1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected by pers_lock. */ 74 static LIST_HEAD(pers_list); 75 static DEFINE_SPINLOCK(pers_lock); 76 77 static const struct kobj_type md_ktype; 78 79 struct md_cluster_operations *md_cluster_ops; 80 EXPORT_SYMBOL(md_cluster_ops); 81 static struct module *md_cluster_mod; 82 83 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 84 static struct workqueue_struct *md_wq; 85 static struct workqueue_struct *md_misc_wq; 86 struct workqueue_struct *md_bitmap_wq; 87 88 static int remove_and_add_spares(struct mddev *mddev, 89 struct md_rdev *this); 90 static void mddev_detach(struct mddev *mddev); 91 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev); 92 static void md_wakeup_thread_directly(struct md_thread __rcu *thread); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static int start_readonly; 312 313 /* 314 * The original mechanism for creating an md device is to create 315 * a device node in /dev and to open it. This causes races with device-close. 316 * The preferred method is to write to the "new_array" module parameter. 317 * This can avoid races. 318 * Setting create_on_open to false disables the original mechanism 319 * so all the races disappear. 320 */ 321 static bool create_on_open = true; 322 323 /* 324 * We have a system wide 'event count' that is incremented 325 * on any 'interesting' event, and readers of /proc/mdstat 326 * can use 'poll' or 'select' to find out when the event 327 * count increases. 328 * 329 * Events are: 330 * start array, stop array, error, add device, remove device, 331 * start build, activate spare 332 */ 333 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 334 static atomic_t md_event_count; 335 void md_new_event(void) 336 { 337 atomic_inc(&md_event_count); 338 wake_up(&md_event_waiters); 339 } 340 EXPORT_SYMBOL_GPL(md_new_event); 341 342 /* 343 * Enables to iterate over all existing md arrays 344 * all_mddevs_lock protects this list. 345 */ 346 static LIST_HEAD(all_mddevs); 347 static DEFINE_SPINLOCK(all_mddevs_lock); 348 349 /* Rather than calling directly into the personality make_request function, 350 * IO requests come here first so that we can check if the device is 351 * being suspended pending a reconfiguration. 352 * We hold a refcount over the call to ->make_request. By the time that 353 * call has finished, the bio has been linked into some internal structure 354 * and so is visible to ->quiesce(), so we don't need the refcount any more. 355 */ 356 static bool is_suspended(struct mddev *mddev, struct bio *bio) 357 { 358 if (is_md_suspended(mddev)) 359 return true; 360 if (bio_data_dir(bio) != WRITE) 361 return false; 362 if (mddev->suspend_lo >= mddev->suspend_hi) 363 return false; 364 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 365 return false; 366 if (bio_end_sector(bio) < mddev->suspend_lo) 367 return false; 368 return true; 369 } 370 371 void md_handle_request(struct mddev *mddev, struct bio *bio) 372 { 373 check_suspended: 374 if (is_suspended(mddev, bio)) { 375 DEFINE_WAIT(__wait); 376 /* Bail out if REQ_NOWAIT is set for the bio */ 377 if (bio->bi_opf & REQ_NOWAIT) { 378 bio_wouldblock_error(bio); 379 return; 380 } 381 for (;;) { 382 prepare_to_wait(&mddev->sb_wait, &__wait, 383 TASK_UNINTERRUPTIBLE); 384 if (!is_suspended(mddev, bio)) 385 break; 386 schedule(); 387 } 388 finish_wait(&mddev->sb_wait, &__wait); 389 } 390 if (!percpu_ref_tryget_live(&mddev->active_io)) 391 goto check_suspended; 392 393 if (!mddev->pers->make_request(mddev, bio)) { 394 percpu_ref_put(&mddev->active_io); 395 goto check_suspended; 396 } 397 398 percpu_ref_put(&mddev->active_io); 399 } 400 EXPORT_SYMBOL(md_handle_request); 401 402 static void md_submit_bio(struct bio *bio) 403 { 404 const int rw = bio_data_dir(bio); 405 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 406 407 if (mddev == NULL || mddev->pers == NULL) { 408 bio_io_error(bio); 409 return; 410 } 411 412 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 413 bio_io_error(bio); 414 return; 415 } 416 417 bio = bio_split_to_limits(bio); 418 if (!bio) 419 return; 420 421 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 422 if (bio_sectors(bio) != 0) 423 bio->bi_status = BLK_STS_IOERR; 424 bio_endio(bio); 425 return; 426 } 427 428 /* bio could be mergeable after passing to underlayer */ 429 bio->bi_opf &= ~REQ_NOMERGE; 430 431 md_handle_request(mddev, bio); 432 } 433 434 /* mddev_suspend makes sure no new requests are submitted 435 * to the device, and that any requests that have been submitted 436 * are completely handled. 437 * Once mddev_detach() is called and completes, the module will be 438 * completely unused. 439 */ 440 void mddev_suspend(struct mddev *mddev) 441 { 442 struct md_thread *thread = rcu_dereference_protected(mddev->thread, 443 lockdep_is_held(&mddev->reconfig_mutex)); 444 445 WARN_ON_ONCE(thread && current == thread->tsk); 446 if (mddev->suspended++) 447 return; 448 wake_up(&mddev->sb_wait); 449 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 450 percpu_ref_kill(&mddev->active_io); 451 452 if (mddev->pers->prepare_suspend) 453 mddev->pers->prepare_suspend(mddev); 454 455 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io)); 456 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 457 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 458 459 del_timer_sync(&mddev->safemode_timer); 460 /* restrict memory reclaim I/O during raid array is suspend */ 461 mddev->noio_flag = memalloc_noio_save(); 462 } 463 EXPORT_SYMBOL_GPL(mddev_suspend); 464 465 void mddev_resume(struct mddev *mddev) 466 { 467 lockdep_assert_held(&mddev->reconfig_mutex); 468 if (--mddev->suspended) 469 return; 470 471 /* entred the memalloc scope from mddev_suspend() */ 472 memalloc_noio_restore(mddev->noio_flag); 473 474 percpu_ref_resurrect(&mddev->active_io); 475 wake_up(&mddev->sb_wait); 476 477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 478 md_wakeup_thread(mddev->thread); 479 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 480 } 481 EXPORT_SYMBOL_GPL(mddev_resume); 482 483 /* 484 * Generic flush handling for md 485 */ 486 487 static void md_end_flush(struct bio *bio) 488 { 489 struct md_rdev *rdev = bio->bi_private; 490 struct mddev *mddev = rdev->mddev; 491 492 bio_put(bio); 493 494 rdev_dec_pending(rdev, mddev); 495 496 if (atomic_dec_and_test(&mddev->flush_pending)) { 497 /* The pre-request flush has finished */ 498 queue_work(md_wq, &mddev->flush_work); 499 } 500 } 501 502 static void md_submit_flush_data(struct work_struct *ws); 503 504 static void submit_flushes(struct work_struct *ws) 505 { 506 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 507 struct md_rdev *rdev; 508 509 mddev->start_flush = ktime_get_boottime(); 510 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 511 atomic_set(&mddev->flush_pending, 1); 512 rcu_read_lock(); 513 rdev_for_each_rcu(rdev, mddev) 514 if (rdev->raid_disk >= 0 && 515 !test_bit(Faulty, &rdev->flags)) { 516 /* Take two references, one is dropped 517 * when request finishes, one after 518 * we reclaim rcu_read_lock 519 */ 520 struct bio *bi; 521 atomic_inc(&rdev->nr_pending); 522 atomic_inc(&rdev->nr_pending); 523 rcu_read_unlock(); 524 bi = bio_alloc_bioset(rdev->bdev, 0, 525 REQ_OP_WRITE | REQ_PREFLUSH, 526 GFP_NOIO, &mddev->bio_set); 527 bi->bi_end_io = md_end_flush; 528 bi->bi_private = rdev; 529 atomic_inc(&mddev->flush_pending); 530 submit_bio(bi); 531 rcu_read_lock(); 532 rdev_dec_pending(rdev, mddev); 533 } 534 rcu_read_unlock(); 535 if (atomic_dec_and_test(&mddev->flush_pending)) 536 queue_work(md_wq, &mddev->flush_work); 537 } 538 539 static void md_submit_flush_data(struct work_struct *ws) 540 { 541 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 542 struct bio *bio = mddev->flush_bio; 543 544 /* 545 * must reset flush_bio before calling into md_handle_request to avoid a 546 * deadlock, because other bios passed md_handle_request suspend check 547 * could wait for this and below md_handle_request could wait for those 548 * bios because of suspend check 549 */ 550 spin_lock_irq(&mddev->lock); 551 mddev->prev_flush_start = mddev->start_flush; 552 mddev->flush_bio = NULL; 553 spin_unlock_irq(&mddev->lock); 554 wake_up(&mddev->sb_wait); 555 556 if (bio->bi_iter.bi_size == 0) { 557 /* an empty barrier - all done */ 558 bio_endio(bio); 559 } else { 560 bio->bi_opf &= ~REQ_PREFLUSH; 561 md_handle_request(mddev, bio); 562 } 563 } 564 565 /* 566 * Manages consolidation of flushes and submitting any flushes needed for 567 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 568 * being finished in another context. Returns false if the flushing is 569 * complete but still needs the I/O portion of the bio to be processed. 570 */ 571 bool md_flush_request(struct mddev *mddev, struct bio *bio) 572 { 573 ktime_t req_start = ktime_get_boottime(); 574 spin_lock_irq(&mddev->lock); 575 /* flush requests wait until ongoing flush completes, 576 * hence coalescing all the pending requests. 577 */ 578 wait_event_lock_irq(mddev->sb_wait, 579 !mddev->flush_bio || 580 ktime_before(req_start, mddev->prev_flush_start), 581 mddev->lock); 582 /* new request after previous flush is completed */ 583 if (ktime_after(req_start, mddev->prev_flush_start)) { 584 WARN_ON(mddev->flush_bio); 585 mddev->flush_bio = bio; 586 bio = NULL; 587 } 588 spin_unlock_irq(&mddev->lock); 589 590 if (!bio) { 591 INIT_WORK(&mddev->flush_work, submit_flushes); 592 queue_work(md_wq, &mddev->flush_work); 593 } else { 594 /* flush was performed for some other bio while we waited. */ 595 if (bio->bi_iter.bi_size == 0) 596 /* an empty barrier - all done */ 597 bio_endio(bio); 598 else { 599 bio->bi_opf &= ~REQ_PREFLUSH; 600 return false; 601 } 602 } 603 return true; 604 } 605 EXPORT_SYMBOL(md_flush_request); 606 607 static inline struct mddev *mddev_get(struct mddev *mddev) 608 { 609 lockdep_assert_held(&all_mddevs_lock); 610 611 if (test_bit(MD_DELETED, &mddev->flags)) 612 return NULL; 613 atomic_inc(&mddev->active); 614 return mddev; 615 } 616 617 static void mddev_delayed_delete(struct work_struct *ws); 618 619 void mddev_put(struct mddev *mddev) 620 { 621 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 622 return; 623 if (!mddev->raid_disks && list_empty(&mddev->disks) && 624 mddev->ctime == 0 && !mddev->hold_active) { 625 /* Array is not configured at all, and not held active, 626 * so destroy it */ 627 set_bit(MD_DELETED, &mddev->flags); 628 629 /* 630 * Call queue_work inside the spinlock so that 631 * flush_workqueue() after mddev_find will succeed in waiting 632 * for the work to be done. 633 */ 634 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 635 queue_work(md_misc_wq, &mddev->del_work); 636 } 637 spin_unlock(&all_mddevs_lock); 638 } 639 640 static void md_safemode_timeout(struct timer_list *t); 641 642 void mddev_init(struct mddev *mddev) 643 { 644 mutex_init(&mddev->open_mutex); 645 mutex_init(&mddev->reconfig_mutex); 646 mutex_init(&mddev->sync_mutex); 647 mutex_init(&mddev->bitmap_info.mutex); 648 INIT_LIST_HEAD(&mddev->disks); 649 INIT_LIST_HEAD(&mddev->all_mddevs); 650 INIT_LIST_HEAD(&mddev->deleting); 651 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 652 atomic_set(&mddev->active, 1); 653 atomic_set(&mddev->openers, 0); 654 atomic_set(&mddev->sync_seq, 0); 655 spin_lock_init(&mddev->lock); 656 atomic_set(&mddev->flush_pending, 0); 657 init_waitqueue_head(&mddev->sb_wait); 658 init_waitqueue_head(&mddev->recovery_wait); 659 mddev->reshape_position = MaxSector; 660 mddev->reshape_backwards = 0; 661 mddev->last_sync_action = "none"; 662 mddev->resync_min = 0; 663 mddev->resync_max = MaxSector; 664 mddev->level = LEVEL_NONE; 665 } 666 EXPORT_SYMBOL_GPL(mddev_init); 667 668 static struct mddev *mddev_find_locked(dev_t unit) 669 { 670 struct mddev *mddev; 671 672 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 673 if (mddev->unit == unit) 674 return mddev; 675 676 return NULL; 677 } 678 679 /* find an unused unit number */ 680 static dev_t mddev_alloc_unit(void) 681 { 682 static int next_minor = 512; 683 int start = next_minor; 684 bool is_free = 0; 685 dev_t dev = 0; 686 687 while (!is_free) { 688 dev = MKDEV(MD_MAJOR, next_minor); 689 next_minor++; 690 if (next_minor > MINORMASK) 691 next_minor = 0; 692 if (next_minor == start) 693 return 0; /* Oh dear, all in use. */ 694 is_free = !mddev_find_locked(dev); 695 } 696 697 return dev; 698 } 699 700 static struct mddev *mddev_alloc(dev_t unit) 701 { 702 struct mddev *new; 703 int error; 704 705 if (unit && MAJOR(unit) != MD_MAJOR) 706 unit &= ~((1 << MdpMinorShift) - 1); 707 708 new = kzalloc(sizeof(*new), GFP_KERNEL); 709 if (!new) 710 return ERR_PTR(-ENOMEM); 711 mddev_init(new); 712 713 spin_lock(&all_mddevs_lock); 714 if (unit) { 715 error = -EEXIST; 716 if (mddev_find_locked(unit)) 717 goto out_free_new; 718 new->unit = unit; 719 if (MAJOR(unit) == MD_MAJOR) 720 new->md_minor = MINOR(unit); 721 else 722 new->md_minor = MINOR(unit) >> MdpMinorShift; 723 new->hold_active = UNTIL_IOCTL; 724 } else { 725 error = -ENODEV; 726 new->unit = mddev_alloc_unit(); 727 if (!new->unit) 728 goto out_free_new; 729 new->md_minor = MINOR(new->unit); 730 new->hold_active = UNTIL_STOP; 731 } 732 733 list_add(&new->all_mddevs, &all_mddevs); 734 spin_unlock(&all_mddevs_lock); 735 return new; 736 out_free_new: 737 spin_unlock(&all_mddevs_lock); 738 kfree(new); 739 return ERR_PTR(error); 740 } 741 742 static void mddev_free(struct mddev *mddev) 743 { 744 spin_lock(&all_mddevs_lock); 745 list_del(&mddev->all_mddevs); 746 spin_unlock(&all_mddevs_lock); 747 748 kfree(mddev); 749 } 750 751 static const struct attribute_group md_redundancy_group; 752 753 void mddev_unlock(struct mddev *mddev) 754 { 755 struct md_rdev *rdev; 756 struct md_rdev *tmp; 757 LIST_HEAD(delete); 758 759 if (!list_empty(&mddev->deleting)) 760 list_splice_init(&mddev->deleting, &delete); 761 762 if (mddev->to_remove) { 763 /* These cannot be removed under reconfig_mutex as 764 * an access to the files will try to take reconfig_mutex 765 * while holding the file unremovable, which leads to 766 * a deadlock. 767 * So hold set sysfs_active while the remove in happeing, 768 * and anything else which might set ->to_remove or my 769 * otherwise change the sysfs namespace will fail with 770 * -EBUSY if sysfs_active is still set. 771 * We set sysfs_active under reconfig_mutex and elsewhere 772 * test it under the same mutex to ensure its correct value 773 * is seen. 774 */ 775 const struct attribute_group *to_remove = mddev->to_remove; 776 mddev->to_remove = NULL; 777 mddev->sysfs_active = 1; 778 mutex_unlock(&mddev->reconfig_mutex); 779 780 if (mddev->kobj.sd) { 781 if (to_remove != &md_redundancy_group) 782 sysfs_remove_group(&mddev->kobj, to_remove); 783 if (mddev->pers == NULL || 784 mddev->pers->sync_request == NULL) { 785 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 786 if (mddev->sysfs_action) 787 sysfs_put(mddev->sysfs_action); 788 if (mddev->sysfs_completed) 789 sysfs_put(mddev->sysfs_completed); 790 if (mddev->sysfs_degraded) 791 sysfs_put(mddev->sysfs_degraded); 792 mddev->sysfs_action = NULL; 793 mddev->sysfs_completed = NULL; 794 mddev->sysfs_degraded = NULL; 795 } 796 } 797 mddev->sysfs_active = 0; 798 } else 799 mutex_unlock(&mddev->reconfig_mutex); 800 801 md_wakeup_thread(mddev->thread); 802 wake_up(&mddev->sb_wait); 803 804 list_for_each_entry_safe(rdev, tmp, &delete, same_set) { 805 list_del_init(&rdev->same_set); 806 kobject_del(&rdev->kobj); 807 export_rdev(rdev, mddev); 808 } 809 } 810 EXPORT_SYMBOL_GPL(mddev_unlock); 811 812 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 813 { 814 struct md_rdev *rdev; 815 816 rdev_for_each_rcu(rdev, mddev) 817 if (rdev->desc_nr == nr) 818 return rdev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 823 824 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 825 { 826 struct md_rdev *rdev; 827 828 rdev_for_each(rdev, mddev) 829 if (rdev->bdev->bd_dev == dev) 830 return rdev; 831 832 return NULL; 833 } 834 835 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 836 { 837 struct md_rdev *rdev; 838 839 rdev_for_each_rcu(rdev, mddev) 840 if (rdev->bdev->bd_dev == dev) 841 return rdev; 842 843 return NULL; 844 } 845 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 846 847 static struct md_personality *find_pers(int level, char *clevel) 848 { 849 struct md_personality *pers; 850 list_for_each_entry(pers, &pers_list, list) { 851 if (level != LEVEL_NONE && pers->level == level) 852 return pers; 853 if (strcmp(pers->name, clevel)==0) 854 return pers; 855 } 856 return NULL; 857 } 858 859 /* return the offset of the super block in 512byte sectors */ 860 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 861 { 862 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 863 } 864 865 static int alloc_disk_sb(struct md_rdev *rdev) 866 { 867 rdev->sb_page = alloc_page(GFP_KERNEL); 868 if (!rdev->sb_page) 869 return -ENOMEM; 870 return 0; 871 } 872 873 void md_rdev_clear(struct md_rdev *rdev) 874 { 875 if (rdev->sb_page) { 876 put_page(rdev->sb_page); 877 rdev->sb_loaded = 0; 878 rdev->sb_page = NULL; 879 rdev->sb_start = 0; 880 rdev->sectors = 0; 881 } 882 if (rdev->bb_page) { 883 put_page(rdev->bb_page); 884 rdev->bb_page = NULL; 885 } 886 badblocks_exit(&rdev->badblocks); 887 } 888 EXPORT_SYMBOL_GPL(md_rdev_clear); 889 890 static void super_written(struct bio *bio) 891 { 892 struct md_rdev *rdev = bio->bi_private; 893 struct mddev *mddev = rdev->mddev; 894 895 if (bio->bi_status) { 896 pr_err("md: %s gets error=%d\n", __func__, 897 blk_status_to_errno(bio->bi_status)); 898 md_error(mddev, rdev); 899 if (!test_bit(Faulty, &rdev->flags) 900 && (bio->bi_opf & MD_FAILFAST)) { 901 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 902 set_bit(LastDev, &rdev->flags); 903 } 904 } else 905 clear_bit(LastDev, &rdev->flags); 906 907 bio_put(bio); 908 909 rdev_dec_pending(rdev, mddev); 910 911 if (atomic_dec_and_test(&mddev->pending_writes)) 912 wake_up(&mddev->sb_wait); 913 } 914 915 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 916 sector_t sector, int size, struct page *page) 917 { 918 /* write first size bytes of page to sector of rdev 919 * Increment mddev->pending_writes before returning 920 * and decrement it on completion, waking up sb_wait 921 * if zero is reached. 922 * If an error occurred, call md_error 923 */ 924 struct bio *bio; 925 926 if (!page) 927 return; 928 929 if (test_bit(Faulty, &rdev->flags)) 930 return; 931 932 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 933 1, 934 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 935 GFP_NOIO, &mddev->sync_set); 936 937 atomic_inc(&rdev->nr_pending); 938 939 bio->bi_iter.bi_sector = sector; 940 __bio_add_page(bio, page, size, 0); 941 bio->bi_private = rdev; 942 bio->bi_end_io = super_written; 943 944 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 945 test_bit(FailFast, &rdev->flags) && 946 !test_bit(LastDev, &rdev->flags)) 947 bio->bi_opf |= MD_FAILFAST; 948 949 atomic_inc(&mddev->pending_writes); 950 submit_bio(bio); 951 } 952 953 int md_super_wait(struct mddev *mddev) 954 { 955 /* wait for all superblock writes that were scheduled to complete */ 956 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 957 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 958 return -EAGAIN; 959 return 0; 960 } 961 962 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 963 struct page *page, blk_opf_t opf, bool metadata_op) 964 { 965 struct bio bio; 966 struct bio_vec bvec; 967 968 if (metadata_op && rdev->meta_bdev) 969 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 970 else 971 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 972 973 if (metadata_op) 974 bio.bi_iter.bi_sector = sector + rdev->sb_start; 975 else if (rdev->mddev->reshape_position != MaxSector && 976 (rdev->mddev->reshape_backwards == 977 (sector >= rdev->mddev->reshape_position))) 978 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 979 else 980 bio.bi_iter.bi_sector = sector + rdev->data_offset; 981 __bio_add_page(&bio, page, size, 0); 982 983 submit_bio_wait(&bio); 984 985 return !bio.bi_status; 986 } 987 EXPORT_SYMBOL_GPL(sync_page_io); 988 989 static int read_disk_sb(struct md_rdev *rdev, int size) 990 { 991 if (rdev->sb_loaded) 992 return 0; 993 994 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 995 goto fail; 996 rdev->sb_loaded = 1; 997 return 0; 998 999 fail: 1000 pr_err("md: disabled device %pg, could not read superblock.\n", 1001 rdev->bdev); 1002 return -EINVAL; 1003 } 1004 1005 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1006 { 1007 return sb1->set_uuid0 == sb2->set_uuid0 && 1008 sb1->set_uuid1 == sb2->set_uuid1 && 1009 sb1->set_uuid2 == sb2->set_uuid2 && 1010 sb1->set_uuid3 == sb2->set_uuid3; 1011 } 1012 1013 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1014 { 1015 int ret; 1016 mdp_super_t *tmp1, *tmp2; 1017 1018 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1019 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1020 1021 if (!tmp1 || !tmp2) { 1022 ret = 0; 1023 goto abort; 1024 } 1025 1026 *tmp1 = *sb1; 1027 *tmp2 = *sb2; 1028 1029 /* 1030 * nr_disks is not constant 1031 */ 1032 tmp1->nr_disks = 0; 1033 tmp2->nr_disks = 0; 1034 1035 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1036 abort: 1037 kfree(tmp1); 1038 kfree(tmp2); 1039 return ret; 1040 } 1041 1042 static u32 md_csum_fold(u32 csum) 1043 { 1044 csum = (csum & 0xffff) + (csum >> 16); 1045 return (csum & 0xffff) + (csum >> 16); 1046 } 1047 1048 static unsigned int calc_sb_csum(mdp_super_t *sb) 1049 { 1050 u64 newcsum = 0; 1051 u32 *sb32 = (u32*)sb; 1052 int i; 1053 unsigned int disk_csum, csum; 1054 1055 disk_csum = sb->sb_csum; 1056 sb->sb_csum = 0; 1057 1058 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1059 newcsum += sb32[i]; 1060 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1061 1062 #ifdef CONFIG_ALPHA 1063 /* This used to use csum_partial, which was wrong for several 1064 * reasons including that different results are returned on 1065 * different architectures. It isn't critical that we get exactly 1066 * the same return value as before (we always csum_fold before 1067 * testing, and that removes any differences). However as we 1068 * know that csum_partial always returned a 16bit value on 1069 * alphas, do a fold to maximise conformity to previous behaviour. 1070 */ 1071 sb->sb_csum = md_csum_fold(disk_csum); 1072 #else 1073 sb->sb_csum = disk_csum; 1074 #endif 1075 return csum; 1076 } 1077 1078 /* 1079 * Handle superblock details. 1080 * We want to be able to handle multiple superblock formats 1081 * so we have a common interface to them all, and an array of 1082 * different handlers. 1083 * We rely on user-space to write the initial superblock, and support 1084 * reading and updating of superblocks. 1085 * Interface methods are: 1086 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1087 * loads and validates a superblock on dev. 1088 * if refdev != NULL, compare superblocks on both devices 1089 * Return: 1090 * 0 - dev has a superblock that is compatible with refdev 1091 * 1 - dev has a superblock that is compatible and newer than refdev 1092 * so dev should be used as the refdev in future 1093 * -EINVAL superblock incompatible or invalid 1094 * -othererror e.g. -EIO 1095 * 1096 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1097 * Verify that dev is acceptable into mddev. 1098 * The first time, mddev->raid_disks will be 0, and data from 1099 * dev should be merged in. Subsequent calls check that dev 1100 * is new enough. Return 0 or -EINVAL 1101 * 1102 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1103 * Update the superblock for rdev with data in mddev 1104 * This does not write to disc. 1105 * 1106 */ 1107 1108 struct super_type { 1109 char *name; 1110 struct module *owner; 1111 int (*load_super)(struct md_rdev *rdev, 1112 struct md_rdev *refdev, 1113 int minor_version); 1114 int (*validate_super)(struct mddev *mddev, 1115 struct md_rdev *rdev); 1116 void (*sync_super)(struct mddev *mddev, 1117 struct md_rdev *rdev); 1118 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1119 sector_t num_sectors); 1120 int (*allow_new_offset)(struct md_rdev *rdev, 1121 unsigned long long new_offset); 1122 }; 1123 1124 /* 1125 * Check that the given mddev has no bitmap. 1126 * 1127 * This function is called from the run method of all personalities that do not 1128 * support bitmaps. It prints an error message and returns non-zero if mddev 1129 * has a bitmap. Otherwise, it returns 0. 1130 * 1131 */ 1132 int md_check_no_bitmap(struct mddev *mddev) 1133 { 1134 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1135 return 0; 1136 pr_warn("%s: bitmaps are not supported for %s\n", 1137 mdname(mddev), mddev->pers->name); 1138 return 1; 1139 } 1140 EXPORT_SYMBOL(md_check_no_bitmap); 1141 1142 /* 1143 * load_super for 0.90.0 1144 */ 1145 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1146 { 1147 mdp_super_t *sb; 1148 int ret; 1149 bool spare_disk = true; 1150 1151 /* 1152 * Calculate the position of the superblock (512byte sectors), 1153 * it's at the end of the disk. 1154 * 1155 * It also happens to be a multiple of 4Kb. 1156 */ 1157 rdev->sb_start = calc_dev_sboffset(rdev); 1158 1159 ret = read_disk_sb(rdev, MD_SB_BYTES); 1160 if (ret) 1161 return ret; 1162 1163 ret = -EINVAL; 1164 1165 sb = page_address(rdev->sb_page); 1166 1167 if (sb->md_magic != MD_SB_MAGIC) { 1168 pr_warn("md: invalid raid superblock magic on %pg\n", 1169 rdev->bdev); 1170 goto abort; 1171 } 1172 1173 if (sb->major_version != 0 || 1174 sb->minor_version < 90 || 1175 sb->minor_version > 91) { 1176 pr_warn("Bad version number %d.%d on %pg\n", 1177 sb->major_version, sb->minor_version, rdev->bdev); 1178 goto abort; 1179 } 1180 1181 if (sb->raid_disks <= 0) 1182 goto abort; 1183 1184 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1185 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1186 goto abort; 1187 } 1188 1189 rdev->preferred_minor = sb->md_minor; 1190 rdev->data_offset = 0; 1191 rdev->new_data_offset = 0; 1192 rdev->sb_size = MD_SB_BYTES; 1193 rdev->badblocks.shift = -1; 1194 1195 if (sb->level == LEVEL_MULTIPATH) 1196 rdev->desc_nr = -1; 1197 else 1198 rdev->desc_nr = sb->this_disk.number; 1199 1200 /* not spare disk, or LEVEL_MULTIPATH */ 1201 if (sb->level == LEVEL_MULTIPATH || 1202 (rdev->desc_nr >= 0 && 1203 rdev->desc_nr < MD_SB_DISKS && 1204 sb->disks[rdev->desc_nr].state & 1205 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1206 spare_disk = false; 1207 1208 if (!refdev) { 1209 if (!spare_disk) 1210 ret = 1; 1211 else 1212 ret = 0; 1213 } else { 1214 __u64 ev1, ev2; 1215 mdp_super_t *refsb = page_address(refdev->sb_page); 1216 if (!md_uuid_equal(refsb, sb)) { 1217 pr_warn("md: %pg has different UUID to %pg\n", 1218 rdev->bdev, refdev->bdev); 1219 goto abort; 1220 } 1221 if (!md_sb_equal(refsb, sb)) { 1222 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1223 rdev->bdev, refdev->bdev); 1224 goto abort; 1225 } 1226 ev1 = md_event(sb); 1227 ev2 = md_event(refsb); 1228 1229 if (!spare_disk && ev1 > ev2) 1230 ret = 1; 1231 else 1232 ret = 0; 1233 } 1234 rdev->sectors = rdev->sb_start; 1235 /* Limit to 4TB as metadata cannot record more than that. 1236 * (not needed for Linear and RAID0 as metadata doesn't 1237 * record this size) 1238 */ 1239 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1240 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1241 1242 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1243 /* "this cannot possibly happen" ... */ 1244 ret = -EINVAL; 1245 1246 abort: 1247 return ret; 1248 } 1249 1250 /* 1251 * validate_super for 0.90.0 1252 */ 1253 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1254 { 1255 mdp_disk_t *desc; 1256 mdp_super_t *sb = page_address(rdev->sb_page); 1257 __u64 ev1 = md_event(sb); 1258 1259 rdev->raid_disk = -1; 1260 clear_bit(Faulty, &rdev->flags); 1261 clear_bit(In_sync, &rdev->flags); 1262 clear_bit(Bitmap_sync, &rdev->flags); 1263 clear_bit(WriteMostly, &rdev->flags); 1264 1265 if (mddev->raid_disks == 0) { 1266 mddev->major_version = 0; 1267 mddev->minor_version = sb->minor_version; 1268 mddev->patch_version = sb->patch_version; 1269 mddev->external = 0; 1270 mddev->chunk_sectors = sb->chunk_size >> 9; 1271 mddev->ctime = sb->ctime; 1272 mddev->utime = sb->utime; 1273 mddev->level = sb->level; 1274 mddev->clevel[0] = 0; 1275 mddev->layout = sb->layout; 1276 mddev->raid_disks = sb->raid_disks; 1277 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1278 mddev->events = ev1; 1279 mddev->bitmap_info.offset = 0; 1280 mddev->bitmap_info.space = 0; 1281 /* bitmap can use 60 K after the 4K superblocks */ 1282 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1283 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1284 mddev->reshape_backwards = 0; 1285 1286 if (mddev->minor_version >= 91) { 1287 mddev->reshape_position = sb->reshape_position; 1288 mddev->delta_disks = sb->delta_disks; 1289 mddev->new_level = sb->new_level; 1290 mddev->new_layout = sb->new_layout; 1291 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1292 if (mddev->delta_disks < 0) 1293 mddev->reshape_backwards = 1; 1294 } else { 1295 mddev->reshape_position = MaxSector; 1296 mddev->delta_disks = 0; 1297 mddev->new_level = mddev->level; 1298 mddev->new_layout = mddev->layout; 1299 mddev->new_chunk_sectors = mddev->chunk_sectors; 1300 } 1301 if (mddev->level == 0) 1302 mddev->layout = -1; 1303 1304 if (sb->state & (1<<MD_SB_CLEAN)) 1305 mddev->recovery_cp = MaxSector; 1306 else { 1307 if (sb->events_hi == sb->cp_events_hi && 1308 sb->events_lo == sb->cp_events_lo) { 1309 mddev->recovery_cp = sb->recovery_cp; 1310 } else 1311 mddev->recovery_cp = 0; 1312 } 1313 1314 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1315 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1316 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1317 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1318 1319 mddev->max_disks = MD_SB_DISKS; 1320 1321 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1322 mddev->bitmap_info.file == NULL) { 1323 mddev->bitmap_info.offset = 1324 mddev->bitmap_info.default_offset; 1325 mddev->bitmap_info.space = 1326 mddev->bitmap_info.default_space; 1327 } 1328 1329 } else if (mddev->pers == NULL) { 1330 /* Insist on good event counter while assembling, except 1331 * for spares (which don't need an event count) */ 1332 ++ev1; 1333 if (sb->disks[rdev->desc_nr].state & ( 1334 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1335 if (ev1 < mddev->events) 1336 return -EINVAL; 1337 } else if (mddev->bitmap) { 1338 /* if adding to array with a bitmap, then we can accept an 1339 * older device ... but not too old. 1340 */ 1341 if (ev1 < mddev->bitmap->events_cleared) 1342 return 0; 1343 if (ev1 < mddev->events) 1344 set_bit(Bitmap_sync, &rdev->flags); 1345 } else { 1346 if (ev1 < mddev->events) 1347 /* just a hot-add of a new device, leave raid_disk at -1 */ 1348 return 0; 1349 } 1350 1351 if (mddev->level != LEVEL_MULTIPATH) { 1352 desc = sb->disks + rdev->desc_nr; 1353 1354 if (desc->state & (1<<MD_DISK_FAULTY)) 1355 set_bit(Faulty, &rdev->flags); 1356 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1357 desc->raid_disk < mddev->raid_disks */) { 1358 set_bit(In_sync, &rdev->flags); 1359 rdev->raid_disk = desc->raid_disk; 1360 rdev->saved_raid_disk = desc->raid_disk; 1361 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1362 /* active but not in sync implies recovery up to 1363 * reshape position. We don't know exactly where 1364 * that is, so set to zero for now */ 1365 if (mddev->minor_version >= 91) { 1366 rdev->recovery_offset = 0; 1367 rdev->raid_disk = desc->raid_disk; 1368 } 1369 } 1370 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1371 set_bit(WriteMostly, &rdev->flags); 1372 if (desc->state & (1<<MD_DISK_FAILFAST)) 1373 set_bit(FailFast, &rdev->flags); 1374 } else /* MULTIPATH are always insync */ 1375 set_bit(In_sync, &rdev->flags); 1376 return 0; 1377 } 1378 1379 /* 1380 * sync_super for 0.90.0 1381 */ 1382 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1383 { 1384 mdp_super_t *sb; 1385 struct md_rdev *rdev2; 1386 int next_spare = mddev->raid_disks; 1387 1388 /* make rdev->sb match mddev data.. 1389 * 1390 * 1/ zero out disks 1391 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1392 * 3/ any empty disks < next_spare become removed 1393 * 1394 * disks[0] gets initialised to REMOVED because 1395 * we cannot be sure from other fields if it has 1396 * been initialised or not. 1397 */ 1398 int i; 1399 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1400 1401 rdev->sb_size = MD_SB_BYTES; 1402 1403 sb = page_address(rdev->sb_page); 1404 1405 memset(sb, 0, sizeof(*sb)); 1406 1407 sb->md_magic = MD_SB_MAGIC; 1408 sb->major_version = mddev->major_version; 1409 sb->patch_version = mddev->patch_version; 1410 sb->gvalid_words = 0; /* ignored */ 1411 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1412 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1413 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1414 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1415 1416 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1417 sb->level = mddev->level; 1418 sb->size = mddev->dev_sectors / 2; 1419 sb->raid_disks = mddev->raid_disks; 1420 sb->md_minor = mddev->md_minor; 1421 sb->not_persistent = 0; 1422 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1423 sb->state = 0; 1424 sb->events_hi = (mddev->events>>32); 1425 sb->events_lo = (u32)mddev->events; 1426 1427 if (mddev->reshape_position == MaxSector) 1428 sb->minor_version = 90; 1429 else { 1430 sb->minor_version = 91; 1431 sb->reshape_position = mddev->reshape_position; 1432 sb->new_level = mddev->new_level; 1433 sb->delta_disks = mddev->delta_disks; 1434 sb->new_layout = mddev->new_layout; 1435 sb->new_chunk = mddev->new_chunk_sectors << 9; 1436 } 1437 mddev->minor_version = sb->minor_version; 1438 if (mddev->in_sync) 1439 { 1440 sb->recovery_cp = mddev->recovery_cp; 1441 sb->cp_events_hi = (mddev->events>>32); 1442 sb->cp_events_lo = (u32)mddev->events; 1443 if (mddev->recovery_cp == MaxSector) 1444 sb->state = (1<< MD_SB_CLEAN); 1445 } else 1446 sb->recovery_cp = 0; 1447 1448 sb->layout = mddev->layout; 1449 sb->chunk_size = mddev->chunk_sectors << 9; 1450 1451 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1452 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1453 1454 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1455 rdev_for_each(rdev2, mddev) { 1456 mdp_disk_t *d; 1457 int desc_nr; 1458 int is_active = test_bit(In_sync, &rdev2->flags); 1459 1460 if (rdev2->raid_disk >= 0 && 1461 sb->minor_version >= 91) 1462 /* we have nowhere to store the recovery_offset, 1463 * but if it is not below the reshape_position, 1464 * we can piggy-back on that. 1465 */ 1466 is_active = 1; 1467 if (rdev2->raid_disk < 0 || 1468 test_bit(Faulty, &rdev2->flags)) 1469 is_active = 0; 1470 if (is_active) 1471 desc_nr = rdev2->raid_disk; 1472 else 1473 desc_nr = next_spare++; 1474 rdev2->desc_nr = desc_nr; 1475 d = &sb->disks[rdev2->desc_nr]; 1476 nr_disks++; 1477 d->number = rdev2->desc_nr; 1478 d->major = MAJOR(rdev2->bdev->bd_dev); 1479 d->minor = MINOR(rdev2->bdev->bd_dev); 1480 if (is_active) 1481 d->raid_disk = rdev2->raid_disk; 1482 else 1483 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1484 if (test_bit(Faulty, &rdev2->flags)) 1485 d->state = (1<<MD_DISK_FAULTY); 1486 else if (is_active) { 1487 d->state = (1<<MD_DISK_ACTIVE); 1488 if (test_bit(In_sync, &rdev2->flags)) 1489 d->state |= (1<<MD_DISK_SYNC); 1490 active++; 1491 working++; 1492 } else { 1493 d->state = 0; 1494 spare++; 1495 working++; 1496 } 1497 if (test_bit(WriteMostly, &rdev2->flags)) 1498 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1499 if (test_bit(FailFast, &rdev2->flags)) 1500 d->state |= (1<<MD_DISK_FAILFAST); 1501 } 1502 /* now set the "removed" and "faulty" bits on any missing devices */ 1503 for (i=0 ; i < mddev->raid_disks ; i++) { 1504 mdp_disk_t *d = &sb->disks[i]; 1505 if (d->state == 0 && d->number == 0) { 1506 d->number = i; 1507 d->raid_disk = i; 1508 d->state = (1<<MD_DISK_REMOVED); 1509 d->state |= (1<<MD_DISK_FAULTY); 1510 failed++; 1511 } 1512 } 1513 sb->nr_disks = nr_disks; 1514 sb->active_disks = active; 1515 sb->working_disks = working; 1516 sb->failed_disks = failed; 1517 sb->spare_disks = spare; 1518 1519 sb->this_disk = sb->disks[rdev->desc_nr]; 1520 sb->sb_csum = calc_sb_csum(sb); 1521 } 1522 1523 /* 1524 * rdev_size_change for 0.90.0 1525 */ 1526 static unsigned long long 1527 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1528 { 1529 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1530 return 0; /* component must fit device */ 1531 if (rdev->mddev->bitmap_info.offset) 1532 return 0; /* can't move bitmap */ 1533 rdev->sb_start = calc_dev_sboffset(rdev); 1534 if (!num_sectors || num_sectors > rdev->sb_start) 1535 num_sectors = rdev->sb_start; 1536 /* Limit to 4TB as metadata cannot record more than that. 1537 * 4TB == 2^32 KB, or 2*2^32 sectors. 1538 */ 1539 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1540 num_sectors = (sector_t)(2ULL << 32) - 2; 1541 do { 1542 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1543 rdev->sb_page); 1544 } while (md_super_wait(rdev->mddev) < 0); 1545 return num_sectors; 1546 } 1547 1548 static int 1549 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1550 { 1551 /* non-zero offset changes not possible with v0.90 */ 1552 return new_offset == 0; 1553 } 1554 1555 /* 1556 * version 1 superblock 1557 */ 1558 1559 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1560 { 1561 __le32 disk_csum; 1562 u32 csum; 1563 unsigned long long newcsum; 1564 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1565 __le32 *isuper = (__le32*)sb; 1566 1567 disk_csum = sb->sb_csum; 1568 sb->sb_csum = 0; 1569 newcsum = 0; 1570 for (; size >= 4; size -= 4) 1571 newcsum += le32_to_cpu(*isuper++); 1572 1573 if (size == 2) 1574 newcsum += le16_to_cpu(*(__le16*) isuper); 1575 1576 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1577 sb->sb_csum = disk_csum; 1578 return cpu_to_le32(csum); 1579 } 1580 1581 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1582 { 1583 struct mdp_superblock_1 *sb; 1584 int ret; 1585 sector_t sb_start; 1586 sector_t sectors; 1587 int bmask; 1588 bool spare_disk = true; 1589 1590 /* 1591 * Calculate the position of the superblock in 512byte sectors. 1592 * It is always aligned to a 4K boundary and 1593 * depeding on minor_version, it can be: 1594 * 0: At least 8K, but less than 12K, from end of device 1595 * 1: At start of device 1596 * 2: 4K from start of device. 1597 */ 1598 switch(minor_version) { 1599 case 0: 1600 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1601 sb_start &= ~(sector_t)(4*2-1); 1602 break; 1603 case 1: 1604 sb_start = 0; 1605 break; 1606 case 2: 1607 sb_start = 8; 1608 break; 1609 default: 1610 return -EINVAL; 1611 } 1612 rdev->sb_start = sb_start; 1613 1614 /* superblock is rarely larger than 1K, but it can be larger, 1615 * and it is safe to read 4k, so we do that 1616 */ 1617 ret = read_disk_sb(rdev, 4096); 1618 if (ret) return ret; 1619 1620 sb = page_address(rdev->sb_page); 1621 1622 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1623 sb->major_version != cpu_to_le32(1) || 1624 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1625 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1626 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1627 return -EINVAL; 1628 1629 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1630 pr_warn("md: invalid superblock checksum on %pg\n", 1631 rdev->bdev); 1632 return -EINVAL; 1633 } 1634 if (le64_to_cpu(sb->data_size) < 10) { 1635 pr_warn("md: data_size too small on %pg\n", 1636 rdev->bdev); 1637 return -EINVAL; 1638 } 1639 if (sb->pad0 || 1640 sb->pad3[0] || 1641 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1642 /* Some padding is non-zero, might be a new feature */ 1643 return -EINVAL; 1644 1645 rdev->preferred_minor = 0xffff; 1646 rdev->data_offset = le64_to_cpu(sb->data_offset); 1647 rdev->new_data_offset = rdev->data_offset; 1648 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1649 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1650 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1651 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1652 1653 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1654 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1655 if (rdev->sb_size & bmask) 1656 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1657 1658 if (minor_version 1659 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1660 return -EINVAL; 1661 if (minor_version 1662 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1663 return -EINVAL; 1664 1665 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1666 rdev->desc_nr = -1; 1667 else 1668 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1669 1670 if (!rdev->bb_page) { 1671 rdev->bb_page = alloc_page(GFP_KERNEL); 1672 if (!rdev->bb_page) 1673 return -ENOMEM; 1674 } 1675 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1676 rdev->badblocks.count == 0) { 1677 /* need to load the bad block list. 1678 * Currently we limit it to one page. 1679 */ 1680 s32 offset; 1681 sector_t bb_sector; 1682 __le64 *bbp; 1683 int i; 1684 int sectors = le16_to_cpu(sb->bblog_size); 1685 if (sectors > (PAGE_SIZE / 512)) 1686 return -EINVAL; 1687 offset = le32_to_cpu(sb->bblog_offset); 1688 if (offset == 0) 1689 return -EINVAL; 1690 bb_sector = (long long)offset; 1691 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1692 rdev->bb_page, REQ_OP_READ, true)) 1693 return -EIO; 1694 bbp = (__le64 *)page_address(rdev->bb_page); 1695 rdev->badblocks.shift = sb->bblog_shift; 1696 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1697 u64 bb = le64_to_cpu(*bbp); 1698 int count = bb & (0x3ff); 1699 u64 sector = bb >> 10; 1700 sector <<= sb->bblog_shift; 1701 count <<= sb->bblog_shift; 1702 if (bb + 1 == 0) 1703 break; 1704 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1705 return -EINVAL; 1706 } 1707 } else if (sb->bblog_offset != 0) 1708 rdev->badblocks.shift = 0; 1709 1710 if ((le32_to_cpu(sb->feature_map) & 1711 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1712 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1713 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1714 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1715 } 1716 1717 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1718 sb->level != 0) 1719 return -EINVAL; 1720 1721 /* not spare disk, or LEVEL_MULTIPATH */ 1722 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1723 (rdev->desc_nr >= 0 && 1724 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1725 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1726 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1727 spare_disk = false; 1728 1729 if (!refdev) { 1730 if (!spare_disk) 1731 ret = 1; 1732 else 1733 ret = 0; 1734 } else { 1735 __u64 ev1, ev2; 1736 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1737 1738 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1739 sb->level != refsb->level || 1740 sb->layout != refsb->layout || 1741 sb->chunksize != refsb->chunksize) { 1742 pr_warn("md: %pg has strangely different superblock to %pg\n", 1743 rdev->bdev, 1744 refdev->bdev); 1745 return -EINVAL; 1746 } 1747 ev1 = le64_to_cpu(sb->events); 1748 ev2 = le64_to_cpu(refsb->events); 1749 1750 if (!spare_disk && ev1 > ev2) 1751 ret = 1; 1752 else 1753 ret = 0; 1754 } 1755 if (minor_version) 1756 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1757 else 1758 sectors = rdev->sb_start; 1759 if (sectors < le64_to_cpu(sb->data_size)) 1760 return -EINVAL; 1761 rdev->sectors = le64_to_cpu(sb->data_size); 1762 return ret; 1763 } 1764 1765 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1766 { 1767 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1768 __u64 ev1 = le64_to_cpu(sb->events); 1769 1770 rdev->raid_disk = -1; 1771 clear_bit(Faulty, &rdev->flags); 1772 clear_bit(In_sync, &rdev->flags); 1773 clear_bit(Bitmap_sync, &rdev->flags); 1774 clear_bit(WriteMostly, &rdev->flags); 1775 1776 if (mddev->raid_disks == 0) { 1777 mddev->major_version = 1; 1778 mddev->patch_version = 0; 1779 mddev->external = 0; 1780 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1781 mddev->ctime = le64_to_cpu(sb->ctime); 1782 mddev->utime = le64_to_cpu(sb->utime); 1783 mddev->level = le32_to_cpu(sb->level); 1784 mddev->clevel[0] = 0; 1785 mddev->layout = le32_to_cpu(sb->layout); 1786 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1787 mddev->dev_sectors = le64_to_cpu(sb->size); 1788 mddev->events = ev1; 1789 mddev->bitmap_info.offset = 0; 1790 mddev->bitmap_info.space = 0; 1791 /* Default location for bitmap is 1K after superblock 1792 * using 3K - total of 4K 1793 */ 1794 mddev->bitmap_info.default_offset = 1024 >> 9; 1795 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1796 mddev->reshape_backwards = 0; 1797 1798 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1799 memcpy(mddev->uuid, sb->set_uuid, 16); 1800 1801 mddev->max_disks = (4096-256)/2; 1802 1803 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1804 mddev->bitmap_info.file == NULL) { 1805 mddev->bitmap_info.offset = 1806 (__s32)le32_to_cpu(sb->bitmap_offset); 1807 /* Metadata doesn't record how much space is available. 1808 * For 1.0, we assume we can use up to the superblock 1809 * if before, else to 4K beyond superblock. 1810 * For others, assume no change is possible. 1811 */ 1812 if (mddev->minor_version > 0) 1813 mddev->bitmap_info.space = 0; 1814 else if (mddev->bitmap_info.offset > 0) 1815 mddev->bitmap_info.space = 1816 8 - mddev->bitmap_info.offset; 1817 else 1818 mddev->bitmap_info.space = 1819 -mddev->bitmap_info.offset; 1820 } 1821 1822 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1823 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1824 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1825 mddev->new_level = le32_to_cpu(sb->new_level); 1826 mddev->new_layout = le32_to_cpu(sb->new_layout); 1827 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1828 if (mddev->delta_disks < 0 || 1829 (mddev->delta_disks == 0 && 1830 (le32_to_cpu(sb->feature_map) 1831 & MD_FEATURE_RESHAPE_BACKWARDS))) 1832 mddev->reshape_backwards = 1; 1833 } else { 1834 mddev->reshape_position = MaxSector; 1835 mddev->delta_disks = 0; 1836 mddev->new_level = mddev->level; 1837 mddev->new_layout = mddev->layout; 1838 mddev->new_chunk_sectors = mddev->chunk_sectors; 1839 } 1840 1841 if (mddev->level == 0 && 1842 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1843 mddev->layout = -1; 1844 1845 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1846 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1847 1848 if (le32_to_cpu(sb->feature_map) & 1849 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1850 if (le32_to_cpu(sb->feature_map) & 1851 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1852 return -EINVAL; 1853 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1854 (le32_to_cpu(sb->feature_map) & 1855 MD_FEATURE_MULTIPLE_PPLS)) 1856 return -EINVAL; 1857 set_bit(MD_HAS_PPL, &mddev->flags); 1858 } 1859 } else if (mddev->pers == NULL) { 1860 /* Insist of good event counter while assembling, except for 1861 * spares (which don't need an event count) */ 1862 ++ev1; 1863 if (rdev->desc_nr >= 0 && 1864 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1865 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1866 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1867 if (ev1 < mddev->events) 1868 return -EINVAL; 1869 } else if (mddev->bitmap) { 1870 /* If adding to array with a bitmap, then we can accept an 1871 * older device, but not too old. 1872 */ 1873 if (ev1 < mddev->bitmap->events_cleared) 1874 return 0; 1875 if (ev1 < mddev->events) 1876 set_bit(Bitmap_sync, &rdev->flags); 1877 } else { 1878 if (ev1 < mddev->events) 1879 /* just a hot-add of a new device, leave raid_disk at -1 */ 1880 return 0; 1881 } 1882 if (mddev->level != LEVEL_MULTIPATH) { 1883 int role; 1884 if (rdev->desc_nr < 0 || 1885 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1886 role = MD_DISK_ROLE_SPARE; 1887 rdev->desc_nr = -1; 1888 } else 1889 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1890 switch(role) { 1891 case MD_DISK_ROLE_SPARE: /* spare */ 1892 break; 1893 case MD_DISK_ROLE_FAULTY: /* faulty */ 1894 set_bit(Faulty, &rdev->flags); 1895 break; 1896 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1897 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1898 /* journal device without journal feature */ 1899 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1900 return -EINVAL; 1901 } 1902 set_bit(Journal, &rdev->flags); 1903 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1904 rdev->raid_disk = 0; 1905 break; 1906 default: 1907 rdev->saved_raid_disk = role; 1908 if ((le32_to_cpu(sb->feature_map) & 1909 MD_FEATURE_RECOVERY_OFFSET)) { 1910 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1911 if (!(le32_to_cpu(sb->feature_map) & 1912 MD_FEATURE_RECOVERY_BITMAP)) 1913 rdev->saved_raid_disk = -1; 1914 } else { 1915 /* 1916 * If the array is FROZEN, then the device can't 1917 * be in_sync with rest of array. 1918 */ 1919 if (!test_bit(MD_RECOVERY_FROZEN, 1920 &mddev->recovery)) 1921 set_bit(In_sync, &rdev->flags); 1922 } 1923 rdev->raid_disk = role; 1924 break; 1925 } 1926 if (sb->devflags & WriteMostly1) 1927 set_bit(WriteMostly, &rdev->flags); 1928 if (sb->devflags & FailFast1) 1929 set_bit(FailFast, &rdev->flags); 1930 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1931 set_bit(Replacement, &rdev->flags); 1932 } else /* MULTIPATH are always insync */ 1933 set_bit(In_sync, &rdev->flags); 1934 1935 return 0; 1936 } 1937 1938 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1939 { 1940 struct mdp_superblock_1 *sb; 1941 struct md_rdev *rdev2; 1942 int max_dev, i; 1943 /* make rdev->sb match mddev and rdev data. */ 1944 1945 sb = page_address(rdev->sb_page); 1946 1947 sb->feature_map = 0; 1948 sb->pad0 = 0; 1949 sb->recovery_offset = cpu_to_le64(0); 1950 memset(sb->pad3, 0, sizeof(sb->pad3)); 1951 1952 sb->utime = cpu_to_le64((__u64)mddev->utime); 1953 sb->events = cpu_to_le64(mddev->events); 1954 if (mddev->in_sync) 1955 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1956 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1957 sb->resync_offset = cpu_to_le64(MaxSector); 1958 else 1959 sb->resync_offset = cpu_to_le64(0); 1960 1961 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1962 1963 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1964 sb->size = cpu_to_le64(mddev->dev_sectors); 1965 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1966 sb->level = cpu_to_le32(mddev->level); 1967 sb->layout = cpu_to_le32(mddev->layout); 1968 if (test_bit(FailFast, &rdev->flags)) 1969 sb->devflags |= FailFast1; 1970 else 1971 sb->devflags &= ~FailFast1; 1972 1973 if (test_bit(WriteMostly, &rdev->flags)) 1974 sb->devflags |= WriteMostly1; 1975 else 1976 sb->devflags &= ~WriteMostly1; 1977 sb->data_offset = cpu_to_le64(rdev->data_offset); 1978 sb->data_size = cpu_to_le64(rdev->sectors); 1979 1980 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1981 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1982 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1983 } 1984 1985 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1986 !test_bit(In_sync, &rdev->flags)) { 1987 sb->feature_map |= 1988 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1989 sb->recovery_offset = 1990 cpu_to_le64(rdev->recovery_offset); 1991 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1992 sb->feature_map |= 1993 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1994 } 1995 /* Note: recovery_offset and journal_tail share space */ 1996 if (test_bit(Journal, &rdev->flags)) 1997 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1998 if (test_bit(Replacement, &rdev->flags)) 1999 sb->feature_map |= 2000 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2001 2002 if (mddev->reshape_position != MaxSector) { 2003 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2004 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2005 sb->new_layout = cpu_to_le32(mddev->new_layout); 2006 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2007 sb->new_level = cpu_to_le32(mddev->new_level); 2008 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2009 if (mddev->delta_disks == 0 && 2010 mddev->reshape_backwards) 2011 sb->feature_map 2012 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2013 if (rdev->new_data_offset != rdev->data_offset) { 2014 sb->feature_map 2015 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2016 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2017 - rdev->data_offset)); 2018 } 2019 } 2020 2021 if (mddev_is_clustered(mddev)) 2022 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2023 2024 if (rdev->badblocks.count == 0) 2025 /* Nothing to do for bad blocks*/ ; 2026 else if (sb->bblog_offset == 0) 2027 /* Cannot record bad blocks on this device */ 2028 md_error(mddev, rdev); 2029 else { 2030 struct badblocks *bb = &rdev->badblocks; 2031 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2032 u64 *p = bb->page; 2033 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2034 if (bb->changed) { 2035 unsigned seq; 2036 2037 retry: 2038 seq = read_seqbegin(&bb->lock); 2039 2040 memset(bbp, 0xff, PAGE_SIZE); 2041 2042 for (i = 0 ; i < bb->count ; i++) { 2043 u64 internal_bb = p[i]; 2044 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2045 | BB_LEN(internal_bb)); 2046 bbp[i] = cpu_to_le64(store_bb); 2047 } 2048 bb->changed = 0; 2049 if (read_seqretry(&bb->lock, seq)) 2050 goto retry; 2051 2052 bb->sector = (rdev->sb_start + 2053 (int)le32_to_cpu(sb->bblog_offset)); 2054 bb->size = le16_to_cpu(sb->bblog_size); 2055 } 2056 } 2057 2058 max_dev = 0; 2059 rdev_for_each(rdev2, mddev) 2060 if (rdev2->desc_nr+1 > max_dev) 2061 max_dev = rdev2->desc_nr+1; 2062 2063 if (max_dev > le32_to_cpu(sb->max_dev)) { 2064 int bmask; 2065 sb->max_dev = cpu_to_le32(max_dev); 2066 rdev->sb_size = max_dev * 2 + 256; 2067 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2068 if (rdev->sb_size & bmask) 2069 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2070 } else 2071 max_dev = le32_to_cpu(sb->max_dev); 2072 2073 for (i=0; i<max_dev;i++) 2074 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2075 2076 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2077 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2078 2079 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2080 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2081 sb->feature_map |= 2082 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2083 else 2084 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2085 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2086 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2087 } 2088 2089 rdev_for_each(rdev2, mddev) { 2090 i = rdev2->desc_nr; 2091 if (test_bit(Faulty, &rdev2->flags)) 2092 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2093 else if (test_bit(In_sync, &rdev2->flags)) 2094 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2095 else if (test_bit(Journal, &rdev2->flags)) 2096 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2097 else if (rdev2->raid_disk >= 0) 2098 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2099 else 2100 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2101 } 2102 2103 sb->sb_csum = calc_sb_1_csum(sb); 2104 } 2105 2106 static sector_t super_1_choose_bm_space(sector_t dev_size) 2107 { 2108 sector_t bm_space; 2109 2110 /* if the device is bigger than 8Gig, save 64k for bitmap 2111 * usage, if bigger than 200Gig, save 128k 2112 */ 2113 if (dev_size < 64*2) 2114 bm_space = 0; 2115 else if (dev_size - 64*2 >= 200*1024*1024*2) 2116 bm_space = 128*2; 2117 else if (dev_size - 4*2 > 8*1024*1024*2) 2118 bm_space = 64*2; 2119 else 2120 bm_space = 4*2; 2121 return bm_space; 2122 } 2123 2124 static unsigned long long 2125 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2126 { 2127 struct mdp_superblock_1 *sb; 2128 sector_t max_sectors; 2129 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2130 return 0; /* component must fit device */ 2131 if (rdev->data_offset != rdev->new_data_offset) 2132 return 0; /* too confusing */ 2133 if (rdev->sb_start < rdev->data_offset) { 2134 /* minor versions 1 and 2; superblock before data */ 2135 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2136 if (!num_sectors || num_sectors > max_sectors) 2137 num_sectors = max_sectors; 2138 } else if (rdev->mddev->bitmap_info.offset) { 2139 /* minor version 0 with bitmap we can't move */ 2140 return 0; 2141 } else { 2142 /* minor version 0; superblock after data */ 2143 sector_t sb_start, bm_space; 2144 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2145 2146 /* 8K is for superblock */ 2147 sb_start = dev_size - 8*2; 2148 sb_start &= ~(sector_t)(4*2 - 1); 2149 2150 bm_space = super_1_choose_bm_space(dev_size); 2151 2152 /* Space that can be used to store date needs to decrease 2153 * superblock bitmap space and bad block space(4K) 2154 */ 2155 max_sectors = sb_start - bm_space - 4*2; 2156 2157 if (!num_sectors || num_sectors > max_sectors) 2158 num_sectors = max_sectors; 2159 rdev->sb_start = sb_start; 2160 } 2161 sb = page_address(rdev->sb_page); 2162 sb->data_size = cpu_to_le64(num_sectors); 2163 sb->super_offset = cpu_to_le64(rdev->sb_start); 2164 sb->sb_csum = calc_sb_1_csum(sb); 2165 do { 2166 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2167 rdev->sb_page); 2168 } while (md_super_wait(rdev->mddev) < 0); 2169 return num_sectors; 2170 2171 } 2172 2173 static int 2174 super_1_allow_new_offset(struct md_rdev *rdev, 2175 unsigned long long new_offset) 2176 { 2177 /* All necessary checks on new >= old have been done */ 2178 struct bitmap *bitmap; 2179 if (new_offset >= rdev->data_offset) 2180 return 1; 2181 2182 /* with 1.0 metadata, there is no metadata to tread on 2183 * so we can always move back */ 2184 if (rdev->mddev->minor_version == 0) 2185 return 1; 2186 2187 /* otherwise we must be sure not to step on 2188 * any metadata, so stay: 2189 * 36K beyond start of superblock 2190 * beyond end of badblocks 2191 * beyond write-intent bitmap 2192 */ 2193 if (rdev->sb_start + (32+4)*2 > new_offset) 2194 return 0; 2195 bitmap = rdev->mddev->bitmap; 2196 if (bitmap && !rdev->mddev->bitmap_info.file && 2197 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2198 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2199 return 0; 2200 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2201 return 0; 2202 2203 return 1; 2204 } 2205 2206 static struct super_type super_types[] = { 2207 [0] = { 2208 .name = "0.90.0", 2209 .owner = THIS_MODULE, 2210 .load_super = super_90_load, 2211 .validate_super = super_90_validate, 2212 .sync_super = super_90_sync, 2213 .rdev_size_change = super_90_rdev_size_change, 2214 .allow_new_offset = super_90_allow_new_offset, 2215 }, 2216 [1] = { 2217 .name = "md-1", 2218 .owner = THIS_MODULE, 2219 .load_super = super_1_load, 2220 .validate_super = super_1_validate, 2221 .sync_super = super_1_sync, 2222 .rdev_size_change = super_1_rdev_size_change, 2223 .allow_new_offset = super_1_allow_new_offset, 2224 }, 2225 }; 2226 2227 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2228 { 2229 if (mddev->sync_super) { 2230 mddev->sync_super(mddev, rdev); 2231 return; 2232 } 2233 2234 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2235 2236 super_types[mddev->major_version].sync_super(mddev, rdev); 2237 } 2238 2239 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2240 { 2241 struct md_rdev *rdev, *rdev2; 2242 2243 rcu_read_lock(); 2244 rdev_for_each_rcu(rdev, mddev1) { 2245 if (test_bit(Faulty, &rdev->flags) || 2246 test_bit(Journal, &rdev->flags) || 2247 rdev->raid_disk == -1) 2248 continue; 2249 rdev_for_each_rcu(rdev2, mddev2) { 2250 if (test_bit(Faulty, &rdev2->flags) || 2251 test_bit(Journal, &rdev2->flags) || 2252 rdev2->raid_disk == -1) 2253 continue; 2254 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2255 rcu_read_unlock(); 2256 return 1; 2257 } 2258 } 2259 } 2260 rcu_read_unlock(); 2261 return 0; 2262 } 2263 2264 static LIST_HEAD(pending_raid_disks); 2265 2266 /* 2267 * Try to register data integrity profile for an mddev 2268 * 2269 * This is called when an array is started and after a disk has been kicked 2270 * from the array. It only succeeds if all working and active component devices 2271 * are integrity capable with matching profiles. 2272 */ 2273 int md_integrity_register(struct mddev *mddev) 2274 { 2275 struct md_rdev *rdev, *reference = NULL; 2276 2277 if (list_empty(&mddev->disks)) 2278 return 0; /* nothing to do */ 2279 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2280 return 0; /* shouldn't register, or already is */ 2281 rdev_for_each(rdev, mddev) { 2282 /* skip spares and non-functional disks */ 2283 if (test_bit(Faulty, &rdev->flags)) 2284 continue; 2285 if (rdev->raid_disk < 0) 2286 continue; 2287 if (!reference) { 2288 /* Use the first rdev as the reference */ 2289 reference = rdev; 2290 continue; 2291 } 2292 /* does this rdev's profile match the reference profile? */ 2293 if (blk_integrity_compare(reference->bdev->bd_disk, 2294 rdev->bdev->bd_disk) < 0) 2295 return -EINVAL; 2296 } 2297 if (!reference || !bdev_get_integrity(reference->bdev)) 2298 return 0; 2299 /* 2300 * All component devices are integrity capable and have matching 2301 * profiles, register the common profile for the md device. 2302 */ 2303 blk_integrity_register(mddev->gendisk, 2304 bdev_get_integrity(reference->bdev)); 2305 2306 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2307 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2308 (mddev->level != 1 && mddev->level != 10 && 2309 bioset_integrity_create(&mddev->io_clone_set, BIO_POOL_SIZE))) { 2310 /* 2311 * No need to handle the failure of bioset_integrity_create, 2312 * because the function is called by md_run() -> pers->run(), 2313 * md_run calls bioset_exit -> bioset_integrity_free in case 2314 * of failure case. 2315 */ 2316 pr_err("md: failed to create integrity pool for %s\n", 2317 mdname(mddev)); 2318 return -EINVAL; 2319 } 2320 return 0; 2321 } 2322 EXPORT_SYMBOL(md_integrity_register); 2323 2324 /* 2325 * Attempt to add an rdev, but only if it is consistent with the current 2326 * integrity profile 2327 */ 2328 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2329 { 2330 struct blk_integrity *bi_mddev; 2331 2332 if (!mddev->gendisk) 2333 return 0; 2334 2335 bi_mddev = blk_get_integrity(mddev->gendisk); 2336 2337 if (!bi_mddev) /* nothing to do */ 2338 return 0; 2339 2340 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2341 pr_err("%s: incompatible integrity profile for %pg\n", 2342 mdname(mddev), rdev->bdev); 2343 return -ENXIO; 2344 } 2345 2346 return 0; 2347 } 2348 EXPORT_SYMBOL(md_integrity_add_rdev); 2349 2350 static bool rdev_read_only(struct md_rdev *rdev) 2351 { 2352 return bdev_read_only(rdev->bdev) || 2353 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2354 } 2355 2356 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2357 { 2358 char b[BDEVNAME_SIZE]; 2359 int err; 2360 2361 /* prevent duplicates */ 2362 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2363 return -EEXIST; 2364 2365 if (rdev_read_only(rdev) && mddev->pers) 2366 return -EROFS; 2367 2368 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2369 if (!test_bit(Journal, &rdev->flags) && 2370 rdev->sectors && 2371 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2372 if (mddev->pers) { 2373 /* Cannot change size, so fail 2374 * If mddev->level <= 0, then we don't care 2375 * about aligning sizes (e.g. linear) 2376 */ 2377 if (mddev->level > 0) 2378 return -ENOSPC; 2379 } else 2380 mddev->dev_sectors = rdev->sectors; 2381 } 2382 2383 /* Verify rdev->desc_nr is unique. 2384 * If it is -1, assign a free number, else 2385 * check number is not in use 2386 */ 2387 rcu_read_lock(); 2388 if (rdev->desc_nr < 0) { 2389 int choice = 0; 2390 if (mddev->pers) 2391 choice = mddev->raid_disks; 2392 while (md_find_rdev_nr_rcu(mddev, choice)) 2393 choice++; 2394 rdev->desc_nr = choice; 2395 } else { 2396 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2397 rcu_read_unlock(); 2398 return -EBUSY; 2399 } 2400 } 2401 rcu_read_unlock(); 2402 if (!test_bit(Journal, &rdev->flags) && 2403 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2404 pr_warn("md: %s: array is limited to %d devices\n", 2405 mdname(mddev), mddev->max_disks); 2406 return -EBUSY; 2407 } 2408 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2409 strreplace(b, '/', '!'); 2410 2411 rdev->mddev = mddev; 2412 pr_debug("md: bind<%s>\n", b); 2413 2414 if (mddev->raid_disks) 2415 mddev_create_serial_pool(mddev, rdev, false); 2416 2417 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2418 goto fail; 2419 2420 /* failure here is OK */ 2421 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2422 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2423 rdev->sysfs_unack_badblocks = 2424 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2425 rdev->sysfs_badblocks = 2426 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2427 2428 list_add_rcu(&rdev->same_set, &mddev->disks); 2429 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2430 2431 /* May as well allow recovery to be retried once */ 2432 mddev->recovery_disabled++; 2433 2434 return 0; 2435 2436 fail: 2437 pr_warn("md: failed to register dev-%s for %s\n", 2438 b, mdname(mddev)); 2439 return err; 2440 } 2441 2442 void md_autodetect_dev(dev_t dev); 2443 2444 /* just for claiming the bdev */ 2445 static struct md_rdev claim_rdev; 2446 2447 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev) 2448 { 2449 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2450 md_rdev_clear(rdev); 2451 #ifndef MODULE 2452 if (test_bit(AutoDetected, &rdev->flags)) 2453 md_autodetect_dev(rdev->bdev->bd_dev); 2454 #endif 2455 blkdev_put(rdev->bdev, 2456 test_bit(Holder, &rdev->flags) ? rdev : &claim_rdev); 2457 rdev->bdev = NULL; 2458 kobject_put(&rdev->kobj); 2459 } 2460 2461 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2462 { 2463 struct mddev *mddev = rdev->mddev; 2464 2465 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2466 list_del_rcu(&rdev->same_set); 2467 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2468 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2469 rdev->mddev = NULL; 2470 sysfs_remove_link(&rdev->kobj, "block"); 2471 sysfs_put(rdev->sysfs_state); 2472 sysfs_put(rdev->sysfs_unack_badblocks); 2473 sysfs_put(rdev->sysfs_badblocks); 2474 rdev->sysfs_state = NULL; 2475 rdev->sysfs_unack_badblocks = NULL; 2476 rdev->sysfs_badblocks = NULL; 2477 rdev->badblocks.count = 0; 2478 2479 synchronize_rcu(); 2480 2481 /* 2482 * kobject_del() will wait for all in progress writers to be done, where 2483 * reconfig_mutex is held, hence it can't be called under 2484 * reconfig_mutex and it's delayed to mddev_unlock(). 2485 */ 2486 list_add(&rdev->same_set, &mddev->deleting); 2487 } 2488 2489 static void export_array(struct mddev *mddev) 2490 { 2491 struct md_rdev *rdev; 2492 2493 while (!list_empty(&mddev->disks)) { 2494 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2495 same_set); 2496 md_kick_rdev_from_array(rdev); 2497 } 2498 mddev->raid_disks = 0; 2499 mddev->major_version = 0; 2500 } 2501 2502 static bool set_in_sync(struct mddev *mddev) 2503 { 2504 lockdep_assert_held(&mddev->lock); 2505 if (!mddev->in_sync) { 2506 mddev->sync_checkers++; 2507 spin_unlock(&mddev->lock); 2508 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2509 spin_lock(&mddev->lock); 2510 if (!mddev->in_sync && 2511 percpu_ref_is_zero(&mddev->writes_pending)) { 2512 mddev->in_sync = 1; 2513 /* 2514 * Ensure ->in_sync is visible before we clear 2515 * ->sync_checkers. 2516 */ 2517 smp_mb(); 2518 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2519 sysfs_notify_dirent_safe(mddev->sysfs_state); 2520 } 2521 if (--mddev->sync_checkers == 0) 2522 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2523 } 2524 if (mddev->safemode == 1) 2525 mddev->safemode = 0; 2526 return mddev->in_sync; 2527 } 2528 2529 static void sync_sbs(struct mddev *mddev, int nospares) 2530 { 2531 /* Update each superblock (in-memory image), but 2532 * if we are allowed to, skip spares which already 2533 * have the right event counter, or have one earlier 2534 * (which would mean they aren't being marked as dirty 2535 * with the rest of the array) 2536 */ 2537 struct md_rdev *rdev; 2538 rdev_for_each(rdev, mddev) { 2539 if (rdev->sb_events == mddev->events || 2540 (nospares && 2541 rdev->raid_disk < 0 && 2542 rdev->sb_events+1 == mddev->events)) { 2543 /* Don't update this superblock */ 2544 rdev->sb_loaded = 2; 2545 } else { 2546 sync_super(mddev, rdev); 2547 rdev->sb_loaded = 1; 2548 } 2549 } 2550 } 2551 2552 static bool does_sb_need_changing(struct mddev *mddev) 2553 { 2554 struct md_rdev *rdev = NULL, *iter; 2555 struct mdp_superblock_1 *sb; 2556 int role; 2557 2558 /* Find a good rdev */ 2559 rdev_for_each(iter, mddev) 2560 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2561 rdev = iter; 2562 break; 2563 } 2564 2565 /* No good device found. */ 2566 if (!rdev) 2567 return false; 2568 2569 sb = page_address(rdev->sb_page); 2570 /* Check if a device has become faulty or a spare become active */ 2571 rdev_for_each(rdev, mddev) { 2572 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2573 /* Device activated? */ 2574 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2575 !test_bit(Faulty, &rdev->flags)) 2576 return true; 2577 /* Device turned faulty? */ 2578 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2579 return true; 2580 } 2581 2582 /* Check if any mddev parameters have changed */ 2583 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2584 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2585 (mddev->layout != le32_to_cpu(sb->layout)) || 2586 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2587 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2588 return true; 2589 2590 return false; 2591 } 2592 2593 void md_update_sb(struct mddev *mddev, int force_change) 2594 { 2595 struct md_rdev *rdev; 2596 int sync_req; 2597 int nospares = 0; 2598 int any_badblocks_changed = 0; 2599 int ret = -1; 2600 2601 if (!md_is_rdwr(mddev)) { 2602 if (force_change) 2603 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2604 return; 2605 } 2606 2607 repeat: 2608 if (mddev_is_clustered(mddev)) { 2609 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2610 force_change = 1; 2611 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2612 nospares = 1; 2613 ret = md_cluster_ops->metadata_update_start(mddev); 2614 /* Has someone else has updated the sb */ 2615 if (!does_sb_need_changing(mddev)) { 2616 if (ret == 0) 2617 md_cluster_ops->metadata_update_cancel(mddev); 2618 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2619 BIT(MD_SB_CHANGE_DEVS) | 2620 BIT(MD_SB_CHANGE_CLEAN)); 2621 return; 2622 } 2623 } 2624 2625 /* 2626 * First make sure individual recovery_offsets are correct 2627 * curr_resync_completed can only be used during recovery. 2628 * During reshape/resync it might use array-addresses rather 2629 * that device addresses. 2630 */ 2631 rdev_for_each(rdev, mddev) { 2632 if (rdev->raid_disk >= 0 && 2633 mddev->delta_disks >= 0 && 2634 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2635 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2636 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2637 !test_bit(Journal, &rdev->flags) && 2638 !test_bit(In_sync, &rdev->flags) && 2639 mddev->curr_resync_completed > rdev->recovery_offset) 2640 rdev->recovery_offset = mddev->curr_resync_completed; 2641 2642 } 2643 if (!mddev->persistent) { 2644 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2645 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2646 if (!mddev->external) { 2647 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2648 rdev_for_each(rdev, mddev) { 2649 if (rdev->badblocks.changed) { 2650 rdev->badblocks.changed = 0; 2651 ack_all_badblocks(&rdev->badblocks); 2652 md_error(mddev, rdev); 2653 } 2654 clear_bit(Blocked, &rdev->flags); 2655 clear_bit(BlockedBadBlocks, &rdev->flags); 2656 wake_up(&rdev->blocked_wait); 2657 } 2658 } 2659 wake_up(&mddev->sb_wait); 2660 return; 2661 } 2662 2663 spin_lock(&mddev->lock); 2664 2665 mddev->utime = ktime_get_real_seconds(); 2666 2667 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2668 force_change = 1; 2669 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2670 /* just a clean<-> dirty transition, possibly leave spares alone, 2671 * though if events isn't the right even/odd, we will have to do 2672 * spares after all 2673 */ 2674 nospares = 1; 2675 if (force_change) 2676 nospares = 0; 2677 if (mddev->degraded) 2678 /* If the array is degraded, then skipping spares is both 2679 * dangerous and fairly pointless. 2680 * Dangerous because a device that was removed from the array 2681 * might have a event_count that still looks up-to-date, 2682 * so it can be re-added without a resync. 2683 * Pointless because if there are any spares to skip, 2684 * then a recovery will happen and soon that array won't 2685 * be degraded any more and the spare can go back to sleep then. 2686 */ 2687 nospares = 0; 2688 2689 sync_req = mddev->in_sync; 2690 2691 /* If this is just a dirty<->clean transition, and the array is clean 2692 * and 'events' is odd, we can roll back to the previous clean state */ 2693 if (nospares 2694 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2695 && mddev->can_decrease_events 2696 && mddev->events != 1) { 2697 mddev->events--; 2698 mddev->can_decrease_events = 0; 2699 } else { 2700 /* otherwise we have to go forward and ... */ 2701 mddev->events ++; 2702 mddev->can_decrease_events = nospares; 2703 } 2704 2705 /* 2706 * This 64-bit counter should never wrap. 2707 * Either we are in around ~1 trillion A.C., assuming 2708 * 1 reboot per second, or we have a bug... 2709 */ 2710 WARN_ON(mddev->events == 0); 2711 2712 rdev_for_each(rdev, mddev) { 2713 if (rdev->badblocks.changed) 2714 any_badblocks_changed++; 2715 if (test_bit(Faulty, &rdev->flags)) 2716 set_bit(FaultRecorded, &rdev->flags); 2717 } 2718 2719 sync_sbs(mddev, nospares); 2720 spin_unlock(&mddev->lock); 2721 2722 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2723 mdname(mddev), mddev->in_sync); 2724 2725 if (mddev->queue) 2726 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2727 rewrite: 2728 md_bitmap_update_sb(mddev->bitmap); 2729 rdev_for_each(rdev, mddev) { 2730 if (rdev->sb_loaded != 1) 2731 continue; /* no noise on spare devices */ 2732 2733 if (!test_bit(Faulty, &rdev->flags)) { 2734 md_super_write(mddev,rdev, 2735 rdev->sb_start, rdev->sb_size, 2736 rdev->sb_page); 2737 pr_debug("md: (write) %pg's sb offset: %llu\n", 2738 rdev->bdev, 2739 (unsigned long long)rdev->sb_start); 2740 rdev->sb_events = mddev->events; 2741 if (rdev->badblocks.size) { 2742 md_super_write(mddev, rdev, 2743 rdev->badblocks.sector, 2744 rdev->badblocks.size << 9, 2745 rdev->bb_page); 2746 rdev->badblocks.size = 0; 2747 } 2748 2749 } else 2750 pr_debug("md: %pg (skipping faulty)\n", 2751 rdev->bdev); 2752 2753 if (mddev->level == LEVEL_MULTIPATH) 2754 /* only need to write one superblock... */ 2755 break; 2756 } 2757 if (md_super_wait(mddev) < 0) 2758 goto rewrite; 2759 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2760 2761 if (mddev_is_clustered(mddev) && ret == 0) 2762 md_cluster_ops->metadata_update_finish(mddev); 2763 2764 if (mddev->in_sync != sync_req || 2765 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2766 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2767 /* have to write it out again */ 2768 goto repeat; 2769 wake_up(&mddev->sb_wait); 2770 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2771 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2772 2773 rdev_for_each(rdev, mddev) { 2774 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2775 clear_bit(Blocked, &rdev->flags); 2776 2777 if (any_badblocks_changed) 2778 ack_all_badblocks(&rdev->badblocks); 2779 clear_bit(BlockedBadBlocks, &rdev->flags); 2780 wake_up(&rdev->blocked_wait); 2781 } 2782 } 2783 EXPORT_SYMBOL(md_update_sb); 2784 2785 static int add_bound_rdev(struct md_rdev *rdev) 2786 { 2787 struct mddev *mddev = rdev->mddev; 2788 int err = 0; 2789 bool add_journal = test_bit(Journal, &rdev->flags); 2790 2791 if (!mddev->pers->hot_remove_disk || add_journal) { 2792 /* If there is hot_add_disk but no hot_remove_disk 2793 * then added disks for geometry changes, 2794 * and should be added immediately. 2795 */ 2796 super_types[mddev->major_version]. 2797 validate_super(mddev, rdev); 2798 if (add_journal) 2799 mddev_suspend(mddev); 2800 err = mddev->pers->hot_add_disk(mddev, rdev); 2801 if (add_journal) 2802 mddev_resume(mddev); 2803 if (err) { 2804 md_kick_rdev_from_array(rdev); 2805 return err; 2806 } 2807 } 2808 sysfs_notify_dirent_safe(rdev->sysfs_state); 2809 2810 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2811 if (mddev->degraded) 2812 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2813 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2814 md_new_event(); 2815 md_wakeup_thread(mddev->thread); 2816 return 0; 2817 } 2818 2819 /* words written to sysfs files may, or may not, be \n terminated. 2820 * We want to accept with case. For this we use cmd_match. 2821 */ 2822 static int cmd_match(const char *cmd, const char *str) 2823 { 2824 /* See if cmd, written into a sysfs file, matches 2825 * str. They must either be the same, or cmd can 2826 * have a trailing newline 2827 */ 2828 while (*cmd && *str && *cmd == *str) { 2829 cmd++; 2830 str++; 2831 } 2832 if (*cmd == '\n') 2833 cmd++; 2834 if (*str || *cmd) 2835 return 0; 2836 return 1; 2837 } 2838 2839 struct rdev_sysfs_entry { 2840 struct attribute attr; 2841 ssize_t (*show)(struct md_rdev *, char *); 2842 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2843 }; 2844 2845 static ssize_t 2846 state_show(struct md_rdev *rdev, char *page) 2847 { 2848 char *sep = ","; 2849 size_t len = 0; 2850 unsigned long flags = READ_ONCE(rdev->flags); 2851 2852 if (test_bit(Faulty, &flags) || 2853 (!test_bit(ExternalBbl, &flags) && 2854 rdev->badblocks.unacked_exist)) 2855 len += sprintf(page+len, "faulty%s", sep); 2856 if (test_bit(In_sync, &flags)) 2857 len += sprintf(page+len, "in_sync%s", sep); 2858 if (test_bit(Journal, &flags)) 2859 len += sprintf(page+len, "journal%s", sep); 2860 if (test_bit(WriteMostly, &flags)) 2861 len += sprintf(page+len, "write_mostly%s", sep); 2862 if (test_bit(Blocked, &flags) || 2863 (rdev->badblocks.unacked_exist 2864 && !test_bit(Faulty, &flags))) 2865 len += sprintf(page+len, "blocked%s", sep); 2866 if (!test_bit(Faulty, &flags) && 2867 !test_bit(Journal, &flags) && 2868 !test_bit(In_sync, &flags)) 2869 len += sprintf(page+len, "spare%s", sep); 2870 if (test_bit(WriteErrorSeen, &flags)) 2871 len += sprintf(page+len, "write_error%s", sep); 2872 if (test_bit(WantReplacement, &flags)) 2873 len += sprintf(page+len, "want_replacement%s", sep); 2874 if (test_bit(Replacement, &flags)) 2875 len += sprintf(page+len, "replacement%s", sep); 2876 if (test_bit(ExternalBbl, &flags)) 2877 len += sprintf(page+len, "external_bbl%s", sep); 2878 if (test_bit(FailFast, &flags)) 2879 len += sprintf(page+len, "failfast%s", sep); 2880 2881 if (len) 2882 len -= strlen(sep); 2883 2884 return len+sprintf(page+len, "\n"); 2885 } 2886 2887 static ssize_t 2888 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2889 { 2890 /* can write 2891 * faulty - simulates an error 2892 * remove - disconnects the device 2893 * writemostly - sets write_mostly 2894 * -writemostly - clears write_mostly 2895 * blocked - sets the Blocked flags 2896 * -blocked - clears the Blocked and possibly simulates an error 2897 * insync - sets Insync providing device isn't active 2898 * -insync - clear Insync for a device with a slot assigned, 2899 * so that it gets rebuilt based on bitmap 2900 * write_error - sets WriteErrorSeen 2901 * -write_error - clears WriteErrorSeen 2902 * {,-}failfast - set/clear FailFast 2903 */ 2904 2905 struct mddev *mddev = rdev->mddev; 2906 int err = -EINVAL; 2907 bool need_update_sb = false; 2908 2909 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2910 md_error(rdev->mddev, rdev); 2911 2912 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2913 err = -EBUSY; 2914 else 2915 err = 0; 2916 } else if (cmd_match(buf, "remove")) { 2917 if (rdev->mddev->pers) { 2918 clear_bit(Blocked, &rdev->flags); 2919 remove_and_add_spares(rdev->mddev, rdev); 2920 } 2921 if (rdev->raid_disk >= 0) 2922 err = -EBUSY; 2923 else { 2924 err = 0; 2925 if (mddev_is_clustered(mddev)) 2926 err = md_cluster_ops->remove_disk(mddev, rdev); 2927 2928 if (err == 0) { 2929 md_kick_rdev_from_array(rdev); 2930 if (mddev->pers) { 2931 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2932 md_wakeup_thread(mddev->thread); 2933 } 2934 md_new_event(); 2935 } 2936 } 2937 } else if (cmd_match(buf, "writemostly")) { 2938 set_bit(WriteMostly, &rdev->flags); 2939 mddev_create_serial_pool(rdev->mddev, rdev, false); 2940 need_update_sb = true; 2941 err = 0; 2942 } else if (cmd_match(buf, "-writemostly")) { 2943 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2944 clear_bit(WriteMostly, &rdev->flags); 2945 need_update_sb = true; 2946 err = 0; 2947 } else if (cmd_match(buf, "blocked")) { 2948 set_bit(Blocked, &rdev->flags); 2949 err = 0; 2950 } else if (cmd_match(buf, "-blocked")) { 2951 if (!test_bit(Faulty, &rdev->flags) && 2952 !test_bit(ExternalBbl, &rdev->flags) && 2953 rdev->badblocks.unacked_exist) { 2954 /* metadata handler doesn't understand badblocks, 2955 * so we need to fail the device 2956 */ 2957 md_error(rdev->mddev, rdev); 2958 } 2959 clear_bit(Blocked, &rdev->flags); 2960 clear_bit(BlockedBadBlocks, &rdev->flags); 2961 wake_up(&rdev->blocked_wait); 2962 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2963 md_wakeup_thread(rdev->mddev->thread); 2964 2965 err = 0; 2966 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2967 set_bit(In_sync, &rdev->flags); 2968 err = 0; 2969 } else if (cmd_match(buf, "failfast")) { 2970 set_bit(FailFast, &rdev->flags); 2971 need_update_sb = true; 2972 err = 0; 2973 } else if (cmd_match(buf, "-failfast")) { 2974 clear_bit(FailFast, &rdev->flags); 2975 need_update_sb = true; 2976 err = 0; 2977 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2978 !test_bit(Journal, &rdev->flags)) { 2979 if (rdev->mddev->pers == NULL) { 2980 clear_bit(In_sync, &rdev->flags); 2981 rdev->saved_raid_disk = rdev->raid_disk; 2982 rdev->raid_disk = -1; 2983 err = 0; 2984 } 2985 } else if (cmd_match(buf, "write_error")) { 2986 set_bit(WriteErrorSeen, &rdev->flags); 2987 err = 0; 2988 } else if (cmd_match(buf, "-write_error")) { 2989 clear_bit(WriteErrorSeen, &rdev->flags); 2990 err = 0; 2991 } else if (cmd_match(buf, "want_replacement")) { 2992 /* Any non-spare device that is not a replacement can 2993 * become want_replacement at any time, but we then need to 2994 * check if recovery is needed. 2995 */ 2996 if (rdev->raid_disk >= 0 && 2997 !test_bit(Journal, &rdev->flags) && 2998 !test_bit(Replacement, &rdev->flags)) 2999 set_bit(WantReplacement, &rdev->flags); 3000 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3001 md_wakeup_thread(rdev->mddev->thread); 3002 err = 0; 3003 } else if (cmd_match(buf, "-want_replacement")) { 3004 /* Clearing 'want_replacement' is always allowed. 3005 * Once replacements starts it is too late though. 3006 */ 3007 err = 0; 3008 clear_bit(WantReplacement, &rdev->flags); 3009 } else if (cmd_match(buf, "replacement")) { 3010 /* Can only set a device as a replacement when array has not 3011 * yet been started. Once running, replacement is automatic 3012 * from spares, or by assigning 'slot'. 3013 */ 3014 if (rdev->mddev->pers) 3015 err = -EBUSY; 3016 else { 3017 set_bit(Replacement, &rdev->flags); 3018 err = 0; 3019 } 3020 } else if (cmd_match(buf, "-replacement")) { 3021 /* Similarly, can only clear Replacement before start */ 3022 if (rdev->mddev->pers) 3023 err = -EBUSY; 3024 else { 3025 clear_bit(Replacement, &rdev->flags); 3026 err = 0; 3027 } 3028 } else if (cmd_match(buf, "re-add")) { 3029 if (!rdev->mddev->pers) 3030 err = -EINVAL; 3031 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3032 rdev->saved_raid_disk >= 0) { 3033 /* clear_bit is performed _after_ all the devices 3034 * have their local Faulty bit cleared. If any writes 3035 * happen in the meantime in the local node, they 3036 * will land in the local bitmap, which will be synced 3037 * by this node eventually 3038 */ 3039 if (!mddev_is_clustered(rdev->mddev) || 3040 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3041 clear_bit(Faulty, &rdev->flags); 3042 err = add_bound_rdev(rdev); 3043 } 3044 } else 3045 err = -EBUSY; 3046 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3047 set_bit(ExternalBbl, &rdev->flags); 3048 rdev->badblocks.shift = 0; 3049 err = 0; 3050 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3051 clear_bit(ExternalBbl, &rdev->flags); 3052 err = 0; 3053 } 3054 if (need_update_sb) 3055 md_update_sb(mddev, 1); 3056 if (!err) 3057 sysfs_notify_dirent_safe(rdev->sysfs_state); 3058 return err ? err : len; 3059 } 3060 static struct rdev_sysfs_entry rdev_state = 3061 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3062 3063 static ssize_t 3064 errors_show(struct md_rdev *rdev, char *page) 3065 { 3066 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3067 } 3068 3069 static ssize_t 3070 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3071 { 3072 unsigned int n; 3073 int rv; 3074 3075 rv = kstrtouint(buf, 10, &n); 3076 if (rv < 0) 3077 return rv; 3078 atomic_set(&rdev->corrected_errors, n); 3079 return len; 3080 } 3081 static struct rdev_sysfs_entry rdev_errors = 3082 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3083 3084 static ssize_t 3085 slot_show(struct md_rdev *rdev, char *page) 3086 { 3087 if (test_bit(Journal, &rdev->flags)) 3088 return sprintf(page, "journal\n"); 3089 else if (rdev->raid_disk < 0) 3090 return sprintf(page, "none\n"); 3091 else 3092 return sprintf(page, "%d\n", rdev->raid_disk); 3093 } 3094 3095 static ssize_t 3096 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3097 { 3098 int slot; 3099 int err; 3100 3101 if (test_bit(Journal, &rdev->flags)) 3102 return -EBUSY; 3103 if (strncmp(buf, "none", 4)==0) 3104 slot = -1; 3105 else { 3106 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3107 if (err < 0) 3108 return err; 3109 if (slot < 0) 3110 /* overflow */ 3111 return -ENOSPC; 3112 } 3113 if (rdev->mddev->pers && slot == -1) { 3114 /* Setting 'slot' on an active array requires also 3115 * updating the 'rd%d' link, and communicating 3116 * with the personality with ->hot_*_disk. 3117 * For now we only support removing 3118 * failed/spare devices. This normally happens automatically, 3119 * but not when the metadata is externally managed. 3120 */ 3121 if (rdev->raid_disk == -1) 3122 return -EEXIST; 3123 /* personality does all needed checks */ 3124 if (rdev->mddev->pers->hot_remove_disk == NULL) 3125 return -EINVAL; 3126 clear_bit(Blocked, &rdev->flags); 3127 remove_and_add_spares(rdev->mddev, rdev); 3128 if (rdev->raid_disk >= 0) 3129 return -EBUSY; 3130 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3131 md_wakeup_thread(rdev->mddev->thread); 3132 } else if (rdev->mddev->pers) { 3133 /* Activating a spare .. or possibly reactivating 3134 * if we ever get bitmaps working here. 3135 */ 3136 int err; 3137 3138 if (rdev->raid_disk != -1) 3139 return -EBUSY; 3140 3141 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3142 return -EBUSY; 3143 3144 if (rdev->mddev->pers->hot_add_disk == NULL) 3145 return -EINVAL; 3146 3147 if (slot >= rdev->mddev->raid_disks && 3148 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3149 return -ENOSPC; 3150 3151 rdev->raid_disk = slot; 3152 if (test_bit(In_sync, &rdev->flags)) 3153 rdev->saved_raid_disk = slot; 3154 else 3155 rdev->saved_raid_disk = -1; 3156 clear_bit(In_sync, &rdev->flags); 3157 clear_bit(Bitmap_sync, &rdev->flags); 3158 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3159 if (err) { 3160 rdev->raid_disk = -1; 3161 return err; 3162 } else 3163 sysfs_notify_dirent_safe(rdev->sysfs_state); 3164 /* failure here is OK */; 3165 sysfs_link_rdev(rdev->mddev, rdev); 3166 /* don't wakeup anyone, leave that to userspace. */ 3167 } else { 3168 if (slot >= rdev->mddev->raid_disks && 3169 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3170 return -ENOSPC; 3171 rdev->raid_disk = slot; 3172 /* assume it is working */ 3173 clear_bit(Faulty, &rdev->flags); 3174 clear_bit(WriteMostly, &rdev->flags); 3175 set_bit(In_sync, &rdev->flags); 3176 sysfs_notify_dirent_safe(rdev->sysfs_state); 3177 } 3178 return len; 3179 } 3180 3181 static struct rdev_sysfs_entry rdev_slot = 3182 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3183 3184 static ssize_t 3185 offset_show(struct md_rdev *rdev, char *page) 3186 { 3187 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3188 } 3189 3190 static ssize_t 3191 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3192 { 3193 unsigned long long offset; 3194 if (kstrtoull(buf, 10, &offset) < 0) 3195 return -EINVAL; 3196 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3197 return -EBUSY; 3198 if (rdev->sectors && rdev->mddev->external) 3199 /* Must set offset before size, so overlap checks 3200 * can be sane */ 3201 return -EBUSY; 3202 rdev->data_offset = offset; 3203 rdev->new_data_offset = offset; 3204 return len; 3205 } 3206 3207 static struct rdev_sysfs_entry rdev_offset = 3208 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3209 3210 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3211 { 3212 return sprintf(page, "%llu\n", 3213 (unsigned long long)rdev->new_data_offset); 3214 } 3215 3216 static ssize_t new_offset_store(struct md_rdev *rdev, 3217 const char *buf, size_t len) 3218 { 3219 unsigned long long new_offset; 3220 struct mddev *mddev = rdev->mddev; 3221 3222 if (kstrtoull(buf, 10, &new_offset) < 0) 3223 return -EINVAL; 3224 3225 if (mddev->sync_thread || 3226 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3227 return -EBUSY; 3228 if (new_offset == rdev->data_offset) 3229 /* reset is always permitted */ 3230 ; 3231 else if (new_offset > rdev->data_offset) { 3232 /* must not push array size beyond rdev_sectors */ 3233 if (new_offset - rdev->data_offset 3234 + mddev->dev_sectors > rdev->sectors) 3235 return -E2BIG; 3236 } 3237 /* Metadata worries about other space details. */ 3238 3239 /* decreasing the offset is inconsistent with a backwards 3240 * reshape. 3241 */ 3242 if (new_offset < rdev->data_offset && 3243 mddev->reshape_backwards) 3244 return -EINVAL; 3245 /* Increasing offset is inconsistent with forwards 3246 * reshape. reshape_direction should be set to 3247 * 'backwards' first. 3248 */ 3249 if (new_offset > rdev->data_offset && 3250 !mddev->reshape_backwards) 3251 return -EINVAL; 3252 3253 if (mddev->pers && mddev->persistent && 3254 !super_types[mddev->major_version] 3255 .allow_new_offset(rdev, new_offset)) 3256 return -E2BIG; 3257 rdev->new_data_offset = new_offset; 3258 if (new_offset > rdev->data_offset) 3259 mddev->reshape_backwards = 1; 3260 else if (new_offset < rdev->data_offset) 3261 mddev->reshape_backwards = 0; 3262 3263 return len; 3264 } 3265 static struct rdev_sysfs_entry rdev_new_offset = 3266 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3267 3268 static ssize_t 3269 rdev_size_show(struct md_rdev *rdev, char *page) 3270 { 3271 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3272 } 3273 3274 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3275 { 3276 /* check if two start/length pairs overlap */ 3277 if (a->data_offset + a->sectors <= b->data_offset) 3278 return false; 3279 if (b->data_offset + b->sectors <= a->data_offset) 3280 return false; 3281 return true; 3282 } 3283 3284 static bool md_rdev_overlaps(struct md_rdev *rdev) 3285 { 3286 struct mddev *mddev; 3287 struct md_rdev *rdev2; 3288 3289 spin_lock(&all_mddevs_lock); 3290 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3291 if (test_bit(MD_DELETED, &mddev->flags)) 3292 continue; 3293 rdev_for_each(rdev2, mddev) { 3294 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3295 md_rdevs_overlap(rdev, rdev2)) { 3296 spin_unlock(&all_mddevs_lock); 3297 return true; 3298 } 3299 } 3300 } 3301 spin_unlock(&all_mddevs_lock); 3302 return false; 3303 } 3304 3305 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3306 { 3307 unsigned long long blocks; 3308 sector_t new; 3309 3310 if (kstrtoull(buf, 10, &blocks) < 0) 3311 return -EINVAL; 3312 3313 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3314 return -EINVAL; /* sector conversion overflow */ 3315 3316 new = blocks * 2; 3317 if (new != blocks * 2) 3318 return -EINVAL; /* unsigned long long to sector_t overflow */ 3319 3320 *sectors = new; 3321 return 0; 3322 } 3323 3324 static ssize_t 3325 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3326 { 3327 struct mddev *my_mddev = rdev->mddev; 3328 sector_t oldsectors = rdev->sectors; 3329 sector_t sectors; 3330 3331 if (test_bit(Journal, &rdev->flags)) 3332 return -EBUSY; 3333 if (strict_blocks_to_sectors(buf, §ors) < 0) 3334 return -EINVAL; 3335 if (rdev->data_offset != rdev->new_data_offset) 3336 return -EINVAL; /* too confusing */ 3337 if (my_mddev->pers && rdev->raid_disk >= 0) { 3338 if (my_mddev->persistent) { 3339 sectors = super_types[my_mddev->major_version]. 3340 rdev_size_change(rdev, sectors); 3341 if (!sectors) 3342 return -EBUSY; 3343 } else if (!sectors) 3344 sectors = bdev_nr_sectors(rdev->bdev) - 3345 rdev->data_offset; 3346 if (!my_mddev->pers->resize) 3347 /* Cannot change size for RAID0 or Linear etc */ 3348 return -EINVAL; 3349 } 3350 if (sectors < my_mddev->dev_sectors) 3351 return -EINVAL; /* component must fit device */ 3352 3353 rdev->sectors = sectors; 3354 3355 /* 3356 * Check that all other rdevs with the same bdev do not overlap. This 3357 * check does not provide a hard guarantee, it just helps avoid 3358 * dangerous mistakes. 3359 */ 3360 if (sectors > oldsectors && my_mddev->external && 3361 md_rdev_overlaps(rdev)) { 3362 /* 3363 * Someone else could have slipped in a size change here, but 3364 * doing so is just silly. We put oldsectors back because we 3365 * know it is safe, and trust userspace not to race with itself. 3366 */ 3367 rdev->sectors = oldsectors; 3368 return -EBUSY; 3369 } 3370 return len; 3371 } 3372 3373 static struct rdev_sysfs_entry rdev_size = 3374 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3375 3376 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3377 { 3378 unsigned long long recovery_start = rdev->recovery_offset; 3379 3380 if (test_bit(In_sync, &rdev->flags) || 3381 recovery_start == MaxSector) 3382 return sprintf(page, "none\n"); 3383 3384 return sprintf(page, "%llu\n", recovery_start); 3385 } 3386 3387 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3388 { 3389 unsigned long long recovery_start; 3390 3391 if (cmd_match(buf, "none")) 3392 recovery_start = MaxSector; 3393 else if (kstrtoull(buf, 10, &recovery_start)) 3394 return -EINVAL; 3395 3396 if (rdev->mddev->pers && 3397 rdev->raid_disk >= 0) 3398 return -EBUSY; 3399 3400 rdev->recovery_offset = recovery_start; 3401 if (recovery_start == MaxSector) 3402 set_bit(In_sync, &rdev->flags); 3403 else 3404 clear_bit(In_sync, &rdev->flags); 3405 return len; 3406 } 3407 3408 static struct rdev_sysfs_entry rdev_recovery_start = 3409 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3410 3411 /* sysfs access to bad-blocks list. 3412 * We present two files. 3413 * 'bad-blocks' lists sector numbers and lengths of ranges that 3414 * are recorded as bad. The list is truncated to fit within 3415 * the one-page limit of sysfs. 3416 * Writing "sector length" to this file adds an acknowledged 3417 * bad block list. 3418 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3419 * been acknowledged. Writing to this file adds bad blocks 3420 * without acknowledging them. This is largely for testing. 3421 */ 3422 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3423 { 3424 return badblocks_show(&rdev->badblocks, page, 0); 3425 } 3426 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3427 { 3428 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3429 /* Maybe that ack was all we needed */ 3430 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3431 wake_up(&rdev->blocked_wait); 3432 return rv; 3433 } 3434 static struct rdev_sysfs_entry rdev_bad_blocks = 3435 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3436 3437 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3438 { 3439 return badblocks_show(&rdev->badblocks, page, 1); 3440 } 3441 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3442 { 3443 return badblocks_store(&rdev->badblocks, page, len, 1); 3444 } 3445 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3446 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3447 3448 static ssize_t 3449 ppl_sector_show(struct md_rdev *rdev, char *page) 3450 { 3451 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3452 } 3453 3454 static ssize_t 3455 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3456 { 3457 unsigned long long sector; 3458 3459 if (kstrtoull(buf, 10, §or) < 0) 3460 return -EINVAL; 3461 if (sector != (sector_t)sector) 3462 return -EINVAL; 3463 3464 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3465 rdev->raid_disk >= 0) 3466 return -EBUSY; 3467 3468 if (rdev->mddev->persistent) { 3469 if (rdev->mddev->major_version == 0) 3470 return -EINVAL; 3471 if ((sector > rdev->sb_start && 3472 sector - rdev->sb_start > S16_MAX) || 3473 (sector < rdev->sb_start && 3474 rdev->sb_start - sector > -S16_MIN)) 3475 return -EINVAL; 3476 rdev->ppl.offset = sector - rdev->sb_start; 3477 } else if (!rdev->mddev->external) { 3478 return -EBUSY; 3479 } 3480 rdev->ppl.sector = sector; 3481 return len; 3482 } 3483 3484 static struct rdev_sysfs_entry rdev_ppl_sector = 3485 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3486 3487 static ssize_t 3488 ppl_size_show(struct md_rdev *rdev, char *page) 3489 { 3490 return sprintf(page, "%u\n", rdev->ppl.size); 3491 } 3492 3493 static ssize_t 3494 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3495 { 3496 unsigned int size; 3497 3498 if (kstrtouint(buf, 10, &size) < 0) 3499 return -EINVAL; 3500 3501 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3502 rdev->raid_disk >= 0) 3503 return -EBUSY; 3504 3505 if (rdev->mddev->persistent) { 3506 if (rdev->mddev->major_version == 0) 3507 return -EINVAL; 3508 if (size > U16_MAX) 3509 return -EINVAL; 3510 } else if (!rdev->mddev->external) { 3511 return -EBUSY; 3512 } 3513 rdev->ppl.size = size; 3514 return len; 3515 } 3516 3517 static struct rdev_sysfs_entry rdev_ppl_size = 3518 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3519 3520 static struct attribute *rdev_default_attrs[] = { 3521 &rdev_state.attr, 3522 &rdev_errors.attr, 3523 &rdev_slot.attr, 3524 &rdev_offset.attr, 3525 &rdev_new_offset.attr, 3526 &rdev_size.attr, 3527 &rdev_recovery_start.attr, 3528 &rdev_bad_blocks.attr, 3529 &rdev_unack_bad_blocks.attr, 3530 &rdev_ppl_sector.attr, 3531 &rdev_ppl_size.attr, 3532 NULL, 3533 }; 3534 ATTRIBUTE_GROUPS(rdev_default); 3535 static ssize_t 3536 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3537 { 3538 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3539 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3540 3541 if (!entry->show) 3542 return -EIO; 3543 if (!rdev->mddev) 3544 return -ENODEV; 3545 return entry->show(rdev, page); 3546 } 3547 3548 static ssize_t 3549 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3550 const char *page, size_t length) 3551 { 3552 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3553 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3554 struct kernfs_node *kn = NULL; 3555 ssize_t rv; 3556 struct mddev *mddev = rdev->mddev; 3557 3558 if (!entry->store) 3559 return -EIO; 3560 if (!capable(CAP_SYS_ADMIN)) 3561 return -EACCES; 3562 3563 if (entry->store == state_store && cmd_match(page, "remove")) 3564 kn = sysfs_break_active_protection(kobj, attr); 3565 3566 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3567 if (!rv) { 3568 if (rdev->mddev == NULL) 3569 rv = -ENODEV; 3570 else 3571 rv = entry->store(rdev, page, length); 3572 mddev_unlock(mddev); 3573 } 3574 3575 if (kn) 3576 sysfs_unbreak_active_protection(kn); 3577 3578 return rv; 3579 } 3580 3581 static void rdev_free(struct kobject *ko) 3582 { 3583 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3584 kfree(rdev); 3585 } 3586 static const struct sysfs_ops rdev_sysfs_ops = { 3587 .show = rdev_attr_show, 3588 .store = rdev_attr_store, 3589 }; 3590 static const struct kobj_type rdev_ktype = { 3591 .release = rdev_free, 3592 .sysfs_ops = &rdev_sysfs_ops, 3593 .default_groups = rdev_default_groups, 3594 }; 3595 3596 int md_rdev_init(struct md_rdev *rdev) 3597 { 3598 rdev->desc_nr = -1; 3599 rdev->saved_raid_disk = -1; 3600 rdev->raid_disk = -1; 3601 rdev->flags = 0; 3602 rdev->data_offset = 0; 3603 rdev->new_data_offset = 0; 3604 rdev->sb_events = 0; 3605 rdev->last_read_error = 0; 3606 rdev->sb_loaded = 0; 3607 rdev->bb_page = NULL; 3608 atomic_set(&rdev->nr_pending, 0); 3609 atomic_set(&rdev->read_errors, 0); 3610 atomic_set(&rdev->corrected_errors, 0); 3611 3612 INIT_LIST_HEAD(&rdev->same_set); 3613 init_waitqueue_head(&rdev->blocked_wait); 3614 3615 /* Add space to store bad block list. 3616 * This reserves the space even on arrays where it cannot 3617 * be used - I wonder if that matters 3618 */ 3619 return badblocks_init(&rdev->badblocks, 0); 3620 } 3621 EXPORT_SYMBOL_GPL(md_rdev_init); 3622 3623 /* 3624 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3625 * 3626 * mark the device faulty if: 3627 * 3628 * - the device is nonexistent (zero size) 3629 * - the device has no valid superblock 3630 * 3631 * a faulty rdev _never_ has rdev->sb set. 3632 */ 3633 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3634 { 3635 struct md_rdev *rdev; 3636 struct md_rdev *holder; 3637 sector_t size; 3638 int err; 3639 3640 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3641 if (!rdev) 3642 return ERR_PTR(-ENOMEM); 3643 3644 err = md_rdev_init(rdev); 3645 if (err) 3646 goto out_free_rdev; 3647 err = alloc_disk_sb(rdev); 3648 if (err) 3649 goto out_clear_rdev; 3650 3651 if (super_format == -2) { 3652 holder = &claim_rdev; 3653 } else { 3654 holder = rdev; 3655 set_bit(Holder, &rdev->flags); 3656 } 3657 3658 rdev->bdev = blkdev_get_by_dev(newdev, BLK_OPEN_READ | BLK_OPEN_WRITE, 3659 holder, NULL); 3660 if (IS_ERR(rdev->bdev)) { 3661 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3662 MAJOR(newdev), MINOR(newdev)); 3663 err = PTR_ERR(rdev->bdev); 3664 goto out_clear_rdev; 3665 } 3666 3667 kobject_init(&rdev->kobj, &rdev_ktype); 3668 3669 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3670 if (!size) { 3671 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3672 rdev->bdev); 3673 err = -EINVAL; 3674 goto out_blkdev_put; 3675 } 3676 3677 if (super_format >= 0) { 3678 err = super_types[super_format]. 3679 load_super(rdev, NULL, super_minor); 3680 if (err == -EINVAL) { 3681 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3682 rdev->bdev, 3683 super_format, super_minor); 3684 goto out_blkdev_put; 3685 } 3686 if (err < 0) { 3687 pr_warn("md: could not read %pg's sb, not importing!\n", 3688 rdev->bdev); 3689 goto out_blkdev_put; 3690 } 3691 } 3692 3693 return rdev; 3694 3695 out_blkdev_put: 3696 blkdev_put(rdev->bdev, holder); 3697 out_clear_rdev: 3698 md_rdev_clear(rdev); 3699 out_free_rdev: 3700 kfree(rdev); 3701 return ERR_PTR(err); 3702 } 3703 3704 /* 3705 * Check a full RAID array for plausibility 3706 */ 3707 3708 static int analyze_sbs(struct mddev *mddev) 3709 { 3710 int i; 3711 struct md_rdev *rdev, *freshest, *tmp; 3712 3713 freshest = NULL; 3714 rdev_for_each_safe(rdev, tmp, mddev) 3715 switch (super_types[mddev->major_version]. 3716 load_super(rdev, freshest, mddev->minor_version)) { 3717 case 1: 3718 freshest = rdev; 3719 break; 3720 case 0: 3721 break; 3722 default: 3723 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3724 rdev->bdev); 3725 md_kick_rdev_from_array(rdev); 3726 } 3727 3728 /* Cannot find a valid fresh disk */ 3729 if (!freshest) { 3730 pr_warn("md: cannot find a valid disk\n"); 3731 return -EINVAL; 3732 } 3733 3734 super_types[mddev->major_version]. 3735 validate_super(mddev, freshest); 3736 3737 i = 0; 3738 rdev_for_each_safe(rdev, tmp, mddev) { 3739 if (mddev->max_disks && 3740 (rdev->desc_nr >= mddev->max_disks || 3741 i > mddev->max_disks)) { 3742 pr_warn("md: %s: %pg: only %d devices permitted\n", 3743 mdname(mddev), rdev->bdev, 3744 mddev->max_disks); 3745 md_kick_rdev_from_array(rdev); 3746 continue; 3747 } 3748 if (rdev != freshest) { 3749 if (super_types[mddev->major_version]. 3750 validate_super(mddev, rdev)) { 3751 pr_warn("md: kicking non-fresh %pg from array!\n", 3752 rdev->bdev); 3753 md_kick_rdev_from_array(rdev); 3754 continue; 3755 } 3756 } 3757 if (mddev->level == LEVEL_MULTIPATH) { 3758 rdev->desc_nr = i++; 3759 rdev->raid_disk = rdev->desc_nr; 3760 set_bit(In_sync, &rdev->flags); 3761 } else if (rdev->raid_disk >= 3762 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3763 !test_bit(Journal, &rdev->flags)) { 3764 rdev->raid_disk = -1; 3765 clear_bit(In_sync, &rdev->flags); 3766 } 3767 } 3768 3769 return 0; 3770 } 3771 3772 /* Read a fixed-point number. 3773 * Numbers in sysfs attributes should be in "standard" units where 3774 * possible, so time should be in seconds. 3775 * However we internally use a a much smaller unit such as 3776 * milliseconds or jiffies. 3777 * This function takes a decimal number with a possible fractional 3778 * component, and produces an integer which is the result of 3779 * multiplying that number by 10^'scale'. 3780 * all without any floating-point arithmetic. 3781 */ 3782 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3783 { 3784 unsigned long result = 0; 3785 long decimals = -1; 3786 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3787 if (*cp == '.') 3788 decimals = 0; 3789 else if (decimals < scale) { 3790 unsigned int value; 3791 value = *cp - '0'; 3792 result = result * 10 + value; 3793 if (decimals >= 0) 3794 decimals++; 3795 } 3796 cp++; 3797 } 3798 if (*cp == '\n') 3799 cp++; 3800 if (*cp) 3801 return -EINVAL; 3802 if (decimals < 0) 3803 decimals = 0; 3804 *res = result * int_pow(10, scale - decimals); 3805 return 0; 3806 } 3807 3808 static ssize_t 3809 safe_delay_show(struct mddev *mddev, char *page) 3810 { 3811 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ; 3812 3813 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000); 3814 } 3815 static ssize_t 3816 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3817 { 3818 unsigned long msec; 3819 3820 if (mddev_is_clustered(mddev)) { 3821 pr_warn("md: Safemode is disabled for clustered mode\n"); 3822 return -EINVAL; 3823 } 3824 3825 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ) 3826 return -EINVAL; 3827 if (msec == 0) 3828 mddev->safemode_delay = 0; 3829 else { 3830 unsigned long old_delay = mddev->safemode_delay; 3831 unsigned long new_delay = (msec*HZ)/1000; 3832 3833 if (new_delay == 0) 3834 new_delay = 1; 3835 mddev->safemode_delay = new_delay; 3836 if (new_delay < old_delay || old_delay == 0) 3837 mod_timer(&mddev->safemode_timer, jiffies+1); 3838 } 3839 return len; 3840 } 3841 static struct md_sysfs_entry md_safe_delay = 3842 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3843 3844 static ssize_t 3845 level_show(struct mddev *mddev, char *page) 3846 { 3847 struct md_personality *p; 3848 int ret; 3849 spin_lock(&mddev->lock); 3850 p = mddev->pers; 3851 if (p) 3852 ret = sprintf(page, "%s\n", p->name); 3853 else if (mddev->clevel[0]) 3854 ret = sprintf(page, "%s\n", mddev->clevel); 3855 else if (mddev->level != LEVEL_NONE) 3856 ret = sprintf(page, "%d\n", mddev->level); 3857 else 3858 ret = 0; 3859 spin_unlock(&mddev->lock); 3860 return ret; 3861 } 3862 3863 static ssize_t 3864 level_store(struct mddev *mddev, const char *buf, size_t len) 3865 { 3866 char clevel[16]; 3867 ssize_t rv; 3868 size_t slen = len; 3869 struct md_personality *pers, *oldpers; 3870 long level; 3871 void *priv, *oldpriv; 3872 struct md_rdev *rdev; 3873 3874 if (slen == 0 || slen >= sizeof(clevel)) 3875 return -EINVAL; 3876 3877 rv = mddev_lock(mddev); 3878 if (rv) 3879 return rv; 3880 3881 if (mddev->pers == NULL) { 3882 strncpy(mddev->clevel, buf, slen); 3883 if (mddev->clevel[slen-1] == '\n') 3884 slen--; 3885 mddev->clevel[slen] = 0; 3886 mddev->level = LEVEL_NONE; 3887 rv = len; 3888 goto out_unlock; 3889 } 3890 rv = -EROFS; 3891 if (!md_is_rdwr(mddev)) 3892 goto out_unlock; 3893 3894 /* request to change the personality. Need to ensure: 3895 * - array is not engaged in resync/recovery/reshape 3896 * - old personality can be suspended 3897 * - new personality will access other array. 3898 */ 3899 3900 rv = -EBUSY; 3901 if (mddev->sync_thread || 3902 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3903 mddev->reshape_position != MaxSector || 3904 mddev->sysfs_active) 3905 goto out_unlock; 3906 3907 rv = -EINVAL; 3908 if (!mddev->pers->quiesce) { 3909 pr_warn("md: %s: %s does not support online personality change\n", 3910 mdname(mddev), mddev->pers->name); 3911 goto out_unlock; 3912 } 3913 3914 /* Now find the new personality */ 3915 strncpy(clevel, buf, slen); 3916 if (clevel[slen-1] == '\n') 3917 slen--; 3918 clevel[slen] = 0; 3919 if (kstrtol(clevel, 10, &level)) 3920 level = LEVEL_NONE; 3921 3922 if (request_module("md-%s", clevel) != 0) 3923 request_module("md-level-%s", clevel); 3924 spin_lock(&pers_lock); 3925 pers = find_pers(level, clevel); 3926 if (!pers || !try_module_get(pers->owner)) { 3927 spin_unlock(&pers_lock); 3928 pr_warn("md: personality %s not loaded\n", clevel); 3929 rv = -EINVAL; 3930 goto out_unlock; 3931 } 3932 spin_unlock(&pers_lock); 3933 3934 if (pers == mddev->pers) { 3935 /* Nothing to do! */ 3936 module_put(pers->owner); 3937 rv = len; 3938 goto out_unlock; 3939 } 3940 if (!pers->takeover) { 3941 module_put(pers->owner); 3942 pr_warn("md: %s: %s does not support personality takeover\n", 3943 mdname(mddev), clevel); 3944 rv = -EINVAL; 3945 goto out_unlock; 3946 } 3947 3948 rdev_for_each(rdev, mddev) 3949 rdev->new_raid_disk = rdev->raid_disk; 3950 3951 /* ->takeover must set new_* and/or delta_disks 3952 * if it succeeds, and may set them when it fails. 3953 */ 3954 priv = pers->takeover(mddev); 3955 if (IS_ERR(priv)) { 3956 mddev->new_level = mddev->level; 3957 mddev->new_layout = mddev->layout; 3958 mddev->new_chunk_sectors = mddev->chunk_sectors; 3959 mddev->raid_disks -= mddev->delta_disks; 3960 mddev->delta_disks = 0; 3961 mddev->reshape_backwards = 0; 3962 module_put(pers->owner); 3963 pr_warn("md: %s: %s would not accept array\n", 3964 mdname(mddev), clevel); 3965 rv = PTR_ERR(priv); 3966 goto out_unlock; 3967 } 3968 3969 /* Looks like we have a winner */ 3970 mddev_suspend(mddev); 3971 mddev_detach(mddev); 3972 3973 spin_lock(&mddev->lock); 3974 oldpers = mddev->pers; 3975 oldpriv = mddev->private; 3976 mddev->pers = pers; 3977 mddev->private = priv; 3978 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3979 mddev->level = mddev->new_level; 3980 mddev->layout = mddev->new_layout; 3981 mddev->chunk_sectors = mddev->new_chunk_sectors; 3982 mddev->delta_disks = 0; 3983 mddev->reshape_backwards = 0; 3984 mddev->degraded = 0; 3985 spin_unlock(&mddev->lock); 3986 3987 if (oldpers->sync_request == NULL && 3988 mddev->external) { 3989 /* We are converting from a no-redundancy array 3990 * to a redundancy array and metadata is managed 3991 * externally so we need to be sure that writes 3992 * won't block due to a need to transition 3993 * clean->dirty 3994 * until external management is started. 3995 */ 3996 mddev->in_sync = 0; 3997 mddev->safemode_delay = 0; 3998 mddev->safemode = 0; 3999 } 4000 4001 oldpers->free(mddev, oldpriv); 4002 4003 if (oldpers->sync_request == NULL && 4004 pers->sync_request != NULL) { 4005 /* need to add the md_redundancy_group */ 4006 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4007 pr_warn("md: cannot register extra attributes for %s\n", 4008 mdname(mddev)); 4009 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4010 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4011 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4012 } 4013 if (oldpers->sync_request != NULL && 4014 pers->sync_request == NULL) { 4015 /* need to remove the md_redundancy_group */ 4016 if (mddev->to_remove == NULL) 4017 mddev->to_remove = &md_redundancy_group; 4018 } 4019 4020 module_put(oldpers->owner); 4021 4022 rdev_for_each(rdev, mddev) { 4023 if (rdev->raid_disk < 0) 4024 continue; 4025 if (rdev->new_raid_disk >= mddev->raid_disks) 4026 rdev->new_raid_disk = -1; 4027 if (rdev->new_raid_disk == rdev->raid_disk) 4028 continue; 4029 sysfs_unlink_rdev(mddev, rdev); 4030 } 4031 rdev_for_each(rdev, mddev) { 4032 if (rdev->raid_disk < 0) 4033 continue; 4034 if (rdev->new_raid_disk == rdev->raid_disk) 4035 continue; 4036 rdev->raid_disk = rdev->new_raid_disk; 4037 if (rdev->raid_disk < 0) 4038 clear_bit(In_sync, &rdev->flags); 4039 else { 4040 if (sysfs_link_rdev(mddev, rdev)) 4041 pr_warn("md: cannot register rd%d for %s after level change\n", 4042 rdev->raid_disk, mdname(mddev)); 4043 } 4044 } 4045 4046 if (pers->sync_request == NULL) { 4047 /* this is now an array without redundancy, so 4048 * it must always be in_sync 4049 */ 4050 mddev->in_sync = 1; 4051 del_timer_sync(&mddev->safemode_timer); 4052 } 4053 blk_set_stacking_limits(&mddev->queue->limits); 4054 pers->run(mddev); 4055 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4056 mddev_resume(mddev); 4057 if (!mddev->thread) 4058 md_update_sb(mddev, 1); 4059 sysfs_notify_dirent_safe(mddev->sysfs_level); 4060 md_new_event(); 4061 rv = len; 4062 out_unlock: 4063 mddev_unlock(mddev); 4064 return rv; 4065 } 4066 4067 static struct md_sysfs_entry md_level = 4068 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4069 4070 static ssize_t 4071 layout_show(struct mddev *mddev, char *page) 4072 { 4073 /* just a number, not meaningful for all levels */ 4074 if (mddev->reshape_position != MaxSector && 4075 mddev->layout != mddev->new_layout) 4076 return sprintf(page, "%d (%d)\n", 4077 mddev->new_layout, mddev->layout); 4078 return sprintf(page, "%d\n", mddev->layout); 4079 } 4080 4081 static ssize_t 4082 layout_store(struct mddev *mddev, const char *buf, size_t len) 4083 { 4084 unsigned int n; 4085 int err; 4086 4087 err = kstrtouint(buf, 10, &n); 4088 if (err < 0) 4089 return err; 4090 err = mddev_lock(mddev); 4091 if (err) 4092 return err; 4093 4094 if (mddev->pers) { 4095 if (mddev->pers->check_reshape == NULL) 4096 err = -EBUSY; 4097 else if (!md_is_rdwr(mddev)) 4098 err = -EROFS; 4099 else { 4100 mddev->new_layout = n; 4101 err = mddev->pers->check_reshape(mddev); 4102 if (err) 4103 mddev->new_layout = mddev->layout; 4104 } 4105 } else { 4106 mddev->new_layout = n; 4107 if (mddev->reshape_position == MaxSector) 4108 mddev->layout = n; 4109 } 4110 mddev_unlock(mddev); 4111 return err ?: len; 4112 } 4113 static struct md_sysfs_entry md_layout = 4114 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4115 4116 static ssize_t 4117 raid_disks_show(struct mddev *mddev, char *page) 4118 { 4119 if (mddev->raid_disks == 0) 4120 return 0; 4121 if (mddev->reshape_position != MaxSector && 4122 mddev->delta_disks != 0) 4123 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4124 mddev->raid_disks - mddev->delta_disks); 4125 return sprintf(page, "%d\n", mddev->raid_disks); 4126 } 4127 4128 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4129 4130 static ssize_t 4131 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4132 { 4133 unsigned int n; 4134 int err; 4135 4136 err = kstrtouint(buf, 10, &n); 4137 if (err < 0) 4138 return err; 4139 4140 err = mddev_lock(mddev); 4141 if (err) 4142 return err; 4143 if (mddev->pers) 4144 err = update_raid_disks(mddev, n); 4145 else if (mddev->reshape_position != MaxSector) { 4146 struct md_rdev *rdev; 4147 int olddisks = mddev->raid_disks - mddev->delta_disks; 4148 4149 err = -EINVAL; 4150 rdev_for_each(rdev, mddev) { 4151 if (olddisks < n && 4152 rdev->data_offset < rdev->new_data_offset) 4153 goto out_unlock; 4154 if (olddisks > n && 4155 rdev->data_offset > rdev->new_data_offset) 4156 goto out_unlock; 4157 } 4158 err = 0; 4159 mddev->delta_disks = n - olddisks; 4160 mddev->raid_disks = n; 4161 mddev->reshape_backwards = (mddev->delta_disks < 0); 4162 } else 4163 mddev->raid_disks = n; 4164 out_unlock: 4165 mddev_unlock(mddev); 4166 return err ? err : len; 4167 } 4168 static struct md_sysfs_entry md_raid_disks = 4169 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4170 4171 static ssize_t 4172 uuid_show(struct mddev *mddev, char *page) 4173 { 4174 return sprintf(page, "%pU\n", mddev->uuid); 4175 } 4176 static struct md_sysfs_entry md_uuid = 4177 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4178 4179 static ssize_t 4180 chunk_size_show(struct mddev *mddev, char *page) 4181 { 4182 if (mddev->reshape_position != MaxSector && 4183 mddev->chunk_sectors != mddev->new_chunk_sectors) 4184 return sprintf(page, "%d (%d)\n", 4185 mddev->new_chunk_sectors << 9, 4186 mddev->chunk_sectors << 9); 4187 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4188 } 4189 4190 static ssize_t 4191 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4192 { 4193 unsigned long n; 4194 int err; 4195 4196 err = kstrtoul(buf, 10, &n); 4197 if (err < 0) 4198 return err; 4199 4200 err = mddev_lock(mddev); 4201 if (err) 4202 return err; 4203 if (mddev->pers) { 4204 if (mddev->pers->check_reshape == NULL) 4205 err = -EBUSY; 4206 else if (!md_is_rdwr(mddev)) 4207 err = -EROFS; 4208 else { 4209 mddev->new_chunk_sectors = n >> 9; 4210 err = mddev->pers->check_reshape(mddev); 4211 if (err) 4212 mddev->new_chunk_sectors = mddev->chunk_sectors; 4213 } 4214 } else { 4215 mddev->new_chunk_sectors = n >> 9; 4216 if (mddev->reshape_position == MaxSector) 4217 mddev->chunk_sectors = n >> 9; 4218 } 4219 mddev_unlock(mddev); 4220 return err ?: len; 4221 } 4222 static struct md_sysfs_entry md_chunk_size = 4223 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4224 4225 static ssize_t 4226 resync_start_show(struct mddev *mddev, char *page) 4227 { 4228 if (mddev->recovery_cp == MaxSector) 4229 return sprintf(page, "none\n"); 4230 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4231 } 4232 4233 static ssize_t 4234 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4235 { 4236 unsigned long long n; 4237 int err; 4238 4239 if (cmd_match(buf, "none")) 4240 n = MaxSector; 4241 else { 4242 err = kstrtoull(buf, 10, &n); 4243 if (err < 0) 4244 return err; 4245 if (n != (sector_t)n) 4246 return -EINVAL; 4247 } 4248 4249 err = mddev_lock(mddev); 4250 if (err) 4251 return err; 4252 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4253 err = -EBUSY; 4254 4255 if (!err) { 4256 mddev->recovery_cp = n; 4257 if (mddev->pers) 4258 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4259 } 4260 mddev_unlock(mddev); 4261 return err ?: len; 4262 } 4263 static struct md_sysfs_entry md_resync_start = 4264 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4265 resync_start_show, resync_start_store); 4266 4267 /* 4268 * The array state can be: 4269 * 4270 * clear 4271 * No devices, no size, no level 4272 * Equivalent to STOP_ARRAY ioctl 4273 * inactive 4274 * May have some settings, but array is not active 4275 * all IO results in error 4276 * When written, doesn't tear down array, but just stops it 4277 * suspended (not supported yet) 4278 * All IO requests will block. The array can be reconfigured. 4279 * Writing this, if accepted, will block until array is quiescent 4280 * readonly 4281 * no resync can happen. no superblocks get written. 4282 * write requests fail 4283 * read-auto 4284 * like readonly, but behaves like 'clean' on a write request. 4285 * 4286 * clean - no pending writes, but otherwise active. 4287 * When written to inactive array, starts without resync 4288 * If a write request arrives then 4289 * if metadata is known, mark 'dirty' and switch to 'active'. 4290 * if not known, block and switch to write-pending 4291 * If written to an active array that has pending writes, then fails. 4292 * active 4293 * fully active: IO and resync can be happening. 4294 * When written to inactive array, starts with resync 4295 * 4296 * write-pending 4297 * clean, but writes are blocked waiting for 'active' to be written. 4298 * 4299 * active-idle 4300 * like active, but no writes have been seen for a while (100msec). 4301 * 4302 * broken 4303 * Array is failed. It's useful because mounted-arrays aren't stopped 4304 * when array is failed, so this state will at least alert the user that 4305 * something is wrong. 4306 */ 4307 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4308 write_pending, active_idle, broken, bad_word}; 4309 static char *array_states[] = { 4310 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4311 "write-pending", "active-idle", "broken", NULL }; 4312 4313 static int match_word(const char *word, char **list) 4314 { 4315 int n; 4316 for (n=0; list[n]; n++) 4317 if (cmd_match(word, list[n])) 4318 break; 4319 return n; 4320 } 4321 4322 static ssize_t 4323 array_state_show(struct mddev *mddev, char *page) 4324 { 4325 enum array_state st = inactive; 4326 4327 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4328 switch(mddev->ro) { 4329 case MD_RDONLY: 4330 st = readonly; 4331 break; 4332 case MD_AUTO_READ: 4333 st = read_auto; 4334 break; 4335 case MD_RDWR: 4336 spin_lock(&mddev->lock); 4337 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4338 st = write_pending; 4339 else if (mddev->in_sync) 4340 st = clean; 4341 else if (mddev->safemode) 4342 st = active_idle; 4343 else 4344 st = active; 4345 spin_unlock(&mddev->lock); 4346 } 4347 4348 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4349 st = broken; 4350 } else { 4351 if (list_empty(&mddev->disks) && 4352 mddev->raid_disks == 0 && 4353 mddev->dev_sectors == 0) 4354 st = clear; 4355 else 4356 st = inactive; 4357 } 4358 return sprintf(page, "%s\n", array_states[st]); 4359 } 4360 4361 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4362 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4363 static int restart_array(struct mddev *mddev); 4364 4365 static ssize_t 4366 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4367 { 4368 int err = 0; 4369 enum array_state st = match_word(buf, array_states); 4370 4371 if (mddev->pers && (st == active || st == clean) && 4372 mddev->ro != MD_RDONLY) { 4373 /* don't take reconfig_mutex when toggling between 4374 * clean and active 4375 */ 4376 spin_lock(&mddev->lock); 4377 if (st == active) { 4378 restart_array(mddev); 4379 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4380 md_wakeup_thread(mddev->thread); 4381 wake_up(&mddev->sb_wait); 4382 } else /* st == clean */ { 4383 restart_array(mddev); 4384 if (!set_in_sync(mddev)) 4385 err = -EBUSY; 4386 } 4387 if (!err) 4388 sysfs_notify_dirent_safe(mddev->sysfs_state); 4389 spin_unlock(&mddev->lock); 4390 return err ?: len; 4391 } 4392 err = mddev_lock(mddev); 4393 if (err) 4394 return err; 4395 err = -EINVAL; 4396 switch(st) { 4397 case bad_word: 4398 break; 4399 case clear: 4400 /* stopping an active array */ 4401 err = do_md_stop(mddev, 0, NULL); 4402 break; 4403 case inactive: 4404 /* stopping an active array */ 4405 if (mddev->pers) 4406 err = do_md_stop(mddev, 2, NULL); 4407 else 4408 err = 0; /* already inactive */ 4409 break; 4410 case suspended: 4411 break; /* not supported yet */ 4412 case readonly: 4413 if (mddev->pers) 4414 err = md_set_readonly(mddev, NULL); 4415 else { 4416 mddev->ro = MD_RDONLY; 4417 set_disk_ro(mddev->gendisk, 1); 4418 err = do_md_run(mddev); 4419 } 4420 break; 4421 case read_auto: 4422 if (mddev->pers) { 4423 if (md_is_rdwr(mddev)) 4424 err = md_set_readonly(mddev, NULL); 4425 else if (mddev->ro == MD_RDONLY) 4426 err = restart_array(mddev); 4427 if (err == 0) { 4428 mddev->ro = MD_AUTO_READ; 4429 set_disk_ro(mddev->gendisk, 0); 4430 } 4431 } else { 4432 mddev->ro = MD_AUTO_READ; 4433 err = do_md_run(mddev); 4434 } 4435 break; 4436 case clean: 4437 if (mddev->pers) { 4438 err = restart_array(mddev); 4439 if (err) 4440 break; 4441 spin_lock(&mddev->lock); 4442 if (!set_in_sync(mddev)) 4443 err = -EBUSY; 4444 spin_unlock(&mddev->lock); 4445 } else 4446 err = -EINVAL; 4447 break; 4448 case active: 4449 if (mddev->pers) { 4450 err = restart_array(mddev); 4451 if (err) 4452 break; 4453 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4454 wake_up(&mddev->sb_wait); 4455 err = 0; 4456 } else { 4457 mddev->ro = MD_RDWR; 4458 set_disk_ro(mddev->gendisk, 0); 4459 err = do_md_run(mddev); 4460 } 4461 break; 4462 case write_pending: 4463 case active_idle: 4464 case broken: 4465 /* these cannot be set */ 4466 break; 4467 } 4468 4469 if (!err) { 4470 if (mddev->hold_active == UNTIL_IOCTL) 4471 mddev->hold_active = 0; 4472 sysfs_notify_dirent_safe(mddev->sysfs_state); 4473 } 4474 mddev_unlock(mddev); 4475 return err ?: len; 4476 } 4477 static struct md_sysfs_entry md_array_state = 4478 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4479 4480 static ssize_t 4481 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4482 return sprintf(page, "%d\n", 4483 atomic_read(&mddev->max_corr_read_errors)); 4484 } 4485 4486 static ssize_t 4487 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4488 { 4489 unsigned int n; 4490 int rv; 4491 4492 rv = kstrtouint(buf, 10, &n); 4493 if (rv < 0) 4494 return rv; 4495 if (n > INT_MAX) 4496 return -EINVAL; 4497 atomic_set(&mddev->max_corr_read_errors, n); 4498 return len; 4499 } 4500 4501 static struct md_sysfs_entry max_corr_read_errors = 4502 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4503 max_corrected_read_errors_store); 4504 4505 static ssize_t 4506 null_show(struct mddev *mddev, char *page) 4507 { 4508 return -EINVAL; 4509 } 4510 4511 static ssize_t 4512 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4513 { 4514 /* buf must be %d:%d\n? giving major and minor numbers */ 4515 /* The new device is added to the array. 4516 * If the array has a persistent superblock, we read the 4517 * superblock to initialise info and check validity. 4518 * Otherwise, only checking done is that in bind_rdev_to_array, 4519 * which mainly checks size. 4520 */ 4521 char *e; 4522 int major = simple_strtoul(buf, &e, 10); 4523 int minor; 4524 dev_t dev; 4525 struct md_rdev *rdev; 4526 int err; 4527 4528 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4529 return -EINVAL; 4530 minor = simple_strtoul(e+1, &e, 10); 4531 if (*e && *e != '\n') 4532 return -EINVAL; 4533 dev = MKDEV(major, minor); 4534 if (major != MAJOR(dev) || 4535 minor != MINOR(dev)) 4536 return -EOVERFLOW; 4537 4538 err = mddev_lock(mddev); 4539 if (err) 4540 return err; 4541 if (mddev->persistent) { 4542 rdev = md_import_device(dev, mddev->major_version, 4543 mddev->minor_version); 4544 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4545 struct md_rdev *rdev0 4546 = list_entry(mddev->disks.next, 4547 struct md_rdev, same_set); 4548 err = super_types[mddev->major_version] 4549 .load_super(rdev, rdev0, mddev->minor_version); 4550 if (err < 0) 4551 goto out; 4552 } 4553 } else if (mddev->external) 4554 rdev = md_import_device(dev, -2, -1); 4555 else 4556 rdev = md_import_device(dev, -1, -1); 4557 4558 if (IS_ERR(rdev)) { 4559 mddev_unlock(mddev); 4560 return PTR_ERR(rdev); 4561 } 4562 err = bind_rdev_to_array(rdev, mddev); 4563 out: 4564 if (err) 4565 export_rdev(rdev, mddev); 4566 mddev_unlock(mddev); 4567 if (!err) 4568 md_new_event(); 4569 return err ? err : len; 4570 } 4571 4572 static struct md_sysfs_entry md_new_device = 4573 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4574 4575 static ssize_t 4576 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4577 { 4578 char *end; 4579 unsigned long chunk, end_chunk; 4580 int err; 4581 4582 err = mddev_lock(mddev); 4583 if (err) 4584 return err; 4585 if (!mddev->bitmap) 4586 goto out; 4587 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4588 while (*buf) { 4589 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4590 if (buf == end) break; 4591 if (*end == '-') { /* range */ 4592 buf = end + 1; 4593 end_chunk = simple_strtoul(buf, &end, 0); 4594 if (buf == end) break; 4595 } 4596 if (*end && !isspace(*end)) break; 4597 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4598 buf = skip_spaces(end); 4599 } 4600 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4601 out: 4602 mddev_unlock(mddev); 4603 return len; 4604 } 4605 4606 static struct md_sysfs_entry md_bitmap = 4607 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4608 4609 static ssize_t 4610 size_show(struct mddev *mddev, char *page) 4611 { 4612 return sprintf(page, "%llu\n", 4613 (unsigned long long)mddev->dev_sectors / 2); 4614 } 4615 4616 static int update_size(struct mddev *mddev, sector_t num_sectors); 4617 4618 static ssize_t 4619 size_store(struct mddev *mddev, const char *buf, size_t len) 4620 { 4621 /* If array is inactive, we can reduce the component size, but 4622 * not increase it (except from 0). 4623 * If array is active, we can try an on-line resize 4624 */ 4625 sector_t sectors; 4626 int err = strict_blocks_to_sectors(buf, §ors); 4627 4628 if (err < 0) 4629 return err; 4630 err = mddev_lock(mddev); 4631 if (err) 4632 return err; 4633 if (mddev->pers) { 4634 err = update_size(mddev, sectors); 4635 if (err == 0) 4636 md_update_sb(mddev, 1); 4637 } else { 4638 if (mddev->dev_sectors == 0 || 4639 mddev->dev_sectors > sectors) 4640 mddev->dev_sectors = sectors; 4641 else 4642 err = -ENOSPC; 4643 } 4644 mddev_unlock(mddev); 4645 return err ? err : len; 4646 } 4647 4648 static struct md_sysfs_entry md_size = 4649 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4650 4651 /* Metadata version. 4652 * This is one of 4653 * 'none' for arrays with no metadata (good luck...) 4654 * 'external' for arrays with externally managed metadata, 4655 * or N.M for internally known formats 4656 */ 4657 static ssize_t 4658 metadata_show(struct mddev *mddev, char *page) 4659 { 4660 if (mddev->persistent) 4661 return sprintf(page, "%d.%d\n", 4662 mddev->major_version, mddev->minor_version); 4663 else if (mddev->external) 4664 return sprintf(page, "external:%s\n", mddev->metadata_type); 4665 else 4666 return sprintf(page, "none\n"); 4667 } 4668 4669 static ssize_t 4670 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4671 { 4672 int major, minor; 4673 char *e; 4674 int err; 4675 /* Changing the details of 'external' metadata is 4676 * always permitted. Otherwise there must be 4677 * no devices attached to the array. 4678 */ 4679 4680 err = mddev_lock(mddev); 4681 if (err) 4682 return err; 4683 err = -EBUSY; 4684 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4685 ; 4686 else if (!list_empty(&mddev->disks)) 4687 goto out_unlock; 4688 4689 err = 0; 4690 if (cmd_match(buf, "none")) { 4691 mddev->persistent = 0; 4692 mddev->external = 0; 4693 mddev->major_version = 0; 4694 mddev->minor_version = 90; 4695 goto out_unlock; 4696 } 4697 if (strncmp(buf, "external:", 9) == 0) { 4698 size_t namelen = len-9; 4699 if (namelen >= sizeof(mddev->metadata_type)) 4700 namelen = sizeof(mddev->metadata_type)-1; 4701 strncpy(mddev->metadata_type, buf+9, namelen); 4702 mddev->metadata_type[namelen] = 0; 4703 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4704 mddev->metadata_type[--namelen] = 0; 4705 mddev->persistent = 0; 4706 mddev->external = 1; 4707 mddev->major_version = 0; 4708 mddev->minor_version = 90; 4709 goto out_unlock; 4710 } 4711 major = simple_strtoul(buf, &e, 10); 4712 err = -EINVAL; 4713 if (e==buf || *e != '.') 4714 goto out_unlock; 4715 buf = e+1; 4716 minor = simple_strtoul(buf, &e, 10); 4717 if (e==buf || (*e && *e != '\n') ) 4718 goto out_unlock; 4719 err = -ENOENT; 4720 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4721 goto out_unlock; 4722 mddev->major_version = major; 4723 mddev->minor_version = minor; 4724 mddev->persistent = 1; 4725 mddev->external = 0; 4726 err = 0; 4727 out_unlock: 4728 mddev_unlock(mddev); 4729 return err ?: len; 4730 } 4731 4732 static struct md_sysfs_entry md_metadata = 4733 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4734 4735 static ssize_t 4736 action_show(struct mddev *mddev, char *page) 4737 { 4738 char *type = "idle"; 4739 unsigned long recovery = mddev->recovery; 4740 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4741 type = "frozen"; 4742 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4743 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4744 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4745 type = "reshape"; 4746 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4747 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4748 type = "resync"; 4749 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4750 type = "check"; 4751 else 4752 type = "repair"; 4753 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4754 type = "recover"; 4755 else if (mddev->reshape_position != MaxSector) 4756 type = "reshape"; 4757 } 4758 return sprintf(page, "%s\n", type); 4759 } 4760 4761 static void stop_sync_thread(struct mddev *mddev) 4762 { 4763 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4764 return; 4765 4766 if (mddev_lock(mddev)) 4767 return; 4768 4769 /* 4770 * Check again in case MD_RECOVERY_RUNNING is cleared before lock is 4771 * held. 4772 */ 4773 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4774 mddev_unlock(mddev); 4775 return; 4776 } 4777 4778 if (work_pending(&mddev->del_work)) 4779 flush_workqueue(md_misc_wq); 4780 4781 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4782 /* 4783 * Thread might be blocked waiting for metadata update which will now 4784 * never happen 4785 */ 4786 md_wakeup_thread_directly(mddev->sync_thread); 4787 4788 mddev_unlock(mddev); 4789 } 4790 4791 static void idle_sync_thread(struct mddev *mddev) 4792 { 4793 int sync_seq = atomic_read(&mddev->sync_seq); 4794 4795 mutex_lock(&mddev->sync_mutex); 4796 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4797 stop_sync_thread(mddev); 4798 4799 wait_event(resync_wait, sync_seq != atomic_read(&mddev->sync_seq) || 4800 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)); 4801 4802 mutex_unlock(&mddev->sync_mutex); 4803 } 4804 4805 static void frozen_sync_thread(struct mddev *mddev) 4806 { 4807 mutex_lock(&mddev->sync_mutex); 4808 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4809 stop_sync_thread(mddev); 4810 4811 wait_event(resync_wait, mddev->sync_thread == NULL && 4812 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)); 4813 4814 mutex_unlock(&mddev->sync_mutex); 4815 } 4816 4817 static ssize_t 4818 action_store(struct mddev *mddev, const char *page, size_t len) 4819 { 4820 if (!mddev->pers || !mddev->pers->sync_request) 4821 return -EINVAL; 4822 4823 4824 if (cmd_match(page, "idle")) 4825 idle_sync_thread(mddev); 4826 else if (cmd_match(page, "frozen")) 4827 frozen_sync_thread(mddev); 4828 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4829 return -EBUSY; 4830 else if (cmd_match(page, "resync")) 4831 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4832 else if (cmd_match(page, "recover")) { 4833 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4834 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4835 } else if (cmd_match(page, "reshape")) { 4836 int err; 4837 if (mddev->pers->start_reshape == NULL) 4838 return -EINVAL; 4839 err = mddev_lock(mddev); 4840 if (!err) { 4841 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4842 err = -EBUSY; 4843 } else if (mddev->reshape_position == MaxSector || 4844 mddev->pers->check_reshape == NULL || 4845 mddev->pers->check_reshape(mddev)) { 4846 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4847 err = mddev->pers->start_reshape(mddev); 4848 } else { 4849 /* 4850 * If reshape is still in progress, and 4851 * md_check_recovery() can continue to reshape, 4852 * don't restart reshape because data can be 4853 * corrupted for raid456. 4854 */ 4855 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4856 } 4857 mddev_unlock(mddev); 4858 } 4859 if (err) 4860 return err; 4861 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4862 } else { 4863 if (cmd_match(page, "check")) 4864 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4865 else if (!cmd_match(page, "repair")) 4866 return -EINVAL; 4867 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4868 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4869 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4870 } 4871 if (mddev->ro == MD_AUTO_READ) { 4872 /* A write to sync_action is enough to justify 4873 * canceling read-auto mode 4874 */ 4875 mddev->ro = MD_RDWR; 4876 md_wakeup_thread(mddev->sync_thread); 4877 } 4878 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4879 md_wakeup_thread(mddev->thread); 4880 sysfs_notify_dirent_safe(mddev->sysfs_action); 4881 return len; 4882 } 4883 4884 static struct md_sysfs_entry md_scan_mode = 4885 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4886 4887 static ssize_t 4888 last_sync_action_show(struct mddev *mddev, char *page) 4889 { 4890 return sprintf(page, "%s\n", mddev->last_sync_action); 4891 } 4892 4893 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4894 4895 static ssize_t 4896 mismatch_cnt_show(struct mddev *mddev, char *page) 4897 { 4898 return sprintf(page, "%llu\n", 4899 (unsigned long long) 4900 atomic64_read(&mddev->resync_mismatches)); 4901 } 4902 4903 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4904 4905 static ssize_t 4906 sync_min_show(struct mddev *mddev, char *page) 4907 { 4908 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4909 mddev->sync_speed_min ? "local": "system"); 4910 } 4911 4912 static ssize_t 4913 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4914 { 4915 unsigned int min; 4916 int rv; 4917 4918 if (strncmp(buf, "system", 6)==0) { 4919 min = 0; 4920 } else { 4921 rv = kstrtouint(buf, 10, &min); 4922 if (rv < 0) 4923 return rv; 4924 if (min == 0) 4925 return -EINVAL; 4926 } 4927 mddev->sync_speed_min = min; 4928 return len; 4929 } 4930 4931 static struct md_sysfs_entry md_sync_min = 4932 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4933 4934 static ssize_t 4935 sync_max_show(struct mddev *mddev, char *page) 4936 { 4937 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4938 mddev->sync_speed_max ? "local": "system"); 4939 } 4940 4941 static ssize_t 4942 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4943 { 4944 unsigned int max; 4945 int rv; 4946 4947 if (strncmp(buf, "system", 6)==0) { 4948 max = 0; 4949 } else { 4950 rv = kstrtouint(buf, 10, &max); 4951 if (rv < 0) 4952 return rv; 4953 if (max == 0) 4954 return -EINVAL; 4955 } 4956 mddev->sync_speed_max = max; 4957 return len; 4958 } 4959 4960 static struct md_sysfs_entry md_sync_max = 4961 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4962 4963 static ssize_t 4964 degraded_show(struct mddev *mddev, char *page) 4965 { 4966 return sprintf(page, "%d\n", mddev->degraded); 4967 } 4968 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4969 4970 static ssize_t 4971 sync_force_parallel_show(struct mddev *mddev, char *page) 4972 { 4973 return sprintf(page, "%d\n", mddev->parallel_resync); 4974 } 4975 4976 static ssize_t 4977 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4978 { 4979 long n; 4980 4981 if (kstrtol(buf, 10, &n)) 4982 return -EINVAL; 4983 4984 if (n != 0 && n != 1) 4985 return -EINVAL; 4986 4987 mddev->parallel_resync = n; 4988 4989 if (mddev->sync_thread) 4990 wake_up(&resync_wait); 4991 4992 return len; 4993 } 4994 4995 /* force parallel resync, even with shared block devices */ 4996 static struct md_sysfs_entry md_sync_force_parallel = 4997 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4998 sync_force_parallel_show, sync_force_parallel_store); 4999 5000 static ssize_t 5001 sync_speed_show(struct mddev *mddev, char *page) 5002 { 5003 unsigned long resync, dt, db; 5004 if (mddev->curr_resync == MD_RESYNC_NONE) 5005 return sprintf(page, "none\n"); 5006 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5007 dt = (jiffies - mddev->resync_mark) / HZ; 5008 if (!dt) dt++; 5009 db = resync - mddev->resync_mark_cnt; 5010 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5011 } 5012 5013 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5014 5015 static ssize_t 5016 sync_completed_show(struct mddev *mddev, char *page) 5017 { 5018 unsigned long long max_sectors, resync; 5019 5020 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5021 return sprintf(page, "none\n"); 5022 5023 if (mddev->curr_resync == MD_RESYNC_YIELDED || 5024 mddev->curr_resync == MD_RESYNC_DELAYED) 5025 return sprintf(page, "delayed\n"); 5026 5027 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5028 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5029 max_sectors = mddev->resync_max_sectors; 5030 else 5031 max_sectors = mddev->dev_sectors; 5032 5033 resync = mddev->curr_resync_completed; 5034 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5035 } 5036 5037 static struct md_sysfs_entry md_sync_completed = 5038 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5039 5040 static ssize_t 5041 min_sync_show(struct mddev *mddev, char *page) 5042 { 5043 return sprintf(page, "%llu\n", 5044 (unsigned long long)mddev->resync_min); 5045 } 5046 static ssize_t 5047 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5048 { 5049 unsigned long long min; 5050 int err; 5051 5052 if (kstrtoull(buf, 10, &min)) 5053 return -EINVAL; 5054 5055 spin_lock(&mddev->lock); 5056 err = -EINVAL; 5057 if (min > mddev->resync_max) 5058 goto out_unlock; 5059 5060 err = -EBUSY; 5061 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5062 goto out_unlock; 5063 5064 /* Round down to multiple of 4K for safety */ 5065 mddev->resync_min = round_down(min, 8); 5066 err = 0; 5067 5068 out_unlock: 5069 spin_unlock(&mddev->lock); 5070 return err ?: len; 5071 } 5072 5073 static struct md_sysfs_entry md_min_sync = 5074 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5075 5076 static ssize_t 5077 max_sync_show(struct mddev *mddev, char *page) 5078 { 5079 if (mddev->resync_max == MaxSector) 5080 return sprintf(page, "max\n"); 5081 else 5082 return sprintf(page, "%llu\n", 5083 (unsigned long long)mddev->resync_max); 5084 } 5085 static ssize_t 5086 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5087 { 5088 int err; 5089 spin_lock(&mddev->lock); 5090 if (strncmp(buf, "max", 3) == 0) 5091 mddev->resync_max = MaxSector; 5092 else { 5093 unsigned long long max; 5094 int chunk; 5095 5096 err = -EINVAL; 5097 if (kstrtoull(buf, 10, &max)) 5098 goto out_unlock; 5099 if (max < mddev->resync_min) 5100 goto out_unlock; 5101 5102 err = -EBUSY; 5103 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5104 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5105 goto out_unlock; 5106 5107 /* Must be a multiple of chunk_size */ 5108 chunk = mddev->chunk_sectors; 5109 if (chunk) { 5110 sector_t temp = max; 5111 5112 err = -EINVAL; 5113 if (sector_div(temp, chunk)) 5114 goto out_unlock; 5115 } 5116 mddev->resync_max = max; 5117 } 5118 wake_up(&mddev->recovery_wait); 5119 err = 0; 5120 out_unlock: 5121 spin_unlock(&mddev->lock); 5122 return err ?: len; 5123 } 5124 5125 static struct md_sysfs_entry md_max_sync = 5126 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5127 5128 static ssize_t 5129 suspend_lo_show(struct mddev *mddev, char *page) 5130 { 5131 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5132 } 5133 5134 static ssize_t 5135 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5136 { 5137 unsigned long long new; 5138 int err; 5139 5140 err = kstrtoull(buf, 10, &new); 5141 if (err < 0) 5142 return err; 5143 if (new != (sector_t)new) 5144 return -EINVAL; 5145 5146 err = mddev_lock(mddev); 5147 if (err) 5148 return err; 5149 err = -EINVAL; 5150 if (mddev->pers == NULL || 5151 mddev->pers->quiesce == NULL) 5152 goto unlock; 5153 mddev_suspend(mddev); 5154 mddev->suspend_lo = new; 5155 mddev_resume(mddev); 5156 5157 err = 0; 5158 unlock: 5159 mddev_unlock(mddev); 5160 return err ?: len; 5161 } 5162 static struct md_sysfs_entry md_suspend_lo = 5163 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5164 5165 static ssize_t 5166 suspend_hi_show(struct mddev *mddev, char *page) 5167 { 5168 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5169 } 5170 5171 static ssize_t 5172 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5173 { 5174 unsigned long long new; 5175 int err; 5176 5177 err = kstrtoull(buf, 10, &new); 5178 if (err < 0) 5179 return err; 5180 if (new != (sector_t)new) 5181 return -EINVAL; 5182 5183 err = mddev_lock(mddev); 5184 if (err) 5185 return err; 5186 err = -EINVAL; 5187 if (mddev->pers == NULL) 5188 goto unlock; 5189 5190 mddev_suspend(mddev); 5191 mddev->suspend_hi = new; 5192 mddev_resume(mddev); 5193 5194 err = 0; 5195 unlock: 5196 mddev_unlock(mddev); 5197 return err ?: len; 5198 } 5199 static struct md_sysfs_entry md_suspend_hi = 5200 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5201 5202 static ssize_t 5203 reshape_position_show(struct mddev *mddev, char *page) 5204 { 5205 if (mddev->reshape_position != MaxSector) 5206 return sprintf(page, "%llu\n", 5207 (unsigned long long)mddev->reshape_position); 5208 strcpy(page, "none\n"); 5209 return 5; 5210 } 5211 5212 static ssize_t 5213 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5214 { 5215 struct md_rdev *rdev; 5216 unsigned long long new; 5217 int err; 5218 5219 err = kstrtoull(buf, 10, &new); 5220 if (err < 0) 5221 return err; 5222 if (new != (sector_t)new) 5223 return -EINVAL; 5224 err = mddev_lock(mddev); 5225 if (err) 5226 return err; 5227 err = -EBUSY; 5228 if (mddev->pers) 5229 goto unlock; 5230 mddev->reshape_position = new; 5231 mddev->delta_disks = 0; 5232 mddev->reshape_backwards = 0; 5233 mddev->new_level = mddev->level; 5234 mddev->new_layout = mddev->layout; 5235 mddev->new_chunk_sectors = mddev->chunk_sectors; 5236 rdev_for_each(rdev, mddev) 5237 rdev->new_data_offset = rdev->data_offset; 5238 err = 0; 5239 unlock: 5240 mddev_unlock(mddev); 5241 return err ?: len; 5242 } 5243 5244 static struct md_sysfs_entry md_reshape_position = 5245 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5246 reshape_position_store); 5247 5248 static ssize_t 5249 reshape_direction_show(struct mddev *mddev, char *page) 5250 { 5251 return sprintf(page, "%s\n", 5252 mddev->reshape_backwards ? "backwards" : "forwards"); 5253 } 5254 5255 static ssize_t 5256 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5257 { 5258 int backwards = 0; 5259 int err; 5260 5261 if (cmd_match(buf, "forwards")) 5262 backwards = 0; 5263 else if (cmd_match(buf, "backwards")) 5264 backwards = 1; 5265 else 5266 return -EINVAL; 5267 if (mddev->reshape_backwards == backwards) 5268 return len; 5269 5270 err = mddev_lock(mddev); 5271 if (err) 5272 return err; 5273 /* check if we are allowed to change */ 5274 if (mddev->delta_disks) 5275 err = -EBUSY; 5276 else if (mddev->persistent && 5277 mddev->major_version == 0) 5278 err = -EINVAL; 5279 else 5280 mddev->reshape_backwards = backwards; 5281 mddev_unlock(mddev); 5282 return err ?: len; 5283 } 5284 5285 static struct md_sysfs_entry md_reshape_direction = 5286 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5287 reshape_direction_store); 5288 5289 static ssize_t 5290 array_size_show(struct mddev *mddev, char *page) 5291 { 5292 if (mddev->external_size) 5293 return sprintf(page, "%llu\n", 5294 (unsigned long long)mddev->array_sectors/2); 5295 else 5296 return sprintf(page, "default\n"); 5297 } 5298 5299 static ssize_t 5300 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5301 { 5302 sector_t sectors; 5303 int err; 5304 5305 err = mddev_lock(mddev); 5306 if (err) 5307 return err; 5308 5309 /* cluster raid doesn't support change array_sectors */ 5310 if (mddev_is_clustered(mddev)) { 5311 mddev_unlock(mddev); 5312 return -EINVAL; 5313 } 5314 5315 if (strncmp(buf, "default", 7) == 0) { 5316 if (mddev->pers) 5317 sectors = mddev->pers->size(mddev, 0, 0); 5318 else 5319 sectors = mddev->array_sectors; 5320 5321 mddev->external_size = 0; 5322 } else { 5323 if (strict_blocks_to_sectors(buf, §ors) < 0) 5324 err = -EINVAL; 5325 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5326 err = -E2BIG; 5327 else 5328 mddev->external_size = 1; 5329 } 5330 5331 if (!err) { 5332 mddev->array_sectors = sectors; 5333 if (mddev->pers) 5334 set_capacity_and_notify(mddev->gendisk, 5335 mddev->array_sectors); 5336 } 5337 mddev_unlock(mddev); 5338 return err ?: len; 5339 } 5340 5341 static struct md_sysfs_entry md_array_size = 5342 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5343 array_size_store); 5344 5345 static ssize_t 5346 consistency_policy_show(struct mddev *mddev, char *page) 5347 { 5348 int ret; 5349 5350 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5351 ret = sprintf(page, "journal\n"); 5352 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5353 ret = sprintf(page, "ppl\n"); 5354 } else if (mddev->bitmap) { 5355 ret = sprintf(page, "bitmap\n"); 5356 } else if (mddev->pers) { 5357 if (mddev->pers->sync_request) 5358 ret = sprintf(page, "resync\n"); 5359 else 5360 ret = sprintf(page, "none\n"); 5361 } else { 5362 ret = sprintf(page, "unknown\n"); 5363 } 5364 5365 return ret; 5366 } 5367 5368 static ssize_t 5369 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5370 { 5371 int err = 0; 5372 5373 if (mddev->pers) { 5374 if (mddev->pers->change_consistency_policy) 5375 err = mddev->pers->change_consistency_policy(mddev, buf); 5376 else 5377 err = -EBUSY; 5378 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5379 set_bit(MD_HAS_PPL, &mddev->flags); 5380 } else { 5381 err = -EINVAL; 5382 } 5383 5384 return err ? err : len; 5385 } 5386 5387 static struct md_sysfs_entry md_consistency_policy = 5388 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5389 consistency_policy_store); 5390 5391 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5392 { 5393 return sprintf(page, "%d\n", mddev->fail_last_dev); 5394 } 5395 5396 /* 5397 * Setting fail_last_dev to true to allow last device to be forcibly removed 5398 * from RAID1/RAID10. 5399 */ 5400 static ssize_t 5401 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5402 { 5403 int ret; 5404 bool value; 5405 5406 ret = kstrtobool(buf, &value); 5407 if (ret) 5408 return ret; 5409 5410 if (value != mddev->fail_last_dev) 5411 mddev->fail_last_dev = value; 5412 5413 return len; 5414 } 5415 static struct md_sysfs_entry md_fail_last_dev = 5416 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5417 fail_last_dev_store); 5418 5419 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5420 { 5421 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5422 return sprintf(page, "n/a\n"); 5423 else 5424 return sprintf(page, "%d\n", mddev->serialize_policy); 5425 } 5426 5427 /* 5428 * Setting serialize_policy to true to enforce write IO is not reordered 5429 * for raid1. 5430 */ 5431 static ssize_t 5432 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5433 { 5434 int err; 5435 bool value; 5436 5437 err = kstrtobool(buf, &value); 5438 if (err) 5439 return err; 5440 5441 if (value == mddev->serialize_policy) 5442 return len; 5443 5444 err = mddev_lock(mddev); 5445 if (err) 5446 return err; 5447 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5448 pr_err("md: serialize_policy is only effective for raid1\n"); 5449 err = -EINVAL; 5450 goto unlock; 5451 } 5452 5453 mddev_suspend(mddev); 5454 if (value) 5455 mddev_create_serial_pool(mddev, NULL, true); 5456 else 5457 mddev_destroy_serial_pool(mddev, NULL, true); 5458 mddev->serialize_policy = value; 5459 mddev_resume(mddev); 5460 unlock: 5461 mddev_unlock(mddev); 5462 return err ?: len; 5463 } 5464 5465 static struct md_sysfs_entry md_serialize_policy = 5466 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5467 serialize_policy_store); 5468 5469 5470 static struct attribute *md_default_attrs[] = { 5471 &md_level.attr, 5472 &md_layout.attr, 5473 &md_raid_disks.attr, 5474 &md_uuid.attr, 5475 &md_chunk_size.attr, 5476 &md_size.attr, 5477 &md_resync_start.attr, 5478 &md_metadata.attr, 5479 &md_new_device.attr, 5480 &md_safe_delay.attr, 5481 &md_array_state.attr, 5482 &md_reshape_position.attr, 5483 &md_reshape_direction.attr, 5484 &md_array_size.attr, 5485 &max_corr_read_errors.attr, 5486 &md_consistency_policy.attr, 5487 &md_fail_last_dev.attr, 5488 &md_serialize_policy.attr, 5489 NULL, 5490 }; 5491 5492 static const struct attribute_group md_default_group = { 5493 .attrs = md_default_attrs, 5494 }; 5495 5496 static struct attribute *md_redundancy_attrs[] = { 5497 &md_scan_mode.attr, 5498 &md_last_scan_mode.attr, 5499 &md_mismatches.attr, 5500 &md_sync_min.attr, 5501 &md_sync_max.attr, 5502 &md_sync_speed.attr, 5503 &md_sync_force_parallel.attr, 5504 &md_sync_completed.attr, 5505 &md_min_sync.attr, 5506 &md_max_sync.attr, 5507 &md_suspend_lo.attr, 5508 &md_suspend_hi.attr, 5509 &md_bitmap.attr, 5510 &md_degraded.attr, 5511 NULL, 5512 }; 5513 static const struct attribute_group md_redundancy_group = { 5514 .name = NULL, 5515 .attrs = md_redundancy_attrs, 5516 }; 5517 5518 static const struct attribute_group *md_attr_groups[] = { 5519 &md_default_group, 5520 &md_bitmap_group, 5521 NULL, 5522 }; 5523 5524 static ssize_t 5525 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5526 { 5527 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5528 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5529 ssize_t rv; 5530 5531 if (!entry->show) 5532 return -EIO; 5533 spin_lock(&all_mddevs_lock); 5534 if (!mddev_get(mddev)) { 5535 spin_unlock(&all_mddevs_lock); 5536 return -EBUSY; 5537 } 5538 spin_unlock(&all_mddevs_lock); 5539 5540 rv = entry->show(mddev, page); 5541 mddev_put(mddev); 5542 return rv; 5543 } 5544 5545 static ssize_t 5546 md_attr_store(struct kobject *kobj, struct attribute *attr, 5547 const char *page, size_t length) 5548 { 5549 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5550 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5551 ssize_t rv; 5552 5553 if (!entry->store) 5554 return -EIO; 5555 if (!capable(CAP_SYS_ADMIN)) 5556 return -EACCES; 5557 spin_lock(&all_mddevs_lock); 5558 if (!mddev_get(mddev)) { 5559 spin_unlock(&all_mddevs_lock); 5560 return -EBUSY; 5561 } 5562 spin_unlock(&all_mddevs_lock); 5563 rv = entry->store(mddev, page, length); 5564 mddev_put(mddev); 5565 return rv; 5566 } 5567 5568 static void md_kobj_release(struct kobject *ko) 5569 { 5570 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5571 5572 if (mddev->sysfs_state) 5573 sysfs_put(mddev->sysfs_state); 5574 if (mddev->sysfs_level) 5575 sysfs_put(mddev->sysfs_level); 5576 5577 del_gendisk(mddev->gendisk); 5578 put_disk(mddev->gendisk); 5579 } 5580 5581 static const struct sysfs_ops md_sysfs_ops = { 5582 .show = md_attr_show, 5583 .store = md_attr_store, 5584 }; 5585 static const struct kobj_type md_ktype = { 5586 .release = md_kobj_release, 5587 .sysfs_ops = &md_sysfs_ops, 5588 .default_groups = md_attr_groups, 5589 }; 5590 5591 int mdp_major = 0; 5592 5593 static void mddev_delayed_delete(struct work_struct *ws) 5594 { 5595 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5596 5597 kobject_put(&mddev->kobj); 5598 } 5599 5600 static void no_op(struct percpu_ref *r) {} 5601 5602 int mddev_init_writes_pending(struct mddev *mddev) 5603 { 5604 if (mddev->writes_pending.percpu_count_ptr) 5605 return 0; 5606 if (percpu_ref_init(&mddev->writes_pending, no_op, 5607 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5608 return -ENOMEM; 5609 /* We want to start with the refcount at zero */ 5610 percpu_ref_put(&mddev->writes_pending); 5611 return 0; 5612 } 5613 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5614 5615 struct mddev *md_alloc(dev_t dev, char *name) 5616 { 5617 /* 5618 * If dev is zero, name is the name of a device to allocate with 5619 * an arbitrary minor number. It will be "md_???" 5620 * If dev is non-zero it must be a device number with a MAJOR of 5621 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5622 * the device is being created by opening a node in /dev. 5623 * If "name" is not NULL, the device is being created by 5624 * writing to /sys/module/md_mod/parameters/new_array. 5625 */ 5626 static DEFINE_MUTEX(disks_mutex); 5627 struct mddev *mddev; 5628 struct gendisk *disk; 5629 int partitioned; 5630 int shift; 5631 int unit; 5632 int error ; 5633 5634 /* 5635 * Wait for any previous instance of this device to be completely 5636 * removed (mddev_delayed_delete). 5637 */ 5638 flush_workqueue(md_misc_wq); 5639 5640 mutex_lock(&disks_mutex); 5641 mddev = mddev_alloc(dev); 5642 if (IS_ERR(mddev)) { 5643 error = PTR_ERR(mddev); 5644 goto out_unlock; 5645 } 5646 5647 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5648 shift = partitioned ? MdpMinorShift : 0; 5649 unit = MINOR(mddev->unit) >> shift; 5650 5651 if (name && !dev) { 5652 /* Need to ensure that 'name' is not a duplicate. 5653 */ 5654 struct mddev *mddev2; 5655 spin_lock(&all_mddevs_lock); 5656 5657 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5658 if (mddev2->gendisk && 5659 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5660 spin_unlock(&all_mddevs_lock); 5661 error = -EEXIST; 5662 goto out_free_mddev; 5663 } 5664 spin_unlock(&all_mddevs_lock); 5665 } 5666 if (name && dev) 5667 /* 5668 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5669 */ 5670 mddev->hold_active = UNTIL_STOP; 5671 5672 error = -ENOMEM; 5673 disk = blk_alloc_disk(NUMA_NO_NODE); 5674 if (!disk) 5675 goto out_free_mddev; 5676 5677 disk->major = MAJOR(mddev->unit); 5678 disk->first_minor = unit << shift; 5679 disk->minors = 1 << shift; 5680 if (name) 5681 strcpy(disk->disk_name, name); 5682 else if (partitioned) 5683 sprintf(disk->disk_name, "md_d%d", unit); 5684 else 5685 sprintf(disk->disk_name, "md%d", unit); 5686 disk->fops = &md_fops; 5687 disk->private_data = mddev; 5688 5689 mddev->queue = disk->queue; 5690 blk_set_stacking_limits(&mddev->queue->limits); 5691 blk_queue_write_cache(mddev->queue, true, true); 5692 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5693 mddev->gendisk = disk; 5694 error = add_disk(disk); 5695 if (error) 5696 goto out_put_disk; 5697 5698 kobject_init(&mddev->kobj, &md_ktype); 5699 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5700 if (error) { 5701 /* 5702 * The disk is already live at this point. Clear the hold flag 5703 * and let mddev_put take care of the deletion, as it isn't any 5704 * different from a normal close on last release now. 5705 */ 5706 mddev->hold_active = 0; 5707 mutex_unlock(&disks_mutex); 5708 mddev_put(mddev); 5709 return ERR_PTR(error); 5710 } 5711 5712 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5713 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5714 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5715 mutex_unlock(&disks_mutex); 5716 return mddev; 5717 5718 out_put_disk: 5719 put_disk(disk); 5720 out_free_mddev: 5721 mddev_free(mddev); 5722 out_unlock: 5723 mutex_unlock(&disks_mutex); 5724 return ERR_PTR(error); 5725 } 5726 5727 static int md_alloc_and_put(dev_t dev, char *name) 5728 { 5729 struct mddev *mddev = md_alloc(dev, name); 5730 5731 if (IS_ERR(mddev)) 5732 return PTR_ERR(mddev); 5733 mddev_put(mddev); 5734 return 0; 5735 } 5736 5737 static void md_probe(dev_t dev) 5738 { 5739 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5740 return; 5741 if (create_on_open) 5742 md_alloc_and_put(dev, NULL); 5743 } 5744 5745 static int add_named_array(const char *val, const struct kernel_param *kp) 5746 { 5747 /* 5748 * val must be "md_*" or "mdNNN". 5749 * For "md_*" we allocate an array with a large free minor number, and 5750 * set the name to val. val must not already be an active name. 5751 * For "mdNNN" we allocate an array with the minor number NNN 5752 * which must not already be in use. 5753 */ 5754 int len = strlen(val); 5755 char buf[DISK_NAME_LEN]; 5756 unsigned long devnum; 5757 5758 while (len && val[len-1] == '\n') 5759 len--; 5760 if (len >= DISK_NAME_LEN) 5761 return -E2BIG; 5762 strscpy(buf, val, len+1); 5763 if (strncmp(buf, "md_", 3) == 0) 5764 return md_alloc_and_put(0, buf); 5765 if (strncmp(buf, "md", 2) == 0 && 5766 isdigit(buf[2]) && 5767 kstrtoul(buf+2, 10, &devnum) == 0 && 5768 devnum <= MINORMASK) 5769 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5770 5771 return -EINVAL; 5772 } 5773 5774 static void md_safemode_timeout(struct timer_list *t) 5775 { 5776 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5777 5778 mddev->safemode = 1; 5779 if (mddev->external) 5780 sysfs_notify_dirent_safe(mddev->sysfs_state); 5781 5782 md_wakeup_thread(mddev->thread); 5783 } 5784 5785 static int start_dirty_degraded; 5786 static void active_io_release(struct percpu_ref *ref) 5787 { 5788 struct mddev *mddev = container_of(ref, struct mddev, active_io); 5789 5790 wake_up(&mddev->sb_wait); 5791 } 5792 5793 int md_run(struct mddev *mddev) 5794 { 5795 int err; 5796 struct md_rdev *rdev; 5797 struct md_personality *pers; 5798 bool nowait = true; 5799 5800 if (list_empty(&mddev->disks)) 5801 /* cannot run an array with no devices.. */ 5802 return -EINVAL; 5803 5804 if (mddev->pers) 5805 return -EBUSY; 5806 /* Cannot run until previous stop completes properly */ 5807 if (mddev->sysfs_active) 5808 return -EBUSY; 5809 5810 /* 5811 * Analyze all RAID superblock(s) 5812 */ 5813 if (!mddev->raid_disks) { 5814 if (!mddev->persistent) 5815 return -EINVAL; 5816 err = analyze_sbs(mddev); 5817 if (err) 5818 return -EINVAL; 5819 } 5820 5821 if (mddev->level != LEVEL_NONE) 5822 request_module("md-level-%d", mddev->level); 5823 else if (mddev->clevel[0]) 5824 request_module("md-%s", mddev->clevel); 5825 5826 /* 5827 * Drop all container device buffers, from now on 5828 * the only valid external interface is through the md 5829 * device. 5830 */ 5831 mddev->has_superblocks = false; 5832 rdev_for_each(rdev, mddev) { 5833 if (test_bit(Faulty, &rdev->flags)) 5834 continue; 5835 sync_blockdev(rdev->bdev); 5836 invalidate_bdev(rdev->bdev); 5837 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5838 mddev->ro = MD_RDONLY; 5839 if (mddev->gendisk) 5840 set_disk_ro(mddev->gendisk, 1); 5841 } 5842 5843 if (rdev->sb_page) 5844 mddev->has_superblocks = true; 5845 5846 /* perform some consistency tests on the device. 5847 * We don't want the data to overlap the metadata, 5848 * Internal Bitmap issues have been handled elsewhere. 5849 */ 5850 if (rdev->meta_bdev) { 5851 /* Nothing to check */; 5852 } else if (rdev->data_offset < rdev->sb_start) { 5853 if (mddev->dev_sectors && 5854 rdev->data_offset + mddev->dev_sectors 5855 > rdev->sb_start) { 5856 pr_warn("md: %s: data overlaps metadata\n", 5857 mdname(mddev)); 5858 return -EINVAL; 5859 } 5860 } else { 5861 if (rdev->sb_start + rdev->sb_size/512 5862 > rdev->data_offset) { 5863 pr_warn("md: %s: metadata overlaps data\n", 5864 mdname(mddev)); 5865 return -EINVAL; 5866 } 5867 } 5868 sysfs_notify_dirent_safe(rdev->sysfs_state); 5869 nowait = nowait && bdev_nowait(rdev->bdev); 5870 } 5871 5872 err = percpu_ref_init(&mddev->active_io, active_io_release, 5873 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 5874 if (err) 5875 return err; 5876 5877 if (!bioset_initialized(&mddev->bio_set)) { 5878 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5879 if (err) 5880 goto exit_active_io; 5881 } 5882 if (!bioset_initialized(&mddev->sync_set)) { 5883 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5884 if (err) 5885 goto exit_bio_set; 5886 } 5887 5888 if (!bioset_initialized(&mddev->io_clone_set)) { 5889 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE, 5890 offsetof(struct md_io_clone, bio_clone), 0); 5891 if (err) 5892 goto exit_sync_set; 5893 } 5894 5895 spin_lock(&pers_lock); 5896 pers = find_pers(mddev->level, mddev->clevel); 5897 if (!pers || !try_module_get(pers->owner)) { 5898 spin_unlock(&pers_lock); 5899 if (mddev->level != LEVEL_NONE) 5900 pr_warn("md: personality for level %d is not loaded!\n", 5901 mddev->level); 5902 else 5903 pr_warn("md: personality for level %s is not loaded!\n", 5904 mddev->clevel); 5905 err = -EINVAL; 5906 goto abort; 5907 } 5908 spin_unlock(&pers_lock); 5909 if (mddev->level != pers->level) { 5910 mddev->level = pers->level; 5911 mddev->new_level = pers->level; 5912 } 5913 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5914 5915 if (mddev->reshape_position != MaxSector && 5916 pers->start_reshape == NULL) { 5917 /* This personality cannot handle reshaping... */ 5918 module_put(pers->owner); 5919 err = -EINVAL; 5920 goto abort; 5921 } 5922 5923 if (pers->sync_request) { 5924 /* Warn if this is a potentially silly 5925 * configuration. 5926 */ 5927 struct md_rdev *rdev2; 5928 int warned = 0; 5929 5930 rdev_for_each(rdev, mddev) 5931 rdev_for_each(rdev2, mddev) { 5932 if (rdev < rdev2 && 5933 rdev->bdev->bd_disk == 5934 rdev2->bdev->bd_disk) { 5935 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5936 mdname(mddev), 5937 rdev->bdev, 5938 rdev2->bdev); 5939 warned = 1; 5940 } 5941 } 5942 5943 if (warned) 5944 pr_warn("True protection against single-disk failure might be compromised.\n"); 5945 } 5946 5947 mddev->recovery = 0; 5948 /* may be over-ridden by personality */ 5949 mddev->resync_max_sectors = mddev->dev_sectors; 5950 5951 mddev->ok_start_degraded = start_dirty_degraded; 5952 5953 if (start_readonly && md_is_rdwr(mddev)) 5954 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 5955 5956 err = pers->run(mddev); 5957 if (err) 5958 pr_warn("md: pers->run() failed ...\n"); 5959 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5960 WARN_ONCE(!mddev->external_size, 5961 "%s: default size too small, but 'external_size' not in effect?\n", 5962 __func__); 5963 pr_warn("md: invalid array_size %llu > default size %llu\n", 5964 (unsigned long long)mddev->array_sectors / 2, 5965 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5966 err = -EINVAL; 5967 } 5968 if (err == 0 && pers->sync_request && 5969 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5970 struct bitmap *bitmap; 5971 5972 bitmap = md_bitmap_create(mddev, -1); 5973 if (IS_ERR(bitmap)) { 5974 err = PTR_ERR(bitmap); 5975 pr_warn("%s: failed to create bitmap (%d)\n", 5976 mdname(mddev), err); 5977 } else 5978 mddev->bitmap = bitmap; 5979 5980 } 5981 if (err) 5982 goto bitmap_abort; 5983 5984 if (mddev->bitmap_info.max_write_behind > 0) { 5985 bool create_pool = false; 5986 5987 rdev_for_each(rdev, mddev) { 5988 if (test_bit(WriteMostly, &rdev->flags) && 5989 rdev_init_serial(rdev)) 5990 create_pool = true; 5991 } 5992 if (create_pool && mddev->serial_info_pool == NULL) { 5993 mddev->serial_info_pool = 5994 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5995 sizeof(struct serial_info)); 5996 if (!mddev->serial_info_pool) { 5997 err = -ENOMEM; 5998 goto bitmap_abort; 5999 } 6000 } 6001 } 6002 6003 if (mddev->queue) { 6004 bool nonrot = true; 6005 6006 rdev_for_each(rdev, mddev) { 6007 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 6008 nonrot = false; 6009 break; 6010 } 6011 } 6012 if (mddev->degraded) 6013 nonrot = false; 6014 if (nonrot) 6015 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6016 else 6017 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6018 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 6019 6020 /* Set the NOWAIT flags if all underlying devices support it */ 6021 if (nowait) 6022 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 6023 } 6024 if (pers->sync_request) { 6025 if (mddev->kobj.sd && 6026 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6027 pr_warn("md: cannot register extra attributes for %s\n", 6028 mdname(mddev)); 6029 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6030 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6031 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6032 } else if (mddev->ro == MD_AUTO_READ) 6033 mddev->ro = MD_RDWR; 6034 6035 atomic_set(&mddev->max_corr_read_errors, 6036 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6037 mddev->safemode = 0; 6038 if (mddev_is_clustered(mddev)) 6039 mddev->safemode_delay = 0; 6040 else 6041 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6042 mddev->in_sync = 1; 6043 smp_wmb(); 6044 spin_lock(&mddev->lock); 6045 mddev->pers = pers; 6046 spin_unlock(&mddev->lock); 6047 rdev_for_each(rdev, mddev) 6048 if (rdev->raid_disk >= 0) 6049 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6050 6051 if (mddev->degraded && md_is_rdwr(mddev)) 6052 /* This ensures that recovering status is reported immediately 6053 * via sysfs - until a lack of spares is confirmed. 6054 */ 6055 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6056 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6057 6058 if (mddev->sb_flags) 6059 md_update_sb(mddev, 0); 6060 6061 md_new_event(); 6062 return 0; 6063 6064 bitmap_abort: 6065 mddev_detach(mddev); 6066 if (mddev->private) 6067 pers->free(mddev, mddev->private); 6068 mddev->private = NULL; 6069 module_put(pers->owner); 6070 md_bitmap_destroy(mddev); 6071 abort: 6072 bioset_exit(&mddev->io_clone_set); 6073 exit_sync_set: 6074 bioset_exit(&mddev->sync_set); 6075 exit_bio_set: 6076 bioset_exit(&mddev->bio_set); 6077 exit_active_io: 6078 percpu_ref_exit(&mddev->active_io); 6079 return err; 6080 } 6081 EXPORT_SYMBOL_GPL(md_run); 6082 6083 int do_md_run(struct mddev *mddev) 6084 { 6085 int err; 6086 6087 set_bit(MD_NOT_READY, &mddev->flags); 6088 err = md_run(mddev); 6089 if (err) 6090 goto out; 6091 err = md_bitmap_load(mddev); 6092 if (err) { 6093 md_bitmap_destroy(mddev); 6094 goto out; 6095 } 6096 6097 if (mddev_is_clustered(mddev)) 6098 md_allow_write(mddev); 6099 6100 /* run start up tasks that require md_thread */ 6101 md_start(mddev); 6102 6103 md_wakeup_thread(mddev->thread); 6104 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6105 6106 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6107 clear_bit(MD_NOT_READY, &mddev->flags); 6108 mddev->changed = 1; 6109 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6110 sysfs_notify_dirent_safe(mddev->sysfs_state); 6111 sysfs_notify_dirent_safe(mddev->sysfs_action); 6112 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6113 out: 6114 clear_bit(MD_NOT_READY, &mddev->flags); 6115 return err; 6116 } 6117 6118 int md_start(struct mddev *mddev) 6119 { 6120 int ret = 0; 6121 6122 if (mddev->pers->start) { 6123 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6124 md_wakeup_thread(mddev->thread); 6125 ret = mddev->pers->start(mddev); 6126 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6127 md_wakeup_thread(mddev->sync_thread); 6128 } 6129 return ret; 6130 } 6131 EXPORT_SYMBOL_GPL(md_start); 6132 6133 static int restart_array(struct mddev *mddev) 6134 { 6135 struct gendisk *disk = mddev->gendisk; 6136 struct md_rdev *rdev; 6137 bool has_journal = false; 6138 bool has_readonly = false; 6139 6140 /* Complain if it has no devices */ 6141 if (list_empty(&mddev->disks)) 6142 return -ENXIO; 6143 if (!mddev->pers) 6144 return -EINVAL; 6145 if (md_is_rdwr(mddev)) 6146 return -EBUSY; 6147 6148 rcu_read_lock(); 6149 rdev_for_each_rcu(rdev, mddev) { 6150 if (test_bit(Journal, &rdev->flags) && 6151 !test_bit(Faulty, &rdev->flags)) 6152 has_journal = true; 6153 if (rdev_read_only(rdev)) 6154 has_readonly = true; 6155 } 6156 rcu_read_unlock(); 6157 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6158 /* Don't restart rw with journal missing/faulty */ 6159 return -EINVAL; 6160 if (has_readonly) 6161 return -EROFS; 6162 6163 mddev->safemode = 0; 6164 mddev->ro = MD_RDWR; 6165 set_disk_ro(disk, 0); 6166 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6167 /* Kick recovery or resync if necessary */ 6168 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6169 md_wakeup_thread(mddev->thread); 6170 md_wakeup_thread(mddev->sync_thread); 6171 sysfs_notify_dirent_safe(mddev->sysfs_state); 6172 return 0; 6173 } 6174 6175 static void md_clean(struct mddev *mddev) 6176 { 6177 mddev->array_sectors = 0; 6178 mddev->external_size = 0; 6179 mddev->dev_sectors = 0; 6180 mddev->raid_disks = 0; 6181 mddev->recovery_cp = 0; 6182 mddev->resync_min = 0; 6183 mddev->resync_max = MaxSector; 6184 mddev->reshape_position = MaxSector; 6185 /* we still need mddev->external in export_rdev, do not clear it yet */ 6186 mddev->persistent = 0; 6187 mddev->level = LEVEL_NONE; 6188 mddev->clevel[0] = 0; 6189 mddev->flags = 0; 6190 mddev->sb_flags = 0; 6191 mddev->ro = MD_RDWR; 6192 mddev->metadata_type[0] = 0; 6193 mddev->chunk_sectors = 0; 6194 mddev->ctime = mddev->utime = 0; 6195 mddev->layout = 0; 6196 mddev->max_disks = 0; 6197 mddev->events = 0; 6198 mddev->can_decrease_events = 0; 6199 mddev->delta_disks = 0; 6200 mddev->reshape_backwards = 0; 6201 mddev->new_level = LEVEL_NONE; 6202 mddev->new_layout = 0; 6203 mddev->new_chunk_sectors = 0; 6204 mddev->curr_resync = MD_RESYNC_NONE; 6205 atomic64_set(&mddev->resync_mismatches, 0); 6206 mddev->suspend_lo = mddev->suspend_hi = 0; 6207 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6208 mddev->recovery = 0; 6209 mddev->in_sync = 0; 6210 mddev->changed = 0; 6211 mddev->degraded = 0; 6212 mddev->safemode = 0; 6213 mddev->private = NULL; 6214 mddev->cluster_info = NULL; 6215 mddev->bitmap_info.offset = 0; 6216 mddev->bitmap_info.default_offset = 0; 6217 mddev->bitmap_info.default_space = 0; 6218 mddev->bitmap_info.chunksize = 0; 6219 mddev->bitmap_info.daemon_sleep = 0; 6220 mddev->bitmap_info.max_write_behind = 0; 6221 mddev->bitmap_info.nodes = 0; 6222 } 6223 6224 static void __md_stop_writes(struct mddev *mddev) 6225 { 6226 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6227 if (work_pending(&mddev->del_work)) 6228 flush_workqueue(md_misc_wq); 6229 if (mddev->sync_thread) { 6230 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6231 md_reap_sync_thread(mddev); 6232 } 6233 6234 del_timer_sync(&mddev->safemode_timer); 6235 6236 if (mddev->pers && mddev->pers->quiesce) { 6237 mddev->pers->quiesce(mddev, 1); 6238 mddev->pers->quiesce(mddev, 0); 6239 } 6240 md_bitmap_flush(mddev); 6241 6242 if (md_is_rdwr(mddev) && 6243 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6244 mddev->sb_flags)) { 6245 /* mark array as shutdown cleanly */ 6246 if (!mddev_is_clustered(mddev)) 6247 mddev->in_sync = 1; 6248 md_update_sb(mddev, 1); 6249 } 6250 /* disable policy to guarantee rdevs free resources for serialization */ 6251 mddev->serialize_policy = 0; 6252 mddev_destroy_serial_pool(mddev, NULL, true); 6253 } 6254 6255 void md_stop_writes(struct mddev *mddev) 6256 { 6257 mddev_lock_nointr(mddev); 6258 __md_stop_writes(mddev); 6259 mddev_unlock(mddev); 6260 } 6261 EXPORT_SYMBOL_GPL(md_stop_writes); 6262 6263 static void mddev_detach(struct mddev *mddev) 6264 { 6265 md_bitmap_wait_behind_writes(mddev); 6266 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6267 mddev->pers->quiesce(mddev, 1); 6268 mddev->pers->quiesce(mddev, 0); 6269 } 6270 md_unregister_thread(mddev, &mddev->thread); 6271 if (mddev->queue) 6272 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6273 } 6274 6275 static void __md_stop(struct mddev *mddev) 6276 { 6277 struct md_personality *pers = mddev->pers; 6278 md_bitmap_destroy(mddev); 6279 mddev_detach(mddev); 6280 /* Ensure ->event_work is done */ 6281 if (mddev->event_work.func) 6282 flush_workqueue(md_misc_wq); 6283 spin_lock(&mddev->lock); 6284 mddev->pers = NULL; 6285 spin_unlock(&mddev->lock); 6286 if (mddev->private) 6287 pers->free(mddev, mddev->private); 6288 mddev->private = NULL; 6289 if (pers->sync_request && mddev->to_remove == NULL) 6290 mddev->to_remove = &md_redundancy_group; 6291 module_put(pers->owner); 6292 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6293 6294 percpu_ref_exit(&mddev->active_io); 6295 bioset_exit(&mddev->bio_set); 6296 bioset_exit(&mddev->sync_set); 6297 bioset_exit(&mddev->io_clone_set); 6298 } 6299 6300 void md_stop(struct mddev *mddev) 6301 { 6302 lockdep_assert_held(&mddev->reconfig_mutex); 6303 6304 /* stop the array and free an attached data structures. 6305 * This is called from dm-raid 6306 */ 6307 __md_stop_writes(mddev); 6308 __md_stop(mddev); 6309 percpu_ref_exit(&mddev->writes_pending); 6310 } 6311 6312 EXPORT_SYMBOL_GPL(md_stop); 6313 6314 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6315 { 6316 int err = 0; 6317 int did_freeze = 0; 6318 6319 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6320 did_freeze = 1; 6321 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6322 md_wakeup_thread(mddev->thread); 6323 } 6324 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6325 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6326 6327 /* 6328 * Thread might be blocked waiting for metadata update which will now 6329 * never happen 6330 */ 6331 md_wakeup_thread_directly(mddev->sync_thread); 6332 6333 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6334 return -EBUSY; 6335 mddev_unlock(mddev); 6336 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6337 &mddev->recovery)); 6338 wait_event(mddev->sb_wait, 6339 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6340 mddev_lock_nointr(mddev); 6341 6342 mutex_lock(&mddev->open_mutex); 6343 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6344 mddev->sync_thread || 6345 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6346 pr_warn("md: %s still in use.\n",mdname(mddev)); 6347 if (did_freeze) { 6348 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6349 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6350 md_wakeup_thread(mddev->thread); 6351 } 6352 err = -EBUSY; 6353 goto out; 6354 } 6355 if (mddev->pers) { 6356 __md_stop_writes(mddev); 6357 6358 err = -ENXIO; 6359 if (mddev->ro == MD_RDONLY) 6360 goto out; 6361 mddev->ro = MD_RDONLY; 6362 set_disk_ro(mddev->gendisk, 1); 6363 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6364 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6365 md_wakeup_thread(mddev->thread); 6366 sysfs_notify_dirent_safe(mddev->sysfs_state); 6367 err = 0; 6368 } 6369 out: 6370 mutex_unlock(&mddev->open_mutex); 6371 return err; 6372 } 6373 6374 /* mode: 6375 * 0 - completely stop and dis-assemble array 6376 * 2 - stop but do not disassemble array 6377 */ 6378 static int do_md_stop(struct mddev *mddev, int mode, 6379 struct block_device *bdev) 6380 { 6381 struct gendisk *disk = mddev->gendisk; 6382 struct md_rdev *rdev; 6383 int did_freeze = 0; 6384 6385 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6386 did_freeze = 1; 6387 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6388 md_wakeup_thread(mddev->thread); 6389 } 6390 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6391 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6392 6393 /* 6394 * Thread might be blocked waiting for metadata update which will now 6395 * never happen 6396 */ 6397 md_wakeup_thread_directly(mddev->sync_thread); 6398 6399 mddev_unlock(mddev); 6400 wait_event(resync_wait, (mddev->sync_thread == NULL && 6401 !test_bit(MD_RECOVERY_RUNNING, 6402 &mddev->recovery))); 6403 mddev_lock_nointr(mddev); 6404 6405 mutex_lock(&mddev->open_mutex); 6406 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6407 mddev->sysfs_active || 6408 mddev->sync_thread || 6409 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6410 pr_warn("md: %s still in use.\n",mdname(mddev)); 6411 mutex_unlock(&mddev->open_mutex); 6412 if (did_freeze) { 6413 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6414 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6415 md_wakeup_thread(mddev->thread); 6416 } 6417 return -EBUSY; 6418 } 6419 if (mddev->pers) { 6420 if (!md_is_rdwr(mddev)) 6421 set_disk_ro(disk, 0); 6422 6423 __md_stop_writes(mddev); 6424 __md_stop(mddev); 6425 6426 /* tell userspace to handle 'inactive' */ 6427 sysfs_notify_dirent_safe(mddev->sysfs_state); 6428 6429 rdev_for_each(rdev, mddev) 6430 if (rdev->raid_disk >= 0) 6431 sysfs_unlink_rdev(mddev, rdev); 6432 6433 set_capacity_and_notify(disk, 0); 6434 mutex_unlock(&mddev->open_mutex); 6435 mddev->changed = 1; 6436 6437 if (!md_is_rdwr(mddev)) 6438 mddev->ro = MD_RDWR; 6439 } else 6440 mutex_unlock(&mddev->open_mutex); 6441 /* 6442 * Free resources if final stop 6443 */ 6444 if (mode == 0) { 6445 pr_info("md: %s stopped.\n", mdname(mddev)); 6446 6447 if (mddev->bitmap_info.file) { 6448 struct file *f = mddev->bitmap_info.file; 6449 spin_lock(&mddev->lock); 6450 mddev->bitmap_info.file = NULL; 6451 spin_unlock(&mddev->lock); 6452 fput(f); 6453 } 6454 mddev->bitmap_info.offset = 0; 6455 6456 export_array(mddev); 6457 6458 md_clean(mddev); 6459 if (mddev->hold_active == UNTIL_STOP) 6460 mddev->hold_active = 0; 6461 } 6462 md_new_event(); 6463 sysfs_notify_dirent_safe(mddev->sysfs_state); 6464 return 0; 6465 } 6466 6467 #ifndef MODULE 6468 static void autorun_array(struct mddev *mddev) 6469 { 6470 struct md_rdev *rdev; 6471 int err; 6472 6473 if (list_empty(&mddev->disks)) 6474 return; 6475 6476 pr_info("md: running: "); 6477 6478 rdev_for_each(rdev, mddev) { 6479 pr_cont("<%pg>", rdev->bdev); 6480 } 6481 pr_cont("\n"); 6482 6483 err = do_md_run(mddev); 6484 if (err) { 6485 pr_warn("md: do_md_run() returned %d\n", err); 6486 do_md_stop(mddev, 0, NULL); 6487 } 6488 } 6489 6490 /* 6491 * lets try to run arrays based on all disks that have arrived 6492 * until now. (those are in pending_raid_disks) 6493 * 6494 * the method: pick the first pending disk, collect all disks with 6495 * the same UUID, remove all from the pending list and put them into 6496 * the 'same_array' list. Then order this list based on superblock 6497 * update time (freshest comes first), kick out 'old' disks and 6498 * compare superblocks. If everything's fine then run it. 6499 * 6500 * If "unit" is allocated, then bump its reference count 6501 */ 6502 static void autorun_devices(int part) 6503 { 6504 struct md_rdev *rdev0, *rdev, *tmp; 6505 struct mddev *mddev; 6506 6507 pr_info("md: autorun ...\n"); 6508 while (!list_empty(&pending_raid_disks)) { 6509 int unit; 6510 dev_t dev; 6511 LIST_HEAD(candidates); 6512 rdev0 = list_entry(pending_raid_disks.next, 6513 struct md_rdev, same_set); 6514 6515 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6516 INIT_LIST_HEAD(&candidates); 6517 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6518 if (super_90_load(rdev, rdev0, 0) >= 0) { 6519 pr_debug("md: adding %pg ...\n", 6520 rdev->bdev); 6521 list_move(&rdev->same_set, &candidates); 6522 } 6523 /* 6524 * now we have a set of devices, with all of them having 6525 * mostly sane superblocks. It's time to allocate the 6526 * mddev. 6527 */ 6528 if (part) { 6529 dev = MKDEV(mdp_major, 6530 rdev0->preferred_minor << MdpMinorShift); 6531 unit = MINOR(dev) >> MdpMinorShift; 6532 } else { 6533 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6534 unit = MINOR(dev); 6535 } 6536 if (rdev0->preferred_minor != unit) { 6537 pr_warn("md: unit number in %pg is bad: %d\n", 6538 rdev0->bdev, rdev0->preferred_minor); 6539 break; 6540 } 6541 6542 mddev = md_alloc(dev, NULL); 6543 if (IS_ERR(mddev)) 6544 break; 6545 6546 if (mddev_lock(mddev)) 6547 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6548 else if (mddev->raid_disks || mddev->major_version 6549 || !list_empty(&mddev->disks)) { 6550 pr_warn("md: %s already running, cannot run %pg\n", 6551 mdname(mddev), rdev0->bdev); 6552 mddev_unlock(mddev); 6553 } else { 6554 pr_debug("md: created %s\n", mdname(mddev)); 6555 mddev->persistent = 1; 6556 rdev_for_each_list(rdev, tmp, &candidates) { 6557 list_del_init(&rdev->same_set); 6558 if (bind_rdev_to_array(rdev, mddev)) 6559 export_rdev(rdev, mddev); 6560 } 6561 autorun_array(mddev); 6562 mddev_unlock(mddev); 6563 } 6564 /* on success, candidates will be empty, on error 6565 * it won't... 6566 */ 6567 rdev_for_each_list(rdev, tmp, &candidates) { 6568 list_del_init(&rdev->same_set); 6569 export_rdev(rdev, mddev); 6570 } 6571 mddev_put(mddev); 6572 } 6573 pr_info("md: ... autorun DONE.\n"); 6574 } 6575 #endif /* !MODULE */ 6576 6577 static int get_version(void __user *arg) 6578 { 6579 mdu_version_t ver; 6580 6581 ver.major = MD_MAJOR_VERSION; 6582 ver.minor = MD_MINOR_VERSION; 6583 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6584 6585 if (copy_to_user(arg, &ver, sizeof(ver))) 6586 return -EFAULT; 6587 6588 return 0; 6589 } 6590 6591 static int get_array_info(struct mddev *mddev, void __user *arg) 6592 { 6593 mdu_array_info_t info; 6594 int nr,working,insync,failed,spare; 6595 struct md_rdev *rdev; 6596 6597 nr = working = insync = failed = spare = 0; 6598 rcu_read_lock(); 6599 rdev_for_each_rcu(rdev, mddev) { 6600 nr++; 6601 if (test_bit(Faulty, &rdev->flags)) 6602 failed++; 6603 else { 6604 working++; 6605 if (test_bit(In_sync, &rdev->flags)) 6606 insync++; 6607 else if (test_bit(Journal, &rdev->flags)) 6608 /* TODO: add journal count to md_u.h */ 6609 ; 6610 else 6611 spare++; 6612 } 6613 } 6614 rcu_read_unlock(); 6615 6616 info.major_version = mddev->major_version; 6617 info.minor_version = mddev->minor_version; 6618 info.patch_version = MD_PATCHLEVEL_VERSION; 6619 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6620 info.level = mddev->level; 6621 info.size = mddev->dev_sectors / 2; 6622 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6623 info.size = -1; 6624 info.nr_disks = nr; 6625 info.raid_disks = mddev->raid_disks; 6626 info.md_minor = mddev->md_minor; 6627 info.not_persistent= !mddev->persistent; 6628 6629 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6630 info.state = 0; 6631 if (mddev->in_sync) 6632 info.state = (1<<MD_SB_CLEAN); 6633 if (mddev->bitmap && mddev->bitmap_info.offset) 6634 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6635 if (mddev_is_clustered(mddev)) 6636 info.state |= (1<<MD_SB_CLUSTERED); 6637 info.active_disks = insync; 6638 info.working_disks = working; 6639 info.failed_disks = failed; 6640 info.spare_disks = spare; 6641 6642 info.layout = mddev->layout; 6643 info.chunk_size = mddev->chunk_sectors << 9; 6644 6645 if (copy_to_user(arg, &info, sizeof(info))) 6646 return -EFAULT; 6647 6648 return 0; 6649 } 6650 6651 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6652 { 6653 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6654 char *ptr; 6655 int err; 6656 6657 file = kzalloc(sizeof(*file), GFP_NOIO); 6658 if (!file) 6659 return -ENOMEM; 6660 6661 err = 0; 6662 spin_lock(&mddev->lock); 6663 /* bitmap enabled */ 6664 if (mddev->bitmap_info.file) { 6665 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6666 sizeof(file->pathname)); 6667 if (IS_ERR(ptr)) 6668 err = PTR_ERR(ptr); 6669 else 6670 memmove(file->pathname, ptr, 6671 sizeof(file->pathname)-(ptr-file->pathname)); 6672 } 6673 spin_unlock(&mddev->lock); 6674 6675 if (err == 0 && 6676 copy_to_user(arg, file, sizeof(*file))) 6677 err = -EFAULT; 6678 6679 kfree(file); 6680 return err; 6681 } 6682 6683 static int get_disk_info(struct mddev *mddev, void __user * arg) 6684 { 6685 mdu_disk_info_t info; 6686 struct md_rdev *rdev; 6687 6688 if (copy_from_user(&info, arg, sizeof(info))) 6689 return -EFAULT; 6690 6691 rcu_read_lock(); 6692 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6693 if (rdev) { 6694 info.major = MAJOR(rdev->bdev->bd_dev); 6695 info.minor = MINOR(rdev->bdev->bd_dev); 6696 info.raid_disk = rdev->raid_disk; 6697 info.state = 0; 6698 if (test_bit(Faulty, &rdev->flags)) 6699 info.state |= (1<<MD_DISK_FAULTY); 6700 else if (test_bit(In_sync, &rdev->flags)) { 6701 info.state |= (1<<MD_DISK_ACTIVE); 6702 info.state |= (1<<MD_DISK_SYNC); 6703 } 6704 if (test_bit(Journal, &rdev->flags)) 6705 info.state |= (1<<MD_DISK_JOURNAL); 6706 if (test_bit(WriteMostly, &rdev->flags)) 6707 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6708 if (test_bit(FailFast, &rdev->flags)) 6709 info.state |= (1<<MD_DISK_FAILFAST); 6710 } else { 6711 info.major = info.minor = 0; 6712 info.raid_disk = -1; 6713 info.state = (1<<MD_DISK_REMOVED); 6714 } 6715 rcu_read_unlock(); 6716 6717 if (copy_to_user(arg, &info, sizeof(info))) 6718 return -EFAULT; 6719 6720 return 0; 6721 } 6722 6723 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6724 { 6725 struct md_rdev *rdev; 6726 dev_t dev = MKDEV(info->major,info->minor); 6727 6728 if (mddev_is_clustered(mddev) && 6729 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6730 pr_warn("%s: Cannot add to clustered mddev.\n", 6731 mdname(mddev)); 6732 return -EINVAL; 6733 } 6734 6735 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6736 return -EOVERFLOW; 6737 6738 if (!mddev->raid_disks) { 6739 int err; 6740 /* expecting a device which has a superblock */ 6741 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6742 if (IS_ERR(rdev)) { 6743 pr_warn("md: md_import_device returned %ld\n", 6744 PTR_ERR(rdev)); 6745 return PTR_ERR(rdev); 6746 } 6747 if (!list_empty(&mddev->disks)) { 6748 struct md_rdev *rdev0 6749 = list_entry(mddev->disks.next, 6750 struct md_rdev, same_set); 6751 err = super_types[mddev->major_version] 6752 .load_super(rdev, rdev0, mddev->minor_version); 6753 if (err < 0) { 6754 pr_warn("md: %pg has different UUID to %pg\n", 6755 rdev->bdev, 6756 rdev0->bdev); 6757 export_rdev(rdev, mddev); 6758 return -EINVAL; 6759 } 6760 } 6761 err = bind_rdev_to_array(rdev, mddev); 6762 if (err) 6763 export_rdev(rdev, mddev); 6764 return err; 6765 } 6766 6767 /* 6768 * md_add_new_disk can be used once the array is assembled 6769 * to add "hot spares". They must already have a superblock 6770 * written 6771 */ 6772 if (mddev->pers) { 6773 int err; 6774 if (!mddev->pers->hot_add_disk) { 6775 pr_warn("%s: personality does not support diskops!\n", 6776 mdname(mddev)); 6777 return -EINVAL; 6778 } 6779 if (mddev->persistent) 6780 rdev = md_import_device(dev, mddev->major_version, 6781 mddev->minor_version); 6782 else 6783 rdev = md_import_device(dev, -1, -1); 6784 if (IS_ERR(rdev)) { 6785 pr_warn("md: md_import_device returned %ld\n", 6786 PTR_ERR(rdev)); 6787 return PTR_ERR(rdev); 6788 } 6789 /* set saved_raid_disk if appropriate */ 6790 if (!mddev->persistent) { 6791 if (info->state & (1<<MD_DISK_SYNC) && 6792 info->raid_disk < mddev->raid_disks) { 6793 rdev->raid_disk = info->raid_disk; 6794 clear_bit(Bitmap_sync, &rdev->flags); 6795 } else 6796 rdev->raid_disk = -1; 6797 rdev->saved_raid_disk = rdev->raid_disk; 6798 } else 6799 super_types[mddev->major_version]. 6800 validate_super(mddev, rdev); 6801 if ((info->state & (1<<MD_DISK_SYNC)) && 6802 rdev->raid_disk != info->raid_disk) { 6803 /* This was a hot-add request, but events doesn't 6804 * match, so reject it. 6805 */ 6806 export_rdev(rdev, mddev); 6807 return -EINVAL; 6808 } 6809 6810 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6811 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6812 set_bit(WriteMostly, &rdev->flags); 6813 else 6814 clear_bit(WriteMostly, &rdev->flags); 6815 if (info->state & (1<<MD_DISK_FAILFAST)) 6816 set_bit(FailFast, &rdev->flags); 6817 else 6818 clear_bit(FailFast, &rdev->flags); 6819 6820 if (info->state & (1<<MD_DISK_JOURNAL)) { 6821 struct md_rdev *rdev2; 6822 bool has_journal = false; 6823 6824 /* make sure no existing journal disk */ 6825 rdev_for_each(rdev2, mddev) { 6826 if (test_bit(Journal, &rdev2->flags)) { 6827 has_journal = true; 6828 break; 6829 } 6830 } 6831 if (has_journal || mddev->bitmap) { 6832 export_rdev(rdev, mddev); 6833 return -EBUSY; 6834 } 6835 set_bit(Journal, &rdev->flags); 6836 } 6837 /* 6838 * check whether the device shows up in other nodes 6839 */ 6840 if (mddev_is_clustered(mddev)) { 6841 if (info->state & (1 << MD_DISK_CANDIDATE)) 6842 set_bit(Candidate, &rdev->flags); 6843 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6844 /* --add initiated by this node */ 6845 err = md_cluster_ops->add_new_disk(mddev, rdev); 6846 if (err) { 6847 export_rdev(rdev, mddev); 6848 return err; 6849 } 6850 } 6851 } 6852 6853 rdev->raid_disk = -1; 6854 err = bind_rdev_to_array(rdev, mddev); 6855 6856 if (err) 6857 export_rdev(rdev, mddev); 6858 6859 if (mddev_is_clustered(mddev)) { 6860 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6861 if (!err) { 6862 err = md_cluster_ops->new_disk_ack(mddev, 6863 err == 0); 6864 if (err) 6865 md_kick_rdev_from_array(rdev); 6866 } 6867 } else { 6868 if (err) 6869 md_cluster_ops->add_new_disk_cancel(mddev); 6870 else 6871 err = add_bound_rdev(rdev); 6872 } 6873 6874 } else if (!err) 6875 err = add_bound_rdev(rdev); 6876 6877 return err; 6878 } 6879 6880 /* otherwise, md_add_new_disk is only allowed 6881 * for major_version==0 superblocks 6882 */ 6883 if (mddev->major_version != 0) { 6884 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6885 return -EINVAL; 6886 } 6887 6888 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6889 int err; 6890 rdev = md_import_device(dev, -1, 0); 6891 if (IS_ERR(rdev)) { 6892 pr_warn("md: error, md_import_device() returned %ld\n", 6893 PTR_ERR(rdev)); 6894 return PTR_ERR(rdev); 6895 } 6896 rdev->desc_nr = info->number; 6897 if (info->raid_disk < mddev->raid_disks) 6898 rdev->raid_disk = info->raid_disk; 6899 else 6900 rdev->raid_disk = -1; 6901 6902 if (rdev->raid_disk < mddev->raid_disks) 6903 if (info->state & (1<<MD_DISK_SYNC)) 6904 set_bit(In_sync, &rdev->flags); 6905 6906 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6907 set_bit(WriteMostly, &rdev->flags); 6908 if (info->state & (1<<MD_DISK_FAILFAST)) 6909 set_bit(FailFast, &rdev->flags); 6910 6911 if (!mddev->persistent) { 6912 pr_debug("md: nonpersistent superblock ...\n"); 6913 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6914 } else 6915 rdev->sb_start = calc_dev_sboffset(rdev); 6916 rdev->sectors = rdev->sb_start; 6917 6918 err = bind_rdev_to_array(rdev, mddev); 6919 if (err) { 6920 export_rdev(rdev, mddev); 6921 return err; 6922 } 6923 } 6924 6925 return 0; 6926 } 6927 6928 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6929 { 6930 struct md_rdev *rdev; 6931 6932 if (!mddev->pers) 6933 return -ENODEV; 6934 6935 rdev = find_rdev(mddev, dev); 6936 if (!rdev) 6937 return -ENXIO; 6938 6939 if (rdev->raid_disk < 0) 6940 goto kick_rdev; 6941 6942 clear_bit(Blocked, &rdev->flags); 6943 remove_and_add_spares(mddev, rdev); 6944 6945 if (rdev->raid_disk >= 0) 6946 goto busy; 6947 6948 kick_rdev: 6949 if (mddev_is_clustered(mddev)) { 6950 if (md_cluster_ops->remove_disk(mddev, rdev)) 6951 goto busy; 6952 } 6953 6954 md_kick_rdev_from_array(rdev); 6955 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6956 if (mddev->thread) 6957 md_wakeup_thread(mddev->thread); 6958 else 6959 md_update_sb(mddev, 1); 6960 md_new_event(); 6961 6962 return 0; 6963 busy: 6964 pr_debug("md: cannot remove active disk %pg from %s ...\n", 6965 rdev->bdev, mdname(mddev)); 6966 return -EBUSY; 6967 } 6968 6969 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6970 { 6971 int err; 6972 struct md_rdev *rdev; 6973 6974 if (!mddev->pers) 6975 return -ENODEV; 6976 6977 if (mddev->major_version != 0) { 6978 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6979 mdname(mddev)); 6980 return -EINVAL; 6981 } 6982 if (!mddev->pers->hot_add_disk) { 6983 pr_warn("%s: personality does not support diskops!\n", 6984 mdname(mddev)); 6985 return -EINVAL; 6986 } 6987 6988 rdev = md_import_device(dev, -1, 0); 6989 if (IS_ERR(rdev)) { 6990 pr_warn("md: error, md_import_device() returned %ld\n", 6991 PTR_ERR(rdev)); 6992 return -EINVAL; 6993 } 6994 6995 if (mddev->persistent) 6996 rdev->sb_start = calc_dev_sboffset(rdev); 6997 else 6998 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6999 7000 rdev->sectors = rdev->sb_start; 7001 7002 if (test_bit(Faulty, &rdev->flags)) { 7003 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 7004 rdev->bdev, mdname(mddev)); 7005 err = -EINVAL; 7006 goto abort_export; 7007 } 7008 7009 clear_bit(In_sync, &rdev->flags); 7010 rdev->desc_nr = -1; 7011 rdev->saved_raid_disk = -1; 7012 err = bind_rdev_to_array(rdev, mddev); 7013 if (err) 7014 goto abort_export; 7015 7016 /* 7017 * The rest should better be atomic, we can have disk failures 7018 * noticed in interrupt contexts ... 7019 */ 7020 7021 rdev->raid_disk = -1; 7022 7023 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7024 if (!mddev->thread) 7025 md_update_sb(mddev, 1); 7026 /* 7027 * If the new disk does not support REQ_NOWAIT, 7028 * disable on the whole MD. 7029 */ 7030 if (!bdev_nowait(rdev->bdev)) { 7031 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 7032 mdname(mddev), rdev->bdev); 7033 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 7034 } 7035 /* 7036 * Kick recovery, maybe this spare has to be added to the 7037 * array immediately. 7038 */ 7039 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7040 md_wakeup_thread(mddev->thread); 7041 md_new_event(); 7042 return 0; 7043 7044 abort_export: 7045 export_rdev(rdev, mddev); 7046 return err; 7047 } 7048 7049 static int set_bitmap_file(struct mddev *mddev, int fd) 7050 { 7051 int err = 0; 7052 7053 if (mddev->pers) { 7054 if (!mddev->pers->quiesce || !mddev->thread) 7055 return -EBUSY; 7056 if (mddev->recovery || mddev->sync_thread) 7057 return -EBUSY; 7058 /* we should be able to change the bitmap.. */ 7059 } 7060 7061 if (fd >= 0) { 7062 struct inode *inode; 7063 struct file *f; 7064 7065 if (mddev->bitmap || mddev->bitmap_info.file) 7066 return -EEXIST; /* cannot add when bitmap is present */ 7067 7068 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) { 7069 pr_warn("%s: bitmap files not supported by this kernel\n", 7070 mdname(mddev)); 7071 return -EINVAL; 7072 } 7073 pr_warn("%s: using deprecated bitmap file support\n", 7074 mdname(mddev)); 7075 7076 f = fget(fd); 7077 7078 if (f == NULL) { 7079 pr_warn("%s: error: failed to get bitmap file\n", 7080 mdname(mddev)); 7081 return -EBADF; 7082 } 7083 7084 inode = f->f_mapping->host; 7085 if (!S_ISREG(inode->i_mode)) { 7086 pr_warn("%s: error: bitmap file must be a regular file\n", 7087 mdname(mddev)); 7088 err = -EBADF; 7089 } else if (!(f->f_mode & FMODE_WRITE)) { 7090 pr_warn("%s: error: bitmap file must open for write\n", 7091 mdname(mddev)); 7092 err = -EBADF; 7093 } else if (atomic_read(&inode->i_writecount) != 1) { 7094 pr_warn("%s: error: bitmap file is already in use\n", 7095 mdname(mddev)); 7096 err = -EBUSY; 7097 } 7098 if (err) { 7099 fput(f); 7100 return err; 7101 } 7102 mddev->bitmap_info.file = f; 7103 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7104 } else if (mddev->bitmap == NULL) 7105 return -ENOENT; /* cannot remove what isn't there */ 7106 err = 0; 7107 if (mddev->pers) { 7108 if (fd >= 0) { 7109 struct bitmap *bitmap; 7110 7111 bitmap = md_bitmap_create(mddev, -1); 7112 mddev_suspend(mddev); 7113 if (!IS_ERR(bitmap)) { 7114 mddev->bitmap = bitmap; 7115 err = md_bitmap_load(mddev); 7116 } else 7117 err = PTR_ERR(bitmap); 7118 if (err) { 7119 md_bitmap_destroy(mddev); 7120 fd = -1; 7121 } 7122 mddev_resume(mddev); 7123 } else if (fd < 0) { 7124 mddev_suspend(mddev); 7125 md_bitmap_destroy(mddev); 7126 mddev_resume(mddev); 7127 } 7128 } 7129 if (fd < 0) { 7130 struct file *f = mddev->bitmap_info.file; 7131 if (f) { 7132 spin_lock(&mddev->lock); 7133 mddev->bitmap_info.file = NULL; 7134 spin_unlock(&mddev->lock); 7135 fput(f); 7136 } 7137 } 7138 7139 return err; 7140 } 7141 7142 /* 7143 * md_set_array_info is used two different ways 7144 * The original usage is when creating a new array. 7145 * In this usage, raid_disks is > 0 and it together with 7146 * level, size, not_persistent,layout,chunksize determine the 7147 * shape of the array. 7148 * This will always create an array with a type-0.90.0 superblock. 7149 * The newer usage is when assembling an array. 7150 * In this case raid_disks will be 0, and the major_version field is 7151 * use to determine which style super-blocks are to be found on the devices. 7152 * The minor and patch _version numbers are also kept incase the 7153 * super_block handler wishes to interpret them. 7154 */ 7155 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7156 { 7157 if (info->raid_disks == 0) { 7158 /* just setting version number for superblock loading */ 7159 if (info->major_version < 0 || 7160 info->major_version >= ARRAY_SIZE(super_types) || 7161 super_types[info->major_version].name == NULL) { 7162 /* maybe try to auto-load a module? */ 7163 pr_warn("md: superblock version %d not known\n", 7164 info->major_version); 7165 return -EINVAL; 7166 } 7167 mddev->major_version = info->major_version; 7168 mddev->minor_version = info->minor_version; 7169 mddev->patch_version = info->patch_version; 7170 mddev->persistent = !info->not_persistent; 7171 /* ensure mddev_put doesn't delete this now that there 7172 * is some minimal configuration. 7173 */ 7174 mddev->ctime = ktime_get_real_seconds(); 7175 return 0; 7176 } 7177 mddev->major_version = MD_MAJOR_VERSION; 7178 mddev->minor_version = MD_MINOR_VERSION; 7179 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7180 mddev->ctime = ktime_get_real_seconds(); 7181 7182 mddev->level = info->level; 7183 mddev->clevel[0] = 0; 7184 mddev->dev_sectors = 2 * (sector_t)info->size; 7185 mddev->raid_disks = info->raid_disks; 7186 /* don't set md_minor, it is determined by which /dev/md* was 7187 * openned 7188 */ 7189 if (info->state & (1<<MD_SB_CLEAN)) 7190 mddev->recovery_cp = MaxSector; 7191 else 7192 mddev->recovery_cp = 0; 7193 mddev->persistent = ! info->not_persistent; 7194 mddev->external = 0; 7195 7196 mddev->layout = info->layout; 7197 if (mddev->level == 0) 7198 /* Cannot trust RAID0 layout info here */ 7199 mddev->layout = -1; 7200 mddev->chunk_sectors = info->chunk_size >> 9; 7201 7202 if (mddev->persistent) { 7203 mddev->max_disks = MD_SB_DISKS; 7204 mddev->flags = 0; 7205 mddev->sb_flags = 0; 7206 } 7207 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7208 7209 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7210 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7211 mddev->bitmap_info.offset = 0; 7212 7213 mddev->reshape_position = MaxSector; 7214 7215 /* 7216 * Generate a 128 bit UUID 7217 */ 7218 get_random_bytes(mddev->uuid, 16); 7219 7220 mddev->new_level = mddev->level; 7221 mddev->new_chunk_sectors = mddev->chunk_sectors; 7222 mddev->new_layout = mddev->layout; 7223 mddev->delta_disks = 0; 7224 mddev->reshape_backwards = 0; 7225 7226 return 0; 7227 } 7228 7229 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7230 { 7231 lockdep_assert_held(&mddev->reconfig_mutex); 7232 7233 if (mddev->external_size) 7234 return; 7235 7236 mddev->array_sectors = array_sectors; 7237 } 7238 EXPORT_SYMBOL(md_set_array_sectors); 7239 7240 static int update_size(struct mddev *mddev, sector_t num_sectors) 7241 { 7242 struct md_rdev *rdev; 7243 int rv; 7244 int fit = (num_sectors == 0); 7245 sector_t old_dev_sectors = mddev->dev_sectors; 7246 7247 if (mddev->pers->resize == NULL) 7248 return -EINVAL; 7249 /* The "num_sectors" is the number of sectors of each device that 7250 * is used. This can only make sense for arrays with redundancy. 7251 * linear and raid0 always use whatever space is available. We can only 7252 * consider changing this number if no resync or reconstruction is 7253 * happening, and if the new size is acceptable. It must fit before the 7254 * sb_start or, if that is <data_offset, it must fit before the size 7255 * of each device. If num_sectors is zero, we find the largest size 7256 * that fits. 7257 */ 7258 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7259 mddev->sync_thread) 7260 return -EBUSY; 7261 if (!md_is_rdwr(mddev)) 7262 return -EROFS; 7263 7264 rdev_for_each(rdev, mddev) { 7265 sector_t avail = rdev->sectors; 7266 7267 if (fit && (num_sectors == 0 || num_sectors > avail)) 7268 num_sectors = avail; 7269 if (avail < num_sectors) 7270 return -ENOSPC; 7271 } 7272 rv = mddev->pers->resize(mddev, num_sectors); 7273 if (!rv) { 7274 if (mddev_is_clustered(mddev)) 7275 md_cluster_ops->update_size(mddev, old_dev_sectors); 7276 else if (mddev->queue) { 7277 set_capacity_and_notify(mddev->gendisk, 7278 mddev->array_sectors); 7279 } 7280 } 7281 return rv; 7282 } 7283 7284 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7285 { 7286 int rv; 7287 struct md_rdev *rdev; 7288 /* change the number of raid disks */ 7289 if (mddev->pers->check_reshape == NULL) 7290 return -EINVAL; 7291 if (!md_is_rdwr(mddev)) 7292 return -EROFS; 7293 if (raid_disks <= 0 || 7294 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7295 return -EINVAL; 7296 if (mddev->sync_thread || 7297 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7298 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7299 mddev->reshape_position != MaxSector) 7300 return -EBUSY; 7301 7302 rdev_for_each(rdev, mddev) { 7303 if (mddev->raid_disks < raid_disks && 7304 rdev->data_offset < rdev->new_data_offset) 7305 return -EINVAL; 7306 if (mddev->raid_disks > raid_disks && 7307 rdev->data_offset > rdev->new_data_offset) 7308 return -EINVAL; 7309 } 7310 7311 mddev->delta_disks = raid_disks - mddev->raid_disks; 7312 if (mddev->delta_disks < 0) 7313 mddev->reshape_backwards = 1; 7314 else if (mddev->delta_disks > 0) 7315 mddev->reshape_backwards = 0; 7316 7317 rv = mddev->pers->check_reshape(mddev); 7318 if (rv < 0) { 7319 mddev->delta_disks = 0; 7320 mddev->reshape_backwards = 0; 7321 } 7322 return rv; 7323 } 7324 7325 /* 7326 * update_array_info is used to change the configuration of an 7327 * on-line array. 7328 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7329 * fields in the info are checked against the array. 7330 * Any differences that cannot be handled will cause an error. 7331 * Normally, only one change can be managed at a time. 7332 */ 7333 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7334 { 7335 int rv = 0; 7336 int cnt = 0; 7337 int state = 0; 7338 7339 /* calculate expected state,ignoring low bits */ 7340 if (mddev->bitmap && mddev->bitmap_info.offset) 7341 state |= (1 << MD_SB_BITMAP_PRESENT); 7342 7343 if (mddev->major_version != info->major_version || 7344 mddev->minor_version != info->minor_version || 7345 /* mddev->patch_version != info->patch_version || */ 7346 mddev->ctime != info->ctime || 7347 mddev->level != info->level || 7348 /* mddev->layout != info->layout || */ 7349 mddev->persistent != !info->not_persistent || 7350 mddev->chunk_sectors != info->chunk_size >> 9 || 7351 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7352 ((state^info->state) & 0xfffffe00) 7353 ) 7354 return -EINVAL; 7355 /* Check there is only one change */ 7356 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7357 cnt++; 7358 if (mddev->raid_disks != info->raid_disks) 7359 cnt++; 7360 if (mddev->layout != info->layout) 7361 cnt++; 7362 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7363 cnt++; 7364 if (cnt == 0) 7365 return 0; 7366 if (cnt > 1) 7367 return -EINVAL; 7368 7369 if (mddev->layout != info->layout) { 7370 /* Change layout 7371 * we don't need to do anything at the md level, the 7372 * personality will take care of it all. 7373 */ 7374 if (mddev->pers->check_reshape == NULL) 7375 return -EINVAL; 7376 else { 7377 mddev->new_layout = info->layout; 7378 rv = mddev->pers->check_reshape(mddev); 7379 if (rv) 7380 mddev->new_layout = mddev->layout; 7381 return rv; 7382 } 7383 } 7384 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7385 rv = update_size(mddev, (sector_t)info->size * 2); 7386 7387 if (mddev->raid_disks != info->raid_disks) 7388 rv = update_raid_disks(mddev, info->raid_disks); 7389 7390 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7391 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7392 rv = -EINVAL; 7393 goto err; 7394 } 7395 if (mddev->recovery || mddev->sync_thread) { 7396 rv = -EBUSY; 7397 goto err; 7398 } 7399 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7400 struct bitmap *bitmap; 7401 /* add the bitmap */ 7402 if (mddev->bitmap) { 7403 rv = -EEXIST; 7404 goto err; 7405 } 7406 if (mddev->bitmap_info.default_offset == 0) { 7407 rv = -EINVAL; 7408 goto err; 7409 } 7410 mddev->bitmap_info.offset = 7411 mddev->bitmap_info.default_offset; 7412 mddev->bitmap_info.space = 7413 mddev->bitmap_info.default_space; 7414 bitmap = md_bitmap_create(mddev, -1); 7415 mddev_suspend(mddev); 7416 if (!IS_ERR(bitmap)) { 7417 mddev->bitmap = bitmap; 7418 rv = md_bitmap_load(mddev); 7419 } else 7420 rv = PTR_ERR(bitmap); 7421 if (rv) 7422 md_bitmap_destroy(mddev); 7423 mddev_resume(mddev); 7424 } else { 7425 /* remove the bitmap */ 7426 if (!mddev->bitmap) { 7427 rv = -ENOENT; 7428 goto err; 7429 } 7430 if (mddev->bitmap->storage.file) { 7431 rv = -EINVAL; 7432 goto err; 7433 } 7434 if (mddev->bitmap_info.nodes) { 7435 /* hold PW on all the bitmap lock */ 7436 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7437 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7438 rv = -EPERM; 7439 md_cluster_ops->unlock_all_bitmaps(mddev); 7440 goto err; 7441 } 7442 7443 mddev->bitmap_info.nodes = 0; 7444 md_cluster_ops->leave(mddev); 7445 module_put(md_cluster_mod); 7446 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7447 } 7448 mddev_suspend(mddev); 7449 md_bitmap_destroy(mddev); 7450 mddev_resume(mddev); 7451 mddev->bitmap_info.offset = 0; 7452 } 7453 } 7454 md_update_sb(mddev, 1); 7455 return rv; 7456 err: 7457 return rv; 7458 } 7459 7460 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7461 { 7462 struct md_rdev *rdev; 7463 int err = 0; 7464 7465 if (mddev->pers == NULL) 7466 return -ENODEV; 7467 7468 rcu_read_lock(); 7469 rdev = md_find_rdev_rcu(mddev, dev); 7470 if (!rdev) 7471 err = -ENODEV; 7472 else { 7473 md_error(mddev, rdev); 7474 if (test_bit(MD_BROKEN, &mddev->flags)) 7475 err = -EBUSY; 7476 } 7477 rcu_read_unlock(); 7478 return err; 7479 } 7480 7481 /* 7482 * We have a problem here : there is no easy way to give a CHS 7483 * virtual geometry. We currently pretend that we have a 2 heads 7484 * 4 sectors (with a BIG number of cylinders...). This drives 7485 * dosfs just mad... ;-) 7486 */ 7487 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7488 { 7489 struct mddev *mddev = bdev->bd_disk->private_data; 7490 7491 geo->heads = 2; 7492 geo->sectors = 4; 7493 geo->cylinders = mddev->array_sectors / 8; 7494 return 0; 7495 } 7496 7497 static inline bool md_ioctl_valid(unsigned int cmd) 7498 { 7499 switch (cmd) { 7500 case ADD_NEW_DISK: 7501 case GET_ARRAY_INFO: 7502 case GET_BITMAP_FILE: 7503 case GET_DISK_INFO: 7504 case HOT_ADD_DISK: 7505 case HOT_REMOVE_DISK: 7506 case RAID_VERSION: 7507 case RESTART_ARRAY_RW: 7508 case RUN_ARRAY: 7509 case SET_ARRAY_INFO: 7510 case SET_BITMAP_FILE: 7511 case SET_DISK_FAULTY: 7512 case STOP_ARRAY: 7513 case STOP_ARRAY_RO: 7514 case CLUSTERED_DISK_NACK: 7515 return true; 7516 default: 7517 return false; 7518 } 7519 } 7520 7521 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7522 { 7523 mdu_array_info_t info; 7524 int err; 7525 7526 if (!argp) 7527 memset(&info, 0, sizeof(info)); 7528 else if (copy_from_user(&info, argp, sizeof(info))) 7529 return -EFAULT; 7530 7531 if (mddev->pers) { 7532 err = update_array_info(mddev, &info); 7533 if (err) 7534 pr_warn("md: couldn't update array info. %d\n", err); 7535 return err; 7536 } 7537 7538 if (!list_empty(&mddev->disks)) { 7539 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7540 return -EBUSY; 7541 } 7542 7543 if (mddev->raid_disks) { 7544 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7545 return -EBUSY; 7546 } 7547 7548 err = md_set_array_info(mddev, &info); 7549 if (err) 7550 pr_warn("md: couldn't set array info. %d\n", err); 7551 7552 return err; 7553 } 7554 7555 static int md_ioctl(struct block_device *bdev, blk_mode_t mode, 7556 unsigned int cmd, unsigned long arg) 7557 { 7558 int err = 0; 7559 void __user *argp = (void __user *)arg; 7560 struct mddev *mddev = NULL; 7561 bool did_set_md_closing = false; 7562 7563 if (!md_ioctl_valid(cmd)) 7564 return -ENOTTY; 7565 7566 switch (cmd) { 7567 case RAID_VERSION: 7568 case GET_ARRAY_INFO: 7569 case GET_DISK_INFO: 7570 break; 7571 default: 7572 if (!capable(CAP_SYS_ADMIN)) 7573 return -EACCES; 7574 } 7575 7576 /* 7577 * Commands dealing with the RAID driver but not any 7578 * particular array: 7579 */ 7580 switch (cmd) { 7581 case RAID_VERSION: 7582 err = get_version(argp); 7583 goto out; 7584 default:; 7585 } 7586 7587 /* 7588 * Commands creating/starting a new array: 7589 */ 7590 7591 mddev = bdev->bd_disk->private_data; 7592 7593 if (!mddev) { 7594 BUG(); 7595 goto out; 7596 } 7597 7598 /* Some actions do not requires the mutex */ 7599 switch (cmd) { 7600 case GET_ARRAY_INFO: 7601 if (!mddev->raid_disks && !mddev->external) 7602 err = -ENODEV; 7603 else 7604 err = get_array_info(mddev, argp); 7605 goto out; 7606 7607 case GET_DISK_INFO: 7608 if (!mddev->raid_disks && !mddev->external) 7609 err = -ENODEV; 7610 else 7611 err = get_disk_info(mddev, argp); 7612 goto out; 7613 7614 case SET_DISK_FAULTY: 7615 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7616 goto out; 7617 7618 case GET_BITMAP_FILE: 7619 err = get_bitmap_file(mddev, argp); 7620 goto out; 7621 7622 } 7623 7624 if (cmd == HOT_REMOVE_DISK) 7625 /* need to ensure recovery thread has run */ 7626 wait_event_interruptible_timeout(mddev->sb_wait, 7627 !test_bit(MD_RECOVERY_NEEDED, 7628 &mddev->recovery), 7629 msecs_to_jiffies(5000)); 7630 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7631 /* Need to flush page cache, and ensure no-one else opens 7632 * and writes 7633 */ 7634 mutex_lock(&mddev->open_mutex); 7635 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7636 mutex_unlock(&mddev->open_mutex); 7637 err = -EBUSY; 7638 goto out; 7639 } 7640 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7641 mutex_unlock(&mddev->open_mutex); 7642 err = -EBUSY; 7643 goto out; 7644 } 7645 did_set_md_closing = true; 7646 mutex_unlock(&mddev->open_mutex); 7647 sync_blockdev(bdev); 7648 } 7649 err = mddev_lock(mddev); 7650 if (err) { 7651 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7652 err, cmd); 7653 goto out; 7654 } 7655 7656 if (cmd == SET_ARRAY_INFO) { 7657 err = __md_set_array_info(mddev, argp); 7658 goto unlock; 7659 } 7660 7661 /* 7662 * Commands querying/configuring an existing array: 7663 */ 7664 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7665 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7666 if ((!mddev->raid_disks && !mddev->external) 7667 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7668 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7669 && cmd != GET_BITMAP_FILE) { 7670 err = -ENODEV; 7671 goto unlock; 7672 } 7673 7674 /* 7675 * Commands even a read-only array can execute: 7676 */ 7677 switch (cmd) { 7678 case RESTART_ARRAY_RW: 7679 err = restart_array(mddev); 7680 goto unlock; 7681 7682 case STOP_ARRAY: 7683 err = do_md_stop(mddev, 0, bdev); 7684 goto unlock; 7685 7686 case STOP_ARRAY_RO: 7687 err = md_set_readonly(mddev, bdev); 7688 goto unlock; 7689 7690 case HOT_REMOVE_DISK: 7691 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7692 goto unlock; 7693 7694 case ADD_NEW_DISK: 7695 /* We can support ADD_NEW_DISK on read-only arrays 7696 * only if we are re-adding a preexisting device. 7697 * So require mddev->pers and MD_DISK_SYNC. 7698 */ 7699 if (mddev->pers) { 7700 mdu_disk_info_t info; 7701 if (copy_from_user(&info, argp, sizeof(info))) 7702 err = -EFAULT; 7703 else if (!(info.state & (1<<MD_DISK_SYNC))) 7704 /* Need to clear read-only for this */ 7705 break; 7706 else 7707 err = md_add_new_disk(mddev, &info); 7708 goto unlock; 7709 } 7710 break; 7711 } 7712 7713 /* 7714 * The remaining ioctls are changing the state of the 7715 * superblock, so we do not allow them on read-only arrays. 7716 */ 7717 if (!md_is_rdwr(mddev) && mddev->pers) { 7718 if (mddev->ro != MD_AUTO_READ) { 7719 err = -EROFS; 7720 goto unlock; 7721 } 7722 mddev->ro = MD_RDWR; 7723 sysfs_notify_dirent_safe(mddev->sysfs_state); 7724 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7725 /* mddev_unlock will wake thread */ 7726 /* If a device failed while we were read-only, we 7727 * need to make sure the metadata is updated now. 7728 */ 7729 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7730 mddev_unlock(mddev); 7731 wait_event(mddev->sb_wait, 7732 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7733 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7734 mddev_lock_nointr(mddev); 7735 } 7736 } 7737 7738 switch (cmd) { 7739 case ADD_NEW_DISK: 7740 { 7741 mdu_disk_info_t info; 7742 if (copy_from_user(&info, argp, sizeof(info))) 7743 err = -EFAULT; 7744 else 7745 err = md_add_new_disk(mddev, &info); 7746 goto unlock; 7747 } 7748 7749 case CLUSTERED_DISK_NACK: 7750 if (mddev_is_clustered(mddev)) 7751 md_cluster_ops->new_disk_ack(mddev, false); 7752 else 7753 err = -EINVAL; 7754 goto unlock; 7755 7756 case HOT_ADD_DISK: 7757 err = hot_add_disk(mddev, new_decode_dev(arg)); 7758 goto unlock; 7759 7760 case RUN_ARRAY: 7761 err = do_md_run(mddev); 7762 goto unlock; 7763 7764 case SET_BITMAP_FILE: 7765 err = set_bitmap_file(mddev, (int)arg); 7766 goto unlock; 7767 7768 default: 7769 err = -EINVAL; 7770 goto unlock; 7771 } 7772 7773 unlock: 7774 if (mddev->hold_active == UNTIL_IOCTL && 7775 err != -EINVAL) 7776 mddev->hold_active = 0; 7777 mddev_unlock(mddev); 7778 out: 7779 if(did_set_md_closing) 7780 clear_bit(MD_CLOSING, &mddev->flags); 7781 return err; 7782 } 7783 #ifdef CONFIG_COMPAT 7784 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 7785 unsigned int cmd, unsigned long arg) 7786 { 7787 switch (cmd) { 7788 case HOT_REMOVE_DISK: 7789 case HOT_ADD_DISK: 7790 case SET_DISK_FAULTY: 7791 case SET_BITMAP_FILE: 7792 /* These take in integer arg, do not convert */ 7793 break; 7794 default: 7795 arg = (unsigned long)compat_ptr(arg); 7796 break; 7797 } 7798 7799 return md_ioctl(bdev, mode, cmd, arg); 7800 } 7801 #endif /* CONFIG_COMPAT */ 7802 7803 static int md_set_read_only(struct block_device *bdev, bool ro) 7804 { 7805 struct mddev *mddev = bdev->bd_disk->private_data; 7806 int err; 7807 7808 err = mddev_lock(mddev); 7809 if (err) 7810 return err; 7811 7812 if (!mddev->raid_disks && !mddev->external) { 7813 err = -ENODEV; 7814 goto out_unlock; 7815 } 7816 7817 /* 7818 * Transitioning to read-auto need only happen for arrays that call 7819 * md_write_start and which are not ready for writes yet. 7820 */ 7821 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7822 err = restart_array(mddev); 7823 if (err) 7824 goto out_unlock; 7825 mddev->ro = MD_AUTO_READ; 7826 } 7827 7828 out_unlock: 7829 mddev_unlock(mddev); 7830 return err; 7831 } 7832 7833 static int md_open(struct gendisk *disk, blk_mode_t mode) 7834 { 7835 struct mddev *mddev; 7836 int err; 7837 7838 spin_lock(&all_mddevs_lock); 7839 mddev = mddev_get(disk->private_data); 7840 spin_unlock(&all_mddevs_lock); 7841 if (!mddev) 7842 return -ENODEV; 7843 7844 err = mutex_lock_interruptible(&mddev->open_mutex); 7845 if (err) 7846 goto out; 7847 7848 err = -ENODEV; 7849 if (test_bit(MD_CLOSING, &mddev->flags)) 7850 goto out_unlock; 7851 7852 atomic_inc(&mddev->openers); 7853 mutex_unlock(&mddev->open_mutex); 7854 7855 disk_check_media_change(disk); 7856 return 0; 7857 7858 out_unlock: 7859 mutex_unlock(&mddev->open_mutex); 7860 out: 7861 mddev_put(mddev); 7862 return err; 7863 } 7864 7865 static void md_release(struct gendisk *disk) 7866 { 7867 struct mddev *mddev = disk->private_data; 7868 7869 BUG_ON(!mddev); 7870 atomic_dec(&mddev->openers); 7871 mddev_put(mddev); 7872 } 7873 7874 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7875 { 7876 struct mddev *mddev = disk->private_data; 7877 unsigned int ret = 0; 7878 7879 if (mddev->changed) 7880 ret = DISK_EVENT_MEDIA_CHANGE; 7881 mddev->changed = 0; 7882 return ret; 7883 } 7884 7885 static void md_free_disk(struct gendisk *disk) 7886 { 7887 struct mddev *mddev = disk->private_data; 7888 7889 percpu_ref_exit(&mddev->writes_pending); 7890 mddev_free(mddev); 7891 } 7892 7893 const struct block_device_operations md_fops = 7894 { 7895 .owner = THIS_MODULE, 7896 .submit_bio = md_submit_bio, 7897 .open = md_open, 7898 .release = md_release, 7899 .ioctl = md_ioctl, 7900 #ifdef CONFIG_COMPAT 7901 .compat_ioctl = md_compat_ioctl, 7902 #endif 7903 .getgeo = md_getgeo, 7904 .check_events = md_check_events, 7905 .set_read_only = md_set_read_only, 7906 .free_disk = md_free_disk, 7907 }; 7908 7909 static int md_thread(void *arg) 7910 { 7911 struct md_thread *thread = arg; 7912 7913 /* 7914 * md_thread is a 'system-thread', it's priority should be very 7915 * high. We avoid resource deadlocks individually in each 7916 * raid personality. (RAID5 does preallocation) We also use RR and 7917 * the very same RT priority as kswapd, thus we will never get 7918 * into a priority inversion deadlock. 7919 * 7920 * we definitely have to have equal or higher priority than 7921 * bdflush, otherwise bdflush will deadlock if there are too 7922 * many dirty RAID5 blocks. 7923 */ 7924 7925 allow_signal(SIGKILL); 7926 while (!kthread_should_stop()) { 7927 7928 /* We need to wait INTERRUPTIBLE so that 7929 * we don't add to the load-average. 7930 * That means we need to be sure no signals are 7931 * pending 7932 */ 7933 if (signal_pending(current)) 7934 flush_signals(current); 7935 7936 wait_event_interruptible_timeout 7937 (thread->wqueue, 7938 test_bit(THREAD_WAKEUP, &thread->flags) 7939 || kthread_should_stop() || kthread_should_park(), 7940 thread->timeout); 7941 7942 clear_bit(THREAD_WAKEUP, &thread->flags); 7943 if (kthread_should_park()) 7944 kthread_parkme(); 7945 if (!kthread_should_stop()) 7946 thread->run(thread); 7947 } 7948 7949 return 0; 7950 } 7951 7952 static void md_wakeup_thread_directly(struct md_thread __rcu *thread) 7953 { 7954 struct md_thread *t; 7955 7956 rcu_read_lock(); 7957 t = rcu_dereference(thread); 7958 if (t) 7959 wake_up_process(t->tsk); 7960 rcu_read_unlock(); 7961 } 7962 7963 void md_wakeup_thread(struct md_thread __rcu *thread) 7964 { 7965 struct md_thread *t; 7966 7967 rcu_read_lock(); 7968 t = rcu_dereference(thread); 7969 if (t) { 7970 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm); 7971 set_bit(THREAD_WAKEUP, &t->flags); 7972 wake_up(&t->wqueue); 7973 } 7974 rcu_read_unlock(); 7975 } 7976 EXPORT_SYMBOL(md_wakeup_thread); 7977 7978 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7979 struct mddev *mddev, const char *name) 7980 { 7981 struct md_thread *thread; 7982 7983 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7984 if (!thread) 7985 return NULL; 7986 7987 init_waitqueue_head(&thread->wqueue); 7988 7989 thread->run = run; 7990 thread->mddev = mddev; 7991 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7992 thread->tsk = kthread_run(md_thread, thread, 7993 "%s_%s", 7994 mdname(thread->mddev), 7995 name); 7996 if (IS_ERR(thread->tsk)) { 7997 kfree(thread); 7998 return NULL; 7999 } 8000 return thread; 8001 } 8002 EXPORT_SYMBOL(md_register_thread); 8003 8004 void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp) 8005 { 8006 struct md_thread *thread = rcu_dereference_protected(*threadp, 8007 lockdep_is_held(&mddev->reconfig_mutex)); 8008 8009 if (!thread) 8010 return; 8011 8012 rcu_assign_pointer(*threadp, NULL); 8013 synchronize_rcu(); 8014 8015 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 8016 kthread_stop(thread->tsk); 8017 kfree(thread); 8018 } 8019 EXPORT_SYMBOL(md_unregister_thread); 8020 8021 void md_error(struct mddev *mddev, struct md_rdev *rdev) 8022 { 8023 if (!rdev || test_bit(Faulty, &rdev->flags)) 8024 return; 8025 8026 if (!mddev->pers || !mddev->pers->error_handler) 8027 return; 8028 mddev->pers->error_handler(mddev, rdev); 8029 8030 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR) 8031 return; 8032 8033 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 8034 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8035 sysfs_notify_dirent_safe(rdev->sysfs_state); 8036 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8037 if (!test_bit(MD_BROKEN, &mddev->flags)) { 8038 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8039 md_wakeup_thread(mddev->thread); 8040 } 8041 if (mddev->event_work.func) 8042 queue_work(md_misc_wq, &mddev->event_work); 8043 md_new_event(); 8044 } 8045 EXPORT_SYMBOL(md_error); 8046 8047 /* seq_file implementation /proc/mdstat */ 8048 8049 static void status_unused(struct seq_file *seq) 8050 { 8051 int i = 0; 8052 struct md_rdev *rdev; 8053 8054 seq_printf(seq, "unused devices: "); 8055 8056 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8057 i++; 8058 seq_printf(seq, "%pg ", rdev->bdev); 8059 } 8060 if (!i) 8061 seq_printf(seq, "<none>"); 8062 8063 seq_printf(seq, "\n"); 8064 } 8065 8066 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8067 { 8068 sector_t max_sectors, resync, res; 8069 unsigned long dt, db = 0; 8070 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8071 int scale, recovery_active; 8072 unsigned int per_milli; 8073 8074 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8075 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8076 max_sectors = mddev->resync_max_sectors; 8077 else 8078 max_sectors = mddev->dev_sectors; 8079 8080 resync = mddev->curr_resync; 8081 if (resync < MD_RESYNC_ACTIVE) { 8082 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8083 /* Still cleaning up */ 8084 resync = max_sectors; 8085 } else if (resync > max_sectors) { 8086 resync = max_sectors; 8087 } else { 8088 res = atomic_read(&mddev->recovery_active); 8089 /* 8090 * Resync has started, but the subtraction has overflowed or 8091 * yielded one of the special values. Force it to active to 8092 * ensure the status reports an active resync. 8093 */ 8094 if (resync < res || resync - res < MD_RESYNC_ACTIVE) 8095 resync = MD_RESYNC_ACTIVE; 8096 else 8097 resync -= res; 8098 } 8099 8100 if (resync == MD_RESYNC_NONE) { 8101 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8102 struct md_rdev *rdev; 8103 8104 rdev_for_each(rdev, mddev) 8105 if (rdev->raid_disk >= 0 && 8106 !test_bit(Faulty, &rdev->flags) && 8107 rdev->recovery_offset != MaxSector && 8108 rdev->recovery_offset) { 8109 seq_printf(seq, "\trecover=REMOTE"); 8110 return 1; 8111 } 8112 if (mddev->reshape_position != MaxSector) 8113 seq_printf(seq, "\treshape=REMOTE"); 8114 else 8115 seq_printf(seq, "\tresync=REMOTE"); 8116 return 1; 8117 } 8118 if (mddev->recovery_cp < MaxSector) { 8119 seq_printf(seq, "\tresync=PENDING"); 8120 return 1; 8121 } 8122 return 0; 8123 } 8124 if (resync < MD_RESYNC_ACTIVE) { 8125 seq_printf(seq, "\tresync=DELAYED"); 8126 return 1; 8127 } 8128 8129 WARN_ON(max_sectors == 0); 8130 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8131 * in a sector_t, and (max_sectors>>scale) will fit in a 8132 * u32, as those are the requirements for sector_div. 8133 * Thus 'scale' must be at least 10 8134 */ 8135 scale = 10; 8136 if (sizeof(sector_t) > sizeof(unsigned long)) { 8137 while ( max_sectors/2 > (1ULL<<(scale+32))) 8138 scale++; 8139 } 8140 res = (resync>>scale)*1000; 8141 sector_div(res, (u32)((max_sectors>>scale)+1)); 8142 8143 per_milli = res; 8144 { 8145 int i, x = per_milli/50, y = 20-x; 8146 seq_printf(seq, "["); 8147 for (i = 0; i < x; i++) 8148 seq_printf(seq, "="); 8149 seq_printf(seq, ">"); 8150 for (i = 0; i < y; i++) 8151 seq_printf(seq, "."); 8152 seq_printf(seq, "] "); 8153 } 8154 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8155 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8156 "reshape" : 8157 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8158 "check" : 8159 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8160 "resync" : "recovery"))), 8161 per_milli/10, per_milli % 10, 8162 (unsigned long long) resync/2, 8163 (unsigned long long) max_sectors/2); 8164 8165 /* 8166 * dt: time from mark until now 8167 * db: blocks written from mark until now 8168 * rt: remaining time 8169 * 8170 * rt is a sector_t, which is always 64bit now. We are keeping 8171 * the original algorithm, but it is not really necessary. 8172 * 8173 * Original algorithm: 8174 * So we divide before multiply in case it is 32bit and close 8175 * to the limit. 8176 * We scale the divisor (db) by 32 to avoid losing precision 8177 * near the end of resync when the number of remaining sectors 8178 * is close to 'db'. 8179 * We then divide rt by 32 after multiplying by db to compensate. 8180 * The '+1' avoids division by zero if db is very small. 8181 */ 8182 dt = ((jiffies - mddev->resync_mark) / HZ); 8183 if (!dt) dt++; 8184 8185 curr_mark_cnt = mddev->curr_mark_cnt; 8186 recovery_active = atomic_read(&mddev->recovery_active); 8187 resync_mark_cnt = mddev->resync_mark_cnt; 8188 8189 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8190 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8191 8192 rt = max_sectors - resync; /* number of remaining sectors */ 8193 rt = div64_u64(rt, db/32+1); 8194 rt *= dt; 8195 rt >>= 5; 8196 8197 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8198 ((unsigned long)rt % 60)/6); 8199 8200 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8201 return 1; 8202 } 8203 8204 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8205 { 8206 struct list_head *tmp; 8207 loff_t l = *pos; 8208 struct mddev *mddev; 8209 8210 if (l == 0x10000) { 8211 ++*pos; 8212 return (void *)2; 8213 } 8214 if (l > 0x10000) 8215 return NULL; 8216 if (!l--) 8217 /* header */ 8218 return (void*)1; 8219 8220 spin_lock(&all_mddevs_lock); 8221 list_for_each(tmp,&all_mddevs) 8222 if (!l--) { 8223 mddev = list_entry(tmp, struct mddev, all_mddevs); 8224 if (!mddev_get(mddev)) 8225 continue; 8226 spin_unlock(&all_mddevs_lock); 8227 return mddev; 8228 } 8229 spin_unlock(&all_mddevs_lock); 8230 if (!l--) 8231 return (void*)2;/* tail */ 8232 return NULL; 8233 } 8234 8235 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8236 { 8237 struct list_head *tmp; 8238 struct mddev *next_mddev, *mddev = v; 8239 struct mddev *to_put = NULL; 8240 8241 ++*pos; 8242 if (v == (void*)2) 8243 return NULL; 8244 8245 spin_lock(&all_mddevs_lock); 8246 if (v == (void*)1) { 8247 tmp = all_mddevs.next; 8248 } else { 8249 to_put = mddev; 8250 tmp = mddev->all_mddevs.next; 8251 } 8252 8253 for (;;) { 8254 if (tmp == &all_mddevs) { 8255 next_mddev = (void*)2; 8256 *pos = 0x10000; 8257 break; 8258 } 8259 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8260 if (mddev_get(next_mddev)) 8261 break; 8262 mddev = next_mddev; 8263 tmp = mddev->all_mddevs.next; 8264 } 8265 spin_unlock(&all_mddevs_lock); 8266 8267 if (to_put) 8268 mddev_put(to_put); 8269 return next_mddev; 8270 8271 } 8272 8273 static void md_seq_stop(struct seq_file *seq, void *v) 8274 { 8275 struct mddev *mddev = v; 8276 8277 if (mddev && v != (void*)1 && v != (void*)2) 8278 mddev_put(mddev); 8279 } 8280 8281 static int md_seq_show(struct seq_file *seq, void *v) 8282 { 8283 struct mddev *mddev = v; 8284 sector_t sectors; 8285 struct md_rdev *rdev; 8286 8287 if (v == (void*)1) { 8288 struct md_personality *pers; 8289 seq_printf(seq, "Personalities : "); 8290 spin_lock(&pers_lock); 8291 list_for_each_entry(pers, &pers_list, list) 8292 seq_printf(seq, "[%s] ", pers->name); 8293 8294 spin_unlock(&pers_lock); 8295 seq_printf(seq, "\n"); 8296 seq->poll_event = atomic_read(&md_event_count); 8297 return 0; 8298 } 8299 if (v == (void*)2) { 8300 status_unused(seq); 8301 return 0; 8302 } 8303 8304 spin_lock(&mddev->lock); 8305 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8306 seq_printf(seq, "%s : %sactive", mdname(mddev), 8307 mddev->pers ? "" : "in"); 8308 if (mddev->pers) { 8309 if (mddev->ro == MD_RDONLY) 8310 seq_printf(seq, " (read-only)"); 8311 if (mddev->ro == MD_AUTO_READ) 8312 seq_printf(seq, " (auto-read-only)"); 8313 seq_printf(seq, " %s", mddev->pers->name); 8314 } 8315 8316 sectors = 0; 8317 rcu_read_lock(); 8318 rdev_for_each_rcu(rdev, mddev) { 8319 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8320 8321 if (test_bit(WriteMostly, &rdev->flags)) 8322 seq_printf(seq, "(W)"); 8323 if (test_bit(Journal, &rdev->flags)) 8324 seq_printf(seq, "(J)"); 8325 if (test_bit(Faulty, &rdev->flags)) { 8326 seq_printf(seq, "(F)"); 8327 continue; 8328 } 8329 if (rdev->raid_disk < 0) 8330 seq_printf(seq, "(S)"); /* spare */ 8331 if (test_bit(Replacement, &rdev->flags)) 8332 seq_printf(seq, "(R)"); 8333 sectors += rdev->sectors; 8334 } 8335 rcu_read_unlock(); 8336 8337 if (!list_empty(&mddev->disks)) { 8338 if (mddev->pers) 8339 seq_printf(seq, "\n %llu blocks", 8340 (unsigned long long) 8341 mddev->array_sectors / 2); 8342 else 8343 seq_printf(seq, "\n %llu blocks", 8344 (unsigned long long)sectors / 2); 8345 } 8346 if (mddev->persistent) { 8347 if (mddev->major_version != 0 || 8348 mddev->minor_version != 90) { 8349 seq_printf(seq," super %d.%d", 8350 mddev->major_version, 8351 mddev->minor_version); 8352 } 8353 } else if (mddev->external) 8354 seq_printf(seq, " super external:%s", 8355 mddev->metadata_type); 8356 else 8357 seq_printf(seq, " super non-persistent"); 8358 8359 if (mddev->pers) { 8360 mddev->pers->status(seq, mddev); 8361 seq_printf(seq, "\n "); 8362 if (mddev->pers->sync_request) { 8363 if (status_resync(seq, mddev)) 8364 seq_printf(seq, "\n "); 8365 } 8366 } else 8367 seq_printf(seq, "\n "); 8368 8369 md_bitmap_status(seq, mddev->bitmap); 8370 8371 seq_printf(seq, "\n"); 8372 } 8373 spin_unlock(&mddev->lock); 8374 8375 return 0; 8376 } 8377 8378 static const struct seq_operations md_seq_ops = { 8379 .start = md_seq_start, 8380 .next = md_seq_next, 8381 .stop = md_seq_stop, 8382 .show = md_seq_show, 8383 }; 8384 8385 static int md_seq_open(struct inode *inode, struct file *file) 8386 { 8387 struct seq_file *seq; 8388 int error; 8389 8390 error = seq_open(file, &md_seq_ops); 8391 if (error) 8392 return error; 8393 8394 seq = file->private_data; 8395 seq->poll_event = atomic_read(&md_event_count); 8396 return error; 8397 } 8398 8399 static int md_unloading; 8400 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8401 { 8402 struct seq_file *seq = filp->private_data; 8403 __poll_t mask; 8404 8405 if (md_unloading) 8406 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8407 poll_wait(filp, &md_event_waiters, wait); 8408 8409 /* always allow read */ 8410 mask = EPOLLIN | EPOLLRDNORM; 8411 8412 if (seq->poll_event != atomic_read(&md_event_count)) 8413 mask |= EPOLLERR | EPOLLPRI; 8414 return mask; 8415 } 8416 8417 static const struct proc_ops mdstat_proc_ops = { 8418 .proc_open = md_seq_open, 8419 .proc_read = seq_read, 8420 .proc_lseek = seq_lseek, 8421 .proc_release = seq_release, 8422 .proc_poll = mdstat_poll, 8423 }; 8424 8425 int register_md_personality(struct md_personality *p) 8426 { 8427 pr_debug("md: %s personality registered for level %d\n", 8428 p->name, p->level); 8429 spin_lock(&pers_lock); 8430 list_add_tail(&p->list, &pers_list); 8431 spin_unlock(&pers_lock); 8432 return 0; 8433 } 8434 EXPORT_SYMBOL(register_md_personality); 8435 8436 int unregister_md_personality(struct md_personality *p) 8437 { 8438 pr_debug("md: %s personality unregistered\n", p->name); 8439 spin_lock(&pers_lock); 8440 list_del_init(&p->list); 8441 spin_unlock(&pers_lock); 8442 return 0; 8443 } 8444 EXPORT_SYMBOL(unregister_md_personality); 8445 8446 int register_md_cluster_operations(struct md_cluster_operations *ops, 8447 struct module *module) 8448 { 8449 int ret = 0; 8450 spin_lock(&pers_lock); 8451 if (md_cluster_ops != NULL) 8452 ret = -EALREADY; 8453 else { 8454 md_cluster_ops = ops; 8455 md_cluster_mod = module; 8456 } 8457 spin_unlock(&pers_lock); 8458 return ret; 8459 } 8460 EXPORT_SYMBOL(register_md_cluster_operations); 8461 8462 int unregister_md_cluster_operations(void) 8463 { 8464 spin_lock(&pers_lock); 8465 md_cluster_ops = NULL; 8466 spin_unlock(&pers_lock); 8467 return 0; 8468 } 8469 EXPORT_SYMBOL(unregister_md_cluster_operations); 8470 8471 int md_setup_cluster(struct mddev *mddev, int nodes) 8472 { 8473 int ret; 8474 if (!md_cluster_ops) 8475 request_module("md-cluster"); 8476 spin_lock(&pers_lock); 8477 /* ensure module won't be unloaded */ 8478 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8479 pr_warn("can't find md-cluster module or get its reference.\n"); 8480 spin_unlock(&pers_lock); 8481 return -ENOENT; 8482 } 8483 spin_unlock(&pers_lock); 8484 8485 ret = md_cluster_ops->join(mddev, nodes); 8486 if (!ret) 8487 mddev->safemode_delay = 0; 8488 return ret; 8489 } 8490 8491 void md_cluster_stop(struct mddev *mddev) 8492 { 8493 if (!md_cluster_ops) 8494 return; 8495 md_cluster_ops->leave(mddev); 8496 module_put(md_cluster_mod); 8497 } 8498 8499 static int is_mddev_idle(struct mddev *mddev, int init) 8500 { 8501 struct md_rdev *rdev; 8502 int idle; 8503 int curr_events; 8504 8505 idle = 1; 8506 rcu_read_lock(); 8507 rdev_for_each_rcu(rdev, mddev) { 8508 struct gendisk *disk = rdev->bdev->bd_disk; 8509 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8510 atomic_read(&disk->sync_io); 8511 /* sync IO will cause sync_io to increase before the disk_stats 8512 * as sync_io is counted when a request starts, and 8513 * disk_stats is counted when it completes. 8514 * So resync activity will cause curr_events to be smaller than 8515 * when there was no such activity. 8516 * non-sync IO will cause disk_stat to increase without 8517 * increasing sync_io so curr_events will (eventually) 8518 * be larger than it was before. Once it becomes 8519 * substantially larger, the test below will cause 8520 * the array to appear non-idle, and resync will slow 8521 * down. 8522 * If there is a lot of outstanding resync activity when 8523 * we set last_event to curr_events, then all that activity 8524 * completing might cause the array to appear non-idle 8525 * and resync will be slowed down even though there might 8526 * not have been non-resync activity. This will only 8527 * happen once though. 'last_events' will soon reflect 8528 * the state where there is little or no outstanding 8529 * resync requests, and further resync activity will 8530 * always make curr_events less than last_events. 8531 * 8532 */ 8533 if (init || curr_events - rdev->last_events > 64) { 8534 rdev->last_events = curr_events; 8535 idle = 0; 8536 } 8537 } 8538 rcu_read_unlock(); 8539 return idle; 8540 } 8541 8542 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8543 { 8544 /* another "blocks" (512byte) blocks have been synced */ 8545 atomic_sub(blocks, &mddev->recovery_active); 8546 wake_up(&mddev->recovery_wait); 8547 if (!ok) { 8548 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8549 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8550 md_wakeup_thread(mddev->thread); 8551 // stop recovery, signal do_sync .... 8552 } 8553 } 8554 EXPORT_SYMBOL(md_done_sync); 8555 8556 /* md_write_start(mddev, bi) 8557 * If we need to update some array metadata (e.g. 'active' flag 8558 * in superblock) before writing, schedule a superblock update 8559 * and wait for it to complete. 8560 * A return value of 'false' means that the write wasn't recorded 8561 * and cannot proceed as the array is being suspend. 8562 */ 8563 bool md_write_start(struct mddev *mddev, struct bio *bi) 8564 { 8565 int did_change = 0; 8566 8567 if (bio_data_dir(bi) != WRITE) 8568 return true; 8569 8570 BUG_ON(mddev->ro == MD_RDONLY); 8571 if (mddev->ro == MD_AUTO_READ) { 8572 /* need to switch to read/write */ 8573 mddev->ro = MD_RDWR; 8574 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8575 md_wakeup_thread(mddev->thread); 8576 md_wakeup_thread(mddev->sync_thread); 8577 did_change = 1; 8578 } 8579 rcu_read_lock(); 8580 percpu_ref_get(&mddev->writes_pending); 8581 smp_mb(); /* Match smp_mb in set_in_sync() */ 8582 if (mddev->safemode == 1) 8583 mddev->safemode = 0; 8584 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8585 if (mddev->in_sync || mddev->sync_checkers) { 8586 spin_lock(&mddev->lock); 8587 if (mddev->in_sync) { 8588 mddev->in_sync = 0; 8589 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8590 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8591 md_wakeup_thread(mddev->thread); 8592 did_change = 1; 8593 } 8594 spin_unlock(&mddev->lock); 8595 } 8596 rcu_read_unlock(); 8597 if (did_change) 8598 sysfs_notify_dirent_safe(mddev->sysfs_state); 8599 if (!mddev->has_superblocks) 8600 return true; 8601 wait_event(mddev->sb_wait, 8602 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8603 is_md_suspended(mddev)); 8604 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8605 percpu_ref_put(&mddev->writes_pending); 8606 return false; 8607 } 8608 return true; 8609 } 8610 EXPORT_SYMBOL(md_write_start); 8611 8612 /* md_write_inc can only be called when md_write_start() has 8613 * already been called at least once of the current request. 8614 * It increments the counter and is useful when a single request 8615 * is split into several parts. Each part causes an increment and 8616 * so needs a matching md_write_end(). 8617 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8618 * a spinlocked region. 8619 */ 8620 void md_write_inc(struct mddev *mddev, struct bio *bi) 8621 { 8622 if (bio_data_dir(bi) != WRITE) 8623 return; 8624 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8625 percpu_ref_get(&mddev->writes_pending); 8626 } 8627 EXPORT_SYMBOL(md_write_inc); 8628 8629 void md_write_end(struct mddev *mddev) 8630 { 8631 percpu_ref_put(&mddev->writes_pending); 8632 8633 if (mddev->safemode == 2) 8634 md_wakeup_thread(mddev->thread); 8635 else if (mddev->safemode_delay) 8636 /* The roundup() ensures this only performs locking once 8637 * every ->safemode_delay jiffies 8638 */ 8639 mod_timer(&mddev->safemode_timer, 8640 roundup(jiffies, mddev->safemode_delay) + 8641 mddev->safemode_delay); 8642 } 8643 8644 EXPORT_SYMBOL(md_write_end); 8645 8646 /* This is used by raid0 and raid10 */ 8647 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8648 struct bio *bio, sector_t start, sector_t size) 8649 { 8650 struct bio *discard_bio = NULL; 8651 8652 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8653 &discard_bio) || !discard_bio) 8654 return; 8655 8656 bio_chain(discard_bio, bio); 8657 bio_clone_blkg_association(discard_bio, bio); 8658 if (mddev->gendisk) 8659 trace_block_bio_remap(discard_bio, 8660 disk_devt(mddev->gendisk), 8661 bio->bi_iter.bi_sector); 8662 submit_bio_noacct(discard_bio); 8663 } 8664 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8665 8666 static void md_end_clone_io(struct bio *bio) 8667 { 8668 struct md_io_clone *md_io_clone = bio->bi_private; 8669 struct bio *orig_bio = md_io_clone->orig_bio; 8670 struct mddev *mddev = md_io_clone->mddev; 8671 8672 orig_bio->bi_status = bio->bi_status; 8673 8674 if (md_io_clone->start_time) 8675 bio_end_io_acct(orig_bio, md_io_clone->start_time); 8676 8677 bio_put(bio); 8678 bio_endio(orig_bio); 8679 percpu_ref_put(&mddev->active_io); 8680 } 8681 8682 static void md_clone_bio(struct mddev *mddev, struct bio **bio) 8683 { 8684 struct block_device *bdev = (*bio)->bi_bdev; 8685 struct md_io_clone *md_io_clone; 8686 struct bio *clone = 8687 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set); 8688 8689 md_io_clone = container_of(clone, struct md_io_clone, bio_clone); 8690 md_io_clone->orig_bio = *bio; 8691 md_io_clone->mddev = mddev; 8692 if (blk_queue_io_stat(bdev->bd_disk->queue)) 8693 md_io_clone->start_time = bio_start_io_acct(*bio); 8694 8695 clone->bi_end_io = md_end_clone_io; 8696 clone->bi_private = md_io_clone; 8697 *bio = clone; 8698 } 8699 8700 void md_account_bio(struct mddev *mddev, struct bio **bio) 8701 { 8702 percpu_ref_get(&mddev->active_io); 8703 md_clone_bio(mddev, bio); 8704 } 8705 EXPORT_SYMBOL_GPL(md_account_bio); 8706 8707 /* md_allow_write(mddev) 8708 * Calling this ensures that the array is marked 'active' so that writes 8709 * may proceed without blocking. It is important to call this before 8710 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8711 * Must be called with mddev_lock held. 8712 */ 8713 void md_allow_write(struct mddev *mddev) 8714 { 8715 if (!mddev->pers) 8716 return; 8717 if (!md_is_rdwr(mddev)) 8718 return; 8719 if (!mddev->pers->sync_request) 8720 return; 8721 8722 spin_lock(&mddev->lock); 8723 if (mddev->in_sync) { 8724 mddev->in_sync = 0; 8725 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8726 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8727 if (mddev->safemode_delay && 8728 mddev->safemode == 0) 8729 mddev->safemode = 1; 8730 spin_unlock(&mddev->lock); 8731 md_update_sb(mddev, 0); 8732 sysfs_notify_dirent_safe(mddev->sysfs_state); 8733 /* wait for the dirty state to be recorded in the metadata */ 8734 wait_event(mddev->sb_wait, 8735 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8736 } else 8737 spin_unlock(&mddev->lock); 8738 } 8739 EXPORT_SYMBOL_GPL(md_allow_write); 8740 8741 #define SYNC_MARKS 10 8742 #define SYNC_MARK_STEP (3*HZ) 8743 #define UPDATE_FREQUENCY (5*60*HZ) 8744 void md_do_sync(struct md_thread *thread) 8745 { 8746 struct mddev *mddev = thread->mddev; 8747 struct mddev *mddev2; 8748 unsigned int currspeed = 0, window; 8749 sector_t max_sectors,j, io_sectors, recovery_done; 8750 unsigned long mark[SYNC_MARKS]; 8751 unsigned long update_time; 8752 sector_t mark_cnt[SYNC_MARKS]; 8753 int last_mark,m; 8754 sector_t last_check; 8755 int skipped = 0; 8756 struct md_rdev *rdev; 8757 char *desc, *action = NULL; 8758 struct blk_plug plug; 8759 int ret; 8760 8761 /* just incase thread restarts... */ 8762 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8763 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8764 return; 8765 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8766 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8767 return; 8768 } 8769 8770 if (mddev_is_clustered(mddev)) { 8771 ret = md_cluster_ops->resync_start(mddev); 8772 if (ret) 8773 goto skip; 8774 8775 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8776 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8777 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8778 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8779 && ((unsigned long long)mddev->curr_resync_completed 8780 < (unsigned long long)mddev->resync_max_sectors)) 8781 goto skip; 8782 } 8783 8784 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8785 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8786 desc = "data-check"; 8787 action = "check"; 8788 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8789 desc = "requested-resync"; 8790 action = "repair"; 8791 } else 8792 desc = "resync"; 8793 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8794 desc = "reshape"; 8795 else 8796 desc = "recovery"; 8797 8798 mddev->last_sync_action = action ?: desc; 8799 8800 /* 8801 * Before starting a resync we must have set curr_resync to 8802 * 2, and then checked that every "conflicting" array has curr_resync 8803 * less than ours. When we find one that is the same or higher 8804 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8805 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8806 * This will mean we have to start checking from the beginning again. 8807 * 8808 */ 8809 8810 do { 8811 int mddev2_minor = -1; 8812 mddev->curr_resync = MD_RESYNC_DELAYED; 8813 8814 try_again: 8815 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8816 goto skip; 8817 spin_lock(&all_mddevs_lock); 8818 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8819 if (test_bit(MD_DELETED, &mddev2->flags)) 8820 continue; 8821 if (mddev2 == mddev) 8822 continue; 8823 if (!mddev->parallel_resync 8824 && mddev2->curr_resync 8825 && match_mddev_units(mddev, mddev2)) { 8826 DEFINE_WAIT(wq); 8827 if (mddev < mddev2 && 8828 mddev->curr_resync == MD_RESYNC_DELAYED) { 8829 /* arbitrarily yield */ 8830 mddev->curr_resync = MD_RESYNC_YIELDED; 8831 wake_up(&resync_wait); 8832 } 8833 if (mddev > mddev2 && 8834 mddev->curr_resync == MD_RESYNC_YIELDED) 8835 /* no need to wait here, we can wait the next 8836 * time 'round when curr_resync == 2 8837 */ 8838 continue; 8839 /* We need to wait 'interruptible' so as not to 8840 * contribute to the load average, and not to 8841 * be caught by 'softlockup' 8842 */ 8843 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8844 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8845 mddev2->curr_resync >= mddev->curr_resync) { 8846 if (mddev2_minor != mddev2->md_minor) { 8847 mddev2_minor = mddev2->md_minor; 8848 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8849 desc, mdname(mddev), 8850 mdname(mddev2)); 8851 } 8852 spin_unlock(&all_mddevs_lock); 8853 8854 if (signal_pending(current)) 8855 flush_signals(current); 8856 schedule(); 8857 finish_wait(&resync_wait, &wq); 8858 goto try_again; 8859 } 8860 finish_wait(&resync_wait, &wq); 8861 } 8862 } 8863 spin_unlock(&all_mddevs_lock); 8864 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8865 8866 j = 0; 8867 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8868 /* resync follows the size requested by the personality, 8869 * which defaults to physical size, but can be virtual size 8870 */ 8871 max_sectors = mddev->resync_max_sectors; 8872 atomic64_set(&mddev->resync_mismatches, 0); 8873 /* we don't use the checkpoint if there's a bitmap */ 8874 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8875 j = mddev->resync_min; 8876 else if (!mddev->bitmap) 8877 j = mddev->recovery_cp; 8878 8879 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8880 max_sectors = mddev->resync_max_sectors; 8881 /* 8882 * If the original node aborts reshaping then we continue the 8883 * reshaping, so set j again to avoid restart reshape from the 8884 * first beginning 8885 */ 8886 if (mddev_is_clustered(mddev) && 8887 mddev->reshape_position != MaxSector) 8888 j = mddev->reshape_position; 8889 } else { 8890 /* recovery follows the physical size of devices */ 8891 max_sectors = mddev->dev_sectors; 8892 j = MaxSector; 8893 rcu_read_lock(); 8894 rdev_for_each_rcu(rdev, mddev) 8895 if (rdev->raid_disk >= 0 && 8896 !test_bit(Journal, &rdev->flags) && 8897 !test_bit(Faulty, &rdev->flags) && 8898 !test_bit(In_sync, &rdev->flags) && 8899 rdev->recovery_offset < j) 8900 j = rdev->recovery_offset; 8901 rcu_read_unlock(); 8902 8903 /* If there is a bitmap, we need to make sure all 8904 * writes that started before we added a spare 8905 * complete before we start doing a recovery. 8906 * Otherwise the write might complete and (via 8907 * bitmap_endwrite) set a bit in the bitmap after the 8908 * recovery has checked that bit and skipped that 8909 * region. 8910 */ 8911 if (mddev->bitmap) { 8912 mddev->pers->quiesce(mddev, 1); 8913 mddev->pers->quiesce(mddev, 0); 8914 } 8915 } 8916 8917 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8918 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8919 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8920 speed_max(mddev), desc); 8921 8922 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8923 8924 io_sectors = 0; 8925 for (m = 0; m < SYNC_MARKS; m++) { 8926 mark[m] = jiffies; 8927 mark_cnt[m] = io_sectors; 8928 } 8929 last_mark = 0; 8930 mddev->resync_mark = mark[last_mark]; 8931 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8932 8933 /* 8934 * Tune reconstruction: 8935 */ 8936 window = 32 * (PAGE_SIZE / 512); 8937 pr_debug("md: using %dk window, over a total of %lluk.\n", 8938 window/2, (unsigned long long)max_sectors/2); 8939 8940 atomic_set(&mddev->recovery_active, 0); 8941 last_check = 0; 8942 8943 if (j >= MD_RESYNC_ACTIVE) { 8944 pr_debug("md: resuming %s of %s from checkpoint.\n", 8945 desc, mdname(mddev)); 8946 mddev->curr_resync = j; 8947 } else 8948 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8949 mddev->curr_resync_completed = j; 8950 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8951 md_new_event(); 8952 update_time = jiffies; 8953 8954 blk_start_plug(&plug); 8955 while (j < max_sectors) { 8956 sector_t sectors; 8957 8958 skipped = 0; 8959 8960 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8961 ((mddev->curr_resync > mddev->curr_resync_completed && 8962 (mddev->curr_resync - mddev->curr_resync_completed) 8963 > (max_sectors >> 4)) || 8964 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8965 (j - mddev->curr_resync_completed)*2 8966 >= mddev->resync_max - mddev->curr_resync_completed || 8967 mddev->curr_resync_completed > mddev->resync_max 8968 )) { 8969 /* time to update curr_resync_completed */ 8970 wait_event(mddev->recovery_wait, 8971 atomic_read(&mddev->recovery_active) == 0); 8972 mddev->curr_resync_completed = j; 8973 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8974 j > mddev->recovery_cp) 8975 mddev->recovery_cp = j; 8976 update_time = jiffies; 8977 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8978 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8979 } 8980 8981 while (j >= mddev->resync_max && 8982 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8983 /* As this condition is controlled by user-space, 8984 * we can block indefinitely, so use '_interruptible' 8985 * to avoid triggering warnings. 8986 */ 8987 flush_signals(current); /* just in case */ 8988 wait_event_interruptible(mddev->recovery_wait, 8989 mddev->resync_max > j 8990 || test_bit(MD_RECOVERY_INTR, 8991 &mddev->recovery)); 8992 } 8993 8994 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8995 break; 8996 8997 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8998 if (sectors == 0) { 8999 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9000 break; 9001 } 9002 9003 if (!skipped) { /* actual IO requested */ 9004 io_sectors += sectors; 9005 atomic_add(sectors, &mddev->recovery_active); 9006 } 9007 9008 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9009 break; 9010 9011 j += sectors; 9012 if (j > max_sectors) 9013 /* when skipping, extra large numbers can be returned. */ 9014 j = max_sectors; 9015 if (j >= MD_RESYNC_ACTIVE) 9016 mddev->curr_resync = j; 9017 mddev->curr_mark_cnt = io_sectors; 9018 if (last_check == 0) 9019 /* this is the earliest that rebuild will be 9020 * visible in /proc/mdstat 9021 */ 9022 md_new_event(); 9023 9024 if (last_check + window > io_sectors || j == max_sectors) 9025 continue; 9026 9027 last_check = io_sectors; 9028 repeat: 9029 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 9030 /* step marks */ 9031 int next = (last_mark+1) % SYNC_MARKS; 9032 9033 mddev->resync_mark = mark[next]; 9034 mddev->resync_mark_cnt = mark_cnt[next]; 9035 mark[next] = jiffies; 9036 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 9037 last_mark = next; 9038 } 9039 9040 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9041 break; 9042 9043 /* 9044 * this loop exits only if either when we are slower than 9045 * the 'hard' speed limit, or the system was IO-idle for 9046 * a jiffy. 9047 * the system might be non-idle CPU-wise, but we only care 9048 * about not overloading the IO subsystem. (things like an 9049 * e2fsck being done on the RAID array should execute fast) 9050 */ 9051 cond_resched(); 9052 9053 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9054 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9055 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9056 9057 if (currspeed > speed_min(mddev)) { 9058 if (currspeed > speed_max(mddev)) { 9059 msleep(500); 9060 goto repeat; 9061 } 9062 if (!is_mddev_idle(mddev, 0)) { 9063 /* 9064 * Give other IO more of a chance. 9065 * The faster the devices, the less we wait. 9066 */ 9067 wait_event(mddev->recovery_wait, 9068 !atomic_read(&mddev->recovery_active)); 9069 } 9070 } 9071 } 9072 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9073 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9074 ? "interrupted" : "done"); 9075 /* 9076 * this also signals 'finished resyncing' to md_stop 9077 */ 9078 blk_finish_plug(&plug); 9079 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9080 9081 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9082 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9083 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9084 mddev->curr_resync_completed = mddev->curr_resync; 9085 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9086 } 9087 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9088 9089 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9090 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9091 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9092 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9093 if (mddev->curr_resync >= mddev->recovery_cp) { 9094 pr_debug("md: checkpointing %s of %s.\n", 9095 desc, mdname(mddev)); 9096 if (test_bit(MD_RECOVERY_ERROR, 9097 &mddev->recovery)) 9098 mddev->recovery_cp = 9099 mddev->curr_resync_completed; 9100 else 9101 mddev->recovery_cp = 9102 mddev->curr_resync; 9103 } 9104 } else 9105 mddev->recovery_cp = MaxSector; 9106 } else { 9107 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9108 mddev->curr_resync = MaxSector; 9109 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9110 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9111 rcu_read_lock(); 9112 rdev_for_each_rcu(rdev, mddev) 9113 if (rdev->raid_disk >= 0 && 9114 mddev->delta_disks >= 0 && 9115 !test_bit(Journal, &rdev->flags) && 9116 !test_bit(Faulty, &rdev->flags) && 9117 !test_bit(In_sync, &rdev->flags) && 9118 rdev->recovery_offset < mddev->curr_resync) 9119 rdev->recovery_offset = mddev->curr_resync; 9120 rcu_read_unlock(); 9121 } 9122 } 9123 } 9124 skip: 9125 /* set CHANGE_PENDING here since maybe another update is needed, 9126 * so other nodes are informed. It should be harmless for normal 9127 * raid */ 9128 set_mask_bits(&mddev->sb_flags, 0, 9129 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9130 9131 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9132 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9133 mddev->delta_disks > 0 && 9134 mddev->pers->finish_reshape && 9135 mddev->pers->size && 9136 mddev->queue) { 9137 mddev_lock_nointr(mddev); 9138 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9139 mddev_unlock(mddev); 9140 if (!mddev_is_clustered(mddev)) 9141 set_capacity_and_notify(mddev->gendisk, 9142 mddev->array_sectors); 9143 } 9144 9145 spin_lock(&mddev->lock); 9146 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9147 /* We completed so min/max setting can be forgotten if used. */ 9148 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9149 mddev->resync_min = 0; 9150 mddev->resync_max = MaxSector; 9151 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9152 mddev->resync_min = mddev->curr_resync_completed; 9153 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9154 mddev->curr_resync = MD_RESYNC_NONE; 9155 spin_unlock(&mddev->lock); 9156 9157 wake_up(&resync_wait); 9158 wake_up(&mddev->sb_wait); 9159 md_wakeup_thread(mddev->thread); 9160 return; 9161 } 9162 EXPORT_SYMBOL_GPL(md_do_sync); 9163 9164 static int remove_and_add_spares(struct mddev *mddev, 9165 struct md_rdev *this) 9166 { 9167 struct md_rdev *rdev; 9168 int spares = 0; 9169 int removed = 0; 9170 bool remove_some = false; 9171 9172 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9173 /* Mustn't remove devices when resync thread is running */ 9174 return 0; 9175 9176 rdev_for_each(rdev, mddev) { 9177 if ((this == NULL || rdev == this) && 9178 rdev->raid_disk >= 0 && 9179 !test_bit(Blocked, &rdev->flags) && 9180 test_bit(Faulty, &rdev->flags) && 9181 atomic_read(&rdev->nr_pending)==0) { 9182 /* Faulty non-Blocked devices with nr_pending == 0 9183 * never get nr_pending incremented, 9184 * never get Faulty cleared, and never get Blocked set. 9185 * So we can synchronize_rcu now rather than once per device 9186 */ 9187 remove_some = true; 9188 set_bit(RemoveSynchronized, &rdev->flags); 9189 } 9190 } 9191 9192 if (remove_some) 9193 synchronize_rcu(); 9194 rdev_for_each(rdev, mddev) { 9195 if ((this == NULL || rdev == this) && 9196 rdev->raid_disk >= 0 && 9197 !test_bit(Blocked, &rdev->flags) && 9198 ((test_bit(RemoveSynchronized, &rdev->flags) || 9199 (!test_bit(In_sync, &rdev->flags) && 9200 !test_bit(Journal, &rdev->flags))) && 9201 atomic_read(&rdev->nr_pending)==0)) { 9202 if (mddev->pers->hot_remove_disk( 9203 mddev, rdev) == 0) { 9204 sysfs_unlink_rdev(mddev, rdev); 9205 rdev->saved_raid_disk = rdev->raid_disk; 9206 rdev->raid_disk = -1; 9207 removed++; 9208 } 9209 } 9210 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9211 clear_bit(RemoveSynchronized, &rdev->flags); 9212 } 9213 9214 if (removed && mddev->kobj.sd) 9215 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9216 9217 if (this && removed) 9218 goto no_add; 9219 9220 rdev_for_each(rdev, mddev) { 9221 if (this && this != rdev) 9222 continue; 9223 if (test_bit(Candidate, &rdev->flags)) 9224 continue; 9225 if (rdev->raid_disk >= 0 && 9226 !test_bit(In_sync, &rdev->flags) && 9227 !test_bit(Journal, &rdev->flags) && 9228 !test_bit(Faulty, &rdev->flags)) 9229 spares++; 9230 if (rdev->raid_disk >= 0) 9231 continue; 9232 if (test_bit(Faulty, &rdev->flags)) 9233 continue; 9234 if (!test_bit(Journal, &rdev->flags)) { 9235 if (!md_is_rdwr(mddev) && 9236 !(rdev->saved_raid_disk >= 0 && 9237 !test_bit(Bitmap_sync, &rdev->flags))) 9238 continue; 9239 9240 rdev->recovery_offset = 0; 9241 } 9242 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9243 /* failure here is OK */ 9244 sysfs_link_rdev(mddev, rdev); 9245 if (!test_bit(Journal, &rdev->flags)) 9246 spares++; 9247 md_new_event(); 9248 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9249 } 9250 } 9251 no_add: 9252 if (removed) 9253 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9254 return spares; 9255 } 9256 9257 static void md_start_sync(struct work_struct *ws) 9258 { 9259 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9260 9261 rcu_assign_pointer(mddev->sync_thread, 9262 md_register_thread(md_do_sync, mddev, "resync")); 9263 if (!mddev->sync_thread) { 9264 pr_warn("%s: could not start resync thread...\n", 9265 mdname(mddev)); 9266 /* leave the spares where they are, it shouldn't hurt */ 9267 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9268 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9269 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9270 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9271 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9272 wake_up(&resync_wait); 9273 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9274 &mddev->recovery)) 9275 if (mddev->sysfs_action) 9276 sysfs_notify_dirent_safe(mddev->sysfs_action); 9277 } else 9278 md_wakeup_thread(mddev->sync_thread); 9279 sysfs_notify_dirent_safe(mddev->sysfs_action); 9280 md_new_event(); 9281 } 9282 9283 /* 9284 * This routine is regularly called by all per-raid-array threads to 9285 * deal with generic issues like resync and super-block update. 9286 * Raid personalities that don't have a thread (linear/raid0) do not 9287 * need this as they never do any recovery or update the superblock. 9288 * 9289 * It does not do any resync itself, but rather "forks" off other threads 9290 * to do that as needed. 9291 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9292 * "->recovery" and create a thread at ->sync_thread. 9293 * When the thread finishes it sets MD_RECOVERY_DONE 9294 * and wakeups up this thread which will reap the thread and finish up. 9295 * This thread also removes any faulty devices (with nr_pending == 0). 9296 * 9297 * The overall approach is: 9298 * 1/ if the superblock needs updating, update it. 9299 * 2/ If a recovery thread is running, don't do anything else. 9300 * 3/ If recovery has finished, clean up, possibly marking spares active. 9301 * 4/ If there are any faulty devices, remove them. 9302 * 5/ If array is degraded, try to add spares devices 9303 * 6/ If array has spares or is not in-sync, start a resync thread. 9304 */ 9305 void md_check_recovery(struct mddev *mddev) 9306 { 9307 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9308 /* Write superblock - thread that called mddev_suspend() 9309 * holds reconfig_mutex for us. 9310 */ 9311 set_bit(MD_UPDATING_SB, &mddev->flags); 9312 smp_mb__after_atomic(); 9313 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9314 md_update_sb(mddev, 0); 9315 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9316 wake_up(&mddev->sb_wait); 9317 } 9318 9319 if (is_md_suspended(mddev)) 9320 return; 9321 9322 if (mddev->bitmap) 9323 md_bitmap_daemon_work(mddev); 9324 9325 if (signal_pending(current)) { 9326 if (mddev->pers->sync_request && !mddev->external) { 9327 pr_debug("md: %s in immediate safe mode\n", 9328 mdname(mddev)); 9329 mddev->safemode = 2; 9330 } 9331 flush_signals(current); 9332 } 9333 9334 if (!md_is_rdwr(mddev) && 9335 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9336 return; 9337 if ( ! ( 9338 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9339 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9340 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9341 (mddev->external == 0 && mddev->safemode == 1) || 9342 (mddev->safemode == 2 9343 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9344 )) 9345 return; 9346 9347 if (mddev_trylock(mddev)) { 9348 int spares = 0; 9349 bool try_set_sync = mddev->safemode != 0; 9350 9351 if (!mddev->external && mddev->safemode == 1) 9352 mddev->safemode = 0; 9353 9354 if (!md_is_rdwr(mddev)) { 9355 struct md_rdev *rdev; 9356 if (!mddev->external && mddev->in_sync) 9357 /* 'Blocked' flag not needed as failed devices 9358 * will be recorded if array switched to read/write. 9359 * Leaving it set will prevent the device 9360 * from being removed. 9361 */ 9362 rdev_for_each(rdev, mddev) 9363 clear_bit(Blocked, &rdev->flags); 9364 /* On a read-only array we can: 9365 * - remove failed devices 9366 * - add already-in_sync devices if the array itself 9367 * is in-sync. 9368 * As we only add devices that are already in-sync, 9369 * we can activate the spares immediately. 9370 */ 9371 remove_and_add_spares(mddev, NULL); 9372 /* There is no thread, but we need to call 9373 * ->spare_active and clear saved_raid_disk 9374 */ 9375 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9376 md_reap_sync_thread(mddev); 9377 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9378 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9379 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9380 goto unlock; 9381 } 9382 9383 if (mddev_is_clustered(mddev)) { 9384 struct md_rdev *rdev, *tmp; 9385 /* kick the device if another node issued a 9386 * remove disk. 9387 */ 9388 rdev_for_each_safe(rdev, tmp, mddev) { 9389 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9390 rdev->raid_disk < 0) 9391 md_kick_rdev_from_array(rdev); 9392 } 9393 } 9394 9395 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9396 spin_lock(&mddev->lock); 9397 set_in_sync(mddev); 9398 spin_unlock(&mddev->lock); 9399 } 9400 9401 if (mddev->sb_flags) 9402 md_update_sb(mddev, 0); 9403 9404 /* 9405 * Never start a new sync thread if MD_RECOVERY_RUNNING is 9406 * still set. 9407 */ 9408 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 9409 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9410 /* resync/recovery still happening */ 9411 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9412 goto unlock; 9413 } 9414 9415 if (WARN_ON_ONCE(!mddev->sync_thread)) 9416 goto unlock; 9417 9418 md_reap_sync_thread(mddev); 9419 goto unlock; 9420 } 9421 9422 /* Set RUNNING before clearing NEEDED to avoid 9423 * any transients in the value of "sync_action". 9424 */ 9425 mddev->curr_resync_completed = 0; 9426 spin_lock(&mddev->lock); 9427 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9428 spin_unlock(&mddev->lock); 9429 /* Clear some bits that don't mean anything, but 9430 * might be left set 9431 */ 9432 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9433 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9434 9435 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9436 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9437 goto not_running; 9438 /* no recovery is running. 9439 * remove any failed drives, then 9440 * add spares if possible. 9441 * Spares are also removed and re-added, to allow 9442 * the personality to fail the re-add. 9443 */ 9444 9445 if (mddev->reshape_position != MaxSector) { 9446 if (mddev->pers->check_reshape == NULL || 9447 mddev->pers->check_reshape(mddev) != 0) 9448 /* Cannot proceed */ 9449 goto not_running; 9450 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9451 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9452 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9453 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9454 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9455 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9456 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9457 } else if (mddev->recovery_cp < MaxSector) { 9458 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9459 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9460 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9461 /* nothing to be done ... */ 9462 goto not_running; 9463 9464 if (mddev->pers->sync_request) { 9465 if (spares) { 9466 /* We are adding a device or devices to an array 9467 * which has the bitmap stored on all devices. 9468 * So make sure all bitmap pages get written 9469 */ 9470 md_bitmap_write_all(mddev->bitmap); 9471 } 9472 INIT_WORK(&mddev->del_work, md_start_sync); 9473 queue_work(md_misc_wq, &mddev->del_work); 9474 goto unlock; 9475 } 9476 not_running: 9477 if (!mddev->sync_thread) { 9478 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9479 wake_up(&resync_wait); 9480 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9481 &mddev->recovery)) 9482 if (mddev->sysfs_action) 9483 sysfs_notify_dirent_safe(mddev->sysfs_action); 9484 } 9485 unlock: 9486 wake_up(&mddev->sb_wait); 9487 mddev_unlock(mddev); 9488 } 9489 } 9490 EXPORT_SYMBOL(md_check_recovery); 9491 9492 void md_reap_sync_thread(struct mddev *mddev) 9493 { 9494 struct md_rdev *rdev; 9495 sector_t old_dev_sectors = mddev->dev_sectors; 9496 bool is_reshaped = false; 9497 9498 /* resync has finished, collect result */ 9499 md_unregister_thread(mddev, &mddev->sync_thread); 9500 atomic_inc(&mddev->sync_seq); 9501 9502 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9503 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9504 mddev->degraded != mddev->raid_disks) { 9505 /* success...*/ 9506 /* activate any spares */ 9507 if (mddev->pers->spare_active(mddev)) { 9508 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9509 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9510 } 9511 } 9512 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9513 mddev->pers->finish_reshape) { 9514 mddev->pers->finish_reshape(mddev); 9515 if (mddev_is_clustered(mddev)) 9516 is_reshaped = true; 9517 } 9518 9519 /* If array is no-longer degraded, then any saved_raid_disk 9520 * information must be scrapped. 9521 */ 9522 if (!mddev->degraded) 9523 rdev_for_each(rdev, mddev) 9524 rdev->saved_raid_disk = -1; 9525 9526 md_update_sb(mddev, 1); 9527 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9528 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9529 * clustered raid */ 9530 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9531 md_cluster_ops->resync_finish(mddev); 9532 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9533 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9534 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9535 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9536 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9537 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9538 /* 9539 * We call md_cluster_ops->update_size here because sync_size could 9540 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9541 * so it is time to update size across cluster. 9542 */ 9543 if (mddev_is_clustered(mddev) && is_reshaped 9544 && !test_bit(MD_CLOSING, &mddev->flags)) 9545 md_cluster_ops->update_size(mddev, old_dev_sectors); 9546 /* flag recovery needed just to double check */ 9547 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9548 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9549 sysfs_notify_dirent_safe(mddev->sysfs_action); 9550 md_new_event(); 9551 if (mddev->event_work.func) 9552 queue_work(md_misc_wq, &mddev->event_work); 9553 wake_up(&resync_wait); 9554 } 9555 EXPORT_SYMBOL(md_reap_sync_thread); 9556 9557 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9558 { 9559 sysfs_notify_dirent_safe(rdev->sysfs_state); 9560 wait_event_timeout(rdev->blocked_wait, 9561 !test_bit(Blocked, &rdev->flags) && 9562 !test_bit(BlockedBadBlocks, &rdev->flags), 9563 msecs_to_jiffies(5000)); 9564 rdev_dec_pending(rdev, mddev); 9565 } 9566 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9567 9568 void md_finish_reshape(struct mddev *mddev) 9569 { 9570 /* called be personality module when reshape completes. */ 9571 struct md_rdev *rdev; 9572 9573 rdev_for_each(rdev, mddev) { 9574 if (rdev->data_offset > rdev->new_data_offset) 9575 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9576 else 9577 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9578 rdev->data_offset = rdev->new_data_offset; 9579 } 9580 } 9581 EXPORT_SYMBOL(md_finish_reshape); 9582 9583 /* Bad block management */ 9584 9585 /* Returns 1 on success, 0 on failure */ 9586 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9587 int is_new) 9588 { 9589 struct mddev *mddev = rdev->mddev; 9590 int rv; 9591 if (is_new) 9592 s += rdev->new_data_offset; 9593 else 9594 s += rdev->data_offset; 9595 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9596 if (rv == 0) { 9597 /* Make sure they get written out promptly */ 9598 if (test_bit(ExternalBbl, &rdev->flags)) 9599 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9600 sysfs_notify_dirent_safe(rdev->sysfs_state); 9601 set_mask_bits(&mddev->sb_flags, 0, 9602 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9603 md_wakeup_thread(rdev->mddev->thread); 9604 return 1; 9605 } else 9606 return 0; 9607 } 9608 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9609 9610 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9611 int is_new) 9612 { 9613 int rv; 9614 if (is_new) 9615 s += rdev->new_data_offset; 9616 else 9617 s += rdev->data_offset; 9618 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9619 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9620 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9621 return rv; 9622 } 9623 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9624 9625 static int md_notify_reboot(struct notifier_block *this, 9626 unsigned long code, void *x) 9627 { 9628 struct mddev *mddev, *n; 9629 int need_delay = 0; 9630 9631 spin_lock(&all_mddevs_lock); 9632 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9633 if (!mddev_get(mddev)) 9634 continue; 9635 spin_unlock(&all_mddevs_lock); 9636 if (mddev_trylock(mddev)) { 9637 if (mddev->pers) 9638 __md_stop_writes(mddev); 9639 if (mddev->persistent) 9640 mddev->safemode = 2; 9641 mddev_unlock(mddev); 9642 } 9643 need_delay = 1; 9644 mddev_put(mddev); 9645 spin_lock(&all_mddevs_lock); 9646 } 9647 spin_unlock(&all_mddevs_lock); 9648 9649 /* 9650 * certain more exotic SCSI devices are known to be 9651 * volatile wrt too early system reboots. While the 9652 * right place to handle this issue is the given 9653 * driver, we do want to have a safe RAID driver ... 9654 */ 9655 if (need_delay) 9656 msleep(1000); 9657 9658 return NOTIFY_DONE; 9659 } 9660 9661 static struct notifier_block md_notifier = { 9662 .notifier_call = md_notify_reboot, 9663 .next = NULL, 9664 .priority = INT_MAX, /* before any real devices */ 9665 }; 9666 9667 static void md_geninit(void) 9668 { 9669 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9670 9671 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9672 } 9673 9674 static int __init md_init(void) 9675 { 9676 int ret = -ENOMEM; 9677 9678 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9679 if (!md_wq) 9680 goto err_wq; 9681 9682 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9683 if (!md_misc_wq) 9684 goto err_misc_wq; 9685 9686 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND, 9687 0); 9688 if (!md_bitmap_wq) 9689 goto err_bitmap_wq; 9690 9691 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9692 if (ret < 0) 9693 goto err_md; 9694 9695 ret = __register_blkdev(0, "mdp", md_probe); 9696 if (ret < 0) 9697 goto err_mdp; 9698 mdp_major = ret; 9699 9700 register_reboot_notifier(&md_notifier); 9701 raid_table_header = register_sysctl("dev/raid", raid_table); 9702 9703 md_geninit(); 9704 return 0; 9705 9706 err_mdp: 9707 unregister_blkdev(MD_MAJOR, "md"); 9708 err_md: 9709 destroy_workqueue(md_bitmap_wq); 9710 err_bitmap_wq: 9711 destroy_workqueue(md_misc_wq); 9712 err_misc_wq: 9713 destroy_workqueue(md_wq); 9714 err_wq: 9715 return ret; 9716 } 9717 9718 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9719 { 9720 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9721 struct md_rdev *rdev2, *tmp; 9722 int role, ret; 9723 9724 /* 9725 * If size is changed in another node then we need to 9726 * do resize as well. 9727 */ 9728 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9729 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9730 if (ret) 9731 pr_info("md-cluster: resize failed\n"); 9732 else 9733 md_bitmap_update_sb(mddev->bitmap); 9734 } 9735 9736 /* Check for change of roles in the active devices */ 9737 rdev_for_each_safe(rdev2, tmp, mddev) { 9738 if (test_bit(Faulty, &rdev2->flags)) 9739 continue; 9740 9741 /* Check if the roles changed */ 9742 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9743 9744 if (test_bit(Candidate, &rdev2->flags)) { 9745 if (role == MD_DISK_ROLE_FAULTY) { 9746 pr_info("md: Removing Candidate device %pg because add failed\n", 9747 rdev2->bdev); 9748 md_kick_rdev_from_array(rdev2); 9749 continue; 9750 } 9751 else 9752 clear_bit(Candidate, &rdev2->flags); 9753 } 9754 9755 if (role != rdev2->raid_disk) { 9756 /* 9757 * got activated except reshape is happening. 9758 */ 9759 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9760 !(le32_to_cpu(sb->feature_map) & 9761 MD_FEATURE_RESHAPE_ACTIVE)) { 9762 rdev2->saved_raid_disk = role; 9763 ret = remove_and_add_spares(mddev, rdev2); 9764 pr_info("Activated spare: %pg\n", 9765 rdev2->bdev); 9766 /* wakeup mddev->thread here, so array could 9767 * perform resync with the new activated disk */ 9768 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9769 md_wakeup_thread(mddev->thread); 9770 } 9771 /* device faulty 9772 * We just want to do the minimum to mark the disk 9773 * as faulty. The recovery is performed by the 9774 * one who initiated the error. 9775 */ 9776 if (role == MD_DISK_ROLE_FAULTY || 9777 role == MD_DISK_ROLE_JOURNAL) { 9778 md_error(mddev, rdev2); 9779 clear_bit(Blocked, &rdev2->flags); 9780 } 9781 } 9782 } 9783 9784 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9785 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9786 if (ret) 9787 pr_warn("md: updating array disks failed. %d\n", ret); 9788 } 9789 9790 /* 9791 * Since mddev->delta_disks has already updated in update_raid_disks, 9792 * so it is time to check reshape. 9793 */ 9794 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9795 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9796 /* 9797 * reshape is happening in the remote node, we need to 9798 * update reshape_position and call start_reshape. 9799 */ 9800 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9801 if (mddev->pers->update_reshape_pos) 9802 mddev->pers->update_reshape_pos(mddev); 9803 if (mddev->pers->start_reshape) 9804 mddev->pers->start_reshape(mddev); 9805 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9806 mddev->reshape_position != MaxSector && 9807 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9808 /* reshape is just done in another node. */ 9809 mddev->reshape_position = MaxSector; 9810 if (mddev->pers->update_reshape_pos) 9811 mddev->pers->update_reshape_pos(mddev); 9812 } 9813 9814 /* Finally set the event to be up to date */ 9815 mddev->events = le64_to_cpu(sb->events); 9816 } 9817 9818 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9819 { 9820 int err; 9821 struct page *swapout = rdev->sb_page; 9822 struct mdp_superblock_1 *sb; 9823 9824 /* Store the sb page of the rdev in the swapout temporary 9825 * variable in case we err in the future 9826 */ 9827 rdev->sb_page = NULL; 9828 err = alloc_disk_sb(rdev); 9829 if (err == 0) { 9830 ClearPageUptodate(rdev->sb_page); 9831 rdev->sb_loaded = 0; 9832 err = super_types[mddev->major_version]. 9833 load_super(rdev, NULL, mddev->minor_version); 9834 } 9835 if (err < 0) { 9836 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9837 __func__, __LINE__, rdev->desc_nr, err); 9838 if (rdev->sb_page) 9839 put_page(rdev->sb_page); 9840 rdev->sb_page = swapout; 9841 rdev->sb_loaded = 1; 9842 return err; 9843 } 9844 9845 sb = page_address(rdev->sb_page); 9846 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9847 * is not set 9848 */ 9849 9850 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9851 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9852 9853 /* The other node finished recovery, call spare_active to set 9854 * device In_sync and mddev->degraded 9855 */ 9856 if (rdev->recovery_offset == MaxSector && 9857 !test_bit(In_sync, &rdev->flags) && 9858 mddev->pers->spare_active(mddev)) 9859 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9860 9861 put_page(swapout); 9862 return 0; 9863 } 9864 9865 void md_reload_sb(struct mddev *mddev, int nr) 9866 { 9867 struct md_rdev *rdev = NULL, *iter; 9868 int err; 9869 9870 /* Find the rdev */ 9871 rdev_for_each_rcu(iter, mddev) { 9872 if (iter->desc_nr == nr) { 9873 rdev = iter; 9874 break; 9875 } 9876 } 9877 9878 if (!rdev) { 9879 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9880 return; 9881 } 9882 9883 err = read_rdev(mddev, rdev); 9884 if (err < 0) 9885 return; 9886 9887 check_sb_changes(mddev, rdev); 9888 9889 /* Read all rdev's to update recovery_offset */ 9890 rdev_for_each_rcu(rdev, mddev) { 9891 if (!test_bit(Faulty, &rdev->flags)) 9892 read_rdev(mddev, rdev); 9893 } 9894 } 9895 EXPORT_SYMBOL(md_reload_sb); 9896 9897 #ifndef MODULE 9898 9899 /* 9900 * Searches all registered partitions for autorun RAID arrays 9901 * at boot time. 9902 */ 9903 9904 static DEFINE_MUTEX(detected_devices_mutex); 9905 static LIST_HEAD(all_detected_devices); 9906 struct detected_devices_node { 9907 struct list_head list; 9908 dev_t dev; 9909 }; 9910 9911 void md_autodetect_dev(dev_t dev) 9912 { 9913 struct detected_devices_node *node_detected_dev; 9914 9915 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9916 if (node_detected_dev) { 9917 node_detected_dev->dev = dev; 9918 mutex_lock(&detected_devices_mutex); 9919 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9920 mutex_unlock(&detected_devices_mutex); 9921 } 9922 } 9923 9924 void md_autostart_arrays(int part) 9925 { 9926 struct md_rdev *rdev; 9927 struct detected_devices_node *node_detected_dev; 9928 dev_t dev; 9929 int i_scanned, i_passed; 9930 9931 i_scanned = 0; 9932 i_passed = 0; 9933 9934 pr_info("md: Autodetecting RAID arrays.\n"); 9935 9936 mutex_lock(&detected_devices_mutex); 9937 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9938 i_scanned++; 9939 node_detected_dev = list_entry(all_detected_devices.next, 9940 struct detected_devices_node, list); 9941 list_del(&node_detected_dev->list); 9942 dev = node_detected_dev->dev; 9943 kfree(node_detected_dev); 9944 mutex_unlock(&detected_devices_mutex); 9945 rdev = md_import_device(dev,0, 90); 9946 mutex_lock(&detected_devices_mutex); 9947 if (IS_ERR(rdev)) 9948 continue; 9949 9950 if (test_bit(Faulty, &rdev->flags)) 9951 continue; 9952 9953 set_bit(AutoDetected, &rdev->flags); 9954 list_add(&rdev->same_set, &pending_raid_disks); 9955 i_passed++; 9956 } 9957 mutex_unlock(&detected_devices_mutex); 9958 9959 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9960 9961 autorun_devices(part); 9962 } 9963 9964 #endif /* !MODULE */ 9965 9966 static __exit void md_exit(void) 9967 { 9968 struct mddev *mddev, *n; 9969 int delay = 1; 9970 9971 unregister_blkdev(MD_MAJOR,"md"); 9972 unregister_blkdev(mdp_major, "mdp"); 9973 unregister_reboot_notifier(&md_notifier); 9974 unregister_sysctl_table(raid_table_header); 9975 9976 /* We cannot unload the modules while some process is 9977 * waiting for us in select() or poll() - wake them up 9978 */ 9979 md_unloading = 1; 9980 while (waitqueue_active(&md_event_waiters)) { 9981 /* not safe to leave yet */ 9982 wake_up(&md_event_waiters); 9983 msleep(delay); 9984 delay += delay; 9985 } 9986 remove_proc_entry("mdstat", NULL); 9987 9988 spin_lock(&all_mddevs_lock); 9989 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9990 if (!mddev_get(mddev)) 9991 continue; 9992 spin_unlock(&all_mddevs_lock); 9993 export_array(mddev); 9994 mddev->ctime = 0; 9995 mddev->hold_active = 0; 9996 /* 9997 * As the mddev is now fully clear, mddev_put will schedule 9998 * the mddev for destruction by a workqueue, and the 9999 * destroy_workqueue() below will wait for that to complete. 10000 */ 10001 mddev_put(mddev); 10002 spin_lock(&all_mddevs_lock); 10003 } 10004 spin_unlock(&all_mddevs_lock); 10005 10006 destroy_workqueue(md_misc_wq); 10007 destroy_workqueue(md_bitmap_wq); 10008 destroy_workqueue(md_wq); 10009 } 10010 10011 subsys_initcall(md_init); 10012 module_exit(md_exit) 10013 10014 static int get_ro(char *buffer, const struct kernel_param *kp) 10015 { 10016 return sprintf(buffer, "%d\n", start_readonly); 10017 } 10018 static int set_ro(const char *val, const struct kernel_param *kp) 10019 { 10020 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 10021 } 10022 10023 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 10024 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 10025 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 10026 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 10027 10028 MODULE_LICENSE("GPL"); 10029 MODULE_DESCRIPTION("MD RAID framework"); 10030 MODULE_ALIAS("md"); 10031 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 10032