xref: /openbmc/linux/drivers/md/md.c (revision 6a613ac6)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74 
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78 
79 static int remove_and_add_spares(struct mddev *mddev,
80 				 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82 
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101 
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_min ?
107 		mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109 
110 static inline int speed_max(struct mddev *mddev)
111 {
112 	return mddev->sync_speed_max ?
113 		mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115 
116 static struct ctl_table_header *raid_table_header;
117 
118 static struct ctl_table raid_table[] = {
119 	{
120 		.procname	= "speed_limit_min",
121 		.data		= &sysctl_speed_limit_min,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{
127 		.procname	= "speed_limit_max",
128 		.data		= &sysctl_speed_limit_max,
129 		.maxlen		= sizeof(int),
130 		.mode		= S_IRUGO|S_IWUSR,
131 		.proc_handler	= proc_dointvec,
132 	},
133 	{ }
134 };
135 
136 static struct ctl_table raid_dir_table[] = {
137 	{
138 		.procname	= "raid",
139 		.maxlen		= 0,
140 		.mode		= S_IRUGO|S_IXUGO,
141 		.child		= raid_table,
142 	},
143 	{ }
144 };
145 
146 static struct ctl_table raid_root_table[] = {
147 	{
148 		.procname	= "dev",
149 		.maxlen		= 0,
150 		.mode		= 0555,
151 		.child		= raid_dir_table,
152 	},
153 	{  }
154 };
155 
156 static const struct block_device_operations md_fops;
157 
158 static int start_readonly;
159 
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163 
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 			    struct mddev *mddev)
166 {
167 	struct bio *b;
168 
169 	if (!mddev || !mddev->bio_set)
170 		return bio_alloc(gfp_mask, nr_iovecs);
171 
172 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 	if (!b)
174 		return NULL;
175 	return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178 
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 			    struct mddev *mddev)
181 {
182 	if (!mddev || !mddev->bio_set)
183 		return bio_clone(bio, gfp_mask);
184 
185 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188 
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 	atomic_inc(&md_event_count);
204 	wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207 
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 	atomic_inc(&md_event_count);
214 	wake_up(&md_event_waiters);
215 }
216 
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223 
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)					\
232 									\
233 	for (({ spin_lock(&all_mddevs_lock);				\
234 		_tmp = all_mddevs.next;					\
235 		_mddev = NULL;});					\
236 	     ({ if (_tmp != &all_mddevs)				\
237 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 		spin_unlock(&all_mddevs_lock);				\
239 		if (_mddev) mddev_put(_mddev);				\
240 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
241 		_tmp != &all_mddevs;});					\
242 	     ({ spin_lock(&all_mddevs_lock);				\
243 		_tmp = _tmp->next;})					\
244 		)
245 
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 	const int rw = bio_data_dir(bio);
256 	struct mddev *mddev = q->queuedata;
257 	unsigned int sectors;
258 	int cpu;
259 
260 	blk_queue_split(q, &bio, q->bio_split);
261 
262 	if (mddev == NULL || mddev->pers == NULL
263 	    || !mddev->ready) {
264 		bio_io_error(bio);
265 		return BLK_QC_T_NONE;
266 	}
267 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268 		if (bio_sectors(bio) != 0)
269 			bio->bi_error = -EROFS;
270 		bio_endio(bio);
271 		return BLK_QC_T_NONE;
272 	}
273 	smp_rmb(); /* Ensure implications of  'active' are visible */
274 	rcu_read_lock();
275 	if (mddev->suspended) {
276 		DEFINE_WAIT(__wait);
277 		for (;;) {
278 			prepare_to_wait(&mddev->sb_wait, &__wait,
279 					TASK_UNINTERRUPTIBLE);
280 			if (!mddev->suspended)
281 				break;
282 			rcu_read_unlock();
283 			schedule();
284 			rcu_read_lock();
285 		}
286 		finish_wait(&mddev->sb_wait, &__wait);
287 	}
288 	atomic_inc(&mddev->active_io);
289 	rcu_read_unlock();
290 
291 	/*
292 	 * save the sectors now since our bio can
293 	 * go away inside make_request
294 	 */
295 	sectors = bio_sectors(bio);
296 	mddev->pers->make_request(mddev, bio);
297 
298 	cpu = part_stat_lock();
299 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301 	part_stat_unlock();
302 
303 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304 		wake_up(&mddev->sb_wait);
305 
306 	return BLK_QC_T_NONE;
307 }
308 
309 /* mddev_suspend makes sure no new requests are submitted
310  * to the device, and that any requests that have been submitted
311  * are completely handled.
312  * Once mddev_detach() is called and completes, the module will be
313  * completely unused.
314  */
315 void mddev_suspend(struct mddev *mddev)
316 {
317 	BUG_ON(mddev->suspended);
318 	mddev->suspended = 1;
319 	synchronize_rcu();
320 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
321 	mddev->pers->quiesce(mddev, 1);
322 
323 	del_timer_sync(&mddev->safemode_timer);
324 }
325 EXPORT_SYMBOL_GPL(mddev_suspend);
326 
327 void mddev_resume(struct mddev *mddev)
328 {
329 	mddev->suspended = 0;
330 	wake_up(&mddev->sb_wait);
331 	mddev->pers->quiesce(mddev, 0);
332 
333 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
334 	md_wakeup_thread(mddev->thread);
335 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
336 }
337 EXPORT_SYMBOL_GPL(mddev_resume);
338 
339 int mddev_congested(struct mddev *mddev, int bits)
340 {
341 	struct md_personality *pers = mddev->pers;
342 	int ret = 0;
343 
344 	rcu_read_lock();
345 	if (mddev->suspended)
346 		ret = 1;
347 	else if (pers && pers->congested)
348 		ret = pers->congested(mddev, bits);
349 	rcu_read_unlock();
350 	return ret;
351 }
352 EXPORT_SYMBOL_GPL(mddev_congested);
353 static int md_congested(void *data, int bits)
354 {
355 	struct mddev *mddev = data;
356 	return mddev_congested(mddev, bits);
357 }
358 
359 /*
360  * Generic flush handling for md
361  */
362 
363 static void md_end_flush(struct bio *bio)
364 {
365 	struct md_rdev *rdev = bio->bi_private;
366 	struct mddev *mddev = rdev->mddev;
367 
368 	rdev_dec_pending(rdev, mddev);
369 
370 	if (atomic_dec_and_test(&mddev->flush_pending)) {
371 		/* The pre-request flush has finished */
372 		queue_work(md_wq, &mddev->flush_work);
373 	}
374 	bio_put(bio);
375 }
376 
377 static void md_submit_flush_data(struct work_struct *ws);
378 
379 static void submit_flushes(struct work_struct *ws)
380 {
381 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
382 	struct md_rdev *rdev;
383 
384 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
385 	atomic_set(&mddev->flush_pending, 1);
386 	rcu_read_lock();
387 	rdev_for_each_rcu(rdev, mddev)
388 		if (rdev->raid_disk >= 0 &&
389 		    !test_bit(Faulty, &rdev->flags)) {
390 			/* Take two references, one is dropped
391 			 * when request finishes, one after
392 			 * we reclaim rcu_read_lock
393 			 */
394 			struct bio *bi;
395 			atomic_inc(&rdev->nr_pending);
396 			atomic_inc(&rdev->nr_pending);
397 			rcu_read_unlock();
398 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
399 			bi->bi_end_io = md_end_flush;
400 			bi->bi_private = rdev;
401 			bi->bi_bdev = rdev->bdev;
402 			atomic_inc(&mddev->flush_pending);
403 			submit_bio(WRITE_FLUSH, bi);
404 			rcu_read_lock();
405 			rdev_dec_pending(rdev, mddev);
406 		}
407 	rcu_read_unlock();
408 	if (atomic_dec_and_test(&mddev->flush_pending))
409 		queue_work(md_wq, &mddev->flush_work);
410 }
411 
412 static void md_submit_flush_data(struct work_struct *ws)
413 {
414 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
415 	struct bio *bio = mddev->flush_bio;
416 
417 	if (bio->bi_iter.bi_size == 0)
418 		/* an empty barrier - all done */
419 		bio_endio(bio);
420 	else {
421 		bio->bi_rw &= ~REQ_FLUSH;
422 		mddev->pers->make_request(mddev, bio);
423 	}
424 
425 	mddev->flush_bio = NULL;
426 	wake_up(&mddev->sb_wait);
427 }
428 
429 void md_flush_request(struct mddev *mddev, struct bio *bio)
430 {
431 	spin_lock_irq(&mddev->lock);
432 	wait_event_lock_irq(mddev->sb_wait,
433 			    !mddev->flush_bio,
434 			    mddev->lock);
435 	mddev->flush_bio = bio;
436 	spin_unlock_irq(&mddev->lock);
437 
438 	INIT_WORK(&mddev->flush_work, submit_flushes);
439 	queue_work(md_wq, &mddev->flush_work);
440 }
441 EXPORT_SYMBOL(md_flush_request);
442 
443 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
444 {
445 	struct mddev *mddev = cb->data;
446 	md_wakeup_thread(mddev->thread);
447 	kfree(cb);
448 }
449 EXPORT_SYMBOL(md_unplug);
450 
451 static inline struct mddev *mddev_get(struct mddev *mddev)
452 {
453 	atomic_inc(&mddev->active);
454 	return mddev;
455 }
456 
457 static void mddev_delayed_delete(struct work_struct *ws);
458 
459 static void mddev_put(struct mddev *mddev)
460 {
461 	struct bio_set *bs = NULL;
462 
463 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
464 		return;
465 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
466 	    mddev->ctime == 0 && !mddev->hold_active) {
467 		/* Array is not configured at all, and not held active,
468 		 * so destroy it */
469 		list_del_init(&mddev->all_mddevs);
470 		bs = mddev->bio_set;
471 		mddev->bio_set = NULL;
472 		if (mddev->gendisk) {
473 			/* We did a probe so need to clean up.  Call
474 			 * queue_work inside the spinlock so that
475 			 * flush_workqueue() after mddev_find will
476 			 * succeed in waiting for the work to be done.
477 			 */
478 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
479 			queue_work(md_misc_wq, &mddev->del_work);
480 		} else
481 			kfree(mddev);
482 	}
483 	spin_unlock(&all_mddevs_lock);
484 	if (bs)
485 		bioset_free(bs);
486 }
487 
488 static void md_safemode_timeout(unsigned long data);
489 
490 void mddev_init(struct mddev *mddev)
491 {
492 	mutex_init(&mddev->open_mutex);
493 	mutex_init(&mddev->reconfig_mutex);
494 	mutex_init(&mddev->bitmap_info.mutex);
495 	INIT_LIST_HEAD(&mddev->disks);
496 	INIT_LIST_HEAD(&mddev->all_mddevs);
497 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
498 		    (unsigned long) mddev);
499 	atomic_set(&mddev->active, 1);
500 	atomic_set(&mddev->openers, 0);
501 	atomic_set(&mddev->active_io, 0);
502 	spin_lock_init(&mddev->lock);
503 	atomic_set(&mddev->flush_pending, 0);
504 	init_waitqueue_head(&mddev->sb_wait);
505 	init_waitqueue_head(&mddev->recovery_wait);
506 	mddev->reshape_position = MaxSector;
507 	mddev->reshape_backwards = 0;
508 	mddev->last_sync_action = "none";
509 	mddev->resync_min = 0;
510 	mddev->resync_max = MaxSector;
511 	mddev->level = LEVEL_NONE;
512 }
513 EXPORT_SYMBOL_GPL(mddev_init);
514 
515 static struct mddev *mddev_find(dev_t unit)
516 {
517 	struct mddev *mddev, *new = NULL;
518 
519 	if (unit && MAJOR(unit) != MD_MAJOR)
520 		unit &= ~((1<<MdpMinorShift)-1);
521 
522  retry:
523 	spin_lock(&all_mddevs_lock);
524 
525 	if (unit) {
526 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
527 			if (mddev->unit == unit) {
528 				mddev_get(mddev);
529 				spin_unlock(&all_mddevs_lock);
530 				kfree(new);
531 				return mddev;
532 			}
533 
534 		if (new) {
535 			list_add(&new->all_mddevs, &all_mddevs);
536 			spin_unlock(&all_mddevs_lock);
537 			new->hold_active = UNTIL_IOCTL;
538 			return new;
539 		}
540 	} else if (new) {
541 		/* find an unused unit number */
542 		static int next_minor = 512;
543 		int start = next_minor;
544 		int is_free = 0;
545 		int dev = 0;
546 		while (!is_free) {
547 			dev = MKDEV(MD_MAJOR, next_minor);
548 			next_minor++;
549 			if (next_minor > MINORMASK)
550 				next_minor = 0;
551 			if (next_minor == start) {
552 				/* Oh dear, all in use. */
553 				spin_unlock(&all_mddevs_lock);
554 				kfree(new);
555 				return NULL;
556 			}
557 
558 			is_free = 1;
559 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
560 				if (mddev->unit == dev) {
561 					is_free = 0;
562 					break;
563 				}
564 		}
565 		new->unit = dev;
566 		new->md_minor = MINOR(dev);
567 		new->hold_active = UNTIL_STOP;
568 		list_add(&new->all_mddevs, &all_mddevs);
569 		spin_unlock(&all_mddevs_lock);
570 		return new;
571 	}
572 	spin_unlock(&all_mddevs_lock);
573 
574 	new = kzalloc(sizeof(*new), GFP_KERNEL);
575 	if (!new)
576 		return NULL;
577 
578 	new->unit = unit;
579 	if (MAJOR(unit) == MD_MAJOR)
580 		new->md_minor = MINOR(unit);
581 	else
582 		new->md_minor = MINOR(unit) >> MdpMinorShift;
583 
584 	mddev_init(new);
585 
586 	goto retry;
587 }
588 
589 static struct attribute_group md_redundancy_group;
590 
591 void mddev_unlock(struct mddev *mddev)
592 {
593 	if (mddev->to_remove) {
594 		/* These cannot be removed under reconfig_mutex as
595 		 * an access to the files will try to take reconfig_mutex
596 		 * while holding the file unremovable, which leads to
597 		 * a deadlock.
598 		 * So hold set sysfs_active while the remove in happeing,
599 		 * and anything else which might set ->to_remove or my
600 		 * otherwise change the sysfs namespace will fail with
601 		 * -EBUSY if sysfs_active is still set.
602 		 * We set sysfs_active under reconfig_mutex and elsewhere
603 		 * test it under the same mutex to ensure its correct value
604 		 * is seen.
605 		 */
606 		struct attribute_group *to_remove = mddev->to_remove;
607 		mddev->to_remove = NULL;
608 		mddev->sysfs_active = 1;
609 		mutex_unlock(&mddev->reconfig_mutex);
610 
611 		if (mddev->kobj.sd) {
612 			if (to_remove != &md_redundancy_group)
613 				sysfs_remove_group(&mddev->kobj, to_remove);
614 			if (mddev->pers == NULL ||
615 			    mddev->pers->sync_request == NULL) {
616 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
617 				if (mddev->sysfs_action)
618 					sysfs_put(mddev->sysfs_action);
619 				mddev->sysfs_action = NULL;
620 			}
621 		}
622 		mddev->sysfs_active = 0;
623 	} else
624 		mutex_unlock(&mddev->reconfig_mutex);
625 
626 	/* As we've dropped the mutex we need a spinlock to
627 	 * make sure the thread doesn't disappear
628 	 */
629 	spin_lock(&pers_lock);
630 	md_wakeup_thread(mddev->thread);
631 	spin_unlock(&pers_lock);
632 }
633 EXPORT_SYMBOL_GPL(mddev_unlock);
634 
635 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
636 {
637 	struct md_rdev *rdev;
638 
639 	rdev_for_each_rcu(rdev, mddev)
640 		if (rdev->desc_nr == nr)
641 			return rdev;
642 
643 	return NULL;
644 }
645 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
646 
647 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
648 {
649 	struct md_rdev *rdev;
650 
651 	rdev_for_each(rdev, mddev)
652 		if (rdev->bdev->bd_dev == dev)
653 			return rdev;
654 
655 	return NULL;
656 }
657 
658 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
659 {
660 	struct md_rdev *rdev;
661 
662 	rdev_for_each_rcu(rdev, mddev)
663 		if (rdev->bdev->bd_dev == dev)
664 			return rdev;
665 
666 	return NULL;
667 }
668 
669 static struct md_personality *find_pers(int level, char *clevel)
670 {
671 	struct md_personality *pers;
672 	list_for_each_entry(pers, &pers_list, list) {
673 		if (level != LEVEL_NONE && pers->level == level)
674 			return pers;
675 		if (strcmp(pers->name, clevel)==0)
676 			return pers;
677 	}
678 	return NULL;
679 }
680 
681 /* return the offset of the super block in 512byte sectors */
682 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
683 {
684 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
685 	return MD_NEW_SIZE_SECTORS(num_sectors);
686 }
687 
688 static int alloc_disk_sb(struct md_rdev *rdev)
689 {
690 	rdev->sb_page = alloc_page(GFP_KERNEL);
691 	if (!rdev->sb_page) {
692 		printk(KERN_ALERT "md: out of memory.\n");
693 		return -ENOMEM;
694 	}
695 
696 	return 0;
697 }
698 
699 void md_rdev_clear(struct md_rdev *rdev)
700 {
701 	if (rdev->sb_page) {
702 		put_page(rdev->sb_page);
703 		rdev->sb_loaded = 0;
704 		rdev->sb_page = NULL;
705 		rdev->sb_start = 0;
706 		rdev->sectors = 0;
707 	}
708 	if (rdev->bb_page) {
709 		put_page(rdev->bb_page);
710 		rdev->bb_page = NULL;
711 	}
712 	kfree(rdev->badblocks.page);
713 	rdev->badblocks.page = NULL;
714 }
715 EXPORT_SYMBOL_GPL(md_rdev_clear);
716 
717 static void super_written(struct bio *bio)
718 {
719 	struct md_rdev *rdev = bio->bi_private;
720 	struct mddev *mddev = rdev->mddev;
721 
722 	if (bio->bi_error) {
723 		printk("md: super_written gets error=%d\n", bio->bi_error);
724 		md_error(mddev, rdev);
725 	}
726 
727 	if (atomic_dec_and_test(&mddev->pending_writes))
728 		wake_up(&mddev->sb_wait);
729 	bio_put(bio);
730 }
731 
732 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
733 		   sector_t sector, int size, struct page *page)
734 {
735 	/* write first size bytes of page to sector of rdev
736 	 * Increment mddev->pending_writes before returning
737 	 * and decrement it on completion, waking up sb_wait
738 	 * if zero is reached.
739 	 * If an error occurred, call md_error
740 	 */
741 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
742 
743 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
744 	bio->bi_iter.bi_sector = sector;
745 	bio_add_page(bio, page, size, 0);
746 	bio->bi_private = rdev;
747 	bio->bi_end_io = super_written;
748 
749 	atomic_inc(&mddev->pending_writes);
750 	submit_bio(WRITE_FLUSH_FUA, bio);
751 }
752 
753 void md_super_wait(struct mddev *mddev)
754 {
755 	/* wait for all superblock writes that were scheduled to complete */
756 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
757 }
758 
759 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
760 		 struct page *page, int rw, bool metadata_op)
761 {
762 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
763 	int ret;
764 
765 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
766 		rdev->meta_bdev : rdev->bdev;
767 	if (metadata_op)
768 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
769 	else if (rdev->mddev->reshape_position != MaxSector &&
770 		 (rdev->mddev->reshape_backwards ==
771 		  (sector >= rdev->mddev->reshape_position)))
772 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
773 	else
774 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
775 	bio_add_page(bio, page, size, 0);
776 	submit_bio_wait(rw, bio);
777 
778 	ret = !bio->bi_error;
779 	bio_put(bio);
780 	return ret;
781 }
782 EXPORT_SYMBOL_GPL(sync_page_io);
783 
784 static int read_disk_sb(struct md_rdev *rdev, int size)
785 {
786 	char b[BDEVNAME_SIZE];
787 
788 	if (rdev->sb_loaded)
789 		return 0;
790 
791 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
792 		goto fail;
793 	rdev->sb_loaded = 1;
794 	return 0;
795 
796 fail:
797 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
798 		bdevname(rdev->bdev,b));
799 	return -EINVAL;
800 }
801 
802 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
803 {
804 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
805 		sb1->set_uuid1 == sb2->set_uuid1 &&
806 		sb1->set_uuid2 == sb2->set_uuid2 &&
807 		sb1->set_uuid3 == sb2->set_uuid3;
808 }
809 
810 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
811 {
812 	int ret;
813 	mdp_super_t *tmp1, *tmp2;
814 
815 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
816 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
817 
818 	if (!tmp1 || !tmp2) {
819 		ret = 0;
820 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
821 		goto abort;
822 	}
823 
824 	*tmp1 = *sb1;
825 	*tmp2 = *sb2;
826 
827 	/*
828 	 * nr_disks is not constant
829 	 */
830 	tmp1->nr_disks = 0;
831 	tmp2->nr_disks = 0;
832 
833 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
834 abort:
835 	kfree(tmp1);
836 	kfree(tmp2);
837 	return ret;
838 }
839 
840 static u32 md_csum_fold(u32 csum)
841 {
842 	csum = (csum & 0xffff) + (csum >> 16);
843 	return (csum & 0xffff) + (csum >> 16);
844 }
845 
846 static unsigned int calc_sb_csum(mdp_super_t *sb)
847 {
848 	u64 newcsum = 0;
849 	u32 *sb32 = (u32*)sb;
850 	int i;
851 	unsigned int disk_csum, csum;
852 
853 	disk_csum = sb->sb_csum;
854 	sb->sb_csum = 0;
855 
856 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
857 		newcsum += sb32[i];
858 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
859 
860 #ifdef CONFIG_ALPHA
861 	/* This used to use csum_partial, which was wrong for several
862 	 * reasons including that different results are returned on
863 	 * different architectures.  It isn't critical that we get exactly
864 	 * the same return value as before (we always csum_fold before
865 	 * testing, and that removes any differences).  However as we
866 	 * know that csum_partial always returned a 16bit value on
867 	 * alphas, do a fold to maximise conformity to previous behaviour.
868 	 */
869 	sb->sb_csum = md_csum_fold(disk_csum);
870 #else
871 	sb->sb_csum = disk_csum;
872 #endif
873 	return csum;
874 }
875 
876 /*
877  * Handle superblock details.
878  * We want to be able to handle multiple superblock formats
879  * so we have a common interface to them all, and an array of
880  * different handlers.
881  * We rely on user-space to write the initial superblock, and support
882  * reading and updating of superblocks.
883  * Interface methods are:
884  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
885  *      loads and validates a superblock on dev.
886  *      if refdev != NULL, compare superblocks on both devices
887  *    Return:
888  *      0 - dev has a superblock that is compatible with refdev
889  *      1 - dev has a superblock that is compatible and newer than refdev
890  *          so dev should be used as the refdev in future
891  *     -EINVAL superblock incompatible or invalid
892  *     -othererror e.g. -EIO
893  *
894  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
895  *      Verify that dev is acceptable into mddev.
896  *       The first time, mddev->raid_disks will be 0, and data from
897  *       dev should be merged in.  Subsequent calls check that dev
898  *       is new enough.  Return 0 or -EINVAL
899  *
900  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
901  *     Update the superblock for rdev with data in mddev
902  *     This does not write to disc.
903  *
904  */
905 
906 struct super_type  {
907 	char		    *name;
908 	struct module	    *owner;
909 	int		    (*load_super)(struct md_rdev *rdev,
910 					  struct md_rdev *refdev,
911 					  int minor_version);
912 	int		    (*validate_super)(struct mddev *mddev,
913 					      struct md_rdev *rdev);
914 	void		    (*sync_super)(struct mddev *mddev,
915 					  struct md_rdev *rdev);
916 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
917 						sector_t num_sectors);
918 	int		    (*allow_new_offset)(struct md_rdev *rdev,
919 						unsigned long long new_offset);
920 };
921 
922 /*
923  * Check that the given mddev has no bitmap.
924  *
925  * This function is called from the run method of all personalities that do not
926  * support bitmaps. It prints an error message and returns non-zero if mddev
927  * has a bitmap. Otherwise, it returns 0.
928  *
929  */
930 int md_check_no_bitmap(struct mddev *mddev)
931 {
932 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
933 		return 0;
934 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
935 		mdname(mddev), mddev->pers->name);
936 	return 1;
937 }
938 EXPORT_SYMBOL(md_check_no_bitmap);
939 
940 /*
941  * load_super for 0.90.0
942  */
943 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
944 {
945 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
946 	mdp_super_t *sb;
947 	int ret;
948 
949 	/*
950 	 * Calculate the position of the superblock (512byte sectors),
951 	 * it's at the end of the disk.
952 	 *
953 	 * It also happens to be a multiple of 4Kb.
954 	 */
955 	rdev->sb_start = calc_dev_sboffset(rdev);
956 
957 	ret = read_disk_sb(rdev, MD_SB_BYTES);
958 	if (ret) return ret;
959 
960 	ret = -EINVAL;
961 
962 	bdevname(rdev->bdev, b);
963 	sb = page_address(rdev->sb_page);
964 
965 	if (sb->md_magic != MD_SB_MAGIC) {
966 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
967 		       b);
968 		goto abort;
969 	}
970 
971 	if (sb->major_version != 0 ||
972 	    sb->minor_version < 90 ||
973 	    sb->minor_version > 91) {
974 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
975 			sb->major_version, sb->minor_version,
976 			b);
977 		goto abort;
978 	}
979 
980 	if (sb->raid_disks <= 0)
981 		goto abort;
982 
983 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
984 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
985 			b);
986 		goto abort;
987 	}
988 
989 	rdev->preferred_minor = sb->md_minor;
990 	rdev->data_offset = 0;
991 	rdev->new_data_offset = 0;
992 	rdev->sb_size = MD_SB_BYTES;
993 	rdev->badblocks.shift = -1;
994 
995 	if (sb->level == LEVEL_MULTIPATH)
996 		rdev->desc_nr = -1;
997 	else
998 		rdev->desc_nr = sb->this_disk.number;
999 
1000 	if (!refdev) {
1001 		ret = 1;
1002 	} else {
1003 		__u64 ev1, ev2;
1004 		mdp_super_t *refsb = page_address(refdev->sb_page);
1005 		if (!uuid_equal(refsb, sb)) {
1006 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1007 				b, bdevname(refdev->bdev,b2));
1008 			goto abort;
1009 		}
1010 		if (!sb_equal(refsb, sb)) {
1011 			printk(KERN_WARNING "md: %s has same UUID"
1012 			       " but different superblock to %s\n",
1013 			       b, bdevname(refdev->bdev, b2));
1014 			goto abort;
1015 		}
1016 		ev1 = md_event(sb);
1017 		ev2 = md_event(refsb);
1018 		if (ev1 > ev2)
1019 			ret = 1;
1020 		else
1021 			ret = 0;
1022 	}
1023 	rdev->sectors = rdev->sb_start;
1024 	/* Limit to 4TB as metadata cannot record more than that.
1025 	 * (not needed for Linear and RAID0 as metadata doesn't
1026 	 * record this size)
1027 	 */
1028 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1029 		rdev->sectors = (2ULL << 32) - 2;
1030 
1031 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1032 		/* "this cannot possibly happen" ... */
1033 		ret = -EINVAL;
1034 
1035  abort:
1036 	return ret;
1037 }
1038 
1039 /*
1040  * validate_super for 0.90.0
1041  */
1042 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1043 {
1044 	mdp_disk_t *desc;
1045 	mdp_super_t *sb = page_address(rdev->sb_page);
1046 	__u64 ev1 = md_event(sb);
1047 
1048 	rdev->raid_disk = -1;
1049 	clear_bit(Faulty, &rdev->flags);
1050 	clear_bit(In_sync, &rdev->flags);
1051 	clear_bit(Bitmap_sync, &rdev->flags);
1052 	clear_bit(WriteMostly, &rdev->flags);
1053 
1054 	if (mddev->raid_disks == 0) {
1055 		mddev->major_version = 0;
1056 		mddev->minor_version = sb->minor_version;
1057 		mddev->patch_version = sb->patch_version;
1058 		mddev->external = 0;
1059 		mddev->chunk_sectors = sb->chunk_size >> 9;
1060 		mddev->ctime = sb->ctime;
1061 		mddev->utime = sb->utime;
1062 		mddev->level = sb->level;
1063 		mddev->clevel[0] = 0;
1064 		mddev->layout = sb->layout;
1065 		mddev->raid_disks = sb->raid_disks;
1066 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1067 		mddev->events = ev1;
1068 		mddev->bitmap_info.offset = 0;
1069 		mddev->bitmap_info.space = 0;
1070 		/* bitmap can use 60 K after the 4K superblocks */
1071 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1072 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1073 		mddev->reshape_backwards = 0;
1074 
1075 		if (mddev->minor_version >= 91) {
1076 			mddev->reshape_position = sb->reshape_position;
1077 			mddev->delta_disks = sb->delta_disks;
1078 			mddev->new_level = sb->new_level;
1079 			mddev->new_layout = sb->new_layout;
1080 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1081 			if (mddev->delta_disks < 0)
1082 				mddev->reshape_backwards = 1;
1083 		} else {
1084 			mddev->reshape_position = MaxSector;
1085 			mddev->delta_disks = 0;
1086 			mddev->new_level = mddev->level;
1087 			mddev->new_layout = mddev->layout;
1088 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1089 		}
1090 
1091 		if (sb->state & (1<<MD_SB_CLEAN))
1092 			mddev->recovery_cp = MaxSector;
1093 		else {
1094 			if (sb->events_hi == sb->cp_events_hi &&
1095 				sb->events_lo == sb->cp_events_lo) {
1096 				mddev->recovery_cp = sb->recovery_cp;
1097 			} else
1098 				mddev->recovery_cp = 0;
1099 		}
1100 
1101 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1102 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1103 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1104 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1105 
1106 		mddev->max_disks = MD_SB_DISKS;
1107 
1108 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1109 		    mddev->bitmap_info.file == NULL) {
1110 			mddev->bitmap_info.offset =
1111 				mddev->bitmap_info.default_offset;
1112 			mddev->bitmap_info.space =
1113 				mddev->bitmap_info.default_space;
1114 		}
1115 
1116 	} else if (mddev->pers == NULL) {
1117 		/* Insist on good event counter while assembling, except
1118 		 * for spares (which don't need an event count) */
1119 		++ev1;
1120 		if (sb->disks[rdev->desc_nr].state & (
1121 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1122 			if (ev1 < mddev->events)
1123 				return -EINVAL;
1124 	} else if (mddev->bitmap) {
1125 		/* if adding to array with a bitmap, then we can accept an
1126 		 * older device ... but not too old.
1127 		 */
1128 		if (ev1 < mddev->bitmap->events_cleared)
1129 			return 0;
1130 		if (ev1 < mddev->events)
1131 			set_bit(Bitmap_sync, &rdev->flags);
1132 	} else {
1133 		if (ev1 < mddev->events)
1134 			/* just a hot-add of a new device, leave raid_disk at -1 */
1135 			return 0;
1136 	}
1137 
1138 	if (mddev->level != LEVEL_MULTIPATH) {
1139 		desc = sb->disks + rdev->desc_nr;
1140 
1141 		if (desc->state & (1<<MD_DISK_FAULTY))
1142 			set_bit(Faulty, &rdev->flags);
1143 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1144 			    desc->raid_disk < mddev->raid_disks */) {
1145 			set_bit(In_sync, &rdev->flags);
1146 			rdev->raid_disk = desc->raid_disk;
1147 			rdev->saved_raid_disk = desc->raid_disk;
1148 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1149 			/* active but not in sync implies recovery up to
1150 			 * reshape position.  We don't know exactly where
1151 			 * that is, so set to zero for now */
1152 			if (mddev->minor_version >= 91) {
1153 				rdev->recovery_offset = 0;
1154 				rdev->raid_disk = desc->raid_disk;
1155 			}
1156 		}
1157 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1158 			set_bit(WriteMostly, &rdev->flags);
1159 	} else /* MULTIPATH are always insync */
1160 		set_bit(In_sync, &rdev->flags);
1161 	return 0;
1162 }
1163 
1164 /*
1165  * sync_super for 0.90.0
1166  */
1167 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1168 {
1169 	mdp_super_t *sb;
1170 	struct md_rdev *rdev2;
1171 	int next_spare = mddev->raid_disks;
1172 
1173 	/* make rdev->sb match mddev data..
1174 	 *
1175 	 * 1/ zero out disks
1176 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1177 	 * 3/ any empty disks < next_spare become removed
1178 	 *
1179 	 * disks[0] gets initialised to REMOVED because
1180 	 * we cannot be sure from other fields if it has
1181 	 * been initialised or not.
1182 	 */
1183 	int i;
1184 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1185 
1186 	rdev->sb_size = MD_SB_BYTES;
1187 
1188 	sb = page_address(rdev->sb_page);
1189 
1190 	memset(sb, 0, sizeof(*sb));
1191 
1192 	sb->md_magic = MD_SB_MAGIC;
1193 	sb->major_version = mddev->major_version;
1194 	sb->patch_version = mddev->patch_version;
1195 	sb->gvalid_words  = 0; /* ignored */
1196 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1197 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1198 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1199 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1200 
1201 	sb->ctime = mddev->ctime;
1202 	sb->level = mddev->level;
1203 	sb->size = mddev->dev_sectors / 2;
1204 	sb->raid_disks = mddev->raid_disks;
1205 	sb->md_minor = mddev->md_minor;
1206 	sb->not_persistent = 0;
1207 	sb->utime = mddev->utime;
1208 	sb->state = 0;
1209 	sb->events_hi = (mddev->events>>32);
1210 	sb->events_lo = (u32)mddev->events;
1211 
1212 	if (mddev->reshape_position == MaxSector)
1213 		sb->minor_version = 90;
1214 	else {
1215 		sb->minor_version = 91;
1216 		sb->reshape_position = mddev->reshape_position;
1217 		sb->new_level = mddev->new_level;
1218 		sb->delta_disks = mddev->delta_disks;
1219 		sb->new_layout = mddev->new_layout;
1220 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1221 	}
1222 	mddev->minor_version = sb->minor_version;
1223 	if (mddev->in_sync)
1224 	{
1225 		sb->recovery_cp = mddev->recovery_cp;
1226 		sb->cp_events_hi = (mddev->events>>32);
1227 		sb->cp_events_lo = (u32)mddev->events;
1228 		if (mddev->recovery_cp == MaxSector)
1229 			sb->state = (1<< MD_SB_CLEAN);
1230 	} else
1231 		sb->recovery_cp = 0;
1232 
1233 	sb->layout = mddev->layout;
1234 	sb->chunk_size = mddev->chunk_sectors << 9;
1235 
1236 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1237 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1238 
1239 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1240 	rdev_for_each(rdev2, mddev) {
1241 		mdp_disk_t *d;
1242 		int desc_nr;
1243 		int is_active = test_bit(In_sync, &rdev2->flags);
1244 
1245 		if (rdev2->raid_disk >= 0 &&
1246 		    sb->minor_version >= 91)
1247 			/* we have nowhere to store the recovery_offset,
1248 			 * but if it is not below the reshape_position,
1249 			 * we can piggy-back on that.
1250 			 */
1251 			is_active = 1;
1252 		if (rdev2->raid_disk < 0 ||
1253 		    test_bit(Faulty, &rdev2->flags))
1254 			is_active = 0;
1255 		if (is_active)
1256 			desc_nr = rdev2->raid_disk;
1257 		else
1258 			desc_nr = next_spare++;
1259 		rdev2->desc_nr = desc_nr;
1260 		d = &sb->disks[rdev2->desc_nr];
1261 		nr_disks++;
1262 		d->number = rdev2->desc_nr;
1263 		d->major = MAJOR(rdev2->bdev->bd_dev);
1264 		d->minor = MINOR(rdev2->bdev->bd_dev);
1265 		if (is_active)
1266 			d->raid_disk = rdev2->raid_disk;
1267 		else
1268 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1269 		if (test_bit(Faulty, &rdev2->flags))
1270 			d->state = (1<<MD_DISK_FAULTY);
1271 		else if (is_active) {
1272 			d->state = (1<<MD_DISK_ACTIVE);
1273 			if (test_bit(In_sync, &rdev2->flags))
1274 				d->state |= (1<<MD_DISK_SYNC);
1275 			active++;
1276 			working++;
1277 		} else {
1278 			d->state = 0;
1279 			spare++;
1280 			working++;
1281 		}
1282 		if (test_bit(WriteMostly, &rdev2->flags))
1283 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1284 	}
1285 	/* now set the "removed" and "faulty" bits on any missing devices */
1286 	for (i=0 ; i < mddev->raid_disks ; i++) {
1287 		mdp_disk_t *d = &sb->disks[i];
1288 		if (d->state == 0 && d->number == 0) {
1289 			d->number = i;
1290 			d->raid_disk = i;
1291 			d->state = (1<<MD_DISK_REMOVED);
1292 			d->state |= (1<<MD_DISK_FAULTY);
1293 			failed++;
1294 		}
1295 	}
1296 	sb->nr_disks = nr_disks;
1297 	sb->active_disks = active;
1298 	sb->working_disks = working;
1299 	sb->failed_disks = failed;
1300 	sb->spare_disks = spare;
1301 
1302 	sb->this_disk = sb->disks[rdev->desc_nr];
1303 	sb->sb_csum = calc_sb_csum(sb);
1304 }
1305 
1306 /*
1307  * rdev_size_change for 0.90.0
1308  */
1309 static unsigned long long
1310 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1311 {
1312 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1313 		return 0; /* component must fit device */
1314 	if (rdev->mddev->bitmap_info.offset)
1315 		return 0; /* can't move bitmap */
1316 	rdev->sb_start = calc_dev_sboffset(rdev);
1317 	if (!num_sectors || num_sectors > rdev->sb_start)
1318 		num_sectors = rdev->sb_start;
1319 	/* Limit to 4TB as metadata cannot record more than that.
1320 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1321 	 */
1322 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1323 		num_sectors = (2ULL << 32) - 2;
1324 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1325 		       rdev->sb_page);
1326 	md_super_wait(rdev->mddev);
1327 	return num_sectors;
1328 }
1329 
1330 static int
1331 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1332 {
1333 	/* non-zero offset changes not possible with v0.90 */
1334 	return new_offset == 0;
1335 }
1336 
1337 /*
1338  * version 1 superblock
1339  */
1340 
1341 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1342 {
1343 	__le32 disk_csum;
1344 	u32 csum;
1345 	unsigned long long newcsum;
1346 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1347 	__le32 *isuper = (__le32*)sb;
1348 
1349 	disk_csum = sb->sb_csum;
1350 	sb->sb_csum = 0;
1351 	newcsum = 0;
1352 	for (; size >= 4; size -= 4)
1353 		newcsum += le32_to_cpu(*isuper++);
1354 
1355 	if (size == 2)
1356 		newcsum += le16_to_cpu(*(__le16*) isuper);
1357 
1358 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1359 	sb->sb_csum = disk_csum;
1360 	return cpu_to_le32(csum);
1361 }
1362 
1363 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1364 			    int acknowledged);
1365 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1366 {
1367 	struct mdp_superblock_1 *sb;
1368 	int ret;
1369 	sector_t sb_start;
1370 	sector_t sectors;
1371 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1372 	int bmask;
1373 
1374 	/*
1375 	 * Calculate the position of the superblock in 512byte sectors.
1376 	 * It is always aligned to a 4K boundary and
1377 	 * depeding on minor_version, it can be:
1378 	 * 0: At least 8K, but less than 12K, from end of device
1379 	 * 1: At start of device
1380 	 * 2: 4K from start of device.
1381 	 */
1382 	switch(minor_version) {
1383 	case 0:
1384 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1385 		sb_start -= 8*2;
1386 		sb_start &= ~(sector_t)(4*2-1);
1387 		break;
1388 	case 1:
1389 		sb_start = 0;
1390 		break;
1391 	case 2:
1392 		sb_start = 8;
1393 		break;
1394 	default:
1395 		return -EINVAL;
1396 	}
1397 	rdev->sb_start = sb_start;
1398 
1399 	/* superblock is rarely larger than 1K, but it can be larger,
1400 	 * and it is safe to read 4k, so we do that
1401 	 */
1402 	ret = read_disk_sb(rdev, 4096);
1403 	if (ret) return ret;
1404 
1405 	sb = page_address(rdev->sb_page);
1406 
1407 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1408 	    sb->major_version != cpu_to_le32(1) ||
1409 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1410 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1411 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1412 		return -EINVAL;
1413 
1414 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1415 		printk("md: invalid superblock checksum on %s\n",
1416 			bdevname(rdev->bdev,b));
1417 		return -EINVAL;
1418 	}
1419 	if (le64_to_cpu(sb->data_size) < 10) {
1420 		printk("md: data_size too small on %s\n",
1421 		       bdevname(rdev->bdev,b));
1422 		return -EINVAL;
1423 	}
1424 	if (sb->pad0 ||
1425 	    sb->pad3[0] ||
1426 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1427 		/* Some padding is non-zero, might be a new feature */
1428 		return -EINVAL;
1429 
1430 	rdev->preferred_minor = 0xffff;
1431 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1432 	rdev->new_data_offset = rdev->data_offset;
1433 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1434 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1435 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1436 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1437 
1438 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1439 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1440 	if (rdev->sb_size & bmask)
1441 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1442 
1443 	if (minor_version
1444 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1445 		return -EINVAL;
1446 	if (minor_version
1447 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1448 		return -EINVAL;
1449 
1450 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1451 		rdev->desc_nr = -1;
1452 	else
1453 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1454 
1455 	if (!rdev->bb_page) {
1456 		rdev->bb_page = alloc_page(GFP_KERNEL);
1457 		if (!rdev->bb_page)
1458 			return -ENOMEM;
1459 	}
1460 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1461 	    rdev->badblocks.count == 0) {
1462 		/* need to load the bad block list.
1463 		 * Currently we limit it to one page.
1464 		 */
1465 		s32 offset;
1466 		sector_t bb_sector;
1467 		u64 *bbp;
1468 		int i;
1469 		int sectors = le16_to_cpu(sb->bblog_size);
1470 		if (sectors > (PAGE_SIZE / 512))
1471 			return -EINVAL;
1472 		offset = le32_to_cpu(sb->bblog_offset);
1473 		if (offset == 0)
1474 			return -EINVAL;
1475 		bb_sector = (long long)offset;
1476 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1477 				  rdev->bb_page, READ, true))
1478 			return -EIO;
1479 		bbp = (u64 *)page_address(rdev->bb_page);
1480 		rdev->badblocks.shift = sb->bblog_shift;
1481 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1482 			u64 bb = le64_to_cpu(*bbp);
1483 			int count = bb & (0x3ff);
1484 			u64 sector = bb >> 10;
1485 			sector <<= sb->bblog_shift;
1486 			count <<= sb->bblog_shift;
1487 			if (bb + 1 == 0)
1488 				break;
1489 			if (md_set_badblocks(&rdev->badblocks,
1490 					     sector, count, 1) == 0)
1491 				return -EINVAL;
1492 		}
1493 	} else if (sb->bblog_offset != 0)
1494 		rdev->badblocks.shift = 0;
1495 
1496 	if (!refdev) {
1497 		ret = 1;
1498 	} else {
1499 		__u64 ev1, ev2;
1500 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1501 
1502 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1503 		    sb->level != refsb->level ||
1504 		    sb->layout != refsb->layout ||
1505 		    sb->chunksize != refsb->chunksize) {
1506 			printk(KERN_WARNING "md: %s has strangely different"
1507 				" superblock to %s\n",
1508 				bdevname(rdev->bdev,b),
1509 				bdevname(refdev->bdev,b2));
1510 			return -EINVAL;
1511 		}
1512 		ev1 = le64_to_cpu(sb->events);
1513 		ev2 = le64_to_cpu(refsb->events);
1514 
1515 		if (ev1 > ev2)
1516 			ret = 1;
1517 		else
1518 			ret = 0;
1519 	}
1520 	if (minor_version) {
1521 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1522 		sectors -= rdev->data_offset;
1523 	} else
1524 		sectors = rdev->sb_start;
1525 	if (sectors < le64_to_cpu(sb->data_size))
1526 		return -EINVAL;
1527 	rdev->sectors = le64_to_cpu(sb->data_size);
1528 	return ret;
1529 }
1530 
1531 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1532 {
1533 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1534 	__u64 ev1 = le64_to_cpu(sb->events);
1535 
1536 	rdev->raid_disk = -1;
1537 	clear_bit(Faulty, &rdev->flags);
1538 	clear_bit(In_sync, &rdev->flags);
1539 	clear_bit(Bitmap_sync, &rdev->flags);
1540 	clear_bit(WriteMostly, &rdev->flags);
1541 
1542 	if (mddev->raid_disks == 0) {
1543 		mddev->major_version = 1;
1544 		mddev->patch_version = 0;
1545 		mddev->external = 0;
1546 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1547 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1548 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1549 		mddev->level = le32_to_cpu(sb->level);
1550 		mddev->clevel[0] = 0;
1551 		mddev->layout = le32_to_cpu(sb->layout);
1552 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1553 		mddev->dev_sectors = le64_to_cpu(sb->size);
1554 		mddev->events = ev1;
1555 		mddev->bitmap_info.offset = 0;
1556 		mddev->bitmap_info.space = 0;
1557 		/* Default location for bitmap is 1K after superblock
1558 		 * using 3K - total of 4K
1559 		 */
1560 		mddev->bitmap_info.default_offset = 1024 >> 9;
1561 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1562 		mddev->reshape_backwards = 0;
1563 
1564 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1565 		memcpy(mddev->uuid, sb->set_uuid, 16);
1566 
1567 		mddev->max_disks =  (4096-256)/2;
1568 
1569 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1570 		    mddev->bitmap_info.file == NULL) {
1571 			mddev->bitmap_info.offset =
1572 				(__s32)le32_to_cpu(sb->bitmap_offset);
1573 			/* Metadata doesn't record how much space is available.
1574 			 * For 1.0, we assume we can use up to the superblock
1575 			 * if before, else to 4K beyond superblock.
1576 			 * For others, assume no change is possible.
1577 			 */
1578 			if (mddev->minor_version > 0)
1579 				mddev->bitmap_info.space = 0;
1580 			else if (mddev->bitmap_info.offset > 0)
1581 				mddev->bitmap_info.space =
1582 					8 - mddev->bitmap_info.offset;
1583 			else
1584 				mddev->bitmap_info.space =
1585 					-mddev->bitmap_info.offset;
1586 		}
1587 
1588 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1589 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1590 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1591 			mddev->new_level = le32_to_cpu(sb->new_level);
1592 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1593 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1594 			if (mddev->delta_disks < 0 ||
1595 			    (mddev->delta_disks == 0 &&
1596 			     (le32_to_cpu(sb->feature_map)
1597 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1598 				mddev->reshape_backwards = 1;
1599 		} else {
1600 			mddev->reshape_position = MaxSector;
1601 			mddev->delta_disks = 0;
1602 			mddev->new_level = mddev->level;
1603 			mddev->new_layout = mddev->layout;
1604 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1605 		}
1606 
1607 	} else if (mddev->pers == NULL) {
1608 		/* Insist of good event counter while assembling, except for
1609 		 * spares (which don't need an event count) */
1610 		++ev1;
1611 		if (rdev->desc_nr >= 0 &&
1612 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1613 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1614 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1615 			if (ev1 < mddev->events)
1616 				return -EINVAL;
1617 	} else if (mddev->bitmap) {
1618 		/* If adding to array with a bitmap, then we can accept an
1619 		 * older device, but not too old.
1620 		 */
1621 		if (ev1 < mddev->bitmap->events_cleared)
1622 			return 0;
1623 		if (ev1 < mddev->events)
1624 			set_bit(Bitmap_sync, &rdev->flags);
1625 	} else {
1626 		if (ev1 < mddev->events)
1627 			/* just a hot-add of a new device, leave raid_disk at -1 */
1628 			return 0;
1629 	}
1630 	if (mddev->level != LEVEL_MULTIPATH) {
1631 		int role;
1632 		if (rdev->desc_nr < 0 ||
1633 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1634 			role = MD_DISK_ROLE_SPARE;
1635 			rdev->desc_nr = -1;
1636 		} else
1637 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1638 		switch(role) {
1639 		case MD_DISK_ROLE_SPARE: /* spare */
1640 			break;
1641 		case MD_DISK_ROLE_FAULTY: /* faulty */
1642 			set_bit(Faulty, &rdev->flags);
1643 			break;
1644 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1645 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1646 				/* journal device without journal feature */
1647 				printk(KERN_WARNING
1648 				  "md: journal device provided without journal feature, ignoring the device\n");
1649 				return -EINVAL;
1650 			}
1651 			set_bit(Journal, &rdev->flags);
1652 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1653 			if (mddev->recovery_cp == MaxSector)
1654 				set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1655 			rdev->raid_disk = mddev->raid_disks;
1656 			break;
1657 		default:
1658 			rdev->saved_raid_disk = role;
1659 			if ((le32_to_cpu(sb->feature_map) &
1660 			     MD_FEATURE_RECOVERY_OFFSET)) {
1661 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1662 				if (!(le32_to_cpu(sb->feature_map) &
1663 				      MD_FEATURE_RECOVERY_BITMAP))
1664 					rdev->saved_raid_disk = -1;
1665 			} else
1666 				set_bit(In_sync, &rdev->flags);
1667 			rdev->raid_disk = role;
1668 			break;
1669 		}
1670 		if (sb->devflags & WriteMostly1)
1671 			set_bit(WriteMostly, &rdev->flags);
1672 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1673 			set_bit(Replacement, &rdev->flags);
1674 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1675 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1676 	} else /* MULTIPATH are always insync */
1677 		set_bit(In_sync, &rdev->flags);
1678 
1679 	return 0;
1680 }
1681 
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684 	struct mdp_superblock_1 *sb;
1685 	struct md_rdev *rdev2;
1686 	int max_dev, i;
1687 	/* make rdev->sb match mddev and rdev data. */
1688 
1689 	sb = page_address(rdev->sb_page);
1690 
1691 	sb->feature_map = 0;
1692 	sb->pad0 = 0;
1693 	sb->recovery_offset = cpu_to_le64(0);
1694 	memset(sb->pad3, 0, sizeof(sb->pad3));
1695 
1696 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1697 	sb->events = cpu_to_le64(mddev->events);
1698 	if (mddev->in_sync)
1699 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1701 		sb->resync_offset = cpu_to_le64(MaxSector);
1702 	else
1703 		sb->resync_offset = cpu_to_le64(0);
1704 
1705 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1706 
1707 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1708 	sb->size = cpu_to_le64(mddev->dev_sectors);
1709 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1710 	sb->level = cpu_to_le32(mddev->level);
1711 	sb->layout = cpu_to_le32(mddev->layout);
1712 
1713 	if (test_bit(WriteMostly, &rdev->flags))
1714 		sb->devflags |= WriteMostly1;
1715 	else
1716 		sb->devflags &= ~WriteMostly1;
1717 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1718 	sb->data_size = cpu_to_le64(rdev->sectors);
1719 
1720 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1721 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1722 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1723 	}
1724 
1725 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1726 	    !test_bit(In_sync, &rdev->flags)) {
1727 		sb->feature_map |=
1728 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1729 		sb->recovery_offset =
1730 			cpu_to_le64(rdev->recovery_offset);
1731 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1732 			sb->feature_map |=
1733 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1734 	}
1735 	/* Note: recovery_offset and journal_tail share space  */
1736 	if (test_bit(Journal, &rdev->flags))
1737 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1738 	if (test_bit(Replacement, &rdev->flags))
1739 		sb->feature_map |=
1740 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1741 
1742 	if (mddev->reshape_position != MaxSector) {
1743 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1744 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1745 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1746 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1747 		sb->new_level = cpu_to_le32(mddev->new_level);
1748 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1749 		if (mddev->delta_disks == 0 &&
1750 		    mddev->reshape_backwards)
1751 			sb->feature_map
1752 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1753 		if (rdev->new_data_offset != rdev->data_offset) {
1754 			sb->feature_map
1755 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1756 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1757 							     - rdev->data_offset));
1758 		}
1759 	}
1760 
1761 	if (mddev_is_clustered(mddev))
1762 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1763 
1764 	if (rdev->badblocks.count == 0)
1765 		/* Nothing to do for bad blocks*/ ;
1766 	else if (sb->bblog_offset == 0)
1767 		/* Cannot record bad blocks on this device */
1768 		md_error(mddev, rdev);
1769 	else {
1770 		struct badblocks *bb = &rdev->badblocks;
1771 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1772 		u64 *p = bb->page;
1773 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1774 		if (bb->changed) {
1775 			unsigned seq;
1776 
1777 retry:
1778 			seq = read_seqbegin(&bb->lock);
1779 
1780 			memset(bbp, 0xff, PAGE_SIZE);
1781 
1782 			for (i = 0 ; i < bb->count ; i++) {
1783 				u64 internal_bb = p[i];
1784 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1785 						| BB_LEN(internal_bb));
1786 				bbp[i] = cpu_to_le64(store_bb);
1787 			}
1788 			bb->changed = 0;
1789 			if (read_seqretry(&bb->lock, seq))
1790 				goto retry;
1791 
1792 			bb->sector = (rdev->sb_start +
1793 				      (int)le32_to_cpu(sb->bblog_offset));
1794 			bb->size = le16_to_cpu(sb->bblog_size);
1795 		}
1796 	}
1797 
1798 	max_dev = 0;
1799 	rdev_for_each(rdev2, mddev)
1800 		if (rdev2->desc_nr+1 > max_dev)
1801 			max_dev = rdev2->desc_nr+1;
1802 
1803 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1804 		int bmask;
1805 		sb->max_dev = cpu_to_le32(max_dev);
1806 		rdev->sb_size = max_dev * 2 + 256;
1807 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1808 		if (rdev->sb_size & bmask)
1809 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1810 	} else
1811 		max_dev = le32_to_cpu(sb->max_dev);
1812 
1813 	for (i=0; i<max_dev;i++)
1814 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1815 
1816 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1817 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1818 
1819 	rdev_for_each(rdev2, mddev) {
1820 		i = rdev2->desc_nr;
1821 		if (test_bit(Faulty, &rdev2->flags))
1822 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1823 		else if (test_bit(In_sync, &rdev2->flags))
1824 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1825 		else if (test_bit(Journal, &rdev2->flags))
1826 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1827 		else if (rdev2->raid_disk >= 0)
1828 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1829 		else
1830 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1831 	}
1832 
1833 	sb->sb_csum = calc_sb_1_csum(sb);
1834 }
1835 
1836 static unsigned long long
1837 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1838 {
1839 	struct mdp_superblock_1 *sb;
1840 	sector_t max_sectors;
1841 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1842 		return 0; /* component must fit device */
1843 	if (rdev->data_offset != rdev->new_data_offset)
1844 		return 0; /* too confusing */
1845 	if (rdev->sb_start < rdev->data_offset) {
1846 		/* minor versions 1 and 2; superblock before data */
1847 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1848 		max_sectors -= rdev->data_offset;
1849 		if (!num_sectors || num_sectors > max_sectors)
1850 			num_sectors = max_sectors;
1851 	} else if (rdev->mddev->bitmap_info.offset) {
1852 		/* minor version 0 with bitmap we can't move */
1853 		return 0;
1854 	} else {
1855 		/* minor version 0; superblock after data */
1856 		sector_t sb_start;
1857 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1858 		sb_start &= ~(sector_t)(4*2 - 1);
1859 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1860 		if (!num_sectors || num_sectors > max_sectors)
1861 			num_sectors = max_sectors;
1862 		rdev->sb_start = sb_start;
1863 	}
1864 	sb = page_address(rdev->sb_page);
1865 	sb->data_size = cpu_to_le64(num_sectors);
1866 	sb->super_offset = rdev->sb_start;
1867 	sb->sb_csum = calc_sb_1_csum(sb);
1868 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1869 		       rdev->sb_page);
1870 	md_super_wait(rdev->mddev);
1871 	return num_sectors;
1872 
1873 }
1874 
1875 static int
1876 super_1_allow_new_offset(struct md_rdev *rdev,
1877 			 unsigned long long new_offset)
1878 {
1879 	/* All necessary checks on new >= old have been done */
1880 	struct bitmap *bitmap;
1881 	if (new_offset >= rdev->data_offset)
1882 		return 1;
1883 
1884 	/* with 1.0 metadata, there is no metadata to tread on
1885 	 * so we can always move back */
1886 	if (rdev->mddev->minor_version == 0)
1887 		return 1;
1888 
1889 	/* otherwise we must be sure not to step on
1890 	 * any metadata, so stay:
1891 	 * 36K beyond start of superblock
1892 	 * beyond end of badblocks
1893 	 * beyond write-intent bitmap
1894 	 */
1895 	if (rdev->sb_start + (32+4)*2 > new_offset)
1896 		return 0;
1897 	bitmap = rdev->mddev->bitmap;
1898 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1899 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1900 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1901 		return 0;
1902 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1903 		return 0;
1904 
1905 	return 1;
1906 }
1907 
1908 static struct super_type super_types[] = {
1909 	[0] = {
1910 		.name	= "0.90.0",
1911 		.owner	= THIS_MODULE,
1912 		.load_super	    = super_90_load,
1913 		.validate_super	    = super_90_validate,
1914 		.sync_super	    = super_90_sync,
1915 		.rdev_size_change   = super_90_rdev_size_change,
1916 		.allow_new_offset   = super_90_allow_new_offset,
1917 	},
1918 	[1] = {
1919 		.name	= "md-1",
1920 		.owner	= THIS_MODULE,
1921 		.load_super	    = super_1_load,
1922 		.validate_super	    = super_1_validate,
1923 		.sync_super	    = super_1_sync,
1924 		.rdev_size_change   = super_1_rdev_size_change,
1925 		.allow_new_offset   = super_1_allow_new_offset,
1926 	},
1927 };
1928 
1929 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1930 {
1931 	if (mddev->sync_super) {
1932 		mddev->sync_super(mddev, rdev);
1933 		return;
1934 	}
1935 
1936 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1937 
1938 	super_types[mddev->major_version].sync_super(mddev, rdev);
1939 }
1940 
1941 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1942 {
1943 	struct md_rdev *rdev, *rdev2;
1944 
1945 	rcu_read_lock();
1946 	rdev_for_each_rcu(rdev, mddev1) {
1947 		if (test_bit(Faulty, &rdev->flags) ||
1948 		    test_bit(Journal, &rdev->flags) ||
1949 		    rdev->raid_disk == -1)
1950 			continue;
1951 		rdev_for_each_rcu(rdev2, mddev2) {
1952 			if (test_bit(Faulty, &rdev2->flags) ||
1953 			    test_bit(Journal, &rdev2->flags) ||
1954 			    rdev2->raid_disk == -1)
1955 				continue;
1956 			if (rdev->bdev->bd_contains ==
1957 			    rdev2->bdev->bd_contains) {
1958 				rcu_read_unlock();
1959 				return 1;
1960 			}
1961 		}
1962 	}
1963 	rcu_read_unlock();
1964 	return 0;
1965 }
1966 
1967 static LIST_HEAD(pending_raid_disks);
1968 
1969 /*
1970  * Try to register data integrity profile for an mddev
1971  *
1972  * This is called when an array is started and after a disk has been kicked
1973  * from the array. It only succeeds if all working and active component devices
1974  * are integrity capable with matching profiles.
1975  */
1976 int md_integrity_register(struct mddev *mddev)
1977 {
1978 	struct md_rdev *rdev, *reference = NULL;
1979 
1980 	if (list_empty(&mddev->disks))
1981 		return 0; /* nothing to do */
1982 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1983 		return 0; /* shouldn't register, or already is */
1984 	rdev_for_each(rdev, mddev) {
1985 		/* skip spares and non-functional disks */
1986 		if (test_bit(Faulty, &rdev->flags))
1987 			continue;
1988 		if (rdev->raid_disk < 0)
1989 			continue;
1990 		if (!reference) {
1991 			/* Use the first rdev as the reference */
1992 			reference = rdev;
1993 			continue;
1994 		}
1995 		/* does this rdev's profile match the reference profile? */
1996 		if (blk_integrity_compare(reference->bdev->bd_disk,
1997 				rdev->bdev->bd_disk) < 0)
1998 			return -EINVAL;
1999 	}
2000 	if (!reference || !bdev_get_integrity(reference->bdev))
2001 		return 0;
2002 	/*
2003 	 * All component devices are integrity capable and have matching
2004 	 * profiles, register the common profile for the md device.
2005 	 */
2006 	blk_integrity_register(mddev->gendisk,
2007 			       bdev_get_integrity(reference->bdev));
2008 
2009 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2010 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2011 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2012 		       mdname(mddev));
2013 		return -EINVAL;
2014 	}
2015 	return 0;
2016 }
2017 EXPORT_SYMBOL(md_integrity_register);
2018 
2019 /* Disable data integrity if non-capable/non-matching disk is being added */
2020 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2021 {
2022 	struct blk_integrity *bi_rdev;
2023 	struct blk_integrity *bi_mddev;
2024 
2025 	if (!mddev->gendisk)
2026 		return;
2027 
2028 	bi_rdev = bdev_get_integrity(rdev->bdev);
2029 	bi_mddev = blk_get_integrity(mddev->gendisk);
2030 
2031 	if (!bi_mddev) /* nothing to do */
2032 		return;
2033 	if (rdev->raid_disk < 0) /* skip spares */
2034 		return;
2035 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2036 					     rdev->bdev->bd_disk) >= 0)
2037 		return;
2038 	WARN_ON_ONCE(!mddev->suspended);
2039 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2040 	blk_integrity_unregister(mddev->gendisk);
2041 }
2042 EXPORT_SYMBOL(md_integrity_add_rdev);
2043 
2044 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2045 {
2046 	char b[BDEVNAME_SIZE];
2047 	struct kobject *ko;
2048 	int err;
2049 
2050 	/* prevent duplicates */
2051 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2052 		return -EEXIST;
2053 
2054 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2055 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2056 			rdev->sectors < mddev->dev_sectors)) {
2057 		if (mddev->pers) {
2058 			/* Cannot change size, so fail
2059 			 * If mddev->level <= 0, then we don't care
2060 			 * about aligning sizes (e.g. linear)
2061 			 */
2062 			if (mddev->level > 0)
2063 				return -ENOSPC;
2064 		} else
2065 			mddev->dev_sectors = rdev->sectors;
2066 	}
2067 
2068 	/* Verify rdev->desc_nr is unique.
2069 	 * If it is -1, assign a free number, else
2070 	 * check number is not in use
2071 	 */
2072 	rcu_read_lock();
2073 	if (rdev->desc_nr < 0) {
2074 		int choice = 0;
2075 		if (mddev->pers)
2076 			choice = mddev->raid_disks;
2077 		while (md_find_rdev_nr_rcu(mddev, choice))
2078 			choice++;
2079 		rdev->desc_nr = choice;
2080 	} else {
2081 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2082 			rcu_read_unlock();
2083 			return -EBUSY;
2084 		}
2085 	}
2086 	rcu_read_unlock();
2087 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2088 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2089 		       mdname(mddev), mddev->max_disks);
2090 		return -EBUSY;
2091 	}
2092 	bdevname(rdev->bdev,b);
2093 	strreplace(b, '/', '!');
2094 
2095 	rdev->mddev = mddev;
2096 	printk(KERN_INFO "md: bind<%s>\n", b);
2097 
2098 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2099 		goto fail;
2100 
2101 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2102 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2103 		/* failure here is OK */;
2104 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2105 
2106 	list_add_rcu(&rdev->same_set, &mddev->disks);
2107 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2108 
2109 	/* May as well allow recovery to be retried once */
2110 	mddev->recovery_disabled++;
2111 
2112 	return 0;
2113 
2114  fail:
2115 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2116 	       b, mdname(mddev));
2117 	return err;
2118 }
2119 
2120 static void md_delayed_delete(struct work_struct *ws)
2121 {
2122 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2123 	kobject_del(&rdev->kobj);
2124 	kobject_put(&rdev->kobj);
2125 }
2126 
2127 static void unbind_rdev_from_array(struct md_rdev *rdev)
2128 {
2129 	char b[BDEVNAME_SIZE];
2130 
2131 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2132 	list_del_rcu(&rdev->same_set);
2133 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2134 	rdev->mddev = NULL;
2135 	sysfs_remove_link(&rdev->kobj, "block");
2136 	sysfs_put(rdev->sysfs_state);
2137 	rdev->sysfs_state = NULL;
2138 	rdev->badblocks.count = 0;
2139 	/* We need to delay this, otherwise we can deadlock when
2140 	 * writing to 'remove' to "dev/state".  We also need
2141 	 * to delay it due to rcu usage.
2142 	 */
2143 	synchronize_rcu();
2144 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2145 	kobject_get(&rdev->kobj);
2146 	queue_work(md_misc_wq, &rdev->del_work);
2147 }
2148 
2149 /*
2150  * prevent the device from being mounted, repartitioned or
2151  * otherwise reused by a RAID array (or any other kernel
2152  * subsystem), by bd_claiming the device.
2153  */
2154 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2155 {
2156 	int err = 0;
2157 	struct block_device *bdev;
2158 	char b[BDEVNAME_SIZE];
2159 
2160 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2161 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2162 	if (IS_ERR(bdev)) {
2163 		printk(KERN_ERR "md: could not open %s.\n",
2164 			__bdevname(dev, b));
2165 		return PTR_ERR(bdev);
2166 	}
2167 	rdev->bdev = bdev;
2168 	return err;
2169 }
2170 
2171 static void unlock_rdev(struct md_rdev *rdev)
2172 {
2173 	struct block_device *bdev = rdev->bdev;
2174 	rdev->bdev = NULL;
2175 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2176 }
2177 
2178 void md_autodetect_dev(dev_t dev);
2179 
2180 static void export_rdev(struct md_rdev *rdev)
2181 {
2182 	char b[BDEVNAME_SIZE];
2183 
2184 	printk(KERN_INFO "md: export_rdev(%s)\n",
2185 		bdevname(rdev->bdev,b));
2186 	md_rdev_clear(rdev);
2187 #ifndef MODULE
2188 	if (test_bit(AutoDetected, &rdev->flags))
2189 		md_autodetect_dev(rdev->bdev->bd_dev);
2190 #endif
2191 	unlock_rdev(rdev);
2192 	kobject_put(&rdev->kobj);
2193 }
2194 
2195 void md_kick_rdev_from_array(struct md_rdev *rdev)
2196 {
2197 	unbind_rdev_from_array(rdev);
2198 	export_rdev(rdev);
2199 }
2200 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2201 
2202 static void export_array(struct mddev *mddev)
2203 {
2204 	struct md_rdev *rdev;
2205 
2206 	while (!list_empty(&mddev->disks)) {
2207 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2208 					same_set);
2209 		md_kick_rdev_from_array(rdev);
2210 	}
2211 	mddev->raid_disks = 0;
2212 	mddev->major_version = 0;
2213 }
2214 
2215 static void sync_sbs(struct mddev *mddev, int nospares)
2216 {
2217 	/* Update each superblock (in-memory image), but
2218 	 * if we are allowed to, skip spares which already
2219 	 * have the right event counter, or have one earlier
2220 	 * (which would mean they aren't being marked as dirty
2221 	 * with the rest of the array)
2222 	 */
2223 	struct md_rdev *rdev;
2224 	rdev_for_each(rdev, mddev) {
2225 		if (rdev->sb_events == mddev->events ||
2226 		    (nospares &&
2227 		     rdev->raid_disk < 0 &&
2228 		     rdev->sb_events+1 == mddev->events)) {
2229 			/* Don't update this superblock */
2230 			rdev->sb_loaded = 2;
2231 		} else {
2232 			sync_super(mddev, rdev);
2233 			rdev->sb_loaded = 1;
2234 		}
2235 	}
2236 }
2237 
2238 static bool does_sb_need_changing(struct mddev *mddev)
2239 {
2240 	struct md_rdev *rdev;
2241 	struct mdp_superblock_1 *sb;
2242 	int role;
2243 
2244 	/* Find a good rdev */
2245 	rdev_for_each(rdev, mddev)
2246 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2247 			break;
2248 
2249 	/* No good device found. */
2250 	if (!rdev)
2251 		return false;
2252 
2253 	sb = page_address(rdev->sb_page);
2254 	/* Check if a device has become faulty or a spare become active */
2255 	rdev_for_each(rdev, mddev) {
2256 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2257 		/* Device activated? */
2258 		if (role == 0xffff && rdev->raid_disk >=0 &&
2259 		    !test_bit(Faulty, &rdev->flags))
2260 			return true;
2261 		/* Device turned faulty? */
2262 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2263 			return true;
2264 	}
2265 
2266 	/* Check if any mddev parameters have changed */
2267 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2268 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2269 	    (mddev->layout != le64_to_cpu(sb->layout)) ||
2270 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2271 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2272 		return true;
2273 
2274 	return false;
2275 }
2276 
2277 void md_update_sb(struct mddev *mddev, int force_change)
2278 {
2279 	struct md_rdev *rdev;
2280 	int sync_req;
2281 	int nospares = 0;
2282 	int any_badblocks_changed = 0;
2283 	int ret = -1;
2284 
2285 	if (mddev->ro) {
2286 		if (force_change)
2287 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2288 		return;
2289 	}
2290 
2291 	if (mddev_is_clustered(mddev)) {
2292 		if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2293 			force_change = 1;
2294 		ret = md_cluster_ops->metadata_update_start(mddev);
2295 		/* Has someone else has updated the sb */
2296 		if (!does_sb_need_changing(mddev)) {
2297 			if (ret == 0)
2298 				md_cluster_ops->metadata_update_cancel(mddev);
2299 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2300 			return;
2301 		}
2302 	}
2303 repeat:
2304 	/* First make sure individual recovery_offsets are correct */
2305 	rdev_for_each(rdev, mddev) {
2306 		if (rdev->raid_disk >= 0 &&
2307 		    mddev->delta_disks >= 0 &&
2308 		    !test_bit(Journal, &rdev->flags) &&
2309 		    !test_bit(In_sync, &rdev->flags) &&
2310 		    mddev->curr_resync_completed > rdev->recovery_offset)
2311 				rdev->recovery_offset = mddev->curr_resync_completed;
2312 
2313 	}
2314 	if (!mddev->persistent) {
2315 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2316 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2317 		if (!mddev->external) {
2318 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2319 			rdev_for_each(rdev, mddev) {
2320 				if (rdev->badblocks.changed) {
2321 					rdev->badblocks.changed = 0;
2322 					md_ack_all_badblocks(&rdev->badblocks);
2323 					md_error(mddev, rdev);
2324 				}
2325 				clear_bit(Blocked, &rdev->flags);
2326 				clear_bit(BlockedBadBlocks, &rdev->flags);
2327 				wake_up(&rdev->blocked_wait);
2328 			}
2329 		}
2330 		wake_up(&mddev->sb_wait);
2331 		return;
2332 	}
2333 
2334 	spin_lock(&mddev->lock);
2335 
2336 	mddev->utime = get_seconds();
2337 
2338 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2339 		force_change = 1;
2340 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2341 		/* just a clean<-> dirty transition, possibly leave spares alone,
2342 		 * though if events isn't the right even/odd, we will have to do
2343 		 * spares after all
2344 		 */
2345 		nospares = 1;
2346 	if (force_change)
2347 		nospares = 0;
2348 	if (mddev->degraded)
2349 		/* If the array is degraded, then skipping spares is both
2350 		 * dangerous and fairly pointless.
2351 		 * Dangerous because a device that was removed from the array
2352 		 * might have a event_count that still looks up-to-date,
2353 		 * so it can be re-added without a resync.
2354 		 * Pointless because if there are any spares to skip,
2355 		 * then a recovery will happen and soon that array won't
2356 		 * be degraded any more and the spare can go back to sleep then.
2357 		 */
2358 		nospares = 0;
2359 
2360 	sync_req = mddev->in_sync;
2361 
2362 	/* If this is just a dirty<->clean transition, and the array is clean
2363 	 * and 'events' is odd, we can roll back to the previous clean state */
2364 	if (nospares
2365 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2366 	    && mddev->can_decrease_events
2367 	    && mddev->events != 1) {
2368 		mddev->events--;
2369 		mddev->can_decrease_events = 0;
2370 	} else {
2371 		/* otherwise we have to go forward and ... */
2372 		mddev->events ++;
2373 		mddev->can_decrease_events = nospares;
2374 	}
2375 
2376 	/*
2377 	 * This 64-bit counter should never wrap.
2378 	 * Either we are in around ~1 trillion A.C., assuming
2379 	 * 1 reboot per second, or we have a bug...
2380 	 */
2381 	WARN_ON(mddev->events == 0);
2382 
2383 	rdev_for_each(rdev, mddev) {
2384 		if (rdev->badblocks.changed)
2385 			any_badblocks_changed++;
2386 		if (test_bit(Faulty, &rdev->flags))
2387 			set_bit(FaultRecorded, &rdev->flags);
2388 	}
2389 
2390 	sync_sbs(mddev, nospares);
2391 	spin_unlock(&mddev->lock);
2392 
2393 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2394 		 mdname(mddev), mddev->in_sync);
2395 
2396 	bitmap_update_sb(mddev->bitmap);
2397 	rdev_for_each(rdev, mddev) {
2398 		char b[BDEVNAME_SIZE];
2399 
2400 		if (rdev->sb_loaded != 1)
2401 			continue; /* no noise on spare devices */
2402 
2403 		if (!test_bit(Faulty, &rdev->flags)) {
2404 			md_super_write(mddev,rdev,
2405 				       rdev->sb_start, rdev->sb_size,
2406 				       rdev->sb_page);
2407 			pr_debug("md: (write) %s's sb offset: %llu\n",
2408 				 bdevname(rdev->bdev, b),
2409 				 (unsigned long long)rdev->sb_start);
2410 			rdev->sb_events = mddev->events;
2411 			if (rdev->badblocks.size) {
2412 				md_super_write(mddev, rdev,
2413 					       rdev->badblocks.sector,
2414 					       rdev->badblocks.size << 9,
2415 					       rdev->bb_page);
2416 				rdev->badblocks.size = 0;
2417 			}
2418 
2419 		} else
2420 			pr_debug("md: %s (skipping faulty)\n",
2421 				 bdevname(rdev->bdev, b));
2422 
2423 		if (mddev->level == LEVEL_MULTIPATH)
2424 			/* only need to write one superblock... */
2425 			break;
2426 	}
2427 	md_super_wait(mddev);
2428 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2429 
2430 	spin_lock(&mddev->lock);
2431 	if (mddev->in_sync != sync_req ||
2432 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2433 		/* have to write it out again */
2434 		spin_unlock(&mddev->lock);
2435 		goto repeat;
2436 	}
2437 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2438 	spin_unlock(&mddev->lock);
2439 	wake_up(&mddev->sb_wait);
2440 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2441 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2442 
2443 	rdev_for_each(rdev, mddev) {
2444 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2445 			clear_bit(Blocked, &rdev->flags);
2446 
2447 		if (any_badblocks_changed)
2448 			md_ack_all_badblocks(&rdev->badblocks);
2449 		clear_bit(BlockedBadBlocks, &rdev->flags);
2450 		wake_up(&rdev->blocked_wait);
2451 	}
2452 
2453 	if (mddev_is_clustered(mddev) && ret == 0)
2454 		md_cluster_ops->metadata_update_finish(mddev);
2455 }
2456 EXPORT_SYMBOL(md_update_sb);
2457 
2458 static int add_bound_rdev(struct md_rdev *rdev)
2459 {
2460 	struct mddev *mddev = rdev->mddev;
2461 	int err = 0;
2462 
2463 	if (!mddev->pers->hot_remove_disk) {
2464 		/* If there is hot_add_disk but no hot_remove_disk
2465 		 * then added disks for geometry changes,
2466 		 * and should be added immediately.
2467 		 */
2468 		super_types[mddev->major_version].
2469 			validate_super(mddev, rdev);
2470 		err = mddev->pers->hot_add_disk(mddev, rdev);
2471 		if (err) {
2472 			unbind_rdev_from_array(rdev);
2473 			export_rdev(rdev);
2474 			return err;
2475 		}
2476 	}
2477 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2478 
2479 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2480 	if (mddev->degraded)
2481 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2482 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2483 	md_new_event(mddev);
2484 	md_wakeup_thread(mddev->thread);
2485 	return 0;
2486 }
2487 
2488 /* words written to sysfs files may, or may not, be \n terminated.
2489  * We want to accept with case. For this we use cmd_match.
2490  */
2491 static int cmd_match(const char *cmd, const char *str)
2492 {
2493 	/* See if cmd, written into a sysfs file, matches
2494 	 * str.  They must either be the same, or cmd can
2495 	 * have a trailing newline
2496 	 */
2497 	while (*cmd && *str && *cmd == *str) {
2498 		cmd++;
2499 		str++;
2500 	}
2501 	if (*cmd == '\n')
2502 		cmd++;
2503 	if (*str || *cmd)
2504 		return 0;
2505 	return 1;
2506 }
2507 
2508 struct rdev_sysfs_entry {
2509 	struct attribute attr;
2510 	ssize_t (*show)(struct md_rdev *, char *);
2511 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2512 };
2513 
2514 static ssize_t
2515 state_show(struct md_rdev *rdev, char *page)
2516 {
2517 	char *sep = "";
2518 	size_t len = 0;
2519 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2520 
2521 	if (test_bit(Faulty, &flags) ||
2522 	    rdev->badblocks.unacked_exist) {
2523 		len+= sprintf(page+len, "%sfaulty",sep);
2524 		sep = ",";
2525 	}
2526 	if (test_bit(In_sync, &flags)) {
2527 		len += sprintf(page+len, "%sin_sync",sep);
2528 		sep = ",";
2529 	}
2530 	if (test_bit(Journal, &flags)) {
2531 		len += sprintf(page+len, "%sjournal",sep);
2532 		sep = ",";
2533 	}
2534 	if (test_bit(WriteMostly, &flags)) {
2535 		len += sprintf(page+len, "%swrite_mostly",sep);
2536 		sep = ",";
2537 	}
2538 	if (test_bit(Blocked, &flags) ||
2539 	    (rdev->badblocks.unacked_exist
2540 	     && !test_bit(Faulty, &flags))) {
2541 		len += sprintf(page+len, "%sblocked", sep);
2542 		sep = ",";
2543 	}
2544 	if (!test_bit(Faulty, &flags) &&
2545 	    !test_bit(Journal, &flags) &&
2546 	    !test_bit(In_sync, &flags)) {
2547 		len += sprintf(page+len, "%sspare", sep);
2548 		sep = ",";
2549 	}
2550 	if (test_bit(WriteErrorSeen, &flags)) {
2551 		len += sprintf(page+len, "%swrite_error", sep);
2552 		sep = ",";
2553 	}
2554 	if (test_bit(WantReplacement, &flags)) {
2555 		len += sprintf(page+len, "%swant_replacement", sep);
2556 		sep = ",";
2557 	}
2558 	if (test_bit(Replacement, &flags)) {
2559 		len += sprintf(page+len, "%sreplacement", sep);
2560 		sep = ",";
2561 	}
2562 
2563 	return len+sprintf(page+len, "\n");
2564 }
2565 
2566 static ssize_t
2567 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2568 {
2569 	/* can write
2570 	 *  faulty  - simulates an error
2571 	 *  remove  - disconnects the device
2572 	 *  writemostly - sets write_mostly
2573 	 *  -writemostly - clears write_mostly
2574 	 *  blocked - sets the Blocked flags
2575 	 *  -blocked - clears the Blocked and possibly simulates an error
2576 	 *  insync - sets Insync providing device isn't active
2577 	 *  -insync - clear Insync for a device with a slot assigned,
2578 	 *            so that it gets rebuilt based on bitmap
2579 	 *  write_error - sets WriteErrorSeen
2580 	 *  -write_error - clears WriteErrorSeen
2581 	 */
2582 	int err = -EINVAL;
2583 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2584 		md_error(rdev->mddev, rdev);
2585 		if (test_bit(Faulty, &rdev->flags))
2586 			err = 0;
2587 		else
2588 			err = -EBUSY;
2589 	} else if (cmd_match(buf, "remove")) {
2590 		if (rdev->raid_disk >= 0)
2591 			err = -EBUSY;
2592 		else {
2593 			struct mddev *mddev = rdev->mddev;
2594 			err = 0;
2595 			if (mddev_is_clustered(mddev))
2596 				err = md_cluster_ops->remove_disk(mddev, rdev);
2597 
2598 			if (err == 0) {
2599 				md_kick_rdev_from_array(rdev);
2600 				if (mddev->pers)
2601 					md_update_sb(mddev, 1);
2602 				md_new_event(mddev);
2603 			}
2604 		}
2605 	} else if (cmd_match(buf, "writemostly")) {
2606 		set_bit(WriteMostly, &rdev->flags);
2607 		err = 0;
2608 	} else if (cmd_match(buf, "-writemostly")) {
2609 		clear_bit(WriteMostly, &rdev->flags);
2610 		err = 0;
2611 	} else if (cmd_match(buf, "blocked")) {
2612 		set_bit(Blocked, &rdev->flags);
2613 		err = 0;
2614 	} else if (cmd_match(buf, "-blocked")) {
2615 		if (!test_bit(Faulty, &rdev->flags) &&
2616 		    rdev->badblocks.unacked_exist) {
2617 			/* metadata handler doesn't understand badblocks,
2618 			 * so we need to fail the device
2619 			 */
2620 			md_error(rdev->mddev, rdev);
2621 		}
2622 		clear_bit(Blocked, &rdev->flags);
2623 		clear_bit(BlockedBadBlocks, &rdev->flags);
2624 		wake_up(&rdev->blocked_wait);
2625 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2626 		md_wakeup_thread(rdev->mddev->thread);
2627 
2628 		err = 0;
2629 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2630 		set_bit(In_sync, &rdev->flags);
2631 		err = 0;
2632 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2633 		   !test_bit(Journal, &rdev->flags)) {
2634 		if (rdev->mddev->pers == NULL) {
2635 			clear_bit(In_sync, &rdev->flags);
2636 			rdev->saved_raid_disk = rdev->raid_disk;
2637 			rdev->raid_disk = -1;
2638 			err = 0;
2639 		}
2640 	} else if (cmd_match(buf, "write_error")) {
2641 		set_bit(WriteErrorSeen, &rdev->flags);
2642 		err = 0;
2643 	} else if (cmd_match(buf, "-write_error")) {
2644 		clear_bit(WriteErrorSeen, &rdev->flags);
2645 		err = 0;
2646 	} else if (cmd_match(buf, "want_replacement")) {
2647 		/* Any non-spare device that is not a replacement can
2648 		 * become want_replacement at any time, but we then need to
2649 		 * check if recovery is needed.
2650 		 */
2651 		if (rdev->raid_disk >= 0 &&
2652 		    !test_bit(Journal, &rdev->flags) &&
2653 		    !test_bit(Replacement, &rdev->flags))
2654 			set_bit(WantReplacement, &rdev->flags);
2655 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2656 		md_wakeup_thread(rdev->mddev->thread);
2657 		err = 0;
2658 	} else if (cmd_match(buf, "-want_replacement")) {
2659 		/* Clearing 'want_replacement' is always allowed.
2660 		 * Once replacements starts it is too late though.
2661 		 */
2662 		err = 0;
2663 		clear_bit(WantReplacement, &rdev->flags);
2664 	} else if (cmd_match(buf, "replacement")) {
2665 		/* Can only set a device as a replacement when array has not
2666 		 * yet been started.  Once running, replacement is automatic
2667 		 * from spares, or by assigning 'slot'.
2668 		 */
2669 		if (rdev->mddev->pers)
2670 			err = -EBUSY;
2671 		else {
2672 			set_bit(Replacement, &rdev->flags);
2673 			err = 0;
2674 		}
2675 	} else if (cmd_match(buf, "-replacement")) {
2676 		/* Similarly, can only clear Replacement before start */
2677 		if (rdev->mddev->pers)
2678 			err = -EBUSY;
2679 		else {
2680 			clear_bit(Replacement, &rdev->flags);
2681 			err = 0;
2682 		}
2683 	} else if (cmd_match(buf, "re-add")) {
2684 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2685 			/* clear_bit is performed _after_ all the devices
2686 			 * have their local Faulty bit cleared. If any writes
2687 			 * happen in the meantime in the local node, they
2688 			 * will land in the local bitmap, which will be synced
2689 			 * by this node eventually
2690 			 */
2691 			if (!mddev_is_clustered(rdev->mddev) ||
2692 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2693 				clear_bit(Faulty, &rdev->flags);
2694 				err = add_bound_rdev(rdev);
2695 			}
2696 		} else
2697 			err = -EBUSY;
2698 	}
2699 	if (!err)
2700 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2701 	return err ? err : len;
2702 }
2703 static struct rdev_sysfs_entry rdev_state =
2704 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2705 
2706 static ssize_t
2707 errors_show(struct md_rdev *rdev, char *page)
2708 {
2709 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2710 }
2711 
2712 static ssize_t
2713 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2714 {
2715 	unsigned int n;
2716 	int rv;
2717 
2718 	rv = kstrtouint(buf, 10, &n);
2719 	if (rv < 0)
2720 		return rv;
2721 	atomic_set(&rdev->corrected_errors, n);
2722 	return len;
2723 }
2724 static struct rdev_sysfs_entry rdev_errors =
2725 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2726 
2727 static ssize_t
2728 slot_show(struct md_rdev *rdev, char *page)
2729 {
2730 	if (test_bit(Journal, &rdev->flags))
2731 		return sprintf(page, "journal\n");
2732 	else if (rdev->raid_disk < 0)
2733 		return sprintf(page, "none\n");
2734 	else
2735 		return sprintf(page, "%d\n", rdev->raid_disk);
2736 }
2737 
2738 static ssize_t
2739 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2740 {
2741 	int slot;
2742 	int err;
2743 
2744 	if (test_bit(Journal, &rdev->flags))
2745 		return -EBUSY;
2746 	if (strncmp(buf, "none", 4)==0)
2747 		slot = -1;
2748 	else {
2749 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2750 		if (err < 0)
2751 			return err;
2752 	}
2753 	if (rdev->mddev->pers && slot == -1) {
2754 		/* Setting 'slot' on an active array requires also
2755 		 * updating the 'rd%d' link, and communicating
2756 		 * with the personality with ->hot_*_disk.
2757 		 * For now we only support removing
2758 		 * failed/spare devices.  This normally happens automatically,
2759 		 * but not when the metadata is externally managed.
2760 		 */
2761 		if (rdev->raid_disk == -1)
2762 			return -EEXIST;
2763 		/* personality does all needed checks */
2764 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2765 			return -EINVAL;
2766 		clear_bit(Blocked, &rdev->flags);
2767 		remove_and_add_spares(rdev->mddev, rdev);
2768 		if (rdev->raid_disk >= 0)
2769 			return -EBUSY;
2770 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2771 		md_wakeup_thread(rdev->mddev->thread);
2772 	} else if (rdev->mddev->pers) {
2773 		/* Activating a spare .. or possibly reactivating
2774 		 * if we ever get bitmaps working here.
2775 		 */
2776 
2777 		if (rdev->raid_disk != -1)
2778 			return -EBUSY;
2779 
2780 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2781 			return -EBUSY;
2782 
2783 		if (rdev->mddev->pers->hot_add_disk == NULL)
2784 			return -EINVAL;
2785 
2786 		if (slot >= rdev->mddev->raid_disks &&
2787 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2788 			return -ENOSPC;
2789 
2790 		rdev->raid_disk = slot;
2791 		if (test_bit(In_sync, &rdev->flags))
2792 			rdev->saved_raid_disk = slot;
2793 		else
2794 			rdev->saved_raid_disk = -1;
2795 		clear_bit(In_sync, &rdev->flags);
2796 		clear_bit(Bitmap_sync, &rdev->flags);
2797 		remove_and_add_spares(rdev->mddev, rdev);
2798 		if (rdev->raid_disk == -1)
2799 			return -EBUSY;
2800 		/* don't wakeup anyone, leave that to userspace. */
2801 	} else {
2802 		if (slot >= rdev->mddev->raid_disks &&
2803 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2804 			return -ENOSPC;
2805 		rdev->raid_disk = slot;
2806 		/* assume it is working */
2807 		clear_bit(Faulty, &rdev->flags);
2808 		clear_bit(WriteMostly, &rdev->flags);
2809 		set_bit(In_sync, &rdev->flags);
2810 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2811 	}
2812 	return len;
2813 }
2814 
2815 static struct rdev_sysfs_entry rdev_slot =
2816 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2817 
2818 static ssize_t
2819 offset_show(struct md_rdev *rdev, char *page)
2820 {
2821 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2822 }
2823 
2824 static ssize_t
2825 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2826 {
2827 	unsigned long long offset;
2828 	if (kstrtoull(buf, 10, &offset) < 0)
2829 		return -EINVAL;
2830 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2831 		return -EBUSY;
2832 	if (rdev->sectors && rdev->mddev->external)
2833 		/* Must set offset before size, so overlap checks
2834 		 * can be sane */
2835 		return -EBUSY;
2836 	rdev->data_offset = offset;
2837 	rdev->new_data_offset = offset;
2838 	return len;
2839 }
2840 
2841 static struct rdev_sysfs_entry rdev_offset =
2842 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2843 
2844 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2845 {
2846 	return sprintf(page, "%llu\n",
2847 		       (unsigned long long)rdev->new_data_offset);
2848 }
2849 
2850 static ssize_t new_offset_store(struct md_rdev *rdev,
2851 				const char *buf, size_t len)
2852 {
2853 	unsigned long long new_offset;
2854 	struct mddev *mddev = rdev->mddev;
2855 
2856 	if (kstrtoull(buf, 10, &new_offset) < 0)
2857 		return -EINVAL;
2858 
2859 	if (mddev->sync_thread ||
2860 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2861 		return -EBUSY;
2862 	if (new_offset == rdev->data_offset)
2863 		/* reset is always permitted */
2864 		;
2865 	else if (new_offset > rdev->data_offset) {
2866 		/* must not push array size beyond rdev_sectors */
2867 		if (new_offset - rdev->data_offset
2868 		    + mddev->dev_sectors > rdev->sectors)
2869 				return -E2BIG;
2870 	}
2871 	/* Metadata worries about other space details. */
2872 
2873 	/* decreasing the offset is inconsistent with a backwards
2874 	 * reshape.
2875 	 */
2876 	if (new_offset < rdev->data_offset &&
2877 	    mddev->reshape_backwards)
2878 		return -EINVAL;
2879 	/* Increasing offset is inconsistent with forwards
2880 	 * reshape.  reshape_direction should be set to
2881 	 * 'backwards' first.
2882 	 */
2883 	if (new_offset > rdev->data_offset &&
2884 	    !mddev->reshape_backwards)
2885 		return -EINVAL;
2886 
2887 	if (mddev->pers && mddev->persistent &&
2888 	    !super_types[mddev->major_version]
2889 	    .allow_new_offset(rdev, new_offset))
2890 		return -E2BIG;
2891 	rdev->new_data_offset = new_offset;
2892 	if (new_offset > rdev->data_offset)
2893 		mddev->reshape_backwards = 1;
2894 	else if (new_offset < rdev->data_offset)
2895 		mddev->reshape_backwards = 0;
2896 
2897 	return len;
2898 }
2899 static struct rdev_sysfs_entry rdev_new_offset =
2900 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2901 
2902 static ssize_t
2903 rdev_size_show(struct md_rdev *rdev, char *page)
2904 {
2905 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2906 }
2907 
2908 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2909 {
2910 	/* check if two start/length pairs overlap */
2911 	if (s1+l1 <= s2)
2912 		return 0;
2913 	if (s2+l2 <= s1)
2914 		return 0;
2915 	return 1;
2916 }
2917 
2918 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2919 {
2920 	unsigned long long blocks;
2921 	sector_t new;
2922 
2923 	if (kstrtoull(buf, 10, &blocks) < 0)
2924 		return -EINVAL;
2925 
2926 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2927 		return -EINVAL; /* sector conversion overflow */
2928 
2929 	new = blocks * 2;
2930 	if (new != blocks * 2)
2931 		return -EINVAL; /* unsigned long long to sector_t overflow */
2932 
2933 	*sectors = new;
2934 	return 0;
2935 }
2936 
2937 static ssize_t
2938 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2939 {
2940 	struct mddev *my_mddev = rdev->mddev;
2941 	sector_t oldsectors = rdev->sectors;
2942 	sector_t sectors;
2943 
2944 	if (test_bit(Journal, &rdev->flags))
2945 		return -EBUSY;
2946 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2947 		return -EINVAL;
2948 	if (rdev->data_offset != rdev->new_data_offset)
2949 		return -EINVAL; /* too confusing */
2950 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2951 		if (my_mddev->persistent) {
2952 			sectors = super_types[my_mddev->major_version].
2953 				rdev_size_change(rdev, sectors);
2954 			if (!sectors)
2955 				return -EBUSY;
2956 		} else if (!sectors)
2957 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2958 				rdev->data_offset;
2959 		if (!my_mddev->pers->resize)
2960 			/* Cannot change size for RAID0 or Linear etc */
2961 			return -EINVAL;
2962 	}
2963 	if (sectors < my_mddev->dev_sectors)
2964 		return -EINVAL; /* component must fit device */
2965 
2966 	rdev->sectors = sectors;
2967 	if (sectors > oldsectors && my_mddev->external) {
2968 		/* Need to check that all other rdevs with the same
2969 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2970 		 * the rdev lists safely.
2971 		 * This check does not provide a hard guarantee, it
2972 		 * just helps avoid dangerous mistakes.
2973 		 */
2974 		struct mddev *mddev;
2975 		int overlap = 0;
2976 		struct list_head *tmp;
2977 
2978 		rcu_read_lock();
2979 		for_each_mddev(mddev, tmp) {
2980 			struct md_rdev *rdev2;
2981 
2982 			rdev_for_each(rdev2, mddev)
2983 				if (rdev->bdev == rdev2->bdev &&
2984 				    rdev != rdev2 &&
2985 				    overlaps(rdev->data_offset, rdev->sectors,
2986 					     rdev2->data_offset,
2987 					     rdev2->sectors)) {
2988 					overlap = 1;
2989 					break;
2990 				}
2991 			if (overlap) {
2992 				mddev_put(mddev);
2993 				break;
2994 			}
2995 		}
2996 		rcu_read_unlock();
2997 		if (overlap) {
2998 			/* Someone else could have slipped in a size
2999 			 * change here, but doing so is just silly.
3000 			 * We put oldsectors back because we *know* it is
3001 			 * safe, and trust userspace not to race with
3002 			 * itself
3003 			 */
3004 			rdev->sectors = oldsectors;
3005 			return -EBUSY;
3006 		}
3007 	}
3008 	return len;
3009 }
3010 
3011 static struct rdev_sysfs_entry rdev_size =
3012 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3013 
3014 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3015 {
3016 	unsigned long long recovery_start = rdev->recovery_offset;
3017 
3018 	if (test_bit(In_sync, &rdev->flags) ||
3019 	    recovery_start == MaxSector)
3020 		return sprintf(page, "none\n");
3021 
3022 	return sprintf(page, "%llu\n", recovery_start);
3023 }
3024 
3025 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3026 {
3027 	unsigned long long recovery_start;
3028 
3029 	if (cmd_match(buf, "none"))
3030 		recovery_start = MaxSector;
3031 	else if (kstrtoull(buf, 10, &recovery_start))
3032 		return -EINVAL;
3033 
3034 	if (rdev->mddev->pers &&
3035 	    rdev->raid_disk >= 0)
3036 		return -EBUSY;
3037 
3038 	rdev->recovery_offset = recovery_start;
3039 	if (recovery_start == MaxSector)
3040 		set_bit(In_sync, &rdev->flags);
3041 	else
3042 		clear_bit(In_sync, &rdev->flags);
3043 	return len;
3044 }
3045 
3046 static struct rdev_sysfs_entry rdev_recovery_start =
3047 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3048 
3049 static ssize_t
3050 badblocks_show(struct badblocks *bb, char *page, int unack);
3051 static ssize_t
3052 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3053 
3054 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3055 {
3056 	return badblocks_show(&rdev->badblocks, page, 0);
3057 }
3058 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3059 {
3060 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3061 	/* Maybe that ack was all we needed */
3062 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3063 		wake_up(&rdev->blocked_wait);
3064 	return rv;
3065 }
3066 static struct rdev_sysfs_entry rdev_bad_blocks =
3067 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3068 
3069 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3070 {
3071 	return badblocks_show(&rdev->badblocks, page, 1);
3072 }
3073 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3074 {
3075 	return badblocks_store(&rdev->badblocks, page, len, 1);
3076 }
3077 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3078 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3079 
3080 static struct attribute *rdev_default_attrs[] = {
3081 	&rdev_state.attr,
3082 	&rdev_errors.attr,
3083 	&rdev_slot.attr,
3084 	&rdev_offset.attr,
3085 	&rdev_new_offset.attr,
3086 	&rdev_size.attr,
3087 	&rdev_recovery_start.attr,
3088 	&rdev_bad_blocks.attr,
3089 	&rdev_unack_bad_blocks.attr,
3090 	NULL,
3091 };
3092 static ssize_t
3093 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3094 {
3095 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3096 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3097 
3098 	if (!entry->show)
3099 		return -EIO;
3100 	if (!rdev->mddev)
3101 		return -EBUSY;
3102 	return entry->show(rdev, page);
3103 }
3104 
3105 static ssize_t
3106 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3107 	      const char *page, size_t length)
3108 {
3109 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3110 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3111 	ssize_t rv;
3112 	struct mddev *mddev = rdev->mddev;
3113 
3114 	if (!entry->store)
3115 		return -EIO;
3116 	if (!capable(CAP_SYS_ADMIN))
3117 		return -EACCES;
3118 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3119 	if (!rv) {
3120 		if (rdev->mddev == NULL)
3121 			rv = -EBUSY;
3122 		else
3123 			rv = entry->store(rdev, page, length);
3124 		mddev_unlock(mddev);
3125 	}
3126 	return rv;
3127 }
3128 
3129 static void rdev_free(struct kobject *ko)
3130 {
3131 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3132 	kfree(rdev);
3133 }
3134 static const struct sysfs_ops rdev_sysfs_ops = {
3135 	.show		= rdev_attr_show,
3136 	.store		= rdev_attr_store,
3137 };
3138 static struct kobj_type rdev_ktype = {
3139 	.release	= rdev_free,
3140 	.sysfs_ops	= &rdev_sysfs_ops,
3141 	.default_attrs	= rdev_default_attrs,
3142 };
3143 
3144 int md_rdev_init(struct md_rdev *rdev)
3145 {
3146 	rdev->desc_nr = -1;
3147 	rdev->saved_raid_disk = -1;
3148 	rdev->raid_disk = -1;
3149 	rdev->flags = 0;
3150 	rdev->data_offset = 0;
3151 	rdev->new_data_offset = 0;
3152 	rdev->sb_events = 0;
3153 	rdev->last_read_error.tv_sec  = 0;
3154 	rdev->last_read_error.tv_nsec = 0;
3155 	rdev->sb_loaded = 0;
3156 	rdev->bb_page = NULL;
3157 	atomic_set(&rdev->nr_pending, 0);
3158 	atomic_set(&rdev->read_errors, 0);
3159 	atomic_set(&rdev->corrected_errors, 0);
3160 
3161 	INIT_LIST_HEAD(&rdev->same_set);
3162 	init_waitqueue_head(&rdev->blocked_wait);
3163 
3164 	/* Add space to store bad block list.
3165 	 * This reserves the space even on arrays where it cannot
3166 	 * be used - I wonder if that matters
3167 	 */
3168 	rdev->badblocks.count = 0;
3169 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3170 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3171 	seqlock_init(&rdev->badblocks.lock);
3172 	if (rdev->badblocks.page == NULL)
3173 		return -ENOMEM;
3174 
3175 	return 0;
3176 }
3177 EXPORT_SYMBOL_GPL(md_rdev_init);
3178 /*
3179  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3180  *
3181  * mark the device faulty if:
3182  *
3183  *   - the device is nonexistent (zero size)
3184  *   - the device has no valid superblock
3185  *
3186  * a faulty rdev _never_ has rdev->sb set.
3187  */
3188 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3189 {
3190 	char b[BDEVNAME_SIZE];
3191 	int err;
3192 	struct md_rdev *rdev;
3193 	sector_t size;
3194 
3195 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3196 	if (!rdev) {
3197 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3198 		return ERR_PTR(-ENOMEM);
3199 	}
3200 
3201 	err = md_rdev_init(rdev);
3202 	if (err)
3203 		goto abort_free;
3204 	err = alloc_disk_sb(rdev);
3205 	if (err)
3206 		goto abort_free;
3207 
3208 	err = lock_rdev(rdev, newdev, super_format == -2);
3209 	if (err)
3210 		goto abort_free;
3211 
3212 	kobject_init(&rdev->kobj, &rdev_ktype);
3213 
3214 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3215 	if (!size) {
3216 		printk(KERN_WARNING
3217 			"md: %s has zero or unknown size, marking faulty!\n",
3218 			bdevname(rdev->bdev,b));
3219 		err = -EINVAL;
3220 		goto abort_free;
3221 	}
3222 
3223 	if (super_format >= 0) {
3224 		err = super_types[super_format].
3225 			load_super(rdev, NULL, super_minor);
3226 		if (err == -EINVAL) {
3227 			printk(KERN_WARNING
3228 				"md: %s does not have a valid v%d.%d "
3229 			       "superblock, not importing!\n",
3230 				bdevname(rdev->bdev,b),
3231 			       super_format, super_minor);
3232 			goto abort_free;
3233 		}
3234 		if (err < 0) {
3235 			printk(KERN_WARNING
3236 				"md: could not read %s's sb, not importing!\n",
3237 				bdevname(rdev->bdev,b));
3238 			goto abort_free;
3239 		}
3240 	}
3241 
3242 	return rdev;
3243 
3244 abort_free:
3245 	if (rdev->bdev)
3246 		unlock_rdev(rdev);
3247 	md_rdev_clear(rdev);
3248 	kfree(rdev);
3249 	return ERR_PTR(err);
3250 }
3251 
3252 /*
3253  * Check a full RAID array for plausibility
3254  */
3255 
3256 static void analyze_sbs(struct mddev *mddev)
3257 {
3258 	int i;
3259 	struct md_rdev *rdev, *freshest, *tmp;
3260 	char b[BDEVNAME_SIZE];
3261 
3262 	freshest = NULL;
3263 	rdev_for_each_safe(rdev, tmp, mddev)
3264 		switch (super_types[mddev->major_version].
3265 			load_super(rdev, freshest, mddev->minor_version)) {
3266 		case 1:
3267 			freshest = rdev;
3268 			break;
3269 		case 0:
3270 			break;
3271 		default:
3272 			printk( KERN_ERR \
3273 				"md: fatal superblock inconsistency in %s"
3274 				" -- removing from array\n",
3275 				bdevname(rdev->bdev,b));
3276 			md_kick_rdev_from_array(rdev);
3277 		}
3278 
3279 	super_types[mddev->major_version].
3280 		validate_super(mddev, freshest);
3281 
3282 	i = 0;
3283 	rdev_for_each_safe(rdev, tmp, mddev) {
3284 		if (mddev->max_disks &&
3285 		    (rdev->desc_nr >= mddev->max_disks ||
3286 		     i > mddev->max_disks)) {
3287 			printk(KERN_WARNING
3288 			       "md: %s: %s: only %d devices permitted\n",
3289 			       mdname(mddev), bdevname(rdev->bdev, b),
3290 			       mddev->max_disks);
3291 			md_kick_rdev_from_array(rdev);
3292 			continue;
3293 		}
3294 		if (rdev != freshest) {
3295 			if (super_types[mddev->major_version].
3296 			    validate_super(mddev, rdev)) {
3297 				printk(KERN_WARNING "md: kicking non-fresh %s"
3298 					" from array!\n",
3299 					bdevname(rdev->bdev,b));
3300 				md_kick_rdev_from_array(rdev);
3301 				continue;
3302 			}
3303 		}
3304 		if (mddev->level == LEVEL_MULTIPATH) {
3305 			rdev->desc_nr = i++;
3306 			rdev->raid_disk = rdev->desc_nr;
3307 			set_bit(In_sync, &rdev->flags);
3308 		} else if (rdev->raid_disk >=
3309 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3310 			   !test_bit(Journal, &rdev->flags)) {
3311 			rdev->raid_disk = -1;
3312 			clear_bit(In_sync, &rdev->flags);
3313 		}
3314 	}
3315 }
3316 
3317 /* Read a fixed-point number.
3318  * Numbers in sysfs attributes should be in "standard" units where
3319  * possible, so time should be in seconds.
3320  * However we internally use a a much smaller unit such as
3321  * milliseconds or jiffies.
3322  * This function takes a decimal number with a possible fractional
3323  * component, and produces an integer which is the result of
3324  * multiplying that number by 10^'scale'.
3325  * all without any floating-point arithmetic.
3326  */
3327 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3328 {
3329 	unsigned long result = 0;
3330 	long decimals = -1;
3331 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3332 		if (*cp == '.')
3333 			decimals = 0;
3334 		else if (decimals < scale) {
3335 			unsigned int value;
3336 			value = *cp - '0';
3337 			result = result * 10 + value;
3338 			if (decimals >= 0)
3339 				decimals++;
3340 		}
3341 		cp++;
3342 	}
3343 	if (*cp == '\n')
3344 		cp++;
3345 	if (*cp)
3346 		return -EINVAL;
3347 	if (decimals < 0)
3348 		decimals = 0;
3349 	while (decimals < scale) {
3350 		result *= 10;
3351 		decimals ++;
3352 	}
3353 	*res = result;
3354 	return 0;
3355 }
3356 
3357 static ssize_t
3358 safe_delay_show(struct mddev *mddev, char *page)
3359 {
3360 	int msec = (mddev->safemode_delay*1000)/HZ;
3361 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3362 }
3363 static ssize_t
3364 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3365 {
3366 	unsigned long msec;
3367 
3368 	if (mddev_is_clustered(mddev)) {
3369 		pr_info("md: Safemode is disabled for clustered mode\n");
3370 		return -EINVAL;
3371 	}
3372 
3373 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3374 		return -EINVAL;
3375 	if (msec == 0)
3376 		mddev->safemode_delay = 0;
3377 	else {
3378 		unsigned long old_delay = mddev->safemode_delay;
3379 		unsigned long new_delay = (msec*HZ)/1000;
3380 
3381 		if (new_delay == 0)
3382 			new_delay = 1;
3383 		mddev->safemode_delay = new_delay;
3384 		if (new_delay < old_delay || old_delay == 0)
3385 			mod_timer(&mddev->safemode_timer, jiffies+1);
3386 	}
3387 	return len;
3388 }
3389 static struct md_sysfs_entry md_safe_delay =
3390 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3391 
3392 static ssize_t
3393 level_show(struct mddev *mddev, char *page)
3394 {
3395 	struct md_personality *p;
3396 	int ret;
3397 	spin_lock(&mddev->lock);
3398 	p = mddev->pers;
3399 	if (p)
3400 		ret = sprintf(page, "%s\n", p->name);
3401 	else if (mddev->clevel[0])
3402 		ret = sprintf(page, "%s\n", mddev->clevel);
3403 	else if (mddev->level != LEVEL_NONE)
3404 		ret = sprintf(page, "%d\n", mddev->level);
3405 	else
3406 		ret = 0;
3407 	spin_unlock(&mddev->lock);
3408 	return ret;
3409 }
3410 
3411 static ssize_t
3412 level_store(struct mddev *mddev, const char *buf, size_t len)
3413 {
3414 	char clevel[16];
3415 	ssize_t rv;
3416 	size_t slen = len;
3417 	struct md_personality *pers, *oldpers;
3418 	long level;
3419 	void *priv, *oldpriv;
3420 	struct md_rdev *rdev;
3421 
3422 	if (slen == 0 || slen >= sizeof(clevel))
3423 		return -EINVAL;
3424 
3425 	rv = mddev_lock(mddev);
3426 	if (rv)
3427 		return rv;
3428 
3429 	if (mddev->pers == NULL) {
3430 		strncpy(mddev->clevel, buf, slen);
3431 		if (mddev->clevel[slen-1] == '\n')
3432 			slen--;
3433 		mddev->clevel[slen] = 0;
3434 		mddev->level = LEVEL_NONE;
3435 		rv = len;
3436 		goto out_unlock;
3437 	}
3438 	rv = -EROFS;
3439 	if (mddev->ro)
3440 		goto out_unlock;
3441 
3442 	/* request to change the personality.  Need to ensure:
3443 	 *  - array is not engaged in resync/recovery/reshape
3444 	 *  - old personality can be suspended
3445 	 *  - new personality will access other array.
3446 	 */
3447 
3448 	rv = -EBUSY;
3449 	if (mddev->sync_thread ||
3450 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3451 	    mddev->reshape_position != MaxSector ||
3452 	    mddev->sysfs_active)
3453 		goto out_unlock;
3454 
3455 	rv = -EINVAL;
3456 	if (!mddev->pers->quiesce) {
3457 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3458 		       mdname(mddev), mddev->pers->name);
3459 		goto out_unlock;
3460 	}
3461 
3462 	/* Now find the new personality */
3463 	strncpy(clevel, buf, slen);
3464 	if (clevel[slen-1] == '\n')
3465 		slen--;
3466 	clevel[slen] = 0;
3467 	if (kstrtol(clevel, 10, &level))
3468 		level = LEVEL_NONE;
3469 
3470 	if (request_module("md-%s", clevel) != 0)
3471 		request_module("md-level-%s", clevel);
3472 	spin_lock(&pers_lock);
3473 	pers = find_pers(level, clevel);
3474 	if (!pers || !try_module_get(pers->owner)) {
3475 		spin_unlock(&pers_lock);
3476 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3477 		rv = -EINVAL;
3478 		goto out_unlock;
3479 	}
3480 	spin_unlock(&pers_lock);
3481 
3482 	if (pers == mddev->pers) {
3483 		/* Nothing to do! */
3484 		module_put(pers->owner);
3485 		rv = len;
3486 		goto out_unlock;
3487 	}
3488 	if (!pers->takeover) {
3489 		module_put(pers->owner);
3490 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3491 		       mdname(mddev), clevel);
3492 		rv = -EINVAL;
3493 		goto out_unlock;
3494 	}
3495 
3496 	rdev_for_each(rdev, mddev)
3497 		rdev->new_raid_disk = rdev->raid_disk;
3498 
3499 	/* ->takeover must set new_* and/or delta_disks
3500 	 * if it succeeds, and may set them when it fails.
3501 	 */
3502 	priv = pers->takeover(mddev);
3503 	if (IS_ERR(priv)) {
3504 		mddev->new_level = mddev->level;
3505 		mddev->new_layout = mddev->layout;
3506 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3507 		mddev->raid_disks -= mddev->delta_disks;
3508 		mddev->delta_disks = 0;
3509 		mddev->reshape_backwards = 0;
3510 		module_put(pers->owner);
3511 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3512 		       mdname(mddev), clevel);
3513 		rv = PTR_ERR(priv);
3514 		goto out_unlock;
3515 	}
3516 
3517 	/* Looks like we have a winner */
3518 	mddev_suspend(mddev);
3519 	mddev_detach(mddev);
3520 
3521 	spin_lock(&mddev->lock);
3522 	oldpers = mddev->pers;
3523 	oldpriv = mddev->private;
3524 	mddev->pers = pers;
3525 	mddev->private = priv;
3526 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3527 	mddev->level = mddev->new_level;
3528 	mddev->layout = mddev->new_layout;
3529 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3530 	mddev->delta_disks = 0;
3531 	mddev->reshape_backwards = 0;
3532 	mddev->degraded = 0;
3533 	spin_unlock(&mddev->lock);
3534 
3535 	if (oldpers->sync_request == NULL &&
3536 	    mddev->external) {
3537 		/* We are converting from a no-redundancy array
3538 		 * to a redundancy array and metadata is managed
3539 		 * externally so we need to be sure that writes
3540 		 * won't block due to a need to transition
3541 		 *      clean->dirty
3542 		 * until external management is started.
3543 		 */
3544 		mddev->in_sync = 0;
3545 		mddev->safemode_delay = 0;
3546 		mddev->safemode = 0;
3547 	}
3548 
3549 	oldpers->free(mddev, oldpriv);
3550 
3551 	if (oldpers->sync_request == NULL &&
3552 	    pers->sync_request != NULL) {
3553 		/* need to add the md_redundancy_group */
3554 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3555 			printk(KERN_WARNING
3556 			       "md: cannot register extra attributes for %s\n",
3557 			       mdname(mddev));
3558 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3559 	}
3560 	if (oldpers->sync_request != NULL &&
3561 	    pers->sync_request == NULL) {
3562 		/* need to remove the md_redundancy_group */
3563 		if (mddev->to_remove == NULL)
3564 			mddev->to_remove = &md_redundancy_group;
3565 	}
3566 
3567 	rdev_for_each(rdev, mddev) {
3568 		if (rdev->raid_disk < 0)
3569 			continue;
3570 		if (rdev->new_raid_disk >= mddev->raid_disks)
3571 			rdev->new_raid_disk = -1;
3572 		if (rdev->new_raid_disk == rdev->raid_disk)
3573 			continue;
3574 		sysfs_unlink_rdev(mddev, rdev);
3575 	}
3576 	rdev_for_each(rdev, mddev) {
3577 		if (rdev->raid_disk < 0)
3578 			continue;
3579 		if (rdev->new_raid_disk == rdev->raid_disk)
3580 			continue;
3581 		rdev->raid_disk = rdev->new_raid_disk;
3582 		if (rdev->raid_disk < 0)
3583 			clear_bit(In_sync, &rdev->flags);
3584 		else {
3585 			if (sysfs_link_rdev(mddev, rdev))
3586 				printk(KERN_WARNING "md: cannot register rd%d"
3587 				       " for %s after level change\n",
3588 				       rdev->raid_disk, mdname(mddev));
3589 		}
3590 	}
3591 
3592 	if (pers->sync_request == NULL) {
3593 		/* this is now an array without redundancy, so
3594 		 * it must always be in_sync
3595 		 */
3596 		mddev->in_sync = 1;
3597 		del_timer_sync(&mddev->safemode_timer);
3598 	}
3599 	blk_set_stacking_limits(&mddev->queue->limits);
3600 	pers->run(mddev);
3601 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3602 	mddev_resume(mddev);
3603 	if (!mddev->thread)
3604 		md_update_sb(mddev, 1);
3605 	sysfs_notify(&mddev->kobj, NULL, "level");
3606 	md_new_event(mddev);
3607 	rv = len;
3608 out_unlock:
3609 	mddev_unlock(mddev);
3610 	return rv;
3611 }
3612 
3613 static struct md_sysfs_entry md_level =
3614 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3615 
3616 static ssize_t
3617 layout_show(struct mddev *mddev, char *page)
3618 {
3619 	/* just a number, not meaningful for all levels */
3620 	if (mddev->reshape_position != MaxSector &&
3621 	    mddev->layout != mddev->new_layout)
3622 		return sprintf(page, "%d (%d)\n",
3623 			       mddev->new_layout, mddev->layout);
3624 	return sprintf(page, "%d\n", mddev->layout);
3625 }
3626 
3627 static ssize_t
3628 layout_store(struct mddev *mddev, const char *buf, size_t len)
3629 {
3630 	unsigned int n;
3631 	int err;
3632 
3633 	err = kstrtouint(buf, 10, &n);
3634 	if (err < 0)
3635 		return err;
3636 	err = mddev_lock(mddev);
3637 	if (err)
3638 		return err;
3639 
3640 	if (mddev->pers) {
3641 		if (mddev->pers->check_reshape == NULL)
3642 			err = -EBUSY;
3643 		else if (mddev->ro)
3644 			err = -EROFS;
3645 		else {
3646 			mddev->new_layout = n;
3647 			err = mddev->pers->check_reshape(mddev);
3648 			if (err)
3649 				mddev->new_layout = mddev->layout;
3650 		}
3651 	} else {
3652 		mddev->new_layout = n;
3653 		if (mddev->reshape_position == MaxSector)
3654 			mddev->layout = n;
3655 	}
3656 	mddev_unlock(mddev);
3657 	return err ?: len;
3658 }
3659 static struct md_sysfs_entry md_layout =
3660 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3661 
3662 static ssize_t
3663 raid_disks_show(struct mddev *mddev, char *page)
3664 {
3665 	if (mddev->raid_disks == 0)
3666 		return 0;
3667 	if (mddev->reshape_position != MaxSector &&
3668 	    mddev->delta_disks != 0)
3669 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3670 			       mddev->raid_disks - mddev->delta_disks);
3671 	return sprintf(page, "%d\n", mddev->raid_disks);
3672 }
3673 
3674 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3675 
3676 static ssize_t
3677 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3678 {
3679 	unsigned int n;
3680 	int err;
3681 
3682 	err = kstrtouint(buf, 10, &n);
3683 	if (err < 0)
3684 		return err;
3685 
3686 	err = mddev_lock(mddev);
3687 	if (err)
3688 		return err;
3689 	if (mddev->pers)
3690 		err = update_raid_disks(mddev, n);
3691 	else if (mddev->reshape_position != MaxSector) {
3692 		struct md_rdev *rdev;
3693 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3694 
3695 		err = -EINVAL;
3696 		rdev_for_each(rdev, mddev) {
3697 			if (olddisks < n &&
3698 			    rdev->data_offset < rdev->new_data_offset)
3699 				goto out_unlock;
3700 			if (olddisks > n &&
3701 			    rdev->data_offset > rdev->new_data_offset)
3702 				goto out_unlock;
3703 		}
3704 		err = 0;
3705 		mddev->delta_disks = n - olddisks;
3706 		mddev->raid_disks = n;
3707 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3708 	} else
3709 		mddev->raid_disks = n;
3710 out_unlock:
3711 	mddev_unlock(mddev);
3712 	return err ? err : len;
3713 }
3714 static struct md_sysfs_entry md_raid_disks =
3715 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3716 
3717 static ssize_t
3718 chunk_size_show(struct mddev *mddev, char *page)
3719 {
3720 	if (mddev->reshape_position != MaxSector &&
3721 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3722 		return sprintf(page, "%d (%d)\n",
3723 			       mddev->new_chunk_sectors << 9,
3724 			       mddev->chunk_sectors << 9);
3725 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3726 }
3727 
3728 static ssize_t
3729 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3730 {
3731 	unsigned long n;
3732 	int err;
3733 
3734 	err = kstrtoul(buf, 10, &n);
3735 	if (err < 0)
3736 		return err;
3737 
3738 	err = mddev_lock(mddev);
3739 	if (err)
3740 		return err;
3741 	if (mddev->pers) {
3742 		if (mddev->pers->check_reshape == NULL)
3743 			err = -EBUSY;
3744 		else if (mddev->ro)
3745 			err = -EROFS;
3746 		else {
3747 			mddev->new_chunk_sectors = n >> 9;
3748 			err = mddev->pers->check_reshape(mddev);
3749 			if (err)
3750 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3751 		}
3752 	} else {
3753 		mddev->new_chunk_sectors = n >> 9;
3754 		if (mddev->reshape_position == MaxSector)
3755 			mddev->chunk_sectors = n >> 9;
3756 	}
3757 	mddev_unlock(mddev);
3758 	return err ?: len;
3759 }
3760 static struct md_sysfs_entry md_chunk_size =
3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3762 
3763 static ssize_t
3764 resync_start_show(struct mddev *mddev, char *page)
3765 {
3766 	if (mddev->recovery_cp == MaxSector)
3767 		return sprintf(page, "none\n");
3768 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3769 }
3770 
3771 static ssize_t
3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3773 {
3774 	unsigned long long n;
3775 	int err;
3776 
3777 	if (cmd_match(buf, "none"))
3778 		n = MaxSector;
3779 	else {
3780 		err = kstrtoull(buf, 10, &n);
3781 		if (err < 0)
3782 			return err;
3783 		if (n != (sector_t)n)
3784 			return -EINVAL;
3785 	}
3786 
3787 	err = mddev_lock(mddev);
3788 	if (err)
3789 		return err;
3790 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3791 		err = -EBUSY;
3792 
3793 	if (!err) {
3794 		mddev->recovery_cp = n;
3795 		if (mddev->pers)
3796 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3797 	}
3798 	mddev_unlock(mddev);
3799 	return err ?: len;
3800 }
3801 static struct md_sysfs_entry md_resync_start =
3802 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3803 		resync_start_show, resync_start_store);
3804 
3805 /*
3806  * The array state can be:
3807  *
3808  * clear
3809  *     No devices, no size, no level
3810  *     Equivalent to STOP_ARRAY ioctl
3811  * inactive
3812  *     May have some settings, but array is not active
3813  *        all IO results in error
3814  *     When written, doesn't tear down array, but just stops it
3815  * suspended (not supported yet)
3816  *     All IO requests will block. The array can be reconfigured.
3817  *     Writing this, if accepted, will block until array is quiescent
3818  * readonly
3819  *     no resync can happen.  no superblocks get written.
3820  *     write requests fail
3821  * read-auto
3822  *     like readonly, but behaves like 'clean' on a write request.
3823  *
3824  * clean - no pending writes, but otherwise active.
3825  *     When written to inactive array, starts without resync
3826  *     If a write request arrives then
3827  *       if metadata is known, mark 'dirty' and switch to 'active'.
3828  *       if not known, block and switch to write-pending
3829  *     If written to an active array that has pending writes, then fails.
3830  * active
3831  *     fully active: IO and resync can be happening.
3832  *     When written to inactive array, starts with resync
3833  *
3834  * write-pending
3835  *     clean, but writes are blocked waiting for 'active' to be written.
3836  *
3837  * active-idle
3838  *     like active, but no writes have been seen for a while (100msec).
3839  *
3840  */
3841 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3842 		   write_pending, active_idle, bad_word};
3843 static char *array_states[] = {
3844 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3845 	"write-pending", "active-idle", NULL };
3846 
3847 static int match_word(const char *word, char **list)
3848 {
3849 	int n;
3850 	for (n=0; list[n]; n++)
3851 		if (cmd_match(word, list[n]))
3852 			break;
3853 	return n;
3854 }
3855 
3856 static ssize_t
3857 array_state_show(struct mddev *mddev, char *page)
3858 {
3859 	enum array_state st = inactive;
3860 
3861 	if (mddev->pers)
3862 		switch(mddev->ro) {
3863 		case 1:
3864 			st = readonly;
3865 			break;
3866 		case 2:
3867 			st = read_auto;
3868 			break;
3869 		case 0:
3870 			if (mddev->in_sync)
3871 				st = clean;
3872 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3873 				st = write_pending;
3874 			else if (mddev->safemode)
3875 				st = active_idle;
3876 			else
3877 				st = active;
3878 		}
3879 	else {
3880 		if (list_empty(&mddev->disks) &&
3881 		    mddev->raid_disks == 0 &&
3882 		    mddev->dev_sectors == 0)
3883 			st = clear;
3884 		else
3885 			st = inactive;
3886 	}
3887 	return sprintf(page, "%s\n", array_states[st]);
3888 }
3889 
3890 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3891 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3892 static int do_md_run(struct mddev *mddev);
3893 static int restart_array(struct mddev *mddev);
3894 
3895 static ssize_t
3896 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3897 {
3898 	int err;
3899 	enum array_state st = match_word(buf, array_states);
3900 
3901 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3902 		/* don't take reconfig_mutex when toggling between
3903 		 * clean and active
3904 		 */
3905 		spin_lock(&mddev->lock);
3906 		if (st == active) {
3907 			restart_array(mddev);
3908 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3909 			wake_up(&mddev->sb_wait);
3910 			err = 0;
3911 		} else /* st == clean */ {
3912 			restart_array(mddev);
3913 			if (atomic_read(&mddev->writes_pending) == 0) {
3914 				if (mddev->in_sync == 0) {
3915 					mddev->in_sync = 1;
3916 					if (mddev->safemode == 1)
3917 						mddev->safemode = 0;
3918 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3919 				}
3920 				err = 0;
3921 			} else
3922 				err = -EBUSY;
3923 		}
3924 		spin_unlock(&mddev->lock);
3925 		return err ?: len;
3926 	}
3927 	err = mddev_lock(mddev);
3928 	if (err)
3929 		return err;
3930 	err = -EINVAL;
3931 	switch(st) {
3932 	case bad_word:
3933 		break;
3934 	case clear:
3935 		/* stopping an active array */
3936 		err = do_md_stop(mddev, 0, NULL);
3937 		break;
3938 	case inactive:
3939 		/* stopping an active array */
3940 		if (mddev->pers)
3941 			err = do_md_stop(mddev, 2, NULL);
3942 		else
3943 			err = 0; /* already inactive */
3944 		break;
3945 	case suspended:
3946 		break; /* not supported yet */
3947 	case readonly:
3948 		if (mddev->pers)
3949 			err = md_set_readonly(mddev, NULL);
3950 		else {
3951 			mddev->ro = 1;
3952 			set_disk_ro(mddev->gendisk, 1);
3953 			err = do_md_run(mddev);
3954 		}
3955 		break;
3956 	case read_auto:
3957 		if (mddev->pers) {
3958 			if (mddev->ro == 0)
3959 				err = md_set_readonly(mddev, NULL);
3960 			else if (mddev->ro == 1)
3961 				err = restart_array(mddev);
3962 			if (err == 0) {
3963 				mddev->ro = 2;
3964 				set_disk_ro(mddev->gendisk, 0);
3965 			}
3966 		} else {
3967 			mddev->ro = 2;
3968 			err = do_md_run(mddev);
3969 		}
3970 		break;
3971 	case clean:
3972 		if (mddev->pers) {
3973 			err = restart_array(mddev);
3974 			if (err)
3975 				break;
3976 			spin_lock(&mddev->lock);
3977 			if (atomic_read(&mddev->writes_pending) == 0) {
3978 				if (mddev->in_sync == 0) {
3979 					mddev->in_sync = 1;
3980 					if (mddev->safemode == 1)
3981 						mddev->safemode = 0;
3982 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3983 				}
3984 				err = 0;
3985 			} else
3986 				err = -EBUSY;
3987 			spin_unlock(&mddev->lock);
3988 		} else
3989 			err = -EINVAL;
3990 		break;
3991 	case active:
3992 		if (mddev->pers) {
3993 			err = restart_array(mddev);
3994 			if (err)
3995 				break;
3996 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3997 			wake_up(&mddev->sb_wait);
3998 			err = 0;
3999 		} else {
4000 			mddev->ro = 0;
4001 			set_disk_ro(mddev->gendisk, 0);
4002 			err = do_md_run(mddev);
4003 		}
4004 		break;
4005 	case write_pending:
4006 	case active_idle:
4007 		/* these cannot be set */
4008 		break;
4009 	}
4010 
4011 	if (!err) {
4012 		if (mddev->hold_active == UNTIL_IOCTL)
4013 			mddev->hold_active = 0;
4014 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4015 	}
4016 	mddev_unlock(mddev);
4017 	return err ?: len;
4018 }
4019 static struct md_sysfs_entry md_array_state =
4020 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4021 
4022 static ssize_t
4023 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4024 	return sprintf(page, "%d\n",
4025 		       atomic_read(&mddev->max_corr_read_errors));
4026 }
4027 
4028 static ssize_t
4029 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4030 {
4031 	unsigned int n;
4032 	int rv;
4033 
4034 	rv = kstrtouint(buf, 10, &n);
4035 	if (rv < 0)
4036 		return rv;
4037 	atomic_set(&mddev->max_corr_read_errors, n);
4038 	return len;
4039 }
4040 
4041 static struct md_sysfs_entry max_corr_read_errors =
4042 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4043 	max_corrected_read_errors_store);
4044 
4045 static ssize_t
4046 null_show(struct mddev *mddev, char *page)
4047 {
4048 	return -EINVAL;
4049 }
4050 
4051 static ssize_t
4052 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4053 {
4054 	/* buf must be %d:%d\n? giving major and minor numbers */
4055 	/* The new device is added to the array.
4056 	 * If the array has a persistent superblock, we read the
4057 	 * superblock to initialise info and check validity.
4058 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4059 	 * which mainly checks size.
4060 	 */
4061 	char *e;
4062 	int major = simple_strtoul(buf, &e, 10);
4063 	int minor;
4064 	dev_t dev;
4065 	struct md_rdev *rdev;
4066 	int err;
4067 
4068 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4069 		return -EINVAL;
4070 	minor = simple_strtoul(e+1, &e, 10);
4071 	if (*e && *e != '\n')
4072 		return -EINVAL;
4073 	dev = MKDEV(major, minor);
4074 	if (major != MAJOR(dev) ||
4075 	    minor != MINOR(dev))
4076 		return -EOVERFLOW;
4077 
4078 	flush_workqueue(md_misc_wq);
4079 
4080 	err = mddev_lock(mddev);
4081 	if (err)
4082 		return err;
4083 	if (mddev->persistent) {
4084 		rdev = md_import_device(dev, mddev->major_version,
4085 					mddev->minor_version);
4086 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4087 			struct md_rdev *rdev0
4088 				= list_entry(mddev->disks.next,
4089 					     struct md_rdev, same_set);
4090 			err = super_types[mddev->major_version]
4091 				.load_super(rdev, rdev0, mddev->minor_version);
4092 			if (err < 0)
4093 				goto out;
4094 		}
4095 	} else if (mddev->external)
4096 		rdev = md_import_device(dev, -2, -1);
4097 	else
4098 		rdev = md_import_device(dev, -1, -1);
4099 
4100 	if (IS_ERR(rdev)) {
4101 		mddev_unlock(mddev);
4102 		return PTR_ERR(rdev);
4103 	}
4104 	err = bind_rdev_to_array(rdev, mddev);
4105  out:
4106 	if (err)
4107 		export_rdev(rdev);
4108 	mddev_unlock(mddev);
4109 	return err ? err : len;
4110 }
4111 
4112 static struct md_sysfs_entry md_new_device =
4113 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4114 
4115 static ssize_t
4116 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4117 {
4118 	char *end;
4119 	unsigned long chunk, end_chunk;
4120 	int err;
4121 
4122 	err = mddev_lock(mddev);
4123 	if (err)
4124 		return err;
4125 	if (!mddev->bitmap)
4126 		goto out;
4127 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4128 	while (*buf) {
4129 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4130 		if (buf == end) break;
4131 		if (*end == '-') { /* range */
4132 			buf = end + 1;
4133 			end_chunk = simple_strtoul(buf, &end, 0);
4134 			if (buf == end) break;
4135 		}
4136 		if (*end && !isspace(*end)) break;
4137 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4138 		buf = skip_spaces(end);
4139 	}
4140 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4141 out:
4142 	mddev_unlock(mddev);
4143 	return len;
4144 }
4145 
4146 static struct md_sysfs_entry md_bitmap =
4147 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4148 
4149 static ssize_t
4150 size_show(struct mddev *mddev, char *page)
4151 {
4152 	return sprintf(page, "%llu\n",
4153 		(unsigned long long)mddev->dev_sectors / 2);
4154 }
4155 
4156 static int update_size(struct mddev *mddev, sector_t num_sectors);
4157 
4158 static ssize_t
4159 size_store(struct mddev *mddev, const char *buf, size_t len)
4160 {
4161 	/* If array is inactive, we can reduce the component size, but
4162 	 * not increase it (except from 0).
4163 	 * If array is active, we can try an on-line resize
4164 	 */
4165 	sector_t sectors;
4166 	int err = strict_blocks_to_sectors(buf, &sectors);
4167 
4168 	if (err < 0)
4169 		return err;
4170 	err = mddev_lock(mddev);
4171 	if (err)
4172 		return err;
4173 	if (mddev->pers) {
4174 		err = update_size(mddev, sectors);
4175 		md_update_sb(mddev, 1);
4176 	} else {
4177 		if (mddev->dev_sectors == 0 ||
4178 		    mddev->dev_sectors > sectors)
4179 			mddev->dev_sectors = sectors;
4180 		else
4181 			err = -ENOSPC;
4182 	}
4183 	mddev_unlock(mddev);
4184 	return err ? err : len;
4185 }
4186 
4187 static struct md_sysfs_entry md_size =
4188 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4189 
4190 /* Metadata version.
4191  * This is one of
4192  *   'none' for arrays with no metadata (good luck...)
4193  *   'external' for arrays with externally managed metadata,
4194  * or N.M for internally known formats
4195  */
4196 static ssize_t
4197 metadata_show(struct mddev *mddev, char *page)
4198 {
4199 	if (mddev->persistent)
4200 		return sprintf(page, "%d.%d\n",
4201 			       mddev->major_version, mddev->minor_version);
4202 	else if (mddev->external)
4203 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4204 	else
4205 		return sprintf(page, "none\n");
4206 }
4207 
4208 static ssize_t
4209 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4210 {
4211 	int major, minor;
4212 	char *e;
4213 	int err;
4214 	/* Changing the details of 'external' metadata is
4215 	 * always permitted.  Otherwise there must be
4216 	 * no devices attached to the array.
4217 	 */
4218 
4219 	err = mddev_lock(mddev);
4220 	if (err)
4221 		return err;
4222 	err = -EBUSY;
4223 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4224 		;
4225 	else if (!list_empty(&mddev->disks))
4226 		goto out_unlock;
4227 
4228 	err = 0;
4229 	if (cmd_match(buf, "none")) {
4230 		mddev->persistent = 0;
4231 		mddev->external = 0;
4232 		mddev->major_version = 0;
4233 		mddev->minor_version = 90;
4234 		goto out_unlock;
4235 	}
4236 	if (strncmp(buf, "external:", 9) == 0) {
4237 		size_t namelen = len-9;
4238 		if (namelen >= sizeof(mddev->metadata_type))
4239 			namelen = sizeof(mddev->metadata_type)-1;
4240 		strncpy(mddev->metadata_type, buf+9, namelen);
4241 		mddev->metadata_type[namelen] = 0;
4242 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4243 			mddev->metadata_type[--namelen] = 0;
4244 		mddev->persistent = 0;
4245 		mddev->external = 1;
4246 		mddev->major_version = 0;
4247 		mddev->minor_version = 90;
4248 		goto out_unlock;
4249 	}
4250 	major = simple_strtoul(buf, &e, 10);
4251 	err = -EINVAL;
4252 	if (e==buf || *e != '.')
4253 		goto out_unlock;
4254 	buf = e+1;
4255 	minor = simple_strtoul(buf, &e, 10);
4256 	if (e==buf || (*e && *e != '\n') )
4257 		goto out_unlock;
4258 	err = -ENOENT;
4259 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4260 		goto out_unlock;
4261 	mddev->major_version = major;
4262 	mddev->minor_version = minor;
4263 	mddev->persistent = 1;
4264 	mddev->external = 0;
4265 	err = 0;
4266 out_unlock:
4267 	mddev_unlock(mddev);
4268 	return err ?: len;
4269 }
4270 
4271 static struct md_sysfs_entry md_metadata =
4272 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4273 
4274 static ssize_t
4275 action_show(struct mddev *mddev, char *page)
4276 {
4277 	char *type = "idle";
4278 	unsigned long recovery = mddev->recovery;
4279 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4280 		type = "frozen";
4281 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4282 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4283 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4284 			type = "reshape";
4285 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4286 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4287 				type = "resync";
4288 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4289 				type = "check";
4290 			else
4291 				type = "repair";
4292 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4293 			type = "recover";
4294 		else if (mddev->reshape_position != MaxSector)
4295 			type = "reshape";
4296 	}
4297 	return sprintf(page, "%s\n", type);
4298 }
4299 
4300 static ssize_t
4301 action_store(struct mddev *mddev, const char *page, size_t len)
4302 {
4303 	if (!mddev->pers || !mddev->pers->sync_request)
4304 		return -EINVAL;
4305 
4306 
4307 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4308 		if (cmd_match(page, "frozen"))
4309 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4310 		else
4311 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4312 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4313 		    mddev_lock(mddev) == 0) {
4314 			flush_workqueue(md_misc_wq);
4315 			if (mddev->sync_thread) {
4316 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4317 				md_reap_sync_thread(mddev);
4318 			}
4319 			mddev_unlock(mddev);
4320 		}
4321 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4322 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4323 		return -EBUSY;
4324 	else if (cmd_match(page, "resync"))
4325 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4326 	else if (cmd_match(page, "recover")) {
4327 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4328 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4329 	} else if (cmd_match(page, "reshape")) {
4330 		int err;
4331 		if (mddev->pers->start_reshape == NULL)
4332 			return -EINVAL;
4333 		err = mddev_lock(mddev);
4334 		if (!err) {
4335 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4336 			err = mddev->pers->start_reshape(mddev);
4337 			mddev_unlock(mddev);
4338 		}
4339 		if (err)
4340 			return err;
4341 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4342 	} else {
4343 		if (cmd_match(page, "check"))
4344 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4345 		else if (!cmd_match(page, "repair"))
4346 			return -EINVAL;
4347 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4348 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4349 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4350 	}
4351 	if (mddev->ro == 2) {
4352 		/* A write to sync_action is enough to justify
4353 		 * canceling read-auto mode
4354 		 */
4355 		mddev->ro = 0;
4356 		md_wakeup_thread(mddev->sync_thread);
4357 	}
4358 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4359 	md_wakeup_thread(mddev->thread);
4360 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4361 	return len;
4362 }
4363 
4364 static struct md_sysfs_entry md_scan_mode =
4365 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4366 
4367 static ssize_t
4368 last_sync_action_show(struct mddev *mddev, char *page)
4369 {
4370 	return sprintf(page, "%s\n", mddev->last_sync_action);
4371 }
4372 
4373 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4374 
4375 static ssize_t
4376 mismatch_cnt_show(struct mddev *mddev, char *page)
4377 {
4378 	return sprintf(page, "%llu\n",
4379 		       (unsigned long long)
4380 		       atomic64_read(&mddev->resync_mismatches));
4381 }
4382 
4383 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4384 
4385 static ssize_t
4386 sync_min_show(struct mddev *mddev, char *page)
4387 {
4388 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4389 		       mddev->sync_speed_min ? "local": "system");
4390 }
4391 
4392 static ssize_t
4393 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4394 {
4395 	unsigned int min;
4396 	int rv;
4397 
4398 	if (strncmp(buf, "system", 6)==0) {
4399 		min = 0;
4400 	} else {
4401 		rv = kstrtouint(buf, 10, &min);
4402 		if (rv < 0)
4403 			return rv;
4404 		if (min == 0)
4405 			return -EINVAL;
4406 	}
4407 	mddev->sync_speed_min = min;
4408 	return len;
4409 }
4410 
4411 static struct md_sysfs_entry md_sync_min =
4412 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4413 
4414 static ssize_t
4415 sync_max_show(struct mddev *mddev, char *page)
4416 {
4417 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4418 		       mddev->sync_speed_max ? "local": "system");
4419 }
4420 
4421 static ssize_t
4422 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4423 {
4424 	unsigned int max;
4425 	int rv;
4426 
4427 	if (strncmp(buf, "system", 6)==0) {
4428 		max = 0;
4429 	} else {
4430 		rv = kstrtouint(buf, 10, &max);
4431 		if (rv < 0)
4432 			return rv;
4433 		if (max == 0)
4434 			return -EINVAL;
4435 	}
4436 	mddev->sync_speed_max = max;
4437 	return len;
4438 }
4439 
4440 static struct md_sysfs_entry md_sync_max =
4441 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4442 
4443 static ssize_t
4444 degraded_show(struct mddev *mddev, char *page)
4445 {
4446 	return sprintf(page, "%d\n", mddev->degraded);
4447 }
4448 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4449 
4450 static ssize_t
4451 sync_force_parallel_show(struct mddev *mddev, char *page)
4452 {
4453 	return sprintf(page, "%d\n", mddev->parallel_resync);
4454 }
4455 
4456 static ssize_t
4457 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4458 {
4459 	long n;
4460 
4461 	if (kstrtol(buf, 10, &n))
4462 		return -EINVAL;
4463 
4464 	if (n != 0 && n != 1)
4465 		return -EINVAL;
4466 
4467 	mddev->parallel_resync = n;
4468 
4469 	if (mddev->sync_thread)
4470 		wake_up(&resync_wait);
4471 
4472 	return len;
4473 }
4474 
4475 /* force parallel resync, even with shared block devices */
4476 static struct md_sysfs_entry md_sync_force_parallel =
4477 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4478        sync_force_parallel_show, sync_force_parallel_store);
4479 
4480 static ssize_t
4481 sync_speed_show(struct mddev *mddev, char *page)
4482 {
4483 	unsigned long resync, dt, db;
4484 	if (mddev->curr_resync == 0)
4485 		return sprintf(page, "none\n");
4486 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4487 	dt = (jiffies - mddev->resync_mark) / HZ;
4488 	if (!dt) dt++;
4489 	db = resync - mddev->resync_mark_cnt;
4490 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4491 }
4492 
4493 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4494 
4495 static ssize_t
4496 sync_completed_show(struct mddev *mddev, char *page)
4497 {
4498 	unsigned long long max_sectors, resync;
4499 
4500 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4501 		return sprintf(page, "none\n");
4502 
4503 	if (mddev->curr_resync == 1 ||
4504 	    mddev->curr_resync == 2)
4505 		return sprintf(page, "delayed\n");
4506 
4507 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4508 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4509 		max_sectors = mddev->resync_max_sectors;
4510 	else
4511 		max_sectors = mddev->dev_sectors;
4512 
4513 	resync = mddev->curr_resync_completed;
4514 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4515 }
4516 
4517 static struct md_sysfs_entry md_sync_completed =
4518 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4519 
4520 static ssize_t
4521 min_sync_show(struct mddev *mddev, char *page)
4522 {
4523 	return sprintf(page, "%llu\n",
4524 		       (unsigned long long)mddev->resync_min);
4525 }
4526 static ssize_t
4527 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4528 {
4529 	unsigned long long min;
4530 	int err;
4531 
4532 	if (kstrtoull(buf, 10, &min))
4533 		return -EINVAL;
4534 
4535 	spin_lock(&mddev->lock);
4536 	err = -EINVAL;
4537 	if (min > mddev->resync_max)
4538 		goto out_unlock;
4539 
4540 	err = -EBUSY;
4541 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4542 		goto out_unlock;
4543 
4544 	/* Round down to multiple of 4K for safety */
4545 	mddev->resync_min = round_down(min, 8);
4546 	err = 0;
4547 
4548 out_unlock:
4549 	spin_unlock(&mddev->lock);
4550 	return err ?: len;
4551 }
4552 
4553 static struct md_sysfs_entry md_min_sync =
4554 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4555 
4556 static ssize_t
4557 max_sync_show(struct mddev *mddev, char *page)
4558 {
4559 	if (mddev->resync_max == MaxSector)
4560 		return sprintf(page, "max\n");
4561 	else
4562 		return sprintf(page, "%llu\n",
4563 			       (unsigned long long)mddev->resync_max);
4564 }
4565 static ssize_t
4566 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4567 {
4568 	int err;
4569 	spin_lock(&mddev->lock);
4570 	if (strncmp(buf, "max", 3) == 0)
4571 		mddev->resync_max = MaxSector;
4572 	else {
4573 		unsigned long long max;
4574 		int chunk;
4575 
4576 		err = -EINVAL;
4577 		if (kstrtoull(buf, 10, &max))
4578 			goto out_unlock;
4579 		if (max < mddev->resync_min)
4580 			goto out_unlock;
4581 
4582 		err = -EBUSY;
4583 		if (max < mddev->resync_max &&
4584 		    mddev->ro == 0 &&
4585 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4586 			goto out_unlock;
4587 
4588 		/* Must be a multiple of chunk_size */
4589 		chunk = mddev->chunk_sectors;
4590 		if (chunk) {
4591 			sector_t temp = max;
4592 
4593 			err = -EINVAL;
4594 			if (sector_div(temp, chunk))
4595 				goto out_unlock;
4596 		}
4597 		mddev->resync_max = max;
4598 	}
4599 	wake_up(&mddev->recovery_wait);
4600 	err = 0;
4601 out_unlock:
4602 	spin_unlock(&mddev->lock);
4603 	return err ?: len;
4604 }
4605 
4606 static struct md_sysfs_entry md_max_sync =
4607 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4608 
4609 static ssize_t
4610 suspend_lo_show(struct mddev *mddev, char *page)
4611 {
4612 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4613 }
4614 
4615 static ssize_t
4616 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4617 {
4618 	unsigned long long old, new;
4619 	int err;
4620 
4621 	err = kstrtoull(buf, 10, &new);
4622 	if (err < 0)
4623 		return err;
4624 	if (new != (sector_t)new)
4625 		return -EINVAL;
4626 
4627 	err = mddev_lock(mddev);
4628 	if (err)
4629 		return err;
4630 	err = -EINVAL;
4631 	if (mddev->pers == NULL ||
4632 	    mddev->pers->quiesce == NULL)
4633 		goto unlock;
4634 	old = mddev->suspend_lo;
4635 	mddev->suspend_lo = new;
4636 	if (new >= old)
4637 		/* Shrinking suspended region */
4638 		mddev->pers->quiesce(mddev, 2);
4639 	else {
4640 		/* Expanding suspended region - need to wait */
4641 		mddev->pers->quiesce(mddev, 1);
4642 		mddev->pers->quiesce(mddev, 0);
4643 	}
4644 	err = 0;
4645 unlock:
4646 	mddev_unlock(mddev);
4647 	return err ?: len;
4648 }
4649 static struct md_sysfs_entry md_suspend_lo =
4650 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4651 
4652 static ssize_t
4653 suspend_hi_show(struct mddev *mddev, char *page)
4654 {
4655 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4656 }
4657 
4658 static ssize_t
4659 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4660 {
4661 	unsigned long long old, new;
4662 	int err;
4663 
4664 	err = kstrtoull(buf, 10, &new);
4665 	if (err < 0)
4666 		return err;
4667 	if (new != (sector_t)new)
4668 		return -EINVAL;
4669 
4670 	err = mddev_lock(mddev);
4671 	if (err)
4672 		return err;
4673 	err = -EINVAL;
4674 	if (mddev->pers == NULL ||
4675 	    mddev->pers->quiesce == NULL)
4676 		goto unlock;
4677 	old = mddev->suspend_hi;
4678 	mddev->suspend_hi = new;
4679 	if (new <= old)
4680 		/* Shrinking suspended region */
4681 		mddev->pers->quiesce(mddev, 2);
4682 	else {
4683 		/* Expanding suspended region - need to wait */
4684 		mddev->pers->quiesce(mddev, 1);
4685 		mddev->pers->quiesce(mddev, 0);
4686 	}
4687 	err = 0;
4688 unlock:
4689 	mddev_unlock(mddev);
4690 	return err ?: len;
4691 }
4692 static struct md_sysfs_entry md_suspend_hi =
4693 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4694 
4695 static ssize_t
4696 reshape_position_show(struct mddev *mddev, char *page)
4697 {
4698 	if (mddev->reshape_position != MaxSector)
4699 		return sprintf(page, "%llu\n",
4700 			       (unsigned long long)mddev->reshape_position);
4701 	strcpy(page, "none\n");
4702 	return 5;
4703 }
4704 
4705 static ssize_t
4706 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4707 {
4708 	struct md_rdev *rdev;
4709 	unsigned long long new;
4710 	int err;
4711 
4712 	err = kstrtoull(buf, 10, &new);
4713 	if (err < 0)
4714 		return err;
4715 	if (new != (sector_t)new)
4716 		return -EINVAL;
4717 	err = mddev_lock(mddev);
4718 	if (err)
4719 		return err;
4720 	err = -EBUSY;
4721 	if (mddev->pers)
4722 		goto unlock;
4723 	mddev->reshape_position = new;
4724 	mddev->delta_disks = 0;
4725 	mddev->reshape_backwards = 0;
4726 	mddev->new_level = mddev->level;
4727 	mddev->new_layout = mddev->layout;
4728 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4729 	rdev_for_each(rdev, mddev)
4730 		rdev->new_data_offset = rdev->data_offset;
4731 	err = 0;
4732 unlock:
4733 	mddev_unlock(mddev);
4734 	return err ?: len;
4735 }
4736 
4737 static struct md_sysfs_entry md_reshape_position =
4738 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4739        reshape_position_store);
4740 
4741 static ssize_t
4742 reshape_direction_show(struct mddev *mddev, char *page)
4743 {
4744 	return sprintf(page, "%s\n",
4745 		       mddev->reshape_backwards ? "backwards" : "forwards");
4746 }
4747 
4748 static ssize_t
4749 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4750 {
4751 	int backwards = 0;
4752 	int err;
4753 
4754 	if (cmd_match(buf, "forwards"))
4755 		backwards = 0;
4756 	else if (cmd_match(buf, "backwards"))
4757 		backwards = 1;
4758 	else
4759 		return -EINVAL;
4760 	if (mddev->reshape_backwards == backwards)
4761 		return len;
4762 
4763 	err = mddev_lock(mddev);
4764 	if (err)
4765 		return err;
4766 	/* check if we are allowed to change */
4767 	if (mddev->delta_disks)
4768 		err = -EBUSY;
4769 	else if (mddev->persistent &&
4770 	    mddev->major_version == 0)
4771 		err =  -EINVAL;
4772 	else
4773 		mddev->reshape_backwards = backwards;
4774 	mddev_unlock(mddev);
4775 	return err ?: len;
4776 }
4777 
4778 static struct md_sysfs_entry md_reshape_direction =
4779 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4780        reshape_direction_store);
4781 
4782 static ssize_t
4783 array_size_show(struct mddev *mddev, char *page)
4784 {
4785 	if (mddev->external_size)
4786 		return sprintf(page, "%llu\n",
4787 			       (unsigned long long)mddev->array_sectors/2);
4788 	else
4789 		return sprintf(page, "default\n");
4790 }
4791 
4792 static ssize_t
4793 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4794 {
4795 	sector_t sectors;
4796 	int err;
4797 
4798 	err = mddev_lock(mddev);
4799 	if (err)
4800 		return err;
4801 
4802 	if (strncmp(buf, "default", 7) == 0) {
4803 		if (mddev->pers)
4804 			sectors = mddev->pers->size(mddev, 0, 0);
4805 		else
4806 			sectors = mddev->array_sectors;
4807 
4808 		mddev->external_size = 0;
4809 	} else {
4810 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4811 			err = -EINVAL;
4812 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4813 			err = -E2BIG;
4814 		else
4815 			mddev->external_size = 1;
4816 	}
4817 
4818 	if (!err) {
4819 		mddev->array_sectors = sectors;
4820 		if (mddev->pers) {
4821 			set_capacity(mddev->gendisk, mddev->array_sectors);
4822 			revalidate_disk(mddev->gendisk);
4823 		}
4824 	}
4825 	mddev_unlock(mddev);
4826 	return err ?: len;
4827 }
4828 
4829 static struct md_sysfs_entry md_array_size =
4830 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4831        array_size_store);
4832 
4833 static struct attribute *md_default_attrs[] = {
4834 	&md_level.attr,
4835 	&md_layout.attr,
4836 	&md_raid_disks.attr,
4837 	&md_chunk_size.attr,
4838 	&md_size.attr,
4839 	&md_resync_start.attr,
4840 	&md_metadata.attr,
4841 	&md_new_device.attr,
4842 	&md_safe_delay.attr,
4843 	&md_array_state.attr,
4844 	&md_reshape_position.attr,
4845 	&md_reshape_direction.attr,
4846 	&md_array_size.attr,
4847 	&max_corr_read_errors.attr,
4848 	NULL,
4849 };
4850 
4851 static struct attribute *md_redundancy_attrs[] = {
4852 	&md_scan_mode.attr,
4853 	&md_last_scan_mode.attr,
4854 	&md_mismatches.attr,
4855 	&md_sync_min.attr,
4856 	&md_sync_max.attr,
4857 	&md_sync_speed.attr,
4858 	&md_sync_force_parallel.attr,
4859 	&md_sync_completed.attr,
4860 	&md_min_sync.attr,
4861 	&md_max_sync.attr,
4862 	&md_suspend_lo.attr,
4863 	&md_suspend_hi.attr,
4864 	&md_bitmap.attr,
4865 	&md_degraded.attr,
4866 	NULL,
4867 };
4868 static struct attribute_group md_redundancy_group = {
4869 	.name = NULL,
4870 	.attrs = md_redundancy_attrs,
4871 };
4872 
4873 static ssize_t
4874 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4875 {
4876 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4877 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4878 	ssize_t rv;
4879 
4880 	if (!entry->show)
4881 		return -EIO;
4882 	spin_lock(&all_mddevs_lock);
4883 	if (list_empty(&mddev->all_mddevs)) {
4884 		spin_unlock(&all_mddevs_lock);
4885 		return -EBUSY;
4886 	}
4887 	mddev_get(mddev);
4888 	spin_unlock(&all_mddevs_lock);
4889 
4890 	rv = entry->show(mddev, page);
4891 	mddev_put(mddev);
4892 	return rv;
4893 }
4894 
4895 static ssize_t
4896 md_attr_store(struct kobject *kobj, struct attribute *attr,
4897 	      const char *page, size_t length)
4898 {
4899 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4900 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4901 	ssize_t rv;
4902 
4903 	if (!entry->store)
4904 		return -EIO;
4905 	if (!capable(CAP_SYS_ADMIN))
4906 		return -EACCES;
4907 	spin_lock(&all_mddevs_lock);
4908 	if (list_empty(&mddev->all_mddevs)) {
4909 		spin_unlock(&all_mddevs_lock);
4910 		return -EBUSY;
4911 	}
4912 	mddev_get(mddev);
4913 	spin_unlock(&all_mddevs_lock);
4914 	rv = entry->store(mddev, page, length);
4915 	mddev_put(mddev);
4916 	return rv;
4917 }
4918 
4919 static void md_free(struct kobject *ko)
4920 {
4921 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4922 
4923 	if (mddev->sysfs_state)
4924 		sysfs_put(mddev->sysfs_state);
4925 
4926 	if (mddev->queue)
4927 		blk_cleanup_queue(mddev->queue);
4928 	if (mddev->gendisk) {
4929 		del_gendisk(mddev->gendisk);
4930 		put_disk(mddev->gendisk);
4931 	}
4932 
4933 	kfree(mddev);
4934 }
4935 
4936 static const struct sysfs_ops md_sysfs_ops = {
4937 	.show	= md_attr_show,
4938 	.store	= md_attr_store,
4939 };
4940 static struct kobj_type md_ktype = {
4941 	.release	= md_free,
4942 	.sysfs_ops	= &md_sysfs_ops,
4943 	.default_attrs	= md_default_attrs,
4944 };
4945 
4946 int mdp_major = 0;
4947 
4948 static void mddev_delayed_delete(struct work_struct *ws)
4949 {
4950 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4951 
4952 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4953 	kobject_del(&mddev->kobj);
4954 	kobject_put(&mddev->kobj);
4955 }
4956 
4957 static int md_alloc(dev_t dev, char *name)
4958 {
4959 	static DEFINE_MUTEX(disks_mutex);
4960 	struct mddev *mddev = mddev_find(dev);
4961 	struct gendisk *disk;
4962 	int partitioned;
4963 	int shift;
4964 	int unit;
4965 	int error;
4966 
4967 	if (!mddev)
4968 		return -ENODEV;
4969 
4970 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4971 	shift = partitioned ? MdpMinorShift : 0;
4972 	unit = MINOR(mddev->unit) >> shift;
4973 
4974 	/* wait for any previous instance of this device to be
4975 	 * completely removed (mddev_delayed_delete).
4976 	 */
4977 	flush_workqueue(md_misc_wq);
4978 
4979 	mutex_lock(&disks_mutex);
4980 	error = -EEXIST;
4981 	if (mddev->gendisk)
4982 		goto abort;
4983 
4984 	if (name) {
4985 		/* Need to ensure that 'name' is not a duplicate.
4986 		 */
4987 		struct mddev *mddev2;
4988 		spin_lock(&all_mddevs_lock);
4989 
4990 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4991 			if (mddev2->gendisk &&
4992 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4993 				spin_unlock(&all_mddevs_lock);
4994 				goto abort;
4995 			}
4996 		spin_unlock(&all_mddevs_lock);
4997 	}
4998 
4999 	error = -ENOMEM;
5000 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
5001 	if (!mddev->queue)
5002 		goto abort;
5003 	mddev->queue->queuedata = mddev;
5004 
5005 	blk_queue_make_request(mddev->queue, md_make_request);
5006 	blk_set_stacking_limits(&mddev->queue->limits);
5007 
5008 	disk = alloc_disk(1 << shift);
5009 	if (!disk) {
5010 		blk_cleanup_queue(mddev->queue);
5011 		mddev->queue = NULL;
5012 		goto abort;
5013 	}
5014 	disk->major = MAJOR(mddev->unit);
5015 	disk->first_minor = unit << shift;
5016 	if (name)
5017 		strcpy(disk->disk_name, name);
5018 	else if (partitioned)
5019 		sprintf(disk->disk_name, "md_d%d", unit);
5020 	else
5021 		sprintf(disk->disk_name, "md%d", unit);
5022 	disk->fops = &md_fops;
5023 	disk->private_data = mddev;
5024 	disk->queue = mddev->queue;
5025 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5026 	/* Allow extended partitions.  This makes the
5027 	 * 'mdp' device redundant, but we can't really
5028 	 * remove it now.
5029 	 */
5030 	disk->flags |= GENHD_FL_EXT_DEVT;
5031 	mddev->gendisk = disk;
5032 	/* As soon as we call add_disk(), another thread could get
5033 	 * through to md_open, so make sure it doesn't get too far
5034 	 */
5035 	mutex_lock(&mddev->open_mutex);
5036 	add_disk(disk);
5037 
5038 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5039 				     &disk_to_dev(disk)->kobj, "%s", "md");
5040 	if (error) {
5041 		/* This isn't possible, but as kobject_init_and_add is marked
5042 		 * __must_check, we must do something with the result
5043 		 */
5044 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5045 		       disk->disk_name);
5046 		error = 0;
5047 	}
5048 	if (mddev->kobj.sd &&
5049 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5050 		printk(KERN_DEBUG "pointless warning\n");
5051 	mutex_unlock(&mddev->open_mutex);
5052  abort:
5053 	mutex_unlock(&disks_mutex);
5054 	if (!error && mddev->kobj.sd) {
5055 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5056 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5057 	}
5058 	mddev_put(mddev);
5059 	return error;
5060 }
5061 
5062 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5063 {
5064 	md_alloc(dev, NULL);
5065 	return NULL;
5066 }
5067 
5068 static int add_named_array(const char *val, struct kernel_param *kp)
5069 {
5070 	/* val must be "md_*" where * is not all digits.
5071 	 * We allocate an array with a large free minor number, and
5072 	 * set the name to val.  val must not already be an active name.
5073 	 */
5074 	int len = strlen(val);
5075 	char buf[DISK_NAME_LEN];
5076 
5077 	while (len && val[len-1] == '\n')
5078 		len--;
5079 	if (len >= DISK_NAME_LEN)
5080 		return -E2BIG;
5081 	strlcpy(buf, val, len+1);
5082 	if (strncmp(buf, "md_", 3) != 0)
5083 		return -EINVAL;
5084 	return md_alloc(0, buf);
5085 }
5086 
5087 static void md_safemode_timeout(unsigned long data)
5088 {
5089 	struct mddev *mddev = (struct mddev *) data;
5090 
5091 	if (!atomic_read(&mddev->writes_pending)) {
5092 		mddev->safemode = 1;
5093 		if (mddev->external)
5094 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5095 	}
5096 	md_wakeup_thread(mddev->thread);
5097 }
5098 
5099 static int start_dirty_degraded;
5100 
5101 int md_run(struct mddev *mddev)
5102 {
5103 	int err;
5104 	struct md_rdev *rdev;
5105 	struct md_personality *pers;
5106 
5107 	if (list_empty(&mddev->disks))
5108 		/* cannot run an array with no devices.. */
5109 		return -EINVAL;
5110 
5111 	if (mddev->pers)
5112 		return -EBUSY;
5113 	/* Cannot run until previous stop completes properly */
5114 	if (mddev->sysfs_active)
5115 		return -EBUSY;
5116 
5117 	/*
5118 	 * Analyze all RAID superblock(s)
5119 	 */
5120 	if (!mddev->raid_disks) {
5121 		if (!mddev->persistent)
5122 			return -EINVAL;
5123 		analyze_sbs(mddev);
5124 	}
5125 
5126 	if (mddev->level != LEVEL_NONE)
5127 		request_module("md-level-%d", mddev->level);
5128 	else if (mddev->clevel[0])
5129 		request_module("md-%s", mddev->clevel);
5130 
5131 	/*
5132 	 * Drop all container device buffers, from now on
5133 	 * the only valid external interface is through the md
5134 	 * device.
5135 	 */
5136 	rdev_for_each(rdev, mddev) {
5137 		if (test_bit(Faulty, &rdev->flags))
5138 			continue;
5139 		sync_blockdev(rdev->bdev);
5140 		invalidate_bdev(rdev->bdev);
5141 
5142 		/* perform some consistency tests on the device.
5143 		 * We don't want the data to overlap the metadata,
5144 		 * Internal Bitmap issues have been handled elsewhere.
5145 		 */
5146 		if (rdev->meta_bdev) {
5147 			/* Nothing to check */;
5148 		} else if (rdev->data_offset < rdev->sb_start) {
5149 			if (mddev->dev_sectors &&
5150 			    rdev->data_offset + mddev->dev_sectors
5151 			    > rdev->sb_start) {
5152 				printk("md: %s: data overlaps metadata\n",
5153 				       mdname(mddev));
5154 				return -EINVAL;
5155 			}
5156 		} else {
5157 			if (rdev->sb_start + rdev->sb_size/512
5158 			    > rdev->data_offset) {
5159 				printk("md: %s: metadata overlaps data\n",
5160 				       mdname(mddev));
5161 				return -EINVAL;
5162 			}
5163 		}
5164 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5165 	}
5166 
5167 	if (mddev->bio_set == NULL)
5168 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5169 
5170 	spin_lock(&pers_lock);
5171 	pers = find_pers(mddev->level, mddev->clevel);
5172 	if (!pers || !try_module_get(pers->owner)) {
5173 		spin_unlock(&pers_lock);
5174 		if (mddev->level != LEVEL_NONE)
5175 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5176 			       mddev->level);
5177 		else
5178 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5179 			       mddev->clevel);
5180 		return -EINVAL;
5181 	}
5182 	spin_unlock(&pers_lock);
5183 	if (mddev->level != pers->level) {
5184 		mddev->level = pers->level;
5185 		mddev->new_level = pers->level;
5186 	}
5187 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5188 
5189 	if (mddev->reshape_position != MaxSector &&
5190 	    pers->start_reshape == NULL) {
5191 		/* This personality cannot handle reshaping... */
5192 		module_put(pers->owner);
5193 		return -EINVAL;
5194 	}
5195 
5196 	if (pers->sync_request) {
5197 		/* Warn if this is a potentially silly
5198 		 * configuration.
5199 		 */
5200 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5201 		struct md_rdev *rdev2;
5202 		int warned = 0;
5203 
5204 		rdev_for_each(rdev, mddev)
5205 			rdev_for_each(rdev2, mddev) {
5206 				if (rdev < rdev2 &&
5207 				    rdev->bdev->bd_contains ==
5208 				    rdev2->bdev->bd_contains) {
5209 					printk(KERN_WARNING
5210 					       "%s: WARNING: %s appears to be"
5211 					       " on the same physical disk as"
5212 					       " %s.\n",
5213 					       mdname(mddev),
5214 					       bdevname(rdev->bdev,b),
5215 					       bdevname(rdev2->bdev,b2));
5216 					warned = 1;
5217 				}
5218 			}
5219 
5220 		if (warned)
5221 			printk(KERN_WARNING
5222 			       "True protection against single-disk"
5223 			       " failure might be compromised.\n");
5224 	}
5225 
5226 	mddev->recovery = 0;
5227 	/* may be over-ridden by personality */
5228 	mddev->resync_max_sectors = mddev->dev_sectors;
5229 
5230 	mddev->ok_start_degraded = start_dirty_degraded;
5231 
5232 	if (start_readonly && mddev->ro == 0)
5233 		mddev->ro = 2; /* read-only, but switch on first write */
5234 
5235 	err = pers->run(mddev);
5236 	if (err)
5237 		printk(KERN_ERR "md: pers->run() failed ...\n");
5238 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5239 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5240 			  " but 'external_size' not in effect?\n", __func__);
5241 		printk(KERN_ERR
5242 		       "md: invalid array_size %llu > default size %llu\n",
5243 		       (unsigned long long)mddev->array_sectors / 2,
5244 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5245 		err = -EINVAL;
5246 	}
5247 	if (err == 0 && pers->sync_request &&
5248 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5249 		struct bitmap *bitmap;
5250 
5251 		bitmap = bitmap_create(mddev, -1);
5252 		if (IS_ERR(bitmap)) {
5253 			err = PTR_ERR(bitmap);
5254 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5255 			       mdname(mddev), err);
5256 		} else
5257 			mddev->bitmap = bitmap;
5258 
5259 	}
5260 	if (err) {
5261 		mddev_detach(mddev);
5262 		if (mddev->private)
5263 			pers->free(mddev, mddev->private);
5264 		mddev->private = NULL;
5265 		module_put(pers->owner);
5266 		bitmap_destroy(mddev);
5267 		return err;
5268 	}
5269 	if (mddev->queue) {
5270 		mddev->queue->backing_dev_info.congested_data = mddev;
5271 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5272 	}
5273 	if (pers->sync_request) {
5274 		if (mddev->kobj.sd &&
5275 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5276 			printk(KERN_WARNING
5277 			       "md: cannot register extra attributes for %s\n",
5278 			       mdname(mddev));
5279 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5280 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5281 		mddev->ro = 0;
5282 
5283 	atomic_set(&mddev->writes_pending,0);
5284 	atomic_set(&mddev->max_corr_read_errors,
5285 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5286 	mddev->safemode = 0;
5287 	if (mddev_is_clustered(mddev))
5288 		mddev->safemode_delay = 0;
5289 	else
5290 		mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5291 	mddev->in_sync = 1;
5292 	smp_wmb();
5293 	spin_lock(&mddev->lock);
5294 	mddev->pers = pers;
5295 	mddev->ready = 1;
5296 	spin_unlock(&mddev->lock);
5297 	rdev_for_each(rdev, mddev)
5298 		if (rdev->raid_disk >= 0)
5299 			if (sysfs_link_rdev(mddev, rdev))
5300 				/* failure here is OK */;
5301 
5302 	if (mddev->degraded && !mddev->ro)
5303 		/* This ensures that recovering status is reported immediately
5304 		 * via sysfs - until a lack of spares is confirmed.
5305 		 */
5306 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5307 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5308 
5309 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5310 		md_update_sb(mddev, 0);
5311 
5312 	md_new_event(mddev);
5313 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5314 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5315 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5316 	return 0;
5317 }
5318 EXPORT_SYMBOL_GPL(md_run);
5319 
5320 static int do_md_run(struct mddev *mddev)
5321 {
5322 	int err;
5323 
5324 	err = md_run(mddev);
5325 	if (err)
5326 		goto out;
5327 	err = bitmap_load(mddev);
5328 	if (err) {
5329 		bitmap_destroy(mddev);
5330 		goto out;
5331 	}
5332 
5333 	if (mddev_is_clustered(mddev))
5334 		md_allow_write(mddev);
5335 
5336 	md_wakeup_thread(mddev->thread);
5337 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5338 
5339 	set_capacity(mddev->gendisk, mddev->array_sectors);
5340 	revalidate_disk(mddev->gendisk);
5341 	mddev->changed = 1;
5342 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5343 out:
5344 	return err;
5345 }
5346 
5347 static int restart_array(struct mddev *mddev)
5348 {
5349 	struct gendisk *disk = mddev->gendisk;
5350 
5351 	/* Complain if it has no devices */
5352 	if (list_empty(&mddev->disks))
5353 		return -ENXIO;
5354 	if (!mddev->pers)
5355 		return -EINVAL;
5356 	if (!mddev->ro)
5357 		return -EBUSY;
5358 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5359 		struct md_rdev *rdev;
5360 		bool has_journal = false;
5361 
5362 		rcu_read_lock();
5363 		rdev_for_each_rcu(rdev, mddev) {
5364 			if (test_bit(Journal, &rdev->flags) &&
5365 			    !test_bit(Faulty, &rdev->flags)) {
5366 				has_journal = true;
5367 				break;
5368 			}
5369 		}
5370 		rcu_read_unlock();
5371 
5372 		/* Don't restart rw with journal missing/faulty */
5373 		if (!has_journal)
5374 			return -EINVAL;
5375 	}
5376 
5377 	mddev->safemode = 0;
5378 	mddev->ro = 0;
5379 	set_disk_ro(disk, 0);
5380 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5381 		mdname(mddev));
5382 	/* Kick recovery or resync if necessary */
5383 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5384 	md_wakeup_thread(mddev->thread);
5385 	md_wakeup_thread(mddev->sync_thread);
5386 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5387 	return 0;
5388 }
5389 
5390 static void md_clean(struct mddev *mddev)
5391 {
5392 	mddev->array_sectors = 0;
5393 	mddev->external_size = 0;
5394 	mddev->dev_sectors = 0;
5395 	mddev->raid_disks = 0;
5396 	mddev->recovery_cp = 0;
5397 	mddev->resync_min = 0;
5398 	mddev->resync_max = MaxSector;
5399 	mddev->reshape_position = MaxSector;
5400 	mddev->external = 0;
5401 	mddev->persistent = 0;
5402 	mddev->level = LEVEL_NONE;
5403 	mddev->clevel[0] = 0;
5404 	mddev->flags = 0;
5405 	mddev->ro = 0;
5406 	mddev->metadata_type[0] = 0;
5407 	mddev->chunk_sectors = 0;
5408 	mddev->ctime = mddev->utime = 0;
5409 	mddev->layout = 0;
5410 	mddev->max_disks = 0;
5411 	mddev->events = 0;
5412 	mddev->can_decrease_events = 0;
5413 	mddev->delta_disks = 0;
5414 	mddev->reshape_backwards = 0;
5415 	mddev->new_level = LEVEL_NONE;
5416 	mddev->new_layout = 0;
5417 	mddev->new_chunk_sectors = 0;
5418 	mddev->curr_resync = 0;
5419 	atomic64_set(&mddev->resync_mismatches, 0);
5420 	mddev->suspend_lo = mddev->suspend_hi = 0;
5421 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5422 	mddev->recovery = 0;
5423 	mddev->in_sync = 0;
5424 	mddev->changed = 0;
5425 	mddev->degraded = 0;
5426 	mddev->safemode = 0;
5427 	mddev->private = NULL;
5428 	mddev->bitmap_info.offset = 0;
5429 	mddev->bitmap_info.default_offset = 0;
5430 	mddev->bitmap_info.default_space = 0;
5431 	mddev->bitmap_info.chunksize = 0;
5432 	mddev->bitmap_info.daemon_sleep = 0;
5433 	mddev->bitmap_info.max_write_behind = 0;
5434 }
5435 
5436 static void __md_stop_writes(struct mddev *mddev)
5437 {
5438 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5439 	flush_workqueue(md_misc_wq);
5440 	if (mddev->sync_thread) {
5441 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5442 		md_reap_sync_thread(mddev);
5443 	}
5444 
5445 	del_timer_sync(&mddev->safemode_timer);
5446 
5447 	bitmap_flush(mddev);
5448 	md_super_wait(mddev);
5449 
5450 	if (mddev->ro == 0 &&
5451 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5452 	     (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5453 		/* mark array as shutdown cleanly */
5454 		if (!mddev_is_clustered(mddev))
5455 			mddev->in_sync = 1;
5456 		md_update_sb(mddev, 1);
5457 	}
5458 }
5459 
5460 void md_stop_writes(struct mddev *mddev)
5461 {
5462 	mddev_lock_nointr(mddev);
5463 	__md_stop_writes(mddev);
5464 	mddev_unlock(mddev);
5465 }
5466 EXPORT_SYMBOL_GPL(md_stop_writes);
5467 
5468 static void mddev_detach(struct mddev *mddev)
5469 {
5470 	struct bitmap *bitmap = mddev->bitmap;
5471 	/* wait for behind writes to complete */
5472 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5473 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5474 		       mdname(mddev));
5475 		/* need to kick something here to make sure I/O goes? */
5476 		wait_event(bitmap->behind_wait,
5477 			   atomic_read(&bitmap->behind_writes) == 0);
5478 	}
5479 	if (mddev->pers && mddev->pers->quiesce) {
5480 		mddev->pers->quiesce(mddev, 1);
5481 		mddev->pers->quiesce(mddev, 0);
5482 	}
5483 	md_unregister_thread(&mddev->thread);
5484 	if (mddev->queue)
5485 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5486 }
5487 
5488 static void __md_stop(struct mddev *mddev)
5489 {
5490 	struct md_personality *pers = mddev->pers;
5491 	mddev_detach(mddev);
5492 	/* Ensure ->event_work is done */
5493 	flush_workqueue(md_misc_wq);
5494 	spin_lock(&mddev->lock);
5495 	mddev->ready = 0;
5496 	mddev->pers = NULL;
5497 	spin_unlock(&mddev->lock);
5498 	pers->free(mddev, mddev->private);
5499 	mddev->private = NULL;
5500 	if (pers->sync_request && mddev->to_remove == NULL)
5501 		mddev->to_remove = &md_redundancy_group;
5502 	module_put(pers->owner);
5503 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5504 }
5505 
5506 void md_stop(struct mddev *mddev)
5507 {
5508 	/* stop the array and free an attached data structures.
5509 	 * This is called from dm-raid
5510 	 */
5511 	__md_stop(mddev);
5512 	bitmap_destroy(mddev);
5513 	if (mddev->bio_set)
5514 		bioset_free(mddev->bio_set);
5515 }
5516 
5517 EXPORT_SYMBOL_GPL(md_stop);
5518 
5519 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5520 {
5521 	int err = 0;
5522 	int did_freeze = 0;
5523 
5524 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5525 		did_freeze = 1;
5526 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5527 		md_wakeup_thread(mddev->thread);
5528 	}
5529 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5530 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5531 	if (mddev->sync_thread)
5532 		/* Thread might be blocked waiting for metadata update
5533 		 * which will now never happen */
5534 		wake_up_process(mddev->sync_thread->tsk);
5535 
5536 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5537 		return -EBUSY;
5538 	mddev_unlock(mddev);
5539 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5540 					  &mddev->recovery));
5541 	wait_event(mddev->sb_wait,
5542 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5543 	mddev_lock_nointr(mddev);
5544 
5545 	mutex_lock(&mddev->open_mutex);
5546 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5547 	    mddev->sync_thread ||
5548 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5549 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5550 		printk("md: %s still in use.\n",mdname(mddev));
5551 		if (did_freeze) {
5552 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5553 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5554 			md_wakeup_thread(mddev->thread);
5555 		}
5556 		err = -EBUSY;
5557 		goto out;
5558 	}
5559 	if (mddev->pers) {
5560 		__md_stop_writes(mddev);
5561 
5562 		err  = -ENXIO;
5563 		if (mddev->ro==1)
5564 			goto out;
5565 		mddev->ro = 1;
5566 		set_disk_ro(mddev->gendisk, 1);
5567 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5568 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5569 		md_wakeup_thread(mddev->thread);
5570 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5571 		err = 0;
5572 	}
5573 out:
5574 	mutex_unlock(&mddev->open_mutex);
5575 	return err;
5576 }
5577 
5578 /* mode:
5579  *   0 - completely stop and dis-assemble array
5580  *   2 - stop but do not disassemble array
5581  */
5582 static int do_md_stop(struct mddev *mddev, int mode,
5583 		      struct block_device *bdev)
5584 {
5585 	struct gendisk *disk = mddev->gendisk;
5586 	struct md_rdev *rdev;
5587 	int did_freeze = 0;
5588 
5589 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5590 		did_freeze = 1;
5591 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5592 		md_wakeup_thread(mddev->thread);
5593 	}
5594 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5595 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5596 	if (mddev->sync_thread)
5597 		/* Thread might be blocked waiting for metadata update
5598 		 * which will now never happen */
5599 		wake_up_process(mddev->sync_thread->tsk);
5600 
5601 	mddev_unlock(mddev);
5602 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5603 				 !test_bit(MD_RECOVERY_RUNNING,
5604 					   &mddev->recovery)));
5605 	mddev_lock_nointr(mddev);
5606 
5607 	mutex_lock(&mddev->open_mutex);
5608 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5609 	    mddev->sysfs_active ||
5610 	    mddev->sync_thread ||
5611 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5612 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5613 		printk("md: %s still in use.\n",mdname(mddev));
5614 		mutex_unlock(&mddev->open_mutex);
5615 		if (did_freeze) {
5616 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5617 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5618 			md_wakeup_thread(mddev->thread);
5619 		}
5620 		return -EBUSY;
5621 	}
5622 	if (mddev->pers) {
5623 		if (mddev->ro)
5624 			set_disk_ro(disk, 0);
5625 
5626 		__md_stop_writes(mddev);
5627 		__md_stop(mddev);
5628 		mddev->queue->backing_dev_info.congested_fn = NULL;
5629 
5630 		/* tell userspace to handle 'inactive' */
5631 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5632 
5633 		rdev_for_each(rdev, mddev)
5634 			if (rdev->raid_disk >= 0)
5635 				sysfs_unlink_rdev(mddev, rdev);
5636 
5637 		set_capacity(disk, 0);
5638 		mutex_unlock(&mddev->open_mutex);
5639 		mddev->changed = 1;
5640 		revalidate_disk(disk);
5641 
5642 		if (mddev->ro)
5643 			mddev->ro = 0;
5644 	} else
5645 		mutex_unlock(&mddev->open_mutex);
5646 	/*
5647 	 * Free resources if final stop
5648 	 */
5649 	if (mode == 0) {
5650 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5651 
5652 		bitmap_destroy(mddev);
5653 		if (mddev->bitmap_info.file) {
5654 			struct file *f = mddev->bitmap_info.file;
5655 			spin_lock(&mddev->lock);
5656 			mddev->bitmap_info.file = NULL;
5657 			spin_unlock(&mddev->lock);
5658 			fput(f);
5659 		}
5660 		mddev->bitmap_info.offset = 0;
5661 
5662 		export_array(mddev);
5663 
5664 		md_clean(mddev);
5665 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5666 		if (mddev->hold_active == UNTIL_STOP)
5667 			mddev->hold_active = 0;
5668 	}
5669 	md_new_event(mddev);
5670 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5671 	return 0;
5672 }
5673 
5674 #ifndef MODULE
5675 static void autorun_array(struct mddev *mddev)
5676 {
5677 	struct md_rdev *rdev;
5678 	int err;
5679 
5680 	if (list_empty(&mddev->disks))
5681 		return;
5682 
5683 	printk(KERN_INFO "md: running: ");
5684 
5685 	rdev_for_each(rdev, mddev) {
5686 		char b[BDEVNAME_SIZE];
5687 		printk("<%s>", bdevname(rdev->bdev,b));
5688 	}
5689 	printk("\n");
5690 
5691 	err = do_md_run(mddev);
5692 	if (err) {
5693 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5694 		do_md_stop(mddev, 0, NULL);
5695 	}
5696 }
5697 
5698 /*
5699  * lets try to run arrays based on all disks that have arrived
5700  * until now. (those are in pending_raid_disks)
5701  *
5702  * the method: pick the first pending disk, collect all disks with
5703  * the same UUID, remove all from the pending list and put them into
5704  * the 'same_array' list. Then order this list based on superblock
5705  * update time (freshest comes first), kick out 'old' disks and
5706  * compare superblocks. If everything's fine then run it.
5707  *
5708  * If "unit" is allocated, then bump its reference count
5709  */
5710 static void autorun_devices(int part)
5711 {
5712 	struct md_rdev *rdev0, *rdev, *tmp;
5713 	struct mddev *mddev;
5714 	char b[BDEVNAME_SIZE];
5715 
5716 	printk(KERN_INFO "md: autorun ...\n");
5717 	while (!list_empty(&pending_raid_disks)) {
5718 		int unit;
5719 		dev_t dev;
5720 		LIST_HEAD(candidates);
5721 		rdev0 = list_entry(pending_raid_disks.next,
5722 					 struct md_rdev, same_set);
5723 
5724 		printk(KERN_INFO "md: considering %s ...\n",
5725 			bdevname(rdev0->bdev,b));
5726 		INIT_LIST_HEAD(&candidates);
5727 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5728 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5729 				printk(KERN_INFO "md:  adding %s ...\n",
5730 					bdevname(rdev->bdev,b));
5731 				list_move(&rdev->same_set, &candidates);
5732 			}
5733 		/*
5734 		 * now we have a set of devices, with all of them having
5735 		 * mostly sane superblocks. It's time to allocate the
5736 		 * mddev.
5737 		 */
5738 		if (part) {
5739 			dev = MKDEV(mdp_major,
5740 				    rdev0->preferred_minor << MdpMinorShift);
5741 			unit = MINOR(dev) >> MdpMinorShift;
5742 		} else {
5743 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5744 			unit = MINOR(dev);
5745 		}
5746 		if (rdev0->preferred_minor != unit) {
5747 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5748 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5749 			break;
5750 		}
5751 
5752 		md_probe(dev, NULL, NULL);
5753 		mddev = mddev_find(dev);
5754 		if (!mddev || !mddev->gendisk) {
5755 			if (mddev)
5756 				mddev_put(mddev);
5757 			printk(KERN_ERR
5758 				"md: cannot allocate memory for md drive.\n");
5759 			break;
5760 		}
5761 		if (mddev_lock(mddev))
5762 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5763 			       mdname(mddev));
5764 		else if (mddev->raid_disks || mddev->major_version
5765 			 || !list_empty(&mddev->disks)) {
5766 			printk(KERN_WARNING
5767 				"md: %s already running, cannot run %s\n",
5768 				mdname(mddev), bdevname(rdev0->bdev,b));
5769 			mddev_unlock(mddev);
5770 		} else {
5771 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5772 			mddev->persistent = 1;
5773 			rdev_for_each_list(rdev, tmp, &candidates) {
5774 				list_del_init(&rdev->same_set);
5775 				if (bind_rdev_to_array(rdev, mddev))
5776 					export_rdev(rdev);
5777 			}
5778 			autorun_array(mddev);
5779 			mddev_unlock(mddev);
5780 		}
5781 		/* on success, candidates will be empty, on error
5782 		 * it won't...
5783 		 */
5784 		rdev_for_each_list(rdev, tmp, &candidates) {
5785 			list_del_init(&rdev->same_set);
5786 			export_rdev(rdev);
5787 		}
5788 		mddev_put(mddev);
5789 	}
5790 	printk(KERN_INFO "md: ... autorun DONE.\n");
5791 }
5792 #endif /* !MODULE */
5793 
5794 static int get_version(void __user *arg)
5795 {
5796 	mdu_version_t ver;
5797 
5798 	ver.major = MD_MAJOR_VERSION;
5799 	ver.minor = MD_MINOR_VERSION;
5800 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5801 
5802 	if (copy_to_user(arg, &ver, sizeof(ver)))
5803 		return -EFAULT;
5804 
5805 	return 0;
5806 }
5807 
5808 static int get_array_info(struct mddev *mddev, void __user *arg)
5809 {
5810 	mdu_array_info_t info;
5811 	int nr,working,insync,failed,spare;
5812 	struct md_rdev *rdev;
5813 
5814 	nr = working = insync = failed = spare = 0;
5815 	rcu_read_lock();
5816 	rdev_for_each_rcu(rdev, mddev) {
5817 		nr++;
5818 		if (test_bit(Faulty, &rdev->flags))
5819 			failed++;
5820 		else {
5821 			working++;
5822 			if (test_bit(In_sync, &rdev->flags))
5823 				insync++;
5824 			else
5825 				spare++;
5826 		}
5827 	}
5828 	rcu_read_unlock();
5829 
5830 	info.major_version = mddev->major_version;
5831 	info.minor_version = mddev->minor_version;
5832 	info.patch_version = MD_PATCHLEVEL_VERSION;
5833 	info.ctime         = mddev->ctime;
5834 	info.level         = mddev->level;
5835 	info.size          = mddev->dev_sectors / 2;
5836 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5837 		info.size = -1;
5838 	info.nr_disks      = nr;
5839 	info.raid_disks    = mddev->raid_disks;
5840 	info.md_minor      = mddev->md_minor;
5841 	info.not_persistent= !mddev->persistent;
5842 
5843 	info.utime         = mddev->utime;
5844 	info.state         = 0;
5845 	if (mddev->in_sync)
5846 		info.state = (1<<MD_SB_CLEAN);
5847 	if (mddev->bitmap && mddev->bitmap_info.offset)
5848 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5849 	if (mddev_is_clustered(mddev))
5850 		info.state |= (1<<MD_SB_CLUSTERED);
5851 	info.active_disks  = insync;
5852 	info.working_disks = working;
5853 	info.failed_disks  = failed;
5854 	info.spare_disks   = spare;
5855 
5856 	info.layout        = mddev->layout;
5857 	info.chunk_size    = mddev->chunk_sectors << 9;
5858 
5859 	if (copy_to_user(arg, &info, sizeof(info)))
5860 		return -EFAULT;
5861 
5862 	return 0;
5863 }
5864 
5865 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5866 {
5867 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5868 	char *ptr;
5869 	int err;
5870 
5871 	file = kzalloc(sizeof(*file), GFP_NOIO);
5872 	if (!file)
5873 		return -ENOMEM;
5874 
5875 	err = 0;
5876 	spin_lock(&mddev->lock);
5877 	/* bitmap enabled */
5878 	if (mddev->bitmap_info.file) {
5879 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5880 				sizeof(file->pathname));
5881 		if (IS_ERR(ptr))
5882 			err = PTR_ERR(ptr);
5883 		else
5884 			memmove(file->pathname, ptr,
5885 				sizeof(file->pathname)-(ptr-file->pathname));
5886 	}
5887 	spin_unlock(&mddev->lock);
5888 
5889 	if (err == 0 &&
5890 	    copy_to_user(arg, file, sizeof(*file)))
5891 		err = -EFAULT;
5892 
5893 	kfree(file);
5894 	return err;
5895 }
5896 
5897 static int get_disk_info(struct mddev *mddev, void __user * arg)
5898 {
5899 	mdu_disk_info_t info;
5900 	struct md_rdev *rdev;
5901 
5902 	if (copy_from_user(&info, arg, sizeof(info)))
5903 		return -EFAULT;
5904 
5905 	rcu_read_lock();
5906 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5907 	if (rdev) {
5908 		info.major = MAJOR(rdev->bdev->bd_dev);
5909 		info.minor = MINOR(rdev->bdev->bd_dev);
5910 		info.raid_disk = rdev->raid_disk;
5911 		info.state = 0;
5912 		if (test_bit(Faulty, &rdev->flags))
5913 			info.state |= (1<<MD_DISK_FAULTY);
5914 		else if (test_bit(In_sync, &rdev->flags)) {
5915 			info.state |= (1<<MD_DISK_ACTIVE);
5916 			info.state |= (1<<MD_DISK_SYNC);
5917 		}
5918 		if (test_bit(Journal, &rdev->flags))
5919 			info.state |= (1<<MD_DISK_JOURNAL);
5920 		if (test_bit(WriteMostly, &rdev->flags))
5921 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5922 	} else {
5923 		info.major = info.minor = 0;
5924 		info.raid_disk = -1;
5925 		info.state = (1<<MD_DISK_REMOVED);
5926 	}
5927 	rcu_read_unlock();
5928 
5929 	if (copy_to_user(arg, &info, sizeof(info)))
5930 		return -EFAULT;
5931 
5932 	return 0;
5933 }
5934 
5935 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5936 {
5937 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5938 	struct md_rdev *rdev;
5939 	dev_t dev = MKDEV(info->major,info->minor);
5940 
5941 	if (mddev_is_clustered(mddev) &&
5942 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5943 		pr_err("%s: Cannot add to clustered mddev.\n",
5944 			       mdname(mddev));
5945 		return -EINVAL;
5946 	}
5947 
5948 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5949 		return -EOVERFLOW;
5950 
5951 	if (!mddev->raid_disks) {
5952 		int err;
5953 		/* expecting a device which has a superblock */
5954 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5955 		if (IS_ERR(rdev)) {
5956 			printk(KERN_WARNING
5957 				"md: md_import_device returned %ld\n",
5958 				PTR_ERR(rdev));
5959 			return PTR_ERR(rdev);
5960 		}
5961 		if (!list_empty(&mddev->disks)) {
5962 			struct md_rdev *rdev0
5963 				= list_entry(mddev->disks.next,
5964 					     struct md_rdev, same_set);
5965 			err = super_types[mddev->major_version]
5966 				.load_super(rdev, rdev0, mddev->minor_version);
5967 			if (err < 0) {
5968 				printk(KERN_WARNING
5969 					"md: %s has different UUID to %s\n",
5970 					bdevname(rdev->bdev,b),
5971 					bdevname(rdev0->bdev,b2));
5972 				export_rdev(rdev);
5973 				return -EINVAL;
5974 			}
5975 		}
5976 		err = bind_rdev_to_array(rdev, mddev);
5977 		if (err)
5978 			export_rdev(rdev);
5979 		return err;
5980 	}
5981 
5982 	/*
5983 	 * add_new_disk can be used once the array is assembled
5984 	 * to add "hot spares".  They must already have a superblock
5985 	 * written
5986 	 */
5987 	if (mddev->pers) {
5988 		int err;
5989 		if (!mddev->pers->hot_add_disk) {
5990 			printk(KERN_WARNING
5991 				"%s: personality does not support diskops!\n",
5992 			       mdname(mddev));
5993 			return -EINVAL;
5994 		}
5995 		if (mddev->persistent)
5996 			rdev = md_import_device(dev, mddev->major_version,
5997 						mddev->minor_version);
5998 		else
5999 			rdev = md_import_device(dev, -1, -1);
6000 		if (IS_ERR(rdev)) {
6001 			printk(KERN_WARNING
6002 				"md: md_import_device returned %ld\n",
6003 				PTR_ERR(rdev));
6004 			return PTR_ERR(rdev);
6005 		}
6006 		/* set saved_raid_disk if appropriate */
6007 		if (!mddev->persistent) {
6008 			if (info->state & (1<<MD_DISK_SYNC)  &&
6009 			    info->raid_disk < mddev->raid_disks) {
6010 				rdev->raid_disk = info->raid_disk;
6011 				set_bit(In_sync, &rdev->flags);
6012 				clear_bit(Bitmap_sync, &rdev->flags);
6013 			} else
6014 				rdev->raid_disk = -1;
6015 			rdev->saved_raid_disk = rdev->raid_disk;
6016 		} else
6017 			super_types[mddev->major_version].
6018 				validate_super(mddev, rdev);
6019 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6020 		     rdev->raid_disk != info->raid_disk) {
6021 			/* This was a hot-add request, but events doesn't
6022 			 * match, so reject it.
6023 			 */
6024 			export_rdev(rdev);
6025 			return -EINVAL;
6026 		}
6027 
6028 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6029 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6030 			set_bit(WriteMostly, &rdev->flags);
6031 		else
6032 			clear_bit(WriteMostly, &rdev->flags);
6033 
6034 		if (info->state & (1<<MD_DISK_JOURNAL))
6035 			set_bit(Journal, &rdev->flags);
6036 		/*
6037 		 * check whether the device shows up in other nodes
6038 		 */
6039 		if (mddev_is_clustered(mddev)) {
6040 			if (info->state & (1 << MD_DISK_CANDIDATE))
6041 				set_bit(Candidate, &rdev->flags);
6042 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6043 				/* --add initiated by this node */
6044 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6045 				if (err) {
6046 					export_rdev(rdev);
6047 					return err;
6048 				}
6049 			}
6050 		}
6051 
6052 		rdev->raid_disk = -1;
6053 		err = bind_rdev_to_array(rdev, mddev);
6054 
6055 		if (err)
6056 			export_rdev(rdev);
6057 
6058 		if (mddev_is_clustered(mddev)) {
6059 			if (info->state & (1 << MD_DISK_CANDIDATE))
6060 				md_cluster_ops->new_disk_ack(mddev, (err == 0));
6061 			else {
6062 				if (err)
6063 					md_cluster_ops->add_new_disk_cancel(mddev);
6064 				else
6065 					err = add_bound_rdev(rdev);
6066 			}
6067 
6068 		} else if (!err)
6069 			err = add_bound_rdev(rdev);
6070 
6071 		return err;
6072 	}
6073 
6074 	/* otherwise, add_new_disk is only allowed
6075 	 * for major_version==0 superblocks
6076 	 */
6077 	if (mddev->major_version != 0) {
6078 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6079 		       mdname(mddev));
6080 		return -EINVAL;
6081 	}
6082 
6083 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6084 		int err;
6085 		rdev = md_import_device(dev, -1, 0);
6086 		if (IS_ERR(rdev)) {
6087 			printk(KERN_WARNING
6088 				"md: error, md_import_device() returned %ld\n",
6089 				PTR_ERR(rdev));
6090 			return PTR_ERR(rdev);
6091 		}
6092 		rdev->desc_nr = info->number;
6093 		if (info->raid_disk < mddev->raid_disks)
6094 			rdev->raid_disk = info->raid_disk;
6095 		else
6096 			rdev->raid_disk = -1;
6097 
6098 		if (rdev->raid_disk < mddev->raid_disks)
6099 			if (info->state & (1<<MD_DISK_SYNC))
6100 				set_bit(In_sync, &rdev->flags);
6101 
6102 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6103 			set_bit(WriteMostly, &rdev->flags);
6104 
6105 		if (!mddev->persistent) {
6106 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
6107 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6108 		} else
6109 			rdev->sb_start = calc_dev_sboffset(rdev);
6110 		rdev->sectors = rdev->sb_start;
6111 
6112 		err = bind_rdev_to_array(rdev, mddev);
6113 		if (err) {
6114 			export_rdev(rdev);
6115 			return err;
6116 		}
6117 	}
6118 
6119 	return 0;
6120 }
6121 
6122 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6123 {
6124 	char b[BDEVNAME_SIZE];
6125 	struct md_rdev *rdev;
6126 	int ret = -1;
6127 
6128 	rdev = find_rdev(mddev, dev);
6129 	if (!rdev)
6130 		return -ENXIO;
6131 
6132 	if (mddev_is_clustered(mddev))
6133 		ret = md_cluster_ops->metadata_update_start(mddev);
6134 
6135 	if (rdev->raid_disk < 0)
6136 		goto kick_rdev;
6137 
6138 	clear_bit(Blocked, &rdev->flags);
6139 	remove_and_add_spares(mddev, rdev);
6140 
6141 	if (rdev->raid_disk >= 0)
6142 		goto busy;
6143 
6144 kick_rdev:
6145 	if (mddev_is_clustered(mddev) && ret == 0)
6146 		md_cluster_ops->remove_disk(mddev, rdev);
6147 
6148 	md_kick_rdev_from_array(rdev);
6149 	md_update_sb(mddev, 1);
6150 	md_new_event(mddev);
6151 
6152 	return 0;
6153 busy:
6154 	if (mddev_is_clustered(mddev) && ret == 0)
6155 		md_cluster_ops->metadata_update_cancel(mddev);
6156 
6157 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6158 		bdevname(rdev->bdev,b), mdname(mddev));
6159 	return -EBUSY;
6160 }
6161 
6162 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6163 {
6164 	char b[BDEVNAME_SIZE];
6165 	int err;
6166 	struct md_rdev *rdev;
6167 
6168 	if (!mddev->pers)
6169 		return -ENODEV;
6170 
6171 	if (mddev->major_version != 0) {
6172 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6173 			" version-0 superblocks.\n",
6174 			mdname(mddev));
6175 		return -EINVAL;
6176 	}
6177 	if (!mddev->pers->hot_add_disk) {
6178 		printk(KERN_WARNING
6179 			"%s: personality does not support diskops!\n",
6180 			mdname(mddev));
6181 		return -EINVAL;
6182 	}
6183 
6184 	rdev = md_import_device(dev, -1, 0);
6185 	if (IS_ERR(rdev)) {
6186 		printk(KERN_WARNING
6187 			"md: error, md_import_device() returned %ld\n",
6188 			PTR_ERR(rdev));
6189 		return -EINVAL;
6190 	}
6191 
6192 	if (mddev->persistent)
6193 		rdev->sb_start = calc_dev_sboffset(rdev);
6194 	else
6195 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6196 
6197 	rdev->sectors = rdev->sb_start;
6198 
6199 	if (test_bit(Faulty, &rdev->flags)) {
6200 		printk(KERN_WARNING
6201 			"md: can not hot-add faulty %s disk to %s!\n",
6202 			bdevname(rdev->bdev,b), mdname(mddev));
6203 		err = -EINVAL;
6204 		goto abort_export;
6205 	}
6206 
6207 	clear_bit(In_sync, &rdev->flags);
6208 	rdev->desc_nr = -1;
6209 	rdev->saved_raid_disk = -1;
6210 	err = bind_rdev_to_array(rdev, mddev);
6211 	if (err)
6212 		goto abort_export;
6213 
6214 	/*
6215 	 * The rest should better be atomic, we can have disk failures
6216 	 * noticed in interrupt contexts ...
6217 	 */
6218 
6219 	rdev->raid_disk = -1;
6220 
6221 	md_update_sb(mddev, 1);
6222 	/*
6223 	 * Kick recovery, maybe this spare has to be added to the
6224 	 * array immediately.
6225 	 */
6226 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6227 	md_wakeup_thread(mddev->thread);
6228 	md_new_event(mddev);
6229 	return 0;
6230 
6231 abort_export:
6232 	export_rdev(rdev);
6233 	return err;
6234 }
6235 
6236 static int set_bitmap_file(struct mddev *mddev, int fd)
6237 {
6238 	int err = 0;
6239 
6240 	if (mddev->pers) {
6241 		if (!mddev->pers->quiesce || !mddev->thread)
6242 			return -EBUSY;
6243 		if (mddev->recovery || mddev->sync_thread)
6244 			return -EBUSY;
6245 		/* we should be able to change the bitmap.. */
6246 	}
6247 
6248 	if (fd >= 0) {
6249 		struct inode *inode;
6250 		struct file *f;
6251 
6252 		if (mddev->bitmap || mddev->bitmap_info.file)
6253 			return -EEXIST; /* cannot add when bitmap is present */
6254 		f = fget(fd);
6255 
6256 		if (f == NULL) {
6257 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6258 			       mdname(mddev));
6259 			return -EBADF;
6260 		}
6261 
6262 		inode = f->f_mapping->host;
6263 		if (!S_ISREG(inode->i_mode)) {
6264 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6265 			       mdname(mddev));
6266 			err = -EBADF;
6267 		} else if (!(f->f_mode & FMODE_WRITE)) {
6268 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6269 			       mdname(mddev));
6270 			err = -EBADF;
6271 		} else if (atomic_read(&inode->i_writecount) != 1) {
6272 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6273 			       mdname(mddev));
6274 			err = -EBUSY;
6275 		}
6276 		if (err) {
6277 			fput(f);
6278 			return err;
6279 		}
6280 		mddev->bitmap_info.file = f;
6281 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6282 	} else if (mddev->bitmap == NULL)
6283 		return -ENOENT; /* cannot remove what isn't there */
6284 	err = 0;
6285 	if (mddev->pers) {
6286 		mddev->pers->quiesce(mddev, 1);
6287 		if (fd >= 0) {
6288 			struct bitmap *bitmap;
6289 
6290 			bitmap = bitmap_create(mddev, -1);
6291 			if (!IS_ERR(bitmap)) {
6292 				mddev->bitmap = bitmap;
6293 				err = bitmap_load(mddev);
6294 			} else
6295 				err = PTR_ERR(bitmap);
6296 		}
6297 		if (fd < 0 || err) {
6298 			bitmap_destroy(mddev);
6299 			fd = -1; /* make sure to put the file */
6300 		}
6301 		mddev->pers->quiesce(mddev, 0);
6302 	}
6303 	if (fd < 0) {
6304 		struct file *f = mddev->bitmap_info.file;
6305 		if (f) {
6306 			spin_lock(&mddev->lock);
6307 			mddev->bitmap_info.file = NULL;
6308 			spin_unlock(&mddev->lock);
6309 			fput(f);
6310 		}
6311 	}
6312 
6313 	return err;
6314 }
6315 
6316 /*
6317  * set_array_info is used two different ways
6318  * The original usage is when creating a new array.
6319  * In this usage, raid_disks is > 0 and it together with
6320  *  level, size, not_persistent,layout,chunksize determine the
6321  *  shape of the array.
6322  *  This will always create an array with a type-0.90.0 superblock.
6323  * The newer usage is when assembling an array.
6324  *  In this case raid_disks will be 0, and the major_version field is
6325  *  use to determine which style super-blocks are to be found on the devices.
6326  *  The minor and patch _version numbers are also kept incase the
6327  *  super_block handler wishes to interpret them.
6328  */
6329 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6330 {
6331 
6332 	if (info->raid_disks == 0) {
6333 		/* just setting version number for superblock loading */
6334 		if (info->major_version < 0 ||
6335 		    info->major_version >= ARRAY_SIZE(super_types) ||
6336 		    super_types[info->major_version].name == NULL) {
6337 			/* maybe try to auto-load a module? */
6338 			printk(KERN_INFO
6339 				"md: superblock version %d not known\n",
6340 				info->major_version);
6341 			return -EINVAL;
6342 		}
6343 		mddev->major_version = info->major_version;
6344 		mddev->minor_version = info->minor_version;
6345 		mddev->patch_version = info->patch_version;
6346 		mddev->persistent = !info->not_persistent;
6347 		/* ensure mddev_put doesn't delete this now that there
6348 		 * is some minimal configuration.
6349 		 */
6350 		mddev->ctime         = get_seconds();
6351 		return 0;
6352 	}
6353 	mddev->major_version = MD_MAJOR_VERSION;
6354 	mddev->minor_version = MD_MINOR_VERSION;
6355 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6356 	mddev->ctime         = get_seconds();
6357 
6358 	mddev->level         = info->level;
6359 	mddev->clevel[0]     = 0;
6360 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6361 	mddev->raid_disks    = info->raid_disks;
6362 	/* don't set md_minor, it is determined by which /dev/md* was
6363 	 * openned
6364 	 */
6365 	if (info->state & (1<<MD_SB_CLEAN))
6366 		mddev->recovery_cp = MaxSector;
6367 	else
6368 		mddev->recovery_cp = 0;
6369 	mddev->persistent    = ! info->not_persistent;
6370 	mddev->external	     = 0;
6371 
6372 	mddev->layout        = info->layout;
6373 	mddev->chunk_sectors = info->chunk_size >> 9;
6374 
6375 	mddev->max_disks     = MD_SB_DISKS;
6376 
6377 	if (mddev->persistent)
6378 		mddev->flags         = 0;
6379 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6380 
6381 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6382 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6383 	mddev->bitmap_info.offset = 0;
6384 
6385 	mddev->reshape_position = MaxSector;
6386 
6387 	/*
6388 	 * Generate a 128 bit UUID
6389 	 */
6390 	get_random_bytes(mddev->uuid, 16);
6391 
6392 	mddev->new_level = mddev->level;
6393 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6394 	mddev->new_layout = mddev->layout;
6395 	mddev->delta_disks = 0;
6396 	mddev->reshape_backwards = 0;
6397 
6398 	return 0;
6399 }
6400 
6401 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6402 {
6403 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6404 
6405 	if (mddev->external_size)
6406 		return;
6407 
6408 	mddev->array_sectors = array_sectors;
6409 }
6410 EXPORT_SYMBOL(md_set_array_sectors);
6411 
6412 static int update_size(struct mddev *mddev, sector_t num_sectors)
6413 {
6414 	struct md_rdev *rdev;
6415 	int rv;
6416 	int fit = (num_sectors == 0);
6417 
6418 	if (mddev->pers->resize == NULL)
6419 		return -EINVAL;
6420 	/* The "num_sectors" is the number of sectors of each device that
6421 	 * is used.  This can only make sense for arrays with redundancy.
6422 	 * linear and raid0 always use whatever space is available. We can only
6423 	 * consider changing this number if no resync or reconstruction is
6424 	 * happening, and if the new size is acceptable. It must fit before the
6425 	 * sb_start or, if that is <data_offset, it must fit before the size
6426 	 * of each device.  If num_sectors is zero, we find the largest size
6427 	 * that fits.
6428 	 */
6429 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6430 	    mddev->sync_thread)
6431 		return -EBUSY;
6432 	if (mddev->ro)
6433 		return -EROFS;
6434 
6435 	rdev_for_each(rdev, mddev) {
6436 		sector_t avail = rdev->sectors;
6437 
6438 		if (fit && (num_sectors == 0 || num_sectors > avail))
6439 			num_sectors = avail;
6440 		if (avail < num_sectors)
6441 			return -ENOSPC;
6442 	}
6443 	rv = mddev->pers->resize(mddev, num_sectors);
6444 	if (!rv)
6445 		revalidate_disk(mddev->gendisk);
6446 	return rv;
6447 }
6448 
6449 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6450 {
6451 	int rv;
6452 	struct md_rdev *rdev;
6453 	/* change the number of raid disks */
6454 	if (mddev->pers->check_reshape == NULL)
6455 		return -EINVAL;
6456 	if (mddev->ro)
6457 		return -EROFS;
6458 	if (raid_disks <= 0 ||
6459 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6460 		return -EINVAL;
6461 	if (mddev->sync_thread ||
6462 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6463 	    mddev->reshape_position != MaxSector)
6464 		return -EBUSY;
6465 
6466 	rdev_for_each(rdev, mddev) {
6467 		if (mddev->raid_disks < raid_disks &&
6468 		    rdev->data_offset < rdev->new_data_offset)
6469 			return -EINVAL;
6470 		if (mddev->raid_disks > raid_disks &&
6471 		    rdev->data_offset > rdev->new_data_offset)
6472 			return -EINVAL;
6473 	}
6474 
6475 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6476 	if (mddev->delta_disks < 0)
6477 		mddev->reshape_backwards = 1;
6478 	else if (mddev->delta_disks > 0)
6479 		mddev->reshape_backwards = 0;
6480 
6481 	rv = mddev->pers->check_reshape(mddev);
6482 	if (rv < 0) {
6483 		mddev->delta_disks = 0;
6484 		mddev->reshape_backwards = 0;
6485 	}
6486 	return rv;
6487 }
6488 
6489 /*
6490  * update_array_info is used to change the configuration of an
6491  * on-line array.
6492  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6493  * fields in the info are checked against the array.
6494  * Any differences that cannot be handled will cause an error.
6495  * Normally, only one change can be managed at a time.
6496  */
6497 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6498 {
6499 	int rv = 0;
6500 	int cnt = 0;
6501 	int state = 0;
6502 
6503 	/* calculate expected state,ignoring low bits */
6504 	if (mddev->bitmap && mddev->bitmap_info.offset)
6505 		state |= (1 << MD_SB_BITMAP_PRESENT);
6506 
6507 	if (mddev->major_version != info->major_version ||
6508 	    mddev->minor_version != info->minor_version ||
6509 /*	    mddev->patch_version != info->patch_version || */
6510 	    mddev->ctime         != info->ctime         ||
6511 	    mddev->level         != info->level         ||
6512 /*	    mddev->layout        != info->layout        || */
6513 	    mddev->persistent	 != !info->not_persistent ||
6514 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6515 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6516 	    ((state^info->state) & 0xfffffe00)
6517 		)
6518 		return -EINVAL;
6519 	/* Check there is only one change */
6520 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6521 		cnt++;
6522 	if (mddev->raid_disks != info->raid_disks)
6523 		cnt++;
6524 	if (mddev->layout != info->layout)
6525 		cnt++;
6526 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6527 		cnt++;
6528 	if (cnt == 0)
6529 		return 0;
6530 	if (cnt > 1)
6531 		return -EINVAL;
6532 
6533 	if (mddev->layout != info->layout) {
6534 		/* Change layout
6535 		 * we don't need to do anything at the md level, the
6536 		 * personality will take care of it all.
6537 		 */
6538 		if (mddev->pers->check_reshape == NULL)
6539 			return -EINVAL;
6540 		else {
6541 			mddev->new_layout = info->layout;
6542 			rv = mddev->pers->check_reshape(mddev);
6543 			if (rv)
6544 				mddev->new_layout = mddev->layout;
6545 			return rv;
6546 		}
6547 	}
6548 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6549 		rv = update_size(mddev, (sector_t)info->size * 2);
6550 
6551 	if (mddev->raid_disks    != info->raid_disks)
6552 		rv = update_raid_disks(mddev, info->raid_disks);
6553 
6554 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6555 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6556 			rv = -EINVAL;
6557 			goto err;
6558 		}
6559 		if (mddev->recovery || mddev->sync_thread) {
6560 			rv = -EBUSY;
6561 			goto err;
6562 		}
6563 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6564 			struct bitmap *bitmap;
6565 			/* add the bitmap */
6566 			if (mddev->bitmap) {
6567 				rv = -EEXIST;
6568 				goto err;
6569 			}
6570 			if (mddev->bitmap_info.default_offset == 0) {
6571 				rv = -EINVAL;
6572 				goto err;
6573 			}
6574 			mddev->bitmap_info.offset =
6575 				mddev->bitmap_info.default_offset;
6576 			mddev->bitmap_info.space =
6577 				mddev->bitmap_info.default_space;
6578 			mddev->pers->quiesce(mddev, 1);
6579 			bitmap = bitmap_create(mddev, -1);
6580 			if (!IS_ERR(bitmap)) {
6581 				mddev->bitmap = bitmap;
6582 				rv = bitmap_load(mddev);
6583 			} else
6584 				rv = PTR_ERR(bitmap);
6585 			if (rv)
6586 				bitmap_destroy(mddev);
6587 			mddev->pers->quiesce(mddev, 0);
6588 		} else {
6589 			/* remove the bitmap */
6590 			if (!mddev->bitmap) {
6591 				rv = -ENOENT;
6592 				goto err;
6593 			}
6594 			if (mddev->bitmap->storage.file) {
6595 				rv = -EINVAL;
6596 				goto err;
6597 			}
6598 			mddev->pers->quiesce(mddev, 1);
6599 			bitmap_destroy(mddev);
6600 			mddev->pers->quiesce(mddev, 0);
6601 			mddev->bitmap_info.offset = 0;
6602 		}
6603 	}
6604 	md_update_sb(mddev, 1);
6605 	return rv;
6606 err:
6607 	return rv;
6608 }
6609 
6610 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6611 {
6612 	struct md_rdev *rdev;
6613 	int err = 0;
6614 
6615 	if (mddev->pers == NULL)
6616 		return -ENODEV;
6617 
6618 	rcu_read_lock();
6619 	rdev = find_rdev_rcu(mddev, dev);
6620 	if (!rdev)
6621 		err =  -ENODEV;
6622 	else {
6623 		md_error(mddev, rdev);
6624 		if (!test_bit(Faulty, &rdev->flags))
6625 			err = -EBUSY;
6626 	}
6627 	rcu_read_unlock();
6628 	return err;
6629 }
6630 
6631 /*
6632  * We have a problem here : there is no easy way to give a CHS
6633  * virtual geometry. We currently pretend that we have a 2 heads
6634  * 4 sectors (with a BIG number of cylinders...). This drives
6635  * dosfs just mad... ;-)
6636  */
6637 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6638 {
6639 	struct mddev *mddev = bdev->bd_disk->private_data;
6640 
6641 	geo->heads = 2;
6642 	geo->sectors = 4;
6643 	geo->cylinders = mddev->array_sectors / 8;
6644 	return 0;
6645 }
6646 
6647 static inline bool md_ioctl_valid(unsigned int cmd)
6648 {
6649 	switch (cmd) {
6650 	case ADD_NEW_DISK:
6651 	case BLKROSET:
6652 	case GET_ARRAY_INFO:
6653 	case GET_BITMAP_FILE:
6654 	case GET_DISK_INFO:
6655 	case HOT_ADD_DISK:
6656 	case HOT_REMOVE_DISK:
6657 	case RAID_AUTORUN:
6658 	case RAID_VERSION:
6659 	case RESTART_ARRAY_RW:
6660 	case RUN_ARRAY:
6661 	case SET_ARRAY_INFO:
6662 	case SET_BITMAP_FILE:
6663 	case SET_DISK_FAULTY:
6664 	case STOP_ARRAY:
6665 	case STOP_ARRAY_RO:
6666 	case CLUSTERED_DISK_NACK:
6667 		return true;
6668 	default:
6669 		return false;
6670 	}
6671 }
6672 
6673 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6674 			unsigned int cmd, unsigned long arg)
6675 {
6676 	int err = 0;
6677 	void __user *argp = (void __user *)arg;
6678 	struct mddev *mddev = NULL;
6679 	int ro;
6680 
6681 	if (!md_ioctl_valid(cmd))
6682 		return -ENOTTY;
6683 
6684 	switch (cmd) {
6685 	case RAID_VERSION:
6686 	case GET_ARRAY_INFO:
6687 	case GET_DISK_INFO:
6688 		break;
6689 	default:
6690 		if (!capable(CAP_SYS_ADMIN))
6691 			return -EACCES;
6692 	}
6693 
6694 	/*
6695 	 * Commands dealing with the RAID driver but not any
6696 	 * particular array:
6697 	 */
6698 	switch (cmd) {
6699 	case RAID_VERSION:
6700 		err = get_version(argp);
6701 		goto out;
6702 
6703 #ifndef MODULE
6704 	case RAID_AUTORUN:
6705 		err = 0;
6706 		autostart_arrays(arg);
6707 		goto out;
6708 #endif
6709 	default:;
6710 	}
6711 
6712 	/*
6713 	 * Commands creating/starting a new array:
6714 	 */
6715 
6716 	mddev = bdev->bd_disk->private_data;
6717 
6718 	if (!mddev) {
6719 		BUG();
6720 		goto out;
6721 	}
6722 
6723 	/* Some actions do not requires the mutex */
6724 	switch (cmd) {
6725 	case GET_ARRAY_INFO:
6726 		if (!mddev->raid_disks && !mddev->external)
6727 			err = -ENODEV;
6728 		else
6729 			err = get_array_info(mddev, argp);
6730 		goto out;
6731 
6732 	case GET_DISK_INFO:
6733 		if (!mddev->raid_disks && !mddev->external)
6734 			err = -ENODEV;
6735 		else
6736 			err = get_disk_info(mddev, argp);
6737 		goto out;
6738 
6739 	case SET_DISK_FAULTY:
6740 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6741 		goto out;
6742 
6743 	case GET_BITMAP_FILE:
6744 		err = get_bitmap_file(mddev, argp);
6745 		goto out;
6746 
6747 	}
6748 
6749 	if (cmd == ADD_NEW_DISK)
6750 		/* need to ensure md_delayed_delete() has completed */
6751 		flush_workqueue(md_misc_wq);
6752 
6753 	if (cmd == HOT_REMOVE_DISK)
6754 		/* need to ensure recovery thread has run */
6755 		wait_event_interruptible_timeout(mddev->sb_wait,
6756 						 !test_bit(MD_RECOVERY_NEEDED,
6757 							   &mddev->flags),
6758 						 msecs_to_jiffies(5000));
6759 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6760 		/* Need to flush page cache, and ensure no-one else opens
6761 		 * and writes
6762 		 */
6763 		mutex_lock(&mddev->open_mutex);
6764 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6765 			mutex_unlock(&mddev->open_mutex);
6766 			err = -EBUSY;
6767 			goto out;
6768 		}
6769 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6770 		mutex_unlock(&mddev->open_mutex);
6771 		sync_blockdev(bdev);
6772 	}
6773 	err = mddev_lock(mddev);
6774 	if (err) {
6775 		printk(KERN_INFO
6776 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6777 			err, cmd);
6778 		goto out;
6779 	}
6780 
6781 	if (cmd == SET_ARRAY_INFO) {
6782 		mdu_array_info_t info;
6783 		if (!arg)
6784 			memset(&info, 0, sizeof(info));
6785 		else if (copy_from_user(&info, argp, sizeof(info))) {
6786 			err = -EFAULT;
6787 			goto unlock;
6788 		}
6789 		if (mddev->pers) {
6790 			err = update_array_info(mddev, &info);
6791 			if (err) {
6792 				printk(KERN_WARNING "md: couldn't update"
6793 				       " array info. %d\n", err);
6794 				goto unlock;
6795 			}
6796 			goto unlock;
6797 		}
6798 		if (!list_empty(&mddev->disks)) {
6799 			printk(KERN_WARNING
6800 			       "md: array %s already has disks!\n",
6801 			       mdname(mddev));
6802 			err = -EBUSY;
6803 			goto unlock;
6804 		}
6805 		if (mddev->raid_disks) {
6806 			printk(KERN_WARNING
6807 			       "md: array %s already initialised!\n",
6808 			       mdname(mddev));
6809 			err = -EBUSY;
6810 			goto unlock;
6811 		}
6812 		err = set_array_info(mddev, &info);
6813 		if (err) {
6814 			printk(KERN_WARNING "md: couldn't set"
6815 			       " array info. %d\n", err);
6816 			goto unlock;
6817 		}
6818 		goto unlock;
6819 	}
6820 
6821 	/*
6822 	 * Commands querying/configuring an existing array:
6823 	 */
6824 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6825 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6826 	if ((!mddev->raid_disks && !mddev->external)
6827 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6828 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6829 	    && cmd != GET_BITMAP_FILE) {
6830 		err = -ENODEV;
6831 		goto unlock;
6832 	}
6833 
6834 	/*
6835 	 * Commands even a read-only array can execute:
6836 	 */
6837 	switch (cmd) {
6838 	case RESTART_ARRAY_RW:
6839 		err = restart_array(mddev);
6840 		goto unlock;
6841 
6842 	case STOP_ARRAY:
6843 		err = do_md_stop(mddev, 0, bdev);
6844 		goto unlock;
6845 
6846 	case STOP_ARRAY_RO:
6847 		err = md_set_readonly(mddev, bdev);
6848 		goto unlock;
6849 
6850 	case HOT_REMOVE_DISK:
6851 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6852 		goto unlock;
6853 
6854 	case ADD_NEW_DISK:
6855 		/* We can support ADD_NEW_DISK on read-only arrays
6856 		 * on if we are re-adding a preexisting device.
6857 		 * So require mddev->pers and MD_DISK_SYNC.
6858 		 */
6859 		if (mddev->pers) {
6860 			mdu_disk_info_t info;
6861 			if (copy_from_user(&info, argp, sizeof(info)))
6862 				err = -EFAULT;
6863 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6864 				/* Need to clear read-only for this */
6865 				break;
6866 			else
6867 				err = add_new_disk(mddev, &info);
6868 			goto unlock;
6869 		}
6870 		break;
6871 
6872 	case BLKROSET:
6873 		if (get_user(ro, (int __user *)(arg))) {
6874 			err = -EFAULT;
6875 			goto unlock;
6876 		}
6877 		err = -EINVAL;
6878 
6879 		/* if the bdev is going readonly the value of mddev->ro
6880 		 * does not matter, no writes are coming
6881 		 */
6882 		if (ro)
6883 			goto unlock;
6884 
6885 		/* are we are already prepared for writes? */
6886 		if (mddev->ro != 1)
6887 			goto unlock;
6888 
6889 		/* transitioning to readauto need only happen for
6890 		 * arrays that call md_write_start
6891 		 */
6892 		if (mddev->pers) {
6893 			err = restart_array(mddev);
6894 			if (err == 0) {
6895 				mddev->ro = 2;
6896 				set_disk_ro(mddev->gendisk, 0);
6897 			}
6898 		}
6899 		goto unlock;
6900 	}
6901 
6902 	/*
6903 	 * The remaining ioctls are changing the state of the
6904 	 * superblock, so we do not allow them on read-only arrays.
6905 	 */
6906 	if (mddev->ro && mddev->pers) {
6907 		if (mddev->ro == 2) {
6908 			mddev->ro = 0;
6909 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6910 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6911 			/* mddev_unlock will wake thread */
6912 			/* If a device failed while we were read-only, we
6913 			 * need to make sure the metadata is updated now.
6914 			 */
6915 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6916 				mddev_unlock(mddev);
6917 				wait_event(mddev->sb_wait,
6918 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6919 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6920 				mddev_lock_nointr(mddev);
6921 			}
6922 		} else {
6923 			err = -EROFS;
6924 			goto unlock;
6925 		}
6926 	}
6927 
6928 	switch (cmd) {
6929 	case ADD_NEW_DISK:
6930 	{
6931 		mdu_disk_info_t info;
6932 		if (copy_from_user(&info, argp, sizeof(info)))
6933 			err = -EFAULT;
6934 		else
6935 			err = add_new_disk(mddev, &info);
6936 		goto unlock;
6937 	}
6938 
6939 	case CLUSTERED_DISK_NACK:
6940 		if (mddev_is_clustered(mddev))
6941 			md_cluster_ops->new_disk_ack(mddev, false);
6942 		else
6943 			err = -EINVAL;
6944 		goto unlock;
6945 
6946 	case HOT_ADD_DISK:
6947 		err = hot_add_disk(mddev, new_decode_dev(arg));
6948 		goto unlock;
6949 
6950 	case RUN_ARRAY:
6951 		err = do_md_run(mddev);
6952 		goto unlock;
6953 
6954 	case SET_BITMAP_FILE:
6955 		err = set_bitmap_file(mddev, (int)arg);
6956 		goto unlock;
6957 
6958 	default:
6959 		err = -EINVAL;
6960 		goto unlock;
6961 	}
6962 
6963 unlock:
6964 	if (mddev->hold_active == UNTIL_IOCTL &&
6965 	    err != -EINVAL)
6966 		mddev->hold_active = 0;
6967 	mddev_unlock(mddev);
6968 out:
6969 	return err;
6970 }
6971 #ifdef CONFIG_COMPAT
6972 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6973 		    unsigned int cmd, unsigned long arg)
6974 {
6975 	switch (cmd) {
6976 	case HOT_REMOVE_DISK:
6977 	case HOT_ADD_DISK:
6978 	case SET_DISK_FAULTY:
6979 	case SET_BITMAP_FILE:
6980 		/* These take in integer arg, do not convert */
6981 		break;
6982 	default:
6983 		arg = (unsigned long)compat_ptr(arg);
6984 		break;
6985 	}
6986 
6987 	return md_ioctl(bdev, mode, cmd, arg);
6988 }
6989 #endif /* CONFIG_COMPAT */
6990 
6991 static int md_open(struct block_device *bdev, fmode_t mode)
6992 {
6993 	/*
6994 	 * Succeed if we can lock the mddev, which confirms that
6995 	 * it isn't being stopped right now.
6996 	 */
6997 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6998 	int err;
6999 
7000 	if (!mddev)
7001 		return -ENODEV;
7002 
7003 	if (mddev->gendisk != bdev->bd_disk) {
7004 		/* we are racing with mddev_put which is discarding this
7005 		 * bd_disk.
7006 		 */
7007 		mddev_put(mddev);
7008 		/* Wait until bdev->bd_disk is definitely gone */
7009 		flush_workqueue(md_misc_wq);
7010 		/* Then retry the open from the top */
7011 		return -ERESTARTSYS;
7012 	}
7013 	BUG_ON(mddev != bdev->bd_disk->private_data);
7014 
7015 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7016 		goto out;
7017 
7018 	err = 0;
7019 	atomic_inc(&mddev->openers);
7020 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
7021 	mutex_unlock(&mddev->open_mutex);
7022 
7023 	check_disk_change(bdev);
7024  out:
7025 	return err;
7026 }
7027 
7028 static void md_release(struct gendisk *disk, fmode_t mode)
7029 {
7030 	struct mddev *mddev = disk->private_data;
7031 
7032 	BUG_ON(!mddev);
7033 	atomic_dec(&mddev->openers);
7034 	mddev_put(mddev);
7035 }
7036 
7037 static int md_media_changed(struct gendisk *disk)
7038 {
7039 	struct mddev *mddev = disk->private_data;
7040 
7041 	return mddev->changed;
7042 }
7043 
7044 static int md_revalidate(struct gendisk *disk)
7045 {
7046 	struct mddev *mddev = disk->private_data;
7047 
7048 	mddev->changed = 0;
7049 	return 0;
7050 }
7051 static const struct block_device_operations md_fops =
7052 {
7053 	.owner		= THIS_MODULE,
7054 	.open		= md_open,
7055 	.release	= md_release,
7056 	.ioctl		= md_ioctl,
7057 #ifdef CONFIG_COMPAT
7058 	.compat_ioctl	= md_compat_ioctl,
7059 #endif
7060 	.getgeo		= md_getgeo,
7061 	.media_changed  = md_media_changed,
7062 	.revalidate_disk= md_revalidate,
7063 };
7064 
7065 static int md_thread(void *arg)
7066 {
7067 	struct md_thread *thread = arg;
7068 
7069 	/*
7070 	 * md_thread is a 'system-thread', it's priority should be very
7071 	 * high. We avoid resource deadlocks individually in each
7072 	 * raid personality. (RAID5 does preallocation) We also use RR and
7073 	 * the very same RT priority as kswapd, thus we will never get
7074 	 * into a priority inversion deadlock.
7075 	 *
7076 	 * we definitely have to have equal or higher priority than
7077 	 * bdflush, otherwise bdflush will deadlock if there are too
7078 	 * many dirty RAID5 blocks.
7079 	 */
7080 
7081 	allow_signal(SIGKILL);
7082 	while (!kthread_should_stop()) {
7083 
7084 		/* We need to wait INTERRUPTIBLE so that
7085 		 * we don't add to the load-average.
7086 		 * That means we need to be sure no signals are
7087 		 * pending
7088 		 */
7089 		if (signal_pending(current))
7090 			flush_signals(current);
7091 
7092 		wait_event_interruptible_timeout
7093 			(thread->wqueue,
7094 			 test_bit(THREAD_WAKEUP, &thread->flags)
7095 			 || kthread_should_stop(),
7096 			 thread->timeout);
7097 
7098 		clear_bit(THREAD_WAKEUP, &thread->flags);
7099 		if (!kthread_should_stop())
7100 			thread->run(thread);
7101 	}
7102 
7103 	return 0;
7104 }
7105 
7106 void md_wakeup_thread(struct md_thread *thread)
7107 {
7108 	if (thread) {
7109 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7110 		set_bit(THREAD_WAKEUP, &thread->flags);
7111 		wake_up(&thread->wqueue);
7112 	}
7113 }
7114 EXPORT_SYMBOL(md_wakeup_thread);
7115 
7116 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7117 		struct mddev *mddev, const char *name)
7118 {
7119 	struct md_thread *thread;
7120 
7121 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7122 	if (!thread)
7123 		return NULL;
7124 
7125 	init_waitqueue_head(&thread->wqueue);
7126 
7127 	thread->run = run;
7128 	thread->mddev = mddev;
7129 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7130 	thread->tsk = kthread_run(md_thread, thread,
7131 				  "%s_%s",
7132 				  mdname(thread->mddev),
7133 				  name);
7134 	if (IS_ERR(thread->tsk)) {
7135 		kfree(thread);
7136 		return NULL;
7137 	}
7138 	return thread;
7139 }
7140 EXPORT_SYMBOL(md_register_thread);
7141 
7142 void md_unregister_thread(struct md_thread **threadp)
7143 {
7144 	struct md_thread *thread = *threadp;
7145 	if (!thread)
7146 		return;
7147 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7148 	/* Locking ensures that mddev_unlock does not wake_up a
7149 	 * non-existent thread
7150 	 */
7151 	spin_lock(&pers_lock);
7152 	*threadp = NULL;
7153 	spin_unlock(&pers_lock);
7154 
7155 	kthread_stop(thread->tsk);
7156 	kfree(thread);
7157 }
7158 EXPORT_SYMBOL(md_unregister_thread);
7159 
7160 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7161 {
7162 	if (!rdev || test_bit(Faulty, &rdev->flags))
7163 		return;
7164 
7165 	if (!mddev->pers || !mddev->pers->error_handler)
7166 		return;
7167 	mddev->pers->error_handler(mddev,rdev);
7168 	if (mddev->degraded)
7169 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7170 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7171 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7172 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7173 	md_wakeup_thread(mddev->thread);
7174 	if (mddev->event_work.func)
7175 		queue_work(md_misc_wq, &mddev->event_work);
7176 	md_new_event_inintr(mddev);
7177 }
7178 EXPORT_SYMBOL(md_error);
7179 
7180 /* seq_file implementation /proc/mdstat */
7181 
7182 static void status_unused(struct seq_file *seq)
7183 {
7184 	int i = 0;
7185 	struct md_rdev *rdev;
7186 
7187 	seq_printf(seq, "unused devices: ");
7188 
7189 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7190 		char b[BDEVNAME_SIZE];
7191 		i++;
7192 		seq_printf(seq, "%s ",
7193 			      bdevname(rdev->bdev,b));
7194 	}
7195 	if (!i)
7196 		seq_printf(seq, "<none>");
7197 
7198 	seq_printf(seq, "\n");
7199 }
7200 
7201 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7202 {
7203 	sector_t max_sectors, resync, res;
7204 	unsigned long dt, db;
7205 	sector_t rt;
7206 	int scale;
7207 	unsigned int per_milli;
7208 
7209 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7210 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7211 		max_sectors = mddev->resync_max_sectors;
7212 	else
7213 		max_sectors = mddev->dev_sectors;
7214 
7215 	resync = mddev->curr_resync;
7216 	if (resync <= 3) {
7217 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7218 			/* Still cleaning up */
7219 			resync = max_sectors;
7220 	} else
7221 		resync -= atomic_read(&mddev->recovery_active);
7222 
7223 	if (resync == 0) {
7224 		if (mddev->recovery_cp < MaxSector) {
7225 			seq_printf(seq, "\tresync=PENDING");
7226 			return 1;
7227 		}
7228 		return 0;
7229 	}
7230 	if (resync < 3) {
7231 		seq_printf(seq, "\tresync=DELAYED");
7232 		return 1;
7233 	}
7234 
7235 	WARN_ON(max_sectors == 0);
7236 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7237 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7238 	 * u32, as those are the requirements for sector_div.
7239 	 * Thus 'scale' must be at least 10
7240 	 */
7241 	scale = 10;
7242 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7243 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7244 			scale++;
7245 	}
7246 	res = (resync>>scale)*1000;
7247 	sector_div(res, (u32)((max_sectors>>scale)+1));
7248 
7249 	per_milli = res;
7250 	{
7251 		int i, x = per_milli/50, y = 20-x;
7252 		seq_printf(seq, "[");
7253 		for (i = 0; i < x; i++)
7254 			seq_printf(seq, "=");
7255 		seq_printf(seq, ">");
7256 		for (i = 0; i < y; i++)
7257 			seq_printf(seq, ".");
7258 		seq_printf(seq, "] ");
7259 	}
7260 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7261 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7262 		    "reshape" :
7263 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7264 		     "check" :
7265 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7266 		      "resync" : "recovery"))),
7267 		   per_milli/10, per_milli % 10,
7268 		   (unsigned long long) resync/2,
7269 		   (unsigned long long) max_sectors/2);
7270 
7271 	/*
7272 	 * dt: time from mark until now
7273 	 * db: blocks written from mark until now
7274 	 * rt: remaining time
7275 	 *
7276 	 * rt is a sector_t, so could be 32bit or 64bit.
7277 	 * So we divide before multiply in case it is 32bit and close
7278 	 * to the limit.
7279 	 * We scale the divisor (db) by 32 to avoid losing precision
7280 	 * near the end of resync when the number of remaining sectors
7281 	 * is close to 'db'.
7282 	 * We then divide rt by 32 after multiplying by db to compensate.
7283 	 * The '+1' avoids division by zero if db is very small.
7284 	 */
7285 	dt = ((jiffies - mddev->resync_mark) / HZ);
7286 	if (!dt) dt++;
7287 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7288 		- mddev->resync_mark_cnt;
7289 
7290 	rt = max_sectors - resync;    /* number of remaining sectors */
7291 	sector_div(rt, db/32+1);
7292 	rt *= dt;
7293 	rt >>= 5;
7294 
7295 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7296 		   ((unsigned long)rt % 60)/6);
7297 
7298 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7299 	return 1;
7300 }
7301 
7302 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7303 {
7304 	struct list_head *tmp;
7305 	loff_t l = *pos;
7306 	struct mddev *mddev;
7307 
7308 	if (l >= 0x10000)
7309 		return NULL;
7310 	if (!l--)
7311 		/* header */
7312 		return (void*)1;
7313 
7314 	spin_lock(&all_mddevs_lock);
7315 	list_for_each(tmp,&all_mddevs)
7316 		if (!l--) {
7317 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7318 			mddev_get(mddev);
7319 			spin_unlock(&all_mddevs_lock);
7320 			return mddev;
7321 		}
7322 	spin_unlock(&all_mddevs_lock);
7323 	if (!l--)
7324 		return (void*)2;/* tail */
7325 	return NULL;
7326 }
7327 
7328 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7329 {
7330 	struct list_head *tmp;
7331 	struct mddev *next_mddev, *mddev = v;
7332 
7333 	++*pos;
7334 	if (v == (void*)2)
7335 		return NULL;
7336 
7337 	spin_lock(&all_mddevs_lock);
7338 	if (v == (void*)1)
7339 		tmp = all_mddevs.next;
7340 	else
7341 		tmp = mddev->all_mddevs.next;
7342 	if (tmp != &all_mddevs)
7343 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7344 	else {
7345 		next_mddev = (void*)2;
7346 		*pos = 0x10000;
7347 	}
7348 	spin_unlock(&all_mddevs_lock);
7349 
7350 	if (v != (void*)1)
7351 		mddev_put(mddev);
7352 	return next_mddev;
7353 
7354 }
7355 
7356 static void md_seq_stop(struct seq_file *seq, void *v)
7357 {
7358 	struct mddev *mddev = v;
7359 
7360 	if (mddev && v != (void*)1 && v != (void*)2)
7361 		mddev_put(mddev);
7362 }
7363 
7364 static int md_seq_show(struct seq_file *seq, void *v)
7365 {
7366 	struct mddev *mddev = v;
7367 	sector_t sectors;
7368 	struct md_rdev *rdev;
7369 
7370 	if (v == (void*)1) {
7371 		struct md_personality *pers;
7372 		seq_printf(seq, "Personalities : ");
7373 		spin_lock(&pers_lock);
7374 		list_for_each_entry(pers, &pers_list, list)
7375 			seq_printf(seq, "[%s] ", pers->name);
7376 
7377 		spin_unlock(&pers_lock);
7378 		seq_printf(seq, "\n");
7379 		seq->poll_event = atomic_read(&md_event_count);
7380 		return 0;
7381 	}
7382 	if (v == (void*)2) {
7383 		status_unused(seq);
7384 		return 0;
7385 	}
7386 
7387 	spin_lock(&mddev->lock);
7388 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7389 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7390 						mddev->pers ? "" : "in");
7391 		if (mddev->pers) {
7392 			if (mddev->ro==1)
7393 				seq_printf(seq, " (read-only)");
7394 			if (mddev->ro==2)
7395 				seq_printf(seq, " (auto-read-only)");
7396 			seq_printf(seq, " %s", mddev->pers->name);
7397 		}
7398 
7399 		sectors = 0;
7400 		rcu_read_lock();
7401 		rdev_for_each_rcu(rdev, mddev) {
7402 			char b[BDEVNAME_SIZE];
7403 			seq_printf(seq, " %s[%d]",
7404 				bdevname(rdev->bdev,b), rdev->desc_nr);
7405 			if (test_bit(WriteMostly, &rdev->flags))
7406 				seq_printf(seq, "(W)");
7407 			if (test_bit(Journal, &rdev->flags))
7408 				seq_printf(seq, "(J)");
7409 			if (test_bit(Faulty, &rdev->flags)) {
7410 				seq_printf(seq, "(F)");
7411 				continue;
7412 			}
7413 			if (rdev->raid_disk < 0)
7414 				seq_printf(seq, "(S)"); /* spare */
7415 			if (test_bit(Replacement, &rdev->flags))
7416 				seq_printf(seq, "(R)");
7417 			sectors += rdev->sectors;
7418 		}
7419 		rcu_read_unlock();
7420 
7421 		if (!list_empty(&mddev->disks)) {
7422 			if (mddev->pers)
7423 				seq_printf(seq, "\n      %llu blocks",
7424 					   (unsigned long long)
7425 					   mddev->array_sectors / 2);
7426 			else
7427 				seq_printf(seq, "\n      %llu blocks",
7428 					   (unsigned long long)sectors / 2);
7429 		}
7430 		if (mddev->persistent) {
7431 			if (mddev->major_version != 0 ||
7432 			    mddev->minor_version != 90) {
7433 				seq_printf(seq," super %d.%d",
7434 					   mddev->major_version,
7435 					   mddev->minor_version);
7436 			}
7437 		} else if (mddev->external)
7438 			seq_printf(seq, " super external:%s",
7439 				   mddev->metadata_type);
7440 		else
7441 			seq_printf(seq, " super non-persistent");
7442 
7443 		if (mddev->pers) {
7444 			mddev->pers->status(seq, mddev);
7445 			seq_printf(seq, "\n      ");
7446 			if (mddev->pers->sync_request) {
7447 				if (status_resync(seq, mddev))
7448 					seq_printf(seq, "\n      ");
7449 			}
7450 		} else
7451 			seq_printf(seq, "\n       ");
7452 
7453 		bitmap_status(seq, mddev->bitmap);
7454 
7455 		seq_printf(seq, "\n");
7456 	}
7457 	spin_unlock(&mddev->lock);
7458 
7459 	return 0;
7460 }
7461 
7462 static const struct seq_operations md_seq_ops = {
7463 	.start  = md_seq_start,
7464 	.next   = md_seq_next,
7465 	.stop   = md_seq_stop,
7466 	.show   = md_seq_show,
7467 };
7468 
7469 static int md_seq_open(struct inode *inode, struct file *file)
7470 {
7471 	struct seq_file *seq;
7472 	int error;
7473 
7474 	error = seq_open(file, &md_seq_ops);
7475 	if (error)
7476 		return error;
7477 
7478 	seq = file->private_data;
7479 	seq->poll_event = atomic_read(&md_event_count);
7480 	return error;
7481 }
7482 
7483 static int md_unloading;
7484 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7485 {
7486 	struct seq_file *seq = filp->private_data;
7487 	int mask;
7488 
7489 	if (md_unloading)
7490 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7491 	poll_wait(filp, &md_event_waiters, wait);
7492 
7493 	/* always allow read */
7494 	mask = POLLIN | POLLRDNORM;
7495 
7496 	if (seq->poll_event != atomic_read(&md_event_count))
7497 		mask |= POLLERR | POLLPRI;
7498 	return mask;
7499 }
7500 
7501 static const struct file_operations md_seq_fops = {
7502 	.owner		= THIS_MODULE,
7503 	.open           = md_seq_open,
7504 	.read           = seq_read,
7505 	.llseek         = seq_lseek,
7506 	.release	= seq_release_private,
7507 	.poll		= mdstat_poll,
7508 };
7509 
7510 int register_md_personality(struct md_personality *p)
7511 {
7512 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7513 						p->name, p->level);
7514 	spin_lock(&pers_lock);
7515 	list_add_tail(&p->list, &pers_list);
7516 	spin_unlock(&pers_lock);
7517 	return 0;
7518 }
7519 EXPORT_SYMBOL(register_md_personality);
7520 
7521 int unregister_md_personality(struct md_personality *p)
7522 {
7523 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7524 	spin_lock(&pers_lock);
7525 	list_del_init(&p->list);
7526 	spin_unlock(&pers_lock);
7527 	return 0;
7528 }
7529 EXPORT_SYMBOL(unregister_md_personality);
7530 
7531 int register_md_cluster_operations(struct md_cluster_operations *ops,
7532 				   struct module *module)
7533 {
7534 	int ret = 0;
7535 	spin_lock(&pers_lock);
7536 	if (md_cluster_ops != NULL)
7537 		ret = -EALREADY;
7538 	else {
7539 		md_cluster_ops = ops;
7540 		md_cluster_mod = module;
7541 	}
7542 	spin_unlock(&pers_lock);
7543 	return ret;
7544 }
7545 EXPORT_SYMBOL(register_md_cluster_operations);
7546 
7547 int unregister_md_cluster_operations(void)
7548 {
7549 	spin_lock(&pers_lock);
7550 	md_cluster_ops = NULL;
7551 	spin_unlock(&pers_lock);
7552 	return 0;
7553 }
7554 EXPORT_SYMBOL(unregister_md_cluster_operations);
7555 
7556 int md_setup_cluster(struct mddev *mddev, int nodes)
7557 {
7558 	int err;
7559 
7560 	err = request_module("md-cluster");
7561 	if (err) {
7562 		pr_err("md-cluster module not found.\n");
7563 		return -ENOENT;
7564 	}
7565 
7566 	spin_lock(&pers_lock);
7567 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7568 		spin_unlock(&pers_lock);
7569 		return -ENOENT;
7570 	}
7571 	spin_unlock(&pers_lock);
7572 
7573 	return md_cluster_ops->join(mddev, nodes);
7574 }
7575 
7576 void md_cluster_stop(struct mddev *mddev)
7577 {
7578 	if (!md_cluster_ops)
7579 		return;
7580 	md_cluster_ops->leave(mddev);
7581 	module_put(md_cluster_mod);
7582 }
7583 
7584 static int is_mddev_idle(struct mddev *mddev, int init)
7585 {
7586 	struct md_rdev *rdev;
7587 	int idle;
7588 	int curr_events;
7589 
7590 	idle = 1;
7591 	rcu_read_lock();
7592 	rdev_for_each_rcu(rdev, mddev) {
7593 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7594 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7595 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7596 			      atomic_read(&disk->sync_io);
7597 		/* sync IO will cause sync_io to increase before the disk_stats
7598 		 * as sync_io is counted when a request starts, and
7599 		 * disk_stats is counted when it completes.
7600 		 * So resync activity will cause curr_events to be smaller than
7601 		 * when there was no such activity.
7602 		 * non-sync IO will cause disk_stat to increase without
7603 		 * increasing sync_io so curr_events will (eventually)
7604 		 * be larger than it was before.  Once it becomes
7605 		 * substantially larger, the test below will cause
7606 		 * the array to appear non-idle, and resync will slow
7607 		 * down.
7608 		 * If there is a lot of outstanding resync activity when
7609 		 * we set last_event to curr_events, then all that activity
7610 		 * completing might cause the array to appear non-idle
7611 		 * and resync will be slowed down even though there might
7612 		 * not have been non-resync activity.  This will only
7613 		 * happen once though.  'last_events' will soon reflect
7614 		 * the state where there is little or no outstanding
7615 		 * resync requests, and further resync activity will
7616 		 * always make curr_events less than last_events.
7617 		 *
7618 		 */
7619 		if (init || curr_events - rdev->last_events > 64) {
7620 			rdev->last_events = curr_events;
7621 			idle = 0;
7622 		}
7623 	}
7624 	rcu_read_unlock();
7625 	return idle;
7626 }
7627 
7628 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7629 {
7630 	/* another "blocks" (512byte) blocks have been synced */
7631 	atomic_sub(blocks, &mddev->recovery_active);
7632 	wake_up(&mddev->recovery_wait);
7633 	if (!ok) {
7634 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7635 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7636 		md_wakeup_thread(mddev->thread);
7637 		// stop recovery, signal do_sync ....
7638 	}
7639 }
7640 EXPORT_SYMBOL(md_done_sync);
7641 
7642 /* md_write_start(mddev, bi)
7643  * If we need to update some array metadata (e.g. 'active' flag
7644  * in superblock) before writing, schedule a superblock update
7645  * and wait for it to complete.
7646  */
7647 void md_write_start(struct mddev *mddev, struct bio *bi)
7648 {
7649 	int did_change = 0;
7650 	if (bio_data_dir(bi) != WRITE)
7651 		return;
7652 
7653 	BUG_ON(mddev->ro == 1);
7654 	if (mddev->ro == 2) {
7655 		/* need to switch to read/write */
7656 		mddev->ro = 0;
7657 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7658 		md_wakeup_thread(mddev->thread);
7659 		md_wakeup_thread(mddev->sync_thread);
7660 		did_change = 1;
7661 	}
7662 	atomic_inc(&mddev->writes_pending);
7663 	if (mddev->safemode == 1)
7664 		mddev->safemode = 0;
7665 	if (mddev->in_sync) {
7666 		spin_lock(&mddev->lock);
7667 		if (mddev->in_sync) {
7668 			mddev->in_sync = 0;
7669 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7670 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7671 			md_wakeup_thread(mddev->thread);
7672 			did_change = 1;
7673 		}
7674 		spin_unlock(&mddev->lock);
7675 	}
7676 	if (did_change)
7677 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7678 	wait_event(mddev->sb_wait,
7679 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7680 }
7681 EXPORT_SYMBOL(md_write_start);
7682 
7683 void md_write_end(struct mddev *mddev)
7684 {
7685 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7686 		if (mddev->safemode == 2)
7687 			md_wakeup_thread(mddev->thread);
7688 		else if (mddev->safemode_delay)
7689 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7690 	}
7691 }
7692 EXPORT_SYMBOL(md_write_end);
7693 
7694 /* md_allow_write(mddev)
7695  * Calling this ensures that the array is marked 'active' so that writes
7696  * may proceed without blocking.  It is important to call this before
7697  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7698  * Must be called with mddev_lock held.
7699  *
7700  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7701  * is dropped, so return -EAGAIN after notifying userspace.
7702  */
7703 int md_allow_write(struct mddev *mddev)
7704 {
7705 	if (!mddev->pers)
7706 		return 0;
7707 	if (mddev->ro)
7708 		return 0;
7709 	if (!mddev->pers->sync_request)
7710 		return 0;
7711 
7712 	spin_lock(&mddev->lock);
7713 	if (mddev->in_sync) {
7714 		mddev->in_sync = 0;
7715 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7716 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7717 		if (mddev->safemode_delay &&
7718 		    mddev->safemode == 0)
7719 			mddev->safemode = 1;
7720 		spin_unlock(&mddev->lock);
7721 		md_update_sb(mddev, 0);
7722 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7723 	} else
7724 		spin_unlock(&mddev->lock);
7725 
7726 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7727 		return -EAGAIN;
7728 	else
7729 		return 0;
7730 }
7731 EXPORT_SYMBOL_GPL(md_allow_write);
7732 
7733 #define SYNC_MARKS	10
7734 #define	SYNC_MARK_STEP	(3*HZ)
7735 #define UPDATE_FREQUENCY (5*60*HZ)
7736 void md_do_sync(struct md_thread *thread)
7737 {
7738 	struct mddev *mddev = thread->mddev;
7739 	struct mddev *mddev2;
7740 	unsigned int currspeed = 0,
7741 		 window;
7742 	sector_t max_sectors,j, io_sectors, recovery_done;
7743 	unsigned long mark[SYNC_MARKS];
7744 	unsigned long update_time;
7745 	sector_t mark_cnt[SYNC_MARKS];
7746 	int last_mark,m;
7747 	struct list_head *tmp;
7748 	sector_t last_check;
7749 	int skipped = 0;
7750 	struct md_rdev *rdev;
7751 	char *desc, *action = NULL;
7752 	struct blk_plug plug;
7753 	bool cluster_resync_finished = false;
7754 
7755 	/* just incase thread restarts... */
7756 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7757 		return;
7758 	if (mddev->ro) {/* never try to sync a read-only array */
7759 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7760 		return;
7761 	}
7762 
7763 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7764 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7765 			desc = "data-check";
7766 			action = "check";
7767 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7768 			desc = "requested-resync";
7769 			action = "repair";
7770 		} else
7771 			desc = "resync";
7772 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7773 		desc = "reshape";
7774 	else
7775 		desc = "recovery";
7776 
7777 	mddev->last_sync_action = action ?: desc;
7778 
7779 	/* we overload curr_resync somewhat here.
7780 	 * 0 == not engaged in resync at all
7781 	 * 2 == checking that there is no conflict with another sync
7782 	 * 1 == like 2, but have yielded to allow conflicting resync to
7783 	 *		commense
7784 	 * other == active in resync - this many blocks
7785 	 *
7786 	 * Before starting a resync we must have set curr_resync to
7787 	 * 2, and then checked that every "conflicting" array has curr_resync
7788 	 * less than ours.  When we find one that is the same or higher
7789 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7790 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7791 	 * This will mean we have to start checking from the beginning again.
7792 	 *
7793 	 */
7794 
7795 	do {
7796 		mddev->curr_resync = 2;
7797 
7798 	try_again:
7799 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7800 			goto skip;
7801 		for_each_mddev(mddev2, tmp) {
7802 			if (mddev2 == mddev)
7803 				continue;
7804 			if (!mddev->parallel_resync
7805 			&&  mddev2->curr_resync
7806 			&&  match_mddev_units(mddev, mddev2)) {
7807 				DEFINE_WAIT(wq);
7808 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7809 					/* arbitrarily yield */
7810 					mddev->curr_resync = 1;
7811 					wake_up(&resync_wait);
7812 				}
7813 				if (mddev > mddev2 && mddev->curr_resync == 1)
7814 					/* no need to wait here, we can wait the next
7815 					 * time 'round when curr_resync == 2
7816 					 */
7817 					continue;
7818 				/* We need to wait 'interruptible' so as not to
7819 				 * contribute to the load average, and not to
7820 				 * be caught by 'softlockup'
7821 				 */
7822 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7823 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7824 				    mddev2->curr_resync >= mddev->curr_resync) {
7825 					printk(KERN_INFO "md: delaying %s of %s"
7826 					       " until %s has finished (they"
7827 					       " share one or more physical units)\n",
7828 					       desc, mdname(mddev), mdname(mddev2));
7829 					mddev_put(mddev2);
7830 					if (signal_pending(current))
7831 						flush_signals(current);
7832 					schedule();
7833 					finish_wait(&resync_wait, &wq);
7834 					goto try_again;
7835 				}
7836 				finish_wait(&resync_wait, &wq);
7837 			}
7838 		}
7839 	} while (mddev->curr_resync < 2);
7840 
7841 	j = 0;
7842 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7843 		/* resync follows the size requested by the personality,
7844 		 * which defaults to physical size, but can be virtual size
7845 		 */
7846 		max_sectors = mddev->resync_max_sectors;
7847 		atomic64_set(&mddev->resync_mismatches, 0);
7848 		/* we don't use the checkpoint if there's a bitmap */
7849 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7850 			j = mddev->resync_min;
7851 		else if (!mddev->bitmap)
7852 			j = mddev->recovery_cp;
7853 
7854 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7855 		max_sectors = mddev->resync_max_sectors;
7856 	else {
7857 		/* recovery follows the physical size of devices */
7858 		max_sectors = mddev->dev_sectors;
7859 		j = MaxSector;
7860 		rcu_read_lock();
7861 		rdev_for_each_rcu(rdev, mddev)
7862 			if (rdev->raid_disk >= 0 &&
7863 			    !test_bit(Journal, &rdev->flags) &&
7864 			    !test_bit(Faulty, &rdev->flags) &&
7865 			    !test_bit(In_sync, &rdev->flags) &&
7866 			    rdev->recovery_offset < j)
7867 				j = rdev->recovery_offset;
7868 		rcu_read_unlock();
7869 
7870 		/* If there is a bitmap, we need to make sure all
7871 		 * writes that started before we added a spare
7872 		 * complete before we start doing a recovery.
7873 		 * Otherwise the write might complete and (via
7874 		 * bitmap_endwrite) set a bit in the bitmap after the
7875 		 * recovery has checked that bit and skipped that
7876 		 * region.
7877 		 */
7878 		if (mddev->bitmap) {
7879 			mddev->pers->quiesce(mddev, 1);
7880 			mddev->pers->quiesce(mddev, 0);
7881 		}
7882 	}
7883 
7884 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7885 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7886 		" %d KB/sec/disk.\n", speed_min(mddev));
7887 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7888 	       "(but not more than %d KB/sec) for %s.\n",
7889 	       speed_max(mddev), desc);
7890 
7891 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7892 
7893 	io_sectors = 0;
7894 	for (m = 0; m < SYNC_MARKS; m++) {
7895 		mark[m] = jiffies;
7896 		mark_cnt[m] = io_sectors;
7897 	}
7898 	last_mark = 0;
7899 	mddev->resync_mark = mark[last_mark];
7900 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7901 
7902 	/*
7903 	 * Tune reconstruction:
7904 	 */
7905 	window = 32*(PAGE_SIZE/512);
7906 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7907 		window/2, (unsigned long long)max_sectors/2);
7908 
7909 	atomic_set(&mddev->recovery_active, 0);
7910 	last_check = 0;
7911 
7912 	if (j>2) {
7913 		printk(KERN_INFO
7914 		       "md: resuming %s of %s from checkpoint.\n",
7915 		       desc, mdname(mddev));
7916 		mddev->curr_resync = j;
7917 	} else
7918 		mddev->curr_resync = 3; /* no longer delayed */
7919 	mddev->curr_resync_completed = j;
7920 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7921 	md_new_event(mddev);
7922 	update_time = jiffies;
7923 
7924 	blk_start_plug(&plug);
7925 	while (j < max_sectors) {
7926 		sector_t sectors;
7927 
7928 		skipped = 0;
7929 
7930 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7931 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7932 		      (mddev->curr_resync - mddev->curr_resync_completed)
7933 		      > (max_sectors >> 4)) ||
7934 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7935 		     (j - mddev->curr_resync_completed)*2
7936 		     >= mddev->resync_max - mddev->curr_resync_completed ||
7937 		     mddev->curr_resync_completed > mddev->resync_max
7938 			    )) {
7939 			/* time to update curr_resync_completed */
7940 			wait_event(mddev->recovery_wait,
7941 				   atomic_read(&mddev->recovery_active) == 0);
7942 			mddev->curr_resync_completed = j;
7943 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7944 			    j > mddev->recovery_cp)
7945 				mddev->recovery_cp = j;
7946 			update_time = jiffies;
7947 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7948 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7949 		}
7950 
7951 		while (j >= mddev->resync_max &&
7952 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7953 			/* As this condition is controlled by user-space,
7954 			 * we can block indefinitely, so use '_interruptible'
7955 			 * to avoid triggering warnings.
7956 			 */
7957 			flush_signals(current); /* just in case */
7958 			wait_event_interruptible(mddev->recovery_wait,
7959 						 mddev->resync_max > j
7960 						 || test_bit(MD_RECOVERY_INTR,
7961 							     &mddev->recovery));
7962 		}
7963 
7964 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7965 			break;
7966 
7967 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7968 		if (sectors == 0) {
7969 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7970 			break;
7971 		}
7972 
7973 		if (!skipped) { /* actual IO requested */
7974 			io_sectors += sectors;
7975 			atomic_add(sectors, &mddev->recovery_active);
7976 		}
7977 
7978 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7979 			break;
7980 
7981 		j += sectors;
7982 		if (j > max_sectors)
7983 			/* when skipping, extra large numbers can be returned. */
7984 			j = max_sectors;
7985 		if (j > 2)
7986 			mddev->curr_resync = j;
7987 		mddev->curr_mark_cnt = io_sectors;
7988 		if (last_check == 0)
7989 			/* this is the earliest that rebuild will be
7990 			 * visible in /proc/mdstat
7991 			 */
7992 			md_new_event(mddev);
7993 
7994 		if (last_check + window > io_sectors || j == max_sectors)
7995 			continue;
7996 
7997 		last_check = io_sectors;
7998 	repeat:
7999 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8000 			/* step marks */
8001 			int next = (last_mark+1) % SYNC_MARKS;
8002 
8003 			mddev->resync_mark = mark[next];
8004 			mddev->resync_mark_cnt = mark_cnt[next];
8005 			mark[next] = jiffies;
8006 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8007 			last_mark = next;
8008 		}
8009 
8010 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8011 			break;
8012 
8013 		/*
8014 		 * this loop exits only if either when we are slower than
8015 		 * the 'hard' speed limit, or the system was IO-idle for
8016 		 * a jiffy.
8017 		 * the system might be non-idle CPU-wise, but we only care
8018 		 * about not overloading the IO subsystem. (things like an
8019 		 * e2fsck being done on the RAID array should execute fast)
8020 		 */
8021 		cond_resched();
8022 
8023 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8024 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8025 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8026 
8027 		if (currspeed > speed_min(mddev)) {
8028 			if (currspeed > speed_max(mddev)) {
8029 				msleep(500);
8030 				goto repeat;
8031 			}
8032 			if (!is_mddev_idle(mddev, 0)) {
8033 				/*
8034 				 * Give other IO more of a chance.
8035 				 * The faster the devices, the less we wait.
8036 				 */
8037 				wait_event(mddev->recovery_wait,
8038 					   !atomic_read(&mddev->recovery_active));
8039 			}
8040 		}
8041 	}
8042 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8043 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8044 	       ? "interrupted" : "done");
8045 	/*
8046 	 * this also signals 'finished resyncing' to md_stop
8047 	 */
8048 	blk_finish_plug(&plug);
8049 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8050 
8051 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8052 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8053 	    mddev->curr_resync > 2) {
8054 		mddev->curr_resync_completed = mddev->curr_resync;
8055 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8056 	}
8057 	/* tell personality and other nodes that we are finished */
8058 	if (mddev_is_clustered(mddev)) {
8059 		md_cluster_ops->resync_finish(mddev);
8060 		cluster_resync_finished = true;
8061 	}
8062 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8063 
8064 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8065 	    mddev->curr_resync > 2) {
8066 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8067 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8068 				if (mddev->curr_resync >= mddev->recovery_cp) {
8069 					printk(KERN_INFO
8070 					       "md: checkpointing %s of %s.\n",
8071 					       desc, mdname(mddev));
8072 					if (test_bit(MD_RECOVERY_ERROR,
8073 						&mddev->recovery))
8074 						mddev->recovery_cp =
8075 							mddev->curr_resync_completed;
8076 					else
8077 						mddev->recovery_cp =
8078 							mddev->curr_resync;
8079 				}
8080 			} else
8081 				mddev->recovery_cp = MaxSector;
8082 		} else {
8083 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8084 				mddev->curr_resync = MaxSector;
8085 			rcu_read_lock();
8086 			rdev_for_each_rcu(rdev, mddev)
8087 				if (rdev->raid_disk >= 0 &&
8088 				    mddev->delta_disks >= 0 &&
8089 				    !test_bit(Journal, &rdev->flags) &&
8090 				    !test_bit(Faulty, &rdev->flags) &&
8091 				    !test_bit(In_sync, &rdev->flags) &&
8092 				    rdev->recovery_offset < mddev->curr_resync)
8093 					rdev->recovery_offset = mddev->curr_resync;
8094 			rcu_read_unlock();
8095 		}
8096 	}
8097  skip:
8098 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
8099 
8100 	if (mddev_is_clustered(mddev) &&
8101 	    test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8102 	    !cluster_resync_finished)
8103 		md_cluster_ops->resync_finish(mddev);
8104 
8105 	spin_lock(&mddev->lock);
8106 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8107 		/* We completed so min/max setting can be forgotten if used. */
8108 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8109 			mddev->resync_min = 0;
8110 		mddev->resync_max = MaxSector;
8111 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8112 		mddev->resync_min = mddev->curr_resync_completed;
8113 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8114 	mddev->curr_resync = 0;
8115 	spin_unlock(&mddev->lock);
8116 
8117 	wake_up(&resync_wait);
8118 	md_wakeup_thread(mddev->thread);
8119 	return;
8120 }
8121 EXPORT_SYMBOL_GPL(md_do_sync);
8122 
8123 static int remove_and_add_spares(struct mddev *mddev,
8124 				 struct md_rdev *this)
8125 {
8126 	struct md_rdev *rdev;
8127 	int spares = 0;
8128 	int removed = 0;
8129 
8130 	rdev_for_each(rdev, mddev)
8131 		if ((this == NULL || rdev == this) &&
8132 		    rdev->raid_disk >= 0 &&
8133 		    !test_bit(Blocked, &rdev->flags) &&
8134 		    (test_bit(Faulty, &rdev->flags) ||
8135 		     (!test_bit(In_sync, &rdev->flags) &&
8136 		      !test_bit(Journal, &rdev->flags))) &&
8137 		    atomic_read(&rdev->nr_pending)==0) {
8138 			if (mddev->pers->hot_remove_disk(
8139 				    mddev, rdev) == 0) {
8140 				sysfs_unlink_rdev(mddev, rdev);
8141 				rdev->raid_disk = -1;
8142 				removed++;
8143 			}
8144 		}
8145 	if (removed && mddev->kobj.sd)
8146 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8147 
8148 	if (this && removed)
8149 		goto no_add;
8150 
8151 	rdev_for_each(rdev, mddev) {
8152 		if (this && this != rdev)
8153 			continue;
8154 		if (test_bit(Candidate, &rdev->flags))
8155 			continue;
8156 		if (rdev->raid_disk >= 0 &&
8157 		    !test_bit(In_sync, &rdev->flags) &&
8158 		    !test_bit(Journal, &rdev->flags) &&
8159 		    !test_bit(Faulty, &rdev->flags))
8160 			spares++;
8161 		if (rdev->raid_disk >= 0)
8162 			continue;
8163 		if (test_bit(Faulty, &rdev->flags))
8164 			continue;
8165 		if (test_bit(Journal, &rdev->flags))
8166 			continue;
8167 		if (mddev->ro &&
8168 		    ! (rdev->saved_raid_disk >= 0 &&
8169 		       !test_bit(Bitmap_sync, &rdev->flags)))
8170 			continue;
8171 
8172 		rdev->recovery_offset = 0;
8173 		if (mddev->pers->
8174 		    hot_add_disk(mddev, rdev) == 0) {
8175 			if (sysfs_link_rdev(mddev, rdev))
8176 				/* failure here is OK */;
8177 			spares++;
8178 			md_new_event(mddev);
8179 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8180 		}
8181 	}
8182 no_add:
8183 	if (removed)
8184 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8185 	return spares;
8186 }
8187 
8188 static void md_start_sync(struct work_struct *ws)
8189 {
8190 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8191 	int ret = 0;
8192 
8193 	if (mddev_is_clustered(mddev)) {
8194 		ret = md_cluster_ops->resync_start(mddev);
8195 		if (ret) {
8196 			mddev->sync_thread = NULL;
8197 			goto out;
8198 		}
8199 	}
8200 
8201 	mddev->sync_thread = md_register_thread(md_do_sync,
8202 						mddev,
8203 						"resync");
8204 out:
8205 	if (!mddev->sync_thread) {
8206 		if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8207 			printk(KERN_ERR "%s: could not start resync"
8208 			       " thread...\n",
8209 			       mdname(mddev));
8210 		/* leave the spares where they are, it shouldn't hurt */
8211 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8212 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8213 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8214 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8215 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8216 		wake_up(&resync_wait);
8217 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8218 				       &mddev->recovery))
8219 			if (mddev->sysfs_action)
8220 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8221 	} else
8222 		md_wakeup_thread(mddev->sync_thread);
8223 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8224 	md_new_event(mddev);
8225 }
8226 
8227 /*
8228  * This routine is regularly called by all per-raid-array threads to
8229  * deal with generic issues like resync and super-block update.
8230  * Raid personalities that don't have a thread (linear/raid0) do not
8231  * need this as they never do any recovery or update the superblock.
8232  *
8233  * It does not do any resync itself, but rather "forks" off other threads
8234  * to do that as needed.
8235  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8236  * "->recovery" and create a thread at ->sync_thread.
8237  * When the thread finishes it sets MD_RECOVERY_DONE
8238  * and wakeups up this thread which will reap the thread and finish up.
8239  * This thread also removes any faulty devices (with nr_pending == 0).
8240  *
8241  * The overall approach is:
8242  *  1/ if the superblock needs updating, update it.
8243  *  2/ If a recovery thread is running, don't do anything else.
8244  *  3/ If recovery has finished, clean up, possibly marking spares active.
8245  *  4/ If there are any faulty devices, remove them.
8246  *  5/ If array is degraded, try to add spares devices
8247  *  6/ If array has spares or is not in-sync, start a resync thread.
8248  */
8249 void md_check_recovery(struct mddev *mddev)
8250 {
8251 	if (mddev->suspended)
8252 		return;
8253 
8254 	if (mddev->bitmap)
8255 		bitmap_daemon_work(mddev);
8256 
8257 	if (signal_pending(current)) {
8258 		if (mddev->pers->sync_request && !mddev->external) {
8259 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8260 			       mdname(mddev));
8261 			mddev->safemode = 2;
8262 		}
8263 		flush_signals(current);
8264 	}
8265 
8266 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8267 		return;
8268 	if ( ! (
8269 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8270 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8271 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8272 		(mddev->external == 0 && mddev->safemode == 1) ||
8273 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8274 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8275 		))
8276 		return;
8277 
8278 	if (mddev_trylock(mddev)) {
8279 		int spares = 0;
8280 
8281 		if (mddev->ro) {
8282 			struct md_rdev *rdev;
8283 			if (!mddev->external && mddev->in_sync)
8284 				/* 'Blocked' flag not needed as failed devices
8285 				 * will be recorded if array switched to read/write.
8286 				 * Leaving it set will prevent the device
8287 				 * from being removed.
8288 				 */
8289 				rdev_for_each(rdev, mddev)
8290 					clear_bit(Blocked, &rdev->flags);
8291 			/* On a read-only array we can:
8292 			 * - remove failed devices
8293 			 * - add already-in_sync devices if the array itself
8294 			 *   is in-sync.
8295 			 * As we only add devices that are already in-sync,
8296 			 * we can activate the spares immediately.
8297 			 */
8298 			remove_and_add_spares(mddev, NULL);
8299 			/* There is no thread, but we need to call
8300 			 * ->spare_active and clear saved_raid_disk
8301 			 */
8302 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8303 			md_reap_sync_thread(mddev);
8304 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8305 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8306 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8307 			goto unlock;
8308 		}
8309 
8310 		if (!mddev->external) {
8311 			int did_change = 0;
8312 			spin_lock(&mddev->lock);
8313 			if (mddev->safemode &&
8314 			    !atomic_read(&mddev->writes_pending) &&
8315 			    !mddev->in_sync &&
8316 			    mddev->recovery_cp == MaxSector) {
8317 				mddev->in_sync = 1;
8318 				did_change = 1;
8319 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8320 			}
8321 			if (mddev->safemode == 1)
8322 				mddev->safemode = 0;
8323 			spin_unlock(&mddev->lock);
8324 			if (did_change)
8325 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8326 		}
8327 
8328 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
8329 			md_update_sb(mddev, 0);
8330 
8331 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8332 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8333 			/* resync/recovery still happening */
8334 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8335 			goto unlock;
8336 		}
8337 		if (mddev->sync_thread) {
8338 			md_reap_sync_thread(mddev);
8339 			goto unlock;
8340 		}
8341 		/* Set RUNNING before clearing NEEDED to avoid
8342 		 * any transients in the value of "sync_action".
8343 		 */
8344 		mddev->curr_resync_completed = 0;
8345 		spin_lock(&mddev->lock);
8346 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8347 		spin_unlock(&mddev->lock);
8348 		/* Clear some bits that don't mean anything, but
8349 		 * might be left set
8350 		 */
8351 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8352 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8353 
8354 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8355 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8356 			goto not_running;
8357 		/* no recovery is running.
8358 		 * remove any failed drives, then
8359 		 * add spares if possible.
8360 		 * Spares are also removed and re-added, to allow
8361 		 * the personality to fail the re-add.
8362 		 */
8363 
8364 		if (mddev->reshape_position != MaxSector) {
8365 			if (mddev->pers->check_reshape == NULL ||
8366 			    mddev->pers->check_reshape(mddev) != 0)
8367 				/* Cannot proceed */
8368 				goto not_running;
8369 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8370 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8371 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8372 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8373 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8374 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8375 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8376 		} else if (mddev->recovery_cp < MaxSector) {
8377 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8378 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8379 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8380 			/* nothing to be done ... */
8381 			goto not_running;
8382 
8383 		if (mddev->pers->sync_request) {
8384 			if (spares) {
8385 				/* We are adding a device or devices to an array
8386 				 * which has the bitmap stored on all devices.
8387 				 * So make sure all bitmap pages get written
8388 				 */
8389 				bitmap_write_all(mddev->bitmap);
8390 			}
8391 			INIT_WORK(&mddev->del_work, md_start_sync);
8392 			queue_work(md_misc_wq, &mddev->del_work);
8393 			goto unlock;
8394 		}
8395 	not_running:
8396 		if (!mddev->sync_thread) {
8397 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8398 			wake_up(&resync_wait);
8399 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8400 					       &mddev->recovery))
8401 				if (mddev->sysfs_action)
8402 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8403 		}
8404 	unlock:
8405 		wake_up(&mddev->sb_wait);
8406 		mddev_unlock(mddev);
8407 	}
8408 }
8409 EXPORT_SYMBOL(md_check_recovery);
8410 
8411 void md_reap_sync_thread(struct mddev *mddev)
8412 {
8413 	struct md_rdev *rdev;
8414 
8415 	/* resync has finished, collect result */
8416 	md_unregister_thread(&mddev->sync_thread);
8417 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8418 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8419 		/* success...*/
8420 		/* activate any spares */
8421 		if (mddev->pers->spare_active(mddev)) {
8422 			sysfs_notify(&mddev->kobj, NULL,
8423 				     "degraded");
8424 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8425 		}
8426 	}
8427 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8428 	    mddev->pers->finish_reshape)
8429 		mddev->pers->finish_reshape(mddev);
8430 
8431 	/* If array is no-longer degraded, then any saved_raid_disk
8432 	 * information must be scrapped.
8433 	 */
8434 	if (!mddev->degraded)
8435 		rdev_for_each(rdev, mddev)
8436 			rdev->saved_raid_disk = -1;
8437 
8438 	md_update_sb(mddev, 1);
8439 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8440 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8441 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8442 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8443 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8444 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8445 	wake_up(&resync_wait);
8446 	/* flag recovery needed just to double check */
8447 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8448 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8449 	md_new_event(mddev);
8450 	if (mddev->event_work.func)
8451 		queue_work(md_misc_wq, &mddev->event_work);
8452 }
8453 EXPORT_SYMBOL(md_reap_sync_thread);
8454 
8455 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8456 {
8457 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8458 	wait_event_timeout(rdev->blocked_wait,
8459 			   !test_bit(Blocked, &rdev->flags) &&
8460 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8461 			   msecs_to_jiffies(5000));
8462 	rdev_dec_pending(rdev, mddev);
8463 }
8464 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8465 
8466 void md_finish_reshape(struct mddev *mddev)
8467 {
8468 	/* called be personality module when reshape completes. */
8469 	struct md_rdev *rdev;
8470 
8471 	rdev_for_each(rdev, mddev) {
8472 		if (rdev->data_offset > rdev->new_data_offset)
8473 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8474 		else
8475 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8476 		rdev->data_offset = rdev->new_data_offset;
8477 	}
8478 }
8479 EXPORT_SYMBOL(md_finish_reshape);
8480 
8481 /* Bad block management.
8482  * We can record which blocks on each device are 'bad' and so just
8483  * fail those blocks, or that stripe, rather than the whole device.
8484  * Entries in the bad-block table are 64bits wide.  This comprises:
8485  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8486  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8487  *  A 'shift' can be set so that larger blocks are tracked and
8488  *  consequently larger devices can be covered.
8489  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8490  *
8491  * Locking of the bad-block table uses a seqlock so md_is_badblock
8492  * might need to retry if it is very unlucky.
8493  * We will sometimes want to check for bad blocks in a bi_end_io function,
8494  * so we use the write_seqlock_irq variant.
8495  *
8496  * When looking for a bad block we specify a range and want to
8497  * know if any block in the range is bad.  So we binary-search
8498  * to the last range that starts at-or-before the given endpoint,
8499  * (or "before the sector after the target range")
8500  * then see if it ends after the given start.
8501  * We return
8502  *  0 if there are no known bad blocks in the range
8503  *  1 if there are known bad block which are all acknowledged
8504  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8505  * plus the start/length of the first bad section we overlap.
8506  */
8507 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8508 		   sector_t *first_bad, int *bad_sectors)
8509 {
8510 	int hi;
8511 	int lo;
8512 	u64 *p = bb->page;
8513 	int rv;
8514 	sector_t target = s + sectors;
8515 	unsigned seq;
8516 
8517 	if (bb->shift > 0) {
8518 		/* round the start down, and the end up */
8519 		s >>= bb->shift;
8520 		target += (1<<bb->shift) - 1;
8521 		target >>= bb->shift;
8522 		sectors = target - s;
8523 	}
8524 	/* 'target' is now the first block after the bad range */
8525 
8526 retry:
8527 	seq = read_seqbegin(&bb->lock);
8528 	lo = 0;
8529 	rv = 0;
8530 	hi = bb->count;
8531 
8532 	/* Binary search between lo and hi for 'target'
8533 	 * i.e. for the last range that starts before 'target'
8534 	 */
8535 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8536 	 * are known not to be the last range before target.
8537 	 * VARIANT: hi-lo is the number of possible
8538 	 * ranges, and decreases until it reaches 1
8539 	 */
8540 	while (hi - lo > 1) {
8541 		int mid = (lo + hi) / 2;
8542 		sector_t a = BB_OFFSET(p[mid]);
8543 		if (a < target)
8544 			/* This could still be the one, earlier ranges
8545 			 * could not. */
8546 			lo = mid;
8547 		else
8548 			/* This and later ranges are definitely out. */
8549 			hi = mid;
8550 	}
8551 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8552 	if (hi > lo) {
8553 		/* need to check all range that end after 's' to see if
8554 		 * any are unacknowledged.
8555 		 */
8556 		while (lo >= 0 &&
8557 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8558 			if (BB_OFFSET(p[lo]) < target) {
8559 				/* starts before the end, and finishes after
8560 				 * the start, so they must overlap
8561 				 */
8562 				if (rv != -1 && BB_ACK(p[lo]))
8563 					rv = 1;
8564 				else
8565 					rv = -1;
8566 				*first_bad = BB_OFFSET(p[lo]);
8567 				*bad_sectors = BB_LEN(p[lo]);
8568 			}
8569 			lo--;
8570 		}
8571 	}
8572 
8573 	if (read_seqretry(&bb->lock, seq))
8574 		goto retry;
8575 
8576 	return rv;
8577 }
8578 EXPORT_SYMBOL_GPL(md_is_badblock);
8579 
8580 /*
8581  * Add a range of bad blocks to the table.
8582  * This might extend the table, or might contract it
8583  * if two adjacent ranges can be merged.
8584  * We binary-search to find the 'insertion' point, then
8585  * decide how best to handle it.
8586  */
8587 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8588 			    int acknowledged)
8589 {
8590 	u64 *p;
8591 	int lo, hi;
8592 	int rv = 1;
8593 	unsigned long flags;
8594 
8595 	if (bb->shift < 0)
8596 		/* badblocks are disabled */
8597 		return 0;
8598 
8599 	if (bb->shift) {
8600 		/* round the start down, and the end up */
8601 		sector_t next = s + sectors;
8602 		s >>= bb->shift;
8603 		next += (1<<bb->shift) - 1;
8604 		next >>= bb->shift;
8605 		sectors = next - s;
8606 	}
8607 
8608 	write_seqlock_irqsave(&bb->lock, flags);
8609 
8610 	p = bb->page;
8611 	lo = 0;
8612 	hi = bb->count;
8613 	/* Find the last range that starts at-or-before 's' */
8614 	while (hi - lo > 1) {
8615 		int mid = (lo + hi) / 2;
8616 		sector_t a = BB_OFFSET(p[mid]);
8617 		if (a <= s)
8618 			lo = mid;
8619 		else
8620 			hi = mid;
8621 	}
8622 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8623 		hi = lo;
8624 
8625 	if (hi > lo) {
8626 		/* we found a range that might merge with the start
8627 		 * of our new range
8628 		 */
8629 		sector_t a = BB_OFFSET(p[lo]);
8630 		sector_t e = a + BB_LEN(p[lo]);
8631 		int ack = BB_ACK(p[lo]);
8632 		if (e >= s) {
8633 			/* Yes, we can merge with a previous range */
8634 			if (s == a && s + sectors >= e)
8635 				/* new range covers old */
8636 				ack = acknowledged;
8637 			else
8638 				ack = ack && acknowledged;
8639 
8640 			if (e < s + sectors)
8641 				e = s + sectors;
8642 			if (e - a <= BB_MAX_LEN) {
8643 				p[lo] = BB_MAKE(a, e-a, ack);
8644 				s = e;
8645 			} else {
8646 				/* does not all fit in one range,
8647 				 * make p[lo] maximal
8648 				 */
8649 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8650 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8651 				s = a + BB_MAX_LEN;
8652 			}
8653 			sectors = e - s;
8654 		}
8655 	}
8656 	if (sectors && hi < bb->count) {
8657 		/* 'hi' points to the first range that starts after 's'.
8658 		 * Maybe we can merge with the start of that range */
8659 		sector_t a = BB_OFFSET(p[hi]);
8660 		sector_t e = a + BB_LEN(p[hi]);
8661 		int ack = BB_ACK(p[hi]);
8662 		if (a <= s + sectors) {
8663 			/* merging is possible */
8664 			if (e <= s + sectors) {
8665 				/* full overlap */
8666 				e = s + sectors;
8667 				ack = acknowledged;
8668 			} else
8669 				ack = ack && acknowledged;
8670 
8671 			a = s;
8672 			if (e - a <= BB_MAX_LEN) {
8673 				p[hi] = BB_MAKE(a, e-a, ack);
8674 				s = e;
8675 			} else {
8676 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8677 				s = a + BB_MAX_LEN;
8678 			}
8679 			sectors = e - s;
8680 			lo = hi;
8681 			hi++;
8682 		}
8683 	}
8684 	if (sectors == 0 && hi < bb->count) {
8685 		/* we might be able to combine lo and hi */
8686 		/* Note: 's' is at the end of 'lo' */
8687 		sector_t a = BB_OFFSET(p[hi]);
8688 		int lolen = BB_LEN(p[lo]);
8689 		int hilen = BB_LEN(p[hi]);
8690 		int newlen = lolen + hilen - (s - a);
8691 		if (s >= a && newlen < BB_MAX_LEN) {
8692 			/* yes, we can combine them */
8693 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8694 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8695 			memmove(p + hi, p + hi + 1,
8696 				(bb->count - hi - 1) * 8);
8697 			bb->count--;
8698 		}
8699 	}
8700 	while (sectors) {
8701 		/* didn't merge (it all).
8702 		 * Need to add a range just before 'hi' */
8703 		if (bb->count >= MD_MAX_BADBLOCKS) {
8704 			/* No room for more */
8705 			rv = 0;
8706 			break;
8707 		} else {
8708 			int this_sectors = sectors;
8709 			memmove(p + hi + 1, p + hi,
8710 				(bb->count - hi) * 8);
8711 			bb->count++;
8712 
8713 			if (this_sectors > BB_MAX_LEN)
8714 				this_sectors = BB_MAX_LEN;
8715 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8716 			sectors -= this_sectors;
8717 			s += this_sectors;
8718 		}
8719 	}
8720 
8721 	bb->changed = 1;
8722 	if (!acknowledged)
8723 		bb->unacked_exist = 1;
8724 	write_sequnlock_irqrestore(&bb->lock, flags);
8725 
8726 	return rv;
8727 }
8728 
8729 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8730 		       int is_new)
8731 {
8732 	int rv;
8733 	if (is_new)
8734 		s += rdev->new_data_offset;
8735 	else
8736 		s += rdev->data_offset;
8737 	rv = md_set_badblocks(&rdev->badblocks,
8738 			      s, sectors, 0);
8739 	if (rv) {
8740 		/* Make sure they get written out promptly */
8741 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8742 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8743 		set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8744 		md_wakeup_thread(rdev->mddev->thread);
8745 	}
8746 	return rv;
8747 }
8748 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8749 
8750 /*
8751  * Remove a range of bad blocks from the table.
8752  * This may involve extending the table if we spilt a region,
8753  * but it must not fail.  So if the table becomes full, we just
8754  * drop the remove request.
8755  */
8756 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8757 {
8758 	u64 *p;
8759 	int lo, hi;
8760 	sector_t target = s + sectors;
8761 	int rv = 0;
8762 
8763 	if (bb->shift > 0) {
8764 		/* When clearing we round the start up and the end down.
8765 		 * This should not matter as the shift should align with
8766 		 * the block size and no rounding should ever be needed.
8767 		 * However it is better the think a block is bad when it
8768 		 * isn't than to think a block is not bad when it is.
8769 		 */
8770 		s += (1<<bb->shift) - 1;
8771 		s >>= bb->shift;
8772 		target >>= bb->shift;
8773 		sectors = target - s;
8774 	}
8775 
8776 	write_seqlock_irq(&bb->lock);
8777 
8778 	p = bb->page;
8779 	lo = 0;
8780 	hi = bb->count;
8781 	/* Find the last range that starts before 'target' */
8782 	while (hi - lo > 1) {
8783 		int mid = (lo + hi) / 2;
8784 		sector_t a = BB_OFFSET(p[mid]);
8785 		if (a < target)
8786 			lo = mid;
8787 		else
8788 			hi = mid;
8789 	}
8790 	if (hi > lo) {
8791 		/* p[lo] is the last range that could overlap the
8792 		 * current range.  Earlier ranges could also overlap,
8793 		 * but only this one can overlap the end of the range.
8794 		 */
8795 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8796 			/* Partial overlap, leave the tail of this range */
8797 			int ack = BB_ACK(p[lo]);
8798 			sector_t a = BB_OFFSET(p[lo]);
8799 			sector_t end = a + BB_LEN(p[lo]);
8800 
8801 			if (a < s) {
8802 				/* we need to split this range */
8803 				if (bb->count >= MD_MAX_BADBLOCKS) {
8804 					rv = -ENOSPC;
8805 					goto out;
8806 				}
8807 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8808 				bb->count++;
8809 				p[lo] = BB_MAKE(a, s-a, ack);
8810 				lo++;
8811 			}
8812 			p[lo] = BB_MAKE(target, end - target, ack);
8813 			/* there is no longer an overlap */
8814 			hi = lo;
8815 			lo--;
8816 		}
8817 		while (lo >= 0 &&
8818 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8819 			/* This range does overlap */
8820 			if (BB_OFFSET(p[lo]) < s) {
8821 				/* Keep the early parts of this range. */
8822 				int ack = BB_ACK(p[lo]);
8823 				sector_t start = BB_OFFSET(p[lo]);
8824 				p[lo] = BB_MAKE(start, s - start, ack);
8825 				/* now low doesn't overlap, so.. */
8826 				break;
8827 			}
8828 			lo--;
8829 		}
8830 		/* 'lo' is strictly before, 'hi' is strictly after,
8831 		 * anything between needs to be discarded
8832 		 */
8833 		if (hi - lo > 1) {
8834 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8835 			bb->count -= (hi - lo - 1);
8836 		}
8837 	}
8838 
8839 	bb->changed = 1;
8840 out:
8841 	write_sequnlock_irq(&bb->lock);
8842 	return rv;
8843 }
8844 
8845 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8846 			 int is_new)
8847 {
8848 	if (is_new)
8849 		s += rdev->new_data_offset;
8850 	else
8851 		s += rdev->data_offset;
8852 	return md_clear_badblocks(&rdev->badblocks,
8853 				  s, sectors);
8854 }
8855 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8856 
8857 /*
8858  * Acknowledge all bad blocks in a list.
8859  * This only succeeds if ->changed is clear.  It is used by
8860  * in-kernel metadata updates
8861  */
8862 void md_ack_all_badblocks(struct badblocks *bb)
8863 {
8864 	if (bb->page == NULL || bb->changed)
8865 		/* no point even trying */
8866 		return;
8867 	write_seqlock_irq(&bb->lock);
8868 
8869 	if (bb->changed == 0 && bb->unacked_exist) {
8870 		u64 *p = bb->page;
8871 		int i;
8872 		for (i = 0; i < bb->count ; i++) {
8873 			if (!BB_ACK(p[i])) {
8874 				sector_t start = BB_OFFSET(p[i]);
8875 				int len = BB_LEN(p[i]);
8876 				p[i] = BB_MAKE(start, len, 1);
8877 			}
8878 		}
8879 		bb->unacked_exist = 0;
8880 	}
8881 	write_sequnlock_irq(&bb->lock);
8882 }
8883 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8884 
8885 /* sysfs access to bad-blocks list.
8886  * We present two files.
8887  * 'bad-blocks' lists sector numbers and lengths of ranges that
8888  *    are recorded as bad.  The list is truncated to fit within
8889  *    the one-page limit of sysfs.
8890  *    Writing "sector length" to this file adds an acknowledged
8891  *    bad block list.
8892  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8893  *    been acknowledged.  Writing to this file adds bad blocks
8894  *    without acknowledging them.  This is largely for testing.
8895  */
8896 
8897 static ssize_t
8898 badblocks_show(struct badblocks *bb, char *page, int unack)
8899 {
8900 	size_t len;
8901 	int i;
8902 	u64 *p = bb->page;
8903 	unsigned seq;
8904 
8905 	if (bb->shift < 0)
8906 		return 0;
8907 
8908 retry:
8909 	seq = read_seqbegin(&bb->lock);
8910 
8911 	len = 0;
8912 	i = 0;
8913 
8914 	while (len < PAGE_SIZE && i < bb->count) {
8915 		sector_t s = BB_OFFSET(p[i]);
8916 		unsigned int length = BB_LEN(p[i]);
8917 		int ack = BB_ACK(p[i]);
8918 		i++;
8919 
8920 		if (unack && ack)
8921 			continue;
8922 
8923 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8924 				(unsigned long long)s << bb->shift,
8925 				length << bb->shift);
8926 	}
8927 	if (unack && len == 0)
8928 		bb->unacked_exist = 0;
8929 
8930 	if (read_seqretry(&bb->lock, seq))
8931 		goto retry;
8932 
8933 	return len;
8934 }
8935 
8936 #define DO_DEBUG 1
8937 
8938 static ssize_t
8939 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8940 {
8941 	unsigned long long sector;
8942 	int length;
8943 	char newline;
8944 #ifdef DO_DEBUG
8945 	/* Allow clearing via sysfs *only* for testing/debugging.
8946 	 * Normally only a successful write may clear a badblock
8947 	 */
8948 	int clear = 0;
8949 	if (page[0] == '-') {
8950 		clear = 1;
8951 		page++;
8952 	}
8953 #endif /* DO_DEBUG */
8954 
8955 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8956 	case 3:
8957 		if (newline != '\n')
8958 			return -EINVAL;
8959 	case 2:
8960 		if (length <= 0)
8961 			return -EINVAL;
8962 		break;
8963 	default:
8964 		return -EINVAL;
8965 	}
8966 
8967 #ifdef DO_DEBUG
8968 	if (clear) {
8969 		md_clear_badblocks(bb, sector, length);
8970 		return len;
8971 	}
8972 #endif /* DO_DEBUG */
8973 	if (md_set_badblocks(bb, sector, length, !unack))
8974 		return len;
8975 	else
8976 		return -ENOSPC;
8977 }
8978 
8979 static int md_notify_reboot(struct notifier_block *this,
8980 			    unsigned long code, void *x)
8981 {
8982 	struct list_head *tmp;
8983 	struct mddev *mddev;
8984 	int need_delay = 0;
8985 
8986 	for_each_mddev(mddev, tmp) {
8987 		if (mddev_trylock(mddev)) {
8988 			if (mddev->pers)
8989 				__md_stop_writes(mddev);
8990 			if (mddev->persistent)
8991 				mddev->safemode = 2;
8992 			mddev_unlock(mddev);
8993 		}
8994 		need_delay = 1;
8995 	}
8996 	/*
8997 	 * certain more exotic SCSI devices are known to be
8998 	 * volatile wrt too early system reboots. While the
8999 	 * right place to handle this issue is the given
9000 	 * driver, we do want to have a safe RAID driver ...
9001 	 */
9002 	if (need_delay)
9003 		mdelay(1000*1);
9004 
9005 	return NOTIFY_DONE;
9006 }
9007 
9008 static struct notifier_block md_notifier = {
9009 	.notifier_call	= md_notify_reboot,
9010 	.next		= NULL,
9011 	.priority	= INT_MAX, /* before any real devices */
9012 };
9013 
9014 static void md_geninit(void)
9015 {
9016 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9017 
9018 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9019 }
9020 
9021 static int __init md_init(void)
9022 {
9023 	int ret = -ENOMEM;
9024 
9025 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9026 	if (!md_wq)
9027 		goto err_wq;
9028 
9029 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9030 	if (!md_misc_wq)
9031 		goto err_misc_wq;
9032 
9033 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9034 		goto err_md;
9035 
9036 	if ((ret = register_blkdev(0, "mdp")) < 0)
9037 		goto err_mdp;
9038 	mdp_major = ret;
9039 
9040 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9041 			    md_probe, NULL, NULL);
9042 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9043 			    md_probe, NULL, NULL);
9044 
9045 	register_reboot_notifier(&md_notifier);
9046 	raid_table_header = register_sysctl_table(raid_root_table);
9047 
9048 	md_geninit();
9049 	return 0;
9050 
9051 err_mdp:
9052 	unregister_blkdev(MD_MAJOR, "md");
9053 err_md:
9054 	destroy_workqueue(md_misc_wq);
9055 err_misc_wq:
9056 	destroy_workqueue(md_wq);
9057 err_wq:
9058 	return ret;
9059 }
9060 
9061 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9062 {
9063 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9064 	struct md_rdev *rdev2;
9065 	int role, ret;
9066 	char b[BDEVNAME_SIZE];
9067 
9068 	/* Check for change of roles in the active devices */
9069 	rdev_for_each(rdev2, mddev) {
9070 		if (test_bit(Faulty, &rdev2->flags))
9071 			continue;
9072 
9073 		/* Check if the roles changed */
9074 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9075 
9076 		if (test_bit(Candidate, &rdev2->flags)) {
9077 			if (role == 0xfffe) {
9078 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9079 				md_kick_rdev_from_array(rdev2);
9080 				continue;
9081 			}
9082 			else
9083 				clear_bit(Candidate, &rdev2->flags);
9084 		}
9085 
9086 		if (role != rdev2->raid_disk) {
9087 			/* got activated */
9088 			if (rdev2->raid_disk == -1 && role != 0xffff) {
9089 				rdev2->saved_raid_disk = role;
9090 				ret = remove_and_add_spares(mddev, rdev2);
9091 				pr_info("Activated spare: %s\n",
9092 						bdevname(rdev2->bdev,b));
9093 				continue;
9094 			}
9095 			/* device faulty
9096 			 * We just want to do the minimum to mark the disk
9097 			 * as faulty. The recovery is performed by the
9098 			 * one who initiated the error.
9099 			 */
9100 			if ((role == 0xfffe) || (role == 0xfffd)) {
9101 				md_error(mddev, rdev2);
9102 				clear_bit(Blocked, &rdev2->flags);
9103 			}
9104 		}
9105 	}
9106 
9107 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9108 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9109 
9110 	/* Finally set the event to be up to date */
9111 	mddev->events = le64_to_cpu(sb->events);
9112 }
9113 
9114 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9115 {
9116 	int err;
9117 	struct page *swapout = rdev->sb_page;
9118 	struct mdp_superblock_1 *sb;
9119 
9120 	/* Store the sb page of the rdev in the swapout temporary
9121 	 * variable in case we err in the future
9122 	 */
9123 	rdev->sb_page = NULL;
9124 	alloc_disk_sb(rdev);
9125 	ClearPageUptodate(rdev->sb_page);
9126 	rdev->sb_loaded = 0;
9127 	err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9128 
9129 	if (err < 0) {
9130 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9131 				__func__, __LINE__, rdev->desc_nr, err);
9132 		put_page(rdev->sb_page);
9133 		rdev->sb_page = swapout;
9134 		rdev->sb_loaded = 1;
9135 		return err;
9136 	}
9137 
9138 	sb = page_address(rdev->sb_page);
9139 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9140 	 * is not set
9141 	 */
9142 
9143 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9144 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9145 
9146 	/* The other node finished recovery, call spare_active to set
9147 	 * device In_sync and mddev->degraded
9148 	 */
9149 	if (rdev->recovery_offset == MaxSector &&
9150 	    !test_bit(In_sync, &rdev->flags) &&
9151 	    mddev->pers->spare_active(mddev))
9152 		sysfs_notify(&mddev->kobj, NULL, "degraded");
9153 
9154 	put_page(swapout);
9155 	return 0;
9156 }
9157 
9158 void md_reload_sb(struct mddev *mddev, int nr)
9159 {
9160 	struct md_rdev *rdev;
9161 	int err;
9162 
9163 	/* Find the rdev */
9164 	rdev_for_each_rcu(rdev, mddev) {
9165 		if (rdev->desc_nr == nr)
9166 			break;
9167 	}
9168 
9169 	if (!rdev || rdev->desc_nr != nr) {
9170 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9171 		return;
9172 	}
9173 
9174 	err = read_rdev(mddev, rdev);
9175 	if (err < 0)
9176 		return;
9177 
9178 	check_sb_changes(mddev, rdev);
9179 
9180 	/* Read all rdev's to update recovery_offset */
9181 	rdev_for_each_rcu(rdev, mddev)
9182 		read_rdev(mddev, rdev);
9183 }
9184 EXPORT_SYMBOL(md_reload_sb);
9185 
9186 #ifndef MODULE
9187 
9188 /*
9189  * Searches all registered partitions for autorun RAID arrays
9190  * at boot time.
9191  */
9192 
9193 static LIST_HEAD(all_detected_devices);
9194 struct detected_devices_node {
9195 	struct list_head list;
9196 	dev_t dev;
9197 };
9198 
9199 void md_autodetect_dev(dev_t dev)
9200 {
9201 	struct detected_devices_node *node_detected_dev;
9202 
9203 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9204 	if (node_detected_dev) {
9205 		node_detected_dev->dev = dev;
9206 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9207 	} else {
9208 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9209 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9210 	}
9211 }
9212 
9213 static void autostart_arrays(int part)
9214 {
9215 	struct md_rdev *rdev;
9216 	struct detected_devices_node *node_detected_dev;
9217 	dev_t dev;
9218 	int i_scanned, i_passed;
9219 
9220 	i_scanned = 0;
9221 	i_passed = 0;
9222 
9223 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9224 
9225 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9226 		i_scanned++;
9227 		node_detected_dev = list_entry(all_detected_devices.next,
9228 					struct detected_devices_node, list);
9229 		list_del(&node_detected_dev->list);
9230 		dev = node_detected_dev->dev;
9231 		kfree(node_detected_dev);
9232 		rdev = md_import_device(dev,0, 90);
9233 		if (IS_ERR(rdev))
9234 			continue;
9235 
9236 		if (test_bit(Faulty, &rdev->flags))
9237 			continue;
9238 
9239 		set_bit(AutoDetected, &rdev->flags);
9240 		list_add(&rdev->same_set, &pending_raid_disks);
9241 		i_passed++;
9242 	}
9243 
9244 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9245 						i_scanned, i_passed);
9246 
9247 	autorun_devices(part);
9248 }
9249 
9250 #endif /* !MODULE */
9251 
9252 static __exit void md_exit(void)
9253 {
9254 	struct mddev *mddev;
9255 	struct list_head *tmp;
9256 	int delay = 1;
9257 
9258 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9259 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9260 
9261 	unregister_blkdev(MD_MAJOR,"md");
9262 	unregister_blkdev(mdp_major, "mdp");
9263 	unregister_reboot_notifier(&md_notifier);
9264 	unregister_sysctl_table(raid_table_header);
9265 
9266 	/* We cannot unload the modules while some process is
9267 	 * waiting for us in select() or poll() - wake them up
9268 	 */
9269 	md_unloading = 1;
9270 	while (waitqueue_active(&md_event_waiters)) {
9271 		/* not safe to leave yet */
9272 		wake_up(&md_event_waiters);
9273 		msleep(delay);
9274 		delay += delay;
9275 	}
9276 	remove_proc_entry("mdstat", NULL);
9277 
9278 	for_each_mddev(mddev, tmp) {
9279 		export_array(mddev);
9280 		mddev->hold_active = 0;
9281 	}
9282 	destroy_workqueue(md_misc_wq);
9283 	destroy_workqueue(md_wq);
9284 }
9285 
9286 subsys_initcall(md_init);
9287 module_exit(md_exit)
9288 
9289 static int get_ro(char *buffer, struct kernel_param *kp)
9290 {
9291 	return sprintf(buffer, "%d", start_readonly);
9292 }
9293 static int set_ro(const char *val, struct kernel_param *kp)
9294 {
9295 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9296 }
9297 
9298 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9299 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9300 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9301 
9302 MODULE_LICENSE("GPL");
9303 MODULE_DESCRIPTION("MD RAID framework");
9304 MODULE_ALIAS("md");
9305 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9306