1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected by pers_lock. */ 74 static LIST_HEAD(pers_list); 75 static DEFINE_SPINLOCK(pers_lock); 76 77 static const struct kobj_type md_ktype; 78 79 struct md_cluster_operations *md_cluster_ops; 80 EXPORT_SYMBOL(md_cluster_ops); 81 static struct module *md_cluster_mod; 82 83 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 84 static struct workqueue_struct *md_wq; 85 static struct workqueue_struct *md_misc_wq; 86 struct workqueue_struct *md_bitmap_wq; 87 88 static int remove_and_add_spares(struct mddev *mddev, 89 struct md_rdev *this); 90 static void mddev_detach(struct mddev *mddev); 91 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev); 92 static void md_wakeup_thread_directly(struct md_thread __rcu *thread); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static int start_readonly; 312 313 /* 314 * The original mechanism for creating an md device is to create 315 * a device node in /dev and to open it. This causes races with device-close. 316 * The preferred method is to write to the "new_array" module parameter. 317 * This can avoid races. 318 * Setting create_on_open to false disables the original mechanism 319 * so all the races disappear. 320 */ 321 static bool create_on_open = true; 322 323 /* 324 * We have a system wide 'event count' that is incremented 325 * on any 'interesting' event, and readers of /proc/mdstat 326 * can use 'poll' or 'select' to find out when the event 327 * count increases. 328 * 329 * Events are: 330 * start array, stop array, error, add device, remove device, 331 * start build, activate spare 332 */ 333 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 334 static atomic_t md_event_count; 335 void md_new_event(void) 336 { 337 atomic_inc(&md_event_count); 338 wake_up(&md_event_waiters); 339 } 340 EXPORT_SYMBOL_GPL(md_new_event); 341 342 /* 343 * Enables to iterate over all existing md arrays 344 * all_mddevs_lock protects this list. 345 */ 346 static LIST_HEAD(all_mddevs); 347 static DEFINE_SPINLOCK(all_mddevs_lock); 348 349 /* Rather than calling directly into the personality make_request function, 350 * IO requests come here first so that we can check if the device is 351 * being suspended pending a reconfiguration. 352 * We hold a refcount over the call to ->make_request. By the time that 353 * call has finished, the bio has been linked into some internal structure 354 * and so is visible to ->quiesce(), so we don't need the refcount any more. 355 */ 356 static bool is_suspended(struct mddev *mddev, struct bio *bio) 357 { 358 if (is_md_suspended(mddev)) 359 return true; 360 if (bio_data_dir(bio) != WRITE) 361 return false; 362 if (mddev->suspend_lo >= mddev->suspend_hi) 363 return false; 364 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 365 return false; 366 if (bio_end_sector(bio) < mddev->suspend_lo) 367 return false; 368 return true; 369 } 370 371 void md_handle_request(struct mddev *mddev, struct bio *bio) 372 { 373 check_suspended: 374 if (is_suspended(mddev, bio)) { 375 DEFINE_WAIT(__wait); 376 /* Bail out if REQ_NOWAIT is set for the bio */ 377 if (bio->bi_opf & REQ_NOWAIT) { 378 bio_wouldblock_error(bio); 379 return; 380 } 381 for (;;) { 382 prepare_to_wait(&mddev->sb_wait, &__wait, 383 TASK_UNINTERRUPTIBLE); 384 if (!is_suspended(mddev, bio)) 385 break; 386 schedule(); 387 } 388 finish_wait(&mddev->sb_wait, &__wait); 389 } 390 if (!percpu_ref_tryget_live(&mddev->active_io)) 391 goto check_suspended; 392 393 if (!mddev->pers->make_request(mddev, bio)) { 394 percpu_ref_put(&mddev->active_io); 395 goto check_suspended; 396 } 397 398 percpu_ref_put(&mddev->active_io); 399 } 400 EXPORT_SYMBOL(md_handle_request); 401 402 static void md_submit_bio(struct bio *bio) 403 { 404 const int rw = bio_data_dir(bio); 405 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 406 407 if (mddev == NULL || mddev->pers == NULL) { 408 bio_io_error(bio); 409 return; 410 } 411 412 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 413 bio_io_error(bio); 414 return; 415 } 416 417 bio = bio_split_to_limits(bio); 418 if (!bio) 419 return; 420 421 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 422 if (bio_sectors(bio) != 0) 423 bio->bi_status = BLK_STS_IOERR; 424 bio_endio(bio); 425 return; 426 } 427 428 /* bio could be mergeable after passing to underlayer */ 429 bio->bi_opf &= ~REQ_NOMERGE; 430 431 md_handle_request(mddev, bio); 432 } 433 434 /* mddev_suspend makes sure no new requests are submitted 435 * to the device, and that any requests that have been submitted 436 * are completely handled. 437 * Once mddev_detach() is called and completes, the module will be 438 * completely unused. 439 */ 440 void mddev_suspend(struct mddev *mddev) 441 { 442 struct md_thread *thread = rcu_dereference_protected(mddev->thread, 443 lockdep_is_held(&mddev->reconfig_mutex)); 444 445 WARN_ON_ONCE(thread && current == thread->tsk); 446 if (mddev->suspended++) 447 return; 448 wake_up(&mddev->sb_wait); 449 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 450 percpu_ref_kill(&mddev->active_io); 451 452 if (mddev->pers->prepare_suspend) 453 mddev->pers->prepare_suspend(mddev); 454 455 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io)); 456 mddev->pers->quiesce(mddev, 1); 457 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 458 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 459 460 del_timer_sync(&mddev->safemode_timer); 461 /* restrict memory reclaim I/O during raid array is suspend */ 462 mddev->noio_flag = memalloc_noio_save(); 463 } 464 EXPORT_SYMBOL_GPL(mddev_suspend); 465 466 void mddev_resume(struct mddev *mddev) 467 { 468 /* entred the memalloc scope from mddev_suspend() */ 469 memalloc_noio_restore(mddev->noio_flag); 470 lockdep_assert_held(&mddev->reconfig_mutex); 471 if (--mddev->suspended) 472 return; 473 percpu_ref_resurrect(&mddev->active_io); 474 wake_up(&mddev->sb_wait); 475 mddev->pers->quiesce(mddev, 0); 476 477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 478 md_wakeup_thread(mddev->thread); 479 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 480 } 481 EXPORT_SYMBOL_GPL(mddev_resume); 482 483 /* 484 * Generic flush handling for md 485 */ 486 487 static void md_end_flush(struct bio *bio) 488 { 489 struct md_rdev *rdev = bio->bi_private; 490 struct mddev *mddev = rdev->mddev; 491 492 bio_put(bio); 493 494 rdev_dec_pending(rdev, mddev); 495 496 if (atomic_dec_and_test(&mddev->flush_pending)) { 497 /* The pre-request flush has finished */ 498 queue_work(md_wq, &mddev->flush_work); 499 } 500 } 501 502 static void md_submit_flush_data(struct work_struct *ws); 503 504 static void submit_flushes(struct work_struct *ws) 505 { 506 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 507 struct md_rdev *rdev; 508 509 mddev->start_flush = ktime_get_boottime(); 510 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 511 atomic_set(&mddev->flush_pending, 1); 512 rcu_read_lock(); 513 rdev_for_each_rcu(rdev, mddev) 514 if (rdev->raid_disk >= 0 && 515 !test_bit(Faulty, &rdev->flags)) { 516 /* Take two references, one is dropped 517 * when request finishes, one after 518 * we reclaim rcu_read_lock 519 */ 520 struct bio *bi; 521 atomic_inc(&rdev->nr_pending); 522 atomic_inc(&rdev->nr_pending); 523 rcu_read_unlock(); 524 bi = bio_alloc_bioset(rdev->bdev, 0, 525 REQ_OP_WRITE | REQ_PREFLUSH, 526 GFP_NOIO, &mddev->bio_set); 527 bi->bi_end_io = md_end_flush; 528 bi->bi_private = rdev; 529 atomic_inc(&mddev->flush_pending); 530 submit_bio(bi); 531 rcu_read_lock(); 532 rdev_dec_pending(rdev, mddev); 533 } 534 rcu_read_unlock(); 535 if (atomic_dec_and_test(&mddev->flush_pending)) 536 queue_work(md_wq, &mddev->flush_work); 537 } 538 539 static void md_submit_flush_data(struct work_struct *ws) 540 { 541 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 542 struct bio *bio = mddev->flush_bio; 543 544 /* 545 * must reset flush_bio before calling into md_handle_request to avoid a 546 * deadlock, because other bios passed md_handle_request suspend check 547 * could wait for this and below md_handle_request could wait for those 548 * bios because of suspend check 549 */ 550 spin_lock_irq(&mddev->lock); 551 mddev->prev_flush_start = mddev->start_flush; 552 mddev->flush_bio = NULL; 553 spin_unlock_irq(&mddev->lock); 554 wake_up(&mddev->sb_wait); 555 556 if (bio->bi_iter.bi_size == 0) { 557 /* an empty barrier - all done */ 558 bio_endio(bio); 559 } else { 560 bio->bi_opf &= ~REQ_PREFLUSH; 561 md_handle_request(mddev, bio); 562 } 563 } 564 565 /* 566 * Manages consolidation of flushes and submitting any flushes needed for 567 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 568 * being finished in another context. Returns false if the flushing is 569 * complete but still needs the I/O portion of the bio to be processed. 570 */ 571 bool md_flush_request(struct mddev *mddev, struct bio *bio) 572 { 573 ktime_t req_start = ktime_get_boottime(); 574 spin_lock_irq(&mddev->lock); 575 /* flush requests wait until ongoing flush completes, 576 * hence coalescing all the pending requests. 577 */ 578 wait_event_lock_irq(mddev->sb_wait, 579 !mddev->flush_bio || 580 ktime_before(req_start, mddev->prev_flush_start), 581 mddev->lock); 582 /* new request after previous flush is completed */ 583 if (ktime_after(req_start, mddev->prev_flush_start)) { 584 WARN_ON(mddev->flush_bio); 585 mddev->flush_bio = bio; 586 bio = NULL; 587 } 588 spin_unlock_irq(&mddev->lock); 589 590 if (!bio) { 591 INIT_WORK(&mddev->flush_work, submit_flushes); 592 queue_work(md_wq, &mddev->flush_work); 593 } else { 594 /* flush was performed for some other bio while we waited. */ 595 if (bio->bi_iter.bi_size == 0) 596 /* an empty barrier - all done */ 597 bio_endio(bio); 598 else { 599 bio->bi_opf &= ~REQ_PREFLUSH; 600 return false; 601 } 602 } 603 return true; 604 } 605 EXPORT_SYMBOL(md_flush_request); 606 607 static inline struct mddev *mddev_get(struct mddev *mddev) 608 { 609 lockdep_assert_held(&all_mddevs_lock); 610 611 if (test_bit(MD_DELETED, &mddev->flags)) 612 return NULL; 613 atomic_inc(&mddev->active); 614 return mddev; 615 } 616 617 static void mddev_delayed_delete(struct work_struct *ws); 618 619 void mddev_put(struct mddev *mddev) 620 { 621 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 622 return; 623 if (!mddev->raid_disks && list_empty(&mddev->disks) && 624 mddev->ctime == 0 && !mddev->hold_active) { 625 /* Array is not configured at all, and not held active, 626 * so destroy it */ 627 set_bit(MD_DELETED, &mddev->flags); 628 629 /* 630 * Call queue_work inside the spinlock so that 631 * flush_workqueue() after mddev_find will succeed in waiting 632 * for the work to be done. 633 */ 634 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 635 queue_work(md_misc_wq, &mddev->del_work); 636 } 637 spin_unlock(&all_mddevs_lock); 638 } 639 640 static void md_safemode_timeout(struct timer_list *t); 641 642 void mddev_init(struct mddev *mddev) 643 { 644 mutex_init(&mddev->open_mutex); 645 mutex_init(&mddev->reconfig_mutex); 646 mutex_init(&mddev->delete_mutex); 647 mutex_init(&mddev->bitmap_info.mutex); 648 INIT_LIST_HEAD(&mddev->disks); 649 INIT_LIST_HEAD(&mddev->all_mddevs); 650 INIT_LIST_HEAD(&mddev->deleting); 651 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 652 atomic_set(&mddev->active, 1); 653 atomic_set(&mddev->openers, 0); 654 spin_lock_init(&mddev->lock); 655 atomic_set(&mddev->flush_pending, 0); 656 init_waitqueue_head(&mddev->sb_wait); 657 init_waitqueue_head(&mddev->recovery_wait); 658 mddev->reshape_position = MaxSector; 659 mddev->reshape_backwards = 0; 660 mddev->last_sync_action = "none"; 661 mddev->resync_min = 0; 662 mddev->resync_max = MaxSector; 663 mddev->level = LEVEL_NONE; 664 } 665 EXPORT_SYMBOL_GPL(mddev_init); 666 667 static struct mddev *mddev_find_locked(dev_t unit) 668 { 669 struct mddev *mddev; 670 671 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 672 if (mddev->unit == unit) 673 return mddev; 674 675 return NULL; 676 } 677 678 /* find an unused unit number */ 679 static dev_t mddev_alloc_unit(void) 680 { 681 static int next_minor = 512; 682 int start = next_minor; 683 bool is_free = 0; 684 dev_t dev = 0; 685 686 while (!is_free) { 687 dev = MKDEV(MD_MAJOR, next_minor); 688 next_minor++; 689 if (next_minor > MINORMASK) 690 next_minor = 0; 691 if (next_minor == start) 692 return 0; /* Oh dear, all in use. */ 693 is_free = !mddev_find_locked(dev); 694 } 695 696 return dev; 697 } 698 699 static struct mddev *mddev_alloc(dev_t unit) 700 { 701 struct mddev *new; 702 int error; 703 704 if (unit && MAJOR(unit) != MD_MAJOR) 705 unit &= ~((1 << MdpMinorShift) - 1); 706 707 new = kzalloc(sizeof(*new), GFP_KERNEL); 708 if (!new) 709 return ERR_PTR(-ENOMEM); 710 mddev_init(new); 711 712 spin_lock(&all_mddevs_lock); 713 if (unit) { 714 error = -EEXIST; 715 if (mddev_find_locked(unit)) 716 goto out_free_new; 717 new->unit = unit; 718 if (MAJOR(unit) == MD_MAJOR) 719 new->md_minor = MINOR(unit); 720 else 721 new->md_minor = MINOR(unit) >> MdpMinorShift; 722 new->hold_active = UNTIL_IOCTL; 723 } else { 724 error = -ENODEV; 725 new->unit = mddev_alloc_unit(); 726 if (!new->unit) 727 goto out_free_new; 728 new->md_minor = MINOR(new->unit); 729 new->hold_active = UNTIL_STOP; 730 } 731 732 list_add(&new->all_mddevs, &all_mddevs); 733 spin_unlock(&all_mddevs_lock); 734 return new; 735 out_free_new: 736 spin_unlock(&all_mddevs_lock); 737 kfree(new); 738 return ERR_PTR(error); 739 } 740 741 static void mddev_free(struct mddev *mddev) 742 { 743 spin_lock(&all_mddevs_lock); 744 list_del(&mddev->all_mddevs); 745 spin_unlock(&all_mddevs_lock); 746 747 kfree(mddev); 748 } 749 750 static const struct attribute_group md_redundancy_group; 751 752 static void md_free_rdev(struct mddev *mddev) 753 { 754 struct md_rdev *rdev; 755 struct md_rdev *tmp; 756 757 mutex_lock(&mddev->delete_mutex); 758 if (list_empty(&mddev->deleting)) 759 goto out; 760 761 list_for_each_entry_safe(rdev, tmp, &mddev->deleting, same_set) { 762 list_del_init(&rdev->same_set); 763 kobject_del(&rdev->kobj); 764 export_rdev(rdev, mddev); 765 } 766 out: 767 mutex_unlock(&mddev->delete_mutex); 768 } 769 770 void mddev_unlock(struct mddev *mddev) 771 { 772 if (mddev->to_remove) { 773 /* These cannot be removed under reconfig_mutex as 774 * an access to the files will try to take reconfig_mutex 775 * while holding the file unremovable, which leads to 776 * a deadlock. 777 * So hold set sysfs_active while the remove in happeing, 778 * and anything else which might set ->to_remove or my 779 * otherwise change the sysfs namespace will fail with 780 * -EBUSY if sysfs_active is still set. 781 * We set sysfs_active under reconfig_mutex and elsewhere 782 * test it under the same mutex to ensure its correct value 783 * is seen. 784 */ 785 const struct attribute_group *to_remove = mddev->to_remove; 786 mddev->to_remove = NULL; 787 mddev->sysfs_active = 1; 788 mutex_unlock(&mddev->reconfig_mutex); 789 790 if (mddev->kobj.sd) { 791 if (to_remove != &md_redundancy_group) 792 sysfs_remove_group(&mddev->kobj, to_remove); 793 if (mddev->pers == NULL || 794 mddev->pers->sync_request == NULL) { 795 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 796 if (mddev->sysfs_action) 797 sysfs_put(mddev->sysfs_action); 798 if (mddev->sysfs_completed) 799 sysfs_put(mddev->sysfs_completed); 800 if (mddev->sysfs_degraded) 801 sysfs_put(mddev->sysfs_degraded); 802 mddev->sysfs_action = NULL; 803 mddev->sysfs_completed = NULL; 804 mddev->sysfs_degraded = NULL; 805 } 806 } 807 mddev->sysfs_active = 0; 808 } else 809 mutex_unlock(&mddev->reconfig_mutex); 810 811 md_free_rdev(mddev); 812 813 md_wakeup_thread(mddev->thread); 814 wake_up(&mddev->sb_wait); 815 } 816 EXPORT_SYMBOL_GPL(mddev_unlock); 817 818 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 819 { 820 struct md_rdev *rdev; 821 822 rdev_for_each_rcu(rdev, mddev) 823 if (rdev->desc_nr == nr) 824 return rdev; 825 826 return NULL; 827 } 828 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 829 830 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 831 { 832 struct md_rdev *rdev; 833 834 rdev_for_each(rdev, mddev) 835 if (rdev->bdev->bd_dev == dev) 836 return rdev; 837 838 return NULL; 839 } 840 841 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 842 { 843 struct md_rdev *rdev; 844 845 rdev_for_each_rcu(rdev, mddev) 846 if (rdev->bdev->bd_dev == dev) 847 return rdev; 848 849 return NULL; 850 } 851 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 852 853 static struct md_personality *find_pers(int level, char *clevel) 854 { 855 struct md_personality *pers; 856 list_for_each_entry(pers, &pers_list, list) { 857 if (level != LEVEL_NONE && pers->level == level) 858 return pers; 859 if (strcmp(pers->name, clevel)==0) 860 return pers; 861 } 862 return NULL; 863 } 864 865 /* return the offset of the super block in 512byte sectors */ 866 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 867 { 868 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 869 } 870 871 static int alloc_disk_sb(struct md_rdev *rdev) 872 { 873 rdev->sb_page = alloc_page(GFP_KERNEL); 874 if (!rdev->sb_page) 875 return -ENOMEM; 876 return 0; 877 } 878 879 void md_rdev_clear(struct md_rdev *rdev) 880 { 881 if (rdev->sb_page) { 882 put_page(rdev->sb_page); 883 rdev->sb_loaded = 0; 884 rdev->sb_page = NULL; 885 rdev->sb_start = 0; 886 rdev->sectors = 0; 887 } 888 if (rdev->bb_page) { 889 put_page(rdev->bb_page); 890 rdev->bb_page = NULL; 891 } 892 badblocks_exit(&rdev->badblocks); 893 } 894 EXPORT_SYMBOL_GPL(md_rdev_clear); 895 896 static void super_written(struct bio *bio) 897 { 898 struct md_rdev *rdev = bio->bi_private; 899 struct mddev *mddev = rdev->mddev; 900 901 if (bio->bi_status) { 902 pr_err("md: %s gets error=%d\n", __func__, 903 blk_status_to_errno(bio->bi_status)); 904 md_error(mddev, rdev); 905 if (!test_bit(Faulty, &rdev->flags) 906 && (bio->bi_opf & MD_FAILFAST)) { 907 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 908 set_bit(LastDev, &rdev->flags); 909 } 910 } else 911 clear_bit(LastDev, &rdev->flags); 912 913 bio_put(bio); 914 915 rdev_dec_pending(rdev, mddev); 916 917 if (atomic_dec_and_test(&mddev->pending_writes)) 918 wake_up(&mddev->sb_wait); 919 } 920 921 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 922 sector_t sector, int size, struct page *page) 923 { 924 /* write first size bytes of page to sector of rdev 925 * Increment mddev->pending_writes before returning 926 * and decrement it on completion, waking up sb_wait 927 * if zero is reached. 928 * If an error occurred, call md_error 929 */ 930 struct bio *bio; 931 932 if (!page) 933 return; 934 935 if (test_bit(Faulty, &rdev->flags)) 936 return; 937 938 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 939 1, 940 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 941 GFP_NOIO, &mddev->sync_set); 942 943 atomic_inc(&rdev->nr_pending); 944 945 bio->bi_iter.bi_sector = sector; 946 __bio_add_page(bio, page, size, 0); 947 bio->bi_private = rdev; 948 bio->bi_end_io = super_written; 949 950 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 951 test_bit(FailFast, &rdev->flags) && 952 !test_bit(LastDev, &rdev->flags)) 953 bio->bi_opf |= MD_FAILFAST; 954 955 atomic_inc(&mddev->pending_writes); 956 submit_bio(bio); 957 } 958 959 int md_super_wait(struct mddev *mddev) 960 { 961 /* wait for all superblock writes that were scheduled to complete */ 962 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 963 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 964 return -EAGAIN; 965 return 0; 966 } 967 968 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 969 struct page *page, blk_opf_t opf, bool metadata_op) 970 { 971 struct bio bio; 972 struct bio_vec bvec; 973 974 if (metadata_op && rdev->meta_bdev) 975 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 976 else 977 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 978 979 if (metadata_op) 980 bio.bi_iter.bi_sector = sector + rdev->sb_start; 981 else if (rdev->mddev->reshape_position != MaxSector && 982 (rdev->mddev->reshape_backwards == 983 (sector >= rdev->mddev->reshape_position))) 984 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 985 else 986 bio.bi_iter.bi_sector = sector + rdev->data_offset; 987 __bio_add_page(&bio, page, size, 0); 988 989 submit_bio_wait(&bio); 990 991 return !bio.bi_status; 992 } 993 EXPORT_SYMBOL_GPL(sync_page_io); 994 995 static int read_disk_sb(struct md_rdev *rdev, int size) 996 { 997 if (rdev->sb_loaded) 998 return 0; 999 1000 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1001 goto fail; 1002 rdev->sb_loaded = 1; 1003 return 0; 1004 1005 fail: 1006 pr_err("md: disabled device %pg, could not read superblock.\n", 1007 rdev->bdev); 1008 return -EINVAL; 1009 } 1010 1011 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1012 { 1013 return sb1->set_uuid0 == sb2->set_uuid0 && 1014 sb1->set_uuid1 == sb2->set_uuid1 && 1015 sb1->set_uuid2 == sb2->set_uuid2 && 1016 sb1->set_uuid3 == sb2->set_uuid3; 1017 } 1018 1019 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1020 { 1021 int ret; 1022 mdp_super_t *tmp1, *tmp2; 1023 1024 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1025 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1026 1027 if (!tmp1 || !tmp2) { 1028 ret = 0; 1029 goto abort; 1030 } 1031 1032 *tmp1 = *sb1; 1033 *tmp2 = *sb2; 1034 1035 /* 1036 * nr_disks is not constant 1037 */ 1038 tmp1->nr_disks = 0; 1039 tmp2->nr_disks = 0; 1040 1041 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1042 abort: 1043 kfree(tmp1); 1044 kfree(tmp2); 1045 return ret; 1046 } 1047 1048 static u32 md_csum_fold(u32 csum) 1049 { 1050 csum = (csum & 0xffff) + (csum >> 16); 1051 return (csum & 0xffff) + (csum >> 16); 1052 } 1053 1054 static unsigned int calc_sb_csum(mdp_super_t *sb) 1055 { 1056 u64 newcsum = 0; 1057 u32 *sb32 = (u32*)sb; 1058 int i; 1059 unsigned int disk_csum, csum; 1060 1061 disk_csum = sb->sb_csum; 1062 sb->sb_csum = 0; 1063 1064 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1065 newcsum += sb32[i]; 1066 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1067 1068 #ifdef CONFIG_ALPHA 1069 /* This used to use csum_partial, which was wrong for several 1070 * reasons including that different results are returned on 1071 * different architectures. It isn't critical that we get exactly 1072 * the same return value as before (we always csum_fold before 1073 * testing, and that removes any differences). However as we 1074 * know that csum_partial always returned a 16bit value on 1075 * alphas, do a fold to maximise conformity to previous behaviour. 1076 */ 1077 sb->sb_csum = md_csum_fold(disk_csum); 1078 #else 1079 sb->sb_csum = disk_csum; 1080 #endif 1081 return csum; 1082 } 1083 1084 /* 1085 * Handle superblock details. 1086 * We want to be able to handle multiple superblock formats 1087 * so we have a common interface to them all, and an array of 1088 * different handlers. 1089 * We rely on user-space to write the initial superblock, and support 1090 * reading and updating of superblocks. 1091 * Interface methods are: 1092 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1093 * loads and validates a superblock on dev. 1094 * if refdev != NULL, compare superblocks on both devices 1095 * Return: 1096 * 0 - dev has a superblock that is compatible with refdev 1097 * 1 - dev has a superblock that is compatible and newer than refdev 1098 * so dev should be used as the refdev in future 1099 * -EINVAL superblock incompatible or invalid 1100 * -othererror e.g. -EIO 1101 * 1102 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1103 * Verify that dev is acceptable into mddev. 1104 * The first time, mddev->raid_disks will be 0, and data from 1105 * dev should be merged in. Subsequent calls check that dev 1106 * is new enough. Return 0 or -EINVAL 1107 * 1108 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1109 * Update the superblock for rdev with data in mddev 1110 * This does not write to disc. 1111 * 1112 */ 1113 1114 struct super_type { 1115 char *name; 1116 struct module *owner; 1117 int (*load_super)(struct md_rdev *rdev, 1118 struct md_rdev *refdev, 1119 int minor_version); 1120 int (*validate_super)(struct mddev *mddev, 1121 struct md_rdev *rdev); 1122 void (*sync_super)(struct mddev *mddev, 1123 struct md_rdev *rdev); 1124 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1125 sector_t num_sectors); 1126 int (*allow_new_offset)(struct md_rdev *rdev, 1127 unsigned long long new_offset); 1128 }; 1129 1130 /* 1131 * Check that the given mddev has no bitmap. 1132 * 1133 * This function is called from the run method of all personalities that do not 1134 * support bitmaps. It prints an error message and returns non-zero if mddev 1135 * has a bitmap. Otherwise, it returns 0. 1136 * 1137 */ 1138 int md_check_no_bitmap(struct mddev *mddev) 1139 { 1140 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1141 return 0; 1142 pr_warn("%s: bitmaps are not supported for %s\n", 1143 mdname(mddev), mddev->pers->name); 1144 return 1; 1145 } 1146 EXPORT_SYMBOL(md_check_no_bitmap); 1147 1148 /* 1149 * load_super for 0.90.0 1150 */ 1151 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1152 { 1153 mdp_super_t *sb; 1154 int ret; 1155 bool spare_disk = true; 1156 1157 /* 1158 * Calculate the position of the superblock (512byte sectors), 1159 * it's at the end of the disk. 1160 * 1161 * It also happens to be a multiple of 4Kb. 1162 */ 1163 rdev->sb_start = calc_dev_sboffset(rdev); 1164 1165 ret = read_disk_sb(rdev, MD_SB_BYTES); 1166 if (ret) 1167 return ret; 1168 1169 ret = -EINVAL; 1170 1171 sb = page_address(rdev->sb_page); 1172 1173 if (sb->md_magic != MD_SB_MAGIC) { 1174 pr_warn("md: invalid raid superblock magic on %pg\n", 1175 rdev->bdev); 1176 goto abort; 1177 } 1178 1179 if (sb->major_version != 0 || 1180 sb->minor_version < 90 || 1181 sb->minor_version > 91) { 1182 pr_warn("Bad version number %d.%d on %pg\n", 1183 sb->major_version, sb->minor_version, rdev->bdev); 1184 goto abort; 1185 } 1186 1187 if (sb->raid_disks <= 0) 1188 goto abort; 1189 1190 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1191 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1192 goto abort; 1193 } 1194 1195 rdev->preferred_minor = sb->md_minor; 1196 rdev->data_offset = 0; 1197 rdev->new_data_offset = 0; 1198 rdev->sb_size = MD_SB_BYTES; 1199 rdev->badblocks.shift = -1; 1200 1201 if (sb->level == LEVEL_MULTIPATH) 1202 rdev->desc_nr = -1; 1203 else 1204 rdev->desc_nr = sb->this_disk.number; 1205 1206 /* not spare disk, or LEVEL_MULTIPATH */ 1207 if (sb->level == LEVEL_MULTIPATH || 1208 (rdev->desc_nr >= 0 && 1209 rdev->desc_nr < MD_SB_DISKS && 1210 sb->disks[rdev->desc_nr].state & 1211 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1212 spare_disk = false; 1213 1214 if (!refdev) { 1215 if (!spare_disk) 1216 ret = 1; 1217 else 1218 ret = 0; 1219 } else { 1220 __u64 ev1, ev2; 1221 mdp_super_t *refsb = page_address(refdev->sb_page); 1222 if (!md_uuid_equal(refsb, sb)) { 1223 pr_warn("md: %pg has different UUID to %pg\n", 1224 rdev->bdev, refdev->bdev); 1225 goto abort; 1226 } 1227 if (!md_sb_equal(refsb, sb)) { 1228 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1229 rdev->bdev, refdev->bdev); 1230 goto abort; 1231 } 1232 ev1 = md_event(sb); 1233 ev2 = md_event(refsb); 1234 1235 if (!spare_disk && ev1 > ev2) 1236 ret = 1; 1237 else 1238 ret = 0; 1239 } 1240 rdev->sectors = rdev->sb_start; 1241 /* Limit to 4TB as metadata cannot record more than that. 1242 * (not needed for Linear and RAID0 as metadata doesn't 1243 * record this size) 1244 */ 1245 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1246 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1247 1248 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1249 /* "this cannot possibly happen" ... */ 1250 ret = -EINVAL; 1251 1252 abort: 1253 return ret; 1254 } 1255 1256 /* 1257 * validate_super for 0.90.0 1258 */ 1259 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1260 { 1261 mdp_disk_t *desc; 1262 mdp_super_t *sb = page_address(rdev->sb_page); 1263 __u64 ev1 = md_event(sb); 1264 1265 rdev->raid_disk = -1; 1266 clear_bit(Faulty, &rdev->flags); 1267 clear_bit(In_sync, &rdev->flags); 1268 clear_bit(Bitmap_sync, &rdev->flags); 1269 clear_bit(WriteMostly, &rdev->flags); 1270 1271 if (mddev->raid_disks == 0) { 1272 mddev->major_version = 0; 1273 mddev->minor_version = sb->minor_version; 1274 mddev->patch_version = sb->patch_version; 1275 mddev->external = 0; 1276 mddev->chunk_sectors = sb->chunk_size >> 9; 1277 mddev->ctime = sb->ctime; 1278 mddev->utime = sb->utime; 1279 mddev->level = sb->level; 1280 mddev->clevel[0] = 0; 1281 mddev->layout = sb->layout; 1282 mddev->raid_disks = sb->raid_disks; 1283 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1284 mddev->events = ev1; 1285 mddev->bitmap_info.offset = 0; 1286 mddev->bitmap_info.space = 0; 1287 /* bitmap can use 60 K after the 4K superblocks */ 1288 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1289 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1290 mddev->reshape_backwards = 0; 1291 1292 if (mddev->minor_version >= 91) { 1293 mddev->reshape_position = sb->reshape_position; 1294 mddev->delta_disks = sb->delta_disks; 1295 mddev->new_level = sb->new_level; 1296 mddev->new_layout = sb->new_layout; 1297 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1298 if (mddev->delta_disks < 0) 1299 mddev->reshape_backwards = 1; 1300 } else { 1301 mddev->reshape_position = MaxSector; 1302 mddev->delta_disks = 0; 1303 mddev->new_level = mddev->level; 1304 mddev->new_layout = mddev->layout; 1305 mddev->new_chunk_sectors = mddev->chunk_sectors; 1306 } 1307 if (mddev->level == 0) 1308 mddev->layout = -1; 1309 1310 if (sb->state & (1<<MD_SB_CLEAN)) 1311 mddev->recovery_cp = MaxSector; 1312 else { 1313 if (sb->events_hi == sb->cp_events_hi && 1314 sb->events_lo == sb->cp_events_lo) { 1315 mddev->recovery_cp = sb->recovery_cp; 1316 } else 1317 mddev->recovery_cp = 0; 1318 } 1319 1320 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1321 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1322 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1323 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1324 1325 mddev->max_disks = MD_SB_DISKS; 1326 1327 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1328 mddev->bitmap_info.file == NULL) { 1329 mddev->bitmap_info.offset = 1330 mddev->bitmap_info.default_offset; 1331 mddev->bitmap_info.space = 1332 mddev->bitmap_info.default_space; 1333 } 1334 1335 } else if (mddev->pers == NULL) { 1336 /* Insist on good event counter while assembling, except 1337 * for spares (which don't need an event count) */ 1338 ++ev1; 1339 if (sb->disks[rdev->desc_nr].state & ( 1340 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1341 if (ev1 < mddev->events) 1342 return -EINVAL; 1343 } else if (mddev->bitmap) { 1344 /* if adding to array with a bitmap, then we can accept an 1345 * older device ... but not too old. 1346 */ 1347 if (ev1 < mddev->bitmap->events_cleared) 1348 return 0; 1349 if (ev1 < mddev->events) 1350 set_bit(Bitmap_sync, &rdev->flags); 1351 } else { 1352 if (ev1 < mddev->events) 1353 /* just a hot-add of a new device, leave raid_disk at -1 */ 1354 return 0; 1355 } 1356 1357 if (mddev->level != LEVEL_MULTIPATH) { 1358 desc = sb->disks + rdev->desc_nr; 1359 1360 if (desc->state & (1<<MD_DISK_FAULTY)) 1361 set_bit(Faulty, &rdev->flags); 1362 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1363 desc->raid_disk < mddev->raid_disks */) { 1364 set_bit(In_sync, &rdev->flags); 1365 rdev->raid_disk = desc->raid_disk; 1366 rdev->saved_raid_disk = desc->raid_disk; 1367 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1368 /* active but not in sync implies recovery up to 1369 * reshape position. We don't know exactly where 1370 * that is, so set to zero for now */ 1371 if (mddev->minor_version >= 91) { 1372 rdev->recovery_offset = 0; 1373 rdev->raid_disk = desc->raid_disk; 1374 } 1375 } 1376 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1377 set_bit(WriteMostly, &rdev->flags); 1378 if (desc->state & (1<<MD_DISK_FAILFAST)) 1379 set_bit(FailFast, &rdev->flags); 1380 } else /* MULTIPATH are always insync */ 1381 set_bit(In_sync, &rdev->flags); 1382 return 0; 1383 } 1384 1385 /* 1386 * sync_super for 0.90.0 1387 */ 1388 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1389 { 1390 mdp_super_t *sb; 1391 struct md_rdev *rdev2; 1392 int next_spare = mddev->raid_disks; 1393 1394 /* make rdev->sb match mddev data.. 1395 * 1396 * 1/ zero out disks 1397 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1398 * 3/ any empty disks < next_spare become removed 1399 * 1400 * disks[0] gets initialised to REMOVED because 1401 * we cannot be sure from other fields if it has 1402 * been initialised or not. 1403 */ 1404 int i; 1405 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1406 1407 rdev->sb_size = MD_SB_BYTES; 1408 1409 sb = page_address(rdev->sb_page); 1410 1411 memset(sb, 0, sizeof(*sb)); 1412 1413 sb->md_magic = MD_SB_MAGIC; 1414 sb->major_version = mddev->major_version; 1415 sb->patch_version = mddev->patch_version; 1416 sb->gvalid_words = 0; /* ignored */ 1417 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1418 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1419 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1420 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1421 1422 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1423 sb->level = mddev->level; 1424 sb->size = mddev->dev_sectors / 2; 1425 sb->raid_disks = mddev->raid_disks; 1426 sb->md_minor = mddev->md_minor; 1427 sb->not_persistent = 0; 1428 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1429 sb->state = 0; 1430 sb->events_hi = (mddev->events>>32); 1431 sb->events_lo = (u32)mddev->events; 1432 1433 if (mddev->reshape_position == MaxSector) 1434 sb->minor_version = 90; 1435 else { 1436 sb->minor_version = 91; 1437 sb->reshape_position = mddev->reshape_position; 1438 sb->new_level = mddev->new_level; 1439 sb->delta_disks = mddev->delta_disks; 1440 sb->new_layout = mddev->new_layout; 1441 sb->new_chunk = mddev->new_chunk_sectors << 9; 1442 } 1443 mddev->minor_version = sb->minor_version; 1444 if (mddev->in_sync) 1445 { 1446 sb->recovery_cp = mddev->recovery_cp; 1447 sb->cp_events_hi = (mddev->events>>32); 1448 sb->cp_events_lo = (u32)mddev->events; 1449 if (mddev->recovery_cp == MaxSector) 1450 sb->state = (1<< MD_SB_CLEAN); 1451 } else 1452 sb->recovery_cp = 0; 1453 1454 sb->layout = mddev->layout; 1455 sb->chunk_size = mddev->chunk_sectors << 9; 1456 1457 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1458 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1459 1460 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1461 rdev_for_each(rdev2, mddev) { 1462 mdp_disk_t *d; 1463 int desc_nr; 1464 int is_active = test_bit(In_sync, &rdev2->flags); 1465 1466 if (rdev2->raid_disk >= 0 && 1467 sb->minor_version >= 91) 1468 /* we have nowhere to store the recovery_offset, 1469 * but if it is not below the reshape_position, 1470 * we can piggy-back on that. 1471 */ 1472 is_active = 1; 1473 if (rdev2->raid_disk < 0 || 1474 test_bit(Faulty, &rdev2->flags)) 1475 is_active = 0; 1476 if (is_active) 1477 desc_nr = rdev2->raid_disk; 1478 else 1479 desc_nr = next_spare++; 1480 rdev2->desc_nr = desc_nr; 1481 d = &sb->disks[rdev2->desc_nr]; 1482 nr_disks++; 1483 d->number = rdev2->desc_nr; 1484 d->major = MAJOR(rdev2->bdev->bd_dev); 1485 d->minor = MINOR(rdev2->bdev->bd_dev); 1486 if (is_active) 1487 d->raid_disk = rdev2->raid_disk; 1488 else 1489 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1490 if (test_bit(Faulty, &rdev2->flags)) 1491 d->state = (1<<MD_DISK_FAULTY); 1492 else if (is_active) { 1493 d->state = (1<<MD_DISK_ACTIVE); 1494 if (test_bit(In_sync, &rdev2->flags)) 1495 d->state |= (1<<MD_DISK_SYNC); 1496 active++; 1497 working++; 1498 } else { 1499 d->state = 0; 1500 spare++; 1501 working++; 1502 } 1503 if (test_bit(WriteMostly, &rdev2->flags)) 1504 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1505 if (test_bit(FailFast, &rdev2->flags)) 1506 d->state |= (1<<MD_DISK_FAILFAST); 1507 } 1508 /* now set the "removed" and "faulty" bits on any missing devices */ 1509 for (i=0 ; i < mddev->raid_disks ; i++) { 1510 mdp_disk_t *d = &sb->disks[i]; 1511 if (d->state == 0 && d->number == 0) { 1512 d->number = i; 1513 d->raid_disk = i; 1514 d->state = (1<<MD_DISK_REMOVED); 1515 d->state |= (1<<MD_DISK_FAULTY); 1516 failed++; 1517 } 1518 } 1519 sb->nr_disks = nr_disks; 1520 sb->active_disks = active; 1521 sb->working_disks = working; 1522 sb->failed_disks = failed; 1523 sb->spare_disks = spare; 1524 1525 sb->this_disk = sb->disks[rdev->desc_nr]; 1526 sb->sb_csum = calc_sb_csum(sb); 1527 } 1528 1529 /* 1530 * rdev_size_change for 0.90.0 1531 */ 1532 static unsigned long long 1533 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1534 { 1535 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1536 return 0; /* component must fit device */ 1537 if (rdev->mddev->bitmap_info.offset) 1538 return 0; /* can't move bitmap */ 1539 rdev->sb_start = calc_dev_sboffset(rdev); 1540 if (!num_sectors || num_sectors > rdev->sb_start) 1541 num_sectors = rdev->sb_start; 1542 /* Limit to 4TB as metadata cannot record more than that. 1543 * 4TB == 2^32 KB, or 2*2^32 sectors. 1544 */ 1545 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1546 num_sectors = (sector_t)(2ULL << 32) - 2; 1547 do { 1548 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1549 rdev->sb_page); 1550 } while (md_super_wait(rdev->mddev) < 0); 1551 return num_sectors; 1552 } 1553 1554 static int 1555 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1556 { 1557 /* non-zero offset changes not possible with v0.90 */ 1558 return new_offset == 0; 1559 } 1560 1561 /* 1562 * version 1 superblock 1563 */ 1564 1565 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1566 { 1567 __le32 disk_csum; 1568 u32 csum; 1569 unsigned long long newcsum; 1570 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1571 __le32 *isuper = (__le32*)sb; 1572 1573 disk_csum = sb->sb_csum; 1574 sb->sb_csum = 0; 1575 newcsum = 0; 1576 for (; size >= 4; size -= 4) 1577 newcsum += le32_to_cpu(*isuper++); 1578 1579 if (size == 2) 1580 newcsum += le16_to_cpu(*(__le16*) isuper); 1581 1582 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1583 sb->sb_csum = disk_csum; 1584 return cpu_to_le32(csum); 1585 } 1586 1587 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1588 { 1589 struct mdp_superblock_1 *sb; 1590 int ret; 1591 sector_t sb_start; 1592 sector_t sectors; 1593 int bmask; 1594 bool spare_disk = true; 1595 1596 /* 1597 * Calculate the position of the superblock in 512byte sectors. 1598 * It is always aligned to a 4K boundary and 1599 * depeding on minor_version, it can be: 1600 * 0: At least 8K, but less than 12K, from end of device 1601 * 1: At start of device 1602 * 2: 4K from start of device. 1603 */ 1604 switch(minor_version) { 1605 case 0: 1606 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1607 sb_start &= ~(sector_t)(4*2-1); 1608 break; 1609 case 1: 1610 sb_start = 0; 1611 break; 1612 case 2: 1613 sb_start = 8; 1614 break; 1615 default: 1616 return -EINVAL; 1617 } 1618 rdev->sb_start = sb_start; 1619 1620 /* superblock is rarely larger than 1K, but it can be larger, 1621 * and it is safe to read 4k, so we do that 1622 */ 1623 ret = read_disk_sb(rdev, 4096); 1624 if (ret) return ret; 1625 1626 sb = page_address(rdev->sb_page); 1627 1628 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1629 sb->major_version != cpu_to_le32(1) || 1630 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1631 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1632 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1633 return -EINVAL; 1634 1635 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1636 pr_warn("md: invalid superblock checksum on %pg\n", 1637 rdev->bdev); 1638 return -EINVAL; 1639 } 1640 if (le64_to_cpu(sb->data_size) < 10) { 1641 pr_warn("md: data_size too small on %pg\n", 1642 rdev->bdev); 1643 return -EINVAL; 1644 } 1645 if (sb->pad0 || 1646 sb->pad3[0] || 1647 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1648 /* Some padding is non-zero, might be a new feature */ 1649 return -EINVAL; 1650 1651 rdev->preferred_minor = 0xffff; 1652 rdev->data_offset = le64_to_cpu(sb->data_offset); 1653 rdev->new_data_offset = rdev->data_offset; 1654 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1655 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1656 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1657 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1658 1659 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1660 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1661 if (rdev->sb_size & bmask) 1662 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1663 1664 if (minor_version 1665 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1666 return -EINVAL; 1667 if (minor_version 1668 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1669 return -EINVAL; 1670 1671 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1672 rdev->desc_nr = -1; 1673 else 1674 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1675 1676 if (!rdev->bb_page) { 1677 rdev->bb_page = alloc_page(GFP_KERNEL); 1678 if (!rdev->bb_page) 1679 return -ENOMEM; 1680 } 1681 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1682 rdev->badblocks.count == 0) { 1683 /* need to load the bad block list. 1684 * Currently we limit it to one page. 1685 */ 1686 s32 offset; 1687 sector_t bb_sector; 1688 __le64 *bbp; 1689 int i; 1690 int sectors = le16_to_cpu(sb->bblog_size); 1691 if (sectors > (PAGE_SIZE / 512)) 1692 return -EINVAL; 1693 offset = le32_to_cpu(sb->bblog_offset); 1694 if (offset == 0) 1695 return -EINVAL; 1696 bb_sector = (long long)offset; 1697 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1698 rdev->bb_page, REQ_OP_READ, true)) 1699 return -EIO; 1700 bbp = (__le64 *)page_address(rdev->bb_page); 1701 rdev->badblocks.shift = sb->bblog_shift; 1702 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1703 u64 bb = le64_to_cpu(*bbp); 1704 int count = bb & (0x3ff); 1705 u64 sector = bb >> 10; 1706 sector <<= sb->bblog_shift; 1707 count <<= sb->bblog_shift; 1708 if (bb + 1 == 0) 1709 break; 1710 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1711 return -EINVAL; 1712 } 1713 } else if (sb->bblog_offset != 0) 1714 rdev->badblocks.shift = 0; 1715 1716 if ((le32_to_cpu(sb->feature_map) & 1717 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1718 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1719 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1720 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1721 } 1722 1723 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1724 sb->level != 0) 1725 return -EINVAL; 1726 1727 /* not spare disk, or LEVEL_MULTIPATH */ 1728 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1729 (rdev->desc_nr >= 0 && 1730 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1731 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1732 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1733 spare_disk = false; 1734 1735 if (!refdev) { 1736 if (!spare_disk) 1737 ret = 1; 1738 else 1739 ret = 0; 1740 } else { 1741 __u64 ev1, ev2; 1742 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1743 1744 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1745 sb->level != refsb->level || 1746 sb->layout != refsb->layout || 1747 sb->chunksize != refsb->chunksize) { 1748 pr_warn("md: %pg has strangely different superblock to %pg\n", 1749 rdev->bdev, 1750 refdev->bdev); 1751 return -EINVAL; 1752 } 1753 ev1 = le64_to_cpu(sb->events); 1754 ev2 = le64_to_cpu(refsb->events); 1755 1756 if (!spare_disk && ev1 > ev2) 1757 ret = 1; 1758 else 1759 ret = 0; 1760 } 1761 if (minor_version) 1762 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1763 else 1764 sectors = rdev->sb_start; 1765 if (sectors < le64_to_cpu(sb->data_size)) 1766 return -EINVAL; 1767 rdev->sectors = le64_to_cpu(sb->data_size); 1768 return ret; 1769 } 1770 1771 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1772 { 1773 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1774 __u64 ev1 = le64_to_cpu(sb->events); 1775 1776 rdev->raid_disk = -1; 1777 clear_bit(Faulty, &rdev->flags); 1778 clear_bit(In_sync, &rdev->flags); 1779 clear_bit(Bitmap_sync, &rdev->flags); 1780 clear_bit(WriteMostly, &rdev->flags); 1781 1782 if (mddev->raid_disks == 0) { 1783 mddev->major_version = 1; 1784 mddev->patch_version = 0; 1785 mddev->external = 0; 1786 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1787 mddev->ctime = le64_to_cpu(sb->ctime); 1788 mddev->utime = le64_to_cpu(sb->utime); 1789 mddev->level = le32_to_cpu(sb->level); 1790 mddev->clevel[0] = 0; 1791 mddev->layout = le32_to_cpu(sb->layout); 1792 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1793 mddev->dev_sectors = le64_to_cpu(sb->size); 1794 mddev->events = ev1; 1795 mddev->bitmap_info.offset = 0; 1796 mddev->bitmap_info.space = 0; 1797 /* Default location for bitmap is 1K after superblock 1798 * using 3K - total of 4K 1799 */ 1800 mddev->bitmap_info.default_offset = 1024 >> 9; 1801 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1802 mddev->reshape_backwards = 0; 1803 1804 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1805 memcpy(mddev->uuid, sb->set_uuid, 16); 1806 1807 mddev->max_disks = (4096-256)/2; 1808 1809 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1810 mddev->bitmap_info.file == NULL) { 1811 mddev->bitmap_info.offset = 1812 (__s32)le32_to_cpu(sb->bitmap_offset); 1813 /* Metadata doesn't record how much space is available. 1814 * For 1.0, we assume we can use up to the superblock 1815 * if before, else to 4K beyond superblock. 1816 * For others, assume no change is possible. 1817 */ 1818 if (mddev->minor_version > 0) 1819 mddev->bitmap_info.space = 0; 1820 else if (mddev->bitmap_info.offset > 0) 1821 mddev->bitmap_info.space = 1822 8 - mddev->bitmap_info.offset; 1823 else 1824 mddev->bitmap_info.space = 1825 -mddev->bitmap_info.offset; 1826 } 1827 1828 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1829 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1830 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1831 mddev->new_level = le32_to_cpu(sb->new_level); 1832 mddev->new_layout = le32_to_cpu(sb->new_layout); 1833 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1834 if (mddev->delta_disks < 0 || 1835 (mddev->delta_disks == 0 && 1836 (le32_to_cpu(sb->feature_map) 1837 & MD_FEATURE_RESHAPE_BACKWARDS))) 1838 mddev->reshape_backwards = 1; 1839 } else { 1840 mddev->reshape_position = MaxSector; 1841 mddev->delta_disks = 0; 1842 mddev->new_level = mddev->level; 1843 mddev->new_layout = mddev->layout; 1844 mddev->new_chunk_sectors = mddev->chunk_sectors; 1845 } 1846 1847 if (mddev->level == 0 && 1848 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1849 mddev->layout = -1; 1850 1851 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1852 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1853 1854 if (le32_to_cpu(sb->feature_map) & 1855 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1856 if (le32_to_cpu(sb->feature_map) & 1857 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1858 return -EINVAL; 1859 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1860 (le32_to_cpu(sb->feature_map) & 1861 MD_FEATURE_MULTIPLE_PPLS)) 1862 return -EINVAL; 1863 set_bit(MD_HAS_PPL, &mddev->flags); 1864 } 1865 } else if (mddev->pers == NULL) { 1866 /* Insist of good event counter while assembling, except for 1867 * spares (which don't need an event count) */ 1868 ++ev1; 1869 if (rdev->desc_nr >= 0 && 1870 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1871 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1872 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1873 if (ev1 < mddev->events) 1874 return -EINVAL; 1875 } else if (mddev->bitmap) { 1876 /* If adding to array with a bitmap, then we can accept an 1877 * older device, but not too old. 1878 */ 1879 if (ev1 < mddev->bitmap->events_cleared) 1880 return 0; 1881 if (ev1 < mddev->events) 1882 set_bit(Bitmap_sync, &rdev->flags); 1883 } else { 1884 if (ev1 < mddev->events) 1885 /* just a hot-add of a new device, leave raid_disk at -1 */ 1886 return 0; 1887 } 1888 if (mddev->level != LEVEL_MULTIPATH) { 1889 int role; 1890 if (rdev->desc_nr < 0 || 1891 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1892 role = MD_DISK_ROLE_SPARE; 1893 rdev->desc_nr = -1; 1894 } else 1895 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1896 switch(role) { 1897 case MD_DISK_ROLE_SPARE: /* spare */ 1898 break; 1899 case MD_DISK_ROLE_FAULTY: /* faulty */ 1900 set_bit(Faulty, &rdev->flags); 1901 break; 1902 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1903 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1904 /* journal device without journal feature */ 1905 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1906 return -EINVAL; 1907 } 1908 set_bit(Journal, &rdev->flags); 1909 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1910 rdev->raid_disk = 0; 1911 break; 1912 default: 1913 rdev->saved_raid_disk = role; 1914 if ((le32_to_cpu(sb->feature_map) & 1915 MD_FEATURE_RECOVERY_OFFSET)) { 1916 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1917 if (!(le32_to_cpu(sb->feature_map) & 1918 MD_FEATURE_RECOVERY_BITMAP)) 1919 rdev->saved_raid_disk = -1; 1920 } else { 1921 /* 1922 * If the array is FROZEN, then the device can't 1923 * be in_sync with rest of array. 1924 */ 1925 if (!test_bit(MD_RECOVERY_FROZEN, 1926 &mddev->recovery)) 1927 set_bit(In_sync, &rdev->flags); 1928 } 1929 rdev->raid_disk = role; 1930 break; 1931 } 1932 if (sb->devflags & WriteMostly1) 1933 set_bit(WriteMostly, &rdev->flags); 1934 if (sb->devflags & FailFast1) 1935 set_bit(FailFast, &rdev->flags); 1936 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1937 set_bit(Replacement, &rdev->flags); 1938 } else /* MULTIPATH are always insync */ 1939 set_bit(In_sync, &rdev->flags); 1940 1941 return 0; 1942 } 1943 1944 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1945 { 1946 struct mdp_superblock_1 *sb; 1947 struct md_rdev *rdev2; 1948 int max_dev, i; 1949 /* make rdev->sb match mddev and rdev data. */ 1950 1951 sb = page_address(rdev->sb_page); 1952 1953 sb->feature_map = 0; 1954 sb->pad0 = 0; 1955 sb->recovery_offset = cpu_to_le64(0); 1956 memset(sb->pad3, 0, sizeof(sb->pad3)); 1957 1958 sb->utime = cpu_to_le64((__u64)mddev->utime); 1959 sb->events = cpu_to_le64(mddev->events); 1960 if (mddev->in_sync) 1961 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1962 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1963 sb->resync_offset = cpu_to_le64(MaxSector); 1964 else 1965 sb->resync_offset = cpu_to_le64(0); 1966 1967 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1968 1969 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1970 sb->size = cpu_to_le64(mddev->dev_sectors); 1971 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1972 sb->level = cpu_to_le32(mddev->level); 1973 sb->layout = cpu_to_le32(mddev->layout); 1974 if (test_bit(FailFast, &rdev->flags)) 1975 sb->devflags |= FailFast1; 1976 else 1977 sb->devflags &= ~FailFast1; 1978 1979 if (test_bit(WriteMostly, &rdev->flags)) 1980 sb->devflags |= WriteMostly1; 1981 else 1982 sb->devflags &= ~WriteMostly1; 1983 sb->data_offset = cpu_to_le64(rdev->data_offset); 1984 sb->data_size = cpu_to_le64(rdev->sectors); 1985 1986 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1987 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1988 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1989 } 1990 1991 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1992 !test_bit(In_sync, &rdev->flags)) { 1993 sb->feature_map |= 1994 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1995 sb->recovery_offset = 1996 cpu_to_le64(rdev->recovery_offset); 1997 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1998 sb->feature_map |= 1999 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2000 } 2001 /* Note: recovery_offset and journal_tail share space */ 2002 if (test_bit(Journal, &rdev->flags)) 2003 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2004 if (test_bit(Replacement, &rdev->flags)) 2005 sb->feature_map |= 2006 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2007 2008 if (mddev->reshape_position != MaxSector) { 2009 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2010 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2011 sb->new_layout = cpu_to_le32(mddev->new_layout); 2012 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2013 sb->new_level = cpu_to_le32(mddev->new_level); 2014 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2015 if (mddev->delta_disks == 0 && 2016 mddev->reshape_backwards) 2017 sb->feature_map 2018 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2019 if (rdev->new_data_offset != rdev->data_offset) { 2020 sb->feature_map 2021 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2022 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2023 - rdev->data_offset)); 2024 } 2025 } 2026 2027 if (mddev_is_clustered(mddev)) 2028 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2029 2030 if (rdev->badblocks.count == 0) 2031 /* Nothing to do for bad blocks*/ ; 2032 else if (sb->bblog_offset == 0) 2033 /* Cannot record bad blocks on this device */ 2034 md_error(mddev, rdev); 2035 else { 2036 struct badblocks *bb = &rdev->badblocks; 2037 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2038 u64 *p = bb->page; 2039 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2040 if (bb->changed) { 2041 unsigned seq; 2042 2043 retry: 2044 seq = read_seqbegin(&bb->lock); 2045 2046 memset(bbp, 0xff, PAGE_SIZE); 2047 2048 for (i = 0 ; i < bb->count ; i++) { 2049 u64 internal_bb = p[i]; 2050 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2051 | BB_LEN(internal_bb)); 2052 bbp[i] = cpu_to_le64(store_bb); 2053 } 2054 bb->changed = 0; 2055 if (read_seqretry(&bb->lock, seq)) 2056 goto retry; 2057 2058 bb->sector = (rdev->sb_start + 2059 (int)le32_to_cpu(sb->bblog_offset)); 2060 bb->size = le16_to_cpu(sb->bblog_size); 2061 } 2062 } 2063 2064 max_dev = 0; 2065 rdev_for_each(rdev2, mddev) 2066 if (rdev2->desc_nr+1 > max_dev) 2067 max_dev = rdev2->desc_nr+1; 2068 2069 if (max_dev > le32_to_cpu(sb->max_dev)) { 2070 int bmask; 2071 sb->max_dev = cpu_to_le32(max_dev); 2072 rdev->sb_size = max_dev * 2 + 256; 2073 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2074 if (rdev->sb_size & bmask) 2075 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2076 } else 2077 max_dev = le32_to_cpu(sb->max_dev); 2078 2079 for (i=0; i<max_dev;i++) 2080 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2081 2082 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2083 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2084 2085 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2086 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2087 sb->feature_map |= 2088 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2089 else 2090 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2091 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2092 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2093 } 2094 2095 rdev_for_each(rdev2, mddev) { 2096 i = rdev2->desc_nr; 2097 if (test_bit(Faulty, &rdev2->flags)) 2098 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2099 else if (test_bit(In_sync, &rdev2->flags)) 2100 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2101 else if (test_bit(Journal, &rdev2->flags)) 2102 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2103 else if (rdev2->raid_disk >= 0) 2104 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2105 else 2106 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2107 } 2108 2109 sb->sb_csum = calc_sb_1_csum(sb); 2110 } 2111 2112 static sector_t super_1_choose_bm_space(sector_t dev_size) 2113 { 2114 sector_t bm_space; 2115 2116 /* if the device is bigger than 8Gig, save 64k for bitmap 2117 * usage, if bigger than 200Gig, save 128k 2118 */ 2119 if (dev_size < 64*2) 2120 bm_space = 0; 2121 else if (dev_size - 64*2 >= 200*1024*1024*2) 2122 bm_space = 128*2; 2123 else if (dev_size - 4*2 > 8*1024*1024*2) 2124 bm_space = 64*2; 2125 else 2126 bm_space = 4*2; 2127 return bm_space; 2128 } 2129 2130 static unsigned long long 2131 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2132 { 2133 struct mdp_superblock_1 *sb; 2134 sector_t max_sectors; 2135 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2136 return 0; /* component must fit device */ 2137 if (rdev->data_offset != rdev->new_data_offset) 2138 return 0; /* too confusing */ 2139 if (rdev->sb_start < rdev->data_offset) { 2140 /* minor versions 1 and 2; superblock before data */ 2141 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2142 if (!num_sectors || num_sectors > max_sectors) 2143 num_sectors = max_sectors; 2144 } else if (rdev->mddev->bitmap_info.offset) { 2145 /* minor version 0 with bitmap we can't move */ 2146 return 0; 2147 } else { 2148 /* minor version 0; superblock after data */ 2149 sector_t sb_start, bm_space; 2150 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2151 2152 /* 8K is for superblock */ 2153 sb_start = dev_size - 8*2; 2154 sb_start &= ~(sector_t)(4*2 - 1); 2155 2156 bm_space = super_1_choose_bm_space(dev_size); 2157 2158 /* Space that can be used to store date needs to decrease 2159 * superblock bitmap space and bad block space(4K) 2160 */ 2161 max_sectors = sb_start - bm_space - 4*2; 2162 2163 if (!num_sectors || num_sectors > max_sectors) 2164 num_sectors = max_sectors; 2165 rdev->sb_start = sb_start; 2166 } 2167 sb = page_address(rdev->sb_page); 2168 sb->data_size = cpu_to_le64(num_sectors); 2169 sb->super_offset = cpu_to_le64(rdev->sb_start); 2170 sb->sb_csum = calc_sb_1_csum(sb); 2171 do { 2172 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2173 rdev->sb_page); 2174 } while (md_super_wait(rdev->mddev) < 0); 2175 return num_sectors; 2176 2177 } 2178 2179 static int 2180 super_1_allow_new_offset(struct md_rdev *rdev, 2181 unsigned long long new_offset) 2182 { 2183 /* All necessary checks on new >= old have been done */ 2184 struct bitmap *bitmap; 2185 if (new_offset >= rdev->data_offset) 2186 return 1; 2187 2188 /* with 1.0 metadata, there is no metadata to tread on 2189 * so we can always move back */ 2190 if (rdev->mddev->minor_version == 0) 2191 return 1; 2192 2193 /* otherwise we must be sure not to step on 2194 * any metadata, so stay: 2195 * 36K beyond start of superblock 2196 * beyond end of badblocks 2197 * beyond write-intent bitmap 2198 */ 2199 if (rdev->sb_start + (32+4)*2 > new_offset) 2200 return 0; 2201 bitmap = rdev->mddev->bitmap; 2202 if (bitmap && !rdev->mddev->bitmap_info.file && 2203 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2204 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2205 return 0; 2206 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2207 return 0; 2208 2209 return 1; 2210 } 2211 2212 static struct super_type super_types[] = { 2213 [0] = { 2214 .name = "0.90.0", 2215 .owner = THIS_MODULE, 2216 .load_super = super_90_load, 2217 .validate_super = super_90_validate, 2218 .sync_super = super_90_sync, 2219 .rdev_size_change = super_90_rdev_size_change, 2220 .allow_new_offset = super_90_allow_new_offset, 2221 }, 2222 [1] = { 2223 .name = "md-1", 2224 .owner = THIS_MODULE, 2225 .load_super = super_1_load, 2226 .validate_super = super_1_validate, 2227 .sync_super = super_1_sync, 2228 .rdev_size_change = super_1_rdev_size_change, 2229 .allow_new_offset = super_1_allow_new_offset, 2230 }, 2231 }; 2232 2233 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2234 { 2235 if (mddev->sync_super) { 2236 mddev->sync_super(mddev, rdev); 2237 return; 2238 } 2239 2240 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2241 2242 super_types[mddev->major_version].sync_super(mddev, rdev); 2243 } 2244 2245 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2246 { 2247 struct md_rdev *rdev, *rdev2; 2248 2249 rcu_read_lock(); 2250 rdev_for_each_rcu(rdev, mddev1) { 2251 if (test_bit(Faulty, &rdev->flags) || 2252 test_bit(Journal, &rdev->flags) || 2253 rdev->raid_disk == -1) 2254 continue; 2255 rdev_for_each_rcu(rdev2, mddev2) { 2256 if (test_bit(Faulty, &rdev2->flags) || 2257 test_bit(Journal, &rdev2->flags) || 2258 rdev2->raid_disk == -1) 2259 continue; 2260 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2261 rcu_read_unlock(); 2262 return 1; 2263 } 2264 } 2265 } 2266 rcu_read_unlock(); 2267 return 0; 2268 } 2269 2270 static LIST_HEAD(pending_raid_disks); 2271 2272 /* 2273 * Try to register data integrity profile for an mddev 2274 * 2275 * This is called when an array is started and after a disk has been kicked 2276 * from the array. It only succeeds if all working and active component devices 2277 * are integrity capable with matching profiles. 2278 */ 2279 int md_integrity_register(struct mddev *mddev) 2280 { 2281 struct md_rdev *rdev, *reference = NULL; 2282 2283 if (list_empty(&mddev->disks)) 2284 return 0; /* nothing to do */ 2285 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2286 return 0; /* shouldn't register, or already is */ 2287 rdev_for_each(rdev, mddev) { 2288 /* skip spares and non-functional disks */ 2289 if (test_bit(Faulty, &rdev->flags)) 2290 continue; 2291 if (rdev->raid_disk < 0) 2292 continue; 2293 if (!reference) { 2294 /* Use the first rdev as the reference */ 2295 reference = rdev; 2296 continue; 2297 } 2298 /* does this rdev's profile match the reference profile? */ 2299 if (blk_integrity_compare(reference->bdev->bd_disk, 2300 rdev->bdev->bd_disk) < 0) 2301 return -EINVAL; 2302 } 2303 if (!reference || !bdev_get_integrity(reference->bdev)) 2304 return 0; 2305 /* 2306 * All component devices are integrity capable and have matching 2307 * profiles, register the common profile for the md device. 2308 */ 2309 blk_integrity_register(mddev->gendisk, 2310 bdev_get_integrity(reference->bdev)); 2311 2312 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2313 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2314 (mddev->level != 1 && mddev->level != 10 && 2315 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2316 /* 2317 * No need to handle the failure of bioset_integrity_create, 2318 * because the function is called by md_run() -> pers->run(), 2319 * md_run calls bioset_exit -> bioset_integrity_free in case 2320 * of failure case. 2321 */ 2322 pr_err("md: failed to create integrity pool for %s\n", 2323 mdname(mddev)); 2324 return -EINVAL; 2325 } 2326 return 0; 2327 } 2328 EXPORT_SYMBOL(md_integrity_register); 2329 2330 /* 2331 * Attempt to add an rdev, but only if it is consistent with the current 2332 * integrity profile 2333 */ 2334 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2335 { 2336 struct blk_integrity *bi_mddev; 2337 2338 if (!mddev->gendisk) 2339 return 0; 2340 2341 bi_mddev = blk_get_integrity(mddev->gendisk); 2342 2343 if (!bi_mddev) /* nothing to do */ 2344 return 0; 2345 2346 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2347 pr_err("%s: incompatible integrity profile for %pg\n", 2348 mdname(mddev), rdev->bdev); 2349 return -ENXIO; 2350 } 2351 2352 return 0; 2353 } 2354 EXPORT_SYMBOL(md_integrity_add_rdev); 2355 2356 static bool rdev_read_only(struct md_rdev *rdev) 2357 { 2358 return bdev_read_only(rdev->bdev) || 2359 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2360 } 2361 2362 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2363 { 2364 char b[BDEVNAME_SIZE]; 2365 int err; 2366 2367 /* prevent duplicates */ 2368 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2369 return -EEXIST; 2370 2371 if (rdev_read_only(rdev) && mddev->pers) 2372 return -EROFS; 2373 2374 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2375 if (!test_bit(Journal, &rdev->flags) && 2376 rdev->sectors && 2377 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2378 if (mddev->pers) { 2379 /* Cannot change size, so fail 2380 * If mddev->level <= 0, then we don't care 2381 * about aligning sizes (e.g. linear) 2382 */ 2383 if (mddev->level > 0) 2384 return -ENOSPC; 2385 } else 2386 mddev->dev_sectors = rdev->sectors; 2387 } 2388 2389 /* Verify rdev->desc_nr is unique. 2390 * If it is -1, assign a free number, else 2391 * check number is not in use 2392 */ 2393 rcu_read_lock(); 2394 if (rdev->desc_nr < 0) { 2395 int choice = 0; 2396 if (mddev->pers) 2397 choice = mddev->raid_disks; 2398 while (md_find_rdev_nr_rcu(mddev, choice)) 2399 choice++; 2400 rdev->desc_nr = choice; 2401 } else { 2402 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2403 rcu_read_unlock(); 2404 return -EBUSY; 2405 } 2406 } 2407 rcu_read_unlock(); 2408 if (!test_bit(Journal, &rdev->flags) && 2409 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2410 pr_warn("md: %s: array is limited to %d devices\n", 2411 mdname(mddev), mddev->max_disks); 2412 return -EBUSY; 2413 } 2414 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2415 strreplace(b, '/', '!'); 2416 2417 rdev->mddev = mddev; 2418 pr_debug("md: bind<%s>\n", b); 2419 2420 if (mddev->raid_disks) 2421 mddev_create_serial_pool(mddev, rdev, false); 2422 2423 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2424 goto fail; 2425 2426 /* failure here is OK */ 2427 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2428 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2429 rdev->sysfs_unack_badblocks = 2430 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2431 rdev->sysfs_badblocks = 2432 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2433 2434 list_add_rcu(&rdev->same_set, &mddev->disks); 2435 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2436 2437 /* May as well allow recovery to be retried once */ 2438 mddev->recovery_disabled++; 2439 2440 return 0; 2441 2442 fail: 2443 pr_warn("md: failed to register dev-%s for %s\n", 2444 b, mdname(mddev)); 2445 return err; 2446 } 2447 2448 void md_autodetect_dev(dev_t dev); 2449 2450 /* just for claiming the bdev */ 2451 static struct md_rdev claim_rdev; 2452 2453 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev) 2454 { 2455 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2456 md_rdev_clear(rdev); 2457 #ifndef MODULE 2458 if (test_bit(AutoDetected, &rdev->flags)) 2459 md_autodetect_dev(rdev->bdev->bd_dev); 2460 #endif 2461 blkdev_put(rdev->bdev, mddev->major_version == -2 ? &claim_rdev : rdev); 2462 rdev->bdev = NULL; 2463 kobject_put(&rdev->kobj); 2464 } 2465 2466 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2467 { 2468 struct mddev *mddev = rdev->mddev; 2469 2470 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2471 list_del_rcu(&rdev->same_set); 2472 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2473 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2474 rdev->mddev = NULL; 2475 sysfs_remove_link(&rdev->kobj, "block"); 2476 sysfs_put(rdev->sysfs_state); 2477 sysfs_put(rdev->sysfs_unack_badblocks); 2478 sysfs_put(rdev->sysfs_badblocks); 2479 rdev->sysfs_state = NULL; 2480 rdev->sysfs_unack_badblocks = NULL; 2481 rdev->sysfs_badblocks = NULL; 2482 rdev->badblocks.count = 0; 2483 2484 synchronize_rcu(); 2485 2486 /* 2487 * kobject_del() will wait for all in progress writers to be done, where 2488 * reconfig_mutex is held, hence it can't be called under 2489 * reconfig_mutex and it's delayed to mddev_unlock(). 2490 */ 2491 mutex_lock(&mddev->delete_mutex); 2492 list_add(&rdev->same_set, &mddev->deleting); 2493 mutex_unlock(&mddev->delete_mutex); 2494 } 2495 2496 static void export_array(struct mddev *mddev) 2497 { 2498 struct md_rdev *rdev; 2499 2500 while (!list_empty(&mddev->disks)) { 2501 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2502 same_set); 2503 md_kick_rdev_from_array(rdev); 2504 } 2505 mddev->raid_disks = 0; 2506 mddev->major_version = 0; 2507 } 2508 2509 static bool set_in_sync(struct mddev *mddev) 2510 { 2511 lockdep_assert_held(&mddev->lock); 2512 if (!mddev->in_sync) { 2513 mddev->sync_checkers++; 2514 spin_unlock(&mddev->lock); 2515 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2516 spin_lock(&mddev->lock); 2517 if (!mddev->in_sync && 2518 percpu_ref_is_zero(&mddev->writes_pending)) { 2519 mddev->in_sync = 1; 2520 /* 2521 * Ensure ->in_sync is visible before we clear 2522 * ->sync_checkers. 2523 */ 2524 smp_mb(); 2525 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2526 sysfs_notify_dirent_safe(mddev->sysfs_state); 2527 } 2528 if (--mddev->sync_checkers == 0) 2529 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2530 } 2531 if (mddev->safemode == 1) 2532 mddev->safemode = 0; 2533 return mddev->in_sync; 2534 } 2535 2536 static void sync_sbs(struct mddev *mddev, int nospares) 2537 { 2538 /* Update each superblock (in-memory image), but 2539 * if we are allowed to, skip spares which already 2540 * have the right event counter, or have one earlier 2541 * (which would mean they aren't being marked as dirty 2542 * with the rest of the array) 2543 */ 2544 struct md_rdev *rdev; 2545 rdev_for_each(rdev, mddev) { 2546 if (rdev->sb_events == mddev->events || 2547 (nospares && 2548 rdev->raid_disk < 0 && 2549 rdev->sb_events+1 == mddev->events)) { 2550 /* Don't update this superblock */ 2551 rdev->sb_loaded = 2; 2552 } else { 2553 sync_super(mddev, rdev); 2554 rdev->sb_loaded = 1; 2555 } 2556 } 2557 } 2558 2559 static bool does_sb_need_changing(struct mddev *mddev) 2560 { 2561 struct md_rdev *rdev = NULL, *iter; 2562 struct mdp_superblock_1 *sb; 2563 int role; 2564 2565 /* Find a good rdev */ 2566 rdev_for_each(iter, mddev) 2567 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2568 rdev = iter; 2569 break; 2570 } 2571 2572 /* No good device found. */ 2573 if (!rdev) 2574 return false; 2575 2576 sb = page_address(rdev->sb_page); 2577 /* Check if a device has become faulty or a spare become active */ 2578 rdev_for_each(rdev, mddev) { 2579 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2580 /* Device activated? */ 2581 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2582 !test_bit(Faulty, &rdev->flags)) 2583 return true; 2584 /* Device turned faulty? */ 2585 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2586 return true; 2587 } 2588 2589 /* Check if any mddev parameters have changed */ 2590 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2591 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2592 (mddev->layout != le32_to_cpu(sb->layout)) || 2593 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2594 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2595 return true; 2596 2597 return false; 2598 } 2599 2600 void md_update_sb(struct mddev *mddev, int force_change) 2601 { 2602 struct md_rdev *rdev; 2603 int sync_req; 2604 int nospares = 0; 2605 int any_badblocks_changed = 0; 2606 int ret = -1; 2607 2608 if (!md_is_rdwr(mddev)) { 2609 if (force_change) 2610 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2611 return; 2612 } 2613 2614 repeat: 2615 if (mddev_is_clustered(mddev)) { 2616 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2617 force_change = 1; 2618 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2619 nospares = 1; 2620 ret = md_cluster_ops->metadata_update_start(mddev); 2621 /* Has someone else has updated the sb */ 2622 if (!does_sb_need_changing(mddev)) { 2623 if (ret == 0) 2624 md_cluster_ops->metadata_update_cancel(mddev); 2625 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2626 BIT(MD_SB_CHANGE_DEVS) | 2627 BIT(MD_SB_CHANGE_CLEAN)); 2628 return; 2629 } 2630 } 2631 2632 /* 2633 * First make sure individual recovery_offsets are correct 2634 * curr_resync_completed can only be used during recovery. 2635 * During reshape/resync it might use array-addresses rather 2636 * that device addresses. 2637 */ 2638 rdev_for_each(rdev, mddev) { 2639 if (rdev->raid_disk >= 0 && 2640 mddev->delta_disks >= 0 && 2641 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2642 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2643 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2644 !test_bit(Journal, &rdev->flags) && 2645 !test_bit(In_sync, &rdev->flags) && 2646 mddev->curr_resync_completed > rdev->recovery_offset) 2647 rdev->recovery_offset = mddev->curr_resync_completed; 2648 2649 } 2650 if (!mddev->persistent) { 2651 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2652 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2653 if (!mddev->external) { 2654 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2655 rdev_for_each(rdev, mddev) { 2656 if (rdev->badblocks.changed) { 2657 rdev->badblocks.changed = 0; 2658 ack_all_badblocks(&rdev->badblocks); 2659 md_error(mddev, rdev); 2660 } 2661 clear_bit(Blocked, &rdev->flags); 2662 clear_bit(BlockedBadBlocks, &rdev->flags); 2663 wake_up(&rdev->blocked_wait); 2664 } 2665 } 2666 wake_up(&mddev->sb_wait); 2667 return; 2668 } 2669 2670 spin_lock(&mddev->lock); 2671 2672 mddev->utime = ktime_get_real_seconds(); 2673 2674 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2675 force_change = 1; 2676 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2677 /* just a clean<-> dirty transition, possibly leave spares alone, 2678 * though if events isn't the right even/odd, we will have to do 2679 * spares after all 2680 */ 2681 nospares = 1; 2682 if (force_change) 2683 nospares = 0; 2684 if (mddev->degraded) 2685 /* If the array is degraded, then skipping spares is both 2686 * dangerous and fairly pointless. 2687 * Dangerous because a device that was removed from the array 2688 * might have a event_count that still looks up-to-date, 2689 * so it can be re-added without a resync. 2690 * Pointless because if there are any spares to skip, 2691 * then a recovery will happen and soon that array won't 2692 * be degraded any more and the spare can go back to sleep then. 2693 */ 2694 nospares = 0; 2695 2696 sync_req = mddev->in_sync; 2697 2698 /* If this is just a dirty<->clean transition, and the array is clean 2699 * and 'events' is odd, we can roll back to the previous clean state */ 2700 if (nospares 2701 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2702 && mddev->can_decrease_events 2703 && mddev->events != 1) { 2704 mddev->events--; 2705 mddev->can_decrease_events = 0; 2706 } else { 2707 /* otherwise we have to go forward and ... */ 2708 mddev->events ++; 2709 mddev->can_decrease_events = nospares; 2710 } 2711 2712 /* 2713 * This 64-bit counter should never wrap. 2714 * Either we are in around ~1 trillion A.C., assuming 2715 * 1 reboot per second, or we have a bug... 2716 */ 2717 WARN_ON(mddev->events == 0); 2718 2719 rdev_for_each(rdev, mddev) { 2720 if (rdev->badblocks.changed) 2721 any_badblocks_changed++; 2722 if (test_bit(Faulty, &rdev->flags)) 2723 set_bit(FaultRecorded, &rdev->flags); 2724 } 2725 2726 sync_sbs(mddev, nospares); 2727 spin_unlock(&mddev->lock); 2728 2729 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2730 mdname(mddev), mddev->in_sync); 2731 2732 if (mddev->queue) 2733 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2734 rewrite: 2735 md_bitmap_update_sb(mddev->bitmap); 2736 rdev_for_each(rdev, mddev) { 2737 if (rdev->sb_loaded != 1) 2738 continue; /* no noise on spare devices */ 2739 2740 if (!test_bit(Faulty, &rdev->flags)) { 2741 md_super_write(mddev,rdev, 2742 rdev->sb_start, rdev->sb_size, 2743 rdev->sb_page); 2744 pr_debug("md: (write) %pg's sb offset: %llu\n", 2745 rdev->bdev, 2746 (unsigned long long)rdev->sb_start); 2747 rdev->sb_events = mddev->events; 2748 if (rdev->badblocks.size) { 2749 md_super_write(mddev, rdev, 2750 rdev->badblocks.sector, 2751 rdev->badblocks.size << 9, 2752 rdev->bb_page); 2753 rdev->badblocks.size = 0; 2754 } 2755 2756 } else 2757 pr_debug("md: %pg (skipping faulty)\n", 2758 rdev->bdev); 2759 2760 if (mddev->level == LEVEL_MULTIPATH) 2761 /* only need to write one superblock... */ 2762 break; 2763 } 2764 if (md_super_wait(mddev) < 0) 2765 goto rewrite; 2766 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2767 2768 if (mddev_is_clustered(mddev) && ret == 0) 2769 md_cluster_ops->metadata_update_finish(mddev); 2770 2771 if (mddev->in_sync != sync_req || 2772 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2773 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2774 /* have to write it out again */ 2775 goto repeat; 2776 wake_up(&mddev->sb_wait); 2777 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2778 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2779 2780 rdev_for_each(rdev, mddev) { 2781 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2782 clear_bit(Blocked, &rdev->flags); 2783 2784 if (any_badblocks_changed) 2785 ack_all_badblocks(&rdev->badblocks); 2786 clear_bit(BlockedBadBlocks, &rdev->flags); 2787 wake_up(&rdev->blocked_wait); 2788 } 2789 } 2790 EXPORT_SYMBOL(md_update_sb); 2791 2792 static int add_bound_rdev(struct md_rdev *rdev) 2793 { 2794 struct mddev *mddev = rdev->mddev; 2795 int err = 0; 2796 bool add_journal = test_bit(Journal, &rdev->flags); 2797 2798 if (!mddev->pers->hot_remove_disk || add_journal) { 2799 /* If there is hot_add_disk but no hot_remove_disk 2800 * then added disks for geometry changes, 2801 * and should be added immediately. 2802 */ 2803 super_types[mddev->major_version]. 2804 validate_super(mddev, rdev); 2805 if (add_journal) 2806 mddev_suspend(mddev); 2807 err = mddev->pers->hot_add_disk(mddev, rdev); 2808 if (add_journal) 2809 mddev_resume(mddev); 2810 if (err) { 2811 md_kick_rdev_from_array(rdev); 2812 return err; 2813 } 2814 } 2815 sysfs_notify_dirent_safe(rdev->sysfs_state); 2816 2817 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2818 if (mddev->degraded) 2819 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2820 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2821 md_new_event(); 2822 md_wakeup_thread(mddev->thread); 2823 return 0; 2824 } 2825 2826 /* words written to sysfs files may, or may not, be \n terminated. 2827 * We want to accept with case. For this we use cmd_match. 2828 */ 2829 static int cmd_match(const char *cmd, const char *str) 2830 { 2831 /* See if cmd, written into a sysfs file, matches 2832 * str. They must either be the same, or cmd can 2833 * have a trailing newline 2834 */ 2835 while (*cmd && *str && *cmd == *str) { 2836 cmd++; 2837 str++; 2838 } 2839 if (*cmd == '\n') 2840 cmd++; 2841 if (*str || *cmd) 2842 return 0; 2843 return 1; 2844 } 2845 2846 struct rdev_sysfs_entry { 2847 struct attribute attr; 2848 ssize_t (*show)(struct md_rdev *, char *); 2849 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2850 }; 2851 2852 static ssize_t 2853 state_show(struct md_rdev *rdev, char *page) 2854 { 2855 char *sep = ","; 2856 size_t len = 0; 2857 unsigned long flags = READ_ONCE(rdev->flags); 2858 2859 if (test_bit(Faulty, &flags) || 2860 (!test_bit(ExternalBbl, &flags) && 2861 rdev->badblocks.unacked_exist)) 2862 len += sprintf(page+len, "faulty%s", sep); 2863 if (test_bit(In_sync, &flags)) 2864 len += sprintf(page+len, "in_sync%s", sep); 2865 if (test_bit(Journal, &flags)) 2866 len += sprintf(page+len, "journal%s", sep); 2867 if (test_bit(WriteMostly, &flags)) 2868 len += sprintf(page+len, "write_mostly%s", sep); 2869 if (test_bit(Blocked, &flags) || 2870 (rdev->badblocks.unacked_exist 2871 && !test_bit(Faulty, &flags))) 2872 len += sprintf(page+len, "blocked%s", sep); 2873 if (!test_bit(Faulty, &flags) && 2874 !test_bit(Journal, &flags) && 2875 !test_bit(In_sync, &flags)) 2876 len += sprintf(page+len, "spare%s", sep); 2877 if (test_bit(WriteErrorSeen, &flags)) 2878 len += sprintf(page+len, "write_error%s", sep); 2879 if (test_bit(WantReplacement, &flags)) 2880 len += sprintf(page+len, "want_replacement%s", sep); 2881 if (test_bit(Replacement, &flags)) 2882 len += sprintf(page+len, "replacement%s", sep); 2883 if (test_bit(ExternalBbl, &flags)) 2884 len += sprintf(page+len, "external_bbl%s", sep); 2885 if (test_bit(FailFast, &flags)) 2886 len += sprintf(page+len, "failfast%s", sep); 2887 2888 if (len) 2889 len -= strlen(sep); 2890 2891 return len+sprintf(page+len, "\n"); 2892 } 2893 2894 static ssize_t 2895 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2896 { 2897 /* can write 2898 * faulty - simulates an error 2899 * remove - disconnects the device 2900 * writemostly - sets write_mostly 2901 * -writemostly - clears write_mostly 2902 * blocked - sets the Blocked flags 2903 * -blocked - clears the Blocked and possibly simulates an error 2904 * insync - sets Insync providing device isn't active 2905 * -insync - clear Insync for a device with a slot assigned, 2906 * so that it gets rebuilt based on bitmap 2907 * write_error - sets WriteErrorSeen 2908 * -write_error - clears WriteErrorSeen 2909 * {,-}failfast - set/clear FailFast 2910 */ 2911 2912 struct mddev *mddev = rdev->mddev; 2913 int err = -EINVAL; 2914 bool need_update_sb = false; 2915 2916 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2917 md_error(rdev->mddev, rdev); 2918 2919 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2920 err = -EBUSY; 2921 else 2922 err = 0; 2923 } else if (cmd_match(buf, "remove")) { 2924 if (rdev->mddev->pers) { 2925 clear_bit(Blocked, &rdev->flags); 2926 remove_and_add_spares(rdev->mddev, rdev); 2927 } 2928 if (rdev->raid_disk >= 0) 2929 err = -EBUSY; 2930 else { 2931 err = 0; 2932 if (mddev_is_clustered(mddev)) 2933 err = md_cluster_ops->remove_disk(mddev, rdev); 2934 2935 if (err == 0) { 2936 md_kick_rdev_from_array(rdev); 2937 if (mddev->pers) { 2938 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2939 md_wakeup_thread(mddev->thread); 2940 } 2941 md_new_event(); 2942 } 2943 } 2944 } else if (cmd_match(buf, "writemostly")) { 2945 set_bit(WriteMostly, &rdev->flags); 2946 mddev_create_serial_pool(rdev->mddev, rdev, false); 2947 need_update_sb = true; 2948 err = 0; 2949 } else if (cmd_match(buf, "-writemostly")) { 2950 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2951 clear_bit(WriteMostly, &rdev->flags); 2952 need_update_sb = true; 2953 err = 0; 2954 } else if (cmd_match(buf, "blocked")) { 2955 set_bit(Blocked, &rdev->flags); 2956 err = 0; 2957 } else if (cmd_match(buf, "-blocked")) { 2958 if (!test_bit(Faulty, &rdev->flags) && 2959 !test_bit(ExternalBbl, &rdev->flags) && 2960 rdev->badblocks.unacked_exist) { 2961 /* metadata handler doesn't understand badblocks, 2962 * so we need to fail the device 2963 */ 2964 md_error(rdev->mddev, rdev); 2965 } 2966 clear_bit(Blocked, &rdev->flags); 2967 clear_bit(BlockedBadBlocks, &rdev->flags); 2968 wake_up(&rdev->blocked_wait); 2969 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2970 md_wakeup_thread(rdev->mddev->thread); 2971 2972 err = 0; 2973 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2974 set_bit(In_sync, &rdev->flags); 2975 err = 0; 2976 } else if (cmd_match(buf, "failfast")) { 2977 set_bit(FailFast, &rdev->flags); 2978 need_update_sb = true; 2979 err = 0; 2980 } else if (cmd_match(buf, "-failfast")) { 2981 clear_bit(FailFast, &rdev->flags); 2982 need_update_sb = true; 2983 err = 0; 2984 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2985 !test_bit(Journal, &rdev->flags)) { 2986 if (rdev->mddev->pers == NULL) { 2987 clear_bit(In_sync, &rdev->flags); 2988 rdev->saved_raid_disk = rdev->raid_disk; 2989 rdev->raid_disk = -1; 2990 err = 0; 2991 } 2992 } else if (cmd_match(buf, "write_error")) { 2993 set_bit(WriteErrorSeen, &rdev->flags); 2994 err = 0; 2995 } else if (cmd_match(buf, "-write_error")) { 2996 clear_bit(WriteErrorSeen, &rdev->flags); 2997 err = 0; 2998 } else if (cmd_match(buf, "want_replacement")) { 2999 /* Any non-spare device that is not a replacement can 3000 * become want_replacement at any time, but we then need to 3001 * check if recovery is needed. 3002 */ 3003 if (rdev->raid_disk >= 0 && 3004 !test_bit(Journal, &rdev->flags) && 3005 !test_bit(Replacement, &rdev->flags)) 3006 set_bit(WantReplacement, &rdev->flags); 3007 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3008 md_wakeup_thread(rdev->mddev->thread); 3009 err = 0; 3010 } else if (cmd_match(buf, "-want_replacement")) { 3011 /* Clearing 'want_replacement' is always allowed. 3012 * Once replacements starts it is too late though. 3013 */ 3014 err = 0; 3015 clear_bit(WantReplacement, &rdev->flags); 3016 } else if (cmd_match(buf, "replacement")) { 3017 /* Can only set a device as a replacement when array has not 3018 * yet been started. Once running, replacement is automatic 3019 * from spares, or by assigning 'slot'. 3020 */ 3021 if (rdev->mddev->pers) 3022 err = -EBUSY; 3023 else { 3024 set_bit(Replacement, &rdev->flags); 3025 err = 0; 3026 } 3027 } else if (cmd_match(buf, "-replacement")) { 3028 /* Similarly, can only clear Replacement before start */ 3029 if (rdev->mddev->pers) 3030 err = -EBUSY; 3031 else { 3032 clear_bit(Replacement, &rdev->flags); 3033 err = 0; 3034 } 3035 } else if (cmd_match(buf, "re-add")) { 3036 if (!rdev->mddev->pers) 3037 err = -EINVAL; 3038 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3039 rdev->saved_raid_disk >= 0) { 3040 /* clear_bit is performed _after_ all the devices 3041 * have their local Faulty bit cleared. If any writes 3042 * happen in the meantime in the local node, they 3043 * will land in the local bitmap, which will be synced 3044 * by this node eventually 3045 */ 3046 if (!mddev_is_clustered(rdev->mddev) || 3047 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3048 clear_bit(Faulty, &rdev->flags); 3049 err = add_bound_rdev(rdev); 3050 } 3051 } else 3052 err = -EBUSY; 3053 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3054 set_bit(ExternalBbl, &rdev->flags); 3055 rdev->badblocks.shift = 0; 3056 err = 0; 3057 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3058 clear_bit(ExternalBbl, &rdev->flags); 3059 err = 0; 3060 } 3061 if (need_update_sb) 3062 md_update_sb(mddev, 1); 3063 if (!err) 3064 sysfs_notify_dirent_safe(rdev->sysfs_state); 3065 return err ? err : len; 3066 } 3067 static struct rdev_sysfs_entry rdev_state = 3068 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3069 3070 static ssize_t 3071 errors_show(struct md_rdev *rdev, char *page) 3072 { 3073 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3074 } 3075 3076 static ssize_t 3077 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3078 { 3079 unsigned int n; 3080 int rv; 3081 3082 rv = kstrtouint(buf, 10, &n); 3083 if (rv < 0) 3084 return rv; 3085 atomic_set(&rdev->corrected_errors, n); 3086 return len; 3087 } 3088 static struct rdev_sysfs_entry rdev_errors = 3089 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3090 3091 static ssize_t 3092 slot_show(struct md_rdev *rdev, char *page) 3093 { 3094 if (test_bit(Journal, &rdev->flags)) 3095 return sprintf(page, "journal\n"); 3096 else if (rdev->raid_disk < 0) 3097 return sprintf(page, "none\n"); 3098 else 3099 return sprintf(page, "%d\n", rdev->raid_disk); 3100 } 3101 3102 static ssize_t 3103 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3104 { 3105 int slot; 3106 int err; 3107 3108 if (test_bit(Journal, &rdev->flags)) 3109 return -EBUSY; 3110 if (strncmp(buf, "none", 4)==0) 3111 slot = -1; 3112 else { 3113 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3114 if (err < 0) 3115 return err; 3116 if (slot < 0) 3117 /* overflow */ 3118 return -ENOSPC; 3119 } 3120 if (rdev->mddev->pers && slot == -1) { 3121 /* Setting 'slot' on an active array requires also 3122 * updating the 'rd%d' link, and communicating 3123 * with the personality with ->hot_*_disk. 3124 * For now we only support removing 3125 * failed/spare devices. This normally happens automatically, 3126 * but not when the metadata is externally managed. 3127 */ 3128 if (rdev->raid_disk == -1) 3129 return -EEXIST; 3130 /* personality does all needed checks */ 3131 if (rdev->mddev->pers->hot_remove_disk == NULL) 3132 return -EINVAL; 3133 clear_bit(Blocked, &rdev->flags); 3134 remove_and_add_spares(rdev->mddev, rdev); 3135 if (rdev->raid_disk >= 0) 3136 return -EBUSY; 3137 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3138 md_wakeup_thread(rdev->mddev->thread); 3139 } else if (rdev->mddev->pers) { 3140 /* Activating a spare .. or possibly reactivating 3141 * if we ever get bitmaps working here. 3142 */ 3143 int err; 3144 3145 if (rdev->raid_disk != -1) 3146 return -EBUSY; 3147 3148 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3149 return -EBUSY; 3150 3151 if (rdev->mddev->pers->hot_add_disk == NULL) 3152 return -EINVAL; 3153 3154 if (slot >= rdev->mddev->raid_disks && 3155 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3156 return -ENOSPC; 3157 3158 rdev->raid_disk = slot; 3159 if (test_bit(In_sync, &rdev->flags)) 3160 rdev->saved_raid_disk = slot; 3161 else 3162 rdev->saved_raid_disk = -1; 3163 clear_bit(In_sync, &rdev->flags); 3164 clear_bit(Bitmap_sync, &rdev->flags); 3165 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3166 if (err) { 3167 rdev->raid_disk = -1; 3168 return err; 3169 } else 3170 sysfs_notify_dirent_safe(rdev->sysfs_state); 3171 /* failure here is OK */; 3172 sysfs_link_rdev(rdev->mddev, rdev); 3173 /* don't wakeup anyone, leave that to userspace. */ 3174 } else { 3175 if (slot >= rdev->mddev->raid_disks && 3176 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3177 return -ENOSPC; 3178 rdev->raid_disk = slot; 3179 /* assume it is working */ 3180 clear_bit(Faulty, &rdev->flags); 3181 clear_bit(WriteMostly, &rdev->flags); 3182 set_bit(In_sync, &rdev->flags); 3183 sysfs_notify_dirent_safe(rdev->sysfs_state); 3184 } 3185 return len; 3186 } 3187 3188 static struct rdev_sysfs_entry rdev_slot = 3189 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3190 3191 static ssize_t 3192 offset_show(struct md_rdev *rdev, char *page) 3193 { 3194 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3195 } 3196 3197 static ssize_t 3198 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3199 { 3200 unsigned long long offset; 3201 if (kstrtoull(buf, 10, &offset) < 0) 3202 return -EINVAL; 3203 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3204 return -EBUSY; 3205 if (rdev->sectors && rdev->mddev->external) 3206 /* Must set offset before size, so overlap checks 3207 * can be sane */ 3208 return -EBUSY; 3209 rdev->data_offset = offset; 3210 rdev->new_data_offset = offset; 3211 return len; 3212 } 3213 3214 static struct rdev_sysfs_entry rdev_offset = 3215 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3216 3217 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3218 { 3219 return sprintf(page, "%llu\n", 3220 (unsigned long long)rdev->new_data_offset); 3221 } 3222 3223 static ssize_t new_offset_store(struct md_rdev *rdev, 3224 const char *buf, size_t len) 3225 { 3226 unsigned long long new_offset; 3227 struct mddev *mddev = rdev->mddev; 3228 3229 if (kstrtoull(buf, 10, &new_offset) < 0) 3230 return -EINVAL; 3231 3232 if (mddev->sync_thread || 3233 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3234 return -EBUSY; 3235 if (new_offset == rdev->data_offset) 3236 /* reset is always permitted */ 3237 ; 3238 else if (new_offset > rdev->data_offset) { 3239 /* must not push array size beyond rdev_sectors */ 3240 if (new_offset - rdev->data_offset 3241 + mddev->dev_sectors > rdev->sectors) 3242 return -E2BIG; 3243 } 3244 /* Metadata worries about other space details. */ 3245 3246 /* decreasing the offset is inconsistent with a backwards 3247 * reshape. 3248 */ 3249 if (new_offset < rdev->data_offset && 3250 mddev->reshape_backwards) 3251 return -EINVAL; 3252 /* Increasing offset is inconsistent with forwards 3253 * reshape. reshape_direction should be set to 3254 * 'backwards' first. 3255 */ 3256 if (new_offset > rdev->data_offset && 3257 !mddev->reshape_backwards) 3258 return -EINVAL; 3259 3260 if (mddev->pers && mddev->persistent && 3261 !super_types[mddev->major_version] 3262 .allow_new_offset(rdev, new_offset)) 3263 return -E2BIG; 3264 rdev->new_data_offset = new_offset; 3265 if (new_offset > rdev->data_offset) 3266 mddev->reshape_backwards = 1; 3267 else if (new_offset < rdev->data_offset) 3268 mddev->reshape_backwards = 0; 3269 3270 return len; 3271 } 3272 static struct rdev_sysfs_entry rdev_new_offset = 3273 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3274 3275 static ssize_t 3276 rdev_size_show(struct md_rdev *rdev, char *page) 3277 { 3278 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3279 } 3280 3281 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3282 { 3283 /* check if two start/length pairs overlap */ 3284 if (a->data_offset + a->sectors <= b->data_offset) 3285 return false; 3286 if (b->data_offset + b->sectors <= a->data_offset) 3287 return false; 3288 return true; 3289 } 3290 3291 static bool md_rdev_overlaps(struct md_rdev *rdev) 3292 { 3293 struct mddev *mddev; 3294 struct md_rdev *rdev2; 3295 3296 spin_lock(&all_mddevs_lock); 3297 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3298 if (test_bit(MD_DELETED, &mddev->flags)) 3299 continue; 3300 rdev_for_each(rdev2, mddev) { 3301 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3302 md_rdevs_overlap(rdev, rdev2)) { 3303 spin_unlock(&all_mddevs_lock); 3304 return true; 3305 } 3306 } 3307 } 3308 spin_unlock(&all_mddevs_lock); 3309 return false; 3310 } 3311 3312 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3313 { 3314 unsigned long long blocks; 3315 sector_t new; 3316 3317 if (kstrtoull(buf, 10, &blocks) < 0) 3318 return -EINVAL; 3319 3320 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3321 return -EINVAL; /* sector conversion overflow */ 3322 3323 new = blocks * 2; 3324 if (new != blocks * 2) 3325 return -EINVAL; /* unsigned long long to sector_t overflow */ 3326 3327 *sectors = new; 3328 return 0; 3329 } 3330 3331 static ssize_t 3332 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3333 { 3334 struct mddev *my_mddev = rdev->mddev; 3335 sector_t oldsectors = rdev->sectors; 3336 sector_t sectors; 3337 3338 if (test_bit(Journal, &rdev->flags)) 3339 return -EBUSY; 3340 if (strict_blocks_to_sectors(buf, §ors) < 0) 3341 return -EINVAL; 3342 if (rdev->data_offset != rdev->new_data_offset) 3343 return -EINVAL; /* too confusing */ 3344 if (my_mddev->pers && rdev->raid_disk >= 0) { 3345 if (my_mddev->persistent) { 3346 sectors = super_types[my_mddev->major_version]. 3347 rdev_size_change(rdev, sectors); 3348 if (!sectors) 3349 return -EBUSY; 3350 } else if (!sectors) 3351 sectors = bdev_nr_sectors(rdev->bdev) - 3352 rdev->data_offset; 3353 if (!my_mddev->pers->resize) 3354 /* Cannot change size for RAID0 or Linear etc */ 3355 return -EINVAL; 3356 } 3357 if (sectors < my_mddev->dev_sectors) 3358 return -EINVAL; /* component must fit device */ 3359 3360 rdev->sectors = sectors; 3361 3362 /* 3363 * Check that all other rdevs with the same bdev do not overlap. This 3364 * check does not provide a hard guarantee, it just helps avoid 3365 * dangerous mistakes. 3366 */ 3367 if (sectors > oldsectors && my_mddev->external && 3368 md_rdev_overlaps(rdev)) { 3369 /* 3370 * Someone else could have slipped in a size change here, but 3371 * doing so is just silly. We put oldsectors back because we 3372 * know it is safe, and trust userspace not to race with itself. 3373 */ 3374 rdev->sectors = oldsectors; 3375 return -EBUSY; 3376 } 3377 return len; 3378 } 3379 3380 static struct rdev_sysfs_entry rdev_size = 3381 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3382 3383 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3384 { 3385 unsigned long long recovery_start = rdev->recovery_offset; 3386 3387 if (test_bit(In_sync, &rdev->flags) || 3388 recovery_start == MaxSector) 3389 return sprintf(page, "none\n"); 3390 3391 return sprintf(page, "%llu\n", recovery_start); 3392 } 3393 3394 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3395 { 3396 unsigned long long recovery_start; 3397 3398 if (cmd_match(buf, "none")) 3399 recovery_start = MaxSector; 3400 else if (kstrtoull(buf, 10, &recovery_start)) 3401 return -EINVAL; 3402 3403 if (rdev->mddev->pers && 3404 rdev->raid_disk >= 0) 3405 return -EBUSY; 3406 3407 rdev->recovery_offset = recovery_start; 3408 if (recovery_start == MaxSector) 3409 set_bit(In_sync, &rdev->flags); 3410 else 3411 clear_bit(In_sync, &rdev->flags); 3412 return len; 3413 } 3414 3415 static struct rdev_sysfs_entry rdev_recovery_start = 3416 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3417 3418 /* sysfs access to bad-blocks list. 3419 * We present two files. 3420 * 'bad-blocks' lists sector numbers and lengths of ranges that 3421 * are recorded as bad. The list is truncated to fit within 3422 * the one-page limit of sysfs. 3423 * Writing "sector length" to this file adds an acknowledged 3424 * bad block list. 3425 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3426 * been acknowledged. Writing to this file adds bad blocks 3427 * without acknowledging them. This is largely for testing. 3428 */ 3429 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3430 { 3431 return badblocks_show(&rdev->badblocks, page, 0); 3432 } 3433 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3434 { 3435 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3436 /* Maybe that ack was all we needed */ 3437 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3438 wake_up(&rdev->blocked_wait); 3439 return rv; 3440 } 3441 static struct rdev_sysfs_entry rdev_bad_blocks = 3442 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3443 3444 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3445 { 3446 return badblocks_show(&rdev->badblocks, page, 1); 3447 } 3448 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3449 { 3450 return badblocks_store(&rdev->badblocks, page, len, 1); 3451 } 3452 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3453 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3454 3455 static ssize_t 3456 ppl_sector_show(struct md_rdev *rdev, char *page) 3457 { 3458 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3459 } 3460 3461 static ssize_t 3462 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3463 { 3464 unsigned long long sector; 3465 3466 if (kstrtoull(buf, 10, §or) < 0) 3467 return -EINVAL; 3468 if (sector != (sector_t)sector) 3469 return -EINVAL; 3470 3471 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3472 rdev->raid_disk >= 0) 3473 return -EBUSY; 3474 3475 if (rdev->mddev->persistent) { 3476 if (rdev->mddev->major_version == 0) 3477 return -EINVAL; 3478 if ((sector > rdev->sb_start && 3479 sector - rdev->sb_start > S16_MAX) || 3480 (sector < rdev->sb_start && 3481 rdev->sb_start - sector > -S16_MIN)) 3482 return -EINVAL; 3483 rdev->ppl.offset = sector - rdev->sb_start; 3484 } else if (!rdev->mddev->external) { 3485 return -EBUSY; 3486 } 3487 rdev->ppl.sector = sector; 3488 return len; 3489 } 3490 3491 static struct rdev_sysfs_entry rdev_ppl_sector = 3492 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3493 3494 static ssize_t 3495 ppl_size_show(struct md_rdev *rdev, char *page) 3496 { 3497 return sprintf(page, "%u\n", rdev->ppl.size); 3498 } 3499 3500 static ssize_t 3501 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3502 { 3503 unsigned int size; 3504 3505 if (kstrtouint(buf, 10, &size) < 0) 3506 return -EINVAL; 3507 3508 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3509 rdev->raid_disk >= 0) 3510 return -EBUSY; 3511 3512 if (rdev->mddev->persistent) { 3513 if (rdev->mddev->major_version == 0) 3514 return -EINVAL; 3515 if (size > U16_MAX) 3516 return -EINVAL; 3517 } else if (!rdev->mddev->external) { 3518 return -EBUSY; 3519 } 3520 rdev->ppl.size = size; 3521 return len; 3522 } 3523 3524 static struct rdev_sysfs_entry rdev_ppl_size = 3525 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3526 3527 static struct attribute *rdev_default_attrs[] = { 3528 &rdev_state.attr, 3529 &rdev_errors.attr, 3530 &rdev_slot.attr, 3531 &rdev_offset.attr, 3532 &rdev_new_offset.attr, 3533 &rdev_size.attr, 3534 &rdev_recovery_start.attr, 3535 &rdev_bad_blocks.attr, 3536 &rdev_unack_bad_blocks.attr, 3537 &rdev_ppl_sector.attr, 3538 &rdev_ppl_size.attr, 3539 NULL, 3540 }; 3541 ATTRIBUTE_GROUPS(rdev_default); 3542 static ssize_t 3543 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3544 { 3545 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3546 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3547 3548 if (!entry->show) 3549 return -EIO; 3550 if (!rdev->mddev) 3551 return -ENODEV; 3552 return entry->show(rdev, page); 3553 } 3554 3555 static ssize_t 3556 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3557 const char *page, size_t length) 3558 { 3559 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3560 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3561 struct kernfs_node *kn = NULL; 3562 ssize_t rv; 3563 struct mddev *mddev = rdev->mddev; 3564 3565 if (!entry->store) 3566 return -EIO; 3567 if (!capable(CAP_SYS_ADMIN)) 3568 return -EACCES; 3569 3570 if (entry->store == state_store && cmd_match(page, "remove")) 3571 kn = sysfs_break_active_protection(kobj, attr); 3572 3573 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3574 if (!rv) { 3575 if (rdev->mddev == NULL) 3576 rv = -ENODEV; 3577 else 3578 rv = entry->store(rdev, page, length); 3579 mddev_unlock(mddev); 3580 } 3581 3582 if (kn) 3583 sysfs_unbreak_active_protection(kn); 3584 3585 return rv; 3586 } 3587 3588 static void rdev_free(struct kobject *ko) 3589 { 3590 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3591 kfree(rdev); 3592 } 3593 static const struct sysfs_ops rdev_sysfs_ops = { 3594 .show = rdev_attr_show, 3595 .store = rdev_attr_store, 3596 }; 3597 static const struct kobj_type rdev_ktype = { 3598 .release = rdev_free, 3599 .sysfs_ops = &rdev_sysfs_ops, 3600 .default_groups = rdev_default_groups, 3601 }; 3602 3603 int md_rdev_init(struct md_rdev *rdev) 3604 { 3605 rdev->desc_nr = -1; 3606 rdev->saved_raid_disk = -1; 3607 rdev->raid_disk = -1; 3608 rdev->flags = 0; 3609 rdev->data_offset = 0; 3610 rdev->new_data_offset = 0; 3611 rdev->sb_events = 0; 3612 rdev->last_read_error = 0; 3613 rdev->sb_loaded = 0; 3614 rdev->bb_page = NULL; 3615 atomic_set(&rdev->nr_pending, 0); 3616 atomic_set(&rdev->read_errors, 0); 3617 atomic_set(&rdev->corrected_errors, 0); 3618 3619 INIT_LIST_HEAD(&rdev->same_set); 3620 init_waitqueue_head(&rdev->blocked_wait); 3621 3622 /* Add space to store bad block list. 3623 * This reserves the space even on arrays where it cannot 3624 * be used - I wonder if that matters 3625 */ 3626 return badblocks_init(&rdev->badblocks, 0); 3627 } 3628 EXPORT_SYMBOL_GPL(md_rdev_init); 3629 3630 /* 3631 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3632 * 3633 * mark the device faulty if: 3634 * 3635 * - the device is nonexistent (zero size) 3636 * - the device has no valid superblock 3637 * 3638 * a faulty rdev _never_ has rdev->sb set. 3639 */ 3640 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3641 { 3642 struct md_rdev *rdev; 3643 sector_t size; 3644 int err; 3645 3646 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3647 if (!rdev) 3648 return ERR_PTR(-ENOMEM); 3649 3650 err = md_rdev_init(rdev); 3651 if (err) 3652 goto out_free_rdev; 3653 err = alloc_disk_sb(rdev); 3654 if (err) 3655 goto out_clear_rdev; 3656 3657 rdev->bdev = blkdev_get_by_dev(newdev, BLK_OPEN_READ | BLK_OPEN_WRITE, 3658 super_format == -2 ? &claim_rdev : rdev, NULL); 3659 if (IS_ERR(rdev->bdev)) { 3660 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3661 MAJOR(newdev), MINOR(newdev)); 3662 err = PTR_ERR(rdev->bdev); 3663 goto out_clear_rdev; 3664 } 3665 3666 kobject_init(&rdev->kobj, &rdev_ktype); 3667 3668 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3669 if (!size) { 3670 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3671 rdev->bdev); 3672 err = -EINVAL; 3673 goto out_blkdev_put; 3674 } 3675 3676 if (super_format >= 0) { 3677 err = super_types[super_format]. 3678 load_super(rdev, NULL, super_minor); 3679 if (err == -EINVAL) { 3680 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3681 rdev->bdev, 3682 super_format, super_minor); 3683 goto out_blkdev_put; 3684 } 3685 if (err < 0) { 3686 pr_warn("md: could not read %pg's sb, not importing!\n", 3687 rdev->bdev); 3688 goto out_blkdev_put; 3689 } 3690 } 3691 3692 return rdev; 3693 3694 out_blkdev_put: 3695 blkdev_put(rdev->bdev, super_format == -2 ? &claim_rdev : rdev); 3696 out_clear_rdev: 3697 md_rdev_clear(rdev); 3698 out_free_rdev: 3699 kfree(rdev); 3700 return ERR_PTR(err); 3701 } 3702 3703 /* 3704 * Check a full RAID array for plausibility 3705 */ 3706 3707 static int analyze_sbs(struct mddev *mddev) 3708 { 3709 int i; 3710 struct md_rdev *rdev, *freshest, *tmp; 3711 3712 freshest = NULL; 3713 rdev_for_each_safe(rdev, tmp, mddev) 3714 switch (super_types[mddev->major_version]. 3715 load_super(rdev, freshest, mddev->minor_version)) { 3716 case 1: 3717 freshest = rdev; 3718 break; 3719 case 0: 3720 break; 3721 default: 3722 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3723 rdev->bdev); 3724 md_kick_rdev_from_array(rdev); 3725 } 3726 3727 /* Cannot find a valid fresh disk */ 3728 if (!freshest) { 3729 pr_warn("md: cannot find a valid disk\n"); 3730 return -EINVAL; 3731 } 3732 3733 super_types[mddev->major_version]. 3734 validate_super(mddev, freshest); 3735 3736 i = 0; 3737 rdev_for_each_safe(rdev, tmp, mddev) { 3738 if (mddev->max_disks && 3739 (rdev->desc_nr >= mddev->max_disks || 3740 i > mddev->max_disks)) { 3741 pr_warn("md: %s: %pg: only %d devices permitted\n", 3742 mdname(mddev), rdev->bdev, 3743 mddev->max_disks); 3744 md_kick_rdev_from_array(rdev); 3745 continue; 3746 } 3747 if (rdev != freshest) { 3748 if (super_types[mddev->major_version]. 3749 validate_super(mddev, rdev)) { 3750 pr_warn("md: kicking non-fresh %pg from array!\n", 3751 rdev->bdev); 3752 md_kick_rdev_from_array(rdev); 3753 continue; 3754 } 3755 } 3756 if (mddev->level == LEVEL_MULTIPATH) { 3757 rdev->desc_nr = i++; 3758 rdev->raid_disk = rdev->desc_nr; 3759 set_bit(In_sync, &rdev->flags); 3760 } else if (rdev->raid_disk >= 3761 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3762 !test_bit(Journal, &rdev->flags)) { 3763 rdev->raid_disk = -1; 3764 clear_bit(In_sync, &rdev->flags); 3765 } 3766 } 3767 3768 return 0; 3769 } 3770 3771 /* Read a fixed-point number. 3772 * Numbers in sysfs attributes should be in "standard" units where 3773 * possible, so time should be in seconds. 3774 * However we internally use a a much smaller unit such as 3775 * milliseconds or jiffies. 3776 * This function takes a decimal number with a possible fractional 3777 * component, and produces an integer which is the result of 3778 * multiplying that number by 10^'scale'. 3779 * all without any floating-point arithmetic. 3780 */ 3781 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3782 { 3783 unsigned long result = 0; 3784 long decimals = -1; 3785 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3786 if (*cp == '.') 3787 decimals = 0; 3788 else if (decimals < scale) { 3789 unsigned int value; 3790 value = *cp - '0'; 3791 result = result * 10 + value; 3792 if (decimals >= 0) 3793 decimals++; 3794 } 3795 cp++; 3796 } 3797 if (*cp == '\n') 3798 cp++; 3799 if (*cp) 3800 return -EINVAL; 3801 if (decimals < 0) 3802 decimals = 0; 3803 *res = result * int_pow(10, scale - decimals); 3804 return 0; 3805 } 3806 3807 static ssize_t 3808 safe_delay_show(struct mddev *mddev, char *page) 3809 { 3810 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ; 3811 3812 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000); 3813 } 3814 static ssize_t 3815 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3816 { 3817 unsigned long msec; 3818 3819 if (mddev_is_clustered(mddev)) { 3820 pr_warn("md: Safemode is disabled for clustered mode\n"); 3821 return -EINVAL; 3822 } 3823 3824 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ) 3825 return -EINVAL; 3826 if (msec == 0) 3827 mddev->safemode_delay = 0; 3828 else { 3829 unsigned long old_delay = mddev->safemode_delay; 3830 unsigned long new_delay = (msec*HZ)/1000; 3831 3832 if (new_delay == 0) 3833 new_delay = 1; 3834 mddev->safemode_delay = new_delay; 3835 if (new_delay < old_delay || old_delay == 0) 3836 mod_timer(&mddev->safemode_timer, jiffies+1); 3837 } 3838 return len; 3839 } 3840 static struct md_sysfs_entry md_safe_delay = 3841 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3842 3843 static ssize_t 3844 level_show(struct mddev *mddev, char *page) 3845 { 3846 struct md_personality *p; 3847 int ret; 3848 spin_lock(&mddev->lock); 3849 p = mddev->pers; 3850 if (p) 3851 ret = sprintf(page, "%s\n", p->name); 3852 else if (mddev->clevel[0]) 3853 ret = sprintf(page, "%s\n", mddev->clevel); 3854 else if (mddev->level != LEVEL_NONE) 3855 ret = sprintf(page, "%d\n", mddev->level); 3856 else 3857 ret = 0; 3858 spin_unlock(&mddev->lock); 3859 return ret; 3860 } 3861 3862 static ssize_t 3863 level_store(struct mddev *mddev, const char *buf, size_t len) 3864 { 3865 char clevel[16]; 3866 ssize_t rv; 3867 size_t slen = len; 3868 struct md_personality *pers, *oldpers; 3869 long level; 3870 void *priv, *oldpriv; 3871 struct md_rdev *rdev; 3872 3873 if (slen == 0 || slen >= sizeof(clevel)) 3874 return -EINVAL; 3875 3876 rv = mddev_lock(mddev); 3877 if (rv) 3878 return rv; 3879 3880 if (mddev->pers == NULL) { 3881 strncpy(mddev->clevel, buf, slen); 3882 if (mddev->clevel[slen-1] == '\n') 3883 slen--; 3884 mddev->clevel[slen] = 0; 3885 mddev->level = LEVEL_NONE; 3886 rv = len; 3887 goto out_unlock; 3888 } 3889 rv = -EROFS; 3890 if (!md_is_rdwr(mddev)) 3891 goto out_unlock; 3892 3893 /* request to change the personality. Need to ensure: 3894 * - array is not engaged in resync/recovery/reshape 3895 * - old personality can be suspended 3896 * - new personality will access other array. 3897 */ 3898 3899 rv = -EBUSY; 3900 if (mddev->sync_thread || 3901 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3902 mddev->reshape_position != MaxSector || 3903 mddev->sysfs_active) 3904 goto out_unlock; 3905 3906 rv = -EINVAL; 3907 if (!mddev->pers->quiesce) { 3908 pr_warn("md: %s: %s does not support online personality change\n", 3909 mdname(mddev), mddev->pers->name); 3910 goto out_unlock; 3911 } 3912 3913 /* Now find the new personality */ 3914 strncpy(clevel, buf, slen); 3915 if (clevel[slen-1] == '\n') 3916 slen--; 3917 clevel[slen] = 0; 3918 if (kstrtol(clevel, 10, &level)) 3919 level = LEVEL_NONE; 3920 3921 if (request_module("md-%s", clevel) != 0) 3922 request_module("md-level-%s", clevel); 3923 spin_lock(&pers_lock); 3924 pers = find_pers(level, clevel); 3925 if (!pers || !try_module_get(pers->owner)) { 3926 spin_unlock(&pers_lock); 3927 pr_warn("md: personality %s not loaded\n", clevel); 3928 rv = -EINVAL; 3929 goto out_unlock; 3930 } 3931 spin_unlock(&pers_lock); 3932 3933 if (pers == mddev->pers) { 3934 /* Nothing to do! */ 3935 module_put(pers->owner); 3936 rv = len; 3937 goto out_unlock; 3938 } 3939 if (!pers->takeover) { 3940 module_put(pers->owner); 3941 pr_warn("md: %s: %s does not support personality takeover\n", 3942 mdname(mddev), clevel); 3943 rv = -EINVAL; 3944 goto out_unlock; 3945 } 3946 3947 rdev_for_each(rdev, mddev) 3948 rdev->new_raid_disk = rdev->raid_disk; 3949 3950 /* ->takeover must set new_* and/or delta_disks 3951 * if it succeeds, and may set them when it fails. 3952 */ 3953 priv = pers->takeover(mddev); 3954 if (IS_ERR(priv)) { 3955 mddev->new_level = mddev->level; 3956 mddev->new_layout = mddev->layout; 3957 mddev->new_chunk_sectors = mddev->chunk_sectors; 3958 mddev->raid_disks -= mddev->delta_disks; 3959 mddev->delta_disks = 0; 3960 mddev->reshape_backwards = 0; 3961 module_put(pers->owner); 3962 pr_warn("md: %s: %s would not accept array\n", 3963 mdname(mddev), clevel); 3964 rv = PTR_ERR(priv); 3965 goto out_unlock; 3966 } 3967 3968 /* Looks like we have a winner */ 3969 mddev_suspend(mddev); 3970 mddev_detach(mddev); 3971 3972 spin_lock(&mddev->lock); 3973 oldpers = mddev->pers; 3974 oldpriv = mddev->private; 3975 mddev->pers = pers; 3976 mddev->private = priv; 3977 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3978 mddev->level = mddev->new_level; 3979 mddev->layout = mddev->new_layout; 3980 mddev->chunk_sectors = mddev->new_chunk_sectors; 3981 mddev->delta_disks = 0; 3982 mddev->reshape_backwards = 0; 3983 mddev->degraded = 0; 3984 spin_unlock(&mddev->lock); 3985 3986 if (oldpers->sync_request == NULL && 3987 mddev->external) { 3988 /* We are converting from a no-redundancy array 3989 * to a redundancy array and metadata is managed 3990 * externally so we need to be sure that writes 3991 * won't block due to a need to transition 3992 * clean->dirty 3993 * until external management is started. 3994 */ 3995 mddev->in_sync = 0; 3996 mddev->safemode_delay = 0; 3997 mddev->safemode = 0; 3998 } 3999 4000 oldpers->free(mddev, oldpriv); 4001 4002 if (oldpers->sync_request == NULL && 4003 pers->sync_request != NULL) { 4004 /* need to add the md_redundancy_group */ 4005 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4006 pr_warn("md: cannot register extra attributes for %s\n", 4007 mdname(mddev)); 4008 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4009 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4010 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4011 } 4012 if (oldpers->sync_request != NULL && 4013 pers->sync_request == NULL) { 4014 /* need to remove the md_redundancy_group */ 4015 if (mddev->to_remove == NULL) 4016 mddev->to_remove = &md_redundancy_group; 4017 } 4018 4019 module_put(oldpers->owner); 4020 4021 rdev_for_each(rdev, mddev) { 4022 if (rdev->raid_disk < 0) 4023 continue; 4024 if (rdev->new_raid_disk >= mddev->raid_disks) 4025 rdev->new_raid_disk = -1; 4026 if (rdev->new_raid_disk == rdev->raid_disk) 4027 continue; 4028 sysfs_unlink_rdev(mddev, rdev); 4029 } 4030 rdev_for_each(rdev, mddev) { 4031 if (rdev->raid_disk < 0) 4032 continue; 4033 if (rdev->new_raid_disk == rdev->raid_disk) 4034 continue; 4035 rdev->raid_disk = rdev->new_raid_disk; 4036 if (rdev->raid_disk < 0) 4037 clear_bit(In_sync, &rdev->flags); 4038 else { 4039 if (sysfs_link_rdev(mddev, rdev)) 4040 pr_warn("md: cannot register rd%d for %s after level change\n", 4041 rdev->raid_disk, mdname(mddev)); 4042 } 4043 } 4044 4045 if (pers->sync_request == NULL) { 4046 /* this is now an array without redundancy, so 4047 * it must always be in_sync 4048 */ 4049 mddev->in_sync = 1; 4050 del_timer_sync(&mddev->safemode_timer); 4051 } 4052 blk_set_stacking_limits(&mddev->queue->limits); 4053 pers->run(mddev); 4054 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4055 mddev_resume(mddev); 4056 if (!mddev->thread) 4057 md_update_sb(mddev, 1); 4058 sysfs_notify_dirent_safe(mddev->sysfs_level); 4059 md_new_event(); 4060 rv = len; 4061 out_unlock: 4062 mddev_unlock(mddev); 4063 return rv; 4064 } 4065 4066 static struct md_sysfs_entry md_level = 4067 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4068 4069 static ssize_t 4070 layout_show(struct mddev *mddev, char *page) 4071 { 4072 /* just a number, not meaningful for all levels */ 4073 if (mddev->reshape_position != MaxSector && 4074 mddev->layout != mddev->new_layout) 4075 return sprintf(page, "%d (%d)\n", 4076 mddev->new_layout, mddev->layout); 4077 return sprintf(page, "%d\n", mddev->layout); 4078 } 4079 4080 static ssize_t 4081 layout_store(struct mddev *mddev, const char *buf, size_t len) 4082 { 4083 unsigned int n; 4084 int err; 4085 4086 err = kstrtouint(buf, 10, &n); 4087 if (err < 0) 4088 return err; 4089 err = mddev_lock(mddev); 4090 if (err) 4091 return err; 4092 4093 if (mddev->pers) { 4094 if (mddev->pers->check_reshape == NULL) 4095 err = -EBUSY; 4096 else if (!md_is_rdwr(mddev)) 4097 err = -EROFS; 4098 else { 4099 mddev->new_layout = n; 4100 err = mddev->pers->check_reshape(mddev); 4101 if (err) 4102 mddev->new_layout = mddev->layout; 4103 } 4104 } else { 4105 mddev->new_layout = n; 4106 if (mddev->reshape_position == MaxSector) 4107 mddev->layout = n; 4108 } 4109 mddev_unlock(mddev); 4110 return err ?: len; 4111 } 4112 static struct md_sysfs_entry md_layout = 4113 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4114 4115 static ssize_t 4116 raid_disks_show(struct mddev *mddev, char *page) 4117 { 4118 if (mddev->raid_disks == 0) 4119 return 0; 4120 if (mddev->reshape_position != MaxSector && 4121 mddev->delta_disks != 0) 4122 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4123 mddev->raid_disks - mddev->delta_disks); 4124 return sprintf(page, "%d\n", mddev->raid_disks); 4125 } 4126 4127 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4128 4129 static ssize_t 4130 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4131 { 4132 unsigned int n; 4133 int err; 4134 4135 err = kstrtouint(buf, 10, &n); 4136 if (err < 0) 4137 return err; 4138 4139 err = mddev_lock(mddev); 4140 if (err) 4141 return err; 4142 if (mddev->pers) 4143 err = update_raid_disks(mddev, n); 4144 else if (mddev->reshape_position != MaxSector) { 4145 struct md_rdev *rdev; 4146 int olddisks = mddev->raid_disks - mddev->delta_disks; 4147 4148 err = -EINVAL; 4149 rdev_for_each(rdev, mddev) { 4150 if (olddisks < n && 4151 rdev->data_offset < rdev->new_data_offset) 4152 goto out_unlock; 4153 if (olddisks > n && 4154 rdev->data_offset > rdev->new_data_offset) 4155 goto out_unlock; 4156 } 4157 err = 0; 4158 mddev->delta_disks = n - olddisks; 4159 mddev->raid_disks = n; 4160 mddev->reshape_backwards = (mddev->delta_disks < 0); 4161 } else 4162 mddev->raid_disks = n; 4163 out_unlock: 4164 mddev_unlock(mddev); 4165 return err ? err : len; 4166 } 4167 static struct md_sysfs_entry md_raid_disks = 4168 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4169 4170 static ssize_t 4171 uuid_show(struct mddev *mddev, char *page) 4172 { 4173 return sprintf(page, "%pU\n", mddev->uuid); 4174 } 4175 static struct md_sysfs_entry md_uuid = 4176 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4177 4178 static ssize_t 4179 chunk_size_show(struct mddev *mddev, char *page) 4180 { 4181 if (mddev->reshape_position != MaxSector && 4182 mddev->chunk_sectors != mddev->new_chunk_sectors) 4183 return sprintf(page, "%d (%d)\n", 4184 mddev->new_chunk_sectors << 9, 4185 mddev->chunk_sectors << 9); 4186 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4187 } 4188 4189 static ssize_t 4190 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4191 { 4192 unsigned long n; 4193 int err; 4194 4195 err = kstrtoul(buf, 10, &n); 4196 if (err < 0) 4197 return err; 4198 4199 err = mddev_lock(mddev); 4200 if (err) 4201 return err; 4202 if (mddev->pers) { 4203 if (mddev->pers->check_reshape == NULL) 4204 err = -EBUSY; 4205 else if (!md_is_rdwr(mddev)) 4206 err = -EROFS; 4207 else { 4208 mddev->new_chunk_sectors = n >> 9; 4209 err = mddev->pers->check_reshape(mddev); 4210 if (err) 4211 mddev->new_chunk_sectors = mddev->chunk_sectors; 4212 } 4213 } else { 4214 mddev->new_chunk_sectors = n >> 9; 4215 if (mddev->reshape_position == MaxSector) 4216 mddev->chunk_sectors = n >> 9; 4217 } 4218 mddev_unlock(mddev); 4219 return err ?: len; 4220 } 4221 static struct md_sysfs_entry md_chunk_size = 4222 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4223 4224 static ssize_t 4225 resync_start_show(struct mddev *mddev, char *page) 4226 { 4227 if (mddev->recovery_cp == MaxSector) 4228 return sprintf(page, "none\n"); 4229 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4230 } 4231 4232 static ssize_t 4233 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4234 { 4235 unsigned long long n; 4236 int err; 4237 4238 if (cmd_match(buf, "none")) 4239 n = MaxSector; 4240 else { 4241 err = kstrtoull(buf, 10, &n); 4242 if (err < 0) 4243 return err; 4244 if (n != (sector_t)n) 4245 return -EINVAL; 4246 } 4247 4248 err = mddev_lock(mddev); 4249 if (err) 4250 return err; 4251 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4252 err = -EBUSY; 4253 4254 if (!err) { 4255 mddev->recovery_cp = n; 4256 if (mddev->pers) 4257 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4258 } 4259 mddev_unlock(mddev); 4260 return err ?: len; 4261 } 4262 static struct md_sysfs_entry md_resync_start = 4263 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4264 resync_start_show, resync_start_store); 4265 4266 /* 4267 * The array state can be: 4268 * 4269 * clear 4270 * No devices, no size, no level 4271 * Equivalent to STOP_ARRAY ioctl 4272 * inactive 4273 * May have some settings, but array is not active 4274 * all IO results in error 4275 * When written, doesn't tear down array, but just stops it 4276 * suspended (not supported yet) 4277 * All IO requests will block. The array can be reconfigured. 4278 * Writing this, if accepted, will block until array is quiescent 4279 * readonly 4280 * no resync can happen. no superblocks get written. 4281 * write requests fail 4282 * read-auto 4283 * like readonly, but behaves like 'clean' on a write request. 4284 * 4285 * clean - no pending writes, but otherwise active. 4286 * When written to inactive array, starts without resync 4287 * If a write request arrives then 4288 * if metadata is known, mark 'dirty' and switch to 'active'. 4289 * if not known, block and switch to write-pending 4290 * If written to an active array that has pending writes, then fails. 4291 * active 4292 * fully active: IO and resync can be happening. 4293 * When written to inactive array, starts with resync 4294 * 4295 * write-pending 4296 * clean, but writes are blocked waiting for 'active' to be written. 4297 * 4298 * active-idle 4299 * like active, but no writes have been seen for a while (100msec). 4300 * 4301 * broken 4302 * Array is failed. It's useful because mounted-arrays aren't stopped 4303 * when array is failed, so this state will at least alert the user that 4304 * something is wrong. 4305 */ 4306 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4307 write_pending, active_idle, broken, bad_word}; 4308 static char *array_states[] = { 4309 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4310 "write-pending", "active-idle", "broken", NULL }; 4311 4312 static int match_word(const char *word, char **list) 4313 { 4314 int n; 4315 for (n=0; list[n]; n++) 4316 if (cmd_match(word, list[n])) 4317 break; 4318 return n; 4319 } 4320 4321 static ssize_t 4322 array_state_show(struct mddev *mddev, char *page) 4323 { 4324 enum array_state st = inactive; 4325 4326 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4327 switch(mddev->ro) { 4328 case MD_RDONLY: 4329 st = readonly; 4330 break; 4331 case MD_AUTO_READ: 4332 st = read_auto; 4333 break; 4334 case MD_RDWR: 4335 spin_lock(&mddev->lock); 4336 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4337 st = write_pending; 4338 else if (mddev->in_sync) 4339 st = clean; 4340 else if (mddev->safemode) 4341 st = active_idle; 4342 else 4343 st = active; 4344 spin_unlock(&mddev->lock); 4345 } 4346 4347 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4348 st = broken; 4349 } else { 4350 if (list_empty(&mddev->disks) && 4351 mddev->raid_disks == 0 && 4352 mddev->dev_sectors == 0) 4353 st = clear; 4354 else 4355 st = inactive; 4356 } 4357 return sprintf(page, "%s\n", array_states[st]); 4358 } 4359 4360 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4361 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4362 static int restart_array(struct mddev *mddev); 4363 4364 static ssize_t 4365 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4366 { 4367 int err = 0; 4368 enum array_state st = match_word(buf, array_states); 4369 4370 if (mddev->pers && (st == active || st == clean) && 4371 mddev->ro != MD_RDONLY) { 4372 /* don't take reconfig_mutex when toggling between 4373 * clean and active 4374 */ 4375 spin_lock(&mddev->lock); 4376 if (st == active) { 4377 restart_array(mddev); 4378 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4379 md_wakeup_thread(mddev->thread); 4380 wake_up(&mddev->sb_wait); 4381 } else /* st == clean */ { 4382 restart_array(mddev); 4383 if (!set_in_sync(mddev)) 4384 err = -EBUSY; 4385 } 4386 if (!err) 4387 sysfs_notify_dirent_safe(mddev->sysfs_state); 4388 spin_unlock(&mddev->lock); 4389 return err ?: len; 4390 } 4391 err = mddev_lock(mddev); 4392 if (err) 4393 return err; 4394 err = -EINVAL; 4395 switch(st) { 4396 case bad_word: 4397 break; 4398 case clear: 4399 /* stopping an active array */ 4400 err = do_md_stop(mddev, 0, NULL); 4401 break; 4402 case inactive: 4403 /* stopping an active array */ 4404 if (mddev->pers) 4405 err = do_md_stop(mddev, 2, NULL); 4406 else 4407 err = 0; /* already inactive */ 4408 break; 4409 case suspended: 4410 break; /* not supported yet */ 4411 case readonly: 4412 if (mddev->pers) 4413 err = md_set_readonly(mddev, NULL); 4414 else { 4415 mddev->ro = MD_RDONLY; 4416 set_disk_ro(mddev->gendisk, 1); 4417 err = do_md_run(mddev); 4418 } 4419 break; 4420 case read_auto: 4421 if (mddev->pers) { 4422 if (md_is_rdwr(mddev)) 4423 err = md_set_readonly(mddev, NULL); 4424 else if (mddev->ro == MD_RDONLY) 4425 err = restart_array(mddev); 4426 if (err == 0) { 4427 mddev->ro = MD_AUTO_READ; 4428 set_disk_ro(mddev->gendisk, 0); 4429 } 4430 } else { 4431 mddev->ro = MD_AUTO_READ; 4432 err = do_md_run(mddev); 4433 } 4434 break; 4435 case clean: 4436 if (mddev->pers) { 4437 err = restart_array(mddev); 4438 if (err) 4439 break; 4440 spin_lock(&mddev->lock); 4441 if (!set_in_sync(mddev)) 4442 err = -EBUSY; 4443 spin_unlock(&mddev->lock); 4444 } else 4445 err = -EINVAL; 4446 break; 4447 case active: 4448 if (mddev->pers) { 4449 err = restart_array(mddev); 4450 if (err) 4451 break; 4452 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4453 wake_up(&mddev->sb_wait); 4454 err = 0; 4455 } else { 4456 mddev->ro = MD_RDWR; 4457 set_disk_ro(mddev->gendisk, 0); 4458 err = do_md_run(mddev); 4459 } 4460 break; 4461 case write_pending: 4462 case active_idle: 4463 case broken: 4464 /* these cannot be set */ 4465 break; 4466 } 4467 4468 if (!err) { 4469 if (mddev->hold_active == UNTIL_IOCTL) 4470 mddev->hold_active = 0; 4471 sysfs_notify_dirent_safe(mddev->sysfs_state); 4472 } 4473 mddev_unlock(mddev); 4474 return err ?: len; 4475 } 4476 static struct md_sysfs_entry md_array_state = 4477 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4478 4479 static ssize_t 4480 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4481 return sprintf(page, "%d\n", 4482 atomic_read(&mddev->max_corr_read_errors)); 4483 } 4484 4485 static ssize_t 4486 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4487 { 4488 unsigned int n; 4489 int rv; 4490 4491 rv = kstrtouint(buf, 10, &n); 4492 if (rv < 0) 4493 return rv; 4494 if (n > INT_MAX) 4495 return -EINVAL; 4496 atomic_set(&mddev->max_corr_read_errors, n); 4497 return len; 4498 } 4499 4500 static struct md_sysfs_entry max_corr_read_errors = 4501 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4502 max_corrected_read_errors_store); 4503 4504 static ssize_t 4505 null_show(struct mddev *mddev, char *page) 4506 { 4507 return -EINVAL; 4508 } 4509 4510 static ssize_t 4511 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4512 { 4513 /* buf must be %d:%d\n? giving major and minor numbers */ 4514 /* The new device is added to the array. 4515 * If the array has a persistent superblock, we read the 4516 * superblock to initialise info and check validity. 4517 * Otherwise, only checking done is that in bind_rdev_to_array, 4518 * which mainly checks size. 4519 */ 4520 char *e; 4521 int major = simple_strtoul(buf, &e, 10); 4522 int minor; 4523 dev_t dev; 4524 struct md_rdev *rdev; 4525 int err; 4526 4527 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4528 return -EINVAL; 4529 minor = simple_strtoul(e+1, &e, 10); 4530 if (*e && *e != '\n') 4531 return -EINVAL; 4532 dev = MKDEV(major, minor); 4533 if (major != MAJOR(dev) || 4534 minor != MINOR(dev)) 4535 return -EOVERFLOW; 4536 4537 err = mddev_lock(mddev); 4538 if (err) 4539 return err; 4540 if (mddev->persistent) { 4541 rdev = md_import_device(dev, mddev->major_version, 4542 mddev->minor_version); 4543 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4544 struct md_rdev *rdev0 4545 = list_entry(mddev->disks.next, 4546 struct md_rdev, same_set); 4547 err = super_types[mddev->major_version] 4548 .load_super(rdev, rdev0, mddev->minor_version); 4549 if (err < 0) 4550 goto out; 4551 } 4552 } else if (mddev->external) 4553 rdev = md_import_device(dev, -2, -1); 4554 else 4555 rdev = md_import_device(dev, -1, -1); 4556 4557 if (IS_ERR(rdev)) { 4558 mddev_unlock(mddev); 4559 return PTR_ERR(rdev); 4560 } 4561 err = bind_rdev_to_array(rdev, mddev); 4562 out: 4563 if (err) 4564 export_rdev(rdev, mddev); 4565 mddev_unlock(mddev); 4566 if (!err) 4567 md_new_event(); 4568 return err ? err : len; 4569 } 4570 4571 static struct md_sysfs_entry md_new_device = 4572 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4573 4574 static ssize_t 4575 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4576 { 4577 char *end; 4578 unsigned long chunk, end_chunk; 4579 int err; 4580 4581 err = mddev_lock(mddev); 4582 if (err) 4583 return err; 4584 if (!mddev->bitmap) 4585 goto out; 4586 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4587 while (*buf) { 4588 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4589 if (buf == end) break; 4590 if (*end == '-') { /* range */ 4591 buf = end + 1; 4592 end_chunk = simple_strtoul(buf, &end, 0); 4593 if (buf == end) break; 4594 } 4595 if (*end && !isspace(*end)) break; 4596 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4597 buf = skip_spaces(end); 4598 } 4599 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4600 out: 4601 mddev_unlock(mddev); 4602 return len; 4603 } 4604 4605 static struct md_sysfs_entry md_bitmap = 4606 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4607 4608 static ssize_t 4609 size_show(struct mddev *mddev, char *page) 4610 { 4611 return sprintf(page, "%llu\n", 4612 (unsigned long long)mddev->dev_sectors / 2); 4613 } 4614 4615 static int update_size(struct mddev *mddev, sector_t num_sectors); 4616 4617 static ssize_t 4618 size_store(struct mddev *mddev, const char *buf, size_t len) 4619 { 4620 /* If array is inactive, we can reduce the component size, but 4621 * not increase it (except from 0). 4622 * If array is active, we can try an on-line resize 4623 */ 4624 sector_t sectors; 4625 int err = strict_blocks_to_sectors(buf, §ors); 4626 4627 if (err < 0) 4628 return err; 4629 err = mddev_lock(mddev); 4630 if (err) 4631 return err; 4632 if (mddev->pers) { 4633 err = update_size(mddev, sectors); 4634 if (err == 0) 4635 md_update_sb(mddev, 1); 4636 } else { 4637 if (mddev->dev_sectors == 0 || 4638 mddev->dev_sectors > sectors) 4639 mddev->dev_sectors = sectors; 4640 else 4641 err = -ENOSPC; 4642 } 4643 mddev_unlock(mddev); 4644 return err ? err : len; 4645 } 4646 4647 static struct md_sysfs_entry md_size = 4648 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4649 4650 /* Metadata version. 4651 * This is one of 4652 * 'none' for arrays with no metadata (good luck...) 4653 * 'external' for arrays with externally managed metadata, 4654 * or N.M for internally known formats 4655 */ 4656 static ssize_t 4657 metadata_show(struct mddev *mddev, char *page) 4658 { 4659 if (mddev->persistent) 4660 return sprintf(page, "%d.%d\n", 4661 mddev->major_version, mddev->minor_version); 4662 else if (mddev->external) 4663 return sprintf(page, "external:%s\n", mddev->metadata_type); 4664 else 4665 return sprintf(page, "none\n"); 4666 } 4667 4668 static ssize_t 4669 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4670 { 4671 int major, minor; 4672 char *e; 4673 int err; 4674 /* Changing the details of 'external' metadata is 4675 * always permitted. Otherwise there must be 4676 * no devices attached to the array. 4677 */ 4678 4679 err = mddev_lock(mddev); 4680 if (err) 4681 return err; 4682 err = -EBUSY; 4683 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4684 ; 4685 else if (!list_empty(&mddev->disks)) 4686 goto out_unlock; 4687 4688 err = 0; 4689 if (cmd_match(buf, "none")) { 4690 mddev->persistent = 0; 4691 mddev->external = 0; 4692 mddev->major_version = 0; 4693 mddev->minor_version = 90; 4694 goto out_unlock; 4695 } 4696 if (strncmp(buf, "external:", 9) == 0) { 4697 size_t namelen = len-9; 4698 if (namelen >= sizeof(mddev->metadata_type)) 4699 namelen = sizeof(mddev->metadata_type)-1; 4700 strncpy(mddev->metadata_type, buf+9, namelen); 4701 mddev->metadata_type[namelen] = 0; 4702 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4703 mddev->metadata_type[--namelen] = 0; 4704 mddev->persistent = 0; 4705 mddev->external = 1; 4706 mddev->major_version = 0; 4707 mddev->minor_version = 90; 4708 goto out_unlock; 4709 } 4710 major = simple_strtoul(buf, &e, 10); 4711 err = -EINVAL; 4712 if (e==buf || *e != '.') 4713 goto out_unlock; 4714 buf = e+1; 4715 minor = simple_strtoul(buf, &e, 10); 4716 if (e==buf || (*e && *e != '\n') ) 4717 goto out_unlock; 4718 err = -ENOENT; 4719 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4720 goto out_unlock; 4721 mddev->major_version = major; 4722 mddev->minor_version = minor; 4723 mddev->persistent = 1; 4724 mddev->external = 0; 4725 err = 0; 4726 out_unlock: 4727 mddev_unlock(mddev); 4728 return err ?: len; 4729 } 4730 4731 static struct md_sysfs_entry md_metadata = 4732 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4733 4734 static ssize_t 4735 action_show(struct mddev *mddev, char *page) 4736 { 4737 char *type = "idle"; 4738 unsigned long recovery = mddev->recovery; 4739 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4740 type = "frozen"; 4741 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4742 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4743 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4744 type = "reshape"; 4745 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4746 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4747 type = "resync"; 4748 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4749 type = "check"; 4750 else 4751 type = "repair"; 4752 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4753 type = "recover"; 4754 else if (mddev->reshape_position != MaxSector) 4755 type = "reshape"; 4756 } 4757 return sprintf(page, "%s\n", type); 4758 } 4759 4760 static ssize_t 4761 action_store(struct mddev *mddev, const char *page, size_t len) 4762 { 4763 if (!mddev->pers || !mddev->pers->sync_request) 4764 return -EINVAL; 4765 4766 4767 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4768 if (cmd_match(page, "frozen")) 4769 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4770 else 4771 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4772 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4773 mddev_lock(mddev) == 0) { 4774 if (work_pending(&mddev->del_work)) 4775 flush_workqueue(md_misc_wq); 4776 if (mddev->sync_thread) { 4777 sector_t save_rp = mddev->reshape_position; 4778 4779 mddev_unlock(mddev); 4780 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4781 md_unregister_thread(&mddev->sync_thread); 4782 mddev_lock_nointr(mddev); 4783 /* 4784 * set RECOVERY_INTR again and restore reshape 4785 * position in case others changed them after 4786 * got lock, eg, reshape_position_store and 4787 * md_check_recovery. 4788 */ 4789 mddev->reshape_position = save_rp; 4790 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4791 md_reap_sync_thread(mddev); 4792 } 4793 mddev_unlock(mddev); 4794 } 4795 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4796 return -EBUSY; 4797 else if (cmd_match(page, "resync")) 4798 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4799 else if (cmd_match(page, "recover")) { 4800 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4801 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4802 } else if (cmd_match(page, "reshape")) { 4803 int err; 4804 if (mddev->pers->start_reshape == NULL) 4805 return -EINVAL; 4806 err = mddev_lock(mddev); 4807 if (!err) { 4808 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4809 err = -EBUSY; 4810 } else if (mddev->reshape_position == MaxSector || 4811 mddev->pers->check_reshape == NULL || 4812 mddev->pers->check_reshape(mddev)) { 4813 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4814 err = mddev->pers->start_reshape(mddev); 4815 } else { 4816 /* 4817 * If reshape is still in progress, and 4818 * md_check_recovery() can continue to reshape, 4819 * don't restart reshape because data can be 4820 * corrupted for raid456. 4821 */ 4822 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4823 } 4824 mddev_unlock(mddev); 4825 } 4826 if (err) 4827 return err; 4828 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4829 } else { 4830 if (cmd_match(page, "check")) 4831 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4832 else if (!cmd_match(page, "repair")) 4833 return -EINVAL; 4834 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4835 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4836 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4837 } 4838 if (mddev->ro == MD_AUTO_READ) { 4839 /* A write to sync_action is enough to justify 4840 * canceling read-auto mode 4841 */ 4842 mddev->ro = MD_RDWR; 4843 md_wakeup_thread(mddev->sync_thread); 4844 } 4845 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4846 md_wakeup_thread(mddev->thread); 4847 sysfs_notify_dirent_safe(mddev->sysfs_action); 4848 return len; 4849 } 4850 4851 static struct md_sysfs_entry md_scan_mode = 4852 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4853 4854 static ssize_t 4855 last_sync_action_show(struct mddev *mddev, char *page) 4856 { 4857 return sprintf(page, "%s\n", mddev->last_sync_action); 4858 } 4859 4860 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4861 4862 static ssize_t 4863 mismatch_cnt_show(struct mddev *mddev, char *page) 4864 { 4865 return sprintf(page, "%llu\n", 4866 (unsigned long long) 4867 atomic64_read(&mddev->resync_mismatches)); 4868 } 4869 4870 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4871 4872 static ssize_t 4873 sync_min_show(struct mddev *mddev, char *page) 4874 { 4875 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4876 mddev->sync_speed_min ? "local": "system"); 4877 } 4878 4879 static ssize_t 4880 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4881 { 4882 unsigned int min; 4883 int rv; 4884 4885 if (strncmp(buf, "system", 6)==0) { 4886 min = 0; 4887 } else { 4888 rv = kstrtouint(buf, 10, &min); 4889 if (rv < 0) 4890 return rv; 4891 if (min == 0) 4892 return -EINVAL; 4893 } 4894 mddev->sync_speed_min = min; 4895 return len; 4896 } 4897 4898 static struct md_sysfs_entry md_sync_min = 4899 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4900 4901 static ssize_t 4902 sync_max_show(struct mddev *mddev, char *page) 4903 { 4904 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4905 mddev->sync_speed_max ? "local": "system"); 4906 } 4907 4908 static ssize_t 4909 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4910 { 4911 unsigned int max; 4912 int rv; 4913 4914 if (strncmp(buf, "system", 6)==0) { 4915 max = 0; 4916 } else { 4917 rv = kstrtouint(buf, 10, &max); 4918 if (rv < 0) 4919 return rv; 4920 if (max == 0) 4921 return -EINVAL; 4922 } 4923 mddev->sync_speed_max = max; 4924 return len; 4925 } 4926 4927 static struct md_sysfs_entry md_sync_max = 4928 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4929 4930 static ssize_t 4931 degraded_show(struct mddev *mddev, char *page) 4932 { 4933 return sprintf(page, "%d\n", mddev->degraded); 4934 } 4935 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4936 4937 static ssize_t 4938 sync_force_parallel_show(struct mddev *mddev, char *page) 4939 { 4940 return sprintf(page, "%d\n", mddev->parallel_resync); 4941 } 4942 4943 static ssize_t 4944 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4945 { 4946 long n; 4947 4948 if (kstrtol(buf, 10, &n)) 4949 return -EINVAL; 4950 4951 if (n != 0 && n != 1) 4952 return -EINVAL; 4953 4954 mddev->parallel_resync = n; 4955 4956 if (mddev->sync_thread) 4957 wake_up(&resync_wait); 4958 4959 return len; 4960 } 4961 4962 /* force parallel resync, even with shared block devices */ 4963 static struct md_sysfs_entry md_sync_force_parallel = 4964 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4965 sync_force_parallel_show, sync_force_parallel_store); 4966 4967 static ssize_t 4968 sync_speed_show(struct mddev *mddev, char *page) 4969 { 4970 unsigned long resync, dt, db; 4971 if (mddev->curr_resync == MD_RESYNC_NONE) 4972 return sprintf(page, "none\n"); 4973 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4974 dt = (jiffies - mddev->resync_mark) / HZ; 4975 if (!dt) dt++; 4976 db = resync - mddev->resync_mark_cnt; 4977 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4978 } 4979 4980 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4981 4982 static ssize_t 4983 sync_completed_show(struct mddev *mddev, char *page) 4984 { 4985 unsigned long long max_sectors, resync; 4986 4987 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4988 return sprintf(page, "none\n"); 4989 4990 if (mddev->curr_resync == MD_RESYNC_YIELDED || 4991 mddev->curr_resync == MD_RESYNC_DELAYED) 4992 return sprintf(page, "delayed\n"); 4993 4994 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4995 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4996 max_sectors = mddev->resync_max_sectors; 4997 else 4998 max_sectors = mddev->dev_sectors; 4999 5000 resync = mddev->curr_resync_completed; 5001 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5002 } 5003 5004 static struct md_sysfs_entry md_sync_completed = 5005 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5006 5007 static ssize_t 5008 min_sync_show(struct mddev *mddev, char *page) 5009 { 5010 return sprintf(page, "%llu\n", 5011 (unsigned long long)mddev->resync_min); 5012 } 5013 static ssize_t 5014 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5015 { 5016 unsigned long long min; 5017 int err; 5018 5019 if (kstrtoull(buf, 10, &min)) 5020 return -EINVAL; 5021 5022 spin_lock(&mddev->lock); 5023 err = -EINVAL; 5024 if (min > mddev->resync_max) 5025 goto out_unlock; 5026 5027 err = -EBUSY; 5028 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5029 goto out_unlock; 5030 5031 /* Round down to multiple of 4K for safety */ 5032 mddev->resync_min = round_down(min, 8); 5033 err = 0; 5034 5035 out_unlock: 5036 spin_unlock(&mddev->lock); 5037 return err ?: len; 5038 } 5039 5040 static struct md_sysfs_entry md_min_sync = 5041 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5042 5043 static ssize_t 5044 max_sync_show(struct mddev *mddev, char *page) 5045 { 5046 if (mddev->resync_max == MaxSector) 5047 return sprintf(page, "max\n"); 5048 else 5049 return sprintf(page, "%llu\n", 5050 (unsigned long long)mddev->resync_max); 5051 } 5052 static ssize_t 5053 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5054 { 5055 int err; 5056 spin_lock(&mddev->lock); 5057 if (strncmp(buf, "max", 3) == 0) 5058 mddev->resync_max = MaxSector; 5059 else { 5060 unsigned long long max; 5061 int chunk; 5062 5063 err = -EINVAL; 5064 if (kstrtoull(buf, 10, &max)) 5065 goto out_unlock; 5066 if (max < mddev->resync_min) 5067 goto out_unlock; 5068 5069 err = -EBUSY; 5070 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5071 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5072 goto out_unlock; 5073 5074 /* Must be a multiple of chunk_size */ 5075 chunk = mddev->chunk_sectors; 5076 if (chunk) { 5077 sector_t temp = max; 5078 5079 err = -EINVAL; 5080 if (sector_div(temp, chunk)) 5081 goto out_unlock; 5082 } 5083 mddev->resync_max = max; 5084 } 5085 wake_up(&mddev->recovery_wait); 5086 err = 0; 5087 out_unlock: 5088 spin_unlock(&mddev->lock); 5089 return err ?: len; 5090 } 5091 5092 static struct md_sysfs_entry md_max_sync = 5093 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5094 5095 static ssize_t 5096 suspend_lo_show(struct mddev *mddev, char *page) 5097 { 5098 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5099 } 5100 5101 static ssize_t 5102 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5103 { 5104 unsigned long long new; 5105 int err; 5106 5107 err = kstrtoull(buf, 10, &new); 5108 if (err < 0) 5109 return err; 5110 if (new != (sector_t)new) 5111 return -EINVAL; 5112 5113 err = mddev_lock(mddev); 5114 if (err) 5115 return err; 5116 err = -EINVAL; 5117 if (mddev->pers == NULL || 5118 mddev->pers->quiesce == NULL) 5119 goto unlock; 5120 mddev_suspend(mddev); 5121 mddev->suspend_lo = new; 5122 mddev_resume(mddev); 5123 5124 err = 0; 5125 unlock: 5126 mddev_unlock(mddev); 5127 return err ?: len; 5128 } 5129 static struct md_sysfs_entry md_suspend_lo = 5130 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5131 5132 static ssize_t 5133 suspend_hi_show(struct mddev *mddev, char *page) 5134 { 5135 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5136 } 5137 5138 static ssize_t 5139 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5140 { 5141 unsigned long long new; 5142 int err; 5143 5144 err = kstrtoull(buf, 10, &new); 5145 if (err < 0) 5146 return err; 5147 if (new != (sector_t)new) 5148 return -EINVAL; 5149 5150 err = mddev_lock(mddev); 5151 if (err) 5152 return err; 5153 err = -EINVAL; 5154 if (mddev->pers == NULL) 5155 goto unlock; 5156 5157 mddev_suspend(mddev); 5158 mddev->suspend_hi = new; 5159 mddev_resume(mddev); 5160 5161 err = 0; 5162 unlock: 5163 mddev_unlock(mddev); 5164 return err ?: len; 5165 } 5166 static struct md_sysfs_entry md_suspend_hi = 5167 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5168 5169 static ssize_t 5170 reshape_position_show(struct mddev *mddev, char *page) 5171 { 5172 if (mddev->reshape_position != MaxSector) 5173 return sprintf(page, "%llu\n", 5174 (unsigned long long)mddev->reshape_position); 5175 strcpy(page, "none\n"); 5176 return 5; 5177 } 5178 5179 static ssize_t 5180 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5181 { 5182 struct md_rdev *rdev; 5183 unsigned long long new; 5184 int err; 5185 5186 err = kstrtoull(buf, 10, &new); 5187 if (err < 0) 5188 return err; 5189 if (new != (sector_t)new) 5190 return -EINVAL; 5191 err = mddev_lock(mddev); 5192 if (err) 5193 return err; 5194 err = -EBUSY; 5195 if (mddev->pers) 5196 goto unlock; 5197 mddev->reshape_position = new; 5198 mddev->delta_disks = 0; 5199 mddev->reshape_backwards = 0; 5200 mddev->new_level = mddev->level; 5201 mddev->new_layout = mddev->layout; 5202 mddev->new_chunk_sectors = mddev->chunk_sectors; 5203 rdev_for_each(rdev, mddev) 5204 rdev->new_data_offset = rdev->data_offset; 5205 err = 0; 5206 unlock: 5207 mddev_unlock(mddev); 5208 return err ?: len; 5209 } 5210 5211 static struct md_sysfs_entry md_reshape_position = 5212 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5213 reshape_position_store); 5214 5215 static ssize_t 5216 reshape_direction_show(struct mddev *mddev, char *page) 5217 { 5218 return sprintf(page, "%s\n", 5219 mddev->reshape_backwards ? "backwards" : "forwards"); 5220 } 5221 5222 static ssize_t 5223 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5224 { 5225 int backwards = 0; 5226 int err; 5227 5228 if (cmd_match(buf, "forwards")) 5229 backwards = 0; 5230 else if (cmd_match(buf, "backwards")) 5231 backwards = 1; 5232 else 5233 return -EINVAL; 5234 if (mddev->reshape_backwards == backwards) 5235 return len; 5236 5237 err = mddev_lock(mddev); 5238 if (err) 5239 return err; 5240 /* check if we are allowed to change */ 5241 if (mddev->delta_disks) 5242 err = -EBUSY; 5243 else if (mddev->persistent && 5244 mddev->major_version == 0) 5245 err = -EINVAL; 5246 else 5247 mddev->reshape_backwards = backwards; 5248 mddev_unlock(mddev); 5249 return err ?: len; 5250 } 5251 5252 static struct md_sysfs_entry md_reshape_direction = 5253 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5254 reshape_direction_store); 5255 5256 static ssize_t 5257 array_size_show(struct mddev *mddev, char *page) 5258 { 5259 if (mddev->external_size) 5260 return sprintf(page, "%llu\n", 5261 (unsigned long long)mddev->array_sectors/2); 5262 else 5263 return sprintf(page, "default\n"); 5264 } 5265 5266 static ssize_t 5267 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5268 { 5269 sector_t sectors; 5270 int err; 5271 5272 err = mddev_lock(mddev); 5273 if (err) 5274 return err; 5275 5276 /* cluster raid doesn't support change array_sectors */ 5277 if (mddev_is_clustered(mddev)) { 5278 mddev_unlock(mddev); 5279 return -EINVAL; 5280 } 5281 5282 if (strncmp(buf, "default", 7) == 0) { 5283 if (mddev->pers) 5284 sectors = mddev->pers->size(mddev, 0, 0); 5285 else 5286 sectors = mddev->array_sectors; 5287 5288 mddev->external_size = 0; 5289 } else { 5290 if (strict_blocks_to_sectors(buf, §ors) < 0) 5291 err = -EINVAL; 5292 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5293 err = -E2BIG; 5294 else 5295 mddev->external_size = 1; 5296 } 5297 5298 if (!err) { 5299 mddev->array_sectors = sectors; 5300 if (mddev->pers) 5301 set_capacity_and_notify(mddev->gendisk, 5302 mddev->array_sectors); 5303 } 5304 mddev_unlock(mddev); 5305 return err ?: len; 5306 } 5307 5308 static struct md_sysfs_entry md_array_size = 5309 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5310 array_size_store); 5311 5312 static ssize_t 5313 consistency_policy_show(struct mddev *mddev, char *page) 5314 { 5315 int ret; 5316 5317 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5318 ret = sprintf(page, "journal\n"); 5319 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5320 ret = sprintf(page, "ppl\n"); 5321 } else if (mddev->bitmap) { 5322 ret = sprintf(page, "bitmap\n"); 5323 } else if (mddev->pers) { 5324 if (mddev->pers->sync_request) 5325 ret = sprintf(page, "resync\n"); 5326 else 5327 ret = sprintf(page, "none\n"); 5328 } else { 5329 ret = sprintf(page, "unknown\n"); 5330 } 5331 5332 return ret; 5333 } 5334 5335 static ssize_t 5336 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5337 { 5338 int err = 0; 5339 5340 if (mddev->pers) { 5341 if (mddev->pers->change_consistency_policy) 5342 err = mddev->pers->change_consistency_policy(mddev, buf); 5343 else 5344 err = -EBUSY; 5345 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5346 set_bit(MD_HAS_PPL, &mddev->flags); 5347 } else { 5348 err = -EINVAL; 5349 } 5350 5351 return err ? err : len; 5352 } 5353 5354 static struct md_sysfs_entry md_consistency_policy = 5355 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5356 consistency_policy_store); 5357 5358 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5359 { 5360 return sprintf(page, "%d\n", mddev->fail_last_dev); 5361 } 5362 5363 /* 5364 * Setting fail_last_dev to true to allow last device to be forcibly removed 5365 * from RAID1/RAID10. 5366 */ 5367 static ssize_t 5368 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5369 { 5370 int ret; 5371 bool value; 5372 5373 ret = kstrtobool(buf, &value); 5374 if (ret) 5375 return ret; 5376 5377 if (value != mddev->fail_last_dev) 5378 mddev->fail_last_dev = value; 5379 5380 return len; 5381 } 5382 static struct md_sysfs_entry md_fail_last_dev = 5383 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5384 fail_last_dev_store); 5385 5386 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5387 { 5388 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5389 return sprintf(page, "n/a\n"); 5390 else 5391 return sprintf(page, "%d\n", mddev->serialize_policy); 5392 } 5393 5394 /* 5395 * Setting serialize_policy to true to enforce write IO is not reordered 5396 * for raid1. 5397 */ 5398 static ssize_t 5399 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5400 { 5401 int err; 5402 bool value; 5403 5404 err = kstrtobool(buf, &value); 5405 if (err) 5406 return err; 5407 5408 if (value == mddev->serialize_policy) 5409 return len; 5410 5411 err = mddev_lock(mddev); 5412 if (err) 5413 return err; 5414 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5415 pr_err("md: serialize_policy is only effective for raid1\n"); 5416 err = -EINVAL; 5417 goto unlock; 5418 } 5419 5420 mddev_suspend(mddev); 5421 if (value) 5422 mddev_create_serial_pool(mddev, NULL, true); 5423 else 5424 mddev_destroy_serial_pool(mddev, NULL, true); 5425 mddev->serialize_policy = value; 5426 mddev_resume(mddev); 5427 unlock: 5428 mddev_unlock(mddev); 5429 return err ?: len; 5430 } 5431 5432 static struct md_sysfs_entry md_serialize_policy = 5433 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5434 serialize_policy_store); 5435 5436 5437 static struct attribute *md_default_attrs[] = { 5438 &md_level.attr, 5439 &md_layout.attr, 5440 &md_raid_disks.attr, 5441 &md_uuid.attr, 5442 &md_chunk_size.attr, 5443 &md_size.attr, 5444 &md_resync_start.attr, 5445 &md_metadata.attr, 5446 &md_new_device.attr, 5447 &md_safe_delay.attr, 5448 &md_array_state.attr, 5449 &md_reshape_position.attr, 5450 &md_reshape_direction.attr, 5451 &md_array_size.attr, 5452 &max_corr_read_errors.attr, 5453 &md_consistency_policy.attr, 5454 &md_fail_last_dev.attr, 5455 &md_serialize_policy.attr, 5456 NULL, 5457 }; 5458 5459 static const struct attribute_group md_default_group = { 5460 .attrs = md_default_attrs, 5461 }; 5462 5463 static struct attribute *md_redundancy_attrs[] = { 5464 &md_scan_mode.attr, 5465 &md_last_scan_mode.attr, 5466 &md_mismatches.attr, 5467 &md_sync_min.attr, 5468 &md_sync_max.attr, 5469 &md_sync_speed.attr, 5470 &md_sync_force_parallel.attr, 5471 &md_sync_completed.attr, 5472 &md_min_sync.attr, 5473 &md_max_sync.attr, 5474 &md_suspend_lo.attr, 5475 &md_suspend_hi.attr, 5476 &md_bitmap.attr, 5477 &md_degraded.attr, 5478 NULL, 5479 }; 5480 static const struct attribute_group md_redundancy_group = { 5481 .name = NULL, 5482 .attrs = md_redundancy_attrs, 5483 }; 5484 5485 static const struct attribute_group *md_attr_groups[] = { 5486 &md_default_group, 5487 &md_bitmap_group, 5488 NULL, 5489 }; 5490 5491 static ssize_t 5492 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5493 { 5494 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5495 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5496 ssize_t rv; 5497 5498 if (!entry->show) 5499 return -EIO; 5500 spin_lock(&all_mddevs_lock); 5501 if (!mddev_get(mddev)) { 5502 spin_unlock(&all_mddevs_lock); 5503 return -EBUSY; 5504 } 5505 spin_unlock(&all_mddevs_lock); 5506 5507 rv = entry->show(mddev, page); 5508 mddev_put(mddev); 5509 return rv; 5510 } 5511 5512 static ssize_t 5513 md_attr_store(struct kobject *kobj, struct attribute *attr, 5514 const char *page, size_t length) 5515 { 5516 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5517 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5518 ssize_t rv; 5519 5520 if (!entry->store) 5521 return -EIO; 5522 if (!capable(CAP_SYS_ADMIN)) 5523 return -EACCES; 5524 spin_lock(&all_mddevs_lock); 5525 if (!mddev_get(mddev)) { 5526 spin_unlock(&all_mddevs_lock); 5527 return -EBUSY; 5528 } 5529 spin_unlock(&all_mddevs_lock); 5530 rv = entry->store(mddev, page, length); 5531 mddev_put(mddev); 5532 return rv; 5533 } 5534 5535 static void md_kobj_release(struct kobject *ko) 5536 { 5537 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5538 5539 if (mddev->sysfs_state) 5540 sysfs_put(mddev->sysfs_state); 5541 if (mddev->sysfs_level) 5542 sysfs_put(mddev->sysfs_level); 5543 5544 del_gendisk(mddev->gendisk); 5545 put_disk(mddev->gendisk); 5546 } 5547 5548 static const struct sysfs_ops md_sysfs_ops = { 5549 .show = md_attr_show, 5550 .store = md_attr_store, 5551 }; 5552 static const struct kobj_type md_ktype = { 5553 .release = md_kobj_release, 5554 .sysfs_ops = &md_sysfs_ops, 5555 .default_groups = md_attr_groups, 5556 }; 5557 5558 int mdp_major = 0; 5559 5560 static void mddev_delayed_delete(struct work_struct *ws) 5561 { 5562 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5563 5564 kobject_put(&mddev->kobj); 5565 } 5566 5567 static void no_op(struct percpu_ref *r) {} 5568 5569 int mddev_init_writes_pending(struct mddev *mddev) 5570 { 5571 if (mddev->writes_pending.percpu_count_ptr) 5572 return 0; 5573 if (percpu_ref_init(&mddev->writes_pending, no_op, 5574 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5575 return -ENOMEM; 5576 /* We want to start with the refcount at zero */ 5577 percpu_ref_put(&mddev->writes_pending); 5578 return 0; 5579 } 5580 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5581 5582 struct mddev *md_alloc(dev_t dev, char *name) 5583 { 5584 /* 5585 * If dev is zero, name is the name of a device to allocate with 5586 * an arbitrary minor number. It will be "md_???" 5587 * If dev is non-zero it must be a device number with a MAJOR of 5588 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5589 * the device is being created by opening a node in /dev. 5590 * If "name" is not NULL, the device is being created by 5591 * writing to /sys/module/md_mod/parameters/new_array. 5592 */ 5593 static DEFINE_MUTEX(disks_mutex); 5594 struct mddev *mddev; 5595 struct gendisk *disk; 5596 int partitioned; 5597 int shift; 5598 int unit; 5599 int error ; 5600 5601 /* 5602 * Wait for any previous instance of this device to be completely 5603 * removed (mddev_delayed_delete). 5604 */ 5605 flush_workqueue(md_misc_wq); 5606 5607 mutex_lock(&disks_mutex); 5608 mddev = mddev_alloc(dev); 5609 if (IS_ERR(mddev)) { 5610 error = PTR_ERR(mddev); 5611 goto out_unlock; 5612 } 5613 5614 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5615 shift = partitioned ? MdpMinorShift : 0; 5616 unit = MINOR(mddev->unit) >> shift; 5617 5618 if (name && !dev) { 5619 /* Need to ensure that 'name' is not a duplicate. 5620 */ 5621 struct mddev *mddev2; 5622 spin_lock(&all_mddevs_lock); 5623 5624 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5625 if (mddev2->gendisk && 5626 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5627 spin_unlock(&all_mddevs_lock); 5628 error = -EEXIST; 5629 goto out_free_mddev; 5630 } 5631 spin_unlock(&all_mddevs_lock); 5632 } 5633 if (name && dev) 5634 /* 5635 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5636 */ 5637 mddev->hold_active = UNTIL_STOP; 5638 5639 error = -ENOMEM; 5640 disk = blk_alloc_disk(NUMA_NO_NODE); 5641 if (!disk) 5642 goto out_free_mddev; 5643 5644 disk->major = MAJOR(mddev->unit); 5645 disk->first_minor = unit << shift; 5646 disk->minors = 1 << shift; 5647 if (name) 5648 strcpy(disk->disk_name, name); 5649 else if (partitioned) 5650 sprintf(disk->disk_name, "md_d%d", unit); 5651 else 5652 sprintf(disk->disk_name, "md%d", unit); 5653 disk->fops = &md_fops; 5654 disk->private_data = mddev; 5655 5656 mddev->queue = disk->queue; 5657 blk_set_stacking_limits(&mddev->queue->limits); 5658 blk_queue_write_cache(mddev->queue, true, true); 5659 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5660 mddev->gendisk = disk; 5661 error = add_disk(disk); 5662 if (error) 5663 goto out_put_disk; 5664 5665 kobject_init(&mddev->kobj, &md_ktype); 5666 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5667 if (error) { 5668 /* 5669 * The disk is already live at this point. Clear the hold flag 5670 * and let mddev_put take care of the deletion, as it isn't any 5671 * different from a normal close on last release now. 5672 */ 5673 mddev->hold_active = 0; 5674 mutex_unlock(&disks_mutex); 5675 mddev_put(mddev); 5676 return ERR_PTR(error); 5677 } 5678 5679 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5680 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5681 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5682 mutex_unlock(&disks_mutex); 5683 return mddev; 5684 5685 out_put_disk: 5686 put_disk(disk); 5687 out_free_mddev: 5688 mddev_free(mddev); 5689 out_unlock: 5690 mutex_unlock(&disks_mutex); 5691 return ERR_PTR(error); 5692 } 5693 5694 static int md_alloc_and_put(dev_t dev, char *name) 5695 { 5696 struct mddev *mddev = md_alloc(dev, name); 5697 5698 if (IS_ERR(mddev)) 5699 return PTR_ERR(mddev); 5700 mddev_put(mddev); 5701 return 0; 5702 } 5703 5704 static void md_probe(dev_t dev) 5705 { 5706 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5707 return; 5708 if (create_on_open) 5709 md_alloc_and_put(dev, NULL); 5710 } 5711 5712 static int add_named_array(const char *val, const struct kernel_param *kp) 5713 { 5714 /* 5715 * val must be "md_*" or "mdNNN". 5716 * For "md_*" we allocate an array with a large free minor number, and 5717 * set the name to val. val must not already be an active name. 5718 * For "mdNNN" we allocate an array with the minor number NNN 5719 * which must not already be in use. 5720 */ 5721 int len = strlen(val); 5722 char buf[DISK_NAME_LEN]; 5723 unsigned long devnum; 5724 5725 while (len && val[len-1] == '\n') 5726 len--; 5727 if (len >= DISK_NAME_LEN) 5728 return -E2BIG; 5729 strscpy(buf, val, len+1); 5730 if (strncmp(buf, "md_", 3) == 0) 5731 return md_alloc_and_put(0, buf); 5732 if (strncmp(buf, "md", 2) == 0 && 5733 isdigit(buf[2]) && 5734 kstrtoul(buf+2, 10, &devnum) == 0 && 5735 devnum <= MINORMASK) 5736 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5737 5738 return -EINVAL; 5739 } 5740 5741 static void md_safemode_timeout(struct timer_list *t) 5742 { 5743 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5744 5745 mddev->safemode = 1; 5746 if (mddev->external) 5747 sysfs_notify_dirent_safe(mddev->sysfs_state); 5748 5749 md_wakeup_thread(mddev->thread); 5750 } 5751 5752 static int start_dirty_degraded; 5753 static void active_io_release(struct percpu_ref *ref) 5754 { 5755 struct mddev *mddev = container_of(ref, struct mddev, active_io); 5756 5757 wake_up(&mddev->sb_wait); 5758 } 5759 5760 int md_run(struct mddev *mddev) 5761 { 5762 int err; 5763 struct md_rdev *rdev; 5764 struct md_personality *pers; 5765 bool nowait = true; 5766 5767 if (list_empty(&mddev->disks)) 5768 /* cannot run an array with no devices.. */ 5769 return -EINVAL; 5770 5771 if (mddev->pers) 5772 return -EBUSY; 5773 /* Cannot run until previous stop completes properly */ 5774 if (mddev->sysfs_active) 5775 return -EBUSY; 5776 5777 /* 5778 * Analyze all RAID superblock(s) 5779 */ 5780 if (!mddev->raid_disks) { 5781 if (!mddev->persistent) 5782 return -EINVAL; 5783 err = analyze_sbs(mddev); 5784 if (err) 5785 return -EINVAL; 5786 } 5787 5788 if (mddev->level != LEVEL_NONE) 5789 request_module("md-level-%d", mddev->level); 5790 else if (mddev->clevel[0]) 5791 request_module("md-%s", mddev->clevel); 5792 5793 /* 5794 * Drop all container device buffers, from now on 5795 * the only valid external interface is through the md 5796 * device. 5797 */ 5798 mddev->has_superblocks = false; 5799 rdev_for_each(rdev, mddev) { 5800 if (test_bit(Faulty, &rdev->flags)) 5801 continue; 5802 sync_blockdev(rdev->bdev); 5803 invalidate_bdev(rdev->bdev); 5804 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5805 mddev->ro = MD_RDONLY; 5806 if (mddev->gendisk) 5807 set_disk_ro(mddev->gendisk, 1); 5808 } 5809 5810 if (rdev->sb_page) 5811 mddev->has_superblocks = true; 5812 5813 /* perform some consistency tests on the device. 5814 * We don't want the data to overlap the metadata, 5815 * Internal Bitmap issues have been handled elsewhere. 5816 */ 5817 if (rdev->meta_bdev) { 5818 /* Nothing to check */; 5819 } else if (rdev->data_offset < rdev->sb_start) { 5820 if (mddev->dev_sectors && 5821 rdev->data_offset + mddev->dev_sectors 5822 > rdev->sb_start) { 5823 pr_warn("md: %s: data overlaps metadata\n", 5824 mdname(mddev)); 5825 return -EINVAL; 5826 } 5827 } else { 5828 if (rdev->sb_start + rdev->sb_size/512 5829 > rdev->data_offset) { 5830 pr_warn("md: %s: metadata overlaps data\n", 5831 mdname(mddev)); 5832 return -EINVAL; 5833 } 5834 } 5835 sysfs_notify_dirent_safe(rdev->sysfs_state); 5836 nowait = nowait && bdev_nowait(rdev->bdev); 5837 } 5838 5839 err = percpu_ref_init(&mddev->active_io, active_io_release, 5840 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 5841 if (err) 5842 return err; 5843 5844 if (!bioset_initialized(&mddev->bio_set)) { 5845 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5846 if (err) 5847 goto exit_active_io; 5848 } 5849 if (!bioset_initialized(&mddev->sync_set)) { 5850 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5851 if (err) 5852 goto exit_bio_set; 5853 } 5854 5855 spin_lock(&pers_lock); 5856 pers = find_pers(mddev->level, mddev->clevel); 5857 if (!pers || !try_module_get(pers->owner)) { 5858 spin_unlock(&pers_lock); 5859 if (mddev->level != LEVEL_NONE) 5860 pr_warn("md: personality for level %d is not loaded!\n", 5861 mddev->level); 5862 else 5863 pr_warn("md: personality for level %s is not loaded!\n", 5864 mddev->clevel); 5865 err = -EINVAL; 5866 goto abort; 5867 } 5868 spin_unlock(&pers_lock); 5869 if (mddev->level != pers->level) { 5870 mddev->level = pers->level; 5871 mddev->new_level = pers->level; 5872 } 5873 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5874 5875 if (mddev->reshape_position != MaxSector && 5876 pers->start_reshape == NULL) { 5877 /* This personality cannot handle reshaping... */ 5878 module_put(pers->owner); 5879 err = -EINVAL; 5880 goto abort; 5881 } 5882 5883 if (pers->sync_request) { 5884 /* Warn if this is a potentially silly 5885 * configuration. 5886 */ 5887 struct md_rdev *rdev2; 5888 int warned = 0; 5889 5890 rdev_for_each(rdev, mddev) 5891 rdev_for_each(rdev2, mddev) { 5892 if (rdev < rdev2 && 5893 rdev->bdev->bd_disk == 5894 rdev2->bdev->bd_disk) { 5895 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5896 mdname(mddev), 5897 rdev->bdev, 5898 rdev2->bdev); 5899 warned = 1; 5900 } 5901 } 5902 5903 if (warned) 5904 pr_warn("True protection against single-disk failure might be compromised.\n"); 5905 } 5906 5907 mddev->recovery = 0; 5908 /* may be over-ridden by personality */ 5909 mddev->resync_max_sectors = mddev->dev_sectors; 5910 5911 mddev->ok_start_degraded = start_dirty_degraded; 5912 5913 if (start_readonly && md_is_rdwr(mddev)) 5914 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 5915 5916 err = pers->run(mddev); 5917 if (err) 5918 pr_warn("md: pers->run() failed ...\n"); 5919 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5920 WARN_ONCE(!mddev->external_size, 5921 "%s: default size too small, but 'external_size' not in effect?\n", 5922 __func__); 5923 pr_warn("md: invalid array_size %llu > default size %llu\n", 5924 (unsigned long long)mddev->array_sectors / 2, 5925 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5926 err = -EINVAL; 5927 } 5928 if (err == 0 && pers->sync_request && 5929 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5930 struct bitmap *bitmap; 5931 5932 bitmap = md_bitmap_create(mddev, -1); 5933 if (IS_ERR(bitmap)) { 5934 err = PTR_ERR(bitmap); 5935 pr_warn("%s: failed to create bitmap (%d)\n", 5936 mdname(mddev), err); 5937 } else 5938 mddev->bitmap = bitmap; 5939 5940 } 5941 if (err) 5942 goto bitmap_abort; 5943 5944 if (mddev->bitmap_info.max_write_behind > 0) { 5945 bool create_pool = false; 5946 5947 rdev_for_each(rdev, mddev) { 5948 if (test_bit(WriteMostly, &rdev->flags) && 5949 rdev_init_serial(rdev)) 5950 create_pool = true; 5951 } 5952 if (create_pool && mddev->serial_info_pool == NULL) { 5953 mddev->serial_info_pool = 5954 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5955 sizeof(struct serial_info)); 5956 if (!mddev->serial_info_pool) { 5957 err = -ENOMEM; 5958 goto bitmap_abort; 5959 } 5960 } 5961 } 5962 5963 if (mddev->queue) { 5964 bool nonrot = true; 5965 5966 rdev_for_each(rdev, mddev) { 5967 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 5968 nonrot = false; 5969 break; 5970 } 5971 } 5972 if (mddev->degraded) 5973 nonrot = false; 5974 if (nonrot) 5975 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5976 else 5977 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5978 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 5979 5980 /* Set the NOWAIT flags if all underlying devices support it */ 5981 if (nowait) 5982 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 5983 } 5984 if (pers->sync_request) { 5985 if (mddev->kobj.sd && 5986 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5987 pr_warn("md: cannot register extra attributes for %s\n", 5988 mdname(mddev)); 5989 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5990 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 5991 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 5992 } else if (mddev->ro == MD_AUTO_READ) 5993 mddev->ro = MD_RDWR; 5994 5995 atomic_set(&mddev->max_corr_read_errors, 5996 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5997 mddev->safemode = 0; 5998 if (mddev_is_clustered(mddev)) 5999 mddev->safemode_delay = 0; 6000 else 6001 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6002 mddev->in_sync = 1; 6003 smp_wmb(); 6004 spin_lock(&mddev->lock); 6005 mddev->pers = pers; 6006 spin_unlock(&mddev->lock); 6007 rdev_for_each(rdev, mddev) 6008 if (rdev->raid_disk >= 0) 6009 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6010 6011 if (mddev->degraded && md_is_rdwr(mddev)) 6012 /* This ensures that recovering status is reported immediately 6013 * via sysfs - until a lack of spares is confirmed. 6014 */ 6015 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6016 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6017 6018 if (mddev->sb_flags) 6019 md_update_sb(mddev, 0); 6020 6021 md_new_event(); 6022 return 0; 6023 6024 bitmap_abort: 6025 mddev_detach(mddev); 6026 if (mddev->private) 6027 pers->free(mddev, mddev->private); 6028 mddev->private = NULL; 6029 module_put(pers->owner); 6030 md_bitmap_destroy(mddev); 6031 abort: 6032 bioset_exit(&mddev->sync_set); 6033 exit_bio_set: 6034 bioset_exit(&mddev->bio_set); 6035 exit_active_io: 6036 percpu_ref_exit(&mddev->active_io); 6037 return err; 6038 } 6039 EXPORT_SYMBOL_GPL(md_run); 6040 6041 int do_md_run(struct mddev *mddev) 6042 { 6043 int err; 6044 6045 set_bit(MD_NOT_READY, &mddev->flags); 6046 err = md_run(mddev); 6047 if (err) 6048 goto out; 6049 err = md_bitmap_load(mddev); 6050 if (err) { 6051 md_bitmap_destroy(mddev); 6052 goto out; 6053 } 6054 6055 if (mddev_is_clustered(mddev)) 6056 md_allow_write(mddev); 6057 6058 /* run start up tasks that require md_thread */ 6059 md_start(mddev); 6060 6061 md_wakeup_thread(mddev->thread); 6062 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6063 6064 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6065 clear_bit(MD_NOT_READY, &mddev->flags); 6066 mddev->changed = 1; 6067 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6068 sysfs_notify_dirent_safe(mddev->sysfs_state); 6069 sysfs_notify_dirent_safe(mddev->sysfs_action); 6070 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6071 out: 6072 clear_bit(MD_NOT_READY, &mddev->flags); 6073 return err; 6074 } 6075 6076 int md_start(struct mddev *mddev) 6077 { 6078 int ret = 0; 6079 6080 if (mddev->pers->start) { 6081 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6082 md_wakeup_thread(mddev->thread); 6083 ret = mddev->pers->start(mddev); 6084 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6085 md_wakeup_thread(mddev->sync_thread); 6086 } 6087 return ret; 6088 } 6089 EXPORT_SYMBOL_GPL(md_start); 6090 6091 static int restart_array(struct mddev *mddev) 6092 { 6093 struct gendisk *disk = mddev->gendisk; 6094 struct md_rdev *rdev; 6095 bool has_journal = false; 6096 bool has_readonly = false; 6097 6098 /* Complain if it has no devices */ 6099 if (list_empty(&mddev->disks)) 6100 return -ENXIO; 6101 if (!mddev->pers) 6102 return -EINVAL; 6103 if (md_is_rdwr(mddev)) 6104 return -EBUSY; 6105 6106 rcu_read_lock(); 6107 rdev_for_each_rcu(rdev, mddev) { 6108 if (test_bit(Journal, &rdev->flags) && 6109 !test_bit(Faulty, &rdev->flags)) 6110 has_journal = true; 6111 if (rdev_read_only(rdev)) 6112 has_readonly = true; 6113 } 6114 rcu_read_unlock(); 6115 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6116 /* Don't restart rw with journal missing/faulty */ 6117 return -EINVAL; 6118 if (has_readonly) 6119 return -EROFS; 6120 6121 mddev->safemode = 0; 6122 mddev->ro = MD_RDWR; 6123 set_disk_ro(disk, 0); 6124 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6125 /* Kick recovery or resync if necessary */ 6126 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6127 md_wakeup_thread(mddev->thread); 6128 md_wakeup_thread(mddev->sync_thread); 6129 sysfs_notify_dirent_safe(mddev->sysfs_state); 6130 return 0; 6131 } 6132 6133 static void md_clean(struct mddev *mddev) 6134 { 6135 mddev->array_sectors = 0; 6136 mddev->external_size = 0; 6137 mddev->dev_sectors = 0; 6138 mddev->raid_disks = 0; 6139 mddev->recovery_cp = 0; 6140 mddev->resync_min = 0; 6141 mddev->resync_max = MaxSector; 6142 mddev->reshape_position = MaxSector; 6143 mddev->external = 0; 6144 mddev->persistent = 0; 6145 mddev->level = LEVEL_NONE; 6146 mddev->clevel[0] = 0; 6147 mddev->flags = 0; 6148 mddev->sb_flags = 0; 6149 mddev->ro = MD_RDWR; 6150 mddev->metadata_type[0] = 0; 6151 mddev->chunk_sectors = 0; 6152 mddev->ctime = mddev->utime = 0; 6153 mddev->layout = 0; 6154 mddev->max_disks = 0; 6155 mddev->events = 0; 6156 mddev->can_decrease_events = 0; 6157 mddev->delta_disks = 0; 6158 mddev->reshape_backwards = 0; 6159 mddev->new_level = LEVEL_NONE; 6160 mddev->new_layout = 0; 6161 mddev->new_chunk_sectors = 0; 6162 mddev->curr_resync = MD_RESYNC_NONE; 6163 atomic64_set(&mddev->resync_mismatches, 0); 6164 mddev->suspend_lo = mddev->suspend_hi = 0; 6165 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6166 mddev->recovery = 0; 6167 mddev->in_sync = 0; 6168 mddev->changed = 0; 6169 mddev->degraded = 0; 6170 mddev->safemode = 0; 6171 mddev->private = NULL; 6172 mddev->cluster_info = NULL; 6173 mddev->bitmap_info.offset = 0; 6174 mddev->bitmap_info.default_offset = 0; 6175 mddev->bitmap_info.default_space = 0; 6176 mddev->bitmap_info.chunksize = 0; 6177 mddev->bitmap_info.daemon_sleep = 0; 6178 mddev->bitmap_info.max_write_behind = 0; 6179 mddev->bitmap_info.nodes = 0; 6180 } 6181 6182 static void __md_stop_writes(struct mddev *mddev) 6183 { 6184 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6185 if (work_pending(&mddev->del_work)) 6186 flush_workqueue(md_misc_wq); 6187 if (mddev->sync_thread) { 6188 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6189 md_unregister_thread(&mddev->sync_thread); 6190 md_reap_sync_thread(mddev); 6191 } 6192 6193 del_timer_sync(&mddev->safemode_timer); 6194 6195 if (mddev->pers && mddev->pers->quiesce) { 6196 mddev->pers->quiesce(mddev, 1); 6197 mddev->pers->quiesce(mddev, 0); 6198 } 6199 md_bitmap_flush(mddev); 6200 6201 if (md_is_rdwr(mddev) && 6202 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6203 mddev->sb_flags)) { 6204 /* mark array as shutdown cleanly */ 6205 if (!mddev_is_clustered(mddev)) 6206 mddev->in_sync = 1; 6207 md_update_sb(mddev, 1); 6208 } 6209 /* disable policy to guarantee rdevs free resources for serialization */ 6210 mddev->serialize_policy = 0; 6211 mddev_destroy_serial_pool(mddev, NULL, true); 6212 } 6213 6214 void md_stop_writes(struct mddev *mddev) 6215 { 6216 mddev_lock_nointr(mddev); 6217 __md_stop_writes(mddev); 6218 mddev_unlock(mddev); 6219 } 6220 EXPORT_SYMBOL_GPL(md_stop_writes); 6221 6222 static void mddev_detach(struct mddev *mddev) 6223 { 6224 md_bitmap_wait_behind_writes(mddev); 6225 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6226 mddev->pers->quiesce(mddev, 1); 6227 mddev->pers->quiesce(mddev, 0); 6228 } 6229 md_unregister_thread(&mddev->thread); 6230 if (mddev->queue) 6231 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6232 } 6233 6234 static void __md_stop(struct mddev *mddev) 6235 { 6236 struct md_personality *pers = mddev->pers; 6237 md_bitmap_destroy(mddev); 6238 mddev_detach(mddev); 6239 /* Ensure ->event_work is done */ 6240 if (mddev->event_work.func) 6241 flush_workqueue(md_misc_wq); 6242 spin_lock(&mddev->lock); 6243 mddev->pers = NULL; 6244 spin_unlock(&mddev->lock); 6245 if (mddev->private) 6246 pers->free(mddev, mddev->private); 6247 mddev->private = NULL; 6248 if (pers->sync_request && mddev->to_remove == NULL) 6249 mddev->to_remove = &md_redundancy_group; 6250 module_put(pers->owner); 6251 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6252 6253 percpu_ref_exit(&mddev->active_io); 6254 bioset_exit(&mddev->bio_set); 6255 bioset_exit(&mddev->sync_set); 6256 } 6257 6258 void md_stop(struct mddev *mddev) 6259 { 6260 /* stop the array and free an attached data structures. 6261 * This is called from dm-raid 6262 */ 6263 __md_stop_writes(mddev); 6264 __md_stop(mddev); 6265 percpu_ref_exit(&mddev->writes_pending); 6266 } 6267 6268 EXPORT_SYMBOL_GPL(md_stop); 6269 6270 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6271 { 6272 int err = 0; 6273 int did_freeze = 0; 6274 6275 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6276 did_freeze = 1; 6277 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6278 md_wakeup_thread(mddev->thread); 6279 } 6280 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6281 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6282 6283 /* 6284 * Thread might be blocked waiting for metadata update which will now 6285 * never happen 6286 */ 6287 md_wakeup_thread_directly(mddev->sync_thread); 6288 6289 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6290 return -EBUSY; 6291 mddev_unlock(mddev); 6292 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6293 &mddev->recovery)); 6294 wait_event(mddev->sb_wait, 6295 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6296 mddev_lock_nointr(mddev); 6297 6298 mutex_lock(&mddev->open_mutex); 6299 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6300 mddev->sync_thread || 6301 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6302 pr_warn("md: %s still in use.\n",mdname(mddev)); 6303 if (did_freeze) { 6304 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6305 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6306 md_wakeup_thread(mddev->thread); 6307 } 6308 err = -EBUSY; 6309 goto out; 6310 } 6311 if (mddev->pers) { 6312 __md_stop_writes(mddev); 6313 6314 err = -ENXIO; 6315 if (mddev->ro == MD_RDONLY) 6316 goto out; 6317 mddev->ro = MD_RDONLY; 6318 set_disk_ro(mddev->gendisk, 1); 6319 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6320 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6321 md_wakeup_thread(mddev->thread); 6322 sysfs_notify_dirent_safe(mddev->sysfs_state); 6323 err = 0; 6324 } 6325 out: 6326 mutex_unlock(&mddev->open_mutex); 6327 return err; 6328 } 6329 6330 /* mode: 6331 * 0 - completely stop and dis-assemble array 6332 * 2 - stop but do not disassemble array 6333 */ 6334 static int do_md_stop(struct mddev *mddev, int mode, 6335 struct block_device *bdev) 6336 { 6337 struct gendisk *disk = mddev->gendisk; 6338 struct md_rdev *rdev; 6339 int did_freeze = 0; 6340 6341 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6342 did_freeze = 1; 6343 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6344 md_wakeup_thread(mddev->thread); 6345 } 6346 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6347 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6348 6349 /* 6350 * Thread might be blocked waiting for metadata update which will now 6351 * never happen 6352 */ 6353 md_wakeup_thread_directly(mddev->sync_thread); 6354 6355 mddev_unlock(mddev); 6356 wait_event(resync_wait, (mddev->sync_thread == NULL && 6357 !test_bit(MD_RECOVERY_RUNNING, 6358 &mddev->recovery))); 6359 mddev_lock_nointr(mddev); 6360 6361 mutex_lock(&mddev->open_mutex); 6362 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6363 mddev->sysfs_active || 6364 mddev->sync_thread || 6365 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6366 pr_warn("md: %s still in use.\n",mdname(mddev)); 6367 mutex_unlock(&mddev->open_mutex); 6368 if (did_freeze) { 6369 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6370 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6371 md_wakeup_thread(mddev->thread); 6372 } 6373 return -EBUSY; 6374 } 6375 if (mddev->pers) { 6376 if (!md_is_rdwr(mddev)) 6377 set_disk_ro(disk, 0); 6378 6379 __md_stop_writes(mddev); 6380 __md_stop(mddev); 6381 6382 /* tell userspace to handle 'inactive' */ 6383 sysfs_notify_dirent_safe(mddev->sysfs_state); 6384 6385 rdev_for_each(rdev, mddev) 6386 if (rdev->raid_disk >= 0) 6387 sysfs_unlink_rdev(mddev, rdev); 6388 6389 set_capacity_and_notify(disk, 0); 6390 mutex_unlock(&mddev->open_mutex); 6391 mddev->changed = 1; 6392 6393 if (!md_is_rdwr(mddev)) 6394 mddev->ro = MD_RDWR; 6395 } else 6396 mutex_unlock(&mddev->open_mutex); 6397 /* 6398 * Free resources if final stop 6399 */ 6400 if (mode == 0) { 6401 pr_info("md: %s stopped.\n", mdname(mddev)); 6402 6403 if (mddev->bitmap_info.file) { 6404 struct file *f = mddev->bitmap_info.file; 6405 spin_lock(&mddev->lock); 6406 mddev->bitmap_info.file = NULL; 6407 spin_unlock(&mddev->lock); 6408 fput(f); 6409 } 6410 mddev->bitmap_info.offset = 0; 6411 6412 export_array(mddev); 6413 6414 md_clean(mddev); 6415 if (mddev->hold_active == UNTIL_STOP) 6416 mddev->hold_active = 0; 6417 } 6418 md_new_event(); 6419 sysfs_notify_dirent_safe(mddev->sysfs_state); 6420 return 0; 6421 } 6422 6423 #ifndef MODULE 6424 static void autorun_array(struct mddev *mddev) 6425 { 6426 struct md_rdev *rdev; 6427 int err; 6428 6429 if (list_empty(&mddev->disks)) 6430 return; 6431 6432 pr_info("md: running: "); 6433 6434 rdev_for_each(rdev, mddev) { 6435 pr_cont("<%pg>", rdev->bdev); 6436 } 6437 pr_cont("\n"); 6438 6439 err = do_md_run(mddev); 6440 if (err) { 6441 pr_warn("md: do_md_run() returned %d\n", err); 6442 do_md_stop(mddev, 0, NULL); 6443 } 6444 } 6445 6446 /* 6447 * lets try to run arrays based on all disks that have arrived 6448 * until now. (those are in pending_raid_disks) 6449 * 6450 * the method: pick the first pending disk, collect all disks with 6451 * the same UUID, remove all from the pending list and put them into 6452 * the 'same_array' list. Then order this list based on superblock 6453 * update time (freshest comes first), kick out 'old' disks and 6454 * compare superblocks. If everything's fine then run it. 6455 * 6456 * If "unit" is allocated, then bump its reference count 6457 */ 6458 static void autorun_devices(int part) 6459 { 6460 struct md_rdev *rdev0, *rdev, *tmp; 6461 struct mddev *mddev; 6462 6463 pr_info("md: autorun ...\n"); 6464 while (!list_empty(&pending_raid_disks)) { 6465 int unit; 6466 dev_t dev; 6467 LIST_HEAD(candidates); 6468 rdev0 = list_entry(pending_raid_disks.next, 6469 struct md_rdev, same_set); 6470 6471 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6472 INIT_LIST_HEAD(&candidates); 6473 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6474 if (super_90_load(rdev, rdev0, 0) >= 0) { 6475 pr_debug("md: adding %pg ...\n", 6476 rdev->bdev); 6477 list_move(&rdev->same_set, &candidates); 6478 } 6479 /* 6480 * now we have a set of devices, with all of them having 6481 * mostly sane superblocks. It's time to allocate the 6482 * mddev. 6483 */ 6484 if (part) { 6485 dev = MKDEV(mdp_major, 6486 rdev0->preferred_minor << MdpMinorShift); 6487 unit = MINOR(dev) >> MdpMinorShift; 6488 } else { 6489 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6490 unit = MINOR(dev); 6491 } 6492 if (rdev0->preferred_minor != unit) { 6493 pr_warn("md: unit number in %pg is bad: %d\n", 6494 rdev0->bdev, rdev0->preferred_minor); 6495 break; 6496 } 6497 6498 mddev = md_alloc(dev, NULL); 6499 if (IS_ERR(mddev)) 6500 break; 6501 6502 if (mddev_lock(mddev)) 6503 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6504 else if (mddev->raid_disks || mddev->major_version 6505 || !list_empty(&mddev->disks)) { 6506 pr_warn("md: %s already running, cannot run %pg\n", 6507 mdname(mddev), rdev0->bdev); 6508 mddev_unlock(mddev); 6509 } else { 6510 pr_debug("md: created %s\n", mdname(mddev)); 6511 mddev->persistent = 1; 6512 rdev_for_each_list(rdev, tmp, &candidates) { 6513 list_del_init(&rdev->same_set); 6514 if (bind_rdev_to_array(rdev, mddev)) 6515 export_rdev(rdev, mddev); 6516 } 6517 autorun_array(mddev); 6518 mddev_unlock(mddev); 6519 } 6520 /* on success, candidates will be empty, on error 6521 * it won't... 6522 */ 6523 rdev_for_each_list(rdev, tmp, &candidates) { 6524 list_del_init(&rdev->same_set); 6525 export_rdev(rdev, mddev); 6526 } 6527 mddev_put(mddev); 6528 } 6529 pr_info("md: ... autorun DONE.\n"); 6530 } 6531 #endif /* !MODULE */ 6532 6533 static int get_version(void __user *arg) 6534 { 6535 mdu_version_t ver; 6536 6537 ver.major = MD_MAJOR_VERSION; 6538 ver.minor = MD_MINOR_VERSION; 6539 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6540 6541 if (copy_to_user(arg, &ver, sizeof(ver))) 6542 return -EFAULT; 6543 6544 return 0; 6545 } 6546 6547 static int get_array_info(struct mddev *mddev, void __user *arg) 6548 { 6549 mdu_array_info_t info; 6550 int nr,working,insync,failed,spare; 6551 struct md_rdev *rdev; 6552 6553 nr = working = insync = failed = spare = 0; 6554 rcu_read_lock(); 6555 rdev_for_each_rcu(rdev, mddev) { 6556 nr++; 6557 if (test_bit(Faulty, &rdev->flags)) 6558 failed++; 6559 else { 6560 working++; 6561 if (test_bit(In_sync, &rdev->flags)) 6562 insync++; 6563 else if (test_bit(Journal, &rdev->flags)) 6564 /* TODO: add journal count to md_u.h */ 6565 ; 6566 else 6567 spare++; 6568 } 6569 } 6570 rcu_read_unlock(); 6571 6572 info.major_version = mddev->major_version; 6573 info.minor_version = mddev->minor_version; 6574 info.patch_version = MD_PATCHLEVEL_VERSION; 6575 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6576 info.level = mddev->level; 6577 info.size = mddev->dev_sectors / 2; 6578 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6579 info.size = -1; 6580 info.nr_disks = nr; 6581 info.raid_disks = mddev->raid_disks; 6582 info.md_minor = mddev->md_minor; 6583 info.not_persistent= !mddev->persistent; 6584 6585 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6586 info.state = 0; 6587 if (mddev->in_sync) 6588 info.state = (1<<MD_SB_CLEAN); 6589 if (mddev->bitmap && mddev->bitmap_info.offset) 6590 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6591 if (mddev_is_clustered(mddev)) 6592 info.state |= (1<<MD_SB_CLUSTERED); 6593 info.active_disks = insync; 6594 info.working_disks = working; 6595 info.failed_disks = failed; 6596 info.spare_disks = spare; 6597 6598 info.layout = mddev->layout; 6599 info.chunk_size = mddev->chunk_sectors << 9; 6600 6601 if (copy_to_user(arg, &info, sizeof(info))) 6602 return -EFAULT; 6603 6604 return 0; 6605 } 6606 6607 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6608 { 6609 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6610 char *ptr; 6611 int err; 6612 6613 file = kzalloc(sizeof(*file), GFP_NOIO); 6614 if (!file) 6615 return -ENOMEM; 6616 6617 err = 0; 6618 spin_lock(&mddev->lock); 6619 /* bitmap enabled */ 6620 if (mddev->bitmap_info.file) { 6621 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6622 sizeof(file->pathname)); 6623 if (IS_ERR(ptr)) 6624 err = PTR_ERR(ptr); 6625 else 6626 memmove(file->pathname, ptr, 6627 sizeof(file->pathname)-(ptr-file->pathname)); 6628 } 6629 spin_unlock(&mddev->lock); 6630 6631 if (err == 0 && 6632 copy_to_user(arg, file, sizeof(*file))) 6633 err = -EFAULT; 6634 6635 kfree(file); 6636 return err; 6637 } 6638 6639 static int get_disk_info(struct mddev *mddev, void __user * arg) 6640 { 6641 mdu_disk_info_t info; 6642 struct md_rdev *rdev; 6643 6644 if (copy_from_user(&info, arg, sizeof(info))) 6645 return -EFAULT; 6646 6647 rcu_read_lock(); 6648 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6649 if (rdev) { 6650 info.major = MAJOR(rdev->bdev->bd_dev); 6651 info.minor = MINOR(rdev->bdev->bd_dev); 6652 info.raid_disk = rdev->raid_disk; 6653 info.state = 0; 6654 if (test_bit(Faulty, &rdev->flags)) 6655 info.state |= (1<<MD_DISK_FAULTY); 6656 else if (test_bit(In_sync, &rdev->flags)) { 6657 info.state |= (1<<MD_DISK_ACTIVE); 6658 info.state |= (1<<MD_DISK_SYNC); 6659 } 6660 if (test_bit(Journal, &rdev->flags)) 6661 info.state |= (1<<MD_DISK_JOURNAL); 6662 if (test_bit(WriteMostly, &rdev->flags)) 6663 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6664 if (test_bit(FailFast, &rdev->flags)) 6665 info.state |= (1<<MD_DISK_FAILFAST); 6666 } else { 6667 info.major = info.minor = 0; 6668 info.raid_disk = -1; 6669 info.state = (1<<MD_DISK_REMOVED); 6670 } 6671 rcu_read_unlock(); 6672 6673 if (copy_to_user(arg, &info, sizeof(info))) 6674 return -EFAULT; 6675 6676 return 0; 6677 } 6678 6679 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6680 { 6681 struct md_rdev *rdev; 6682 dev_t dev = MKDEV(info->major,info->minor); 6683 6684 if (mddev_is_clustered(mddev) && 6685 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6686 pr_warn("%s: Cannot add to clustered mddev.\n", 6687 mdname(mddev)); 6688 return -EINVAL; 6689 } 6690 6691 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6692 return -EOVERFLOW; 6693 6694 if (!mddev->raid_disks) { 6695 int err; 6696 /* expecting a device which has a superblock */ 6697 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6698 if (IS_ERR(rdev)) { 6699 pr_warn("md: md_import_device returned %ld\n", 6700 PTR_ERR(rdev)); 6701 return PTR_ERR(rdev); 6702 } 6703 if (!list_empty(&mddev->disks)) { 6704 struct md_rdev *rdev0 6705 = list_entry(mddev->disks.next, 6706 struct md_rdev, same_set); 6707 err = super_types[mddev->major_version] 6708 .load_super(rdev, rdev0, mddev->minor_version); 6709 if (err < 0) { 6710 pr_warn("md: %pg has different UUID to %pg\n", 6711 rdev->bdev, 6712 rdev0->bdev); 6713 export_rdev(rdev, mddev); 6714 return -EINVAL; 6715 } 6716 } 6717 err = bind_rdev_to_array(rdev, mddev); 6718 if (err) 6719 export_rdev(rdev, mddev); 6720 return err; 6721 } 6722 6723 /* 6724 * md_add_new_disk can be used once the array is assembled 6725 * to add "hot spares". They must already have a superblock 6726 * written 6727 */ 6728 if (mddev->pers) { 6729 int err; 6730 if (!mddev->pers->hot_add_disk) { 6731 pr_warn("%s: personality does not support diskops!\n", 6732 mdname(mddev)); 6733 return -EINVAL; 6734 } 6735 if (mddev->persistent) 6736 rdev = md_import_device(dev, mddev->major_version, 6737 mddev->minor_version); 6738 else 6739 rdev = md_import_device(dev, -1, -1); 6740 if (IS_ERR(rdev)) { 6741 pr_warn("md: md_import_device returned %ld\n", 6742 PTR_ERR(rdev)); 6743 return PTR_ERR(rdev); 6744 } 6745 /* set saved_raid_disk if appropriate */ 6746 if (!mddev->persistent) { 6747 if (info->state & (1<<MD_DISK_SYNC) && 6748 info->raid_disk < mddev->raid_disks) { 6749 rdev->raid_disk = info->raid_disk; 6750 clear_bit(Bitmap_sync, &rdev->flags); 6751 } else 6752 rdev->raid_disk = -1; 6753 rdev->saved_raid_disk = rdev->raid_disk; 6754 } else 6755 super_types[mddev->major_version]. 6756 validate_super(mddev, rdev); 6757 if ((info->state & (1<<MD_DISK_SYNC)) && 6758 rdev->raid_disk != info->raid_disk) { 6759 /* This was a hot-add request, but events doesn't 6760 * match, so reject it. 6761 */ 6762 export_rdev(rdev, mddev); 6763 return -EINVAL; 6764 } 6765 6766 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6767 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6768 set_bit(WriteMostly, &rdev->flags); 6769 else 6770 clear_bit(WriteMostly, &rdev->flags); 6771 if (info->state & (1<<MD_DISK_FAILFAST)) 6772 set_bit(FailFast, &rdev->flags); 6773 else 6774 clear_bit(FailFast, &rdev->flags); 6775 6776 if (info->state & (1<<MD_DISK_JOURNAL)) { 6777 struct md_rdev *rdev2; 6778 bool has_journal = false; 6779 6780 /* make sure no existing journal disk */ 6781 rdev_for_each(rdev2, mddev) { 6782 if (test_bit(Journal, &rdev2->flags)) { 6783 has_journal = true; 6784 break; 6785 } 6786 } 6787 if (has_journal || mddev->bitmap) { 6788 export_rdev(rdev, mddev); 6789 return -EBUSY; 6790 } 6791 set_bit(Journal, &rdev->flags); 6792 } 6793 /* 6794 * check whether the device shows up in other nodes 6795 */ 6796 if (mddev_is_clustered(mddev)) { 6797 if (info->state & (1 << MD_DISK_CANDIDATE)) 6798 set_bit(Candidate, &rdev->flags); 6799 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6800 /* --add initiated by this node */ 6801 err = md_cluster_ops->add_new_disk(mddev, rdev); 6802 if (err) { 6803 export_rdev(rdev, mddev); 6804 return err; 6805 } 6806 } 6807 } 6808 6809 rdev->raid_disk = -1; 6810 err = bind_rdev_to_array(rdev, mddev); 6811 6812 if (err) 6813 export_rdev(rdev, mddev); 6814 6815 if (mddev_is_clustered(mddev)) { 6816 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6817 if (!err) { 6818 err = md_cluster_ops->new_disk_ack(mddev, 6819 err == 0); 6820 if (err) 6821 md_kick_rdev_from_array(rdev); 6822 } 6823 } else { 6824 if (err) 6825 md_cluster_ops->add_new_disk_cancel(mddev); 6826 else 6827 err = add_bound_rdev(rdev); 6828 } 6829 6830 } else if (!err) 6831 err = add_bound_rdev(rdev); 6832 6833 return err; 6834 } 6835 6836 /* otherwise, md_add_new_disk is only allowed 6837 * for major_version==0 superblocks 6838 */ 6839 if (mddev->major_version != 0) { 6840 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6841 return -EINVAL; 6842 } 6843 6844 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6845 int err; 6846 rdev = md_import_device(dev, -1, 0); 6847 if (IS_ERR(rdev)) { 6848 pr_warn("md: error, md_import_device() returned %ld\n", 6849 PTR_ERR(rdev)); 6850 return PTR_ERR(rdev); 6851 } 6852 rdev->desc_nr = info->number; 6853 if (info->raid_disk < mddev->raid_disks) 6854 rdev->raid_disk = info->raid_disk; 6855 else 6856 rdev->raid_disk = -1; 6857 6858 if (rdev->raid_disk < mddev->raid_disks) 6859 if (info->state & (1<<MD_DISK_SYNC)) 6860 set_bit(In_sync, &rdev->flags); 6861 6862 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6863 set_bit(WriteMostly, &rdev->flags); 6864 if (info->state & (1<<MD_DISK_FAILFAST)) 6865 set_bit(FailFast, &rdev->flags); 6866 6867 if (!mddev->persistent) { 6868 pr_debug("md: nonpersistent superblock ...\n"); 6869 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6870 } else 6871 rdev->sb_start = calc_dev_sboffset(rdev); 6872 rdev->sectors = rdev->sb_start; 6873 6874 err = bind_rdev_to_array(rdev, mddev); 6875 if (err) { 6876 export_rdev(rdev, mddev); 6877 return err; 6878 } 6879 } 6880 6881 return 0; 6882 } 6883 6884 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6885 { 6886 struct md_rdev *rdev; 6887 6888 if (!mddev->pers) 6889 return -ENODEV; 6890 6891 rdev = find_rdev(mddev, dev); 6892 if (!rdev) 6893 return -ENXIO; 6894 6895 if (rdev->raid_disk < 0) 6896 goto kick_rdev; 6897 6898 clear_bit(Blocked, &rdev->flags); 6899 remove_and_add_spares(mddev, rdev); 6900 6901 if (rdev->raid_disk >= 0) 6902 goto busy; 6903 6904 kick_rdev: 6905 if (mddev_is_clustered(mddev)) { 6906 if (md_cluster_ops->remove_disk(mddev, rdev)) 6907 goto busy; 6908 } 6909 6910 md_kick_rdev_from_array(rdev); 6911 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6912 if (mddev->thread) 6913 md_wakeup_thread(mddev->thread); 6914 else 6915 md_update_sb(mddev, 1); 6916 md_new_event(); 6917 6918 return 0; 6919 busy: 6920 pr_debug("md: cannot remove active disk %pg from %s ...\n", 6921 rdev->bdev, mdname(mddev)); 6922 return -EBUSY; 6923 } 6924 6925 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6926 { 6927 int err; 6928 struct md_rdev *rdev; 6929 6930 if (!mddev->pers) 6931 return -ENODEV; 6932 6933 if (mddev->major_version != 0) { 6934 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6935 mdname(mddev)); 6936 return -EINVAL; 6937 } 6938 if (!mddev->pers->hot_add_disk) { 6939 pr_warn("%s: personality does not support diskops!\n", 6940 mdname(mddev)); 6941 return -EINVAL; 6942 } 6943 6944 rdev = md_import_device(dev, -1, 0); 6945 if (IS_ERR(rdev)) { 6946 pr_warn("md: error, md_import_device() returned %ld\n", 6947 PTR_ERR(rdev)); 6948 return -EINVAL; 6949 } 6950 6951 if (mddev->persistent) 6952 rdev->sb_start = calc_dev_sboffset(rdev); 6953 else 6954 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6955 6956 rdev->sectors = rdev->sb_start; 6957 6958 if (test_bit(Faulty, &rdev->flags)) { 6959 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 6960 rdev->bdev, mdname(mddev)); 6961 err = -EINVAL; 6962 goto abort_export; 6963 } 6964 6965 clear_bit(In_sync, &rdev->flags); 6966 rdev->desc_nr = -1; 6967 rdev->saved_raid_disk = -1; 6968 err = bind_rdev_to_array(rdev, mddev); 6969 if (err) 6970 goto abort_export; 6971 6972 /* 6973 * The rest should better be atomic, we can have disk failures 6974 * noticed in interrupt contexts ... 6975 */ 6976 6977 rdev->raid_disk = -1; 6978 6979 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6980 if (!mddev->thread) 6981 md_update_sb(mddev, 1); 6982 /* 6983 * If the new disk does not support REQ_NOWAIT, 6984 * disable on the whole MD. 6985 */ 6986 if (!bdev_nowait(rdev->bdev)) { 6987 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 6988 mdname(mddev), rdev->bdev); 6989 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 6990 } 6991 /* 6992 * Kick recovery, maybe this spare has to be added to the 6993 * array immediately. 6994 */ 6995 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6996 md_wakeup_thread(mddev->thread); 6997 md_new_event(); 6998 return 0; 6999 7000 abort_export: 7001 export_rdev(rdev, mddev); 7002 return err; 7003 } 7004 7005 static int set_bitmap_file(struct mddev *mddev, int fd) 7006 { 7007 int err = 0; 7008 7009 if (mddev->pers) { 7010 if (!mddev->pers->quiesce || !mddev->thread) 7011 return -EBUSY; 7012 if (mddev->recovery || mddev->sync_thread) 7013 return -EBUSY; 7014 /* we should be able to change the bitmap.. */ 7015 } 7016 7017 if (fd >= 0) { 7018 struct inode *inode; 7019 struct file *f; 7020 7021 if (mddev->bitmap || mddev->bitmap_info.file) 7022 return -EEXIST; /* cannot add when bitmap is present */ 7023 f = fget(fd); 7024 7025 if (f == NULL) { 7026 pr_warn("%s: error: failed to get bitmap file\n", 7027 mdname(mddev)); 7028 return -EBADF; 7029 } 7030 7031 inode = f->f_mapping->host; 7032 if (!S_ISREG(inode->i_mode)) { 7033 pr_warn("%s: error: bitmap file must be a regular file\n", 7034 mdname(mddev)); 7035 err = -EBADF; 7036 } else if (!(f->f_mode & FMODE_WRITE)) { 7037 pr_warn("%s: error: bitmap file must open for write\n", 7038 mdname(mddev)); 7039 err = -EBADF; 7040 } else if (atomic_read(&inode->i_writecount) != 1) { 7041 pr_warn("%s: error: bitmap file is already in use\n", 7042 mdname(mddev)); 7043 err = -EBUSY; 7044 } 7045 if (err) { 7046 fput(f); 7047 return err; 7048 } 7049 mddev->bitmap_info.file = f; 7050 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7051 } else if (mddev->bitmap == NULL) 7052 return -ENOENT; /* cannot remove what isn't there */ 7053 err = 0; 7054 if (mddev->pers) { 7055 if (fd >= 0) { 7056 struct bitmap *bitmap; 7057 7058 bitmap = md_bitmap_create(mddev, -1); 7059 mddev_suspend(mddev); 7060 if (!IS_ERR(bitmap)) { 7061 mddev->bitmap = bitmap; 7062 err = md_bitmap_load(mddev); 7063 } else 7064 err = PTR_ERR(bitmap); 7065 if (err) { 7066 md_bitmap_destroy(mddev); 7067 fd = -1; 7068 } 7069 mddev_resume(mddev); 7070 } else if (fd < 0) { 7071 mddev_suspend(mddev); 7072 md_bitmap_destroy(mddev); 7073 mddev_resume(mddev); 7074 } 7075 } 7076 if (fd < 0) { 7077 struct file *f = mddev->bitmap_info.file; 7078 if (f) { 7079 spin_lock(&mddev->lock); 7080 mddev->bitmap_info.file = NULL; 7081 spin_unlock(&mddev->lock); 7082 fput(f); 7083 } 7084 } 7085 7086 return err; 7087 } 7088 7089 /* 7090 * md_set_array_info is used two different ways 7091 * The original usage is when creating a new array. 7092 * In this usage, raid_disks is > 0 and it together with 7093 * level, size, not_persistent,layout,chunksize determine the 7094 * shape of the array. 7095 * This will always create an array with a type-0.90.0 superblock. 7096 * The newer usage is when assembling an array. 7097 * In this case raid_disks will be 0, and the major_version field is 7098 * use to determine which style super-blocks are to be found on the devices. 7099 * The minor and patch _version numbers are also kept incase the 7100 * super_block handler wishes to interpret them. 7101 */ 7102 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7103 { 7104 if (info->raid_disks == 0) { 7105 /* just setting version number for superblock loading */ 7106 if (info->major_version < 0 || 7107 info->major_version >= ARRAY_SIZE(super_types) || 7108 super_types[info->major_version].name == NULL) { 7109 /* maybe try to auto-load a module? */ 7110 pr_warn("md: superblock version %d not known\n", 7111 info->major_version); 7112 return -EINVAL; 7113 } 7114 mddev->major_version = info->major_version; 7115 mddev->minor_version = info->minor_version; 7116 mddev->patch_version = info->patch_version; 7117 mddev->persistent = !info->not_persistent; 7118 /* ensure mddev_put doesn't delete this now that there 7119 * is some minimal configuration. 7120 */ 7121 mddev->ctime = ktime_get_real_seconds(); 7122 return 0; 7123 } 7124 mddev->major_version = MD_MAJOR_VERSION; 7125 mddev->minor_version = MD_MINOR_VERSION; 7126 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7127 mddev->ctime = ktime_get_real_seconds(); 7128 7129 mddev->level = info->level; 7130 mddev->clevel[0] = 0; 7131 mddev->dev_sectors = 2 * (sector_t)info->size; 7132 mddev->raid_disks = info->raid_disks; 7133 /* don't set md_minor, it is determined by which /dev/md* was 7134 * openned 7135 */ 7136 if (info->state & (1<<MD_SB_CLEAN)) 7137 mddev->recovery_cp = MaxSector; 7138 else 7139 mddev->recovery_cp = 0; 7140 mddev->persistent = ! info->not_persistent; 7141 mddev->external = 0; 7142 7143 mddev->layout = info->layout; 7144 if (mddev->level == 0) 7145 /* Cannot trust RAID0 layout info here */ 7146 mddev->layout = -1; 7147 mddev->chunk_sectors = info->chunk_size >> 9; 7148 7149 if (mddev->persistent) { 7150 mddev->max_disks = MD_SB_DISKS; 7151 mddev->flags = 0; 7152 mddev->sb_flags = 0; 7153 } 7154 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7155 7156 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7157 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7158 mddev->bitmap_info.offset = 0; 7159 7160 mddev->reshape_position = MaxSector; 7161 7162 /* 7163 * Generate a 128 bit UUID 7164 */ 7165 get_random_bytes(mddev->uuid, 16); 7166 7167 mddev->new_level = mddev->level; 7168 mddev->new_chunk_sectors = mddev->chunk_sectors; 7169 mddev->new_layout = mddev->layout; 7170 mddev->delta_disks = 0; 7171 mddev->reshape_backwards = 0; 7172 7173 return 0; 7174 } 7175 7176 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7177 { 7178 lockdep_assert_held(&mddev->reconfig_mutex); 7179 7180 if (mddev->external_size) 7181 return; 7182 7183 mddev->array_sectors = array_sectors; 7184 } 7185 EXPORT_SYMBOL(md_set_array_sectors); 7186 7187 static int update_size(struct mddev *mddev, sector_t num_sectors) 7188 { 7189 struct md_rdev *rdev; 7190 int rv; 7191 int fit = (num_sectors == 0); 7192 sector_t old_dev_sectors = mddev->dev_sectors; 7193 7194 if (mddev->pers->resize == NULL) 7195 return -EINVAL; 7196 /* The "num_sectors" is the number of sectors of each device that 7197 * is used. This can only make sense for arrays with redundancy. 7198 * linear and raid0 always use whatever space is available. We can only 7199 * consider changing this number if no resync or reconstruction is 7200 * happening, and if the new size is acceptable. It must fit before the 7201 * sb_start or, if that is <data_offset, it must fit before the size 7202 * of each device. If num_sectors is zero, we find the largest size 7203 * that fits. 7204 */ 7205 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7206 mddev->sync_thread) 7207 return -EBUSY; 7208 if (!md_is_rdwr(mddev)) 7209 return -EROFS; 7210 7211 rdev_for_each(rdev, mddev) { 7212 sector_t avail = rdev->sectors; 7213 7214 if (fit && (num_sectors == 0 || num_sectors > avail)) 7215 num_sectors = avail; 7216 if (avail < num_sectors) 7217 return -ENOSPC; 7218 } 7219 rv = mddev->pers->resize(mddev, num_sectors); 7220 if (!rv) { 7221 if (mddev_is_clustered(mddev)) 7222 md_cluster_ops->update_size(mddev, old_dev_sectors); 7223 else if (mddev->queue) { 7224 set_capacity_and_notify(mddev->gendisk, 7225 mddev->array_sectors); 7226 } 7227 } 7228 return rv; 7229 } 7230 7231 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7232 { 7233 int rv; 7234 struct md_rdev *rdev; 7235 /* change the number of raid disks */ 7236 if (mddev->pers->check_reshape == NULL) 7237 return -EINVAL; 7238 if (!md_is_rdwr(mddev)) 7239 return -EROFS; 7240 if (raid_disks <= 0 || 7241 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7242 return -EINVAL; 7243 if (mddev->sync_thread || 7244 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7245 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7246 mddev->reshape_position != MaxSector) 7247 return -EBUSY; 7248 7249 rdev_for_each(rdev, mddev) { 7250 if (mddev->raid_disks < raid_disks && 7251 rdev->data_offset < rdev->new_data_offset) 7252 return -EINVAL; 7253 if (mddev->raid_disks > raid_disks && 7254 rdev->data_offset > rdev->new_data_offset) 7255 return -EINVAL; 7256 } 7257 7258 mddev->delta_disks = raid_disks - mddev->raid_disks; 7259 if (mddev->delta_disks < 0) 7260 mddev->reshape_backwards = 1; 7261 else if (mddev->delta_disks > 0) 7262 mddev->reshape_backwards = 0; 7263 7264 rv = mddev->pers->check_reshape(mddev); 7265 if (rv < 0) { 7266 mddev->delta_disks = 0; 7267 mddev->reshape_backwards = 0; 7268 } 7269 return rv; 7270 } 7271 7272 /* 7273 * update_array_info is used to change the configuration of an 7274 * on-line array. 7275 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7276 * fields in the info are checked against the array. 7277 * Any differences that cannot be handled will cause an error. 7278 * Normally, only one change can be managed at a time. 7279 */ 7280 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7281 { 7282 int rv = 0; 7283 int cnt = 0; 7284 int state = 0; 7285 7286 /* calculate expected state,ignoring low bits */ 7287 if (mddev->bitmap && mddev->bitmap_info.offset) 7288 state |= (1 << MD_SB_BITMAP_PRESENT); 7289 7290 if (mddev->major_version != info->major_version || 7291 mddev->minor_version != info->minor_version || 7292 /* mddev->patch_version != info->patch_version || */ 7293 mddev->ctime != info->ctime || 7294 mddev->level != info->level || 7295 /* mddev->layout != info->layout || */ 7296 mddev->persistent != !info->not_persistent || 7297 mddev->chunk_sectors != info->chunk_size >> 9 || 7298 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7299 ((state^info->state) & 0xfffffe00) 7300 ) 7301 return -EINVAL; 7302 /* Check there is only one change */ 7303 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7304 cnt++; 7305 if (mddev->raid_disks != info->raid_disks) 7306 cnt++; 7307 if (mddev->layout != info->layout) 7308 cnt++; 7309 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7310 cnt++; 7311 if (cnt == 0) 7312 return 0; 7313 if (cnt > 1) 7314 return -EINVAL; 7315 7316 if (mddev->layout != info->layout) { 7317 /* Change layout 7318 * we don't need to do anything at the md level, the 7319 * personality will take care of it all. 7320 */ 7321 if (mddev->pers->check_reshape == NULL) 7322 return -EINVAL; 7323 else { 7324 mddev->new_layout = info->layout; 7325 rv = mddev->pers->check_reshape(mddev); 7326 if (rv) 7327 mddev->new_layout = mddev->layout; 7328 return rv; 7329 } 7330 } 7331 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7332 rv = update_size(mddev, (sector_t)info->size * 2); 7333 7334 if (mddev->raid_disks != info->raid_disks) 7335 rv = update_raid_disks(mddev, info->raid_disks); 7336 7337 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7338 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7339 rv = -EINVAL; 7340 goto err; 7341 } 7342 if (mddev->recovery || mddev->sync_thread) { 7343 rv = -EBUSY; 7344 goto err; 7345 } 7346 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7347 struct bitmap *bitmap; 7348 /* add the bitmap */ 7349 if (mddev->bitmap) { 7350 rv = -EEXIST; 7351 goto err; 7352 } 7353 if (mddev->bitmap_info.default_offset == 0) { 7354 rv = -EINVAL; 7355 goto err; 7356 } 7357 mddev->bitmap_info.offset = 7358 mddev->bitmap_info.default_offset; 7359 mddev->bitmap_info.space = 7360 mddev->bitmap_info.default_space; 7361 bitmap = md_bitmap_create(mddev, -1); 7362 mddev_suspend(mddev); 7363 if (!IS_ERR(bitmap)) { 7364 mddev->bitmap = bitmap; 7365 rv = md_bitmap_load(mddev); 7366 } else 7367 rv = PTR_ERR(bitmap); 7368 if (rv) 7369 md_bitmap_destroy(mddev); 7370 mddev_resume(mddev); 7371 } else { 7372 /* remove the bitmap */ 7373 if (!mddev->bitmap) { 7374 rv = -ENOENT; 7375 goto err; 7376 } 7377 if (mddev->bitmap->storage.file) { 7378 rv = -EINVAL; 7379 goto err; 7380 } 7381 if (mddev->bitmap_info.nodes) { 7382 /* hold PW on all the bitmap lock */ 7383 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7384 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7385 rv = -EPERM; 7386 md_cluster_ops->unlock_all_bitmaps(mddev); 7387 goto err; 7388 } 7389 7390 mddev->bitmap_info.nodes = 0; 7391 md_cluster_ops->leave(mddev); 7392 module_put(md_cluster_mod); 7393 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7394 } 7395 mddev_suspend(mddev); 7396 md_bitmap_destroy(mddev); 7397 mddev_resume(mddev); 7398 mddev->bitmap_info.offset = 0; 7399 } 7400 } 7401 md_update_sb(mddev, 1); 7402 return rv; 7403 err: 7404 return rv; 7405 } 7406 7407 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7408 { 7409 struct md_rdev *rdev; 7410 int err = 0; 7411 7412 if (mddev->pers == NULL) 7413 return -ENODEV; 7414 7415 rcu_read_lock(); 7416 rdev = md_find_rdev_rcu(mddev, dev); 7417 if (!rdev) 7418 err = -ENODEV; 7419 else { 7420 md_error(mddev, rdev); 7421 if (test_bit(MD_BROKEN, &mddev->flags)) 7422 err = -EBUSY; 7423 } 7424 rcu_read_unlock(); 7425 return err; 7426 } 7427 7428 /* 7429 * We have a problem here : there is no easy way to give a CHS 7430 * virtual geometry. We currently pretend that we have a 2 heads 7431 * 4 sectors (with a BIG number of cylinders...). This drives 7432 * dosfs just mad... ;-) 7433 */ 7434 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7435 { 7436 struct mddev *mddev = bdev->bd_disk->private_data; 7437 7438 geo->heads = 2; 7439 geo->sectors = 4; 7440 geo->cylinders = mddev->array_sectors / 8; 7441 return 0; 7442 } 7443 7444 static inline bool md_ioctl_valid(unsigned int cmd) 7445 { 7446 switch (cmd) { 7447 case ADD_NEW_DISK: 7448 case GET_ARRAY_INFO: 7449 case GET_BITMAP_FILE: 7450 case GET_DISK_INFO: 7451 case HOT_ADD_DISK: 7452 case HOT_REMOVE_DISK: 7453 case RAID_VERSION: 7454 case RESTART_ARRAY_RW: 7455 case RUN_ARRAY: 7456 case SET_ARRAY_INFO: 7457 case SET_BITMAP_FILE: 7458 case SET_DISK_FAULTY: 7459 case STOP_ARRAY: 7460 case STOP_ARRAY_RO: 7461 case CLUSTERED_DISK_NACK: 7462 return true; 7463 default: 7464 return false; 7465 } 7466 } 7467 7468 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7469 { 7470 mdu_array_info_t info; 7471 int err; 7472 7473 if (!argp) 7474 memset(&info, 0, sizeof(info)); 7475 else if (copy_from_user(&info, argp, sizeof(info))) 7476 return -EFAULT; 7477 7478 if (mddev->pers) { 7479 err = update_array_info(mddev, &info); 7480 if (err) 7481 pr_warn("md: couldn't update array info. %d\n", err); 7482 return err; 7483 } 7484 7485 if (!list_empty(&mddev->disks)) { 7486 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7487 return -EBUSY; 7488 } 7489 7490 if (mddev->raid_disks) { 7491 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7492 return -EBUSY; 7493 } 7494 7495 err = md_set_array_info(mddev, &info); 7496 if (err) 7497 pr_warn("md: couldn't set array info. %d\n", err); 7498 7499 return err; 7500 } 7501 7502 static int md_ioctl(struct block_device *bdev, blk_mode_t mode, 7503 unsigned int cmd, unsigned long arg) 7504 { 7505 int err = 0; 7506 void __user *argp = (void __user *)arg; 7507 struct mddev *mddev = NULL; 7508 bool did_set_md_closing = false; 7509 7510 if (!md_ioctl_valid(cmd)) 7511 return -ENOTTY; 7512 7513 switch (cmd) { 7514 case RAID_VERSION: 7515 case GET_ARRAY_INFO: 7516 case GET_DISK_INFO: 7517 break; 7518 default: 7519 if (!capable(CAP_SYS_ADMIN)) 7520 return -EACCES; 7521 } 7522 7523 /* 7524 * Commands dealing with the RAID driver but not any 7525 * particular array: 7526 */ 7527 switch (cmd) { 7528 case RAID_VERSION: 7529 err = get_version(argp); 7530 goto out; 7531 default:; 7532 } 7533 7534 /* 7535 * Commands creating/starting a new array: 7536 */ 7537 7538 mddev = bdev->bd_disk->private_data; 7539 7540 if (!mddev) { 7541 BUG(); 7542 goto out; 7543 } 7544 7545 /* Some actions do not requires the mutex */ 7546 switch (cmd) { 7547 case GET_ARRAY_INFO: 7548 if (!mddev->raid_disks && !mddev->external) 7549 err = -ENODEV; 7550 else 7551 err = get_array_info(mddev, argp); 7552 goto out; 7553 7554 case GET_DISK_INFO: 7555 if (!mddev->raid_disks && !mddev->external) 7556 err = -ENODEV; 7557 else 7558 err = get_disk_info(mddev, argp); 7559 goto out; 7560 7561 case SET_DISK_FAULTY: 7562 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7563 goto out; 7564 7565 case GET_BITMAP_FILE: 7566 err = get_bitmap_file(mddev, argp); 7567 goto out; 7568 7569 } 7570 7571 if (cmd == HOT_REMOVE_DISK) 7572 /* need to ensure recovery thread has run */ 7573 wait_event_interruptible_timeout(mddev->sb_wait, 7574 !test_bit(MD_RECOVERY_NEEDED, 7575 &mddev->recovery), 7576 msecs_to_jiffies(5000)); 7577 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7578 /* Need to flush page cache, and ensure no-one else opens 7579 * and writes 7580 */ 7581 mutex_lock(&mddev->open_mutex); 7582 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7583 mutex_unlock(&mddev->open_mutex); 7584 err = -EBUSY; 7585 goto out; 7586 } 7587 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7588 mutex_unlock(&mddev->open_mutex); 7589 err = -EBUSY; 7590 goto out; 7591 } 7592 did_set_md_closing = true; 7593 mutex_unlock(&mddev->open_mutex); 7594 sync_blockdev(bdev); 7595 } 7596 err = mddev_lock(mddev); 7597 if (err) { 7598 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7599 err, cmd); 7600 goto out; 7601 } 7602 7603 if (cmd == SET_ARRAY_INFO) { 7604 err = __md_set_array_info(mddev, argp); 7605 goto unlock; 7606 } 7607 7608 /* 7609 * Commands querying/configuring an existing array: 7610 */ 7611 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7612 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7613 if ((!mddev->raid_disks && !mddev->external) 7614 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7615 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7616 && cmd != GET_BITMAP_FILE) { 7617 err = -ENODEV; 7618 goto unlock; 7619 } 7620 7621 /* 7622 * Commands even a read-only array can execute: 7623 */ 7624 switch (cmd) { 7625 case RESTART_ARRAY_RW: 7626 err = restart_array(mddev); 7627 goto unlock; 7628 7629 case STOP_ARRAY: 7630 err = do_md_stop(mddev, 0, bdev); 7631 goto unlock; 7632 7633 case STOP_ARRAY_RO: 7634 err = md_set_readonly(mddev, bdev); 7635 goto unlock; 7636 7637 case HOT_REMOVE_DISK: 7638 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7639 goto unlock; 7640 7641 case ADD_NEW_DISK: 7642 /* We can support ADD_NEW_DISK on read-only arrays 7643 * only if we are re-adding a preexisting device. 7644 * So require mddev->pers and MD_DISK_SYNC. 7645 */ 7646 if (mddev->pers) { 7647 mdu_disk_info_t info; 7648 if (copy_from_user(&info, argp, sizeof(info))) 7649 err = -EFAULT; 7650 else if (!(info.state & (1<<MD_DISK_SYNC))) 7651 /* Need to clear read-only for this */ 7652 break; 7653 else 7654 err = md_add_new_disk(mddev, &info); 7655 goto unlock; 7656 } 7657 break; 7658 } 7659 7660 /* 7661 * The remaining ioctls are changing the state of the 7662 * superblock, so we do not allow them on read-only arrays. 7663 */ 7664 if (!md_is_rdwr(mddev) && mddev->pers) { 7665 if (mddev->ro != MD_AUTO_READ) { 7666 err = -EROFS; 7667 goto unlock; 7668 } 7669 mddev->ro = MD_RDWR; 7670 sysfs_notify_dirent_safe(mddev->sysfs_state); 7671 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7672 /* mddev_unlock will wake thread */ 7673 /* If a device failed while we were read-only, we 7674 * need to make sure the metadata is updated now. 7675 */ 7676 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7677 mddev_unlock(mddev); 7678 wait_event(mddev->sb_wait, 7679 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7680 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7681 mddev_lock_nointr(mddev); 7682 } 7683 } 7684 7685 switch (cmd) { 7686 case ADD_NEW_DISK: 7687 { 7688 mdu_disk_info_t info; 7689 if (copy_from_user(&info, argp, sizeof(info))) 7690 err = -EFAULT; 7691 else 7692 err = md_add_new_disk(mddev, &info); 7693 goto unlock; 7694 } 7695 7696 case CLUSTERED_DISK_NACK: 7697 if (mddev_is_clustered(mddev)) 7698 md_cluster_ops->new_disk_ack(mddev, false); 7699 else 7700 err = -EINVAL; 7701 goto unlock; 7702 7703 case HOT_ADD_DISK: 7704 err = hot_add_disk(mddev, new_decode_dev(arg)); 7705 goto unlock; 7706 7707 case RUN_ARRAY: 7708 err = do_md_run(mddev); 7709 goto unlock; 7710 7711 case SET_BITMAP_FILE: 7712 err = set_bitmap_file(mddev, (int)arg); 7713 goto unlock; 7714 7715 default: 7716 err = -EINVAL; 7717 goto unlock; 7718 } 7719 7720 unlock: 7721 if (mddev->hold_active == UNTIL_IOCTL && 7722 err != -EINVAL) 7723 mddev->hold_active = 0; 7724 mddev_unlock(mddev); 7725 out: 7726 if(did_set_md_closing) 7727 clear_bit(MD_CLOSING, &mddev->flags); 7728 return err; 7729 } 7730 #ifdef CONFIG_COMPAT 7731 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 7732 unsigned int cmd, unsigned long arg) 7733 { 7734 switch (cmd) { 7735 case HOT_REMOVE_DISK: 7736 case HOT_ADD_DISK: 7737 case SET_DISK_FAULTY: 7738 case SET_BITMAP_FILE: 7739 /* These take in integer arg, do not convert */ 7740 break; 7741 default: 7742 arg = (unsigned long)compat_ptr(arg); 7743 break; 7744 } 7745 7746 return md_ioctl(bdev, mode, cmd, arg); 7747 } 7748 #endif /* CONFIG_COMPAT */ 7749 7750 static int md_set_read_only(struct block_device *bdev, bool ro) 7751 { 7752 struct mddev *mddev = bdev->bd_disk->private_data; 7753 int err; 7754 7755 err = mddev_lock(mddev); 7756 if (err) 7757 return err; 7758 7759 if (!mddev->raid_disks && !mddev->external) { 7760 err = -ENODEV; 7761 goto out_unlock; 7762 } 7763 7764 /* 7765 * Transitioning to read-auto need only happen for arrays that call 7766 * md_write_start and which are not ready for writes yet. 7767 */ 7768 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7769 err = restart_array(mddev); 7770 if (err) 7771 goto out_unlock; 7772 mddev->ro = MD_AUTO_READ; 7773 } 7774 7775 out_unlock: 7776 mddev_unlock(mddev); 7777 return err; 7778 } 7779 7780 static int md_open(struct gendisk *disk, blk_mode_t mode) 7781 { 7782 struct mddev *mddev; 7783 int err; 7784 7785 spin_lock(&all_mddevs_lock); 7786 mddev = mddev_get(disk->private_data); 7787 spin_unlock(&all_mddevs_lock); 7788 if (!mddev) 7789 return -ENODEV; 7790 7791 err = mutex_lock_interruptible(&mddev->open_mutex); 7792 if (err) 7793 goto out; 7794 7795 err = -ENODEV; 7796 if (test_bit(MD_CLOSING, &mddev->flags)) 7797 goto out_unlock; 7798 7799 atomic_inc(&mddev->openers); 7800 mutex_unlock(&mddev->open_mutex); 7801 7802 disk_check_media_change(disk); 7803 return 0; 7804 7805 out_unlock: 7806 mutex_unlock(&mddev->open_mutex); 7807 out: 7808 mddev_put(mddev); 7809 return err; 7810 } 7811 7812 static void md_release(struct gendisk *disk) 7813 { 7814 struct mddev *mddev = disk->private_data; 7815 7816 BUG_ON(!mddev); 7817 atomic_dec(&mddev->openers); 7818 mddev_put(mddev); 7819 } 7820 7821 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7822 { 7823 struct mddev *mddev = disk->private_data; 7824 unsigned int ret = 0; 7825 7826 if (mddev->changed) 7827 ret = DISK_EVENT_MEDIA_CHANGE; 7828 mddev->changed = 0; 7829 return ret; 7830 } 7831 7832 static void md_free_disk(struct gendisk *disk) 7833 { 7834 struct mddev *mddev = disk->private_data; 7835 7836 percpu_ref_exit(&mddev->writes_pending); 7837 mddev_free(mddev); 7838 } 7839 7840 const struct block_device_operations md_fops = 7841 { 7842 .owner = THIS_MODULE, 7843 .submit_bio = md_submit_bio, 7844 .open = md_open, 7845 .release = md_release, 7846 .ioctl = md_ioctl, 7847 #ifdef CONFIG_COMPAT 7848 .compat_ioctl = md_compat_ioctl, 7849 #endif 7850 .getgeo = md_getgeo, 7851 .check_events = md_check_events, 7852 .set_read_only = md_set_read_only, 7853 .free_disk = md_free_disk, 7854 }; 7855 7856 static int md_thread(void *arg) 7857 { 7858 struct md_thread *thread = arg; 7859 7860 /* 7861 * md_thread is a 'system-thread', it's priority should be very 7862 * high. We avoid resource deadlocks individually in each 7863 * raid personality. (RAID5 does preallocation) We also use RR and 7864 * the very same RT priority as kswapd, thus we will never get 7865 * into a priority inversion deadlock. 7866 * 7867 * we definitely have to have equal or higher priority than 7868 * bdflush, otherwise bdflush will deadlock if there are too 7869 * many dirty RAID5 blocks. 7870 */ 7871 7872 allow_signal(SIGKILL); 7873 while (!kthread_should_stop()) { 7874 7875 /* We need to wait INTERRUPTIBLE so that 7876 * we don't add to the load-average. 7877 * That means we need to be sure no signals are 7878 * pending 7879 */ 7880 if (signal_pending(current)) 7881 flush_signals(current); 7882 7883 wait_event_interruptible_timeout 7884 (thread->wqueue, 7885 test_bit(THREAD_WAKEUP, &thread->flags) 7886 || kthread_should_stop() || kthread_should_park(), 7887 thread->timeout); 7888 7889 clear_bit(THREAD_WAKEUP, &thread->flags); 7890 if (kthread_should_park()) 7891 kthread_parkme(); 7892 if (!kthread_should_stop()) 7893 thread->run(thread); 7894 } 7895 7896 return 0; 7897 } 7898 7899 static void md_wakeup_thread_directly(struct md_thread __rcu *thread) 7900 { 7901 struct md_thread *t; 7902 7903 rcu_read_lock(); 7904 t = rcu_dereference(thread); 7905 if (t) 7906 wake_up_process(t->tsk); 7907 rcu_read_unlock(); 7908 } 7909 7910 void md_wakeup_thread(struct md_thread __rcu *thread) 7911 { 7912 struct md_thread *t; 7913 7914 rcu_read_lock(); 7915 t = rcu_dereference(thread); 7916 if (t) { 7917 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm); 7918 set_bit(THREAD_WAKEUP, &t->flags); 7919 wake_up(&t->wqueue); 7920 } 7921 rcu_read_unlock(); 7922 } 7923 EXPORT_SYMBOL(md_wakeup_thread); 7924 7925 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7926 struct mddev *mddev, const char *name) 7927 { 7928 struct md_thread *thread; 7929 7930 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7931 if (!thread) 7932 return NULL; 7933 7934 init_waitqueue_head(&thread->wqueue); 7935 7936 thread->run = run; 7937 thread->mddev = mddev; 7938 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7939 thread->tsk = kthread_run(md_thread, thread, 7940 "%s_%s", 7941 mdname(thread->mddev), 7942 name); 7943 if (IS_ERR(thread->tsk)) { 7944 kfree(thread); 7945 return NULL; 7946 } 7947 return thread; 7948 } 7949 EXPORT_SYMBOL(md_register_thread); 7950 7951 void md_unregister_thread(struct md_thread __rcu **threadp) 7952 { 7953 struct md_thread *thread = rcu_dereference_protected(*threadp, true); 7954 7955 if (!thread) 7956 return; 7957 7958 rcu_assign_pointer(*threadp, NULL); 7959 synchronize_rcu(); 7960 7961 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7962 kthread_stop(thread->tsk); 7963 kfree(thread); 7964 } 7965 EXPORT_SYMBOL(md_unregister_thread); 7966 7967 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7968 { 7969 if (!rdev || test_bit(Faulty, &rdev->flags)) 7970 return; 7971 7972 if (!mddev->pers || !mddev->pers->error_handler) 7973 return; 7974 mddev->pers->error_handler(mddev, rdev); 7975 7976 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR) 7977 return; 7978 7979 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 7980 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7981 sysfs_notify_dirent_safe(rdev->sysfs_state); 7982 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7983 if (!test_bit(MD_BROKEN, &mddev->flags)) { 7984 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7985 md_wakeup_thread(mddev->thread); 7986 } 7987 if (mddev->event_work.func) 7988 queue_work(md_misc_wq, &mddev->event_work); 7989 md_new_event(); 7990 } 7991 EXPORT_SYMBOL(md_error); 7992 7993 /* seq_file implementation /proc/mdstat */ 7994 7995 static void status_unused(struct seq_file *seq) 7996 { 7997 int i = 0; 7998 struct md_rdev *rdev; 7999 8000 seq_printf(seq, "unused devices: "); 8001 8002 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8003 i++; 8004 seq_printf(seq, "%pg ", rdev->bdev); 8005 } 8006 if (!i) 8007 seq_printf(seq, "<none>"); 8008 8009 seq_printf(seq, "\n"); 8010 } 8011 8012 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8013 { 8014 sector_t max_sectors, resync, res; 8015 unsigned long dt, db = 0; 8016 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8017 int scale, recovery_active; 8018 unsigned int per_milli; 8019 8020 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8021 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8022 max_sectors = mddev->resync_max_sectors; 8023 else 8024 max_sectors = mddev->dev_sectors; 8025 8026 resync = mddev->curr_resync; 8027 if (resync < MD_RESYNC_ACTIVE) { 8028 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8029 /* Still cleaning up */ 8030 resync = max_sectors; 8031 } else if (resync > max_sectors) { 8032 resync = max_sectors; 8033 } else { 8034 res = atomic_read(&mddev->recovery_active); 8035 /* 8036 * Resync has started, but the subtraction has overflowed or 8037 * yielded one of the special values. Force it to active to 8038 * ensure the status reports an active resync. 8039 */ 8040 if (resync < res || resync - res < MD_RESYNC_ACTIVE) 8041 resync = MD_RESYNC_ACTIVE; 8042 else 8043 resync -= res; 8044 } 8045 8046 if (resync == MD_RESYNC_NONE) { 8047 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8048 struct md_rdev *rdev; 8049 8050 rdev_for_each(rdev, mddev) 8051 if (rdev->raid_disk >= 0 && 8052 !test_bit(Faulty, &rdev->flags) && 8053 rdev->recovery_offset != MaxSector && 8054 rdev->recovery_offset) { 8055 seq_printf(seq, "\trecover=REMOTE"); 8056 return 1; 8057 } 8058 if (mddev->reshape_position != MaxSector) 8059 seq_printf(seq, "\treshape=REMOTE"); 8060 else 8061 seq_printf(seq, "\tresync=REMOTE"); 8062 return 1; 8063 } 8064 if (mddev->recovery_cp < MaxSector) { 8065 seq_printf(seq, "\tresync=PENDING"); 8066 return 1; 8067 } 8068 return 0; 8069 } 8070 if (resync < MD_RESYNC_ACTIVE) { 8071 seq_printf(seq, "\tresync=DELAYED"); 8072 return 1; 8073 } 8074 8075 WARN_ON(max_sectors == 0); 8076 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8077 * in a sector_t, and (max_sectors>>scale) will fit in a 8078 * u32, as those are the requirements for sector_div. 8079 * Thus 'scale' must be at least 10 8080 */ 8081 scale = 10; 8082 if (sizeof(sector_t) > sizeof(unsigned long)) { 8083 while ( max_sectors/2 > (1ULL<<(scale+32))) 8084 scale++; 8085 } 8086 res = (resync>>scale)*1000; 8087 sector_div(res, (u32)((max_sectors>>scale)+1)); 8088 8089 per_milli = res; 8090 { 8091 int i, x = per_milli/50, y = 20-x; 8092 seq_printf(seq, "["); 8093 for (i = 0; i < x; i++) 8094 seq_printf(seq, "="); 8095 seq_printf(seq, ">"); 8096 for (i = 0; i < y; i++) 8097 seq_printf(seq, "."); 8098 seq_printf(seq, "] "); 8099 } 8100 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8101 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8102 "reshape" : 8103 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8104 "check" : 8105 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8106 "resync" : "recovery"))), 8107 per_milli/10, per_milli % 10, 8108 (unsigned long long) resync/2, 8109 (unsigned long long) max_sectors/2); 8110 8111 /* 8112 * dt: time from mark until now 8113 * db: blocks written from mark until now 8114 * rt: remaining time 8115 * 8116 * rt is a sector_t, which is always 64bit now. We are keeping 8117 * the original algorithm, but it is not really necessary. 8118 * 8119 * Original algorithm: 8120 * So we divide before multiply in case it is 32bit and close 8121 * to the limit. 8122 * We scale the divisor (db) by 32 to avoid losing precision 8123 * near the end of resync when the number of remaining sectors 8124 * is close to 'db'. 8125 * We then divide rt by 32 after multiplying by db to compensate. 8126 * The '+1' avoids division by zero if db is very small. 8127 */ 8128 dt = ((jiffies - mddev->resync_mark) / HZ); 8129 if (!dt) dt++; 8130 8131 curr_mark_cnt = mddev->curr_mark_cnt; 8132 recovery_active = atomic_read(&mddev->recovery_active); 8133 resync_mark_cnt = mddev->resync_mark_cnt; 8134 8135 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8136 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8137 8138 rt = max_sectors - resync; /* number of remaining sectors */ 8139 rt = div64_u64(rt, db/32+1); 8140 rt *= dt; 8141 rt >>= 5; 8142 8143 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8144 ((unsigned long)rt % 60)/6); 8145 8146 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8147 return 1; 8148 } 8149 8150 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8151 { 8152 struct list_head *tmp; 8153 loff_t l = *pos; 8154 struct mddev *mddev; 8155 8156 if (l == 0x10000) { 8157 ++*pos; 8158 return (void *)2; 8159 } 8160 if (l > 0x10000) 8161 return NULL; 8162 if (!l--) 8163 /* header */ 8164 return (void*)1; 8165 8166 spin_lock(&all_mddevs_lock); 8167 list_for_each(tmp,&all_mddevs) 8168 if (!l--) { 8169 mddev = list_entry(tmp, struct mddev, all_mddevs); 8170 if (!mddev_get(mddev)) 8171 continue; 8172 spin_unlock(&all_mddevs_lock); 8173 return mddev; 8174 } 8175 spin_unlock(&all_mddevs_lock); 8176 if (!l--) 8177 return (void*)2;/* tail */ 8178 return NULL; 8179 } 8180 8181 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8182 { 8183 struct list_head *tmp; 8184 struct mddev *next_mddev, *mddev = v; 8185 struct mddev *to_put = NULL; 8186 8187 ++*pos; 8188 if (v == (void*)2) 8189 return NULL; 8190 8191 spin_lock(&all_mddevs_lock); 8192 if (v == (void*)1) { 8193 tmp = all_mddevs.next; 8194 } else { 8195 to_put = mddev; 8196 tmp = mddev->all_mddevs.next; 8197 } 8198 8199 for (;;) { 8200 if (tmp == &all_mddevs) { 8201 next_mddev = (void*)2; 8202 *pos = 0x10000; 8203 break; 8204 } 8205 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8206 if (mddev_get(next_mddev)) 8207 break; 8208 mddev = next_mddev; 8209 tmp = mddev->all_mddevs.next; 8210 } 8211 spin_unlock(&all_mddevs_lock); 8212 8213 if (to_put) 8214 mddev_put(mddev); 8215 return next_mddev; 8216 8217 } 8218 8219 static void md_seq_stop(struct seq_file *seq, void *v) 8220 { 8221 struct mddev *mddev = v; 8222 8223 if (mddev && v != (void*)1 && v != (void*)2) 8224 mddev_put(mddev); 8225 } 8226 8227 static int md_seq_show(struct seq_file *seq, void *v) 8228 { 8229 struct mddev *mddev = v; 8230 sector_t sectors; 8231 struct md_rdev *rdev; 8232 8233 if (v == (void*)1) { 8234 struct md_personality *pers; 8235 seq_printf(seq, "Personalities : "); 8236 spin_lock(&pers_lock); 8237 list_for_each_entry(pers, &pers_list, list) 8238 seq_printf(seq, "[%s] ", pers->name); 8239 8240 spin_unlock(&pers_lock); 8241 seq_printf(seq, "\n"); 8242 seq->poll_event = atomic_read(&md_event_count); 8243 return 0; 8244 } 8245 if (v == (void*)2) { 8246 status_unused(seq); 8247 return 0; 8248 } 8249 8250 spin_lock(&mddev->lock); 8251 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8252 seq_printf(seq, "%s : %sactive", mdname(mddev), 8253 mddev->pers ? "" : "in"); 8254 if (mddev->pers) { 8255 if (mddev->ro == MD_RDONLY) 8256 seq_printf(seq, " (read-only)"); 8257 if (mddev->ro == MD_AUTO_READ) 8258 seq_printf(seq, " (auto-read-only)"); 8259 seq_printf(seq, " %s", mddev->pers->name); 8260 } 8261 8262 sectors = 0; 8263 rcu_read_lock(); 8264 rdev_for_each_rcu(rdev, mddev) { 8265 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8266 8267 if (test_bit(WriteMostly, &rdev->flags)) 8268 seq_printf(seq, "(W)"); 8269 if (test_bit(Journal, &rdev->flags)) 8270 seq_printf(seq, "(J)"); 8271 if (test_bit(Faulty, &rdev->flags)) { 8272 seq_printf(seq, "(F)"); 8273 continue; 8274 } 8275 if (rdev->raid_disk < 0) 8276 seq_printf(seq, "(S)"); /* spare */ 8277 if (test_bit(Replacement, &rdev->flags)) 8278 seq_printf(seq, "(R)"); 8279 sectors += rdev->sectors; 8280 } 8281 rcu_read_unlock(); 8282 8283 if (!list_empty(&mddev->disks)) { 8284 if (mddev->pers) 8285 seq_printf(seq, "\n %llu blocks", 8286 (unsigned long long) 8287 mddev->array_sectors / 2); 8288 else 8289 seq_printf(seq, "\n %llu blocks", 8290 (unsigned long long)sectors / 2); 8291 } 8292 if (mddev->persistent) { 8293 if (mddev->major_version != 0 || 8294 mddev->minor_version != 90) { 8295 seq_printf(seq," super %d.%d", 8296 mddev->major_version, 8297 mddev->minor_version); 8298 } 8299 } else if (mddev->external) 8300 seq_printf(seq, " super external:%s", 8301 mddev->metadata_type); 8302 else 8303 seq_printf(seq, " super non-persistent"); 8304 8305 if (mddev->pers) { 8306 mddev->pers->status(seq, mddev); 8307 seq_printf(seq, "\n "); 8308 if (mddev->pers->sync_request) { 8309 if (status_resync(seq, mddev)) 8310 seq_printf(seq, "\n "); 8311 } 8312 } else 8313 seq_printf(seq, "\n "); 8314 8315 md_bitmap_status(seq, mddev->bitmap); 8316 8317 seq_printf(seq, "\n"); 8318 } 8319 spin_unlock(&mddev->lock); 8320 8321 return 0; 8322 } 8323 8324 static const struct seq_operations md_seq_ops = { 8325 .start = md_seq_start, 8326 .next = md_seq_next, 8327 .stop = md_seq_stop, 8328 .show = md_seq_show, 8329 }; 8330 8331 static int md_seq_open(struct inode *inode, struct file *file) 8332 { 8333 struct seq_file *seq; 8334 int error; 8335 8336 error = seq_open(file, &md_seq_ops); 8337 if (error) 8338 return error; 8339 8340 seq = file->private_data; 8341 seq->poll_event = atomic_read(&md_event_count); 8342 return error; 8343 } 8344 8345 static int md_unloading; 8346 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8347 { 8348 struct seq_file *seq = filp->private_data; 8349 __poll_t mask; 8350 8351 if (md_unloading) 8352 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8353 poll_wait(filp, &md_event_waiters, wait); 8354 8355 /* always allow read */ 8356 mask = EPOLLIN | EPOLLRDNORM; 8357 8358 if (seq->poll_event != atomic_read(&md_event_count)) 8359 mask |= EPOLLERR | EPOLLPRI; 8360 return mask; 8361 } 8362 8363 static const struct proc_ops mdstat_proc_ops = { 8364 .proc_open = md_seq_open, 8365 .proc_read = seq_read, 8366 .proc_lseek = seq_lseek, 8367 .proc_release = seq_release, 8368 .proc_poll = mdstat_poll, 8369 }; 8370 8371 int register_md_personality(struct md_personality *p) 8372 { 8373 pr_debug("md: %s personality registered for level %d\n", 8374 p->name, p->level); 8375 spin_lock(&pers_lock); 8376 list_add_tail(&p->list, &pers_list); 8377 spin_unlock(&pers_lock); 8378 return 0; 8379 } 8380 EXPORT_SYMBOL(register_md_personality); 8381 8382 int unregister_md_personality(struct md_personality *p) 8383 { 8384 pr_debug("md: %s personality unregistered\n", p->name); 8385 spin_lock(&pers_lock); 8386 list_del_init(&p->list); 8387 spin_unlock(&pers_lock); 8388 return 0; 8389 } 8390 EXPORT_SYMBOL(unregister_md_personality); 8391 8392 int register_md_cluster_operations(struct md_cluster_operations *ops, 8393 struct module *module) 8394 { 8395 int ret = 0; 8396 spin_lock(&pers_lock); 8397 if (md_cluster_ops != NULL) 8398 ret = -EALREADY; 8399 else { 8400 md_cluster_ops = ops; 8401 md_cluster_mod = module; 8402 } 8403 spin_unlock(&pers_lock); 8404 return ret; 8405 } 8406 EXPORT_SYMBOL(register_md_cluster_operations); 8407 8408 int unregister_md_cluster_operations(void) 8409 { 8410 spin_lock(&pers_lock); 8411 md_cluster_ops = NULL; 8412 spin_unlock(&pers_lock); 8413 return 0; 8414 } 8415 EXPORT_SYMBOL(unregister_md_cluster_operations); 8416 8417 int md_setup_cluster(struct mddev *mddev, int nodes) 8418 { 8419 int ret; 8420 if (!md_cluster_ops) 8421 request_module("md-cluster"); 8422 spin_lock(&pers_lock); 8423 /* ensure module won't be unloaded */ 8424 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8425 pr_warn("can't find md-cluster module or get its reference.\n"); 8426 spin_unlock(&pers_lock); 8427 return -ENOENT; 8428 } 8429 spin_unlock(&pers_lock); 8430 8431 ret = md_cluster_ops->join(mddev, nodes); 8432 if (!ret) 8433 mddev->safemode_delay = 0; 8434 return ret; 8435 } 8436 8437 void md_cluster_stop(struct mddev *mddev) 8438 { 8439 if (!md_cluster_ops) 8440 return; 8441 md_cluster_ops->leave(mddev); 8442 module_put(md_cluster_mod); 8443 } 8444 8445 static int is_mddev_idle(struct mddev *mddev, int init) 8446 { 8447 struct md_rdev *rdev; 8448 int idle; 8449 int curr_events; 8450 8451 idle = 1; 8452 rcu_read_lock(); 8453 rdev_for_each_rcu(rdev, mddev) { 8454 struct gendisk *disk = rdev->bdev->bd_disk; 8455 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8456 atomic_read(&disk->sync_io); 8457 /* sync IO will cause sync_io to increase before the disk_stats 8458 * as sync_io is counted when a request starts, and 8459 * disk_stats is counted when it completes. 8460 * So resync activity will cause curr_events to be smaller than 8461 * when there was no such activity. 8462 * non-sync IO will cause disk_stat to increase without 8463 * increasing sync_io so curr_events will (eventually) 8464 * be larger than it was before. Once it becomes 8465 * substantially larger, the test below will cause 8466 * the array to appear non-idle, and resync will slow 8467 * down. 8468 * If there is a lot of outstanding resync activity when 8469 * we set last_event to curr_events, then all that activity 8470 * completing might cause the array to appear non-idle 8471 * and resync will be slowed down even though there might 8472 * not have been non-resync activity. This will only 8473 * happen once though. 'last_events' will soon reflect 8474 * the state where there is little or no outstanding 8475 * resync requests, and further resync activity will 8476 * always make curr_events less than last_events. 8477 * 8478 */ 8479 if (init || curr_events - rdev->last_events > 64) { 8480 rdev->last_events = curr_events; 8481 idle = 0; 8482 } 8483 } 8484 rcu_read_unlock(); 8485 return idle; 8486 } 8487 8488 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8489 { 8490 /* another "blocks" (512byte) blocks have been synced */ 8491 atomic_sub(blocks, &mddev->recovery_active); 8492 wake_up(&mddev->recovery_wait); 8493 if (!ok) { 8494 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8495 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8496 md_wakeup_thread(mddev->thread); 8497 // stop recovery, signal do_sync .... 8498 } 8499 } 8500 EXPORT_SYMBOL(md_done_sync); 8501 8502 /* md_write_start(mddev, bi) 8503 * If we need to update some array metadata (e.g. 'active' flag 8504 * in superblock) before writing, schedule a superblock update 8505 * and wait for it to complete. 8506 * A return value of 'false' means that the write wasn't recorded 8507 * and cannot proceed as the array is being suspend. 8508 */ 8509 bool md_write_start(struct mddev *mddev, struct bio *bi) 8510 { 8511 int did_change = 0; 8512 8513 if (bio_data_dir(bi) != WRITE) 8514 return true; 8515 8516 BUG_ON(mddev->ro == MD_RDONLY); 8517 if (mddev->ro == MD_AUTO_READ) { 8518 /* need to switch to read/write */ 8519 mddev->ro = MD_RDWR; 8520 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8521 md_wakeup_thread(mddev->thread); 8522 md_wakeup_thread(mddev->sync_thread); 8523 did_change = 1; 8524 } 8525 rcu_read_lock(); 8526 percpu_ref_get(&mddev->writes_pending); 8527 smp_mb(); /* Match smp_mb in set_in_sync() */ 8528 if (mddev->safemode == 1) 8529 mddev->safemode = 0; 8530 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8531 if (mddev->in_sync || mddev->sync_checkers) { 8532 spin_lock(&mddev->lock); 8533 if (mddev->in_sync) { 8534 mddev->in_sync = 0; 8535 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8536 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8537 md_wakeup_thread(mddev->thread); 8538 did_change = 1; 8539 } 8540 spin_unlock(&mddev->lock); 8541 } 8542 rcu_read_unlock(); 8543 if (did_change) 8544 sysfs_notify_dirent_safe(mddev->sysfs_state); 8545 if (!mddev->has_superblocks) 8546 return true; 8547 wait_event(mddev->sb_wait, 8548 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8549 is_md_suspended(mddev)); 8550 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8551 percpu_ref_put(&mddev->writes_pending); 8552 return false; 8553 } 8554 return true; 8555 } 8556 EXPORT_SYMBOL(md_write_start); 8557 8558 /* md_write_inc can only be called when md_write_start() has 8559 * already been called at least once of the current request. 8560 * It increments the counter and is useful when a single request 8561 * is split into several parts. Each part causes an increment and 8562 * so needs a matching md_write_end(). 8563 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8564 * a spinlocked region. 8565 */ 8566 void md_write_inc(struct mddev *mddev, struct bio *bi) 8567 { 8568 if (bio_data_dir(bi) != WRITE) 8569 return; 8570 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8571 percpu_ref_get(&mddev->writes_pending); 8572 } 8573 EXPORT_SYMBOL(md_write_inc); 8574 8575 void md_write_end(struct mddev *mddev) 8576 { 8577 percpu_ref_put(&mddev->writes_pending); 8578 8579 if (mddev->safemode == 2) 8580 md_wakeup_thread(mddev->thread); 8581 else if (mddev->safemode_delay) 8582 /* The roundup() ensures this only performs locking once 8583 * every ->safemode_delay jiffies 8584 */ 8585 mod_timer(&mddev->safemode_timer, 8586 roundup(jiffies, mddev->safemode_delay) + 8587 mddev->safemode_delay); 8588 } 8589 8590 EXPORT_SYMBOL(md_write_end); 8591 8592 /* This is used by raid0 and raid10 */ 8593 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8594 struct bio *bio, sector_t start, sector_t size) 8595 { 8596 struct bio *discard_bio = NULL; 8597 8598 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8599 &discard_bio) || !discard_bio) 8600 return; 8601 8602 bio_chain(discard_bio, bio); 8603 bio_clone_blkg_association(discard_bio, bio); 8604 if (mddev->gendisk) 8605 trace_block_bio_remap(discard_bio, 8606 disk_devt(mddev->gendisk), 8607 bio->bi_iter.bi_sector); 8608 submit_bio_noacct(discard_bio); 8609 } 8610 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8611 8612 int acct_bioset_init(struct mddev *mddev) 8613 { 8614 int err = 0; 8615 8616 if (!bioset_initialized(&mddev->io_acct_set)) 8617 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 8618 offsetof(struct md_io_acct, bio_clone), 0); 8619 return err; 8620 } 8621 EXPORT_SYMBOL_GPL(acct_bioset_init); 8622 8623 void acct_bioset_exit(struct mddev *mddev) 8624 { 8625 bioset_exit(&mddev->io_acct_set); 8626 } 8627 EXPORT_SYMBOL_GPL(acct_bioset_exit); 8628 8629 static void md_end_io_acct(struct bio *bio) 8630 { 8631 struct md_io_acct *md_io_acct = bio->bi_private; 8632 struct bio *orig_bio = md_io_acct->orig_bio; 8633 struct mddev *mddev = md_io_acct->mddev; 8634 8635 orig_bio->bi_status = bio->bi_status; 8636 8637 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8638 bio_put(bio); 8639 bio_endio(orig_bio); 8640 8641 percpu_ref_put(&mddev->active_io); 8642 } 8643 8644 /* 8645 * Used by personalities that don't already clone the bio and thus can't 8646 * easily add the timestamp to their extended bio structure. 8647 */ 8648 void md_account_bio(struct mddev *mddev, struct bio **bio) 8649 { 8650 struct block_device *bdev = (*bio)->bi_bdev; 8651 struct md_io_acct *md_io_acct; 8652 struct bio *clone; 8653 8654 if (!blk_queue_io_stat(bdev->bd_disk->queue)) 8655 return; 8656 8657 percpu_ref_get(&mddev->active_io); 8658 8659 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set); 8660 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8661 md_io_acct->orig_bio = *bio; 8662 md_io_acct->start_time = bio_start_io_acct(*bio); 8663 md_io_acct->mddev = mddev; 8664 8665 clone->bi_end_io = md_end_io_acct; 8666 clone->bi_private = md_io_acct; 8667 *bio = clone; 8668 } 8669 EXPORT_SYMBOL_GPL(md_account_bio); 8670 8671 /* md_allow_write(mddev) 8672 * Calling this ensures that the array is marked 'active' so that writes 8673 * may proceed without blocking. It is important to call this before 8674 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8675 * Must be called with mddev_lock held. 8676 */ 8677 void md_allow_write(struct mddev *mddev) 8678 { 8679 if (!mddev->pers) 8680 return; 8681 if (!md_is_rdwr(mddev)) 8682 return; 8683 if (!mddev->pers->sync_request) 8684 return; 8685 8686 spin_lock(&mddev->lock); 8687 if (mddev->in_sync) { 8688 mddev->in_sync = 0; 8689 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8690 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8691 if (mddev->safemode_delay && 8692 mddev->safemode == 0) 8693 mddev->safemode = 1; 8694 spin_unlock(&mddev->lock); 8695 md_update_sb(mddev, 0); 8696 sysfs_notify_dirent_safe(mddev->sysfs_state); 8697 /* wait for the dirty state to be recorded in the metadata */ 8698 wait_event(mddev->sb_wait, 8699 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8700 } else 8701 spin_unlock(&mddev->lock); 8702 } 8703 EXPORT_SYMBOL_GPL(md_allow_write); 8704 8705 #define SYNC_MARKS 10 8706 #define SYNC_MARK_STEP (3*HZ) 8707 #define UPDATE_FREQUENCY (5*60*HZ) 8708 void md_do_sync(struct md_thread *thread) 8709 { 8710 struct mddev *mddev = thread->mddev; 8711 struct mddev *mddev2; 8712 unsigned int currspeed = 0, window; 8713 sector_t max_sectors,j, io_sectors, recovery_done; 8714 unsigned long mark[SYNC_MARKS]; 8715 unsigned long update_time; 8716 sector_t mark_cnt[SYNC_MARKS]; 8717 int last_mark,m; 8718 sector_t last_check; 8719 int skipped = 0; 8720 struct md_rdev *rdev; 8721 char *desc, *action = NULL; 8722 struct blk_plug plug; 8723 int ret; 8724 8725 /* just incase thread restarts... */ 8726 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8727 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8728 return; 8729 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8730 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8731 return; 8732 } 8733 8734 if (mddev_is_clustered(mddev)) { 8735 ret = md_cluster_ops->resync_start(mddev); 8736 if (ret) 8737 goto skip; 8738 8739 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8740 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8741 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8742 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8743 && ((unsigned long long)mddev->curr_resync_completed 8744 < (unsigned long long)mddev->resync_max_sectors)) 8745 goto skip; 8746 } 8747 8748 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8749 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8750 desc = "data-check"; 8751 action = "check"; 8752 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8753 desc = "requested-resync"; 8754 action = "repair"; 8755 } else 8756 desc = "resync"; 8757 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8758 desc = "reshape"; 8759 else 8760 desc = "recovery"; 8761 8762 mddev->last_sync_action = action ?: desc; 8763 8764 /* 8765 * Before starting a resync we must have set curr_resync to 8766 * 2, and then checked that every "conflicting" array has curr_resync 8767 * less than ours. When we find one that is the same or higher 8768 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8769 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8770 * This will mean we have to start checking from the beginning again. 8771 * 8772 */ 8773 8774 do { 8775 int mddev2_minor = -1; 8776 mddev->curr_resync = MD_RESYNC_DELAYED; 8777 8778 try_again: 8779 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8780 goto skip; 8781 spin_lock(&all_mddevs_lock); 8782 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8783 if (test_bit(MD_DELETED, &mddev2->flags)) 8784 continue; 8785 if (mddev2 == mddev) 8786 continue; 8787 if (!mddev->parallel_resync 8788 && mddev2->curr_resync 8789 && match_mddev_units(mddev, mddev2)) { 8790 DEFINE_WAIT(wq); 8791 if (mddev < mddev2 && 8792 mddev->curr_resync == MD_RESYNC_DELAYED) { 8793 /* arbitrarily yield */ 8794 mddev->curr_resync = MD_RESYNC_YIELDED; 8795 wake_up(&resync_wait); 8796 } 8797 if (mddev > mddev2 && 8798 mddev->curr_resync == MD_RESYNC_YIELDED) 8799 /* no need to wait here, we can wait the next 8800 * time 'round when curr_resync == 2 8801 */ 8802 continue; 8803 /* We need to wait 'interruptible' so as not to 8804 * contribute to the load average, and not to 8805 * be caught by 'softlockup' 8806 */ 8807 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8808 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8809 mddev2->curr_resync >= mddev->curr_resync) { 8810 if (mddev2_minor != mddev2->md_minor) { 8811 mddev2_minor = mddev2->md_minor; 8812 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8813 desc, mdname(mddev), 8814 mdname(mddev2)); 8815 } 8816 spin_unlock(&all_mddevs_lock); 8817 8818 if (signal_pending(current)) 8819 flush_signals(current); 8820 schedule(); 8821 finish_wait(&resync_wait, &wq); 8822 goto try_again; 8823 } 8824 finish_wait(&resync_wait, &wq); 8825 } 8826 } 8827 spin_unlock(&all_mddevs_lock); 8828 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8829 8830 j = 0; 8831 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8832 /* resync follows the size requested by the personality, 8833 * which defaults to physical size, but can be virtual size 8834 */ 8835 max_sectors = mddev->resync_max_sectors; 8836 atomic64_set(&mddev->resync_mismatches, 0); 8837 /* we don't use the checkpoint if there's a bitmap */ 8838 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8839 j = mddev->resync_min; 8840 else if (!mddev->bitmap) 8841 j = mddev->recovery_cp; 8842 8843 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8844 max_sectors = mddev->resync_max_sectors; 8845 /* 8846 * If the original node aborts reshaping then we continue the 8847 * reshaping, so set j again to avoid restart reshape from the 8848 * first beginning 8849 */ 8850 if (mddev_is_clustered(mddev) && 8851 mddev->reshape_position != MaxSector) 8852 j = mddev->reshape_position; 8853 } else { 8854 /* recovery follows the physical size of devices */ 8855 max_sectors = mddev->dev_sectors; 8856 j = MaxSector; 8857 rcu_read_lock(); 8858 rdev_for_each_rcu(rdev, mddev) 8859 if (rdev->raid_disk >= 0 && 8860 !test_bit(Journal, &rdev->flags) && 8861 !test_bit(Faulty, &rdev->flags) && 8862 !test_bit(In_sync, &rdev->flags) && 8863 rdev->recovery_offset < j) 8864 j = rdev->recovery_offset; 8865 rcu_read_unlock(); 8866 8867 /* If there is a bitmap, we need to make sure all 8868 * writes that started before we added a spare 8869 * complete before we start doing a recovery. 8870 * Otherwise the write might complete and (via 8871 * bitmap_endwrite) set a bit in the bitmap after the 8872 * recovery has checked that bit and skipped that 8873 * region. 8874 */ 8875 if (mddev->bitmap) { 8876 mddev->pers->quiesce(mddev, 1); 8877 mddev->pers->quiesce(mddev, 0); 8878 } 8879 } 8880 8881 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8882 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8883 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8884 speed_max(mddev), desc); 8885 8886 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8887 8888 io_sectors = 0; 8889 for (m = 0; m < SYNC_MARKS; m++) { 8890 mark[m] = jiffies; 8891 mark_cnt[m] = io_sectors; 8892 } 8893 last_mark = 0; 8894 mddev->resync_mark = mark[last_mark]; 8895 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8896 8897 /* 8898 * Tune reconstruction: 8899 */ 8900 window = 32 * (PAGE_SIZE / 512); 8901 pr_debug("md: using %dk window, over a total of %lluk.\n", 8902 window/2, (unsigned long long)max_sectors/2); 8903 8904 atomic_set(&mddev->recovery_active, 0); 8905 last_check = 0; 8906 8907 if (j >= MD_RESYNC_ACTIVE) { 8908 pr_debug("md: resuming %s of %s from checkpoint.\n", 8909 desc, mdname(mddev)); 8910 mddev->curr_resync = j; 8911 } else 8912 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8913 mddev->curr_resync_completed = j; 8914 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8915 md_new_event(); 8916 update_time = jiffies; 8917 8918 blk_start_plug(&plug); 8919 while (j < max_sectors) { 8920 sector_t sectors; 8921 8922 skipped = 0; 8923 8924 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8925 ((mddev->curr_resync > mddev->curr_resync_completed && 8926 (mddev->curr_resync - mddev->curr_resync_completed) 8927 > (max_sectors >> 4)) || 8928 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8929 (j - mddev->curr_resync_completed)*2 8930 >= mddev->resync_max - mddev->curr_resync_completed || 8931 mddev->curr_resync_completed > mddev->resync_max 8932 )) { 8933 /* time to update curr_resync_completed */ 8934 wait_event(mddev->recovery_wait, 8935 atomic_read(&mddev->recovery_active) == 0); 8936 mddev->curr_resync_completed = j; 8937 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8938 j > mddev->recovery_cp) 8939 mddev->recovery_cp = j; 8940 update_time = jiffies; 8941 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8942 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8943 } 8944 8945 while (j >= mddev->resync_max && 8946 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8947 /* As this condition is controlled by user-space, 8948 * we can block indefinitely, so use '_interruptible' 8949 * to avoid triggering warnings. 8950 */ 8951 flush_signals(current); /* just in case */ 8952 wait_event_interruptible(mddev->recovery_wait, 8953 mddev->resync_max > j 8954 || test_bit(MD_RECOVERY_INTR, 8955 &mddev->recovery)); 8956 } 8957 8958 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8959 break; 8960 8961 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8962 if (sectors == 0) { 8963 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8964 break; 8965 } 8966 8967 if (!skipped) { /* actual IO requested */ 8968 io_sectors += sectors; 8969 atomic_add(sectors, &mddev->recovery_active); 8970 } 8971 8972 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8973 break; 8974 8975 j += sectors; 8976 if (j > max_sectors) 8977 /* when skipping, extra large numbers can be returned. */ 8978 j = max_sectors; 8979 if (j >= MD_RESYNC_ACTIVE) 8980 mddev->curr_resync = j; 8981 mddev->curr_mark_cnt = io_sectors; 8982 if (last_check == 0) 8983 /* this is the earliest that rebuild will be 8984 * visible in /proc/mdstat 8985 */ 8986 md_new_event(); 8987 8988 if (last_check + window > io_sectors || j == max_sectors) 8989 continue; 8990 8991 last_check = io_sectors; 8992 repeat: 8993 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8994 /* step marks */ 8995 int next = (last_mark+1) % SYNC_MARKS; 8996 8997 mddev->resync_mark = mark[next]; 8998 mddev->resync_mark_cnt = mark_cnt[next]; 8999 mark[next] = jiffies; 9000 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 9001 last_mark = next; 9002 } 9003 9004 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9005 break; 9006 9007 /* 9008 * this loop exits only if either when we are slower than 9009 * the 'hard' speed limit, or the system was IO-idle for 9010 * a jiffy. 9011 * the system might be non-idle CPU-wise, but we only care 9012 * about not overloading the IO subsystem. (things like an 9013 * e2fsck being done on the RAID array should execute fast) 9014 */ 9015 cond_resched(); 9016 9017 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9018 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9019 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9020 9021 if (currspeed > speed_min(mddev)) { 9022 if (currspeed > speed_max(mddev)) { 9023 msleep(500); 9024 goto repeat; 9025 } 9026 if (!is_mddev_idle(mddev, 0)) { 9027 /* 9028 * Give other IO more of a chance. 9029 * The faster the devices, the less we wait. 9030 */ 9031 wait_event(mddev->recovery_wait, 9032 !atomic_read(&mddev->recovery_active)); 9033 } 9034 } 9035 } 9036 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9037 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9038 ? "interrupted" : "done"); 9039 /* 9040 * this also signals 'finished resyncing' to md_stop 9041 */ 9042 blk_finish_plug(&plug); 9043 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9044 9045 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9046 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9047 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9048 mddev->curr_resync_completed = mddev->curr_resync; 9049 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9050 } 9051 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9052 9053 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9054 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9055 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9056 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9057 if (mddev->curr_resync >= mddev->recovery_cp) { 9058 pr_debug("md: checkpointing %s of %s.\n", 9059 desc, mdname(mddev)); 9060 if (test_bit(MD_RECOVERY_ERROR, 9061 &mddev->recovery)) 9062 mddev->recovery_cp = 9063 mddev->curr_resync_completed; 9064 else 9065 mddev->recovery_cp = 9066 mddev->curr_resync; 9067 } 9068 } else 9069 mddev->recovery_cp = MaxSector; 9070 } else { 9071 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9072 mddev->curr_resync = MaxSector; 9073 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9074 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9075 rcu_read_lock(); 9076 rdev_for_each_rcu(rdev, mddev) 9077 if (rdev->raid_disk >= 0 && 9078 mddev->delta_disks >= 0 && 9079 !test_bit(Journal, &rdev->flags) && 9080 !test_bit(Faulty, &rdev->flags) && 9081 !test_bit(In_sync, &rdev->flags) && 9082 rdev->recovery_offset < mddev->curr_resync) 9083 rdev->recovery_offset = mddev->curr_resync; 9084 rcu_read_unlock(); 9085 } 9086 } 9087 } 9088 skip: 9089 /* set CHANGE_PENDING here since maybe another update is needed, 9090 * so other nodes are informed. It should be harmless for normal 9091 * raid */ 9092 set_mask_bits(&mddev->sb_flags, 0, 9093 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9094 9095 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9096 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9097 mddev->delta_disks > 0 && 9098 mddev->pers->finish_reshape && 9099 mddev->pers->size && 9100 mddev->queue) { 9101 mddev_lock_nointr(mddev); 9102 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9103 mddev_unlock(mddev); 9104 if (!mddev_is_clustered(mddev)) 9105 set_capacity_and_notify(mddev->gendisk, 9106 mddev->array_sectors); 9107 } 9108 9109 spin_lock(&mddev->lock); 9110 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9111 /* We completed so min/max setting can be forgotten if used. */ 9112 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9113 mddev->resync_min = 0; 9114 mddev->resync_max = MaxSector; 9115 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9116 mddev->resync_min = mddev->curr_resync_completed; 9117 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9118 mddev->curr_resync = MD_RESYNC_NONE; 9119 spin_unlock(&mddev->lock); 9120 9121 wake_up(&resync_wait); 9122 wake_up(&mddev->sb_wait); 9123 md_wakeup_thread(mddev->thread); 9124 return; 9125 } 9126 EXPORT_SYMBOL_GPL(md_do_sync); 9127 9128 static int remove_and_add_spares(struct mddev *mddev, 9129 struct md_rdev *this) 9130 { 9131 struct md_rdev *rdev; 9132 int spares = 0; 9133 int removed = 0; 9134 bool remove_some = false; 9135 9136 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9137 /* Mustn't remove devices when resync thread is running */ 9138 return 0; 9139 9140 rdev_for_each(rdev, mddev) { 9141 if ((this == NULL || rdev == this) && 9142 rdev->raid_disk >= 0 && 9143 !test_bit(Blocked, &rdev->flags) && 9144 test_bit(Faulty, &rdev->flags) && 9145 atomic_read(&rdev->nr_pending)==0) { 9146 /* Faulty non-Blocked devices with nr_pending == 0 9147 * never get nr_pending incremented, 9148 * never get Faulty cleared, and never get Blocked set. 9149 * So we can synchronize_rcu now rather than once per device 9150 */ 9151 remove_some = true; 9152 set_bit(RemoveSynchronized, &rdev->flags); 9153 } 9154 } 9155 9156 if (remove_some) 9157 synchronize_rcu(); 9158 rdev_for_each(rdev, mddev) { 9159 if ((this == NULL || rdev == this) && 9160 rdev->raid_disk >= 0 && 9161 !test_bit(Blocked, &rdev->flags) && 9162 ((test_bit(RemoveSynchronized, &rdev->flags) || 9163 (!test_bit(In_sync, &rdev->flags) && 9164 !test_bit(Journal, &rdev->flags))) && 9165 atomic_read(&rdev->nr_pending)==0)) { 9166 if (mddev->pers->hot_remove_disk( 9167 mddev, rdev) == 0) { 9168 sysfs_unlink_rdev(mddev, rdev); 9169 rdev->saved_raid_disk = rdev->raid_disk; 9170 rdev->raid_disk = -1; 9171 removed++; 9172 } 9173 } 9174 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9175 clear_bit(RemoveSynchronized, &rdev->flags); 9176 } 9177 9178 if (removed && mddev->kobj.sd) 9179 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9180 9181 if (this && removed) 9182 goto no_add; 9183 9184 rdev_for_each(rdev, mddev) { 9185 if (this && this != rdev) 9186 continue; 9187 if (test_bit(Candidate, &rdev->flags)) 9188 continue; 9189 if (rdev->raid_disk >= 0 && 9190 !test_bit(In_sync, &rdev->flags) && 9191 !test_bit(Journal, &rdev->flags) && 9192 !test_bit(Faulty, &rdev->flags)) 9193 spares++; 9194 if (rdev->raid_disk >= 0) 9195 continue; 9196 if (test_bit(Faulty, &rdev->flags)) 9197 continue; 9198 if (!test_bit(Journal, &rdev->flags)) { 9199 if (!md_is_rdwr(mddev) && 9200 !(rdev->saved_raid_disk >= 0 && 9201 !test_bit(Bitmap_sync, &rdev->flags))) 9202 continue; 9203 9204 rdev->recovery_offset = 0; 9205 } 9206 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9207 /* failure here is OK */ 9208 sysfs_link_rdev(mddev, rdev); 9209 if (!test_bit(Journal, &rdev->flags)) 9210 spares++; 9211 md_new_event(); 9212 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9213 } 9214 } 9215 no_add: 9216 if (removed) 9217 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9218 return spares; 9219 } 9220 9221 static void md_start_sync(struct work_struct *ws) 9222 { 9223 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9224 9225 rcu_assign_pointer(mddev->sync_thread, 9226 md_register_thread(md_do_sync, mddev, "resync")); 9227 if (!mddev->sync_thread) { 9228 pr_warn("%s: could not start resync thread...\n", 9229 mdname(mddev)); 9230 /* leave the spares where they are, it shouldn't hurt */ 9231 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9232 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9233 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9234 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9235 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9236 wake_up(&resync_wait); 9237 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9238 &mddev->recovery)) 9239 if (mddev->sysfs_action) 9240 sysfs_notify_dirent_safe(mddev->sysfs_action); 9241 } else 9242 md_wakeup_thread(mddev->sync_thread); 9243 sysfs_notify_dirent_safe(mddev->sysfs_action); 9244 md_new_event(); 9245 } 9246 9247 /* 9248 * This routine is regularly called by all per-raid-array threads to 9249 * deal with generic issues like resync and super-block update. 9250 * Raid personalities that don't have a thread (linear/raid0) do not 9251 * need this as they never do any recovery or update the superblock. 9252 * 9253 * It does not do any resync itself, but rather "forks" off other threads 9254 * to do that as needed. 9255 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9256 * "->recovery" and create a thread at ->sync_thread. 9257 * When the thread finishes it sets MD_RECOVERY_DONE 9258 * and wakeups up this thread which will reap the thread and finish up. 9259 * This thread also removes any faulty devices (with nr_pending == 0). 9260 * 9261 * The overall approach is: 9262 * 1/ if the superblock needs updating, update it. 9263 * 2/ If a recovery thread is running, don't do anything else. 9264 * 3/ If recovery has finished, clean up, possibly marking spares active. 9265 * 4/ If there are any faulty devices, remove them. 9266 * 5/ If array is degraded, try to add spares devices 9267 * 6/ If array has spares or is not in-sync, start a resync thread. 9268 */ 9269 void md_check_recovery(struct mddev *mddev) 9270 { 9271 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9272 /* Write superblock - thread that called mddev_suspend() 9273 * holds reconfig_mutex for us. 9274 */ 9275 set_bit(MD_UPDATING_SB, &mddev->flags); 9276 smp_mb__after_atomic(); 9277 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9278 md_update_sb(mddev, 0); 9279 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9280 wake_up(&mddev->sb_wait); 9281 } 9282 9283 if (is_md_suspended(mddev)) 9284 return; 9285 9286 if (mddev->bitmap) 9287 md_bitmap_daemon_work(mddev); 9288 9289 if (signal_pending(current)) { 9290 if (mddev->pers->sync_request && !mddev->external) { 9291 pr_debug("md: %s in immediate safe mode\n", 9292 mdname(mddev)); 9293 mddev->safemode = 2; 9294 } 9295 flush_signals(current); 9296 } 9297 9298 if (!md_is_rdwr(mddev) && 9299 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9300 return; 9301 if ( ! ( 9302 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9303 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9304 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9305 (mddev->external == 0 && mddev->safemode == 1) || 9306 (mddev->safemode == 2 9307 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9308 )) 9309 return; 9310 9311 if (mddev_trylock(mddev)) { 9312 int spares = 0; 9313 bool try_set_sync = mddev->safemode != 0; 9314 9315 if (!mddev->external && mddev->safemode == 1) 9316 mddev->safemode = 0; 9317 9318 if (!md_is_rdwr(mddev)) { 9319 struct md_rdev *rdev; 9320 if (!mddev->external && mddev->in_sync) 9321 /* 'Blocked' flag not needed as failed devices 9322 * will be recorded if array switched to read/write. 9323 * Leaving it set will prevent the device 9324 * from being removed. 9325 */ 9326 rdev_for_each(rdev, mddev) 9327 clear_bit(Blocked, &rdev->flags); 9328 /* On a read-only array we can: 9329 * - remove failed devices 9330 * - add already-in_sync devices if the array itself 9331 * is in-sync. 9332 * As we only add devices that are already in-sync, 9333 * we can activate the spares immediately. 9334 */ 9335 remove_and_add_spares(mddev, NULL); 9336 /* There is no thread, but we need to call 9337 * ->spare_active and clear saved_raid_disk 9338 */ 9339 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9340 md_unregister_thread(&mddev->sync_thread); 9341 md_reap_sync_thread(mddev); 9342 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9343 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9344 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9345 goto unlock; 9346 } 9347 9348 if (mddev_is_clustered(mddev)) { 9349 struct md_rdev *rdev, *tmp; 9350 /* kick the device if another node issued a 9351 * remove disk. 9352 */ 9353 rdev_for_each_safe(rdev, tmp, mddev) { 9354 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9355 rdev->raid_disk < 0) 9356 md_kick_rdev_from_array(rdev); 9357 } 9358 } 9359 9360 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9361 spin_lock(&mddev->lock); 9362 set_in_sync(mddev); 9363 spin_unlock(&mddev->lock); 9364 } 9365 9366 if (mddev->sb_flags) 9367 md_update_sb(mddev, 0); 9368 9369 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9370 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9371 /* resync/recovery still happening */ 9372 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9373 goto unlock; 9374 } 9375 if (mddev->sync_thread) { 9376 md_unregister_thread(&mddev->sync_thread); 9377 md_reap_sync_thread(mddev); 9378 goto unlock; 9379 } 9380 /* Set RUNNING before clearing NEEDED to avoid 9381 * any transients in the value of "sync_action". 9382 */ 9383 mddev->curr_resync_completed = 0; 9384 spin_lock(&mddev->lock); 9385 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9386 spin_unlock(&mddev->lock); 9387 /* Clear some bits that don't mean anything, but 9388 * might be left set 9389 */ 9390 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9391 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9392 9393 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9394 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9395 goto not_running; 9396 /* no recovery is running. 9397 * remove any failed drives, then 9398 * add spares if possible. 9399 * Spares are also removed and re-added, to allow 9400 * the personality to fail the re-add. 9401 */ 9402 9403 if (mddev->reshape_position != MaxSector) { 9404 if (mddev->pers->check_reshape == NULL || 9405 mddev->pers->check_reshape(mddev) != 0) 9406 /* Cannot proceed */ 9407 goto not_running; 9408 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9409 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9410 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9411 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9412 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9413 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9414 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9415 } else if (mddev->recovery_cp < MaxSector) { 9416 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9417 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9418 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9419 /* nothing to be done ... */ 9420 goto not_running; 9421 9422 if (mddev->pers->sync_request) { 9423 if (spares) { 9424 /* We are adding a device or devices to an array 9425 * which has the bitmap stored on all devices. 9426 * So make sure all bitmap pages get written 9427 */ 9428 md_bitmap_write_all(mddev->bitmap); 9429 } 9430 INIT_WORK(&mddev->del_work, md_start_sync); 9431 queue_work(md_misc_wq, &mddev->del_work); 9432 goto unlock; 9433 } 9434 not_running: 9435 if (!mddev->sync_thread) { 9436 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9437 wake_up(&resync_wait); 9438 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9439 &mddev->recovery)) 9440 if (mddev->sysfs_action) 9441 sysfs_notify_dirent_safe(mddev->sysfs_action); 9442 } 9443 unlock: 9444 wake_up(&mddev->sb_wait); 9445 mddev_unlock(mddev); 9446 } 9447 } 9448 EXPORT_SYMBOL(md_check_recovery); 9449 9450 void md_reap_sync_thread(struct mddev *mddev) 9451 { 9452 struct md_rdev *rdev; 9453 sector_t old_dev_sectors = mddev->dev_sectors; 9454 bool is_reshaped = false; 9455 9456 /* sync_thread should be unregistered, collect result */ 9457 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9458 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9459 mddev->degraded != mddev->raid_disks) { 9460 /* success...*/ 9461 /* activate any spares */ 9462 if (mddev->pers->spare_active(mddev)) { 9463 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9464 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9465 } 9466 } 9467 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9468 mddev->pers->finish_reshape) { 9469 mddev->pers->finish_reshape(mddev); 9470 if (mddev_is_clustered(mddev)) 9471 is_reshaped = true; 9472 } 9473 9474 /* If array is no-longer degraded, then any saved_raid_disk 9475 * information must be scrapped. 9476 */ 9477 if (!mddev->degraded) 9478 rdev_for_each(rdev, mddev) 9479 rdev->saved_raid_disk = -1; 9480 9481 md_update_sb(mddev, 1); 9482 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9483 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9484 * clustered raid */ 9485 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9486 md_cluster_ops->resync_finish(mddev); 9487 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9488 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9489 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9490 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9491 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9492 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9493 /* 9494 * We call md_cluster_ops->update_size here because sync_size could 9495 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9496 * so it is time to update size across cluster. 9497 */ 9498 if (mddev_is_clustered(mddev) && is_reshaped 9499 && !test_bit(MD_CLOSING, &mddev->flags)) 9500 md_cluster_ops->update_size(mddev, old_dev_sectors); 9501 wake_up(&resync_wait); 9502 /* flag recovery needed just to double check */ 9503 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9504 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9505 sysfs_notify_dirent_safe(mddev->sysfs_action); 9506 md_new_event(); 9507 if (mddev->event_work.func) 9508 queue_work(md_misc_wq, &mddev->event_work); 9509 } 9510 EXPORT_SYMBOL(md_reap_sync_thread); 9511 9512 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9513 { 9514 sysfs_notify_dirent_safe(rdev->sysfs_state); 9515 wait_event_timeout(rdev->blocked_wait, 9516 !test_bit(Blocked, &rdev->flags) && 9517 !test_bit(BlockedBadBlocks, &rdev->flags), 9518 msecs_to_jiffies(5000)); 9519 rdev_dec_pending(rdev, mddev); 9520 } 9521 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9522 9523 void md_finish_reshape(struct mddev *mddev) 9524 { 9525 /* called be personality module when reshape completes. */ 9526 struct md_rdev *rdev; 9527 9528 rdev_for_each(rdev, mddev) { 9529 if (rdev->data_offset > rdev->new_data_offset) 9530 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9531 else 9532 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9533 rdev->data_offset = rdev->new_data_offset; 9534 } 9535 } 9536 EXPORT_SYMBOL(md_finish_reshape); 9537 9538 /* Bad block management */ 9539 9540 /* Returns 1 on success, 0 on failure */ 9541 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9542 int is_new) 9543 { 9544 struct mddev *mddev = rdev->mddev; 9545 int rv; 9546 if (is_new) 9547 s += rdev->new_data_offset; 9548 else 9549 s += rdev->data_offset; 9550 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9551 if (rv == 0) { 9552 /* Make sure they get written out promptly */ 9553 if (test_bit(ExternalBbl, &rdev->flags)) 9554 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9555 sysfs_notify_dirent_safe(rdev->sysfs_state); 9556 set_mask_bits(&mddev->sb_flags, 0, 9557 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9558 md_wakeup_thread(rdev->mddev->thread); 9559 return 1; 9560 } else 9561 return 0; 9562 } 9563 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9564 9565 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9566 int is_new) 9567 { 9568 int rv; 9569 if (is_new) 9570 s += rdev->new_data_offset; 9571 else 9572 s += rdev->data_offset; 9573 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9574 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9575 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9576 return rv; 9577 } 9578 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9579 9580 static int md_notify_reboot(struct notifier_block *this, 9581 unsigned long code, void *x) 9582 { 9583 struct mddev *mddev, *n; 9584 int need_delay = 0; 9585 9586 spin_lock(&all_mddevs_lock); 9587 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9588 if (!mddev_get(mddev)) 9589 continue; 9590 spin_unlock(&all_mddevs_lock); 9591 if (mddev_trylock(mddev)) { 9592 if (mddev->pers) 9593 __md_stop_writes(mddev); 9594 if (mddev->persistent) 9595 mddev->safemode = 2; 9596 mddev_unlock(mddev); 9597 } 9598 need_delay = 1; 9599 mddev_put(mddev); 9600 spin_lock(&all_mddevs_lock); 9601 } 9602 spin_unlock(&all_mddevs_lock); 9603 9604 /* 9605 * certain more exotic SCSI devices are known to be 9606 * volatile wrt too early system reboots. While the 9607 * right place to handle this issue is the given 9608 * driver, we do want to have a safe RAID driver ... 9609 */ 9610 if (need_delay) 9611 msleep(1000); 9612 9613 return NOTIFY_DONE; 9614 } 9615 9616 static struct notifier_block md_notifier = { 9617 .notifier_call = md_notify_reboot, 9618 .next = NULL, 9619 .priority = INT_MAX, /* before any real devices */ 9620 }; 9621 9622 static void md_geninit(void) 9623 { 9624 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9625 9626 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9627 } 9628 9629 static int __init md_init(void) 9630 { 9631 int ret = -ENOMEM; 9632 9633 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9634 if (!md_wq) 9635 goto err_wq; 9636 9637 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9638 if (!md_misc_wq) 9639 goto err_misc_wq; 9640 9641 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND, 9642 0); 9643 if (!md_bitmap_wq) 9644 goto err_bitmap_wq; 9645 9646 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9647 if (ret < 0) 9648 goto err_md; 9649 9650 ret = __register_blkdev(0, "mdp", md_probe); 9651 if (ret < 0) 9652 goto err_mdp; 9653 mdp_major = ret; 9654 9655 register_reboot_notifier(&md_notifier); 9656 raid_table_header = register_sysctl("dev/raid", raid_table); 9657 9658 md_geninit(); 9659 return 0; 9660 9661 err_mdp: 9662 unregister_blkdev(MD_MAJOR, "md"); 9663 err_md: 9664 destroy_workqueue(md_bitmap_wq); 9665 err_bitmap_wq: 9666 destroy_workqueue(md_misc_wq); 9667 err_misc_wq: 9668 destroy_workqueue(md_wq); 9669 err_wq: 9670 return ret; 9671 } 9672 9673 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9674 { 9675 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9676 struct md_rdev *rdev2, *tmp; 9677 int role, ret; 9678 9679 /* 9680 * If size is changed in another node then we need to 9681 * do resize as well. 9682 */ 9683 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9684 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9685 if (ret) 9686 pr_info("md-cluster: resize failed\n"); 9687 else 9688 md_bitmap_update_sb(mddev->bitmap); 9689 } 9690 9691 /* Check for change of roles in the active devices */ 9692 rdev_for_each_safe(rdev2, tmp, mddev) { 9693 if (test_bit(Faulty, &rdev2->flags)) 9694 continue; 9695 9696 /* Check if the roles changed */ 9697 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9698 9699 if (test_bit(Candidate, &rdev2->flags)) { 9700 if (role == MD_DISK_ROLE_FAULTY) { 9701 pr_info("md: Removing Candidate device %pg because add failed\n", 9702 rdev2->bdev); 9703 md_kick_rdev_from_array(rdev2); 9704 continue; 9705 } 9706 else 9707 clear_bit(Candidate, &rdev2->flags); 9708 } 9709 9710 if (role != rdev2->raid_disk) { 9711 /* 9712 * got activated except reshape is happening. 9713 */ 9714 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9715 !(le32_to_cpu(sb->feature_map) & 9716 MD_FEATURE_RESHAPE_ACTIVE)) { 9717 rdev2->saved_raid_disk = role; 9718 ret = remove_and_add_spares(mddev, rdev2); 9719 pr_info("Activated spare: %pg\n", 9720 rdev2->bdev); 9721 /* wakeup mddev->thread here, so array could 9722 * perform resync with the new activated disk */ 9723 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9724 md_wakeup_thread(mddev->thread); 9725 } 9726 /* device faulty 9727 * We just want to do the minimum to mark the disk 9728 * as faulty. The recovery is performed by the 9729 * one who initiated the error. 9730 */ 9731 if (role == MD_DISK_ROLE_FAULTY || 9732 role == MD_DISK_ROLE_JOURNAL) { 9733 md_error(mddev, rdev2); 9734 clear_bit(Blocked, &rdev2->flags); 9735 } 9736 } 9737 } 9738 9739 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9740 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9741 if (ret) 9742 pr_warn("md: updating array disks failed. %d\n", ret); 9743 } 9744 9745 /* 9746 * Since mddev->delta_disks has already updated in update_raid_disks, 9747 * so it is time to check reshape. 9748 */ 9749 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9750 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9751 /* 9752 * reshape is happening in the remote node, we need to 9753 * update reshape_position and call start_reshape. 9754 */ 9755 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9756 if (mddev->pers->update_reshape_pos) 9757 mddev->pers->update_reshape_pos(mddev); 9758 if (mddev->pers->start_reshape) 9759 mddev->pers->start_reshape(mddev); 9760 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9761 mddev->reshape_position != MaxSector && 9762 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9763 /* reshape is just done in another node. */ 9764 mddev->reshape_position = MaxSector; 9765 if (mddev->pers->update_reshape_pos) 9766 mddev->pers->update_reshape_pos(mddev); 9767 } 9768 9769 /* Finally set the event to be up to date */ 9770 mddev->events = le64_to_cpu(sb->events); 9771 } 9772 9773 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9774 { 9775 int err; 9776 struct page *swapout = rdev->sb_page; 9777 struct mdp_superblock_1 *sb; 9778 9779 /* Store the sb page of the rdev in the swapout temporary 9780 * variable in case we err in the future 9781 */ 9782 rdev->sb_page = NULL; 9783 err = alloc_disk_sb(rdev); 9784 if (err == 0) { 9785 ClearPageUptodate(rdev->sb_page); 9786 rdev->sb_loaded = 0; 9787 err = super_types[mddev->major_version]. 9788 load_super(rdev, NULL, mddev->minor_version); 9789 } 9790 if (err < 0) { 9791 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9792 __func__, __LINE__, rdev->desc_nr, err); 9793 if (rdev->sb_page) 9794 put_page(rdev->sb_page); 9795 rdev->sb_page = swapout; 9796 rdev->sb_loaded = 1; 9797 return err; 9798 } 9799 9800 sb = page_address(rdev->sb_page); 9801 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9802 * is not set 9803 */ 9804 9805 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9806 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9807 9808 /* The other node finished recovery, call spare_active to set 9809 * device In_sync and mddev->degraded 9810 */ 9811 if (rdev->recovery_offset == MaxSector && 9812 !test_bit(In_sync, &rdev->flags) && 9813 mddev->pers->spare_active(mddev)) 9814 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9815 9816 put_page(swapout); 9817 return 0; 9818 } 9819 9820 void md_reload_sb(struct mddev *mddev, int nr) 9821 { 9822 struct md_rdev *rdev = NULL, *iter; 9823 int err; 9824 9825 /* Find the rdev */ 9826 rdev_for_each_rcu(iter, mddev) { 9827 if (iter->desc_nr == nr) { 9828 rdev = iter; 9829 break; 9830 } 9831 } 9832 9833 if (!rdev) { 9834 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9835 return; 9836 } 9837 9838 err = read_rdev(mddev, rdev); 9839 if (err < 0) 9840 return; 9841 9842 check_sb_changes(mddev, rdev); 9843 9844 /* Read all rdev's to update recovery_offset */ 9845 rdev_for_each_rcu(rdev, mddev) { 9846 if (!test_bit(Faulty, &rdev->flags)) 9847 read_rdev(mddev, rdev); 9848 } 9849 } 9850 EXPORT_SYMBOL(md_reload_sb); 9851 9852 #ifndef MODULE 9853 9854 /* 9855 * Searches all registered partitions for autorun RAID arrays 9856 * at boot time. 9857 */ 9858 9859 static DEFINE_MUTEX(detected_devices_mutex); 9860 static LIST_HEAD(all_detected_devices); 9861 struct detected_devices_node { 9862 struct list_head list; 9863 dev_t dev; 9864 }; 9865 9866 void md_autodetect_dev(dev_t dev) 9867 { 9868 struct detected_devices_node *node_detected_dev; 9869 9870 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9871 if (node_detected_dev) { 9872 node_detected_dev->dev = dev; 9873 mutex_lock(&detected_devices_mutex); 9874 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9875 mutex_unlock(&detected_devices_mutex); 9876 } 9877 } 9878 9879 void md_autostart_arrays(int part) 9880 { 9881 struct md_rdev *rdev; 9882 struct detected_devices_node *node_detected_dev; 9883 dev_t dev; 9884 int i_scanned, i_passed; 9885 9886 i_scanned = 0; 9887 i_passed = 0; 9888 9889 pr_info("md: Autodetecting RAID arrays.\n"); 9890 9891 mutex_lock(&detected_devices_mutex); 9892 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9893 i_scanned++; 9894 node_detected_dev = list_entry(all_detected_devices.next, 9895 struct detected_devices_node, list); 9896 list_del(&node_detected_dev->list); 9897 dev = node_detected_dev->dev; 9898 kfree(node_detected_dev); 9899 mutex_unlock(&detected_devices_mutex); 9900 rdev = md_import_device(dev,0, 90); 9901 mutex_lock(&detected_devices_mutex); 9902 if (IS_ERR(rdev)) 9903 continue; 9904 9905 if (test_bit(Faulty, &rdev->flags)) 9906 continue; 9907 9908 set_bit(AutoDetected, &rdev->flags); 9909 list_add(&rdev->same_set, &pending_raid_disks); 9910 i_passed++; 9911 } 9912 mutex_unlock(&detected_devices_mutex); 9913 9914 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9915 9916 autorun_devices(part); 9917 } 9918 9919 #endif /* !MODULE */ 9920 9921 static __exit void md_exit(void) 9922 { 9923 struct mddev *mddev, *n; 9924 int delay = 1; 9925 9926 unregister_blkdev(MD_MAJOR,"md"); 9927 unregister_blkdev(mdp_major, "mdp"); 9928 unregister_reboot_notifier(&md_notifier); 9929 unregister_sysctl_table(raid_table_header); 9930 9931 /* We cannot unload the modules while some process is 9932 * waiting for us in select() or poll() - wake them up 9933 */ 9934 md_unloading = 1; 9935 while (waitqueue_active(&md_event_waiters)) { 9936 /* not safe to leave yet */ 9937 wake_up(&md_event_waiters); 9938 msleep(delay); 9939 delay += delay; 9940 } 9941 remove_proc_entry("mdstat", NULL); 9942 9943 spin_lock(&all_mddevs_lock); 9944 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9945 if (!mddev_get(mddev)) 9946 continue; 9947 spin_unlock(&all_mddevs_lock); 9948 export_array(mddev); 9949 mddev->ctime = 0; 9950 mddev->hold_active = 0; 9951 /* 9952 * As the mddev is now fully clear, mddev_put will schedule 9953 * the mddev for destruction by a workqueue, and the 9954 * destroy_workqueue() below will wait for that to complete. 9955 */ 9956 mddev_put(mddev); 9957 spin_lock(&all_mddevs_lock); 9958 } 9959 spin_unlock(&all_mddevs_lock); 9960 9961 destroy_workqueue(md_misc_wq); 9962 destroy_workqueue(md_bitmap_wq); 9963 destroy_workqueue(md_wq); 9964 } 9965 9966 subsys_initcall(md_init); 9967 module_exit(md_exit) 9968 9969 static int get_ro(char *buffer, const struct kernel_param *kp) 9970 { 9971 return sprintf(buffer, "%d\n", start_readonly); 9972 } 9973 static int set_ro(const char *val, const struct kernel_param *kp) 9974 { 9975 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9976 } 9977 9978 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9979 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9980 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9981 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9982 9983 MODULE_LICENSE("GPL"); 9984 MODULE_DESCRIPTION("MD RAID framework"); 9985 MODULE_ALIAS("md"); 9986 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9987