active = test_bit(In_sync, &rdev2->flags); 1242 1243 if (rdev2->raid_disk >= 0 && 1244 sb->minor_version >= 91) 1245 /* we have nowhere to store the recovery_offset, 1246 * but if it is not below the reshape_position, 1247 * we can piggy-back on that. 1248 */ 1249 is_active = 1; 1250 if (rdev2->raid_disk < 0 || 1251 test_bit(Faulty, &rdev2->flags)) 1252 is_active = 0; 1253 if (is_active) 1254 desc_nr = rdev2->raid_disk; 1255 else 1256 desc_nr = next_spare++; 1257 rdev2->desc_nr = desc_nr; 1258 d = &sb->disks[rdev2->desc_nr]; 1259 nr_disks++; 1260 d->number = rdev2->desc_nr; 1261 d->major = MAJOR(rdev2->bdev->bd_dev); 1262 d->minor = MINOR(rdev2->bdev->bd_dev); 1263 if (is_active) 1264 d->raid_disk = rdev2->raid_disk; 1265 else 1266 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1267 if (test_bit(Faulty, &rdev2->flags)) 1268 d->state = (1<<MD_DISK_FAULTY); 1269 else if (is_active) { 1270 d->state = (1<<MD_DISK_ACTIVE); 1271 if (test_bit(In_sync, &rdev2->flags)) 1272 d->state |= (1<<MD_DISK_SYNC); 1273 active++; 1274 working++; 1275 } else { 1276 d->state = 0; 1277 spare++; 1278 working++; 1279 } 1280 if (test_bit(WriteMostly, &rdev2->flags)) 1281 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1282 } 1283 /* now set the "removed" and "faulty" bits on any missing devices */ 1284 for (i=0 ; i < mddev->raid_disks ; i++) { 1285 mdp_disk_t *d = &sb->disks[i]; 1286 if (d->state == 0 && d->number == 0) { 1287 d->number = i; 1288 d->raid_disk = i; 1289 d->state = (1<<MD_DISK_REMOVED); 1290 d->state |= (1<<MD_DISK_FAULTY); 1291 failed++; 1292 } 1293 } 1294 sb->nr_disks = nr_disks; 1295 sb->active_disks = active; 1296 sb->working_disks = working; 1297 sb->failed_disks = failed; 1298 sb->spare_disks = spare; 1299 1300 sb->this_disk = sb->disks[rdev->desc_nr]; 1301 sb->sb_csum = calc_sb_csum(sb); 1302 } 1303 1304 /* 1305 * rdev_size_change for 0.90.0 1306 */ 1307 static unsigned long long 1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1309 { 1310 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1311 return 0; /* component must fit device */ 1312 if (rdev->mddev->bitmap_info.offset) 1313 return 0; /* can't move bitmap */ 1314 rdev->sb_start = calc_dev_sboffset(rdev); 1315 if (!num_sectors || num_sectors > rdev->sb_start) 1316 num_sectors = rdev->sb_start; 1317 /* Limit to 4TB as metadata cannot record more than that. 1318 * 4TB == 2^32 KB, or 2*2^32 sectors. 1319 */ 1320 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1321 rdev->mddev->level >= 1) 1322 num_sectors = (sector_t)(2ULL << 32) - 2; 1323 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1324 rdev->sb_page); 1325 md_super_wait(rdev->mddev); 1326 return num_sectors; 1327 } 1328 1329 static int 1330 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1331 { 1332 /* non-zero offset changes not possible with v0.90 */ 1333 return new_offset == 0; 1334 } 1335 1336 /* 1337 * version 1 superblock 1338 */ 1339 1340 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1341 { 1342 __le32 disk_csum; 1343 u32 csum; 1344 unsigned long long newcsum; 1345 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1346 __le32 *isuper = (__le32*)sb; 1347 1348 disk_csum = sb->sb_csum; 1349 sb->sb_csum = 0; 1350 newcsum = 0; 1351 for (; size >= 4; size -= 4) 1352 newcsum += le32_to_cpu(*isuper++); 1353 1354 if (size == 2) 1355 newcsum += le16_to_cpu(*(__le16*) isuper); 1356 1357 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1358 sb->sb_csum = disk_csum; 1359 return cpu_to_le32(csum); 1360 } 1361 1362 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1363 { 1364 struct mdp_superblock_1 *sb; 1365 int ret; 1366 sector_t sb_start; 1367 sector_t sectors; 1368 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1369 int bmask; 1370 1371 /* 1372 * Calculate the position of the superblock in 512byte sectors. 1373 * It is always aligned to a 4K boundary and 1374 * depeding on minor_version, it can be: 1375 * 0: At least 8K, but less than 12K, from end of device 1376 * 1: At start of device 1377 * 2: 4K from start of device. 1378 */ 1379 switch(minor_version) { 1380 case 0: 1381 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1382 sb_start -= 8*2; 1383 sb_start &= ~(sector_t)(4*2-1); 1384 break; 1385 case 1: 1386 sb_start = 0; 1387 break; 1388 case 2: 1389 sb_start = 8; 1390 break; 1391 default: 1392 return -EINVAL; 1393 } 1394 rdev->sb_start = sb_start; 1395 1396 /* superblock is rarely larger than 1K, but it can be larger, 1397 * and it is safe to read 4k, so we do that 1398 */ 1399 ret = read_disk_sb(rdev, 4096); 1400 if (ret) return ret; 1401 1402 sb = page_address(rdev->sb_page); 1403 1404 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1405 sb->major_version != cpu_to_le32(1) || 1406 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1407 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1408 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1409 return -EINVAL; 1410 1411 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1412 printk("md: invalid superblock checksum on %s\n", 1413 bdevname(rdev->bdev,b)); 1414 return -EINVAL; 1415 } 1416 if (le64_to_cpu(sb->data_size) < 10) { 1417 printk("md: data_size too small on %s\n", 1418 bdevname(rdev->bdev,b)); 1419 return -EINVAL; 1420 } 1421 if (sb->pad0 || 1422 sb->pad3[0] || 1423 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1424 /* Some padding is non-zero, might be a new feature */ 1425 return -EINVAL; 1426 1427 rdev->preferred_minor = 0xffff; 1428 rdev->data_offset = le64_to_cpu(sb->data_offset); 1429 rdev->new_data_offset = rdev->data_offset; 1430 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1431 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1432 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1433 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1434 1435 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1436 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1437 if (rdev->sb_size & bmask) 1438 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1439 1440 if (minor_version 1441 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1442 return -EINVAL; 1443 if (minor_version 1444 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1445 return -EINVAL; 1446 1447 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1448 rdev->desc_nr = -1; 1449 else 1450 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1451 1452 if (!rdev->bb_page) { 1453 rdev->bb_page = alloc_page(GFP_KERNEL); 1454 if (!rdev->bb_page) 1455 return -ENOMEM; 1456 } 1457 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1458 rdev->badblocks.count == 0) { 1459 /* need to load the bad block list. 1460 * Currently we limit it to one page. 1461 */ 1462 s32 offset; 1463 sector_t bb_sector; 1464 u64 *bbp; 1465 int i; 1466 int sectors = le16_to_cpu(sb->bblog_size); 1467 if (sectors > (PAGE_SIZE / 512)) 1468 return -EINVAL; 1469 offset = le32_to_cpu(sb->bblog_offset); 1470 if (offset == 0) 1471 return -EINVAL; 1472 bb_sector = (long long)offset; 1473 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1474 rdev->bb_page, READ, true)) 1475 return -EIO; 1476 bbp = (u64 *)page_address(rdev->bb_page); 1477 rdev->badblocks.shift = sb->bblog_shift; 1478 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1479 u64 bb = le64_to_cpu(*bbp); 1480 int count = bb & (0x3ff); 1481 u64 sector = bb >> 10; 1482 sector <<= sb->bblog_shift; 1483 count <<= sb->bblog_shift; 1484 if (bb + 1 == 0) 1485 break; 1486 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1487 return -EINVAL; 1488 } 1489 } else if (sb->bblog_offset != 0) 1490 rdev->badblocks.shift = 0; 1491 1492 if (!refdev) { 1493 ret = 1; 1494 } else { 1495 __u64 ev1, ev2; 1496 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1497 1498 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1499 sb->level != refsb->level || 1500 sb->layout != refsb->layout || 1501 sb->chunksize != refsb->chunksize) { 1502 printk(KERN_WARNING "md: %s has strangely different" 1503 " superblock to %s\n", 1504 bdevname(rdev->bdev,b), 1505 bdevname(refdev->bdev,b2)); 1506 return -EINVAL; 1507 } 1508 ev1 = le64_to_cpu(sb->events); 1509 ev2 = le64_to_cpu(refsb->events); 1510 1511 if (ev1 > ev2) 1512 ret = 1; 1513 else 1514 ret = 0; 1515 } 1516 if (minor_version) { 1517 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1518 sectors -= rdev->data_offset; 1519 } else 1520 sectors = rdev->sb_start; 1521 if (sectors < le64_to_cpu(sb->data_size)) 1522 return -EINVAL; 1523 rdev->sectors = le64_to_cpu(sb->data_size); 1524 return ret; 1525 } 1526 1527 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1528 { 1529 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1530 __u64 ev1 = le64_to_cpu(sb->events); 1531 1532 rdev->raid_disk = -1; 1533 clear_bit(Faulty, &rdev->flags); 1534 clear_bit(In_sync, &rdev->flags); 1535 clear_bit(Bitmap_sync, &rdev->flags); 1536 clear_bit(WriteMostly, &rdev->flags); 1537 1538 if (mddev->raid_disks == 0) { 1539 mddev->major_version = 1; 1540 mddev->patch_version = 0; 1541 mddev->external = 0; 1542 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1543 mddev->ctime = le64_to_cpu(sb->ctime); 1544 mddev->utime = le64_to_cpu(sb->utime); 1545 mddev->level = le32_to_cpu(sb->level); 1546 mddev->clevel[0] = 0; 1547 mddev->layout = le32_to_cpu(sb->layout); 1548 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1549 mddev->dev_sectors = le64_to_cpu(sb->size); 1550 mddev->events = ev1; 1551 mddev->bitmap_info.offset = 0; 1552 mddev->bitmap_info.space = 0; 1553 /* Default location for bitmap is 1K after superblock 1554 * using 3K - total of 4K 1555 */ 1556 mddev->bitmap_info.default_offset = 1024 >> 9; 1557 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1558 mddev->reshape_backwards = 0; 1559 1560 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1561 memcpy(mddev->uuid, sb->set_uuid, 16); 1562 1563 mddev->max_disks = (4096-256)/2; 1564 1565 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1566 mddev->bitmap_info.file == NULL) { 1567 mddev->bitmap_info.offset = 1568 (__s32)le32_to_cpu(sb->bitmap_offset); 1569 /* Metadata doesn't record how much space is available. 1570 * For 1.0, we assume we can use up to the superblock 1571 * if before, else to 4K beyond superblock. 1572 * For others, assume no change is possible. 1573 */ 1574 if (mddev->minor_version > 0) 1575 mddev->bitmap_info.space = 0; 1576 else if (mddev->bitmap_info.offset > 0) 1577 mddev->bitmap_info.space = 1578 8 - mddev->bitmap_info.offset; 1579 else 1580 mddev->bitmap_info.space = 1581 -mddev->bitmap_info.offset; 1582 } 1583 1584 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1585 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1586 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1587 mddev->new_level = le32_to_cpu(sb->new_level); 1588 mddev->new_layout = le32_to_cpu(sb->new_layout); 1589 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1590 if (mddev->delta_disks < 0 || 1591 (mddev->delta_disks == 0 && 1592 (le32_to_cpu(sb->feature_map) 1593 & MD_FEATURE_RESHAPE_BACKWARDS))) 1594 mddev->reshape_backwards = 1; 1595 } else { 1596 mddev->reshape_position = MaxSector; 1597 mddev->delta_disks = 0; 1598 mddev->new_level = mddev->level; 1599 mddev->new_layout = mddev->layout; 1600 mddev->new_chunk_sectors = mddev->chunk_sectors; 1601 } 1602 1603 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) { 1604 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1605 if (mddev->recovery_cp == MaxSector) 1606 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 1607 } 1608 } else if (mddev->pers == NULL) { 1609 /* Insist of good event counter while assembling, except for 1610 * spares (which don't need an event count) */ 1611 ++ev1; 1612 if (rdev->desc_nr >= 0 && 1613 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1614 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1615 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1616 if (ev1 < mddev->events) 1617 return -EINVAL; 1618 } else if (mddev->bitmap) { 1619 /* If adding to array with a bitmap, then we can accept an 1620 * older device, but not too old. 1621 */ 1622 if (ev1 < mddev->bitmap->events_cleared) 1623 return 0; 1624 if (ev1 < mddev->events) 1625 set_bit(Bitmap_sync, &rdev->flags); 1626 } else { 1627 if (ev1 < mddev->events) 1628 /* just a hot-add of a new device, leave raid_disk at -1 */ 1629 return 0; 1630 } 1631 if (mddev->level != LEVEL_MULTIPATH) { 1632 int role; 1633 if (rdev->desc_nr < 0 || 1634 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1635 role = MD_DISK_ROLE_SPARE; 1636 rdev->desc_nr = -1; 1637 } else 1638 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1639 switch(role) { 1640 case MD_DISK_ROLE_SPARE: /* spare */ 1641 break; 1642 case MD_DISK_ROLE_FAULTY: /* faulty */ 1643 set_bit(Faulty, &rdev->flags); 1644 break; 1645 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1646 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1647 /* journal device without journal feature */ 1648 printk(KERN_WARNING 1649 "md: journal device provided without journal feature, ignoring the device\n"); 1650 return -EINVAL; 1651 } 1652 set_bit(Journal, &rdev->flags); 1653 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1654 rdev->raid_disk = 0; 1655 break; 1656 default: 1657 rdev->saved_raid_disk = role; 1658 if ((le32_to_cpu(sb->feature_map) & 1659 MD_FEATURE_RECOVERY_OFFSET)) { 1660 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1661 if (!(le32_to_cpu(sb->feature_map) & 1662 MD_FEATURE_RECOVERY_BITMAP)) 1663 rdev->saved_raid_disk = -1; 1664 } else 1665 set_bit(In_sync, &rdev->flags); 1666 rdev->raid_disk = role; 1667 break; 1668 } 1669 if (sb->devflags & WriteMostly1) 1670 set_bit(WriteMostly, &rdev->flags); 1671 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1672 set_bit(Replacement, &rdev->flags); 1673 } else /* MULTIPATH are always insync */ 1674 set_bit(In_sync, &rdev->flags); 1675 1676 return 0; 1677 } 1678 1679 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1680 { 1681 struct mdp_superblock_1 *sb; 1682 struct md_rdev *rdev2; 1683 int max_dev, i; 1684 /* make rdev->sb match mddev and rdev data. */ 1685 1686 sb = page_address(rdev->sb_page); 1687 1688 sb->feature_map = 0; 1689 sb->pad0 = 0; 1690 sb->recovery_offset = cpu_to_le64(0); 1691 memset(sb->pad3, 0, sizeof(sb->pad3)); 1692 1693 sb->utime = cpu_to_le64((__u64)mddev->utime); 1694 sb->events = cpu_to_le64(mddev->events); 1695 if (mddev->in_sync) 1696 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1697 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1698 sb->resync_offset = cpu_to_le64(MaxSector); 1699 else 1700 sb->resync_offset = cpu_to_le64(0); 1701 1702 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1703 1704 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1705 sb->size = cpu_to_le64(mddev->dev_sectors); 1706 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1707 sb->level = cpu_to_le32(mddev->level); 1708 sb->layout = cpu_to_le32(mddev->layout); 1709 1710 if (test_bit(WriteMostly, &rdev->flags)) 1711 sb->devflags |= WriteMostly1; 1712 else 1713 sb->devflags &= ~WriteMostly1; 1714 sb->data_offset = cpu_to_le64(rdev->data_offset); 1715 sb->data_size = cpu_to_le64(rdev->sectors); 1716 1717 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1718 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1719 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1720 } 1721 1722 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1723 !test_bit(In_sync, &rdev->flags)) { 1724 sb->feature_map |= 1725 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1726 sb->recovery_offset = 1727 cpu_to_le64(rdev->recovery_offset); 1728 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1729 sb->feature_map |= 1730 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1731 } 1732 /* Note: recovery_offset and journal_tail share space */ 1733 if (test_bit(Journal, &rdev->flags)) 1734 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1735 if (test_bit(Replacement, &rdev->flags)) 1736 sb->feature_map |= 1737 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1738 1739 if (mddev->reshape_position != MaxSector) { 1740 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1741 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1742 sb->new_layout = cpu_to_le32(mddev->new_layout); 1743 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1744 sb->new_level = cpu_to_le32(mddev->new_level); 1745 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1746 if (mddev->delta_disks == 0 && 1747 mddev->reshape_backwards) 1748 sb->feature_map 1749 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1750 if (rdev->new_data_offset != rdev->data_offset) { 1751 sb->feature_map 1752 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1753 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1754 - rdev->data_offset)); 1755 } 1756 } 1757 1758 if (mddev_is_clustered(mddev)) 1759 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1760 1761 if (rdev->badblocks.count == 0) 1762 /* Nothing to do for bad blocks*/ ; 1763 else if (sb->bblog_offset == 0) 1764 /* Cannot record bad blocks on this device */ 1765 md_error(mddev, rdev); 1766 else { 1767 struct badblocks *bb = &rdev->badblocks; 1768 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1769 u64 *p = bb->page; 1770 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1771 if (bb->changed) { 1772 unsigned seq; 1773 1774 retry: 1775 seq = read_seqbegin(&bb->lock); 1776 1777 memset(bbp, 0xff, PAGE_SIZE); 1778 1779 for (i = 0 ; i < bb->count ; i++) { 1780 u64 internal_bb = p[i]; 1781 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1782 | BB_LEN(internal_bb)); 1783 bbp[i] = cpu_to_le64(store_bb); 1784 } 1785 bb->changed = 0; 1786 if (read_seqretry(&bb->lock, seq)) 1787 goto retry; 1788 1789 bb->sector = (rdev->sb_start + 1790 (int)le32_to_cpu(sb->bblog_offset)); 1791 bb->size = le16_to_cpu(sb->bblog_size); 1792 } 1793 } 1794 1795 max_dev = 0; 1796 rdev_for_each(rdev2, mddev) 1797 if (rdev2->desc_nr+1 > max_dev) 1798 max_dev = rdev2->desc_nr+1; 1799 1800 if (max_dev > le32_to_cpu(sb->max_dev)) { 1801 int bmask; 1802 sb->max_dev = cpu_to_le32(max_dev); 1803 rdev->sb_size = max_dev * 2 + 256; 1804 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1805 if (rdev->sb_size & bmask) 1806 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1807 } else 1808 max_dev = le32_to_cpu(sb->max_dev); 1809 1810 for (i=0; i<max_dev;i++) 1811 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1812 1813 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1814 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1815 1816 rdev_for_each(rdev2, mddev) { 1817 i = rdev2->desc_nr; 1818 if (test_bit(Faulty, &rdev2->flags)) 1819 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1820 else if (test_bit(In_sync, &rdev2->flags)) 1821 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1822 else if (test_bit(Journal, &rdev2->flags)) 1823 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1824 else if (rdev2->raid_disk >= 0) 1825 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1826 else 1827 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1828 } 1829 1830 sb->sb_csum = calc_sb_1_csum(sb); 1831 } 1832 1833 static unsigned long long 1834 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1835 { 1836 struct mdp_superblock_1 *sb; 1837 sector_t max_sectors; 1838 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1839 return 0; /* component must fit device */ 1840 if (rdev->data_offset != rdev->new_data_offset) 1841 return 0; /* too confusing */ 1842 if (rdev->sb_start < rdev->data_offset) { 1843 /* minor versions 1 and 2; superblock before data */ 1844 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1845 max_sectors -= rdev->data_offset; 1846 if (!num_sectors || num_sectors > max_sectors) 1847 num_sectors = max_sectors; 1848 } else if (rdev->mddev->bitmap_info.offset) { 1849 /* minor version 0 with bitmap we can't move */ 1850 return 0; 1851 } else { 1852 /* minor version 0; superblock after data */ 1853 sector_t sb_start; 1854 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1855 sb_start &= ~(sector_t)(4*2 - 1); 1856 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1857 if (!num_sectors || num_sectors > max_sectors) 1858 num_sectors = max_sectors; 1859 rdev->sb_start = sb_start; 1860 } 1861 sb = page_address(rdev->sb_page); 1862 sb->data_size = cpu_to_le64(num_sectors); 1863 sb->super_offset = rdev->sb_start; 1864 sb->sb_csum = calc_sb_1_csum(sb); 1865 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1866 rdev->sb_page); 1867 md_super_wait(rdev->mddev); 1868 return num_sectors; 1869 1870 } 1871 1872 static int 1873 super_1_allow_new_offset(struct md_rdev *rdev, 1874 unsigned long long new_offset) 1875 { 1876 /* All necessary checks on new >= old have been done */ 1877 struct bitmap *bitmap; 1878 if (new_offset >= rdev->data_offset) 1879 return 1; 1880 1881 /* with 1.0 metadata, there is no metadata to tread on 1882 * so we can always move back */ 1883 if (rdev->mddev->minor_version == 0) 1884 return 1; 1885 1886 /* otherwise we must be sure not to step on 1887 * any metadata, so stay: 1888 * 36K beyond start of superblock 1889 * beyond end of badblocks 1890 * beyond write-intent bitmap 1891 */ 1892 if (rdev->sb_start + (32+4)*2 > new_offset) 1893 return 0; 1894 bitmap = rdev->mddev->bitmap; 1895 if (bitmap && !rdev->mddev->bitmap_info.file && 1896 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1897 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1898 return 0; 1899 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1900 return 0; 1901 1902 return 1; 1903 } 1904 1905 static struct super_type super_types[] = { 1906 [0] = { 1907 .name = "0.90.0", 1908 .owner = THIS_MODULE, 1909 .load_super = super_90_load, 1910 .validate_super = super_90_validate, 1911 .sync_super = super_90_sync, 1912 .rdev_size_change = super_90_rdev_size_change, 1913 .allow_new_offset = super_90_allow_new_offset, 1914 }, 1915 [1] = { 1916 .name = "md-1", 1917 .owner = THIS_MODULE, 1918 .load_super = super_1_load, 1919 .validate_super = super_1_validate, 1920 .sync_super = super_1_sync, 1921 .rdev_size_change = super_1_rdev_size_change, 1922 .allow_new_offset = super_1_allow_new_offset, 1923 }, 1924 }; 1925 1926 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1927 { 1928 if (mddev->sync_super) { 1929 mddev->sync_super(mddev, rdev); 1930 return; 1931 } 1932 1933 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1934 1935 super_types[mddev->major_version].sync_super(mddev, rdev); 1936 } 1937 1938 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1939 { 1940 struct md_rdev *rdev, *rdev2; 1941 1942 rcu_read_lock(); 1943 rdev_for_each_rcu(rdev, mddev1) { 1944 if (test_bit(Faulty, &rdev->flags) || 1945 test_bit(Journal, &rdev->flags) || 1946 rdev->raid_disk == -1) 1947 continue; 1948 rdev_for_each_rcu(rdev2, mddev2) { 1949 if (test_bit(Faulty, &rdev2->flags) || 1950 test_bit(Journal, &rdev2->flags) || 1951 rdev2->raid_disk == -1) 1952 continue; 1953 if (rdev->bdev->bd_contains == 1954 rdev2->bdev->bd_contains) { 1955 rcu_read_unlock(); 1956 return 1; 1957 } 1958 } 1959 } 1960 rcu_read_unlock(); 1961 return 0; 1962 } 1963 1964 static LIST_HEAD(pending_raid_disks); 1965 1966 /* 1967 * Try to register data integrity profile for an mddev 1968 * 1969 * This is called when an array is started and after a disk has been kicked 1970 * from the array. It only succeeds if all working and active component devices 1971 * are integrity capable with matching profiles. 1972 */ 1973 int md_integrity_register(struct mddev *mddev) 1974 { 1975 struct md_rdev *rdev, *reference = NULL; 1976 1977 if (list_empty(&mddev->disks)) 1978 return 0; /* nothing to do */ 1979 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1980 return 0; /* shouldn't register, or already is */ 1981 rdev_for_each(rdev, mddev) { 1982 /* skip spares and non-functional disks */ 1983 if (test_bit(Faulty, &rdev->flags)) 1984 continue; 1985 if (rdev->raid_disk < 0) 1986 continue; 1987 if (!reference) { 1988 /* Use the first rdev as the reference */ 1989 reference = rdev; 1990 continue; 1991 } 1992 /* does this rdev's profile match the reference profile? */ 1993 if (blk_integrity_compare(reference->bdev->bd_disk, 1994 rdev->bdev->bd_disk) < 0) 1995 return -EINVAL; 1996 } 1997 if (!reference || !bdev_get_integrity(reference->bdev)) 1998 return 0; 1999 /* 2000 * All component devices are integrity capable and have matching 2001 * profiles, register the common profile for the md device. 2002 */ 2003 blk_integrity_register(mddev->gendisk, 2004 bdev_get_integrity(reference->bdev)); 2005 2006 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2007 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2008 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2009 mdname(mddev)); 2010 return -EINVAL; 2011 } 2012 return 0; 2013 } 2014 EXPORT_SYMBOL(md_integrity_register); 2015 2016 /* 2017 * Attempt to add an rdev, but only if it is consistent with the current 2018 * integrity profile 2019 */ 2020 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2021 { 2022 struct blk_integrity *bi_rdev; 2023 struct blk_integrity *bi_mddev; 2024 char name[BDEVNAME_SIZE]; 2025 2026 if (!mddev->gendisk) 2027 return 0; 2028 2029 bi_rdev = bdev_get_integrity(rdev->bdev); 2030 bi_mddev = blk_get_integrity(mddev->gendisk); 2031 2032 if (!bi_mddev) /* nothing to do */ 2033 return 0; 2034 2035 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2036 printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n", 2037 mdname(mddev), bdevname(rdev->bdev, name)); 2038 return -ENXIO; 2039 } 2040 2041 return 0; 2042 } 2043 EXPORT_SYMBOL(md_integrity_add_rdev); 2044 2045 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2046 { 2047 char b[BDEVNAME_SIZE]; 2048 struct kobject *ko; 2049 int err; 2050 2051 /* prevent duplicates */ 2052 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2053 return -EEXIST; 2054 2055 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2056 if (!test_bit(Journal, &rdev->flags) && 2057 rdev->sectors && 2058 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2059 if (mddev->pers) { 2060 /* Cannot change size, so fail 2061 * If mddev->level <= 0, then we don't care 2062 * about aligning sizes (e.g. linear) 2063 */ 2064 if (mddev->level > 0) 2065 return -ENOSPC; 2066 } else 2067 mddev->dev_sectors = rdev->sectors; 2068 } 2069 2070 /* Verify rdev->desc_nr is unique. 2071 * If it is -1, assign a free number, else 2072 * check number is not in use 2073 */ 2074 rcu_read_lock(); 2075 if (rdev->desc_nr < 0) { 2076 int choice = 0; 2077 if (mddev->pers) 2078 choice = mddev->raid_disks; 2079 while (md_find_rdev_nr_rcu(mddev, choice)) 2080 choice++; 2081 rdev->desc_nr = choice; 2082 } else { 2083 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2084 rcu_read_unlock(); 2085 return -EBUSY; 2086 } 2087 } 2088 rcu_read_unlock(); 2089 if (!test_bit(Journal, &rdev->flags) && 2090 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2091 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2092 mdname(mddev), mddev->max_disks); 2093 return -EBUSY; 2094 } 2095 bdevname(rdev->bdev,b); 2096 strreplace(b, '/', '!'); 2097 2098 rdev->mddev = mddev; 2099 printk(KERN_INFO "md: bind<%s>\n", b); 2100 2101 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2102 goto fail; 2103 2104 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2105 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2106 /* failure here is OK */; 2107 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2108 2109 list_add_rcu(&rdev->same_set, &mddev->disks); 2110 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2111 2112 /* May as well allow recovery to be retried once */ 2113 mddev->recovery_disabled++; 2114 2115 return 0; 2116 2117 fail: 2118 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2119 b, mdname(mddev)); 2120 return err; 2121 } 2122 2123 static void md_delayed_delete(struct work_struct *ws) 2124 { 2125 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2126 kobject_del(&rdev->kobj); 2127 kobject_put(&rdev->kobj); 2128 } 2129 2130 static void unbind_rdev_from_array(struct md_rdev *rdev) 2131 { 2132 char b[BDEVNAME_SIZE]; 2133 2134 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2135 list_del_rcu(&rdev->same_set); 2136 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2137 rdev->mddev = NULL; 2138 sysfs_remove_link(&rdev->kobj, "block"); 2139 sysfs_put(rdev->sysfs_state); 2140 rdev->sysfs_state = NULL; 2141 rdev->badblocks.count = 0; 2142 /* We need to delay this, otherwise we can deadlock when 2143 * writing to 'remove' to "dev/state". We also need 2144 * to delay it due to rcu usage. 2145 */ 2146 synchronize_rcu(); 2147 INIT_WORK(&rdev->del_work, md_delayed_delete); 2148 kobject_get(&rdev->kobj); 2149 queue_work(md_misc_wq, &rdev->del_work); 2150 } 2151 2152 /* 2153 * prevent the device from being mounted, repartitioned or 2154 * otherwise reused by a RAID array (or any other kernel 2155 * subsystem), by bd_claiming the device. 2156 */ 2157 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2158 { 2159 int err = 0; 2160 struct block_device *bdev; 2161 char b[BDEVNAME_SIZE]; 2162 2163 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2164 shared ? (struct md_rdev *)lock_rdev : rdev); 2165 if (IS_ERR(bdev)) { 2166 printk(KERN_ERR "md: could not open %s.\n", 2167 __bdevname(dev, b)); 2168 return PTR_ERR(bdev); 2169 } 2170 rdev->bdev = bdev; 2171 return err; 2172 } 2173 2174 static void unlock_rdev(struct md_rdev *rdev) 2175 { 2176 struct block_device *bdev = rdev->bdev; 2177 rdev->bdev = NULL; 2178 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2179 } 2180 2181 void md_autodetect_dev(dev_t dev); 2182 2183 static void export_rdev(struct md_rdev *rdev) 2184 { 2185 char b[BDEVNAME_SIZE]; 2186 2187 printk(KERN_INFO "md: export_rdev(%s)\n", 2188 bdevname(rdev->bdev,b)); 2189 md_rdev_clear(rdev); 2190 #ifndef MODULE 2191 if (test_bit(AutoDetected, &rdev->flags)) 2192 md_autodetect_dev(rdev->bdev->bd_dev); 2193 #endif 2194 unlock_rdev(rdev); 2195 kobject_put(&rdev->kobj); 2196 } 2197 2198 void md_kick_rdev_from_array(struct md_rdev *rdev) 2199 { 2200 unbind_rdev_from_array(rdev); 2201 export_rdev(rdev); 2202 } 2203 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2204 2205 static void export_array(struct mddev *mddev) 2206 { 2207 struct md_rdev *rdev; 2208 2209 while (!list_empty(&mddev->disks)) { 2210 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2211 same_set); 2212 md_kick_rdev_from_array(rdev); 2213 } 2214 mddev->raid_disks = 0; 2215 mddev->major_version = 0; 2216 } 2217 2218 static void sync_sbs(struct mddev *mddev, int nospares) 2219 { 2220 /* Update each superblock (in-memory image), but 2221 * if we are allowed to, skip spares which already 2222 * have the right event counter, or have one earlier 2223 * (which would mean they aren't being marked as dirty 2224 * with the rest of the array) 2225 */ 2226 struct md_rdev *rdev; 2227 rdev_for_each(rdev, mddev) { 2228 if (rdev->sb_events == mddev->events || 2229 (nospares && 2230 rdev->raid_disk < 0 && 2231 rdev->sb_events+1 == mddev->events)) { 2232 /* Don't update this superblock */ 2233 rdev->sb_loaded = 2; 2234 } else { 2235 sync_super(mddev, rdev); 2236 rdev->sb_loaded = 1; 2237 } 2238 } 2239 } 2240 2241 static bool does_sb_need_changing(struct mddev *mddev) 2242 { 2243 struct md_rdev *rdev; 2244 struct mdp_superblock_1 *sb; 2245 int role; 2246 2247 /* Find a good rdev */ 2248 rdev_for_each(rdev, mddev) 2249 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2250 break; 2251 2252 /* No good device found. */ 2253 if (!rdev) 2254 return false; 2255 2256 sb = page_address(rdev->sb_page); 2257 /* Check if a device has become faulty or a spare become active */ 2258 rdev_for_each(rdev, mddev) { 2259 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2260 /* Device activated? */ 2261 if (role == 0xffff && rdev->raid_disk >=0 && 2262 !test_bit(Faulty, &rdev->flags)) 2263 return true; 2264 /* Device turned faulty? */ 2265 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2266 return true; 2267 } 2268 2269 /* Check if any mddev parameters have changed */ 2270 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2271 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2272 (mddev->layout != le64_to_cpu(sb->layout)) || 2273 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2274 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2275 return true; 2276 2277 return false; 2278 } 2279 2280 void md_update_sb(struct mddev *mddev, int force_change) 2281 { 2282 struct md_rdev *rdev; 2283 int sync_req; 2284 int nospares = 0; 2285 int any_badblocks_changed = 0; 2286 int ret = -1; 2287 2288 if (mddev->ro) { 2289 if (force_change) 2290 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2291 return; 2292 } 2293 2294 repeat: 2295 if (mddev_is_clustered(mddev)) { 2296 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2297 force_change = 1; 2298 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2299 nospares = 1; 2300 ret = md_cluster_ops->metadata_update_start(mddev); 2301 /* Has someone else has updated the sb */ 2302 if (!does_sb_need_changing(mddev)) { 2303 if (ret == 0) 2304 md_cluster_ops->metadata_update_cancel(mddev); 2305 bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING), 2306 BIT(MD_CHANGE_DEVS) | 2307 BIT(MD_CHANGE_CLEAN)); 2308 return; 2309 } 2310 } 2311 2312 /* First make sure individual recovery_offsets are correct */ 2313 rdev_for_each(rdev, mddev) { 2314 if (rdev->raid_disk >= 0 && 2315 mddev->delta_disks >= 0 && 2316 !test_bit(Journal, &rdev->flags) && 2317 !test_bit(In_sync, &rdev->flags) && 2318 mddev->curr_resync_completed > rdev->recovery_offset) 2319 rdev->recovery_offset = mddev->curr_resync_completed; 2320 2321 } 2322 if (!mddev->persistent) { 2323 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2324 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2325 if (!mddev->external) { 2326 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2327 rdev_for_each(rdev, mddev) { 2328 if (rdev->badblocks.changed) { 2329 rdev->badblocks.changed = 0; 2330 ack_all_badblocks(&rdev->badblocks); 2331 md_error(mddev, rdev); 2332 } 2333 clear_bit(Blocked, &rdev->flags); 2334 clear_bit(BlockedBadBlocks, &rdev->flags); 2335 wake_up(&rdev->blocked_wait); 2336 } 2337 } 2338 wake_up(&mddev->sb_wait); 2339 return; 2340 } 2341 2342 spin_lock(&mddev->lock); 2343 2344 mddev->utime = ktime_get_real_seconds(); 2345 2346 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2347 force_change = 1; 2348 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2349 /* just a clean<-> dirty transition, possibly leave spares alone, 2350 * though if events isn't the right even/odd, we will have to do 2351 * spares after all 2352 */ 2353 nospares = 1; 2354 if (force_change) 2355 nospares = 0; 2356 if (mddev->degraded) 2357 /* If the array is degraded, then skipping spares is both 2358 * dangerous and fairly pointless. 2359 * Dangerous because a device that was removed from the array 2360 * might have a event_count that still looks up-to-date, 2361 * so it can be re-added without a resync. 2362 * Pointless because if there are any spares to skip, 2363 * then a recovery will happen and soon that array won't 2364 * be degraded any more and the spare can go back to sleep then. 2365 */ 2366 nospares = 0; 2367 2368 sync_req = mddev->in_sync; 2369 2370 /* If this is just a dirty<->clean transition, and the array is clean 2371 * and 'events' is odd, we can roll back to the previous clean state */ 2372 if (nospares 2373 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2374 && mddev->can_decrease_events 2375 && mddev->events != 1) { 2376 mddev->events--; 2377 mddev->can_decrease_events = 0; 2378 } else { 2379 /* otherwise we have to go forward and ... */ 2380 mddev->events ++; 2381 mddev->can_decrease_events = nospares; 2382 } 2383 2384 /* 2385 * This 64-bit counter should never wrap. 2386 * Either we are in around ~1 trillion A.C., assuming 2387 * 1 reboot per second, or we have a bug... 2388 */ 2389 WARN_ON(mddev->events == 0); 2390 2391 rdev_for_each(rdev, mddev) { 2392 if (rdev->badblocks.changed) 2393 any_badblocks_changed++; 2394 if (test_bit(Faulty, &rdev->flags)) 2395 set_bit(FaultRecorded, &rdev->flags); 2396 } 2397 2398 sync_sbs(mddev, nospares); 2399 spin_unlock(&mddev->lock); 2400 2401 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2402 mdname(mddev), mddev->in_sync); 2403 2404 bitmap_update_sb(mddev->bitmap); 2405 rdev_for_each(rdev, mddev) { 2406 char b[BDEVNAME_SIZE]; 2407 2408 if (rdev->sb_loaded != 1) 2409 continue; /* no noise on spare devices */ 2410 2411 if (!test_bit(Faulty, &rdev->flags)) { 2412 md_super_write(mddev,rdev, 2413 rdev->sb_start, rdev->sb_size, 2414 rdev->sb_page); 2415 pr_debug("md: (write) %s's sb offset: %llu\n", 2416 bdevname(rdev->bdev, b), 2417 (unsigned long long)rdev->sb_start); 2418 rdev->sb_events = mddev->events; 2419 if (rdev->badblocks.size) { 2420 md_super_write(mddev, rdev, 2421 rdev->badblocks.sector, 2422 rdev->badblocks.size << 9, 2423 rdev->bb_page); 2424 rdev->badblocks.size = 0; 2425 } 2426 2427 } else 2428 pr_debug("md: %s (skipping faulty)\n", 2429 bdevname(rdev->bdev, b)); 2430 2431 if (mddev->level == LEVEL_MULTIPATH) 2432 /* only need to write one superblock... */ 2433 break; 2434 } 2435 md_super_wait(mddev); 2436 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2437 2438 if (mddev_is_clustered(mddev) && ret == 0) 2439 md_cluster_ops->metadata_update_finish(mddev); 2440 2441 if (mddev->in_sync != sync_req || 2442 !bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING), 2443 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_CLEAN))) 2444 /* have to write it out again */ 2445 goto repeat; 2446 wake_up(&mddev->sb_wait); 2447 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2448 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2449 2450 rdev_for_each(rdev, mddev) { 2451 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2452 clear_bit(Blocked, &rdev->flags); 2453 2454 if (any_badblocks_changed) 2455 ack_all_badblocks(&rdev->badblocks); 2456 clear_bit(BlockedBadBlocks, &rdev->flags); 2457 wake_up(&rdev->blocked_wait); 2458 } 2459 } 2460 EXPORT_SYMBOL(md_update_sb); 2461 2462 static int add_bound_rdev(struct md_rdev *rdev) 2463 { 2464 struct mddev *mddev = rdev->mddev; 2465 int err = 0; 2466 bool add_journal = test_bit(Journal, &rdev->flags); 2467 2468 if (!mddev->pers->hot_remove_disk || add_journal) { 2469 /* If there is hot_add_disk but no hot_remove_disk 2470 * then added disks for geometry changes, 2471 * and should be added immediately. 2472 */ 2473 super_types[mddev->major_version]. 2474 validate_super(mddev, rdev); 2475 if (add_journal) 2476 mddev_suspend(mddev); 2477 err = mddev->pers->hot_add_disk(mddev, rdev); 2478 if (add_journal) 2479 mddev_resume(mddev); 2480 if (err) { 2481 unbind_rdev_from_array(rdev); 2482 export_rdev(rdev); 2483 return err; 2484 } 2485 } 2486 sysfs_notify_dirent_safe(rdev->sysfs_state); 2487 2488 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2489 if (mddev->degraded) 2490 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2491 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2492 md_new_event(mddev); 2493 md_wakeup_thread(mddev->thread); 2494 return 0; 2495 } 2496 2497 /* words written to sysfs files may, or may not, be \n terminated. 2498 * We want to accept with case. For this we use cmd_match. 2499 */ 2500 static int cmd_match(const char *cmd, const char *str) 2501 { 2502 /* See if cmd, written into a sysfs file, matches 2503 * str. They must either be the same, or cmd can 2504 * have a trailing newline 2505 */ 2506 while (*cmd && *str && *cmd == *str) { 2507 cmd++; 2508 str++; 2509 } 2510 if (*cmd == '\n') 2511 cmd++; 2512 if (*str || *cmd) 2513 return 0; 2514 return 1; 2515 } 2516 2517 struct rdev_sysfs_entry { 2518 struct attribute attr; 2519 ssize_t (*show)(struct md_rdev *, char *); 2520 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2521 }; 2522 2523 static ssize_t 2524 state_show(struct md_rdev *rdev, char *page) 2525 { 2526 char *sep = ""; 2527 size_t len = 0; 2528 unsigned long flags = ACCESS_ONCE(rdev->flags); 2529 2530 if (test_bit(Faulty, &flags) || 2531 rdev->badblocks.unacked_exist) { 2532 len+= sprintf(page+len, "%sfaulty",sep); 2533 sep = ","; 2534 } 2535 if (test_bit(In_sync, &flags)) { 2536 len += sprintf(page+len, "%sin_sync",sep); 2537 sep = ","; 2538 } 2539 if (test_bit(Journal, &flags)) { 2540 len += sprintf(page+len, "%sjournal",sep); 2541 sep = ","; 2542 } 2543 if (test_bit(WriteMostly, &flags)) { 2544 len += sprintf(page+len, "%swrite_mostly",sep); 2545 sep = ","; 2546 } 2547 if (test_bit(Blocked, &flags) || 2548 (rdev->badblocks.unacked_exist 2549 && !test_bit(Faulty, &flags))) { 2550 len += sprintf(page+len, "%sblocked", sep); 2551 sep = ","; 2552 } 2553 if (!test_bit(Faulty, &flags) && 2554 !test_bit(Journal, &flags) && 2555 !test_bit(In_sync, &flags)) { 2556 len += sprintf(page+len, "%sspare", sep); 2557 sep = ","; 2558 } 2559 if (test_bit(WriteErrorSeen, &flags)) { 2560 len += sprintf(page+len, "%swrite_error", sep); 2561 sep = ","; 2562 } 2563 if (test_bit(WantReplacement, &flags)) { 2564 len += sprintf(page+len, "%swant_replacement", sep); 2565 sep = ","; 2566 } 2567 if (test_bit(Replacement, &flags)) { 2568 len += sprintf(page+len, "%sreplacement", sep); 2569 sep = ","; 2570 } 2571 2572 return len+sprintf(page+len, "\n"); 2573 } 2574 2575 static ssize_t 2576 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2577 { 2578 /* can write 2579 * faulty - simulates an error 2580 * remove - disconnects the device 2581 * writemostly - sets write_mostly 2582 * -writemostly - clears write_mostly 2583 * blocked - sets the Blocked flags 2584 * -blocked - clears the Blocked and possibly simulates an error 2585 * insync - sets Insync providing device isn't active 2586 * -insync - clear Insync for a device with a slot assigned, 2587 * so that it gets rebuilt based on bitmap 2588 * write_error - sets WriteErrorSeen 2589 * -write_error - clears WriteErrorSeen 2590 */ 2591 int err = -EINVAL; 2592 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2593 md_error(rdev->mddev, rdev); 2594 if (test_bit(Faulty, &rdev->flags)) 2595 err = 0; 2596 else 2597 err = -EBUSY; 2598 } else if (cmd_match(buf, "remove")) { 2599 if (rdev->raid_disk >= 0) 2600 err = -EBUSY; 2601 else { 2602 struct mddev *mddev = rdev->mddev; 2603 err = 0; 2604 if (mddev_is_clustered(mddev)) 2605 err = md_cluster_ops->remove_disk(mddev, rdev); 2606 2607 if (err == 0) { 2608 md_kick_rdev_from_array(rdev); 2609 if (mddev->pers) 2610 md_update_sb(mddev, 1); 2611 md_new_event(mddev); 2612 } 2613 } 2614 } else if (cmd_match(buf, "writemostly")) { 2615 set_bit(WriteMostly, &rdev->flags); 2616 err = 0; 2617 } else if (cmd_match(buf, "-writemostly")) { 2618 clear_bit(WriteMostly, &rdev->flags); 2619 err = 0; 2620 } else if (cmd_match(buf, "blocked")) { 2621 set_bit(Blocked, &rdev->flags); 2622 err = 0; 2623 } else if (cmd_match(buf, "-blocked")) { 2624 if (!test_bit(Faulty, &rdev->flags) && 2625 rdev->badblocks.unacked_exist) { 2626 /* metadata handler doesn't understand badblocks, 2627 * so we need to fail the device 2628 */ 2629 md_error(rdev->mddev, rdev); 2630 } 2631 clear_bit(Blocked, &rdev->flags); 2632 clear_bit(BlockedBadBlocks, &rdev->flags); 2633 wake_up(&rdev->blocked_wait); 2634 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2635 md_wakeup_thread(rdev->mddev->thread); 2636 2637 err = 0; 2638 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2639 set_bit(In_sync, &rdev->flags); 2640 err = 0; 2641 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2642 !test_bit(Journal, &rdev->flags)) { 2643 if (rdev->mddev->pers == NULL) { 2644 clear_bit(In_sync, &rdev->flags); 2645 rdev->saved_raid_disk = rdev->raid_disk; 2646 rdev->raid_disk = -1; 2647 err = 0; 2648 } 2649 } else if (cmd_match(buf, "write_error")) { 2650 set_bit(WriteErrorSeen, &rdev->flags); 2651 err = 0; 2652 } else if (cmd_match(buf, "-write_error")) { 2653 clear_bit(WriteErrorSeen, &rdev->flags); 2654 err = 0; 2655 } else if (cmd_match(buf, "want_replacement")) { 2656 /* Any non-spare device that is not a replacement can 2657 * become want_replacement at any time, but we then need to 2658 * check if recovery is needed. 2659 */ 2660 if (rdev->raid_disk >= 0 && 2661 !test_bit(Journal, &rdev->flags) && 2662 !test_bit(Replacement, &rdev->flags)) 2663 set_bit(WantReplacement, &rdev->flags); 2664 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2665 md_wakeup_thread(rdev->mddev->thread); 2666 err = 0; 2667 } else if (cmd_match(buf, "-want_replacement")) { 2668 /* Clearing 'want_replacement' is always allowed. 2669 * Once replacements starts it is too late though. 2670 */ 2671 err = 0; 2672 clear_bit(WantReplacement, &rdev->flags); 2673 } else if (cmd_match(buf, "replacement")) { 2674 /* Can only set a device as a replacement when array has not 2675 * yet been started. Once running, replacement is automatic 2676 * from spares, or by assigning 'slot'. 2677 */ 2678 if (rdev->mddev->pers) 2679 err = -EBUSY; 2680 else { 2681 set_bit(Replacement, &rdev->flags); 2682 err = 0; 2683 } 2684 } else if (cmd_match(buf, "-replacement")) { 2685 /* Similarly, can only clear Replacement before start */ 2686 if (rdev->mddev->pers) 2687 err = -EBUSY; 2688 else { 2689 clear_bit(Replacement, &rdev->flags); 2690 err = 0; 2691 } 2692 } else if (cmd_match(buf, "re-add")) { 2693 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) { 2694 /* clear_bit is performed _after_ all the devices 2695 * have their local Faulty bit cleared. If any writes 2696 * happen in the meantime in the local node, they 2697 * will land in the local bitmap, which will be synced 2698 * by this node eventually 2699 */ 2700 if (!mddev_is_clustered(rdev->mddev) || 2701 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2702 clear_bit(Faulty, &rdev->flags); 2703 err = add_bound_rdev(rdev); 2704 } 2705 } else 2706 err = -EBUSY; 2707 } 2708 if (!err) 2709 sysfs_notify_dirent_safe(rdev->sysfs_state); 2710 return err ? err : len; 2711 } 2712 static struct rdev_sysfs_entry rdev_state = 2713 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2714 2715 static ssize_t 2716 errors_show(struct md_rdev *rdev, char *page) 2717 { 2718 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2719 } 2720 2721 static ssize_t 2722 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2723 { 2724 unsigned int n; 2725 int rv; 2726 2727 rv = kstrtouint(buf, 10, &n); 2728 if (rv < 0) 2729 return rv; 2730 atomic_set(&rdev->corrected_errors, n); 2731 return len; 2732 } 2733 static struct rdev_sysfs_entry rdev_errors = 2734 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2735 2736 static ssize_t 2737 slot_show(struct md_rdev *rdev, char *page) 2738 { 2739 if (test_bit(Journal, &rdev->flags)) 2740 return sprintf(page, "journal\n"); 2741 else if (rdev->raid_disk < 0) 2742 return sprintf(page, "none\n"); 2743 else 2744 return sprintf(page, "%d\n", rdev->raid_disk); 2745 } 2746 2747 static ssize_t 2748 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2749 { 2750 int slot; 2751 int err; 2752 2753 if (test_bit(Journal, &rdev->flags)) 2754 return -EBUSY; 2755 if (strncmp(buf, "none", 4)==0) 2756 slot = -1; 2757 else { 2758 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2759 if (err < 0) 2760 return err; 2761 } 2762 if (rdev->mddev->pers && slot == -1) { 2763 /* Setting 'slot' on an active array requires also 2764 * updating the 'rd%d' link, and communicating 2765 * with the personality with ->hot_*_disk. 2766 * For now we only support removing 2767 * failed/spare devices. This normally happens automatically, 2768 * but not when the metadata is externally managed. 2769 */ 2770 if (rdev->raid_disk == -1) 2771 return -EEXIST; 2772 /* personality does all needed checks */ 2773 if (rdev->mddev->pers->hot_remove_disk == NULL) 2774 return -EINVAL; 2775 clear_bit(Blocked, &rdev->flags); 2776 remove_and_add_spares(rdev->mddev, rdev); 2777 if (rdev->raid_disk >= 0) 2778 return -EBUSY; 2779 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2780 md_wakeup_thread(rdev->mddev->thread); 2781 } else if (rdev->mddev->pers) { 2782 /* Activating a spare .. or possibly reactivating 2783 * if we ever get bitmaps working here. 2784 */ 2785 int err; 2786 2787 if (rdev->raid_disk != -1) 2788 return -EBUSY; 2789 2790 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2791 return -EBUSY; 2792 2793 if (rdev->mddev->pers->hot_add_disk == NULL) 2794 return -EINVAL; 2795 2796 if (slot >= rdev->mddev->raid_disks && 2797 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2798 return -ENOSPC; 2799 2800 rdev->raid_disk = slot; 2801 if (test_bit(In_sync, &rdev->flags)) 2802 rdev->saved_raid_disk = slot; 2803 else 2804 rdev->saved_raid_disk = -1; 2805 clear_bit(In_sync, &rdev->flags); 2806 clear_bit(Bitmap_sync, &rdev->flags); 2807 err = rdev->mddev->pers-> 2808 hot_add_disk(rdev->mddev, rdev); 2809 if (err) { 2810 rdev->raid_disk = -1; 2811 return err; 2812 } else 2813 sysfs_notify_dirent_safe(rdev->sysfs_state); 2814 if (sysfs_link_rdev(rdev->mddev, rdev)) 2815 /* failure here is OK */; 2816 /* don't wakeup anyone, leave that to userspace. */ 2817 } else { 2818 if (slot >= rdev->mddev->raid_disks && 2819 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2820 return -ENOSPC; 2821 rdev->raid_disk = slot; 2822 /* assume it is working */ 2823 clear_bit(Faulty, &rdev->flags); 2824 clear_bit(WriteMostly, &rdev->flags); 2825 set_bit(In_sync, &rdev->flags); 2826 sysfs_notify_dirent_safe(rdev->sysfs_state); 2827 } 2828 return len; 2829 } 2830 2831 static struct rdev_sysfs_entry rdev_slot = 2832 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2833 2834 static ssize_t 2835 offset_show(struct md_rdev *rdev, char *page) 2836 { 2837 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2838 } 2839 2840 static ssize_t 2841 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2842 { 2843 unsigned long long offset; 2844 if (kstrtoull(buf, 10, &offset) < 0) 2845 return -EINVAL; 2846 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2847 return -EBUSY; 2848 if (rdev->sectors && rdev->mddev->external) 2849 /* Must set offset before size, so overlap checks 2850 * can be sane */ 2851 return -EBUSY; 2852 rdev->data_offset = offset; 2853 rdev->new_data_offset = offset; 2854 return len; 2855 } 2856 2857 static struct rdev_sysfs_entry rdev_offset = 2858 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2859 2860 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2861 { 2862 return sprintf(page, "%llu\n", 2863 (unsigned long long)rdev->new_data_offset); 2864 } 2865 2866 static ssize_t new_offset_store(struct md_rdev *rdev, 2867 const char *buf, size_t len) 2868 { 2869 unsigned long long new_offset; 2870 struct mddev *mddev = rdev->mddev; 2871 2872 if (kstrtoull(buf, 10, &new_offset) < 0) 2873 return -EINVAL; 2874 2875 if (mddev->sync_thread || 2876 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 2877 return -EBUSY; 2878 if (new_offset == rdev->data_offset) 2879 /* reset is always permitted */ 2880 ; 2881 else if (new_offset > rdev->data_offset) { 2882 /* must not push array size beyond rdev_sectors */ 2883 if (new_offset - rdev->data_offset 2884 + mddev->dev_sectors > rdev->sectors) 2885 return -E2BIG; 2886 } 2887 /* Metadata worries about other space details. */ 2888 2889 /* decreasing the offset is inconsistent with a backwards 2890 * reshape. 2891 */ 2892 if (new_offset < rdev->data_offset && 2893 mddev->reshape_backwards) 2894 return -EINVAL; 2895 /* Increasing offset is inconsistent with forwards 2896 * reshape. reshape_direction should be set to 2897 * 'backwards' first. 2898 */ 2899 if (new_offset > rdev->data_offset && 2900 !mddev->reshape_backwards) 2901 return -EINVAL; 2902 2903 if (mddev->pers && mddev->persistent && 2904 !super_types[mddev->major_version] 2905 .allow_new_offset(rdev, new_offset)) 2906 return -E2BIG; 2907 rdev->new_data_offset = new_offset; 2908 if (new_offset > rdev->data_offset) 2909 mddev->reshape_backwards = 1; 2910 else if (new_offset < rdev->data_offset) 2911 mddev->reshape_backwards = 0; 2912 2913 return len; 2914 } 2915 static struct rdev_sysfs_entry rdev_new_offset = 2916 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2917 2918 static ssize_t 2919 rdev_size_show(struct md_rdev *rdev, char *page) 2920 { 2921 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2922 } 2923 2924 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2925 { 2926 /* check if two start/length pairs overlap */ 2927 if (s1+l1 <= s2) 2928 return 0; 2929 if (s2+l2 <= s1) 2930 return 0; 2931 return 1; 2932 } 2933 2934 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2935 { 2936 unsigned long long blocks; 2937 sector_t new; 2938 2939 if (kstrtoull(buf, 10, &blocks) < 0) 2940 return -EINVAL; 2941 2942 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2943 return -EINVAL; /* sector conversion overflow */ 2944 2945 new = blocks * 2; 2946 if (new != blocks * 2) 2947 return -EINVAL; /* unsigned long long to sector_t overflow */ 2948 2949 *sectors = new; 2950 return 0; 2951 } 2952 2953 static ssize_t 2954 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2955 { 2956 struct mddev *my_mddev = rdev->mddev; 2957 sector_t oldsectors = rdev->sectors; 2958 sector_t sectors; 2959 2960 if (test_bit(Journal, &rdev->flags)) 2961 return -EBUSY; 2962 if (strict_blocks_to_sectors(buf, §ors) < 0) 2963 return -EINVAL; 2964 if (rdev->data_offset != rdev->new_data_offset) 2965 return -EINVAL; /* too confusing */ 2966 if (my_mddev->pers && rdev->raid_disk >= 0) { 2967 if (my_mddev->persistent) { 2968 sectors = super_types[my_mddev->major_version]. 2969 rdev_size_change(rdev, sectors); 2970 if (!sectors) 2971 return -EBUSY; 2972 } else if (!sectors) 2973 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2974 rdev->data_offset; 2975 if (!my_mddev->pers->resize) 2976 /* Cannot change size for RAID0 or Linear etc */ 2977 return -EINVAL; 2978 } 2979 if (sectors < my_mddev->dev_sectors) 2980 return -EINVAL; /* component must fit device */ 2981 2982 rdev->sectors = sectors; 2983 if (sectors > oldsectors && my_mddev->external) { 2984 /* Need to check that all other rdevs with the same 2985 * ->bdev do not overlap. 'rcu' is sufficient to walk 2986 * the rdev lists safely. 2987 * This check does not provide a hard guarantee, it 2988 * just helps avoid dangerous mistakes. 2989 */ 2990 struct mddev *mddev; 2991 int overlap = 0; 2992 struct list_head *tmp; 2993 2994 rcu_read_lock(); 2995 for_each_mddev(mddev, tmp) { 2996 struct md_rdev *rdev2; 2997 2998 rdev_for_each(rdev2, mddev) 2999 if (rdev->bdev == rdev2->bdev && 3000 rdev != rdev2 && 3001 overlaps(rdev->data_offset, rdev->sectors, 3002 rdev2->data_offset, 3003 rdev2->sectors)) { 3004 overlap = 1; 3005 break; 3006 } 3007 if (overlap) { 3008 mddev_put(mddev); 3009 break; 3010 } 3011 } 3012 rcu_read_unlock(); 3013 if (overlap) { 3014 /* Someone else could have slipped in a size 3015 * change here, but doing so is just silly. 3016 * We put oldsectors back because we *know* it is 3017 * safe, and trust userspace not to race with 3018 * itself 3019 */ 3020 rdev->sectors = oldsectors; 3021 return -EBUSY; 3022 } 3023 } 3024 return len; 3025 } 3026 3027 static struct rdev_sysfs_entry rdev_size = 3028 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3029 3030 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3031 { 3032 unsigned long long recovery_start = rdev->recovery_offset; 3033 3034 if (test_bit(In_sync, &rdev->flags) || 3035 recovery_start == MaxSector) 3036 return sprintf(page, "none\n"); 3037 3038 return sprintf(page, "%llu\n", recovery_start); 3039 } 3040 3041 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3042 { 3043 unsigned long long recovery_start; 3044 3045 if (cmd_match(buf, "none")) 3046 recovery_start = MaxSector; 3047 else if (kstrtoull(buf, 10, &recovery_start)) 3048 return -EINVAL; 3049 3050 if (rdev->mddev->pers && 3051 rdev->raid_disk >= 0) 3052 return -EBUSY; 3053 3054 rdev->recovery_offset = recovery_start; 3055 if (recovery_start == MaxSector) 3056 set_bit(In_sync, &rdev->flags); 3057 else 3058 clear_bit(In_sync, &rdev->flags); 3059 return len; 3060 } 3061 3062 static struct rdev_sysfs_entry rdev_recovery_start = 3063 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3064 3065 /* sysfs access to bad-blocks list. 3066 * We present two files. 3067 * 'bad-blocks' lists sector numbers and lengths of ranges that 3068 * are recorded as bad. The list is truncated to fit within 3069 * the one-page limit of sysfs. 3070 * Writing "sector length" to this file adds an acknowledged 3071 * bad block list. 3072 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3073 * been acknowledged. Writing to this file adds bad blocks 3074 * without acknowledging them. This is largely for testing. 3075 */ 3076 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3077 { 3078 return badblocks_show(&rdev->badblocks, page, 0); 3079 } 3080 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3081 { 3082 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3083 /* Maybe that ack was all we needed */ 3084 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3085 wake_up(&rdev->blocked_wait); 3086 return rv; 3087 } 3088 static struct rdev_sysfs_entry rdev_bad_blocks = 3089 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3090 3091 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3092 { 3093 return badblocks_show(&rdev->badblocks, page, 1); 3094 } 3095 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3096 { 3097 return badblocks_store(&rdev->badblocks, page, len, 1); 3098 } 3099 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3100 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3101 3102 static struct attribute *rdev_default_attrs[] = { 3103 &rdev_state.attr, 3104 &rdev_errors.attr, 3105 &rdev_slot.attr, 3106 &rdev_offset.attr, 3107 &rdev_new_offset.attr, 3108 &rdev_size.attr, 3109 &rdev_recovery_start.attr, 3110 &rdev_bad_blocks.attr, 3111 &rdev_unack_bad_blocks.attr, 3112 NULL, 3113 }; 3114 static ssize_t 3115 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3116 { 3117 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3118 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3119 3120 if (!entry->show) 3121 return -EIO; 3122 if (!rdev->mddev) 3123 return -EBUSY; 3124 return entry->show(rdev, page); 3125 } 3126 3127 static ssize_t 3128 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3129 const char *page, size_t length) 3130 { 3131 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3132 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3133 ssize_t rv; 3134 struct mddev *mddev = rdev->mddev; 3135 3136 if (!entry->store) 3137 return -EIO; 3138 if (!capable(CAP_SYS_ADMIN)) 3139 return -EACCES; 3140 rv = mddev ? mddev_lock(mddev): -EBUSY; 3141 if (!rv) { 3142 if (rdev->mddev == NULL) 3143 rv = -EBUSY; 3144 else 3145 rv = entry->store(rdev, page, length); 3146 mddev_unlock(mddev); 3147 } 3148 return rv; 3149 } 3150 3151 static void rdev_free(struct kobject *ko) 3152 { 3153 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3154 kfree(rdev); 3155 } 3156 static const struct sysfs_ops rdev_sysfs_ops = { 3157 .show = rdev_attr_show, 3158 .store = rdev_attr_store, 3159 }; 3160 static struct kobj_type rdev_ktype = { 3161 .release = rdev_free, 3162 .sysfs_ops = &rdev_sysfs_ops, 3163 .default_attrs = rdev_default_attrs, 3164 }; 3165 3166 int md_rdev_init(struct md_rdev *rdev) 3167 { 3168 rdev->desc_nr = -1; 3169 rdev->saved_raid_disk = -1; 3170 rdev->raid_disk = -1; 3171 rdev->flags = 0; 3172 rdev->data_offset = 0; 3173 rdev->new_data_offset = 0; 3174 rdev->sb_events = 0; 3175 rdev->last_read_error.tv_sec = 0; 3176 rdev->last_read_error.tv_nsec = 0; 3177 rdev->sb_loaded = 0; 3178 rdev->bb_page = NULL; 3179 atomic_set(&rdev->nr_pending, 0); 3180 atomic_set(&rdev->read_errors, 0); 3181 atomic_set(&rdev->corrected_errors, 0); 3182 3183 INIT_LIST_HEAD(&rdev->same_set); 3184 init_waitqueue_head(&rdev->blocked_wait); 3185 3186 /* Add space to store bad block list. 3187 * This reserves the space even on arrays where it cannot 3188 * be used - I wonder if that matters 3189 */ 3190 return badblocks_init(&rdev->badblocks, 0); 3191 } 3192 EXPORT_SYMBOL_GPL(md_rdev_init); 3193 /* 3194 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3195 * 3196 * mark the device faulty if: 3197 * 3198 * - the device is nonexistent (zero size) 3199 * - the device has no valid superblock 3200 * 3201 * a faulty rdev _never_ has rdev->sb set. 3202 */ 3203 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3204 { 3205 char b[BDEVNAME_SIZE]; 3206 int err; 3207 struct md_rdev *rdev; 3208 sector_t size; 3209 3210 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3211 if (!rdev) { 3212 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3213 return ERR_PTR(-ENOMEM); 3214 } 3215 3216 err = md_rdev_init(rdev); 3217 if (err) 3218 goto abort_free; 3219 err = alloc_disk_sb(rdev); 3220 if (err) 3221 goto abort_free; 3222 3223 err = lock_rdev(rdev, newdev, super_format == -2); 3224 if (err) 3225 goto abort_free; 3226 3227 kobject_init(&rdev->kobj, &rdev_ktype); 3228 3229 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3230 if (!size) { 3231 printk(KERN_WARNING 3232 "md: %s has zero or unknown size, marking faulty!\n", 3233 bdevname(rdev->bdev,b)); 3234 err = -EINVAL; 3235 goto abort_free; 3236 } 3237 3238 if (super_format >= 0) { 3239 err = super_types[super_format]. 3240 load_super(rdev, NULL, super_minor); 3241 if (err == -EINVAL) { 3242 printk(KERN_WARNING 3243 "md: %s does not have a valid v%d.%d " 3244 "superblock, not importing!\n", 3245 bdevname(rdev->bdev,b), 3246 super_format, super_minor); 3247 goto abort_free; 3248 } 3249 if (err < 0) { 3250 printk(KERN_WARNING 3251 "md: could not read %s's sb, not importing!\n", 3252 bdevname(rdev->bdev,b)); 3253 goto abort_free; 3254 } 3255 } 3256 3257 return rdev; 3258 3259 abort_free: 3260 if (rdev->bdev) 3261 unlock_rdev(rdev); 3262 md_rdev_clear(rdev); 3263 kfree(rdev); 3264 return ERR_PTR(err); 3265 } 3266 3267 /* 3268 * Check a full RAID array for plausibility 3269 */ 3270 3271 static void analyze_sbs(struct mddev *mddev) 3272 { 3273 int i; 3274 struct md_rdev *rdev, *freshest, *tmp; 3275 char b[BDEVNAME_SIZE]; 3276 3277 freshest = NULL; 3278 rdev_for_each_safe(rdev, tmp, mddev) 3279 switch (super_types[mddev->major_version]. 3280 load_super(rdev, freshest, mddev->minor_version)) { 3281 case 1: 3282 freshest = rdev; 3283 break; 3284 case 0: 3285 break; 3286 default: 3287 printk( KERN_ERR \ 3288 "md: fatal superblock inconsistency in %s" 3289 " -- removing from array\n", 3290 bdevname(rdev->bdev,b)); 3291 md_kick_rdev_from_array(rdev); 3292 } 3293 3294 super_types[mddev->major_version]. 3295 validate_super(mddev, freshest); 3296 3297 i = 0; 3298 rdev_for_each_safe(rdev, tmp, mddev) { 3299 if (mddev->max_disks && 3300 (rdev->desc_nr >= mddev->max_disks || 3301 i > mddev->max_disks)) { 3302 printk(KERN_WARNING 3303 "md: %s: %s: only %d devices permitted\n", 3304 mdname(mddev), bdevname(rdev->bdev, b), 3305 mddev->max_disks); 3306 md_kick_rdev_from_array(rdev); 3307 continue; 3308 } 3309 if (rdev != freshest) { 3310 if (super_types[mddev->major_version]. 3311 validate_super(mddev, rdev)) { 3312 printk(KERN_WARNING "md: kicking non-fresh %s" 3313 " from array!\n", 3314 bdevname(rdev->bdev,b)); 3315 md_kick_rdev_from_array(rdev); 3316 continue; 3317 } 3318 } 3319 if (mddev->level == LEVEL_MULTIPATH) { 3320 rdev->desc_nr = i++; 3321 rdev->raid_disk = rdev->desc_nr; 3322 set_bit(In_sync, &rdev->flags); 3323 } else if (rdev->raid_disk >= 3324 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3325 !test_bit(Journal, &rdev->flags)) { 3326 rdev->raid_disk = -1; 3327 clear_bit(In_sync, &rdev->flags); 3328 } 3329 } 3330 } 3331 3332 /* Read a fixed-point number. 3333 * Numbers in sysfs attributes should be in "standard" units where 3334 * possible, so time should be in seconds. 3335 * However we internally use a a much smaller unit such as 3336 * milliseconds or jiffies. 3337 * This function takes a decimal number with a possible fractional 3338 * component, and produces an integer which is the result of 3339 * multiplying that number by 10^'scale'. 3340 * all without any floating-point arithmetic. 3341 */ 3342 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3343 { 3344 unsigned long result = 0; 3345 long decimals = -1; 3346 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3347 if (*cp == '.') 3348 decimals = 0; 3349 else if (decimals < scale) { 3350 unsigned int value; 3351 value = *cp - '0'; 3352 result = result * 10 + value; 3353 if (decimals >= 0) 3354 decimals++; 3355 } 3356 cp++; 3357 } 3358 if (*cp == '\n') 3359 cp++; 3360 if (*cp) 3361 return -EINVAL; 3362 if (decimals < 0) 3363 decimals = 0; 3364 while (decimals < scale) { 3365 result *= 10; 3366 decimals ++; 3367 } 3368 *res = result; 3369 return 0; 3370 } 3371 3372 static ssize_t 3373 safe_delay_show(struct mddev *mddev, char *page) 3374 { 3375 int msec = (mddev->safemode_delay*1000)/HZ; 3376 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3377 } 3378 static ssize_t 3379 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3380 { 3381 unsigned long msec; 3382 3383 if (mddev_is_clustered(mddev)) { 3384 pr_info("md: Safemode is disabled for clustered mode\n"); 3385 return -EINVAL; 3386 } 3387 3388 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3389 return -EINVAL; 3390 if (msec == 0) 3391 mddev->safemode_delay = 0; 3392 else { 3393 unsigned long old_delay = mddev->safemode_delay; 3394 unsigned long new_delay = (msec*HZ)/1000; 3395 3396 if (new_delay == 0) 3397 new_delay = 1; 3398 mddev->safemode_delay = new_delay; 3399 if (new_delay < old_delay || old_delay == 0) 3400 mod_timer(&mddev->safemode_timer, jiffies+1); 3401 } 3402 return len; 3403 } 3404 static struct md_sysfs_entry md_safe_delay = 3405 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3406 3407 static ssize_t 3408 level_show(struct mddev *mddev, char *page) 3409 { 3410 struct md_personality *p; 3411 int ret; 3412 spin_lock(&mddev->lock); 3413 p = mddev->pers; 3414 if (p) 3415 ret = sprintf(page, "%s\n", p->name); 3416 else if (mddev->clevel[0]) 3417 ret = sprintf(page, "%s\n", mddev->clevel); 3418 else if (mddev->level != LEVEL_NONE) 3419 ret = sprintf(page, "%d\n", mddev->level); 3420 else 3421 ret = 0; 3422 spin_unlock(&mddev->lock); 3423 return ret; 3424 } 3425 3426 static ssize_t 3427 level_store(struct mddev *mddev, const char *buf, size_t len) 3428 { 3429 char clevel[16]; 3430 ssize_t rv; 3431 size_t slen = len; 3432 struct md_personality *pers, *oldpers; 3433 long level; 3434 void *priv, *oldpriv; 3435 struct md_rdev *rdev; 3436 3437 if (slen == 0 || slen >= sizeof(clevel)) 3438 return -EINVAL; 3439 3440 rv = mddev_lock(mddev); 3441 if (rv) 3442 return rv; 3443 3444 if (mddev->pers == NULL) { 3445 strncpy(mddev->clevel, buf, slen); 3446 if (mddev->clevel[slen-1] == '\n') 3447 slen--; 3448 mddev->clevel[slen] = 0; 3449 mddev->level = LEVEL_NONE; 3450 rv = len; 3451 goto out_unlock; 3452 } 3453 rv = -EROFS; 3454 if (mddev->ro) 3455 goto out_unlock; 3456 3457 /* request to change the personality. Need to ensure: 3458 * - array is not engaged in resync/recovery/reshape 3459 * - old personality can be suspended 3460 * - new personality will access other array. 3461 */ 3462 3463 rv = -EBUSY; 3464 if (mddev->sync_thread || 3465 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3466 mddev->reshape_position != MaxSector || 3467 mddev->sysfs_active) 3468 goto out_unlock; 3469 3470 rv = -EINVAL; 3471 if (!mddev->pers->quiesce) { 3472 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3473 mdname(mddev), mddev->pers->name); 3474 goto out_unlock; 3475 } 3476 3477 /* Now find the new personality */ 3478 strncpy(clevel, buf, slen); 3479 if (clevel[slen-1] == '\n') 3480 slen--; 3481 clevel[slen] = 0; 3482 if (kstrtol(clevel, 10, &level)) 3483 level = LEVEL_NONE; 3484 3485 if (request_module("md-%s", clevel) != 0) 3486 request_module("md-level-%s", clevel); 3487 spin_lock(&pers_lock); 3488 pers = find_pers(level, clevel); 3489 if (!pers || !try_module_get(pers->owner)) { 3490 spin_unlock(&pers_lock); 3491 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3492 rv = -EINVAL; 3493 goto out_unlock; 3494 } 3495 spin_unlock(&pers_lock); 3496 3497 if (pers == mddev->pers) { 3498 /* Nothing to do! */ 3499 module_put(pers->owner); 3500 rv = len; 3501 goto out_unlock; 3502 } 3503 if (!pers->takeover) { 3504 module_put(pers->owner); 3505 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3506 mdname(mddev), clevel); 3507 rv = -EINVAL; 3508 goto out_unlock; 3509 } 3510 3511 rdev_for_each(rdev, mddev) 3512 rdev->new_raid_disk = rdev->raid_disk; 3513 3514 /* ->takeover must set new_* and/or delta_disks 3515 * if it succeeds, and may set them when it fails. 3516 */ 3517 priv = pers->takeover(mddev); 3518 if (IS_ERR(priv)) { 3519 mddev->new_level = mddev->level; 3520 mddev->new_layout = mddev->layout; 3521 mddev->new_chunk_sectors = mddev->chunk_sectors; 3522 mddev->raid_disks -= mddev->delta_disks; 3523 mddev->delta_disks = 0; 3524 mddev->reshape_backwards = 0; 3525 module_put(pers->owner); 3526 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3527 mdname(mddev), clevel); 3528 rv = PTR_ERR(priv); 3529 goto out_unlock; 3530 } 3531 3532 /* Looks like we have a winner */ 3533 mddev_suspend(mddev); 3534 mddev_detach(mddev); 3535 3536 spin_lock(&mddev->lock); 3537 oldpers = mddev->pers; 3538 oldpriv = mddev->private; 3539 mddev->pers = pers; 3540 mddev->private = priv; 3541 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3542 mddev->level = mddev->new_level; 3543 mddev->layout = mddev->new_layout; 3544 mddev->chunk_sectors = mddev->new_chunk_sectors; 3545 mddev->delta_disks = 0; 3546 mddev->reshape_backwards = 0; 3547 mddev->degraded = 0; 3548 spin_unlock(&mddev->lock); 3549 3550 if (oldpers->sync_request == NULL && 3551 mddev->external) { 3552 /* We are converting from a no-redundancy array 3553 * to a redundancy array and metadata is managed 3554 * externally so we need to be sure that writes 3555 * won't block due to a need to transition 3556 * clean->dirty 3557 * until external management is started. 3558 */ 3559 mddev->in_sync = 0; 3560 mddev->safemode_delay = 0; 3561 mddev->safemode = 0; 3562 } 3563 3564 oldpers->free(mddev, oldpriv); 3565 3566 if (oldpers->sync_request == NULL && 3567 pers->sync_request != NULL) { 3568 /* need to add the md_redundancy_group */ 3569 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3570 printk(KERN_WARNING 3571 "md: cannot register extra attributes for %s\n", 3572 mdname(mddev)); 3573 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3574 } 3575 if (oldpers->sync_request != NULL && 3576 pers->sync_request == NULL) { 3577 /* need to remove the md_redundancy_group */ 3578 if (mddev->to_remove == NULL) 3579 mddev->to_remove = &md_redundancy_group; 3580 } 3581 3582 rdev_for_each(rdev, mddev) { 3583 if (rdev->raid_disk < 0) 3584 continue; 3585 if (rdev->new_raid_disk >= mddev->raid_disks) 3586 rdev->new_raid_disk = -1; 3587 if (rdev->new_raid_disk == rdev->raid_disk) 3588 continue; 3589 sysfs_unlink_rdev(mddev, rdev); 3590 } 3591 rdev_for_each(rdev, mddev) { 3592 if (rdev->raid_disk < 0) 3593 continue; 3594 if (rdev->new_raid_disk == rdev->raid_disk) 3595 continue; 3596 rdev->raid_disk = rdev->new_raid_disk; 3597 if (rdev->raid_disk < 0) 3598 clear_bit(In_sync, &rdev->flags); 3599 else { 3600 if (sysfs_link_rdev(mddev, rdev)) 3601 printk(KERN_WARNING "md: cannot register rd%d" 3602 " for %s after level change\n", 3603 rdev->raid_disk, mdname(mddev)); 3604 } 3605 } 3606 3607 if (pers->sync_request == NULL) { 3608 /* this is now an array without redundancy, so 3609 * it must always be in_sync 3610 */ 3611 mddev->in_sync = 1; 3612 del_timer_sync(&mddev->safemode_timer); 3613 } 3614 blk_set_stacking_limits(&mddev->queue->limits); 3615 pers->run(mddev); 3616 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3617 mddev_resume(mddev); 3618 if (!mddev->thread) 3619 md_update_sb(mddev, 1); 3620 sysfs_notify(&mddev->kobj, NULL, "level"); 3621 md_new_event(mddev); 3622 rv = len; 3623 out_unlock: 3624 mddev_unlock(mddev); 3625 return rv; 3626 } 3627 3628 static struct md_sysfs_entry md_level = 3629 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3630 3631 static ssize_t 3632 layout_show(struct mddev *mddev, char *page) 3633 { 3634 /* just a number, not meaningful for all levels */ 3635 if (mddev->reshape_position != MaxSector && 3636 mddev->layout != mddev->new_layout) 3637 return sprintf(page, "%d (%d)\n", 3638 mddev->new_layout, mddev->layout); 3639 return sprintf(page, "%d\n", mddev->layout); 3640 } 3641 3642 static ssize_t 3643 layout_store(struct mddev *mddev, const char *buf, size_t len) 3644 { 3645 unsigned int n; 3646 int err; 3647 3648 err = kstrtouint(buf, 10, &n); 3649 if (err < 0) 3650 return err; 3651 err = mddev_lock(mddev); 3652 if (err) 3653 return err; 3654 3655 if (mddev->pers) { 3656 if (mddev->pers->check_reshape == NULL) 3657 err = -EBUSY; 3658 else if (mddev->ro) 3659 err = -EROFS; 3660 else { 3661 mddev->new_layout = n; 3662 err = mddev->pers->check_reshape(mddev); 3663 if (err) 3664 mddev->new_layout = mddev->layout; 3665 } 3666 } else { 3667 mddev->new_layout = n; 3668 if (mddev->reshape_position == MaxSector) 3669 mddev->layout = n; 3670 } 3671 mddev_unlock(mddev); 3672 return err ?: len; 3673 } 3674 static struct md_sysfs_entry md_layout = 3675 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3676 3677 static ssize_t 3678 raid_disks_show(struct mddev *mddev, char *page) 3679 { 3680 if (mddev->raid_disks == 0) 3681 return 0; 3682 if (mddev->reshape_position != MaxSector && 3683 mddev->delta_disks != 0) 3684 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3685 mddev->raid_disks - mddev->delta_disks); 3686 return sprintf(page, "%d\n", mddev->raid_disks); 3687 } 3688 3689 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3690 3691 static ssize_t 3692 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3693 { 3694 unsigned int n; 3695 int err; 3696 3697 err = kstrtouint(buf, 10, &n); 3698 if (err < 0) 3699 return err; 3700 3701 err = mddev_lock(mddev); 3702 if (err) 3703 return err; 3704 if (mddev->pers) 3705 err = update_raid_disks(mddev, n); 3706 else if (mddev->reshape_position != MaxSector) { 3707 struct md_rdev *rdev; 3708 int olddisks = mddev->raid_disks - mddev->delta_disks; 3709 3710 err = -EINVAL; 3711 rdev_for_each(rdev, mddev) { 3712 if (olddisks < n && 3713 rdev->data_offset < rdev->new_data_offset) 3714 goto out_unlock; 3715 if (olddisks > n && 3716 rdev->data_offset > rdev->new_data_offset) 3717 goto out_unlock; 3718 } 3719 err = 0; 3720 mddev->delta_disks = n - olddisks; 3721 mddev->raid_disks = n; 3722 mddev->reshape_backwards = (mddev->delta_disks < 0); 3723 } else 3724 mddev->raid_disks = n; 3725 out_unlock: 3726 mddev_unlock(mddev); 3727 return err ? err : len; 3728 } 3729 static struct md_sysfs_entry md_raid_disks = 3730 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3731 3732 static ssize_t 3733 chunk_size_show(struct mddev *mddev, char *page) 3734 { 3735 if (mddev->reshape_position != MaxSector && 3736 mddev->chunk_sectors != mddev->new_chunk_sectors) 3737 return sprintf(page, "%d (%d)\n", 3738 mddev->new_chunk_sectors << 9, 3739 mddev->chunk_sectors << 9); 3740 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3741 } 3742 3743 static ssize_t 3744 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3745 { 3746 unsigned long n; 3747 int err; 3748 3749 err = kstrtoul(buf, 10, &n); 3750 if (err < 0) 3751 return err; 3752 3753 err = mddev_lock(mddev); 3754 if (err) 3755 return err; 3756 if (mddev->pers) { 3757 if (mddev->pers->check_reshape == NULL) 3758 err = -EBUSY; 3759 else if (mddev->ro) 3760 err = -EROFS; 3761 else { 3762 mddev->new_chunk_sectors = n >> 9; 3763 err = mddev->pers->check_reshape(mddev); 3764 if (err) 3765 mddev->new_chunk_sectors = mddev->chunk_sectors; 3766 } 3767 } else { 3768 mddev->new_chunk_sectors = n >> 9; 3769 if (mddev->reshape_position == MaxSector) 3770 mddev->chunk_sectors = n >> 9; 3771 } 3772 mddev_unlock(mddev); 3773 return err ?: len; 3774 } 3775 static struct md_sysfs_entry md_chunk_size = 3776 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3777 3778 static ssize_t 3779 resync_start_show(struct mddev *mddev, char *page) 3780 { 3781 if (mddev->recovery_cp == MaxSector) 3782 return sprintf(page, "none\n"); 3783 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3784 } 3785 3786 static ssize_t 3787 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3788 { 3789 unsigned long long n; 3790 int err; 3791 3792 if (cmd_match(buf, "none")) 3793 n = MaxSector; 3794 else { 3795 err = kstrtoull(buf, 10, &n); 3796 if (err < 0) 3797 return err; 3798 if (n != (sector_t)n) 3799 return -EINVAL; 3800 } 3801 3802 err = mddev_lock(mddev); 3803 if (err) 3804 return err; 3805 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3806 err = -EBUSY; 3807 3808 if (!err) { 3809 mddev->recovery_cp = n; 3810 if (mddev->pers) 3811 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3812 } 3813 mddev_unlock(mddev); 3814 return err ?: len; 3815 } 3816 static struct md_sysfs_entry md_resync_start = 3817 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 3818 resync_start_show, resync_start_store); 3819 3820 /* 3821 * The array state can be: 3822 * 3823 * clear 3824 * No devices, no size, no level 3825 * Equivalent to STOP_ARRAY ioctl 3826 * inactive 3827 * May have some settings, but array is not active 3828 * all IO results in error 3829 * When written, doesn't tear down array, but just stops it 3830 * suspended (not supported yet) 3831 * All IO requests will block. The array can be reconfigured. 3832 * Writing this, if accepted, will block until array is quiescent 3833 * readonly 3834 * no resync can happen. no superblocks get written. 3835 * write requests fail 3836 * read-auto 3837 * like readonly, but behaves like 'clean' on a write request. 3838 * 3839 * clean - no pending writes, but otherwise active. 3840 * When written to inactive array, starts without resync 3841 * If a write request arrives then 3842 * if metadata is known, mark 'dirty' and switch to 'active'. 3843 * if not known, block and switch to write-pending 3844 * If written to an active array that has pending writes, then fails. 3845 * active 3846 * fully active: IO and resync can be happening. 3847 * When written to inactive array, starts with resync 3848 * 3849 * write-pending 3850 * clean, but writes are blocked waiting for 'active' to be written. 3851 * 3852 * active-idle 3853 * like active, but no writes have been seen for a while (100msec). 3854 * 3855 */ 3856 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3857 write_pending, active_idle, bad_word}; 3858 static char *array_states[] = { 3859 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3860 "write-pending", "active-idle", NULL }; 3861 3862 static int match_word(const char *word, char **list) 3863 { 3864 int n; 3865 for (n=0; list[n]; n++) 3866 if (cmd_match(word, list[n])) 3867 break; 3868 return n; 3869 } 3870 3871 static ssize_t 3872 array_state_show(struct mddev *mddev, char *page) 3873 { 3874 enum array_state st = inactive; 3875 3876 if (mddev->pers) 3877 switch(mddev->ro) { 3878 case 1: 3879 st = readonly; 3880 break; 3881 case 2: 3882 st = read_auto; 3883 break; 3884 case 0: 3885 if (mddev->in_sync) 3886 st = clean; 3887 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3888 st = write_pending; 3889 else if (mddev->safemode) 3890 st = active_idle; 3891 else 3892 st = active; 3893 } 3894 else { 3895 if (list_empty(&mddev->disks) && 3896 mddev->raid_disks == 0 && 3897 mddev->dev_sectors == 0) 3898 st = clear; 3899 else 3900 st = inactive; 3901 } 3902 return sprintf(page, "%s\n", array_states[st]); 3903 } 3904 3905 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 3906 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 3907 static int do_md_run(struct mddev *mddev); 3908 static int restart_array(struct mddev *mddev); 3909 3910 static ssize_t 3911 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3912 { 3913 int err; 3914 enum array_state st = match_word(buf, array_states); 3915 3916 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 3917 /* don't take reconfig_mutex when toggling between 3918 * clean and active 3919 */ 3920 spin_lock(&mddev->lock); 3921 if (st == active) { 3922 restart_array(mddev); 3923 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3924 wake_up(&mddev->sb_wait); 3925 err = 0; 3926 } else /* st == clean */ { 3927 restart_array(mddev); 3928 if (atomic_read(&mddev->writes_pending) == 0) { 3929 if (mddev->in_sync == 0) { 3930 mddev->in_sync = 1; 3931 if (mddev->safemode == 1) 3932 mddev->safemode = 0; 3933 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3934 } 3935 err = 0; 3936 } else 3937 err = -EBUSY; 3938 } 3939 spin_unlock(&mddev->lock); 3940 return err ?: len; 3941 } 3942 err = mddev_lock(mddev); 3943 if (err) 3944 return err; 3945 err = -EINVAL; 3946 switch(st) { 3947 case bad_word: 3948 break; 3949 case clear: 3950 /* stopping an active array */ 3951 err = do_md_stop(mddev, 0, NULL); 3952 break; 3953 case inactive: 3954 /* stopping an active array */ 3955 if (mddev->pers) 3956 err = do_md_stop(mddev, 2, NULL); 3957 else 3958 err = 0; /* already inactive */ 3959 break; 3960 case suspended: 3961 break; /* not supported yet */ 3962 case readonly: 3963 if (mddev->pers) 3964 err = md_set_readonly(mddev, NULL); 3965 else { 3966 mddev->ro = 1; 3967 set_disk_ro(mddev->gendisk, 1); 3968 err = do_md_run(mddev); 3969 } 3970 break; 3971 case read_auto: 3972 if (mddev->pers) { 3973 if (mddev->ro == 0) 3974 err = md_set_readonly(mddev, NULL); 3975 else if (mddev->ro == 1) 3976 err = restart_array(mddev); 3977 if (err == 0) { 3978 mddev->ro = 2; 3979 set_disk_ro(mddev->gendisk, 0); 3980 } 3981 } else { 3982 mddev->ro = 2; 3983 err = do_md_run(mddev); 3984 } 3985 break; 3986 case clean: 3987 if (mddev->pers) { 3988 err = restart_array(mddev); 3989 if (err) 3990 break; 3991 spin_lock(&mddev->lock); 3992 if (atomic_read(&mddev->writes_pending) == 0) { 3993 if (mddev->in_sync == 0) { 3994 mddev->in_sync = 1; 3995 if (mddev->safemode == 1) 3996 mddev->safemode = 0; 3997 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3998 } 3999 err = 0; 4000 } else 4001 err = -EBUSY; 4002 spin_unlock(&mddev->lock); 4003 } else 4004 err = -EINVAL; 4005 break; 4006 case active: 4007 if (mddev->pers) { 4008 err = restart_array(mddev); 4009 if (err) 4010 break; 4011 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 4012 wake_up(&mddev->sb_wait); 4013 err = 0; 4014 } else { 4015 mddev->ro = 0; 4016 set_disk_ro(mddev->gendisk, 0); 4017 err = do_md_run(mddev); 4018 } 4019 break; 4020 case write_pending: 4021 case active_idle: 4022 /* these cannot be set */ 4023 break; 4024 } 4025 4026 if (!err) { 4027 if (mddev->hold_active == UNTIL_IOCTL) 4028 mddev->hold_active = 0; 4029 sysfs_notify_dirent_safe(mddev->sysfs_state); 4030 } 4031 mddev_unlock(mddev); 4032 return err ?: len; 4033 } 4034 static struct md_sysfs_entry md_array_state = 4035 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4036 4037 static ssize_t 4038 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4039 return sprintf(page, "%d\n", 4040 atomic_read(&mddev->max_corr_read_errors)); 4041 } 4042 4043 static ssize_t 4044 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4045 { 4046 unsigned int n; 4047 int rv; 4048 4049 rv = kstrtouint(buf, 10, &n); 4050 if (rv < 0) 4051 return rv; 4052 atomic_set(&mddev->max_corr_read_errors, n); 4053 return len; 4054 } 4055 4056 static struct md_sysfs_entry max_corr_read_errors = 4057 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4058 max_corrected_read_errors_store); 4059 4060 static ssize_t 4061 null_show(struct mddev *mddev, char *page) 4062 { 4063 return -EINVAL; 4064 } 4065 4066 static ssize_t 4067 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4068 { 4069 /* buf must be %d:%d\n? giving major and minor numbers */ 4070 /* The new device is added to the array. 4071 * If the array has a persistent superblock, we read the 4072 * superblock to initialise info and check validity. 4073 * Otherwise, only checking done is that in bind_rdev_to_array, 4074 * which mainly checks size. 4075 */ 4076 char *e; 4077 int major = simple_strtoul(buf, &e, 10); 4078 int minor; 4079 dev_t dev; 4080 struct md_rdev *rdev; 4081 int err; 4082 4083 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4084 return -EINVAL; 4085 minor = simple_strtoul(e+1, &e, 10); 4086 if (*e && *e != '\n') 4087 return -EINVAL; 4088 dev = MKDEV(major, minor); 4089 if (major != MAJOR(dev) || 4090 minor != MINOR(dev)) 4091 return -EOVERFLOW; 4092 4093 flush_workqueue(md_misc_wq); 4094 4095 err = mddev_lock(mddev); 4096 if (err) 4097 return err; 4098 if (mddev->persistent) { 4099 rdev = md_import_device(dev, mddev->major_version, 4100 mddev->minor_version); 4101 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4102 struct md_rdev *rdev0 4103 = list_entry(mddev->disks.next, 4104 struct md_rdev, same_set); 4105 err = super_types[mddev->major_version] 4106 .load_super(rdev, rdev0, mddev->minor_version); 4107 if (err < 0) 4108 goto out; 4109 } 4110 } else if (mddev->external) 4111 rdev = md_import_device(dev, -2, -1); 4112 else 4113 rdev = md_import_device(dev, -1, -1); 4114 4115 if (IS_ERR(rdev)) { 4116 mddev_unlock(mddev); 4117 return PTR_ERR(rdev); 4118 } 4119 err = bind_rdev_to_array(rdev, mddev); 4120 out: 4121 if (err) 4122 export_rdev(rdev); 4123 mddev_unlock(mddev); 4124 return err ? err : len; 4125 } 4126 4127 static struct md_sysfs_entry md_new_device = 4128 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4129 4130 static ssize_t 4131 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4132 { 4133 char *end; 4134 unsigned long chunk, end_chunk; 4135 int err; 4136 4137 err = mddev_lock(mddev); 4138 if (err) 4139 return err; 4140 if (!mddev->bitmap) 4141 goto out; 4142 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4143 while (*buf) { 4144 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4145 if (buf == end) break; 4146 if (*end == '-') { /* range */ 4147 buf = end + 1; 4148 end_chunk = simple_strtoul(buf, &end, 0); 4149 if (buf == end) break; 4150 } 4151 if (*end && !isspace(*end)) break; 4152 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4153 buf = skip_spaces(end); 4154 } 4155 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4156 out: 4157 mddev_unlock(mddev); 4158 return len; 4159 } 4160 4161 static struct md_sysfs_entry md_bitmap = 4162 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4163 4164 static ssize_t 4165 size_show(struct mddev *mddev, char *page) 4166 { 4167 return sprintf(page, "%llu\n", 4168 (unsigned long long)mddev->dev_sectors / 2); 4169 } 4170 4171 static int update_size(struct mddev *mddev, sector_t num_sectors); 4172 4173 static ssize_t 4174 size_store(struct mddev *mddev, const char *buf, size_t len) 4175 { 4176 /* If array is inactive, we can reduce the component size, but 4177 * not increase it (except from 0). 4178 * If array is active, we can try an on-line resize 4179 */ 4180 sector_t sectors; 4181 int err = strict_blocks_to_sectors(buf, §ors); 4182 4183 if (err < 0) 4184 return err; 4185 err = mddev_lock(mddev); 4186 if (err) 4187 return err; 4188 if (mddev->pers) { 4189 err = update_size(mddev, sectors); 4190 md_update_sb(mddev, 1); 4191 } else { 4192 if (mddev->dev_sectors == 0 || 4193 mddev->dev_sectors > sectors) 4194 mddev->dev_sectors = sectors; 4195 else 4196 err = -ENOSPC; 4197 } 4198 mddev_unlock(mddev); 4199 return err ? err : len; 4200 } 4201 4202 static struct md_sysfs_entry md_size = 4203 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4204 4205 /* Metadata version. 4206 * This is one of 4207 * 'none' for arrays with no metadata (good luck...) 4208 * 'external' for arrays with externally managed metadata, 4209 * or N.M for internally known formats 4210 */ 4211 static ssize_t 4212 metadata_show(struct mddev *mddev, char *page) 4213 { 4214 if (mddev->persistent) 4215 return sprintf(page, "%d.%d\n", 4216 mddev->major_version, mddev->minor_version); 4217 else if (mddev->external) 4218 return sprintf(page, "external:%s\n", mddev->metadata_type); 4219 else 4220 return sprintf(page, "none\n"); 4221 } 4222 4223 static ssize_t 4224 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4225 { 4226 int major, minor; 4227 char *e; 4228 int err; 4229 /* Changing the details of 'external' metadata is 4230 * always permitted. Otherwise there must be 4231 * no devices attached to the array. 4232 */ 4233 4234 err = mddev_lock(mddev); 4235 if (err) 4236 return err; 4237 err = -EBUSY; 4238 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4239 ; 4240 else if (!list_empty(&mddev->disks)) 4241 goto out_unlock; 4242 4243 err = 0; 4244 if (cmd_match(buf, "none")) { 4245 mddev->persistent = 0; 4246 mddev->external = 0; 4247 mddev->major_version = 0; 4248 mddev->minor_version = 90; 4249 goto out_unlock; 4250 } 4251 if (strncmp(buf, "external:", 9) == 0) { 4252 size_t namelen = len-9; 4253 if (namelen >= sizeof(mddev->metadata_type)) 4254 namelen = sizeof(mddev->metadata_type)-1; 4255 strncpy(mddev->metadata_type, buf+9, namelen); 4256 mddev->metadata_type[namelen] = 0; 4257 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4258 mddev->metadata_type[--namelen] = 0; 4259 mddev->persistent = 0; 4260 mddev->external = 1; 4261 mddev->major_version = 0; 4262 mddev->minor_version = 90; 4263 goto out_unlock; 4264 } 4265 major = simple_strtoul(buf, &e, 10); 4266 err = -EINVAL; 4267 if (e==buf || *e != '.') 4268 goto out_unlock; 4269 buf = e+1; 4270 minor = simple_strtoul(buf, &e, 10); 4271 if (e==buf || (*e && *e != '\n') ) 4272 goto out_unlock; 4273 err = -ENOENT; 4274 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4275 goto out_unlock; 4276 mddev->major_version = major; 4277 mddev->minor_version = minor; 4278 mddev->persistent = 1; 4279 mddev->external = 0; 4280 err = 0; 4281 out_unlock: 4282 mddev_unlock(mddev); 4283 return err ?: len; 4284 } 4285 4286 static struct md_sysfs_entry md_metadata = 4287 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4288 4289 static ssize_t 4290 action_show(struct mddev *mddev, char *page) 4291 { 4292 char *type = "idle"; 4293 unsigned long recovery = mddev->recovery; 4294 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4295 type = "frozen"; 4296 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4297 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4298 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4299 type = "reshape"; 4300 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4301 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4302 type = "resync"; 4303 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4304 type = "check"; 4305 else 4306 type = "repair"; 4307 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4308 type = "recover"; 4309 else if (mddev->reshape_position != MaxSector) 4310 type = "reshape"; 4311 } 4312 return sprintf(page, "%s\n", type); 4313 } 4314 4315 static ssize_t 4316 action_store(struct mddev *mddev, const char *page, size_t len) 4317 { 4318 if (!mddev->pers || !mddev->pers->sync_request) 4319 return -EINVAL; 4320 4321 4322 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4323 if (cmd_match(page, "frozen")) 4324 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4325 else 4326 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4327 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4328 mddev_lock(mddev) == 0) { 4329 flush_workqueue(md_misc_wq); 4330 if (mddev->sync_thread) { 4331 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4332 md_reap_sync_thread(mddev); 4333 } 4334 mddev_unlock(mddev); 4335 } 4336 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4337 return -EBUSY; 4338 else if (cmd_match(page, "resync")) 4339 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4340 else if (cmd_match(page, "recover")) { 4341 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4342 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4343 } else if (cmd_match(page, "reshape")) { 4344 int err; 4345 if (mddev->pers->start_reshape == NULL) 4346 return -EINVAL; 4347 err = mddev_lock(mddev); 4348 if (!err) { 4349 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4350 err = -EBUSY; 4351 else { 4352 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4353 err = mddev->pers->start_reshape(mddev); 4354 } 4355 mddev_unlock(mddev); 4356 } 4357 if (err) 4358 return err; 4359 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4360 } else { 4361 if (cmd_match(page, "check")) 4362 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4363 else if (!cmd_match(page, "repair")) 4364 return -EINVAL; 4365 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4366 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4367 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4368 } 4369 if (mddev->ro == 2) { 4370 /* A write to sync_action is enough to justify 4371 * canceling read-auto mode 4372 */ 4373 mddev->ro = 0; 4374 md_wakeup_thread(mddev->sync_thread); 4375 } 4376 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4377 md_wakeup_thread(mddev->thread); 4378 sysfs_notify_dirent_safe(mddev->sysfs_action); 4379 return len; 4380 } 4381 4382 static struct md_sysfs_entry md_scan_mode = 4383 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4384 4385 static ssize_t 4386 last_sync_action_show(struct mddev *mddev, char *page) 4387 { 4388 return sprintf(page, "%s\n", mddev->last_sync_action); 4389 } 4390 4391 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4392 4393 static ssize_t 4394 mismatch_cnt_show(struct mddev *mddev, char *page) 4395 { 4396 return sprintf(page, "%llu\n", 4397 (unsigned long long) 4398 atomic64_read(&mddev->resync_mismatches)); 4399 } 4400 4401 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4402 4403 static ssize_t 4404 sync_min_show(struct mddev *mddev, char *page) 4405 { 4406 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4407 mddev->sync_speed_min ? "local": "system"); 4408 } 4409 4410 static ssize_t 4411 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4412 { 4413 unsigned int min; 4414 int rv; 4415 4416 if (strncmp(buf, "system", 6)==0) { 4417 min = 0; 4418 } else { 4419 rv = kstrtouint(buf, 10, &min); 4420 if (rv < 0) 4421 return rv; 4422 if (min == 0) 4423 return -EINVAL; 4424 } 4425 mddev->sync_speed_min = min; 4426 return len; 4427 } 4428 4429 static struct md_sysfs_entry md_sync_min = 4430 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4431 4432 static ssize_t 4433 sync_max_show(struct mddev *mddev, char *page) 4434 { 4435 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4436 mddev->sync_speed_max ? "local": "system"); 4437 } 4438 4439 static ssize_t 4440 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4441 { 4442 unsigned int max; 4443 int rv; 4444 4445 if (strncmp(buf, "system", 6)==0) { 4446 max = 0; 4447 } else { 4448 rv = kstrtouint(buf, 10, &max); 4449 if (rv < 0) 4450 return rv; 4451 if (max == 0) 4452 return -EINVAL; 4453 } 4454 mddev->sync_speed_max = max; 4455 return len; 4456 } 4457 4458 static struct md_sysfs_entry md_sync_max = 4459 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4460 4461 static ssize_t 4462 degraded_show(struct mddev *mddev, char *page) 4463 { 4464 return sprintf(page, "%d\n", mddev->degraded); 4465 } 4466 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4467 4468 static ssize_t 4469 sync_force_parallel_show(struct mddev *mddev, char *page) 4470 { 4471 return sprintf(page, "%d\n", mddev->parallel_resync); 4472 } 4473 4474 static ssize_t 4475 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4476 { 4477 long n; 4478 4479 if (kstrtol(buf, 10, &n)) 4480 return -EINVAL; 4481 4482 if (n != 0 && n != 1) 4483 return -EINVAL; 4484 4485 mddev->parallel_resync = n; 4486 4487 if (mddev->sync_thread) 4488 wake_up(&resync_wait); 4489 4490 return len; 4491 } 4492 4493 /* force parallel resync, even with shared block devices */ 4494 static struct md_sysfs_entry md_sync_force_parallel = 4495 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4496 sync_force_parallel_show, sync_force_parallel_store); 4497 4498 static ssize_t 4499 sync_speed_show(struct mddev *mddev, char *page) 4500 { 4501 unsigned long resync, dt, db; 4502 if (mddev->curr_resync == 0) 4503 return sprintf(page, "none\n"); 4504 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4505 dt = (jiffies - mddev->resync_mark) / HZ; 4506 if (!dt) dt++; 4507 db = resync - mddev->resync_mark_cnt; 4508 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4509 } 4510 4511 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4512 4513 static ssize_t 4514 sync_completed_show(struct mddev *mddev, char *page) 4515 { 4516 unsigned long long max_sectors, resync; 4517 4518 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4519 return sprintf(page, "none\n"); 4520 4521 if (mddev->curr_resync == 1 || 4522 mddev->curr_resync == 2) 4523 return sprintf(page, "delayed\n"); 4524 4525 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4526 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4527 max_sectors = mddev->resync_max_sectors; 4528 else 4529 max_sectors = mddev->dev_sectors; 4530 4531 resync = mddev->curr_resync_completed; 4532 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4533 } 4534 4535 static struct md_sysfs_entry md_sync_completed = 4536 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4537 4538 static ssize_t 4539 min_sync_show(struct mddev *mddev, char *page) 4540 { 4541 return sprintf(page, "%llu\n", 4542 (unsigned long long)mddev->resync_min); 4543 } 4544 static ssize_t 4545 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4546 { 4547 unsigned long long min; 4548 int err; 4549 4550 if (kstrtoull(buf, 10, &min)) 4551 return -EINVAL; 4552 4553 spin_lock(&mddev->lock); 4554 err = -EINVAL; 4555 if (min > mddev->resync_max) 4556 goto out_unlock; 4557 4558 err = -EBUSY; 4559 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4560 goto out_unlock; 4561 4562 /* Round down to multiple of 4K for safety */ 4563 mddev->resync_min = round_down(min, 8); 4564 err = 0; 4565 4566 out_unlock: 4567 spin_unlock(&mddev->lock); 4568 return err ?: len; 4569 } 4570 4571 static struct md_sysfs_entry md_min_sync = 4572 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4573 4574 static ssize_t 4575 max_sync_show(struct mddev *mddev, char *page) 4576 { 4577 if (mddev->resync_max == MaxSector) 4578 return sprintf(page, "max\n"); 4579 else 4580 return sprintf(page, "%llu\n", 4581 (unsigned long long)mddev->resync_max); 4582 } 4583 static ssize_t 4584 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4585 { 4586 int err; 4587 spin_lock(&mddev->lock); 4588 if (strncmp(buf, "max", 3) == 0) 4589 mddev->resync_max = MaxSector; 4590 else { 4591 unsigned long long max; 4592 int chunk; 4593 4594 err = -EINVAL; 4595 if (kstrtoull(buf, 10, &max)) 4596 goto out_unlock; 4597 if (max < mddev->resync_min) 4598 goto out_unlock; 4599 4600 err = -EBUSY; 4601 if (max < mddev->resync_max && 4602 mddev->ro == 0 && 4603 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4604 goto out_unlock; 4605 4606 /* Must be a multiple of chunk_size */ 4607 chunk = mddev->chunk_sectors; 4608 if (chunk) { 4609 sector_t temp = max; 4610 4611 err = -EINVAL; 4612 if (sector_div(temp, chunk)) 4613 goto out_unlock; 4614 } 4615 mddev->resync_max = max; 4616 } 4617 wake_up(&mddev->recovery_wait); 4618 err = 0; 4619 out_unlock: 4620 spin_unlock(&mddev->lock); 4621 return err ?: len; 4622 } 4623 4624 static struct md_sysfs_entry md_max_sync = 4625 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4626 4627 static ssize_t 4628 suspend_lo_show(struct mddev *mddev, char *page) 4629 { 4630 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4631 } 4632 4633 static ssize_t 4634 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4635 { 4636 unsigned long long old, new; 4637 int err; 4638 4639 err = kstrtoull(buf, 10, &new); 4640 if (err < 0) 4641 return err; 4642 if (new != (sector_t)new) 4643 return -EINVAL; 4644 4645 err = mddev_lock(mddev); 4646 if (err) 4647 return err; 4648 err = -EINVAL; 4649 if (mddev->pers == NULL || 4650 mddev->pers->quiesce == NULL) 4651 goto unlock; 4652 old = mddev->suspend_lo; 4653 mddev->suspend_lo = new; 4654 if (new >= old) 4655 /* Shrinking suspended region */ 4656 mddev->pers->quiesce(mddev, 2); 4657 else { 4658 /* Expanding suspended region - need to wait */ 4659 mddev->pers->quiesce(mddev, 1); 4660 mddev->pers->quiesce(mddev, 0); 4661 } 4662 err = 0; 4663 unlock: 4664 mddev_unlock(mddev); 4665 return err ?: len; 4666 } 4667 static struct md_sysfs_entry md_suspend_lo = 4668 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4669 4670 static ssize_t 4671 suspend_hi_show(struct mddev *mddev, char *page) 4672 { 4673 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4674 } 4675 4676 static ssize_t 4677 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4678 { 4679 unsigned long long old, new; 4680 int err; 4681 4682 err = kstrtoull(buf, 10, &new); 4683 if (err < 0) 4684 return err; 4685 if (new != (sector_t)new) 4686 return -EINVAL; 4687 4688 err = mddev_lock(mddev); 4689 if (err) 4690 return err; 4691 err = -EINVAL; 4692 if (mddev->pers == NULL || 4693 mddev->pers->quiesce == NULL) 4694 goto unlock; 4695 old = mddev->suspend_hi; 4696 mddev->suspend_hi = new; 4697 if (new <= old) 4698 /* Shrinking suspended region */ 4699 mddev->pers->quiesce(mddev, 2); 4700 else { 4701 /* Expanding suspended region - need to wait */ 4702 mddev->pers->quiesce(mddev, 1); 4703 mddev->pers->quiesce(mddev, 0); 4704 } 4705 err = 0; 4706 unlock: 4707 mddev_unlock(mddev); 4708 return err ?: len; 4709 } 4710 static struct md_sysfs_entry md_suspend_hi = 4711 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4712 4713 static ssize_t 4714 reshape_position_show(struct mddev *mddev, char *page) 4715 { 4716 if (mddev->reshape_position != MaxSector) 4717 return sprintf(page, "%llu\n", 4718 (unsigned long long)mddev->reshape_position); 4719 strcpy(page, "none\n"); 4720 return 5; 4721 } 4722 4723 static ssize_t 4724 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4725 { 4726 struct md_rdev *rdev; 4727 unsigned long long new; 4728 int err; 4729 4730 err = kstrtoull(buf, 10, &new); 4731 if (err < 0) 4732 return err; 4733 if (new != (sector_t)new) 4734 return -EINVAL; 4735 err = mddev_lock(mddev); 4736 if (err) 4737 return err; 4738 err = -EBUSY; 4739 if (mddev->pers) 4740 goto unlock; 4741 mddev->reshape_position = new; 4742 mddev->delta_disks = 0; 4743 mddev->reshape_backwards = 0; 4744 mddev->new_level = mddev->level; 4745 mddev->new_layout = mddev->layout; 4746 mddev->new_chunk_sectors = mddev->chunk_sectors; 4747 rdev_for_each(rdev, mddev) 4748 rdev->new_data_offset = rdev->data_offset; 4749 err = 0; 4750 unlock: 4751 mddev_unlock(mddev); 4752 return err ?: len; 4753 } 4754 4755 static struct md_sysfs_entry md_reshape_position = 4756 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4757 reshape_position_store); 4758 4759 static ssize_t 4760 reshape_direction_show(struct mddev *mddev, char *page) 4761 { 4762 return sprintf(page, "%s\n", 4763 mddev->reshape_backwards ? "backwards" : "forwards"); 4764 } 4765 4766 static ssize_t 4767 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4768 { 4769 int backwards = 0; 4770 int err; 4771 4772 if (cmd_match(buf, "forwards")) 4773 backwards = 0; 4774 else if (cmd_match(buf, "backwards")) 4775 backwards = 1; 4776 else 4777 return -EINVAL; 4778 if (mddev->reshape_backwards == backwards) 4779 return len; 4780 4781 err = mddev_lock(mddev); 4782 if (err) 4783 return err; 4784 /* check if we are allowed to change */ 4785 if (mddev->delta_disks) 4786 err = -EBUSY; 4787 else if (mddev->persistent && 4788 mddev->major_version == 0) 4789 err = -EINVAL; 4790 else 4791 mddev->reshape_backwards = backwards; 4792 mddev_unlock(mddev); 4793 return err ?: len; 4794 } 4795 4796 static struct md_sysfs_entry md_reshape_direction = 4797 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4798 reshape_direction_store); 4799 4800 static ssize_t 4801 array_size_show(struct mddev *mddev, char *page) 4802 { 4803 if (mddev->external_size) 4804 return sprintf(page, "%llu\n", 4805 (unsigned long long)mddev->array_sectors/2); 4806 else 4807 return sprintf(page, "default\n"); 4808 } 4809 4810 static ssize_t 4811 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4812 { 4813 sector_t sectors; 4814 int err; 4815 4816 err = mddev_lock(mddev); 4817 if (err) 4818 return err; 4819 4820 /* cluster raid doesn't support change array_sectors */ 4821 if (mddev_is_clustered(mddev)) 4822 return -EINVAL; 4823 4824 if (strncmp(buf, "default", 7) == 0) { 4825 if (mddev->pers) 4826 sectors = mddev->pers->size(mddev, 0, 0); 4827 else 4828 sectors = mddev->array_sectors; 4829 4830 mddev->external_size = 0; 4831 } else { 4832 if (strict_blocks_to_sectors(buf, §ors) < 0) 4833 err = -EINVAL; 4834 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4835 err = -E2BIG; 4836 else 4837 mddev->external_size = 1; 4838 } 4839 4840 if (!err) { 4841 mddev->array_sectors = sectors; 4842 if (mddev->pers) { 4843 set_capacity(mddev->gendisk, mddev->array_sectors); 4844 revalidate_disk(mddev->gendisk); 4845 } 4846 } 4847 mddev_unlock(mddev); 4848 return err ?: len; 4849 } 4850 4851 static struct md_sysfs_entry md_array_size = 4852 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4853 array_size_store); 4854 4855 static struct attribute *md_default_attrs[] = { 4856 &md_level.attr, 4857 &md_layout.attr, 4858 &md_raid_disks.attr, 4859 &md_chunk_size.attr, 4860 &md_size.attr, 4861 &md_resync_start.attr, 4862 &md_metadata.attr, 4863 &md_new_device.attr, 4864 &md_safe_delay.attr, 4865 &md_array_state.attr, 4866 &md_reshape_position.attr, 4867 &md_reshape_direction.attr, 4868 &md_array_size.attr, 4869 &max_corr_read_errors.attr, 4870 NULL, 4871 }; 4872 4873 static struct attribute *md_redundancy_attrs[] = { 4874 &md_scan_mode.attr, 4875 &md_last_scan_mode.attr, 4876 &md_mismatches.attr, 4877 &md_sync_min.attr, 4878 &md_sync_max.attr, 4879 &md_sync_speed.attr, 4880 &md_sync_force_parallel.attr, 4881 &md_sync_completed.attr, 4882 &md_min_sync.attr, 4883 &md_max_sync.attr, 4884 &md_suspend_lo.attr, 4885 &md_suspend_hi.attr, 4886 &md_bitmap.attr, 4887 &md_degraded.attr, 4888 NULL, 4889 }; 4890 static struct attribute_group md_redundancy_group = { 4891 .name = NULL, 4892 .attrs = md_redundancy_attrs, 4893 }; 4894 4895 static ssize_t 4896 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4897 { 4898 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4899 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4900 ssize_t rv; 4901 4902 if (!entry->show) 4903 return -EIO; 4904 spin_lock(&all_mddevs_lock); 4905 if (list_empty(&mddev->all_mddevs)) { 4906 spin_unlock(&all_mddevs_lock); 4907 return -EBUSY; 4908 } 4909 mddev_get(mddev); 4910 spin_unlock(&all_mddevs_lock); 4911 4912 rv = entry->show(mddev, page); 4913 mddev_put(mddev); 4914 return rv; 4915 } 4916 4917 static ssize_t 4918 md_attr_store(struct kobject *kobj, struct attribute *attr, 4919 const char *page, size_t length) 4920 { 4921 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4922 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4923 ssize_t rv; 4924 4925 if (!entry->store) 4926 return -EIO; 4927 if (!capable(CAP_SYS_ADMIN)) 4928 return -EACCES; 4929 spin_lock(&all_mddevs_lock); 4930 if (list_empty(&mddev->all_mddevs)) { 4931 spin_unlock(&all_mddevs_lock); 4932 return -EBUSY; 4933 } 4934 mddev_get(mddev); 4935 spin_unlock(&all_mddevs_lock); 4936 rv = entry->store(mddev, page, length); 4937 mddev_put(mddev); 4938 return rv; 4939 } 4940 4941 static void md_free(struct kobject *ko) 4942 { 4943 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4944 4945 if (mddev->sysfs_state) 4946 sysfs_put(mddev->sysfs_state); 4947 4948 if (mddev->queue) 4949 blk_cleanup_queue(mddev->queue); 4950 if (mddev->gendisk) { 4951 del_gendisk(mddev->gendisk); 4952 put_disk(mddev->gendisk); 4953 } 4954 4955 kfree(mddev); 4956 } 4957 4958 static const struct sysfs_ops md_sysfs_ops = { 4959 .show = md_attr_show, 4960 .store = md_attr_store, 4961 }; 4962 static struct kobj_type md_ktype = { 4963 .release = md_free, 4964 .sysfs_ops = &md_sysfs_ops, 4965 .default_attrs = md_default_attrs, 4966 }; 4967 4968 int mdp_major = 0; 4969 4970 static void mddev_delayed_delete(struct work_struct *ws) 4971 { 4972 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4973 4974 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4975 kobject_del(&mddev->kobj); 4976 kobject_put(&mddev->kobj); 4977 } 4978 4979 static int md_alloc(dev_t dev, char *name) 4980 { 4981 static DEFINE_MUTEX(disks_mutex); 4982 struct mddev *mddev = mddev_find(dev); 4983 struct gendisk *disk; 4984 int partitioned; 4985 int shift; 4986 int unit; 4987 int error; 4988 4989 if (!mddev) 4990 return -ENODEV; 4991 4992 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4993 shift = partitioned ? MdpMinorShift : 0; 4994 unit = MINOR(mddev->unit) >> shift; 4995 4996 /* wait for any previous instance of this device to be 4997 * completely removed (mddev_delayed_delete). 4998 */ 4999 flush_workqueue(md_misc_wq); 5000 5001 mutex_lock(&disks_mutex); 5002 error = -EEXIST; 5003 if (mddev->gendisk) 5004 goto abort; 5005 5006 if (name) { 5007 /* Need to ensure that 'name' is not a duplicate. 5008 */ 5009 struct mddev *mddev2; 5010 spin_lock(&all_mddevs_lock); 5011 5012 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5013 if (mddev2->gendisk && 5014 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5015 spin_unlock(&all_mddevs_lock); 5016 goto abort; 5017 } 5018 spin_unlock(&all_mddevs_lock); 5019 } 5020 5021 error = -ENOMEM; 5022 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5023 if (!mddev->queue) 5024 goto abort; 5025 mddev->queue->queuedata = mddev; 5026 5027 blk_queue_make_request(mddev->queue, md_make_request); 5028 blk_set_stacking_limits(&mddev->queue->limits); 5029 5030 disk = alloc_disk(1 << shift); 5031 if (!disk) { 5032 blk_cleanup_queue(mddev->queue); 5033 mddev->queue = NULL; 5034 goto abort; 5035 } 5036 disk->major = MAJOR(mddev->unit); 5037 disk->first_minor = unit << shift; 5038 if (name) 5039 strcpy(disk->disk_name, name); 5040 else if (partitioned) 5041 sprintf(disk->disk_name, "md_d%d", unit); 5042 else 5043 sprintf(disk->disk_name, "md%d", unit); 5044 disk->fops = &md_fops; 5045 disk->private_data = mddev; 5046 disk->queue = mddev->queue; 5047 blk_queue_write_cache(mddev->queue, true, true); 5048 /* Allow extended partitions. This makes the 5049 * 'mdp' device redundant, but we can't really 5050 * remove it now. 5051 */ 5052 disk->flags |= GENHD_FL_EXT_DEVT; 5053 mddev->gendisk = disk; 5054 /* As soon as we call add_disk(), another thread could get 5055 * through to md_open, so make sure it doesn't get too far 5056 */ 5057 mutex_lock(&mddev->open_mutex); 5058 add_disk(disk); 5059 5060 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 5061 &disk_to_dev(disk)->kobj, "%s", "md"); 5062 if (error) { 5063 /* This isn't possible, but as kobject_init_and_add is marked 5064 * __must_check, we must do something with the result 5065 */ 5066 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 5067 disk->disk_name); 5068 error = 0; 5069 } 5070 if (mddev->kobj.sd && 5071 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5072 printk(KERN_DEBUG "pointless warning\n"); 5073 mutex_unlock(&mddev->open_mutex); 5074 abort: 5075 mutex_unlock(&disks_mutex); 5076 if (!error && mddev->kobj.sd) { 5077 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5078 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5079 } 5080 mddev_put(mddev); 5081 return error; 5082 } 5083 5084 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5085 { 5086 md_alloc(dev, NULL); 5087 return NULL; 5088 } 5089 5090 static int add_named_array(const char *val, struct kernel_param *kp) 5091 { 5092 /* val must be "md_*" where * is not all digits. 5093 * We allocate an array with a large free minor number, and 5094 * set the name to val. val must not already be an active name. 5095 */ 5096 int len = strlen(val); 5097 char buf[DISK_NAME_LEN]; 5098 5099 while (len && val[len-1] == '\n') 5100 len--; 5101 if (len >= DISK_NAME_LEN) 5102 return -E2BIG; 5103 strlcpy(buf, val, len+1); 5104 if (strncmp(buf, "md_", 3) != 0) 5105 return -EINVAL; 5106 return md_alloc(0, buf); 5107 } 5108 5109 static void md_safemode_timeout(unsigned long data) 5110 { 5111 struct mddev *mddev = (struct mddev *) data; 5112 5113 if (!atomic_read(&mddev->writes_pending)) { 5114 mddev->safemode = 1; 5115 if (mddev->external) 5116 sysfs_notify_dirent_safe(mddev->sysfs_state); 5117 } 5118 md_wakeup_thread(mddev->thread); 5119 } 5120 5121 static int start_dirty_degraded; 5122 5123 int md_run(struct mddev *mddev) 5124 { 5125 int err; 5126 struct md_rdev *rdev; 5127 struct md_personality *pers; 5128 5129 if (list_empty(&mddev->disks)) 5130 /* cannot run an array with no devices.. */ 5131 return -EINVAL; 5132 5133 if (mddev->pers) 5134 return -EBUSY; 5135 /* Cannot run until previous stop completes properly */ 5136 if (mddev->sysfs_active) 5137 return -EBUSY; 5138 5139 /* 5140 * Analyze all RAID superblock(s) 5141 */ 5142 if (!mddev->raid_disks) { 5143 if (!mddev->persistent) 5144 return -EINVAL; 5145 analyze_sbs(mddev); 5146 } 5147 5148 if (mddev->level != LEVEL_NONE) 5149 request_module("md-level-%d", mddev->level); 5150 else if (mddev->clevel[0]) 5151 request_module("md-%s", mddev->clevel); 5152 5153 /* 5154 * Drop all container device buffers, from now on 5155 * the only valid external interface is through the md 5156 * device. 5157 */ 5158 rdev_for_each(rdev, mddev) { 5159 if (test_bit(Faulty, &rdev->flags)) 5160 continue; 5161 sync_blockdev(rdev->bdev); 5162 invalidate_bdev(rdev->bdev); 5163 5164 /* perform some consistency tests on the device. 5165 * We don't want the data to overlap the metadata, 5166 * Internal Bitmap issues have been handled elsewhere. 5167 */ 5168 if (rdev->meta_bdev) { 5169 /* Nothing to check */; 5170 } else if (rdev->data_offset < rdev->sb_start) { 5171 if (mddev->dev_sectors && 5172 rdev->data_offset + mddev->dev_sectors 5173 > rdev->sb_start) { 5174 printk("md: %s: data overlaps metadata\n", 5175 mdname(mddev)); 5176 return -EINVAL; 5177 } 5178 } else { 5179 if (rdev->sb_start + rdev->sb_size/512 5180 > rdev->data_offset) { 5181 printk("md: %s: metadata overlaps data\n", 5182 mdname(mddev)); 5183 return -EINVAL; 5184 } 5185 } 5186 sysfs_notify_dirent_safe(rdev->sysfs_state); 5187 } 5188 5189 if (mddev->bio_set == NULL) 5190 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 5191 5192 spin_lock(&pers_lock); 5193 pers = find_pers(mddev->level, mddev->clevel); 5194 if (!pers || !try_module_get(pers->owner)) { 5195 spin_unlock(&pers_lock); 5196 if (mddev->level != LEVEL_NONE) 5197 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5198 mddev->level); 5199 else 5200 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5201 mddev->clevel); 5202 return -EINVAL; 5203 } 5204 spin_unlock(&pers_lock); 5205 if (mddev->level != pers->level) { 5206 mddev->level = pers->level; 5207 mddev->new_level = pers->level; 5208 } 5209 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5210 5211 if (mddev->reshape_position != MaxSector && 5212 pers->start_reshape == NULL) { 5213 /* This personality cannot handle reshaping... */ 5214 module_put(pers->owner); 5215 return -EINVAL; 5216 } 5217 5218 if (pers->sync_request) { 5219 /* Warn if this is a potentially silly 5220 * configuration. 5221 */ 5222 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5223 struct md_rdev *rdev2; 5224 int warned = 0; 5225 5226 rdev_for_each(rdev, mddev) 5227 rdev_for_each(rdev2, mddev) { 5228 if (rdev < rdev2 && 5229 rdev->bdev->bd_contains == 5230 rdev2->bdev->bd_contains) { 5231 printk(KERN_WARNING 5232 "%s: WARNING: %s appears to be" 5233 " on the same physical disk as" 5234 " %s.\n", 5235 mdname(mddev), 5236 bdevname(rdev->bdev,b), 5237 bdevname(rdev2->bdev,b2)); 5238 warned = 1; 5239 } 5240 } 5241 5242 if (warned) 5243 printk(KERN_WARNING 5244 "True protection against single-disk" 5245 " failure might be compromised.\n"); 5246 } 5247 5248 mddev->recovery = 0; 5249 /* may be over-ridden by personality */ 5250 mddev->resync_max_sectors = mddev->dev_sectors; 5251 5252 mddev->ok_start_degraded = start_dirty_degraded; 5253 5254 if (start_readonly && mddev->ro == 0) 5255 mddev->ro = 2; /* read-only, but switch on first write */ 5256 5257 err = pers->run(mddev); 5258 if (err) 5259 printk(KERN_ERR "md: pers->run() failed ...\n"); 5260 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5261 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5262 " but 'external_size' not in effect?\n", __func__); 5263 printk(KERN_ERR 5264 "md: invalid array_size %llu > default size %llu\n", 5265 (unsigned long long)mddev->array_sectors / 2, 5266 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5267 err = -EINVAL; 5268 } 5269 if (err == 0 && pers->sync_request && 5270 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5271 struct bitmap *bitmap; 5272 5273 bitmap = bitmap_create(mddev, -1); 5274 if (IS_ERR(bitmap)) { 5275 err = PTR_ERR(bitmap); 5276 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5277 mdname(mddev), err); 5278 } else 5279 mddev->bitmap = bitmap; 5280 5281 } 5282 if (err) { 5283 mddev_detach(mddev); 5284 if (mddev->private) 5285 pers->free(mddev, mddev->private); 5286 mddev->private = NULL; 5287 module_put(pers->owner); 5288 bitmap_destroy(mddev); 5289 return err; 5290 } 5291 if (mddev->queue) { 5292 mddev->queue->backing_dev_info.congested_data = mddev; 5293 mddev->queue->backing_dev_info.congested_fn = md_congested; 5294 } 5295 if (pers->sync_request) { 5296 if (mddev->kobj.sd && 5297 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5298 printk(KERN_WARNING 5299 "md: cannot register extra attributes for %s\n", 5300 mdname(mddev)); 5301 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5302 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5303 mddev->ro = 0; 5304 5305 atomic_set(&mddev->writes_pending,0); 5306 atomic_set(&mddev->max_corr_read_errors, 5307 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5308 mddev->safemode = 0; 5309 if (mddev_is_clustered(mddev)) 5310 mddev->safemode_delay = 0; 5311 else 5312 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5313 mddev->in_sync = 1; 5314 smp_wmb(); 5315 spin_lock(&mddev->lock); 5316 mddev->pers = pers; 5317 spin_unlock(&mddev->lock); 5318 rdev_for_each(rdev, mddev) 5319 if (rdev->raid_disk >= 0) 5320 if (sysfs_link_rdev(mddev, rdev)) 5321 /* failure here is OK */; 5322 5323 if (mddev->degraded && !mddev->ro) 5324 /* This ensures that recovering status is reported immediately 5325 * via sysfs - until a lack of spares is confirmed. 5326 */ 5327 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5328 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5329 5330 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5331 md_update_sb(mddev, 0); 5332 5333 md_new_event(mddev); 5334 sysfs_notify_dirent_safe(mddev->sysfs_state); 5335 sysfs_notify_dirent_safe(mddev->sysfs_action); 5336 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5337 return 0; 5338 } 5339 EXPORT_SYMBOL_GPL(md_run); 5340 5341 static int do_md_run(struct mddev *mddev) 5342 { 5343 int err; 5344 5345 err = md_run(mddev); 5346 if (err) 5347 goto out; 5348 err = bitmap_load(mddev); 5349 if (err) { 5350 bitmap_destroy(mddev); 5351 goto out; 5352 } 5353 5354 if (mddev_is_clustered(mddev)) 5355 md_allow_write(mddev); 5356 5357 md_wakeup_thread(mddev->thread); 5358 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5359 5360 set_capacity(mddev->gendisk, mddev->array_sectors); 5361 revalidate_disk(mddev->gendisk); 5362 mddev->changed = 1; 5363 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5364 out: 5365 return err; 5366 } 5367 5368 static int restart_array(struct mddev *mddev) 5369 { 5370 struct gendisk *disk = mddev->gendisk; 5371 5372 /* Complain if it has no devices */ 5373 if (list_empty(&mddev->disks)) 5374 return -ENXIO; 5375 if (!mddev->pers) 5376 return -EINVAL; 5377 if (!mddev->ro) 5378 return -EBUSY; 5379 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5380 struct md_rdev *rdev; 5381 bool has_journal = false; 5382 5383 rcu_read_lock(); 5384 rdev_for_each_rcu(rdev, mddev) { 5385 if (test_bit(Journal, &rdev->flags) && 5386 !test_bit(Faulty, &rdev->flags)) { 5387 has_journal = true; 5388 break; 5389 } 5390 } 5391 rcu_read_unlock(); 5392 5393 /* Don't restart rw with journal missing/faulty */ 5394 if (!has_journal) 5395 return -EINVAL; 5396 } 5397 5398 mddev->safemode = 0; 5399 mddev->ro = 0; 5400 set_disk_ro(disk, 0); 5401 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5402 mdname(mddev)); 5403 /* Kick recovery or resync if necessary */ 5404 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5405 md_wakeup_thread(mddev->thread); 5406 md_wakeup_thread(mddev->sync_thread); 5407 sysfs_notify_dirent_safe(mddev->sysfs_state); 5408 return 0; 5409 } 5410 5411 static void md_clean(struct mddev *mddev) 5412 { 5413 mddev->array_sectors = 0; 5414 mddev->external_size = 0; 5415 mddev->dev_sectors = 0; 5416 mddev->raid_disks = 0; 5417 mddev->recovery_cp = 0; 5418 mddev->resync_min = 0; 5419 mddev->resync_max = MaxSector; 5420 mddev->reshape_position = MaxSector; 5421 mddev->external = 0; 5422 mddev->persistent = 0; 5423 mddev->level = LEVEL_NONE; 5424 mddev->clevel[0] = 0; 5425 mddev->flags = 0; 5426 mddev->ro = 0; 5427 mddev->metadata_type[0] = 0; 5428 mddev->chunk_sectors = 0; 5429 mddev->ctime = mddev->utime = 0; 5430 mddev->layout = 0; 5431 mddev->max_disks = 0; 5432 mddev->events = 0; 5433 mddev->can_decrease_events = 0; 5434 mddev->delta_disks = 0; 5435 mddev->reshape_backwards = 0; 5436 mddev->new_level = LEVEL_NONE; 5437 mddev->new_layout = 0; 5438 mddev->new_chunk_sectors = 0; 5439 mddev->curr_resync = 0; 5440 atomic64_set(&mddev->resync_mismatches, 0); 5441 mddev->suspend_lo = mddev->suspend_hi = 0; 5442 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5443 mddev->recovery = 0; 5444 mddev->in_sync = 0; 5445 mddev->changed = 0; 5446 mddev->degraded = 0; 5447 mddev->safemode = 0; 5448 mddev->private = NULL; 5449 mddev->bitmap_info.offset = 0; 5450 mddev->bitmap_info.default_offset = 0; 5451 mddev->bitmap_info.default_space = 0; 5452 mddev->bitmap_info.chunksize = 0; 5453 mddev->bitmap_info.daemon_sleep = 0; 5454 mddev->bitmap_info.max_write_behind = 0; 5455 } 5456 5457 static void __md_stop_writes(struct mddev *mddev) 5458 { 5459 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5460 flush_workqueue(md_misc_wq); 5461 if (mddev->sync_thread) { 5462 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5463 md_reap_sync_thread(mddev); 5464 } 5465 5466 del_timer_sync(&mddev->safemode_timer); 5467 5468 bitmap_flush(mddev); 5469 md_super_wait(mddev); 5470 5471 if (mddev->ro == 0 && 5472 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5473 (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5474 /* mark array as shutdown cleanly */ 5475 if (!mddev_is_clustered(mddev)) 5476 mddev->in_sync = 1; 5477 md_update_sb(mddev, 1); 5478 } 5479 } 5480 5481 void md_stop_writes(struct mddev *mddev) 5482 { 5483 mddev_lock_nointr(mddev); 5484 __md_stop_writes(mddev); 5485 mddev_unlock(mddev); 5486 } 5487 EXPORT_SYMBOL_GPL(md_stop_writes); 5488 5489 static void mddev_detach(struct mddev *mddev) 5490 { 5491 struct bitmap *bitmap = mddev->bitmap; 5492 /* wait for behind writes to complete */ 5493 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 5494 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n", 5495 mdname(mddev)); 5496 /* need to kick something here to make sure I/O goes? */ 5497 wait_event(bitmap->behind_wait, 5498 atomic_read(&bitmap->behind_writes) == 0); 5499 } 5500 if (mddev->pers && mddev->pers->quiesce) { 5501 mddev->pers->quiesce(mddev, 1); 5502 mddev->pers->quiesce(mddev, 0); 5503 } 5504 md_unregister_thread(&mddev->thread); 5505 if (mddev->queue) 5506 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5507 } 5508 5509 static void __md_stop(struct mddev *mddev) 5510 { 5511 struct md_personality *pers = mddev->pers; 5512 mddev_detach(mddev); 5513 /* Ensure ->event_work is done */ 5514 flush_workqueue(md_misc_wq); 5515 spin_lock(&mddev->lock); 5516 mddev->pers = NULL; 5517 spin_unlock(&mddev->lock); 5518 pers->free(mddev, mddev->private); 5519 mddev->private = NULL; 5520 if (pers->sync_request && mddev->to_remove == NULL) 5521 mddev->to_remove = &md_redundancy_group; 5522 module_put(pers->owner); 5523 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5524 } 5525 5526 void md_stop(struct mddev *mddev) 5527 { 5528 /* stop the array and free an attached data structures. 5529 * This is called from dm-raid 5530 */ 5531 __md_stop(mddev); 5532 bitmap_destroy(mddev); 5533 if (mddev->bio_set) 5534 bioset_free(mddev->bio_set); 5535 } 5536 5537 EXPORT_SYMBOL_GPL(md_stop); 5538 5539 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5540 { 5541 int err = 0; 5542 int did_freeze = 0; 5543 5544 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5545 did_freeze = 1; 5546 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5547 md_wakeup_thread(mddev->thread); 5548 } 5549 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5550 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5551 if (mddev->sync_thread) 5552 /* Thread might be blocked waiting for metadata update 5553 * which will now never happen */ 5554 wake_up_process(mddev->sync_thread->tsk); 5555 5556 if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags)) 5557 return -EBUSY; 5558 mddev_unlock(mddev); 5559 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5560 &mddev->recovery)); 5561 wait_event(mddev->sb_wait, 5562 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 5563 mddev_lock_nointr(mddev); 5564 5565 mutex_lock(&mddev->open_mutex); 5566 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5567 mddev->sync_thread || 5568 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 5569 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5570 printk("md: %s still in use.\n",mdname(mddev)); 5571 if (did_freeze) { 5572 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5573 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5574 md_wakeup_thread(mddev->thread); 5575 } 5576 err = -EBUSY; 5577 goto out; 5578 } 5579 if (mddev->pers) { 5580 __md_stop_writes(mddev); 5581 5582 err = -ENXIO; 5583 if (mddev->ro==1) 5584 goto out; 5585 mddev->ro = 1; 5586 set_disk_ro(mddev->gendisk, 1); 5587 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5588 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5589 md_wakeup_thread(mddev->thread); 5590 sysfs_notify_dirent_safe(mddev->sysfs_state); 5591 err = 0; 5592 } 5593 out: 5594 mutex_unlock(&mddev->open_mutex); 5595 return err; 5596 } 5597 5598 /* mode: 5599 * 0 - completely stop and dis-assemble array 5600 * 2 - stop but do not disassemble array 5601 */ 5602 static int do_md_stop(struct mddev *mddev, int mode, 5603 struct block_device *bdev) 5604 { 5605 struct gendisk *disk = mddev->gendisk; 5606 struct md_rdev *rdev; 5607 int did_freeze = 0; 5608 5609 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5610 did_freeze = 1; 5611 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5612 md_wakeup_thread(mddev->thread); 5613 } 5614 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5615 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5616 if (mddev->sync_thread) 5617 /* Thread might be blocked waiting for metadata update 5618 * which will now never happen */ 5619 wake_up_process(mddev->sync_thread->tsk); 5620 5621 mddev_unlock(mddev); 5622 wait_event(resync_wait, (mddev->sync_thread == NULL && 5623 !test_bit(MD_RECOVERY_RUNNING, 5624 &mddev->recovery))); 5625 mddev_lock_nointr(mddev); 5626 5627 mutex_lock(&mddev->open_mutex); 5628 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5629 mddev->sysfs_active || 5630 mddev->sync_thread || 5631 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 5632 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5633 printk("md: %s still in use.\n",mdname(mddev)); 5634 mutex_unlock(&mddev->open_mutex); 5635 if (did_freeze) { 5636 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5637 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5638 md_wakeup_thread(mddev->thread); 5639 } 5640 return -EBUSY; 5641 } 5642 if (mddev->pers) { 5643 if (mddev->ro) 5644 set_disk_ro(disk, 0); 5645 5646 __md_stop_writes(mddev); 5647 __md_stop(mddev); 5648 mddev->queue->backing_dev_info.congested_fn = NULL; 5649 5650 /* tell userspace to handle 'inactive' */ 5651 sysfs_notify_dirent_safe(mddev->sysfs_state); 5652 5653 rdev_for_each(rdev, mddev) 5654 if (rdev->raid_disk >= 0) 5655 sysfs_unlink_rdev(mddev, rdev); 5656 5657 set_capacity(disk, 0); 5658 mutex_unlock(&mddev->open_mutex); 5659 mddev->changed = 1; 5660 revalidate_disk(disk); 5661 5662 if (mddev->ro) 5663 mddev->ro = 0; 5664 } else 5665 mutex_unlock(&mddev->open_mutex); 5666 /* 5667 * Free resources if final stop 5668 */ 5669 if (mode == 0) { 5670 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5671 5672 bitmap_destroy(mddev); 5673 if (mddev->bitmap_info.file) { 5674 struct file *f = mddev->bitmap_info.file; 5675 spin_lock(&mddev->lock); 5676 mddev->bitmap_info.file = NULL; 5677 spin_unlock(&mddev->lock); 5678 fput(f); 5679 } 5680 mddev->bitmap_info.offset = 0; 5681 5682 export_array(mddev); 5683 5684 md_clean(mddev); 5685 if (mddev->hold_active == UNTIL_STOP) 5686 mddev->hold_active = 0; 5687 } 5688 md_new_event(mddev); 5689 sysfs_notify_dirent_safe(mddev->sysfs_state); 5690 return 0; 5691 } 5692 5693 #ifndef MODULE 5694 static void autorun_array(struct mddev *mddev) 5695 { 5696 struct md_rdev *rdev; 5697 int err; 5698 5699 if (list_empty(&mddev->disks)) 5700 return; 5701 5702 printk(KERN_INFO "md: running: "); 5703 5704 rdev_for_each(rdev, mddev) { 5705 char b[BDEVNAME_SIZE]; 5706 printk("<%s>", bdevname(rdev->bdev,b)); 5707 } 5708 printk("\n"); 5709 5710 err = do_md_run(mddev); 5711 if (err) { 5712 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5713 do_md_stop(mddev, 0, NULL); 5714 } 5715 } 5716 5717 /* 5718 * lets try to run arrays based on all disks that have arrived 5719 * until now. (those are in pending_raid_disks) 5720 * 5721 * the method: pick the first pending disk, collect all disks with 5722 * the same UUID, remove all from the pending list and put them into 5723 * the 'same_array' list. Then order this list based on superblock 5724 * update time (freshest comes first), kick out 'old' disks and 5725 * compare superblocks. If everything's fine then run it. 5726 * 5727 * If "unit" is allocated, then bump its reference count 5728 */ 5729 static void autorun_devices(int part) 5730 { 5731 struct md_rdev *rdev0, *rdev, *tmp; 5732 struct mddev *mddev; 5733 char b[BDEVNAME_SIZE]; 5734 5735 printk(KERN_INFO "md: autorun ...\n"); 5736 while (!list_empty(&pending_raid_disks)) { 5737 int unit; 5738 dev_t dev; 5739 LIST_HEAD(candidates); 5740 rdev0 = list_entry(pending_raid_disks.next, 5741 struct md_rdev, same_set); 5742 5743 printk(KERN_INFO "md: considering %s ...\n", 5744 bdevname(rdev0->bdev,b)); 5745 INIT_LIST_HEAD(&candidates); 5746 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5747 if (super_90_load(rdev, rdev0, 0) >= 0) { 5748 printk(KERN_INFO "md: adding %s ...\n", 5749 bdevname(rdev->bdev,b)); 5750 list_move(&rdev->same_set, &candidates); 5751 } 5752 /* 5753 * now we have a set of devices, with all of them having 5754 * mostly sane superblocks. It's time to allocate the 5755 * mddev. 5756 */ 5757 if (part) { 5758 dev = MKDEV(mdp_major, 5759 rdev0->preferred_minor << MdpMinorShift); 5760 unit = MINOR(dev) >> MdpMinorShift; 5761 } else { 5762 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5763 unit = MINOR(dev); 5764 } 5765 if (rdev0->preferred_minor != unit) { 5766 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5767 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5768 break; 5769 } 5770 5771 md_probe(dev, NULL, NULL); 5772 mddev = mddev_find(dev); 5773 if (!mddev || !mddev->gendisk) { 5774 if (mddev) 5775 mddev_put(mddev); 5776 printk(KERN_ERR 5777 "md: cannot allocate memory for md drive.\n"); 5778 break; 5779 } 5780 if (mddev_lock(mddev)) 5781 printk(KERN_WARNING "md: %s locked, cannot run\n", 5782 mdname(mddev)); 5783 else if (mddev->raid_disks || mddev->major_version 5784 || !list_empty(&mddev->disks)) { 5785 printk(KERN_WARNING 5786 "md: %s already running, cannot run %s\n", 5787 mdname(mddev), bdevname(rdev0->bdev,b)); 5788 mddev_unlock(mddev); 5789 } else { 5790 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5791 mddev->persistent = 1; 5792 rdev_for_each_list(rdev, tmp, &candidates) { 5793 list_del_init(&rdev->same_set); 5794 if (bind_rdev_to_array(rdev, mddev)) 5795 export_rdev(rdev); 5796 } 5797 autorun_array(mddev); 5798 mddev_unlock(mddev); 5799 } 5800 /* on success, candidates will be empty, on error 5801 * it won't... 5802 */ 5803 rdev_for_each_list(rdev, tmp, &candidates) { 5804 list_del_init(&rdev->same_set); 5805 export_rdev(rdev); 5806 } 5807 mddev_put(mddev); 5808 } 5809 printk(KERN_INFO "md: ... autorun DONE.\n"); 5810 } 5811 #endif /* !MODULE */ 5812 5813 static int get_version(void __user *arg) 5814 { 5815 mdu_version_t ver; 5816 5817 ver.major = MD_MAJOR_VERSION; 5818 ver.minor = MD_MINOR_VERSION; 5819 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5820 5821 if (copy_to_user(arg, &ver, sizeof(ver))) 5822 return -EFAULT; 5823 5824 return 0; 5825 } 5826 5827 static int get_array_info(struct mddev *mddev, void __user *arg) 5828 { 5829 mdu_array_info_t info; 5830 int nr,working,insync,failed,spare; 5831 struct md_rdev *rdev; 5832 5833 nr = working = insync = failed = spare = 0; 5834 rcu_read_lock(); 5835 rdev_for_each_rcu(rdev, mddev) { 5836 nr++; 5837 if (test_bit(Faulty, &rdev->flags)) 5838 failed++; 5839 else { 5840 working++; 5841 if (test_bit(In_sync, &rdev->flags)) 5842 insync++; 5843 else 5844 spare++; 5845 } 5846 } 5847 rcu_read_unlock(); 5848 5849 info.major_version = mddev->major_version; 5850 info.minor_version = mddev->minor_version; 5851 info.patch_version = MD_PATCHLEVEL_VERSION; 5852 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 5853 info.level = mddev->level; 5854 info.size = mddev->dev_sectors / 2; 5855 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5856 info.size = -1; 5857 info.nr_disks = nr; 5858 info.raid_disks = mddev->raid_disks; 5859 info.md_minor = mddev->md_minor; 5860 info.not_persistent= !mddev->persistent; 5861 5862 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 5863 info.state = 0; 5864 if (mddev->in_sync) 5865 info.state = (1<<MD_SB_CLEAN); 5866 if (mddev->bitmap && mddev->bitmap_info.offset) 5867 info.state |= (1<<MD_SB_BITMAP_PRESENT); 5868 if (mddev_is_clustered(mddev)) 5869 info.state |= (1<<MD_SB_CLUSTERED); 5870 info.active_disks = insync; 5871 info.working_disks = working; 5872 info.failed_disks = failed; 5873 info.spare_disks = spare; 5874 5875 info.layout = mddev->layout; 5876 info.chunk_size = mddev->chunk_sectors << 9; 5877 5878 if (copy_to_user(arg, &info, sizeof(info))) 5879 return -EFAULT; 5880 5881 return 0; 5882 } 5883 5884 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 5885 { 5886 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5887 char *ptr; 5888 int err; 5889 5890 file = kzalloc(sizeof(*file), GFP_NOIO); 5891 if (!file) 5892 return -ENOMEM; 5893 5894 err = 0; 5895 spin_lock(&mddev->lock); 5896 /* bitmap enabled */ 5897 if (mddev->bitmap_info.file) { 5898 ptr = file_path(mddev->bitmap_info.file, file->pathname, 5899 sizeof(file->pathname)); 5900 if (IS_ERR(ptr)) 5901 err = PTR_ERR(ptr); 5902 else 5903 memmove(file->pathname, ptr, 5904 sizeof(file->pathname)-(ptr-file->pathname)); 5905 } 5906 spin_unlock(&mddev->lock); 5907 5908 if (err == 0 && 5909 copy_to_user(arg, file, sizeof(*file))) 5910 err = -EFAULT; 5911 5912 kfree(file); 5913 return err; 5914 } 5915 5916 static int get_disk_info(struct mddev *mddev, void __user * arg) 5917 { 5918 mdu_disk_info_t info; 5919 struct md_rdev *rdev; 5920 5921 if (copy_from_user(&info, arg, sizeof(info))) 5922 return -EFAULT; 5923 5924 rcu_read_lock(); 5925 rdev = md_find_rdev_nr_rcu(mddev, info.number); 5926 if (rdev) { 5927 info.major = MAJOR(rdev->bdev->bd_dev); 5928 info.minor = MINOR(rdev->bdev->bd_dev); 5929 info.raid_disk = rdev->raid_disk; 5930 info.state = 0; 5931 if (test_bit(Faulty, &rdev->flags)) 5932 info.state |= (1<<MD_DISK_FAULTY); 5933 else if (test_bit(In_sync, &rdev->flags)) { 5934 info.state |= (1<<MD_DISK_ACTIVE); 5935 info.state |= (1<<MD_DISK_SYNC); 5936 } 5937 if (test_bit(Journal, &rdev->flags)) 5938 info.state |= (1<<MD_DISK_JOURNAL); 5939 if (test_bit(WriteMostly, &rdev->flags)) 5940 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5941 } else { 5942 info.major = info.minor = 0; 5943 info.raid_disk = -1; 5944 info.state = (1<<MD_DISK_REMOVED); 5945 } 5946 rcu_read_unlock(); 5947 5948 if (copy_to_user(arg, &info, sizeof(info))) 5949 return -EFAULT; 5950 5951 return 0; 5952 } 5953 5954 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 5955 { 5956 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5957 struct md_rdev *rdev; 5958 dev_t dev = MKDEV(info->major,info->minor); 5959 5960 if (mddev_is_clustered(mddev) && 5961 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 5962 pr_err("%s: Cannot add to clustered mddev.\n", 5963 mdname(mddev)); 5964 return -EINVAL; 5965 } 5966 5967 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5968 return -EOVERFLOW; 5969 5970 if (!mddev->raid_disks) { 5971 int err; 5972 /* expecting a device which has a superblock */ 5973 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5974 if (IS_ERR(rdev)) { 5975 printk(KERN_WARNING 5976 "md: md_import_device returned %ld\n", 5977 PTR_ERR(rdev)); 5978 return PTR_ERR(rdev); 5979 } 5980 if (!list_empty(&mddev->disks)) { 5981 struct md_rdev *rdev0 5982 = list_entry(mddev->disks.next, 5983 struct md_rdev, same_set); 5984 err = super_types[mddev->major_version] 5985 .load_super(rdev, rdev0, mddev->minor_version); 5986 if (err < 0) { 5987 printk(KERN_WARNING 5988 "md: %s has different UUID to %s\n", 5989 bdevname(rdev->bdev,b), 5990 bdevname(rdev0->bdev,b2)); 5991 export_rdev(rdev); 5992 return -EINVAL; 5993 } 5994 } 5995 err = bind_rdev_to_array(rdev, mddev); 5996 if (err) 5997 export_rdev(rdev); 5998 return err; 5999 } 6000 6001 /* 6002 * add_new_disk can be used once the array is assembled 6003 * to add "hot spares". They must already have a superblock 6004 * written 6005 */ 6006 if (mddev->pers) { 6007 int err; 6008 if (!mddev->pers->hot_add_disk) { 6009 printk(KERN_WARNING 6010 "%s: personality does not support diskops!\n", 6011 mdname(mddev)); 6012 return -EINVAL; 6013 } 6014 if (mddev->persistent) 6015 rdev = md_import_device(dev, mddev->major_version, 6016 mddev->minor_version); 6017 else 6018 rdev = md_import_device(dev, -1, -1); 6019 if (IS_ERR(rdev)) { 6020 printk(KERN_WARNING 6021 "md: md_import_device returned %ld\n", 6022 PTR_ERR(rdev)); 6023 return PTR_ERR(rdev); 6024 } 6025 /* set saved_raid_disk if appropriate */ 6026 if (!mddev->persistent) { 6027 if (info->state & (1<<MD_DISK_SYNC) && 6028 info->raid_disk < mddev->raid_disks) { 6029 rdev->raid_disk = info->raid_disk; 6030 set_bit(In_sync, &rdev->flags); 6031 clear_bit(Bitmap_sync, &rdev->flags); 6032 } else 6033 rdev->raid_disk = -1; 6034 rdev->saved_raid_disk = rdev->raid_disk; 6035 } else 6036 super_types[mddev->major_version]. 6037 validate_super(mddev, rdev); 6038 if ((info->state & (1<<MD_DISK_SYNC)) && 6039 rdev->raid_disk != info->raid_disk) { 6040 /* This was a hot-add request, but events doesn't 6041 * match, so reject it. 6042 */ 6043 export_rdev(rdev); 6044 return -EINVAL; 6045 } 6046 6047 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6048 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6049 set_bit(WriteMostly, &rdev->flags); 6050 else 6051 clear_bit(WriteMostly, &rdev->flags); 6052 6053 if (info->state & (1<<MD_DISK_JOURNAL)) { 6054 struct md_rdev *rdev2; 6055 bool has_journal = false; 6056 6057 /* make sure no existing journal disk */ 6058 rdev_for_each(rdev2, mddev) { 6059 if (test_bit(Journal, &rdev2->flags)) { 6060 has_journal = true; 6061 break; 6062 } 6063 } 6064 if (has_journal) { 6065 export_rdev(rdev); 6066 return -EBUSY; 6067 } 6068 set_bit(Journal, &rdev->flags); 6069 } 6070 /* 6071 * check whether the device shows up in other nodes 6072 */ 6073 if (mddev_is_clustered(mddev)) { 6074 if (info->state & (1 << MD_DISK_CANDIDATE)) 6075 set_bit(Candidate, &rdev->flags); 6076 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6077 /* --add initiated by this node */ 6078 err = md_cluster_ops->add_new_disk(mddev, rdev); 6079 if (err) { 6080 export_rdev(rdev); 6081 return err; 6082 } 6083 } 6084 } 6085 6086 rdev->raid_disk = -1; 6087 err = bind_rdev_to_array(rdev, mddev); 6088 6089 if (err) 6090 export_rdev(rdev); 6091 6092 if (mddev_is_clustered(mddev)) { 6093 if (info->state & (1 << MD_DISK_CANDIDATE)) 6094 md_cluster_ops->new_disk_ack(mddev, (err == 0)); 6095 else { 6096 if (err) 6097 md_cluster_ops->add_new_disk_cancel(mddev); 6098 else 6099 err = add_bound_rdev(rdev); 6100 } 6101 6102 } else if (!err) 6103 err = add_bound_rdev(rdev); 6104 6105 return err; 6106 } 6107 6108 /* otherwise, add_new_disk is only allowed 6109 * for major_version==0 superblocks 6110 */ 6111 if (mddev->major_version != 0) { 6112 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 6113 mdname(mddev)); 6114 return -EINVAL; 6115 } 6116 6117 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6118 int err; 6119 rdev = md_import_device(dev, -1, 0); 6120 if (IS_ERR(rdev)) { 6121 printk(KERN_WARNING 6122 "md: error, md_import_device() returned %ld\n", 6123 PTR_ERR(rdev)); 6124 return PTR_ERR(rdev); 6125 } 6126 rdev->desc_nr = info->number; 6127 if (info->raid_disk < mddev->raid_disks) 6128 rdev->raid_disk = info->raid_disk; 6129 else 6130 rdev->raid_disk = -1; 6131 6132 if (rdev->raid_disk < mddev->raid_disks) 6133 if (info->state & (1<<MD_DISK_SYNC)) 6134 set_bit(In_sync, &rdev->flags); 6135 6136 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6137 set_bit(WriteMostly, &rdev->flags); 6138 6139 if (!mddev->persistent) { 6140 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 6141 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6142 } else 6143 rdev->sb_start = calc_dev_sboffset(rdev); 6144 rdev->sectors = rdev->sb_start; 6145 6146 err = bind_rdev_to_array(rdev, mddev); 6147 if (err) { 6148 export_rdev(rdev); 6149 return err; 6150 } 6151 } 6152 6153 return 0; 6154 } 6155 6156 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6157 { 6158 char b[BDEVNAME_SIZE]; 6159 struct md_rdev *rdev; 6160 6161 rdev = find_rdev(mddev, dev); 6162 if (!rdev) 6163 return -ENXIO; 6164 6165 if (rdev->raid_disk < 0) 6166 goto kick_rdev; 6167 6168 clear_bit(Blocked, &rdev->flags); 6169 remove_and_add_spares(mddev, rdev); 6170 6171 if (rdev->raid_disk >= 0) 6172 goto busy; 6173 6174 kick_rdev: 6175 if (mddev_is_clustered(mddev)) 6176 md_cluster_ops->remove_disk(mddev, rdev); 6177 6178 md_kick_rdev_from_array(rdev); 6179 md_update_sb(mddev, 1); 6180 md_new_event(mddev); 6181 6182 return 0; 6183 busy: 6184 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 6185 bdevname(rdev->bdev,b), mdname(mddev)); 6186 return -EBUSY; 6187 } 6188 6189 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6190 { 6191 char b[BDEVNAME_SIZE]; 6192 int err; 6193 struct md_rdev *rdev; 6194 6195 if (!mddev->pers) 6196 return -ENODEV; 6197 6198 if (mddev->major_version != 0) { 6199 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 6200 " version-0 superblocks.\n", 6201 mdname(mddev)); 6202 return -EINVAL; 6203 } 6204 if (!mddev->pers->hot_add_disk) { 6205 printk(KERN_WARNING 6206 "%s: personality does not support diskops!\n", 6207 mdname(mddev)); 6208 return -EINVAL; 6209 } 6210 6211 rdev = md_import_device(dev, -1, 0); 6212 if (IS_ERR(rdev)) { 6213 printk(KERN_WARNING 6214 "md: error, md_import_device() returned %ld\n", 6215 PTR_ERR(rdev)); 6216 return -EINVAL; 6217 } 6218 6219 if (mddev->persistent) 6220 rdev->sb_start = calc_dev_sboffset(rdev); 6221 else 6222 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6223 6224 rdev->sectors = rdev->sb_start; 6225 6226 if (test_bit(Faulty, &rdev->flags)) { 6227 printk(KERN_WARNING 6228 "md: can not hot-add faulty %s disk to %s!\n", 6229 bdevname(rdev->bdev,b), mdname(mddev)); 6230 err = -EINVAL; 6231 goto abort_export; 6232 } 6233 6234 clear_bit(In_sync, &rdev->flags); 6235 rdev->desc_nr = -1; 6236 rdev->saved_raid_disk = -1; 6237 err = bind_rdev_to_array(rdev, mddev); 6238 if (err) 6239 goto abort_export; 6240 6241 /* 6242 * The rest should better be atomic, we can have disk failures 6243 * noticed in interrupt contexts ... 6244 */ 6245 6246 rdev->raid_disk = -1; 6247 6248 md_update_sb(mddev, 1); 6249 /* 6250 * Kick recovery, maybe this spare has to be added to the 6251 * array immediately. 6252 */ 6253 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6254 md_wakeup_thread(mddev->thread); 6255 md_new_event(mddev); 6256 return 0; 6257 6258 abort_export: 6259 export_rdev(rdev); 6260 return err; 6261 } 6262 6263 static int set_bitmap_file(struct mddev *mddev, int fd) 6264 { 6265 int err = 0; 6266 6267 if (mddev->pers) { 6268 if (!mddev->pers->quiesce || !mddev->thread) 6269 return -EBUSY; 6270 if (mddev->recovery || mddev->sync_thread) 6271 return -EBUSY; 6272 /* we should be able to change the bitmap.. */ 6273 } 6274 6275 if (fd >= 0) { 6276 struct inode *inode; 6277 struct file *f; 6278 6279 if (mddev->bitmap || mddev->bitmap_info.file) 6280 return -EEXIST; /* cannot add when bitmap is present */ 6281 f = fget(fd); 6282 6283 if (f == NULL) { 6284 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 6285 mdname(mddev)); 6286 return -EBADF; 6287 } 6288 6289 inode = f->f_mapping->host; 6290 if (!S_ISREG(inode->i_mode)) { 6291 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n", 6292 mdname(mddev)); 6293 err = -EBADF; 6294 } else if (!(f->f_mode & FMODE_WRITE)) { 6295 printk(KERN_ERR "%s: error: bitmap file must open for write\n", 6296 mdname(mddev)); 6297 err = -EBADF; 6298 } else if (atomic_read(&inode->i_writecount) != 1) { 6299 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 6300 mdname(mddev)); 6301 err = -EBUSY; 6302 } 6303 if (err) { 6304 fput(f); 6305 return err; 6306 } 6307 mddev->bitmap_info.file = f; 6308 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6309 } else if (mddev->bitmap == NULL) 6310 return -ENOENT; /* cannot remove what isn't there */ 6311 err = 0; 6312 if (mddev->pers) { 6313 mddev->pers->quiesce(mddev, 1); 6314 if (fd >= 0) { 6315 struct bitmap *bitmap; 6316 6317 bitmap = bitmap_create(mddev, -1); 6318 if (!IS_ERR(bitmap)) { 6319 mddev->bitmap = bitmap; 6320 err = bitmap_load(mddev); 6321 } else 6322 err = PTR_ERR(bitmap); 6323 } 6324 if (fd < 0 || err) { 6325 bitmap_destroy(mddev); 6326 fd = -1; /* make sure to put the file */ 6327 } 6328 mddev->pers->quiesce(mddev, 0); 6329 } 6330 if (fd < 0) { 6331 struct file *f = mddev->bitmap_info.file; 6332 if (f) { 6333 spin_lock(&mddev->lock); 6334 mddev->bitmap_info.file = NULL; 6335 spin_unlock(&mddev->lock); 6336 fput(f); 6337 } 6338 } 6339 6340 return err; 6341 } 6342 6343 /* 6344 * set_array_info is used two different ways 6345 * The original usage is when creating a new array. 6346 * In this usage, raid_disks is > 0 and it together with 6347 * level, size, not_persistent,layout,chunksize determine the 6348 * shape of the array. 6349 * This will always create an array with a type-0.90.0 superblock. 6350 * The newer usage is when assembling an array. 6351 * In this case raid_disks will be 0, and the major_version field is 6352 * use to determine which style super-blocks are to be found on the devices. 6353 * The minor and patch _version numbers are also kept incase the 6354 * super_block handler wishes to interpret them. 6355 */ 6356 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6357 { 6358 6359 if (info->raid_disks == 0) { 6360 /* just setting version number for superblock loading */ 6361 if (info->major_version < 0 || 6362 info->major_version >= ARRAY_SIZE(super_types) || 6363 super_types[info->major_version].name == NULL) { 6364 /* maybe try to auto-load a module? */ 6365 printk(KERN_INFO 6366 "md: superblock version %d not known\n", 6367 info->major_version); 6368 return -EINVAL; 6369 } 6370 mddev->major_version = info->major_version; 6371 mddev->minor_version = info->minor_version; 6372 mddev->patch_version = info->patch_version; 6373 mddev->persistent = !info->not_persistent; 6374 /* ensure mddev_put doesn't delete this now that there 6375 * is some minimal configuration. 6376 */ 6377 mddev->ctime = ktime_get_real_seconds(); 6378 return 0; 6379 } 6380 mddev->major_version = MD_MAJOR_VERSION; 6381 mddev->minor_version = MD_MINOR_VERSION; 6382 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6383 mddev->ctime = ktime_get_real_seconds(); 6384 6385 mddev->level = info->level; 6386 mddev->clevel[0] = 0; 6387 mddev->dev_sectors = 2 * (sector_t)info->size; 6388 mddev->raid_disks = info->raid_disks; 6389 /* don't set md_minor, it is determined by which /dev/md* was 6390 * openned 6391 */ 6392 if (info->state & (1<<MD_SB_CLEAN)) 6393 mddev->recovery_cp = MaxSector; 6394 else 6395 mddev->recovery_cp = 0; 6396 mddev->persistent = ! info->not_persistent; 6397 mddev->external = 0; 6398 6399 mddev->layout = info->layout; 6400 mddev->chunk_sectors = info->chunk_size >> 9; 6401 6402 mddev->max_disks = MD_SB_DISKS; 6403 6404 if (mddev->persistent) 6405 mddev->flags = 0; 6406 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6407 6408 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6409 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6410 mddev->bitmap_info.offset = 0; 6411 6412 mddev->reshape_position = MaxSector; 6413 6414 /* 6415 * Generate a 128 bit UUID 6416 */ 6417 get_random_bytes(mddev->uuid, 16); 6418 6419 mddev->new_level = mddev->level; 6420 mddev->new_chunk_sectors = mddev->chunk_sectors; 6421 mddev->new_layout = mddev->layout; 6422 mddev->delta_disks = 0; 6423 mddev->reshape_backwards = 0; 6424 6425 return 0; 6426 } 6427 6428 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6429 { 6430 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6431 6432 if (mddev->external_size) 6433 return; 6434 6435 mddev->array_sectors = array_sectors; 6436 } 6437 EXPORT_SYMBOL(md_set_array_sectors); 6438 6439 static int update_size(struct mddev *mddev, sector_t num_sectors) 6440 { 6441 struct md_rdev *rdev; 6442 int rv; 6443 int fit = (num_sectors == 0); 6444 6445 /* cluster raid doesn't support update size */ 6446 if (mddev_is_clustered(mddev)) 6447 return -EINVAL; 6448 6449 if (mddev->pers->resize == NULL) 6450 return -EINVAL; 6451 /* The "num_sectors" is the number of sectors of each device that 6452 * is used. This can only make sense for arrays with redundancy. 6453 * linear and raid0 always use whatever space is available. We can only 6454 * consider changing this number if no resync or reconstruction is 6455 * happening, and if the new size is acceptable. It must fit before the 6456 * sb_start or, if that is <data_offset, it must fit before the size 6457 * of each device. If num_sectors is zero, we find the largest size 6458 * that fits. 6459 */ 6460 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6461 mddev->sync_thread) 6462 return -EBUSY; 6463 if (mddev->ro) 6464 return -EROFS; 6465 6466 rdev_for_each(rdev, mddev) { 6467 sector_t avail = rdev->sectors; 6468 6469 if (fit && (num_sectors == 0 || num_sectors > avail)) 6470 num_sectors = avail; 6471 if (avail < num_sectors) 6472 return -ENOSPC; 6473 } 6474 rv = mddev->pers->resize(mddev, num_sectors); 6475 if (!rv) 6476 revalidate_disk(mddev->gendisk); 6477 return rv; 6478 } 6479 6480 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6481 { 6482 int rv; 6483 struct md_rdev *rdev; 6484 /* change the number of raid disks */ 6485 if (mddev->pers->check_reshape == NULL) 6486 return -EINVAL; 6487 if (mddev->ro) 6488 return -EROFS; 6489 if (raid_disks <= 0 || 6490 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6491 return -EINVAL; 6492 if (mddev->sync_thread || 6493 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6494 mddev->reshape_position != MaxSector) 6495 return -EBUSY; 6496 6497 rdev_for_each(rdev, mddev) { 6498 if (mddev->raid_disks < raid_disks && 6499 rdev->data_offset < rdev->new_data_offset) 6500 return -EINVAL; 6501 if (mddev->raid_disks > raid_disks && 6502 rdev->data_offset > rdev->new_data_offset) 6503 return -EINVAL; 6504 } 6505 6506 mddev->delta_disks = raid_disks - mddev->raid_disks; 6507 if (mddev->delta_disks < 0) 6508 mddev->reshape_backwards = 1; 6509 else if (mddev->delta_disks > 0) 6510 mddev->reshape_backwards = 0; 6511 6512 rv = mddev->pers->check_reshape(mddev); 6513 if (rv < 0) { 6514 mddev->delta_disks = 0; 6515 mddev->reshape_backwards = 0; 6516 } 6517 return rv; 6518 } 6519 6520 /* 6521 * update_array_info is used to change the configuration of an 6522 * on-line array. 6523 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6524 * fields in the info are checked against the array. 6525 * Any differences that cannot be handled will cause an error. 6526 * Normally, only one change can be managed at a time. 6527 */ 6528 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6529 { 6530 int rv = 0; 6531 int cnt = 0; 6532 int state = 0; 6533 6534 /* calculate expected state,ignoring low bits */ 6535 if (mddev->bitmap && mddev->bitmap_info.offset) 6536 state |= (1 << MD_SB_BITMAP_PRESENT); 6537 6538 if (mddev->major_version != info->major_version || 6539 mddev->minor_version != info->minor_version || 6540 /* mddev->patch_version != info->patch_version || */ 6541 mddev->ctime != info->ctime || 6542 mddev->level != info->level || 6543 /* mddev->layout != info->layout || */ 6544 mddev->persistent != !info->not_persistent || 6545 mddev->chunk_sectors != info->chunk_size >> 9 || 6546 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6547 ((state^info->state) & 0xfffffe00) 6548 ) 6549 return -EINVAL; 6550 /* Check there is only one change */ 6551 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6552 cnt++; 6553 if (mddev->raid_disks != info->raid_disks) 6554 cnt++; 6555 if (mddev->layout != info->layout) 6556 cnt++; 6557 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6558 cnt++; 6559 if (cnt == 0) 6560 return 0; 6561 if (cnt > 1) 6562 return -EINVAL; 6563 6564 if (mddev->layout != info->layout) { 6565 /* Change layout 6566 * we don't need to do anything at the md level, the 6567 * personality will take care of it all. 6568 */ 6569 if (mddev->pers->check_reshape == NULL) 6570 return -EINVAL; 6571 else { 6572 mddev->new_layout = info->layout; 6573 rv = mddev->pers->check_reshape(mddev); 6574 if (rv) 6575 mddev->new_layout = mddev->layout; 6576 return rv; 6577 } 6578 } 6579 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6580 rv = update_size(mddev, (sector_t)info->size * 2); 6581 6582 if (mddev->raid_disks != info->raid_disks) 6583 rv = update_raid_disks(mddev, info->raid_disks); 6584 6585 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6586 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6587 rv = -EINVAL; 6588 goto err; 6589 } 6590 if (mddev->recovery || mddev->sync_thread) { 6591 rv = -EBUSY; 6592 goto err; 6593 } 6594 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6595 struct bitmap *bitmap; 6596 /* add the bitmap */ 6597 if (mddev->bitmap) { 6598 rv = -EEXIST; 6599 goto err; 6600 } 6601 if (mddev->bitmap_info.default_offset == 0) { 6602 rv = -EINVAL; 6603 goto err; 6604 } 6605 mddev->bitmap_info.offset = 6606 mddev->bitmap_info.default_offset; 6607 mddev->bitmap_info.space = 6608 mddev->bitmap_info.default_space; 6609 mddev->pers->quiesce(mddev, 1); 6610 bitmap = bitmap_create(mddev, -1); 6611 if (!IS_ERR(bitmap)) { 6612 mddev->bitmap = bitmap; 6613 rv = bitmap_load(mddev); 6614 } else 6615 rv = PTR_ERR(bitmap); 6616 if (rv) 6617 bitmap_destroy(mddev); 6618 mddev->pers->quiesce(mddev, 0); 6619 } else { 6620 /* remove the bitmap */ 6621 if (!mddev->bitmap) { 6622 rv = -ENOENT; 6623 goto err; 6624 } 6625 if (mddev->bitmap->storage.file) { 6626 rv = -EINVAL; 6627 goto err; 6628 } 6629 if (mddev->bitmap_info.nodes) { 6630 /* hold PW on all the bitmap lock */ 6631 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 6632 printk("md: can't change bitmap to none since the" 6633 " array is in use by more than one node\n"); 6634 rv = -EPERM; 6635 md_cluster_ops->unlock_all_bitmaps(mddev); 6636 goto err; 6637 } 6638 6639 mddev->bitmap_info.nodes = 0; 6640 md_cluster_ops->leave(mddev); 6641 } 6642 mddev->pers->quiesce(mddev, 1); 6643 bitmap_destroy(mddev); 6644 mddev->pers->quiesce(mddev, 0); 6645 mddev->bitmap_info.offset = 0; 6646 } 6647 } 6648 md_update_sb(mddev, 1); 6649 return rv; 6650 err: 6651 return rv; 6652 } 6653 6654 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6655 { 6656 struct md_rdev *rdev; 6657 int err = 0; 6658 6659 if (mddev->pers == NULL) 6660 return -ENODEV; 6661 6662 rcu_read_lock(); 6663 rdev = find_rdev_rcu(mddev, dev); 6664 if (!rdev) 6665 err = -ENODEV; 6666 else { 6667 md_error(mddev, rdev); 6668 if (!test_bit(Faulty, &rdev->flags)) 6669 err = -EBUSY; 6670 } 6671 rcu_read_unlock(); 6672 return err; 6673 } 6674 6675 /* 6676 * We have a problem here : there is no easy way to give a CHS 6677 * virtual geometry. We currently pretend that we have a 2 heads 6678 * 4 sectors (with a BIG number of cylinders...). This drives 6679 * dosfs just mad... ;-) 6680 */ 6681 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6682 { 6683 struct mddev *mddev = bdev->bd_disk->private_data; 6684 6685 geo->heads = 2; 6686 geo->sectors = 4; 6687 geo->cylinders = mddev->array_sectors / 8; 6688 return 0; 6689 } 6690 6691 static inline bool md_ioctl_valid(unsigned int cmd) 6692 { 6693 switch (cmd) { 6694 case ADD_NEW_DISK: 6695 case BLKROSET: 6696 case GET_ARRAY_INFO: 6697 case GET_BITMAP_FILE: 6698 case GET_DISK_INFO: 6699 case HOT_ADD_DISK: 6700 case HOT_REMOVE_DISK: 6701 case RAID_AUTORUN: 6702 case RAID_VERSION: 6703 case RESTART_ARRAY_RW: 6704 case RUN_ARRAY: 6705 case SET_ARRAY_INFO: 6706 case SET_BITMAP_FILE: 6707 case SET_DISK_FAULTY: 6708 case STOP_ARRAY: 6709 case STOP_ARRAY_RO: 6710 case CLUSTERED_DISK_NACK: 6711 return true; 6712 default: 6713 return false; 6714 } 6715 } 6716 6717 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6718 unsigned int cmd, unsigned long arg) 6719 { 6720 int err = 0; 6721 void __user *argp = (void __user *)arg; 6722 struct mddev *mddev = NULL; 6723 int ro; 6724 6725 if (!md_ioctl_valid(cmd)) 6726 return -ENOTTY; 6727 6728 switch (cmd) { 6729 case RAID_VERSION: 6730 case GET_ARRAY_INFO: 6731 case GET_DISK_INFO: 6732 break; 6733 default: 6734 if (!capable(CAP_SYS_ADMIN)) 6735 return -EACCES; 6736 } 6737 6738 /* 6739 * Commands dealing with the RAID driver but not any 6740 * particular array: 6741 */ 6742 switch (cmd) { 6743 case RAID_VERSION: 6744 err = get_version(argp); 6745 goto out; 6746 6747 #ifndef MODULE 6748 case RAID_AUTORUN: 6749 err = 0; 6750 autostart_arrays(arg); 6751 goto out; 6752 #endif 6753 default:; 6754 } 6755 6756 /* 6757 * Commands creating/starting a new array: 6758 */ 6759 6760 mddev = bdev->bd_disk->private_data; 6761 6762 if (!mddev) { 6763 BUG(); 6764 goto out; 6765 } 6766 6767 /* Some actions do not requires the mutex */ 6768 switch (cmd) { 6769 case GET_ARRAY_INFO: 6770 if (!mddev->raid_disks && !mddev->external) 6771 err = -ENODEV; 6772 else 6773 err = get_array_info(mddev, argp); 6774 goto out; 6775 6776 case GET_DISK_INFO: 6777 if (!mddev->raid_disks && !mddev->external) 6778 err = -ENODEV; 6779 else 6780 err = get_disk_info(mddev, argp); 6781 goto out; 6782 6783 case SET_DISK_FAULTY: 6784 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6785 goto out; 6786 6787 case GET_BITMAP_FILE: 6788 err = get_bitmap_file(mddev, argp); 6789 goto out; 6790 6791 } 6792 6793 if (cmd == ADD_NEW_DISK) 6794 /* need to ensure md_delayed_delete() has completed */ 6795 flush_workqueue(md_misc_wq); 6796 6797 if (cmd == HOT_REMOVE_DISK) 6798 /* need to ensure recovery thread has run */ 6799 wait_event_interruptible_timeout(mddev->sb_wait, 6800 !test_bit(MD_RECOVERY_NEEDED, 6801 &mddev->flags), 6802 msecs_to_jiffies(5000)); 6803 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6804 /* Need to flush page cache, and ensure no-one else opens 6805 * and writes 6806 */ 6807 mutex_lock(&mddev->open_mutex); 6808 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 6809 mutex_unlock(&mddev->open_mutex); 6810 err = -EBUSY; 6811 goto out; 6812 } 6813 set_bit(MD_STILL_CLOSED, &mddev->flags); 6814 mutex_unlock(&mddev->open_mutex); 6815 sync_blockdev(bdev); 6816 } 6817 err = mddev_lock(mddev); 6818 if (err) { 6819 printk(KERN_INFO 6820 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6821 err, cmd); 6822 goto out; 6823 } 6824 6825 if (cmd == SET_ARRAY_INFO) { 6826 mdu_array_info_t info; 6827 if (!arg) 6828 memset(&info, 0, sizeof(info)); 6829 else if (copy_from_user(&info, argp, sizeof(info))) { 6830 err = -EFAULT; 6831 goto unlock; 6832 } 6833 if (mddev->pers) { 6834 err = update_array_info(mddev, &info); 6835 if (err) { 6836 printk(KERN_WARNING "md: couldn't update" 6837 " array info. %d\n", err); 6838 goto unlock; 6839 } 6840 goto unlock; 6841 } 6842 if (!list_empty(&mddev->disks)) { 6843 printk(KERN_WARNING 6844 "md: array %s already has disks!\n", 6845 mdname(mddev)); 6846 err = -EBUSY; 6847 goto unlock; 6848 } 6849 if (mddev->raid_disks) { 6850 printk(KERN_WARNING 6851 "md: array %s already initialised!\n", 6852 mdname(mddev)); 6853 err = -EBUSY; 6854 goto unlock; 6855 } 6856 err = set_array_info(mddev, &info); 6857 if (err) { 6858 printk(KERN_WARNING "md: couldn't set" 6859 " array info. %d\n", err); 6860 goto unlock; 6861 } 6862 goto unlock; 6863 } 6864 6865 /* 6866 * Commands querying/configuring an existing array: 6867 */ 6868 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6869 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6870 if ((!mddev->raid_disks && !mddev->external) 6871 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6872 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6873 && cmd != GET_BITMAP_FILE) { 6874 err = -ENODEV; 6875 goto unlock; 6876 } 6877 6878 /* 6879 * Commands even a read-only array can execute: 6880 */ 6881 switch (cmd) { 6882 case RESTART_ARRAY_RW: 6883 err = restart_array(mddev); 6884 goto unlock; 6885 6886 case STOP_ARRAY: 6887 err = do_md_stop(mddev, 0, bdev); 6888 goto unlock; 6889 6890 case STOP_ARRAY_RO: 6891 err = md_set_readonly(mddev, bdev); 6892 goto unlock; 6893 6894 case HOT_REMOVE_DISK: 6895 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6896 goto unlock; 6897 6898 case ADD_NEW_DISK: 6899 /* We can support ADD_NEW_DISK on read-only arrays 6900 * only if we are re-adding a preexisting device. 6901 * So require mddev->pers and MD_DISK_SYNC. 6902 */ 6903 if (mddev->pers) { 6904 mdu_disk_info_t info; 6905 if (copy_from_user(&info, argp, sizeof(info))) 6906 err = -EFAULT; 6907 else if (!(info.state & (1<<MD_DISK_SYNC))) 6908 /* Need to clear read-only for this */ 6909 break; 6910 else 6911 err = add_new_disk(mddev, &info); 6912 goto unlock; 6913 } 6914 break; 6915 6916 case BLKROSET: 6917 if (get_user(ro, (int __user *)(arg))) { 6918 err = -EFAULT; 6919 goto unlock; 6920 } 6921 err = -EINVAL; 6922 6923 /* if the bdev is going readonly the value of mddev->ro 6924 * does not matter, no writes are coming 6925 */ 6926 if (ro) 6927 goto unlock; 6928 6929 /* are we are already prepared for writes? */ 6930 if (mddev->ro != 1) 6931 goto unlock; 6932 6933 /* transitioning to readauto need only happen for 6934 * arrays that call md_write_start 6935 */ 6936 if (mddev->pers) { 6937 err = restart_array(mddev); 6938 if (err == 0) { 6939 mddev->ro = 2; 6940 set_disk_ro(mddev->gendisk, 0); 6941 } 6942 } 6943 goto unlock; 6944 } 6945 6946 /* 6947 * The remaining ioctls are changing the state of the 6948 * superblock, so we do not allow them on read-only arrays. 6949 */ 6950 if (mddev->ro && mddev->pers) { 6951 if (mddev->ro == 2) { 6952 mddev->ro = 0; 6953 sysfs_notify_dirent_safe(mddev->sysfs_state); 6954 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6955 /* mddev_unlock will wake thread */ 6956 /* If a device failed while we were read-only, we 6957 * need to make sure the metadata is updated now. 6958 */ 6959 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6960 mddev_unlock(mddev); 6961 wait_event(mddev->sb_wait, 6962 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6963 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6964 mddev_lock_nointr(mddev); 6965 } 6966 } else { 6967 err = -EROFS; 6968 goto unlock; 6969 } 6970 } 6971 6972 switch (cmd) { 6973 case ADD_NEW_DISK: 6974 { 6975 mdu_disk_info_t info; 6976 if (copy_from_user(&info, argp, sizeof(info))) 6977 err = -EFAULT; 6978 else 6979 err = add_new_disk(mddev, &info); 6980 goto unlock; 6981 } 6982 6983 case CLUSTERED_DISK_NACK: 6984 if (mddev_is_clustered(mddev)) 6985 md_cluster_ops->new_disk_ack(mddev, false); 6986 else 6987 err = -EINVAL; 6988 goto unlock; 6989 6990 case HOT_ADD_DISK: 6991 err = hot_add_disk(mddev, new_decode_dev(arg)); 6992 goto unlock; 6993 6994 case RUN_ARRAY: 6995 err = do_md_run(mddev); 6996 goto unlock; 6997 6998 case SET_BITMAP_FILE: 6999 err = set_bitmap_file(mddev, (int)arg); 7000 goto unlock; 7001 7002 default: 7003 err = -EINVAL; 7004 goto unlock; 7005 } 7006 7007 unlock: 7008 if (mddev->hold_active == UNTIL_IOCTL && 7009 err != -EINVAL) 7010 mddev->hold_active = 0; 7011 mddev_unlock(mddev); 7012 out: 7013 return err; 7014 } 7015 #ifdef CONFIG_COMPAT 7016 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7017 unsigned int cmd, unsigned long arg) 7018 { 7019 switch (cmd) { 7020 case HOT_REMOVE_DISK: 7021 case HOT_ADD_DISK: 7022 case SET_DISK_FAULTY: 7023 case SET_BITMAP_FILE: 7024 /* These take in integer arg, do not convert */ 7025 break; 7026 default: 7027 arg = (unsigned long)compat_ptr(arg); 7028 break; 7029 } 7030 7031 return md_ioctl(bdev, mode, cmd, arg); 7032 } 7033 #endif /* CONFIG_COMPAT */ 7034 7035 static int md_open(struct block_device *bdev, fmode_t mode) 7036 { 7037 /* 7038 * Succeed if we can lock the mddev, which confirms that 7039 * it isn't being stopped right now. 7040 */ 7041 struct mddev *mddev = mddev_find(bdev->bd_dev); 7042 int err; 7043 7044 if (!mddev) 7045 return -ENODEV; 7046 7047 if (mddev->gendisk != bdev->bd_disk) { 7048 /* we are racing with mddev_put which is discarding this 7049 * bd_disk. 7050 */ 7051 mddev_put(mddev); 7052 /* Wait until bdev->bd_disk is definitely gone */ 7053 flush_workqueue(md_misc_wq); 7054 /* Then retry the open from the top */ 7055 return -ERESTARTSYS; 7056 } 7057 BUG_ON(mddev != bdev->bd_disk->private_data); 7058 7059 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7060 goto out; 7061 7062 err = 0; 7063 atomic_inc(&mddev->openers); 7064 clear_bit(MD_STILL_CLOSED, &mddev->flags); 7065 mutex_unlock(&mddev->open_mutex); 7066 7067 check_disk_change(bdev); 7068 out: 7069 return err; 7070 } 7071 7072 static void md_release(struct gendisk *disk, fmode_t mode) 7073 { 7074 struct mddev *mddev = disk->private_data; 7075 7076 BUG_ON(!mddev); 7077 atomic_dec(&mddev->openers); 7078 mddev_put(mddev); 7079 } 7080 7081 static int md_media_changed(struct gendisk *disk) 7082 { 7083 struct mddev *mddev = disk->private_data; 7084 7085 return mddev->changed; 7086 } 7087 7088 static int md_revalidate(struct gendisk *disk) 7089 { 7090 struct mddev *mddev = disk->private_data; 7091 7092 mddev->changed = 0; 7093 return 0; 7094 } 7095 static const struct block_device_operations md_fops = 7096 { 7097 .owner = THIS_MODULE, 7098 .open = md_open, 7099 .release = md_release, 7100 .ioctl = md_ioctl, 7101 #ifdef CONFIG_COMPAT 7102 .compat_ioctl = md_compat_ioctl, 7103 #endif 7104 .getgeo = md_getgeo, 7105 .media_changed = md_media_changed, 7106 .revalidate_disk= md_revalidate, 7107 }; 7108 7109 static int md_thread(void *arg) 7110 { 7111 struct md_thread *thread = arg; 7112 7113 /* 7114 * md_thread is a 'system-thread', it's priority should be very 7115 * high. We avoid resource deadlocks individually in each 7116 * raid personality. (RAID5 does preallocation) We also use RR and 7117 * the very same RT priority as kswapd, thus we will never get 7118 * into a priority inversion deadlock. 7119 * 7120 * we definitely have to have equal or higher priority than 7121 * bdflush, otherwise bdflush will deadlock if there are too 7122 * many dirty RAID5 blocks. 7123 */ 7124 7125 allow_signal(SIGKILL); 7126 while (!kthread_should_stop()) { 7127 7128 /* We need to wait INTERRUPTIBLE so that 7129 * we don't add to the load-average. 7130 * That means we need to be sure no signals are 7131 * pending 7132 */ 7133 if (signal_pending(current)) 7134 flush_signals(current); 7135 7136 wait_event_interruptible_timeout 7137 (thread->wqueue, 7138 test_bit(THREAD_WAKEUP, &thread->flags) 7139 || kthread_should_stop(), 7140 thread->timeout); 7141 7142 clear_bit(THREAD_WAKEUP, &thread->flags); 7143 if (!kthread_should_stop()) 7144 thread->run(thread); 7145 } 7146 7147 return 0; 7148 } 7149 7150 void md_wakeup_thread(struct md_thread *thread) 7151 { 7152 if (thread) { 7153 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7154 set_bit(THREAD_WAKEUP, &thread->flags); 7155 wake_up(&thread->wqueue); 7156 } 7157 } 7158 EXPORT_SYMBOL(md_wakeup_thread); 7159 7160 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7161 struct mddev *mddev, const char *name) 7162 { 7163 struct md_thread *thread; 7164 7165 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7166 if (!thread) 7167 return NULL; 7168 7169 init_waitqueue_head(&thread->wqueue); 7170 7171 thread->run = run; 7172 thread->mddev = mddev; 7173 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7174 thread->tsk = kthread_run(md_thread, thread, 7175 "%s_%s", 7176 mdname(thread->mddev), 7177 name); 7178 if (IS_ERR(thread->tsk)) { 7179 kfree(thread); 7180 return NULL; 7181 } 7182 return thread; 7183 } 7184 EXPORT_SYMBOL(md_register_thread); 7185 7186 void md_unregister_thread(struct md_thread **threadp) 7187 { 7188 struct md_thread *thread = *threadp; 7189 if (!thread) 7190 return; 7191 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7192 /* Locking ensures that mddev_unlock does not wake_up a 7193 * non-existent thread 7194 */ 7195 spin_lock(&pers_lock); 7196 *threadp = NULL; 7197 spin_unlock(&pers_lock); 7198 7199 kthread_stop(thread->tsk); 7200 kfree(thread); 7201 } 7202 EXPORT_SYMBOL(md_unregister_thread); 7203 7204 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7205 { 7206 if (!rdev || test_bit(Faulty, &rdev->flags)) 7207 return; 7208 7209 if (!mddev->pers || !mddev->pers->error_handler) 7210 return; 7211 mddev->pers->error_handler(mddev,rdev); 7212 if (mddev->degraded) 7213 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7214 sysfs_notify_dirent_safe(rdev->sysfs_state); 7215 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7216 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7217 md_wakeup_thread(mddev->thread); 7218 if (mddev->event_work.func) 7219 queue_work(md_misc_wq, &mddev->event_work); 7220 md_new_event(mddev); 7221 } 7222 EXPORT_SYMBOL(md_error); 7223 7224 /* seq_file implementation /proc/mdstat */ 7225 7226 static void status_unused(struct seq_file *seq) 7227 { 7228 int i = 0; 7229 struct md_rdev *rdev; 7230 7231 seq_printf(seq, "unused devices: "); 7232 7233 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7234 char b[BDEVNAME_SIZE]; 7235 i++; 7236 seq_printf(seq, "%s ", 7237 bdevname(rdev->bdev,b)); 7238 } 7239 if (!i) 7240 seq_printf(seq, "<none>"); 7241 7242 seq_printf(seq, "\n"); 7243 } 7244 7245 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7246 { 7247 sector_t max_sectors, resync, res; 7248 unsigned long dt, db; 7249 sector_t rt; 7250 int scale; 7251 unsigned int per_milli; 7252 7253 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7254 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7255 max_sectors = mddev->resync_max_sectors; 7256 else 7257 max_sectors = mddev->dev_sectors; 7258 7259 resync = mddev->curr_resync; 7260 if (resync <= 3) { 7261 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7262 /* Still cleaning up */ 7263 resync = max_sectors; 7264 } else 7265 resync -= atomic_read(&mddev->recovery_active); 7266 7267 if (resync == 0) { 7268 if (mddev->recovery_cp < MaxSector) { 7269 seq_printf(seq, "\tresync=PENDING"); 7270 return 1; 7271 } 7272 return 0; 7273 } 7274 if (resync < 3) { 7275 seq_printf(seq, "\tresync=DELAYED"); 7276 return 1; 7277 } 7278 7279 WARN_ON(max_sectors == 0); 7280 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7281 * in a sector_t, and (max_sectors>>scale) will fit in a 7282 * u32, as those are the requirements for sector_div. 7283 * Thus 'scale' must be at least 10 7284 */ 7285 scale = 10; 7286 if (sizeof(sector_t) > sizeof(unsigned long)) { 7287 while ( max_sectors/2 > (1ULL<<(scale+32))) 7288 scale++; 7289 } 7290 res = (resync>>scale)*1000; 7291 sector_div(res, (u32)((max_sectors>>scale)+1)); 7292 7293 per_milli = res; 7294 { 7295 int i, x = per_milli/50, y = 20-x; 7296 seq_printf(seq, "["); 7297 for (i = 0; i < x; i++) 7298 seq_printf(seq, "="); 7299 seq_printf(seq, ">"); 7300 for (i = 0; i < y; i++) 7301 seq_printf(seq, "."); 7302 seq_printf(seq, "] "); 7303 } 7304 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7305 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7306 "reshape" : 7307 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7308 "check" : 7309 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7310 "resync" : "recovery"))), 7311 per_milli/10, per_milli % 10, 7312 (unsigned long long) resync/2, 7313 (unsigned long long) max_sectors/2); 7314 7315 /* 7316 * dt: time from mark until now 7317 * db: blocks written from mark until now 7318 * rt: remaining time 7319 * 7320 * rt is a sector_t, so could be 32bit or 64bit. 7321 * So we divide before multiply in case it is 32bit and close 7322 * to the limit. 7323 * We scale the divisor (db) by 32 to avoid losing precision 7324 * near the end of resync when the number of remaining sectors 7325 * is close to 'db'. 7326 * We then divide rt by 32 after multiplying by db to compensate. 7327 * The '+1' avoids division by zero if db is very small. 7328 */ 7329 dt = ((jiffies - mddev->resync_mark) / HZ); 7330 if (!dt) dt++; 7331 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7332 - mddev->resync_mark_cnt; 7333 7334 rt = max_sectors - resync; /* number of remaining sectors */ 7335 sector_div(rt, db/32+1); 7336 rt *= dt; 7337 rt >>= 5; 7338 7339 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7340 ((unsigned long)rt % 60)/6); 7341 7342 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7343 return 1; 7344 } 7345 7346 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7347 { 7348 struct list_head *tmp; 7349 loff_t l = *pos; 7350 struct mddev *mddev; 7351 7352 if (l >= 0x10000) 7353 return NULL; 7354 if (!l--) 7355 /* header */ 7356 return (void*)1; 7357 7358 spin_lock(&all_mddevs_lock); 7359 list_for_each(tmp,&all_mddevs) 7360 if (!l--) { 7361 mddev = list_entry(tmp, struct mddev, all_mddevs); 7362 mddev_get(mddev); 7363 spin_unlock(&all_mddevs_lock); 7364 return mddev; 7365 } 7366 spin_unlock(&all_mddevs_lock); 7367 if (!l--) 7368 return (void*)2;/* tail */ 7369 return NULL; 7370 } 7371 7372 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7373 { 7374 struct list_head *tmp; 7375 struct mddev *next_mddev, *mddev = v; 7376 7377 ++*pos; 7378 if (v == (void*)2) 7379 return NULL; 7380 7381 spin_lock(&all_mddevs_lock); 7382 if (v == (void*)1) 7383 tmp = all_mddevs.next; 7384 else 7385 tmp = mddev->all_mddevs.next; 7386 if (tmp != &all_mddevs) 7387 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7388 else { 7389 next_mddev = (void*)2; 7390 *pos = 0x10000; 7391 } 7392 spin_unlock(&all_mddevs_lock); 7393 7394 if (v != (void*)1) 7395 mddev_put(mddev); 7396 return next_mddev; 7397 7398 } 7399 7400 static void md_seq_stop(struct seq_file *seq, void *v) 7401 { 7402 struct mddev *mddev = v; 7403 7404 if (mddev && v != (void*)1 && v != (void*)2) 7405 mddev_put(mddev); 7406 } 7407 7408 static int md_seq_show(struct seq_file *seq, void *v) 7409 { 7410 struct mddev *mddev = v; 7411 sector_t sectors; 7412 struct md_rdev *rdev; 7413 7414 if (v == (void*)1) { 7415 struct md_personality *pers; 7416 seq_printf(seq, "Personalities : "); 7417 spin_lock(&pers_lock); 7418 list_for_each_entry(pers, &pers_list, list) 7419 seq_printf(seq, "[%s] ", pers->name); 7420 7421 spin_unlock(&pers_lock); 7422 seq_printf(seq, "\n"); 7423 seq->poll_event = atomic_read(&md_event_count); 7424 return 0; 7425 } 7426 if (v == (void*)2) { 7427 status_unused(seq); 7428 return 0; 7429 } 7430 7431 spin_lock(&mddev->lock); 7432 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7433 seq_printf(seq, "%s : %sactive", mdname(mddev), 7434 mddev->pers ? "" : "in"); 7435 if (mddev->pers) { 7436 if (mddev->ro==1) 7437 seq_printf(seq, " (read-only)"); 7438 if (mddev->ro==2) 7439 seq_printf(seq, " (auto-read-only)"); 7440 seq_printf(seq, " %s", mddev->pers->name); 7441 } 7442 7443 sectors = 0; 7444 rcu_read_lock(); 7445 rdev_for_each_rcu(rdev, mddev) { 7446 char b[BDEVNAME_SIZE]; 7447 seq_printf(seq, " %s[%d]", 7448 bdevname(rdev->bdev,b), rdev->desc_nr); 7449 if (test_bit(WriteMostly, &rdev->flags)) 7450 seq_printf(seq, "(W)"); 7451 if (test_bit(Journal, &rdev->flags)) 7452 seq_printf(seq, "(J)"); 7453 if (test_bit(Faulty, &rdev->flags)) { 7454 seq_printf(seq, "(F)"); 7455 continue; 7456 } 7457 if (rdev->raid_disk < 0) 7458 seq_printf(seq, "(S)"); /* spare */ 7459 if (test_bit(Replacement, &rdev->flags)) 7460 seq_printf(seq, "(R)"); 7461 sectors += rdev->sectors; 7462 } 7463 rcu_read_unlock(); 7464 7465 if (!list_empty(&mddev->disks)) { 7466 if (mddev->pers) 7467 seq_printf(seq, "\n %llu blocks", 7468 (unsigned long long) 7469 mddev->array_sectors / 2); 7470 else 7471 seq_printf(seq, "\n %llu blocks", 7472 (unsigned long long)sectors / 2); 7473 } 7474 if (mddev->persistent) { 7475 if (mddev->major_version != 0 || 7476 mddev->minor_version != 90) { 7477 seq_printf(seq," super %d.%d", 7478 mddev->major_version, 7479 mddev->minor_version); 7480 } 7481 } else if (mddev->external) 7482 seq_printf(seq, " super external:%s", 7483 mddev->metadata_type); 7484 else 7485 seq_printf(seq, " super non-persistent"); 7486 7487 if (mddev->pers) { 7488 mddev->pers->status(seq, mddev); 7489 seq_printf(seq, "\n "); 7490 if (mddev->pers->sync_request) { 7491 if (status_resync(seq, mddev)) 7492 seq_printf(seq, "\n "); 7493 } 7494 } else 7495 seq_printf(seq, "\n "); 7496 7497 bitmap_status(seq, mddev->bitmap); 7498 7499 seq_printf(seq, "\n"); 7500 } 7501 spin_unlock(&mddev->lock); 7502 7503 return 0; 7504 } 7505 7506 static const struct seq_operations md_seq_ops = { 7507 .start = md_seq_start, 7508 .next = md_seq_next, 7509 .stop = md_seq_stop, 7510 .show = md_seq_show, 7511 }; 7512 7513 static int md_seq_open(struct inode *inode, struct file *file) 7514 { 7515 struct seq_file *seq; 7516 int error; 7517 7518 error = seq_open(file, &md_seq_ops); 7519 if (error) 7520 return error; 7521 7522 seq = file->private_data; 7523 seq->poll_event = atomic_read(&md_event_count); 7524 return error; 7525 } 7526 7527 static int md_unloading; 7528 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7529 { 7530 struct seq_file *seq = filp->private_data; 7531 int mask; 7532 7533 if (md_unloading) 7534 return POLLIN|POLLRDNORM|POLLERR|POLLPRI; 7535 poll_wait(filp, &md_event_waiters, wait); 7536 7537 /* always allow read */ 7538 mask = POLLIN | POLLRDNORM; 7539 7540 if (seq->poll_event != atomic_read(&md_event_count)) 7541 mask |= POLLERR | POLLPRI; 7542 return mask; 7543 } 7544 7545 static const struct file_operations md_seq_fops = { 7546 .owner = THIS_MODULE, 7547 .open = md_seq_open, 7548 .read = seq_read, 7549 .llseek = seq_lseek, 7550 .release = seq_release_private, 7551 .poll = mdstat_poll, 7552 }; 7553 7554 int register_md_personality(struct md_personality *p) 7555 { 7556 printk(KERN_INFO "md: %s personality registered for level %d\n", 7557 p->name, p->level); 7558 spin_lock(&pers_lock); 7559 list_add_tail(&p->list, &pers_list); 7560 spin_unlock(&pers_lock); 7561 return 0; 7562 } 7563 EXPORT_SYMBOL(register_md_personality); 7564 7565 int unregister_md_personality(struct md_personality *p) 7566 { 7567 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7568 spin_lock(&pers_lock); 7569 list_del_init(&p->list); 7570 spin_unlock(&pers_lock); 7571 return 0; 7572 } 7573 EXPORT_SYMBOL(unregister_md_personality); 7574 7575 int register_md_cluster_operations(struct md_cluster_operations *ops, 7576 struct module *module) 7577 { 7578 int ret = 0; 7579 spin_lock(&pers_lock); 7580 if (md_cluster_ops != NULL) 7581 ret = -EALREADY; 7582 else { 7583 md_cluster_ops = ops; 7584 md_cluster_mod = module; 7585 } 7586 spin_unlock(&pers_lock); 7587 return ret; 7588 } 7589 EXPORT_SYMBOL(register_md_cluster_operations); 7590 7591 int unregister_md_cluster_operations(void) 7592 { 7593 spin_lock(&pers_lock); 7594 md_cluster_ops = NULL; 7595 spin_unlock(&pers_lock); 7596 return 0; 7597 } 7598 EXPORT_SYMBOL(unregister_md_cluster_operations); 7599 7600 int md_setup_cluster(struct mddev *mddev, int nodes) 7601 { 7602 int err; 7603 7604 err = request_module("md-cluster"); 7605 if (err) { 7606 pr_err("md-cluster module not found.\n"); 7607 return -ENOENT; 7608 } 7609 7610 spin_lock(&pers_lock); 7611 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 7612 spin_unlock(&pers_lock); 7613 return -ENOENT; 7614 } 7615 spin_unlock(&pers_lock); 7616 7617 return md_cluster_ops->join(mddev, nodes); 7618 } 7619 7620 void md_cluster_stop(struct mddev *mddev) 7621 { 7622 if (!md_cluster_ops) 7623 return; 7624 md_cluster_ops->leave(mddev); 7625 module_put(md_cluster_mod); 7626 } 7627 7628 static int is_mddev_idle(struct mddev *mddev, int init) 7629 { 7630 struct md_rdev *rdev; 7631 int idle; 7632 int curr_events; 7633 7634 idle = 1; 7635 rcu_read_lock(); 7636 rdev_for_each_rcu(rdev, mddev) { 7637 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7638 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7639 (int)part_stat_read(&disk->part0, sectors[1]) - 7640 atomic_read(&disk->sync_io); 7641 /* sync IO will cause sync_io to increase before the disk_stats 7642 * as sync_io is counted when a request starts, and 7643 * disk_stats is counted when it completes. 7644 * So resync activity will cause curr_events to be smaller than 7645 * when there was no such activity. 7646 * non-sync IO will cause disk_stat to increase without 7647 * increasing sync_io so curr_events will (eventually) 7648 * be larger than it was before. Once it becomes 7649 * substantially larger, the test below will cause 7650 * the array to appear non-idle, and resync will slow 7651 * down. 7652 * If there is a lot of outstanding resync activity when 7653 * we set last_event to curr_events, then all that activity 7654 * completing might cause the array to appear non-idle 7655 * and resync will be slowed down even though there might 7656 * not have been non-resync activity. This will only 7657 * happen once though. 'last_events' will soon reflect 7658 * the state where there is little or no outstanding 7659 * resync requests, and further resync activity will 7660 * always make curr_events less than last_events. 7661 * 7662 */ 7663 if (init || curr_events - rdev->last_events > 64) { 7664 rdev->last_events = curr_events; 7665 idle = 0; 7666 } 7667 } 7668 rcu_read_unlock(); 7669 return idle; 7670 } 7671 7672 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7673 { 7674 /* another "blocks" (512byte) blocks have been synced */ 7675 atomic_sub(blocks, &mddev->recovery_active); 7676 wake_up(&mddev->recovery_wait); 7677 if (!ok) { 7678 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7679 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7680 md_wakeup_thread(mddev->thread); 7681 // stop recovery, signal do_sync .... 7682 } 7683 } 7684 EXPORT_SYMBOL(md_done_sync); 7685 7686 /* md_write_start(mddev, bi) 7687 * If we need to update some array metadata (e.g. 'active' flag 7688 * in superblock) before writing, schedule a superblock update 7689 * and wait for it to complete. 7690 */ 7691 void md_write_start(struct mddev *mddev, struct bio *bi) 7692 { 7693 int did_change = 0; 7694 if (bio_data_dir(bi) != WRITE) 7695 return; 7696 7697 BUG_ON(mddev->ro == 1); 7698 if (mddev->ro == 2) { 7699 /* need to switch to read/write */ 7700 mddev->ro = 0; 7701 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7702 md_wakeup_thread(mddev->thread); 7703 md_wakeup_thread(mddev->sync_thread); 7704 did_change = 1; 7705 } 7706 atomic_inc(&mddev->writes_pending); 7707 if (mddev->safemode == 1) 7708 mddev->safemode = 0; 7709 if (mddev->in_sync) { 7710 spin_lock(&mddev->lock); 7711 if (mddev->in_sync) { 7712 mddev->in_sync = 0; 7713 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7714 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7715 md_wakeup_thread(mddev->thread); 7716 did_change = 1; 7717 } 7718 spin_unlock(&mddev->lock); 7719 } 7720 if (did_change) 7721 sysfs_notify_dirent_safe(mddev->sysfs_state); 7722 wait_event(mddev->sb_wait, 7723 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7724 } 7725 EXPORT_SYMBOL(md_write_start); 7726 7727 void md_write_end(struct mddev *mddev) 7728 { 7729 if (atomic_dec_and_test(&mddev->writes_pending)) { 7730 if (mddev->safemode == 2) 7731 md_wakeup_thread(mddev->thread); 7732 else if (mddev->safemode_delay) 7733 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7734 } 7735 } 7736 EXPORT_SYMBOL(md_write_end); 7737 7738 /* md_allow_write(mddev) 7739 * Calling this ensures that the array is marked 'active' so that writes 7740 * may proceed without blocking. It is important to call this before 7741 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7742 * Must be called with mddev_lock held. 7743 * 7744 * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock 7745 * is dropped, so return -EAGAIN after notifying userspace. 7746 */ 7747 int md_allow_write(struct mddev *mddev) 7748 { 7749 if (!mddev->pers) 7750 return 0; 7751 if (mddev->ro) 7752 return 0; 7753 if (!mddev->pers->sync_request) 7754 return 0; 7755 7756 spin_lock(&mddev->lock); 7757 if (mddev->in_sync) { 7758 mddev->in_sync = 0; 7759 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7760 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7761 if (mddev->safemode_delay && 7762 mddev->safemode == 0) 7763 mddev->safemode = 1; 7764 spin_unlock(&mddev->lock); 7765 md_update_sb(mddev, 0); 7766 sysfs_notify_dirent_safe(mddev->sysfs_state); 7767 } else 7768 spin_unlock(&mddev->lock); 7769 7770 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7771 return -EAGAIN; 7772 else 7773 return 0; 7774 } 7775 EXPORT_SYMBOL_GPL(md_allow_write); 7776 7777 #define SYNC_MARKS 10 7778 #define SYNC_MARK_STEP (3*HZ) 7779 #define UPDATE_FREQUENCY (5*60*HZ) 7780 void md_do_sync(struct md_thread *thread) 7781 { 7782 struct mddev *mddev = thread->mddev; 7783 struct mddev *mddev2; 7784 unsigned int currspeed = 0, 7785 window; 7786 sector_t max_sectors,j, io_sectors, recovery_done; 7787 unsigned long mark[SYNC_MARKS]; 7788 unsigned long update_time; 7789 sector_t mark_cnt[SYNC_MARKS]; 7790 int last_mark,m; 7791 struct list_head *tmp; 7792 sector_t last_check; 7793 int skipped = 0; 7794 struct md_rdev *rdev; 7795 char *desc, *action = NULL; 7796 struct blk_plug plug; 7797 int ret; 7798 7799 /* just incase thread restarts... */ 7800 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7801 return; 7802 if (mddev->ro) {/* never try to sync a read-only array */ 7803 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7804 return; 7805 } 7806 7807 if (mddev_is_clustered(mddev)) { 7808 ret = md_cluster_ops->resync_start(mddev); 7809 if (ret) 7810 goto skip; 7811 7812 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7813 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 7814 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 7815 && ((unsigned long long)mddev->curr_resync_completed 7816 < (unsigned long long)mddev->resync_max_sectors)) 7817 goto skip; 7818 } 7819 7820 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7821 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7822 desc = "data-check"; 7823 action = "check"; 7824 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7825 desc = "requested-resync"; 7826 action = "repair"; 7827 } else 7828 desc = "resync"; 7829 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7830 desc = "reshape"; 7831 else 7832 desc = "recovery"; 7833 7834 mddev->last_sync_action = action ?: desc; 7835 7836 /* we overload curr_resync somewhat here. 7837 * 0 == not engaged in resync at all 7838 * 2 == checking that there is no conflict with another sync 7839 * 1 == like 2, but have yielded to allow conflicting resync to 7840 * commense 7841 * other == active in resync - this many blocks 7842 * 7843 * Before starting a resync we must have set curr_resync to 7844 * 2, and then checked that every "conflicting" array has curr_resync 7845 * less than ours. When we find one that is the same or higher 7846 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7847 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7848 * This will mean we have to start checking from the beginning again. 7849 * 7850 */ 7851 7852 do { 7853 mddev->curr_resync = 2; 7854 7855 try_again: 7856 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7857 goto skip; 7858 for_each_mddev(mddev2, tmp) { 7859 if (mddev2 == mddev) 7860 continue; 7861 if (!mddev->parallel_resync 7862 && mddev2->curr_resync 7863 && match_mddev_units(mddev, mddev2)) { 7864 DEFINE_WAIT(wq); 7865 if (mddev < mddev2 && mddev->curr_resync == 2) { 7866 /* arbitrarily yield */ 7867 mddev->curr_resync = 1; 7868 wake_up(&resync_wait); 7869 } 7870 if (mddev > mddev2 && mddev->curr_resync == 1) 7871 /* no need to wait here, we can wait the next 7872 * time 'round when curr_resync == 2 7873 */ 7874 continue; 7875 /* We need to wait 'interruptible' so as not to 7876 * contribute to the load average, and not to 7877 * be caught by 'softlockup' 7878 */ 7879 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7880 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7881 mddev2->curr_resync >= mddev->curr_resync) { 7882 printk(KERN_INFO "md: delaying %s of %s" 7883 " until %s has finished (they" 7884 " share one or more physical units)\n", 7885 desc, mdname(mddev), mdname(mddev2)); 7886 mddev_put(mddev2); 7887 if (signal_pending(current)) 7888 flush_signals(current); 7889 schedule(); 7890 finish_wait(&resync_wait, &wq); 7891 goto try_again; 7892 } 7893 finish_wait(&resync_wait, &wq); 7894 } 7895 } 7896 } while (mddev->curr_resync < 2); 7897 7898 j = 0; 7899 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7900 /* resync follows the size requested by the personality, 7901 * which defaults to physical size, but can be virtual size 7902 */ 7903 max_sectors = mddev->resync_max_sectors; 7904 atomic64_set(&mddev->resync_mismatches, 0); 7905 /* we don't use the checkpoint if there's a bitmap */ 7906 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7907 j = mddev->resync_min; 7908 else if (!mddev->bitmap) 7909 j = mddev->recovery_cp; 7910 7911 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7912 max_sectors = mddev->resync_max_sectors; 7913 else { 7914 /* recovery follows the physical size of devices */ 7915 max_sectors = mddev->dev_sectors; 7916 j = MaxSector; 7917 rcu_read_lock(); 7918 rdev_for_each_rcu(rdev, mddev) 7919 if (rdev->raid_disk >= 0 && 7920 !test_bit(Journal, &rdev->flags) && 7921 !test_bit(Faulty, &rdev->flags) && 7922 !test_bit(In_sync, &rdev->flags) && 7923 rdev->recovery_offset < j) 7924 j = rdev->recovery_offset; 7925 rcu_read_unlock(); 7926 7927 /* If there is a bitmap, we need to make sure all 7928 * writes that started before we added a spare 7929 * complete before we start doing a recovery. 7930 * Otherwise the write might complete and (via 7931 * bitmap_endwrite) set a bit in the bitmap after the 7932 * recovery has checked that bit and skipped that 7933 * region. 7934 */ 7935 if (mddev->bitmap) { 7936 mddev->pers->quiesce(mddev, 1); 7937 mddev->pers->quiesce(mddev, 0); 7938 } 7939 } 7940 7941 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7942 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7943 " %d KB/sec/disk.\n", speed_min(mddev)); 7944 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7945 "(but not more than %d KB/sec) for %s.\n", 7946 speed_max(mddev), desc); 7947 7948 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7949 7950 io_sectors = 0; 7951 for (m = 0; m < SYNC_MARKS; m++) { 7952 mark[m] = jiffies; 7953 mark_cnt[m] = io_sectors; 7954 } 7955 last_mark = 0; 7956 mddev->resync_mark = mark[last_mark]; 7957 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7958 7959 /* 7960 * Tune reconstruction: 7961 */ 7962 window = 32*(PAGE_SIZE/512); 7963 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7964 window/2, (unsigned long long)max_sectors/2); 7965 7966 atomic_set(&mddev->recovery_active, 0); 7967 last_check = 0; 7968 7969 if (j>2) { 7970 printk(KERN_INFO 7971 "md: resuming %s of %s from checkpoint.\n", 7972 desc, mdname(mddev)); 7973 mddev->curr_resync = j; 7974 } else 7975 mddev->curr_resync = 3; /* no longer delayed */ 7976 mddev->curr_resync_completed = j; 7977 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7978 md_new_event(mddev); 7979 update_time = jiffies; 7980 7981 blk_start_plug(&plug); 7982 while (j < max_sectors) { 7983 sector_t sectors; 7984 7985 skipped = 0; 7986 7987 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7988 ((mddev->curr_resync > mddev->curr_resync_completed && 7989 (mddev->curr_resync - mddev->curr_resync_completed) 7990 > (max_sectors >> 4)) || 7991 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7992 (j - mddev->curr_resync_completed)*2 7993 >= mddev->resync_max - mddev->curr_resync_completed || 7994 mddev->curr_resync_completed > mddev->resync_max 7995 )) { 7996 /* time to update curr_resync_completed */ 7997 wait_event(mddev->recovery_wait, 7998 atomic_read(&mddev->recovery_active) == 0); 7999 mddev->curr_resync_completed = j; 8000 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8001 j > mddev->recovery_cp) 8002 mddev->recovery_cp = j; 8003 update_time = jiffies; 8004 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 8005 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8006 } 8007 8008 while (j >= mddev->resync_max && 8009 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8010 /* As this condition is controlled by user-space, 8011 * we can block indefinitely, so use '_interruptible' 8012 * to avoid triggering warnings. 8013 */ 8014 flush_signals(current); /* just in case */ 8015 wait_event_interruptible(mddev->recovery_wait, 8016 mddev->resync_max > j 8017 || test_bit(MD_RECOVERY_INTR, 8018 &mddev->recovery)); 8019 } 8020 8021 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8022 break; 8023 8024 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8025 if (sectors == 0) { 8026 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8027 break; 8028 } 8029 8030 if (!skipped) { /* actual IO requested */ 8031 io_sectors += sectors; 8032 atomic_add(sectors, &mddev->recovery_active); 8033 } 8034 8035 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8036 break; 8037 8038 j += sectors; 8039 if (j > max_sectors) 8040 /* when skipping, extra large numbers can be returned. */ 8041 j = max_sectors; 8042 if (j > 2) 8043 mddev->curr_resync = j; 8044 mddev->curr_mark_cnt = io_sectors; 8045 if (last_check == 0) 8046 /* this is the earliest that rebuild will be 8047 * visible in /proc/mdstat 8048 */ 8049 md_new_event(mddev); 8050 8051 if (last_check + window > io_sectors || j == max_sectors) 8052 continue; 8053 8054 last_check = io_sectors; 8055 repeat: 8056 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8057 /* step marks */ 8058 int next = (last_mark+1) % SYNC_MARKS; 8059 8060 mddev->resync_mark = mark[next]; 8061 mddev->resync_mark_cnt = mark_cnt[next]; 8062 mark[next] = jiffies; 8063 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8064 last_mark = next; 8065 } 8066 8067 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8068 break; 8069 8070 /* 8071 * this loop exits only if either when we are slower than 8072 * the 'hard' speed limit, or the system was IO-idle for 8073 * a jiffy. 8074 * the system might be non-idle CPU-wise, but we only care 8075 * about not overloading the IO subsystem. (things like an 8076 * e2fsck being done on the RAID array should execute fast) 8077 */ 8078 cond_resched(); 8079 8080 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8081 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8082 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8083 8084 if (currspeed > speed_min(mddev)) { 8085 if (currspeed > speed_max(mddev)) { 8086 msleep(500); 8087 goto repeat; 8088 } 8089 if (!is_mddev_idle(mddev, 0)) { 8090 /* 8091 * Give other IO more of a chance. 8092 * The faster the devices, the less we wait. 8093 */ 8094 wait_event(mddev->recovery_wait, 8095 !atomic_read(&mddev->recovery_active)); 8096 } 8097 } 8098 } 8099 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc, 8100 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8101 ? "interrupted" : "done"); 8102 /* 8103 * this also signals 'finished resyncing' to md_stop 8104 */ 8105 blk_finish_plug(&plug); 8106 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8107 8108 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8109 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8110 mddev->curr_resync > 2) { 8111 mddev->curr_resync_completed = mddev->curr_resync; 8112 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8113 } 8114 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8115 8116 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8117 mddev->curr_resync > 2) { 8118 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8119 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8120 if (mddev->curr_resync >= mddev->recovery_cp) { 8121 printk(KERN_INFO 8122 "md: checkpointing %s of %s.\n", 8123 desc, mdname(mddev)); 8124 if (test_bit(MD_RECOVERY_ERROR, 8125 &mddev->recovery)) 8126 mddev->recovery_cp = 8127 mddev->curr_resync_completed; 8128 else 8129 mddev->recovery_cp = 8130 mddev->curr_resync; 8131 } 8132 } else 8133 mddev->recovery_cp = MaxSector; 8134 } else { 8135 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8136 mddev->curr_resync = MaxSector; 8137 rcu_read_lock(); 8138 rdev_for_each_rcu(rdev, mddev) 8139 if (rdev->raid_disk >= 0 && 8140 mddev->delta_disks >= 0 && 8141 !test_bit(Journal, &rdev->flags) && 8142 !test_bit(Faulty, &rdev->flags) && 8143 !test_bit(In_sync, &rdev->flags) && 8144 rdev->recovery_offset < mddev->curr_resync) 8145 rdev->recovery_offset = mddev->curr_resync; 8146 rcu_read_unlock(); 8147 } 8148 } 8149 skip: 8150 if (mddev_is_clustered(mddev) && 8151 ret == 0) { 8152 /* set CHANGE_PENDING here since maybe another 8153 * update is needed, so other nodes are informed */ 8154 set_mask_bits(&mddev->flags, 0, 8155 BIT(MD_CHANGE_PENDING) | BIT(MD_CHANGE_DEVS)); 8156 md_wakeup_thread(mddev->thread); 8157 wait_event(mddev->sb_wait, 8158 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 8159 md_cluster_ops->resync_finish(mddev); 8160 } else 8161 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8162 8163 spin_lock(&mddev->lock); 8164 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8165 /* We completed so min/max setting can be forgotten if used. */ 8166 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8167 mddev->resync_min = 0; 8168 mddev->resync_max = MaxSector; 8169 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8170 mddev->resync_min = mddev->curr_resync_completed; 8171 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8172 mddev->curr_resync = 0; 8173 spin_unlock(&mddev->lock); 8174 8175 wake_up(&resync_wait); 8176 md_wakeup_thread(mddev->thread); 8177 return; 8178 } 8179 EXPORT_SYMBOL_GPL(md_do_sync); 8180 8181 static int remove_and_add_spares(struct mddev *mddev, 8182 struct md_rdev *this) 8183 { 8184 struct md_rdev *rdev; 8185 int spares = 0; 8186 int removed = 0; 8187 8188 rdev_for_each(rdev, mddev) 8189 if ((this == NULL || rdev == this) && 8190 rdev->raid_disk >= 0 && 8191 !test_bit(Blocked, &rdev->flags) && 8192 (test_bit(Faulty, &rdev->flags) || 8193 (!test_bit(In_sync, &rdev->flags) && 8194 !test_bit(Journal, &rdev->flags))) && 8195 atomic_read(&rdev->nr_pending)==0) { 8196 if (mddev->pers->hot_remove_disk( 8197 mddev, rdev) == 0) { 8198 sysfs_unlink_rdev(mddev, rdev); 8199 rdev->raid_disk = -1; 8200 removed++; 8201 } 8202 } 8203 if (removed && mddev->kobj.sd) 8204 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8205 8206 if (this && removed) 8207 goto no_add; 8208 8209 rdev_for_each(rdev, mddev) { 8210 if (this && this != rdev) 8211 continue; 8212 if (test_bit(Candidate, &rdev->flags)) 8213 continue; 8214 if (rdev->raid_disk >= 0 && 8215 !test_bit(In_sync, &rdev->flags) && 8216 !test_bit(Journal, &rdev->flags) && 8217 !test_bit(Faulty, &rdev->flags)) 8218 spares++; 8219 if (rdev->raid_disk >= 0) 8220 continue; 8221 if (test_bit(Faulty, &rdev->flags)) 8222 continue; 8223 if (!test_bit(Journal, &rdev->flags)) { 8224 if (mddev->ro && 8225 ! (rdev->saved_raid_disk >= 0 && 8226 !test_bit(Bitmap_sync, &rdev->flags))) 8227 continue; 8228 8229 rdev->recovery_offset = 0; 8230 } 8231 if (mddev->pers-> 8232 hot_add_disk(mddev, rdev) == 0) { 8233 if (sysfs_link_rdev(mddev, rdev)) 8234 /* failure here is OK */; 8235 if (!test_bit(Journal, &rdev->flags)) 8236 spares++; 8237 md_new_event(mddev); 8238 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8239 } 8240 } 8241 no_add: 8242 if (removed) 8243 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8244 return spares; 8245 } 8246 8247 static void md_start_sync(struct work_struct *ws) 8248 { 8249 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8250 int ret = 0; 8251 8252 mddev->sync_thread = md_register_thread(md_do_sync, 8253 mddev, 8254 "resync"); 8255 if (!mddev->sync_thread) { 8256 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN)) 8257 printk(KERN_ERR "%s: could not start resync" 8258 " thread...\n", 8259 mdname(mddev)); 8260 /* leave the spares where they are, it shouldn't hurt */ 8261 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8262 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8263 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8264 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8265 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8266 wake_up(&resync_wait); 8267 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8268 &mddev->recovery)) 8269 if (mddev->sysfs_action) 8270 sysfs_notify_dirent_safe(mddev->sysfs_action); 8271 } else 8272 md_wakeup_thread(mddev->sync_thread); 8273 sysfs_notify_dirent_safe(mddev->sysfs_action); 8274 md_new_event(mddev); 8275 } 8276 8277 /* 8278 * This routine is regularly called by all per-raid-array threads to 8279 * deal with generic issues like resync and super-block update. 8280 * Raid personalities that don't have a thread (linear/raid0) do not 8281 * need this as they never do any recovery or update the superblock. 8282 * 8283 * It does not do any resync itself, but rather "forks" off other threads 8284 * to do that as needed. 8285 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8286 * "->recovery" and create a thread at ->sync_thread. 8287 * When the thread finishes it sets MD_RECOVERY_DONE 8288 * and wakeups up this thread which will reap the thread and finish up. 8289 * This thread also removes any faulty devices (with nr_pending == 0). 8290 * 8291 * The overall approach is: 8292 * 1/ if the superblock needs updating, update it. 8293 * 2/ If a recovery thread is running, don't do anything else. 8294 * 3/ If recovery has finished, clean up, possibly marking spares active. 8295 * 4/ If there are any faulty devices, remove them. 8296 * 5/ If array is degraded, try to add spares devices 8297 * 6/ If array has spares or is not in-sync, start a resync thread. 8298 */ 8299 void md_check_recovery(struct mddev *mddev) 8300 { 8301 if (mddev->suspended) 8302 return; 8303 8304 if (mddev->bitmap) 8305 bitmap_daemon_work(mddev); 8306 8307 if (signal_pending(current)) { 8308 if (mddev->pers->sync_request && !mddev->external) { 8309 printk(KERN_INFO "md: %s in immediate safe mode\n", 8310 mdname(mddev)); 8311 mddev->safemode = 2; 8312 } 8313 flush_signals(current); 8314 } 8315 8316 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8317 return; 8318 if ( ! ( 8319 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) || 8320 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8321 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8322 test_bit(MD_RELOAD_SB, &mddev->flags) || 8323 (mddev->external == 0 && mddev->safemode == 1) || 8324 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 8325 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8326 )) 8327 return; 8328 8329 if (mddev_trylock(mddev)) { 8330 int spares = 0; 8331 8332 if (mddev->ro) { 8333 struct md_rdev *rdev; 8334 if (!mddev->external && mddev->in_sync) 8335 /* 'Blocked' flag not needed as failed devices 8336 * will be recorded if array switched to read/write. 8337 * Leaving it set will prevent the device 8338 * from being removed. 8339 */ 8340 rdev_for_each(rdev, mddev) 8341 clear_bit(Blocked, &rdev->flags); 8342 /* On a read-only array we can: 8343 * - remove failed devices 8344 * - add already-in_sync devices if the array itself 8345 * is in-sync. 8346 * As we only add devices that are already in-sync, 8347 * we can activate the spares immediately. 8348 */ 8349 remove_and_add_spares(mddev, NULL); 8350 /* There is no thread, but we need to call 8351 * ->spare_active and clear saved_raid_disk 8352 */ 8353 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8354 md_reap_sync_thread(mddev); 8355 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8356 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8357 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 8358 goto unlock; 8359 } 8360 8361 if (mddev_is_clustered(mddev)) { 8362 struct md_rdev *rdev; 8363 /* kick the device if another node issued a 8364 * remove disk. 8365 */ 8366 rdev_for_each(rdev, mddev) { 8367 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8368 rdev->raid_disk < 0) 8369 md_kick_rdev_from_array(rdev); 8370 } 8371 8372 if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags)) 8373 md_reload_sb(mddev, mddev->good_device_nr); 8374 } 8375 8376 if (!mddev->external) { 8377 int did_change = 0; 8378 spin_lock(&mddev->lock); 8379 if (mddev->safemode && 8380 !atomic_read(&mddev->writes_pending) && 8381 !mddev->in_sync && 8382 mddev->recovery_cp == MaxSector) { 8383 mddev->in_sync = 1; 8384 did_change = 1; 8385 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 8386 } 8387 if (mddev->safemode == 1) 8388 mddev->safemode = 0; 8389 spin_unlock(&mddev->lock); 8390 if (did_change) 8391 sysfs_notify_dirent_safe(mddev->sysfs_state); 8392 } 8393 8394 if (mddev->flags & MD_UPDATE_SB_FLAGS) 8395 md_update_sb(mddev, 0); 8396 8397 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8398 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8399 /* resync/recovery still happening */ 8400 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8401 goto unlock; 8402 } 8403 if (mddev->sync_thread) { 8404 md_reap_sync_thread(mddev); 8405 goto unlock; 8406 } 8407 /* Set RUNNING before clearing NEEDED to avoid 8408 * any transients in the value of "sync_action". 8409 */ 8410 mddev->curr_resync_completed = 0; 8411 spin_lock(&mddev->lock); 8412 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8413 spin_unlock(&mddev->lock); 8414 /* Clear some bits that don't mean anything, but 8415 * might be left set 8416 */ 8417 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8418 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8419 8420 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8421 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8422 goto not_running; 8423 /* no recovery is running. 8424 * remove any failed drives, then 8425 * add spares if possible. 8426 * Spares are also removed and re-added, to allow 8427 * the personality to fail the re-add. 8428 */ 8429 8430 if (mddev->reshape_position != MaxSector) { 8431 if (mddev->pers->check_reshape == NULL || 8432 mddev->pers->check_reshape(mddev) != 0) 8433 /* Cannot proceed */ 8434 goto not_running; 8435 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8436 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8437 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8438 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8439 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8440 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8441 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8442 } else if (mddev->recovery_cp < MaxSector) { 8443 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8444 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8445 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8446 /* nothing to be done ... */ 8447 goto not_running; 8448 8449 if (mddev->pers->sync_request) { 8450 if (spares) { 8451 /* We are adding a device or devices to an array 8452 * which has the bitmap stored on all devices. 8453 * So make sure all bitmap pages get written 8454 */ 8455 bitmap_write_all(mddev->bitmap); 8456 } 8457 INIT_WORK(&mddev->del_work, md_start_sync); 8458 queue_work(md_misc_wq, &mddev->del_work); 8459 goto unlock; 8460 } 8461 not_running: 8462 if (!mddev->sync_thread) { 8463 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8464 wake_up(&resync_wait); 8465 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8466 &mddev->recovery)) 8467 if (mddev->sysfs_action) 8468 sysfs_notify_dirent_safe(mddev->sysfs_action); 8469 } 8470 unlock: 8471 wake_up(&mddev->sb_wait); 8472 mddev_unlock(mddev); 8473 } 8474 } 8475 EXPORT_SYMBOL(md_check_recovery); 8476 8477 void md_reap_sync_thread(struct mddev *mddev) 8478 { 8479 struct md_rdev *rdev; 8480 8481 /* resync has finished, collect result */ 8482 md_unregister_thread(&mddev->sync_thread); 8483 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8484 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8485 /* success...*/ 8486 /* activate any spares */ 8487 if (mddev->pers->spare_active(mddev)) { 8488 sysfs_notify(&mddev->kobj, NULL, 8489 "degraded"); 8490 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8491 } 8492 } 8493 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8494 mddev->pers->finish_reshape) 8495 mddev->pers->finish_reshape(mddev); 8496 8497 /* If array is no-longer degraded, then any saved_raid_disk 8498 * information must be scrapped. 8499 */ 8500 if (!mddev->degraded) 8501 rdev_for_each(rdev, mddev) 8502 rdev->saved_raid_disk = -1; 8503 8504 md_update_sb(mddev, 1); 8505 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8506 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8507 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8508 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8509 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8510 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8511 wake_up(&resync_wait); 8512 /* flag recovery needed just to double check */ 8513 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8514 sysfs_notify_dirent_safe(mddev->sysfs_action); 8515 md_new_event(mddev); 8516 if (mddev->event_work.func) 8517 queue_work(md_misc_wq, &mddev->event_work); 8518 } 8519 EXPORT_SYMBOL(md_reap_sync_thread); 8520 8521 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8522 { 8523 sysfs_notify_dirent_safe(rdev->sysfs_state); 8524 wait_event_timeout(rdev->blocked_wait, 8525 !test_bit(Blocked, &rdev->flags) && 8526 !test_bit(BlockedBadBlocks, &rdev->flags), 8527 msecs_to_jiffies(5000)); 8528 rdev_dec_pending(rdev, mddev); 8529 } 8530 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8531 8532 void md_finish_reshape(struct mddev *mddev) 8533 { 8534 /* called be personality module when reshape completes. */ 8535 struct md_rdev *rdev; 8536 8537 rdev_for_each(rdev, mddev) { 8538 if (rdev->data_offset > rdev->new_data_offset) 8539 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8540 else 8541 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8542 rdev->data_offset = rdev->new_data_offset; 8543 } 8544 } 8545 EXPORT_SYMBOL(md_finish_reshape); 8546 8547 /* Bad block management */ 8548 8549 /* Returns 1 on success, 0 on failure */ 8550 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8551 int is_new) 8552 { 8553 struct mddev *mddev = rdev->mddev; 8554 int rv; 8555 if (is_new) 8556 s += rdev->new_data_offset; 8557 else 8558 s += rdev->data_offset; 8559 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 8560 if (rv == 0) { 8561 /* Make sure they get written out promptly */ 8562 sysfs_notify_dirent_safe(rdev->sysfs_state); 8563 set_mask_bits(&mddev->flags, 0, 8564 BIT(MD_CHANGE_CLEAN) | BIT(MD_CHANGE_PENDING)); 8565 md_wakeup_thread(rdev->mddev->thread); 8566 return 1; 8567 } else 8568 return 0; 8569 } 8570 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8571 8572 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8573 int is_new) 8574 { 8575 if (is_new) 8576 s += rdev->new_data_offset; 8577 else 8578 s += rdev->data_offset; 8579 return badblocks_clear(&rdev->badblocks, 8580 s, sectors); 8581 } 8582 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8583 8584 static int md_notify_reboot(struct notifier_block *this, 8585 unsigned long code, void *x) 8586 { 8587 struct list_head *tmp; 8588 struct mddev *mddev; 8589 int need_delay = 0; 8590 8591 for_each_mddev(mddev, tmp) { 8592 if (mddev_trylock(mddev)) { 8593 if (mddev->pers) 8594 __md_stop_writes(mddev); 8595 if (mddev->persistent) 8596 mddev->safemode = 2; 8597 mddev_unlock(mddev); 8598 } 8599 need_delay = 1; 8600 } 8601 /* 8602 * certain more exotic SCSI devices are known to be 8603 * volatile wrt too early system reboots. While the 8604 * right place to handle this issue is the given 8605 * driver, we do want to have a safe RAID driver ... 8606 */ 8607 if (need_delay) 8608 mdelay(1000*1); 8609 8610 return NOTIFY_DONE; 8611 } 8612 8613 static struct notifier_block md_notifier = { 8614 .notifier_call = md_notify_reboot, 8615 .next = NULL, 8616 .priority = INT_MAX, /* before any real devices */ 8617 }; 8618 8619 static void md_geninit(void) 8620 { 8621 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8622 8623 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8624 } 8625 8626 static int __init md_init(void) 8627 { 8628 int ret = -ENOMEM; 8629 8630 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8631 if (!md_wq) 8632 goto err_wq; 8633 8634 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8635 if (!md_misc_wq) 8636 goto err_misc_wq; 8637 8638 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8639 goto err_md; 8640 8641 if ((ret = register_blkdev(0, "mdp")) < 0) 8642 goto err_mdp; 8643 mdp_major = ret; 8644 8645 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 8646 md_probe, NULL, NULL); 8647 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8648 md_probe, NULL, NULL); 8649 8650 register_reboot_notifier(&md_notifier); 8651 raid_table_header = register_sysctl_table(raid_root_table); 8652 8653 md_geninit(); 8654 return 0; 8655 8656 err_mdp: 8657 unregister_blkdev(MD_MAJOR, "md"); 8658 err_md: 8659 destroy_workqueue(md_misc_wq); 8660 err_misc_wq: 8661 destroy_workqueue(md_wq); 8662 err_wq: 8663 return ret; 8664 } 8665 8666 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 8667 { 8668 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 8669 struct md_rdev *rdev2; 8670 int role, ret; 8671 char b[BDEVNAME_SIZE]; 8672 8673 /* Check for change of roles in the active devices */ 8674 rdev_for_each(rdev2, mddev) { 8675 if (test_bit(Faulty, &rdev2->flags)) 8676 continue; 8677 8678 /* Check if the roles changed */ 8679 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 8680 8681 if (test_bit(Candidate, &rdev2->flags)) { 8682 if (role == 0xfffe) { 8683 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 8684 md_kick_rdev_from_array(rdev2); 8685 continue; 8686 } 8687 else 8688 clear_bit(Candidate, &rdev2->flags); 8689 } 8690 8691 if (role != rdev2->raid_disk) { 8692 /* got activated */ 8693 if (rdev2->raid_disk == -1 && role != 0xffff) { 8694 rdev2->saved_raid_disk = role; 8695 ret = remove_and_add_spares(mddev, rdev2); 8696 pr_info("Activated spare: %s\n", 8697 bdevname(rdev2->bdev,b)); 8698 /* wakeup mddev->thread here, so array could 8699 * perform resync with the new activated disk */ 8700 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8701 md_wakeup_thread(mddev->thread); 8702 8703 } 8704 /* device faulty 8705 * We just want to do the minimum to mark the disk 8706 * as faulty. The recovery is performed by the 8707 * one who initiated the error. 8708 */ 8709 if ((role == 0xfffe) || (role == 0xfffd)) { 8710 md_error(mddev, rdev2); 8711 clear_bit(Blocked, &rdev2->flags); 8712 } 8713 } 8714 } 8715 8716 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 8717 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 8718 8719 /* Finally set the event to be up to date */ 8720 mddev->events = le64_to_cpu(sb->events); 8721 } 8722 8723 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 8724 { 8725 int err; 8726 struct page *swapout = rdev->sb_page; 8727 struct mdp_superblock_1 *sb; 8728 8729 /* Store the sb page of the rdev in the swapout temporary 8730 * variable in case we err in the future 8731 */ 8732 rdev->sb_page = NULL; 8733 alloc_disk_sb(rdev); 8734 ClearPageUptodate(rdev->sb_page); 8735 rdev->sb_loaded = 0; 8736 err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version); 8737 8738 if (err < 0) { 8739 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 8740 __func__, __LINE__, rdev->desc_nr, err); 8741 put_page(rdev->sb_page); 8742 rdev->sb_page = swapout; 8743 rdev->sb_loaded = 1; 8744 return err; 8745 } 8746 8747 sb = page_address(rdev->sb_page); 8748 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 8749 * is not set 8750 */ 8751 8752 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 8753 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 8754 8755 /* The other node finished recovery, call spare_active to set 8756 * device In_sync and mddev->degraded 8757 */ 8758 if (rdev->recovery_offset == MaxSector && 8759 !test_bit(In_sync, &rdev->flags) && 8760 mddev->pers->spare_active(mddev)) 8761 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8762 8763 put_page(swapout); 8764 return 0; 8765 } 8766 8767 void md_reload_sb(struct mddev *mddev, int nr) 8768 { 8769 struct md_rdev *rdev; 8770 int err; 8771 8772 /* Find the rdev */ 8773 rdev_for_each_rcu(rdev, mddev) { 8774 if (rdev->desc_nr == nr) 8775 break; 8776 } 8777 8778 if (!rdev || rdev->desc_nr != nr) { 8779 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 8780 return; 8781 } 8782 8783 err = read_rdev(mddev, rdev); 8784 if (err < 0) 8785 return; 8786 8787 check_sb_changes(mddev, rdev); 8788 8789 /* Read all rdev's to update recovery_offset */ 8790 rdev_for_each_rcu(rdev, mddev) 8791 read_rdev(mddev, rdev); 8792 } 8793 EXPORT_SYMBOL(md_reload_sb); 8794 8795 #ifndef MODULE 8796 8797 /* 8798 * Searches all registered partitions for autorun RAID arrays 8799 * at boot time. 8800 */ 8801 8802 static LIST_HEAD(all_detected_devices); 8803 struct detected_devices_node { 8804 struct list_head list; 8805 dev_t dev; 8806 }; 8807 8808 void md_autodetect_dev(dev_t dev) 8809 { 8810 struct detected_devices_node *node_detected_dev; 8811 8812 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8813 if (node_detected_dev) { 8814 node_detected_dev->dev = dev; 8815 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8816 } else { 8817 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8818 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8819 } 8820 } 8821 8822 static void autostart_arrays(int part) 8823 { 8824 struct md_rdev *rdev; 8825 struct detected_devices_node *node_detected_dev; 8826 dev_t dev; 8827 int i_scanned, i_passed; 8828 8829 i_scanned = 0; 8830 i_passed = 0; 8831 8832 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8833 8834 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8835 i_scanned++; 8836 node_detected_dev = list_entry(all_detected_devices.next, 8837 struct detected_devices_node, list); 8838 list_del(&node_detected_dev->list); 8839 dev = node_detected_dev->dev; 8840 kfree(node_detected_dev); 8841 rdev = md_import_device(dev,0, 90); 8842 if (IS_ERR(rdev)) 8843 continue; 8844 8845 if (test_bit(Faulty, &rdev->flags)) 8846 continue; 8847 8848 set_bit(AutoDetected, &rdev->flags); 8849 list_add(&rdev->same_set, &pending_raid_disks); 8850 i_passed++; 8851 } 8852 8853 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8854 i_scanned, i_passed); 8855 8856 autorun_devices(part); 8857 } 8858 8859 #endif /* !MODULE */ 8860 8861 static __exit void md_exit(void) 8862 { 8863 struct mddev *mddev; 8864 struct list_head *tmp; 8865 int delay = 1; 8866 8867 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 8868 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8869 8870 unregister_blkdev(MD_MAJOR,"md"); 8871 unregister_blkdev(mdp_major, "mdp"); 8872 unregister_reboot_notifier(&md_notifier); 8873 unregister_sysctl_table(raid_table_header); 8874 8875 /* We cannot unload the modules while some process is 8876 * waiting for us in select() or poll() - wake them up 8877 */ 8878 md_unloading = 1; 8879 while (waitqueue_active(&md_event_waiters)) { 8880 /* not safe to leave yet */ 8881 wake_up(&md_event_waiters); 8882 msleep(delay); 8883 delay += delay; 8884 } 8885 remove_proc_entry("mdstat", NULL); 8886 8887 for_each_mddev(mddev, tmp) { 8888 export_array(mddev); 8889 mddev->hold_active = 0; 8890 } 8891 destroy_workqueue(md_misc_wq); 8892 destroy_workqueue(md_wq); 8893 } 8894 8895 subsys_initcall(md_init); 8896 module_exit(md_exit) 8897 8898 static int get_ro(char *buffer, struct kernel_param *kp) 8899 { 8900 return sprintf(buffer, "%d", start_readonly); 8901 } 8902 static int set_ro(const char *val, struct kernel_param *kp) 8903 { 8904 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 8905 } 8906 8907 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8908 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8909 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8910 8911 MODULE_LICENSE("GPL"); 8912 MODULE_DESCRIPTION("MD RAID framework"); 8913 MODULE_ALIAS("md"); 8914 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8915