1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 34 Errors, Warnings, etc. 35 Please use: 36 pr_crit() for error conditions that risk data loss 37 pr_err() for error conditions that are unexpected, like an IO error 38 or internal inconsistency 39 pr_warn() for error conditions that could have been predicated, like 40 adding a device to an array when it has incompatible metadata 41 pr_info() for every interesting, very rare events, like an array starting 42 or stopping, or resync starting or stopping 43 pr_debug() for everything else. 44 45 */ 46 47 #include <linux/sched/signal.h> 48 #include <linux/kthread.h> 49 #include <linux/blkdev.h> 50 #include <linux/badblocks.h> 51 #include <linux/sysctl.h> 52 #include <linux/seq_file.h> 53 #include <linux/fs.h> 54 #include <linux/poll.h> 55 #include <linux/ctype.h> 56 #include <linux/string.h> 57 #include <linux/hdreg.h> 58 #include <linux/proc_fs.h> 59 #include <linux/random.h> 60 #include <linux/module.h> 61 #include <linux/reboot.h> 62 #include <linux/file.h> 63 #include <linux/compat.h> 64 #include <linux/delay.h> 65 #include <linux/raid/md_p.h> 66 #include <linux/raid/md_u.h> 67 #include <linux/slab.h> 68 #include <linux/percpu-refcount.h> 69 70 #include <trace/events/block.h> 71 #include "md.h" 72 #include "bitmap.h" 73 #include "md-cluster.h" 74 75 #ifndef MODULE 76 static void autostart_arrays(int part); 77 #endif 78 79 /* pers_list is a list of registered personalities protected 80 * by pers_lock. 81 * pers_lock does extra service to protect accesses to 82 * mddev->thread when the mutex cannot be held. 83 */ 84 static LIST_HEAD(pers_list); 85 static DEFINE_SPINLOCK(pers_lock); 86 87 struct md_cluster_operations *md_cluster_ops; 88 EXPORT_SYMBOL(md_cluster_ops); 89 struct module *md_cluster_mod; 90 EXPORT_SYMBOL(md_cluster_mod); 91 92 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 93 static struct workqueue_struct *md_wq; 94 static struct workqueue_struct *md_misc_wq; 95 96 static int remove_and_add_spares(struct mddev *mddev, 97 struct md_rdev *this); 98 static void mddev_detach(struct mddev *mddev); 99 100 /* 101 * Default number of read corrections we'll attempt on an rdev 102 * before ejecting it from the array. We divide the read error 103 * count by 2 for every hour elapsed between read errors. 104 */ 105 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 106 /* 107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 108 * is 1000 KB/sec, so the extra system load does not show up that much. 109 * Increase it if you want to have more _guaranteed_ speed. Note that 110 * the RAID driver will use the maximum available bandwidth if the IO 111 * subsystem is idle. There is also an 'absolute maximum' reconstruction 112 * speed limit - in case reconstruction slows down your system despite 113 * idle IO detection. 114 * 115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 116 * or /sys/block/mdX/md/sync_speed_{min,max} 117 */ 118 119 static int sysctl_speed_limit_min = 1000; 120 static int sysctl_speed_limit_max = 200000; 121 static inline int speed_min(struct mddev *mddev) 122 { 123 return mddev->sync_speed_min ? 124 mddev->sync_speed_min : sysctl_speed_limit_min; 125 } 126 127 static inline int speed_max(struct mddev *mddev) 128 { 129 return mddev->sync_speed_max ? 130 mddev->sync_speed_max : sysctl_speed_limit_max; 131 } 132 133 static struct ctl_table_header *raid_table_header; 134 135 static struct ctl_table raid_table[] = { 136 { 137 .procname = "speed_limit_min", 138 .data = &sysctl_speed_limit_min, 139 .maxlen = sizeof(int), 140 .mode = S_IRUGO|S_IWUSR, 141 .proc_handler = proc_dointvec, 142 }, 143 { 144 .procname = "speed_limit_max", 145 .data = &sysctl_speed_limit_max, 146 .maxlen = sizeof(int), 147 .mode = S_IRUGO|S_IWUSR, 148 .proc_handler = proc_dointvec, 149 }, 150 { } 151 }; 152 153 static struct ctl_table raid_dir_table[] = { 154 { 155 .procname = "raid", 156 .maxlen = 0, 157 .mode = S_IRUGO|S_IXUGO, 158 .child = raid_table, 159 }, 160 { } 161 }; 162 163 static struct ctl_table raid_root_table[] = { 164 { 165 .procname = "dev", 166 .maxlen = 0, 167 .mode = 0555, 168 .child = raid_dir_table, 169 }, 170 { } 171 }; 172 173 static const struct block_device_operations md_fops; 174 175 static int start_readonly; 176 177 /* 178 * The original mechanism for creating an md device is to create 179 * a device node in /dev and to open it. This causes races with device-close. 180 * The preferred method is to write to the "new_array" module parameter. 181 * This can avoid races. 182 * Setting create_on_open to false disables the original mechanism 183 * so all the races disappear. 184 */ 185 static bool create_on_open = true; 186 187 /* bio_clone_mddev 188 * like bio_clone_bioset, but with a local bio set 189 */ 190 191 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 192 struct mddev *mddev) 193 { 194 struct bio *b; 195 196 if (!mddev || !mddev->bio_set) 197 return bio_alloc(gfp_mask, nr_iovecs); 198 199 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 200 if (!b) 201 return NULL; 202 return b; 203 } 204 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 205 206 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 207 { 208 if (!mddev || !mddev->sync_set) 209 return bio_alloc(GFP_NOIO, 1); 210 211 return bio_alloc_bioset(GFP_NOIO, 1, mddev->sync_set); 212 } 213 214 /* 215 * We have a system wide 'event count' that is incremented 216 * on any 'interesting' event, and readers of /proc/mdstat 217 * can use 'poll' or 'select' to find out when the event 218 * count increases. 219 * 220 * Events are: 221 * start array, stop array, error, add device, remove device, 222 * start build, activate spare 223 */ 224 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 225 static atomic_t md_event_count; 226 void md_new_event(struct mddev *mddev) 227 { 228 atomic_inc(&md_event_count); 229 wake_up(&md_event_waiters); 230 } 231 EXPORT_SYMBOL_GPL(md_new_event); 232 233 /* 234 * Enables to iterate over all existing md arrays 235 * all_mddevs_lock protects this list. 236 */ 237 static LIST_HEAD(all_mddevs); 238 static DEFINE_SPINLOCK(all_mddevs_lock); 239 240 /* 241 * iterates through all used mddevs in the system. 242 * We take care to grab the all_mddevs_lock whenever navigating 243 * the list, and to always hold a refcount when unlocked. 244 * Any code which breaks out of this loop while own 245 * a reference to the current mddev and must mddev_put it. 246 */ 247 #define for_each_mddev(_mddev,_tmp) \ 248 \ 249 for (({ spin_lock(&all_mddevs_lock); \ 250 _tmp = all_mddevs.next; \ 251 _mddev = NULL;}); \ 252 ({ if (_tmp != &all_mddevs) \ 253 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 254 spin_unlock(&all_mddevs_lock); \ 255 if (_mddev) mddev_put(_mddev); \ 256 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 257 _tmp != &all_mddevs;}); \ 258 ({ spin_lock(&all_mddevs_lock); \ 259 _tmp = _tmp->next;}) \ 260 ) 261 262 /* Rather than calling directly into the personality make_request function, 263 * IO requests come here first so that we can check if the device is 264 * being suspended pending a reconfiguration. 265 * We hold a refcount over the call to ->make_request. By the time that 266 * call has finished, the bio has been linked into some internal structure 267 * and so is visible to ->quiesce(), so we don't need the refcount any more. 268 */ 269 void md_handle_request(struct mddev *mddev, struct bio *bio) 270 { 271 check_suspended: 272 rcu_read_lock(); 273 if (mddev->suspended) { 274 DEFINE_WAIT(__wait); 275 for (;;) { 276 prepare_to_wait(&mddev->sb_wait, &__wait, 277 TASK_UNINTERRUPTIBLE); 278 if (!mddev->suspended) 279 break; 280 rcu_read_unlock(); 281 schedule(); 282 rcu_read_lock(); 283 } 284 finish_wait(&mddev->sb_wait, &__wait); 285 } 286 atomic_inc(&mddev->active_io); 287 rcu_read_unlock(); 288 289 if (!mddev->pers->make_request(mddev, bio)) { 290 atomic_dec(&mddev->active_io); 291 wake_up(&mddev->sb_wait); 292 goto check_suspended; 293 } 294 295 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 296 wake_up(&mddev->sb_wait); 297 } 298 EXPORT_SYMBOL(md_handle_request); 299 300 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 301 { 302 const int rw = bio_data_dir(bio); 303 struct mddev *mddev = q->queuedata; 304 unsigned int sectors; 305 int cpu; 306 307 blk_queue_split(q, &bio); 308 309 if (mddev == NULL || mddev->pers == NULL) { 310 bio_io_error(bio); 311 return BLK_QC_T_NONE; 312 } 313 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 314 if (bio_sectors(bio) != 0) 315 bio->bi_status = BLK_STS_IOERR; 316 bio_endio(bio); 317 return BLK_QC_T_NONE; 318 } 319 320 /* 321 * save the sectors now since our bio can 322 * go away inside make_request 323 */ 324 sectors = bio_sectors(bio); 325 /* bio could be mergeable after passing to underlayer */ 326 bio->bi_opf &= ~REQ_NOMERGE; 327 328 md_handle_request(mddev, bio); 329 330 cpu = part_stat_lock(); 331 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 332 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 333 part_stat_unlock(); 334 335 return BLK_QC_T_NONE; 336 } 337 338 /* mddev_suspend makes sure no new requests are submitted 339 * to the device, and that any requests that have been submitted 340 * are completely handled. 341 * Once mddev_detach() is called and completes, the module will be 342 * completely unused. 343 */ 344 void mddev_suspend(struct mddev *mddev) 345 { 346 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 347 if (mddev->suspended++) 348 return; 349 synchronize_rcu(); 350 wake_up(&mddev->sb_wait); 351 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 352 mddev->pers->quiesce(mddev, 1); 353 354 del_timer_sync(&mddev->safemode_timer); 355 } 356 EXPORT_SYMBOL_GPL(mddev_suspend); 357 358 void mddev_resume(struct mddev *mddev) 359 { 360 if (--mddev->suspended) 361 return; 362 wake_up(&mddev->sb_wait); 363 mddev->pers->quiesce(mddev, 0); 364 365 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 366 md_wakeup_thread(mddev->thread); 367 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 368 } 369 EXPORT_SYMBOL_GPL(mddev_resume); 370 371 int mddev_congested(struct mddev *mddev, int bits) 372 { 373 struct md_personality *pers = mddev->pers; 374 int ret = 0; 375 376 rcu_read_lock(); 377 if (mddev->suspended) 378 ret = 1; 379 else if (pers && pers->congested) 380 ret = pers->congested(mddev, bits); 381 rcu_read_unlock(); 382 return ret; 383 } 384 EXPORT_SYMBOL_GPL(mddev_congested); 385 static int md_congested(void *data, int bits) 386 { 387 struct mddev *mddev = data; 388 return mddev_congested(mddev, bits); 389 } 390 391 /* 392 * Generic flush handling for md 393 */ 394 395 static void md_end_flush(struct bio *bio) 396 { 397 struct md_rdev *rdev = bio->bi_private; 398 struct mddev *mddev = rdev->mddev; 399 400 rdev_dec_pending(rdev, mddev); 401 402 if (atomic_dec_and_test(&mddev->flush_pending)) { 403 /* The pre-request flush has finished */ 404 queue_work(md_wq, &mddev->flush_work); 405 } 406 bio_put(bio); 407 } 408 409 static void md_submit_flush_data(struct work_struct *ws); 410 411 static void submit_flushes(struct work_struct *ws) 412 { 413 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 414 struct md_rdev *rdev; 415 416 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 417 atomic_set(&mddev->flush_pending, 1); 418 rcu_read_lock(); 419 rdev_for_each_rcu(rdev, mddev) 420 if (rdev->raid_disk >= 0 && 421 !test_bit(Faulty, &rdev->flags)) { 422 /* Take two references, one is dropped 423 * when request finishes, one after 424 * we reclaim rcu_read_lock 425 */ 426 struct bio *bi; 427 atomic_inc(&rdev->nr_pending); 428 atomic_inc(&rdev->nr_pending); 429 rcu_read_unlock(); 430 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 431 bi->bi_end_io = md_end_flush; 432 bi->bi_private = rdev; 433 bio_set_dev(bi, rdev->bdev); 434 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 435 atomic_inc(&mddev->flush_pending); 436 submit_bio(bi); 437 rcu_read_lock(); 438 rdev_dec_pending(rdev, mddev); 439 } 440 rcu_read_unlock(); 441 if (atomic_dec_and_test(&mddev->flush_pending)) 442 queue_work(md_wq, &mddev->flush_work); 443 } 444 445 static void md_submit_flush_data(struct work_struct *ws) 446 { 447 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 448 struct bio *bio = mddev->flush_bio; 449 450 /* 451 * must reset flush_bio before calling into md_handle_request to avoid a 452 * deadlock, because other bios passed md_handle_request suspend check 453 * could wait for this and below md_handle_request could wait for those 454 * bios because of suspend check 455 */ 456 mddev->flush_bio = NULL; 457 wake_up(&mddev->sb_wait); 458 459 if (bio->bi_iter.bi_size == 0) 460 /* an empty barrier - all done */ 461 bio_endio(bio); 462 else { 463 bio->bi_opf &= ~REQ_PREFLUSH; 464 md_handle_request(mddev, bio); 465 } 466 } 467 468 void md_flush_request(struct mddev *mddev, struct bio *bio) 469 { 470 spin_lock_irq(&mddev->lock); 471 wait_event_lock_irq(mddev->sb_wait, 472 !mddev->flush_bio, 473 mddev->lock); 474 mddev->flush_bio = bio; 475 spin_unlock_irq(&mddev->lock); 476 477 INIT_WORK(&mddev->flush_work, submit_flushes); 478 queue_work(md_wq, &mddev->flush_work); 479 } 480 EXPORT_SYMBOL(md_flush_request); 481 482 static inline struct mddev *mddev_get(struct mddev *mddev) 483 { 484 atomic_inc(&mddev->active); 485 return mddev; 486 } 487 488 static void mddev_delayed_delete(struct work_struct *ws); 489 490 static void mddev_put(struct mddev *mddev) 491 { 492 struct bio_set *bs = NULL, *sync_bs = NULL; 493 494 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 495 return; 496 if (!mddev->raid_disks && list_empty(&mddev->disks) && 497 mddev->ctime == 0 && !mddev->hold_active) { 498 /* Array is not configured at all, and not held active, 499 * so destroy it */ 500 list_del_init(&mddev->all_mddevs); 501 bs = mddev->bio_set; 502 sync_bs = mddev->sync_set; 503 mddev->bio_set = NULL; 504 mddev->sync_set = NULL; 505 if (mddev->gendisk) { 506 /* We did a probe so need to clean up. Call 507 * queue_work inside the spinlock so that 508 * flush_workqueue() after mddev_find will 509 * succeed in waiting for the work to be done. 510 */ 511 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 512 queue_work(md_misc_wq, &mddev->del_work); 513 } else 514 kfree(mddev); 515 } 516 spin_unlock(&all_mddevs_lock); 517 if (bs) 518 bioset_free(bs); 519 if (sync_bs) 520 bioset_free(sync_bs); 521 } 522 523 static void md_safemode_timeout(unsigned long data); 524 525 void mddev_init(struct mddev *mddev) 526 { 527 mutex_init(&mddev->open_mutex); 528 mutex_init(&mddev->reconfig_mutex); 529 mutex_init(&mddev->bitmap_info.mutex); 530 INIT_LIST_HEAD(&mddev->disks); 531 INIT_LIST_HEAD(&mddev->all_mddevs); 532 setup_timer(&mddev->safemode_timer, md_safemode_timeout, 533 (unsigned long) mddev); 534 atomic_set(&mddev->active, 1); 535 atomic_set(&mddev->openers, 0); 536 atomic_set(&mddev->active_io, 0); 537 spin_lock_init(&mddev->lock); 538 atomic_set(&mddev->flush_pending, 0); 539 init_waitqueue_head(&mddev->sb_wait); 540 init_waitqueue_head(&mddev->recovery_wait); 541 mddev->reshape_position = MaxSector; 542 mddev->reshape_backwards = 0; 543 mddev->last_sync_action = "none"; 544 mddev->resync_min = 0; 545 mddev->resync_max = MaxSector; 546 mddev->level = LEVEL_NONE; 547 } 548 EXPORT_SYMBOL_GPL(mddev_init); 549 550 static struct mddev *mddev_find(dev_t unit) 551 { 552 struct mddev *mddev, *new = NULL; 553 554 if (unit && MAJOR(unit) != MD_MAJOR) 555 unit &= ~((1<<MdpMinorShift)-1); 556 557 retry: 558 spin_lock(&all_mddevs_lock); 559 560 if (unit) { 561 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 562 if (mddev->unit == unit) { 563 mddev_get(mddev); 564 spin_unlock(&all_mddevs_lock); 565 kfree(new); 566 return mddev; 567 } 568 569 if (new) { 570 list_add(&new->all_mddevs, &all_mddevs); 571 spin_unlock(&all_mddevs_lock); 572 new->hold_active = UNTIL_IOCTL; 573 return new; 574 } 575 } else if (new) { 576 /* find an unused unit number */ 577 static int next_minor = 512; 578 int start = next_minor; 579 int is_free = 0; 580 int dev = 0; 581 while (!is_free) { 582 dev = MKDEV(MD_MAJOR, next_minor); 583 next_minor++; 584 if (next_minor > MINORMASK) 585 next_minor = 0; 586 if (next_minor == start) { 587 /* Oh dear, all in use. */ 588 spin_unlock(&all_mddevs_lock); 589 kfree(new); 590 return NULL; 591 } 592 593 is_free = 1; 594 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 595 if (mddev->unit == dev) { 596 is_free = 0; 597 break; 598 } 599 } 600 new->unit = dev; 601 new->md_minor = MINOR(dev); 602 new->hold_active = UNTIL_STOP; 603 list_add(&new->all_mddevs, &all_mddevs); 604 spin_unlock(&all_mddevs_lock); 605 return new; 606 } 607 spin_unlock(&all_mddevs_lock); 608 609 new = kzalloc(sizeof(*new), GFP_KERNEL); 610 if (!new) 611 return NULL; 612 613 new->unit = unit; 614 if (MAJOR(unit) == MD_MAJOR) 615 new->md_minor = MINOR(unit); 616 else 617 new->md_minor = MINOR(unit) >> MdpMinorShift; 618 619 mddev_init(new); 620 621 goto retry; 622 } 623 624 static struct attribute_group md_redundancy_group; 625 626 void mddev_unlock(struct mddev *mddev) 627 { 628 if (mddev->to_remove) { 629 /* These cannot be removed under reconfig_mutex as 630 * an access to the files will try to take reconfig_mutex 631 * while holding the file unremovable, which leads to 632 * a deadlock. 633 * So hold set sysfs_active while the remove in happeing, 634 * and anything else which might set ->to_remove or my 635 * otherwise change the sysfs namespace will fail with 636 * -EBUSY if sysfs_active is still set. 637 * We set sysfs_active under reconfig_mutex and elsewhere 638 * test it under the same mutex to ensure its correct value 639 * is seen. 640 */ 641 struct attribute_group *to_remove = mddev->to_remove; 642 mddev->to_remove = NULL; 643 mddev->sysfs_active = 1; 644 mutex_unlock(&mddev->reconfig_mutex); 645 646 if (mddev->kobj.sd) { 647 if (to_remove != &md_redundancy_group) 648 sysfs_remove_group(&mddev->kobj, to_remove); 649 if (mddev->pers == NULL || 650 mddev->pers->sync_request == NULL) { 651 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 652 if (mddev->sysfs_action) 653 sysfs_put(mddev->sysfs_action); 654 mddev->sysfs_action = NULL; 655 } 656 } 657 mddev->sysfs_active = 0; 658 } else 659 mutex_unlock(&mddev->reconfig_mutex); 660 661 /* As we've dropped the mutex we need a spinlock to 662 * make sure the thread doesn't disappear 663 */ 664 spin_lock(&pers_lock); 665 md_wakeup_thread(mddev->thread); 666 spin_unlock(&pers_lock); 667 } 668 EXPORT_SYMBOL_GPL(mddev_unlock); 669 670 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 671 { 672 struct md_rdev *rdev; 673 674 rdev_for_each_rcu(rdev, mddev) 675 if (rdev->desc_nr == nr) 676 return rdev; 677 678 return NULL; 679 } 680 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 681 682 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 683 { 684 struct md_rdev *rdev; 685 686 rdev_for_each(rdev, mddev) 687 if (rdev->bdev->bd_dev == dev) 688 return rdev; 689 690 return NULL; 691 } 692 693 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 694 { 695 struct md_rdev *rdev; 696 697 rdev_for_each_rcu(rdev, mddev) 698 if (rdev->bdev->bd_dev == dev) 699 return rdev; 700 701 return NULL; 702 } 703 704 static struct md_personality *find_pers(int level, char *clevel) 705 { 706 struct md_personality *pers; 707 list_for_each_entry(pers, &pers_list, list) { 708 if (level != LEVEL_NONE && pers->level == level) 709 return pers; 710 if (strcmp(pers->name, clevel)==0) 711 return pers; 712 } 713 return NULL; 714 } 715 716 /* return the offset of the super block in 512byte sectors */ 717 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 718 { 719 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 720 return MD_NEW_SIZE_SECTORS(num_sectors); 721 } 722 723 static int alloc_disk_sb(struct md_rdev *rdev) 724 { 725 rdev->sb_page = alloc_page(GFP_KERNEL); 726 if (!rdev->sb_page) 727 return -ENOMEM; 728 return 0; 729 } 730 731 void md_rdev_clear(struct md_rdev *rdev) 732 { 733 if (rdev->sb_page) { 734 put_page(rdev->sb_page); 735 rdev->sb_loaded = 0; 736 rdev->sb_page = NULL; 737 rdev->sb_start = 0; 738 rdev->sectors = 0; 739 } 740 if (rdev->bb_page) { 741 put_page(rdev->bb_page); 742 rdev->bb_page = NULL; 743 } 744 badblocks_exit(&rdev->badblocks); 745 } 746 EXPORT_SYMBOL_GPL(md_rdev_clear); 747 748 static void super_written(struct bio *bio) 749 { 750 struct md_rdev *rdev = bio->bi_private; 751 struct mddev *mddev = rdev->mddev; 752 753 if (bio->bi_status) { 754 pr_err("md: super_written gets error=%d\n", bio->bi_status); 755 md_error(mddev, rdev); 756 if (!test_bit(Faulty, &rdev->flags) 757 && (bio->bi_opf & MD_FAILFAST)) { 758 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 759 set_bit(LastDev, &rdev->flags); 760 } 761 } else 762 clear_bit(LastDev, &rdev->flags); 763 764 if (atomic_dec_and_test(&mddev->pending_writes)) 765 wake_up(&mddev->sb_wait); 766 rdev_dec_pending(rdev, mddev); 767 bio_put(bio); 768 } 769 770 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 771 sector_t sector, int size, struct page *page) 772 { 773 /* write first size bytes of page to sector of rdev 774 * Increment mddev->pending_writes before returning 775 * and decrement it on completion, waking up sb_wait 776 * if zero is reached. 777 * If an error occurred, call md_error 778 */ 779 struct bio *bio; 780 int ff = 0; 781 782 if (test_bit(Faulty, &rdev->flags)) 783 return; 784 785 bio = md_bio_alloc_sync(mddev); 786 787 atomic_inc(&rdev->nr_pending); 788 789 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 790 bio->bi_iter.bi_sector = sector; 791 bio_add_page(bio, page, size, 0); 792 bio->bi_private = rdev; 793 bio->bi_end_io = super_written; 794 795 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 796 test_bit(FailFast, &rdev->flags) && 797 !test_bit(LastDev, &rdev->flags)) 798 ff = MD_FAILFAST; 799 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 800 801 atomic_inc(&mddev->pending_writes); 802 submit_bio(bio); 803 } 804 805 int md_super_wait(struct mddev *mddev) 806 { 807 /* wait for all superblock writes that were scheduled to complete */ 808 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 809 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 810 return -EAGAIN; 811 return 0; 812 } 813 814 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 815 struct page *page, int op, int op_flags, bool metadata_op) 816 { 817 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 818 int ret; 819 820 if (metadata_op && rdev->meta_bdev) 821 bio_set_dev(bio, rdev->meta_bdev); 822 else 823 bio_set_dev(bio, rdev->bdev); 824 bio_set_op_attrs(bio, op, op_flags); 825 if (metadata_op) 826 bio->bi_iter.bi_sector = sector + rdev->sb_start; 827 else if (rdev->mddev->reshape_position != MaxSector && 828 (rdev->mddev->reshape_backwards == 829 (sector >= rdev->mddev->reshape_position))) 830 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 831 else 832 bio->bi_iter.bi_sector = sector + rdev->data_offset; 833 bio_add_page(bio, page, size, 0); 834 835 submit_bio_wait(bio); 836 837 ret = !bio->bi_status; 838 bio_put(bio); 839 return ret; 840 } 841 EXPORT_SYMBOL_GPL(sync_page_io); 842 843 static int read_disk_sb(struct md_rdev *rdev, int size) 844 { 845 char b[BDEVNAME_SIZE]; 846 847 if (rdev->sb_loaded) 848 return 0; 849 850 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 851 goto fail; 852 rdev->sb_loaded = 1; 853 return 0; 854 855 fail: 856 pr_err("md: disabled device %s, could not read superblock.\n", 857 bdevname(rdev->bdev,b)); 858 return -EINVAL; 859 } 860 861 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 862 { 863 return sb1->set_uuid0 == sb2->set_uuid0 && 864 sb1->set_uuid1 == sb2->set_uuid1 && 865 sb1->set_uuid2 == sb2->set_uuid2 && 866 sb1->set_uuid3 == sb2->set_uuid3; 867 } 868 869 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 870 { 871 int ret; 872 mdp_super_t *tmp1, *tmp2; 873 874 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 875 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 876 877 if (!tmp1 || !tmp2) { 878 ret = 0; 879 goto abort; 880 } 881 882 *tmp1 = *sb1; 883 *tmp2 = *sb2; 884 885 /* 886 * nr_disks is not constant 887 */ 888 tmp1->nr_disks = 0; 889 tmp2->nr_disks = 0; 890 891 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 892 abort: 893 kfree(tmp1); 894 kfree(tmp2); 895 return ret; 896 } 897 898 static u32 md_csum_fold(u32 csum) 899 { 900 csum = (csum & 0xffff) + (csum >> 16); 901 return (csum & 0xffff) + (csum >> 16); 902 } 903 904 static unsigned int calc_sb_csum(mdp_super_t *sb) 905 { 906 u64 newcsum = 0; 907 u32 *sb32 = (u32*)sb; 908 int i; 909 unsigned int disk_csum, csum; 910 911 disk_csum = sb->sb_csum; 912 sb->sb_csum = 0; 913 914 for (i = 0; i < MD_SB_BYTES/4 ; i++) 915 newcsum += sb32[i]; 916 csum = (newcsum & 0xffffffff) + (newcsum>>32); 917 918 #ifdef CONFIG_ALPHA 919 /* This used to use csum_partial, which was wrong for several 920 * reasons including that different results are returned on 921 * different architectures. It isn't critical that we get exactly 922 * the same return value as before (we always csum_fold before 923 * testing, and that removes any differences). However as we 924 * know that csum_partial always returned a 16bit value on 925 * alphas, do a fold to maximise conformity to previous behaviour. 926 */ 927 sb->sb_csum = md_csum_fold(disk_csum); 928 #else 929 sb->sb_csum = disk_csum; 930 #endif 931 return csum; 932 } 933 934 /* 935 * Handle superblock details. 936 * We want to be able to handle multiple superblock formats 937 * so we have a common interface to them all, and an array of 938 * different handlers. 939 * We rely on user-space to write the initial superblock, and support 940 * reading and updating of superblocks. 941 * Interface methods are: 942 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 943 * loads and validates a superblock on dev. 944 * if refdev != NULL, compare superblocks on both devices 945 * Return: 946 * 0 - dev has a superblock that is compatible with refdev 947 * 1 - dev has a superblock that is compatible and newer than refdev 948 * so dev should be used as the refdev in future 949 * -EINVAL superblock incompatible or invalid 950 * -othererror e.g. -EIO 951 * 952 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 953 * Verify that dev is acceptable into mddev. 954 * The first time, mddev->raid_disks will be 0, and data from 955 * dev should be merged in. Subsequent calls check that dev 956 * is new enough. Return 0 or -EINVAL 957 * 958 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 959 * Update the superblock for rdev with data in mddev 960 * This does not write to disc. 961 * 962 */ 963 964 struct super_type { 965 char *name; 966 struct module *owner; 967 int (*load_super)(struct md_rdev *rdev, 968 struct md_rdev *refdev, 969 int minor_version); 970 int (*validate_super)(struct mddev *mddev, 971 struct md_rdev *rdev); 972 void (*sync_super)(struct mddev *mddev, 973 struct md_rdev *rdev); 974 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 975 sector_t num_sectors); 976 int (*allow_new_offset)(struct md_rdev *rdev, 977 unsigned long long new_offset); 978 }; 979 980 /* 981 * Check that the given mddev has no bitmap. 982 * 983 * This function is called from the run method of all personalities that do not 984 * support bitmaps. It prints an error message and returns non-zero if mddev 985 * has a bitmap. Otherwise, it returns 0. 986 * 987 */ 988 int md_check_no_bitmap(struct mddev *mddev) 989 { 990 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 991 return 0; 992 pr_warn("%s: bitmaps are not supported for %s\n", 993 mdname(mddev), mddev->pers->name); 994 return 1; 995 } 996 EXPORT_SYMBOL(md_check_no_bitmap); 997 998 /* 999 * load_super for 0.90.0 1000 */ 1001 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1002 { 1003 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1004 mdp_super_t *sb; 1005 int ret; 1006 1007 /* 1008 * Calculate the position of the superblock (512byte sectors), 1009 * it's at the end of the disk. 1010 * 1011 * It also happens to be a multiple of 4Kb. 1012 */ 1013 rdev->sb_start = calc_dev_sboffset(rdev); 1014 1015 ret = read_disk_sb(rdev, MD_SB_BYTES); 1016 if (ret) 1017 return ret; 1018 1019 ret = -EINVAL; 1020 1021 bdevname(rdev->bdev, b); 1022 sb = page_address(rdev->sb_page); 1023 1024 if (sb->md_magic != MD_SB_MAGIC) { 1025 pr_warn("md: invalid raid superblock magic on %s\n", b); 1026 goto abort; 1027 } 1028 1029 if (sb->major_version != 0 || 1030 sb->minor_version < 90 || 1031 sb->minor_version > 91) { 1032 pr_warn("Bad version number %d.%d on %s\n", 1033 sb->major_version, sb->minor_version, b); 1034 goto abort; 1035 } 1036 1037 if (sb->raid_disks <= 0) 1038 goto abort; 1039 1040 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1041 pr_warn("md: invalid superblock checksum on %s\n", b); 1042 goto abort; 1043 } 1044 1045 rdev->preferred_minor = sb->md_minor; 1046 rdev->data_offset = 0; 1047 rdev->new_data_offset = 0; 1048 rdev->sb_size = MD_SB_BYTES; 1049 rdev->badblocks.shift = -1; 1050 1051 if (sb->level == LEVEL_MULTIPATH) 1052 rdev->desc_nr = -1; 1053 else 1054 rdev->desc_nr = sb->this_disk.number; 1055 1056 if (!refdev) { 1057 ret = 1; 1058 } else { 1059 __u64 ev1, ev2; 1060 mdp_super_t *refsb = page_address(refdev->sb_page); 1061 if (!md_uuid_equal(refsb, sb)) { 1062 pr_warn("md: %s has different UUID to %s\n", 1063 b, bdevname(refdev->bdev,b2)); 1064 goto abort; 1065 } 1066 if (!md_sb_equal(refsb, sb)) { 1067 pr_warn("md: %s has same UUID but different superblock to %s\n", 1068 b, bdevname(refdev->bdev, b2)); 1069 goto abort; 1070 } 1071 ev1 = md_event(sb); 1072 ev2 = md_event(refsb); 1073 if (ev1 > ev2) 1074 ret = 1; 1075 else 1076 ret = 0; 1077 } 1078 rdev->sectors = rdev->sb_start; 1079 /* Limit to 4TB as metadata cannot record more than that. 1080 * (not needed for Linear and RAID0 as metadata doesn't 1081 * record this size) 1082 */ 1083 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1084 sb->level >= 1) 1085 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1086 1087 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1088 /* "this cannot possibly happen" ... */ 1089 ret = -EINVAL; 1090 1091 abort: 1092 return ret; 1093 } 1094 1095 /* 1096 * validate_super for 0.90.0 1097 */ 1098 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1099 { 1100 mdp_disk_t *desc; 1101 mdp_super_t *sb = page_address(rdev->sb_page); 1102 __u64 ev1 = md_event(sb); 1103 1104 rdev->raid_disk = -1; 1105 clear_bit(Faulty, &rdev->flags); 1106 clear_bit(In_sync, &rdev->flags); 1107 clear_bit(Bitmap_sync, &rdev->flags); 1108 clear_bit(WriteMostly, &rdev->flags); 1109 1110 if (mddev->raid_disks == 0) { 1111 mddev->major_version = 0; 1112 mddev->minor_version = sb->minor_version; 1113 mddev->patch_version = sb->patch_version; 1114 mddev->external = 0; 1115 mddev->chunk_sectors = sb->chunk_size >> 9; 1116 mddev->ctime = sb->ctime; 1117 mddev->utime = sb->utime; 1118 mddev->level = sb->level; 1119 mddev->clevel[0] = 0; 1120 mddev->layout = sb->layout; 1121 mddev->raid_disks = sb->raid_disks; 1122 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1123 mddev->events = ev1; 1124 mddev->bitmap_info.offset = 0; 1125 mddev->bitmap_info.space = 0; 1126 /* bitmap can use 60 K after the 4K superblocks */ 1127 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1128 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1129 mddev->reshape_backwards = 0; 1130 1131 if (mddev->minor_version >= 91) { 1132 mddev->reshape_position = sb->reshape_position; 1133 mddev->delta_disks = sb->delta_disks; 1134 mddev->new_level = sb->new_level; 1135 mddev->new_layout = sb->new_layout; 1136 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1137 if (mddev->delta_disks < 0) 1138 mddev->reshape_backwards = 1; 1139 } else { 1140 mddev->reshape_position = MaxSector; 1141 mddev->delta_disks = 0; 1142 mddev->new_level = mddev->level; 1143 mddev->new_layout = mddev->layout; 1144 mddev->new_chunk_sectors = mddev->chunk_sectors; 1145 } 1146 1147 if (sb->state & (1<<MD_SB_CLEAN)) 1148 mddev->recovery_cp = MaxSector; 1149 else { 1150 if (sb->events_hi == sb->cp_events_hi && 1151 sb->events_lo == sb->cp_events_lo) { 1152 mddev->recovery_cp = sb->recovery_cp; 1153 } else 1154 mddev->recovery_cp = 0; 1155 } 1156 1157 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1158 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1159 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1160 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1161 1162 mddev->max_disks = MD_SB_DISKS; 1163 1164 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1165 mddev->bitmap_info.file == NULL) { 1166 mddev->bitmap_info.offset = 1167 mddev->bitmap_info.default_offset; 1168 mddev->bitmap_info.space = 1169 mddev->bitmap_info.default_space; 1170 } 1171 1172 } else if (mddev->pers == NULL) { 1173 /* Insist on good event counter while assembling, except 1174 * for spares (which don't need an event count) */ 1175 ++ev1; 1176 if (sb->disks[rdev->desc_nr].state & ( 1177 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1178 if (ev1 < mddev->events) 1179 return -EINVAL; 1180 } else if (mddev->bitmap) { 1181 /* if adding to array with a bitmap, then we can accept an 1182 * older device ... but not too old. 1183 */ 1184 if (ev1 < mddev->bitmap->events_cleared) 1185 return 0; 1186 if (ev1 < mddev->events) 1187 set_bit(Bitmap_sync, &rdev->flags); 1188 } else { 1189 if (ev1 < mddev->events) 1190 /* just a hot-add of a new device, leave raid_disk at -1 */ 1191 return 0; 1192 } 1193 1194 if (mddev->level != LEVEL_MULTIPATH) { 1195 desc = sb->disks + rdev->desc_nr; 1196 1197 if (desc->state & (1<<MD_DISK_FAULTY)) 1198 set_bit(Faulty, &rdev->flags); 1199 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1200 desc->raid_disk < mddev->raid_disks */) { 1201 set_bit(In_sync, &rdev->flags); 1202 rdev->raid_disk = desc->raid_disk; 1203 rdev->saved_raid_disk = desc->raid_disk; 1204 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1205 /* active but not in sync implies recovery up to 1206 * reshape position. We don't know exactly where 1207 * that is, so set to zero for now */ 1208 if (mddev->minor_version >= 91) { 1209 rdev->recovery_offset = 0; 1210 rdev->raid_disk = desc->raid_disk; 1211 } 1212 } 1213 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1214 set_bit(WriteMostly, &rdev->flags); 1215 if (desc->state & (1<<MD_DISK_FAILFAST)) 1216 set_bit(FailFast, &rdev->flags); 1217 } else /* MULTIPATH are always insync */ 1218 set_bit(In_sync, &rdev->flags); 1219 return 0; 1220 } 1221 1222 /* 1223 * sync_super for 0.90.0 1224 */ 1225 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1226 { 1227 mdp_super_t *sb; 1228 struct md_rdev *rdev2; 1229 int next_spare = mddev->raid_disks; 1230 1231 /* make rdev->sb match mddev data.. 1232 * 1233 * 1/ zero out disks 1234 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1235 * 3/ any empty disks < next_spare become removed 1236 * 1237 * disks[0] gets initialised to REMOVED because 1238 * we cannot be sure from other fields if it has 1239 * been initialised or not. 1240 */ 1241 int i; 1242 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1243 1244 rdev->sb_size = MD_SB_BYTES; 1245 1246 sb = page_address(rdev->sb_page); 1247 1248 memset(sb, 0, sizeof(*sb)); 1249 1250 sb->md_magic = MD_SB_MAGIC; 1251 sb->major_version = mddev->major_version; 1252 sb->patch_version = mddev->patch_version; 1253 sb->gvalid_words = 0; /* ignored */ 1254 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1255 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1256 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1257 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1258 1259 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1260 sb->level = mddev->level; 1261 sb->size = mddev->dev_sectors / 2; 1262 sb->raid_disks = mddev->raid_disks; 1263 sb->md_minor = mddev->md_minor; 1264 sb->not_persistent = 0; 1265 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1266 sb->state = 0; 1267 sb->events_hi = (mddev->events>>32); 1268 sb->events_lo = (u32)mddev->events; 1269 1270 if (mddev->reshape_position == MaxSector) 1271 sb->minor_version = 90; 1272 else { 1273 sb->minor_version = 91; 1274 sb->reshape_position = mddev->reshape_position; 1275 sb->new_level = mddev->new_level; 1276 sb->delta_disks = mddev->delta_disks; 1277 sb->new_layout = mddev->new_layout; 1278 sb->new_chunk = mddev->new_chunk_sectors << 9; 1279 } 1280 mddev->minor_version = sb->minor_version; 1281 if (mddev->in_sync) 1282 { 1283 sb->recovery_cp = mddev->recovery_cp; 1284 sb->cp_events_hi = (mddev->events>>32); 1285 sb->cp_events_lo = (u32)mddev->events; 1286 if (mddev->recovery_cp == MaxSector) 1287 sb->state = (1<< MD_SB_CLEAN); 1288 } else 1289 sb->recovery_cp = 0; 1290 1291 sb->layout = mddev->layout; 1292 sb->chunk_size = mddev->chunk_sectors << 9; 1293 1294 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1295 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1296 1297 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1298 rdev_for_each(rdev2, mddev) { 1299 mdp_disk_t *d; 1300 int desc_nr; 1301 int is_active = test_bit(In_sync, &rdev2->flags); 1302 1303 if (rdev2->raid_disk >= 0 && 1304 sb->minor_version >= 91) 1305 /* we have nowhere to store the recovery_offset, 1306 * but if it is not below the reshape_position, 1307 * we can piggy-back on that. 1308 */ 1309 is_active = 1; 1310 if (rdev2->raid_disk < 0 || 1311 test_bit(Faulty, &rdev2->flags)) 1312 is_active = 0; 1313 if (is_active) 1314 desc_nr = rdev2->raid_disk; 1315 else 1316 desc_nr = next_spare++; 1317 rdev2->desc_nr = desc_nr; 1318 d = &sb->disks[rdev2->desc_nr]; 1319 nr_disks++; 1320 d->number = rdev2->desc_nr; 1321 d->major = MAJOR(rdev2->bdev->bd_dev); 1322 d->minor = MINOR(rdev2->bdev->bd_dev); 1323 if (is_active) 1324 d->raid_disk = rdev2->raid_disk; 1325 else 1326 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1327 if (test_bit(Faulty, &rdev2->flags)) 1328 d->state = (1<<MD_DISK_FAULTY); 1329 else if (is_active) { 1330 d->state = (1<<MD_DISK_ACTIVE); 1331 if (test_bit(In_sync, &rdev2->flags)) 1332 d->state |= (1<<MD_DISK_SYNC); 1333 active++; 1334 working++; 1335 } else { 1336 d->state = 0; 1337 spare++; 1338 working++; 1339 } 1340 if (test_bit(WriteMostly, &rdev2->flags)) 1341 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1342 if (test_bit(FailFast, &rdev2->flags)) 1343 d->state |= (1<<MD_DISK_FAILFAST); 1344 } 1345 /* now set the "removed" and "faulty" bits on any missing devices */ 1346 for (i=0 ; i < mddev->raid_disks ; i++) { 1347 mdp_disk_t *d = &sb->disks[i]; 1348 if (d->state == 0 && d->number == 0) { 1349 d->number = i; 1350 d->raid_disk = i; 1351 d->state = (1<<MD_DISK_REMOVED); 1352 d->state |= (1<<MD_DISK_FAULTY); 1353 failed++; 1354 } 1355 } 1356 sb->nr_disks = nr_disks; 1357 sb->active_disks = active; 1358 sb->working_disks = working; 1359 sb->failed_disks = failed; 1360 sb->spare_disks = spare; 1361 1362 sb->this_disk = sb->disks[rdev->desc_nr]; 1363 sb->sb_csum = calc_sb_csum(sb); 1364 } 1365 1366 /* 1367 * rdev_size_change for 0.90.0 1368 */ 1369 static unsigned long long 1370 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1371 { 1372 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1373 return 0; /* component must fit device */ 1374 if (rdev->mddev->bitmap_info.offset) 1375 return 0; /* can't move bitmap */ 1376 rdev->sb_start = calc_dev_sboffset(rdev); 1377 if (!num_sectors || num_sectors > rdev->sb_start) 1378 num_sectors = rdev->sb_start; 1379 /* Limit to 4TB as metadata cannot record more than that. 1380 * 4TB == 2^32 KB, or 2*2^32 sectors. 1381 */ 1382 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1383 rdev->mddev->level >= 1) 1384 num_sectors = (sector_t)(2ULL << 32) - 2; 1385 do { 1386 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1387 rdev->sb_page); 1388 } while (md_super_wait(rdev->mddev) < 0); 1389 return num_sectors; 1390 } 1391 1392 static int 1393 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1394 { 1395 /* non-zero offset changes not possible with v0.90 */ 1396 return new_offset == 0; 1397 } 1398 1399 /* 1400 * version 1 superblock 1401 */ 1402 1403 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1404 { 1405 __le32 disk_csum; 1406 u32 csum; 1407 unsigned long long newcsum; 1408 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1409 __le32 *isuper = (__le32*)sb; 1410 1411 disk_csum = sb->sb_csum; 1412 sb->sb_csum = 0; 1413 newcsum = 0; 1414 for (; size >= 4; size -= 4) 1415 newcsum += le32_to_cpu(*isuper++); 1416 1417 if (size == 2) 1418 newcsum += le16_to_cpu(*(__le16*) isuper); 1419 1420 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1421 sb->sb_csum = disk_csum; 1422 return cpu_to_le32(csum); 1423 } 1424 1425 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1426 { 1427 struct mdp_superblock_1 *sb; 1428 int ret; 1429 sector_t sb_start; 1430 sector_t sectors; 1431 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1432 int bmask; 1433 1434 /* 1435 * Calculate the position of the superblock in 512byte sectors. 1436 * It is always aligned to a 4K boundary and 1437 * depeding on minor_version, it can be: 1438 * 0: At least 8K, but less than 12K, from end of device 1439 * 1: At start of device 1440 * 2: 4K from start of device. 1441 */ 1442 switch(minor_version) { 1443 case 0: 1444 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1445 sb_start -= 8*2; 1446 sb_start &= ~(sector_t)(4*2-1); 1447 break; 1448 case 1: 1449 sb_start = 0; 1450 break; 1451 case 2: 1452 sb_start = 8; 1453 break; 1454 default: 1455 return -EINVAL; 1456 } 1457 rdev->sb_start = sb_start; 1458 1459 /* superblock is rarely larger than 1K, but it can be larger, 1460 * and it is safe to read 4k, so we do that 1461 */ 1462 ret = read_disk_sb(rdev, 4096); 1463 if (ret) return ret; 1464 1465 sb = page_address(rdev->sb_page); 1466 1467 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1468 sb->major_version != cpu_to_le32(1) || 1469 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1470 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1471 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1472 return -EINVAL; 1473 1474 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1475 pr_warn("md: invalid superblock checksum on %s\n", 1476 bdevname(rdev->bdev,b)); 1477 return -EINVAL; 1478 } 1479 if (le64_to_cpu(sb->data_size) < 10) { 1480 pr_warn("md: data_size too small on %s\n", 1481 bdevname(rdev->bdev,b)); 1482 return -EINVAL; 1483 } 1484 if (sb->pad0 || 1485 sb->pad3[0] || 1486 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1487 /* Some padding is non-zero, might be a new feature */ 1488 return -EINVAL; 1489 1490 rdev->preferred_minor = 0xffff; 1491 rdev->data_offset = le64_to_cpu(sb->data_offset); 1492 rdev->new_data_offset = rdev->data_offset; 1493 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1494 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1495 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1496 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1497 1498 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1499 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1500 if (rdev->sb_size & bmask) 1501 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1502 1503 if (minor_version 1504 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1505 return -EINVAL; 1506 if (minor_version 1507 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1508 return -EINVAL; 1509 1510 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1511 rdev->desc_nr = -1; 1512 else 1513 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1514 1515 if (!rdev->bb_page) { 1516 rdev->bb_page = alloc_page(GFP_KERNEL); 1517 if (!rdev->bb_page) 1518 return -ENOMEM; 1519 } 1520 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1521 rdev->badblocks.count == 0) { 1522 /* need to load the bad block list. 1523 * Currently we limit it to one page. 1524 */ 1525 s32 offset; 1526 sector_t bb_sector; 1527 u64 *bbp; 1528 int i; 1529 int sectors = le16_to_cpu(sb->bblog_size); 1530 if (sectors > (PAGE_SIZE / 512)) 1531 return -EINVAL; 1532 offset = le32_to_cpu(sb->bblog_offset); 1533 if (offset == 0) 1534 return -EINVAL; 1535 bb_sector = (long long)offset; 1536 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1537 rdev->bb_page, REQ_OP_READ, 0, true)) 1538 return -EIO; 1539 bbp = (u64 *)page_address(rdev->bb_page); 1540 rdev->badblocks.shift = sb->bblog_shift; 1541 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1542 u64 bb = le64_to_cpu(*bbp); 1543 int count = bb & (0x3ff); 1544 u64 sector = bb >> 10; 1545 sector <<= sb->bblog_shift; 1546 count <<= sb->bblog_shift; 1547 if (bb + 1 == 0) 1548 break; 1549 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1550 return -EINVAL; 1551 } 1552 } else if (sb->bblog_offset != 0) 1553 rdev->badblocks.shift = 0; 1554 1555 if ((le32_to_cpu(sb->feature_map) & 1556 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1557 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1558 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1559 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1560 } 1561 1562 if (!refdev) { 1563 ret = 1; 1564 } else { 1565 __u64 ev1, ev2; 1566 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1567 1568 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1569 sb->level != refsb->level || 1570 sb->layout != refsb->layout || 1571 sb->chunksize != refsb->chunksize) { 1572 pr_warn("md: %s has strangely different superblock to %s\n", 1573 bdevname(rdev->bdev,b), 1574 bdevname(refdev->bdev,b2)); 1575 return -EINVAL; 1576 } 1577 ev1 = le64_to_cpu(sb->events); 1578 ev2 = le64_to_cpu(refsb->events); 1579 1580 if (ev1 > ev2) 1581 ret = 1; 1582 else 1583 ret = 0; 1584 } 1585 if (minor_version) { 1586 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1587 sectors -= rdev->data_offset; 1588 } else 1589 sectors = rdev->sb_start; 1590 if (sectors < le64_to_cpu(sb->data_size)) 1591 return -EINVAL; 1592 rdev->sectors = le64_to_cpu(sb->data_size); 1593 return ret; 1594 } 1595 1596 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1597 { 1598 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1599 __u64 ev1 = le64_to_cpu(sb->events); 1600 1601 rdev->raid_disk = -1; 1602 clear_bit(Faulty, &rdev->flags); 1603 clear_bit(In_sync, &rdev->flags); 1604 clear_bit(Bitmap_sync, &rdev->flags); 1605 clear_bit(WriteMostly, &rdev->flags); 1606 1607 if (mddev->raid_disks == 0) { 1608 mddev->major_version = 1; 1609 mddev->patch_version = 0; 1610 mddev->external = 0; 1611 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1612 mddev->ctime = le64_to_cpu(sb->ctime); 1613 mddev->utime = le64_to_cpu(sb->utime); 1614 mddev->level = le32_to_cpu(sb->level); 1615 mddev->clevel[0] = 0; 1616 mddev->layout = le32_to_cpu(sb->layout); 1617 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1618 mddev->dev_sectors = le64_to_cpu(sb->size); 1619 mddev->events = ev1; 1620 mddev->bitmap_info.offset = 0; 1621 mddev->bitmap_info.space = 0; 1622 /* Default location for bitmap is 1K after superblock 1623 * using 3K - total of 4K 1624 */ 1625 mddev->bitmap_info.default_offset = 1024 >> 9; 1626 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1627 mddev->reshape_backwards = 0; 1628 1629 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1630 memcpy(mddev->uuid, sb->set_uuid, 16); 1631 1632 mddev->max_disks = (4096-256)/2; 1633 1634 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1635 mddev->bitmap_info.file == NULL) { 1636 mddev->bitmap_info.offset = 1637 (__s32)le32_to_cpu(sb->bitmap_offset); 1638 /* Metadata doesn't record how much space is available. 1639 * For 1.0, we assume we can use up to the superblock 1640 * if before, else to 4K beyond superblock. 1641 * For others, assume no change is possible. 1642 */ 1643 if (mddev->minor_version > 0) 1644 mddev->bitmap_info.space = 0; 1645 else if (mddev->bitmap_info.offset > 0) 1646 mddev->bitmap_info.space = 1647 8 - mddev->bitmap_info.offset; 1648 else 1649 mddev->bitmap_info.space = 1650 -mddev->bitmap_info.offset; 1651 } 1652 1653 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1654 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1655 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1656 mddev->new_level = le32_to_cpu(sb->new_level); 1657 mddev->new_layout = le32_to_cpu(sb->new_layout); 1658 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1659 if (mddev->delta_disks < 0 || 1660 (mddev->delta_disks == 0 && 1661 (le32_to_cpu(sb->feature_map) 1662 & MD_FEATURE_RESHAPE_BACKWARDS))) 1663 mddev->reshape_backwards = 1; 1664 } else { 1665 mddev->reshape_position = MaxSector; 1666 mddev->delta_disks = 0; 1667 mddev->new_level = mddev->level; 1668 mddev->new_layout = mddev->layout; 1669 mddev->new_chunk_sectors = mddev->chunk_sectors; 1670 } 1671 1672 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1673 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1674 1675 if (le32_to_cpu(sb->feature_map) & 1676 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1677 if (le32_to_cpu(sb->feature_map) & 1678 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1679 return -EINVAL; 1680 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1681 (le32_to_cpu(sb->feature_map) & 1682 MD_FEATURE_MULTIPLE_PPLS)) 1683 return -EINVAL; 1684 set_bit(MD_HAS_PPL, &mddev->flags); 1685 } 1686 } else if (mddev->pers == NULL) { 1687 /* Insist of good event counter while assembling, except for 1688 * spares (which don't need an event count) */ 1689 ++ev1; 1690 if (rdev->desc_nr >= 0 && 1691 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1692 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1693 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1694 if (ev1 < mddev->events) 1695 return -EINVAL; 1696 } else if (mddev->bitmap) { 1697 /* If adding to array with a bitmap, then we can accept an 1698 * older device, but not too old. 1699 */ 1700 if (ev1 < mddev->bitmap->events_cleared) 1701 return 0; 1702 if (ev1 < mddev->events) 1703 set_bit(Bitmap_sync, &rdev->flags); 1704 } else { 1705 if (ev1 < mddev->events) 1706 /* just a hot-add of a new device, leave raid_disk at -1 */ 1707 return 0; 1708 } 1709 if (mddev->level != LEVEL_MULTIPATH) { 1710 int role; 1711 if (rdev->desc_nr < 0 || 1712 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1713 role = MD_DISK_ROLE_SPARE; 1714 rdev->desc_nr = -1; 1715 } else 1716 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1717 switch(role) { 1718 case MD_DISK_ROLE_SPARE: /* spare */ 1719 break; 1720 case MD_DISK_ROLE_FAULTY: /* faulty */ 1721 set_bit(Faulty, &rdev->flags); 1722 break; 1723 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1724 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1725 /* journal device without journal feature */ 1726 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1727 return -EINVAL; 1728 } 1729 set_bit(Journal, &rdev->flags); 1730 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1731 rdev->raid_disk = 0; 1732 break; 1733 default: 1734 rdev->saved_raid_disk = role; 1735 if ((le32_to_cpu(sb->feature_map) & 1736 MD_FEATURE_RECOVERY_OFFSET)) { 1737 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1738 if (!(le32_to_cpu(sb->feature_map) & 1739 MD_FEATURE_RECOVERY_BITMAP)) 1740 rdev->saved_raid_disk = -1; 1741 } else 1742 set_bit(In_sync, &rdev->flags); 1743 rdev->raid_disk = role; 1744 break; 1745 } 1746 if (sb->devflags & WriteMostly1) 1747 set_bit(WriteMostly, &rdev->flags); 1748 if (sb->devflags & FailFast1) 1749 set_bit(FailFast, &rdev->flags); 1750 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1751 set_bit(Replacement, &rdev->flags); 1752 } else /* MULTIPATH are always insync */ 1753 set_bit(In_sync, &rdev->flags); 1754 1755 return 0; 1756 } 1757 1758 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1759 { 1760 struct mdp_superblock_1 *sb; 1761 struct md_rdev *rdev2; 1762 int max_dev, i; 1763 /* make rdev->sb match mddev and rdev data. */ 1764 1765 sb = page_address(rdev->sb_page); 1766 1767 sb->feature_map = 0; 1768 sb->pad0 = 0; 1769 sb->recovery_offset = cpu_to_le64(0); 1770 memset(sb->pad3, 0, sizeof(sb->pad3)); 1771 1772 sb->utime = cpu_to_le64((__u64)mddev->utime); 1773 sb->events = cpu_to_le64(mddev->events); 1774 if (mddev->in_sync) 1775 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1776 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1777 sb->resync_offset = cpu_to_le64(MaxSector); 1778 else 1779 sb->resync_offset = cpu_to_le64(0); 1780 1781 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1782 1783 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1784 sb->size = cpu_to_le64(mddev->dev_sectors); 1785 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1786 sb->level = cpu_to_le32(mddev->level); 1787 sb->layout = cpu_to_le32(mddev->layout); 1788 if (test_bit(FailFast, &rdev->flags)) 1789 sb->devflags |= FailFast1; 1790 else 1791 sb->devflags &= ~FailFast1; 1792 1793 if (test_bit(WriteMostly, &rdev->flags)) 1794 sb->devflags |= WriteMostly1; 1795 else 1796 sb->devflags &= ~WriteMostly1; 1797 sb->data_offset = cpu_to_le64(rdev->data_offset); 1798 sb->data_size = cpu_to_le64(rdev->sectors); 1799 1800 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1801 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1802 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1803 } 1804 1805 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1806 !test_bit(In_sync, &rdev->flags)) { 1807 sb->feature_map |= 1808 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1809 sb->recovery_offset = 1810 cpu_to_le64(rdev->recovery_offset); 1811 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1812 sb->feature_map |= 1813 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1814 } 1815 /* Note: recovery_offset and journal_tail share space */ 1816 if (test_bit(Journal, &rdev->flags)) 1817 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1818 if (test_bit(Replacement, &rdev->flags)) 1819 sb->feature_map |= 1820 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1821 1822 if (mddev->reshape_position != MaxSector) { 1823 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1824 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1825 sb->new_layout = cpu_to_le32(mddev->new_layout); 1826 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1827 sb->new_level = cpu_to_le32(mddev->new_level); 1828 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1829 if (mddev->delta_disks == 0 && 1830 mddev->reshape_backwards) 1831 sb->feature_map 1832 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1833 if (rdev->new_data_offset != rdev->data_offset) { 1834 sb->feature_map 1835 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1836 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1837 - rdev->data_offset)); 1838 } 1839 } 1840 1841 if (mddev_is_clustered(mddev)) 1842 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1843 1844 if (rdev->badblocks.count == 0) 1845 /* Nothing to do for bad blocks*/ ; 1846 else if (sb->bblog_offset == 0) 1847 /* Cannot record bad blocks on this device */ 1848 md_error(mddev, rdev); 1849 else { 1850 struct badblocks *bb = &rdev->badblocks; 1851 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1852 u64 *p = bb->page; 1853 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1854 if (bb->changed) { 1855 unsigned seq; 1856 1857 retry: 1858 seq = read_seqbegin(&bb->lock); 1859 1860 memset(bbp, 0xff, PAGE_SIZE); 1861 1862 for (i = 0 ; i < bb->count ; i++) { 1863 u64 internal_bb = p[i]; 1864 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1865 | BB_LEN(internal_bb)); 1866 bbp[i] = cpu_to_le64(store_bb); 1867 } 1868 bb->changed = 0; 1869 if (read_seqretry(&bb->lock, seq)) 1870 goto retry; 1871 1872 bb->sector = (rdev->sb_start + 1873 (int)le32_to_cpu(sb->bblog_offset)); 1874 bb->size = le16_to_cpu(sb->bblog_size); 1875 } 1876 } 1877 1878 max_dev = 0; 1879 rdev_for_each(rdev2, mddev) 1880 if (rdev2->desc_nr+1 > max_dev) 1881 max_dev = rdev2->desc_nr+1; 1882 1883 if (max_dev > le32_to_cpu(sb->max_dev)) { 1884 int bmask; 1885 sb->max_dev = cpu_to_le32(max_dev); 1886 rdev->sb_size = max_dev * 2 + 256; 1887 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1888 if (rdev->sb_size & bmask) 1889 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1890 } else 1891 max_dev = le32_to_cpu(sb->max_dev); 1892 1893 for (i=0; i<max_dev;i++) 1894 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1895 1896 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1897 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1898 1899 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 1900 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 1901 sb->feature_map |= 1902 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 1903 else 1904 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 1905 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 1906 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 1907 } 1908 1909 rdev_for_each(rdev2, mddev) { 1910 i = rdev2->desc_nr; 1911 if (test_bit(Faulty, &rdev2->flags)) 1912 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1913 else if (test_bit(In_sync, &rdev2->flags)) 1914 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1915 else if (test_bit(Journal, &rdev2->flags)) 1916 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1917 else if (rdev2->raid_disk >= 0) 1918 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1919 else 1920 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1921 } 1922 1923 sb->sb_csum = calc_sb_1_csum(sb); 1924 } 1925 1926 static unsigned long long 1927 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1928 { 1929 struct mdp_superblock_1 *sb; 1930 sector_t max_sectors; 1931 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1932 return 0; /* component must fit device */ 1933 if (rdev->data_offset != rdev->new_data_offset) 1934 return 0; /* too confusing */ 1935 if (rdev->sb_start < rdev->data_offset) { 1936 /* minor versions 1 and 2; superblock before data */ 1937 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1938 max_sectors -= rdev->data_offset; 1939 if (!num_sectors || num_sectors > max_sectors) 1940 num_sectors = max_sectors; 1941 } else if (rdev->mddev->bitmap_info.offset) { 1942 /* minor version 0 with bitmap we can't move */ 1943 return 0; 1944 } else { 1945 /* minor version 0; superblock after data */ 1946 sector_t sb_start; 1947 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1948 sb_start &= ~(sector_t)(4*2 - 1); 1949 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1950 if (!num_sectors || num_sectors > max_sectors) 1951 num_sectors = max_sectors; 1952 rdev->sb_start = sb_start; 1953 } 1954 sb = page_address(rdev->sb_page); 1955 sb->data_size = cpu_to_le64(num_sectors); 1956 sb->super_offset = cpu_to_le64(rdev->sb_start); 1957 sb->sb_csum = calc_sb_1_csum(sb); 1958 do { 1959 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1960 rdev->sb_page); 1961 } while (md_super_wait(rdev->mddev) < 0); 1962 return num_sectors; 1963 1964 } 1965 1966 static int 1967 super_1_allow_new_offset(struct md_rdev *rdev, 1968 unsigned long long new_offset) 1969 { 1970 /* All necessary checks on new >= old have been done */ 1971 struct bitmap *bitmap; 1972 if (new_offset >= rdev->data_offset) 1973 return 1; 1974 1975 /* with 1.0 metadata, there is no metadata to tread on 1976 * so we can always move back */ 1977 if (rdev->mddev->minor_version == 0) 1978 return 1; 1979 1980 /* otherwise we must be sure not to step on 1981 * any metadata, so stay: 1982 * 36K beyond start of superblock 1983 * beyond end of badblocks 1984 * beyond write-intent bitmap 1985 */ 1986 if (rdev->sb_start + (32+4)*2 > new_offset) 1987 return 0; 1988 bitmap = rdev->mddev->bitmap; 1989 if (bitmap && !rdev->mddev->bitmap_info.file && 1990 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1991 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1992 return 0; 1993 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1994 return 0; 1995 1996 return 1; 1997 } 1998 1999 static struct super_type super_types[] = { 2000 [0] = { 2001 .name = "0.90.0", 2002 .owner = THIS_MODULE, 2003 .load_super = super_90_load, 2004 .validate_super = super_90_validate, 2005 .sync_super = super_90_sync, 2006 .rdev_size_change = super_90_rdev_size_change, 2007 .allow_new_offset = super_90_allow_new_offset, 2008 }, 2009 [1] = { 2010 .name = "md-1", 2011 .owner = THIS_MODULE, 2012 .load_super = super_1_load, 2013 .validate_super = super_1_validate, 2014 .sync_super = super_1_sync, 2015 .rdev_size_change = super_1_rdev_size_change, 2016 .allow_new_offset = super_1_allow_new_offset, 2017 }, 2018 }; 2019 2020 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2021 { 2022 if (mddev->sync_super) { 2023 mddev->sync_super(mddev, rdev); 2024 return; 2025 } 2026 2027 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2028 2029 super_types[mddev->major_version].sync_super(mddev, rdev); 2030 } 2031 2032 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2033 { 2034 struct md_rdev *rdev, *rdev2; 2035 2036 rcu_read_lock(); 2037 rdev_for_each_rcu(rdev, mddev1) { 2038 if (test_bit(Faulty, &rdev->flags) || 2039 test_bit(Journal, &rdev->flags) || 2040 rdev->raid_disk == -1) 2041 continue; 2042 rdev_for_each_rcu(rdev2, mddev2) { 2043 if (test_bit(Faulty, &rdev2->flags) || 2044 test_bit(Journal, &rdev2->flags) || 2045 rdev2->raid_disk == -1) 2046 continue; 2047 if (rdev->bdev->bd_contains == 2048 rdev2->bdev->bd_contains) { 2049 rcu_read_unlock(); 2050 return 1; 2051 } 2052 } 2053 } 2054 rcu_read_unlock(); 2055 return 0; 2056 } 2057 2058 static LIST_HEAD(pending_raid_disks); 2059 2060 /* 2061 * Try to register data integrity profile for an mddev 2062 * 2063 * This is called when an array is started and after a disk has been kicked 2064 * from the array. It only succeeds if all working and active component devices 2065 * are integrity capable with matching profiles. 2066 */ 2067 int md_integrity_register(struct mddev *mddev) 2068 { 2069 struct md_rdev *rdev, *reference = NULL; 2070 2071 if (list_empty(&mddev->disks)) 2072 return 0; /* nothing to do */ 2073 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2074 return 0; /* shouldn't register, or already is */ 2075 rdev_for_each(rdev, mddev) { 2076 /* skip spares and non-functional disks */ 2077 if (test_bit(Faulty, &rdev->flags)) 2078 continue; 2079 if (rdev->raid_disk < 0) 2080 continue; 2081 if (!reference) { 2082 /* Use the first rdev as the reference */ 2083 reference = rdev; 2084 continue; 2085 } 2086 /* does this rdev's profile match the reference profile? */ 2087 if (blk_integrity_compare(reference->bdev->bd_disk, 2088 rdev->bdev->bd_disk) < 0) 2089 return -EINVAL; 2090 } 2091 if (!reference || !bdev_get_integrity(reference->bdev)) 2092 return 0; 2093 /* 2094 * All component devices are integrity capable and have matching 2095 * profiles, register the common profile for the md device. 2096 */ 2097 blk_integrity_register(mddev->gendisk, 2098 bdev_get_integrity(reference->bdev)); 2099 2100 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2101 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2102 pr_err("md: failed to create integrity pool for %s\n", 2103 mdname(mddev)); 2104 return -EINVAL; 2105 } 2106 return 0; 2107 } 2108 EXPORT_SYMBOL(md_integrity_register); 2109 2110 /* 2111 * Attempt to add an rdev, but only if it is consistent with the current 2112 * integrity profile 2113 */ 2114 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2115 { 2116 struct blk_integrity *bi_rdev; 2117 struct blk_integrity *bi_mddev; 2118 char name[BDEVNAME_SIZE]; 2119 2120 if (!mddev->gendisk) 2121 return 0; 2122 2123 bi_rdev = bdev_get_integrity(rdev->bdev); 2124 bi_mddev = blk_get_integrity(mddev->gendisk); 2125 2126 if (!bi_mddev) /* nothing to do */ 2127 return 0; 2128 2129 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2130 pr_err("%s: incompatible integrity profile for %s\n", 2131 mdname(mddev), bdevname(rdev->bdev, name)); 2132 return -ENXIO; 2133 } 2134 2135 return 0; 2136 } 2137 EXPORT_SYMBOL(md_integrity_add_rdev); 2138 2139 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2140 { 2141 char b[BDEVNAME_SIZE]; 2142 struct kobject *ko; 2143 int err; 2144 2145 /* prevent duplicates */ 2146 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2147 return -EEXIST; 2148 2149 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2150 mddev->pers) 2151 return -EROFS; 2152 2153 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2154 if (!test_bit(Journal, &rdev->flags) && 2155 rdev->sectors && 2156 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2157 if (mddev->pers) { 2158 /* Cannot change size, so fail 2159 * If mddev->level <= 0, then we don't care 2160 * about aligning sizes (e.g. linear) 2161 */ 2162 if (mddev->level > 0) 2163 return -ENOSPC; 2164 } else 2165 mddev->dev_sectors = rdev->sectors; 2166 } 2167 2168 /* Verify rdev->desc_nr is unique. 2169 * If it is -1, assign a free number, else 2170 * check number is not in use 2171 */ 2172 rcu_read_lock(); 2173 if (rdev->desc_nr < 0) { 2174 int choice = 0; 2175 if (mddev->pers) 2176 choice = mddev->raid_disks; 2177 while (md_find_rdev_nr_rcu(mddev, choice)) 2178 choice++; 2179 rdev->desc_nr = choice; 2180 } else { 2181 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2182 rcu_read_unlock(); 2183 return -EBUSY; 2184 } 2185 } 2186 rcu_read_unlock(); 2187 if (!test_bit(Journal, &rdev->flags) && 2188 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2189 pr_warn("md: %s: array is limited to %d devices\n", 2190 mdname(mddev), mddev->max_disks); 2191 return -EBUSY; 2192 } 2193 bdevname(rdev->bdev,b); 2194 strreplace(b, '/', '!'); 2195 2196 rdev->mddev = mddev; 2197 pr_debug("md: bind<%s>\n", b); 2198 2199 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2200 goto fail; 2201 2202 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2203 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2204 /* failure here is OK */; 2205 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2206 2207 list_add_rcu(&rdev->same_set, &mddev->disks); 2208 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2209 2210 /* May as well allow recovery to be retried once */ 2211 mddev->recovery_disabled++; 2212 2213 return 0; 2214 2215 fail: 2216 pr_warn("md: failed to register dev-%s for %s\n", 2217 b, mdname(mddev)); 2218 return err; 2219 } 2220 2221 static void md_delayed_delete(struct work_struct *ws) 2222 { 2223 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2224 kobject_del(&rdev->kobj); 2225 kobject_put(&rdev->kobj); 2226 } 2227 2228 static void unbind_rdev_from_array(struct md_rdev *rdev) 2229 { 2230 char b[BDEVNAME_SIZE]; 2231 2232 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2233 list_del_rcu(&rdev->same_set); 2234 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2235 rdev->mddev = NULL; 2236 sysfs_remove_link(&rdev->kobj, "block"); 2237 sysfs_put(rdev->sysfs_state); 2238 rdev->sysfs_state = NULL; 2239 rdev->badblocks.count = 0; 2240 /* We need to delay this, otherwise we can deadlock when 2241 * writing to 'remove' to "dev/state". We also need 2242 * to delay it due to rcu usage. 2243 */ 2244 synchronize_rcu(); 2245 INIT_WORK(&rdev->del_work, md_delayed_delete); 2246 kobject_get(&rdev->kobj); 2247 queue_work(md_misc_wq, &rdev->del_work); 2248 } 2249 2250 /* 2251 * prevent the device from being mounted, repartitioned or 2252 * otherwise reused by a RAID array (or any other kernel 2253 * subsystem), by bd_claiming the device. 2254 */ 2255 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2256 { 2257 int err = 0; 2258 struct block_device *bdev; 2259 char b[BDEVNAME_SIZE]; 2260 2261 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2262 shared ? (struct md_rdev *)lock_rdev : rdev); 2263 if (IS_ERR(bdev)) { 2264 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2265 return PTR_ERR(bdev); 2266 } 2267 rdev->bdev = bdev; 2268 return err; 2269 } 2270 2271 static void unlock_rdev(struct md_rdev *rdev) 2272 { 2273 struct block_device *bdev = rdev->bdev; 2274 rdev->bdev = NULL; 2275 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2276 } 2277 2278 void md_autodetect_dev(dev_t dev); 2279 2280 static void export_rdev(struct md_rdev *rdev) 2281 { 2282 char b[BDEVNAME_SIZE]; 2283 2284 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2285 md_rdev_clear(rdev); 2286 #ifndef MODULE 2287 if (test_bit(AutoDetected, &rdev->flags)) 2288 md_autodetect_dev(rdev->bdev->bd_dev); 2289 #endif 2290 unlock_rdev(rdev); 2291 kobject_put(&rdev->kobj); 2292 } 2293 2294 void md_kick_rdev_from_array(struct md_rdev *rdev) 2295 { 2296 unbind_rdev_from_array(rdev); 2297 export_rdev(rdev); 2298 } 2299 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2300 2301 static void export_array(struct mddev *mddev) 2302 { 2303 struct md_rdev *rdev; 2304 2305 while (!list_empty(&mddev->disks)) { 2306 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2307 same_set); 2308 md_kick_rdev_from_array(rdev); 2309 } 2310 mddev->raid_disks = 0; 2311 mddev->major_version = 0; 2312 } 2313 2314 static bool set_in_sync(struct mddev *mddev) 2315 { 2316 WARN_ON_ONCE(NR_CPUS != 1 && !spin_is_locked(&mddev->lock)); 2317 if (!mddev->in_sync) { 2318 mddev->sync_checkers++; 2319 spin_unlock(&mddev->lock); 2320 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2321 spin_lock(&mddev->lock); 2322 if (!mddev->in_sync && 2323 percpu_ref_is_zero(&mddev->writes_pending)) { 2324 mddev->in_sync = 1; 2325 /* 2326 * Ensure ->in_sync is visible before we clear 2327 * ->sync_checkers. 2328 */ 2329 smp_mb(); 2330 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2331 sysfs_notify_dirent_safe(mddev->sysfs_state); 2332 } 2333 if (--mddev->sync_checkers == 0) 2334 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2335 } 2336 if (mddev->safemode == 1) 2337 mddev->safemode = 0; 2338 return mddev->in_sync; 2339 } 2340 2341 static void sync_sbs(struct mddev *mddev, int nospares) 2342 { 2343 /* Update each superblock (in-memory image), but 2344 * if we are allowed to, skip spares which already 2345 * have the right event counter, or have one earlier 2346 * (which would mean they aren't being marked as dirty 2347 * with the rest of the array) 2348 */ 2349 struct md_rdev *rdev; 2350 rdev_for_each(rdev, mddev) { 2351 if (rdev->sb_events == mddev->events || 2352 (nospares && 2353 rdev->raid_disk < 0 && 2354 rdev->sb_events+1 == mddev->events)) { 2355 /* Don't update this superblock */ 2356 rdev->sb_loaded = 2; 2357 } else { 2358 sync_super(mddev, rdev); 2359 rdev->sb_loaded = 1; 2360 } 2361 } 2362 } 2363 2364 static bool does_sb_need_changing(struct mddev *mddev) 2365 { 2366 struct md_rdev *rdev; 2367 struct mdp_superblock_1 *sb; 2368 int role; 2369 2370 /* Find a good rdev */ 2371 rdev_for_each(rdev, mddev) 2372 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2373 break; 2374 2375 /* No good device found. */ 2376 if (!rdev) 2377 return false; 2378 2379 sb = page_address(rdev->sb_page); 2380 /* Check if a device has become faulty or a spare become active */ 2381 rdev_for_each(rdev, mddev) { 2382 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2383 /* Device activated? */ 2384 if (role == 0xffff && rdev->raid_disk >=0 && 2385 !test_bit(Faulty, &rdev->flags)) 2386 return true; 2387 /* Device turned faulty? */ 2388 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2389 return true; 2390 } 2391 2392 /* Check if any mddev parameters have changed */ 2393 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2394 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2395 (mddev->layout != le32_to_cpu(sb->layout)) || 2396 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2397 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2398 return true; 2399 2400 return false; 2401 } 2402 2403 void md_update_sb(struct mddev *mddev, int force_change) 2404 { 2405 struct md_rdev *rdev; 2406 int sync_req; 2407 int nospares = 0; 2408 int any_badblocks_changed = 0; 2409 int ret = -1; 2410 2411 if (mddev->ro) { 2412 if (force_change) 2413 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2414 return; 2415 } 2416 2417 repeat: 2418 if (mddev_is_clustered(mddev)) { 2419 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2420 force_change = 1; 2421 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2422 nospares = 1; 2423 ret = md_cluster_ops->metadata_update_start(mddev); 2424 /* Has someone else has updated the sb */ 2425 if (!does_sb_need_changing(mddev)) { 2426 if (ret == 0) 2427 md_cluster_ops->metadata_update_cancel(mddev); 2428 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2429 BIT(MD_SB_CHANGE_DEVS) | 2430 BIT(MD_SB_CHANGE_CLEAN)); 2431 return; 2432 } 2433 } 2434 2435 /* First make sure individual recovery_offsets are correct */ 2436 rdev_for_each(rdev, mddev) { 2437 if (rdev->raid_disk >= 0 && 2438 mddev->delta_disks >= 0 && 2439 !test_bit(Journal, &rdev->flags) && 2440 !test_bit(In_sync, &rdev->flags) && 2441 mddev->curr_resync_completed > rdev->recovery_offset) 2442 rdev->recovery_offset = mddev->curr_resync_completed; 2443 2444 } 2445 if (!mddev->persistent) { 2446 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2447 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2448 if (!mddev->external) { 2449 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2450 rdev_for_each(rdev, mddev) { 2451 if (rdev->badblocks.changed) { 2452 rdev->badblocks.changed = 0; 2453 ack_all_badblocks(&rdev->badblocks); 2454 md_error(mddev, rdev); 2455 } 2456 clear_bit(Blocked, &rdev->flags); 2457 clear_bit(BlockedBadBlocks, &rdev->flags); 2458 wake_up(&rdev->blocked_wait); 2459 } 2460 } 2461 wake_up(&mddev->sb_wait); 2462 return; 2463 } 2464 2465 spin_lock(&mddev->lock); 2466 2467 mddev->utime = ktime_get_real_seconds(); 2468 2469 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2470 force_change = 1; 2471 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2472 /* just a clean<-> dirty transition, possibly leave spares alone, 2473 * though if events isn't the right even/odd, we will have to do 2474 * spares after all 2475 */ 2476 nospares = 1; 2477 if (force_change) 2478 nospares = 0; 2479 if (mddev->degraded) 2480 /* If the array is degraded, then skipping spares is both 2481 * dangerous and fairly pointless. 2482 * Dangerous because a device that was removed from the array 2483 * might have a event_count that still looks up-to-date, 2484 * so it can be re-added without a resync. 2485 * Pointless because if there are any spares to skip, 2486 * then a recovery will happen and soon that array won't 2487 * be degraded any more and the spare can go back to sleep then. 2488 */ 2489 nospares = 0; 2490 2491 sync_req = mddev->in_sync; 2492 2493 /* If this is just a dirty<->clean transition, and the array is clean 2494 * and 'events' is odd, we can roll back to the previous clean state */ 2495 if (nospares 2496 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2497 && mddev->can_decrease_events 2498 && mddev->events != 1) { 2499 mddev->events--; 2500 mddev->can_decrease_events = 0; 2501 } else { 2502 /* otherwise we have to go forward and ... */ 2503 mddev->events ++; 2504 mddev->can_decrease_events = nospares; 2505 } 2506 2507 /* 2508 * This 64-bit counter should never wrap. 2509 * Either we are in around ~1 trillion A.C., assuming 2510 * 1 reboot per second, or we have a bug... 2511 */ 2512 WARN_ON(mddev->events == 0); 2513 2514 rdev_for_each(rdev, mddev) { 2515 if (rdev->badblocks.changed) 2516 any_badblocks_changed++; 2517 if (test_bit(Faulty, &rdev->flags)) 2518 set_bit(FaultRecorded, &rdev->flags); 2519 } 2520 2521 sync_sbs(mddev, nospares); 2522 spin_unlock(&mddev->lock); 2523 2524 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2525 mdname(mddev), mddev->in_sync); 2526 2527 if (mddev->queue) 2528 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2529 rewrite: 2530 bitmap_update_sb(mddev->bitmap); 2531 rdev_for_each(rdev, mddev) { 2532 char b[BDEVNAME_SIZE]; 2533 2534 if (rdev->sb_loaded != 1) 2535 continue; /* no noise on spare devices */ 2536 2537 if (!test_bit(Faulty, &rdev->flags)) { 2538 md_super_write(mddev,rdev, 2539 rdev->sb_start, rdev->sb_size, 2540 rdev->sb_page); 2541 pr_debug("md: (write) %s's sb offset: %llu\n", 2542 bdevname(rdev->bdev, b), 2543 (unsigned long long)rdev->sb_start); 2544 rdev->sb_events = mddev->events; 2545 if (rdev->badblocks.size) { 2546 md_super_write(mddev, rdev, 2547 rdev->badblocks.sector, 2548 rdev->badblocks.size << 9, 2549 rdev->bb_page); 2550 rdev->badblocks.size = 0; 2551 } 2552 2553 } else 2554 pr_debug("md: %s (skipping faulty)\n", 2555 bdevname(rdev->bdev, b)); 2556 2557 if (mddev->level == LEVEL_MULTIPATH) 2558 /* only need to write one superblock... */ 2559 break; 2560 } 2561 if (md_super_wait(mddev) < 0) 2562 goto rewrite; 2563 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2564 2565 if (mddev_is_clustered(mddev) && ret == 0) 2566 md_cluster_ops->metadata_update_finish(mddev); 2567 2568 if (mddev->in_sync != sync_req || 2569 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2570 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2571 /* have to write it out again */ 2572 goto repeat; 2573 wake_up(&mddev->sb_wait); 2574 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2575 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2576 2577 rdev_for_each(rdev, mddev) { 2578 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2579 clear_bit(Blocked, &rdev->flags); 2580 2581 if (any_badblocks_changed) 2582 ack_all_badblocks(&rdev->badblocks); 2583 clear_bit(BlockedBadBlocks, &rdev->flags); 2584 wake_up(&rdev->blocked_wait); 2585 } 2586 } 2587 EXPORT_SYMBOL(md_update_sb); 2588 2589 static int add_bound_rdev(struct md_rdev *rdev) 2590 { 2591 struct mddev *mddev = rdev->mddev; 2592 int err = 0; 2593 bool add_journal = test_bit(Journal, &rdev->flags); 2594 2595 if (!mddev->pers->hot_remove_disk || add_journal) { 2596 /* If there is hot_add_disk but no hot_remove_disk 2597 * then added disks for geometry changes, 2598 * and should be added immediately. 2599 */ 2600 super_types[mddev->major_version]. 2601 validate_super(mddev, rdev); 2602 if (add_journal) 2603 mddev_suspend(mddev); 2604 err = mddev->pers->hot_add_disk(mddev, rdev); 2605 if (add_journal) 2606 mddev_resume(mddev); 2607 if (err) { 2608 md_kick_rdev_from_array(rdev); 2609 return err; 2610 } 2611 } 2612 sysfs_notify_dirent_safe(rdev->sysfs_state); 2613 2614 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2615 if (mddev->degraded) 2616 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2617 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2618 md_new_event(mddev); 2619 md_wakeup_thread(mddev->thread); 2620 return 0; 2621 } 2622 2623 /* words written to sysfs files may, or may not, be \n terminated. 2624 * We want to accept with case. For this we use cmd_match. 2625 */ 2626 static int cmd_match(const char *cmd, const char *str) 2627 { 2628 /* See if cmd, written into a sysfs file, matches 2629 * str. They must either be the same, or cmd can 2630 * have a trailing newline 2631 */ 2632 while (*cmd && *str && *cmd == *str) { 2633 cmd++; 2634 str++; 2635 } 2636 if (*cmd == '\n') 2637 cmd++; 2638 if (*str || *cmd) 2639 return 0; 2640 return 1; 2641 } 2642 2643 struct rdev_sysfs_entry { 2644 struct attribute attr; 2645 ssize_t (*show)(struct md_rdev *, char *); 2646 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2647 }; 2648 2649 static ssize_t 2650 state_show(struct md_rdev *rdev, char *page) 2651 { 2652 char *sep = ","; 2653 size_t len = 0; 2654 unsigned long flags = ACCESS_ONCE(rdev->flags); 2655 2656 if (test_bit(Faulty, &flags) || 2657 (!test_bit(ExternalBbl, &flags) && 2658 rdev->badblocks.unacked_exist)) 2659 len += sprintf(page+len, "faulty%s", sep); 2660 if (test_bit(In_sync, &flags)) 2661 len += sprintf(page+len, "in_sync%s", sep); 2662 if (test_bit(Journal, &flags)) 2663 len += sprintf(page+len, "journal%s", sep); 2664 if (test_bit(WriteMostly, &flags)) 2665 len += sprintf(page+len, "write_mostly%s", sep); 2666 if (test_bit(Blocked, &flags) || 2667 (rdev->badblocks.unacked_exist 2668 && !test_bit(Faulty, &flags))) 2669 len += sprintf(page+len, "blocked%s", sep); 2670 if (!test_bit(Faulty, &flags) && 2671 !test_bit(Journal, &flags) && 2672 !test_bit(In_sync, &flags)) 2673 len += sprintf(page+len, "spare%s", sep); 2674 if (test_bit(WriteErrorSeen, &flags)) 2675 len += sprintf(page+len, "write_error%s", sep); 2676 if (test_bit(WantReplacement, &flags)) 2677 len += sprintf(page+len, "want_replacement%s", sep); 2678 if (test_bit(Replacement, &flags)) 2679 len += sprintf(page+len, "replacement%s", sep); 2680 if (test_bit(ExternalBbl, &flags)) 2681 len += sprintf(page+len, "external_bbl%s", sep); 2682 if (test_bit(FailFast, &flags)) 2683 len += sprintf(page+len, "failfast%s", sep); 2684 2685 if (len) 2686 len -= strlen(sep); 2687 2688 return len+sprintf(page+len, "\n"); 2689 } 2690 2691 static ssize_t 2692 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2693 { 2694 /* can write 2695 * faulty - simulates an error 2696 * remove - disconnects the device 2697 * writemostly - sets write_mostly 2698 * -writemostly - clears write_mostly 2699 * blocked - sets the Blocked flags 2700 * -blocked - clears the Blocked and possibly simulates an error 2701 * insync - sets Insync providing device isn't active 2702 * -insync - clear Insync for a device with a slot assigned, 2703 * so that it gets rebuilt based on bitmap 2704 * write_error - sets WriteErrorSeen 2705 * -write_error - clears WriteErrorSeen 2706 * {,-}failfast - set/clear FailFast 2707 */ 2708 int err = -EINVAL; 2709 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2710 md_error(rdev->mddev, rdev); 2711 if (test_bit(Faulty, &rdev->flags)) 2712 err = 0; 2713 else 2714 err = -EBUSY; 2715 } else if (cmd_match(buf, "remove")) { 2716 if (rdev->mddev->pers) { 2717 clear_bit(Blocked, &rdev->flags); 2718 remove_and_add_spares(rdev->mddev, rdev); 2719 } 2720 if (rdev->raid_disk >= 0) 2721 err = -EBUSY; 2722 else { 2723 struct mddev *mddev = rdev->mddev; 2724 err = 0; 2725 if (mddev_is_clustered(mddev)) 2726 err = md_cluster_ops->remove_disk(mddev, rdev); 2727 2728 if (err == 0) { 2729 md_kick_rdev_from_array(rdev); 2730 if (mddev->pers) { 2731 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2732 md_wakeup_thread(mddev->thread); 2733 } 2734 md_new_event(mddev); 2735 } 2736 } 2737 } else if (cmd_match(buf, "writemostly")) { 2738 set_bit(WriteMostly, &rdev->flags); 2739 err = 0; 2740 } else if (cmd_match(buf, "-writemostly")) { 2741 clear_bit(WriteMostly, &rdev->flags); 2742 err = 0; 2743 } else if (cmd_match(buf, "blocked")) { 2744 set_bit(Blocked, &rdev->flags); 2745 err = 0; 2746 } else if (cmd_match(buf, "-blocked")) { 2747 if (!test_bit(Faulty, &rdev->flags) && 2748 !test_bit(ExternalBbl, &rdev->flags) && 2749 rdev->badblocks.unacked_exist) { 2750 /* metadata handler doesn't understand badblocks, 2751 * so we need to fail the device 2752 */ 2753 md_error(rdev->mddev, rdev); 2754 } 2755 clear_bit(Blocked, &rdev->flags); 2756 clear_bit(BlockedBadBlocks, &rdev->flags); 2757 wake_up(&rdev->blocked_wait); 2758 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2759 md_wakeup_thread(rdev->mddev->thread); 2760 2761 err = 0; 2762 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2763 set_bit(In_sync, &rdev->flags); 2764 err = 0; 2765 } else if (cmd_match(buf, "failfast")) { 2766 set_bit(FailFast, &rdev->flags); 2767 err = 0; 2768 } else if (cmd_match(buf, "-failfast")) { 2769 clear_bit(FailFast, &rdev->flags); 2770 err = 0; 2771 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2772 !test_bit(Journal, &rdev->flags)) { 2773 if (rdev->mddev->pers == NULL) { 2774 clear_bit(In_sync, &rdev->flags); 2775 rdev->saved_raid_disk = rdev->raid_disk; 2776 rdev->raid_disk = -1; 2777 err = 0; 2778 } 2779 } else if (cmd_match(buf, "write_error")) { 2780 set_bit(WriteErrorSeen, &rdev->flags); 2781 err = 0; 2782 } else if (cmd_match(buf, "-write_error")) { 2783 clear_bit(WriteErrorSeen, &rdev->flags); 2784 err = 0; 2785 } else if (cmd_match(buf, "want_replacement")) { 2786 /* Any non-spare device that is not a replacement can 2787 * become want_replacement at any time, but we then need to 2788 * check if recovery is needed. 2789 */ 2790 if (rdev->raid_disk >= 0 && 2791 !test_bit(Journal, &rdev->flags) && 2792 !test_bit(Replacement, &rdev->flags)) 2793 set_bit(WantReplacement, &rdev->flags); 2794 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2795 md_wakeup_thread(rdev->mddev->thread); 2796 err = 0; 2797 } else if (cmd_match(buf, "-want_replacement")) { 2798 /* Clearing 'want_replacement' is always allowed. 2799 * Once replacements starts it is too late though. 2800 */ 2801 err = 0; 2802 clear_bit(WantReplacement, &rdev->flags); 2803 } else if (cmd_match(buf, "replacement")) { 2804 /* Can only set a device as a replacement when array has not 2805 * yet been started. Once running, replacement is automatic 2806 * from spares, or by assigning 'slot'. 2807 */ 2808 if (rdev->mddev->pers) 2809 err = -EBUSY; 2810 else { 2811 set_bit(Replacement, &rdev->flags); 2812 err = 0; 2813 } 2814 } else if (cmd_match(buf, "-replacement")) { 2815 /* Similarly, can only clear Replacement before start */ 2816 if (rdev->mddev->pers) 2817 err = -EBUSY; 2818 else { 2819 clear_bit(Replacement, &rdev->flags); 2820 err = 0; 2821 } 2822 } else if (cmd_match(buf, "re-add")) { 2823 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) { 2824 /* clear_bit is performed _after_ all the devices 2825 * have their local Faulty bit cleared. If any writes 2826 * happen in the meantime in the local node, they 2827 * will land in the local bitmap, which will be synced 2828 * by this node eventually 2829 */ 2830 if (!mddev_is_clustered(rdev->mddev) || 2831 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2832 clear_bit(Faulty, &rdev->flags); 2833 err = add_bound_rdev(rdev); 2834 } 2835 } else 2836 err = -EBUSY; 2837 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2838 set_bit(ExternalBbl, &rdev->flags); 2839 rdev->badblocks.shift = 0; 2840 err = 0; 2841 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2842 clear_bit(ExternalBbl, &rdev->flags); 2843 err = 0; 2844 } 2845 if (!err) 2846 sysfs_notify_dirent_safe(rdev->sysfs_state); 2847 return err ? err : len; 2848 } 2849 static struct rdev_sysfs_entry rdev_state = 2850 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2851 2852 static ssize_t 2853 errors_show(struct md_rdev *rdev, char *page) 2854 { 2855 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2856 } 2857 2858 static ssize_t 2859 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2860 { 2861 unsigned int n; 2862 int rv; 2863 2864 rv = kstrtouint(buf, 10, &n); 2865 if (rv < 0) 2866 return rv; 2867 atomic_set(&rdev->corrected_errors, n); 2868 return len; 2869 } 2870 static struct rdev_sysfs_entry rdev_errors = 2871 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2872 2873 static ssize_t 2874 slot_show(struct md_rdev *rdev, char *page) 2875 { 2876 if (test_bit(Journal, &rdev->flags)) 2877 return sprintf(page, "journal\n"); 2878 else if (rdev->raid_disk < 0) 2879 return sprintf(page, "none\n"); 2880 else 2881 return sprintf(page, "%d\n", rdev->raid_disk); 2882 } 2883 2884 static ssize_t 2885 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2886 { 2887 int slot; 2888 int err; 2889 2890 if (test_bit(Journal, &rdev->flags)) 2891 return -EBUSY; 2892 if (strncmp(buf, "none", 4)==0) 2893 slot = -1; 2894 else { 2895 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2896 if (err < 0) 2897 return err; 2898 } 2899 if (rdev->mddev->pers && slot == -1) { 2900 /* Setting 'slot' on an active array requires also 2901 * updating the 'rd%d' link, and communicating 2902 * with the personality with ->hot_*_disk. 2903 * For now we only support removing 2904 * failed/spare devices. This normally happens automatically, 2905 * but not when the metadata is externally managed. 2906 */ 2907 if (rdev->raid_disk == -1) 2908 return -EEXIST; 2909 /* personality does all needed checks */ 2910 if (rdev->mddev->pers->hot_remove_disk == NULL) 2911 return -EINVAL; 2912 clear_bit(Blocked, &rdev->flags); 2913 remove_and_add_spares(rdev->mddev, rdev); 2914 if (rdev->raid_disk >= 0) 2915 return -EBUSY; 2916 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2917 md_wakeup_thread(rdev->mddev->thread); 2918 } else if (rdev->mddev->pers) { 2919 /* Activating a spare .. or possibly reactivating 2920 * if we ever get bitmaps working here. 2921 */ 2922 int err; 2923 2924 if (rdev->raid_disk != -1) 2925 return -EBUSY; 2926 2927 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2928 return -EBUSY; 2929 2930 if (rdev->mddev->pers->hot_add_disk == NULL) 2931 return -EINVAL; 2932 2933 if (slot >= rdev->mddev->raid_disks && 2934 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2935 return -ENOSPC; 2936 2937 rdev->raid_disk = slot; 2938 if (test_bit(In_sync, &rdev->flags)) 2939 rdev->saved_raid_disk = slot; 2940 else 2941 rdev->saved_raid_disk = -1; 2942 clear_bit(In_sync, &rdev->flags); 2943 clear_bit(Bitmap_sync, &rdev->flags); 2944 err = rdev->mddev->pers-> 2945 hot_add_disk(rdev->mddev, rdev); 2946 if (err) { 2947 rdev->raid_disk = -1; 2948 return err; 2949 } else 2950 sysfs_notify_dirent_safe(rdev->sysfs_state); 2951 if (sysfs_link_rdev(rdev->mddev, rdev)) 2952 /* failure here is OK */; 2953 /* don't wakeup anyone, leave that to userspace. */ 2954 } else { 2955 if (slot >= rdev->mddev->raid_disks && 2956 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2957 return -ENOSPC; 2958 rdev->raid_disk = slot; 2959 /* assume it is working */ 2960 clear_bit(Faulty, &rdev->flags); 2961 clear_bit(WriteMostly, &rdev->flags); 2962 set_bit(In_sync, &rdev->flags); 2963 sysfs_notify_dirent_safe(rdev->sysfs_state); 2964 } 2965 return len; 2966 } 2967 2968 static struct rdev_sysfs_entry rdev_slot = 2969 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2970 2971 static ssize_t 2972 offset_show(struct md_rdev *rdev, char *page) 2973 { 2974 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2975 } 2976 2977 static ssize_t 2978 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2979 { 2980 unsigned long long offset; 2981 if (kstrtoull(buf, 10, &offset) < 0) 2982 return -EINVAL; 2983 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2984 return -EBUSY; 2985 if (rdev->sectors && rdev->mddev->external) 2986 /* Must set offset before size, so overlap checks 2987 * can be sane */ 2988 return -EBUSY; 2989 rdev->data_offset = offset; 2990 rdev->new_data_offset = offset; 2991 return len; 2992 } 2993 2994 static struct rdev_sysfs_entry rdev_offset = 2995 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2996 2997 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2998 { 2999 return sprintf(page, "%llu\n", 3000 (unsigned long long)rdev->new_data_offset); 3001 } 3002 3003 static ssize_t new_offset_store(struct md_rdev *rdev, 3004 const char *buf, size_t len) 3005 { 3006 unsigned long long new_offset; 3007 struct mddev *mddev = rdev->mddev; 3008 3009 if (kstrtoull(buf, 10, &new_offset) < 0) 3010 return -EINVAL; 3011 3012 if (mddev->sync_thread || 3013 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3014 return -EBUSY; 3015 if (new_offset == rdev->data_offset) 3016 /* reset is always permitted */ 3017 ; 3018 else if (new_offset > rdev->data_offset) { 3019 /* must not push array size beyond rdev_sectors */ 3020 if (new_offset - rdev->data_offset 3021 + mddev->dev_sectors > rdev->sectors) 3022 return -E2BIG; 3023 } 3024 /* Metadata worries about other space details. */ 3025 3026 /* decreasing the offset is inconsistent with a backwards 3027 * reshape. 3028 */ 3029 if (new_offset < rdev->data_offset && 3030 mddev->reshape_backwards) 3031 return -EINVAL; 3032 /* Increasing offset is inconsistent with forwards 3033 * reshape. reshape_direction should be set to 3034 * 'backwards' first. 3035 */ 3036 if (new_offset > rdev->data_offset && 3037 !mddev->reshape_backwards) 3038 return -EINVAL; 3039 3040 if (mddev->pers && mddev->persistent && 3041 !super_types[mddev->major_version] 3042 .allow_new_offset(rdev, new_offset)) 3043 return -E2BIG; 3044 rdev->new_data_offset = new_offset; 3045 if (new_offset > rdev->data_offset) 3046 mddev->reshape_backwards = 1; 3047 else if (new_offset < rdev->data_offset) 3048 mddev->reshape_backwards = 0; 3049 3050 return len; 3051 } 3052 static struct rdev_sysfs_entry rdev_new_offset = 3053 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3054 3055 static ssize_t 3056 rdev_size_show(struct md_rdev *rdev, char *page) 3057 { 3058 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3059 } 3060 3061 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3062 { 3063 /* check if two start/length pairs overlap */ 3064 if (s1+l1 <= s2) 3065 return 0; 3066 if (s2+l2 <= s1) 3067 return 0; 3068 return 1; 3069 } 3070 3071 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3072 { 3073 unsigned long long blocks; 3074 sector_t new; 3075 3076 if (kstrtoull(buf, 10, &blocks) < 0) 3077 return -EINVAL; 3078 3079 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3080 return -EINVAL; /* sector conversion overflow */ 3081 3082 new = blocks * 2; 3083 if (new != blocks * 2) 3084 return -EINVAL; /* unsigned long long to sector_t overflow */ 3085 3086 *sectors = new; 3087 return 0; 3088 } 3089 3090 static ssize_t 3091 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3092 { 3093 struct mddev *my_mddev = rdev->mddev; 3094 sector_t oldsectors = rdev->sectors; 3095 sector_t sectors; 3096 3097 if (test_bit(Journal, &rdev->flags)) 3098 return -EBUSY; 3099 if (strict_blocks_to_sectors(buf, §ors) < 0) 3100 return -EINVAL; 3101 if (rdev->data_offset != rdev->new_data_offset) 3102 return -EINVAL; /* too confusing */ 3103 if (my_mddev->pers && rdev->raid_disk >= 0) { 3104 if (my_mddev->persistent) { 3105 sectors = super_types[my_mddev->major_version]. 3106 rdev_size_change(rdev, sectors); 3107 if (!sectors) 3108 return -EBUSY; 3109 } else if (!sectors) 3110 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3111 rdev->data_offset; 3112 if (!my_mddev->pers->resize) 3113 /* Cannot change size for RAID0 or Linear etc */ 3114 return -EINVAL; 3115 } 3116 if (sectors < my_mddev->dev_sectors) 3117 return -EINVAL; /* component must fit device */ 3118 3119 rdev->sectors = sectors; 3120 if (sectors > oldsectors && my_mddev->external) { 3121 /* Need to check that all other rdevs with the same 3122 * ->bdev do not overlap. 'rcu' is sufficient to walk 3123 * the rdev lists safely. 3124 * This check does not provide a hard guarantee, it 3125 * just helps avoid dangerous mistakes. 3126 */ 3127 struct mddev *mddev; 3128 int overlap = 0; 3129 struct list_head *tmp; 3130 3131 rcu_read_lock(); 3132 for_each_mddev(mddev, tmp) { 3133 struct md_rdev *rdev2; 3134 3135 rdev_for_each(rdev2, mddev) 3136 if (rdev->bdev == rdev2->bdev && 3137 rdev != rdev2 && 3138 overlaps(rdev->data_offset, rdev->sectors, 3139 rdev2->data_offset, 3140 rdev2->sectors)) { 3141 overlap = 1; 3142 break; 3143 } 3144 if (overlap) { 3145 mddev_put(mddev); 3146 break; 3147 } 3148 } 3149 rcu_read_unlock(); 3150 if (overlap) { 3151 /* Someone else could have slipped in a size 3152 * change here, but doing so is just silly. 3153 * We put oldsectors back because we *know* it is 3154 * safe, and trust userspace not to race with 3155 * itself 3156 */ 3157 rdev->sectors = oldsectors; 3158 return -EBUSY; 3159 } 3160 } 3161 return len; 3162 } 3163 3164 static struct rdev_sysfs_entry rdev_size = 3165 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3166 3167 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3168 { 3169 unsigned long long recovery_start = rdev->recovery_offset; 3170 3171 if (test_bit(In_sync, &rdev->flags) || 3172 recovery_start == MaxSector) 3173 return sprintf(page, "none\n"); 3174 3175 return sprintf(page, "%llu\n", recovery_start); 3176 } 3177 3178 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3179 { 3180 unsigned long long recovery_start; 3181 3182 if (cmd_match(buf, "none")) 3183 recovery_start = MaxSector; 3184 else if (kstrtoull(buf, 10, &recovery_start)) 3185 return -EINVAL; 3186 3187 if (rdev->mddev->pers && 3188 rdev->raid_disk >= 0) 3189 return -EBUSY; 3190 3191 rdev->recovery_offset = recovery_start; 3192 if (recovery_start == MaxSector) 3193 set_bit(In_sync, &rdev->flags); 3194 else 3195 clear_bit(In_sync, &rdev->flags); 3196 return len; 3197 } 3198 3199 static struct rdev_sysfs_entry rdev_recovery_start = 3200 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3201 3202 /* sysfs access to bad-blocks list. 3203 * We present two files. 3204 * 'bad-blocks' lists sector numbers and lengths of ranges that 3205 * are recorded as bad. The list is truncated to fit within 3206 * the one-page limit of sysfs. 3207 * Writing "sector length" to this file adds an acknowledged 3208 * bad block list. 3209 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3210 * been acknowledged. Writing to this file adds bad blocks 3211 * without acknowledging them. This is largely for testing. 3212 */ 3213 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3214 { 3215 return badblocks_show(&rdev->badblocks, page, 0); 3216 } 3217 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3218 { 3219 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3220 /* Maybe that ack was all we needed */ 3221 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3222 wake_up(&rdev->blocked_wait); 3223 return rv; 3224 } 3225 static struct rdev_sysfs_entry rdev_bad_blocks = 3226 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3227 3228 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3229 { 3230 return badblocks_show(&rdev->badblocks, page, 1); 3231 } 3232 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3233 { 3234 return badblocks_store(&rdev->badblocks, page, len, 1); 3235 } 3236 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3237 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3238 3239 static ssize_t 3240 ppl_sector_show(struct md_rdev *rdev, char *page) 3241 { 3242 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3243 } 3244 3245 static ssize_t 3246 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3247 { 3248 unsigned long long sector; 3249 3250 if (kstrtoull(buf, 10, §or) < 0) 3251 return -EINVAL; 3252 if (sector != (sector_t)sector) 3253 return -EINVAL; 3254 3255 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3256 rdev->raid_disk >= 0) 3257 return -EBUSY; 3258 3259 if (rdev->mddev->persistent) { 3260 if (rdev->mddev->major_version == 0) 3261 return -EINVAL; 3262 if ((sector > rdev->sb_start && 3263 sector - rdev->sb_start > S16_MAX) || 3264 (sector < rdev->sb_start && 3265 rdev->sb_start - sector > -S16_MIN)) 3266 return -EINVAL; 3267 rdev->ppl.offset = sector - rdev->sb_start; 3268 } else if (!rdev->mddev->external) { 3269 return -EBUSY; 3270 } 3271 rdev->ppl.sector = sector; 3272 return len; 3273 } 3274 3275 static struct rdev_sysfs_entry rdev_ppl_sector = 3276 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3277 3278 static ssize_t 3279 ppl_size_show(struct md_rdev *rdev, char *page) 3280 { 3281 return sprintf(page, "%u\n", rdev->ppl.size); 3282 } 3283 3284 static ssize_t 3285 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3286 { 3287 unsigned int size; 3288 3289 if (kstrtouint(buf, 10, &size) < 0) 3290 return -EINVAL; 3291 3292 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3293 rdev->raid_disk >= 0) 3294 return -EBUSY; 3295 3296 if (rdev->mddev->persistent) { 3297 if (rdev->mddev->major_version == 0) 3298 return -EINVAL; 3299 if (size > U16_MAX) 3300 return -EINVAL; 3301 } else if (!rdev->mddev->external) { 3302 return -EBUSY; 3303 } 3304 rdev->ppl.size = size; 3305 return len; 3306 } 3307 3308 static struct rdev_sysfs_entry rdev_ppl_size = 3309 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3310 3311 static struct attribute *rdev_default_attrs[] = { 3312 &rdev_state.attr, 3313 &rdev_errors.attr, 3314 &rdev_slot.attr, 3315 &rdev_offset.attr, 3316 &rdev_new_offset.attr, 3317 &rdev_size.attr, 3318 &rdev_recovery_start.attr, 3319 &rdev_bad_blocks.attr, 3320 &rdev_unack_bad_blocks.attr, 3321 &rdev_ppl_sector.attr, 3322 &rdev_ppl_size.attr, 3323 NULL, 3324 }; 3325 static ssize_t 3326 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3327 { 3328 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3329 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3330 3331 if (!entry->show) 3332 return -EIO; 3333 if (!rdev->mddev) 3334 return -EBUSY; 3335 return entry->show(rdev, page); 3336 } 3337 3338 static ssize_t 3339 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3340 const char *page, size_t length) 3341 { 3342 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3343 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3344 ssize_t rv; 3345 struct mddev *mddev = rdev->mddev; 3346 3347 if (!entry->store) 3348 return -EIO; 3349 if (!capable(CAP_SYS_ADMIN)) 3350 return -EACCES; 3351 rv = mddev ? mddev_lock(mddev): -EBUSY; 3352 if (!rv) { 3353 if (rdev->mddev == NULL) 3354 rv = -EBUSY; 3355 else 3356 rv = entry->store(rdev, page, length); 3357 mddev_unlock(mddev); 3358 } 3359 return rv; 3360 } 3361 3362 static void rdev_free(struct kobject *ko) 3363 { 3364 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3365 kfree(rdev); 3366 } 3367 static const struct sysfs_ops rdev_sysfs_ops = { 3368 .show = rdev_attr_show, 3369 .store = rdev_attr_store, 3370 }; 3371 static struct kobj_type rdev_ktype = { 3372 .release = rdev_free, 3373 .sysfs_ops = &rdev_sysfs_ops, 3374 .default_attrs = rdev_default_attrs, 3375 }; 3376 3377 int md_rdev_init(struct md_rdev *rdev) 3378 { 3379 rdev->desc_nr = -1; 3380 rdev->saved_raid_disk = -1; 3381 rdev->raid_disk = -1; 3382 rdev->flags = 0; 3383 rdev->data_offset = 0; 3384 rdev->new_data_offset = 0; 3385 rdev->sb_events = 0; 3386 rdev->last_read_error = 0; 3387 rdev->sb_loaded = 0; 3388 rdev->bb_page = NULL; 3389 atomic_set(&rdev->nr_pending, 0); 3390 atomic_set(&rdev->read_errors, 0); 3391 atomic_set(&rdev->corrected_errors, 0); 3392 3393 INIT_LIST_HEAD(&rdev->same_set); 3394 init_waitqueue_head(&rdev->blocked_wait); 3395 3396 /* Add space to store bad block list. 3397 * This reserves the space even on arrays where it cannot 3398 * be used - I wonder if that matters 3399 */ 3400 return badblocks_init(&rdev->badblocks, 0); 3401 } 3402 EXPORT_SYMBOL_GPL(md_rdev_init); 3403 /* 3404 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3405 * 3406 * mark the device faulty if: 3407 * 3408 * - the device is nonexistent (zero size) 3409 * - the device has no valid superblock 3410 * 3411 * a faulty rdev _never_ has rdev->sb set. 3412 */ 3413 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3414 { 3415 char b[BDEVNAME_SIZE]; 3416 int err; 3417 struct md_rdev *rdev; 3418 sector_t size; 3419 3420 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3421 if (!rdev) 3422 return ERR_PTR(-ENOMEM); 3423 3424 err = md_rdev_init(rdev); 3425 if (err) 3426 goto abort_free; 3427 err = alloc_disk_sb(rdev); 3428 if (err) 3429 goto abort_free; 3430 3431 err = lock_rdev(rdev, newdev, super_format == -2); 3432 if (err) 3433 goto abort_free; 3434 3435 kobject_init(&rdev->kobj, &rdev_ktype); 3436 3437 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3438 if (!size) { 3439 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3440 bdevname(rdev->bdev,b)); 3441 err = -EINVAL; 3442 goto abort_free; 3443 } 3444 3445 if (super_format >= 0) { 3446 err = super_types[super_format]. 3447 load_super(rdev, NULL, super_minor); 3448 if (err == -EINVAL) { 3449 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3450 bdevname(rdev->bdev,b), 3451 super_format, super_minor); 3452 goto abort_free; 3453 } 3454 if (err < 0) { 3455 pr_warn("md: could not read %s's sb, not importing!\n", 3456 bdevname(rdev->bdev,b)); 3457 goto abort_free; 3458 } 3459 } 3460 3461 return rdev; 3462 3463 abort_free: 3464 if (rdev->bdev) 3465 unlock_rdev(rdev); 3466 md_rdev_clear(rdev); 3467 kfree(rdev); 3468 return ERR_PTR(err); 3469 } 3470 3471 /* 3472 * Check a full RAID array for plausibility 3473 */ 3474 3475 static void analyze_sbs(struct mddev *mddev) 3476 { 3477 int i; 3478 struct md_rdev *rdev, *freshest, *tmp; 3479 char b[BDEVNAME_SIZE]; 3480 3481 freshest = NULL; 3482 rdev_for_each_safe(rdev, tmp, mddev) 3483 switch (super_types[mddev->major_version]. 3484 load_super(rdev, freshest, mddev->minor_version)) { 3485 case 1: 3486 freshest = rdev; 3487 break; 3488 case 0: 3489 break; 3490 default: 3491 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3492 bdevname(rdev->bdev,b)); 3493 md_kick_rdev_from_array(rdev); 3494 } 3495 3496 super_types[mddev->major_version]. 3497 validate_super(mddev, freshest); 3498 3499 i = 0; 3500 rdev_for_each_safe(rdev, tmp, mddev) { 3501 if (mddev->max_disks && 3502 (rdev->desc_nr >= mddev->max_disks || 3503 i > mddev->max_disks)) { 3504 pr_warn("md: %s: %s: only %d devices permitted\n", 3505 mdname(mddev), bdevname(rdev->bdev, b), 3506 mddev->max_disks); 3507 md_kick_rdev_from_array(rdev); 3508 continue; 3509 } 3510 if (rdev != freshest) { 3511 if (super_types[mddev->major_version]. 3512 validate_super(mddev, rdev)) { 3513 pr_warn("md: kicking non-fresh %s from array!\n", 3514 bdevname(rdev->bdev,b)); 3515 md_kick_rdev_from_array(rdev); 3516 continue; 3517 } 3518 } 3519 if (mddev->level == LEVEL_MULTIPATH) { 3520 rdev->desc_nr = i++; 3521 rdev->raid_disk = rdev->desc_nr; 3522 set_bit(In_sync, &rdev->flags); 3523 } else if (rdev->raid_disk >= 3524 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3525 !test_bit(Journal, &rdev->flags)) { 3526 rdev->raid_disk = -1; 3527 clear_bit(In_sync, &rdev->flags); 3528 } 3529 } 3530 } 3531 3532 /* Read a fixed-point number. 3533 * Numbers in sysfs attributes should be in "standard" units where 3534 * possible, so time should be in seconds. 3535 * However we internally use a a much smaller unit such as 3536 * milliseconds or jiffies. 3537 * This function takes a decimal number with a possible fractional 3538 * component, and produces an integer which is the result of 3539 * multiplying that number by 10^'scale'. 3540 * all without any floating-point arithmetic. 3541 */ 3542 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3543 { 3544 unsigned long result = 0; 3545 long decimals = -1; 3546 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3547 if (*cp == '.') 3548 decimals = 0; 3549 else if (decimals < scale) { 3550 unsigned int value; 3551 value = *cp - '0'; 3552 result = result * 10 + value; 3553 if (decimals >= 0) 3554 decimals++; 3555 } 3556 cp++; 3557 } 3558 if (*cp == '\n') 3559 cp++; 3560 if (*cp) 3561 return -EINVAL; 3562 if (decimals < 0) 3563 decimals = 0; 3564 while (decimals < scale) { 3565 result *= 10; 3566 decimals ++; 3567 } 3568 *res = result; 3569 return 0; 3570 } 3571 3572 static ssize_t 3573 safe_delay_show(struct mddev *mddev, char *page) 3574 { 3575 int msec = (mddev->safemode_delay*1000)/HZ; 3576 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3577 } 3578 static ssize_t 3579 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3580 { 3581 unsigned long msec; 3582 3583 if (mddev_is_clustered(mddev)) { 3584 pr_warn("md: Safemode is disabled for clustered mode\n"); 3585 return -EINVAL; 3586 } 3587 3588 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3589 return -EINVAL; 3590 if (msec == 0) 3591 mddev->safemode_delay = 0; 3592 else { 3593 unsigned long old_delay = mddev->safemode_delay; 3594 unsigned long new_delay = (msec*HZ)/1000; 3595 3596 if (new_delay == 0) 3597 new_delay = 1; 3598 mddev->safemode_delay = new_delay; 3599 if (new_delay < old_delay || old_delay == 0) 3600 mod_timer(&mddev->safemode_timer, jiffies+1); 3601 } 3602 return len; 3603 } 3604 static struct md_sysfs_entry md_safe_delay = 3605 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3606 3607 static ssize_t 3608 level_show(struct mddev *mddev, char *page) 3609 { 3610 struct md_personality *p; 3611 int ret; 3612 spin_lock(&mddev->lock); 3613 p = mddev->pers; 3614 if (p) 3615 ret = sprintf(page, "%s\n", p->name); 3616 else if (mddev->clevel[0]) 3617 ret = sprintf(page, "%s\n", mddev->clevel); 3618 else if (mddev->level != LEVEL_NONE) 3619 ret = sprintf(page, "%d\n", mddev->level); 3620 else 3621 ret = 0; 3622 spin_unlock(&mddev->lock); 3623 return ret; 3624 } 3625 3626 static ssize_t 3627 level_store(struct mddev *mddev, const char *buf, size_t len) 3628 { 3629 char clevel[16]; 3630 ssize_t rv; 3631 size_t slen = len; 3632 struct md_personality *pers, *oldpers; 3633 long level; 3634 void *priv, *oldpriv; 3635 struct md_rdev *rdev; 3636 3637 if (slen == 0 || slen >= sizeof(clevel)) 3638 return -EINVAL; 3639 3640 rv = mddev_lock(mddev); 3641 if (rv) 3642 return rv; 3643 3644 if (mddev->pers == NULL) { 3645 strncpy(mddev->clevel, buf, slen); 3646 if (mddev->clevel[slen-1] == '\n') 3647 slen--; 3648 mddev->clevel[slen] = 0; 3649 mddev->level = LEVEL_NONE; 3650 rv = len; 3651 goto out_unlock; 3652 } 3653 rv = -EROFS; 3654 if (mddev->ro) 3655 goto out_unlock; 3656 3657 /* request to change the personality. Need to ensure: 3658 * - array is not engaged in resync/recovery/reshape 3659 * - old personality can be suspended 3660 * - new personality will access other array. 3661 */ 3662 3663 rv = -EBUSY; 3664 if (mddev->sync_thread || 3665 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3666 mddev->reshape_position != MaxSector || 3667 mddev->sysfs_active) 3668 goto out_unlock; 3669 3670 rv = -EINVAL; 3671 if (!mddev->pers->quiesce) { 3672 pr_warn("md: %s: %s does not support online personality change\n", 3673 mdname(mddev), mddev->pers->name); 3674 goto out_unlock; 3675 } 3676 3677 /* Now find the new personality */ 3678 strncpy(clevel, buf, slen); 3679 if (clevel[slen-1] == '\n') 3680 slen--; 3681 clevel[slen] = 0; 3682 if (kstrtol(clevel, 10, &level)) 3683 level = LEVEL_NONE; 3684 3685 if (request_module("md-%s", clevel) != 0) 3686 request_module("md-level-%s", clevel); 3687 spin_lock(&pers_lock); 3688 pers = find_pers(level, clevel); 3689 if (!pers || !try_module_get(pers->owner)) { 3690 spin_unlock(&pers_lock); 3691 pr_warn("md: personality %s not loaded\n", clevel); 3692 rv = -EINVAL; 3693 goto out_unlock; 3694 } 3695 spin_unlock(&pers_lock); 3696 3697 if (pers == mddev->pers) { 3698 /* Nothing to do! */ 3699 module_put(pers->owner); 3700 rv = len; 3701 goto out_unlock; 3702 } 3703 if (!pers->takeover) { 3704 module_put(pers->owner); 3705 pr_warn("md: %s: %s does not support personality takeover\n", 3706 mdname(mddev), clevel); 3707 rv = -EINVAL; 3708 goto out_unlock; 3709 } 3710 3711 rdev_for_each(rdev, mddev) 3712 rdev->new_raid_disk = rdev->raid_disk; 3713 3714 /* ->takeover must set new_* and/or delta_disks 3715 * if it succeeds, and may set them when it fails. 3716 */ 3717 priv = pers->takeover(mddev); 3718 if (IS_ERR(priv)) { 3719 mddev->new_level = mddev->level; 3720 mddev->new_layout = mddev->layout; 3721 mddev->new_chunk_sectors = mddev->chunk_sectors; 3722 mddev->raid_disks -= mddev->delta_disks; 3723 mddev->delta_disks = 0; 3724 mddev->reshape_backwards = 0; 3725 module_put(pers->owner); 3726 pr_warn("md: %s: %s would not accept array\n", 3727 mdname(mddev), clevel); 3728 rv = PTR_ERR(priv); 3729 goto out_unlock; 3730 } 3731 3732 /* Looks like we have a winner */ 3733 mddev_suspend(mddev); 3734 mddev_detach(mddev); 3735 3736 spin_lock(&mddev->lock); 3737 oldpers = mddev->pers; 3738 oldpriv = mddev->private; 3739 mddev->pers = pers; 3740 mddev->private = priv; 3741 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3742 mddev->level = mddev->new_level; 3743 mddev->layout = mddev->new_layout; 3744 mddev->chunk_sectors = mddev->new_chunk_sectors; 3745 mddev->delta_disks = 0; 3746 mddev->reshape_backwards = 0; 3747 mddev->degraded = 0; 3748 spin_unlock(&mddev->lock); 3749 3750 if (oldpers->sync_request == NULL && 3751 mddev->external) { 3752 /* We are converting from a no-redundancy array 3753 * to a redundancy array and metadata is managed 3754 * externally so we need to be sure that writes 3755 * won't block due to a need to transition 3756 * clean->dirty 3757 * until external management is started. 3758 */ 3759 mddev->in_sync = 0; 3760 mddev->safemode_delay = 0; 3761 mddev->safemode = 0; 3762 } 3763 3764 oldpers->free(mddev, oldpriv); 3765 3766 if (oldpers->sync_request == NULL && 3767 pers->sync_request != NULL) { 3768 /* need to add the md_redundancy_group */ 3769 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3770 pr_warn("md: cannot register extra attributes for %s\n", 3771 mdname(mddev)); 3772 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3773 } 3774 if (oldpers->sync_request != NULL && 3775 pers->sync_request == NULL) { 3776 /* need to remove the md_redundancy_group */ 3777 if (mddev->to_remove == NULL) 3778 mddev->to_remove = &md_redundancy_group; 3779 } 3780 3781 module_put(oldpers->owner); 3782 3783 rdev_for_each(rdev, mddev) { 3784 if (rdev->raid_disk < 0) 3785 continue; 3786 if (rdev->new_raid_disk >= mddev->raid_disks) 3787 rdev->new_raid_disk = -1; 3788 if (rdev->new_raid_disk == rdev->raid_disk) 3789 continue; 3790 sysfs_unlink_rdev(mddev, rdev); 3791 } 3792 rdev_for_each(rdev, mddev) { 3793 if (rdev->raid_disk < 0) 3794 continue; 3795 if (rdev->new_raid_disk == rdev->raid_disk) 3796 continue; 3797 rdev->raid_disk = rdev->new_raid_disk; 3798 if (rdev->raid_disk < 0) 3799 clear_bit(In_sync, &rdev->flags); 3800 else { 3801 if (sysfs_link_rdev(mddev, rdev)) 3802 pr_warn("md: cannot register rd%d for %s after level change\n", 3803 rdev->raid_disk, mdname(mddev)); 3804 } 3805 } 3806 3807 if (pers->sync_request == NULL) { 3808 /* this is now an array without redundancy, so 3809 * it must always be in_sync 3810 */ 3811 mddev->in_sync = 1; 3812 del_timer_sync(&mddev->safemode_timer); 3813 } 3814 blk_set_stacking_limits(&mddev->queue->limits); 3815 pers->run(mddev); 3816 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3817 mddev_resume(mddev); 3818 if (!mddev->thread) 3819 md_update_sb(mddev, 1); 3820 sysfs_notify(&mddev->kobj, NULL, "level"); 3821 md_new_event(mddev); 3822 rv = len; 3823 out_unlock: 3824 mddev_unlock(mddev); 3825 return rv; 3826 } 3827 3828 static struct md_sysfs_entry md_level = 3829 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3830 3831 static ssize_t 3832 layout_show(struct mddev *mddev, char *page) 3833 { 3834 /* just a number, not meaningful for all levels */ 3835 if (mddev->reshape_position != MaxSector && 3836 mddev->layout != mddev->new_layout) 3837 return sprintf(page, "%d (%d)\n", 3838 mddev->new_layout, mddev->layout); 3839 return sprintf(page, "%d\n", mddev->layout); 3840 } 3841 3842 static ssize_t 3843 layout_store(struct mddev *mddev, const char *buf, size_t len) 3844 { 3845 unsigned int n; 3846 int err; 3847 3848 err = kstrtouint(buf, 10, &n); 3849 if (err < 0) 3850 return err; 3851 err = mddev_lock(mddev); 3852 if (err) 3853 return err; 3854 3855 if (mddev->pers) { 3856 if (mddev->pers->check_reshape == NULL) 3857 err = -EBUSY; 3858 else if (mddev->ro) 3859 err = -EROFS; 3860 else { 3861 mddev->new_layout = n; 3862 err = mddev->pers->check_reshape(mddev); 3863 if (err) 3864 mddev->new_layout = mddev->layout; 3865 } 3866 } else { 3867 mddev->new_layout = n; 3868 if (mddev->reshape_position == MaxSector) 3869 mddev->layout = n; 3870 } 3871 mddev_unlock(mddev); 3872 return err ?: len; 3873 } 3874 static struct md_sysfs_entry md_layout = 3875 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3876 3877 static ssize_t 3878 raid_disks_show(struct mddev *mddev, char *page) 3879 { 3880 if (mddev->raid_disks == 0) 3881 return 0; 3882 if (mddev->reshape_position != MaxSector && 3883 mddev->delta_disks != 0) 3884 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3885 mddev->raid_disks - mddev->delta_disks); 3886 return sprintf(page, "%d\n", mddev->raid_disks); 3887 } 3888 3889 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3890 3891 static ssize_t 3892 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3893 { 3894 unsigned int n; 3895 int err; 3896 3897 err = kstrtouint(buf, 10, &n); 3898 if (err < 0) 3899 return err; 3900 3901 err = mddev_lock(mddev); 3902 if (err) 3903 return err; 3904 if (mddev->pers) 3905 err = update_raid_disks(mddev, n); 3906 else if (mddev->reshape_position != MaxSector) { 3907 struct md_rdev *rdev; 3908 int olddisks = mddev->raid_disks - mddev->delta_disks; 3909 3910 err = -EINVAL; 3911 rdev_for_each(rdev, mddev) { 3912 if (olddisks < n && 3913 rdev->data_offset < rdev->new_data_offset) 3914 goto out_unlock; 3915 if (olddisks > n && 3916 rdev->data_offset > rdev->new_data_offset) 3917 goto out_unlock; 3918 } 3919 err = 0; 3920 mddev->delta_disks = n - olddisks; 3921 mddev->raid_disks = n; 3922 mddev->reshape_backwards = (mddev->delta_disks < 0); 3923 } else 3924 mddev->raid_disks = n; 3925 out_unlock: 3926 mddev_unlock(mddev); 3927 return err ? err : len; 3928 } 3929 static struct md_sysfs_entry md_raid_disks = 3930 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3931 3932 static ssize_t 3933 chunk_size_show(struct mddev *mddev, char *page) 3934 { 3935 if (mddev->reshape_position != MaxSector && 3936 mddev->chunk_sectors != mddev->new_chunk_sectors) 3937 return sprintf(page, "%d (%d)\n", 3938 mddev->new_chunk_sectors << 9, 3939 mddev->chunk_sectors << 9); 3940 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3941 } 3942 3943 static ssize_t 3944 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3945 { 3946 unsigned long n; 3947 int err; 3948 3949 err = kstrtoul(buf, 10, &n); 3950 if (err < 0) 3951 return err; 3952 3953 err = mddev_lock(mddev); 3954 if (err) 3955 return err; 3956 if (mddev->pers) { 3957 if (mddev->pers->check_reshape == NULL) 3958 err = -EBUSY; 3959 else if (mddev->ro) 3960 err = -EROFS; 3961 else { 3962 mddev->new_chunk_sectors = n >> 9; 3963 err = mddev->pers->check_reshape(mddev); 3964 if (err) 3965 mddev->new_chunk_sectors = mddev->chunk_sectors; 3966 } 3967 } else { 3968 mddev->new_chunk_sectors = n >> 9; 3969 if (mddev->reshape_position == MaxSector) 3970 mddev->chunk_sectors = n >> 9; 3971 } 3972 mddev_unlock(mddev); 3973 return err ?: len; 3974 } 3975 static struct md_sysfs_entry md_chunk_size = 3976 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3977 3978 static ssize_t 3979 resync_start_show(struct mddev *mddev, char *page) 3980 { 3981 if (mddev->recovery_cp == MaxSector) 3982 return sprintf(page, "none\n"); 3983 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3984 } 3985 3986 static ssize_t 3987 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3988 { 3989 unsigned long long n; 3990 int err; 3991 3992 if (cmd_match(buf, "none")) 3993 n = MaxSector; 3994 else { 3995 err = kstrtoull(buf, 10, &n); 3996 if (err < 0) 3997 return err; 3998 if (n != (sector_t)n) 3999 return -EINVAL; 4000 } 4001 4002 err = mddev_lock(mddev); 4003 if (err) 4004 return err; 4005 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4006 err = -EBUSY; 4007 4008 if (!err) { 4009 mddev->recovery_cp = n; 4010 if (mddev->pers) 4011 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4012 } 4013 mddev_unlock(mddev); 4014 return err ?: len; 4015 } 4016 static struct md_sysfs_entry md_resync_start = 4017 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4018 resync_start_show, resync_start_store); 4019 4020 /* 4021 * The array state can be: 4022 * 4023 * clear 4024 * No devices, no size, no level 4025 * Equivalent to STOP_ARRAY ioctl 4026 * inactive 4027 * May have some settings, but array is not active 4028 * all IO results in error 4029 * When written, doesn't tear down array, but just stops it 4030 * suspended (not supported yet) 4031 * All IO requests will block. The array can be reconfigured. 4032 * Writing this, if accepted, will block until array is quiescent 4033 * readonly 4034 * no resync can happen. no superblocks get written. 4035 * write requests fail 4036 * read-auto 4037 * like readonly, but behaves like 'clean' on a write request. 4038 * 4039 * clean - no pending writes, but otherwise active. 4040 * When written to inactive array, starts without resync 4041 * If a write request arrives then 4042 * if metadata is known, mark 'dirty' and switch to 'active'. 4043 * if not known, block and switch to write-pending 4044 * If written to an active array that has pending writes, then fails. 4045 * active 4046 * fully active: IO and resync can be happening. 4047 * When written to inactive array, starts with resync 4048 * 4049 * write-pending 4050 * clean, but writes are blocked waiting for 'active' to be written. 4051 * 4052 * active-idle 4053 * like active, but no writes have been seen for a while (100msec). 4054 * 4055 */ 4056 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4057 write_pending, active_idle, bad_word}; 4058 static char *array_states[] = { 4059 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4060 "write-pending", "active-idle", NULL }; 4061 4062 static int match_word(const char *word, char **list) 4063 { 4064 int n; 4065 for (n=0; list[n]; n++) 4066 if (cmd_match(word, list[n])) 4067 break; 4068 return n; 4069 } 4070 4071 static ssize_t 4072 array_state_show(struct mddev *mddev, char *page) 4073 { 4074 enum array_state st = inactive; 4075 4076 if (mddev->pers) 4077 switch(mddev->ro) { 4078 case 1: 4079 st = readonly; 4080 break; 4081 case 2: 4082 st = read_auto; 4083 break; 4084 case 0: 4085 spin_lock(&mddev->lock); 4086 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4087 st = write_pending; 4088 else if (mddev->in_sync) 4089 st = clean; 4090 else if (mddev->safemode) 4091 st = active_idle; 4092 else 4093 st = active; 4094 spin_unlock(&mddev->lock); 4095 } 4096 else { 4097 if (list_empty(&mddev->disks) && 4098 mddev->raid_disks == 0 && 4099 mddev->dev_sectors == 0) 4100 st = clear; 4101 else 4102 st = inactive; 4103 } 4104 return sprintf(page, "%s\n", array_states[st]); 4105 } 4106 4107 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4108 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4109 static int do_md_run(struct mddev *mddev); 4110 static int restart_array(struct mddev *mddev); 4111 4112 static ssize_t 4113 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4114 { 4115 int err = 0; 4116 enum array_state st = match_word(buf, array_states); 4117 4118 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4119 /* don't take reconfig_mutex when toggling between 4120 * clean and active 4121 */ 4122 spin_lock(&mddev->lock); 4123 if (st == active) { 4124 restart_array(mddev); 4125 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4126 md_wakeup_thread(mddev->thread); 4127 wake_up(&mddev->sb_wait); 4128 } else /* st == clean */ { 4129 restart_array(mddev); 4130 if (!set_in_sync(mddev)) 4131 err = -EBUSY; 4132 } 4133 if (!err) 4134 sysfs_notify_dirent_safe(mddev->sysfs_state); 4135 spin_unlock(&mddev->lock); 4136 return err ?: len; 4137 } 4138 err = mddev_lock(mddev); 4139 if (err) 4140 return err; 4141 err = -EINVAL; 4142 switch(st) { 4143 case bad_word: 4144 break; 4145 case clear: 4146 /* stopping an active array */ 4147 err = do_md_stop(mddev, 0, NULL); 4148 break; 4149 case inactive: 4150 /* stopping an active array */ 4151 if (mddev->pers) 4152 err = do_md_stop(mddev, 2, NULL); 4153 else 4154 err = 0; /* already inactive */ 4155 break; 4156 case suspended: 4157 break; /* not supported yet */ 4158 case readonly: 4159 if (mddev->pers) 4160 err = md_set_readonly(mddev, NULL); 4161 else { 4162 mddev->ro = 1; 4163 set_disk_ro(mddev->gendisk, 1); 4164 err = do_md_run(mddev); 4165 } 4166 break; 4167 case read_auto: 4168 if (mddev->pers) { 4169 if (mddev->ro == 0) 4170 err = md_set_readonly(mddev, NULL); 4171 else if (mddev->ro == 1) 4172 err = restart_array(mddev); 4173 if (err == 0) { 4174 mddev->ro = 2; 4175 set_disk_ro(mddev->gendisk, 0); 4176 } 4177 } else { 4178 mddev->ro = 2; 4179 err = do_md_run(mddev); 4180 } 4181 break; 4182 case clean: 4183 if (mddev->pers) { 4184 err = restart_array(mddev); 4185 if (err) 4186 break; 4187 spin_lock(&mddev->lock); 4188 if (!set_in_sync(mddev)) 4189 err = -EBUSY; 4190 spin_unlock(&mddev->lock); 4191 } else 4192 err = -EINVAL; 4193 break; 4194 case active: 4195 if (mddev->pers) { 4196 err = restart_array(mddev); 4197 if (err) 4198 break; 4199 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4200 wake_up(&mddev->sb_wait); 4201 err = 0; 4202 } else { 4203 mddev->ro = 0; 4204 set_disk_ro(mddev->gendisk, 0); 4205 err = do_md_run(mddev); 4206 } 4207 break; 4208 case write_pending: 4209 case active_idle: 4210 /* these cannot be set */ 4211 break; 4212 } 4213 4214 if (!err) { 4215 if (mddev->hold_active == UNTIL_IOCTL) 4216 mddev->hold_active = 0; 4217 sysfs_notify_dirent_safe(mddev->sysfs_state); 4218 } 4219 mddev_unlock(mddev); 4220 return err ?: len; 4221 } 4222 static struct md_sysfs_entry md_array_state = 4223 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4224 4225 static ssize_t 4226 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4227 return sprintf(page, "%d\n", 4228 atomic_read(&mddev->max_corr_read_errors)); 4229 } 4230 4231 static ssize_t 4232 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4233 { 4234 unsigned int n; 4235 int rv; 4236 4237 rv = kstrtouint(buf, 10, &n); 4238 if (rv < 0) 4239 return rv; 4240 atomic_set(&mddev->max_corr_read_errors, n); 4241 return len; 4242 } 4243 4244 static struct md_sysfs_entry max_corr_read_errors = 4245 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4246 max_corrected_read_errors_store); 4247 4248 static ssize_t 4249 null_show(struct mddev *mddev, char *page) 4250 { 4251 return -EINVAL; 4252 } 4253 4254 static ssize_t 4255 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4256 { 4257 /* buf must be %d:%d\n? giving major and minor numbers */ 4258 /* The new device is added to the array. 4259 * If the array has a persistent superblock, we read the 4260 * superblock to initialise info and check validity. 4261 * Otherwise, only checking done is that in bind_rdev_to_array, 4262 * which mainly checks size. 4263 */ 4264 char *e; 4265 int major = simple_strtoul(buf, &e, 10); 4266 int minor; 4267 dev_t dev; 4268 struct md_rdev *rdev; 4269 int err; 4270 4271 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4272 return -EINVAL; 4273 minor = simple_strtoul(e+1, &e, 10); 4274 if (*e && *e != '\n') 4275 return -EINVAL; 4276 dev = MKDEV(major, minor); 4277 if (major != MAJOR(dev) || 4278 minor != MINOR(dev)) 4279 return -EOVERFLOW; 4280 4281 flush_workqueue(md_misc_wq); 4282 4283 err = mddev_lock(mddev); 4284 if (err) 4285 return err; 4286 if (mddev->persistent) { 4287 rdev = md_import_device(dev, mddev->major_version, 4288 mddev->minor_version); 4289 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4290 struct md_rdev *rdev0 4291 = list_entry(mddev->disks.next, 4292 struct md_rdev, same_set); 4293 err = super_types[mddev->major_version] 4294 .load_super(rdev, rdev0, mddev->minor_version); 4295 if (err < 0) 4296 goto out; 4297 } 4298 } else if (mddev->external) 4299 rdev = md_import_device(dev, -2, -1); 4300 else 4301 rdev = md_import_device(dev, -1, -1); 4302 4303 if (IS_ERR(rdev)) { 4304 mddev_unlock(mddev); 4305 return PTR_ERR(rdev); 4306 } 4307 err = bind_rdev_to_array(rdev, mddev); 4308 out: 4309 if (err) 4310 export_rdev(rdev); 4311 mddev_unlock(mddev); 4312 if (!err) 4313 md_new_event(mddev); 4314 return err ? err : len; 4315 } 4316 4317 static struct md_sysfs_entry md_new_device = 4318 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4319 4320 static ssize_t 4321 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4322 { 4323 char *end; 4324 unsigned long chunk, end_chunk; 4325 int err; 4326 4327 err = mddev_lock(mddev); 4328 if (err) 4329 return err; 4330 if (!mddev->bitmap) 4331 goto out; 4332 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4333 while (*buf) { 4334 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4335 if (buf == end) break; 4336 if (*end == '-') { /* range */ 4337 buf = end + 1; 4338 end_chunk = simple_strtoul(buf, &end, 0); 4339 if (buf == end) break; 4340 } 4341 if (*end && !isspace(*end)) break; 4342 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4343 buf = skip_spaces(end); 4344 } 4345 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4346 out: 4347 mddev_unlock(mddev); 4348 return len; 4349 } 4350 4351 static struct md_sysfs_entry md_bitmap = 4352 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4353 4354 static ssize_t 4355 size_show(struct mddev *mddev, char *page) 4356 { 4357 return sprintf(page, "%llu\n", 4358 (unsigned long long)mddev->dev_sectors / 2); 4359 } 4360 4361 static int update_size(struct mddev *mddev, sector_t num_sectors); 4362 4363 static ssize_t 4364 size_store(struct mddev *mddev, const char *buf, size_t len) 4365 { 4366 /* If array is inactive, we can reduce the component size, but 4367 * not increase it (except from 0). 4368 * If array is active, we can try an on-line resize 4369 */ 4370 sector_t sectors; 4371 int err = strict_blocks_to_sectors(buf, §ors); 4372 4373 if (err < 0) 4374 return err; 4375 err = mddev_lock(mddev); 4376 if (err) 4377 return err; 4378 if (mddev->pers) { 4379 err = update_size(mddev, sectors); 4380 if (err == 0) 4381 md_update_sb(mddev, 1); 4382 } else { 4383 if (mddev->dev_sectors == 0 || 4384 mddev->dev_sectors > sectors) 4385 mddev->dev_sectors = sectors; 4386 else 4387 err = -ENOSPC; 4388 } 4389 mddev_unlock(mddev); 4390 return err ? err : len; 4391 } 4392 4393 static struct md_sysfs_entry md_size = 4394 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4395 4396 /* Metadata version. 4397 * This is one of 4398 * 'none' for arrays with no metadata (good luck...) 4399 * 'external' for arrays with externally managed metadata, 4400 * or N.M for internally known formats 4401 */ 4402 static ssize_t 4403 metadata_show(struct mddev *mddev, char *page) 4404 { 4405 if (mddev->persistent) 4406 return sprintf(page, "%d.%d\n", 4407 mddev->major_version, mddev->minor_version); 4408 else if (mddev->external) 4409 return sprintf(page, "external:%s\n", mddev->metadata_type); 4410 else 4411 return sprintf(page, "none\n"); 4412 } 4413 4414 static ssize_t 4415 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4416 { 4417 int major, minor; 4418 char *e; 4419 int err; 4420 /* Changing the details of 'external' metadata is 4421 * always permitted. Otherwise there must be 4422 * no devices attached to the array. 4423 */ 4424 4425 err = mddev_lock(mddev); 4426 if (err) 4427 return err; 4428 err = -EBUSY; 4429 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4430 ; 4431 else if (!list_empty(&mddev->disks)) 4432 goto out_unlock; 4433 4434 err = 0; 4435 if (cmd_match(buf, "none")) { 4436 mddev->persistent = 0; 4437 mddev->external = 0; 4438 mddev->major_version = 0; 4439 mddev->minor_version = 90; 4440 goto out_unlock; 4441 } 4442 if (strncmp(buf, "external:", 9) == 0) { 4443 size_t namelen = len-9; 4444 if (namelen >= sizeof(mddev->metadata_type)) 4445 namelen = sizeof(mddev->metadata_type)-1; 4446 strncpy(mddev->metadata_type, buf+9, namelen); 4447 mddev->metadata_type[namelen] = 0; 4448 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4449 mddev->metadata_type[--namelen] = 0; 4450 mddev->persistent = 0; 4451 mddev->external = 1; 4452 mddev->major_version = 0; 4453 mddev->minor_version = 90; 4454 goto out_unlock; 4455 } 4456 major = simple_strtoul(buf, &e, 10); 4457 err = -EINVAL; 4458 if (e==buf || *e != '.') 4459 goto out_unlock; 4460 buf = e+1; 4461 minor = simple_strtoul(buf, &e, 10); 4462 if (e==buf || (*e && *e != '\n') ) 4463 goto out_unlock; 4464 err = -ENOENT; 4465 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4466 goto out_unlock; 4467 mddev->major_version = major; 4468 mddev->minor_version = minor; 4469 mddev->persistent = 1; 4470 mddev->external = 0; 4471 err = 0; 4472 out_unlock: 4473 mddev_unlock(mddev); 4474 return err ?: len; 4475 } 4476 4477 static struct md_sysfs_entry md_metadata = 4478 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4479 4480 static ssize_t 4481 action_show(struct mddev *mddev, char *page) 4482 { 4483 char *type = "idle"; 4484 unsigned long recovery = mddev->recovery; 4485 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4486 type = "frozen"; 4487 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4488 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4489 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4490 type = "reshape"; 4491 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4492 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4493 type = "resync"; 4494 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4495 type = "check"; 4496 else 4497 type = "repair"; 4498 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4499 type = "recover"; 4500 else if (mddev->reshape_position != MaxSector) 4501 type = "reshape"; 4502 } 4503 return sprintf(page, "%s\n", type); 4504 } 4505 4506 static ssize_t 4507 action_store(struct mddev *mddev, const char *page, size_t len) 4508 { 4509 if (!mddev->pers || !mddev->pers->sync_request) 4510 return -EINVAL; 4511 4512 4513 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4514 if (cmd_match(page, "frozen")) 4515 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4516 else 4517 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4518 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4519 mddev_lock(mddev) == 0) { 4520 flush_workqueue(md_misc_wq); 4521 if (mddev->sync_thread) { 4522 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4523 md_reap_sync_thread(mddev); 4524 } 4525 mddev_unlock(mddev); 4526 } 4527 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4528 return -EBUSY; 4529 else if (cmd_match(page, "resync")) 4530 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4531 else if (cmd_match(page, "recover")) { 4532 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4533 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4534 } else if (cmd_match(page, "reshape")) { 4535 int err; 4536 if (mddev->pers->start_reshape == NULL) 4537 return -EINVAL; 4538 err = mddev_lock(mddev); 4539 if (!err) { 4540 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4541 err = -EBUSY; 4542 else { 4543 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4544 err = mddev->pers->start_reshape(mddev); 4545 } 4546 mddev_unlock(mddev); 4547 } 4548 if (err) 4549 return err; 4550 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4551 } else { 4552 if (cmd_match(page, "check")) 4553 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4554 else if (!cmd_match(page, "repair")) 4555 return -EINVAL; 4556 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4557 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4558 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4559 } 4560 if (mddev->ro == 2) { 4561 /* A write to sync_action is enough to justify 4562 * canceling read-auto mode 4563 */ 4564 mddev->ro = 0; 4565 md_wakeup_thread(mddev->sync_thread); 4566 } 4567 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4568 md_wakeup_thread(mddev->thread); 4569 sysfs_notify_dirent_safe(mddev->sysfs_action); 4570 return len; 4571 } 4572 4573 static struct md_sysfs_entry md_scan_mode = 4574 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4575 4576 static ssize_t 4577 last_sync_action_show(struct mddev *mddev, char *page) 4578 { 4579 return sprintf(page, "%s\n", mddev->last_sync_action); 4580 } 4581 4582 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4583 4584 static ssize_t 4585 mismatch_cnt_show(struct mddev *mddev, char *page) 4586 { 4587 return sprintf(page, "%llu\n", 4588 (unsigned long long) 4589 atomic64_read(&mddev->resync_mismatches)); 4590 } 4591 4592 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4593 4594 static ssize_t 4595 sync_min_show(struct mddev *mddev, char *page) 4596 { 4597 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4598 mddev->sync_speed_min ? "local": "system"); 4599 } 4600 4601 static ssize_t 4602 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4603 { 4604 unsigned int min; 4605 int rv; 4606 4607 if (strncmp(buf, "system", 6)==0) { 4608 min = 0; 4609 } else { 4610 rv = kstrtouint(buf, 10, &min); 4611 if (rv < 0) 4612 return rv; 4613 if (min == 0) 4614 return -EINVAL; 4615 } 4616 mddev->sync_speed_min = min; 4617 return len; 4618 } 4619 4620 static struct md_sysfs_entry md_sync_min = 4621 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4622 4623 static ssize_t 4624 sync_max_show(struct mddev *mddev, char *page) 4625 { 4626 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4627 mddev->sync_speed_max ? "local": "system"); 4628 } 4629 4630 static ssize_t 4631 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4632 { 4633 unsigned int max; 4634 int rv; 4635 4636 if (strncmp(buf, "system", 6)==0) { 4637 max = 0; 4638 } else { 4639 rv = kstrtouint(buf, 10, &max); 4640 if (rv < 0) 4641 return rv; 4642 if (max == 0) 4643 return -EINVAL; 4644 } 4645 mddev->sync_speed_max = max; 4646 return len; 4647 } 4648 4649 static struct md_sysfs_entry md_sync_max = 4650 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4651 4652 static ssize_t 4653 degraded_show(struct mddev *mddev, char *page) 4654 { 4655 return sprintf(page, "%d\n", mddev->degraded); 4656 } 4657 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4658 4659 static ssize_t 4660 sync_force_parallel_show(struct mddev *mddev, char *page) 4661 { 4662 return sprintf(page, "%d\n", mddev->parallel_resync); 4663 } 4664 4665 static ssize_t 4666 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4667 { 4668 long n; 4669 4670 if (kstrtol(buf, 10, &n)) 4671 return -EINVAL; 4672 4673 if (n != 0 && n != 1) 4674 return -EINVAL; 4675 4676 mddev->parallel_resync = n; 4677 4678 if (mddev->sync_thread) 4679 wake_up(&resync_wait); 4680 4681 return len; 4682 } 4683 4684 /* force parallel resync, even with shared block devices */ 4685 static struct md_sysfs_entry md_sync_force_parallel = 4686 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4687 sync_force_parallel_show, sync_force_parallel_store); 4688 4689 static ssize_t 4690 sync_speed_show(struct mddev *mddev, char *page) 4691 { 4692 unsigned long resync, dt, db; 4693 if (mddev->curr_resync == 0) 4694 return sprintf(page, "none\n"); 4695 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4696 dt = (jiffies - mddev->resync_mark) / HZ; 4697 if (!dt) dt++; 4698 db = resync - mddev->resync_mark_cnt; 4699 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4700 } 4701 4702 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4703 4704 static ssize_t 4705 sync_completed_show(struct mddev *mddev, char *page) 4706 { 4707 unsigned long long max_sectors, resync; 4708 4709 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4710 return sprintf(page, "none\n"); 4711 4712 if (mddev->curr_resync == 1 || 4713 mddev->curr_resync == 2) 4714 return sprintf(page, "delayed\n"); 4715 4716 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4717 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4718 max_sectors = mddev->resync_max_sectors; 4719 else 4720 max_sectors = mddev->dev_sectors; 4721 4722 resync = mddev->curr_resync_completed; 4723 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4724 } 4725 4726 static struct md_sysfs_entry md_sync_completed = 4727 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4728 4729 static ssize_t 4730 min_sync_show(struct mddev *mddev, char *page) 4731 { 4732 return sprintf(page, "%llu\n", 4733 (unsigned long long)mddev->resync_min); 4734 } 4735 static ssize_t 4736 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4737 { 4738 unsigned long long min; 4739 int err; 4740 4741 if (kstrtoull(buf, 10, &min)) 4742 return -EINVAL; 4743 4744 spin_lock(&mddev->lock); 4745 err = -EINVAL; 4746 if (min > mddev->resync_max) 4747 goto out_unlock; 4748 4749 err = -EBUSY; 4750 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4751 goto out_unlock; 4752 4753 /* Round down to multiple of 4K for safety */ 4754 mddev->resync_min = round_down(min, 8); 4755 err = 0; 4756 4757 out_unlock: 4758 spin_unlock(&mddev->lock); 4759 return err ?: len; 4760 } 4761 4762 static struct md_sysfs_entry md_min_sync = 4763 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4764 4765 static ssize_t 4766 max_sync_show(struct mddev *mddev, char *page) 4767 { 4768 if (mddev->resync_max == MaxSector) 4769 return sprintf(page, "max\n"); 4770 else 4771 return sprintf(page, "%llu\n", 4772 (unsigned long long)mddev->resync_max); 4773 } 4774 static ssize_t 4775 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4776 { 4777 int err; 4778 spin_lock(&mddev->lock); 4779 if (strncmp(buf, "max", 3) == 0) 4780 mddev->resync_max = MaxSector; 4781 else { 4782 unsigned long long max; 4783 int chunk; 4784 4785 err = -EINVAL; 4786 if (kstrtoull(buf, 10, &max)) 4787 goto out_unlock; 4788 if (max < mddev->resync_min) 4789 goto out_unlock; 4790 4791 err = -EBUSY; 4792 if (max < mddev->resync_max && 4793 mddev->ro == 0 && 4794 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4795 goto out_unlock; 4796 4797 /* Must be a multiple of chunk_size */ 4798 chunk = mddev->chunk_sectors; 4799 if (chunk) { 4800 sector_t temp = max; 4801 4802 err = -EINVAL; 4803 if (sector_div(temp, chunk)) 4804 goto out_unlock; 4805 } 4806 mddev->resync_max = max; 4807 } 4808 wake_up(&mddev->recovery_wait); 4809 err = 0; 4810 out_unlock: 4811 spin_unlock(&mddev->lock); 4812 return err ?: len; 4813 } 4814 4815 static struct md_sysfs_entry md_max_sync = 4816 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4817 4818 static ssize_t 4819 suspend_lo_show(struct mddev *mddev, char *page) 4820 { 4821 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4822 } 4823 4824 static ssize_t 4825 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4826 { 4827 unsigned long long old, new; 4828 int err; 4829 4830 err = kstrtoull(buf, 10, &new); 4831 if (err < 0) 4832 return err; 4833 if (new != (sector_t)new) 4834 return -EINVAL; 4835 4836 err = mddev_lock(mddev); 4837 if (err) 4838 return err; 4839 err = -EINVAL; 4840 if (mddev->pers == NULL || 4841 mddev->pers->quiesce == NULL) 4842 goto unlock; 4843 old = mddev->suspend_lo; 4844 mddev->suspend_lo = new; 4845 if (new >= old) 4846 /* Shrinking suspended region */ 4847 mddev->pers->quiesce(mddev, 2); 4848 else { 4849 /* Expanding suspended region - need to wait */ 4850 mddev->pers->quiesce(mddev, 1); 4851 mddev->pers->quiesce(mddev, 0); 4852 } 4853 err = 0; 4854 unlock: 4855 mddev_unlock(mddev); 4856 return err ?: len; 4857 } 4858 static struct md_sysfs_entry md_suspend_lo = 4859 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4860 4861 static ssize_t 4862 suspend_hi_show(struct mddev *mddev, char *page) 4863 { 4864 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4865 } 4866 4867 static ssize_t 4868 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4869 { 4870 unsigned long long old, new; 4871 int err; 4872 4873 err = kstrtoull(buf, 10, &new); 4874 if (err < 0) 4875 return err; 4876 if (new != (sector_t)new) 4877 return -EINVAL; 4878 4879 err = mddev_lock(mddev); 4880 if (err) 4881 return err; 4882 err = -EINVAL; 4883 if (mddev->pers == NULL || 4884 mddev->pers->quiesce == NULL) 4885 goto unlock; 4886 old = mddev->suspend_hi; 4887 mddev->suspend_hi = new; 4888 if (new <= old) 4889 /* Shrinking suspended region */ 4890 mddev->pers->quiesce(mddev, 2); 4891 else { 4892 /* Expanding suspended region - need to wait */ 4893 mddev->pers->quiesce(mddev, 1); 4894 mddev->pers->quiesce(mddev, 0); 4895 } 4896 err = 0; 4897 unlock: 4898 mddev_unlock(mddev); 4899 return err ?: len; 4900 } 4901 static struct md_sysfs_entry md_suspend_hi = 4902 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4903 4904 static ssize_t 4905 reshape_position_show(struct mddev *mddev, char *page) 4906 { 4907 if (mddev->reshape_position != MaxSector) 4908 return sprintf(page, "%llu\n", 4909 (unsigned long long)mddev->reshape_position); 4910 strcpy(page, "none\n"); 4911 return 5; 4912 } 4913 4914 static ssize_t 4915 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4916 { 4917 struct md_rdev *rdev; 4918 unsigned long long new; 4919 int err; 4920 4921 err = kstrtoull(buf, 10, &new); 4922 if (err < 0) 4923 return err; 4924 if (new != (sector_t)new) 4925 return -EINVAL; 4926 err = mddev_lock(mddev); 4927 if (err) 4928 return err; 4929 err = -EBUSY; 4930 if (mddev->pers) 4931 goto unlock; 4932 mddev->reshape_position = new; 4933 mddev->delta_disks = 0; 4934 mddev->reshape_backwards = 0; 4935 mddev->new_level = mddev->level; 4936 mddev->new_layout = mddev->layout; 4937 mddev->new_chunk_sectors = mddev->chunk_sectors; 4938 rdev_for_each(rdev, mddev) 4939 rdev->new_data_offset = rdev->data_offset; 4940 err = 0; 4941 unlock: 4942 mddev_unlock(mddev); 4943 return err ?: len; 4944 } 4945 4946 static struct md_sysfs_entry md_reshape_position = 4947 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4948 reshape_position_store); 4949 4950 static ssize_t 4951 reshape_direction_show(struct mddev *mddev, char *page) 4952 { 4953 return sprintf(page, "%s\n", 4954 mddev->reshape_backwards ? "backwards" : "forwards"); 4955 } 4956 4957 static ssize_t 4958 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4959 { 4960 int backwards = 0; 4961 int err; 4962 4963 if (cmd_match(buf, "forwards")) 4964 backwards = 0; 4965 else if (cmd_match(buf, "backwards")) 4966 backwards = 1; 4967 else 4968 return -EINVAL; 4969 if (mddev->reshape_backwards == backwards) 4970 return len; 4971 4972 err = mddev_lock(mddev); 4973 if (err) 4974 return err; 4975 /* check if we are allowed to change */ 4976 if (mddev->delta_disks) 4977 err = -EBUSY; 4978 else if (mddev->persistent && 4979 mddev->major_version == 0) 4980 err = -EINVAL; 4981 else 4982 mddev->reshape_backwards = backwards; 4983 mddev_unlock(mddev); 4984 return err ?: len; 4985 } 4986 4987 static struct md_sysfs_entry md_reshape_direction = 4988 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4989 reshape_direction_store); 4990 4991 static ssize_t 4992 array_size_show(struct mddev *mddev, char *page) 4993 { 4994 if (mddev->external_size) 4995 return sprintf(page, "%llu\n", 4996 (unsigned long long)mddev->array_sectors/2); 4997 else 4998 return sprintf(page, "default\n"); 4999 } 5000 5001 static ssize_t 5002 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5003 { 5004 sector_t sectors; 5005 int err; 5006 5007 err = mddev_lock(mddev); 5008 if (err) 5009 return err; 5010 5011 /* cluster raid doesn't support change array_sectors */ 5012 if (mddev_is_clustered(mddev)) { 5013 mddev_unlock(mddev); 5014 return -EINVAL; 5015 } 5016 5017 if (strncmp(buf, "default", 7) == 0) { 5018 if (mddev->pers) 5019 sectors = mddev->pers->size(mddev, 0, 0); 5020 else 5021 sectors = mddev->array_sectors; 5022 5023 mddev->external_size = 0; 5024 } else { 5025 if (strict_blocks_to_sectors(buf, §ors) < 0) 5026 err = -EINVAL; 5027 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5028 err = -E2BIG; 5029 else 5030 mddev->external_size = 1; 5031 } 5032 5033 if (!err) { 5034 mddev->array_sectors = sectors; 5035 if (mddev->pers) { 5036 set_capacity(mddev->gendisk, mddev->array_sectors); 5037 revalidate_disk(mddev->gendisk); 5038 } 5039 } 5040 mddev_unlock(mddev); 5041 return err ?: len; 5042 } 5043 5044 static struct md_sysfs_entry md_array_size = 5045 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5046 array_size_store); 5047 5048 static ssize_t 5049 consistency_policy_show(struct mddev *mddev, char *page) 5050 { 5051 int ret; 5052 5053 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5054 ret = sprintf(page, "journal\n"); 5055 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5056 ret = sprintf(page, "ppl\n"); 5057 } else if (mddev->bitmap) { 5058 ret = sprintf(page, "bitmap\n"); 5059 } else if (mddev->pers) { 5060 if (mddev->pers->sync_request) 5061 ret = sprintf(page, "resync\n"); 5062 else 5063 ret = sprintf(page, "none\n"); 5064 } else { 5065 ret = sprintf(page, "unknown\n"); 5066 } 5067 5068 return ret; 5069 } 5070 5071 static ssize_t 5072 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5073 { 5074 int err = 0; 5075 5076 if (mddev->pers) { 5077 if (mddev->pers->change_consistency_policy) 5078 err = mddev->pers->change_consistency_policy(mddev, buf); 5079 else 5080 err = -EBUSY; 5081 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5082 set_bit(MD_HAS_PPL, &mddev->flags); 5083 } else { 5084 err = -EINVAL; 5085 } 5086 5087 return err ? err : len; 5088 } 5089 5090 static struct md_sysfs_entry md_consistency_policy = 5091 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5092 consistency_policy_store); 5093 5094 static struct attribute *md_default_attrs[] = { 5095 &md_level.attr, 5096 &md_layout.attr, 5097 &md_raid_disks.attr, 5098 &md_chunk_size.attr, 5099 &md_size.attr, 5100 &md_resync_start.attr, 5101 &md_metadata.attr, 5102 &md_new_device.attr, 5103 &md_safe_delay.attr, 5104 &md_array_state.attr, 5105 &md_reshape_position.attr, 5106 &md_reshape_direction.attr, 5107 &md_array_size.attr, 5108 &max_corr_read_errors.attr, 5109 &md_consistency_policy.attr, 5110 NULL, 5111 }; 5112 5113 static struct attribute *md_redundancy_attrs[] = { 5114 &md_scan_mode.attr, 5115 &md_last_scan_mode.attr, 5116 &md_mismatches.attr, 5117 &md_sync_min.attr, 5118 &md_sync_max.attr, 5119 &md_sync_speed.attr, 5120 &md_sync_force_parallel.attr, 5121 &md_sync_completed.attr, 5122 &md_min_sync.attr, 5123 &md_max_sync.attr, 5124 &md_suspend_lo.attr, 5125 &md_suspend_hi.attr, 5126 &md_bitmap.attr, 5127 &md_degraded.attr, 5128 NULL, 5129 }; 5130 static struct attribute_group md_redundancy_group = { 5131 .name = NULL, 5132 .attrs = md_redundancy_attrs, 5133 }; 5134 5135 static ssize_t 5136 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5137 { 5138 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5139 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5140 ssize_t rv; 5141 5142 if (!entry->show) 5143 return -EIO; 5144 spin_lock(&all_mddevs_lock); 5145 if (list_empty(&mddev->all_mddevs)) { 5146 spin_unlock(&all_mddevs_lock); 5147 return -EBUSY; 5148 } 5149 mddev_get(mddev); 5150 spin_unlock(&all_mddevs_lock); 5151 5152 rv = entry->show(mddev, page); 5153 mddev_put(mddev); 5154 return rv; 5155 } 5156 5157 static ssize_t 5158 md_attr_store(struct kobject *kobj, struct attribute *attr, 5159 const char *page, size_t length) 5160 { 5161 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5162 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5163 ssize_t rv; 5164 5165 if (!entry->store) 5166 return -EIO; 5167 if (!capable(CAP_SYS_ADMIN)) 5168 return -EACCES; 5169 spin_lock(&all_mddevs_lock); 5170 if (list_empty(&mddev->all_mddevs)) { 5171 spin_unlock(&all_mddevs_lock); 5172 return -EBUSY; 5173 } 5174 mddev_get(mddev); 5175 spin_unlock(&all_mddevs_lock); 5176 rv = entry->store(mddev, page, length); 5177 mddev_put(mddev); 5178 return rv; 5179 } 5180 5181 static void md_free(struct kobject *ko) 5182 { 5183 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5184 5185 if (mddev->sysfs_state) 5186 sysfs_put(mddev->sysfs_state); 5187 5188 if (mddev->queue) 5189 blk_cleanup_queue(mddev->queue); 5190 if (mddev->gendisk) { 5191 del_gendisk(mddev->gendisk); 5192 put_disk(mddev->gendisk); 5193 } 5194 percpu_ref_exit(&mddev->writes_pending); 5195 5196 kfree(mddev); 5197 } 5198 5199 static const struct sysfs_ops md_sysfs_ops = { 5200 .show = md_attr_show, 5201 .store = md_attr_store, 5202 }; 5203 static struct kobj_type md_ktype = { 5204 .release = md_free, 5205 .sysfs_ops = &md_sysfs_ops, 5206 .default_attrs = md_default_attrs, 5207 }; 5208 5209 int mdp_major = 0; 5210 5211 static void mddev_delayed_delete(struct work_struct *ws) 5212 { 5213 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5214 5215 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5216 kobject_del(&mddev->kobj); 5217 kobject_put(&mddev->kobj); 5218 } 5219 5220 static void no_op(struct percpu_ref *r) {} 5221 5222 int mddev_init_writes_pending(struct mddev *mddev) 5223 { 5224 if (mddev->writes_pending.percpu_count_ptr) 5225 return 0; 5226 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0) 5227 return -ENOMEM; 5228 /* We want to start with the refcount at zero */ 5229 percpu_ref_put(&mddev->writes_pending); 5230 return 0; 5231 } 5232 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5233 5234 static int md_alloc(dev_t dev, char *name) 5235 { 5236 /* 5237 * If dev is zero, name is the name of a device to allocate with 5238 * an arbitrary minor number. It will be "md_???" 5239 * If dev is non-zero it must be a device number with a MAJOR of 5240 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5241 * the device is being created by opening a node in /dev. 5242 * If "name" is not NULL, the device is being created by 5243 * writing to /sys/module/md_mod/parameters/new_array. 5244 */ 5245 static DEFINE_MUTEX(disks_mutex); 5246 struct mddev *mddev = mddev_find(dev); 5247 struct gendisk *disk; 5248 int partitioned; 5249 int shift; 5250 int unit; 5251 int error; 5252 5253 if (!mddev) 5254 return -ENODEV; 5255 5256 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5257 shift = partitioned ? MdpMinorShift : 0; 5258 unit = MINOR(mddev->unit) >> shift; 5259 5260 /* wait for any previous instance of this device to be 5261 * completely removed (mddev_delayed_delete). 5262 */ 5263 flush_workqueue(md_misc_wq); 5264 5265 mutex_lock(&disks_mutex); 5266 error = -EEXIST; 5267 if (mddev->gendisk) 5268 goto abort; 5269 5270 if (name && !dev) { 5271 /* Need to ensure that 'name' is not a duplicate. 5272 */ 5273 struct mddev *mddev2; 5274 spin_lock(&all_mddevs_lock); 5275 5276 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5277 if (mddev2->gendisk && 5278 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5279 spin_unlock(&all_mddevs_lock); 5280 goto abort; 5281 } 5282 spin_unlock(&all_mddevs_lock); 5283 } 5284 if (name && dev) 5285 /* 5286 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5287 */ 5288 mddev->hold_active = UNTIL_STOP; 5289 5290 error = -ENOMEM; 5291 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5292 if (!mddev->queue) 5293 goto abort; 5294 mddev->queue->queuedata = mddev; 5295 5296 blk_queue_make_request(mddev->queue, md_make_request); 5297 blk_set_stacking_limits(&mddev->queue->limits); 5298 5299 disk = alloc_disk(1 << shift); 5300 if (!disk) { 5301 blk_cleanup_queue(mddev->queue); 5302 mddev->queue = NULL; 5303 goto abort; 5304 } 5305 disk->major = MAJOR(mddev->unit); 5306 disk->first_minor = unit << shift; 5307 if (name) 5308 strcpy(disk->disk_name, name); 5309 else if (partitioned) 5310 sprintf(disk->disk_name, "md_d%d", unit); 5311 else 5312 sprintf(disk->disk_name, "md%d", unit); 5313 disk->fops = &md_fops; 5314 disk->private_data = mddev; 5315 disk->queue = mddev->queue; 5316 blk_queue_write_cache(mddev->queue, true, true); 5317 /* Allow extended partitions. This makes the 5318 * 'mdp' device redundant, but we can't really 5319 * remove it now. 5320 */ 5321 disk->flags |= GENHD_FL_EXT_DEVT; 5322 mddev->gendisk = disk; 5323 /* As soon as we call add_disk(), another thread could get 5324 * through to md_open, so make sure it doesn't get too far 5325 */ 5326 mutex_lock(&mddev->open_mutex); 5327 add_disk(disk); 5328 5329 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 5330 &disk_to_dev(disk)->kobj, "%s", "md"); 5331 if (error) { 5332 /* This isn't possible, but as kobject_init_and_add is marked 5333 * __must_check, we must do something with the result 5334 */ 5335 pr_debug("md: cannot register %s/md - name in use\n", 5336 disk->disk_name); 5337 error = 0; 5338 } 5339 if (mddev->kobj.sd && 5340 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5341 pr_debug("pointless warning\n"); 5342 mutex_unlock(&mddev->open_mutex); 5343 abort: 5344 mutex_unlock(&disks_mutex); 5345 if (!error && mddev->kobj.sd) { 5346 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5347 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5348 } 5349 mddev_put(mddev); 5350 return error; 5351 } 5352 5353 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5354 { 5355 if (create_on_open) 5356 md_alloc(dev, NULL); 5357 return NULL; 5358 } 5359 5360 static int add_named_array(const char *val, struct kernel_param *kp) 5361 { 5362 /* 5363 * val must be "md_*" or "mdNNN". 5364 * For "md_*" we allocate an array with a large free minor number, and 5365 * set the name to val. val must not already be an active name. 5366 * For "mdNNN" we allocate an array with the minor number NNN 5367 * which must not already be in use. 5368 */ 5369 int len = strlen(val); 5370 char buf[DISK_NAME_LEN]; 5371 unsigned long devnum; 5372 5373 while (len && val[len-1] == '\n') 5374 len--; 5375 if (len >= DISK_NAME_LEN) 5376 return -E2BIG; 5377 strlcpy(buf, val, len+1); 5378 if (strncmp(buf, "md_", 3) == 0) 5379 return md_alloc(0, buf); 5380 if (strncmp(buf, "md", 2) == 0 && 5381 isdigit(buf[2]) && 5382 kstrtoul(buf+2, 10, &devnum) == 0 && 5383 devnum <= MINORMASK) 5384 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5385 5386 return -EINVAL; 5387 } 5388 5389 static void md_safemode_timeout(unsigned long data) 5390 { 5391 struct mddev *mddev = (struct mddev *) data; 5392 5393 mddev->safemode = 1; 5394 if (mddev->external) 5395 sysfs_notify_dirent_safe(mddev->sysfs_state); 5396 5397 md_wakeup_thread(mddev->thread); 5398 } 5399 5400 static int start_dirty_degraded; 5401 5402 int md_run(struct mddev *mddev) 5403 { 5404 int err; 5405 struct md_rdev *rdev; 5406 struct md_personality *pers; 5407 5408 if (list_empty(&mddev->disks)) 5409 /* cannot run an array with no devices.. */ 5410 return -EINVAL; 5411 5412 if (mddev->pers) 5413 return -EBUSY; 5414 /* Cannot run until previous stop completes properly */ 5415 if (mddev->sysfs_active) 5416 return -EBUSY; 5417 5418 /* 5419 * Analyze all RAID superblock(s) 5420 */ 5421 if (!mddev->raid_disks) { 5422 if (!mddev->persistent) 5423 return -EINVAL; 5424 analyze_sbs(mddev); 5425 } 5426 5427 if (mddev->level != LEVEL_NONE) 5428 request_module("md-level-%d", mddev->level); 5429 else if (mddev->clevel[0]) 5430 request_module("md-%s", mddev->clevel); 5431 5432 /* 5433 * Drop all container device buffers, from now on 5434 * the only valid external interface is through the md 5435 * device. 5436 */ 5437 rdev_for_each(rdev, mddev) { 5438 if (test_bit(Faulty, &rdev->flags)) 5439 continue; 5440 sync_blockdev(rdev->bdev); 5441 invalidate_bdev(rdev->bdev); 5442 if (mddev->ro != 1 && 5443 (bdev_read_only(rdev->bdev) || 5444 bdev_read_only(rdev->meta_bdev))) { 5445 mddev->ro = 1; 5446 if (mddev->gendisk) 5447 set_disk_ro(mddev->gendisk, 1); 5448 } 5449 5450 /* perform some consistency tests on the device. 5451 * We don't want the data to overlap the metadata, 5452 * Internal Bitmap issues have been handled elsewhere. 5453 */ 5454 if (rdev->meta_bdev) { 5455 /* Nothing to check */; 5456 } else if (rdev->data_offset < rdev->sb_start) { 5457 if (mddev->dev_sectors && 5458 rdev->data_offset + mddev->dev_sectors 5459 > rdev->sb_start) { 5460 pr_warn("md: %s: data overlaps metadata\n", 5461 mdname(mddev)); 5462 return -EINVAL; 5463 } 5464 } else { 5465 if (rdev->sb_start + rdev->sb_size/512 5466 > rdev->data_offset) { 5467 pr_warn("md: %s: metadata overlaps data\n", 5468 mdname(mddev)); 5469 return -EINVAL; 5470 } 5471 } 5472 sysfs_notify_dirent_safe(rdev->sysfs_state); 5473 } 5474 5475 if (mddev->bio_set == NULL) { 5476 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5477 if (!mddev->bio_set) 5478 return -ENOMEM; 5479 } 5480 if (mddev->sync_set == NULL) { 5481 mddev->sync_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5482 if (!mddev->sync_set) 5483 return -ENOMEM; 5484 } 5485 5486 spin_lock(&pers_lock); 5487 pers = find_pers(mddev->level, mddev->clevel); 5488 if (!pers || !try_module_get(pers->owner)) { 5489 spin_unlock(&pers_lock); 5490 if (mddev->level != LEVEL_NONE) 5491 pr_warn("md: personality for level %d is not loaded!\n", 5492 mddev->level); 5493 else 5494 pr_warn("md: personality for level %s is not loaded!\n", 5495 mddev->clevel); 5496 return -EINVAL; 5497 } 5498 spin_unlock(&pers_lock); 5499 if (mddev->level != pers->level) { 5500 mddev->level = pers->level; 5501 mddev->new_level = pers->level; 5502 } 5503 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5504 5505 if (mddev->reshape_position != MaxSector && 5506 pers->start_reshape == NULL) { 5507 /* This personality cannot handle reshaping... */ 5508 module_put(pers->owner); 5509 return -EINVAL; 5510 } 5511 5512 if (pers->sync_request) { 5513 /* Warn if this is a potentially silly 5514 * configuration. 5515 */ 5516 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5517 struct md_rdev *rdev2; 5518 int warned = 0; 5519 5520 rdev_for_each(rdev, mddev) 5521 rdev_for_each(rdev2, mddev) { 5522 if (rdev < rdev2 && 5523 rdev->bdev->bd_contains == 5524 rdev2->bdev->bd_contains) { 5525 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5526 mdname(mddev), 5527 bdevname(rdev->bdev,b), 5528 bdevname(rdev2->bdev,b2)); 5529 warned = 1; 5530 } 5531 } 5532 5533 if (warned) 5534 pr_warn("True protection against single-disk failure might be compromised.\n"); 5535 } 5536 5537 mddev->recovery = 0; 5538 /* may be over-ridden by personality */ 5539 mddev->resync_max_sectors = mddev->dev_sectors; 5540 5541 mddev->ok_start_degraded = start_dirty_degraded; 5542 5543 if (start_readonly && mddev->ro == 0) 5544 mddev->ro = 2; /* read-only, but switch on first write */ 5545 5546 /* 5547 * NOTE: some pers->run(), for example r5l_recovery_log(), wakes 5548 * up mddev->thread. It is important to initialize critical 5549 * resources for mddev->thread BEFORE calling pers->run(). 5550 */ 5551 err = pers->run(mddev); 5552 if (err) 5553 pr_warn("md: pers->run() failed ...\n"); 5554 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5555 WARN_ONCE(!mddev->external_size, 5556 "%s: default size too small, but 'external_size' not in effect?\n", 5557 __func__); 5558 pr_warn("md: invalid array_size %llu > default size %llu\n", 5559 (unsigned long long)mddev->array_sectors / 2, 5560 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5561 err = -EINVAL; 5562 } 5563 if (err == 0 && pers->sync_request && 5564 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5565 struct bitmap *bitmap; 5566 5567 bitmap = bitmap_create(mddev, -1); 5568 if (IS_ERR(bitmap)) { 5569 err = PTR_ERR(bitmap); 5570 pr_warn("%s: failed to create bitmap (%d)\n", 5571 mdname(mddev), err); 5572 } else 5573 mddev->bitmap = bitmap; 5574 5575 } 5576 if (err) { 5577 mddev_detach(mddev); 5578 if (mddev->private) 5579 pers->free(mddev, mddev->private); 5580 mddev->private = NULL; 5581 module_put(pers->owner); 5582 bitmap_destroy(mddev); 5583 return err; 5584 } 5585 if (mddev->queue) { 5586 bool nonrot = true; 5587 5588 rdev_for_each(rdev, mddev) { 5589 if (rdev->raid_disk >= 0 && 5590 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5591 nonrot = false; 5592 break; 5593 } 5594 } 5595 if (mddev->degraded) 5596 nonrot = false; 5597 if (nonrot) 5598 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue); 5599 else 5600 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue); 5601 mddev->queue->backing_dev_info->congested_data = mddev; 5602 mddev->queue->backing_dev_info->congested_fn = md_congested; 5603 } 5604 if (pers->sync_request) { 5605 if (mddev->kobj.sd && 5606 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5607 pr_warn("md: cannot register extra attributes for %s\n", 5608 mdname(mddev)); 5609 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5610 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5611 mddev->ro = 0; 5612 5613 atomic_set(&mddev->max_corr_read_errors, 5614 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5615 mddev->safemode = 0; 5616 if (mddev_is_clustered(mddev)) 5617 mddev->safemode_delay = 0; 5618 else 5619 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5620 mddev->in_sync = 1; 5621 smp_wmb(); 5622 spin_lock(&mddev->lock); 5623 mddev->pers = pers; 5624 spin_unlock(&mddev->lock); 5625 rdev_for_each(rdev, mddev) 5626 if (rdev->raid_disk >= 0) 5627 if (sysfs_link_rdev(mddev, rdev)) 5628 /* failure here is OK */; 5629 5630 if (mddev->degraded && !mddev->ro) 5631 /* This ensures that recovering status is reported immediately 5632 * via sysfs - until a lack of spares is confirmed. 5633 */ 5634 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5635 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5636 5637 if (mddev->sb_flags) 5638 md_update_sb(mddev, 0); 5639 5640 md_new_event(mddev); 5641 sysfs_notify_dirent_safe(mddev->sysfs_state); 5642 sysfs_notify_dirent_safe(mddev->sysfs_action); 5643 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5644 return 0; 5645 } 5646 EXPORT_SYMBOL_GPL(md_run); 5647 5648 static int do_md_run(struct mddev *mddev) 5649 { 5650 int err; 5651 5652 err = md_run(mddev); 5653 if (err) 5654 goto out; 5655 err = bitmap_load(mddev); 5656 if (err) { 5657 bitmap_destroy(mddev); 5658 goto out; 5659 } 5660 5661 if (mddev_is_clustered(mddev)) 5662 md_allow_write(mddev); 5663 5664 md_wakeup_thread(mddev->thread); 5665 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5666 5667 set_capacity(mddev->gendisk, mddev->array_sectors); 5668 revalidate_disk(mddev->gendisk); 5669 mddev->changed = 1; 5670 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5671 out: 5672 return err; 5673 } 5674 5675 static int restart_array(struct mddev *mddev) 5676 { 5677 struct gendisk *disk = mddev->gendisk; 5678 struct md_rdev *rdev; 5679 bool has_journal = false; 5680 bool has_readonly = false; 5681 5682 /* Complain if it has no devices */ 5683 if (list_empty(&mddev->disks)) 5684 return -ENXIO; 5685 if (!mddev->pers) 5686 return -EINVAL; 5687 if (!mddev->ro) 5688 return -EBUSY; 5689 5690 rcu_read_lock(); 5691 rdev_for_each_rcu(rdev, mddev) { 5692 if (test_bit(Journal, &rdev->flags) && 5693 !test_bit(Faulty, &rdev->flags)) 5694 has_journal = true; 5695 if (bdev_read_only(rdev->bdev)) 5696 has_readonly = true; 5697 } 5698 rcu_read_unlock(); 5699 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5700 /* Don't restart rw with journal missing/faulty */ 5701 return -EINVAL; 5702 if (has_readonly) 5703 return -EROFS; 5704 5705 mddev->safemode = 0; 5706 mddev->ro = 0; 5707 set_disk_ro(disk, 0); 5708 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5709 /* Kick recovery or resync if necessary */ 5710 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5711 md_wakeup_thread(mddev->thread); 5712 md_wakeup_thread(mddev->sync_thread); 5713 sysfs_notify_dirent_safe(mddev->sysfs_state); 5714 return 0; 5715 } 5716 5717 static void md_clean(struct mddev *mddev) 5718 { 5719 mddev->array_sectors = 0; 5720 mddev->external_size = 0; 5721 mddev->dev_sectors = 0; 5722 mddev->raid_disks = 0; 5723 mddev->recovery_cp = 0; 5724 mddev->resync_min = 0; 5725 mddev->resync_max = MaxSector; 5726 mddev->reshape_position = MaxSector; 5727 mddev->external = 0; 5728 mddev->persistent = 0; 5729 mddev->level = LEVEL_NONE; 5730 mddev->clevel[0] = 0; 5731 mddev->flags = 0; 5732 mddev->sb_flags = 0; 5733 mddev->ro = 0; 5734 mddev->metadata_type[0] = 0; 5735 mddev->chunk_sectors = 0; 5736 mddev->ctime = mddev->utime = 0; 5737 mddev->layout = 0; 5738 mddev->max_disks = 0; 5739 mddev->events = 0; 5740 mddev->can_decrease_events = 0; 5741 mddev->delta_disks = 0; 5742 mddev->reshape_backwards = 0; 5743 mddev->new_level = LEVEL_NONE; 5744 mddev->new_layout = 0; 5745 mddev->new_chunk_sectors = 0; 5746 mddev->curr_resync = 0; 5747 atomic64_set(&mddev->resync_mismatches, 0); 5748 mddev->suspend_lo = mddev->suspend_hi = 0; 5749 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5750 mddev->recovery = 0; 5751 mddev->in_sync = 0; 5752 mddev->changed = 0; 5753 mddev->degraded = 0; 5754 mddev->safemode = 0; 5755 mddev->private = NULL; 5756 mddev->cluster_info = NULL; 5757 mddev->bitmap_info.offset = 0; 5758 mddev->bitmap_info.default_offset = 0; 5759 mddev->bitmap_info.default_space = 0; 5760 mddev->bitmap_info.chunksize = 0; 5761 mddev->bitmap_info.daemon_sleep = 0; 5762 mddev->bitmap_info.max_write_behind = 0; 5763 mddev->bitmap_info.nodes = 0; 5764 } 5765 5766 static void __md_stop_writes(struct mddev *mddev) 5767 { 5768 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5769 flush_workqueue(md_misc_wq); 5770 if (mddev->sync_thread) { 5771 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5772 md_reap_sync_thread(mddev); 5773 } 5774 5775 del_timer_sync(&mddev->safemode_timer); 5776 5777 if (mddev->pers && mddev->pers->quiesce) { 5778 mddev->pers->quiesce(mddev, 1); 5779 mddev->pers->quiesce(mddev, 0); 5780 } 5781 bitmap_flush(mddev); 5782 5783 if (mddev->ro == 0 && 5784 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5785 mddev->sb_flags)) { 5786 /* mark array as shutdown cleanly */ 5787 if (!mddev_is_clustered(mddev)) 5788 mddev->in_sync = 1; 5789 md_update_sb(mddev, 1); 5790 } 5791 } 5792 5793 void md_stop_writes(struct mddev *mddev) 5794 { 5795 mddev_lock_nointr(mddev); 5796 __md_stop_writes(mddev); 5797 mddev_unlock(mddev); 5798 } 5799 EXPORT_SYMBOL_GPL(md_stop_writes); 5800 5801 static void mddev_detach(struct mddev *mddev) 5802 { 5803 bitmap_wait_behind_writes(mddev); 5804 if (mddev->pers && mddev->pers->quiesce) { 5805 mddev->pers->quiesce(mddev, 1); 5806 mddev->pers->quiesce(mddev, 0); 5807 } 5808 md_unregister_thread(&mddev->thread); 5809 if (mddev->queue) 5810 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5811 } 5812 5813 static void __md_stop(struct mddev *mddev) 5814 { 5815 struct md_personality *pers = mddev->pers; 5816 bitmap_destroy(mddev); 5817 mddev_detach(mddev); 5818 /* Ensure ->event_work is done */ 5819 flush_workqueue(md_misc_wq); 5820 spin_lock(&mddev->lock); 5821 mddev->pers = NULL; 5822 spin_unlock(&mddev->lock); 5823 pers->free(mddev, mddev->private); 5824 mddev->private = NULL; 5825 if (pers->sync_request && mddev->to_remove == NULL) 5826 mddev->to_remove = &md_redundancy_group; 5827 module_put(pers->owner); 5828 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5829 } 5830 5831 void md_stop(struct mddev *mddev) 5832 { 5833 /* stop the array and free an attached data structures. 5834 * This is called from dm-raid 5835 */ 5836 __md_stop(mddev); 5837 if (mddev->bio_set) 5838 bioset_free(mddev->bio_set); 5839 } 5840 5841 EXPORT_SYMBOL_GPL(md_stop); 5842 5843 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5844 { 5845 int err = 0; 5846 int did_freeze = 0; 5847 5848 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5849 did_freeze = 1; 5850 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5851 md_wakeup_thread(mddev->thread); 5852 } 5853 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5854 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5855 if (mddev->sync_thread) 5856 /* Thread might be blocked waiting for metadata update 5857 * which will now never happen */ 5858 wake_up_process(mddev->sync_thread->tsk); 5859 5860 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 5861 return -EBUSY; 5862 mddev_unlock(mddev); 5863 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5864 &mddev->recovery)); 5865 wait_event(mddev->sb_wait, 5866 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 5867 mddev_lock_nointr(mddev); 5868 5869 mutex_lock(&mddev->open_mutex); 5870 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5871 mddev->sync_thread || 5872 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5873 pr_warn("md: %s still in use.\n",mdname(mddev)); 5874 if (did_freeze) { 5875 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5876 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5877 md_wakeup_thread(mddev->thread); 5878 } 5879 err = -EBUSY; 5880 goto out; 5881 } 5882 if (mddev->pers) { 5883 __md_stop_writes(mddev); 5884 5885 err = -ENXIO; 5886 if (mddev->ro==1) 5887 goto out; 5888 mddev->ro = 1; 5889 set_disk_ro(mddev->gendisk, 1); 5890 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5891 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5892 md_wakeup_thread(mddev->thread); 5893 sysfs_notify_dirent_safe(mddev->sysfs_state); 5894 err = 0; 5895 } 5896 out: 5897 mutex_unlock(&mddev->open_mutex); 5898 return err; 5899 } 5900 5901 /* mode: 5902 * 0 - completely stop and dis-assemble array 5903 * 2 - stop but do not disassemble array 5904 */ 5905 static int do_md_stop(struct mddev *mddev, int mode, 5906 struct block_device *bdev) 5907 { 5908 struct gendisk *disk = mddev->gendisk; 5909 struct md_rdev *rdev; 5910 int did_freeze = 0; 5911 5912 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5913 did_freeze = 1; 5914 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5915 md_wakeup_thread(mddev->thread); 5916 } 5917 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5918 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5919 if (mddev->sync_thread) 5920 /* Thread might be blocked waiting for metadata update 5921 * which will now never happen */ 5922 wake_up_process(mddev->sync_thread->tsk); 5923 5924 mddev_unlock(mddev); 5925 wait_event(resync_wait, (mddev->sync_thread == NULL && 5926 !test_bit(MD_RECOVERY_RUNNING, 5927 &mddev->recovery))); 5928 mddev_lock_nointr(mddev); 5929 5930 mutex_lock(&mddev->open_mutex); 5931 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5932 mddev->sysfs_active || 5933 mddev->sync_thread || 5934 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5935 pr_warn("md: %s still in use.\n",mdname(mddev)); 5936 mutex_unlock(&mddev->open_mutex); 5937 if (did_freeze) { 5938 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5939 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5940 md_wakeup_thread(mddev->thread); 5941 } 5942 return -EBUSY; 5943 } 5944 if (mddev->pers) { 5945 if (mddev->ro) 5946 set_disk_ro(disk, 0); 5947 5948 __md_stop_writes(mddev); 5949 __md_stop(mddev); 5950 mddev->queue->backing_dev_info->congested_fn = NULL; 5951 5952 /* tell userspace to handle 'inactive' */ 5953 sysfs_notify_dirent_safe(mddev->sysfs_state); 5954 5955 rdev_for_each(rdev, mddev) 5956 if (rdev->raid_disk >= 0) 5957 sysfs_unlink_rdev(mddev, rdev); 5958 5959 set_capacity(disk, 0); 5960 mutex_unlock(&mddev->open_mutex); 5961 mddev->changed = 1; 5962 revalidate_disk(disk); 5963 5964 if (mddev->ro) 5965 mddev->ro = 0; 5966 } else 5967 mutex_unlock(&mddev->open_mutex); 5968 /* 5969 * Free resources if final stop 5970 */ 5971 if (mode == 0) { 5972 pr_info("md: %s stopped.\n", mdname(mddev)); 5973 5974 if (mddev->bitmap_info.file) { 5975 struct file *f = mddev->bitmap_info.file; 5976 spin_lock(&mddev->lock); 5977 mddev->bitmap_info.file = NULL; 5978 spin_unlock(&mddev->lock); 5979 fput(f); 5980 } 5981 mddev->bitmap_info.offset = 0; 5982 5983 export_array(mddev); 5984 5985 md_clean(mddev); 5986 if (mddev->hold_active == UNTIL_STOP) 5987 mddev->hold_active = 0; 5988 } 5989 md_new_event(mddev); 5990 sysfs_notify_dirent_safe(mddev->sysfs_state); 5991 return 0; 5992 } 5993 5994 #ifndef MODULE 5995 static void autorun_array(struct mddev *mddev) 5996 { 5997 struct md_rdev *rdev; 5998 int err; 5999 6000 if (list_empty(&mddev->disks)) 6001 return; 6002 6003 pr_info("md: running: "); 6004 6005 rdev_for_each(rdev, mddev) { 6006 char b[BDEVNAME_SIZE]; 6007 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6008 } 6009 pr_cont("\n"); 6010 6011 err = do_md_run(mddev); 6012 if (err) { 6013 pr_warn("md: do_md_run() returned %d\n", err); 6014 do_md_stop(mddev, 0, NULL); 6015 } 6016 } 6017 6018 /* 6019 * lets try to run arrays based on all disks that have arrived 6020 * until now. (those are in pending_raid_disks) 6021 * 6022 * the method: pick the first pending disk, collect all disks with 6023 * the same UUID, remove all from the pending list and put them into 6024 * the 'same_array' list. Then order this list based on superblock 6025 * update time (freshest comes first), kick out 'old' disks and 6026 * compare superblocks. If everything's fine then run it. 6027 * 6028 * If "unit" is allocated, then bump its reference count 6029 */ 6030 static void autorun_devices(int part) 6031 { 6032 struct md_rdev *rdev0, *rdev, *tmp; 6033 struct mddev *mddev; 6034 char b[BDEVNAME_SIZE]; 6035 6036 pr_info("md: autorun ...\n"); 6037 while (!list_empty(&pending_raid_disks)) { 6038 int unit; 6039 dev_t dev; 6040 LIST_HEAD(candidates); 6041 rdev0 = list_entry(pending_raid_disks.next, 6042 struct md_rdev, same_set); 6043 6044 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6045 INIT_LIST_HEAD(&candidates); 6046 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6047 if (super_90_load(rdev, rdev0, 0) >= 0) { 6048 pr_debug("md: adding %s ...\n", 6049 bdevname(rdev->bdev,b)); 6050 list_move(&rdev->same_set, &candidates); 6051 } 6052 /* 6053 * now we have a set of devices, with all of them having 6054 * mostly sane superblocks. It's time to allocate the 6055 * mddev. 6056 */ 6057 if (part) { 6058 dev = MKDEV(mdp_major, 6059 rdev0->preferred_minor << MdpMinorShift); 6060 unit = MINOR(dev) >> MdpMinorShift; 6061 } else { 6062 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6063 unit = MINOR(dev); 6064 } 6065 if (rdev0->preferred_minor != unit) { 6066 pr_warn("md: unit number in %s is bad: %d\n", 6067 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6068 break; 6069 } 6070 6071 md_probe(dev, NULL, NULL); 6072 mddev = mddev_find(dev); 6073 if (!mddev || !mddev->gendisk) { 6074 if (mddev) 6075 mddev_put(mddev); 6076 break; 6077 } 6078 if (mddev_lock(mddev)) 6079 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6080 else if (mddev->raid_disks || mddev->major_version 6081 || !list_empty(&mddev->disks)) { 6082 pr_warn("md: %s already running, cannot run %s\n", 6083 mdname(mddev), bdevname(rdev0->bdev,b)); 6084 mddev_unlock(mddev); 6085 } else { 6086 pr_debug("md: created %s\n", mdname(mddev)); 6087 mddev->persistent = 1; 6088 rdev_for_each_list(rdev, tmp, &candidates) { 6089 list_del_init(&rdev->same_set); 6090 if (bind_rdev_to_array(rdev, mddev)) 6091 export_rdev(rdev); 6092 } 6093 autorun_array(mddev); 6094 mddev_unlock(mddev); 6095 } 6096 /* on success, candidates will be empty, on error 6097 * it won't... 6098 */ 6099 rdev_for_each_list(rdev, tmp, &candidates) { 6100 list_del_init(&rdev->same_set); 6101 export_rdev(rdev); 6102 } 6103 mddev_put(mddev); 6104 } 6105 pr_info("md: ... autorun DONE.\n"); 6106 } 6107 #endif /* !MODULE */ 6108 6109 static int get_version(void __user *arg) 6110 { 6111 mdu_version_t ver; 6112 6113 ver.major = MD_MAJOR_VERSION; 6114 ver.minor = MD_MINOR_VERSION; 6115 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6116 6117 if (copy_to_user(arg, &ver, sizeof(ver))) 6118 return -EFAULT; 6119 6120 return 0; 6121 } 6122 6123 static int get_array_info(struct mddev *mddev, void __user *arg) 6124 { 6125 mdu_array_info_t info; 6126 int nr,working,insync,failed,spare; 6127 struct md_rdev *rdev; 6128 6129 nr = working = insync = failed = spare = 0; 6130 rcu_read_lock(); 6131 rdev_for_each_rcu(rdev, mddev) { 6132 nr++; 6133 if (test_bit(Faulty, &rdev->flags)) 6134 failed++; 6135 else { 6136 working++; 6137 if (test_bit(In_sync, &rdev->flags)) 6138 insync++; 6139 else if (test_bit(Journal, &rdev->flags)) 6140 /* TODO: add journal count to md_u.h */ 6141 ; 6142 else 6143 spare++; 6144 } 6145 } 6146 rcu_read_unlock(); 6147 6148 info.major_version = mddev->major_version; 6149 info.minor_version = mddev->minor_version; 6150 info.patch_version = MD_PATCHLEVEL_VERSION; 6151 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6152 info.level = mddev->level; 6153 info.size = mddev->dev_sectors / 2; 6154 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6155 info.size = -1; 6156 info.nr_disks = nr; 6157 info.raid_disks = mddev->raid_disks; 6158 info.md_minor = mddev->md_minor; 6159 info.not_persistent= !mddev->persistent; 6160 6161 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6162 info.state = 0; 6163 if (mddev->in_sync) 6164 info.state = (1<<MD_SB_CLEAN); 6165 if (mddev->bitmap && mddev->bitmap_info.offset) 6166 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6167 if (mddev_is_clustered(mddev)) 6168 info.state |= (1<<MD_SB_CLUSTERED); 6169 info.active_disks = insync; 6170 info.working_disks = working; 6171 info.failed_disks = failed; 6172 info.spare_disks = spare; 6173 6174 info.layout = mddev->layout; 6175 info.chunk_size = mddev->chunk_sectors << 9; 6176 6177 if (copy_to_user(arg, &info, sizeof(info))) 6178 return -EFAULT; 6179 6180 return 0; 6181 } 6182 6183 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6184 { 6185 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6186 char *ptr; 6187 int err; 6188 6189 file = kzalloc(sizeof(*file), GFP_NOIO); 6190 if (!file) 6191 return -ENOMEM; 6192 6193 err = 0; 6194 spin_lock(&mddev->lock); 6195 /* bitmap enabled */ 6196 if (mddev->bitmap_info.file) { 6197 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6198 sizeof(file->pathname)); 6199 if (IS_ERR(ptr)) 6200 err = PTR_ERR(ptr); 6201 else 6202 memmove(file->pathname, ptr, 6203 sizeof(file->pathname)-(ptr-file->pathname)); 6204 } 6205 spin_unlock(&mddev->lock); 6206 6207 if (err == 0 && 6208 copy_to_user(arg, file, sizeof(*file))) 6209 err = -EFAULT; 6210 6211 kfree(file); 6212 return err; 6213 } 6214 6215 static int get_disk_info(struct mddev *mddev, void __user * arg) 6216 { 6217 mdu_disk_info_t info; 6218 struct md_rdev *rdev; 6219 6220 if (copy_from_user(&info, arg, sizeof(info))) 6221 return -EFAULT; 6222 6223 rcu_read_lock(); 6224 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6225 if (rdev) { 6226 info.major = MAJOR(rdev->bdev->bd_dev); 6227 info.minor = MINOR(rdev->bdev->bd_dev); 6228 info.raid_disk = rdev->raid_disk; 6229 info.state = 0; 6230 if (test_bit(Faulty, &rdev->flags)) 6231 info.state |= (1<<MD_DISK_FAULTY); 6232 else if (test_bit(In_sync, &rdev->flags)) { 6233 info.state |= (1<<MD_DISK_ACTIVE); 6234 info.state |= (1<<MD_DISK_SYNC); 6235 } 6236 if (test_bit(Journal, &rdev->flags)) 6237 info.state |= (1<<MD_DISK_JOURNAL); 6238 if (test_bit(WriteMostly, &rdev->flags)) 6239 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6240 if (test_bit(FailFast, &rdev->flags)) 6241 info.state |= (1<<MD_DISK_FAILFAST); 6242 } else { 6243 info.major = info.minor = 0; 6244 info.raid_disk = -1; 6245 info.state = (1<<MD_DISK_REMOVED); 6246 } 6247 rcu_read_unlock(); 6248 6249 if (copy_to_user(arg, &info, sizeof(info))) 6250 return -EFAULT; 6251 6252 return 0; 6253 } 6254 6255 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6256 { 6257 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6258 struct md_rdev *rdev; 6259 dev_t dev = MKDEV(info->major,info->minor); 6260 6261 if (mddev_is_clustered(mddev) && 6262 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6263 pr_warn("%s: Cannot add to clustered mddev.\n", 6264 mdname(mddev)); 6265 return -EINVAL; 6266 } 6267 6268 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6269 return -EOVERFLOW; 6270 6271 if (!mddev->raid_disks) { 6272 int err; 6273 /* expecting a device which has a superblock */ 6274 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6275 if (IS_ERR(rdev)) { 6276 pr_warn("md: md_import_device returned %ld\n", 6277 PTR_ERR(rdev)); 6278 return PTR_ERR(rdev); 6279 } 6280 if (!list_empty(&mddev->disks)) { 6281 struct md_rdev *rdev0 6282 = list_entry(mddev->disks.next, 6283 struct md_rdev, same_set); 6284 err = super_types[mddev->major_version] 6285 .load_super(rdev, rdev0, mddev->minor_version); 6286 if (err < 0) { 6287 pr_warn("md: %s has different UUID to %s\n", 6288 bdevname(rdev->bdev,b), 6289 bdevname(rdev0->bdev,b2)); 6290 export_rdev(rdev); 6291 return -EINVAL; 6292 } 6293 } 6294 err = bind_rdev_to_array(rdev, mddev); 6295 if (err) 6296 export_rdev(rdev); 6297 return err; 6298 } 6299 6300 /* 6301 * add_new_disk can be used once the array is assembled 6302 * to add "hot spares". They must already have a superblock 6303 * written 6304 */ 6305 if (mddev->pers) { 6306 int err; 6307 if (!mddev->pers->hot_add_disk) { 6308 pr_warn("%s: personality does not support diskops!\n", 6309 mdname(mddev)); 6310 return -EINVAL; 6311 } 6312 if (mddev->persistent) 6313 rdev = md_import_device(dev, mddev->major_version, 6314 mddev->minor_version); 6315 else 6316 rdev = md_import_device(dev, -1, -1); 6317 if (IS_ERR(rdev)) { 6318 pr_warn("md: md_import_device returned %ld\n", 6319 PTR_ERR(rdev)); 6320 return PTR_ERR(rdev); 6321 } 6322 /* set saved_raid_disk if appropriate */ 6323 if (!mddev->persistent) { 6324 if (info->state & (1<<MD_DISK_SYNC) && 6325 info->raid_disk < mddev->raid_disks) { 6326 rdev->raid_disk = info->raid_disk; 6327 set_bit(In_sync, &rdev->flags); 6328 clear_bit(Bitmap_sync, &rdev->flags); 6329 } else 6330 rdev->raid_disk = -1; 6331 rdev->saved_raid_disk = rdev->raid_disk; 6332 } else 6333 super_types[mddev->major_version]. 6334 validate_super(mddev, rdev); 6335 if ((info->state & (1<<MD_DISK_SYNC)) && 6336 rdev->raid_disk != info->raid_disk) { 6337 /* This was a hot-add request, but events doesn't 6338 * match, so reject it. 6339 */ 6340 export_rdev(rdev); 6341 return -EINVAL; 6342 } 6343 6344 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6345 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6346 set_bit(WriteMostly, &rdev->flags); 6347 else 6348 clear_bit(WriteMostly, &rdev->flags); 6349 if (info->state & (1<<MD_DISK_FAILFAST)) 6350 set_bit(FailFast, &rdev->flags); 6351 else 6352 clear_bit(FailFast, &rdev->flags); 6353 6354 if (info->state & (1<<MD_DISK_JOURNAL)) { 6355 struct md_rdev *rdev2; 6356 bool has_journal = false; 6357 6358 /* make sure no existing journal disk */ 6359 rdev_for_each(rdev2, mddev) { 6360 if (test_bit(Journal, &rdev2->flags)) { 6361 has_journal = true; 6362 break; 6363 } 6364 } 6365 if (has_journal) { 6366 export_rdev(rdev); 6367 return -EBUSY; 6368 } 6369 set_bit(Journal, &rdev->flags); 6370 } 6371 /* 6372 * check whether the device shows up in other nodes 6373 */ 6374 if (mddev_is_clustered(mddev)) { 6375 if (info->state & (1 << MD_DISK_CANDIDATE)) 6376 set_bit(Candidate, &rdev->flags); 6377 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6378 /* --add initiated by this node */ 6379 err = md_cluster_ops->add_new_disk(mddev, rdev); 6380 if (err) { 6381 export_rdev(rdev); 6382 return err; 6383 } 6384 } 6385 } 6386 6387 rdev->raid_disk = -1; 6388 err = bind_rdev_to_array(rdev, mddev); 6389 6390 if (err) 6391 export_rdev(rdev); 6392 6393 if (mddev_is_clustered(mddev)) { 6394 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6395 if (!err) { 6396 err = md_cluster_ops->new_disk_ack(mddev, 6397 err == 0); 6398 if (err) 6399 md_kick_rdev_from_array(rdev); 6400 } 6401 } else { 6402 if (err) 6403 md_cluster_ops->add_new_disk_cancel(mddev); 6404 else 6405 err = add_bound_rdev(rdev); 6406 } 6407 6408 } else if (!err) 6409 err = add_bound_rdev(rdev); 6410 6411 return err; 6412 } 6413 6414 /* otherwise, add_new_disk is only allowed 6415 * for major_version==0 superblocks 6416 */ 6417 if (mddev->major_version != 0) { 6418 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6419 return -EINVAL; 6420 } 6421 6422 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6423 int err; 6424 rdev = md_import_device(dev, -1, 0); 6425 if (IS_ERR(rdev)) { 6426 pr_warn("md: error, md_import_device() returned %ld\n", 6427 PTR_ERR(rdev)); 6428 return PTR_ERR(rdev); 6429 } 6430 rdev->desc_nr = info->number; 6431 if (info->raid_disk < mddev->raid_disks) 6432 rdev->raid_disk = info->raid_disk; 6433 else 6434 rdev->raid_disk = -1; 6435 6436 if (rdev->raid_disk < mddev->raid_disks) 6437 if (info->state & (1<<MD_DISK_SYNC)) 6438 set_bit(In_sync, &rdev->flags); 6439 6440 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6441 set_bit(WriteMostly, &rdev->flags); 6442 if (info->state & (1<<MD_DISK_FAILFAST)) 6443 set_bit(FailFast, &rdev->flags); 6444 6445 if (!mddev->persistent) { 6446 pr_debug("md: nonpersistent superblock ...\n"); 6447 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6448 } else 6449 rdev->sb_start = calc_dev_sboffset(rdev); 6450 rdev->sectors = rdev->sb_start; 6451 6452 err = bind_rdev_to_array(rdev, mddev); 6453 if (err) { 6454 export_rdev(rdev); 6455 return err; 6456 } 6457 } 6458 6459 return 0; 6460 } 6461 6462 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6463 { 6464 char b[BDEVNAME_SIZE]; 6465 struct md_rdev *rdev; 6466 6467 rdev = find_rdev(mddev, dev); 6468 if (!rdev) 6469 return -ENXIO; 6470 6471 if (rdev->raid_disk < 0) 6472 goto kick_rdev; 6473 6474 clear_bit(Blocked, &rdev->flags); 6475 remove_and_add_spares(mddev, rdev); 6476 6477 if (rdev->raid_disk >= 0) 6478 goto busy; 6479 6480 kick_rdev: 6481 if (mddev_is_clustered(mddev)) 6482 md_cluster_ops->remove_disk(mddev, rdev); 6483 6484 md_kick_rdev_from_array(rdev); 6485 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6486 if (mddev->thread) 6487 md_wakeup_thread(mddev->thread); 6488 else 6489 md_update_sb(mddev, 1); 6490 md_new_event(mddev); 6491 6492 return 0; 6493 busy: 6494 pr_debug("md: cannot remove active disk %s from %s ...\n", 6495 bdevname(rdev->bdev,b), mdname(mddev)); 6496 return -EBUSY; 6497 } 6498 6499 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6500 { 6501 char b[BDEVNAME_SIZE]; 6502 int err; 6503 struct md_rdev *rdev; 6504 6505 if (!mddev->pers) 6506 return -ENODEV; 6507 6508 if (mddev->major_version != 0) { 6509 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6510 mdname(mddev)); 6511 return -EINVAL; 6512 } 6513 if (!mddev->pers->hot_add_disk) { 6514 pr_warn("%s: personality does not support diskops!\n", 6515 mdname(mddev)); 6516 return -EINVAL; 6517 } 6518 6519 rdev = md_import_device(dev, -1, 0); 6520 if (IS_ERR(rdev)) { 6521 pr_warn("md: error, md_import_device() returned %ld\n", 6522 PTR_ERR(rdev)); 6523 return -EINVAL; 6524 } 6525 6526 if (mddev->persistent) 6527 rdev->sb_start = calc_dev_sboffset(rdev); 6528 else 6529 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6530 6531 rdev->sectors = rdev->sb_start; 6532 6533 if (test_bit(Faulty, &rdev->flags)) { 6534 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6535 bdevname(rdev->bdev,b), mdname(mddev)); 6536 err = -EINVAL; 6537 goto abort_export; 6538 } 6539 6540 clear_bit(In_sync, &rdev->flags); 6541 rdev->desc_nr = -1; 6542 rdev->saved_raid_disk = -1; 6543 err = bind_rdev_to_array(rdev, mddev); 6544 if (err) 6545 goto abort_export; 6546 6547 /* 6548 * The rest should better be atomic, we can have disk failures 6549 * noticed in interrupt contexts ... 6550 */ 6551 6552 rdev->raid_disk = -1; 6553 6554 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6555 if (!mddev->thread) 6556 md_update_sb(mddev, 1); 6557 /* 6558 * Kick recovery, maybe this spare has to be added to the 6559 * array immediately. 6560 */ 6561 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6562 md_wakeup_thread(mddev->thread); 6563 md_new_event(mddev); 6564 return 0; 6565 6566 abort_export: 6567 export_rdev(rdev); 6568 return err; 6569 } 6570 6571 static int set_bitmap_file(struct mddev *mddev, int fd) 6572 { 6573 int err = 0; 6574 6575 if (mddev->pers) { 6576 if (!mddev->pers->quiesce || !mddev->thread) 6577 return -EBUSY; 6578 if (mddev->recovery || mddev->sync_thread) 6579 return -EBUSY; 6580 /* we should be able to change the bitmap.. */ 6581 } 6582 6583 if (fd >= 0) { 6584 struct inode *inode; 6585 struct file *f; 6586 6587 if (mddev->bitmap || mddev->bitmap_info.file) 6588 return -EEXIST; /* cannot add when bitmap is present */ 6589 f = fget(fd); 6590 6591 if (f == NULL) { 6592 pr_warn("%s: error: failed to get bitmap file\n", 6593 mdname(mddev)); 6594 return -EBADF; 6595 } 6596 6597 inode = f->f_mapping->host; 6598 if (!S_ISREG(inode->i_mode)) { 6599 pr_warn("%s: error: bitmap file must be a regular file\n", 6600 mdname(mddev)); 6601 err = -EBADF; 6602 } else if (!(f->f_mode & FMODE_WRITE)) { 6603 pr_warn("%s: error: bitmap file must open for write\n", 6604 mdname(mddev)); 6605 err = -EBADF; 6606 } else if (atomic_read(&inode->i_writecount) != 1) { 6607 pr_warn("%s: error: bitmap file is already in use\n", 6608 mdname(mddev)); 6609 err = -EBUSY; 6610 } 6611 if (err) { 6612 fput(f); 6613 return err; 6614 } 6615 mddev->bitmap_info.file = f; 6616 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6617 } else if (mddev->bitmap == NULL) 6618 return -ENOENT; /* cannot remove what isn't there */ 6619 err = 0; 6620 if (mddev->pers) { 6621 mddev->pers->quiesce(mddev, 1); 6622 if (fd >= 0) { 6623 struct bitmap *bitmap; 6624 6625 bitmap = bitmap_create(mddev, -1); 6626 if (!IS_ERR(bitmap)) { 6627 mddev->bitmap = bitmap; 6628 err = bitmap_load(mddev); 6629 } else 6630 err = PTR_ERR(bitmap); 6631 } 6632 if (fd < 0 || err) { 6633 bitmap_destroy(mddev); 6634 fd = -1; /* make sure to put the file */ 6635 } 6636 mddev->pers->quiesce(mddev, 0); 6637 } 6638 if (fd < 0) { 6639 struct file *f = mddev->bitmap_info.file; 6640 if (f) { 6641 spin_lock(&mddev->lock); 6642 mddev->bitmap_info.file = NULL; 6643 spin_unlock(&mddev->lock); 6644 fput(f); 6645 } 6646 } 6647 6648 return err; 6649 } 6650 6651 /* 6652 * set_array_info is used two different ways 6653 * The original usage is when creating a new array. 6654 * In this usage, raid_disks is > 0 and it together with 6655 * level, size, not_persistent,layout,chunksize determine the 6656 * shape of the array. 6657 * This will always create an array with a type-0.90.0 superblock. 6658 * The newer usage is when assembling an array. 6659 * In this case raid_disks will be 0, and the major_version field is 6660 * use to determine which style super-blocks are to be found on the devices. 6661 * The minor and patch _version numbers are also kept incase the 6662 * super_block handler wishes to interpret them. 6663 */ 6664 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6665 { 6666 6667 if (info->raid_disks == 0) { 6668 /* just setting version number for superblock loading */ 6669 if (info->major_version < 0 || 6670 info->major_version >= ARRAY_SIZE(super_types) || 6671 super_types[info->major_version].name == NULL) { 6672 /* maybe try to auto-load a module? */ 6673 pr_warn("md: superblock version %d not known\n", 6674 info->major_version); 6675 return -EINVAL; 6676 } 6677 mddev->major_version = info->major_version; 6678 mddev->minor_version = info->minor_version; 6679 mddev->patch_version = info->patch_version; 6680 mddev->persistent = !info->not_persistent; 6681 /* ensure mddev_put doesn't delete this now that there 6682 * is some minimal configuration. 6683 */ 6684 mddev->ctime = ktime_get_real_seconds(); 6685 return 0; 6686 } 6687 mddev->major_version = MD_MAJOR_VERSION; 6688 mddev->minor_version = MD_MINOR_VERSION; 6689 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6690 mddev->ctime = ktime_get_real_seconds(); 6691 6692 mddev->level = info->level; 6693 mddev->clevel[0] = 0; 6694 mddev->dev_sectors = 2 * (sector_t)info->size; 6695 mddev->raid_disks = info->raid_disks; 6696 /* don't set md_minor, it is determined by which /dev/md* was 6697 * openned 6698 */ 6699 if (info->state & (1<<MD_SB_CLEAN)) 6700 mddev->recovery_cp = MaxSector; 6701 else 6702 mddev->recovery_cp = 0; 6703 mddev->persistent = ! info->not_persistent; 6704 mddev->external = 0; 6705 6706 mddev->layout = info->layout; 6707 mddev->chunk_sectors = info->chunk_size >> 9; 6708 6709 if (mddev->persistent) { 6710 mddev->max_disks = MD_SB_DISKS; 6711 mddev->flags = 0; 6712 mddev->sb_flags = 0; 6713 } 6714 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6715 6716 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6717 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6718 mddev->bitmap_info.offset = 0; 6719 6720 mddev->reshape_position = MaxSector; 6721 6722 /* 6723 * Generate a 128 bit UUID 6724 */ 6725 get_random_bytes(mddev->uuid, 16); 6726 6727 mddev->new_level = mddev->level; 6728 mddev->new_chunk_sectors = mddev->chunk_sectors; 6729 mddev->new_layout = mddev->layout; 6730 mddev->delta_disks = 0; 6731 mddev->reshape_backwards = 0; 6732 6733 return 0; 6734 } 6735 6736 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6737 { 6738 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6739 6740 if (mddev->external_size) 6741 return; 6742 6743 mddev->array_sectors = array_sectors; 6744 } 6745 EXPORT_SYMBOL(md_set_array_sectors); 6746 6747 static int update_size(struct mddev *mddev, sector_t num_sectors) 6748 { 6749 struct md_rdev *rdev; 6750 int rv; 6751 int fit = (num_sectors == 0); 6752 sector_t old_dev_sectors = mddev->dev_sectors; 6753 6754 if (mddev->pers->resize == NULL) 6755 return -EINVAL; 6756 /* The "num_sectors" is the number of sectors of each device that 6757 * is used. This can only make sense for arrays with redundancy. 6758 * linear and raid0 always use whatever space is available. We can only 6759 * consider changing this number if no resync or reconstruction is 6760 * happening, and if the new size is acceptable. It must fit before the 6761 * sb_start or, if that is <data_offset, it must fit before the size 6762 * of each device. If num_sectors is zero, we find the largest size 6763 * that fits. 6764 */ 6765 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6766 mddev->sync_thread) 6767 return -EBUSY; 6768 if (mddev->ro) 6769 return -EROFS; 6770 6771 rdev_for_each(rdev, mddev) { 6772 sector_t avail = rdev->sectors; 6773 6774 if (fit && (num_sectors == 0 || num_sectors > avail)) 6775 num_sectors = avail; 6776 if (avail < num_sectors) 6777 return -ENOSPC; 6778 } 6779 rv = mddev->pers->resize(mddev, num_sectors); 6780 if (!rv) { 6781 if (mddev_is_clustered(mddev)) 6782 md_cluster_ops->update_size(mddev, old_dev_sectors); 6783 else if (mddev->queue) { 6784 set_capacity(mddev->gendisk, mddev->array_sectors); 6785 revalidate_disk(mddev->gendisk); 6786 } 6787 } 6788 return rv; 6789 } 6790 6791 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6792 { 6793 int rv; 6794 struct md_rdev *rdev; 6795 /* change the number of raid disks */ 6796 if (mddev->pers->check_reshape == NULL) 6797 return -EINVAL; 6798 if (mddev->ro) 6799 return -EROFS; 6800 if (raid_disks <= 0 || 6801 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6802 return -EINVAL; 6803 if (mddev->sync_thread || 6804 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6805 mddev->reshape_position != MaxSector) 6806 return -EBUSY; 6807 6808 rdev_for_each(rdev, mddev) { 6809 if (mddev->raid_disks < raid_disks && 6810 rdev->data_offset < rdev->new_data_offset) 6811 return -EINVAL; 6812 if (mddev->raid_disks > raid_disks && 6813 rdev->data_offset > rdev->new_data_offset) 6814 return -EINVAL; 6815 } 6816 6817 mddev->delta_disks = raid_disks - mddev->raid_disks; 6818 if (mddev->delta_disks < 0) 6819 mddev->reshape_backwards = 1; 6820 else if (mddev->delta_disks > 0) 6821 mddev->reshape_backwards = 0; 6822 6823 rv = mddev->pers->check_reshape(mddev); 6824 if (rv < 0) { 6825 mddev->delta_disks = 0; 6826 mddev->reshape_backwards = 0; 6827 } 6828 return rv; 6829 } 6830 6831 /* 6832 * update_array_info is used to change the configuration of an 6833 * on-line array. 6834 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6835 * fields in the info are checked against the array. 6836 * Any differences that cannot be handled will cause an error. 6837 * Normally, only one change can be managed at a time. 6838 */ 6839 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6840 { 6841 int rv = 0; 6842 int cnt = 0; 6843 int state = 0; 6844 6845 /* calculate expected state,ignoring low bits */ 6846 if (mddev->bitmap && mddev->bitmap_info.offset) 6847 state |= (1 << MD_SB_BITMAP_PRESENT); 6848 6849 if (mddev->major_version != info->major_version || 6850 mddev->minor_version != info->minor_version || 6851 /* mddev->patch_version != info->patch_version || */ 6852 mddev->ctime != info->ctime || 6853 mddev->level != info->level || 6854 /* mddev->layout != info->layout || */ 6855 mddev->persistent != !info->not_persistent || 6856 mddev->chunk_sectors != info->chunk_size >> 9 || 6857 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6858 ((state^info->state) & 0xfffffe00) 6859 ) 6860 return -EINVAL; 6861 /* Check there is only one change */ 6862 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6863 cnt++; 6864 if (mddev->raid_disks != info->raid_disks) 6865 cnt++; 6866 if (mddev->layout != info->layout) 6867 cnt++; 6868 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6869 cnt++; 6870 if (cnt == 0) 6871 return 0; 6872 if (cnt > 1) 6873 return -EINVAL; 6874 6875 if (mddev->layout != info->layout) { 6876 /* Change layout 6877 * we don't need to do anything at the md level, the 6878 * personality will take care of it all. 6879 */ 6880 if (mddev->pers->check_reshape == NULL) 6881 return -EINVAL; 6882 else { 6883 mddev->new_layout = info->layout; 6884 rv = mddev->pers->check_reshape(mddev); 6885 if (rv) 6886 mddev->new_layout = mddev->layout; 6887 return rv; 6888 } 6889 } 6890 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6891 rv = update_size(mddev, (sector_t)info->size * 2); 6892 6893 if (mddev->raid_disks != info->raid_disks) 6894 rv = update_raid_disks(mddev, info->raid_disks); 6895 6896 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6897 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6898 rv = -EINVAL; 6899 goto err; 6900 } 6901 if (mddev->recovery || mddev->sync_thread) { 6902 rv = -EBUSY; 6903 goto err; 6904 } 6905 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6906 struct bitmap *bitmap; 6907 /* add the bitmap */ 6908 if (mddev->bitmap) { 6909 rv = -EEXIST; 6910 goto err; 6911 } 6912 if (mddev->bitmap_info.default_offset == 0) { 6913 rv = -EINVAL; 6914 goto err; 6915 } 6916 mddev->bitmap_info.offset = 6917 mddev->bitmap_info.default_offset; 6918 mddev->bitmap_info.space = 6919 mddev->bitmap_info.default_space; 6920 mddev->pers->quiesce(mddev, 1); 6921 bitmap = bitmap_create(mddev, -1); 6922 if (!IS_ERR(bitmap)) { 6923 mddev->bitmap = bitmap; 6924 rv = bitmap_load(mddev); 6925 } else 6926 rv = PTR_ERR(bitmap); 6927 if (rv) 6928 bitmap_destroy(mddev); 6929 mddev->pers->quiesce(mddev, 0); 6930 } else { 6931 /* remove the bitmap */ 6932 if (!mddev->bitmap) { 6933 rv = -ENOENT; 6934 goto err; 6935 } 6936 if (mddev->bitmap->storage.file) { 6937 rv = -EINVAL; 6938 goto err; 6939 } 6940 if (mddev->bitmap_info.nodes) { 6941 /* hold PW on all the bitmap lock */ 6942 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 6943 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 6944 rv = -EPERM; 6945 md_cluster_ops->unlock_all_bitmaps(mddev); 6946 goto err; 6947 } 6948 6949 mddev->bitmap_info.nodes = 0; 6950 md_cluster_ops->leave(mddev); 6951 } 6952 mddev->pers->quiesce(mddev, 1); 6953 bitmap_destroy(mddev); 6954 mddev->pers->quiesce(mddev, 0); 6955 mddev->bitmap_info.offset = 0; 6956 } 6957 } 6958 md_update_sb(mddev, 1); 6959 return rv; 6960 err: 6961 return rv; 6962 } 6963 6964 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6965 { 6966 struct md_rdev *rdev; 6967 int err = 0; 6968 6969 if (mddev->pers == NULL) 6970 return -ENODEV; 6971 6972 rcu_read_lock(); 6973 rdev = find_rdev_rcu(mddev, dev); 6974 if (!rdev) 6975 err = -ENODEV; 6976 else { 6977 md_error(mddev, rdev); 6978 if (!test_bit(Faulty, &rdev->flags)) 6979 err = -EBUSY; 6980 } 6981 rcu_read_unlock(); 6982 return err; 6983 } 6984 6985 /* 6986 * We have a problem here : there is no easy way to give a CHS 6987 * virtual geometry. We currently pretend that we have a 2 heads 6988 * 4 sectors (with a BIG number of cylinders...). This drives 6989 * dosfs just mad... ;-) 6990 */ 6991 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6992 { 6993 struct mddev *mddev = bdev->bd_disk->private_data; 6994 6995 geo->heads = 2; 6996 geo->sectors = 4; 6997 geo->cylinders = mddev->array_sectors / 8; 6998 return 0; 6999 } 7000 7001 static inline bool md_ioctl_valid(unsigned int cmd) 7002 { 7003 switch (cmd) { 7004 case ADD_NEW_DISK: 7005 case BLKROSET: 7006 case GET_ARRAY_INFO: 7007 case GET_BITMAP_FILE: 7008 case GET_DISK_INFO: 7009 case HOT_ADD_DISK: 7010 case HOT_REMOVE_DISK: 7011 case RAID_AUTORUN: 7012 case RAID_VERSION: 7013 case RESTART_ARRAY_RW: 7014 case RUN_ARRAY: 7015 case SET_ARRAY_INFO: 7016 case SET_BITMAP_FILE: 7017 case SET_DISK_FAULTY: 7018 case STOP_ARRAY: 7019 case STOP_ARRAY_RO: 7020 case CLUSTERED_DISK_NACK: 7021 return true; 7022 default: 7023 return false; 7024 } 7025 } 7026 7027 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7028 unsigned int cmd, unsigned long arg) 7029 { 7030 int err = 0; 7031 void __user *argp = (void __user *)arg; 7032 struct mddev *mddev = NULL; 7033 int ro; 7034 bool did_set_md_closing = false; 7035 7036 if (!md_ioctl_valid(cmd)) 7037 return -ENOTTY; 7038 7039 switch (cmd) { 7040 case RAID_VERSION: 7041 case GET_ARRAY_INFO: 7042 case GET_DISK_INFO: 7043 break; 7044 default: 7045 if (!capable(CAP_SYS_ADMIN)) 7046 return -EACCES; 7047 } 7048 7049 /* 7050 * Commands dealing with the RAID driver but not any 7051 * particular array: 7052 */ 7053 switch (cmd) { 7054 case RAID_VERSION: 7055 err = get_version(argp); 7056 goto out; 7057 7058 #ifndef MODULE 7059 case RAID_AUTORUN: 7060 err = 0; 7061 autostart_arrays(arg); 7062 goto out; 7063 #endif 7064 default:; 7065 } 7066 7067 /* 7068 * Commands creating/starting a new array: 7069 */ 7070 7071 mddev = bdev->bd_disk->private_data; 7072 7073 if (!mddev) { 7074 BUG(); 7075 goto out; 7076 } 7077 7078 /* Some actions do not requires the mutex */ 7079 switch (cmd) { 7080 case GET_ARRAY_INFO: 7081 if (!mddev->raid_disks && !mddev->external) 7082 err = -ENODEV; 7083 else 7084 err = get_array_info(mddev, argp); 7085 goto out; 7086 7087 case GET_DISK_INFO: 7088 if (!mddev->raid_disks && !mddev->external) 7089 err = -ENODEV; 7090 else 7091 err = get_disk_info(mddev, argp); 7092 goto out; 7093 7094 case SET_DISK_FAULTY: 7095 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7096 goto out; 7097 7098 case GET_BITMAP_FILE: 7099 err = get_bitmap_file(mddev, argp); 7100 goto out; 7101 7102 } 7103 7104 if (cmd == ADD_NEW_DISK) 7105 /* need to ensure md_delayed_delete() has completed */ 7106 flush_workqueue(md_misc_wq); 7107 7108 if (cmd == HOT_REMOVE_DISK) 7109 /* need to ensure recovery thread has run */ 7110 wait_event_interruptible_timeout(mddev->sb_wait, 7111 !test_bit(MD_RECOVERY_NEEDED, 7112 &mddev->recovery), 7113 msecs_to_jiffies(5000)); 7114 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7115 /* Need to flush page cache, and ensure no-one else opens 7116 * and writes 7117 */ 7118 mutex_lock(&mddev->open_mutex); 7119 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7120 mutex_unlock(&mddev->open_mutex); 7121 err = -EBUSY; 7122 goto out; 7123 } 7124 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7125 set_bit(MD_CLOSING, &mddev->flags); 7126 did_set_md_closing = true; 7127 mutex_unlock(&mddev->open_mutex); 7128 sync_blockdev(bdev); 7129 } 7130 err = mddev_lock(mddev); 7131 if (err) { 7132 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7133 err, cmd); 7134 goto out; 7135 } 7136 7137 if (cmd == SET_ARRAY_INFO) { 7138 mdu_array_info_t info; 7139 if (!arg) 7140 memset(&info, 0, sizeof(info)); 7141 else if (copy_from_user(&info, argp, sizeof(info))) { 7142 err = -EFAULT; 7143 goto unlock; 7144 } 7145 if (mddev->pers) { 7146 err = update_array_info(mddev, &info); 7147 if (err) { 7148 pr_warn("md: couldn't update array info. %d\n", err); 7149 goto unlock; 7150 } 7151 goto unlock; 7152 } 7153 if (!list_empty(&mddev->disks)) { 7154 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7155 err = -EBUSY; 7156 goto unlock; 7157 } 7158 if (mddev->raid_disks) { 7159 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7160 err = -EBUSY; 7161 goto unlock; 7162 } 7163 err = set_array_info(mddev, &info); 7164 if (err) { 7165 pr_warn("md: couldn't set array info. %d\n", err); 7166 goto unlock; 7167 } 7168 goto unlock; 7169 } 7170 7171 /* 7172 * Commands querying/configuring an existing array: 7173 */ 7174 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7175 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7176 if ((!mddev->raid_disks && !mddev->external) 7177 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7178 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7179 && cmd != GET_BITMAP_FILE) { 7180 err = -ENODEV; 7181 goto unlock; 7182 } 7183 7184 /* 7185 * Commands even a read-only array can execute: 7186 */ 7187 switch (cmd) { 7188 case RESTART_ARRAY_RW: 7189 err = restart_array(mddev); 7190 goto unlock; 7191 7192 case STOP_ARRAY: 7193 err = do_md_stop(mddev, 0, bdev); 7194 goto unlock; 7195 7196 case STOP_ARRAY_RO: 7197 err = md_set_readonly(mddev, bdev); 7198 goto unlock; 7199 7200 case HOT_REMOVE_DISK: 7201 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7202 goto unlock; 7203 7204 case ADD_NEW_DISK: 7205 /* We can support ADD_NEW_DISK on read-only arrays 7206 * only if we are re-adding a preexisting device. 7207 * So require mddev->pers and MD_DISK_SYNC. 7208 */ 7209 if (mddev->pers) { 7210 mdu_disk_info_t info; 7211 if (copy_from_user(&info, argp, sizeof(info))) 7212 err = -EFAULT; 7213 else if (!(info.state & (1<<MD_DISK_SYNC))) 7214 /* Need to clear read-only for this */ 7215 break; 7216 else 7217 err = add_new_disk(mddev, &info); 7218 goto unlock; 7219 } 7220 break; 7221 7222 case BLKROSET: 7223 if (get_user(ro, (int __user *)(arg))) { 7224 err = -EFAULT; 7225 goto unlock; 7226 } 7227 err = -EINVAL; 7228 7229 /* if the bdev is going readonly the value of mddev->ro 7230 * does not matter, no writes are coming 7231 */ 7232 if (ro) 7233 goto unlock; 7234 7235 /* are we are already prepared for writes? */ 7236 if (mddev->ro != 1) 7237 goto unlock; 7238 7239 /* transitioning to readauto need only happen for 7240 * arrays that call md_write_start 7241 */ 7242 if (mddev->pers) { 7243 err = restart_array(mddev); 7244 if (err == 0) { 7245 mddev->ro = 2; 7246 set_disk_ro(mddev->gendisk, 0); 7247 } 7248 } 7249 goto unlock; 7250 } 7251 7252 /* 7253 * The remaining ioctls are changing the state of the 7254 * superblock, so we do not allow them on read-only arrays. 7255 */ 7256 if (mddev->ro && mddev->pers) { 7257 if (mddev->ro == 2) { 7258 mddev->ro = 0; 7259 sysfs_notify_dirent_safe(mddev->sysfs_state); 7260 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7261 /* mddev_unlock will wake thread */ 7262 /* If a device failed while we were read-only, we 7263 * need to make sure the metadata is updated now. 7264 */ 7265 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7266 mddev_unlock(mddev); 7267 wait_event(mddev->sb_wait, 7268 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7269 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7270 mddev_lock_nointr(mddev); 7271 } 7272 } else { 7273 err = -EROFS; 7274 goto unlock; 7275 } 7276 } 7277 7278 switch (cmd) { 7279 case ADD_NEW_DISK: 7280 { 7281 mdu_disk_info_t info; 7282 if (copy_from_user(&info, argp, sizeof(info))) 7283 err = -EFAULT; 7284 else 7285 err = add_new_disk(mddev, &info); 7286 goto unlock; 7287 } 7288 7289 case CLUSTERED_DISK_NACK: 7290 if (mddev_is_clustered(mddev)) 7291 md_cluster_ops->new_disk_ack(mddev, false); 7292 else 7293 err = -EINVAL; 7294 goto unlock; 7295 7296 case HOT_ADD_DISK: 7297 err = hot_add_disk(mddev, new_decode_dev(arg)); 7298 goto unlock; 7299 7300 case RUN_ARRAY: 7301 err = do_md_run(mddev); 7302 goto unlock; 7303 7304 case SET_BITMAP_FILE: 7305 err = set_bitmap_file(mddev, (int)arg); 7306 goto unlock; 7307 7308 default: 7309 err = -EINVAL; 7310 goto unlock; 7311 } 7312 7313 unlock: 7314 if (mddev->hold_active == UNTIL_IOCTL && 7315 err != -EINVAL) 7316 mddev->hold_active = 0; 7317 mddev_unlock(mddev); 7318 out: 7319 if(did_set_md_closing) 7320 clear_bit(MD_CLOSING, &mddev->flags); 7321 return err; 7322 } 7323 #ifdef CONFIG_COMPAT 7324 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7325 unsigned int cmd, unsigned long arg) 7326 { 7327 switch (cmd) { 7328 case HOT_REMOVE_DISK: 7329 case HOT_ADD_DISK: 7330 case SET_DISK_FAULTY: 7331 case SET_BITMAP_FILE: 7332 /* These take in integer arg, do not convert */ 7333 break; 7334 default: 7335 arg = (unsigned long)compat_ptr(arg); 7336 break; 7337 } 7338 7339 return md_ioctl(bdev, mode, cmd, arg); 7340 } 7341 #endif /* CONFIG_COMPAT */ 7342 7343 static int md_open(struct block_device *bdev, fmode_t mode) 7344 { 7345 /* 7346 * Succeed if we can lock the mddev, which confirms that 7347 * it isn't being stopped right now. 7348 */ 7349 struct mddev *mddev = mddev_find(bdev->bd_dev); 7350 int err; 7351 7352 if (!mddev) 7353 return -ENODEV; 7354 7355 if (mddev->gendisk != bdev->bd_disk) { 7356 /* we are racing with mddev_put which is discarding this 7357 * bd_disk. 7358 */ 7359 mddev_put(mddev); 7360 /* Wait until bdev->bd_disk is definitely gone */ 7361 flush_workqueue(md_misc_wq); 7362 /* Then retry the open from the top */ 7363 return -ERESTARTSYS; 7364 } 7365 BUG_ON(mddev != bdev->bd_disk->private_data); 7366 7367 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7368 goto out; 7369 7370 if (test_bit(MD_CLOSING, &mddev->flags)) { 7371 mutex_unlock(&mddev->open_mutex); 7372 err = -ENODEV; 7373 goto out; 7374 } 7375 7376 err = 0; 7377 atomic_inc(&mddev->openers); 7378 mutex_unlock(&mddev->open_mutex); 7379 7380 check_disk_change(bdev); 7381 out: 7382 if (err) 7383 mddev_put(mddev); 7384 return err; 7385 } 7386 7387 static void md_release(struct gendisk *disk, fmode_t mode) 7388 { 7389 struct mddev *mddev = disk->private_data; 7390 7391 BUG_ON(!mddev); 7392 atomic_dec(&mddev->openers); 7393 mddev_put(mddev); 7394 } 7395 7396 static int md_media_changed(struct gendisk *disk) 7397 { 7398 struct mddev *mddev = disk->private_data; 7399 7400 return mddev->changed; 7401 } 7402 7403 static int md_revalidate(struct gendisk *disk) 7404 { 7405 struct mddev *mddev = disk->private_data; 7406 7407 mddev->changed = 0; 7408 return 0; 7409 } 7410 static const struct block_device_operations md_fops = 7411 { 7412 .owner = THIS_MODULE, 7413 .open = md_open, 7414 .release = md_release, 7415 .ioctl = md_ioctl, 7416 #ifdef CONFIG_COMPAT 7417 .compat_ioctl = md_compat_ioctl, 7418 #endif 7419 .getgeo = md_getgeo, 7420 .media_changed = md_media_changed, 7421 .revalidate_disk= md_revalidate, 7422 }; 7423 7424 static int md_thread(void *arg) 7425 { 7426 struct md_thread *thread = arg; 7427 7428 /* 7429 * md_thread is a 'system-thread', it's priority should be very 7430 * high. We avoid resource deadlocks individually in each 7431 * raid personality. (RAID5 does preallocation) We also use RR and 7432 * the very same RT priority as kswapd, thus we will never get 7433 * into a priority inversion deadlock. 7434 * 7435 * we definitely have to have equal or higher priority than 7436 * bdflush, otherwise bdflush will deadlock if there are too 7437 * many dirty RAID5 blocks. 7438 */ 7439 7440 allow_signal(SIGKILL); 7441 while (!kthread_should_stop()) { 7442 7443 /* We need to wait INTERRUPTIBLE so that 7444 * we don't add to the load-average. 7445 * That means we need to be sure no signals are 7446 * pending 7447 */ 7448 if (signal_pending(current)) 7449 flush_signals(current); 7450 7451 wait_event_interruptible_timeout 7452 (thread->wqueue, 7453 test_bit(THREAD_WAKEUP, &thread->flags) 7454 || kthread_should_stop() || kthread_should_park(), 7455 thread->timeout); 7456 7457 clear_bit(THREAD_WAKEUP, &thread->flags); 7458 if (kthread_should_park()) 7459 kthread_parkme(); 7460 if (!kthread_should_stop()) 7461 thread->run(thread); 7462 } 7463 7464 return 0; 7465 } 7466 7467 void md_wakeup_thread(struct md_thread *thread) 7468 { 7469 if (thread) { 7470 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7471 if (!test_and_set_bit(THREAD_WAKEUP, &thread->flags)) 7472 wake_up(&thread->wqueue); 7473 } 7474 } 7475 EXPORT_SYMBOL(md_wakeup_thread); 7476 7477 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7478 struct mddev *mddev, const char *name) 7479 { 7480 struct md_thread *thread; 7481 7482 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7483 if (!thread) 7484 return NULL; 7485 7486 init_waitqueue_head(&thread->wqueue); 7487 7488 thread->run = run; 7489 thread->mddev = mddev; 7490 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7491 thread->tsk = kthread_run(md_thread, thread, 7492 "%s_%s", 7493 mdname(thread->mddev), 7494 name); 7495 if (IS_ERR(thread->tsk)) { 7496 kfree(thread); 7497 return NULL; 7498 } 7499 return thread; 7500 } 7501 EXPORT_SYMBOL(md_register_thread); 7502 7503 void md_unregister_thread(struct md_thread **threadp) 7504 { 7505 struct md_thread *thread = *threadp; 7506 if (!thread) 7507 return; 7508 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7509 /* Locking ensures that mddev_unlock does not wake_up a 7510 * non-existent thread 7511 */ 7512 spin_lock(&pers_lock); 7513 *threadp = NULL; 7514 spin_unlock(&pers_lock); 7515 7516 kthread_stop(thread->tsk); 7517 kfree(thread); 7518 } 7519 EXPORT_SYMBOL(md_unregister_thread); 7520 7521 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7522 { 7523 if (!rdev || test_bit(Faulty, &rdev->flags)) 7524 return; 7525 7526 if (!mddev->pers || !mddev->pers->error_handler) 7527 return; 7528 mddev->pers->error_handler(mddev,rdev); 7529 if (mddev->degraded) 7530 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7531 sysfs_notify_dirent_safe(rdev->sysfs_state); 7532 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7533 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7534 md_wakeup_thread(mddev->thread); 7535 if (mddev->event_work.func) 7536 queue_work(md_misc_wq, &mddev->event_work); 7537 md_new_event(mddev); 7538 } 7539 EXPORT_SYMBOL(md_error); 7540 7541 /* seq_file implementation /proc/mdstat */ 7542 7543 static void status_unused(struct seq_file *seq) 7544 { 7545 int i = 0; 7546 struct md_rdev *rdev; 7547 7548 seq_printf(seq, "unused devices: "); 7549 7550 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7551 char b[BDEVNAME_SIZE]; 7552 i++; 7553 seq_printf(seq, "%s ", 7554 bdevname(rdev->bdev,b)); 7555 } 7556 if (!i) 7557 seq_printf(seq, "<none>"); 7558 7559 seq_printf(seq, "\n"); 7560 } 7561 7562 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7563 { 7564 sector_t max_sectors, resync, res; 7565 unsigned long dt, db; 7566 sector_t rt; 7567 int scale; 7568 unsigned int per_milli; 7569 7570 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7571 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7572 max_sectors = mddev->resync_max_sectors; 7573 else 7574 max_sectors = mddev->dev_sectors; 7575 7576 resync = mddev->curr_resync; 7577 if (resync <= 3) { 7578 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7579 /* Still cleaning up */ 7580 resync = max_sectors; 7581 } else 7582 resync -= atomic_read(&mddev->recovery_active); 7583 7584 if (resync == 0) { 7585 if (mddev->recovery_cp < MaxSector) { 7586 seq_printf(seq, "\tresync=PENDING"); 7587 return 1; 7588 } 7589 return 0; 7590 } 7591 if (resync < 3) { 7592 seq_printf(seq, "\tresync=DELAYED"); 7593 return 1; 7594 } 7595 7596 WARN_ON(max_sectors == 0); 7597 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7598 * in a sector_t, and (max_sectors>>scale) will fit in a 7599 * u32, as those are the requirements for sector_div. 7600 * Thus 'scale' must be at least 10 7601 */ 7602 scale = 10; 7603 if (sizeof(sector_t) > sizeof(unsigned long)) { 7604 while ( max_sectors/2 > (1ULL<<(scale+32))) 7605 scale++; 7606 } 7607 res = (resync>>scale)*1000; 7608 sector_div(res, (u32)((max_sectors>>scale)+1)); 7609 7610 per_milli = res; 7611 { 7612 int i, x = per_milli/50, y = 20-x; 7613 seq_printf(seq, "["); 7614 for (i = 0; i < x; i++) 7615 seq_printf(seq, "="); 7616 seq_printf(seq, ">"); 7617 for (i = 0; i < y; i++) 7618 seq_printf(seq, "."); 7619 seq_printf(seq, "] "); 7620 } 7621 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7622 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7623 "reshape" : 7624 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7625 "check" : 7626 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7627 "resync" : "recovery"))), 7628 per_milli/10, per_milli % 10, 7629 (unsigned long long) resync/2, 7630 (unsigned long long) max_sectors/2); 7631 7632 /* 7633 * dt: time from mark until now 7634 * db: blocks written from mark until now 7635 * rt: remaining time 7636 * 7637 * rt is a sector_t, so could be 32bit or 64bit. 7638 * So we divide before multiply in case it is 32bit and close 7639 * to the limit. 7640 * We scale the divisor (db) by 32 to avoid losing precision 7641 * near the end of resync when the number of remaining sectors 7642 * is close to 'db'. 7643 * We then divide rt by 32 after multiplying by db to compensate. 7644 * The '+1' avoids division by zero if db is very small. 7645 */ 7646 dt = ((jiffies - mddev->resync_mark) / HZ); 7647 if (!dt) dt++; 7648 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7649 - mddev->resync_mark_cnt; 7650 7651 rt = max_sectors - resync; /* number of remaining sectors */ 7652 sector_div(rt, db/32+1); 7653 rt *= dt; 7654 rt >>= 5; 7655 7656 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7657 ((unsigned long)rt % 60)/6); 7658 7659 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7660 return 1; 7661 } 7662 7663 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7664 { 7665 struct list_head *tmp; 7666 loff_t l = *pos; 7667 struct mddev *mddev; 7668 7669 if (l >= 0x10000) 7670 return NULL; 7671 if (!l--) 7672 /* header */ 7673 return (void*)1; 7674 7675 spin_lock(&all_mddevs_lock); 7676 list_for_each(tmp,&all_mddevs) 7677 if (!l--) { 7678 mddev = list_entry(tmp, struct mddev, all_mddevs); 7679 mddev_get(mddev); 7680 spin_unlock(&all_mddevs_lock); 7681 return mddev; 7682 } 7683 spin_unlock(&all_mddevs_lock); 7684 if (!l--) 7685 return (void*)2;/* tail */ 7686 return NULL; 7687 } 7688 7689 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7690 { 7691 struct list_head *tmp; 7692 struct mddev *next_mddev, *mddev = v; 7693 7694 ++*pos; 7695 if (v == (void*)2) 7696 return NULL; 7697 7698 spin_lock(&all_mddevs_lock); 7699 if (v == (void*)1) 7700 tmp = all_mddevs.next; 7701 else 7702 tmp = mddev->all_mddevs.next; 7703 if (tmp != &all_mddevs) 7704 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7705 else { 7706 next_mddev = (void*)2; 7707 *pos = 0x10000; 7708 } 7709 spin_unlock(&all_mddevs_lock); 7710 7711 if (v != (void*)1) 7712 mddev_put(mddev); 7713 return next_mddev; 7714 7715 } 7716 7717 static void md_seq_stop(struct seq_file *seq, void *v) 7718 { 7719 struct mddev *mddev = v; 7720 7721 if (mddev && v != (void*)1 && v != (void*)2) 7722 mddev_put(mddev); 7723 } 7724 7725 static int md_seq_show(struct seq_file *seq, void *v) 7726 { 7727 struct mddev *mddev = v; 7728 sector_t sectors; 7729 struct md_rdev *rdev; 7730 7731 if (v == (void*)1) { 7732 struct md_personality *pers; 7733 seq_printf(seq, "Personalities : "); 7734 spin_lock(&pers_lock); 7735 list_for_each_entry(pers, &pers_list, list) 7736 seq_printf(seq, "[%s] ", pers->name); 7737 7738 spin_unlock(&pers_lock); 7739 seq_printf(seq, "\n"); 7740 seq->poll_event = atomic_read(&md_event_count); 7741 return 0; 7742 } 7743 if (v == (void*)2) { 7744 status_unused(seq); 7745 return 0; 7746 } 7747 7748 spin_lock(&mddev->lock); 7749 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7750 seq_printf(seq, "%s : %sactive", mdname(mddev), 7751 mddev->pers ? "" : "in"); 7752 if (mddev->pers) { 7753 if (mddev->ro==1) 7754 seq_printf(seq, " (read-only)"); 7755 if (mddev->ro==2) 7756 seq_printf(seq, " (auto-read-only)"); 7757 seq_printf(seq, " %s", mddev->pers->name); 7758 } 7759 7760 sectors = 0; 7761 rcu_read_lock(); 7762 rdev_for_each_rcu(rdev, mddev) { 7763 char b[BDEVNAME_SIZE]; 7764 seq_printf(seq, " %s[%d]", 7765 bdevname(rdev->bdev,b), rdev->desc_nr); 7766 if (test_bit(WriteMostly, &rdev->flags)) 7767 seq_printf(seq, "(W)"); 7768 if (test_bit(Journal, &rdev->flags)) 7769 seq_printf(seq, "(J)"); 7770 if (test_bit(Faulty, &rdev->flags)) { 7771 seq_printf(seq, "(F)"); 7772 continue; 7773 } 7774 if (rdev->raid_disk < 0) 7775 seq_printf(seq, "(S)"); /* spare */ 7776 if (test_bit(Replacement, &rdev->flags)) 7777 seq_printf(seq, "(R)"); 7778 sectors += rdev->sectors; 7779 } 7780 rcu_read_unlock(); 7781 7782 if (!list_empty(&mddev->disks)) { 7783 if (mddev->pers) 7784 seq_printf(seq, "\n %llu blocks", 7785 (unsigned long long) 7786 mddev->array_sectors / 2); 7787 else 7788 seq_printf(seq, "\n %llu blocks", 7789 (unsigned long long)sectors / 2); 7790 } 7791 if (mddev->persistent) { 7792 if (mddev->major_version != 0 || 7793 mddev->minor_version != 90) { 7794 seq_printf(seq," super %d.%d", 7795 mddev->major_version, 7796 mddev->minor_version); 7797 } 7798 } else if (mddev->external) 7799 seq_printf(seq, " super external:%s", 7800 mddev->metadata_type); 7801 else 7802 seq_printf(seq, " super non-persistent"); 7803 7804 if (mddev->pers) { 7805 mddev->pers->status(seq, mddev); 7806 seq_printf(seq, "\n "); 7807 if (mddev->pers->sync_request) { 7808 if (status_resync(seq, mddev)) 7809 seq_printf(seq, "\n "); 7810 } 7811 } else 7812 seq_printf(seq, "\n "); 7813 7814 bitmap_status(seq, mddev->bitmap); 7815 7816 seq_printf(seq, "\n"); 7817 } 7818 spin_unlock(&mddev->lock); 7819 7820 return 0; 7821 } 7822 7823 static const struct seq_operations md_seq_ops = { 7824 .start = md_seq_start, 7825 .next = md_seq_next, 7826 .stop = md_seq_stop, 7827 .show = md_seq_show, 7828 }; 7829 7830 static int md_seq_open(struct inode *inode, struct file *file) 7831 { 7832 struct seq_file *seq; 7833 int error; 7834 7835 error = seq_open(file, &md_seq_ops); 7836 if (error) 7837 return error; 7838 7839 seq = file->private_data; 7840 seq->poll_event = atomic_read(&md_event_count); 7841 return error; 7842 } 7843 7844 static int md_unloading; 7845 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7846 { 7847 struct seq_file *seq = filp->private_data; 7848 int mask; 7849 7850 if (md_unloading) 7851 return POLLIN|POLLRDNORM|POLLERR|POLLPRI; 7852 poll_wait(filp, &md_event_waiters, wait); 7853 7854 /* always allow read */ 7855 mask = POLLIN | POLLRDNORM; 7856 7857 if (seq->poll_event != atomic_read(&md_event_count)) 7858 mask |= POLLERR | POLLPRI; 7859 return mask; 7860 } 7861 7862 static const struct file_operations md_seq_fops = { 7863 .owner = THIS_MODULE, 7864 .open = md_seq_open, 7865 .read = seq_read, 7866 .llseek = seq_lseek, 7867 .release = seq_release, 7868 .poll = mdstat_poll, 7869 }; 7870 7871 int register_md_personality(struct md_personality *p) 7872 { 7873 pr_debug("md: %s personality registered for level %d\n", 7874 p->name, p->level); 7875 spin_lock(&pers_lock); 7876 list_add_tail(&p->list, &pers_list); 7877 spin_unlock(&pers_lock); 7878 return 0; 7879 } 7880 EXPORT_SYMBOL(register_md_personality); 7881 7882 int unregister_md_personality(struct md_personality *p) 7883 { 7884 pr_debug("md: %s personality unregistered\n", p->name); 7885 spin_lock(&pers_lock); 7886 list_del_init(&p->list); 7887 spin_unlock(&pers_lock); 7888 return 0; 7889 } 7890 EXPORT_SYMBOL(unregister_md_personality); 7891 7892 int register_md_cluster_operations(struct md_cluster_operations *ops, 7893 struct module *module) 7894 { 7895 int ret = 0; 7896 spin_lock(&pers_lock); 7897 if (md_cluster_ops != NULL) 7898 ret = -EALREADY; 7899 else { 7900 md_cluster_ops = ops; 7901 md_cluster_mod = module; 7902 } 7903 spin_unlock(&pers_lock); 7904 return ret; 7905 } 7906 EXPORT_SYMBOL(register_md_cluster_operations); 7907 7908 int unregister_md_cluster_operations(void) 7909 { 7910 spin_lock(&pers_lock); 7911 md_cluster_ops = NULL; 7912 spin_unlock(&pers_lock); 7913 return 0; 7914 } 7915 EXPORT_SYMBOL(unregister_md_cluster_operations); 7916 7917 int md_setup_cluster(struct mddev *mddev, int nodes) 7918 { 7919 if (!md_cluster_ops) 7920 request_module("md-cluster"); 7921 spin_lock(&pers_lock); 7922 /* ensure module won't be unloaded */ 7923 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 7924 pr_warn("can't find md-cluster module or get it's reference.\n"); 7925 spin_unlock(&pers_lock); 7926 return -ENOENT; 7927 } 7928 spin_unlock(&pers_lock); 7929 7930 return md_cluster_ops->join(mddev, nodes); 7931 } 7932 7933 void md_cluster_stop(struct mddev *mddev) 7934 { 7935 if (!md_cluster_ops) 7936 return; 7937 md_cluster_ops->leave(mddev); 7938 module_put(md_cluster_mod); 7939 } 7940 7941 static int is_mddev_idle(struct mddev *mddev, int init) 7942 { 7943 struct md_rdev *rdev; 7944 int idle; 7945 int curr_events; 7946 7947 idle = 1; 7948 rcu_read_lock(); 7949 rdev_for_each_rcu(rdev, mddev) { 7950 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7951 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7952 (int)part_stat_read(&disk->part0, sectors[1]) - 7953 atomic_read(&disk->sync_io); 7954 /* sync IO will cause sync_io to increase before the disk_stats 7955 * as sync_io is counted when a request starts, and 7956 * disk_stats is counted when it completes. 7957 * So resync activity will cause curr_events to be smaller than 7958 * when there was no such activity. 7959 * non-sync IO will cause disk_stat to increase without 7960 * increasing sync_io so curr_events will (eventually) 7961 * be larger than it was before. Once it becomes 7962 * substantially larger, the test below will cause 7963 * the array to appear non-idle, and resync will slow 7964 * down. 7965 * If there is a lot of outstanding resync activity when 7966 * we set last_event to curr_events, then all that activity 7967 * completing might cause the array to appear non-idle 7968 * and resync will be slowed down even though there might 7969 * not have been non-resync activity. This will only 7970 * happen once though. 'last_events' will soon reflect 7971 * the state where there is little or no outstanding 7972 * resync requests, and further resync activity will 7973 * always make curr_events less than last_events. 7974 * 7975 */ 7976 if (init || curr_events - rdev->last_events > 64) { 7977 rdev->last_events = curr_events; 7978 idle = 0; 7979 } 7980 } 7981 rcu_read_unlock(); 7982 return idle; 7983 } 7984 7985 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7986 { 7987 /* another "blocks" (512byte) blocks have been synced */ 7988 atomic_sub(blocks, &mddev->recovery_active); 7989 wake_up(&mddev->recovery_wait); 7990 if (!ok) { 7991 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7992 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7993 md_wakeup_thread(mddev->thread); 7994 // stop recovery, signal do_sync .... 7995 } 7996 } 7997 EXPORT_SYMBOL(md_done_sync); 7998 7999 /* md_write_start(mddev, bi) 8000 * If we need to update some array metadata (e.g. 'active' flag 8001 * in superblock) before writing, schedule a superblock update 8002 * and wait for it to complete. 8003 * A return value of 'false' means that the write wasn't recorded 8004 * and cannot proceed as the array is being suspend. 8005 */ 8006 bool md_write_start(struct mddev *mddev, struct bio *bi) 8007 { 8008 int did_change = 0; 8009 if (bio_data_dir(bi) != WRITE) 8010 return true; 8011 8012 BUG_ON(mddev->ro == 1); 8013 if (mddev->ro == 2) { 8014 /* need to switch to read/write */ 8015 mddev->ro = 0; 8016 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8017 md_wakeup_thread(mddev->thread); 8018 md_wakeup_thread(mddev->sync_thread); 8019 did_change = 1; 8020 } 8021 rcu_read_lock(); 8022 percpu_ref_get(&mddev->writes_pending); 8023 smp_mb(); /* Match smp_mb in set_in_sync() */ 8024 if (mddev->safemode == 1) 8025 mddev->safemode = 0; 8026 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8027 if (mddev->in_sync || mddev->sync_checkers) { 8028 spin_lock(&mddev->lock); 8029 if (mddev->in_sync) { 8030 mddev->in_sync = 0; 8031 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8032 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8033 md_wakeup_thread(mddev->thread); 8034 did_change = 1; 8035 } 8036 spin_unlock(&mddev->lock); 8037 } 8038 rcu_read_unlock(); 8039 if (did_change) 8040 sysfs_notify_dirent_safe(mddev->sysfs_state); 8041 wait_event(mddev->sb_wait, 8042 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && !mddev->suspended); 8043 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8044 percpu_ref_put(&mddev->writes_pending); 8045 return false; 8046 } 8047 return true; 8048 } 8049 EXPORT_SYMBOL(md_write_start); 8050 8051 /* md_write_inc can only be called when md_write_start() has 8052 * already been called at least once of the current request. 8053 * It increments the counter and is useful when a single request 8054 * is split into several parts. Each part causes an increment and 8055 * so needs a matching md_write_end(). 8056 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8057 * a spinlocked region. 8058 */ 8059 void md_write_inc(struct mddev *mddev, struct bio *bi) 8060 { 8061 if (bio_data_dir(bi) != WRITE) 8062 return; 8063 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8064 percpu_ref_get(&mddev->writes_pending); 8065 } 8066 EXPORT_SYMBOL(md_write_inc); 8067 8068 void md_write_end(struct mddev *mddev) 8069 { 8070 percpu_ref_put(&mddev->writes_pending); 8071 8072 if (mddev->safemode == 2) 8073 md_wakeup_thread(mddev->thread); 8074 else if (mddev->safemode_delay) 8075 /* The roundup() ensures this only performs locking once 8076 * every ->safemode_delay jiffies 8077 */ 8078 mod_timer(&mddev->safemode_timer, 8079 roundup(jiffies, mddev->safemode_delay) + 8080 mddev->safemode_delay); 8081 } 8082 8083 EXPORT_SYMBOL(md_write_end); 8084 8085 /* md_allow_write(mddev) 8086 * Calling this ensures that the array is marked 'active' so that writes 8087 * may proceed without blocking. It is important to call this before 8088 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8089 * Must be called with mddev_lock held. 8090 */ 8091 void md_allow_write(struct mddev *mddev) 8092 { 8093 if (!mddev->pers) 8094 return; 8095 if (mddev->ro) 8096 return; 8097 if (!mddev->pers->sync_request) 8098 return; 8099 8100 spin_lock(&mddev->lock); 8101 if (mddev->in_sync) { 8102 mddev->in_sync = 0; 8103 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8104 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8105 if (mddev->safemode_delay && 8106 mddev->safemode == 0) 8107 mddev->safemode = 1; 8108 spin_unlock(&mddev->lock); 8109 md_update_sb(mddev, 0); 8110 sysfs_notify_dirent_safe(mddev->sysfs_state); 8111 /* wait for the dirty state to be recorded in the metadata */ 8112 wait_event(mddev->sb_wait, 8113 !test_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags) && 8114 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8115 } else 8116 spin_unlock(&mddev->lock); 8117 } 8118 EXPORT_SYMBOL_GPL(md_allow_write); 8119 8120 #define SYNC_MARKS 10 8121 #define SYNC_MARK_STEP (3*HZ) 8122 #define UPDATE_FREQUENCY (5*60*HZ) 8123 void md_do_sync(struct md_thread *thread) 8124 { 8125 struct mddev *mddev = thread->mddev; 8126 struct mddev *mddev2; 8127 unsigned int currspeed = 0, 8128 window; 8129 sector_t max_sectors,j, io_sectors, recovery_done; 8130 unsigned long mark[SYNC_MARKS]; 8131 unsigned long update_time; 8132 sector_t mark_cnt[SYNC_MARKS]; 8133 int last_mark,m; 8134 struct list_head *tmp; 8135 sector_t last_check; 8136 int skipped = 0; 8137 struct md_rdev *rdev; 8138 char *desc, *action = NULL; 8139 struct blk_plug plug; 8140 int ret; 8141 8142 /* just incase thread restarts... */ 8143 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8144 return; 8145 if (mddev->ro) {/* never try to sync a read-only array */ 8146 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8147 return; 8148 } 8149 8150 if (mddev_is_clustered(mddev)) { 8151 ret = md_cluster_ops->resync_start(mddev); 8152 if (ret) 8153 goto skip; 8154 8155 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8156 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8157 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8158 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8159 && ((unsigned long long)mddev->curr_resync_completed 8160 < (unsigned long long)mddev->resync_max_sectors)) 8161 goto skip; 8162 } 8163 8164 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8165 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8166 desc = "data-check"; 8167 action = "check"; 8168 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8169 desc = "requested-resync"; 8170 action = "repair"; 8171 } else 8172 desc = "resync"; 8173 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8174 desc = "reshape"; 8175 else 8176 desc = "recovery"; 8177 8178 mddev->last_sync_action = action ?: desc; 8179 8180 /* we overload curr_resync somewhat here. 8181 * 0 == not engaged in resync at all 8182 * 2 == checking that there is no conflict with another sync 8183 * 1 == like 2, but have yielded to allow conflicting resync to 8184 * commense 8185 * other == active in resync - this many blocks 8186 * 8187 * Before starting a resync we must have set curr_resync to 8188 * 2, and then checked that every "conflicting" array has curr_resync 8189 * less than ours. When we find one that is the same or higher 8190 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8191 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8192 * This will mean we have to start checking from the beginning again. 8193 * 8194 */ 8195 8196 do { 8197 int mddev2_minor = -1; 8198 mddev->curr_resync = 2; 8199 8200 try_again: 8201 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8202 goto skip; 8203 for_each_mddev(mddev2, tmp) { 8204 if (mddev2 == mddev) 8205 continue; 8206 if (!mddev->parallel_resync 8207 && mddev2->curr_resync 8208 && match_mddev_units(mddev, mddev2)) { 8209 DEFINE_WAIT(wq); 8210 if (mddev < mddev2 && mddev->curr_resync == 2) { 8211 /* arbitrarily yield */ 8212 mddev->curr_resync = 1; 8213 wake_up(&resync_wait); 8214 } 8215 if (mddev > mddev2 && mddev->curr_resync == 1) 8216 /* no need to wait here, we can wait the next 8217 * time 'round when curr_resync == 2 8218 */ 8219 continue; 8220 /* We need to wait 'interruptible' so as not to 8221 * contribute to the load average, and not to 8222 * be caught by 'softlockup' 8223 */ 8224 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8225 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8226 mddev2->curr_resync >= mddev->curr_resync) { 8227 if (mddev2_minor != mddev2->md_minor) { 8228 mddev2_minor = mddev2->md_minor; 8229 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8230 desc, mdname(mddev), 8231 mdname(mddev2)); 8232 } 8233 mddev_put(mddev2); 8234 if (signal_pending(current)) 8235 flush_signals(current); 8236 schedule(); 8237 finish_wait(&resync_wait, &wq); 8238 goto try_again; 8239 } 8240 finish_wait(&resync_wait, &wq); 8241 } 8242 } 8243 } while (mddev->curr_resync < 2); 8244 8245 j = 0; 8246 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8247 /* resync follows the size requested by the personality, 8248 * which defaults to physical size, but can be virtual size 8249 */ 8250 max_sectors = mddev->resync_max_sectors; 8251 atomic64_set(&mddev->resync_mismatches, 0); 8252 /* we don't use the checkpoint if there's a bitmap */ 8253 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8254 j = mddev->resync_min; 8255 else if (!mddev->bitmap) 8256 j = mddev->recovery_cp; 8257 8258 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8259 max_sectors = mddev->resync_max_sectors; 8260 else { 8261 /* recovery follows the physical size of devices */ 8262 max_sectors = mddev->dev_sectors; 8263 j = MaxSector; 8264 rcu_read_lock(); 8265 rdev_for_each_rcu(rdev, mddev) 8266 if (rdev->raid_disk >= 0 && 8267 !test_bit(Journal, &rdev->flags) && 8268 !test_bit(Faulty, &rdev->flags) && 8269 !test_bit(In_sync, &rdev->flags) && 8270 rdev->recovery_offset < j) 8271 j = rdev->recovery_offset; 8272 rcu_read_unlock(); 8273 8274 /* If there is a bitmap, we need to make sure all 8275 * writes that started before we added a spare 8276 * complete before we start doing a recovery. 8277 * Otherwise the write might complete and (via 8278 * bitmap_endwrite) set a bit in the bitmap after the 8279 * recovery has checked that bit and skipped that 8280 * region. 8281 */ 8282 if (mddev->bitmap) { 8283 mddev->pers->quiesce(mddev, 1); 8284 mddev->pers->quiesce(mddev, 0); 8285 } 8286 } 8287 8288 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8289 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8290 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8291 speed_max(mddev), desc); 8292 8293 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8294 8295 io_sectors = 0; 8296 for (m = 0; m < SYNC_MARKS; m++) { 8297 mark[m] = jiffies; 8298 mark_cnt[m] = io_sectors; 8299 } 8300 last_mark = 0; 8301 mddev->resync_mark = mark[last_mark]; 8302 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8303 8304 /* 8305 * Tune reconstruction: 8306 */ 8307 window = 32*(PAGE_SIZE/512); 8308 pr_debug("md: using %dk window, over a total of %lluk.\n", 8309 window/2, (unsigned long long)max_sectors/2); 8310 8311 atomic_set(&mddev->recovery_active, 0); 8312 last_check = 0; 8313 8314 if (j>2) { 8315 pr_debug("md: resuming %s of %s from checkpoint.\n", 8316 desc, mdname(mddev)); 8317 mddev->curr_resync = j; 8318 } else 8319 mddev->curr_resync = 3; /* no longer delayed */ 8320 mddev->curr_resync_completed = j; 8321 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8322 md_new_event(mddev); 8323 update_time = jiffies; 8324 8325 blk_start_plug(&plug); 8326 while (j < max_sectors) { 8327 sector_t sectors; 8328 8329 skipped = 0; 8330 8331 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8332 ((mddev->curr_resync > mddev->curr_resync_completed && 8333 (mddev->curr_resync - mddev->curr_resync_completed) 8334 > (max_sectors >> 4)) || 8335 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8336 (j - mddev->curr_resync_completed)*2 8337 >= mddev->resync_max - mddev->curr_resync_completed || 8338 mddev->curr_resync_completed > mddev->resync_max 8339 )) { 8340 /* time to update curr_resync_completed */ 8341 wait_event(mddev->recovery_wait, 8342 atomic_read(&mddev->recovery_active) == 0); 8343 mddev->curr_resync_completed = j; 8344 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8345 j > mddev->recovery_cp) 8346 mddev->recovery_cp = j; 8347 update_time = jiffies; 8348 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8349 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8350 } 8351 8352 while (j >= mddev->resync_max && 8353 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8354 /* As this condition is controlled by user-space, 8355 * we can block indefinitely, so use '_interruptible' 8356 * to avoid triggering warnings. 8357 */ 8358 flush_signals(current); /* just in case */ 8359 wait_event_interruptible(mddev->recovery_wait, 8360 mddev->resync_max > j 8361 || test_bit(MD_RECOVERY_INTR, 8362 &mddev->recovery)); 8363 } 8364 8365 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8366 break; 8367 8368 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8369 if (sectors == 0) { 8370 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8371 break; 8372 } 8373 8374 if (!skipped) { /* actual IO requested */ 8375 io_sectors += sectors; 8376 atomic_add(sectors, &mddev->recovery_active); 8377 } 8378 8379 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8380 break; 8381 8382 j += sectors; 8383 if (j > max_sectors) 8384 /* when skipping, extra large numbers can be returned. */ 8385 j = max_sectors; 8386 if (j > 2) 8387 mddev->curr_resync = j; 8388 mddev->curr_mark_cnt = io_sectors; 8389 if (last_check == 0) 8390 /* this is the earliest that rebuild will be 8391 * visible in /proc/mdstat 8392 */ 8393 md_new_event(mddev); 8394 8395 if (last_check + window > io_sectors || j == max_sectors) 8396 continue; 8397 8398 last_check = io_sectors; 8399 repeat: 8400 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8401 /* step marks */ 8402 int next = (last_mark+1) % SYNC_MARKS; 8403 8404 mddev->resync_mark = mark[next]; 8405 mddev->resync_mark_cnt = mark_cnt[next]; 8406 mark[next] = jiffies; 8407 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8408 last_mark = next; 8409 } 8410 8411 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8412 break; 8413 8414 /* 8415 * this loop exits only if either when we are slower than 8416 * the 'hard' speed limit, or the system was IO-idle for 8417 * a jiffy. 8418 * the system might be non-idle CPU-wise, but we only care 8419 * about not overloading the IO subsystem. (things like an 8420 * e2fsck being done on the RAID array should execute fast) 8421 */ 8422 cond_resched(); 8423 8424 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8425 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8426 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8427 8428 if (currspeed > speed_min(mddev)) { 8429 if (currspeed > speed_max(mddev)) { 8430 msleep(500); 8431 goto repeat; 8432 } 8433 if (!is_mddev_idle(mddev, 0)) { 8434 /* 8435 * Give other IO more of a chance. 8436 * The faster the devices, the less we wait. 8437 */ 8438 wait_event(mddev->recovery_wait, 8439 !atomic_read(&mddev->recovery_active)); 8440 } 8441 } 8442 } 8443 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8444 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8445 ? "interrupted" : "done"); 8446 /* 8447 * this also signals 'finished resyncing' to md_stop 8448 */ 8449 blk_finish_plug(&plug); 8450 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8451 8452 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8453 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8454 mddev->curr_resync > 3) { 8455 mddev->curr_resync_completed = mddev->curr_resync; 8456 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8457 } 8458 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8459 8460 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8461 mddev->curr_resync > 3) { 8462 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8463 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8464 if (mddev->curr_resync >= mddev->recovery_cp) { 8465 pr_debug("md: checkpointing %s of %s.\n", 8466 desc, mdname(mddev)); 8467 if (test_bit(MD_RECOVERY_ERROR, 8468 &mddev->recovery)) 8469 mddev->recovery_cp = 8470 mddev->curr_resync_completed; 8471 else 8472 mddev->recovery_cp = 8473 mddev->curr_resync; 8474 } 8475 } else 8476 mddev->recovery_cp = MaxSector; 8477 } else { 8478 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8479 mddev->curr_resync = MaxSector; 8480 rcu_read_lock(); 8481 rdev_for_each_rcu(rdev, mddev) 8482 if (rdev->raid_disk >= 0 && 8483 mddev->delta_disks >= 0 && 8484 !test_bit(Journal, &rdev->flags) && 8485 !test_bit(Faulty, &rdev->flags) && 8486 !test_bit(In_sync, &rdev->flags) && 8487 rdev->recovery_offset < mddev->curr_resync) 8488 rdev->recovery_offset = mddev->curr_resync; 8489 rcu_read_unlock(); 8490 } 8491 } 8492 skip: 8493 /* set CHANGE_PENDING here since maybe another update is needed, 8494 * so other nodes are informed. It should be harmless for normal 8495 * raid */ 8496 set_mask_bits(&mddev->sb_flags, 0, 8497 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8498 8499 spin_lock(&mddev->lock); 8500 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8501 /* We completed so min/max setting can be forgotten if used. */ 8502 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8503 mddev->resync_min = 0; 8504 mddev->resync_max = MaxSector; 8505 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8506 mddev->resync_min = mddev->curr_resync_completed; 8507 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8508 mddev->curr_resync = 0; 8509 spin_unlock(&mddev->lock); 8510 8511 wake_up(&resync_wait); 8512 md_wakeup_thread(mddev->thread); 8513 return; 8514 } 8515 EXPORT_SYMBOL_GPL(md_do_sync); 8516 8517 static int remove_and_add_spares(struct mddev *mddev, 8518 struct md_rdev *this) 8519 { 8520 struct md_rdev *rdev; 8521 int spares = 0; 8522 int removed = 0; 8523 bool remove_some = false; 8524 8525 rdev_for_each(rdev, mddev) { 8526 if ((this == NULL || rdev == this) && 8527 rdev->raid_disk >= 0 && 8528 !test_bit(Blocked, &rdev->flags) && 8529 test_bit(Faulty, &rdev->flags) && 8530 atomic_read(&rdev->nr_pending)==0) { 8531 /* Faulty non-Blocked devices with nr_pending == 0 8532 * never get nr_pending incremented, 8533 * never get Faulty cleared, and never get Blocked set. 8534 * So we can synchronize_rcu now rather than once per device 8535 */ 8536 remove_some = true; 8537 set_bit(RemoveSynchronized, &rdev->flags); 8538 } 8539 } 8540 8541 if (remove_some) 8542 synchronize_rcu(); 8543 rdev_for_each(rdev, mddev) { 8544 if ((this == NULL || rdev == this) && 8545 rdev->raid_disk >= 0 && 8546 !test_bit(Blocked, &rdev->flags) && 8547 ((test_bit(RemoveSynchronized, &rdev->flags) || 8548 (!test_bit(In_sync, &rdev->flags) && 8549 !test_bit(Journal, &rdev->flags))) && 8550 atomic_read(&rdev->nr_pending)==0)) { 8551 if (mddev->pers->hot_remove_disk( 8552 mddev, rdev) == 0) { 8553 sysfs_unlink_rdev(mddev, rdev); 8554 rdev->raid_disk = -1; 8555 removed++; 8556 } 8557 } 8558 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8559 clear_bit(RemoveSynchronized, &rdev->flags); 8560 } 8561 8562 if (removed && mddev->kobj.sd) 8563 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8564 8565 if (this && removed) 8566 goto no_add; 8567 8568 rdev_for_each(rdev, mddev) { 8569 if (this && this != rdev) 8570 continue; 8571 if (test_bit(Candidate, &rdev->flags)) 8572 continue; 8573 if (rdev->raid_disk >= 0 && 8574 !test_bit(In_sync, &rdev->flags) && 8575 !test_bit(Journal, &rdev->flags) && 8576 !test_bit(Faulty, &rdev->flags)) 8577 spares++; 8578 if (rdev->raid_disk >= 0) 8579 continue; 8580 if (test_bit(Faulty, &rdev->flags)) 8581 continue; 8582 if (!test_bit(Journal, &rdev->flags)) { 8583 if (mddev->ro && 8584 ! (rdev->saved_raid_disk >= 0 && 8585 !test_bit(Bitmap_sync, &rdev->flags))) 8586 continue; 8587 8588 rdev->recovery_offset = 0; 8589 } 8590 if (mddev->pers-> 8591 hot_add_disk(mddev, rdev) == 0) { 8592 if (sysfs_link_rdev(mddev, rdev)) 8593 /* failure here is OK */; 8594 if (!test_bit(Journal, &rdev->flags)) 8595 spares++; 8596 md_new_event(mddev); 8597 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8598 } 8599 } 8600 no_add: 8601 if (removed) 8602 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8603 return spares; 8604 } 8605 8606 static void md_start_sync(struct work_struct *ws) 8607 { 8608 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8609 8610 mddev->sync_thread = md_register_thread(md_do_sync, 8611 mddev, 8612 "resync"); 8613 if (!mddev->sync_thread) { 8614 pr_warn("%s: could not start resync thread...\n", 8615 mdname(mddev)); 8616 /* leave the spares where they are, it shouldn't hurt */ 8617 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8618 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8619 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8620 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8621 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8622 wake_up(&resync_wait); 8623 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8624 &mddev->recovery)) 8625 if (mddev->sysfs_action) 8626 sysfs_notify_dirent_safe(mddev->sysfs_action); 8627 } else 8628 md_wakeup_thread(mddev->sync_thread); 8629 sysfs_notify_dirent_safe(mddev->sysfs_action); 8630 md_new_event(mddev); 8631 } 8632 8633 /* 8634 * This routine is regularly called by all per-raid-array threads to 8635 * deal with generic issues like resync and super-block update. 8636 * Raid personalities that don't have a thread (linear/raid0) do not 8637 * need this as they never do any recovery or update the superblock. 8638 * 8639 * It does not do any resync itself, but rather "forks" off other threads 8640 * to do that as needed. 8641 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8642 * "->recovery" and create a thread at ->sync_thread. 8643 * When the thread finishes it sets MD_RECOVERY_DONE 8644 * and wakeups up this thread which will reap the thread and finish up. 8645 * This thread also removes any faulty devices (with nr_pending == 0). 8646 * 8647 * The overall approach is: 8648 * 1/ if the superblock needs updating, update it. 8649 * 2/ If a recovery thread is running, don't do anything else. 8650 * 3/ If recovery has finished, clean up, possibly marking spares active. 8651 * 4/ If there are any faulty devices, remove them. 8652 * 5/ If array is degraded, try to add spares devices 8653 * 6/ If array has spares or is not in-sync, start a resync thread. 8654 */ 8655 void md_check_recovery(struct mddev *mddev) 8656 { 8657 if (mddev->suspended) 8658 return; 8659 8660 if (mddev->bitmap) 8661 bitmap_daemon_work(mddev); 8662 8663 if (signal_pending(current)) { 8664 if (mddev->pers->sync_request && !mddev->external) { 8665 pr_debug("md: %s in immediate safe mode\n", 8666 mdname(mddev)); 8667 mddev->safemode = 2; 8668 } 8669 flush_signals(current); 8670 } 8671 8672 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8673 return; 8674 if ( ! ( 8675 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8676 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8677 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8678 (mddev->external == 0 && mddev->safemode == 1) || 8679 (mddev->safemode == 2 8680 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8681 )) 8682 return; 8683 8684 if (mddev_trylock(mddev)) { 8685 int spares = 0; 8686 8687 if (!mddev->external && mddev->safemode == 1) 8688 mddev->safemode = 0; 8689 8690 if (mddev->ro) { 8691 struct md_rdev *rdev; 8692 if (!mddev->external && mddev->in_sync) 8693 /* 'Blocked' flag not needed as failed devices 8694 * will be recorded if array switched to read/write. 8695 * Leaving it set will prevent the device 8696 * from being removed. 8697 */ 8698 rdev_for_each(rdev, mddev) 8699 clear_bit(Blocked, &rdev->flags); 8700 /* On a read-only array we can: 8701 * - remove failed devices 8702 * - add already-in_sync devices if the array itself 8703 * is in-sync. 8704 * As we only add devices that are already in-sync, 8705 * we can activate the spares immediately. 8706 */ 8707 remove_and_add_spares(mddev, NULL); 8708 /* There is no thread, but we need to call 8709 * ->spare_active and clear saved_raid_disk 8710 */ 8711 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8712 md_reap_sync_thread(mddev); 8713 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8714 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8715 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8716 goto unlock; 8717 } 8718 8719 if (mddev_is_clustered(mddev)) { 8720 struct md_rdev *rdev; 8721 /* kick the device if another node issued a 8722 * remove disk. 8723 */ 8724 rdev_for_each(rdev, mddev) { 8725 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8726 rdev->raid_disk < 0) 8727 md_kick_rdev_from_array(rdev); 8728 } 8729 } 8730 8731 if (!mddev->external && !mddev->in_sync) { 8732 spin_lock(&mddev->lock); 8733 set_in_sync(mddev); 8734 spin_unlock(&mddev->lock); 8735 } 8736 8737 if (mddev->sb_flags) 8738 md_update_sb(mddev, 0); 8739 8740 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8741 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8742 /* resync/recovery still happening */ 8743 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8744 goto unlock; 8745 } 8746 if (mddev->sync_thread) { 8747 md_reap_sync_thread(mddev); 8748 goto unlock; 8749 } 8750 /* Set RUNNING before clearing NEEDED to avoid 8751 * any transients in the value of "sync_action". 8752 */ 8753 mddev->curr_resync_completed = 0; 8754 spin_lock(&mddev->lock); 8755 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8756 spin_unlock(&mddev->lock); 8757 /* Clear some bits that don't mean anything, but 8758 * might be left set 8759 */ 8760 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8761 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8762 8763 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8764 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8765 goto not_running; 8766 /* no recovery is running. 8767 * remove any failed drives, then 8768 * add spares if possible. 8769 * Spares are also removed and re-added, to allow 8770 * the personality to fail the re-add. 8771 */ 8772 8773 if (mddev->reshape_position != MaxSector) { 8774 if (mddev->pers->check_reshape == NULL || 8775 mddev->pers->check_reshape(mddev) != 0) 8776 /* Cannot proceed */ 8777 goto not_running; 8778 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8779 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8780 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8781 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8782 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8783 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8784 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8785 } else if (mddev->recovery_cp < MaxSector) { 8786 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8787 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8788 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8789 /* nothing to be done ... */ 8790 goto not_running; 8791 8792 if (mddev->pers->sync_request) { 8793 if (spares) { 8794 /* We are adding a device or devices to an array 8795 * which has the bitmap stored on all devices. 8796 * So make sure all bitmap pages get written 8797 */ 8798 bitmap_write_all(mddev->bitmap); 8799 } 8800 INIT_WORK(&mddev->del_work, md_start_sync); 8801 queue_work(md_misc_wq, &mddev->del_work); 8802 goto unlock; 8803 } 8804 not_running: 8805 if (!mddev->sync_thread) { 8806 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8807 wake_up(&resync_wait); 8808 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8809 &mddev->recovery)) 8810 if (mddev->sysfs_action) 8811 sysfs_notify_dirent_safe(mddev->sysfs_action); 8812 } 8813 unlock: 8814 wake_up(&mddev->sb_wait); 8815 mddev_unlock(mddev); 8816 } 8817 } 8818 EXPORT_SYMBOL(md_check_recovery); 8819 8820 void md_reap_sync_thread(struct mddev *mddev) 8821 { 8822 struct md_rdev *rdev; 8823 8824 /* resync has finished, collect result */ 8825 md_unregister_thread(&mddev->sync_thread); 8826 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8827 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8828 /* success...*/ 8829 /* activate any spares */ 8830 if (mddev->pers->spare_active(mddev)) { 8831 sysfs_notify(&mddev->kobj, NULL, 8832 "degraded"); 8833 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8834 } 8835 } 8836 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8837 mddev->pers->finish_reshape) 8838 mddev->pers->finish_reshape(mddev); 8839 8840 /* If array is no-longer degraded, then any saved_raid_disk 8841 * information must be scrapped. 8842 */ 8843 if (!mddev->degraded) 8844 rdev_for_each(rdev, mddev) 8845 rdev->saved_raid_disk = -1; 8846 8847 md_update_sb(mddev, 1); 8848 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 8849 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 8850 * clustered raid */ 8851 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 8852 md_cluster_ops->resync_finish(mddev); 8853 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8854 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8855 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8856 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8857 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8858 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8859 wake_up(&resync_wait); 8860 /* flag recovery needed just to double check */ 8861 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8862 sysfs_notify_dirent_safe(mddev->sysfs_action); 8863 md_new_event(mddev); 8864 if (mddev->event_work.func) 8865 queue_work(md_misc_wq, &mddev->event_work); 8866 } 8867 EXPORT_SYMBOL(md_reap_sync_thread); 8868 8869 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8870 { 8871 sysfs_notify_dirent_safe(rdev->sysfs_state); 8872 wait_event_timeout(rdev->blocked_wait, 8873 !test_bit(Blocked, &rdev->flags) && 8874 !test_bit(BlockedBadBlocks, &rdev->flags), 8875 msecs_to_jiffies(5000)); 8876 rdev_dec_pending(rdev, mddev); 8877 } 8878 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8879 8880 void md_finish_reshape(struct mddev *mddev) 8881 { 8882 /* called be personality module when reshape completes. */ 8883 struct md_rdev *rdev; 8884 8885 rdev_for_each(rdev, mddev) { 8886 if (rdev->data_offset > rdev->new_data_offset) 8887 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8888 else 8889 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8890 rdev->data_offset = rdev->new_data_offset; 8891 } 8892 } 8893 EXPORT_SYMBOL(md_finish_reshape); 8894 8895 /* Bad block management */ 8896 8897 /* Returns 1 on success, 0 on failure */ 8898 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8899 int is_new) 8900 { 8901 struct mddev *mddev = rdev->mddev; 8902 int rv; 8903 if (is_new) 8904 s += rdev->new_data_offset; 8905 else 8906 s += rdev->data_offset; 8907 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 8908 if (rv == 0) { 8909 /* Make sure they get written out promptly */ 8910 if (test_bit(ExternalBbl, &rdev->flags)) 8911 sysfs_notify(&rdev->kobj, NULL, 8912 "unacknowledged_bad_blocks"); 8913 sysfs_notify_dirent_safe(rdev->sysfs_state); 8914 set_mask_bits(&mddev->sb_flags, 0, 8915 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 8916 md_wakeup_thread(rdev->mddev->thread); 8917 return 1; 8918 } else 8919 return 0; 8920 } 8921 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8922 8923 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8924 int is_new) 8925 { 8926 int rv; 8927 if (is_new) 8928 s += rdev->new_data_offset; 8929 else 8930 s += rdev->data_offset; 8931 rv = badblocks_clear(&rdev->badblocks, s, sectors); 8932 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 8933 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 8934 return rv; 8935 } 8936 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8937 8938 static int md_notify_reboot(struct notifier_block *this, 8939 unsigned long code, void *x) 8940 { 8941 struct list_head *tmp; 8942 struct mddev *mddev; 8943 int need_delay = 0; 8944 8945 for_each_mddev(mddev, tmp) { 8946 if (mddev_trylock(mddev)) { 8947 if (mddev->pers) 8948 __md_stop_writes(mddev); 8949 if (mddev->persistent) 8950 mddev->safemode = 2; 8951 mddev_unlock(mddev); 8952 } 8953 need_delay = 1; 8954 } 8955 /* 8956 * certain more exotic SCSI devices are known to be 8957 * volatile wrt too early system reboots. While the 8958 * right place to handle this issue is the given 8959 * driver, we do want to have a safe RAID driver ... 8960 */ 8961 if (need_delay) 8962 mdelay(1000*1); 8963 8964 return NOTIFY_DONE; 8965 } 8966 8967 static struct notifier_block md_notifier = { 8968 .notifier_call = md_notify_reboot, 8969 .next = NULL, 8970 .priority = INT_MAX, /* before any real devices */ 8971 }; 8972 8973 static void md_geninit(void) 8974 { 8975 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8976 8977 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8978 } 8979 8980 static int __init md_init(void) 8981 { 8982 int ret = -ENOMEM; 8983 8984 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8985 if (!md_wq) 8986 goto err_wq; 8987 8988 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8989 if (!md_misc_wq) 8990 goto err_misc_wq; 8991 8992 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8993 goto err_md; 8994 8995 if ((ret = register_blkdev(0, "mdp")) < 0) 8996 goto err_mdp; 8997 mdp_major = ret; 8998 8999 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9000 md_probe, NULL, NULL); 9001 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9002 md_probe, NULL, NULL); 9003 9004 register_reboot_notifier(&md_notifier); 9005 raid_table_header = register_sysctl_table(raid_root_table); 9006 9007 md_geninit(); 9008 return 0; 9009 9010 err_mdp: 9011 unregister_blkdev(MD_MAJOR, "md"); 9012 err_md: 9013 destroy_workqueue(md_misc_wq); 9014 err_misc_wq: 9015 destroy_workqueue(md_wq); 9016 err_wq: 9017 return ret; 9018 } 9019 9020 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9021 { 9022 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9023 struct md_rdev *rdev2; 9024 int role, ret; 9025 char b[BDEVNAME_SIZE]; 9026 9027 /* 9028 * If size is changed in another node then we need to 9029 * do resize as well. 9030 */ 9031 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9032 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9033 if (ret) 9034 pr_info("md-cluster: resize failed\n"); 9035 else 9036 bitmap_update_sb(mddev->bitmap); 9037 } 9038 9039 /* Check for change of roles in the active devices */ 9040 rdev_for_each(rdev2, mddev) { 9041 if (test_bit(Faulty, &rdev2->flags)) 9042 continue; 9043 9044 /* Check if the roles changed */ 9045 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9046 9047 if (test_bit(Candidate, &rdev2->flags)) { 9048 if (role == 0xfffe) { 9049 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9050 md_kick_rdev_from_array(rdev2); 9051 continue; 9052 } 9053 else 9054 clear_bit(Candidate, &rdev2->flags); 9055 } 9056 9057 if (role != rdev2->raid_disk) { 9058 /* got activated */ 9059 if (rdev2->raid_disk == -1 && role != 0xffff) { 9060 rdev2->saved_raid_disk = role; 9061 ret = remove_and_add_spares(mddev, rdev2); 9062 pr_info("Activated spare: %s\n", 9063 bdevname(rdev2->bdev,b)); 9064 /* wakeup mddev->thread here, so array could 9065 * perform resync with the new activated disk */ 9066 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9067 md_wakeup_thread(mddev->thread); 9068 9069 } 9070 /* device faulty 9071 * We just want to do the minimum to mark the disk 9072 * as faulty. The recovery is performed by the 9073 * one who initiated the error. 9074 */ 9075 if ((role == 0xfffe) || (role == 0xfffd)) { 9076 md_error(mddev, rdev2); 9077 clear_bit(Blocked, &rdev2->flags); 9078 } 9079 } 9080 } 9081 9082 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9083 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9084 9085 /* Finally set the event to be up to date */ 9086 mddev->events = le64_to_cpu(sb->events); 9087 } 9088 9089 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9090 { 9091 int err; 9092 struct page *swapout = rdev->sb_page; 9093 struct mdp_superblock_1 *sb; 9094 9095 /* Store the sb page of the rdev in the swapout temporary 9096 * variable in case we err in the future 9097 */ 9098 rdev->sb_page = NULL; 9099 err = alloc_disk_sb(rdev); 9100 if (err == 0) { 9101 ClearPageUptodate(rdev->sb_page); 9102 rdev->sb_loaded = 0; 9103 err = super_types[mddev->major_version]. 9104 load_super(rdev, NULL, mddev->minor_version); 9105 } 9106 if (err < 0) { 9107 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9108 __func__, __LINE__, rdev->desc_nr, err); 9109 if (rdev->sb_page) 9110 put_page(rdev->sb_page); 9111 rdev->sb_page = swapout; 9112 rdev->sb_loaded = 1; 9113 return err; 9114 } 9115 9116 sb = page_address(rdev->sb_page); 9117 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9118 * is not set 9119 */ 9120 9121 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9122 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9123 9124 /* The other node finished recovery, call spare_active to set 9125 * device In_sync and mddev->degraded 9126 */ 9127 if (rdev->recovery_offset == MaxSector && 9128 !test_bit(In_sync, &rdev->flags) && 9129 mddev->pers->spare_active(mddev)) 9130 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9131 9132 put_page(swapout); 9133 return 0; 9134 } 9135 9136 void md_reload_sb(struct mddev *mddev, int nr) 9137 { 9138 struct md_rdev *rdev; 9139 int err; 9140 9141 /* Find the rdev */ 9142 rdev_for_each_rcu(rdev, mddev) { 9143 if (rdev->desc_nr == nr) 9144 break; 9145 } 9146 9147 if (!rdev || rdev->desc_nr != nr) { 9148 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9149 return; 9150 } 9151 9152 err = read_rdev(mddev, rdev); 9153 if (err < 0) 9154 return; 9155 9156 check_sb_changes(mddev, rdev); 9157 9158 /* Read all rdev's to update recovery_offset */ 9159 rdev_for_each_rcu(rdev, mddev) 9160 read_rdev(mddev, rdev); 9161 } 9162 EXPORT_SYMBOL(md_reload_sb); 9163 9164 #ifndef MODULE 9165 9166 /* 9167 * Searches all registered partitions for autorun RAID arrays 9168 * at boot time. 9169 */ 9170 9171 static DEFINE_MUTEX(detected_devices_mutex); 9172 static LIST_HEAD(all_detected_devices); 9173 struct detected_devices_node { 9174 struct list_head list; 9175 dev_t dev; 9176 }; 9177 9178 void md_autodetect_dev(dev_t dev) 9179 { 9180 struct detected_devices_node *node_detected_dev; 9181 9182 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9183 if (node_detected_dev) { 9184 node_detected_dev->dev = dev; 9185 mutex_lock(&detected_devices_mutex); 9186 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9187 mutex_unlock(&detected_devices_mutex); 9188 } 9189 } 9190 9191 static void autostart_arrays(int part) 9192 { 9193 struct md_rdev *rdev; 9194 struct detected_devices_node *node_detected_dev; 9195 dev_t dev; 9196 int i_scanned, i_passed; 9197 9198 i_scanned = 0; 9199 i_passed = 0; 9200 9201 pr_info("md: Autodetecting RAID arrays.\n"); 9202 9203 mutex_lock(&detected_devices_mutex); 9204 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9205 i_scanned++; 9206 node_detected_dev = list_entry(all_detected_devices.next, 9207 struct detected_devices_node, list); 9208 list_del(&node_detected_dev->list); 9209 dev = node_detected_dev->dev; 9210 kfree(node_detected_dev); 9211 mutex_unlock(&detected_devices_mutex); 9212 rdev = md_import_device(dev,0, 90); 9213 mutex_lock(&detected_devices_mutex); 9214 if (IS_ERR(rdev)) 9215 continue; 9216 9217 if (test_bit(Faulty, &rdev->flags)) 9218 continue; 9219 9220 set_bit(AutoDetected, &rdev->flags); 9221 list_add(&rdev->same_set, &pending_raid_disks); 9222 i_passed++; 9223 } 9224 mutex_unlock(&detected_devices_mutex); 9225 9226 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9227 9228 autorun_devices(part); 9229 } 9230 9231 #endif /* !MODULE */ 9232 9233 static __exit void md_exit(void) 9234 { 9235 struct mddev *mddev; 9236 struct list_head *tmp; 9237 int delay = 1; 9238 9239 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9240 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9241 9242 unregister_blkdev(MD_MAJOR,"md"); 9243 unregister_blkdev(mdp_major, "mdp"); 9244 unregister_reboot_notifier(&md_notifier); 9245 unregister_sysctl_table(raid_table_header); 9246 9247 /* We cannot unload the modules while some process is 9248 * waiting for us in select() or poll() - wake them up 9249 */ 9250 md_unloading = 1; 9251 while (waitqueue_active(&md_event_waiters)) { 9252 /* not safe to leave yet */ 9253 wake_up(&md_event_waiters); 9254 msleep(delay); 9255 delay += delay; 9256 } 9257 remove_proc_entry("mdstat", NULL); 9258 9259 for_each_mddev(mddev, tmp) { 9260 export_array(mddev); 9261 mddev->ctime = 0; 9262 mddev->hold_active = 0; 9263 /* 9264 * for_each_mddev() will call mddev_put() at the end of each 9265 * iteration. As the mddev is now fully clear, this will 9266 * schedule the mddev for destruction by a workqueue, and the 9267 * destroy_workqueue() below will wait for that to complete. 9268 */ 9269 } 9270 destroy_workqueue(md_misc_wq); 9271 destroy_workqueue(md_wq); 9272 } 9273 9274 subsys_initcall(md_init); 9275 module_exit(md_exit) 9276 9277 static int get_ro(char *buffer, struct kernel_param *kp) 9278 { 9279 return sprintf(buffer, "%d", start_readonly); 9280 } 9281 static int set_ro(const char *val, struct kernel_param *kp) 9282 { 9283 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9284 } 9285 9286 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9287 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9288 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9289 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9290 9291 MODULE_LICENSE("GPL"); 9292 MODULE_DESCRIPTION("MD RAID framework"); 9293 MODULE_ALIAS("md"); 9294 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9295