xref: /openbmc/linux/drivers/md/md.c (revision 6cce3b23)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 
46 #include <linux/init.h>
47 
48 #include <linux/file.h>
49 
50 #ifdef CONFIG_KMOD
51 #include <linux/kmod.h>
52 #endif
53 
54 #include <asm/unaligned.h>
55 
56 #define MAJOR_NR MD_MAJOR
57 #define MD_DRIVER
58 
59 /* 63 partitions with the alternate major number (mdp) */
60 #define MdpMinorShift 6
61 
62 #define DEBUG 0
63 #define dprintk(x...) ((void)(DEBUG && printk(x)))
64 
65 
66 #ifndef MODULE
67 static void autostart_arrays (int part);
68 #endif
69 
70 static mdk_personality_t *pers[MAX_PERSONALITY];
71 static DEFINE_SPINLOCK(pers_lock);
72 
73 /*
74  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75  * is 1000 KB/sec, so the extra system load does not show up that much.
76  * Increase it if you want to have more _guaranteed_ speed. Note that
77  * the RAID driver will use the maximum available bandwidth if the IO
78  * subsystem is idle. There is also an 'absolute maximum' reconstruction
79  * speed limit - in case reconstruction slows down your system despite
80  * idle IO detection.
81  *
82  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
83  */
84 
85 static int sysctl_speed_limit_min = 1000;
86 static int sysctl_speed_limit_max = 200000;
87 
88 static struct ctl_table_header *raid_table_header;
89 
90 static ctl_table raid_table[] = {
91 	{
92 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
93 		.procname	= "speed_limit_min",
94 		.data		= &sysctl_speed_limit_min,
95 		.maxlen		= sizeof(int),
96 		.mode		= 0644,
97 		.proc_handler	= &proc_dointvec,
98 	},
99 	{
100 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
101 		.procname	= "speed_limit_max",
102 		.data		= &sysctl_speed_limit_max,
103 		.maxlen		= sizeof(int),
104 		.mode		= 0644,
105 		.proc_handler	= &proc_dointvec,
106 	},
107 	{ .ctl_name = 0 }
108 };
109 
110 static ctl_table raid_dir_table[] = {
111 	{
112 		.ctl_name	= DEV_RAID,
113 		.procname	= "raid",
114 		.maxlen		= 0,
115 		.mode		= 0555,
116 		.child		= raid_table,
117 	},
118 	{ .ctl_name = 0 }
119 };
120 
121 static ctl_table raid_root_table[] = {
122 	{
123 		.ctl_name	= CTL_DEV,
124 		.procname	= "dev",
125 		.maxlen		= 0,
126 		.mode		= 0555,
127 		.child		= raid_dir_table,
128 	},
129 	{ .ctl_name = 0 }
130 };
131 
132 static struct block_device_operations md_fops;
133 
134 static int start_readonly;
135 
136 /*
137  * Enables to iterate over all existing md arrays
138  * all_mddevs_lock protects this list.
139  */
140 static LIST_HEAD(all_mddevs);
141 static DEFINE_SPINLOCK(all_mddevs_lock);
142 
143 
144 /*
145  * iterates through all used mddevs in the system.
146  * We take care to grab the all_mddevs_lock whenever navigating
147  * the list, and to always hold a refcount when unlocked.
148  * Any code which breaks out of this loop while own
149  * a reference to the current mddev and must mddev_put it.
150  */
151 #define ITERATE_MDDEV(mddev,tmp)					\
152 									\
153 	for (({ spin_lock(&all_mddevs_lock); 				\
154 		tmp = all_mddevs.next;					\
155 		mddev = NULL;});					\
156 	     ({ if (tmp != &all_mddevs)					\
157 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
158 		spin_unlock(&all_mddevs_lock);				\
159 		if (mddev) mddev_put(mddev);				\
160 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
161 		tmp != &all_mddevs;});					\
162 	     ({ spin_lock(&all_mddevs_lock);				\
163 		tmp = tmp->next;})					\
164 		)
165 
166 
167 static int md_fail_request (request_queue_t *q, struct bio *bio)
168 {
169 	bio_io_error(bio, bio->bi_size);
170 	return 0;
171 }
172 
173 static inline mddev_t *mddev_get(mddev_t *mddev)
174 {
175 	atomic_inc(&mddev->active);
176 	return mddev;
177 }
178 
179 static void mddev_put(mddev_t *mddev)
180 {
181 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
182 		return;
183 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
184 		list_del(&mddev->all_mddevs);
185 		blk_put_queue(mddev->queue);
186 		kobject_unregister(&mddev->kobj);
187 	}
188 	spin_unlock(&all_mddevs_lock);
189 }
190 
191 static mddev_t * mddev_find(dev_t unit)
192 {
193 	mddev_t *mddev, *new = NULL;
194 
195  retry:
196 	spin_lock(&all_mddevs_lock);
197 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
198 		if (mddev->unit == unit) {
199 			mddev_get(mddev);
200 			spin_unlock(&all_mddevs_lock);
201 			kfree(new);
202 			return mddev;
203 		}
204 
205 	if (new) {
206 		list_add(&new->all_mddevs, &all_mddevs);
207 		spin_unlock(&all_mddevs_lock);
208 		return new;
209 	}
210 	spin_unlock(&all_mddevs_lock);
211 
212 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
213 	if (!new)
214 		return NULL;
215 
216 	memset(new, 0, sizeof(*new));
217 
218 	new->unit = unit;
219 	if (MAJOR(unit) == MD_MAJOR)
220 		new->md_minor = MINOR(unit);
221 	else
222 		new->md_minor = MINOR(unit) >> MdpMinorShift;
223 
224 	init_MUTEX(&new->reconfig_sem);
225 	INIT_LIST_HEAD(&new->disks);
226 	INIT_LIST_HEAD(&new->all_mddevs);
227 	init_timer(&new->safemode_timer);
228 	atomic_set(&new->active, 1);
229 	spin_lock_init(&new->write_lock);
230 	init_waitqueue_head(&new->sb_wait);
231 
232 	new->queue = blk_alloc_queue(GFP_KERNEL);
233 	if (!new->queue) {
234 		kfree(new);
235 		return NULL;
236 	}
237 
238 	blk_queue_make_request(new->queue, md_fail_request);
239 
240 	goto retry;
241 }
242 
243 static inline int mddev_lock(mddev_t * mddev)
244 {
245 	return down_interruptible(&mddev->reconfig_sem);
246 }
247 
248 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
249 {
250 	down(&mddev->reconfig_sem);
251 }
252 
253 static inline int mddev_trylock(mddev_t * mddev)
254 {
255 	return down_trylock(&mddev->reconfig_sem);
256 }
257 
258 static inline void mddev_unlock(mddev_t * mddev)
259 {
260 	up(&mddev->reconfig_sem);
261 
262 	md_wakeup_thread(mddev->thread);
263 }
264 
265 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
266 {
267 	mdk_rdev_t * rdev;
268 	struct list_head *tmp;
269 
270 	ITERATE_RDEV(mddev,rdev,tmp) {
271 		if (rdev->desc_nr == nr)
272 			return rdev;
273 	}
274 	return NULL;
275 }
276 
277 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
278 {
279 	struct list_head *tmp;
280 	mdk_rdev_t *rdev;
281 
282 	ITERATE_RDEV(mddev,rdev,tmp) {
283 		if (rdev->bdev->bd_dev == dev)
284 			return rdev;
285 	}
286 	return NULL;
287 }
288 
289 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
290 {
291 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
292 	return MD_NEW_SIZE_BLOCKS(size);
293 }
294 
295 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
296 {
297 	sector_t size;
298 
299 	size = rdev->sb_offset;
300 
301 	if (chunk_size)
302 		size &= ~((sector_t)chunk_size/1024 - 1);
303 	return size;
304 }
305 
306 static int alloc_disk_sb(mdk_rdev_t * rdev)
307 {
308 	if (rdev->sb_page)
309 		MD_BUG();
310 
311 	rdev->sb_page = alloc_page(GFP_KERNEL);
312 	if (!rdev->sb_page) {
313 		printk(KERN_ALERT "md: out of memory.\n");
314 		return -EINVAL;
315 	}
316 
317 	return 0;
318 }
319 
320 static void free_disk_sb(mdk_rdev_t * rdev)
321 {
322 	if (rdev->sb_page) {
323 		page_cache_release(rdev->sb_page);
324 		rdev->sb_loaded = 0;
325 		rdev->sb_page = NULL;
326 		rdev->sb_offset = 0;
327 		rdev->size = 0;
328 	}
329 }
330 
331 
332 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
333 {
334 	mdk_rdev_t *rdev = bio->bi_private;
335 	mddev_t *mddev = rdev->mddev;
336 	if (bio->bi_size)
337 		return 1;
338 
339 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
340 		md_error(mddev, rdev);
341 
342 	if (atomic_dec_and_test(&mddev->pending_writes))
343 		wake_up(&mddev->sb_wait);
344 	bio_put(bio);
345 	return 0;
346 }
347 
348 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
349 {
350 	struct bio *bio2 = bio->bi_private;
351 	mdk_rdev_t *rdev = bio2->bi_private;
352 	mddev_t *mddev = rdev->mddev;
353 	if (bio->bi_size)
354 		return 1;
355 
356 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
357 	    error == -EOPNOTSUPP) {
358 		unsigned long flags;
359 		/* barriers don't appear to be supported :-( */
360 		set_bit(BarriersNotsupp, &rdev->flags);
361 		mddev->barriers_work = 0;
362 		spin_lock_irqsave(&mddev->write_lock, flags);
363 		bio2->bi_next = mddev->biolist;
364 		mddev->biolist = bio2;
365 		spin_unlock_irqrestore(&mddev->write_lock, flags);
366 		wake_up(&mddev->sb_wait);
367 		bio_put(bio);
368 		return 0;
369 	}
370 	bio_put(bio2);
371 	bio->bi_private = rdev;
372 	return super_written(bio, bytes_done, error);
373 }
374 
375 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
376 		   sector_t sector, int size, struct page *page)
377 {
378 	/* write first size bytes of page to sector of rdev
379 	 * Increment mddev->pending_writes before returning
380 	 * and decrement it on completion, waking up sb_wait
381 	 * if zero is reached.
382 	 * If an error occurred, call md_error
383 	 *
384 	 * As we might need to resubmit the request if BIO_RW_BARRIER
385 	 * causes ENOTSUPP, we allocate a spare bio...
386 	 */
387 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
388 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
389 
390 	bio->bi_bdev = rdev->bdev;
391 	bio->bi_sector = sector;
392 	bio_add_page(bio, page, size, 0);
393 	bio->bi_private = rdev;
394 	bio->bi_end_io = super_written;
395 	bio->bi_rw = rw;
396 
397 	atomic_inc(&mddev->pending_writes);
398 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
399 		struct bio *rbio;
400 		rw |= (1<<BIO_RW_BARRIER);
401 		rbio = bio_clone(bio, GFP_NOIO);
402 		rbio->bi_private = bio;
403 		rbio->bi_end_io = super_written_barrier;
404 		submit_bio(rw, rbio);
405 	} else
406 		submit_bio(rw, bio);
407 }
408 
409 void md_super_wait(mddev_t *mddev)
410 {
411 	/* wait for all superblock writes that were scheduled to complete.
412 	 * if any had to be retried (due to BARRIER problems), retry them
413 	 */
414 	DEFINE_WAIT(wq);
415 	for(;;) {
416 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
417 		if (atomic_read(&mddev->pending_writes)==0)
418 			break;
419 		while (mddev->biolist) {
420 			struct bio *bio;
421 			spin_lock_irq(&mddev->write_lock);
422 			bio = mddev->biolist;
423 			mddev->biolist = bio->bi_next ;
424 			bio->bi_next = NULL;
425 			spin_unlock_irq(&mddev->write_lock);
426 			submit_bio(bio->bi_rw, bio);
427 		}
428 		schedule();
429 	}
430 	finish_wait(&mddev->sb_wait, &wq);
431 }
432 
433 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
434 {
435 	if (bio->bi_size)
436 		return 1;
437 
438 	complete((struct completion*)bio->bi_private);
439 	return 0;
440 }
441 
442 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
443 		   struct page *page, int rw)
444 {
445 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
446 	struct completion event;
447 	int ret;
448 
449 	rw |= (1 << BIO_RW_SYNC);
450 
451 	bio->bi_bdev = bdev;
452 	bio->bi_sector = sector;
453 	bio_add_page(bio, page, size, 0);
454 	init_completion(&event);
455 	bio->bi_private = &event;
456 	bio->bi_end_io = bi_complete;
457 	submit_bio(rw, bio);
458 	wait_for_completion(&event);
459 
460 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
461 	bio_put(bio);
462 	return ret;
463 }
464 
465 static int read_disk_sb(mdk_rdev_t * rdev, int size)
466 {
467 	char b[BDEVNAME_SIZE];
468 	if (!rdev->sb_page) {
469 		MD_BUG();
470 		return -EINVAL;
471 	}
472 	if (rdev->sb_loaded)
473 		return 0;
474 
475 
476 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
477 		goto fail;
478 	rdev->sb_loaded = 1;
479 	return 0;
480 
481 fail:
482 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
483 		bdevname(rdev->bdev,b));
484 	return -EINVAL;
485 }
486 
487 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
488 {
489 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
490 		(sb1->set_uuid1 == sb2->set_uuid1) &&
491 		(sb1->set_uuid2 == sb2->set_uuid2) &&
492 		(sb1->set_uuid3 == sb2->set_uuid3))
493 
494 		return 1;
495 
496 	return 0;
497 }
498 
499 
500 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
501 {
502 	int ret;
503 	mdp_super_t *tmp1, *tmp2;
504 
505 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
506 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
507 
508 	if (!tmp1 || !tmp2) {
509 		ret = 0;
510 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
511 		goto abort;
512 	}
513 
514 	*tmp1 = *sb1;
515 	*tmp2 = *sb2;
516 
517 	/*
518 	 * nr_disks is not constant
519 	 */
520 	tmp1->nr_disks = 0;
521 	tmp2->nr_disks = 0;
522 
523 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
524 		ret = 0;
525 	else
526 		ret = 1;
527 
528 abort:
529 	kfree(tmp1);
530 	kfree(tmp2);
531 	return ret;
532 }
533 
534 static unsigned int calc_sb_csum(mdp_super_t * sb)
535 {
536 	unsigned int disk_csum, csum;
537 
538 	disk_csum = sb->sb_csum;
539 	sb->sb_csum = 0;
540 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
541 	sb->sb_csum = disk_csum;
542 	return csum;
543 }
544 
545 
546 /*
547  * Handle superblock details.
548  * We want to be able to handle multiple superblock formats
549  * so we have a common interface to them all, and an array of
550  * different handlers.
551  * We rely on user-space to write the initial superblock, and support
552  * reading and updating of superblocks.
553  * Interface methods are:
554  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
555  *      loads and validates a superblock on dev.
556  *      if refdev != NULL, compare superblocks on both devices
557  *    Return:
558  *      0 - dev has a superblock that is compatible with refdev
559  *      1 - dev has a superblock that is compatible and newer than refdev
560  *          so dev should be used as the refdev in future
561  *     -EINVAL superblock incompatible or invalid
562  *     -othererror e.g. -EIO
563  *
564  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
565  *      Verify that dev is acceptable into mddev.
566  *       The first time, mddev->raid_disks will be 0, and data from
567  *       dev should be merged in.  Subsequent calls check that dev
568  *       is new enough.  Return 0 or -EINVAL
569  *
570  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
571  *     Update the superblock for rdev with data in mddev
572  *     This does not write to disc.
573  *
574  */
575 
576 struct super_type  {
577 	char 		*name;
578 	struct module	*owner;
579 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
580 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
581 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
582 };
583 
584 /*
585  * load_super for 0.90.0
586  */
587 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
588 {
589 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
590 	mdp_super_t *sb;
591 	int ret;
592 	sector_t sb_offset;
593 
594 	/*
595 	 * Calculate the position of the superblock,
596 	 * it's at the end of the disk.
597 	 *
598 	 * It also happens to be a multiple of 4Kb.
599 	 */
600 	sb_offset = calc_dev_sboffset(rdev->bdev);
601 	rdev->sb_offset = sb_offset;
602 
603 	ret = read_disk_sb(rdev, MD_SB_BYTES);
604 	if (ret) return ret;
605 
606 	ret = -EINVAL;
607 
608 	bdevname(rdev->bdev, b);
609 	sb = (mdp_super_t*)page_address(rdev->sb_page);
610 
611 	if (sb->md_magic != MD_SB_MAGIC) {
612 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
613 		       b);
614 		goto abort;
615 	}
616 
617 	if (sb->major_version != 0 ||
618 	    sb->minor_version != 90) {
619 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
620 			sb->major_version, sb->minor_version,
621 			b);
622 		goto abort;
623 	}
624 
625 	if (sb->raid_disks <= 0)
626 		goto abort;
627 
628 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
629 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
630 			b);
631 		goto abort;
632 	}
633 
634 	rdev->preferred_minor = sb->md_minor;
635 	rdev->data_offset = 0;
636 	rdev->sb_size = MD_SB_BYTES;
637 
638 	if (sb->level == LEVEL_MULTIPATH)
639 		rdev->desc_nr = -1;
640 	else
641 		rdev->desc_nr = sb->this_disk.number;
642 
643 	if (refdev == 0)
644 		ret = 1;
645 	else {
646 		__u64 ev1, ev2;
647 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
648 		if (!uuid_equal(refsb, sb)) {
649 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
650 				b, bdevname(refdev->bdev,b2));
651 			goto abort;
652 		}
653 		if (!sb_equal(refsb, sb)) {
654 			printk(KERN_WARNING "md: %s has same UUID"
655 			       " but different superblock to %s\n",
656 			       b, bdevname(refdev->bdev, b2));
657 			goto abort;
658 		}
659 		ev1 = md_event(sb);
660 		ev2 = md_event(refsb);
661 		if (ev1 > ev2)
662 			ret = 1;
663 		else
664 			ret = 0;
665 	}
666 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
667 
668  abort:
669 	return ret;
670 }
671 
672 /*
673  * validate_super for 0.90.0
674  */
675 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
676 {
677 	mdp_disk_t *desc;
678 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
679 
680 	rdev->raid_disk = -1;
681 	rdev->flags = 0;
682 	if (mddev->raid_disks == 0) {
683 		mddev->major_version = 0;
684 		mddev->minor_version = sb->minor_version;
685 		mddev->patch_version = sb->patch_version;
686 		mddev->persistent = ! sb->not_persistent;
687 		mddev->chunk_size = sb->chunk_size;
688 		mddev->ctime = sb->ctime;
689 		mddev->utime = sb->utime;
690 		mddev->level = sb->level;
691 		mddev->layout = sb->layout;
692 		mddev->raid_disks = sb->raid_disks;
693 		mddev->size = sb->size;
694 		mddev->events = md_event(sb);
695 		mddev->bitmap_offset = 0;
696 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
697 
698 		if (sb->state & (1<<MD_SB_CLEAN))
699 			mddev->recovery_cp = MaxSector;
700 		else {
701 			if (sb->events_hi == sb->cp_events_hi &&
702 				sb->events_lo == sb->cp_events_lo) {
703 				mddev->recovery_cp = sb->recovery_cp;
704 			} else
705 				mddev->recovery_cp = 0;
706 		}
707 
708 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
709 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
710 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
711 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
712 
713 		mddev->max_disks = MD_SB_DISKS;
714 
715 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
716 		    mddev->bitmap_file == NULL) {
717 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
718 			    && mddev->level != 10) {
719 				/* FIXME use a better test */
720 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
721 				return -EINVAL;
722 			}
723 			mddev->bitmap_offset = mddev->default_bitmap_offset;
724 		}
725 
726 	} else if (mddev->pers == NULL) {
727 		/* Insist on good event counter while assembling */
728 		__u64 ev1 = md_event(sb);
729 		++ev1;
730 		if (ev1 < mddev->events)
731 			return -EINVAL;
732 	} else if (mddev->bitmap) {
733 		/* if adding to array with a bitmap, then we can accept an
734 		 * older device ... but not too old.
735 		 */
736 		__u64 ev1 = md_event(sb);
737 		if (ev1 < mddev->bitmap->events_cleared)
738 			return 0;
739 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
740 		return 0;
741 
742 	if (mddev->level != LEVEL_MULTIPATH) {
743 		desc = sb->disks + rdev->desc_nr;
744 
745 		if (desc->state & (1<<MD_DISK_FAULTY))
746 			set_bit(Faulty, &rdev->flags);
747 		else if (desc->state & (1<<MD_DISK_SYNC) &&
748 			 desc->raid_disk < mddev->raid_disks) {
749 			set_bit(In_sync, &rdev->flags);
750 			rdev->raid_disk = desc->raid_disk;
751 		}
752 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
753 			set_bit(WriteMostly, &rdev->flags);
754 	} else /* MULTIPATH are always insync */
755 		set_bit(In_sync, &rdev->flags);
756 	return 0;
757 }
758 
759 /*
760  * sync_super for 0.90.0
761  */
762 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
763 {
764 	mdp_super_t *sb;
765 	struct list_head *tmp;
766 	mdk_rdev_t *rdev2;
767 	int next_spare = mddev->raid_disks;
768 
769 
770 	/* make rdev->sb match mddev data..
771 	 *
772 	 * 1/ zero out disks
773 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
774 	 * 3/ any empty disks < next_spare become removed
775 	 *
776 	 * disks[0] gets initialised to REMOVED because
777 	 * we cannot be sure from other fields if it has
778 	 * been initialised or not.
779 	 */
780 	int i;
781 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
782 
783 	rdev->sb_size = MD_SB_BYTES;
784 
785 	sb = (mdp_super_t*)page_address(rdev->sb_page);
786 
787 	memset(sb, 0, sizeof(*sb));
788 
789 	sb->md_magic = MD_SB_MAGIC;
790 	sb->major_version = mddev->major_version;
791 	sb->minor_version = mddev->minor_version;
792 	sb->patch_version = mddev->patch_version;
793 	sb->gvalid_words  = 0; /* ignored */
794 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
795 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
796 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
797 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
798 
799 	sb->ctime = mddev->ctime;
800 	sb->level = mddev->level;
801 	sb->size  = mddev->size;
802 	sb->raid_disks = mddev->raid_disks;
803 	sb->md_minor = mddev->md_minor;
804 	sb->not_persistent = !mddev->persistent;
805 	sb->utime = mddev->utime;
806 	sb->state = 0;
807 	sb->events_hi = (mddev->events>>32);
808 	sb->events_lo = (u32)mddev->events;
809 
810 	if (mddev->in_sync)
811 	{
812 		sb->recovery_cp = mddev->recovery_cp;
813 		sb->cp_events_hi = (mddev->events>>32);
814 		sb->cp_events_lo = (u32)mddev->events;
815 		if (mddev->recovery_cp == MaxSector)
816 			sb->state = (1<< MD_SB_CLEAN);
817 	} else
818 		sb->recovery_cp = 0;
819 
820 	sb->layout = mddev->layout;
821 	sb->chunk_size = mddev->chunk_size;
822 
823 	if (mddev->bitmap && mddev->bitmap_file == NULL)
824 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
825 
826 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
827 	ITERATE_RDEV(mddev,rdev2,tmp) {
828 		mdp_disk_t *d;
829 		int desc_nr;
830 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
831 		    && !test_bit(Faulty, &rdev2->flags))
832 			desc_nr = rdev2->raid_disk;
833 		else
834 			desc_nr = next_spare++;
835 		rdev2->desc_nr = desc_nr;
836 		d = &sb->disks[rdev2->desc_nr];
837 		nr_disks++;
838 		d->number = rdev2->desc_nr;
839 		d->major = MAJOR(rdev2->bdev->bd_dev);
840 		d->minor = MINOR(rdev2->bdev->bd_dev);
841 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
842 		    && !test_bit(Faulty, &rdev2->flags))
843 			d->raid_disk = rdev2->raid_disk;
844 		else
845 			d->raid_disk = rdev2->desc_nr; /* compatibility */
846 		if (test_bit(Faulty, &rdev2->flags)) {
847 			d->state = (1<<MD_DISK_FAULTY);
848 			failed++;
849 		} else if (test_bit(In_sync, &rdev2->flags)) {
850 			d->state = (1<<MD_DISK_ACTIVE);
851 			d->state |= (1<<MD_DISK_SYNC);
852 			active++;
853 			working++;
854 		} else {
855 			d->state = 0;
856 			spare++;
857 			working++;
858 		}
859 		if (test_bit(WriteMostly, &rdev2->flags))
860 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
861 	}
862 	/* now set the "removed" and "faulty" bits on any missing devices */
863 	for (i=0 ; i < mddev->raid_disks ; i++) {
864 		mdp_disk_t *d = &sb->disks[i];
865 		if (d->state == 0 && d->number == 0) {
866 			d->number = i;
867 			d->raid_disk = i;
868 			d->state = (1<<MD_DISK_REMOVED);
869 			d->state |= (1<<MD_DISK_FAULTY);
870 			failed++;
871 		}
872 	}
873 	sb->nr_disks = nr_disks;
874 	sb->active_disks = active;
875 	sb->working_disks = working;
876 	sb->failed_disks = failed;
877 	sb->spare_disks = spare;
878 
879 	sb->this_disk = sb->disks[rdev->desc_nr];
880 	sb->sb_csum = calc_sb_csum(sb);
881 }
882 
883 /*
884  * version 1 superblock
885  */
886 
887 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
888 {
889 	unsigned int disk_csum, csum;
890 	unsigned long long newcsum;
891 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
892 	unsigned int *isuper = (unsigned int*)sb;
893 	int i;
894 
895 	disk_csum = sb->sb_csum;
896 	sb->sb_csum = 0;
897 	newcsum = 0;
898 	for (i=0; size>=4; size -= 4 )
899 		newcsum += le32_to_cpu(*isuper++);
900 
901 	if (size == 2)
902 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
903 
904 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
905 	sb->sb_csum = disk_csum;
906 	return cpu_to_le32(csum);
907 }
908 
909 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
910 {
911 	struct mdp_superblock_1 *sb;
912 	int ret;
913 	sector_t sb_offset;
914 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
915 	int bmask;
916 
917 	/*
918 	 * Calculate the position of the superblock.
919 	 * It is always aligned to a 4K boundary and
920 	 * depeding on minor_version, it can be:
921 	 * 0: At least 8K, but less than 12K, from end of device
922 	 * 1: At start of device
923 	 * 2: 4K from start of device.
924 	 */
925 	switch(minor_version) {
926 	case 0:
927 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
928 		sb_offset -= 8*2;
929 		sb_offset &= ~(sector_t)(4*2-1);
930 		/* convert from sectors to K */
931 		sb_offset /= 2;
932 		break;
933 	case 1:
934 		sb_offset = 0;
935 		break;
936 	case 2:
937 		sb_offset = 4;
938 		break;
939 	default:
940 		return -EINVAL;
941 	}
942 	rdev->sb_offset = sb_offset;
943 
944 	/* superblock is rarely larger than 1K, but it can be larger,
945 	 * and it is safe to read 4k, so we do that
946 	 */
947 	ret = read_disk_sb(rdev, 4096);
948 	if (ret) return ret;
949 
950 
951 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
952 
953 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
954 	    sb->major_version != cpu_to_le32(1) ||
955 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
956 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
957 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
958 		return -EINVAL;
959 
960 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
961 		printk("md: invalid superblock checksum on %s\n",
962 			bdevname(rdev->bdev,b));
963 		return -EINVAL;
964 	}
965 	if (le64_to_cpu(sb->data_size) < 10) {
966 		printk("md: data_size too small on %s\n",
967 		       bdevname(rdev->bdev,b));
968 		return -EINVAL;
969 	}
970 	rdev->preferred_minor = 0xffff;
971 	rdev->data_offset = le64_to_cpu(sb->data_offset);
972 
973 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
974 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
975 	if (rdev->sb_size & bmask)
976 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
977 
978 	if (refdev == 0)
979 		return 1;
980 	else {
981 		__u64 ev1, ev2;
982 		struct mdp_superblock_1 *refsb =
983 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
984 
985 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
986 		    sb->level != refsb->level ||
987 		    sb->layout != refsb->layout ||
988 		    sb->chunksize != refsb->chunksize) {
989 			printk(KERN_WARNING "md: %s has strangely different"
990 				" superblock to %s\n",
991 				bdevname(rdev->bdev,b),
992 				bdevname(refdev->bdev,b2));
993 			return -EINVAL;
994 		}
995 		ev1 = le64_to_cpu(sb->events);
996 		ev2 = le64_to_cpu(refsb->events);
997 
998 		if (ev1 > ev2)
999 			return 1;
1000 	}
1001 	if (minor_version)
1002 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1003 	else
1004 		rdev->size = rdev->sb_offset;
1005 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1006 		return -EINVAL;
1007 	rdev->size = le64_to_cpu(sb->data_size)/2;
1008 	if (le32_to_cpu(sb->chunksize))
1009 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1010 	return 0;
1011 }
1012 
1013 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1014 {
1015 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1016 
1017 	rdev->raid_disk = -1;
1018 	rdev->flags = 0;
1019 	if (mddev->raid_disks == 0) {
1020 		mddev->major_version = 1;
1021 		mddev->patch_version = 0;
1022 		mddev->persistent = 1;
1023 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1024 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1025 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1026 		mddev->level = le32_to_cpu(sb->level);
1027 		mddev->layout = le32_to_cpu(sb->layout);
1028 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1029 		mddev->size = le64_to_cpu(sb->size)/2;
1030 		mddev->events = le64_to_cpu(sb->events);
1031 		mddev->bitmap_offset = 0;
1032 		mddev->default_bitmap_offset = 1024;
1033 
1034 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1035 		memcpy(mddev->uuid, sb->set_uuid, 16);
1036 
1037 		mddev->max_disks =  (4096-256)/2;
1038 
1039 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1040 		    mddev->bitmap_file == NULL ) {
1041 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1042 			    && mddev->level != 10) {
1043 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1044 				return -EINVAL;
1045 			}
1046 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1047 		}
1048 	} else if (mddev->pers == NULL) {
1049 		/* Insist of good event counter while assembling */
1050 		__u64 ev1 = le64_to_cpu(sb->events);
1051 		++ev1;
1052 		if (ev1 < mddev->events)
1053 			return -EINVAL;
1054 	} else if (mddev->bitmap) {
1055 		/* If adding to array with a bitmap, then we can accept an
1056 		 * older device, but not too old.
1057 		 */
1058 		__u64 ev1 = le64_to_cpu(sb->events);
1059 		if (ev1 < mddev->bitmap->events_cleared)
1060 			return 0;
1061 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1062 		return 0;
1063 
1064 	if (mddev->level != LEVEL_MULTIPATH) {
1065 		int role;
1066 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1067 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1068 		switch(role) {
1069 		case 0xffff: /* spare */
1070 			break;
1071 		case 0xfffe: /* faulty */
1072 			set_bit(Faulty, &rdev->flags);
1073 			break;
1074 		default:
1075 			set_bit(In_sync, &rdev->flags);
1076 			rdev->raid_disk = role;
1077 			break;
1078 		}
1079 		if (sb->devflags & WriteMostly1)
1080 			set_bit(WriteMostly, &rdev->flags);
1081 	} else /* MULTIPATH are always insync */
1082 		set_bit(In_sync, &rdev->flags);
1083 
1084 	return 0;
1085 }
1086 
1087 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1088 {
1089 	struct mdp_superblock_1 *sb;
1090 	struct list_head *tmp;
1091 	mdk_rdev_t *rdev2;
1092 	int max_dev, i;
1093 	/* make rdev->sb match mddev and rdev data. */
1094 
1095 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1096 
1097 	sb->feature_map = 0;
1098 	sb->pad0 = 0;
1099 	memset(sb->pad1, 0, sizeof(sb->pad1));
1100 	memset(sb->pad2, 0, sizeof(sb->pad2));
1101 	memset(sb->pad3, 0, sizeof(sb->pad3));
1102 
1103 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1104 	sb->events = cpu_to_le64(mddev->events);
1105 	if (mddev->in_sync)
1106 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1107 	else
1108 		sb->resync_offset = cpu_to_le64(0);
1109 
1110 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1111 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1112 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1113 	}
1114 
1115 	max_dev = 0;
1116 	ITERATE_RDEV(mddev,rdev2,tmp)
1117 		if (rdev2->desc_nr+1 > max_dev)
1118 			max_dev = rdev2->desc_nr+1;
1119 
1120 	sb->max_dev = cpu_to_le32(max_dev);
1121 	for (i=0; i<max_dev;i++)
1122 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1123 
1124 	ITERATE_RDEV(mddev,rdev2,tmp) {
1125 		i = rdev2->desc_nr;
1126 		if (test_bit(Faulty, &rdev2->flags))
1127 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1128 		else if (test_bit(In_sync, &rdev2->flags))
1129 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1130 		else
1131 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1132 	}
1133 
1134 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1135 	sb->sb_csum = calc_sb_1_csum(sb);
1136 }
1137 
1138 
1139 static struct super_type super_types[] = {
1140 	[0] = {
1141 		.name	= "0.90.0",
1142 		.owner	= THIS_MODULE,
1143 		.load_super	= super_90_load,
1144 		.validate_super	= super_90_validate,
1145 		.sync_super	= super_90_sync,
1146 	},
1147 	[1] = {
1148 		.name	= "md-1",
1149 		.owner	= THIS_MODULE,
1150 		.load_super	= super_1_load,
1151 		.validate_super	= super_1_validate,
1152 		.sync_super	= super_1_sync,
1153 	},
1154 };
1155 
1156 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1157 {
1158 	struct list_head *tmp;
1159 	mdk_rdev_t *rdev;
1160 
1161 	ITERATE_RDEV(mddev,rdev,tmp)
1162 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1163 			return rdev;
1164 
1165 	return NULL;
1166 }
1167 
1168 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1169 {
1170 	struct list_head *tmp;
1171 	mdk_rdev_t *rdev;
1172 
1173 	ITERATE_RDEV(mddev1,rdev,tmp)
1174 		if (match_dev_unit(mddev2, rdev))
1175 			return 1;
1176 
1177 	return 0;
1178 }
1179 
1180 static LIST_HEAD(pending_raid_disks);
1181 
1182 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1183 {
1184 	mdk_rdev_t *same_pdev;
1185 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1186 	struct kobject *ko;
1187 
1188 	if (rdev->mddev) {
1189 		MD_BUG();
1190 		return -EINVAL;
1191 	}
1192 	same_pdev = match_dev_unit(mddev, rdev);
1193 	if (same_pdev)
1194 		printk(KERN_WARNING
1195 			"%s: WARNING: %s appears to be on the same physical"
1196 	 		" disk as %s. True\n     protection against single-disk"
1197 			" failure might be compromised.\n",
1198 			mdname(mddev), bdevname(rdev->bdev,b),
1199 			bdevname(same_pdev->bdev,b2));
1200 
1201 	/* Verify rdev->desc_nr is unique.
1202 	 * If it is -1, assign a free number, else
1203 	 * check number is not in use
1204 	 */
1205 	if (rdev->desc_nr < 0) {
1206 		int choice = 0;
1207 		if (mddev->pers) choice = mddev->raid_disks;
1208 		while (find_rdev_nr(mddev, choice))
1209 			choice++;
1210 		rdev->desc_nr = choice;
1211 	} else {
1212 		if (find_rdev_nr(mddev, rdev->desc_nr))
1213 			return -EBUSY;
1214 	}
1215 	bdevname(rdev->bdev,b);
1216 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1217 		return -ENOMEM;
1218 
1219 	list_add(&rdev->same_set, &mddev->disks);
1220 	rdev->mddev = mddev;
1221 	printk(KERN_INFO "md: bind<%s>\n", b);
1222 
1223 	rdev->kobj.parent = &mddev->kobj;
1224 	kobject_add(&rdev->kobj);
1225 
1226 	if (rdev->bdev->bd_part)
1227 		ko = &rdev->bdev->bd_part->kobj;
1228 	else
1229 		ko = &rdev->bdev->bd_disk->kobj;
1230 	sysfs_create_link(&rdev->kobj, ko, "block");
1231 	return 0;
1232 }
1233 
1234 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1235 {
1236 	char b[BDEVNAME_SIZE];
1237 	if (!rdev->mddev) {
1238 		MD_BUG();
1239 		return;
1240 	}
1241 	list_del_init(&rdev->same_set);
1242 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1243 	rdev->mddev = NULL;
1244 	sysfs_remove_link(&rdev->kobj, "block");
1245 	kobject_del(&rdev->kobj);
1246 }
1247 
1248 /*
1249  * prevent the device from being mounted, repartitioned or
1250  * otherwise reused by a RAID array (or any other kernel
1251  * subsystem), by bd_claiming the device.
1252  */
1253 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1254 {
1255 	int err = 0;
1256 	struct block_device *bdev;
1257 	char b[BDEVNAME_SIZE];
1258 
1259 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1260 	if (IS_ERR(bdev)) {
1261 		printk(KERN_ERR "md: could not open %s.\n",
1262 			__bdevname(dev, b));
1263 		return PTR_ERR(bdev);
1264 	}
1265 	err = bd_claim(bdev, rdev);
1266 	if (err) {
1267 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1268 			bdevname(bdev, b));
1269 		blkdev_put(bdev);
1270 		return err;
1271 	}
1272 	rdev->bdev = bdev;
1273 	return err;
1274 }
1275 
1276 static void unlock_rdev(mdk_rdev_t *rdev)
1277 {
1278 	struct block_device *bdev = rdev->bdev;
1279 	rdev->bdev = NULL;
1280 	if (!bdev)
1281 		MD_BUG();
1282 	bd_release(bdev);
1283 	blkdev_put(bdev);
1284 }
1285 
1286 void md_autodetect_dev(dev_t dev);
1287 
1288 static void export_rdev(mdk_rdev_t * rdev)
1289 {
1290 	char b[BDEVNAME_SIZE];
1291 	printk(KERN_INFO "md: export_rdev(%s)\n",
1292 		bdevname(rdev->bdev,b));
1293 	if (rdev->mddev)
1294 		MD_BUG();
1295 	free_disk_sb(rdev);
1296 	list_del_init(&rdev->same_set);
1297 #ifndef MODULE
1298 	md_autodetect_dev(rdev->bdev->bd_dev);
1299 #endif
1300 	unlock_rdev(rdev);
1301 	kobject_put(&rdev->kobj);
1302 }
1303 
1304 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1305 {
1306 	unbind_rdev_from_array(rdev);
1307 	export_rdev(rdev);
1308 }
1309 
1310 static void export_array(mddev_t *mddev)
1311 {
1312 	struct list_head *tmp;
1313 	mdk_rdev_t *rdev;
1314 
1315 	ITERATE_RDEV(mddev,rdev,tmp) {
1316 		if (!rdev->mddev) {
1317 			MD_BUG();
1318 			continue;
1319 		}
1320 		kick_rdev_from_array(rdev);
1321 	}
1322 	if (!list_empty(&mddev->disks))
1323 		MD_BUG();
1324 	mddev->raid_disks = 0;
1325 	mddev->major_version = 0;
1326 }
1327 
1328 static void print_desc(mdp_disk_t *desc)
1329 {
1330 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1331 		desc->major,desc->minor,desc->raid_disk,desc->state);
1332 }
1333 
1334 static void print_sb(mdp_super_t *sb)
1335 {
1336 	int i;
1337 
1338 	printk(KERN_INFO
1339 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1340 		sb->major_version, sb->minor_version, sb->patch_version,
1341 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1342 		sb->ctime);
1343 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1344 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1345 		sb->md_minor, sb->layout, sb->chunk_size);
1346 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1347 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1348 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1349 		sb->failed_disks, sb->spare_disks,
1350 		sb->sb_csum, (unsigned long)sb->events_lo);
1351 
1352 	printk(KERN_INFO);
1353 	for (i = 0; i < MD_SB_DISKS; i++) {
1354 		mdp_disk_t *desc;
1355 
1356 		desc = sb->disks + i;
1357 		if (desc->number || desc->major || desc->minor ||
1358 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1359 			printk("     D %2d: ", i);
1360 			print_desc(desc);
1361 		}
1362 	}
1363 	printk(KERN_INFO "md:     THIS: ");
1364 	print_desc(&sb->this_disk);
1365 
1366 }
1367 
1368 static void print_rdev(mdk_rdev_t *rdev)
1369 {
1370 	char b[BDEVNAME_SIZE];
1371 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1372 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1373 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1374 	        rdev->desc_nr);
1375 	if (rdev->sb_loaded) {
1376 		printk(KERN_INFO "md: rdev superblock:\n");
1377 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1378 	} else
1379 		printk(KERN_INFO "md: no rdev superblock!\n");
1380 }
1381 
1382 void md_print_devices(void)
1383 {
1384 	struct list_head *tmp, *tmp2;
1385 	mdk_rdev_t *rdev;
1386 	mddev_t *mddev;
1387 	char b[BDEVNAME_SIZE];
1388 
1389 	printk("\n");
1390 	printk("md:	**********************************\n");
1391 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1392 	printk("md:	**********************************\n");
1393 	ITERATE_MDDEV(mddev,tmp) {
1394 
1395 		if (mddev->bitmap)
1396 			bitmap_print_sb(mddev->bitmap);
1397 		else
1398 			printk("%s: ", mdname(mddev));
1399 		ITERATE_RDEV(mddev,rdev,tmp2)
1400 			printk("<%s>", bdevname(rdev->bdev,b));
1401 		printk("\n");
1402 
1403 		ITERATE_RDEV(mddev,rdev,tmp2)
1404 			print_rdev(rdev);
1405 	}
1406 	printk("md:	**********************************\n");
1407 	printk("\n");
1408 }
1409 
1410 
1411 static void sync_sbs(mddev_t * mddev)
1412 {
1413 	mdk_rdev_t *rdev;
1414 	struct list_head *tmp;
1415 
1416 	ITERATE_RDEV(mddev,rdev,tmp) {
1417 		super_types[mddev->major_version].
1418 			sync_super(mddev, rdev);
1419 		rdev->sb_loaded = 1;
1420 	}
1421 }
1422 
1423 static void md_update_sb(mddev_t * mddev)
1424 {
1425 	int err;
1426 	struct list_head *tmp;
1427 	mdk_rdev_t *rdev;
1428 	int sync_req;
1429 
1430 repeat:
1431 	spin_lock_irq(&mddev->write_lock);
1432 	sync_req = mddev->in_sync;
1433 	mddev->utime = get_seconds();
1434 	mddev->events ++;
1435 
1436 	if (!mddev->events) {
1437 		/*
1438 		 * oops, this 64-bit counter should never wrap.
1439 		 * Either we are in around ~1 trillion A.C., assuming
1440 		 * 1 reboot per second, or we have a bug:
1441 		 */
1442 		MD_BUG();
1443 		mddev->events --;
1444 	}
1445 	mddev->sb_dirty = 2;
1446 	sync_sbs(mddev);
1447 
1448 	/*
1449 	 * do not write anything to disk if using
1450 	 * nonpersistent superblocks
1451 	 */
1452 	if (!mddev->persistent) {
1453 		mddev->sb_dirty = 0;
1454 		spin_unlock_irq(&mddev->write_lock);
1455 		wake_up(&mddev->sb_wait);
1456 		return;
1457 	}
1458 	spin_unlock_irq(&mddev->write_lock);
1459 
1460 	dprintk(KERN_INFO
1461 		"md: updating %s RAID superblock on device (in sync %d)\n",
1462 		mdname(mddev),mddev->in_sync);
1463 
1464 	err = bitmap_update_sb(mddev->bitmap);
1465 	ITERATE_RDEV(mddev,rdev,tmp) {
1466 		char b[BDEVNAME_SIZE];
1467 		dprintk(KERN_INFO "md: ");
1468 		if (test_bit(Faulty, &rdev->flags))
1469 			dprintk("(skipping faulty ");
1470 
1471 		dprintk("%s ", bdevname(rdev->bdev,b));
1472 		if (!test_bit(Faulty, &rdev->flags)) {
1473 			md_super_write(mddev,rdev,
1474 				       rdev->sb_offset<<1, rdev->sb_size,
1475 				       rdev->sb_page);
1476 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1477 				bdevname(rdev->bdev,b),
1478 				(unsigned long long)rdev->sb_offset);
1479 
1480 		} else
1481 			dprintk(")\n");
1482 		if (mddev->level == LEVEL_MULTIPATH)
1483 			/* only need to write one superblock... */
1484 			break;
1485 	}
1486 	md_super_wait(mddev);
1487 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1488 
1489 	spin_lock_irq(&mddev->write_lock);
1490 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1491 		/* have to write it out again */
1492 		spin_unlock_irq(&mddev->write_lock);
1493 		goto repeat;
1494 	}
1495 	mddev->sb_dirty = 0;
1496 	spin_unlock_irq(&mddev->write_lock);
1497 	wake_up(&mddev->sb_wait);
1498 
1499 }
1500 
1501 struct rdev_sysfs_entry {
1502 	struct attribute attr;
1503 	ssize_t (*show)(mdk_rdev_t *, char *);
1504 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1505 };
1506 
1507 static ssize_t
1508 state_show(mdk_rdev_t *rdev, char *page)
1509 {
1510 	char *sep = "";
1511 	int len=0;
1512 
1513 	if (test_bit(Faulty, &rdev->flags)) {
1514 		len+= sprintf(page+len, "%sfaulty",sep);
1515 		sep = ",";
1516 	}
1517 	if (test_bit(In_sync, &rdev->flags)) {
1518 		len += sprintf(page+len, "%sin_sync",sep);
1519 		sep = ",";
1520 	}
1521 	if (!test_bit(Faulty, &rdev->flags) &&
1522 	    !test_bit(In_sync, &rdev->flags)) {
1523 		len += sprintf(page+len, "%sspare", sep);
1524 		sep = ",";
1525 	}
1526 	return len+sprintf(page+len, "\n");
1527 }
1528 
1529 static struct rdev_sysfs_entry
1530 rdev_state = __ATTR_RO(state);
1531 
1532 static ssize_t
1533 super_show(mdk_rdev_t *rdev, char *page)
1534 {
1535 	if (rdev->sb_loaded && rdev->sb_size) {
1536 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1537 		return rdev->sb_size;
1538 	} else
1539 		return 0;
1540 }
1541 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1542 
1543 static struct attribute *rdev_default_attrs[] = {
1544 	&rdev_state.attr,
1545 	&rdev_super.attr,
1546 	NULL,
1547 };
1548 static ssize_t
1549 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1550 {
1551 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1552 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1553 
1554 	if (!entry->show)
1555 		return -EIO;
1556 	return entry->show(rdev, page);
1557 }
1558 
1559 static ssize_t
1560 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1561 	      const char *page, size_t length)
1562 {
1563 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1564 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1565 
1566 	if (!entry->store)
1567 		return -EIO;
1568 	return entry->store(rdev, page, length);
1569 }
1570 
1571 static void rdev_free(struct kobject *ko)
1572 {
1573 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1574 	kfree(rdev);
1575 }
1576 static struct sysfs_ops rdev_sysfs_ops = {
1577 	.show		= rdev_attr_show,
1578 	.store		= rdev_attr_store,
1579 };
1580 static struct kobj_type rdev_ktype = {
1581 	.release	= rdev_free,
1582 	.sysfs_ops	= &rdev_sysfs_ops,
1583 	.default_attrs	= rdev_default_attrs,
1584 };
1585 
1586 /*
1587  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1588  *
1589  * mark the device faulty if:
1590  *
1591  *   - the device is nonexistent (zero size)
1592  *   - the device has no valid superblock
1593  *
1594  * a faulty rdev _never_ has rdev->sb set.
1595  */
1596 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1597 {
1598 	char b[BDEVNAME_SIZE];
1599 	int err;
1600 	mdk_rdev_t *rdev;
1601 	sector_t size;
1602 
1603 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1604 	if (!rdev) {
1605 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1606 		return ERR_PTR(-ENOMEM);
1607 	}
1608 	memset(rdev, 0, sizeof(*rdev));
1609 
1610 	if ((err = alloc_disk_sb(rdev)))
1611 		goto abort_free;
1612 
1613 	err = lock_rdev(rdev, newdev);
1614 	if (err)
1615 		goto abort_free;
1616 
1617 	rdev->kobj.parent = NULL;
1618 	rdev->kobj.ktype = &rdev_ktype;
1619 	kobject_init(&rdev->kobj);
1620 
1621 	rdev->desc_nr = -1;
1622 	rdev->flags = 0;
1623 	rdev->data_offset = 0;
1624 	atomic_set(&rdev->nr_pending, 0);
1625 	atomic_set(&rdev->read_errors, 0);
1626 
1627 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1628 	if (!size) {
1629 		printk(KERN_WARNING
1630 			"md: %s has zero or unknown size, marking faulty!\n",
1631 			bdevname(rdev->bdev,b));
1632 		err = -EINVAL;
1633 		goto abort_free;
1634 	}
1635 
1636 	if (super_format >= 0) {
1637 		err = super_types[super_format].
1638 			load_super(rdev, NULL, super_minor);
1639 		if (err == -EINVAL) {
1640 			printk(KERN_WARNING
1641 				"md: %s has invalid sb, not importing!\n",
1642 				bdevname(rdev->bdev,b));
1643 			goto abort_free;
1644 		}
1645 		if (err < 0) {
1646 			printk(KERN_WARNING
1647 				"md: could not read %s's sb, not importing!\n",
1648 				bdevname(rdev->bdev,b));
1649 			goto abort_free;
1650 		}
1651 	}
1652 	INIT_LIST_HEAD(&rdev->same_set);
1653 
1654 	return rdev;
1655 
1656 abort_free:
1657 	if (rdev->sb_page) {
1658 		if (rdev->bdev)
1659 			unlock_rdev(rdev);
1660 		free_disk_sb(rdev);
1661 	}
1662 	kfree(rdev);
1663 	return ERR_PTR(err);
1664 }
1665 
1666 /*
1667  * Check a full RAID array for plausibility
1668  */
1669 
1670 
1671 static void analyze_sbs(mddev_t * mddev)
1672 {
1673 	int i;
1674 	struct list_head *tmp;
1675 	mdk_rdev_t *rdev, *freshest;
1676 	char b[BDEVNAME_SIZE];
1677 
1678 	freshest = NULL;
1679 	ITERATE_RDEV(mddev,rdev,tmp)
1680 		switch (super_types[mddev->major_version].
1681 			load_super(rdev, freshest, mddev->minor_version)) {
1682 		case 1:
1683 			freshest = rdev;
1684 			break;
1685 		case 0:
1686 			break;
1687 		default:
1688 			printk( KERN_ERR \
1689 				"md: fatal superblock inconsistency in %s"
1690 				" -- removing from array\n",
1691 				bdevname(rdev->bdev,b));
1692 			kick_rdev_from_array(rdev);
1693 		}
1694 
1695 
1696 	super_types[mddev->major_version].
1697 		validate_super(mddev, freshest);
1698 
1699 	i = 0;
1700 	ITERATE_RDEV(mddev,rdev,tmp) {
1701 		if (rdev != freshest)
1702 			if (super_types[mddev->major_version].
1703 			    validate_super(mddev, rdev)) {
1704 				printk(KERN_WARNING "md: kicking non-fresh %s"
1705 					" from array!\n",
1706 					bdevname(rdev->bdev,b));
1707 				kick_rdev_from_array(rdev);
1708 				continue;
1709 			}
1710 		if (mddev->level == LEVEL_MULTIPATH) {
1711 			rdev->desc_nr = i++;
1712 			rdev->raid_disk = rdev->desc_nr;
1713 			set_bit(In_sync, &rdev->flags);
1714 		}
1715 	}
1716 
1717 
1718 
1719 	if (mddev->recovery_cp != MaxSector &&
1720 	    mddev->level >= 1)
1721 		printk(KERN_ERR "md: %s: raid array is not clean"
1722 		       " -- starting background reconstruction\n",
1723 		       mdname(mddev));
1724 
1725 }
1726 
1727 static ssize_t
1728 level_show(mddev_t *mddev, char *page)
1729 {
1730 	mdk_personality_t *p = mddev->pers;
1731 	if (p == NULL && mddev->raid_disks == 0)
1732 		return 0;
1733 	if (mddev->level >= 0)
1734 		return sprintf(page, "raid%d\n", mddev->level);
1735 	else
1736 		return sprintf(page, "%s\n", p->name);
1737 }
1738 
1739 static struct md_sysfs_entry md_level = __ATTR_RO(level);
1740 
1741 static ssize_t
1742 raid_disks_show(mddev_t *mddev, char *page)
1743 {
1744 	if (mddev->raid_disks == 0)
1745 		return 0;
1746 	return sprintf(page, "%d\n", mddev->raid_disks);
1747 }
1748 
1749 static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
1750 
1751 static ssize_t
1752 action_show(mddev_t *mddev, char *page)
1753 {
1754 	char *type = "idle";
1755 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1756 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1757 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1758 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1759 				type = "resync";
1760 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1761 				type = "check";
1762 			else
1763 				type = "repair";
1764 		} else
1765 			type = "recover";
1766 	}
1767 	return sprintf(page, "%s\n", type);
1768 }
1769 
1770 static ssize_t
1771 action_store(mddev_t *mddev, const char *page, size_t len)
1772 {
1773 	if (!mddev->pers || !mddev->pers->sync_request)
1774 		return -EINVAL;
1775 
1776 	if (strcmp(page, "idle")==0 || strcmp(page, "idle\n")==0) {
1777 		if (mddev->sync_thread) {
1778 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1779 			md_unregister_thread(mddev->sync_thread);
1780 			mddev->sync_thread = NULL;
1781 			mddev->recovery = 0;
1782 		}
1783 		return len;
1784 	}
1785 
1786 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1787 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1788 		return -EBUSY;
1789 	if (strcmp(page, "resync")==0 || strcmp(page, "resync\n")==0 ||
1790 	    strcmp(page, "recover")==0 || strcmp(page, "recover\n")==0)
1791 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1792 	else {
1793 		if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
1794 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1795 		else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
1796 			return -EINVAL;
1797 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1798 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1799 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1800 	}
1801 	md_wakeup_thread(mddev->thread);
1802 	return len;
1803 }
1804 
1805 static ssize_t
1806 mismatch_cnt_show(mddev_t *mddev, char *page)
1807 {
1808 	return sprintf(page, "%llu\n",
1809 		       (unsigned long long) mddev->resync_mismatches);
1810 }
1811 
1812 static struct md_sysfs_entry
1813 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
1814 
1815 
1816 static struct md_sysfs_entry
1817 md_mismatches = __ATTR_RO(mismatch_cnt);
1818 
1819 static struct attribute *md_default_attrs[] = {
1820 	&md_level.attr,
1821 	&md_raid_disks.attr,
1822 	NULL,
1823 };
1824 
1825 static struct attribute *md_redundancy_attrs[] = {
1826 	&md_scan_mode.attr,
1827 	&md_mismatches.attr,
1828 	NULL,
1829 };
1830 static struct attribute_group md_redundancy_group = {
1831 	.name = NULL,
1832 	.attrs = md_redundancy_attrs,
1833 };
1834 
1835 
1836 static ssize_t
1837 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1838 {
1839 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1840 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1841 	ssize_t rv;
1842 
1843 	if (!entry->show)
1844 		return -EIO;
1845 	mddev_lock(mddev);
1846 	rv = entry->show(mddev, page);
1847 	mddev_unlock(mddev);
1848 	return rv;
1849 }
1850 
1851 static ssize_t
1852 md_attr_store(struct kobject *kobj, struct attribute *attr,
1853 	      const char *page, size_t length)
1854 {
1855 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1856 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1857 	ssize_t rv;
1858 
1859 	if (!entry->store)
1860 		return -EIO;
1861 	mddev_lock(mddev);
1862 	rv = entry->store(mddev, page, length);
1863 	mddev_unlock(mddev);
1864 	return rv;
1865 }
1866 
1867 static void md_free(struct kobject *ko)
1868 {
1869 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
1870 	kfree(mddev);
1871 }
1872 
1873 static struct sysfs_ops md_sysfs_ops = {
1874 	.show	= md_attr_show,
1875 	.store	= md_attr_store,
1876 };
1877 static struct kobj_type md_ktype = {
1878 	.release	= md_free,
1879 	.sysfs_ops	= &md_sysfs_ops,
1880 	.default_attrs	= md_default_attrs,
1881 };
1882 
1883 int mdp_major = 0;
1884 
1885 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1886 {
1887 	static DECLARE_MUTEX(disks_sem);
1888 	mddev_t *mddev = mddev_find(dev);
1889 	struct gendisk *disk;
1890 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1891 	int shift = partitioned ? MdpMinorShift : 0;
1892 	int unit = MINOR(dev) >> shift;
1893 
1894 	if (!mddev)
1895 		return NULL;
1896 
1897 	down(&disks_sem);
1898 	if (mddev->gendisk) {
1899 		up(&disks_sem);
1900 		mddev_put(mddev);
1901 		return NULL;
1902 	}
1903 	disk = alloc_disk(1 << shift);
1904 	if (!disk) {
1905 		up(&disks_sem);
1906 		mddev_put(mddev);
1907 		return NULL;
1908 	}
1909 	disk->major = MAJOR(dev);
1910 	disk->first_minor = unit << shift;
1911 	if (partitioned) {
1912 		sprintf(disk->disk_name, "md_d%d", unit);
1913 		sprintf(disk->devfs_name, "md/d%d", unit);
1914 	} else {
1915 		sprintf(disk->disk_name, "md%d", unit);
1916 		sprintf(disk->devfs_name, "md/%d", unit);
1917 	}
1918 	disk->fops = &md_fops;
1919 	disk->private_data = mddev;
1920 	disk->queue = mddev->queue;
1921 	add_disk(disk);
1922 	mddev->gendisk = disk;
1923 	up(&disks_sem);
1924 	mddev->kobj.parent = &disk->kobj;
1925 	mddev->kobj.k_name = NULL;
1926 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1927 	mddev->kobj.ktype = &md_ktype;
1928 	kobject_register(&mddev->kobj);
1929 	return NULL;
1930 }
1931 
1932 void md_wakeup_thread(mdk_thread_t *thread);
1933 
1934 static void md_safemode_timeout(unsigned long data)
1935 {
1936 	mddev_t *mddev = (mddev_t *) data;
1937 
1938 	mddev->safemode = 1;
1939 	md_wakeup_thread(mddev->thread);
1940 }
1941 
1942 static int start_dirty_degraded;
1943 
1944 static int do_md_run(mddev_t * mddev)
1945 {
1946 	int pnum, err;
1947 	int chunk_size;
1948 	struct list_head *tmp;
1949 	mdk_rdev_t *rdev;
1950 	struct gendisk *disk;
1951 	char b[BDEVNAME_SIZE];
1952 
1953 	if (list_empty(&mddev->disks))
1954 		/* cannot run an array with no devices.. */
1955 		return -EINVAL;
1956 
1957 	if (mddev->pers)
1958 		return -EBUSY;
1959 
1960 	/*
1961 	 * Analyze all RAID superblock(s)
1962 	 */
1963 	if (!mddev->raid_disks)
1964 		analyze_sbs(mddev);
1965 
1966 	chunk_size = mddev->chunk_size;
1967 	pnum = level_to_pers(mddev->level);
1968 
1969 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1970 		if (!chunk_size) {
1971 			/*
1972 			 * 'default chunksize' in the old md code used to
1973 			 * be PAGE_SIZE, baaad.
1974 			 * we abort here to be on the safe side. We don't
1975 			 * want to continue the bad practice.
1976 			 */
1977 			printk(KERN_ERR
1978 				"no chunksize specified, see 'man raidtab'\n");
1979 			return -EINVAL;
1980 		}
1981 		if (chunk_size > MAX_CHUNK_SIZE) {
1982 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1983 				chunk_size, MAX_CHUNK_SIZE);
1984 			return -EINVAL;
1985 		}
1986 		/*
1987 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1988 		 */
1989 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1990 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1991 			return -EINVAL;
1992 		}
1993 		if (chunk_size < PAGE_SIZE) {
1994 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1995 				chunk_size, PAGE_SIZE);
1996 			return -EINVAL;
1997 		}
1998 
1999 		/* devices must have minimum size of one chunk */
2000 		ITERATE_RDEV(mddev,rdev,tmp) {
2001 			if (test_bit(Faulty, &rdev->flags))
2002 				continue;
2003 			if (rdev->size < chunk_size / 1024) {
2004 				printk(KERN_WARNING
2005 					"md: Dev %s smaller than chunk_size:"
2006 					" %lluk < %dk\n",
2007 					bdevname(rdev->bdev,b),
2008 					(unsigned long long)rdev->size,
2009 					chunk_size / 1024);
2010 				return -EINVAL;
2011 			}
2012 		}
2013 	}
2014 
2015 #ifdef CONFIG_KMOD
2016 	if (!pers[pnum])
2017 	{
2018 		request_module("md-personality-%d", pnum);
2019 	}
2020 #endif
2021 
2022 	/*
2023 	 * Drop all container device buffers, from now on
2024 	 * the only valid external interface is through the md
2025 	 * device.
2026 	 * Also find largest hardsector size
2027 	 */
2028 	ITERATE_RDEV(mddev,rdev,tmp) {
2029 		if (test_bit(Faulty, &rdev->flags))
2030 			continue;
2031 		sync_blockdev(rdev->bdev);
2032 		invalidate_bdev(rdev->bdev, 0);
2033 	}
2034 
2035 	md_probe(mddev->unit, NULL, NULL);
2036 	disk = mddev->gendisk;
2037 	if (!disk)
2038 		return -ENOMEM;
2039 
2040 	spin_lock(&pers_lock);
2041 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
2042 		spin_unlock(&pers_lock);
2043 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
2044 		       pnum);
2045 		return -EINVAL;
2046 	}
2047 
2048 	mddev->pers = pers[pnum];
2049 	spin_unlock(&pers_lock);
2050 
2051 	mddev->recovery = 0;
2052 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2053 	mddev->barriers_work = 1;
2054 	mddev->ok_start_degraded = start_dirty_degraded;
2055 
2056 	if (start_readonly)
2057 		mddev->ro = 2; /* read-only, but switch on first write */
2058 
2059 	err = mddev->pers->run(mddev);
2060 	if (!err && mddev->pers->sync_request) {
2061 		err = bitmap_create(mddev);
2062 		if (err) {
2063 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2064 			       mdname(mddev), err);
2065 			mddev->pers->stop(mddev);
2066 		}
2067 	}
2068 	if (err) {
2069 		printk(KERN_ERR "md: pers->run() failed ...\n");
2070 		module_put(mddev->pers->owner);
2071 		mddev->pers = NULL;
2072 		bitmap_destroy(mddev);
2073 		return err;
2074 	}
2075 	if (mddev->pers->sync_request)
2076 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2077 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
2078 		mddev->ro = 0;
2079 
2080  	atomic_set(&mddev->writes_pending,0);
2081 	mddev->safemode = 0;
2082 	mddev->safemode_timer.function = md_safemode_timeout;
2083 	mddev->safemode_timer.data = (unsigned long) mddev;
2084 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2085 	mddev->in_sync = 1;
2086 
2087 	ITERATE_RDEV(mddev,rdev,tmp)
2088 		if (rdev->raid_disk >= 0) {
2089 			char nm[20];
2090 			sprintf(nm, "rd%d", rdev->raid_disk);
2091 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2092 		}
2093 
2094 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2095 	md_wakeup_thread(mddev->thread);
2096 
2097 	if (mddev->sb_dirty)
2098 		md_update_sb(mddev);
2099 
2100 	set_capacity(disk, mddev->array_size<<1);
2101 
2102 	/* If we call blk_queue_make_request here, it will
2103 	 * re-initialise max_sectors etc which may have been
2104 	 * refined inside -> run.  So just set the bits we need to set.
2105 	 * Most initialisation happended when we called
2106 	 * blk_queue_make_request(..., md_fail_request)
2107 	 * earlier.
2108 	 */
2109 	mddev->queue->queuedata = mddev;
2110 	mddev->queue->make_request_fn = mddev->pers->make_request;
2111 
2112 	mddev->changed = 1;
2113 	return 0;
2114 }
2115 
2116 static int restart_array(mddev_t *mddev)
2117 {
2118 	struct gendisk *disk = mddev->gendisk;
2119 	int err;
2120 
2121 	/*
2122 	 * Complain if it has no devices
2123 	 */
2124 	err = -ENXIO;
2125 	if (list_empty(&mddev->disks))
2126 		goto out;
2127 
2128 	if (mddev->pers) {
2129 		err = -EBUSY;
2130 		if (!mddev->ro)
2131 			goto out;
2132 
2133 		mddev->safemode = 0;
2134 		mddev->ro = 0;
2135 		set_disk_ro(disk, 0);
2136 
2137 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2138 			mdname(mddev));
2139 		/*
2140 		 * Kick recovery or resync if necessary
2141 		 */
2142 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2143 		md_wakeup_thread(mddev->thread);
2144 		err = 0;
2145 	} else {
2146 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2147 			mdname(mddev));
2148 		err = -EINVAL;
2149 	}
2150 
2151 out:
2152 	return err;
2153 }
2154 
2155 static int do_md_stop(mddev_t * mddev, int ro)
2156 {
2157 	int err = 0;
2158 	struct gendisk *disk = mddev->gendisk;
2159 
2160 	if (mddev->pers) {
2161 		if (atomic_read(&mddev->active)>2) {
2162 			printk("md: %s still in use.\n",mdname(mddev));
2163 			return -EBUSY;
2164 		}
2165 
2166 		if (mddev->sync_thread) {
2167 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2168 			md_unregister_thread(mddev->sync_thread);
2169 			mddev->sync_thread = NULL;
2170 		}
2171 
2172 		del_timer_sync(&mddev->safemode_timer);
2173 
2174 		invalidate_partition(disk, 0);
2175 
2176 		if (ro) {
2177 			err  = -ENXIO;
2178 			if (mddev->ro==1)
2179 				goto out;
2180 			mddev->ro = 1;
2181 		} else {
2182 			bitmap_flush(mddev);
2183 			md_super_wait(mddev);
2184 			if (mddev->ro)
2185 				set_disk_ro(disk, 0);
2186 			blk_queue_make_request(mddev->queue, md_fail_request);
2187 			mddev->pers->stop(mddev);
2188 			if (mddev->pers->sync_request)
2189 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2190 
2191 			module_put(mddev->pers->owner);
2192 			mddev->pers = NULL;
2193 			if (mddev->ro)
2194 				mddev->ro = 0;
2195 		}
2196 		if (!mddev->in_sync) {
2197 			/* mark array as shutdown cleanly */
2198 			mddev->in_sync = 1;
2199 			md_update_sb(mddev);
2200 		}
2201 		if (ro)
2202 			set_disk_ro(disk, 1);
2203 	}
2204 
2205 	bitmap_destroy(mddev);
2206 	if (mddev->bitmap_file) {
2207 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2208 		fput(mddev->bitmap_file);
2209 		mddev->bitmap_file = NULL;
2210 	}
2211 	mddev->bitmap_offset = 0;
2212 
2213 	/*
2214 	 * Free resources if final stop
2215 	 */
2216 	if (!ro) {
2217 		mdk_rdev_t *rdev;
2218 		struct list_head *tmp;
2219 		struct gendisk *disk;
2220 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2221 
2222 		ITERATE_RDEV(mddev,rdev,tmp)
2223 			if (rdev->raid_disk >= 0) {
2224 				char nm[20];
2225 				sprintf(nm, "rd%d", rdev->raid_disk);
2226 				sysfs_remove_link(&mddev->kobj, nm);
2227 			}
2228 
2229 		export_array(mddev);
2230 
2231 		mddev->array_size = 0;
2232 		disk = mddev->gendisk;
2233 		if (disk)
2234 			set_capacity(disk, 0);
2235 		mddev->changed = 1;
2236 	} else
2237 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2238 			mdname(mddev));
2239 	err = 0;
2240 out:
2241 	return err;
2242 }
2243 
2244 static void autorun_array(mddev_t *mddev)
2245 {
2246 	mdk_rdev_t *rdev;
2247 	struct list_head *tmp;
2248 	int err;
2249 
2250 	if (list_empty(&mddev->disks))
2251 		return;
2252 
2253 	printk(KERN_INFO "md: running: ");
2254 
2255 	ITERATE_RDEV(mddev,rdev,tmp) {
2256 		char b[BDEVNAME_SIZE];
2257 		printk("<%s>", bdevname(rdev->bdev,b));
2258 	}
2259 	printk("\n");
2260 
2261 	err = do_md_run (mddev);
2262 	if (err) {
2263 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2264 		do_md_stop (mddev, 0);
2265 	}
2266 }
2267 
2268 /*
2269  * lets try to run arrays based on all disks that have arrived
2270  * until now. (those are in pending_raid_disks)
2271  *
2272  * the method: pick the first pending disk, collect all disks with
2273  * the same UUID, remove all from the pending list and put them into
2274  * the 'same_array' list. Then order this list based on superblock
2275  * update time (freshest comes first), kick out 'old' disks and
2276  * compare superblocks. If everything's fine then run it.
2277  *
2278  * If "unit" is allocated, then bump its reference count
2279  */
2280 static void autorun_devices(int part)
2281 {
2282 	struct list_head candidates;
2283 	struct list_head *tmp;
2284 	mdk_rdev_t *rdev0, *rdev;
2285 	mddev_t *mddev;
2286 	char b[BDEVNAME_SIZE];
2287 
2288 	printk(KERN_INFO "md: autorun ...\n");
2289 	while (!list_empty(&pending_raid_disks)) {
2290 		dev_t dev;
2291 		rdev0 = list_entry(pending_raid_disks.next,
2292 					 mdk_rdev_t, same_set);
2293 
2294 		printk(KERN_INFO "md: considering %s ...\n",
2295 			bdevname(rdev0->bdev,b));
2296 		INIT_LIST_HEAD(&candidates);
2297 		ITERATE_RDEV_PENDING(rdev,tmp)
2298 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2299 				printk(KERN_INFO "md:  adding %s ...\n",
2300 					bdevname(rdev->bdev,b));
2301 				list_move(&rdev->same_set, &candidates);
2302 			}
2303 		/*
2304 		 * now we have a set of devices, with all of them having
2305 		 * mostly sane superblocks. It's time to allocate the
2306 		 * mddev.
2307 		 */
2308 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2309 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2310 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2311 			break;
2312 		}
2313 		if (part)
2314 			dev = MKDEV(mdp_major,
2315 				    rdev0->preferred_minor << MdpMinorShift);
2316 		else
2317 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2318 
2319 		md_probe(dev, NULL, NULL);
2320 		mddev = mddev_find(dev);
2321 		if (!mddev) {
2322 			printk(KERN_ERR
2323 				"md: cannot allocate memory for md drive.\n");
2324 			break;
2325 		}
2326 		if (mddev_lock(mddev))
2327 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2328 			       mdname(mddev));
2329 		else if (mddev->raid_disks || mddev->major_version
2330 			 || !list_empty(&mddev->disks)) {
2331 			printk(KERN_WARNING
2332 				"md: %s already running, cannot run %s\n",
2333 				mdname(mddev), bdevname(rdev0->bdev,b));
2334 			mddev_unlock(mddev);
2335 		} else {
2336 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2337 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2338 				list_del_init(&rdev->same_set);
2339 				if (bind_rdev_to_array(rdev, mddev))
2340 					export_rdev(rdev);
2341 			}
2342 			autorun_array(mddev);
2343 			mddev_unlock(mddev);
2344 		}
2345 		/* on success, candidates will be empty, on error
2346 		 * it won't...
2347 		 */
2348 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2349 			export_rdev(rdev);
2350 		mddev_put(mddev);
2351 	}
2352 	printk(KERN_INFO "md: ... autorun DONE.\n");
2353 }
2354 
2355 /*
2356  * import RAID devices based on one partition
2357  * if possible, the array gets run as well.
2358  */
2359 
2360 static int autostart_array(dev_t startdev)
2361 {
2362 	char b[BDEVNAME_SIZE];
2363 	int err = -EINVAL, i;
2364 	mdp_super_t *sb = NULL;
2365 	mdk_rdev_t *start_rdev = NULL, *rdev;
2366 
2367 	start_rdev = md_import_device(startdev, 0, 0);
2368 	if (IS_ERR(start_rdev))
2369 		return err;
2370 
2371 
2372 	/* NOTE: this can only work for 0.90.0 superblocks */
2373 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2374 	if (sb->major_version != 0 ||
2375 	    sb->minor_version != 90 ) {
2376 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2377 		export_rdev(start_rdev);
2378 		return err;
2379 	}
2380 
2381 	if (test_bit(Faulty, &start_rdev->flags)) {
2382 		printk(KERN_WARNING
2383 			"md: can not autostart based on faulty %s!\n",
2384 			bdevname(start_rdev->bdev,b));
2385 		export_rdev(start_rdev);
2386 		return err;
2387 	}
2388 	list_add(&start_rdev->same_set, &pending_raid_disks);
2389 
2390 	for (i = 0; i < MD_SB_DISKS; i++) {
2391 		mdp_disk_t *desc = sb->disks + i;
2392 		dev_t dev = MKDEV(desc->major, desc->minor);
2393 
2394 		if (!dev)
2395 			continue;
2396 		if (dev == startdev)
2397 			continue;
2398 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2399 			continue;
2400 		rdev = md_import_device(dev, 0, 0);
2401 		if (IS_ERR(rdev))
2402 			continue;
2403 
2404 		list_add(&rdev->same_set, &pending_raid_disks);
2405 	}
2406 
2407 	/*
2408 	 * possibly return codes
2409 	 */
2410 	autorun_devices(0);
2411 	return 0;
2412 
2413 }
2414 
2415 
2416 static int get_version(void __user * arg)
2417 {
2418 	mdu_version_t ver;
2419 
2420 	ver.major = MD_MAJOR_VERSION;
2421 	ver.minor = MD_MINOR_VERSION;
2422 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2423 
2424 	if (copy_to_user(arg, &ver, sizeof(ver)))
2425 		return -EFAULT;
2426 
2427 	return 0;
2428 }
2429 
2430 static int get_array_info(mddev_t * mddev, void __user * arg)
2431 {
2432 	mdu_array_info_t info;
2433 	int nr,working,active,failed,spare;
2434 	mdk_rdev_t *rdev;
2435 	struct list_head *tmp;
2436 
2437 	nr=working=active=failed=spare=0;
2438 	ITERATE_RDEV(mddev,rdev,tmp) {
2439 		nr++;
2440 		if (test_bit(Faulty, &rdev->flags))
2441 			failed++;
2442 		else {
2443 			working++;
2444 			if (test_bit(In_sync, &rdev->flags))
2445 				active++;
2446 			else
2447 				spare++;
2448 		}
2449 	}
2450 
2451 	info.major_version = mddev->major_version;
2452 	info.minor_version = mddev->minor_version;
2453 	info.patch_version = MD_PATCHLEVEL_VERSION;
2454 	info.ctime         = mddev->ctime;
2455 	info.level         = mddev->level;
2456 	info.size          = mddev->size;
2457 	info.nr_disks      = nr;
2458 	info.raid_disks    = mddev->raid_disks;
2459 	info.md_minor      = mddev->md_minor;
2460 	info.not_persistent= !mddev->persistent;
2461 
2462 	info.utime         = mddev->utime;
2463 	info.state         = 0;
2464 	if (mddev->in_sync)
2465 		info.state = (1<<MD_SB_CLEAN);
2466 	if (mddev->bitmap && mddev->bitmap_offset)
2467 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2468 	info.active_disks  = active;
2469 	info.working_disks = working;
2470 	info.failed_disks  = failed;
2471 	info.spare_disks   = spare;
2472 
2473 	info.layout        = mddev->layout;
2474 	info.chunk_size    = mddev->chunk_size;
2475 
2476 	if (copy_to_user(arg, &info, sizeof(info)))
2477 		return -EFAULT;
2478 
2479 	return 0;
2480 }
2481 
2482 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2483 {
2484 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2485 	char *ptr, *buf = NULL;
2486 	int err = -ENOMEM;
2487 
2488 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2489 	if (!file)
2490 		goto out;
2491 
2492 	/* bitmap disabled, zero the first byte and copy out */
2493 	if (!mddev->bitmap || !mddev->bitmap->file) {
2494 		file->pathname[0] = '\0';
2495 		goto copy_out;
2496 	}
2497 
2498 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2499 	if (!buf)
2500 		goto out;
2501 
2502 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2503 	if (!ptr)
2504 		goto out;
2505 
2506 	strcpy(file->pathname, ptr);
2507 
2508 copy_out:
2509 	err = 0;
2510 	if (copy_to_user(arg, file, sizeof(*file)))
2511 		err = -EFAULT;
2512 out:
2513 	kfree(buf);
2514 	kfree(file);
2515 	return err;
2516 }
2517 
2518 static int get_disk_info(mddev_t * mddev, void __user * arg)
2519 {
2520 	mdu_disk_info_t info;
2521 	unsigned int nr;
2522 	mdk_rdev_t *rdev;
2523 
2524 	if (copy_from_user(&info, arg, sizeof(info)))
2525 		return -EFAULT;
2526 
2527 	nr = info.number;
2528 
2529 	rdev = find_rdev_nr(mddev, nr);
2530 	if (rdev) {
2531 		info.major = MAJOR(rdev->bdev->bd_dev);
2532 		info.minor = MINOR(rdev->bdev->bd_dev);
2533 		info.raid_disk = rdev->raid_disk;
2534 		info.state = 0;
2535 		if (test_bit(Faulty, &rdev->flags))
2536 			info.state |= (1<<MD_DISK_FAULTY);
2537 		else if (test_bit(In_sync, &rdev->flags)) {
2538 			info.state |= (1<<MD_DISK_ACTIVE);
2539 			info.state |= (1<<MD_DISK_SYNC);
2540 		}
2541 		if (test_bit(WriteMostly, &rdev->flags))
2542 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2543 	} else {
2544 		info.major = info.minor = 0;
2545 		info.raid_disk = -1;
2546 		info.state = (1<<MD_DISK_REMOVED);
2547 	}
2548 
2549 	if (copy_to_user(arg, &info, sizeof(info)))
2550 		return -EFAULT;
2551 
2552 	return 0;
2553 }
2554 
2555 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2556 {
2557 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2558 	mdk_rdev_t *rdev;
2559 	dev_t dev = MKDEV(info->major,info->minor);
2560 
2561 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2562 		return -EOVERFLOW;
2563 
2564 	if (!mddev->raid_disks) {
2565 		int err;
2566 		/* expecting a device which has a superblock */
2567 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2568 		if (IS_ERR(rdev)) {
2569 			printk(KERN_WARNING
2570 				"md: md_import_device returned %ld\n",
2571 				PTR_ERR(rdev));
2572 			return PTR_ERR(rdev);
2573 		}
2574 		if (!list_empty(&mddev->disks)) {
2575 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2576 							mdk_rdev_t, same_set);
2577 			int err = super_types[mddev->major_version]
2578 				.load_super(rdev, rdev0, mddev->minor_version);
2579 			if (err < 0) {
2580 				printk(KERN_WARNING
2581 					"md: %s has different UUID to %s\n",
2582 					bdevname(rdev->bdev,b),
2583 					bdevname(rdev0->bdev,b2));
2584 				export_rdev(rdev);
2585 				return -EINVAL;
2586 			}
2587 		}
2588 		err = bind_rdev_to_array(rdev, mddev);
2589 		if (err)
2590 			export_rdev(rdev);
2591 		return err;
2592 	}
2593 
2594 	/*
2595 	 * add_new_disk can be used once the array is assembled
2596 	 * to add "hot spares".  They must already have a superblock
2597 	 * written
2598 	 */
2599 	if (mddev->pers) {
2600 		int err;
2601 		if (!mddev->pers->hot_add_disk) {
2602 			printk(KERN_WARNING
2603 				"%s: personality does not support diskops!\n",
2604 			       mdname(mddev));
2605 			return -EINVAL;
2606 		}
2607 		if (mddev->persistent)
2608 			rdev = md_import_device(dev, mddev->major_version,
2609 						mddev->minor_version);
2610 		else
2611 			rdev = md_import_device(dev, -1, -1);
2612 		if (IS_ERR(rdev)) {
2613 			printk(KERN_WARNING
2614 				"md: md_import_device returned %ld\n",
2615 				PTR_ERR(rdev));
2616 			return PTR_ERR(rdev);
2617 		}
2618 		/* set save_raid_disk if appropriate */
2619 		if (!mddev->persistent) {
2620 			if (info->state & (1<<MD_DISK_SYNC)  &&
2621 			    info->raid_disk < mddev->raid_disks)
2622 				rdev->raid_disk = info->raid_disk;
2623 			else
2624 				rdev->raid_disk = -1;
2625 		} else
2626 			super_types[mddev->major_version].
2627 				validate_super(mddev, rdev);
2628 		rdev->saved_raid_disk = rdev->raid_disk;
2629 
2630 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
2631 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2632 			set_bit(WriteMostly, &rdev->flags);
2633 
2634 		rdev->raid_disk = -1;
2635 		err = bind_rdev_to_array(rdev, mddev);
2636 		if (err)
2637 			export_rdev(rdev);
2638 
2639 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2640 		md_wakeup_thread(mddev->thread);
2641 		return err;
2642 	}
2643 
2644 	/* otherwise, add_new_disk is only allowed
2645 	 * for major_version==0 superblocks
2646 	 */
2647 	if (mddev->major_version != 0) {
2648 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2649 		       mdname(mddev));
2650 		return -EINVAL;
2651 	}
2652 
2653 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2654 		int err;
2655 		rdev = md_import_device (dev, -1, 0);
2656 		if (IS_ERR(rdev)) {
2657 			printk(KERN_WARNING
2658 				"md: error, md_import_device() returned %ld\n",
2659 				PTR_ERR(rdev));
2660 			return PTR_ERR(rdev);
2661 		}
2662 		rdev->desc_nr = info->number;
2663 		if (info->raid_disk < mddev->raid_disks)
2664 			rdev->raid_disk = info->raid_disk;
2665 		else
2666 			rdev->raid_disk = -1;
2667 
2668 		rdev->flags = 0;
2669 
2670 		if (rdev->raid_disk < mddev->raid_disks)
2671 			if (info->state & (1<<MD_DISK_SYNC))
2672 				set_bit(In_sync, &rdev->flags);
2673 
2674 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2675 			set_bit(WriteMostly, &rdev->flags);
2676 
2677 		err = bind_rdev_to_array(rdev, mddev);
2678 		if (err) {
2679 			export_rdev(rdev);
2680 			return err;
2681 		}
2682 
2683 		if (!mddev->persistent) {
2684 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2685 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2686 		} else
2687 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2688 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2689 
2690 		if (!mddev->size || (mddev->size > rdev->size))
2691 			mddev->size = rdev->size;
2692 	}
2693 
2694 	return 0;
2695 }
2696 
2697 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2698 {
2699 	char b[BDEVNAME_SIZE];
2700 	mdk_rdev_t *rdev;
2701 
2702 	if (!mddev->pers)
2703 		return -ENODEV;
2704 
2705 	rdev = find_rdev(mddev, dev);
2706 	if (!rdev)
2707 		return -ENXIO;
2708 
2709 	if (rdev->raid_disk >= 0)
2710 		goto busy;
2711 
2712 	kick_rdev_from_array(rdev);
2713 	md_update_sb(mddev);
2714 
2715 	return 0;
2716 busy:
2717 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2718 		bdevname(rdev->bdev,b), mdname(mddev));
2719 	return -EBUSY;
2720 }
2721 
2722 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2723 {
2724 	char b[BDEVNAME_SIZE];
2725 	int err;
2726 	unsigned int size;
2727 	mdk_rdev_t *rdev;
2728 
2729 	if (!mddev->pers)
2730 		return -ENODEV;
2731 
2732 	if (mddev->major_version != 0) {
2733 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2734 			" version-0 superblocks.\n",
2735 			mdname(mddev));
2736 		return -EINVAL;
2737 	}
2738 	if (!mddev->pers->hot_add_disk) {
2739 		printk(KERN_WARNING
2740 			"%s: personality does not support diskops!\n",
2741 			mdname(mddev));
2742 		return -EINVAL;
2743 	}
2744 
2745 	rdev = md_import_device (dev, -1, 0);
2746 	if (IS_ERR(rdev)) {
2747 		printk(KERN_WARNING
2748 			"md: error, md_import_device() returned %ld\n",
2749 			PTR_ERR(rdev));
2750 		return -EINVAL;
2751 	}
2752 
2753 	if (mddev->persistent)
2754 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2755 	else
2756 		rdev->sb_offset =
2757 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2758 
2759 	size = calc_dev_size(rdev, mddev->chunk_size);
2760 	rdev->size = size;
2761 
2762 	if (size < mddev->size) {
2763 		printk(KERN_WARNING
2764 			"%s: disk size %llu blocks < array size %llu\n",
2765 			mdname(mddev), (unsigned long long)size,
2766 			(unsigned long long)mddev->size);
2767 		err = -ENOSPC;
2768 		goto abort_export;
2769 	}
2770 
2771 	if (test_bit(Faulty, &rdev->flags)) {
2772 		printk(KERN_WARNING
2773 			"md: can not hot-add faulty %s disk to %s!\n",
2774 			bdevname(rdev->bdev,b), mdname(mddev));
2775 		err = -EINVAL;
2776 		goto abort_export;
2777 	}
2778 	clear_bit(In_sync, &rdev->flags);
2779 	rdev->desc_nr = -1;
2780 	bind_rdev_to_array(rdev, mddev);
2781 
2782 	/*
2783 	 * The rest should better be atomic, we can have disk failures
2784 	 * noticed in interrupt contexts ...
2785 	 */
2786 
2787 	if (rdev->desc_nr == mddev->max_disks) {
2788 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2789 			mdname(mddev));
2790 		err = -EBUSY;
2791 		goto abort_unbind_export;
2792 	}
2793 
2794 	rdev->raid_disk = -1;
2795 
2796 	md_update_sb(mddev);
2797 
2798 	/*
2799 	 * Kick recovery, maybe this spare has to be added to the
2800 	 * array immediately.
2801 	 */
2802 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2803 	md_wakeup_thread(mddev->thread);
2804 
2805 	return 0;
2806 
2807 abort_unbind_export:
2808 	unbind_rdev_from_array(rdev);
2809 
2810 abort_export:
2811 	export_rdev(rdev);
2812 	return err;
2813 }
2814 
2815 /* similar to deny_write_access, but accounts for our holding a reference
2816  * to the file ourselves */
2817 static int deny_bitmap_write_access(struct file * file)
2818 {
2819 	struct inode *inode = file->f_mapping->host;
2820 
2821 	spin_lock(&inode->i_lock);
2822 	if (atomic_read(&inode->i_writecount) > 1) {
2823 		spin_unlock(&inode->i_lock);
2824 		return -ETXTBSY;
2825 	}
2826 	atomic_set(&inode->i_writecount, -1);
2827 	spin_unlock(&inode->i_lock);
2828 
2829 	return 0;
2830 }
2831 
2832 static int set_bitmap_file(mddev_t *mddev, int fd)
2833 {
2834 	int err;
2835 
2836 	if (mddev->pers) {
2837 		if (!mddev->pers->quiesce)
2838 			return -EBUSY;
2839 		if (mddev->recovery || mddev->sync_thread)
2840 			return -EBUSY;
2841 		/* we should be able to change the bitmap.. */
2842 	}
2843 
2844 
2845 	if (fd >= 0) {
2846 		if (mddev->bitmap)
2847 			return -EEXIST; /* cannot add when bitmap is present */
2848 		mddev->bitmap_file = fget(fd);
2849 
2850 		if (mddev->bitmap_file == NULL) {
2851 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2852 			       mdname(mddev));
2853 			return -EBADF;
2854 		}
2855 
2856 		err = deny_bitmap_write_access(mddev->bitmap_file);
2857 		if (err) {
2858 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2859 			       mdname(mddev));
2860 			fput(mddev->bitmap_file);
2861 			mddev->bitmap_file = NULL;
2862 			return err;
2863 		}
2864 		mddev->bitmap_offset = 0; /* file overrides offset */
2865 	} else if (mddev->bitmap == NULL)
2866 		return -ENOENT; /* cannot remove what isn't there */
2867 	err = 0;
2868 	if (mddev->pers) {
2869 		mddev->pers->quiesce(mddev, 1);
2870 		if (fd >= 0)
2871 			err = bitmap_create(mddev);
2872 		if (fd < 0 || err)
2873 			bitmap_destroy(mddev);
2874 		mddev->pers->quiesce(mddev, 0);
2875 	} else if (fd < 0) {
2876 		if (mddev->bitmap_file)
2877 			fput(mddev->bitmap_file);
2878 		mddev->bitmap_file = NULL;
2879 	}
2880 
2881 	return err;
2882 }
2883 
2884 /*
2885  * set_array_info is used two different ways
2886  * The original usage is when creating a new array.
2887  * In this usage, raid_disks is > 0 and it together with
2888  *  level, size, not_persistent,layout,chunksize determine the
2889  *  shape of the array.
2890  *  This will always create an array with a type-0.90.0 superblock.
2891  * The newer usage is when assembling an array.
2892  *  In this case raid_disks will be 0, and the major_version field is
2893  *  use to determine which style super-blocks are to be found on the devices.
2894  *  The minor and patch _version numbers are also kept incase the
2895  *  super_block handler wishes to interpret them.
2896  */
2897 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2898 {
2899 
2900 	if (info->raid_disks == 0) {
2901 		/* just setting version number for superblock loading */
2902 		if (info->major_version < 0 ||
2903 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2904 		    super_types[info->major_version].name == NULL) {
2905 			/* maybe try to auto-load a module? */
2906 			printk(KERN_INFO
2907 				"md: superblock version %d not known\n",
2908 				info->major_version);
2909 			return -EINVAL;
2910 		}
2911 		mddev->major_version = info->major_version;
2912 		mddev->minor_version = info->minor_version;
2913 		mddev->patch_version = info->patch_version;
2914 		return 0;
2915 	}
2916 	mddev->major_version = MD_MAJOR_VERSION;
2917 	mddev->minor_version = MD_MINOR_VERSION;
2918 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2919 	mddev->ctime         = get_seconds();
2920 
2921 	mddev->level         = info->level;
2922 	mddev->size          = info->size;
2923 	mddev->raid_disks    = info->raid_disks;
2924 	/* don't set md_minor, it is determined by which /dev/md* was
2925 	 * openned
2926 	 */
2927 	if (info->state & (1<<MD_SB_CLEAN))
2928 		mddev->recovery_cp = MaxSector;
2929 	else
2930 		mddev->recovery_cp = 0;
2931 	mddev->persistent    = ! info->not_persistent;
2932 
2933 	mddev->layout        = info->layout;
2934 	mddev->chunk_size    = info->chunk_size;
2935 
2936 	mddev->max_disks     = MD_SB_DISKS;
2937 
2938 	mddev->sb_dirty      = 1;
2939 
2940 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
2941 	mddev->bitmap_offset = 0;
2942 
2943 	/*
2944 	 * Generate a 128 bit UUID
2945 	 */
2946 	get_random_bytes(mddev->uuid, 16);
2947 
2948 	return 0;
2949 }
2950 
2951 /*
2952  * update_array_info is used to change the configuration of an
2953  * on-line array.
2954  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2955  * fields in the info are checked against the array.
2956  * Any differences that cannot be handled will cause an error.
2957  * Normally, only one change can be managed at a time.
2958  */
2959 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2960 {
2961 	int rv = 0;
2962 	int cnt = 0;
2963 	int state = 0;
2964 
2965 	/* calculate expected state,ignoring low bits */
2966 	if (mddev->bitmap && mddev->bitmap_offset)
2967 		state |= (1 << MD_SB_BITMAP_PRESENT);
2968 
2969 	if (mddev->major_version != info->major_version ||
2970 	    mddev->minor_version != info->minor_version ||
2971 /*	    mddev->patch_version != info->patch_version || */
2972 	    mddev->ctime         != info->ctime         ||
2973 	    mddev->level         != info->level         ||
2974 /*	    mddev->layout        != info->layout        || */
2975 	    !mddev->persistent	 != info->not_persistent||
2976 	    mddev->chunk_size    != info->chunk_size    ||
2977 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2978 	    ((state^info->state) & 0xfffffe00)
2979 		)
2980 		return -EINVAL;
2981 	/* Check there is only one change */
2982 	if (mddev->size != info->size) cnt++;
2983 	if (mddev->raid_disks != info->raid_disks) cnt++;
2984 	if (mddev->layout != info->layout) cnt++;
2985 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
2986 	if (cnt == 0) return 0;
2987 	if (cnt > 1) return -EINVAL;
2988 
2989 	if (mddev->layout != info->layout) {
2990 		/* Change layout
2991 		 * we don't need to do anything at the md level, the
2992 		 * personality will take care of it all.
2993 		 */
2994 		if (mddev->pers->reconfig == NULL)
2995 			return -EINVAL;
2996 		else
2997 			return mddev->pers->reconfig(mddev, info->layout, -1);
2998 	}
2999 	if (mddev->size != info->size) {
3000 		mdk_rdev_t * rdev;
3001 		struct list_head *tmp;
3002 		if (mddev->pers->resize == NULL)
3003 			return -EINVAL;
3004 		/* The "size" is the amount of each device that is used.
3005 		 * This can only make sense for arrays with redundancy.
3006 		 * linear and raid0 always use whatever space is available
3007 		 * We can only consider changing the size if no resync
3008 		 * or reconstruction is happening, and if the new size
3009 		 * is acceptable. It must fit before the sb_offset or,
3010 		 * if that is <data_offset, it must fit before the
3011 		 * size of each device.
3012 		 * If size is zero, we find the largest size that fits.
3013 		 */
3014 		if (mddev->sync_thread)
3015 			return -EBUSY;
3016 		ITERATE_RDEV(mddev,rdev,tmp) {
3017 			sector_t avail;
3018 			int fit = (info->size == 0);
3019 			if (rdev->sb_offset > rdev->data_offset)
3020 				avail = (rdev->sb_offset*2) - rdev->data_offset;
3021 			else
3022 				avail = get_capacity(rdev->bdev->bd_disk)
3023 					- rdev->data_offset;
3024 			if (fit && (info->size == 0 || info->size > avail/2))
3025 				info->size = avail/2;
3026 			if (avail < ((sector_t)info->size << 1))
3027 				return -ENOSPC;
3028 		}
3029 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
3030 		if (!rv) {
3031 			struct block_device *bdev;
3032 
3033 			bdev = bdget_disk(mddev->gendisk, 0);
3034 			if (bdev) {
3035 				down(&bdev->bd_inode->i_sem);
3036 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3037 				up(&bdev->bd_inode->i_sem);
3038 				bdput(bdev);
3039 			}
3040 		}
3041 	}
3042 	if (mddev->raid_disks    != info->raid_disks) {
3043 		/* change the number of raid disks */
3044 		if (mddev->pers->reshape == NULL)
3045 			return -EINVAL;
3046 		if (info->raid_disks <= 0 ||
3047 		    info->raid_disks >= mddev->max_disks)
3048 			return -EINVAL;
3049 		if (mddev->sync_thread)
3050 			return -EBUSY;
3051 		rv = mddev->pers->reshape(mddev, info->raid_disks);
3052 		if (!rv) {
3053 			struct block_device *bdev;
3054 
3055 			bdev = bdget_disk(mddev->gendisk, 0);
3056 			if (bdev) {
3057 				down(&bdev->bd_inode->i_sem);
3058 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3059 				up(&bdev->bd_inode->i_sem);
3060 				bdput(bdev);
3061 			}
3062 		}
3063 	}
3064 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3065 		if (mddev->pers->quiesce == NULL)
3066 			return -EINVAL;
3067 		if (mddev->recovery || mddev->sync_thread)
3068 			return -EBUSY;
3069 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3070 			/* add the bitmap */
3071 			if (mddev->bitmap)
3072 				return -EEXIST;
3073 			if (mddev->default_bitmap_offset == 0)
3074 				return -EINVAL;
3075 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3076 			mddev->pers->quiesce(mddev, 1);
3077 			rv = bitmap_create(mddev);
3078 			if (rv)
3079 				bitmap_destroy(mddev);
3080 			mddev->pers->quiesce(mddev, 0);
3081 		} else {
3082 			/* remove the bitmap */
3083 			if (!mddev->bitmap)
3084 				return -ENOENT;
3085 			if (mddev->bitmap->file)
3086 				return -EINVAL;
3087 			mddev->pers->quiesce(mddev, 1);
3088 			bitmap_destroy(mddev);
3089 			mddev->pers->quiesce(mddev, 0);
3090 			mddev->bitmap_offset = 0;
3091 		}
3092 	}
3093 	md_update_sb(mddev);
3094 	return rv;
3095 }
3096 
3097 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3098 {
3099 	mdk_rdev_t *rdev;
3100 
3101 	if (mddev->pers == NULL)
3102 		return -ENODEV;
3103 
3104 	rdev = find_rdev(mddev, dev);
3105 	if (!rdev)
3106 		return -ENODEV;
3107 
3108 	md_error(mddev, rdev);
3109 	return 0;
3110 }
3111 
3112 static int md_ioctl(struct inode *inode, struct file *file,
3113 			unsigned int cmd, unsigned long arg)
3114 {
3115 	int err = 0;
3116 	void __user *argp = (void __user *)arg;
3117 	struct hd_geometry __user *loc = argp;
3118 	mddev_t *mddev = NULL;
3119 
3120 	if (!capable(CAP_SYS_ADMIN))
3121 		return -EACCES;
3122 
3123 	/*
3124 	 * Commands dealing with the RAID driver but not any
3125 	 * particular array:
3126 	 */
3127 	switch (cmd)
3128 	{
3129 		case RAID_VERSION:
3130 			err = get_version(argp);
3131 			goto done;
3132 
3133 		case PRINT_RAID_DEBUG:
3134 			err = 0;
3135 			md_print_devices();
3136 			goto done;
3137 
3138 #ifndef MODULE
3139 		case RAID_AUTORUN:
3140 			err = 0;
3141 			autostart_arrays(arg);
3142 			goto done;
3143 #endif
3144 		default:;
3145 	}
3146 
3147 	/*
3148 	 * Commands creating/starting a new array:
3149 	 */
3150 
3151 	mddev = inode->i_bdev->bd_disk->private_data;
3152 
3153 	if (!mddev) {
3154 		BUG();
3155 		goto abort;
3156 	}
3157 
3158 
3159 	if (cmd == START_ARRAY) {
3160 		/* START_ARRAY doesn't need to lock the array as autostart_array
3161 		 * does the locking, and it could even be a different array
3162 		 */
3163 		static int cnt = 3;
3164 		if (cnt > 0 ) {
3165 			printk(KERN_WARNING
3166 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3167 			       "This will not be supported beyond July 2006\n",
3168 			       current->comm, current->pid);
3169 			cnt--;
3170 		}
3171 		err = autostart_array(new_decode_dev(arg));
3172 		if (err) {
3173 			printk(KERN_WARNING "md: autostart failed!\n");
3174 			goto abort;
3175 		}
3176 		goto done;
3177 	}
3178 
3179 	err = mddev_lock(mddev);
3180 	if (err) {
3181 		printk(KERN_INFO
3182 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3183 			err, cmd);
3184 		goto abort;
3185 	}
3186 
3187 	switch (cmd)
3188 	{
3189 		case SET_ARRAY_INFO:
3190 			{
3191 				mdu_array_info_t info;
3192 				if (!arg)
3193 					memset(&info, 0, sizeof(info));
3194 				else if (copy_from_user(&info, argp, sizeof(info))) {
3195 					err = -EFAULT;
3196 					goto abort_unlock;
3197 				}
3198 				if (mddev->pers) {
3199 					err = update_array_info(mddev, &info);
3200 					if (err) {
3201 						printk(KERN_WARNING "md: couldn't update"
3202 						       " array info. %d\n", err);
3203 						goto abort_unlock;
3204 					}
3205 					goto done_unlock;
3206 				}
3207 				if (!list_empty(&mddev->disks)) {
3208 					printk(KERN_WARNING
3209 					       "md: array %s already has disks!\n",
3210 					       mdname(mddev));
3211 					err = -EBUSY;
3212 					goto abort_unlock;
3213 				}
3214 				if (mddev->raid_disks) {
3215 					printk(KERN_WARNING
3216 					       "md: array %s already initialised!\n",
3217 					       mdname(mddev));
3218 					err = -EBUSY;
3219 					goto abort_unlock;
3220 				}
3221 				err = set_array_info(mddev, &info);
3222 				if (err) {
3223 					printk(KERN_WARNING "md: couldn't set"
3224 					       " array info. %d\n", err);
3225 					goto abort_unlock;
3226 				}
3227 			}
3228 			goto done_unlock;
3229 
3230 		default:;
3231 	}
3232 
3233 	/*
3234 	 * Commands querying/configuring an existing array:
3235 	 */
3236 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3237 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3238 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3239 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3240 		err = -ENODEV;
3241 		goto abort_unlock;
3242 	}
3243 
3244 	/*
3245 	 * Commands even a read-only array can execute:
3246 	 */
3247 	switch (cmd)
3248 	{
3249 		case GET_ARRAY_INFO:
3250 			err = get_array_info(mddev, argp);
3251 			goto done_unlock;
3252 
3253 		case GET_BITMAP_FILE:
3254 			err = get_bitmap_file(mddev, argp);
3255 			goto done_unlock;
3256 
3257 		case GET_DISK_INFO:
3258 			err = get_disk_info(mddev, argp);
3259 			goto done_unlock;
3260 
3261 		case RESTART_ARRAY_RW:
3262 			err = restart_array(mddev);
3263 			goto done_unlock;
3264 
3265 		case STOP_ARRAY:
3266 			err = do_md_stop (mddev, 0);
3267 			goto done_unlock;
3268 
3269 		case STOP_ARRAY_RO:
3270 			err = do_md_stop (mddev, 1);
3271 			goto done_unlock;
3272 
3273 	/*
3274 	 * We have a problem here : there is no easy way to give a CHS
3275 	 * virtual geometry. We currently pretend that we have a 2 heads
3276 	 * 4 sectors (with a BIG number of cylinders...). This drives
3277 	 * dosfs just mad... ;-)
3278 	 */
3279 		case HDIO_GETGEO:
3280 			if (!loc) {
3281 				err = -EINVAL;
3282 				goto abort_unlock;
3283 			}
3284 			err = put_user (2, (char __user *) &loc->heads);
3285 			if (err)
3286 				goto abort_unlock;
3287 			err = put_user (4, (char __user *) &loc->sectors);
3288 			if (err)
3289 				goto abort_unlock;
3290 			err = put_user(get_capacity(mddev->gendisk)/8,
3291 					(short __user *) &loc->cylinders);
3292 			if (err)
3293 				goto abort_unlock;
3294 			err = put_user (get_start_sect(inode->i_bdev),
3295 						(long __user *) &loc->start);
3296 			goto done_unlock;
3297 	}
3298 
3299 	/*
3300 	 * The remaining ioctls are changing the state of the
3301 	 * superblock, so we do not allow them on read-only arrays.
3302 	 * However non-MD ioctls (e.g. get-size) will still come through
3303 	 * here and hit the 'default' below, so only disallow
3304 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3305 	 */
3306 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3307 	    mddev->ro && mddev->pers) {
3308 		if (mddev->ro == 2) {
3309 			mddev->ro = 0;
3310 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3311 		md_wakeup_thread(mddev->thread);
3312 
3313 		} else {
3314 			err = -EROFS;
3315 			goto abort_unlock;
3316 		}
3317 	}
3318 
3319 	switch (cmd)
3320 	{
3321 		case ADD_NEW_DISK:
3322 		{
3323 			mdu_disk_info_t info;
3324 			if (copy_from_user(&info, argp, sizeof(info)))
3325 				err = -EFAULT;
3326 			else
3327 				err = add_new_disk(mddev, &info);
3328 			goto done_unlock;
3329 		}
3330 
3331 		case HOT_REMOVE_DISK:
3332 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3333 			goto done_unlock;
3334 
3335 		case HOT_ADD_DISK:
3336 			err = hot_add_disk(mddev, new_decode_dev(arg));
3337 			goto done_unlock;
3338 
3339 		case SET_DISK_FAULTY:
3340 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3341 			goto done_unlock;
3342 
3343 		case RUN_ARRAY:
3344 			err = do_md_run (mddev);
3345 			goto done_unlock;
3346 
3347 		case SET_BITMAP_FILE:
3348 			err = set_bitmap_file(mddev, (int)arg);
3349 			goto done_unlock;
3350 
3351 		default:
3352 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3353 				printk(KERN_WARNING "md: %s(pid %d) used"
3354 					" obsolete MD ioctl, upgrade your"
3355 					" software to use new ictls.\n",
3356 					current->comm, current->pid);
3357 			err = -EINVAL;
3358 			goto abort_unlock;
3359 	}
3360 
3361 done_unlock:
3362 abort_unlock:
3363 	mddev_unlock(mddev);
3364 
3365 	return err;
3366 done:
3367 	if (err)
3368 		MD_BUG();
3369 abort:
3370 	return err;
3371 }
3372 
3373 static int md_open(struct inode *inode, struct file *file)
3374 {
3375 	/*
3376 	 * Succeed if we can lock the mddev, which confirms that
3377 	 * it isn't being stopped right now.
3378 	 */
3379 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3380 	int err;
3381 
3382 	if ((err = mddev_lock(mddev)))
3383 		goto out;
3384 
3385 	err = 0;
3386 	mddev_get(mddev);
3387 	mddev_unlock(mddev);
3388 
3389 	check_disk_change(inode->i_bdev);
3390  out:
3391 	return err;
3392 }
3393 
3394 static int md_release(struct inode *inode, struct file * file)
3395 {
3396  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3397 
3398 	if (!mddev)
3399 		BUG();
3400 	mddev_put(mddev);
3401 
3402 	return 0;
3403 }
3404 
3405 static int md_media_changed(struct gendisk *disk)
3406 {
3407 	mddev_t *mddev = disk->private_data;
3408 
3409 	return mddev->changed;
3410 }
3411 
3412 static int md_revalidate(struct gendisk *disk)
3413 {
3414 	mddev_t *mddev = disk->private_data;
3415 
3416 	mddev->changed = 0;
3417 	return 0;
3418 }
3419 static struct block_device_operations md_fops =
3420 {
3421 	.owner		= THIS_MODULE,
3422 	.open		= md_open,
3423 	.release	= md_release,
3424 	.ioctl		= md_ioctl,
3425 	.media_changed	= md_media_changed,
3426 	.revalidate_disk= md_revalidate,
3427 };
3428 
3429 static int md_thread(void * arg)
3430 {
3431 	mdk_thread_t *thread = arg;
3432 
3433 	/*
3434 	 * md_thread is a 'system-thread', it's priority should be very
3435 	 * high. We avoid resource deadlocks individually in each
3436 	 * raid personality. (RAID5 does preallocation) We also use RR and
3437 	 * the very same RT priority as kswapd, thus we will never get
3438 	 * into a priority inversion deadlock.
3439 	 *
3440 	 * we definitely have to have equal or higher priority than
3441 	 * bdflush, otherwise bdflush will deadlock if there are too
3442 	 * many dirty RAID5 blocks.
3443 	 */
3444 
3445 	allow_signal(SIGKILL);
3446 	while (!kthread_should_stop()) {
3447 
3448 		/* We need to wait INTERRUPTIBLE so that
3449 		 * we don't add to the load-average.
3450 		 * That means we need to be sure no signals are
3451 		 * pending
3452 		 */
3453 		if (signal_pending(current))
3454 			flush_signals(current);
3455 
3456 		wait_event_interruptible_timeout
3457 			(thread->wqueue,
3458 			 test_bit(THREAD_WAKEUP, &thread->flags)
3459 			 || kthread_should_stop(),
3460 			 thread->timeout);
3461 		try_to_freeze();
3462 
3463 		clear_bit(THREAD_WAKEUP, &thread->flags);
3464 
3465 		thread->run(thread->mddev);
3466 	}
3467 
3468 	return 0;
3469 }
3470 
3471 void md_wakeup_thread(mdk_thread_t *thread)
3472 {
3473 	if (thread) {
3474 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3475 		set_bit(THREAD_WAKEUP, &thread->flags);
3476 		wake_up(&thread->wqueue);
3477 	}
3478 }
3479 
3480 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3481 				 const char *name)
3482 {
3483 	mdk_thread_t *thread;
3484 
3485 	thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3486 	if (!thread)
3487 		return NULL;
3488 
3489 	memset(thread, 0, sizeof(mdk_thread_t));
3490 	init_waitqueue_head(&thread->wqueue);
3491 
3492 	thread->run = run;
3493 	thread->mddev = mddev;
3494 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3495 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3496 	if (IS_ERR(thread->tsk)) {
3497 		kfree(thread);
3498 		return NULL;
3499 	}
3500 	return thread;
3501 }
3502 
3503 void md_unregister_thread(mdk_thread_t *thread)
3504 {
3505 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3506 
3507 	kthread_stop(thread->tsk);
3508 	kfree(thread);
3509 }
3510 
3511 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3512 {
3513 	if (!mddev) {
3514 		MD_BUG();
3515 		return;
3516 	}
3517 
3518 	if (!rdev || test_bit(Faulty, &rdev->flags))
3519 		return;
3520 /*
3521 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3522 		mdname(mddev),
3523 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3524 		__builtin_return_address(0),__builtin_return_address(1),
3525 		__builtin_return_address(2),__builtin_return_address(3));
3526 */
3527 	if (!mddev->pers->error_handler)
3528 		return;
3529 	mddev->pers->error_handler(mddev,rdev);
3530 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3531 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3532 	md_wakeup_thread(mddev->thread);
3533 }
3534 
3535 /* seq_file implementation /proc/mdstat */
3536 
3537 static void status_unused(struct seq_file *seq)
3538 {
3539 	int i = 0;
3540 	mdk_rdev_t *rdev;
3541 	struct list_head *tmp;
3542 
3543 	seq_printf(seq, "unused devices: ");
3544 
3545 	ITERATE_RDEV_PENDING(rdev,tmp) {
3546 		char b[BDEVNAME_SIZE];
3547 		i++;
3548 		seq_printf(seq, "%s ",
3549 			      bdevname(rdev->bdev,b));
3550 	}
3551 	if (!i)
3552 		seq_printf(seq, "<none>");
3553 
3554 	seq_printf(seq, "\n");
3555 }
3556 
3557 
3558 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3559 {
3560 	unsigned long max_blocks, resync, res, dt, db, rt;
3561 
3562 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3563 
3564 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3565 		max_blocks = mddev->resync_max_sectors >> 1;
3566 	else
3567 		max_blocks = mddev->size;
3568 
3569 	/*
3570 	 * Should not happen.
3571 	 */
3572 	if (!max_blocks) {
3573 		MD_BUG();
3574 		return;
3575 	}
3576 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3577 	{
3578 		int i, x = res/50, y = 20-x;
3579 		seq_printf(seq, "[");
3580 		for (i = 0; i < x; i++)
3581 			seq_printf(seq, "=");
3582 		seq_printf(seq, ">");
3583 		for (i = 0; i < y; i++)
3584 			seq_printf(seq, ".");
3585 		seq_printf(seq, "] ");
3586 	}
3587 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3588 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3589 		       "resync" : "recovery"),
3590 		      res/10, res % 10, resync, max_blocks);
3591 
3592 	/*
3593 	 * We do not want to overflow, so the order of operands and
3594 	 * the * 100 / 100 trick are important. We do a +1 to be
3595 	 * safe against division by zero. We only estimate anyway.
3596 	 *
3597 	 * dt: time from mark until now
3598 	 * db: blocks written from mark until now
3599 	 * rt: remaining time
3600 	 */
3601 	dt = ((jiffies - mddev->resync_mark) / HZ);
3602 	if (!dt) dt++;
3603 	db = resync - (mddev->resync_mark_cnt/2);
3604 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3605 
3606 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3607 
3608 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3609 }
3610 
3611 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3612 {
3613 	struct list_head *tmp;
3614 	loff_t l = *pos;
3615 	mddev_t *mddev;
3616 
3617 	if (l >= 0x10000)
3618 		return NULL;
3619 	if (!l--)
3620 		/* header */
3621 		return (void*)1;
3622 
3623 	spin_lock(&all_mddevs_lock);
3624 	list_for_each(tmp,&all_mddevs)
3625 		if (!l--) {
3626 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3627 			mddev_get(mddev);
3628 			spin_unlock(&all_mddevs_lock);
3629 			return mddev;
3630 		}
3631 	spin_unlock(&all_mddevs_lock);
3632 	if (!l--)
3633 		return (void*)2;/* tail */
3634 	return NULL;
3635 }
3636 
3637 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3638 {
3639 	struct list_head *tmp;
3640 	mddev_t *next_mddev, *mddev = v;
3641 
3642 	++*pos;
3643 	if (v == (void*)2)
3644 		return NULL;
3645 
3646 	spin_lock(&all_mddevs_lock);
3647 	if (v == (void*)1)
3648 		tmp = all_mddevs.next;
3649 	else
3650 		tmp = mddev->all_mddevs.next;
3651 	if (tmp != &all_mddevs)
3652 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3653 	else {
3654 		next_mddev = (void*)2;
3655 		*pos = 0x10000;
3656 	}
3657 	spin_unlock(&all_mddevs_lock);
3658 
3659 	if (v != (void*)1)
3660 		mddev_put(mddev);
3661 	return next_mddev;
3662 
3663 }
3664 
3665 static void md_seq_stop(struct seq_file *seq, void *v)
3666 {
3667 	mddev_t *mddev = v;
3668 
3669 	if (mddev && v != (void*)1 && v != (void*)2)
3670 		mddev_put(mddev);
3671 }
3672 
3673 static int md_seq_show(struct seq_file *seq, void *v)
3674 {
3675 	mddev_t *mddev = v;
3676 	sector_t size;
3677 	struct list_head *tmp2;
3678 	mdk_rdev_t *rdev;
3679 	int i;
3680 	struct bitmap *bitmap;
3681 
3682 	if (v == (void*)1) {
3683 		seq_printf(seq, "Personalities : ");
3684 		spin_lock(&pers_lock);
3685 		for (i = 0; i < MAX_PERSONALITY; i++)
3686 			if (pers[i])
3687 				seq_printf(seq, "[%s] ", pers[i]->name);
3688 
3689 		spin_unlock(&pers_lock);
3690 		seq_printf(seq, "\n");
3691 		return 0;
3692 	}
3693 	if (v == (void*)2) {
3694 		status_unused(seq);
3695 		return 0;
3696 	}
3697 
3698 	if (mddev_lock(mddev)!=0)
3699 		return -EINTR;
3700 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3701 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3702 						mddev->pers ? "" : "in");
3703 		if (mddev->pers) {
3704 			if (mddev->ro==1)
3705 				seq_printf(seq, " (read-only)");
3706 			if (mddev->ro==2)
3707 				seq_printf(seq, "(auto-read-only)");
3708 			seq_printf(seq, " %s", mddev->pers->name);
3709 		}
3710 
3711 		size = 0;
3712 		ITERATE_RDEV(mddev,rdev,tmp2) {
3713 			char b[BDEVNAME_SIZE];
3714 			seq_printf(seq, " %s[%d]",
3715 				bdevname(rdev->bdev,b), rdev->desc_nr);
3716 			if (test_bit(WriteMostly, &rdev->flags))
3717 				seq_printf(seq, "(W)");
3718 			if (test_bit(Faulty, &rdev->flags)) {
3719 				seq_printf(seq, "(F)");
3720 				continue;
3721 			} else if (rdev->raid_disk < 0)
3722 				seq_printf(seq, "(S)"); /* spare */
3723 			size += rdev->size;
3724 		}
3725 
3726 		if (!list_empty(&mddev->disks)) {
3727 			if (mddev->pers)
3728 				seq_printf(seq, "\n      %llu blocks",
3729 					(unsigned long long)mddev->array_size);
3730 			else
3731 				seq_printf(seq, "\n      %llu blocks",
3732 					(unsigned long long)size);
3733 		}
3734 		if (mddev->persistent) {
3735 			if (mddev->major_version != 0 ||
3736 			    mddev->minor_version != 90) {
3737 				seq_printf(seq," super %d.%d",
3738 					   mddev->major_version,
3739 					   mddev->minor_version);
3740 			}
3741 		} else
3742 			seq_printf(seq, " super non-persistent");
3743 
3744 		if (mddev->pers) {
3745 			mddev->pers->status (seq, mddev);
3746 	 		seq_printf(seq, "\n      ");
3747 			if (mddev->pers->sync_request) {
3748 				if (mddev->curr_resync > 2) {
3749 					status_resync (seq, mddev);
3750 					seq_printf(seq, "\n      ");
3751 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3752 					seq_printf(seq, "\tresync=DELAYED\n      ");
3753 				else if (mddev->recovery_cp < MaxSector)
3754 					seq_printf(seq, "\tresync=PENDING\n      ");
3755 			}
3756 		} else
3757 			seq_printf(seq, "\n       ");
3758 
3759 		if ((bitmap = mddev->bitmap)) {
3760 			unsigned long chunk_kb;
3761 			unsigned long flags;
3762 			spin_lock_irqsave(&bitmap->lock, flags);
3763 			chunk_kb = bitmap->chunksize >> 10;
3764 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3765 				"%lu%s chunk",
3766 				bitmap->pages - bitmap->missing_pages,
3767 				bitmap->pages,
3768 				(bitmap->pages - bitmap->missing_pages)
3769 					<< (PAGE_SHIFT - 10),
3770 				chunk_kb ? chunk_kb : bitmap->chunksize,
3771 				chunk_kb ? "KB" : "B");
3772 			if (bitmap->file) {
3773 				seq_printf(seq, ", file: ");
3774 				seq_path(seq, bitmap->file->f_vfsmnt,
3775 					 bitmap->file->f_dentry," \t\n");
3776 			}
3777 
3778 			seq_printf(seq, "\n");
3779 			spin_unlock_irqrestore(&bitmap->lock, flags);
3780 		}
3781 
3782 		seq_printf(seq, "\n");
3783 	}
3784 	mddev_unlock(mddev);
3785 
3786 	return 0;
3787 }
3788 
3789 static struct seq_operations md_seq_ops = {
3790 	.start  = md_seq_start,
3791 	.next   = md_seq_next,
3792 	.stop   = md_seq_stop,
3793 	.show   = md_seq_show,
3794 };
3795 
3796 static int md_seq_open(struct inode *inode, struct file *file)
3797 {
3798 	int error;
3799 
3800 	error = seq_open(file, &md_seq_ops);
3801 	return error;
3802 }
3803 
3804 static struct file_operations md_seq_fops = {
3805 	.open           = md_seq_open,
3806 	.read           = seq_read,
3807 	.llseek         = seq_lseek,
3808 	.release	= seq_release,
3809 };
3810 
3811 int register_md_personality(int pnum, mdk_personality_t *p)
3812 {
3813 	if (pnum >= MAX_PERSONALITY) {
3814 		printk(KERN_ERR
3815 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3816 		       p->name, pnum, MAX_PERSONALITY-1);
3817 		return -EINVAL;
3818 	}
3819 
3820 	spin_lock(&pers_lock);
3821 	if (pers[pnum]) {
3822 		spin_unlock(&pers_lock);
3823 		return -EBUSY;
3824 	}
3825 
3826 	pers[pnum] = p;
3827 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3828 	spin_unlock(&pers_lock);
3829 	return 0;
3830 }
3831 
3832 int unregister_md_personality(int pnum)
3833 {
3834 	if (pnum >= MAX_PERSONALITY)
3835 		return -EINVAL;
3836 
3837 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3838 	spin_lock(&pers_lock);
3839 	pers[pnum] = NULL;
3840 	spin_unlock(&pers_lock);
3841 	return 0;
3842 }
3843 
3844 static int is_mddev_idle(mddev_t *mddev)
3845 {
3846 	mdk_rdev_t * rdev;
3847 	struct list_head *tmp;
3848 	int idle;
3849 	unsigned long curr_events;
3850 
3851 	idle = 1;
3852 	ITERATE_RDEV(mddev,rdev,tmp) {
3853 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3854 		curr_events = disk_stat_read(disk, sectors[0]) +
3855 				disk_stat_read(disk, sectors[1]) -
3856 				atomic_read(&disk->sync_io);
3857 		/* The difference between curr_events and last_events
3858 		 * will be affected by any new non-sync IO (making
3859 		 * curr_events bigger) and any difference in the amount of
3860 		 * in-flight syncio (making current_events bigger or smaller)
3861 		 * The amount in-flight is currently limited to
3862 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
3863 		 * which is at most 4096 sectors.
3864 		 * These numbers are fairly fragile and should be made
3865 		 * more robust, probably by enforcing the
3866 		 * 'window size' that md_do_sync sort-of uses.
3867 		 *
3868 		 * Note: the following is an unsigned comparison.
3869 		 */
3870 		if ((curr_events - rdev->last_events + 4096) > 8192) {
3871 			rdev->last_events = curr_events;
3872 			idle = 0;
3873 		}
3874 	}
3875 	return idle;
3876 }
3877 
3878 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3879 {
3880 	/* another "blocks" (512byte) blocks have been synced */
3881 	atomic_sub(blocks, &mddev->recovery_active);
3882 	wake_up(&mddev->recovery_wait);
3883 	if (!ok) {
3884 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3885 		md_wakeup_thread(mddev->thread);
3886 		// stop recovery, signal do_sync ....
3887 	}
3888 }
3889 
3890 
3891 /* md_write_start(mddev, bi)
3892  * If we need to update some array metadata (e.g. 'active' flag
3893  * in superblock) before writing, schedule a superblock update
3894  * and wait for it to complete.
3895  */
3896 void md_write_start(mddev_t *mddev, struct bio *bi)
3897 {
3898 	if (bio_data_dir(bi) != WRITE)
3899 		return;
3900 
3901 	BUG_ON(mddev->ro == 1);
3902 	if (mddev->ro == 2) {
3903 		/* need to switch to read/write */
3904 		mddev->ro = 0;
3905 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3906 		md_wakeup_thread(mddev->thread);
3907 	}
3908 	atomic_inc(&mddev->writes_pending);
3909 	if (mddev->in_sync) {
3910 		spin_lock_irq(&mddev->write_lock);
3911 		if (mddev->in_sync) {
3912 			mddev->in_sync = 0;
3913 			mddev->sb_dirty = 1;
3914 			md_wakeup_thread(mddev->thread);
3915 		}
3916 		spin_unlock_irq(&mddev->write_lock);
3917 	}
3918 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3919 }
3920 
3921 void md_write_end(mddev_t *mddev)
3922 {
3923 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3924 		if (mddev->safemode == 2)
3925 			md_wakeup_thread(mddev->thread);
3926 		else
3927 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3928 	}
3929 }
3930 
3931 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3932 
3933 #define SYNC_MARKS	10
3934 #define	SYNC_MARK_STEP	(3*HZ)
3935 static void md_do_sync(mddev_t *mddev)
3936 {
3937 	mddev_t *mddev2;
3938 	unsigned int currspeed = 0,
3939 		 window;
3940 	sector_t max_sectors,j, io_sectors;
3941 	unsigned long mark[SYNC_MARKS];
3942 	sector_t mark_cnt[SYNC_MARKS];
3943 	int last_mark,m;
3944 	struct list_head *tmp;
3945 	sector_t last_check;
3946 	int skipped = 0;
3947 
3948 	/* just incase thread restarts... */
3949 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3950 		return;
3951 
3952 	/* we overload curr_resync somewhat here.
3953 	 * 0 == not engaged in resync at all
3954 	 * 2 == checking that there is no conflict with another sync
3955 	 * 1 == like 2, but have yielded to allow conflicting resync to
3956 	 *		commense
3957 	 * other == active in resync - this many blocks
3958 	 *
3959 	 * Before starting a resync we must have set curr_resync to
3960 	 * 2, and then checked that every "conflicting" array has curr_resync
3961 	 * less than ours.  When we find one that is the same or higher
3962 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3963 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3964 	 * This will mean we have to start checking from the beginning again.
3965 	 *
3966 	 */
3967 
3968 	do {
3969 		mddev->curr_resync = 2;
3970 
3971 	try_again:
3972 		if (kthread_should_stop()) {
3973 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3974 			goto skip;
3975 		}
3976 		ITERATE_MDDEV(mddev2,tmp) {
3977 			if (mddev2 == mddev)
3978 				continue;
3979 			if (mddev2->curr_resync &&
3980 			    match_mddev_units(mddev,mddev2)) {
3981 				DEFINE_WAIT(wq);
3982 				if (mddev < mddev2 && mddev->curr_resync == 2) {
3983 					/* arbitrarily yield */
3984 					mddev->curr_resync = 1;
3985 					wake_up(&resync_wait);
3986 				}
3987 				if (mddev > mddev2 && mddev->curr_resync == 1)
3988 					/* no need to wait here, we can wait the next
3989 					 * time 'round when curr_resync == 2
3990 					 */
3991 					continue;
3992 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
3993 				if (!kthread_should_stop() &&
3994 				    mddev2->curr_resync >= mddev->curr_resync) {
3995 					printk(KERN_INFO "md: delaying resync of %s"
3996 					       " until %s has finished resync (they"
3997 					       " share one or more physical units)\n",
3998 					       mdname(mddev), mdname(mddev2));
3999 					mddev_put(mddev2);
4000 					schedule();
4001 					finish_wait(&resync_wait, &wq);
4002 					goto try_again;
4003 				}
4004 				finish_wait(&resync_wait, &wq);
4005 			}
4006 		}
4007 	} while (mddev->curr_resync < 2);
4008 
4009 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4010 		/* resync follows the size requested by the personality,
4011 		 * which defaults to physical size, but can be virtual size
4012 		 */
4013 		max_sectors = mddev->resync_max_sectors;
4014 		mddev->resync_mismatches = 0;
4015 	} else
4016 		/* recovery follows the physical size of devices */
4017 		max_sectors = mddev->size << 1;
4018 
4019 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4020 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4021 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
4022 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4023 	       "(but not more than %d KB/sec) for reconstruction.\n",
4024 	       sysctl_speed_limit_max);
4025 
4026 	is_mddev_idle(mddev); /* this also initializes IO event counters */
4027 	/* we don't use the checkpoint if there's a bitmap */
4028 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4029 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4030 		j = mddev->recovery_cp;
4031 	else
4032 		j = 0;
4033 	io_sectors = 0;
4034 	for (m = 0; m < SYNC_MARKS; m++) {
4035 		mark[m] = jiffies;
4036 		mark_cnt[m] = io_sectors;
4037 	}
4038 	last_mark = 0;
4039 	mddev->resync_mark = mark[last_mark];
4040 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4041 
4042 	/*
4043 	 * Tune reconstruction:
4044 	 */
4045 	window = 32*(PAGE_SIZE/512);
4046 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4047 		window/2,(unsigned long long) max_sectors/2);
4048 
4049 	atomic_set(&mddev->recovery_active, 0);
4050 	init_waitqueue_head(&mddev->recovery_wait);
4051 	last_check = 0;
4052 
4053 	if (j>2) {
4054 		printk(KERN_INFO
4055 			"md: resuming recovery of %s from checkpoint.\n",
4056 			mdname(mddev));
4057 		mddev->curr_resync = j;
4058 	}
4059 
4060 	while (j < max_sectors) {
4061 		sector_t sectors;
4062 
4063 		skipped = 0;
4064 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4065 					    currspeed < sysctl_speed_limit_min);
4066 		if (sectors == 0) {
4067 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4068 			goto out;
4069 		}
4070 
4071 		if (!skipped) { /* actual IO requested */
4072 			io_sectors += sectors;
4073 			atomic_add(sectors, &mddev->recovery_active);
4074 		}
4075 
4076 		j += sectors;
4077 		if (j>1) mddev->curr_resync = j;
4078 
4079 
4080 		if (last_check + window > io_sectors || j == max_sectors)
4081 			continue;
4082 
4083 		last_check = io_sectors;
4084 
4085 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4086 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4087 			break;
4088 
4089 	repeat:
4090 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4091 			/* step marks */
4092 			int next = (last_mark+1) % SYNC_MARKS;
4093 
4094 			mddev->resync_mark = mark[next];
4095 			mddev->resync_mark_cnt = mark_cnt[next];
4096 			mark[next] = jiffies;
4097 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4098 			last_mark = next;
4099 		}
4100 
4101 
4102 		if (kthread_should_stop()) {
4103 			/*
4104 			 * got a signal, exit.
4105 			 */
4106 			printk(KERN_INFO
4107 				"md: md_do_sync() got signal ... exiting\n");
4108 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4109 			goto out;
4110 		}
4111 
4112 		/*
4113 		 * this loop exits only if either when we are slower than
4114 		 * the 'hard' speed limit, or the system was IO-idle for
4115 		 * a jiffy.
4116 		 * the system might be non-idle CPU-wise, but we only care
4117 		 * about not overloading the IO subsystem. (things like an
4118 		 * e2fsck being done on the RAID array should execute fast)
4119 		 */
4120 		mddev->queue->unplug_fn(mddev->queue);
4121 		cond_resched();
4122 
4123 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4124 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4125 
4126 		if (currspeed > sysctl_speed_limit_min) {
4127 			if ((currspeed > sysctl_speed_limit_max) ||
4128 					!is_mddev_idle(mddev)) {
4129 				msleep(500);
4130 				goto repeat;
4131 			}
4132 		}
4133 	}
4134 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4135 	/*
4136 	 * this also signals 'finished resyncing' to md_stop
4137 	 */
4138  out:
4139 	mddev->queue->unplug_fn(mddev->queue);
4140 
4141 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4142 
4143 	/* tell personality that we are finished */
4144 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4145 
4146 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4147 	    mddev->curr_resync > 2 &&
4148 	    mddev->curr_resync >= mddev->recovery_cp) {
4149 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4150 			printk(KERN_INFO
4151 				"md: checkpointing recovery of %s.\n",
4152 				mdname(mddev));
4153 			mddev->recovery_cp = mddev->curr_resync;
4154 		} else
4155 			mddev->recovery_cp = MaxSector;
4156 	}
4157 
4158  skip:
4159 	mddev->curr_resync = 0;
4160 	wake_up(&resync_wait);
4161 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4162 	md_wakeup_thread(mddev->thread);
4163 }
4164 
4165 
4166 /*
4167  * This routine is regularly called by all per-raid-array threads to
4168  * deal with generic issues like resync and super-block update.
4169  * Raid personalities that don't have a thread (linear/raid0) do not
4170  * need this as they never do any recovery or update the superblock.
4171  *
4172  * It does not do any resync itself, but rather "forks" off other threads
4173  * to do that as needed.
4174  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4175  * "->recovery" and create a thread at ->sync_thread.
4176  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4177  * and wakeups up this thread which will reap the thread and finish up.
4178  * This thread also removes any faulty devices (with nr_pending == 0).
4179  *
4180  * The overall approach is:
4181  *  1/ if the superblock needs updating, update it.
4182  *  2/ If a recovery thread is running, don't do anything else.
4183  *  3/ If recovery has finished, clean up, possibly marking spares active.
4184  *  4/ If there are any faulty devices, remove them.
4185  *  5/ If array is degraded, try to add spares devices
4186  *  6/ If array has spares or is not in-sync, start a resync thread.
4187  */
4188 void md_check_recovery(mddev_t *mddev)
4189 {
4190 	mdk_rdev_t *rdev;
4191 	struct list_head *rtmp;
4192 
4193 
4194 	if (mddev->bitmap)
4195 		bitmap_daemon_work(mddev->bitmap);
4196 
4197 	if (mddev->ro)
4198 		return;
4199 
4200 	if (signal_pending(current)) {
4201 		if (mddev->pers->sync_request) {
4202 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4203 			       mdname(mddev));
4204 			mddev->safemode = 2;
4205 		}
4206 		flush_signals(current);
4207 	}
4208 
4209 	if ( ! (
4210 		mddev->sb_dirty ||
4211 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4212 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4213 		(mddev->safemode == 1) ||
4214 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4215 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4216 		))
4217 		return;
4218 
4219 	if (mddev_trylock(mddev)==0) {
4220 		int spares =0;
4221 
4222 		spin_lock_irq(&mddev->write_lock);
4223 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4224 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4225 			mddev->in_sync = 1;
4226 			mddev->sb_dirty = 1;
4227 		}
4228 		if (mddev->safemode == 1)
4229 			mddev->safemode = 0;
4230 		spin_unlock_irq(&mddev->write_lock);
4231 
4232 		if (mddev->sb_dirty)
4233 			md_update_sb(mddev);
4234 
4235 
4236 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4237 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4238 			/* resync/recovery still happening */
4239 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4240 			goto unlock;
4241 		}
4242 		if (mddev->sync_thread) {
4243 			/* resync has finished, collect result */
4244 			md_unregister_thread(mddev->sync_thread);
4245 			mddev->sync_thread = NULL;
4246 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4247 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4248 				/* success...*/
4249 				/* activate any spares */
4250 				mddev->pers->spare_active(mddev);
4251 			}
4252 			md_update_sb(mddev);
4253 
4254 			/* if array is no-longer degraded, then any saved_raid_disk
4255 			 * information must be scrapped
4256 			 */
4257 			if (!mddev->degraded)
4258 				ITERATE_RDEV(mddev,rdev,rtmp)
4259 					rdev->saved_raid_disk = -1;
4260 
4261 			mddev->recovery = 0;
4262 			/* flag recovery needed just to double check */
4263 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4264 			goto unlock;
4265 		}
4266 		/* Clear some bits that don't mean anything, but
4267 		 * might be left set
4268 		 */
4269 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4270 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4271 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4272 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4273 
4274 		/* no recovery is running.
4275 		 * remove any failed drives, then
4276 		 * add spares if possible.
4277 		 * Spare are also removed and re-added, to allow
4278 		 * the personality to fail the re-add.
4279 		 */
4280 		ITERATE_RDEV(mddev,rdev,rtmp)
4281 			if (rdev->raid_disk >= 0 &&
4282 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4283 			    atomic_read(&rdev->nr_pending)==0) {
4284 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4285 					char nm[20];
4286 					sprintf(nm,"rd%d", rdev->raid_disk);
4287 					sysfs_remove_link(&mddev->kobj, nm);
4288 					rdev->raid_disk = -1;
4289 				}
4290 			}
4291 
4292 		if (mddev->degraded) {
4293 			ITERATE_RDEV(mddev,rdev,rtmp)
4294 				if (rdev->raid_disk < 0
4295 				    && !test_bit(Faulty, &rdev->flags)) {
4296 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4297 						char nm[20];
4298 						sprintf(nm, "rd%d", rdev->raid_disk);
4299 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4300 						spares++;
4301 					} else
4302 						break;
4303 				}
4304 		}
4305 
4306 		if (spares) {
4307 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4308 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4309 		} else if (mddev->recovery_cp < MaxSector) {
4310 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4311 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4312 			/* nothing to be done ... */
4313 			goto unlock;
4314 
4315 		if (mddev->pers->sync_request) {
4316 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4317 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4318 				/* We are adding a device or devices to an array
4319 				 * which has the bitmap stored on all devices.
4320 				 * So make sure all bitmap pages get written
4321 				 */
4322 				bitmap_write_all(mddev->bitmap);
4323 			}
4324 			mddev->sync_thread = md_register_thread(md_do_sync,
4325 								mddev,
4326 								"%s_resync");
4327 			if (!mddev->sync_thread) {
4328 				printk(KERN_ERR "%s: could not start resync"
4329 					" thread...\n",
4330 					mdname(mddev));
4331 				/* leave the spares where they are, it shouldn't hurt */
4332 				mddev->recovery = 0;
4333 			} else {
4334 				md_wakeup_thread(mddev->sync_thread);
4335 			}
4336 		}
4337 	unlock:
4338 		mddev_unlock(mddev);
4339 	}
4340 }
4341 
4342 static int md_notify_reboot(struct notifier_block *this,
4343 			    unsigned long code, void *x)
4344 {
4345 	struct list_head *tmp;
4346 	mddev_t *mddev;
4347 
4348 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4349 
4350 		printk(KERN_INFO "md: stopping all md devices.\n");
4351 
4352 		ITERATE_MDDEV(mddev,tmp)
4353 			if (mddev_trylock(mddev)==0)
4354 				do_md_stop (mddev, 1);
4355 		/*
4356 		 * certain more exotic SCSI devices are known to be
4357 		 * volatile wrt too early system reboots. While the
4358 		 * right place to handle this issue is the given
4359 		 * driver, we do want to have a safe RAID driver ...
4360 		 */
4361 		mdelay(1000*1);
4362 	}
4363 	return NOTIFY_DONE;
4364 }
4365 
4366 static struct notifier_block md_notifier = {
4367 	.notifier_call	= md_notify_reboot,
4368 	.next		= NULL,
4369 	.priority	= INT_MAX, /* before any real devices */
4370 };
4371 
4372 static void md_geninit(void)
4373 {
4374 	struct proc_dir_entry *p;
4375 
4376 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4377 
4378 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4379 	if (p)
4380 		p->proc_fops = &md_seq_fops;
4381 }
4382 
4383 static int __init md_init(void)
4384 {
4385 	int minor;
4386 
4387 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4388 			" MD_SB_DISKS=%d\n",
4389 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4390 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4391 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4392 			BITMAP_MINOR);
4393 
4394 	if (register_blkdev(MAJOR_NR, "md"))
4395 		return -1;
4396 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4397 		unregister_blkdev(MAJOR_NR, "md");
4398 		return -1;
4399 	}
4400 	devfs_mk_dir("md");
4401 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4402 				md_probe, NULL, NULL);
4403 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4404 			    md_probe, NULL, NULL);
4405 
4406 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4407 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4408 				S_IFBLK|S_IRUSR|S_IWUSR,
4409 				"md/%d", minor);
4410 
4411 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4412 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4413 			      S_IFBLK|S_IRUSR|S_IWUSR,
4414 			      "md/mdp%d", minor);
4415 
4416 
4417 	register_reboot_notifier(&md_notifier);
4418 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4419 
4420 	md_geninit();
4421 	return (0);
4422 }
4423 
4424 
4425 #ifndef MODULE
4426 
4427 /*
4428  * Searches all registered partitions for autorun RAID arrays
4429  * at boot time.
4430  */
4431 static dev_t detected_devices[128];
4432 static int dev_cnt;
4433 
4434 void md_autodetect_dev(dev_t dev)
4435 {
4436 	if (dev_cnt >= 0 && dev_cnt < 127)
4437 		detected_devices[dev_cnt++] = dev;
4438 }
4439 
4440 
4441 static void autostart_arrays(int part)
4442 {
4443 	mdk_rdev_t *rdev;
4444 	int i;
4445 
4446 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4447 
4448 	for (i = 0; i < dev_cnt; i++) {
4449 		dev_t dev = detected_devices[i];
4450 
4451 		rdev = md_import_device(dev,0, 0);
4452 		if (IS_ERR(rdev))
4453 			continue;
4454 
4455 		if (test_bit(Faulty, &rdev->flags)) {
4456 			MD_BUG();
4457 			continue;
4458 		}
4459 		list_add(&rdev->same_set, &pending_raid_disks);
4460 	}
4461 	dev_cnt = 0;
4462 
4463 	autorun_devices(part);
4464 }
4465 
4466 #endif
4467 
4468 static __exit void md_exit(void)
4469 {
4470 	mddev_t *mddev;
4471 	struct list_head *tmp;
4472 	int i;
4473 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4474 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4475 	for (i=0; i < MAX_MD_DEVS; i++)
4476 		devfs_remove("md/%d", i);
4477 	for (i=0; i < MAX_MD_DEVS; i++)
4478 		devfs_remove("md/d%d", i);
4479 
4480 	devfs_remove("md");
4481 
4482 	unregister_blkdev(MAJOR_NR,"md");
4483 	unregister_blkdev(mdp_major, "mdp");
4484 	unregister_reboot_notifier(&md_notifier);
4485 	unregister_sysctl_table(raid_table_header);
4486 	remove_proc_entry("mdstat", NULL);
4487 	ITERATE_MDDEV(mddev,tmp) {
4488 		struct gendisk *disk = mddev->gendisk;
4489 		if (!disk)
4490 			continue;
4491 		export_array(mddev);
4492 		del_gendisk(disk);
4493 		put_disk(disk);
4494 		mddev->gendisk = NULL;
4495 		mddev_put(mddev);
4496 	}
4497 }
4498 
4499 module_init(md_init)
4500 module_exit(md_exit)
4501 
4502 static int get_ro(char *buffer, struct kernel_param *kp)
4503 {
4504 	return sprintf(buffer, "%d", start_readonly);
4505 }
4506 static int set_ro(const char *val, struct kernel_param *kp)
4507 {
4508 	char *e;
4509 	int num = simple_strtoul(val, &e, 10);
4510 	if (*val && (*e == '\0' || *e == '\n')) {
4511 		start_readonly = num;
4512 		return 0;;
4513 	}
4514 	return -EINVAL;
4515 }
4516 
4517 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4518 module_param(start_dirty_degraded, int, 0644);
4519 
4520 
4521 EXPORT_SYMBOL(register_md_personality);
4522 EXPORT_SYMBOL(unregister_md_personality);
4523 EXPORT_SYMBOL(md_error);
4524 EXPORT_SYMBOL(md_done_sync);
4525 EXPORT_SYMBOL(md_write_start);
4526 EXPORT_SYMBOL(md_write_end);
4527 EXPORT_SYMBOL(md_register_thread);
4528 EXPORT_SYMBOL(md_unregister_thread);
4529 EXPORT_SYMBOL(md_wakeup_thread);
4530 EXPORT_SYMBOL(md_print_devices);
4531 EXPORT_SYMBOL(md_check_recovery);
4532 MODULE_LICENSE("GPL");
4533 MODULE_ALIAS("md");
4534 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4535